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ABSTRACT 

 

 

QUANTIFYING NON-RECURRENT DELAY USING PROBE-
VEHICLE DATA 

Current practices based on estimated volume and basic queuing theory to calculate delay 
resulting from non-recurrent congestion do not account for the day-to-day fluctuations in 
traffic.  In an attempt to address this issue, probe GPS data are used to develop impact 
zone boundaries and calculate Vehicle Hours of Delay (VHD) for incidents stored in the 
Traffic Response and Incident Management Assisting the River City (TRIMARC) 
incident log in Louisville, KY.  Multiple linear regression along with stepwise selection 
is used to generate models for the maximum queue length, the average queue length, and 
VHD to explore the factors that explain the impact boundary and VHD.  Models 
predicting queue length do not explain significant amounts of variance but can be useful 
in queue spillback studies.  Models predicting VHD are as effective as the data collected; 
models using cheaper-to-collect data sources explain less variance; models collecting 
more detailed data explained more variance.  Models for VHD can be useful in incident 
management after action reviews and predicting road user costs. 

Key Words: Probe GPS, Modeling, Multiple Linear Regression, Impact Zone, Vehicle 
Hours of Delay 
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 Introduction 
1.1 Quantifying Congestion Costs 
The 2015 Urban Mobility Scorecard recently conducted a cost analysis of the level of 
congestion in the United States.  It stated that the problem is “very large” and that in 2014 
Americans experienced “an extra 6.9 billion hours” of travel and purchased “3.1 billion 
gallons of fuel” leading to a “congestion cost of $160 billion” (1).  Based on these data 
and Americans’ love affair with cars, traffic congestion is becoming increasingly worse 
and must be addressed.  It begs the question of what avenues are available leading to 
limiting or eliminating the damage of congestion.  One particular avenue involves 
addressing non-recurrent congestion. 

Non-recurrent congestion is defined as congestion caused by extraneous events outside of 
normal day-to-day patterns.  For example, weather events, crashes, and work zones are 
all considered as causes of non-recurrent congestion.  Non-recurrent congestion, as a 
result, lead to workplace tardiness and delayed shipments which results in time lost to 
roadway users and dollars lost to businesses.  Examples of current strategies deployed to 
alleviate non-recurrent congestion include incident management strategies for crashes 
and road user cost allocation to contractors for work zones.  To be effective, delay must 
be quantified for both types of incidents to know the potential cost-benefit of a given 
strategy. 

Existing methodologies typically use aggregated volume numbers such as AADT and 
hourly volume distribution factors to estimate hourly traffic flows.  These flows are then 
used to develop capacities, estimate queues, and calculate delay for roadway incidents.  
This method does not consider the day-to-day conditions present in everyday traffic 
which can lead to potential inaccuracies in quantifying congestion.  Data that can capture 
these day-to-day fluctuations could possibly improve calculating congestion. 

One possible avenue to capture day-to-day conditions is the use of big data applications 
such as speed data from private vendors like INRIX (1).  Vendors sell these data from a 
database of what are known as probe GPS data, or speed data collected from roadway 
users during every day commutes or other driving activity.  These data are a powerful 
tool in understanding congestion due to its spatial and temporal detail along various 
roadways and can be used to identify slowdowns and calculate, for example, the number 
of miles of congested roadway (2).   

1.2 Research Goals 
The primary goal of this research is to explore the relationships between the factors that 
describe the incident and the delay caused by the incident.  It is the hope of this research 
that the day-to-day fluctuations of traffic can be captured to generate better estimates of 
delay.  This study will pursue this goal by using a combination of probe GPS data 
purchased by the Kentucky Transportation Cabinet (KYTC) and an incident log 
monitored by Louisville, KY through their Intelligent Transportation Systems initiative 
called the Traffic Response and Incident Management Assisting the River City 
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(TRIMARC) program.  First, the TRIMARC incident dataset will be conflated with the 
probe GPS dataset from KYTC to identify the speed reductions potentially attributed to 
the incident. 

Next, the “impact zone” or spatial and temporal boundary of the incident, will be 
identified.  After that, the speed reductions found within the impact zone will be 
quantified into Vehicle Hours of Delay (VHD) for the incident.  Finally, the study will 
incorporate regression modeling on the impact zone dimensions and VHD to draw 
conclusions on the relationships that best describe the impact zone and congestion. 

1.3 Organization of Document 
The document consists of six chapters.  Chapter 1 will introduce the topic and research 
goals.  Chapter 2 will overview the comprehensive literature search prior to and 
throughout the research process.  Chapter 3 will overview the study area and data sources 
used during the research and outline the data processing steps to generate the impact zone 
and VHD metric.  Chapter 4 will detail the modeling process and present advantages and 
disadvantages of both modeling procedures.  Chapter 5 will conclude the document and 
summarize the findings. 

This section overviewed the goals of the project and outlined the structure of the 
document.  The next section will overview the literatures that helped guide and inspire 
this work. 
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 Literature Review 
Congestion management is an expansive topic.  With multiple approaches and access to 
more data than in recent memory, various approaches have been implemented to attempt 
to answer the question of how to quantify and alleviate delay.  Methods such as 
simulation, modeling, and deterministic queueing have been instrumental in the research 
behind understanding the nature of delay and what strategies best address the delay in 
concern.  Given the scope of this work is to calculate a delay metric for each incident and 
explore the relationship between the calculated delay metrics as well as given information 
about the incident, a review in previous practices on how delay is quantified is warranted.  
Below is a review of these practices. 

2.1 Current Practice in Quantifying Congestion 
Beginning to understand how delay is quantified required studying the state of the 
practice of how congestion is identified.  When reviewing literatures on this topic, it was 
noted that methods pertaining to congestion were especially popular in work zone 
analysis. The traditional approach to modeling congestion is deterministic queuing or 
using inflows and outflows of vehicles in an area to determine whether queues propagate 
or dissipate (3-6).  Some have implemented the use of simulation software, such as 
VISSIM (7), Quickzone (8), and Netzone (9) to both assess road user costs and develop 
planning-level routing strategies for roadways.  Traffic monitoring has also been adopted 
for delay management strategies.  Most notably, the Washington DOT is using a 
background volume profile to capture incident-induced delay with data collected from 
loop detectors (10). 

The aforementioned methods use aggregated data to calculate delay and measure the 
impact area.  More specifically, tools like Quickzone and the Kentucky User Cost 
Program (KYUCP) use AADT to generate results (4; 8).  The main disadvantage of using 
aggregated data sources is that the day-to-day or even the minute-to-minute fluctuations 
in traffic are not accounted for.  More recent research has focused on quantifying 
congestion and measuring the impacted area using techniques that both build on using 
volume data and utilizing new data sources such as probe GPS speed data. 

2.2 Research in Quantifying Congestion 
Researchers in previous studies have used various modeling techniques in identifying and 
quantifying congestion which can be categorized by: 

• Simulation 
• Machine Learning 
• Statistical Modeling 
• Traffic Monitoring 
• Utilization of Background Speed Profile 

Park et al. developed a simulation model of incident conditions and non-incident 
conditions using the INTEGRATION microscopic traffic simulation software (11).  The 
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study found that incidents “increase the mean travel time and variability in travel times 
for the congested condition.”  Other simulation approaches utilize unique processes such 
as a binary integer algorithm as proposed by Chung and Recker as well as tools such as 
VISSIM (12; 13). 

Some research exists in using machine learning techniques in both predicting traffic 
flows (14; 15) and modeling traffic impacts (16).  Du et al. developed a multilayer feed 
forward artificial neural network (ANN) model to “estimate work zone delay using 
probe-vehicle data” (16).  It was found that the modeling technique outperformed the 
traditional deterministic queuing technique in accurately “estimating work zone costs and 
performance measures.”  It was also observed that the implementation of probe vehicle 
speeds were superior to using traffic volumes in this case, given that in some cases it is 
more difficult to find volume-based data for a specific work zone at a specific time.  
Edara et al also developed a process to predict travel times in work zones using Random 
Forests (17). 

Various statistical modeling and empirical analyses were examined in this review.  
Multiple linear regression was found to be a choice for two papers that both modeled 
impact duration and VHD (18) as well as work zone speeds (13).  Other statistical 
techniques, such as the t-test, were also utilized.  Seeherman et al. utilized t-tests to 
determine the effect of weather at freeway bottlenecks and freeway merge sections (19).  
The study concluded that for the study areas “Discharge flow during rainy days dropped 
by an average of 12.6% at the lane drop and 13.6% at the merge, with both differences 
being significant at the 95% confidence level.”  Wright et al. used an empirical analysis 
with travel times derived from volumes collected by loop detector data to study the 
differences in travel time, travel time variability, buffer index, and probability of 
breakdown for incidents with a shoulder blockage, one lane blocked, or multiple lanes 
blocked as compared to normal conditions (20).  It was found that travel time variability 
and buffer index were highest with incidents with multiple blocked lanes.  Also, shoulder 
incidents were found to produce much higher probabilities of breakdown as compared to 
normal conditions. 

Areas of research have focused on improving traffic monitoring in identifying and 
quantifying congestion.  For example, McNamara et al. developed a “congestion ticker” 
which utilizes probe GPS data to identify congestion where speeds are less than 45 mph 
(2). The congestion ticker can be used for “after-action review of major events such as ice 
storms, major crashes, and construction work zones.”  Traffic monitoring has also been 
used in quantifying congestion on arterials and investigating Travel Time Reliability 
metrics (21; 22). 

The background speed profile is also a valuable tool in quantifying the effect of 
congestion with respect to a “normal day.”  However, the definition of a “normal day” 
can vary from the type of background profile developed.  For example, researchers in the 
past have used the average speed of incident-free days as a benchmark (23).  Recent 
research has also explored the use of algorithms such as kalman filter, k-nearest neighbor, 
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day-of-week matching, clustering, and gaussian mixture models since using the average 
background speed may not be representative of the speeds for the day of the incident (18; 
23-25).   

2.3 Research in Identifying Impact Zone 
It was noted that extensive research is available in identifying and quantifying the 
spatiotemporal areas of non-recurrent congestion, chiefly, queue length and duration.  
First, data must be collected and processed to identify and quantify the spatiotemporal 
impact of an incident whether it be through statistical means such as Sullivan et al.’s 
standard normal deviate or Li et al.’s delta speed to identify the back of the queue (26-
29).  Modeling is also a popular topic especially when attempting to predict impact 
duration of crashes (18; 30-32).  The reason is because impact duration can be used as an 
indicator of vehicle delay (18) and to allow TMCs to choose “the appropriate response to 
an incident” (32).  Linear regression modeling as well as analysis that uses linear 
regression as a basis, such as ANOVA, have been popular in the past (18; 30; 33).  
However, other studies have utilized other methods of modeling such as Logistic 
Regression, Quantile Regression, and copula-based models (18; 31). 

One study found to be particularly interesting is Kazi’s work in developing impact 
boundaries to ascertain the “data-driven” effect of crashes in Louisville, Ky (18).  The 
study used TRIMARC stationary sensor speed data to develop spatiotemporal impact 
zones for crashes recorded in the TRIMARC incident log.  Crash delay was calculated 
using a difference between the background speed profile as developed by the kalman 
filter algorithm and the speeds during the crash incident.  Then, the study developed three 
models for impact duration using multiple linear regression, logistic regression, and 
quantile regression.  Kazi also developed a linear model to estimate impact delay.  Kazi 
found the post-crash mean speed and the weather to be contributing factors to impact 
duration in the linear model, the logistic model, and the quantile model for incident 
duration.  However, the effects of injury are found significant in the higher quantiles of 
the quantile regression model.  For the delay model, the post-crash mean speed and the 
impact duration are found as significant factors in explaining delay.  The study also 
conducted a reliability analysis using Cumulative Frequency Diagrams (CDFs) to 
illustrate different scenarios. 

2.4 Emergence of Probe GPS Data 
In recent years, the emergence of probe GPS speed data have become increasingly 
popular in congestion analysis primarily due to the cost of operating and maintaining 
sensors (34).  Without the burden of operating and maintaining sensors, efforts can be 
redirected to develop tools to utilize the data for congestion analysis.  Based on this 
knowledge, it is of great interest to conduct a review of the available data and the current 
practices in using probe GPS data in congestion management. 

On example of data available for use in transportation research is the National 
Performance Management Research Data Set (NPMRDS), which is available in Traffic 
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Message Channel (TMC) format for the National Highway System (NHS) (35).  The 
Federal Highway Administration (FHWA) purchases these data from vendors and allow 
MPOs and DOTs free access to the data for various purposes.  If a DOT or MPO wanted 
non-NHS data or data at finer spatial granularity, they would have to purchase the data 
from the vendors themselves. 

In the transportation data marketplace, more than just probe GPS data are available for 
purchase.  Various suites are also available to assist in the calculation of congestion 
metrics using these data sources.  For example, tools such as the Regional Integrated 
Transportation Information System (RITIS) and the Iteris Performance Measurement 
System (iPeMS) handle speed data from multiple sources including probe GPS data and 
fuse them with information such as weather data, traffic incidents, and signal timing to 
detect bottlenecks, develop travel time reliability measures, and conduct after-action 
reviews on congestion events (36; 37).  As an example, the Oregon Department of 
Transportation (ODOT) used iPeMS to conduct a congestion study around the solar 
eclipse event in 2017 (38).  Using the data and tools provided within iPeMS, bottlenecks 
caused by event traffic were identified and lessons learned were compiled to ensure 
ODOT would be prepared for the upcoming 2024 total eclipse. 

Tools are also being developed by DOTs to handle probe vehicle data.  For example, 
Chien et al developed a tool called Work Zone Interactive Management Application-
Planning (WIMAP-P), which is a “work zone lane-closure impact prediction system” 
used to plan and schedule work zones in New Jersey (39).   

2.5 Synthesis of Research  
The applications of probe GPS speed data in traffic monitoring, congestion management, 
and reducing data collection costs promise great potential in reshaping how roadway 
projects are prioritized and how future applications will shape the transportation 
infrastructure.  It is of great interest to research the potential uses of these data and how 
they can be leveraged to maximize the effectiveness of new projects through congestion 
reduction and reducing the cost to contractors through more accurate road user cost 
estimations.   

As stated earlier, Kazi developed models for impact duration and delay using stationary 
sensor data from TRIMARC(18).  Even though stationary sensor data can capture the 
day-to-day fluctuations of traffic, it was noted that the average spacing between sensors is 
0.4 miles and the data were aggregated to the 15-minute level.  These levels of 
aggregation increase the difficulty of attaining accurate values for impact duration as well 
as queue length (which was not covered in Kazi’s study) so it is a focus of this work to 
explore data at more detailed levels of aggregation. 

Building from the research presented by Kazi, an analysis approach using “third party 
data” is proposed(18).  Probe GPS data purchased by KYTC is the selected data source 
for speed data.  These data are presented in 5-min aggregation and at “link” level which 
is spatially more detailed than the stationary sensor data from TRIMARC.  This greater 
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level of spatial detail will allow the research to explore quantifying queue length for 
incidents and its association with delay.  The analysis will conflate these data with the 
TRIMARC incident log so weekday incidents can be identified using a combination of a 
background speed profile comprising of average historic speeds for weekday non-
holidays.  Once these incidents are identified, a custom python-based search algorithm 
will be implemented to identify the spatial and temporal boundaries of the impact zone.  
With this boundary information, the speed and volume data associated with the impact 
boundary will be used to calculate VHD. Also, linear models will be developed to 
explore the significant factors explaining the dimensions of the impact zone and the delay 
of the incident. A challenge moving forward with using this probe GPS dataset is the 
presence of missing data, or times when data are not collected for a given roadway 
segment.  The study must address these concerns by imputing speed data for where there 
are missing data within the defined impact boundaries. 

This section described the prevailing literature on the subject of congestion and the 
impact zone.  The next section overviews the data sources and details the process of 
defining the impact zone and calculating VHD. 
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 Data Sources and Processing 
This chapter will overview the data sources used for this study.  Then, this chapter will 
detail the process of how the impact zone and VHD are calculated. 

The corridor selected for study is 35 miles of I-64 East and I-64 West in Louisville, KY.  
The corridor stretches from Shelbyville, KY to the Kentucky/Indiana Borderline on the 
west side of Louisville.  Along this corridor, probe GPS data from a total of 324 links 
have been extracted of which 164 are on I-64E and 160 are on I-64W. Figure 1 shows an 
overview of the study area. 

 

Figure 1 Study Area: I-64 in Louisville, KY 
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3.1 Probe GPS Data 
Probe GPS speed data from a private data vendor are used for this research.  Two years of 
data from January 2013 to December 2014 were extracted for the links along the corridor 
and the speeds are aggregated to 5-minutes.  In terms of spatial detail, the data links along 
the roadway average 0.2 miles with the longest link measuring 2.3 miles long and the 
shortest at approximately 34 feet.  Details provided by the data are the link the speeds are 
associated with, the date and time of collection/aggregation, and the mean speed of the 5-
min aggregation period.  The dataset selected is considered a “probe” dataset, in which 
there was no smoothing or preprocessing performed by the data vendor. 

Since the original data do not contain mile markers, a process was developed to generate 
the start and end mile markers for each probe GPS link.  This is done by starting at the 
last link on the segment and identifying the mile marker using the KYTC Photo Log.  
Then, the link lengths can be used to calculate the mile marker location of all the other 
nodes. 

3.2 TRIMARC Incident Log 
The initial focus of this research was to use work zone data from TRIMARC for analysis.  
However, during initial studies, it was found that adjustments were required to proceed 
with the analysis.  For example, work zone data are concentrated during the nighttime 
when less traffic is present.  Given probe GPS data are scarce during the nighttime, not 
enough information is present to illustrate the delays present during the work zone period.  
Therefore, crashes are used instead.  Also, preliminary analysis showed that little 
congestion is present within the TRIMARC dataset for incidents that do not at least block 
a lane. As a result, only lane-blocking crashes are considered for this analysis. 

Two years of lane-blocking crashes ranging from January 2013 to December 2014 are 
extracted from the TRIMARC incident log.  Table 1 shows a sample from the TRIMARC 
incident log, respectively. 
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Table 1 Sample TRIMARC Incident Log for I64E in 2013 

 

 

 

 

 

 

Type Start Date Start Time End Date End Time MP Conditions blockedLanes Injury Weather

Accident 1/21/2013 17:23:00 1/21/2013 18:09:00 1.5
Dry Pavement, Sunny, Non-incapacitating Injury, Rear-
End Collision, Vehicle Damage, Car, Pickup Truck 2 Injury Sunny

Accident 1/23/2013 17:34:00 1/23/2013 18:25:00 17.8 Overcast Cloudy, Unknown Collision, Car, Pickup Truck 1 No Injury Overcast Cloudy

Accident 1/25/2013 9:09:00 1/25/2013 10:08:00 1.8
Ice, Vehicle Damage, Car, SUV, FSP Service, Ice 
Pavement 1 Injury Ice

Accident 1/25/2013 9:30:00 1/25/2013 9:50:00 1.6
Ice, Car, Pickup Truck, SUV, Single Unit Truck, FSP 
Service, Ice Pavement 2 Injury Ice

Accident 1/28/2013 17:04:00 1/28/2013 17:40:00 8
Wet Pavement, Rain, Rear-End Collision, Car, Pickup 
Truck, FSP Service 1 No Injury Rain

Accident 2/11/2013 16:14:00 2/11/2013 17:13:00 14.8

Chemically Wet Pavement, Sunny, Incapacitating 
Injury, Vehicle Damage, Car, FSP Service, Vehicle 
Overturned 1 Injury Sunny

Accident 2/20/2013 17:54:00 2/20/2013 18:14:00 19 Overcast Cloudy, Rear-End Collision, Car 1 Injury Overcast Cloudy
Accident 3/5/2013 13:00:00 3/5/2013 14:09:00 17 Wet Pavement, Rain, Possible Injury 1 Injury Rain
Accident 3/8/2013 7:03:00 3/8/2013 7:22:00 3.7 Overcast Cloudy, Car, FSP Service 1 Unknown Overcast Cloudy
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For this analysis, weather and injury severity were of interest.  Weather and injury 
severity data are present in the TRIMARC incident log.  However, the data are 
incomplete for both categories.  To complete the weather dataset, weather underground 
was used (40).  To complete the injury category, the injury column was first coded as 
whether the incident had any injuries.  Next, data from the Kentucky State Police (KSP) 
database were used to code injuries for crashes with unknown injuries with respect to the 
TRIMARC incident log.  Of these that did not have data from either the TRIMARC 
incident log or the KSP database, these were assumed to have no injury.  It was decided 
that the severity of the injury will not be used because the KSP database does not record 
injury severity.  If injury severity were to be used, either an assumption of the injury 
severity for the KSP-imputed incidents would be required or an unknown injury variable 
would be created. 

3.3 Traffic Volumes 
KYTC has 16 counting stations deployed along I-64 within the study area.  These stations 
keep track of Average Annual Daily Traffic (AADT), K factors, D factors, and truck 
percentages.  AADT was collected during the 2013 calendar year because the difference 
between 2013 and 2014 AADT were small according to the Automatic Traffic Recorder 
(ATR) sensor located along the roadway (62769 in 2013 vs 61867 for 2014). If 2013 data 
are not available, the closest year was collected.  Table 2 shows the AADT by milepoint.  
Figure 2 is an example of a readout of a sensor readout as found in the KYTC traffic 
database (41). 

Table 2 AADT By Milepoint 

Begin Mile Point End Mile Point AADT Year Collected 
0 0.818 78534 2014 

0.818 2.74 62769 2013 
2.74 4.052 66992 2013 
4.052 4.759 89526 2013 
4.759 4.995 90900 2010 
4.995 5.967 135400 Imputed 
5.967 6.303 79991 2013 
6.303 7.809 74600 2011 
7.809 10.308 79308 2014 
10.308 12.275 77818 2013 
12.275 15.018 130876 2013 
15.018 17.177 92843 2013 
17.177 18.956 84200 2011 
18.956 27.596 56852 2013 
27.596 31.842 50900 2011 
31.842 35.163 49662 2013 
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Figure 2 Detail of KYTC Traffic Counts 

These counts are used to calculate VHD by first associating the counts with the mile 
points of the incident locations for the 2013 calendar year or whichever year was closest.  
The details of this process are outlined further in Section 3.4.3. 

Before the delay analysis could begin, one unusual record was investigated as indicated 
by the “Imputed” denotation in Table 2.  It took place between mile marker 5 and mile 
marker 6 on sensor 056M84.  The reading on this sensor was 144000 vehicles in the 
2008, which was thought of as strange because it doubled the counts preceding and 
succeeding the station.  Also, it was strange that the sensor ceased counting after 2008.  
After contacting KYTC, it was determined that this was indeed a mainline count and that 
data collection past 2008 ceased due to construction along the roadway.  Therefore, since 
counts preceding and succeeding the sensor were similar between 2008 and 2013, it was 
assumed that the counts for this segment did not drastically change.  Therefore, it was 
necessary to get an imputed value for sensor 056M84 for 2013.  It was noticed that in the 
area, I64 splits and the start of I71 begins as denoted by sensors 056M88 (I71) and 
056M86 (I64).  Therefore, the combined values of the two sensors would yield a similar 
count to 056M84.  The combined values for 2008 counts for the two sensors was 151800, 
which is less than 10000 vehicles different from the reported 144000 at 056M84.  
Therefore, it is likely that these values are comparable since there is no other access for 
vehicle to enter or leave the roadway.  Based on this finding, a ratio of the combined 
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values over the value at 056M84 was generated and the result is 1.0542.  Then, 056M86 
and 056M88 were combined again only using 2013 data which is 142756.  Using this 
ratio, an imputed 2013 volume of approximately 135400 was generated for 056M84 by 
dividing the 2013 combined counts after the split with the ratio.  135400 was used for this 
sensor for the analysis found in Section 3.4.3. 

3.4 Identifying the Impact Boundary and Calculating Delay 
This section will overview the process of identifying the impact zone and calculating the 
delay associated with the incident.  It is important to understand what constitutes the 
impact zone because each incident affects traffic by how long it is present, how far back 
the queue propagates, and the speeds at which traffic flow through the impacted area.  
The impact zone is identified with two sources: 1. TRIMARC incident information 
containing the mile marker, the starting time of the incident, and the end time of the 
incident, and 2. the speed data considered statistically congested.  Beginning at the start 
time and location of the incident, the impact zone is identified by searching the congested 
areas for the extents of the impact boundary to generate information on incident duration 
and queue length.  Then, the impact zone is used to calculate delay by imputing speeds 
that are missing and using volume data to calculate VHD.  

3.4.1 Background Speed Profile 
First, to address what typically happens along any portion of the roadway at any given 
time, a background profile must be developed.  This profile is used to compare with 
speed data for a given incident day to determine the difference in speed between what 
occurred on an incident day and what typically occurs.  The data used in this work are 
weekday data that did not occur on holidays because the incident data selected occur on 
weekdays.  Developing a background profile which reflects the typical commuting 
patterns of traffic is the most sensible approach to developing a relationship between 
what is considered normal operation and what is considered abnormal.  The background 
profile is constructed by taking the mean average of the speeds within a certain 5-minute 
window and for a certain probe GPS link for all time periods and links.  These features 
are called “cells.”  The result is mean speeds in a two-dimensional profile of cells where 
the x axis is the time of day and the y axis is the mile marker along the roadway.  An 
example of a background speed profile is provided in Figure 3. 
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Figure 3 Background Speed Profile for I64E in 2013 

3.4.2 Identifying Impact Zone 
Identifying the impact zone requires knowledge of when and where the incident occurred 
as well as the time and places where congestion occurs during the day of the incident.  
After these are established, a search can be conducted to determine the impact boundary 
of the incidents.  Finally, metrics such as queue length and duration of the incidents can 
be generated from the impact boundaries.  The following will detail how the congested 
region is defined, how the search was conducted, and how the impact zone characteristics 
such as queue length and duration are calculated. 

Determining the congested regions requires knowledge of the speed difference between 
the incident day speeds and the speeds in the background profile.  Although knowing the 
speed difference is useful for calculating delay, it is not as useful when defining what 
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constitutes the impact boundary.  Because of the dynamic nature of traffic, speed 
fluctuations exist but may not be considered congestion.  Therefore, a threshold must be 
identified that constitutes congestion outside of normal traffic fluctuations so that a clear 
boundary can be identified.  One method to do this is to use the coefficient of variation, 
which is defined as the ratio between the standard deviation and the mean of the data. It is 
defined in the FHWA Travel Time Data Collection Handbook as follows (42). 

𝑐𝑐. 𝑣𝑣. =
𝜎𝜎
𝜇𝜇

 𝑜𝑜𝑜𝑜
𝑠𝑠
𝑥𝑥

 

Where: 

c.v. = coefficient of variation 

σ = population standard deviation 

µ = population mean 

s = sample standard deviation 

x = sample mean 

The typical c.v. value for freeways is 15-25%.  Therefore, the assumption of a 20% speed 
threshold will be used for the project, in that, if speeds for a given time and section drop 
below 80% of the typical background speed, then it will be considered congested.   

Although the 20% speed threshold is used for identifying impact boundaries, it is not 
used when aggregating delay because there is the possibility that “uncongested” cells 
exist within the congested region but still exhibit a speed drop.  This speed drop must be 
aggregated because, despite not statistically being congested, is still a speed reduction 
resulting in a delay; not aggregating this delay will cause a systematic underestimation of 
the total delay.  There are also instances within the impact boundary that speeds are 
greater than the background speed.  These are assumed to have zero delay and are not 
used in calculation.  The heatmap in Figure 4 shows an example of the end-result of this 
process.  Red cells denote cells that are operating under normal conditions, green cells 
represent cells that are considered statistically congested, and gray cells are cells where 
there are no data for speeds on the day in question. 
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Figure 4 Congestion for Incident on 01/23/2013 at Mile Marker 18 

After the congested cells have been identified, they are used to calculate the impact zone 
boundaries. 

To determine the impact zone boundary, an algorithm was written in Python script and 
implemented to identify the temporal congestion bounds along the roadway.  The 
algorithm takes information about the start time and the starting mile marker from the 
TRIMARC incident log and begins a search based upon the calculated or assumed 
duration of the incident.  One challenge of this process was that the probe GPS data are 
aggregated to the nearest 5 minutes.  Since the TRIMARC incident log times are in more 
detail, they are truncated to the nearest 5 minutes to allow the start time and the probe 
GPS speed data to be directly comparable. 
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The algorithm identifies the start and end of congestion for each affected link by 
searching the probe GPS speed data beginning at the start time and mile marker of the 
incident.  With respect to space, the algorithm searches for 5 miles upstream from the 
point the incident occurs assuming: 1. the algorithm does not run outside of the bounds of 
the study zone or 2. not enough data are present to determine the end of the queue has 
been reached.  Details on how the algorithm stops by detecting the end of the queue 
based on the given data is explained in the following paragraphs.  With respect to time, 
the algorithm iterates over each 5-minute period for each link and searches 1.25 hours 
past the TRIMARC-reported end time but no longer than 6 hours past the TRIMARC-
reported start time for each link.  When the search is complete for the link in question, the 
link will begin to search the adjacent upstream link unless the algorithm determines it 
should stop.  These constraints do not mean that all incidents will be properly identified 
based on these constraints because there are, for example, incidents that are longer than 5 
miles.  This is addressed in the manual update phase of this report explained later.  This 
algorithm is merely to serve as a high-level tool to generate a baseline for all the impact 
zones to reduce the manual workload. 

As mentioned earlier, the algorithm uses data within each link to determine whether the 
algorithm should stop.  During the algorithm search, the count of three data items are 
identified: the number of congested cells, the number of uncongested cells, and the 
number of empty cells for each link.  Using these data, a determination is made on 
whether the algorithm should stop based on the logic provided in Figure 5. 

 

 

 

Figure 5 Algorithm for Detecting the End of the Queue 

As indicated by Figure 5, a ratio of the percent of uncongested verses congested cells is 
used alongside a percent of missing data.  The ratio determines whether the number of 
uncongested cells warrants the end of the queue has been reached.  Too high of a ratio 
and the algorithm runs the risk of overestimating the maximum queue length; too low and 
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the algorithm could stop prematurely.  Also, a percent of missing data metric is used to 
determine whether enough data are present to stop the algorithm.  This is to ensure the 
determination made is reasonably confident given enough data are present. 

This study employed a heuristic approach to determine the ratio and percent of missing 
data.  Five different ratios and five different percent of missing data values were selected.  
The ratios selected are 1:1, 2:1, 3:1, 4:1, and 5:1 and the percent missing data values 
selected are 40%, 50%, 60%, 70%, and 80%.  All 25 possible combinations of ratios and 
percent missing data are tested using the algorithm and the resulting maximum queue 
lengths and end times are compared to the manually verified end times and queue lengths 
as shown on the developed heatmaps.  The smallest amount of variance in maximum 
queue length and end time would determine the optimum combination of ratio and 
percent missing data.  The test was carried out on I64E 2013 data.  After commencement 
of the test, a 2 to 1 ratio and a percent of missing data less than 60% was determined to 
produce the least error and was used for the algorithm for both years and both directions 
of incident data. 

Once the algorithm was applied, a manual check was performed to ensure the accuracy of 
the impact boundaries.  The first was to ensure the maximum queue lengths and end 
times were representative of the manually verified maximum queue length and end times 
taken from the incident heat maps.  The second involved addressing impossible shifts, or 
when the data-driven start time shifts to earlier in time upstream of the incident. 

To ensure the accuracy of the end times and maximum queue lengths, the following 
criteria was used to check for inaccurate data: 1. if maximum queue lengths varied more 
than 0.5 miles from the visually verified maximum queue length or 2. if the end time 
varied greater than 30 minutes compared to the visually verified end time.  If maximum 
queue lengths or end times did not meet the criteria, a correction was needed. 

As stated earlier, it was noticed that some of the impact boundaries were exhibiting 
impossible behavior.  The chief concern was the realization that as the impact boundary 
was developed upstream, the left bound would shift back in time, which is an impossible 
movement because queues cannot propagate in negative time; it violates the assumption 
that traffic queues forward in time.  An example of this phenomenon is shown in Figure 6 
which is for an incident occurring on 05/14/2014 at 11:58 AM on mile point 17.3 of 
I64E.  Mile point 17.3 rests on top of the congestion bounds, but as the queue moves 
upstream, a shift can be seen in the top-left corner which is impossible. 
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Figure 6 Example of Left Shift 

Addressing this required developing another algorithm which searched downstream of 
the impossibly shifted cells for uncongested cells.  If cells are found along any link up to 
the top of the impact zone, or where the incident occurred, then the start time will be 
shifted to 5 minutes past the temporal location of the downstream uncongested cell.  
After the implementation of the algorithm, the results were inspected for any 
abnormalities.  It was found that in some cases the algorithm shifted start times too far 
forward.  In these cases, the start times were manually adjusted to correct the issue.  In 
the case where no shift occurred, it was assumed there was not enough data to perform 
the shift.  Therefore, these incidents were left unaltered. 

After the identification of the impact zone, queue length and duration can be calculated.  
These are not only helpful in describing the spatial and temporal characteristics of the 
impact zone, but also can potentially be used to model VHD as described in chapter 4.  
The list of values for queue length and duration generated for this analysis are as follows: 

• Average Duration is the average of the difference between the data-derived end 
and start times. 

• Maximum Duration is the identified longest duration between the data-driven end 
time and the TRIMARC-reported start time of an incident. 

• Site Duration is the difference between the data-driven end time and the 
TRIMARC-reported start time at the incident site (or probe GPS link in which the 
incident was reported to occur). 

• Average Queue Length is the average of the aggregate queue length for each time 
period in the impact zone. 

• Maximum Queue Length is the largest identified aggregate queue length in the 
impact zone. 

• Zone Area is the product of the Average Queue Length and the Average Duration. 



 

20 

Once the impact boundaries are defined and the queue length and duration metrics are 
calculated, they are used to calculate VHD, which is then used alongside the available 
categorical, continuous, and spatiotemporal data to develop linear regression models. 

3.4.3 Calculating VHD 
The final step after generating the impact zone is to calculate VHD from a combination 
of the impact zone, speed data, and volume data for each incident.  However, one 
challenge still exists; each incident has missing data within the impacted boundaries 
which must be addressed.  Since VHD is calculated using the sum of the delays for each 
cell within the impact zone, not addressing the missing data cells will cause a systematic 
underestimation of delay for each incident.  Therefore, data imputation is required to 
properly estimate delay. 

A review of literatures on imputing missing data was conducted to investigate the 
available options.  Methods used to impute traffic data to increase sample sizes include 
multiple linear regression, adaptive smoothing method, k-nearest neighbor method, 
cokriging via GIS, and local least squares (43-47).  The methods presented are 
sophisticated and can potentially impute speed data with great accuracy.  However, Smith 
et al. states that using methods such as the “weighted average of surrounding 
detectors…” produce results that are fast and “generally reliable” (48).  Given the speed 
data are disaggregate, the conditions influencing traffic and the impact itself are unlikely 
to change.  Therefore, an average of the data links within a time period within an impact 
zone is used for this study. 

Data are imputed by using the speed ratio calculated by dividing the congested speed and 
the background speed.  Then, the ratios are averaged for all links within a specific time 
period of the incident.  Finally, new speeds based on these imputed ratios are calculated.  
The succeeding example illustrates the process of imputing speed ratios and calculating 
new speeds. 

Say an incident occurred on mile marker 0.8 between 7:30-8:15 AM along a stretch of 
freeway traveling in the cardinal direction.  The historic average background speed is 
assumed to be 60 mph for the entire segment.  The recorded speeds for the day of the 
incident as well as the speed differences for each cell are aggregated to a 15-minute level 
for the purposes of this example and can be seen in Table 3. 
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Table 3 Speeds and Speed Differences for Hypothetical Incident 

Legend Congested Uncongested Missing Imputed 
 

 

 

Using these data points, speed ratios for each cell must be calculated.  This is shown in 
Table 4. 

 

 

 

 

 

 

MM
1 50 50 50 55

0.9 50 55 50 55
0.8 20 20
0.7 20
0.6 15 25 45
0.5 15 20 20 50
0.4 20 10 60
0.3 20 10 20 60
0.2 50 10 40 60
0.1 55 40 60 60

0 60 60 60 60
Time 7:30 7:45 8:00 8:15

Recorded Speeds

MM
1 10 10 10 5

0.9 10 5 10 5
0.8 40 40
0.7 40
0.6 45 35 15
0.5 45 40 40 10
0.4 40 50 0
0.3 40 50 40 0
0.2 10 50 20 0
0.1 5 20 0 0

0 0 0 0 0
Time 7:30 7:45 8:00 8:15

Speed Difference
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Table 4 Speed Ratios for Each Cell 

Legend Congested Uncongested Missing Imputed 
 

 

Notice the white cells which indicate missing data.  These must be filled using the data 
within a specific time period for every link missing data by taking the average speed ratio 
for all of the segments within a specific time period.  The reason for averaging within 
specified time periods is because traffic is subject to similar conditions during the same 
time period; averaging within the same roadway link over different time periods may 
result in averaging speeds during periods when different traffic conditions exist.  Using 
the imputed ratios, new congested speeds can be calculated.  The results of these 
calculations are shown in Table 5. 

 

 

 

 

 

 

 

 

 

 

 

MM
1 0.83 0.83 0.83 0.92

0.9 0.83 0.92 0.83 0.92
0.8 0.33 0.33
0.7 0.33
0.6 0.25 0.42 0.75
0.5 0.25 0.33 0.33 0.83
0.4 0.33 0.17 1.00
0.3 0.33 0.17 0.33 1.00
0.2 0.83 0.17 0.67 1.00
0.1 0.92 0.67 1.00 1.00

0 1.00 1.00 1.00 1.00
Time 7:30 7:45 8:00 8:15

Speed Ratio
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Table 5 Speed Ratios after Imputation 

Legend Congested Uncongested Missing Imputed 
 

 

 

 

 

 

 

 

 

 

MM
1 0.83 0.83 0.83 0.92

0.9 0.83 0.92 0.83 0.92
0.8 0.33 0.32 0.44 0.33
0.7 0.33 0.32 0.44 0.54
0.6 0.25 0.42 0.44 0.75
0.5 0.25 0.33 0.33 0.83
0.4 0.33 0.17 0.44 1.00
0.3 0.33 0.17 0.33 1.00
0.2 0.83 0.17 0.67 1.00
0.1 0.92 0.67 1.00 1.00

0 1.00 1.00 1.00 1.00
Time 7:30 7:45 8:00 8:15
Average 0.32 0.44 0.54

Speed Ratio Imputed

MM
1 50 50 50 55

0.9 50 55 50 55
0.8 20 19 27 20
0.7 20 19 27 33
0.6 15 25 27 45
0.5 15 20 20 50
0.4 20 10 27 60
0.3 20 10 20 60
0.2 50 10 40 60
0.1 55 40 60 60

0 60 60 60 60
Time 7:30 7:45 8:00 8:15

New Congested Speeds
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For visual representation of the actual results of the imputation, Figure 7 shows the same 
incident as seen in Figure 4 but with imputed speed data. 

 

Figure 7 01-23-2013 Incident After Imputation 

Once the dimensions of each incident’s impact zone are defined and the proper 
imputation is performed, the cells within the boundary are used to calculate VHD.  This 
can be derived by using the speed data that exhibit lower speeds, both recorded and 
imputed as discussed in section 3.4.2, versus the background speeds to generate a travel 
delay.  Then, volume data can then be applied to calculate the VHD for each cell and then 
aggregated to get the total VHD for the incident. 

Hourly volumes are derived from the KYTC traffic volume data as described in section 
3.3.  To generate hourly volumes, since hourly data were not available for the segment, 
hourly factors for functional class 11 highways in the state of Kentucky, which are urban 
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freeways, were used to assume the hourly volume pattern.  After the hourly volumes were 
calculated, it is assumed that the directional split of the roadway is 50%, so the volumes 
are divided by two.  Finally, 5-minute volumes must be calculated from the directional 
hourly volumes by dividing by 12 5-min time periods.   

The calculation for travel delay is as follows. 

𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 =
𝐿𝐿𝑖𝑖𝑖𝑖
𝐶𝐶𝑖𝑖𝑖𝑖

−
𝐿𝐿𝑖𝑖𝑖𝑖
𝐹𝐹𝑖𝑖𝑖𝑖

 

Where: 

𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 is the travel delay calculated for each link i and for each time j 

𝐿𝐿𝑖𝑖𝑖𝑖 is the probe GPS link length 

𝐶𝐶𝑖𝑖𝑖𝑖 is the congested speed for each link i and for each time j 

𝐹𝐹𝑖𝑖𝑖𝑖 is the background speed for each link i and for each time j 

VHD for the incident is calculated as follows. 

VHD = ∑max {𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖𝑉𝑉𝑖𝑖𝑖𝑖 , 0} 

Where: 

VHD = Vehicle Hours of Delay 

𝑇𝑇𝑇𝑇𝑖𝑖𝑖𝑖 is the travel delay calculated for each link i and for each time j 

𝑉𝑉𝑖𝑖𝑖𝑖 is the volume for each link i and for each time j 

In some impact zones, cells exhibiting speeds greater than the background speed exist as 
explained in section 3.4.2.  The formula for VHD reflects this need to consider negative 
delays as zero. 

This chapter overviewed the sets of data and described the process in which the impact 
zones were defined and VHD was calculated.  The next chapter will overview the model 
selection process and discuss the outcomes and different considerations when comparing 
the process to work zone analysis. 
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 Modeling the Impact Zone and Delay 
This chapter focuses on modeling VHD as well as the impact zone dimensions.  The 
purpose of modeling these data is to explore the relationships between the variables that 
describe incidents and the delay associated with the incidents.  Also, it is important to 
infer if variables will be collinear with each other. 

The variables used for the analysis are the impact zone dimensions previously defined, 
AADT, hourly volume, weather, the number of blocked lanes (shortened as blocked lanes 
for this work), time period, and injury.  Table 6 showcases details on each factor. 

Table 6 Variables Selected 

Factors Considered Definition 

Impact Zone Dimensions 
Average Length, Max Length, Average 

Duration, Maximum Duration, Site Duration, 
and Zone Area 

AADT Average Annual Daily Traffic 
Hourly Volume Bi-Directional Hourly Volume 

Weather Either Clear or with Precipitation 

Number of Blocked Lanes One Lane Blocked or More than One Lane 
Blocked 

Time Period Either Peak (6AM-9AM or 3PM-6PM) or Non-
Peak 

Injury Either Injury or Non-Injury 
 

4.1 Data Exploration 
Before diving into deeper modeling and analysis, it is important that the relationships 
between the variables be explored.  The reason being is because understanding how the 
factors relate to each other will assist in interpreting the results of the models for the 
queue length, duration, and VHD.  To begin, a high-level look at the continuous variables 
in the analysis will be conducted using Pearson correlation coefficients.  Next, the 
relationship between the continuous and categorical variables will be studied using 
ANOVA analysis.  Finally, the findings from the Correlation and ANOVA analyses will 
be explored deeper by using Welch’s t-test to examine how the categorical variables 
interact with each other when comparing the means of VHD as well as the other 
continuous variables. 

4.1.1 Correlation 
In this step, it is important to see how the continuous variables correlate with each other 
before exploring any deeper.  It is important to view the strength of correlation to 
discover which factors are strongly related to each other.  For example, what factors are 
strongly correlated to VHD?  Average length?  Site duration?  A correlation plot is 
provided in Table 7. 
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Table 7 Correlation Plot 

 VHD AADT Hourly 
Volume 

Avg 
Length 

Max 
Length 

Avg 
Duration 

Site 
Duration 

Max 
Duration Zone Area 

VHD 1.00         
AADT -0.05 1.00        
Hourly 
Volume -0.04 0.80 1.00       

Avg Length 0.76 -0.05 -0.03 1.00      
Max Length 0.75 -0.04 -0.01 0.97 1.00     

Avg 
Duration 0.74 -0.03 0.00 0.53 0.49 1.00    

Site 
Duration 0.70 -0.03 0.03 0.48 0.47 0.90 1.00   

Max 
Duration 0.73 -0.05 0.00 0.54 0.57 0.92 0.89 1.00  

Zone Area 0.91 -0.09 -0.07 0.85 0.80 0.80 0.71 0.75 1.00 
 

 

 



 

28 

The variables correlated with VHD are average length, maximum length, average 
duration, maximum duration, incident duration, and zone area.  Zone area has the highest 
direct correlation and site duration has the lowest direct correlation with VHD, 
respectively.  Hourly volume and AADT are not correlated with VHD or the impact zone 
dimensions based on this study area which is surprising because one would assume that 
increased volume would cause traffic breakdowns. One potential reason is that the data 
used for this analysis are derived from AADT for the course of a year as well as hourly 
factors derived for functional class 11 highways (Interstates).  Therefore, an assumption 
is being made for the number of vehicles that are traversing each impact zone which is 
most likely not representative of the actual number of vehicles traversing the impact 
zone.  If further investigation is required, more detailed volume data would be required.  
However, in this case, hourly volume or AADT will not enter the modeling process for 
VHD described in section 4.2. 

It was observed that the duration variables are correlated with the length variables.  This 
is logical given a longer duration of an incident will more than likely result in longer 
queues.  Both duration and length variables are directly correlated with zone area since 
zone area is a derivative of duration and length and with increased length or duration 
comes a potentially larger zone area.  Hourly volume and AADT are not correlated with 
any of the spatiotemporal variables.  It is expected that the reasons presented in the 
previous paragraph are also a significant factor in the lack of relationship between 
volume and the impact zone.  Therefore, hourly volume and AADT will not be used to 
model the impact zone dimensions. 

This section only serves as a high-level analysis of the continuous variables.  When 
modeling these variables, a more detailed picture of the relationship between the 
variables can be realized.  However, before that can be conducted, the relationship 
between the categorical variables must be evaluated.  In the next section, ANOVA will be 
conducted on the categorical variables to detect their level of significance as well as any 
signs of interaction between the variables. 

4.1.2 ANOVA 
In this section, ANOVA is conducted to determine whether a categorical variable or a 
pair of categorical variables such as injury and weather have a significant effect in 
explaining continuous variables such as VHD, duration, and queue length.  ANOVA can 
also determine if the relationships are linear or non-linear as well as detect if categorical 
variables interact with each other. 

ANOVA uses a difference in variance to test whether two categorical variables or pairs of 
categorical variables are significant in explaining a selected response variable which, in 
this case, are VHD, average length, maximum length, site duration, and zone area. 
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The ANOVA procedure is based in using a linear model as shown below. 

𝑦𝑦 =  𝛽𝛽1𝑥𝑥1 +  𝛽𝛽2𝑥𝑥2 + 𝛽𝛽3𝑥𝑥3 + 𝜀𝜀𝑖𝑖 

Where: 

y is the response variable 

βi is the coefficients 

x1 is the value of the first categorical variable (0 or 1) 

x2 is the value of the second categorical variable (0 or 1) 

x3 is the value of the interaction term between the x1 and x2 variable (0 or 1) 

εi is the error term 

The goal is to test if there is enough evidence to suggest that any of the categorical 
variables explain error in the response variable (or that the slopes are not zero).  The null 
hypothesis for One-Way ANOVA and Two-Way ANOVA are as follows. 

One-Way ANOVA 

𝐻𝐻0 =  𝛽𝛽1 = 0 

Two-Way ANOVA 

𝐻𝐻0 =  𝛽𝛽1 =  𝛽𝛽2 =  𝛽𝛽3 = 0 

To test this hypothesis, the F-Statistic for both the overall model and each coefficient is 
used.  A significant F-Statistic can either show the overall model has at least one value 
that explains the variance or, in the case of a coefficient F-Statistics, at least one group 
within the variable when controlling for all other groups is significant.  The resulting p-
value from the F-Statistic will be used to determine significance for this work. 

Since the experimental designs in this work are unbalanced, an unbalanced ANOVA 
approach will be adopted.  This means that the F-Statistic and the p-values will be 
gathered from Type 3 Sum of Squares error, which “test a function of the underlying 
parameters that is independent of the number of observations per treatment combination” 
(49). 

For this analysis, the continuous variables selected are VHD, average length, maximum 
length, site duration, and zone area.  Average duration and maximum duration were not 
selected because site duration is more representative of the recorded incident duration in 
the TRIMARC incident log, or the difference between the reported start and end times of 
the incident.  Maximum duration can be tricky to collect because the end time of the 
incident may not occur at the mile marker the incident occurred.  Also, average duration 
is accounted for in the zone area metric. 
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Upon investigation of the preliminary models, it was seen that the residual distributions 
are right-skewed which indicates heteroscedasticity.  According to Tastan, log-
transformations can be used to treat heteroscedasticity and ensure the model meets the 
assumptions of normality (50).  Based on this knowledge, it was determined in analysis 
that the log-transformed versions of the continuous variables should be used because the 
relationship between the continuous variables and categorical variables are not normal as 
shown in Figure 8, which shows the residuals of modeling VHD as a function of time 
period. 

 

Figure 8 Time Period Model Residuals Before and After Transformation of VHD 

As can be seen, before transformation, the QQ plot (top-left plot) is not a straight line and 
the residual histogram (bottom-left plot) is skewed right.  Therefore, before 
transformation, the assumptions of a linear model are likely not being met.  With 
transformation, the QQ Plot (top-right plot) is linear and the histogram (bottom-right 
plot) both look more normally distributed.  This is also true for all other continuous 
variables modeled.  Figure 9 shows a histogram of VHD and the entire catalog of 
histograms can be found in Appendix A1. 
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Figure 9 Histogram of VHD 

Table 8,  Table 9, Table 10, Table 11, and Table 12 show the ANOVA regression F-
Statistics and coefficient p-values for VHD, average length, maximum length, site 
duration, and zone area, respectively. 

Table 8 ANOVA Analysis for Variables Modeling for VHD 

Note: p-vales in order, 
respectively, to row names 

F-Stat p-
value 1 

p-
value 2 

p-value 
interaction 

Independent         
Weather 0.95 0.95     
Blocked Lanes 0.08 0.08     
Time Period 0.20 0.20     
Injury 0.04 0.04     
Time Period and Injury 0.03 0.06 0.07 0.38 
Blocked Lanes and Injury 0.13 0.25 0.17 0.96 
Blocked Lanes and Time Period 0.05 0.02 0.29 0.20 
Weather and Time Period 0.62 0.87 0.42 0.74 
Weather and Blocked Lanes 0.30 0.60 0.34 0.46 
Weather and Injury 0.22 0.97 0.09 0.83 
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For the ANOVA with respect to VHD, there is a significant interaction on VHD when 
considering blocked lanes and injury as indicated by the small p-value.  For time period 
and injury, time period is significant in explaining VHD when injury is held constant, and 
injury is significant in explaining VHD when time period is held constant.  For blocked 
lanes and time period, blocked lanes is significant in explaining VHD when time period 
is held constant. 

Table 9 ANOVA Analysis for Variables Modeling for Average Length 

Note: p-vales in order, 
respectively, to row names 

F-Stat p-
value 1 

p-value 
2 

p-value 
interaction 

Independent         
Weather 0.91 0.91     
Blocked Lanes 0.93 0.93     
Time Period 0.04 0.04     
Injury 0.46 0.46     
Time Period and Injury 0.10 0.02 0.39 0.56 
Blocked Lanes and Injury 0.88 0.72 0.45 0.87 
Blocked Lanes and Time Period 0.07 0.40 0.20 0.11 
Weather and Time Period 0.14 0.63 0.32 0.29 
Weather and Blocked Lanes 0.97 0.75 0.73 0.65 
Weather and Injury 0.88 0.85 0.74 0.74 

 

For the ANOVA with respect to the average length, there is a significant interaction on 
average length when considering time period as indicated by the small p-value.  For time 
period and injury, time period is significant in explaining average length when injury is 
held constant.  For blocked lanes and time period, although the overall F-Statistic reveals 
an effect present, neither blocked lanes or time period are significant.  However, the 
interaction parameter p value is low despite not being significant to a 90% confidence 
level. 
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Table 10 ANOVA Analysis for Variables Modeling for Maximum Length 

Note: p-vales in order, 
respectively, to row names 

F-Stat p-
value 1 

p-
value 2 

p-value 
interaction 

Independent         
Weather 0.99 0.99     
Blocked Lanes 0.79 0.79     
Time Period 0.04 0.04     
Injury 0.45 0.45     
Time Period and Injury 0.11 0.02 0.35 0.65 
Blocked Lanes and Injury 0.89 0.99 0.47 0.81 
Blocked Lanes and Time Period 0.06 0.23 0.21 0.09 
Weather and Time Period 0.15 0.55 0.36 0.26 
Weather and Blocked Lanes 0.95 0.77 0.90 0.58 
Weather and Injury 0.88 0.92 0.73 0.74 

 

For the ANOVA with respect to the maximum length, there is a significant interaction on 
maximum length when considering time period as indicated by the small p-value.  For 
time period and injury, the F-Statistic does not indicate significance at the 90% 
confidence level.  However, the p-value of the time period coefficient is low enough to 
indicate further analysis into the relationship especially given time period when injury is 
held constant is significant with respect to average length.  For blocked lanes and time 
period, there is a significant overall effect based on the F-statistic but neither blocked 
lanes or time period are significant.  However, the interaction parameter p value is 
significantly low to the 90% confidence level. 

Table 11 ANOVA Analysis for Variables Modeling for Site Duration 

Note: p-vales in order, 
respectively, to row names 

F-Stat p-
value 1 

p-
value 2 

p-value 
interaction 

Independent         
Weather 0.82 0.82     
Blocked Lanes 0.15 0.15     
Time Period 0.89 0.89     
Injury 0.23 0.23     
Time Period and Injury 0.63 0.88 0.41 0.61 
Blocked Lanes and Injury 0.31 0.34 0.24 0.35 
Blocked Lanes and Time Period 0.30 0.08 0.72 0.21 
Weather and Time Period 0.53 0.68 0.42 0.14 
Weather and Blocked Lanes 0.54 0.99 0.33 0.79 
Weather and Injury 0.66 0.90 0.51 0.74 
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For the ANOVA with respect to site duration, the blocked lanes and time period analysis 
indicate a significant effect of blocked lanes when time period is held constant despite an 
insignificant overall F-Statistic.   

Table 12 ANOVA Analysis for Variables Modeling for Zone Area 

Note: p-vales in order, 
respectively, to row names F-Stat 

p-value 
1 

p-value 
2 

p-value 
interaction 

Independent         
Weather 0.93 0.93     
Blocked Lanes 0.63 0.63     
Time Period 0.20 0.20     
Injury 0.14 0.14     
Time Period and Injury 0.14 0.09 0.19 0.49 
Blocked Lanes and Injury 0.49 0.96 0.16 0.64 
Blocked Lanes and Time Period 0.28 0.26 0.44 0.21 
Weather and Time Period 0.58 0.80 0.53 0.55 
Weather and Blocked Lanes 0.93 0.74 0.91 0.65 
Weather and Injury 0.52 0.87 0.34 0.83 

 

For the ANOVA with respect to zone area, the time period and injury analysis indicate a 
significant effect of time period when injury is held constant despite an insignificant 
overall F-Statistic. 

The highlighted values in the previous tables denote significance or values worth noting.  
The summarization of the findings can be found below. 

• Injury is significant in explaining VHD by itself. 
• Blocked lanes is significant in explaining VHD by itself. 
• Time period is not significant in explaining VHD by itself but is when Injury is held 

constant. 
• Time period is significant in explaining both average length and maximum length by 

itself. 
• Blocked lanes and injury are not significant when explaining VHD together. 
• Weather removed from analysis due to lack of significance to any continuous 

variable. 

In this analysis, ANOVA is used to test whether there are significant factors explaining 
the continuous variables.  Based on this analysis, the most important interactions to 
consider are the relationship between time period and injury, blocked lanes and injury, 
and blocked lanes and time period.  Using the results of this section, a detailed analysis 
using t-tests will be used to detect exactly which groups differ from each other. 
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4.1.3 Detailed Investigation: T-Tests 
In the previous section, ANOVA is used to determine which factors are significant in 
describing VHD and the impact zone boundaries.  However, ANOVA cannot show 
exactly which pairs of categorical variables are significantly different.  For example, in 
the previous section, time period was found to be significant when injury is held constant 
with respect to VHD.  It is not known if time period is significant when only considering 
injury crashes or non-injury crashes.  Therefore, t-tests shall be used to explore these 
factors in more detail.   

In this analysis, the relationship between time period and injury, blocked lanes and injury, 
and blocked lanes and time period will be explored with respect to the continuous 
variables.  Given the uneven sample sizes found in this study, Welch’s t-test will be used 
for this analysis.  Welch’s t-test is identical in interpretation to the Student’s t-test, so 
results will be familiar.  In this analysis, the two-tailed test is used verses the one-tailed 
test because it was not desired to assume how the effect will change the effect of a given 
continuous variable.  Results in this analysis will be considered significant if the p-value 
is below 0.1.  Table 13 shows the results of the t-tests with respect to the continuous 
variables. 

Table 13 Summary of T-Tests 

Response Variable Pair p-value 

Log VHD 

Injury Peak vs No Injury Peak 0.00 
Injury and Peak vs Injury and Non-Peak 0.10 

1 Blocked Lane and Peak vs 1 Blocked Lane and Non-Peak 0.10 
1 Blocked Lane vs More than 1 Blocked Lane 0.05 

1 Blocked Lane and Non-Peak vs More than 1 Blocked 
Lane and Non-Peak 0.03 

Injury vs No Injury 0.04 

Log Average Length 
Injury and Peak vs Injury and Non-Peak 0.05 

Peak vs Non-Peak 0.04 
1 Blocked Lane and Peak vs 1 Blocked Lane and Non-Peak 0.02 

Log Zone Area Injury Peak vs No Injury Peak 0.03 

Log Maximum 
Length 

Injury and Peak vs Injury and Non-Peak 0.06 
Peak vs Non-Peak 0.05 

1 Blocked Lane and Peak vs 1 Blocked Lane and Non-Peak 0.02 
1 Blocked Lane and Non-Peak vs More than 1 Blocked 

Lane and Non-Peak 0.06 

Log Site Duration 1 Blocked Lane and Non-Peak vs More than 1 Blocked 
Lane and Non-Peak 0.06 
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This analysis revealed that, for the combination of time period and injury and blocked 
lanes and time period, the factors are dependent on each other in explaining VHD and the 
impact zone dimensions.  For example, when considering zone area, injury is significant 
for peak period incidents but not for non-peak incidents.  However, there was no such 
relationship when considering blocked lanes and injury. 

Ultimately, the purpose of these investigations is to infer, when performing modeling, 
how the categorical and continuous variables will interact with each other and to 
determine if collinearity will be an issue.  Based on the significant relationships between 
multiple categorical variables to VHD and the impact zone dimensions, this is likely 
problematic.  To combat collinearity, techniques such as stepwise regression will be used 
to develop the most parsimonious models.  For example, if a model for VHD is 
developed using average length as an explanatory variable, categorical variables 
significant in explaining average length will be removed leaving those not related to 
explaining average length yet explaining VHD.  For this analysis, stepwise selection 
using the Schwarz Bayesian Criterion (SBC) will be implemented.  The next section 
overviews this process and issues models for both the spatiotemporal boundaries as well 
as VHD. 

4.2 Modeling 
In the previous section, Welch’s t-tests were used to determine the relationships 
categorical variables or pairs of categorical variables had with respect to the continuous 
variables associated with describing incident delay and the impact zone. 

The chosen method for performing models in this analysis is multiple linear regression.  
The general form for Multiple Linear Regression is as follows 

𝑦𝑦 =  𝛽𝛽1𝑥𝑥1 +  𝛽𝛽2𝑥𝑥2 + ⋯+  𝛽𝛽𝑛𝑛𝑥𝑥𝑛𝑛 +  𝜀𝜀𝑖𝑖 

For this analysis, stepwise selection is used to determine parsimonious models based on 
the values being modeled and their significance in explaining the model.  In SAS, the 
SBC is used by default to select the optimum model based on the input data. 

The next section discusses modeling based on the selected dimensions of the impact 
zone. 

4.2.1 Modeling the Impact Zone 
In this section, it is of interest to investigate possible models for queue length using site 
duration.  Understanding how the duration of an incident affects queue length for a given 
area can reveal potential operational issues that may arise, such as queue spillback onto 
side roads or through interchanges.  Also, site duration is easier to collect data-wise 
because only knowledge of the incident area is required verses monitoring upstream to 
detect the back of the queue. 

Models for maximum length and average length are developed in this section because 
both can illustrate various magnitudes of disruption when considering spillback.  For 
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example, if an interchange is found within the average queue length, the interchange may 
be affected for much longer versus if it were found within the maximum queue length but 
outside of the average queue length. 

The models developed prior to stepwise selection are as follows: 

ln(𝑀𝑀𝑀𝑀𝑥𝑥 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ)
= 𝛽𝛽0 + 𝛽𝛽1 ln(𝑠𝑠𝑠𝑠𝐿𝐿𝐿𝐿 𝑑𝑑𝑑𝑑𝑜𝑜𝑀𝑀𝐿𝐿𝑠𝑠𝑜𝑜𝐿𝐿) + 𝛽𝛽2(𝐿𝐿𝑠𝑠𝑡𝑡𝐿𝐿 𝑝𝑝𝐿𝐿𝑜𝑜𝑠𝑠𝑜𝑜𝑑𝑑) +  𝛽𝛽3(𝑠𝑠𝐿𝐿𝑖𝑖𝑑𝑑𝑜𝑜𝑦𝑦)
+ 𝛽𝛽4(𝑏𝑏𝑏𝑏𝑜𝑜𝑐𝑐𝑏𝑏𝐿𝐿𝑑𝑑 𝑏𝑏𝑀𝑀𝐿𝐿𝐿𝐿𝑠𝑠) + 𝛽𝛽5(𝑠𝑠𝐿𝐿𝐿𝐿𝐿𝐿𝑜𝑜𝑀𝑀𝑐𝑐𝐿𝐿𝑠𝑠𝑜𝑜𝐿𝐿 𝐿𝐿𝑠𝑠𝑡𝑡𝐿𝐿 𝑝𝑝𝐿𝐿𝑜𝑜𝑠𝑠𝑜𝑜𝑑𝑑 𝑀𝑀𝐿𝐿𝑑𝑑 𝑠𝑠𝐿𝐿𝑖𝑖𝑑𝑑𝑜𝑜𝑦𝑦)
+ 𝛽𝛽6(𝑠𝑠𝐿𝐿𝐿𝐿𝐿𝐿𝑜𝑜𝑀𝑀𝑐𝑐𝐿𝐿𝑠𝑠𝑜𝑜𝐿𝐿 𝑏𝑏𝑏𝑏𝑜𝑜𝑐𝑐𝑏𝑏𝐿𝐿𝑑𝑑 𝑏𝑏𝑀𝑀𝐿𝐿𝐿𝐿𝑠𝑠 𝑀𝑀𝐿𝐿𝑑𝑑 𝐿𝐿𝑠𝑠𝑡𝑡𝐿𝐿 𝑝𝑝𝐿𝐿𝑜𝑜𝑠𝑠𝑜𝑜𝑑𝑑) 

ln(𝐴𝐴𝑣𝑣𝐿𝐿 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ)
= 𝛽𝛽0 + 𝛽𝛽1 ln(𝑠𝑠𝑠𝑠𝐿𝐿𝐿𝐿 𝑑𝑑𝑑𝑑𝑜𝑜𝑀𝑀𝐿𝐿𝑠𝑠𝑜𝑜𝐿𝐿) + 𝛽𝛽2(𝐿𝐿𝑠𝑠𝑡𝑡𝐿𝐿 𝑝𝑝𝐿𝐿𝑜𝑜𝑠𝑠𝑜𝑜𝑑𝑑) +  𝛽𝛽3(𝑠𝑠𝐿𝐿𝑖𝑖𝑑𝑑𝑜𝑜𝑦𝑦)
+ 𝛽𝛽4(𝑏𝑏𝑏𝑏𝑜𝑜𝑐𝑐𝑏𝑏𝐿𝐿𝑑𝑑 𝑏𝑏𝑀𝑀𝐿𝐿𝐿𝐿𝑠𝑠) + 𝛽𝛽5(𝑠𝑠𝐿𝐿𝐿𝐿𝐿𝐿𝑜𝑜𝑀𝑀𝑐𝑐𝐿𝐿𝑠𝑠𝑜𝑜𝐿𝐿 𝐿𝐿𝑠𝑠𝑡𝑡𝐿𝐿 𝑝𝑝𝐿𝐿𝑜𝑜𝑠𝑠𝑜𝑜𝑑𝑑 𝑀𝑀𝐿𝐿𝑑𝑑 𝑠𝑠𝐿𝐿𝑖𝑖𝑑𝑑𝑜𝑜𝑦𝑦)
+ 𝛽𝛽6(𝑠𝑠𝐿𝐿𝐿𝐿𝐿𝐿𝑜𝑜𝑀𝑀𝑐𝑐𝐿𝐿𝑠𝑠𝑜𝑜𝐿𝐿 𝑏𝑏𝑏𝑏𝑜𝑜𝑐𝑐𝑏𝑏𝐿𝐿𝑑𝑑 𝑏𝑏𝑀𝑀𝐿𝐿𝐿𝐿𝑠𝑠 𝑀𝑀𝐿𝐿𝑑𝑑 𝐿𝐿𝑠𝑠𝑡𝑡𝐿𝐿 𝑝𝑝𝐿𝐿𝑜𝑜𝑠𝑠𝑜𝑜𝑑𝑑) 

 

Only one continuous variable was modeled at a time given the strong correlations 
between the spatiotemporal variables as seen in section 4.1.1. 

Performing stepwise selection, the resulting model for maximum length is given below: 

ln(𝑀𝑀𝑀𝑀𝑥𝑥 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ) = −1.06 + 0.487 ln(𝑆𝑆𝑠𝑠𝐿𝐿𝐿𝐿 𝑇𝑇𝑑𝑑𝑜𝑜𝑀𝑀𝐿𝐿𝑠𝑠𝑜𝑜𝐿𝐿) − 0.292𝐿𝐿𝑠𝑠𝑡𝑡𝐿𝐿 𝑝𝑝𝐿𝐿𝑜𝑜𝑠𝑠𝑜𝑜𝑑𝑑 

When performing an exponential transformation of the model, the following equation is 
given: 

𝐿𝐿ln (𝑀𝑀𝑀𝑀𝑥𝑥 𝐿𝐿𝐿𝐿𝑛𝑛𝐿𝐿𝐿𝐿ℎ) = 𝐿𝐿−1.06+0.487 ln(𝑆𝑆𝑖𝑖𝐿𝐿𝐿𝐿 𝐷𝐷𝐷𝐷𝐷𝐷𝑀𝑀𝐿𝐿𝑖𝑖𝐷𝐷𝑛𝑛)−0.292𝐿𝐿𝑖𝑖𝑡𝑡𝐿𝐿 𝑝𝑝𝐿𝐿𝐷𝐷𝑖𝑖𝐷𝐷𝑝𝑝 or 

𝑀𝑀𝑀𝑀𝑥𝑥 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ = 0.346𝐿𝐿−0.292𝐿𝐿𝑖𝑖𝑡𝑡𝐿𝐿 𝑝𝑝𝐿𝐿𝐷𝐷𝑖𝑖𝐷𝐷𝑝𝑝𝑆𝑆𝑠𝑠𝐿𝐿𝐿𝐿 𝑇𝑇𝑑𝑑𝑜𝑜𝑀𝑀𝐿𝐿𝑠𝑠𝑜𝑜𝐿𝐿0.487 

The model states that when the incident occurs during the off-peak period, the maximum 
length should be approximately e-0.292 or 0.75 times smaller than incidents during the 
peak period.  For every minute increase in site duration, the site duration multiplier for 
maximum length will increase according to a power function raised to the 0.487 power.  
Since the queue length should decrease during the night time and increase with increasing 
site duration, the model makes sense. 

The transformed equation for average length is presented below: 

𝐴𝐴𝑣𝑣𝐿𝐿 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ = 0.251𝐿𝐿−0.286𝐿𝐿𝑖𝑖𝑡𝑡𝐿𝐿 𝑝𝑝𝐿𝐿𝐷𝐷𝑖𝑖𝐷𝐷𝑝𝑝𝑆𝑆𝑠𝑠𝐿𝐿𝐿𝐿 𝑇𝑇𝑑𝑑𝑜𝑜𝑀𝑀𝐿𝐿𝑠𝑠𝑜𝑜𝐿𝐿0.468 

The model states that when the incident occurs during the off-peak period, the maximum 
length should be approximately e-0.286 or 0.75 times smaller than incidents during the peak 
period.  For every minute increase in site duration, the site duration multiplier for 
maximum length will increase according to a power function raised to the 0.468 power.  
Also, the coefficient of 0.251 is less than the coefficient for maximum queue length, 
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which is 0.346 which makes sense given maximum length should be larger than average 
length. 

In summary, it is found that the models for maximum length and average length are better 
explained when time period is included in the model.  This is consistent with the 
significance found in the ANOVA analysis in section 4.1.2.  The R2 values for maximum 
length and the average length are 0.253 and 0.246, respectively.  Therefore, based on this 
study area, site duration does explain some variance in maximum length and average 
length, but results should be taken with caution. 

4.2.2 Modeling VHD 
In this section, models will be developed for VHD.  It is not cheap to constantly monitor 
the impact area and develop VHD based on collected data.  Building models using what 
is known about the impact zone and conditions of the incident can allow practitioners to 
both reduce the data collection required and effectively estimate the impact of incidents 
for traffic impact analyses.. 

The four VHD models before stepwise selection are presented below: 

ln(𝑉𝑉𝐻𝐻𝑇𝑇) = 𝛽𝛽0 + 𝛽𝛽1 ln(𝑠𝑠𝑠𝑠𝐿𝐿𝐿𝐿 𝑑𝑑𝑑𝑑𝑜𝑜𝑀𝑀𝐿𝐿𝑠𝑠𝑜𝑜𝐿𝐿) + 𝛽𝛽2(𝐿𝐿𝑠𝑠𝑡𝑡𝐿𝐿 𝑝𝑝𝐿𝐿𝑜𝑜𝑠𝑠𝑜𝑜𝑑𝑑) + 𝛽𝛽3(𝑠𝑠𝐿𝐿𝑖𝑖𝑑𝑑𝑜𝑜𝑦𝑦)
+ 𝛽𝛽4(𝑏𝑏𝑏𝑏𝑜𝑜𝑐𝑐𝑏𝑏𝐿𝐿𝑑𝑑 𝑏𝑏𝑀𝑀𝐿𝐿𝐿𝐿𝑠𝑠) + 𝛽𝛽5(𝑠𝑠𝐿𝐿𝐿𝐿𝐿𝐿𝑜𝑜𝑀𝑀𝑐𝑐𝐿𝐿𝑠𝑠𝑜𝑜𝐿𝐿 𝐿𝐿𝑠𝑠𝑡𝑡𝐿𝐿 𝑝𝑝𝐿𝐿𝑜𝑜𝑠𝑠𝑜𝑜𝑑𝑑 𝑀𝑀𝐿𝐿𝑑𝑑 𝑠𝑠𝐿𝐿𝑖𝑖𝑑𝑑𝑜𝑜𝑦𝑦)
+ 𝛽𝛽6(𝑠𝑠𝐿𝐿𝐿𝐿𝐿𝐿𝑜𝑜𝑀𝑀𝑐𝑐𝐿𝐿𝑠𝑠𝑜𝑜𝐿𝐿 𝑏𝑏𝑏𝑏𝑜𝑜𝑐𝑐𝑏𝑏𝐿𝐿𝑑𝑑 𝑏𝑏𝑀𝑀𝐿𝐿𝐿𝐿𝑠𝑠 𝑀𝑀𝐿𝐿𝑑𝑑 𝐿𝐿𝑠𝑠𝑡𝑡𝐿𝐿 𝑝𝑝𝐿𝐿𝑜𝑜𝑠𝑠𝑜𝑜𝑑𝑑) 

ln(𝑉𝑉𝐻𝐻𝑇𝑇) = 𝛽𝛽0 + 𝛽𝛽1 ln(𝑀𝑀𝑣𝑣𝐿𝐿 𝑏𝑏𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ) + 𝛽𝛽2(𝐿𝐿𝑠𝑠𝑡𝑡𝐿𝐿 𝑝𝑝𝐿𝐿𝑜𝑜𝑠𝑠𝑜𝑜𝑑𝑑) +  𝛽𝛽3(𝑠𝑠𝐿𝐿𝑖𝑖𝑑𝑑𝑜𝑜𝑦𝑦)
+ 𝛽𝛽4(𝑏𝑏𝑏𝑏𝑜𝑜𝑐𝑐𝑏𝑏𝐿𝐿𝑑𝑑 𝑏𝑏𝑀𝑀𝐿𝐿𝐿𝐿𝑠𝑠) + 𝛽𝛽5(𝑠𝑠𝐿𝐿𝐿𝐿𝐿𝐿𝑜𝑜𝑀𝑀𝑐𝑐𝐿𝐿𝑠𝑠𝑜𝑜𝐿𝐿 𝐿𝐿𝑠𝑠𝑡𝑡𝐿𝐿 𝑝𝑝𝐿𝐿𝑜𝑜𝑠𝑠𝑜𝑜𝑑𝑑 𝑀𝑀𝐿𝐿𝑑𝑑 𝑠𝑠𝐿𝐿𝑖𝑖𝑑𝑑𝑜𝑜𝑦𝑦)
+ 𝛽𝛽6(𝑠𝑠𝐿𝐿𝐿𝐿𝐿𝐿𝑜𝑜𝑀𝑀𝑐𝑐𝐿𝐿𝑠𝑠𝑜𝑜𝐿𝐿 𝑏𝑏𝑏𝑏𝑜𝑜𝑐𝑐𝑏𝑏𝐿𝐿𝑑𝑑 𝑏𝑏𝑀𝑀𝐿𝐿𝐿𝐿𝑠𝑠 𝑀𝑀𝐿𝐿𝑑𝑑 𝐿𝐿𝑠𝑠𝑡𝑡𝐿𝐿 𝑝𝑝𝐿𝐿𝑜𝑜𝑠𝑠𝑜𝑜𝑑𝑑) 

ln(𝑉𝑉𝐻𝐻𝑇𝑇) = 𝛽𝛽0 + 𝛽𝛽1 ln(𝑡𝑡𝑀𝑀𝑥𝑥 𝑏𝑏𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ) + 𝛽𝛽2(𝐿𝐿𝑠𝑠𝑡𝑡𝐿𝐿 𝑝𝑝𝐿𝐿𝑜𝑜𝑠𝑠𝑜𝑜𝑑𝑑) + 𝛽𝛽3(𝑠𝑠𝐿𝐿𝑖𝑖𝑑𝑑𝑜𝑜𝑦𝑦)
+ 𝛽𝛽4(𝑏𝑏𝑏𝑏𝑜𝑜𝑐𝑐𝑏𝑏𝐿𝐿𝑑𝑑 𝑏𝑏𝑀𝑀𝐿𝐿𝐿𝐿𝑠𝑠) + 𝛽𝛽5(𝑠𝑠𝐿𝐿𝐿𝐿𝐿𝐿𝑜𝑜𝑀𝑀𝑐𝑐𝐿𝐿𝑠𝑠𝑜𝑜𝐿𝐿 𝐿𝐿𝑠𝑠𝑡𝑡𝐿𝐿 𝑝𝑝𝐿𝐿𝑜𝑜𝑠𝑠𝑜𝑜𝑑𝑑 𝑀𝑀𝐿𝐿𝑑𝑑 𝑠𝑠𝐿𝐿𝑖𝑖𝑑𝑑𝑜𝑜𝑦𝑦)
+ 𝛽𝛽6(𝑠𝑠𝐿𝐿𝐿𝐿𝐿𝐿𝑜𝑜𝑀𝑀𝑐𝑐𝐿𝐿𝑠𝑠𝑜𝑜𝐿𝐿 𝑏𝑏𝑏𝑏𝑜𝑜𝑐𝑐𝑏𝑏𝐿𝐿𝑑𝑑 𝑏𝑏𝑀𝑀𝐿𝐿𝐿𝐿𝑠𝑠 𝑀𝑀𝐿𝐿𝑑𝑑 𝐿𝐿𝑠𝑠𝑡𝑡𝐿𝐿 𝑝𝑝𝐿𝐿𝑜𝑜𝑠𝑠𝑜𝑜𝑑𝑑) 

ln(𝑉𝑉𝐻𝐻𝑇𝑇) = 𝛽𝛽0 + 𝛽𝛽1 ln(𝑧𝑧𝑜𝑜𝐿𝐿𝐿𝐿 𝑀𝑀𝑜𝑜𝐿𝐿𝑀𝑀) + +𝛽𝛽2(𝐿𝐿𝑠𝑠𝑡𝑡𝐿𝐿 𝑝𝑝𝐿𝐿𝑜𝑜𝑠𝑠𝑜𝑜𝑑𝑑) +  𝛽𝛽3(𝑠𝑠𝐿𝐿𝑖𝑖𝑑𝑑𝑜𝑜𝑦𝑦)
+ 𝛽𝛽4(𝑏𝑏𝑏𝑏𝑜𝑜𝑐𝑐𝑏𝑏𝐿𝐿𝑑𝑑 𝑏𝑏𝑀𝑀𝐿𝐿𝐿𝐿𝑠𝑠) + 𝛽𝛽5(𝑠𝑠𝐿𝐿𝐿𝐿𝐿𝐿𝑜𝑜𝑀𝑀𝑐𝑐𝐿𝐿𝑠𝑠𝑜𝑜𝐿𝐿 𝐿𝐿𝑠𝑠𝑡𝑡𝐿𝐿 𝑝𝑝𝐿𝐿𝑜𝑜𝑠𝑠𝑜𝑜𝑑𝑑 𝑀𝑀𝐿𝐿𝑑𝑑 𝑠𝑠𝐿𝐿𝑖𝑖𝑑𝑑𝑜𝑜𝑦𝑦)
+ 𝛽𝛽6(𝑠𝑠𝐿𝐿𝐿𝐿𝐿𝐿𝑜𝑜𝑀𝑀𝑐𝑐𝐿𝐿𝑠𝑠𝑜𝑜𝐿𝐿 𝑏𝑏𝑏𝑏𝑜𝑜𝑐𝑐𝑏𝑏𝐿𝐿𝑑𝑑 𝑏𝑏𝑀𝑀𝐿𝐿𝐿𝐿𝑠𝑠 𝑀𝑀𝐿𝐿𝑑𝑑 𝐿𝐿𝑠𝑠𝑡𝑡𝐿𝐿 𝑝𝑝𝐿𝐿𝑜𝑜𝑠𝑠𝑜𝑜𝑑𝑑) 

Where the coefficients are previously defined in section 4.2.1. 

The explanatory variables are selected using the stepwise regression procedure and 
transformed to exponential form as described earlier.  The four resulting models are 
shown below: 

𝑉𝑉𝐻𝐻𝑇𝑇 = 2.11𝑠𝑠𝑠𝑠𝐿𝐿𝐿𝐿 𝑑𝑑𝑑𝑑𝑜𝑜𝑀𝑀𝐿𝐿𝑠𝑠𝑜𝑜𝐿𝐿1.29      R2 = 0.407 

The model states that for every minute increase in site duration, the site duration 
multiplier for VHD will increase according to a power function raised to the 1.29 power. 

𝑉𝑉𝐻𝐻𝑇𝑇 = 166𝐿𝐿0.527𝑏𝑏𝑏𝑏𝐷𝐷𝑏𝑏𝑏𝑏𝐿𝐿𝑝𝑝 𝑏𝑏𝑀𝑀𝑛𝑛𝐿𝐿𝑙𝑙𝑀𝑀𝑣𝑣𝐿𝐿 𝑏𝑏𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ1.71      R2 = 0.713 
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The model states that for every mile increase in average length, the average length 
multiplier for VHD will increase according to a power function raised to the 1.71 power.  
Also, when more than one blocked lane is present, the VHD will be e0.527 or 
approximately 1.69 times larger. 

𝑉𝑉𝐻𝐻𝑇𝑇 = 90.9𝐿𝐿0.442𝑏𝑏𝑏𝑏𝐷𝐷𝑏𝑏𝑏𝑏𝐿𝐿𝑝𝑝 𝑏𝑏𝑀𝑀𝑛𝑛𝐿𝐿𝑙𝑙𝑡𝑡𝑀𝑀𝑥𝑥 𝑏𝑏𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ1.64      R2 = 0.726 

The model states that for every mile increase in maximum length, the maximum length 
multiplier for VHD will increase according to a power function raised to the 1.64 power.  
Also, when more than one blocked lane is present, the VHD will be e0.442 or 
approximately 1.56 times larger. 

𝑉𝑉𝐻𝐻𝑇𝑇 = 3.67𝐿𝐿0.384𝑏𝑏𝑏𝑏𝐷𝐷𝑏𝑏𝑏𝑏𝐿𝐿𝑝𝑝 𝑏𝑏𝑀𝑀𝑛𝑛𝐿𝐿𝑙𝑙𝑧𝑧𝑜𝑜𝐿𝐿𝐿𝐿 𝑀𝑀𝑜𝑜𝐿𝐿𝑀𝑀1.11      R2 = 0.773 

The model states that for every mile-minute increase in zone area, the zone area 
multiplier for VHD will increase according to a power function raised to the 1.11 power.  
Also, when more than one blocked lane is present, the VHD will be e0.384 or 
approximately 1.47 times larger. 

In reviewing the models, it is seen that the model using zone area explains VHD the best 
with an R2 of 0.773.  The model using site duration is the worst in explaining VHD with 
an R2 of 0.407.  The models using maximum length and average length perform 
admirably well in explaining VHD with R2 values above 0.7.  It is also interesting to see 
blocked lanes result in significance in three of the four models even though injury, 
according to the ANOVA analysis, appears as the most significant factor in explaining 
VHD.  One potential reason is because injury also explains the queue length variables, 
which, in this case, causes collinearity. 

Although zone area produces the best results, it is also the most data-intensive.  As stated 
before calculating zone area requires knowledge of the average duration and the average 
length of the incident.  Site duration is the lowest performer but the easiest to collect data 
for since it only requires knowledge of the duration at the crash site.  
 
This section developed models for the VHD, average length, and maximum length.  The 
next section will discuss the results.  Details of all model outputs can be found in 
Appendix A2. 

4.3 Discussion 
First and foremost, the results of this study are specific to the roadway in question and are 
most likely not transferrable to other roadways.  If results are desired for other roadways, 
then the process must be repeated for the roadway in question to ensure accuracy.  Also, 
this methodology is applied to a freeway.  It is not recommended this methodology be 
applied to arterials without further research. 

In the modeling sections of this report, it was found that the probe GPS data-driven site 
duration is the worst performer in explaining VHD in comparison to the other models 
proposed.  However, it can be argued that site duration is an easier metric to collect 
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because it only requires knowledge of the incident site instead of the entire impact zone.  
TRIMARC currently collects similar data within the incident log since most incidents 
identify a start and an end time.  Given that information, an investigation in the 
comparability of the TRIMARC incident log was conducted against the data-driven site 
duration using Welch’s t-test.  This is to determine if TRIMARC’s current data collection 
practices are sufficient to use as the site duration versus using the data-driven site 
duration as found in the probe GPS dataset.  It was found that there is enough statistical 
evidence to suggest that the means are not the same given the small p-value in the two-
tail test.  Also, given the mean of site duration is larger than the mean of the TRIMARC 
duration, it can be verified that, given the presented data, the TRIMARC durations 
underestimate the data-driven site duration.  This means that TRIMARC is not capturing 
the full impact of the incident verses probe GPS speed data.  The results of Welch’s t-test 
are shown in Table 14. 

Table 14 Welch’s T-Test Between TRIMARC Duration and Site Duration 

   

  TRIMARC Duration 
Site 

Duration 
Mean 55.3 70.7 
Variance 1305 2079 
Observations 155 155 
Hypothesized Mean Difference 0.00  
df 293  
t Stat -3.29  
P(T<=t) one-tail 0.00  
t Critical one-tail 1.65  
P(T<=t) two-tail 0.00  
t Critical two-tail 1.97   

   
 

Despite the results of the t-test, it would be naive to think all incident durations were 
underestimated by TRIMARC; it is entirely possible TRIMARC overestimated the 
impact of incidents.  For the dataset used in Welch’s t-test, TRIMARC is found to 
overestimate the impact of incidents 52 times and by as much as 70 minutes.  To better 
understand how and when TRIMARC underestimates the data-driven incidents, an 
investigation using the reported TRIMARC incident lengths, the categorical factors 
describing the incidents, and the location of the incidents was conducted using Welch’s t-
test.  It was found that TRIMARC under reported site duration worse during incidents 
reported to have lasted less than on hour according to TRIMARC versus incidents lasting 
more than 1 hour.  It was also noticed that incidents with an injury and incidents 
occurring during the peak period underestimated data-driven delay.  Also, it was noticed 
that the level of under reporting and over reporting could be different based on location.  
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Appendix A3 contains the details of the results of the t-tests for factors that showed 
significance. 

This study also utilized a 20% speed threshold as described in section 3.4.2 to identify the 
congested cells and define the impact zone.  Although this can successfully identify 
incident congestion assuming the TRIMARC incident log as well as the data are correct, 
it does not guarantee that the congestion identified is entirely related to the incident.  
Procedures such as Kazi’s kalman filter have the potential to further isolate the effects of 
the incident (18). 
 
It is also desirable to use metrics related to the incident type.  For example, injury is a 
metric related to crashes.  In analysis for work zones, work zone speed limit and work 
zone barrier type could be considered (51). 
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 Conclusion 
5.1 Summary of Work 
The goal of this work is to explore the relationships between the data describing incident 
conditions, the spatiotemporal features of the impact zone, and the delay associated with 
incidents to assist in congestion management and the determination of road user costs.  
The utilization of probe GPS speed data can describe the day-to-day conditions of traffic 
which yield more detail in explaining the impact and delay caused by incidents.  Using 
this methodology, practitioners can analyze other roadway segments and potentially 
combine them to allow for network examination.  For example, the methodology could 
be applied to both I-64 and I-65 in Louisville together or separately depending on needs.  
This work can also serve as a stepping stone into future research using different methods 
and different algorithms to utilize probe GPS speed data to measure and predict 
congestion for roadways. 

The study began with an overview of the recent research in the field of non-recurrent 
congestion.  Then, it transitioned into discussing the data collection and processing 
required to generate the metrics for an incident’s impact zone.  This process was carried 
out using a combination of Python-based algorithms as well as manual updates to ensure 
the quality of the collected data.  Next, the modeling process explored the relationship 
between the calculated VHD, the TRIMARC recorded metrics such as the number of 
blocked lanes, and the spatiotemporal dimensions of the impact zone such as queue 
length and duration. 

This work proposed six linear models: two of which model average length and maximum 
length and four that model VHD.  They are as follows: 

𝑀𝑀𝑀𝑀𝑥𝑥 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ = 0.346𝐿𝐿−0.292𝐿𝐿𝑖𝑖𝑡𝑡𝐿𝐿 𝑝𝑝𝐿𝐿𝐷𝐷𝑖𝑖𝐷𝐷𝑝𝑝𝑠𝑠𝑠𝑠𝐿𝐿𝐿𝐿 𝑑𝑑𝑑𝑑𝑜𝑜𝑀𝑀𝐿𝐿𝑠𝑠𝑜𝑜𝐿𝐿0.487 

𝐴𝐴𝑣𝑣𝐿𝐿 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ = 0.251𝐿𝐿−0.286𝐿𝐿𝑖𝑖𝑡𝑡𝐿𝐿 𝑝𝑝𝐿𝐿𝐷𝐷𝑖𝑖𝐷𝐷𝑝𝑝𝑠𝑠𝑠𝑠𝐿𝐿𝐿𝐿 𝑑𝑑𝑑𝑑𝑜𝑜𝑀𝑀𝐿𝐿𝑠𝑠𝑜𝑜𝐿𝐿0.468 

𝑉𝑉𝐻𝐻𝑇𝑇 = 2.11𝑠𝑠𝑠𝑠𝐿𝐿𝐿𝐿 𝑑𝑑𝑑𝑑𝑜𝑜𝑀𝑀𝐿𝐿𝑠𝑠𝑜𝑜𝐿𝐿1.29   

𝑉𝑉𝐻𝐻𝑇𝑇 = 166𝐿𝐿0.527𝑏𝑏𝑏𝑏𝐷𝐷𝑏𝑏𝑏𝑏𝐿𝐿𝑝𝑝 𝑏𝑏𝑀𝑀𝑛𝑛𝐿𝐿𝑙𝑙𝑀𝑀𝑣𝑣𝐿𝐿 𝑏𝑏𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ1.71   

𝑉𝑉𝐻𝐻𝑇𝑇 = 90.9𝐿𝐿0.442𝑏𝑏𝑏𝑏𝐷𝐷𝑏𝑏𝑏𝑏𝐿𝐿𝑝𝑝 𝑏𝑏𝑀𝑀𝑛𝑛𝐿𝐿𝑙𝑙𝑡𝑡𝑀𝑀𝑥𝑥 𝑏𝑏𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿ℎ1.64   

𝑉𝑉𝐻𝐻𝑇𝑇 = 3.67𝐿𝐿0.384𝑏𝑏𝑏𝑏𝐷𝐷𝑏𝑏𝑏𝑏𝐿𝐿𝑝𝑝 𝑏𝑏𝑀𝑀𝑛𝑛𝐿𝐿𝑙𝑙𝑧𝑧𝑜𝑜𝐿𝐿𝐿𝐿 𝑀𝑀𝑜𝑜𝐿𝐿𝑀𝑀1.11   

5.2 Applications 
The models presented in this analysis can be used in multiple applications in incident 
management.  For example, the two models predicting queue length can be used in 
estimating queue spillback for incidents.  This is valuable information because queue 
spillback, especially when affecting side streets and interchanges, can greatly impact the 
network.  In a work zone context, if crews know the expected queue length of the 
incident given the work time allotted, measures can be enacted to reduce the likelihood of 
queue spillback onto side streets.  For models predicting VHD, these are valuable in 
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estimating costs for incidents for use in after action reviews and incident management 
program reviews.  Before and after studies on roadway treatments can be conducted using 
quickly estimated VHD in lieu of a direct calculation.  These estimates can shed light on 
the potential cost savings of roadway treatments assuming the treatment reduced 
congestion.  Also, quality VHD estimations can improve the road user cost estimation 
process by generating road-specific results. 

These methods can also be used to calibrate traditional methods, like those from the 
Highway Capacity Manual (51).  In the work zone methodology outlined in chapter 10, 
speed adjustment factors and capacity adjustment factors are calculated and can be used 
to estimate queue length.  A comparison between the HCM-derived queue lengths and the 
data-driven queue lengths can be conducted for a work zone to determine if the HCM 
assumptions match what is seen in the data or the data model. 

5.3 Future Work 
The main goal of this work is to explore the different relationships between the factors 
that describe congestion and the factors that describe the impact boundary.  Multiple 
Linear Regression is not the only method in which this can be accomplished.  A study of 
other methods and their applications to this study area would be recommended.  
Examples include Logistic Regression and Quantile Regression as presented by Kazi 
(18).   

Also, this study explored the use of Python to conflate probe GPS speed data with the 
TRIMARC incident log.  Given the amount of manual work required to update the 
impact boundaries and impute missing data, a more sophisticated approach is desired.  
This approach would better handle the exceptions presented in this report and reduce the 
amount of manual labor required to successfully process the data while maintaining 
accuracy when calculating impact boundaries and imputing missing data.  Ultimately, 
this would allow DOTs and MPOs to process larger datasets. 

This study presented multiple models in which explain queue length and delay.  For 
DOTs and MPOs to decide which model works best, a new set of data would be required 
to justify the accuracy of each model using metrics such as Root Mean Square Error 
(RMSE).  With this information, DOTs and MPOs will have more information to 
properly select the correct model especially if it is desired to use a simpler-to-collect data 
source such as site duration; if site duration does not greatly reduce the accuracy of 
prediction to where the model is useless, it may be more effective versus models using 
zone area or queue length. 

The results of this work are influenced not only by the real data but an imputation process 
that replaces missing probe GPS speed data as described in section 3.4.2.  This could 
potentially introduce bias into the given results.  More complete datasets could 
potentially yield more accurate representations of congestion and reduce estimation bias.  
Data Fusion techniques such as spatiotemporal cokriging could impute missing data with 
potentially more accurate speed data (44) 
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Finally, an analysis approach using arterial streets is recommended for future 
development.  The signalization of an arterial roadway provides new challenges to 
identify what is considered typical speeds since arterial speeds are so volatile.  Along 
with the freeway methodology, an arterial methodology, especially with comparable 
VHD and impact zone boundaries, can provide information not only for the freeway 
network, but for the entire roadway network further providing insight on the nature of 
congestion. 
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Appendix 
A1 Histograms 
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A2 Model Outputs 
1. Average Queue Length and Maximum Queue Length 
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2. VHD 
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A3 T-Tests for TRIMARC Duration vs Site Duration 
Note: Negative mean denotes under reporting.  Positive mean denotes over reporting 

1. Length of Incident 

  
under 1 

hour 
More than 1 

hour 
Mean -24.2 -1.4 
Variance 1561 1083 
Observations 95 60 
Hypothesized Mean Difference 0.0  
df 142  
t Stat -3.9  
P(T<=t) one-tail 0.0  
t Critical one-tail 1.7  
P(T<=t) two-tail 0.0  
t Critical two-tail 2.0   

 

2. Injury Type 

  Injury No Injury 
Mean -8.7 -19.1 
Variance 911 1791 
Observations 56 99 
Hypothesized Mean Difference 0.0  
df 145  
t Stat 1.8  
P(T<=t) one-tail 0.0  
t Critical one-tail 1.7  
P(T<=t) two-tail 0.1  
t Critical two-tail 2.0   
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3. Time Period 

  Peak Non-Peak 
Mean -20.2 2.1 
Variance 1682 441.1 
Observations 121 34 
Hypothesized Mean Difference 0.0  
df 108  
t Stat -4.3  
P(T<=t) one-tail 0.0  
t Critical one-tail 1.7  
P(T<=t) two-tail 0.0  
t Critical two-tail 2.0   

 

4. Examples of Location Tests 

I64W   
  MP 0-8 MP 8-16 

Mean -32.0 -11.5 
Variance 2426 1310 
Observations 45.0 34.0 
Hypothesized Mean Difference 0.0  
df 77.0  
t Stat -2.1  
P(T<=t) one-tail 0.0  
t Critical one-tail 1.7  
P(T<=t) two-tail 0.0  
t Critical two-tail 2.0   

 
I64E   

  MP 8-16 MP 16-24 
Mean 5.0 -17.0 
Variance 377.8 895.6 
Observations 10 10 
Hypothesized Mean Difference 0.0  
df 15  
t Stat 1.9  
P(T<=t) one-tail 0.0  
t Critical one-tail 1.8  
P(T<=t) two-tail 0.1  
t Critical two-tail 2.1   
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