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Travel time reliability is deemed as one of the most important factors affecting travelers’ 

route choice decisions. However, existing practices mostly consider average travel time 

only. This dissertation establishes a methodology framework to overcome such 

limitation.   

Semi-standard deviation is first proposed as the measure of reliability to quantify the risk 

under uncertain conditions on the network. This measure only accounts for travel times 

that exceed certain pre-specified benchmark, which offers a better behavioral 

interpretation and theoretical foundation than some currently used measures such as 

standard deviation and the probability of on-time arrival.   

Two path finding models are then developed by integrating both average travel time and 

semi-standard deviation. The single objective model tries to minimize the weighted sum 

of average travel time and semi-standard deviation, while the multi-objective model treats 

them as separate objectives and seeks to minimize them simultaneously. The multi-

objective formulation is preferred to the single objective model, because it eliminates the 

need for prior knowledge of reliability ratios. It offers an additional benefit of providing 

multiple attractive paths for traveler’s further decision making.  

The sampling based approach using archived travel time data is applied to derive the path 

semi-standard deviation. The approach provides a nice workaround to the problem that 

there is no exact solution to analytically derive the measure. Through this process, the 

correlation structure can be implicitly accounted for while simultaneously avoiding the 

complicated link travel time distribution fitting and convolution process.  

Furthermore, the metaheuristic algorithm and stochastic dominance based approach are 

adapted to solve the proposed models. Both approaches address the issue where classical 

shortest path algorithms are not applicable due to non-additive semi-standard deviation. 

ABSTRACT OF DISSERTATION 

 

INCORPORATING TRAVEL TIME RELIABILITY INTO TRANSPORTATION 

NETWORK MODELING 

 



However, the stochastic dominance based approach is preferred because it is more 

computationally efficient and can always find the true optimal paths.  

In addition to semi-standard deviation, on-time arrival probability and scheduling delay 

measures are also investigated. Although these three measures share similar mathematical 

structures, they exhibit different behaviors in response to large deviations from the pre-

specified travel time benchmark. Theoretical connections between these measures and the 

first three stochastic dominance rules are also established. This enables us to incorporate 

on-time arrival probability and scheduling delay measures into the methodology 

framework as well.  

 

KEYWORDS: Travel Time Reliability, Transportation System Uncertainty,  

                         Route Choice, Traffic Assignment, Stochastic Dominance 

              

 

 

 

 

 

 

 

 

 

  

Xu Zhang 

Name of Student 

5/5/2017 

Date 

 



 

 

 

 

 

 

 

 

 

 

By 

Xu Zhang 

 

 

  

Dr. Mei Chen 

Director of Dissertation 
 

Dr. Yi-Tin Wang 
Director of Graduate Studies 

 
5/5/2017 

Date 
 

 

 

INCORPORATING TRAVEL TIME RELIABILITY INTO 

TRANSPORTATION NETWORK MODELING 



 

 

To my beloved family 



iii 
 

ACKNOWLEDGEMENTS 

First of all, I would like to express my sincerest gratitude to my advisor, Dr. Mei Chen, 

without whom, this dissertation would have never become a reality. Dr. Chen brought me 

to the academic world and advised me constantly throughout this journey. I have 

benefited so much from the conversations and discussions with her almost every day over 

the last six years both in and out of the transportation profession.  

I also would like to thank my committee members, Dr. Reg Souleyrette, Dr. Nick 

Stamatiadis, and Dr. Qiang Ye and former member Dr. Yanbing Zheng for their 

willingness to serve on my dissertation committee, valuable time to review my 

dissertation, and constructive comments that greatly enhanced this dissertation.  

Next, I want to thank my friends and colleagues. Wes Nowell, James Riker, Steven 

Shafner, Marcos Rodrigues, Yongwei Shan, Chen Wang, Bojie Chen, Teng Wang, 

Shushu Liu, Eric Green, Tony Fields, Shelia Williams. It has never been easy to study in 

a completely new environment, but your help, companionship and encouragement have 

made this journey meaningful and memorable.  

Last but not least, I would like to thank my family for their endless understanding, 

support, encouragement, and love since day one. Thank you dad, mom, brother, and 

sisters for always being there no matter what. I also want to thank my wife, for all the 

joys and laughters she brings to my life.  

  



iv 
 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ............................................................................................... iii 

LIST OF TABLES ............................................................................................................ vii 

LIST OF FIGURES ......................................................................................................... viii 

CHAPTER 1 INTRODUCTION ........................................................................................ 1 

1.1 BACKGROUND ....................................................................................................... 1 

1.2 PROBLEM STATEMENT ....................................................................................... 3 

1.3 OBJECTIVES ........................................................................................................... 4 

1.4 OUTLINE OF DISSERTATION .............................................................................. 5 

CHAPTER 2 LITERATURE REVIEW ............................................................................. 8 

2.1 INTRODUCTION ..................................................................................................... 8 

2.2 TRAVEL TIME DISTRIBUTION ........................................................................... 8 

2.3 TRAVEL TIME CORRELATION ........................................................................... 9 

2.4 ROUTE CHOICE MODELS .................................................................................. 11 

2.4.1 Distributional Approach ................................................................................... 11 

2.4.2 Centrality-Dispersion Approach ....................................................................... 13 

2.4.3 Multi-Objective Shortest Path Problem ............................................................ 14 

2.5 TRAFFIC EQUILIBRIUM MODELS.................................................................... 15 

2.5.1 Distributional Approach ................................................................................... 15 

2.5.2 Centrality-Dispersion Approach ....................................................................... 16 

2.5.3 Multi-Objective Traffic Assignment Model ..................................................... 18 

2.6 CONCLUSIONS ..................................................................................................... 19 

CHAPTER 3 A MINIMUM WEIGHTED COST PATH FINDING MODEL ................ 20 

3.1 INTRODUCTION ................................................................................................... 20 

3.2 PROBLEM STATEMENT ..................................................................................... 21 

3.2.1 Semi-Standard Deviation as Reliability Measure ............................................. 21 

3.2.2 Model Formulation ........................................................................................... 22 

3.2.3 Routing Model Considering Travel Unreliability ............................................ 23 

3.3 SOLUTION ALGORITHM .................................................................................... 24 

3.3.1 Overview .......................................................................................................... 24 

3.3.2 Chromosome Encoding and Population Initialization ...................................... 25 

3.3.3 Fitness Assignment ........................................................................................... 26 



v 
 

3.3.4 Selection Operation .......................................................................................... 26 

3.3.5 Crossover Operation ......................................................................................... 26 

3.3.6 Mutation Operation........................................................................................... 27 

3.4 TUNING ALGORITHM PARAMETERS ............................................................. 28 

3.5 NUMERICAL EXPERIMENTS ............................................................................ 29 

3.5.1 Network and Travel Time Data ........................................................................ 29 

3.5.2 Model Calibration ............................................................................................. 34 

3.5.3 Model Implementation and Discussion ............................................................ 36 

3.6 CONCLUSIONS ..................................................................................................... 39 

CHAPTER 4 A MULTI-OBJECTIVE PATH FINDING MODEL ................................. 41 

4.1 INTRODUCTION ................................................................................................... 41 

4.2 PROBLEM STATEMENT ..................................................................................... 42 

4.2.1 Definitions ........................................................................................................ 42 

4.2.2 Model Formulation ........................................................................................... 43 

4.3 SOLUTION ALGORITHM .................................................................................... 44 

4.3.1 Overview .......................................................................................................... 44 

4.3.2 Fitness Assignment ........................................................................................... 45 

4.3.3 Environmental Selection................................................................................... 45 

4.4 TUNING ALGORITHM PARAMETERS ............................................................. 47 

4.5 NUMERICAL EXPERIMENTS ............................................................................ 48 

4.5.1 Model Calibration ............................................................................................. 48 

4.5.2 Model Implementation and Discussion ............................................................ 51 

4.6 CONCLUSIONS ..................................................................................................... 56 

CHAPTER 5 A GENERALIZED ROUTE CHOICE MODLING FRAMEWORK ....... 58 

5.1 INTRODUCTION ................................................................................................... 58 

5.2 ALTERNATIVE RELIABILITY MODELS .......................................................... 60 

5.2.1 On Time Arrival Probability............................................................................. 60 

5.2.2 Scheduling Delay .............................................................................................. 61 

5.2.3 Semi-Standard Deviation .................................................................................. 62 

5.3 A GENERALIZED FRAMEWORK ...................................................................... 63 

5.3.1 Measure Generalization .................................................................................... 63 

5.3.2 Model Formulation ........................................................................................... 64 



vi 
 

5.4 CONNECTIONS WITH STOCHASTIC DOMINANCE THEORY ..................... 65 

5.4.1 Stochastic Dominance Definitions ................................................................... 65 

5.4.2 Theoretical Connections ................................................................................... 68 

5.5 SOLUTION ALGORITHM .................................................................................... 71 

5.6 NUMERICAL EXPERIMENTS ............................................................................ 72 

5.6.1 OD Pair 128-278 ............................................................................................... 73 

5.6.2 OD Pair 285-9 ................................................................................................... 82 

5.7 CONCLUSIONS ..................................................................................................... 90 

CHAPTER 6 A MULTI-OBJECTIVE USER EQUILIBRIUM MODEL ....................... 92 

6.1 INTRODUCTION ................................................................................................... 92 

6.2 PROBLEM STATEMENT ..................................................................................... 93 

6.3 SOLUTION ALGORITHM .................................................................................... 94 

6.4 NUMERICAL EXPERIMENTS ............................................................................ 96 

6.4.1 Small Network .................................................................................................. 96 

6.4.2 Medium-Sized Network ................................................................................... 99 

6.5 CONCLUSIONS ................................................................................................... 100 

CHAPTER 7 CONCLUSIONS AND FUTURE RESEARCH ...................................... 102 

7.1 CONCLUSIONS ................................................................................................... 102 

7.2 FUTURE RESEARCH ......................................................................................... 103 

REFERENCES ............................................................................................................... 105 

VITA ............................................................................................................................... 112 

 

  



vii 
 

LIST OF TABLES 

Table 3.1 Path Travel Times on Illustrative Network ....................................................... 22 

Table 3.2 Two-Link Travel Time Samples ....................................................................... 24 

Table 3.3 Link-Node Incidence Table .............................................................................. 33 

Table 3.4 Segment Travel Time........................................................................................ 33 

Table 3.5 Options of GA Parameters ................................................................................ 34 

Table 3.6 Combination of GA Parameters ........................................................................ 34 

Table 3.7 GA Performance on Lexington Network .......................................................... 35 

Table 3.8 GA Performance on Louisville Network .......................................................... 35 

Table 3.9 Descriptive Statistics of Identified Path Travel Times ..................................... 38 

Table 3.10 Objective Values of Identified Paths .............................................................. 38 

Table 4.1 SOSD and MSSD Non-Dominated Paths ......................................................... 49 

Table 4.2 Options of EA Parameters ................................................................................ 50 

Table 4.3 Combination of EA Parameters ........................................................................ 50 

Table 4.4 EA Performance Measures ............................................................................... 51 

Table 4.5 Attributes of Selected Paths .............................................................................. 55 

Table 5.1 STD Non-Dominated Paths for OD 128-478 ................................................... 73 

Table 5.2 Statistics of MTTR Non-Dominated Paths for OD128-478 ............................. 77 

Table 5.3 Non-Dominated Paths Regarding Each MTTR Rule for OD128-478 .............. 77 

Table 5.4 STD Non-Dominated Paths for OD 285-9 ....................................................... 82 

Table 5.5 Statistics of MTTR Non-Dominated Paths for OD285-9 ................................. 86 

Table 5.6 Non-Dominated Paths Regarding Each MTTR Rule for OD285-9 .................. 86 

Table 6.1 Network Performance under User Equilibriums .............................................. 97 

 

  



viii 
 

LIST OF FIGURES 

Figure 1.1 Travel Time Variation on I-71/75 ..................................................................... 2 

Figure 1.2 Valuation of Travel Time Reliability(16).......................................................... 3 

Figure 1.3 Research Flowchart ........................................................................................... 7 

Figure 3.1 Two-Link Example .......................................................................................... 24 

Figure 3.2 Genetic Algorithm Flowchart .......................................................................... 28 

Figure 3.3 Lexington Area Route Network ...................................................................... 30 

Figure 3.4 Louisville Area Route Network....................................................................... 30 

Figure 3.5 Network Topology Example ........................................................................... 31 

Figure 3.6 Link Aggregation Procedure ........................................................................... 32 

Figure 3.7 Routing Options for OD Pair 209-133 ............................................................ 37 

Figure 3.8 Routing Options for OD Pair 285-9 ................................................................ 37 

Figure 4.1 Environmental Selection Example .................................................................. 46 

Figure 4.2 SOSD Non-Dominated Paths .......................................................................... 49 

Figure 4.3 Single-Objective Optimal Path ........................................................................ 54 

Figure 4.4 Multi-Objective Non-Dominated Paths ........................................................... 55 

Figure 5.1 Cumulative distributions on three example paths ........................................... 66 

Figure 5.2 Cumulative distributions with additional variability ....................................... 67 

Figure 5.3 Consistency between MTTR and SDT Rules .................................................. 70 

Figure 5.4 FOSD Non-Dominated Paths for OD128-478 ................................................ 74 

Figure 5.5 Cumulative Distributions of Travel Time on FOSD Non-Dominated Paths for 

OD128-478 ....................................................................................................................... 74 

Figure 5.6 SOSD Non-Dominated Paths for OD128-478 ................................................ 75 

Figure 5.7 Cumulative Distributions of Travel Time on SOSD Non-Dominated Paths for 

OD128-478 ....................................................................................................................... 75 

Figure 5.8 TOSD Non-Dominated Paths for OD128-478 ................................................ 76 

Figure 5.9 Cumulative Distributions of Travel Time on TOSD Non-Dominated Paths for 

OD128-478 ....................................................................................................................... 76 

Figure 5.10 MLAP Non-Dominated Paths for OD128-478.............................................. 79 

Figure 5.11 Cumulative Distributions of Travel Time on MLAP Non-Dominated Paths 

for OD128-478 .................................................................................................................. 79 

Figure 5.12 MSD Non-Dominated Paths for OD128-478 ................................................ 80 

Figure 5.13 Cumulative Distributions of Travel Time on MSD Non-Dominated Paths for 

OD128-478 ....................................................................................................................... 80 

Figure 5.14 MSSD Non-Dominated Paths for OD128-478 .............................................. 81 

Figure 5.15 Cumulative Distributions of Travel Time on MSSD Non-Dominated Paths 

for OD128-478 .................................................................................................................. 81 

Figure 5.16 FOSD Non-Dominated Paths for OD285-9 .................................................. 83 

Figure 5.17 Cumulative Distributions of Travel Time on FOSD Non-Dominated Paths for 

OD285-9 ........................................................................................................................... 83 

Figure 5.18 SOSD Non-Dominated Paths for OD285-9 .................................................. 84 



ix 
 

Figure 5.19 Cumulative Distributions of Travel Time on SOSD Non-Dominated Paths for 

OD285-9 ........................................................................................................................... 84 

Figure 5.20 TOSD Non-Dominated Paths for OD285-9 .................................................. 85 

Figure 5.21 Cumulative Distributions of Travel Time on TOSD Non-Dominated Paths for 

OD285-9 ........................................................................................................................... 85 

Figure 5.22 MLAP Non-Dominated Paths for OD285-9.................................................. 87 

Figure 5.23 Cumulative Distributions of Travel Time on MLAP Non-Dominated Paths 

for OD285-9 ...................................................................................................................... 87 

Figure 5.24 MSD Non-Dominated Paths for OD285-9 .................................................... 88 

Figure 5.25 Cumulative Distributions of Travel Time on MSD Non-Dominated Paths for 

OD285-9 ........................................................................................................................... 88 

Figure 5.26 MSSD Non-Dominated Paths for OD285-9 .................................................. 89 

Figure 5.27 Cumulative Distributions of Travel Time on MSSD Non-Dominated Paths 

for OD285-9 ...................................................................................................................... 89 

Figure 6.1 Small Network ................................................................................................. 97 

Figure 6.2 Demand Share on Paths under Equilibrium Condition ................................... 98 

Figure 6.3 Medium-Sized Network .................................................................................. 99 

Figure 6.4 Convergence Performance on the Medium-Size Network ............................ 100 

 



1 
 

CHAPTER 1 INTRODUCTION 

 

1.1 BACKGROUND 

The efficiency of a transportation system in moving people and goods around is of 

critical importance to societal vitality and development. However, such efficiency is 

greatly undermined as the system is often faced with uncertainty resulted from a variety 

of non-recurring events. Aside from extreme cases like floods, tornados, and hurricanes 

that can be disastrous to the regular transportation activities, more common events 

including traffic incidents, work zones, inclement weather, control device malfunctions, 

festival and sport events, and so forth could also have apparent negative impacts on the 

system. These factors disrupt or interfere with normal traffic operation and lead to 

unstable system conditions over the course of time. In order to better investigate and 

understand the uncertainty and reliability aspects of road network, many approaches have 

been proposed from different perspectives. For instance, the connectivity reliability 

models the probability of successful connection between an origin and destination (OD) 

pair in a network(1; 2). The capacity reliability concept has also been developed to model 

the probability of roadway network handling a certain level of travel demand during 

capacity-degrading circumstances(3). Another important concept that has been heavily 

investigated and will be the focus of current research is travel time reliability (TTR).  

As one of the most common performance measures, travel time represents the amount of 

time a traveler spends traveling from an origin to a destination. It is a direct reflection of 

the traffic condition at the time when the observation is made. For instance, when the 

traffic volume is low and there is no delay on the road, the experienced travel time would 

be considered as free-flow travel time. However, when the volume is close to the capacity 

and a crash occurs on the road, the resulting travel time would be significantly higher 

compared to that during the free-flow condition. Due to the impact of those factors 

mentioned before, travel times actually experienced on a link or a route are always 

fluctuating at different times of day and from day to day.  

Conventionally, only average travel time is measured and communicated to show the 

system performance by transportation agencies. In the meantime, it is traditional practice 

during the network modeling process to assume travelers are risk neutral and only 

consider average travel time when making route choice decisions. It is then assumed 

travelers always select the route with minimum travel time between specified origin and 

destination, regardless of how variable travel times could be. However, the limitations 

underlying these assumptions can be easily illustrated using real-world travel time 

observations, as displayed in Figure 1.1. The data is collected from an 8-mile segment on 

Interstate 71/75 in Northern Kentucky area. The travel times on non-holiday weekdays 

are broken down with respect to each event type. It is clearly shown that travel times are 

dramatically variable throughout the day, especially during morning and afternoon peak 

periods. In addition, average travel time would significantly misrepresent travel 

conditions under many occasions. Thus, it is not able to reflect the whole story of actual 

travel conditions on the corridor of interest.   
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Figure 1.1 Travel Time Variation on I-71/75 

Under this notion, the travel time reliability concept has been proposed and applied by 

transportation agencies and practitioners to provide additional perspective on the 

variation aspect of travel times. According to the SHRP2 L03 project, which evaluates 

various procedures for analytically determining the impacts of congestion and reliability 

mitigation strategies, the TTR is “the level of consistency in travel time conditions 

represented by the distribution of travel times that occur over a substantial period of 

time”(4). Another research effort that incorporates the travel time reliability concept into 

the Highway Capacity Manual provides a much thorough definition as “travel time 

reliability aims to quantify the variation of travel time. It is defined using the entire range 

of travel times for a given trip, for a selected time period (for example, the pm peak hour 

during weekdays), and over a selected horizon (for example, a year). For the purpose of 

measuring reliability, a “trip” can occur on a specific segment, facility (combination of 

multiple consecutive segments), any subset of the transportation network, or can be 

broadened to include a traveler’s initial origin and final destination. Measuring travel 

time reliability requires that a sufficient history of travel times be present in order to 

track travel time performance; this history is described by the travel time distribution for 

a given trip”(5). 

Recently, transportation agencies have recognized that TTR provides a new means to 

measure the deficiency of the system, and thus devoted numerous efforts to incorporate it 

into performance management and project appraisals. The previously enacted law, the 

Moving Ahead for Progress in the 21st Century Act or MAP-21, requires the State 

Departments of Transportation (DOT) and Metropolitan Planning Organization (MPO) to 

shift their focus toward establishing performance based transportation system 

management programs. In particular, travel time reliability is one of seven national-level 

performance measures to be included in the performance reporting(6). Authorized by 

Congress, the second Strategic Highway Research Program or SHRP2 has also been 
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established to conduct in-depth research on four imperative areas including system 

reliability on national highway system, aiming to address the negative impacts resulting 

from a wide range of abnormal traffic events(7). In addition, a number of DOTs and 

MPOs have also put significant effort into integrating travel time reliability in their 

network monitoring, reporting, and planning processes(8-10). 

Many empirical studies have also confirmed that TTR is one of the most important 

elements in travelers’ route choice decisions. Jackson and Jucker find that some travelers 

are willing to choose the more reliable route over the less reliable one to avoid the risk of 

being delayed, even when the former may take longer than the latter(11). Through a 

stated preference survey, Small et al find that both passenger travelers and freight 

shippers value travel time predictability during congested periods and they are willing to 

pay to increase the reliability of travel and avoid the cost of late arrival(12). They also 

indicate that the value of reliability depends on trip purpose. For example, commuters 

and business travelers usually put a higher value on trip reliability than recreational or 

casual travelers. Another study conducted by Abdel-Aty et al indicates that travel time 

reliability is a significant factor in route choice among other factors like travel time and 

traffic safety(13). Senna shows that the value of reliability is close to or even higher than 

the value of travel time under investigated scenarios. He also indicates there is a need to 

incorporate the reliability into travel choice models(14). Similarly, using both revealed 

preference and stated preference data on State Route 91 in Los Angeles, Small et al apply 

the difference between the 80th and 50th percentile of travel times as reliability measure 

and estimate that the median value of time is $21.46/hour while the median value of 

reliability is $19.56/hour(15). Carrion and Levinson summarize the state of the practice 

on valuation of travel time reliability (Figure 1.2) and find that the value of reliability is 

typically 0.5 to 2 times the value of travel time(16). 

 

Figure 1.2 Valuation of Travel Time Reliability(16) 

1.2 PROBLEM STATEMENT 

Despite the significance of TTR in influencing travelers’ decision-making behaviors, the 

consideration of reliability is not included in the conventional route choice and traffic 

assignment models(17). These models are developed under the assumption that travelers 

R
el

ia
b

il
it

y
 R

at
io

 

Year 



4 
 

only consider average travel time in their utility function and accordingly select paths 

with minimal travel time between OD pairs. Then, according to the Wardrop’s Principle, 

equilibrium flow pattern on the network can be obtained when travel times on all used 

paths are equal to the minimum travel time between each origin and destination pair. 

To obtain equilibrium, the minimum travel time between each OD pair has to be known 

beforehand. Therefore, the shortest path problem has to be solved iteratively during the 

procedure. Since travel time is included in the cost function, classical algorithms, e.g. 

Dijkstra’s algorithm, can be used to find the optimal path.  

However, as many empirical studies have shown, travelers also take travel time reliability 

into consideration when making trip decisions, in addition to average travel time. In fact, 

under some circumstances, they are even more concerned with their knowledge of travel 

time variation, which is gradually built based on their past experiences. As a result, the 

identified optimal path from traditional models may fail to represent most travelers’ risk-

averse behaviors(16). 

The traditional travel demand forecasting model is a vital tool for many transportation 

agencies in their planning process. It would be of great value to incorporate the reliability 

component into the model so that it is more realistic and comprehensive. Many studies 

have been conducted on this front and contributed to the advance of current modeling 

techniques. A variety of models including on-time arrival probability(18), travel time 

budget(19), stochastic dominance(20), etc. have been proposed and investigated in 

previous research. Although they provide valuable insights into the topic, the drawbacks 

in these models are also apparent. For example, many of them assume travel times are 

normally distributed and associated distributions among links are mutually independent, 

which is not the case based on real-world observations(4). 

1.3 OBJECTIVES 

The objective of this research is to extend the travel forecasting model by taking travel 

time reliability into consideration and evaluate the corresponding effects. To better 

understand the current issue and prepare for the research, existing literature will be 

extensively reviewed. A realistic reliability measure that is different from those already 

studied will be proposed in the research. The measure should have better behavioral 

representation and be readily incorporated into the model.  

With incorporation of the reliability component, it will be shown later that the cost 

function would be no longer additive, i.e. the total cost on the path cannot be obtained 

from the direct summation of cost on links comprising the path. As a result, traditional 

deterministic shortest path algorithms are no longer applicable. To overcome this 

challenge, two metaheuristic algorithms will be explored in current research, one of 

which has not been previously evaluated in the reliability modeling context.  

In addition, Stochastic Dominance Theory has been recently introduced to the 

transportation modeling field. It has been shown to be effective in prioritizing alternative 

paths in stochastic setting and representing various risk-taking preferences as well. This 
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research will intend to further its application by evaluating the relationship between the 

first three stochastic dominance criteria and existing reliability models. The results from 

this effort will provide behavioral foundations for reliability models and facilitate the 

development of a more effective approach.  

Last, with the understanding of specific behaviors of the proposed route choice model, 

traditional traffic assignment model will be extended so that the travel time reliability 

component can be accounted for in achieving new equilibrium. The model developed 

should be solvable with effective solution methods and implementable in practical 

applications. 

1.4 OUTLINE OF DISSERTATION 

In this section, the specific organization of the dissertation is provided as follows. 

In Chapter 1, the background of research is first introduced to provide a broad context for 

this dissertation. The statement of the problem is then elaborated, followed by the 

objectives that are intended to be achieved in the following chapters.  

In Chapter 2, findings from extensive review on the existing literature are provided. The 

review covers a broad range of topics, involving travel time distributions, correlations of 

link travel times, and extension of traditional path finding and traffic assignment models 

by integrating travel time reliability. The limitations underlying previous studies are also 

discussed.  

In Chapter 3, the semi-standard deviation is proposed as new reliability measure and the 

route choice model is reformulated by using a sampling based approach. To solve the 

new model, the Genetic Algorithm based approach is adapted. In addition, a Label 

Correcting algorithm is applied to calibrate Genetic Algorithm parameters in order to 

achieve better performance. Numerical experiments based on real-world data are 

conducted. 

In Chapter 4, the single objective route choice model is transformed into the multi-

objective counterpart, after recognizing the limitations underlying the former model. A 

multi-objective evolutionary algorithm is applied to solve the reformulated model. To 

reduce the objectivity in choosing algorithm parameters, the second-order stochastic 

dominance criterion is implemented and obtained non-dominated paths are used as 

ground truth for assessing the performance of proposed solution approach. Numerical 

experiments based on Louisville urban network and collected GPS speed data are 

conducted to evaluate the model. 

In Chapter 5, a more in-depth study based on Stochastic Dominance Theory is conducted. 

The specific risk-taking behaviors corresponding to each of the dominant rules are 

discussed in this chapter. Later, the relationships between three reliability models and 

stochastic dominance rules are established, which in turn provide theoretical foundations 

for reliability models of interest. The extended Label Correcting algorithms are 

implemented to find Pareto optimal solutions for different models. 
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In Chapter 6, the research is further enriched by looking into a multi-objective traffic 

assignment model, so that both average travel time and reliability can be simultaneously 

minimized. Next, the solution algorithm taking advantage of the Label Correcting 

algorithm and Reference Point-based Method of Successive Averages approach is 

developed. At last, numerical experiments are conducted on two hypothetical networks to 

assess the effectiveness of the proposed model. 

In Chapter 7, an overall summary of this dissertation and future research directions are 

provided. 
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Figure 1.3 Research Flowchart 
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CHAPTER 2 LITERATURE REVIEW 

 

2.1 INTRODUCTION 

The transportation community has increasingly recognized the importance of travel time 

reliability and numerous efforts have been devoted to this area, aiming to advance the 

understanding and implementation of the reliability component in various transportation 

applications. In this chapter, existing literature on four main aspects that are directly 

related to TTR concept are carefully reviewed to better understand the state of the art. In 

particular, Section 2.2 summarizes findings regarding travel time distribution, which is 

often regarded as the building stone of TTR quantification. Section 2.3 provides 

discussions on the correlation of travel times, which is another important element in 

reliability modeling area. Furthermore, route choice models involving TTR 

considerations are extensively reviewed and discussed in Section 2.4. Section 2.5 is 

dedicated to extended traffic equilibrium models by taking travel reliability into account. 

At last, the findings from literature review are discussed and summarized in Section 2.6.  

2.2 TRAVEL TIME DISTRIBUTION  

With the advancement of data collection and communication technologies, travel time 

data can now be consistently obtained by a myriad of means at large spatial and temporal 

scales. This offers a valuable opportunity to quantify travel time variability over time 

across the network. As there is no consensus on the performance measure that is suitable 

to quantitatively represent TTR, different indicators have been proposed to assess 

reliability condition from different perspectives(21). In contrast, there is no dispute that 

the travel time distribution is the starting point to reliability quantification. Therefore, it is 

of practical value to appropriately construct travel time distributions.  

SHRP2 L03 Analytic Procedures for Determining the Impacts of Reliability Mitigation 

Strategies project finds out that distributions on different types of facility, including 

urban freeways, rural freeways, and urban arterials, are all having longer tails at right side 

of the distribution(4). The observation indicates excessively long travel times exist across 

facility types, regardless of the fact that traffic flow patterns can be very different on 

those facilities. In addition, it is reported that the distribution of travel times during peak 

periods has a broader and less sharp shape than that during off-peak periods.  

Another SHRP2 study establishes a reliability monitoring system using data from various 

sources to construct probability density functions and cumulative density functions under 

different traffic operating regimes(22). Each regime represents a combination of 

prevalent traffic operating condition (e.g. uncongested, moderately congested, highly 

congested) along with the occurrence of traffic influencing events (e.g. accidents, no-

accident incidents, road work, weather, special events. etc.). It is shown that obtained 

distributions under different regimes are often skewed to the right.  

In another study, Arroyo and Kornhauser look into normal, gamma, weibull, and 

lognormal distributions on the basis of GPS-based data using a maximum likelihood 
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technique, and they find that the lognormal distribution provides the best performance in 

fitting the observed data(23).  

Li et al find that travel times during weekdays have a highly skewed distribution with a 

long right tail. Depending on time periods, the travel  time distribution curve during 

uncongested period has the shortest right tail whereas the distribution during afternoon 

peak is mostly skewed(24). They also show that the normal distribution best describes 

travel times when a shorter time window is used while lognormal distribution has the best 

fitness as time window increases. 

Recognizing the non-symmetrical feature of travel time distribution, Emam et al evaluate 

weibull, exponential, lognormal, and normal distributions using dual loop detector data 

on I-4 in Orlando and discover that lognormal distribution works best in terms of the 

goodness-of-fit(25).  

Similarly, Rakha et al analyze observed automatic vehicle identification data from San 

Antonio, and conclude that lognormal distribution best describes the travel time, 

rendering the normal distribution assumption frequently assumed in previous research 

inappropriate(26). 

Considering traffic flow typically experiences congested and uncongested conditions, 

multistate distribution models have also been evaluated by a few studies. For example, 

Part et al fit the travel time data with a bimodal model by assuming each component 

followed normal distribution(27). In order to take the non-symmetrical property of travel 

times into account, Guo and Rakha use skewed distributions for components of the 

multistate model, and demonstrate that multi-lognormal model has the best performance 

among models investigated during peak hours. While during non-peak period, the single 

state model could still be a suitable option(28).  

Based on these studies, it is apparent that travel times are not normally distributed as 

often assumed in previous studies; therefore, applying normal distribution in reliability 

problems may not represent the real-world situation. Instead, travel times are often 

observed to be asymmetrically distributed with a long fat tail at the right side. This 

phenomenon can be easily explained with the occurrence of non-recurring events which 

often result in long delays. Furthermore, by assuming the symmetrical distribution, 

previous studies overlook the skewness of the distribution, which has been considered as 

an important property of reliability analysis(29). 

2.3 TRAVEL TIME CORRELATION 

Travel time distribution evaluation is often conducted on individual segments due to lack 

of trip level data. However, it is often required to obtain travel time distributions at path 

or trip level. Therefore, travel times on component links have to be combined in some 

manner to obtain such information. On the other hand, travel times between links are 

usually correlated, especially during congested time periods (30; 31).  This is because the 

queue on a congested upstream link can propagate backwards to downstream links and 

cause congestion on those links as well. The phenomenon often can be seen when a crash 
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or severe weather event happens. Accounting for the correlation between links ensures 

the accuracy of estimated path travel time distribution, whereas ignoring the correlation 

altogether would lead to inaccurate estimation of true distribution and consequently 

reliability measures. To incorporate the correlation into path travel time estimation, three 

alternatives exist in current literature, including variance-covariance matrix, joint 

distribution function, and sampling-based approach. 

Recognizing the importance of spatial correlations of travel times in journey travel time 

estimation, Chan et al apply a variance-covariance matrix by time of day, day of week, 

and week of month in their real-time estimation of arterial travel times(30). Horowitz and 

Granato state that omitting the correlation would cause imprecise calculation of path 

travel time measures(32). Therefore, they consider the correlation when computing 

standard deviation of path travel times. However, this is done only for adjacent links 

while correlations between non-adjacent links are ignored. Unlike previous work, 

Shababi et al assume travel times on one link is correlated with travel times on all other 

links on the network and Hardin’s method is adopted to generate valid correlation 

matrices in their shortest path problem(33). Yet, it should be pointed out that the 

correlation information is introduced into the model by randomly generated numbers, 

instead of estimation from real-world observations.  

Another means to consider the correlation is through joint distribution functions. 

Polychronopoulos and Tsitsiklis apply this method for a dependent case of recursive 

shortest path problem(34). However, as argued by Xing and Zhou, when the size of 

network becomes significant, the joint distribution based method would become 

computationally intractable for each path between OD pairs(35). As a result, its 

applicability is rather limited. 

The third option is to apply a sampling based approach, which has been proved effective 

in several studies(36). The method works based on the idea that the path travel time at a 

certain time interval is equal to the sum of travel times on component links at the same 

time interval. When travel time observations are available for a long time period, a 

relatively complete set of path travel times can be obtained, from which the distribution 

function can be derived with ease. This way the correlation of travel times between links 

can be implicitly considered during the procedure.  

Based on these studies, the correlation information is an essential part in network 

modeling process. Among three available options, covariance matrix and joint 

distribution methods suffer from their computational complexity, especially in large-scale 

networks. In contrast, the concept underlying the sampling-based approach is rather 

straightforward. It circumvents the need to directly estimate the covariance matrix or 

joint distribution functions, and therefore provides a practical means to account for travel 

time correlations across network. It should be noted that no matter which method is used, 

a relatively large dataset should be collected over a long time period. This is to reduce 

sampling errors and ensure the accuracy of derived path travel time distributions. 
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2.4 ROUTE CHOICE MODELS 

The route choice model has been extensively studied in transportation field due to its 

practical importance to many applications, such as routing navigation, traffic assignment, 

and network design. Traditionally, only a single deterministic criterion, for example the 

physical distance or average travel time, is considered in classical models(37). However, 

such practice is unable to account for the risk-averse behaviors when travelers are faced 

with travel time uncertainty. In order to incorporate the impact of travel time reliability, 

many research attempts have been made to develop routing models with integration of 

the reliability term. After extensive review, previous studies can mainly be classified into 

three groups, i.e. distributional approach, centrality-dispersion approach, and multi-

objective modeling approach. 

2.4.1 Distributional Approach 

The group of distributional approaches is conducted on the basis of convolution of known 

link travel time distributions to obtain path travel time distribution. Within this group, 

one direction is to apply Stochastic Dominance Theory (SDT) to compare and rank routes 

with random travel times in terms of known cumulative distribution functions. Assuming 

independence of travel times on links, Miller-Hooks and Mahmassani investigate three 

path comparison schemes involving expected value comparison, deterministic 

dominance, and first-order stochastic dominance under stochastic and time-varying 

settings(38). Wu and Nie apply first-, second-, and third-order stochastic dominance 

criteria to model heterogeneous risk-taking route choice decisions with respect to 

insatiable, risk-averse, and ruin-averse behaviors, respectively(20). Later, a Label 

Correcting technique is developed to determine all admissible paths in terms of each 

dominance criterion. It is also assumed that travel times on links are independent, which 

is not realistic based on studies reviewed in last section. Nonetheless, the SDT approach 

fits well with the optimal path finding problem under the stochastic travel time setting, 

and will be utilized later in current study as well.  

Another direction of study is to apply the concept of on-time arrival probability (OTAP). 

Recognizing travel times on a link are random, Frank studies the probabilistic shortest 

path problem in finding the optimal path, which maximizes the probability of arriving at 

destination within a certain amount of time(39). Following Frank’s work, Fan et al look 

into a similar problem but in a dynamic and adaptive environment(40). They propose that 

it would be a success if travelers arrive at the destination within a given time. Otherwise, 

it would be considered a failure. Also, at every location, travelers want to choose next 

node based on current location in order to obtain maximum probability of on-time arrival 

with the remaining travel time budget. The Bellman Principle of Optimality is applied to 

formulate the model and then the Picard Method of Successive Approximation is adopted 

to solve the problem. The limitations of this study are: (a) it assumes travel time 

distributions at any given time are known across network; (b) the applicability of 

proposed method in real-world applications requires further assessment. 

Similar to Fan’s work, Nie and Wu’s proposition incorporates OTAP as a priori shortest 

path problem, assuming travel time distributions on links are already known as well(18). 
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They first demonstrate that the optimal solution to the problem can be obtained from the 

local-reliable path set which is generated by the first-order stochastic dominance. A 

Label-Correcting algorithm is then developed to solve the model. Although proven to be 

effective, the solution algorithm requires a complicated distribution convolution process, 

which may limit its practical implementation.  

Later, Zockaie et al put forth a Monte Carlo Simulation method to approximately solve 

the a priori problem defined in the previous study(41). They assume that specific link 

travel time distributions and corresponding joint distribution functions are already known 

beforehand during the simulation process. For each simulation run, the shortest path is 

obtained and stored in the candidate set. After the first round of simulations, the second 

round is conducted on paths in the candidate set to get their travel time distributions, from 

which the optimal path can be eventually determined. Even though the simulation method 

avoids the need to convolve link distributions, the assumption of available joint 

distribution functions across network is not valid. 

To account for travel time uncertainty, Chen and Ji provide three optimal path 

models(42). The expected value model tries to find the path with minimum expected 

travel time, which is essentially equivalent to traditional models. The maximum 

probability model aims to find the path that is attached with highest probability of 

arriving at the destination within specified time interval. While α-reliable model tries to 

find the path with minimum effective travel time while ensuring the on-time arrival 

within certain level of confidence. A simulation-based Genetic Algorithm is used to find 

optimal paths for proposed models. Similar to this study, the Genetic Algorithm will also 

be adopted to solve the extended route choice model proposed in current work. 

In addition to OTAP, the travel time budget (TTB) or effective travel time model has also 

been studied (18; 42). The model tries to minimize the budgeted travel time given a pre-

specified on-time arrival probability and makes use of inverse of cumulative probability 

function, which is directly utilized by OTAP model. It should be noted that the TTB and 

OTAP models are considered equivalent when the travel times are assumed to follow 

normal distribution. Under normal distribution assumption, Chen et al first introduce the 

first-order stochastic dominance and mean-variance dominance conditions, and then 

develop an 𝐴∗ algorithm to find the most reliable path in a transformed two-level 

hierarchical network, where correlations are represented by a covariance matrix(43). Yet, 

it is already shown that travel times are often asymmetrically distributed. 

Zhou and Chen argue that TTB model is only able to account for the reliable part of 

travel time distribution while unable to account for the unreliable part where travel times 

exceed the budgeted travel time(44; 45). They develop a mean-excess travel time 

(METT) based model and incorporate it into the route choice decision process. Later, 

based on the finding that travel time distributions on urban interrupted facilities are bi-

modal, instead of normally assumed unimodal, Yang et al evaluate the most reliable, 

TTB, and METT models on an urban arterial network under bi-modal distribution 

circumstance(46). 



 

13 
 

Based on these studies, in order for this group to work, travel time distributions at path 

level between OD pairs need to be constructed(47). Different approaches have been 

investigated for this purpose, yet most of them are too theoretically complex to be readily 

adapted to existing MPO models. To simplify the process, it is usually assumed that 

travel times on links are normally distributed and mutually independent. However, travel 

times on links are usually correlated and travel time distributions are typically 

asymmetrical with a positive skewness value. Moreover, OTAP has been criticized for its 

inability to fully account for the reliability(20). Based on reviews so far, a simpler 

method based on a more realistic measure is still desired.  

2.4.2 Centrality-Dispersion Approach 

Many studies have directly used a simple statistical measure as the reliability term and 

then incorporated the measure into routing models. The centrality-dispersion based trade-

off model is the most commonly studied in current literature. First introduced in the 

portfolio theory by Markovitz, the mean-dispersion type of criteria have been extensively 

used in a variety of applications to accommodate uncertain and risky circumstances(14). 

Unlike former group of research, such formulation eliminates the requirement that travel 

time distributions on the network should be known a priori and the need to assume 

distributions between links are mutually independent to reduce the complexity involving 

distribution convolution. As a result, it looks more promising to be adapted into travel 

demand models. 

Using standard deviation (STD) as the travel time reliability term, Xing and Zhou 

reformulate the traditional shortest path problem into a most reliable path finding 

problem. Two formulations are proposed depending on whether correlation structure is 

considered by the model. Due to the quadratic form of standard deviation, the cost 

function that is to be optimized is no longer additive. A Lagrangian substitution method 

is adopted to approximate the optimal solution for problems both under independent and 

correlated assumption of link travel times(35). However, the method is not guaranteed to 

always find the optimal solution. It should be noted that the sampling based method is 

used by the authors to account for the correlation and proved to be effective. Therefore, 

this approach will also be adapted in the current work. 

Prakash et al also suggest to use a sampling based approximation method to circumvent 

the hard to obtain correlation matrix(36). They state that under current conditions, travel 

times could be continuously collected and thus path travel times could be obtained from 

the links that make up of the path and then the mean and variability, which is represented 

by standard deviation, could be determined. With this reformulation, a sub-path 

elimination procedure is developed to eliminate suboptimal sub-paths and a network 

pruning algorithm is further applied to find the optimal solution to the problem. 

In another study, Shahabi et al also use standard deviation to represent travel time 

uncertainty in a shortest path problem(33). In their research, the original formulation is 

transformed into a mixed integer conic quadratic program, which is easier to solve. An 

outer-approximation solution algorithm is developed to first decompose the problem into 

a sub-problem and a master problem and then solve them respectively to find the optimal 
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solution when solutions for two decomposed problems converge. However, as pointed 

out by the authors, accurate covariance matrix for the whole network may be hard to 

obtain, and therefore, more robust estimation methods are needed to relieve this 

restriction.  

Khani and Boyles provide a different perspective to solve above problem. They first 

prove that the optimal solution of the mean-standard deviation problem is a subset of the 

mean-variance problem, and then develop an exact algorithm based on the Label 

Correcting and bisection-type line search approach to solve the model(48). To simplify 

the problem, travel times are assumed to be independent during the model development, 

which is an unrealistic assumption as have been discussed before.  

Despite being widely accepted and applied, utilization of variance or standard deviation 

has some limitations(49-51). First, it is a symmetrical measure. Therefore, it gives the 

same emphasis on travel times that are both below and above the mean(52). In other 

words, travel times that are shorter than the expected value will also be viewed as 

undesirable by travelers, which is usually not the case in reality. In addition, studies have 

shown that travel time distribution is usually asymmetrical and has a longer tail on the 

right side of the distribution(26). Standard deviation, however, fails to take into account 

the skewness of the distribution, which is considered to be an important aspect of 

reliability. As a result, it may not be consistent with how travelers consider the reliability 

factor (49; 52). In this dissertation, a new statistical measure that is similar to standard 

deviation but has a better behavioral implication will be proposed and used to extend 

traditional travel models. 

2.4.3 Multi-Objective Shortest Path Problem 

Instead of having only one objective, actual route decision often involves a trade-off 

process that takes multiple incommensurable and usually conflicting factors into 

consideration. As a result, a single route that is optimal in every respect usually doesn’t 

exist. In this regard, a multi-objective formulation and optimization seems more suitable 

for route choice problems.  

Many studies have been conducted from the multi-objective perspective. As one of the 

first to study the bi-criteria shortest path problem, Hansen evaluates ten related problems 

and their associated computational complexities, and provides several algorithms that can 

be used for different kinds of bi-criteria problems(53). In addition to travel time, Gwo-

Hshiung and Chien-Ho argue that travel distance and air pollution are also important 

factors considered by other stakeholders(54). Then they extend the conventional single-

objective model to a multi-objective traffic assignment model. Li and Leung develop a 

route planning model for dangerous goods transportation by simultaneously considering 

expected travel time, probability of an accident, population exposure, and negative 

economic effect(55).  

In order to incorporate the impact of travel time reliability, Sen adopt the variance into 

the route choice decision process by using a bi-criteria model(56). Ji et al state that 

travelers can have multiple requirements of travel time reliability to evaluate and select 
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routes between an OD pair and accordingly formulate a chance constrained multi-

objective programming model to find paths that simultaneously satisfy more than one 

confidence requirements of on-time arrivals(57). The study also indicates that meta-

heuristic algorithms can be effective in finding the Pareto optimal paths.  

As a more realistic approach, the multi-objective formulation will also be adopted in the 

current work to further develop the route choice model so that more than one path that are 

attractive in some aspect to some travelers can be identified.  

2.5 TRAFFIC EQUILIBRIUM MODELS 

Similar to route choice models, the consideration of reliability is not included in 

conventional traffic assignment models as well(17; 58). As a result, the identified optimal 

paths from these models may not represent travelers’ complete decision making 

processes under uncertain travel time conditions. Acknowledging the limitation rooted in 

traditional assignment models in terms of the reliability concern, many models that 

incorporate TTR have also been proposed and developed recently. The grouping scheme 

used in the route choice section are also applicable in categorizing those assignment 

models here, as built-in cost functions in those models are directly reliant on associated 

route choice models. 

2.5.1 Distributional Approach 

The on-time arrival probability based traffic assignment models have been developed in 

several studies. Asakura and Kashiwadani examine the network reliability under 

fluctuated demand condition in terms of connectivity and travel time reliability(1). An 

iterative traffic assignment simulation model is used in their research due to the data 

availability issue. Each time, OD demand is obtained from a distribution and a traffic 

assignment procedure is called to assign the obtained demand to the network. After 

enough iterations, the distribution of travel time could be obtained and then the on-time 

arrival probability measure could be derived for each OD pair. Although this application 

is not requiring any modification of underlying model structure, the traffic assignment 

procedure is still based on the minimum average travel time decision principle.  

Shao et al extend traditional user equilibrium by considering the on-time arrival 

probability(59) where the uncertainty of travel times is resulted from day-to-day demand 

fluctuation. The traffic demand between each OD pair is assumed to follow a given 

probability distribution, and the flow distribution at both link and path level could then be 

derived if independent assumption is made between path flows. In the meantime, link 

travel times are assumed to be independent during the model development. The 

equilibrium conditions are converted to the variational inequality formulation and a 

heuristic algorithm based on the method of successive averages is proposed to solve the 

model. 

Following the same concept, Lo et al and Siu et al both develop a multiclass mixed 

equilibrium model to account for different risky attitudes among travelers(19; 60). The 

flows on used paths are determined to be positive if the travel time required to ensure on-
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time arrival within certain confidence level for each class of travelers with same risk-

coping behaviors is equal to the minimum. The model is then reformulated as the 

complementary conditions and solved by an unconstrained mathematical program. 

In another study, Nie propose a percentile user equilibrium model which minimizes the 

travel time budget to ensure certain level of probability of on-time arrival(61). The 

stochasticity of travel time, which is represented by a distribution function, is derived 

from the probability density function of the service flow rate. The link travel time 

distributions are assumed to be independent in the model. The route travel time 

distribution is then derived by convolving link travel time distributions using a numerical 

evaluation method. The equilibrium conditions are reformulated as variational inequality 

problem and solved by a gradient project algorithm.  

Lo and Tung extend traditional deterministic user equilibrium by accounting for travel 

time variability in a probabilistic user equilibrium model(62). The variability is 

considered as a consequence of capacity degradation due to stochastic events like 

incidents. During the model development, link capacity distributions are assumed to be 

independent, therefore so are link travel time distributions. At last, the equilibrium state is 

obtained with following conditions: a) the traffic flow on a path is positive if the mean 

travel time is minimum; b) the travel time distribution of the used path satisfies the travel 

time reliability requirement. 

Chen and Zhou propose a mean-excess traffic equilibrium (METE) model by 

incorporating the mean-excess travel time based route choice model(63). The equilibrium 

condition is obtained when no traveler could reduce their path mean-excess travel time by 

unilaterally changing the route. The travel times on the links were assumed to be 

mutually independent between each other. With formulation of METE, the additive 

assumption no longer applies; therefore, the authors reformulate the model to a VI 

problem and solve it with a modified alternating direction algorithm. Along this line, Xu 

et al extend Chen’s METE model by taking the perception errors into consideration(64). 

In their model, the assumption that travelers have perfect information about the travel 

time distribution on the routes is relaxed and the perceived travel time distribution is used 

to formulate the model. Next, the corresponding impacts from the stochastic version of 

METE model on the obtained equilibrium results are investigated. However, detailed 

survey data is required to have an accurate representation of travelers’ perception errors. 

Although extending traditional traffic assignment models by integrating OTAP measure 

have been proved doable, the limitations such as normal and independent distribution 

assumption underlying the route choice model still exist.  

2.5.2 Centrality-Dispersion Approach 

Under this group, one direction of studies have applied the scheduling delay (SD) concept 

which is commonly used in travelers’ departure time choice model to determine the 

optimal departure time given the preferred arrival time by trading off the cost associated 

with possible early and late arrival(16). A preferred arrival time point or window is pre-

defined such that the arrival time occurs before the desired arrival time or at the left side 
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of the desired arrival time window is considered as early arrival. Similarly, arrival time 

happens after the preferred arrival time or exceeds the right boundary of the desired 

arrival time window is considered as late arrival. The logic behind the model is that both 

early arrival and late arrival can cause some negative impacts on travelers, like less time 

at home or late penalty at work. A utility function which explicitly combines those 

considerations has been proposed and widely used in existing literature(65). 

Following this line, Watling proposes a route disutility function that comprises the 

generalized travel cost plus the late penalty(66). The author then develops a late arrival 

penalized user equilibrium model so that the disutility on all used paths is equal, and less 

than that on any unselected paths. Due to the nonlinear relationship of utilities between a 

path and its component links, the shortest path algorithms developed under additive 

assumption could not be used here. Therefore, the model is reformulated as a 

complementarity problem and solved by a route-based algorithm proposed by Lo and 

Chen(67). 

To model travelers’ risk-taking behaviors on congested network, Yin et al also apply the 

SD approach in their modeling framework(68). Similarly, they propose a generalized cost 

function and assume travelers are to minimize the disutility associated with the routes 

under consideration. However, some assumptions that have been criticized are also 

present during the model development, such as Normal distribution of link travel times 

and independence of travel times between links. Then, the model is transformed into an 

equivalent non-linear complementary problem, which is solved by two algorithms, 

including a gap-function and iterative heuristic algorithm.  

The scheduling delay is considered as a more realistic measure dealing with uncertainty, 

and has been widely used in behavioral preference surveys. However, it also suffers from 

some drawbacks that greatly limit its practical applicability. First, effective solution 

algorithms tailored for this kind of model are lacking in current literature. Second, it 

requires detailed survey data, which is hard to obtain and thus usually unavailable, to 

derive travelers’ preferred arrival times at destinations for different departure times(69). 

In addition, the scheduling delay has been criticized for its inability to fully capture travel 

time reliability(70). 

Another direction within the group is to use standard deviation as reliability measure, as 

have been discussed in the route choice model section. In a real-world application, 

Horowitz and Granato integrate standard deviation into the cost function in a dynamic 

traffic assignment based travel forecasting model(32). The coefficient of variation 

regression equation derived by Black(71) is adopted to relate travel time variability to 

average condition. The correlations only between adjacent links that are also not 

separated by turns at controlled intersections are considered. A Dijkstra-type and shortest 

marginal path finding algorithms are developed to find paths with minimum cost between 

OD pairs. The model is tested on a metropolitan network and outputs shown that 

inclusion of reliability would produce more realistic path choice modeling.  

SHRP2 C04 project, which aims to improve the understanding of how highway 

congestion and pricing affect travel demand, recommends a general highway utility 
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function to account for additional effect from travel time reliability(52). Particularly, the 

reliability term is represented by day-to-day standard deviation of travel times divided by 

distance. Accordingly, the total cost on a path is derived based on the monetary cost, 

travel time and travel time reliability, assuming the linear relationship between standard 

deviation and mean travel time per unit distance. To overcome the non-additive 

difficulty, a heuristic procedure is developed, which first constructs a path set with 

minimum cost omitting standard deviation in the cost function. Next, the reliability 

component is put back to the model via the linear equation developed beforehand, and the 

final optimal path can be determined. This procedure has been implemented in a large-

scale network, which proves its practical applicability, yet, the heuristic method may not 

guarantee the final path is always the global optimal. Also, the standard deviation, as 

discussed in last section, may not represent a traveler’s actual perspective on travel time 

reliability. As a result, a more realistic measure and model are still desired. 

2.5.3 Multi-Objective Traffic Assignment Model 

Compared to rich research on single objective based traffic assignment models in 

previous literature, the multi-objective counterparts in reliability based modeling practice 

are rather limited. Wang et al revisit two popular user equilibrium models, i.e. travel time 

budget and scheduling delay model(72). They first show that the single objective 

formulation would omit some reasonable choices that may still be attractive to rational 

decision makers. In addition, it is pointed out that with the single objective model, 

travelers are indifferent to any paths as long as the sum of mean and reliability measure 

on those paths are equal, which in turn contradicts the behavioral assumption made at 

first for the model development. To deal with these issues, a bi-objective equilibrium 

model that integrates travel time reliability represented by standard deviation is proposed. 

It is shown that the proposed bi-objective equilibrium model is a generalized framework 

for TTB and SD models after some transformations under Normal distribution 

assumption. A numerical example based on a three link network is used to demonstrate 

the applicability of the model.  

Similarly, Tan et al also put forth a bi-objective traffic equilibrium model with standard 

deviation as the reliability indicator and then conduct a pareto efficiency analysis as well 

as risk-taking behavior evaluation(73). The non-dominated path concept in terms of mean 

and standard deviation, and pareto efficient flow pattern are defined to facilitate the 

model development. Based on the geometric condition of the mean-standard deviation 

indifference curve, it is found that it must be downward sloping at equilibrium when 

travelers are risk averters. The authors further investigate specific risk averse behaviors 

of other reliability models, including OTAP, TTB, METT, and quadratic disutility 

function. The models are later tested on a two-link network with a single OD pair.  

Based on above studies, standard deviation is still a popular choice to represent reliability 

consideration in existing multi-objective traffic assignment models. Therefore, these 

models still suffer from the undesirable properties resulted from standard deviation’s 

mathematical formulation when the underlying distribution is not symmetrical. Also, as 

they provide valuable theoretical contributions to the subject of interest, neither of them 

offer an effective solution that can be readily applicable in real-world applications. 



 

19 
 

Nonetheless, the studies show that the Pareto efficiency is an important property of 

network reliability analysis; hence, the multi-objective formulation will also be adapted 

in current work to develop a new user equilibrium model that involves a more realistic 

measure. More details will be presented in following chapters in this dissertation.  

2.6 CONCLUSIONS 

Travel time reliability recently has attracted significant attention from transportation 

profession. Empirical studies have shown that the reliability of trip is one of the most 

important components in traveler’s route choice decision when facing uncertain 

situations. This is due to negative consequences that may be resulted from late arrivals. In 

order to advance the state of the art, numerous studies have been conducted on relevant 

topics, including theoretical definitions and concepts, quantitative reliability measures, 

and extension of traditional route choice and traffic assignment models.  

Through extensive literature review, it is found that the travel time distribution is often 

asymmetrical with a longer tail at the right side of the distribution. Many studies find that 

the lognormal distribution works best with respect to the goodness of fit among many 

tested distribution functions. The finding directly contradicts the normal distribution 

assumption in many previous studies, and as a result makes them unrealistic. In addition, 

it is also shown that travel times between links on the network are often correlated. 

Therefore, it must be incorporated into the modeling process when deriving path travel 

time distributions. Ignoring this important element may result in biased outcomes from 

route choice and traffic assignment models.  

On the route choice and traffic assignment modeling front, many different ways have 

been explored in current literature to account for the impact of travel time reliability. The 

reliability measures proposed in different studies have their own merits in interpreting 

traveler’s behavioral reaction to travel time uncertainty. However, limitations with 

respect to each group are also apparent and have restricted their practical applicability. 

Those limitations include but not limited to theoretical complexity of distribution 

convolution, unrealistic behavioral representation of travelers’ actual behaviors, and lack 

of effective solution algorithms. Therefore, there is still a gap to be filled between the 

behavioral importance of travel time reliability and practical implementation in real-

world applications. To achieve this goal, a more appropriate reliability measure that has a 

better behavioral representation and can be readily incorporated into existing travel 

models should be proposed. The extended model after incorporating the reliability 

measure should also be solvable with effective solution methods and implementable in 

practical applications. 
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CHAPTER 3 A MINIMUM WEIGHTED COST PATH FINDING MODEL  

 

3.1 INTRODUCTION 

Literature review shows that the mean-dispersion model is one of the most commonly 

adopted approaches in optimal path finding problem involving travel time reliability. 

Also, standard deviation has been widely used as the quantitative measure in many 

existing models. However, there have been concerns regarding its behavioral 

interpretation and theoretical limitations when the underlying travel time distribution is 

asymmetrical, which has been proved to be the case based on real-world observations. In 

this chapter, we propose a new reliability measure based on semi-standard deviation 

(SSD). SSD not only has the same advantages that STD has, but also has some desirable 

features that overcome the limitations of STD. A traveler usually remembers 

unexpectedly long travel times from his/her past experiences and will budget a buffer 

time to deal with the uncertainty of travel conditions to ensure on-time arrival at the 

destination. SSD only considers travel times that exceed certain threshold as undesirable 

and applies this part into the calculation procedure. Furthermore, the skewness is 

accounted for by SSD since only the right part of the distribution, which usually has a 

longer tail, is taken into consideration.  

The semi-variance, i.e. the square of semi-standard deviation, has recently been used in 

several SHRP 2 research projects as one of primary measures of travel time reliability. 

List et al indicate that semi-variance is a better measure because it is sensitive to travel 

times above the mean(22). Potts et al. state that it is more useful to use semi-standard 

deviation to describe how travel times are deviating from the pre-specified threshold(74). 

The proposed SSD measure places more emphasis on larger deviations from the mean 

and therefore can better assess the reliability.  

The semi-variance and semi-standard deviation have been widely used in economic and 

financial applications, such as in portfolio selection model that trades off the return and 

risk to find optimal combination of securities or assets(66-69). In those financial models, 

large values of the return variable are preferred, and accordingly they try to minimize the 

downside risk that is considered as the loss at the left side of the distribution when the 

return is less than a predefined reference value. In our proposed model, larger travel times 

are deemed undesirable and travelers will try to minimize the risk at the right side of 

travel time distribution. 

The rest of the chapter is organized as follows. The following section provides the 

definition of semi-standard deviation and the reformulation of the routing model using 

semi-standard deviation as the reliability indicator. Due to the complexity of deriving the 

correlation structure, the sampling-based approach is adopted here. The approach has 

been used in existing literature(35). Section 3.3 describes a Genetic Algorithm based 

solution approach to solve the proposed model. Section 3.4 provides numerical examples 

on two real-world networks to test the proposed model and solution algorithm. The 

findings are summarized and discussed in the final section. 
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3.2 PROBLEM STATEMENT 

Consider a directed network 𝐺 = (𝑁, 𝐴, 𝐷) where 𝑁 is the set of nodes, 𝐴 is the set of 

links, and 𝐷 is the set of probability distributions of travel times associated with 

individual links. Let 𝑟 ∈ 𝑁 and 𝑠 ∈ 𝑁 represent the origin and destination node 

respectively. Let 𝑡𝑘
𝑟𝑠 be the random travel time variable on path 𝑝𝑘

𝑟𝑠 ∈ 𝑃𝑟𝑠, where 𝑃𝑟𝑠 

denotes the set of paths connecting the origin 𝑟 and destination 𝑠. Let 𝜇𝑘
𝑟𝑠, 𝜎𝑘

𝑟𝑠 and 𝜏𝑘
𝑟𝑠 

represent the mean, STD, and SSD of 𝑡𝑘
𝑟𝑠 along 𝑝𝑘

𝑟𝑠, respectively.  

3.2.1 Semi-Standard Deviation as Reliability Measure 

The semi-standard deviation only accounts for travel times that are above the reference 

value. Therefore, the reference value plays an important role in determining SSD. In this 

chapter, we choose the average travel time as the benchmark to maintain consistency with 

the standard deviation counterpart. A more detailed discussion on the impact of 

benchmark can be found in following chapters, especially Chapter 5.  

Accordingly, the STD 𝜎𝑘
𝑟𝑠, and SSD 𝜏𝑘

𝑟𝑠 of 𝑡𝑘
𝑟𝑠 can be respectively defined as 

𝜎𝑘
𝑟𝑠 = √𝐸[(𝑡𝑘

𝑟𝑠 − 𝜇𝑘
𝑟𝑠)2]                                                                                                 (3.1) 

𝜏𝑘
𝑟𝑠 = √𝐸[(𝑡𝑘

𝑟𝑠 − 𝜇𝑘
𝑟𝑠)+

2
]                                                                                                  (3.2) 

where 𝑧+ = 𝑚𝑎𝑥(𝑧, 0), 𝐸[∙] is the expectation operator. 

If 𝑡𝑘
𝑟𝑠 is a discrete random variable and takes 𝑛 random values, the semi-standard 

deviation can be calculated with the following equation. 

𝜏𝑘
𝑟𝑠 = √

1

𝑛
∑ [(𝑡𝑘

𝑟𝑠
𝑖

− 𝜇𝑘
𝑟𝑠)

+

2
]𝑛

𝑖=1                                                                                         (3.3) 

where 𝜇𝑘
𝑟𝑠 =

1

𝑛
∑ 𝑡𝑘

𝑟𝑠
𝑖

𝑛
𝑖=1 . 

If 𝑡𝑘
𝑟𝑠 is a continuous random variable and has a probability density function of 𝑓(𝑡), the 

semi-standard deviation can then be calculated as: 

𝜏𝑘
𝑟𝑠 = √∫ (𝑡𝑘

𝑟𝑠 − 𝜇𝑘
𝑟𝑠)2𝑓(𝑡)𝑑𝑡

+∞

𝜇𝑘
𝑟𝑠                                                                                       (3.4) 

where 𝜇𝑘
𝑟𝑠 = ∫ 𝑡𝑓(𝑡)𝑑𝑡. 

Based on SSD equations, we can see that unlike STD, which considers a path to be 

unreliable if the travel time varies a lot over time, SSD considers a path to be unreliable if 

travel time beyond traveler’s expected travel time varies a lot. In other words, STD 

considers travel times below and above the mean as equally undesirable, while SSD only 

considers travel times that are above the mean as undesirable. As a result, when the travel 



 

22 
 

time distribution is asymmetrical, which is usually the case, SSD incorporates the 

skewness of the distribution implicitly, while STD does not. 

A simple hypothetical three-path network is used to illustrate above idea. Again, different 

benchmark values can be used in SSD calculation, which will lead to different SSD 

values, but the mean is chosen here to be consistent with STD calculation. The sampled 

travel time data and summarized statistics are shown in Table 3.1. 

Table 3.1 Path Travel Times on Illustrative Network 

Path 
Day 

1 

Day 

2 

Day 

3 

Day 

4 

Day 

5 

Day 

6 

Day 

7 

Day 

8 

Day 

9 

Day 

10 
Mean STD SSD 

Skew-

ness 

A 7 7 2 7 7 2 7 7 7 7 6 2 0.89 -1.78 

B 6 8 6 4 2 6 6 6 10 6 6 2 1.41 0 

C 5 5 5 10 5 5 10 5 5 5 6 2 1.79 1.78 

The mean and STD of travel times on three different paths are identical based on 10-day 

samples. However, Path A has a negatively skewed distribution of travel times, Path B 

has a symmetrical distribution, and Path C has a positively skewed distribution. 

Therefore, it is clear that STD is unable to account for the asymmetry of the distribution 

and ineffective in differentiating the variability as a reliability measure. In contrast, if 

SSD is used as the reliability measure, Path A will be the most reliable route, while Path 

C will be the most unreliable. 

3.2.2 Model Formulation 

Now consider a path 𝑝𝑘
𝑟𝑠 connecting the OD pair between 𝑟 and 𝑠. The travel cost on the 

path is consisting of the mean and semi-standard deviation of travel times. Accordingly, 

it can be formulated as 

𝜂𝑘
𝑟𝑠 = 𝜇𝑘

𝑟𝑠 + 𝜆𝜏𝑘
𝑟𝑠                                                                                                               (3.5) 

where: 

    𝜂𝑘
𝑟𝑠 is the cost on path 𝑝𝑘

𝑟𝑠 between OD pair rs; 

    𝜇𝑘
𝑟𝑠 is the expected travel time on path 𝑝𝑘

𝑟𝑠  between OD pair rs; 

    𝜏𝑘
𝑟𝑠 is the semi-standard deviation of travel time on path 𝑝𝑘

𝑟𝑠; 

    𝜆 is the sensitivity to the unreliability. It is indicative of the weight travelers place on 

travel time reliability relative to the mean travel time when making route choice 

decisions. The more weight travelers place on the potential delay to reduce or avoid the 

probability of late arrival, the larger the 𝜆 value will be. 

When deriving the path level reliability, correlation between links should be considered. 

Unlike standard deviation that can make use of the covariance matrix, due to the special 
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formulation of semi-standard deviation, there is no closed form equation to come up with 

a similar semi-covariance matrix. In other words, the exact semi-covariance of link travel 

times can only be derived on the basis of path travel times. However, the path travel time 

distribution is unknown in advance and therefore needs to be derived from link travel 

times. Although approximation methods have been proposed as an alternative(75), 

preliminary analysis indicates the resulting errors from those methods are too large for 

them to be applicable in current study. On the other hand, it is cost prohibitive to derive 

the correlation structure on the whole network.  

Besides the covariance matrix, the sampling-based approach has also been applied in 

current literature to account for the correlation(35). Compared to the covariance method, 

the sampling based approach directly circumvents the extensive estimation process and is 

able to incorporate the correlation inherently in the samples. With the recent 

advancement of data collection technologies, we are provided with an unprecedented 

opportunity to cost-effectively collect continuous data on a large-scale network for 

transportation system monitoring and management. As the availability and quality of 

such data improves, it also provides a valuable opportunity for route choice modeling. 

Therefore, the sampling based approach is adopted in this study as well. 

Assume field collected travel time data is continuously available across links on the 

network for a period that is long enough to accurately measure the mean and travel time 

reliability. Now suppose there are 𝑤 discrete travel time realizations for each link, and let 

𝑟𝑚
𝑖𝑗

 denote the travel time realization on link 𝑎𝑖𝑗 at time interval 𝑚. Let 𝑥𝑖𝑗
𝑟𝑠 be the binary 

variable where 𝑥𝑖𝑗
𝑟𝑠 = 1 if link 𝑎𝑖𝑗 is a member link of path 𝑝𝑘

𝑟𝑠, and 𝑥𝑖𝑗
𝑟𝑠 = 0 otherwise. 

Accordingly, we can determine the mean and SSD of path travel time 𝑡𝑘
𝑟𝑠 as follows. 

𝜇𝑘
𝑟𝑠 =

1

𝑤
∑ ∑ 𝑟𝑚

𝑖𝑗
𝑥𝑖𝑗

𝑟𝑠
𝑎𝑖𝑗∈𝐴

𝑤
𝑚=1                                                                                              (3.6) 

𝜏𝑘
𝑟𝑠 = (

1

𝑤
∑ (∑ 𝑟𝑚

𝑖𝑗
𝑥𝑖𝑗

𝑟𝑠
𝑎𝑖𝑗∈𝐴 − 𝜇𝑘

𝑟𝑠)
+

2
𝑤
𝑚=1 )

0.5

                                                                     (3.7) 

3.2.3 Routing Model Considering Travel Unreliability 

The travel cost from the Equation (3.5) is essentially the sum of average path travel time 

and the extra amount of time allocated by travelers to cope with travel time variability. It 

is assumed that travelers want to minimize the disutility associated with their trip and 

always choose the path with the minimum cost from the path set connecting the origin 

and destination. The route choice model considering the travel unreliability is given 

below. 

𝑀𝑖𝑛 𝜂𝑘
𝑟𝑠 =

1

𝑤
∑ ∑ 𝑟𝑚

𝑖𝑗
𝑥𝑖𝑗

𝑟𝑠
𝑎𝑖𝑗∈𝐴

𝑤
𝑚=1 + 𝜆 ∗ (

1

𝑤
∑ (∑ 𝑟𝑚

𝑖𝑗
𝑥𝑖𝑗

𝑟𝑠
𝑎𝑖𝑗∈𝐴 − 𝜇𝑘

𝑟𝑠)
+

2
𝑤
𝑚=1 )

0.5

                 (3.8) 

𝑠. 𝑡. ∑ 𝑥𝑖𝑗
𝑟𝑠

𝑗:𝑎𝑖𝑗∈𝐴 − ∑ 𝑥𝑗𝑖
𝑟𝑠

𝑖:𝑎𝑗𝑖∈𝐴 = {
1, 𝑖𝑓 𝑖 = 𝑟

−1,     𝑖𝑓 𝑖 = 𝑠
0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                           (3.9) 
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𝑥𝑖𝑗 ∈ {0,1} ∀(𝑖, 𝑗) ∈ 𝐴                                                                                                                   (3.10) 

It is important to recognize that complications arise due to incorporation of SSD into the 

model. This is because the path cost is no longer the direct summation of the cost of links 

that comprise the path. Consequently, the classic algorithms developed to solve the 

traditional shortest path problems, such as Dijkastra’s algorithm, are no longer applicable 

to solve this problem because they are based on the additivity assumption. 

The non-additive concept can be illustrated with a simple two-link example below. The 

travel time observations on each individual link are also listed in the following table. 

Based on the semi-standard deviation equation which uses the mean as the benchmark, 

the SSD on link 1 and 2 is 1.63 and 1.76, respectively. If SSD were additive, then the 

path SSD would be 1.63+1.76=3.39. However, the actual SSD based on obtained path 

travel times is 2.53 instead. By comparing those values, we can easily conclude that the 

SSD on a path is not equal to the summation of that on component links, attesting to the 

non-additive property of SSD. 

21

 

Figure 3.1 Two-Link Example 

Table 3.2 Two-Link Travel Time Samples 

Travel Time Link 1 Link2 Path 

1 6 5 11 

2 8 4 12 

3 12 8 20 

4 7 10 17 

5 9 5 14 

SSD 1.63 1.76 2.53 

3.3 SOLUTION ALGORITHM 

3.3.1 Overview 

A variety of algorithms have been applied in the existing literature to the routing problem 

with consideration of travel time reliability. They can be grouped into three main 

categories: 

 Mathematical programming based algorithms(33; 56) 

 Simulation based methods(41; 76) 

 Genetic Algorithm (GA) based approaches(42; 57) 

GA is an iterative process, which mimics the natural selection and evolution scheme(77). 

The algorithm starts with an initial population that consists of a pre-determined number 

of chromosomes and iterates through the GA operators to generate a new population each 
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time until the optimal solution or the specified stop criterion is achieved. It is a widely 

applied stochastic and heuristic technique to solve many complex optimization 

problems(78). It is easy to understand and apply, and effective to solve non-continuous 

and non-differentiable problems. Also, the parallel searching ability helps to keep the 

solutions from being trapped at the local optima. Because of those advantages, GA is also 

adapted in this research to solve the proposed shortest path model. 

The overview of the GA-based solution procedure is as follows.  

Genetic Algorithm 

Step 1: Algorithm Input. Specify the number of population, crossover probability, 

mutation probability, and number of iterations. 

Step 2: Population Initialization. Generate an initial population with chromosomes 

representing feasible paths in the route network. 

Step 3: Fitness Assignment. Calculate the fitness of each chromosome on path in the 

current generation using the travel time matrix.  

Step 4: Selection Operation. Use the binary tournament selection without replacement 

method to choose the more fit chromosomes from the current generation to take into 

next generation.  

Step 5: Crossover. Apply the crossover operator to previously selected parent 

chromosomes to generate new offspring chromosomes and ensure the newly generated 

chromosomes are acyclic. 

Step 6: Mutation. Apply the mutation operator to genetically modify chromosomes in 

current generation and ensure modified chromosomes are acyclic. 

Step 7: Termination. Stop the procedure and output the final optimal path, if the 

stopping criteria are met. Otherwise, go back to Step 3. 

3.3.2 Chromosome Encoding and Population Initialization 

Genetic algorithm is an iterative process which mimics the natural selection and 

evolution scheme. The algorithm starts with an initial population which is consisted of a 

pre-determined number of chromosomes and iterates through GA operators to generate a 

new set of population each time until the stop criterion is satisfied. Each chromosome in 

the population set represents a potential solution to the problem being solved. Therefore 

appropriately encoding the chromosome serves a critical role during the evolutionary 

process. In particular, to apply GA in the routing problem, each chromosome constructed 

from the encoding procedure should represent a feasible path which actually exists in the 

network and at the same time doesn’t contain any loop.   

To construct a feasible path, the procedure below is followed. At first, the first gene on 

the chromosome is set to be the origin node of the path. Then based on the topological 

and connectivity information of the transportation network, all the successor nodes that 

are connected to the origin node are identified and stored in a temporary vector. Next, a 

random integer number that is between 1 and the number of previously found successor 

nodes is generated and used to reference the node that will be selected and encoded at the 

second gene. In the meantime, all the nodes that are connected to this node are eliminated 

from the scan list. This is to ensure the same node will not be selected again in the 
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remaining process, therefore preventing the loop from the path. The node selection 

process is repeated until the destination node is reached.  

The above procedure is repeated until pre-specified population size is reached and then 

we will have a randomly generated initial population.  

3.3.3 Fitness Assignment 

Fitness assignment is a process to quantitatively evaluate the fitness associated with each 

chromosome in current generation. The more fit individuals are more likely to be selected 

and used to reproduce next generation, while less fit ones are more likely to be eliminated 

from current population. The fitness of a chromosome usually can be calculated directly 

based on the objective function. The fitness function on the particular path 𝑝𝑘
𝑟𝑠 is defined 

as 

𝐹𝑖𝑡𝑘
𝑟𝑠 =

1

𝜂𝑘
𝑟𝑠                                                                                                                         (3.11) 

Based on the sequential order of nodes in each chromosome, the corresponding total cost 

in terms of the mean and semi-standard deviation can be obtained, and then associated 

fitness can be calculated by taking the reciprocal. A more fit chromosome means less 

travel cost along that path. 

3.3.4 Selection Operation 

After evaluation of each solution in the fitness assignment step, a selection operator is 

developed to choose the more fit chromosomes from current generation to move into next 

generation. Various approaches have been proposed in existing literature(79). The first 

option is a completely random procedure, which is called roulette wheel selection. It is 

developed in a way that the probability of a chromosome getting selected is proportional 

to its fitness compared to the total fitness from all the chromosomes. Another option is 

through elitist selection, which is a deterministic scheme. It involves ranking all the 

chromosomes in the population by their respective fitness and only individuals with 

highest fitness are selected. The third alternative is the tournament selection, which 

involves both random and deterministic process. Each time a fixed number of 

chromosomes, which is called the tournament size, are randomly selected from the 

population and the best ones are picked out. Based on whether chromosomes are placed 

back to the original population, the method can be further specified as tournament 

selection without replacement and tournament selection with replacement. In this study, 

the binary tournament selection with replacement is used.  

3.3.5 Crossover Operation 

Crossover operator is one of the schemes used to generate new offspring chromosomes 

from previously selected parent chromosomes(79; 80). In order to ensure the feasibility 

of produced child chromosomes, some restrictions are applied during the process. For 

two selected parent chromosomes, they have to have at least one common node excluding 

the origin and destination nodes so that the crossover operation can be performed. If more 
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than one set of shared nodes are present, one of them is randomly selected as the 

crossover node. New offspring is generated by integrating the partial sequence from 

beginning node to the selected node from one parent and the partial sequence from the 

selected node to the destination node from the other parent. In addition, the sequential 

order of nodes in each newly generated chromosome should be examined to ensure they 

are acyclic. If a loop is present, all the nodes except for the first one are removed. 

3.3.6 Mutation Operation 

Mutation operator is the other scheme adopted in this study to genetically modify 

chromosomes in current population and therefore ensure genetic diversity(79). During the 

mutation operation, a node located in between the origin and destination node is 

randomly selected. Then the selected mutation node is serving temporarily as the starting 

node and the same procedure developed in the population initialization section is applied 

to form the remaining partial path. It is important that existing nodes preceding the 

mutation node shall not be selected again to eliminate possible loops in the final path. 

Therefore, similar to the population generation procedure, starting from the origin node, 

the initial scan list is first enumerated to exclude any nodes that are connected to the node 

under evaluation. This step is iterated until the mutation node is reached.  

Combining all the steps, the complete GA-based solution flow chart is shown in Figure 

3.2.  
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Configure GA parameters, including number of population 

and iterations, crossover and mutation probability 
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Single point mutation Put back to offspring pool
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Figure 3.2 Genetic Algorithm Flowchart 

3.4 TUNING ALGORITHM PARAMETERS 

As GA is a stochastic method in nature, it cannot guarantee to always find the global 

optimal solution. The performance of the algorithm is greatly related to the parameters 

implemented, including number of population, number of generation, crossover 

probability, and mutation probability. For instance, a larger number of generation would 

expand the searching space and increase the probability of finding the optimal path, yet it 

will be done in the expanse of longer executing time. In contrast, a smaller number of 
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generation would expedite the evolutionary process, however, the algorithm may suffer 

from not having a good coverage of searching space.  

Hence, it is critical to quantitatively assess the performance of GA on finding the optimal 

path for the proposed approach with various combinations of parameters so that the best 

combination can be determined for implementation. In order to do so, the global optimal 

has to be acquired beforehand as ground truth. Due to the special model structure, it is 

hard to analytically solve the optimization problem and find the global optimal. However, 

it has been a mature practice to find the shortest path in the deterministic context, for 

example, only looking at average travel time in this case. In this study, the classical Label 

Correcting (LC) algorithm is adopted to find the shortest path in terms of average travel 

time(81). Then, GA is implemented and the identified optimal path is compared to that 

from LC algorithm. The relative percentage error, i.e. 100 (actual objective value –

minimum objective value)/minimum objective value, and computing time are selected as 

performance metrics to evaluate GA solutions.  

The implementation procedure of the LC algorithm is provided as follows. 

LC Algorithm 

Step 1: Initialization. Let 𝑝𝑠𝑠 be the path from 𝑠 to itself and 𝑡0
𝑠𝑠 be the average travel 

time which is first set to zero. Initialize the scan list 𝑄 = {𝑝𝑠𝑠}.  

Step 2: Select the first path from 𝑄, and denote it as 𝑝𝑘
𝑗𝑠

, then delete it from 𝑄. 

Step 3: For any predecessor node 𝑖 of 𝑗 and 𝑖 is not contained in current 𝑝𝑘
𝑗𝑠

, create a 

new path 𝑝𝑘
𝑖𝑠 = 𝑝𝑘

𝑗𝑠
+ 𝑎𝑖𝑗, and update the path travel time 𝑡𝑘

𝑖𝑠 = 𝑡𝑘
𝑗𝑠

+ 𝑟𝑖𝑗 and the 

average travel time 𝜇𝑘
𝑖𝑠. 

Step 4: Compare the updated path travel time 𝜇𝑘
𝑖𝑠 of path 𝑝𝑘

𝑖𝑠 to 𝜇𝑙
𝑖𝑠 of path 𝑝𝑙

𝑖𝑠, which is 

the existing shortest travel time path. If 𝜇𝑘
𝑖𝑠 < 𝜇𝑙

𝑖𝑠, replace 𝑝𝑙
𝑖𝑠 with 𝑝𝑘

𝑖𝑠; otherwise, drop 

𝑝𝑘
𝑖𝑠. 

Step 5: If 𝑄 is empty, terminate the algorithm; otherwise go to step 2. 

3.5 NUMERICAL EXPERIMENTS 

3.5.1 Network and Travel Time Data 

In this section, numerical experiments are designed to evaluate the proposed routing 

model and the effectiveness of GA-based solution method. Two real-world networks 

from Lexington and Louisville urban areas in Kentucky, as shown in Figure 3.3 and 

Figure 3.4, are selected. They are obtained from a navigation map provided by a private 

company, where large number of GPS-based probe data are also available. The original 

network comes in as a shapefile with granularity at block-by-block level as shown by 

basemaps in following figures. Due to the penetration rate of probe vehicles on lower 

functional class roads is relatively low, there may not be enough samples to infer credible 

travel time distribution over the whole year. Thus, some pre-processing work is required 

to reduce the network size to only include higher functional class roads and then obtain 

the machine-readable topology information such as the link-node incidence table for 

following route choice analysis. 
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Figure 3.3 Lexington Area Route Network 

 

Figure 3.4 Louisville Area Route Network 
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At first, only higher functional class roads (colored lines in above maps) are selected, and 

then ArcGIS software is used to generate end nodes for all the links on each network and 

count number of links that intersect at each end node. To further reduce the size of 

networks under study, following definitions are first provided for different node types to 

facilitate the discussion. 

 A node is an intersecting node where more than two links intersect. 

 A node is an intermediate node where only two links intersect.  

An example of different types of nodes is shown in Figure 3.5. Since the turning option is 

restricted at intermediate nodes and on the links in between any two intermediate nodes, 

those nodes and links have no impact on the final route choice between a selected OD 

pair. Therefore, they should be aggregated into one longer segment, bounded by 

intersecting nodes.  

 

Figure 3.5 Network Topology Example 

On difficulty arises due to links are directional on the network while most links share a 

single line and same link ID for both directions in the provided shapefile. Therefore, the 

directional information has to be accounted for during the aggregating process. Different 

from standard linear reference system that has been used by public transportation 

agencies, the navigation map provider uses a reference node based definition to infer the 

direction information. 

 A node is the reference node of a link if its latitude is lower.  

 If the latitudes of both nodes are identical, the node with a lower longitude is the 

reference node. 

Based on reference node definition, the direction of a link is then defined as follows. 

Intersecting node 

Intermediate 

node 
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 The direction of a link is from the reference node or F if the link traverses from 

the reference node to the non-reference node. 

 The direction of a link is to the reference node or T if the link traverses from the 

non-reference node to the reference node. 

According to above definitions, the latitude and longitude of each node have to be 

known. Such information is obtained by ArcGIS Add Coordinates tool. Since our goal is 

to figure out which links belong to the same longer segment, the following logic is 

developed. 

Start

Get latitude/longitude for both end nodes of each link

Duplicate link id and assign F and T to each one

To node is an 

intersecting node

Direction is B?

Determine the From and To node based on F or T direction

Get a list of links whose from node is an intersecting node

Select a link from the list

Segment ID = index of link of the list

Yes

No

Find the link whose From node is same as current T node

No

Update the To node

Assign the segment ID to the link

Yes

 

Figure 3.6 Link Aggregation Procedure 

After aggregation process, the Lexington network consists of 263 nodes and 636 

segments while Louisville network consists of 528 nodes and 1269 segments. In 

particular, there is a ring road which is partially freeway in the Lexington area and there 

are three interstate corridors in the Louisville area, as displayed on the maps. An example 

of obtained link-node incidence table is shown in Table 3.3. 
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Table 3.3 Link-Node Incidence Table 

Segment 

ID 

From 

Node 

From 

Long 

From 

Lat 

To 

Node 

To 

Long 

To 

Lat 

Length 

(ft) 

1 1265 -84.470 37.997 997 -84.486 38.007 5630.2 

2 297 -84.521 37.998 252 -84.525 37.998 1274.4 

3 1327 -84.464 37.998 1307 -84.466 37.996 1083.8 

4 1295 -84.468 37.997 1319 -84.465 37.995 941.3 

5 1295 -84.468 37.997 1284 -84.469 37.994 1079.5 

6 1322 -84.465 37.995 1328 -84.464 37.998 989.8 

7 1319 -84.465 37.995 1322 -84.465 37.995 57.2 

8 1278 -84.469 37.994 1319 -84.465 37.995 1235.2 

9 912 -84.491 37.991 820 -84.495 37.992 1121.8 

10 912 -84.491 37.991 660 -84.499 37.991 2452.5 

The GPS-based speed data is also obtained to provide link travel times across network. 

The speed data is organized by 15-minute increments and available by time of day and 

day of week in each month on every link. Based on previously obtained topological 

relationship, the speed data at the shorter link level is converted to the longer segment 

level using following equations(82).  

𝑡𝑠𝑒𝑔 = ∑
𝑙𝑖

𝑣𝑖

𝑛
𝑖=1                                                                                                                  (3.12)                                                         

where 𝑡𝑠𝑒𝑔 represents the travel time on the segment; 𝑛 is the number of links belong to 

the segment; 𝑙𝑖 and 𝑣𝑖 are the length and speed of 𝑖th link, respectively. 

The aggregated travel time table is shown as follows. 

Table 3.4 Segment Travel Time 

Segment 

ID 
Month Day Time 

Travel Time 

(sec) 

1 January Monday 15:00 115.28 

1 February Tuesday 15:15 102.37 

1 March Wednesday 15:30 91.18 

1 April Thursday 15:45 80.31 

1 January Friday 17:45 95.02 

1 February Monday 17:30 95.02 

1 March Tuesday 16:30 106.04 

1 April Wednesday 16:45 106.04 

1 May Thursday 17:00 96.45 
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It should be noted that only the afternoon peak period (3-6pm) during weekdays is used 

in the experiments. Therefore, each segment has 12 months*5 weekdays*3 hours*4 15-

minute intervals=720 individual travel time realizations. The preliminary analysis 

indicates the skewness values for individual segments vary from -0.36 to 26.5, with only 

three segments from two networks having negative values and the rest having positive 

values; indicating the travel time distributions on the network are asymmetrical.  

3.5.2 Model Calibration 

Both GA and LC algorithms are coded in Matlab on a Windows 7 personal computer 

equipped with a 3.30 GHz Intel i5 CPU and 8 GB RAM. At first, it is important to 

evaluate the performance of GA approach under different parameter settings. As it is 

impractical to test every combination of input parameters, a wide range of input values 

are selected for testing, as shown in Table 3.5 -Table 3.6. 

Table 3.5 Options of GA Parameters 

Level 1 2 3 

Generation 200 400 600 

Population 20 40 80 

Crossover 0.25 0.5 0.75 

Mutation 0.1 0.3 0.5 

Table 3.6 Combination of GA Parameters 

Combination Generation Population Crossover Mutation 

1 1 1 1 1 

2 2 1 2 2 

3 3 1 3 3 

4 1 2 2 3 

5 2 2 3 1 

6 3 2 1 2 

7 1 3 3 2 

8 2 3 1 3 

9 3 3 2 1 

The LC algorithm is also applied to find the shortest path whose travel time serves as the 

baseline for comparison between each OD pair under study. The relative percentage 

error, i.e. 100 (actual objective value –minimum objective value)/minimum objective 

value, and computing time are recorded for each test run. Note that although the model is 

not intended for real-time applications, a more computationally efficient algorithm is 

desired because once implemented it will allow transportation agencies to more quickly 

run travel models and thus greatly improve their productivity. This is especially essential 

for large scale networks where hundreds of thousands of OD pairs are under evaluation. 

The average percent error (APE) and average computing time are then obtained by 
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averaging over the corresponding values from five repeated experiments for each set of 

input values.  

In this experiment, two OD pairs are selected from each network to conduct the 

performance evaluation. For Lexington network, one is from node 209 to node 133 and 

the other is from node 54 to node 245. Similarly, for Louisville network, one is from 

node 128 to node 478, and the other is from node 285 to node 9. Locations of those points 

of interest are illustrated in Figure 3.3 and Figure 3.4. According to LC, the shortest 

travel time paths for these four OD pairs take 21.5, 17.7, 19.6, and 22.2 minutes, 

respectively. Next, the GA approach with each combination of input parameters as 

specified in above tables is implemented and run 5 times. Therefore, 45 trial runs in total 

for each OD are conducted. The results after averaging quality measures from 5 separate 

runs for each combination are summarized in Table 3.7 and Table 3.8 below. 

Table 3.7 GA Performance on Lexington Network 

Combination 
OD 209-133  OD 54-245 

APE (%) CPU Time (sec)  APE (%) CPU Time (sec) 

1 17.5 23.7  72.4 24.7 

2 11.9 44.6  20.8 43.5 

3 2.9 52.9  11.3 53.0 

4 1.4 37.8  2.1 35.7 

5 1.5 99.7  28.1 101.9 

6 14.6 141.3  10.1 139.4 

7 6.6 92.9  5.0 95.4 

8 7.2 158.8  5.7 165.3 

9 4.3 309.5  13.9 325.9 

Table 3.8 GA Performance on Louisville Network  

Combination 
OD 128-478  OD 285-9 

APE (%) CPU Time (sec)  APE (%) CPU Time (sec) 

1 42.5 120.6  48.6 101.3 

2 6.4 218.6  10.1 186.7 

3 11.6 264.1  11.4 211.1 

4 4.1 175.8  7.7 139.9 

5 4.6 505.2  10.2 404.1 

6 4.6 709.6  4.0 553.0 

7 2.3 436.9  5.7 363.5 

8 4.0 739.3  5.2 611.5 

9 5.5 1507.1  7.6 1250.2 

Based on above tables, it is clearly seen that the performance of GA is significantly 

affected by input variables. The average percentage error can vary from as low as 1.4% to 
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as high as 72.4%, depending on specific values implemented. At the same time, the 

computing time are also significantly different among combinations tested and between 

networks. It can also be observed that although the size of Lexington network is half of 

that of Louisville network, the program running time is only 1/5-1/4 of the time took by 

the Louisville network when using same parameter setting, indicating the non-linear 

impact of network size on the algorithm performance. Combining results from both 

networks, it is determined that GA with combination 4 and 7 have relatively better 

performance in that they have lower percentage errors while take less amount of time as 

well. From the perspective of individual network, combination 4 performs best on 

Lexington network while combination 7 works best on Louisville network. Thus, they are 

selected for implementation in further analysis for respective networks.  

3.5.3 Model Implementation and Discussion 

In the following analysis, the proposed route choice model is evaluated with more details 

for OD 209-133 and OD 285-9 from Lexington and Louisville network, respectively. In 

addition to the proposed mean-semi-standard deviation (MSSD) model, the minimum 

expected travel time (ETT) and mean-standard deviation (MSTD) models are also 

investigated. It is expected that different travelers may have different attitudes towards 

the risk of being late and such attitudes can also vary depending on their specific purpose 

of trip. In order to understand the impact of traveler’s sensitivity to the risk on the routing 

results, different 𝜆 values varying from 0.5 to 4 are analyzed in the experiments. 

Although travelers may adopt a different 𝜆 value with respect to SSD in the MSSD model 

from that in the MSTD model, the same value is used here when comparing two models. 

The results are summarized in Figure 3.7-Figure 3.8 and Table 3.9-Table 3.10. The 

optimal objective values of the models are marked in bold in Table 3.10. 
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Figure 3.7 Routing Options for OD Pair 209-133 

 

Figure 3.8 Routing Options for OD Pair 285-9 
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Table 3.9 Descriptive Statistics of Identified Path Travel Times 

OD Pair 
Path 

ID 

Mean 

(min) 

STD 

(min) 

SSD 

(min) 
Skewness 

95th travel 

time (min) 

99th travel 

time (min) 

209-133 

1 21.54 15.27 13.87 2.84 53.26 83.59 

2 21.67 11.71 10.08 1.78 37.74 64.06 

3 24.15 8.42 7.89 4.48 38.29 64.23 

285-9 

1 22.18 8.50 7.36 1.96 39.15 51.95 

2 24.21 6.28 5.73 3.56 34.34 56.73 

3 24.49 6.27 5.72 3.56 34.58 56.96 

4 27.04 6.32 5.63 3.14 36.99 56.40 

Table 3.10 Objective Values of Identified Paths 

OD 

Pair 

Path 

ID 
ETT 

0.5 1 2 4 

MSTD MSSD MSTD MSSD MSTD MSSD MSTD MSSD 

209

-

133 

1 21.54 29.18 28.48 36.81 35.41 52.07 49.28 82.60 77.02 

2 21.67 27.53 26.71 33.38 31.75 45.09 41.83 68.51 61.98 

3 24.15 28.36 28.09 32.57 32.03 40.99 39.92 57.83 55.69 

285

- 

9 

1 22.18 26.43 25.86 30.68 29.54 39.19 36.90 56.19 51.62 

2 24.21 27.35 27.08 30.50 29.95 36.78 35.68 49.34 47.14 

3 24.49 27.63 27.35 30.76 30.21 37.03 35.94 49.57 47.38 

4 27.04 30.20 29.85 33.35 32.67 39.67 38.30 52.30 49.57 

Based on the test results, three distinct paths are found as optimal depending on the 

specific model of interest for OD pair 209-133. Similarly, four different paths are 

identified for OD pair 285-9. The average travel time and travel time reliability both in 

terms of STD and SSD vary noticeably among candidate paths connecting each OD pair. 

The positive skewness values of all the paths indicate route travel times are also 

asymmetrically distributed with a longer right tail on both networks examined. From 

Table 3.9, Path 1 provides the shortest average travel time and hence, will be chosen as 

optimal by ETT model for both OD pairs. However, corresponding travel time variations 

in terms of either STD or SSD are also the highest.  

If both average travel time and travel time reliability are included in the routing process, 

the identified optimal path may be different. For OD pair 209-133, Path 1 is no longer 

optimal under all four evaluated scenarios when either STD or SSD is considered in the 

model. Path 2 becomes the most appealing route based on both MSTD and MSSD 

models when 𝜆 is 0.5. In general, paths with less variable travel time would be identified 

as the optimal routes as travelers become increasingly intolerant to travel time variation, 

which is marked by the increasing 𝜆 values. This appears to be the case regardless of 

whether SSD or STD is used as the reliability metric. At some point (when 𝜆 is set to 1 in 

this example), MSTD and MSSD models give different optimal paths. The MSTD reports 

Path 3 as the most attractive choice while the MSSD model prefers Path 2. This 



 

39 
 

difference can be explained by the distribution of travel times on these two paths. 

Historical data indicates travel times on Path 3 have a more skewed distribution with a 

longer right tail compared to that on Path 2. This is consistent with the characteristics of 

an expressway type facility where while day-to-day variation in travel times might be 

rather small, major incidents can cause excessive delays due to limited access to other 

routes. Since SSD focuses on the right part of the distribution only, it would be more 

sensitive to the long tail or, in other words, excessive delays. As a result, when SSD is 

applied in the routing process, the MSSD model tends to avoid such route. 

A similar occurrence can be observed for OD pair 285-9 in that different optimal paths 

may be resulted depending on the model and reliability metric applied in the experiments. 

Since the largest difference of average travel time on the four paths is approximately 5 

minutes, compared to that of STD and SSD with roughly 2 minutes, it will take a higher 𝜆 

value to shift away from the ETT-optimal path (i.e. Path 1). When the shift occurs at 𝜆 

=1, Path 2 becomes optimal. It can be seen that Path 2 and Path 3 are essentially the 

same, except for where they take ramps on to I-65. Under this situation, when the optimal 

path switches to Path 2, it will remain the best choice even when 𝜆 increases hereafter. 

When the disagreement happens at 𝜆 = 1, the MSTD model identifies Path 2 as the 

optimal while MSSD model still suggests Path 1. This can be explained based on the 

skewness statistics and higher percentile travel times as they clearly indicate that Path 2 

travel time is more skewed and has a longer tail at the right end of its travel time 

distribution. This indicates long delays on Path 1 are less excessive than those on Path 2. 

Because of its tendency to penalize paths with long tails, the MSSD model identifies Path 

1 as optimal. 

3.6 CONCLUSIONS 

In this chapter, a new routing strategy is proposed to take travel time reliability into 

consideration when the underlying travel time distribution is asymmetrical. It is argued 

that under this circumstance, SSD is a better measure of reliability due to its more 

intuitively meaningful explanation with respect to traveler’s decision-making behavior 

and accountability for the asymmetry of the probability distribution. A sampling based 

method is adopted to incorporate correlations among link travel times and to circumvent 

the complicated and time consuming procedure to derive the correlation matrix for the 

whole network. Then, a Genetic Algorithm based method is developed to solve the 

problem as it is deemed suitable to solve the nonlinear models. Numerical experiments 

using real-world networks with varying sizes and field-collected speed data are 

conducted to test the proposed models.  

Since the GA approach relies on heuristic search, implemented parameters will have a 

collective impact on its performance. In order to enhance the algorithm, a parameter 

tuning process is first conducted on two real-world networks. The Label Correcting 

algorithm is implemented to find the ground truth for selected OD pairs. The finding 

from the analysis confirms that the number of population and generation, crossover 

probability, and mutation probability collectively have a significant impact on final 

results. In addition, it is found that the optimal parameter combination can be different 

depending on the specific network under study.  
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After model calibration, proposed path finding models are evaluated. In general, when 

the mean travel time among all alternatives is similar, more reliable path (i.e. those 

marked by lower STD and/or SSD values) will be chosen as optimal. Those travelers who 

place more emphasis on travel time reliability tend to gravitate toward the route with the 

least variability. However, it also depends upon the relative scale of the average travel 

time and travel time variability, as well as the degree of sensitivity to the reliability. 

When the mean travel times among all alternative paths are similar, slight difference in 

the reliability measure could change the suggested optimal route. Otherwise, a more 

substantial difference in the reliability metric or a traveler population that puts more 

weight on travel time reliability, or both, will be needed to effect a change. 

In most cases in the test, the MSTD and MSSD models gave the same suggested optimal 

route. This is hardly surprising because STD and SSD are highly correlated, and the 

distribution of travel times is not heavily skewed for all paths according to the field data. 

The scale of the mean travel time, reliability measure, and 𝜆 also play a role. In this 

study, MSSD suggests a different optimal route than MSTD at certain points. In those 

cases, the MSSD model considers the route with less excessive delays as the most 

attractive choice. 
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CHAPTER 4 A MULTI-OBJECTIVE PATH FINDING MODEL 

 

4.1 INTRODUCTION 

In the previous chapter, the optimal path finding model focusing on minimizing the travel 

cost that consists of average travel time and travel time reliability is studied. The semi-

standard deviation is proposed as the reliability measure and integrated into the cost 

function via a weighting parameter, namely the reliability ratio. Although it is relatively 

easy to formulate and solve, the model suffers from several weaknesses. First, it is 

practically difficult to determine the actual reliability ratio travelers would use in reality. 

This is because for the present there is a lack of detailed survey data to empirically derive 

those values for different groups of travelers. They may have different views on travel 

time uncertainty and even the same traveler may change their attitude under different 

circumstances. For instance, catching a flight certainly requires allocating more time for 

the trip than going shopping. Second, even if the ratio could be determined, the linear 

combination of two components can also lead to some unrealistic outcomes. This is due 

to the single objective model cannot differentiate paths with equal objective values, even 

though average travel time and SSD are significantly different among those paths. 

However, different mean and SSD represent distinct reliability ratios and hence, 

contradict to the initial assumption of prior knowledge of reliability ratio. Furthermore, 

there may be paths that are potentially attractive to rational travelers but ignored by the 

single objective model. 

With regard to above concerns, the multi-objective formulation seems more suitable to 

account for the route choice decision, which involves a trade-off process that takes 

multiple conflicting factors into consideration. In this case, instead of finding a single 

optimal route with minimum cost, the multi-objective optimization will optimize both 

average travel time and reliability simultaneously. This usually results in an optimal 

frontier that includes many Pareto-optimal alternatives that can be provided for travelers’ 

further route choice decisions.  

In this chapter, the single objective problem studied in previous chapter is expanded to a 

multi-objective problem. The model integrates advantages of appealing characteristics 

underlying SSD and multi-objective formulation. The rest of the chapter is organized as 

follows. In section 4.2, the multi-objective model is applied to reformulate the routing 

problem with SSD as the reliability indicator. The sampling-based approach directly 

using field collected travel time data is also adopted to account for correlations. Section 

4.3 introduces an multi-objective evolutionary algorithm to solve the proposed model. 

Due to the stochastic nature of the search heuristic, the performance of algorithm is 

evaluated in Section 4.4 based on the established relationship between the mean-semi-

standard deviation (MSSD) dominance rule and second-order stochastic dominance 

(SOSD) rule. Section 4.5 provides numerical examples using Louisville network to test 

proposed models and solution algorithms. The final section summarizes the analysis and 

concludes the chapter.  
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4.2 PROBLEM STATEMENT 

4.2.1 Definitions 

Consider a directed network 𝐺 = (𝑁, 𝐴, 𝐷) where 𝑁 is the set of nodes, 𝐴 is the set of 

links, and 𝐷 is the set of probability distributions of travel times associated with 

individual links. Let 𝑟 ∈ 𝑁 and 𝑠 ∈ 𝑁 represent the origin and destination node 

respectively. Let 𝑡𝑘
𝑟𝑠 be the random travel time on path 𝑝𝑘

𝑟𝑠 ∈ 𝑃𝑟𝑠, where 𝑃𝑟𝑠 denotes the 

set of paths connecting the origin and destination. Let 𝜇𝑘
𝑟𝑠, 𝜎𝑘

𝑟𝑠 and 𝜏𝑘
𝑟𝑠 represent the 

mean, STD, and SSD of 𝑡𝑘
𝑟𝑠 along 𝑝𝑘

𝑟𝑠, respectively. Easily, the semi-standard deviation 

of 𝑡𝑘
𝑟𝑠 can be derived as 

𝜏𝑘
𝑟𝑠 = √𝐸[(𝑡𝑘

𝑟𝑠 − 𝑏)+
2

]                                                                                                     (4.1) 

where 𝑧+ = 𝑚𝑎𝑥(𝑧, 0), 𝐸[∙] is the expectation operator, and 𝑏 is the benchmark value 

specified by decision makers.  

One difference from above equation compared to Equation (3.2) in Chapter 3 is the 

benchmark value. In this chapter, the use of average travel time as benchmark is relaxed. 

In other words, different threshold values can be specified in the model to offer more 

flexibility in SSD calculation. With such relaxation, SSD is able to reflect different 

behaviors from travelers with different degrees of sensitivity concerning the uncertainty 

as the benchmark value can be easily shifted. A lower benchmark indicates a lower 

degree of tolerance of unreliability, thus a more risk-averse attitude from the traveler.  

With the multi-objective formulation of the routing problem involving stochastic travel 

times, the model tries to minimize average travel time and travel time unreliability 

simultaneously. The multi-objective model incorporating SSD is formulated as shown 

below. 

{
min 𝜇𝑟𝑠

min 𝜏𝑟𝑠                                                                                                                              (4.2) 

The model with respect to STD is also formulated so that two models can be compared. 

{
min 𝜇𝑟𝑠

min 𝜎𝑟𝑠                                                                                                                              (4.3) 

In order to solve the models, following path dominance rules in terms of mean and 

dispersions including STD and SSD are first defined.   

Definition 1 A path 𝑝𝑘
𝑟𝑠 ∈ 𝑃𝑟𝑠 dominates another path 𝑝𝑙

𝑟𝑠 ∈ 𝑃𝑟𝑠 by the mean-standard 

deviation dominance rule (MSTD) or 𝑝𝑘
𝑟𝑠 ≻𝑀𝑆𝑇𝐷 𝑝𝑙

𝑟𝑠, if 𝜇𝑘
𝑟𝑠 ≤ 𝜇𝑙

𝑟𝑠 and 𝜎𝑘
𝑟𝑠 ≤ 𝜎𝑙

𝑟𝑠 with at 

least one inequality holds.  
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Definition 2 A path 𝑝𝑘
𝑟𝑠 ∈ 𝑃𝑟𝑠 dominates another path 𝑝𝑙

𝑟𝑠 ∈ 𝑃𝑟𝑠 by the mean-semi-

standard deviation dominance rule (MSSD) or 𝑝𝑘
𝑟𝑠 ≻𝑀𝑆𝑆𝐷 𝑝𝑙

𝑟𝑠, if 𝜇𝑘
𝑟𝑠 ≤ 𝜇𝑙

𝑟𝑠 and 𝜏𝑘
𝑟𝑠 ≤ 𝜏𝑙

𝑟𝑠 

with at least one inequality holds.  

Definition 3 A path 𝑝𝑘
𝑟𝑠 ∈ 𝑃𝑟𝑠 is a MSTD non-dominated path, if and only if no such a 

path 𝑝𝑙
𝑟𝑠 ∈ 𝑃𝑟𝑠 exists that 𝑝𝑙

𝑟𝑠 ≻𝑀𝑆𝑇𝐷 𝑝𝑘
𝑟𝑠. 

Definition 4 A path 𝑝𝑘
𝑟𝑠 ∈ 𝑃𝑟𝑠 is a MSSD non-dominated path, if and only if no such a 

path 𝑝𝑙
𝑟𝑠 ∈ 𝑃𝑟𝑠 exists that 𝑝𝑙

𝑟𝑠 ≻𝑀𝑆𝑆𝐷 𝑝𝑘
𝑟𝑠. 

4.2.2 Model Formulation 

To further formulate the model, it also assumes field collected travel time samples are 

continuously available across links on the network for a temporal period that is long 

enough to accurately measure the mean and travel time reliability. This approach is 

particularly advantageous to SSD formulation because there is no closed form equation 

available to come up with a semi-covariance matrix similar to the covariance matrix in 

the STD case(51). Now suppose there are 𝑤 discrete travel time realizations for each link, 

and let 𝑟𝑚
𝑖𝑗

 denote the travel time realization on link 𝑎𝑖𝑗 at time interval 𝑚. Let 𝑥𝑖𝑗
𝑟𝑠 be the 

binary variable where 𝑥𝑖𝑗
𝑟𝑠 = 1 if link 𝑎𝑖𝑗 is a member link of path 𝑝𝑘

𝑟𝑠, and 𝑥𝑖𝑗
𝑟𝑠 = 0 

otherwise. Accordingly, we can determine the mean and SSD of path travel time 𝑡𝑘
𝑟𝑠 as 

follows. 

𝜇𝑘
𝑟𝑠 =

1

𝑤
∑ ∑ 𝑟𝑚

𝑖𝑗
𝑥𝑖𝑗

𝑟𝑠
𝑎𝑖𝑗∈𝐴

𝑤
𝑚=1                                                                                               (4.4) 

𝜏𝑘
𝑟𝑠 = (

1

𝑤
∑ (∑ 𝑟𝑚

𝑖𝑗
𝑥𝑖𝑗

𝑟𝑠
𝑎𝑖𝑗∈𝐴 − 𝑏)

+

2
𝑤
𝑚=1 )

0.5

                                                                         (4.5) 

In order to understand the impact of traveler’s risk-taking behavior on the routing results, 

both average travel time, which represents his/her expectation about the traffic condition, 

and the 15𝑡ℎ percentile travel time that represents a more desirable traffic condition are 

respectively used as benchmark 𝑏 and analyzed in the study. Let 𝜌𝑘
𝑟𝑠 be the 15th percentile 

travel time on path 𝑝𝑘
𝑟𝑠 and it is derived using the following equation. 

𝜌𝑘
𝑟𝑠 = 𝑓 ∙ 𝑡𝑘𝑔+1

𝑟𝑠 + (1 − 𝑓) ∙ 𝑡𝑘𝑔

𝑟𝑠                                                                                           (4.6) 

where 𝑓 is the fractional part of (0.15 ∗ 𝑤 + 0.5), 𝑔 is the integer part of (0.15 ∗ 𝑤 +
0.5), and 𝑡𝑘

𝑟𝑠 is travel time on path 𝑝𝑘
𝑟𝑠 that has been sorted in ascending order.  

According to above equations, the multi-objective path finding model can now be 

reformulated as follows. 

𝑀𝑖𝑛 
1

𝑤
∑ ∑ 𝑟𝑚

𝑖𝑗
𝑥𝑖𝑗

𝑟𝑠
𝑎𝑖𝑗∈𝐴

𝑤
𝑚=1                                                                                                 (4.7) 

𝑀𝑖𝑛 (
1

𝑤
∑ (∑ 𝑟𝑚

𝑖𝑗
𝑥𝑖𝑗

𝑟𝑠
𝑎𝑖𝑗∈𝐴 − 𝑏)

+

2
𝑤
𝑚=1 )

0.5

                                                                           (4.8) 



 

44 
 

𝑠. 𝑡. ∑ 𝑥𝑖𝑗
𝑟𝑠

𝑗:𝑎𝑖𝑗∈𝐴 − ∑ 𝑥𝑗𝑖
𝑟𝑠

𝑖:𝑎𝑗𝑖∈𝐴 = {
1, 𝑖𝑓 𝑖 = 𝑟

−1,     𝑖𝑓 𝑖 = 𝑠
0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                           (4.9) 

𝑥𝑖𝑗 ∈ {0,1} ∀(𝑖, 𝑗) ∈ 𝐴                                                                                                                   (4.10) 

Equation (4.7) is to minimize the average travel time travelers experienced which 

represents their expectation under normal traffic conditions. Equation (4.8) is to minimize 

the travel time variability with regard to the pre-specified benchmark which can be 

average travel time or the 15th percentile travel time. Equation (4.9) ensures all the links 

on the path are feasible. Equation (4.10) defines a binary link-path incidence variable.  

4.3 SOLUTION ALGORITHM 

4.3.1 Overview 

To solve multi-objective problems, a variety of algorithms have been developed or 

applied in the existing literature (83; 84). In particular, as a widely applicable stochastic 

search heuristic and optimization technique, the multi-objective evolutionary algorithm 

has been proved to be a suitable and effective option(84). Among different evolutionary 

algorithms, the improved Strength Pareto Evolutionary Algorithm (SPEA2) is one of the 

most widely applied methods and considered to have better performance(85). Therefore, 

the algorithm is also adopted here and modified for solving the proposed model. For 

more algorithmic details, interested readers are referred to (85-87). 

The overview of SPEA2 procedure is as follows. 

SPEA2 Algorithm 

Step 1: Algorithm Input. Specify the population size 𝑛𝑃𝑜𝑝, archive size 𝑛𝐴𝑟𝑐ℎ𝑖𝑣𝑒, and 

number of generations 𝑛𝐺𝑒𝑛. Set generation counter 𝑐 = 0. 

Step 2: Initialization. Generate an initial population 𝑃𝑜𝑝0 and obtain the associated 

travel time matrix 𝑀0 during the process. Also, create an empty archival set 𝑃𝑜𝑝̅̅ ̅̅ ̅
0. 

Step 3: Fitness assignment. Calculate the fitness of each chromosome or path in 𝑃𝑜𝑝𝑐 

and 𝑃𝑜𝑝̅̅ ̅̅ ̅
𝑐 based on 𝑀𝑐. 

Step 4: Environmental selection. Select all the non-dominated paths in 𝑃𝑜𝑝𝑐 and 𝑃𝑜𝑝̅̅ ̅̅ ̅
𝑐 

to 𝑃𝑜𝑝̅̅ ̅̅ ̅
𝑐+1. If number of paths in 𝑃𝑜𝑝̅̅ ̅̅ ̅

𝑐+1 exceeds 𝑛𝐴𝑟𝑐ℎ𝑖𝑣𝑒, then execute the 

truncating operation until the number is equal to 𝑛𝐴𝑟𝑐ℎ𝑖𝑣𝑒. If the number of paths is 

less than 𝑛𝐴𝑟𝑐ℎ𝑖𝑣𝑒, then fill 𝑃𝑜𝑝̅̅ ̅̅ ̅
𝑐+1 with dominated paths in 𝑃𝑜𝑝𝑐 and 𝑃𝑜𝑝̅̅ ̅̅ ̅

𝑐. 

Step 5: Mating selection. Apply the binary tournament selection with replacement on 

chromosomes in 𝑃𝑜𝑝̅̅ ̅̅ ̅
𝑐+1 until the mating pool is filled.  

Step 6: Variation. Apply crossover and mutation operators to the mating pool and the 

resulted population is set to be 𝑃𝑜𝑝𝑐+1. 

Step 7: Termination. If 𝑐 ≥ 𝑛𝐺𝑒𝑛, then terminate the procedure and output the final 

Pareto optimal paths, otherwise, increment 𝑐 by 1 and go to step 3. 

It should be noted that the population initialization process, mating selection, and 

crossover and mutation operations all follow same procedures as in GA implementation 
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in the previous chapter. The new components in SPEA2 including fitness assignment and 

environmental selection will be discussed in detail as follows. 

4.3.2 Fitness Assignment 

Fitness assignment is a process to quantitatively evaluate the fitness associated with each 

chromosome in current generation. The more fit individuals are, the more likely they are 

selected and used to reproduce the next generation, while less fit ones are more likely to 

be eliminated from current population. The fitness of a chromosome in SPEA2 is 

essentially calculated based on the dominance relationship with others. 

 Sub-step 1: Obtain the vector 𝑍𝑐 consisting two elements including average travel 

time and travel time reliability which are computed based on path travel time 

matrix 𝑀𝑐.  

 Sub-step 2: Assign a strength value to each chromosome in 𝑃𝑜𝑝𝑐 and 𝑃𝑜𝑝̅̅ ̅̅ ̅
𝑐. The 

strength value of a chromosome is equal to the number of individuals it 

dominates. It can be calculated as 𝑆(𝑘) = |⟨𝑙|𝑙 ∈ 𝑃𝑜𝑝𝑐 + 𝑃𝑜𝑝̅̅ ̅̅ ̅
𝑐 ∧ 𝑘 ≻ 𝑙⟩|, where 

|∙| means the number of chromosomes in the set and + means the union operation. 

 Sub-step 3: Calculate the raw fitness value. The raw fitness value 𝑅(𝑘) is 

computed based on derived 𝑆 values from previous step with 𝑅(𝑙) =
∑ 𝑆(𝑘)𝑘∈𝑃𝑜𝑝𝑐+𝑃𝑜𝑝̅̅ ̅̅ ̅̅ 𝑐,𝑘≻𝑙 . In other words, the raw fitness of a chromosome is 

determined by the sum of strength values of dominating chromosomes in the 

population and archive sets. 

 Sub-step 4: Calculate the density value using k-th nearest neighbor method. The 

density is considered to differentiate chromosomes that may have same raw 

fitness values. The standardized Euclidean distance, instead of Euclidean distance 

in the original algorithm, is applied here to balance out the contribution from 

variables with different scales of values. So the distance between two individuals 

can be calculated as 𝑑(𝑘, 𝑙) = (𝑍𝑐(𝑘)−𝑍𝑐(𝑙))𝑉−1(𝑍𝑐(𝑘)−𝑍𝑐(𝑙))
′
, where 𝑉 is a 

two-by-two diagonal matrix whose first and second diagonal element is the 

variance of average travel time and travel time reliability on paths contained in 

𝑃𝑜𝑝𝑐 and 𝑃𝑜𝑝̅̅ ̅̅ ̅
𝑐. Once all the distances between path 𝑘 and all other paths in 𝑃𝑜𝑝𝑐 

and 𝑃𝑜𝑝̅̅ ̅̅ ̅
𝑐 are calculated, they are sorted in ascending order, and then the distance 

𝑑𝑘
𝜃 at 𝜃𝑡ℎ point is selected, where 𝜃 = √𝑛𝑃𝑜𝑝 + 𝑛𝐴𝑟𝑐ℎ𝑖𝑣𝑒. Then, the density 

𝐷𝑒𝑛(𝑘) is computed as 𝐷𝑒𝑛(𝑘) =
1

𝑑𝑘
𝜃+2

, where 2 is added to ensure the density 

value is less than 1. 

 Sub-step 5: Calculate the final fitness value 𝐹𝑖𝑡(𝑘) with 𝐹𝑖𝑡(𝑘) = 𝑅(𝑘) +
𝐷𝑒𝑛(𝑘).  

4.3.3 Environmental Selection 

The environmental selection operation is to update the archive set with chromosomes that 

have higher fitness values. For a non-dominated path, its fitness value should be smaller 

than 1. Therefore, all the non-dominated paths can be identified and then copied to 

𝑃𝑜𝑝̅̅ ̅̅ ̅
𝑐+1 as 𝑃𝑜𝑝̅̅ ̅̅ ̅

𝑐+1 = ⟨𝑘|𝑘 ∈ 𝑃𝑜𝑝𝑐 + 𝑃𝑜𝑝̅̅ ̅̅ ̅
𝑐 ∧ 𝐹𝑖𝑡(𝑘) < 1⟩. If the number of chromosomes 
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that are selected into 𝑃𝑜𝑝̅̅ ̅̅ ̅
𝑐+1 is equal to 𝑛𝐴𝑟𝑐ℎ𝑖𝑣𝑒, then the task is completed. If the 

number is smaller than 𝑛𝐴𝑟𝑐ℎ𝑖𝑣𝑒, then the next best (𝑛𝐴𝑟𝑐ℎ𝑖𝑣𝑒 − |𝑃𝑜𝑝̅̅ ̅̅ ̅
𝑐+1

|) 

chromosomes in 𝑃𝑜𝑝𝑐 and 𝑃𝑜𝑝̅̅ ̅̅ ̅
𝑐 in terms of fitness values which have been sorted in 

increasing order are selected to fill the archive set. On the other hand, if the number is 

larger than 𝑛𝐴𝑟𝑐ℎ𝑖𝑣𝑒, the iterative truncating operation is triggered and executed until 

the number of remaining chromosomes is equal to 𝑛𝐴𝑟𝑐ℎ𝑖𝑣𝑒. Following condition is 

evaluated to identify the path to be removed from 𝑃𝑜𝑝̅̅ ̅̅ ̅
𝑐+1: 

∀ 0 < 𝜃 < |𝑃𝑜𝑝̅̅ ̅̅ ̅
𝑐+1|: 𝑑𝑘

𝜃 = 𝑑𝑙
𝜃  ∨  ∃ 0 < 𝜃 < |𝑃𝑜𝑝̅̅ ̅̅ ̅

𝑐+1|: [(∀ 0 < 𝜗 < 𝜃: 𝑑𝑘
𝜗 = 𝑑𝑙

𝜗) ∧

𝑑𝑘
𝜃 > 𝑑𝑙

𝜃]. In other words, the path with the minimum distance to another path in the 

archive set is selected at each iteration and then removed. If there are more than two 

paths with same minimum distance, the second smallest distance is used and the 

comparison is continued until the tie is broken. The purpose of this step is to exclude the 

solutions that are close to each other and keep those that are far away from each other, so 

that the diversity of solutions can be maintained. 

The following example is used to illustrate the idea of truncating operation. Here, 

𝑛𝐴𝑟𝑐ℎ𝑖𝑣𝑒 is set to 5, i.e. the ideal number of non-dominated paths is five. Yet as can be 

seen in Figure 4.1, there are seven paths in the external archive. Therefore, the truncating 

operation needs to be executed. At first, the distance between each non-dominated path to 

all the other non-dominated paths is calculated and then sorted by increasing order. Since 

Path 1 and 3 have the minimum distance, and the distance between Path 1 and Path 5 is 

smaller than that between Path 3 and Path 6, Path 1 is first removed from the external set. 

Following the same procedure, Path 2 can also be identified and eliminated from the set.  

 

Figure 4.1 Environmental Selection Example 
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4.4 TUNING ALGORITHM PARAMETERS 

Similar to GA, the SPEA2-based solution algorithm is also a heuristic method and its 

performance is greatly dependent on the proper choice of the implemented parameters. 

Although model calibration has been conducted on GA in previous chapter, the 

underlying structure of SPEA2 has been fundamentally changed, therefore there is still a 

need to quantitatively assess the performance and quality of the adopted approach and 

understand the impact from different parameter combinations. There have been a variety 

of performance metrics to evaluate the multi-objective evolutionary algorithms, many of 

which require the true global optimal paths to be known beforehand. In order to 

determine the combination of parameters that generate the best performance, it is critical 

to find the global optimal path set first. In this study, an alternative solution based on the 

relationship that will be established between the MSSD dominance rule and SOSD rule is 

adopted. Note that the calculation of SSD here uses a constant benchmark value across 

different paths, which is a minor adjustment to the proposed model in which the 

benchmark is actually path-specific. Since the structure of the models are still identical, 

the parameter values calibrated in this section can be directly applied to solve proposed 

multi-objective models with respect to STD and SSD. 

Let Γ𝑀𝑆𝑆𝐷
𝑟𝑠  and Γ𝑆𝑂𝑆𝐷

𝑟𝑠  represent the sets of non-dominated paths under MSSD and SOSD 

dominance rules, respectively. 

Proposition Γ𝑀𝑆𝑆𝐷
𝑟𝑠 ⊆ Γ𝑆𝑂𝑆𝐷

𝑟𝑠  except for the scenario where paths have identical mean and 

SSD. 

Proof. To show the relationship holds, consider two paths 𝑝𝑘
𝑟𝑠 and 𝑝𝑙

𝑟𝑠 with cumulative 

travel time distribution function 𝐹𝑘 and 𝐹𝑙. Then, based on the definition of SSD and 

using integration by parts twice, here we can have 

(𝜏𝑘
𝑟𝑠)2 = ∫ (𝑥 − 𝑏0)2𝑑𝐹𝑘(𝑥)

𝑇

𝑏0
= 2 ∫ [𝑇 − 𝑡 − ∫ 𝐹𝑘(𝑥)𝑑𝑥

𝑇

𝑡
] 𝑑𝑦

𝑇

𝑏0
                                  (4.11) 

(𝜏𝑙
𝑟𝑠)2 = ∫ (𝑥 − 𝑏0)2𝑑𝐹𝑙(𝑥) = 2 ∫ [𝑇 − 𝑡 − ∫ 𝐹𝑙(𝑥)𝑑𝑥

𝑇

𝑡
] 𝑑𝑦

𝑇

𝑏0

𝑇

𝑏0
                                    (4.12) 

Where 𝑏0 and T are the uniform threshold and upper bound travel time value for both 

paths, respectively. Accordingly, 

(𝜏𝑘
𝑟𝑠)2 − (𝜏𝑙

𝑟𝑠)2 = −2 ∫ ∫ [𝐹𝑘(𝑥) − 𝐹𝑙(𝑥)]𝑑𝑥𝑑𝑦
𝑇

𝑡

𝑇

𝑏0
                                                         (4.13) 

In addition, Based on the definition of SOSD rule, if 𝑝𝑘
𝑟𝑠 ≻𝑆𝑂𝑆𝐷 𝑝𝑙

𝑟𝑠, then 

∫ [𝐹𝑘(𝑥) − 𝐹𝑙(𝑥)]
𝑇

𝑡
𝑑𝑥 ≥ 0, for all values of 𝑡 ∈ [0, 𝑇], with the inequality holds for at 

least one 𝑡. Therefore, we can get (𝜏𝑘
𝑟𝑠)2 − (𝜏𝑙

𝑟𝑠)2 ≤ 0, then 𝜏𝑘
𝑟𝑠 ≤ 𝜏𝑙

𝑟𝑠. 

At the same time, as proved in (50), if 𝑝𝑘
𝑟𝑠 ≻𝑆𝑆𝐷 𝑝𝑙

𝑟𝑠, then 𝜇𝑘
𝑟𝑠 ≤ 𝜇𝑙

𝑟𝑠. ∎  

It should be noted that the exception condition noted in the proposition only occurs if a 

path is MSSD non-dominated yet dominated by another path in Γ𝑆𝑂𝑆𝐷
𝑟𝑠 . Even though the 
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scenario is possible to happen, its impact on the obtained non-dominated paths is 

negligible thanks to at least one path with identical mean and SSD is already included in 

Γ𝑆𝑂𝑆𝐷
𝑟𝑠 . If the included path is not ultimately chosen by the decision maker, the omitted 

path would also not be chosen anyway; if the included path is chosen as the desired path 

to travel, there would be no difference between the chosen and omitted paths as their 

attributes are exactly the same. Therefore, the relationship of Γ𝑀𝑆𝑆𝐷
𝑟𝑠 ⊆ Γ𝑆𝑂𝑆𝐷

𝑟𝑠  is 

considered true and used in finding MSSD non-dominated paths. 

The problem of finding SOSD non-dominated paths has been extensively studied and an 

extended Label Correcting algorithm based on the Bellman’s Principle of Optimality has 

been developed and proved to be effective in solving the problem(20). Based on above 

proposition, we first adopt the SOSD-based Label Correcting algorithm (SOSD-LC) to 

find all the non-dominated paths. Next, from the identified candidates we can determine 

final non-dominated paths based on the MSSD dominance rule. Interested readers are 

referred to (20; 50; 88) for detailed implementation of the SOSD-LC algorithm. A brief 

description of the algorithm is provided here for the sake of reading continuity.  

SOSD-LC Algorithm 

Step 1: Initialization. Let 𝑝𝑠𝑠 be the path from 𝑠 to itself and 𝑡0
𝑠𝑠 be the discrete travel 

time which are zero. Initialize the scan list 𝑄 = {𝑝𝑠𝑠}.  

Step 2: Select the first path from 𝑄, and denote it as 𝑝𝑘
𝑗𝑠

, then delete it from 𝑄. 

Step 3: For any predecessor node 𝑖 of 𝑗 and 𝑖 is not contained in current 𝑝𝑘
𝑗𝑠

, create a 

new path 𝑝𝑘
𝑖𝑠 = 𝑝𝑘

𝑗𝑠
+ 𝑎𝑖𝑗, and update the path travel time 𝑡𝑘

𝑖𝑠 = 𝑡𝑘
𝑗𝑠

+ 𝑟𝑖𝑗. 

Step 4: Compare the travel time 𝑡𝑘
𝑖𝑠 of path 𝑝𝑘

𝑖𝑠 to 𝑡𝑙
𝑖𝑠 of path 𝑝𝑙

𝑖𝑠 ∈ Γ𝑖𝑠, where Γ𝑆𝑂𝑆𝐷
𝑖𝑠  is 

the existing SOSD non-dominated path set. If 𝐸(𝑡𝑘
𝑖𝑠 − 𝜂)

+
≤ 𝐸(𝑡𝑙

𝑖𝑠 − 𝜂)
+

 for all 𝜂 ∈

Ψ𝑖𝑠, where Ψ𝑖𝑠 is the set of unique travel time realizations of path 𝑝𝑘
𝑖𝑠 and 

𝐸(𝑡𝑘
𝑖𝑠 − 𝜂)

+
< 𝐸(𝑡𝑙

𝑖𝑠 − 𝜂)
+

 for at least one 𝜂, drop 𝑝𝑙
𝑖𝑠 and update Γ𝑆𝑂𝑆𝐷

𝑖𝑠 = Γ𝑆𝑂𝑆𝐷
𝑖𝑠 ∪ 𝑝𝑘

𝑖𝑠 

and 𝑄 = 𝑄 ∪ 𝑝𝑘
𝑖𝑠; otherwise, drop 𝑝𝑘

𝑖𝑠. 

Step 5: If 𝑄 is empty, go to step 6; otherwise go to step 2. 

Step 6: Identify paths in Γ𝑆𝑂𝑆𝐷
𝑟𝑠  that are MSSD non-dominated and generate Γ𝑀𝑆𝑆𝐷

𝑟𝑠 . 

Once Γ𝑀𝑆𝑆𝐷
𝑟𝑠  is obtained, we now have the true Pareto-optimal paths to evaluate the 

performance of SPEA2. In this study, the cardinality of actual Pareto-optimal solutions 

found by SPEA2 and the closeness of SPEA2 solutions to Γ𝑀𝑆𝑆𝐷
𝑟𝑠  are regarded as two 

quality measures. In addition, the computing time required by SPEA2 and SOSD-LC for 

generating those solutions are also recorded and reported as additional evaluation 

criterion. Detailed analysis are conducted in the following section. 

4.5 NUMERICAL EXPERIMENTS 

4.5.1 Model Calibration 

In this section, numerical experiments are designed to test the proposed multi-objective 

models and solution algorithms. The same test network in the Louisville, Kentucky area 

is selected here. Both SPEA2 and SOSD-LC algorithms are coded and executed in 
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MATLAB. Two OD pairs are selected for detailed analysis. One is from node 128 to 

node 478, and the other is from node 285 to node 9. The SOSD-LC algorithm is first 

executed for selected OD pairs and results are reported in Table 4.1 and illustrated in 

Figure 4.2. The average and 15th percentile travel time for each of SOSD non-dominated 

paths are calculated and comparison between paths based on the MSSD dominance rule 

is conducted. The final non-dominated paths in terms of the MSSD rule are marked in 

bold in Table 4.1.   

Table 4.1 SOSD and MSSD Non-Dominated Paths 

OD 128-478  OD 285-9 

Path ID Mean SSD Path ID Mean SSD  Path ID Mean SSD 

1 19.83 9.55 14 19.63 10.12  1 22.18 10.77 

2 19.60 10.45 15 21.32 11.23  2 22.89 11.21 

3 20.03 11.33 16 20.94 10.83  3 22.83 12.15 

4 20.05 11.10 17 21.06 11.11  4 22.97 11.62 

5 21.49 11.06 18 20.08 10.12  5 24.76 12.36 

6 20.08 10.05 19 21.93 10.85  6 25.35 12.56 

7 21.68 11.62 20 21.61 11.37  7 24.30 11.86 

8 20.70 10.70 21 21.70 11.40  8 22.81 11.29 

9 21.48 11.86 22 22.17 11.29  9 24.07 11.35 

10 20.51 11.05 23 23.60 12.75  10 24.21 10.70 

11 20.58 11.09 24 23.03 12.13  11 27.47 14.06 

12 19.62 10.46 25 24.46 13.56  12 25.04 11.77 

13 20.28 10.62              

  
(a) OD 128-478 (b) OD 285-9 

Figure 4.2 SOSD Non-Dominated Paths 

Based on the results, it is first observed that the number of non-dominated paths 

according to the SOSD rule is fairly large. There are 25 and 12 paths found for OD pair 

128-478 and 285-9, respectively. In particular, compared to OD 285-9, OD 128-478 is 
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within the downtown area, whose network has a gridiron type structure with a higher 

density of intersections and links. As a result, more paths using local streets are found. In 

contrast, OD 285-9 is further apart and across the city, and trips are heavily reliant on the 

interstates, which will very likely dominate local streets and thus provide fewer options. 

In addition, it is seen that there are only 3 and 2 non-dominated paths found for OD pair 

128-478 and 285-9, respectively. This finding indicates fixed benchmark based MSSD 

rule is more stringent than the SOSD rule. As a result, applying the MSSD rule 

significantly reduces the number of non-dominated paths.  

Next, we proceed to assess the solution quality of the adopted SPEA2 algorithm and tune 

its parameters to achieve desired performance. In order to do so, the minimum 15th 

percentile travel time among all identified SOSD non-dominated paths for each OD pair 

is first determined and then used as the uniform benchmark to implement in SPEA2. At 

the same time, it is acknowledged that the algorithmic performance relies significantly on 

the proper selection of input parameters. As shown in Table 4.2, we consider three 

different values for each variable. Nine different combinations of those values are then 

considered and listed in Table 4.3. Five trials are repeated for each combination. The 

approximate solutions from each trial are obtained and evaluated against the ground truth 

found by the SOSD-LC algorithm. The computing time required to finish each trail is 

monitored as well. At last, the performance of each combination of parameters is 

determined by averaging corresponding metric values from those five repeated trails. The 

experiment results are reported in Table 4.4. 

Table 4.2 Options of EA Parameters 

Level 1 2 3 

Generation 200 400 600 

Population 50 100 150 

Archive 50 100 150 

Crossover 0.25 0.5 0.75 

Mutation 0.1 0.3 0.5 

Table 4.3 Combination of EA Parameters 

Combination Generation Population Archive Crossover Mutation 

1 1 1 1 1 1 

2 2 1 1 2 2 

3 3 1 1 3 3 

4 1 2 2 2 3 

5 2 2 2 3 1 

6 3 2 2 1 2 

7 1 3 3 3 2 

8 2 3 3 1 3 

9 3 3 3 2 1 



 

51 
 

Table 4.4 EA Performance Measures 

Combination 

OD 128-478  OD 285-9 

Number Percentage 
CPU 

Time 
 Number Percentage 

CPU 

Time 

1 1.2 40.0 37.9  0.4 20.0 37.4 

2 2 66.7 204.2  1.2 60.0 177.1 

3 1.8 60.0 507.4  1.2 60.0 416.3 

4 2 66.7 356.4  1.4 70.0 292.1 

5 1.8 60.0 178.1  1 50.0 153.8 

6 2.2 73.3 655.8  1.2 60.0 541.7 

7 2.2 73.3 355.9  1.8 90.0 304.4 

8 1.8 60.0 1108.2  0.8 40.0 936.1 

9 2.4 80.0 450.3  1.4 70.0 401.2 

Global 

Optimal 
3 100 663.6  2 100 458.9 

Based on above table, it can be seen that the performance of SPEA2 is directly correlated 

with different combinations of parameter values while no dominating combination, in 

terms of every performance measure, is observed. It is interesting to note that the running 

time may not positively correlate with the distance of OD as we can see that OD 128-478 

requires more executing time than OD 285-9 which is further apart than the former. In 

general, quality of solutions from combination 2, 4, 6, 7, 9 appear to be better than that 

from other combinations. Among those five combinations, combination 2 is the most 

efficient choice in terms of the computing time. However, the quality of solutions is 

inferior to the other four combinations. After combining all the considerations together, 

combination 7 is chosen to implement SPEA2: the population and archive size are 150, 

the number of generations is 200, crossover probability is 0.75, and mutation probability 

is 0.3.  

4.5.2 Model Implementation and Discussion 

In the following experiments, different models involving two categories are evaluated 

with more details for OD 285-9 whose origin is from the University of Louisville and 

destination is Shawnee Park, located at the northwest side of the city. To distinguish two 

proposed asymmetrical reliability measures, hereafter the SSD with regard to average 

travel time is referred to as 𝑆𝑆𝐷𝜇, while SSD in terms of the 15th percentile travel time is 

represented by 𝑆𝑆𝐷𝜌. Also, the multi-objective model involving 𝑆𝑆𝐷𝜇 or 𝑆𝑆𝐷𝜌 is 

respectively referred to as 𝑀𝑆𝑆𝐷𝜇 or 𝑀𝑆𝑆𝐷𝜌 model. 

Single-objective optimization scenarios: 

 Minimum expected travel time (ETT) path; 

 The 𝑆𝑇𝐷-based most reliable path; 

 𝑆𝑆𝐷𝜇-based most reliable path; 
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 𝑆𝑆𝐷𝜌-based most reliable path; 

Multi-objective optimization scenarios: 

 The 𝑀𝑆𝐷 model; 

 The 𝑀𝑆𝑆𝐷𝜇 model; 

 The 𝑀𝑆𝑆𝐷𝜌 model. 

The test results for the selected OD pair are discussed. For single-objective scenarios, the 

following observations are made. As depicted in Figure 4.3, the optimal paths based on 

different objectives are quite different, except for the most reliable paths based on 𝑆𝑇𝐷 

and 𝑆𝑆𝐷𝜌. Those two paths only differ at one link as to when to take I-65.  It can be 

observed that if only average travel time is used as the objective, the ETT path will rely 

heavily on I-65 and I-64 and take 22.18 minutes to arrive at the destination.  However, 

the fastest path does not take travel time reliability into consideration. In fact, it would be 

the worst or most unreliable path among paths identified here in terms of selected 

reliability measures. The 𝑆𝑇𝐷, 𝑆𝑆𝐷𝜇, and 𝑆𝑆𝐷𝜌 are 8.5, 7.36, 10.78 minutes respectively 

on this route as shown in Table 4.5. 

In contrast, if only travel time reliability is taken into consideration, the optimal path 

would be completely different from previously identified ETT path. Regardless of which 

reliability measure is used, it seems the travel time would be less variable if travelers take 

I-65 southbound and then take I-264 for most of the remaining trip. Although the optimal 

routes with respect to 𝑆𝑇𝐷 and 𝑆𝑆𝐷𝜌 are very similar, the difference between optimal 

solutions from 𝑆𝑇𝐷 and 𝑆𝑆𝐷𝜇 at the end of the trip are obvious. It can be observed that 

the 𝑆𝑆𝐷𝜇 based path will get off I-264 earlier and then rely on arterials to get to the 

destination. It should be noted that average travel time on this path will be 27.04 minutes, 

which is the longest among those identified paths.  

From the above analysis, different paths will be selected with respect to different criteria 

and there isn’t a single path that is optimal with respect to all the examined criteria. 

Instead, the objectives may be in conflict and an optimal path under one objective is often 

obtained at the expense of other objectives. Therefore, without knowing the decision 

maker’s specific risk preference, it is premature to exclude all the other paths. Unlike 

single objective optimization, when both the average travel time and travel time 

reliability are optimized simultaneously, multiple paths will be consequently identified 

between the same OD pair. The obtained Pareto optimal path set can then be used for 

decision-making based on users’ preferences. 

It can be seen if both mean and 𝑆𝑇𝐷 are used as objectives, five paths that are mutually 

non-dominant are generated with average travel time ranging from 22.18 to 24.49 

minutes and 𝑆𝑇𝐷 ranging between 6.27 and 8.5 minutes. In particular, two paths will 

mainly use I-65 northbound and I-64 and the three other paths will mainly use I-65 

southbound and then I-264. In contrast, if 𝑆𝑆𝐷𝜇 is used to substitute 𝑆𝑇𝐷, the non-

dominated solutions largely remain the same but include two additional paths, which 

suggest to leave I-264 early and then turn on to Hale Ave to finish the trip. The average 
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travel time of this non-dominated path set ranges from 22.18 to 27.04 minutes, while the 

𝑆𝑆𝐷𝜇 ranges from 5.63 to 7.36 minutes. Furthermore, if the desirable travel time is 

instead chosen as the benchmark and resulted 𝑆𝑆𝐷𝜌 is used as the reliability measure, an 

apparent change can be seen with the addition of path 3 which is not identified by either 

𝑀𝑆𝑇𝐷 or 𝑀𝑆𝑆𝐷𝜇 model. The new route avoids I-65, and instead uses Southern Parkway 

first and then turns on to I-264 to continue the trip.  It is almost equally as attractive as 

path 1 in that the mean and 𝑆𝑆𝐷𝜌 of two routes are very close. 

The Pareto optimal paths from evaluated multi-objective models are also compared to 

those obtained from the SOSD dominance rule. The last column in Table 4.5 marks those 

paths identified by multi-objective models that are also SOSD non-dominated. First, it is 

observed that the 𝑀𝑆𝑆𝐷𝜌-based paths are completely contained in the SOSD non-

dominated path set. However, this is not true for MSTD and MSSD non-dominated paths. 

In fact, the 𝑆𝑇𝐷-based and 𝑆𝑆𝐷𝜇-based most reliable paths are not even included in the 

SOSD optimal path set. Therefore, it is empirically sufficient to say that MSTD and 

MSSD dominance rules are not compatible with SOSD rule. The findings confirm with 

observations made in (20; 50). In addition, these results indicate more caution should be 

used when applying SOSD non-dominated paths as a basis to generate the minimum TTB 

path or MSTD/MSSD non-dominated paths due to some highly potential paths may not 

be identified by SOSD rule.
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                (a) ETT Path (b) 𝑆𝐷-Most Reliable Path 

  
(c) 𝑆𝑆𝐷𝜇-Most Reliable Path (d) 𝑆𝑆𝐷𝜌-Most Reliable Path 

Figure 4.3 Single-Objective Optimal Path 
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(a) 𝑀𝑆𝑇𝐷 Optimal Paths (b) 𝑀𝑆𝑆𝐷𝜇 Optimal Paths (c) 𝑀𝑆𝑆𝐷𝜌 Optimal Paths 

Figure 4.4 Multi-Objective Non-Dominated Paths 

Table 4.5 Attributes of Selected Paths 

Path 

ID 
𝜌 𝜇 𝜎 𝑆𝑆𝐷𝜇 𝑆𝑆𝐷𝜌 MTT 

Most Reliable Path Pareto Optimal Paths 
SOSD 

Path STD 𝑆𝑆𝐷𝜇 𝑆𝑆𝐷𝜌 𝑀𝑆𝐷 𝑀𝑆𝑆𝐷𝜇 𝑀𝑆𝑆𝐷𝜌 

1 15.55 22.18 8.50 7.36 10.78 √    √ √ √ √ 

2 16.14 22.89 8.47 7.32 10.83     √ √  √ 

3 17.67 22.97 8.94 8.21 10.39       √ √ 

4 20.19 24.07 7.50 7.06 8.44     √ √ √ √ 

5 20.36 24.21 6.28 5.73 7.36    √ √ √ √ √ 

6 20.66 24.49 6.27 5.72 7.36  √   √ √   

7 22.20 26.69 6.33 5.65 7.74      √   

8 22.61 27.04 6.32 5.63 7.70   √   √   
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4.6 CONCLUSIONS 

In this chapter, a multi-objective model is developed aiming to simultaneously minimize 

the expected travel time and travel time reliability. The improved Strength Pareto 

Evolutionary Algorithm is adapted in the study to solve the proposed models. In order to 

quantitatively assess the performance of SPEA2, the relationship between MSSD and 

SOSD dominance rules is first established and a Label Correcting algorithm is applied to 

generate the ground truth Pareto optimal paths. The SPEA2 parameters are then tuned so 

the algorithm can achieve desired performance both in solution quality and required 

computational resource. The calibrated algorithm is later applied to solve multiple multi-

objective models with regard to STD and SSD. The findings from the analysis are 

summarized as follows. 

First, the SOSD rule may not be able to effectively determine the dominance relationship 

among candidate paths. This leads to a relatively large number of non-dominated paths. 

As pointed out by Messac and Mattson, too many solutions would be undesirable to 

decision makers(89); it is valuable to augment the SOSD rule with additional criteria. As 

shown in the study, when a proper constant is applied to the SSD calculation for different 

paths, the resulting MSSD non-dominated paths would become a subset of the SOSD 

non-dominated paths. In fact, the empirical results indicate the MSSD rule can eliminate 

a significant portion of paths from the SOSD path set for two OD pairs investigated.  

In addition, input parameters have considerable impact on the performance of the adopted 

metaheuristic algorithm. Based on the paths generated by SOSD-LC algorithm, the 

quality of solutions from a wide range of parameter values are evaluated. It is found that 

the solution quality and computing time are conflicting objectives for the implemented 

algorithm as certain combination of values can produce better quality of solutions, but 

require longer time to run. Therefore, the trade-off of performance metrics is necessary to 

choose the best combination. 

Furthermore, when different criteria are used in the routing model, different alternative 

paths are identified. The optimal paths in terms of average travel time, STD, and SSD 

alone are all different from each other. Even though these different criteria can be 

combined into a single objective, many potentially attractive paths would be 

consequently omitted. Thus, the multi-objective formulation is more appealing in that it 

provides more options for further trade-off and decision-making. Based on the identified 

paths from the proposed models, it is shown that SSD not only can account for the 

asymmetry and skewness of the distribution, but also offer more flexibility for users with 

different risk preferences. Additional paths as attractive as MSTD non-dominated paths 

are identified by the MSSD model.  

Through this study, it is empirically shown that there exists inconsistency among MSTD, 

𝑀𝑆𝑆𝐷𝜇 and SOSD dominance conditions. In other words, at least one of the non-

dominated paths in terms of MSTD or 𝑀𝑆𝑆𝐷𝜇 dominant rule is dominated by SOSD non-

dominated paths. Likewise, there are path(s) that are SOSD non-dominated but not 

MSTD or 𝑀𝑆𝑆𝐷𝜇 non-dominated. As an effective and tractable approach, the SOSD-

based LC algorithm can still be utilized to find paths that approximate the true optimal 
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solutions to the multi-objective model involving STD and SSD. However, the 

inconsistent relationship should still be kept in mind even when such compromise is 

deemed acceptable in the application. 

In the future study, it would be valuable to extend the range of parameter values 

considered in the study and apply experimental design techniques such as Taguchi 

method to objectively determine the optimal input values. Also, as a number of novel 

genetic operators have been proposed in many applications, it will be interesting to see 

how its implementation into the proposed algorithm can lead to performance 

improvement. In addition, it is postulated that the size of travel time samples considered 

during the model development could affect the identified optimal paths. Therefore, it is a 

practically important topic worth more research efforts. Finally, the mutual relationships 

among MSTD, MSSD, and SOSD dominance rules and the necessary conditions required 

to ensure compatibility among them is also a continued area of interest. 
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CHAPTER 5 A GENERALIZED ROUTE CHOICE MODLING FRAMEWORK  

 

5.1 INTRODUCTION 

It has been shown in previous chapters that using SSD as the reliability measure has 

advantages of being more realistic in representing traveler’s attitude toward uncertain 

travel times. Also, if the benchmark is set to a constant across paths connecting the same 

OD pair, the obtained non-dominated paths according to the MSSD rule would be a 

subset of non-dominated paths based on SOSD criterion. In this chapter, more general 

relationships between existing reliability models and stochastic dominance rules are 

investigated.  

Using a constant benchmark in SSD calculation actually offers realistic meaning. In 

previous chapters, either the average or 15th percentile travel time on each path is used as 

the threshold for that path. As a result, each path will have its own benchmark to compute 

the reliability measure. However, as shown in (16; 90), instead of having path specific 

values, travelers often have fixed departure time and acceptable travel time when making 

trip decisions. Applying the OD specific benchmark can offer additional benefits. For 

instance, consider two paths where one path has travel times of 1, 3, and 5 minutes, 

whereas the other has travel times of 6, 7, and 8 minutes. If average travel time is used as 

the threshold, SSD would be 1.15 and 0.58 minutes for respective paths. According to 

previously defined MSSD rule, both paths are non-dominated. However, the first path 

looks much more attractive to a rational traveler, because experienced travel times will 

always be shorter. If a uniform value, e.g. 5 minutes, is used instead, the first path would 

have no reliability issue, and consequently, dominate the second path. It is under this 

notion that we decide to use the uniform benchmark across paths from hereafter for semi-

standard deviation calculation.  

In addition to SSD, reliability measures, including on-time arrival probability and 

scheduling delay have also been proposed. In particular, the OTAP model tries to find the 

path that maximizes the probability of arriving at the destination on time, whereas the SD 

model intends to minimize the penalty resulted from late arrivals. Both measures have 

realistic meaning in interpreting travelers’ route choice behaviors. Therefore, they are 

revisited and discussed in more details in this chapter.  

Meanwhile, the Stochastic Dominance Theory has received extensive application in 

measuring risk and ranking uncertain prospects in finance and economics. It is designed 

to establish partial orders over a set of alternatives under consideration based on 

associated distributions, even with a limited knowledge of specific utility function that a 

decision maker may possess. Recently, SDT has also been introduced to the 

transportation network modeling field(38), as it fits well with the optimal path finding 

problem under the stochastic travel time setting. Another appealing advantage of SDT is 

its compliance with the Bellman’s Principle of Optimality which makes it efficient in 

finding non-dominated paths. Also, traveler’s risk taking behavior can be accounted for 

by different ordering SDT rules when ranking different routes with stochastic travel times 
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in terms of known cumulative distribution functions. Therefore, a few studies have been 

conducted on its application in the transportation network modeling problem involving 

time-adaptive path comparison(38), heterogeneous risk taking behavioral modeling(91), 

travel time and reliability valuation(92), and traffic assignment(93). 

 

While different approaches have their own merits in representing decision making 

behaviors under uncertain conditions, there is a lack of consensus as to which measure is 

more reflective of traveler’s actual perception of reliability. There have been studies 

investigating relationships among different measures. For instance, under the assumption 

that travel time distribution is independent of the departure time and there is no discrete 

lateness penalty, there is a theoretical equivalence between scheduling delay and mean-

standard deviation approaches (94). However, the underlying assumption is often violated 

in reality. Wu and Nie demonstrate that the optimal OTAP and METT path can be found 

by applying the first-order stochastic dominance rule, while it is not true for mean-

variance/standard deviation model(20). Similar to the work done by Ogryczak and 

Ruszczyński (95), Wu has proved the incompatibility between the mean-standard 

deviation model and SDT rules(50). Also, he points out there is a consistent relationship 

between semi-standard deviation and second-order stochastic dominance rule, yet the 

reliability ratio should not exceed one.  

As the accuracy of route choice and demand forecasting models is heavily reliant on the 

proper incorporation of the reliability component, it continues to be an important area to 

understand travelers’ risk-taking behaviors under uncertainty and corresponding 

quantitative measures. The objective of this chapter is to advance the understanding of 

existing reliability models by investigating their underlying attributes and behavioral 

implications as well as the relationships between each other. This will help facilitate the 

proper selection of the reliability measure that is more consistent with the attitude of a 

certain group of travelers towards uncertainty. More specifically, a generic formulation is 

proposed based on the similar structural properties of three measures, including OTAP, 

SD, and SSD. This is similar to the lower partial moment concept applied in financial risk 

analysis(96), however, our study regards long travel times as undesirable and concentrate 

on the right side of the distribution. In addition, as Pareto efficiency is an important 

property of reliability analysis, the study also presumes the decision process involves 

trading-off of the mean and reliability requirements and applies the multi-objective 

formulation in route choice models. Furthermore, consistent relationships between the 

generalized reliability model and SDT criteria are established. This not only provides 

theoretical foundation regarding risk preferences for the reliability measures under study, 

but also makes it possible to analytically and efficiently solve route choice models 

involving those measures.  

The outline of the chapter is as follows. The Section 5.2 introduces the three reliability 

models of particular interest in our study and a generic multi-objective formulation is 

developed in the following section. The definitions associated with the first three orders 

of SDT are provided in Section 5.4, and relationships between reliability models and 

stochastic dominance rules are examined. The results facilitate the development of 
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solution algorithm in the fifth section based on the Label Correcting algorithms. Next, 

numerical experiments are conducted on the real-world network using field travel time 

data to evaluate the proposed models and algorithms. The findings from the study are 

summarized in the final section.  

5.2 ALTERNATIVE RELIABILITY MODELS 

To facilitate the discussion, following notations are used. First consider a directed 

network 𝐺 = (𝑁, 𝐴, 𝐷) where 𝑁 is the set of nodes, 𝐴 is the set of links, and 𝐷 is the set 

of probability distributions of travel times associated with individual links. Let 𝑟 ∈ 𝑁 and 

𝑠 ∈ 𝑁 represent the origin and destination node respectively. Let 𝑡𝑘
𝑟𝑠 be the random travel 

time on path 𝑝𝑘
𝑟𝑠 ∈ 𝑃𝑟𝑠, where 𝑃𝑟𝑠 denotes the set of paths connecting the origin and 

destination and follow a probability distribution 𝑓𝑘
𝑟𝑠 with a cumulative function 𝐹𝑘

𝑟𝑠. Let 

𝜇𝑘
𝑟𝑠, 𝛼𝑘

𝑟𝑠, 𝛽𝑘
𝑟𝑠, and 𝛾𝑘

𝑟𝑠 represent the mean, on-time arrival probability, schedule delay, 

and semi-standard deviation of 𝑡𝑘
𝑟𝑠 along 𝑝𝑘

𝑟𝑠 with respect to a pre-defined acceptable 

travel time benchmark 𝑏, respectively. Assume travelers know exactly the travel time and 

variability on each link and would make rational choices among path alternatives. 

Accordingly, three route choice models of interest in terms of each reliability measure are 

respectively introduced if the following sections. 

5.2.1 On Time Arrival Probability  

First applied by Frank in the probabilistic shortest path problem, the OTAP model has 

become one of the most commonly studied approaches to the reliable routing problem in 

the stochastic network setting. The model aims to determine the optimal path that 

maximizes a traveler’s chance of arriving at a destination on time give his/her specific 

travel time constraint for the trip. The OTAP model can be mathematically represented as 

follows. 

𝑀𝑎𝑥 𝛼𝑘
𝑟𝑠(𝑏) = 𝐹𝑘

𝑟𝑠(𝑏) = ∫ 𝑓𝑘
𝑟𝑠(𝑡)𝑑𝑡

𝑏

0
, ∀(𝑟, 𝑠) ∈ 𝑅𝑆, 𝑝𝑘

𝑟𝑠 ∈ 𝑃𝑟𝑠                                    (5.1) 

To transform the OATP model into an equivalent optimization problem, first we define a 

complementary cumulative distribution function as: 

�̅�(𝑏) = 1 − 𝐹(𝑏) = ∫ 𝑓(𝑡)𝑑𝑡
𝑇

𝑏
                                                                                         (5.2) 

where �̅�(𝑏) represents the probability of having a travel time that is above the benchmark 

value 𝑏. Therefore, contrast to 𝐹(𝑏), �̅�(𝑏) is a non-increasing function with �̅�(0)=1 and 

�̅�(𝑇)=0, where 𝑇 is the upper bound of the travel time distribution. 

Accordingly, the OATP model can be equivalently reformulated as a late arrival 

probability (LAP) model, which tries to minimize the probability of late arrival at the 

destination.  

𝑀𝑖𝑛 𝛼𝑘
𝑟𝑠(𝑏) = [𝐹𝑘

𝑟𝑠̅̅ ̅̅ (𝑏)] = ∫ 𝑓𝑘
𝑟𝑠(𝑡)𝑑𝑡

𝑇

𝑏
= ∫ (𝑡𝑘

𝑟𝑠 − 𝑏)0𝑑𝐹𝑘
𝑟𝑠𝑇

𝑏
, ∀(𝑟, 𝑠) ∈ 𝑅𝑆, 𝑝𝑘

𝑟𝑠 ∈ 𝑃𝑟𝑠                

(5.3) 
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5.2.2 Scheduling Delay 

Scheduling delay approach is commonly used in traveler’s departure time choice model 

to cope with travel time uncertainty. Travelers usually have a preferred arrival time in 

mind when making their trip decisions and accordingly determine the departure time 

according to the travel time allocated for the trip. When faced with the variability of 

travel times, in addition to choose the most reliable route, travelers can also adjust their 

departure time as traffic conditions on the same route can be significantly different during 

different time periods. Building on the previous work, following formulation is proposed 

by Small et al to simultaneously account for the scheduling and travel time 

reliability(65):  

𝑈(𝑡𝑑) = 𝛾1𝑡 + 𝛾2𝑆𝐷𝐸 + 𝛾3𝑆𝐷𝐿 + 𝛾4𝐷𝐿                                                                                (5.4) 

where 𝑡𝑑 represents the traveler’s departure time, 𝑈(𝑡𝑑) represents the utility associated 

with the particular 𝑡𝑑,  𝛾𝑖 is the estimated coefficient and expected to be negative, t is the 

trip travel time; SDE is schedule delay early; SDL is the schedule delay late; DL 

indicates whether the trip is late or not, and takes 1 if yes, and 0 otherwise. In particular, 

the SDE and SDL can be respectively represented by 

𝑆𝐷𝐸 = (𝑃𝐴𝑇 − [𝑡 + 𝑡𝑑])+                                                                                              (5.5) 

𝑆𝐷𝐿 = ([𝑡 + 𝑡𝑑] − 𝑃𝐴𝑇)+                                                                                              (5.6) 

where 𝑧+ = 𝑚𝑎𝑥(𝑧, 0). 

Argued that above formulation is only suitable under certainty situation, as the travel time 

is essentially a constant, Noland and Small further extend the scheduling model by 

considering the travel time as a random variable that follows a probability density 

function. As a result, above equation can be rewritten as 

𝐸[𝑈(𝑡𝑑)] = 𝛾1𝐸[𝑡] + 𝛾2𝐸[𝑆𝐷𝐸] + 𝛾3𝐸[𝑆𝐷𝐿] + 𝛾4𝑝𝐿(𝑡𝑑)                                             (5.7) 

where 𝐸[∙] is the expectation operator and 𝑝𝐿(𝑡𝑑) represents the probability of late arrival 

given the departure time 𝑡𝑑. 

Following this vein, Watling proposes a late arrival penalty model, assuming the 

departure time is fixed and the penalty only incurs when the trip travel time exceeds the 

pre-defined benchmark or acceptable travel time as stated in his work(66). The adapted 

disutility function, which comprises the generalized travel cost plus late penalty, can be 

represented as follows: 

𝑢𝑟 = 𝜃0𝑑𝑟 + 𝜃1𝐸[𝐶𝑟] + 𝜃2𝐸[(𝐶𝑟 − 𝜏𝑘)+]                                                                      (5.8) 

The author then incorporates the function to extend the traditional user equilibrium 

model, so that the disutility on all used paths is equal, and less than that on any 

unselected paths. However, no specific solution method is provided in the study. In this 
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study, an efficient algorithm based on SDT is adopted after the consistent relationship 

between the scheduling delay and stochastic dominance rule is established. Similar as in 

Equation (5.8), we only focus on the scheduling delay component. Therefore, the route 

choice model can be reformulated as 

𝑀𝑖𝑛 𝛽𝑘
𝑟𝑠(𝑏) = 𝐸(𝑡𝑘

𝑟𝑠 − 𝑏)+ = ∫ (𝑡𝑘
𝑟𝑠 − 𝑏)𝑑𝐹𝑘

𝑟𝑠𝑇

𝑏
                                                            (5.9) 

5.2.3 Semi-Standard Deviation 

Introduced in the portfolio theory by Markovitz, the centrality-dispersion based trade-off 

model has been extensively used in a variety of applications to accommodate risky 

circumstances(14). In the portfolio optimization, investors intend to maximize the return 

of the investment as often represented by the mean while minimize the potential loss, 

which is usually represented by the variance or standard deviation. In the route choice 

context, since travel time is an undesirable feature, travelers attempt to minimize both the 

average and variability of travel time at the same time. Therefore, the objective of the 

model is to minimize the utility which is the linear combination of two components. The 

obtained utility is essentially equivalent to the travel time budget or effective travel time 

concept in many studies. The general formulation is expressed as follows. 

𝑈 = 𝜇 + 𝜆𝜎                                                                                                                     (5.10) 

where 𝑈 is the utility of the path; 𝜇 and 𝜎 represents the mean and standard deviation of 

travel times on the path; 𝜆 represents the relative importance of the reliability compared 

to the average travel time. 

Under normal distribution assumption, there is one-to-one relationship between the 

mean-STD and OTAP models. However, such corresponding relationship does not hold 

when the assumption is violated, which is often the case since travel times are often 

asymmetrically distributed. On the other hand, the shortcomings of standard deviation are 

apparent under asymmetrical distribution condition(27). In contrast, SSD not only has the 

advantages that standard deviation has, but also has the feasibility in accounting for the 

important rule the benchmark value plays in the route choice model. This property echoes 

very well with LAP and SD based measures. 

𝑀𝑖𝑛 𝛾𝑘
𝑟𝑠(𝑏) = √𝐸[(𝑡𝑘

𝑟𝑠 − 𝑏)+
2

] = √∫ (𝑡𝑘
𝑟𝑠 − 𝑏)2𝑑𝐹𝑘

𝑟𝑠𝑇

𝑏
                                                (5.11) 

Despite the flexibility in using different 𝑏 values, such as the average and 15th percentile 

travel time, here we will define 𝑏 as the acceptable travel time, same as used in LAP and 

SD models. In contrast to using mean as the benchmark, the constant value is regarded as 

more realistic as travelers usually compare candidate paths with a universal criterion 

instead of path-specific.  
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Since SSD is the square root of semi-variance, the routing model that minimizes the 

semi-variance of travel times will equally minimize the SSD. Therefore, the formulation 

can be equivalently rewritten as below. 

𝑀𝑖𝑛 𝛾𝑘
𝑟𝑠(𝑏)2 = 𝐸[(𝑡𝑘

𝑟𝑠 − 𝑏)+
2

] = ∫ (𝑡𝑘
𝑟𝑠 − 𝑏)2𝑑𝐹𝑘

𝑟𝑠𝑇

𝑏
                                                        (5.12) 

5.3 A GENERALIZED FRAMEWORK 

5.3.1 Measure Generalization 

From the above formulations, we can immediately see that three reliability models 

essentially follow the same mathematical structure, which only accounts for the 

distributional portion that exceed the benchmark. The only difference is the power factor 

applied in the formula. Naturally, we can generalize the reliability measures with 

following formulation.  

𝜏𝜃𝑘
𝑟𝑠(𝑏) = ∫ (𝑡𝑘

𝑟𝑠 − 𝑏)𝜃𝑑𝐹𝑘
𝑟𝑠𝑇

𝑏
                                                                                        (5.13) 

where 𝜃 is the reliability parameter that governs how the deviation from the benchmark 

travel time is treated in the calculation.  

 

Based on the generalized formulae above, the reliability measurement is determined by 

two parameters. The benchmark 𝑏 reflects at what extent beyond which travelers would 

consider the trip to be unreliable, therefore represents their tolerance of unreliability. A 

small value indicates travelers are intolerant of relatively long travel time whereas a very 

large value indicates only under highly congested conditions would the traveler consider 

the impact of reliability on their trip planning. An extreme scenario exists if 𝑏 takes the 

upper bound of travel time distribution or even a larger value so that any travel time 

realizations would be below the benchmark. Under this situation, travelers are insensitive 

to any travel time variation. In other words, they are not concerned with the reliability 

condition and do not include it in their route choice decisions. In this case, the reliability 

model degenerates to the traditional minimum expected travel time model. 

 

The reliability parameter 𝜃, on the other hand, determines the behavior of the reliability 

measure in response to the degree of deviation of travel time from the specified 

benchmark. If 𝜃 = 0, the deviation, no matter small or large, has no impact on the 

quantity of the measure; therefore, the generalized measure simply degenerates to the 

probability measure, i.e. LAP, and it is only affected by the benchmark value. If 0 < 𝜃 <
1, the small deviation has a relatively larger impact on the reliability measure, however, 

such contribution gradually decreases as 𝜃 increases. If 𝜃 = 1, the generalized measure 

becomes SD and the small and large deviations have the same weight in calculating the 

measure. In contrast, if 𝜃 > 1, the large deviation will have a larger weight in quantifying 

the reliability condition and the impact increases exponentially as 𝜃 increases. This is 

consistent with the understanding that travelers are more concerned with excessive delays 

than the average condition. A special case would be when 𝜃 = 2, the generalized 

measure becomes SV. As it is critical to choose an appropriate reliability parameter, the 
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behavioral implication corresponding to each value will be further investigated through 

the congruent relationship between the generalized measure and stochastic dominance 

criteria.  

5.3.2 Model Formulation 

With the multi-objective formulation of the routing problem involving stochastic travel 

time, travelers are assumed to try to minimize the expected travel time, besides the travel 

time reliability consideration. Accordingly, the multi-objective shortest path problem that 

seeks to optimize both objectives simultaneously can be developed into following mean-

travel time reliability (MTTR) 𝜇 − 𝜏𝜃 model: 

{
𝑀𝑖𝑛 𝜇𝑟𝑠

𝑀𝑖𝑛 𝜏𝜃
𝑟𝑠                                                                                                                        (5.14) 

Then, the following path dominance rules are defined so that the comparison between 

alternative paths can be made.   

Definition 1 A path 𝑝𝑘
𝑟𝑠 ∈ 𝑃𝑟𝑠 dominates another path 𝑝𝑙

𝑟𝑠 ∈ 𝑃𝑟𝑠 by the mean-travel time 

reliability i.e. 𝜇 − 𝜏𝜃 decision rule or 𝑝𝑘
𝑟𝑠 ≻𝜇−𝜏𝜃

𝑝𝑙
𝑟𝑠, if 𝜇𝑘

𝑟𝑠 ≤ 𝜇𝑙
𝑟𝑠 and 𝜏𝜃𝑘

𝑟𝑠 ≤ 𝜏𝜃𝑙
𝑟𝑠 with at 

least one strict inequality holds.  

Definition 2 A path 𝑝𝑘
𝑟𝑠 ∈ 𝑃𝑟𝑠 is a 𝜇 − 𝜏𝜃 non-dominated path, if and only if no such a 

path 𝑝𝑙
𝑟𝑠 ∈ 𝑃𝑟𝑠 exists such that 𝑝𝑙

𝑟𝑠 ≻𝜇−𝜏𝜃
𝑝𝑘

𝑟𝑠. 

Since this dissertation takes advantage of the sampling based approach to account for the 

inherent correlation between travel times on adjacent links, now suppose there are 𝑤 

discrete travel time realizations for each link, and let 𝑟𝑚
𝑖𝑗

 denote the travel time realization 

on link 𝑎𝑖𝑗 at time interval 𝑚. Let 𝑥𝑖𝑗
𝑟𝑠 be the binary variable where 𝑥𝑖𝑗

𝑟𝑠 = 1 if link 𝑎𝑖𝑗 is a 

member link of path 𝑝𝑘
𝑟𝑠, and 𝑥𝑖𝑗

𝑟𝑠 = 0 otherwise. Accordingly, we can determine the 

mean and SSD of path travel time 𝑡𝑘
𝑟𝑠 as follows. 

𝜇𝑘
𝑟𝑠 =

1

𝑤
∑ ∑ 𝑟𝑚

𝑖𝑗
𝑥𝑖𝑗

𝑟𝑠
𝑎𝑖𝑗∈𝐴

𝑤
𝑚=1                                                                                               (5.15) 

𝜏𝜃𝑘
𝑟𝑠 =

1

𝑤
∑ (∑ 𝑟𝑚

𝑖𝑗
𝑥𝑖𝑗

𝑟𝑠
𝑎𝑖𝑗∈𝐴 − 𝑏)

+

𝜃
𝑤
𝑚=1                                                                            (5.16) 

According to equations (5.14), (5.15), and (5.16), the multi-objective model can now be 

reformulated as follows. 

𝑀𝑖𝑛 
1

𝑤
∑ ∑ 𝑟𝑚

𝑖𝑗
𝑥𝑖𝑗

𝑟𝑠
𝑎𝑖𝑗∈𝐴

𝑤
𝑚=1                                                                                                 (5.17) 

𝑀𝑖𝑛 
1

𝑤
∑ (∑ 𝑟𝑚

𝑖𝑗
𝑥𝑖𝑗

𝑟𝑠
𝑎𝑖𝑗∈𝐴 − 𝑏)

+

𝜃
𝑤
𝑚=1                                                                                (5.18) 
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𝑠. 𝑡. ∑ 𝑥𝑖𝑗
𝑟𝑠

𝑗:𝑎𝑖𝑗∈𝐴 − ∑ 𝑥𝑗𝑖
𝑟𝑠

𝑖:𝑎𝑗𝑖∈𝐴 = {
1, 𝑖𝑓 𝑖 = 𝑟

−1,     𝑖𝑓 𝑖 = 𝑠
0,    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                           (5.19) 

𝑥𝑖𝑗 ∈ {0,1} ∀(𝑖, 𝑗) ∈ 𝐴                                                                                                                   (5.20) 

Equation (5.17) is to minimize the average travel time which represents travelers’ 

expectation under normal traffic conditions. Equation (5.18) is to minimize the travel 

time variability derived based on their repeated travel experiences. Equation (5.19) 

ensures all the links on the path are feasible. Equation (5.20) defines a binary link-path 

incidence variable.  

5.4 CONNECTIONS WITH STOCHASTIC DOMINANCE THEORY 

5.4.1 Stochastic Dominance Definitions 

In this section, we proceed to show that there is a consistent relationship between multi-

objective models under study and the classical stochastic dominance theory so that the 

risk taking behaviors corresponding to the reliability measures can be derived 

accordingly. To introduce the stochastic dominance to the shortest path domain and assist 

the route choice decision making, following notions with regard to different ordering 

rules are first defined. As travel time is an undesirable feature, travelers are assumed to 

always prefer less travel time to more. 

Definition 3 A path 𝑝𝑘
𝑟𝑠 ∈ 𝑃𝑟𝑠 dominates another path 𝑝𝑙

𝑟𝑠 ∈ 𝑃𝑟𝑠 in the sense of the first-

order stochastic dominant (FOSD) rule or 𝑝𝑘
𝑟𝑠 ≻𝐹𝑂𝑆𝐷 𝑝𝑙

𝑟𝑠, if 𝐹𝑘(𝑡) ≥ 𝐹𝑙(𝑡), for all values 

of 𝑡 ∈ [0, 𝑇], with the strict inequality holds for at least one 𝑡. 

Based on the FOSD definition, it indicates the cumulative distribution curve of travel 

times on one path lies on or at the right of the distribution curve on the other path. In 

other words, the cumulative distribution curves of these two paths do not cross 

throughout the travel time range. Under this condition, the cumulative probability of 

having travel times that are less than any specific value on the first path is always equal 

to or larger than that on the second path and for at least one value, the former is strictly 

larger than the latter. In this sense, any travelers that prefers less to more, which is 

generally true in the real world, would choose the first path over the second one.  

The implication of FOSD can be illustrated with following simple example. If there are 

three paths, where 

 Path 1 takes a constant travel time of 30 minutes; 

 Path 2 takes 40 and 50 minutes each with 50% of chance; 

 Path 3 takes 20 and 40 minutes each with 50% of chance. 

The corresponding cumulative distributions are shown in Figure 1. 
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Figure 5.1 Cumulative distributions on three example paths 

Therefore, it is clear that Path 1 and 3 are at the right side of Path 2, except that Path 3 

and 2 are overlapping when travel time is 40 minutes. In spite of that, Path 2 will be 

dominated by the other two paths according to the FOSD definition. However, other than 

preferring less to more, FOSD does not necessarily involve any risk taking preference. 

Consequently, it may not be able to differentiate a more reliable path from a riskier path. 

Therefore, the risk-taking behavior corresponds to the FOSD rule is generally considered 

as risk-neutral(97). As shown in above example, both Path 1 and 3 have a mean travel 

time of 30 minutes, but Path 3 has a much higher chance to take a longer travel time than 

Path 1, which makes Path 3 riskier. However, this cannot be reflected by the FOSD rule. 

In reality, many travelers are risk averse, as they try to avoid the risky route even at the 

expense of taking longer travel time. In order to deal with the risk averse behavior, the 

second-order stochastic dominance criterion is introduced below. 

Definition 4 A path 𝑝𝑘
𝑟𝑠 ∈ 𝑃𝑟𝑠 dominates another path 𝑝𝑙

𝑟𝑠 ∈ 𝑃𝑟𝑠 in the sense of the 

second-order stochastic dominant (SOSD) rule or 𝑝𝑘
𝑟𝑠 ≻𝑆𝑂𝑆𝐷 𝑝𝑙

𝑟𝑠, if ∫ 𝐹𝑘(𝑥)𝑑𝑥
𝑇

𝑡
≥

∫ 𝐹𝑙(𝑥)
𝑇

𝑡
𝑑𝑥, for all values of 𝑡 ∈ [0, 𝑇], with the strict inequality holds for at least one 𝑡. 

Based on the definition above, 𝑝𝑘
𝑟𝑠 would be preferred to 𝑝𝑙

𝑟𝑠, if the area enclosed by the 

cumulative distribution curve of former path is always equal to or greater than that of the 

latter path, for any travel time in the whole range. Still use Figure 5.1 as example. Since 

three are only three discrete values, we can analyze each of them individually. When the 

travel time is 20 minutes, the area under Path 1 is (30 − 20) ∙ 0 + (40 − 30) ∙ 1 = 10, 

while the area under Path 3 is (40 − 20) ∙ 0.5 = 10 as well. Now if the travel time is 30 
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minutes, the area under Path 1 is still 10, while the area under Path 3 becomes 
(40 − 30) ∙ 0.5 = 5, which is smaller. It is also easy to see the area under both 

cumulative curves is 0 when travel time takes 40 minutes. Under this circumstance, we 

can see Path 1 dominates Path 3 according to the SOSD rule. 

Now assume there is additional variability in travel times in which there are 50% of 

chance of reducing 5 minutes and 50% of chance of increasing 5 minutes and such 

variability component can be added to either lower or higher travel time values on Path 3. 

Accordingly, this results in two new scenarios with following travel time distributions: 

 Path 4 takes 20, 35, and 45 minutes with probability of 50%, 25%, and 25%, 

respectively; 

 Path 5 takes 15, 25, and 40 minutes with probability of 25%, 25%, and 50%, 

respectively. 

The corresponding cumulative distribution curves are illustrated in Figure 5.2. 

 

Figure 5.2 Cumulative distributions with additional variability 

In this case, FOSD rule would be indifferent to both paths as their cumulative curves are 

intersecting multiple times. Meanwhile, we can observe that Path 4 has a larger area 

enclosed by the cumulative curve when travel time is 20 minutes. However, when travel 

time is 40 minutes, the area under Path 4 becomes smaller than that under Path 5. 

Therefore, the SOSD rule becomes ineffective in determine the dominance relationship 

between them. In this regard, the third order stochastic dominance (TOSD) rule can be 

applied. In particular, the TOSD rule corresponds to the ruin averse behavior, which tries 
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to avoid the possibility of encountering heavily congested conditions, even though such 

possibility is very small. A ruin-averse traveler is definitely risk-averse, but the reverse is 

not true. 

Definition 5 A path 𝑝𝑘
𝑟𝑠 ∈ 𝑃𝑟𝑠 dominates another path 𝑝𝑙

𝑟𝑠 ∈ 𝑃𝑟𝑠 by the TOSD rule or 

𝑝𝑘
𝑟𝑠 ≻𝑇𝑂𝑆𝐷 𝑝𝑙

𝑟𝑠, if 𝜇𝑘
𝑟𝑠 ≤ 𝜇𝑙

𝑟𝑠 and ∫ ∫ 𝐹𝑘(𝑥)𝑑𝑥𝑑𝑦
𝑇

𝑦

𝑇

𝑡
≥ ∫ ∫ 𝐹𝑙(𝑥)𝑑𝑥𝑑𝑦

𝑇

𝑦

𝑇

𝑡
, for all values of 

𝑡 ∈ [0, 𝑇], with the strict inequality holds for at least one 𝑡. 

The definition implies travelers whose behaviors are pertinent to the TOSD rule prefer 

the route with less travel time variability at the upside of travel time distribution. In last 

example, the path with variability added to the lower end will dominate the path that 

having additional variability at the higher end, which makes it more unreliable as 

travelers have a higher chance of have longer travel time. Such behavior can also be 

reflected by looking at the skewness of distributions. As shown in Figure 5.2, Path 4 has 

a positive skewness with 0.54 whereas Path 5 has a negative skewness with -0.54. As 

Path 5 is considered superior to Path 4, the TOSD rule is able to take the skewness into 

account, a property that is also reflected in SSD. 

5.4.2 Theoretical Connections 

With understandings of the stochastic dominance rules, we proceed to examine the 

relationship between the generalized reliability formulation and stochastic dominance 

criteria. To facilitate discussion, here we denote Γ𝐹𝑂𝑆𝐷, Γ𝑆𝑂𝑆𝐷, and Γ𝑇𝑂𝑆𝐷 as non-

dominated path set with respect to FOSD, SOSD, and TOSD decision rules, respectively. 

At first, it is easy to obtain the relationship among three stochastic dominance rules. 

Proposition 2 The non-dominated path set in terms of FOSD rule contains that in terms 

of SOSD rule, which contains that in terms of TOSD rule, or Γ𝐹𝑂𝑆𝐷 ⊇ Γ𝑆𝑂𝑆𝐷 ⊇ Γ𝑇𝑂𝑆𝐷. 

Proof. Firstly, ∫ 𝐹𝑘(𝑥)𝑑𝑥
𝑇

𝑡
− ∫ 𝐹𝑙(𝑥)

𝑇

𝑡
𝑑𝑥 = ∫ [𝐹𝑘(𝑥) − 𝐹𝑙(𝑥)]𝑑𝑥

𝑇

𝑡
. Based on the 

definition of FOSD rule, if 𝑝𝑘
𝑟𝑠 ≻𝐹𝑂𝑆𝐷 𝑝𝑙

𝑟𝑠, then 𝐹𝑘(𝑥) − 𝐹𝑙(𝑥) ≥ 0. Accordingly, 

∫ [𝐹𝑘(𝑥) − 𝐹𝑙(𝑥)]𝑑𝑥 ≥ 0
𝑇

𝑡
. Therefore, Γ𝐹𝑂𝑆𝐷 ⊇ Γ𝑆𝑂𝑆𝐷. Similarly, we can get Γ𝑆𝑂𝑆𝐷 ⊇

Γ𝑇𝑂𝑆𝐷.∎ 

Proposition 3 if 𝑝𝑘
𝑟𝑠 ≻𝐹𝑂𝑆𝐷/𝑆𝑂𝑆𝐷/𝑇𝑂𝑆𝐷 𝑝𝑙

𝑟𝑠, then 𝜇𝑘
𝑟𝑠 ≤ 𝜇𝑙

𝑟𝑠 where the strict inequality 

holds for FOSD condition. 

Proof. First we can get 𝜇𝑘
𝑟𝑠 − 𝜇𝑙

𝑟𝑠 = ∫ 𝑡𝑓𝑘
𝑟𝑠(𝑡)𝑑𝑡

𝑇

0
− ∫ 𝑡𝑓𝑙

𝑟𝑠(𝑡)𝑑𝑡
𝑇

0
= ∫ 𝑡[𝑓𝑘

𝑟𝑠(𝑡) −
𝑇

0

𝑓𝑙
𝑟𝑠(𝑡)]𝑑𝑡. Then by applying the integration by parts, we can accordingly have 𝜇𝑘

𝑟𝑠 −

𝜇𝑙
𝑟𝑠 = − ∫ [𝐹𝑘

𝑟𝑠(𝑡) − 𝐹𝑙
𝑟𝑠(𝑡)]𝑑𝑡

𝑇

0
. With FOSD rule,  𝐹𝑘(𝑥) − 𝐹𝑙(𝑥) ≥ 0 and the inequality 

holds for at least one value, therefore the integral part is negative, which leads to 𝜇𝑘
𝑟𝑠 <

𝜇𝑙
𝑟𝑠. Under SOSD and TOSD definitions, we can directly know 𝜇𝑘

𝑟𝑠 ≤ 𝜇𝑙
𝑟𝑠. ■ 

Proposition 4 The optimal solutions to the 𝜇 − 𝜏𝜃 model for any value of 𝜃 ≥ 0 is a 

subset of FOSD non-dominated paths. 
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Proof. To show the relationship holds, consider two paths 𝑝𝑘
𝑟𝑠 and 𝑝𝑙

𝑟𝑠 with cumulative 

travel time distribution function 𝐹𝑘 and 𝐹𝑙. Then, based on the generalized reliability 

measure we can have  

∆𝜏 = 𝜏𝑘
𝑟𝑠(𝑏) − 𝜏𝑙

𝑟𝑠(𝑏) = ∫ (𝑥 − 𝑏)𝜃𝑑(𝐹𝑘
𝑟𝑠 − 𝐹𝑙

𝑟𝑠)
𝑇

𝑏
                                                      (5.21) 

If 𝜃 = 0, then ∆𝜏 = 𝐹𝑙
𝑟𝑠(𝑏) − 𝐹𝑘

𝑟𝑠(𝑏)                                                                                            (5.22) 

Based on the definition of FOSD rule, if 𝑝𝑘
𝑟𝑠 ≻𝐹𝑂𝑆𝐷 𝑝𝑙

𝑟𝑠, then 𝐹𝑘(𝑥) − 𝐹𝑙(𝑥) ≥ 0, for all 

values of 𝑡 ∈ [0, 𝑇], with the inequality holds for at least one 𝑡. Therefore, ∆𝜏 ≤ 0. 

If 𝜃 > 0, then by applying the integration by parts, we can accordingly obtain 

∆𝜏 = −𝜃 ∫ (𝑥 − 𝑏)𝜃−1(𝐹𝑘
𝑟𝑠 − 𝐹𝑙

𝑟𝑠)𝑑𝑡
𝑇

𝑏
                                                                          (5.23) 

Because 𝑥 ≥ 𝑏, we can know (𝑥 − 𝑏)𝜃−1 ≥ 0. In the meantime, if 𝑝𝑘
𝑟𝑠 ≻𝐹𝑂𝑆𝐷 𝑝𝑙

𝑟𝑠, then 

𝐹𝑘(𝑥) − 𝐹𝑙(𝑥) ≥ 0. Combining these together, we can know ∆𝜏 ≤ 0, i.e. 𝜏𝑘
𝑟𝑠 ≤ 𝜏𝑙

𝑟𝑠. 

In addition, based on Proposition 3, if 𝑝𝑘
𝑟𝑠 ≻𝐹𝑂𝑆𝐷 𝑝𝑙

𝑟𝑠, then naturally we can have 𝜇𝑘
𝑟𝑠 <

𝜇𝑙
𝑟𝑠. ∎  

 

Above proposition is critical in a sense that finding FOSD non-dominated paths will 

provide a unanimous approach to solving three reliability models all at once. In previous 

studies, the label correcting algorithm developed based on the Bellman’s Principle of 

Optimality has been validated to be effective in identifying optimal paths(20). This 

approach will be adapted in the study as well. Before elaborate on the algorithm, 

following propositions can also be obtained for higher dominance orders. 

 

Proposition 5 The optimal solutions to the mean-SD (MSD) and mean-SSD (MSSD) 

model is a subset of SOSD non-dominated paths, except for the scenario where paths 

have identical mean and SD/SSD. 

Proof. Based on the definition of SOSD rule, if 𝑝𝑘
𝑟𝑠 ≻𝑆𝑂𝑆𝐷 𝑝𝑙

𝑟𝑠, then ∫ 𝐹𝑘(𝑥)𝑑𝑥
𝑇

𝑡
−

∫ 𝐹𝑙(𝑥)
𝑇

𝑡
𝑑𝑥 ≥ 0. Then based on Proposition 4, ∆𝜏 ≤ 0. At the same time, if 

𝑝𝑘
𝑟𝑠 ≻𝑆𝑂𝑆𝐷 𝑝𝑙

𝑟𝑠, then 𝜇𝑘
𝑟𝑠 ≤ 𝜇𝑙

𝑟𝑠. This means the optimal solutions to the 𝜇 − 𝜏𝜃 model for 

any value of 𝜃 > 0 is a subset of SOSD non-dominated paths, including the MSD and 

MSSD models. ∎  

Proposition 6 The optimal solutions to the MSSD model is a subset of TOSD non-

dominated paths, except for the scenario where paths have identical mean and SSD. 

Proof. Now with 𝜃 > 1, apply integration by parts once again, we can easily have  

∆𝜏 = −𝜃(𝜃 − 1) ∫ ∫ (𝑥 − 𝑏)𝜃−2(𝐹𝑘
𝑟𝑠 − 𝐹𝑙

𝑟𝑠)
𝑇

𝑦
𝑑𝑥𝑑𝑦

𝑇

𝑏
                                                   (5.24) 
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First, it is easy to know 𝜃(𝜃 − 1) > 0 and (𝑥 − 𝑏)𝜃−2 ≥ 0 since 𝑥 ≥ 𝑏. Also, based on 

the TOSD definition, ∫ ∫ [𝐹𝑘(𝑥) − 𝐹𝑙(𝑥)]𝑑𝑥𝑑𝑦
𝑇

𝑦

𝑇

𝑡
≥ 0. As 𝐹𝑘

𝑟𝑠 − 𝐹𝑙
𝑟𝑠 is non-negative, we 

now have ∆𝜏 ≤ 0. Similarly, if 𝑝𝑘
𝑟𝑠 ≻𝑇𝑂𝑆𝐷 𝑝𝑙

𝑟𝑠, then 𝜇𝑘
𝑟𝑠 ≤ 𝜇𝑙

𝑟𝑠. Therefore, if travelers are 

more concerned with the possible occurrence of long travel time, the exponential 

reliability factor should be set to above one so that the model gives larger weight to 

longer travel time to reflect such behavior. If it is chosen to be 2, then the model will 

become the MSSD model. ∎  

It should be noted that the exception condition noted in the propositions only occurs if a 

path is MSD or MSSD non-dominated yet dominated by another path in Γ𝑆𝑂𝑆𝐷
𝑟𝑠  or Γ𝑇𝑂𝑆𝐷

𝑟𝑠  

(for MSSD non-dominated case only). The probability of encountering this condition is 

rather low. However, even though it is possible to happen, the impact on the obtained 

optimal paths is negligible thanks to the path with identical mean and SSD is already 

included in the SOSD or TOSD non-dominated path set. If the included path is not 

ultimately chosen by the decision maker, the omitted path would also not be chosen 

anyway; if the included path is chosen as the optimal path to travel, there would be no 

difference to the omitted path as two considered attributes are the same. Therefore, the 

propositions can be considered true under this circumstance without the noted exception 

condition and the SOSD or TOSD based LC algorithms can be used in finding the MSD 

or MSSD non-dominated paths. The various relationships can be illustrated as follows. 

              

Figure 5.3 Consistency between MTTR and SDT Rules 
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5.5 SOLUTION ALGORITHM 

Many previously developed algorithms that are used to solve classical models are no 

longer feasible for the proposed model because the assumption that path cost is the direct 

summation of the cost of links that comprise the path is no longer held with incorporation 

of the travel time reliability measures. A variety of new solutions including but not 

limited to mathematical programming, simulation based methods, and evolutionary 

algorithms have been proposed in existing literature to specially deal with such 

challenge(18; 42; 76). In particular, the stochastic dominance theory based approach has 

recently been investigated and shown to be efficient in solving transportation models in 

both continuous and discrete travel time distribution scenarios in relatively large network 

settings(98). This is because of the appealing advantage of SDT in compliance with the 

Bellman’s principle of optimality, which makes it possible to adapt the traditional label 

correcting algorithm developed for the deterministic shortest path problems. 

 

In last section, we has proven the congruent relationship between reliability models and 

the FOSD dominance rule. Hence, the FOSD-based label correcting algorithm (FOSD-

LC) can be adapted to find all non-dominated paths, from which the final non-dominated 

MTTR non-dominated paths can be determined. In the meantime, the label correcting 

algorithm based on the SOSD and TOSD rules can also be adopted for determining MSD 

and MSSD non-dominated paths. 

  

To determine the dominance relationship between paths in the solution procedure, it is 

inevitable to examine the corresponding distributions associated with each path. This is 

computationally costly because theoretically for every pair of distributions, two 

comparisons may have to be made in order to know the final dominant relationship. That 

is to say, we still need to determine if the second path dominates the first one, after we 

know the first path does not dominate the second one. This is especially burdensome 

when the number of paths under consideration is large. In order to improve the efficiency 

of the algorithm, the following proposition is first provided. 

 

Proposition 7 If 𝑝𝑘
𝑟𝑠 ≻𝐹𝑂𝑆𝐷/𝑆𝑂𝑆𝐷/𝑇𝑂𝑆𝐷 𝑝𝑙

𝑟𝑠, then 𝑡𝑘
𝑟𝑠

𝑚𝑖𝑛
≤ 𝑡𝑙

𝑟𝑠
𝑚𝑖𝑛

 where 𝑡𝑘
𝑟𝑠

𝑚𝑖𝑛
 and 

𝑡𝑙
𝑟𝑠

𝑚𝑖𝑛
 represent the minimum travel time on 𝑝𝑘

𝑟𝑠and 𝑝𝑙
𝑟𝑠, respectively.  

 

Proof. Suppose there is a travel time observation 𝑡0 such that 𝑡𝑙
𝑟𝑠

𝑚𝑖𝑛
< 𝑡0 < 𝑡𝑘

𝑟𝑠
𝑚𝑖𝑛

, then 

we can easily get 𝐹𝑙(𝑡0) > 𝐹𝑘(𝑡0) = 0. As a result, 𝐹𝑘(𝑡0) − 𝐹𝑙(𝑡0) = −𝐹𝑙(𝑡0) < 0. First, 

this directly contradicts to the FOSD rule. Second, integrating −𝐹𝑙(𝑡0) over the range 

[𝑡𝑙
𝑟𝑠

𝑚𝑖𝑛
, 𝑡0] generates a negative value, which also violates the SOSD and TOSD 

requirements. ■ 

 

Implications from proposition 2 and 6 are valuable in that some unnecessary comparisons 

can be pre-eliminated by first examining the minimum and average of travel times on two 

paths. Suppose there are three alternative paths connecting the OD pair. In order to obtain 

the non-dominated paths, maximum number of pairwise evaluations can be six times. 

Now assume the minimum travel time on those paths are now known and ordered as 

𝑡𝑘𝑚𝑖𝑛
< 𝑡𝑙𝑚𝑖𝑛

< 𝑡𝑚𝑚𝑖𝑛
. Based on Proposition 6, we could theoretically eliminate half of 
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the number of comparisons required. For instance, it is clear 𝑝𝑙 would not be preferred 

𝑝𝑘; otherwise it is a violation to the proposition. In addition, if the average travel time are 

obtained and suppose the order follows 𝜇𝑚 < 𝜇𝑘 < 𝜇𝑙. This additional condition further 

reduces the number and only one comparison becomes necessary, i.e. whether 𝑝𝑘 

dominates 𝑝𝑙. As a result, the efficiency of the solution procedure is significantly 

improved. The improved procedure for finding non-dominated paths is provided below. 

 

SDT-LC Algorithm 

Step 1: Initialization. Let 𝑝𝑠𝑠 be the path from 𝑠 to itself and 𝑡0
𝑠𝑠 be the discrete travel 

time which are zero. Initialize the scan list 𝑄 = {𝑝𝑠𝑠}.  

Step 2: Select the first path from 𝑄, and denote it as 𝑝𝑘
𝑗𝑠

, then delete it from 𝑄. 

Step 3: For any predecessor node 𝑖 of 𝑗 and 𝑖 is not contained in current 𝑝𝑘
𝑗𝑠

, create a 

new path 𝑝𝑘
𝑖𝑠 = 𝑝𝑘

𝑗𝑠
+ 𝑎𝑖𝑗, and update the path travel time 𝑡𝑘

𝑖𝑠 = 𝑡𝑘
𝑗𝑠

+ 𝑟𝑖𝑗 and then 

obtain the set of  unique travel time realizations Ψ𝑖𝑠 of path 𝑝𝑘
𝑖𝑠. 

Step 4: Pre-eliminating condition check. Compare the 𝑡𝑘
𝑖𝑠

𝑚𝑖𝑛
 and 𝜇𝑘

𝑖𝑠 of path 𝑝𝑘
𝑖𝑠 to 

those of path 𝑝𝑙
𝑖𝑠 ∈ Γ𝑆𝐷𝑇

𝑖𝑠 , where Γ𝑆𝐷𝑇
𝑖𝑠  is the existing non-dominated path set according 

to the particular dominance rule of interest. If 𝑡𝑘
𝑖𝑠

𝑚𝑖𝑛
< 𝑡𝑙

𝑖𝑠
𝑚𝑖𝑛

 and 𝜇𝑘
𝑖𝑠 < 𝜇𝑙

𝑖𝑠, check if 

path 𝑝𝑘
𝑖𝑠 dominates path 𝑝𝑙

𝑖𝑠; else if 𝑡𝑘
𝑖𝑠

𝑚𝑖𝑛
> 𝑡𝑙

𝑖𝑠
𝑚𝑖𝑛

 and 𝜇𝑘
𝑖𝑠 > 𝜇𝑙

𝑖𝑠, check if path 𝑝𝑙
𝑖𝑠 

dominates path 𝑝𝑘
𝑖𝑠; Otherwise, keep 𝑝𝑙

𝑖𝑠 and update Γ𝑆𝐷𝑇
𝑖𝑠 = Γ𝑆𝐷𝑇

𝑖𝑠 ∪ 𝑝𝑘
𝑖𝑠 and 𝑄 = 𝑄 ∪

𝑝𝑘
𝑖𝑠, then go to Step 2. 

Step 5: Dominance condition evaluation. Suppose we now need to check whether 𝑝𝑘
𝑖𝑠 

dominates𝑝𝑙
𝑖𝑠. Depending on the particular dominance rule under evaluation:  

(a) FOSD dominance: if 𝐹𝑘
𝑖𝑠(𝜂) ≥ 𝐹𝑙

𝑖𝑠(𝜂) for all 𝜂 ∈ Ψ𝑖𝑠, and 𝐹𝑘
𝑖𝑠(𝜂) > 𝐹𝑙

𝑖𝑠(𝜂)  

for at least one 𝜂; 

(b): SOSD dominance: if 𝐸(𝑡𝑘
𝑖𝑠 − 𝜂)

+
≤ 𝐸(𝑡𝑙

𝑖𝑠 − 𝜂)
+

 for all 𝜂 ∈ Ψ𝑖𝑠, and 

𝐸(𝑡𝑘
𝑖𝑠 − 𝜂)

+
< 𝐸(𝑡𝑙

𝑖𝑠 − 𝜂)
+

 for at least one 𝜂; 

(c): TOSD dominance: if 𝐸[𝐸(𝑡𝑘
𝑖𝑠 − 𝜂)

+
− 𝛾]+ ≤ 𝐸[𝐸(𝑡𝑙

𝑖𝑠 − 𝜂)
+

− 𝛾]+ for all 

𝜂, 𝛾 ∈ Ψ𝑖𝑠, and 𝐸[𝐸(𝑡𝑘
𝑖𝑠 − 𝜂)

+
− 𝛾]+ < 𝐸[𝐸(𝑡𝑙

𝑖𝑠 − 𝜂)
+

− 𝛾]+ for at least one 

𝜂, 𝛾.  

Drop 𝑝𝑙
𝑖𝑠 and update Γ𝑆𝐷𝑇

𝑖𝑠 = Γ𝑆𝐷𝑇
𝑖𝑠 ∪ 𝑝𝑘

𝑖𝑠 and 𝑄 = 𝑄 ∪ 𝑝𝑘
𝑖𝑠. Otherwise, drop 𝑝𝑘

𝑖𝑠 and go to 

Step 6. 

Step 6: If 𝑄 is empty, go to step 7; otherwise go to step 2. 

Step 7: Identify and output the MTTR non-dominated path set Γ𝑀𝑇𝑇𝑅
𝑟𝑠 . 

 

5.6 NUMERICAL EXPERIMENTS 

In this section, numerical experiments are designed to assess various MTTR models and 

Label Correcting based solution algorithms. Louisville urban network and probe GPS-

based travel time data are used for experiments. Same OD pairs used in previous chapters 

are also selected for detailed analysis here. To determine the non-dominated paths, the 

desirable reference travel time is set to be the minimum average travel time for each OD 

pair, which is obtained from the deterministic LC algorithm implemented in Chapter 3.  
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5.6.1 OD Pair 128-278 

The non-dominated paths with regard to each dominance rule for OD 128-478 are 

presented and discussed in detail as follows. 

Table 5.1 SDT Non-Dominated Paths for OD 128-478 

Dominance Rule Number of Paths CPU Time (sec) 

FOSD 148 1010.6 

SOSD 25 159.0 

TOSD 7 281.6 

It first can be seen that the FOSD-LC algorithm requires a significantly longer computing 

time and generates a much larger size of non-dominated paths. This is mainly due to the 

relatively strict requirement that travel time distribution on a path has to be on the right 

side of another path for every travel time realization in order to satisfy the FOSD 

criterion. Since the condition can be easily violated, especially in congested networks, a 

considerably larger amount of paths in the scan list and accordingly pair-wise 

comparisons are resulted during the evaluation procedure. This in turn causes a much 

longer computing time for the FOSD-LC algorithm. The details of routes included in the 

non-dominated path set are shown in Figure 5.4 and Figure 5.5. It can be observed that 

there is no single path offering systematically lower travel times compared to other 

alternatives. This is mainly due to long travel times observed in all the non-dominated 

paths. The results indicate the FOSD rule alone may not be an effective strategy as ti 

finds too many options for further decision-making. 

Compared to the FOSD rule, the SOSD rule significantly reduces the number of non-

dominated paths. This is straightforward as the non-dominated paths based on the SOSD 

rule are part of those found by the FOSD rule, and SOSD involves additional risk-averse 

behavior when evaluating alternatives. As the number of paths reduces during the path 

evaluation procedure, the time needed to determine the dominant relationship between 

newly added path and current non-dominated paths also significantly drops. The obtained 

non-dominated paths in terms of the SOSD rule are shown in Figure 5.6 and Figure 5.7. It 

can be seen that only part of links on the map are used and only those paths whose 

cumulative travel time distributions have smaller portion of long travel times are selected 

by the SOSD rule. This is consistent with risk-averse travelers avoidong those routes with 

higher probability of having longer travel times. 

As to the TOSD rule, the number of obtained non-dominated paths are further reduced 

and only 7 paths are included in the final path set. This is understandable as TOSD non-

dominated paths are a subset of those obtained from SOSD or FOSD rules. However, 

TOSD-LC takes longer to run than SOSD-LC. Closer inspection shows that TOSD needs 

additional expectation operation in determining the dominance relationship between any 

two paths, and thus requires more time to execute. The travel time distributions of those 

obtained non-dominated paths also have smaller portion of excessively long travel times. 
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Figure 5.4 FOSD Non-Dominated Paths for OD128-478 

 

Figure 5.5 Cumulative Distributions of Travel Time on FOSD Non-Dominated Paths 

for OD128-478 
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Figure 5.6 SOSD Non-Dominated Paths for OD128-478 

 

Figure 5.7 Cumulative Distributions of Travel Time on SOSD Non-Dominated Paths 

for OD128-478 
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Figure 5.8 TOSD Non-Dominated Paths for OD128-478 

 

Figure 5.9 Cumulative Distributions of Travel Time on TOSD Non-Dominated Paths 

for OD128-478 
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Next, we look at the three reliability models under consideration here. According to the 

deterministic LC algorithm, the minimum travel time between OD 128-478 is 19.6041 

minutes. It is then used as the benchmark to derive LAP, SD, and SSD on all the non-

dominated paths obtained from the FOSD-LC algorithm. The final paths in terms of each 

MTTR dominance rule are summarized in Table 5.2 and Table 5.3. The paths with 

respect to the minimum average travel time, LAP, SD, and SSD are highlighted with bold 

in the table. It can be seen that when a single criterion is used, the optimal paths can be 

different from each other. Path 1 takes the least amount of time on average to arrive at the 

destination. However, the travel times are more variable compared to other available 

paths. In contrast, Path 6 has the lowest probability of being late with 31.25 percent of the 

time. However, this comes in at an expense of taking a longer time. In fact, its average 

travel time is the longest among the six paths. Meanwhile, the minimum SD and SSD 

path share the same path, i.e. Path 4. The 95th and 99th percentile travel times are also 

provided as indicators of prolonged travel times that can be experienced on each path. 

Interestingly, Path 4 has the smallest 95th and 99th percentile travel times, indicating 

smallest chance of experiencing excessively long travel times; an observation 

demonstrates risk-averse behaviors underlying the SD and SSD measures. 

Table 5.2 Statistics of MTTR Non-Dominated Paths for OD128-478 

Path ID Mean Probability SD SSD Skewness 95th 99th 

1 19.6041 35.83 2.82 7.17 2.69 34.99 51.83 

2 19.6043 33.47 2.77 7.23 2.46 36.26 55.21 

3 19.6287 33.47 2.59 6.90 2.57 35.60 56.37 

4 19.8322 39.44 2.46 5.95 2.93 31.63 42.48 

5 19.8788 31.67 3.05 8.31 2.83 37.31 60.98 

6 20.3032 31.25 3.70 9.12 2.39 40.00 58.31 

Table 5.3 Non-Dominated Paths Regarding Each MTTR Rule for OD128-478 

Path ID MOTAP MSD MSSD 

1 √ √ √ 

2 √ √  

3  √ √ 

4  √ √ 

5 √   

6 √   

 

If both mean and LAP are considered simultaneously, four different paths would be 

identified, as shown in Figure 3. The average travel time varies from 19.6 to 20.3 minutes 

while the late arrival probability varies from 31.25% to 35.83%. Also, the cumulative 

travel time distribution curves of four MLAP non-dominated paths are at the right of 

most FOSD non-dominated paths before the benchmark travel time. After exceeding the 
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benchmark, especially above the 90th percentile line, the cumulative curves on these four 

paths are below many other paths. This indicates the LAP measure is not able to take into 

account the distribution of travel times that exceeds the benchmark value. This finding is 

consistent with the notion that FOSD does not necessarily involve risk-taking behavior as 

it can only account for the reliability portion of the whole distribution. 

If both mean and SD are taken into account, four different paths would be resulted from 

MSD multi-objective model. Two paths will mainly take interstates whereas two other 

paths will heavily rely on urban arterial roads. Two other paths which are MLAP non-

dominated are now dominated under the MSD dominant rule. The 95th and 99th 

percentile travel times indicate there is a higher probability of having significant delay on 

these two paths, and this situation is accounted for by MSD criterion. 

Now take SSD as the reliability indicator, and the MSSD model accordingly generates 

three non-dominated paths. One of those will heavily rely on urban arterials while the 

other two will seek to use Interstates, which are more reliable than arterials. Path 2, which 

is previously MSD non-dominated is avoided by the MSSD rule, as the delays are more 

significant than other paths according to higher percentile travel time values. 
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Figure 5.10 MLAP Non-Dominated Paths for OD128-478 

 

Figure 5.11 Cumulative Distributions of Travel Time on MLAP Non-Dominated 

Paths for OD128-478 
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Figure 5.12 MSD Non-Dominated Paths for OD128-478 

 

Figure 5.13 Cumulative Distributions of Travel Time on MSD Non-Dominated Paths 

for OD128-478 
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Figure 5.14 MSSD Non-Dominated Paths for OD128-478 

 

Figure 5.15 Cumulative Distributions of Travel Time on MSSD Non-Dominated 

Paths for OD128-478 



 

82 
 

5.6.2 OD Pair 285-9 

Similar analysis using SDT and MTTR dominant rules on OD pair 285-9 is also 

conducted. The results are summarized as follows. At first, the summary of three 

stochastic dominance rules in terms of the number of optimal paths and computing time 

is shown in Table 5.4. 

Table 5.4 SDT Non-Dominated Paths for OD 285-9 

Dominance Rule Number of Paths CPU Time (sec) 

FOSD 42 596.9 

SOSD 12 98.3 

TOSD 6 263.0 

Based on the results, it is first observed that the number of non-dominated paths 

gradually decreases as the order of dominance rule increases, which is consistent with the 

observations from the first OD pair. One noticeable difference is that due to the origin 

and destination being across the city, the identified non-dominated paths are highly 

reliant on interstate highways, which very likely dominate local streets and thus provide 

fewer choices. Compared to OD 285-9, OD 128-478, however, is within Louisville 

downtown area, whose road network has a gridiron type structure with a higher density of 

intersections and links, which provide more options to maneuver around. In addition, it is 

shown that the computing time required for OD 285-9 is also less than that for OD 128-

478 which is also understandable. The finding from the analysis indicates the 

effectiveness and efficiency of LC algorithms are also greatly dependent on the spatial 

structure of the regional network under investigation. 

The analysis results with regard to the FOSD rule for OD 285-9 are presented in Figure 

5.16 and Figure 5.17. Some observations can be made as follows. First, many different 

options are recommended and most of them heavily rely on the interstates in the area. 

This makes sense since interstates are generally more reliable than urban arterials where 

traffic is periodically interrupted by signals. Second, although some paths are included in 

the final non-dominated path set, they are not necessarily practically feasible to travelers, 

because it is highly unlikely for travelers to get off an interchange and then immediately 

take next ramp to get back to the interstate again.  

The resulting non-dominated paths from the SOSD criterion are illustrated in Figure 5.18 

for spatial display and Figure 5.19 for detailed cumulative distribution curves. With the 

risk averse implication, the number of paths recommended are significantly reduced. 

There are three main options. The first option mainly relies on I-64, and the second takes 

I-65 first and then goes on to I-264, whereas the third option avoids I-65 completely, and 

instead uses Southern Parkway first and then switches to I-264 to continue the trip. The 

unfeasibility of some paths as discovered in the FOSD non-dominated paths is also 

present in the SOSD path set.  

By assuming travelers are ruin averse, i.e. more concerned with longer delays, the final 

non-dominant set further decreases to only 6 paths, as shown in Figure 5.20. 
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Figure 5.16 FOSD Non-Dominated Paths for OD285-9 

 

Figure 5.17 Cumulative Distributions of Travel Time on FOSD Non-Dominated 

Paths for OD285-9 
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Figure 5.18 SOSD Non-Dominated Paths for OD285-9 

 

Figure 5.19 Cumulative Distributions of Travel Time on SOSD Non-Dominated 

Paths for OD285-9 
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Figure 5.20 TOSD Non-Dominated Paths for OD285-9 

 

Figure 5.21 Cumulative Distributions of Travel Time on TOSD Non-Dominated 

Paths for OD285-9 
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Next, we proceed to evaluate the application of reliability models on the same OD pair. 

According to the deterministic LC algorithm, the shortest average travel time between 

OD 285-9 is 22.18 minutes. Adopting it as the benchmark to calculate reliability 

measures, the corresponding non-dominated routes with regard to each MTTR 

dominance rule are summarized in Table 5.5 and Table 5.6. Similar to OD 128-478, it is 

clearly shown that when only optimizing one single objective, different optimal paths can 

be identified, depending on the particular measure to be minimized.  

Table 5.5 Statistics of MTTR Non-Dominated Paths for OD285-9 

Path ID Mean Probability SD SSD Skewness 95th 99th 

1 22.18 35.00 3.13 7.36 1.96 39.15 51.95 

2 22.83 31.25 2.90 9.27 4.20 36.82 70.45 

3 24.07 49.17 2.63 7.64 6.59 33.63 56.00 

4 24.21 50.83 2.73 6.50 3.56 34.34 56.73 

Table 5.6 Non-Dominated Paths Regarding Each MTTR Rule for OD285-9 

Path ID MLAP MSD MSSD 

1 √ √ √ 

2 √ √  

3  √  

4   √ 

In particular, if the model tries to minimize the mean and late arrival probability at the 

same time, two distinct paths are more attractive to travelers. The first path takes I-65 

first and then switches to I-64 for the most of remaining trip. In comparison, the second 

path would choose Southern Parkway first and then rely on I-264 for a significant portion 

of trip before getting off the interstate and travelling on local streets.  

If travelers possess a risk averse preference, SD can be used to replace LAP in the routing 

model. In this case, an additional Path 3 will become MSD non-dominated attributing to 

its SD value is smaller than the other two paths previously identified by the MLAP 

dominance rule.  

In the situation where travelers are not only risk averse but even ruin averse, the SSD 

measure is a more appropriate indicator as it gives disproportionate emphasis on larger 

deviations. With the MSSD model, Path 1 and Path 4 are identified as the non-dominated 

paths. Closer analysis on the distributional statistics reveals that these two paths both 

have lowest skewness value and 95th and 99th percentile travel times; this indicates travel 

time distributions on these two paths are less skewed to the right with a much shorter 

right tail. As a result, the MSSD non-dominated paths have less probability of 

encountering significantly long delays. 
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Figure 5.22 MLAP Non-Dominated Paths for OD285-9 

 

Figure 5.23 Cumulative Distributions of Travel Time on MLAP Non-Dominated 

Paths for OD285-9 
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Figure 5.24 MSD Non-Dominated Paths for OD285-9 

 

Figure 5.25 Cumulative Distributions of Travel Time on MSD Non-Dominated Paths 

for OD285-9 
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Figure 5.26 MSSD Non-Dominated Paths for OD285-9 

 

Figure 5.27 Cumulative Distributions of Travel Time on MSSD Non-Dominated 

Paths for OD285-9 
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5.7 CONCLUSIONS 

A variety of route choice models have been studied in transportation modeling 

community, in response to the emerging recognition of the importance of travel time 

reliability in travelers’ route choice decision making process. In this paper, the on-time 

arrival probability, scheduling delay, and semi-standard deviation measures are selected 

for further examination of their properties. It is found that all three measures base their 

calculations solely on the right side of the distribution; therefore, they belong to a more 

generic upper partial moment formulation. Depending on the value of exponential factor, 

the three measures under study express different behaviors with respect to the travel time 

above the benchmark. In particular, OTAP corresponds to a single point on the 

distribution, therefore is indifferent to the magnitude of variation of travel time over the 

benchmark. In contrast, SD and SSD both focus on unreliability part of the distribution, 

but SD assigns equal weights to the deviations whereas SSD is more affected by the 

larger deviations.  

In addition, the consistent relationships between the generalized measure and SDT 

decision rules are established. This provides two important implications. First, according 

to the risk-taking behavior of each SDT decision rule, it is deduced that OTAP, SD, and 

SSD are risk-neutral, risk-averse, and ruin-averse, respectively. This finding is consistent 

with how the deviations are treated by the three measures. Therefore, if a traveler’s 

attitude towards uncertainty or large deviations is known, a more representative reliability 

measure can be chosen to reflect his/her behavior. Second, the established relationships 

facilitate the development of analytical solution algorithms for reliability models by 

taking advantage of currently available LC algorithms. Since there is lack of effective 

algorithms for SD and SSD models, this alternative approach offers a great value to apply 

the reliability measures to practical applications, such as travel demand forecasting and 

network design models. 

Numerical experiments based on a real-world urban network and GPS-based data are 

conducted to evaluate the reliability models and SDT rules. Unlike observations made in 

previous studies that only a small size of paths are found to be non-dominated with 

respect to SDT rules, a much larger number of paths are included in the study, especially 

for the FOSD rule. This is due to the more variable and skewed travel time distribution 

on the paths, making the FOSD condition easily violated at the right tail of the 

distributions. This observation indicates the SDT rules alone may not be efficient enough 

for highly unreliable networks. In this regard, the multi-objective formulation involving 

the reliability consideration is preferred. It can significantly reduce the size of non-

dominated set to only 2-4 paths, which is desirable to decision makers. The results also 

show that the non-dominated paths are distinct from the three reliability models, attesting 

the importance to incorporate travelers’ risk-taking preferences into route choice models. 

In future studies, empirical surveys on the stated or revealed preferences are necessary to 

understand travelers’ actual decision-making behaviors under uncertain conditions. It is 

also important to understand how travelers set their benchmark travel time to make 
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departure time and route choices. In addition, since the travel time variation is caused 

collectively by various non-recurring events, the degree of variation varies at different 

times of day and incident conditions. As a result, the identified optimal path could be 

different under varying scenarios. In this regard, there is still a need to evaluate the travel 

time reliability separately at different time periods and travel conditions. 
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CHAPTER 6 A MULTI-OBJECTIVE USER EQUILIBRIUM MODEL  

 

6.1 INTRODUCTION 

The traditional travel demand forecasting model has been extensively used by state 

DOTs, MPOs and other transportation agencies for decades in their planning process. By 

comparing predictions from the model with current infrastructure condition, 

transportation planners are able to identify inadequacies in current transportation system, 

and therefore make better informed decisions on project prioritization to accommodate 

foreseeable challenges. In this process, the travel demand model serves a crucial role in 

linking travelers’ travel behaviors and transportation network performance. As one of the 

critical components in the traditional “four-step” model, the traffic assignment 

determines how travelers use the road network. Traditionally, the equilibrium flow 

pattern is obtained when the travel time on all used paths is equal to the minimum travel 

time whereas the travel time on all unused paths is either equal to or longer than that 

minimum value between OD pairs. To achieve equilibrium, the original problem is often 

transformed into a mathematical program which can take advantage of the fact that the 

path travel time is the linear summation of travel times on links comprising the path(99).  

 

Similar to the route choice model discussed in previous chapters, the foundamental 

assumption underlying the traditional traffic assignment model also invovles only 

considering the travel time between OD pairs. However, it has been empirically found 

that travel times on the network can be unreliable, and travelers are well aware of such 

uncertainty from their daily experiences and factor it into their decision making process. 

Consequently, travel time reliability should also be incorporated into the user equilibrium 

model as well; otherwise, the procedure may not represent traveler’s actual perspective, 

and lead to biased results. 

Based on the work in previous chapters, we know that SSD and multi-objective 

formulation are more appropriate in representing travel time reliability and reconstructing 

the route choice model. As the multi-objective route choice model incorporating SSD has 

been developed and analytical approach has been proven effective in large-size networks, 

the next step is to reformulate the traditional traffic assignment model to account for the 

travel time reliability consideration. Therefore, the objective of this chapter is to propose 

a new multi-objective user equilibrium (MOUE) model in which SSD is applied as the 

reliability objective to extend traditional deterministic user equilibrium (DUE) model, 

and then develop an effective solution algorithm to obtain the equilibrium condition 

under the multi-objective setting for practical applications.  

 

The rest of the chapter is organized as follows. Section 6.2 provides the problem 

statement, which applies the multi-objective approach to reformulate the route choice and 

traffic assignment models. A solution algorithm is proposed in Section 6.3 to solve the 

new user equilibrium model based on previously implemented FOSD-LC algorithm and 

method of successive averages approach. Numerical experiments are conducted on two 

test networks with varying sizes to demonstrate the applicability of the proposed model 
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and algorithm in Section 6.4. The findings from the study are summarized in the final 

section. 

6.2 PROBLEM STATEMENT 

Assume travelers know exactly the travel time and variability on each link and would 

make rational choices among path alternatives. Accordingly, with the multi-objective 

path finding formulation involving stochastic travel times, travelers try to minimize the 

average travel time and travel time unreliability at the same time when making route 

choice decisions. Based on previous chapter, the corresponding route choice model can 

be described as shown below. 

{
𝑚𝑖𝑛 𝜇𝑟𝑠

𝑚𝑖𝑛 𝜏𝑟𝑠                                                                                                                               (6.1) 

In order to solve the multi-objective routing model, previously defined path dominance 

rules in terms of the mean and SSD still hold here. After incorporating dominance 

definitions with regard to the route choice decision making process into the traffic 

assignment model, the multi-objective user equilibrium is reached when the following 

conditions are met. 

 

Definition 1 Multi-objective user equilibrium conditions are achieved such that no 

traveler on a path can be better off in terms of either criterion, whether the average travel 

time or variability, without worsening the other criterion by unilaterally switching to 

other routes. 

 

In other words, the non-dominated paths connecting each OD pair should have positive 

traffic flows, whereas the dominated paths should carry no traffic. Now let Γ𝑀𝑆𝑆𝐷
𝑟𝑠  

represent the set of all non-dominated paths under the MSSD dominance rule. 

Accordingly, above condition can be expressed mathematically as  

𝑓𝑘
𝑟𝑠 > 0, ∀(𝑟, 𝑠) ∈ 𝑅𝑆, 𝑘 ∈ Γ𝑀𝑆𝑆𝐷

𝑟𝑠                                                                                       (6.2) 

𝑓𝑘
𝑟𝑠 = 0, ∀(𝑟, 𝑠) ∈ 𝑅𝑆, 𝑘 ∉ Γ𝑀𝑆𝑆𝐷

𝑟𝑠                                                                                      (6.3) 

In addition, the flow conservation requirement should be satisfied as follows. 

∑ 𝑓𝑝
𝑟𝑠

𝑘∈Γ𝑀𝑆𝑆𝐷
𝑟𝑠 = 𝑞𝑟𝑠, ∀(𝑟, 𝑠) ∈ 𝑅𝑆                                                                                     (6.4) 

Meanwhile, let 𝑣𝑎 denote the traffic flow on the link 𝑎. Therefore,  

𝑣𝑎 = ∑ ∑ ∑ 𝑓𝑘
𝑟𝑠𝛿𝑎,𝑘

𝑟𝑠
𝑘∈𝑃𝑟𝑠𝑠∈𝑁𝑟∈𝑁 , ∀𝑎 ∈ 𝐴                                                                          (6.5) 

where 𝛿𝑎,𝑘
𝑟𝑠  is link-path incidence indicator. It is1 if link 𝑎 is on the path 𝑝, and 0 

otherwise. 
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Here we adopt the widely used Bureau of Public Road (BPR) function to model the link 

travel time which is flow-dependent and increases as traffic flow on the link increases.  

𝜇𝑎 = 𝑡𝑎
0 (1 + 𝛼 (

𝑣𝑎

𝑐𝑎
)

𝛽

) , ∀𝑎 ∈ 𝐴                                                                                       (6.6) 

where 𝑡𝑎
0 is the free flow travel time on link 𝑎; 𝑐𝑎 is the capacity on link 𝑎; 𝛼 and 𝛽 are 

function parameters and are chosen to be 0.15 and 2, respectively. 

 

Accordingly, the average path travel time 𝜇𝑘
𝑟𝑠 can be derived directly from summation of 

the travel time from links that comprise the path, which can be expressed as  

𝜇𝑘
𝑟𝑠 = ∑ 𝜇𝑎𝛿𝑎,𝑘

𝑟𝑠
𝑎∈𝐴 , ∀(𝑟, 𝑠) ∈ 𝑅𝑆, 𝑘 ∈ 𝑃𝑟𝑠                                                                        (6.7) 

Since the sampling based approach has been used to account for the correlation structure, 

a simulation-based approach based on joint travel time distributions is adopted to 

generate random samples in each iteration, so that 𝜏𝑘
𝑟𝑠 can be constantly updated in 

response to the newly generated 𝜇𝑘
𝑟𝑠. This way the previously implemented FOSD-LC 

algorithm is still applicable. Now suppose during each assignment iteration, a traffic 

simulation module is employed to generate 𝑤 discrete travel time realizations for each 

link on the network, and let 𝑟𝑖 denote the 𝑖-th travel time realization on link 𝑎. Then, we 

can determine SSD of path travel time 𝑡𝑘
𝑟𝑠 as  

𝜏𝑘
𝑟𝑠 = (

1

𝑤
∑ (∑ 𝑟𝑖𝛿𝑎,𝑘

𝑟𝑠
𝑎∈𝐴 − 𝑏)

+

2𝑤
𝑖=1 )

0.5

                                                                               (6.8) 

The multi-objective traffic assignment model based on the above equations will be 

iteratively implemented until the MOUE condition is reached when the difference 

between input and updated link flows on the network becomes insignificant.  

6.3 SOLUTION ALGORITHM 

In this chapter, the FOSD-based all-to-one approach is adapted to find the non-dominated 

paths during the iterative traffic assignment process. Reflecting on last chapter, the 

relationship between MSSD and FOSD dominance rules has been established. Therefore, 

we first adapt the FOSD-LC algorithm to find all the non-dominated paths for every OD 

pair on the network. From these paths, we can then determine the non-dominated paths 

Γ𝑀𝑆𝑆𝐷
𝑟𝑠  based on the MSSD dominance rule. This path finding procedure will be called 

periodically during the traffic assignment process. 
 

Once Γ𝑀𝑆𝑆𝐷
𝑟𝑠  is obtained, we now have the non-dominated paths on which travel demand 

can be assigned. In next step, an approach based on the method of successive averages 

and reference point assignment (MSA-RPA) is applied in order to solve the multi-

objective user equilibrium condition. In this method, a reference point with regard to the 

best scenario in terms of average travel time and variability that travelers may encounter 

from their past experiences is defined beforehand. In other words, travelers will have an 

ideal or imagined path that requires least travel time and possesses best reliability in mind 
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and will compare current alternatives to the ideal path when selecting a path. A similar 

method has also been discussed in (100). Based on this idea, the attractiveness of each 

path can then be determined based on the distance between the actual path and reference 

point. Suppose 𝐶Γ and 𝐶𝑟 are the cost vector consisting of average travel time and SSD 

for a non-dominated path set and reference point, respectively. The standardized 

Euclidean distance is applied here to balance out the contribution from variables with 

different scales of values. Accordingly, the distance between two individuals can be 

calculated as 

𝑑𝑘 = (𝐶Γ(𝑘)−𝐶𝑟)𝑉−1(𝐶Γ(𝑘)−𝐶𝑟)′                                                                                (6.9) 

where 𝑉 is a two-by-two diagonal matrix whose first and second diagonal element is the 

variance of the average travel time and SSD on respective values contained in 𝐶Γ and 𝐶𝑟. 

 

Therefore, the smaller the distance between the path of interest and reference point, the 

more appealing the path is to travelers. As a result, more travelers are expected to select 

such path. To ensure the portion of travel demand assigned to the path is proportionate to 

its attractiveness, following route choice probability equation is defined: 

𝛾𝑘 =
1/𝑑𝑘

∑ (1/𝑑𝑘)
𝑘∈Γ𝑀𝑆𝑆𝐷

𝑟𝑠
, ∀(𝑟, 𝑠) ∈ 𝑅𝑆                                                                                  (6.10) 

Therefore,  

𝑓𝑘
𝑟𝑠 = 𝛾𝑘𝑞𝑟𝑠, ∀(𝑟, 𝑠) ∈ 𝑅𝑆, 𝑘 ∈ Γ𝑀𝑆𝑆𝐷

𝑟𝑠                                                                             (6.11) 

 

Accordingly, the traffic assignment procedure based on the method of successive 

averages can be developed as follows. 

 

MSA-RPA Algorithm 

Step 1: Initialization. Specify the number of iteration 𝑛𝑚𝑎𝑥 and convergence criterion 

휀. Set iteration counter 𝑛 = 1. Perform an initial simulation run based on the average 

travel time and variance-covariance matrix Ω to generate the travel time matrix 𝑀1. 

Step 2: Path selection.∀(𝑟, 𝑠) ∈ 𝑅𝑆, call procedure FOSD-LC to generate Γ𝑀𝑆𝑆𝐷
𝑟𝑠 .  

Step 3: Traffic assignment. Based on equation (12)-(14), determine the portion of 𝑞𝑟𝑠 

to assign to path 𝑘 ∈ Γ𝑀𝑆𝑆𝐷
𝑟𝑠  and obtain path flow vector 𝐹𝑛. Update the link flow vector 

�̂� = 𝐹𝑛 ∙ ∆, where ∆ is the link-path incidence matrix. 

Step 4: Network reloading. Update link flows as 𝑉𝑛 = (1 −
1

𝑛
) 𝑉𝑛−1 +

1

𝑛
�̂� where 𝑛 > 1 

and average link travel time vector 𝒯𝑛 based on equation (6). Run the simulation 

module again using 𝒯𝑛 and Ω to obtain 𝑀𝑛. 

Step 5: Converge test. Calculate the gap function 𝐺𝑎𝑝𝑛 =
∑ |𝑣𝑎𝑛−1−𝑣�̂�|𝑎𝜖𝐴

∑ 𝑣𝑎𝑛−1𝑎𝜖𝐴
, 𝑛 > 1. If 

𝐺𝑎𝑝𝑛 ≤ 휀 or 𝑛 = 𝑛𝑚𝑎𝑥, then stop; otherwise go to step 2 and set 𝑛 = 𝑛 + 1. 
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6.4 NUMERICAL EXPERIMENTS 

In this section, numerical experiments are carried out on two networks to test the 

effectiveness of the proposed simulation-based solution approach in solving the multi-

objective route choice and traffic assignment model. Particularly, the travel time on links 

on two networks are all assumed to follow the log-normal probability distribution, which 

is deemed suitable with the underlying properties such as non-negativity and asymmetry. 

Many studies have shown log-normal distribution fits best with empirical data(25). 

Furthermore, the variance-covariance matrix stays the same throughout the modeling 

process. It is postulated that since travelers build the concept of variability from their 

day-to-day experiences, such long term variation is independent of short-term flow 

fluctuation when the reliability is factored into their route choice decision. 

6.4.1 Small Network  

A small network consists of four nodes, five links, and three paths as shown in Figure 6.1 

is first analyzed(63). The first number in the parentheses next to each link represents the 

free-flow travel time while the second number means the capacity associated with the 

link. The node sequence for each link and path are shown in Table 6.1. The demand 

between the origin and destination is 1000 units. The travel time threshold for calculating 

SSD uses the following equation. 

𝑏 = 𝜗 ∗ 𝐹𝐹𝑇𝑇                                                                                                                  (6.12) 

where 𝐹𝐹𝑇𝑇 stands for the free-flow travel time, and 𝜗 is the reliability parameter and 

the lower the value, the more risk averse the traveler will be. The above equation will 

enable us to adjust the parameter value to evaluate its impact on the equilibrium state 

later. During each traffic assignment iteration, 10,000 travel time realizations are 

simulated simultaneously for all the links on the network with a correlation coefficient of 

0.5 between any two links. The first element of the reference point is chosen to be 

shortest FFTT, which is 17 in this case. The second element is the travel time reliability, 

where 0 is used to indicate no variation in travel time is desired. Meanwhile, the 

deterministic user equilibrium model which only considers average travel time in the cost 

function is also solved and used as a benchmark to compare with solutions from the 

proposed model. In particular, the obtained link travel times under DUE condition can be 

considered as a long-term travel time pattern that is finally optimal to travelers on the 

network. In order to obtain the additional day-to-day or long-term travel time reliability 

pattern, the study simply assumes the v/c ratio to represent coefficient of variation, which 

can be directly used to derive the variation of travel time on the link of question. The idea 

behind the assumption is that links with higher level of congestion tend to be less reliable. 

Note that link 3 carries no flow when DUE is obtained. Therefore, the variation is 

assumed to be 2.   
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Figure 6.1 Small Network 

The solution algorithm is coded and executed in MATLAB environment. In addition to 

DUE and MOUE, the use equilibrium model that only considers the travel time reliability 

component (RUE) is also analyzed for comparison purposes. This can be easily done 

since the variance-covariance stays constant. For MOUE, it takes 193 iterations to 

achieve the equilibrium condition with the convergence error less than 0.002%. A closer 

inspection of the converging trend indicates that the traffic flows on three paths quickly 

approach the equilibrium state and stay stable after 15 iterations. The CPU running time 

is about 1.1 minutes. The results from three models are reported in Table 6.1.  

Table 6.1 Network Performance under User Equilibriums 

Scenario ID 
Node 

Sequence 

DUE  RUE  MOUE 

Flow Mean SSD  Flow Mean SSD  Flow Mean SSD 

Link 

1 1-2 532.4 5.59 5.51  1000 6.65 5.06  662.5 5.91 4.68 

2 2-4 532.4 15.19 30.25  0 12.00 18.09  295.8 12.98 19.32 

3 2-3 0 7 1.55  1000 12.19 5.54  366.7 7.88 2.04 

4 1-3 467.6 12.05 17.84  0 10.12 13.21  337.5 11.07 12.50 

5 3-4 467.6 8.73 6.85  1000 11.33 7.41  704.2 9.65 6.63 

Path 

1 1-2-4 532.4 20.78 33.41  0 18.65 21.15  295.8 18.90 21.99 

2 1-2-3-4 0 21.32 13.12  1000 30.17 17.47  366.7 23.45 12.93 

3 1-3-4 467.6 20.78 22.49  0 21.45 18.32  337.5 20.72 17.36 

Based on the result, when only considering the average travel time regardless of the 

variability in the DUE model, Path 2 would not be selected due to its travel time of 21.32 

minutes, which is the longest among the three paths. However, with no traffic on link 3, 

the reliability condition is the best among all links, which makes Path 2 the most reliable 

path also. Therefore, when travelers only consider travel time reliability as the 

determining factor, all travelers will choose Path 2 over the other two paths. Even with all 

the demand assigned to Path 2, the SSD of 17.47 minutes is still the smallest, even 

though the mean travel time become 30.17 minutes, which is the longest among the three 

1 

2 

3 

4 

(7
,4

0
0
) 
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paths. In contrast, when both average travel time and reliability are integrated into the 

assignment model, a dramatically different pattern in the equilibrium pattern is found. As 

we can see, in contrast to DUE, 36.7% travelers will now switch to Path 2 in MOUE 

model in seeking to achieve a higher reliability to ensure a higher probability of arriving 

at the destination. Meanwhile, Path 1, which attracts most travelers under DUE condition, 

now is less appealing to drivers because it contains link 2, which has the most unreliable 

travel time with its SSD at 19.32 minutes. Also, the mean and SSD on Path 3 are in 

between that on Path 1 and 2, which is not the most congested nor unreliable, thus attract 

33.75% of travelers. Hence, from the multi-objective perspective, all three paths seem to 

be attractive to some travelers. 

With the formulation of SSD, it is clear that different benchmark values directly 

determine how travelers treat the uncertain conditions and influence their final route 

choice decisions correspondingly. Therefore, a sensitivity analysis is conducted on this 

aspect in order to understand its impact on the obtained user equilibrium state (Figure 

6.2). 

 

Figure 6.2 Demand Share on Paths under Equilibrium Condition 

It is observed that as risk parameter value increases, the share of the demand on Paths 1 

and 3, which have less reliable travel times, also increase as travelers become more 

tolerant of the uncertainty thus have less incentive to switch paths. In contrast, the 

number of travelers choosing Path 2 decreases because its attractiveness as the most 

reliable path gradually declines. For example, when the reliability parameter is chosen as 

10, the SSD on Path 1, 2, 3 are 6.3, 0, and 1.5 minutes, respectively. The difference 

between them is much smaller than that when just FFTT is used as the SSD threshold.  

 

 

29.6 30.4 31.3 35.3 36.2

36.7 35.1 33.0 28.0 25.3

33.7 34.6 35.7 36.8 38.6

1 1.5 2 5 10

S
h
ar

e 
P

er
ce

n
ta

g
e 

(%
)

Reliability Parameter

Path 3

Path 2

Path 1



 

99 
 

6.4.2 Medium-Sized Network 

In this section, the proposed model is tested on a medium-sized network to evaluate its 

capability in solving relatively large-scale network problems. The widely used Sioux 

Falls network, which consists of 24 nodes, 75 links, and 550 OD pairs (Figure 6.3) is 

used here. The network data involving FFTT and capacity on links and demands between 

OD pairs are obtained from (101). 
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Figure 6.3 Medium-Sized Network 

The well-known best solutions in terms of the DUE is also obtained from the same link 

and used as the initial input to implement the MOUE model. Like small network analysis, 

the d/c ratio under DUE condition is used to derive the variation on links. The approach 

proposed in (102) is adapted to generate multi-variate log-normally distributed travel 

time realizations. In this experiment, only travel times from adjacent links are assumed to 

be correlated with a coefficient of 0.5. The shortest FFTT between each OD pair is also 

selected as the benchmark for computing SSD for paths connecting the origin and 

destination.  
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The convergence performance of the proposed MOUE traffic assignment model is shown 

in Figure 6.4. The program terminates after 71 iterations when the gap between input and 

updated link flows is less than a pre-determined threshold, which is set to be 0.05 in this 

case. Each assignment iteration takes 25 seconds on average to complete. Using link 

flows under DUE condition as the base scenario, the mean absolute error is 2002.7 and 

the mean absolute error percentage is 19.95%, indicating a considerable change in final 

user equilibrium pattern when both mean and SSD are considered by the MOUE model. 

 

 

Figure 6.4 Convergence Performance on the Medium-Size Network 

Based on the experiments conducted from this study, it shows the proposed multi-

objective model is a viable extension to the traditional models by accounting for travel 

time reliability. Also, the proposed algorithm is effective in finding solutions for MOUE 

on a relatively large network.  

6.5 CONCLUSIONS 

In this study, a multi-objective traffic assignment model is proposed to extend the 

traditional user equilibrium models by incorporating the travel time reliability 

consideration into the modeling process. Particularly, SSD based on a constant 

benchmark specified by travelers is chosen as the reliability measure under asymmetric 

distribution conditions. It has the following benefits. First, it has been shown that SSD 

has more appealing characteristics over standard deviation in this context and has more 

intuitively meaningful interpretation of travelers’ behaviors. In addition, using a constant 

benchmark in SSD formulation is similar to the scheduling delay concept, but SSD 

emphasizes more on the larger deviations than small deviations. As stated in (70), the 

scheduling delay may not be able to fully capture the travel time uncertainty, which is 

mostly affected by large deviations at the right tail of the travel time distribution. 
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Therefore, the proposed approach provides an alternative to evaluate travelers’ departure 

time and route choices under uncertain conditions. 

 

The developed multi-objective model is able to include multiple Pareto-optimal paths; 

thus, relaxing the limitations underlying the linear combination of the mean and 

reliability measure, which is widely used in previous studies. Also, the MSSD dominance 

rule is shown to be contained by the FOSD rule. This finding is particularly important 

because it enables us to directly take advantage of Bellman’s Principle of Optimality and 

already developed LC algorithm and analytically solve the route choice model. Based on 

obtained non-dominated paths, a certain proportion of traffic demand is assigned to each 

path based on travelers’ perceived attractiveness. This is also deemed more realistic than 

traditional single-objective assignment procedure, because in reality different travelers 

may prioritize and select different paths between the same OD pair.  

 

Numerical experiments are conducted to evaluate the effectiveness of proposed 

algorithms. It is found that the user equilibrium pattern under the proposed multi-

objective formulation is significantly different from that of the traditional DUE model. 

When both travel time and reliability are considered, a considerable portion of travelers 

will switch to the path that won’t be selected by the DUE model even though it is most 

reliable among available alternatives. In addition, it is observed that how travelers set the 

acceptable reference values also affects the assignment results, which of itself is a 

practical research topic(103). It is also shown that the algorithm can quickly converge to 

the equilibrium condition, attesting its potential in practical models.   

 

In future studies, it will be interesting to see how the results from the proposed model 

compare to that from the standard deviation based model. Also, extending the current 

problem to a dynamic network setting is also worth studying. 
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CHAPTER 7 CONCLUSIONS AND FUTURE RESEARCH 

 

7.1 CONCLUSIONS 

Travel times may be highly variable across the network due to frequent traffic-impacting 

events. This unreliability may result in late arrivals, which in turn causes negative 

consequences. It has been established that travel time reliability is an important factor in 

travelers’ route choice decisions. However, the factor is non-present in existing MPO 

models. In this dissertation, a methodology framework is developed to incorporate travel 

time reliability into travel demand models. The framework contains four major 

components that enhance the reliability measurement and the applicability in the 

operational models. 

The first component proposes semi-standard deviation as the reliability measure. 

Compared to standard deviation that regards travel times both below and above the mean 

as undesirable, semi-standard deviation only concentrates on the right side of the 

distribution, i.e. those relatively long travel times. It also has the flexibility in setting the 

benchmark value. Thus, it is able to account for travelers’ different degrees of sensitivity 

about the uncertainty. In contrast to on-time arrival probability and scheduling delay 

measures, semi-standard deviation gives disproportionate emphasis on longer travel 

times, and hence, can better capture the impact of travel time reliability. 

The sampling based approach provides many benefits compared to current methods. 

Deriving path SSD directly from component links can be very difficult. As a non-additive 

measure, the path SSD is not equal to the linear summation of SSD on component links; a 

challenge most reliability measures face. In addition, unlike standard deviation and 

covariance matrix, there is no closed form solution to analytically derive the accurate 

semi-covariance matrix. A workaround to the problem is using archived travel time data 

to directly obtain path travel times and SSD. Through this process, the correlation 

structure can be implicitly accounted for and the complicated link travel time distribution 

fitting and convolution process can be avoided.  

The third key component involves reformulating the model from the multi-objective 

perspective compared to the widely used single objective formulation. The reformulated 

model focuses on minimizing the mean and SSD at the same time, thus eliminating the 

need for reliability ratios to be known beforehand. The multi-objective formulation also 

offers an additional benefit of providing multiple attractive choices for travelers’ further 

decision making, including the optimal path in single objective case. In reality, this 

property is highly applicable because it presents multiple paths that can be selected by 

travelers for the same OD pair. To balance out disproportionate contributions from the 

mean and SSD with different scales, the standardized distance is applied to determine the 

attractiveness of each path. 

Application of the stochastic dominance based approach to solve the proposed model 

marks the final integral component of the methodology. Due to the non-additive property 
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of SSD, traditional shortest path algorithms, such as Dijkstra’s algorithm, are no longer 

applicable. To address this issue, two different approaches are evaluated: the 

metaheuristic algorithm and the stochastic dominance based approach. The metaheuristic 

algorithm demonstrates reasonable performance in finding optimal paths. A particular 

advantage is its ability to not be restricted to certain objective functions. However, the 

algorithm is stochastic in nature and thus the global optima is not guranteed. On the other 

hand, the stochastic dominance ordering criterion is more effective and efficient. It is an 

all-to-one approach and able to find the true optimal paths. In addition, it can directly 

take discrete travel time samples as inputs, which fits very well with the adopted 

sampling based approach.  

In addition to these four components, this work also contributes to the reliability 

modeling field by establishing theoretical connections between the first three stochastic 

dominance rules and three reliability models. A generic formulation is provided for on-

time arrival probability, scheduling delay, and semi-standard deviation measures, as they 

share common mathematical structures. Through the application of the generalized 

formulation, theoretical connections between stochastic dominance rules and reliability 

models under evaluation are established. These findings provide great insight into the 

behavioral implication with regard to each reliability model. Based on the risk-taking 

behaviors of stochastic dominance rules, we are able to infer that on-time arrival 

probability, scheduling delay, and semi-standard deviation correspond to risk-neutral, 

risk-averse, and ruin-averse behaviors, respectively. The generic formulation and its 

association with stochastic dominance rules also offer an opportunity to incorporate on-

time arrival probability and scheduling delay into the framework. 

The results from numerical tests demonstrate the advantages of the proposed 

methodology. The semi-standard deviation based model shows a better representation of 

traveler’s route choice decision involving skewed travel time distribution with 

excessively long delays. Observations also indicate no single path is optimal in every 

criterion, reinforcing the need of a multi-objective model to find multiple non-dominated 

paths that are attractive to travelers. The overall methodology is effective in finding 

optimal paths in each assignment iteration and ultimately achieving the equilibrium 

condition. It is suggested that the traffic flows under equilibrium are sensitive to various 

benchmarks set by travelers. The impact of travel time reliability on equilibrium is 

apparent for two tested networks. As a result, the models and algorithms developed in 

this dissertation are highly applicable to the real-world situations and have great potential 

to be adapted into current MPO models.    

7.2 FUTURE RESEARCH 

This work proposes a more representative reliability measure and greatly enhances the 

applicability of route choice and user equilibrium models in dealing with stochastic travel 

times. However, there are some limitations in the modeling process that are worth 

discussing as well as recommendations to further improve the proposed models and 

algorithms.  
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The first limitation is that both GA and SPEA2 methods are metaheuristic, whose 

performance is greatly reliant on proper parameter selections. While only a relatively 

small range of values are evaluated in this work, it would be valuable to extend the range 

of parameter values and apply experimental design techniques such as Taguchi 

method(104) to objectively determine the optimal input values. As many novel genetic 

operators have been proposed in recent applications, it would also be beneficial to 

evaluate how their implementation into the proposed models can lead to performance 

improvement(80; 105). Moreover, a number of new evolutionary algorithms have been 

developed recently(106; 107). This presents an opportunity for future research to adapt 

them to solve the proposed models and compare with currently implemented SPEA2 

approach. 

Second, the sampling-based approach serves an important role in the proposed 

methodology to implicitly account for the underlying correlation structure between links 

on the network, circumventing the complex distribution convolution procedure. However, 

the accuracy of the results from the approach directly depends on the adequate size of 

travel time samples during the model development. As this research directly makes use of 

available GPS-based probe vehicle data, it is an important topic worth more efforts to 

determine the impact of sample size on the identified optimal paths. 

In addition, different risk-taking behaviors corresponding to existing reliability models 

are investigated in this work. As they are all used in the current modeling practice, 

appropriately choosing the right model that better reflects traveler’s perspective on 

uncertainty remains an area of further research. Therefore, empirical surveys on the stated 

or revealed preferences are necessary to understand traveler’s actual decision making 

behavior under uncertain conditions. Furthermore, it is important to understand how 

travelers set their benchmark travel time to make departure time and route choices. 

In addition, since travel time variation is caused collectively by various non-recurring 

events, the degree of variation varies at different times of day and incident conditions. 

Travel times are expected to be more reliable during the night-time incident free 

condition than the morning peak period while snowing. As a result, the identified optimal 

paths could also be distinct under varying conditions. In this regard, there is still a need to 

evaluate travel time reliability separately at different time periods and travel conditions. 

Finally, the models are built on the assumption that travelers have exact information 

regarding the travel time distribution and always make rational choices during uncertain 

situations. However, studies have shown bias exists in traveler’s perception on traffic 

conditions(108). In other words, the travel time distribution possessed by travelers are 

subjective and may be different from the objective distribution based on actual 

observations. Therefore, the impact of perception error should also be accounted for in 

the route choice and traffic assignment models in future research.  
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