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ABSTRACT OF THESIS 

 

 

 

UNDERSTANDING THE DEVELOPMENT OF INFANT FEEDING: 

A SPECTRAL ANALYSIS APPROACH 

 

Feeding problems in preterm neonates stem from complications of early delivery. 
Attainment of independent feeding is a prerequisite for Neonatal Intensive Care 
Unit (NICU) discharges. Some quantitative studies of infant feeding involve 
excessive amounts of time for data processing. Multivariate spectral analysis was 
used to minimize time for investigation of variability in these rhythms. Auto and 
Cross-spectral parameters of the rhythms were correlated with Gestational Age 
(GA), Postmenstrual Age (PMA), Birthweight (BW), Days of Life (DOL), and Time 
Since First Nipple feeding (TSFN). Auto-spectral analysis showed 25.55% 
increase in Bandwidth of suck (bw-su) for a 2-week increase in GA (DOL fixed) 
and 8.99% increase in bw-su for a 10-day increase in DOL (GA fixed). Cross-
spectral analysis showed a decrease of 0.158Hz of Bandwidth of Suck-Swallow 
(bw-SS) for a 2-week increase in GA for GA later than 28 weeks. For GA earlier 
than 28 weeks, peak coherence decreased by 0.774 for a 2-week increase in GA 
(PMA fixed) and decreased by 0.126 for a 2-week increase in PMA (GA fixed). 
The method describes the progression of feeding rhythms through correlations 
with clinical indexes, thus providing clinicians with an understanding of the 
development of infant feeding and helps predict long-term developmental 
outcomes.    
 
Keywords: preterm infants, rhythmic suckle and swallow, neurological 
maturation, developmental outcomes, spectral analysis. 
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GLOSSARY OF TERMS 

1. GA:    Gestational Age  

2. PMA:  Postmenstrual age  

3. DOL:   Day-of-Life  

4. TSFN: Time since first nipple feed 

5. BW :    Birthweight 

6. bw-su : Bandwidth of suck  

7. 50p-su : 50% power of suck 

8. pk-freq-su : Peak frequency of suck 

9. bw-sw : Bandwidth of swallow  

10. 50p-sw : 50% power of swallow 

11. pk-freq-sw : Peak frequency of swallow 

12. bw-SS: Bandwidth of suck-swallow relationship 

13. 50p-SS: 50% power of suck-swallow relationship 

14. pk-freq-SS : Peak frequency of suck-swallow relationship 

15. pk-pha-SS: Peak phase of suck-swallow relationship 

16. max-phase: Maximum phase in bandwidth of suck-swallow relationship 

17. min-phase: Minimum phase in bandwidth of suck-swallow relationship 

18. norm-phase-SS : Normalized phase of suck-swallow relationship 

19. pk-coh-SS: Peak coherence of suck-swallow relationship 

20. avg-coh-SS: Average coherence in bandwidth of suck-swallow 

relationship 
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CHAPTER ONE: INTRODUCTION 

Preterm births are defined as those occurring prior to 37 weeks of 

gestation. Births occurring before 32 weeks are classified as very preterm. While 

most of the morbidity associated with preterm birth occurs among the very 

preterm infants, even late preterm delivery (32-37 weeks) is associated with 

increased risk of poor outcomes. It is in this group of infants that most disorders 

associated with prematurity are observed. This group also accounts for a majority 

of neonatal deaths[1]. Preterm birth rates have increased over the last decade. 

The March of Dimes census showed a substantial increase of 29% in the rate of 

preterm births in the state of Kentucky between 1996 and 2006 [2]. In 2006, 

15.1% of live births babies were born prematurely in the state of Kentucky[2].  

Infants born preterm can have severe physiological problems that stem 

from their immature body systems and low birthweight as well as other 

associated illnesses due to prematurity. Some of the common disorders in these 

infants are Bronchopulmonary dysplasia (BPD) or chronic lung disease 

characterized by the abnormal development of lung tissue and Intraventricular 

Hemorrhage (IVH) characterized by bleeding in the brain’s ventricular system. 

Another disorder common in preterm infants is inefficient feeding. Wang et al in 

2004 found that as much as 27% of late preterm infants (infants born between 32 

and 37 weeks of gestation) had feeding problems versus only 5% of term 

infants[3]. Feeding issues are even more common in the very preterm group.  

Since attainment of efficient feeding is imperative to independent survival, these 
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feeding problems often lead to delayed discharge from the hospital and 

increased cost [3, 4].  

 With increased survival of these preterm infants, there is an increase in 

feeding problems. Consequently, there is a need to expedite the understanding 

of these issues. Understanding feeding and its associated problems may predict 

the developmental outcomes leading to an overall decrease in the duration of 

stay of these patients in the Neonatal Intensive Care Unit (NICU).  

Currently there are very few reliable methods to investigate infant feeding.  

Most researchers have used qualitative investigations to describe the 

morphologies of the rhythms, as well as feeding behaviors of the infants [3, 4].  

Some others have shown stability of these feeding rhythms using quantitative 

analyses, with stress on temporal relationships and statistical correlations 

between these physiological events [5, 6]. These quantitative analyses involve 

manual computations that are labor intensive and time-consuming requiring 

many hours of data processing per study. The analysis method used in the 

present study was based on multivariate spectral analysis that allows us to 

understand the underlying frequencies in these rhythms and the correlations 

between the three rhythms of suck, swallow and respiration.  
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CHAPTER TWO: BACKGROUND 

 

Healthy term infants usually demonstrate efficient feeding skills at birth. 

However, feeding difficulties or disorders are common among preterm infants. 

Feeding is the most complex activity an infant must accomplish and is crucial to 

the independent survival of the newborn. It requires an efficient coordination of 

the three rhythms of feeding i.e. suckle, swallow and respiration[7, 8]. Inefficient 

coordination of these rhythms may lead to insufficient ventilation during the feed 

and improper nutrition and growth as a long term consequence [5].  

It has been shown that the near-term fetus can swallow 450 ml/day[9]. In a 

study by Humphrey et al, the fetus was shown to swallow amniotic fluid at 12 

weeks Postmenstrual age (PMA) [10]. Newborn infant feeding skills are known to 

be almost entirely reflexive and under the control of the brain stem[11]. Rhythm 

regulators situated in the brain stem control the regulation of feeding rhythms. 

These are nucleus solitarius, nucleus ambiguous and nucleus hypoglossus, and 

the nucleus trigeminalis [7, 12-14]. Feeding is an important milestone in neural 

development. Feeding problems in the early stages have been correlated with a 

number of disorders especially neurological deficits such as cerebral palsy[15]. 

This suggests that efficient coordination of the rhythms may indicate central 

nervous system maturity. Thus, the study of preterm infant feeding provides an 

insight into the neurological development and maturation of the infant.  

There are various therapies available for treatment of feeding disorders if 

identified early in the infants. Speech therapists develop programs with feeding 
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strategies once such problems have been identified. Previous studies have 

included qualitative investigations, which focus on morphologies of the rhythms 

as well as feeding behaviors; for example, Lau et al have described and 

differentiated the components of suck and developed a unique ‘hyoid drum’ for 

non-invasive measurements of swallows. They showed that the suck was 

constituted by a suction component (the negative intraoral pressure) and an 

expression component (the positive pressure on the nipple to squeeze the nipple 

between the upper palate and the tongue for milk flow)[16]. They have also 

proposed the different stages of sucking by an infant to aid clinicians in 

understanding the initiation and development of oral feeding in an infant with 

feeding difficulty[17]. These stages were classified as a progression of the 

suction and expression components with an increase in amplitude of suction with 

time and duration of the suck bursts. Gewolb et al have approached these issues 

through quantitative analyses, with stress on temporal relationships and 

statistical correlations between the physiological events [5, 6, 18]. They have 

described the ontogeny of these rhythms and the progression of the suck-

swallow dyad leading to achievement of an efficient coordination[5]. Coefficient of 

variation (COV) for pairs of rhythms (suck-suck, swallow-swallow, and suck-

swallow) were calculated and used as a measure of successful coordination and 

stability in these rhythms. They demonstrate that the development of these 

rhythms is a function of PMA implying that the basis of successful feeding lies in 

the innate neurological maturity of the infants.    
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In 2002, Qureshi et al studied the changes in the suckle rhythm during the 

first month of life of the infants. The group also introduced another method using 

X-Y plots to check for stability of the rhythms[6]. Koenig, Davies and Thach in 

1990 have elegantly shown the coordination of these rhythms through temporal 

measures of the onset of each of the rhythms. They have clearly delineated the 

relationships between suck-swallow, suck-breath and swallow-breath and 

illustrated the interplay of respiration in the coordination of the rhythms [19, 20].  

Gewolb et al, in their quantitative analyses approach, define ‘runs’ as an 

aggregation or occurrence of ≥ 3 events with inter-event intervals of ≤2 seconds. 

Sucks and swallows in runs were analyzed and their peak-to-peak intervals were 

computed. Further, the COV was calculated for the suck-suck and swallow- 

swallow interval. The method required an investigator to manually inspect each 

rhythmic waveform, and then to subjectively identify a significant deflection, and 

manually input the data into a spreadsheet. A labor-intensive method such as 

this can require several days of data processing for just one feeding study. Thus, 

new methods that would automate this computation are desired.  

The present project was designed to overcome these inadequacies with 

digital signal processing techniques. Spectral analysis provides a novel approach 

to these investigations. It enables us to describe the fundamental frequencies 

associated with the feeding rhythms. Auto-spectral estimates give us an idea of 

variability in the individual rhythms. Cross-spectral analysis help in describing 

cross correlations between these rhythms and their interactions through phase 

relationships. The results of these analyses are presented in two parts. First, 
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auto-spectral analysis of suck and swallow rhythms was performed and the 

correlations of the spectral measures with demographic and maturational data 

from the infants were investigated. Then, an extension of the procedure was 

adopted using cross-spectral and coherence analyses to investigate the 

relationships between the spectral parameters and the maturational indices.  
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CHAPTER THREE: METHOD AND ANALYSES 

 

As part of an ongoing study of infant feeding, we collected data from a 

group of twenty-five low risk preterm infants. Low risk was defined as having no 

IVH, and not likely to develop BPD, and other congenital anomalies.  

 All the study participants were selected from the Neonatal Intensive Care 

Unit at the Kentucky Children’s Hospital. The study protocol complied with all 

HIPPAA and IRB regulations. Informed parental consent was obtained for all 

infant participants. The infants were prepared approximately half hour before 

their regular time of feeding. An illustration of the set up is shown in Figures 1. 

Two acoustic devices, a microphone and an accelerometer were fixed to either 

side of the neck of the infant with double-sided tape. Outputs from these devices 

were routed into the data acquisition device through a mixing board (Yamaha 

MG10/2, Yamaha Corp, Indonesia). The acoustic devices were used for 

measurements of swallow sounds as a part of data collection for another project 

that is focused on cervical auscultation. ECG signals were acquired with a 

cardio-respiratory monitor (SpaceLabs Model 90623A, SpaceLabs Inc., 

Redmond WA). Oxygen saturation was measured with a standard Pulse 

Oximeter (Masimo Radical, Masimo Corporation, Irvine, CA). A 5F naso-

pharyngeal catheter was connected through a pressure transducer (Transpac IV 

Neonatal/Pediatric Pressure Monitoring Kit, Hospira Inc., Lake Forrest IL) to a 

nipple and was cut such that the catheter tip was flush with the tip of the nipple. 

This was used to measure suckle pressure. A second catheter was placed such 
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that the tip was in the infant’s pharynx via the nostrils and connected to a 

pressure transducer to measure swallow pressure. Nasal airflow was measured 

with a small thermistor bead (Omega 44030, Omega Engineering Inc., Stamford, 

CT) in a custom assembly placed at the opening of the nares. Respiratory effort 

was measured with a thoracic chest band (Pneumotrace II, Model 1132, UFI, 

Morro Bay, CA).  

 With the above stated eight channels of recording in place, a 1-minute 

session of non-nutritive suck (data from which are not used in this project) was 

performed followed by a session of nutritive feeding for 15 minutes. The infants 

were studied once a week from the onset of feeding at their normal feeding time 

until discharge. They were given the amount of breast milk or infant formula that 

was prescribed by the clinical caregivers. The entire session with all biometric 

and cervical auscultation data was collected and displayed as a linear graph 

using Windaq Data Acquisition System and Waveform Browser (DATAQ 

Instruments, Akron OH.). A sample recording in Windaq Acquisition System is 

shown in Figure 3, which displays about 75 seconds of recorded data. The first 

two channels are the accelerometer and microphone data respectively. ECG is 

displayed as the third channel. Sucks and swallows are seen as deflections in 

the nipple and pharyngeal recordings on the fourth and fifth channel respectively. 

Respiratory data measured by the nasal thermistor and the thoracic band are 

also noted as deflections for outward and inward movements of airflow and the 

chest motion shown in channels 6 and 7. Pulse Oximeter recording for the baby’s 

oxygen saturation is shown in channel 8. Only the suck and swallow recordings 
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from channel 4 and 5 were used for the following analyses. Figure 2 shows the 

setup during the course of a feeding study. 
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Figure 1: Schematic of the instrumentation setup. 
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Figure 2: Photograph of the instrumentation during a feeding episode.   
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Figure 3: Sample data recording on Windaq Acquisition Instruments. 
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SECTION A: AUTO SPECTRAL ANALYSIS 

 

Fifty-one recordings from twenty-one low-risk preterm infants were used 

for this analysis. The demographic data for these infants is shown in Table 1.  

 

Table 1: Demographics of subject population for Auto spectral analysis. 

 

These demographic measures were used as independent variables in our 

statistical analyses. Gestational Age (GA) is defined as the total number of 

weeks of pregnancy completed at the time of delivery. Postmenstrual age (PMA) 

is defined as the total number of weeks since the mother’s last menstrual period. 

Day-of-Life (DOL) refers to the number of days since the baby’s birth at the time 

of the study. Time since first nipple feed (TSFN) refers to the number of days 

since the baby started nipple feeding and is a measure of learning or practice. 

Birthweight (BW) was the baby’s weight at the time of delivery. Figure 3 shows 

 Mean Std. Dev. 

Birth weight (BWT) grams 1030 342 

Gestational Age (GA) weeks 28.85  2 

Post-Menstrual Age (PMA) weeks 35.28 2.28 

Day of Life (DOL) days 49 20 

Time Since First Nipple (TSFN) days 18 11 
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aggregation of suck and swallow with apnea in between periods of no feeding 

activity (denoted by a flat line). These aggregations of sucks and swallows are 

referred to as ‘runs’ and are defined as suck or swallow deflections occurring in 

groups of no less than 3 events separated by not more than 2 seconds. For our 

auto-spectral analysis, we intended to look at the periods of active feeding and 

thus these runs constitute our period of interest. The suck and swallow data 

channels were acquired at 500 samples per second using Windaq Pro+ 

Acquisition device and recorded in the Windaq Waveform Browser. The data was 

then exported from the Windaq Waveform Browser into MATLAB v7.5 (The 

Mathworks Inc. Natick, MA).  A program was written to identify the runs and 

excise the periods of inactivity between them. The concurrent period of swallows 

were also extracted. These runs were then spliced together to form a continuous 

waveform of suckle activity. Similarly, the corresponding segments of swallows 

that were extracted were also spliced together. Figure 4 illustrates this process. 

Section A represents the suck and swallow channels from Figure 3. Section B 

shows the period of runs with the inactivity period excised. Section C shows the 

spliced suck waveform with the corresponding swallow segments.  
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Figure 4: Process of data splicing for Auto-spectral analysis. 
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Auto-spectra were estimated for these waveforms of suck and swallow in 

MATLAB using built in functions. The calibrated data from Windaq was imported 

into MATLAB. The data were divided into 10-second segments and the mean of 

each segment was subtracted from the segment (i.e. zero meaning). The 

MATLAB function computed the spectra using the Welch’s method of estimation 

with no overlap. A Hanning window of 10-second duration (5000 points) was 

used for windowing the data prior to spectral estimation. The length of the FFT 

used was 8192 (power of 2 greater than 5000), thus providing a frequency 

resolution of 0.061Hz. The following spectral parameters, frequency (pk freq), 

amplitude, bandwidth containing 50% power (bw-su), and 50% power (50p-su) 

were computed. An illustration of these computations is shown in Figure 5. These 

parameters were correlated with the demographic factors such as Gestational 

Age (GA) Postmenstrual Age (PMA), Birth Weight (BWT), Days of Life (DOL), 

and Time Since First Nipple feeding (TSFN).  
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Figure 5: Auto spectrum of suck data obtained during a trial from an infant with 

measured parameters. 
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 PROC MIXED in Version 9.1 of SAS (SAS Institute Cary, NC) was used to fit 

linear mixed models with random effects capturing the correlations among 

repeated measurements on the same babies. Natural logarithm transformed data 

were used in order to mitigate the effects of outlying spectral values before fitting 

the statistical model. Stepwise-backward elimination was performed on the 

dependent spectral variable against every individual independent demographic 

variable. Stepwise-backward elimination was performed by fitting a model of the 

dependent variable against all the independent variables. The t-statistic or the F-

statistic was computed and the corresponding p-value for each of the 

independent variables was calculated. Since the significance threshold of α=0.05 

was used, the p-values of each independent variable was compared for 

significance. The variable with the highest non-significant p-value was eliminated 

and the process was repeated. This backward elimination was carried out until all 

remaining independent variables, if any, had p-values less than 0.05. These 

independent variables, if any, were deemed significant predictors of the 

dependent variable. The first set of results was obtained for the cohort as a 

whole. The next set of results was obtained based on stratifications by 

gestational age in order to identify changes in spectral parameters. 

 

 

 

 

 



 19

SECTION B: CROSS-SPECTRAL AND COHERENCE ANALYSES 

 

These analyses are an extension of the analysis discussed in Section A. 

In this analysis, cross-spectra and coherence were computed on the complete 

nutritive recording of the infants using a program in MATLAB. The calibrated data 

from Windaq was imported into MATLAB. The data were divided into 10-second 

segments and the mean of each segment was subtracted from the segment (i.e. 

zero meaning). The MATLAB function estimated the cross spectra of these data 

using the Welch’s method of estimation with no overlap. A Hanning window of 

10-second duration (5000 points) was used for windowing the data prior to 

spectral estimation. The frequency resolution was calculated as mentioned 

earlier to be 0.061Hz (i.e. sampling frequency / NFFT). This analysis was 

performed on the low risk infants for suck-swallow (SS), swallow-respiration (SR) 

and suck-respiration (SkR) interactions. Data were collected from 23 infants over 

69 recordings. The demographics for this group of infants are shown in Table 2 

below. 
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Table 2: Demographics of subject population for Cross-spectral and Coherence 

analysis. 

 

Calculations for spectral parameters such as peak freq (pk –freq), 

bandwidth containing 50% power (bw), 50% power (50p), peak phase (pk-pha), 

normalized phase (norm-pha) and peak coherence (pk-coh) and mean 

coherence in the bandwidth (avg-coh) were noted for the all the three paired 

interactions. The first three parameters were measured similarly from the 

magnitude spectrum as mentioned in previous section. From the phase 

spectrum, we measure the phase value corresponding to the peak of the 

magnitude spectrum and call it peak phase. Phase measurements in the 

bandwidth were also studied. Since phase values maybe positive or negative, 

averaging phase in the bandwidth can lead to errors in computation. We use 

  

Mean 

 

Std Dev 

 

Birthweight (BW) gms 

 

1060 

 

329 

 

Gestational Age (GA) weeks 

 

28.85 

 

2 

 

Post-Menstrual Age (PMA) weeks 

 

35.14 

 

2.28 

 

Days of Life (DOL) days 

 

47 

 

20 

 

Time Since First Nipple (TSFN) days 

 

17 

 

12 
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normalized phase as a measure of phase variation in the bandwidth instead. 

Normalized phase (norm phase) is defined as the percentage change of phase in 

the bandwidth. It is computed as  

Norm phase = maximum phase in bw – minimum phase in bw      X 100% 

                                                   Peak phase   

High values of normalized phase indicate a high variation in phase within the 

bandwidth. Coherence provides a non-dimensional measure of correlation 

between the two time series as a function of frequency. Figure 6 below illustrates 

the measurements of the spectral parameters discussed above.  
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Figure 6: Cross-spectrum and coherence between suck and swallow rhythms 

obtained from an infant with measured parameters. 
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Coherence is given by the following formula  

    χ2 =         | Pxy (f) |
2    

                                                        Px (f) . Py (f) 

Where Pxy (f) is the cross-spectrum of the two time series  

           Px (f) is the auto-spectrum of the first time series  

           Py (f) is the auto-spectrum of the second time series [21] 

 A large value of coherence indicates correlation between the two time series at 

the corresponding frequency (f).  A high value of coherence may occur in two 

cases. First, if Pxy (f) is truly large, coherence will be high. Next, if Pxy (f) is not a 

large value and the individual auto spectra Px (f) and Py (f) are very low, the 

reciprocal would cause a high coherence. To evaluate true coherence, we use 

95% confidence intervals on zero coherency. This test is based on the 

assumption that both time series are uncorrelated and hence their theoretical 

coherence is zero[21]. Upon calculating the degrees of freedom for the time 

series, theoretical coherence maybe computed using the Fisher or F-distribution. 

If the coherence estimated between the two time series at the peak is greater 

than this theoretical coherence, then it signifies true coherence and therefore true 

cross correlation [21]. The equation for the above test is given by 

          (ν - 2) χest
2(f)          ≥     F2, ν-2,α 

                                       2 (1 - χest
2(f))    

Where ν is the degrees of freedom for the Hanning window, χest
2(f) is the squared 

coherency computed at frequency f, F2, ν-2,α
 is the F- value for the given ν and 

α=0.05[21].  
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Twenty-two infants over fifty-one recordings (about 70% of the total 

recordings) passed the test for zero coherency and showed true coherence. With 

swallow-breath and suck-breath interactions, about fifteen percent of the total 

recordings showed true coherencies. As such, these were not considered large 

enough for further statistical analysis.  

Similar statistical analysis as mentioned earlier using linear mixed 

modeling with random effects (PROC MIXED) was performed on this data as 

well. In this case, the spectral parameters were not logarithmically transformed.  

Logarithms of negative phase values yield complex values. The results of the 

mixed modeling are established for real-valued dependent variables. As such, 

such a transformation will not be able to provide a method for interpretation. 

Stepwise-backward elimination as mentioned in the earlier section was 

performed similarly on the dependent variables against every individual 

independent spectral variable. The results of the statistical analysis were 

obtained at a significance threshold of α=0.05. The first set of results was 

obtained for the cohort as a whole. We then employed stratification by 

gestational age to help identify corresponding changes in spectral parameters. 
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CHAPTER FOUR: RESULTS 

 

SECTION A: AUTO-SPECTRAL ANALYSIS 

Initially we performed statistical analysis for the cohort as a whole.          

The first statistical model was fit for the dependent variable natural logarithm of 

bandwidth-suck (ln (bw-su)) and the independent variables GA, PMA, BW, DOL 

and TSFN. After stepwise backward elimination, GA and DOL were the only 

significant predictors of bw-su (GA: slope =0.1138 p=0.0072; DOL: slope= 0.008, 

p =0.0367). The second model was fit for ln (50p-su) with the same independent 

variables. DOL was a significant predictor (slope=0.007 p-value= 0.0028).  

The process was repeated for the spectral parameters for swallow. 

Models were fit between the ln (bw-sw), ln (50-p), ln (pk freq-sw) and the same 

independent variables. DOL was negatively associated with the ln (bw-sw)      

(slope= -0.007, p = 0.0461) and TSFN were significant in predicting the ln (bw-

sw) (slope = 0.017, p=0.01). 

Based on the premise that older infants at higher GA are expected to be 

more neurologically developed, we performed the similar statistics with GA 

stratification. Table 3 shows the statistical results obtained. We found that for this 

cohort, the median GA was 28 weeks and we used this arbitrarily as the point of 

stratification for this analysis.  Most of the results showed significant changes in 

Bandwidth, 50% power, and peak frequency for babies born before 28 weeks. 

For babies born after 28 weeks there was only one significant result.  
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Table 3: Results of Auto-spectral analysis for GA before 28 weeks. 

 

 

 

 

 

 

 

 

 

 

 

       

  

 

 

m: slope, p: p-value 

The only significant association for babies born after 28 weeks is for 50p –su with 

PMA (slope = 0.07399, p = 0.0044)  

  

With GA stratification in the statistical model, we fit a model between the 

dependent variable (bw-su) and the same independent variables. After stepwise 

backward elimination for GA less than 28 weeks, PMA was found to be a 

significant predictor of the bw-su and was associated positively (slope = 0.212, p 

= 0.0163). We fit a second model between 50p-su and all the independent 

variable. For infants with GA greater than 28 weeks, PMA showed a positive 

association with 50p-su (slope=0.073 p = 0.0044). The third model was fit 

between the pk freq-su and the independent variables. For GA less than 28 

ln(x) BW PMA DOL TSFN 

bw-su NS 
m =0.2126 
 p = 0.0163 

NS NS 

50p-su NS NS NS NS 

pk freq-su NS 
m = -0.351   
p = 0.0121 

m = -0.017   
p = 0.0243 

m = 0.075   
p = 0.0002 

bw-sw 
m = -0.001  
   p= 0.0343 

m = 0.181    
p = 0.04 

m = -0.021   
p = 0.02 

NS 

50p-sw NS NS 
m = -0.035 
p = 0.0092 

NS 

pk freq-sw NS NS NS NS 
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weeks, there were three significant predictors PMA, DOL and TSFN. PMA and 

DOL showed negative associations i.e. decrease in the dependent variable with 

increase in independent variable (PMA: slope = -0.351, p = 0.0121; DOL: slope = 

-0.017 p=0.0243). TSFN showed a positive association i.e. increase in the 

dependent variable with increase in the independent variable (slope=0.075,      

p= 0.0002).  

The model fit for the dependent variable bw-sw showed significant 

associations with the predictors PMA, DOL, BW. There was a positive 

association between PMA and bw-sw (slope = 0.181, p = 0.04) for GA less than 

28 weeks. DOL showed negative association with bw-sw (slope= -0.02125 p 

=0.02). BW showed negative association with bw-sw as well (slope= -0.00101 p 

= 0.0343). The last model was fit for the dependent variable 50p-sw and the 

independent variables for GA less than 28 weeks. DOL was the only significant 

predictor and had a negative association with 50p-sw. (slope= -0.03528 p = 

0.0092). 

Natural logarithm transformations of the dependent variables cause the 

slopes of the statistical computations to be very small. To reveal their true 

significance, we converted them back to their original scale. For the first 

statistical test using the whole group, if we increase GA by 2 weeks while holding 

DOL fixed, the typical increase in the bw-su is an estimated 25.55%. If we 

increase DOL by 10 days while holding GA fixed, the typical increase in the bw-

su is an estimated 8.99%. If we increase DOL by 10 days, the typical increase in 

the 50p-su is an estimated 7.55%. If we increase DOL by 10 days while holding 
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TSFN fixed, the typical decrease in bw-sw is an estimated 7.31%. If we increase 

TSFN by 10 days while holding DOL fixed, the typical increase in the bw-sw is an 

estimated 19.17%. 

For Gestational Age less than 28 weeks, a 1-week increase in PMA 

showed a corresponding 23.68% change in bw-su. There was no change in bw-

su with respect to any maturational index for GA greater than 28 weeks. 

However, for infants in this group, the 50p-su showed significant a change with 

increase in PMA. A 1-week increase in PMA showed a corresponding 7.67% 

increase in 50p-su. For GA less than 28 weeks, PMA, DOL and TSFN correlate 

with the peak frequency of suck. A 1-week increase in PMA, keeping the other 

two parameters constant, shows a corresponding decrease of 29.6% in the 

frequency of suck. An increase in 10 days of DOL, keeping the PMA and TSFN 

constant shows a corresponding decrease of 16.33%. An increase in 10 days of 

TSFN for the same PMA and DOL shows an increase in the peak frequency by a 

factor of 113.5%.  

The results also showed significance for parameters measured from the 

swallow rhythm. For Gestational age less than 28 weeks, bandwidth of swallow 

showed significant changes with respect to changes in PMA, DOL, and BWT. A 

1-week increase in PMA, keeping the other two parameters of DOL and BWT the 

same, showed a corresponding increase of 19.84% in the bandwidth of swallow. 

With BWT and PMA constant, an increase in 10 days of DOL showed a 

corresponding decrease of 19.14% in the bandwidth of swallow. Keeping PMA 

and DOL constant, an increase of 50 grams in BWT gives a corresponding 
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decrease of 4.92% in the bandwidth. For Gestational age less than 28 weeks, 

50% power of swallow shows a dependence on the DOL. A 10-day increase in 

DOL shows a corresponding negative change of 29.72% in the 50% power of 

swallow. All other variables of the spectral analysis showed no relationships with 

the maturational indexes with the application of the GA stratification.  
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SECTION B: CROSS-SPECTRAL ANALYSIS 

 

Similar statistical analysis was performed for the cross-spectral analysis. 

We used PROC MIXED with random effects in SAS. Logarithmic transformation 

was not used in this analysis since some values of phase are negative and 

hence the transformations would introduce difficulty in both computation and 

interpretation. Thus, all parameters were used as absolute values. Table 4 below 

shows the results obtained upon considering the cohort as a whole.  

Table 4: Results of Cross-spectral & Coherence analysis for the whole cohort.  

  

BW 

 

GA 

 

PMA 

 

DOL 

 

TSFN 

 

Bw-SS 

 

NS 

 

NS 

 

m=0.03133, 

p= 0.0099 

 

NS 

 

NS 

 

Pk-pha-

SS 

 

 

m=0.1853, 

p= 0.0377 

 

NS 

 

NS 

 

NS 

 

NS 

m: slope, p: p-value 

The first model was fit between the dependent variable bandwidth (bw-SS) 

with all the independent variables. The bw-SS was found to be dependent 

significantly with PMA (slope=0.031, p= 0.0099). Another model was fit between 

peak phase (pk-phase-SS) and the independent variables. A positive association 



 31

was found between pk-phase-SS and birthweight (BW) (slope=0.185, p= 

0.0377).  

The process was then repeated with stratification using the median GA 

(28 weeks) of the group. We found significant results for both GA greater than 

and GA less than 28 weeks. For GA later than 28 weeks, bw-SS had a significant 

negative association with GA (slope=-0.079, p=0.0454). In addition, 50-p-SS was 

found to have a small but significant association with TSFN (slope=0.006, 

p=0.019). The results are shown in Table 5. 

Table 5: Results of Cross-spectral & Coherence analysis for GA after 28 weeks. 

m: slope, p: p-value 

For GA earlier than 28 weeks, 50p-SS was found to have two significant 

predictors in GA (slope=-0.518, p=<0.0001) and DOL (slope=-0.008, 

p=0.0036).Pk-freq-SS showed a significant dependence on BW (slope=0.0007, 

p=0.0004). Normalized phase (norm phase-SS) was found to have a significant 

positive association with GA (slope=100.11, p=0.0002). The peak coherence was 

also found to have a negative association with both GA (slope=-0.387, p=0.0005) 

 

 

 

BW 

 

GA 

 

 

PMA 

 

DOL 

 

 

TSFN 

 

Bw-SS 

 

NS 

 

m=-0.079, 

p=0.0454 

 

NS 

 

NS 

 

NS 

 

50p-SS 

 

 

NS 

 

NS 

 

NS 

 

NS 

 

m=0.006, 

p=0.019 
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and PMA (slope=-0.063, p= 0.016) and the average coherence showed negative 

association with both GA (slope=-0.487, p=<0.0001) and DOL (slope=-0.008, 

p=0.0076). The results are shown in Table 6. 

Table 6: Results of Cross-spectral & Coherence analysis for GA before 28 weeks 

m: slope, p: p-value 

 

 

 

BW 

 

GA 

 

PMA 

 

DOL 

 

TSFN 

 

Bw-SS 

 

NS 

 

NS 

 

NS 

 

NS 

 

NS 

 

50p –SS 

 

 

NS 

 

m=-0.518, 

p=<0.0001 

 

NS 

 

m=-0.008 

p=0.0036 

 

 

NS 

 

Pk-freq-

SS 

 

m=0.0007, 

p=0.0004 

 

NS 

 

NS 

 

NS 

 

NS 

 

Pk-pha-

SS 

 

NS 

 

NS 

 

NS 

 

NS 

 

NS 

 

Norm-

pha-SS 

 

NS 

 

m=100.11, 

p=0.0002 

 

NS 

 

NS 

 

NS 

 

Pk-coh-

SS 

 

NS 

 

m=-0.387, 

p=0.0005 

 

m=-0.063,  

p= 0.016 

 

NS 

 

NS 

 

Avg-

coh-SS 

 

NS 

 

m=-0.487, 

p=<0.0001 

 

NS 

 

m=-0.008,  

p=0.0076 

 

NS 
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Without a logarithmic transformation of the dependent variable, the 

interpretations of regression coefficient estimates are cast in terms of absolute 

changes. Thus for the results with the whole cohort, we have a 2-week increase 

in PMA causing an increase of 0.0626 Hz in the bw-SS and a 10-g increase in 

BW correlates with an increase of 1.85 degrees in the peak phase-SS. 

For GA less than 28 weeks, there is a decrease of 0.51V2Hz-1 in 50p-SS 

for a 1-week increase in GA keeping DOL fixed. With GA fixed, the 50p-SS also 

decreases by 0.081V2Hz-1 for a 10-day increase in DOL. Peak-freq-SS showed 

an increase of 0.078Hz for a 100g increase in BW. Normalized phase showed an 

increase of by a factor of 100% for a 1-week increase in GA. The peak 

coherence showed a decrease of 0.387 for increase in 1 week of GA keeping 

PMA fixed and a decrease of 0.063 for a 1-week increase in PMA keeping GA 

fixed. The average coherence also showed a decrease with both GA and DOL. 

Keeping DOL fixed, for a 1-week increase in GA, the average coherence 

decreased by 0.48 and keeping GA fixed, the average coherence decreased by a 

very small factor of 0.08 for a 10-day increase in DOL. 
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CHAPTER FIVE: DISCUSSION 

 

Achievement of effective feeding requires the coordination of the rhythms 

of suckle, swallow and respiration. This is considered the most complex skill in 

the life of a newborn infant. To achieve independent survival, an infant must be 

proficient in coordinating these rhythms. Feeding difficulties are prevalent 

amongst preterm infants [3, 4, 22, 23]. Since the regulators of the feeding 

rhythms are located in the brainstem, the study of the development of feeding 

may provide insight into function of the brainstem. Consequently, poor feeding is 

often thought to be one of the first signs of neurological damage[24]. There is 

immense pressure on health care providers to limit costs and discharge patients 

earlier [25]. Clinicians are trying to understand infant feeding patterns so that 

they can design better interventions to improve outcomes, decrease length-of-

stay in the hospital for preterm infants and possibly predict long-term 

developmental outcomes.  

Gewolb et al, have investigated the ontogeny of feeding rhythms with 

linear graphic representations through a quantitative approach. They have also 

studied how various disease states of preterm infants affect their development in 

cross-sectional studies [5, 6, 18, 26-28].  The approach for their studies involved 

labor-intensive techniques. The analyses used by them detected peaks in the 

suck and swallow data. The method required scrolling through the entire data 

channel of interest for peaks of the events (i.e. sucks and swallows).  With this 

study designed to record 15 minutes of a single feeding episode, and two 
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channels of interest, this process of manual peak detection would be very 

cumbersome. In addition to this difficulty, 25 infants were enrolled in this Low risk 

category with 175 infants to be enrolled in the entire project. Thus with multiple 

studies, on multiple subjects, the previous method would be inefficient. Our aim 

in this project was to introduce multivariate spectral analysis as an effective tool 

to understand these rhythms and their interactions. Spectral analysis is a 

technique that is used to study variability in the waveforms. The auto-spectral 

measures used in the analysis were peak frequency (pk-freq), area under the 

curve containing 50% power (50p) and bandwidth containing the 50% power 

(bw). The x-coordinate (frequency axis) corresponding to the peak depicts the 

most dominant frequency contained in the signal and is defined as the peak 

frequency (pk-freq). It is a measure of the rate of occurrence of the events (i.e. 

sucks and swallows). The computation of area under the curve containing 50% 

power is an extension of the concept of a spectral edge frequency. Spectral edge 

frequency is a measure used in signal processing to indicate the amount of 

power (usually in %) contained in the spectrum below a certain frequency ‘x’[29]. 

In our case, we modified it to define the middle 50% of the spectrum obtained 

from the power spectral density of the suck or swallow signal. The frequency 

band or bandwidth (bw) containing this 50% power was used as a measure of 

variability. The choice of 50% was arbitrary. An increased bandwidth shows 

increased variability and vice versa.  

Taking the cohort as whole with the auto-spectral analysis, GA and DOL 

were positively associated with bw-su, indicating that older babies had more 
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variability in their suckle rhythm. On stratifying the data by GA less than or equal 

to 28 weeks, only PMA was positively associated with bw-su. This seems 

intuitive, as GA+ (DOL/7) =PMA. However, the positive association between bw-

su and PMA indicates that there is increased variability in the suck rhythm with 

increasing age of the infant. This is in contrast to the previous works that have 

shown decreasing variability in the suckle feeding rhythm with advancing age. 

The results for bw-sw bring in further complexity to our interpretations. In this 

case, TSFN and DOL have opposing effects on the bw-sw. DOL is an index of 

the maturation and increase in DOL shows lesser variability. On the other hand, 

TSFN, which is used as an index of the learning, shows an increase in variability. 

GA stratification showed that bw-sw could be predicted by changes in PMA, DOL 

and BWT. There is increasing rhythm variability with increase in PMA but a 

decrease in variability with increases in DOL and BWT. Infants born at a higher 

birthweight have lesser variability or increased stability in their swallow rhythm. 

 For GA less than 28 weeks, we had significant changes in peak 

frequency measures of suck. Three factors, PMA, DOL and TSFN play a 

combined role in predicting the behavior of peak frequency. Increases in PMA 

and DOL show decreases in peak frequency. The suck frequency increases with 

increasing TSFN. This is a significant observation because contrasting changes 

with these three predictors shows that the maturational indices of PMA and DOL 

control the suck rate by decreasing it whereas, the learning index of TSFN 

apparently increases it.  
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The next step was to investigate the cross-spectra and coherence 

between the rhythms for a more comprehensive idea of the phase relationships 

between the rhythms. The results of the cross-spectral and coherence analysis 

when the cohort was considered as a whole also showed that the bandwidth of 

the suck-swallow relationship (bw-SS) varied positively with PMA, indicating that 

there is increased variation with increase in age. An interesting point to note is 

that when the cohort was stratified with GA, for GA greater than 28 weeks, bw-

SS showed decreased variability with increase in GA. This clearly shows that the 

suck-swallow interaction achieves stability with increasing age.   

Peak-phase (pk-pha-SS) showed positive correlation with birthweight 

(BW) for the whole group of infants. For a 10-gram increase in BW, we find that 

the phase-shift between the two rhythms of suck and swallow increases by 1.85 

degrees. In other words, the lag between the suck and swallow rhythms 

increases with birthweight.   

For GA earlier than 28 weeks, 50p-SS showed a decrease with increasing 

GA and DOL showing that the suction amplitude maybe significantly lower at 

early GA. The pk-freq-SS also showed a small but significant increase with 

corresponding increases in BW. The normalized phase showed a very high 

increase with increased GA earlier than 28 weeks suggesting a large variation of 

phase in the bandwidth. There was no significant relationship between them for 

GA later than 28 weeks.  

The peak coherence of suck swallow (pk-coh-SS) was shown to decrease 

with GA and PMA for GA earlier than 28 weeks. The average coherence also 
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decreased with GA and DOL. This may be due to the fact that for an earlier GA, 

the rhythms of suck and swallow are less rhythmic and is consistent with 

previous findings[5].  

We have presented a novel method of analyses for the study of infant   feeding. 

In our effort to improve the data analysis process, we investigated the differences 

between the maturational components of infant feeding and contributions to the 

development of feeding behaviors from learning.  PMA and GA are measures of 

maturation.  BW is usually proportional to GA. TSFN and DOL are both 

measures of the baby’s opportunities to practice or learn to feed. The results of 

the auto-spectral analysis shows a few differences when compared to the cross-

spectral analysis. The most significant difference was in the bandwidth 

measurements. The difference could be because the auto-spectra were analyzed 

for runs and the cross-spectra were not. The bandwidth results of the auto-

spectral analysis are in contrast with those in literature, whereas the cross-

spectral result for bandwidth showed consistency with those in literature. The 

results of this study show that the maturational and the learning theories jointly 

contribute to the development of infant feeding. Neither of the theories may be 

solely responsible for the development of these skills. Our method uses 

multivariate spectral analysis as a quantitative approach to measure the 

characteristics of the rhythms. The method describes the progression of feeding 

rhythms through correlations with clinical indexes, thus providing clinicians with 

an understanding of the development of infant feeding, to help decrease length-

of-stay and possibly predict long-term developmental outcomes. Many studies of 
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infant feeding have used maturational indexes such as GA, PMA, and BW as 

comparable indices. Using indexes such as DOL and TSFN, gives us a slightly 

wider perspective with regard to the indexes of learning. Most of our results show 

that more than one index is a predictor of the measured spectral parameter. 

We have thus provided a basis for future studies to consider both aspects 

of maturation and learning. Since we have investigated only Low-risk infants in 

this study, we may use the results as a standard to compare with those from 

infants with other pathological conditions.     
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APPENDIX  

Auto Spectrum of Suck 
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Figure A1:  Example of Auto Spectrum of suckle data obtained during a trial in a infant (GA>28 

weeks). 

Auto Spectrum of Swallow 
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Figure A2: Example of Auto spectrum of swallow data obtained during a trial in an infant (GA> 28 

weeks). 
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Comparison of Auto Spectra of Suck 
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Figure A3:  Comparison of Auto spectra of Suck between one infant with GA > 28 weeks and one 

infant with GA < 28 weeks.   
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Figure A4:  Comparison of Auto spectra of Swallow between one infant with GA > 28 weeks and 

one infant with GA < 28 weeks.   
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Figure A5: Example of Cross Spectrum of Suck- swallow relationship from data obtained during a 

trial in an infant (GA>28 weeks). 
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Figure A6: Example of Cross Spectrum of Swallow-Respiration relationship from data obtained 

during a trial in an infant (GA>28 weeks). 
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Figure A7: Example of Cross Spectrum of Suck-Respiration relationship from data obtained 

during a trial in an infant (GA>28 weeks). 
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Figure A8: Comparison of Cross spectra of Suck-Swallow relationship between one infant with 

GA > 28 weeks and one infant with GA < 28 weeks.   

0

0.05

0.1

0.15

0.2

0.25

0.3

0.
00

0.
18

0.
37

0.
55

0.
73

0.
92

1.
10

1.
28

1.
46

1.
65

1.
83

2.
01

2.
20

2.
38

2.
56

2.
75

2.
93

Frequency(Hz)

M
ag

ni
tu

de

Magnitude spectrum of Suck-sw allow  of subject
w ith GA<28 w eeks

Magnitude spectrum of Suck Sw allow  of subject
w ith GA>28 w eeks

-200

-100

0

100

200

300

400

500

600

0.
00

0.
18

0.
37

0.
55

0.
73

0.
92

1.
10

1.
28

1.
46

1.
65

1.
83

2.
01

2.
20

2.
38

2.
56

2.
75

2.
93

Frequency(Hz)

P
ha

se
(D

eg
re

es
)

Phase spectrum of Suck-Sw allow  of
subject w ith GA >28w eeks

Phase spectrum of Suck-sw allow  of
subject w ith GA <28 w eeks

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0.
00

0.
18

0.
37

0.
55

0.
73

0.
92

1.
10

1.
28

1.
46

1.
65

1.
83

2.
01

2.
20

2.
38

2.
56

2.
75

2.
93

Frequency(Hz)

C
oh

er
en

ce

Coherence spectrum of Suck-Sw allow  of
subject w ith GA>28 w eeks

Coherence spectrum of Suck- sw allow  of
subject w ith GA <28 w eeks



 46

Auto spectral results: Whole cohort 

Bw-Su vs GA (DOL fixed) 
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Figure A9: Bandwidth of suck varying with GA (DOL fixed). 

All figures are shown with the regression line (in pink) drawn with the respective slope values as mentioned 

in the text. 
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Figure A10: Bandwidth of suck varying with DOL (GA fixed). 
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50p-Su vs DOL
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Figure A11: 50% power of suck varying with DOL. 
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Figure A12: Bandwidth of swallow varying with DOL (TSFN fixed). 
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Bw-Sw vs TSFN (DOL fixed)
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Figure A13: Bandwidth of swallow varying with TSFN (DOL fixed). 
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Stratification using GA: GA earlier than 28 weeks 
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Figure A14: Bandwidth of suck varying with PMA. 
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Figure A15: Peak frequency of suck varying with PMA (DOL, TSFN fixed). 
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Pk-freq-Su vs DOL (PMA,TSFN fixed)
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Figure A16: Peak frequency of suck varying with DOL (PMA, TSFN fixed). 
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Figure A17: Peak frequency of suck varying with TSFN (PMA, DOL fixed). 
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Bw-Sw vs BW (DOL,PMA fixed)
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Figure A18: Bandwidth of swallow varying with BW (DOL, PMA fixed). 
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Figure A19: Bandwidth of swallow varying with DOL (BW, PMA fixed). 
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Bw-Sw vs PMA (BW, DOL fixed)
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Figure A20: Bandwidth of swallow varying with DOL (BW, PMA fixed). 
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Figure A21: 50% power of swallow varying with DOL. 
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Stratification with GA: GA later than 28 weeks 
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Figure A22: 50% power of suck varying with PMA. 
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Cross spectral results: Whole cohort 

Bw-SS vs PMA
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Figure A23: Bandwidth of suck-swallow varying with PMA. 
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Figure A24: Peak phase of suck-swallow varying with BW. 
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Stratification using GA: GA later than 28 weeks 
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Figure A25: Bandwidth of suck-swallow varying with GA. 
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Figure A26: 50% power of suck-swallow varying with TSFN. 
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Stratification with GA: GA earlier than 28 weeks 
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Figure A27: 50% power of suck-swallow varying with GA (DOL fixed). 
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Figure A28: 50% power of suck-swallow varying with DOL (GA fixed). 
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Pk-freq-SS vs BW
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Figure A29: Peak frequency of suck-swallow varying with BW. 
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Figure A30: Normalized phase of suck-swallow varying with GA. 
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Pk- coh-SS vs GA (PMA fixed)
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Figure A31: Peak Coherence of suck-swallow varying with GA (PMA fixed). 
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Figure A32: Peak Coherence of suck-swallow varying with PMA (GA fixed). 
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Avg- Coh-SS vs GA (DOL fixed)
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Figure A33: Average coherence of suck-swallow varying with GA (DOL fixed). 
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 Figure A34: Average Coherence of suck-swallow varying with DOL (GA fixed). 
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