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ABSTRACT

The results of Semi-Inclusive Deep Inelastic Scattering and Deep Inelastic Scattering ex-

periments combined in a global analysis have shown us that a transversely polarized quark

undergoes an azimuthal spatially-biased neutral pion fragmentation. One goal of the PHENIX

experiment at RHIC is to study similar properties in a hadron-hadron collision environment in

an attempt to show the degree to which universality is broken between these di�ering systems

as well as the relative contribution of competing processes to the observed single spin asymme-

tries. A novel measurement method was formulated speci�cally for the PHENIX experiment's

detector con�guration. The method and results are presented here.
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CHAPTER 1. INTRODUCTION

The structure of a proton is a complex set of emergent properties born from the basic

interactions of Quantum Chromodynamics (QCD) and Quantum Electrodynamics (QED). The

study of these emergent (phenomenological) properties allows one to infer basic QCD principles;

speci�cally, the way in which the phenomenological properties arise from various initial states

allows one control and variance over which speci�c QCD principles are tested. The emergent

property studied here is the quantum mechanical spin of a proton.

1.1 Goal

The goal of this research is to solve a puzzle which directly correlates to our understanding

of QCD. The speci�c puzzle chosen is a spatial bias in particle production in polarized proton-

proton collisions. Simply, when polarized protons collide they eject particles, one of which is

the neutral pion (π0). It has been observed in previous measurements that the spatial-density

of neutral pions ejected from the collision depends on the orientation of the proton polarization

vector from which the neutral pion was ejected. A schematic representation of such a process

can be seen in Figure 1.1
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Figure 1.1 Schematic of a simpli�ed polarized proton-proton collision producing a spatially-bi-

ased neutral pion distribution. In this example more π0s are found to the "right"

of the spin axis than to the "left" of the spin axis.

To understand how the proton spin correlates to the proton structure itself we must �rst

understand the basic qualitative properties of QCD as well as the basic (non-spin-dependent)

proton structure. Presented in this introduction chapter is a purely qualitative conceptual

overview of the large-distance (greater than half a fermi) bulk properties of QCD.

1.2 QCD and QED Comparison

As a basis for comparison one can consider the case of QED in which the gauge boson

(force mediator) is the photon. The photon itself carries no electromagnetic charge and is

thus non-self-interacting (at leading order). As such, the electric potential falls as a function

of separation distance (V ∼ 1
r ) and the force between two electromagnetic charges falls as a

function of separation distance (F ∼ 1
r2
). A schematic representation of the electric �eld lines

between two point charges can be seen in Figure 1.2.
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Figure 1.2 Schematic of electric �eld lines between two point charges [1].

Almost disparately, the QCD force is mediated by the gluon which does carry QCD charge

(color charge) which in turn enables the gluon to self-interact (Figure 1.3). Gluon-gluon interac-

tions being possible at leading order causes the potential �eld lines between two color charged

objects to form a "tube" rather than the classical QED picture as seen in Figure 1.5. The

e�ect of this di�erence between QED and QCD results in the QCD potential (Figure 1.4) to

grow as a function of (large) separation distance (V ∼ k · r) like a classical mechanical spring

system. Through Newton's Second Law of Motion we know that the correlation between scalar

potential and force is simply a spatial gradient (
−→
F ∼ −

−→
∇V ); consequently, the (large distance)

force between two QCD point charges remains constant as a function of separation distance.

Figure 1.3 Feynman diagrams of leading order interactions. Left-most: QED, Right two:

QCD.
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Figure 1.4 Lattice determination of the large-distance QCD potential [2].

Since the force remains constant, the work (energy) required for separation grows as the line-

integral of the separation distance which implies that the energy stored in the QCD �ux-tube

connecting the two QCD objects grows as the objects are separated as can be seen in Figure 1.5.

Just like in the QED vacuum, the QCD vacuum continuously undergoes vacuum excitation to

create particle-antiparticle pairs. In the QCD vacuum one can consider the vacuum excitation

of virtual quark-antiquark pairs, which, in the large (stored) energy density of a QCD �ux tube

allows for the easy conversion of a said virtual particle pair into a real quark-antiquark pair

rather than being instantly re-converted to vacuum energy. The process by which the QCD

vacuum "steals" energy from the �ux tube to create particle-antiparticle pairs is called "string

breaking," a schematic representation of which can be seen in Figure 1.6.
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Figure 1.5 Schematic representation of the �ux "tube" formed between color charged particles

[3].

Figure 1.6 Schematic representation of "string breaking" [3].

Since the proton is a composite object comprised of partons (quarks and gluons) it will serve

as our laboratory for studying QCD phenomenology. A schematic of the naive parton model of

a proton can be seen in Figure 1.7. The proton contains both small-distance and large-distance

QCD phenomena, making it an excellent choice for studying QCD itself. Our chosen method

of study is to collide protons at (near) the speed of light and analyze what comes out.
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Figure 1.7 Naive quark-parton model proton schematic.

The net e�ect of this QCD �ux-tube formation is that if a single parton attempts to leave the

con�nes of a proton during a collision it pulls these QCD "strings." This means that the parton

sees a large (constant) restoring force while its energy is converted to QCD potential energy in

the �ux tube that is formed. Once the �ux tube is high enough energy density the QCD vacuum

itself can steal energy from the �ux tube for the creation of quark-antiquark pairs. As the parton

continues to attempt to leave the con�nes of the proton this process repeats until no appreciable

kinetic energy remains. This process is the result of con�nement; simply, the universe does not

allow a color charge to roam free, it must be bound into a net colorless state. The system is

then left with many quarks and anti-quarks which can form colorless bound states (hadrons).

These colorless bound states do not cause the same string-pulling e�ect and are able to leave

the con�nes of the proton. This process is called "fragmentation" or "hadronization" and this

speci�c e�ect is the main focus of this work and will be discussed in subsequent chapters.
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CHAPTER 2. OVERVIEW

The results of Semi-Inclusive Deep Inelastic Scattering (SIDIS) and Deep Inelastic Scattering

(DIS) experiments combined in a global analysis have shown us that a transversely polarized

quark undergoes an azimuthal spatially-biased neutral pion fragmentation. One goal of the

PHENIX experiment at RHIC is to study similar properties in a hadron-hadron [4] collision

environment in an attempt to show the degree to which the universality of fragmentation pro-

cesses is broken between these di�ering systems as well as the relative contribution of competing

processes to an observed single spin asymmetries [5]. The speci�c e�ect and quantity of interest

studied in this work is the Collins E�ect's spatial bias on neutral pion production.

The Collins E�ect, however, cannot be studied in insolation in a hadron-hadron collision

environment. The hadrons' initial state parton con�gurations in�uence the �nal state particle

production greatly. This measurement will utilize �nal-state particle kinematic biases to garner

some control over the hadrons' initial states during the collision to enhance our measurement's

purity. Since our quantity of interest is a spin-dependent quantity which depends greatly on

the initial-state parton con�guration we will examine that aspect �rst.

2.1 Spin Structure of the Proton

The proton's leading-order collinear hadronic structure at leading twist (Figure 2.1) is made

of three components: the unpolarized Parton Distribution Function (PDF), the helicity dis-

tribution, and the transversity distribution. The collinear picture is one in which no partonic

transverse momentum is considered. Of particular interest to this measurement are the proton's

unpolarized PDF and transversity distribution; the helicity distribution is not probed in this

measurement. The proton's unpolarized PDF is known quite well from past measurements (Sec-
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tion 2.1.1). The transversity distribution is essentially the last piece of the collinear partonic

jig-saw puzzle to complete the total leading-order hadronic picture.

Figure 2.1 Diagram of a SIDIS interaction at leading twist order (one allowed exchange gluon)

[6]. Straight lines are quarks, wavy lines are photons, the curly line is a gluon, and

�1� represents the exchange gluon.

2.1.1 Parton Distribution Functions

The parton distribution function (PDF) of interest here is the unpolarized proton PDF. A

PDF is a distribution function (number density) of partons within a hadron at a speci�c partonic

momentum fraction (x, Equation 2.1). A PDF for each parton �avor (including anti-quarks)

as a function of partonic momentum fraction as well as a function of interaction momentum

transfer (Q) has been measured from previous experiments. The Naive Parton Model utilizes

Bjorken scaling which dictates that the PDF is only a function of x, however, this is not valid

at either low or high values of x [7].

x =
−→p parton · p̂proton
|−→p proton|

(2.1)

The vast majority of high-precision data used in PDF global �ts comes from Deep Inelastic

Scattering (DIS) experiments. The basic premise of DIS is the scattering of a lepton o� of a

hadron at energies such that the hadron's constituent partons can be probed via an exchange of a

virtual photon. The energy required for the scattering is large enough that the hadron undergoes

break-up during the interaction (i.e. inelastic scattering). The measurements performed in a
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DIS experiment are fully inclusive measurements; only the initial lepton, initial hadron, and

�nal lepton states are known or observed. The rest of the collision products in the interaction

are ignored. A Feynman diagram of a DIS interaction is shown in Figure 2.2.

Figure 2.2 Diagram of the neutral and charged-current channels of a Deep Inelastic Scattering

process where �X� denotes the hadronic �nal state [8].

Figure 2.3 shows the CTEQ6M extraction of the proton PDFs at two di�erent energy scales

[9]. The nomenclature oft used for the PDF number density is fph(x,Q2), where �h� is the

hadron species and �p� is the parton �avor.

The evolution of the PDF between energy scales is governed by the partonic splitting and

recombintation functions [10] used in the DGLAP (Dokshitzer�Gribov�Lipatov�Altarelli�Parisi)

evolution scheme [11]. The DGLAP evolution scheme is applicable in the perturbative regime

where the QCD coupling constant (αs(Q
2)) is small, i.e. at large momentum transfer. The

DGLAP scheme is required to match the experimentalQ2 of an interaction with an appropriately

evolved PDF for that energy scale.

The naive quark-parton model provides a probabilistic interpretation of the hadronic struc-

ture. The PDF can be normalized to the total number of partons as a function of x such that

the PDF can be sampled as a probability density function. The analysis presented here exploits

features of the unpolarized PDFs extensively. Speci�cally, it relies on the fact that a central-

going (predominantly perpendicular to the beam-axis) parton is likely sampled from low-x in
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Figure 2.3 The CTEQ6M extractions of the proton PDFs. Left: Q = 2 GeV. Right: Q = 100

GeV.

the PDF which biases it to be a gluon rather than a quark (or anti-quark); also, a forward-going

(predominantly parallel to the beam-axis) high-pT particle biases the same-side-going parton to

higher-x, which biases it toward quark �avors and away from the large gluon distribution.

2.1.2 Transversity

The transversity distribution describes the density of transversely polarized quarks (of a spe-

ci�c �avor) in a transversely polarized nucleon. The nomenclature used here for the transversity

distribution is δq(x), which describes the distribution of quark �avor �q� at a partonic momen-

tum fraction �x�. δq(x) performs the same role as q(x) in our unpolarized PDFs except now the

density is weighted by the relationship between the parton and parent hadron's transverse spin

directions.

Transversity is a leading-twist (one exchange gluon, Figure 2.1) partonic distribution func-

tion which is time-reversal-odd [12], making it an unobservable quantity unless coupled with

another t-odd quantity. This requirement makes it impossible to extract the transversity dis-

tribution from DIS experiments alone [13]. A few candidates for coupled measurement include

the Collins function (time-reversal-odd), double transverse spin asymmetry using the Drell-Yan



11

processes, and transversity itself [14]. Since the gluon does not have a transversity distribution

(massless, spin-1) it is much easier to separate out the quark and gluon components of a SIDIS

measurement if it involves spin-polarized hadrons [13].

The most accessible channel for measurement of the transversity distribution is the azimuthal

asymmetry in SIDIS processes (`p↑ → `hX) which convolutes the transversity distribution with

the Collins function. A global analysis [15] which combines data from the HERMES, Belle, and

COMPASS collaborations lead to the �rst breakthrough in transversity measurement (coupled

with the Collins function). In reality, there should exist a transversity distribution for each

parent hadron type and parton �avor, however, current data only allows for the extraction of

the up and down quark transversity distributions. The latest extraction of the transversity

distributions can be seen in Figure 2.4. The maxima/minima seen at x ≈ 0.3 are primarily do

to the chosen parameterization function coupled with the boundary condition that transversity

must be zero at x = 1. The sign of the transversity value implies that the up-quark (down-quark)

favors aligning parallel (anti-parallel) to the proton spin axis.

2.2 Single Spin Asymmetry

A single spin asymmetry in proton-proton collisions is de�ned as a di�erence in cross-sections

for processes based on the polarization of colliding protons (Equation 2.2).

AN =
dσ↑ − dσ↓

dσ↑ + dσ↓
(2.2)

where σ↑,↓ is the cross section for a p↑,↓ + punpol → π0 + X process and the di�erential

represents a derivative with respect to three-space momentum of the π0. Previous measurements

of the π0 (or unidenti�ed neutral cluster) AN at the PHENIX experiment can be seen in

Figure 2.5 provided by Reference [16]. One can see a large asymmetry in the distribution of

unidenti�ed neutral clusters that increases as a function of xF =
−−−−−→
Clusterz−−−−→
Protonz

.



12

Figure 2.4 Anselmino group transversity distribution extractions (x∆T q(x) = xδq(x)) [15].

The red line represents the function value with their associated uncertainty bands.

Top: Up quark. Bottom: Down quark.

Figure 2.5 Single spin asymmetry of unidenti�ed single clusters at forward rapidity at the

PHENIX experiment [16]. Top: As a function of xF =
−−−−−→
Clusterz−−−−→
Protonz

. Bottom: As a

function of cluster pT .
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This asymmetry could have several possible contributions. The two main avenues of in-

terpretation are the transverse momentum dependent (TMD) factorization approach and the

collinear twist-three factorization approach [17]. The analysis and discussion herein utilizes

the TMD factorization approach. The TMD factorization approach states that an observed

single spin asymmetry is caused by a correlation between the spin and transverse momentum

of the �nal-state hadron and its parent parton. This correlation manifests as the Collins and

transversity coupling (Sections 2.1.2 and 2.3.1). Alternatively, a single spin asymmetry could

be attributed to a correlation between the parent hadron's spin and the transverse momentum

of the initial-state parton. This correlation implies there exists a bias in the transverse motion

of partons inside its parent hadron. This correlation is called the Sivers E�ect [18].

The goal of this analysis is to help determine the relative contribution of sources of a

measured single spin asymmetry such as Collins coupled with transversity or the Sivers e�ect

(in the TMD framework). It is important to note that di�culty in measurement primarily

arises due to the composite and complex nature of the proton coupled with the ability to only

measure �nal-state particles that exist after fragmentation.

2.3 Fragmentation Functions

In our context, a fragmentation function is a description of the number-density of a produced

particle �avor during the QCD-dressing of a parton due to color con�nement as it attempts

to exit a collision system. Essentially, fragmentation functions describe the hadronization of

quarks and gluons. While the number-density alone is an interesting quantity, the fragmentation

function can also describe the number density as a function of z, which is the longitudinal

momentum fraction of the produced hadron relative to the fragmenting parton. Additionally, a

characteristic width (usually a positive-de�nite Gaussian with a mean of zero) of the transverse

momentum (p⊥) distribution of the produced hadrons with respect to the parton momentum

vector direction can be de�ned. For our interests, the quark fragmentation functions are of

particular importance. Equation 2.3 is the usual formalism to describe a fragmentation function

of this type.
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Dh
q (z, p⊥) = Dh

q (z)
e−p⊥

2/<p⊥
2>

π< p⊥2 >
(2.3)

Where:

• q = �avor of the fragmenting parton

• h = species of the produced hadron

• z =
−→p h·q̂
|−→q | = longitudinal momentum fraction of the produced hadron with respect to the

fragmenting parton

• Dh
q (z) =

∫
d2−→p ⊥Dh

q (z, p⊥) = number density for a quark �q� fragmenting into a hadron

�h� with a momentum fraction �z�.

• < p⊥
2 >= 0.25GeV 2 is a �xed value extracted from SIDIS data and can be found in

Reference [19].

• Dh
q (z, p⊥) = number density for a quark �q� fragmenting into a hadron �h� with a mo-

mentum fraction �z� at a momentum transverse to the quark axis of p⊥.

The Dh
q (z) term is extracted from data and a comparison of the extraction to a data set can

be seen in Figure 2.6 for the DSS [20] (Daniel de Florian, Rodolfo Sassot, and Marco Stratmann)

extraction. Rigorous comparison between the DSS extractions and ten di�erent experiments

spanning di�ering and overlapping phase spaces can be seen in Reference [20].

2.3.1 Collins Function

The Collins Function is a spatial-modulation applied to the fragmentation function. We

�rst de�ne a few terms:

• −→p q = quark momentum vector

•
−→
P q = quark transverse polarization vector

• −→p h = hadron momentum, where −→p h = z−→p q + −→p hT where −→p hT is relative to the quark

momentum vector
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• Dh
q (z, pT ) = as before, our z and pT dependent unpolarized fragmentation function

• ∆NDh
q↑

(z, pT ) = Collins fragmentation function (the ∆N term is just nomenclature). The

q↑ term represents a transversely polarized quark.

•
−→
P q ·(−→p q×−→p hT )
|−→p q×−→p hT |

, all possible spatial modulations which allow for the conversation of momen-

tum. See Equation 2.4.

The spatial modulation term looks complex, but due to our transverse quark spin require-

ment it reduces nicely:

−→p q ·
−→
P q = 0

−→p q · −→p hT = 0

A = ‖a× b‖ = ‖a‖ ‖b‖ sin θ.

a · b = ‖a‖ ‖b‖ cos θ,

−→
P q · (−→p q ×−→p hT )

|−→p q ×−→p hT |
= Pq sin(ΦC)

(2.4)

Where ΦC is the Collins angle [22] measured from the quark transverse polarization to the

hadron momentum in the transverse plane (relative to the quark). Equation 2.5 shows the

formalism adopted for the modulation.

Dh
q (−→p q,

−→
P q; z,

−→p T ) = Dh
q +

1

2
∆NDh

q (z, p↑T )Pq sin(ΦC) (2.5)

Since we are interested in measuring an asymmetry, it is useful to know the di�erence

between �up� and �down� polarizations in which the Dh
q (z, pT ) term vanishes:

Dh
q (−→p q,

−→
P q; z,

−→p T )−Dh
q (−→p q,−

−→
P q; z,

−→p T ) = ∆NDh
q (z, pT )Pq sin(ΦC) (2.6)

This implies that there exists an AN (analyzing power, asymmetry) associated with the

fragmentation. Speci�cally Equation 4 from [22]:

Ahq (−→p q,
−→
P q; z,

−→p hT ) = Ahq (z, pT ) · Pq sin(ΦC) (2.7)
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This asymmetry would represent a contributing factor to a single spin asymmetry in proton-

proton collisions1 [24] as seen in Section 2.2. Simultaneous extractions of the Collins function

and transversity were performed by the Anselmino group in a global analysis of available data.

The full detail of the kinematics and data-sets involved can be seen in Reference [25]. New data

is continuously generated and added to the global analysis, updated extraction results without

full explanation (but with the parameterization functions shown) can be found in References

[15] and [26].

In reality, there could exist a di�erent Collins function for each quark �avor and fragmen-

tation hadron combination (∆NDπ+

d↑
(z),∆NDπ−

ū↑
(z), etc.), but currently that level of detail is

not possible given the available data. However, the Anselmino group de�nes two sets of Collins

functions, one for �favored� and one for �disfavored� fragmentation. A favored fragmentation

is one in which the fragmenting quark is producing a hadron which contains a (valence) quark

of that �avor. For example, an up-quark fragmenting into a π+ is a favored fragmentation

since the π+ has a constituent up-quark. An example of a disfavored fragmentation would be

a down-quark fragmenting into a π+. Figure 2.7 shows the latest Collins function extraction

from the Anselmino group for both favored and disfavored fragmentation. Above x ≈ 0.25 is

extrapolation of the functional form, no data exists in this region.

A main goal of this analysis is to garner some control over the relative contribution of the

Collins function relative to the Sivers and higher-twist contributions (which are equivalent to

Sivers in equal energy regimes) to a single spin asymmetry in proton-proton collisions as seen

in Figure 2.5.

1It should be noted that previous studies on the possible contribution of the Collins e�ect to a single spin
asymmetry seen in proton-proton collisions were erroneous (Erroneous, not cited: Phys. Rev. D 71, 014002 �
Published 3 January 2005) and ruled out the possibility of a Collins contribution. The error was corrected and
new upper-limits on the Collins contribution were calculated [23] which allow for a sizable Collins contribution
to a single spin asymmetry.
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Figure 2.6 The DSS group [20] theoretical NLO calculation which determines the

Dh
q (z) = Dπ0

q (z) term at mid-rapidities (|η| ≤ 0.35) as measured by the PHENIX

experiment [21]. The Y-axis is proportional to the di�erential cross section

(E d3σπ
0

dp3
). �THIS FIT� is the DSS theoretical �t; the KRE and AKK are other

theoretical �ts. A good agreement between theory and data can be seen.
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Figure 2.7 Anselmino group Collins functions extractions (z∆NDh
q↑

(z)) [15]. The red line

represents the Collins function value with their associated uncertainty bands. The

top and bottom plots correspond to the favored and disfavored Collins functions

respectively.
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CHAPTER 3. EXPERIMENTAL SETUP

3.1 The Relativistic Heavy Ion Collider

The measurement performed here relies on the fact that we can probe polarized proton-

proton collisions at a center-of-momentum such that our Bjorken-x value lies in the valence

region where transversity is large. The only place on earth that can meet these requirements is

the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). Specif-

ically, RHIC is used in the con�guration such that it is colliding transversely polarized protons

at a
√
s of 200 GeV with an average polarization of roughly 60%. A schematic view of the

facility at BNL can be seen in Figure 3.1. Of particular note are the PHENIX and STAR ex-

periments; sister experiments at two di�erent RHIC interaction points (IPs) where the proton

beams collide.

3.2 Polarization and Acceleration

To obtain our polarized proton beams we �rst start at the Optically Pumped Polarized Ion

Source (OPPIS)[28] the location of which can be see in Figure 3.1. For each beam bunch the

OPPIS produces 11× 1011 negatively charged Hydrogen atoms with a net polarization of 85%.

To achieve this result the OPPIS is fed from a new Fast Atomic Hydrogen Source [29] which

provides an ionized atomic hydrogen beam from a helium gas ionizer cell [30]. The unpolarized

proton beam is sent through excited (optically pumped) Rubidium gas in a four Tesla magnetic

�eld. The unpolarized protons pick up longitudinally spin-polarized electrons from the Rb vapor

cell. The neutral, polarized hydrogen atoms are sent through a region with rapid magnetic �eld

reversal that causes hyper�ne splitting of the electron energy level due to the polarization of the

electron and eventually transfer of the polarization to the nucleus (called the Sona-transition).
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Figure 3.1 An aerial view of the Relativistic Heavy Ion Collider complex with superimposed

graphics showing acceleration and detection facilities [27].

The longitudinally nuclear-polarized hydrogen is then given an extra electron via a sodium

vapor cell making it negatively charged and allowing further acceleration. A �ow chart of this

process can be seen in Figure 3.2

Figure 3.2 Spin-Transfer Polarization in Proton-Rb Collisions[31]
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There are several points of both losses of ions/protons and polarization during the following

stages. Once the longitudinally polarized-H− ions leave the OPPIS they are accelerated through

the Radio Frequency Cavity (RFQ) to 750 KeV of 11 × 1011 protons with 85% transverse

polarization; the �rst solenoidal spin-rotator is used to change the polarization from longitudinal

to transverse in the RFQ. The LINAC then accelerates the ions to 200 MeV, strips their extra

electrons, and injects bunch sizes of 6.0− 6.5× 1011 of 85% polarized protons into the Booster

synchrotron. The Booster provides acceleration to 2.3 GeV and injects 2.2−2.4×1011 protons at

80% polarization into the Alternating Gradient Synchrotron (AGS). The AGS then accelerates

the protons to 24.3 GeV and injects 2.0 − 2.2 × 1011 protons at 65-70% polarization into the

AGS-to-RHIC (AtR) transfer line to enter the RHIC ring so the bunch is circling in either

the clockwise (�Blue beam�) or anti-clockwise (�Yellow beam�) directions (shown in Figure 3.1).

Once the bunch is in the RHIC ring it is accelerated to 100 GeV/c and has a average intensity

of 1.8× 1011 protons per bunch at 58% polarization([30],[32]).

3.2.1 Siberian Snakes

As seen in the last section, much of the initial 85% polarization is lost in the AGS and

RHIC acceleration stages. The particles in these stages are in a closed orbit such that the

particle trajectory remains constant from one orbital revolution to the next. A main source of

polarization loss in a circular accelerator is betatron oscillation coupled with Thomas precession.

The Thomas-BMT equation (Equation 3.1) describes the behavior of a particle's spin in a

static magnetic �eld:

d~S

dt
=

q

mγ
~S × [ ~B +G(γ ~B⊥ + ~B‖)] (3.1)

Where ~B‖ = v̂ · ~Bv̂ and ~B⊥ = ~B − ~B‖ = (v̂ × ~B) × v̂ are the longitudinal and transverse

components of the magnetic �eld and ~v is the particle velocity. G is the anomalous magnetic

moment of the particle, q is its charge, m is its mass, and γ is the Lorentz factor associated

with the particle's relativistic motion.

At large values of γ we can ignore the ~B‖ term giving us Equations 3.2 and 3.3[33] where

Gγ is the precession frequency (spin tune)[34]. The spin precession frequency is constantly
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changing as the particle is accelerated in the AGS and RHIC rings. If the spin precession

frequency matches the frequency of either an imperfection resonance or intrinsic resonance in

the accelerator a spin depolarizing e�ect will occur. An imperfection resonance is simply an

imperfection in the magnetic �eld seen by the particle that occurs at a �xed interval. An

intrinsic resonance is due to vertical betatron oscillations which occur when particle trajectories

deviate from a �at circular orbit and the magnetic �eld periodically provides a restoring force

(weak focusing) to correct the deviation as seen can be seen in Figure 3.3.

d~S

dt
=

q

mγ
~S × [ ~B +Gγ ~B⊥] (3.2)

(
∆φ

2π
)perloop = γ(g/2− 1) = γG (3.3)

Figure 3.3 Betatron oscillation diagram. Red is the particle trajectory.[35]

To combat these resonances the transverse polarization direction of the beam is rotated at

speci�c points along the AGS and RHIC rings using �Siberian Snakes�; the positions of which

can be seen in Figure 3.1. The AGS ring contains one partial-Snake which rotates the polariza-

tion direction by 9◦ and the RHIC ring contains two full-Snakes which rotate the polarization

direction by 180◦ each. The goal of the Siberian Snakes is to counter-balance the spin de-

polarization resonances by changing the polarization direction each time the beam encounters

said resonance; this way, the depolarization is �ghting against itself with each revolution of the

beam. A schematic of a 180◦ spin �ip by a full Siberian Snake can be seen in Figure 3.4.
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Figure 3.4 Schematic of beam polarization changing from �up� to �down� due to a full Siberian

Snake.[35]

3.2.2 Polarimetry

To learn how to maintain and increase beam polarization one must measure it. There are

two main polarimeters in the RHIC ring and one �local� polarimeter in each of the STAR and

PHENIX experiments. The two main RHIC polarimeters are the CNI and HJet which can be

seen in Figure 3.1 and will be discussed in the next sections. The �local� polarimeter is located

at the PHENIX interaction point and will also be discussed in the next sections.

3.2.2.1 CNI Polarimeters

For high-statistics �fast� polarization measurements RHIC utilizes the Coulomb Nuclear In-

ferference (CNI) polarimeters[36] (also called the Proton-Carbon (PC) polarimeters). There

are two CNI polarimeters in each ring that allow for the measurements of both vertical and

horizontal beam polarization pro�les. Each polarimeter utilizes horizontal or vertical Carbon

targets and six Silicon strip detectors for measuring recoil Carbon ions. The detection system

performs a measurement of the raw azimuthal asymmetry (εN ) relative to the beam's polariza-

tion direction (nominally vertical). These polarimeters are able to extract an asymmetry quickly

(multiple times during a single �ll) but are only able to make relative asymmetry measurements

rather than an absolute asymmetry measurement, i.e. the CNI polarimeters are only able to

measure changes in polarization rather than absolute polarization as seen in Equation 3.4.
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AN (physics, unknown) =
εN (measured)

Pbeam(wanted, unknown)
(3.4)

3.2.2.2 Hydrogen-Jet Polarimeter

To obtain an absolute polarization measurement the high-statistics CNI relative-polarization

measurements are combined with low-statistics Hydrogen-Jet polarimetery (HJet) measure-

ments ([36], [37]). The HJet polarimeter injects a gas of ionized and polarized Hydrogen into

the beam region where interactions take place. Polarized Hydrogen scatters o� the beam and is

detected by Silicon strip detectors (Figure 3.5) similar to how the CNI measures interactions.

Because both the HJet and the beam are polarized one is able to extract the polarization of

the beam via a spatial azimuthal asymmetry measurement given that the HJet polarization was

already measured.

AN (physics) =
εN,target(measured)

Ptarget(known)
=

εN,beam(measured)

Pbeam(wanted, unknown)
(3.5)

Equation 3.5 shows the relationship between target and beam polarizations and raw asym-

metries; εN,target uses the target spin sign, εN,beam uses the beam spin sign[38] and their �nal

physics asymmetry must be equal as they are undergoing elastic scattering. The slow collection

of statistics by the HJet polarimeter means that the data from an entire Run-year is utilized

to obtain the absolute polarization in conjunction with the CNI's �ll-by-�ll (and semi-hourly)

results.

Figure 3.5 Left: Setup, Left: Elastic scattering process[37]
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3.2.2.3 Local Polarimeters

As a cross-check the PHENIX experiment utilizes two Zero Degree Calorimeter (ZDC) de-

tectors at positions that can be seen in Figure 3.8 and Figure 3.6. The ZDCs are hadronic

calorimeters with a total interaction length of 5.1 × λI that are able to use the large Neutron

asymmetry [39] seen in proton-proton collisions as a measurement of the beam polarization

magnitude and direction at the PHENIX interaction point for each beam. The ZDCs are each

positioned behind the RHIC crossing-magnets (DX magnets) so that the vast majority of par-

ticles that can reach the ZDC are neutral; charged particles are swept away by the magnetic

�eld in front of the ZDC [40]. I was part of the team that did the Run-12 ZDC calibrations

and local polarimetery, the primary goal of which was to reduce the unwanted longitudinal or

transverse components of the beam polarization as needed by the experiment as well as monitor

the polarization throughout the year for any deviations.

Figure 3.6 A plan view of the experimental setup at PHENIX, not to scale. Shown are the

principle components for the leading neutron physics.[41]

3.2.3 Spin Pattern

Each RHIC beam bunch contains a total of 120 bunches (variable) each containing roughly

1.8 × 1011 protons per bunch. The polarization of each bunch can be pointed in any direction

transverse to the motion of the bunch while in the ring. Nominally each bunch is either �up�

or �down�, which is when the polarization vector of the bunches are literally pointing either

toward the sky or toward the ground. Since both the Yellow and Blue beams are polarized,
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there are a total of four combinations of polarized collisions for our collision system: p↑ + p↑,

p↓ + p↑, p↑ + p↓, and p↓ + p↓. A naive way to get such a combination is to orient the beams

as shown in Figure 3.7, though the actual spin pattern changes from �ll to �ll in an e�ort to

reduce possible systematic errors associated with certain bunches being speci�c polarizations

throughout a Run, or the order of polarizations being collided.

Figure 3.7 The pattern of the polarization signs of the bunches in the two counter-rotating

beams in RHIC. It is typically desirable to collide equal numbers of (+ +,+ −,−

+,− −) bunches at each experiment, where (+ −) represents a bunch in one beam

with polarization up colliding with a bunch in the other beam with polarization

down in transverse pp mode.[41]

3.3 The PHENIX Detector

The PHENIX (Pioneering High Energy Nuclear Interaction eXperiment) detector is actually

a conglomeration of over ten di�erent sub-detectors which work in tandem to provide a complete

picture of the �nal state of a collision at the interaction point of the experiment [42]. A set of

schematics of the full detector system in the con�guration that existed in 2012 can be seen in

Figure 3.8. Of particular interest to this measurement are the Beam-Beam Counters, Central

Arm detectors (East and West arms), and the Muon Piston Calorimeter detectors.



27

Figure 3.8 Schematics of the PHENIX detector con�guration during the 2012 data taking

period.

3.3.1 Beam-Beam Counters

The �rst step in determining whether or not an inelastic interaction occurred usually begins

with the Beam-Beam Counters (BBCs) [43, 44]. They have been used in dozens of publications

from the PHENIX collaboration. As can be see in Figure 3.8, the BBCs reside at large forward
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and backward rapidity circling the beam pipe entirely. The North and South BBCs work

together to determine where (along the beam axis) and when an interaction of interest has

happened. In this analysis I require a �minimum bias� event such that the interaction occurs

within +/- 30cm of the middle of the PHENIX detector (z=0 point). This is crucially important

as the Central Arm detector con�guration is best utilized for collisions in this region. Along

with determining the z-vertex of the interaction, the BBC detectors determine the time at which

the interaction occurs (t=0 for each event). This is important so that other detector systems

use the same start-time for each individual event and the detectors are kept synchronized.

Figure 3.9 (a) Single PMT tube and quartz radiator. (b) One arm of the BBC detector (c)

Location of one of the BBC detectors in the PHENIX setup. The BBC is encircling

the beam pipe in this image.

The BBC detectors themselves are an array of quartz radiators coupled with photomultiplier

tubes which can be seen in Figure 3.9. The BBCs lie between a pseudorapidity of 3.1 and 3.9 in

both the backward in forward direction at a distance of 144cm from the center of the PHENIX

detector as seen in Figure 3.8. An average of the detected signals' times in both the North and
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South detectors are used to determine both the z-vertex and time (t=0) of the interaction.

3.3.2 Electromagnetic Calorimeter

The primary use of the PHENIX Electomagnetic Calorimeters [45] is for the measurement

of electromagnetic energy deposition and time-of-�ight measurement (relative to the BBC's t=0

timing point). The electromagnetic calorimeters are divided into eight sectors which span in to-

tal 90◦ (East arm) + 90◦ (West arm) in azimuth and from -0.35 to 0.35 in pseudorapidity. Four

sectors of lead-scintillator calorimeters reside in the West arm; two sectors of lead-scintillator

and two sectors of lead-glass calorimeters reside in the East arm. In total, the PHENIX EMCals

are made of 24,768 detector channels which give precise spatial positioning information of de-

tected electromagnetic clusters. It is important to analyze the Pb-Glass and Pb-Sc calorimeters

independently since they behave quite di�erently. In general, an EMCal works by introducing a

photon or charged particle to �radiation lengths� (electromagnetic mean-free-path) of material

which causes Bremsstrahlung (e → e−γ) and pair-production (γ → e+e−) (electromagnetic

shower). The relative contribution of these processes to the total cluster are energy dependent.

Light from charged particle scintillation in the medium is collected and funneled to a device

such as a semiconductor Avalanche Photo-Diode (APD) or Photo-Multiplier Tube (PMT) and

the signals are read out by electronics.

3.3.3 Lead-Glass Calorimeters

The lead-glass calorimeter is a homogeneous calorimeter comprised of 9,216 towers of a

transparent material which both produces scintillation light from charged particles traversing

the medium and funnels it to a photo-multiplier. The towers are grouped into super modules

in sets of 24 towers and share common electronics but maintain independent read-outs for each

channel. Each tower has a cross-sectional area of 4cm × 4cm and a depth of 40cm. The

lead-glass type used has a Moliere radius of 3.68cm, which means that a single electromagnetic

shower spans several towers that must be summed together into a �cluster�. The Pb-Glass

material has an interaction length (hadronic mean-free-path) of 38cm, so only minimal neutral

Hadron energy is measured; this is bene�cial to our measurement as we do not want neutral
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hadron contamination. The total energy resolution for the lead-glass type towers is 6%√
E(GeV )

.

Figure 3.10 Exploded view of a lead-glass detector super module.

3.3.4 Lead-Scintillator Calorimeters

The lead-scintillator calorimeter is a sampling calorimeter comprised of 15,552 towers, each

consisting of alternating lead and scintillator material. The lead material is the catalyst for

electromagnetic showers while the scintillation �bers that run the entire depth of the tower

collect and funnel the light to PMTs. Four towers are combined into a single module (as seen

in Figure 3.11), but each tower is then read out individually by electronics. With an active

depth for each tower of 37.5cm this equates to only 85% of an interaction length of material,

also leading to minimal neutral Hadron energy deposited. The total energy resolution for the

lead-scintillator type towers is 8.1%√
E(GeV )

⊕
2.1%.
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Figure 3.11 Interior view of a Pb-scintillator calorimeter module showing a stack of scintillator

and lead plates, wavelength shifting �ber readout and leaky �ber inserted in the

central hole.

3.3.5 Drift Chamber

The PHENIX Drift Chamber (DC)[46] detectors measure charged particle tracks in the

PHENIX central arms. Each Drift Chamber covers the full area of the East and West PHENIX

arms. The face of the Drift Chamber starts at 2.0 meters from the beam line, this is far enough

from the interaction region to only experience a minimal magnetic �eld. The charged tracks

through the DC are thus straight lines which are measured in the r-φ direction to determine the

bend caused by the magnetic �eld as the particle traversed the central region of the interaction

region. The bend associated with the particle's traversal is used to determine the transverse

momentum (pT ) of the particle. In general, a drift chamber is just a wire chamber that uses

drift-time information (both �fast� and �slow�, negative and positive signals respectively) to

localize where an interaction (ionization) in the scintillating or interacting gas occurs.
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Figure 3.12 Left: Construction of DC frame, Middle: The layout of wire position within one

sector and inside the anode plane (side view), Right: A schematic diagram of the

stereo wire orientation (top view).

Each DC is comprised of a gas volume containing 50% Ar and 50% Ethane, though this

speci�c balance is adjusted by DC experts to maintain constant high performance. The gas

contains wires of di�ering orientation called the X, U, and V orientations as seen in Figure 3.12.

The X orientation wires run parallel to the beam pipe and give the r-φ coordinate of the track;

the U and V wires run at stereo angles of about 6 degrees relative to the X wires to give the an

estimate of the z-coordinate of the track. In total the DC detectors contain a total of roughly

13,000 readout channels.

3.3.6 Pad Chambers

The PHENIX Pad Chamber (PC)[46] detectors (PC1, PC2, and PC3 as seen in Figure 3.8)

are multi wire proportional chambers which specialize in the determination of the z-coordinate

of a charged track traversing the PHENIX central arms. The PCs and DCs work in tandem to

provide a full picture of the charged track reconstruction (but not necessarily particle identi�-
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cation) in PHENIX.

Figure 3.13 Cross-section of a pad chamber from the interaction region's vantage point. The

anode and sense wires can be seen in front of the silicon pad detectors.

The PCs are composed of a gas volume containing a plane of anode wires that is bound by

two cathode planes on either side. One of the cathode planes is composed of �nely segmented

pads (pad board), each of which contains three pixels while the other is a solid cathode as can

be seen in Figure 3.13. For a valid hit to be found, an entire pad of three pixels must detect a

charged particle avalanche on the pad board. Requiring three separate pixels to �re reduces the

chance of electronics noise causing false signals. The pads are oriented such that they optimize

the z-position resolution of a charged track. The z-position resolution of the PC1 detector is

±1.7mm and the PC3 detector has an equivalent angular resolution. Only the PC1 and PC3

are used in this analysis.

3.3.7 Ring-Imaging Cherenkov Detector

The Ring-Imaging Cherenkov detector[47] (RICH) provides electron-hadron separation be-

tween approximately 0.2 GeV/c and 4.0 GeV/c. The main purpose of this detector in this
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analysis is the rejection of hadrons.

Figure 3.14 A cutaway view of one arm of the PHENIX RICH detector.

The RICH detectors in both PHENIX arms are identical. Each is �lled with ethane or CO2

gas and contains 48 composite mirror panels in two intersecting spherical surfaces which cover

the back of the detector as seen in Figure 3.14. As an electron traverses the gas it produces

scintillation light which is focused by the mirrors onto arrays of 1,280 photomultiplier tubes

near the front of the detector. One can identify an electron using the RICH detector from the

unique ring pattern that is formed on the PMT array from the spherical mirrors. To reduce the

possibility of conversion electron creation the entire RICH detector was designed such that its

thickness is only 2% of a radiation length when using ethane gas (though CO2 gas was in use

during Run-12).
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3.3.8 Muon Piston Calorimeter

The Muon Piston Calorimeters (MPCs) are electromagnetic calorimeters sitting at forward

rapidities and covering the full azimuth around the beam pipe as can be seen in Figure 3.8.

Because the South MPC detector was undergoing an electronics upgrade during the Run-12

data-taking period this analysis only utilizes the North MPC detector. The North MPC detector

sits between a pseudorapidity of 3.1 and 3.9 at a distance of 220cm from the interaction region.

The North MPC is composed of 220 Lead-Tungstate (PbWO4) crystals (towers) measuring

2.2cm × 2.2cm × 18cm. Each crystal is glued to an avalanche photo-diode (APD) which sends

its output to read-out electronics.

The PbWO4 crystals have a radiation length of X0 = 0.89cm[48] and an interaction length

of λI = 22.4cm[38], with a tower depth of 18cm this means that most of the energy collected

is due to electromagnetic interactions. The Moliere radius of PbWO4 is 2cm, meaning that an

electromagnetic shower is roughly 90% contained within a single crystal if it starts at the center

of said crystal. In reality, the shower extends and is summed over a 3x3 set of towers and made

into a �cluster� similarly de�ned in the EMCal (Section 3.3.2). An extremely comprehensive

resource for the MPC construction, design, and implementation can be found in reference: [38].
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Figure 3.15 AutoCAD model rendering of the South (left) and North (right) MPC's. The

bottom panel shows the the front side of the detector which faces the collision

point[38].
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CHAPTER 4. DATA QUALITY ASSURANCE AND CALIBRATIONS

To obtain usable experimental data for this analysis one must perform both detector cali-

brations and data quality assurance. I will �rst cover the calibrations I performed, all of which

were made available to the PHENIX collaboration through the calibrations databases. A full

GEANT3 [49] simulation using the PHENIX Integrated Simulation Application (PISA) of the

detector systems was used for simulation studies. The results of both the real-detector QA and

the simulated-detector QA will be shown where relevant.

4.1 Beam O�set Calibration

The PHENIX central arms are situated on a carriage system which allows each of the

arms to be retracted for ease of access. After a carriage is moved there exists some error in

returning it to the same location for data-taking (on the order of millimeters). To account for

possible shifts in positions between the PHENIX East arm, West arm, and the beam-pipe due

to carriage movement a calibration is performed to correct for any o�set. A brief explanation

of the calibration is shown here; a detailed explanation can be found in PHENIX Analysis Note

1120 [50]. The calibration is performed by turning the PHENIX central magnetic �eld(s) o� and

collecting data as usual. Since the magnets are o�, charged particle tracks follow a straight line

from the collision point (beam pipe) and the central arm tracking system as seen in Figure 4.2,

i.e. the value of α should always be zero.

α =
dx

RDC
sin(φ) +

dy

RDC
cos(φ) (4.1)

Where:
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• RDC = radial distance from PHENIX coordinate (0,0,0) to the drift chamber detectors

(nominally taken to be 220cm). The PHENIX coordinate system can be seen in Figure 4.1.

• φ = azimuthal angle de�ned by the PHENIX coordinate system

• α = angular separation between a straight line from (0,0,0) to the drift chamber hit

position at RDC for a charged track and the charged track's momentum vector at the

drift chamber, this can be see in Figure 4.2

• dx = beam position displacement in the x direction in centimeters under the PHENIX

coordinate system.

• dy = beam position displacement in the y direction in centimeters under the PHENIX

coordinate system

Figure 4.1 PHENIX coordinate system
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Figure 4.2 De�niton of α in PHENX

Figure 4.3 East Arm < α > plots; Left: before calibration, Right: after calibration. Red line

the �t function from Equation 4.1.

Figure 4.3 shows data extracted from �eld-o� data before and after the beam-o�set calibra-

tion has been performed. Before the calibration is performed there are non-zero values of dx

and dy in the �t function from Equation 4.1. After calibration one can see that the �t function

is �at, meaning that dx and dy are both zero.
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4.2 Global Momentum Scale Calibration

Changes in the magnetic �eld strength and gradients over time can result in the incorrect

determination of the absolute momentum scale in the experiment. A brief explanation of the

calibration is shown here; a detailed explanation can be found in PHENIX Analysis Note 1120

[50]. To correct for this change the global momentum scale calibration was performed. The

global momentum scale calibration requires the beam o�set calibration to be complete as de-

scribed in the previous section. There are a few di�erent ways to do the momentum scale

calibration. I have chosen to use the Time of Flight (TOF) East detector to �nd protons' and

antiprotons' masses and apply a correction relative to the Particle Data Group (PDG) value

for the proton and anti-proton mass values of 0.938272GeV
c2

[51]. Figure 4.4 shows distributions

of detected charged particle mass-squared values. To reduce backgrounds a minimum pT cut of

1.0GeVc is applied to the data during the calibration.

The global momentum scale correction is calculated as follows:

ProtonScaleFactor =
ProtonMassmeasured
ProtonMassPDG

(4.2)

AntiProtonScaleFactor =
AntiProtonMassmeasured

ProtonMassPDG
(4.3)

The �nal global momentum scale correction is the average of the proton and anti-proton scale

factors. These should not, and did not, di�er by more than a few hundredths of a percent. The

measured proton (anti-proton) mass value was 0.9349GeV
c2

(0.9332GeV
c2

), meaning the momentum

of all tracks is increased or decreased according to Equations 4.4 and 4.5 such that the average

proton and anti-proton masses match the PDG value of 0.938272GeV
c2

as best possible. After

the calibration was performed the scale factors were recalculated; their values were 0.999981 for

the proton and 1.00087 for the anti-proton.

AvgScaleFactor =
ProtonScaleFactor +AntiProtonScaleFactor

2
(4.4)

CorrectedMomentum =
Momentum

AvgScaleFactor
(4.5)
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Figure 4.4 Positively charged tracks. Left: Full mass region, Right: Proton mass region with

�t

4.3 EMCal and PC3 Track Matching Calibration

In this analysis we require that charged tracks in the PHENIX central arms are matched to

a hit in the EMCal or PC3 hit. This requirement is used to reject false electromagnetic clusters

in the EMCal as well as reduce the conversion electron and hadronic backgrounds; all of which

have incorrect reconstructed momentum and energy as determined by the tracking system.

A brief explanation of the calibration is shown here; a detailed explanation can be found in

PHENIX Analysis Note 1117 [52]. Requiring a hit in either the PC3 or EMCal detectors also

reduces the probability of fake track reconstruction due to combinatorics, e.g. three random

hits or noise lining up and looking like a track. To enforce our PC3/EMCal hit requirement we
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measure the distance from the central arm track to the hit in PC3/EMCal in the z-direction

(dz) and φ-direction (dφ). A small value of the quantity Distance =
√
dz2 + dφ2 means that

the hit is likely associated with the track in question. To quantify a �small� Distance value we

perform a calibration which �sigmalizes� (normalizes) the dz and dφ values as follows:

sdz =
dz− < dz >

σdz
(4.6)

sdphi =
dφ− < dφ >

σdφ
(4.7)

Where sdz and sdφ are the �sigmalized� variables representing the standard deviation from

the mean of the dz and dφ distributions. The reasons for creating these sigmalized variables is

so that they can be used for di�ering track charge values, pT , φ, η, and PHENIX arms with

ease; a single cut can be used for all the previously mentioned scenarios with known e�ciency.

Figure 4.5 shows dφ and sdφ as a function of track pT . The usual track requirement used in

PHENIX data analysis is that |Distance| < 3.0. The spread in the �nal calibrated sdφ and sdz

values are small enough such that they have no real impact at the 3 · σ level.

4.4 EMCal Warnmap

Out of the 24,768 EMCal towers roughly 20% of them are not usable for my measurement.

A �warnmap� was made which sets a classi�cation for each tower from the following list:

• Good: this is a usable tower

• Hot: this tower �res too often or indiscriminately

• Dead: this tower does not �re with high enough frequency to be reliable

• Uncalibrated: this tower was not able to be calibrated properly (gain calibration)

• Edge: this tower is on the edge of a sector and is not able to be used

• Around Hot/Dead/Uncalibrated: A tower adjacent to a hot, dead, or uncalibrated tower
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The EMCal is divided into eight physical sectors, there is thus one warnmap for each sector.

Figure 4.6 shows the number of EMCal hits with pT between 0.5GeVc and 0.8GeVc for all runs in

the analysis. The colors correspond to di�erent EMCal physical sectors. Many outlier towers

can be seen. A distribution of the number of hits in a single EMCal sector in the same pT region

can be seen in Figure 4.7. The green lines in this �gure are 3 ·σ from the mean of the Gaussian

�t; towers below the lower green line are considered �dead� and towers above the upper green

line are considered �hot�. Each of which are eliminated from the analysis and can be seen in

Figure 4.8.

Since the Moliere radius of the EMCal material is roughly the width of three EMCal towers,

a single electromagnetic cluster is composed of a 3x3 grid of towers. If a single tower in that 3x3

grid is deemed bad (hot, dead, or uncalibrated), the cluster itself cannot be used. To prevent

this, the towers around (touching) a bad tower are also eliminated from being a central tower

in the cluster.

Figure 4.6 Number of EMCal hits per tower with pT between 0.5 GeV
c and 0.8 GeV

c for all

runs. X-axis is a tower identi�cation number; Y-axis is counts.
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Figure 4.7 Distribution of the number of EMCal hits in Sector #2 between a pT of 0.5 GeV
c

and 0.8 GeV
c . The red line represents an iterative upper limit (hot) cut. The green

lines are 3σ from the mean of the Gaussian �t; they represent the �nal lower (dead)

and upper (hot) cuts used in the analysis.

4.5 Drift Chamber Modi�ed Quality Map

For a measurement that is attempting to reconstruct jets it is important to understand

detector acceptance (active area). It is also important to have as uniform of acceptance as

possible. To aid in this goal, a modi�ed quality map for the DC and PC1 detectors is used. A

complex pattern recognition system is used to take a system of X1, X2, U, V, and PC1 detector

hits and �lter them such that charged tracks can be properly reconstructed. A summary of the

track �nding procedure can be found in Reference [53]. For a charged track to be reconstructed

we can require the following criteria:

• An X1 wire hit is used in the reconstruction

• An X2 wire hit is used in the reconstruction

• A U and V set of wire hits were found, unambiguous, used in the reconstruction

• A PC1 hit is found, unambiguous, and used in the reconstruction
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However, there are several known broken or dead X1, X2, U, and V wires. Since these wires

are known dead, no tracks in that acceptance region can be used. The total dead area because

of these requirements can be seen on the left side of Figure 4.12. This level of track quality isn't

required for this analysis, it is more important to have increased acceptance and good track

quality. To achieve this, mappings of the known dead wires were made. These can be seen in

Figures 4.9 to 4.12. Using this modi�ed quality mapping, we can require the following criteria

for a reconstructed track:

• If the track is in a good X1, X2, and UV region we require the previous criteria

• If the track is in a known bad X1 region we require that we �nd an X2, UV hit found and

unambiguous, and PC1 hit found

• If the track is in a known bad X2 region we require that we �nd an X1, UV hit found and

unambiguous, and PC1 hit found

• If the track is in a known bad UV region we require that we �nd an X1, X2, and PC1 hit

found and unambiguous

Due to the wire orientations within the DC and PC1 detectors each wire provides better

resolution in one direction and worse resolution orthogonally. The X1 and X2 wires primarily

provide track φ-positioning. The PC1 provides precise track z -positioning. The UV wires

provide both track φ-positioning and z -positioning (with less precision than PC1) [53]. There

is no PC1 modi�ed warnmap as a PC1 hit is always required for an accepted track.
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Figure 4.9 Various DC physical sections. Left: Real data, distribution of tracks with UV

wire hit found, unique, and associated with a track. Right: Modi�ed quality map

applied to UV hits. X-axis: Board number; Y-axis: Track alpha value

Figure 4.10 Various DC physical sections. Left: Real data, distribution of tracks with X1 wire

hit found and associated with a track. Right: Modi�ed quality map applied to

X1 hits. X-axis: Board number; Y-axis: Track alpha value
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Figure 4.11 Various DC physical sections. Left: Real data, distribution of tracks with X2 wire

hit found and associated with a track. Right: Modi�ed quality map applied to

X2 hits. X-axis: Board number; Y-axis: Track alpha value

Figure 4.12 Various DC physical sections. Left: Real data, distribution of tracks with UV

(unique), X1, and X2 wire hit found and associated with a track. Right: Modi�ed

quality map applied. X-axis: Board number; Y-axis: Track alpha value

4.6 MPC Calibration

The calibration of the North MPC detector for Run-12 proton-proton running was performed

primarily by myself. The full details of the calibration can be found in PHENIX Analysis Note

1094 [54]. The calibration consists of several parts:

1. Identi�cation of the point at which the Analog-to-Digital Converters (ADCs) values over-

�ow and cutting out said ADC values (Figure 4.13).
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2. Identi�cation of the point at which the Time-to-Digital Converters (TDCs) values over�ow

and cutting out said TDC values (Figure 4.13).

3. Determining the ratio of the Low-gain ADC to High-gain ADC such that their combination

can yield a true and continuous single ADC spectrum (Figure 4.14).

4. Reconstruction of two-cluster π0 masses for each tower (Figure 4.15).

5. Iteratively adjusting the gain of each tower such that the π0 mass measured by each tower

is correct (Figure 4.16).

6. Reconstruction of two-cluster π0 masses for each run (over time) and adjusting the global

gain value (for all towers) as a function to time to correct for transient e�ects such as

temperature variations which impact APD gain (Figure 4.17).

The �nal calibration values mentioned above were added to the PHENIX calibration database

for use by the collaboration and were all utilized in this analysis.

4.7 Triggering and Statistics

The data set used in this analysis was gathered using a coincidence trigger between the

central arms and the MPC detectors. The central arm trigger, called the ERT2x2, is a trigger

which sums the energy in EMCal towers in a 2x2 area and issues a trigger if that energy is above

some threshold (roughly 700MeV for the ERT2x2 in Run-12). Similarly, the MPC portion of

the coincidence trigger was the MPC4x4c, which sums energy in a 4x4 grid and issues a trigger

if it above its threshold (roughly 2.0GeV ). A total of roughly 150 million coincidence triggers

were analyzed in this analysis.

The projected integrated luminosity of transversely polarized proton-proton collisions at

√
s = 200GeV

c2
available for this analysis between Run-12 and Run-13 was roughly 66 1

pb (pb is

pico-barns) over a total of 10 weeks [55] of run time ([56],[57]). The sampled luminosity was

roughly half that (37.9 1
pb) over 4.4 weeks as the Run-13 portion of transverse proton-proton

running did not occur [58].
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Additionally, the projected total analyzable statistics included the use of the South arm

MPC detector, but its calibration with newly installed electronics was not ready at the time

of this analysis. These two compounding factors reduced the size of the expected statistical

sample greatly.

4.8 Track Quality Assurance

Using the track to EMCal matching from Section 4.3 we eliminate a EMCal cluster from

the analysis if it is within 3.0σ from a reconstructed track. This eliminates double counting of

a track and its associated energy deposit in the EMCal. Additionally, a set of ghost and DC

internal conversion cuts are utilized, these are itemized below:

• Ghost pair de�nition: for same charge pair, if |∆φ| < 0.024 rad and |∆z| < 0.066 cm it is

a �ghost�

• If asymmetry in pT of ghost pairs (
pT i−pT j
pT i+pT j

) < 0.3, reject one track; else, reject both tracks

• For di�erent charge pair, if |∆φ| < 0.072 rad and |∆z| < 0.066 cm, reject both tracks

4.8.1 Conversion Electrons

Conversion electrons come from the process γ → e+ + e−. The location of the conversion

production impacts the reconstructed momentum of the detected electron/positron. A simu-

lation was performed by Sasha Lebedev in which he produced π0s with a �at pT distribution

from 1 GeV to 10 GeV (Dalitz decay disabled) [59]. The π0s then decay to photons and pro-

duce conversions in the material of the simulated detector (using PISA). The source of detected

conversion electrons can be seen in Figure 4.19 [60]. A comparison of truth (pT,true) and recon-

structed (pT,rec) conversion electron momenta can be seen in Figure 4.18. A minimum track pT

cut of 500 MeV is used and eliminates a large portion of the misreconstructed conversions. The

band at pT,true = pT,rec are conversion electrons that are properly unreconstructed. The band

at pT,true ≈ 0 are incorrectly reconstructed and must be eliminated.

The conversions from the beam-pipe can be seen at very small R-value and z-vertex = 0. If

the conversion happens at the beam-pipe the electron/positron still traverses the entire length
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of magnetic �eld and can be detected by the central arm tracking systems; in this case, the

reconstructed momentum is roughly correct. The VTX detector in PHENIX (Figure 3.8) sits

just outside the beam pipe at roughly 3cm < R < 17cm and was a candidate for conversion

production, but it produces negligible background as can be seen here. The VTX detector is

not used in this analysis.

If the conversion happens at the face of the Drift Chamber the electron momentum vector is

incorrectly reconstructed as its α value (Figure 4.2) will be extremely small. The reconstructed

momentum will thus be much higher than the real momentum of the electron. The face of the

Drift Chamber sits at a nominal R=220cm; a band of conversion electrons at that radius can

be seen in Figure 4.19. The locations of conversion electrons in z-φ space at a radius of roughly

220cm can be seen in Figure 4.20. The four vertical bands of conversions are the locations of the

edges of the Drift Chamber's physical sections in the West arm (the East has similar features).

Charged tracks pointing back to the regions within the red dashed lines are eliminated from the

analysis.

The charged track is then matched to an EMCal cluster (Section 4.3). The charged particle

deposits energy in the EMCal via the mechanisms discussed in Section 3.3.2 to give the equation

E(x) = E0e
−x
X0 where the total integrated energy is related to the incident momentum. A

conversion electron will have a measured E0 ≈ |−→pe± | that is too large when matched to the

integrated dE
dx energy loss in the EMCal material. This situation can be seen in Figure 4.21.

The conversion cuts used in the analysis are the following:

• Track eliminated if: (φ0 > -0.65 and φ0 < -0.49)

• Track eliminated if: (φ0 > 0.89 and φ0 < 1.05)

• Track eliminated if: (φ0 > 2.10 and φ0 < 2.26)

• Track eliminated if: (φ0 > 3.62 and φ0 < 3.78)

• Track eliminated if:
√
sdφ2

emc + sdz2
emc < 3.0 and ecore < 200 MeV

• Track eliminated if: pT < 4.5 and n0 >= 2 and (ecore / momentum) < 0.6



51

Figure 4.18 The pT spectrum of conversion electrons from simulation. The region that needs

to be reduced or eliminated is when a conversion electron/positron reconstructs

with high-pT when it should not have (the left-most region of the plot). Y-axis:

Reconstructed pT , X-axis: True pT .
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Figure 4.19 Location in R-z space in which a detected conversion electron was created. The

red concentration at roughly z=0 and R=5 is due to the beam pipe.

Figure 4.20 The location in φ0-z space on the face of the DC from which conversion electrons

originated. The red bands surround mechanical staging, those regions have been

eliminated from the analysis.
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Figure 4.21 The Ecore (EMCal energy deposition) for a misreconstructed conversion electron

where pT true < 0.1GeVc and pT reco > 4.0GeVc . Tracks which deposit minimal

energy into the EMCal were eliminated from the analysis.
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Figure 4.5 Sigmalized mean distributions versus pT for negatively charged particles in the

East arm. Top: Before calibration, y-axis is absolute physical units; Bottom: After

calibration, y-axis is sigma
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Figure 4.8 EMCal warnmaps, one for each sector. Colors and precedence: Black = Dead, Blue

= Around Dead, Red = Hot, Light Red = Around Hot, Pink = Uncalib, Purple =

Around Uncalib, Green = Edge. The plots labeled �as6/7� are the PbGl sectors.
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Figure 4.13 Top: corrected low-gain ADC distribution and ADC over�ow cut, Bottom: TDC

distribution and TDC over�ow cut. The vertical dashed red lines represent the

over�ow cut values used for this tower.
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Figure 4.14 X-axis: High gain ADC; Y-axis: Low gain ADC; Left and Right are two di�erent

towers.

Figure 4.15 The top half of the North MPC. Each plot is a single tower. The color code

identi�es regions of common electronics. X-axis: Reconstructed mass; Y-axis:

Counts.
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Figure 4.16 X-axis: Iteration number; Y-axis: Tower gain value; A representative sample of

towers is shown. The green background implies that the towers are all connected

to common electronics as seen in Figure 4.15. The gain of each tower depends

on the gain of all other towers, so a stable gain for a tower may change as other

towers' gains are updated (as can be seen in the lower-right �gure).

Figure 4.17 X-axis: Time; Y-axis, left (black points): Average North arm reconstructed π0

mass value; Y-axis, right (blue points): Thermocouple temperature reading, rela-

tive scale.



59

CHAPTER 5. ANALYSIS METHOD

An ideal scenario for measuring the Collins-induced asymmetry in proton-proton collisions

would be if a forward-going (high-x) quark were to fragment (shower) into a detector system

placed at large pseudorapidity. If the detector system was built to reconstruct jets at forward

rapidity one could detect both a forward jet and a single π0 within that jet in an event. One could

then relate the forward parton's momentum vector (approximated from jet reconstruction) and

spin axis (due to parton transversity in the polarized proton) to the π0 momentum vector. An

asymmetry here would be purely due to the Collins' e�ect during the fragmentation of the quark

to the π0. Since there does not exist a forward jet detector at a high-energy polarized-proton

accelerator/collider facility we

From this crayon-physics level picture one can see that this �Boost, Flip, and Swap� proce-

dure allows for the determination of the �jet proxy� which in turn allows us to approximate the

forward quark's direction.
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Figure 5.1 Lab frame quark-gluon 2→2 scattering with no initial-state kT

Figure 5.2 Center-of-momentum frame of the �nal-state quark and gluon system
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Figure 5.3 Final-state forward quark and �jet proxy� in the center-of-momentum frame

Figure 5.4 Final-state forward quark, π0, and �jet proxy� in the lab frame

5.1 Conservation of Momentum

The analysis method used here is conceptually based on a QCD leading-order 2→2 scattering

scenario. In a leading-order 2→2 process the initial state partons are assumed to have zero

momentum in the transverse plane (kT ). Since there is a vector-sum of zero kT in the initial
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state there must be a vector-sum of zero kT in the �nal state due to momentum conservation.

This implies that the transverse momentum of the two �nal-state partons must be equal in

magnitude and opposite in direction (Equation 5.1 and Figure 5.5). Because of this symmetry,

if we can reconstruct the
−→
kT of one of the �nal state partons we can determine the

−→
kT of the

other. While momentum conservation does apply to the z-momentum of the 2→2 scattering

system it is not utilized as an explicit input to the analysis. Information about the partons'

initial state z-momentum (partonic longitudinal momentum fraction of the proton) is unknown

on an event-by-event basis, so z-momentum conservation is exploited between the initial-state

and �nal-state as an assumption that is satis�ed exactly on an event-by-event basis (Figure 5.6).

−→p1f⊥ = −−→p2f⊥ (5.1)

−→p1f

−→p2f

+x̂ (West)

+ŷ (Up)

Figure 5.5 Conceptual drawing of parton-parton 2→2 scattering in the transverse plane with

no initial state kT . The proton beams are into and out of the page on this �gure.
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−→p1i

−→p1f

−→p1f

−→p1f

+x̂ (West)

+ẑ (North)

Figure 5.6 Conceptual drawing of parton-parton 2→2 scattering in the x-z plane with no

initial state kT . The proton beams momentum vectors are along the ±z-axes in

this picture.

5.2 Analysis Requirements

Since it is not possible to observe the �nal state partons directly we must infer their prop-

erties via jet reconstruction (Section 5.3).

A main challenge in this analysis is working with the limitations presented by the available

detector systems for jet reconstruction and detector acceptance at forward rapidities in the

PHENIX experiment. As stated previously, a strong Collins' asymmetry is present at high-x

which, experimentally, means looking at large values of pseudorapidity (η). The PHENIX ex-

periment has only one detector which can measure neutral pions at large (non-in�nite) values

of η. This detector is the MPC discussed previously in Section 3.3.8. The MPC cannot re-

construct a full jet axis with its limited acceptance and emphasis on electromagnetic cluster

(photon) detection while being mostly blind to the hadronic and charged particle portions of a

jet.

The PHENIX's central arm, however, is able to reconstruct jets within its acceptance using

the central arm detectors discussed in Section 3.3. We are able to successfully reconstruct jets in
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the central arm acceptance in both simulation and real data (Section 5.3.4). The basic �nal-state

kinematic event structure is thus a reconstructed jet in one of the PHENIX central arms coupled

with a π0 (electromagnetic cluster) in the North MPC detector as seen in Figure 5.7. These

kinematic requirements bias our partonic �nal-state to central-going gluon and a forward-going

quark (See Section 5.5).

Given a reconstructed jet in the PHENIX central arm acceptance we can approximate

the transverse component of the central-going �nal-state partons' kinematics (−→p cent,f,⊥) (Sec-

tion 5.3.4). Similarly, a North MPC π0 can be correlated with the forward-going quark. Thus,

two requirements of this analysis are that we must reconstruct a central arm jet and an MPC

π0. Additionally, the central arm jet and the MPC π0 must be separated by an opening angle

in φ by more than 2π
3 (i.e. the jet and π0 must be roughly back-to-back in φ). The next sections

cover these requirements.

Figure 5.7 Quark-gluon 2→2 scattering with fragmentation. The gluon produces a jet detected

by the central arm and the quark produces a pi0 detected by the North MPC.

5.3 Jets

The de�nitions of a �jet� are varied and often disparate. Michael J. Tannenbaum of Brookhaven

National Laboratory has summed the matter up nicely when he said (paraphrased) �a jet is not
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a physical quantity but a legal contract between experimentalists and theorists� [61]. The �legal

contract� I am using here is the following:

• Given a set of QA-�ltered �nal-state charged tracks and electromagnetic clusters I perform

an anti−kT sequential recombination to �nd �inclusive� jets (using the FastJet package

in decreasing-pT -ordering mode) with a speci�c �R� parameter (Section 5.3.2).

• The set of jets has QA performed through a series of cuts based on simulation study

results (Section 5.3.3).

• The �nal set of jet kinematics are used as an approximation of post-scattering partonic

kinematics (Section 5.5).

The speci�cs of each contract clause is presented in subsequent sections.

5.3.1 Jet Reconstruction

The �eld of jet reconstruction in high energy physics is vast, I will only be covering a single

technique in the family �sequential recombination� algorithms. Many techniques used in other

experiments are not applicable to this data set due to limited acceptance, hadronic blindness,

and maximum pT reach. The algorithm used here for coalescing our collection of particles into

a reconstructed jet is the anti−kT algorithm applied by the FastJet [62] software package.

5.3.2 Anti−kT Algorithm

The anti−kT algorithm can be summarized as an algorithm which takes momentum vec-

tors in η−φ space and sequentially combines them using a weighting based on their transverse

momentum and spatial separation. The moniker anti−kT is used to emphasize that the recom-

bination scheme incorporates the kT of each particle raised to a negative power (inverse of kT ).

When particles are combined in this manner during intermediate iterations of the algorithm the

objects are called �pseudojets� since they are neither real particles nor full jets. Throughout

this section all statements that apply to �particles� also apply to �pseudojets�. The anti−kT

algorithm is an infrared-safe in regards to the number of jets found when a minimum particle

pT cut is enforced, which is the case in this analysis [63].
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The anti−kT algorithm's �rst step is determining a distance parameter between particle

pairs as de�ned by Equation 5.2.

dij = dji = min(p−2
⊥,i, p

−2
⊥,j)

∆p−2
i,j

R2
(5.2)

Where:

• i,j = index of all particles in the system

• ∆Ri,j = distance in η − φ space (
√

∆η2 + ∆φ2) between particles i,j.

• R = a parameter of the algorithm which roughly describes the size of the jet, though the

jet boundaries are mutable based on combined particle/jet pT and location.

• p⊥,i and p⊥,j = the transverse momentum of particles i,j.

• dij = anti−kT algorithm calculated distance parameter between particles i,j.

Since we are using an �inclusive� formulation of the anti− kT algorithm, once the smallest

dij value for the set of particles is found we perform one of two actions:

• If the smallest dij value is smaller than (or equal to) p−2
⊥,i then particle/�pseudojet� i is

assumed to be a �nal �inclusive� jet and is removed from the list of particles/�pseudojets�

and is saved.

• If the smallest dij is larger than p−2
⊥,i then particles i and j are combined using simple

momentum-vector addition into a �pseudojet�.

Because only the smallest of dij values are used in the recombination procedure the anti−kT

algorithm is also infrared- and collinear-safe in terms of jet shape and direction; i.e. adding

an arbitrary number of soft particles (radiation) to an event cannot change the jet direction or

shape. The algorithm is considered �soft-resilient� since soft particles can change the �nal jet

pT unless a minimum particle pT cut is used, which this analysis does. Once all particles in an

event are clustered into jets the iterative procedure stops.
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A sample event that has had the anti−kT algorithm performed on a sample of hard particles

embedded in a soft particle background is shown in Figure 5.8. In Figure 5.8 the green colored

area (upper-right) is an example of a jet formed from a hard particle and the soft background.

The soft background has no in�uence on the jet boundary in this case. The purple colored

area (to the left of the green area) is a jet formed from several mid-pT particles and the soft

background. One can see that the purple area's boundary is deformed due to the higher pT

(harder) green jet and does not in�uence the green jet itself. The area encompassed by each

jet is roughly equal to πR2 even if the boundary shape is deformed. The jets that the anti−kT

algorithm gives us are not all useful or interpretable, a series of QA cuts are placed on these jets

to reduce the number of fake or misreconstructed jets. These cuts are covered in Section 5.3.3.

Figure 5.8 A sample parton-level event with added random soft particles. The anti−kT algo-

rithm clustering was performed on the event. Di�ering colors represent the areas

of various jets. [63]
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5.3.3 Jet Cuts

All particles that are fed into the anti−kT algorithm for jet reconstruction have all of the QA

checks and cuts covered in Chapter 4. The following jet-level cuts are applied to the �nal-state

anti−kT reconstructed jets (each cut is explained in the subsequent sections):

• We require that Jet pT ≥ 5.0GeVc .

• The number of constituent particles used to form the jet (Nconstituents) is ≥ 3.

• Jet �charged fraction (CF)� where CF =
∑

i=chargedconstituents

−→p i·p̂jet
|−→p jet|

and the allowed jets

meet the requirement that CF < 0.8.

5.3.4 Jet Reconstruction Results

The results of the track, cluster, event, and jet-level cuts are a clean jet sample that we can

use for this analysis. Figures 5.9 to 5.11 show the e�ect of the jet charged fraction cut, which was

crucial to this analysis. Figure 5.9 shows the e�ect of the charged fraction cut on the constituent

contributions to the jet momentum. Figure 5.10 shows the high degree of contamination that is

eliminated due to the 0.8 upper limit on the jet charged fraction. The �nal jet pT distribution

can be seen in Figure 5.11 in the green points matching �Jet CF < 0.8�.
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Figure 5.9 pT distribution of charged constituents within a reconstructed jet.
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Figure 5.10 Jet charged fraction for di�erent jet pT regions.
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Figure 5.11 The bright green curve represents the �nal reconstructed jet pT raw spectrum

using our charged fraction upper limit of 0.8. The X-axis is reconstructed jet pT .

5.4 North MPC π0s

The set of cuts used on the MPC data is basically standardized over many analyses [64].

The cuts used are the following (speci�c de�nitions can be found in [64]):

• Maximum allowed χ2 shape cut value: 2.0

• Maximum allowed value of the central tower energy divided by the total cluster energy

(EcentE9
): 0.95

• Maximum allowed cluster dispersion value: 4.0

• Minimum allowed photon probability cut (shape cut): 0.01

• Minimum radius in the transverse plane for the cluster center: 11cm

• Maximum radius in the transverse plane for the cluster center: 19cm

• Minimum allowed ∆R between clusters in the transverse plane: 2.6cm
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• Cluster pT between 1.0 GeV
c and 3.0 GeV

c in the lab frame.

The �nal MPC π0 (single-cluster) pT distribution is shown in Figure 5.12. The sample

shown also required a coincident central jet. The composition of said clusters as a function of

pT was studied by the MPC group, the results of which can be found in Figure 5.13 [64].

Figure 5.12 pT distribution of real-data reconstructed MPC single-clusters (π0s). Left: Jet in

West arm, Right: Jet in East arm.
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Figure 5.13 Simulation: The fractional composition of MPC reconstructed single-clusters [64].

5.5 Parton Kinematics

The requirement of a reconstructed jet in one of the central arms and a π0 (electromagnetic

cluster) in the North MPC detector biases the collision sub-process and both the initial-state

and �nal-state parton kinematics. The sub-process fractions can be seen in Figure 5.14 (from

the simulation described in Chapter 6). A clear bias toward quark + gluon→quark + gluon

scattering can be seen.
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Figure 5.14 The fraction of 2→2 events from each subprocess. Notable contributions

above the 2% level from left to right: quark+quark→quark+quark,

quark+gluon→quark+gluon, gluon+gluon→quark+anti−quark, and

gluon+gluon→gluon+gluon.

Since we require a 5 GeV reconstructed jet pT in the lab-frame this preferentially biases the

initial-state kT such that the collision system has a net-kT in the direction of the reconstructed

jet. If there is zero initial-state partonic kT (i.e. the transverse scattering frame and lab frame

are equal) the momentum of the �nal-state gluon headed towards the central arm must be at

least 5 GeV in pT to fragment into an accepted reconstructed jet. However, if the net initial-

state gluon's kT is 1.0 GeV in the direction of the jet (i.e. the transverse scattering frame is

moving relative to the lab frame) then only a 4.0 GeV pT gluon (in the scattering frame) is

required to produce a 5.0 GeV pT gluon in the lab frame. This e�ect can be seen in Figure 5.15.

It is important to note that the analysis method used here does not use initial-state partonic

information directly, it only uses �nal-state information and avoids many of the ambiguities

associated with modeling partonic initial states.
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Figure 5.15 Plots showing the initial-state kT biases due to �nal-state kinematic requirements.

Left: �nal-state quark, Right: �nal-state gluon. The positive x-axis in each plot

is momentum in the direction of the �nal-state reconstructed jet. Top: The y-axis

is the spatial y-axis relative to the x-axis. Bottom: A projection of the top

histogram onto its X-axis, note the x-axis scale and range changes. The means of

the distributions are shown.

In the context of quark+gluon→quark+gluon subprocesses we can further analyze the �nal

state parton kinematics. The requirement of a central jet coupled with a North MPC cluster of

various minimum pT biases the �nal-state gluon and quark kinematics. The �nal-state quark's

pseudorapidity for di�erent minimum MPC cluster pT can be see in Figure 5.16. Our signal

events occur when the quark momentum vector is pointed roughly toward the North MPC

detector (η > 2.5). To increase the signal-to-background for these events we require a minimum

MPC π0 pT of 1.0GeVc .
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Figure 5.16 The distribution of �nal-state quark pseudorapidities in

quark + gluon → quark + gluon subprocess events. The various curves

each correspond to a di�erent minimum MPC π0 pT . From top to bottom, the

minimum π0pT cuts are: 0.0, 0.4, 0.6, 0.8, and 1.0 GeV.
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CHAPTER 6. SIMULATIONS

Two main simulations were performed for this analysis. The Pythia [65] monte carlo program

performed the entirety of sub-process interactions in each simulation performed. The PISA im-

plimentation of the GEANT3 program performed the material interaction and detector response

portions of the simulation.

6.1 Pythia

The Pythia monte carlo package performs event generation. Each piece of the simulation

relies on either a comparison with experimental results (where possible) or reliance on QCD-

based model results. The program is highly con�gurable. A set of tunes can then be performed

to set various parameters to better match experimental observations in di�erent energy regimes.

A comparison of two leading tunes, �Tune A� [66] and �Perugia� [67], was performed at RHIC

for the PHENIX FOCAL upgrade proposal [68]. The �ndings show that Tune A provides a

better approximation of the reality seen at RHIC at forward rapidity. Further information on

Tune A can be found in References [69] and [70].

The Pythia simulation provides both the initial state and �nal state event structure. Of

which, of course, only the �nal state is veri�able at the moment. The initial state is, in part,

adjusted such that it produces the correct (measurable) �nal state event kinematics and struc-

ture.

6.2 PISA

The PISA (PHENIX Integrated Simulation Application) package created by the PHENIX

group provides a GEANT3 interface which performs the interactions between �nal-state Pythia
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particles and simulated materials and detectors. PISA itself has undergone rigorous tuning to

best match the simulated and real detector responses. The output of the PISA package provides

data in the same format as the real data itself, allowing for ease of comparison. The speci�c

details of the implementation of GEANT3 can be found in Reference [49].

6.3 Event Selection and Generation

The selection of events from which our eventually needed parameterizations (Chapter 7)

is derived are outlined here. Due to the extremely rare nature of the events required and

the inability to heavily modify the initial and �nal-state partonic kinematics without biasing

our result we require a set of �nal-state event kinematics to be met within each simulated

event that is saved for analysis. Our set of signal events is de�ned such that we obtain a

quark + gluon → quark + gluon scattering event where the �nal-state quark's momentum

is roughly in the direction of the MPC detector (Section 3.3.8, 2.5 < η < 5.5). Next, we

require that a π0 with a minimum pT is found directed toward the MPC acceptance. Lastly, jet

reconstruction is performed on the �nal-state particles that would have made it into the central

arm acceptance and were able to be reconstructed by the central arm detectors. To that end,

a fast-�lter developed at Iowa State was used to quickly approximate the trajectory of charged

particles through the magnetic �eld at PHENIX. A minimum Anti−kT reconstructed jet pT of

5.0 GeV
c and with a minimum of three constituent particles was required to save the event. A

total of 3.2∗1012 quark + gluon→ quark + gluon sub-processes were generated from a total of

roughly 3.2 million computing-hours (roughly three months using 1,500 CPUs concurrently and

continuously). Of the generated events roughly one event per 7.5∗106 were saved for eventual

analysis (a total of 424,221 events). After this stage the saved Pythia events were passed to

the PISA simulation package with the Run-12 con�guration. A �nal set of cuts requiring the

reconstruction of an Anti−kT reconstructed jet as well as the π0 kinematic cuts as placed on

real data outlined in Chapters 4 and 5. This whittled the total simulated event sample down

to 2,913 events.
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CHAPTER 7. METHOD APPLIED

This chapter implicitly assumes that we have previously determined both the reconstructed

jet momentum and the MPC π0 momentum as discussed in Chapters 4 and 5. All �gures in

this chapter are from the simulation described in Chapter 6. The analysis method as described

in previous sections relies heavily on using Lorentz transforms to boost into the transverse

scattering frame (tSF) and center-of-momentum frame (CM). The three-dimensional lorentz

transform can be see in Equation 7.1.



E′

p′x

p′y

p′z
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
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

E
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
(7.1)

Where the variables used here are the following:

•
−→
β = βx · x̂+ βy · ŷ + βz · ẑ

• |
−→
β | = β = v

c

• v = velocity of one frame with respect to another

• γ = 1√
1−β2

It is important to note that the di�erence in pseudorapidity between two objects is invari-

ant with respect to any Lorentz boost along the z-axis. For ease of explanation I will refer

to the forward-going parton simply as the �quark� (
−→
Q) and the central-going parton as the

�gluon� (
−→
G) throughout the next sections; a reasonable nomenclature as shown in Figure 5.14.

Throughout these sections the statistical error on the mean of a distribution is de�ned as 1√
N
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unless speci�cally referenced to the �error of the mean� which is σ√
N

(where σ is the usual
√
variance statistical property). This choice was made to avoid under-represented statistical

errors due to low statistics in distributions which often have very small σ values (often due

to the low statistics itself). Since many of the quantities here vary from plentiful statistics to

low statistics, as a function of transverse momentum, a metric that could easily address both

cases was chosen. This choice does not apply to the �nal result, the proper statistical error is

calculated as shown in that section. Throughout the next sections I make heavy use of pro�le

histograms. A pro�le histogram in our context displays the mean of the entries along the y-axis

for each x-axis bin, the error bars on each bin are the aforementioned statistical errors.

7.1 Method Synopsis

This section is provided for reference when reading the next sections. A �ow diagram of the

analysis method is presented below for clarity (Figures 7.1 and 7.2). Each block represents an

object (a 3-space vector), the lines and arrows represent information �ow. The information can

either be from a parameterization from simulation or from calculation. For example, going from

−→
Jetf,lab to

−→
Gf,lab uses a parameterization (�P�) that is obtained from simulation while

−→
Gf,tSF

is obtained by an event-by-event calculation (�C�) utilizing
−→
Gf,lab and

−→
β ⊥. The nomenclature

used here will be explain in subsequent sections.
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−→
Jetf,lab

−→
Gf,lab

P

−→
π0

f,lab ≈
−→
Qf,lab

P

−→
β ⊥

P

−→
Gf,tSF

≈
−→
Qf,tSF

C

C

−→
β ‖

−→
Gf,CM

≈
−→
Qf,CM

C

C

C

Figure 7.1 Flowchart of the analysis method. �C� = calculated step, �P� = simulation param-

eterized step.

−→
Gf,CM

≈
−→
Qf,CM

Flip and Swap

−−−−−−→
JetProxyf,CM

−→
β ‖,
−→
β ⊥

−−−−−−→
JetProxyf,lab

−→
π0

f,lab

Asymmetry

Figure 7.2 Flowchart of the analysis method. All steps are calculated steps (in reference to

Figure 7.1 nomenclature).

A convenient coordinate system to work in is one where the reconstructed jet direction

determines the transverse plane coordinates; to this end, each event is rotated in φ such that
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the +x̂ direction is collinear with the transverse component of the reconstructed jet. For ease

of reference, the equations which describe this coordinate system are shown below:

x̂ = ˆJetf,lab, ẑ = ẑPHENIX (7.2)

where ẑPHENIX is de�ned in Figure 4.1, but the system has been rotated in φ such that the x̂

and ŷ coordinate are no longer equal to the PHENIX coordinates. The ŷ coordinate is, of course,

still orthogonal to the x-z plane and satis�es x̂ × ŷ = ẑ. Because of this choice of coordinate

system the y-component of any vector is automatically perpendicular to the reconstructed lab

frame jet momentum; this will be a useful tool in the next sections.

7.2 Lab Frame Final State Parton Approximation

The determination of
−→
Gf,lab⊥ is accomplished through the parameterization of

−→
Gf,labx (the

y-component is necessarily zero, see Section 7.1 and Equation 7.2). Figure 7.3 shows the param-

eterization extracted from simulation. Similarly,
−→
Qf,lab⊥ is obtained through parameterization

of
−→
Qf,labx and

−→
Qf,laby in simulation (Figures 7.4 and 7.5). The parameterizations are used in

the analysis according to Figure 7.1. Simply, for a measured
−→
Jetf,labx (

−→
π0

f,labx,y) we determine

−→
Gf,lab⊥ (

−→
Qf,labx,y) through the parameterizations below. The φ-angle in the tranverse plane

for the jet remains unchanged, however, the π0 φ angle (relative to the central jet) is shifted due

to the y-component of the parameterization, leading to an improved approximation of
−→
Qf,lab⊥.
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Figure 7.3 Top: Y-axis:
−→
Gf,labx, X-axis:

−→
Jetf,labx. The bottom �gures are pro�le histograms

of top plots. The �t function takes the form: p0 + p1 ∗ x, the extracted p0 and p1

parameters are shown on the plot. Left: Jet in West arm, Right: Jet in East arm.

Figure 7.4 Top: Y-axis:
−→
Qf,labx, X-axis:

−→
π0

f,labx. The bottom �gures are pro�le histograms

of top plots. The �t function takes the form: p0 + p1 ∗ x, the extracted p0 and p1

parameters are shown on the plot. Left: Jet in West arm, Right: Jet in East arm.
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Figure 7.5 Top: Y-axis:
−→
Qf,laby, X-axis:

−→
π0

f,laby. The bottom �gures are pro�le histograms

of top plots. The �t function takes the form: p0 + p1 ∗ x, the extracted p0 and p1

parameters are shown on the plot. Left: Jet in West arm, Right: Jet in East arm.

The direction of Ĝf,lab is simply set equal to ˆJetf,lab (both in the transverse plane and

the longitudinal), the distribution of ∆η values between our approximated Ĝf,lab and the true

(simulation) value of Ĝf,lab is shown in Section 7.2.1. Due to the ∆η bias between
−→
Qf,lab and

−→
π0

f,lab shown in Figure 7.6 a pT dependent correction is applied so that the η value of
−→
Qf,lab is

correct on an average basis (Section 7.2.1).



85

Figure 7.6 Simulation: The ∆η between the true
−→
Qf,lab and the reconstructed

−→
π0

f,lab. X-axis

is |
−→
π0

f,lab⊥|, Y-axis is ∆η. Left: Jet in West arm, Right: Jet in East arm. Top: 2D

distribution, Bottom: Pro�le histogram of above.

7.2.1 Lab Frame Final State Parton Approximation - Quality Assurance

The parameterizations extracted from the simulation were then applied to the simulation

data in the same manner in which they were applied to the real data. A series of checks

were performed to determine if the method was able to reproduce the true
−→
Gf,lab and

−→
Qf,lab

using the parameterizations outlined in Section 7.2. The ∆η between the true parton and

its approximation can be seen in Figures 7.7 and 7.8 for the gluon and quark respectively.

Likewise, the ∆φ between the true parton and its approximation can be seen in Figures 7.9

and 7.10 for the gluon and quark respectively. Of critical importance is the approximation of

the average pT of the central gluon and forward quark in the determination of the scattering

frame (Section 7.3). The relative error (∆pT ≡
−−→
G,Qf,labapprox−

−−→
G,Qf,labtrue

−−→
G,Qf,labtrue

) in determining the pT

of our lab-frame partons is shown in Figures 7.11 and 7.12.
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Figure 7.7 Top: The ∆η between the true
−→
Gf,lab and the approximated

−→
Gf,lab. Middle: Pro�le

histogram of above. Bottom: Projection onto the Y-axis of the top histograms.

Left: Jet in West arm, Right: Jet in East arm.
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Figure 7.8 Top: The ∆η between the true
−→
Qf,lab and the approximated

−→
Qf,lab. Middle: Pro�le

histogram of above. Bottom: Projection onto the Y-axis of the top histograms.

Left: Jet in West arm, Right: Jet in East arm.
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Figure 7.9 Top: The ∆φ between the true and approximated
−→
Gf,lab. Bottom: Projection onto

the Y-axis. Left: Jet in West arm, Right: Jet in East arm.

Figure 7.10 Top: The ∆φ between the true and approximated
−→
Qf,lab. Bottom: Projection

onto the Y-axis. Left: Jet in West arm, Right: Jet in East arm.
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Figure 7.11 Top: The relative error in pT between the true and approximated
−→
Gf,lab. Y-axis:

∆pT , X-axis:
−→
Jetf,lab⊥. Fit function: p0 + p1 ∗ x. Bottom: Pro�le histogram of

above. Left: Jet in West arm, Right: Jet in East arm.

Figure 7.12 Top: The relative error in pT between the true and approximated
−→
Qf,lab. Y-axis:

∆pT , X-axis:
−→
π0

f,lab⊥. Bottom: Pro�le histogram of above. Fit function:

p0 + p1 ∗ x. Left: Jet in West arm, Right: Jet in East arm.
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7.3 Transverse Scattering Frame

The transverse scattering frame (tSF) is de�ned such that
−→
Gf,tSF⊥ = −

−→
Qf,tSF⊥. A Lorentz

boost is performed to translate from the lab frame into the tSF using the regular formulation of

the Lorentz transform equation (Equation 7.1) with βz = 0 which gives us Equation 7.3. The

Lorentz boost into the tSF is thus de�ned by the
−→
β ⊥ magnitude and direction (Equation 7.4).

Our requirement that
−→
Gf,tSF⊥ = −

−→
Qf,tSF⊥ implies that the individual x and y components

are also equal:
−→
Gf,tSF x = −

−→
Qf,tSF x and

−→
Gf,tSF y = −

−→
Qf,tSF y. The usual high-energy approx-

imation is made here such that E ≈ |−→p |. Using these requirements coupled with Equation 7.3

gives us the Equation 7.5.
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(7.3)

−→
β ⊥ = βx · x̂+ βy · ŷ (7.4)

βx =

−→
Gf,labx +

−→
Qf,labx

|
−→
Gf,lab⊥|+ |

−→
Qf,lab⊥|

, βy =

−→
Gf,laby +

−→
Qf,laby

|
−→
Gf,lab⊥|+ |

−→
Qf,lab⊥|

(7.5)

The individual βx and βy components are each extracted from the simulation. The central

jet momentum as well as the x-component of the MPC π0 both contribute to the determination

of the βx component. Speci�cally, βx is parameterized versus
−→
Jetf,labx +

−→
π0

f,labx as shown in

Figure 7.13. The MPC π0 alone determines the βy component (Figure 7.14), since the central

jet has no y-component in our coordinate system, as explained in Section 7.1 and Equation 7.2.

The parameterization here is seen in the method �owchart in Figure 7.1.
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Figure 7.13 βx as a function of
−→
Jetf,labx+

−→
π0

f,labx. Top: Two dimensional distribution. Middle:

Pro�le of the above using �error of the mean� statistical errors ( σ√
N
). Bottom:

Projection onto the Y-axis showing the mean is larger than zero. The �t function

takes the form: p0 + p1 ∗ x, the extracted p0 and p1 parameters are shown on the

plot. Left: Jet in West arm, Right: Jet in East arm.
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Figure 7.14 βy as a function of
−→
π0

f,laby. Top: Two dimensional distribution. Middle: Pro�le

of the above using �error of the mean� statistical errors ( σ√
N
). Bottom: Projec-

tion onto the Y-axis showing the mean is zero. The �t function takes the form:

p0 + p1 ∗ x, the extracted p0 and p1 parameters are shown on the plot. Left: Jet

in West arm, Right: Jet in East arm.

The �nal-state quark (
−→
Qf,tSF⊥) and gluon (

−→
Gf,tSF⊥) momentum vectors in the transverse

scattering frame (tSF) need to be known or approximated for application in the �Boost, Flip,

and Swap� procedure as described in Chapter 5. To obtain approximations for these vectors we

turn to the
−→
Gf,lab⊥ and

−→
Qf,lab⊥ obtained via the method in described in Section 7.2. Using the

boost obtained from Section 7.3 on our
−→
Qf,lab and

−→
Qf,lab vectors via Equation 7.3 we obtain

−→
Qf,tSF and

−→
Gf,tSF .
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7.3.1 Transverse Scattering Frame - Quality Assurance

Once again, checks were performed to determine the e�cacy of the procedure in determin-

ing the tSF and the objects within the tSF. The checks are similar to the ones performed in

Section 7.2.1. The ∆η, ∆φ, and ∆pT between the approximate parton in the tSF and the true

(simulation) parton in the tSF were all investigated. The ∆η checks can be seen in Figures 7.15

and 7.16, ∆φ checks can be seen in Figures 7.17 and 7.18, and the ∆pT checks can be seen in

Figures 7.19 and 7.20.

Figure 7.15 Top: The ∆η between the true
−→
Gf,tSF and the approximated

−→
Gf,tSF . Middle:

Pro�le histogram of above. Bottom: Projection onto the Y-axis of the top his-

tograms. Left: Jet in West arm, Right: Jet in East arm.
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Figure 7.16 Top: The ∆η between the true
−→
Qf,tSF and the approximated

−→
Qf,tSF . Middle:

Pro�le histogram of above. Bottom: Projection onto the Y-axis of the top his-

tograms. Left: Jet in West arm, Right: Jet in East arm.
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Figure 7.17 Top: The ∆φ between the true
−→
Gf,tSF and the approximated

−→
Gf,tSF . Bottom:

Projection onto the Y-axis of the top histograms. Left: Jet in West arm, Right:

Jet in East arm.

Figure 7.18 Top: The ∆φ between the true
−→
Qf,tSF and the approximated

−→
Qf,tSF . Bottom:

Projection onto the Y-axis of the top histograms. Left: Jet in West arm, Right:

Jet in East arm.
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Figure 7.19 Top: The absolute ∆pT between the true and approximated
−→
Gf,tSF . Y-axis:

∆pT ≡
−→
Gf,tSF true −

−→
Gf,tSF approx, X-axis:

−→
Jetf,lab⊥. Bottom: Pro�le histogram

of above. Left: Jet in West arm, Right: Jet in East arm.

Figure 7.20 Top: The absolute ∆pT between the true and approximated
−→
Qf,tSF . Y-axis:

∆pT ≡
−→
Qf,tSF true −

−→
Qf,tSF approx, X-axis:

−→
π0

f,lab⊥. Bottom: Pro�le histogram of

above. Left: Jet in West arm, Right: Jet in East arm.
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7.3.2 Transverse Scattering Frame - Momentum Conservation

As discussed in Sections 5.1 and 7.3, we take it as a precept that there exists a transverse

scattering frame such that the quark and gluon momentum in the transverse plane are equal

and opposite. Since we have now obtained (approximated) our
−→
Gf,tSF and

−→
Qf,tSF objects we

can determine if this precept still holds given our approximations and method. If the transverse

scattering frame as been found we should be able to assert that
−→
Gf,tSF x +

−→
Qf,tSF x = 0 and

−→
Gf,tSF y +

−→
Qf,tSF y = 0. To that end, �rst we explore the quantities

−→
Gf,tSF x +

−→
Qf,tSF x and

−→
Gf,tSF y +

−→
Qf,tSF y using the true (simulation) values for

−→
Gf,lab,

−→
Qf,lab, βT x, and βT y to obtain

our objects in the tSF. Two-dimensional distributions are shown in Figure 7.21. Next, the same

quantities are shown using our approximate quantities exactly as would be performed with real

data (Figure 7.22).

Figure 7.21 Distribution of momentum conservation quantities in the tSF using true (simula-

tion) values for
−→
Gf,lab,

−→
Qf,lab, βT x, and βT y. Y-axis:

−→
Gf,tSF y +

−→
Qf,tSF y, X-axis:

−→
Gf,tSF x +

−→
Qf,tSF x. Left: Jet in West arm, Right: Jet in East arm.
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Figure 7.22 Top: Distribution of momentum conservation quantities in the tSF using our

approximated
−→
Gf,lab,

−→
Qf,lab, βT x, and βT y. Y-axis:

−→
Gf,tSF y +

−→
Qf,tSF y, X-axis:

−→
Gf,tSF x +

−→
Qf,tSF x. Middle: Projection of the top plots onto the x-axis. Bottom:

Projection of the top plots onto the y-axis. Left: Jet in West arm, Right: Jet in

East arm.

7.4 Boost, Flip, and Swap Applied

Throughout this section it is helpful for the reader to reference and follow along with the �ow

chart in Figure 7.2. Building o� of our now known approximate
−→
Qf,tSF and

−→
Gf,tSF momentum

vectors we can perform the boost, �ip, and swap procedure described in Chapter 5. Speci�cally,

a Lorentz boost parallel to the z-direction (in the tSF frame) is performed to move from the

transverse scattering frame into the center-of-momentum frame where
−→
Qf,CM = −

−→
Gf,CM in
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our 2→2 scattering model. Since the tSF has already satis�ed the condition that the tranverse

components of the quark and gluon momentum vectors are equal and opposite we only require

a boost along the z-direction to make the 3-space vectors equal. The βz value of the Lorentz

boost is determined by Equation 7.6 which is derived from our
−→
Qf,CM = −

−→
Gf,CM constraint

coupled with βx = 0 and βy = 0 in Equation 7.1.

βz =

−→
Gf,tSF z +

−→
Qf,tSF z

|
−→
Gf,tSF |+ |

−→
Qf,tSF |

(7.6)

An approximate βz value is not derived from simulation, the βz value used is always de-

termined from our approximated
−→
Gf,lab and

−→
Qf,lab momentum vectors on an event-by-event

basis.

Once in the CM frame the ��ip� portion of this analysis method is performed. Speci�cally,

we create a new momentum vector called the �jet proxy� (
−−−−−→
JProxyf,CM ) and set it equal to a

��ipped�
−→
Gf,CM which can be seen in Equation 7.7.

−−−−−→
JProxyf,CM = −

−→
Gf,CM (7.7)

Once the jet proxy is determined in the CM frame we reverse our previous boost from the

tSF frame to the CM frame by setting βz → −βz which e�ectively undoes the boost, allowing us

to obtain
−−−−−→
JProxyf,tSF . From there, the βT boost is undone, allowing us to obtain

−−−−−→
JProxyf,lab.

Once the jet proxy vector is known in the lab frame we have all of the required information

to approximate the �nal-state quark momentum vector direction. We now apply the �swap�

portion of the analysis method, which is to swap the unknown
−→
Qf,lab for our

−−−−−→
JProxyf,lab that

was determined from the previous sections.

To determine if our
−−−−−→
JProxyf,lab is a good approximation of

−→
Qf,lab we show the ∆η be-

tween our true
−→
Qf,lab in simulation with our

−−−−−→
JProxyf,lab derived from the analysis method.

Figures 7.23 and 7.24 show the ∆η between
−→
Qf,lab and

−−−−−→
JProxyf,lab in the simulation if we do

not use any approximations for
−→
Gf,lab or

−→
Qf,lab; basically, we assume we know the �nal-state

parton kinematics and apply the method. One can see that the method produces a near-perfect

jet proxy if all information is known. Using our approximately derived
−−−−−→
JProxyf,lab we compare
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it to our known
−→
Qf,lab in simulation and show the ∆η distribution in Figures 7.25 and 7.26. Fi-

nally, our approximate
−−−−−→
JProxyf,lab is compared to the true

−→
Qf,lab in φ (Figures 7.27 and 7.28),

giving us a full 3-dimensional picture of the resolution of the method in simulation.

Figure 7.23 Using exact
−−−−−→
JProxyf,lab and

−→
Qf,lab vectors in simulation. Top: Y-axis: ∆η be-

tween the true
−→
Qf,lab and

−−−−−→
JProxyf,lab. X-axis: |

−→
Jetf,lab⊥|. The bottom �gures

are pro�le histograms of top plots. Left: Jet in West arm, Right: Jet in East arm.
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Figure 7.24 Using exact
−−−−−→
JProxyf,lab and

−→
Qf,lab vectors in simulation. Top: Y-axis: ∆η be-

tween the true
−→
Qf,lab and

−−−−−→
JProxyf,lab. X-axis: |

−→
π0

f,lab⊥|. The bottom �gures are

pro�le histograms of top plots. Left: Jet in West arm, Right: Jet in East arm.
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Figure 7.25 The ∆η between the approximated
−−−−−→
JProxyf,lab and the true

−→
Qf,lab vectors in

simulation. Top: Y-axis: ∆η. X-axis: |
−→
Jetf,lab⊥|. Middle: Pro�le histogram of

the top plots. Bottom: Projections of the top plots onto the Y-axis. Left: Jet in

West arm, Right: Jet in East arm.
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Figure 7.26 The ∆η between the approximated
−−−−−→
JProxyf,lab and the true

−→
Qf,lab vectors in

simulation. Top: Y-axis: ∆η. X-axis: |
−→
π0

f,lab⊥|. Middle: Pro�le histogram of the

top plots. Bottom: Projections of the top plots onto the Y-axis. Left: Jet in West

arm, Right: Jet in East arm.
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Figure 7.27 The ∆φ between the approximated
−−−−−→
JProxyf,lab and the true

−→
Qf,lab vectors in

simulation. Top: Y-axis: ∆η. X-axis: |
−→
Jetf,lab⊥|. Bottom: Projections of the top

plots onto the Y-axis. Left: Jet in West arm, Right: Jet in East arm.

Figure 7.28 The ∆φ between the approximated
−−−−−→
JProxyf,lab and the true

−→
Qf,lab vectors in

simulation. Top: Y-axis: ∆η. X-axis: |
−→
π0

f,lab⊥|. Bottom: Projections of the top

plots onto the Y-axis. Left: Jet in West arm, Right: Jet in East arm.
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CHAPTER 8. RESULTS

We have now determined, from simulation, our needed parameterized corrections to perform

the analysis on our real data. Namely, we required knowledge of the following:

• The average
−→
β ⊥ as a function of our

−→
Jetf,lab⊥ and

−→
π0

f,lab⊥ momentum vectors.

• The average
−→
Gf,lab as a function of our

−→
Jetf,lab properties.

• The average
−→
Qf,lab as a function of our

−→
π0

f,lab properties.

Each of these parameterized correction factors were explained in Chapter 7. Along with

the parameterized corrections we also require events with well reconstructed jets and π0s, the

procedure to obtain these was explained in Chapters 4 and 5.

8.1 Final State Parton Approximations

The �rst step in applying the simulation parameterizations to the data is to approximate our

−→
Gf,lab and

−→
Qf,lab vectors using the procedure discussed in Section 7.2. The pT distributions of

our approximate
−→
Gf,lab and approximate

−→
Qf,lab can be seen in Figures 8.1 and 8.2 respectively.

The counts in simulation are not normalized to the data's available statistics.
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Figure 8.1 Comparison between simulation and real data approximated �nal-state lab-frame

gluons. Y-axis: Counts, X-axis: |
−→
Gf,lab⊥|. Top: Simulated data, Bottom: Real

data. Left: Jet in West arm, Right: Jet in East arm.

Figure 8.2 Comparison between simulation and real data approximated �nal-state lab-frame

quarks. Y-axis: Counts, X-axis: |
−→
Qf,lab⊥|. Top: Simulated data, Bottom: Real

data. Left: Jet in West arm, Right: Jet in East arm.
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8.1.1 Transverse Boost Parameter

The transverse boost parameter (
−→
β ⊥) extracted from the simulation can be compared to the

value in the real data calculated from our approximate
−→
Gf,lab and

−→
Qf,lab obtained in the previous

subsection. This procedure cannot be used on an event-by-event basis to circumvent the need

for the
−→
β ⊥ parameterization from the simulation as this would nullify any spin-dependence in

the ∆pT between the
−→
Gf,lab and

−→
Qf,lab objects (which ultimately contributes greatly to our

asymmetry measurement). One could theoretically create a parameterization of
−→
β ⊥ from the

(spin-independent) real data and apply it to the data itself. The main reason this was not done

is due to the low statistics of our real data sample the autocorrelation that would occur is very

large, i.e. we do not have enough data to have a reasonable mix of both �up� and �down� spin

components (relative luminosity normalized) to obtain a set of spin-independent parameters.

The comparison between the
−→
β ⊥ simulation and real-data parameters is shown in Figures 8.3

to 8.5.
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Figure 8.3 Comparison between simulation approximated and real data extracted β⊥x param-

eter. Top: Y-axis: β⊥xsim-β⊥xreal, X-axis: Reconstructed |
−→
Jetf,lab⊥|. Middle:

Pro�le histogram of above. Bottom: Projection onto the Y-axis of the top his-

tograms. Left: Jet in West arm, Right: Jet in East arm.
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Figure 8.4 Comparison between simulation approximated and real data extracted β⊥x param-

eter. Top: Y-axis: β⊥xsim-β⊥xreal, X-axis: Reconstructed |
−→
π0

f,lab⊥|. Middle: Pro-

�le histogram of above. Bottom: Projection onto the Y-axis of the top histograms.

Left: Jet in West arm, Right: Jet in East arm.



110

Figure 8.5 Comparison between simulation approximated and real data extracted β⊥y param-

eter. Top: Y-axis: β⊥ysim-β⊥yreal, X-axis: Reconstructed |
−→
π0

f,lab⊥|. Middle: Pro-

�le histogram of above. Bottom: Projection onto the Y-axis of the top histograms.

Left: Jet in West arm, Right: Jet in East arm.

8.1.2 Final State Parton Approximations - Transverse Scattering Frame

Using both
−→
Gf,lab and

−→
β ⊥ we can now obtain

−→
Gf,tSF . The pT distribution of which is

shown in Figure 8.6 for both simulation and real data. Similarly,
−→
Qf,tSF is obtained from the

Lorentz transform of
−→
Qf,lab using our

−→
β ⊥ parameterization. The pT distribution is shown in

Figure 8.7, both simulation and real data are shown for comparison.
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Figure 8.6 Comparison between simulation and real data approximated �nal-state transverse

scattering frame gluons. Y-axis: Counts, X-axis: |
−→
Gf,tSF⊥|. Top: Simulated data,

Bottom: Real data. Left: Jet in West arm, Right: Jet in East arm.

Figure 8.7 Comparison between simulation and real data approximated �nal-state transverse

scattering frame quarks. Y-axis: Counts, X-axis: |
−→
Qf,tSF⊥|. Top: Simulated data,

Bottom: Real data. Left: Jet in West arm, Right: Jet in East arm.
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8.2 Boost, Flip, and Swap

We have now determined the approximated vectors that we require to perform the boost,

�ip, and swap procedure as discussed in Chapter 5, Section 7.4, and outlined in Figure 7.2.

Namely, we now have our approximated
−→
β ⊥,

−→
Gf,tSF , and

−→
Qf,tSF objects. The boost, �ip,

and swap procedure is performed and we obtain our
−−−−−→
JProxyf,lab momentum vector. Now the

comparison between the jet proxy and the π0 can be performed.

8.2.1 Jet Proxy Frame

In order to study the azimuthal asymmetry of π0 production about the jet proxy axis we

must de�ne the jet proxy axis on an event-by-event basis. To that end, once the jet proxy is

known we transform our system into what is called the �jet proxy frame�. In this frame the

jet proxy points along the +ẑ direction and the φ angle is measured in the plane transverse to

the jet proxy momentum direction. Both the lab-frame North-going proton polarization vector

(
−→
S f,lab) and the π0 (

−→
π0

f,lab) are translated into this jet proxy frame. For convenience, the

jet proxy frame is labeled as �JP� and the
−→
S f,lab and

−→
π0

f,lab objects become
−→
S f,JP and

−→
π0

f,JP

respectively. As a convenient choice of y-axis in the jet proxy frame is when the transverse plane

is rotated in φ such that the y-axis lies along the
−→
S f,JP direction. It is then a simple matter

to measure, in the JP transverse plane, the angle from the
−→
S f,JP vector to the

−→
π0

f,JP . This

angle measure is labeled φ in the next sections and is measured in the clockwise direction when

looking parallel to the jet proxy momentum vector direction. Since a known and quanti�ed spin-

independent ∆η between
−→
Qf,lab and

−→
π0

f,lab exists in simulation (Figure 7.6), it is subtracted

from
−→
π0

f,lab before translation into the jet proxy frame.

Figure 8.8 shows the φ measurement scheme as described above.
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Figure 8.8 The de�nition of our φ measure. Blue circle: jet proxy momentum vector, pointed

into the page. Purple circle: π0 momentum vector, pointed into the page (
−→
π0

f,JP ).

Red arrow: Proton polarization vector translated into the jet proxy frame (
−→
S f,JP ).

Green arrow: φ measurement direction from the spin vector to the π0. Nomencla-

ture is explained in Section 8.3

8.3 Asymmetry Calculation

There are several well-established methods for the calculation of an asymmetry and the

error associated with that calculation. Several of these are covered in great detail in Reference

[38]. The asymmetry, at its core, is an asymmetry in the accepted event cross-section. Without

spin-dependence, the cross-section per steradian is:

dσ

dΩ
=
N

L
(8.1)

Where:

• σ: The cross-section

• Ω: Solid angle in space
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• N: Number of accepted events

• L: Beam luminosity

If the cross-section has a φ angle (relative to the spin-vector) dependence due to a spin e�ect

the cross-section becomes:

dσ

dΩ
(φ) = (

dσ

dΩ
)
0

=
N(φ)

L
(8.2)

Where ( dσdΩ)
0
is the spin-independent cross-section from Equation 8.1. Finally, the asymme-

try factor (AN , the analyzing power) can be extracted from:

N(φ) = La(φ)(
dσ

dΩ
)
0
(1 +ANPycos(φ)) (8.3)

Where Py is the beam polarization, a(φ) is an acceptance and e�ciency correction, and AN

is the analyzing power. In this analysis, the φ angle is measured in the jet proxy frame which

changes on an event-by-event basis (though, on average it is consistent), the luminosity is no

longer the beam luminosity and is instead the luminosity of central-jet and forward-π0 events,

and �nally the acceptance factor (a(φ)) changes with every event. The luminosity factor and

the acceptance factor must be circumvented to extract the AN in this analysis.

8.3.1 Asymmetry Calculation - Naive Formulation

In the naive formulation, the asymmetry calculation is just a comparison between counts to

the �right� and �left� of the spin vector. To that end, we can formulate the raw asymmetry as:

εN (φ) =
N↑(right)−N↑(left)
N↑(right) +N↑(left)

=
N↑(φ)−N↑(φ+ π)

N↑(φ) +N↑(φ+ π)
(8.4)

which allows us to calculate the AN by taking into account the beam polarization:

AN (φ) =
εN (φ)

Py
(8.5)

Following John Koster's lead [38] I insert Equation 8.3 into Equation 8.4 to obtain:
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εN (φ) =
La(φ)( dσdΩ)

0
(1 +ANPycos(φ))− La(φ+ π)( dσdΩ)

0
(1 +ANPycos(φ+ π))

La(φ)( dσdΩ)
0
(1 +ANPycos(φ)) + La(φ+ π)( dσdΩ)

0
(1 +ANPycos(φ+ π))

(8.6)

which reduces to:

εN (φ) =
a(φ)(1 +ANPycos(φ))− a(φ+ π)(1 +ANPycos(φ+ π))

a(φ)(1 +ANPycos(φ)) + a(φ+ π)(1 +ANPycos(φ+ π))
(8.7)

As can be seen, this formulation does not eliminate the acceptance and e�ciency factor, an

intractable factor which changes on an event-by-event basis in this analysis. Luckily, there are

better (more complex) options.

8.3.2 Asymmetry Calculation - Square Root Formula

The choice of asymmetry calculation made here is the square-root formula:

εsqrt(φ) =

√
N↑(φ)N↓(φ)−

√
N↑(φ+ π)N↓(φ+ π)√

N↑(φ)N↓(φ) +
√
N↑(φ+ π)N↓(φ+ π)

(8.8)

Where:

• εsqrt(φ) = The raw asymmetry as measured

• φ = Angle as de�ned in Section 8.2.1. The angle is measured from the proton polarization

vector in the JP frame (
−→
S f,JP ) to

−→
π0

f,JP in a clockwise manner in the plane transverse

to the jet proxy momentum direction. This angle measure is between zero and 2π: [0,2π).

• N↑(φ) = Number of events where the π0 is found within some angular inverval φ when

the proton polarization vector in the lab frame was �up� (+ŷ direction).

• N↓(φ) = Number of events where the π0 is found within some angular inverval φ when

the proton polarization vector in the lab frame was �down� (-ŷ direction).

• N↑(φ) = Number of events where the π0 is found within some angular inverval φ+π when

the proton polarization vector in the lab frame was �up� (+ŷ direction).

• N↓(φ) = Number of events where the π0 is found within some angular inverval φ+π when

the proton polarization vector in the lab frame was �down� (-ŷ direction).
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The associated statistical error (variance) is:

σ2(εsqrt(φ)) =
1

16
(1− ε2)

2
[

1

N↑(φ)
+

1

N↓(φ)
+

1

N↑(φ+ π)
+

1

N↓(φ+ π)
] (8.9)

As a simple example, where only two φ intervals are de�ned, [0, π) and [π, 2π), the square-

root formula is a comparison between the number of π0s found to the �right� and �left� of the spin

vector in the JP frame (
−→
S f,JP ). The elimination of a(φ) can be seen in the subtraction of the

geometric mean of the counts (
√
N↑(φ)N↓(φ)) in the numerator of Equation 8.8. Remembering

that φ when the spin polarization is �up� is equal to φ+π when the spin polarization is �down�

(a↑(φ) = a↓(φ + π), on average). Inserting Equation 8.3 into the �rst term of Equation 8.8

yields:

√
N↑(φ)N↓(φ) =

√
(L↑a↑(φ)(

dσ

dΩ
)
0
(1 +ANPycos(φ)))(L↓a↓(φ)(

dσ

dΩ
)
0
(1 +ANPycos(φ)))

−
√

(L↑a↑(φ+ π)(
dσ

dΩ
)
0
(1 +ANPycos(φ+ π)))(L↓a↓(φ+ π)(

dσ

dΩ
)
0
(1 +ANPycos(φ+ π)))

(8.10)

which reduces to:

√
N↑(φ)N↓(φ) =

√
L↑L↓a↑(φ)a↓(φ)(

dσ

dΩ
)
0

√
(1 +ANPycos(φ))(1 +ANPycos(φ))

−
√
L↑L↓a↑(φ+ π)a↓(φ+ π)(

dσ

dΩ
)
0

√
(1 +ANPycos(φ+ π))(1 +ANPycos(φ+ π))

(8.11)

Using the fact that a↑(φ) = a↓(φ+ π) we obtain:

√
N↑(φ)N↓(φ) =

√
L↑L↓a↓(φ+ π)a↓(φ)(

dσ

dΩ
)
0
(
√

(1 +ANPycos(φ))(1 +ANPycos(φ))

−
√

(1 +ANPycos(φ+ π))(1 +ANPycos(φ+ π)))

(8.12)

Incorporating the denominator of Equation 8.8 eliminates the common
√
L↑L↓a↓(φ+ π)a↓(φ)( dσdΩ)

0

term and recognizing that cos(φ) = −cos(φ+ π) leaves us with:

εsqrt(φ) =

√
(1 +ANPycos(φ))(1 +ANPycos(φ))−

√
(1−ANPycos(φ))(1−ANPycos(φ))√

(1 +ANPycos(φ))(1 +ANPycos(φ)) +
√

(1−ANPycos(φ))(1−ANPycos(φ))

(8.13)
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and �nally:

εsqrt(φ) = ANPycos(φ) (8.14)

Which is independent of acceptance, e�ciency, and luminosity e�ects. We measure ε in the

data via Equation 8.8 and use the known Py to extract AN .

8.4 Neutral Pions in the Jet Proxy Frame

Since we have our
−→
S f,JP and

−→
π0

f,JP vectors in the jet proxy frame (Section 8.2.1) and our

method for extracting the raw asymmetry (Section 8.3.2) we can now perform the extraction.

The two-dimensional distribution of
−→
π0

f,JP momentum in the x-y plane (in the jet proxy

frame) is shown in Figure 8.9. As stated, the +ŷ direction is always the direction of
−→
S f,JP in

the x-y plane. A portion of the bias seen here can be understood from the ∆η distributions

between the π0 and jet proxy as shown in Figures 8.10 and 8.11 which show a net-positive ∆η.
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Figure 8.9 Distribution of
−→
π0

f,JP momentum in the x-y plane in the jet proxy frame. The

y-axis corresponds to the
−→
S f,JP direction in the x-y plane (also displayed as a

black arrow). The blue ellipse corresponds to the rough (relative) location of the

North-going beam pipe. The x and y axis are
−→
π0

f,JP x and
−→
π0

f,JP y respectively.

Top: Lab-frame proton events with �up� polarization, Bottom: Lab-frame proton

events with �down� polarization. Left: Jet in West arm, Right: Jet in East arm.
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Figure 8.10 Top: The distribution of ∆η between the π0 and the jet proxy in the lab frame.

Y-axis: ∆η, X-axis:
−→
Jetf,lab⊥. Bottom: Pro�le histogram of the above plot. Left:

Jet in West arm, Right: Jet in East arm.

Figure 8.11 Top: The distribution of ∆η between the π0 and the jet proxy in the lab frame.

Y-axis: ∆η, X-axis: |
−→
Jetf,lab⊥|. Bottom: Pro�le histogram of the above plot.

Left: Jet in West arm, Right: Jet in East arm.
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8.5 ∆φ from Spin Vector to π0 in Jet Proxy Frame

Two-dimensional distributions of ∆φ measured from
−→
S f,JP to

−→
π0

f,JP in the manner de-

scribed in Section 8.2.1 are shown in Figures 8.12 and 8.13.

Figure 8.12 Distribution of ∆φ measured from
−→
S f,JP to

−→
π0

f,JP . Y-axis: ∆φ, X-axis:

|
−→
Jetf,lab⊥|. Top: Proton polarization vector �up�, Bottom: proton polarization

�down�. Left: Jet in West arm, Right: Jet in East arm.
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Figure 8.13 Distribution of ∆φ measured from
−→
S f,JP to

−→
π0

f,JP . Y-axis: ∆φ, X-axis:

|
−→
π0

f,lab⊥|. Top: Proton polarization vector �up�, Bottom: proton polarization

�down�. Left: Jet in West arm, Right: Jet in East arm.

The analysis is then broken up into three distinct pT regions for both |
−→
Jetf,lab⊥| and

|
−→
π0

f,lab⊥|. The |
−→
Jetf,lab⊥| regions are de�ned as (in units of GeV

c ): [5, 5.45), [5.45, 6.5), and

[6.5, 8.0]while the |
−→
π0

f,lab⊥| regions are: [1.0, 1.2), [1.2, 2.0), and [2.0, 3.0]. Figures 8.14 to 8.17

show the φ distributions using two φ bins (e�ectively �right� and �left�).
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Figure 8.14 Distribution of ∆φ measured from
−→
S f,JP to

−→
π0

f,JP with proton polarization �up�.

Y-axis: Counts, X-axis: ∆φ. Top to bottom |
−→
Jetf,lab⊥| regions (

GeV
c ): [5, 5.45),

[5.45, 6.5), and [6.5, 8.0]. Left: Jet in West arm, Right: Jet in East arm.
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Figure 8.15 Distribution of ∆φ measured from
−→
S f,JP to

−→
π0

f,JP with proton polarization

�down�. Y-axis: Counts, X-axis: ∆φ. Top to bottom |
−→
Jetf,lab⊥| regions (

GeV
c ):

[5, 5.45), [5.45, 6.5), and [6.5, 8.0]. Left: Jet in West arm, Right: Jet in East arm.
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Figure 8.16 Distribution of ∆φ measured from
−→
S f,JP to

−→
π0

f,JP with proton polarization �up�.

Y-axis: Counts, X-axis: ∆φ. Top to bottom |
−→
π0

f,lab⊥| regions (
GeV
c ): [1.0, 1.2),

[1.2, 2.0), and [2.0, 3.0]. Left: Jet in West arm, Right: Jet in East arm.
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Figure 8.17 Distribution of ∆φ measured from
−→
S f,JP to

−→
π0

f,JP with proton polarization

�down�. Y-axis: Counts, X-axis: ∆φ. Top to bottom |
−→
π0

f,lab⊥| regions (
GeV
c ):

[1.0, 1.2), [1.2, 2.0), and [2.0, 3.0], and [2.0, 3.0]. Left: Jet in West arm, Right: Jet

in East arm.

8.6 Final Raw Asymmetry Calculation

Now that the yields are known and sorted by proton polarization, ∆φ in the JP frame,

jet arm, jet pT , and π0 pT the calculation of the square-root asymmetry and its associated

statistical error (Section 8.3.2) term can occur. Figure 8.18 summarizes the results of the

square-root asymmetry calculations. The error bars are purely statistical.
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Figure 8.18 Final raw asymmetry. Y-axis: Square-root asymmetry values. Top: X-axis:

|
−→
Jetf,lab⊥|. Bottom: X-axis: |

−→
π0

f,lab⊥|. Left: Jet in West arm, Right: Jet in

East arm.

8.7 Estimation of Systematic Error

To provide an estimation of the systematic error induced by the Boost, Flip, and Swap

method a �nal state event weighting is applied to the simulated data. The weighting used is

A · Sin[φ] where A =0.0, 0.2, 0.4 and φ is the azimuthal angle between the Pythia truth quark

momentum and the Pythia truth MPC π0 momentum as described in Figure 8.8. Shown below

in Figures 8.19 to 8.30 are the square-root asymmetry method (Section 8.3.2) outputs for each

central arm jet pT range, MPC π0 pT range, central arm jet arm, and input asymmetry value; for

each output the �nal asymmetry is shown using the Pythia truth information when performing

the Boost, Flip, and Swap as well as using our approximated parameterizations (which is what is

applied to the real data). The square-root asymmetry method is applied to pairs of bins in φ such

that each bin at angle φ is compared to the bin at angle φ+π (Section 8.3.2, Equation 8.8 uses

identical notation). Each �gure also includes an A ·Sin[φ] �t curve and the extracted amplitude

and amplitude error (due to �tting). The relative di�erence between the input and output
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asymmetries leads to a dilution factor imposed by the method. The systematic uncertainty

on the measured spin asymmetry induced by the method itself (extraction and application of

parameterizations as discussed in Chapter 7) would be represented by a combination of the

comparison between the input and output asymmetry as well as the error on the A · Sin[φ]

extractions in Figures 8.19 to 8.30.

One can see that the use of the Pythia truth information to perform the Boost, Flip, and

Swap procedure (left-hand side of the aforementioned �gures) allows for an accurate reproduc-

tion of the input asymmetry in most pT ranges with su�cient statistics (below 6.5 GeV/c in

jet pT and below 2.0 GeV/c in MPC π0 pT ). The left-hand sides of Figures 8.19 to 8.30 and

Tables 8.1 to 8.4 show that the method itself is valid assuming that the parameterizations in

Section 7.2 can be extracted with little error. Due to exceedingly low simulation statistics a

parameterization extract with little error is not possible; the results of which are the asymmetry

extractions shown on the right-hand sides of Figures 8.19 to 8.30 and in Tables 8.5 to 8.8. Be-

cause the systematic error is exceedingly large an exact extraction is not warranted. Conclusions

about the validity of the method itself can be seen in Section 8.8.
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Figure 8.19 Final simulation asymmetry values. Jet in East arm with a pT between 5 GeV

and 5.5 GeV. Y-axis: Square-root asymmetry values. X-axis: φ. Top: 0% input

asymmetry. Middle: 20% input asymmetry. Bottom: 40% input asymmetry. Left:

Using Pythia truth values of partonic kinematics, Right: Using approximated

values for partonic kinematics.
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Figure 8.20 Final simulation asymmetry values. Jet in West arm with a pT between 5 GeV

and 5.5 GeV. Y-axis: Square-root asymmetry values. X-axis: φ. Top: 0% input

asymmetry. Middle: 20% input asymmetry. Bottom: 40% input asymmetry. Left:

Using Pythia truth values of partonic kinematics, Right: Using approximated

values for partonic kinematics.
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Figure 8.21 Final simulation asymmetry values. Jet in East arm with a pT between 5.5 GeV

and 6.5 GeV. Y-axis: Square-root asymmetry values. X-axis: φ. Top: 0% input

asymmetry. Middle: 20% input asymmetry. Bottom: 40% input asymmetry. Left:

Using Pythia truth values of partonic kinematics, Right: Using approximated

values for partonic kinematics.
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Figure 8.22 Final simulation asymmetry values. Jet in West arm with a pT between 5.5 GeV

and 6.5 GeV. Y-axis: Square-root asymmetry values. X-axis: φ. Top: 0% input

asymmetry. Middle: 20% input asymmetry. Bottom: 40% input asymmetry. Left:

Using Pythia truth values of partonic kinematics, Right: Using approximated

values for partonic kinematics.
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Figure 8.23 Final simulation asymmetry values. Jet in East arm with a pT between 6.5 GeV

and 8.0 GeV. Y-axis: Square-root asymmetry values. X-axis: φ. Top: 0% input

asymmetry. Middle: 20% input asymmetry. Bottom: 40% input asymmetry. Left:

Using Pythia truth values of partonic kinematics, Right: Using approximated

values for partonic kinematics.
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Figure 8.24 Final simulation asymmetry values. Jet in West arm with a pT between 6.5 GeV

and 8.0 GeV. Y-axis: Square-root asymmetry values. X-axis: φ. Top: 0% input

asymmetry. Middle: 20% input asymmetry. Bottom: 40% input asymmetry. Left:

Using Pythia truth values of partonic kinematics, Right: Using approximated

values for partonic kinematics.
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Figure 8.25 Final simulation asymmetry values. Jet in East arm. MPC π0 with a pT be-

tween 1 GeV and 1.3 GeV. Y-axis: Square-root asymmetry values. X-axis: φ.

Top: 0% input asymmetry. Middle: 20% input asymmetry. Bottom: 40% input

asymmetry. Left: Using Pythia truth values of partonic kinematics, Right: Using

approximated values for partonic kinematics.
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Figure 8.26 Final simulation asymmetry values. Jet in West arm. MPC π0 with a pT be-

tween 1 GeV and 1.3 GeV. Y-axis: Square-root asymmetry values. X-axis: φ.

Top: 0% input asymmetry. Middle: 20% input asymmetry. Bottom: 40% input

asymmetry. Left: Using Pythia truth values of partonic kinematics, Right: Using

approximated values for partonic kinematics.
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Figure 8.27 Final simulation asymmetry values. Jet in East arm. MPC π0 with a pT be-

tween 1.3 GeV and 2.0 GeV. Y-axis: Square-root asymmetry values. X-axis: φ.

Top: 0% input asymmetry. Middle: 20% input asymmetry. Bottom: 40% input

asymmetry. Left: Using Pythia truth values of partonic kinematics, Right: Using

approximated values for partonic kinematics.
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Figure 8.28 Final simulation asymmetry values. Jet in West arm. MPC π0 with a pT be-

tween 1.3 GeV and 2.0 GeV. Y-axis: Square-root asymmetry values. X-axis: φ.

Top: 0% input asymmetry. Middle: 20% input asymmetry. Bottom: 40% input

asymmetry. Left: Using Pythia truth values of partonic kinematics, Right: Using

approximated values for partonic kinematics.
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Figure 8.29 Final simulation asymmetry values. Jet in East arm. MPC π0 with a pT be-

tween 2.0 GeV and 3.0 GeV. Y-axis: Square-root asymmetry values. X-axis: φ.

Top: 0% input asymmetry. Middle: 20% input asymmetry. Bottom: 40% input

asymmetry. Left: Using Pythia truth values of partonic kinematics, Right: Using

approximated values for partonic kinematics.
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Figure 8.30 Final simulation asymmetry values. Jet in West arm. MPC π0 with a pT be-

tween 2.0 GeV and 3.0 GeV. Y-axis: Square-root asymmetry values. X-axis: φ.

Top: 0% input asymmetry. Middle: 20% input asymmetry. Bottom: 40% input

asymmetry. Left: Using Pythia truth values of partonic kinematics, Right: Using

approximated values for partonic kinematics.

Tables of the extracted �t amplitudes and amplitude errors are shown below for ease of

comparison. Tables 8.1 to 8.4 shows the extracted asymmetries using the Pythia truth values

for the Boost, Flip, and Swap method (left-hand sides of Figures 8.19 to 8.30). Tables 8.5

to 8.8 use only the approximated parameterizations (right-hand sides of Figures 8.19 to 8.30).

A simple comparison of the input and output asymmetries shows extremely large di�erences and

inconsistencies when the approximated parameterizations are used (Tables 8.5 to 8.8). Further

discussion of the topics addressed in this section can be found in Section 8.8.
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Output Asymmetry (East, Truth, MPC π0 pT ranges)

Input Asymmetry 1.0 - 1.3 GeV/c 1.3 - 2.0 GeV/c 2.0 - 3.0 GeV/c

0% 0.03 ± 0.07 0.06 ± 0.06 -0.24 ± 0.12

20% 0.24 ± 0.07 0.27 ± 0.06 -0.05 ± 0.13

40% 0.43 ± 0.07 0.47 ± 0.06 0.18 ± 0.13

Table 8.1 Jet in East arm. Pythia truth values used for Boost, Flip, and Swap procedure.

MPC π0 pT ranges used.

Output Asymmetry (West, Truth, MPC π0 pT ranges)

Input Asymmetry 1.0 - 1.3 GeV/c 1.3 - 2.0 GeV/c 2.0 - 3.0 GeV/c

0% -0.01 ± 0.05 0.00 ± 0.05 0.00 ± 0.13

20% 0.19 ± 0.05 0.20 ± 0.05 0.20 ± 0.13

40% 0.39 ± 0.05 0.40 ± 0.05 0.44 ± 0.14

Table 8.2 Jet in West arm. Pythia truth values used for Boost, Flip, and Swap procedure.

MPC π0 pT ranges used.

Output Asymmetry (East, Truth, Jet pT ranges)

Input Asymmetry 5.0 - 5.5 GeV/c 5.5 - 6.5 GeV/c 6.5 - 8.0 GeV/c

0% 0.07 ± 0.06 0.00 ± 0.07 -0.12 ± 0.15

20% 0.27 ± 0.06 0.21 ± 0.07 0.07 ± 0.15

40% 0.47 ± 0.06 0.43 ± 0.07 0.29 ± 0.15

Table 8.3 Jet in East arm. Pythia truth values used for Boost, Flip, and Swap procedure. Jet

pT ranges used.
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Output Asymmetry (West, Truth, Jet pT ranges)

Input Asymmetry 5.0 - 5.5 GeV/c 5.5 - 6.5 GeV/c 6.5 - 8.0 GeV/c

0% -0.01 ± 0.05 -0.03 ± 0.05 -0.04 ± 0.11

20% 0.19 ± 0.05 0.18 ± 0.05 0.15 ± 0.11

40% 0.40 ± 0.05 0.38 ± 0.05 0.38 ± 0.11

Table 8.4 Jet in West arm. Pythia truth values used for Boost, Flip, and Swap procedure. Jet

pT ranges used.

Output Asymmetry (East, Approximate, MPC π0 pT ranges)

Input Asymmetry 1.0 - 1.3 GeV/c 1.3 - 2.0 GeV/c 2.0 - 3.0 GeV/c

0% 0.02 ± 0.14 0.01 ± 0.07 0.30 ± 0.15

20% 0.00 ± 0.15 0.02 ± 0.08 0.41 ± 0.17

40% -0.02 ± 0.15 0.02 ± 0.08 0.44 ± 0.17

Table 8.5 Jet in East arm. Approximated parameterizations used for Boost, Flip, and Swap

procedure. MPC π0 pT ranges used.

Output Asymmetry (West, Approximate, MPC π0 pT ranges)

Input Asymmetry 1.0 - 1.3 GeV/c 1.3 - 2.0 GeV/c 2.0 - 3.0 GeV/c

0% 0.01 ± 0.11 -0.03 ± 0.06 0.17 ± 0.12

20% 0.00 ± 0.12 -0.02 ± 0.06 0.21 ± 0.13

40% 0.02 ± 0.13 0.00 ± 0.06 0.19 ± 0.14

Table 8.6 Jet in West arm. Approximated parameterizations used for Boost, Flip, and Swap

procedure. MPC π0 pT ranges used.



142

Output Asymmetry (East, Approximate, Jet pT ranges)

Input Asymmetry 5.0 - 5.5 GeV/c 5.5 - 6.5 GeV/c 6.5 - 8.0 GeV/c

0% -0.02 ± 0.06 0.07 ± 0.08 -0.02 ± 0.22

20% -0.01 ± 0.07 0.08 ± 0.08 NA

40% 0.00 ± 0.07 0.10 ± 0.08 NA

Table 8.7 Jet in East arm. Approximated parameterizations used for Boost, Flip, and Swap

procedure. Jet pT ranges used.

Output Asymmetry (West, Approximate, Jet pT ranges)

Input Asymmetry 5.0 - 5.5 GeV/c 5.5 - 6.5 GeV/c 6.5 - 8.0 GeV/c

0% 0.02 ± 0.05 0.02 ± 0.07 0.01 ± 0.14

20% 0.03 ± 0.05 0.05 ± 0.07 -0.01 ± 0.15

40% 0.04 ± 0.05 0.07 ± 0.07 0.03 ± 0.15

Table 8.8 Jet in West arm. Approximated parameterizations used for Boost, Flip, and Swap

procedure. Jet pT ranges used.

8.8 Conclusions

In an ideal scenario there would exist a detector system at forward rapidity (large η) that

is capable of jet reconstruction at a polarized proton-proton accerator/collider facility, but

this just does not exist. This novel method was pursued in order to take advantage of the

current detector systems that do exist at the PHENIX experiment at RHIC. The work presented

here shows the viability of this novel method. Due to the limited nature of simulated event

generation (Chapter 6), the systematic errors due to the parameterization (Chapter 7) remain

too large to perform a meaningful extraction of the measured asymmetry (Tables 8.5 to 8.8).

New event generation techniques are required for this measurement and are being explored

by the Experimental Nuclear Physics group at Iowa State University with the hope that the

event generation rate can be signi�cantly increased. A larger simulated event sample would
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lead to dramatically lower systematic and statistical errors imposed on the analysis due to

the parameterization extraction and application procedure (Chapter 7 and Section 8.7). With

lowered parameterization error one can see that the method itself is viable as the input and

output asymmetries in Tables 8.1 to 8.4 are in good agreement.

Due to the unexpectedly low statistical sample of real data available (roughly four times

smaller than anticipated, Section 4.7) no �rm conclusions about the relative contribution of

the Collins e�ect to the observed single spin asymmetry can be made. Run-15 at RHIC is

will contain a larger sample of transversely polarized proton-proton running at
√
s = 200GeV

c2

[71] that will increase the size of the statistical sample available for this analysis by over a

factor of �ve. Run-15 will also include the MPC-EX upgrade to the MPC detectors which adds

silicon tracking in front of the existing MPC detectors [72]. The MPC-EX upgrade will allow

for charged-jet reconstruction which enables a more direct method for measuring the Collins

contribution to the asymmetry.

Forward jet physics will continue to be a topic of great interest and research in the fu-

ture. The PHENIX experiment plans for a large detector upgrade (sPHENIX) in tandem with

upgrades to the RHIC accelerator with data taking occurring in 2021 and beyond [73]. The

sPHENIX upgrade largely emphasises jet physics in the forward rapidity region which will help

to further disentangle the Collins e�ect contribution from the observed single spin asymmetry.
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