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ABSTRACT OF THESIS 

 

 
EFFECT OF SOCIOECONOMIC AND DEMOGRAPHIC FACTORS ON KENTUCKY 

CRASHES 
 

The goal of this research was to examine the potential predictive ability of 
socioeconomic and demographic data for drivers on Kentucky crash 
occurrence.  Identifying unique background characteristics of at-fault drivers that 
contribute to crash rates and crash severity may lead to improved and more specific 
interventions to reduce the negative impacts of motor vehicle crashes. The driver-residence 
zip code was used as a spatial unit to connect five years of Kentucky crash data with 
socioeconomic factors from the U.S. Census, such as income, employment, education, age, 
and others, along with terrain and vehicle age.  At-fault driver crash counts, normalized 
over the driving population, were used as the dependent variable in a multivariate linear 
regression to model socioeconomic variables and their relationship with motor vehicle 
crashes. The final model consisted of nine socioeconomic and demographic variables and 
resulted in a R-square of 0.279, which indicates linear correlation but a lack of strong 
predicting power. The model resulted in both positive and negative correlations of 
socioeconomic variables with crash rates.  Positive associations were found with the terrain 
index (a composite measure of road curviness), travel time, high school graduation and 
vehicle age.  Negative associations were found with younger drivers, unemployment, 
college education, and terrain difference, which considers the terrain index at the driver 
residence and crash location.  Further research seems to be warranted to fully understand 
the role that socioeconomic and demographic characteristics play in driving behavior and 
crash risk. 

 
KEYWORDS: Multilinear Regression, Crash Rate, Socioeconomics, Demographics, At-

Fault, Zip Code  
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CHAPTER 1.  INTRODUCTION 

Vehicle crashes are a major cause of injuries and fatalities in the U.S. and around the 

world even though roadway safety has been improving globally for the several decades. 

The World Health Organization (WHO) estimates that more than 1.25 million people are 

killed each year as the result of road traffic crashes (WHO 2018). In the United States 

alone, there were 37,461 traffic related fatalities in 2016, a 5.6 percent increase since 2015 

(NHTSA 2016). Crash data from Kentucky indicate a higher percent increase from 2015 

than the national average – an increase of 10 percent from 761 to 834 fatalities (KTC 2016). 

In addition, Kentucky has a higher overall crash rate per population than the national 

average. In 2016, the National Highway Traffic Safety Administration (NHTSA) estimated 

22.5 crashes per 1,000 residence population for the country, while Kentucky had a rate of 

37.3. NHTSA also estimated that all traffic crashes in 2010 incurred a comprehensive cost 

of $836 Billion on the U.S. economy (NHTSA 2016).   

Prior research has shown that the highest contributing factors to crashes are related 

to human aspects (AASHTO 2010). Even though a relatively small percentage of motor 

vehicle crashes are related to highway conditions, safely designed highways could lessen 

the severity of injuries when crashes occur. The vehicle is not a contributing factor in many 

crashes; however, more safely designed vehicles have had beneficial effects in reducing 

injuries resulting from crashes. Various programs targeting safety improvements, such as 

increased seat belt use and alcohol enforcement, have been recently implemented 

throughout the United States, but may not have the same effectiveness in Kentucky.  

However, it appears that fewer benefits have been gained as a result of those programs in 

the Southeast overall (Stamatiadis and Puccini 1999). Moreover, it is reasonable to believe 

that design standards are in general similar among the various states, and thus these 

differences may be attributed to other factors. 

A plausible explanation of the increased crash rates in Kentucky may be the 

differences in a variety of socioeconomic characteristics of the state compared with other 

states. Based on statistics from the Bureau of the Census, Kentucky has lower percentages 

of high school completion and university attainment than the national average (U.S. Census 

Bureau 2018). With respect to income characteristics, most of the counties have a median 
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family income 19 percent lower than the national median income, they are at the bottom of 

the national rankings with respect to both income and disposable income per capita, and 

they have one of the largest percentages among the states of persons below the poverty 

level. These types of socioeconomic characteristics could influence highway safety by 

affecting the age of vehicles owned (older, less safe vehicles), the condition of these 

vehicles (not properly maintained), the attitudes of the drivers toward safety and risk-taking 

behaviors, and the level of driving education available to people (Stamatiadis and Puccini 

1999). 

At the same time, the fact that most areas in the region are considered rural areas 

may also contribute to these increased rates. About 42 percent of the Kentucky population 

is classified as rural, compared to the national average of 27 percent. (U.S. Census Bureau 

2018). Historical crash data indicate that the fatality rates are twice as high in rural as in 

urban areas (KTC 2016). Thus, the higher fatality rates in rural areas combined with the 

larger rural area population in Kentucky may also help explain these higher crash rates. 

This research seeks to examine the impacts of socioeconomic and demographic 

factors on at-fault drivers in the state of Kentucky. Crash data will be obtained from the 

Kentucky State Police and demographic information of drivers will be acquired from the 

U.S. Census Bureau’s American Community Survey linked to the residence zip code of 

the driver. A multivariate linear regression will be used to identify significant variables as 

they relate to at-fault driver crash rates in each zip code.  
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CHAPTER 2. LITERATURE REVIEW 

A significant research effort has been undertaken globally to investigate the role and 

possible contribution of socioeconomic and demographic factors on crash occurrence. 

Some of the methods investigate demographics surrounding the crash location, while 

others use surrogate descriptors associated with residence location of the drivers involved 

in a crash. The following sections discuss past research efforts to identify significant 

socioeconomic and demographic factors that could explain crash involvement as well as 

methods used to investigate them.  

2.1 Socioeconomic and Demographic Variables 

Various socioeconomic and demographic variables have been examined in the past 

to identify their potential contribution on crash occurrence. Prior research shows some 

common threads among explanatory variables, which agree with a priori expectations: 

income, poverty, employment, education, rurality, and driver age all seem to have an 

impact. Hasselberg et al. (2005) determined that drivers with a relatively low educational 

attainment level show an excess risk of both road-traffic crashes and of crashes leading to 

fatality or serious injury. Their study also estimated that 33 percent of minor injuries and 

53 percent of severe injuries would be avoided if all subjects had the same injury rate as 

subjects with a higher education. Similarly, Zephaniah et al. (2018) concluded that “a more 

educated population contributes to a lower DUI crash rate for a given postal code.” Their 

study found that the percentage of college educated women and the overall percentage of 

residents with at least a high school education in a postal code reduced the occurrences of 

DUI crashes. These two studies used the characteristics of the driver’s residence location 

and showed that a higher education has a positive impact, i.e., reduction, on vehicle 

crashes. Conversely, Lourens et al. (1999) conducted a study based on data from a traffic 

survey conducted each year in the Netherlands. Lourens found that while adjusting for 

annual mileage of a driver, education did not have a significant impact on accident 

involvement.  

Both income and poverty were cited as relevant predictors for crash related analysis 

from several sources. It should be noted though that income and poverty could be closely 
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related, as poverty status is generally based on income below a certain level. Lee et al. 

(2014) investigated the relationship between at-fault driver residence characteristics and 

all types of crashes for three years of data in Florida. They found that Median Family 

Income had a negative relationship with the number of at-fault drivers, indicating that 

drivers from lower income communities are more likely to be responsible for a crash 

occurrence. Maciag (2014) indicated that within metro areas, low-income tracts recorded 

pedestrian fatality rates approximately twice that of more affluent neighborhoods; high 

poverty rate tracts revealed a similar trend. Aguero-Valverde et al. (2005) also concluded 

that percent of population under the poverty level had a highly significant and positive 

correlation with crash risk when using a negative binomial prediction model. In contrast to 

this, Noland and Laham (2018) concluded that income did not have an impact on the 

probability of dying from a motor vehicle crash. This was determined with data from the 

National Longitudinal Mortality Study.  

Rural areas are generally cited as having higher fatality crash rates than urban areas 

and a large portion of previous research dealt with the levels of rural and urban components 

of a region. Muelleman et al. (1986) investigated fatal motor vehicle crash characteristics 

to determine the crash characteristics related to population density. They concluded that 

the fatality rate per 100 million Vehicle Miles Traveled (VMT) was 44 percent higher (p < 

0.001) in rural than urban areas. They also noted that rural areas are not homogeneous and 

comparisons based only on urban/rural groupings can obscure important differences 

between urban and rural areas as well as variations within rural areas. Similarly, Zwerling 

et al. (2005) found that fatal crash incidence density was more than two times higher in 

rural than in urban areas.  

Employment has been cited in several forms either as unemployment rates, portion 

of people working from home or portion of unskilled workers. Adanu et al. (2017) found 

that unemployed drivers were shown to have a probability of 0.23 of being at-fault in a 

crash and the probability of being at-fault in a serious injury crash was 0.57. They 

suggested that the odds of an unemployed driver being at-fault for a serious crash were 

1.32 times higher than a driver who was employed, self-employed or retired. Factor et al. 

(2008) used a sample of the Israeli population with detailed socioeconomic data and nine 

years of crash data for their analysis. They found that non-skilled workers are over-
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involved in fatal crashes relative to their size in the total population of all workers. 

Conversely, Lee et al. (2014) found that the higher proportion of the population working 

from home resulted in a lower number of at-fault drivers, though it was proposed that this 

is the result of travel exposure. Finally, Noland and Quddus (2004) examined traffic 

fatalities in England aggregated to the census ward. They determined that areas of higher 

employment density (employed people per land area) actually resulted in more traffic 

casualties. They proposed that this is most likely due to an increased level of street activity 

in higher employment dense areas, resulting in more pedestrian related crashes. 

Chen et al. (2010), Factor et al. (2008), and Hanna et al. (2012) all indicated that 

undesirable crash results, such as more crashes or higher fatality rates, were present for 

young or new drivers, but there was some variation about the impact of elderly drivers. Lee 

et al. (2014) determined that a larger proportion of elderly population decreases the 

likelihood of drivers being at-fault, while Aguero-Valverde et al. (2005) concluded that 

age groups below 25 and over 65 have a positive association with crash risk. Kim et al. 

(1998) found that young drivers are more likely to be classified as at-fault, and more 

specifically that young (less than age 25) males driving pickup trucks were the most likely 

subgroup to be at-fault in a crash.  

Additional variables identified as significant include driving under the influence 

(DUI)/impaired driving (Adanu et al. 2018; La Torre et al. 2007; Muelleman et al. 1986), 

commute time to work (Adanu et al. 2017; Lee et al. 2014), and marital status (Factor et 

al. 2008). 

2.2 Analysis Methods 

The negative binomial distribution is a discreet probability distribution which is often 

used when dealing with crash counts and negative binomial regressions are used to model 

crash counts for a roadway segment. Noland and Quddus (2004) used negative binomial 

count data models to analyze the associations between demographic factors (such as land 

use types, road characteristics and area-wide demographics including the level of social 

deprivation) with traffic fatalities and serious or slight injuries. The social deprivation is 

an index developed in the United Kingdom consisting of six socioeconomic factors: 

income, employment, health deprivation and disability, education skills and training, 
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housing, and geographical access to services. They used the census block in England as a 

spatial unit of the crash location in order to connect these demographics with crash 

fatalities. More recently, the Highway Safety Manual recommends developing Safety 

Performance Functions (SPFs) using negative binomial regressions which are primarily 

based on Average Annual Daily Traffic (AADT) for homogeneous roadway segments. 

However, Ivan et al. (2016) demonstrated an alternative in predicting crashes on local roads 

where the traffic volumes are not available. The study estimated SPFs for local road 

intersections and segments at the Traffic Analysis Zone (TAZ) level using socio-

demographic and network topological data. There are approximately 1,800 TAZs in 

Connecticut which were then clustered into six analysis groups based on land use and 

population density. SPFs were developed using Poisson regression models which can 

predict intersection and segment crashes within each TAZ using the number of 

intersections and the total local roadway length, respectively.  

Various other forms of regression modeling have been used in crash analysis. La 

Torre et al. (2007) and Rivas-Ruiz et al. (2007) used multiple linear regression in their 

analysis. La Torre et al. (2007) investigated the association between regional differences 

in traffic crash mortality case fatality and crash rates with socio-demographic factors and 

variables describing road behavior, vehicles, infrastructure and medical care in Italy, while 

Rivas-Ruiz et al. (2007) utilized a backwards stepwise elimination approach to study the 

variability of Road Traffic Injury (RTI) mortality on Spanish roads adjusted for Vehicle 

Kilometers Traveled in each Spanish province. Both studies found some significance in 

area wide socioeconomic factors, such as employment rates, alcohol use, and education 

levels.  

Some have found other regression models to be more useful such as logistic and 

lognormal regressions. The logistic regression is typically used to describe a discrete 

variable. Noland and Laham (2018) used a multinomial logit model in conjunction with 

data from the National Longitudinal Mortality Study to determine the effects of 

socioeconomics on the probability for a motor vehicle fatality in comparison to other 

causes of death. Factor et al. (2008) created a binary response variable to describe crash 

fatality level. The model used demographic factors to predict the probability of being 

involved in a fatal crash versus a non-fatal crash. The research linked nine years of injury 
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and fatal road-crash records with census data and used several socioeconomic factors all 

grouped into discrete categories, such as gender, education groups, and age groups. 

Similarly, Hanna et al. (2012) considered fatal crashes involving unlicensed young drivers 

(under age 19) in the United States using conditional and unconditional logistic modeling. 

This analysis was based on the urbanicity (which categorizes all US counties as urban, 

suburban or rural based on population and proximity to metropolitan areas) and the 

Townsend Index of Relative Material Deprivation (which serves as a proxy measure for 

socioeconomic status based on access to local goods, services, resources and amenities.)  

To allow for the simultaneous study of driver characteristics and region information, 

Adanu et al. (2017) used multilevel logistic modeling, which recognizes “the hierarchical 

structure in data and also provide[s] information to compute the amount of variability in 

the data attributable to each level of the hierarchy.” They also created a binary response 

variable which identifies the crashes as fatal or non-fatal. Kim et al. (1998) used a binary 

response variable to study the fault of a driver. They employed log-linear modeling which 

allows for the analysis of joint relationships among categorical variables, in this case age, 

gender, and vehicle type. As opposed to a logistic regression which relies on an additive 

model, the log-linear allows for a multiplicative model which improves the comparisons 

of variable combinations.  

Other methods such as spatial analysis have also been used in crash analysis utilizing 

socioeconomic factors. Brown et al. (2016) considered the residential locations of at-risk 

drivers (drivers reported as contributing to fatal crashes) and the demographic 

characteristics associated with those residential locations at the Census Block Group level. 

Higher risk block group (more than 8 at-risk drivers per 1,000 driving population) 

socioeconomic variables were compared to those of lower risk groups to determine trends. 

This study used a cluster analysis creating hot spots of high or low risk areas that can be 

targeted for specific safety programs. Of note here is the fact that this study examined 

demographic characteristics tied to the driver’s home location instead of the commonly 

used method of socioeconomic characteristics tied to the crash location. Kocatepe et al. 

(2017) used hotspots to investigate the exposure of different age groups to severe injury 

crashes in the Tampa Bay region. The severity-weighted crash hotspots were identified 

using Getis-Ord Gi method weighted by the number of severely injured occupants involved 
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in each crash. The study examined the proximity of residents in different age groups (17 

and younger, 18 to 21, 22 to 64 and 65 and older) to severity-weighted crash hotspots. The 

results revealed that age, ethnicity, education, poverty level, and vehicle ownership have 

an effect on crash injury exposure. 

Finally, a less defined but seemingly widely used method for this type of research 

simply involves separating crash or socioeconomic data into groups and comparing them 

with descriptive statistics. Abdalla et al. (1997) studied the effect of driver social 

circumstance on crash occurrence and casualty by linking crash records and census data in 

the Lothian Region, Scotland. The research showed a correlation between fatal crashes and 

a driver’s distance from home. Socioeconomic variables were bundled into a Deprivation 

Index and postal codes were separated into the most affluent and most deprived in order to 

compare traffic casualties normalized by population. Similarly, Blatt et al. (1997) 

considered fatal crashes occurring in rural areas, with a focus on the residential location of 

the driver.  Five years of crash data from the Fatality Analysis Reporting System (FARS) 

was linked with driver home zip code and other factors, including driver age, gender and 

blood alcohol concentration.  Five levels of population density were identified for 

classifying each driver’s residence location, including rural, small town, second city, 

suburban, and urban; other driver characteristics were divided into social clusters (age 

groups, for example).  Using geodemographic analysis, the percentage of drivers in fatal 

crashes in each social cluster was compared to the base population of that social cluster. In 

additional research involving traffic fatalities, Maciag (2014) investigated the differences 

in demographics of census tracts in relation to pedestrian fatalities in that tract. Census 

tracts were broken into categories by income and poverty to allow for a direct comparison 

of pedestrian fatalities.  

2.3 Summary 

In conclusion, the most prominent factors that seem to be relevant to crash 

occurrence investigation are income, education level, poverty percentage, employment, 

driver’s age, and the rurality of an area. Education and income are typically negatively 

correlated with crash response, while poverty is positively correlated, and employment 

varies across studies. Young drivers, and areas with a high proportion of young drivers, 
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tend to have a higher proportion of crashes and fatalities, and in general crashes in more 

rural areas seem to be more fatal.  

To investigate the role of these factors on crash occurrence, many different methods 

have been used, and while all of the considered methods are valid, there is still a wide range 

of analysis practices for relating socioeconomic characteristics with crash data. Many 

forms of regression techniques have been applied, as well as spatial statistics, clustering, 

and comparative grouping. Most of the relevant research has examined fatal crashes in 

some form and the socioeconomic variables in question often pertain to the location of the 

crash rather than the residential location of the driver.  
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CHAPTER 3. DATA 

To examine the characteristics of drivers involved in crashes, two types of data are 

required: the number of at-fault drivers aggregated to a spatial unit, and the socioeconomic 

and demographic characteristics associated with that unit. The smallest common unit that 

can be easily obtained for these two datasets in Kentucky is the zip-code. The Kentucky 

State Police (KSP) record the drivers’ 5-digit home zip code for each crash, and the US 

Census Bureau aggregates the American Community Survey to the zip code level as well. 

For each Kentucky zip code, a database record can be developed that contains the pertinent 

demographic and socioeconomic data augmented with the number of at-fault drivers 

involved in a crash from that zip code. Once crash data was obtained from KSP, driver 

records were pared down to those occurring in valid Kentucky zip codes, of which there 

are 960. These records along with the American Community Survey were all linked into a 

single database for analysis.  

A total of 463,116 crashes occurred in Kentucky between 2012-2016 in which a driver 

could be identified as at-fault and a valid Kentucky zip code was recorded for that driver’s 

residence. Comparatively, the full database of driver crash records with Kentucky zip codes 

in that time span contained 751,634 records in total. The at-fault driver is identified through 

use of the Human Factor Code in the police report (Stamatiadis and Deacon 1997; 

Chandraratna and Stamatiadis 2007). If the human factor code is recorded for only one 

driver in a crash, that driver is most likely the main contributor to the crash as determined 

by the police officer. This method includes all single vehicle crashes and all the at-fault 

drivers for multivehicle crashes. For multivehicle crashes in which a human factor code 

was recorded for neither or both drivers, these driver records were eliminated from the 

analysis. Lee et al. (2014) used the police citation record to determine at-fault drivers, but 

this significantly reduces the sample size as citations are often not issued for crashes. 

Records containing home zip codes outside of Kentucky were not used for this analysis.  

Several socioeconomic and demographic characteristics were identified as potential 

independent variables for this analysis based on the literature review. These include factors 

related to income, employment, and education for each zip code. In total, 16 variables that 
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describe relevant socioeconomic and demographic factors were considered for the analysis 

and are summarized in Table 3.1.  

Table 3.1 Socioeconomic and Demographic Variable Stats Summary 

Socioeconomic/Demographic Mean Median Stdev Max Min
Median Income ($) 41599.79 38990.50 17524.55 250000.00 10881.00
Mean Income ($) 52517.65 48984.00 25980.38 541084.00 10423.00

Unemployment Rate (%) 9.85 7.60 10.19 100.00 0.00
Percent Families Below Poverty Line (%) 23.49 21.10 15.18 100.00 0.00
Percent Below Poverty Line (≤18yrs) (%) 31.03 27.80 22.52 100.00 0.00
Percent High School Graduate (18-24yrs) 

(%) 
81.90 85.75 19.44 100.00 0.00 

Percent High School Graduate (≥25yrs) 
(%) 

78.51 79.95 12.20 100.00 0.00 

Percent with College Degree (≥25yrs) (%) 22.10 19.50 14.54 100.00 0.00
Percent Divorced or Separated (%) 15.72 14.90 10.78 100.00 0.00

Average Terrain Index 94.08 94.39 2.61 99.93 83.13
Average Terrain Difference 7.79 7.64 2.57 53.56 0.00
Percent Elderly (>65) (%) 17.04 15.60 11.86 100.00 0.00

Percent Young (15-24) (%) 12.56 11.90 8.42 99.10 0.00
Percent Rural (%) 79.47 100.00 34.70 100.00 0.00

Mean Travel Time to Work (minutes) 27.34 26.00 8.01 76.40 8.50
Average Vehicle Age (yrs) 10.09 10.15 1.02 15.33 0.00

Source: U.S. Census Bureau 2018, Kentucky State Police 2018 

Of these variables, only Average Terrain Index, Average Vehicle Age, and Average 

Terrain Difference were obtained through sources other than the 2016 American 

Community Survey (U.S. Census Bureau 2018). Terrain Index is a proxy for roadway 

curviness based on the total length compared to the point-to-point length of all roadway 

segments in Kentucky (Staats et al. 2015).  These values were averaged over zip code 

boundaries. The Average Terrain Difference can be calculated as the difference between 

the terrain index for the driver’s residency (TIhome) and the crash location (TIcrash) 

multiplied by a factor of ten. This could provide an indication of a driver's lack of 

familiarity with the roadway environment based on their experience driving in their home 

environment. Average Vehicle Age was calculated from the crash records. In each crash, 

the model year of the vehicle is recorded for all units involved and the vehicle age was 

determined subtracting this from the crash year. The age of all vehicles was averaged across 

each zip code to allow for an estimated average vehicle age for the zip code.  
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Drug related data was also considered as a potential predicting variable for crash 

rates; however, drug data is difficult to obtain for such a small spatial unit. Drug overdose 

death rate was the primary data considered for this research, but due to privacy concerns, 

over 500 out of 960 zip codes were suppressed as the result of overdose related deaths 

being less than five for that zip code (i.e. privacy was not a concern when a zip code had 

more than five overdose deaths). Due to such a reduced sample size, drug related factors 

were not included in this phase of the research.  

Driving exposure is an integral part of modeling the potential for vehicle crashes. 

Current methodology in the Highway Safety Manual recommends that crashes should be 

primarily modeled using AADT and analyzed at the segment level. A roadway segment is 

a continuous homogeneous portion of the roadway. Vehicle crashes tend to follow a 

negative binomial trend with AADT. In other words, more miles driven is positively 

correlated with the number of crashes that occur on a segment up to a point. However, to 

account for the socioeconomic and demographic variables, zip codes and not road 

segments, must be used as a spatial unit to connect crashes to those demographic predictors. 

Unfortunately, the use of zip codes as a spatial unit renders the use of AADT as a predictor 

nearly impossible. As alternative to consider exposure and thus normalize the number of 

crashes occurring in a zip code, the population above the age of 15-years-old was used as 

a near estimate of the driving population. This information is taken directly from the 

American Community Survey. Using this normalization, a crash rate of at-fault drivers can 

be developed for each of the zip codes in Kentucky. For each zip code (Z), the crash count 

is the number of crashes between the years 2012 and 2016 which involved an at-fault driver 

whose home location is zip code Z. This count is divided by the driving population in 

thousands of each zip code Z to produce a crash rate. For example, if the driving population 

of a zip code is 6,000, and there have been 900 at-fault crashes with drivers from that zip 

code in five years, the rate would be 150 crashes per 1,000 driving population per 5 year 

period.  

Once the initial database was developed, it was examined for outliers. For example, 

several zip codes were reporting high crash rates, upwards of 2,000 crashes per 1,000 

driving population. This would indicate that on average, every person in that zip code had 

two crashes in the five-year period considered. Most of these outliers were the result of a 
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very low zip code population, so to account for this, zip codes with a total population of 

less than 20 people were excluded from the database. This eliminated 17 of the zip codes. 

It should be noted that such outliers may indicate specific problem driver groups and their 

repeated crashes could be associated to their socioeconomic characteristics. In order to 

examine this, a separate analysis was conducted that examined these initially excluded zip 

codes.  
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CHAPTER 4. METHODOLOGY 

4.1 Multilinear Regression Model 

To better understand how human factors can contribute to crash occurrence, this 

research utilized a multiple linear regression with socioeconomic and demographic 

characteristics as the explanatory variables. Crash counts were aggregated to every zip code 

in the state and normalized by driving population of that zip code. Additionally, 

socioeconomic and demographic variables were obtained from the US Census Bureau and 

connected to a singular database via the zip code. With the zip code as a consistent spatial 

unit of analysis, multiple linear regression was recognized to be a straight forward and 

useful approach for this analysis.  

Multiple linear regression is a standard statistical technique that has been used by La 

Torre et al. (2007) and Ruiz et al. (2007) to relate socioeconomic and demographic 

characteristics to crash response. To determine if the socioeconomic and demographic 

variables were viable for linear regression, each potential variable was plotted with the 

response variable, i.e., crash rate. A regression analysis was conducted for each of the 

potential predictor variables alone to identify any trends. Linear and quadratic curves were 

fit to each of the regressions, and the p-value (significance) was compared for a linear 

versus a quadratic fit.  

After fitting both a linear and a quadratic line to each of the scatter plots, the R-square 

values for both lines can be compared. The R-square indicates the proportion of the 

variance in the dependent variable that is predictable from the independent variable. For 

most of the independent variables, the R-square values were low (ranging from 0.000 to 

0.118) for both the linear and quadratic curve fits. This means that on their own, none of 

the potential predictor variables (shown in Table 1) can significantly explain the change in 

crash rates among zip codes. Examining the plots, it is evident that each variable shows 

some degree of relation to crash rates using either a linear or a quadratic fit. In addition to 

a linear and a quadratic term, some variables were also considered for a logarithmic fit. 

Primarily this fit was considered in order to convert Median Income on a smaller, more 

workable scale; however, none of the variables showed any strong correlation with a 

logarithmic fit, so it was not used.  



15 
 

One of the highest R-square values (11.8 percent with p-value 0.000 for quadratic 

and 4.4 percent with p-value 0.000 for linear) shown among the predictor variables is for 

the “Percent Divorced and Separated.” With many variables following the trend of both a 

significant linear and a significant quadratic fit, each variable was transformed by squaring 

it, effectively allowing the use of a quadratic variable in a linear model. Figure 4.1 shows 

the regression fits for "Percent Divorced and Separated" as the independent variable.  

 

Figure 4.1 'Percent Divorced and Separated' Curve Fits 

For each variable, the plots were examined for the goodness of curve fits and for 

the presence of outliers. There were outliers, but the data from the outlying zip codes still 

appears to be accurate. Notably, a zip code near Louisville had extremely high numbers for 

mean and median income (>$250,000 and $541,084 respectively) as well as high 

unemployment and high education levels. This zip code is however a very small wealthy 

neighborhood and the data seems appropriate.   

The statistical package SPSS by IBM was used for the regression analysis in this 

study (IBM 2016). SPSS allows for the development of a multivariate linear model while 

introducing one independent variable at a time. A stepwise regression can be used to 

optimize many variables, but the stepwise will primarily consider the R-square value 

without considering the significance of the variables or their multicollinearity with each 
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other. To build this regression model, each variable was manually considered for inclusion 

or exclusion based on its contribution to the R-square, its significance, and its 

multicollinearity. The first model was developed using the variable with the highest R-

square value from the earlier scatter plots, Percent Divorced and Separated, as a starting 

point. Both the linear and quadratic terms were included as independent variables for the 

dependent variable, crash rate. As both the linear and the quadratic terms were significant, 

both were initially left in the model, though using both terms will not be allowed in the 

final model due to the presence of multicollinearity.  After Percent Divorced and Separated, 

the potential predicting variables were included in descending order of R-square. Both the 

linear and quadratic terms were considered for inclusion. If the R-square value decreased 

or if one of the variables was notably not significant (having a t-statistic with a p-value of 

greater than .05), then it was not included. The R-square value quantifies the variance in 

the dependent variable that is predictable from the independent variable, and it was chosen 

as the indicator of model vitality for this research due to its widely understood meaning. 

R-square is simple and can be easily interpreted by most levels of familiarity with statistics. 

Other metrics such as AIC or BIC could also be used. Each of these simply accounts for a 

different penalty based on model parameters. 

After all of the variables had been considered for inclusion, the collinearity of each 

was considered to determine if it warranted addressing. The Variance Inflation Factor 

(VIF) was used to assess multicollinearity of independent variables in the model. The VIF 

is the reciprocal of the tolerance, computed as: 

𝑉𝐼𝐹
1

1 𝑅
 

with 𝑅 : the Coefficient of Determination.  

The VIF is always greater than or equal to 1. There is no formal VIF value for 

determining presence of multicollinearity but often a VIF that exceeds 10 is regarded as 

indicating that multicollinearity should be addressed. A value of 10 would indicate that the 

standard errors are larger by a factor of 10 than they would normally be without inter-

correlations between the predictor of interest and the remaining predictor variables in the 

multiple regression analysis. For this model, if a VIF exceeded 10 for an independent 

variable, then the variable was considered for removal. Sometimes removing only the 
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linear or only the quadratic term for that variable addressed the problem. In some cases, 

there was multicollinearity between the variables which predict similar demographics such 

as Mean and Median Household Income. When Mean Income was considered for 

inclusion, it increased the R-square of the model, but the VIF for the Mean and the Median 

Income variables increased beyond 10, and as a result, the Median Income was left out of 

the initial model. 

The Census data is not always complete for each zip code. Some records such as 

Income might be available for a particular zip code while other variables were simply not 

obtained during the census. Additionally, the default setting when running the regression 

is to exclude records that were missing one of the variable fields; a process called “listwise” 

in SPSS. In this case, the data is more complete, but the overall sample size may be reduced. 

Another option is to remove records based on the presence or absence of each particular 

variable. This approach is called in SPSS “pairwise.” This allows for the use of records 

that contain missing data. Pairwise deletion does not include a particular variable when it 

has a missing value, but it can still use the record when analyzing other variables with non-

missing values. This however can result in different statistics being based on different 

subsets of variables, which can be problematic. For this model, when the regression was 

run with pairwise deletion, the overall R-square value increased but the residual plots 

showed notable linear trends, and several of the otherwise significant variables became 

insignificant.  After a final model was determined using listwise deletion, the pairwise 

deletion method was tested again, and the resulting R-square notably decreased.  
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CHAPTER 5. MODEL RESULTS  

5.1 Primary Regression Model 

After considering each variable and each term, linear and quadratic, for inclusion in 

the model, the first model was constructed optimizing R-square, VIF, and variable 

significance. The first model has an R-square value of 0.318 and a standard estimate error 

of 345.28. The variables included in the model are shown in Table 5.1, along with their 

respective coefficients, significance values, and VIF.  

Table 5.1 Initial Model Coefficients 

 
Unstandardized 

Coefficients
Standardized 
Coefficients

t Sig. 
Collinearity 

Statistics
B Std. Error Beta  Tolerance VIF

(Constant) -2619.032 362.538 -7.224 .000 
Unemployment Rate -7.021 2.223 -.112 -3.158 .002 .855 1.170
Percent High School 

Graduate (18-24) 
2.157 .771 .095 2.799 .005 .926 1.080

Percent High School 
Graduate (≥25) 

8.010 2.004 .191 3.996 .000 .472 2.117

Percent with College 
Degree (≥25) 

-7.116 1.599 -.215 -4.452 .000 .462 2.163

Percent Young -9.643 2.647 -.123 -3.643 .000 .947 1.056
Mean travel time to work 

(minutes) 
5.327 1.949 .102 2.734 .006 .768 1.302

Mean Income Squared 1.389E-8 .000 .393 10.575 .000 .779 1.284
Average Terrain Index 

Squared 
.323 .037 .351 8.783 .000 .674 1.484

Average Vehicle Age 
Squared 

2.840 .937 .106 3.030 .003 .882 1.134

Average Terrain 
Difference Squared 

-.337 .129 -.092 -2.625 .009 .876 1.142

Each variable in the model and the model as a whole is significant (all p-values are 

less than the 0.05 level of significance). Additionally, the VIF for all included variables 

fall below 3 indicating an acceptable level of variable multicollinearity for this model. 

Based on the Beta Coefficients, which have been standardized to a common scale among 

variables, the variable with the largest effect on crash rates is the squared term of “Mean 

Income” with a coefficient of 0.393, followed by the squared term for “Average Terrain 
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Index” with a coefficient of 0.351. This indicates that for every unit increase in each of 

these variables, crashes would increase.   

To test the homoscedasticity of the model, a scatter plot was developed of the 

regression residuals as shown in Figure 5.1 below. The scatterplot allows for a visual 

examination of the assumption of homoscedasticity between the predicted values and the 

error for those values. If the variance of the standardized residuals is nearly the same for 

all predicted scores, then the assumption of homoscedasticity is met, and the chances for 

making Type I (false positive) and a Type II (false negative) errors are greatly reduced. 

 

Figure 5.1 Initial Residual Plot 

Figure 5.1 shows a generally randomly distributed residual plot, except for a large 

outlier. This outlier was identified to be the result of zip code 40025, a previously discussed 

zip code north of Louisville. This zip code not only has an exceptionally high median 

income, but a relatively small population (45 persons), high crash rate (428 crashes per 

1,000 driving population), high education rate (97 percent college graduates), and high 

unemployment rate (17.6 percent). For these reasons, it was analyzed separately to 

determine whether it should be included in the data set. To do this, the human factor codes 

were examined for each crash that happened from 2012-2016. If a pattern became apparent 
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(e.g. the majority of crashes attributed to drunk driving), then the zip code might merit 

inclusion in the model. Table 5.2 shows the primary human factor code listed for each crash 

in zip code 40025. 

Table 5.2 Human Factors in Outlying Zip Code 

Code Human Factor 
Number of 

Occurrences 

4 Distraction 2
5 Drug Involvement 1
8 Failed to Yield Right of Way 2
11 Following Too Close 1
12 Improper Backing 1 
14 Inattention 2
17 Misjudge Clearance 1
18 Not Under Proper Control 1
23 Turning Improperly 1
97 Other 2
99 None Detected 1

Table 5.2 shows no immediately discernable pattern which might hint to the human 

factor contribution in crash rates and therefore zip code 40025 will be excluded from the 

data set.  

Running the model without this zip code, the R-square drops to 0.279, which is 

notably lower for the exclusion of a single data point. This means that zip code 40025 was 

having an undue effect on the fit of the model, likely due in part to its large income figures. 

In addition, with the exclusion of this point, the Mean Income squared term became 

insignificant in the model. Otherwise, the variable coefficient signs and magnitudes 

remained nearly the same. Shown in Table 5.3 is the new list of model variables, 

coefficients, p-values, and VIFs.  
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Table 5.3 Primary Model Coefficients 

 
Unstandardized 

Coefficients 
Standardized 
Coefficients t Sig. 

Collinearity 
Statistics 

B Std. Error Beta Tolerance VIF
(Constant) -2653.992 360.417  -7.364 .000   

Unemployment Rate -7.827 2.207 -.129 -3.546 .000 .857 1.167
Percent High School 

Graduate (18-24) 
2.109 .766 .095 2.753 .006 .955 1.047

Percent High School 
Graduate (≥25) 

8.218 1.957 .203 4.199 .000 .485 2.060

Percent with College 
Degree (≥25) 

-5.102 1.466 -.162 -3.480 .001 .523 1.911

Percent Young -11.846 1.814 -.230 -6.531 .000 .916 1.091
Mean travel time to work 

(minutes) 
5.967 1.937 .119 3.080 .002 .757 1.321

Average Terrain Index 
Squared 

.327 .037 .367 8.958 .000 .676 1.478

Average Vehicle Age 
Squared 

2.831 .917 .110 3.086 .002 .888 1.126

Average Terrain 
Difference Squared 

-.323 .127 -.091 -2.549 .011 .896 1.116

As with the first model, the VIFs and significance values are all within acceptable 

levels. Figure 5.2 shows a new residual plot for the model, excluding the outlier.  

 

Figure 5.2 Final Residual Plot 
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The variance of the residuals remains relatively constant as the predicted values 

increase. For this reason, it is assumed that the model is homoscedastic, and the chances 

for making Type I (false positive) and a Type II (false negative) errors are greatly reduced. 

Though the R-square of the model is reduced with the exclusion of this outlier, the residual 

plot indicates that the overall worth of the model is improved.  

In addition to homoscedasticity, the model must also be analyzed for the normality 

of its errors. A model with non-normal errors could result in incorrect inferences about 

variable relationships. A P-P plot shown as Figure 5.3 below was used to analyze the error 

normality of this model.  

 

Figure 5.3 Error Normality Plot 

The errors shown in the plot generally follow the line corresponding to a normal 

distribution. For this reason, it is assumed that the errors are normally distributed, and the 

risk of making invalid inferences is greatly reduced.  
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5.2 Interactions  

An important aspect of the analysis is the examination of the interaction among the 

variables included in the model. A variable interaction is simply the product of two 

predictor variables. Certain variable interactions may cause a dramatic increase in the 

vitality of the model, in this case the R-square value. A program developed by the 

University of Kentucky was used to examine the impact of variable interactions (Lambert 

2018). This program is designed to run a regression on the given variables and cycle 

through all of the potential interactions while optimizing a specified criterion such as R-

square. The program is called “A Feasible Solution Algorithm (FSA) for Finding 

Interactions.” 

The program identified several variable interactions that when added to the current 

model increased the overall R-square. The interaction with the greatest effect on the R-

square is a product of “Median Income” and “Average Terrain Index.” These two terms 

and their product term must be added to the model when examining the impact of an 

interaction. With both terms and their interaction added to the model, the R-square value 

increased from .279 to .313; however, the VIF values for all three added terms and some 

terms already in the model became extremely high and the interaction inevitably was not 

included in the model.  

Two additional interactions were also determined to increase the overall R-square of 

the model. These include the product of “Percent with a College Degree” with “Average 

Vehicle Age” and the product of “Percent Rural” with “Percent Divorced and Separated.” 

Both interaction terms increased the R-square from 0.279 to 0.299 and 0.298 respectively, 

but both also had similar issues with VIF, indicating an unacceptable level of 

multicollinearity, and were not included in the final model. Though none of these terms 

were included in the final model, the increase in R-square from the interactions is still 

relevant.  
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5.3 Different Crash Rates 

Though the socioeconomic and demographic characteristics associated with each 

crash are generally only available at the zip-code level, there are some variables which can 

be obtained at the driver level. For example, driver age can be included as a variable at the 

zip code level, indicating the percentage of certain age groups among the total population, 

but driver age is also a variable available for each driver record and thus it can be analyzed 

with less aggregation. One way of conducting this analysis is to average the age of each at-

fault driver over the zip code. An alternative way is to group drivers into age groups and 

develop specific models for each subgroup.  

The database was divided based on the driver’s gender (male or female) and age 

(groups for 16-24, 25-44, 45-64, and over 65 years old). The regression was recalculated 

with each of these subgroups to determine if any of these variables examined could 

improve the predictive power of the model. Table 5.4 summarizes the R-square values for 

each of these models. 

Table 5.4 R-square for different subgroups 

Model R-square 
All Records 0.279 

Male 0.285 
Female 0.228 

Age (16-24) 0.222 
Age (25-44) 0.236 
Age (45-64) 0.222 
Age (65+) 0.196 

From the initial R-square of 0.279 using all crash rates, the only model 

improvements came from male driver crash rates, with an R-square of 0.285. Using only 

male drivers was a very small improvement and it rendered the Average Terrain Difference 

insignificant. Without this variable, the model falls to an R-square of 0.282, meaning that 

these socioeconomic variables will predict male at-fault drivers slightly better than all 

drivers.  
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CHAPTER 6. DISCUSSION  

The goal of this research was to examine the potential predictive ability of 

socioeconomic and demographic data for drivers on crash occurrence and determine 

whether any specific such variables could explain the differences in crash rates (as defined 

here) among zip codes.  Some of the correlations are intuitive, while others may need more 

research to fully understand their ramifications.  

The final model developed here has an R-square value of 0.279, which means that 

trying to predict crash rates with a model based solely on these socioeconomic and 

demographic variables is not fully practical at this stage. It should be noted, though, that 

each variable in the model is statistically significant, meaning that at a 95 percent 

confidence level, the impact of the variables is not random. While the model may not 

accurately predict crash rates at the zip code level, it still allows for meaningful 

interpretation of the relationship between the model variables and crashes.   

For each variable in the model, the sign of its coefficient describes the relationship of 

the variable with crash rates. If the coefficient is positive, an increase in that variable will 

coincide with an increase in crash rates and if the coefficient is negative, the crash rates 

will decrease. For this model, each variable describes a different socioeconomic or 

demographic factor, so the sign of the variable must be interpreted accordingly. For 

example, employment can be reported as an employment or an unemployment rate, and the 

direction of the relationship with the dependent variable would be different for each. All 

the model variables and their respective coefficients are listed in Table 6.1.  

Table 6.1 Model Variable Coefficients 

Independent Variables 
Unstandardized 

Coefficients 

Average Terrain Index Squared (ATI) 0.327 
Average Terrain Difference Squared (ATD) -0.323 

Percent Young (PY) -11.846 
Mean travel time to work (minutes) (MTT) 5.967 

Unemployment Rate (UR) -7.827 
Percent with College Degree (≥25) (CD25) -5.102 

Percent High School Graduate (18-24) (HS18) 2.109 
Percent High School Graduate (≥25) (HS25) 8.218 

Average Vehicle Age Squared (AVA) 2.831 
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The coefficients shown here have both positive and negative signs indicating their 

relationships with the predicted variable, Crash Rate. Along with the intercept, the crash 

rate equation can be given as: 

𝑐𝑟𝑎𝑠ℎ 𝑟𝑎𝑡𝑒𝑠  2653.992 𝐴𝑇𝐼 ∗ 0.327 𝐴𝑇𝐷 ∗ 0.323 𝑃𝑌 ∗

11.846 𝑀𝑇𝑇 ∗ 5.967 𝑈𝑅 ∗ 7.827 𝐶𝐷25 ∗ 5.102 𝐻𝑆25 ∗

8.218 𝐻𝑆18 ∗ 2.109 𝐴𝑉𝐴 ∗ 2.831   

The coefficients reveal that Average Terrain Index Squared has a positive 

correlation with crash rates, meaning an increase in the Average Terrain Index will result 

in more crashes. The Average Terrain Index typically ranged from 75 to 100, with 100 

being a zip code with entirely straight segments of road.  Even though this correlation could 

be deemed counterintuitive, one needs to consider the location of such straighter roadway 

segments and their implications. For example, the straighter roads are found more often in 

urban settings and on larger arterial roads such as interstates. Both of these have a higher 

amount of travel than a rural curvy road and frequently drivers may drive at higher speeds 

and thus a positive correlation with terrain may simply point to other factors. The Average 

Terrain Index was also used to create a variable of the difference between a driver’s home 

terrain and the terrain of the crash site. In this model, the Average Terrain Difference 

Squared term showed a negative association with crash rates in a zip code, indicating that 

on average, the crash rate increases when drivers are having crashes in similar terrain to 

that of their residence. However, this could be indicative of many other factors, such as 

drivers crashing at higher rates closer to home, or drivers becoming more attentive on 

unfamiliar roads. This variable may merit further investigation on a crash-by-crash basis.  

Percent Young has a negative correlation with crash rates in this model. The Percent 

Young is the proportion of people ages 15-24 as compared to the total population. The 

negative coefficient sign indicates that a decrease in the percent of young drivers in a zip 

code would result in a higher crash rate for a zip code. This is somewhat unexpected, as a 

higher population of young drivers is typically associated with more crashes. In addition, 

past literature primarily indicates a positive association with young population and crashes 

or fatalities. Though most of the literature focuses on changes in fatality rates, Aguero-
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Valverde et al. (2005) concluded that age groups below 25 and over 65 have a positive 

association with crash risk.  

The Mean Travel Time to Work variable shows an expected relationship with 

crashes: the at-fault driver crash rates are higher in relation to a longer commute time to 

work. Both Adanu et al. (2017) and Lee et al. (2014) corroborate this result. Adanu et al. 

(2017) determined that an increase in travel time for a given postal code increased the 

probability of serious injury crashes, while Lee et al. (2017) showed that a shorter commute 

time corresponded to a smaller number of at-fault drivers. In both cases, it was concluded 

that commute time is a measure of exposure and that longer commute times will increase 

the number of crashes in an area.  

Driving exposure may also explain the relationship of Unemployment Rate in a 

given zip code with crashes. This model shows a negative correlation with Unemployment 

Rate, indicating a higher rate of employment will correspond with a higher crash rate. Past 

research pertaining to this socioeconomic factor has shown inconclusive findings; 

however, like Mean Travel Time to Work, Unemployment Rate may also be predicting 

driving exposure. A high Unemployment Rate could indicate less day-to-day driving 

activity within a zip code, which would result in a lower crash rate. 

Similar to findings from Hasselberg et al. (2005) and Zephaniah et al. (2008), this 

model shows a negative relationship between education level and crash rates. As the 

Percent with a College Degree increases for a zip code, crash rates are decreased, which 

points to a positive impact of higher education on driving ability. Two additional education 

terms in the model however show a different relationship. The Percent of High School 

Graduates in a zip code has a positive association with crash rate, which indicates that an 

increase in the number of high school graduates would actually result in a higher crash rate 

for a zip code. This relationship holds for drivers in the 18-24 age group and those over 25 

years old. Despite the divide between high school and college attainment, there are some 

reasons why this relationship might happen. For example, a higher level of high school 

graduates in a zip code may indicate a higher level of employment, which has also been 

shown to increase crash rates. 

The final variable in the model, Average Age of Vehicle Squared, has a positive 

association with crash rates, indicating that drivers of older vehicles are more frequently 



28 
 

involved in crashes. As a vehicle ages, certain functional systems such as brakes, tires, and 

wipers become more likely to underperform or fail, and in many cases, this could be a 

contributing factor in crashes. The age of vehicles, and consequently the safety of drivers 

in an area might also be related to the average income in an area, as lower income drivers 

are potentially less equipped to afford vehicle maintenance and repairs.   

Several of the variable relationships in this model contradict a priori expectations 

from previous literature. For example, several articles noted that the proportion of young 

people had a positive correlation with crashes and crash severity, but this model indicates 

otherwise. In addition, past research indicated a negative association between education 

and crashes, but the results of this work are mixed, pointing to a negative relationship with 

college attainment but a positive relationship with high school attainment. 

Based on prior research and the results of this regression, the Mean Travel to Work 

seems to be a proxy for driving exposure and it is theorized that Unemployment Rate may 

be pointing to the same concept. In addition, the Average Terrain Index variable shows 

higher crash rates on straighter roads indicating it may also have some interaction with 

driving exposure or even driving speed.  
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CHAPTER 7. CONCLUSIONS AND RECOMMENDATIONS 

The analysis undertaken in this report shows both positive and negative correlations 

between socioeconomic variables and crash rates, some of which met expectations while 

others contradicted the findings of prior research as discussed previously. Further research 

seems to be warranted to fully understand the role that socioeconomic and demographic 

characteristics play in driving behavior and crash risk. 

One way to further this research is to address driving exposure. This can be done 

by normalizing the crash counts by VMT instead of population. The current Highway 

Safety Manual methodology develops SPFs which analyze crashes on a roadway segment 

level and take AADT into account for that segment. Though the crashes have been 

normalized by population of the zip code, the total miles traveled in that zip code may play 

a large role in crash estimation. It should be noted though that such estimates are impossible 

to obtain at the level required for such an analysis. One way to include VMT in conjunction 

with socioeconomic data is to geocode at-fault driver crashes to the road segment level and 

analyze the average socioeconomic and demographic data on that segment. Using 

residence zip codes of the at-fault drivers crashing on each segment, an average 

socioeconomic variable can be calculated for that segment. An SPF can then be based on 

the AADT of the roadway segment in conjunction with socioeconomic and demographic 

data. However, such aggregation may mask the detailed information required for 

estimating the effect of socioeconomic factors on crash occurrence.  

Moreover, while this report studied the number of at-fault driver crashes, the fault 

of the driver could be further analyzed with other techniques such as a log-linear model 

(Kim et. al 1998) or a logistic regression. The logistic regression approach would involve 

building a model to predict the fault of a driver based on socioeconomics and would include 

the entire database of crashes (both at-fault and not at-fault), effectively doubling the 

sample size. In addition, it would allow for the inclusion of certain variables which can be 

obtained from the crash record (e.g. crash type, roadway conditions, gender, and age) 

without the need for aggregation, as the driver would be the analysis unit.  

With more research, it is possible to further identify unique background 

characteristics of at-fault drivers that contribute to crash rates and crash severity. A more 
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in depth understanding of these relationships will lead to improved and targeted 

intervention measures to reduce the negative impacts of motor vehicle crashes. 



31 
 

REFERENCES  

Abdalla, I. M., Raeside, R., Barker, D., & McGuigan, D. R. (1997). An investigation into 
the relationships between area social characteristics and road accident 
casualties. Accident Analysis & Prevention, 29(5), 583-593. 

Adanu, E., Penmetsa, P., Jones, S., & Smith, R. (2018). Gendered Analysis of Fatal 
Crashes among Young Drivers in Alabama, USA. Safety, 4(3), 29. 

Adanu, E. K., Smith, R., Powell, L., & Jones, S. (2017). Multilevel analysis of the role of 
human factors in regional disparities in crash outcomes. Accident Analysis & 
Prevention, 109, 10-17. 

Aguero-Valverde, J., & Jovanis, P. P. (2006). Spatial analysis of fatal and injury crashes 
in Pennsylvania. Accident Analysis & Prevention, 38(3), 618-625. 

American Association of State Highway and Transportation Officials. Transportation 
Research Board. Task Force on Development of the Highway Safety Manual, & 
Transportation Officials. Joint Task Force on the Highway Safety Manual. 
(2010). Highway safety manual (Vol. 1). AASHTO. 

Blatt, J., & Furman, S. M. (1998). Residence location of drivers involved in fatal 
crashes. Accident Analysis & Prevention, 30(6), 705-711. 

Brown, K., Sarasua, W. A., & Ogle, J. H. (2016). Safety Planning: Analysis of the Socio-
Economic and Demographic Characteristics of At-Risk Driver Residential Areas 
in South Carolina (No. 16-5034). 

Chandraratna, S., & Stamatiadis, N. (2009). Quasi-induced exposure method: evaluation 
of not-at-fault assumption. Accident Analysis & Prevention, 41(2), 308-313. 

Chen, H. Y., Ivers, R. Q., Martiniuk, A. L. C., Boufous, S., Senserrick, T., Woodward, 
M., Stevenson, M., & Norton, R. (2010). Socioeconomic status and risk of car 
crash injury, independent of place of residence and driving exposure: results from 
the DRIVE Study. Journal of Epidemiology & Community Health, 64(11), 998-
1003. 

Factor, R., Mahalel, D., & Yair, G. (2008). Inter-group differences in road-traffic crash 
involvement. Accident Analysis & Prevention, 40(6), 2000-2007. 

Hanna, C. L., Laflamme, L., & Bingham, C. R. (2012). Fatal crash involvement of 
unlicensed young drivers: county level differences according to material 
deprivation and urbanicity in the United States. Accident Analysis & 
Prevention, 45, 291-295. 

Hasselberg, M., Vaez, M., & Laflamme, L. (2005). Socioeconomic aspects of the 
circumstances and consequences of car crashes among young adults. Social 
science & medicine, 60(2), 287-295. 

IBM Corp. Released 2016. IBM SPSS Statistics for Windows, Version 24.0. Armonk, 
NY: IBM Corp. 

Ivan, J., Burnicki, A., Wang, K., & Mamun, S. (2016). Improvements to road safety 
improvement selection procedures for Connecticut (No. JHR 16-328). 

Kentucky State Police. (2018). KY Collision Analysis. Retrieved January, 2018, from 
crashinformationky.org/. 

Kim, K., Li, L., Richardson, J., & Nitz, L. (1998). Drivers at fault: influences of age, sex, 
and vehicle type. Journal of Safety Research, 29(3), 171-179. 



32 
 

Kocatepe, A., Ulak, M. B., Ozguven, E. E., Horner, M. W., & Arghandeh, R. (2017). 
Socioeconomic characteristics and crash injury exposure: A case study in Florida 
using two-step floating catchment area method. Applied geography, 87, 207-221. 

Lambert, J. (2018). A Feasible Solution Algorithm (FSA) for Finding 
Interactions. Retrieved June, 2018, from shiny.as.uky.edu/mcfsa/. 

La Torre, G., Van Beeck, E., Quaranta, G., Mannocci, A., & Ricciardi, W. (2007). 
Determinants of within-country variation in traffic accident mortality in Italy: a 
geographical analysis. International journal of health geographics, 6(1), 49. 

Lee, J., Abdel-Aty, M., & Choi, K. (2014). Analysis of residence characteristics of at-
fault drivers in traffic crashes. Safety science, 68, 6-13. 

Lourens, P. F., Vissers, J. A., & Jessurun, M. (1999). Annual mileage, driving violations, 
and accident involvement in relation to drivers’ sex, age, and level of 
education. Accident Analysis & Prevention, 31(5), 593-597. 

Maciag, M. (2014). Pedestrian Deaths in Poorer Neighborhoods Report. Governing 
Magazine: State and Local Government News for America's Leaders. Retrieved 
from www.governing.com/gov-data/pedestrian-deaths-poor-neighborhoods-
report.html. 

Muelleman, R. L., & Mueller, K. (1996). Fatal motor vehicle crashes: variations of crash 
characteristics within rural regions of different population densities. Journal of 
Trauma and Acute Care Surgery, 41(2), 315-320. 

National Highway Traffic Safety Administration. (July 2, 2018). Fatality Analysis 
Reporting System (FARS). Retrieved August 25, 2018, from 
www.nhtsa.gov/FARS. 

Noland, R. B., & Laham, M. L. (2018). Are low income and minority households more 
likely to die from traffic-related crashes?. Accident Analysis & Prevention, 120, 
233-238. 

Noland, R. B., & Quddus, M. A. (2004). A spatially disaggregate analysis of road 
casualties in England. Accident Analysis & Prevention, 36(6), 973-984. 

Rivas-Ruiz, F., Perea-Milla, E., & Jimenez-Puente, A. (2007). Geographic variability of 
fatal road traffic injuries in Spain during the period 2002–2004: an ecological 
study. BMC Public Health, 7(1), 266. 

Staats, W. N. (2016). Estimation of Annual Average Daily Traffic on Local Roads in 
Kentucky. 

Stamatiadis, N., & Deacon, J. A. (1997). Quasi-induced exposure: methodology and 
insight. Accident Analysis & Prevention, 29(1), 37-52. 

Stamatiadis, N., & Puccini, G. (1999). Fatal crash rates in the Southeastern United States: 
why are they higher?. Transportation Research Record: Journal of the 
Transportation Research Board, (1665), 118-124. 

University of Kentucky and Kentucky State Police. (2017). Kentucky Traffic Collision 
Facts 2016. Retrieved September 2, 2018, from 
http://ksponline.org/pdf/KY_Traffic_Collision_Facts_2016.pdf 

United States Census Bureau. (2016). 2012-2016 American Community Survey 5-year 
estimates. Retrieved December, 2017, from http://factfinder2.census.gov. 

World Health Organization. (19 Feb. 2018). Road Traffic Injuries. Retrieved September, 
2018, from www.who.int/news-room/fact-sheets/detail/road-traffic-injuries. 



33 
 

Zephaniah, S., Jones, S., Smith, R., & Weber, J. (2018). Spatial Dependence among 
Socioeconomic Attributes in the Analysis of Crashes Attributable to Human 
Factors.  

Zwerling, C., Peek-Asa, C., Whitten, P. S., Choi, S. W., Sprince, N. L., & Jones, M. P. 
(2005). Fatal motor vehicle crashes in rural and urban areas: decomposing rates 
into contributing factors. Injury Prevention, 11(1), 24-28. 



34 
 

 
VITA 

AARON BERRY CAMBRON 

 

EDUCATION____________________________________________________________ 

BSCE   University of Kentucky; Lexington, Kentucky. May 2017 

2013 -2017   Bachelor of Science in Civil Engineering. GPA: 3.53 

 

HONORS AND AWARDS__________________________________________________ 

2018 Distinguished Service Award, Engineers Without Borders - University of Kentucky 

2016 William N. and Ocie M. Downey Scholarship ($1000) 

2015 William Harp Memorial Scholarship ($500) 

2013-2017 UK Provost Scholarship ($1500/year) 

2013-2017 Kentucky Educational Excellence Scholarship ($2500/year) 


	University of Kentucky
	UKnowledge
	2018

	EFFECT OF SOCIOECONOMIC AND DEMOGRAPHIC FACTORS ON KENTUCKY CRASHES
	Aaron Berry Cambron
	Recommended Citation


	Title Page
	Abstract
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1 INTRODUCTION
	CHAPTER 2 LITERATURE REVIEW
	2.1 Socioeconomic and Demographic Variables
	2.2 Analysis Methods
	2.3 Summary

	CHAPTER 3 DATA
	CHAPTER 4 METHODOLOGY
	4.1 Multilinear Regression Model

	CHAPTER 5 MODEL RESULTS
	5.1 Primary Regression Model
	5.2 Interactions
	5.3 Different Crash Rates

	CHAPTER 6 DISCUSSION
	CHAPTER 7 CONCLUSIONS AND RECOMMENDATIONS
	REFERENCES
	VITA

