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ABSTRACT OF DISSERTATION 

 
 
 
 

ANALYTICAL STRIP METHOD FOR THIN CYLINDRICAL SHELLS 
 
 

The Analytical Strip Method (ASM) for the analysis of thin cylindrical shells is presented 
in this dissertation.  The system of three governing differential equations for the 
cylindrical shell are reduced to a single eighth order partial differential equation (PDE) in 
terms of a potential function.  The PDE is solved as a single series form of the potential 
function, from which the displacement and force quantities are determined.  The solution 
is applicable to isotropic, generally orthotropic, and laminated shells.  Cylinders may 
have simply supported edges, clamped edges, free edges, or edges supported by isotropic 
beams.  The cylindrical shell can be stiffened with isotropic beams in the circumferential 
direction placed anywhere along the length of the cylinder.  The solution method can 
handle any combination of point loads, uniform loads, hydrostatic loads, sinusoidal loads, 
patch loads, and line loads applied in the radial direction.  The results of the ASM are 
compared to results from existing analytical solutions and numerical solutions for several 
examples; the results for each of the methods were in good agreement.  The ASM 
overcomes limitations of existing analytical solutions and provides an alternative to 
approximate numerical and semi-numerical methods. 

 

KEYWORDS:  Analytical modeling, Thin shells, Laminates, bending-extension 
coupling, Composite shells 
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CHAPTER 1 

INTRODUCTION 

 

1.1  Background 

Cylindrical Shells are important structural elements with widespread applications in 

various fields such as civil, environmental, mechanical, and aerospace engineering.  On a 

larger scale they are used as storage tanks, buried conduits, pressure vessels, towers, and 

chimneys.  On a smaller scale they can be used as functional components of a larger 

system.  To design these cylindrical shell structures effectively and efficiently it is critical 

to understand their behavior. 

 

Unlike plates, whose geometry lies within a plane, shells can have curvature in two 

orthogonal directions.  Cylindrical shells are a special case with curvature in a single 

direction.  This curvature complicates the governing equations since there is coupling 

between transverse shearing forces and bending moments.  To simplify the solution to the 

governing equations, it is often necessary to rely on specialized shell theories that 

implement simplifications based on assumptions of stress and strain distributions through 

the thickness of the shell. 

 

The most basic cylindrical shells are constructed from isotropic materials.  The use of 

composite materials is also embraced because of the unique benefits they provide.  

Composite materials are created by combining two or more constituent materials at the 

macroscopic level to produce a product with desirable performance characteristics.  

Composite materials may exhibit superior strength and stiffness-to-weight ratio, 

corrosion resistance, high fatigue life, and enhanced thermal performance. 

 

The most common use of composites in engineering applications is laminated 

composites.  These materials are made of individual orthotropic layers, lamina, stacked in 

a configuration that optimizes performance for the desired application.  The lamina 

consists of fibers, either unidirectional or bidirectional, encased in a supporting matrix.  

The fiber material, fiber distribution, number of layers, layer thickness, and angular fiber 
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orientation within each layer are all parameters than may be adjusted to optimize the 

performance of the material. 

 

Laminates with a symmetric configuration about the middle surface of the shell behave 

orthotropic at the macromechanical level.  Symmetric angle-ply laminates exhibit a 

coupling between extensional and shearing stresses.  Laminates with an antisymmetric 

lamination scheme about the middle surface exhibit coupling between extensional and 

bending or twisting forces.  These coupling effects significantly complicate the behavior 

of the laminate and make the development of analytical solutions more difficult. 

 

1.2  Literature Review 

1.2.1  Shell Theory 

Finding the exact stress and deformational response of a cylindrical shell subjected to 

static loading is a complex problem that requires solution of the three-dimensional 

elasticity equations.  Elasticity solutions may be possible for problems with simplified 

loading or boundary conditions, but for anything more complex, the governing elasticity 

equations must be reduced to simplify the problem.  Shell theories apply assumptions of 

stress and strain distribution through the thickness of the shell to reduce the three-

dimensional structure to a two-dimensional plane stress problem. 

 

The most basic shell theory is known as the theory of thin elastic shells, also referred to 

as classical shell theory or Love’s first approximation.  Thin shell theories are based on 

the following, known as Love’s assumptions (Love, 1944) 

 

• Thickness of the shell is small compared with the other dimensions 

• Strains and displacements are sufficiently small so that the quantities of second- 

and higher-order magnitude in the strain-displacement relations may be neglected 

in comparison with the first-order terms 

• The transverse normal stress is negligible. 
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• Normals to the undeformed middle surface remain straight and normal to the 

deformed middle surface and undergo no change in length during deformation. 

 

There are a wide number of thin shell theories available, including those formulated by 

Donnell (1933, 1938), Mushtari (1938), Love (1988, 1944), Timoshenko and 

Woinowsky-Krieger (1959), Reissner (1941), Naghdi and Berry (1964), Vlasov (1944, 

1949), Sanders (1959), Byrne (1944), Flügge (1934, 1962), Goldenveizer (1961), Lur’ye 

(1940), and Novozhilov (1964).  These theories vary by the level of simplification 

implemented in the strain-displacement equations and the governing equilibrium 

equations.  Leissa (1973) provides an excellent review of available thin shell theories. 

 

Three notable thin shell theories are those developed by Donnell (1933, 1938), Love 

(1944), and Naghdi and Berry (1964).  Donnell’s theory is analogous to plate theory, as it 

neglects the component of transverse shearing force from the equilibrium of forces in the 

circumferential direction, and is applicable to shallow shells.  This greatly simplifies the 

governing differential equations for cylindrical shells, but can lead to inaccuracies as the 

ratio of thickness-to-radius and thickness-to-length of the shell increases (Kraus, 1967).  

Love’s equations are commonly adopted for thin shell problems because they provide 

reliable results while maintaining adequate simplicity to facilitate the solution process.  A 

disadvantage of the Love’s equations is that it does not produce a symmetric system of 

governing differential equations.  Shell theory of Naghdi and Berry implement the same 

set of assumptions as Love but produce a symmetric set of governing equations (Leissa, 

1973). 

 

Love’s assumptions are appropriate for thin shells, but as the thickness of the shell 

increases relative to the radius and length they can lead to inaccuracies.  This has 

necessitated the development of higher-order shell theories that relax one or more of 

Love’s assumptions.  In particular, the fourth of Love’s assumption is relaxed to allow for 

transverse shearing deformations through the thickness of the shell.  The order of the 

shell theory correlates to the assumed distribution of transverse shearing stresses.  

Example higher order theories are those proposed by Hildebrand, Reissner, and Thomas 
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(1949), Reissner (1952), and Naghdi (1957).  Due to the complexity of the governing 

equations, solutions utilizing these theories are often limited to numerical methods. 

 

The above shell theories were originally derived based on isotropic shells, but can be 

easily extended to laminated composite shells by generalizing the assumed material 

constitutive relationships.  Ambartsumian (1961, 1966) and Bert (1975) both presented a 

theory for laminated orthotropic shells, which incorporated extensional-bending coupling.  

Dong, Pister, and Taylor (1962) developed a theory of thin shells laminated with 

anisotropic layers based on Donnell’s assumptions (1933), while Cheng and Ho (1963) 

developed equations based on Flügge’s shell theory (1962).  The fourth of Love’s 

assumptions, which assumes undeformable normals to the middle surface of the shell, 

becomes quite significant for laminated shells as it can lead to more than 30% error for 

deflections, stresses, and frequencies (Reddy, 2004).  Whitney and Sun (1974), Reddy 

(1984), Vasilenko and Golub (1984), and Barbero et al. (1990) have developed shear 

deformational theories for laminated shells, but these theories suffer from the same 

limitations as higher-order isotropic shell theories due to complexity of the governing 

equations. 

 

1.2.2  Analytical Solutions 

An analytical solution (Timoshenko, 1961) to a problem is one that satisfies the 

governing equations at every point in the domain, as well as the boundary and initial 

conditions.  An analytical solution may be formulated as either closed-form or as an 

infinite series.  Analytical solutions for cylindrical shells often necessitate infinite series 

solutions. 

 

Analytical solutions to isotropic cylindrical shells subjected to axisymmetric loads are 

widely available.  Timoshenko and Woinowsky-Krieger (1959) provide solutions for 

cylindrical shells with uniform internal pressure as well as cylindrical tanks subjected to 

hydrostatic loads.  Due to the introduction of a second variable in the circumferential 

direction, non-axisymmetric type loadings are difficult to incorporate in the solution.  

Bijlaard (1955) developed a double series solution for cylindrical shells subjected to a 
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patch load as well as a similar solution for point loads.  Odqvist (1946), Hoff et. al. 

(1954), Cooper (1957), and Naghdi (1968) have developed unique solutions for 

cylindrical shells subjected to a uniform line load along a generator.  Meck (1961) 

presented a solution for line loads applied along the circumferential direction. 

 

For laminated composite shells, three-dimensional elasticity solutions and higher order 

shell theories are well suited for thick to moderately thick shells.  Elasticity solutions for 

laminated composite shells are widely available (Ren, 1987, 1995; Chandrashekhara and 

Nanjunda Rao, 1997, 1998; Varadan and Bhaskar, 1991).  Noor and Burton (1990) 

provide and exhaustive review of available solutions.  The applicability of these solutions 

is generally constrained to shells of infinite length or with simplified loading conditions.  

Although thin shell theories poorly capture the behavior of shells with low radius-to-

thickness ratio, they perform reliably for high radius-to-thickness ratios (Ren, 1987), and 

the simplifying assumptions in the theory facilitate the incorporation of complex loading 

and boundary conditions. 

 

One of the primary uses for analytical solutions is as a benchmark to validate and 

compare solutions attained from other methods.  For example, an analytical solution 

developed for a thin shell theory may be used to validate the accuracy of a finite element 

solution or may be used as a basis of comparison for a higher-order shell theory for which 

only numerical solutions methods are possible. 

 

1.2.3  Numerical Solutions 

A numerical solution is one that approximates the solution to a governing differential 

equation including boundary and initial conditions.  Analytical solutions are not always 

available for problems with complex geometries and boundary conditions, nonlinearity, 

and higher-order deformation response.  These limitations, however, do not preclude the 

use of numerical methods.  Two common numerical solution methods are the finite 

difference and finite element methods.  Finite element solutions for laminated cylindrical 

shells have been developed by Saviz et al. (2009), Singha et al. (2006), Liew et al. 

(2002), and Saviz and Mohammadpourfard (2010). 
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The finite element method requires the structure to be discretized into elements of regular 

geometric shape.  The response of each element is approximated by shape functions, 

which when assembled, dictate the global response of the structure.  Consequently, more 

refinement of the domain discretization yields a more accurate approximation to the 

structural response.  The finite element solution requires the solution of a system of 

equations, the order of which depends on the discretization of the domain.  Efficient 

solutions to numerical methods may require considerable computational demand and 

storage capacity. 

 

Numerical methods provide versatility not available for most existing analytical 

solutions.  They are, however, limited by the implementation of loading and boundary 

conditions.  Additionally, most numerical solutions are not continuous for all pertinent 

displacement and forces components of the domain. 

 

1.3  Research Objective 

The objective of this paper is to develop an analytical strip method (ASM) of solution for 

stiffened isotropic and laminated composite thin cylindrical shells.   

 

The ASM was first developed by Harik and Salamoun (1986, 1988) for the analysis of 

thin orthotropic and stiffened rectangular plates subjected to uniform, partial uniform, 

patch, line, partial line and point loads, or any combination thereof.  The solution method 

was subsequently extended to laminated plates by Sun (2009).  The solution procedure 

requires that the structure be divided into strips based on the geometric discontinuities 

and applied loads.  Figure 1.1 shows the necessary strip discretization for a stiffened 

cylindrical shell subjected to a combination of loadings.  The governing differential 

equation for each strip is solved analytically, and the applicable continuity and boundary 

conditions are used to combine the solutions for the strips. 

 

1.4  Research Significance 

Available analytical solutions to cylindrical shells are currently limited; many require 

simplifications such as infinite length boundary conditions, axisymmetric loading, and 
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omission of terms in the governing equations.  Methods that don’t require these 

simplifications lack generality in terms of end boundary conditions, variations in wall 

thickness, and incorporation of stiffeners.  The ASM overcomes these limitations. 

 

Numerical methods provide an alternative to analytical solutions.  Numerical methods, 

such as finite element solutions, often require significant effort to discretize the domain 

and to perform refinement studies to validate the accuracy of the results.  In the ASM, the 

structure is divided into strips based on discontinuities in the shell geometry and applied 

loads.  Unlike numerical methods, the accuracy of the ASM results are dependent on the 

number of modes summed in the solution rather than the number of strips that sub-divide 

the structure. 

 

1.5  Dissertation Outline 

The dissertation consists of six chapters organized as follows: 

• Chapter 2 presents the governing equations for isotropic and laminated cylindrical 

shells. 

• Chapter 3 details the derivation of the ASM solution. 

• Chapter 4 summarizes the ASM for isotropic thin cylindrical shells and provides 

numerical examples that compare the ASM results with existing analytical 

solutions and highlights the features of the ASM. 

• Chapter 5 summarizes the ASM for laminated thin cylindrical shells and provides 

numerical examples that compare the ASM results with existing analytical 

solutions and highlights the features of the ASM. 

• Chapter 6 presents a summary of the significant findings from this research, and 
conclusions are drawn with regards to its relevance.  Future research needs are 
identified and discussed.  
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Figure 1.1.  Stiffened cylindrical shell with strip and edge loadings  

Note:  The stiffeners are concentric with the shell 
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CHAPTER 2 

GOVERNING EQUATIONS 

 

2.1  Introduction 

This chapter presents the derivation of the governing differential equations for isotropic 

and laminated cylindrical shells (Figure 2.1).  Laminated shells can have any generalized 

layer configuration and ply-angle scheme, such that the shell behaves anisotropically.   

The derivation of the governing differential equations are based on the following 

assumptions: 

• The shell materials are linear and elastic. 

• The lamina are homogeneous and orthotropic. 

• The stacked lamina are perfectly bonded, thus no delamination at the layer 

interfaces. 

• The shell walls are thin and Love’s assumptions (Love, 1944) are applicable 

 Thickness of the shell is small compared with the other dimensions. 

 Strains and displacements are sufficiently small so that the magnitudes of 

the second-order and higher-order terms in the strain-displacement 

relations may be neglected in comparison with the first-order terms. 

 The transverse normal stress is negligible. 

 Normals to the undeformed middle surface remain straight and normal to 

the deformed middle surface, and undergo no change in length during 

deformation. 
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2.2  Strain-Displacement Equations 

The surface coordinate system used in the derivation of the governing equations for the 

cylindrical shell is shown in Figure 2.1.  The strain-displacement equations associated 

with thin shell theory are given as (Kraus, 1967) 

߳௫ = డ௨ೣడ௫                (2.1a) 

߳௦ = డ௨ೞడ௦ + ௪ோ                 (2.1b) 

௫௦ߛ = డ௨ೞడ௫ + డ௨ೣడ௦             (2.1c) 

௫ߢ = −డమ௪డ௫మ                 (2.1d) 

௦ߢ  = డడ௦ ቀ௨ೞோ − డ௪డ௦ ቁ               (2.1e) 

௫௦ߢ  = ଵோ డ௨ೞడ௫ − 2 డమ௪డ௫డ௦           (2.1f) 

 

2.3  Constitutive Equations 

2.3.1  Isotropic Shells 

The constitutive equations for a single isotropic layer are provided by Jones (1999). 

൝ ௫ܰܰ௦௫ܰ௦ൡ = ቎ ܣ ܣߥ ܣߥ0 ܣ 00 0 ଵିఔଶ ቏ܣ ൝ ߳௫߳௦ߛ௫௦ൡ         (2.2a) 

൝ܯ௫ܯ௦ܯ௫௦ൡ = ቎ ܦ ܦߥ ܦߥ0 ܦ 00 0 ଵିఔଶ ቏ܦ ൝  ௫௦ൡ         (2.2b)ߢ௦ߢ௫ߢ

where A and D are the extensional and bending stiffness of the shell 
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ܣ = ா௧ଵିఔమ             (2.3a) 

ܦ = ா௧యଵଶ(ଵିఔమ)             (2.3b) 

 

2.3.2  Laminated Shells 

The stress-strain relationships for a single orthotropic lamina are (Jones, 1999) 

൝ߪ௫ߪ௦߬௫௦ൡ = ቎ തܳଵଵ തܳଵଶ തܳଵ଺തܳଵଶ തܳଶଶ തܳଶ଺തܳଵ଺ തܳଶ଺ തܳ଺଺቏ ൝
߳௫߳௦ߛ௫௦ൡ           (2.4) 

where തܳ௜௝ are the transformed reduced stiffness coefficients given by (Jones, 1999) തܳଵଵ = ܳଵଵ cosସ ߚ + 2(ܳଵଶ + 2ܳ଺଺) sinଶ ߚ cosଶ ߚ + ܳଶଶ sinସ തܳଵଶ (2.5a)     ߚ = (ܳଵଵ + ܳଶଶ − 4ܳ଺଺) sinଶ ߚ cosଶ ߚ + ܳଵଶ(sinସ ߚ + cosସ തܳଶଶ (2.5b)     (ߚ = ܳଵଵ sinସ ߚ + 2(ܳଵଶ + 2ܳ଺଺) sinଶ ߚ cosଶ ߚ + ܳଶଶ cosସ തܳଵ଺ (2.5c)     ߚ = (ܳଵଵ − ܳଵଶ − 2ܳ଺଺) sin ߚ cosଷ ߚ + (ܳଵଶ − ܳଶଶ + 2ܳ଺଺) sinଷ ߚ cos തܳଶ଺ (2.5d)   ߚ = (ܳଵଵ − ܳଵଶ − 2ܳ଺଺) sinଷ ߚ cos ߚ + (ܳଵଶ − ܳଶଶ + 2ܳ଺଺) sin ߚ cosଷ തܳଶ଺ (2.5e)   ߚ = (ܳଵଵ + ܳଶଶ − 2ܳଵଶ − 2ܳ଺଺) sinଶ ߚ cosଶ ߚ + ܳ଺଺(sinସ ߚ + cosସ  (2.5f)    (ߚ

and β is the orientation angle of the lamina principal direction, measured 

counterclockwise from the x-axis of the cylinder.  The reduced stiffness coefficients, ܳ௜௝, 
are (Jones, 1999) 

ܳଵଵ = ாభଵିఔభమఔమభ            (2.6a) 

ܳଵଶ = ఔమభாభଵିఔభమఔమభ = ఔభమாమଵିఔభమఔమభ           (2.6b) 
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ܳଶଶ = ாమଵିఔభమఔమభ            (2.6c) 

ܳ଺଺ =  ଵଶ             (2.6d)ܩ

The constitutive relationships for the laminated shell are (Jones, 1999) 

൝ ௫ܰܰ௦௫ܰ௦ൡ = ൥ܣଵଵ ଵଶܣ ଵଶܣଵ଺ܣ ଶଶܣ ଵ଺ܣଶ଺ܣ ଶ଺ܣ ଺଺൩ܣ ൝ ߳௫߳௦ߛ௫௦ൡ + ൥ܤଵଵ ଵଶܤ ଵଶܤଵ଺ܤ ଶଶܤ ଵ଺ܤଶ଺ܤ ଶ଺ܤ ଺଺൩ܤ ൝  ௫௦ൡ      (2.7a)ߢ௦ߢ௫ߢ

൝ܯ௫ܯ௦ܯ௫௦ൡ = ൥ܤଵଵ ଵଶܤ ଵଶܤଵ଺ܤ ଶଶܤ ଵ଺ܤଶ଺ܤ ଶ଺ܤ ଺଺൩ܤ ൝ ߳௫߳௦ߛ௫௦ൡ + ൥ܦଵଵ ଵଶܦ ଵଶܦଵ଺ܦ ଶଶܦ ଵ଺ܦଶ଺ܦ ଶ଺ܦ ଺଺൩ܦ ൝  ௫௦ൡ      (2.7b)ߢ௦ߢ௫ߢ

where Aij are the extensional stiffnesses, Bij are the bending-extensional coupling 

stiffnesses, and Dij are the bending stiffnesses.  The stiffness coefficients are given by 

Reddy (2004) and are defined as  

൛ܣ௜௝, ,௜௝ܤ ௜௝ൟܦ = ׬ തܳ௜௝ሼ1, ,ݖ ;ݖଶሽ݀ݖ 				݅, ݆ = 1,2,6೟మି೟మ           (2.8) 

where t is the thickness of the shell. 

In symmetric laminates, Bij = 0 in Eq. (2.7).  In antisymmetric cross-ply laminates, B12 = 

B16 = B26 = B66 = 0 and B22 = -B11 in Eq. (2.7).  In antisymmetric angle-ply laminates, B11 

= B12 = B22 = B66 = 0 in Eq. (2.7). 

The reduced constitutive relations for a single generally orthotropic layer as well as 

cross-ply and angle-ply symmetric and antisymmetric laminates is 

൝ ௫ܰܰ௦௫ܰ௦ൡ = ൥ܣଵଵ ଵଶܣ ଵଶܣଵ଺ܣ ଶଶܣ ଵ଺ܣଶ଺ܣ ଶ଺ܣ ଺଺൩ܣ ൝ ߳௫߳௦ߛ௫௦ൡ + ൥ܤଵଵ 0 ଵ଺0ܤ ଶଶܤ ଵ଺ܤଶ଺ܤ ଶ଺ܤ 0 ൩ ൝  ௫௦ൡ    (2.9a)ߢ௦ߢ௫ߢ

൝ܯ௫ܯ௦ܯ௫௦ൡ = ൥ܤଵଵ 0 ଵ଺0ܤ ଶଶܤ ଵ଺ܤଶ଺ܤ ଶ଺ܤ 0 ൩ ൝ ߳௫߳௦ߛ௫௦ൡ + ൥ܦଵଵ ଵଶܦ ଵଶܦଵ଺ܦ ଶଶܦ ଵ଺ܦଶ଺ܦ ଶ଺ܦ ଺଺൩ܦ ൝  ௫௦ൡ    (2.9b)ߢ௦ߢ௫ߢ
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2.4  Equilibrium Equations 

The equilibrium equations for the cylindrical shell are given as (Kraus, 1967) 

డேೣడ௫ + డேೞೣడ௦ + ௫ݍ = 0         (2.10a) 

డேೣೞడ௫ + డேೞడ௦ + ொೞோ + ௦ݍ = 0         (2.10b) 

డொೣడ௫ + డொೞడ௦ − ேೞோ + ݍ = 0         (2.10c) 

డெೣడ௫ + డெೣೞడ௦ − ܳ௫ = 0          (2.10d) 

డெೣೞడ௫ + డெೞడ௦ − ܳ௦ = 0          (2.10e) 

The five equilibrium equations are reduced to three by substituting Eq. (2.10d) and Eq. 

(2.10e) into Eq. (2.10c). 

డேೣడ௫ + డேೞೣడ௦ + ௫ݍ = 0         (2.11a) 

డேೣೞడ௫ + డேೞడ௦ + ொೞோ + ௦ݍ = 0         (2.11b) 

డమெೣడ௫మ + 2 డమெೣೞడ௫డ௦ + డమெೞడ௦మ − ேೞோ + ݍ = 0        (2.11c) 

 

2.5  Coupled Governing Differential Equations 

2.5.1  Isotropic Shells 

The three coupled differential equations for isotropic cylindrical shells are derived by 

substituting the strain-displacement equations, Eq. (2.1), into the constitutive 

relationships of Eq. (2.2) to get the force-displacement relationships.  The force-

displacement relationships are then substituted into the equilibrium equations of Eq. 

(2.11).  The system of differential equations may be presented as  
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൥ܮଵଵ ଵଶܮ ଵଶܮଵଷܮ ଶଶܮ ଵଷܮଶଷܮ ଶଷܮ ଷଷ൩ܮ ቊݑ௫ݑ௦ݓ ቋ = ൝ݍ௫ݍ௦ݍ ൡ         (2.12) 

where ܮ௜௝ are differential operators 

ଵଵܮ = ܣ డమడ௫మ + ଵିఔଶ ܣ డమడ௦మ         (2.13a) 

ଵଶܮ = ଵାఔଶ ܣ డమడ௫డ௦          (2.13b) 

ଵଷܮ = ఔோ ܣ డడ௫           (2.13c) 

ଶଶܮ = ቀଵିఔଶ ܣ + ଵିఔଶோమ ቁܦ డమడ௫మ + ܣ) + (ܦ డమడ௦మ       (2.13d) 

ଶଷܮ = ଵோ ܣ డడ௦ − ଵோ ܦ డయడ௫మడ௦ − ଵோ ܦ డయడ௦య        (2.13e) 

ଷଷܮ = ଵோమ ܣ + ܦ డరడ௫ర + ܦ2 డరడ௫మడ௦మ + ܦ డరడ௦ర       (2.13f) 

A and D are the extensional and bending stiffness of the shell given by Eq. (2.3).  The 

differential equations of Eq. (2.12) and Eq. (2.13) are consistent with the thin shell theory 

developed by Naghdi and Berry (1964). 

 

2.5.2  Laminated Shells 

The three coupled differential equations for laminated cylindrical shells are derived by 

substituting the strain-displacement equations, Eq. (2.1), into the constitutive 

relationships of Eq. (2.9) to get the force-displacement relationships.  The force-

displacement relationships are then substituted into the equilibrium equations of Eq. 

(2.11).  The system of differential equations may be presented as  

൥ܮଵଵ ଵଶܮ ଵଶܮଵଷܮ ଶଶܮ ଵଷܮଶଷܮ ଶଷܮ ଷଷ൩ܮ ቊݑ௫ݑ௦ݓ ቋ = ൝ݍ௫ݍ௦ݍ ൡ         (2.14) 
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where ܮ௜௝ are differential operators 

ଵଵܮ = ଵଵܣ డమడ௫మ + ଵ଺ܣ2 డమడ௫డ௦ + ଺଺ܣ డమడ௦మ        (2.15a) 

ଵଶܮ = ቀܣଵ଺ + ଵோ ଵ଺ቁܤ డమడ௫మ + ቀܣଵଶ + ଺଺ܣ + ଵோ ଵଶܤ + ଵோ ଺଺ቁܤ డమడ௫డ௦ +  

           ቀܣଶ଺ + ଵோ ଶ଺ቁܤ డమడ௦మ        (2.15b) 

ଵଷܮ = ଵଵܤ− డయడ௫య + ଵோ ଵଶܣ డడ௫ − ଵ଺ܤ3 డయడ௫మడ௦ − ଵଶܤ) + (଺଺ܤ2 డయడ௫డ௦మ + ଵோ ଶ଺ܣ డడ௦ −   

ଶ଺ܤ  డయడ௦య          (2.15c) 

ଶଶܮ = ቀܣ଺଺ + ଵோమ ଺଺ܦ + ଶோ ଺଺ቁܤ డమడ௫మ + 2 ቀ ଵோమ ଶ଺ܦ + ଶோ ଶ଺ܤ + ଶ଺ቁܣ డమడ௫డ௦ +  

ቀܣଶଶ + ଶோ ଶଶܤ + ଵோమ ଶଶቁܦ డమడ௦మ       (2.15d) 

ଶଷܮ = ቀ−ܤଵ଺ − ଵோ ଵ଺ቁܦ డయడ௫య + ଵோ ቀଵோ ଶ଺ܤ + ଶ଺ቁܣ డడ௫ −  

          ቀଶோ ଺଺ܦ + ଵோ ଵଶܦ + ଵଶܤ + ଺଺ቁܤ2 డయడ௫మడ௦ + ቀ−3ܤଶ଺ − ଷோ ଶ଺ቁܦ డయడ௫డ௦మ +  

ଵோ ቀܣଶଶ + ଵோ ଶଶቁܤ డడ௦ +	ቀ−ܤଶଶ − ଵோ ଶଶቁܦ డయడ௦య                 (2.15e) 

ଷଷܮ = ଵோమ ଶଶܣ + ଵଵܦ డరడ௫ర + ଵ଺ܦ4 డరడ௫యడ௦ + ଵଶܦ2) + (଺଺ܦ4 డరడ௫మడ௦మ − ଶோ ଵଶܤ డమడ௫మ  
− ସோ ଶ଺ܤ డమడ௫డ௦ + ଶ଺ܦ4	 డరడ௫డ௦య − ଶோ ଶଶܤ డమడ௦మ + ଶଶܦ డరడ௦ర      (2.15f) 

and Aij are the extensional stiffnesses, Bij are the bending-extensional coupling 

stiffnesses, and Dij are the bending stiffnesses given by Eq. (2.8). 
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2.6  Single Uncoupled Governing Differential Equation 

2.6.1  Isotropic Shells 

This section reduces the system of three coupled differential equations for the isotropic 

cylindrical shell into a single eighth-order partial differential equation.  For the case of 

radial loads only, qx = qs = 0 in Eq. (2.12) reducing the system to 

൥ܮଵଵ ଵଶܮ ଵଶܮଵଷܮ ଶଶܮ ଵଷܮଶଷܮ ଶଷܮ ଷଷ൩ܮ ቊݑ௫ݑ௦ݓ ቋ = ൝00ݍൡ          (2.16) 

The displacements in the x, s, and r direction, ux, us, and w, can be written in terms of the 

potential function Φ(ݔ, ௫ݑ (Sharma et al., 1980) (ݏ = ଶଷܮଵଶܮ) − ,ݔ)ଶଶ)Φܮଵଷܮ ௦ݑ (2.17a)        (ݏ = ଶଵܮଵଷܮ) − ,ݔ)ଵଵ)Φܮଶଷܮ ݓ (2.17b)        (ݏ = ଶଶܮଵଵܮ) − ,ݔ)ଶଵ)Φܮଵଶܮ  (2.17c)        (ݏ

where the differential operators Lij are presented in Eq. (2.13). 

The first two equations in the system of governing differential equations of Eq. (2.16) are 

identically satisfied by Eq. (2.17).  Substituting Eq. (2.17) into the third equation of Eq. 

(2.16) yields (Sharma et al., 1980) 

൫ܮଵଵܮଶଶܮଷଷ − ଷଷܮଵଶଶܮ − ଵଵܮଶଷଶܮ + ଶଷܮଵଶܮଵଷܮ2 − ,ݔ)ଶଶ൯Φܮଵଷଶܮ (ݏ = ,ݔ)ݍ  (2.18)   (ݏ

Expansion of Eq. (2.18) gives the eighth-order partial differential equation 

ܨ଼ ଴ డఴ஍డ௫ఴ + ଺ଶܨ డఴ஍డ௫లడ௦మ + ସସܨ డఴ஍డ௫రడ௦ర + ଶ଺ܨ డఴ஍డ௫మడ௦ల + ଴଼ܨ డఴ஍డ௦ఴ + ସଶܨ డల஍డ௫రడ௦మ + ଶସܨ డల஍డ௫మడ௦ర +  

଴଺ܨ డల஍డ௦ల + ସ଴ܨ డర஍డ௫ర + ଶଶܨ డర஍డ௫మడ௦మ + ଴ସܨ డర஍డ௦ర = ,ݔ)ݍ  (2.19)        (ݏ

The coefficients ܨ௜௝ are 
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ܨ଼ ଴ = 	 ଵିఔଶோమ ଶܦܣ + ଵିఔଶ  (2.20a)         ܦଶܣ

଺ଶܨ = 	 (ఔିଵ)(ఔିହ)ସோమ ଶܦܣ + 2(1 −  (2.20b)       ܦଶܣ(ߥ

ସସܨ = 	 (ఔିଵ)(ఔାଷ)ଶோమ ଶܦܣ + 3(1 −  (2.20c)       ܦଶܣ(ߥ

ଶ଺ܨ = 	 (ଵିఔ)మସோమ ଶܦܣ + 2(1 −  (2.20d)        ܦଶܣ(ߥ

଴଼ܨ = 	 ଵିఔଶ  (2.20e)          ܦଶܣ

ସଶܨ = 	 (ଵିఔ)(ఔାଶ)ோమ  (2.20f)                     ܦଶܣ

ଶସܨ = 	 (ଵିఔ)(ఔାଷ)ோమ  (2.20g)            ܦଶܣ

଴଺ܨ = 	 (ଵିఔ)ோమ  (2.20h)          ܦଶܣ

ସ଴ܨ = 	 (ఔିଵ)మ(ఔାଵ)ଶோర ܦଶܣ + (ఔିଵ)మ(ఔାଵ)ଶோమ  ଷ       (2.20i)ܣ

ଶଶܨ = 	 (ଵିఔ)(ଷఔାହ)ସோర  (2.20j)         ܦଶܣ

଴ସܨ = 	 (ଵିఔ)ଶோర  (2.20k)          ܦଶܣ

Where A and D are the extensional and bending stiffness provided in Eq. (2.3). 

 

2.6.2  Laminated Shells 

This section reduces the system of three coupled differential equations for the laminated 

cylindrical shell into a single eighth-order partial differential equation.  For the case of 

radial loads only, qx = qs = 0 in Eq. (2.14) reducing the system to 
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൥ܮଵଵ ଵଶܮ ଵଶܮଵଷܮ ଶଶܮ ଵଷܮଶଷܮ ଶଷܮ ଷଷ൩ܮ ቊݑ௫ݑ௦ݓ ቋ = ൝00ݍൡ          (2.21) 

The displacements in the x, s, and r direction, ux, us, and w, can be written in terms of the 

potential function Φ(ݔ, ௫ݑ (Sharma et al., 1980) (ݏ = ଶଷܮଵଶܮ) − ,ݔ)ଶଶ)Φܮଵଷܮ ௦ݑ (2.22a)        (ݏ = ଶଵܮଵଷܮ) − ,ݔ)ଵଵ)Φܮଶଷܮ ݓ (2.22b)        (ݏ = ଶଶܮଵଵܮ) − ,ݔ)ଶଵ)Φܮଵଶܮ  (2.22c)        (ݏ

where the differential operators Lij are presented in Eq. (2.15). 

The first two equations in the system of governing differential equations of Eq. (2.21) are 

identically satisfied by Eq. (2.22).  Substituting Eq. (2.22) into the third equation of Eq. 

(2.21) yields (Sharma et al., 1980) 

൫ܮଵଵܮଶଶܮଷଷ − ଷଷܮଵଶଶܮ − ଵଵܮଶଷଶܮ + ଶଷܮଵଶܮଵଷܮ2 − ,ݔ)ଶଶ൯Φܮଵଷଶܮ (ݏ = ,ݔ)ݍ  (2.23)   (ݏ

Expansion of Eq. (2.23) gives the eighth-order partial differential equation 

ܨ଼ ଴ డఴ஍డ௫ఴ + ଻ଵܨ డఴ஍డ௫ళడ௦ + ଺ଶܨ డఴ஍డ௫లడ௦మ + ହଷܨ డఴ஍డ௫ఱడ௦య ସସܨ+ డఴ஍డ௫రడ௦ర + ଷହܨ డఴ஍డ௫యడ௦ఱ + ଶ଺ܨ డఴ஍డ௫మడ௦ల ଵ଻ܨ+ డఴ஍డ௫డ௦ళ + ଴଼ܨ డఴ஍డ௦ఴ + ଺଴ܨ డల஍డ௫ల + ହଵܨ డల஍డ௫ఱడ௦ ସଶܨ+ డల஍డ௫రడ௦మ + ଷଷܨ డల஍డ௫యడ௦య + ଶସܨ డల஍డ௫మడ௦ర ଵହܨ+ డల஍డ௫డ௦ఱ + ଴଺ܨ డల஍డ௦ల + ସ଴ܨ డర஍డ௫ర + ଷଵܨ డర஍డ௫యడ௦ + ଶଶܨ డర஍డ௫మడ௦మ + ଵଷܨ డర஍డ௫డ௦య + ଴ସܨ డర஍డ௦ర = ,ݔ)ݍ   (ݏ
               (2.24) 

The coefficients ܨ௜௝ for i, j = 1, 3, 5, 7 are not presented since they are condensed out of 

the solution for the analytical strip method; details are presented in Chapter 3.  The 

coefficients ܨ௜௝ for i, j = 0, 2, 4, 6, 8 are 

ܨ଼ ଴ = ଵଵܦ଺଺ܣଵଵܣ	 − ଵଵܦଵ଺ଶܣ + ଵ଺ܤଵ଺ܣଵଵܤ2 − ଵଵܣଵ଺ଶܤ − ଺଺ܣଵଵଶܤ +ଶோ ൫ܤଵ଺ଶܤଵଵ − ଵଵܦଵ଺ܤଵ଺ܣ − ଵଵܣଵ଺ܤଵ଺ܦ + ଵ଺ܦଵ଺ܣଵଵܤ + ଵଵܦ଺଺ܤଵଵܣ − (2.25a)
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଺଺൯ܤଵଵଶܤ + ଵோమ ൫ܣଵଵܦ଺଺ܦଵଵ − ଵଵܦଵ଺ଶܤ − ଵଵܣଵ଺ଶܦ + ଵ଺ܦଵ଺ܤଵଵܤ2   ଺଺൯ܦଵଵଶܤ−
଺ଶܨ = ଵଶܦ଺଺ܣଵଵܣ2	 − ଵଶܦଵ଺ଶܣ2 − ଺଺ܦଵ଺ଶܣ4 + ଺଺ܦ଺଺ܣଵଵܣ4 + ଵଵܦଶଶܣଵଵܣ ଵ଺ܦଶ଺ܣଵଵܣ8+ + ଵଵܦଶ଺ܣଵ଺ܣ2 − ଵଵܦ଺଺ܣଵଶܣ2 − ଵ଺ܦଵ଺ܣଵଶܣ8 ଶ଺ܤଵ଺ܣଵଵܤ6+ − ଵଵܣଶ଺ܤଵ଺ܤ6 − ଵ଺ܤଶ଺ܣଵଵܤ10 − ଵଵܦଵଶଶܣ + ଵଶܣଵ଺ଶܤ6 ଺଺ܣଵ଺ଶܤ4− − ଶଶܣଵଵଶܤ − ଵଵܣଵଶଶܤ − ଵଵܣ଺଺ܤଵଶܤ4 + ଵଶܣଵଵܤଵଶܤ2 ଵ଺ܣଵ଺ܤଵଶܤ4+ − ଵଵܣ଺଺ଶܤ4 + ଵ଺ܣଵ଺ܤ଺଺ܤ8 + ଺଺ܤଵଶܣଵଵܤ4 +ଶோ ൫ܣଵଶܤଵଶܦଵଵ + ଵଵܦଵ଺ܣଶ଺ܤ3 + ଵ଺ܦଶ଺ܤଵଵܣ5 + ଵଵܦଶଶܤଵଵܣ ଺଺ܦଵ଺ܤଵ଺ܣ2− − ଵ଺ܦଵ଺ܤଵଶܣ − ଵଶܦଵ଺ܤଵ଺ܣ − ଵଵܦଵ଺ܤଶ଺ܣ ଵ଺ܦଵ଺ܤ଺଺ܣ2− − ଵଵܣଵ଺ܤଶ଺ܦ3 + ଺଺ܦଵଶܣଵଵܤ2 + ଵଶܦଵଶܣଵଵܤ ଶ଺ܦଵ଺ܣଵଵܤ3+ − ଶ଺ܤଵ଺ܤଵଵܤ8 + ଵ଺ܦଶ଺ܣଵଵܤ + ଺଺ܦ଺଺ܣଵଵܤ2 ଵଶܦ଺଺ܣଵଵܤ+ − ଶଶܤଵଵଶܤ − ଵ଺ܦଵଶܤଵ଺ܣ5 − ଵଵܦଵଶܤ଺଺ܣ + ଵଵܤଵଶଶܤ ଵଶܤଵ଺ଶܤ7+ + ଺଺ܤଵଶܤଵଵܤ − ଺଺ܦଵଵܣଵଶܤ2 − ଵଵܣଵଶܤଵଶܦ + ଺଺ܤଵ଺ଶܤ2 ଵଵܦ଺଺ܤଵଶܣ− + ଵ଺ܦ଺଺ܤଵ଺ܣ2 − ଵଵ൯ܤ଺଺ଶܤ2 + ଵோమ ൫4ܤଵ଺ଶܦଵଶ ଵଵܦଵ଺ܤଶ଺ܤ2− − ଺଺ܦଵ଺ଶܤ − ଺଺ܣଵ଺ଶܦ − ଵଵܣଵଶଶܦ + ଵ଺ܦଶ଺ܦଵଵܣ2 ଵଶܦ଺଺ܦଵଵܣ2− + ଵଵܦଶ଺ܦଵ଺ܣ4 + ଵଵܦଶଶܦଵଵܣ + ଵଵܦ଺଺ܦ଺଺ܣ ଵ଺ܣଵ଺ܦଵଶܦ4− − ଶ଺ܦଵ଺ܤଵଵܤ6 + ଵ଺ܦଶ଺ܤଵଵܤ2 − ଶଶܦଵଵଶܤ − ଵଵܦଵଶଶܤ ଵଵܦ଺଺ܤଵଶܤ2+ + ଺଺ܦଵଶܤଵଵܤ2 + ଵଶܦଵଶܤଵଵܤ2 − ଵଵܦ଺଺ଶܤ ଵଶܦ଺଺ܤଵଵܤ2+ +   ଵ଺൯ܦ଺଺ܤଵ଺ܤ2

(2.25b)

ସସܨ = ଶଶܦ଺଺ܣଵଵܣ	 − ଺଺ܦଵଶଶܣ4 − ଵଶܦଵଶଶܣ2 − ଶଶܦଵ଺ଶܣ + ଵଶܦଶଶܣଵଵܣ2 ଺଺ܦଶଶܣଵଵܣ4+ + ଵ଺ܦଶଶܣଵ଺ܣ8 + ଵଵܦଶଶܣ଺଺ܣ − ଵଶܦ଺଺ܣଵଶܣ4 ଺଺ܦ଺଺ܣଵଶܣ8− + ଶ଺ܦଶ଺ܣଵଵܣ8 + ଵଶܦଶ଺ܣଵ଺ܣ + ଺଺ܦଶ଺ܣଵ଺ܣ8 ଵ଺ܦଶ଺ܣଵଶܣ8− + ଺଺ܣଵ଺ܤଶ଺ܤ8 + ଶ଺ܣଵଵܤଶ଺ܤ2 − ଶ଺ܦଵ଺ܣଵଶܣ8 ଶ଺ܤଵଶܣଵ଺ܤ20+ + ଵ଺ܣଶଶܤଵ଺ܤ2 + ଶଶܤଵଶܣଵଵܤ2 + ଶଶܤ଺଺ܣଵଵܤ2 ଶଶܣଵ଺ଶܤ9− − ଵଵܦଶ଺ଶܣ − ଵଵܣଶ଺ଶܤ9 + ଵଶܣଵଶଶܤ2 − ଵ଺ܣଵଶܤଶ଺ܤ4 ଵଵܣଵଶܤଶଶܤ2− − ଵ଺ܤଶ଺ܣଵଶܤ4 + ଺଺ܤଵଶܣଵଶܤ8 − ଶଶܣଵଶܤଵଵܤ2 +
(2.25c)
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ଵଶܣ଺଺ଶܤ8 − ଵ଺ܣ଺଺ܤଶ଺ܤ8 − ଵଵܣ଺଺ܤଶଶܤ4 − ଺଺ܤଶ଺ܣଵ଺ܤ8 ଶଶܣ଺଺ܤଵଵܤ4− + ଶோ ൫2ܤଶ଺ܣ଺଺ܦଵ଺ − ଵଵܦଶ଺ܣଶ଺ܤ − ଵଵܤଶ଺ଶܤ − ଶଶܤଵ଺ଶܤ6 ଵଶܦଶଶܤଵଵܣ+ − ଶ଺ܦଶ଺ܤଵଵܣ + ଺଺ܦଶଶܤଵଵܣ2 + ଵ଺ܦଶଶܤଵ଺ܣ6 ଵଵܦଶଶܤ଺଺ܣ+ + ଶ଺ܦଵ଺ܤଵଶܣ5 + ଵଶܦଵ଺ܤଶ଺ܣ + ଺଺ܦଵ଺ܤଶ଺ܣ2 ଵ଺ܦଵଶܣଶ଺ܤ3− + ଺଺ܦଵ଺ܣଶ଺ܤ2 + ଵଶܦଵ଺ܣଶ଺ܤ + ଶ଺ܦଵ଺ܤ଺଺ܣ2 ଶଶܦଵଶܣଵଵܤ+ + ଶ଺ܦଶ଺ܣଵଵܤ3 + ଶଶܦ଺଺ܣଵଵܤ − ଵଶܦଵଶܣଵଶܤ ଺଺ܦଵଶܣଵଶܤ2− − ଶ଺ܦଵ଺ܣଵଶܤ7 − ଵ଺ܦଶ଺ܣଵଶܤ3 − ଵଶܦ଺଺ܣଵଶܤ2 ଺଺ܦ଺଺ܣଵଶܤ4− − ଵଵܣଵଶܤଶଶܦ − ଶଶܤଵଶܤଵଵܤ + ଶ଺ܤଵ଺ܤଵଶܤ6 + ଺଺ܤଵଶଶܤ4 ଵଶܤ଺଺ଶܤ4+ + ଵଶଷܤ − ଶ଺ܦଵ଺ܣ଺଺ܤ2 − ଵ଺ܦଶ଺ܣ଺଺ܤ2 − ଶଶܦ଺଺ܤଵଵܣ ଶଶܤ଺଺ܤଵଵܤ3− − ଺଺൯ܤଶ଺ܤଵ଺ܤ4 + ଵோమ ൫4ܤଶ଺ܤଵ଺ܦଵଶ + ଺଺ܦଵ଺ܤଶ଺ܤ2 ଵଵܦଶ଺ଶܤ− − ଵଵܣଶ଺ଶܦ − ଶଶܦଵ଺ଶܤ4 − ଺଺ܣଵଶଶܦ + ଶଶܦ଺଺ܦଵଵܣ ଵଶܦଶ଺ܦଵ଺ܣ4− − ଵଶܦ଺଺ܦ଺଺ܣ2 + ଵ଺ܦଶଶܦଵ଺ܣ4 + ଵ଺ܦଶ଺ܦ଺଺ܣ2 ଵଵܦଶଶܦ଺଺ܣ+ + ଶ଺ܦଵଵܤଶ଺ܤ2 − ଺଺ܦଵଶଶܤ + ଶ଺ܦଵ଺ܤଵଶܤ4 − ଵ଺ܦଶ଺ܤଵଶܤ4 ଵଶܦ଺଺ܤଵଶܤ2+ + ଵଶܦ଺଺ଶܤ2 − ଶ଺ܦ଺଺ܤଵ଺ܤ2 − ଵ଺ܦ଺଺ܤଶ଺ܤ2   ଶଶ൯ܦ଺଺ܤଵଵܤ2−
ଶ଺ܨ = ଶଶܦଶଶܣଵଵܣ − ଶଶܦଵଶଶܣ + ଶଶܦଶ଺ܣଵ଺ܣ2 + ଶ଺ܦଶଶܣଵ଺ܣ8 + ଵଶܦଶଶܣ଺଺ܣ2 ଺଺ܦଶଶܣ଺଺ܣ4+ − ଶଶܦ଺଺ܣଵଶܣ2 − ଶ଺ܦଶ଺ܣଵଶܣ8 − ଶଶܣଵ଺ܤଶ଺ܤ6 ଶଶܤଶ଺ܣଵ଺ܤ6+ − ଵ଺ܣଶଶܤଶ଺ܤ10 + ଵଶܣଶ଺ଶܤ6 − ଵଶܦଶ଺ଶܣ2 − ଺଺ܦଶ଺ଶܣ4 ଺଺ܣଶ଺ଶܤ4− − ଵଵܣଶଶଶܤ − ଶଶܣଵଶଶܤ + ଶଶܤଵଶܣଵଶܤ2 + ଶ଺ܣଶ଺ܤଵଶܤ4 ଶଶܣ଺଺ܤଵଶܤ4− + ଶ଺ܣଶ଺ܤ଺଺ܤ8 − ଶଶܣ଺଺ଶܤ4 + ଶଶܤଵଶܣ଺଺ܤ4 +ଶோ ൫2ܣଵ଺ܤଶଶܦଶ଺ − ଶଶܦଵ଺ܣଶ଺ܤ2 − ଺଺ܦଶ଺ܣଶ଺ܤ2 − ଶ଺ܦ଺଺ܣଶ଺ܤ2 ଵଶܦଶ଺ܣଶ଺ܤ− + ଺଺ܦଶଶܤ଺଺ܣ2 + ଵଶܦଶଶܤ଺଺ܣ + ଶଶܦଵ଺ܤଶ଺ܣ2 ଶ଺ܦଵଶܣଶ଺ܤ− − ଶଶܤଵ଺ܤଶ଺ܤ2 − ଶଶܦଵଶܤ଺଺ܣ − ଶ଺ܦଵଶܤଶ଺ܣ + ଵଶܤଶ଺ଶܤ3 ଶଶܤ଺଺ܤଵଶܤ− + ଶଶܦ଺଺ܤଵଶܣ + ଶ଺ܦ଺଺ܤଶ଺ܣ2 + ଺଺ܤଶ଺ଶܤ2 − ଶଶ൯ܤ଺଺ଶܤ2 +ଵோమ ൫ܣ଺଺ܦ଺଺ܦଶଶ − ଺଺ܦଶ଺ଶܤ − ଺଺ܣଶ଺ଶܦ − ଶଶܦ଺଺ଶܤ +   ଶ଺൯ܦ଺଺ܤଶ଺ܤ2

(2.25d)
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଴଼ܨ = ଶଶܦଶଶܣ଺଺ܣ	 − ଶଶܣଶ଺ଶܤ − ଶଶܦଶ଺ଶܣ − ଺଺ܣଶଶଶܤ + ଶ଺  (2.25e)ܣଶ଺ܤଶଶܤ2

଺଴ܨ = ଶோ ൫ܣଵଶܤଵଵܣ଺଺ + ଵଵܣଵ଺ܤଶ଺ܣ − ଶ଺ܣଵ଺ܣଵଵܤ − ଵ଺ܤଵ଺ܣଵଶܣ + ଵଶܤଵ଺ଶܣ ଵଶ൯ܤ଺଺ܣଵଵܣ− + ଶோమ ൫ܤଶ଺ܤଵ଺ܣଵଵ + ଵଵܣଶ଺ܣଵ଺ܦ − ଶ଺ܤଵ଺ܣଵଵܤ ଶ଺ܣଵ଺ܤଵଵܤ− − ଵ଺ܦଵ଺ܣଵଶܣ − ଵଶܣଵ଺ଶܤ + ଵଶܤଵ଺ܤଵ଺ܣ2 − ଵଶܤ଺଺ܤଵଵܣ2 ଺଺൯ܤଵଶܣଵଵܤ2+ + ଶோయ ൫ܣଵଶܤଵଵܦ଺଺ + ଵଵܣଵ଺ܦଶ଺ܤ − ଶ଺ܤଵ଺ܤଵଵܤ ଵ଺ܦଵ଺ܤଵଶܣ− − ଵଶܤ଺଺ܦଵଵܣ +  ଵଶ൯ܤଵ଺ଶܤ
(2.25f)

ସଶܨ = 	 ଶோ ൫ܣଵ଺ଶܤଶଶ + ଵଵܤଶ଺ଶܣ + ଶ଺ܣଵ଺ܤଵଶܣ − ଶଶܤ଺଺ܣଵଵܣ − ଶ଺ܤଶ଺ܣଵଵܣ ଶ଺ܤଵ଺ܣଵଶܣ+ − ଵ଺ܣଵ଺ܤଶଶܣ − ଶଶܣ଺଺ܣଵଵܤ − ଵଶܦଵଶଶܣ + ଵଶܤ଺଺ܣଵଶܣ2 ଵଶܤଶ଺ܣଵ଺ܣ2− − ଺଺ܤଵଶଶܣ2 + ଵଵ൯ܣ଺଺ܤଶଶܣ2 + ଶோమ ൫ܣଵଶܤଵଵܤଶଶ ଶ଺ܤଵ଺ܤଵଶܣ9+ − ଵଵܣଶ଺ଶܤ5 − ଶଶܣଵ଺ଶܤ3 + ଶଶܤଵ଺ܤଵ଺ܣ + ଶ଺ܤଵ଺ܤ଺଺ܣ2 ଵଵܣଵଶܦଶଶܣ+ + ଵଵܣ଺଺ܦଶଶܣ2 + ଵ଺ܣଵ଺ܦଶଶܣ2 + ଵ଺ܣଶ଺ܣ଺଺ܦ2 ଵ଺ܣଶ଺ܣଵଶܦ+ + ଵଵܣଶ଺ܣଶ଺ܦ3 + ଶ଺ܤଶ଺ܣଵଵܤ2 − ଶଶܤ଺଺ܣଵଵܤ ଶ଺ܦଵ଺ܣଵଶܣ3− − ଺଺ܦ଺଺ܣଵଶܣ2 − ଵଶܦ଺଺ܣଵଶܣ − ଵ଺ܦଶ଺ܣଵଶܣ2 ଺଺ܦଵଶଶܣ2− − ଵଶܦଵଶଶܣ − ଵଶܤଵ଺ܤଶ଺ܣ4 + ଺଺ܣଵଶଶܤ2 − ଶଶܣଵଶܤଵଵܤ ଵଶܤଶଶܤଵଵܣ− + ଵଶܣଵଶଶܤ + ଵଶܤଵଶܣ଺଺ܤ − ଵ଺ܣଵଶܤଶ଺ܤ + ଵଶܣ଺଺ଶܤ4 ଶ଺ܤ଺଺ܤଵ଺ܣ2− − ଵ଺ܤଶ଺ܣ଺଺ܤ2 − ଶଶ൯ܣ଺଺ܤଵଵܤ + ଶோయ ൫ܣଵଶܤଵଵܦଶଶ ଶ଺ܦଵ଺ܤଵଶܣ3+ − ଶଶܤଵ଺ଶܤ2 − ଶ଺ܤଶ଺ܦଵଵܣ + ଶଶܤ଺଺ܦଵଵܣ + ଵଵܣଵଶܦଶଶܤ ଵ଺ܣଵ଺ܦଶଶܤ2+ + ଵ଺ܣଵଶܦଶ଺ܤ2 + ଺଺ܣଵ଺ܦଶ଺ܤ − ଵ଺ܦଶ଺ܤଵଶܣ + ଺଺ܦଵ଺ܤଶ଺ܣ ଵଶܦଵ଺ܤଶ଺ܣ− − ଵଵܤଶ଺ଶܤ + ଶ଺ܦଶ଺ܣଵଵܤ2 − ଵଶܤଵଶܣଵଶܦ + ଵଶଷܤ ଺଺ܦଵଶܣଵଶܤ− − ଵଶܤ଺଺ܦ଺଺ܣ + ଵଶܤ଺଺ଶܤ − ଵଶܤଶଶܦଵଵܣ + ଺଺ܤଵଶଶܤ2 ଵଶܤଶ଺ܦଵ଺ܣ4− + ଵଶܤଵ଺ܤଶ଺ܤ2 − ଶ଺ܣଵଶܤଵ଺ܦ − ଶଶܤଵଶܤଵଵܤ − ଺଺ܤଵଶܣଵଶܦ ଶଶܤ଺଺ܤଵଵܤ− − ଶ଺ܣ଺଺ܤଵ଺ܦ −    ଶ଺൯ܤ଺଺ܤଵ଺ܤ

(2.25g)

ଶସܨ = ଶோ ൫ܣଵ଺ܣଶଶܤଶ଺ − ଶ଺ܣଶ଺ܤଵଶܣ − ଶଶܤଶ଺ܣଵ଺ܣ + ଶଶܤ଺଺ܣଵଶܣ − ଵଶܤଶଶܣ଺଺ܣ + (2.25h)
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ଵଶ൯ܤଶ଺ଶܣ + ଶோమ ൫4ܤଶ଺ଶܣଵଶ − ଺଺ܣଶ଺ଶܤ2 − ଵଵܣଶଶଶܤ + ଶଶܤଵ଺ܤଶ଺ܣ4 ଶଶܤଵ଺ܣଶ଺ܤ7− + ଺଺ܣଵଶܦଶଶܣ + ଵ଺ܣଶ଺ܦଶଶܣ6 + ଺଺ܣ଺଺ܦଶଶܣ2 ଵଵܣଶଶܦଶଶܣ+ + ଵ଺ܣଶ଺ܣଶଶܦ − ଶଶܣଶ଺ܤଵ଺ܤ4 − ଶ଺ܦଶ଺ܣଵଶܣ6 ଶଶܦ଺଺ܣଵଶܣ− − ଶଶܦଵଶଶܣ − ଵଶܦଶ଺ଶܣ − ଺଺ܦଶ଺ଶܣ2 + ଵଶܤଶଶܤଵଶܣ2 ଶ଺ܤଵଶܤଶ଺ܣ3+ − ଶଶܣ଺଺ܤଵଶܤ3 − ଶଶܣଵଶଶܤ + ଶଶܤ଺଺ܤଵଶܣ3 ଶ଺ܤ଺଺ܤଶ଺ܣ4+ − ଶଶ൯ܣ଺଺ଶܤ2 + ଶோయ ൫2ܣଵ଺ܦଶ଺ܤଶଶ − ଶଶܤଵ଺ܤଶ଺ܤ2 ଶ଺ܦଶ଺ܤଵଶܣ− + ଶଶܤଶ଺ܦଵ଺ܣ2 − ଶ଺ܤଶଶܦଵ଺ܣ2 − ଶ଺ܤଶ଺ܦ଺଺ܣ ଶଶܤ଺଺ܦ଺଺ܣ+ − ଺଺ܦଶ଺ܣଶ଺ܤ + ଺଺ܣଵଶܦଶଶܤ + ଶଶܦଵ଺ܤଶ଺ܣ2 − ଵଶܦଶ଺ܤଶ଺ܣ ଵଶܤଶଶܦ଺଺ܣ− − ଶ଺ܦଶ଺ܣଵଶܤ + ଵଶܤଶ଺ଶܤ3 − ଶଶܤ଺଺ܤଵଶܤ − ଶଶܤ଺଺ଶܤ ଺଺ܤଶ଺ଶܤ+ + ଶ଺ܣ଺଺ܤଶ଺ܦ + ଺଺൯ܤଵଶܣଶଶܦ   

଴଺ܨ = 	 ଶோమ ൫2ܤଶ଺ܣଶ଺ܤଶଶ − ଺଺ܣଶଶଶܤ + ଺଺ܣଶଶܦଶଶܣ − ଶଶܦଶ଺ଶܣ − ଶଶ൯  (2.25i)ܣଶ଺ଶܤ

ସ଴ܨ = 	 ଵோమ ൫ܣଵଵܣ଺଺ܣଶଶ − ଺଺ܣଵଶଶܣ − ଶଶܣଵ଺ଶܣ − ଵଵܣଶ଺ଶܣ + ଶ଺൯ܣଵ଺ܣଵଶܣ2 +ଶோయ ൫ܣଵଶܣଵ଺ܤଶ଺ − ଶଶܣଵ଺ܤଵ଺ܣ − ଵଵܣଶ଺ܣଶ଺ܤ + ଶ଺ܣଵ଺ܤଵଶܣ ଶଶܣ଺଺ܤଵଵܣ+ − ଺଺൯ܤଵଶଶܣ + ଵோర ൫ܣଵଵܦ଺଺ܣଶଶ − ଺଺ܦଵଶଶܣ − ଶଶܣଵ଺ଶܤ ଵଵܣଶ଺ଶܤ− +    ଶ଺൯ܤଵ଺ܤଵଶܣ2

(2.25j)

ଶଶܨ = ଶோయ ൫ܤଶ଺ܣଵ଺ܣଶଶ − ଶ଺ܤଶ଺ܣଵଶܣ − ଵ଺ܣଶ଺ܣଶଶܤ + ଶଶܤ଺଺ܣଵଶܣ ଶଶܣଵଶܤ଺଺ܣ− + ଵଶ൯ܤଶ଺ଶܣ + ଵோర ൫ܣଵଵܦଶଶܣଶଶ − ଶଶܣଵ଺ܤଶ଺ܤ2 − ଶଶܦଵଶଶܣ ଵଵܣଶଶଶܤ− − ଺଺ܣଶ଺ଶܤ − ଶ଺ܦଶ଺ܣଵଶܣ4 + ଶଶܣଶ଺ܦଵ଺ܣ4 + ଶଶܣ଺଺ܦ଺଺ܣ ଵ଺ܣଶଶܤଶ଺ܤ4− + ଶଶܤଵ଺ܤଶ଺ܣ2 + ଵଶܣଶ଺ଶܤ2 − ଺଺ܦଶ଺ଶܣ + ଵଶܤଵଶܣଶଶܤ2 ଵଶܤଶ଺ܣଶ଺ܤ2+ − ଶଶܣଵଶଶܤ − ଶଶܣ଺଺ܤଵଶܤ2 + ଺଺ܤଶ଺ܣଶ଺ܤ2 ଺଺ܤଵଶܣଶଶܤ2+ − ଶଶ൯ܣ଺଺ଶܤ   

(2.25k)

଴ସܨ = 	 1ܴସ ൫ܣ଺଺ܦଶଶܣଶଶ − ଺଺ܣଶଶଶܤ + ଶଶܤଶ଺ܤଶ଺ܣ2 − ଶଶܦଶ଺ଶܣ − ଶଶ൯ (2.25l)ܣଶ଺ଶܤ
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where Aij are the extensional stiffnesses, Bij are the bending-extensional coupling 

stiffnesses, and Dij are the bending stiffnesses given by Eq. (2.8) 

 

2.7  Displacement Equations 

2.7.1  Isotropic Shells 

The displacement equations of Eq. (2.17) can be expressed in terms of the potential 

function Φ(ݔ,   The longitudinal displacement is  .(ݏ

௫ݑ = ܽଷ డఱ஍(௫,௦)డ௫యడ௦మ + ܽହ డఱ஍(௫,௦)డ௫డ௦ర + ܽ଻ డయ஍(௫,௦)డ௫య + ܽଽ డయ஍(௫,௦)డ௫డ௦మ        (2.26)  

where 

ܽଷ = − (ଵାఔ)ଶோ  (2.27a)          ܦܣ

ܽହ = − ଶ(ଵାఔ)ோ  (2.27b)          ܦܣ

ܽ଻ = − ఔ(ଵିఔ)ଶோ ଶܣ − ఔ(ଵିఔ)ଶோయ  (2.27c)        ܦܣ

ܽଽ = (ଵିఔ)ଶோ ଶܣ − ఔோయ  (2.27d)        ܦܣ

The circumferential displacement is 

௦ݑ = ܽଵଶ డఱ஍(௫,௦)డ௫రడ௦ + ܽଵସ డఱ஍(௫,௦)డ௫మడ௦య + ܽଵ଺ డఱ஍(௫,௦)డ௦ఱ + ܽଵ଼ డయ஍(௫,௦)డ௫మడ௦ + ܽଶ଴ డయ஍(௫,௦)డ௦య     (2.28) 

where 

ܽଵଶ = ଵோ  (2.29a)          ܦܣ

ܽଵସ = (ଷିఔ)ଶோ  (2.29b)          ܦܣ

ܽଵ଺ = (ଵିఔ)ଶோ  (2.29c)          ܦܣ
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ܽଵ଼ = − (ଵିఔ)ோ  ଶ          (2.29d)ܣ

ܽଶ଴ = − (ଵିఔ)ଶோ  ଶ          (2.29e)ܣ

The radial displacement is 

ݓ = ܽଶଵ డర஍(௫,௦)డ௫ర + ܽଶଷ డర஍(௫,௦)డ௫మడ௦మ + ܽଶହ డర஍(௫,௦)డ௦ర       (2.30) 

where 

ܽଶଵ = (ଵିఔ)ଶ ଶܣ + (ଵିఔ)ଶோమ  (2.31a)         ܦܣ

ܽଶଷ = (1 − ଶܣ(ߥ + ସା(ଵିఔ)మସோమ  (2.31b)        ܦܣ

ܽଶହ = (ଵିఔ)ଶ ଶܣ + (ଵିఔ)ଶோమ  (2.31c)         ܦܣ

The extensional and bending stiffness, A and D, are provided in Eq. (2.3). 

 

2.7.2  Laminated Shells 

The displacement equations of Eq. (2.22) can be expressed in terms of the potential 

function Φ(ݔ,   The longitudinal displacement is  .(ݏ

௫ݑ = ܽଵ డఱ஍(௫,௦)డ௫ఱ + ܽଶ డఱ஍(௫,௦)డ௫రడ௦ + ܽଷ డఱ஍(௫,௦)డ௫యడ௦మ + ܽସ డఱ஍(௫,௦)డ௫మడ௦య + ܽହ డఱ஍(௫,௦)డ௫డ௦ర + ܽ଺ డఱ஍(௫,௦)డ௦ఱ +ܽ଻ డయ஍(௫,௦)డ௫య + ଼ܽ డయ஍(௫,௦)డ௫మడ௦ + ܽଽ డయ஍(௫,௦)డ௫డ௦మ + ܽଵ଴ డయ஍(௫,௦)డ௦య        (2.32) 

where 

ܽଵ = ଺଺ܣଵଵܤ + ଵோమ ଺଺ܦଵଵܤ − ଵ଺ܤଵ଺ܣ − ଵோ ଵ଺ܦଵ଺ܣ − ଵோమ ଵ଺ܦଵ଺ܤ − ଵோ ଵ଺ଶܤ +ଶோ   ଺଺ܤଵଵܤ
(2.33a)
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ܽଶ = ଶ଺ܣଵଵܤ2 − ଵோ ଵ଺ܦଵଶܣ − ଶோ ଺଺ܦଵ଺ܣ − ଵோ ଵଶܦଵ଺ܣ + ଵோమ ଺଺ܦଵ଺ܤ − ଵோమ ଵଶܦଵ଺ܤ −ଵோ ଵ଺ܦ଺଺ܣ + ଶோమ ଶ଺ܦଵଵܤ + ସோ ଶ଺ܤଵଵܤ − ଵ଺ܤଵଶܣ + ଵ଺ܤ଺଺ܣ2 + ଶோ ଵ଺ܤଵଶܤ ଵଶܤଵ଺ܣ− − ଵோమ ଵ଺ܦ଺଺ܤ − ଵோమ ଵ଺ܦଵଶܤ + ଷோ ଺଺ܤଵ଺ܤ −   ଺଺ܤଵ଺ܣ2

(2.33b)

ܽଷ = ଵ଺ܤଶ଺ܣ5 − ଶோ ଺଺ܦଵଶܣ − ଵோ ଵଶܦଵଶܣ − ଶோ ଺଺ܦ଺଺ܣ − ଵோ ଵଶܦ଺଺ܣ + ଶଶܣଵଵܤ +ଶோ ଶଶܤଵଵܤ + ଵோమ ଶଶܦଵଵܤ − ଺ோ ଶ଺ܦଵ଺ܣ + ோ଼ ଶ଺ܤଵ଺ܤ + ଷோమ ଶ଺ܦଵ଺ܤ −ଵோ ଵ଺ܦଶ଺ܣ − ଵோమ ଵ଺ܦଶ଺ܤ − ଶ଺ܤଵ଺ܣ3 − ଵோమ ଵଶܦଵଶܤ − ଵோమ ଺଺ܦଵଶܤ −ଵோ ଺଺ܤଵଶܤ − ଵோ ଵଶଶܤ − ଵோమ ଵଶܦ଺଺ܤ + ଶோ ଺଺ଶܤ − ଵଶܤଵଶܣ −   ଺଺ܤଵଶܣ2

(2.33c)

ܽସ = ଶଶܣଵ଺ܤ3 − ଷோ ଶ଺ܦଵଶܣ − ଵோ ଶଶܦଵ଺ܣ + ହோ ଶଶܤଵ଺ܤ + ଶோమ ଶଶܦଵ଺ܤ − ଶோ ଺଺ܦଶ଺ܣ −ଵோ ଵଶܦଶ଺ܣ − ଷோ ଶ଺ܦ଺଺ܣ − ଵோమ ଺଺ܦଶ଺ܤ − ଵோమ ଵଶܦଶ଺ܤ − ଶ଺ܤଵଶܣ3 − ଶଶܤଵ଺ܣ ଶ଺ܤ଺଺ܣ2− + ଺଺ܤଶ଺ܣ2 + ଵோమ ଶ଺ܦ଺଺ܤ − ଵோమ ଶ଺ܦଵଶܤ + ଵଶܤଶ଺ܣ + ହோ   ଺଺ܤଶ଺ܤ

(2.33d)

ܽହ = ଵோ ଶ଺ଶܤ − ଶଶܤଵଶܣ − ଵோ ଶଶܦଵଶܣ − ଶଶܤ଺଺ܣ − ଵோ ଶଶܦ଺଺ܣ − ଷோ ଶ଺ܦଶ଺ܣ −ଵோమ ଶ଺ܦଶ଺ܤ − ଶ଺ܤଶ଺ܣ + ଶଶܣଵଶܤ + ଶଶܣ଺଺ܤ2 + ଷோ ଶଶܤ଺଺ܤ + ଵோ ଶଶܤଵଶܤ +ଵோమ   ଶଶܦ଺଺ܤ

(2.33e)

ܽ଺ = ଶଶܣଶ଺ܤ − ଵோ ଶଶܦଶ଺ܣ + ଵோ ଶଶܤଶ଺ܤ − ଶଶ  (2.33f)ܤଶ଺ܣ

ܽ଻ = ଵோమ ଶ଺ܣଵ଺ܤ − ଵோ ଺଺ܣଵଶܣ − ଵோయ ଺଺ܦଵଶܣ + ଵோమ ଶ଺ܤଵ଺ܣ + ଵோ ଶ଺ܣଵ଺ܣ +ଵோయ ଶ଺ܤଵ଺ܤ − ଶோమ   ଺଺ܤଵଶܣ
(2.33g)

଼ܽ = ଵோ ଶଶܣଵ଺ܣ − ଷோమ ଶ଺ܤଵଶܣ − ଵோ ଶ଺ܣଵଶܣ + ଵோమ ଶଶܤଵ଺ܣ + ଵோమ ଶଶܣଵ଺ܤ +ଵோయ ଶଶܤଵ଺ܤ + ଵோమ ଶ଺ܤ଺଺ܣ − ଶோయ ଶ଺ܦଵଶܣ − ଵோయ ଺଺ܦଶ଺ܣ + ଵோయ ଶ଺ܤଵଶܤ + (2.33h)
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ଵோమ ଶ଺ܣଵଶܤ + ଵோయ ଶ଺ܤ଺଺ܤ − ଵோమ   ଶ଺ܣ଺଺ܤ

ܽଽ = ଵோయ ଶ଺ଶܤ − ଵோమ ଶଶܤଵଶܣ + ଵோ ଶଶܣ଺଺ܣ + ଵோమ ଶଶܤ଺଺ܣ − ଵோయ ଶଶܦଵଶܣ −ଶோమ ଶ଺ܤଶ଺ܣ − ଵோయ ଶ଺ܦଶ଺ܣ − ଵோ ଶ଺ଶܣ + ଵோమ ଶଶܣ଺଺ܤ + ଵோయ ଶଶܤ଺଺ܤ +ଵோమ ଶଶܣଵଶܤ + ଵோయ   ଶଶܤଵଶܤ

(2.33i)

ܽଵ଴ = ଵோమ ଶଶܣଶ଺ܤ − ଵோమ ଶଶܤଶ଺ܣ + ଵோయ ଶଶܤଶ଺ܤ − ଵோయ ଶଶ  (2.33j)ܦଶ଺ܣ

The circumferential displacement is 

௦ݑ = ܽଵଵ డఱ஍(௫,௦)డ௫ఱ + ܽଵଶ డఱ஍(௫,௦)డ௫రడ௦ + ܽଵଷ డఱ஍(௫,௦)డ௫యడ௦మ + ܽଵସ డఱ஍(௫,௦)డ௫మడ௦య + ܽଵହ డఱ஍(௫,௦)డ௫డ௦ర +ܽଵ଺ డఱ஍(௫,௦)డ௦ఱ + ܽଵ଻ డయ஍(௫,௦)డ௫య + ܽଵ଼ డయ஍(௫,௦)డ௫మడ௦ + ܽଵଽ డయ஍(௫,௦)డ௫డ௦మ + ܽଶ଴ డయ஍(௫,௦)డ௦య      (2.34) 

where 

ܽଵଵ = ଵଵܣଵ଺ܤ − ଵோ ଵ଺ܤଵଵ	ܤ + ଵோ ଵଵܣଵ଺ܦ − ଵ଺  (2.35a)ܣଵଵܤ

ܽଵଶ = ଵோ ଵଵܣଵଶܦ − ଵଶܣଵଵܤ − ଺଺ܣଵଵܤ + ଶோ ଵଵܣ଺଺ܦ + ଶோ ଵ଺ܣଵ଺ܦ − ଵ଺ܣଵ଺ܤ −ଷோ ଵ଺ଶܤ − ଵோ ଵଶܤଵଵܤ + ଵଵܣଵଶܤ + ଵଵܣ଺଺ܤ2 − ଵோ   ଺଺ܤଵଵܤ
(2.35b)

ܽଵଷ = ଵଵܣଶ଺ܤ3 − ଵோ ଶ଺ܤଵଵܤ + ସோ ଵ଺ܣ଺଺ܦ + ଶோ ଵ଺ܣଵଶܦ + ଵோ ଺଺ܣଵ଺ܦ +ଷோ ଵଵܣଶ଺ܦ − ଶ଺ܣଵଵܤ − ଵଶܣଵ଺ܤ3 − ଺଺ܣଵ଺ܤ2 − ହோ ଺଺ܤଵ଺ܤ + ଵ଺ܣଵଶܤ −ସோ ଵ଺ܤଵଶܤ +   ଵ଺ܣ଺଺ܤ2

(2.35c)

ܽଵସ = ଵଵܣଶଶܤ + ଶோ ଺଺ܣ଺଺ܦ + ଵோ ଺଺ܣଵଶܦ + ଵோ ଵଵܣଶଶܦ − ସோ ଶ଺ܤଵ଺ܤ + ଺ோ ଵ଺ܣଶ଺ܦ ଶ଺ܣଵ଺ܤ3− + ଵ଺ܣଶ଺ܤ5 − ଵଶܣଵଶܤ − ଷோ ଺଺ܤଵଶܤ − ଵଶܣ଺଺ܤ2 − ଶோ ଺଺ଶܤ − (2.35d)
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ଵோ   ଵଶଶܤ

ܽଵହ = ଶோ ଵ଺ܣଶଶܦ + ଷோ ଺଺ܣଶ଺ܦ − ଵଶܣଶ଺ܤ + ଺଺ܣଶ଺ܤ2 + ଵ଺ܣଶଶܤ2 − ଶ଺ܣଵଶܤ −ଶோ ଶ଺ܤଵଶܤ − ଶ଺ܣ଺଺ܤ2 − ଷோ   ଺଺ܤଶ଺ܤ
(2.35e)

ܽଵ଺ = ଺଺ܣଶଶܤ + ଵோ ଺଺ܣଶଶܦ − ଶ଺ܣଶ଺ܤ − ଵோ ଶ଺ଶ  (2.35f)ܤ

ܽଵ଻ = ଵோ ଵ଺ܣଵଶܣ + ଵோమ ଵ଺ܤଵଶܣ − ଵோమ ଵଵܣଶ଺ܤ − ଵோ ଵଵ  (2.35g)ܣଶ଺ܣ

ܽଵ଼ = ଵோ ଵଶଶܣ + ଵோ ଺଺ܣଵଶܣ − ଵோ ଵଵܣଶଶܣ − ଵோమ ଵଵܣଶଶܤ − ଵோ ଵ଺ܣଶ଺ܣ + ଵோమ ଵ଺ܤଶ଺ܣ −ଶோమ ଵ଺ܣଶ଺ܤ + ଵோమ ଺଺ܤଵଶܣ + ଵோమ   ଵଶܤଵଶܣ
(2.35h)

ܽଵଽ = ଶோ ଶ଺ܣଵଶܣ + ଵோమ ଶ଺ܤଵଶܣ − ଶோ ଵ଺ܣଶଶܣ − ଵோమ ଺଺ܣଶ଺ܤ − ଶோమ ଵ଺ܣଶଶܤ +ଵோమ ଵଶܤଶ଺ܣ + ଵோమ   ଺଺ܤଶ଺ܣ
(2.35i)

ܽଶ଴ = ଵோ ଶ଺ଶܣ − ଵோ ଺଺ܣଶଶܣ − ଵோమ ଺଺ܣଶଶܤ + ଵோమ ଶ଺  (2.35j)ܤଶ଺ܣ

The radial displacement is  

ݓ = ܽଶଵ డర஍(௫,௦)డ௫ర + ܽଶଶ డర஍(௫,௦)డ௫యడ௦ + ܽଶଷ డర஍(௫,௦)డ௫మడ௦మ + ܽଶସ డర஍(௫,௦)డ௫డ௦య + ܽଶହ డర஍(௫,௦)డ௦ర      (2.36) 

where 

ܽଶଵ = ଺଺ܣଵଵܣ + ଵோమ ଺଺ܦଵଵܣ − ଶோ ଵ଺ܤଵ଺ܣ − ଵோమ ଵ଺ଶܤ − ଵ଺ଶܣ + ଶோ ଺଺  (2.37a)ܤଵଵܣ

ܽଶଶ = ଶோమ ଶ଺ܦଵଵܣ + ସோ ଶ଺ܤଵଵܣ + ଶோమ ଺଺ܦଵ଺ܣ − ଶோ ଵ଺ܤଵଶܣ − ଶோ ଺଺ܣଵ଺ܤ + (2.37b)
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ଶ଺ܣଵଵܣ2 − ଵ଺ܣଵଶܣ2 − ଶோ ଵଶܤଵ଺ܣ − ଶோమ ଵ଺ܤଵଶܤ + ଶோ ଷଷܤଵ଺ܣ − ଶோమ   ଺଺ܤଵ଺ܤ

ܽଶଷ = ଶଶܣଵଵܣ + ଶோ ଶଶܤଵଵܣ + ଵோమ ଶଶܦଵଵܣ + ଵோమ ଺଺ܦ଺଺ܣ − ଵଶଶܣ − ଺଺ܣଵଶܣ2 +ସோమ ଶ଺ܦଵ଺ܣ + ଺ோ ଶ଺ܤଵ଺ܣ − ଶோ ଶ଺ܣଵ଺ܤ − ଶோమ ଶ଺ܤଵ଺ܤ + ଶ଺ܣଵ଺ܣ2 −ଶோ ଵଶܤଵଶܣ − ଶோమ ଺଺ܤଵଶܤ − ଶோ ଺଺ܣଵଶܤ − ଵோమ ଵଶଶܤ − ଵோమ ଺଺ଶܤ − ଶோ   ଺଺ܤଵଶܣ

(2.37c)

ܽଶସ = ସோ ଶଶܤଵ଺ܣ + ଶோమ ଶଶܦଵ଺ܣ + ଶோమ ଶ଺ܦ଺଺ܣ + ଶோ ଶ଺ܤ଺଺ܣ − ଶோ ଶ଺ܤଵଶܣ ଶ଺ܣଵଶܣ2− + ଶଶܣଵ଺ܣ2 − ଶோ ଶ଺ܣଵଶܤ − ଶோమ ଶ଺ܤଵଶܤ − ଶோ ଺଺ܤଶ଺ܣ − ଶோమ   ଺଺ܤଶ଺ܤ
(2.37d)

ܽଶହ = ଶଶܣ଺଺ܣ + ଶோ ଶଶܤ଺଺ܣ + ଵோమ ଶଶܦ଺଺ܣ − ଶோ ଶ଺ܤଶ଺ܣ − ଵோమ ଶ଺ଶܤ − ଶ଺ଶ  (2.37e)ܣ

The extensional stiffnesses Aij, extensional-bending coupling stiffnesses Bij, and the 

bending stiffnesses Dij are provided in Eq. (2.8). 

 

2.8  Force Equations 

2.8.1  Isotropic Shells 

The force equations are derived by substituting the strain-displacement equations of Eq. 

(2.1) into the constitutive relations of Eq. (2.2).  This produces the following equations 

for the membrane and bending force components 

൝ ௫ܰܰ௦௫ܰ௦ൡ = ቎ ܣ ܣߥ ܣߥ0 ܣ 00 0 ଵିఔଶ ቏ܣ ۔ۖەۖ
ۓ డ௨ೣడ௫డ௨ೞడ௦ + ௪ோడ௨ೞడ௫ + డ௨ೣడ௦ ۙۘۖ

ۖۗ
      (2.38a) 
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൝ܯ௫ܯ௦ܯ௫௦ൡ = ቎ ܦ ܦߥ ܦߥ0 ܦ 00 0 ଵିఔଶ ቏ܦ ۔ۖەۖ
ۓ − డమ௪డ௫మడడ௦ ቀ௨ೞோ − డ௪డ௦ ቁଵோ డ௨ೞడ௫ − 2 డమ௪డ௫డ௦ۙۘۖ

ۖۗ
     (2.38b) 

The shearing forces are derived from Eq. (2.10d) and Eq. (2.10e) 

ܳ௫ = ቄ డడ௫ డడ௦ቅ ቈܦ ܦߥ 00 0 ଵିఔଶ ቉ܦ ۔ۖەۖ
ۓ − డమ௪డ௫మడడ௦ ቀ௨ೞோ − డ௪డ௦ ቁଵோ డ௨ೞడ௫ − 2 డమ௪డ௫డ௦ۙۘۖ

ۖۗ
      (2.39a) 

ܳௌ = ቄ డడ௫ డడ௦ቅ ቈ 0 0 ଵିఔଶ ܦߥܦ ܦ 0 ቉ ۔ۖەۖ
ۓ − డమ௪డ௫మడడ௦ ቀ௨ೞோ − డ௪డ௦ ቁଵோ డ௨ೞడ௫ − 2 డమ௪డ௫డ௦ۙۘۖ

ۖۗ
      (2.39b) 

The extensional and bending stiffness, A and D, are provided in Eq. (2.3).  The 

displacements, ux, us, and w, are presented in terms of the potential function, Φ(ݔ,  in ,(ݏ

Eq. (2.26), Eq. (2.28), and Eq. (2.30). 

 

2.8.2  Laminated Shells 

The force equations are derived by substituting the strain-displacement equations of Eq. 

(2.1) into the constitutive relations of Eq. (2.9).  This produces the following equations 

for the membrane and bending force components 

൝ ௫ܰܰ௦௫ܰ௦ൡ = ൥ܣଵଵ ଵଶܣ ଵଶܣଵ଺ܣ ଶଶܣ ଵ଺ܣଶ଺ܣ ଶ଺ܣ ଺଺൩ܣ ۔ۖەۖ
ۓ డ௨ೣడ௫డ௨ೞడ௦ + ௪ோడ௨ೞడ௫ + డ௨ೣడ௦ ۙۘۖ

ۖۗ + ൥ܤଵଵ ଵଶܤ ଵଶܤଵ଺ܤ ଶଶܤ ଵ଺ܤଶ଺ܤ ଶ଺ܤ ଺଺൩ܤ ۔ۖەۖ
ۓ − డమ௪డ௫మడడ௦ ቀ௨ೞோ − డ௪డ௦ ቁଵோ డ௨ೞడ௫ − 2 డమ௪డ௫డ௦ۙۘۖ

ۖۗ
 (2.40a) 
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൝ܯ௫ܯ௦ܯ௫௦ൡ = ൥ܤଵଵ ଵଶܤ ଵଶܤଵ଺ܤ ଶଶܤ ଵ଺ܤଶ଺ܤ ଶ଺ܤ ଺଺൩ܤ ۔ۖەۖ
ۓ డ௨ೣడ௫డ௨ೞడ௦ + ௪ோడ௨ೞడ௫ + డ௨ೣడ௦ ۙۘۖ

ۖۗ + ൥ܦଵଵ ଵଶܦ ଵଶܦଵ଺ܦ ଶଶܦ ଵ଺ܦଶ଺ܦ ଶ଺ܦ ଺଺൩ܦ ۔ۖەۖ
ۓ − డమ௪డ௫మడడ௦ ቀ௨ೞோ − డ௪డ௦ ቁଵோ డ௨ೞడ௫ − 2 డమ௪డ௫డ௦ۙۘۖ

ۖۗ
 (2.40b) 

The shearing forces are derived from Eq. (2.10d) and Eq. (2.10e) 

ܳ௫ = ቄ డడ௫ డడ௦ቅۈۉ
ଵଵܤ൤ۇ ଵଶܤ ଵ଺ܤଵ଺ܤ ଶ଺ܤ ଺଺൨ܤ ۔ۖەۖ

ۓ డ௨ೣడ௫డ௨ೞడ௦ + ௪ோడ௨ೞడ௫ + డ௨ೣడ௦ ۙۘۖ
ۖۗ + ൤ܦଵଵ ଵଶܦ ଵ଺ܦଵ଺ܦ ଶ଺ܦ ଺଺൨ܦ ۔ۖەۖ

ۓ − డమ௪డ௫మడడ௦ ቀ௨ೞோ − డ௪డ௦ ቁଵோ డ௨ೞడ௫ − 2 డమ௪డ௫డ௦ۙۘۖ
ۖۗ
ۋی
ۊ

  

           (2.41a) 

ܳ௦ = ቄ డడ௫ డడ௦ቅۈۉ
ଵ଺ܤ൤ۇ ଶ଺ܤ ଵଶܤ଺଺ܤ ଶଶܤ ଶ଺൨ܤ ۔ۖەۖ

ۓ డ௨ೣడ௫డ௨ೞడ௦ + ௪ோడ௨ೞడ௫ + డ௨ೣడ௦ ۙۘۖ
ۖۗ + ൤ܦଵ଺ ଶ଺ܦ ଵଶܦ଺଺ܦ ଶଶܦ ଶ଺൨ܦ ۔ۖەۖ

ۓ − డమ௪డ௫మడడ௦ ቀ௨ೞோ − డ௪డ௦ ቁଵோ డ௨ೞడ௫ − 2 డమ௪డ௫డ௦ۙۘۖ
ۖۗ
ۋی
ۊ

  

           (2.41b) 

The extensional stiffnesses Aij, extensional-bending coupling stiffnesses Bij, and the 

bending stiffnesses Dij are provided in Eq. (2.8).  The displacements, ux, us, and w, are 

presented in terms of the potential function, Φ(ݔ,  .in Eq. (2.32), Eq. (2.34), and Eq ,(ݏ

(2.36). 
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Figure 2.1.  Stiffened cylindrical shell with strip and edge loadings  
Note:  The stiffeners are concentric with the shell 
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CHAPTER 3 

DERIVATION OF THE ANALYTICAL STRIP METHOD 

 

3.1  Introduction 

This chapter presents the derivation of the Analytical Strip Method for stiffened and 

unstiffened cylindrical shells.  The shells may be isotropic, generally orthotropic, or 

laminated with any generalized layer configuration and ply-angle scheme, such that the 

shell behaves anisotropically.  In addition to the assumptions made in the derivation of 

the equations in Chapter 2, the derivation of the solution is based on the following 

assumptions: 

• Stiffeners consist of isotropic beams and are concentric with the middle surface of 

the shell. 

• Changes in thickness of the shell wall occur at a discrete location, such that the 

structure can be divided in to a finite number of strips, where the wall thickness is 

constant within a strip. 

• Adjacent strips have a coincident middle surface, even in the case where the wall 

thickness changes. 

• Loads are applied in the radial direction. 

 

3.2  Governing Differential Equation 

Since the governing equation for isotropic shells is a reduced case of the laminated shell 

equation, the solution method will be derived based on the laminated shell equation.  The 

governing differential equation for laminated shells subjected to a radial load, q(x,s), is 

given in Eq. (2.24). 



    

33 

 

ܨ଼ ଴ డఴ஍డ௫ఴ + ଻ଵܨ డఴ஍డ௫ళడ௦ + ଺ଶܨ డఴ஍డ௫లడ௦మ + ହଷܨ డఴ஍డ௫ఱడ௦య ସସܨ+ డఴ஍డ௫రడ௦ర + ଷହܨ డఴ஍డ௫యడ௦ఱ + ଶ଺ܨ డఴ஍డ௫మడ௦ల ଵ଻ܨ+ డఴ஍డ௫డ௦ళ + ଴଼ܨ డఴ஍డ௦ఴ + ଺଴ܨ డల஍డ௫ల + ହଵܨ డల஍డ௫ఱడ௦ ସଶܨ+ డల஍డ௫రడ௦మ + ଷଷܨ డల஍డ௫యడ௦య + ଶସܨ డల஍డ௫మడ௦ర ଵହܨ+ డల஍డ௫డ௦ఱ + ଴଺ܨ డల஍డ௦ల + ସ଴ܨ డర஍డ௫ర + ଷଵܨ డర஍డ௫యడ௦ + ଶଶܨ డర஍డ௫మడ௦మ + ଵଷܨ డర஍డ௫డ௦య + ଴ସܨ డర஍డ௦ర = ,ݔ)ݍ   (ݏ
               (2.24) 

 

3.3  Analytical Strip Method 

The ASM was first developed by Harik and Salamoun (1986, 1988) for the analysis of 

thin orthotropic and stiffened rectangular plates subjected to uniform, partial uniform, 

patch, line, partial line and point loads, or any combination thereof.  The solution 

procedure requires that the structure be divided into strips based on the geometric 

discontinuities and applied loads (Figure 3.1).  The governing differential equation for 

each strip is solved analytically and the applicable continuity and boundary conditions are 

used to combine the solutions for the strips. 

The solution of the differential equation for a general strip I assumes that the form for the 

potential function, Φூ, satisfies continuity at the surface coordinates ݏ = 0 and ݏ =   .ܴߨ2

Let Φூ(ݔ, (ݏ = ∑ ߶௡ூ(ݔ) cos(ߚ௡ݏ)ஶ௡             (3.1) 

Where 

௡ߚ  = ௡ோ                (3.2) 

Hereinafter, the subscript I, denoting the Ith strip, will be excluded in the derivation.   

Substituting Eq. (3.1) into the governing differential equation, Eq. (2.24), yields 
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ܨ଼ ଴ ∑ ௗఴథ೙(௫)ௗ௫ఴஶ௡ cos(ߚ௡ݏ) − ଻ଵܨ ∑ ௗళథ೙(௫)ௗ௫ళ ௡ஶ௡ߚ sin(ߚ௡ݏ) − ଺ଶܨ ∑ ௗలథ೙(௫)ௗ௫ల ௡ଶஶ௡ߚ cos(ߚ௡ݏ) ହଷܨ+ ∑ ௗఱథ೙(௫)ௗ௫ఱஶ௡ (ݏ௡ߚ)௡ଷsinߚ + ସସܨ ∑ ௗరథ೙(௫)ௗ௫రஶ௡ (ݏ௡ߚ)௡ସcosߚ ଷହܨ− ∑ ௗయథ೙(௫)ௗ௫య ௡ହஶ௡ߚ sin(ߚ௡ݏ) − ଶ଺ܨ ∑ ௗమథ೙(௫)ௗ௫మஶ௡ (ݏ௡ߚ)௡଺cosߚ ଵ଻ܨ+ ∑ ௗథ೙(௫)ௗ௫ ௡଻ஶ௡ߚ sin(ߚ௡ݏ) + ଴଼ܨ ∑ ߶௡(ݔ)ஶ௡ ௡଼ߚ cos(ߚ௡ݏ) + ଺଴ܨ ∑ ௗలథ೙(௫)ௗ௫లஶ௡ cos(ߚ௡ݏ) ହଵܨ− ∑ ௗఱథ೙(௫)ௗ௫ఱ ௡ߚ sin(ߚ௡ݏ)ஶ௡ ସଶܨ− ∑ ௗరథ೙(௫)ௗ௫రஶ௡ ௡ଶߚ cos(ߚ௡ݏ) ଷଷܨ+ ∑ ௗయథ೙(௫)ௗ௫యஶ௡ ௡ଷߚ sin(ߚ௡ݏ) + ଶସܨ ∑ ௗమథ೙(௫)ௗ௫మ ௡ସஶ௡ߚ cos(ߚ௡ݏ) ଵହܨ− ∑ ௗథ೙(௫)ௗ௫ஶ௡ ௡ହߚ sin(ߚ௡ݏ) − ଴଺ܨ ∑ ߶௡(ݔ)ஶ௡ (ݏ௡ߚ)௡଺cosߚ + ସ଴ܨ ∑ ௗరథ೙(௫)ௗ௫రஶ௡ cos(ߚ௡ݏ) ଷଵܨ− ∑ ௗయథ೙(௫)ௗ௫యஶ௡ (ݏ௡ߚ)௡sinߚ − ଶଶܨ ∑ ௗమథ೙(௫)ௗ௫మஶ௡ ௡ଶߚ cos(ߚ௡ݏ) ଵଷܨ+ ∑ ௗథ೙(௫)ௗ௫ஶ௡ (ݏ௡ߚ)௡ଷsinߚ + ଴ସܨ ∑ ߶௡(ݔ)ஶ௡ (ݏ௡ߚ)௡ସcosߚ = ,ݔ)ݍ  (3.3)       (ݏ

Eq. (3.3) is multiplied by cos(ߚ௠ݏ), integrated from s = 0 to s = 2πR, and summed from 

m = 0 to m = ∞.  Due to orthogonality of the trigonometric functions,  ׬ sin(ߚ௡ݏ) cos(ߚ௠ݏ) = 0ଶగோ଴  for all values of m and n when m ≠ n.  The term ׬ cos(ߚ௡ݏ) cos(ߚ௠ݏ) = ଶగோ଴ܴߨ2  for m = n = 0,  and ׬ cos(ߚ௡ݏ) cos(ߚ௠ݏ) = ଶగோ଴ܴߨ  for 

m = n ≠ 0.  Implementing these relations leads to 

∑ ቄ଼ܨ ௠∗ ௗఴథ೘(௫)ௗ௫ఴ + ∗଺௠ܨ ௗలథ೘(௫)ௗ௫ల + ∗ସ௠ܨ ௗరథ೘(௫)ௗ௫ర + ∗ଶ௠ܨ ௗమథ೘(௫)ௗ௫మ + ∗଴௠ܨ ߶௠(ݔ)ቅ =ஶ௠ଵଶగோ ׬ ,ݔ)ݍ ݏ݀(ݏ + ∑ ଵగோ ׬ ,ݔ)ݍ (ݏ cos(ߚ௠ݏ) ଶగோ଴ஶ௠ୀଵଶగோ଴ݏ݀          (3.4) 

Where: ଼ܨ ௠∗ = ܨ଼ ଴             (3.5a) 

∗଺௠ܨ =  ௠ଶ            (3.5b)ߚ଺ଶܨ−

∗ସ௠ܨ = ௠ସߚସସܨ − ௠ଶߚସଶܨ +  ସ଴          (3.5c)ܨ

∗ଶ௠ܨ = ௠଺ߚଶ଺ܨ− + ௠ସߚଶସܨ −  ௠ଶ         (3.6d)ߚଶଶܨ
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∗଴௠ܨ = ௠଼ߚ଴଼ܨ − ௠଺ߚ଴଺ܨ +  ௠ସ          (3.6e)ߚ଴ସܨ

For m = 0, ܨଶ଴∗ = ∗଴଴ܨ = 0 and for m = 1, ܨ଴ଵ∗ = 0.  The coefficients Fij are provided in 

equations Eq. (2.20) for isotropic shells and Eq. (2.25) for laminated shells. 

Eq. (3.4) is an infinite set of linear eighth-order ordinary differential equations for ߶௠(ݔ) 
with m = 0, 1, 2, …, ∞.  The solution is obtained by superposition of the associated 

homogeneous and particular solutions. Φ(ݔ, (ݏ = Φு(ݔ, (ݏ + Φ௉(ݔ,  (3.7)            (ݏ

where the homogeneous solution 

 Φு(ݔ, (ݏ = ∑ ߶ு௠(ݔ) cos(ߚ௠ݏ)ஶ௠            (3.8) 

and the particular solution 

 Φ௉(ݔ, (ݏ = ∑ ߶௉௠(ݔ)cos	(ߚ௠ݏ)ஶ௠            (3.9) 

 

3.3.1  Homogeneous Solution 

The homogeneous solution for mode m, ߶ு௠(ݔ), is expressed as  

߶ு௠(ݔ) = ݁ఊ೘ఉ೘௫            (3.10) 

Substituting Eq. (3.10) into Eq. (3.4) yields the characteristic equation for mode ݉ = ଴଼ߛ∗ܨ଼ .0 + ଴଺ߛ∗଺ܨ + ଴ସߛ∗ସܨ = 0           (3.11) 

Setting ߛ଴ଶ =  ଴ reduces Eq. (3.11) toߦ

൫଼ߦ∗ܨ଴ଶ + ଴ߦ∗଺ܨ + ଴ଶߦସ∗൯ܨ = 0          (3.12) 

Two roots of Eq. (3.12) are ߦ଴ = 0 with a multiplicity of two and the other two roots are 

given by the quadratic formula (Stewart, 1995).  Substituting the roots of the 
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characteristic equation Eq. (3.11) into Eq. (3.10) leads to the homogenous solution for 

mode m = 0 Φு଴(ݔ, (ݏ = ଵ଴ܥ + ݔଶ଴ܥ + ଶݔଷ଴ܥ + ଷݔସ଴ܥ + ሾܥହ଴ cosh(ߛଷ଴ݔ) ሿ(ݔଷ଴ߛ)	଺଴sinhܥ+ cos(ߛସ଴ݔ) + ሾܥ଻଴ cosh(ߛଷ଴ݔ) +  (ݔସ଴ߛ)	ሿsin(ݔଷ଴ߛ)	଴sinh଼ܥ
            (3.13) 

where 

ଷ଴ߛ = ඨିிల∗ାටிల∗మିସிఴ∗ிర∗ଶிఴ∗          (3.14a) 

ସ଴ߛ = ඨିிల∗ିටிల∗మିସிఴ∗ிర∗ଶிఴ∗          (3.14b) 

and coefficients Cd0 for d = 1, 2, …, 8 are constants determined by the boundary 

conditions at ݔ = 0 and ݔ = ݔ ௡ and the continuity conditions atݔ = ݅) ௜ݔ = 1,2, … , ݊ −1), see Figure 3.1. 

The characteristic equation for mode m = 1 is ଼ߛ∗ܨ௠଼ + ௠଺ߛ∗଺ܨ + ௠ସߛ∗ସܨ + ௠ଶߛ∗ଶܨ = 0         (3.15) 

and for all other modes (m = 2, 3, …,∞)  ଼ߛ∗ܨ௠଼ + ௠଺ߛ∗଺ܨ + ௠ସߛ∗ସܨ + ௠ଶߛ∗ଶܨ + ∗଴ܨ = 0        (3.16) 

The characteristic equation of Eq. (3.15) may be considered a special case of Eq. (3.16) 

with ܨ଴∗ = 0 and two of the roots taken as ߛ௠ = 0 with a multiplicity of two. 

Dividing Eq. (3.16) by ܨ଴∗ and setting ߛ௠ଶ =  ௠ leads toߦ

௠ସߦ + ௠ଷߦܾ + ௠ଶߦܿ + ௠ߦ݀ + ݁ = 0         (3.17) 

where 
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ܾ = ிల∗ிఴ∗ ,   ܿ = ிర∗ிఴ∗,   ݀ = ிమ∗ிఴ∗,   ݁ = ிబ∗ிఴ∗         (3.18) 

Eq. (3.17) is a quartic equation that can be solved analytically (Editing Group of the 

Manual of Mathematics, 1979; Sun, 2009).  The four roots for Eq. (3.17) are the same as 

the four roots in the following two equations 

௡ଶߦ + ൫ܾ + ݏ8√ + ܾଶ − 4ܿ൯ క೙ଶ + ቀݏ + ௕௦ିௗ√଼௦ା௕మିସ௖ቁ = 0     (3.19a) 

௡ଶߦ + ൫ܾ − ݏ8√ + ܾଶ − 4ܿ൯ క೙ଶ + ቀݏ − ௕௦ିௗ√଼௦ା௕మିସ௖ቁ = 0     (3.19b) 

Where s is any real root for the following equation 8ݏଷ − ଶݏ4ܿ + (2ܾ݀ − ݏ(8݁ + ݁(4ܿ − ܾଶ) − ݀ଶ = 0      (3.20)  

Eq. (3.20) can be reduced to ݏଷ + ଶݏ݂ + ݏ݃ + ℎ = 0           (3.21) 

where, 

݂ = − ௖ଶ           (3.22a) 

݃ = ଶ௕ௗି଼௘଼            (3.22b) 

ℎ = ௘൫ସ௖ି௕మ൯ିௗమ଼           (3.22c) 

Let 

ݏ = ݐ − ௙ଷ            (3.23)  

Then, substitute into Eq. (3.21) 

ቀݐ − ௙ଷቁଷ + ݂ ቀݐ − ௙ଷቁଶ + ݃ ቀݐ − ௙ଷቁ + ℎ = ଷݐ + ቀ− ௙మଷ + ݃ቁ ݐ + ቀଶ௙యଶ଻ − ௙௚ଷ + ℎቁ   (3.24)  

Eq. (3.24) becomes 
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ଷݐ + ݐ݌ + ݍ = 0           (3.25)  

in which, 

݌ = −௙మଷ + ݃           (3.26a) 

ݍ = ଶ௙యଶ଻ − ௙௚ଷ + ℎ          (3.26b) 

Let, 

Δ = ቀ௤ଶቁଶ + ቀ௣ଷቁଷ           (3.27)  

ଵݐ = ට−௤ଶ + √Δయ + ට−௤ଶ − √Δయ
  when    Δ > 0       (3.28) 

ଵݐ = యݎ√2 cos when   Δ    ߠ < 0       (3.29) 

where, 

ݎ = ට−ቀ௣ଷቁଷ          (3.30a)  

ߠ = ଵଷ cosିଵ ቀ− ௤ଶ௥ቁ         (3.30b)  

Substituting t1 into Eq. (3.23) gives 

ݏ = ଵݐ − ௙ଷ             (3.31) 

Substituting the results from Eq. (3.31) into Eq. (3.19), and carrying out the solution, 

produces four roots to Eq. (3.17).  From the relation of ߛ௠ଶ =  ௠ is solved for theߛ ,௠ߦ

characteristic equation of Eq. (3.15) and Eq. (3.16). 

The homogeneous solution for mode m = 1 is 
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Φுଵ(ݔ, (ݏ = ቐ ଵଵܥ + ݔଶଵܥ + ଷଵ݁ఊయభ௫ܥ + ହଵܥସଵ݁ିఊయభ௫+ሾܥ cosh(ߛଵଵݔ) + ଺ଵܥ sinh(ߛଵଵݔ)ሿ cos(ߛଶଵݔ)+ሾܥ଻ଵ cosh(ߛଵଵݔ) + (ݔଶଵߛ)	ሿsin(ݔଵଵߛ)	ଵsinh଼ܥ ቑ cos	(ߚଵݏ)    (3.32) 

where ߛ௝ଵ (j = 1, 2, 3) are the non-zero roots to the characteristic equation [Eq. (3.15)].  

The coefficients Cd1 (d = 1, 2, …, 8) are constants determined from the applicable 

boundary and continuity conditions at the ends of the strip. 

The homogeneous solution for all other modes (m = 2, 3, …, ∞) is 

Φு௠(ݔ, (ݏ = ۔ە
ۓ ሾܥଵ௠ cosh(ߛଵ௠ݔ) + ଶ௠ܥ sinh(ߛଵ௠ݔ)ሿ cos(ߛଶ௠ݔ)+ሾܥଷ௠ cosh(ߛଵ௠ݔ) + ସ௠ܥ sinh(ߛଵ௠ݔ)ሿ sin(ߛଶ௠ݔ)+ሾܥହ௠ cosh(ߛଷ௠ݔ) + ଺௠ܥ sinh(ߛଷ௠ݔ)ሿ cos(ߛସ௠ݔ)+ሾܥ଻௠ cosh(ߛଷ௠ݔ) + (ݔସ௠ߛ)	ሿsin(ݔଷ௠ߛ)	௠sinh଼ܥ ۙۘ

ۗ cos	(ߚ௠ݏ)    (3.33) 

where ߛ௝௠ (j = 1, 2, 3, 4) are the non-zero roots to the characteristic equation [Eq. (3.16)] 

for mode m = 2, 3, …, ∞.  The coefficients Cdm (d = 1, 2, …, 8) are constants determined 

from the boundary conditions at ݔ = 0 and ݔ = ݔ ௡ and the continuity conditions atݔ ݅] ௜ݔ= = 1, 2, … , ݊ − 1 (Figure 3.1)]. 

 

3.3.2  Particular Solution 

The particular solution is dependent upon the load distribution applied to the strip.  For a 

given strip loading, the load distribution function, ݔ)ݍ, ,ݔ)ݍ is expressed as ,(ݏ (ݏ =  (3.34)           (ݏ)݃(ݔ)଴݂ݍ

where q0 is the load amplitude and f(x) and g(s) are the load distribution functions in the x 

and s directions. 

Substituting into the right hand side of Eq. (3.4) yields,  

௤బ௙(௫)ଶగோ ׬ ଶగோ଴ݏ݀(ݏ)݃     for m = 0       (3.35) 

and  
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௤బ௙(௫)గோ ׬ (ݏ)݃ cos(ߚ௠ݏ) ଶగோ଴ݏ݀   for m = 1, 2, …, ∞      (3.36) 

The potential function, ߶௣௠(ݔ), can be derived for a wide range of commonly 

encountered load distributions.  The particular solution for most common strip loadings 

are presented in Table 3.1. 

When a strip is subjected to more than one load, the method of superposition is employed 

to determine the particular solution. 

 

3.3.3  Edge Loading 

For cylinders subjected to point loads and radial line loads distributed along the 

circumferential direction, the cylinder is divided into strips such that the loads coincide 

with the edges of the strips (Figure 3.1).  These loads are expressed as a Fourier series 

and incorporated into the solution as shear force discontinuities between strips.  Table 3.2 

presents the edge loading function, ߰௜(ݏ), for several common loadings. 

When an edge is subjected to a combination of loads, the method of superposition is 

employed to determine the edge loading function. 

 

3.3.4  Isotropic Beam Equations 

For cylinders with ring stiffeners along the circumferential direction, the structure is 

divided into strips such that the stiffeners coincide with the edges of the strips (Figure 

3.1).  The stiffeners are incorporated into the solution as part of the boundary and 

continuity conditions.  The solution method assumes that the ring stiffeners are isotropic 

beams and are concentric with the middle surface of the shell. 

The following differential equations can be derived from the equilibrium of an isotropic 

curved beam element (Vlasov, 1961) 
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௫௕ݍ = ௥ܫ௕ܧ ቀௗర௨ೣ್ௗ௦ర − ଵோ ௗమథ್ௗ௦మ ቁ + ா್஼ೢோ ቀௗరథ್ௗ௦ర + ଵோ ௗర௨ೣ್ௗ௦ర ቁ − ீ್௃್ோ ቀௗమథ್ௗ௦మ + ଵோ ௗమ௨ೣ್ௗ௦మ ቁ  (3.37a) 

௥௕ݍ = ௫ܫ௕ܧ ቀௗర௪್ௗ௦ర − ଵோ ௗయ௨ೞ್ௗ௦య ቁ + ா್஺್ோ ቀௗ௨ೞ್ௗ௦ + ଵோ  ௕ቁ      (3.37b)ݓ

௦௕ݍ = ா್ூೣோ ቀௗయ௪್ௗ௦య − ଵோ ௗమ௨ೞ್ௗ௦మ ቁ − ௕ܣ௕ܧ ቀௗమ௨ೞ್ௗ௦మ + ଵோ ௗ௪್ௗ௦ ቁ     (3.37c) 

݉௫௕ = ா್ூೝோ ቀ− ௗమ௨ೣ್ௗ௦మ + ଵோ ߶௕ቁ + ௪ܥ௕ܧ ቀௗరథ್ௗ௦ర + ଵோ ௗర௨ೣ್ௗ௦ర ቁ − ௕ܬ௕ܩ ቀௗమథ್ௗ௦మ + ଵோ ௗమ௨ೣ್ௗ௦మ ቁ  (3.37d) 

The terms qxb, qrb, and qsb are the distributed forces per unit length applied to the beam in 

the x, r, and s directions (Figure 3.2); mxb is the twisting moment per unit length applied 

to the beam; uxb, usb, and wb are the deflections of the beam in the x, r, and s directions 

(Figure 3.2); ߶௕ is the twist angle of the beam; R is the radius measured to the centroid of 

the beam; EbIr = flexural rigidity about the r-axis (Figure 3.2); EbIx = flexural rigidity 

about the x-axis (Figure 3.2); EbAb = axial stiffness of the beam; GbJb = torsional rigidity 

of the beam; EbCw = warping rigidity of the beam. 

 

3.3.5  Boundary Conditions 

The boundary conditions along the edges  ݔ = 0 and ݔ =  :௡ areݔ

For simply supported edges:  ݑ௫ = ௦ݑ     ,0 = ݓ     ,0 = ௫ܯ     ,0 = 0 (3.38a, b, c, d) 

For clamped edges:  ݑ௫ = ௦ݑ     ,0 = ݓ     ,0 = 0,     
డ௪డ௫ = 0,  (3.38a, b, c, d) 

For free edges:  ܳ௫ = ψ,     ௫ܰ = 0,     ௫ܰ௦ = ௫ܯ     ,0 = 0,   (3.38a, b, c, d) 

For beam support:  ݓ =      ,௕ݓ
ௗ௪ௗ௫ = ߶௕,     ܳ௫ = ௥௕ݍ + ௫ܯ     ,߰ = ݉௧௕ (3.38a, b, c, d) 

Where ߶௕ is the twist angle of the beam and ݉௧௕ is the twisting moment per unit length 

applied to the beam from Eq. (3.37d). 
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Difficulties arise when the coefficients on the odd derivatives of the s terms in Eq. 2.32, 

Eq. 2.34, and Eq. 2.36 are non-zero.  Expansion of these equations lead to both cos(ߚ௠ݏ) 
and sin	(ߚ௠ݏ) in the expressions for ux, us, and w when m = 1, 2, …, ∞.  This necessitates 

two constraint equations to impose any one of the boundary conditions in Eq. 3.38.  For 

these cases, only four boundary conditions can be assigned per strip, in contrast to the 

eight conditions allowed for the alternative case.   

 

3.3.6  Continuity Conditions 

The following continuity conditions are applied along the shared edge between strips ܫ 
and ܫ + 1 at ݔ =  ௜ when there is no stiffener presentݔ

௫ூݑ = ௦ூݑ     ,௫(ூାଵ)ݑ = ூݓ     ,௦(ூାଵ)ݑ = డ௪಺డ௫     ,(ூାଵ)ݓ = డ௪(಺శభ)డ௫   (3.39a, b, c, d) 

and ܯ௫ூ = ௫(ூାଵ),   ௫ܰூܯ = ௫ܰ(ூାଵ),   ܳ௫ூ = ܳ௫(ூାଵ) + ߰௜,   ௫ܰ௦ூ = ௫ܰ௦(ூାଵ)     (3.40a, b, c, d) 

When a beam is present at ݔ =  ௜, the following continuity conditions are imposed alongݔ

the common edge ݔ =  .௜, between strips I and I+1ݔ

௫ூݑ = ௦ூݑ     ,௫(ூାଵ)ݑ = ூݓ     ,௦(ூାଵ)ݑ = డ௪಺డ௫     ,(ூାଵ)ݓ = డ௪(಺శభ)డ௫ = ߶௕ (3.41a, b, c, d) 

and ݉௧௕ = ௫(ூାଵ)ܯ − ௫௕ݍ  ,௫ூܯ = ௫ܰ(ூାଵ) − ௫ܰூ,             (3.42a, b) 

௥௕ݍ = ܳ௫(ூାଵ) − ܳ௫ூ + ߰௜,  ݍ௦௕ = ௫ܰ௦(ூାଵ) − ௫ܰ௦ூ            (3.43c, d) 

Where ߰௜ is the edge loading function, ߶௕ is the twist angle of the beam, ݉௧௕ is the 

twisting moment per unit length applied to the beam from Eq. (3.37d), and qxb, qrb, and 

qsb are the distributed forces per unit length applied to the beam in the x, r, and s 

directions from Eq. (3.37a,b,c). 
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3.3.7  Solution 

A cylindrical shell is divided into N-strips (Figure 3.1) depending on the number of 

loading and geometric discontinuities and the locations of the ring stiffeners.  For each of 

the N-strips, eight equations are generated from the boundary and continuity conditions.  

This yields a unique 8N system of equations for each mode m (m = 0, 1, 2, …, ∞).  

Solution of these systems of equations provide the constants CdmI (d = 1, 2, …, 8) in the 

homogeneous solution.  The potential function Φூ for each strip I (I = 1, 2, …, N) is 

derived by summing the homogeneous and particular solutions.  The potential function is 

then back-substituted into the relevant equations to yield the desired forces and 

displacements. 

 

3.3.8  Convergence 

The ASM results are derived from the summation of modes in the infinite series solution.  

The number of modes required for the convergence of the solution is dependent on the 

geometry of the structure and the applied loading.  In practice, the summation continues 

until the modal contribution is significantly less than the required accuracy of the results.  

Typically, 50 modes are adequate to obtain deflection and force results accurate to four 

significant digits. 

 

3.3.9  Implementation 

The ASM is easily programmable.  For the examples considered in Chapter 4 and 

Chapter 5, a MATLAB (Mathworks, 2017) program was developed to compute the 

results.  Due to the ill-conditioned nature of the solution, the ASM is susceptible to 

numerical instabilities when computing solutions using double precision floating point 

format.  This required the use of an arbitrary-precision package, which solved the 

problem with overflow/underflow and allowed for the storage of an arbitrary number of 

digits in the solution. 
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Solution times vary depending on the number of strips required, shell wall material, 

loading complexity, and number of modes.  For simple cases with isotropic shells and 

axisymmetric loading, the computation time required for the solution is seconds.  A 

laminated shell with four strips, non-axisymmetric loading, and 50 modes required for the 

solution would have a computational time of approximately 20 minutes. 
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Table 3.1.  Particular solution Φ௉ூ(ݔ,  for cylindrical strip I (ݏ

 

Load Case

Case 1  - Zero load

Case 2  - Linearly varying load (hydrostatic load)

Case 3  - Uniform load q 0

Case 4  - Partial uniform load q 0

Case 5  - Line load L x

Φ௉ூ௠ୀ଴ ,ݔ ݏ = ∗ସ଴ܣ଴24ݍ ସݔ
Φ௉ூ௠ୀଵ,ଶ,…,ஶ ,ݔ ݏ = 0

Φ௉ூ ,ݔ ݏ

Φ௉ூ ,ݔ ݏ = 0

Φ௉ூ௠ୀ଴ ,ݔ ݏ = ∗ସ଴ܣ଴24ݍ ସݔ − ∗ସ଴ܣ120ߛ ହݔ
Φ௉ூ௠ୀଵ,ଶ,…,ஶ ,ݔ ݏ = 0

Φ௉ூ௠ୀ଴ ,ݔ ݏ = ∗ସ଴ܣܴߨ଴48ݍ ଶݏ − ଵݏ ସݔ
Φ௉ூ௠ୀଵ ,ݔ ݏ = ∗ଶଵܣܴߨ଴2ݍ sin ଶܴݏ − sin ଵܴݏ ଶݔ cos ݏܴ
Φ௉ூ௠ୀଶ,ଷ,…,ஶ ,ݔ ݏ = ∗଴௠ܣܴߨ଴݉ݍ sin ܴ݉ ଶݏ − sin ܴ݉ ଵݏ cos ܴ݉ ݏ
Φ௉ூ௠ୀ଴ ,ݔ ݏ = ∗ସ଴ܣܴߨ௫48ܮ ସݔ
Φ௉ூ௠ୀଵ ,ݔ ݏ = ∗ଶଵܣܴߨ௫2ܮ cos ଵܴݏ ଶݔ cos ݏܴ
Φ௉ூ௠ୀଶ,ଷ,…,ஶ ,ݔ ݏ = ∗଴௠ܣܴߨ௫ܮ cos ܴ݉ ଵݏ cos ܴ݉ ݏ

ݍ ,ݔ ݏ = ଴ݍ − ݔ)ߛ − (௜ିଵݔ
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Table 3.2.  Edge loading function ߰௜(ݏ) along the edge x = xi 

 

  

Load Case

Case 1  - Zero load

Case 2  - Line load L s  in s  direction

Case 3  - Partial line load L y

Case 4  - Concentrated point load P

߰௜ ݏ

߰௜ ݏ = 0

߰௜௠ୀ଴ ݏ = ௦ܮ
߰௜௠ୀଵ,ଶ,…,ஶ ݏ = 0

߰௜௠ୀ଴ ݏ = ௦ܮ ଶݏ − ܴߨଵ2ݏ

߰௜௠ୀ଴ ݏ = ܴߨ2ܲ

߰௜௠ୀଵ,ଶ,…,ஶ ݏ = ߨ௦݉ܮ2 sin 2ܴ݉ ଶݏ − ଵݏ cos ܴ݉ ݏ − ଵݏ + ଶ2ݏ

߰௜௠ୀଵ,ଶ,…,ஶ ݏ = ܴߨܲ ݏ݋ܿ ܴ݉ ݏ − ଵݏ
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Figure 3.1.  Stiffened cylindrical shell with strip and edge loadings  
Note:  The stiffeners are concentric with the shell 

 

 

 

 

 

 

Figure 3.2.  Coordinate system for the ring stiffener 
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CHAPTER 4 

ANALYTICAL STRIP METHOD FOR THIN ISOTROPIC CYLINDRICAL 
SHELLS 

 

4.1  Introduction 

Cylindrical Shells are important structural elements with widespread applications in 

various fields such as civil, environmental, mechanical, and aerospace engineering.  

Much effort has been dedicated to understanding the behavior of these structures.  

Several shell theories have been developed to simplify complex three-dimensional 

elasticity based solutions.  These theories are roughly divided into two categories, thin 

shell theories which adopt Love’s assumptions and higher order shell theories that relax 

one or more of the Love’s assumptions (Kraus, 1967).  Due to the complexity of the 

governing equations for cylindrical shells, many of the existing analytical solutions are 

based on thin shell theory.  Leissa (1973) provides an excellent review of available thin 

shell theories. 

Analytical solutions to cylindrical shells subjected to axisymmetric loads are widely 

available.  Timoshenko and Woinowsky-Krieger (1959) provide solutions for cylindrical 

shells with uniform internal pressure as well as cylindrical tanks subjected to hydrostatic 

loads.  Due to the introduction of a second variable in the circumferential direction, non-

axisymmetric type loadings are difficult to incorporate in the solution.  Bijlaard (1955) 

developed a double series solution for cylindrical shells subjected to a patch load as well 

as a similar solution for points.  Odqvist (1946), Hoff et al. (1954), Cooper (1957), and 

Naghdi (1968) have developed unique solutions for cylindrical shells subjected to a 

uniform line load along a generator.  Meck (1961) presented a solution for line loads 

applied along the circumferential direction. 

The objective of this paper is to develop an analytical strip method (ASM) of solution for 

stiffened isotropic thin cylindrical shells.  The ASM was first developed by Harik and 

Salamoun (1986, 1988) for the analysis of thin orthotropic and stiffened rectangular 

plates subjected to uniform, partial uniform, patch, line, partial line and point loads or any 



    

49 

 

combination thereof.  The solution procedure requires that the structure be divided into 

strips based on the geometric discontinuities and applied loads (Figure 4.1).  The 

governing differential equation for each strip is solved analytically and the applicable 

continuity and boundary conditions are used to combine the solutions for the strips. 

The primary contribution of the ASM is in its ability to handle a wide variety of loading 

and geometric configurations.  At present, analytical solutions are limited to 

axisymmetric and simple non-axisymmetric loadings applied to cylindrical shells of basic 

geometry.  Other more complex cases must utilize numerical or semi-numerical 

techniques.  Unlike numerical based solutions, the accuracy of the ASM does not depend 

on the number of strips within the structure, but rather the number of modes considered in 

the series solution. 

 

4.2  Governing Differential Equation for Isotropic Cylindrical Shells 

The surface coordinate system used in the derivation of the governing equation for a 

cylindrical strip is shown in Figure 4.1.  The strain-displacement equations associated 

with thin shell theory are given as (Kraus, 1967) 

߳௫ = డ௨ೣడ௫                (4.1a) 

߳௦ = డ௨ೞడ௦ + ௪ோ                 (4.1b) 

௫௦ߛ = డ௨ೞడ௫ + డ௨ೣడ௦             (4.1c) 

௫ߢ = −డమ௪డ௫మ                 (4.1d) 

௦ߢ  = డడ௦ ቀ௨ೞோ − డ௪డ௦ ቁ               (4.1e) 

௫௦ߢ  = ଵோ డ௨ೞడ௫ − 2 డమ௪డ௫డ௦            (4.1f) 
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And the equilibrium equations are (Kraus, 1967) 

డேೣడ௫ + డேೞೣడ௦ + ௫ݍ = 0           (4.2a) 

డேೣೞడ௫ + డேೞడ௦ + ொೞோ + ௦ݍ = 0           (4.2b) 

డொೣడ௫ + డொೞడ௦ − ேೞோ + ݍ = 0           (4.2c) 

డெೣడ௫ + డெೣೞడ௦ − ܳ௫ = 0            (4.2d) 

డெೣೞడ௫ + డெೞడ௦ − ܳ௦ = 0            (4.2e) 

The five equilibrium equations are reduced to three by substituting Eq. (4.2d) and Eq. 

(4.2e) into Eq. (4.2c).  Substitution of the strain-displacement equations into the 

equilibrium equations yield a system of three differential equations that may be presented 

as  

൥ܮଵଵ ଵଶܮ ଵଶܮଵଷܮ ଶଶܮ ଵଷܮଶଷܮ ଶଷܮ ଷଷ൩ܮ ቊݑ௫ݑ௦ݓ ቋ = ൝ݍ௫ݍ௦ݍ ൡ           (4.3) 

where ܮ௜௝ are differential operators 

ଵଵܮ = ܣ డమడ௫మ + ଵିఔଶ ܣ డమడ௦మ           (4.4a) 

ଵଶܮ = ଵାఔଶ ܣ డమడ௫డ௦            (4.4b) 

ଵଷܮ = ఔோ ܣ డడ௫             (4.4c) 

ଶଶܮ = ቀଵିఔଶ ܣ + ଵିఔଶோమ ቁܦ డమడ௫మ + ܣ) + (ܦ డమడ௦మ         (4.4d) 

ଶଷܮ = ଵோ ܣ డడ௦ − ଵோ ܦ డయడ௫మడ௦ − ଵோ ܦ డయడ௦య          (4.4e) 
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ଷଷܮ = ଵோమ ܣ + ܦ డరడ௫ర + ܦ2 డరడ௫మడ௦మ + ܦ డరడ௦ర         (4.4f) 

A and D are the extensional and bending stiffness of the shell 

ܣ = ா௧ଵିఔమ             (4.5a) 

ܦ = ா௧యଵଶ(ଵିఔమ)             (4.5b) 

Where t is the thickness, E is the elastic modulus, and ν is Poisson’s ratio. 

The displacements in the x, s, and r direction, ux, us, and w, are presented in terms of the 

potential function Φ(ݔ, ௫ݑ (Sharma et al., 1980) (ݏ = ଶଷܮଵଶܮ) − ,ݔ)ଶଶ)Φܮଵଷܮ ௦ݑ (4.6a)          (ݏ = ଶଵܮଵଷܮ) − ,ݔ)ଵଵ)Φܮଶଷܮ ݓ (4.6b)          (ݏ = ଶଶܮଵଵܮ) − ,ݔ)ଶଵ)Φܮଵଶܮ  (4.6c)          (ݏ

For the case of radial loads only, the three equations can be combined into a single eighth 

order differential equation expressed in terms of the potential function Φ (Sharma et al., 

1980). 

ܨ଼ ଴ డఴ஍డ௫ఴ + ଺ଶܨ డఴ஍డ௫లడ௦మ + ସସܨ డఴ஍డ௫రడ௦ర + ଶ଺ܨ డఴ஍డ௫మడ௦ల + ଴଼ܨ డఴ஍డ௦ఴ + ସଶܨ డల஍డ௫రడ௦మ + ଶସܨ డల஍డ௫మడ௦ర ଴଺ܨ+ డల஍డ௦ల + ସ଴ܨ డర஍డ௫ర + ଶଶܨ డర஍డ௫మడ௦మ + ଴ସܨ డర஍డ௦ర = ,ݔ)ݍ  (4.7)          (ݏ

The coefficients ܨ௜௝ are 

ܨ଼ ଴ = 	 ଵିఔଶோమ ଶܦܣ + ଵିఔଶ  (4.8a)           ܦଶܣ

଺ଶܨ = 	 (ఔିଵ)(ఔିହ)ସோమ ଶܦܣ + 2(1 −  (4.8b)         ܦଶܣ(ߥ

ସସܨ = 	 (ఔିଵ)(ఔାଷ)ଶோమ ଶܦܣ + 3(1 −  (4.8c)         ܦଶܣ(ߥ
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ଶ଺ܨ = 	 (ଵିఔ)మସோమ ଶܦܣ + 2(1 −  (4.8d)          ܦଶܣ(ߥ

଴଼ܨ = 	 ଵିఔଶ  (4.8e)            ܦଶܣ

ସଶܨ = 	 (ଵିఔ)(ఔାଶ)ோమ  (4.8f)                       ܦଶܣ

ଶସܨ = 	 (ଵିఔ)(ఔାଷ)ோమ  (4.8g)              ܦଶܣ

଴଺ܨ = 	 (ଵିఔ)ோమ  (4.8h)            ܦଶܣ

ସ଴ܨ = 	 (ఔିଵ)మ(ఔାଵ)ଶோర ܦଶܣ + (ఔିଵ)మ(ఔାଵ)ଶோమ  ଷ         (4.8i)ܣ

ଶଶܨ = 	 (ଵିఔ)(ଷఔାହ)ସோర  (4.8j)           ܦଶܣ

଴ସܨ = 	 (ଵିఔ)ଶோర  (4.8k)            ܦଶܣ

Where A and D are the extensional and bending stiffness provided in Eq. (4.5). 

 

4.3  Isotropic Beam Equations 

The following differential equations can be derived from the equilibrium of an isotropic 

curved beam element (Vlasov, 1961) 

௫௕ݍ = ௥ܫ௕ܧ ቀௗర௨ೣ್ௗ௦ర − ଵோ ௗమథ್ௗ௦మ ቁ + ா್஼ೢோ ቀௗరథ್ௗ௦ర + ଵோ ௗర௨ೣ್ௗ௦ర ቁ − ீ್௃್ோ ቀௗమథ್ௗ௦మ + ଵோ ௗమ௨ೣ್ௗ௦మ ቁ    (4.9) 

௥௕ݍ = ௫ܫ௕ܧ ቀௗర௪್ௗ௦ర − ଵோ ௗయ௨ೞ್ௗ௦య ቁ + ா್஺್ோ ቀௗ௨ೞ್ௗ௦ + ଵோ  ௕ቁ        (4.10)ݓ

௦௕ݍ = ா್ூೣோ ቀௗయ௪್ௗ௦య − ଵோ ௗమ௨ೞ್ௗ௦మ ቁ − ௕ܣ௕ܧ ቀௗమ௨ೞ್ௗ௦మ + ଵோ ௗ௪್ௗ௦ ቁ       (4.11) 

݉௫௕ = ா್ூೝோ ቀ− ௗమ௨ೣ್ௗ௦మ + ଵோ ߶௕ቁ + ௪ܥ௕ܧ ቀௗరథ್ௗ௦ర + ଵோ ௗర௨ೣ್ௗ௦ర ቁ − ௕ܬ௕ܩ ቀௗమథ್ௗ௦మ + ଵோ ௗమ௨ೣ್ௗ௦మ ቁ    (4.12) 
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The terms qxb, qrb, and qsb are the distributed forces per unit length applied to the beam in 

the x, r, and s directions (Figure 4.2); mxb is the twisting moment per unit length applied 

to the beam; uxb, usb, and wb are the deflections of the beam in the x, r, and s directions 

(Figure 4.2); ߶௕ is the twist angle of the beam; R is the radius measured to the centroid of 

the beam; EbIr = flexural rigidity about the r-axis (Figure 4.2); EbIx = flexural rigidity 

about the x-axis (Figure 4.2); EbAb = axial stiffness of the beam; GbJb = torsional rigidity 

of the beam; EbCw = warping rigidity of the beam. 

 

4.4  Analytical Strip Method 

The solution of the differential equation for a general strip I is based on the assumption 

that the form for the potential function, Φூ, satisfies continuity at the surface coordinate ݏ = 0 and ݏ = Let Φ  .ܴߨ2 = ∑ ߶௡(ݔ) cos(ߚ௡ݏ)ஶ௡            (4.13) 

Where 

௡ߚ  = ௡ோ              (4.14) 

Substituting Eq. (4.13) into the governing differential equation [Eq. (4.7)], multiplying 

both sides of the equation by cos	(ߚ௠ݏ), integrating from ݏ = 0 to ݏ =  and ,ܴߨ2

summing from ݉ = 0 to ݉ = ∞ yields the following equation by orthogonality 

∑ ቄ଼ܨ ௠∗ ௗఴథ೘(௫)ௗ௫ఴ + ∗଺௠ܨ ௗలథ೘(௫)ௗ௫ల + ∗ସ௠ܨ ௗరథ೘(௫)ௗ௫ర + ∗ଶ௠ܨ ௗమథ೘(௫)ௗ௫మ + ∗଴௠ܨ ߶௠(ݔ)ቅ =ஶ௠ଵଶగோ ׬ ,ݔ)ݍ ݏ݀(ݏ + ∑ ଵగோ ׬ ,ݔ)ݍ (ݏ cos(ߚ௠ݏ) ଶగோ଴ஶ௠ୀଵଶగோ଴ݏ݀        (4.15) 

Where: ଼ܨ ௠∗ = ܨ଼ ଴           (4.16a) 

∗଺௠ܨ =  ௠ଶ          (4.16b)ߚ଺ଶܨ−
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∗ସ௠ܨ = ௠ସߚସସܨ − ௠ଶߚସଶܨ +  ସ଴        (4.16c)ܨ

∗ଶ௠ܨ = ௠଺ߚଶ଺ܨ− + ௠ସߚଶସܨ −  ௠ଶ       (4.16d)ߚଶଶܨ

∗଴௠ܨ = ௠଼ߚ଴଼ܨ − ௠଺ߚ଴଺ܨ +  ௠ସ        (4.16e)ߚ଴ସܨ

For m = 0, ܨଶ଴∗ = ∗଴଴ܨ = 0 and for m = 1, ܨ଴ଵ∗ = 0. 

Eq. (4.15) is an infinite set of linear 8th order ordinary differential equations for ߶௠(ݔ) 
with m = 0, 1, 2, …, ∞.  The solution is obtained by superposition of the associated 

homogeneous and particular solutions. Φ(ݔ, (ݏ = Φு(ݔ, (ݏ + Φ௉(ݔ,  (4.17)          (ݏ

where the homogeneous solution 

 Φு(ݔ, (ݏ = ∑ ߶ு௠(ݔ) cos(ߚ௠ݏ)ஶ௠          (4.18) 

and the particular solution 

 Φ௉(ݔ, (ݏ = ∑ ߶௉௠(ݔ)cos	(ߚ௠ݏ)ஶ௠          (4.19) 

 

4.4.1  Homogeneous Solution 

The homogeneous solution for mode m, ߶ு௠(ݔ), is expressed as  

߶ு௠(ݔ) = ݁ఊ೘ఉ೘௫            (4.20) 

The characteristic equation of Eq. (4.20) for mode ݉ = 0 is ଼ߛ∗ܨ௠଼ + ௠଺ߛ∗଺ܨ + ௠ସߛ∗ସܨ = 0          (4.21) 

And the homogeneous solution for mode m = 0 is Φு଴(ݔ, (ݏ = ଵ଴ܥ + ݔଶ଴ܥ + ଶݔଷ଴ܥ + ଷݔସ଴ܥ + ሾܥହ଴ cosh(ߛଷ଴ݔ) ሿ(ݔଷ଴ߛ)	଺଴sinhܥ+ cos(ߛସ଴ݔ) + ሾܥ଻଴ cosh(ߛଷ଴ݔ) +  (4.22)    (ݔସ଴ߛ)	ሿsin(ݔଷ଴ߛ)	଴sinh଼ܥ
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The characteristic equation of Eq. (4.20) for mode ݉ = 1 is ଼ߛ∗ܨ௠଼ + ௠଺ߛ∗଺ܨ + ௠ସߛ∗ସܨ + ௠ଶߛ∗ଶܨ = 0         (4.23) 

And the homogeneous solution for mode m = 1 is 

Φுଵ(ݔ, (ݏ = ቐ ଵଵܥ + ݔଶଵܥ + ଷଵ݁ఊయభ௫ܥ + ହଵܥସଵ݁ିఊయభ௫+ሾܥ cosh(ߛଵଵݔ) + ଺ଵܥ sinh(ߛଵଵݔ)ሿ cos(ߛଶଵݔ)+ሾܥ଻ଵ cosh(ߛଵଵݔ) + (ݔଶଵߛ)	ሿsin(ݔଵଵߛ)	ଵsinh଼ܥ ቑ cos	(ߚଵݏ)    (4.24) 

The characteristic equation of Eq. (4.20) for all other modes (m = 2, 3, …,∞) is ଼ߛ∗ܨ௠଼ + ௠଺ߛ∗଺ܨ + ௠ସߛ∗ସܨ + ௠ଶߛ∗ଶܨ + ∗଴ܨ = 0        (4.25) 

And the homogeneous solution for all other modes (m = 2, 3, …, ∞) is 

Φு௠(ݔ, (ݏ = ۔ە
ۓ ሾܥଵ௠ cosh(ߛଵ௠ݔ) + ଶ௠ܥ sinh(ߛଵ௠ݔ)ሿ cos(ߛଶ௠ݔ)+ሾܥଷ௠ cosh(ߛଵ௠ݔ) + ସ௠ܥ sinh(ߛଵ௠ݔ)ሿ sin(ߛଶ௠ݔ)+ሾܥହ௠ cosh(ߛଷ௠ݔ) + ଺௠ܥ sinh(ߛଷ௠ݔ)ሿ cos(ߛସ௠ݔ)+ሾܥ଻௠ cosh(ߛଷ௠ݔ) + (ݔସ௠ߛ)	ሿsin(ݔଷ௠ߛ)	௠sinh଼ܥ ۙۘ

ۗ cos	(ߚ௠ݏ)    (4.26) 

Eq. (4.21), Eq. (4.23), and Eq. (4.25) can be reduced to quartic equations for which the 

characteristic roots can be solved analytically (Editing Group of the Manual of 

Mathematics, 1979).  The constants ܥௗ௠ (݀ = 1,2,… ,8) for each mode (݉ = 1,2,… ,∞) 

are determined by the boundary conditions at ݔ = 0 and ݔ =  ௡ and the continuityݔ

conditions at ݔ = ݅)] ௜ݔ = 1,2, … , ݊ − 1) Figure 4.1]. 

 

4.4.2  Particular Solution 

The particular solution is dependent upon the load distribution applied to the strip.  For a 

given strip loading, the load distribution function, ݔ)ݍ, ,ݔ)ݍ is expressed as ,(ݏ (ݏ =  (4.27)           (ݏ)݃(ݔ)଴݂ݍ

where q0 is the load amplitude and f(x) and g(s) are the load distribution functions in the x 

and s directions. 
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Substituting into the right hand side of Eq. (4.15) yields, 

௤బ௙(௫)ଶగோ ׬ ଶగோ଴ݏ݀(ݏ)݃   for m = 0         (4.28) 

and 

௤బ௙(௫)గோ ׬ (ݏ)݃ cos(ߚ௠ݏ) ଶగோ଴ݏ݀   for m = 1, 2, …, ∞      (4.29) 

The potential function, ߶௣௠(ݔ), can be derived for a wide range of commonly 

encountered load distributions.  The particular solution for most common strip loadings 

are presented in Table 4.1.  

When a strip is subjected to more than one load, the method of superposition is employed 

to determine the particular solution. 

 

4.4.3  Edge Loading 

For cylinders subjected to point loads and radial line loads distributed along the 

circumferential direction, the cylinder is divided into strips such that the loads coincide 

with the edges of the strips (Figure 4.1).  These loads are expressed as a Fourier series 

and incorporated into the solution as shear force discontinuities between strips.  Table 4.2 

presents the edge loading function ߰௜(ݏ) for several common loadings. 

When an edge is subjected to a combination of loads, the method of superposition is 

employed to determine the edge loading function. 

 

4.4.4  Boundary Conditions 

The boundary conditions along the edges  ݔ = 0 and ݔ =  :௡ areݔ

For simply supported edges:  ݑ௫ = ௦ݑ     ,0 = ݓ     ,0 = ௫ܯ     ,0 = 0 (4.30a, b, c, d) 
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For clamped edges:  ݑ௫ = ௦ݑ     ,0 = ݓ     ,0 = 0,     
డ௪డ௫ = 0,  (4.31a, b, c, d) 

For free edges:  ܳ௫ = ψ,     ௫ܰ = 0,     ௫ܰ௦ = ௫ܯ     ,0 = 0,   (4.32a, b, c, d) 

For beam support:  ݓ =      ,௕ݓ
ௗ௪ௗ௫ = ߶௕,     ܳ௫ = ௥௕ݍ + ௫ܯ     ,߰ = ݉௧௕ (4.33a, b, c, d) 

 

4.4.5  Continuity Conditions 

The following continuity conditions are applied along the shared edge between strips ܫ 
and ܫ + 1 at ݔ =  ௜ݔ
௫ூݑ = ௦ூݑ     ,௫(ூାଵ)ݑ = ூݓ     ,௦(ூାଵ)ݑ = డ௪಺డ௫     ,(ூାଵ)ݓ = డ௪(಺శభ)డ௫   (4.34a, b, c, d) 

and ܯ௫ூ = ௫(ூାଵ),   ௫ܰூܯ = ௫ܰ(ூାଵ),   ܳ௫ூ = ܳ௫(ூାଵ) + ߰௜,   ௫ܰ௦ூ = ௫ܰ௦(ூାଵ)     (4.35a, b, c, d) 

When a beam is present at ݔ =  ௜, the following continuity conditions are imposed alongݔ

the common edge ݔ =  .௜, between strips I and I+1ݔ

௫ூݑ = ௦ூݑ     ,௫(ூାଵ)ݑ = ூݓ     ,௦(ூାଵ)ݑ = డ௪಺డ௫     ,(ூାଵ)ݓ = డ௪(಺శభ)డ௫ = ߶௕ (4.36a, b, c, d) 

and ݉௧௕ = ௫(ூାଵ)ܯ − ௫௕ݍ  ,௫ூܯ = ௫ܰ(ூାଵ) − ௫ܰூ,             (4.37a, b) 

  

4.5  Solution 

A cylindrical shell is divided into N-strips (Figure 4.1) depending on the number of 

loading discontinuities and the locations of the ring stiffeners.  For each of the N-strips, 

eight equations are generated from the boundary and continuity conditions.  This yields a 

unique 8N system of equations for each mode (m = 0, 1, 2, …, ∞).  Solution of these 
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systems of equations provide the constants CdmI (d = 1, 2, …, 8) in the homogeneous 

solution.  The potential function Φூ for each strip I (I = 1, 2, …, N) is derived by 

summing the homogeneous and particular solutions.  The potential function is then back-

substituted into the relevant force and displacement equations.  

 

4.6  Application 

Because of the ill-conditioned nature of the solution, the ASM is susceptible to numerical 

instabilities when computing solutions using double precision floating point format.  To 

eliminate this concern, examples are computed with a MATLAB (Mathworks, 2017) 

program using an arbitrary-precision package.   

 

4.6.1  Example 1:  Cylindrical Shell Subjected to Non-Axisymmetric Loads 

The purpose of this example is to compare the Analytical Strip Method (ASM) results for 

cylindrical shells subjected to non-axisymmetric loads to an existing analytical solution 

developed by Bijlaard (1955) for the design of pressure vessels subjected to point and 

patch loads. 

The shells in Figure 4.3 and Figure 4.4 are simply supported at the ends, 

(∂ux/∂x) = us = w = Mx = 0, and are subject to a point load and a patch load at mid-length, 

respectively.  The magnitude of the point load is designated as P, while the resultant (or 

total) magnitude of the patch load is P* = 4pc1c2, where p is the distributed load and c1 

and c2 are the half-lengths of the patch area in the circumferential and longitudinal 

direction respectively (Figure 4.4).  Poisson's ratio ν = 0.30. 

Table 4.3 presents the dimensionless radial deflection and force quantities corresponding 

to bending moments Ms and Mx as well as membrane forces Ns and Nx.  The results are 

presented for prescribed radius-to-thickness ratios (R/t) and length-to-radius ratios (L/R) 

at x = L/2, s = 0.  The results are presented for an existing analytical solution (Bijlaard, 
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1955), the Analytical Strip Method (ASM), and a finite-element (FEM) solution 

generated using SAP2000 (Computers and Structures, Inc., 2015). 

The results show excellent agreement between the ASM and FEM solutions; the 

dimensionless quantities are all within 2% difference.  There is also good agreement 

between the existing analytical solution (Bijlaard, 1955) and the ASM for the 

dimensionless deflection quantities and the dimensionless force quantities corresponding 

to Ms and Nx; the values are predominately within 3% difference.  The dimensionless 

force quantities for Mx and Ns show more variation between the existing analytical 

solution (Bijlaard, 1955) and the ASM; the difference in the two solutions is as much as 

10% with the larger differences occurring at larger radius-to-thickness ratios. 

In development of the existing analytical solution, Bijlaard’s intent was to develop a set 

of practical equations that could be used in practice for the evaluation of local stresses in 

pressure vessels.  As a result, there were several simplifications made in his formulation 

at the cost of accuracy in the solution; the most significant being the neglect of the fourth-

order terms in his combined eight-order differential equation.  The neglected terms 

correspond to the absence of 

௧మଵଶோమ ቂ(1 − (ߥ డమ௩డ௫మ + డమ௩డ௦మቃ          (4.39) 

in the second of Timoshenko’s (1959) three uncoupled differential equations.  This term 

is fully incorporated into the ASM solution.  The neglect of this term will not fully 

capture the membrane stiffness of the shell and is likely a major contributor in the 

differences in the dimensionless Mx and Ns values between the existing analytical solution 

(Bijlaard, 1955) and the ASM and FEM. 

The ASM results in Table 4.3 are based on summation of the first 51 modes.  For the case 

of radius-to-thickness ratio of 100 and length-to-radius ratio of 3, Table 4.4 presents the 

cumulative dimensionless deflection and force quantities for selected modes.  The 

solution demonstrates good convergence.  The dimensionless force quantity associated 

with bending moments Ms and Mx converged slower than the other results with variation 

of 1.7% and 0.6%, respectively, between modes 40 and 50. 



    

60 

 

4.6.2  Example 2:  Cylindrical Shell Subjected to Line Load along the Generator 

The purpose of this example is to compare the Analytical Strip Method (ASM) results for 

a cylindrical shell subjected to a line load with an existing analytical solution developed 

by Hoff, et al. (1954) with numerical results derived by Kempner (1955). 

The shell in Figure 4.5 is simply supported at the ends, (∂ux/∂x) = us = w = Mx = 0, and is 

subject to a line load centered at mid-length of the cylinder.  The line load has a total 

magnitude designated as P* = 2c2p and a half-length designated at c2.  The modulus of 

elasticity E = 2.07x108 kPa = 30x106 psi and Poisson's ratio ν = 0.30. 

Table 4.5 presents the dimensionless radial deflection and force quantities at x = L/2, s = 

0 corresponding to bending moments Ms and Mx as well as membrane forces Ns and Nx.  

The results presented by Kempner (1955) are compared with ones generated using the 

ASM and the finite-element method (FEM) solution generated using SAP2000 

(Computers and Structures, Inc., 2015).  The results of all three methods are in very good 

agreement.  

 

4.6.3  Example 3:  Stiffened Tank 

The steel tank in Figure 4.6 has a fixed base and is stiffened with standard W10x49 steel 

rolled sections having an area A = 9290 mm2 (14.4 in2) and a moment of inertia Ix = 

1.132x108 mm4 (272 in4).  The dimensions and fluid properties for the tank are presented 

in Table 4.6.  The modulus of elasticity of the tank and stiffener E = 2x108 kPa (29x106 

psi) and Poisson’s ratio ν = 0.3. 

The inclusion of the stiffeners as well as the variation in wall thickness and loading 

through the height of the cylinder limits the use of existing analytical solutions.  The 

Analytical Strip Method (ASM) is deployed herein by identifying the six geometric and 

loading discontinuities, dividing the cylinder into five strips between the discontinuity 

points, and imposing the boundary and continuity conditions at the ends of each strip.  

Figure 4.7 through Figure 4.9 present the radial displacement w, bending moment Mx, and 
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shear Qx, along the height of the stiffened tank.  Comparison with existing analytic 

methods of solution is not possible.  Consequently, the results of the ASM are compared 

with the finite-element (FEM) results generated using SAP2000 (Computers and 

Structures, Inc., 2015).  To provide a direct comparison, the FEM analysis was performed 

with stiffeners concentric to the middle surface of the cylinder walls.  The two results are 

in very good agreement.  An additional FEM analysis was performed with stiffeners at 

their true eccentricity.  These results correlate well with the FEM results for concentric 

stiffeners indicating that the eccentricity has minor impact on the deflection and force 

quantities for this example. 

 

4.6.4  Example 4:  Stiffened Tank Subjected to Line Load 

The purpose of this example is to demonstrate the application of the Analytical Strip 

Method (ASM) to a stiffened cylinder subjected to non-axisymmetric loading.  Existing 

analytical solutions to these type problems are not available. 

The steel cylinder in Figure 4.10 is stiffened with standard W10x49 steel rolled sections 

having an area A = 9290 mm2 (14.4 in2), a moment of inertia about the section x-axis Ix = 

1.132x108 mm4 (272 in4), a moment of inertia about the section y-axis Iy = 3.888x107 

mm4 (93.4 in4), and a torsion constant J = 5.786x105 mm4 (1.39 in4).  The modulus of 

elasticity of the cylinder and stiffener E = 2x108 kPa (29x106 psi) and Poisson’s ratio ν = 

0.3.  The ends are simply supported with boundary conditions, u = s = w = Mx = 0.  The 

cylinder is subjected to a line load p = 0.01 kN/mm (57.1 lb/in). 

The inclusion of the stiffeners, as well as the non-axisymmetric loading, limits the use of 

analytical solutions.  Just as in Example 3, for a shell subjected to axisymmetric loads, 

the ASM is deployed by identifying four strips between the stiffeners and imposing the 

boundary and continuity conditions at the ends of each strip.  Comparison with existing 

analytic methods of solution is not possible.  Consequently, the results of the ASM are 

compared with the finite-element (FEM) results generated using SAP2000 (Computers 
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and Structures, Inc., 2015).  Figure 4.11 presents the radial deflection along the generator, 

s = 0.  There is excellent agreement between the ASM solution and the FEM solution. 

The ASM results are based on summation of the first 51 modes.  Table 4.7 presents the 

radial deflection quantity for several modes at distances of x = 375 mm (14.8 in) and x = 

500 mm (19.7 in) along the generator, s = 0.  The series shows good convergence 

characteristics, mode 50 contributes less than 0.04% to the cumulative deflection at both 

locations presented. 

 

4.7  Conclusions 

The Analytical Strip Method (ASM) is presented in this paper for stiffened isotropic 

cylindrical shells.  The primary advantage of the ASM is its applicability to any 

generalized distribution of ring stiffeners along the length of the shell and to any 

combination of patch, uniform, line, concentrated, and hydrostatic loads.  The following 

are deduced from the derivation of the ASM and the examples presented in this paper: 

• The results of the ASM are in good agreement with existing analytical solutions, 

and the generality of the solution method overcomes many limitations of existing 

analytical solutions. 

• Unlike the finite element method, the ASM does not require significant pre-

processing effort.  Its accuracy is dependent on the number of modes considered 

in the solution rather than the fineness of the discretization of the structure.  

• The finite element method does offer more flexibility in structure geometry.   For 

instance, the ASM requires stiffeners to be concentric with the shell walls and 

stepped wall thicknesses to have a coincident middle surface. 

• The finite element method has less potential for numerical instabilities than the 

ASM. 
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Table 4.1.  Particular solution Φ௉ூ(ݔ,  for cylindrical strip I (ݏ

Load Case

Case 1  - Zero load

Case 2  - Linearly varying load (hydrostatic load)

Case 3  - Uniform load q 0

Case 4  - Partial uniform load q 0

Case 5  - Line load L x

Φ௉ூ௠ୀ଴ ,ݔ ݏ = ∗ସ଴ܣ଴24ݍ ସݔ
Φ௉ூ௠ୀଵ,ଶ,…,ஶ ,ݔ ݏ = 0

Φ௉ூ ,ݔ ݏ

Φ௉ூ ,ݔ ݏ = 0

Φ௉ூ௠ୀ଴ ,ݔ ݏ = ∗ସ଴ܣ଴24ݍ ସݔ − ∗ସ଴ܣ120ߛ ହݔ
Φ௉ூ௠ୀଵ,ଶ,…,ஶ ,ݔ ݏ = 0

Φ௉ூ௠ୀ଴ ,ݔ ݏ = ∗ସ଴ܣܴߨ଴48ݍ ଶݏ − ଵݏ ସݔ
Φ௉ூ௠ୀଵ ,ݔ ݏ = ∗ଶଵܣܴߨ଴2ݍ sin ଶܴݏ − sin ଵܴݏ ଶݔ cos ݏܴ
Φ௉ூ௠ୀଶ,ଷ,…,ஶ ,ݔ ݏ = ∗଴௠ܣܴߨ଴݉ݍ sin ܴ݉ ଶݏ − sin ܴ݉ ଵݏ cos ܴ݉ ݏ
Φ௉ூ௠ୀ଴ ,ݔ ݏ = ∗ସ଴ܣܴߨ௫48ܮ ସݔ
Φ௉ூ௠ୀଵ ,ݔ ݏ = ∗ଶଵܣܴߨ௫2ܮ cos ଵܴݏ ଶݔ cos ݏܴ
Φ௉ூ௠ୀଶ,ଷ,…,ஶ ,ݔ ݏ = ∗଴௠ܣܴߨ௫ܮ cos ܴ݉ ଵݏ cos ܴ݉ ݏ

ݍ ,ݔ ݏ = ଴ݍ − ݔ)ߛ − (௜ିଵݔ
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Table 4.2.  Edge loading function ߰௜(ݏ) along the edge x = xi 

 

Load Case

Case 1  - Zero load

Case 2  - Line load L s  in s  direction

Case 3  - Partial line load L y

Case 4  - Concentrated point load P

߰௜ ݏ

߰௜ ݏ = 0

߰௜௠ୀ଴ ݏ = ௦ܮ
߰௜௠ୀଵ,ଶ,…,ஶ ݏ = 0

߰௜௠ୀ଴ ݏ = ௦ܮ ଶݏ − ܴߨଵ2ݏ

߰௜௠ୀ଴ ݏ = ܴߨ2ܲ

߰௜௠ୀଵ,ଶ,…,ஶ ݏ = ߨ௦݉ܮ2 sin 2ܴ݉ ଶݏ − ଵݏ cos ܴ݉ ݏ − ଵݏ + ଶ2ݏ

߰௜௠ୀଵ,ଶ,…,ஶ ݏ = ܴߨܲ ݏ݋ܿ ܴ݉ ݏ − ଵݏ
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Table 4.3.  Dimensionless deflection and forces at x = L/2 and s = 0 for the cylindrical 
shell subjected to point load, P, in Figure 4.3 and to patch load, P* = 4pc1c2, with c1 = 
c2 in Figure 4.4. 

 

a Bijlaard = Existing Analytical Solution (Bijlaard, 1955) 
b ASM = Analytical Strip Method 
c FEM = Finite Element Solution (Computers and Structures, Inc., 2015) 

Point
Load

R/t L/R Method

Bijlaarda 300 272 0.1324 0.1057 2.613 2.320

ASMb 296 267 0.1321 0.1045 2.482 2.282

FEMc 299 269 0.1333 0.1052 2.460 2.300

Bijlaard 468 442 0.1438 0.1100 2.592 2.640
ASM 463 434 0.1438 0.1079 2.439 2.619
FEM 469 438 0.1452 0.1086 2.420 2.640

Bijlaard 601 576 0.1463 0.1102 2.574 2.784
ASM 597 566 0.1473 0.1087 2.428 2.719
FEM 586 570 0.1486 0.1095 2.420 2.740

Bijlaard 4352 3645 0.0863 0.0559 6.451 7.120
ASM 4324 3573 0.0857 0.0556 6.367 7.038
FEM 4350 3596 0.0864 0.0559 6.360 7.060

Bijlaard 7631 6924 0.0967 0.0614 6.482 8.064
ASM 7608 6826 0.0956 0.0585 6.310 8.001
FEM 7656 6844 0.0964 0.0588 6.300 8.020

Bijlaard 13430 12930 0.1030 0.0634 6.434 8.704
ASM 12667 11853 0.1007 0.0599 6.292 8.466
FEM 12702 11890 0.1015 0.0603 6.280 8.500

Bijlaard 20227 15800 0.0626 0.0343 9.578 12.784
ASM 20256 15643 0.0617 0.0341 9.517 12.744
FEM 20532 15660 0.0627 0.0344 9.520 12.760

Bijlaard 34350 30136 0.0716 0.0394 9.792 14.192
ASM 34747 29857 0.0704 0.0366 9.450 14.142
FEM 35032 29870 0.0711 0.0368 9.460 14.160

Bijlaard 74379 71448 0.0767 0.0400 9.618 15.472
ASM 74124 68968 0.0760 0.0382 9.432 15.400
FEM 74472 69020 0.0767 0.0385 9.440 15.420

Bijlaard 231738 158362 0.0337 0.0137 13.696 29.328
ASM 234848 157615 0.0332 0.0135 13.617 29.188
FEM 237974 157180 0.0337 0.0136 13.620 29.140

Bijlaard 402590 313842 0.0406 0.0172 14.963 32.288
ASM 397532 315039 0.0394 0.0154 13.532 32.197
FEM 404260 314592 0.0399 0.0155 13.540 32.160

Bijlaard 625855 566530 0.0440 0.0180 14.584 33.424
ASM 676570 590498 0.0431 0.0165 13.512 34.344
FEM 683356 590092 0.0436 0.0166 13.520 34.300

Bijlaard 968910 925438 0.0453 0.0180 14.200 34.128
ASM 1014420 925796 0.0453 0.0171 13.504 35.043
FEM 1021380 925506 0.0458 0.0172 13.520 35.000

Patch Load
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ܴܲܧݓ ∗ܴܲܧݓ ∗௦ܲܯ ∗௫ܲܯ −ܰ௫ܴܲ∗−ܰ௦ܴܲ∗
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Table 4.4.  ASM cumulative dimensionless deflections and forces at x = L/2 and s = 0 for 
the cylindrical shell subjected to a point load, P, in Figure 4.3 and to a patch load, P* 
= 4pc1c2 with c1 = c2 in Figure 4.4;  R/t = 100 and L/R = 3. 

Note:  ࢝ = ∑ ૙࢓࢓࢝ , ࡹ = ∑ ૙࢓࢓ࡹ , ࡺ = ∑ ૙࢓࢓ࡺ  

 

 

 

 

 

Table 4.5.  Dimensionless deflection and forces at x = L/2 and s = 0 for the cylindrical 
shell subjected to a line load with total magnitude of P* = 2c2p in Figure 4.5. 

 

 

 

 

 

Mode Point Load

m

0 102 64 0.0001 0.0004 0.641 0.000

1 371 255 0.0004 0.0012 1.917 0.227

2 1043 842 0.0008 0.0021 3.174 1.127

5 9930 9054 0.0146 0.0098 6.410 7.212

10 16698 14448 0.0435 0.0248 8.972 11.530

20 19401 15648 0.0644 0.0348 9.510 12.738

30 19969 15666 0.0647 0.0350 9.514 12.752

40 20167 15643 0.0627 0.0343 9.516 12.744

50 20256 15643 0.0617 0.0341 9.517 12.744

Patch Loadܴܲܧݓ ∗௦ܲܯ ∗ܴܲܧݓ∗௫ܲܯ −ܰ௦ܴܲ∗ −ܰ௫ܴܲ∗

Method
Kempner (1955) 6211 0.196 0.107 8.094 9.275

ASM 6201 0.190 0.102 8.031 9.304
FEM 6208 0.196 0.105 8.170 9.337

∗ܴܲܧݓ ∗௦ܲܯ ∗௫ܲܯ −ܰ௦ܴܲ∗ −ܰ௫ܴܲ∗
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Table 4.6.  Dimensions and fluid properties for the tank in Figure 4.6 

 

Specific 

Gravity 

γ1 = 9.81 kN/m3 (62.4 pcf) 

γ2 = 7.35 kN/m3 (46.8 pcf) 

Wall 

Thickness 

t1 = 76.2 mm (3.0 in) 

t2 = 38.1 mm (1.5 in) 

Radius R = 6.1 m (20 ft) 

Height 

H = 6.08 m (20 ft) 

H1 = 1.52 m (5.0 ft) 

H2 = 0.76 m (2.5 ft) 

H3 = 0.76 m (2.5 ft) 

H4 = 1.52 m (5.0 ft) 

H5 = 1.52 m (5.0 ft) 

 

 

Table 4.7.  ASM cumulative deflections ࢝ = ∑ ૙࢓࢓࢝  along the generator (s = 0) at x = 
375 mm (14.8 in) and x = 500 mm (19.7 in) for the stiffened cylindrical shell in Figure 
4.10. 

  

Mode

w w w w

(10-3 mm) (10-4 in) (10-3 mm) (10-4 in)

0 0.86 0.34 0.03 0.01

1 4.39 1.73 2.23 0.88

2 7.14 2.81 2.78 1.09

5 17.3 6.82 2.91 1.15

10 43.6 17.2 2.92 1.15

20 69.2 27.2 2.93 1.15

30 73.7 29.0 2.93 1.15

40 74.8 29.5 2.93 1.15

50 75.2 29.6 2.93 1.15

x  = 375 mm (14.8 in) x  = 500 mm (19.7 in)

m
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Figure 4.1.  Stiffened cylindrical shell with strip and edge loadings  
Note:  The stiffeners are concentric with the shell 

 

 

 

 

 

 

Figure 4.2.  Coordinate system for the ring stiffener 
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Figure 4.3.  Cylindrical Shell Subjected to Point Load 

 

 

 

 

 

Figure 4.4.  Cylindrical Shell Subjected to Patch Load 
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Figure 4.5.  Cylindrical shell subjected to a line load 

 

 

 

 

Figure 4.6.  Stiffened tank with clamped base 
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Figure 4.7.  Radial deflection for the stiffened tank in Figure 4.6 

Note:  The ASM and FEM results are in very good agreement and difficult 

to discern in the figure 
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Figure 4.8.  Bending moment, Mx, for the stiffened tank in Figure 4.6 

Note:  The ASM and FEM results are in very good agreement and difficult 

to discern in the figure 
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Figure 4.9.  Shear, Qx, for the stiffened tank in Figure 4.6 

Note:  The ASM and FEM results are in very good agreement and difficult 

to discern in the figure 

 

 

 

 



    

74 

 

 

 

Figure 4.10.  Stiffened cylindrical shell subjected to a line load 

 

 

Figure 4.11.  Radial deflection, w, along the generator (s = 0) for the stiffened cylinder 
in Figure 4.10 

Note:  The ASM and FEM results are in very good agreement and difficult 
to discern in the figure 
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CHAPTER 5 

ANALYTICAL STRIP METHOD FOR THIN LAMINATED CYLINDRICAL 
SHELLS 

 

5.1  Introduction 

Laminated shells are widely used in civil, environmental, mechanical, and aerospace 

applications due to their high stiffness-to-weight ratio.  The layered nature of laminates 

allows for optimal and economical use of the material.  Several laminated shell theories 

have been developed to simplify complex three-dimensional elasticity based solutions.  

These theories are roughly divided into two categories, thin shell theories which adopt 

Love’s assumptions (Ambartsumian, 1961, 1966; Bert, 1975) and higher order shell 

theories that relax one or more of Love’s assumptions (Vasilenko and Golub, 1984; 

Reddy, 2004; Barbero et al., 1990).   

Three-dimensional elasticity solutions and higher order shell theories are well suited for 

thick to moderately thick shells.  Elasticity solutions for laminated composite shells are 

widely available (Ren, 1987, 1995; Chandrashekhara and Nanjunda Rao, 1997, 1998; 

Varadan and Bhaskar, 1991).  Noor and Burton (1990) provide and exhaustive review of 

available solutions.  The applicability of these solutions is generally constrained to shells 

of infinite length or with simplified loading conditions.  Although thin shell theories 

poorly capture the behavior of shells with low radius-to-thickness ratios, they perform 

reliably for higher radius-to-thickness ratios (Ren, 1987) and the simplifying assumptions 

in the theory facilitate the incorporation of complex loading and boundary conditions. 

The objective of this paper is to develop an analytical strip method (ASM) of solution for 

stiffened and laminated thin cylindrical shells.  The solution is applicable to laminated 

shells with any generalized layer configuration and ply-angle scheme, such that the shell 

behaves anisotropically.  The ASM was first developed by Harik and Salamoun (1986, 

1988) for the analysis of thin orthotropic and stiffened rectangular plates subjected to 

uniform, partial uniform, patch, line, partial line and point loads or any combination 

thereof.  The solution procedure requires that the structure be divided into strips based on 
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the geometric discontinuities and applied loads (Figure 5.1).  The governing differential 

equation for each strip is solved analytically and the applicable continuity and boundary 

conditions are used to combine the solutions for the strips. 

The primary contribution of the ASM is in its ability to handle a wide variety of loading 

and geometric configurations.  At present, analytical solutions are limited to 

axisymmetric and simple non-axisymmetric loadings applied to cylindrical shells of basic 

geometry.  Other more complex cases must utilize numerical or semi-numerical 

techniques.  Unlike numerical based solutions, the accuracy of the ASM does not depend 

on the number of strips within the structure, but rather the number of modes considered in 

the series solution. 

 

5.2  Governing Differential Equation for Laminated Cylindrical Shells 

The surface coordinate system used in the derivation of the governing equation for a 

cylindrical strip is shown in Figure 5.1.  The strain-displacement equations associated 

with thin shell theory are given as (Kraus, 1967) 

߳௫ = డ௨ೣడ௫                (5.1a) 

߳௦ = డ௨ೞడ௦ + ௪ோ                 (5.1b) 

௫௦ߛ = డ௨ೞడ௫ + డ௨ೣడ௦             (5.1c) 

௫ߢ = −డమ௪డ௫మ                 (5.1d) 

௦ߢ  = డడ௦ ቀ௨ೞோ − డ௪డ௦ ቁ               (5.1e) 

௫௦ߢ  = ଵோ డ௨ೞడ௫ − 2 డమ௪డ௫డ௦            (5.1f) 

And the equilibrium equations are (Kraus, 1967) 
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డேೣడ௫ + డேೞೣడ௦ + ௫ݍ = 0           (5.2a) 

డேೣೞడ௫ + డேೞడ௦ + ொೞோ + ௦ݍ = 0           (5.2b) 

డொೣడ௫ + డொೞడ௦ − ேೞோ + ݍ = 0           (5.2c) 

డெೣడ௫ + డெೣೞడ௦ − ܳ௫ = 0            (5.2d) 

డெೣೞడ௫ + డெೞడ௦ − ܳ௦ = 0            (5.2e) 

The five equilibrium equations are reduced to three by substituting Eq. (5.2d) and Eq. 

(5.2e) into Eq. (5.2c).  Substitution of the strain-displacement equations into the 

equilibrium equations yield a system of three differential equations that may be presented 

as  

൥ܮଵଵ ଵଶܮ ଵଶܮଵଷܮ ଶଶܮ ଵଷܮଶଷܮ ଶଷܮ ଷଷ൩ܮ ቊݑ௫ݑ௦ݓ ቋ = ൝ݍ௫ݍ௦ݍ ൡ           (5.3) 

where, differential operators ܮ௜௝ are 

ଵଵܮ = ଵଵܣ డమడ௫మ + ଵ଺ܣ2 డమడ௫డ௦ + ଺଺ܣ డమడ௦మ          (5.4a) 

ଵଶܮ = ቀܣଵ଺ + ଵோ ଵ଺ቁܤ డమడ௫మ + ቀܣଵଶ + ଺଺ܣ + ଵோ ଵଶܤ + ଵோ ଺଺ቁܤ డమడ௫డ௦ +  

           ቀܣଶ଺ + ଵோ ଶ଺ቁܤ డమడ௦మ          (5.4b) 

ଵଷܮ = ଵଵܤ− డయడ௫య + ଵோ ଵଶܣ డడ௫ − ଵ଺ܤ3 డయడ௫మడ௦ − ଵଶܤ) + (଺଺ܤ2 డయడ௫డ௦మ + ଵோ ଶ଺ܣ డడ௦ −   

ଶ଺ܤ  డయడ௦య            (5.4c) 

ଶଶܮ = ቀܣ଺଺ + ଵோమ ଺଺ܦ + ଶோ ଺଺ቁܤ డమడ௫మ + 2 ቀ ଵோమ ଶ଺ܦ + ଶோ ଶ଺ܤ + ଶ଺ቁܣ డమడ௫డ௦ +  

           ቀܣଶଶ + ଶோ ଶଶܤ + ଵோమ ଶଶቁܦ డమడ௦మ         (5.4d) 
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ଶଷܮ = ቀ−ܤଵ଺ − ଵோ ଵ଺ቁܦ డయడ௫య + ଵோ ቀଵோ ଶ଺ܤ + ଶ଺ቁܣ డడ௫ −  

          ቀଶோ ଺଺ܦ + ଵோ ଵଶܦ + ଵଶܤ + ଺଺ቁܤ2 డయడ௫మడ௦ + ቀ−3ܤଶ଺ − ଷோ ଶ଺ቁܦ డయడ௫డ௦మ +  

          
ଵோ ቀܣଶଶ + ଵோ ଶଶቁܤ డడ௦ +	ቀ−ܤଶଶ − ଵோ ଶଶቁܦ డయడ௦య                   (5.4e) 

ଷଷܮ = ଵோమ ଶଶܣ + ଵଵܦ డరడ௫ర + ଵ଺ܦ4 డరడ௫యడ௦ + ଵଶܦ2) + (଺଺ܦ4 డరడ௫మడ௦మ − ଶோ ଵଶܤ డమడ௫మ  
        − ସோ ଶ଺ܤ డమడ௫డ௦ + ଶ଺ܦ4	 డరడ௫డ௦య − ଶோ ଶଶܤ డమడ௦మ + ଶଶܦ డరడ௦ర        (5.4f) 

where Aij are the extensional stiffnesses, Bij are the bending-extensional coupling 

stiffnesses, and Dij are the bending stiffnesses.  The stiffness coefficients are given by 

Reddy (2004) and are defined as  

൛ܣ௜௝, ,௜௝ܤ ௜௝ൟܦ = ׬ തܳ௜௝ሼ1, ,ݖ ;ݖଶሽ݀ݖ 				݅, ݆ = 1,2,6೟మି೟మ           (5.5) 

where t is the thickness of the shell and തܳ௜௝ are the lamina stiffness coefficients (Reddy, 

2004). 

In symmetric laminates, Bij = 0 in Eq. (5.4).  In antisymmetric cross-ply laminates, B12 = 

B16 = B26 = B66 = 0 and B22 = -B11 in Eq. (5.4).  In antisymmetric angle-ply laminates, B11 

= B12 = B22 = B66 = 0 in Eq. (5.4). 

The displacements in the x, s, and r direction, ux, us, and w, are presented in terms of the 

potential function Φ(ݔ, ௫ݑ (Sharma et al., 1980) (ݏ = ଶଷܮଵଶܮ) − ,ݔ)ଶଶ)Φܮଵଷܮ ௦ݑ (5.6a)          (ݏ = ଶଵܮଵଷܮ) − ,ݔ)ଵଵ)Φܮଶଷܮ ݓ (5.6b)          (ݏ = ଶଶܮଵଵܮ) − ,ݔ)ଶଵ)Φܮଵଶܮ  (5.6c)          (ݏ

For the case of radial loads only, the three equations can be combined into a single eighth 

order differential equation expressed in terms of the potential function Φ (Sharma et. al., 

1980). 



    

79 

 

ܨ଼ ଴ డఴ஍డ௫ఴ + ଻ଵܨ డఴ஍డ௫ళడ௦ + ଺ଶܨ డఴ஍డ௫లడ௦మ + ହଷܨ డఴ஍డ௫ఱడ௦య ସସܨ+ డఴ஍డ௫రడ௦ర + ଷହܨ డఴ஍డ௫యడ௦ఱ + ଶ଺ܨ డఴ஍డ௫మడ௦ల ଵ଻ܨ+ డఴ஍డ௫డ௦ళ + ଴଼ܨ డఴ஍డ௦ఴ + ଺଴ܨ డల஍డ௫ల + ହଵܨ డల஍డ௫ఱడ௦ ସଶܨ+ డల஍డ௫రడ௦మ + ଷଷܨ డల஍డ௫యడ௦య + ଶସܨ డల஍డ௫మడ௦ర ଵହܨ+ డల஍డ௫డ௦ఱ + ଴଺ܨ డల஍డ௦ల + ସ଴ܨ డర஍డ௫ర + ଷଵܨ డర஍డ௫యడ௦ + ଶଶܨ డర஍డ௫మడ௦మ + ଵଷܨ డర஍డ௫డ௦య + ଴ସܨ డర஍డ௦ర = ,ݔ)ݍ  (ݏ
               (5.7) 

The coefficients ܨ௜௝ are presented in Eq. (2.25). 

 

5.3  Isotropic Beam Equations 

The following differential equations can be derived from the equilibrium of an isotropic 

curved beam element (Vlasov, 1961) 

௫௕ݍ = ௥ܫ௕ܧ ቀௗర௨ೣ್ௗ௦ర − ଵோ ௗమథ್ௗ௦మ ቁ + ா್஼ೢோ ቀௗరథ್ௗ௦ర + ଵோ ௗర௨ೣ್ௗ௦ర ቁ − ீ್௃್ோ ቀௗమథ್ௗ௦మ + ଵோ ௗమ௨ೣ್ௗ௦మ ቁ      (5.8) 

௥௕ݍ = ௫ܫ௕ܧ ቀௗర௪್ௗ௦ర − ଵோ ௗయ௨ೞ್ௗ௦య ቁ + ா್஺್ோ ቀௗ௨ೞ್ௗ௦ + ଵோ  ௕ቁ          (5.9)ݓ

௦௕ݍ = ா್ூೣோ ቀௗయ௪್ௗ௦య − ଵோ ௗమ௨ೞ್ௗ௦మ ቁ − ௕ܣ௕ܧ ቀௗమ௨ೞ್ௗ௦మ + ଵோ ௗ௪್ௗ௦ ቁ       (5.10) 

݉௫௕ = ா್ூೝோ ቀ− ௗమ௨ೣ್ௗ௦మ + ଵோ ߶௕ቁ + ௪ܥ௕ܧ ቀௗరథ್ௗ௦ర + ଵோ ௗర௨ೣ್ௗ௦ర ቁ − ௕ܬ௕ܩ ቀௗమథ್ௗ௦మ + ଵோ ௗమ௨ೣ್ௗ௦మ ቁ    (5.11) 

The terms qxb, qrb, and qsb are the distributed forces per unit length applied to the beam in 

the x, r, and s directions (Figure 5.2); mxb is the twisting moment per unit length applied 

to the beam; uxb, usb, and wb are the deflections of the beam in the x, r, and s directions 

(Figure 5.2); ߶௕ is the twist angle of the beam; R is the radius measured to the centroid of 

the beam; EbIr = flexural rigidity about the r-axis (Figure 5.2); EbIx = flexural rigidity 

about the x-axis (Figure 5.2); EbAb = axial stiffness of the beam; GbJb = torsional rigidity 

of the beam; EbCw = warping rigidity of the beam. 
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5.4  Analytical Strip Method 

The solution of the differential equation for a general strip I assumes that the form for the 

potential function Φூ satisfies continuity at the surface coordinate ݏ = 0 and ݏ =   .ܴߨ2

Let Φ = ∑ ߶௡(ݔ) cos(ߚ௡ݏ)ஶ௡            (5.12) 

Where 

௡ߚ  = ௡ோ              (5.13) 

Substituting Eq. (5.12) into the governing differential equation [Eq. (5.7)], multiplying 

both sides of the equation by cos	(ߚ௠ݏ), integrating from ݏ = 0 to ݏ =  and ,ܴߨ2

summing from ݉ = 0 to ݉ = ∞ yields the following equation by orthogonality 

∑ ቄ଼ܨ ௠∗ ௗఴథ೘(௫)ௗ௫ఴ + ∗଺௠ܨ ௗలథ೘(௫)ௗ௫ల + ∗ସ௠ܨ ௗరథ೘(௫)ௗ௫ర + ∗ଶ௠ܨ ௗమథ೘(௫)ௗ௫మ + ∗଴௠ܨ ߶௠(ݔ)ቅ =ஶ௠ଵଶగோ ׬ ,ݔ)ݍ ݏ݀(ݏ + ∑ ଵగோ ׬ ,ݔ)ݍ (ݏ cos(ߚ௠ݏ) ଶగோ଴ஶ௠ୀଵଶగோ଴ݏ݀        (5.14) 

Where: ଼ܨ ௠∗ = ܨ଼ ଴           (5.15a) 

∗଺௠ܨ =  ௠ଶ          (5.15b)ߚ଺ଶܨ−

∗ସ௠ܨ = ௠ସߚସସܨ − ௠ଶߚସଶܨ +  ସ଴        (5.15c)ܨ

∗ଶ௠ܨ = ௠଺ߚଶ଺ܨ− + ௠ସߚଶସܨ −  ௠ଶ       (5.15d)ߚଶଶܨ

∗଴௠ܨ = ௠଼ߚ଴଼ܨ − ௠଺ߚ଴଺ܨ +  ௠ସ        (5.15e)ߚ଴ସܨ

For m = 0, ܨଶ଴∗ = ∗଴଴ܨ = 0 and for m = 1, ܨ଴ଵ∗ = 0. 

Eq. (5.14) is an infinite set of linear 8th order ordinary differential equations for ߶௠(ݔ) 
with m = 0, 1, 2, …, ∞.  The solution is obtained by superposition of the associated 

homogeneous and particular solutions. 
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Φ(ݔ, (ݏ = Φு(ݔ, (ݏ + Φ௉(ݔ,  (5.16)          (ݏ

where the homogeneous solution Φு(ݔ, (ݏ = ∑ ߶ு௠(ݔ) cos(ߚ௠ݏ)ஶ௠          (5.17) 

and the particular solution 

 Φ௉(ݔ, (ݏ = ∑ ߶௉௠(ݔ)cos	(ߚ௠ݏ)ஶ௠          (5.18) 

 

5.4.1  Homogeneous Solution 

The homogeneous solution for mode m, ߶ு௠(ݔ), is expressed as  

߶ு௠(ݔ) = ݁ఊ೘ఉ೘௫            (5.19) 

The characteristic equation of Eq. (5.19) for mode ݉ = 0 is ଼ߛ∗ܨ௠଼ + ௠଺ߛ∗଺ܨ + ௠ସߛ∗ସܨ = 0          (5.20) 

And the homogeneous solution for mode m = 0 is Φு଴(ݔ, (ݏ = ଵ଴ܥ + ݔଶ଴ܥ + ଶݔଷ଴ܥ + ଷݔସ଴ܥ + ሾܥହ଴ cosh(ߛଷ଴ݔ) ሿ(ݔଷ଴ߛ)	଺଴sinhܥ+ cos(ߛସ଴ݔ) + ሾܥ଻଴ cosh(ߛଷ଴ݔ) +    (ݔସ଴ߛ)	ሿsin(ݔଷ଴ߛ)	଴sinh଼ܥ

                  (5.21) 

The characteristic equation of Eq. (5.19) for mode ݉ = 1 is ଼ߛ∗ܨ௠଼ + ௠଺ߛ∗଺ܨ + ௠ସߛ∗ସܨ + ௠ଶߛ∗ଶܨ = 0         (5.22) 

And the homogeneous solution for mode m = 1 is 

Φுଵ(ݔ, (ݏ = ቐ ଵଵܥ + ݔଶଵܥ + ଷଵ݁ఊయభ௫ܥ + ହଵܥସଵ݁ିఊయభ௫+ሾܥ cosh(ߛଵଵݔ) + ଺ଵܥ sinh(ߛଵଵݔ)ሿ cos(ߛଶଵݔ)+ሾܥ଻ଵ cosh(ߛଵଵݔ) + (ݔଶଵߛ)	ሿsin(ݔଵଵߛ)	ଵsinh଼ܥ ቑ cos	(ߚଵݏ)    (5.23) 



    

82 

 

The characteristic equation of Eq. (5.19) for all other modes (m = 2, 3, …,∞) is ଼ߛ∗ܨ௠଼ + ௠଺ߛ∗଺ܨ + ௠ସߛ∗ସܨ + ௠ଶߛ∗ଶܨ + ∗଴ܨ = 0        (5.24) 

And the homogeneous solution for all other modes (m = 2, 3, …, ∞) is 

Φு௠(ݔ, (ݏ = ۔ە
ۓ ሾܥଵ௠ cosh(ߛଵ௠ݔ) + ଶ௠ܥ sinh(ߛଵ௠ݔ)ሿ cos(ߛଶ௠ݔ)+ሾܥଷ௠ cosh(ߛଵ௠ݔ) + ସ௠ܥ sinh(ߛଵ௠ݔ)ሿ sin(ߛଶ௠ݔ)+ሾܥହ௠ cosh(ߛଷ௠ݔ) + ଺௠ܥ sinh(ߛଷ௠ݔ)ሿ cos(ߛସ௠ݔ)+ሾܥ଻௠ cosh(ߛଷ௠ݔ) + (ݔସ௠ߛ)	ሿsin(ݔଷ௠ߛ)	௠sinh଼ܥ ۙۘ

ۗ cos	(ߚ௠ݏ)    (5.25) 

Eq. (5.20), Eq. (5.22), and Eq. (5.24) can be reduced to quartic equations for which the 

characteristic roots can be solved analytically (Editing Group of the Manual of 

Mathematics, 1979).  The constants ܥௗ௠ (݀ = 1,2,… ,8) for each mode (݉ = 1,2,… ,∞) 

are determined from the boundary conditions at ݔ = 0 and ݔ =  ௡ and the continuityݔ

conditions at ݔ = ݅] ௜ݔ = 1,2, … , ݊ − 1,  Figure 5.1]. 

 

5.4.2  Particular Solution 

The particular solution is dependent upon the load distribution applied to the strip.  For a 

given strip loading, the load distribution function, ݔ)ݍ, ,ݔ)ݍ is expressed as ,(ݏ (ݏ =  (5.26)           (ݏ)݃(ݔ)଴݂ݍ

where q0 is the load amplitude and f(x) and g(s) are the load distribution functions in the x 

and s directions. 

Substituting into the right hand side of Eq. (5.14) yields, 

௤బ௙(௫)ଶగோ ׬ ଶగோ଴ݏ݀(ݏ)݃   for m = 0         (5.27) 

and 

௤బ௙(௫)గோ ׬ (ݏ)݃ cos(ߚ௠ݏ) ଶగோ଴ݏ݀        for m = 1, 2, …, ∞       (5.28) 
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The potential function, ߶௣௠(ݔ), can be derived for a wide range of commonly 

encountered load distributions.  The particular solution for most common strip loadings 

are presented in Table 4.1. 

When a strip is subjected to more than one load, the method of superposition is employed 

to determine the particular solution. 

 

5.4.3  Edge Loading 

For cylinders subjected to point loads and radial line loads distributed along the 

circumferential direction, the cylinder is divided into strips such that the loads coincide 

with the edges of the strips (Figure 5.1).  These loads are expressed as a Fourier series 

and incorporated into the solution as shear force discontinuities between strips.  Table 4.2 

presents the edge loading function ߰௜(ݏ) for several common loadings. 

When an edge is subjected to a combination of loads, the method of superposition is 

employed to determine the edge loading function. 

 

 

5.4.4  Boundary Conditions 

The boundary conditions along the edges  ݔ = 0 and ݔ =  :௡ areݔ

For simply supported edges:  ݑ௫ = ௦ݑ     ,0 = ݓ     ,0 = ௫ܯ     ,0 = 0 (5.29a, b, c, d) 

For clamped edges:  ݑ௫ = ௦ݑ     ,0 = ݓ     ,0 = 0,     
డ௪డ௫ = 0,  (5.30a, b, c, d) 

For free edges:  ܳ௫ = ψ,     ௫ܰ = 0,     ௫ܰ௦ = ௫ܯ     ,0 = 0,   (5.31a, b, c, d) 

For beam support:  ݓ =      ,௕ݓ
ௗ௪ௗ௫ = ߶௕,     ܳ௫ = ௥௕ݍ + ௫ܯ     ,߰ = ݉௧௕ (5.32a, b, c, d) 
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Difficulties arise when the coefficients on the odd derivatives of the s terms in Eq. (2.32), 

Eq. (2.34), and Eq. (2.36) are non-zero.  Expansion of these equations lead to both cos(ߚ௠ݏ) and sin	(ߚ௠ݏ) in the expressions for ux, us, and w when m = 1, 2, …, ∞.  This 

necessitates two constraint equations to impose any one of the boundary conditions in Eq. 

(5.29) through Eq. (5.32).  For these cases, only four boundary conditions can be 

assigned per strip, in contrast to the eight conditions allowed for the alternative case. 

 

5.4.5  Continuity Conditions 

The following continuity conditions are applied along the shared edge between strips ܫ 
and ܫ + 1 at ݔ =  ௜ݔ
௫ூݑ = ௦ூݑ     ,௫(ூାଵ)ݑ = ூݓ     ,௦(ூାଵ)ݑ = డ௪಺డ௫     ,(ூାଵ)ݓ = డ௪(಺శభ)డ௫   (5.33a, b, c, d) 

and ܯ௫ூ = ௫(ூାଵ),   ௫ܰூܯ = ௫ܰ(ூାଵ),   ܳ௫ூ = ܳ௫(ூାଵ) + ߰௜,   ௫ܰ௦ூ = ௫ܰ௦(ூାଵ)     (5.34a, b, c, d) 

When a beam is present at ݔ =  ௜, the following continuity conditions are imposed alongݔ

the common edge ݔ =  .௜, between strips I and I+1ݔ

௫ூݑ = ௦ூݑ     ,௫(ூାଵ)ݑ = ூݓ     ,௦(ூାଵ)ݑ = డ௪಺డ௫     ,(ூାଵ)ݓ = డ௪(಺శభ)డ௫ = ߶௕ (5.35a, b, c, d) 

and ݉௧௕ = ௫(ூାଵ)ܯ − ௫௕ݍ  ,௫ூܯ = ௫ܰ(ூାଵ) − ௫ܰூ,             (5.36a, b) 

௥௕ݍ  = ܳ௫(ூାଵ) − ܳ௫ூ + ߰௜,  ݍ௦௕ = ௫ܰ௦(ூାଵ) − ௫ܰ௦ூ            (5.37c, d) 
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5.5  Solution 

A cylindrical shell is divided into N-strips (Figure 5.1) depending on the number of 

loading discontinuities and the locations of the ring stiffeners.  For each of the N-strips, 

eight equations are generated from the boundary and continuity conditions.  This yields a 

unique 8N system of equations for each mode (m = 0, 1, 2, …, ∞).  Solution of these 

systems of equations provide the constants CdmI (d = 1, 2, …, 8) in the homogeneous 

solution.  The potential function Φூ for each strip I (I = 1, 2, …, N) is derived by 

summing the homogeneous and particular solutions.  The potential function is then back-

substituted into the relevant force and displacement equations.  

 

5.6  Application 

Because of the ill-conditioned nature of the solution, the ASM is susceptible to numerical 

instabilities when computing solutions using double precision floating point format.  To 

eliminate this concern, examples are computed with a MATLAB (Mathworks, 2017) 

program using an arbitrary-precision package. 

 

5.6.1  Example 1:  Laminated Cylindrical Shells Subjected to Axisymmetric Loads 

The purpose of this example is to compare the Analytical Strip Method (ASM) results for 

laminated cylindrical shells subjected to axisymmetric loads to an existing analytical 

solution developed by Ren (1995). 

Three laminated shells are considered: 

Case 1:  Single layer with lamina fibers oriented at an angle of β = 45°. 

Case 2:  Two-layer antisymmetric angle-ply laminate with inner layer oriented with fibers 

at an angle of β = 45° and outer layer oriented with fibers at an angle of β = -45°. 
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Case 3:  Three-layer symmetric angle-ply laminate with inner and outer layers oriented 

with fibers at an angle of β = 45° and middle layer oriented at an angle of β = -45°.  The 

thickness of the inner, middle, and outer layers is t/2, t/4, and t/2. 

Orientation angle of the lamina, β, is measured counterclockwise from the x-axis of the 

cylinder.  For the layer material, the elastic modulus in the direction of the fibers E1 = 

172 GPa = 25x106 psi, the elastic modulus perpendicular to the direction of the fibers E2 

= 7 GPa = 106 psi, shear modulus G12 = 3.4 GPa = 0.5x106 psi, and Poisson's ratio ν12 = 

0.25. 

The shells are simply supported with length-to-radius ratio L/R = 6 and are subjected to 

an axisymmetric sinusoidal load ݍ = ଴ݍ sin(ܮ/ݔߨ).  Table 5.1 presents the dimensionless 

deflection, ݓഥ = ଵ଴଴ாమ௧య௪௤బோర , at x = L/2 for prescribed radius-to-thickness ratios (R/t).  The 

results are presented for an exact elasticity based solution (Ren, 1995), an existing 

classical shell theory (CST) solution for thin shells (Ren, 1995), and the Analytical Strip 

Method (ASM). 

As expected, the ASM and CST results are in excellent agreement regardless of the 

radius-to-thickness ratios.  The ASM and CST solutions are within 2% of the Exact 

solution for radius-to-thickness ratios up to 10.  For the thicker shells, the difference 

between the Exact and thin shell solutions increases to 15% for R/t = 2. 

 

5.6.2  Example 2:  Laminated Cylindrical Shells Subjected to Non-Axisymmetric 

Loads 

The purpose of this example is to compare the Analytical Strip Method (ASM) results for 

laminated cylindrical shells subjected to non-axisymmetric loads to an existing analytical 

solution developed by Ren (1987). 

Three laminated shells are considered: 

Case 1:  Single layer with lamina fibers oriented in the s-direction, β = 90°. 
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Case 2:  Two-layer antisymmetric cross-ply laminate with inner layer oriented with fibers 

in the x-direction, β = 0°, and outer layer oriented with fibers in the s-direction, β = 90°. 

Case 3:  Three-layer symmetric cross-ply laminate with inner and outer layers oriented 

with fibers in the s-direction, β = 90°, and middle layer oriented with fibers in the x-

direction, β = 0°.  All three layers are of equal thickness. 

For the layer material, the elastic modulus in the direction of the fibers E1 = 172 GPa = 

25x106 psi, the elastic modulus perpendicular to the direction of the fibers E2 = 6.9 GPa = 

106 psi, shear modulus G12 = 3.4 GPa = 0.5x106 psi, and Poisson's ratio ν12 = 0.25. 

The loading on the shells is uniform in the x-direction but has a sinusoidal distribution ݍ = ଴ݍ cos(3ݏ/ܴ) in the circumferential direction.  The cylinders are infinite in length 

and have a radius R = 10.  Table 5.2 present the dimensionless deflection, ݓഥ = ଵ଴଴ாమ௧య௪௤బோర , 
at s = 0 for prescribed radius-to-thickness ratios (R/t).  The results are presented for an 

exact elasticity based solution (Ren, 1987), an existing classical shell theory (CST) 

solution for thin shells (Ren, 1987), and the Analytical Strip Method (ASM).  Because 

the ASM is not constrained by the infinite length requirement, the solution is obtained by 

increasing the length of the simply supported shells until the dimensionless deflection 

quantity converges. 

As expected, the ASM and CST results are in excellent agreement regardless of the 

radius-to-thickness ratios.  The thin shell theories give reliable results for radius-to-

thickness ratios down to 50, as the dimensionless deflection quantities are within 3%.  As 

the thickness of the shell increases, the thin shell theories tend to significantly under 

predict the deflection.  At R/t = 10, the exact solution predicts nearly twice the deflection 

as given by the thin shell theories; and at R/t = 2, the exact solution predicts 18 times the 

deflection of the thin shell theories. 
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5.6.3  Example 3:  Retrofit of a Water Storage Tank 

The purpose of this example is to demonstrate the use of the ASM to optimize the design 

of a retrofit for a steel water storage tank.   

An existing water storage tank has a radius R = 4.572 m (15 ft), a height H = 12.192 m 

(40 ft), and is simply-supported at the base.  The tank is constructed from steel with a 

uniform wall thickness t1 = 6.350 mm (0.25 in), modulus of elasticity E = 2.0x105 MPa 

(29x103 ksi) and Poisson’s ratio ν = 0.3.  The owner wants to increase the storage 

capacity by raising the height of the tank by H3 = 9.144 m (30 ft).  The raised portion is 

constructed from steel with a uniform wall thickness t2 = 3.175 mm (0.125 in). 

The increased height of the tank produces a maximum Von Mises stress σv = 167 MPa 

(24.2 ksi), which is more than the maximum allowable stress σall = 124 MPa (18 ksi).  To 

reduce the stresses below the allowable, the steel is wrapped with a fiber-reinforced 

polymer (FRP) from the base to a height H1 = 4.572 m (15 ft).  The FRP has elastic 

moduli E1 = 1.724x105 MPa (25x103 ksi) and E2 = 1.724x104 MPa (2.5x103 ksi), shear 

modulus G12 = 3.792x104 MPa (5.5x103 ksi), and Poisson’s ratio ν12 = 0.25.  The 

thickness of each lamina layer is tL = 0.991 mm (0.039 in).  The retrofitted tank is shown 

in Figure 5.3. 

The ASM is deployed by dividing the tank into three strips, corresponding to the 

geometric discontinuities, and imposing the boundary and continuity conditions at the 

ends of each strip.  The strip at the base of the tank will behave anisotropically due to the 

FRP layers, while the other two strips are isotropic.  The ASM is used to analyze the 

structure for 1, 2, 3, and 4 layers of FRP with ply-orientations of β, β/-β, β/-β/β, and β/-

β/β/-β, where β varies from 0° to  90°.  Due to the variations in the geometry of the 

structure and the anisotropic behavior, no existing analytical methods are suitable for the 

analysis. 

Figure 5.4 shows the ratio of maximum Von Mises stress within the steel portion of the 

tank to the allowable stress, ߪ௩ ௔௟௟ൗߪ , for the range of FRP configurations analyzed.  The 

optimal design of the retrofit uses three layers of FRP with ply-angle oriented at 71o < β < 
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90°.  The optimal orientation is at β = 90°, which orients the fibers in the circumferential 

direction of the tank.  Figure 5.5 shows the variation in Von Mises stress within the steel 

along the height of the structure for the optimal retrofit.  The results are compared with a 

finite element (FEM) solution generated using ANSYS (ANSYS, Inc., 2016).  The results 

are in good agreement. 

 

5.6.4  Example 4:  Stiffened Tank Subjected to Line Load 

The purpose of this example is to demonstrate the use of the ASM for stiffened and 

laminated cylindrical shells. 

The cylinder in Figure 5.6 is stiffened with standard W10x49 steel rolled sections having 

an area A = 9290 mm2 (14.4 in2), a moment of inertia about the section x-axis Ix = 

1.132x108 mm4 (272 in4), a moment of inertia about the section y-axis Iy = 3.888x107 

mm4 (93.4 in4), and a torsion constant J = 5.786x105 mm4 (1.39 in4).  The modulus of 

elasticity of the stiffener E = 2x108 kPa (29x106 psi) and Poisson’s ratio ν = 0.3.  The 

ends are simply supported with boundary conditions, u = s = w = Mx = 0.  The cylinder is 

subjected to a line load p = 0.01 kN/mm (57.1 lb/in) along the generator, s = 0. 

Table 5.3 presents dimensionless deflections along the generator, s = 0, at x = L/8, x = 

L/4, x = 3L/8, and x = L/2 for the shell in Figure 5.6.  Results are presented for an 

isotropic steel shell as well as cross-ply laminated shells with the number of layers 

ranging from 2-ply to 8-ply.  For the isotropic steel shell, the modulus of elasticity E = 

2x108 kPa (29x106 psi), Poisson’s ratio ν = 0.3, and thickness t = 5 mm (0.197 in).  For 

the cross-ply laminated shells, the lamina has elastic moduli E1 = 1.724x105 MPa (25x103 

ksi) and E2 = 1.724x104 MPa (2.5x103 ksi), shear modulus G12 = 3.792x104 MPa (5.5x103 

ksi), and Poisson’s ratio ν12 = 0.25.  Results are presented for the ASM solution as well as 

a finite-element method (FEM) solution generated using ANSYS (ANSYS, Inc., 2016).  

The results are in good agreement. 

One of the primary advantages of laminated composites is their high weight-to-stiffness 

ratio.  Table 5.3 shows that a 7-layer laminate with total thickness 39% greater than the 
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thickness of the steel shell yields deflections within 15% of steel.  Since the unit weight 

of FRP is ¼ the weight of steel, the reduction in the weight, exclusive of the stiffeners, is 

approximately 36%.  High weight-to-stiffness ratio along with other performance 

characteristics, such as corrosion resistance, make laminated composites a desirable 

construction material. 

The ASM results are based on summation of the first 51 modes.  Table 5.4 presents the 

dimensionless radial deflection quantity for several modes at distances of x = L/8, x = L/4, 

x = 3L/8, and x = L/2 along the generator, s = 0, for the 7-layer cross-ply laminated shell.  

The series shows good convergence characteristics, mode 50 contributes less than 0.05% 

to the cumulative deflection at all locations presented.  Deflections at the ring stiffeners 

show faster convergence than at other locations.   

 

5.7  Conclusion 

The Analytical Strip Method (ASM) is presented in this chapter for stiffened and 

laminated cylindrical shells.  The primary advantage of the ASM is its applicability to 

any laminated shell, any generalized distribution of ring stiffeners along the length of the 

shell, and to a wide variety of axisymmetric and non-axisymmetric loads.  The following 

are deduced from the derivation of the ASM and the examples presented in this chapter: 

 

• The results of the ASM are in good agreement with existing analytical solutions 

based on classical thin shell theory, and the generality of the solution method 

overcomes many limitations of existing analytical solutions. 

• The ASM produces reliable results for shells with a large radius-to-thickness 

ratio; however, as the ratio drops below 50, significant deviations from the exact 

elasticity solution are likely. 

• The ASM can be used to efficiently optimize the design of laminated cylinders 

and structure retrofits. 

• The ASM shows good convergence characteristics. 
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Table 5.1.  Dimensionless deflections,	ݓഥ = ଵ଴଴ாమ௧య௪௤బோర  , at x = L/2 for angle-ply laminated 

cylindrical shells subjected to axisymmetric loading with sinusoidal distribution, ݍ ଴ݍ= sin(ܮ/ݔߨ), along the length of the shell. 

 
a ASM = Analytical Strip Method 
b CST = Classical Shell Theory solution for thin shells (Ren, 1995) 
c EXACT = Three-dimensional elasticity solution (Ren, 1995) 
 
 
 

Table 5.2.  Dimensionless deflections,	ݓഥ = ଵ଴଴ாమ௧య௪௤బோర  , at s = 0 for cross-ply laminated 

cylindrical shells subjected to sinusoidal load distribution, ݍ = ଴ݍ cos(3ݏ/ܴ), along the 
circumference of the shell. 

 
a ASM = Analytical Strip Method 
b CST = Classical Shell Theory solution for thin shells (Ren, 1987) 
c EXACT = Three-dimensional elasticity solution (Ren, 1987) 
 
 
 
 
 
 

R /t ASMa CSTb EXACTc ASM CST EXACT ASM CST EXACT

2 18.968 18.600 19.882 13.852 13.469 16.184 13.741 13.361 16.184

5 3.072 3.012 3.154 2.213 2.151 2.341 2.210 2.149 2.341

10 0.7693 0.7545 0.7784 0.5530 0.5377 0.5624 0.5528 0.5375 0.5624

20 0.1924 0.1887 0.1922 0.1382 0.1344 0.1376 0.1382 0.1344 0.1376

50 0.0308 0.0302 0.0304 0.0221 0.0215 0.0217 0.0221 0.0211 0.0217

Case 1 - β  = 45° Case 2 - β  = 45° / -45° Case 2 - β ഥݓ45° / 45°- / 45° =  ഥݓ ഥݓ

R /t ASMa CSTb EXACTc ASM CST EXACT ASM CST EXACT

2 0.7659 0.7640 9.9860 4.9991 4.9900 20.7900 0.8004 0.7790 14.3600

4 0.7543 0.7520 3.1200 4.4742 4.4700 8.5400 0.7838 0.7810 4.5700

10 0.7509 0.7490 1.1500 4.1814 4.1700 4.9300 0.7791 0.7770 1.4400

50 0.7503 0.7480 0.7700 4.0307 4.0200 4.0900 0.7779 0.7760 0.8080

100 0.7503 0.7480 0.7550 4.0117 4.0000 4.0300 0.7782 0.7760 0.7870

500 0.7503 0.7480 0.7490 3.9910 3.9900 3.9900 0.7779 0.7760 0.7730

Case 1 - β  = 90° Case 2 - β  = 0° / 90° Case 2 - β ഥݓ90° / 0° / 90° =  ഥݓ ഥݓ
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Table 5.3.  Dimensionless deflections,	ݓෝ = ௪ாభோ௣௅  , at s = 0 for stiffened cylindrical shell 

in Figure 5.6 subjected to line load, p, along the generator of the shell. 

 
a ASM = Analytical Strip Method 
b FEM = Finite Element Method 

 

 

Table 5.4.  ASM cumulative deflections ݓෝ = ∑ ෝ௠௠଴ݓ , where ݓෝ௠ = ௪೘ாభோ௣௅ , along the 

generator (s = 0) for the stiffened 7-layer cross-ply cylindrical shell in Figure 5.6. 

ASMa FEMb ASM FEM ASM FEM ASM FEM

Isotropic 100 790 793 23 27 752 756 29 33

2 Layer - Cross-Ply 252 13943 14058 77 79 13998 14092 101 103

3 Layer - Cross-Ply 168 7389 7458 53 57 6810 6868 70 73

4 Layer - Cross-Ply 126 2604 2608 41 45 2549 2554 54 57

5 Layer - Cross-Ply 101 1936 1947 35 38 1772 1785 45 48

6 Layer - Cross-Ply 84 1098 1103 30 33 1052 1058 38 42

7 Layer - Cross-Ply 72 883 890 27 30 798 807 34 37

8 Layer - Cross-Ply 63 599 605 24 27 563 570 30 34

   at x  = L /8   at x  = L /4   at x  = 3L /8   at x  = L /2Shell
Material R /t

ෝݓ ෝݓ ෝݓ ෝݓ

Mode
m
0 13 0 12 0
1 50 21 61 28
2 83 26 95 33
5 218 27 218 34
10 534 27 480 34
20 814 27 731 34
30 865 27 781 34
40 878 27 794 34
50 883 27 798 34

  at x  = L /8   at x  = L /4   at x  = 3L /8   at x  = L ෝݓ2/ ෝݓ ෝݓ ෝݓ
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Figure 5.1.  Stiffened cylindrical shell with strip and edge loadings  
Note:  The stiffeners are concentric with the shell 

 

 

 

Figure 5.2.  Coordinate system for the ring stiffener 

 

 

Figure 5.3.  Retrofitted water storage tank with simply supported base 
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Figure 5.4.  Ratio of maximum Von Mises stress to allowable stress, ߪ௩ ௔௟௟ൗߪ , for the 
water storage tank in Figure 5.3 retrofitted with layers of FRP laminate at varying ply-
angle orientations.   
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Figure 5.5.  Ratio of maximum Von Mises stress to allowable stress, ߪ௩ ௔௟௟ൗߪ , along the 
height of the water storage tank in Figure 5.3 retrofitted with three layers of FRP 
laminate with fibers oriented in the circumferential direction of the tank.   

 

 

 

Figure 5.6.  Stiffened cylindrical shell subjected to a line load 
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CHAPTER 6 

CONCLUSIONS AND FUTURE RESEARCH NEEDS 

 

6.1  General Summary 

An Analytical Strip Method (ASM) has been derived for isotropic and laminated 

cylindrical shells.  Laminated shells can have any generalized layer configuration and 

ply-angle scheme, such that the shell behaves anisotropically.  The ASM can handle any 

combination of fixed, simply supported, and beam supported boundary conditions, as 

well as any variations in wall thickness and distribution of ring stiffeners.  The ASM can 

be applied to any combination of radially applied point loads, patch loads, line loads, and 

hydrostatic loads.  The following are deduced from the derivation of the ASM and the 

examples presented in Chapter 4 and Chapter 5: 

• The results of the ASM are in good agreement with existing analytical solutions, 

and the generality of the solution method overcomes many limitations of existing 

analytical solutions. 

• Unlike the finite element method, the ASM does not require significant pre-

processing effort.  Its accuracy is dependent on the number of modes considered 

in the solution rather than the fineness of the discretization of the structure.  

• The finite element method offers more flexibility in structure geometry.   For 

instance, the ASM requires stiffeners to be concentric with the shell walls and 

stepped wall thicknesses to have a coincident middle surface. 

• The finite element method has less potential for numerical instabilities than the 

ASM. 

 

6.2  Isotropic Cylindrical Shells 

Existing analytical solutions for isotropic shells are limited to simplified loading 

conditions and shell geometry; the ASM overcomes these limitations.  Unlike many 

existing analytical solutions, the ASM does not require elimination of terms from the 
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governing equations to simplify the solution.  Examples in Chapter 4 show up to 10% 

difference between the ASM and existing analytical solution.  Finite Element results are 

in very good agreement with the ASM results.  Convergence studies show good 

convergence characteristics of the ASM series solution.  In general, force quantities 

require more modes for convergence when compared to the displacement quantities. 

 

6.3  Laminated Cylindrical Shells 

The ASM is derived for laminated shells with any generalized layer scheme and ply-

angle orientation, such that the shell behaves anisotropically.  This includes the special 

cases of symmetric and anti-symmetric laminates with cross-ply or angle-ply 

orientations.  ASM results were compared to results from existing classical shell theory 

(CST) solutions for thin shells, as well as exact elasticity solutions.  As expected, the 

results between the ASM and CST were in excellent agreement.  For shells with large 

radius-to-thickness ratios, the ASM solution closely matched the exact solution.  Thicker 

shells, with small radius-to-thickness ratios, exhibited a significant deviation between the 

ASM and exact solution. 

A major benefit of the ASM is the ability to optimize the design of laminated cylindrical 

shells.  Chapter 5 demonstrated the use of the ASM to find the optimal design of a retrofit 

for and cylindrical water storage tank.  The isotropic steel tank, wrapped with fiber-

reinforced polymer laminates leads to an anisotropic response, for which there are no 

existing analytical solutions available. 

 

6.4  Recommendations for Future Research 

Based on the current work, recommendations for future work include: 
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• Eccentricity of stiffeners:  The solution is derived with stiffeners concentric to the 

mid-surface of the shell.  The ASM can be modified to incorporate an eccentricity 

between the ring stiffener and the mid-surface of the shell.   

• Non-isotropic stiffeners:  The governing equations for the stiffeners are derived 

based on isotropic beams.  Laminated stiffeners or stiffeners with non-isotropic 

properties can be incorporated in the same fashion using revised governing 

equations. 

• Eccentricity of reference surface:  The ASM requires that adjacent strips have a 

coincident middle surface, even in the case where the wall thickness changes.  

The solution method can be modified to incorporate arbitrary definition of the 

reference surface within each strip.   

• Axial and circumferential loading:  The ASM is currently derived for radial loads 

only.  The solution method can be extended to incorporate axial and 

circumferential loading.  This would require the incorporation of qx and qs in the 

three coupled differential equations of Eq. (2.16). 

• Thermal loading:  The ASM can be extended to handle thermal loading, which is 

of considerable interest in laminated shells. 

• Free vibration:  The ASM could be used to determine the fundamental frequencies 

of a cylindrical shell by incorporating the equations of motion into the governing 

differential equations.  Free vibration analysis of stiffened and laminated 

cylindrical shells would be a significant advancement in the analysis and design 

of shell structures. 

• Buckling:  By incorporating axial loading into the solution method, the ASM can 

be further extended to the bucking of stiffened and laminated cylindrical shells.  

Buckling analysis of cylindrical shells is of great interest due to the high number 

of cylindrical shell structures designed to carry axial loads. 
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