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Two price economy provides a new approach to describe incomplete markets.

Unlike the classical economy theory, in which the law of one price prevails, a two

price economy determines prices by the directions of the trades. Static one period

and discrete time two price economies are described and applied in a number of

papers.

Following the static and discrete time models, continuous time two price

economies are studied in this thesis. Dynamically consistent nonlinear pricing func-

tionals are generated from backward stochastic differential equations (BSDEs) on

continuous time Markov chains (CTMCs) and G-expectations. This thesis also in-

cludes a convergence theorem of BSDEs on CTMCs, and the existence and unique-

ness of solution to the distorted partial integro-differential equation coming from

the G-expectation approach.

The continuous time models for two price economies are illustrated through

three examples. BSDEs on CTMCs are used to generate bid and ask prices for



option spreads. Then G-expectation theory is applied to produce credit capital

commitments for derivatives with bilateral counterparty risk and give bid and ask

interest rate swap rates and swaption prices.
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Chapter 1

Introduction

1.1 Overview

In classical economic theory, merchandise is traded in both directions at the

same price–a phenomenon best known as the law of one price. This price is de-

termined through a market clearing condition (Arrow [4]; Ingersoll [28]) under the

framework of economic equilibrium analysis (Arrow and Debreu [5]). In financial

economies, the law of one price is explained to be the consequence of the no arbitrage

assumption, and derivatives are priced under the risk neutral measure according to

the fundamental theorem of asset pricing (Dybvig and Ross [16]).

However, considerable differences between the bid and ask prices (spread) are

widely noticed in financial markets, especially during the financial crisis in 2008

(Flannery et al. [20]). Numerous theoretical and statistical studies have been con-

ducted on the bid-ask spread. Some theoretical models emphasize the order pro-

cessing and inventory holding costs incurred by liquidity providers (Amihud and

Mendelson [2]; Demsetz [15]; Stoll [51]), while others concentrate on the adverse

selection costs caused by informed traders (Copeland and Galai [13]; Easley and

Kiefer [17]; Glosten and Milgrom [23]; Kyle [31]). Statistical methods are applied

to measure the components of the bid-ask spread. Roll [48], Choi, Salandro and

Shastri [9], Stoll [52], George, Kaul and Nimalendran [21] make inferences about
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the bid-ask spread from the serial covariance of price changes. A trade indicator

regression model is developed and extended in Glosten and Harris [22], Madhavan,

Richardson, and Roomans [40], Huang and Stoll [25] [26]. Most of these existing

studies focus on finding the source of costs for market makers by modeling the price

determination process in liquid markets.

In a recent paper [36] by Madan and Schoutens, a two price economy with

an equilibrium model is developed. It is explained in [36] that the bid-ask spread

originates from the difference between the event space where contracts are written

and the event space where the actual economy lives. This argument is similar to the

opaqueness investigated in Flannery et al. [20]. Since the actual economy lives in a

much larger space, unexpected events may cause endowment loss, and precommitted

demands are not cleared. A financial system is thus introduced to approve trades

and cover unexpected loss of the markets. In the two price economy, all market

participants are modeled to do trades with the same financial system at different

prices depending on the directions of the trades. The system would determine the

spreads so as to make its loss exposures acceptable. A one period static model for the

two price economy is introduced in [36], in which bid and ask prices are defined as

the infimum and supremum of test measures’ evaluations. This model is generalized

to include discrete time case in a subsequent paper [35] by Madan, Pistorius and

Schoutens, with bid and ask prices modeled as dynamically consistent nonlinear

expectations. Many applications have been conducted under this framework. In

[34] and [32] by Cherny and Madan, the static two price model is used to estimate

stress levels of distortions from market prices of vanilla options and to define capital
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requirements and monitor leverage. In [35], Madan, Pistorius and Schoutens employ

the discrete time model to price a variety of structured products. These methods

are also applied to the pricing of insurance loss liabilities in [38] by Madan, Wang,

and Heckman.

Despite the usefulness of static and discrete time two price models in a variety

of contexts, they lack the ability of evaluating claims that may be delivered at arbi-

trary times. As a result, we wants to find ways to conduct dynamically consistent

nonlinear pricing in continuous time. Inspired by the discrete time two price model

in [35], where the bid and ask prices are generated as nonlinear expectations induced

by backward stochastic difference equations, we have developed two approaches to

build a two price economy in continuous time. The first approach utilizes properties

of backward stochastic differential equation (BSDE). BSDE has been extensively

studied during the past two decades since the original paper [44] by Pardoux and

Peng appeared in 1990, due to its connection with stochastic optimization problem.

The connection between solution to BSDE and nonlinear expectation is first estab-

lished by Peng in [45] in 1997. The result is obtained in the context of continuous

time diffusions, and therefore, is unable to deal with any case when the underlying

martingale could jump with positive probability. However, such case may arise in

various applications. In a recent paper [11] by Cohen and Elliott, BSDE with ran-

domness generated by continuous time Markov chains (CTMCs) is studied and the

connection between BSDE solution and nonlinear expectation is also given. This

then allows one to construct dynamically consistent bid and ask prices as solutions

to BSDEs on CTMCs, which is also the key idea behind our first approach. The
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second approach makes use of the G-expectation method proposed by Peng in [46].

In Peng’s paper, G-expectation is described as the solution to a nonlinear heat equa-

tion with a given infinitesimal generator G. Following this idea, we have extended

the G-expectation concept to partial integral differential equations (PIDEs), and

the nonlinearity is obtained by distorting the integral term in the PIDE. We can

then generate the bid and ask prices as viscosity solutions to the resulting distorted

PIDEs.

The two price economy in continuous time adds more flexibility to the two

price theory, which now allows construction of dynamically consistent bid and ask

prices for a much larger set of derivatives. It also provides approaches to study

financial concepts that are related to the bid and ask prices, for example, capital

requirements and monitor leverage introduced in [32], and market implied stress

levels discussed in [34].

The outline of this thesis is as follows. The rest of Chapter 1 briefly reviews the

basics of Lévy processes used in this study, and the Carr-Madan Fast Fourier Trans-

form (FFT) method [7] associated with Lévy based models. Chapter 2 summarizes

the static and discrete time models for two price economies. Chapter 3 introduces

BSDE on CTMC and its relation with nonlinear expectation. Asymptotic result of

solutions to BSDEs on CTMCs under certain conditions is also developed in Chapter

3. Chapter 4 presents the G-expectation methods in the context of Lévy processes.

Applications of the continuous time two price economy are conducted in Chapter 5.

The model is applied to build bid and ask prices for option spreads, generate bid

and ask interest rate swap rates, compute bid and ask swaption prices, and evaluate
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credit capital commitments for derivatives with bilateral counterparty risk.

1.2 Lévy Processes in Finance

1.2.1 Definition and Lévy-Khintchine Representation

Lévy processes are named after the great French probabilist Paul Lévy, who

first studied them back in the 1930s. Although most of their basic structures and

properties were understood in the 1930s and 1940s, they have generated great inter-

est during the past two decades, particularly in the field of mathematical finance.

Lévy processes, from a probability point of view, are stochastic processes with sta-

tionary and independent increments. They could be seen as generalizations of ran-

dom walks to continuous time. Many well-known processes in the literature fall into

this category, such as Brownian motions, Poisson processes, stable processes, and

subordinators. A formal definition of Lévy processes can be written as follows. This

definition can be found in Section 1.3 in [3].

Definition 1.2.1. Let X = (Xt; t ≥ 0) be a stochastic process taking values in Rd

defined on (Ω,F , P ). Then X is a Lévy process if:

1. X0 = 0 almost surely (a.s.).

2. X has independent increments: for any 0 ≤ t0 ≤ t1 ≤ ... ≤ tn < ∞, the

random variables (Xtj −Xtj−1
, 1 ≤ j ≤ n) are independent.

3. X has stationary increments: for any t ≥ 0 and h ≥ 0, Xt+h−Xt
d
= Xh−X0.
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4. X is stochastically continuous: for any t ≥ 0,h ≥ 0, and ε > 0,

lim
h→0

P (|Xt+h −Xt| > ε) = 0.

Every Lévy process has a càdlàg (right continuous with left limits) modifica-

tion that is also a Lévy process. A stochastic process (Yt, t ≥ 0) is said to be a

modification of (Xt, t ≥ 0) if for each t ≥ 0, P (Xt 6= Yt) = 0. From now on, for

any Lévy process, we will be referring to its cádlág modification. Levy processes are

closely connected with infinitely divisible distributions. The following definition is

given in Section 1.2.2 in [3].

Definition 1.2.2. A random variable X taking values in Rd is called an infinitely

divisible if for all n ∈ N , there exists a sequence of independent and identically

distributed (i.i.d.) random variables Y1, Y2,...,Yn, such that

X
d
= Y1 + · · ·+ Yn.

The following proposition is given by Corollary 1.4.6 in [3].

Proposition 1.2.3. Let (Xt, t ≥ 0) be a Lévy process. Then for any t ≥ 0, the

distribution of Xt is infinitely divisible. Conversely, let µ be an infinitely divisible

probability measure. Then there exists a Lévy process (Xt, t ≥ 0), such that µ is the

law of X1.

This proposition implies that the characteristic function of a Lévy process

(Xt, t ≥ 0) at time t ≥ 0 can be expressed as

φXt(u) = E(ei(u,Xt)) = (φX1(u))t = etψX1
(u),
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where ψX1 denotes the characteristic exponent of X1, that is φX1(u) = eψX1
(u). To

characterize a Lévy process, it suffices to specify its distribution at unit time. The

famous Lévy-Khintchine formula gives a general form of the characteristic compo-

nent of the distribution of a Lévy process at unit time. The following theorem is

given by Theorem 1.2.14 in [3].

Theorem 1.2.4. (Lévy-Khintchine Representation) Let X = (Xt, t ≥ 0) be a

Lévy process that takes values in Rd. Then the characteristic exponent of X1 can be

expressed as

ψX1(u) = i < γ, u > −1

2
< u,Au > +

∫
Rd−{0}

(ei(u,y) − 1− i(u, y)1|y|<1)ν(dy),

where γ ∈ Rd, A is a symmetric non-negative definite d × d matrix, and ν is a

measure on Rd − {0}, named the Lévy measure, with

∫
Rd

(|x|2 ∧ 1)ν(dx) <∞.

One calls (γ,A, ν) the Lévy triplet of the process X.

We can see from the Lévy-Khintchine representation that in general, a Lévy

process can be decomposed into three independent parts: a linear deterministic

drift, a Brownian motion, and a pure jump part.

1.2.2 The Variance Gamma Process

The class of Variance Gamma (VG) processes was first introduced by Madan

and Seneta in [37], as an alternative to the Brownian motion in modeling stock

market returns. In [37], the symmetric case of VG process is developed, which
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is later generalized to provide skewness to the model in [33] by Madan, Carr and

Chang. Since then, the VG process has become one of the most popular Lévy pro-

cesses. Before presenting the VG process, we need to introduce the VG distribution.

Definitions in this subsection can be found in Section 5.3.7 in [49].

Definition 1.2.5. Let X be a random variable. We say X is VG distributed with

parameters (σ, ν > 0, θ) if the characteristic function of X satisfies

φX(u) = (1− iuθν +
1

2
u2σ2ν)−

1
ν .

A VG process X(V G) = (X
(V G)
t , t ≥ 0) would then be a Lévy process for which

the increment X
(V G)
t+s − X

(V G)
s (t ≥ 0, s ≥ 0) follows a VG (σ

√
t, ν/t, θt) law. An

alternative way of defining VG process is as follows.

Definition 1.2.6. Let X(V G) = (X
(V G)
t , t ≥ 0) be a VG process with parameters

(σ, ν > 0, θ). Then X(V G) can be written as

X
(V G)
t = θGt + σWGt ,

where W = (Wt, t ≥ 0) is a standard Brownian motion and Gt is a Gamma process

independent of W, with parameter (1/ν, 1/ν).

Definition 1.2.7. A Lévy process X = (Xt, t ≥ 0) is a Gamma process with pa-

rameter (γ, λ) if it has Lévy triplet

γ(1− exp(−λ))/λ, 0, γexp(λx)x−11{x>0}dx).

As a result, a VG process can be seen as a time changed Brownian motion

with drift, which is also how the process was invented in the first place. The Lévy
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measure of X(V G) can be computed to be

νV G(dx) =


CeGx

|x| , x < 0,

Ce−Mx

x
, x > 0,

where

C =
1

ν
,

G =

(√
1

4
θ2ν2 +

1

2
σ2ν − 1

2
θν

)−1

,

M =

(√
1

4
θ2ν2 +

1

2
σ2ν +

1

2
θν

)−1

.

The Lévy triplet of X(V G) is given by (γ, 0, νV G(dx)), with

γ =
CG(1− e−M)− CM(1− e−G)

MG
.

This leads to another way of explaining the VG process as the difference between

two independent Gamma processes:

X(V G = X(G)(t;C,M)−X(G)(t;C,G).

1.3 The Fast Fourier Transform Method in Option Pricing

Although Lévy based models have shown significant improvements in explain-

ing financial data compared with the renowned Black-Scholes model, their distribu-

tions lack closed form expressions in most cases. Numerical methods and Fourier

analysis have been applied in the literature to develop calibration methods for non-

Gaussian models. Heston in [24] made use of Lévy’s inversion formula to evaluate

Vanilla options numerically. Carr and Madan showed in [7] a fast Fourier transform
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(FFT) method to do option pricing by relating the Fourier tranform of the option

price with the characteristic function of the underlying Lévy process. The Carr-

Madan FFT method has since been used as a standard engine for calibration due

to its fast speed and effectiveness. This method is briefly discussed below.

Consider a European call option with strike K and maturity T . Let k denote

ln(K), sT denote ln(ST ), qT (s) denote the probability density of sT under the risk

neutral measure, and CT (k) denote the expected value of the call option. Our goal

is to compute CT (k) in an efficient way. Since CT (k) is not square integrable, Carr

and Madan introduced the modified call price

cT (k) := eαkCT (k)

for some α > 0. The α is called the dampening coefficient, and is chosen to make

the modified call price square integrable. Now consider the Fourier transform of cT ,

ψT (v) =

∫ ∞
−∞

eivkcT (k)dk.

Then ψT (v) can be derived analytically as

ψT (v) =
e−rTφT (v − (α + 1)i)

α2 + α− v2 + iv(2α + 1)
,

where φT (u) is the characteristic function of sT , defined by

φT (u) =

∫ ∞
−∞

eiusqT (s)ds.

Therefore, CT (k) can be recovered from inverse Fourier transform through

CT (k) =
e−αk

π

∫ ∞
0

eivkψT (v)dv. (1.1)
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In [7], the integral term in (1.1) is approximated by trapezoidal rule on a well-defined

grid for v, and FFT method is applied to obtain values of CT (k) on a pre-specified

grid for k.The grids for v and k are chosen as

vj = (j − 1)η, for j = 1, 2, ...N ,

ku = −1

2
Nλ+ (u− 1)λ, for u = 1, 2, ...N ,

where λ, η satisfy λη = 2π
N

. As a result, we have the following approximation of

(1.1),

CT (ku) ≈
e−αku

π

N∑
j=1

e−
2πi
N

(j−1)(u−1)ei
1
2
Nλvjψ(vj)

η

3
[3 + (−1)j − 1j=1]. (1.2)

In general, N is chosen to be a power of 2, and is set to 1024 in [7]. The summation

in (1.2) is then computed using the FFT method.
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Chapter 2

The Two Price Economy

2.1 One Period Two Price Model

In classical economic analysis, the market is modeled as a passive agent, which

attains its equilibrium by setting prices so as to ensure market clearing. The two

price economy is built upon the belief that market clearing is not always reachable.

In the two price economy, the market is defined to achieve its equilibrium by making

excess supplies acceptable.

Consider an economy trading bounded cash flows defined on a probability

space (Ω,F , P ). A cash flow X is said to be acceptable if

EQ(X) ≥ 0, for all Q ∈ N ,

where N is a pre-determined convex set of probability measures equivalent to P ,

and also includes a risk neutral measure. The N is called the set of test measures.

Let A denote the collection of acceptable cash flows. Then A would be a cone

including all nonnegative F measurable random variables. The larger the size of A

, the bigger the trading opportunities in the market, so the larger the size of the

economy.

The two price economy proceeds by offering each market participant the same

cone of acceptable cash flows A. It is shown in [34] that for any state contingent
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claim with F measurable payoff X, its bid price b(X) and ask price a(X) in the two

price system are then given by

b(X) = inf
Q∈N

EQ(X),

a(X) = sup
Q∈N

EQ(X).

The bid and ask pricing functionals map from the space of bounded F measurable

random variables to R. By construction, bid is concave, ask is convex, and the two

functionals satisfy

a(X) = −b(−X).

As a result, one only needs to develop methods for generating bid prices.

We note that the bid pricing functional is controlled by the set of test measures.

In [34], this set of measures is constructed indirectly through acceptability indices.

The concept of acceptability index is introduced in [8] by Cherny and Madan as a

new measure for performance evaluation. Its definition is given below.

Definition 2.1.1. Let (Ω,F , P ) be a probability space. An acceptability index α is

a mapping α : L∞(Ω,F , P )→ [0,∞] satisfying

1. Quasi-concavity: if α(X) ≥ γ and α(Y ) ≥ γ, then α(λX + (1− λ)Y ) ≥ γ for

any λ ∈ [0, 1],

2. Monotonicity: if X ≤ Y a.s., then α(X) ≤ α(Y ),

3. Scale invariance: α(λX) = α(X) for any λ > 0,

4. Fatou property: for any sequence of uniformly bounded random variables (Xi)
∞
i=1

that converges to X in probability, with α(Xi) ≥ λ for all i, then α(X) ≥ λ.
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We have the following property regarding acceptability indices. Proofs can be

found in [8].

Theorem 2.1.2. Let α be a mapping from L∞(Ω,F , P ) to [0,∞], and let P denote

the set of probability measures absolutely continuous with respect to P. The following

statements are equivalent.

(i) α is an acceptability index;

(ii) there exists a family of sets (Dγ)γ∈R+, with Dγ ⊆ P and Dγ1 ⊆ Dγ2 whenever

γ1 ≤ γ2, such that

α(X) = sup{γ ∈ R+ : inf
Q∈Dγ

EQ(X) ≥ 0},

where inf ∅ =∞ and sup ∅ = 0.

Cherny and Madan [8] proposed a class of acceptability indices termed the

Weighted Value at Risk (WVAR) acceptability index. Suppose X is a random vari-

able belonging to L∞(Ω,F , P ) with distribution function FX(x). Then the WVAR

of X is defined as

WVAR(X) = −
∫
R

xd(Ψ(FX(x))),

where Ψ is an increasing, concave continuous function from [0, 1] to [0, 1] called the

concave distortion. Let (Ψ(u)γ)γ∈R+ be a family of concave distortions with Ψγ(u)

strictly increasing in γ for all u ∈ [0, 1]. The WVAR acceptability index (AIW) is

given by

AIW (X) = sup{γ ∈ R+ :

∫
R

xd(Ψγ(FX(x))) ≥ 0}.
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By Theorem 2.1.2, AIW is associated with a sequence of increasing sets of test

measures (Dγ)γ∈R+ . If we fix the set of test measures as Dγ for a given γ, we

then get a two price economy in which the bid and ask prices have the following

representations,

bγ(X) =

∫
R

xd(Ψγ(FX(x))), (2.1)

and

aγ(X) = −
∫
R

xd(Ψγ(F−X(x))). (2.2)

Observe that if the concave distortion Ψγ is the identity function, equation

(2.1) is simply the expectation of X. Therefore, the bid price can be viewed as a

distorted expectation under the distribution given by Ψγ(FX(x)). From (2.1), we

can obtain the following two properties about the bid price functional induced by

AIW,

1. Law invariant: if X
d
= Y , then b(X) = b(Y ),

2. Linear in comonotone variables: if (X(ω1)−X(ω2))(Y (ω1)− Y (ω2)) ≥ 0 a.s.,

then b(X + Y ) = b(X) + b(Y ).

Hence, the bid and ask prices are nonlinear expectations defined on L∞(Ω,F , P ),

with linearity preserved only for comonotone random variables. The size of the

resulting two price economy is controlled by γ through the function Ψγ(u). Recall

that (Ψ(u)γ)γ∈R+ is a family of concave distortions increasing in γ. An example of

such family of functions termed minmaxvar is proposed by Cherny and Madan in

[8], and is defined by

Ψγ(u) = 1− (1− u
1

1+γ )1+γ. (2.3)
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All the computations related with concave distortions in this thesis will employ the

minmaxvar function.

2.2 Discrete Time Two Price Model

The discrete time two price model is developed in [35] by Madan, Pistorius

and Schoutens. The model could be seen as a multi-period extension of the one

period two price model. Consider a discrete time two price economy defined on a

filtered probability space (Ω,F , {Ft}0≤t≤T , P ). Assume the filtration is generated

by a discrete time finite state Markov chain (Xt)0≤t≤T . Without loss of generality,

we can use standard basis vectors {e1, ...eN} ⊂ RN to identify the states of the

Markov chain, where ei = (0, 0, ...0, 1, 0, ...0)T and N is the total number of states.

Suppose the discrete time two price economy trades state contingent terminal cash

flows C ∈ C ⊆ L2(FT ). We note that since there could only be finitely many possible

paths for X on t = 0, 1, ...T , we have

L2(FT ) = L∞(FT ).

As an analogue to the one period two price economy, in which the bid and

ask prices are nonlinear expectations on (Ω,F , P ), the two prices in discrete time

are modeled as dynamically consistent nonlinear expectations defined on (Ω,F ,

{Ft}0≤t≤T , P ). A system of operators

E(·|Ft) : L2(FT )→ L2(Ft), 0 ≤ t ≤ T

is called a dynamically consistent nonlinear expectation if it satisfies the following

properties:
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1. Monotonicity: if X ≤ Y a.s., then E(X|Ft) ≤ E(Y |Ft) a.s.,

2. Ft-triviality: E(X|Ft) = X a.s. for any Ft measurable X,

3. Recursivity: E(E(X|Ft)|Fs) = E(X|Fs) a.s. for any s ≤ t,

4. Regularity: 1AE(X|Ft) = E(1AX|Ft) a.s. for any A ∈ Ft.

Moreover, we want to preserve the concavity and convexity of the bid and

ask pricing functionals, respectively. In [35], such nonlinear pricing functionals are

constructed as solutions to backward stochastic difference equations. The connec-

tion between backward stochastic difference equations and dynamically consistent

nonlinear expectations is established by Theorem 7 of Cohen and Elliott [12].

In the discrete two price economy, the uncertainty evolution is described by

a N state Markov chain (Xt)0≤t≤T . The discrete time Markov chain X can be

represented as

Xt = E(Xt|Ft−1) +Mt,

where Mt is a martingale that takes values in RN . A backward stochastic difference

equation based on (Mt)0≤t≤T has the following form

Yt −
∑
t≤u<T

F (ω, u, Yu, Zu) +
∑
t≤u<T

ZT
uMu+1 = C, (2.4)

where F is an adapted map F : Ω × {0, ..., T} × R × RN → R called the driver

function, C a bounded FT measurable random variable representing the terminal

value. The solution to (2.4) is a pair (Yt, Zt) that satisfies the equation, with Y

taking values in R and Z taking value in RN . By Theorem 7 in [12], the solution to
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(2.4) is linked to nonlinear expectation through

Yt = E(C|Ft).

One can rewrite (2.4) as

Yt − F (ω, t, Yt, Zt) + ZT
t Mt+1 = Yt+1,

with YT = C. Taking E(·|Ft) on both sides yields

Yt = E(Yt+1|Ft) + F (ω, t, Yt, Zt). (2.5)

As a result, bid and ask prices can be constructed backwardly from (2.5) by carefully

selecting the driver functions. In [36], the driver functions for bid and ask prices are

chosen to be

Fb(ω, t, Y
b
t , Zt) = bγ(Z

T
t Mt+1)

= bγ(Y
b
t+1 − E[Y b

t+1|Ft]),

and

Fa(ω, t, Y
a
t , Zt) = aγ(Z

T
t Mt+1)

= aγ(Y
a
t+1 − E[Y a

t+1|Ft]),

where the functions aγ and bγ are one step distorted expectations defined in (2.1)

and (2.2). We observe from the definition of one step distorted expectations that the

bid and ask pricing functionals are locally law invariant and translation invariant,

which means

E(C +Q|Ft) = E(C|Ft) +Q for any Q ∈ L2(Ft).
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By construction, the bid price process satisfies

Y b
t = E(Y b

t+1|Ft) + bγ(Y
b
t+1 − E[Y b

t+1|Ft])

= bγ(Y
b
t+1)

≤ E(Y b
t+1|Ft),

while the ask price process follows

Y a
t = E(Y a

t+1|Ft) + aγ(Y
a
t+1 − E[Y a

t+1|Ft])

= aγ(Y
a
t+1)

≥ E(Y a
t+1|Ft).

Hence bid prices are submartingales whereas ask prices are supermartingales. We

also have

Y b
t ≤ E(C|Ft) ≤ Y a

t ,

which is consistent with the one period two price economy.
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Chapter 3

BSDEs on Markov Chains

3.1 Introduction

The theory of backward stochastic differential equations (BSDEs) has been

extensively studied since its initial development in the work of Pardoux and Peng

[44]. BSDEs have attracted much attention during the past two decades due to their

connections with stochastic optimization problems. Most of the previous results are

obtained in the context of continuous time diffusions, and therefore are unable to deal

with any case when the underlying martingale could jump with positive probability.

However, such cases may arise in various applications. In a series of papers [10],

[11] by Cohen and Elliott, BSDEs generated by continuous time Markov chains

(CTMCs) are proposed and studied in detail. Their results will be summarized in

this section.

Consider a CTMC X = (Xt)0≤t≤T with N states. Without loss of generality,

we can use standard basis vectors {e1, ...eN} ⊂ RN to identify the states of the

Markov chain, where ei = (0, 0, ...0, 1, 0, ...0)T . This chain generates a filtered prob-

ability space (Ω,FT ,{Ft}0≤t≤T ,P ). Let At be the rate matrix of X at time t. Then

this process has the following representation:

Xt = X0 +

∫
]0,t]

ATuXudu+Mt, (3.1)
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where Mt is a martingale. The predictable quadratic variation of Mt, 〈M,M〉t,

satisfies

〈M,M〉t =

∫
]0,t]

[
diag(ATuXu−)− diag(Xu−)ATu − ATudiag(Xu−)

]
du. (3.2)

Proofs of (3.1) and (3.2) can be found in Appendix B in [19].

A BSDE on the Markov chain X is defined by

Yt −
∫

]t,T ]

F (ω, u, Yu−, Zu)du+

∫
]t,T ]

ZT
udMu = Q, (3.3)

where Q is a square integrable, FT measurable, R valued random variable, and F

is a progressively measurable function which takes values in R, called the driver

function. Let ψu denote the integrand in (3.2):

ψu = diag(ATuXu−)− diag(Xu−)ATu − ATudiag(Xu−).

The matrix ψu is a nonnegative definite. For any two vectors ũ, ṽ ∈ RN , the inner

product induced by ψu is defined in [10] as

< ũ, ṽ >Xu−= ũTψu(Xu−)ṽ. (3.4)

With some calculations, we could get for any vector ṽ:

‖ṽ‖2
Xu− =

∑
j:XT

u−Auej>0

XT
u−Auej(vj − vXu−)2.

As a result, the norm of ṽ is 0 if and only if vj = vXu− for all the states j with

XT
u−Auej > 0.

The solution to the BSDE (3.3) is a pair (Yt, Zt) that satisfies (3.3) for all

t ∈ [0, T ], with Yt taking values in R and Z taking values in RN . Existence and

uniqueness of the solution to (3.3) is proved in [10], which is stated below.
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Theorem 3.1.1. Let Q belong to L2(FT ), and let F be Lipschitz continuous in

the sense that there exists a constant C, such that for any Y 1,Y 2, Z1, Z2, square

integrable and of appropriate dimension,

|F (ω, t, Y 1
t−, Z

2
t )− F (ω, t, Y 2

t−, Z
2
t )| ≤ C(|Y 1

t− − Y 2
t−|+ ‖Z1

t − Z2
t ‖Xt−) a.s., dt× P.

(3.5)

Then (3.3) has a unique solution (Y, Z), up to indistinguishability for Y and equality

[d〈M,M〉t × P ]-a.s. for Z. Moreover, Yt is an adapted càdlàg process with

E

[∫
]0,T ]

|Yt|2du
]
< +∞,

and Zt is predictable with

E

[∫
]0,T ]

‖Zt‖2
Xt−du

]
< +∞.

In [11], Cohen and Elliott established the connection between solutions of

BSDEs on CTMCs with dynamically consistent nonlinear expectations. Before stat-

ing the main result of [11], we’ll need the following comparison theorem, which is

also proved in [11].

Theorem 3.1.2. Suppose we have two standard scalar BSDEs with driver functions

and terminal values (F 1, Q1), (F 2, Q2), and corresponding solutions (Y 1, Z1) and

(Y 2, Z2). Assume the following conditions hold:

1. Q1 ≥ Q2 P -a.s.,

2. F 1(ω, t, Y 2
t−, Z

2
t ) ≥ F 2(ω, t, Y 2

t−, Z
2
t ) dt× P -a.s.,
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3. there exists ε > 0, such that for all t ∈ [0, T ], P -a.s., if Z1
t , Z

2
t satisfies

(eTj A
T
t Xt−)[Z1

t − Z2
t ]T (ej −Xt−) ≥ −ε‖Z1

t − Z2
t ‖Xt− (3.6)

for all ej,then

F 1(ω, t, Y 2
t−, Z

1
t )− F 1(ω, t, Y 2

t−, Z
2
t ) ≥ −[Z1

t − Z2
t ]TATt Xt− (3.7)

holds with equality only if ‖Z1
t − Z2

t ‖Xt− = 0.

Then Y 1 ≥ Y 2 P -a.s. And this comparison is strict, meaning if Y 1
t = Y 2

t for

some t and on some set U ∈ Ft, then Q1 = Q2 P -a.s. on U and F 1(ω, s, Y 2
s−, Z

2
s ) =

F 2(ω, s, Y 2
s−, Z

2
s ) [ds× P ]-a.s. on [t, T ]× U .

3.2 Nonlinear Expectations Induced by BSDEs on CTMCs

Definition 3.2.1. A system of operators, E(·|Ft) : L2(FT ) → L2(Ft), 0 ≤ t ≤ T ,

is called an Ft-consistent nonlinear expectation for Qt ⊆ L2(FT ) defined on [0, T ],

if it satisfies the following properties:

1. for Q,Q
′ ∈ Qt, with Q ≥ Q

′
P − a.s.,

E(Q|Ft) ≥ E(Q
′|Ft) P − a.s., (3.8)

with equality holding iff Q = Q
′
P − a.s.,

2. E(Q|Ft) = Q, P − a.s., for any Ft measurable Q,

3. E(E(Q|Ft)|Fs) = E(Q|Fs), P − a.s., for any s ≤ t,

4. for any A ∈ Ft, 1AE(Q|Ft) = E(1AQ|Ft), P − a.s..
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A nonlinear expectation shares all the properties of the traditional expectation

except the linearity. In [45], it is shown that under some restrictions, a BSDE on

Brownian motion generates a dynamically consistent nonlinear expectation. An

analogue to this connection is given in [11] by Cohen and Elliott. Their main result

is stated below.

Theorem 3.2.2. Fix a Lipschitz continuous (3.5) driver F that satisfies

F (ω, t, Y, 0) = 0 dt × P -a.s.. Moreover, consider a family of sets Qt ⊆ L2(FT ),

such that for all Q, Q
′ ∈ Qt with Q ≥ Q

′
, the comparison theorem 3.1.2 holds with

F 1 = F 2 = F . Define a system of operators EF (·|Ft) by

EF (Q|Ft) = Yt, (3.9)

where Yt is the solution to

Yt −
∫

]t,T ]

F (ω, u, Yu−, Zu)du+

∫
]t,T ]

ZT
u dMu = Q.

Then EF (·|Ft) is a Ft-consistent nonlinear expectation for Qt.

3.3 Continuous Time Modeling of Bid and Ask Prices

Recall that in Chapter 2, we have reviewed two models (static and discrete

time) for two price economies. In order to extend the theory of two price economy

to continuous time, we need to develop continuous time modeling of the bid and

ask prices. The idea behind the discrete time two price economy, in which the two

prices are constructed as nonlinear expectations, brings us naturally to dynamically

consistent nonlinear pricing in continuous time. Theorem 3.2.2 provides a way to
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generate continuous time nonlinear expectations from BSDEs on Markov chains.

Our task reduces to describing the BSDEs corresponding to the bid and ask pricing

functionals.

Consider the following BSDE,

Yt −
∫

]t,T ]

F (Xu, u, Yu−, Zu)du+

∫
]t,T ]

ZT
u dMu = Q(XT ), (3.10)

where F is a Markovian driver function, and Q is a square integrable random variable

that only depends on the terminal state of the underlying CTMC X. The solution

to (3.10) is given by the theorem below.

Theorem 3.3.1. Let F be a Lipschitz Markovian driver function. Suppose there

exists a continuous vector Ṽ that satisfies, for i = 1, 2, ...N ,

dṼi
dt
− eTi AT−tṼ (t)− F (ei, T − t, Ṽi(t), Ṽ (t)) = 0, (3.11)

and

Ṽi(0) = Q(ei).

Then (Ṽ T (T − t)Xt, Ṽ (T − t)) is the solution to (3.10).

Proof. Applying Itô’s formula to Ṽ (t)TXt yields

d(Ṽ (T − t)TXt) (3.12)

= (AtṼ (T − t))TXtdt+ F (Xt, t, Ṽ (T − t)TXt, Ṽ (T − t))dt+ Ṽ (T − t)TdXt.

From (3.1),

dXt = ATt Xtdt+ dMt.
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Substituting into (3.12), we get

d(Ṽ T (T − t)Xt) = −(Ṽ T (T − t)ATt Xt + F (Xt, t, Ṽ
T (T − t)Xt, Ṽ (T − t)))dt

+ Ṽ T (T − t)ATt Xtdt+ Ṽ (T − t)TdMt

= −F (Xt, t, Ṽ
T (T − t)Xt, Ṽ (T − t))dt+ Ṽ (T − t)TdMt.

As a result, we have

Ṽ T (T − t)Xt −
∫

]t,T ]

F (Xu, u, Ṽ
T (T − u)Xu, Ṽ (T − u))du+

∫
]t,T ]

Ṽ (T − u)TdMu

= Q(Xt).

Note that Ṽ T (T − u)Xu = Ṽ T (T − u−)Xu− except for countably may u s, we get

Ṽ T (T − t)Xt −
∫

]t,T ]

F (Xu, u, Ṽ
T (T − u−)Xu−, Ṽ (T − u))du+

∫
]t,T ]

Ṽ (T − u)TdMu

= Q(Xt),

which is in the same form as (3.10) with Yt = Ṽ T (T − t)Xt and Zt = Ṽ (T − t).

We will use the BSDE with Markovian driver and terminal value as our tool

for modeling continuous time two price economy. For computing bid prices, we pick

the driver to be

Fb(Xt, t, Yt, Zt) = |XT
t AtXt|

∫
R

zd(Ψγ(FZ(z)))−XT
t AtZt, (3.13)

where Ψγ is the minmaxvar function defined in (2.3), and FZ(z) is the distribution

function of a random variable Z that takes values in (ei − Xt)
TZt for all ei 6= Xt,

with

P (Z = (ei −Xt)
TZt) =

XT
t Atei

|XT
t AtXt|

. (3.14)
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The driver function for generating ask prices is

Fa(Xt, t, Yt, Zt) = −Fb(Xt, t, Yt,−Zt). (3.15)

The probability mass function of Z defined in (3.14) is the same as the transition

probability at state Xt of the embedded Markov chain associated with the CTMC

(Xt)0≤t≤T . The driver functions (3.13), (3.15) can be seen as scaled distorted ex-

pectations of ZtdMt. By construction, Fb ≤ 0 ≤ Fa, we have for any 0 ≤ s < t ≤ T ,

Y b
s = E(Y b

t |Fs) + E(

∫
]s,t]

F (Xu, u, Y
b
u−, Zu)du|Fs)

≤ E(Y b
t |Fs),

and

Y a
s = E(Y a

t |Fs) + E(

∫
]s,t]

F (Xu, u, Y
a
u−, Zu)du|Fs)

≥ E(Y a
t |Fs).

Hence the bid prices are submartingales whereas the ask prices are super-

martingales, which is consistent with the discrete time two price economy. More-

over, the bid and ask pricing functionals induced by the BSDEs are dynamically

consistent nonlinear expectations. This property is given by the proposition below.

Proposition 3.3.2. Consider a BSDE of the following form

Yt −
∫

]t,T ]

F (Xu, u, Yu−, Zu)du+

∫
]t,T ]

ZT
u dMu = Q(XT ),

where the driver function F is either Fb or Fa, defined in (3.13) and (3.15). For any

t ∈ [0, T ], let Qt denote the set of Ft measurable square integrable random variables
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that only depend on Xt. Define a system of operators

EF (·|Ft) : QT → Qt

by

EF (·|Ft) = Yt.

Then EF is a dynamically consistent nonlinear expectation defined for {Qt}0≤t≤T .

We first prove the following lemma.

Lemma 3.3.1. Let Ṽ 1 and Ṽ 2 be solutions to (3.11). If for i = 1, ..., N , Ṽ 1
i (0) >

Ṽ 2
i (0), then Ṽ 1

i (t) ≥ Ṽ 2
i (t) for all t ∈ [0, T ], i = 1, ...N .

Proof. For any two vectors Ũ and Ṽ in RN , let Ũ � Ṽ denote

Ũi > Ṽi, i = 1, ..., N,

and Ũ � Ṽ denote

Ũi ≥ Ṽi, i = 1, ..., N.

Equation (3.11) could be written as

dṼ

dt
= Λ(t)(E(Ṽ )− Ṽ ), (3.16)

where Λ(t) is a diagonal matrix with Λii(t) = |eTi AT−tei| for all t ∈ [0, T ], and E(Ṽ )

an N dimensional vector satisfying

E(Ṽ )i = E(Zi),

for i = 1, ...N . The Zi above denotes a random variable that takes values eTj Ṽ for

ej 6= ei, with probability mass function

P (Zi = eTj Ṽ ) =
eTi Atej

Λii

,
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and E(Zi) stands for bγ(Zi) or aγ(Zi) depending on the form of the driver function

F . Therefore, Ṽ 1 − Ṽ 2 satisfies

d(Ṽ 1 − Ṽ 2)

dt
= Λ(t)[E(Ṽ 1)− E(Ṽ 2)− (Ṽ 1 − Ṽ 2)]. (3.17)

Suppose Lemma 3.3.1 does not hold. Define

τ = inf{t ≥ 0|∃i, V 1
i (t) < V 2

i (t)}.

Since V 1 and V 2 are continuous, we have τ > 0, and V 1
i (τ) ≥ V 2

i (τ), with equality

holding for at least one i. By definition of τ , we infer that when t ∈ [0, τ ], V 1
i (t) >

V 2
i (t) for i = 1, ..., N . Consider (3.17) on the interval [0, τ ]. Since E(Ṽ 1) � E(Ṽ 2),

by the comparison theorem for ordinary differential equations, (Ṽ 1 − Ṽ 2) is greater

than the solution to

dŨ

dt
= −Λ(t)Ũ ,

with initial condition Ũ(0) = Ṽ 1(0)− Ṽ 2(0). Thus we have

Ṽ 1(τ)− Ṽ 2(τ) � Ũ(τ) = (Ṽ 1(0)− Ṽ 2(0))exp

[∫ τ

0

Λ(s)ds

]
� 0,

which contradicts with the fact that V 1
i (τ) = V 2

i (τ) for some i.

We next prove Proposition 3.3.2.

Proof. Properties 2 through 4 in Definition 3.2.1 follow directly from Theorem 3.2.2.

However, our picks of F do not satisfy the requirements for the comparison theorem

(Theorem 3.1.2), and so we will prove the monotonicity directly. By Theorem 3.3.1,

we need to prove that for any Ṽ 1 and Ṽ 2 satisfying (3.11), if Ṽ 1(0) � Ṽ 2(0), then

Ṽ 1(t) � Ṽ 2(t) for all t ∈ [0, T ].
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By definition, for any vector Ṽ and any ε > 0, we have

E(Ṽ )− V = E(Ṽ − ε)− (V − ε).

Recall that Ṽ 2 satisfies (3.16). Hence Ṽ 2 − ε also satisfies (3.16), with initial value

given by Ṽ 2(0)− ε. Use Lemma 3.3.1 and Ṽ 1(0) � Ṽ 2(0)− ε to obtain

Ṽ 1(t) � Ṽ 2(t)− ε, for any t ∈ [0, T ].

Since ε is arbitrary, we have

Ṽ 1(t) � Ṽ 2(t), for any t ∈ [0, T ].

3.4 A Convergence Theorem of BSDEs on CTMCs

3.4.1 Overview

In this section, we are going to prove a convergence theorem of BSDEs on

CTMCs. Consider a sequence of BSDEs on CTMCs,

Y n
t = ξn +

∫ T

t

F n(u, Y n
u−, Z

n
u )−

∫ T

t

(Zn
u )TdMn

u , (3.18)

driven by a sequence of CTMCs Xn with transition rate matrix Ant and state value

vector V n.

Also, consider a BSDE generated by a Levy process X,

Yt = ξ +

∫ T

t

f(s, Ys−, Zs)ds−
∞∑
i=1

∫ T

t

Z(i)
s dH

(i)
s (3.19)
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where H
(i)
t is the orthonormalized Teugels martingale of order i associated with the

Levy process X. The solution to (3.19) is a pair (Yt, Zt), in which Yt has càdlàg

trajectories on [0, T ] and Zt ∈ R∞. BSDEs driven by Levy processes are introduced

and studied by Nualart and Schoutens in [43]. The existence and uniqueness of the

solution of (3.19) is shown in [43].

Let X(n) = (V n)TXn, the Markov chain that follows the same dynamics as Xn

and takes values in V n. We are interested in the asymptotic behavior of the solutions

to (3.18), as the sequence of Markov chains X(n) converges to a Levy process X.

3.4.2 Preliminaries

Before stating the main result of this section, we’ll introduce the preliminary

background related to our result. The solutions to both (3.18) and (3.19) are pairs,

with their first components having càdlàg trajectories on [0, T ]. To characterize

the convergence of solutions, we’ll need a metric to measure the closeness between

càdlàg functions. Let D[0, T ] denote the set of all càdlàg functions from [0, T ] to

R. One commonly used metric on D[0, T ] is the J1-Skorokhod metric. It was first

introduced by Skorokhod in [50] to characterize convergence of sample paths of

stochastic processes . The definition of J1-Skorokhod metric is given below.

Definition 3.4.1. Let f, g ∈ D[0, T ], the J1 − Skorokhod metric d on D[0, T ] is

defined by

dJ1(f, g) = inf
λ∈Λ

max{‖λ− I‖∞, ‖f − g ◦ λ‖∞},

where Λ denotes the class of strictly increasing, continuous mappings of [0, T ] onto
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itself, ‖ · ‖∞ is the L∞ norm, and I is the identity function.

D[0, T ] together with the J1-Skorokhod metric induce a topological space.

In order to characterize the convergence of random processes, we will use the

Aldou’s extended convergence introduced in [41], which is defined as follows,

Definition 3.4.2. Given a sequence of random processes Xn defined on a filtered

space (Ω,F , (Fnt ), P ) and a process X defined on a filtered space (Ω,F , (Ft), P ),

we say that (Xn, (Fnt )) converges to (X, (Ft)) in the Aldous extended sense, if for

every bounded Borelian function Φ from D[0, T ] to R, the sequence of càdlàg pro-

cesses (Xn
t , (E[Φ(Xn)|Fnt )) converges in probability under J1-Skorokhod topology to

the process (Xt, (E[Φ(X)|Ft])).

There exists many ways to check if a sequence of (Xn, (F n
t )) converges to

(X, (Ft)) in the Aldous extended sense. We’ll use Theorem 1 and Proposition 2(i)

in paper [29].

Next we discuss the orthonormalized martingales induced by Teugels martin-

gales of a Levy process. The concept is introduced in [43] by Nualart and Schoutens.

For any Levy process X, its power-jump processes are defined as follows,

X
(1)
t = Xt,

X
(i)
t =

∑
0<s≤t

(∆Xs)
i, i ≥ 2.

The Teugels martingales are

Y
(i)
t = X

(i)
t − E(X

(i)
t ), for i ≥ 1. (3.20)
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Similar to the Gram-Schmidt method, orthonormalization could be applied to the

Teugels martingales Y
(i)
t so as to get a sequence of strongly orthonormal martingales

H
(i)
t , that is < H

(i)
t , H

(j)
t >= 0 for i 6= j and < H

(i)
t , H

(j)
t >= t, where each H i is a

linear combination of {Y (j)}ij=1. Details of the orthonormalization method can be

found in [43].

Now consider an N -state CTMC X, with transition rate matrix A(t) satisfying

∀i, j, aij(t) 6= 0.

Let us also suppose that the state value vector V of X consists of N distinct values.

Inspired by the Teugels martingales for a Levy process, we define the generalized

Teugels martingales for the CTMC X with N states and state value vector V .

X
(i)
t =

∑
0<s≤t

(∆(V TXt))
i 1 ≤ i ≤ N − 1.

Similar to (3.1), X
(i)
t also has a martingale representation form:

X
(i)
t =

∫ t

0

((V − V TXu−)i)TATuXu−du+

∫ t

0

((V − V TXu−)i)TdMu.

Let Y
(i)
t be

∫ t
0
((V − V TXu−)i)TdMu, the martingale part of X

(i)
t . Similar to

the orthonormalization of Teugels martingales induced by a Levy process, we seek

to find a set of orthonormal martingales induced by Y
(i)
t .

For any two martingales of the form M1(t) =
∫ t

0
Z1(u)TdMu, and M2(t) =∫ t

0
Z2(u)TdMu with predictable vectors Z1 and Z2, the predictable cross variation

between M1 and M2 could be written as

< M1,M2 >t=

∫ t

0

< Z1(u), Z2(u) >Xu− ds,
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where < ·, · >Xu− denotes the inner product induced by M , which is defined in (3.4).

Let V (i) denote (V − V TXu−)i. We have the following lemma.

Lemma 3.4.3. For any fixed time u, the set of vectors {V (i)(u)}N−1
i=1 has rank N−1.

Proof. Without loss of generality, suppose Xu− = j. Then

[V (1), V (2), ..., V (N)] =



v1 − vj (v1 − vj)2 . . . (v1 − vj)N−1

v2 − vj (v2 − vj)2 . . . (v2 − vj)N−1

...
. . .

...

0 0 . . . 0

...
. . .

...

vN − vj (vN − vj)2 . . . (vN − vj)N−1



.

If we add a vector of 1s as the first column in front of {V (i)}N−1
i=1 , we get a full rank

Vandermonde matrix. Therefore the original matrix has rank N − 1.

As a result, for each u ∈ [0, T ] we could apply the Gram-Schmidt method to

{V (i)(u)}N−1
i=1 to obtain a set of orthonormal vectors {C(i)(u)}N−1

i=1 with respect to

(w.r.t) the inner product induced by M . Define {H(i)}N−1
i=1 as

H(i) =

∫ t

0

(C(i)(u))TdMu.

Then {H(i)}N−1
i=1 forms a set of strongly orthonormal martingales. Let us call

{H(i)}N−1
i=1 the generalized orthonormal martingales induced by the CTMC X. We

have the following generalized martingale representation theorem for {H(i)}N−1
i=1 .

Theorem 3.4.4. Let Kt be a martingale adapted to Fnt , the filtration generated by a

CTMC (Xt)0≤t≤T with N states and nonzero transition rate. Then Kt can be written
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as

Kt =
N−1∑
i=1

∫ t

0

αi(u)dH(i)
u , (3.21)

where {H(i)}N−1
i=1 are the generalized orthonormal martingales of X.

Proof. By the martingale representation theorem for CTMC (Lemma 3.1 in [10]),

Kt can be written as

Kt =

∫ t

0

D(u)TdMu, (3.22)

for some predictable D(u). For each u, D(u) is a vector in RN . Recall that {C(i)}N−1
i=1

is the orthonormalized {V (i)}N−1
i=1 . For each 1 ≤ i ≤ N − 1, (V i)TXu− = 0, which

implies (C(i))TXu− = 0. From (3.1), we get

dMu = dXu − ATuXu−dt.

Thus

1̃TdMu = 1̃TdXu − 1̃TATuXu−dt = 1̃TdXu − 0̃TXu−dt = 0.

As a result, if we replace D(u) by D(u)−D(u)TXu− in (3.22), we will get the same

Kt. Use D̃(u) to denote D(u) −D(u)
′
Xu−. Then D̃(u)TXu− is 0. Since {C(i)}N−1

i=1

has full rank with (C(i))TXu− = 0, D̃(u) is in the span of {C(i)}N−1
i=1 . Therefore,

there exists predictable {αi}1≤i≤N−1, such that

D̃(u) =
N−1∑
i=1

αi(u)C(i)(u).
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Thus we obtain

Kt =

∫ t

0

D̃(u)TdMu

=
N−1∑
i=1

∫ t

0

αi(u)C(i)(u)TdMu

=
N−1∑
i=1

∫ t

0

αi(u)dH(i)
u .

3.4.3 A Convergence Theorem

Let X(n) be a sequence of continuous time Markov chain and X a Levy process.

Suppose that

1. (X(n),Fnt ) converges to (X,Ft) in the Aldous extended sense,

2. for any N , and sufficiently large n, the first N generalized orthonormal mar-

tingales of X(n), {Hn(i)}Ni=1 converge in probability to the first N orthonor-

mal martingales of X {H(i)}Ni=1 in the J1-Skorokhod topology. Moreover,

E[|H(i)
T |3] + supnE[|Hn(i)

T |3] <∞ for 1 ≤ i ≤ N ,

3. ξn converges to ξ in L2 as n → ∞, where ξn is FnT measurable and ξ is FT

measurable,

4. E[|ξ|3] + supnE[|ξn|3] <∞,

5. for any ε > 0, the jump measure ν of X satisfies for some λ > 0,

∫
(−ε,ε)c

eλ|x|ν(dx) <∞,
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6. f is Lipschitz continuous with Lipschitz constant K, and f(s, 0, 0) is square

integrable,

7. F n(t, Y, Z) = f(t, Y, Z̃), where Z̃i =< Z,C(i) >Xt− .

Theorem 3.4.1. Suppose assumptions 1 − 7 hold, Then there exists a sequence of

solutions (Y n, Zn) to the BSDEs

Y n
t = ξn +

∫
]t,T ]

F n(s, Y n
s−, Z

n
s )ds−

∫
]t,T ]

(Zn
s )TdMn

t

that converges to the solution (Y, (Z(i))∞i=1) to the BSDE (3.19) in the following

sense:

dJ1(Y
n, Y ) +

∫ T

0

‖Z̃n − Z‖2ds −→ 0 in probability as n→∞, (3.23)

where Z̃n is defined by

Z̃n
i =< Zn, Cn(i) >Xn

t−
.

Before proving the theorem, we’ll state the following lemmas.

Lemma 3.4.5. For any sequence of random variables ζn and ζ satisfying condition

3, E(ζn|Fn. ) converges in probability to E(ζ|F.) in the J1-Skorokhod topology.

Proof.

d(E(ζ|Ft), E(ζn|Fnt ))J1 ≤ d(E(ζ|Ft), E(ζ|Fnt ))J1 + d(E(ζ|Fnt ), E(ζn|Fnt ))J1

≤ d(E(ζ|Ft), E(ζ|Fnt ))J1 + sup
t
|E(ζ − ζn|Fnt )|.

By Doob’s martingale inequality, for any ε, we have

P (sup
t≤T
|E(ζ − ζn|Fnt )| > ε) ≤ E(|ζ − ζn|2)

ε2
.

37



Since Fn converges weakly to F , E(ζ|Fnt ) converges in probability to E(ζ|Ft) in

the J1-Skorokhod topology. In all, we have that E(ζn|Fn. ) converges in probability

to E(ζ|F.) in the J1-Skorokhod topology.

Lemma 3.4.6. Let {Hn
. }∞n=1 be a sequence of Fn. martingales that converges in

probability to an F. martingale H. in the J1-Skorokhod topology. Suppose we have

extended convergence (Hn
. ,Fn. ) → (H.,F.). Assume Hn

T and HT satisfies condition

4, ξn and ξ satisfies conditions 3 and 4. Let Kn
t and Kt denote E(ξn|Fnt ) and E(ξ|Ft)

respectively. Then < Kn, Hn > converges in probability to < K,H > uniformly on

[0, T ] as n→∞.

Proof. Since Hn
. converges in probability to H. in the J1-Skorokhod topology, by

definition of the J1 metric, Hn
T converges to HT in probability and then in L2 by

L3-boundedness. As a result, ξn ±Hn
T converge to ξ ±HT in L2. By Corollary 12

in [41], < Kn + Hn, Kn + Hn > converges in probability to < K + H,K + H >

under J1. Since < Kn+Hn, Kn+Hn > and < K+H,K+H > are continuous, the

convergence in J1-Skorokhod topology actually gives uniform convergence in [0, T ].

Similarly, < Kn −Hn, Kn −Hn > converges in probability to < K −H,K −H >

uniformly in [0, T ]. By the fact that

< Kn, Hn >=
< Kn +Hn, Kn +Hn > − < Kn −Hn, Kn −Hn >

4
, (3.24)

and

< K,H >=
< K +H,K +H > − < K −H,K −H >

4
, (3.25)

< Kn, Hn > converges in probability to < K,H > uniformly on [0, T ].
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Lemma 3.4.7. Let N (n) denote the number of states of the CTMC X(n). For any

vector V ∈ Rm, let Ṽ denote its extension to R∞, that is Ṽ = (V T , 0, 0, . . .)T .

Suppose assumptions 1 − 7 hold. Then there exists a sequence (Zn
t )0≤t≤T of Fn. -

predictable processes, and an F.-predictable process (Zt)0≤t≤T such that for any t ∈

[0, T ],

E(ξn|Fnt ) = E(ξn) +
N(n)−1∑
i=1

∫ t

0

Zn(i)
s dHn(i)

s , (3.26)

E(ξ|Ft) = E(ξ) +
∞∑
i=1

∫ t

0

Z(i)
s dH

(i)
s , (3.27)

and ∫ T

0

‖Z̃n
t − Zt‖2dt→ 0 in probability.

Moreover, for any δ ∈ (0, 1), we have

E(
∞∑
i=1

∫ T

0

(Z̃
n(i)
t − Z(i)

t )1+δdt)→ 0.

Proof. Equation (3.26) and (3.27) come directly from martingale representation the-

orems for CTMCs and Levy processes. Let Kt denote E(ξ|Ft). Apply Itô’s formula

to K2
T . It follows that

K2
T −K2

0 =

∫ T

0

2Kt−dKt +

∫ T

0

d[K,K]t

=

∫ T

0

2Kt−

∞∑
i=1

Z(i)
s dH

(i)
s +

∫ T

0

∞∑
i=1

∞∑
j=1

Z
(i)
t Z

(j)
t d[H(i), H(j)]t.

Taking expectation on both sides yields

E(ξ2)− E(ξ)2 =
∞∑
i=1

E(

∫ T

0

|Z(i)
t |2dt).

By assumption 4, E(ξ2) and E(ξ) are both bounded, so we have

∞∑
i=1

E(

∫ T

0

|Z(i)
t |2dt) < C (3.28)
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for some constant C. For any ε > 0, there exists N1, such that

∞∑
i=N1+1

E(

∫ T

0

|Z(i)
t |2dt) < ε2. (3.29)

By condition 2, we have {Hn(i)}N1
i=1 converge in probability to {H(i)}N1

i=1 in the J1-

Skorokhod topology, with E[|H(i)
T |3] + supnE[|Hn(i)

T |3] < ∞ for 1 ≤ i ≤ N1. Let

Kn
t denote E(ξn|Fnt ). Since ξn and ξ satisfy condition 3, by Lemma 3.4.5, we have

Kn converges to K in probability under J1 Skorokhod topology. Apply Lemma

3.4.6 to Kn, K, {Hn(i)}N1
i=1 and {H(i)}N1

i=1 and use conditions 2 through 4, it follows

that < Kn, Hn(i) > converges in probability to < K,H(i) > uniformly in [0, T ] for

1 ≤ i ≤ N1, which is equivalent to

sup
0≤t≤T

|
∫ t

0

Zn(i)
s ds−

∫ t

0

Z(i)
s ds| → 0 in probability for 1 ≤ i ≤ N1.

Apply Lemma 3.4.6 to Kn and K to see that < Kn, Kn > converges in probability

to < K,K > uniformly in [0, T ]. That is

sup
0≤t≤T

|
N(n)−1∑
i=1

∫ t

0

|Zn(i)
s |2ds−

∞∑
i=1

∫ t

0

|Z(i)
s |2ds| → 0 in probability.

Thus, we could extract a subsequence (indexed by nk), such that

sup
0≤t≤T

|
∫ t

0

Znk(i)
s (ω)ds−

∫ t

0

Z(i)
s (ω)ds| → 0 almost surely for 1 ≤ i ≤ N1, (3.30)

and

sup
0≤t≤T

|
N(nk)−1∑
i=1

∫ t

0

|Znk(i)
s (ω)|2ds−

∞∑
i=1

∫ t

0

|Z(i)
s (ω)|2ds| → 0 almost surely.

By (3.30), for almost every ω, Znk(i)(ω) converges weakly to Z(i)(ω) in L2([0, T ]) for

1 ≤ i ≤ N1. As a result, we have

lim inf
k→∞

∫ T

0

|Znk(i)
s (ω)|2ds ≥

∫ T

0

|Z(i)
s (ω)|2ds.
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Let M(ω) denote
∑∞

i=1

∫ T
0
|Z(i)

s (ω)|2ds, then there exists some K1(ω), such that for

all k > K1(ω),

N1∑
i=1

∫ T

0

|Znk(i)
s (ω)|2ds ≥

N1∑
i=1

∫ T

0

|Z(i)
s (ω)|2ds− ε, (3.31)

and

|
N(nk)−1∑
i=1

∫ T

0

|Znk(i)
s (ω)|2ds−M(ω)| < ε. (3.32)

From (3.29), it follows from Chebyshev’s inequality that

P (
∑
i>N1

∫ T

0

|Z(i)|2ds ≥ ε) < ε.

Let Oε denote the collection of all the ωs such that

∑
i>N1

∫ T

0

|Z(i)|2ds < ε. (3.33)

Combining (3.31), (3.32), and (3.33), we have for almost every ω in Oε and for all

k > K(ε),

M − 2ε ≤
N1∑
i=1

∫ T

0

|Z(i)|2ds− ε (3.34)

≤
N1∑
i=1

∫ T

0

|Znk(i)(ω)|2ds

≤
N(nk)−1∑
i=1

∫ T

0

|Znk(i)
s (ω)|2ds

≤M + ε,

which yields ∑
i>N1

∫ T

0

|Znk(i)(ω)|2ds ≤ 3ε, (3.35)

and

|
N1∑
i=1

∫ T

0

|Znk(i)(ω)|2ds−
N1∑
i=1

∫ T

0

|Z(i)(ω)|2ds| < 2ε. (3.36)
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For almost every ω in Oε, and sufficiently large k,∫ T

0

‖Z̃nk
t (ω)− Zt(ω)‖2dt

=
∞∑
i=1

(Z
nk(i)
t (ω)− Z(i)

t (ω))2dt

=

N1∑
i=1

∫ T

0

(Z
nk(i)
t (ω)− Z(i)

t (ω))2dt+
∑
i>N1

∫ T

0

(Z
nk(i)
t (ω)− Z(i)

t (ω))2dt

≤
N1∑
i=1

∫ T

0

(Z
nk(i)
t (ω)− Z(i)

t (ω))2dt+ 2
∑
i>N1

[

∫ T

0

(|Znk(i)
t (ω)|2 + |Z(i)

t (ω)|2)dt]

≤
N1∑
i=1

∫ T

0

(Z
nk(i)
t (ω)− Z(i)

t (ω))2dt+ 8ε (by (3.33) and (3.35))

= 8ε+

N1∑
i=1

∫ T

0

(|Znk(i)
t (ω)|2 − |Z(i)

t (ω)|2)dt+

N1∑
i=1

∫ T

0

2Z
(i)
t (Z

(i)
t − Z

nk(i)
t )(ω)dt

≤ 10ε+

N1∑
i=1

∫ T

0

2Z
(i)
t (ω)(Z

(i)
t (ω)− Znk(i)

t (ω))dt. (by (3.36)) (3.37)

Since Znk(i)(ω) converges weakly to Z(i)(ω) in L2([0, T ]) for 1 ≤ i ≤ N1, by

definition of weak convergence, there exists K2(ω), such that for all k > K2(ω),∣∣∣∣∣
N1∑
i=1

∫ T

0

2Z
(i)
t (ω)(Z

(i)
t (ω)− Znk(i)

t (ω))dt

∣∣∣∣∣ < ε.

Together with (3.37), we get for almost every ω ∈ Oε , for all k > max(K1(ω), K2(ω)),∫ T

0

‖Z̃nk
t (ω)− Zt(ω)‖2dt ≤ 11ε.

Define for k ≥ 1

Ak =
⋃
m≥k

{ω ∈ Oε :

∫ T

0

‖Z̃nm
t (ω)− Zt(ω)‖2dt > 12ε}.

This is a sequence of decreasing sets satisfying Ak ⊇ Ak+1, for k ≥ 1. Let A∞ denote⋂
k≤1Ak. We have

P (A∞) = lim
k→∞

P (Ak).
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For all ω ∈ A∞, we have that for any k > 0, there exists m > k, such that∫ T
0
‖Z̃nm

t (ω) − Zt(ω)‖2dt > 12ε, which implies that A∞ should have probability 0.

As a result, there exists a constant K, such that for all k > K, P (Ak) < ε. It follows

that

P ({ω :

∫ T

0

‖Z̃nk
t (ω)− Zt(ω)‖2dt > 12ε}) ≤ P (Ak) + P (Ω \Oε)

≤ 2ε.

Since ε is arbitrary, by the axiom of choice, in all, there exists a sequence of Zn
t and

Zt that satisfies (3.26) and (3.27), such that∫ T

0

‖Z̃n
t − Zt‖2dt→ 0 in probability.

The L1+δ(Ω× [0, T ]) convergence comes immediately from the L2 boundedness

of (
∫ T

0
‖Z̃n

t ‖dt)
1
2 , which could be derived in the same way as (3.28).

3.4.4 Proof of Theorem 3.4.1

We follow the same method used in [6]. The main idea is to decompose the

differences between solutions into three parts,

Y n − Y = (Y n − Y n,p) + (Y n,p − Y ∞,p) + (Y ∞,p − Y ), (3.38)

and

Z̃n − Z = (Z̃n − Z̃n,p) + (Z̃n,p − Z∞,p) + (Z∞,p − Z). (3.39)

Here ∞ stands for the Levy case and p denotes the approximation of solutions to

(3.18) and (3.19) through the Picard iteration, that is

Y n,p+1
t = ξn +

∫ T

t

F n(s, Y n,p
s− , Z

n,p
s )ds−

∫ T

t

(Zn,p+1
s )TdMs, (3.40)
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and

Y ∞,p+1
t = ξ +

∫ T

t

f(s, Y ∞,ps− , Z∞,ps )ds−
∞∑
i=1

∫ T

t

Z(i)∞,p+1
s dH(i)

s . (3.41)

The transformation from Zn ∈ RN(n)
to Z̃n ∈ R∞ is defined by

Z̃n(i) =< Zn, Cn(i) >Xt− , for 1 ≤ i ≤ N (n) − 1,

and

Z̃n(i) = 0 , for i ≥ N (n),

such that ∫ t

0

(Zn
s )TdMs =

∞∑
i=1

∫ t

0

Z̃n
s (i)dHn(i)

s ,

where N (n) is the number of states in X(n). Moreover, we have

‖Zn
s ‖2

Xt− =
∞∑
i=1

|Z̃n
s (i)|2.

For the Picard iteration, we set Y ∞,0 = 0, Z∞,0 = 0, Y n,0 = 0, and Zn,0 = 0.

Let’s first consider Y ∞,p − Y and Z∞,p − Z. Define

‖(Y ∞,p − Y, Z∞,p − Z)‖2
β = E[

∫ T

0

eβs(|Y ∞,p − Y |2 +
∞∑
i=1

|Z(i)∞,p
s − Z(i)

s |2)ds].

From the proof of Theorem 1 in [43], we have for some β ≥ 1,

‖(Y ∞,p − Y, Z∞,p − Z)‖2
β → 0, as p→∞. (3.42)

In order to get convergence in the sense of (3.23), we need the following lemma.

Lemma 3.4.8.

E

[
sup

0≤t≤T
|Y ∞,p − Y |+

∞∑
i=1

∫ T

0

|Z(i)∞,p
s − Z(i)

s |2ds

]
→ 0, asp→∞. (3.43)
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Proof. It can be easily observed from (3.42) and β ≥ 1 that

E

(
∞∑
i=1

∫ T

0

|Z(i)∞,p
s − Z(i)

s |2ds

)
→ 0, asp→∞. (3.44)

What remains is to prove the convergence of E( sup
0≤t≤T

|Y ∞,p − Y |) to 0. For any

p ≥ 0, we have

Y ∞,p+1
t = ξ +

∫ T

t

f(s, Y ∞,ps− , Z∞,ps )ds−
∞∑
i=1

∫ T

t

Z(i)∞,p+1
s dH(i)

s ,

and

Yt = ξ +

∫ T

t

f(s, Ys−, Zs)ds−
∞∑
i=1

∫ T

t

Z(i)
s dH

(i)
s .

Hence

Y ∞,p+1
t − Yt

=

∫ T

t

f(s, Y ∞,ps− , Z∞,ps )− f(s, Ys−, Zs)ds−
∞∑
i=1

∫ T

t

(Z(i)∞,p+1
s − Z(i)

s )dH(i)
s

=

∫ T

t

f(s, Y ∞,ps− , Z∞,ps )− f(s, Ys−, Zs)ds−
∞∑
i=1

∫ T

0

(Z(i)∞,p+1
s − Z(i)

s )dH(i)
s

+
∞∑
i=1

∫ t

0

(Z(i)∞,p+1
s − Z(i)

s )dH(i)
s .

Take absolute values on both sides of the above equation and use condition 6 to get

|Y ∞,p+1
t − Yt|

≤
∫ T

t

|f(s, Y ∞,ps− , Z∞,ps )− f(s, Ys−, Zs)|ds+

∣∣∣∣∣
∞∑
i=1

∫ T

0

(Z(i)∞,p+1
s − Z(i)

s )dH(i)
s

∣∣∣∣∣
+ |

∞∑
i=1

∫ t

0

(Z(i)∞,p+1
s − Z(i)

s )dH(i)
s |

≤
∫ T

0

K

|Y ∞,ps− − Ys−|+

[
∞∑
i=1

|Z(i)∞,p
s − Z(i)

s |2
]1/2

 ds

+ 2 sup
0≤t≤T

∣∣∣∣∫ t

0

(Z(i)∞,p+1
s − Z(i)

s )dH(i)
s

∣∣∣∣ ,
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where K denotes the Lipschitz constant of f . It follows that

sup
0≤t≤T

|Y ∞,p+1
t − Yt| ≤

∫ T

0

K

|Y ∞,ps− − Ys−|+

[
∞∑
i=1

|Z(i)∞,p
s − Z(i)

s |2
]1/2

 ds

+ 2 sup
0≤t≤T

∣∣∣∣∫ t

0

(Z(i)∞,p+1
s − Z(i)

s )dH(i)
s

∣∣∣∣ . (3.45)

By Hölder’s inequality, we have

∫ T

0

|Y ∞,ps− − Ys−|+

[
∞∑
i=1

|Z(i)∞,p
s − Z(i)

s |2
]1/2

 ds

≤

T ∫ T

0

|Y ∞,ps− − Ys−|+

[
∞∑
i=1

|Z(i)∞,p
s − Z(i)

s |2
]1/2

2

ds


1
2

≤
√

2T

[∫ T

0

|Y ∞,ps− − Ys−|2 +
∞∑
i=1

|Z(i)∞,p
s − Z(i)

s |2ds

] 1
2

.

Take expectation on both sides and use Jensen’s inequality to get

E

∫ T

0

|Y ∞,ps− − Ys−|+

[
∞∑
i=1

|Z(i)∞,p
s − Z(i)

s |2
]1/2

 ds


≤
√

2T

(
E

[∫ T

0

|Y ∞,ps− − Ys−|2 +
∞∑
i=1

|Z(i)∞,p
s − Z(i)

s |2ds

]) 1
2

. (3.46)

By (3.42) and the fact that β ≥ 1, the right hand side of the above inequality

should converge to 0 as p→∞. Applying Burkholder-Davis-Gundy inequality and
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Jensen’s inequality to sup
0≤t≤T

|
∫ t

0

(Z(i)∞,p+1
s − Z(i)

s )dH(i)
s |, we obtain

E

(
2 sup

0≤t≤T

∣∣∣∣∫ t

0

(Z(i)∞,p+1
s − Z(i)

s )dH(i)
s

∣∣∣∣) (3.47)

≤ 2E

(
sup

0≤t≤T

∣∣∣∣∫ t

0

(Z(i)∞,p+1
s − Z(i)

s )dH(i)
s

∣∣∣∣2
) 1

2

(3.48)

≤ 4E

(∫ T

0

(Z(i)∞,p+1
s − Z(i)

s )2ds

) 1
2

.

(3.49)

By (3.44), the right hand side of 3.47 converges to 0 as p→∞. Taking expectation

to (3.45), substitute in (3.46) and (3.47) to get

E( sup
0≤t≤T

|Y ∞,pt − Yt|)→ 0 as p→∞. (3.50)

(3.50) together with (3.44) implies (3.43).

Next, consider Y n− Y n,p and Z̃n− Z̃n,p. By the proof of Theorem 6.2 in [10],

we have for some constants C1 and C2 that only depend on T and K,∫ T

0

E(|Y n,p+1
s − Y n,p

s |2)ds ≤ (C1)p

p!

∫ T

0

E(|Y n,1
s − Y n,0

s |2)ds, (3.51)

and∫ T

0

E(|Z̃n,p+1
s − Z̃n,p

s |2)ds ≤ C2

∫ T

0

E(|Y n,p+1
s − Y n,p

s |2) + E(|Y n,p
s − Y n,p−1

s |2)ds.

(3.52)

Regarding Y n,p − Y n and Zn,p − Zn, we have the following lemma.

Lemma 3.4.9.

sup
n
E

[
sup

0≤t≤T
|Y n,p − Y n|+

∞∑
i=1

∫ T

0

|Z̃(i)n,p
s − Z̃(i)n

s |2ds

]
→ 0, asp→∞. (3.53)
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Proof. By Stirling’s formula, we could write (3.51) as

∫ T

0

E(|Y n,p+1
s − Y n,p

s |2)ds ≤ (C1)p

(p/e)p

∫ T

0

E(|Y n,1
s − Y n,0

s |2)ds.

Thus for p > 4C1e,[∫ T

0

E(|Y n,p+1
s − Y n,p

s |2)ds

] 1
2

≤
(

1

2

)p [∫ T

0

E(|Y n,1
s − Y n,0

s |2)ds

] 1
2

.

As a result, we have for p > 4C1e,[∫ T

0

E(|Y n,p
s − Y n

s |2)ds

] 1
2

≤
(

1

2

)p−1 [∫ T

0

E(|Y n,1
s − Y n,0

s |2)ds

] 1
2

. (3.54)

Substitute (3.51) into (3.52) and use Stirling’s formula to obtain

∫ T

0

E(|Z̃n,p+1
s − Z̃n,p

s |2)ds ≤ 5C2

(
1

4

)p ∫ T

0

E(|Y n,1
s − Y n,0

s |2)ds,

for p > 4C1e. This implies

[∫ T

0

E(|Z̃n,p
s − Z̃n

s |2)ds

] 1
2

≤
√

5C2

(
1

2

)p−1 [∫ T

0

E(|Y n,1
s − Y n,0

s |2)ds

] 1
2

. (3.55)

For any p ≥ 0, we have

Y n,p+1
t = ξn +

∫ T

t

F n(s, Y n,p
s− , Z

n,p
s )ds−

∫ T

t

(Zn,p+1
s )TdMs,

and

Y n
t = ξn +

∫ T

t

F n(s, Y n
s−, Z

n
s )−

∫ T

t

(Zn
s )TdMs.

Thus

Y n,p+1
t − Y n

t =

∫ T

t

F n(s, Y n,p
s− , Z

n,p
s )− F n(s, Y n

s−, Z
n
s )ds

−
∫ T

0

(Zn,p+1
s − Zn

s )TdMs +

∫ t

0

(Zn,p+1
s − Zn

s )TdMs.
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Similar to the proof in Lemma 3.4.8, we can obtain

sup
0≤t≤T

|Y n,p+1
t − Y n

t |

≤ K

∫ T

0

|Y n,p
s− − Y n

s−|+ ‖Zn,p
s − Zn

s ‖Xs−ds+ 2 sup
0≤t≤T

∣∣∣∣∫ t

0

(Zn,p+1
s − Zn

s )TdMs

∣∣∣∣ .
(3.56)

By Hölder’s inequality,∫ T

0

|Y n,p
s− − Y n

s−|+ ‖Zn,p
s − Zn

s ‖Xs−ds ≤

√
2T

∫ T

0

|Y n,p
s− − Y n

s−|2 + ‖Zn,p
s − Zn

s ‖2
Xs−

ds.

It follows from Jensen’s inequality that

E[

∫ T

0

|Y n,p
s− −Y n

s−|+‖Zn,p
s −Zn

s ‖Xs−ds] ≤ [2TE(

∫ T

0

|Y n,p
s− −Y n

s−|2+‖Zn,p
s −Zn

s ‖2
Xs−ds)]

1
2 .

Substituting (3.54) and (3.55) into the above inequality yields

E

[∫ T

0

|Y n,p
s− − Y n

s−|+ ‖Zn,p
s − Zn

s ‖Xs−ds
]

≤
√

2T (5C2 + 1)

(
1

2

)p−1 [∫ T

0

E(|Y n,1
s − Y n,0

s |2)ds

] 1
2

. (3.57)

Next, apply Burkholder-Davis-Gundy inequality and Jensen’s inequality to

sup
0≤t≤T

∣∣∣∣∫ t

0

(Zn,p+1
s − Zn

s )TdMs

∣∣∣∣
to get

E

(
sup

0≤t≤T

∣∣∣∣∫ t

0

(Zn,p+1
s − Zn

s )TdMs

∣∣∣∣) ≤ E

[(
sup

0≤t≤T

∣∣∣∣∫ t

0

(Zn,p+1
s − Zn

s )TdMs

∣∣∣∣)2
] 1

2

≤ 2E

(∫ T

0

‖Zn,p+1
s − Zn

s ‖2
Xs−ds

) 1
2

= 2

[∫ T

0

E(|Z̃n,p+1
s − Z̃n

s |2)ds

] 1
2

≤
√

5C2

(
1

2

)p−1 [∫ T

0

E(|Y n,1
s − Y n,0

s |2)ds

] 1
2

.

(3.58)
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Taking expectation on both sides of (3.56), and substituting (3.57) and (3.58) into

the inequality yields

E

(
sup

0≤t≤T
|Y n,p+1
t − Y n

t |
)
≤ (K

√
2T (5C2 + 1) + 2

√
5C2)

(
1

2

)p−1 [∫ T

0

E(|Y n,1
s − Y n,0

s |2)ds

] 1
2

.

In order to get convergence in the sense of (3.53), what remains is to check

sup
n

[∫ T

0

E(|Y n,1
s − Y n,0

s |2)ds

]
<∞. (3.59)

Apply Itô’s formula to (Y n,1
s )2 yields

|Y n,1
t |2 = |ξn|2 − 2

∫ T

t

Y n,1
s (−F n(s, 0, 0)ds+ Zn,1

s dMs)−
∫ T

t

(Zn,1
s )Td[M,M ]s(Z

n,1
s ).

Take expectation and then absolute values on both sides gives

E(|Y n,1
t |2) ≤ E(|ξn|2) + 2E

∫ T

t

|Y n,1
s F n(s, 0, 0)|ds− E

∫ T

t

‖Zn,1
s ‖2

Xs−ds

≤ E(|ξn|2) +

∫ T

t

E(|Y n,1
s |2)ds+

∫ T

t

|F n(s, 0, 0)|2ds.

Move the second term on the right to the left and multiply both sides by et to get

etE(|Y n,1
t |2)− et

∫ T

t

E(|Y n,1
s |2)ds ≤ et

[
E(|ξn|2) +

∫ T

t

|F n(s, 0, 0)|2ds
]

−(et
∫ T

t

E(|Y n,1
s |2)ds)′ ≤ et

[
E(|ξn|2) +

∫ T

t

|F n(s, 0, 0)|2ds
]
.

Integrating the above inequality from 0 to T yields∫ T

0

E(|Y n,1
s |2)ds ≤

∫ T

0

et
[
E(|ξn|2) +

∫ T

t

|F n(s, 0, 0)|2ds
]
dt

≤
∫ T

0

eT
[
E(|ξn|2) +

∫ T

t

|F n(s, 0, 0)|2ds
]
dt

≤ TeT
[
E(|ξn|2) +

∫ T

0

|F n(s, 0, 0)|2ds
]

≤ TeT
[
E(|ξn|2) +

∫ T

0

|f(s, 0, 0)|2ds
]
. (3.60)
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It follows from conditions 4 and 6 that (3.59) holds. In all, we have convergence in

the sense of (3.53).

Given Lemma 3.4.8 and Lemma 3.4.9, it remains to show the convergence to

zero of Y n,p−Y ∞,p and Z̃n,p−Z∞,p. We will show the following lemma by induction.

Lemma 3.4.10. For any p ≥ 0, we have

dJ1(Y
n,p, Y ∞,p) +

∫ T

0

|Y n,p
s − Y ∞,ps |ds+

∫ T

0

‖Z̃n,p
s − Z∞,ps ‖2ds

→ 0 in probability as n→∞, (3.61)

as well as

sup
n
{E[

∫ T

0

(|Y n,p|3 + |Y ∞,p|3)dt]+E[(

∫ T

0

‖Z̃n,p
s ‖2ds)

3
2 ]+E[(

∫ T

0

‖Z∞,ps ‖2ds)
3
2 ]} <∞.

(3.62)

Proof. The case when p = 0 is trivial, since we have both expressions in (3.61) and

(3.62) equal to zero (Y n,0 = Y ∞,0 = 0 and Z̃n,0
s = Z∞,0s = 0).

Suppose (3.61) and (3.62) hold for all p ≤ k. When p = k + 1, by definition, we

have

Y n,k+1
t = ξn +

∫ T

t

F n(s, Y n,k
s− , Z

n,k
s )ds−

∫ T

t

(Zn,k+1
s )TdMs,

and

Y ∞,k+1
t = ξ +

∫ T

t

f(s, Y ∞,ks− , Z∞,ks )ds−
∞∑
i=1

∫ T

t

Z(i)∞,k+1
s dH(i)

s .

Define processes

Nn
t = Y n,k+1

t +

∫ t

0

F n(s, Y n,k
s− , Z

n,k
s )ds, and Nt = Y ∞,k+1

t +

∫ t

0

f(s, Y ∞,ks− , Z∞,ks )ds.
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The process Nn
t satisfies

Nn
t = ξn +

∫ T

0

F n(s, Y n,k
s− , Z

n,k
s )ds−

∫ T

t

(Zn,k+1
s )TdMs

= ξn +

∫ T

0

F n(s, Y n,k
s− , Z

n,k
s )ds−

∫ T

0

(Zn,k+1
s )TdMs +

∫ t

0

(Zn,k+1
s )TdMs

= Y n,k+1
0 +

∫ t

0

(Zn,k+1
s )TdMs

= Nn
0 +

∫ t

0

(Zn,k+1
s )TdMs

= Nn
0 +

∞∑
i=1

∫ t

0

Z̃n,k+1
s (i)dHn(i)

s . (3.63)

Hence it is an Fn. -martingale, with

Nn
t = E(Nn

T |Fnt )

= E

(
ξn +

∫ T

0

F n(s, Y n,k
s− , Z

n,k
s )ds|Fnt

)
.

Similarly, Nt is an F.-martingale, with

Nt = N0 +
∞∑
i=1

∫ t

0

(Z(i)∞,k+1
s )dH(i)

s (3.64)

= E

(
ξ +

∫ T

0

f(s, Y ∞,ks− , Z∞,ks )ds|Ft
)
.

At the terminal time, we have

|Nn
T −NT | =

∣∣∣∣ξn − ξ +

∫ T

0

F n(s, Y n,k
s− , Z

n,k
s )ds−

∫ T

0

f(s, Y ∞,ks− , Z∞,ks )ds

∣∣∣∣
≤ |ξn − ξ|+

∫ T

0

∣∣∣∣f(s, Y n,k
s− , Z̃

n,k
s )− f(s, Y ∞,ks− , Z∞,ks )

∣∣∣∣ ds
≤ |ξn − ξ|+K

(∫ T

0

|Y n,k
s− − Y

∞,k
s− |ds+

∫ T

0

‖Z̃n,k
s − Z∞,ks ‖ds

)
≤ |ξn − ξ|+K

∫ T

0

|Y n,k
s− − Y

∞,k
s− |ds+K

√
T

∫ T

0

‖Z̃n,k
s − Z∞,ks ‖2ds,

which converges to zero in probability by condition 3 and the induction hypothesis

(3.61).
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In order to apply Lemma 3.4.7 to Nn
T and NT , we need to show they satisfy condition

3 and condition 4. Since |Nn
T −NT | converges to zero in probability, L2 convergence

(condition 3) would immediately follow from L3 boundedness (condition 4), thus we

only need to check condition 4.

|Nn
T |3 + |NT |3

=

∣∣∣∣ξn +

∫ T

0

f(s, Y n,k
s− , Z̃

n,k
s )ds|3 + |ξ +

∫ T

0

f(s, Y ∞,ks− , Z∞,ks )ds

∣∣∣∣3
≤ 4

[
|ξn|3 + |ξ|3 +

(∫ T

0

|f(s, Y n,k
s− , Z̃

n,k
s )|ds

)3

+

(∫ T

0

|f(s, Y ∞,ks− , Z∞,ks )|ds
)3
]

≤ C

[
|ξn|3 + |ξ|3 +

(∫ T

0

|f(s, 0, 0)|ds
)3

+

(∫ T

0

|Y n,k
s− |ds

)3

+

(∫ T

0

‖Z̃n,k
s ‖ds

)3

+

(∫ T

0

|Y ∞,ks− |ds
)3

+

(∫ T

0

‖Z∞,ks ‖ds
)3
]

≤ C̃

[
|ξn|3 + |ξ|3 +

(∫ T

0

|f(s, 0, 0)|2ds
) 3

2

+

(∫ T

0

|Y n,k
s− |ds

)3

+

(∫ T

0

|Y ∞,ks− |ds
)3

+

(∫ T

0

‖Z̃n,k
s ‖2ds

) 3
2

+

(∫ T

0

‖Z∞,ks ‖2ds

) 3
2

]
,

for some constants C and C̃. Take expectations and supremum on both sides of the

above inequality, use condition 4, condition 6 and (3.62) to get

E(|NT |3) + sup
n
E(|Nn

T |3) <∞.

As a result, Nn
T and NT satisfy the requirements. Apply Lemma 3.4.7 to Nn

T and

NT to obtain ∫ T

0

‖Z̃n,k+1
s − Z∞,k+1

s ‖2ds→ 0 as n→∞.

Next, by L2 convergence of Nn
T to NT and Lemma 3.4.5, it follows that

Nn
t → Nt in probability in the J1 Skorokhod sense.
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Since
∫ t

0
f(s, Y n,k

s− , Z̃
n,k
s )ds and

∫ t
0
f(s, Y ∞,ks− , Z∞,ks )ds are continuous in t, we have

dJ1(Y
n,k+1
t , Y k+1

t )

≤ dJ1(N
n
t , Nt) + sup

t

∣∣∣∣∫ t

0

f(s, Y n,k
s− , Z̃

n,k
s )ds−

∫ t

0

f(s, Y ∞,ks− , Z∞,ks )ds

∣∣∣∣
≤ dJ1(N

n
t , Nt) +

∫ T

0

|f(s, Y n,k
s− , Z̃

n,k
s − f(s, Y ∞,ks− , Z∞,ks )|ds

≤ dJ1(N
n
t , Nt) +K

∫ T

0

|Y n,k
s− − Y

∞,k
s− |+K

∫ T

0

‖Z̃n,k
s − Z∞,ks ‖ds

≤ dJ1(N
n
t , Nt) +K

∫ T

0

|Y n,k
s− − Y

∞,k
s− |+K

√
T

∫ T

0

‖Z̃n,k
s − Z∞,ks ‖2)ds,

which goes to zero in probability by the induction hypothesis (3.61).

In order to show (3.61) holds for k + 1, we still need to verify that
∫ T

0
|Y n,k+1
s −

Y ∞,k+1
s |ds converges to zero in probability. By definition,

∫ T

0

|Y n,k+1
s −Y ∞,k+1

s |ds ≤
∫ T

0

|Nn
s −Ns|ds+

∫ T

0

|f(s, Y n,k
s− , Z̃

n,k
s −f(s, Y ∞,ks− , Z∞,ks )|ds.

The convergence of
∫ T

0
|f(s, Y n,k

s− , Z̃
n,k
s ) − f(s, Y ∞,ks− , Z∞,ks )|ds to zero in probability

comes directly from the Lipschitz continuity of f . It suffices to prove the convergence

to zero of the process
∫ T

0
|Nn

s −Ns|ds. Since Nn
T converges to NT in L2, we can get

from Lemma 3.4.5

Nn
t → Nt in probability under J1 Skorokhod topology.

As a result,we can extract a subsequence (still indexed by n), so that for almost

every ω, dJ1(N
n
t (ω), Nt(ω)) converges to zero, which means there exists a sequence

of strictly increasing homeomorphisms λn on [0, T ], such that

sup
t
|λn(t)− t| → 0, and sup

t
|Nn

t (ω)−Nλn(t)(ω)| → 0.
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For almost every ω,

|Nn
t (ω)−Nt(ω)| ≤ |Nn

t (ω)−Nλn(t)(ω)|+ |Nλn(t)(ω)−Nt(ω)|.

By the fact that supt |Nn
t (ω)−Nλn(t)(ω)| converges to zero, we have

∫ T

0

|Nn
t (ω)−Nλn(t)(ω)|dt→ 0.

As to the part |Nλn(t)(ω) − Nt(ω)|, we’ll make use of one property about càdlàg

functions. Since Nt(ω) is a càdlàg function, by Lemma 6.10 in [30], for any α > 0,

let Uα = {t ∈ [0, T ] : |Nt+(ω)−Nt−(ω)| ≥ α}, which is a finite set. Then

lim sup
δ→0+

(sup{|Nv(ω)−Nu(ω)| : 0 ≤ u < v ≤ T, v − u ≤ δ, (u, v] ∩ Uα = ∅}) ≤ α.

First, pick δ̃, such that when δ < δ̃,

sup{|Nv(ω)−Nu(ω)| : 0 ≤ u < v ≤ T, v − u ≤ δ, (u, v] ∩ Uα = ∅} ≤ 2α,

then pick N, st when n > N , maxt |λn(t)− t| < δ̃. Therefore, when n > N , we have

∫ T

0

|Nλn(t)(ω)−Nt(ω)|dt ≤ 2αT + |Uα|Mα max
t
|λn(t)− t|,

where Mα denotes the size of the maximum jump in Uα. Since α is arbitrary and

maxt |λn(t)− t| goes to zero as n goes to infinity,

∫ T

0

|Nλn(t)(ω)−Nt(ω)|dt→ 0.

In all, we have for almost all ω,

∫ T

0

|Nn
t (ω)−Nt(ω)|dt→ 0,
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which then implies∫ T

0

|Y n,k+1
s − Y ∞,k+1

s |ds→ 0 in probability.

As a result, we have proved (3.61) holds for p = k + 1. We next show that when

p = k + 1, the solutions (Y n,k+1, Z̃n,k+1) and (Y ∞,k+1, Z∞,k+1) satisfy (3.62). By

definition of Nn
t ,

Y n,k+1
t = Nn

t −
∫ t

0

f(s, Y n,k
s , Z̃n,k

s )ds,

so Y n,k+1
t satisfies

Y n,k+1
t ≤ |Nn

t |+
∫ T

0

|f(s, Y n,k
s , Z̃n,k

s )|ds

≤ sup
0≤t≤T

|Nn
t |+K

(∫ T

0

f(s, 0, 0)ds+

∫ T

0

|Y n,k
s |ds+

∫ T

0

‖Z̃n,k
s ‖ds

)
.

As a result,∫ T

0

|Y n,k+1
t |3dt

≤ 3

[
T ( sup

0≤t≤T
|Nn

t |)3 +KT

(∫ T

0

f(s, 0, 0)ds+

∫ T

0

|Y n,k
s |ds+

∫ T

0

‖Z̃n,k
s ‖ds

)]3

≤ C

[
| sup

0≤t≤T
|Nn

t ||3 +

(∫ T

0

f(s, 0, 0)ds

)3

+

(∫ T

0

|Y n,k
s |ds

)3

+

(∫ T

0

‖Z̃n,k
s ‖ds

)3
]

≤ C̃

[
| sup

0≤t≤T
|Nn

t ||3 +

(∫ T

0

f 2(s, 0, 0)ds

) 3
2

+

(∫ T

0

|Y n,k
s |3ds

)
+

(∫ T

0

‖Z̃n,k
s ‖2ds

) 3
2

]
,

for some constants C and C̃. Take expectation on both sides yields

E

[(∫ T

0

|Y n,k+1
t |dt

)3
]
≤ C̃

{
E

(
| sup

0≤t≤T
|Nn

t ||3
)

+

(∫ T

0

f 2(s, 0, 0)ds

) 3
2

+E

(∫ T

0

|Y n,k
s |3ds

)
+ E

[(∫ T

0

‖Z̃n,k
s ‖2ds

) 3
2

]}
.

By induction hypothesis (3.62), it suffices to show that E(| sup
0≤t≤T

|Nn
t ||3) is bounded.

From Doob’s martingale property, ‖ sup0≤t≤T |Nn
t |‖3 ≤ 3

2
‖|Nn

T |‖3, which is equivalent
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to

E(| sup
0≤t≤T

|Nn
t ||3) ≤ 27

8
E(|Nn

T |3). (3.65)

However, in the previous proof, we have already shown E(|NT |3) + supnE(|Nn
T |3) <

∞. Therefore,

sup
n
E

(
| sup

0≤t≤T
|Nn

t ||3
)
<∞,

which then leads to

sup
n
E

(∫ T

0

|Y n,k+1
t |3dt

)
<∞.

Similarly, we can apply the above arguments to E(
∫ T

0
|Y ∞,k+1
t |3dt) and then use the

fact that E(|NT |3) + supnE(|Nn
T |3) <∞ to derive

E

(∫ T

0

|Y ∞,k+1
t |3dt

)
<∞.

Combined we have

sup
n
E

[∫ T

0

(|Y n,k+1
t |3 + |Y ∞,k+1

t |3)dt

]
<∞. (3.66)

To get the boundedness of

sup
n

{
E

[(∫ T

0

‖Z̃n,k+1
s ‖2ds

) 3
2

]
+ E

[(∫ T

0

‖Z∞,k+1
s ‖2ds

) 3
2

]}
,

we use the Theorem 1 in [47], which implies

‖ < Nn, Nn >
1
2
T ‖q ≤ Cq‖ sup

t
|Nn

t |‖q for q ≥ 2,

with Cq a constant depending only on q. Pick q = 3. By definition of Nn,

< Nn, Nn >T=

∫ T

0

‖Z̃n,k+1
s ‖2ds,
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substitute back into the previous inequality and use (3.65) to obtain

E

[(∫ T

0

‖Z̃n,k+1
s ‖2

) 2
3

]
≤ C̃3E(|Nn

T |3).

Following the same arguments, we can get for Nt,

E

[(∫ T

0

‖Z∞,k+1
s ‖2ds

) 3
2

]
≤ C̃3E(|NT |3).

Since C̃3 is a constant, we finally obtain

sup
n
{E[(

∫ T

0

‖Z̃n,k+1
s ‖2ds)

3
2 ] + E[(

∫ T

0

‖Z∞,k+1
s ‖2ds)

3
2 ]}

≤ C̃3[E(|NT |3) + sup
n
E(|Nn

T |3)] <∞.

Thus (3.62) is shown for p = k + 1. To summarize, we have proved that when

p = k + 1, (3.61) and (3.62) still hold. In all, the induction hypotheses are satisfied

for all p ≥ 0.

Let’s get back to the proof of Theorem 3.4.1. Recall that Y n− Y and Z̃n−Z

are decomposed as

Y n − Y = (Y n − Y n,p) + (Y n,p − Y ∞,p) + (Y ∞,p − Y ),

and

Z̃n − Z = (Z̃n − Z̃n,p) + (Z̃n,p − Z∞,p) + (Z∞,p − Z).

By Lemma 3.4.8, Lemma 3.4.9 and Lemma 3.4.10, we have

sup
n

[
sup

0≤t≤T
|Y ∞,p − Y |+ sup

0≤t≤T
|Y n,p − Y n|

]
+
∞∑
i=1

∫ T

0

|Z(i)∞,p
s − Z(i)

s |2ds

+ sup
n

[
∞∑
i=1

∫ T

0

|Z̃(i)n,p
s − Z̃(i)n

s |2ds

]
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converges to zero in probability as p→∞, and

dJ1(Y
n,p, Y ∞,p) +

∫ T

0

‖Z̃n,p
s − Z∞,ps ‖2ds→ 0 in probability as n→∞.

For any ε > 0, δ > 0, we can find some value p̃, such that

P

(
sup
n

[
sup

0≤t≤T
|Y ∞,p̃ − Y |+ sup

0≤t≤T
|Y n,p̃ − Y n|

]
+
∞∑
i=1

∫ T

0

|Z(i)∞,p̃
s − Z(i)

s |2ds

+ sup
n

[
∞∑
i=1

∫ T

0

|Z̃(i)n,p̃
s − Z̃(i)n

s |2ds

]
≥ ε

6

)
<
δ

2
.

Fix p = p̃. There exists some value N , such that when n > N ,

P (dJ1(Y
n,p̃, Y ∞,p̃) +

∫ T

0

‖Z̃n,p̃
s − Z∞,p̃s ‖2ds ≥ ε

6
) <

δ

2
.

From decomposition of Y n − Y and Z̃n − Z, we have the following inequalities:

dJ1(Y
n, Y ) ≤ dJ1(Y

n, Y n,p̃) + dJ1(Y
n,p̃, Y ∞,p̃) + dJ1(Y

∞,p̃ − Y )

≤ sup
0≤t≤T

|Y n,p̃ − Y n|+ dJ1(Y
n,p̃, Y ∞,p̃) + sup

0≤t≤T
|Y ∞,p̃ − Y |,

and∫ T

0

‖Z̃n − Z‖2ds ≤ (‖Z̃n − Z̃n,p̃‖+ ‖Z̃n,p̃ − Z∞,p̃‖+ ‖Z∞,p̃ − Z‖)2ds

≤ 3

∫ T

0

‖Z̃n − Z̃n,p̃‖2 + ‖Z̃n,p̃ − Z∞,p̃‖2 + ‖Z∞,p̃ − Z‖2ds.

Let Rp̃ and Sp̃ denote

sup
n

[
sup

0≤t≤T
|Y ∞,p̃ − Y |+ sup

0≤t≤T
|Y n,p̃ − Y n|

]
+
∞∑
i=1

∫ T

0

|Z(i)∞,p̃
s − Z(i)

s |2ds

+ sup
n

[
∞∑
i=1

∫ T

0

|Z̃(i)n,p̃
s − Z̃(i)n

s |2ds

]
,

and

dJ1(Y
n,p̃, Y ∞,p̃) +

∫ T

0

‖Z̃n,p̃
s − Z∞,p̃s ‖2ds,
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respectively. Therefore, for all n > N ,

P (dJ1(Y
n, Y ) +

∫ T

0

‖Z̃n − Z‖2ds ≥ ε)

≤ P (3Rp̃ + 3Sp̃ ≥ ε)

≤ P (Rp̃ + Sp̃ ≥
ε

3
)

≤ P (Rp̃ ≥
ε

6
) + P (Sp̃ ≥

ε

6
)

<
δ

2
+
δ

2

< δ,

which finishs the proof of Theorem 3.4.1.
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Chapter 4

Nonlinear G-Expectations

4.1 Introduction to G-Expectations

The concept of G-expectation is first introduced in [46] by Peng, where it is

used to create a new process termed G-Brownian motion. A G-expectation is defined

as a unique viscosity solution to a PDE of the form

ut = G(u), (4.1)

with boundary condition

u(0, x) = φ(x). (4.2)

The G in (4.1) is usually picked to be a nonlinear operator. In [46], G is given by

G(a) =
1

2
(a+ − σ0a

−),

where a+ = max(a, 0), a− = max(−a, 0), and 0 ≤ σ0 ≤ 1. Consider the G-

expectation induced by the following PDE,

ut = G(uxx), (4.3)

with boundary condition (4.2). Peng defines the G-Brownian motion as the process

X that satisfies

u(t, x) = EG(φ(Xt))|X0 = x),

for all t ≥ 0.
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Suppose Y is a Brownian motion, and let us define

v(t, x) = E(φ(x+ Yt)),

then v satisfies

vt =
1

2
vxx. (4.4)

Comparing (4.4) and (4.3), it could be observed that the nonlinearity of G-expectation

comes from the nonlinearity of the operator G.

4.2 Bid and Ask Prices as G-Expectations

Peng’s G-expectation provides us a candidate for the continuous time modeling

of two price economy. In this section, we will first describe the basic set up of the

two price economy, its underlying driving force and the associated infinitesimal

generator. Following Peng’s approach in [46], we would then add nonlinearity to the

infinitesimal generator using distortion. The bid and ask prices are finally modeled

as viscosity solutions to the resulting distorted PIDEs.

4.2.1 The Underlying Uncertainty

Consider a two price economy whose randomness is generated by a pure jump

Lévy process (Xt)0≤t≤T with jump density k. Moreover, we assume∫ ∞
−∞
|y|k(y)dy <∞,

and ∫ ∞
−∞

y2k(y)dy <∞.
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The infinitesimal generator L of X is given by

L(u) =

∫ ∞
−∞

(u(t, x+ y)− u(t, x))k(y)dy. (4.5)

Let u(t, x) be the expected value of a claim that pays φ(Xt) at time t, given X0 = x.

Suppose the interest rate r is a constant, a formal definition of u(t, x) is

u(t, x) = E(e−rtφ(Xt)|X0 = x).

The function u(t, x) is the solution to the following partial integro-differential equa-

tion (PIDE),

ut = L(u)− ru, (4.6)

with boundary condition

u(x, 0) = φ(x).

We shall then construct nonlinear PIDEs from (4.6) that would generates our bid

and ask pricing functionals.

4.2.2 G-expectations using Distortions

Inspired by Peng’s approach, we will introduce nonlinearity into (4.6) by re-

placing the linear infinitesimal generator L by a nonlinear generator G. Let

K =

∫ ∞
−∞

y2k(y)dy.

Then L could be rewritten as

L(u) = K

∫ ∞
−∞

u(t, x+ y)− u(t, x)

y2

y2k(y)

K
dy. (4.7)
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We note that y2k(y)/K is always nonnegative and integrates to one. Thus (4.7)

could be seen as a scaled expectation of (u(t, x+ Y )− u(t, x))/Y 2 for some random

variable Y with probability density y2k(y)/K. Define

Yt,x =
u(t, x+ Y )− u(t, x)

Y 2
,

we have

L(u) = KE(Yt,x).

As a result, we could define the generators for the bid and ask prices as

GQVb = Kbγ(Yt,x),

and

GQVa = Kaγ(Yt,x),

where bγ and aγ are the static one period bid and ask pricing operators defined

in (2.1) and (2.2). The superscript QV stands for quadratic variation since this

method requires the underlying Lévy process having finite quadratic variation.

Another way of constructing nonlinear operators is to normalize the Lévy

density. We start with the following integral

Lε(u) =

∫
|y|≥ε

(u(t, x+ y)− u(t, x))k(y)dy, (4.8)

which could be obtained from (4.5) by truncating a small neighborhood of zero.

Although in general, a Lévy density does not integrate to a finite number, it is

integrable on {|y| ≥ ε}. Let Kε denote
∫
|y|≥ε k(y)dy, then (4.8) can be expressed as

Lε(u) = Kε

∫
|y|≥ε

(u(t, x+ y)− u(t, x))
k(y)

Kε

dy.

64



The above equation can be viewed as

KεE(u(t, x+ Z)− u(t, x)),

where Z is a random variable that takes values in R\(−ε, ε) with probability density

function given by k(y)/Kε. Let Zt,x = u(t, x+Z)−u(t, x), we could then define our

nonlinear generators as

GNLb = Kεbγ(Zt,x),

and

GNLa = Kεaγ(Zt,x),

where NL indicates the normalizing Lévy approach.

We finally model continuous time bid and ask prices as G-expectations induced

by distorted PIDEs of the following form

ut = G(u)− ru.

We note that the above methods could easily be generalized to construct two price

economies driven by non stationary and non homogeneous processes, such as Sato

processes and Hunt processes [27]. Existence and uniqueness of solutions to the

resulting distorted PIDEs will be discussed in the next section.
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4.3 Viscosity Solutions of Distorted PIDEs

4.3.1 Introduction

In this section, existence and uniqueness of solution to the Cauchy problem of

a distorted PIDE is studied. Consider a distorted PIDE of form

ut(t, x) = F (t, x, u, ux(t, x))+

∫
|y|≥ε

(u(t, x+y)−u(t, x))k̃t,x(dy) on (0, T ]×R, (4.9)

with initial condition

u(0, x) = ϕ(x),

where F is a function that is continuous in its every argument, ϕ(x) a continuous

function with |ϕ(x)| ≤M for some nonnegative constant M . kt,x denotes a bounded

measure on {|y| ≥ ε} , satisfying

lim
(s,y)→(t,x)

∫
|z|≥ε
|ks,y − kt,x|dz = 0,

and there exists a positive constant µK , such that

sup
(t,x)∈[0,T )×R

∫
|y|≥ε

kt,x(dy) ≤ µK . (4.10)

The k̃t,x comes from distortion which depends on the integrand. Pick C ≥ 2M , we

will only consider those solutions that satisfies

|u(t, x+ y)− u(t, x)| ≤ C. (4.11)

This section is organized as follows. We first discuss the properties of distorted

integrals. Next we introduce several equivalent definitions of viscosity solutions. We

would then proceed to prove the existence and uniqueness of solutions to distorted
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PIDEs by following Alvarez and Tourin’s approach developed in [1]. We will begin

with a comparison theorem for distorted PIDEs and then apply Perron’s method

for the construction of solutions.

4.3.2 Properties of Distorted Expectations

Let X be a random variable defined on a general probability space (Ω,F , P ),

and F (x) its distribution function. The expectation of X is defined as

E(X) =

∫
xdF (x).

We know from elementary probability theory that the expectation operator E is

linear. Recall from Chapter 2, a distortion is an increasing function from [0, 1] to

[0, 1]. One example is given by the minmaxvar function,

Ψ(u) = 1− (1 + u
1

1+γ )1+γ. (4.12)

We define the distorted expectation of X as

E(X) =

∫
xdΨ(F (x)), (4.13)

where Ψ is the minmaxvar function in (4.12).

We will start with the superadditivity of E .

Theorem 4.3.1. Suppose X, Y are two random variables defined on the same

probability space (Ω,F , P ) with joint pdf or pmf, then

E(X + Y ) ≥ E(X) + E(Y )
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Proof. Suppose X and Y have joint pdf f(x, y). Let Z denotes X + Y . The pdf of

Z, fZ(z) satisfies

fZ(z) =

∫ ∞
−∞

f(x, z − x)dx. (4.14)

From (4.13), we have

E(X + Y ) =

∫ ∞
−∞

zdΨ(

∫ z

−∞
fZ(s)ds).

Let us define a function gZ(z) by

gZ(z) = Ψ
′
(∫ z

−∞
fZ(s)ds

)
· fZ(z). (4.15)

Thus gZ(z) is a nonnegative function that integrates to 1, and it satisfies

E(Z) = Eg(Z).

Based on (4.14)and (4.15), we could define a function g(x,y) as

g(x, y) =
f(x, y)

fZ(x+ y)
· gZ(x+ y).

g(x, y) is a valid pdf since

∫ ∫
g(x, y)dxdy =

∫ ∫
f(x, y)

fZ(x+ y)
· gZ(x+ y)dxdy

=

∫ ∫
f(x, z − x)

fZ(z)
· gZ(z)dxdz (x = x, z = x+ y)

=

∫ ∫
f(x, z − x)dx

fZ(z)
gZ(z)dz

=

∫
gZ(z)dz

= 1.
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Moreover, we have

Eg(X + Y ) =

∫ ∫
(x+ y)g(x, y)dxdy

=

∫ ∫
(x+ y)

f(x, y)

fZ(x+ y)
· gZ(x+ y)dxdy

=

∫ ∫
z
f(x, z − x)

fZ(z)
· gZ(z)dxdz

=

∫
z

∫
f(x, z − x)dx

fZ(z)
gZ(z)dz

=

∫
zgZ(z)dz

= E(Z)

= E(X + Y ).

Since expectation is linear, we obtain

E(X + Y ) = Eg(X + Y ) = Eg(X) + Eg(Y ). (4.16)

Next, we will prove

Eg(X) ≥ E(X).

Let F (x) and G(x) denote the marginal distribution function of X under f(x, y)

and g(x, y) respectively. We have

F (u) =

∫ u

−∞

∫
f(x, y)dydx,

and

G(u) =

∫ u

−∞

∫
g(x, y)dydx =

∫ u

−∞

∫
f(x, y)

fZ(x+ y)
· gZ(x+ y)dydx

=

∫ u

−∞

∫
f(x, z − y)

fZ(z)
· gZ(z)dzdx

=

∫ ∞
−∞

∫ u
−∞ f(x, z − x)dx

fZ(z)
Ψ
′
(∫ z

−∞
fZ(s)ds

)
· fZ(z)dz

=

∫ ∞
−∞

∫ u

−∞
f(x, z − x)dxΨ

′
(∫ z

−∞
fZ(s)ds

)
dz.
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We note that

Eg(X) = EG(X).

Let us define

F̃ (x) = Ψ(F (x)),

thus F̃ (x) is a valid distribution function satisfying

EF̃ (X) = E(X).

Eg(X) ≥ E(X) is equivalent with EG(X) ≥ EF̃ (X). By the fact that

E(X) =

∫ ∞
0

(1− F (x))dx−
∫ 0

−∞
F (x)dx, (4.17)

it suffice to prove G(u) ≤ F̃ (u), for any u ∈ R.

Let us write F̃ (u) in the following form,

F̃ (u) = Ψ

(∫ u

−∞

∫ ∞
−∞

f(x, y)dydx

)
= Ψ

(∫ ∞
−∞

∫ u

−∞
f(x, z − x)dxdz

)
.

Define

H(u, v) =

∫ v

−∞

∫ u

−∞
f(x, z − x)dxΨ

′
(∫ z

−∞
fZ(s)ds

)
dz,

and

K(u, v) = Ψ

(∫ v

−∞

∫ u

−∞
f(x, z − x)dxdz

)
,

such that

G(u) = lim
v→∞

H(u, v),

and

F̃ (u) = lim
Z→∞

K(u, v).
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We have

∂H(u, v)

∂v
=

∫ u

−∞
f(x, v − x)dx ·Ψ′

(∫ v

−∞
fZ(z)dz

)
, (4.18)

and

∂K(u, v)

∂v
=

∫ u

−∞
f(x, v − x) ·Ψ′

(∫ v

−∞

∫ u

−∞
f(x, z − x)dxdz

)
. (4.19)

Comparing (4.18) and (4.19), we notice the only difference lies in Ψ′. It follows

from (4.14) that

fZ(z) ≥
∫ X

−∞
f(x, z − x)dx,

hence ∫ Z

−∞
fZ(z)dz ≥

∫ Z

−∞

∫ X

−∞
f(x, z − x)dxdz.

The concavity of Ψ(u) then implies

∂H(u, v)

∂v
≤ ∂K(u, v)

∂v
.

Since the limits of H(u, v) and K(u, v) as v goes to negative infinity are both zero,

we have

H(u, v) =

∫ v

−∞

∂H(u, v)

∂v
(u, s)ds,

and

K(u, v) =

∫ v

−∞

∂K(u, v)

∂v
(u, s)ds.

In all, H(u, v) ≤ K(u, v) for any value of v. Take limits on both sides as v goes to

infinity, we get G(x) ≤ F̃ (x). As a result, Eg(X) ≥ E(X). Similarly, we could also

prove Eg(Y ) ≥ E(Y ), substituting into 4.16 to obtain

E(X + Y ) = Eg(X) + Eg(Y ) ≥ E(X) + E(Y ).
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The proof for discrete X and Y would follow the same steps.

We next state the monotonicity of E , and E ≤ E.

Theorem 4.3.2. Suppose X and Y are two random variables with X ≤ Y a.s., we

have

E(X) ≤ E(Y ).

For any r.v Z,

E(Z) ≤ E(Z).

Proof. By equation (4.17), it is equivalent to show

Ψ(FX(x)) ≥ Ψ(FY (x)), (4.20)

and

Ψ(FZ(x)) ≥ FZ(x). (4.21)

(4.20) is satisfied since FX(x) ≥ FY (x), and Ψ(u) is increasing. It follows from

Ψ(u) ≥ u that (4.21) also holds .

We finally present an analogue of the dominated convergence theorem.

Theorem 4.3.3. Let {Xn}n≥1 be a sequence of random variables that converges

almost surely to a random variable X defined on the same probability space (Ω,F , P ).

Suppose |Xn| ≤M for some positive constant M . Then,

E(Xn)→ E(X)
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Proof. By Theorem 4.3.1,

E(X −Xn) ≤ E(X)− E(Xn) ≤ −E(Xn −X).

Moreover, from Theorem 4.3.2,

E(−|X −Xn|) ≤ (E(X −Xn), E(Xn −X)) ≤ E(|X −Xn|).

Hence,

|E(X)− E(Xn)| ≤ max(E(|X −Xn|), |E(−|X −Xn|)|). (4.22)

From Theorem 4.3.2, we have E(|X −Xn|) ≤ E(|X −Xn|). Since |X −Xn| ≤

2M a.s., by dominanted convergence theorem, lim
n→∞

E|X −Xn| = 0, which implies

lim
n→∞

E(|X −Xn|) = 0. (4.23)

By Chebyshev’s inequality,

P (|X −Xn| ≥ ε) ≤ E|X −Xn|
ε

.

As a result, for any ε > 0, δ > 0, there exists some N , such that when n ≥ N ,

P (|X −Xn| ≥ ε) ≤ δ.

We have

E(−|X −Xn|) = E(−|X −Xn|1|X−Xn|≥ε − |X −Xn|1|X−Xn|<ε)

≥ E(−|X −Xn|1|X−Xn|≥ε + E(−|X −Xn|1|X−Xn|<ε

≥ −2Mδ − ε.

Since ε and δ are arbitrary, limn→∞ |E(−|X−Xn|)| = 0. Combined with (4.23)

and (4.22), we have limn→∞ |E(X)− E(Xn)| = 0, thus E(Xn)→ E(X).
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4.3.3 Viscosity Solutions

We are going to give two equivalent definitions for semicontinuous viscosity

solution of distorted PIDE with boundary condition, that will both be useful in later

proofs. Our definitions are analogues to those in [14].

A function f from R to R is a upper semicontinuous function (USC) if it

satisfies

lim sup
x→x0

f(x) ≤ f(x0).

The function f is called a lower semicontinuous function (LSC) if it satisfies

lim inf
x→x0

f(x) ≥ f(x0).

f is continuous if it is both a USC and a LSU. Given any u ∈ USC([0, T )×R), and

any point (t, x) ∈ [0, T )× R, define the first order superjet at point (t, x) as

P+u(t, x) = {(p, q) ∈ R× R|u(s, y) ≤ u(t, x) + p(s− t) + q(y − x)

+ o(|s− t|+ |y − x|) as (s, y)→ (t, x)},

and its closure,

P+
u(t, x) = {(p, q) ∈ R× R|(p, q) = lim

n→∞
(pn, qn), with (pn, qn) ∈ P+u(tn, xn),

and lim
n→∞

(tn, xn, u(tn, xn)) = (t, x, u(t, x))}.

For any u ∈ LSC([0, T ) × R), its first order subjet P−u(t, x) and its closure

is defined by

P−u(t, x) = −P+(−u)(t, x),

and

P−u(t, x) = −P+
(−u)(t, x).
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We next state the main definition of this subsection.

Definition 4.3.4. A viscosity subsolution of (4.9) is a locally bounded function

u ∈ USC([0, T )× R) satisfying (4.11), such that for all (t, x) ∈ (0, T )× R, (p, q) ∈

P+u(t, x),

p− F (t, x, u, q)−
∫
|y|≥ε

(u(t, x+ y)− u(t, x))k̃t,x(dy) ≤ 0 on (0, T )× R, (4.24)

and for all x ∈ R, u(0, x) ≤ ϕ(x).

Similarly, a viscosity supersolution of (4.9) is a locally bounded function// u ∈

LSC([0, T ) × R) satisfying (4.11), such that for all (t, x) ∈ (0, T ) × R, (p, q) ∈

P−u(t, x),

p− F (t, x, u, q)−
∫
|y|≥ε

(u(t, x+ y)− u(t, x))k̃t,x(dy) ≥ 0 on (0, T )× R, (4.25)

and for all x ∈ R, u(0, x) ≥ ϕ(x). Finally, u ∈ C([0, T )×R) is a viscosity solution

of (4.9), if it is a viscosity subsolution and a viscosity supersolution of (4.9).

Remark 4.3.5. It is equivalent to require the (p, q) in the above definition of sub-

solution(resp. supersolution) to be in P+
u(t, x)(resp. P−u(t, x)). Since for all

(p, q) ∈ P+
u(t, x)(resp. P−u(t, x)), by definition, there exists a sequence (tn, xn) ∈

[0, T )×R, as well as (pn, qn) ∈ P+u(tn, xn)(resp. (pn, qn) ∈ P−u(tn, xn)), such that

lim
n→∞

(tn, xn, u(tn, xn), pn, qn) = (t, x, u(t, x), p, q).

Substitute (tn, xn, pn, qn) into (4.24) (resp.(4.25)), and take upper limits on both

sides(resp. lower limits). By assumption, u(tn, xn + y)− u(tn, xn) is bounded, thus

we could apply Theorem 4.3.3 to get the convergence of the distorted integral term.
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Together with continuity of F, we conclude that (4.24) (resp. (4.25)) holds at (t, x)

for (p, q).

Definition 4.3.6. (Equivalence) A viscosity subsolution of (4.9) is a locally bounded

function u ∈ USC([0, T )×R) satisfying (4.11), such that for all (t, x) ∈ (0, T )×R,

bounded φ ∈ C1([0, T )×R) with u(t, x) = φ(t, x) and u < φ on [0, T )×R/(t, x), we

have

φt − F (t, x, φ, φx)−
∫
|y|≥ε

(φ(t, x+ y)− u(t, x))k̃t,x(dy) ≤ 0 on (0, T )× R, (4.26)

and for all x ∈ R, u(0, x) ≤ ϕ(x).

Similarly, a viscosity supersolution of (4.9) is a locally bounded function u ∈ LSC([0, T )×

R) satisfying (4.11), such that for all (t, x) ∈ (0, T ) × R, φ ∈ C1([0, T ) × R) with

u(t, x) = φ(t, x) and u > φ on [0, T )× R/(t, x), we have

φt − F (t, x, φ, φx)−
∫
|y|≥ε

(φ(t, x+ y)− u(t, x))k̃t,x(dy) ≥ 0 on (0, T )× R, (4.27)

and for all x ∈ R, u(0, x) ≥ ϕ(x).

Remark 4.3.7. Definitions 4.3.4 and 4.3.6 are equivalent. Definition 4.3.4 im-

mediately implies Definition 4.3.6 because (φt, φx) ∈ P+u(t, x)(resp. P−u(t, x)),

and the distorted integral is monotone in its integrand. Conversely, given any (t, x)

and (p, q) ∈ P+u(t, x)(resp. P−u(t, x)), we could construct a sequence of functions

φn ∈ C1, such that u < φn ≤ u(t, x) + 2C on [0, T )×R/(t, x), φ→ u on [0, T )×R,

with

(φn(t, x), ∂tφn(t, x), ∂xφn(t, x)) = (u(t, x), p, q).
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Since (4.26)(resp. (4.27)) holds for any φn, as n → ∞, the inequality becomes

(4.24)(resp. 4.25), where we have used Theorem 4.3.3 to get the convergence of

distorted integral terms.

4.3.4 A Comparison Theorem

We will focus our discussion on equations with F given by

F (t, x, u, ux) = −ru+ b(t, x)ux, (4.28)

where r is a nonnegative constant, b(t, x) a function on R × R that is Liptchitz

continuous in x.

Before going into details of the comparison theorem, let us first state a fact

about the viscosity subsolution and supersolution of (4.9).

Proposition 4.3.8. Suppose F is of form (4.28), then −Me−rt is a viscosity sub-

solution of (4.9),and Me−rt is a viscosity supersolution of (4.9).

Proof. Denote −Me−rt by u. It is obvious that −M = u(0, x) ≤ ϕ(x) for all

x ∈ R. By Definition 4.3.6, it suffice to show that for any (t, x) ∈ [0, T ) × R, and

φ ∈ C1([0, T )× R) with u(t, x) = φ(t, x), the following equation holds,

φt − F (t, x, φ, φx)−
∫
|y|≥ε

(φ(t, x+ y)− u(t, x))k̃t,x(dy) ≤ 0. (4.29)

Since φt − u reaches its local minimum at (t, x), we have φt(t, x) = ut(t, x) =

−ru(t, x), and φx(t, x) = ux(t, x) = 0, which yields φt − F (t, x, φ, φx) = 0. By the

requirements of φ, we have φ(t, x + y) − u(t, x) > 0 for any y. Thus the distorted

integral term is positive, (4.29) holds. Therefore, u is a viscosity subsolution. It
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could be shown using the same arguments that Me−rt is a viscosity supersolution

of (4.9).

From now on, let’s denote −Me−rt and Me−rt by u and v respectively. We

have the following comparison theorem.

Theorem 4.3.9. Suppose F satisfies (4.28). Let u ∈ USC([0, T )×R) be a viscosity

subsolution, and v ∈ LSC([0, T ) × R) a viscosity supersolution of (4.9), such that

u ≤ (u, v) ≤ v. Then,

u ≤ v on [0, T )× R . (4.30)

Proof. We prove by contradiction. Assume (4.30) doesn’t hold, that is

sup
(t,x)∈[0,T )×R

u(t, x)− v(t, x) > 0.

We could fix for some η > 0 small enough, such that

N := sup
(t,x)∈[0,T )×R

u(t, x)− v(t, x)− η

T − t
> 0. (4.31)

For any δ > 0, set

Nδ = max
(t,x)∈[0,T )×R

u(t, x)− v(t, x)− η

T − t
− δ|x|2. (4.32)

Suppose Nδ is achieved at (tδ, xδ). Based on Nδ, for any ε̃ > 0, define

Hδ,ε̃ = u(t, x)− v(t, y)− η

T − t
− δ|x|2 − |x− y|

2

ε̃
.

Let’s denote a global maximum point of Hδ,ε̃ by (tε̃, xε̃, yε̃). By Proposition 3.7 of

[14] we have

lim
ε̃→0

|xε̃ − yε̃|2

ε̃
= 0,
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and there exists a subsequence of (tε̃, xε̃, yε̃), such that

lim
ε̃→0

(tε̃, xε̃, yε̃) = (tδ, xδ, xδ),

and

lim
ε̃→0

u(tε̃, xε̃) = u(tδ, xδ), lim
ε̃→0

v(tε̃, yε̃) = v(tδ, xδ).

It is easy to check we also have

lim
δ→0

Nδ = N, and lim
δ→0

δ|xδ|2 = 0.

Following Theorem 8.3 in [14], there exists (pε̃, qε̃) ∈ R× R, such that

(pε̃ +
η

(T − tε̃)2
, qε̃ + 2δxε̃) ∈ P

+
u(tε̃, xε̃), and (pε̃, qε̃) ∈ P

−
v(tε̃, yε̃).

Definition 4.3.4 and the fact that u is a subsolution then yield

pε̃ +
η

(T − tε̃)2
+ ru(tε̃, xε̃)− b(tε̃, xε̃)(qε̃ + 2δxε̃)

−
∫
|z|≥ε

(u(tε̃, xε̃ + z)− u(tε̃, xε̃)) ˜ktε̃,xε̃(dz) ≤ 0. (4.33)

Similarly, since v is a supersolution, one can also get

pε̃ + rv(tε̃, yε̃)− b(tε̃, yε̃)qε̃ −
∫
|z|≥ε

(v(tε̃, yε̃ + z)− v(tε̃, yε̃)) ˜ktε̃,yε̃(dz) ≥ 0. (4.34)

We could substract (4.34) from (4.33) and take limit superior as ε̃→ 0 on both sides

to get

ru(tδ, xδ)− rv(tδ, yδ)− 2δxδb(tδ, xδ)

≤ lim sup
ε̃→0

[∫
|z|≥ε

(u(tε̃, xε̃ + z)− u(tε̃, xε̃)) ˜ktε̃,xε̃(dz)

−
∫
|z|≥ε

(v(tε̃, yε̃ + z)− v(tε̃, yε̃)) ˜ktε̃,yε̃(dz)

]
. (4.35)
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We drop the term η/(T − tε̃)2 since it won’t affect the direction of the inequality.

Properties of distorted expectation and the fact that u ∈ USC and v ∈ LSC then

yield

lim sup
ε̃→0

[∫
|z|≥ε

(u(tε̃, xε̃ + z)− u(tε̃, xε̃)) ˜ktε̃,xε̃(dz)

−
∫
|z|≥ε

(v(tε̃, yε̃ + z)− v(tε̃, yε̃)) ˜ktε̃,yε̃(dz)

]
≤
∫
|z|≥ε

(u(tδ, xδ + z)− u(tδ, xδ)) ˜ktδ,xδ(dz)

−
∫
|z|≥ε

(v(tδ, xδ + z)− v(tδ, xδ)) ˜ktδ,xδ(dz). (4.36)

By (4.31) and (4.32), we have for any z ∈ R,

u(tδ, xδ + z)− v(tδ, xδ + z)− η

tδ
≤ N, (4.37)

and

u(tδ, xδ)− v(tδ, xδ)−
η

tδ
− δ|xδ|2 = Nδ. (4.38)

Substract (4.38) from (4.37) to get

u(tδ, xδ + z)− u(tδ, xδ) ≤ v(tδ, xδ + z)− v(tδ, xδ) +N −Nδ.

By monotonicity and superadditivity of distorted expectation, we could bound from

above the right hand side of (4.36) by (N−Nδ)
∫
|z|≥ε ktδ,xδ(dz), which, by assumption

of measure kt,x and the fact that limδ→0Nδ = N , goes to zero as δ → 0. Combined

with (4.35), we obtain

lim sup
δ→0

[ru(tδ, xδ)− rv(tδ, yδ)− 2δxδb(tδ, xδ)] ≤ 0.

Since limδ→0 δ|xδ|2 = 0, and limδ→0 δ|xδ| = 0,

lim
δ→0

2|δxδb(tδ, xδ)| ≤ 2 lim
δ→0
|δxδ|(|b(0, 0)|+ C(T + |xδ|)) = 0.
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We conclude that

lim sup
δ→0

[u(tδ, xδ)− v(tδ, yδ)] ≤ 0,

which contradicts our assumption that N is positive.

4.3.5 Perron’s Method

In this subsection, we are going to construct the solution to (4.9) using Perron’s

method.

Theorem 4.3.10. Suppose all the assumptions of the comparison theorem hold,

then there is a unique viscosity solution u ∈ C([0, T ) × R) satisfying (4.9), with

u ≤ u ≤ v on [0, T )× R.

Proof. To begin with, let’s define a new function v(t, x) in the following way. For

all (t, x) ∈ [0, T )× R, define

v(t, x) = sup {u(t, x)|u is a subsolution of (4.9) such that u ≤ v on [0, T )× R} .

(4.39)

Let v∗ be the upper semicontinuous envelope of v, which is defined as

v∗(t, x) = lim sup
[0,T )×R3(s,y)→(t,x)

v(s, y).

And define the lower semicontinuous envelope of v, v∗(t, x) = −(−v)∗(t, x).

We first show that v∗ and v∗ are viscosity subsolution and supersolution, re-

spectively. We prove it in two steps. We begin by showing that v∗ (resp. v∗) is a

viscosity subsolution (resp. supersolution) with generalized boundary condition, and

then prove that v∗ is indeed a subsolution in the strict sense(proof for v∗ proceeds
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in the same way). We say that some function u(t, x) is a subsolution of (4.9) with

generalized boundary condition, that is the inequality u(0, x) ≤ ϕ(x) in Definition

4.3.4 is replaced by the following condition:

p− F (t, x, u(0, x), q)−
∫
|y|≥ε

(u(0, x+ y)− u(0, x)) ˜k0,x(dy) ≤ 0, if u(0, x) > ϕ(x),

for all (p, q) ∈ P+(0, x).

For any (t, x) ∈ [0, T ) × R, by definition of v∗, we could find a sequence

(sn, yn, un), where un is a subsolution, such that

lim
n→∞

(sn, yn, un(sn, yn)) = (t, x, v∗(t, x)). (4.40)

For any bounded φ ∈ C1([0, T ) × R) satisfying v∗(t, x) = φ(t, x) and v∗ < φ

on [0, T )× R/(t, x), define

Nr =
{

(s, y)|(s− t)2 + (y − x)2 ≤ r2, (s, y) ∈ [0, T )× R
}
.

We could find some r small enough, such that Nr is compact. Let (tn, xn) be the

maximum point of un − φ in Nr. Since Nr is compact, there exists a converging

subsequence (tn, xn) (for convenience still indexed by n), and the converging limit

is also in Nr. We claim that the limit is (t, x). We prove by contradiction. Suppose

the limit is (s, y) 6= (t, x). By (4.40), we could find N , such that when n ≥ N ,

(sn, yn) ∈ Nr. As a result, for n ≥ N ,

un(sn, yn) ≤ un(tn, xn)− φ(tn, xn) + φ(sn, yn).

Take liminf on both sides to get

v∗(t, x) ≤ lim inf
n→∞

un(tn, xn) + φ(t, x)− φ(s, y),
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together with

lim inf
n→∞

un(tn, xn) ≤ lim sup
n→∞

v(tn, xn) ≤ v∗(s, y), (4.41)

implies

v∗(t, x) ≤ v∗(s, y) + φ(t, x)− φ(s, y).

Because v∗(t, x) = φ(t, x), we have φ(s, y) ≤ v∗(s, y), which implies (s, y) = (t, x)

and all the inequality signs in (4.41) is actually equality signs. Thus we have found

a sequence (tn, xn, un) with

lim
n→∞

(tn, xn, un(tn, xn)) = (t, x, v∗(t, x)),

and for each n, (tn, xn) is the local maximum of un − φ.

We note that if t 6= 0, tn > 0 for large n. When t = 0 and v∗(0, x) > ϕ(x),

we could also get tn > 0 for large n. If not, then there exists a subsequence such

that unk(0, xnk)→ v∗(0, x). However, since each unk is a subsolution, unk(0, xnk) ≤

ϕ(0, xnk). Take limit on both sides to get v∗(0, x) ≤ ϕ(0, x), contradiction. As a

result, tn > 0 for large n, unless t = 0 and v∗(0, x) ≤ ϕ(x). In addition, we have

(φt, φx) ∈ P+un(tn, xn), which comes from the fact that (tn, xn) is a local maximum

of un − φ.

When tn > 0, by Definition 4.3.4, one has

φt − F (tn, xn, un(tn, xn), φx) ≤
∫
|y|≥ε

(φ(tn, xn + y)− un(tn, xn)) ˜ktn,xn(dy),

where we have used the monotonicity of distorted expectation together with un ≤ φ.

Letting n→∞, by the continuity of F and Theorem 4.3.3, we conclude that

φt − F (t, x, v∗(t, x), φx) ≤
∫
|y|≥ε

(φ(t, x+ y)− v∗(t, x))k̃t,x(dy).
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Therefore v∗ is a viscosity subsolution with generalized boundary condition .

Next let’s prove v∗ is a viscosity supersolution with generalized boundary con-

dition. We argue by contradiction. Suppose v∗ doesn’t have the desire property,

then exist (t, x) ∈ [0, T ) × R, a function φ ∈ C1
b ([0, T ) × R with v∗(t, x) = φ(t, x)

and v∗ > φ elsewhere, v∗(0, x) < ϕ(x) if t = 0, such that

φt − F (t, x, φ(t, x), φx) <

∫
|y|≥ε

(φ(t, x+ y)− φ(t, x))k̃t,x(dy). (4.42)

By definition of v∗, v∗(t, x) ≤ v̄(t, x). We claim that v∗(t, x) < v̄(t, x). If v∗(t, x) =

v̄(t, x), then (φt, φx) ∈ P−v̄(t, x). However, v̄ is a supersolution, which contradict

(4.42). So we have v∗(t, x) < v̄(t, x), then there exist η1, δ1 positive, such that

φ+ δ1 ≤ v̄ on Bη1(t, x) ∩ [0, T )× R, and φ(0, y) + δ1 ≤ ϕ(y) for (0, y) ∈ Bη1(t, x) ∩

[0, T )×R if t = 0. By continuity of F and the distorted integral in (4.42), we could

find η2, δ2 positive, such that for all (s, y, δ) ∈ (Bη2(t, x) ∩ [0, T ) × R) × [0, δ2], the

following inequality holds.

φs − F (s, y, φ(s, y) + δ, φy) <

∫
|z|≥ε

(φ(s, y + z) + δ − (φ(s, y) + δ)) ˜ks,y(dz). (4.43)

Denote η0 = min(η1, η2), there exists δ3 > 0, such that v∗ > φ+ δ3 on the boundary

of Bη0(t, x) ∩ [0, T )× R. Now, set δ0 = min(δ1, δ2, δ3), and define

w = max(v∗, φ+ δ0) on Bη0(t, x) ∩ [0, T )× R, and w = v∗ elsewhere.

Observing that w is upper semicontinuous and u ≤ w ≤ v, we claim that w is

actually a viscosity subsolution of (4.9) with generalized boundary condition. For

all (s, y) ∈ [0, T )×R, ψ ∈ C1
b ([0, T )×R with w(s, y) = ψ(s, y) and w < ψ elsewhere,

we have (ψs, ψy) in either P+v∗(s, y) or P+(φ+δ0)(s, y). By our choice of δ3, φ+δ0 is
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achieved at interior point of Bη0(t, x)∩[0, T )×R. As a result, if w(s, y) = φ(s, y)+δ0,

(s, y) is a local maximum of φ+ δ0−ψ, we obtain (ψs, ψy) = (φs, φy). The fact that

v∗ is a subsolution with generalized boundary condition and (4.43) would then imply

(4.26). Therefore w is a subsolution with generalized boundary condition. Let w∗

be the lower semicontinuous envelope of w, we have

w∗(t, x) ≥ max(v∗(t, x), φ(t, x) + δ0) > v∗(t, x).

Thus there exists some (s, y), such that w(s, y) > v(s, y).

Recall the definition of v in (4.39), we notice that if w is a viscosity subsolution

of (4.9) in the strict sense, then we have obtained a contradiction. Actually one could

show that for any u, that is a viscosity subsolution (resp. supersolution) of (4.9) with

generalized boundary condition and u ≤ u ≤ v, it is indeed a viscosity subsolutiton

(resp. supersolution) in the strict sense. The rest of the proof is devoted to this

claim.

We would only show the case for subsolution, the proof for supersolution pro-

ceeds exactly in the same way. Suppose u ∈ USC([0, T )×R), u ≤ u ≤ v, u is a vis-

cosity subsolution of (4.9) with generalized boundary condition, and u(0, x) > ϕ(x)

for some x ∈ R. Since ϕ is continuous, we could fix some r > 0, such that

u(0, x) > ϕ(y) for y ∈ [x−r, x+r] and Br(0, x)∩ [0, T )×R compact. For any ε̃ > 0,

there is some Cε̃ > 0, with

Cε̃ > sup
(s,y)∈Br(0,x)∩[0,T )×R

{
F (s, y, u(s, y),

2(y − x)

ε̃
) + 2MµK

}
,

where µK is defined in (4.10). As ε̃ → 0, we could pick Cε̃ such that Cε̃ → ∞. Let
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(tε̃, xε̃) denote the maximum of

u(s, y)− (y − x)2

ε̃
− sCε̃

on Br(0, x)∩[0, T )×R. For ε̃ sufficiently small, (tε̃, xε̃) is the global maximum, which

implies (Cε̃, 2(xε̃− x)/ε̃) ∈ P+u(tε̃, xε̃). When tε̃ = 0, u(0, xε̃) ≥ u(0, x) ≥ ϕ(xε̃). By

definition of the generalized boundary condition, we conclude that for sufficiently

small ε̃, (4.24) should hold for (Cε̃, 2(xε̃ − x)/ε̃) ∈ P+u(tε̃, xε̃). However, (4.24)

contradicts our choice of Cε̃. In all, u is a viscosity subsolution in the strict sense.

We have proved that v∗ and v∗ are viscosity subsolution and supersolution,

respectively. It is clear that u ≤ (v∗, v∗) ≤ v. By Theorem 4.3.9 (comparison

theorem), v∗ ≤ v∗, which implies v∗ = v∗ = v. Therefore, v ∈ C([0, T ) × R) is

the unique viscosity solution of (4.9). Uniqueness follows directly from Theorem

4.3.9.
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Chapter 5

Applications of Continuous Time Two Price Economy

5.1 Overview

In this Chapter, three applications of continuous time two price economies will

be given. The first example uses BSDEs on CTMCs with Markovian drivers to gen-

erate bid and ask prices of option spreads. In the second example, the G-expectation

approach is applied to produce credit capital commitments for derivatives with bi-

lateral counterparty risk. The last example computes bid and ask swap rates and

swaption prices using the distorted PIDE method.

5.2 Bid and Ask Option Spreads

Consider a two price economy whose randomness is generated by a CTMC

(Xt)0≤t≤T . We’ll model bid and ask prices of state contingent claims as solutions to

BSDEs on CTMCs with Markovian driver functions. By Theorem 3.3.1, the solution

to a BSDE of form

Yt −
∫

]t,T ]

F (Xu, u, Yu−, Zu)du+

∫
]t,T ]

ZT
u dMu = Q(XT ), (5.1)

is given by

dṼ

dt
− AT−tṼ (t)− F̃ (T − t, Ṽ (t)) = 0, (5.2)
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where F̃ satisfies

F̃i(T − t, Ṽ (t)) = F (ei, T − t, Ṽi(t), Ṽ (t)).

We pick the driver functions for bid and ask prices as

Fb(Xt, t, Yt, Zt) = |XT
t AtXt|

∫
R

zd(Ψγ(FZ(z)))−XT
t AtZt,

and

Fa(Xt, t, Yt, Zt) = −Fb(Xt, t, Yt,−Zt),

with Ψγ the minmaxvar function defined in (2.3).

We first construct a CTMC (Xt)0≤t≤T as an approximation to a Variance

Gamma (VG) process. The parameter for the VG process is taken to be (σ =

0.43, ν = 0.76, θ = −0.6). The parameter is obtained by calibrating the VG process

to the option surface on JPM on the date of Oct. 18, 2011, with initial stock price

equals to 32. We then construct the CTMC X following the method suggested by

Mijatović and Pistorious in [42]. The total number of states of X is set to 200, with

state value vector V of X given by

V = (−2.51 : 0.0178 : 1.04)T .

Suppose the stock price St satisfies

St = 32exp(0.45t+XT
t V ),

where V is the state value vector of X.

Consider a strangle with K1 = 25, K2 = 39 and maturity T = 1. A strangle

is a derivative with terminal payoff

Q(ST ) = (K1 − ST )+ + (ST −K2)+, (5.3)
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which is illustrated in Figure 5.1.
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Figure 5.1: Strangle payoff with K1 = 25 and K2 = 39

We then generate the bid and ask prices of the strangle as solutions to (5.2)

with initial value (5.3), at three different distortion levels: γ = 0.1, γ = 0.2, γ = 0.5.

We have also computed the expected value of the strangle (γ = 0). Figure 5.2 shows

the bid, ask and expected values of the strangle at distortion level γ = 0.1. In Figure

5.3, the trading advantage of the strangle is illustrated with γ = 0.1, in which the

top curve and the bottom curve correspond to the ask and bid prices of trading the

strangle as a put option with strike K1 = 25 and a call option with strike K2 = 39,

while the three curves in the middle are the same as in Figure 5.2.

Figure 5.4 compares the bid and ask prices of the strangle under different

distortion levels. Table 5.1 presents the bid, ask and expected prices of the strangle
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Figure 5.2: Bid, ask and expected prices of a strangle at distortion level 0.1
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Figure 5.3: Trading advantage of a strangle at distortion level 0.1
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(a) Bid prices of a strangle under distortion levels 0.1, 0.2, and 0.5
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(b) Ask prices of a strangle under distortion levels 0.1, 0.2, and 0.5

Figure 5.4: Bid and ask prices of a strangle under different distortion levels
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at t = 0 under different distortion levels and stock prices.

Table 5.1: Prices of a strangle at different stock prices and distortion levels

Distortion Level Stock Price Bid Ask Expectation

0.1

25 3.7031 8.1031 5.6940

32 4.9032 10.7494 7.4689

39 7.4493 15.5189 10.9982

0.2

25 2.2964 10.6567 5.6940

32 3.1185 14.6207 7.4689

39 4.9195 20.9310 10.9982

0.5

25 0.4573 19.7900 5.6940

32 0.7239 30.6385 7.4689

39 1.3219 41.7017 10.9982

We next consider a butterfly spread with K1 = 25, K2 = 39 and maturity

T = 1. A butterfly spread is a derivative with terminal payoff given by

Q(ST ) = (ST −K1)+ + (ST −K2)+ − 2(ST −
K1 +K2

2
)+, (5.4)

which is illustrated in Figure 5.5.

We computed the bid, ask and expected prices of the butterfly spread at

distortion levels γ = 0.1, γ = 0.2, γ = 0.5. Figure 5.6 shows the bid, ask and

expected values of the butterfly spread at distortion level γ = 0.1. Figure 5.7

illustrates the trading advantage of the butterfly spread with γ = 0.01. In Figure
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Figure 5.5: Butterfly spread payoff with K1 = 25 and K2 = 39
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Figure 5.6: Bid, ask and expected prices of a butterfly spread at distortion level 0.1
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5.7, the top curve and the bottom curve correspond to the ask and bid prices of

trading the butterfly spread as buying two call options with strikes K1 = 25 and

K2 = 39, and selling two call options with strike (K1 + K2)/2 = 32 or vise versa,

while the three curves in the middle are the bid, ask, and expected values of the

butterfly spread computed at distortion level γ = 0.01. Figure 5.8 compares the
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Figure 5.7: Trading advantage of a butterfly spread at distortion level 0.1

bid and ask prices of the butterfly spread under different distortion levels. Table

5.2 presents the bid, ask and expected prices of the butterfly spread at t = 0 under

different distortion levels and stock prices.
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Figure 5.8: Bid and ask prices of a butterfly spread under different distortion levels
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Table 5.2: Prices of a butterfly spread at different stock prices and distortion levels

Distortion Level Stock Price Bid Ask Expectation

0.1

25 0.7740 1.9526 1.2827

32 0.5372 1.6226 0.9895

39 0.3787 1.3365 0.7609

0.2

25 0.4475 2.6826 1.2827

32 0.2714 2.3420 0.9895

39 0.1734 2.0281 0.7609

0.5

25 0.0750 4.5879 1.2827

32 0.0258 4.3306 0.9895

39 0.0118 4.0794 0.7609
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5.3 Credit Capital Commitments in Continuous Time

5.3.1 Introduction

The theory of credit capital commitment (CCC) is introduced in [39] by Madan

in place of the credit valuation adjustment (CVA) in incomplete markets. The CCC

of a cash flow X is defined as the difference between its bid and ask prices. Some

illustrative evaluations are given in [39] in the context of static one period two price

economy. We are going to apply the G-expectation method developed in Chapter 4

to compute CCCs in a continuous time two price economy.

5.3.2 PIDE Representation

Consider a derivative contract on an asset S between an issuer I and a coun-

terparty C that may both default. At default, one party would pay the other a

predetermined amount. If there is no default, C would pay I H(S) ∈ R at maturity

T . Let JI and JC be two independent Poisson processes with intensities λI and λC

that jump from 0 to 1 on default of I and C respectively. Suppose S is driven by a

pure jump Levy process (Xt)0≤t≤T independent of the default processes, under the

martingale measure. Suppose X has finite variation and quadratic variation. Let V

denote the value of the derivative to the issuer I. In fact, V is a function of t, X,

JI and JC , with boundary conditions

V (t,X, 1, 0) = MI(t,X)

V (t,X, 0, 1) = MC(t,X),
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and terminal condition

V (T,X, 0, 0) = Ĥ(X),

where MI and MC are predetermined functions, and Ĥ(X) satisfying

Ĥ(X) = H(S(X)).

We have the following result regarding V (t,X, JI , JC).

Proposition 5.3.1. Let u(t,X, JI , JC) be the solution to

∂tu+Atu− (r + λI + λC)u+ λIMI + λCMC = 0

u(T,X, 0, 0) = ĤT (X)

u(t,X, 1, 0) = MI(t,X), u(t,X, 0, 1) = MC(t,X), (5.5)

where A is the infinitesimal generator of X. Let τ denote the time of the first default,

we have

u(t,X, 0, 0)

= E(1τ>T e
−rT−tĤ(X)|Ft) + E(1τ≤T e

−r(τ−t)((1JI=1)MI(τ,X) + 1JC=1MC(τ,X))|Ft).

As a result, V (t,X, JI , JC) = u(t,X, JI , JC).

Proof. The triplet X̃ = (X, JI , JC)T could be seen as a multivariate jump process

with jump intensity (k(x), λIδ(1), λCδ(1))T , that satisfies the following Levy-Itô de-

composition:

dX̃(t) =

∫
R3

diag(z̃)Ñ(dt, dz).
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By Itô’s formula, for any t < t̃,

e−r(t̃−t)u(t̃, Xt̃, JI(t̃), JC(t̃))− u(t, x, JI(t), JC(t))

=

∫
]t,t̃]

(∂tu− ru)ds

+
∑
t<s≤t̃

(u(s,Xs, JI(s), JC(s))− u(s,Xs−, JI(s−), JC(s−)))

=

∫
]t,t̃]

∂tu− ru

+

∫
R

u(s,Xs− + z, JI(s−), JC(s−))− u(s,Xs−, JI(s−), JC(s−))k(z)dz

+ λI(u(s,Xs−, JI(s−) + 1, JC(s−))− u(s,Xs−, JI(s−), JC(s−)))

+ λC(u(s,Xs−, JI(s−), JC(s−) + 1)− u(s,Xs−, JI(s−), JC(s−)))ds

+

∫
]t,t̃]

∫
R

u(s,Xs− + z, JI(s−), JC(s−))− u(s,Xs−, JI(s−), JC(s−))N1(ds, dz)

− k(z)dzds

+

∫
]t,t̃]

(u(s,Xs−, JI(s−) + 1, JC(s−))− u(s,Xs−, JI(s−), JC(s−)))d(N2(s)− λIs)

+

∫
]t,t̃]

(u(s,Xs−, JI(s−), JC(s−) + 1)− u(s,Xs−, JI(s−), JC(s−)))d(N3(s)− λCs)

Since the last three expressions in the above equation are martingales, if u satisfies

(5.5), then for any t̃ > t, with JI(t) = JC(t) = 0, we have

E(e−r(t̃−t)u(t̃, Xt̃, JI(t̃), JC(t̃))) = u(t, x, 0, 0). (5.6)

Substitute t̃ = τ ∧ T into (5.6) to get

u(t, x, 0, 0) = E(e−r(t̃−t)u(τ ∧ T,Xτ∧T , JI(τ ∧ T ), JC(τ ∧ T )))

= E(1τ>T e
−rT−tĤ(X)|Ft)

+ E(1τ≤T e
−r(τ−t)((1JI=1)MI(τ,X) + 1JC=1MC(τ,X))|Ft).
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5.3.3 Distorted PIDEs for Bid and Ask Prices

By Proposition 5.3.1, the risk neutral price of the derivative satisfies (5.5).

Following the G-expectation approach discussed in Chapter 4, we could use distorted

PIDEs to describe the bid and ask prices. Recall the original PIDE

∂tu = −Atu+ (r + λI + λC)u− λIMI − λCMC ,

its right hand side of the equation could be rewritten as

ru− (Au+ λI(MI − u) + λC(MC − u)).

Let’s define the operator L by

L = Au+ λI(MI − u) + λC(MC − u).

L could be written in the following way,

Lu = (K + λI + λC)(

∫
u(x+ y)− u(x)

y2

y2k(y)

K + λI + λC
dy

+
λI

K + λI + λC
(MI − u) +

λC
K + λI + λC

(MC − u)), (5.7)

where K =
∫
y2k(y)dy. Define

g(y) =
y2k(y)

K + λ1 + λ2

.

Then

∫
u(x+ y)− u(x)

y2
g(y)dy +

λI
K + λI + λC

(MI − u) +
λC

K + λB + λC
(MC − u)
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could be seen as the expectation of a random variable Z, that can take values

(u(x+ y)− u(x))/y2, MI − u, and MC − u, with distribution function

FQV (z) =



∫
A(t,x,z)

g(y)dy z < M− − u(x)

∫
A(t,x,z)

g(y)dy + λI
K+λI+λC

1MI<MC
+ λC

K+λI+λC
1MI≥MC

z elsewhere

∫
A(t,x,z)

g(y)dy + λI+λC
K+λI+λC

z ≥M+ − u(x)

,

where

A(t, x, z) =

{
(u(x+ y)− u(x)

y2
≤ z

}
,

M− = min(MI ,MC),

M+ = max(MI ,MC).

We have

Lu = (K + λI + λC)E(Z).

We define GQVb and GQVa as

GQVb u = (K + λI + λC)

∫
zdΨγ(FQV (z)),

and

GQVa u = −GQVb (−u)

where Ψ is the minmaxvar function defined in (2.3).

In the above method, the idea is to build a probability measure from an infinite

Levy measure by reducing the weights of small jumps and scaling by its quadratic

variation. Another way to ignore small jumps is by truncating a small neighborhood
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of 0 and normalizing the truncated Levy measure. Consider the truncated generator

Lε,

Lεu = (K̂ + λI + λC)(

∫
{|y|>ε}

(u(x+ y)− u(x))
k(y)

K̂ + λI + λC
dy

+
λI(MI − u)

K̂ + λI + λC
+
λC(MC − u)

K̂ + λI + λC
). (5.8)

Similar to the QV method, we can view (5.8) as scaled expectation of a random

variable Z, that could take values u(x + y) − u(x), MI − u and MC − u, with

distribution function FNL(z) defined as

FNL(z) =



∫
B(t,x,z)

h(y)dy z < M− − u(x)

∫
B(t,x,z)

h(y)dy + λI
K̂+λI+λC

1MI<MC
+ λC

K+λI+λC
1MI≥MC

z elsewhere

∫
B(t,x,z)

h(y)dy + λI+λC
K̂+λI+λC

z ≥M+ − u(x)

,

where h(y) and B(t, x, z) are defined as

h(y) =
k(y)

K̂ + λI + λC
,

B(t, x, z) = {u(x+ y)− u(x) ≤ z, |y| ≥ ε} .

We could then define GNLb and GNLa by

GNLb u = (K̂ + λB + λC)

∫
zdΨγ(FNL(z)),

and

GNLa u = −GNLb (−u).

Once we have bid and ask generators, the prices are given by

∂tu− ru+ G(u) = 0.
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5.3.4 Numerical Results

Consider a one year contract (T = 1) between two parties, with terminal payoff

H(S) = (0.9−S)+ +(S−1.1)+, and default payment MI = MC = 0. Suppose ln(S)

follows a VG process with drift. We pick the parameter (σ, ν, θ) of the VG process

to be (0.39, 0.51,−0.57). The parameter is obtained by calibrating the VG process

to the option surface on JPM on the date of Oct. 20, 2008, with initial stock price

equals to 40. Assume the interest rate r = 0.02. We first choose default intensities

as λI = λC = 0.1, and set the distortion level at 0.1. Figure 5.9 shows the graph of

H(ST ), with ln(ST ) ranging from −1.54 to 1.46. Figure 5.10 presents the bid, ask
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Figure 5.9: Terminal payoff function H(S)

and expected values of the derivative using the QV and NL methods. We compare

in Figure 5.11 the CCCs computed using the QV and NL approaches. Figure 5.12
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(a) Bid, ask, and expected values computed using QV method at distortion level
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Figure 5.10: Bid, ask and expected values of a derivative with bilateral counterparty

risk
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Figure 5.11: CCCs under bilateral counterparty risk

illustrates the effect of distortion levels on the CCCs. Table 5.3 compares the CCCs

computed using QV and NL methods under different distortion levels and different

initial stock prices.

We next compare the CCCs under bilateral counterparty risk with the CCCs

under own default, counterparty default and no default. We set default rates for

both I and C to be 0.1, and keep MB and MC same as before. The distortion level is

set at γ = 0.1. By symmetry, own default and counterparty default would yield the

same result. Figure 5.13 compares the CCCs under different default assumptions.

Table 5.4 shows the CCCs at S0 = 1 computed using QV and NL methods under

different default assumptions. The distortion level is set to 0.1.

105



−2 −1.5 −1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

Log Stock Price

C
C

C

QV CCCs under Different Distortion Levels

gamma=0.5
gamma=0.2
gamma=0.1

(a) CCCs computed using QV method at distortion levels 0.1, 0.2, and 0.5

−2 −1.5 −1 −0.5 0 0.5 1
0

0.5

1

1.5

2

2.5

3

Log Stock Price

C
C

C

NL CCCs under Different Distortion Levels

gamma=0.5
gamma=0.2
gamma=0.1

(b) CCCs computed using QV method at distortion levels 0.1, 0.2, and 0.5

Figure 5.12: CCCs of a derivative with bilateral counterparty risk
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Table 5.3: CCCs at different stock prices and distortion levels

Distortion Level Stock Price CCC QV CCC NL

0.1

0.9 0.2307 0.1957

1 0.2830 0.2249

1.1 0.3421 0.2656

0.2

0.9 0.5161 0.3848

1 0.6185 0.4522

1.1 0.7309 0.5373

0.5

0.9 2.0945 1.1318

1 2.1816 1.3158

1.1 2.2485 1.5006

Table 5.4: CCCs under different default assumptions with γ = 0.1 and S0 = 1

Assumption CCC QV CCC NL

Bilateral Default Risk 0.2830 0.2249

Counterparty Default Risk 0.2904 0.2317

No Default Risk 0.2860 0.2334
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Figure 5.13: CCCs under different default assumptions
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5.4 Bid and Ask Swap Rates and Swaption Prices

5.4.1 Introduction

Interest rate swaps are widely used in the market to hedge against changes in

interest rates. An interest rate swap is a derivative instrument between two parties,

in which they agree to exchange interest rate cash flows based on a specified notional

amount from a fixed rate to a floating rate or vice versa. In this section, we are going

to apply the G-expectation method for the computations of bid and ask interest rate

swap rates and swaption prices. We start by deriving PIDE representations of the

risk neutral swap rate and swaption prices , and then model the bid and ask swap

rates and swaption prices as solutions to the distorted PIDEs build upon the risk

neutral representations.

5.4.2 PIDE Representations of Swap Rates

Consider a continuous time interest rate swap between two parties from time

0 to T . Let r denote the interest rate. The swap rate is defined to be the value K,

such that the present value of future cash flows,

E(

∫ T

0

(r(s)−K)e−
∫ s
0 r(u)duds),

equals to zero. Following [18], the instantaneous interest r(t) is modeled as an

Ornstein-Uhlenbeck process driven by a gamma process g(t) defined on a filtered

probability space (Ω,F , {Ft}0≤t≤T , P ). Suppose the initial interest rate is r0, and
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r(t) follows

dr = −κrdt+ dg, (5.9)

where g is a gamma process with Levy density

k(x) = γ
e−λx

x
, x > 0. (5.10)

The solution to (5.9) is

r(t) = r0e
−κt +

∫ t

0

e−κ(t−u)dg(u). (5.11)

Integrating both sides of (5.11) yields

∫ t

0

r(u)du = r0
1− e−κt

κ
+

∫ t

0

1− e−κ(t−u)

k
dg(u).

Let P (0, t) denote E(e−
∫ t
0 r(u)du), we can find the analytical expression for

P (0, t) as

exp[−r0
1− e−κt

κ
+

∫ t

0

∫ ∞
0

(e−
1−e−κ(t−u)

k
y − 1)k(y)dydu], (5.12)

where k(x) is defined in (5.10).

Consider the following expression

E(

∫ T

t

(r(s)−K)e−
∫ s
t r(u)duds|Ft),

which is the time t value of the future cash flow of the interest rate swap with swap

rate K. Let’s call the value of K that makes the above expression 0 the swap rate

at time t, denoted by Kt. Then Kt satisfies

Kt =
E(
∫ T
t
r(s)e−

∫ s
t r(u)duds|Ft)

E(
∫ T
t
e−

∫ s
t r(u)du|Ft)

(5.13)
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We observed that both the numerator and the denominator of (5.13) depend

only on t and r(t). As a result, Kt is also a function of t and r(t). Let V (t, x) and

J(t, x) denote the functions for Kt and E(
∫ T
t
e−

∫ s
t r(u)du|Ft) respectively.

Define a random process Mt as follows,

Mt = e−
∫ t
0 r(u)duV (t, r(t))E(

∫ T

t

e−
∫ s
t r(u)du|Ft) +

∫ t

0

r(s)e−
∫ s
0 r(u)duds. (5.14)

Substitute (5.13) into (5.14) to get

Mt = E(

∫ T

0

r(s)e−
∫ s
0 r(u)duds|Ft).

Therefore, Mt is a martingale. By Itô’s formula for jump diffusions, we have

dMt = r(t)e−
∫ t
0 r(u)dudt+ e−

∫ t
0 r(u)du(−r(t))V (t, r(t))J(t, r(t))dt

+ e−
∫ t
0 r(u)du[

∂(V J)

∂t
dt+

∂(V J)

∂x
(−κr(t))dt+ V J(t, r(t) + ∆)− V J(t, r(t))].

Since Mt is a martingale, the drift term of dMt should be zero. We obtain

r(t)e−
∫ t
0 r(u)du + e−

∫ t
0 r(u)du(−r(t))V (t, r(t))J(t, r(t))

+ e−
∫ t
0 r(u)du[

∂(V J)

∂t
dt+

∂(V J)

∂x
(−κr(t))

+

∫ ∞
0

(V J(t, r(t) + z)− V J(t, r(t)))k(z)dz] = 0.

Dividing both sides by the common term e−
∫ t
0 r(u)du and put x in place of r(t) to get

J(
∂V

∂t
− κx∂V

∂x
) +

∫ ∞
0

(V J(t, r(t) + z)− V J(t, r(t)))k(z)dz (5.15)

+ V (
∂J

∂t
− κx∂J

∂x
− xJ) + x = 0.

The boundary condition is

V (T, x) = x. (5.16)
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We obtain the following expression for J(t, x) from (5.12),

J(t, x) =

∫ T−t

0

e−x
1−e−κu

κ
+H(u)du,

where

H(u) =

∫ u

0

∫ ∞
0

(e
e−κx−1

k
y − 1)k(y)dydx.

∂J
∂t

and ∂J
∂x

can be computed as

∂J

∂t
= −e−x

1−e−κ(T−t)
κ

+H(T−t),

and

∂J

∂x
=

∫ T−t

0

−1− e−κu

κ
e−x

1−e−κu
κ

+H(u)du.

For t ∈ [0, T ), we could divide both sides of (5.15) by J to get

∂V

∂t
− κx∂V

∂x
+

∫ ∞
0

(V (t, x+ z)
J(t, x+ z)

J(t, x)
− V (t, x))k(z)dz (5.17)

+V (
∂J
∂t
− κx∂J

∂x

J
− x) +

x

J
= 0

As t goes to T in (5.17), we can compute the limiting values on both sides.

We obtain, on the boundary t = T , V (t, x) satisfies

∂V

∂t
− κx∂V

∂x
+

∫ ∞
0

(V (t, x+ z)− V (t, x))k(z)dz = 0. (5.18)

In all, (5.17) and (5.18) describes the PIDE for the risk neutral swap rate,

with boundary condition given by (5.16).

5.4.3 Bid and Ask Swap Rates

Following the G-expectation method, we model bid and ask swap rates as the

solutions to the distorted PIDEs built upon the PIDE representation of the risk
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neutral swap rate. We construct the distorted PIDEs by distorting the integral

terms in (5.17) and (5.18) using the NL method described in Chapter 4. For the

dynamics of the interest rate, we use the parameters κ = 0.1868, λ = 570.3251, and

γ = 4.7936. These parameters are obtained by calibrating the interest rate model

(5.9) to the pure discount curve on Aug. 15, 2011, with details given in Section 3 in

[18]. The time interval is set to [0, 1]. We apply NL-distortion to the integral term

in the PIDE and solve the PIDEs numerically using the Euler method. We build

the space grid on the interval [0, 0.0495] with step size 0.0005. The time step equals

to 0.1. We present in Figures 5.14 and Figure 5.15 the bid ask and expected swap

rates under distortion levels 0.1 and 0.5 respectively. Table 5.5 compares the bid,

ask and expected swap rates at t = 0, 0.5, 1, rt = 0.02 and γ = 0.1, 0.5.
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Figure 5.14: Bid, ask, and expected swap rates under distortion level 0.1
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Figure 5.15: Bid, ask, and expected swap rates under distortion level 0.5

Table 5.5: Swap rates at r = 0.02, t = 0, 0.5, 1 and γ = 0.1, 0.5

Distortion Level Time Bid Ask Expectation

0.1

0 0.0211 0.0220 0.0215

0.5 0.0206 0.0211 0.0209

1 0.02 0.02 0.02

0.5

0 0.0203 0.0242 0.0215

0.5 0.0202 0.0224 0.0209

1 0.02 0.02 0.02
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5.4.4 Bid and Ask Prices of Swaptions

Consider a payer swaption on a forward starting swap that starts at time a

and ends at time T with strike K∗. The expiration time of this swaption is t = a.

We are going to derive the bid and ask prices for the swaption. First we need to

find a PIDE to describe the risk neutral value of this swaption for 0 ≤ t ≤ a. Let

us denote the risk neutral swap rate at time t = a given spot interest rate r(a) by

K(r(a)). As a result, for 0 ≤ t ≤ a, the risk neutral value of the swaption is

E(

∫ T

a

(r(s)−K∗)e−
∫ s
t r(u)duds1K(r(a))>K∗|Ft). (5.19)

By definition, K(r(a)) satisfies

E(

∫ T

a

(r(s)−K(r(a)))e−
∫ s
a r(u)duds|Fa) = 0,

therefore, (5.19) can be rewritten into

E(

∫ T

a

(K(r(a))−K∗)+e−
∫ s
t r(u)duds|Ft). (5.20)

We note that the expression (5.20) should be a function of only t and r(t). Let

V (t, x) denote such function, and define a process Mt as follows,

Mt = e−
∫ t
0 r(u)duV (t, r(t)).

By Ito’s formula, we could get

dMt = e−
∫ t
0 r(u)du[−r(t)V dt+ ∂V

∂t
+
∂V

∂x
(−κr(t))dt+V (t, r(t−)+∆)−V (t−, r(t−))].

(5.21)

Since

Mt = E(

∫ T

a

(K(r(a))−K∗)+e−
∫ s
0 r(u)duds|Ft), (5.22)
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Mt is a martingale, the drift term should equal to zero. We obtain the following

PIDE representation of the risk neutral swaption price.

∂V

∂t
+
∂V

∂x
(−κx) +

∫ ∞
0

(V (t, x+ z)− V (t, x))k(z)dz − xV = 0, (5.23)

with terminal value

V (a, x) = (K(x)−K∗)+J(a, x). (5.24)

We could then generate the bid and ask swaption prices using G-expectation

approach. Consider a swaption with maturity a = 0.5 and strike K∗ = 0.02 on a

swap that begins at time 0.5 and ends at time 1. We use the same parameters for

interest rate as in the last subsection. Figure 5.16 shows the payoff of the swaption

at maturity (t = 0.5). Figure 5.17 and Figure 5.18 present the bid, ask and expected
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Figure 5.16: Terminal payoff of a swaption with strike 0.02

prices of the swaption at distortion levels 0.1 and 0.5 respectively.
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Figure 5.17: Bid, ask, and expected prices of a swaption at distortion level 0.1
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Figure 5.18: Bid, ask, and expected prices of a swaption at distortion level 0.5

117



Table 5.6 compares the bid, ask and expected prices of the swaption at dif-

ferent spot interest rates under distortion levels 0.1 and 0.5. Finally, in Figure

5.19, we present the implied volatilities of the bid, ask and expected swaption prices

computed at distortion level 0.01.

Table 5.6: Swaption prices at different spot interest rates and distortion levels 0.1

and 0.5

Distortion Level Interest Rate Bid Ask Expectation

0.1

0.01 0 0 0

0.02 0.0011 0.0015 0.0012

0.03 0.0053 0.0057 0.0055

0.04 0.0094 0.0098 0.0096

0.5

0.01 0 0.0004 0

0.02 0.0006 0.0026 0.0012

0.03 0.0048 0.0068 0.0055

0.04 0.0090 0.0107 0.0096
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Figure 5.19: Bid, ask, and expected implied volatilities at distortion level 0.01
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[29] Jakubowski, A., and S lomiński, L. Extended convergence to continuous

in probability processes with independent increments. Probability Theory and

Related Fields 72, 1 (1986), 55–82.

[30] Kurtz, T. Lectures on stochastic analysis.

[31] Kyle, A. Continuous auctions and insider trading. Econometrica 53, 1315-

1335 (1985).

[32] Madan, D. Capital requirements, acceptable risks and profits. Quantitative

Finance 7 (2009), 767–773.

[33] Madan, D., Carr, P., and Chang, E. The variance gamma process and

option pricing. European Finance Review 2, 1 (1998), 79–105.

123



[34] Madan, D., and Cherny, A. Markets as a counterparty: an introduction to

conic finance. International Journal of Theoretical and Applied Finance (Aug

2010), 1149–1177.

[35] Madan, D., Pistorius, M., and Schoutens, W. The valuation of struc-

tured products using Markov chain models. Quantitative Finance 13, 1 (2013),

125–136.

[36] Madan, D., and Schoutens, W. Structured products equilibria in conic

two price markets. Mathematics and Financial Economics 6 (2012), 37–57.

[37] Madan, D., and Seneta, E. The variance gamma (v.g.) model for share

market returns. The Journal of Business 63, 4 (Oct 1990), 511–524.

[38] Madan, D., Wang, S., and Heckman, P. A theory of risk for two price

market equilibria.

[39] Madan, D. B. From credit valuation adjustments to credit capital commit-

ments. Quantitative Finance 12, 6 (2012), 839–845.

[40] Madhavan, A., Richardson, M., and Roomans, M. Why do security

prices change? a transaction-level analysis of nyse stocks. The Review of Fi-

nancial Studies 10, 4 (1997), 1035–1064.
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