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Chapter 1

Introduction

This thesis consists of six single authored research papers. Five out of the six papers are

published as journal articles:

1. Optimality of first-come-first-served: a unified approach, Mongolian Mathematical

Journal, 2011, 15: 45-53. (included in Chapter 2)

2. An axiomatization of the Leontief preferences, to appear in Finnish Economic Papers,

2012, 25 (1). (included in Chapter 3)

3. Remarks on Young’s theorem, Economics Bulletin, 2012, 32 (1): 706-714. (included

in Chapter 4)

4. Approval voting without faithfulness, 2012. (included in Chapter 5)

5. Another direct proof for the Gibbard-Satterthwaite theorem, Economics Letters, 2012,

116 (3): 418-421. (included in Chapter 6)

6. Symmetry vs. complexity in proving the Muller-Satterthwaite theorem, Economics

Bulletin, 2012, 32 (2): 1434-1441. (included in Chapter 7)

The first paper is on queues and schedules. Queueing theory mathematically analyzes

certain aspects of congestion situations that often arise in service and manufacturing

industries as well as in communication networks. It is a subfield of Operations Research

and Industrial and Systems Engineering studies. A related field to queueing theory is

scheduling theory, which studies the problem of assigning, over time, a certain number

of jobs to a certain number machines so that the jobs get processed by the machines

according to this assignment.
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CHAPTER 1. INTRODUCTION

The main difference between these two fields is that the former has a stochastic setting,

while the latter usually has a deterministic setting. However, the problem of finding the

best allocation of jobs (or customers) to machines (or servers) arises in both disciplines. In

particular, the main theme of scheduling theory is, under given objectives and constraints,

to find the optimal such allocations.

Within this context, among other problems, the problems of investigating the optimal-

ity properties of the well known schedules (or queue disciplines), such as first-come-first-

served (FCFS), last-come-first-served and shortest-remaining-processing-time, are stud-

ied. Such problems are usually solved with the techniques of optimization theory, i.e.

Linear, Integer and Dynamic Programming methods.

In our paper, we suggest an alternative approach to investigate optimality properties

of FCFS schedule. We demonstrate our approach in a single and identical m parallel

machine scheduling settings. Using our approach we verify that FCFS is optimal for the

following ”bottleneck” problems: max of completion time, max of flow time and max

of waiting time. The underlying idea of our approach is to compare schedules over the

last busy period before the system reaches to its peak under FCFS. Then, the optimality

proof pins down to comparison of sums of real numbers and hence, our approach leads to

simple, direct and self-contained proofs for the optimality results related to FCFS.

On the other hand, there are two standard approaches used in scheduling literature to

solve these problems. The first one uses the ”interchange argument,” which is a method

based on the following reasoning: an optimal schedule is characterized by the property

that interchanging two jobs does not improve the value of the objective function. The

second method refers to a classic result by Hardy, Littlewood and Polya when solving this

problem (see for instance, Section 5.3 in Pinedo, 2008).

The former of these two is perhaps more general. It can be used for solving other

scheduling problems, and can also be applied to a stochastic setting. The key aspect of

this method is that it is related to a general principle in optimization theory: ”optimality

can be studied through variation.” The latter is, on the other hand, more delicate and it

gives the result immediately. It is also related to another common and powerful technique

in optimization theory, the Majorization technique (see for instance, Marshall, et al.,

2009). In comparison, according to our opinion, our approach is more direct than the

other two.

Given that scheduling problems are renowned for their complexities (see Brucker, 2007;

Brucker and Knust, 2011), a new approach to investigate such problems can be useful.

Moreover, in a computer environment, applying the interchange argument can be very
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costly as it is based on binary comparisons. In such cases, a more direct approach is

preferable. In particular, if the problem is to determine whether FCFS is better than

some other given schedule, our approach is certainly more efficient than the others.

The second paper is on choice theory. We give an axiomatic characterization of weak

preferences as the Leontief preferences (or the maximin preferences). The Leontief pref-

erences frequently appear in economic literature. In consumer choice theory they are the

most useful tool to analyze the consumer choice when commodities are complements, i.e.

when the value of each commodity positively depends on the relative abundance of the

others. In social choice theory they appear in the formalization of Rawlsian theory of

justice (see Rawls, 1971).

It is also closely related to the well known minimax decision criteria in statistical

decision theory. A decision maker whose objective is to minimize the maximum loss (or

regret) follows such a decision rule. This rule has received wide attention after the works

of A.Wald and L.J.Savage (for a short overview, see Stoye, 2009). On the other hand,

the same decision maker, when her objective is to maximize the minimum gain instead,

follows the maximin decision rule, i.e. she has the maximin preferences. Hence, as long

as ”gain” and ”loss” are related, so are these decision rules.

The key axiom in our axiomatization is upper consistency, which is based on the fol-

lowing trinary comparison: given two alternatives, under which condition would a decision

maker weakly prefer a third alternative to at least one of the two? Then, along with two

other rather common axioms (symmetry and local non-satiation), specifying such a con-

dition leads us to the maximin preferences. Hence, our analysis suggests that, despite of

its rich philosophical and decision theoretical content, the maximin preferences have a

simple structure in terms of preferences.

The last four papers are on voting and social choice theory. One of the main themes

of this field is to find out which choice aggregation procedures have which properties.

Along this line there are both positive, in the sense of possibility or existence of certain

procedures satisfying certain properties, and negative, in the sense of impossibility or

non-existence of such procedures, results in this literature. We will consider both kinds

of results in our papers (see Chapters 4 to 7).

The third paper is on axiomatization of social choice scoring rules. Scoring rules

constitute a broad class of voting methods which share the following common structure:

voters rank the alternatives arbitrarily, and each alternative, depending on its position in

each voter’s ranking, receives a score (a real number), and the alternatives that collect

the highest score are chosen. A case in point is the well known Borda rule, which is a
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CHAPTER 1. INTRODUCTION

scoring rule with the scores of 0, 1, ..., m− 1, where m is the number of alternatives, and

the i’th best alternative receives m− i score.

In a variable electorate setting, i.e. when the number of voters is not fixed, Smith

(1973) and Young (1975) axiomatized scoring rules with four axioms: anonymity, neu-

trality, continuity and consistency. The first two axioms represent the idea that the voters

and the alternatives are to be treated equally. However, the key axioms in their charac-

terization are the last two, continuity and consistency. The continuity axiom is a kind of

”domination by large numbers” principle and it says that, when a subgroup of voters is

replicated sufficiently many times the enlarged group eventually chooses the alternatives

which are in the subgroup’s choice. The consistency axiom says that, when there are two

disjoint groups whose choices overlap or agree to some extend, and when these groups

come together, the new group’s choice must be those alternatives which both groups had

in common in their choices (for more discussions, see Chapter 9 in Moulin, 1988).

In our paper, we provide some additional results related to the axiomatization of

scoring rules. We first show that when there are two alternatives, the continuity axiom

in the above characterization is unnecessary. We then provide a rather complete analysis

of the two alternative case by showing that,

(a) the smaller set of axioms (i.e. anonymity, neutrality and consistency) characterize

scoring rules even if voters are allowed to be indifferent between the alternatives,

(b) one can obtain a variant May’s theorem (which gives an axiomatic characterization

of majority rule) from the result in (a), and

(c) in each of these results, the axioms of neutrality and cancellation can be used inter-

changeably.

The fourth paper is on Approval Voting (AV). AV is considered as a simple yet powerful

voting method. Under AV, each voter divides alternatives into two classes, those she

approves and those she does not, and the approved alternatives are casted in her ballot.

After collecting all ballots, the most approved alternatives are chosen as the winners.

Among its advantages perhaps the most notable one is that it reduces voters’ incentives

to vote insincerely, in part, by giving them rich and flexible ballot choices (see Brams

and Fishburn, 1978). Moreover, according to Brams and Fishburn (2005), the other

advantages of AV are

• it helps to elect the strongest candidate, in the sense of Condorcet winner : a candi-

date who would win against each of the other candidates in a two candidate election

under majority rule,
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• it reduces negative campaigning,

• it increases voter turnout, and

• it gives minority candidates their proper due.

Fishburn (1978) showed that AV is the only ballot aggregation function satisfying the

axioms of neutrality, consistency, cancellation and faithfulness. Notice that the first two

axioms already appeared in the axiomatization of scoring rules discussed above. Can-

cellation requires that when all alternatives receive the same number of votes, the ballot

aggregation function should choose all of them. Faithfulness requires that when group’s

profile consists of a single voter’s ballot, then those alternatives in her ballot are to be

chosen at that profile.

In our paper, we investigate the implications of dropping the axiom of faithfulness in

Fishburn (1978)’s axiomatization. We show that if one drops it, then there are only three

ballot aggregation functions satisfying the remaining axioms (neutrality, consistency and

cancellation), namely,

• AV, and

• a function that chooses the least approved alternatives, which we call as Inverse

Approval Voting, and

• a function that chooses the whole set of alternatives at all profiles.

Hence, our finding suggests that the primary role of faithfulness in Fishburn (1978)’s

axiomatization is to distinguish AV from two other functions, one of which has a trivial

structure, while the other has a similar but opposite structure as AV. Finally, it is worth

to mention that there is an interesting similarity between our result and Wilson’s impos-

sibility theorem (see Wilson, 1972), which is obtained as a consequence of dropping the

Pareto axiom in Arrow’s impossibility theorem.

The last two papers are on social choice impossibility theorems. Impossibility theo-

rems are special kind of axiomatization results which show that a set of (desirable) axioms

are incompatible when they put together. The most well known example of such result is

Arrow’s Impossibility Theorem, which states that, when there are at least three alterna-

tives, there is no social welfare function satisfying the axioms of independence of irrelevant

alternatives, Pareto efficiency and non-dictatorship. The other well known impossibility

theorems are the Gibbard-Satterthwaite theorem and the Muller-Satterthwaite theorem.

The former of the two shows that there is no social choice function satisfying the axioms of
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CHAPTER 1. INTRODUCTION

unanimity, strategy-proofness (non-manipulability) and non-dictatorship, while the latter

is a similar result obtained by replacing strategy-proofness with (Maskin) monotonicity.

These theorems received much attention since their initial appearances. For example,

several extensions and generalizations are obtained, their interconnections are analyzed,

as well as several ways of proving these kind of theorems are discovered (for a survey

see, Campbell and Kelly 2002; Barberà, 2011). However, they are often mentioned as

”paradoxes,” which indicates that more work needs to be done on these results. Indeed,

some authors already suggested that any amount of mystery in these results needs to be

”demystified” (see Saari, 2008).

In the literature, impossibility theorems are usually presented as characterization the-

orems of the following type: a social choice function satisfies all but the last axiom (non-

dictatorship) if and only if it is a dictatorial social choice function (i.e. a function whose

choice coincides with a certain individual’s choice at all the time), which is then incon-

sistent with the remaining axiom. Moreover, a common approach to prove such results

works as follows. In order to prove that a function satisfying a set of axioms is dictatorial,

first, a subset of the set of individuals containing a dictator (a distinguished individual

who determines the group’s choice) is defined or identified (e.g., decisive coalition, piv-

otal voter etc.). Then, certain properties of that set are investigated, and eventually it

is shown that this set is a singleton. A classic example of such approach is Sen’s proof

of Arrow’s Impossibility Theorem using the so called Field Extension Lemma and Group

Contraction Lemma (see Sen, 1986). The other well known cases of this common approach

are Barberà’s pivotal voters approach (Barberà 1980, 1983), and Geanakoplos’ extremely

pivotal voters approach (Geanakoplos, 2005).

In the fifth paper we propose an alternative approach to prove this kind of results.

We consider the case of the Gibbard-Satterthwaite (impossibility) theorem. The essence

of our approach is that, in contrast to the common approach described above, we focus

on the individuals who are not candidates for a dictator. More specifically, it consists

of two steps. First, we show that when a social choice function is strategy-proof and

unanimous, at any given profile, if an individual’s most preferred alternative differs from

the social choice, then she can not change the social choice at that profile by changing

her preferences. Then, in the second step we deduce the Gibbard-Satterthwaite theorem

from this result.

We believe that our approach can be seen as a complementary (or dual) approach to

the other approaches that focus on the potential candidates of a dictator of a social choice

function. Moreover, in our opinion, it provides some additional insights on social choice

8



impossibility results.

The last paper is on the Muller-Satterthwaite (impossibility) theorem. We provide an

induction proof of the theorem. We first prove it in the baseline case of two persons and

three alternatives. Then, we show that it actually suffices to prove this result for the case

of three alternatives with arbitrary N individuals, as it then can easily be extended to

the general case of finite but more than three alternatives. We then complete our proof of

the Muller-Satterthwaite theorem by showing that the result holds for the decisive case

of three alternatives by induction on N .

In our proof, we explicitly use the symmetry property (or the neutrality axiom) which

is hidden in the definition of a social choice function. This allows us to see the underlying

structure of the Muller-Satterthwaite theorem more clearly. In particular, the mono-

tonicity axiom, which is central in this result, is above all an order theoretical notion:

it defines, with respect to each alternative, a preorder on the set of preference profiles.

In this respect, our paper is a step toward putting the order theoretical aspects of the

Muller-Satterthwaite theorem in front, and more work along this direction is a subject to

further research.
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Chapter 2

Optimality of

First-Come-First-Served: A Unified

Approach1

Abstract: This paper provides a unified approach that can directly verify the follow-

ing results related to First-Come-First-Served (FCFS): (a) in the case of a single server

system, FCFS is optimal for max of C (completion time) and max of F (flow time), (b)

in the case of a multi server system with identical servers, when customers have the equal

processing time, any optimal discipline for the total (sum) of C, F and W (waiting time)

has the same service starting times as FCFS, and (c) in the latter case, FCFS is optimal

for max of C, max of F and max of W .

Keywords: Optimality of FCFS, Optimal non-preemptive queue disciplines, Parallel

machine scheduling with equal processing time.

2.1 Introduction

In queueing models, FCFS is often assumed to be the queue discipline. Moreover, FCFS

is very common in real life situations such as the grocery stores. This paper aims

to (re)investigate certain optimality properties of this commonly used queue discipline.

There are several results on the optimality of FCFS in queueing literature (see Gittins

[6], Foss [4], Doshi and Lipper [3], Daley [2], Wolf [12], Righter and Shanthikumar [9], Liu

and Towsley [8], Foss and Chernova [5]).

1Published in Mongolian Mathematical Journal, 2011, 15: 45-53.

13



CHAPTER 2. OPTIMALITY OF FIRST-COME-FIRST-SERVED: A UNIFIED

APPROACH

Generality of these results necessarily depends on their setting: properties of the queue-

ing system, class of disciplines among which the comparison is made and the optimality

criterion that is considered. For instance, Gittins [6] shows that in (GI/GI/m) queues, if

the processing times are i.i.d across customers, then the expected waiting time for a typ-

ical customer in steady state is minimum under FCFS among all non-preemptive queue

disciplines.2 More recent works provide rather general results: in (G/GI/m) queues, if

the processing times are i.i.d across customers, the expected value of any Schur convex

function of customer waiting times and total workload after arrival of each customer, and

of any symmetric and convex function of customer flow times are minimum under FCFS,

among all non-preemptive queue disciplines (see Foss [4], Daley [2], Liu and Towsley [8],

Towsley [11], Foss and Chernova [5]).

In this paper we treat the discipline design problem as a scheduling problem. Ac-

cordingly, we use performance measures used in scheduling theory to evaluate different

queue disciplines: total and max of completion time, flow time and waiting time (C, F ,

W ), and all of our results can be interpreted in the context of (n/m) parallel machine

scheduling problem. Our main findings are as follows. First, in Theorem 2.2 in Section

2.3 we show that, in the case of a single server system, FCFS minimizes max of C and

max of F . We then consider systems with identical customers, i.e. with equal processing

times. However, all performance measures that we consider are convex and symmetric

(hence, Schur convex) and the equal processing time case is a special case of that being

i.i.d. But in Theorem 2.3 in Section 2.3 we show that, when all customers have the same

processing time, not only FCFS is optimal for the the sum of C, F,W , but any optimal

schedule has the same service starting times as FCFS. Then, in Theorem 2.5 in Section

2.3 we also show that, in that case FCFS is optimal for max of W . Finally, in Theorem

2.7 and 2.8 in Section 2.4, we extend results in Theorem 2.3 and 2.5 in Section 2.3 to the

case of a multi server system with identical servers.

Most of our results are known in scheduling literature. For instance, results in Theorem

2.2 are well known in scheduling theory (see Lawler [7], Baker and Trietsch [1]). Results

in Theorem 2.3 (a) and 2.7 follow from ”optimality of greedy schedules,” whereas results

in Theorem 2.5 and 2.8 follow from a more general result in Simmons [10]. However,

our proof technique is based on a recursive reasoning and it is different than the other

popular techniques: interchange argument, forward and backward induction, majorization

2In queueing theory, so called Kendall’s notation, A/B/m, is often used to describe queueing systems.
A describes the arrival time distribution, B describes the service times distribution and the last entry,
m describes the number of service channels. G stands for general and GI stands for general independent
distributions.
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argument and linear and dynamic programming. It is based on a simple observation that

”in order to show optimality of FCFS for max (bottleneck)-problems, it suffices to compare

feasible schedules over the last busy period before system reaches its peak under FCFS,”

and provides a direct, self-contained and unified approach, used thoroughly in proving

Theorem 2.2, 2.5, 2.8 in Section 2.3 and 2.4.

In the next section we introduce our notation and main definitions. In Section 2.3, we

consider single server systems and in Section 2.4 we consider multi server systems with

identical servers and the last section concludes.

2.2 The set up

Let there be n ∈ N customers J = {1, 2, ..., n} and a single server. Each customer i ∈ J

has a processing time pi ≥ 0 and an arrival time ti ≥ 0 and let p = (p1, ..., pn) ∈ Rn
+

and t = (t1, ..., tn) ∈ Rn
+ be the corresponding vectors. Without loss of generality we may

assume that 0 ≤ t1 ≤ · · · ≤ tn. A schedule s = (s1, . . . , sn) ∈ Rn
+ for a given (p, t) ∈

Rn
+ × Rn

+ assigns to each customer i ∈ J a starting time si ≥ 0 when the server begins

to process it. It is feasible if processing of a customer does not start before his arrival,

si ≥ ti, i ∈ J , and the server does not process more than one customer simultaneously,

∀i, j ∈ J with i 6= j, [si, si + pi) ∩ [sj, sj + pj) = ∅. First-come-first-served-schedule

(FCFSS) is a schedule s∗ that processes all jobs in the order of their arrival and does

so as soon as possible: s∗1 = t1 and s∗i = max{s∗i−1 + pi−1, ti} for i = 2, . . . , n. Note

that, according to the above definition we only consider permutation schedules without

preemption, but we allow the server to stay idle when there are customers available for

the service. From now on we only consider feasible schedules and we first verify that the

FCFSS is feasible.

Proposition 2.1 s∗is feasible for any (p, t) ∈ Rn
+ × Rn

+.

Proof. We can express the feasibility condition above as follows: si ≥ ti, i ∈ J , and

∀i, j ∈ J such that i 6= j, if si < sj, then si+pi ≤ sj . Then, by definition s∗ satisfies both

of these conditions. �

A queue discipline is defined as a complete contingent plan of schedules. More formally,

a queue discipline is a mapping q : Rn
+ × Rn

+ → Rn
+ which assigns to each (p, t) ∈

Rn
+ × Rn

+ a feasible schedule s. The FCFS is a queue discipline q∗ such that ∀(p, t) ∈

Rn
+ × Rn

+, q∗(p, t) = s∗. The following performance measures are commonly used in

15
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both queueing and scheduling theory. The flow time, the completion time and the

waiting time for customer i ∈ J under schedule s are the time that he spends in the

queueing system, the time that is needed before he gets the service completed and the

time that he waits in the queue until he gets the service, respectively. The corresponding

formulas are: Fi(s) = si + pi − ti, Ci(s) = si + pi and Wi(s) = si − ti. The sum

(total) and the maximum of these measures are defined as usual: F (s) =
∑n

1 Fi(s),

Fmax(s) = max{F1(s), ..., Fn(s)}; C(s) =
∑n

1 Ci(s), Cmax(s) = max{C1(s), ..., Cn(s)};

W (s) =
∑n

1 Wi(s), Wmax(s) = max{W1(s), ...,Wn(s)}.

A schedule s is an optimal schedule for the performance measure M if there is no

other schedule s′ such that M(s′) < M(s) and a queue discipline q is optimal for

M if ∀(p, t) ∈ Rn
+ × Rn

+, q(p, t) is optimal for M . Finally, the following permutation

defined for any set of finitely many real numbers is very useful in our proofs. Let α =

(αk+1, ..., αk+m) ∈ Rm
+ be a set of m nonnegative real numbers and let απ = (απ1 , ..., απm

)

a permutation of α. Then we call απ as ranking of α if απi
≤ απi+1

for i = 1, ..., m− 1.

2.3 Single server systems

Theorem 2.2 Consider a single server system and let (p, t) ∈ Rn
+ × Rn

+ be arbitrary.

Then q∗ is optimal for Cmax and Fmax.

Proof. For the first claim, we need to prove that, given (p, t) ∈ Rn
+ × Rn

+, for any

schedule s, Cmax(s) ≥ Cmax(s
∗). By definition, s∗i = max{s∗i−1 + pi−1, ti} for i = 2, ..., n,

which implies that s∗i + pi ≥ s∗i−1 + pi−1, for i = 2, ..., n and hence, Cmax(s
∗) = s∗n + pn.

Let us define j = max{i : 1 ≤ i ≤ n, s∗i = ti}. So, j is the the last customer in J who

gets the service at his arrival under s∗. Note that j is well defined since s∗1 = t1. For an

arbitrary schedule s, consider α = (sj , ..., sn) and its ranking απ = (sπ1, ..., sπn−j+1
). By

feasibility, si ≥ ti ≥ tj for i = j, ..., n, and sπn−j+1
+ pπn−j+1

≥ sπn−j
+ pπn−j

+ pπn−j+1
≥

... ≥ tj +
∑n

i=j pi. By definition, Cmax(s) ≥ sπn−j+1
+ pπn−j+1

. But since s∗i = s∗i−1 + pi−1

for i = j +1, ..., n and s∗j = tj , Cmax(s
∗) = tj +

∑n

i=j pi. Hence, Cmax(s) ≥ Cmax(s
∗). This

proves the first claim.

For the second claim, we need to prove that, given (p, t) ∈ Rn
+×Rn

+, for any schedule s,

Fmax(s) ≥ Fmax(s
∗). By definition, F1(s

∗) = p1 and for i = 2, ..., n, Fi(s
∗) = s∗i + pi − ti =

max{s∗i−1 + pi−1, ti} − ti + pi = max{s∗i−1 + pi−1 − ti, 0} + pi. Let k ∈ J be such that

Fmax(s
∗) = Fk(s

∗). Let us define j = max{i : 1 ≤ i ≤ k, s∗i = ti}. So, j is the the last

customer in {1, ..., k} who gets the service at his arrival under s∗. Note that j is well

defined since s∗1 = t1. Then by definition, Fk(s
∗) = s∗k + pk − tk = tj +

∑k

i=j pi − tk.
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For an arbitrary schedule s = (s1, ..., sn), consider α = (sj, ..., sk) and its ranking

απ = (sπ1 , ..., sπk−j+1
). Note that tj ≤ tπ1 ≤ sπ1 and tπk−j+1

≤ tk and by feasibility we

conclude that Fπk−j+1
(s) = sπk−j+1

+ pπk−j+1
− tπk−j+1

≥ sπk−j
+ pπk−j

+ pπk−j+1
− tπk−j+1

≥

... ≥ sπ1 +
∑k

i=j pi − tπk−j+1
≥ tj +

∑k

i=j pi − tk = Fk(s
∗). Since Fmax(s) ≥ Fπk−j+1

(s), this

completes the proof. �

Results in Theorem 2.2 show that s∗ is always optimal for Cmax and Fmax. The

following example shows that for the other performance measures, such a general result

does not hold.

Example 2.1 Let n = 2 and t = (0, 1) and p = (10, 1). Consider schedule s = (2, 1).

Then F (s) = 13 < F (s∗) = 20; C(s) = 14 < C(s∗) = 21; W (s) = Wmax(s) = 2 < 9 =

W (s∗) = Wmax(s
∗). ⊳

However, if all customers have the equal processing time, s∗ is optimal for all of these

performance measures.

Theorem 2.3 Let all customers have the equal processing time, pi = p0 ∈ R+, i ∈ J .

Then,

(a) schedule s is optimal for F (s),W (s)and C(s) if and only if sπi
= s∗i for all i ∈ J ,

where sπ = (sπ1, ..., sπn
) is the ranking of s, and

(b) s∗ is optimal for the performance measures in (a). Moreover, s∗ is the unique optimal

schedule if and only if t ∈ Rn
+ is such that ti + p0 < ti+2, for i = 1, ..., n− 2.

Proof. (a) Note that the objectives differ by a constant, hence the optimal schedules

coincide. Each objective take its minimum value whenever
∑

si is at its minimum. Let s

be an arbitrary schedule.

For the if part, it suffices to show that
∑

s∗i ≤
∑

si. Consider the ranking sπ =

(sπ1, ..., sπn
) of s. Since sπ is a permutation of s,

∑

sπi
=

∑

si. Note that by feasibility,

sπj
≥ tj for all j = 1, ..., n since there must be at least j customers have arrived in order

πj to be the j′th customer to be served. In particular, sπ1 ≥ t1 = s∗1. For 2 ≤ i ≤ n,

if sπi−1
≥ s∗i−1, then it is also true that sπi

≥ s∗i since sπi
≥ sπi−1

+ p0 ≥ s∗i−1 + p0 and

sπi
≥ ti. But since sπ1 ≥ s∗1, we conclude that sπi

≥ s∗i , i ∈ J . Hence,
∑

sπi
≥

∑

s∗i .

For the only if part, suppose s is optimal. Then it must be the case that
∑

sπi
=

∑

s∗i
and since it is also true that sπi

≥ s∗i , i ∈ J , the equality of the two sums is possible only

if each term in the sum is equal. This completes the proof.
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(b) The optimality of s∗ is trivial from (a). Note that, if s is an optimal schedule,

then sπ1 = s∗1 = t1, which implies that π1 = 1 since it is possible to assign t1 only to the

customer 1. For the if part, suppose t1 + p0 < t3. Since t2 < t3, we conclude that t3 > s∗2.

But for an optimal schedule s, the only customer that can be scheduled at sπ2 = s∗2 is the

customer 2 since no other customer is available at s∗2. Hence, for any optimal schedule s,

π2 = 2. Similarly, we conclude that πi = i for i = 3, ..., n. Hence, if s is optimal, then

s = s∗.

For the only if part, let s∗ be the only optimal schedule and let there be j ∈ {1, ..., n−2}

such that tj + p0 > tj+2. Consider schedule s such that it agrees with s∗ in all positions

but (j + 1)′th and (j + 2)′th : sπi
= s∗i for i ∈ J and πi = i for i ∈ J\{j + 1, j + 2} and

πj+1 = j + 2 and πj+2 = j + 1. Then by construction s is optimal and s 6= s∗, which

contradicts to the uniqueness of s∗. �

The theorem above can be interpreted as: when all customers have the same processing

time, the optimal schedule is characterized by the starting times of s∗. Moreover, from

this exact characterization, for any t ∈ Rn
+, one can fully describe the set of corresponding

optimal schedules:

Corollary 2.4 Let all customers have the equal processing time, pi = p0 ∈ R+, i ∈ J ,

and let t ∈ Rn
+ be the vector of arrival times. Let us define L1, ..., Ln and i1, ..., in as

follows: Lk = {i ∈ N : 1 ≤ i ≤ n, s∗k ≥ ti} = {1, 2, ..., ik}. Then,

(a) L1 = 1, Ln = {1, ..., n} and k ≤ ik ≤ ik+1 ≤ n, for k = 1, ..., n, and

(b) There are ϕ =
n
∏

k=1

(ik−k+1) many distinct optimal schedules and every such schedule

can be generated by the following procedure:

Step 1: Assign for the first position of the schedule π1 = 1 and update Lk into L1
k by

deleting all the first entries of Lk, for k = 2, ..., n,

Step j for 2 ≤ j ≤ n: Assign for the j′th position of the schedule any πj ∈ Lj−1
j and

update Lj−1
k into Lj

k by deleting all the first entries of Lj−1
k and replacing all πj in

Lj−1
k by the deleted first entry, for k = j + 1, ..., n.

Proof. (a) By definition L1 = 1, Ln = {1, ..., n} and k ≤ ik ≤ n, for k = 1, ..., n. Note

that if ik ∈ Lk, then ik ∈ Lk+1 for k = 1, ..., n since s∗k+1 > s∗k ≥ tik . Hence, ik ≤ ik+1 for

k = 1, ..., n.
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(b) Note that every optimal schedule uniquely corresponds to an assignment

{π1, ..., πn : πk ∈ Lk, πk 6= πj for k 6= j}

and by construction the procedure above gives all such assignments for any given t ∈ Rn
+.

Consider Step j: any customer in Lj−1
j can be assigned to the j′th position and those are

the only possible choices for that position. Note that, by construction there are (ij−j+1)

elements in Lj−1
j . Hence, there are ϕ distinct optimal schedules. �

Let us demonstrate procedure in Corollary 2.4 with an example:

Let n = 6 and t ∈ R6
+ and p0 ∈ R+ be such that L1 = {1}, L2 = {1, 2}, Li =

{1, 2, 3, 4, 5}, for 3 ≤ i ≤ 5, and L6 = {1, 2, ..., 6}. Let us construct a matrix M with Li

in its i′th row: M =





















1

1 2

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5 6





















.

In Step 1 we assign π1 = 1 and obtain an updated matrix: M1 =





















1

. 2

. 2 3 4 5

. 2 3 4 5

. 2 3 4 5

. 2 3 4 5 6





















.

In Step 2 we assign π2 = 2 since that is the only feasible assignment and update M1:

M2 =





















1

. 2

. . 3 4 5

. . 3 4 5

. . 3 4 5

. . 3 4 5 6





















.

In Step 3 we may assign any of {3, 4, 5} for π3 and let π3 = 4, we update M2:
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M3 =





















1

. 2

. . 3 4 5

. . . 3 5

. . . 3 5

. . . 3 5 6





















.

In Step 4 we can assign any of {3, 5} for π4 and let π4 = 5, we update M3:

M4 =





















1

. 2

. . 3 4 5

. . . . 5

. . . . 3

. . . . 3 6





















.

Then, for π5 the only feasible assignment is 3 and for π6 its 6: M6 =





















1

. 2

. . 3 4 5

. . . . 5

. . . . 3

. . . . . 6





















.

Theorem 2.5 When all customers have the equal processing time, pi = p0 ∈ R+, i ∈ J ,

s∗ is optimal for Wmax.

Proof. By definition, W1(s
∗) = 0 and for i = 2, ..., n,

Wi(s
∗) = s∗i − ti = max{s∗i−1 + p0, ti} − ti = max{s∗i−1 + p0 − ti, 0}.

Let k ∈ J be such that Wmax(s
∗) = Wk(s

∗). Let us define j = max{i : 1 ≤ i ≤ k, s∗i = ti}.

So, j is the the last customer in {1, ..., k} who gets the service at his arrival under s∗. Note

that j is well defined since s∗1 = t1. Then by definition, Wk(s
∗) = s∗k−tk = tj+(k−j)·p0−tk.

For an arbitrary schedule s, consider α = (sj, ..., sk) and its ranking απ = (sπ1, ..., sπk−j+1
).

Note that tj ≤ tπ1 ≤ sπ1 and tπk−j+1
≤ tk and by feasibility we conclude that Wπk−j+1

(s) =

sπk−j+1
− tπk−j+1

≥ sπ1 + (k − j) · p0 − tπk−j+1
≥ tj + (k − j) · p0 − tk = Wk(s

∗). Since

Wmax(s) ≥ Wπk−j+1
(s), this completes the proof. �
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2.4 Multi server systems with equal processing time

In this section we extend the main results in Section 2.3 to a multi server system. Before

we state the main results, we shall introduce some more notations and extend some of

the main definitions to the new setting.

Let there be k ∈ N identical servers, M = {m0, m1, ..., mk−1}. For i ∈ J , let z(i), y(i) ∈

Z+ be such that i = z(i) · k + y(i) with y(i) < k, i.e. i ≡ y mod k. Each customer has

a processing time p ≥ 0 and let t = (t1, ..., tn) ∈ Rn
+ be the vector of customer arrival

times. As before we may assume that 0 ≤ t1 ≤ · · · ≤ tn. We redefine the notions

of schedule, feasibility and FCFSS, and the other notions are defined same as in

Section 2.2. A schedule [s] = [(s1, 1M), . . . , (sn, nM)] for a given t ∈ Rn
+ assigns to

each customer i ∈ J a pair of (si, iM) where si ≥ 0 is the starting time for i gets the

service and iM ∈ M is the corresponding server. It is feasible if processing of a customer

does not start before his arrival: si ≥ ti, ∀i ∈ J and none of the servers processes more

than one job simultaneously: ∀m ∈ M , ∀i, j ∈ J with i 6= j, if iM = jM = m, then

[si, si + p) ∩ [sj, sj + p) = ∅. First-come-first-served-schedule (FCFSS) is a schedule

[s∗] = [(s∗1, 1
∗
M), . . . , (s∗n, n

∗
M)] that processes all jobs in the order of their arrival and does

so as soon as possible: for 1 ≤ i < k, (s∗i , i
∗
M) = (ti, mi); for i = k, (s∗k, k

∗
M) = (tk, m0);

and for k < i ≤ n, (s∗i , i
∗
M) = (max{s∗(z(i)−1)·k+y(i) + p, ti}, my(i)).

Note that FCFSS can be defined up to an arbitrary assignment of the initial k arrivals

to the servers. Here we have chosen a particular one, i′th arrival is assigned to i′th server.

Since our enumeration of the servers was arbitrary, none of the results that follow depend

on this particular choice. Before we state the main results of this section we prove the

following lemma.

Lemma 2.6 Let [s] be any schedule and s = (s1, ..., sn) be the vector of the starting

times of [s]. Consider sπ = (sπ1, ..., sπn
), the ranking of s. For any (k + 1) sequence

(sπl
, sπl+1

, ..., sπl+k
), ∃j ∈ {0, ..., k − 1} such that sπl+k

≥ sπl+j
+ p.

Proof. Since there are k servers, there are at least two customers πq, πi with q < i among

(πl, ..., πl+k) who assigned to the same server, by the pigeonhole principle. Then the result

follows by feasibility: sπl+k
≥ sπi

≥ sπq
+ p. �

The following results are extensions of Theorem 2.3 and 2.5, subsequently.

Theorem 2.7 Schedule [s] is optimal for F (s), W (s) and C(s) if and only if sπi
= s∗i for

all i ∈ J where sπ = (sπ1, ..., sπn
) is the ranking of s = (s1, ..., sn), the vector of starting

times of [s].
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Proof. Note that all of the measures in the theorem take their minimum value whenever
∑

si is at its minimum. Let [s] be an arbitrary schedule and s be the vector of starting

time of [s].

For the if part, it suffices to show that
∑

s∗i ≤
∑

si. Consider the ranking sπ =

(sπ1, ..., sπn
) of s. Since sπ is a permutation of s,

∑

sπi
=

∑

si. Note that by feasibility,

sπj
≥ tj for all j ∈ J since there must be at least j customers have arrived in order

πj be the j′th customer to be served. In particular, for 1 ≤ i ≤ k, sπi
≥ s∗i = ti. For

k < i ≤ n, if sπ(z(i)−1)·k+y(i)
≥ s∗(z(i)−1)·k+y(i), then it is also true that sπi

≥ s∗i since sπi
≥ ti

and by Lemma 2.6, sπi
≥ sπ(z(i)−1)·k+y(i)

+ p ≥ s∗(z(i)−1)·k+y(i) + p. But since sπi
≥ s∗i = ti

for 1 ≤ i ≤ k, we conclude that sπj
≥ s∗j for all j ∈ J . Hence,

∑

sπi
≥

∑

s∗i .

For the only if part, suppose [s] is optimal. Then it must be the case that
∑

sπi
=

∑

s∗i
and since it is also true that sπi

≥ s∗i for all i ∈ J , the equality of the two sums is possible

only if each term in the sum is equal. This completes our proof. �

Theorem 2.8 [s∗] is optimal for Wmax, Cmax and Fmax.

Proof. We prove the result for Wmax and essentially the same procedure works for Cmax

and Fmax. By definition, for 1 ≤ i ≤ k,Wi(s
∗) = 0 and for k < i ≤ n, Wi(s

∗) = s∗i − ti =

max{s∗(z(i)−1)·k+y(i) + p, ti}− ti = max{s∗(z(i)−1)·k+y(i) + p− ti, 0}. Let r ∈ {1, ..., n} be such

that Wmax(s
∗) = Wr(s

∗).

Let us define j = max{i : 1 ≤ i ≤ r, i = z(i) · k + y(r), s∗i = ti}. So, j is the the last

customer in {y(r), k + y(r), 2 · k + y(r), ..., r} (here we identify 0′th customer with k′th)

who gets the service at his arrival under [s∗]. Note that j is well defined since s∗y(r) = ty(r).

Then by definition, Wr(s
∗) = s∗r − tr = tj + (z(r) − z(j)) · p − tr. For an arbitrary

schedule [s] with the vector of starting times s, consider α = (sj , sj+1, ..., sr) and its rank-

ing απ = (sπ1, ..., sπr−j+1
). Note that tj ≤ tπ1 ≤ sπ1 and tπr−j+1

≤ tr and by Lemma

2.6 we conclude that Wπr−j+1
(s) = sπr−j+1

− tπr−j+1
≥ sπ1 + (z(r) − z(j)) · p − tπr−j+1

≥

tj+(z(r)−z(j))·p−tr = Wr(s
∗). SinceWmax(s) ≥ Wπr−j+1

(s), this completes our proof. �

2.5 Conclusion

Since FCFS is commonly used both in theory and in applications, its optimality properties

receive considerable attention. This paper provides a technique that can be used to

investigate optimality properties related to FCFS in a single and (identical) multi server
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settings. The underlying idea of our technique is to compare schedules (queue disciplines)

over the last busy period before system reaches to its peak under FCFS. Then, max -

objectives can be expressed as recursive sums over that period and optimality proofs

pin down to simple comparisons of sums of real numbers. Hence, our approach provides

simple, unified and self-contained proofs for optimality results related to FCFS.
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Chapter 3

An Axiomatization of the Leontief

Preferences 1

Abstract: An axiomatic characterization of the well known Leontief preferences is

given. The key axiom is upper consistency, which states that for any two bundles, another

bundle is weakly preferred to at least one of them if and only if it is weakly preferred to

the bundle that contains the least amount of each commodity in them.

JEL: D01, D11

Keywords: Leontief preferences, Maximin social welfare ordering

3.1 Introduction

In economic literature, it is often assumed that a decision maker, either as an individual

or as a group, has the following preferences: alternative x ∈ Rn
+ is weakly preferred to

alternative y ∈ Rn
+ if and only if mini{aixi} ≥ mini{aiyi}, where x, y ∈ Rn

+ can be either

consumption bundles, as in the consumer choice literature, or utility profiles as in the

social choice literature. Such preferences are known as the Leontief preferences.

The Leontief preferences are representable by the Leontief utility function, which is

one of the standard functional forms used in economics. Moreover, in consumer choice

theory, it is the most useful tool to demonstrate the idea of complementarity of economic

1To appear in Finnish Economic Papers, 2012, 25 (1). I am thankful to Mark Voorneveld for suggest-
ing this research topic, to Tore Ellingsen for pointing out a potential connection between the Leontief
preferences and the Leontief production technology and to the editor and an anonymous referee of this
journal for their helpful comments.
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goods, often attributed to the case of right and left shoes. We do not have any clear

reference on its entrance to this field. However, its analogy in production theory, the

Leontief production technology used in input-output analysis was developed as early as

1933 by Wassily Leontief (see Dorfman (2008)). The standard reference in this respect is

Leontief (1951) (see for instance, Chap. 9 in Dorfman et al., (1958)).

This paper contributes to the economic literature on choice theory by axiomatizing this

prototypical preferences. In particular, we give three basic axioms that fully characterize

weak preferences on Rn
+ as the Leontief preferences (Theorem 3.1 in Section 3.3). Some

of the earlier works related to ours are as follows. Segal and Sobel (2002) provides a

joint axiomatization of min, max and sum utility functions, defined respectively as, for

all x ∈ Rn with n ≥ 3, u(x) = mini{xi}, u(x) = maxi{xi} and u(x) =
∑

xi, with

five axioms: continuity, monotonicity, symmetry, linearity and partial separability (see

Theorem 2 in Segal and Sobel (2002)). However, since they do not directly characterize

the Leontief utility function, which corresponds to u(x) = mini{xi}, one needs additional

axiom(s) in order to obtain such characterization from their result. Moreover, they only

consider the unweighted min, max and sum utility functions whereas the standard form

of the Leontief utility function involves positive weights.

In the social choice literature, the maximin social welfare ordering defined on the

utility profiles of the society members has the same form as the Leontief preferences. It

can be defined for societies with finite or countably infinite members: see for instance

Bosmans and Ooghe (2006) and Miyagishima (2010) for the former, and Lauwers (1997)

and Chambers (2009) for the latter. The former is more relevant to us since our setting

is restricted to a finite dimensional Euclidean space. In that case, Bosmans and Ooghe

(2006) characterizes the maximin social welfare ordering with four axioms: anonymity,

continuity, weak Pareto and Hammond equity, and Miyagishima (2010) shows that one

can drop anonymity and modify Hammond equity into a weighted Hammond equity to

characterize the weighted maximin social welfare ordering. In contrast to these charac-

terizations, we do not use any of the continuity, weak Pareto and Hammond equity, but

only use a counterpart of anonymity (see A.2 in Section 3.2) in our characterization.

The next section introduces the main definitions, Section 3.3 gives the main result,

the characterization theorem, and the last section concludes.
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3.2 The preliminaries

Define preferences on a set X in terms of a binary relation & (”weakly preferred to”)

which is:

complete: for all x, y ∈ X, x & y, y & x or both;

transitive: for all x, y, z ∈ X, if x & y and y & z, then x & z.

We call & as a weak order on X . As usual, x ≻ y means x & y, but not y & x, whereas

x ∼ y means both x & y and y & x. For any x ∈ X , let U(x) = {y ∈ X : y & x} ⊆ X be

the set of alternatives that are at least as good as x ∈ X , and I(x) = {y ∈ X : y ∼ x} ⊆ X

be the set of alternatives that are indifferent to x ∈ X , according to &. From now on we

take X as Rn
+. A weak order & on Rn

+ is the Leontief preferences if

∀x, y ∈ Rn
+, x & y ⇔ min{x1, ..., xn} ≥ min{y1, ..., yn},

and it is an a = (a1, ..., an)-weighted Leontief preferences with ai > 0 for i = 1, ..., n, if

∀x, y ∈ Rn
+, x & y ⇔ min{a1x1, ..., anxn} ≥ min{a1y1, ..., anyn}.

Note that the former is a special case of the latter with ai = 1, i = 1, ..., n. For any

x, y ∈ Rn
+, let min{x, y} = (min{x1, y1}, ...,min{xn, yn}) ∈ Rn

+. For any ε > 0, an ε-ball

around x ∈ Rn
+ is Bε(x) = {y ∈ Rn

+ :

√

n
∑

i=1

(xi − yi)2 < ε}. For any positive numbers

a1, ..., an, let l(a1, ..., an) ⊂ Rn
+ be a line with

l(a1, ..., an) = {x ∈ Rn
+ : a1x1 = ... = anxn}

and when ai = 1 for i = 1, ..., n, we write l instead of l(1, ..., 1). Finally, for any x ∈ Rn
+

and for i, j = 1, ..., n, let πi,j(x) ∈ Rn
+ be a vector obtained from x ∈ Rn

+ by interchanging

its i′th and j′th components, and for any x, y ∈ Rn
+ let x ∗ y ∈ Rn

+ be defined as

x ∗ y = (x1y1, ..., xnyn).

We say that & on Rn
+ is

A.1: Upper consistent if ∀x, y ∈ Rn
+,U(min{x, y}) = U(x) ∪U(y).

A.2: Symmetric (or Neutral) with respect to l if whenever x ∼ y, we have

πi,j(x) ∼ πi,j(y), for all i, j = 1, ..., n.
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A.2’: Symmetric (or Neutral) with respect to l(a1, ..., an) if whenever x ∼ y, we have

(
1

a1
, ...,

1

an
) ∗ πi,j(a1x1, ..., anxn) ∼ (

1

a1
, ...,

1

an
) ∗ πi,j(a1y1, ..., anyn)

for all i, j = 1, ..., n.

A.3: Locally non-satiable if ∀ε > 0 and ∀x ∈ Rn
+, ∃y ∈ Bε(x) with y ≻ x.

A.1 says that for any two bundles, another bundle is weakly preferred to at least one

of them if and only if it is weakly preferred to the bundle that contains the least amount

of each commodity in them. A.2 is a way of saying that goods are of equal importance,

i.e. it does not matter if one exchanges the roles of right and left shoes. More precisely,

the indifference relation induced by & is unaffected by renaming of the commodities. A.2′

is a variant of A.2 after rescaling of coordinates with a ∈Rn
++. A.3 is a standard axiom

in microeconomics and it rules out thick indifference curves.

3.3 The characterization theorem

We now state and prove a characterization theorem for R2
+ since the main idea is best

illustrated in that case. However, we remark here that the result holds in the general

domain of Rn
+ (see Theorem 3.3 in Appendix 3.5).

Theorem 3.1 Let & be a weak order on R2
+. Then,

(a) & satisfies A.1,A.2 and A.3 if and only if it is the Leontief preferences, and

(b) & satisfies A.1,A.2′ and A.3 if and only if it is an (a1, a2)-weighted Leontief pref-

erences.

Proof. Since IF parts are easy to check, we prove ONLY IF parts.

(a) Suppose & satisfies A.1−A.3. Consider x∗ ∈ l, i.e. x∗
1 = x∗

2. Let

L(x∗) = {x ∈ R2
+ : xi ≥ x∗

i , i = 1, 2}.

We proceed in 3 steps.

Step 1: We claim that U(x∗) = L(x∗). First, note that for any x ∈ L(x∗), min{x∗, x} =

x∗ and then by A.1, U(x) ⊆ U(x∗). In particular, x ∈ U(x∗). Hence, L(x∗) ⊆

U(x∗). For the other inclusion, suppose ∃y ∈ U(x∗) such that y /∈ L(x∗). Since
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y ∈ U(x∗), by transitivity of &, we conclude that U(y) ⊆ U(x∗). Consider x1 =

min{y, x∗}. Suppose that x1 6= y. By A.1 and our last conclusion, U(x1) =

U(x∗). Hence, x1 ∼ x∗. Let xα1 = α1x
1 + (1 − α1)x

∗, for α1 ∈ [0, 1]. Note

that by A.1, U(x∗) ⊆ U(xα)⊆ U(x1). But since U(x1) = U(x∗), we conclude

that U(x1) = U(xα1) = U(x∗), which implies that x1 ∼ xα1 ∼ x∗ for α1 ∈ [0, 1].

Let x2 = π1,2(x
1) be the symmetric image of x1 : x2 = (x1

2, x
1
1). Then by A.2,

x2 ∼ xα2 ∼ x∗ where xα2 = α2x
2+(1−α2)x

∗, for α2 ∈ [0, 1]. For any α1, α2 ∈ [0, 1],

let xα1,α2 = min{xα1 , xα2}. Then by A.1, xα1,α2 ∼ xα1 ∼ xα2 ∼ x∗, which implies

that alternatives in a square with vertices at {x1, x∗, x2,min{x1, x2}} (see Fig. 1)

are indifferent to each others. But that contradicts A.3.

Figure 3.1: x1 6= y

Let’s consider the other case. Suppose x1 = y. Then by repeating the same argu-

ment we conclude that, alternatives in a quadrilateral with vertices at {y, x∗, y′,

min{y, y′}} where y′ = (y2, y1) is the symmetric image of y (see Fig. 2) are indif-

ferent to each others, which contradicts A.3. Hence, we conclude that ∄y ∈ U(x∗)

such that y /∈ L(x∗). So, U(x∗) ⊆ L(x∗) and the claim is established.

Figure 3.2: x1 = y

Step 2: Let ∂(L(x∗)) = {x ∈ R2
+ : xi ≥ x∗

i , i = 1, 2, xj = x∗
j for some j = 1, 2}.

We claim that I(x∗) = ∂(L(x∗)). Take any x ∈ ∂(L(x∗)). Note that by A.1,
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U(x) ⊆ U(x∗) since min{x, x∗} = x∗. Hence, x & x∗. Suppose ∃x ∈ ∂(L(x∗))

such that x ≻ x∗. Consider x′ ∈ ∂(L(x∗)) which is the symmetric image of x.

Then, by A.1, U(x∗) = U(x) ∪ U(x′), since x∗ = min{x, x′}. By Step 1, then

L(x∗) = U(x) ∪U(x′). Since x∗ /∈ U(x), the last equality implies that x∗ ∈ U(x′).

But since x′ ∈ U(x∗) = L(x∗), we conclude that x′ ∼ x∗. But that contradicts A.2.

So ∄x ∈ ∂(L(x∗)) such that x ≻ x∗ and we conclude that ∀x ∈ ∂(L(x∗)), x∗ & x.

Hence, ∂(L(x∗)) ⊆ I(x∗). For the other inclusion, suppose ∃x ∈ I(x∗) such that

x /∈ ∂(L(x∗)). But since by definition, I(x∗) ⊆ U(x∗) and by Step 1, U(x∗) = L(x∗),

it must be the case that x ∈ L(x∗). Hence, min{x∗, x} = x∗. Let x′ ∈ ∂(L(x∗))

be such that xi = x′
i for some i = 1, 2, i.e. projection of x into ∂(L(x∗)). Note

that x ∼ x∗ ∼ x′ since the first conclusion is by definition and the second is by the

statement just shown, ∂(L(x∗)) ⊆ I(x∗), which implies that U(x) = U(x′) = U(x∗).

Consider xα′

= α′x+ (1− α′)x′ and xα∗

= α∗x+ (1− α∗)x∗ for α′, α∗ ∈ [0, 1]. Note

that by A.1, U(x) ⊆ U(xα′

)⊆ U(x′) and U(x) ⊆ U(xα∗

)⊆ U(x∗), which implies

that U(x) = U(xα′

) = U(x′) = U(xα∗

) = U(x∗), hence x ∼ xα′

∼ x′ ∼ xα∗

∼ x∗

for α′, α∗ ∈ [0, 1]. For α′, α∗ ∈ [0, 1], let xα′,α∗

= min{xα′

, xα∗

}. Then by A.1,

∀α′, α∗ ∈ [0, 1], xα′,α∗

∼ xα′

∼ xα∗

∼ x∗, which implies that alternatives in a

triangle with vertices at {x, x′, x∗} (see Fig. 3) are indifferent to each others. But

that contradicts A.3. Hence, we conclude that ∄x ∈ I(x∗) such that x /∈ ∂(L(x∗))

and I(x∗) ⊆ ∂(L(x∗)).

Figure 3.3: x ∈ I(x∗), x /∈ ∂(L(x∗))

Step 3: Suppose y, z ∈ R2
+ are such that y & z and let y∗, z∗ ∈ R2

+ be such that

y∗ = (min{y1, y2},min{y1, y2})

and

z∗ = (min{z1, z2},min{z1, z2}).

32



3.3. THE CHARACTERIZATION THEOREM

Then, by construction y ∈ ∂(L(y∗)) and z ∈ ∂(L(z∗)). By Step 2, y ∼ y∗ and z ∼ z∗

which implies y∗ & z∗. By Step 1, y∗ & z∗ ⇔ min{y1, y2} ≥ min{z1, z2} and hence,

& is the Leontief preferences.

(b) Starting with a point x∗ ∈ l(a1, a2) and repeating the same arguments as above

one can show that (1) U(x∗) = L(x∗) and (2) I(x∗) = ∂(L(x∗)). Suppose y, z ∈ R2
+ are

such that y & z and let y∗, z∗ ∈ l(a1, a2) be such that

y∗ = (
1

a1
min{a1y1, a2y2},

1

a2
min{a1y1, a2y2})

and

z∗ = (
1

a1
min{a1z1, a2z2},

1

a2
min{a1z1, a2z2}).

Then, by construction y ∈ ∂(L(y∗)) and z ∈ ∂(L(z∗)). By (2), y ∼ y∗, z ∼ z∗ which

implies that y∗ & z∗. By (1), y∗ & z∗ ⇔ min{a1y1, a2y2} ≥ min{a1z1, a2z2} and hence, &

is an (a1, a2)-weighted Leontief preferences. �

There are two commonly accepted criterion for the validity of an axiomatization re-

sult: consistency and logical independence (see also discussions in Chap. 1 in Kreps

(1988)). Consistency of A.1, A.2 (or A.2′) and A.3 is established by the IF part of the

characterization theorem above, and their independence can easily be verified:

Example 3.1 A preference satisfying A.1 and A.2 but not A.3 is as follows (the arrow

indicates the direction of utility increase):

Figure 3.4: A.3 is not satisfied

⊳
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Example 3.2 A preference satisfying A.1 and A.3 but not A.2 is as follows:

Figure 3.5: A.2 is not satisfied

⊳

Example 3.3 A preference satisfying A.2 and A.3 but not A.1 is as follows:

Figure 3.6: A.1 is not satisfied

⊳

3.4 Conclusions

This paper axiomatizes weak preferences on Rn
+ as the Leontief preferences with three ba-

sic axioms: upper consistency, neutrality (or symmetry) and local non-satiation. Among

the axioms, local non-satiation is standard in economic literature while neutrality (or sym-

metry) is also used, especially in the context of social choice (see for instance, anonymity

in Lauwers (1997); and symmetry in Segal and Sobel (2002)). However, the upper con-

sistency axiom is, to our best knowledge, new to the field.

Then one could ask whether upper consistency is related to the other axioms, especially

to those used in the axiomatization of the maximin social welfare ordering, mentioned

above. In this respect, it can be shown that upper consistency and local non-satiation
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together imply monotonicity (or weak Pareto) (see Lemma 3.2 in Appendix A). Also,

an example of preferences that satisfy upper consistency, but not Hammond equity can

be given (see Example 2 in Section 3.3), and it can easily be checked that the following

preferences satisfy Hammond equity but not upper consistency:

∀x ∈ R2
+, u(x) = −max{x1, x2}.

3.5 Appendix

For x, y ∈ Rn
+, we write x >> y if xi > yi for all i = 1, ..., n. We say that & on Rn

+ is

A.4: Monotonic if whenever x, y ∈ Rn
+ are such that x >> y, we have x ≻ y.

Lemma 3.2 If & on Rn
+ satisfies A.1 and A.3, then it satisfies A.4.

Proof. Consider y ∈ Rn
+ such that x >> y. Then, min{x, y} = y and by A.1,

U(x) ⊆ U(y), which implies that x & y. Suppose x ∼ y and consider the following

n -dimensional box B(x, y) = {z ∈ Rn
+ : xi ≥ zi ≥ yi, i = 1, ..., n}. Then, for any

z ∈ B(x, y), min{x, z} = z and min{z, y} = y and by A.1, x & z and z & y. Since x ∼ y,

we then conclude that x ∼ z ∼ y. But that contradicts A.3. Hence, x ≻ y. �

Theorem 3.3 Let & be a weak order on Rn
+. Then,

(a) & satisfies A.1,A.2 and A.3 if and only if it is the Leontief preferences, and

(b) & satisfies A.1,A.2′ and A.3 if and only if it is an a-weighted Leontief preferences.

Proof. Since IF parts are easy to check, we prove ONLY IF parts. By Lemma 3.2 we

may assume that & satisfies A.4.

(a) Suppose & satisfies A.1−A.4. Consider x∗ ∈ l. Let

L(x∗) = {x ∈ Rn
+ : xi ≥ x∗

i , i = 1, ..., n}.

We proceed in 3 steps.

Step 1(a): We claim thatU(x∗) = L(x∗). First, note that for any x ∈ L(x∗), min{x, x∗} =

x∗. Then by A.1, U(x) ⊆ U(x∗). In particular, x ∈ U(x∗). Hence, L(x∗) ⊆ U(x∗).

For the other inclusion, suppose ∃y ∈ U(x∗) such that y /∈ L(x∗). Since y ∈ U(x∗),

by transitivity of &, we conclude that U(y) ⊆ U(x∗). Consider x = min{y, x∗}. By
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A.1 and by our last conclusion, U(x) = U(x∗) and hence, x ∼ x∗. Since y /∈ L(x∗),

it is the case that x /∈ L(x∗) and hence ∃j ∈ {1, ..., n} such that xj < x∗
j . For

i = 1, ..., n, let xi = πi,j(x). Then by A.2, xi ∼ x∗, i = 1, ..., n. Let

xmin = min{xn,min{xn−1,min{xn−2, ...,min{x3,min{x2, x1}}...}}}.

Then by repeated use of A.1 and by our conclusion that xi ∼ x∗, i = 1, ..., n,

we conclude that xmin ∼ x∗. Note that by construction, xmin
i ≤ xj , i = 1, ..., n

which implies that xmin << x∗. But that contradicts A.4. Hence, we conclude that

U(x∗) ⊆ L(x∗).

Step 2(a): Let ∂(L(x∗)) = {x ∈ Rn
+ : xi ≥ x∗

i , i = 1, ..., n, xj = x∗
j for some j = 1, ..., n}.

We claim that I(x∗) = ∂(L(x∗)). Since by definition, I(x∗) ⊆ U(x∗), by Step

1(a) we conclude that I(x∗) ⊆ L(x∗). Then by A.4, I(x∗) ⊆ ∂(L(x∗)). For the

other inclusion, consider any x ∈ ∂(L(x∗)). Then by Step 1(a), x & x∗. Suppose

∃x ∈ ∂(L(x∗)) such that x ≻ x∗. Since x ∈ ∂(L(x∗)), ∃j ∈ {1, ..., n} such that

xj = x∗
j . For i = 1, ..., n, let xi = πi,j(x). Let

xmin = min{xn,min{xn−1,min{xn−2, ...,min{x3,min{x2, x1}}...}}}.

Note that by construction, xmin = x∗. Then, by repeated use of A.1 we conclude

that U(x∗) = U(x1) ∪ ... ∪ U(xn). Hence, ∃k ∈ {1, ..., n} such that x∗ ∈ U(xk),

which implies that x∗ ∼ xk. Then by A.2, x∗ ∼ xj = x, which is a contradiction.

Hence, ∂(L(x∗)) ⊆ I(x∗).

Step 3(a): Suppose y, z ∈ Rn
+ are such that y & z and let y∗, z∗ ∈ l be such that

y∗ = (min{y1, ..., yn}, ...,min{y1, ..., yn})

and

z∗ = (min{z1, ..., zn}, ...,min{z1, ..., zn}).

Then, by construction y ∈ ∂(L(y∗)) and z ∈ ∂(L(z∗)). By Step 2(a), y ∼ y∗ and

z ∼ z∗ which implies that y∗ & z∗. Then, by Step 1(a),

y∗ & z∗ ⇔ min{y1, ..., y2} ≥ min{z1, ..., zn}

and hence, & is the Leontief preferences.

36



3.5. APPENDIX

(b) Consider x∗ ∈ l(a1, ..., an). Note that ∀i, j = 1, ..., n,

(
1

a1
, ...,

1

an
) ∗ πi,j(a1x

∗
1, ..., anx

∗
n) = x∗

i.e. the neutral (symmetric) image of x∗ is itself, since aix
∗
i = ajx

∗
j ⇔ 1

ai
ajx

∗
j = x∗

i . We

proceed in 3 steps.

Step 1(b): We claim that U(x∗) = L(x∗). First, by repeating the same argument as

in Step 1(a) we conclude that L(x∗) ⊆ U(x∗). For the other inclusion, suppose

∃y ∈ U(x∗) such that y /∈ L(x∗). Since y ∈ U(x∗), by transitivity of &, we conclude

that U(y) ⊆ U(x∗). Consider x = min{y, x∗}. By A.1 and by our last conclusion,

U(x) = U(x∗) and hence, x ∼ x∗. Since y /∈ L(x∗), x /∈ L(x∗) and ∃j ∈ {1, ..., n}

such that xj < x∗
j . For i = 1, ..., n, let xi = ( 1

a1
, ..., 1

an
) ∗ πi,j(a1x1, ..., anxn). Then

by A.2′, xi ∼ x∗, i = 1, ..., n. Let

xmin = min{xn,min{xn−1,min{xn−2, ...,min{x3,min{x2, x1}}...}}}.

Then by repeated use of A.1 and by our conclusion that xi ∼ x∗, i = 1, ..., n, we

conclude that xmin ∼ x∗. Note that by construction, the i′th component of xi is

xi
i =

1
ai
ajxj , for i = 1, ..., n. Then, xi

i < x∗
i , for i = 1, ..., n since 1

ai
ajxj <

1
ai
ajx

∗
j =

1
ai
aix

∗
i = x∗

i , which implies that xmin << x∗. But that contradicts A.4. Hence, we

conclude that U(x∗) ⊆ L(x∗).

Step 2(b): We claim that I(x∗) = ∂(L(x∗)). First, by repeating the same argument as

in Step 2(a) we conclude that I(x∗) ⊆ L(x∗). Then by A.4, I(x∗) ⊆ ∂(L(x∗)).

For the other inclusion, consider any x ∈ ∂(L(x∗)). Then by Step 1(b), x & x∗.

Suppose ∃x ∈ ∂(L(x∗)) such that x ≻ x∗. Since x ∈ ∂(L(x∗)), ∃j ∈ {1, ..., n} such

that xj = x∗
j . For i = 1, ..., n, let xi = ( 1

a1
, ..., 1

an
) ∗ πi,j(a1x1, ..., anxn). Let

xmin = min{xn,min{xn−1,min{xn−2, ...,min{x3,min{x2, x1}}...}}}.

Note that by construction, ∀i = 1, ..., n, the i′th component of xi is xi
i =

1
ai
ajxj =

1
ai
ajx

∗
j = 1

ai
aix

∗
i = x∗

i , and when i 6= j, ∀k ∈ {1, ..., n}\{i}, the i′th component of

xk is xk
i = xi ≥ x∗

i (recall that x ∈ ∂(L(x∗))), and when i = j, ∀k ∈ {1, ..., n}\{j},

the j′th component of xk is xk
j = 1

aj
akxk ≥ 1

aj
akx

∗
k = 1

aj
ajx

∗
j = x∗

j . This implies that

xmin = x∗. Then, by repeated use of A.1 we conclude that

U(x∗) = U(x1) ∪ ... ∪U(xn).
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Hence, ∃q ∈ {1, ..., n} such that x∗ ∈ U(xq), which implies that x∗ ∼ xq. Then by

A.2′, x∗ ∼ xj = x, which is a contradiction. Hence, ∂(L(x∗)) ⊆ I(x∗).

Step 3(b): Suppose y, z ∈ Rn
+ are such that y & z and let y∗, z∗ ∈ l(a1, ..., an) be such

that

y∗ = (
1

a1
min{a1y1, ..., anyn}, ...,

1

an
min{a1y1, ..., anyn})

and

z∗ = (
1

a1
min{a1z1, ..., anzn}, ...,

1

an
min{a1z1, ..., anzn}).

Then, by construction y ∈ ∂(L(y∗)) and z ∈ ∂(L(z∗)). By Step 2(b), y ∼ y∗ and

z ∼ z∗ which implies that y∗ & z∗. Then, by Step 1(b),

y∗ & z∗ ⇔ min{a1y1, ..., anyn} ≥ min{a1z1, ..., anzn}

and hence, & is an a-weighted Leontief preferences.

�
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Chapter 4

Remarks on Young’s Theorem 1

Abstract: In this paper we analyze the simple case of voting over two alternatives with

variable electorate. Our main findings are (a) the axiom of continuity is redundant in the

axiomatization of scoring rules in Young (1975), SIAM J. Appl. Math. 28: 824-838, (b)

the smaller set of axioms characterize the scoring rules when indifferences are allowed in

voter’s preferences, (c) a version of May’s theorem can be derived from this last result

and finally, (d) in each of these results, the axioms of neutrality and cancellation can be

used interchangeably.

JEL: D71, D72

Keywords: Scoring rules, Young’s theorem, May’s theorem

4.1 Introduction

In this paper we reconsider the problem of axiomatizing scoring rules. Early results on this

problem are due to Smith (1973) and Young (1975). They characterized social welfare and

social choice functions, respectively, as scoring rules with four basic axioms: anonymity,

neutrality, consistency (or separability, or reinforcement) and continuity (or Archimedian,

or overwhelming majority). Following them, Myerson (1995) showed that essentially the

same set of axioms characterize scoring rules even if some of the assumptions of Smith

(1973) and Young (1975) are weakened.

Our objective in this paper is to point out an important detail that has seemingly been

ignored in this literature: in the special case of two alternatives, the continuity axiom in

1Published in Economics Bulletin, 2012, 32 (1): 706-714. I am thankful to the associate editor Jordi
Massó and two anonymous referees for their helpful comments.
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Young (1975) is redundant in the axiomatization of scoring rules. Hence, our main result

is (Theorem 4.3 in Section 4.3.1) ”When there are two alternatives, a social choice function

is anonymous, neutral and consistent if and only if it is a simple scoring function.” We also

show that the same result holds, i.e. the smaller set of axioms characterize this voting

rule, when indifferences are allowed in the voters’ preferences (Theorem 4.5 in Section

4.3.2). Moreover, from this result we derive another result (Theorem 4.6 in Section 4.3.2)

that can be seen as a variant of May’s theorem in May (1952), and hence establish a

formal connection between the two classic results, Young’s Theorem and May’s Theorem.

Finally, we also show that in each of our results, axioms of neutrality and cancellation

property can be used interchangeably (Proposition 4.4 and 4.7).

In the next section we introduce our notation and the main definitions. Section 4.3

gives the main results and the last section concludes.

4.2 The preliminaries

Let Rn denote the set of all n-tuples of real numbers and let Rn
+ be its nonnegative orthant.

The notions of weak (and associated indifference relation) and strict preferences over a

set B are defined as usual and when a ∈ B is weakly, strictly preferred and indifferent to

b ∈ B, we write a & b, a ≻ b and a ∼ b, respectively. A transposition on set B = {a, b},

that is a permutation that exchanges the roles of a and b, is denoted as a ⇆ b.

Our main setting follows closely that of Young (1975). Let A = {a1, ..., am} be the set

of alternatives. Let N denote the set of nonnegative integers which constitute names for

the voters and let P be the set of all preference orders (strict) on A. For any finite V ⊂ N,

a profile is a function from V to P and a social choice function (SCF) is a function from

set X of all profiles to the family of non-empty subsets of A, 2A\{∅}. A SCF is said to

be anonymous if it depends only on the number of voters associated with each preference

order. We can represent the domain of an anonymous SCF by Nm!, i.e. the set of all

m!-tuples with nonnegative integer coordinates, indexed by P, where for any x ∈ Nm! and

any p ∈ P, xp represents the number of voters having preference order p. Let Sm be the

group of permutations of the index set {1, 2, ..., m}. Each σ ∈ Sm induces permutations

of the alternatives (which we also denote by σ), and hence profiles, in the natural way.

We say that SCF is neutral if f ◦ σ = σ ◦ f for all σ ∈ Sm. An anonymous SCF f is

consistent if ∀x′, x′′ ∈ Nm! such that f(x′) ∩ f(x′′) 6= ∅, f(x′ + x′′) = f(x′) ∩ f(x′′), and

it is continuous if whenever f(x) = {ai}, ∀y ∈ Nm! there is a sufficiently large integer n

such that f(y + n′x) = {ai} for n′ ≥ n.
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We say that a SCF f has the cancellation property if whenever x is a profile such that

the number of voters preferring ai to aj equals that of preferring aj to ai for all pairs

ai 6= aj, then f(x) = A. A SCF is a simple scoring function, denoted by f s, if there is a

vector s = (s1, ..., sm) ∈ Rm of scores such that for any given profile, it assigns a score of

si to each voter’s i′th most preferred alternative and chooses the alternative(s) with the

highest total score at that profile.2 A SCF is trivial (f ∗) if ∀x ∈ Nm!, f ∗(x) = A. Note

that f ∗ is a simple scoring function with s = (0, ..., 0).

The following result is known as Young’s Theorem (Theorem 1.(ii) in Young, 1975):

Theorem 4.1 Let f be a SCF. Then, f is anonymous, neutral, consistent and continuous

if and only if it is a simple scoring function.

4.3 The axioms for scoring rules when m = 2

4.3.1 Two remarks on Young’s theorem

Before we consider the case of m = 2, we prove the following Lemma which holds for any

finite m.

Lemma 4.2 Suppose f is an anonymous, neutral and consistent SCF. Then,

(a) f is either trivial or it contains all the singletons of 2A\{∅} in its range:

∀ai ∈ A, ∃x ∈ Nm! such that f(x) = {ai}.

(b) Let e = (1, ..., 1) ∈ Nm!. Then, ∀n ∈ N, f(ne) = A.

Proof. (a) Note that when m = 1 the result is trivial. Suppose m ≥ 2. We show

that R(f), the range of f , includes at least one singleton {ai}. Then, the result follows

by neutrality. When m = 2, the claim is trivial since f 6= f ∗ immediately implies that

∃x ∈ N2! such that f(x) = {ai} for some ai ∈ {a1, a2}. Let m ≥ 3 and suppose R(f)

does not contain any singleton. Then, we claim that it can’t have any 2-element sets,

3 -element sets,..., (m − 1)-element sets. Because if R(f) has a 2-element set {ai, aj},

then by neutrality it has another 2-element set {ai, ak}. Then for x′ ∈ f−1({ai, aj}) and

x′′ ∈ f−1({ai, ak}), consistency implies that f(x′+x′′) = {ai}, which is a singleton. Hence,

we reach to a contradiction. Similarly, we conclude that R(f) can’t have any k-element

sets, for 3 ≤ k < m. But then, f = f ∗.

2Note that scoring rules constitute rather general class of voting procedures. In particular, the possi-
bility of assigning lower scores to more preferred alternatives is allowed.
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(b) We show that f(e) = A. Then the result follows by consistency. Note that e ∈ Nm!

is invariant under all permutations in Sm. Then f(e) must be so by neutrality. But in

2A\{∅}, the only set with that property is A. �

We remark here that Lemma 4.2 (b) is already established in Young (1975). Let us

now consider the case of m = 2. Our main result is the following:

Theorem 4.3 Let m = 2 and let f be a SCF. Then, f is anonymous, neutral and

consistent if and only if it is a simple scoring function.

Proof. Since the IF part is easy to verify we prove the ONLY IF part. For any x =

(x1, x2) ∈ N2 ⊂ R2
+, let x1 be the number of voters with preference p1 : a1 ≻ a2 and let

x2 be that with p2 : a2 ≻ a1. We shall partition N2 ⊂ R2
+ as follows:

D = {x ∈ N2 : x1 = x2};

D′ = {x ∈ N2 : x1 > x2};

D′′ = {x ∈ N2 : x1 < x2}.

Then by Lemma 4.2 (b), ∀x ∈ D, f(x) = {a1, a2}. We claim that ∀x′ ∈ D′, f(x′) = f(1, 0).

Suppose ∃x′ ∈ D′ such that f(x′) = f(1, 0). Then, by consistency

f(x′ + (1, 0)) = f(x′
1 + 1, x′

2) = f(1, 0)

and

f(x′ + (1, 1)) = f(x′
1 + 1, x′

2 + 1) = f(1, 0).

Hence, for any such x′ ∈ D′, its two immediate neighbors, one on the right side and one

on the upper right side, take the same value. Since (1, 0) ∈ D′, this proves our claim. By

neutrality, then ∀x
′′

∈ D
′′

, f(x
′′

) = f(0, 1). Then by Lemma 4.2 (a), f is either f ∗, or f1:

f1(x) =











A if x ∈ D

{a1} if x ∈ D′

{a2} if x ∈ D
′′

,

or f2:

f2(x) =











A if x ∈ D

{a2} if x ∈ D′

{a1} if x ∈ D
′′

.
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Since f1 and f2 correspond to f s with s1 > s2 and s1 < s2 respectively, the proof is

completed. �

Let us show that one can use the axioms of neutrality and cancellation property

interchangeably in Theorem 4.3.

Proposition 4.4 Let m = 2 and let f be an anonymous and consistent SCF. Then, f

has cancellation property if and only if it is neutral.

Proof. IF: We have shown in Lemma 4.2 (b) that anonymity, consistency and neutrality

imply that, ∀x ∈ D, f(x) = {a1, a2}. Since m = 2, any profile x ∈ N2 is such that the

number of voters who prefers a1 ≻ a2 is same as that of who prefers a2 ≻ a1, if and only

if x ∈ D. Hence, f satisfies the cancellation property.

ONLY IF: Suppose f satisfies anonymity, consistency and cancellation property, but

not neutrality: ∃y ∈ N2 such that f◦σ′(y) 6= σ′◦f(y) for some σ′ ∈ S2. The only candidate

for such σ′ ∈ S2 is σ
′ : a1 ⇆ a2. Note that if one of f ◦σ′(y) ∈ 2A\{∅} and f(y) ∈ 2A\{∅}

is A, then consistency implies that they both must be A, since σ′(y)+ y ∈ D and by can-

cellation property, f(σ′(y)+y) = A. But then f ◦σ′(y) = σ′ ◦f(y) = A which contradicts

to our assumption. Hence, none of f ◦ σ′(y) ∈ 2A\{∅} and f(y) ∈ 2A\{∅} is A. Suppose

f ◦σ′(y) = {ai} and f(y) = {aj} for i, j ∈ {1, 2}, i 6= j. Then f ◦σ′(y) = σ′ ◦ f(y) = {ai},

which is a contradiction. Hence, the only possibility left is f ◦ σ′(y) = f(y) = {ai} for

some i ∈ {1, 2}. Then by consistency f(σ′(y) + y) = {ai}, which contradicts to cancella-

tion property. This completes our proof. �

In our opinion, redundancy of the continuity axiom in Theorem 4.1 when m = 2 is

not so obvious until one proves Theorem 4.3. However, one can also verify it directly

from Theorem 1.(i) in Young (1975) which states that a SCF is anonymous, neutral and

consistent if and only if it is a (composite) scoring function. Provided that Theorem 1.(i)

is proven, it suffices to notice that when m = 2, a composition g = f s2 ◦ f s1 of two

simple scoring functions f s1, f s2, defined as g(x) = f s1(x) if f s1(x) ⊆ A is a singleton set,

otherwise apply f s2 to break the ties in f s1(x), is a simple scoring function. Note that

there are two possibilities: either f s1 is trivial or it is not. Suppose f s1 = f ∗. Then, since

g = f s2 ◦ f ∗ = f s2, g is a simple scoring function. Now suppose f s1 6= f ∗. Then, since

when m = 2, f s1(x) produces ties if and only if x ∈ D and since f s2(x) = A for x ∈ D,

we conclude that g = f s1, hence g is a simple scoring function.
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4.3.2 Allowing for indifferences in voters’ preferences

Let us now change our initial setting by allowing indifferences in the individual’s pref-

erences, hence enlarging the domain of SCF. Sets A, Sm and N are defined as above in

Section 4.2. Let W be the set off all weak preference orders on A. For any finite V ⊂ N, an

extended profile is a function from V to W and an extended social choice function (ESCF)

is a function from set Y of all extended profiles to the set 2A\{∅}. An ESCF is said to

be anonymous if it depends only on the number of voters associated with each preference

order. We can represent the domain of an anonymous ESCF by N#W. The notions of

neutrality, consistency and cancellation property for an ESCF are defined analogously to

that for a SCF.

Since scoring rules are initially defined for profiles with strict preferences in Section

4.2, it needs to be generalized. As we are eventually interested in the case of m = 2, we

impose a rather weak condition in our generalization: whenever alternatives are indifferent

to each others at a given preference they must receive the same score (for a more specific

generalization which applies to the case of any finite m, see Vorsatz, 2008). So when

m = 2, an ESCF is a simple scoring function, denoted by F s, if there is a vector s =

(s1, s2, s3) ∈ R3 of scores such that for any given profile, it assigns a score of si to each

voter’s i′th strictly most preferred alternative, for i = 1, 2, and assigns a score of s3 to

each voter’s indifferent alternatives, and chooses the alternative(s) with the highest total

score at that profile. An ESCF is trivial (F ∗) if ∀x ∈ N#W, F ∗(x) = A. Note that when

m = 2, F ∗ is a simple scoring function with s = (0, 0, 0).

Theorem 4.5 Let m = 2 and let F be an ESCF. Then, F is anonymous, neutral and

consistent if and only if it is a simple scoring function.

Proof. IF: F s is clearly anonymous since the outcome of F s depends only on the total

scores and that in turn depends only on the number of voters associated with each pref-

erence. F s is neutral since exchanging the roles of a1 and a2 is same as exchanging the

total scores received by each. F s is consistent since the total score received by ai under

x + y ∈ N3 is the sum of the scores received under each of x, y ∈ N3, for any x, y ∈ N3

and i = 1, 2.

ONLY IF: For any x = (x1, x2, x3) ∈ N3 ⊂ R3
+, let x1, x2 and x3 be the number of

voters with the preferences p1 : a1 ≻ a2, p2 : a2 ≻ a1 and p3 : a1 ∼ a2, respectively. We
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shall partition N3 ⊂ R3
+ as follows:

D3 = {x ∈ N3 : x1 = x2, x3 ∈ N};

D′
3 = {x ∈ N3 : x1 > x2, x3 ∈ N};

D′′
3 = {x ∈ N3 : x1 < x2, x3 ∈ N}.

Firstly, note that ∀x ∈ D3, F (x) = {a1, a2} since x ∈ D3 is invariant under all permuta-

tions in S2 (recall that the indifference relation is symmetric) and by neutrality so must

be F (x). But the only set with that property in {a1}, {a2} and {a1, a2} is the very last

one.

Let Pn ⊂ N3 be defined as follows: ∀n ∈ N,Pn = {x ∈ N3 : x1, x2 ∈ N, x3 = n}.

We claim that for n ≥ 1, if F (x) = F (1, 0, 0), ∀x ∈ Pn−1 ∩ D′
3, then F (x) = F (1, 0, 0),

∀x ∈ Pn ∩ D′
3. Suppose y ∈ Pn−1 ∩ D′

3 and F (y) = F (1, 0, 0). Then by consistency,

F (y + (0, 0, 1)) = F (y) = F (1, 0, 0) since (0, 0, 1) ∈ D3 and F (0, 0, 1) = A. But for

n ≥ 1, Pn = {x ∈ N3 : x = y + (0, 0, 1), y ∈ Pn−1} and this proves our claim.

Recall that we already showed in the proof of Theorem 4.3 that F (x) = F (1, 0, 0),

∀x ∈ P0∩D
′
3. Hence, we conclude that ∀x ∈ D′

3, F (x) = F (1, 0, 0), and then by neutrality,

∀x ∈ D′′
3 , F (x) = F (0, 1, 0). To complete the proof, suppose F 6= F ∗, then F includes all

singletons in its range since F 6= F ∗ implies that ∃x ∈ N3 such that F (x) = {ai} for some

ai ∈ A and hence by neutrality, ∃xi ∈ N3 such that F (xi) = {ai}, for i = 1, 2. Combining

our last observation with the above conclusions, we have established that F is either F ∗,

or F1 :

F1(x) =











A if x ∈ D3

{a1} if x ∈ D′
3

{a2} if x ∈ D
′′

3

,

or F2 :

F2(x) =











A if x ∈ D3

{a2} if x ∈ D′
3

{a1} if x ∈ D
′′

3

.

Since F1 and F2 correspond to F s with s1 > s2 and s1 < s2 respectively, the proof is

completed. �

Let us now derive a variant of May’s theorem from Theorem 4.5 above. First, we

need to introduce some more properties for anonymous ESCFs. For any extended profile

x ∈ N3, let N(ai, x) ∈ N be the number of voters who prefers (weakly) ai to aj at x ∈ N3,
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for i, j ∈ {1, 2} and i 6= j. An anonymous ESCF is a simple majority rule (FM) if

FM(x) =

{

{ai} if N(ai, x) > N(aj , x)

{a1, a2} if N(ai, x) = N(aj , x)

for i, j ∈ {1, 2}, i 6= j. It is an inverse simple majority rule (F−M) if

F−M(x) =

{

{ai} if N(ai, x) < N(aj , x)

{a1, a2} if N(ai, x) = N(aj , x)

for i, j ∈ {1, 2}, i 6= j. Finally, anonymous ESCF is positive responsive to voter addition

(positive responsiveness) if whenever ai ∈ F (x) for x ∈ N3, and y ∈ N3 is obtained from

x ∈ N3 by adding one more voter with preferences of ai ≻ aj, we have F (y) = {ai}, for

i, j ∈ {1, 2}, i 6= j. The second part of the following result is a variant of May’s Theorem

(May (1952)):

Theorem 4.6 Let m = 2 and let F be an ESCF. Then,

(a) F is anonymous, neutral and consistent if and only if it is either trivial, or a simple

majority rule, or an inverse majority rule and

(b) F is anonymous, neutral and positive responsive if and only if it is a simple majority

rule.

Proof. Since the IF parts are easy we prove the ONLY IF parts.

(a) By definition, F1 and F2 in the proof of Theorem 4.5 correspond to simple majority

rule and inverse simple majority rule, respectively.

(b) We present two proofs.

1. Let us show that positive responsiveness with anonymity and neutrality imply

consistency. From the proof of Theorem 4.5, we know that anonymity and neutrality

imply that, ∀x ∈ D3, F (x) = {a1, a2}. For any x = (x1, x2, x3) ∈ N3, let xD3 ∈ D3 be

defined as xD3 = (min{x1, x2},min{x1, x2}, x3). We can write x as x = xD3 + (x− xD3).

We claim that F (x) = F (x − xD3). Note that if x ∈ D3, then F (x) = F (0) = A, hence

the claim is true. Suppose x /∈ D3. Then one can generate x ∈ N3 from xD3 ∈ D3 and

x−xD3 ∈ N3 from 0 ∈ D3 by one and the same procedure: if x1 > x2, adding |x1 − x2| > 0

voters, one at a time, who strictly prefers a1 to a2, if otherwise adding the same number of

voters with the reverse preferences. Then, by positive responsiveness, F (x) = F (x−xD3)

as we claimed, and moreover, F (x) = A if and only if x = xD3 ∈ D3.
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Suppose x, y ∈ N3 are such that F (x) ∩ F (y) 6= ∅. We can express as F (x) ∩ F (y) =

F (x − xD3) ∩ F (y − yD3). Let z = x + y and notice that zD3 = xD3 + yD3 , since the

’min’ operator is additive. Hence, F (z) = F (xD3 + yD3 + (x − xD3) + (y − yD3)) =

F ((x−xD3)+(y−yD3)). We claim that F ((x−xD3)+(y−yD3)) = F (x−xD3)∩F (y−yD3).

Notice that if at least one of x, y is in D3, then the claim is established: if x ∈ D3, then

x = xD3 and F (x − xD3) = A. Suppose x, y /∈ D3. Then, F (x − xD3) ∩ F (y − yD3) 6= ∅

implies F (x− xD3) = F (y − yD3) = {ai} for some i ∈ {1, 2}. By positive responsiveness,

that is only possible if min{x1, x2} = xj and min{y1, y2} = yj for j ∈ {1, 2} and j 6= i.

Then by positive responsiveness, F ((x− xD3) + (y − yD3)) = {ai} since one can generate

(x− xD3) + (y − yD3) ∈ N3 from 0 ∈ D3 by adding (xi − xj) + (yi − yj) many voters with

strict preferences of ai ≻ aj. Hence, our second claim is established, which then implies

that F is consistent.

Then, the result in part (a) implies that F is one of F ∗, F1 and F2. But none of F ∗

and F2 satisfies positive responsiveness. Hence, F = F1 which is the simple majority rule.

2. The proof above is rather indirect and a more direct proof is as follows. We know

that anonymity and neutrality imply that, ∀x ∈ D3, F (x) = {a1, a2}. We claim that

∀x′ ∈ D′
3, F (x′) = {a1}. Suppose x′ = (x′

1, x
′
2, x

′
3) ∈ D′

3. Consider x
∗ = (x′

2, x
′
2, x

′
3) ∈ D3.

Then, F (x∗) = {a1, a2}. We can generate x′ from x∗ by adding (x′
1 − x′

2) voters, one at

a time, with the preferences of a1 ≻ a2. Then by positive responsiveness, F (x′) = {a1}.

Hence, ∀x′ ∈ D′
3, F (x′) = {a1} and by neutrality, ∀x

′′

∈ D
′′

3 , F (x
′′

) = {a2}, which imply

that F = F1, which is the simple majority rule. �

May (1952) axiomatizes majority rule with anonymity, neutrality and strong mono-

tonicity. The main difference between May’s Theorem and Theorem 4.6 (b) is, May (1952)

considers a fixed electorate setting while we consider a variable electorate setting. Then,

the axiom of positive responsiveness to voter addition should be seen as a modification of

the strong monotonicity axiom to the new setting.3

Let us show that one can use cancellation property axiom instead of neutrality in

Theorem 4.5 and 4.6.

Proposition 4.7 Let m = 2 and let F be an anonymous ESCF. Then,

(a) If F is consistent then it has cancellation property if and only if it is neutral, and

3Strictly speaking, positive responsiveness to voter addition can not be stated in the original setting
with fixed electorate. But it captures the underlying idea of the strong monotonicity axiom, and hence
Theorem 4.6 (b) can be seen as a variant of May’s Theorem.
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(b) If F has cancellation property and is positive responsive then it is consistent.

Proof. (a) IF: We have shown in the proof of Theorem 4.5 that anonymity, consistency

and neutrality imply that, ∀x ∈ D3, F (x) = A. Since m = 2, any profile x ∈ N3 is such

that the number of voters who prefers a1 & a2 is same as that of who prefers a2 & a1, if

and only if x ∈ D3. Hence, F satisfies the cancellation property.

ONLY IF: Let F|P0
be restriction of F into P0 = {x ∈ N3 : x1, x2 ∈ N, x3 = 0} ⊂ N3.

Note that F|P0 is a SCF and since F satisfies anonymity, consistency and cancellation

property, so is F|P0
. Then by Proposition 4.4, we conclude that F|P0

satisfies neutrality.

Note also that by cancellation property, F (0, 0, 1) = A, which implies that F (0, 0, x3) = A

for all x3 ≥ 1, by consistency. Then, we conclude that ∀x = (x1, x2, x3) ∈ N3 such that

x3 ≥ 1, F (x1, x2, x3) = F (x1, x2, 0) = F|P0(x1, x2) since F (x1, x2, x3) = F (x1, x2, 0) +

F (0, 0, x3) = F (x1, x2, 0), where the last equality follows by consistency. Then, ∀x ∈

N3, ∀σ ∈ S2, F ◦ σ(x) = F|P0 ◦ σ(x) = σ ◦ F|P0(x1, x2) = σ ◦ F (x) since the first and the

last equality follows by our second conclusion, while the second equality follows by our

first conclusion, and hence F is neutral.

(b) We prove the statement indirectly showing that anonymity, cancellation prop-

erty and positive responsiveness imply that F = FM . By definition, cancellation prop-

erty implies that ∀x ∈ D3, F (x) = {a1, a2}. Repeating the same argument as above

in the second proof of Theorem 4.6 (b), we conclude that, by positive responsiveness,

∀x′ ∈ D′
3, F (x′) = {a1}. Let x

′′

= (x
′′

1 , x
′′

2 , x
′′

3) ∈ D
′′

3 . Consider x∗ = (x
′′

1 , x
′′

1 , x
′′

3) ∈ D3.

Then, F (x∗) = {a1, a2}. We can generate x
′′

from x∗ by adding (x
′′

2 − x
′′

1) voters, one at

a time, with the preferences of a2 ≻ a1. Then by positive responsiveness, F (x
′′

) = {a2}.

Hence ∀x
′′

∈ D
′′

3 , F (x
′′

) = {a2}. So, F = FM and hence, it is consistent. �

4.4 Final comments

When it is presented Young’s Theorem is often accompanied by the following remark: ”its

proof is difficult and omitted” (see for instance, Chap. 9 in Moulin, 1988). However, the

analysis above shows that in the special case of voting over two alternatives it can easily

be proved. One may also wonder whether the axiom of continuity can be eliminated when

there are more than two alternatives. The answer to this question is negative since the

example of a (composite) scoring function satisfying the axioms of anonymity, neutrality

and consistency but not continuity, given in Section 3 of Young (1975), can easily be

extended to the case of any finite (but three or more) alternatives. This observation
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implies that any such elimination contradicts Theorem 1 in Young (1975).

It may seem that the setting with two alternatives is rather restrictive, especially in

the context of scoring rules. However, note that the analysis of this simple case can

shed a light on possible improvements of some of the axiomatization results in voting

theory. For instance, as majority rule and approval voting (AV) coincide when m = 2,

the result in Theorem 4.6 (a) is related to the axiomatization of AV in Fishburn (1978).

In the simple case it is easy to see that the axioms of neutrality and cancellation can

be used interchangeably (see Proposition 4.7). On the other hand, Alós-Ferrer (2006)

shows that one can drop neutrality in the presence of anonymity, consistency, cancellation

and faithfulness in Fishburn (1978)’s axiomatization of AV. Hence, Alós-Ferrer (2006)’s

result can be seen as an extension of Theorem 4.6 (a). Finally, note also that Theorem

4.6 (a) admits another extension: one can keep neutrality and drop cancellation in the

axiomatization of AV, which is, to my best knowledge, an open question.
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Chapter 5

Approval Voting without

Faithfulness

Abstract: In this short note, we analyze the implications of dropping the axiom of

faithfulness in the axiomatization of Approval Voting, due to P.C. Fishburn. We show that

a ballot aggregation function satisfies the remaining axioms (neutrality, consistency and

cancellation) if and only if it is either a function that chooses the whole set of alternatives,

or an Approval Voting, or a function that chooses the least approved alternatives.

JEL: D71, D72

Keywords: Approval voting, Faithfulness, Inverse approval voting

5.1 Introduction

There are a number studies related to axiomatization of Approval Voting (AV) in the

literature (for a survey, see Hu, 2010). Early results on this problem are due to Fishburn

(1978a, 1978b). Fishburn (1978a) shows that AV is the only ballot aggregation function

(BAF) satisfying the axioms of neutrality, consistency, cancellation and faithfulness, while

Fishburn (1978b) axiomatizes AV with the axioms of neutrality, consistency and disjoint

equality. Alós-Ferrer (2006) shows that one can drop the axiom of neutrality in the

axiomatization of Fishburn (1978a).

The primary objective of this short paper is to investigate the implications of dropping

the axiom of faithfulness in the axiomatization of Fishburn (1978a), hence to analyze

cutting power of this axiom. Our main finding is (Theorem 5.1 in Section 5.2), a BAF

satisfies the axioms of neutrality, consistency and cancellation if and only if it is either
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a trivial function that chooses the whole set of alternatives at all profiles, or AV, or its

inverse, that is a function that chooses the least approved alternatives.

5.2 Characterization

Let N denote the set of nonnegative integers. Let X be a (finite) set of alternatives and

let S be the set of all permutations of X . For σ ∈ S and Y ⊆ X , σ(Y ) ⊆ X is the image

of Y under σ. A ballot B is a nonempty subset of X and let B = 2X\{∅} be the set of

all admissible ballots. Voters can cast any ballot, approving as many candidates as they

want. A voter response profile is a function π : B→ N such that π(B) is the number of

voters who cast ballot B. Let Π be the set of all possible voter response profiles, including

the empty profile π0 with π0(B) = 0 for all B ∈ B. A ballot aggregation function (BAF)

is a correspondence f which assigns to every possible voter response profile π ∈ Π, a

nonempty set of selected alternatives, ∅ ( f(π) ⊆ X . A BAF is an approval voting (fA )

if

fA(π) = argmax
∑

x∈X

{π(B) : x ∈ B ∈ B},

it is an inverse approval voting (f−A) if

f−A(π) = argmin
∑

x∈X

{π(B) : x ∈ B ∈ B},

and it is a trivial function (f ∗) if f ∗(π) = X, ∀π ∈ Π.

Given x ∈ X and π ∈ Π, the number of voters who approve of x in π is given by

v(x, π) =
∑

{π(B) : x ∈ B ∈ B}.

For any B ∈ B, let πB ∈ Π denote the voter response profile with πB(B) = 1 and

πB(B
′) = 0 for all B′ 6= B, i.e. πB consists of only one ballot B. When B ∈ B consists of

a single element x ∈ X , we write πx instead of π{x}. For any π, π′ ∈ Π, π + π′ ∈ Π is a

voter response profile with (π + π′)(B) = π(B) + π′(B), ∀B ∈ B, and whenever π, π′ ∈ Π

are such that π(B) = π′(B),∀B ∈ B, we write π = π′.

A BAF satisfies

Neutrality: if f(π ◦ σ) = σ(f(π)) for every σ ∈ S and for every π ∈ Π, where π ◦ σ ∈ Π

is defined as (π ◦ σ)(B) = π(σ(B)), ∀B ∈ B;

Faithfulness: if f(πB) = B for all B ∈ B;

56



5.2. CHARACTERIZATION

Consistency: if whenever f(π)∩f(π′) 6= ∅ for π, π′ ∈ Π, we have f(π+π′) = f(π)∩f(π′);

Cancellation: if whenever π ∈ Π satisfies v(x, π) = v(y, π) for all x, y ∈ X , then f(π) =

X .

For interpretations of the axioms, see Fishburn (1978a,b) and Hu (2010). We now

state and prove our main result (of which part (b) is already established in Fishburn

(1978a)):

Theorem 5.1 Let f be a BAF. Then

(a) f satisfies neutrality, consistency and cancellation if and only if it is either a trivial

function, or an approval voting, or an inverse approval voting, and

(b) in addition, such f is faithful if and only if it is an approval voting.

Proof. Since the IF parts are easy to prove, we prove the ONLY IF parts.

(a) We proceed in 4 steps. We remark here that Steps 2, 3 in our proof are the same

as Steps 1, 2 in the proof of Theorem 1 in Alós-Ferrer (2006).

Step 1: Let us prove that for all B ⊆ X , f(πB) is either B, or X\B or X , and similarly,

f(
∑

x∈B

πx) is either B, or X\B or X . To see this, note that both πB ∈ Π and
∑

x∈B

πx ∈ Π are invariant under any permutation σB ∈ S that permutes the elements

of B and X\B in an arbitrary way, but does not interchange the elements of these

two sets. That is, for any such σB ∈ S,

πB ◦ σB = πB

and

(
∑

x∈B

πx) ◦ σB =
∑

x∈B

πx.

Then, by neutrality so must be f(πB) and f(
∑

x∈B

πx): for any such σB ∈ S,

σB(f(πB)) = f(πB)

and

σB(f(
∑

x∈B

πx)) = f(
∑

x∈B

πx).

But it is easy to check that the only sets in 2X\{∅} with such property (invariant

under any σB ∈ S) are B, X\B and X .

57



CHAPTER 5. APPROVAL VOTING WITHOUT FAITHFULNESS

Step 2: Let us prove that for all π ∈ Π and for all B′, B′′ ⊆ X such that B′ ∩ B′′ = ∅,

we have

f(π + πB′∪B′′) = f(π + πB′ + πB′′).

To see this, note that cancellation implies that

f(πB′ + πB′′ + πX\(B′∪B′′)) = X.

Then, by consistency,

f(π + πB′∪B′′) = f(π + πB′∪B′′ + πB′ + πB′′ + πX\(B′∪B′′)).

Note also that by cancellation,

f(πB′∪B′′ + πX\(B′∪B′′)) = X

and then by consistency,

f(π + πB′ + πB′′) = f(π + πB′ + πB′′ + πB′∪B′′ + πX\(B′∪B′′)).

Hence,

f(π + πB′∪B′′) = f(π + πB′ + πB′′). [1]

Step 3: Let π ∈ Π be an arbitrary voter response profile. Let π′ ∈ Π be such that

v(x, π) = v(x, π′) for all x ∈ X , but π′ consists only of singleton ballots, i.e. π′(B) >

0 implies that |B| = 1. The profile π′ is constructed from π by taking apart each

ballot cast under π into separate, singleton ballots. Then iteration of [1], starting

from π0 ∈ Π, shows that f(π) = f(π′).

Step 4: Let x ∈ X be any alternative and consider πx ∈ Π. By Step 1, f(πx) is either

{x}, or X\{x}, or X . We show that these possibilities correspond, respectively, to

the cases of f being either fA, or f−A, or f ∗.

Case 1: Let f(πx) = {x}. By neutrality, f(πy) = {y} for any y ∈ X . We claim that for

all B ⊆ X , f(πB) = B, i.e. f is faithful. Since by cancellation (or by neutrality),

f(πX) = X , we may assume that B ( X . Note that by Step 1, f(πB) is either B,

or X\B, or X . Suppose f(πB) 6= B, then consistency implies that for z ∈ X\B,

f(πB + πz) = f(πB) ∩ f(πz) = {z}.
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By [1],

f(πB + πz) = f(πB∪{z}),

which implies that f(πB∪{z}) = {z}. But that contradicts to Step 1. So, f(πB) = B

and the claim is established. Then, by repeating the same argument as in Step 3 of

the proof of Theorem 1 in Alós-Ferrer (2006), we can conclude that f = fA.

Case 2: Let f(πx) = X\{x}. By neutrality, f(πy) = X\{y} for all y ∈ X . We claim

that for all B ( X , f(πB) = X\B. Note that by [1],

f(πB) = f(
∑

z∈B

πz),

and starting from any two elements, z1, z2 ∈ B, by repeated use of consistency,

f(
∑

z∈B

πz) =
⋂

z∈B

X\{z} = X\B

which implies that, f(πB) = X\B and the claim is established. Let π ∈ Π be a

given profile. Let K = max{v(x, π)} and note that K is well defined since X is

finite. For each k = 0, ..., K, we define Bk = {x ∈ X : v(x, π) = k}. Then, the sets

Bk form a partition of X . Consider the profile

π∗ = πBK
+ πBK∪BK−1

+ ...+ πBK∪BK−1∪...∪B1.

Since for B ( X , f(πB) = X\B and f(πX) = X , consistency implies that

f(π∗) = X\(BK ∪BK−1 ∪ ... ∪Bj+1) = Bj ,

where j = min{k : Bk 6= ∅}.1 But iteration of [1] implies that f(π∗) = f(π′) and

by Step 3, we conclude that f(π) = Bj . Thus, f = f−A.

Case 3: Let f(πx) = X . Then by neutrality, f(πy) = X for all y ∈ X . We claim that

for all B ⊆ X , f(πB) = X . Since f(πX) = X by cancellation (or by neutrality), we

can assume that B ( X . By consistency,

f(πB +
∑

z∈X\B

πz) = f(πB) ∩
∑

z∈X\B

f(πz) = f(πB)

1Notice that by construction, BK ∪BK−1 ∪ ...∪Bj = X , and hence for 0 ≤ i ≤ j, f(πBK∪...∪Bi
) = X .

59



CHAPTER 5. APPROVAL VOTING WITHOUT FAITHFULNESS

since ∀z ∈ X\B, f(πz) = X . But by cancellation,

f(πB +
∑

z∈X\B

πz) = X.

Hence, f(πB) = X and the claim is established. As in Case 2, let us consider π∗ ∈ Π.

Since f(πBk
) = X , consistency implies that f(π∗) = X . But iteration of [1] implies

that f(π∗) = f(π′) and by Step 3, we conclude that f(π) = X . Thus, f = f ∗.

(b) Clearly, none of f−A and f ∗ is faithful. Hence, f = fA. �

5.3 Final Remarks

From the outset, it may seem that the primary role of the axiom of faithfulness is to fix

an orientation, i.e. to set the right direction. The analysis above clarifies that intuition:

in the axiomatization of Approval Voting (AV) in Fishburn (1978a), faithfulness helps us

to distinguish AV from a function that always chooses the whole set of alternatives, and

a function that always chooses the least approved alternatives.
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Chapter 6

Another Direct Proof for the

Gibbard-Satterthwaite Theorem 1

Abstract: We prove the following result which is equivalent to the Gibbard- Satterth-

waite Theorem: when there are at least 3 alternatives, for any unanimous and strategy-

proof social choice function, at any given profile if an individual’s top ranked alternative

differs from the social choice, then she can not change the social choice at that profile by

changing her ranking. Hence, proving it yields a new proof for the Gibbard-Satterthwaite

Theorem.

JEL: D71, D72

Keywords: the Gibbard-Satterthwaite theorem, Strategy-proofness, Option sets

6.1 Introduction

There are a number of elegant proofs for the Gibbard-Satterthwaite (G-S) Theorem (Gib-

bard, 1973; Satterthwaite, 1975) in the literature: see for instance, Schmeidler and Son-

nenschein (1978), Barberà (1983), Barberà and Peleg (1990), Benoit (2000), Reny (2001),

Sen (2001), Cato (2009), and for a survey, see Section 3.3 in Barberà (2011).

This paper suggests yet another approach to prove this classic result. We prove it

in two steps. First, in Theorem 6.3 in Section 6.3 we show that when there are at least

3 alternatives, if a social choice function is unanimous and strategy-proof, then for any

given preference profile, if an individual is not a candidate for a dictator (an individual

whose choice coincides or determines group’s choice), then she can not change the social

1Published in Economics Letters, 2012, 116 (3): 418-421.
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choice at that profile by unilateral deviation. Then, in the second step we verify that such

social choice function is necessarily dictatorial, hence deduce the G-S Theorem from this

result (Corollary 6.4).

Our approach differs from some of the existing proofs in the following sense: contrary

to some of the existing proofs, our focus is not on the potential candidates for a dictator of

a social choice function (e.g., pivotal voter in Barberà, 1983; stepwise procedures focusing

on extremely pivotal voter used in Benoit, 2000 and Reny, 2001), but on the individuals

who are not candidates for a dictator. It also implies that the result in Theorem 6.3 is

equivalent to the G-S Theorem since one can easily deduce the former from the latter.

Among the existing proofs mentioned above, our approach is close to that of Barberà

and Peleg (1990), which introduced the notion of (group) option set: under an N individ-

ual social choice function, an option set of a group of N − 1 individuals at a given profile

is the set of alternatives that they can achieve by changing their rankings collectively,

keeping the other individual’s ranking fixed (see Defn. 5.2 in Barberà and Peleg, 1990).

They showed that if a social choice function is unanimous and strategy-proof, then the

option sets are either a singleton or the full set of alternatives (see Lemma 2.9 and 5.7

in Barberà and Peleg, 1990). In contrast, our result in Theorem 6.3 shows that for any

unanimous and strategy-proof social choice function, at any given profile if an individual

is not a candidate for a dictator, then her option set (i.e. the set of alternatives that she

can achieve by a unilateral deviation) is a singleton.

When N = 2, Barberà and Peleg (1990)’s group option set is the same as individual’s

option set and consequently, in that case, Theorem 6.3 in Section 6.3 is an immediate

corollary of Lemma 2.9 in Barberà and Peleg (1990). However, when N > 2, the connec-

tion between our result in Theorem 6.3 and their result in Lemma 5.7 is less immediate:

when the number of alternatives is finite in Barberà and Peleg (1990), both results are

equivalent to the G-S Theorem, hence equivalent to each others, but none is an immediate

corollary of the other.

In the next section, we introduce our notation and the main definitions. Section 6.3

gives the main result and our proof of the G-S Theorem and the last section concludes.

6.2 The preliminaries

Let A denote the set of alternatives with n ∈ N elements and let X denote the set

of strict linear orders (strict rankings) on A. Let there be N individuals in the group

I = {1, 2, ..., N}. A function f : XN → A is called as a social choice function. A member
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x = (x1, ..., xN) of XN is called a profile of rankings (or simply a profile) and its i′th

component, xi, is called the individual i′s ranking. When a is ranked above b according

to xi we write a ≻xi
b. ∀x ∈ XN and ∀i ∈ I, let (x′

i, x−i) ∈ XN denote the profile that has

x′
i ∈ X in its i′th component instead of xi ∈ X, and otherwise same as x ∈ XN . Under a

social choice function f , an option set of individual i ∈ I at a given profile x ∈ XN is the

set of alternatives that i can achieve by a unilateral deviation:

Oi(x) = {a ∈ A : ∃x′
i ∈ X s.t f(x′

i, x−i) = a}.

We say that a social choice function f : XN → A is unanimous (UNM) if ∀a ∈ A,

whenever a is on top of xi for i = 1, ..., N , then f(x) = a. It is manipulable (MNP)

at x ∈ XN by i ∈ I via x′
i ∈ X if f(x′

i, x−i) ≻xi
f(x). It is strategy-proof (STP) if it

is not manipulable. Finally, it is dictatorial (DT) if ∃i ∈ I, referred to as the dictator,

such that ∀x ∈ XN , ∀a ∈ A, f(x) = a if and only if a is at the top of xi. The following

result is known as the G-S Theorem (Gibbard 1973; Satterthwaite, 1975):

Theorem 6.1 If n ≥ 3, a social choice function f : XN → A is UNM and STP if and

only if it is DT.

6.3 The main result and the proof

Throughout this section we assume that n ≥ 3. Let f : XN → A be a given social choice

function and let x ∈ XN be a given profile. Let Gf
1(x) ⊆ I be the set of individuals

i ∈ I who ranks f(x) at the top of their rankings, xi, and let Gf
2(x) = I\Gf

1(x) be its

complement in I.

We first prove the following result which is a 2 individual case of our main result in

Theorem 6.3.

Lemma 6.2 Let N = 2 and let f : X2 → A be a UNM and STP social choice function

and let x ∈ X2 be a given profile. Then,

(a) Gf
1(x) 6= ∅ and

(b) If i ∈ Gf
2(x), then Oi(x) = {f(x)}.

Proof. (a) Suppose x ∈ X2 is such that Gf
1(x) = ∅. Let a be at the top of x1 and b

be at the top of x2 and let f(x) = c where c is distinct from a and b. By UNM, a 6= b.

Consider x′
1 = (a ≻ b ≻ c ≻ ...) and x′

2 = (b ≻ a ≻ c ≻ ...). Then, f(x′
1, x2) = b since
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f(x′
1, x2) 6= a as otherwise f is MNP at x ∈ X2 by 1 via x′

1 and f(x′
1, x2) can not be any

alternative that is ranked below b in x′
1 since otherwise f is MNP at (x′

1, x2) ∈ X2 by 1

via any x′′
1 ranks b at the top. Similarly, f(x1, x

′
2) = a. Note that f(x′

1, x
′
2) = a since

otherwise f is MNP at (x′
1, x

′
2) ∈ X2 by 1 via x1. But then f is MNP at (x′

1, x
′
2) ∈ X2 by

2 via x2. Hence a contradiction. We remark here that this claim is already established in

Sen (2001).

(b) Without loss of generality we may assume that 2 ∈ Gf
2(x). By (a), then 1 ∈ Gf

1(x)

and let f(x) = a. If a is at the bottom of x2 and f(x1, x
′
2) 6= a for some x′

2 ∈ X , then

f is MNP at x ∈ X2 by 2 via x′
2. Hence, the statement is true. Let x2 = (b1 ≻ ... ≻

bk−1 ≻ a ≻ ck+1 ≻ ... ≻ cn) for some k = 2, ..., n − 1. Then, ∄x′
2 ∈ X such that

f(x1, x
′
2) ∈ {b1, ..., bk−1} since otherwise f is MNP at x ∈ X2 by 2 via x′

2. Suppose

∃x′
2 ∈ X such that f(x1, x

′
2) = c ∈ {ck+1, ..., cn}. Then, the following cross examinations

lead us to a contradiction. Let x′′
2 be a ranking with x′′

2 = (b1 ≻ c ≻ a ≻ ...). Then,

f(x1, x
′′
2) 6= b1 since otherwise f is MNP at (x1, x2) ∈ X2 by 2 via x′′

2, and f(x1, x
′′
2) can

not be any alternative ranked below c in x′′
2 since otherwise f is MNP at (x1, x

′′
2) ∈ X2

by 2 via x′
2. Hence, f(x1, x

′′
2) = c.

Consider x′
1 = (a ≻ b1 ≻ c ≻ ...). Then, f(x′

1, x2) = a since otherwise f is MNP

at (x′
1, x2) ∈ X2 by 1 via x1. We claim that f(x′

1, x
′′
2) = c. Since f(x1, x

′′
2) = c,

f(x′
1, x

′′
2) ∈ {a, b1, c} since otherwise f is MNP at (x′

1, x
′′
2) ∈ X2 by 1 via x1. But

f(x′
1, x

′′
2) 6= a since otherwise f is MNP at (x1, x

′′
2) ∈ X2 by 1 via x′

1. Note also that

f(x′
1, x

′′
2) 6= b1 since otherwise f is MNP at (x′

1, x2) ∈ X2 by 2 via x
′′

2 . Hence, f(x
′
1, x

′′
2) = c.

Consider now x′′ = (x
′′

1 , x
′′
2) ∈ X2 such that b1 is at the top of x′′

1. Then, f(x
′′) 6= b1 since

otherwise f is MNP at (x′
1, x

′′
2) ∈ X2 by 1 via x′′

1. But by UNM, f(x′′) = b1, hence a

contradiction. �

Our main result is as follows:

Theorem 6.3 Let N ≥ 2 and let f : XN → A be a UNM and STP social choice function

and let x ∈ XN be a given profile. Then,

(a) Gf
1(x) 6= ∅ and

(b) If i ∈ Gf
2(x), then Oi(x) = {f(x)}.

Proof. (a) Suppose x ∈ XN is such that Gf
1(x) = ∅. Let a ∈ A be the top alternative in

x1 and let xk be the next ranking whose top alternative differs from a, i.e.

k = min{1 < i ≤ N : the top of xk 6= a}.
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By UNM such xk must exist. Let b ∈ A be the top alternative of xk and let f(x) = c.

Consider x′
1 = (a ≻ b ≻ c ≻ ...) and x′

k = (b ≻ a ≻ c ≻ ...). Then, f(x′
1, x−1) ∈ {b, c}

since f(x′
1, x−1) 6= a as otherwise f is MNP at x ∈ XN by 1 via x′

1, and f(x′
1, x−1) ∈ A

can not be any alternative that is ranked below c in x′
1 since otherwise f is MNP at

(x′
1, x−1) ∈ XN by 1 via x1. Similarly, f(x′

k, x−k) ∈ {a, c}. There are 4 possible cases:

A. f(x′
1, x−1) = b, f(x′

k, x−k) = a,

B. f(x′
1, x−1) = b, f(x′

k, x−k) = c,

C. f(x′
1, x−1) = c, f(x′

k, x−k) = a,

D. f(x′
1, x−1) = c, f(x′

k, x−k) = c.

Suppose A is the case. Then, f(x′
1, x2, ..., x

′
k, ..., xN ) = a since otherwise f is MNP at

(x′
1, x2, ..., x

′
k, ..., xN ) ∈ XN by 1 via x1. But then f is MNP at (x′

1, x2, ..., x
′
k, ..., xN ) ∈ XN

by k via xk. Hence a contradiction and A can not be the case. Suppose f(x′
k, x−k) = c

as in the cases of B and D. Then,

f(x1, ..., xk−1, x
′
1, ..., xN) = c [1]

since f(x1, ..., xk−1, x
′
1, ..., xN ) /∈ {a, b} as otherwise f is MNP at (x′

k, x−k) ∈ XN by k via

x′
1. Similarly, f(x1, ..., xk−1, x

′
1, ..., xN) ∈ A can not be any alternative ranked below c in

x′
1, since otherwise f is MNP at (x1, ..., xk−1, x

′
1, ..., xN) ∈ XN by k via x′

k. Note that by

construction a ∈ A is at the top of each first k rankings in (x1, x2, ..., x
′
1, ..., xN) ∈ XN .

Suppose C is the case. We first show that f(x′
1, x

′
1, ..., x

′
1, xk, ..., xN) = c. Start with

the second individual and change her ranking to x′
1. Then,

f(x′
1, x

′
1, x3, ..., xk−1, xk, ..., xN) ∈ {b, c}

since f(x′
1, x

′
1, x3, ..., xk−1, xk, ..., xN ) 6= a as otherwise f is MNP at (x′

1, x−1) ∈ XN

by 2 via x′
1. Similarly, f(x′

1, x
′
1, x3, ..., xk−1, xk, ..., xN) ∈ A can not be any alternative

ranked below c in x′
1 as otherwise f is MNP at (x′

1, x
′
1, x3, ..., xk−1, xk, ..., xN) ∈ XN

by 2 via x2. Suppose f(x′
1, x

′
1, x3, ..., xk−1, xk, ..., xN ) = b. Recall that f(x′

k, x−k) =

a. Then f(x′
1, x2, ..., x

′
k, ..., xN) = a as otherwise f is MNP at (x′

1, x2, ..., x
′
k, ..., xN ) ∈

XN by 1 via x1. Then, f(x′
1, x

′
1, x3, ..., xk−1, x

′
k, xk+1, ..., xN) = a as otherwise f is

MNP at (x′
1, x

′
1, x3, ..., xk−1, x

′
k, xk+1, ..., xN) ∈ XN by 2 via x2. But then f is MNP

at (x′
1, x

′
1, x3, ..., xk−1, x

′
k, xk+1, ..., xN) ∈ XN by k via xk. Hence a contradiction. So,
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f(x′
1, x

′
1, x3, ..., xk−1, xk, ..., xN ) = c. Repeating the same argument for individuals 3 to

k − 1, we conclude that f(x′
1, x

′
1, ..., x

′
1, xk, ..., xN) = c.

Let us now change each of the first k − 1 individuals’ ranking to x′
k, one at a time

starting with individual 1. Then, f(x′
k, x

′
1, ..., x

′
1, xk, ..., xN) = c since

f(x′
k, x

′
1, ..., x

′
1, xk, ..., xN) /∈ {a, b}

as otherwise f is MNP at (x′
1, x

′
1, ..., x

′
1, xk, ..., xN) ∈ XN by 1 via x′

k. Similarly,

f(x′
k, x

′
1, ..., x

′
1, xk, ..., xN) ∈ A

can not be any alternative ranked below c in x′
k since otherwise f is MNP at

(x′
k, x

′
1, ..., x

′
1, xk, ..., xN ) ∈ XN

by 1 via x′
1. Repeating the same argument for individuals 2 to k − 1, we then conclude

that

f(x′
k, x

′
k, ..., x

′
k, xk, ..., xN) = c. [2]

Notice that by construction b ∈ A is at the top of each first k rankings in

(x′
k, x

′
k, ..., x

′
k, xk, ..., xN) ∈ XN .

Then, in either of the possible cases (of B-D), we conclude that there is a profile y ∈ XN

such that c ∈ A is not ranked at the top of any ranking yi, i = 1, ..., N and the top

alternatives of the first k rankings are the same, but f(y) = c (see [1] and [2]). We then

consider the next individual j > k whose top element is different from that of the first k

rankings at y ∈ XN . By UNM such yj exists. Repeating the same argument as above, we

then conclude that there must be another profile z ∈ XN such that c ∈ A is not ranked at

the top of any ranking zi, i = 1, ..., N and the top alternatives of the first j rankings are

the same, but f(z) = c. Since N is finite, eventually, we conclude that there is a profile

z′ ∈ XN such that the top alternatives of the first N rankings are the same (and distinct

from c), but f(z′) = c, which contradicts to UNM. This completes our proof.

(b) Let f(x) = a and without loss of generality we may assume that Gf
1(x) = {1, ..., j−

1} and Gf
2(x) = {j, ..., N}. Suppose on contrary that individual j ∈ Gf

2(x) is such that

for some x′
j ∈ X, f(x′

j, x−j) 6= f(x). Let us construct f 2 : X2 → A from f : XN → A

with the following reductions: combine all individuals’ preferences in Gf
1(x) into one and

the same, i.e. individuals in the group are coalesced (same as in Sen, 2001), and fix
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everyone’s preferences in Gf
2(x), except j′s, at x (same as in Cato, 2009). So, ∀z ∈ X2

let f 2(z1, z2) = f(z1, ..., z1, z2, xj+1, ..., xN ).

Claim 1: f 2 : X2 → A is UNM.

Consider any x′′
1 ∈ X that ranks a on top. Suppose f(x′′

1, ..., x
′′
1, xj , ..., xN) 6= a. Then,

f(x1, x
′′
1, ..., x

′′
1, xj, ..., xN ) 6= a since otherwise f is MNP at (x′′

1, ..., x
′′
1, xj , ..., xN) ∈ XN

by 1 via x1. Similarly, f(x1, x2, x
′′
1, ..., x

′′
1, xj , ..., xN) 6= a since otherwise f is MNP at

(x1, x
′′
1, ..., x

′′
1, xj , ..., xN) ∈ XN by 2 via x2. Repeating the same argument, after j − 1

steps we conclude that f(x) 6= a, which is a contradiction. So, ∀x′′
1 ∈ X such that a is

ranked on top,

f(x′′
1, ..., x

′′
1, xj , ..., xN) = a. [3]

Now let x′′
j ∈ X be such that a ∈ A is ranked on top. Then, f(x′′

1, ..., x
′′
1, x

′′
j , ..., xN) = a

since otherwise f is MNP at (x′′
1, ..., x

′′
1, x

′′
j , ..., xN) ∈ XN by j via xj . So, for any x′′

1, x
′′
j ∈ X

such that a ∈ A is ranked on top, f(x′′
1, ..., x

′′
1, x

′′
j , ..., xN) = a.

Let b ∈ A be any other alternative and let y1 ∈ X be a ranking with y1 = (b ≻ a ≻ ...).

We claim that f(y1, ..., y1, xj, ..., xN ) = b. Note that f(y1, x−1) ∈ {a, b} since otherwise

f is MNP at (y1, x−1) ∈ XN by 1 via x1. Similarly, f(y1, y1, x3, ..., xN) ∈ {a, b} since

otherwise f is MNP at (y1, y1, x3, .., xN ) ∈ XN by 2 via x2. Then, repeating the same

argument, we conclude that f(y1, ..., y1, xj , ..., xN) ∈ {a, b}. But by Theorem 6.3 (a),

f(y1, ..., y1, xj , ..., xN) 6= a since by construction a ∈ A is not on the top of any ranking

in (y1, ..., y1, xj, ..., xN ) ∈ XN . So, f(y1, ..., y1, xj, ..., xN ) = b. Now by the same argument

as for a ∈ A, we will then conclude that for any y′′1 , y
′′
j ∈ X such that b ∈ A is ranked on

top, f(y′′1 , ..., y
′′
1 , y

′′
j , xj+1, ..., xN) = b. Then, by definition, ∀b ∈ A and ∀z ∈ X2 such that

b is ranked on top of each zi, i = 1, 2, f 2(z) = b. Hence, f 2 is UNM.

Claim 2: f 2 : X2 → A is STP.

Clearly the second individual can not manipulate f 2 since otherwise individual j would

manipulate f . Suppose f 2 is MNP at y ∈ X2 by individual 1 via y′1 ∈ X : f 2(y) = b and

f 2(y′1, y−1) = c and c ≻y1 b. Then by definition, f(y1, ..., y1, y2, xj+1, ..., xN) = b and

f(y′1, ..., y
′
1, y2, xj+1, ..., xN) = c. Let’s change first j−1 individuals’ preferences from y1 to

y′1 each at a time, starting with individual 1. Then, f(y′1, y1, ..., y1, y2, xj+1, ..., xN ) = c1 ∈

A is not ranked above b in y1 since otherwise f is MNP at (y1, ..., y1, y2, xj+1, ..., xN ) ∈ XN

by individual 1 via y′1. Repeat the same argument for the second individual when changing

her preferences from y1 to y′1. Then, f(y′1, y
′
1, ..., y1, y2, xj+1, ..., xN ) = c2 ∈ A is not

ranked above c1 in y1 since otherwise f is MNP at (y′1, y1, ..., y1, y2, xj+1, ..., xN ) ∈ XN by
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individual 2 via y′1. Note that since y is transitive, c2 is not ranked above b in y1. After

j − 1 repetitions, we then conclude that cj−1(= c) is not ranked above b in y1 which is a

contradiction. Hence, f 2 is not MNP by individual 1 and the claim is established.

Claim 3: Recall that initially x ∈ XN is such that f(x) = a, and by assumption ∃x′
j ∈ X

such that f(x′
j , x−j) 6= a. Then, f 2(x1, xj) = a and f 2(x1, x

′
j) 6= a.

We have already established the first part of the claim (see [3]). For the second part,

suppose on the contrary that f 2(x1, x
′
j) = a. By definition, then f(x1, ..., x1, x

′
j , ..., xN) =

a. Suppose we change the second individual’s preferences to x2 ∈ X . Then,

f(x1, x2, x1, ..., x
′
j , .., xN) = a

since otherwise f is MNP at (x1, x2, x1, ..., x
′
j , .., xN) ∈ XN by 2 via x1. Repeating the

same argument for individuals 3 to j − 1, we then conclude that f(x′
j , x−j) = a, which is

a contradiction. Hence, the claim is established.

But then f 2 is a UNM and STP social choice function and at x∗ = (x1, xj) ∈ X2,

2 ∈ Gf2

2 (x∗) and for x′
j ∈ X, f 2(x1, x

′
j) 6= f 2(x∗), which contradicts Lemma 6.2 (b). This

completes our proof of Theorem 6.3. �

Corollary 6.4 Theorem 6.1.

Let us now prove the G-S Theorem. Let x0 ∈ XN be such that x0
i ∈ X is x0

i = (a1 ≻

a2 ≻ a3 ≻ ...) for i = 1, ..., N − 1, and x0
N ∈ X is x0

N = (a2 ≻ a1 ≻ a3 ≻ ...). Then,

by Theorem 6.3 (a), f(x0) ∈ {a1, a2}. Suppose f(x0) = a2. Then, we show that N is a

dictator. Note that since 1 ∈ Gf
2(x

0), by Theorem 6.3 (b) , ∀x′
1 ∈ X , f(x′

1, x
0
−1) = a2.

Consider any x′
2 ∈ X . Note that ∀x′

1 ∈ X, 2 ∈ Gf
2(x

′
1, x

0
2, x

0
3, ..., x

0
N) and then by Theorem

6.3 (b), ∀x
′

1 ∈ X, ∀x′
2 ∈ X, f(x′

1, x
′
2, x

0
3, ..., x

0
N) = a2. Repeating the same argument we

then conclude that ∀x′ ∈ XN , f(x0
N , x

′
−N) = a2. But then for any xN ∈ X such that a2 is

ranked at the top of xN , f(xN , x
′
−N) = a2 since otherwise f is MNP at (xN , x

′
−N) ∈ XN

by N via x0
N . Hence, we conclude that whenever x ∈ XN is such that a2 is ranked at the

top of xN , f(x) = a2. Now suppose ∃y ∈ XN such that f(y) = ak where ak is not the

top ranked alternative of xN . Then, by definition N ∈ Gf
2(y) and by our last conclusion,

ak 6= a2. Then by Theorem 6.3 (b), f(x0
N , y−N) = ak, which is a contradiction. Hence,

N ∈ I is a dictator of f .

Suppose now f(x0) = a1. Then by definition, N ∈ Gf
2(x

0) and by Theorem 6.3 (b),

f(z, x0
−N ) = a1 for z ∈ X such that z = (a3 ≻ a2 ≻ a1 ≻ ...). Let us consider x1 ∈ XN
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such that x1
i = x0

i , i = 1, ..., N − 2, x1
N−1 = x0

N and x1
N = z. Then, by Theorem 6.3

(a), f(x1) ∈ {a1, a2, a3}. But if f(x1) = a3 then f is MNP at x1 ∈ XN by N − 1 via

x0
N−1. So, f(x

1) ∈ {a1, a2}. If f(x
1) = a2, we show that N − 1 ∈ I is a dictator with the

same argument as above. If otherwise, f(x1) = a1, then we consider x2 ∈ XN such that

x2
i = x0

i , i = 1, ..., N − 3, x2
N−2 = x0

N and x2
N−1 = x2

N = z, and we repeat the same steps.

Hence, whenever xj ∈ XN is such that f(xj) = a2, then we show that individual N−j ∈ I

is a dictator of f by the same argument as above. But notice that ∃j ∈ {1, ..., N − 1}

such that f(xj) = a2, since if f(xk) = a1 for all k = 1, ..., N − 2, then in the last step,

by Theorem 6.3 (a), f(xN−1) ∈ {a2, a3}, but f(x
N−1) 6= a3 since otherwise f is MNP at

xN−1 ∈ XN by 1 via x0
1. This completes our proof.

6.4 Final remarks

A common approach to prove social choice impossibility theorems is as follows. First, to

identify or define a subset of individuals that contains a dictator (e.g., decisive coalition,

(extremely) pivotal voters, etc.). Then, to investigate some of the properties of that

set (e.g., non-empty, etc.), and eventually to show that it is a singleton. The approach

pursued in this paper differs from this standard technique by focusing on the individuals

who are not candidates for a dictator. More specifically, our approach is built on the

following result: if a social choice function satisfies the axioms of unanimity and strategy-

proofness, at any given profile, if an individual is not a candidate for a dictator, then

she can not change the social choice at that profile by unilateral deviation (Theorem 6.3,

Section 6.3). We then show that this result is sufficient to verify that such social choice

function is dictatorial (Corollary 6.4, Section 6.3).

It also shows that Theorem 6.3 is logically equivalent to the G-S Theorem: as already

established above (Corollary 6.4, Section 6.3) it implies the G-S Theorem and it is also

rather easy to deduce it from the G-S Theorem. This equivalence is of considerable

interest: Theorem 6.3 addresses to a rather local property of a unanimous and strategy-

proof social choice function while the property of being dictatorial in the G-S Theorem is

a more global one.
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Chapter 7

Symmetry vs. Complexity in

Proving the Muller-Satterthwaite

Theorem 1

Abstract: In this short note, we first provide two rather straightforward proofs for the

Muller-Satterthwaite theorem in the baseline case of 2 person 3 alternatives, and 2 person

n ≥ 3 alternatives. We also show that it suffices to prove the result in the special case

of 3 alternatives with arbitrary N individuals, as it then can easily be extended to the

general case. We then prove the result in the decisive case of 3 alternatives with arbitrary

N individuals by induction on N .

JEL: D71, D72

Keywords: the Muller-Satterthwaite theorem, Monotonicity

7.1 Introduction

An analogous result to Arrow’s Impossibility Theorem (Arrow 1963) in the context of

voting is the Gibbard-Satterthwaite (G-S) Theorem (Gibbard 1973; Satterthwaite 1975).

The interconnection between these two results is a recurrent topic of study in social choice

and voting theory. In this respect, it is known that

(a) one can prove each theorem with the help of the other (see Gibbard 1973; Satterth-

waite 1975; Schmeidler and Sonnenschein 1978),

1Published in Economics Bulletin, 2012, 32 (2): 1434-1441.
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(b) one can provide a more general result that implies both theorems (e.g., Miller 2009),

and

(c) one can obtain a single proof for both theorems (see Reny 2001).

Moreover, it can be observed that the connection between these results is usually

obtained through another result, the Muller-Satterthwaite (M-S) Theorem (Muller and

Satterthwaite 1977). Hence, the latter constitutes a common ground for the former two.

In particular, the fact that the monotonicity axiom in the M-S Theorem is analogous to the

independence axiom in Arrow’s Impossibility Theorem, and on the unrestricted domain

of strict preferences, it is equivalent to the strategy-proofness in the G-S Theorem, allows

one to easily obtain results mentioned above in (a) - (c): see Reny (2001), Miller (2009)

and Chap. 2 in Vohra (2011).

In this paper, we first provide two proofs of a variant of the M-S Theorem (Theorem

7.1, Section 7.2) in the baseline case of 2 person, 3 alternatives. Since it is well known that

the M-S Theorem has the G-S Theorem as a corollary (see Reny 2001), we also prove the

G-S Theorem in the baseline case. As Barberà (2011) notes, ”the 2 person 3 alternative

case contains all the essential elements of the (G-S) theorem, in a nutshell,” in the sense

that it is possible to prove the theorem in the general case by a double induction on the

number of individuals and the number of alternatives, once it is proved in the baseline

case (see Satterthwaite 1975; Schmeidler and Sonnenschein 1978).

The essence of our proofs is to directly verify the result in the baseline case. However,

we reduce the complexity of the problem in two ways: (1) via explicit use of neutrality

(symmetry), and (2) via tying up all reasoning on a monotone social choice function with

full domain to that of a monotone social choice function with a smaller domain of 1

person society. Then, in Section 7.4 we show that one can easily prove the M-S Theorem

in the general case, once it is proved for the case of 3 alternatives (Proposition 7.3). Such

extension can be useful in inductive proofs of the M-S Theorem. We then complete the

proof of the theorem by proving it in the decisive case of 3 alternatives (Proposition 7.4).

In the next section we introduce our main definitions and state the theorem to be

proven. Section 7.3 gives the proofs of the M-S Theorem in the baseline case, while Section

7.4 shows how one can extend the M-S Theorem with 3 alternatives to the general case

of arbitrary but finite alternatives. The last section concludes.
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7.2 The preliminaries

Let A = {a1, ..., an} denote the set of alternatives with n ∈ N elements and let X denote

the set of strict linear orders (strict rankings) on A. Let there be N individuals in the

group. A function f : XN → A is called a social choice function (SCF). A member

x = (x1, ..., xN) of XN is called a profile of rankings (or simply a profile) and its i′th

component, xi, is called the individual i′s ranking. We say that a SCF f : XN → A

is Pareto efficient (PE) if whenever alternative a is on top of xi for i = 1, ..., N , then

f(x) = a. It is monotonic (MT) if whenever f(x) = a and for every individual i and

every alternative b the ranking x′
i ranks a above b if xi does, then f(x′) = a. Finally, it is

dictatorial (DT) if there is individual i such that f(x) = a if and only if a is at the top

of xi, and we denote such function as f i
d, for i = 1, ..., N .

The following result is known as (a variant of) the M-S Theorem (see also Reny 2001):

Theorem 7.1 If n ≥ 3, a SCF f : XN → A is PE and MT if and only if it is DT.

7.3 The proofs for the baseline case

Let us introduce a binary relation Ra1 on X , called as the monotonicity relation w.r.t a1

on X , defined as ∀x, y ∈ X , xRa1y, i.e. x is related to y according to Ra1 , if x, y ∈ X

are such that for any alternative aj, if a1 is ranked above aj in x then so is in y. Rai for

i = 2, ..., n are defined analogously. Whenever xRaiy, we say y is a successor of x in Rai .

We also introduce a similar binary relation (RN
a1
) on the full domain of XN : ∀x, y ∈ XN ,

xRN
a1
y if x, y ∈ XN are such that for any alternative aj and any individual i = 1, ..., N , if

a1 is ranked above aj in xi, then so is in yi. RN
ai

for i = 2, ..., n are defined analogously.2

Whenever xRN
ai
y, we say y is a successor of x in RN

ai
. Note that by definition, for any MT

SCF f : XN → A, xRN
ai
y implies that if f(x) = ai, then f(y) = ai, for i = 1, ..., n.

RN
ai

for i = 1, ..., n has the following properties:

Lemma 7.2 For i = 1, ..., n,

(a) ∀x, y ∈ XN , xRN
ai
y if and only if xjRaiyj, for j = 1, ..., N , and

(b) RN
ai

is a preorder (reflexive and transitive) on XN .

2See also the notion of monotonic transformation in Klaus and Bochet (2011).
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Proof. (a) Both directions of the statement immediately follow from the definitions of

Rai and RN
ai
. (b) Observe that it is easy to verify that Rai is a preorder on X . The result

follows combining this observation with (a). �

Lemma 7.2 (a) allows any reasoning on RN
ai
to be entirely based on Rai , for i = 1, ..., n,

while Lemma 7.2 (b) allows us to reason recursively.

Let us now assume N = 2 and n = 3. We can code the elements of X as follows:

a1 ≻ a2 ≻ a3 ≡ 123; a1 ≻ a3 ≻ a2 ≡ 132; a2 ≻ a1 ≻ a3 ≡ 213; a2 ≻ a3 ≻ a1 ≡ 231;

a3 ≻ a1 ≻ a2 ≡ 312; a3 ≻ a2 ≻ a1 ≡ 321. Let’s construct the following graph which

represents Ra1 :

Figure 7.1: Γa1

We call Γa1 as ”Monotonicity Graph for a1” and note that ∀α, β ∈ V (Γa1) (the set of

vertices), αRa1β if and only if there is directed path from α to β (we assume that every

node is connected to itself by a directed path). Note that if a node is assigned to a1

under any MT SCF g : X → A, then all of its successors in Γa1 must be assigned to a1.

Similarly, we can create ’monotonicity graphs’ for a2 and a3:

Figure 7.2: Γa2

Figure 7.3: Γa3
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Proof 1: Let us now prove the M-S Theorem. Let f : X2 → A be a MT and PE SCF

and for i = 1, 2, 3, let Di denote the set of profiles such that ai is ranked at the top

of each ranking:

D1 = {(123, 123), (123, 132), (132, 123), (132, 132)},

D2 = {(213, 213), (213, 231), (231, 213), (231, 231)},

D3 = {(312, 312), (312, 321), (321, 312), (321, 321)}.

Note that none of the profiles in D2∪D3 can be assigned to a1, by PE. Hence, none

of their predecessors in R2
a1

(α is a predecessor of β if αR2
a1
β and α 6= β) can be

assigned to a1. So, every profile in

P (D2 ∪D3) = {(213, 321), (321, 213), (231, 312), (312, 231), (231, 321), (321, 231)}

needs to be assigned either to a2 or a3. Let f(213, 321) = a3. Then, referring to R2
a3

(to Γa3) we conclude that

ω1 : f(213, 321) = f(231, 321) = f(231, 312) = f(213, 312) =

= f(123, 312) = f(132, 312) = f(123, 321) = f(132, 321) = a3.

Note that there is a complete symmetry among the elements of A in our renaming

them as a1, a2 and a3: any of the a1, a2, a3 can equally represent any of the three

alternatives in A. This symmetry is often called as the neutrality axiom and it

is implicit in our definition of SCF. Because of the symmetry between a3 and a2

(exchanging the roles of a3 and a2), we can conclude that decisions in ω1 are one

and the same as the following decisions:

ω2 : f(132, 213) = f(123, 213) = f(123, 231) = f(132, 231) =

= f(312, 231) = f(321, 231) = f(312, 213) = f(321, 213) = a2.

Similarly, since there is a symmetry between a3 and a1, they are are also one and

the same as the following decisions:

ω3 : f(231, 123) = f(213, 132) = f(213, 123) = f(231, 132) =

= f(321, 132) = f(312, 132) = f(321, 123) = f(312, 123) = a1.
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Hence, once the initial decision is made, all the other decisions follow

(recall that the profiles in Di are assigned to ai by PE, for i = 1, 2, 3). Alterna-

tively, let f(213, 321) = a2. Note that f(213, 132) 6= a3, since otherwise referring

to R2
a3

we conclude that f(213, 321) = a3, which is a contradiction. Note also that

f(213, 132) 6= a1 since otherwise by the symmetry between a1 and a3, we conclude

that f(231, 312) = a3, which then implies that (referring to R2
a3
) f(231, 321) = a3.

But (231, 321) is a successor of (213, 321) in R2
a2
, hence f(231, 321) = a2, which is a

contradiction. So, f(213, 132) = a2. Then referring to R2
a2
, we can conclude that

ϕ1 : f(213, 321) = f(231, 321) = f(213, 132) = f(213, 123) =

= f(231, 132) = f(231, 123) = f(231, 312) = f(213, 312) = a2.

Because of symmetry, decisions in ϕ1 are one and the same as the following decisions:

ϕ2 : f(123, 312) = f(132, 312) = f(123, 231) = f(123, 213) =

= f(132, 231) = f(132, 213) = f(132, 321) = f(123, 321) = a1

and

ϕ3 : f(321, 132) = f(312, 132) = f(321, 213) = f(321, 231) =

= f(312, 213) = f(312, 231) = f(312, 123) = f(321, 123) = a3.

Hence, there are only two possible assignments, {ω1, ω2, ω3} and {ϕ1, ϕ2, ϕ3}, and

each of them corresponds to a DT social choice function with one of the two indi-

viduals being a dictator. This completes the proof.

Proof 2: Suppose f(213, 321) = a3. Note that (213) has 6 successors in Γa3 while (321)

has 2. Since by Lemma 7.2 (a) any combination of successors of (213) and (321) in

Γa3 is a successor of (213, 321) in R2
a3
, there are 12 = 6 × 2 (including (213, 321))

profiles to be assigned to a3. By symmetry, then there are 12 profiles to be assigned

to ai, i = 1, 2. Since X2 has 36 elements, once the initial decision is made all the

other decisions follow i.e., there is a unique function f : X2 → A which is PE, MT

and f(213, 321) = a3. On the other hand f 2
d : X2 → A has these properties: it is

PE, MT and f 2
d (213, 321) = a3. Hence, f = f 2

d .

Alternatively, suppose f(213, 321) = a2. Then, by the same argument as in Proof

1 we conclude that f(213, 132) = a2. Then, repeating the same argument just used
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for the case of f(213, 321) = a3, we conclude that there is a unique PE and MT

function f : X2 → A such that f(213, 132) = a2. Since f 1
d : X2 → A has these

properties, we then conclude that f = f 1
d . This completes our proof.

Proof 2 for N = 2, n ≥ 3: Consider a profile x ∈ X2 such that x1 = (a1 ≻ a2 ≻ ... ≻

an) and x2 = (a2 ≻ a3 ≻ ... ≻ an ≻ a1). Let f : X2 → A be PE and MT. We

claim that f(x) ∈ {a1, a2}. Suppose on the contrary that f(x) = aj /∈ {a1, a2}.

Then, consider x∗
1 = (a2 ≻ a1 ≻ a3 ≻ ... ≻ an). By MT, if f(x) = aj /∈ {a1, a2},

then f(x∗
1, x2) = aj which then contradicts PE. Hence, the claim is established. Let

f(x) = a1. Since any ranking is a successor of x2 in Ra1 , it has n! successors, and

since any ranking with a1 ranked at the top is a successor of x1 in Ra1 , it has (n−1)!

successors. Then by Lemma 7.2 (a), any combination of successors of x1 and x2 in

Ra1 is a successor of x in R2
a1
, there are n!(n−1)! profiles to be assigned to a1 under

f . By symmetry, then there are n!(n− 1)! profiles to be assigned to ai, i = 2, ..., n.

Since X2 has (n!)2 elements, once the initial decision is made all the other decisions

follow. Hence, there is a unique PE and MT f : X2 → A with f(x) = a1. But since

f 1
d has these properties, we conclude that f = f 1

d .

Alternatively, let f(x) = a2. Let x′ ∈ X2 be such that x′
1 = x1 = (a1 ≻ a2 ≻ ... ≻

an) and x′
2 = (a2 ≻ a1 ≻ a3 ≻ ... ≻ an). Since f(x) = a2, f(x

′) = a2 by MT.

Consider x′′ ∈ X2 such that x′′
1 = (a1 ≻ a3 ≻ ... ≻ an ≻ a2) and x′′

2 = x′
2. We claim

that f(x′′) ∈ {a1, a2}. Suppose on the contrary f(x′′) = aj /∈ {a1, a2}. Consider

x∗
2 = (a1 ≻ a2 ≻ a3 ≻ ... ≻ an). If f(x′′) = aj /∈ {a1, a2}, then f(x′

1, x
∗
2) = aj

by MT, which then contradicts PE. Hence, the claim is established. Note that

f(x′′) 6= a1 as otherwise it would imply that f(x′) = a1 by MT. Hence, we conclude

that f(x′′) = a2. Then by the same argument as above we can show that there is a

unique PE and MT function with f(x′′) = a2, and since f 2
d has these properties, we

then conclude that f = f 2
d .

7.4 Sufficiency of proving the M-S Theorem for n = 3

The following result shows that it suffices to prove Theorem 7.1 when n = 3:

Proposition 7.3 Suppose Theorem 7.1 holds when n = 3. Then it holds for any finite

n > 3.

Proof. Let n > 3 and let f : XN → A be a MT and PE SCF. Let A3 = {a1, a2, a3} ⊂ A

and let XA3 ⊂ XN be the set of all profiles x ∈ XN such that for each xi, i = 1, ..., N ,
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the top 3 alternatives of xi are in A3, and for j = 4, ..., n, the j′th top alternative of xi

is aj ∈ A. We claim that ∀x ∈ XA3 , f(x) ∈ A3. Suppose on the contrary that ∃y ∈ XA3

such that f(y) = ar with r > 3. By MT this implies that ∀x ∈ XA3, f(x) = ar which

contradicts PE. Hence, the claim is established.

Let X3 be the set of all strict rankings on A3 and let us define f 3 : XN
3 → A3 as

∀z ∈ XN
3 , f 3(z) = f(xz) where xz ∈ XA3 is a profile such that xz

i and zi coincide on A3,

i.e. xz
i = (zi ≻ a4 ≻ ... ≻ an), for all i = 1, ..., N . Notice that for each z ∈ XN

3 there

is a unique such xz ∈ XA3 . Combining this with our claim we conclude that, f 3 is a

well defined 3 alternative SCF. Moreover, since f is PE and MT, so is f 3. Hence, by our

hypothesis f 3 must be DT.

Without loss of generality we may assume that 1 is the dictator of f 3. Let us then

show that 1 is the dictator of f . Consider z ∈ XN
3 such that z1 = (a1 ≻ a2 ≻ a3) and zi =

(a2 ≻ a1 ≻ a3) for i = 2, ..., N . Since 1 is the dictator of f 3, f 3(z) = f(xz) = a1. Now let

x′
i = (a2 ≻ a3 ≻ ... ≻ an ≻ a1) for i = 2, ..., N . We first claim that f(xz

1, x
′
2, x

z
3, ..., x

z
N ) =

a1. Note that f(xz
1, x

′
2, x

z
3, ..., x

z
N ) 6= a2 as otherwise it would imply that f(xz) = a2 by

MT, and also f(xz
1, x

′
2, x

z
3, ..., x

z
N ) /∈ {a3, ..., an} since if f(xz

1, x
′
2, x

z
3, ..., x

z
N) = aj for some

j ∈ {3, ..., n}, then f(x′
1, x

′
2, x

z
3, ..., x

z
N) = aj where x

′
1 = (a2 ≻ a1 ≻ a3 ≻ ... ≻ an) by MT,

which then contradicts PE. Hence, f(xz
1, x

′
2, x

z
3, ..., x

z
N) = a1.

We can change rankings of individuals 3 to N from xz
i to x′

i, each at a time, and

repeat the same argument to conclude that f(xz
1, x

′
2, ..., x

′
N) = a1. Notice that xz

1 has

(n − 1)! successors in Ra1 , while x′
i has n! successors in Ra1 . By Lemma 7.2 (a),

then (xz
1, x

′
2, x

′
3, ..., x

′
N) ∈ XN has (n − 1)!(n!)N−1 successors in RN

a1
. Hence, there are

(n − 1)!(n!)N−1 profiles to be assigned to a1 under f . By symmetry, then there are

(n − 1)!(n!)N−1 profiles to be assigned to ai, i = 2, ..., n. Since XN has (n!)N elements,

there is a unique PE and MT SCF such that f(xz
1, x

′
2, ..., x

′
N ) = a1. But since f

1
d : XN → A

has these properties, we conclude that f = f 1
d . �

For completeness, let us verify that Theorem 7.1 holds when n = 3.

Proposition 7.4 Theorem 7.1 holds when n = 3.

Proof. We use induction on N . As shown above in Proof 1 and 2, the statement is

true when N = 2. Suppose it is true when N = k ≥ 2 and let us consider the case of

N = k + 1. Let f : Xk+1 → A be PE and MT SCF. Consider a profile x ∈ Xk+1 with

x1 = (a1 ≻ a2 ≻ a3) and xi = (a2 ≻ a3 ≻ a1) for i = 2, ..., k + 1. Then, f(x) 6= a3 since

otherwise by MT f(x∗) = a3 for x∗ ∈ Xk+1 such that x∗
1 = (a2 ≻ a1 ≻ a3) and x∗

i = xi,
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i = 2, ..., k + 1, which then contradicts PE. Hence, f(x) ∈ {a1, a2}. Suppose f(x) = a1.

Notice that x1 ∈ X has 2 successors in Ra1 while xi ∈ X has 3! successors in Ra1 . By

Lemma 7.2 (a), then x ∈ Xk+1 has 2 · (3!)k successors in Rk+1
a1

, and there are 2 · (3!)k

many profiles to be assigned to a1 under f . By symmetry, then there are 2 · (3!)k many

profiles to be assigned to ai, i = 2, 3. Since Xk+1 has (3!)k+1 elements, there is a unique

f : Xk+1 → A which is PE, MT and satisfies f(x) = a1. Since f 1
d has these properties,

we conclude that f = f 1
d .

Alternatively, suppose f(x) = a2. Let us define g : Xk → A as ∀y ∈ Xk, g(y) =

f(x1, y2, ..., yk+1), i.e. we fix individual 1′s ranking at x1. Note that since f is MT, so

is g. We claim that g is also PE. Notice that when a1 ∈ A is on top of each ranking yi,

i = 2, ..., k + 1, g(y) = a1, by PE of f . Note also that when a2 ∈ A is on top of each yi,

i = 2, ..., k + 1, g(y) = a2 by MT. Consider x′ ∈ Xk+1 such that x′
1 = (a1 ≻ a3 ≻ a2) and

x′
i = (a3 ≻ a2 ≻ a1) for i = 2, ..., k + 1. Then, f(x′) 6= a1 since otherwise f(x) = a1 by

MT, which is a contradiction. Also f(x′) 6= a2 since otherwise f(x
∗∗) = a2 for x

∗∗ ∈ Xk+1

such that x∗∗
1 = (a3 ≻ a1 ≻ a2) and x∗∗

i = x′
i, i = 2, ..., k + 1, which then contradicts PE.

Hence, f(x′) = a3. By MT, this implies that f(x′′) = a3 for x′′ ∈ Xk+1 such that x′′
1 = x′

1

and x′′
i = (a3 ≻ a1 ≻ a2) for i = 2, ..., k + 1.

Consider x′′′ ∈ Xk+1 such that x′′′
1 = x1 = (a1 ≻ a2 ≻ a3) and x′′′

i = x′′
i , i = 2, ..., k+1.

Then, f(x′′′) 6= a1 since otherwise f(x′′) = a1 by MT, which is a contradiction as we just

concluded that f(x′′) = a3. Also f(x′′′) 6= a2 since otherwise by MT f(x∗∗∗) = a2 for

x∗∗∗ ∈ Xk+1 such that x∗∗∗
1 = x′′′

1 and x∗∗∗
i = (a1 ≻ a3 ≻ a2) for i = 2, ..., k+1, which then

contradicts PE. Hence, we conclude that f(x′′′) = a3. This implies that, for all y ∈ Xk

such that a3 is ranked at the top of each yi, i = 2, ..., k + 1, g(y) = f(x1, y2..., yk+1) = a3.

Hence, g : Xk → A is PE.

Then by our induction hypothesis, g : Xk → A is DT. Without loss of generality, we

may assume that individual 2 is the dictator of g. We claim that 2 is also the dictator of

f . Consider x˜ ∈ Xk+1 such that x˜
2 = (a3 ≻ a2 ≻ a1) and x˜

i = x1 for i = 1, 3, ..., k + 1.

Then, f(x˜) = g(x˜
2, ..., x

˜
k+1) = a3. Repeating the same argument as in the first part of

the proof, we can conclude that there is a unique f : Xk+1 → A which is PE, MT and

f(x˜) = a3. Since f 2
d has these properties, we conclude that f = f 2

d . This completes our

proof. �
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7.5 Final comments

In the first part of this paper (Section 7.3), we presented two rather straightforward

proofs of the Muller-Satterthwaite (M-S) Theorem in the baseline case of 2 person and 3

alternatives. With a slight modification of the set up each approach can prove Arrow’s

Impossibility Theorem in that case. Moreover, in principle it is possible to prove the M-S

Theorem in the general case using the same approach. In order to that, one needs to in-

vestigate more abstract properties of the binary relations introduced above. In particular,

the fact that these relations can be defined recursively, starting with the simplest case of

a single individual profile, indicates a possibility for such investigation.

In the second part (Section 7.4), we showed how one can extend the special case of

the M-S Theorem with 3 alternatives to the general case of arbitrary but finite number

of alternatives (in Proposition 7.3). Such extension can be relevant for inductive proofs

of the M-S Theorem. In particular, it shows that for such proofs, using double induction

on both number of alternatives and number individuals is unnecessary.
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Runsten, Philip (2011). Kollektiv förm̊aga: en avhandling om grupper och kunskapsinte-

gration.

Setterberg, Hanna (2011). The pricing of earnings: essays on the post-earnings announce-

ment drift and earnings quality risk.

Stepanok, Ignat (2011). Essays on international trade and foreign direct investment.

Söderblom, Anna (2011). Private equity fund investing: investment strategies, entry order

and performance.

Wallace, Björn (2011). Genes, history and economics.



ISBN 978-91-7258-871-4

Doctoral Dissertation
in Economics

Stockholm School of Economics 
Sweden, 2012

Essays on M
athem

atical Econom
ics

U
uganbaatar N

injbat  •  2012

Uuganbaatar Ninjbat

Essays on Mathematical 
Economics
 


