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ABSTRACT OF DISSERTATION

ANALYTICAL STRIP METHOD FOR THIN CYLINDRICAL SHELLS

The Analytical Strip Method (ASM) for the analysis of thin cylindrical shells is presented
in this dissertation. The system of three governing differential equations for the
cylindrical shell are reduced to a single eighth order partial differential equation (PDE) in
terms of a potential function. The PDE is solved as a single series form of the potential
function, from which the displacement and force quantities are determined. The solution
is applicable to isotropic, generally orthotropic, and laminated shells. Cylinders may
have simply supported edges, clamped edges, free edges, or edges supported by isotropic
beams. The cylindrical shell can be stiffened with isotropic beams in the circumferential
direction placed anywhere along the length of the cylinder. The solution method can
handle any combination of point loads, uniform loads, hydrostatic loads, sinusoidal loads,
patch loads, and line loads applied in the radial direction. The results of the ASM are
compared to results from existing analytical solutions and numerical solutions for several
examples; the results for each of the methods were in good agreement. The ASM
overcomes limitations of existing analytical solutions and provides an alternative to
approximate numerical and semi-numerical methods.

KEYWORDS:  Analytical modeling, Thin shells, Laminates, bending-extension
coupling, Composite shells
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CHAPTER 1
INTRODUCTION

1.1 Background

Cylindrical Shells are important structural elements with widespread applications in
various fields such as civil, environmental, mechanical, and aerospace engineering. On a
larger scale they are used as storage tanks, buried conduits, pressure vessels, towers, and
chimneys. On a smaller scale they can be used as functional components of a larger
system. To design these cylindrical shell structures effectively and efficiently it is critical

to understand their behavior.

Unlike plates, whose geometry lies within a plane, shells can have curvature in two
orthogonal directions. Cylindrical shells are a special case with curvature in a single
direction. This curvature complicates the governing equations since there is coupling
between transverse shearing forces and bending moments. To simplify the solution to the
governing equations, it is often necessary to rely on specialized shell theories that
implement simplifications based on assumptions of stress and strain distributions through

the thickness of the shell.

The most basic cylindrical shells are constructed from isotropic materials. The use of
composite materials is also embraced because of the unique benefits they provide.
Composite materials are created by combining two or more constituent materials at the
macroscopic level to produce a product with desirable performance characteristics.
Composite materials may exhibit superior strength and stiffness-to-weight ratio,

corrosion resistance, high fatigue life, and enhanced thermal performance.

The most common use of composites in engineering applications is laminated
composites. These materials are made of individual orthotropic layers, lamina, stacked in
a configuration that optimizes performance for the desired application. The lamina
consists of fibers, either unidirectional or bidirectional, encased in a supporting matrix.

The fiber material, fiber distribution, number of layers, layer thickness, and angular fiber



orientation within each layer are all parameters than may be adjusted to optimize the

performance of the material.

Laminates with a symmetric configuration about the middle surface of the shell behave
orthotropic at the macromechanical level. Symmetric angle-ply laminates exhibit a
coupling between extensional and shearing stresses. Laminates with an antisymmetric
lamination scheme about the middle surface exhibit coupling between extensional and
bending or twisting forces. These coupling effects significantly complicate the behavior

of the laminate and make the development of analytical solutions more difficult.

1.2 Literature Review
1.2.1 Shell Theory

Finding the exact stress and deformational response of a cylindrical shell subjected to
static loading is a complex problem that requires solution of the three-dimensional
elasticity equations. Elasticity solutions may be possible for problems with simplified
loading or boundary conditions, but for anything more complex, the governing elasticity
equations must be reduced to simplify the problem. Shell theories apply assumptions of
stress and strain distribution through the thickness of the shell to reduce the three-

dimensional structure to a two-dimensional plane stress problem.

The most basic shell theory is known as the theory of thin elastic shells, also referred to
as classical shell theory or Love’s first approximation. Thin shell theories are based on

the following, known as Love’s assumptions (Love, 1944)

e Thickness of the shell is small compared with the other dimensions

e Strains and displacements are sufficiently small so that the quantities of second-
and higher-order magnitude in the strain-displacement relations may be neglected
in comparison with the first-order terms

e The transverse normal stress is negligible.



e Normals to the undeformed middle surface remain straight and normal to the

deformed middle surface and undergo no change in length during deformation.

There are a wide number of thin shell theories available, including those formulated by
Donnell (1933, 1938), Mushtari (1938), Love (1988, 1944), Timoshenko and
Woinowsky-Krieger (1959), Reissner (1941), Naghdi and Berry (1964), Vlasov (1944,
1949), Sanders (1959), Byrne (1944), Fliigge (1934, 1962), Goldenveizer (1961), Lur’ye
(1940), and Novozhilov (1964). These theories vary by the level of simplification
implemented in the strain-displacement equations and the governing equilibrium

equations. Leissa (1973) provides an excellent review of available thin shell theories.

Three notable thin shell theories are those developed by Donnell (1933, 1938), Love
(1944), and Naghdi and Berry (1964). Donnell’s theory is analogous to plate theory, as it
neglects the component of transverse shearing force from the equilibrium of forces in the
circumferential direction, and is applicable to shallow shells. This greatly simplifies the
governing differential equations for cylindrical shells, but can lead to inaccuracies as the
ratio of thickness-to-radius and thickness-to-length of the shell increases (Kraus, 1967).
Love’s equations are commonly adopted for thin shell problems because they provide
reliable results while maintaining adequate simplicity to facilitate the solution process. A
disadvantage of the Love’s equations is that it does not produce a symmetric system of
governing differential equations. Shell theory of Naghdi and Berry implement the same
set of assumptions as Love but produce a symmetric set of governing equations (Leissa,

1973).

Love’s assumptions are appropriate for thin shells, but as the thickness of the shell
increases relative to the radius and length they can lead to inaccuracies. This has
necessitated the development of higher-order shell theories that relax one or more of
Love’s assumptions. In particular, the fourth of Love’s assumption is relaxed to allow for
transverse shearing deformations through the thickness of the shell. The order of the
shell theory correlates to the assumed distribution of transverse shearing stresses.

Example higher order theories are those proposed by Hildebrand, Reissner, and Thomas



(1949), Reissner (1952), and Naghdi (1957). Due to the complexity of the governing

equations, solutions utilizing these theories are often limited to numerical methods.

The above shell theories were originally derived based on isotropic shells, but can be
easily extended to laminated composite shells by generalizing the assumed material
constitutive relationships. Ambartsumian (1961, 1966) and Bert (1975) both presented a
theory for laminated orthotropic shells, which incorporated extensional-bending coupling.
Dong, Pister, and Taylor (1962) developed a theory of thin shells laminated with
anisotropic layers based on Donnell’s assumptions (1933), while Cheng and Ho (1963)
developed equations based on Fliigge’s shell theory (1962). The fourth of Love’s
assumptions, which assumes undeformable normals to the middle surface of the shell,
becomes quite significant for laminated shells as it can lead to more than 30% error for
deflections, stresses, and frequencies (Reddy, 2004). Whitney and Sun (1974), Reddy
(1984), Vasilenko and Golub (1984), and Barbero et al. (1990) have developed shear
deformational theories for laminated shells, but these theories suffer from the same
limitations as higher-order isotropic shell theories due to complexity of the governing

equations.

1.2.2 Analytical Solutions

An analytical solution (Timoshenko, 1961) to a problem is one that satisfies the
governing equations at every point in the domain, as well as the boundary and initial
conditions. An analytical solution may be formulated as either closed-form or as an
infinite series. Analytical solutions for cylindrical shells often necessitate infinite series

solutions.

Analytical solutions to isotropic cylindrical shells subjected to axisymmetric loads are
widely available. Timoshenko and Woinowsky-Krieger (1959) provide solutions for
cylindrical shells with uniform internal pressure as well as cylindrical tanks subjected to
hydrostatic loads. Due to the introduction of a second variable in the circumferential
direction, non-axisymmetric type loadings are difficult to incorporate in the solution.

Bijlaard (1955) developed a double series solution for cylindrical shells subjected to a



patch load as well as a similar solution for point loads. Odqvist (1946), Hoff et. al.
(1954), Cooper (1957), and Naghdi (1968) have developed unique solutions for
cylindrical shells subjected to a uniform line load along a generator. Meck (1961)

presented a solution for line loads applied along the circumferential direction.

For laminated composite shells, three-dimensional elasticity solutions and higher order
shell theories are well suited for thick to moderately thick shells. Elasticity solutions for
laminated composite shells are widely available (Ren, 1987, 1995; Chandrashekhara and
Nanjunda Rao, 1997, 1998; Varadan and Bhaskar, 1991). Noor and Burton (1990)
provide and exhaustive review of available solutions. The applicability of these solutions
is generally constrained to shells of infinite length or with simplified loading conditions.
Although thin shell theories poorly capture the behavior of shells with low radius-to-
thickness ratio, they perform reliably for high radius-to-thickness ratios (Ren, 1987), and
the simplifying assumptions in the theory facilitate the incorporation of complex loading

and boundary conditions.

One of the primary uses for analytical solutions is as a benchmark to validate and
compare solutions attained from other methods. For example, an analytical solution
developed for a thin shell theory may be used to validate the accuracy of a finite element
solution or may be used as a basis of comparison for a higher-order shell theory for which

only numerical solutions methods are possible.

1.2.3 Numerical Solutions

A numerical solution is one that approximates the solution to a governing differential
equation including boundary and initial conditions. Analytical solutions are not always
available for problems with complex geometries and boundary conditions, nonlinearity,
and higher-order deformation response. These limitations, however, do not preclude the
use of numerical methods. Two common numerical solution methods are the finite
difference and finite element methods. Finite element solutions for laminated cylindrical
shells have been developed by Saviz et al. (2009), Singha et al. (2006), Liew et al.
(2002), and Saviz and Mohammadpourfard (2010).



The finite element method requires the structure to be discretized into elements of regular
geometric shape. The response of each element is approximated by shape functions,
which when assembled, dictate the global response of the structure. Consequently, more
refinement of the domain discretization yields a more accurate approximation to the
structural response. The finite element solution requires the solution of a system of
equations, the order of which depends on the discretization of the domain. Efficient
solutions to numerical methods may require considerable computational demand and

storage capacity.

Numerical methods provide versatility not available for most existing analytical
solutions. They are, however, limited by the implementation of loading and boundary
conditions. Additionally, most numerical solutions are not continuous for all pertinent

displacement and forces components of the domain.

1.3 Research Objective

The objective of this paper is to develop an analytical strip method (ASM) of solution for

stiffened isotropic and laminated composite thin cylindrical shells.

The ASM was first developed by Harik and Salamoun (1986, 1988) for the analysis of
thin orthotropic and stiffened rectangular plates subjected to uniform, partial uniform,
patch, line, partial line and point loads, or any combination thereof. The solution method
was subsequently extended to laminated plates by Sun (2009). The solution procedure
requires that the structure be divided into strips based on the geometric discontinuities
and applied loads. Figure 1.1 shows the necessary strip discretization for a stiffened
cylindrical shell subjected to a combination of loadings. The governing differential
equation for each strip is solved analytically, and the applicable continuity and boundary

conditions are used to combine the solutions for the strips.

1.4 Research Significance

Available analytical solutions to cylindrical shells are currently limited; many require

simplifications such as infinite length boundary conditions, axisymmetric loading, and



omission of terms in the governing equations. Methods that don’t require these
simplifications lack generality in terms of end boundary conditions, variations in wall

thickness, and incorporation of stiffeners. The ASM overcomes these limitations.

Numerical methods provide an alternative to analytical solutions. Numerical methods,
such as finite element solutions, often require significant effort to discretize the domain
and to perform refinement studies to validate the accuracy of the results. In the ASM, the
structure is divided into strips based on discontinuities in the shell geometry and applied
loads. Unlike numerical methods, the accuracy of the ASM results are dependent on the
number of modes summed in the solution rather than the number of strips that sub-divide

the structure.

1.5 Dissertation Outline

The dissertation consists of six chapters organized as follows:

e Chapter 2 presents the governing equations for isotropic and laminated cylindrical
shells.

e Chapter 3 details the derivation of the ASM solution.

e Chapter 4 summarizes the ASM for isotropic thin cylindrical shells and provides
numerical examples that compare the ASM results with existing analytical
solutions and highlights the features of the ASM.

e Chapter 5 summarizes the ASM for laminated thin cylindrical shells and provides
numerical examples that compare the ASM results with existing analytical
solutions and highlights the features of the ASM.

e Chapter 6 presents a summary of the significant findings from this research, and
conclusions are drawn with regards to its relevance. Future research needs are
identified and discussed.
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Figure 1.1. Stiffened cylindrical shell with strip and edge loadings

Note: The stiffeners are concentric with the shell



CHAPTER 2
GOVERNING EQUATIONS

2.1 Introduction

This chapter presents the derivation of the governing differential equations for isotropic
and laminated cylindrical shells (Figure 2.1). Laminated shells can have any generalized

layer configuration and ply-angle scheme, such that the shell behaves anisotropically.

The derivation of the governing differential equations are based on the following

assumptions:
e The shell materials are linear and elastic.
e The lamina are homogeneous and orthotropic.

e The stacked lamina are perfectly bonded, thus no delamination at the layer

interfaces.
e The shell walls are thin and Love’s assumptions (Love, 1944) are applicable
= Thickness of the shell is small compared with the other dimensions.

= Strains and displacements are sufficiently small so that the magnitudes of
the second-order and higher-order terms in the strain-displacement

relations may be neglected in comparison with the first-order terms.
= The transverse normal stress is negligible.

= Normals to the undeformed middle surface remain straight and normal to
the deformed middle surface, and undergo no change in length during

deformation.



2.2 Strain-Displacement Equations

The surface coordinate system used in the derivation of the governing equations for the
cylindrical shell is shown in Figure 2.1. The strain-displacement equations associated

with thin shell theory are given as (Kraus, 1967)

Ly
€ = —a’; (2.1a)
dug w
ES = E E (21b)
dus | duy
Vas = 5o+ =2 (2.1¢)

2*w

K, = _ﬁ (21d)
d (us Ow

ks =5 (5= 50) (2.1e)
1 dug a%w

Kxs _EE_Zaxas (2.19)

2.3 Constitutive Equations
2.3.1 Isotropic Shells

The constitutive equations for a single isotropic layer are provided by Jones (1999).

N, A VA 0 €y
N, t=|vA A 1_9 [ € } (2.2a)
Ny 0 0 — AW
M, D wvD 0 Ky

{Ms } —|vD D 1_9 [KS } (2.2b)
M, 0 0 TD Kys

where A and D are the extensional and bending stiffness of the shell
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A= — (2.3a)
Et3
T 12(1-v2) (2.3b)

2.3.2 Laminated Shells
The stress-strain relationships for a single orthotropic lamina are (Jones, 1999)

Oy @1 (212 (216 €Ex

Os (= 912 922 (_?26 €s (2.4)

Txs Q6 Q26 Qes Vs

where Q; ; are the transformed reduced stiffness coefficients given by (Jones, 1999)

Q11 = Q11 cos* B + 2(Q12 + 2Q¢6) sin B cos® B + Qy; sin* B (2.52)
612 = (Q11 + Q22 — 4Qss) sin? B cos? B+ Q12 (Sin4ﬂ + cos* B) (2.5b)
ézz = Qq; sin* L+ 2(Q12 + 2Q¢6) sin? B cos? B+ Qz; cos* B (2.5¢)

Q16 = (Q11 — Q12 — 2Qe6) sin B cos® B + (Q12 — Q22 + 2Qee) sin® B cos B (2.5d)
626 = (Q11 — Q12 — 2Q66) sin® fcosf + (Q2 — Q22 + 2Q66) sin cos® B (2.5¢)
Q26 = (Q11 + Q22 — 2Q15 — 2Qg¢) Sin? B cos? B + Qge(sin* B + cos* ) (2.5%)

and f is the orientation angle of the lamina principal direction, measured
counterclockwise from the x-axis of the cylinder. The reduced stiffness coefficients, Q;;,

are (Jones, 1999)

Qi =—
1 1-v12V21

(2.6a)

= Vo1Ex VB (2.6b)

1-v12V21 1-v12V21
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Qe6 = G12

The constitutive relationships for the laminated shell are (Jones, 1999)

1(€ _
{ €s } +
1 Vs |

€y [
} ;
Vxs i

N Aqq
Ng ¢ = |A12
Nxs A16
M, Bi1
{Ms } = |B12
st Blé

Bll
BlZ

Bie
B26
B66

D16
D26
D66

Kx
Ks

KXS

|

Kx
Ks

KXS

}
}

(2.6¢)

(2.6d)

(2.7a)

(2.7b)

where Aj; are the extensional stiffnesses, Bj are the bending-extensional coupling

stiffnesses, and Dj; are the bending stiffnesses. The stiffness coefficients are given by

Reddy (2004) and are defined as

t
{4i;,Bij, Dij} = [*.Qij{1,2,2°}dz; i,j =126 (2.8)
2

where ¢ is the thickness of the shell.

In symmetric laminates, B; = 0 in Eq. (2.7). In antisymmetric cross-ply laminates, B2 =
Bi6= B26= Bes= 0 and B22 =-B11 in Eq. (2.7). In antisymmetric angle-ply laminates, B1:
= B12=B22=Bess=01n Eq. (2.7).

The reduced constitutive relations for a single generally orthotropic layer as well as

cross-ply and angle-ply symmetric and antisymmetric laminates is

N, Ayn A A (Ex Bi1 0 Bie](Kx
Ngt =|A12 Az Ay {Es } +[ 0 By By { Ks } (2.92)
Nys Ate Aze Aeed Vxs) LBig Byg 0 1\Kxs
M, By 0 Big](€x D11 D1z Dig](Kx
{Ms } =10 By, By {65 } + (D12 Dz Dy {KS } (2.9b)
M Bie Bze 0 1Wxs) LDig Dzs Deel\Kys

12



2.4 Equilibrium Equations

The equilibrium equations for the cylindrical shell are given as (Kraus, 1967)

ONy . ONgy

P s +q,=0 (2.10a)
ONys , ONs | Qs _
W+E+F+qs_0 (2.10b)

8Qx , 9Qs _ Ns _
42— =0 (2.10¢)
oM, OMyg
ax as

~Q,=0 (2.10d)

OMys | OMs

S S0, =0 (2.10¢)

The five equilibrium equations are reduced to three by substituting Eq. (2.10d) and Eq.
(2.10e) into Eq. (2.10c).

ONy = ONgy

E-i_ P +q, = 0 (2113)
ONys ONg Qs _

?+¥+E+qs—0 (leb)
0%M, 0%Mys  02Mg  Ng _

0x2 0x0s as2 R +tq=0 (2'1 IC)

2.5 Coupled Governing Differential Equations
2.5.1 Isotropic Shells

The three coupled differential equations for isotropic cylindrical shells are derived by
substituting the strain-displacement equations, Eq. (2.1), into the constitutive
relationships of Eq. (2.2) to get the force-displacement relationships. The force-
displacement relationships are then substituted into the equilibrium equations of Eq.

(2.11). The system of differential equations may be presented as

13



L1 Liz  Li3] (uy qx
Li; Ly; Lys {us} =19s (2.12)
Liz Lp3 Lsgzl'w q

where L;; are differential operators

Ly=Al+20a 2 (2.13a)
Ly =2a-2 (2.13b)
Lig=2A= (2.13c¢)
L= (2A+22D) S+ (A+ D)2 (2.13d)
Las = %A%_% a:;as_%D;_; (2.13¢)
Lys=—A+D+2D—2—+ D2 (2.136)

A and D are the extensional and bending stiffness of the shell given by Eq. (2.3). The
differential equations of Eq. (2.12) and Eq. (2.13) are consistent with the thin shell theory
developed by Naghdi and Berry (1964).

2.5.2 Laminated Shells

The three coupled differential equations for laminated cylindrical shells are derived by
substituting the strain-displacement equations, Eq. (2.1), into the constitutive
relationships of Eq. (2.9) to get the force-displacement relationships. The force-
displacement relationships are then substituted into the equilibrium equations of Eq.

(2.11). The system of differential equations may be presented as

L1 Liz  Li3] (uy qx
Liz Lyy Las {us} =14s (2.14)
Liz Lpz Lsazl'w q

14



where L;; are differential operators

92 92 02
L11 = Allﬁ+ 2A16@+A66E (2.1521)
1 92 a?
L, = (A16 + EB16) Py (A12 + Age + = B12 + = Bse) Py
2
(Axs +2B25) & (2.15b)
63 1 bl 63 1 d
L13 = _Bll 923 + EAlz % 3316 9x20s (Blz + 2366) 9x0s2 R 26&
63
BZ6§ (2.15C)
1 2 92 ik
Ly, = (Ase 2 Dec + Bee.)ﬁ + 2 ( D6 +— Bze + A26) 2xas T
2 1 0?
(AZZ +EBZZ +FD22)E (215d)

Lz = (—316 - %Dm) :—; + % (% By + Aze) aa_x -

2 93 3 a3
(2D + = D1z + Buz + 2Bgg ) 5= + (—3B26 — 2 D36 ) 555 +

2 (Asz +2Bys) 2+ (=Bay —Dz2) o (2.15¢)

2 0%

1 a* 0*
Lis = pAzz + Dy, Pyl 4Dy 6 === P + (2D1; + 4Dgg) 555 2352 —=B255

4 92 94 2 R 94
B EBZ6 0x0s + 4Ds6 axdsd EBZZ 952 + D2, as* (2'15f)

and A4; are the extensional stiffnesses, Bj; are the bending-extensional coupling

stiffnesses, and Dj; are the bending stiffnesses given by Eq. (2.8).
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2.6 Single Uncoupled Governing Differential Equation
2.6.1 Isotropic Shells

This section reduces the system of three coupled differential equations for the isotropic
cylindrical shell into a single eighth-order partial differential equation. For the case of

radial loads only, gx = ¢s = 0 in Eq. (2.12) reducing the system to

Li1 Lz Li3] (uy 0
Liz Laz Lp3 {us} =40 (2.16)
Liz Lp3 L3z q

The displacements in the x, s, and 7 direction, ux, us, and w, can be written in terms of the

potential function ®(x, s) (Sharma et al., 1980)

Uy = (L1pLpz — LizLyp)P(x, ) (2.17a)
us = (L13Lyg — La3Ly)P(x, s) (2.17b)
W = (Ly1Lyp — Ly1pLy1 )P (%, 5) (2.17¢)

where the differential operators Lj are presented in Eq. (2.13).

The first two equations in the system of governing differential equations of Eq. (2.16) are
identically satisfied by Eq. (2.17). Substituting Eq. (2.17) into the third equation of Eq.
(2.16) yields (Sharma et al., 1980)

(L11L22L33 - L122L33 - L232L11 + 2L13L15L55 — L132L22)Cb(x, s) =q(x,s) (2.18)

Expansion of Eq. (2.18) gives the eighth-order partial differential equation

o%d 08 2°d oed

FSOa 8 +F626 66 2+F44a 46 4.+F26a 26 6+F086 8 +F426 46 2+ 24ax2654+
2% ot ot ot
F0606+F4004+F226262+F04a4 q(x,s) (2.19)

The coefficients F;; are

16



Fao = 53 AD? + =2 A%D (2.20a)

2R?2
Fy, = % AD? +2(1 — v)A2%D (2.20b)
_ (V—l)(V+3) 2 _ 2
Fy = =——=AD? +3(1 — v)A?D (2.20¢)
_ -2 oo 2
Fp6 = ~~AD? + 2(1 = v)A?D (2.20d)
Fog = 121,421) (2.20¢)
A-v)(+2)
F,, = ”R—ZVAZD (2.20f)
Fp, = “‘”}1@ A2D (2.20g)
1-v)
Fys = R—ZVAZD (2.20h)
(v=1)2(v+1) (v-1)2(v+1) .
Fio = o A?D + === A® (2.201)
_ (1-v)(Bv+5) ,5 .
Fpp = == A?D (2.20)
_ A=) 4
Fos = — - A2D (2.20k)

Where 4 and D are the extensional and bending stiffness provided in Eq. (2.3).

2.6.2 Laminated Shells

This section reduces the system of three coupled differential equations for the laminated
cylindrical shell into a single eighth-order partial differential equation. For the case of

radial loads only, gx = ¢s = 0 in Eq. (2.14) reducing the system to

17



L1 Liz  Li3] (uy 0
Liz Lyp Los {us} =40 (2.21)
Liz Lp3 L3z q

The displacements in the x, s, and r direction, ux, us, and w, can be written in terms of the

potential function ®(x, s) (Sharma et al., 1980)

Uy = (LyzLlaz — LizLap) (%, 5) (2.22a)
us = (Lyglyy — Lasly)®(x,s) (2.22b)
w = (Ly1Ly — LipLa1)®(x, s) (2.22¢)

where the differential operators L; are presented in Eq. (2.15).

The first two equations in the system of governing differential equations of Eq. (2.21) are
identically satisfied by Eq. (2.22). Substituting Eq. (2.22) into the third equation of Eq.
(2.21) yields (Sharma et al., 1980)

(L11L22L33 - L122L33 - L232L11 + 2L13L15L55 — L132L22)(D(x, s) = q(x,s) (2.23)
Expansion of Eq. (2.23) gives the eighth-order partial differential equation

08 08 08 08 080 28 08
F8°a 8+F7la 7as+F6Za 69s 2+F53a 595 3+F44ax4a 4+F35a 395 5+F266x2656+

a%d 2°d

F17axa7+F08aB+F6°a 6+F516x +F4Zax4a 2+F33a 333+F24'6x2654+
0°d %0 9% 4o 04o 04d 04o
F15axa st Foe5s tFaog ot Faig o t Faz g 262+F13a = T Foa5r = a(x,s)

(2.24)

The coefficients F;; for i, j =1, 3, 5, 7 are not presented since they are condensed out of
the solution for the analytical strip method; details are presented in Chapter 3. The

coefficients F;; fori,j =0, 2, 4, 6, 8 are

F80 = A11A66D11 - A162D11 + 2B11Al6B16 - B162A11 - 3112A66 + (2253)

2
E(Bl6zB11 - A16B16D11 - D16B16A11 + BllA16D16 + A11B66D11 -

18



1
B112B66) + E(A11D66D11 - B162D11 - D162A11 + 2BllB16D16 -

B11°Des)

Fs; = 2A11A66D15 — 2A16° D1y — 4416 Dgs + 4A11466D66 + A11A22D11 +
8411426016 + 2416426D11 — 2412466011 — 8A12416D16 +
6B11A16B26 — 6B16B2gA11 — 10B11456B16 — A1, Dy + 6B167 Ay, —
4B16”Ags — B11°Azz — B1o? A1y — 4B1;BgArr + 2B1;BiiAr, +
4B1,B16A16 — 4Bss A1 + 8BgsBisArs + 4B11A1,Bgs +
%(A12312D11 + 3B6A16D11 + 5A11B26D16 + A11B2D15 —
2A16B16Dss — A12B16D16 — A16B16D12 — A26B16D11 —
2466B16D16 — 3D26B16A11 + 2B11A12D66 + B11A12D12 +
3B11416D26 — 8B11B16B26 + B11426D16 + 2B11466Des + (2.25b)
Bi1146D12 — B11°Bzy — 5A16B12D16 — AesB12D11 + B12*Byy +
7B16°Biz + B11B12Bes — 2B12411 D66 — D1;B15A11 + 2B16”Bes —
A12BgD11 + 2A16BssD1 — 2Bgs Brq) + %(43162D12 -
2By6B16D11 — B16°Dgs — D16°Ass — D12° A1 + 2A11Dz6 D16 —
2411DeeD1; + 4A16D26D11 + A11D22D11 + AseDos D11 —
4D;,D16A16 — 6B11B1Dog + 2B11BogDig — Bi1°Dyp — Bi Dy +
2B1;BsD11 + 2B11B1,Dgg + 2B11B12 D1 — Bgg”Dig +
2B11Bg6D1; + 2B16BssDis)

Fia = A114Ag6Dz; — 441, Dgs — 2A15° D1y — A16”Dyy + 2411 A5,D;5 +
4A1142,D66 + 8A16422D16 + AgeA22D11 — 4A12466D12 —
8412466066 + 8A11426D26 + A16A26D12 + 8A16A26D66 —
8A412426D16 + 8B26B16Aes + 2B26B11426 — 8A12416D26 +
20B16A13B56 + 2B16B22A16 + 2B11412B5; + 2B11466B22 —
9B16°Azs — Azs D1y — 9By6 Ay + 2B15 Ay — 4BysBiyArg —
2B;3B12A11 — 4B13A26B16 + 8B12412Bg6 — 2B11B1242; +

(2.25¢)
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8Bgs” A1z — 8B26BsgA1s — 4B22BsgAr1 — 8B1gAz6Bss —
4B11BssAz22 +%(ZBZ6A66D16 — By6A26D11 — By” By — 6B1s” By +
A11B23D15 — A11B26Dag + 2411 B22Dgs + 6A16B22D16 +

AgeB22D11 + 5A13B16D26 + A26B16D12 + 2426B16Ds —
3B6A12D16 + 2B26A16D66 + B2sA16D12 + 2A66B16D26 +
B11A12D2; + 3B11426D26 + B11Ae Doz — B12A12D12 —

2B12412D66 — 7B12A16D26 — 3B12426D16 — 2B12A66D12 —
4B1;A66Des — D22B12A11 — B11B12By; + 6B13B1gBog + 4B1,”Bgg +
4Bg”B1 + B1,° — 2BsA16D26 — 2BssAz6D16 — A11Bes D2z —
3B11BesBy2 — 4B16B26Bss) + % (4B26B16D12 + 2B36B16Des —
By6°D1y — Dy6”Ayy — 4B16”° Dy — D1p* Agg + A11Dgs Dz —
4A16D26D12 — 2466De6 D12 + 4A16D22D16 + 2466D26D16 +
Ag6D22D11 + 2BysB11 Dy — B13° Do + 4B12B16 D36 — 4B12By6 D6 +
2B1;Bs6D1y + 2Bg6” D1y — 2B16BesDzg — 2B26BssDig —
2B11B46Ds;)

Fa6 = A11425D05 — A3 Dy + 2A16426D2; + 8A16A42,D6 + 2Ag6A 22 D15 +
4AecA22D66 — 2412466022 — 8A12426D26 — 6B6B16A2, +
6B16A26B22 — 10BysByy A1 + 6By A1y — 2456 D1y — 4Az6” D —
4Bys” Ass — Bya®A11 — B1y" Ay + 2B13A12By; + 4B13BygAze —
4B1;BgsAzz + 8BesBasAzs — 4Bes” Azz + 4BesA12Bz +
2 (2.25d)
= (2416B22D26 — 2B26A16D25 — 2By6A26D66 — 2B26A66D26 —

B6Az6D12 + 2466B22D66 + AgeBa2D12 + 2426B16D22 —

By6A12D26 — 2B36B16B2s — AssB12D22 — Az6B1,Dz6 + 3By " B1y —

B12BesBaz + A12Bs6Dsz + 2A56Bes D2 + 2B26” Bos — 2Bes By +

1
E (A66D66D22 - 3262066 - D262A66 - BG6ZD22 + 2BZ6BG6D26)

20



F08 = A66A22D22 - BZ62A22 - A262D22 - B222A66 + 2322326‘426 (2256)

F60 = %(A12311A66 + A26B16A11 - BllA16A26 - A12A16Bl6 + A162312 -
A11A66B12) + % (BZ6Bl6A11 + D16A26A11 - BllA16BZ6 -
BllB16A26 - A12A16D16 - Bl62A12 + 2‘416B16312 - 2‘411366312 + (225D
2311‘412366) + %(A12311D66 + BZ6D16A11 - BllBIGB26 -

A12B16D16 - A11D66312 + BlGZBIZ)

Fyp = %(szBzz + Az6”Biy + A1zB16426 — A11AssBrz — A11AzeBs +
A12A16B26 — AzyBisArs — Bi1AgeAzs — A1z°Dig + 2A1,466B12 —
2A16A26B1; — 2A15°Bgg + 245,BgA11) + % (A12B11Bo; +
9412B16Bs — 5By6” A11 — 3B1s Az + A16B16B2s + 2466B16B2 +
Az2D12A11 + 242;D66A11 + 2A22D16A16 + 2D A26A16 +
D12A36A16 + 3D26A26A11 + 2B11A26B26 — B11A466B22 —

3412416026 — 2412466D66 — A12466D12 — 2412426D16 —

2A1,°Des — A12° D1 — 4Az6B16B12 + 2B1," Ags — B11Bi2Ag, — (2.250)
A11B33B1y + B12% A1y + BesA12B1, — BagBiaArs + 4BegArp —

2A16Bs6B26 — 2BgsA26B16 — B11BesAzz) + %(AuBnDzz +

3A12B16D26 — 2B16° Bz — A11D26Ba6 + A11Ds6Baz + BaaDipAry +
2B32D16A16 + 2ByeD12A16 + BagD16Acs — A12B26D16 + A26B16Dss —
Az6B16D1; — B2s”Biy + 2B11A26Dz6 — D12A12B12 + Biy® —

Bi2A12De6 — AssDesBiz2 + Bss Bz — A11D23B15 + 2By, Bes —

4A16D26B12 + 2B26B16B12 — D16B12A26 — B11B12B22 — D12A12Be6 —

B11Bss B2z — D16BgsAz6 — B16BssBas)

2 2.25h
Fpy = E(A16AZZBZ6 — A12By6A26 — A16A26B22 + A12466B22 — AgsA22B12 + ( )
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Fyy =

Aze’Biz) + % (4B26 A1z — 2By6”Ags — B2a® A1y + 4A26B16Bsz —
7Ba6A16B22 + A22D12466 + 6422026416 + 2422D66As6 +
Az2D22A11 + D2pAz6A16 — 4B16BosAzz — 6A12426D,6 —

A12A66D22 — A12° Doy — Aps” Dy — 2456 Dge + 2A12B, By, +
3A426B12B26 — 3B12Bs6Azz — B1z Ay + 3A1,BesBas +

4426Be6B2s — 2Bss”Azz) + % (2416D26B2, — 2B26B1sBy, —
A13B26Dy6 + 2A16D26B27 — 2416D22B26 — AgeD26B2s +

AgcDecBr2 — BagAz6Dee + B D12Ags + 2A26B16D22 — Az6B26D12 —
Ag6D22B17 — Bi2A26Do6 + 3By6” Bz — B1yBgBzy — Bes Bay +
By6°Bes + D26BssAzs + Da2A12Bs6)

2 .
'Y (ZBZ6A26BZZ — By Age + AzzDypAge — Az Day — BzezAzz) (2.251)

1
E (A11A66A22 - A122A66 - A162A22 - A262A11 + 2A12A16A26) +

2
= (A12A16BZ6 — A16B16A22 — BygAzeA11 + A12B16426 +

(2.25))
1
A11BeeAzz — A122366) to (AnDeeAzz — A12°Dgg — B1g"Agy —
Bye’A1y + 2A1ZB16326)
2
el (BZ6A16A22 — A13A26B26 — By AzeAie + A12466B22 —
1
AgeB1242; + A262312) + E(AnDzzAzz — 2By6B16A2; — A12°Dyy —
By2°A1y — Bye’Age — 4A12426D46 + 4A16D26A57 + AceDesAza — (2.25k)
4B,6BoyA16 + 2A56B16Bys + 2Byg A1z — Az Deg + 2ByyA1,B1, +
2B,6A56B15 — B1y°Agy — 2B13BgeAys + 2By6A56B66 +
2By;A13Bg6 — BeezAzz)
1
= Ri (A66D22A22 — Byy"Age + 2A26B26Bys — Az Dyy — BzezAzz) (2.251)
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where A4; are the extensional stiffnesses, Bj; are the bending-extensional coupling

stiffnesses, and Dy are the bending stiffnesses given by Eq. (2.8)

2.7 Displacement Equations

2.7.1 Isotropic Shells

The displacement equations of Eq. (2.17) can be expressed in terms of the potential

function ®(x,s). The longitudinal displacement is

_ 5D (x,5) 5D (x,5) 23D (x,5) 23D (x,5)
Uy = a3 0x30s2 +as dxds* +ay dax3 9 0x0s2
where

1+v
a3 == _uAD
2R
2(1+v
as = — 22 4p
R
v(1l-v v(1l-v
a, = =& g2 YA 4
2R 2R
1-v v
ag =242 Y ap
2R R3
The circumferential displacement is
U =a 5d(x,s) 85d>(x,s)+a 65¢(x,s)+a 63CI>(x,s)+ 3d(x,5)
S T 12 gx4ps 14 5x29s3 16 g5 18 9x29s 200 53
where
1
A = EAD
_ (B-v)
14 — 2R AD
_ (1-v)
A6 =7 AD

23

(2.26)

(2.27a)

(2.27b)

(2.27¢)

(2.27d)

(2.28)

(2.292)

(2.29b)

(2.29¢)



ag = — 24 (2.29d)

ay = -2 (2.29¢)

The radial displacement is

W = ay; % + ays a;;gl’? + a,s 64335(;’5) (2.30)
where

ay =247 + 24D (2.31a)
azs = (1—v)A2 + 0 4 (2.31b)
ays =247 + 24D 2.31c)

The extensional and bending stiffness, 4 and D, are provided in Eq. (2.3).

2.7.2 Laminated Shells

The displacement equations of Eq. (2.22) can be expressed in terms of the potential

function ®(x,s). The longitudinal displacement is

5D (x,5) 5D (x,5) 5D (x,5) 5D (x,5) 5D (x,s) 5D (x,5)
u, =a a a a a
X 1 95 ta 0x*0s +a; 0x30s2 tay 0x20s3 tas 0x0s* 6 9s5
33d(x,5) 33d(x,5) 23d(x,5) 33®(x,5)
a 2.32
7 9x3 8 9x2ds 9 9xds? 10 3s3 ( )
where

1 1 1 1
al = B11A66 + E311D66 - A16316 - EA16D16 - ﬁBl6D16 - EBl62 +
(2.332)

2
EBllB66

24



1 2 1 1 1
Ay = 2B11436 — 7 A12D16 — 7 A16D66 — 7 A16D12 + 73 Bi6Des — 7z BieD12 —
1 2 4 2
=A66D16 T 77 B11D26 + - B11B2g — A12B16 + 2466B16 t  B12B16 — (2.33b)

1 1 3
A16B12 — ;BseDm - EBIZDlﬁ + EB16BG6 — 2A16B66

2 1 2 1
az = 5A3¢B16 — EA12D66 - EA12D12 - EA66D66 - EA66D12 + B1145, +

2 1 6 8 3
=B11B2y + 5 B11Dy; — 2 A16D26 + 7 B16B26 + 3 B16D26 —

: ) ) ) (2.33¢)
EA26D16 - EB26D16 - 3A16BZG - EBlzDIZ - 5312D66 -
1 1 1 2
EB12366 - EBIZZ - EB66D12 + EB662 - AlZBlz - 2A12B66
3 1 5 2 2
a, = 3B16‘422 - EAIZDZG - EAIGDZZ + EBIGBZZ + §B16D22 - EA26D66 -
1 3 1 1
=A26D12 — 2 AgeD26 — 5 B26Ds6 — 77 B26D12 — 3A412B26 — A16Ba2 — (2.33d)
1 1 5
2A66BZ6 + 2A26B66 + R_ZB66D26 - E312D26 + A26B12 + EB26BG6
1 5 1 1 3
as = EB26 - A12B22 - EAIZDZZ - A66B22 - EA66D22 - EA26D26 -
1 3 1
EBzeDze — AzeB26 + B12Az2 + 2BgeAzz + EB66BZZ + EB12322 + (2.33¢)
1
=z Bee D22
1 1
aeg = BZ6A22 - EA26D22 + EBZ6BZZ - A26B22 (233f)
1 1 1 1 1
a; = FBIGAZG - EA12A66 - FA12D66 + §A16BZ6 + EA16A26 +
) ) (2.33g)
R_3816BZ6 - FA12866
1 3 1 1 1
ag = EA16A22 - EAIZBZ6 - EA12A26 + §A16BZZ + FBIGAZZ + (233h)

1 1 2 1 1
R_3816BZZ + ﬁAeeBze - EA12D26 - gAzeDee + 5312326 +
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1 1 1
EBIZA26 + §B66BZ6 - EB6GA26

1 2 1 1 1 1
= R—3326 - ;AuBzz + ;AesAzz + ;AseBzz - R—3A12D22 -
2 1 1 2 1 1

§A26326 - §A26D26 - EAze + ﬁBeeAzz + 5366322 +

1 1
R—2312A22 + 5312322
_ 1 A L4 1 L4
a0 = EBze 22 " g2 26B22 + 5326322 R 26D22

The circumferential displacement is

U =a 5d(x,5) a 5D (x,5) a 5 (x,5) a 5D (x,s) a 5D (x,s)
s T L Hys 12 5x49s 13 5x39s2 14 5x2943 15 9xast
5D (x,5) a 23D (x,5) a 23D (x,5) 3 d(x,5) 3 d(x,s)
16 55 17 gx3 18 5x29s 19 9xas2 20 53
where

1 1
a1 = Bl6A11 - EB 11316 + ED16A11 - BllA16

1 2 2
a1z = ;D12A11 — B11415 — B114ge + ED66A11 + ED16A16 — BigAss —

3 1 1
EBl62 - EBl1B1z + B12A11 + 2BgeA11 — EBllB66

1 4 2 1
a3 = 3ByeA1; — EBllBZG + ED66A16 + ED12A16 + ;D16A66 +
3 5
EDzeAn — B11436 — 3B16A12 — 2B16A66 — = B16Bes t Bi3A16 —

4
= B1;B16 + 2Bg6A16

2 1 1 4 6
A4 = BZZAll + ED66A66 + ED12A66 + EDZZAll - 3316326 + ED26A16 -

3 2
3Bl6AZ6 + 5BZ6Al6 - BlZA12 - EBIZB66 - 2B66‘412 - EB662 -
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(2.33))

(2.34)

(2.352)

(2.35b)

(2.35¢)

(2.35d)



1 2
=B
R D12

2 3
A5 = 7 D22A16 + - DogAes — BagA1z + 2BrgAse + 2B22A16 — BiaAze —

, 5 (2.35¢)
EBIZB26 — 2BgAz6 — EBZ6B66
1 1
A16 = ByyAge + ED22A66 — ByAze — Est2 (2.351)
1 1 1 1
a7 = EA12A16 + EA12316 - szsAn - EA26A11 (2.35g)
1 1 1 1 1 1
aig = 51‘1122 + EAleee - EA22A11 - EBzzAn - EA26A16 + §A26316 -
) . ) (2.35h)
szeAm + §A12366 + §A12312
2 1 2 1 2
A9 = EAleze + §A12326 - EA22A16 - EBzeAee - ﬁBzzAm +
) . (2.351)
§A26312 + R_zAzeBee
1 1 1 1 )
azo = EAzsz - EAzere - ﬁBzere + pAzest (2.35))
The radial displacement is
_ *d(x,5) 24D (x,5) *d(x,5) 2t d(x,5) 24 d(x,5)
W= T ass Y0 Gas0 Tl as T s 50 (2.36)
where
1 2 1 2 2, 2
az1 = A114e6 + 77 A11D66 — - A16B16 — 3 B16” — A16” t - A11Bes (2.37a)
(2.37b)

2 4 2 2 2
Azy = §A11D26 + EA11326 + §A16D66 - EA12316 - EBl6A66 +
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2 2 2 2
2‘4111426 - 21412‘416 - EA16812 - EBIZBlﬁ + EA16B33 - R_zBl6B66

2 1 1
Ay3 = A11432 + EAnBzz + §A11D22 + §A66D66 — Ayp® — 2415466 +

4 6 2 2
§A16D26 + EA16BZ6 - ;B16A26 - §B16Bze + 2416426 —

1 2 2
_B66 - EA12B66

2 2 2 1 2
2 AyzB1y — = B1yBgs — = B1yAgs — — Bio? —
R 12212 R2 12766 R 124166 R2 12 R2

4 2 2 2 2
Azs =~ A16B2p + 5 A16D22 + 5 Ass D26 + - As6B26 — 7 A12B26 —

2 2 2 2
2‘412‘426 + 2‘416‘422 - E812A26 - 5312826 - EA26B66 - EBZ6B66

1

2 1 2 2 2
Qzs = A66A22 + EA66B22 + R_2A66DZZ - EA26BZG - §B26 - A26

(2.37¢)

(2.37d)

(2.37¢)

The extensional stiffnesses A4j, extensional-bending coupling stiffnesses Bj, and the

bending stiffnesses Dy are provided in Eq. (2.8).

2.8 Force Equations

2.8.1 Isotropic Shells

The force equations are derived by substituting the strain-displacement equations of Eq.

(2.1) into the constitutive relations of Eq. (2.2). This produces the following equations

for the membrane and bending force components

( %ux )
N, A VA 0 ax
N, b= vA A 0 dus , w
1-v as R
Nes) 100 54 ou | awe
dx as
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( _2w
M, D vD 0 | dx2 |
_|lwo b o { 9 (us_aw $
{MS} - 0 0 1—vD | as (R 65) | (2.38b)
Mg N kl Oug a%w
R 0x 0x0s

\
|
o= o 0 )| 22 @39

v

_azw
0 0 1‘1)! > l
o 0 i 9 (us _ ow
o= {5 a}LD D Zol = (e as)l (2.395)
Ll%_zaz‘”)
R 0x 0x0s

The extensional and bending stiffness, 4 and D, are provided in Eq. (2.3). The

displacements, ux, us, and w, are presented in terms of the potential function, ®(x, s), in

Eq. (2.26), Eq. (2.28), and Eq. (2.30).

2.8.2 Laminated Shells

The force equations are derived by substituting the strain-displacement equations of Eq.
(2.1) into the constitutive relations of Eq. (2.9). This produces the following equations

for the membrane and bending force components

( dux ) ( _2w
Ny A A Ass 5 ox Byy By Bis I 5 ax26 I
Ny o =412 Az Az 4 %+% $+ Bi; By; By 4 g(%— a‘:) ¥ (2.40a)
Nys Ae Az Aes L%'F%J Bige Bzs Bss Ll dug asz

ox s R 0x ~ axds
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(2= ) ( 2w
M, Bi1 Biz Bis 5 ox D1 Dy 6 I 5 ax2 I
{MS}: Bz By, B 4 %‘l‘R &‘*‘ Diz Dz Dy 4& —S— & (2.40D)
Ms Bi¢ Bzs Bes L%'F%J D1 Dz Des Ikla J
ox ds R 0x 6x65
The shearing forces are derived from Eq. (2.10d) and Eq. (2.10e)
(% ) ( 2w
B B B | ox | D D D [ dx2 [
_f{9 9 11 12 16 4 dus | w E 11 12 16| ) 0 (us 9w
Qx - {ax 65} B16 BZ6 366] das + R + D16 D26 D66] { as (R aS) }
|2t 4 2 Lous 0w |
ox ds R 0x dx0s
(2.41a)
Qux ( 2w
ox [ dx2 [
0 :{i i} Bis Bag Bse“ dus , w ¥+ Dis  Dze Dee] i(ﬁ_a_W)
S dx as B12 BZZ BZG das R D12 DZZ D26 ds \ R as
dug %J 1 dug %w /
\ Lax + ds k;g_ 269«565J
(2.41b)

The extensional stiffnesses A4j, extensional-bending coupling stiffnesses Bj, and the

bending stiffnesses D;; are provided in Eq. (2.8). The displacements, ux, us, and w, are

presented in terms of the potential function, ®(x, s), in Eq. (2.32), Eq. (2.34), and Eq.

(2.36).
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Figure 2.1. Stiffened cylindrical shell with strip and edge loadings
Note: The stiffeners are concentric with the shell
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CHAPTER 3
DERIVATION OF THE ANALYTICAL STRIP METHOD

3.1 Introduction

This chapter presents the derivation of the Analytical Strip Method for stiffened and
unstiffened cylindrical shells. The shells may be isotropic, generally orthotropic, or
laminated with any generalized layer configuration and ply-angle scheme, such that the
shell behaves anisotropically. In addition to the assumptions made in the derivation of
the equations in Chapter 2, the derivation of the solution is based on the following

assumptions:

e Stiffeners consist of isotropic beams and are concentric with the middle surface of

the shell.

e Changes in thickness of the shell wall occur at a discrete location, such that the
structure can be divided in to a finite number of strips, where the wall thickness is

constant within a strip.

e Adjacent strips have a coincident middle surface, even in the case where the wall

thickness changes.

e Loads are applied in the radial direction.

3.2 Governing Differential Equation

Since the governing equation for isotropic shells is a reduced case of the laminated shell
equation, the solution method will be derived based on the laminated shell equation. The
governing differential equation for laminated shells subjected to a radial load, g(x,s), is

given in Eq. (2.24).
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8 68(13 68

8 68‘1) 68
x4ds 4+F35a 39s 5+F26axZas6

98
Fsoa 8 +F7la 7ds +F626x6652

08d 0%d 0% 0%d 0%d
b7 50 dxds? + F08 958 + F6° 9x6 + Fs1 555 9x59s +Fy, dx*ds? + F33 9x30s3 24 9x2954

66 64 64 64 64(13
FlSaxa 5+F0666+F4-Oa 4+F3la 39s +F226 232+F136 63+F0464 —Q(X S)

(2.24)

+

3.3 Analytical Strip Method

The ASM was first developed by Harik and Salamoun (1986, 1988) for the analysis of
thin orthotropic and stiffened rectangular plates subjected to uniform, partial uniform,
patch, line, partial line and point loads, or any combination thereof. The solution
procedure requires that the structure be divided into strips based on the geometric
discontinuities and applied loads (Figure 3.1). The governing differential equation for
each strip is solved analytically and the applicable continuity and boundary conditions are

used to combine the solutions for the strips.

The solution of the differential equation for a general strip / assumes that the form for the
potential function, ®;, satisfies continuity at the surface coordinates s = 0 and s = 2nR.

Let

D,(x,5) = X5 P (x) cos(Bs) (3.1)
Where
Bn =7 (3.2)

Hereinafter, the subscript /, denoting the /™ strip, will be excluded in the derivation.

Substituting Eq. (3.1) into the governing differential equation, Eq. (2.24), yields
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d8¢,(x) d” ppn(x) dbdn(x)
Foo 20 S22 08 (BS) — Fyy i 222 B, sin(B5) — Fop 2 o % cos(Bs) +

ds n( ) a* n( )
F53 Zn ¢ = Bn Sln(ﬁns) + F44 Zn ¢ = Bn COS(BnS) -

d3 n d? n
Fos 55 S22 g5 in(B,5) — Fpe Sy 282 B, cos(B) +

0 AdPn . 0 ood6 n
Fiy 552 2285 5.7 Sin(B5) + Fog £ (%) Bn® c05(Ba5) + Feo T2 252 cos(,,5) —

d5¢n d*¢on
F51 Zn ¢ (X) .Bn Sln(ﬁns) F4-2 Zn ¢ (X) ﬁnz COS(,BnS) +

d3 n da? n
F33 Zn ¢ (X) .Bn Sln(ﬁns) + F24- Zn ¢ (X) :Bn COS(ﬁnS)

Fis 3% d“’"(’”ﬁn SIN(BS) — Fog £ bn () B ®c0s(Brs) + Fyo Tip 22D cos(B,5) —

d3¢pn(x) d?¢p(x)
F31 Zn d)n = ﬁnSIH(ﬂns) FZZ Zn ¢n > .Bn COS(ﬁnS) +

Fia z;?%")ﬁfsin(ﬁns) + Fou 25 $n () B *c0s(Bns) = q(x, ) (33)

Eq. (3.3) is multiplied by cos(f,,s), integrated from s = 0 to s = 2nR, and summed from

m = 0 to m = o. Due to orthogonality of the trigonometric functions,

foan sin(B,,s) cos(B,,s) = 0 for all values of m and n when m + n. The term

2nk cos(B,,s) cos(B,,s) = 2nR for m = n =0, and 2nk cos(B,s) cos(B,,s) = mR for
0 0

m =n# 0. Implementing these relations leads to

o « d°Pm(x) d® P (x) d*pm(x) d? ¢m(x)
Zm{FSm—+F6m—+F4m—+F2m +F0m¢m(x)}

dx®
2mR w 1 27R
ﬁf " q(x,s)ds + Zm=1—= o " q(x,5) cos(Bs) ds (3.4)
Where:
Fgm = Fgo (3.52)
Fem = —Fe2Bm” (3.5b)
Fim = FaaPm” = FizBm” + Fa (3.50)
* 6 4 2
Fym = —FsPm” + FouPm — F22Bm (3.6d)
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Fom = FosBm® = FosBm® + FouBm” (3.6¢)

For m =0, F;, = Fyo = 0 and for m = 1, Fj; = 0. The coefficients Fj; are provided in

equations Eq. (2.20) for isotropic shells and Eq. (2.25) for laminated shells.

Eq. (3.4) is an infinite set of linear eighth-order ordinary differential equations for ¢, (x)
with m = 0, 1, 2, ..., co. The solution is obtained by superposition of the associated

homogeneous and particular solutions.

Dd(x,s) = dy(x,s) + Pp(x,s) (3.7
where the homogeneous solution

Py (x,5) = Xin Qum (x) cos(Bns) (3.8)

and the particular solution

Dp(x,8) = X Ppm(x)c0S(Bms) (3.9)

3.3.1 Homogeneous Solution

The homogeneous solution for mode m, ¢y, (x), is expressed as

Prm (x) = e¥YmPm* (3.10)
Substituting Eq. (3.10) into Eq. (3.4) yields the characteristic equation for mode m = 0.
F3vo® + Fevo® + Fiyo* = 0 (3.11)
Setting Y42 = &, reduces Eq. (3.11) to

(F3&o” + Faéo + Fi)éo" =0 (3.12)

Two roots of Eq. (3.12) are £, = 0 with a multiplicity of two and the other two roots are

given by the quadratic formula (Stewart, 1995).  Substituting the roots of the
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characteristic equation Eq. (3.11) into Eq. (3.10) leads to the homogenous solution for

mode m =0

CDHo(x, S) == ClO + Czox + C30x2 + C40x3 + [CSO COSh(ygox) +

Coosinh(¥39x)] cos(y40x) + [C7o cosh(y39x) + Cgosinh(y3zox)]sin(ysox)

(3.13)
where
~Fi+ |Fe?—4F}F;
Y30 =j2—FS* (3.14a)

~Fg— |F;*~aF3F;
Vao =\/M (3.14b)

2F;

and coefficients Cao for d = 1, 2, ..., 8 are constants determined by the boundary
conditions at x = 0 and x = x,, and the continuity conditions at x = x; (i = 1,2, ...,n —

1), see Figure 3.1.

The characteristic equation for mode m =1 is

Fiym® + Fivm® + Sy + F3y2 =0 (3.15)
and for all other modes (m =2, 3, ...,©)

Fo¥m® + Fovm® + Bivm* + v + F; =0 (3.16)

The characteristic equation of Eq. (3.15) may be considered a special case of Eq. (3.16)

with Fj = 0 and two of the roots taken as y,,, = 0 with a multiplicity of two.
Dividing Eq. (3.16) by F; and setting y,,% = &, leads to
Em’ +bEy° +cEn’ +dE +e=0 (3.17)

where
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F; Fy
b:_G*a :;‘;5 d:_w e =— (318)
Fg Fg Fg Fg

Eq. (3.17) is a quartic equation that can be solved analytically (Editing Group of the
Manual of Mathematics, 1979; Sun, 2009). The four roots for Eq. (3.17) are the same as

the four roots in the following two equations

E2+(b+VBS T BT o) 2 4+ (s+ ) = ¢

V8s+b2—4c

E2+(b—VBS T BT o) 2 4+ (s ) = ¢

V8s+b2—4c

Where s is any real root for the following equation
8s3 —4cs? + (2bd —8e)s + e(4c —b?) —d?* =0
Eq. (3.20) can be reduced to
s3+fs?+gs+h=0

where,

Then, substitute into Eq. (3.21)

(=5 7 (=5 ra(e-t) enmrte(-Los

Eq. (3.24) becomes
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(3.19b)

(3.20)

(3.21)

(3.22a)

(3.22b)

(3.22¢)

(3.23)

(3.24)



t3+pt+qg=0

in which,

tlzg\/—%+\/Z+3 -1V

t; = 2¥rcos 6

where,

Substituting #1 into Eq. (3.23) gives

S:tl_g

when A>0

when A<O

(3.25)

(3.26a)

(3.26b)

(3.27)

(3.28)

(3.29)

(3.30a)

(3.30b)

(3.31)

Substituting the results from Eq. (3.31) into Eq. (3.19), and carrying out the solution,

produces four roots to Eq. (3.17). From the relation of y2 = &,,, ¥, is solved for the

characteristic equation of Eq. (3.15) and Eq. (3.16).

The homogeneous solution for mode m =1 is
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dyq(x,8) = +[Cs1 cosh(y11x) + Cgq sinh(y;1x)] cos(y,1x) cos(f1s) (3.32)
+[C71 cosh(yy1x) + Cgysinh(yy1x)]sin(yz1x)

where yj; (j = 1, 2, 3) are the non-zero roots to the characteristic equation [Eq. (3.15)].

The coefficients Ca1 (d = 1, 2, ..., 8) are constants determined from the applicable

boundary and continuity conditions at the ends of the strip.
The homogeneous solution for all other modes (m =2, 3, ..., ©) is

[Clm COSh(Vlmx) + CZm Sinh(ylmx)] COS(Vme)
+[C3m COSh(Vlmx) + C4m Sinh(ylmx)] Sin(Vme)
+[CSm COSh(y3mx) + C6m Sinh(VSmx)] COS(V4mx)
+[C7m COSh(V3mx) + CSmSinh(Y3mx)]Sin(Y4mx)

Dy (x,s) = cos(BmS) (3.33)

where ¥, (j = 1, 2, 3, 4) are the non-zero roots to the characteristic equation [Eq. (3.16)]
for mode m =2, 3, ..., ©. The coefficients Cam (d = 1, 2, ..., 8) are constants determined
from the boundary conditions at x = 0 and x = x,, and the continuity conditions at x =

x;[i=1,2,..,n—1 (Figure 3.1)].

3.3.2 Particular Solution

The particular solution is dependent upon the load distribution applied to the strip. For a

given strip loading, the load distribution function, q(x, s), is expressed as

q(x,s) = qof (x)g(s) (3.34)

where qo 1s the load amplitude and f{x) and g(s) are the load distribution functions in the x

and s directions.

Substituting into the right hand side of Eq. (3.4) yields,
9T (2R (s)ds for m =0 (3.35)

2TR

and
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90/ ) (27R o cos(B,,s) ds form=1,2,...,© 3.36
TR 0 g

The potential function, ¢,m,(x), can be derived for a wide range of commonly
encountered load distributions. The particular solution for most common strip loadings

are presented in Table 3.1.

When a strip is subjected to more than one load, the method of superposition is employed

to determine the particular solution.

3.3.3 Edge Loading

For cylinders subjected to point loads and radial line loads distributed along the
circumferential direction, the cylinder is divided into strips such that the loads coincide
with the edges of the strips (Figure 3.1). These loads are expressed as a Fourier series
and incorporated into the solution as shear force discontinuities between strips. Table 3.2

presents the edge loading function, 1;(s), for several common loadings.

When an edge is subjected to a combination of loads, the method of superposition is

employed to determine the edge loading function.

3.3.4 Isotropic Beam Equations

For cylinders with ring stiffeners along the circumferential direction, the structure is
divided into strips such that the stiffeners coincide with the edges of the strips (Figure
3.1). The stiffeners are incorporated into the solution as part of the boundary and
continuity conditions. The solution method assumes that the ring stiffeners are isotropic

beams and are concentric with the middle surface of the shell.

The following differential equations can be derived from the equilibrium of an isotropic

curved beam element (Vlasov, 1961)
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4 2 4 4 2 2
G = Epl, (d Ugp 1d ¢b) _|_Ewa (d P +1d uxb) __ GbJp (d P +1d uxb) (3.37a)

ds* R ds? R ds* R ds* R ds? R ds?
d*wy, 1 d3ugy EpAp (dugp 1
=yl (L 20ty Bl (B 4 2 ) 3.37b
drb bix \ gs4 R ds3 R ds RD ( )
Eply (d3wb 1 dzusb) dzusb 1 dwyp
= —-= —EA +-— 3.37c
sb R ds3 R ds? beb \ " gs2 R ds ( )

__ Eply d?uyp 1 d*¢p 1 d*uyyp d?¢p 1 d?uyp
Mxp = (_ +E¢b)+EbCW(ds4 +E ds* )_Gb]b(ds2 +E ds? ) (3.37d)

The terms g, grb, and gs» are the distributed forces per unit length applied to the beam in
the x, 7, and s directions (Figure 3.2); mx» is the twisting moment per unit length applied
to the beam; u.w», usp, and wp are the deflections of the beam in the x, », and s directions
(Figure 3.2); ¢y, is the twist angle of the beam; R is the radius measured to the centroid of
the beam; E»l, = flexural rigidity about the r-axis (Figure 3.2); E»lx = flexural rigidity
about the x-axis (Figure 3.2); E»A» = axial stiffness of the beam; GnJ» = torsional rigidity
of the beam; E»Cyw = warping rigidity of the beam.

3.3.5 Boundary Conditions
The boundary conditions along the edges x = 0 and x = x,, are:

For simply supported edges: u, =0, u,=0, w=0, M,=0 (3.38a, b, c, d)

For clamped edges: u, =0, us=0, w=0, Z—:: =0, (3.38a, b, ¢, d)
For free edges: Q, =y, N,=0, N,,=0, M, =0, (3.38a,b, ¢, d)
For beam support: w = wy, Z—: =¢p, Qr=qmp+¢¥, M,=my (3.38a,b,c,d)

Where ¢, is the twist angle of the beam and my,;, is the twisting moment per unit length

applied to the beam from Eq. (3.37d).
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Difficulties arise when the coefficients on the odd derivatives of the s terms in Eq. 2.32,
Eq. 2.34, and Eq. 2.36 are non-zero. Expansion of these equations lead to both cos(f,,s)
and sin(f,,s) in the expressions for ux, us, and w when m = 1, 2, ..., co. This necessitates
two constraint equations to impose any one of the boundary conditions in Eq. 3.38. For
these cases, only four boundary conditions can be assigned per strip, in contrast to the

eight conditions allowed for the alternative case.

3.3.6 Continuity Conditions

The following continuity conditions are applied along the shared edge between strips I

and [ + 1 at x = x; when there is no stiffener present

owy _ OW(4y)
O0x dx

(3.39a, b, ¢, d)

Uyxr = Uxg+1),  Ust = Usg+1)s W1 = W),
and
Myr = My+1)s Nt = Nxg+1)s Qur = Q1) T ¥i Nust = Nysg+y (3403, b, ¢, d)

When a beam is present at x = x;, the following continuity conditions are imposed along

the common edge x = x;, between strips / and /+1.

owy _ 0wy

Uy = Ux(r+1)>  Ust = Usg+1), W1 = W), 7= 57 = ®p (3.41a, b, ¢, d)
and

My = My+1) — Myrs Gxp = Nxg+1) — Naos (3.42a, b)
Grb = Qx+1) — Qxr + Wis qsp = Nys+1) — Nxst (3.43¢, d)

Where 1; is the edge loading function, ¢, is the twist angle of the beam, my;, is the
twisting moment per unit length applied to the beam from Eq. (3.37d), and g.», g», and
gs» are the distributed forces per unit length applied to the beam in the x, , and s

directions from Eq. (3.37a,b,c).
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3.3.7 Solution

A cylindrical shell is divided into N-strips (Figure 3.1) depending on the number of
loading and geometric discontinuities and the locations of the ring stiffeners. For each of

the N-strips, eight equations are generated from the boundary and continuity conditions.

This yields a unique 8N system of equations for each mode m (m = 0, 1, 2, ..., o).
Solution of these systems of equations provide the constants Cams (d =1, 2, ..., 8) in the
homogeneous solution. The potential function ®; for each strip / (I =1, 2, ..., N) is

derived by summing the homogeneous and particular solutions. The potential function is
then back-substituted into the relevant equations to yield the desired forces and

displacements.

3.3.8 Convergence

The ASM results are derived from the summation of modes in the infinite series solution.
The number of modes required for the convergence of the solution is dependent on the
geometry of the structure and the applied loading. In practice, the summation continues
until the modal contribution is significantly less than the required accuracy of the results.
Typically, 50 modes are adequate to obtain deflection and force results accurate to four

significant digits.

3.3.9 Implementation

The ASM is easily programmable. For the examples considered in Chapter 4 and
Chapter 5, a MATLAB (Mathworks, 2017) program was developed to compute the
results. Due to the ill-conditioned nature of the solution, the ASM is susceptible to
numerical instabilities when computing solutions using double precision floating point
format. This required the use of an arbitrary-precision package, which solved the
problem with overflow/underflow and allowed for the storage of an arbitrary number of

digits in the solution.
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Solution times vary depending on the number of strips required, shell wall material,
loading complexity, and number of modes. For simple cases with isotropic shells and
axisymmetric loading, the computation time required for the solution is seconds. A
laminated shell with four strips, non-axisymmetric loading, and 50 modes required for the

solution would have a computational time of approximately 20 minutes.
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Table 3.1. Particular solution ®p,(x, s) for cylindrical strip /

Load Case Dp(x, )

Case 1 - Zero load

0 X Xis X;
S

®p;(x,5) =0

Case 2 - Linearly varying load (hydrostatic load)

q(x,s) =qo —v(x — x;_1)

qo Xt _ Y X5
2443, 1204;,

Ppim=o(x,s) =

Dpim=12,.0(%,5) =0

do 4
244, "

Dpim=o(x,5) =

Dpim=12,.0(%,5) =0

qo

v _ 4
48rRAL, 2 T S%

Ppim=o(x,s) =

DPpim=1(x,5) = 271';?4;1 [sin (%2) — sin (%1)] x? cos (%)

Dprm=z3,.0(%,5) = ﬁ [sin (% 52) — sin (% 5 )] cos (% s)
m

Ly

4
48TRAL, "

Dpim=o(x,s) =

@pim=1(x,5) = = cos (s_l) x* cos (%)

2nRAL, O \R
L m m
- Dpim=23,.,0%,8) = ”R‘:Em cos (E sl) cos (E s)
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Table 3.2. Edge loading function y;(s) along the edge x = xi

Load Case P;(s)

Case 1 - Zero load

0 X Xi1 X; Xiig
S
Yi(s) =0
1 +1

Case 2 - Line load L in s direction

lpim:o(s) =L

Yim=12,..0() =0

Case 3 - Partial line load L

0 X Xt X Xivi
N

\S\ /7 \ Ly(s; — 51)

Yim=o(s) = ————
j ( \) . 2nR
S5 _ S1 + Sy

¢im=1,2,...,oo (5) = % sin [% (Sz - 51)] cos [% (s 2 )]

1 I+1

Case 4 - Concentrated point load P

‘xi—l xl xi*l

0 X
s P
\s /\\ ;/P wimzo(s) = ﬁ
P
Yim=12,.., w(8) = ECOS [% (s— 51)]
1 +1
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1 2 12 -1 7 1 2 [+3

Figure 3.1. Stiffened cylindrical shell with strip and edge loadings
Note: The stiffeners are concentric with the shell

X, Uyp

S, Ug
r) Wb

Figure 3.2. Coordinate system for the ring stiffener
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CHAPTER 4

ANALYTICAL STRIP METHOD FOR THIN ISOTROPIC CYLINDRICAL
SHELLS

4.1 Introduction

Cylindrical Shells are important structural elements with widespread applications in
various fields such as civil, environmental, mechanical, and aerospace engineering.
Much effort has been dedicated to understanding the behavior of these structures.
Several shell theories have been developed to simplify complex three-dimensional
elasticity based solutions. These theories are roughly divided into two categories, thin
shell theories which adopt Love’s assumptions and higher order shell theories that relax
one or more of the Love’s assumptions (Kraus, 1967). Due to the complexity of the
governing equations for cylindrical shells, many of the existing analytical solutions are
based on thin shell theory. Leissa (1973) provides an excellent review of available thin

shell theories.

Analytical solutions to cylindrical shells subjected to axisymmetric loads are widely
available. Timoshenko and Woinowsky-Krieger (1959) provide solutions for cylindrical
shells with uniform internal pressure as well as cylindrical tanks subjected to hydrostatic
loads. Due to the introduction of a second variable in the circumferential direction, non-
axisymmetric type loadings are difficult to incorporate in the solution. Bijlaard (1955)
developed a double series solution for cylindrical shells subjected to a patch load as well
as a similar solution for points. Odqvist (1946), Hoff et al. (1954), Cooper (1957), and
Naghdi (1968) have developed unique solutions for cylindrical shells subjected to a
uniform line load along a generator. Meck (1961) presented a solution for line loads

applied along the circumferential direction.

The objective of this paper is to develop an analytical strip method (ASM) of solution for
stiffened isotropic thin cylindrical shells. The ASM was first developed by Harik and
Salamoun (1986, 1988) for the analysis of thin orthotropic and stiffened rectangular

plates subjected to uniform, partial uniform, patch, line, partial line and point loads or any
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combination thereof. The solution procedure requires that the structure be divided into
strips based on the geometric discontinuities and applied loads (Figure 4.1). The
governing differential equation for each strip is solved analytically and the applicable

continuity and boundary conditions are used to combine the solutions for the strips.

The primary contribution of the ASM is in its ability to handle a wide variety of loading
and geometric configurations. At present, analytical solutions are limited to
axisymmetric and simple non-axisymmetric loadings applied to cylindrical shells of basic
geometry. Other more complex cases must utilize numerical or semi-numerical
techniques. Unlike numerical based solutions, the accuracy of the ASM does not depend
on the number of strips within the structure, but rather the number of modes considered in

the series solution.

4.2 Governing Differential Equation for Isotropic Cylindrical Shells

The surface coordinate system used in the derivation of the governing equation for a
cylindrical strip is shown in Figure 4.1. The strain-displacement equations associated

with thin shell theory are given as (Kraus, 1967)

€y = 22 (4.1a)
s=24l (4.1b)
Vs = 52+ 2 (4.10)
e = —2Y (4.1d)
w2(-2) 1o
T w0
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And the equilibrium equations are (Kraus, 1967)

r T g =0 (4.22)
a1 ey Ly g, =0 (4.2b)
aa%+%——+q 0 (4.2¢)
Py B0, =0 (4.2d)
% % ~Q,=0 (4.2¢)

The five equilibrium equations are reduced to three by substituting Eq. (4.2d) and Eq.
(4.2e) into Eq. (4.2c). Substitution of the strain-displacement equations into the
equilibrium equations yield a system of three differential equations that may be presented

as

L1 Liz  Li3] (uy qx
Liz Lyy Las {us} = 19s 4.3)
Liz Lp3 Lsgzl'w q

where L;; are differential operators

Ly =AS+20a 2 (4.42)
b= s
Lz =2A— (4.4¢)
Ly, = (17,4 + ED) +(4+ D)= (4.4d)
Las = % ai _% 6:2365 B %D ;_; (4.4¢)
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64
L33— A+D_+2D 262+D§ (4.4ﬂ

A and D are the extensional and bending stiffness of the shell

Et
A= — (4.5a)
D= __Et? 4.5b
T 12(1-v2) (4.5b)

Where ¢ is the thickness, E is the elastic modulus, and v is Poisson’s ratio.

The displacements in the x, s, and 7 direction, ux, us, and w, are presented in terms of the

potential function ®(x, s) (Sharma et al., 1980)

Uy = (LypLp3 — L13Lyp) @ (x, ) (4.6a)
Us = (Ly3Lyq — Ly3Ly1)®P(x, s) (4.6b)
W = (Ly1Ly; — LypLy1)®(x, ) (4.6¢)

For the case of radial loads only, the three equations can be combined into a single eighth

order differential equation expressed in terms of the potential function @ (Sharma et al.,

1980).

%o %o % %o %o %0 %P
Fsoa8+F626662+F44_a4a4+F266 266+F0883+F4'28462+F24ax2654+
9% 9t '
Foe 55+ F40 Py Tt Fayss 5oz T Foagz = a(x,s) (4.7)
The coefficients F;; are
F80 = ZRZ ADZ > AZD (4.8a)
_ (v-1D(-5) 2 2
Fgy = TAD +2(1 —-v)A“D (4.8b)
Fpp = 00 Ap2 4 3(1 - 1) 42D 438
44 = T ez —v) (4.8¢)

51



(1-v)?

F26 = IR? AD2 + 2(1 - V)AZD (4.8d)
Fog = IZ;VAZD (4.8¢)
Fy, = ﬂ-g# A2D (4.8f)
Fp, = U—v;# A2D (4.82)
Foe = 22 42p 4.8h
06 — R2 ( . )
—1)2 _1)2
Fpo = L0t p2p 4 L) 0FD 43 (4.81)
(1-v)(3v+5) .
Fpp = —— o A®D (4.8))
Fop = £ 42p (4.8K)
04 2R* )

Where 4 and D are the extensional and bending stiffness provided in Eq. (4.5).

4.3 Isotropic Beam Equations

The following differential equations can be derived from the equilibrium of an isotropic

curved beam element (Vlasov, 1961)

_ d*uyp 1 d2¢b) EpCw (d4¢b 1 d4uxb) GpJb (d2¢>b 1 dzuxb)

Axv = Eblr( ds* R ds? + R ds* + R ds* R ds? + R ds? (4.9)
_ d*wy, 1 d3usb) EpAp (dusb 1 )

Aro = Eblx ( ds* R ds3 + R ds + R Wb (4'10)
__ Eply (d3wb . ldzusb) _ (dzusb lm)

Asp = R ds3 R ds2 EpAy ds? +R ds (4.11)

Evl 2 1 a4 1d4 d? 1d?
me = (=G ) + BCu (G 41 00) - ol (TR ) @12
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The terms g, b, and gs» are the distributed forces per unit length applied to the beam in
the x, 7, and s directions (Figure 4.2); mx» 1s the twisting moment per unit length applied
to the beam; u.w», usp, and wp are the deflections of the beam in the x, », and s directions
(Figure 4.2); ¢, is the twist angle of the beam; R is the radius measured to the centroid of
the beam; E»l, = flexural rigidity about the r-axis (Figure 4.2); Eplx = flexural rigidity
about the x-axis (Figure 4.2); E»ds = axial stiffness of the beam; GnJy = torsional rigidity
of the beam; E»Cw = warping rigidity of the beam.

4.4 Analytical Strip Method

The solution of the differential equation for a general strip / is based on the assumption
that the form for the potential function, ®,, satisfies continuity at the surface coordinate

s=0ands = 2nR. Let

d = Z?Lo ¢n(x) COS(,BnS) (413)
Where
=1 (4.14)

Substituting Eq. (4.13) into the governing differential equation [Eq. (4.7)], multiplying
both sides of the equation by cos(f,,s), integrating from s =0 to s = 2nR, and

summing from m = 0 to m = oo yields the following equation by orthogonality

S i S2m g, Eom®) 4 pp LD 4y SOnD) 4 i (0] =

2TTR ©
ﬁf " qx,s)ds + Zm=15f0 T 4(x, 5) cos(Bps) ds (4.15)
Where:
Fgm = Fao (4.162)
Fém = —Fe2Pm” (4.16b)
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Fim = FaaBm” — FiaBm’ + Fuo (4.16¢)
* 6 4 2

Fym = —FosPm” + FouPm — F22Bm (4.16d)
. 8 6 4

Fom = FogBm — FosBm~ + FoaPm (4.16¢)

Form=0, F;y, = Fjo = 0and form=1, Fj; = 0.

Eq. (4.15) is an infinite set of linear 8" order ordinary differential equations for ¢, (x)
with m = 0, 1, 2, ..., co. The solution is obtained by superposition of the associated

homogeneous and particular solutions.

®(x,5) = Oy(x,s) + Pp(x,s) (4.17)
where the homogeneous solution

Py (x,5) = Xm Prm () cos(Bs) (4.18)

and the particular solution

Dp(x,5) = Xin Ppm (x)c0S (B S) (4.19)

4.4.1 Homogeneous Solution

The homogeneous solution for mode m, ¢y, (x), is expressed as

Prm (x) = e¥Ymbm* (4.20)
The characteristic equation of Eq. (4.20) for mode m = 0 is

Fgym® + Fovn® + Ffyn* =0 (4.21)
And the homogeneous solution for mode m =0 is

Dpyo(x,8) = Cig + Crox + C30x2 + Chox® + [Cso cosh(ysox) +
CooSinh(y30x)] cos(yaox) + [Cro cosh(yzox) + Cgosinh(yzox)]sin(ysox) (4.22)
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The characteristic equation of Eq. (4.20) for mode m = 1 is
ngm8+ngm6+F:Vm4+F;Vm2 =0 (4.23)
And the homogeneous solution for mode m =1 is
®p1(x,5) = { +[Cs1 cosh(yy1x) + Cgq sinh(y11x)] cos(yz1x) p cos(Bys) (4.24)

+[C71 cosh(y11%) + Cgysinh(y13x)]sin(y21%)
The characteristic equation of Eq. (4.20) for all other modes (m = 2, 3, ...,0) is
ngm8+Fng6+F:Vm4+F;Vm2+F5:O (4.25)

And the homogeneous solution for all other modes (m =2, 3, ..., ©) is

[Clm COSh(Vlmx) + CZm Sinh(ylmx)] COS(Vme)

® (X S) — +[C3m COSh(Vlmx) + C4m Sinh(ylmx)] Sin(Vme)
Hm A +[CSm COSh(y3mx) + C6m Sinh(VSmx)] COS(V4mx)
+[C7m COSh(V3mx) + CSmSinh(Y3mx)]Sin(Y4mx)

l cos(fBmS) (4.26)

Eq. (4.21), Eq. (4.23), and Eq. (4.25) can be reduced to quartic equations for which the
characteristic roots can be solved analytically (Editing Group of the Manual of
Mathematics, 1979). The constants Cg4,,, (d = 1,2, ...,8) for each mode (m = 1,2, ..., )
are determined by the boundary conditions at x = 0 and x = x,, and the continuity

conditions at x = x; [(i = 1,2, ...,n — 1) Figure 4.1].

4.4.2 Particular Solution

The particular solution is dependent upon the load distribution applied to the strip. For a

given strip loading, the load distribution function, q(x, ), is expressed as

q(x,s) = qof (x)g(s) (4.27)

where qo is the load amplitude and f{x) and g(s) are the load distribution functions in the x

and s directions.
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Substituting into the right hand side of Eq. (4.15) yields,

28 2 g(s)ds  form =0 (4.28)
and
%ng) foan g(s) cos(B,,s) ds form=1,2,...,0 (4.29)

The potential function, ¢,m,(x), can be derived for a wide range of commonly

encountered load distributions. The particular solution for most common strip loadings

are presented in Table 4.1.

When a strip is subjected to more than one load, the method of superposition is employed

to determine the particular solution.

4.4.3 Edge Loading

For cylinders subjected to point loads and radial line loads distributed along the
circumferential direction, the cylinder is divided into strips such that the loads coincide
with the edges of the strips (Figure 4.1). These loads are expressed as a Fourier series
and incorporated into the solution as shear force discontinuities between strips. Table 4.2

presents the edge loading function 1; (s) for several common loadings.

When an edge is subjected to a combination of loads, the method of superposition is

employed to determine the edge loading function.

4.4.4 Boundary Conditions
The boundary conditions along the edges x = 0 and x = x,, are:

For simply supported edges: u, =0, us=0, w=0, M,=0 (4.30a, b, ¢, d)
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For clamped edges: u, =0, us=0, w=0, —=0, (4.31a,b, ¢, d)
For free edges: Q, =¢, N,=0, N,,=0, M, =0, (4.32a,b, ¢, d)

For beam support: w =wy, ===y, Qx =G+, My=my (433ab,c,d)

4.4.5 Continuity Conditions

The following continuity conditions are applied along the shared edge between strips I

and [ + 1 atx = x;

_ _ _ owy _ Ow(+1)
Upr = Uxr1)s  Ust = Usen)s  WI=Waen), 5o = - (4.34a,b, ¢, d)

and

My = Myg+1)s Nt = Nee1)s Qur = Qurr) T ¥is Nest = Nysg+y (4353, b, ¢, d)

When a beam is present at x = x;, the following continuity conditions are imposed along

the common edge x = x;, between strips / and /+1.

owy 0wy

Uyr = Uy(re1)s  Ust = Us+1)s WI = Wisr), o= — = dp (4.36a, b, c, d)
and
My = Mx(1+1) — My, Qxp = Nx(l+1) — Ny, (4.37a,b)

4.5 Solution

A cylindrical shell is divided into N-strips (Figure 4.1) depending on the number of
loading discontinuities and the locations of the ring stiffeners. For each of the N-strips,
eight equations are generated from the boundary and continuity conditions. This yields a

unique 8N system of equations for each mode (m = 0, 1, 2, ..., ©). Solution of these
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systems of equations provide the constants Cams (d = 1, 2, ..., 8) in the homogeneous
solution. The potential function ®; for each strip I (/ = 1, 2, ..., N) is derived by
summing the homogeneous and particular solutions. The potential function is then back-

substituted into the relevant force and displacement equations.

4.6 Application

Because of the ill-conditioned nature of the solution, the ASM is susceptible to numerical
instabilities when computing solutions using double precision floating point format. To
eliminate this concern, examples are computed with a MATLAB (Mathworks, 2017)

program using an arbitrary-precision package.

4.6.1 Example 1: Cylindrical Shell Subjected to Non-Axisymmetric Loads

The purpose of this example is to compare the Analytical Strip Method (ASM) results for
cylindrical shells subjected to non-axisymmetric loads to an existing analytical solution
developed by Bijlaard (1955) for the design of pressure vessels subjected to point and
patch loads.

The shells in Figure 4.3 and Figure 4.4 are simply supported at the ends,
(O/ax) = us = w = Mx = 0, and are subject to a point load and a patch load at mid-length,
respectively. The magnitude of the point load is designated as P, while the resultant (or
total) magnitude of the patch load is P* = 4pcic2, where p is the distributed load and c;
and c2 are the half-lengths of the patch area in the circumferential and longitudinal

direction respectively (Figure 4.4). Poisson's ratio v = 0.30.

Table 4.3 presents the dimensionless radial deflection and force quantities corresponding
to bending moments M; and Mx as well as membrane forces Ns and Nx. The results are
presented for prescribed radius-to-thickness ratios (R/f) and length-to-radius ratios (L/R)

atx = L/2, s = 0. The results are presented for an existing analytical solution (Bijlaard,
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1955), the Analytical Strip Method (ASM), and a finite-element (FEM) solution
generated using SAP2000 (Computers and Structures, Inc., 2015).

The results show excellent agreement between the ASM and FEM solutions; the
dimensionless quantities are all within 2% difference. There is also good agreement
between the existing analytical solution (Bijlaard, 1955) and the ASM for the
dimensionless deflection quantities and the dimensionless force quantities corresponding
to Ms and Ny; the values are predominately within 3% difference. The dimensionless
force quantities for Mr and Ns show more variation between the existing analytical
solution (Bijlaard, 1955) and the ASM; the difference in the two solutions is as much as

10% with the larger differences occurring at larger radius-to-thickness ratios.

In development of the existing analytical solution, Bijlaard’s intent was to develop a set
of practical equations that could be used in practice for the evaluation of local stresses in
pressure vessels. As a result, there were several simplifications made in his formulation
at the cost of accuracy in the solution; the most significant being the neglect of the fourth-
order terms in his combined eight-order differential equation. The neglected terms

correspond to the absence of

92 92
[(1 -+ (4.39)

tZ
12R?

in the second of Timoshenko’s (1959) three uncoupled differential equations. This term
is fully incorporated into the ASM solution. The neglect of this term will not fully
capture the membrane stiffness of the shell and is likely a major contributor in the
differences in the dimensionless Mx and N; values between the existing analytical solution

(Bijlaard, 1955) and the ASM and FEM.

The ASM results in Table 4.3 are based on summation of the first 51 modes. For the case
of radius-to-thickness ratio of 100 and length-to-radius ratio of 3, Table 4.4 presents the
cumulative dimensionless deflection and force quantities for selected modes. The
solution demonstrates good convergence. The dimensionless force quantity associated
with bending moments Ms and Mx converged slower than the other results with variation

of 1.7% and 0.6%, respectively, between modes 40 and 50.
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4.6.2 Example 2: Cylindrical Shell Subjected to Line Load along the Generator

The purpose of this example is to compare the Analytical Strip Method (ASM) results for
a cylindrical shell subjected to a line load with an existing analytical solution developed

by Hoff, et al. (1954) with numerical results derived by Kempner (1955).

The shell in Figure 4.5 is simply supported at the ends, (*/ax) = us =w = Mx = 0, and is
subject to a line load centered at mid-length of the cylinder. The line load has a total
magnitude designated as P* = 2¢zp and a half-length designated at c2. The modulus of
elasticity £ = 2.07x10® kPa = 30x10° psi and Poisson's ratio v = 0.30.

Table 4.5 presents the dimensionless radial deflection and force quantities at x = L/2, s =
0 corresponding to bending moments Ms and M as well as membrane forces Ns and Nk.
The results presented by Kempner (1955) are compared with ones generated using the
ASM and the finite-element method (FEM) solution generated using SAP2000
(Computers and Structures, Inc., 2015). The results of all three methods are in very good

agreement.

4.6.3 Example 3: Stiffened Tank

The steel tank in Figure 4.6 has a fixed base and is stiffened with standard W10x49 steel
rolled sections having an area 4 = 9290 mm? (14.4 in%) and a moment of inertia /x =
1.132x10% mm* (272 in*). The dimensions and fluid properties for the tank are presented
in Table 4.6. The modulus of elasticity of the tank and stiffener £ = 2x10% kPa (29x10°

psi) and Poisson’s ratio v = 0.3.

The inclusion of the stiffeners as well as the variation in wall thickness and loading
through the height of the cylinder limits the use of existing analytical solutions. The
Analytical Strip Method (ASM) is deployed herein by identifying the six geometric and
loading discontinuities, dividing the cylinder into five strips between the discontinuity
points, and imposing the boundary and continuity conditions at the ends of each strip.

Figure 4.7 through Figure 4.9 present the radial displacement w, bending moment M., and
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shear Qx, along the height of the stiffened tank. Comparison with existing analytic
methods of solution is not possible. Consequently, the results of the ASM are compared
with the finite-element (FEM) results generated using SAP2000 (Computers and
Structures, Inc., 2015). To provide a direct comparison, the FEM analysis was performed
with stiffeners concentric to the middle surface of the cylinder walls. The two results are
in very good agreement. An additional FEM analysis was performed with stiffeners at
their true eccentricity. These results correlate well with the FEM results for concentric
stiffeners indicating that the eccentricity has minor impact on the deflection and force

quantities for this example.

4.6.4 Example 4: Stiffened Tank Subjected to Line Load

The purpose of this example is to demonstrate the application of the Analytical Strip
Method (ASM) to a stiffened cylinder subjected to non-axisymmetric loading. Existing

analytical solutions to these type problems are not available.

The steel cylinder in Figure 4.10 is stiffened with standard W10x49 steel rolled sections
having an area 4 = 9290 mm? (14.4 in?), a moment of inertia about the section x-axis Ix =
1.132x10% mm* (272 in*), a moment of inertia about the section y-axis I, = 3.888x10’
mm* (93.4 in*), and a torsion constant J = 5.786x10° mm* (1.39 in*). The modulus of
elasticity of the cylinder and stiffener E = 2x10® kPa (29x10° psi) and Poisson’s ratio v =
0.3. The ends are simply supported with boundary conditions, u =s =w = Mx = (. The
cylinder is subjected to a line load p = 0.01 kN/mm (57.1 1b/in).

The inclusion of the stiffeners, as well as the non-axisymmetric loading, limits the use of
analytical solutions. Just as in Example 3, for a shell subjected to axisymmetric loads,
the ASM is deployed by identifying four strips between the stiffeners and imposing the
boundary and continuity conditions at the ends of each strip. Comparison with existing
analytic methods of solution is not possible. Consequently, the results of the ASM are

compared with the finite-element (FEM) results generated using SAP2000 (Computers
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and Structures, Inc., 2015). Figure 4.11 presents the radial deflection along the generator,

s =0. There is excellent agreement between the ASM solution and the FEM solution.

The ASM results are based on summation of the first 51 modes. Table 4.7 presents the
radial deflection quantity for several modes at distances of x = 375 mm (14.8 in) and x =
500 mm (19.7 in) along the generator, s = 0. The series shows good convergence
characteristics, mode 50 contributes less than 0.04% to the cumulative deflection at both

locations presented.

4.7 Conclusions

The Analytical Strip Method (ASM) is presented in this paper for stiffened isotropic
cylindrical shells. The primary advantage of the ASM is its applicability to any
generalized distribution of ring stiffeners along the length of the shell and to any
combination of patch, uniform, line, concentrated, and hydrostatic loads. The following

are deduced from the derivation of the ASM and the examples presented in this paper:

e The results of the ASM are in good agreement with existing analytical solutions,
and the generality of the solution method overcomes many limitations of existing
analytical solutions.

e Unlike the finite element method, the ASM does not require significant pre-
processing effort. Its accuracy is dependent on the number of modes considered
in the solution rather than the fineness of the discretization of the structure.

e The finite element method does offer more flexibility in structure geometry. For
instance, the ASM requires stiffeners to be concentric with the shell walls and
stepped wall thicknesses to have a coincident middle surface.

e The finite element method has less potential for numerical instabilities than the

ASM.
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Table 4.1. Particular solution ®p,(x, s) for cylindrical strip /

Load Case Dp(x,8)

Case 1 - Zero load

Op(x,8) =0

q(x,8) = qo —y(x — xi_1)

90 x4 _ Y xs
244, T 1204},

Dppm=o(x,s) =

Dpim=1p,.,0(x,5) =0

o Xt
2445,

Ppm=o(x,5) =

Dpim=12,.0(%,5) =0

do

Ppim=o(x,5) = m(sz - s)x*

Dpm=1(x,5) = 2711??(1)4;1 [sin (%2) — sin (%1)] x% cos (%)
Ppm=23,.00(%,5) = 7mng?4(*)m [Sin (% sz) — sin (% sl)] cos (% s)
cbplm:o(x. s) = 4-81:‘#;0364

DPpym=q(x,5) = ZnILél;l cos (%1) x? cos (%)

Ppim=23,.00(%,8) = an:lCB cos (% Sl) cos (% S)
m
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Table 4.2. Edge loading function 1;(s) along the edge x = xi

Load Case P(s)

Case 1 - Zero load

Pi(s) =0

1 I+1

lpim=0(s) = Ls

Vim=12, .0 (s)=0

0 X Xig X; Xy
SO L(s, — 59)
S ¢im:o(5) = T
j ( \j) LS
. 2L, m m;  si+ss
Ipim=1,2,...,oo (5) = % sin [ﬁ (52 - Sl)] cos [E (S - > )]
1 I+1
Case 4 - Concentrated point load P
0 X X1 X; Xiyg
s ///\ p
\s\l Vg Yim=o(s) =5 —
P m
lpim:l,z,...,oo (S) = E cos [E (S - 51)]
1 I+1
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Table 4.3. Dimensionless deflection and forces at x = L/2 and s = 0 for the cylindrical
shell subjected to point load, P, in Figure 4.3 and to patch load, P* = 4pcic2, with c1 =
c2 in Figure 4.4.

Point
Load Patch Load
WER wER M, M, NsR NyR
Rit LR Method P P P P* p* P*
Bijlaard* 300 272 0.1324 0.1057 2,613 2.320
3 ASM® 296 267 0.1321 0.1045 2.482 2282
FEM® 299 269 0.1333 0.1052 2.460 2.300
Bijlaard 468 442 0.1438 0.1100 2592 2.640
15 6 ASM 463 434 0.1438 0.1079 2.439 2.619
FEM 469 438 0.1452 0.1086 2.420 2.640
Bijlaard 601 576 0.1463 0.1102 2574 2784
10 ASM 597 566 0.1473 0.1087 2.428 2.719
FEM 586 570 0.1486 0.1095 2.420 2.740
Bijlaard 4352 3645 0.0863 0.0559 6.451 7.120
3 ASM 4324 3573 0.0857 0.0556 6.367 7.038
FEM 4350 3596 0.0864 0.0559 6.360 7.060
Bijlaard 7631 6924 0.0967 0.0614 6.482 8.064
50 8 ASM 7608 6826 0.0956 0.0585 6.310 8.001
FEM 7656 6844 0.0964 0.0588 6.300 8.020
Bijlaard 13430 12930 0.1030 0.0634 6.434 8.704
20 ASM 12667 11853 0.1007 0.0599 6.292 8.466
FEM 12702 11890 0.1015 0.0603 6.280 8.500
Bijlaard 20227 15800 0.0626 0.0343 9.578 12.784
3 ASM 20256 15643 0.0617 0.0341 9.517 12.744
FEM 20532 15660 0.0627 0.0344 9.520 12.760
Bijlaard 34350 30136 0.0716 0.0394 9.792 14.192
100 8 ASM 34747 29857 0.0704 0.0366 9.450 14.142
FEM 35032 29870 0.0711 0.0368 9.460 14.160
Bijlaard 74379 71448 0.0767 0.0400 9.618 15.472
30 ASM 74124 68968 0.0760 0.0382 9.432 15.400
FEM 74472 69020 0.0767 0.0385 9.440 15.420
Bijlaard 231738 158362 0.0337 0.0137 13.696 29.328
3 ASM 234848 157615 0.0332 0.0135 13.617 29.188
FEM 237974 157180 0.0337 0.0136 13.620 29.140
Bijlaard 402590 313842 0.0406 0.0172 14.963 32.288
8 ASM 397532 315039 0.0394 0.0154 13.532 32.197
300 FEM 404260 314592 0.0399 0.0155 13.540 32.160
Bijlaard 625855 566530 0.0440 0.0180 14.584 33.424
20 ASM 676570 590498 0.0431 0.0165 13.512 34.344
FEM 683356 590092 0.0436 0.0166 13.520 34.300
Bijlaard 968910 925438 0.0453 0.0180 14.200 34.128
40 ASM 1014420 925796 0.0453 0.0171 13.504 35.043
FEM 1021380 925506 0.0458 0.0172 13.520 35.000

2 Bijlaard = Existing Analytical Solution (Bijlaard, 1955)
® ASM = Analytical Strip Method
¢ FEM = Finite Element Solution (Computers and Structures, Inc., 2015)
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Table 4.4. ASM cumulative dimensionless deflections and forces at x = L/2 and s = 0 for
the cylindrical shell subjected to a point load, P, in Figure 4.3 and to a patch load, P*
=4pcic2 with ¢1 = ¢2 in Figure 4.4; R/t =100 and L/R = 3.

Note: w =YWy, M=Y0M,,, N=Y7N,

Mode Point Load Patch Load
" WER wER M; M, _NGR _ NyR
P P* P* P* P* P*
0 102 64 0.0001 0.0004 0.641 0.000
1 371 255 0.0004 0.0012 1.917 0.227
2 1043 842 0.0008 0.0021 3.174 1.127
5 9930 9054 0.0146 0.0098 6.410 7.212
10 16698 14448 0.0435 0.0248 8.972 11.530
20 19401 15648 0.0644 0.0348 9.510 12.738
30 19969 15666 0.0647 0.0350 9.514 12.752
40 20167 15643 0.0627 0.0343 9.516 12.744
50 20256 15643 0.0617 0.0341 9.517 12.744

Table 4.5. Dimensionless deflection and forces at x = L/2 and s = 0 for the cylindrical
shell subjected to a line load with total magnitude of P* = 2¢2p in Figure 4.5.

WER M, M, NR N, R

Method P* P* P* P* P*
Kempner (1955) 6211 0.196 0.107 8.094 9.275
ASM 6201 0.190 0.102 8.031 9.304
FEM 6208 0.196 0.105 8.170 9.337
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Table 4.6. Dimensions and fluid properties for the tank in Figure 4.6

Specific y1=19.81 kN/m? (62.4 pcf)
Gravity y2=| 7.35 kN/m> (46.8 pcf)
Wall t1=176.2mm (3.0 in)
Thickness | #2=| 38.1 mm (1.5 in)
Radius R=]6.1m(20 ft)
H=6.08 m (20 ft)
Hi=|152m(5.0 ft)
H>=10.76 m (2.5 ft)
Hz={0.76 m (2.5 ft)
Hi=|152m (5.0 ft)
Hs=|152m(5.0 ft)

Height

Table 4.7. ASM cumulative deflections w = }i* w,,, along the generator (s = 0) at x =
375 mm (14.8 in) and x = 500 mm (19.7 in) for the stiffened cylindrical shell in Figure
4.10.

Mode x =375 mm (14.8 in) x =500 mm (19.7 in)
w w w w
m 3 4. 3 4.
(10" mm) (10" in) (10" mm) (10" in)
0 0.86 0.34 0.03 0.01
1 4.39 1.73 2.23 0.88
2 7.14 2.81 2.78 1.09
5 17.3 6.82 2.91 1.15
10 43.6 17.2 2.92 1.15
20 69.2 27.2 2.93 1.15
30 73.7 29.0 2.93 1.15
40 74.8 29.5 2.93 1.15
50 75.2 29.6 2.93 1.15
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Figure 4.1. Stiffened cylindrical shell with strip and edge loadings
Note: The stiffeners are concentric with the shell

X, Uy

S, Ugp
R, Wy

Figure 4.2. Coordinate system for the ring stiffener
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Figure 4.3. Cylindrical Shell Subjected to Point Load
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Figure 4.4. Cylindrical Shell Subjected to Patch Load

69
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Figure 4.5. Cylindrical shell subjected to a line load
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Figure 4.6. Stiffened tank with clamped base
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Radial Deflection, w (x10* in)
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Figure 4.7. Radial deflection for the stiffened tank in Figure 4.6
Note: The ASM and FEM results are in very good agreement and difficult

to discern in the figure
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Bending Moment, M, (lb-in)
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Figure 4.8. Bending moment, Mk, for the stiffened tank in Figure 4.6
Note: The ASM and FEM results are in very good agreement and difficult

to discern in the figure
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Figure 4.9. Shear, O, for the stiffened tank in Figure 4.6

to discern in the figure
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Note: The ASM and FEM results are in very good agreement and difficult
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4 Strips at 250 mm (9.84 in)

Figure 4.10. Stiffened cylindrical shell subjected to a line load
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Figure 4.11. Radial deflection, w, along the generator (s = 0) for the stiffened cylinder
in Figure 4.10
Note: The ASM and FEM results are in very good agreement and difficult
to discern in the figure
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CHAPTER 5

ANALYTICAL STRIP METHOD FOR THIN LAMINATED CYLINDRICAL
SHELLS

5.1 Introduction

Laminated shells are widely used in civil, environmental, mechanical, and aerospace
applications due to their high stiffness-to-weight ratio. The layered nature of laminates
allows for optimal and economical use of the material. Several laminated shell theories
have been developed to simplify complex three-dimensional elasticity based solutions.
These theories are roughly divided into two categories, thin shell theories which adopt
Love’s assumptions (Ambartsumian, 1961, 1966; Bert, 1975) and higher order shell
theories that relax one or more of Love’s assumptions (Vasilenko and Golub, 1984;

Reddy, 2004; Barbero et al., 1990).

Three-dimensional elasticity solutions and higher order shell theories are well suited for
thick to moderately thick shells. Elasticity solutions for laminated composite shells are
widely available (Ren, 1987, 1995; Chandrashekhara and Nanjunda Rao, 1997, 1998;
Varadan and Bhaskar, 1991). Noor and Burton (1990) provide and exhaustive review of
available solutions. The applicability of these solutions is generally constrained to shells
of infinite length or with simplified loading conditions. Although thin shell theories
poorly capture the behavior of shells with low radius-to-thickness ratios, they perform
reliably for higher radius-to-thickness ratios (Ren, 1987) and the simplifying assumptions

in the theory facilitate the incorporation of complex loading and boundary conditions.

The objective of this paper is to develop an analytical strip method (ASM) of solution for
stiffened and laminated thin cylindrical shells. The solution is applicable to laminated
shells with any generalized layer configuration and ply-angle scheme, such that the shell
behaves anisotropically. The ASM was first developed by Harik and Salamoun (1986,
1988) for the analysis of thin orthotropic and stiffened rectangular plates subjected to
uniform, partial uniform, patch, line, partial line and point loads or any combination

thereof. The solution procedure requires that the structure be divided into strips based on
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the geometric discontinuities and applied loads (Figure 5.1). The governing differential
equation for each strip is solved analytically and the applicable continuity and boundary

conditions are used to combine the solutions for the strips.

The primary contribution of the ASM is in its ability to handle a wide variety of loading
and geometric configurations. At present, analytical solutions are limited to
axisymmetric and simple non-axisymmetric loadings applied to cylindrical shells of basic
geometry. Other more complex cases must utilize numerical or semi-numerical
techniques. Unlike numerical based solutions, the accuracy of the ASM does not depend
on the number of strips within the structure, but rather the number of modes considered in

the series solution.

5.2 Governing Differential Equation for Laminated Cylindrical Shells

The surface coordinate system used in the derivation of the governing equation for a
cylindrical strip is shown in Figure 5.1. The strain-displacement equations associated

with thin shell theory are given as (Kraus, 1967)

e = 2% (5.1a)
dug w
€s = E-I_E (Slb)
dus . duy
Vs = 5o+ =% (5.1c)
62
Ky = —ﬁ (5.1d)
d (us Ow
k=5 (=50 (5.1¢)
1ous ., 9%w 51
Kas = R 0x 0x0s (5.19)

And the equilibrium equations are (Kraus, 1967)

76



ONy = ONgy

ax as + Tx = 0
0Ny aNs
S + 24+qs=0

90x 4 9Qs _ Ns _
0x as R-I_q_0

OM, = OMyg _
ax + das Qx =0

OMys | OMs

ax BS_QSZO

(5.2a)

(5.2b)

(5.2¢)

(5.2d)

(5.2¢)

The five equilibrium equations are reduced to three by substituting Eq. (5.2d) and Eq.

(5.2¢) into Eq. (5.2c). Substitution of the strain-displacement equations into the

equilibrium equations yield a system of three differential equations that may be presented

as

L1 Liz  Lqi3] (uy qx
Liz Lpy Loz {us} =195
Liz Lz Lzzl'w q

where, differential operators L;; are

2

Lio=A, 2 y24, 2L 44 2
1 = An gz elie gt Aee g

1 62 62
Li; = \A16 + = B16 + (A2 + Age + = B12 + = Bse —+
R 6 0x0s

(Azs + %st) ;_522

% 1 0 9° 1 2
bus = =Bua s+ a5 = 3Bro iz — (Bua + 2B 55+ s
63
26 543
1 2 9? i
Ly = (Aee + 22 Des + 5366)5 +2 ( D2s +3 326 + A26) oxas T

2 1 92
(Azz +2B2 t pDzz) 32
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(5.4a)

(5.4b)

(5.4¢)

(5.4d)



5 L 3 3 a3
(E D66 + EDlz + Blz + 2B66) _axzaS + (_3826 - EDZG) dx0s? +

1 1 b} 1 a3
E(Azz +EBZZ)£+ (_Bzz _EDzz)g (5.4¢)
1 04 0% 04 2 02
Lz = ﬁAzz + Dy, Pyl 4Dy s T (2D1; + 4Dgg) vzaez RP125.2
4 K 04 2 0% 04
B EBZ6 0x0s + 4D26 9xds3 EBZZ 952 + DZZ ds% (5'4f)

where A4; are the extensional stiffnesses, Bj; are the bending-extensional coupling
stiffnesses, and Dy are the bending stiffnesses. The stiffness coefficients are given by

Reddy (2004) and are defined as
L

{Aij,Bij, Dyj} = [%.Qy{1,2,2%}dz; i,j =126 (5.5)
2

where ¢ is the thickness of the shell and Q; ; are the lamina stiffness coefficients (Reddy,

2004).

In symmetric laminates, B;; = 0 in Eq. (5.4). In antisymmetric cross-ply laminates, B;> =
Bis = B2s = Bss= 0 and B22 = -Bi; in Eq. (5.4). In antisymmetric angle-ply laminates, B/
=Bi2=B22=Bss=01n Eq. (5.4).

The displacements in the x, s, and r direction, ux, us, and w, are presented in terms of the

potential function ®(x, s) (Sharma et al., 1980)

Uy = (LypLp3 — Ly3Lap)®(x, s) (5.6a)
Us = (Ly3Ly1 — Ly3Ly1)®P(x, s) (5.6b)
w = (Ly1Ly — LypLay1) (%, 5) (5.6¢)

For the case of radial loads only, the three equations can be combined into a single eighth
order differential equation expressed in terms of the potential function @ (Sharma et. al.,

1980).
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8¢ %@ % d

8 280 280
x*ds 4+F35a 39s 5+F26axZas6

98D
Fsoa 8+F7la 7ds -|'F6Zax6as2

Fo 2 g P g 20 g 000 g 0% 0% 0°%
17 xas” 08 358 60 9x6 | T 51gx55s | 42 gxags? %3053 24 9x29s4

+

66 64 64 64 64(13
FlSaxa 5+F0666+F4-Oa 4+F3la 39s +F226 232+F136 33+F0464 —Q(X S)

(5.7)

The coefficients F;; are presented in Eq. (2.25).

5.3 Isotropic Beam Equations

The following differential equations can be derived from the equilibrium of an isotropic

curved beam element (Vlasov, 1961)

G = Epl (d4uxb _ 1d2¢b) + EpCw (d4¢b + 1d4uxb) __ GbJp (d2¢>b + ldzuxb) (5.8)
xb bir \ " gs4 R ds? R ds* R ds* R ds? R ds2 ’
d*wy, 1 d3ugy EpAp (dugp 1

= L, (Lo 20ty Bl (B 4 2 ) 5.9

drb bix \ gs4 R ds3 R ds RD ( )
Eply (d3wb 1 dzusb) dzusb 1 dwyp

= -= —EA (——+=-—= 5.10

sb R ds3 R ds? beb \ " gs2 R ds ( )

Eply d?u, 1 d*¢ 1 d*u, d?¢ 1 d?u,
Myp = p (_ - +E¢b) +EbCW( : +E ds4b) Gb]b ( dszb +E dszb) (5'11)

The terms g, grb, and gs» are the distributed forces per unit length applied to the beam in
the x, 7, and s directions (Figure 5.2); mx» 1s the twisting moment per unit length applied
to the beam; u.w», usp, and wp are the deflections of the beam in the x, », and s directions
(Figure 5.2); ¢y, is the twist angle of the beam; R is the radius measured to the centroid of
the beam; E»l, = flexural rigidity about the r-axis (Figure 5.2); Eslx = flexural rigidity
about the x-axis (Figure 5.2); E»ds = axial stiffness of the beam; GnJy = torsional rigidity
of the beam; E»Cw = warping rigidity of the beam.
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5.4 Analytical Strip Method

The solution of the differential equation for a general strip / assumes that the form for the
potential function @, satisfies continuity at the surface coordinate s = 0 and s = 2nR.

Let

d = Z%) ¢n(x) COS(,BnS) (512)
Where
Bn =~ (5.13)

Substituting Eq. (5.12) into the governing differential equation [Eq. (5.7)], multiplying
both sides of the equation by cos(f,,s), integrating from s =0 to s = 2nR, and

summing from m = 0 to m = oo yields the following equation by orthogonality

o) « d8Ppm(x) « A%Pm(x) « A*Pm(x) v A2Pm(x) *
o { Fom + Fim + Fim + Fim + Fombm(0)} =

dx8 dx® dx* dx?

1 (27R w 1 r2mR
— " q(x,s)ds + Yom=1—Jo " q(x,5) cos(Bs) ds (5.14)
Where:
Fs*m = F80 (5.1521)
Fém = —Fe2Pm” (5.15b)
Fim = FaaPm” = FizBm” + Fa (5.15¢)
Fom = _F26ﬂm6 + Fz4ﬁm4 - F22,8m2 (5.15d)

x 8 6 4
Fom = FogBm — FoeBm + FoaPm (5.15¢)

Form=0, F;, = F;o =0and form=1, Fj; = 0.

Eq. (5.14) is an infinite set of linear 8" order ordinary differential equations for ¢,,(x)
with m = 0, 1, 2, ..., . The solution is obtained by superposition of the associated

homogeneous and particular solutions.
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P(x,5) = Oy(x,s) + Pp(x,s) (5.16)
where the homogeneous solution
Py (x,s) = Xim Prm (%) cos(Brs) (5.17)

and the particular solution

Dp(x,5) = Xin Ppm (x)c0S (B S) (5.18)

5.4.1 Homogeneous Solution

The homogeneous solution for mode m, ¢y, (x), is expressed as

Prm (x) = e¥Ymbm* (5.19)
The characteristic equation of Eq. (5.19) for mode m = 0 is

Fyym® + Fovn® + Ffyn* =0 (5.20)
And the homogeneous solution for mode m =0 is

Dpyo(x,8) = Cig + Coox + C30x2 + Chox® + [Cso cosh(ysox) +

CooSinh(y30x)] cos(y4ox) + [C70 cosh(yzex) + Cgosinh(yzpx)]sin(yaox)
(5.21)

The characteristic equation of Eq. (5.19) for mode m = 1 is
Fiym® + Feym® + B vm* + B3y =0 (5.22)
And the homogeneous solution for mode m =1 is

Ci1 + Cy1x + C31€731% + Cype7731%

dyq(x,s) = +[Cs1 cosh(y11x) + Cgq sinh(y;71x)] cos(y,1x) cos(fs) (5.23)
+[C71 cosh(yy1x) + Cgysinh(yy1x)]sin(yz1x)
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The characteristic equation of Eq. (5.19) for all other modes (m = 2, 3, ...,0) is
FngS+Fng6+F:Vm4+F;Vm2+F(3k=O (5.24)
And the homogeneous solution for all other modes (m =2, 3, ..., ©) is

[Cim cosh(y1mx) + Cop sinh(y1px)] cos(yomx)
+[Csm cosh(y1mx) + Cam sinh(yymx)] sin(yzmx)
+[Csm cosh(yzmx) + Com sinh(yz,,%)] cos(Vamx)
+[C7m cosh(¥amx) + Cgmsinh(yzmx)]sin(yYamx)

Dy (x,s) = cos(BmS) (5.25)

Eq. (5.20), Eq. (5.22), and Eq. (5.24) can be reduced to quartic equations for which the
characteristic roots can be solved analytically (Editing Group of the Manual of
Mathematics, 1979). The constants Cg4,,, (d = 1,2, ...,8) for each mode (m = 1,2, ..., )
are determined from the boundary conditions at x = 0 and x = x,, and the continuity

conditions at x = x; [i = 1,2, ...,n — 1, Figure 5.1].

5.4.2 Particular Solution

The particular solution is dependent upon the load distribution applied to the strip. For a

given strip loading, the load distribution function, q(x, s), is expressed as

q(x,s) = qof (x)g(s) (5.26)

where qo 1s the load amplitude and f(x) and g(s) are the load distribution functions in the x

and s directions.

Substituting into the right hand side of Eq. (5.14) yields,

20709 (¥ g(s)ds  form=0 (5.27)
and
%ng) foan g(s)cos(Bs)ds  form=1,2,...,0 (5.28)
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The potential function, ¢p,m,(x), can be derived for a wide range of commonly
encountered load distributions. The particular solution for most common strip loadings

are presented in Table 4.1.

When a strip is subjected to more than one load, the method of superposition is employed

to determine the particular solution.

5.4.3 Edge Loading

For cylinders subjected to point loads and radial line loads distributed along the
circumferential direction, the cylinder is divided into strips such that the loads coincide
with the edges of the strips (Figure 5.1). These loads are expressed as a Fourier series
and incorporated into the solution as shear force discontinuities between strips. Table 4.2

presents the edge loading function 1;(s) for several common loadings.

When an edge is subjected to a combination of loads, the method of superposition is

employed to determine the edge loading function.

5.4.4 Boundary Conditions
The boundary conditions along the edges x = 0 and x = x,, are:

For simply supported edges: u, =0, u;=0, w=0, M,=0 (5.29a, b, ¢, d)
For clamped edges: u, =0, us=0, w=0, —=0, (5.30a, b, ¢, d)
For free edges: Q, =¢, N,=0, N, =0, M, =0, (5.31a,b,c,d)

For beam support: w = wy, 52 =y, Q=G+ My =my (5322.b,c,d)
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Difficulties arise when the coefficients on the odd derivatives of the s terms in Eq. (2.32),
Eq. (2.34), and Eq. (2.36) are non-zero. Expansion of these equations lead to both
cos(fy,s) and sin(fBy,s) in the expressions for ux, us, and w when m =1, 2, ..., oo. This
necessitates two constraint equations to impose any one of the boundary conditions in Eq.
(5.29) through Eq. (5.32). For these cases, only four boundary conditions can be

assigned per strip, in contrast to the eight conditions allowed for the alternative case.

5.4.5 Continuity Conditions

The following continuity conditions are applied along the shared edge between strips I

and[ + 1atx = x;

— — owr _ W+
Uy = Ux41)s  Ust = Usgenys WIS Warn), o =5 (5.33a,b,¢,d)

and
Myr = My@+1)s Nt = N1y, Qur = Qxavn) T ¥i Nust = Nusgvy (5343, b, ¢, d)

When a beam is present at x = x;, the following continuity conditions are imposed along

the common edge x = x;, between strips / and /+1.

owp _ Owgyr)

Uxp = Ux(+1)>  Ust = Usg+r), W1 =Wy, 575757 = b (5.35a,b, ¢, d)
and

Mep = My+1) — Myrs Qxp = Nxg+1) — Naos (5.36a, b)
b = Qx+1) — Qxr + Vis qsp = Nysg+1) — Nisi (5.37c, d)
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5.5 Solution

A cylindrical shell is divided into N-strips (Figure 5.1) depending on the number of
loading discontinuities and the locations of the ring stiffeners. For each of the N-strips,
eight equations are generated from the boundary and continuity conditions. This yields a
unique 8N system of equations for each mode (m = 0, 1, 2, ..., ©). Solution of these
systems of equations provide the constants Cams (d = 1, 2, ..., 8) in the homogeneous
solution. The potential function ®; for each strip / (/ = 1, 2, ..., N) is derived by
summing the homogeneous and particular solutions. The potential function is then back-

substituted into the relevant force and displacement equations.

5.6 Application

Because of the ill-conditioned nature of the solution, the ASM is susceptible to numerical
instabilities when computing solutions using double precision floating point format. To
eliminate this concern, examples are computed with a MATLAB (Mathworks, 2017)

program using an arbitrary-precision package.

5.6.1 Example 1: Laminated Cylindrical Shells Subjected to Axisymmetric Loads

The purpose of this example is to compare the Analytical Strip Method (ASM) results for
laminated cylindrical shells subjected to axisymmetric loads to an existing analytical

solution developed by Ren (1995).
Three laminated shells are considered:
Case 1: Single layer with lamina fibers oriented at an angle of § = 45°.

Case 2: Two-layer antisymmetric angle-ply laminate with inner layer oriented with fibers

at an angle of f = 45° and outer layer oriented with fibers at an angle of f = -45°.
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Case 3: Three-layer symmetric angle-ply laminate with inner and outer layers oriented
with fibers at an angle of f = 45° and middle layer oriented at an angle of f = -45°. The
thickness of the inner, middle, and outer layers is t/2, t/4, and t/2.

Orientation angle of the lamina, f, is measured counterclockwise from the x-axis of the
cylinder. For the layer material, the elastic modulus in the direction of the fibers E; =
172 GPa = 25x10° psi, the elastic modulus perpendicular to the direction of the fibers E>
=7 GPa = 10° psi, shear modulus G712 = 3.4 GPa = 0.5x10° psi, and Poisson's ratio v;2 =
0.25.

The shells are simply supported with length-to-radius ratio L/R = 6 and are subjected to

an axisymmetric sinusoidal load q = g, sin(rtx/L). Table 5.1 presents the dimensionless

100E,t3w
qoR*

deflection, w = , at x = L/2 for prescribed radius-to-thickness ratios (R/t). The

results are presented for an exact elasticity based solution (Ren, 1995), an existing
classical shell theory (CST) solution for thin shells (Ren, 1995), and the Analytical Strip
Method (ASM).

As expected, the ASM and CST results are in excellent agreement regardless of the
radius-to-thickness ratios. The ASM and CST solutions are within 2% of the Exact
solution for radius-to-thickness ratios up to 10. For the thicker shells, the difference

between the Exact and thin shell solutions increases to 15% for R/t = 2.

5.6.2 Example 2: Laminated Cylindrical Shells Subjected to Non-Axisymmetric
Loads

The purpose of this example is to compare the Analytical Strip Method (ASM) results for
laminated cylindrical shells subjected to non-axisymmetric loads to an existing analytical

solution developed by Ren (1987).
Three laminated shells are considered:

Case 1: Single layer with lamina fibers oriented in the s-direction, S = 90°.
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Case 2: Two-layer antisymmetric cross-ply laminate with inner layer oriented with fibers

in the x-direction, f = 0°, and outer layer oriented with fibers in the s-direction, 5 = 90°.

Case 3: Three-layer symmetric cross-ply laminate with inner and outer layers oriented
with fibers in the s-direction, f = 90°, and middle layer oriented with fibers in the x-

direction, 5 = 0°. All three layers are of equal thickness.

For the layer material, the elastic modulus in the direction of the fibers £7 = 172 GPa =
25x10° psi, the elastic modulus perpendicular to the direction of the fibers E2 = 6.9 GPa =
10° psi, shear modulus G2 = 3.4 GPa = 0.5x10° psi, and Poisson's ratio vi2 = 0.25.

The loading on the shells is uniform in the x-direction but has a sinusoidal distribution

q = qo cos(3s/R) in the circumferential direction. The cylinders are infinite in length

100E,t3w
qoR*

and have a radius R = 10. Table 5.2 present the dimensionless deflection, w =

at s = 0 for prescribed radius-to-thickness ratios (R/f). The results are presented for an
exact elasticity based solution (Ren, 1987), an existing classical shell theory (CST)
solution for thin shells (Ren, 1987), and the Analytical Strip Method (ASM). Because
the ASM is not constrained by the infinite length requirement, the solution is obtained by
increasing the length of the simply supported shells until the dimensionless deflection

quantity converges.

As expected, the ASM and CST results are in excellent agreement regardless of the
radius-to-thickness ratios. The thin shell theories give reliable results for radius-to-
thickness ratios down to 50, as the dimensionless deflection quantities are within 3%. As
the thickness of the shell increases, the thin shell theories tend to significantly under
predict the deflection. At R/t = 10, the exact solution predicts nearly twice the deflection
as given by the thin shell theories; and at R/t = 2, the exact solution predicts 18 times the
deflection of the thin shell theories.
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5.6.3 Example 3: Retrofit of a Water Storage Tank

The purpose of this example is to demonstrate the use of the ASM to optimize the design

of a retrofit for a steel water storage tank.

An existing water storage tank has a radius R = 4.572 m (15 ft), a height # = 12.192 m
(40 ft), and is simply-supported at the base. The tank is constructed from steel with a
uniform wall thickness #1 = 6.350 mm (0.25 in), modulus of elasticity £ = 2.0x10° MPa
(29x10° ksi) and Poisson’s ratio v = 0.3. The owner wants to increase the storage
capacity by raising the height of the tank by A3 = 9.144 m (30 ft). The raised portion is

constructed from steel with a uniform wall thickness 2 = 3.175 mm (0.125 in).

The increased height of the tank produces a maximum Von Mises stress ov = 167 MPa
(24.2 ksi), which is more than the maximum allowable stress gan = 124 MPa (18 ksi). To
reduce the stresses below the allowable, the steel is wrapped with a fiber-reinforced
polymer (FRP) from the base to a height A1 = 4.572 m (15 ft). The FRP has elastic
moduli £1 = 1.724x10° MPa (25x10° ksi) and E> = 1.724x10* MPa (2.5x10? ksi), shear
modulus Gi2 = 3.792x10* MPa (5.5x10° ksi), and Poisson’s ratio vi2 = 0.25. The
thickness of each lamina layer is 7z = 0.991 mm (0.039 in). The retrofitted tank is shown

in Figure 5.3.

The ASM is deployed by dividing the tank into three strips, corresponding to the
geometric discontinuities, and imposing the boundary and continuity conditions at the
ends of each strip. The strip at the base of the tank will behave anisotropically due to the
FRP layers, while the other two strips are isotropic. The ASM is used to analyze the
structure for 1, 2, 3, and 4 layers of FRP with ply-orientations of g, /-8, p/-p/f, and p/-
pIp/-p, where B varies from 0° to 90°. Due to the variations in the geometry of the
structure and the anisotropic behavior, no existing analytical methods are suitable for the

analysis.

Figure 5.4 shows the ratio of maximum Von Mises stress within the steel portion of the
tank to the allowable stress, G"/gau, for the range of FRP configurations analyzed. The

optimal design of the retrofit uses three layers of FRP with ply-angle oriented at 71° < <
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90°. The optimal orientation is at f = 90°, which orients the fibers in the circumferential
direction of the tank. Figure 5.5 shows the variation in Von Mises stress within the steel
along the height of the structure for the optimal retrofit. The results are compared with a
finite element (FEM) solution generated using ANSYS (ANSYS, Inc., 2016). The results

are in good agreement.

5.6.4 Example 4: Stiffened Tank Subjected to Line Load

The purpose of this example is to demonstrate the use of the ASM for stiffened and

laminated cylindrical shells.

The cylinder in Figure 5.6 is stiffened with standard W10x49 steel rolled sections having
an area 4 = 9290 mm? (14.4 in%), a moment of inertia about the section x-axis /x =
1.132x10% mm* (272 in*), a moment of inertia about the section y-axis I, = 3.888x10’
mm* (93.4 in*), and a torsion constant J = 5.786x10° mm* (1.39 in*). The modulus of
elasticity of the stiffener E = 2x10% kPa (29x10° psi) and Poisson’s ratio v = 0.3. The
ends are simply supported with boundary conditions, u =s =w = Mx = (0. The cylinder is

subjected to a line load p = 0.01 kN/mm (57.1 Ib/in) along the generator, s = 0.

Table 5.3 presents dimensionless deflections along the generator, s = 0, at x = L/8, x =
L/4, x = 3L/8, and x = L/2 for the shell in Figure 5.6. Results are presented for an
isotropic steel shell as well as cross-ply laminated shells with the number of layers
ranging from 2-ply to 8-ply. For the isotropic steel shell, the modulus of elasticity E =
2x10® kPa (29x10° psi), Poisson’s ratio v = 0.3, and thickness # = 5 mm (0.197 in). For
the cross-ply laminated shells, the lamina has elastic moduli E1 = 1.724x10° MPa (25x10°
ksi) and E> = 1.724x10* MPa (2.5x10° ksi), shear modulus G12 = 3.792x10* MPa (5.5x10°
ksi), and Poisson’s ratio vi2 = 0.25. Results are presented for the ASM solution as well as
a finite-element method (FEM) solution generated using ANSYS (ANSYS, Inc., 2016).

The results are in good agreement.

One of the primary advantages of laminated composites is their high weight-to-stiffness

ratio. Table 5.3 shows that a 7-layer laminate with total thickness 39% greater than the
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thickness of the steel shell yields deflections within 15% of steel. Since the unit weight
of FRP is 7 the weight of steel, the reduction in the weight, exclusive of the stiffeners, is
approximately 36%. High weight-to-stiffness ratio along with other performance
characteristics, such as corrosion resistance, make laminated composites a desirable

construction material.

The ASM results are based on summation of the first 51 modes. Table 5.4 presents the
dimensionless radial deflection quantity for several modes at distances of x = L/8, x = L/4,
x =3L/8, and x = L/2 along the generator, s = 0, for the 7-layer cross-ply laminated shell.
The series shows good convergence characteristics, mode 50 contributes less than 0.05%
to the cumulative deflection at all locations presented. Deflections at the ring stiffeners

show faster convergence than at other locations.

5.7 Conclusion

The Analytical Strip Method (ASM) is presented in this chapter for stiffened and
laminated cylindrical shells. The primary advantage of the ASM is its applicability to
any laminated shell, any generalized distribution of ring stiffeners along the length of the
shell, and to a wide variety of axisymmetric and non-axisymmetric loads. The following

are deduced from the derivation of the ASM and the examples presented in this chapter:

e The results of the ASM are in good agreement with existing analytical solutions
based on classical thin shell theory, and the generality of the solution method
overcomes many limitations of existing analytical solutions.

e The ASM produces reliable results for shells with a large radius-to-thickness
ratio; however, as the ratio drops below 50, significant deviations from the exact
elasticity solution are likely.

e The ASM can be used to efficiently optimize the design of laminated cylinders
and structure retrofits.

e The ASM shows good convergence characteristics.
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qoR* ’
cylindrical shells subjected to axisymmetric loading with sinusoidal distribution, q =
qo sin(mx /L), along the length of the shell.

Table 5.1. Dimensionless deflections, w = at x = L/2 for angle-ply laminated

Case 1 - p =45° Case 2 - f =45°/-45° Case 2 - f =45°/-45°/45°
w w w

R/t ASM? CST° EXACT ASM CST EXACT ASM CST EXACT
2 18.968 18.600 19.882 13.852 13.469 16.184 13.741 13.361 16.184

5 3.072 3.012 3.154 2.213 2.151 2.341 2.210 2.149 2.341
10 0.7693 0.7545 0.7784 0.5530 0.5377 0.5624 0.5528 0.5375 0.5624
20 0.1924 0.1887 0.1922 0.1382 0.1344 0.1376 0.1382 0.1344 0.1376
50 0.0308 0.0302 0.0304 0.0221 0.0215 0.0217 0.0221 0.0211 0.0217

* ASM = Analytical Strip Method
b CST = Classical Shell Theory solution for thin shells (Ren, 1995)
¢ EXACT = Three-dimensional elasticity solution (Ren, 1995)

100E,t3w

Tl at s = 0 for cross-ply laminated
0

Table 5.2. Dimensionless deflections, w =

cylindrical shells subjected to sinusoidal load distribution, g = q, cos(3s/R), along the
circumference of the shell.

Case 1 -4 =90° Case2- 4 =0°/90° Case2 -4 =90°/0°/90°
w w w
R/t ASM* CST EXACT® ASM CST EXACT ASM CST EXACT
2 0.7659 0.7640 9.9860 4.9991 4.9900  20.7900 0.8004 0.7790 14.3600
4 0.7543 0.7520 3.1200 4.4742 4.4700 8.5400 0.7838 0.7810 4.5700
10 0.7509 0.7490 1.1500 4.1814 4.1700 4.9300 0.7791 0.7770 1.4400
50 0.7503 0.7480 0.7700 4.0307 4.0200 4.0900 0.7779 0.7760 0.8080
100 0.7503 0.7480 0.7550 4.0117 4.0000 4.0300 0.7782 0.7760 0.7870
500 0.7503 0.7480 0.7490 3.9910 3.9900 3.9900 0.7779 0.7760 0.7730

% ASM = Analytical Strip Method
b CST = Classical Shell Theory solution for thin shells (Ren, 1987)
¢ EXACT = Three-dimensional elasticity solution (Ren, 1987)
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Table 5.3. Dimensionless deflections, W = WELR

, at s = 0 for stiffened cylindrical shell
in Figure 5.6 subjected to line load, p, along the generator of the shell.

Shell Watx =L/8 watx =L/4 Wwatx =3L/8 watx =L/2

Material R/t ASM"  FEM’ ASM  FEM ASM  FEM ASM  FEM
Isotropic 100 790 793 23 27 752 756 29 33

2 Layer - Cross-Ply 252 13943 14058 77 79 13998 14092 101 103
3 Layer - Cross-Ply 168 7389 7458 53 57 6810 6868 70 73
4 Layer - Cross-Ply 126 2604 2608 41 45 2549 2554 54 57
5 Layer - Cross-Ply 101 1936 1947 35 38 1772 1785 45 48
6 Layer - Cross-Ply 84 1098 1103 30 33 1052 1058 38 42
7 Layer - Cross-Ply 72 883 890 27 30 798 807 34 37
8 Layer - Cross-Ply 63 599 605 24 27 563 570 30 34

# ASM = Analytical Strip Method
> FEM = Finite Element Method

Table 5.4. ASM cumulative deflections W = Y.i* W,,,, where w,,, = W";?R, along the

generator (s = 0) for the stiffened 7-layer cross-ply cylindrical shell in Figure 5.6.

Mode
m watx =L/8 Watx =L/4 watx =3L/8 watx =L/2
0 13 0 12 0
1 50 21 61 28
2 83 26 95 33
5 218 27 218 34
10 534 27 480 34
20 814 27 731 34
30 865 27 781 34
40 878 27 794 34
50 883 27 798 34
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Figure 5.1. Stiffened cylindrical shell with strip and edge loadings
Note: The stiffeners are concentric with the shell
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Figure 5.2. Coordinate system for the ring stiffener
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Figure 5.3. Retrofitted water storage tank with simply supported base
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CHAPTER 6
CONCLUSIONS AND FUTURE RESEARCH NEEDS

6.1 General Summary

An Analytical Strip Method (ASM) has been derived for isotropic and laminated
cylindrical shells. Laminated shells can have any generalized layer configuration and
ply-angle scheme, such that the shell behaves anisotropically. The ASM can handle any
combination of fixed, simply supported, and beam supported boundary conditions, as
well as any variations in wall thickness and distribution of ring stiffeners. The ASM can
be applied to any combination of radially applied point loads, patch loads, line loads, and
hydrostatic loads. The following are deduced from the derivation of the ASM and the
examples presented in Chapter 4 and Chapter 5:

e The results of the ASM are in good agreement with existing analytical solutions,
and the generality of the solution method overcomes many limitations of existing
analytical solutions.

e Unlike the finite element method, the ASM does not require significant pre-
processing effort. Its accuracy is dependent on the number of modes considered
in the solution rather than the fineness of the discretization of the structure.

e The finite element method offers more flexibility in structure geometry. For
instance, the ASM requires stiffeners to be concentric with the shell walls and
stepped wall thicknesses to have a coincident middle surface.

e The finite element method has less potential for numerical instabilities than the

ASM.

6.2 Isotropic Cylindrical Shells

Existing analytical solutions for isotropic shells are limited to simplified loading
conditions and shell geometry; the ASM overcomes these limitations. Unlike many

existing analytical solutions, the ASM does not require elimination of terms from the
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governing equations to simplify the solution. Examples in Chapter 4 show up to 10%
difference between the ASM and existing analytical solution. Finite Element results are
in very good agreement with the ASM results. Convergence studies show good
convergence characteristics of the ASM series solution. In general, force quantities

require more modes for convergence when compared to the displacement quantities.

6.3 Laminated Cylindrical Shells

The ASM is derived for laminated shells with any generalized layer scheme and ply-
angle orientation, such that the shell behaves anisotropically. This includes the special
cases of symmetric and anti-symmetric laminates with cross-ply or angle-ply
orientations. ASM results were compared to results from existing classical shell theory
(CST) solutions for thin shells, as well as exact elasticity solutions. As expected, the
results between the ASM and CST were in excellent agreement. For shells with large
radius-to-thickness ratios, the ASM solution closely matched the exact solution. Thicker
shells, with small radius-to-thickness ratios, exhibited a significant deviation between the

ASM and exact solution.

A major benefit of the ASM is the ability to optimize the design of laminated cylindrical
shells. Chapter 5 demonstrated the use of the ASM to find the optimal design of a retrofit
for and cylindrical water storage tank. The isotropic steel tank, wrapped with fiber-
reinforced polymer laminates leads to an anisotropic response, for which there are no

existing analytical solutions available.

6.4 Recommendations for Future Research

Based on the current work, recommendations for future work include:
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Eccentricity of stiffeners: The solution is derived with stiffeners concentric to the
mid-surface of the shell. The ASM can be modified to incorporate an eccentricity

between the ring stiffener and the mid-surface of the shell.

Non-isotropic stiffeners: The governing equations for the stiffeners are derived
based on isotropic beams. Laminated stiffeners or stiffeners with non-isotropic
properties can be incorporated in the same fashion using revised governing

equations.

Eccentricity of reference surface: The ASM requires that adjacent strips have a
coincident middle surface, even in the case where the wall thickness changes.
The solution method can be modified to incorporate arbitrary definition of the

reference surface within each strip.

Axial and circumferential loading: The ASM is currently derived for radial loads
only. The solution method can be extended to incorporate axial and
circumferential loading. This would require the incorporation of gx and gs in the

three coupled differential equations of Eq. (2.16).

Thermal loading: The ASM can be extended to handle thermal loading, which is

of considerable interest in laminated shells.

Free vibration: The ASM could be used to determine the fundamental frequencies
of a cylindrical shell by incorporating the equations of motion into the governing
differential equations. Free vibration analysis of stiffened and laminated
cylindrical shells would be a significant advancement in the analysis and design

of shell structures.

Buckling: By incorporating axial loading into the solution method, the ASM can
be further extended to the bucking of stiffened and laminated cylindrical shells.
Buckling analysis of cylindrical shells is of great interest due to the high number

of cylindrical shell structures designed to carry axial loads.
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