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ABSTRACT OF DISSERTATION 
 
 
 
 
 

BEHAVIOR OF RC BEAMS STRENGTHENED IN FLEXURE WITH SPLICED 
CFRP ROD PANELS 

 
 

FRP laminates and fabrics, used as an externally bonded reinforcement (EBR) to strengthen 

or repair concrete members, have proven to be an economical retrofitting method. 

However, when used to strengthen long-span members or members with limited access, 

the labor and equipment demands may negate the benefits of using continuous EBR FRP. 

Recently, CFRP rod panels (CRPs) have been developed and deployed to overcome the 

aforementioned limitations.  Each CRP is made of several small diameter CFRP rods 

placed at discrete spacing. To fulfill the strengthening length, CRP’s are spliced together 

and made continuous by means of overlaps (or finger joints). 

 

In this doctoral dissertation, the effectiveness of spliced CRPs as flexural strengthening 

reinforcement for RC members was investigated by experimental, analytical and numerical 

methods. The experimental research includes laboratory tests on (1) RC beams under four-

point bending and (2) double-lap shear concrete specimens. The first set of tests examines 

the behavior of concrete members strengthened with spliced CRPs.  Several beams were 

fabricated and tested, including: (a) unstrengthened, (b) strengthened with spliced CRPs, 

(c) strengthened with full-length CRPs, and (d) strengthened with full-length and spliced 

CFRP laminates. The double-lap shear tests serve to characterize the development length 

and bond strength of two commonly used CRPs. Several small-scale CRPs, with variable 

bond lengths, were tested to arrive to an accurate estimation of development length and 



 

 
 

 

bond strength. Several other specimens were additionally tested to preliminarily examine 

the effects of bond width and rod spacing. 

 

A 3D nonlinear finite element simulation was utilized to further study the response of CRP 

strengthened RC beams, by extracting essential data, that couldn’t be measured in the 

experimental tests. Additionally, analytical tools were added to investigate the behavior of 

tested bond and beam specimens. The first tool complements the double-lap shear tests, 

and provides mathematical terms for important characteristics of the CRP/concrete bond 

interface. The second tool investigates concrete cover separation failure, which was 

observed in the beam testing, for RC beams strengthened with full-length and spliced 

CRPs.  

 
  
 
KEYWORDS: Spliced CFRP rod panels (CRPs), RC beam, double-lap shear, 3D F.E 

models, CZM debonding models, concrete cover separation. 
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CHAPTER 1:   INTRODUCTION 

 
 
 

1.1      Problem Background (The Need for Retrofit) 

Reinforced and prestressed concrete structures will need performance modification and 

improvement at one point in their lifetime (Allawi 2006, Al-Mahmoud et al. 2009, and 

Obaidat 2010). The need for structural repair or replacement is attributed to many reasons, 

including but not limited to: deterioration as a result of aging, severe environmental 

exposure, natural events, vehicular impacts, errors in the design and/or in the construction, 

inferior materials used in the building, changes in function, and updates to the design codes. 

When a structure becomes deteriorated and/or unable to withstand the applied loads, there 

are two possible solutions: replace the structure, or repair the current one. However, full 

structure replacement has become an unfavorable choice due to the tight budgets and low 

resources of most local, state, and federal agencies. Also, full structure replacement 

imposes other disadvantages due to the disruption of construction, such as: the need for 

detours and traffic problems.  From this it can be concluded that when the opportunity of a 

cost-effective and easy to implement repair is available, structural engineers, owners, and 

operators will opt to repair or upgrade the structure rather than replace it.  

The Federal Highway Administration (FHA) publishes a status report every few years to 

assess the ongoing condition of all U.S bridges. In (FHA 2013) report, it was estimated that 

of the 607,751 bridges in the U.S, 24% of them are listed as either “Structurally Deficient” 

or “Functionally Obsolete”. Structurally deficient refers to bridges in which major 

structural elements have deteriorated and lost a large component of their internal resistance. 
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Although the term structurally deficient does not designate these bridges to be completely 

unsafe for usage; it does indicate that in such bridges, the load-carrying capacity of major 

structural members has decreased to less than the designed value.  Therefore, major repair, 

load adjustment, or replacement procedures should be carried out in order for the bridge to 

remain in service and function as intended. On the other hand, the term functionally 

obsolete describes bridges that have been designed and constructed according to earlier 

standards; and since the standards have been updated, these bridges have failed under the 

new standards. Unlike the structurally deficient category, the functionally obsolete 

category does not involve structural deficiencies such as deterioration, corrosion, or 

damage, but rather it includes geometrical inadequacies such as insufficient deck width or 

road approach, or low under bridge clearance (FHA 2010).  

Furthermore, according to (FHA 2010) study, the percentage of bridges that are 25-50 years 

old is 37.7 %.  In addition, 20.7 % of the bridges are more than 50 years old.  In addition, 

FHA study specifies the typical life of a standard bridge to be 50 years. Therefore, by 

comparing the above data, it’s evident that there is a large portion of highway bridges, 

providing necessary services to millions of Americans, are either in immediate need for 

rehabilitation or replacement procedures, or soon will be. 

The information above on the deficiencies and aging issues of our nation’s bridges, and the 

call for immediate corrective actions is just one example describing the importance that 

structural engineers must seek out efficient, cost-effective, and easy-to-install 

rehabilitation techniques for our nation’s infrastructure.  
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1.2     Lap-Spliced FRP Plates (Laminates) 

Externally bonded reinforcement (EBR) consisting of fiber reinforced polymer (FRP) 

composites has been successfully deployed worldwide for strengthening existing concrete 

structures.  It is generally more economical and convenient than other repair systems 

(Attari et al 2012, Vasudevan and Kothandaraman 2014).  Numerous experimental and 

field applications have shown that EBR FRP can efficiently increase the flexural strength 

of a concrete member (Bonacci and Maalej 2001, Lee et al 2005, Chansawat et al 2009, Si-

Larbi et al 2012, Ren et al 2015).  

One of the drawbacks of the EBR FRP method is the man power needed to attach 

continuous laminate along the entire length of the member. The difficulty is more evident 

when the concrete member is too long or inaccessible (e.g., bridge over waterway or multi-

lane expressway). Construction of scaffolding along the length of a member can be time 

consuming and costly (Peiris 2011).  Although splicing FRP laminates is an option, it is 

not commonly used in practice. Much of the research investigating lap-splicing FRP 

plates/sheets has focused on steel substrate. For example, Yang and Nanni 2002 

investigated the lap-splice length and fatigue performance of lap-spliced CFRP laminates 

through double lap-shear steel coupon tests. It was found that 38.1 mm (1.5 in.) lap-splice 

length is sufficient to provide continuity for the lap-splice system, under static loads. 

Fatigue tests were performed on 101.6 mm (4 in.) lap-spliced specimens. The study 

reported that the provided lap-splice length can resist more than 2.0 million load cycles 

with no effects on residual strength, providing that the maximum applied stress does not 

exceed 40% of the ultimate static strength.   
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Dawood and Rizkalla 2006 conducted an experimental study on steel beams and double-

lap shear steel specimens to investigate the effectiveness of lap-spliced CFRP laminates, 

using different splice configurations. The study indicated that controlling failure mode is 

debonding of the splice from the primary laminates due to high shear stresses at splice 

ends. The study also showed that implementing reverse taper at the splice ends results in 

reduction of the end shear stresses, and could increase the structure load capacity. Dawood 

et al 2007 extended the above study to include the effects of various taper configurations, 

the effects of increasing splice length, and the effects of using mechanical anchorage near 

the splice ends. The study reported that using reverse taper at both (1) the butt-joint of 

primary laminates, and at (2) at splice ends results in increasing the splice capacity to twice 

as the splice without reverse taper. While increasing the splice length or providing 

additional mechanical anchorage have minimum influence.  

The research on lap-spliced CFRP plates bonded to concrete substrate was pioneered in 

late 90’s by Alabama Department of Transportation (ALDOT), [Tedesco et al 1996, and 

1998, Stallings et al 2000]. In that research, the CFRP lap-splicing technique was 

implemented in the field to rehabilitate an existing concrete bridge in Albama. The retrofit 

procedure consisted of strengthening the all girders at bottom face by bonding three CFRP 

primary plates, that are equal in length and disconnected at one third-of-length locations to 

form two joints (called “butt-joints”), and CFRP splices over the butt-joints (figure 1.1). 

Along the sides of three girders, CFRP primary plates and splices of similar configuration 

to the attachment at bottom, were used. Field load testes, using a commercial truck with 

known weight and axle positions, were performed before and after implementing the 

rehabilitation procedure. Strain measurement of tensile steel rebars and along the surface 



 

5 
 

 

of primary and splice plates, as well as deflections, have shown that the rehabilitation 

system was effective in reducing rebar tensile stresses, and bridge deflections.   

 Stalling and Porter 2003 performed laboratory tests on large-scale RC beams strengthened 

with lap-spliced CFRP plates. Splices of 610 mm (24 in.) and 915 mm (36 in.) lengths were 

investigated. The effects of splice location were explored by attaching the splice at (1) one 

splice at maximum bending moment (mid-span), and (2) two splices at shear span. The 

study showed that the predominant failure mode is debonding of splice by high shear 

stresses at splice ends, due to the difference in strains between primary plate and splice. 

 The study also included small-scale tension tests consisting of CFRP primary plates 

connected by splices. Both the beam tests and tension tests indicated that there was a 

uniform strain at the threshold of debonding. For design purposes, the study devised to 

limit the strain at the end of splice to 1682 micorstrain, in order to prevent debonding of 

the splice. The study also concluded that in order for the splices to be fully functional, and 

to avoid shear failure in the splice, the average shear stress should be kept below 15% of 

the shear strength of the adhesive.  This implies that relatively very long splices are 

required. To our best knowledge, there has not been other recent researches on lap-spliced 

CFRP plates, bonded to concrete structures.    

 

1.3     CFRP Rod Panels (CRP Strengthening System) 

Carbon fiber reinforced polymer (CFRP) rod panels (CRP’s) have recently been developed 

and deployed in the field to overcome the above limitations of FRP laminates (Harik and 

Peiris 2014). CRP’s are externally bonded to the concrete substrate in a manner similar to 

other externally bonded reinforcement (EBR). However, CRPs are made from small 



 

6 
 

 

diameter CFRP rods. The group of rods are placed side by side at discrete spacing to form 

a panel [figures 1.2 (a), 1.3 (a)]. The rods are then mounted to a fiberglass backing to 

facilitate the handling of the panel and to keep the rod spacing consistent. This change in 

orientation from FRP laminates to CRPs, in turn changes the area of the CFRP. The area 

of CRPs becomes the product of the individual rod area by the number of rods provided. 

Therefore, the total area can be adjusted by either varying rod dimeter, rod spacing or both.  

Nominally, CRPs are usually given the term CRP-X3 (X3=XXX=070, 145, 195, etc.), 

which indicates that CRP can resist XXX kips of force per 1-ft wide section. Each panel is 

approximately 1.2 m (4 ft.) long.  

CRPs are attached to the structural member as externally bonded reinforcement (EBR). 

Attachment of CRP onto a structural substrate can be summarized as such: (1) a uniform 

layer of adhesive is applied onto the substrate. (2) CRP is then brought to its correct 

position and pressed gently, forcing the adhesive to flow around the rods and fill 

completely between the rods. (3) Finally, CRP is covered with a second adhesive coat.  

In this attachment configuration, CRP will be centered and embedded inside the adhesive, 

[figure 1.3 (c)]. Adhesive thickness will approximately be 2-to-3 millimeters greater than 

rod diameter. Neighboring panels are brought together and made continuous by 

overlapping “finger joint” methods, [figures 1.3 (c, d)]. The overlap length, conservatively 

selected based on preliminary double-lap shear tests conducted by Harik and Peiris (2014), 

is 150 mm (6 in.). Each alternate panel is produced with an extra rod to provide symmetry 

on both sides of the overlap region. 
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Potential advantages of using CRP technique are: 

1- CRP technique is suitable for rehabilitation/strengthening of members with long span or 

limited access (e.g. bridges over waterways and freeways). Under such circumstances, 

application of externally bonded FRP laminates (plates) would be interfered by the need 

for large equipment and manpower, required for attaching continuous laminates. Splicing 

FRP laminates is still uncommon practice. Few studies have reported on the viability of 

lap splicing FRP plates for concrete members (Yang and Nanni 2002; Stalling and Porter 

2003).  However, within spliced (overlapped) CRPs, the retrofit program can easily be 

carried out by few workers with relatively simple equipment, therefore leading to a 

significant reduction in the repair cost and time.  

2- Within CRP technique, the bond width (wf) can be increased by adjusting rod spacing 

and rod diameter, for a constant CFRP area. Several researches have shown through 

experimental and analytical studies that increasing bond width results in delaying or 

complete prevention of pre-mature debonding failures for FRP plated concrete and steel 

members (Chen and Teng 2001, Kamel et al 2003, Obaidat 2011).This capability is 

unavailable with CFRP laminates, due to their solid geometry and limited available 

thickness.  

3- Since the rods are embedded inside the adhesive layer, adhesive will provide a degree 

of protection against chemical and environmental attacks. 
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1.4    Research Objective 

The main objective of this doctoral dissertation is to investigate, experimentally, 

analytically and numerically, the effectiveness of spliced CRPs used as external 

reinforcement for strengthening concrete structures.  

 

1.5    Research Significance 

FRP composites have been widely used in the last few decades as an alternative 

reinforcement to conventional materials, such as steel. FRPs can be used in new 

constructions to complement or completely replace steel rebars and grids, or as an 

additional reinforcement to strengthen or repair deficient structures. As this system 

continues to develop, new ideas and techniques emerge to overcome the limitations and 

flaws encountered within early developed FRP systems.  

The current proposed research is anticipated to provide an insight on one of the new FRP 

techniques used in strengthening concrete members. CFRP Rod panels are developed to 

reduce labor and equipment costs by means of using short panels jointed together by 

overlapping. The technique is used in lieu of other forms (i.e plates, fabrics) when the to-

be repaired structure has limited access (e.g. bridge over busy roadway). Although, there 

have been some laboratory tests that investigate the behavior of concrete members bonded 

to CRPs, as well as some field applications utilizing CRPs for bridge repair (Harik and 

Peiris 2014). This proposed research serves as the first in-depth study to evaluate the 

flexural and bond responses of CRPs, when they are bonded to concrete substrate. The 

experimental, numerical and analytical outcomes of this proposed research study will be 
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significantly important in support of the developed technique; in order to gain reliability 

on the system and introduce it into the market. 

 

1.6    Dissertation Layout 

This dissertation is organized in seven chapters. The main body of the work, which includes 

experimental, numerical, and analytical investigations of the effectiveness of spliced CRPs 

to strengthen concrete members, is presented in chapters 3, 4, 5, and 6. An outline of the 

contents of the following chapters is explained as follows: 

 

Chapter 2:  Literature Review  

This chapter provides a state-of-the-art literature survey on past and current methods used 

to repair or upgrade concrete members. Current strengthening methods that utilize FRP 

forms material, including (1) externally bonded FRP plates (laminates) and sheets, (2) near 

surface mounted (NSM) FRP rods and strips, and (3) externally bonded pre-stressed FRP 

plates, are examined. Each of the above strengthening techniques is reviewed in terms of 

its characteristics, method of application onto the concrete substrate, advantages and 

limitations, while also listing laboratory studies and field applications, that investigate the 

applicability of these techniques onto the retrofit of concrete structures.   

 

Chapter 3:  

The development length and bond strength, along with other factors, expected to effect the 

bond behavior of CRP/concrete joint, are studied experimentally through laboratory tests 
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on double-lap shear specimens. Results are presented for two CRPs, with two rod diameters 

and two rod spacing. 

 

Chapter 4:  

The flexural behavior of overlapped CRPs is experimentally studied by testing laboratory-

size, RC beams under four-point bending. In order to measure the effectiveness of 

overlapped CRPs, and to compare the results with the other widely used strengthening 

methods, the beam testing program includes: (1) control (un-strengthened) specimen, (2) 

specimens strengthened with full-length CRPs, and (3) specimens bonded to full-length 

and spliced CFRP laminates, in addition to specimens bonded to overlapped CRPs. 

 

 Chapter 5:  

3D nonlinear finite element (F.E) analysis of the specimens tested in chapter 4 is 

performed. The steps followed to create the finite element analysis are presented.  Also, 

the simulation results are compared with the findings of the experimental testing. The 

validated F.E models are further used to extract essential data that can’t be produced from 

the experiments.  And finally, to study in detail the performance of CRPs in strengthening 

RC beams. 
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Chapter 6:  

Presents two analytical tools to investigate the behavior of CRPs when used to strengthen 

or retrofit concrete members. The first tool complements the double-lap shear tests in  

chapter 3, and provides mathematical terms for important characteristics of the 

CRP/concrete interface; such as adhesive shear stress, relative slip between concrete and 

CRP, and tensile strains in CRP. The second tool investigates concrete cover separation 

failure, which was observed in the beam testing for RC beams strengthened with full-length 

and overlapped CRPs.  

 

Chapter 7:  

Concludes the major findings of the dissertation and summarizes recommendations for 

future work. Also this chapter lists the limited factors and case studies undertaken in the 

current investigation and provides suggestions about how to further examine other potential 

parameters.   
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Fig. 1.1 Lap-spliced FRP plates on concrete bridge (after Stallings et al 2000). 
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(a) Individual CRP (pictured CRP-195) 

 

 

 

 

 

 

 

 

 

 

 

(b) Two panels, arranged in overlapping layout (pictured CRP-070) 

 

 

 

 

 

 

 

 

 

 

 

(c) Close-up of rod overlap region (pictured CRP-070) 

Fig. 1.2 CRP strengthening technique (actual panels). 
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Fig. 1.3 CRP strengthening technique (schematics). 
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CHAPTER 2:   LITERATURE REVIEW 

 

2.1     Conventional Strengthening Methods 

In civil engineering applications, the repair and strengthening of concrete and steel 

infrastructure is as important as the design, analysis and construction aspects. The 

following are a number of conventional techniques used for repair before the development 

of strong structural adhesives and plate bonding techniques: 

1- Introduction of additional supports intended to reduce the member’s span, and hence 

decrease forces and deformations in the member, [figure 2.1 (a)], (Wipf et al 1987, Al-

Jelawy 2013). 

2- Increasing dimensions of the section, by stapling additional reinforcement and casting 

new concrete, to enlarge the section’s capacity, [figure 2.1 (b)], (Hollaway and Leeming 

2000). 

3- Replacing non load-bearing sections with load-bearing ones; or using lighter partitions 

and coverings, to reduce dead weight (Jones et al 1982).  

4- Using external prestressing technique, in which the pestressing strands act as an 

additional tensile reinforcement, to increase or supplement the internal reinforcement, 

[figure 2.3 (c)] (Wipf et al 1987, Al-Jelawy 2013). 

Although these conventional methods can suffice in restoring or increasing a member’s 

capacity, they have a number of disadvantages. Conventional methods require extensive 

labor and time, they cause disruption to the structure functionality, and sometimes, demand 

evacuation of the buildings inhabitants or closure if necessary (Jones et al 1982).  
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2.2     Adhesively Bonded Plates 

In the last few decades, the development of strong bonding agents, in conjunction with a 

better understanding of the mathematical concepts governing how composite parts interact 

and behave when they are bonded together, and the development of numerical and 

analytical tools (e.g. finite element method, advanced closed-form equations) used in 

predicting the behavior and failure mechanism of different engineering materials, have all 

guided structural engineers and researchers toward the development of new repair 

techniques that are cost-effective,  and easy-to-install. Plate bonding technique is one of 

those great repair methods. It involves attaching a steel or FRP plate onto the structural 

substrate (e.g. concrete, steel, masonry, timber, etc.) with the help of bonding agent, 

oftentimes, epoxy adhesives.  

Since concrete has a relatively low tensile strength, therefore it cracks in tension at low 

load levels, and given that other parameters such as moisture, freeze-thaw circles, chemical 

attacks, etc., could cause significant corrosion of the steel reinforcement and lead to a 

reduction in the member’s load capacity, external plates could be bonded to the concrete 

soffit as a supplementary reinforcement to restore the lost tensile force due to cracking 

and/or steel corrosion in repair projects. Likewise, in strengthening projects, bonded plates 

could be glued to the uncracked, un-corroded concrete member to increase the member’s 

load capacity to certain limits when such capacity needs to be increased due to: change of 

structure’s function, adaptation of new, more rigorous design codes, or increase in 

operational loads.  
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2.2.1 Adhesively Bonded Steel Plates  

During 1960s, the use of steel plates as an externally bonded reinforcement for 

strengthening, repair, and retrofit of structural elements, is believed to have first initiated 

in South Africa and France (Chajes et al 1994, Norris et al. 1997, Toutanji et al. 2006). The 

technique was attractive at first because it offered many advantages including cost-

effectiveness compared to other conventional methods, small to negligible changes in the 

member’s geometry, tangible increase in strength and stiffness, and reduction in deflections 

and cracks (Macdonald and Calder 1982, jones et. al. 1982, and Narayan et. al 1996). 

Furthermore, steel plates have isotropic properties, are ductile, and possess a relatively long 

fatigue life (Jumaat and Alam 2008).   

Large numbers of laboratory studies have shown that RC beams or slabs bonded in tension 

with steel plates could achieve a substantial increase of strength and stiffness, within both 

service and ultimate-load stages; while also achieving a decrease in cracks and 

deformations (Macdonald 1978, and 1982, Van Germet 1980, Jones et al 1988, Swamy et 

al 1989). For Example, Oehler’s 1992 tests of grouped RC beams, with a focus on flexural 

and shear peeling failures, were in fact strengthened with steel plates. During these tests, 

various variables were changed such as: concrete compressive strength, shear 

reinforcement amount, shear span, and distance between supports and plate ends, this 

allowed for the arrival at a design model capable of preventing debonding induced by 

flexure and/or shear forces.  In addition, in Barnes et al. 2001, steel plates joined by means 

of bolting or adhesive bonding, were attached to the sides of 2330 mm (91 in.) long RC 

beams, proving to enhance the shear capacity. Furthermore, the fatigue life of beams 

bonded to steel plates was studied in Hwan et al 2003. The study found that strengthened 
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beams had a better fatigue resistance at the same load level than their un-plated 

counterparts. Finally, the bearing capacity of RC beams, was also significantly enhanced 

due to the presence of adhesively bonded steel plates, as studied by Lei Dong et al. 2012.  

Further studies also showed that RC slabs could also be strengthened with steel plates. In 

Ebead and Marzouk 2002, two-way RC slabs with a square side of 1900 mm and a built-

in column at the center were showed to have strengthened with steel plates of 1.5 mm thick. 

The plates were located at the central region near the column, in which, punching shear 

force is high. Static (central point load, and moment) and cyclic loads were considered.  

For strengthened specimens subjected to point loads, the ultimate load increased by 54 and 

36.5%, for internal reinforcement ratios of 1%, and 0.5%, respectively. Specimens 

subjected to combination of point load and moment had an increase of at least 88% in 

ultimate capacity.  

Zhang et al. 2001 carried out an experimental program on square, two-way, simply-

supported, RC slabs strengthened with steel plates. The results of the testing revealed that 

steel plates were able of enhancing cracking and ultimate load behavior as well as reducing 

cracks and deflections. No debonding failure was observed in the strengthened specimens, 

and the authors assumed that debonding is unlikely to occur in plated two-way RC slab. 

One-way RC slabs, having a length 1500 mm, a width of 600 mm, and a thickness of 60 

mm, were strengthened in flexure with steel plates bonded at the bottom, (Rasheed and Al-

Azawi 2013). According to the authors, bonded plates were effective in increasing the 

crack load by at least 60%, and ultimate load by at least 85%. Debonding at plate ends was 

the predominant failure mode. 
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 In field applications, steel plates were successfully applied to strengthen or repair RC 

buildings, bridges or other types of structures. (Mander 1981, Van Germert and 

Maesschalckt 1983, Sims 1985). Plates have also been applied to the sides of concrete 

members to repair or strengthen structures with inadequate shear reinforcement (Swamy et 

al 1989, Taljstan 1994, Barnes and Mays 2001).  

However, steel plate bonding technique has some disadvantages that limit its full utilization 

within structural repair/strengthening projects. Those disadvantages may include: (1) 

corrosion: since steel plates are bonded to the external surface of the member, they are 

generally un-protected against corrosion, in which, steel material is highly susceptible to; 

and due to the reduction of the plate’s sectional-area, corrosion could result in deterioration 

of the bond strength (Hollaway and Leeming 2000, Obaidat 2010). (2) Difficulty of 

transportation: especially with long sections, due to the high density of steel. Furthermore, 

due to the lack of flexibility, it is hard to use the technique within complex shape members.  

(3) High labor costs: since steel plates are heavy, handling and installing them is a 

cumbersome task, most times, requiring the use of massive false-works and clamping 

systems to hold the plates in place while adhesive is in the process of curing. Consequently, 

both the project’s cost and time would be increased (Jumaat and Alam 2008). (4) Cracking 

and debonding: In practice, the delivery lengths of the plates are limited, therefore when 

long sections need to be strengthened, jointed plates or lap-spliced are used to achieve the 

strengthening length. Those jointed plates would then, be connected by the use of welding 

and/or bolting, which both are observed to cause several issues such as cracks within 

concrete as in the case of bolting, large normal and shear stresses at the bond interface, and 

debonding failures (Norris et al. 1997, Toutanji et al. 2006).   
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2.3    Strengthening of Concrete Members with FRP 

In the last two decades, there has been an extensive increase in the use of fiber reinforced 

polymer (FRP) composites for structural engineering projects, (Alaee and Karihaloo 2003, 

Aram et al 2008). Due to the composites’ excellent attributes of high strength and stiffness, 

low density, and immunity to corrosion, FRP’s have made their way into the zenith of 

structural applications. Despite that FRP sections are more expensive than other 

conventional structural materials, like concrete and steel, the project’s total cost is 

generally competitive due to the cost savings received from labor, equipment, and time. 

Since FRPs are lightweight, and easy to install, the need for labor and equipment is reduced. 

(ACI 440.2R-2008).  

Furthermore, FRP’s have various configurations, enabling them to be used in a host of 

assignments. Rectangular sections, angles, channels, tubes, bars, tendons, rods, etc., are 

just some examples of the shapes available in the market. Within the civil engineering field, 

FRP’s can be employed in two ways: internal and external reinforcement. In the 

construction of reinforced and pre-stressed concrete members (e.g. beams, columns, and 

slabs), FRPs can be used as an internal reinforcement to replace or supplement steel rebars, 

tendons, or grids, particularly in corrosive environments (Micelli and Nanni 2004, Nour et 

al 2007, De Luca et al 2010, Triantafillou and Matthys 2013). On the other hand, most 

utilizations of FRP involve applying the advance material as an external reinforcement to 

repair or strengthen structures that are weak in flexure, shear, torsion, etc. (Arduini and  

Nanni 1997, Blanksvard et al 2009, El-Maaddawy and El-Dieb 2011).  
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2.3.1 Adhesively Bonded FRP Plates (Laminates, Strips) 

Pultruded FRP plates (also called laminates or strips), of high tensile strength, are glued to 

the soffit of concrete members to increase the flexural capacity. The plate must be glued to 

the tensile face of the member in a way that ensures the fibers are aligned with the 

member’s longitudinal axis. Additional resistance moment, resulting from the plate’s 

tensile force and its distance from neutral axis, would be added to the section nominal 

moment capacity.  Improvements in load-carrying resistance, post-cracking stiffness, 

reductions in crack widths and deflections at service are abundantly reported in the 

literature for FRP plated concrete members (Meier 1987, Bonacci and Maalej 2001, 

Eshwar et al 2005, El Maaddawy and Soudki 2008, and Florut et al 2014).  Other studies 

geared toward the long-term behavior, fatigue performance, environmental exposure, and 

time-dependent (dynamic) applications of FRP bonded concrete are also abundant (Plevris 

and Triantafillou 1994, Ferrier and Hamelin 2002, Savoia et al 2005, Kesavan et al 2013, 

Rabinovitch 2014).   

In a study of strengthening by FRP plating by Meier and his colleagues (Meier et al. 1992), 

presented a four-point, static testing program on 60 small-scale RC beams, strengthened 

by soffit CFRP laminate, 0.3 mm (0.012 in) thick and 200 mm (8 in.) wide. The flexural 

capacity of strengthened specimens was reported to be over 100% more than control beam, 

the deflection to be 50% less, and cracks were smaller in width and spaced closely.  Further, 

in another study by Ritchi (1991), Glass and carbon (FRP) plates were adhesively bonded 

to the soffit of 2.74 m (9 ft.) long RC beams, and tested to failure in flexure. The study 

found that when comparing with un-plated control specimens, the FRP bonded beams, 

achieved 17 to 99 % increase of the at-service stiffness, and 40-97% increase of ultimate 
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strength. Also, in a study by Jumaat and Alam 2008, 2300 mm long, RC beams with a cross 

section of 125 x 250 mm, for width, and depth, respectively, were bonded to CFRP plates 

and tested in four-point bending,. The testing revealed that FRP bonded beams were able 

to achieve 54% increase in failure loads over the control specimen for un-anchored FRP 

plates, and 96% for end-ancored FRP plates.   

To mimic practical field applications, in which most bridge or building repair projects are 

under some loading levels, pre-loaded concrete beams (to 85% of capacity) were strengthed 

with FRP  plates, and tested in flexure, Alfarabi et al 1994. Pre-loading to the suggested 

levels didn’t influence the flexural behavior of tested strengthened specimens when 

compared to un-loaded strengthened reference beam.  At the University of Arizona, full-

scale concrete rectangular and flanged beams were repaired in flexure by GFRP plates and 

tested under four-point setting, Saadatmanesh and Ehsani 1991. The experimental program 

is believed to be the first testing performed on large scale FRP repaired members in the 

US. Consederable improvents in strength and stiffness, and reduction in stress levels of 

internal steel, were observed.  

Besides experiements, in some places, experimental repair programs have been a huge 

success. In Delaware, several RC bridges comprised of prestressed box beams were in a 

bad structural shape due to severe cracking at the beams’ tensile faces.  The bridges were 

scheduled for replacement, but later on the replacement was canceled since their capacity 

was successfully restored by bonding FRP plates to the tensile side of each beam, Chajes 

et al 1993.  Another example of a succesful FRP plating is the concrete deck slab of the 

two-span, composite bridge over Deerfoot trail in Calgary, Canada.  The bridge was in 

need for strengthening to carry out the current design live loading, Hutchinson et al 2003. 
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CFRP strips, 100 mm (4 in.) wide and 1.2 mm (0.048 in.) thick, spacing 500 mm (20 in.) 

apart, were added to the tension face of the slab at negative moment locations.  

The feasibility of attaching FRP plates to retrofit concrete members against blast loading 

was examined through experimental testing and analytical modeling by Wu et al 2009. 

FRP plating was found to be an appropriate technique for retrofitting blast damaged 

concrete elements, and effective in increasing the energy absorption at such loading event.  

As part of a larger program concerning the long-term durability, fatigue endurance, low 

temperature, and dynamic loading effects on FRPs,  Lopez et al 2003 tested four RC 

concrete beams glued to FRP laminates.  The study concluded that temperature as low as -

29 0C (- 20.2 0F) didn’t have an impact on the interfacial bond between concrete and FRP, 

nor on the ultimate load performance.  In another test to evaluate the effects of using 

bonded composite reinforcement, Ebead and Marzouk (2004) studied two-way concrete 

slabs that were bonded in the soffit with carbon FRP strips and glass FRP laminates.  The 

study found that flexural capacity was increased by in average by 35.5%, with a similar 

increase in initial stiffness.  

 

2.3.2 Adhesively Bonded FRP Fabrics (Sheets) 

Although FRP plates are best known for use with flexural applications and FRP fabrics for 

shear repair or column confinement, fabrics can be also used to enhance bending capacity. 

Fabrics are very flexible and can follow the outline of an un-even surface and bend at right 

angles. Since the production of bonded fabrics involve impregnating dry or pre-preg fibers 

with a saturating resin at site, the cost of the fabric system is generally less than for factory 

manufactured plates. Numerous number of research studies, concerning bonding FRP 
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fabrics (sheets) to strengthen or repair concrete members in bending, have been found.  

Various types of FRP fabrics, including E-glass, aramid, and graphite CFRP fibers, were 

bonded with two-part epoxy to the bottom of RC beams, and tested in flexural setting, 

Chajes et al 1994. The composite reinforcement contribute to an increase in the flexural 

capacity by 36-57%, depending on the type of FRP reinforcement, while the post-cracking 

stiffness enhanced by 45-53%. E-glass and graphite fiber FRP strengthened specimens 

failed by fabric tensile rupture in the constant-moment region, while specimens bonded to 

aramid fabrics, failed by compressive concrete crushing.   

The effects of strengthening pre-cracked members and changing the orientation of fibers 

were examined experimentally in Norris et al 1997. CFRP sheets with fibers oriented either 

parallel to beam’s length (00), diagonal to length (± 450), or perpendicular to length (900) 

were bonded to concrete beams, which were tested under flexural conditions. As for pre-

cracking effects, the study concluded that pre-cracked strengthened specimens performed 

similar to their un-cracked peers.  The fiber orientation, however, has a great deal of 

influence. Fibers with longitudinal orientation presented the largest increase in strength and 

decrease in deflection, but the beams failed in brittle matter by end-peeling. Beams bonded 

with perpendicularly oriented fibers presented strength increase, 20% less than of uni-

directional fibers, and showed greater ductility increase. ± 450 oriented fibers provided the 

highest ductility increase.  

Twelve simply supported concrete beams, spanning 4.5 m (14. 76 ft.), were bonded with 

unidirectional CFRP sheets or fabrics having different layouts and anchoring types and 

tested in flexural setting, to investigate the feasibility of CFRP bonding, 

Alagusundaramoorthy et al 2002. The flexural strength of the beams was increased by 49% 
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for bonded CFRP sheets, by 58% for bonded and anchored CFRP sheets, and by 40% for 

bonded CFRP fabrics. Carbon FRP sheets were bonded to RC beams with dimensions of 

2000 mm for length, 150 mm for width, and 200 mm for height, Esfahani et al 2007.  Four-

point flexural testing of the strengthened beams indicated that the flexural capacity, and 

stiffness of the beams were significantly enhanced when bonding CFRP sheets. The study 

also found that ACI 440 and Canadian ISSS code equations, overestimate the flexural 

capacity of RC beams glued to CFRP sheets, and the overestimation increases when small 

internal reinforcement ratios are used. CFRP sheets were also applied to enhance the 

resistance of RC slabs with openings, Enochsson et al 2007. As concluded by the study, 

the flexural resistance of concrete slabs with an opening can be increased by attaching 

CFRP reinforcement.  

 An experimental study by Gharachorlou and Ramezaninanpur 2010 investigated the 

effects of chloride ions penetration and other harsh environmental conditions on concrete 

elements bonded with GFRP and CFRP sheets. Complete wrapping of the specimens with 

sheets resulted in 70% reduction in chloride ions penetration. Only 13.6% degradation of 

flexural capacity, when specimens strengthened with FRP sheets and immersed in salt 

water, at higher temperature, was observed; while specimens that were fully confined with 

the sheets achieved an increase in ultimate strength by 8.1%.  

Furthermore, FRP sheets have also been attached to masonry walls and elements, and have 

been proved to be very effective for in-plane or out-of-plane strength enhancement (Myers 

et al 2004, Schnerch 2007).  The flexural behavior of unreinforced masonry walls, 

strengthened with GFRP sheets, was examined by Ehsani and Saadatmanesh 1996. Walls, 

measuring 215 mm wide, 100 mm thick, and 1450 mm long, were adhesively bonded to 
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GFRP sheets and tested in four-point bending. A remarkable enhancement of flexural 

capacity of 24 times the capacity of control specimen was reported in the study. GFRP 

sheets of different layouts were bonded to10 full-scale infill masonry walls and tested, 

under uniform pressure in the out-of-plane direction, Lunn et al 2011. Several key factors 

were studied including: aspect ratio of the wall, FRP coverage ratio, number of masonry 

wythes, and FRP anchorage. The GFRP sheets were successful in strengthening the wall 

and increasing the out-of-plane load resistance, with a proper anchorage method. Foster et 

al 2005 recorded an increase in strength, psudo-ductility, and energy dissipation for 

masonry walls strengthened with GFRP wet lay-up sheets, when the specimens were tested 

under combination of gravity loads and cyclic lateral pressure.  

 

2.3.3 Near Surface Mounted (NSM) Technique 

NSM technique is a novel method of strengthening/repairing concrete members in flexure 

and/or shear and is used in lieu of externally bonded (EB) FRP plates or fabrics, to 

overcome some of the limitations and shortcomings associated with EB technique. Its 

[NSM method] simply consists of inserting FRP rods or plates (strips) inside pre-cut 

grooves or slits within the concrete cover. Adhesives or other types of bonding agents are 

then used to fill the grooves/slits and bond the composite material onto the concrete 

substrate, (figure 2.2). In some cases, using NSM technique instead of externally bonded 

plates or fabrics can be more beneficial and yet necessary.  Advantages of using NSM 

technique with respect to externally bonded FRP (EBR) are: reasonable protection of the 

FRP material against environmental attacks, fire, and vandalism since the composite 

material would be embedded inside the concrete cover; preparation of concrete surface to 
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provide a strong bond with the composite reinforcement is un-needed within NSM method, 

and that in turn, would reduce both cost and time of the repair project; no reduction of floor 

height or bridge clearance due to the installation of  the strengthening material is associated 

with NSM; the method becomes particularly attractive for flexural strengthening in the 

negative moment regions of slabs and decks, in which, external reinforcement would be 

subjected to mechanical and environmental damage and would require a protective cover, 

which could interfere with the presence of floor finishes (De Lorenzis and Nanni 2002, 

Hassan and Rizkalla 2003, EL-Hacha and rizkalla 2004, Badawi and Soudki 2009, Al-

Mahmoud et al. 2010, Capozucca 2014). 

Laboratory applications and experimental testing have showed that NSM rods/strips can 

be successively applied in strengthening or upgrading RC members in flexure. Badawi 

2007 conducted an experimental program on 22 RC beams to investigate the monotonic 

and fatigue behavior of NSM strengthened concrete members. Un-prestressed and 

prestressed (to 40% or 60% of the rod’s tensile strength) CFRP rods were both used. 

Generally, both the monotonic and fatigue strength of the strengthened beams were 

enhanced due to the presence of the rods. For un-prestressed rods, the monotonic yield and 

ultimate loads were increased by 26% and 50%, respectively, as referenced to the control 

specimen. Another increase of 16% was registered for the flexural stiffness. The 

prestressed rods contributed further, and an increase of up to 91%, 79%, and 52.6% were 

reported for yield load, ultimate load, and flexural stiffness, respectively, when prestressed 

rods (40% or 60%) were used. Foret and Limam 2008 carried out an inverstigation on RC 

two-way slabs strengthened with NSM FRP rods. The load bearing capacity, as revealed 

by testing, was enhanced when NSM rods are bonded to the slabs. 14 walletts of hollow 
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clay masonary units, measuring 60 x 120 x 19 cm, four masonry beams, measuring 90 x 

12.5 x 9 cm, and three walls of void-concrete blocks, measuring 60 x 60 x 9 cm, were 

strengthened with NSM  GFRP rods of 6 and 10 mm in diameter and tested experimentally, 

Tinazzi et al. 2000. Flexural and shear testing revealed that the additional NSM reiforcment 

was able to maximize the shear and flexural performance. For the concrete block walls, an 

increase in the flexural strength as referenced to the control specimen, of 7 times to 15.7 

times, depending on the number of rods attached, was observed. The masonry units also 

received an appreciable increase of strength due to the presence of the rods. When the units 

were subjected to cyclic loading, good energy dissipation of the strengthend units was 

recorded over the un-strengthend specimen.  Also in shear tests, all the strengthend  

masonry units, achieved substantial increase in shear capcity. 

 Tumialan et al 2001 presented an experimental program on un-reinforced masonsry 

(URM) walls strengthened with GFRP rods, embeded in grooves inside horizontal and/or 

vertical joint locations. Shear testing was carried out throug a diagonal loading set-up. The 

shear strength of the strengthened units was about two times the capacity of the analogos 

un-strengthned sample.  A modified epoxy adhesive, reinforced by short glass fibers, was 

suggested to be used as an adhesive for bonding NSM GFRP rods to URM walls, Bajpai 

and Duthinh 2003. The new epoxy formulation was implemented to improve the 

development behavior of the rods. Flexural testing of GFRP rod strengthened walls, using 

four-point bending, indicated that the epoxy was active in providing full anchorage for the 

rods, and failure was therefore, due to tensile rod rupture. 
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2.3.4 Pre-stressed FRP’s 

FRP plating technique is most recognized in increasing the ultimate load capacity, while 

its effects on serviceability state are limited due to pre-mature debonding failures taking 

place within service loading conditions. In most practical applications, the ultimate state 

design will never control the failure of the member. Rather, cracks widths and sizes, 

deflections, and other serviceability requirements would govern the behavior of concrete 

members. This being said, an innovative idea of pre-stressing the composite material before 

applying it to the substrate of the member, could fulfil the serviceability needs, prove more 

cost-effective, while also increasing the ultimate loads. The idea of pre-stressing the soffit 

plate was initiated with steel plates bonded structures during 1960s (Hollway and Leeming 

2000), and it was expended to FRP material in the 1990s (Franca 2007). 

 Several laboratory studies and field cases, dealing with bonding prestressed FRP material 

onto concrete,  have taken place and been recorded in the literature (Triantafillou et al 1992, 

Luke et al 1998, El-Hatcha et al 2003, Nordin and Tajsten 2006, El-Hatcha et al 2013). The 

effects of prestressing CFRP sheets were experimentally investigated in Wight et al 2001. 

Through flexural testing of RC beams bonded with pre-stressed CFRP sheets, the study 

concluded that the pre-stressing assisted in improving serviceability by reducing cracks 

widths and delaying their onsets, decreasing deflections, and at the same time, increasing 

ultimate capacity. Huang et al 2000, 2005 carried out an experimental program on 2.0 m 

(6.56 ft.) long T-section RC beams to examine the phenomenon of debonding failure that 

takes place at the plate-ends, when the prestress force is released. The study concluded that 

using glass FRP plates could mitigate the debonding, since GFRP composite has a modulus 

of elasticity comparable to that of concrete, and therefore, the adhered components would 
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transfer forces in a compatible way. While carbon FRP plates, which have a modulus in 

the range of seven times greater than concrete, were not recommended.   

Badawi and Soudki 2009 presented a similar experimental program on RC beams 

strengthened with prestressed NSM CFRP rods. Prestressing values of 40% and 60% in the 

rods, resulted in 90% increase in the yielding load, and 79% increase in the ultimate load, 

over the control sample. Peng et al 2014 compared the effectiveness of using pre-stressed 

NSM CFRP strips as replacement to non-prestressed strips through a flexural testing 

procedure on rectangular RC beams. The study found that prestressed NSM strips 

improved the load-carrying capacity better than non-prestressed strips. Hajihashemi et al 

2011 reported an increase in cracking load, and ultimate capacity when prestressed, rather 

than un-prestressed, NSM CFRP laminates are bonded to RC beams. Several rectangular, 

simply supported RC beams were bonded to prestressed CFRP laminates and tested under 

central point load, Sakar and Tanarslan 2014. The study investigated a new, easy-to-

implement in the field, device for applying the prestress force, and carried out the 

experimental program to assess the outcomes of the method. Specimens attached to 

prestressed laminates failed by FRP rupture, while specimens bonded to un-prestressed 

laminates failed by FRP debonding. At least twice the increase in ultimate load that was 

recorded for un-prestressed laminates was registered for pre-stressed ones, when both are 

compared to control beam. 

Kotynia et al 2014 carried out an experimental program consisting of RC slabs 

strengthened with prestressed CFRP laminates. The main objective was to study the 

effectiveness of prestressed FRP material in enhancing the behavior of preloaded concrete 

slabs. The strengthening method was deemed promising in improving the ultimate limits 
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and serviceability state. The range of increase in the flexural load capacity was between 

64-119%. Several slabs, made of Granite stones, were reinforced with prestressed NSM 

CFRP bars and tested in monotonic flexural setting, Guo and Chai 2014. Prestressing the 

composite bars resulted in a higher efficiency than non-prestressed bars, in terms of 

flexural stiffness and strength. An increase of 60% in the cracking load was recorded, when 

the bars were stressed to 30% of their guaranteed strength. Smaller spacing and width for 

cracks, was also noticed, when using prestressed bars. 

Other research into the same subject has proven the feasibility of prestressed FRP rods, 

sheets, and plates in improving service conditions and strength of concrete beams, girders, 

slabs, and masonry units---both in laboratory testings and field applications (Kim et al 

2008, Choi et al 2011, Kotynia et al 2011, Michels et al 2013, Wu et al 2014). However, 

the method has not yet completely matured, and most recent studies are concentrating on 

practical challenges that need to be tackled before the method becomes a mainstream. For 

example, considerable amount of research has focused on the device that applies the 

prestrssing force, and researchers are trying to find an easy to use devices (Monti and Liotta 

2006, Franca and Costa 2007); on the stress limit that can be applied to the FRP material 

and results in optimum utilization of the reinforcement, while reducing the risks of release-

debonding (Berset 2002); on anchorage systems to hold the reinforcement in place while 

the stress is released, their types and effects (Andra et al 2001, Wu et al 2006).    
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2.4.5 Other Novel Techniques 

When introduced into the civil engineering community, FRPs were a breakthrough 

innovation that helped in solving issues related to heavy weight and corrosion of steel 

plates and rebars, and helped in making retrofit of our aging infrastructure become a 

favorable choice. However, no material is 100% perfect, and FRP abides to that rule of 

nature. Some limitations inhereted withen the composite nature or interaction (bond) with 

the structure,  have pushed researchers and engineers to futher  improve FRPs entrinsic 

composition or the bonding method to give superior charcterstics for specific applications. 

Ongoing innovations of different composite systems are difficult to count, and therefore, 

the following paragraphs provide only a review on some of the innovative methods 

available in the literature. 

Several ways have been imployed to bond the advance reinforcement onto the substrate of 

a structural member in addition to adhesive bonding method. A relatively recent method 

consisting of mechanical bonding through the use of high strength bolts has been developed 

(Lamanna et al 2001, 2004, Martin and Lamanna 2008). The method eliminates the need 

for some procedures encountered in adhesively bonded applications. For example, 

mechanical fastening requires no surface preparation and curing for adhesives, therefore 

the structure can be put into service immediately after completion of fastening, and the cost 

required for those procedures can be cut down. Lamana 2002 carried out an extensive 

program to validate the viability of mechanical fastening through experimental testing of 

both small-scale and large-scale rectangular RC beams. Several parameters were 

considered such as fastener spacing and number of rows, predrilled holes, edge distance 

between last fastener and plate end, and fastener connection strength. Small-scale 
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specimens strengthened with mechanically fastened CFRP strips showed 34.2% and 24.8% 

increase of yield and ultimate moment capacity, respectively, over the un-strengthened 

specimen. Similarly, the large-scale beams gave 21.6% and 20.1% increase of yield and 

ultimate moments, respectively. Furthermore, the study concluded that failure mode of the 

mechanically attached strips was gradual, and attachment of strips took less time than 

adhesively bonded strips.  

In  El Maaddawy and Soudki 2008, FRP reinforcement was attached to the bottom of RC 

two-way slabs by means of mechanical anchorage- to investigate the potential of using 

mechanicaly anchored FRP plates, throughout the entire bonded length, in lieu of adhesive 

bondded plates, un-anchored or anchored at ends. A quasi-static testing, using four-bending 

loading scheme, was performed to validate the feasibility of the suggested technique. The 

new method granted similar increases of flexural strength as compared to adhesively 

bonded reinforcement, while deflections at failure stage were higher than from bonded 

plates, and only 15% lower than from the control specimen, indicating a good enhancement 

in the ductility of concrete members.  Elsayed et al 2009 carried out a similar study, in 

which mechanicaly fastened FRP plates were added to the soffit of concrete slabs with or 

witout central opening.  The flexural capacity of the strengthend slabs was about 30-70% 

graeter than the for un-strengthend (control) slabs.  

Another novel technique, comprised of FRP fabrics, grids, and networks embedded in an 

in-organic cementitious matrix, has been recently developed, Taljsten et al 2006, Tommaso 

and Focacci 2008, Nanni 2012, Loreto et al 2014. The technique is named fabric-reinforced 

cementitious-matrix composites (FRCM) and is bonded to the structural member as an 

external reinforcement. Other techniques, similar to FRCM, are also developed, and they 
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all are based on the idea of selecting various types for reinforcement and/or matrix to 

produce specific characteristics. To name few, textile reinforced concrete (TRC), consists 

of multi-axial textile fabrics as the reinforcement and fine-grained, high strength concrete 

as matrix; textile reinforced mortar (TRM), made of textile fabrics and polymeric matrix; 

and mineral based composite (MBC), having fiber composite grid embedded in 

cementitious binder (Ombres 2012).  The biggest benefits of using FRCM instead of FRP 

material are: better behavior in elevated temperatures and during fire events, applicability 

in wet surfaces, enhanced resistance to ultra-violet light, and perhaps the most important 

advantage is that, FRCM bonded members maintain higher ductility than FRP bonded ones 

due to the gradual failure type as a result of slippage at the fiber/cementitious matrix 

interface (Ombres 2011).  

Ombress 2012 reported an increase of 30% in flexural strength for FRCM bonded concrete 

beams over un-strengthened sample. In their experimental study, Ambrisi and Focacci 

2011, found analogous increase in flexural capacity of FRCM strengthened concrete 

beams, as compared to FRP bonded beams, with FRCM beams performing better in term 

of ductility retention. Taljsten and Blanksvard 2007 presented a flexural pilot study of RC 

one-way slabs strengthened with FRCM technique. CFRP grids were used as reinforcing 

fibers with cementitious mortar as binding agent, and the composite was called mineral 

based composite.  The behavior of slabs bonded to the new composite was comparable to 

FRP bonded peer slabs. Nanni 2012 reported several field applications of deteriorated 

structural projects, repaired with FRCM technique. Those projects included plain concrete 

vault, a bridge RC pier, a concrete trestle pedestals, a RC tunnel, and a masonry chimney.  
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Fig. 2.1 Methods used in the past to repair or upgrade concrete structures, (a) extra 
supporting (Alkhadraji 2004), (b) section enlargement (Alkhadraji and Thomas 

2009), and (c) external prestressing technique (Alkhadraji 2004). 
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Fig. 2.2 NSM strengthening system, (a) NSM rods, (b) NSM strips.  
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CHAPTER 3:   BOND STUDY ON CFRP ROD PANELS EXTERNALLY 

ADHERED TO CONCRETE  

 

3.1     Synopsis 

Fiber reinforced polymer (FRP) laminates (plates, strips) and fabrics (sheets) used as 

externally bonded reinforcement (EBR) to strengthen or repair concrete structural members 

have proven to be an economical retrofit alternative.   However, when strengthening long-

span members with limited access (e.g. bridges over waterways and freeways), labor and 

equipment demands may hinder the use of continuous EBR FRP. Recently, carbon FRP 

(CFRP) rod panels (CRP’s) have been developed and deployed to overcome the 

aforementioned limitations.  Each CRP is made of several small diameter CFRP rods 

placed at discrete spacing. Several CRP’s are brought together and made continuous, to 

fulfill the strengthening length, by means of a lap-splice (or finger joint). In this chapter, 

the bond behavior between CRP and concrete was experimentally investigated. Twenty-

five double-lap shear specimens were tested under pull-off loading to evaluate the bond 

strength, development length, transfer mechanism, shear stress-slip relation, and effects of 

other variables expected to influence the bond behavior. The bond strength and 

development length were established for two CRPs, CRP-070 (generated with rods of  2.00 

mm (0.08 in.) in diameter, spaced at 6.25 mm (0.25 in.), and CRP-195 (generated with rods 

of  4.00 mm (0.16 in) in diameter, spaced at 9.35 mm (0.38 in.)). The development length 

was estimated to be 100 mm (4.00 in.), and 125 mm (5 in.), for CRP-070, and CRP-195, 

respectively. The bond strength for one-unit (e.g. one meter) wide CRP was determined to 

be 563 kN/m (38.5 kip/ft.) for CRP-070 and 712 kN/m (48.8 kip/ft.) for CRP-195. 
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3.2     Introduction 

Numerous experimental and field applications have shown that EBR FRP can efficiently 

increase the flexural strength of a concrete member (Bonacci and Maalej 2001, Lee et al 

2005, Chansawat et al 2009, Si-Larbi et al 2012, Ren et al 2015). One of the drawbacks of 

the EBR FRP method is the man power needed to attach continuous laminate along the 

entire length of the member. The difficulty is more evident when the concrete member is 

too long or inaccessible (e.g., bridge over waterway or multi-lane expressway). 

Construction of scaffolding along the length of a member can be time consuming and costly 

(Peiris 2011).  Although splicing FRP laminates is an option, it is not commonly used in 

practice. Reseach on the applicability of lap-splicing FRP plates/sheets has been carried 

out for steel substrate (Yang and Nanni 2002, Dawood and Rizkalla, and Dawood et al 

2007). 

Carbon fiber reinforced polymer (CFRP) rod panels (CRP’s) have recently been developed 

and deployed in the field.  CRPs are externally bonded to the concrete substrate in a manner 

similar to other externally bonded reinforcement (EBR).  Each panel is 1.2 m (4 ft) long 

and is made of a number of small diameter rods that are attached to a glass mesh intended 

to facilitate handling of the panels and to retain a uniform spacing between rods.  In the 

field, the panels are connected through a finger joint “lap-splice” to form a continuous EBR 

and fulfil the strengthening length. Within CRP’s, splicing of short-length panels can 

provide an economical alternative, where individual workers can carry out the 

strengthening process using  a  boom truck or simple scaffolding,  thus reducing labor and 

equipment costs.  
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3.3     Experimental Program 

Each double-lap shear specimen was constructed using two concrete blocks as the inner 

adherends  [figure 3.1 (a)] . Each block is 300 mm (12 in.) in length and has a square cross-

section of 100 x 100 mm (4 x 4 in.).  A deformed steel rebar with a diameter of 25 mm (1 

in.) was embedded in the center of each block and used to attach the specimen onto the 

testing machine. The CRP was attached on two opposite sides of the blocks, as per double-

lap shear test. The dimensions of double-lap concrete specimen were selected based on the 

recommendations of JSCE-E 543 (2000), and the specimen is shown in figure 3.1.   
 

3.3.1 Specimen Description and Strengthening Schemes 

The bond test matrix, comprising 25 specimens, was selected according to the to the 

objective of the chapter, which is to (1) to establish the development length for, CRP-070, 

and CRP-195, and (2) to measure effects of parameters expected to influence the bond 

behavior and ultimate load capacity of CRPs. The two panels have a 150 mm (6 in.) 

overlap, intended to provide continuity between spliced panels. A wide range of bond 

lengths was tested for each panel in order to accurately establish the development length. 

This range was chosen based on previous studies performed on CFRP rods (Harik and 

Peiris 2014). The bond test matrix is presented in table 3.1. According to the above 

parameters, the test matrix is divided into three major groups of specimens, as follows: 

Series I: specimens in this series were prepared to determine the development length for a 

CRP-070, fabricated with CFRP rods of 2 mm (0.078 in.) diameter, spaced at 6.35 mm 

(0.25 in.).  
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Series II: this series was intended to evaluate the effects of varying CRP bond width (or 

CRP /concrete width ratio) and rod spacing on the bond behavior and ultimate load capacity 

of CRP-070. 

Series III: specimens in this series were prepared to determine the development length for 

a CRP--195, fabricated with CFRP rods of 4 mm (0.156 in.) diameter, spaced at 9.5 mm 

(0.375 in.).     

The specimen identification is designated by a combination of five components: series 

number (I, II,), CFRP rod diameter (2 mm or 4 mm), rod spacing (6.35, 9.5 mm), and bond 

width (in mm), and bond length (also in mm). The A and B letters that appear at the end of 

occasional codes indicate specimen repetition. Some specimens failed due to concrete 

cracking outside the bond area; therefore, another specimen with the same bond length was 

fabricated and tested. However, for specimen I-2-6-50-25, the testing was repeated due to 

doubts that the first fabricated specimen could have had geometric or loading faults.  

 

3.3.2 Specimen Preparation 

3.3.2.1 Concrete Blocks  

The concrete blocks, used in this experiment as the inner adherends, were made from mix-

ready concrete having a targeted concrete compressive strength of 34.5 MPa (5000 psi). 

The concrete components, with added water, were mixed for about three minutes. 

Immediately before being filled with the mixed concrete, the wooden block forms were 

anointed with a release agent, and the steel rebar was placed and centered in the forms. The 

concrete was applied in three layers per block and compacted with rounded-end tampering 

rod, similar to the procedure used in making concrete cylinders for compressive strength 

tests, following ASTM C31/C31M-09 (2009) standards. The compressive strength of the 
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cured concrete was confirmed by rebound hammer tests, following ASTM C805-08 (2008) 

standards. The average rebound hammer compressive strength of concrete was 32 MPa 

(4650 psi) for 40 rebound measurements obtained from all specimens, each specimen being 

tested on its four faces. 

 

3.3.2.2 CFRP Rods and CRP’s 

CFRP rods were used to generate CRP-070 and CRP-195, used in this experiment. The 

rods were produced by Diversified Structural Composites (2016) and the manufacturer’s 

guaranteed tensile modulus of elasticity is 134 GPa (19,500 ksi) and tensile strength is 

2,340 MPa (320 ksi). For double-lap shear tests, small-scale CRP’s were fabricated with 

the number of rods, rod spacing, and panel width defined according to the bond test matrix 

in table 1. Each panel had a total length consisting of a control length of 213 mm (8.5 in.), 

including 12.5 mm (0.5 in.) gap between the two concrete blocks, and a variable bond 

length [figure 3.2 (a)]. On the control length side, the CRP was mounted on a fiberglass 

backing to keep the rods accurately aligned according to the specified spacing. The 

fiberglass mesh was not used on the bond length side, as it was assumed that any presence 

of the backing would cause discontinuity within the tested bond length. Figure 3.2 shows 

one of the panels used in the bond testing program. 

 
 
 
 
3.3.2.3 Adhesive 

The adhesive used to adhere the CRPs to the concrete blocks is Sikadur 30 high modulus 

(2014).  It is a high strength structural epoxy paste with a manufacturer’s specified tensile 
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modulus of elasticity of 4,482 MPa (6.5 x 105 psi) and tensile strength of 24.8 MPa (3,600 

psi). 

 

3.3.3 Surface Preparation and CRP Installation 

The block faces, on which CRP panels are to be bonded to, were ground using an electric 

grinder to remove any dust and laitance, and to provide a rough bonding surface profile 

[figure 3 (a)]. The concrete and CRP faces were then wiped clean with acetone. The two-

part epoxy adhesive was then applied onto the concrete surface with a profile to a nominal 

epoxy thickness of 2 mm (0.078 in.) as shown in figure 3 (b). This process was carried out 

on both sides of the specimen, as per double-lap shear configuration.  The CRP was then 

placed in position and gently pressed, forcing the epoxy to flow around the rods and fill 

completely between the rods [figure 3 (c)]. Finally, the panel was covered with more epoxy, 

[figure 3 (d)], and the specimens were left to cure for at least 10 days. 

 

3.3.4 Test Setup and Instrumentation 

A 1335 kN (300 kip) universal load testing machine, with a displacement controlled rate 

of 1.25 mm/min (0.05 in./min), was used to perform the double-lap shear tests. Figure 4 

shows the testing machine being loaded with a typical bond specimen. Each specimen was 

loaded until failure, which was defined as either one or a combination of the following 

criteria: (1) debonding of CRP, and (2) concrete block cracking failure. Before application 

of CRPs onto the concrete blocks, the two blocks comprising the double-lap configuration 

were placed inside a steel casing, [figure 3.3 (b, c, d)]. The casing was meant to keep the 

specimen aligned in the longitudinal direction, and minimize twisting or bending moments. 
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The blocks were allowed to slide freely inside the casing, by lubricating the points of attach 

between the block and the casing with a WD-40 lubricant, and providing a sufficient 

clamping space.   

The structural behavior of the CRP/concrete bonded interface was examined by using strain 

gages mounted on the surface of the adhesive, along the center line of the bond’s length. 

Specimens with  bond lengths 62.5 mm (2.5 in.) or longer, were instrumented with 3.20 

mm (0.125 in.) foil-type electric resistance strain gages. The gages were mounted on the 

concrete block that contained the bond length. On one side of the bond length, as per 

double-lap configuration, the entire length was equipped with gages spaced at 25 mm (1 

in.) apart, and that side was referred to as the “monitored side”. On the other side of the 

bond length, one gage was placed near the gap between the two blocks on several 

specimens to evaluate the load transfer and balance between the two sides of double-lap 

configuration. This side was referred to as the “un-monitored side.   

Figure 3.5 shows the strain gage layout for a specimen with a bond length of 150 mm (6 

in.). Since the rods are of very small diameters [2 mm (0.08 in.) for CRP-070 and 4 mm 

(0.16 in.) for CRP-195], it was difficult to mount strain gages on the surface of the rods. 

The strains were measured at the surface of adhesive above the rods and were assumed to 

correspond to the ones in the rods unless any debonding or other signs of distress at the 

rod/adhesive interface were identified.  

 

3.4     Test Results 

Table 3.2 summarizes the bond test results for CRP-070 and CRP-195, presenting the values of 

recorded failure loads and observed modes of failure. The failure mode for four of the specimens 

was by concrete block failure outside the CRP-concrete bond region (figure 3.6). Since the 
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failure did not relate to CRP-concrete bonded region, and was caused by either: 

misalignment of the concrete blocks in longitudinal direction, accidental twisting forces or 

a combination of the two, these specimens were discarded. Other two specimens failed by 

rod-peel off from the embedding adhesive, combined with cracks in the adhesive near the 

gap between the two blocks (figure 3.7).   

For the remaining eighteen specimens, nine in Series I for the CRP-070 and nine in Series 

II for CRP- 195, the mode of failure was a concrete shear-off failure beneath the adhesive 

layer.  A thin concrete layer, having an average thickness of 1 mm to 6 mm was attached 

to the debonded CRP-adhesive system after failure. Figure 3.8, and figure 3.9 show the 

failure mode of typical CRP-070 and CRP-195 specimens, respectively. The failure 

initiated on one side of the specimen.  Ideally, the failure should initiate simultaneously on 

both sides of the specimen, due to the size of the specimen and the setup in the test machine, 

it is very difficult to insure perfect symmetry during the fabrication and testing process. 

 

3.4.1 Development Length 

There has been a general understanding between researchers that there exists a minimum 

length, necessary to attain a failure within the reinforcement (Miller and Nanni 1999). This 

length is called the development length (also referred to as effective bond length).  Within 

the development length, most of the force transfer is expected to occur. That means, 

providing a bond length, larger than the development length, would not result in an increase 

in bond strength. However, failure of members with short bond lengths is generally brittle 

and sudden, while members having longer bond lengths tend to fail in a gradual, ductile 

manner. 
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Fig. 3.10 presents the failure load, Pf, and the corresponding bond length, lb, for the 

specimens in Series I and II (tables 3.1 and 3.2).  As the bond length was increased, the 

failure load increased initially and leveled off for longer bond lengths.  A development 

length, ld , can be estimated as the distance up to the leveling off point.  ld is estimated to 

be 100 mm (4 in.) for CRP-070 and 125 mm (5 in.) for CRP-195.  The bond strength, 

estimated as the load at the leveling-off line,  for 1-m (0.30 ft.) wide CRP-070 and CRP-

195, was determined to be 563 kN/m (38.5 kip/ft), and 712 kN/m (48.8 kip/ft), respectively.  

Based on the results of current investigation, a simple analytical model, for predicting the 

failure load (only for concrete shear-off failure) of 1 m (3.28 ft.) wide CRP-070 and CRP-

195 bonded to concrete, can be written as follows: 

 

(a) For CRP-070. 

       Pu = 5.63 x lb    (kN/m)    for  bl  ≤ 100 mm                                                            (3.1a) 

      Pu = 9.625 x lb    (kip/ft)    for  bl  ≤ 4 in.                                                       (3.1b) 

     Pu =563    (kN/m)          for bl    > 100 mm                                                               (3.2a)       

     Pu = 38.5  (kip/ft)          for  bl   ˃ 4 in.                                                      (3.2b)                                    

 

(b) For CRP-195.   

       Pu = 5.70 x lb    (kN/m)    for  bl   ≤ 125 mm                                                           (3.3a) 

      Pu = 9.76 x lb    (kip/ft)      for  bl   ≤ 5 in.                                                                 (3.3b)                                                  
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      Pu =712     (kN/m)       for bl  > 125 mm (4.75 in.)                                                  (3.4a)               

P   Pu =48.8   (kip/ft)        for  lb  ˃ 5 in.                                                                       (3.4b) 

Where:  P u = ultimate load of CRP in kN/m (kip/ft), bl  = bond length in mm (in.). 
 

3.4.2 Average Bond Strength  

The average bond strength of CRP-070 and CRP-195 can be calculated by dividing the 

failure load of each testes specimen by the bond area. This factor, bond strength, is of great 

value when establishing a design procedure for the strengthening program, in which the 

FRP quantity and dimensions can be determined so that debonding failure can be avoided, 

providing that local bond stresses are lower than the bond strength. The bond strength of 

FRP/concrete interface is influenced mainly by concrete surface preparation method, 

concrete strength, and geometry of the FRP reinforcement (Bizindavyi and Neale 1999). 

The authors also reported that the bond strength observed in experimental tests documented 

in the literature vary between 2.5-15.32 MPa (0.36-2.22 ksi).    

The adhesive average bond stress at failure (or average bond strength), τb, is plotted against 

the bond length, lb, in figure 3.11 for CRP-070 and CRP-195, and is expressed as follows: 

2
f

b
b f

P
l w

τ =
⋅ ⋅

                                                                                                                         (3.5) 

In which, Pf is the load at failure for the double lap shear specimen, and wf  is the width of 

CRP. The average bond strength of specimens having bond lengths shorter than the 

established development length, fluctuated between 5-7.5 MPa (0.72-1.01 ksi) for CRP-

070 specimens and between 4-7.5 MPa (0.58-1.01 ksi) for CRP-195 specimens. This 

fluctuation, while being in an accepted range, might be attributed to inevitable geometrical 

and loading imperfections. More importantly, as can be seen in figure 3.11, and for bond 
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lengths exceeding the development length, τb decreases linearly and will approach zero for 

large bond lengths. For the current study, adhesive bond strength is deduced from 

specimens that have a bond length equal to the development length, ld, and is found to be 

5.5 MPa (0. 8 ksi) for both CRP-070 and CRP-195.   

 

3.4.3 Load Transfer Mechanism along CRP Bond Length 

As mentioned before, specimens with bond lengths larger than development length (ld) fail 

in a ductile manner, while specimens with lengths shorter than ld display a brittle failure. 

This trend was also seen in the current investigation as will be illustrated in the following 

paragraphs. The distribution of strain along the CRP bond length at various loads, are 

presented in figure 3.12 (for a typical CRP-070 bonded specimen) and figure 3.14 (for a 

typical CRP-195 bonded specimen). For both specimens, the bond length is 150 mm (6 

in.). As can be seen from these figures, at low loads, strain gages located close to the gap 

between the two concrete blocks register large stains, while strain gages located far from 

the gap, register negligible strains.  

Bizindavyi and Neale 1999 defines the portion of bond length bounded by the gap and the 

location where the strain reading diminishes as the “transfer length”.When loading 

increases to values causing the shear stress in the region bounded by the transfer length to 

exceed the average bond strength, local debonding occurs in that section, and the transfer 

length moves toward the rest of bond length. If the provided bond length is sufficiently 

larger than the development length, this shift of transfer length and multiple occurrence of 

local debonding can take place several times, indicating a ductile failure type.  
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Figures 3.13 and 3.15 depict the evolution of transfer length over different load levels, for 

CRP-070 and CRP-195 bonded specimens, respectively. Both specimens are of bond 

lengths equal to 150 mm (6 in.) which are larger than the determined developments lengths 

for both panels. Figure 3.13 and figure 3.15 show that there is a shift in the transfer length 

as the load level increases, indicating the possibility of local debonding. The first local 

debonding and transfer length shift can be of great importance since it will define the 

threshold of the debonding process. For CRP-070, the first local debonding, calculated 

from this experiment, is approximated to occur at a stress level of 33% of rod guaranteed 

strength. While for CRP-195, the first local debonding is estimated to exist at a stress level 

of 20% of rod ultimate strength. . Strain variation along bond length and transfer length vs. 

relative load level results for the rest of tested specimens are given in appendix (A). 

 

3.4.4 Shear Stress Distribution along CRP Bond Length 

The adhesive local shear stress (τa) at the concrete-adhesive interface along CRP bond 

length can be calculated from strain gage data and force equilibrium of the panel section 

bonded to concrete block. The equilibrium considers shear stresses at the concrete-adhesive 

interface and tensile forces of CFRP rods. However, it neglects the tensile forces 

contributed by the adhesive, since the adhesive elastic modulus is small when compared to 

the CFRP rod modulus. Other assumptions used in the analysis are: (1) a uniform shear 

stress between two known strain gage locations, (2) the strain readings at the adhesive 

surface are corresponding to CFRP rod strains, and (3) CFRP rod material is linear elastic 

until failure. The adhesive shear stress of a typical segment bounded by two strain gage 

locations, xi and xi-1, is calculated as follows:  
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Where:          

ix , 1ix − = locations of strain gages measured from the gap between concrete blocks, mm 

(in.),  𝐸𝐸𝑓𝑓 = CFRP rod tensile modulus, MPa (psi), ( )f ixε , 1( )f ixε −−  = measured strains at 

locations 𝑥𝑥𝑖𝑖  , 𝑥𝑥𝑖𝑖−1, respectively, mm/mm (in./in.), 𝐴𝐴𝑓𝑓 = cross-sectional area of CRP (i.e. 

area of a single rod multiplied by number of rods), mm2 (in2), and wf = width of CRP, mm 

(in.). 

Proceeding with the above calculations for all strain gages mounted on the bond length, 

the shear stress distribution along the entire bond length can be deduced, provided that the 

distance between strain gages is small. Figure 16 shows the distribution of shear stresses 

at various portions of the bond length as a function of the load level for two specimens, 

one from CRP-070, and the other from CRP-195. In both specimens, the bond length is 

150 mm (6 in.). At each load level, the shear stress calculated from equation 3.7 was 

determined for each region delimited by the two adjacent gages, and shear stress vs. load 

level curve was constructed for the entire bond length.  

As can be seen form the figures; at low load levels, only regions close to the gap between 

the two concrete blocks carry large shear stresses, while shear stresses at regions located 

far from the gap are very small. This trend also indicates the existence of development 

length/initial transfer length within which force transfer takes place. Furthermore, figure 

3.16 shows that when the shear stress at the region with highest stresses reaches a peak 
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value, the shear stress then tends to decrease, while at the same time, the shear stress in the 

next region increases. This observed trend are explained by lines 1, 2, and 3. The reduction 

in shear stress in a region indicates that local debonding is taking place, while the build-up 

of shear stress in the following region infers that the load transfer mechanism has shifted 

toward new region. Other researchers have found similar behavior for FRP laminates and 

fabrics bonded to concrete substrate (Bizindavyi and Neale 1999, Kamel et al. 2003).  

 

3.4.5 Shear Stress- Slip Relation 

From strain gage readings, the local shear stress vs. slip (τ-s) model can be obtained, 

provided that many strain gages are used and positioned at small intervals along the bond 

length. The τ-s relationship is extremely important when defining analytical models for 

different joint properties like: development length, bond strength, and ultimate load 

capacity, since the area under that curve defines the interfacial fracture energy of the 

bonded joint, Gf. Furthermore, to accurately capture the debonding initiation and 

progression of bonded concrete-CRP joints in numerical analysis simulations (e.g. finite 

element), the shear stress vs. slip model becomes highly beneficial.  

To accurately define the shear vs. slip model from discrete strain gage data, the bond length 

has be to be long enough to decently capture all the joint slips and to validate the 

assumption of zero slip at bond length ends. For the current study, the τ-s model for both 

panels, was obtained from specimens having at least 125 mm (5 in.) long bond lengths. 

Furthermore, only specimens that failed by debonding at concrete-epoxy interface, and 

hadn’t developed any visible concrete cracks, were used to obtain the model. The slip is 
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defined as the relative displacement between the reinforcement (CRP in this study) and a 

parent material (concrete), and is calculated from strain data as follows:  

( )
f c

ds x
dx

ε ε= −                                                                                                              (3.8)   

f
f

du
dx

ε =      and   c
c

du
dx

ε = ,                                                                                                         (3.9) 

Where ( )s x  is the slip in mm (in.) at location x, measured from the gap between the two 

concrete blocks. fu  and cu  are the displacement of CRP and of concrete, respectively. cε  

is concrete strain, and fε   is CRP strain (assuming strain in CFRP rods is equivalent to 

strain at adhesive surface). Concrete strain can be neglected when compared to CRP strain. 

Therefore: 

 ( )
f

ds x
dx

ε≈                                                                                                            (3.10)   

And,    

0

( ) ( 0)
x

fs x s x dxε= = + ⋅∫                                                                                                                (3.11) 

For discrete strain data, and assuming the slip at the bond length end [s (x = lb)] can be 

neglected prior to debonding, equation 7 becomes: 

{ } { }1 11

1( ) ( ) ( )
2

i
i f j f j j jj

s x x x x xε ε − −=
= ⋅ − ⋅ −∑                                                                                (3.12) 

 



 

52 
 

 

At any load level, slip for the entire bond length [at the gap between concrete blocks, (x = 

0)], s (x = 0), can be obtained from equation 3.12. Then, s (x = 0) is calculated for all load 

levels, prior to first local debonding, and combined with shear stress [at x = 0, τa (x = 0)] 

to produce, the shear stress vs. slip model. To accurately define the shear vs. slip model 

from discrete strain gage data, the bond length has to be long enough to decently capture 

all the joint slips and to validate the assumption of zero slip at x = lb. For the current study, 

the τ-s models for CRP-070 and CRP-195 were deducted from specimens that have bond 

lengths of 150 mm (6 in.), and hadn’t developed any visible concrete cracks. Figure 3.17 

plots the τ-s model for both CRP-070 and CRP-195, at load level corresponding to first 

local debonding.  

 

3.4.6 Effect of Bond (Panel) Width  

The effects that the bond (panel) width, wf , has on the bond strength and ultimate load 

capacity of CRP’s were studied using the results of double-lap shear specimens bonded to 

CRP-070.  Two specimens from the current study, specimens I-2-6-50-150 and I-2-6-25-

150, in addition to a third specimen obtained from a previous study on bond behavior of 

CRP’s, conducted by Harik and Peiris 2014, were used to make the observations. All three 

specimens had similar properties (e.g. bond length, rod diameter, rod spacing, etc.), with 

only one varied parameter, wf . The bond length of all specimens is 150 mm (6 in.), and the 

rod diameter 2 mm (0.078 in.), while the rod spacing 6.35 mm (0.25 in.). To facilitate 

proper comparison between specimens with different bond widths (and, in turn, different 

CFRP areas), each specimen’s failure load was divided by the number of rods used in the 

specimen.  



 

53 
 

 

Figure 3.18 plots the failure load per number of rods against the bond width for the three 

aforementioned specimens. It can be seen the failure load per number of rods was 

comparable for all three specimens, indicating that bond width had negligible effects on 

the bond strength of the concrete-CRP joint. Also, the failure mode for all the three 

specimens was identical, concrete shear-off, suggesting also that bond width did not 

influence the mode of failure. Furthermore, Figure 3.19 depicts the strain distribution along 

bond length for the two specimens conducted in the current study, at a load of 17.80 kN (4 

kip). The figure shows that the transfer length for both specimens is within similar value, 

and strains within the transfer length region, for specimen with wf =25 mm (1 in.) are almost 

double the strains in specimen with wf =50 mm (2 in.). 

 

3.5     Conclusions 

This chapter presented 25 double-lap shear experiments to estimate the development 

length, bond strength, and other properties related to bond between CRP and concrete 

substrate. CRP is a panel made of small diameter CFRP rods, with spacing, between 

individual rods, greater than the rod diameter. Each panel is mounted on a fiberglass 

backing to facilitate handling, and connected with other panels by “finger joint” or “lap-

splice” method. Two CRP’s were evaluated in this chapter, namely: CRP-070 (fabricated 

with 2 mm diameter CFRP rods, spaced at 6.35 mm, and CRP-195 (fabricated with 4 mm 

diameter CFRP rods, spaced at 9.5 mm). The following conclusions can be drawn: (1) the 

development length was found to be 100 mm (4 in.) for CRP-070 and 125 mm (5 in.) for 

CRP-195; (2) the bond strength for 1-m wide panel was estimated to be 563 kN/m (38.5 
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kip/ft) for CRP-070 and 712 kN/m (48.8 kip/ft) for CRP-195; and (3) the adhesive average 

bond strength was estimated to be 5. 5 MPa (0.85 ksi) for both panels. 

While this chapter provided a means to establish the basic characteristics of the bond 

behavior between two commonly used CRPs and concrete substrate, such as development 

length, and bond strength, there are other equally important factors need to be investigated. 

Those factors include the behavior at the finger joint between spliced CRPs, effects of long 

term effects such as creep, freeze-thaw cycles, UV exposure, temperature, etc. 
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Table 3.1. (a) Series I of double-lap shear test matrix. 
 Specimen 

Identification 

Bond length Specimen 

Identification 

Bond length 

mm in. mm in. 
 

I-2-6-50-25 A 25.0 1.0 I-2-6-50-75 B 75.0 3.0 

I-2-6-50-25 B 25.0 1.0 I-2-6-50-100 100.0 4.0 

I-2-6-50-37 37.5 1.5 I-2-6-50-125 A 125.0 5.0 

I-2-6-50-50  50.0 2.0 I-2-6-50-125 B 125.0 5.0 

I-2-6-50-62 62.5 2.5 I-2-6-50-150 150.0 6.0 

I-2-6-50-75 A  75.0 3.0 I-2-6-50-175 175.0 7.0 

- Rod diameter = 2 mm (0.078 in.) 
- Rod spacing = 6.35 mm (0.25 in.)  
- CRP panel (bond) width = 50 mm (2 in.) 
- Number of rods = 8 
- Afrp (CRP area, for one side of double specimen) = 23.7 mm2 (0.04 in.2) 
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Table 3.1. (b) Series II of double-lap shear test matrix. 
  

Specimen code 

Rod spacing Bond width 

mm in. mm in. 
 

II-2-6-25-150 6.35 0.25 25.0 1.0 

II-2-9-37-150 9.50 0.38 37.5 1.5 

II-2-12-50-150 12.50 0.50 50.0 2.0 

- Bond length 150 mm (6 in.) 
- Rod diameter = 2 mm (0.078 in.) 
- Number of rods= 4  
- Afrp (CRP area, for one side of double specimen) = 11.9mm2 (0.02 in.2) 
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Table 3.1. (c) Series III of double -lap shear test matrix. 
  

Specimen code 

Bond length  

Specimen code 

 

Bond length 

mm in. mm in. 
 

III-4-9-19-25 25.0 1.0 III-4-9-19-100 100.0 4.0 

III-4-9-19-37 37.5 1.5 III-4-9-19-125 125.0 5.0 

III-4-9-19-50 50.0 2.0 III-4-9-19-150 150.0 6.0 

III-4-9-19-62 62.5 2.5 III-4-9-19-175A  175.0 7.0 

III-4-9-19-75 75.0 3.0 III-4-9-19-175B 175.0 7.0 

- Rod diameter = 4 mm (0.156 in.) 
- Rod spacing = 9.5 mm (0.375 in.)  
- CRP panel (bond) width = 19 mm (0.75 in.) 
- Number of rods = 2 
- Afrp (CRP area, for one side of double specimen) = 23.7 mm2 (0.04 in.2) 
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Table 3.2 (a).  Failure loads and modes of failure for Series I and II specimens.  

 
a Concrete shear-off failure refers to debonding at concrete-epoxy interface through shearing-off concrete, in 

which, a layer of concrete would be attached to the detached CRP panel.  
b Concrete block failure by cracking outside the bond region. Specimens failed in this manner were 

disregarded in any calculations related to the bond behavior (e.g. bond strength, development length, shear 
stress-slip relation). 

 
Note: Afrp (area of CRP for one side of the double-lap configuration) is 23.7 mm2 (0.04 in2) for specimens 
in series I and III, and it is 11.9 mm2 (0.02 in2) for specimens in series I. 

 Specimen 

code 

Bond length Failure load Failure mode 

mm in. kN kip 

 

I-2-6-50-25A 25 1 12.703 2.856 Concrete shear-off a 

I-2-6-50-25B 25 1 12.828 2.884 Concrete shear-off a 

I-2-6-50-37 37.5 1.5 27.058 6.083 Concrete shear-off a 

I-2-6-50-50  50 2 34.723 7.806 Concrete shear-off a 

I-2-6-50-62 62.5 2.5 30.639 6.888 Concrete block failureb  

I-2-6-50-75A  75 3 30.510 6.859 Concrete block failureb  

I-2-6-50-75B 75 3 39.776 8.942 Concrete shear-off a 

I-2-6-50-100 100 4 53.343 11.992 Concrete shear-off a 

I-2-6-50-125A 125 5 40.367 9.075 Concrete block failureb  

I-2-6-50-125B 125 5 53.988 12.137 Concrete shear-off a 

I-2-6-50-150 150 6 63.676 14.315 Concrete shear-off a 

I-2-6-50-175 175 7 47.164 10.603 Concrete shear-off a 

 

 

II-2-6-25-150 150 6 31.840 7.158 Concrete shear-off a 

II-2-9-37-150 150 6 47.195 10.561 Rod peel-off  

II-2-12-50-150 150 6 49.322 11.088 Rod peel-off   
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Table 3.2 (b).  Failure loads and modes of failure for Series III specimens.  

 
a Concrete shear-off failure refers to debonding at concrete-epoxy interface through shearing-off concrete, in 

which, a layer of concrete would be attached to the detached CRP panel.  
b In specimen III-4-9-175A, the rod debonded from the embedding adhesive. After observation of the failed 

specimen, it was found that the rod was not properly covered in adhesive. This specimen was disregarded 
from calculations related to bond behavior. 

 
Note: Afrp (area of CRP for one side of the double-lap configuration) is 23.7 mm2 (0.04 in2) for specimens 
in series I and III, and it is 11.9 mm2 (0.02 in2) for specimens in series I. 

 
 

 

 

 

 

 

 

 

 Specimen 

Identification 

Bond length Failure load Failure mode 

mm in. kN kip 

 

III-4-9-19-25 25 1 5.306 1.193 Concrete shear-off a 

III-4-9-19-37 37.5 1.5 5.711 1.284 Concrete shear-off a 

III-4-9-19-50 50 2 8.980 2.019 Concrete shear-off a 

III-4-9-19-62 62.5 2.5 14.158 3.183 Concrete shear-off a 

III-4-9-19-75 75 3 20.400 4.586 Concrete shear-off a 

III-4-9-19-100 100 4 21.565 4.848 Concrete shear-off a 

III-4-9-19-125 125 5 26.089 5.865 Concrete shear-off a 

III-4-9-19-150 150 6 26.471 5.951 Concrete shear-off a 

III-4-9-19-175A  175 7 33.246 7.474 Rod/adhesive interface b 

III-4-9-19-175B 175 7 29.340 6.596 Concrete shear-off a 
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Figure. 3.1. Double-lap shear specimen. 
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(a) Small-scale CRP used in the double-lap tests 

 
 

 

 

 

 

 

 

 

 

(b) Small-scale CRP-070, with a bond length of 100 mm (4 in.) 

Fig. 3.2 Small-scale CRP’s used in the bond testing program. 
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Fig. 3.3 Double lap test specimen fabrication: (a) concrete surface preparation, (b) 
adhesive application, (c) CRP placement, (d) application of second layer of adhesive.   
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Fig. 3.4 Double-lap shear specimen in testing machine. 
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Fig. 3.5 Strain gage layout for a specimen with bond length of 150 mm (6 in.), all 
dimensions are in mm (25 mm =1 in.). 
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(a) Cracks location in the concrete block failure mode 

 

 

 

 

 

 

 

 
 

(b) Schematics of the concrete block failure 

Fig. 3.6. Concrete block failure mode. 
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(a) Monitored side, specimen (II-2-9-37-150) 

 

 

 

 

 

 

 

 

 

 

 

(b) Un-monitored side, specimen (II-2-9-37-150) 

Fig. 3.7. Rod peel-off failure mode.  
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(a) Typical shear-off failure in the double-lap specimens 

 

 

 

 

  

 

 

 

 

 

 

 

(b) Concrete surface after removing the CRP 

Fig. 3.8. Concrete shear-off failure mode of CRP-070 (lb=150 mm).  
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(a) Typical shear-off failure in the double-lap specimens 

 

 

 

 

 

 

 

 

 

 

 

(b) Concrete surface after removing the CRP 

Fig. 3.9. Concrete shear-off failure mode of CRP-195 (lb=150 mm).  
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(a) CRP070 
  

 

 

 

 

 

 

 

 

 

 
(b) CRP 195 

Fig. 3.10. Failure load vs. bond length, lb . 
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(a) CRP-070 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) CRP-195 
Fig. 3.11. Adhesive bond strength, τb, vs. bond length, lb, for CRP-070 and CRP-195.  
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Fig. 3.12 Strain variation along the bond length, for CRP-070 with lb =150 mm (6 
in.) and different load levels, P.  
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P = current load level 
Pf = Load at failure 

P / Pf  

 

 

 

 

 

 

 

 

 

 

Fig. 3.13 Measured transfer length vs. relative load level, for CRP-070 with lb =150 
mm and different load levels, P, up to failure.  
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Fig. 3.14 Strain variation along bond length, for CRP-195 with lb =150 mm (6 in.) 
and different load levels, P.  
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Fig. 3.15 Measured transfer length vs. relative load level, for CRP-070 with lb =150 
mm and different load levels, P, up to failure.  
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(a) CRP-070, specimen (I-2-6-25-150), (lb) = 150 mm (6 in.) 
 

 

 

 

 

 

 

 

 

 

 
 

(b) CRP-195, specimen (III-4-9-19-150), (lb) = 150 mm (6 in.) 
Fig. 3.16 Shear stress vs. relative load level for CRP-070 and CRP-195. 
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Fig. 3.17 Shear stress vs. slip model for CRP-070 and CRP-195.  
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Fig. 3.18 Comparison of failure loads for specimens with different bond widths. 
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Fig. 3.19 Strain variation along bond length, for specimens (I-2-6-50-150) and (II-2-
6-25-150). 
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CHAPTER 4:   FLEXURAL STUDY ON RC BEAMS STRENGTHENED WITH 

CFRP ROD PANELS AND CFRP LAMINATES 

 

4.1     Synopsis 

Recently, carbon FRP (CFRP) rod panels (CRPs) have been developed and deployed to 

overcome some of the limitations accompanying current methods of repair with CFRP 

laminates.  CRPs are externally bonded to a concrete substrate in a manner similar to other 

externally bonded reinforcement (EBR). Each panel is 1.2 m (4 ft) long and is made of a 

number of small diameter rods that are attached to a glass FRP mesh. In the field, the panels 

are connected through a finger joint to form a continuous EBR.  

In this chapter, the effectiveness of using spliced CRP’s in strengthening RC beams was 

evaluated by conducting four-point flexural tests on nine beam specimens. The 

experimental program consists of: (1) control (or unstrengthened) beam; (2) two beams 

strengthened with a continuous (full-length) CRP; (3) two beams strengthened with two 

spliced CRPs; (4) two beams strengthened with two spliced CRPs, and anchored at ends 

with U-shaped CFRP fabric; (5) one beam strengthened with a continuous CFRP laminate; 

and (7) one beam strengthened with spliced CFRP laminates. For beams in (2), (3), and 

(4), one beam was strengthened with CRP-070 (fabricated with rods of Ø=2 mm, spaced 

at 6.35 mm), while the other beam was strengthened with CRP-195 (fabricated with rods 

of Ø=4 mm, spaced at 9.5 mm). The CFRP area (Af) of CRP-070 and CFRP laminate are 

equal to 64 mm2 (100 x 10-3 in2), while Af of CRP-195 is 173 mm2 (268 x 10-3 in2). The 

following sections report the experimental program that was carried out. 
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4.2    Introduction 

In the last few decades, the development of strong bonding agents, in conjunction with a 

better understanding of the behavior of composite parts, and the development of robust 

numerical and analytical tools, have guided structural engineers and researchers to find 

new repair techniques that are cost-effective, and easy-to-install. The plate bonding 

technique is one of the repair methods.  It involves attaching a steel or FRP plate onto the 

structural substrate (e.g. concrete, steel, masonry, timber, etc.) with the help of a bonding 

agent, oftentimes, epoxy adhesives.  FRP plates (laminates) have become an ideal choice 

for plate bonding technique due to the excellent attributes of FRP material, such as high 

strength and stiffness, immunity to corrosion, ease of handling and installation, minimum 

added weight and minor increase in the member size [Adhikary and Mutsuyoshi (2002), 

Ahn et al. (2006), De Lorenzis et al. (2010), Guenaneche et al. (2014)].   

When strengthening long-span beams with limited access (e.g. bridges over waterways and 

freeways), labor and equipment demands may hinder the use of continuous EBR FRP. 

Splicing of FRP laminates is still an uncommon practice. Several laboratory and field 

studies have investigated the viability of lap-splicing FRP laminates for steel members 

[Yang and Nanni (2002), Dawood and Rizkalla (2006), Dawood et al (2007)].  Peiris 

(2011) presented a technique consisting of ultra-high modulus CFRP plate strip panels as 

an alternative for lap-spliced FRP laminates. Each panel is 1.2 m (4 ft.) long and consists 

of 5 mm (0.2 in.) or 10 mm (0.4 in.) wide ultra-high modulus CFRP strips.  To fulfil the 

total strengthening length, several panels are brought together and jointed by means of 150 

mm (6 in.) overlap “finger joint”. Experimental tests and finite element analysis on small-

scale wide flange steel beams have validated the viability of the technique, and results 
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shown that overlapped panels are better alternative than regular lap-spliced laminates, 

when comparing ultimate load-capacity of the joint, Peiris (2011).  

Several other studies were also performed on concrete members [Tedesco et al (1996), and 

(1998), Stallings et al (2000)]. Stalling and Porter (2003) performed laboratory tests on 

large-scale RC beams strengthened with lap-spliced CFRP plates. Splices of 610 mm (24 

in.) and 915 mm (36 in.) lengths were investigated. The effects of splice location were 

explored by attaching (1) one splice at maximum bending moment (mid-span), and (2) two 

splices at shear span. The study showed that the predominant failure mode is debonding of 

splice due to high shear stresses at splice ends resulting from the difference in strains 

between primary plate and splice. The study also included small-scale tension tests 

consisting of CFRP primary plates connected by splices. Both the beam tests and tension 

tests indicated that there was a uniform strain at the threshold of debonding. For design 

purposes, the study devised to limit the strain at the end of splice to 1682 microstrain in 

order to prevent debonding of the splice. The study also concluded that in order for the 

splices to be fully functional, and to avoid shear failure in the splice, the average shear 

stress at the splice end should be kept below 15% of the shear strength of the adhesive.  

This implies that relatively very long splices are required. 

  Carbon fiber reinforced polymer (CFRP) rod panels (CRPs) have recently been developed 

and deployed in the field to provide a substitute for lap-spliced FRP plates, and provide an 

economical retrofit for concrete and steel bridges. CRPs are made from small diameter 

CFRP rods that are placed side by side at discrete spacing to form a panel. The rods are 

then mounted to a fiberglass backing to facilitate the handling of the panel and to keep the 

rod spacing consistent. Spacing between rods is selected so that rods in the overlap region 
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can easily be inserted in the field. Neighboring panels are brought together and made 

continuous by an overlapping “finger joint” method. The overlap length, conservatively 

selected based on preliminary double-lap shear tests conducted by Harik and Peiris (2014), 

is 150 mm (6 in.).  

Each alternate panel is produced with an extra rod to provide symmetry on both sides of 

the overlap region. CRPs are externally bonded to the concrete substrate in a manner 

similar to other externally bonded reinforcement (EBR). The CFRP area of CRPs is the 

product of the individual rod area by the number of rods provided. Therefore, either varying 

rod dimeter, rod spacing or both can adjust the total area.  Nominally, CRPs are usually 

given the term CRP-X3 (X3=XXX=070, 145, 195, etc.), which indicates that the CRP can 

resist XXX kips of force per 1-ft wide section. Each panel is 1.2 m (4 ft.) long.  

The objective of this chapter is to experimentally investigate the effectiveness of 

overlapped CRPs for strengthening of RC members.  Nine RC beams are tested to quantify 

the effectiveness of CRP strengthening by comparing the flexural behavior and ultimate 

load with an un-strengthened beam (or control beam), and with beams bonded to 

conventional CFRP laminates.    
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4.3     Experimental Program 

4.3.1 Dimensions of RC Beams 

The dimensions of RC beams were selected to ensure that the specimens are strong in shear 

and weak in flexure. The flexural and shear reinforcements were determined following the 

ACI 318-11 (2011) specifications.  Furthermore, the shear reinforcement was doubled at 

load-points and support. The flexural and shear behavior of CFRP strengthened RC beams 

was examined for potential shear failure following ACI 318-11 and ACI 440.2R-08 (2008) 

specifications.  

The RC beams are 3000 mm (120 in.) long and have a square cross-section of 150 x 150 

mm (6 x 6 in.). The flexural reinforcement consists of two Ø-10 mm (0.375 in.) deformed 

steel rebars located at the beam’s tension face. The shear reinforcement consists of Ø-3 

mm (0.125 in.) steel stirrups located at shear span. The stirrups were spaced at 150 mm (6 

in.) for most parts of shear span, while for locations at supports and load-points, the stirrups 

were spaced at 75 mm (3 in.). Furthermore, to facilitate the attachment and vertical 

alignment of shear stirrups, two Ø-10 mm deformed steel rebars located at the beam’s 

compression face were added, [figure 4.1 (a), and 4.2 (a)]. 

 

4.3.2 Specimen Description and Strengthening Schemes 

Nine RC beams selected for the experimental program, including: (1) one control (or un-

strengthened) beam; (2) one beam strengthened with a continuous (full-length) CRP-070; 

(3) one beam strengthened with a spliced CRP-070 [two CRP-070 made continuous at mid-

span by 150 mm (6 in) overlap]; (4) one beam strengthened with two spliced CRP-070 and 

anchored at panel’s ends with U-shaped CFRP fabrics; (5) one beam strengthened with a 
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continuous  CRP-195; (6) one beam strengthened with two spliced CRP-195 [two CRP-

195 made continuous at mid-span by 150 mm (6 in) overlap]; (7) one beam strengthened 

with two spliced CRP-195 and anchored at panel’s ends with U-shaped CFRP fabrics; (8) 

one beam strengthened with a continuous CFRP laminate; and (9) one beam strengthened 

with spliced CFRP laminate system. The strengthening length for all CFRP strengthened 

beams is 2286 mm (90 in.). CFRP laminate and CRP-070 have an equal cross-sectional 

area (Af) of 64 mm2 (100 x 10-3 in2), while for CRP-195, Af is 173 mm2 (268 x 10-3 in2). 

Both CRP-070 and CRP-195 were set to have a width, wf , that covers the entire beam’s 

underside. While CRP-070 and CFRP laminate had an equal cross-sectional area to 

compare the performance of the two strengthening systems, CRP-195 was included in the 

program to investigate its performance when it’s used to strengthen a concrete member.  

 

The control beam was used as a reference specimen to provide comparative data on 

different characteristics, such as strength, stiffness, ductility, cracks and deflections, for 

beams strengthened with CRPs as well as CFRP laminates. Specimens in (2), (5), were 

tested to compare the behavior of spliced CRPs and the effectiveness of the 150 mm (6 in.) 

overlap in maintaining continuity between spliced panels, with un-spliced (full-length) 

counterpart panels.  

Specimens in (4), (7), were added to measure the effectiveness of CFRP end anchorage in 

preventing pre-mature failures (e.g. end peeling, concrete cover separation), expected to 

occur at end locations. The fabric used in this testing was SikaWrap Hex 103C, and its 

dimensions were designed according to ACI 440.2R-08 (2008) standards. The design 

yielded one ply, U-shaped fabric, with a thickness of 1 mm (0.04 in.) and width of 300 
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mm. A second ply was added on top of the first one to further control the failure location. 

The fabric fibers were oriented perpendicular to the beam’s longitudinal axis. Beams in 

(8), (9) were cast to compare CRP strengthening technique, both un-spliced and spliced 

panels, with commonly used externally bonded laminates. The spliced laminate system 

consists of two main laminates, having a length of 1143 mm (45 in.) each, and a splice, 

having a length of 1220 mm (48 in.). The splice length, 1220 mm (48 in.), was selected 

based on a study by Stallings and Porter (2003). Table. 4.1 provides essential information 

on the properties of CRP-070 and CRP-195. Table 4.2 lists the test matrix and gives 

information about strengthening parts, while figures 4.1 and 4.2 show the dimensions of 

RC beams and strengthening parts.  

 

4.3.3 Materials 

High strength concrete was used in the fabrication of the RC beams. For each individual 

beam, three concrete cylinders [with dimensions of 150 mm (6 in.) for the diameter and 

300 mm (12 in.) for the height] were cast and tested on the same day of beam testing.  

Testing was conducted in accordance with  ASTM C31/C31M-09 (2009) standards of 

making and curing concrete specimens, and ASTM C39/C39M-09 (2009) standards of test 

method for compressive strength of concrete cylinders. The average compressive strength 

of all nine specimens is 64.7 MPa (9384 psi). Compressive strengths of individual beam 

and cylinders, as well as average values, are listed in table 4.2. The concrete modulus, Ec, 

was determined by attaching strain gages onto several concrete cylinders and plotting the 

stress-strain curve while the specimens were in compression, following ASTM 

C469/C469M-10 (2010) standards. The modulus was found to be 4.068x104 MPa 

(5.90x106 psi).  
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Grade 60 steel rebars were used for both the longitudinal (tensile and compressive) and 

shear reinforcements. The mechanical properties of the steel were verified by performing 

tensile tests on several specimens, prepared from the actual rebars used in the experimental 

program, according to ASTM A370-09 (2009) standards.  

CFRP rods were used to generate the CRP-070 and CRP-195. The manufacturer’s 

[Diversified Structural Composites (2015)] guaranteed tensile modulus of elasticity is 134 

GPa (19,500 ksi) and the tensile strength is 2,340 MPa (320 ksi). CFRP laminates were 

normal modulus Sika CarboDur S1012 and had a tensile strength of 2800 MPa (406 ksi) 

and a modulus of elasticity of 160 GPa (23200 ksi), according to the manufacturer’s 

specifications [Sika CarboDur plates, (2011)].  

CFRP fabrics were SikaWrap Hex 103C type and had a tensile strength of 960 MPa (139 

ksi) and a modulus of elasticity of 73 GPa (10600 ksi) [SikaWrap Hex 103C, (2014)]. Two 

types of adhesive were used in the experiment: (1) Sikadur 30 (epoxy adhesive), which was 

used as the adhesive for bonding CRP and CFRP laminates to the beam’s bottom face, and 

(2) Sikadur 300 (impregnating resin), used to impregnate and bond CFRP fabric to the 

beam’s side face and to the bottom of CRP.  The material properties for Sikadur 30 are: 

24.8 MPa (3.6 ksi) for tensile strength and 4482 MPa (650 ksi) for modulus of elasticity 

[Sikadur 30 (2014)], and for Sikadur 300: 55 MPa (8 ksi) for tensile strength and 1724 

MPa (250 ksi) for modulus of elasticity [Sikadur 300 (2014)]. 

 

4.3.4 Surface Preparation and CFRP Installation 

Proper bond between concrete substrate and FRP material plays an extraordinary role in 

executing a successful and effective strengthening or rehabilitation project. An adequate 

bond allows for strong transfer and distribution of forces between the two adhered 
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materials, and a sound surface preparation is part of the process to achieve a high-quality 

retrofit. The beam’s tensile face, where the strengthening material will be applied, was 

ground using an electric grinder to remove any dust, laitance, foreign particles, and to 

abstain an aggregate rich layer that provides a rough surface profile for CFRP bonding. 

Prior to the application of the adhesive, both the beam’s tensile face and the CFRP surface 

were wiped clean with acetone.  

CRPs were applied onto the beam’s tensile face in the following sequence: (1) the concrete 

face was coated with a uniform layer of approximately 2 mm (0.078 in.) thick SikaDur 30 

epoxy adhesive [figure 4.3 (a)]; (2) CRP was placed into position and pressed gently, 

forcing the epoxy to flow around the rods and fill the gap between the rods [figure. 4. 3 (b, 

c)]; and (3) an additional coat of adhesive was placed to completely embed CFRP rods 

[figure 4.3 (d)].  The beams were left to cure, with the first beam test performed 51 days 

after the placement of CFRP systems (CRP and CFRP laminate.  

When CFRP fabric is applied, the above steps are first carried out, followed by the surface 

preparation in the region where the fabric will be bonded (i.e hand grinding and wiping 

clean with acetone).  The prepared surface was later wetted with SikaDur 300 adhesive 

using a hand-brush.  At the same time, the fabric was saturated with SikaDur 300.  Next, 

the saturated fabric was placed onto the wet concrete and CRP surfaces and smoothed out 

by hand to prevent formation of folds and wrinkles.  Plastic rollers were used to remove 

any air entrapped under the fabric and further impregnate the fabric with resin [figure  4.4]. 

A second fabric ply was applied on top of the first one. The beams were left to cure for an 

additional 21 days after the placement of CFRP fabric. 
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The CFRP laminates were applied according to the manufacturer’s guidelines [Sika 

CarboDur plates, (2011)].  SikaDur 30 adhesive was applied to the concrete surface with a 

profile to a nominal epoxy thickness of 1.5 mm (0.06 in.). At the same time, the same 

adhesive was also applied to the laminate bonding surface with a roof-shaped profile to a 

nominal thickness of 1.5 mm (0.06 in.). Next, the laminate was placed onto the concrete 

surface at its designated location and pressed with a plastic roller until the adhesive was 

forced out on both sides of the laminate. The excessive adhesive was then removed and 

pressure was applied on the laminate for 24 hours, [figure 4.5]. For the application of the 

spliced CFRP laminate system, main laminates were firstly applied onto the concrete, 

according to the above procedure, followed immediately by attaching the splice on the 

surface of main laminates. 

 

4.3.5 Test Setup and Instrumentation 

All nine beams were tested in four-point bending with simple support conditions at the 

ends. The clear span between supports was 2743 mm (108 in.), while the span between 

load points was 762 mm (30 in.), as shown in figure 4.6.  A hydraulic actuator, with 890 

kN (200 kip) load capacity, was used to apply the force. A load cell placed above the 

actuator head was used to record the load increments. Two cable extension type 

displacement sensors were attached to the bottom of the beam at mid-span and quarter-

span.  In addition, at mid-span, two linear variable displacement transducers (LVDTs) were 

attached to accurately measure the mid-span deflection, observe any twisting or differential 

deflection, and provide extra safety measurement if the displacement sensors malfunction 

. A third displacement sensor was attached to the reaction frame to measure any movement 
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of the reaction frame during loading. A data acquisition system connected to a laptop 

computer was used to digitally record and collect the test data, load cell readings, 

displacement sensor readings, and strain-gauge readings.  Figure 4.7 shows a beam under 

testing. 

All beams were instrumented with foil type electrical resistance strain gauges. On the 

concrete surface along the beam depth at mid-span (all beams) and along the length at 

bottom face (control beam), 50 mm (2 in.) long gages were attached. For CFRP 

strengthened beams, 3 mm (0.125 in) long gages were used along the length of the CRP or 

CFRP laminate. It was not possible  to attach gages directly on the surface of CFRP rods 

due to their small diameter. Alternatively, gages were attached to the surface of adhesive. 

The strain at the surface of adhesive is assumed to correspond to the strain in rods, 

considering the following conditions: (1) distance from the surface of adhesive to the rod 

centroid is negligible, (2) no debonding or other signs of distress at the rod/adhesive 

interface, and (3) no slip between rods and adhesive. 

 

4.4     Results and Discussions 

4.4.1 Modes of Failure 

The control beam (CB2, table 4.2) failed in the conventional way for under-reinforced 

concrete members, by yielding of tensile steel reinforcement, followed by crushing of 

compressive concrete in the mid-span region, figure 4.9. Beams strengthened with full-

length and spliced CRP-070 and CRP-195 (CS70, SS70, CS195 and SS195, table 4.2) 

failed by concrete cover separation (CCS), at one of panel ends. The failure started by 

formation of a diagonal crack, few millimeters outside the panel’s end. At the level of 
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tensile steel reinforcement, the crack propagated horizontally, resulting in separation of 

concrete cover from the beam section. In some instances, shear or flexural-shear cracks, 

near load points, are present, and may be coupled with CCS failure, figure 4.10.  

The failure was sudden and the load dropped immediately after the cover separation was 

visible. Beams strengthened with spliced and anchored CRP-070 and CRP-195 (SSW70, 

and SSW195, table 4.2) failed by intermediate crack-induced debonding (ICID), figure 

4.11.  The failure initiated in the vicinity of flexural or flexural-shear crack on the beam’s 

tension side as a result of differential vertical movement at the ends of the crack.  At failure 

of specimens SSW70 and SSW195, the CRP debonded from the concrete substrate, at the 

concrete adhesive interface, with a thin layer of concrete attached to the adhesive. In 

SSW70 beam, ICID was also coupled with delamination of the concrete cover at mid-span 

region, figure 4.11 (a). Additionally, for both SSW70 and SSW195, the CFRP fabric 

debonded from the beam’s side, possibly due to the push-out forces generated from 

debonding of CRP by ICID.  

Beams strengthened with CFRP laminates (CSSC2, and SSSC2, table 4.2) failed by 

laminate debonding initiated at the end of the laminate.  For the beam strengthened with a 

full-length laminate (CSSC2, table 4.2), the failure initiated at one of the laminate’s ends 

and propagated toward mid-span. Debonding was along laminate/adhesive interface (i.e 

adhesive remained attached to the concrete soffit), as can be seen in figure. 4.12 (a). The 

beam strengthened with spliced laminate system (SSSC2, table 4.2), failed by debonding 

of the splice from the laminate system. Debonding initiated at one end of the splice, and 

progressed toward the butt-joint between main laminates, figure. 4.12 (b). For both beams, 



 

91 
 

 

after debonding of CFRP laminates, loading was continued until failure by concrete 

crushing, figure. 4.12.  

 

4.4.2 Maximum Loads and Capacity Increase 

The recorded maximum loads, defined as the peak load within the load-mid span deflection 

curve, and failure modes for the nine beams, are presented in table 4.4. The maximum loads 

at failure for the strengthened beams and the corresponding percentage increase in load 

capacity relative to the control beam are as follows:  38.98 kN (8.76 k) or 112% increase 

for the full-length CRP-070; 37.94 kN (8.53 k) or 106% increase for the spliced CRP-070; 

47.43 kN (10.66 k) or 158% increase for the spliced/anchored CRP-070; 27.3 kN (6.15 k) 

or 49% increase for the full-length laminate; and  24.2 kN (5.45 k) or 31.8% increase for 

the spliced laminate.  

The results presented in Table 4.4 and figure 4.13(a) show that, relative to the beams 

strengthened with CFRP laminates, the beams strengthened with CRPs achieved more than 

double the capacity increase.  This is due to the different modes of failure.  The CFRP 

laminates failed by debonding at laminate or splice ends, while debonding was not 

observed within CRP-070.  This is primarily due the geometrical properties of CRP and 

CFRP laminate.   The CRP is made of several rods at discrete spacing that permit the resin 

cover the entire surface area of each rod while, for the laminate, the resin covers the bottom 

face (or ~ 50% of the surface area).  In order to provide the same cross sectional area of 

CFRP,  the bond width wf = 150 mm (6 in.) CRP-070 [(figure 4.1 (e)] compared to wf = 50 

mm (2 in.) for the laminate [(figure 4.2 (d)].. Experimental and analytical studies have 
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shown that increasing wf results in delaying or preventing the end-debonding failure (Chen 

and Teng 2001, Kamel et al 2004, Obaidat 2010). 

The maximum loads and percentage increase in load capacity for beams strengthened with 

CRP-195 (CS195, SS195, and SSW195, table 4.2), are as follows:  37.42 kN (8.41 k) or 

104% increase for the full-length CRP-195; 35.80 kN (8.05 k) or 95% increase for the 

spliced CRP-195; 54.17 kN (12.18 k) or 195% increase for the spliced and fabric anchored 

CRP-195. Beams strengthened with full-length or spliced CRP-070 and CRP-195, despite 

that CFRP area, Af of CRP-195 is 2.7 times that of CRP-070, failed at similar maximum 

loads figure 4.13 (b).  This is due to the fact that CCS failure was predominant. The failure 

is primarily affected by the concrete strength. Since the beams were made of one concrete 

batch, Af is not expected to increase the maximum load. On the other hand, CFRP end 

anchorage was very effective in preventing CCS failure and further increasing the load 

capacity of beams strengthened with spliced CRPs, as can be seen in table 4.4, for SSW70 

and SSW195 beams. Since CCS was prevented, SSW195 beam, with Af = 173 mm2 (268 x 

10-3 in2), has achieved higher load capacity increase than SSW70 beam, with Af = 64 mm2 

(100 x 10-3 in2), figure 4.13 (b). 

The objective of this testing was to investigate the effectiveness of spliced CRPs, and to 

examine if the proposed 150 mm (6 in.) overlap is sufficient in transferring forces between 

spliced panels and maintaining composite action throughout loading stages. Notably, 

specimens strengthened with spliced CRPs behaved in a similar manner when compared 

to respective full-length CRPs, and both failed at comparable maximum loads and identical 

failure modes. No signs of debonding or distress were observed at the rod overlap region 

for all four beams strengthened with spliced CRPs.  In contrast, the beam with a CFRP 



 

93 
 

 

laminate splice (figure 4.2), in which the splice length was designed following 

recommendations by Stallings and porter (2003), failed due to debonding of the splice from 

the laminate system.  

 

4.4.3 Load Mid-Span Behavior 

Table 4.5 lists the cracking, yielding, and maximum loads, and their respective deflections, 

as observed in the experimental program. Also shown in the table, the percentage increase 

in cracking, yielding and maximum loads, as compared to the control beam.  The ductility, 

defined by the ratio of the deflection at maximum load divided by the deflection at yielding 

of tension steel, is also presented in table 4.5. At cracking and yielding stages, both CRP 

and CFRP laminate strengthened beams showed comparable increase of loads and 

deflections over the control beam. The ductility for the control beam and beams 

strengthened with CFRP laminates range between (6.25 and 7.03). Beams bonded to CRP-

070 yielded a ductility of 2.91 (for full-length CRP-070), 2.11 (for spliced CRP-070), and 

2.65 (for spliced and fabric anchored CRP-070). Ductility of CRP-195 bonded beams was 

1.32 (for full-length CRP-195), and 1.31 (for spliced and fabric anchored CRP-070), while 

ductility of the beam bonded to spliced CRP1-95 was not presented, since the specimen 

failed before reaching yielding load.  

Figures 4.14 and 4.15 show the load mid-span deflection response of beams strengthened 

with CRP-070, CRP-195, and CFRP laminates, respectively. After cracking, all 

strengthened beams showed an increase in the stiffness when compared with control beam. 

Figure 4.14 (a) shows that the load deflection response of beams strengthened with spliced 

CRP-070 (SS70, SSW70, table 4.2) were similar to the beam bonded to full-length CRP-
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070 (CS70, table 4.2) prior to yielding stage. Figure 4. 14 (b) shows that the load deflection 

response of spliced CRP-195 (SS195, SSW195, table 4.2) were identical to the full-length 

CRP-195 (CS195, table 4.2).  

Figure 4.16 presents the load mid-span deflection response for the CRP-070 and CRP-195 

strengthened beams, and the control beam.   The post-cracking stiffness of CRP-195 beams 

is larger than that of the CRP-070 beams.  This is expected since the CFRP area, Af, of 

CRP-195 is larger than of CRP-070 (173 mm2 vs. 64 mm2).   

Figure 4.17 presents the load mid-span deflection response for the CRP strengthened 

beams, CFRP Laminate strengthened beam, and the control beam. The response of the 

strengthened beams is similar prior to debonding of the laminates.   

 

4.4.4 Cracking Patterns 

Figure 4.18 presents the visually observed cracking patterns on the beams. To permit crack 

observations, each specimen was painted white and grids of 25x25 mm (1x1 in.) were 

drawn at both sides of the beam.  During testing, two persons, one on each side of the 

specimen, were positioned to document the load at which each crack develop and to trace 

the crack path. The first crack was observed at loads of 8.9 kN (2 kip) for the control beam, 

15.7 kN (3.5 kip) for beams strengthened with CRP-070, 23.7 kN (5.3 kip) for beams 

strengthened with CRP-195, and 13.3 kN (3 kip) for beams strengthened with CFRP 

laminates.  
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4.4.5 Strain Profile along Depth, at Mid-Span 

Strain distributions along the beam’s depth at mid-span  were generated using strain data 

obtained from the three concrete strain gages, S1, S2, and S3 mounted on the beam side at 

different depths [figure 4.8 (a)]. These distributions were generated at several load levels 

prior to and after yielding of tension steel.  Strain data for the control beam are not 

presented herein, due to strain gage malfunction.  

Strain profiles for beams strengthened with full-length CRP-070, CRP-195 and CFRP 

laminate, for several load levels [(P/Pmax), where P is current load, and Pmax is maximum 

load)] up to failure, are shown in figure 4.19. For other strengthened beams, similar plots 

are given in figures B.1 through B.3 (in appendix B).  The neutral axis (N.A), defined as 

the ordinate where strains are zero, is approximately at mid-height for loads below 

cracking. After cracking, the N.A moves up toward the beam’s compressive face. The N.A 

then approaches a constant value for loads exceeding the load at yielding of tension steel. 

The measured post-yielding N.A, obtained from figures 4.19, and B.1 to B.4 in Appendix 

B, is approximately 37.5 mm (1.5 in.) for CRP-070 strengthened beams, 50 mm (2 in.) for 

CRP-195 strengthened beams, and 40 mm (1.6 in.) for CFRP laminate strengthened beams.   

 

4.4.6 Strain Behavior across the CRP width 

In several specimens, strengthened with CRPs, an additional strain gage was placed at mid-

span, 38 mm (1.5 in.) form the longitudinal center line, to examine the behavior of CRP in 

the transverse direction. Figure 4.20 shows the load levels (P/Pmax) vs. strain curve, for the 

central gage and side gage, in four CRP strengthened beams. As can be seen in, the load-

strain behavior at center of CRP and at 38 mm from center are in good agreement.  
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4.4.7 Strain and shear stress along the CRP and /CFRP laminate 

Tensile strain and shear stress variations along the CFRP reinforcement length were 

generated from the readings of strain gages mounted on the surface of the strengthening 

material, for several load levels up to ultimate. For each specimen, the load levels were 

normalized by dividing the selected load value by the specimen maximum load. Shear 

stress is the adhesive local shear stress,𝜏𝜏𝑎𝑎, at the concrete-adhesive interface along the CRP 

or CFRP laminate length, and is calculated by considering the equilibrium of the CFRP 

reinforcement section bonded to concrete, as follows: 

(a) For CRP bonded beams.  

𝜏𝜏𝑎𝑎 =
𝜀𝜀𝑓𝑓(𝑥𝑥𝑖𝑖)−𝜀𝜀𝑓𝑓(𝑥𝑥𝑖𝑖−1)

(𝑥𝑥𝑖𝑖−𝑥𝑥𝑖𝑖−1)
∙ 𝐸𝐸𝑓𝑓 ∙

𝐴𝐴𝑓𝑓 
w𝑓𝑓

      

(b) For CFRP laminate bonded beams.  

𝜏𝜏𝑎𝑎 =
𝜀𝜀𝑓𝑓(𝑥𝑥𝑖𝑖) − 𝜀𝜀𝑓𝑓(𝑥𝑥𝑖𝑖−1)

(𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖−1)
∙ 𝐸𝐸𝑓𝑓 ∙ 𝑡𝑡𝑓𝑓 

Where;        

𝑥𝑥𝑖𝑖 , 𝑥𝑥𝑖𝑖−1 are the locations of any two consecutive gages, measured from a reference point,  

𝐸𝐸𝑓𝑓 is CFRP tensile modulus, MPa (psi), 𝜀𝜀𝑓𝑓(𝑥𝑥𝑖𝑖), 𝜀𝜀𝑓𝑓(𝑥𝑥𝑖𝑖−1) are strains at locations 𝑥𝑥𝑖𝑖  , 𝑥𝑥𝑖𝑖−1 

respectively, 𝐴𝐴𝑓𝑓 is the cross-sectional area of CRP [figure 4.1], wf is width of CRP [figure 

4.1 (a)], and 𝑡𝑡𝑓𝑓 is thickness of CFRP laminate [figure 4.2].   

Figures 4.21 to 4.24 present the, tensile strains and shear stress variations between the 

support and the beam’s mid-span.  The results for four of the beams are presented in this 

chapter and rest are presented appendix B in figures B.4 to B.7. The maximum shear stress, 

τa, for beams bonded to full-length or spliced CRP-070 or CRP-195 [figure 4.20, and 

(4.1) 

(4.2) 
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figures B.4 to B.6],  is approximately 3 MPa (0.445 ksi) compared to the average  adhesive  

bond stress of 5.50 MPa (0.80 ksi) derived from  the double-lap shear tests (section 3.4.3 

in chapter 3). It should be noted that none of the full-length or spliced CRP strengthened 

beams failed by debonding. 

As previously mentioned in section 4.4.1, the two beams strengthened with spliced and 

anchored CRP-070 and CRP-195 failed by interfacial crack induced debonding (ICID), 

which is known to initiate at flexural or flexural-shear cracks (Teng et al 2003).  Figures 

4.22, and B.5 in Appendix B, show large tensile strain values near the loading-point, along 

with maximum shear stress of 5.0 to 7.5 MPa (0.72 to 1.09 ksi) at the same location. This 

shear stress range exceeds the adhesive average bond stress of 5.50 MPa (0.80 ksi), 

indicating that debonding may have initiated near load-point and propagated elsewhere. 

Furthermore, ACI 440.2R-08 (2008) guide for design and construction of externally 

bonded FRP systems places an upper limit on the FRP strain, to prevent ICID failure [ 

equation 10-2 in ACI 440.2R-08 (2008)] 

𝜀𝜀𝑓𝑓𝑓𝑓 = 0.083 � 𝑓𝑓𝑐𝑐′

𝑛𝑛𝐸𝐸𝑓𝑓𝑡𝑡𝑓𝑓
≤ 0.9𝜀𝜀𝑓𝑓𝑓𝑓                                                                                        (4.3) 

Where; 𝜀𝜀𝑓𝑓𝑓𝑓 is FRP effective strain (upper limit to prevent ICID failure); 𝑓𝑓𝑐𝑐′ is concrete’s 

compressive strength, MPa; n is number of FRP plies; 𝜀𝜀𝑓𝑓𝑓𝑓  is the rupture strain of CFRP 

rods; and other variables were previously defined in this section. If the properties of the 

beam [(𝑓𝑓𝑐𝑐′), table 4.4] and CFRP rods [(𝐸𝐸𝑓𝑓), section 4.3.3] are inputted in equation 4.3, 

while assuming that tf can be approximated for a virtual FRP plate, having Af and wf of 

CRP, [tf = Af / wf], 𝜀𝜀𝑓𝑓𝑓𝑓 can be determined for the two beams strengthened with spliced and 
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anchored CRP-070 and CRP-195. Figure 4.22 (a), shows that for the beam bonded to 

spliced and anchored CRP-070 (SSW70, table 4.2) the strain at the surface of CRP, near 

the loading point have exceeded the ACI strain limit, 𝜀𝜀𝑓𝑓𝑓𝑓. Figure B.7 (appendix. B) shows 

similar trend where the strain near loading point of the beam bonded to spliced and 

anchored CRP-195 (SSW195, table 4.2) is almost equal to 𝜀𝜀𝑓𝑓𝑓𝑓. 

For the beam bonded to the full-length CFRP laminate, figure 4.23 shows that, at a load 

level (P/Pmax) of approximately 0.75 a peak shear stress (debonding stress) of 4.25 MPa 

(0.62 ksi) was reached at roughly 150 mm (6 in.) from the laminate end.   In the subsequent 

load levels, the shear stress at the above location dropped, and other peak stresses were 

registered at other locations indicating the initiation and propagation of the debonding 

process.   

For the beam strengthened with spliced CFRP laminate system, figure 4.24 shows the strain 

and shear stress variations along the length of the laminate system.  It should be noted that 

the strain variations are plotted for half beam, from the end of main laminate to the mid-

span section, while shear stress variations are plotted for the splice laminate only, from end 

of splice to mid-span.   Figure 4.24 shows that, approximately, at a load level of 0.375, a 

peak shear stress (debonding stress) of 2 MPa (0.29 ksi), was registered at splice ends.  As 

the load increased, the shear stress at splice end decreased, while other locations inside the 

splice, picked up significant increase in shear stress. This indicates that the debonding 

started at the splice ends and progressed toward the splice center, as was observed in the 

experiment. 
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4.5    Conclusions 

The primary goal of this chapter was to investigate experimentally the behavior and 

effectiveness of using overlapped (spliced) CFRP rod panels (CRPs) to rehabilitate or 

strengthen concrete members in lieu of other FRP strengthening techniques. To study such 

effects, several variables that examine the applicability and optimum use of overlapped 

CRPs were investigated. First, the behavior of the proposed 150 mm (6 in.) overlap length 

and its effectiveness in providing continuity for the overlapped CRPs, and in turn, their 

behavior in comparison to full length panels was studied.  

The flexural testing was completed by performing static, four-point bending tests on small 

scale RC beams that were strengthened in tension with CRPs or CFRP laminates. Six 

specimens were strengthened in tension with CRPs, using both spliced and un-spliced 

panels, as well as spliced panels that had CFRP fabrics on their ends. To measure 

quantitatively the effectiveness of the suggested CRP system, three other specimens were 

fabricated and tested:--one control specimen that was an un-strengthened RC beam, and 

two beams strengthened with spliced and full-length CFRP laminates. 

Testing concluded the following: (1) the proposed 150 mm (6 in.) overlap seems to be 

sufficient in transferring forces between spliced panels and maintaining composite action 

throughout loading stages. Notably, specimens strengthened with spliced CRPs or full-

length CRPs, both failed at comparable maximum loads and identical failure modes. No 

signs of debonding or distress were seen at the rod overlap region in all of the four beams 

strengthened with spliced CRPs. In contrast, spliced CFRP laminates debonded from the 

laminate system. (2) Comparing CRPs to CFRP laminates, both full-length and spliced 

counterparts, it was found that CRPs achieved larger capacity increase. This is due to the 
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different type of failure experienced in the CRP technique. CFRP laminates failed pre-

maturely by debonding at laminate or splice ends, while debonding was not observed with 

CRP-070. 

 (3) Beams strengthened with full-length or spliced CRP-070 and CRP-195, failed at 

similar maximum loads; despite that the CFRP area, Af, of CRP-195 is 2.7 times that of 

CRP-070.  Af was not effective in enhancing the flexural capacity due to the nature of 

failure in full-length or spliced CRP strengthened beams. Since the failure mode is initiated 

at concrete cover (concrete cover separation, CCS). (4) Beams strengthened with spliced 

and anchored CRPs failed by intermediate crack-induced debonding (ICID). (5) CFRP end 

anchorage was very effective in preventing CCS failure and further increasing the load 

capacity of beams strengthened with spliced CRPs. 
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Table 4.1. CRPs used in the experimental program. 
  

 
(a) The guaranteed tensile stress of CFRP rods is 2.34 GPa (320 ksi), Diversified Structural composites (2015). 
(b) The strength of 1-ft wide CRP is calculated by multiplying the strength of one rod by number of rods per 

1-ft panel. Strength of individual rods, determined from the rod’s guaranteed strength and rod area, is 6.8 
kN (1.53 kip) for 2 mm (0.078 in.) diameter rods, and 27.2 kN (6.12 kip) for 4 mm (0.156 in.) diameter 
rods. 

 

  

 
Panel 

Rod diameter Rod spacing  Rods per 
 1-ft wide 

panel 

Strength of  
1-ft wide panel (a), (b) 

mm in. mm in. kN kip 

CRP-070 2.00 0.08 6.35 0.25 48 326.66 73.44 

CRP-195 4.00 0.16 9.50 0.38 32 871.10 195.84 
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Table 4.2. Beam test matrix. 

Beam 

specimen  

CFRP strengthening scheme Area of CFRP 

mm2 x 10-3 in2 

CB2 Control beam  NA NA 

CS70 One full length CRP-070. 64 100 

SS70 Two spliced CRP-070. 64 100 

SSW70 Two spliced CRP-070,  

anchored with CFRP fabric at the beam ends. 

64 100 

CSSC2 One full length CFRP laminate. 64 100 

SSSC2 Spliced CFRP laminate system. 64 100 

CS195 One full length CRP-195. 173 268 

SS195 Two spliced CRP-195. 173 268 

SSW195 two spliced CRP-195, 

 anchored with CFRP fabric at the beam ends. 

173 268 
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Table 4.3.  Concrete cylinder compressive strength [150 mm x 300 mm (6 in. x 12 
in.) cylinders]. 

Beam 

specimen 

Cylinder compressive strength Avg. compressive Strength 

MPa psi MPa psi 

 

CB2 

68.44 9927  

68.83 

 

9983 68.80 9980 

69.25 10044 

 

CS70 

69.44 10072  

68.02 

 

9866 68.69 9963 

65.93 9563 

 

SS70 

68.79 9977  

64.41 

 

9342 65.30 9471 

59.15 8580 

 

CSSC2 

65.74 9535  

66.89 

 

9702 66.93 9708 

68.00 9864 

 

SSSC2 

68.85 9987  

67.67 

 

9816 66.10 9588 

68.07 9874 

 

SSW70 

65.25 9464  

66.43 

 

9636 64.03 9287 

67.96 9857 

 

CS195 

59.06 8566  

58.30 

 

8456 58.59 8498 

57.25 8304 

 

SS195 

55.06 7986  

59.50 

 

8630 60.96 8842 

62.49 9064 

 

SSW195 

63.74 9245  

62.23 

 

9026 65.93 9563 

57.03 8272 
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Table 4.4. Maximum load and mode of failure for beams in table 4.2. 

Beam 

specimen 

Max. load Failure mode 

kN kip 

CB2 18.38 4.13 Yielding of tension followed by 

crushing of concrete  

CS70 38.98 8.76 Concrete cover separation (CCS) 

SS70 37.94 8.53 Concrete cover separation (CCS) 

SSW70 47.43 10.66 Intermediate crack-induced 

interfacial debonding (ICID) 

CSSC2 27.34 6.15 Laminate end debonding  

SSSC2 24.23 5.45 Splice debonding from main 

laminates 

CS195 37.42 8.41 Concrete cover separation (CCS) 

SS195 35.80 8.05 Concrete cover separation (CCS) 

SSW195 54.17 12.18 Intermediate crack-induced 

debonding (ICID) 
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Table. 4.5 (a) Load and deflection at cracking, yielding of steel, and at maximum, and ductility [SI units]. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1) = 𝑃𝑃𝑐𝑐𝑐𝑐−𝑃𝑃𝑐𝑐𝑐𝑐(CB2)
𝑃𝑃𝑐𝑐𝑐𝑐(CB2)

%,  (2) =  𝑃𝑃𝑦𝑦−𝑃𝑃𝑦𝑦(CB2)
𝑃𝑃𝑦𝑦(CB2)

%, (3) =  𝑃𝑃𝑚𝑚𝑚𝑚𝑥𝑥−𝑃𝑃𝑚𝑚𝑚𝑚𝑥𝑥(CB2)
𝑃𝑃𝑚𝑚𝑚𝑚𝑥𝑥(CB2)

% ,   (4) = ∆𝑚𝑚𝑚𝑚𝑥𝑥
∆𝑦𝑦

 %  , (5) = yielding was not observed for beam (SS195)  

Where: Pcr is the load at cracking, Py is the load at yielding of tension steel, and Pmax is the maximum load. ∆cr is the deflection at cracking, ∆y is the 
deflection at yielding of tension steel, and ∆max is the deflection at maximum load. 

 
 
 
 

Beam 

specimen 

Pcr 

(kN) 

% 

increase(1) 

∆cr 

(mm) 

Py 

(kN) 

% 

increase(2) 

∆y 

(mm) 

Pmax 

(kN) 

% 

increase(3) 

∆max 

(mm) 

Ductility (4) 

CB2 5.20 NA 1.67 13.49 NA 18.45 18.38 NA 129.80 7.03 

CS70 7.93 52.50 2.85 20.75 53.8 19.77 38.98 112.0 57.62 2.91 

SS70 7.45 43.3 2.07 24.68 82.9 22.12 37.94 106.4 46.67 2.11 

SSW70 7.50 44.2 2.60 28.01 107.6 26.94 47.43 158.0 71.53 2.65 

CSSC2 6.97 34.0 2.68 18.45 36.8 15.97 27.34 48.7 99.85 6.25 

SSSC2 8.0 53.8 2.08 19.5 44.4 13.98 24.23 31.8 90.05 6.44 

CS195 7.41 42.5 2.37 30.23 124.1 18.66 37.42 103.6 24.68 1.32 

SS195 7.19 38.2 2.35 −− (5) −− (5) −− (5) 35.79 94.7 23.90 −− (5) 

SSW195 7.92 52.3 2.60 45.50 237.2 30.30 54.17 194.7 39.78 1.31 
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Table. 4.5 (b) Load and deflection at cracking, yielding of steel, and at maximum, and ductility [US units]. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(1) = 𝑃𝑃𝑐𝑐𝑐𝑐−𝑃𝑃𝑐𝑐𝑐𝑐(CB2)
𝑃𝑃𝑐𝑐𝑐𝑐(CB2)

%, (2) =  𝑃𝑃𝑦𝑦−𝑃𝑃𝑦𝑦(CB2)
𝑃𝑃𝑦𝑦(CB2)

%, (3) =  𝑃𝑃𝑚𝑚𝑚𝑚𝑥𝑥−𝑃𝑃𝑚𝑚𝑚𝑚𝑥𝑥(CB2)
𝑃𝑃𝑚𝑚𝑚𝑚𝑥𝑥(CB2)

% ,   (4) = ∆𝑚𝑚𝑚𝑚𝑥𝑥
∆𝑦𝑦

 %  , (5) = No yielding could be observed for beam (SS195)  

Where: Pcr is cracking load, Py is yielding load, and Pmax is maximum load. ∆cr is cracking deflection, ∆y is yielding deflection, and ∆max is deflection at 
maximum load. 
 

 

Beam 

specimen 

Pcr 

(kN) 

% 

increase(1) 

∆cr 

(mm) 

Py 

(kN) 

% 

increase(2) 

∆y 

(mm) 

Pmax 

(kN) 

% 

increase(3) 

∆max 

(mm) 

Ductility (4) 

CB2 1.17 NA 0.07 3.03 NA 0.73 4.13 NA 5.11 7.03 

CS70 1.78 52.5 0.11 4.66 53.8 0.78 8.76 112.0 2.27 2.91 

SS70 1.67 43.3 0.08 5.55 82.9 0.87 8.53 106.4 1.84 2.11 

SSW70 1.69 44.2 0.10 6.30 107.6 1.06 10.66 158.0 2.82 2.65 

CSSC2 1.57 34.0 0.10 4.15 36.8 0.63 6.15 48.7 3.93 6.25 

SSSC2 1.80 53.8 0.08 4.38 44.4 0.55 5.45 31.8 3.54 6.44 

CS195 1.67 42.5 0.09 6.80 124.1 0.73 8.41 103.6 0.97 1.32 

SS195 1.62 38.2 0.09 −− (5) −− (5) −− (5) 8.05 94.7 0.94 −− (5) 

SSW195 1.78 52.3 0.10 10.23 237.2 1.19 12.18 194.7 1.57 1.31 
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(a) RC beam details 
 
 
 

 

 

 
(b) Bottom face of RC beam strengthened with full-length CRP (CRP-070, CRP-195) 

 

  

 

 

 

(c) Bottom face of RC beam strengthened with spliced CRP (CRP-070, CRP-195) 

 

  

 

  

 

 

(d) Bottom face of RC beam strengthened with spliced CRP (CRP-070, CRP-195) and 
anchored at panel’s ends with CFRP fabrics 

Fig. 4.1 Geometry of RC beams and CRP strengthening. 
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(e) Cross-section details 

 

Fig. 4.1 (continued) Geometry of RC beams and CRP strengthening. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CRP-070 S = 6.35 mm tf  = 4mm  Adhesive 

CFRP rod, Ø =2 mm 
No. of rods = 21 (for full-length CRP, and CRP “-”) 
                   = 22 (for CRP “+”) 
Af = 64 mm2 (100 x 10-3 in2)  

S = 9.5 mm 

CFRP rod, Ø =4 mm 
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(a) RC beam details, dimensions in mm 
 
 

 

 

(b) Bottom view of RC beam strengthened with full-length CFRP laminate 

 

 

 

 

(c) Bottom view of RC beam strengthened with spliced CFRP laminate system 

 

 

 

 

 

 

 

 

 

       (d) Cross-section details 

Fig. 4.2 Geometry of RC beams and CFRP laminate strengthening layout 
(dimensions in mm). 
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Fig. 4.3 Installation of CRPs: (a) application of first adhesive layer, (b) placement of 
CRP, (c) placement of CRPs at finger joint, (d) CRPs embedded in adhesive. 

 

(c) 
CFRP rods at 
finger joint 

(b) 

CFRP rod 
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(d) 

CRPs completely 
embedded in adhesive 
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Fig. 4.4 Installation of CFRP fabric at CRP ends. 

  

CFRP fabric 



 

112 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 

Figure 4.5 Installation of CFRP laminate. 

 
 

  

CFRP laminate 
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Fig. 4.6 Schematics of beam test setup. 

 

  

  

30 in    

  

  

        

    

3000 mm 

(1) Loading frame 
(2) Load cell 
(3) Hydraulic jack 
(4) LVDT 
(5) RC beam 
(6) Displacement sensor 
(7) Cross-section at mid-span 

showing LVDTs 
  

(6) 762 mm (5) 

(4) (3) 

(2) 

(1) 

(7) 



 

114 
 

 

Fig. 4.7 CSSC2 Beam placed in the test frame. 

 
  

Span, 3000 mm 

Constant moment, 
762 mm 



 

115 
 

 

 

 

 

(a) CB2 beam (control) 
 

 

 

 

 

(b)  
 

(b) CS70, and CS195 beams (strengthened with one-full length CRPs) 
 

 

 

 

 

 

 

 

(c) SS70, and SS195 beams (strengthened with spliced CRPs) 
 

Fig. 4.8 Strain gage layout (dimensions are in mm). 
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(e) BI.5 beam (strengthened with one-full length CFRP laminate) 
 

(f) CSSC2 beam (strengthened with one full length CFRP laminate) 
 

 

 

 

 

 

 

 

 

(g) SSSC2 beam (strengthened with spliced CFRP laminate system) 
 

Fig. 4.8 (continued) Strain gage layout (dimensions are in mm). 
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Fig. 4.9 Failure mode of control beam. 
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(a) CS70 beam 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 
(b) SS70 beam 

Fig. 4.10 Failure due to concrete cover separation. 
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(c) CS195 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(d) SS195 
Fig. 4.10 (continued) Failure due to concrete cover separation. 
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(a) SSW70 
 
 
 
 
 

 

 

 

 

 

 

 

  

 

(b) SSW195 

Fig. 4.11 Intermediate crack induced debonding failure. 
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(a) CSSC2 
 

 

 

 

 

 

 

 

 

 

 

 

 

(b) SSSC2 
Fig. 4.12 CFRP Laminate debonding failure. 
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(a) CRP-070 and CFRP laminate 

 

 

 

 

 

  

 

 

 

 

 

(b) CRP-070 and CRP-195 

 

 Fig. 4.13 Capacity increase percentage (over control beam) of CRP-070, 
CFRP laminate, and CRP-195 strengthening systems. 
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(a) CRP-070 strengthened beams 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) CRP-195 strengthened beam 

Fig. 4.14 Load mid-span deflection for CRP strengthened beams. 
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Fig. 4.15 Load mid-span deflection for CFRP laminate strengthened beams. 
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Fig. 4.16 Load mid-span deflection for CRP-070 and CRP-195. 
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Fig. 4.17 Load mid-span deflection for the control beam and beams strengthened 
with CRP-070 and CFRP laminate. 
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Fig. 4.18 Crack patterns in beams (numbers next to the cracks are loads, in kN, at 
which the crack was visible.  Note 1 kN = 0.225 kip). 
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Fig. 4.18 (continued) Crack patterns in beams, (numbers next to the cracks are 
loads, in kN, at which the crack was visible.  Note 1 kN = 0.225 kip). 
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(a) CS70 beam (full-length CRP-070)   
 
 

 

(a) CS195 beam (full-length CRP-195) 

Fig. 4.19 Strain profile along depth, at mid-span, CS70 and CS195 beams. 
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(c) CSSC2 beam (full-length CFRP laminate)  

Fig. 4.19 (continued) Strain profile along depth, at mid-span, CSSC2 beam. 
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 (a) SSW70 beam (spliced/anchored CRP-070) 

 

 

 

(b) CS195 beam (full-length CRP-195) 

Fig. 4.20 Load level, P/Pmax vs. strain along CRP width. 
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(c) SS195 beam (spliced CRP-195) 

 

 

 

(d) SSW195 beam (spliced and anchored CRP-195) 

Fig. 4.20 (continued) Load level, P/Pmax vs. strain along CRP width. 
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(a) Tensile strains 
 

 

 

 

(b) Shear stresses 

Fig. 4.21 Tensile strain and shear stress distribution along CRP length, beam SS70 
(spliced CRP-070).  
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 (a) Tensile strains 

 

 

 

 

(b) Shear stresses 

Fig. 4.22 Tensile strain and shear stress distribution along CRP length, beam 
SSW70 (spliced and anchored CRP-070).  
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(a) Tensile strains 

 

 

 

  

(b) Shear stresses 

Fig. 4.23 Tensile strain and shear stress distribution along CFRP laminate length, 
beam CSSC2 (full-length CFRP laminate).  
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(a) Tensile strains 

 

 

 

 

 

(b) Shear stresses 

Fig. 4.24 Tensile strain and shear stress distribution along CFRP laminate length, 
beam SSSC2 (spliced CFRP laminate system).  
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CHAPTER 5:   FINTE ELEMENT ANALYSIS OF RC BEAMS BONDED TO 

CFRP ROD PANELS AND CFRP LAMINATES  

 

5.1     Synopsis 

In this chapter, comprehensive three dimensional (3D) finite element (FE) models of RC 

beams, flexurally strengthened with CFRP rod panels (CRP’s) and CFRP laminates, were 

developed. The models consider the nonlinearity of concrete material, including: concrete 

nonlinear stress-strain behavior in compression, cracking, crushing, stress softening 

behavior in tension, and effects of confinement on concrete compressive stress-strain 

relation. The structural behavior of CRP’s, especially the overlap region, was explicitly 

captured by modeling CFRP rods as discrete reinforcement embedded inside the adhesive 

layer. Debonding phenomenon, observed in some specimens bonded to CRP’s and CFRP 

laminates, was fully implemented using proper cohesive zone models (CZM), and interface 

elements. The results show that the FE models were able to capture the debonding load and 

location, and simulate the load mid-span deflection response with reasonable correlation 

to the experiments. Due to implementing a displacement-controlled loading scheme, the 

FE response was able to capture the drops in load that were seen in some specimens due to 

debonding or concrete crushing failures. Concrete cover separation failure, which occurred 

in several specimens strengthened with CRP, was predicted in the FE analysis, with 

percentage difference between FE and experimental maximum load ranging between 2.9 

and 6.2. FE models predicted high shear stress concentration at the end of CRPs in all 

beams strengthened with full-length or spliced CRPs. For the beams that were strengthened 

with spliced CRPs and had CFRP U-shaped fabrics over CRP ends, FE analysis shows that 
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the fabric anchorage to be effective in shifting the location of maximum shear stress from 

the panel’s end to inside the strengthening length. 

 

5.2     Introduction 

With the development of powerful computer platforms, numerical models have become 

widely available and useful in simulating the behavior of structural members under various 

loading, geometrical, and material configurations. Numerical models can be used as an 

alternative method when the geometry, loading configuration, or material behavior of a 

member are too complex to be solved by closed-form analytical models. Also, numerical 

tools can supplement experimental testing and assist in exploring effects of various 

parameters, left out in the experimental program, due to time, apparatus or cost limitations.  

Several methods, namely finite element (FE), finite difference, boundary element, are 

available. The FE method is the most widely practiced method (Lu et al 2005, Park et al 

2007, Teng and Zhang 2014). 

When performing a FE modeling of FRP bonded concrete members, there are several 

approaches followed by researchers, depending on the degree of accuracy required, time 

restrictions, FE software robustness, computer capability, etc.  For starter, the model can 

be three-dimensional or two-dimensional (Omran and El-Hacha 2012). The material 

properties of the constituents can be simplified, assuming linear models, or advanced 

nonlinear relations can be implemented (Kheyroddin and Naderpour 2008). Some 

researchers model the internal steel reinforcement as smeared layer inside the concrete 

elements (Supoviriyakit et al 2004), while others use link or truss elements to realistically 

model the reinforcement (Ross et al 1999). The concrete-FRP interface can be 
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simplistically assumed to have perfect bond criteria, applicable in cases where the failure 

mode is not due to debonding at the interface (Pendhari et al 2006); while contact elements 

with proper shear stress-slip relation and normal (peeling) stress values, ought to be 

prescribed to accurately predict the interface debonding (Ferretti and Savoia 2003).  

 

5.3     Experimental Program  

Nine RC beams were tested in the experimental program, including: (1) one control (or un-

strengthened) beam; (2) one beam strengthened with a continuous (full-length) CRP-070; 

(3) one beam strengthened with a spliced CRP-070 [two CRP-070 made continuous at mid-

span by 150 mm (6 in) overlap]; (4) one beam strengthened with two spliced CRP-070 and 

anchored at panel’s ends with U-shaped CFRP fabrics; (5) one beam strengthened with a 

continuous  CRP-195; (6) one beam strengthened with two spliced CRP-195 [two CRP-

195 made continuous at mid-span by 150 mm (6 in) overlap]; (7) one beam strengthened 

with two spliced CRP-195 and anchored at panel’s ends with U-shaped CFRP fabrics; (8) 

one beam strengthened with a continuous CFRP laminate; and (9) one beam strengthened 

with spliced CFRP laminate system. The strengthening length for all CFRP strengthened 

beams is 2286 mm (90 in.). CFRP laminate and CRP-070 have an equal cross-sectional 

area (Af) of 64 mm2 (100 x 10-3 in2), while for CRP-195, Af is 173 mm2 (268 x 10-3 in2). 

Both CRP-070 and CRP-195 were set to have a width, wf , that covers the entire beam’s 

underside. While CRP-070 and CFRP laminate had an equal cross-sectional area to 

compare the performance of the two strengthening systems, CRP-195 was included in the 

program to investigate its performance when it’s used to strengthen a concrete member.  
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The beams were tested until failure in a static, four-point bending configuration. Figures 

5.1 and 5.2 describe the details of tested specimens. High strength concrete was used in 

fabrication of the RC beams. For each individual beam, three accompanying concrete 

cylinders [with dimensions of 150 mm (6 in.) for diameter, and 300 mm (12 in.) for length] 

were cast and tested on the same day of beam testing. The average compressive strength of 

the nine specimens is 64.7 MPa (9384 psi). The concrete modulus, Ec, was determined by 

attaching strain gages onto several concrete cylinders and plotting the stress-strain curve 

while the specimens were in compression, following ASTM C469/C469M-10 (2010) 

standards. The modulus was found to be 4.068x104 MPa (5.90x106 psi).  

. Grade 60 steel rebars were used for both the longitudinal (tensile and compressive) and 

shear reinforcements. The mechanical properties of the steel were verified by performing 

tensile tests on several specimens, prepared from the actual rebars used in the experimental 

program, according to ASTM A370-09 standards. CFRP rods were used to generate the 

CRP-070 and CRP-195. The manufacturer’s [Diversified Structural Composites (2015)] 

guaranteed tensile modulus of elasticity is 134 GPa (19,500 ksi) and the tensile strength is 

2,340 MPa (320 ksi). CFRP laminates were normal modulus Sika CarboDur S1012 and 

had a tensile strength of 2800 MPa (406 ksi) and a modulus of elasticity of 160 GPa (23200 

ksi), according to the manufacturer’s specifications [Sika CarboDur plates, (2011)].  

CFRP fabrics were SikaWrap Hex 103C type and had a tensile strength of 960 MPa (139 

ksi) and a modulus of elasticity of 73 GPa (10600 ksi) [SikaWrap Hex 103C, (2014)]. Two 

types of adhesive were used in the experiment: (1) Sikadur 30 (epoxy adhesive), which was 

used as the adhesive for bonding CRP and CFRP laminates to the beam’s bottom face, and 

(2) Sikadur 300 (impregnating resin), used to impregnate and bond CFRP fabric to the 
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beam’s side face and to the bottom of CRP.  The material properties for Sikadur 30 are: 

24.8 MPa (3.6 ksi) for tensile strength and 4482 MPa (650 ksi) for modulus of elasticity 

[Sikadur 30 (2014)], and for Sikadur 300: 55 MPa (8 ksi) for tensile strength and 1724 

MPa (250 ksi) for modulus of elasticity [Sikadur 300 (2014)]. 

 

5.4     FE Analysis 

Commercial software ANSYS V 14.5 (ANSYS 2012) is adopted in this study to perform 

the 3D finite element modeling of RC beams strengthened in flexure with CRP’S and 

CFRP laminates. 

 

5.4.1 Modeling of Materials 

5.4.1.1 Concrete Material modeling 

A nonlinear stress-strain model, proposed by Kent and Park 1971, is used to simulate the 

concrete’s uniaxial compressive behavior. The model was selected due its capability of 

including the effects of reinforcement confinement, on the concrete compressive behavior. 

The model consists of two parts: a non-linear ascending curve, and a linear descending 

portion, figure 5.3 (a). The first part, which is identical for confined and un-confined 

concrete, describes the stress-strain behavior for stresses up to the maximum compressive 

stress (fc
′), at accompanying strain of 0.002. The descending linear portion continues until 

concrete crushing, which is assumed to occur at 20% of fc
′ (Kent and Park 1971). The 

mathematical expression for the model is as follows: 
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First part, 

2

0 0

2 c c
c cf f ε ε

ε ε

   ′= ⋅ −      

    for  0 < εc < ε0                                                                     (5.1)                    

Second part, 

[ ]01 ( )c c cf f Z ε ε′= − ⋅ −      for  ε0  < εc                                                                          (5.2)                                                                                               

Where fc is compressive stress in MPa (psi), at any strain (εc).  ε0 is the strain at the 

maximum compressive stress, fc
′, ( = 0.002). 

 Z represents the slope of the descending line, and is given by: 
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Where 
50uε is strain at 50% fc

′ for un-confined concrete.
50hε  is the strain increment due to 

the effects of confinement for confined concrete, also at 50% fc
′. b′′  is width of the confined 

concrete core, measured to the outside of shear reinforcement,  and d ′′   is height of the 

confined concrete core, measured to the outside of shear reinforcement. s is the center to 

center stirrup spacing, and sA  is the stirrup cross-sectional rebar area.  

According to the beam shear reinforcement lay-out, shown in figure 5.1 (a) and 5.2 (a), the 

concrete beam inside core was divided into three regions: (1) at constant moment, where 

no shear stirrups were provided, (2) at locations with shear stirrups spaced at 75 mm (3 

in.), and (3) at locations with shear stirrups spaced at 150 mm (6 in.). For the first region, 

0ε
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a non-confined concrete stress-strain model is used, while for the second and third regions, 

a confined concrete stress-strain model, using the respective stirrups spacing, is assigned 

to each region. The nonlinear stress-strain model was incorporated into ANSYS by using 

a multilinear curve idealization. Fifteen stress/strain points were used to sufficiently 

represent the model.  

Figure 5.3 (b) shows the concrete tensile stress-strain model used in this study. Under 

uniaxial tensile stress-strain loading, the response is assumed to be linear elastic. Cracks 

are assumed to form when the concrete tensile strength, tf , is reached. The tension-

stiffening phenomenon, which refers to the capability of cracked concrete to carry some 

tensile stresses at locations between adjacent cracks, due to the bond between 

reinforcement and concrete, is considered in the model. After cracking, the stress is 

assumed to drop abruptly to 0.6 tf  and then drops gradually to zero. 

A failure criteria is needed to define the failure type of concrete; either in cracking (for 

regions under tensile stresses) or crushing (for regions under compressive stresses). 

ANSYS uses the failure criteria proposed by Willam and Warnke 1975. Other inputs 

required for modeling concrete material are: poisson’s ratio (v), and shear coefficient for 

open and closed crack ( β ). Poisson’s ratio, (v), was assumed as 0.2 (Kachlakev et al 2001), 

while the shear coefficient, β, varies from 0.0 to 1.0, and depends on the crack face 

conditions. A value of 0.3 was used in this study based on recommendations of other 

researchers (Kachlakev et al 2001, Wolanski 2004). 
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5.4.1.2 Steel Reinforcement 

The steel reinforcement (both longitudinal rebars and shear stirrups) were assumed to have 

an elastic-perfectly plastic stress-strain response, identical in tension and compression, see 

figure 5.4. A poisson’s ratio of 0.3 was assigned to the material (Obaidat 2010). 

 

5.4.1.3 CFRP Material (Rods, Laminates, and Fabrics), and Adhesives 

An isotropic linear elastic behavior is assigned for CFRP components (rods, laminates, and 

fabrics) and for adhesives, see figure 5.5. A failure criteria is defined for each component. 

The linear response is assumed to continue until the tensile strength is reached, and beyond 

that a complete tensile failure is assumed. The material properties that define the response 

[tensile strength ( fuσ ), tensile modulus (Ef), and ultimate strain ( fuε )], are described in the 

experimental program (section 5.2). A poisson’s ratio of 0.3 was assigned for CFRP 

components and of 0.35 for adhesives (Demakos et al 2013). 

 

5.4.2 Geometrical Representation  

Since the tested RC beams have inherent discontinuities in the out-of-plan direction, such 

as the presence of steel reinforcements, and CFRP rods, three dimensional models are 

needed to accurately capture the behavior of tested beams (especially the overlap region of 

spliced CRP’s). A half-model of the actual specimen was used to reduce modeling and 

computational time and computer space by benefiting from symmetry of geometry, 

material, and loading conditions. The half model, rather than a quarter one, is needed 

because: (1) spliced CRP’s are not symmetrical in the length direction (one CRP has extra 

rod), and, therefore, (2) a unified model for all specimens is needed, to allow for justifiable 

comparisons between specimens strengthened with different materials. 
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5.4.3 Element Types 

Solid 65: Concrete volume was modeled using 8-node, brick element (solid 65). The 

element has three degrees of freedom at each node, translations in the global x, y, and z 

directions, and it is capable of representing concrete’s inherent nonlinear properties such 

as cracking in three orthogonal directions, crushing, creep, and plastic deformations 

(ANSYS 2012).  

Solid 185: CFRP laminates, CFRP fabrics, adhesives, and the steel plates that are placed 

between concrete and loading apparatus or supports were modeled using 8-node brick 

element (solid 185). The element also has eight nodes with three degrees of freedom at 

each node, translations in the global x, y, and z directions, and is capable of considering 

nonlinear properties such as multi-linear material model, plasticity, stress stiffening, and 

large deformations (ANSYS 2012). 

REINF264: For CFRP rods and steel reinforcement, a discrete representation is followed 

to accurately capture the behavior of CFRP rods, especially at overlap regions. A 

reinforcing element, REINF 264, is used to model the rods. The element is recommended 

for modeling reinforcing fibers, having random orientations and only uniaxial stiffness. 

The element has two nodes, with three degrees of freedom at each node, translations in the 

global x, y, and z directions, and is capable of plasticity, creep, and large deformations. 

REINF264 is assigned to a base (solid) element, such as (Solid 65, and solid185), and it 

interacts with the base element via the global nodes of the base element. The inputs for 

REINF264 element are: orientation, location relative to the base element, cross-sectional 

area, and material model. A perfect bond assumption, at the interface between concrete 

base elements (Solid 65) and steel reinforcing elements, and also at the interface between 
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adhesive base elements (Solid 185) and CFRP rod reinforcing elements, was adopted, since 

in the experiment, debonding has never been observed at those interfaces. 

 

5.4.4 Loading Scheme and Boundary conditions 

The boundary conditions (B.C’s) of the tested beams are simple-supports. The half-beam 

FE model was also constructed with similar conditions. A pin-type B.C’s was assigned to 

the left support, and a roller-type B.C’s was assigned to the right support.  For nodes located 

along the plane of symmetry (at beam’s mid-width), displacement in the direction 

perpendicular to the plane was assigned a zero value.  The tested beams were loaded in a 

four-point bending and a displacement-controlled approach is adopted. The load was 

applied as non-zero displacement constraints at the respective loading positions, rather than 

applying forces.  

The reactions of nodes located along the roller and pin supports were collected to form the 

total reaction, which is equal to the applied load. The displacement-control loading 

approach is adopted due to its capability to track drops in load that occur due to local 

damage such as debonding, or concrete cracking and crushing. Within the force-controlled 

loading, it is not possible to capture the drops in load because in nonlinear solution 

algorithms, such as in ANSYS, the force is applied in an incremental manner. The B.C’s 

and non-zero displacement constraints were applied as a line load to all nodes in the width 

direction, at respective loading or support positions. Figure 5.6 illustrates the boundary 

conditions and loading scheme of the FE model.  
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5.4.5 FE Meshing 

Along the length of the beam, a refined mesh, consisting 6.25 mm (0.25 in.) long elements, 

is used at locations where stress concentrations are expected, i.e. [at rods’ overlap region 

(finger joint mid-span), at curtailments of CRPs and CFRP main or splice laminate (figure 

5.7)] .  At other locations along the length, the element size is doubled to 12.5 mm (0.5 in.), 

as shown in figure 5.7.  Along the width and height of the beam, the element size is 12.5 

mm (0.5 in.), as shown in figure 5.7.   For adhesives, CFRP main and splice laminates, and 

CFRP fabric, one element is used through the thickness. Steel plates were divided into four 

elements through the thickness [figure5.7 (d)], each element is 3 mm (0.125 in.) thick. .  

 

5.4.6 Nonlinear Solution 

The Full Newton-Raphson method is adopted to solve the set of nonlinear equations, with 

a sufficiently large number of solution sub-steps during the loading process to capture the 

different stages of the behavior, such as cracking, yielding, and failure. The automatic time 

stepping, which regulates the sub-step size according to the convergence of the solution, is 

activated to help reduce computational time.  For Solid 65 element, 185 brick element, a 2 

x 2 x 2 set of Gaussian integration points is used.  A convergence tolerance of 5% is 

assumed for the displacement degree of freedom.  
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5.4.7 Modeling of Debonding 

Modeling of the debonding phenomenon in adhered materials requires appropriate 

knowledge of the behavior of each bonded component as well as the interaction between 

the bonded parts.  In the experimental program, four tested beams failed by debonding: two 

of the beams were strengthened with spliced andanchored CRP’s and the other two beams 

were strengthened with CFRP laminates (full-length laminate and spliced laminate 

system).   

For the beams strengthened with spliced and anchored CRP’s, debonding occurred along 

the adhesive-concrete interface. The debonding initiated from loading locations and 

progressed toward the panel’s end.  Part of the fabric wrap debonded from the beam’s side 

face due to debonding of CRP and its movement away from the beam.  The other part of 

the fabric, which is placed outside the strengthening length, remained attached to the beam.   

For the beam strengthened with a full-length CFRP laminate, the laminate debonded from 

the beam at the laminate adhesive interface.  The debonding initiated from one of the 

laminate ends and moved towards the mid-span. The adhesive, between the laminate and 

the beam, remained attached to the beam.  For the beam strengthened with a spliced CFRP 

laminate system, the splice debonded from the main laminate system [figure 4.12 (b)]. 

Debonding started at the splice ends and progressed towards mid-span.  The main laminates 

remained attached to the beam.  

Debonding of the above specimens is included in the developed FE models by using the 

interface element INTER 205 and cohesive zone material CZM.  INTER 205 is a 3-D linear 

interface element used to model debonding at the surface between the linear 3D elements, 

such as Solid 65 and Solid 185 (ANSYS 2012).  INTER 205 has eight nodes and each node 
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has three degrees of freedom (translations in x, y, and z) as shown in figure 5. 12.  The 

debonding process is defined by the relative movement between the 205 nodes.  Figure 

5.13 presents the shows FE models of the debonded interfaces.  

A cohesive zone material (CZM) model is required for INTER 205 element to define the 

traction-separation [(normal or shear stress)-(normal jump or tangential slip)] behavior 

along the interface. A bilinear CZM model, available in ANSYS, is used in this study. The 

model consists of a linear elastic portion until a maximum normal (peeling) or shear stress 

is reached, and a softening line, that ends at the maximum normal jump or tangential slip.  

Figure 5.14 shows a typical bilinear CZM model, in which six parameters are needed to 

define the model.  For debonding induced by normal stresses, the parameters are: maxσ

(maximum normal stress), *
nu  (normal jump accompanying maxσ ), and c

nu  (normal jump 

at completion of debonding). While for debonding caused by shear stresses, the parameters 

are: maxτ  (maximum stress stress), *
tδ (tangential slip accompanying maxτ ), and c

tδ  

(tangential slip at completion of debonding). 

 

5.4.7.1 CZM Model for Debonding of CRP  

A mixed-mode CZM model (including both, normal debonding and shear debonding) is 

used to model the debonding of CRP at the beam’s bottom. The reason for using the mixed 

mode CZM model for this interface is because debonding of CRP, in the experiment, was 

by intermediate crack induced debonding (ICID).  The failure initiates at locations of 

flexural or flexural-shear cracks (e.g. at loading points) as a result of the relative vertical 

displacement at the tip of the crack, causing high concentration of normal and shear 

stresses, and advances toward other locations (Teng et al 2003).  The bilinear bond-slip 
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model, proposed by Lu et al 2005, and used widely in analytical and numerical 

investigations of FRP bonded concrete members, is used to determine the shear-debonding 

parameters ( maxτ , *
tδ , and c

tδ ), as such:  

max 1.1 w tfτ β=                                                                                                                  (5.6) 

* 0.0195t w tfδ β=                                                                                                              (5.7) 

Where maxτ (in MPa) and *
tδ  (in mm) are governed by the concrete tensile strength tf

(MPa), and width ratio ( wβ ). wβ  is given as: 

2.25 ( / )
1.25 ( / )

f c
w

f c

w b
w b

β
−

=
+

                                                                                                  (5.8) 

fw  is the width of CRP in mm, and cb is width of concrete member, in mm. tf  is estimated 

in this study from the concrete compressive strength, cf ′ ( ACI 318-11, 2011). 

0.56t cf f ′=          [SI units (MPa), ACI-11]}                                                             (5.9) 

max

2 fc
t

G
δ

τ
=       , mm                                                                                                       (5.10) 

Where fG  is the fracture energy per unit bond area required for complete debonding, and 

it is equal to the area under the bond-slip curve, fG  is given by: 

20.308f w tG fβ=                                                                                                        (5.11) 

The normal debonding parameters ( maxσ , *
nu , and c

nu ) are determined, following 

suggestions by Wittman 2002 and Holmer 2010. maxσ is limited to the concrete tensile 

strength ( tf ), while c
nu  is assumed  to be equal to 0.06 mm, and *

nu  equal to  0.024 mm.  
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The following energy criterion in ANSYS is used to define the contribution of shear and 

normal debonding to the mixed-mode debonding (ANSYS 2012):  

1n t

cn ct

du d

G G

σ τ δ   
   + =
   
   

∫ ∫                                                                                              (5.12) 

Where cnG and ctG  are the total fracture energies for normal and shear fractures, and are 

calculated as the area under respective CZM models.  

 

5.4.7.2 CZM Model for Debonding of CFRP fabric and laminates 

For debonding of the CFRP fabric from the beam’s side, the full-length CFRP laminate 

from beam’s bottom, and the CFRP splice laminate from the laminate system, a shear 

debonding CZM model, with only maxτ , *
tδ , and c

tδ parameters, is used to define the 

debonding process. Table 5.1 lists the values used for the above parameters, for each 

debonding interface.  The slips ( *
tδ and c

tδ ) were obtained from Lu et al’s 2005 model 

(equations 5.7 and 5.10).  The maximum shear stress, maxτ , of the CFRP fabric was 

determined from the manufacturer’s specifications (Sika 2014).  For debonding of the full-

length and spliced laminates, and since the debonding was at laminate/adhesive interface, 

equation 5.6 of Lu et al’s model (2005) could not be used to determine maxτ  since it was 

derived for debonding at concrete/adhesive interface. Alternatively, maxτ was determined 

from correlation analyses between the FE and experimental results.  
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5.5     Results and Discussions 

5.5.1 Load-Deflection Response 

Figures 5.15 to 5.17 show the experimental and FE load vs mid-span deflection response 

for the control beam, the beams strengthened with CRP-70, and the beams strengthened 

with CFRP laminate. For beams strengthened with CRP-195, the experimental and FE 

load-deflection comparisons are presented in appendix C (figure C.1).  In general, there is 

a good agreement between FE and experimental results, and the FE load-deflection curves 

seem to correctly follow the experimental trends. It should be mentioned that for some 

specimens, and after cracking stage, the FE load-deflection curve is stiffer than the 

experimental one. This difference in stiffness can be attributed to many factors, some 

belong to the experiment, and others to limitations within the FE model.  For example, 

micro-cracks caused by shrinkage and slippage at steel/concrete interface or at other 

interfaces might be present in the experiments, but not accounted for in the FE model. The 

FE model has some limitations regarding element type and size, material models, etc.  

Furthermore, due to implementing a displacement-controlled loading scheme, the FE 

response was capable of capturing the drops in load that were seen in some specimens due 

to debonding or concrete crushing failures (figures 5.15 to 5.17 and figure C.1).  Most FE 

studies that utilize ANSYS software fail to present the load drops because the force-

controlled loading scheme is used rather than displacement-controlled scheme (Omran and 

El-Hacha 2012). Table 5.2 lists loads and mid-span deflections at cracking, yielding and 

failure stages, obtained from the experiment and FE analysis. As the table shows, the FE 

models predicted well the loads and deflections at the three main stages.   
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5.5.2 Simulation of Concrete Cover Separation 

Four specimens, strengthened with full-length and spliced CRP-070 or CRP-195 failed by 

concrete cover separation (CCS). The failure occurred near one of the panels’ ends and was 

characterized by the separation of the concrete cover from the beam’s section, along the 

level of internal steel reinforcement. Several theoretical studies concerned with 

determining the ultimate load when CCS is predominant, assume that the failure initiates 

when the tensile stress in concrete section near the end of the strengthening plate and along 

the level of internal reinforcement, exceeds the concrete tensile strength (Zhang et al 1995, 

Raoof and Hassanen 2000, Al-Mahmoud et al 2010).  

In this study, a section of concrete (bound by the beam’s bottom face and tensile 

reinforcement), at CRP cut-off location, was isolated from the FE model, and used to 

perform a post processing analysis, figure 5.18. A stress failure criterion, similar to what 

Al-Mahmood et al 2010 and Radfar et al 2012 used in their analysis, is followed.  At each 

load step, normal stresses at the above mentioned section were observed and compared to 

the concrete tensile strength, and when the maximum tensile stress exceeds the tensile 

strength, CCS failure is assumed to initiate and the accompanying load step is considered 

to be the ultimate load.  In agreement with theoretical studies, the FE distribution of normal 

stresses in the section shows that the maximum tensile stress is registered at CRP end, 

along the tensile steel reinforcement level (figure 5.18).  Furthermore, the failure loads 

obtained from the post processing analysis, and given in table 5.2, are in a good agreement 

with the experimental loads.  
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5.5.3 Simulation of Debonding and Concrete Crushing Failures 

Figures 5.19 through 5.23 show, respectively, the FE simulation of failures for (1) control 

(un-strengthened) beam, (2) beam strengthened with spliced and anchored CRP-070,  (3) 

beam strengthened with spliced and anchored CRP-195, (4) beam strengthened with full-

length CFRP laminate, and (5) beam strengthened with spliced CFRP laminate system.  As 

can be seen in those figures, cohesive zone material (CZM) models, along the respective 

debonding interfaces, were able to accurately capture the debonding failure for CRPs, 

CFRP laminates, and CFRP fabrics.  

For specimens that experienced concrete crushing at mid-span region, the FE models were 

able to predict the failure mode.  FE predictions show that concrete compressive stresses 

at the beam’s top face, at mid-span, exceeded the concrete compressive strength (fc
′). 

Furthermore, and at mid-span, concrete strains (both compressive and tensile) are very 

large and thus indicate that there is excessive deformations and loss of section integrity due 

to steel yielding and concrete crushing (i.e. plastic hinge formation at mid-span section). 

 
5.5.4 Load versus Strain in CFRP at Mid-Span 

Experimental and FE load versus strain in CFRP material, at mid-span, are plotted in figure 

5.24 for specimens strengthened with CRP-070 and in figure 5.25 for specimens 

strengthened with CFRP laminate.  For specimens strengthened with CRP-195, the plots 

are given in appendix C (figure C.2).  The load vs strain variations from the FE models 

seem to match the experimental results.  The only exception is, in the specimen 

strengthened with full-length CRP-070 (beam CS70) in which, around the load at yielding 

of tension steel, the experimental strain readings decreased suddenly [figure 5.25 (a)].  This 
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strain decrease could be a result of strain gage malfunction or cracks in the adhesive at 

locations near the strain gages.  

In specimens that experienced debonding failures (beams SSW70, CSSC2, SSSC2, and 

SSW195), the load-strain curve encounters load reversal (drop in load and strain) when 

debonding occurs.  This is due to the loss of the composite action between the bonded 

reinforcement and the beam.  In turn, this   leads to (1) reduction in load due to the loss of 

the force contributed by CFRP reinforcement, and (2) release of strain in CFRP, since it’s 

no longer connected to the beam.  The FE post-debonding load-strain curve was capable 

of predicting this behavior and agreed well with the experimental trend.  

It should be mentioned that in specimens that failed in concrete cover separation (CCS),  

as in beams CS70, SS70, CS195, and SS195, the reversal in load-strain curve is not 

captured by the FE models.  This is a result of not explicitly including CCS in the 

simulations; rather, the failure load was estimated by post-processing analyses and failure 

criteria. It is possible to capture the reversal in the load-strain curve for beams that failed 

by CCS by modeling the interface between concrete cover and the rest of the beam as a 

cohesive zone material (CZM).  Such models require the identification of the interface path 

(location and length) and CZM properties such as, interface shear stress, interface normal 

stress, slips, interface fracture energy, etc. The analytical procedure followed in section 

5.5.2 provided sufficient predictions for the scope of this chapter, while FE modeling of 

the CCS failure as debonding surface (interface elements and CZM) will be highly 

recommended for future investigations.  
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5.5.5 Strain Profile along CRP and CFRP Laminate Length 

Experimental and FE strain profiles along the length of the CFRP material, for several load 

levels up to 18 kN (4 kip), are presented in figure 5.26 for CRP-070 strengthened beams 

and in figure 5.27 for CFRP laminate strengthened beams. For CRP-195 strengthened 

beams, the strain profile plots are given in appendix C (figure C.3).  The FE predicted 

strains along the CFRP length are seen to roughly agree with the experimental strain 

readings, although discrepancies exist between the two, at some locations within the CFRP 

length.  These discrepancies are expected, considering the nonlinear nature of CFRP 

bonded RC beams, where concrete cracks, local debonding and interfacial slip at interior 

regions, among other factors, could have direct effects on the experimental strain 

measurements.  In addition, the FE model contains some limitations, such as mesh size, 

and perfect-bond assumption at interfaces that didn’t develop visible debonding failure 

(e.g. steel rebar/concrete interface). 

 

5.5.6 Load versus Concrete Strain at Mid-Span 

In the experiments, the concrete surface strains (i.e. compressive strain at top face and 

tensile strain at bottom face) were not measured at mid-span. It was assumed that any strain 

gage at these locations would give erroneous results as the load approaches the load at 

failure because of concrete cracking and crushing.  Therefore, the validated FE models 

were used to extract these strains, and provide an insight on the behavior of concrete in 

compression and in tension, when different CFRP reinforcements are used as strengthening 

reinforcement (e.g. full-length CRP-070, two spliced CRP-070, etc.). Figure 5.28 plots the 

FE predicted load versus concrete surface strains at the top and bottom faces at mid-span, 
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for all modeled specimens. The figure shows that the compressive strains in specimens that 

failed by concrete crushing failure (control beam, beams strengthened with CFRP 

laminates) reached values between 0.004-0.005.  Those values exceed the maximum 

compressive strain of 0.003, adopted in (ACI 318-14) code. For the same specimens, and 

considering the tensile strains, figure 5.28 shows that, after steel yielding (for the control 

beam) and steel yielding followed by debonding of the laminate (for the laminate 

strengthened beams), the load vs. tensile strain curve displayed a plateau.  This plateau, 

indicates ductile response of the member and provides an ample warning against imminent 

failure.  

On the other hand, the tensile and compressive strains in CRP-070 and CRP-195 

strengthened beams increase with load after yielding of tension tensile steel until failure. 

When comparing CRP-070 (full-length or two spliced) with respective CFRP laminate, 

(CRP-070 and laminate have equal cross-sectional area), beams bonded to CRP-070 

reached higher ultimate loads, but CFRP laminate bonded beams displayed larger ductility.   

 
5.5.7 Tensile Stress Distribution in CRP and CFRP laminate 

Since the specimens are tested under four-point loading, the maximum tensile stress in the 

strengthening CFRP reinforcement, is expected to appear in constant-moment region 

(between load points).  Figure 5.29 shows, at a load level of 18 kN (4 kip), the tensile stress 

in the constant moment region for the full-length CFRP laminate, the full-length CRP-070, 

and the two spliced CRP-070. The tensile stresses in the constant moment region of the 

full-length and two spliced CRP-195 are shown in figure 5.30.  Furthermore, figures C.4 

to C.10 in appendix C present the tensile stresses of each CFRP reinforcement for the 
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following load stages:  (1) immediately after cracking, (2) before steel yielding, (3) after 

steel yielding, and (4) at maximum load. 

Figure 5.29 shows that, at P =18 kN (4 kip), the maximum stress in the full-length CFRP 

laminate, full-length CRP-070, and two the spliced CRP-070, are of comparable 

magnitude.  Also at P=18 kN, the full-length and two spliced CRP-195, have comparable 

maximum tensile stress, as can be seen in figure 5.30.  These above observations are also 

true at other load levels, as can be seen in figures C.4 to C.10 in Appendix C.  The 

maximum tensile stress of the two spliced CRPs (i.e. CRP-070 or CRP-195) occurs just a 

few millimeters outside the rod overlap region, as shown in figures 5.29 and 5.30. The 

stress inside the overlap region is fairly uniform, and the magnitude of the average stress 

inside the overlap is almost half that of the maximum stress.  

As the beam is subjected to four point loading, it is anticipated that the tensile stress profile 

be uniform within constant moment region.  For the full-length CFRP laminate and CRPs, 

and considering the highly non-linear nature of RC members, the stresses are seen to be 

fairly uniform, except for segments adjacent to the load points.  For spliced CRPs, the 

tensile stress profile within the constant moment region can no longer be expected to be 

uniform due to the overlapping and the fact that one panel has an extra rod.  

 

5.5.8 Maximum Tensile Stress in CRP and CFRP laminate 

The tensile stresses of each CFRP strengthening reinforcement, at maximum load, was 

extracted from FE results and are presented in table 5.3.  Table 5.3 also shows the stress 

ratio for each reinforcement which is defined as the reinforcement’s maximum tensile 

stress divided by the material’s guaranteed tensile strength, as obtained from the 



 

159 
 

manufacturer.  The FE predictions for the maximum stress ratio are summarized in the 

following paragraphs:  

1- The stress ratio is 58% for full-length CRP-070, 53% for two-spliced CRP-070, 25% for 

full-length CFRP laminate, and 22% for spliced CFRP laminate system.  

2- The stress ratio is 19% for the full-length CRP-195 and 22% for the two-spliced CRP-

195.   These values are less than half the stress ratios for the two spliced CRP-070.  All 

four beams strengthened with full-length and spliced CRP-070 and CRP-195 failed at 

comparable loads by concrete cover separation.  Consequently, the stress ratio in CRP-195 

is expected to be lower than that in CRP-070, because CRP-195 cross-sectional area is 2.73 

times the area of CRP-070. 

3-The beam strengthened with two spliced CRP-070 anchored with CFRP fabrics achieved 

the largest stress ratio of 74%. 

 

5.5.9 Interfacial Shear Stress distribution along CFRP Length 

Generally, in experimental tests, the interfacial stress distribution of CFRP/concrete 

interface is indirectly determined from strain data measurement at the surface of the CFRP, 

by employing force equilibrium principles and simplistic relations for material properties.  

When reliable, validated FE models are available, the shear stress profile can directly and 

accurately be drawn.  Interfacial shear stress distribution along CFRP length for beams 

strengthened with CRP-070 and CFRP laminate, obtained from FE analysis, at maximum 

load, are plotted in figures 5.31 to 5.33.  For CRP-195, the interfacial shear stress 

distribution is plotted in figure C.11 (of appendix C).  
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For the full-length and spliced CRP-070 and CRP-195, the maximum shear stress occurs 

at CRP’s end [figures 5.31, and C.11 (a, b)].  Figure 5.32, and C.11 (c) show that, when 

CFRP fabrics are attached at CRP ends, the maximum shear location is not at the CRP end 

but inside the strengthening length [225 mm (9 in.) from CRP’s end]  and at load points.  

For the full-length CFRP laminate, the maximum shear stress is roughly located 125 mm 

(5 in.) away from the laminate ends (figure 5.32). 

 In the beam strengthened with the spliced laminate system, the FE predicted shear stress 

distribution is presented in figure 5.33 for two interfaces, (1) CFRP main laminate/concrete 

interface, and (2) main laminate/splice interface.  For the first interface, the maximum shear 

stress occurs at mid-span (the butt-joint between main laminates). For the second interface, 

although the maximum shear stress also exists at mid-span, but debonding initiated from 

splice ends and propagated toward mid-span, as can be seen in figure 5.33 (b).  The FE 

predicted maximum interfacial shear and normal tensile (peeling) stresses for each CFRP 

reinforcement are presented in table 5.4. The locations of the maximum interfacial stresses 

along the strengthening length are listed in table 5.5.  

 

5.6    Conclusions 

A comprehensive 3D nonlinear finite element (FE) model was developed in this chapter to 

simulate the behavior of RC beams strengthened in flexure with CRPs and CFRP 

laminates.  The model accounts for concrete nonlinear behavior in tension and 

compression, confinement effects on concrete compressive stress-strain relation, concrete 

cracking, and concrete crushing. The debonding failure of various reinforcement and 

interfaces was accounted for in the FE model by using cohesive zone material (CZM) 
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models as well as interface elements. The following conclusions can be outlined, based on 

the findings of this study: 

 (1) There is a good agreement between the FE and experimental results when comparing 

the load vs. mid-span deflection response, load vs. strain in CFRP at mid-span, and strain 

profile along CFRP length.  

(2) Concrete cover separation failure was accurately predicted in the FE analysis by using 

post-processing analysis, along with tensile stress failure criteria for concrete.  

(3) At failure, the FE results indicated that the CRP-070 is stressed to 58% and 53% of the 

guaranteed strength for the full-length panel and the two spliced panels, respectively.  The 

CFRP laminate is stressed to 25% and 22% of the guaranteed strength for full-length 

laminate and the spliced laminate system, respectively.  

(4) At all load levels, the maximum tensile stress in the full-length CFRP laminate, full-

length CRP-070, and the two spliced CRP-070 are all of comparable magnitudes.  For 

example, at a load of 18 kN (4 kip) in figure 5.29, the maximum tensile stress was 373.74 

MPa (54.20 ksi) in the full-length CFRP laminate, 359.00 MPa (52.07 ksi) in the full-length 

CRP-070, and 390.80 MPa (56.68 ksi) in the spliced CRP-070.  Also, the full-length and 

spliced CRP-195, have a comparable maximum tensile stresses at same load levels, figure 

5.30. 

 (5) The maximum tensile stress of two spliced CRPs (i.e. CRP-070 or CRP-195) occurs at 

12.5 mm (0.5 in.), outside the rod overlap region (figure 5.29 (c) and, and figure 5.30 (b, 

c). The stress inside the overlap region is fairly uniform, and the magnitude of the average 

stress inside the overlap is almost half the maximum stress. 
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 (6) The FE models predicted a high shear stress concentration at the end of the CRPs in 

all beams strengthened with full-length or spliced CRPs. The fabric anchorage seems to be 

effective in shifting the location of maximum shear stress from the panel’s end to inside 

the strengthening length [225 mm (9 in.) from CRP’s end toward the center of the beam]  

and at load points [figure 5.31 (c)]. 
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Table 5.1 Numerical parameters for CZM model of CFRP fabric and laminates. 

Debonded region maxτ  
(MPa) 

c
tδ  

(mm) 

*
tδ  

(mm) 
CFRP fabric from beam’s side face 1.4 (a) 0.3 (b) 0.06 (b) 

Full-length CFRP laminate from beam’s 
bottom, at laminate-adhesive interface 1.75 (c) 0.3 (b) 0.06 (b) 

CFRP splice laminate from the laminate system, 
at splice-adhesive interface. 3.75 (c) 0.3 (b) 0.06 (b) 

 

(a) Given by manufacturer, (Sika 2014).  
(b) Calculated from Lu et al 2005 model, equations 5.6 to 5.11 
(c) Determined from correlation analyses between FE models and the experiment.  It should be noticed that 
for debonding of full-length laminate, and debonding of splice laminate and because the debonding was at 
laminate/adhesive interface, equation 5.6 of Lu et al 2005 model could not be used to determine maxτ , since 
the model was derived for debonding at concrete/adhesive interface. 
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Table 5.2 (a) Comparisons between FE and experimental results at cracking, yielding, and maximum load stages, SI. 
 

  

 

 

 

 

 

 

 

 

                              (1) Value is not observed in the analysis.     

  

Beam 
code 

Cracking Yielding Maximum 
P test 
(kN) 

P FE 
(kN) 

Δ test 
(mm) 

Δ FE 
(mm) 

P test 
(kN) 

P FE 
(kN) 

Δ test 
(mm) 

Δ FE 
(mm) 

P test 
(kN) 

P FE 
(kN) 

Δ test 
(mm) 

Δ FE 
(mm) 

CB2 5.21 5.03 1.5 1 13.48 13.35 18.25 16 18.38 17.31 88.75 79 
CS70 7.92 5.97 2.75 1.175 20.73 21.31 19.5 18.5 38.97 40.68 56.75 52.25 
SS70 7.43 6.5 2 1.25 24.69 22.47 21.75 18 37.95 39.54 46 43 
SSW70 7.52 7.12 2.5 3.25 28.03 23.09 26.5 18 47.42 45.37 70.5 58.5 
CSSC2 6.99 6.9 2.5 1.25 18.46 22.16 15.75 16.75 27.36 26.69 26 23.25 
SSSC2 8.01 7.74 2 2.75 19.49 23.36 13.75 16.25 24.25 24.56 19.5 18 
CS195 7.43 5.34 2.25 1 30.25 −− (1) 18.25 −− (1) 37.41 35.08 24.25 21 
SS195 7.21 5.39 2.25 1 −− (1) 36.00 −− (1) 20.75 35.81 36.84 23.5 20.5 
SSW195 7.92 7.3 2.5 2.25 45.51 39.15 29.75 21.75 54.18 59.21 39 42.75 
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Table 5.2 (b) Comparisons between F.E and experimental results at cracking, yielding, and maximum load stages, US.  
 

  

 

 

 

 

 

 

 

                      

                      (1) Value is not observed in the analysis.     

Beam 
code 

Cracking  Yielding  Maximum 
P test 
(kip) 

P FE 
(kip) 

Δ test 
(in.) 

Δ FE 
(in.) 

P test 
(kip) 

P FE 
(kip) 

Δ test 
(in.) 

Δ FE 
(in.) 

P test 
(kip) 

P FE 
(kip) 

Δ test 
(in.) 

Δ FE 
(in.) 

CB2 1.17 1.13 0.07 0.04 3.03 3.00 0.73 0.64 4.13 3.89 5.11 3.16 
CS70 1.78 1.34 0.11 0.05 4.66 4.79 0.78 0.74 8.76 9.14 2.27 2.09 
SS70 1.67 1.46 0.08 0.05 5.55 5.05 0.87 0.72 8.53 8.88 1.84 1.72 
SSW70 1.69 1.6 0.10 0.13 6.30 5.19 1.06 0.72 10.66 10.2 2.82 2.34 
CSSC2 1.57 1.55 0.10 0.05 4.15 4.98 0.63 0.67 6.15 6 3.93 0.93 
SSSC2 1.80 1.74 0.08 0.11 4.38 5.25 0.55 0.65 5.45 5.52 3.54 0.72 
CS195 1.67 1.2 0.09 0.04 6.80 −− (1) 0.73 −− (1) 8.41 7.88 0.97 0.84 
SS195 1.62 1.21 0.09 0.04 −− (1) 8.09 −− (1) 0.83 8.05 8.28 0.94 0.82 
SSW195 1.78 1.64 0.10 0.09 10.23 8.8 1.19 0.87 12.18 13.31 1.57 1.71 
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Table 5.3 Stress at maximum, and stress ratio for CFRP strengthening 
reinforcements, obtained from the FE simulations. 

 

(1) CRP-070 and CFRP laminate have an equal CFRP area of 64 mm2 (100 x 10-3 in2). 
(2) CRP-195 has a CFRP area of 173 mm2 (268 x 10-3 in2). 
(3) Stress ratio is calculated by dividing the tensile stress at maximum load for each reinforcement by its 
guaranteed tensile strength. The guaranteed tensile strength, obtained from the manufacturer, for CFRP rods 
is 2340 MPa (320 ksi), and for CFRP laminate is 2800 MPa (406 ksi). 
 

 

 

 

 

  

Beam 
code. 

Strengthening 
reinforcement  

Tensile stress at maximum 
load  

Stress 
ratio(3) 

% 
MPa ksi 

CS70 Full-length CRP-070 (1) 1282 186 58 

SS70 Two spliced CRP-070 (1) 1172 170 53 

SSW70 Two spliced CRP-070 (1), 
anchored with CFRP fabric 

1641 238 74 

CS195 Full-length CRP-195 (2) 427 62 19 

SS195 Two spliced CRP-195 (2) 496 72 22 

SSW195 Two spliced CRP-195 (2), 
anchored with CFRP fabric 

958 139 43 

CSSC2 Full-length CFRP  
laminate (1) 

689 100 25 

SSSC2 Spliced CFRP laminate 
system (1)  

620 90 22 
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Table 5.4 FE predicted interfacial shear and peeling stresses, at maximum load.   

 
Beam 
code 

 
Strengthening material 

Maximum 
load 

Interfacial 
shear stress 

Interfacial 
peeling stress 

kN kip MPa ksi MPa ksi 
CS70 Full-length CRP-070(1) 40.7 9.1 9.47 1.37 1.6 0.22 
SS70 Two spliced CRP-070(1) 39.5 8.9 13.00 1.90 3.15 0.46 

SSW70 Two spliced CRP-070(1), 
with fabric anchorage 

45.4 10.2 6.17 0.89 2.68 0.39 

CS195 Full-length CRP-195 35.0 7.9 11.36 1.65 0.92 0.133 
SS195 Two spliced CRP-195 36.8 8.3 9.11 1.32 1.83 0.27 

SSW195 Two spliced CRP-195, 
with fabric anchorage 

59.2 13.3 5.82 0.84 1.20 0.17 

CSSC2 Full-length CFRP 
laminate (1) 

26.7 6.0 4.44 0.64 2.00 0.29 

SSSC2(2) Spliced CFRP laminate 
system (1) 

24.0 5.5 14.7 2.14 3.6 0.52 

SSSC2(3) = = = 3.93 0.57 0.48 0.07 
(1) CFRP laminate and CRP-070 are of equal cross-sectional area [64 mm2 (100 x 10-3 in2].  
(2) Results are for the interface between CFRP main laminate and concrete (interface 1). 
(3) Results are for the interface between CFRP main laminate and splice (interface 2). 
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Table 5.5 FE predicted locations of maximum shear and peeling stresses.  

Beam 
code 

Location of maximum 
shear stress 

Location of maximum peeling stress 

CS70 Panel ends 150 mm (6 in.) from Panel ends 
SS70 Panel ends Edge of rods overlap [75 mm (3 in.) from 

mid-span] 
SSW70 At fabric termination [75 

mm (3 in.) from Panel ends] 
Edge of rods overlap [75 mm (3 in.) from 
mid-span] 

CS195 Panel ends 425 mm (17 in.) from Panel ends 
SS195 Panel ends Edge of rods overlap [75 mm (3 in.) from 

mid-span] 
SSW195 At fabric termination [75 

mm (3 in.) from Panel ends] 
Edge of rods overlap [75 mm (3 in.) from 
mid-span] 

CSSC2 125 mm (5 in.) from 
laminate ends 

Near load points 

SSSC2 (1) 

SSSC2 (2) 
At mid-span (butt joint) 

= 
Laminate ends 
Near load points 

(1) Results are for the interface between CFRP main laminate and concrete (interface 1). 
(2) Results are for the interface between CFRP main laminate and splice (interface 2).  
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(c) RC beam details 
 
 
 

 

 

 
(b) Bottom face of RC beam strengthened with full-length CRP (CRP-070, CRP-195) 

 

  

 

 

 

(c) Bottom face of RC beam strengthened with spliced CRP (CRP-070, CRP-195) 

 

  

 

  

 

 

(d) Bottom face of RC beam strengthened with spliced CRP (CRP-070, CRP-195) and 
anchored at panel’s ends with CFRP fabrics 

 

Figure 5.1 (a) Geometry of experimental RC beams, CRP strengthening technique. 
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(e) Cross-section details 

 

 
Figure 5.1 (a) (continued) Geometry of experimental RC beams, CRP strengthening 

technique, dimensions in mm. 
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(a) RC beam details, dimensions in mm 
 
 

 

 

(b) Bottom view of RC beam strengthened with full-length CFRP laminate 

 

 

 

 

(c) Bottom view of RC beam strengthened with spliced CFRP laminate system 

 

 

 

 

 

 

 

 

 

       (d) Cross-section details 

Figure 5.2 Geometry of experimental RC beams, CFRP laminate strengthening 
technique, dimensions in mm. 
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(a) Compressive stress-strain curve 
 

 

 

 

 

 

 

(b) Tensile stress-strain curve 

Figure 5.3 concrete constitutive material models. 
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Figure 5.4 Steel constitutive material model. 
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Figure 5.5 Uniaxial stress-strain response of CFRP components and adhesives. 
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Figure 5.6 Boundary conditions and loading scheme of FE models. 
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(a) FE mesh for (1) control beam, (2) strengthened with CRP’s, (3) strengthened with 
full-length CFRP laminate 

 

 

 

 

 

 

 

 

 

(b) FE mesh for RC beam strengthened with spliced CFRP laminate 

 

 

 

 

 

 

 

 

 

Figure 5.7 FE mesh of RC beams strengthened with CRPs or CFRP laminates. 
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Figure 5.8 FE mesh of RC beams strengthened with CRPs, showing FE model of 
CFRP rods at overlap and CRP end locations.  

 
 

(a) 

Section at rods overlap 

Adhesive 

Section at CRP end 

(1) 

(1) CFRP area is half 
due to symmetry 

CFRP rod S=6.25 mm  

CFRP rod 

Adhesive 

Adhesive 
(1) 

(a) FE model of CFRP rods at CRP end for 
beams strengthened with full-length CRP-070 

 

tf = 4 mm 

Adhesive 

CFRP rod 
S=9.5 mm 

CFRP rod 

Adhesive 
(b) FE model of CFRP rods at CRP end for 

beams strengthened with full-length CRP-195 
 

tf = 6 mm 

S=6.25 mm 
 

CFRP rod 

Adhesive 

CRP-070 “+” 

CRP-070 “-” 

(1) 

(1) CFRP area is half 
due to symmetry 

(c) FE model of CFRP rods at overlap for beams 
strengthened with spliced CRP-070 

 

tf = 4 mm 

CRP-195 “+” 

CRP-195 “-” 
S=9.5 mm  

 
CFRP rod 

Adhesive 

(1) 

(1) CFRP area is half 
due to symmetry 

(1) 

(d) FE model of CFRP rods at overlap for beams 
strengthened with full-length CRP-070 

 

tf = 6 mm 



 

178 
 

 

  

 

 

 

 

  

 

 

 

 

 

 

Figure 5.9 FE mesh of RC beams strengthened with spliced CRPs, and anchored at 
CRP ends with CFRP fabrics. 
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Figure 5.10 FE mesh of RC beams strengthened with full-length CFRP laminate.  
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Figure 5.11 FE mesh of RC beams strengthened with spliced CFRP laminate system. 
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Figure 5.12 Geometry of INTER 205 element (after ANSYS 2012). 
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(a) Beams strengthened with spliced CRPs and anchored with CFRP fabrics 

 

 

 

(b) Beam strengthened with full-length CFRP laminate 

 

 

 

(c) Beam strengthened with full-length CFRP laminate 

Figure 5.13 FE simulation of debonding at various interfaces by INTER 205 
element. 
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                        (a)                                                                   (b) 

Figure 5.14 Bilinear CZM model (a) normal (peeling) debonding, (b) shear 
debonding. 
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Figure 5.15 Load-mid span deflection comparisons, between experiment and FE, for 
Control beam (specimen CB2). 
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(a) Strengthened with full-length CRP-070 (specimen CS70)  

Figure 5.16 Load-mid span deflection comparisons, between experiment and FE, for 
beams strengthened with CRP-070. 
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(b) Strengthened with two spliced CRP-070 (specimen SS70) 

 

 

 

 

 

 

 

 

 

 

 

 

(c) Strengthened with two spliced CRP-070, anchored with fabric (specimen SSW70) 

Figure 5.16 (continued) Load-mid span deflection comparisons, between experiment 
and FE, for beams strengthened with CRP-070. 
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(a) Strengthened with full-length CFRP laminate (specimen CSSC2) 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Strengthened with spliced CFRP laminate system (specimen SSSC2) 

Figure 5.17 Load-mid span deflection comparisons, between experiment and FE, for 
beams strengthened with CFRP laminates. 
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Figure 5.18 Normal stress distribution of section A-A. 

 

(1) Maximum normal tensile stress in concrete, of the concrete section near CRP end, from post processing of 
FE results. 
(2) Concrete tensile strength, calculated from ACI-11 and given by [𝑓𝑓𝑡𝑡 = 0.56 �𝑓𝑓𝑐𝑐′, where 𝑓𝑓𝑐𝑐′  is concrete 
compressive strength, (𝑓𝑓𝑡𝑡  and 𝑓𝑓𝑐𝑐′) are in MPa units]. 
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(a) Experimental specimen 

 

 

 

 

 

 

 

(d) FE model showing large compressive concrete stresses at mid-span 
 

 

 

 

 

 

 

 

(c) FE model showing large strains at mid-span 

Figure 5.19 FE simulation of concrete crushing failure of control beam (beam CB2). 
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Figure 5.20 FE simulation for debonding of the beam strengthened with two spliced 
CRP-070, and anchored with CFRP fabric (beam SSW70). 
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Figure 5.21 FE simulation for debonding of the beam strengthened with two spliced 
CRP-195, and anchored with CFRP fabric (beam SSW195). 
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Figure 5.22 FE simulation for debonding and concrete crushing failures of the beam 
strengthened with full-length CFRP laminate (beam CSSC2). 
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Figure 5.23 FE simulation for debonding and concrete crushing failures of beam 

strengthened with spliced CFRP laminate system (beam SSSC2). 

Concrete crushing 

Main laminate 

CFRP splice laminate 
debonded from the laminate 
system 

Stress values in psi (1 MPa = 145 psi) 

Maximum compressive stress at concrete’s 
outermost compressive fiber, (11486 psi) >𝑓𝑓𝑐𝑐′ 
(9816 psi), indicating concrete crushing at mid-
span 

Concrete stresses at mid-span 

Large strains at mid-span region due to 
yielding of steel reinforcement and 
crushing of concrete 

Concrete strains at mid-span 



 

194 
 

 

 

 

 

 

 

 

 

 

(a) Beam strengthened with full-length CRP-070 (beam CS70) 

 

 

 

 

 

 

 

 

(b) Beam strengthened with two-spliced CRP-070 (beam SS70) 

 

 

 

 

 

 

 

 

(c) Beam strengthened with two-spliced CRP-070, anchored with fabric (beam SSW70) 

Figure 5.24 Load vs. strain in CRP-070, at mid-span. 
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(a) Beam strengthened with full-length CFRP laminate (beam CSSC2) 

 

 

 

 

 

 

 

 

(b) Beam strengthened with spliced CFRP laminate system (beam SSSC2) 

Figure 5.25 Load vs. strain in CRP-070, at mid-span. 
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(a) Beam strengthened with full-length CRP-070 (beam CS70) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
(b) Beam strengthened with two-spliced CRP-070 (beam SS70) 

Figure 5.26 Strain distribution along CRP-070 surface, for loads up to 18 kN. 
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(c) Beam strengthened with two-spliced CRP-070, anchored with fabric (beam SSW70) 

Figure 5.26 (cont.) Strain distribution along CRP-070 surface, for loads up to 18 kN. 
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(a) Beam strengthened with full-length CFRP laminate (beam CSSC2) 

Figure 5.27 Strain distribution along CFRP laminate surface, for loads up to 18 kN. 
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(b) Beam strengthened with spliced CFRP laminate system (beam SSSC2) 

Figure 5.27 (cont.) Strain distribution along CFRP laminate surface, for loads up to 
18 kN. 
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(a) Comparisons of beams strengthened with CRP-070 

Figure 5.28 Load vs. strain at concrete’s outermost compressive and tensile surfaces.  
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(b) Comparisons of beams strengthened with CRP-195 

 

 

 

 

 

 

 

 

 

 

 

Load versus tensile or compressive strain at  

(c) Comparisons of beams strengthened with CFRP laminate 

Figure 5.28 (continued) Load vs. strain at concrete’s outermost compressive and 
tensile surfaces.  
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(a) Full-length CFRP laminate, (beam CSSC2) 

 

 

 

 

 

 

 (b) Full-length CRP-070, (beam CS70)  

 

 

  

 

 

 

(c) Two Spliced CRP-070 (beam SS70) 

 

 

 

 

 

 

 

(d) Two Spliced CRP-070 (beam SSW70, with fabric anchorage) 

Figure 5.29 Tensile stress distribution in CRP-070 and CFRP laminate, at constant 
moment region, P = 18 kN (4 kip). 
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 (a) Full-length CRP-195, (beam CS195) 

 

 

 

  

 

 

 

(b) Two Spliced CRP-195 (beam SS195) 

 

 

  

 

 

 

 

(c) Two Spliced CRP-195 (beam SSW195, with fabric anchorage) 

Figure 5.30 Tensile stress distribution in CRP-195, at constant moment region, P = 
18 kN (4 kip). 
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(a) Full-length CRP-070 (beam CS70) 
 
 
 
 

 

 

 

  

 

 

 
 
 
 
 
 

(b) Two spliced CRP-070 (beam SS70) 
 

Figure 5.31 FE shear distribution along CRP/concrete interface, for CRP-070, at 
maximum load. 
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(c) Two spliced CRP-070, anchored with CFRP fabric (beam SSW70) 

Figure 5.31 (continued) FE shear distribution along CRP/concrete interface, for 
CRP-070, at maximum load. 
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Figure 5.32 FE shear stress distribution along laminate/concrete interface, for 
CFRP full-length laminate (beam CSSC2), at maximum load. 
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(a) Shear stress profile at interface (1) between main laminate and concrete 

 

 

 
 

 

 

 

 

 

 

 

 
 

(b) Shear stress profile at interface (2) between main laminate and splice 

Figure 5.33 FE shear stress distribution along laminate/concrete interface, for 
spliced CFRP laminate system (beam SSSC2), at maximum load. 
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CHAPTER 6:   ANALYTICAL INVESTIGATION OF CFRP ROD PANELS 

BONDED TO CONCRETE MEMBERS 

 

6.1     Synopsis 

In this chapter, the behavior of RC members strengthened with CFRP rod panels (CRPs) 

is investigated using analytical approaches.  First, the bond behavior and development 

length of the double-lap shear specimens tested in the experimental program were analyzed 

using a simple shear-lag approach.  This model is applicable for moderate loads in the 

linear elastic range of the behavior.  Analytical terms for shear stress, slip, and strain along 

the length of CRPs were developed.  The model findings were compared with the 

experimental results for strain distributions along the CRP length of several specimens, and 

it was found that the model compares well with the experiment.  The approximate 

development length predicted from the analytical model for CRP-070 and CRP-195 was 

100 mm (4 in.).  The panel width was found to have negligible effects on transfer length of 

CRP-070 and CRP-195.  Second, since four RC beams strengthened with CRPs (full-length 

or spliced) failed by concrete cover separation (CCS), two analytical models were 

developed.  One is based on the concrete tooth concept and the other on the shear capacity 

concept.  Analytical terms for the ultimate load for CRP strengthened RC beams when CCS 

is predominant are presented.  Comparisons of ultimate loads from the analytical models 

and the experiments showed the validity of the analytical models.  
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6.2     Introduction 

Labrotory and field testing programs can initially be utilizd to validate the merit of new 

materials, and techinques, and to provide basline for detailed studies.  However, those 

programs, due to monetary, space, and time restraints, cover only some aspects of the tested 

concept or system.  Analytical tools are great supplements to experimental studies, and can 

serve in examining more parameters and cases if they are calibrated with experimental 

findings.  The analytical studies concerning the behaviour of FRP bonded concrete 

elements can be categarized into three groups. The first group is based on analyzing 

stresses, strains, and failure loads of a member, applying static concepts of deformation 

compatibility and  force equilibruim, in conjunction with approperate material stress-strain 

curves, failure modes and strain limits, (Wei et al 1991, Alagusundaramoorthy et al 2003, 

Brena et al. 2003, Daugevicius et al 2012).  ACI 440.2R-08 provides in depth procedure 

on how to estimate the strength of FRP plated concrete members.  

The second and third groups are the empirical models and fracture mechanics models, 

respectively.   Empirical models, derived from regression and curve fitting analyses of 

experimental data, and fracture mechanics models, are intended to model the member’s 

local behaviour, such as bond-slip relation, failure strains and causes, and load-causing 

debonding.  A number of bond stregnth models for FRP-concrete joint  are available in the 

literature (Maeda et al 1997, Hiroyuki and Wu 1997, Bizindavyi and Neale 1999, Chen and 

Teng 2001, Ben Ouezdou et al 2009, Fawzia et al 2010). 
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6.3     Analysis of Double-Lap Shear Tests 

An analytical model (model no.1) for predicting the strain, shear stress, and slip distribution 

along the bonded CRP-concrete joint, based on a simple shear-lag approach and applicable 

only in the linear elastic range of the behavior, is developed in this section.  Figure 6.1 (a) 

shows the double-lap shear test specimen and the bonded CRP of length lb on one side.   A 

finite segment of the CRP of length dx is presented in figure 6.1 (b).  Assuming a linear 

elastic behavior for both the CFRP rods and the adhesive, and a uniform shear stress 

distribution along the finite segment of length of dx, the equilibrium of forces acting on the 

segment in figure 6.1 (b) yields: 

[ ]( ) 0x x fdF s x dx wτ− ⋅ ⋅ =                                                                                           (6.1) 

Where xF  = CRP tensile force, xτ  = shear stress at a distance x from the end of the CRP 

[figure 6.1 (a)], ( )s x = slip at a distance x, and  fw  = bond (or panel) width.   

The tensile force contributed by the adhesive layer, dFx (adhesive), is derived by assuming 

a linear stress-strain relationship for the adhesive.  The contribution of the adhesive is 

limited to strain levels below the strain at failure of the adhesive as specified by the 

manufacturer [Sikadur 30 (2014)].   

( ) ( )x x xdF dF rods dF adhesive= +                                                                                  (6.2-a) 

( ){ }( ) ( )x f f f a a f a fdF d x E A d x E w t Aε ε   = ⋅ ⋅ + ⋅ ⋅ ⋅ −                                               (6.2-b) 

Where, fε = strain in CFRP rods at a distance x, aε = strain in the adhesive at a distance x, 

fE = CFRP rod modulus of elasticity, fA = total cross-sectional area of CFRP rods (equal 
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to the number of rods multiplied by the area of one rod), aE = adhesive modulus of 

elasticity, and at  = thickness of adhesive layer. 

The experimental observations indicated that failure resulted from debonding at the 

concrete-epoxy interface (concrete shear-off), while no debonding or any signs of distress 

were observed at the rod-adhesive interface. Strain compatibility is employed in the 

following derivation and, since the distance between surface of the adhesive and center of  

( ) ( )f ad x d xε ε=                                                                                                              (6.3)                                                   

{ } ( ){ }( )x f f f a f a fdF d x E A E w t Aε  = ⋅ ⋅ + ⋅ ⋅ −
                                                        (6.4-a) 

( )x fdF d x aε= ⋅                                                                                                           (6.4-b) 

where; 

( ) ( ){ }f f a f a fa E A E w t A = ⋅ + ⋅ −
  , force units                                                        (6.5)                                           

Rearranging equation. (6.1) leads to                                                  

( )
( ( ))f f

x

d x w
s x

dx a
ε

τ− ⋅                                                                                                    (6.6)                          

Recalling the definition of slip as the relative displacement between the reinforcement and 

a parent material (De Lorenzis and Nanni 2002), and recalling that 

( ) f
f

du
x

dx
ε =   and   ( ) c

c
dux
dx

ε =  ,                                                                                  (6.7) 

Where fu and cu are the displacements of CRP and of concrete, respectively:  
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( ) ( ) ( ) ( )f c f
ds x x x x

dx
ε ε ε= − ≈                                                                                        (6.8) 

Where the concrete strain, cε  is assumed to be negligible when compared to the strain in 

CRP, fε , in pull-out tests (Bizindavyi and Neale 1999, De Lorenzis and Nanni 2002). The 

governing differential equation for the shear stress-slip relation of bonded CRP-concrete 

joint is derived by substituting equation (6.8) into equation (6.6):        

[ ]
2

2

( ) ( ) 0f
x

wd s x s x
dx a

τ− ⋅ =                                                                                  (6.9) 

At moderate load levels, a linear bond stress-slip model can be adopted (De Lorenzis et al 

2001): 

( )x k s xτ = ⋅                                                                                                                   (6.10) 

Solving equation (6.9), with xτ  given by equation (6.10), yields the following solution: 

1 2( ) sinh( ) cosh( )s x c x c xω ω= ⋅ ⋅ + ⋅ ⋅                                                                       (6.11) 

1 2( ) cosh( ) sinh( )f x c x c xε ω ω ω ω= ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅                                                                 (6.12) 

Where 

fk w
a

ω
⋅

=                                                                                                               (6.13) 

𝑐𝑐1 and 𝑐𝑐2  are constants to be determined from the boundary conditions at x = 0 and x = lb 

(figure 6.1).  At x = 0, which corresponds to the free end of the bonded panel, the strain is 
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negligible.  At x = lb, located at the gap between the two concrete blocks, the strain is 

maximum. The boundary conditions are as follows: 

( 0) 0xε = ≈                                                                                                                (6.14-a) 

( ) ( ) ( ) 0b f b a bx l x l x lε ε ε= = = = = ≠                                                                        (6.15-a)                                                                           

( ) CRP
f b

f f

Px l
E A

ε = =
⋅

,   
( )

( ) a
a b

a f a f

Px l
E w t A

ε = =
⋅ ⋅ −

                          (6.15-b)                            

( )
CRP a

f f a f a f

P P
E A E w t A

=
⋅ ⋅ ⋅ −

                                                           (6.15-c) 

and    

CRP aP P P= +                                                                                                    (6.16) 

Where   P = total force applied at x = lb, PCRP = force carried by CFRP rods at x = lb, and 

Pa = force carried by adhesive at x = lb. 

Solving for Pa in equation 6.16 and substituting in equation 6.15-c leads to 

( )
1

CRP

a f a f

f f

PP
E w t A

E A

=
  ⋅ ⋅ −  +

⋅ 
 

                                                                       (6.17) 

( ) CRP
b

f f

Px l
E A

ε = =
⋅

                                                                                      (6.18)    

Solving for 𝑐𝑐1 and 𝑐𝑐2  from equations 6.11 and 6.12, and applying the boundary conditions 



 

214 
 

identified in equations (6.14-a) and (6.18), equations 6.11, 6.12. and 6.10, respectively, can 

be expressed as follows: 

( )( ) cosh( )
sinh( )

b

b

x ls x x
l

ε ω
ω ω

=
= ⋅ ⋅

⋅ ⋅
                                                                                 (6.19) 

( )( ) sinh( )
sinh( )

b

b

x lx x
l

εε ω
ω
=

= ⋅ ⋅
⋅

                                                                                      (6.20) 

( ) cosh( )
sinh( )

b
x

b

x lk x
l

ετ ω
ω ω

=
= ⋅ ⋅ ⋅

⋅ ⋅
                                                                                 (6.21)                                                                                      

 

6.3.1 Slip Modulus, k 

The above analytical model has successfully been adapted for externally bonded FRP 

plates and fabrics where the slip modulus, 𝑘𝑘, is generally estimated as the ratio of the 

adhesive shear modulus to its thickness.  In the case of bonded CRPs, this approach has no 

rational justification since the adhesive would have discontinuities in its thickness due to 

the presence of embedded rods.  An empirical approach, suggested by De Lorenzis and 

Nanni (2002), and used in a similar context by the authors, for bonded (NSM) FRP rods, 

has been adopted to evaluate the slip modulus of bonded CRPs.  This was achieved by best 

fitting the analytical strain distribution given by equation (6.20) and the experimental strain 

data obtained in the double-lap shear tests.  
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6.3.2 Model Verification 

Experimental and analytical strain distributions along the bond length of CRP, at moderate 

load levels, are shown in figure 6.2.  The comparisons are available for double-lap shear 

concrete specimens bonded to CRP-070 and CRP-195.  In the experimental double-lap 

shear tests in chapter 3, specimens with short bond lengths displayed non-linear strain 

distributions that don’t comply with the fundamental assumptions of the shear-lag 

theoretical model.  Consequently, only experimental specimens with sufficiently long bond 

lengths, 150 mm (6 in.) and 175 mm (7 in.), were used to validate the analytical model.  

Following the method described in 6.2.1 for estimating the slip modulus, the modulus was 

estimated to be 375 MPa/mm (1360 ksi/in.) for CRP-070 [fabricated with 2 mm (0.078 in.) 

diameter rods, spaced at 6.35 mm (0.25 in.)] and 800 MPa/mm (2900 ksi/in.) for CRP-195 

[fabricated with 4 mm (0.156 in.) diameter rods, spaced at 9.5 mm (0.375 in.)].  

As can be seen from figure 6.2, strain profiles at moderate loads, from model no.1 (based 

on shear-lag approach) and the experiment, correlate reasonably well. The only 

discrepancy between experimental and model predictions was seen with specimen III-4-9-

19-150 [figure 6.2 (d)], for which experimental strains at x1 = 0, for all load levels, were 

very low compared to the analytical values and the expected trend. This difference may be 

due to inaccurate initial readings in the strain gages, cracking in concrete block or adhesive 

layer, or limitations of the theoretical model.  
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6.3.3 Parametric Study 

Model no.1 was further used to perform a parametric study investigating variables expected 

to have an impact on the behavior and efficiency of CRPs bonded to concrete, namely 

development length and effects of CRP width. The study was limited to those variables due 

to the lack of sufficient data regarding the slip modulus, 𝑘𝑘.  Other influential variables, 

such as rod spacing, adhesive thickness, and FRP stiffness, can be further investigated 

provided that experimental testing or theoretical basis are available for characterizing the 

slip modulus.  

 

6.3.3.1 Development Length 

Model no.1 was used to approximate the development length, ld, for CRP-070 and CRP-

195.  Equation 6.20 along with equations 6.17 and 6.18 were used to construct the strain 

distribution along bond length, lb, for double-lap shear specimens bonded to CRPs with 

varied bond lengths.  lb was varied from 25 mm (1 in.) to 200 mm (8 in.).  Other variables 

were kept constant, and as follows: (1) bond width, wf = 50 mm (2 in.) for CRP-070 and wf 

= 19 mm (0.76 in.) for CRP-195; (2) rod spacing, S = 6.35 mm (0.25 in.) for CRP-070 and 

S = 9.5 mm (0.375 in.) for CRP-195; and (3) number of rods is 16 for CRP-070 and 4 for 

CRP-195. 

 For each bond length, and considering a load level of 11.11 kN (2.5 kip), the strain profile 

along the bond length was constructed from equation 6.20 along with equations 6.17 and 

6.18. The transfer length, which is the distance from the gap between concrete blocks, or x 

= lb in figure 6.1, of the joint to the point where the exponential strain profile approaches 

zero (x = 0 in figure 6.1), was recorded. Figure 6.3 (a, b) presents the variation of transfer 
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length with bond length for CRP-070 and CRP-195, respectively. From the transfer length 

vs. bond length curve, the analytical development length can be inferred. The development 

length is estimated to be 100 mm (4 in.) for both panels.  In the experimental double-lap 

shear tests, the development length was 100 mm (4 in.) for CRP-70, and 125 mm (5 in.) 

for CRP-195. 

 

6.3.3.2 CRP Width Effects 

The effects of varying the bond width or CRP/concrete width ratio (wf /bc) were evaluated 

using model no.1, [wf and bc are shown in figure 6.1 (a)]. Equation 6.20 along with 

equations 6.17 and 6.18 were used to construct the strain distribution along the bond length 

for the double-lap shear specimens bonded to CRPs and with varied CRP widths.  For CRP-

070, the bond width was increased from 25 mm (1 in.) to 100 mm (4 in.) or the (wf/bc) ratio, 

was varied from 0.25 to 1.0.  For CRP-195, the width was increased from 19 mm (0.76 in.) 

to 95 mm (3.8 in.) or the (wf/bc) ratio, was varied from 0.19 to 0.95.  

The rod spacing was kept constant, 6.35 mm (0.25 in.) for CRP-070 and 9.5 mm (0.375 

in.) for CRP-195, while the number of rods was increased depending on the width of the 

CRP.  A bond length of 150 mm (6 in.) was used for all specimens.  For each bond width, 

and considering a load level of 11.11 kN (2.5 kip), the strain distribution along bond length 

was constructed and the transfer length was estimated.  Figure 6.4 (a, b) presents the 

variation of transfer length with the panel width, for CRP-070 and CRP1-95, respectively. 

As can be seen from the figure, the transfer length did not vary when CRP width increased. 

This observation aligns with the previous findings of experimental tests where the bond 
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width was found to have negligible effects on the bond strength and ultimate load capacity 

of CRPs bonded to concrete double-lap shear specimens (chapter 3, section 3.4.6). 

 

6.4     Analysis of concrete Cover Separation 

Four beams that were strengthened with CRPs, both full-length panels and spliced ones 

failed due to concrete cover separation (CCS), as discussed in Chapter 4. The failure 

occurred near the cut-off location of CRP and was characterized by the separation of the 

concrete cover from the beam’s section, along the level of tensile steel reinforcement. This 

section analytically investigates the causes and theories behind CCS, and also predicts the 

ultimate load carrying capacity of CRP strengthened RC beams when CCS is predominant.  

 

6.4.1 Analytical models 

Existing studies concerning the development of analytical models to predict concrete cover 

separation and the ultimate load capacity of strengthened RC beams when CCS failure is 

predominant are generally classified into three categories (Zhang et al 2012).  In the first 

category are models that concentrate on the derivation of interfacial normal and shear 

stresses at the plate ends at the instance of cover separation, based on linear elastic bending 

theory (Zhang et al 2012).  Shear capacity based models constitute the second category and 

are based on comparing the shear force at the plate ends with concrete shear strength with 

or without stirrup contribution. Models in the third category are called “concrete tooth” 

models and are based on comparing tensile stresses at the plate ends, along the level of 

internal steel, with concrete tensile strength. In this chapter, two analytical models for 

predicting the CCS failure in CRP bonded RC beams were derived and presented. The first 
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analytical model (model no.2) is based on the concrete shear capacity, while the second 

model (model no.3) is based on the concrete tooth concept.  

 

6.4.1.1 Shear Capacity Based Models  

Oehlers (1992) introduced the first shear capacity model to predict plate end debonding 

failures for steel plated RC beams.  If the plate is terminated at or very close to supports, it 

was suggested that debonding occurs when the shear force at the plate end (loads before 

steel plate is bonded are considered) reaches the concrete shear capacity. In this model, 

experimental results have indicated that shear stirrups do not have an impact on the 

debonding load and only concrete shear strength needs to be considered.  In general, when 

both the shear force and bending moment are large at the plate end, a debonding formula, 

that considers the interaction between shear and flexural peeling, is usually adopted based 

on empirical fitting of test results.  

Most of shear capacity models for RC beams bonded to FRPs originated from Oehlers’ 

model for beams attached to steel plates.  A study by Smith and Teng (2002a) has shown 

that Oehlers’ model can be used directly and successfully for the case of FRP plated beams 

when geometrical and material properties are modified to consider FRP characteristics.  

Most of the recent shear capacity models for FRP bonded RC beams have included the 

influence of different factors such as internal shear stirrups, shear force induced by FRP 

plates, and non-linear terms instead of linear ones used for the interaction formula between 

shear force and bending moment (Gao et al 2005, Yao and Teng 2007b). 
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6.4.1.2 Concrete Tooth Models 

The first introduction of a concrete tooth model was given in Zhang et al (1995) and was 

utilized for RC beams bonded to steel plates.  Concrete tooth models were developed and 

intended to rely only on theoretical analyses without the need for correlation factors or 

empirical equations used in other approaches. The main concept behind the model is, when 

the loading is applied, flexural cracks will develop on the tension face of the concrete 

member and, when the loading is increased, new cracks will develop between the former 

ones until they are stabilized in size and spacing.  At this stage, the concrete cover between 

longitudinal steel rebars and the member’s outermost tensile face resembles a comb-like 

structure (see figure 6.5).    

When the loading is further increased, the individual concrete teeth between adjacent 

cracks deform like a cantilever beam under the influence of horizontal shear stresses at 

their ends.  Peeling off occurs when these shear stresses generate tensile stresses at the root 

of the tooth (i.e. at the level of steel rebar) that exceed the tensile strength of the concrete.  

Since the model depends mainly on the flexural crack spacing, and because crack spacing 

can be expected to vary between minimum and maximum spacing, lower and upper bound 

equations for the ultimate load values are introduced. The corresponding lower and upper 

bounds of the ultimate peeling moment are determined using conventional section analysis 

and bending theory assumptions.  
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6. 4.2   Application of Analytical Models to RC Beams Strengthened with CRPs 

6.4.2.1 Analytical model No. 2 

The first analytical model for predicting CCS (model no.2), carried out in this chapter to 

simulate the ultimate capacity of CRP strengthened RC beams that fail by CCS, is based 

on the concrete tooth concept.  The model presented here was originally obtained from Al-

Mahmoud et al (2010) model, which was used to determine the failure load of NSM-FRP 

rod strengthened RC beams. The Al-Mahmoud et al model is also an extension of previous 

concrete tooth models that were used in the case of externally bonded steel or FRP plates 

[Zhang et al (1995), Raoof and Hassanen (2000)].  

CRP rod panels are geometrically different from both externally bonded plates and NSM 

technique, consequently, modifications are needed to make the model applicable in the 

case of CRP bonded beams.  The criteria in the following calculations is that all concrete 

teeth formed inside the region between CRP and tensile steel reinforcement fail 

simultaneously, and therefore only the first tooth that is formed at the panel’s end is 

required to obtain the solution. This approach has been used for predicting CCS in RC 

members bonded to NSM FRP rods [Al-Mahmoud et al (2010)], FRP laminates [Raoof 

and Hassanen (2000)], and steel plates [Zhang et al (1995)]. 

Pivotal to the calculations is the measurement or estimation of the crack spacing, Scr. In 

this study, Scr was directly measured from the failed experimental beams. As stated 

previously, the concrete tooth formed at the panel’s end behaves like a cantilever beam and 

the forces acting on that cantilever are: (1) the tensile stress in the CRP rods at distance 

equal to Scr from the panel’s end, and (2) the resisting moment at the cantilever tip (i.e. 
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beneath the internal reinforcement).  Figure 6.6 shows the first concrete tooth and the forces 

acting on it.  The classic bending theory is used to solve the cantilever model.  At point A 

in figure 6.6, the tensile stress is given by: 

2
cr

A

A
tooth

SM

I
σ

⋅
=                                                                                                                 6.22 

 
3

12
cr

tooth
b SI ⋅

=                                                                                                                   6.23 

The moment at the tooth tip is:  

A f fM A hσ ′= ⋅ ⋅                                                                                                               6.24 

Substituting equation 6.24 into equation 6.22, leads to 

2

6 f
A f

cr

A h
b S

σ σ
′⋅ ⋅

= ⋅
⋅

                                                                                                           6.25 

Where, Aσ  = tensile stress at point A, AM  = bending moment of the tooth structure, toothI = 

moment of inertia of the tooth, crS =crack width, b = beam width, fσ = tensile stress of CRP 

at distance of crS  from panel’s end, fA  = total area of CFRP rods, and h′ = depth from the 

level of internal steel to the tensile face of the concrete.  

fσ  can be determined using the bending theory for the whole beam and considering the 

applied loads (i.e. four-point bending test beams in this dissertation) as shown in figure 6.7.  

The other assumptions are: (1) near the panel’s end, all materials are within their linear- 

elastic range, and (2) concrete is cracked.  
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,

f
f f B B

tr cr

d c
n M

I
σ −

−
=                                                                                                       6.26 

f
f

c

E
n

E
=                                                                                                                          6.27 

where, B BM − = bending moment of the beam at section (B-B) in [figure 6.7 (b, c)] = 

distance from extreme compressive fiber of concrete to neutral axis, fd = distance from 

concrete extreme compressive fiber to the center of CFRP rods,  fn = fE / cE  = FRP rods 

modular ratio, fE = modulus of elasticity of CFRP rods, cE = modulus of elasticity of 

concrete, ,tr crI = cracked and transformed moment of inertia of the beam. ,tr crI  and c can 

be calculated, assuming a cracked beam section with tensile steel reinforcement and FRP 

rods transformed into equivalent concrete areas, see figure 6.7 (c).  

Other variables shown in figure 6.7 (c) are: As = area of tensile steel reinforcement, As
′ = 

area of compressive steel reinforcement, and n = steel modular ratio, n= (Es/Ec), Es = 

modulus of elasticity of steel. 

Substituting equation 6.26 in equation 6.25, Aσ  can be expressed as 

2
,

6 ( )f f f
A B B

cr tr cr

A n h d c
M

b S I
σ −

′⋅ ⋅ ⋅ ⋅ −
= ⋅

⋅ ⋅
                                                                                 6.28 

Assuming that failure initiates when A tfσ =  (concrete tensile strength), M B-B, at the 

instance of cover separation, can be calculated from equation 6.28.  tf  is estimated in the 

current chapter from the concrete compressive strength, cf ′ , following ACI 318-14 (2014) 

 0.56t cf f ′= ⋅                SI units (MPa), ACI-14M                                                       6.29 
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The ultimate load, P, can now be estimated from summing moments at section (B-B) of 

the beam segment shown in figure 6.7 (b) 

0

2
( )

B B

cr

MP
S x

−⋅
=

+
                                                                                                                 6.30 

B BM −  can be determined easily from equation 6.28 and substituted in 6.30.   Finally, the 

ultimate load of RC beams strengthened with CRPs that fail by concrete cover separation, 

CCS, is: 

2
,

06 ( ) ( )
ct cr tr cr

f f f cr

f b S I
P

A n h d c S x
⋅ ⋅ ⋅

=
′⋅ ⋅ ⋅ ⋅ − ⋅ +

                                                                              6.31 

 

6.4.2.2 Analytical model No. 3 

The second analytical model (model no.3), for simulation of CCS failure in CRP 

strengthened RC beams, is based on the shear capacity models and is adapted from Smith 

and Teng (2003) with proper modifications to suit the model for the case of externally 

bonded CRPs.  The original Smith and Teng model is given as follows: 

, ,

, ,

0.4 1db end db end

db f db s

M V
M V

+ × =     if   , ,0.67db end db sV V≥ ×                                                          6.32 

, ,db end db fM M=   if   , ,0.67db end db sV V< ×                                                                           6.33 

,
, 0.90

c tr cr ct
db f

f f

E I f
M

E t
⋅ ⋅

=
⋅ ⋅

                                                                                                       6.34 

1/3
, 1.4 ( )

2000db s c s c
dV V b d fρ  ′= = − ⋅ ⋅ ⋅ ⋅  

                                                                  6.35 (a)                                    
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1.4 1.1
2000

d − ≥  
                                                                                                      6.35 (b) 

s
s

A
b d

ρ =
⋅

                                                                                                                        6.36 

where, ,db endM  = bending moment at CRP’s end at the instance of CCS initiation, ,db endV  = 

shear force at CRP’s end at the instance of CCS initiation, ,db fM = flexural moment 

capacity at CRP’s end derived by considering pure flexural failure when the CRP is 

terminated at regions of large moments and negligible shear forces, ,db sV  = concrete shear 

capacity at CRP’s end, d = distance from outermost compressive concrete fiber to center 

of tensile steel reinforcement.  Other variables have been defined in analytical model No.1.  

,db fM , given by equation 6.34, was proposed by Oehlers (1992) based on the calibration 

of the test results for steel plates bonded to concrete, and was later used for FRP plates by 

Smith and Teng (2003) who accounted for the geometric and material properties for FRP 

instead of steel. ,db sV , the concrete shear capacity at CRP’s end, can be estimated from the 

ACI code or any other code of practice.  In this study, ,db sV , presented in equation 6.35, as 

given by Oehlers (1992) and Smith and Teng (2003), is the concrete shear strength taken 

from the Australian code (AS 3600 1988). 

Equation 6.34 needs to be modified to suit the case of CRPs, since ft , thickness of FRP or 

steel plates, is not directly applicable for the case of CRPs.  In this chapter, an equivalnt 

plate thickness, ft , is proposed by assuming an equivalent plate having a CFRP area (Af) 

and width (wf ) equal to those of CRP [figure 6.8 (a)] 
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f
f

f

A
t

w
= ,                                                                                                                         6.37 

where, fA  and fw  are the total rod area and bond width of CRP. 

,db endV  and ,db endM  are calculated from the equilibrium of forces of the beam, using the 

boundary conditions and loading configurations for the tested beams (i.e. simple-supports 

and four-point loading), and ignoring the weight of the beam, figure 6.8 (b).  The load at 

failure, P, at the instance of concrete cover separation, is calculated from equation 6.32 or 

6.33.  It should be noted that all equations in the analytical model no.2 are in the SI unit 

system.   

, 02db end
PM x= ⋅                                                                                                              6.38 

, 2db end
PV =                                                                                                                        6.39 

 

6.4.3   Results of analytical models no.2, and no.3 

Ultimate loads of the tested beams that failed by CCS, predicted using the two analytical 

models (models no.2, and no.3), and are given in table 6.1.  The corresponding graphical 

representations of the analytical/experimental failure load ratios are also shown in figure 

6.9. It should be noted that in both analytical models, cf ′ , the specified 28-day, compressive 

concrete strength is used, while in the experimental program, the compressive strength was 

evaluated at the time of testing.  Therefore, a correction formula to relate the “at-testing” 
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strength to the 28-day specified strength was needed. The formula used in the PCI Bridge 

Design Manual of 2010 is adopted in this chapter: 

28( ) ( )
( )c t c
tf f

A B t
′ ′= ×

+ ⋅
                                                                                                6.40 

where, ( )c tf ′  and 28( )cf ′  compressive strengths at-testing and at 28 days, respectively, t is 

time in days, and A and B are constants.  

Both models presented a very good correlation with the experimental failure loads. The 

maximum difference between prediction and experimental loads is 4.5%, and 13.5 % for 

models no.2 and no.3, respectively.  Model no.2 presented the best agreement with the 

experimental results, possibly because the model was derived from purely theoretical 

analysis of the cracked concrete cover without any use of correlation factors, and in the 

current investigation, the flexural cracks spacing was obtained from direct measurements 

of the cracks seen in the tested beams.  

As can be seen in table 6.1, and previously mentioned in chapter 4, and 5, the four beams 

failed at comparable experimental loads, regardless that CS195 and SS195 beams were 

strengthened with CRP-195, while CS70 and SS70 beams were strengthened with CRP-

070 (Af for CRP-195 is 2.7 times that of CRP-070). As it was discussed earlier, concrete 

strength, fc
′ has the largest effects on the ultimate load when CCS takes place. Both models 

used concrete strength as failure criteria, and therefore were able to predict well this trend. 

During the analysis, using model no. 3, it was noticed that when the bending moment at 

the panel’s end is removed from equation 6.32, while keeping only the shear force at the 

panel’s end as the failure criteria, the model presents a better agreement with the 

experimental results.  Figure 6.10 shows the trend for analytical/experimental load ratio 
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when neglecting the bending moment.  Oehlers (1992), and Smith and Teng (2003), argued 

that when the FRP composite is terminated close to the supports, or when the composite is 

terminated in regions where shear forces are high and bending moments are very low, the 

bending moment can be neglected in the interaction equation.  In this experiment, CRPs 

were terminated 225 mm (9 in.) from the supports.  Therefore, equation 6.32 can be 

adjusted to arrive at a new analytical model, as given by the following:  

,

,

0.4 1db end

db s

V
V

× =                                                                                                                  6.41 

Substituting equations 6.35 (a) and 6.39 in 6.35, the failure load can be written as:  

1/3
,5 5 1.4 ( )

2000db s s c
dP V b d fρ  ′= × = × − ⋅ ⋅ ⋅ ⋅  

                                                              6.42 

It should be noted that equation 6.42 is only applicable for the beams tested in this 

experiment, and only for the case of simply supported beams loaded in four-point bending.  

Additional studies are needed before making any generalizations.  

 

6.5     Conclusions 

In this chapter, several aspects of the bond and flexural characteristics of bonded CRP and 

concrete were analytically examined in two studies. Three analytical models are presented.  

The first, or model no.1, is an analytical model to predict the shear stress, slip between 

CRP reinforcement and concrete, and strain along the length of CRP, at moderate load 

levels. The model results were calibrated with double-lap concrete specimens bonded to 

CRP-070 and CRP-195 that were tested in chapter 3. The model was used to perform a 
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parametric study, examining the development length and bond width of CRPs. The model 

predicted the development length to be 100 mm (4 in.) for both CRP-070 and CRP-195, 

while the bond width was found to have minor effects on the transfer length of the above 

panels. 

Model no.2 and model no.3 are analytical models used to predict the ultimate load of RC 

beams strengthened with CRPS, when the strengthened beam fails by CCS.  Model no.2 is 

derived from the “concrete tooth concept”, while model no.3 is based on “concrete shear 

capacity concept”.  Both models were calibrated with the experiments of chapter 4 (four-

point bending tests on RC beams strengthened with CRPs), and it was found that he 

maximum difference between the analytical and experimental loads is 4.5% and 13.5 % 

for model no.2 and no.3, respectively.  The two analytical models were derived based on 

the observed failure mode of the tested RC beams that were strengthened with full-length 

or spliced CRPs, and are only applicable when the failure mode is CCS.  In case the 

strengthened member fails by debonding of CRP reinforcement, CRP rupture, concrete 

crushing, etc., other analytical models, incorporating the properties of aforementioned 

failure mechanisms should be derived. 
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Table 6.1. (a) Results of analytical investigation of CCS, SI system. 

 

Where: f '
c specified, 28-day concrete compressive strength, Pexp experimental failure load,  

Pm 2, Pm 3  predicted failure load, from model no.2 and no.3, respectively, and Scr flexural 
crack spacing, measured from experiment. 

 

  

 
Beam 
code 

 
f 'c 

(MPa) 

 
Scr 

(mm) 

 
Pexp 
(kN) 

Model no.2 Model no.3 
Pm.2 

(kN) 
Pm.2/Pexp 

 
Pm.3 

(kN) 
Pm.3/Pexp 

 
CS70 59.20 59.37 38.90 38.33 0.985 36.00 0.925 

SS70 55.84 60.00 37.94 37.22 0.981 35.27 0.930 

CS195 50.33 84.10 37.49 36.92 0.984 32.43 0.865 

SS195 51.34 84.40 35.71 37.32 1.045 32.86 0.920 
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Table 6.1. (b) Results of analytical investigation of CCS, US customary system. 

 
Where: f '

c specified, 28-day concrete compressive strength, Pexp experimental failure load,  
Pm 2, Pm 3  predicted failure load, from model no.2 and no.3, respectively, and Scr flexural 
crack spacing, measured from experiment. 
 

 

 

  

 
Beam 
code 

 
f 'c 

(ksi) 

 
Scr 

(in.) 

 
Pexp 
(kip) 

Model no.2 Model no.3 
Pm.2 

( kip) 
Pm.2/Pexp 

 
Pm.3 

( kip) 
Pm.3/Pexp 

 
CS70 8.58 2.37 8.74 8.62 0.985 8.09 0.925 

SS70 8.09 2.40 8.53 8.36 0.981 7.93 0.930 

CS195 7.30 3.36 8.43 8.30 0.984 7.29 0.865 

SS195 7.44 3.37 8.03 8.39 1.045 7.38 0.920 
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(b) 

 
 

Fig. 6.1. (a) Concrete block bonded to CRP, (b) finite segment of bonded CRP, 
showing the bond interface and acting forces. 
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(a) Specimen (I-2-6-50-150)  

 
(b) Specimen (II-2-6-25-150)  

Fig. 6.2. Experimental and analytical (model no.1) strain-displacement comparisons 
for double-lap shear tests. 
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(c) Specimen (II-2-9-37-150)  

 
 

 
(d) Specimen (III-4-9-19-150) 

Fig. 6.2. (continued) Experimental and analytical (model no.1) strain-displacement 
comparisons for double-lap shear tests. 
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(d) Specimen (III-4-9-19-175B) 

Fig. 6.2. (continued) Experimental and analytical (model no.1) strain-displacement 
comparisons for double-lap shear tests. 
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(a) CRP-070 

 

 
(b) CRP-195 

Fig. 6.3. Transfer length vs. bond length relation, obtained from model no.1. 
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(a) CRP-070 

 

 

(a) CRP-070 

Fig. 6.4. Transfer length vs CRP width relation, obtained from model no.1. 
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Section (1), first concrete tooth 

Fig. 6.5. Concept of concrete tooth models (after Zhang et al 1995). 
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                                          (a)                                                            (b) 

Fig. 6.6. First concrete tooth with proper forces, (a) three-dimensional section, (b) 
two-dimensional section. 
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(a) Side view of CRP strengthened beam with applied loads 

 

 

 

  

                                                                                     

                         (b) Section (B-B)                                              

Fig. 6.7. CRP strengthened RC beam, calculations of bending moment (M B-B). 

 
  

Tensile steel 
Compressive 

steel 

Scr 

Crack 

P/2 

P/2 

P/2 

P/2 

B 

B 

x0 
A B 

A 
Scr 

P/2 

B 

B 

x0 
B 

M B-B 

n As 

c 

b 

nf  Af 

(n-1) A s´ 

df Neutral axis 

(c) Transformed and cracked 
beam cross -section 



 

241 
 

 
 

 

 

 

 

Fig. 6.8. (a) Equivalent plate concept, (b) tested beam, showing shear force and 
bending moment at panel’s end and applied loads. 
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Fig. 6.9. Analytical/experimental failure load ratios for analytical models no.2, 3. 
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Fig. 6.10. Prediction of model no.3, as a percentage of experimental load, with and 
without bending moment.  
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CHAPTER 7:    CONCLUSIONS AND RECOMMENDATIONS 

 

7.1     Summary and Conclusions 

This doctoral dissertation examined the bond and flexural characteristics of spliced CFRP rod panels 

(CRPs) when used for strengthening and repair of concrete structures.  The bond performance of 

CRPs was investigated by conducting 25 double-lap shear tests on concrete blocks adhered to small-

scale CRPs.  The effectiveness of CRPs, as a flexural reinforcement to strengthen or repair concrete 

members, was investigated in four-point bending tests on nine RC beams that were: (1) un-

strengthened, (2) strengthened with spliced CRPs, (3) strengthened with full-length CRPs, and (4) 

strengthened with full-length and spliced CFRP laminates.  Three-dimensional (3D) finite element 

models were developed to examine the behavior of the experimental RC beam tests in order to extract 

essential data that could not be deduced from the experiments alone, and to examine the state of 

deformation, and stress of the CFRP rods.  Additionally, analytical models were also developed to 

provide closed-form solutions to aspects of the bond and flexural response of concrete members 

bonded to CRPs. 

 

7.1.1 Conclusions of Chapter 3 (Double-Lap Shear Tests) 

Chapter 3 presented 25 double-lap shear experiments to estimate the development length, 

bond strength, and other properties related to the bond between the CRP and concrete 

substrate. Two CRPs were evaluated in this study, namely: CRP-070 [fabricated with 2 

mm (0.078 in.) diameter CFRP rods, spaced at 6.35 mm (0.25 in.)], and CRP-195 

[fabricated with 4 mm (0.156 in.) diameter CFRP rods, spaced at 9.5 mm (0.375 in.)]. 

Several bond lengths, ranging from 25 mm (1 in.) to 175 mm (7 in.) were tested in order to 
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estimate the bond properties of CRP-070 and CRP-195. Three bond widths, 25 mm (1 in.), 

37.5 mm (1.5 in.), and 50 mm (2 in.), were included to quantify the effects of bond width. 

The effects of rod spacing were also preliminarily scrutinized, by testing three spacing: 

6.35 mm (0.25 in.), 9.50 mm (0.375 in.), and 12.5 mm (0.5 in.). Based on the results of 

testing program, the following conclusions can be drawn:  

1. Testing revealed three types of failure modes: concrete shear-off, concrete block failure 

by diagonal cracking, and rod peel-off. Most specimens of CRP-070, and CRP-195 

failed by debonding at the concrete-adhesive interface through concrete shear-off 

beneath the adhesive layer. A thin concrete layer was attached to the debonded CRP 

after failure, having an average thickness of 1- 6 mm (0.04-0.24 in.). 

2. The development length was found to be 100 mm (4 in.) for CRP-070 and 125 mm (5 

in.) for CRP-195.  

3. The bond strength for one-unit (e.g. one meter) wide CRP was determined to be 563 

kN/m (38.5 kip/ft.) for CRP-070 and 712 kN/m (48.8 kip/ft.) for CRP-195.The average 

bond strength of the adhesive is estimated to be 5. 5 MPa (0.85 ksi). 

4. Strain variations along the CRP bond length for various load levels up to failure, were 

produced from strain gages mounted on the surface of CRPs. The strain variations were 

then used to establish the shear stress-slip relation for CRP-070 and CRP-195. Shear 

stress-slip relation is extremely useful when the behavior of CRP-concrete joint is 

studied by analytical or numerical solutions. 

5. The bond width was found to have negligible effects on the bond behavior of CRP-070.  
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7.1.2 Conclusions of Chapter 4 (Four-Point Bending Beam Tests) 

In chapter 4, the effectiveness of using spliced CRPs in strengthening/repair RC members 

was evaluated by conducting four-point flexural tests on nine RC beam specimens. The 

testing program consists of: (1) control (un-strengthened) beam; (2) two beams 

strengthened with a continuous (full-length) CRPs; (3) two beams strengthened with two 

spliced CRPs; (4) two beams strengthened with two spliced CRPs, and anchored at ends 

with U-shaped CFRP fabrics; (5) one beam strengthened with a continuous CFRP laminate; 

and (7) one beam strengthened with spliced CFRP laminate system. In (2), (3), and (4), one 

specimen was bonded to CRP-070 (fabricated with rods of Ø=2 mm, spaced at 6.35 mm), 

and the other bonded to CRP-195 (fabricated with rods of Ø=4 mm, spaced at 9.5 mm). 

The CFRP area (Af) of CRP-070 and CFRP laminate are equal, 64 mm2 (100 x 10-3 in.2), 

while Af  of CRP-195 is 173 mm2 (268 x 10-3 in.2). The following paragraphs conclude the 

results of the tests: 

1. The following are the maximum loads at failure for the strengthened beams and the 

corresponding percentage increase in load capacity, relative to the control beam:  38.98 

kN (8.76 k) or 112% increase for the full-length CRP-070; 37.94 kN (8.53 k) or 106% 

increase for the spliced CRP-070; 47.43 kN (10.66 k) or 158% increase for the 

spliced/anchored CRP-070; 27.3 kN (6.15 k) or 49% increase for the full-length 

laminate; and  24.2 kN (5.45 k) or 31.8% increase for the spliced laminate.  

2. Comparing CRPs with CFRP laminates, both full-length and spliced counterparts, it 

was found that CRPs achieved larger capacity increase. This is due to the different type 

of failure experienced in the CRP technique. CFRP laminates failed pre-maturely by 
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debonding at laminate or splice ends, while debonding was not observed with CRP-

070. 

3. The maximum loads and percentage increase in load capacity for beams strengthened 

with CRP-195 are as follows:  37.42 kN (8.41 k) or 104% increase for the full-length 

CRP-195; 35.80 kN (8.05 k) or 95% increase for the spliced CRP-195; 54.17 kN (12.18 

k) or 195% increase for the spliced and anchored CRP-195. 

4. Beams strengthened with full-length or spliced CRP-070 and CRP-195, failed at similar 

maximum loads; despite that the CFRP area, Af, of CRP-195 is 2.7 times that of CRP-

070.  Af  was not effective in enhancing the flexural capacity due to the nature of failure 

in full-length or spliced CRP strengthened beams. Since the failure mode is initiated at 

concrete cover (concrete cover separation, CCS). 

5. CFRP end anchorage was very effective in preventing CCS failure and further 

increasing the load capacity of beams strengthened with spliced CRPs. 

6. The proposed 150 mm (6 in.) overlap seems to be sufficient in transferring forces 

between spliced panels and maintaining composite action throughout loading stages. 

Notably, specimens strengthened with spliced CRPs or full-length CRPs, both failed at 

comparable maximum loads and identical failure modes. No signs of debonding or 

distress were seen at the rod overlap region in all of the four beams strengthened with 

spliced CRPs. In contrast, spliced CFRP laminates debonded from the laminate system. 

7. The control beam failed in the conventional way of under-reinforced concrete 

members, by yielding of tensile steel reinforcement, followed by crushing of 

compressive concrete in the mid-span region. Beams strengthened with full-length and 

spliced CRPs failed by CCS at one of the panel ends. Beams strengthened with spliced 
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and anchored CRPs failed by intermediate crack-induced debonding (ICID). While 

beams strengthened with CFRP laminate, both spliced and full-length, failed by 

laminate or splice end debonding. 

8. On average, the first concrete crack was visibly observed at loads of: 8.9 kN (2 kip) for 

the control beam, 15.7 kN (3.5 kip) for beams strengthened with CRP-070, 23.7 kN 

(5.3 kip) for beams strengthened with CRP-195, and 13.3 kN (3 kip) for beams 

strengthened with CFRP laminate. For the control beam and beams bonded to CFRP 

laminate, cracks were located at both inside and outside the constant moment region. 

Whereas, for CRP strengthened beams, except in the SS70 beam, cracks were limited 

to within constant moment region. 

9. The measured post-yielding neutral axis (N.A) is approximately 37.5 mm (1.5 in.) for 

CRP-070 strengthened beams, 50 mm (2 in.) for CRP-195 strengthened beams, and 40 

mm (1.6 in.) for CFRP laminate strengthened beams.   

10. The maximum adhesive shear stress, τa , for beams bonded to full-length or spliced 

CRPs is roughly 3 MPa (0.445 ksi), which is less than the adhesive average bond stress 

of 5.50 MPa (0.80 ksi), previously estimated from double-lap shear tests.  

11. The two beams strengthened with spliced and anchored CRPs, which failed by ICID,  

showed large strain values near the loading-point, along with a  maximum shear stress 

of 5-7.5 MPa (0.72-1.09 ksi). This shear stress range exceeds the average bond stress 

and strain limit set forth by ACI 440.2R-08 (2008), indicating that debonding might 

have initiated near load-point.  

12. For the beam bonded to full-length CFRP laminate, the debonding process started 

approximately at a load level of 0.75, [(P/Pmax), where P is current load, and Pmax is 
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maximum load)], with a maximum stress of 4.25 MPa (0.62 ksi). This registered at 

roughly 150 mm (6 in.) from the laminate end.  

13. For the beam strengthened with a spliced CFRP laminate system, the debonding 

process started approximately at a load level of 0.375, with a maximum stress of 2 MPa 

(0.29 ksi).  This registered at spliced ends, with debonding then propagated toward the 

mid-span region. 

 

7.1.3 Conclusions of Chapter 5 (Finite Element Analysis) 

In chapter 5, a comprehensive 3D nonlinear finite element (FE) model was developed to 

simulate the behavior of RC beams strengthened in flexure with CRPs and CFRP laminate.  

The developed F.E model accounts for: concrete nonlinear behavior in tension and 

compression, confinement effects on concrete compressive stress-strain relation, concrete 

cracking, and crushing. The debonding failure of various reinforcement at several 

interfaces, was accounted for in the FE model by using cohesive zone material (CZM) and 

interface elements. The following conclusions can be outlined, based on the findings of 

this study; 

1. There is a good agreement between FE predictions and experimental results when 

comparing the load vs. mid-span deflection response, load vs. strain in CFRP at mid-

span, and strain profile along CFRP length. Furthermore, due to implementing a 

displacement-controlled loading scheme, the FE response was reasonably able to 

capture the drops in load that were seen in some specimens due to debonding or 

concrete crushing failures.  
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2. The model accurately predicted the debonding failure of (1) CRP and CFRP laminate 

from a beam’s tension face, (2) CFRP fabric from the beam’s side, and (3) CFRP splice 

from the laminate system.  

3. Concrete cover separation failure was predicted in the FE analysis by using post-

processing analysis, along with tensile stress failure criteria for concrete. The failure 

criteria is employed for a concrete section near the termination of CRP, at the level of 

tension steel reinforcement. The assumed analysis methodology appeared to give a 

reliable prediction, since the failure load obtained from the analysis is in good 

agreement with the experimental failure load, with the difference between FE and 

experimental maximum loads range between 2.87% and 6.22%.  

4. At failure, the FE results indicated that the CRP-070 is stressed to 58% and 53% of the 

guaranteed strength for the full-length panel and the two spliced panels, respectively.  

The CFRP laminate is stressed to 25% and 22% of the guaranteed strength for full-

length laminate and the spliced laminate system, respectively.  

5. FE predicted that the concrete’s maximum compressive strain, at mid-span, ranged 

between (0.004-0.005), for beams that experienced concrete crushing failure (control 

beam, and beams strengthened with CFRP laminate).  Those values exceed the 

maximum compressive strain of 0.003, adopted in (ACI 318-14) code. The model 

predictions of the concrete maximum compressive strains (of the CRP strengthened 

beams) were less than the ACI’s 0.003 strain limit.  

6. At all load levels, the maximum tensile stress in the full-length CFRP laminate, full-

length CRP-070, and the two spliced CRP-070 are all of comparable magnitudes. Also, 



 

251 
 

the full-length and spliced CRP-195, have a comparable maximum tensile stresses at 

same load levels. 

7. The maximum tensile stress of two spliced CRPs (i.e. CRP-070 or CRP-195) occurs at 

12.5 mm (0.5 in.), outside the rod overlap region. The stress inside the overlap region 

is fairly uniform, and the magnitude of the average stress inside the overlap is almost 

half the maximum stress. 

8. The FE models predicted a high shear stress concentration at the end of the CRPs in all 

beams strengthened with full-length or spliced CRPs. The fabric anchorage seems to 

be effective in shifting the location of maximum shear stress from the panel’s end to 

inside the strengthening length [225 mm (9 in.) from CRP’s end toward the center of 

the beam]  and at load points. 

 

7.1.4 Conclusions of Chapter 6 (Analytical Models) 

Chapter 6 analytically examined aspects of the bond and flexural prperties of CRPs when 

adhered to concrete substrate. Given in this chapter, were two studies. In the first study, an 

analytical model (model no.1), based on the simple shear lag approach, and was applicable 

only for moderate loads within the linear elastic range, was derived to characterize the 

outcomes of double-lap shear tests. Analytical terms were presented for CRP strains, 

adhesive shear stress, and slip between CRP and concrete. The second study investigated 

concrete cover separation (CCS) failure, observed in the experimental RC beam testing, in 

which four specimens strengthened with full-length or spliced CRPs, failed by CCS. Two 

analytical models, one based on concrete tooth concept (model no.2) and the other on 

concrete shear capacity (model no.3), were derived for estimating the ultimate load of CRP 
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strengthened RC beams when CCS is predominant. The following, are concluded remarks 

of the chapter: 

1- Comparisons of tensile strains, along the entire CRP bond length, in double-lap shear 

tests, showed a good correlation between analytical model no.1 and the experiment. 

2- The approximate development length predicted from model no.1, for both CRP-070 

and CRP-195, was 100 mm (4 in.). 

3- The panel width was found to have negligible effects on transfer length of CRP-070 and CRP-

195, as examined by model no.1.  

4- The ultimate loads obtained from analytical models no.2 and no.3, were compared with 

failure loads of the experimental beams.  It was found that both models presented a 

very good match with the experiment. The maximum difference in analytical and 

experimental load ratio, is 4.5%, and 13.5 % for model no.2 and no.3, respectively. 

5- Model no. 3 was further reviewed and was found that when the term containing bending 

moment at CRP ends is removed from the model, a better match with experimental 

results can be obtained. Therefore, a modified model, that neglects the bending moment 

at ends, is given. The modified equation is only applicable for the beams tested in this 

experiment, as more data is needed before making any generalizations. 

 

7.2     Study Limitations and Future Recommendations  

The current research examined both the bond and flexural properties of spliced CRPs when 

used as an external reinforcement to strengthen or repair concrete members. Double-lap 

shear tests, four-point bending tests, F.E models, and analytical tools were carried out to 

evaluate the effectiveness of the overlap rod joint in maintaining composite action between 
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neighboring panels and transferring forces from one panel to another.  However, the current 

study only investigated some areas concerning the performance of spliced CRPs as an 

external reinforcement for concrete members.  Due to inevitable limitations on time, funds, 

laboratory space or apparatus, not all areas of investigation were included.  However, some 

of those areas, which can deepen the understanding of the CRP behavior and its interaction 

with the structural member, were identified and listed as follows for investigative studies 

in the future:  

1. The double-lap shear tests included only few samples that examined preliminarily the 

effects of bond width and rod spacing.  Further tests, are needed to determine the effects 

of bond width and rod spacing.  

2. The double-lap shear tests did not take into account the effects of concrete surface 

preparation methods, CRP axial stiffness, and adhesive properties. These factors, 

among others, are expected to have an impact on the bond between CRP and concrete 

substrate and need further examination.  

3. The bond properties of CRPs were determined from pure shear tests.  In practice, CRPs 

are used at locations where both shear forces and bending moments are present, 

therefore in those circumstances, beam tests could better evaluate the bond 

characteristics of CRPs. 

4. Small-scale beam tests were used in the current investigation.  Larger scale (field size) 

specimens can be tested experimentally or studied by reliable finite element models to 

assess the behavior of CRPs when used in actual rehabilitation practices. Furthermore, 

field testing on bridge or other typical structures, can provide essential data on the 
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efficiency of CRP strengthening systems by evaluating: time of CRP application, labor, 

and cost, in addition to measurements of structural properties before and after retrofit.  

5. In the four-point beam tests, CRP width, wf, was set equal to the beam’s width, bc, (or 

width ratio, wf /bc =1).  Further experimental or F.E studies should cover a wide range 

of ratios in order to study the effects of (wf /bc).  Extensive research has been dedicated 

to study the effects of (wf /bc) for externally bonded FRP laminates and fabrics, and has 

concluded that pre-mature debonding failures are likely with small width ratios.  

6. The beams were made of high-strength concrete [fc
′= 62 MPa (9 ksi)].  A wider range 

of concrete strengths, varying from normal to high strength, need to be tested in order 

to cover the effects of concrete strength. 

7. The testing was limited to simply supported, rectangular beams, under four-point 

bending.  Other geometrical shapes, such as flanged sections and slabs, and other 

support conditions and loading types can be investigated experimentally, analytically, 

or numerically. 

8. As in most retrofit projects, the concrete member is generally retrofitted after being in 

service for a considerable time. Therefore, the effects of pre-loading (pre-cracking) and 

effects of concrete damage can be examined to determine their influence on the 

behavior of CRP retrofitted RC members. 

9. The study was limited to static loading. Cyclic and fatigue loads can be further 

investigated for CRP adhered structures.  

10. The effects of long-term behavior and environmental effects such as concrete creep, 

freezing-thawing cycles, and effects of temperature need to be further studied. 
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11. Other structural substrates such as steel, timber and masonry can be investigated to 

evaluate the applicability of CRP system for those important materials.  

 

7.2.1     Effects of Rod Spacing 

The double-lap testing program included three specimens that were intended to 

preliminarily examination of the effects of varying rod spacing, S. The specimens utilize 

CRP-070, and all have the following: bond length, lb = 150 mm (6 in.), four rods with 

diameter, Ø = 2 mm (0.078 in.), in each double-lap shear side. The varied parameter was 

S, and three values were investigated:  6.35 mm (0.25 in.), 9.5 mm (0.38 in.), and 12.5 mm 

(0.50 in.).  The bond width, wf is a function of the rod spacing and number or rods, and 

therefore wf  was altered once S was varied. However, the double-lap testing studied the 

effects of wf   on CRP bond behavior, and it was found that wf  had negligible effects.  

The failure load for the specimen with S = 6.35 mm was 31.84 kN (7.16 kip), while it was 

47.195 kN (10.61 kip) for specimen with S = 9.5 mm and 49.322 kN for specimen with S 

= 12.5 mm.  Furthermore, the failure mode was altered when S was increased.  For 

specimen with S = 6.35 mm, the failure mode was concrete shear-off, (see figure 7.1),  

while for specimens with S= 9.5, and 12.5 mm, the failure mode was rod peel-off from the 

embedding adhesive, combined with cracks and fracture of the adhesive at locations near 

the gap between the two concrete blocks, (see figure 7.2).   Figure 7.3 shows the stress 

ratio, ff , in CFRP rods for each one of the three tested specimens. ff was derived by dividing 

the failure stress in the rods (calculated as the specimen’s failure load divided by CRP area) 

by the guaranteed CFRP rod strength, 2,340 MPa [(320 ksi), Diversified Structural 

Composites (2016)].  As can be seen in the figure, the rods were able to carry 86% and 
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91% of the manufacturer guaranteed strength when the rod spacing was 9.5, and 12.5 mm, 

respectively; while for rod spacing of 6.35 mm the rods were only stressed to 58% of the 

guaranteed strength.  

While the tested specimens were very limited [three spacings with only one specimen for 

each spacing], and that would prevent making any sound judgment regarding the exact 

effects of rod spacing, the specimens serve as incentive to study the effects of rod spacing 

in depth with larger scale in terms of spacing range and quality control.  Using a large-yet-

satisfactory rod spacing is extremely important, since FRP material is still expensive and 

any reduction in the material quantity while providing an adequate performance, would   

provide an economic solution. 
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Fig. 7.1. Concrete shear-off failure in specimen with rod spacing, S = 6.35 mm (0.25 
in.). 
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(b) Monitored side, specimen (II-2-9-37-150) 

 

 

 

 

 

 

 

 

 

 

 

(b) Un-monitored side, specimen (II-2-9-37-150) 

Fig. 7.2. Rod peel-off failure in a specimen with rod spacing, S = 9.5 mm (0.375 in.). 
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Fig. 7.3 Stress ratio in CFRP rods of specimens with different rod spacing. 

 

  

0.2 0.4 0.6

0.5

0.75

1

5 10 15

Spacing, S (in.)
St

re
ss

 ra
tio

,  
f f

Spacing, S (mm)

S =6.35 mm (0.25 in.)
S =9.5 mm (0.375 in.)
S =12.5 mm (0.5 in.)

  CFRP Rod Spacing, S 

Adhesive 
Concrete 

ff = (P/ Af)/ σg 
P = failure load 
Af = total area of rods 
σg = guaranteed strength 
of rods 



 

260 
 

 

 

 

 

 

 

 

APPEDIX A:   BOND STUDY ON CFRP ROD PANELS EXTERNALLY 

ADHERED TO CONCRETE 
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Figure. A. 1 Strain variation along bond length, for specimen (I-2-6-50-75).  

 
 
 

 

 

  

 

 

 

 

 

 

 

 

Figure. A. 2 Measured transfer length vs. relative load level, specimen (I-2-6-50-75).  
  

0 1 2 3 4

0

1000

2000

3000

0 25 50 75 100 125

Distance from concrete block edge, x (in.)

M
ic

ro
 st

ra
in

, µ
ε

Distance from concrete block edge, x (mm)

4.45 kN (1 kip)
8.89 kN (2 kip)
13.34 kN (3 kip)
17.79 kN (4 kip)
24.46 kN (5 kip)
26.69 kN (6 kip)

Concrete cracked at the vicinity 
between strain gages S1 and S2 

0

2

4

6

0

50

100

150

0 0.2 0.4 0.6 0.8 1

Tr
an

sf
er

 le
ng

th
 (i

n.
)

Tr
an

sf
er

 le
ng

th
 (m

m
)

P / Pf  

S1               S2                S3               S4          

P = current load level 
Pf = Load at failure 

S1,  S3 S4 

x  
lb=75 

 
CRP-070 P 



 

262 
 

P / Pf  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. A. 3 Strain variation along bond length, for specimen (I-2-6-50-125).  
 

 

 

 

 

 

 

 

 

 

 

 

 
Figure. A. 4 Measured transfer length vs. relative load level, specimen (I-2-6-50-

125). 
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Figure. A. 5 Strain variation along bond length, for specimen (II-2-6-25-150).  
 
 
 
 

 

 

 

 

 

 

 

 

 

 

  

 

Figure. A. 6 Measured transfer length vs. relative load level, for specimen (II-2-6-25-
150).  
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Figure. A. 7 Strain variation along bond length, for specimen (III-4-9-19-125).  
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure. A. 8 Measured transfer length vs. relative load level, specimen (III-4-9-19-
125).  
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Figure. A. 9 Shear stress vs. relative load level for specimen (I-2-6-50-62.5). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. A. 10 Shear stress vs. relative load level for specimen (I-2-6-50-75).  
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Figure. A. 11 Shear stress vs. relative load level for specimen (I-2-6-50-125). 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. A. 12 Shear stress vs. relative load level for specimen (I-2-6-50-150).  
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Figure. A. 13 Shear stress vs. relative load level for specimen (III-4-9-19-75).  
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure. A. 14 Shear stress vs. relative load level for specimen (III-2-6-50-125).  
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APPEDIX B:   FLEXURAL STUDY ON RC BEAMS STRENGTHENED WITH 

CFRP ROD PANELS AND CFRP LAMINATES 
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(a) SS70 beam (spliced CRP-070) 
 

 

 

 (b) SSW70 beam (spliced and anchored CRP-070) 
Fig. B.1 Strain profile along depth, at mid-span, SS70 and SSW70 beams. 
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(a) SS195 beam (spliced CRP-195) 
 

 

 

(b) SSW195 beam (spliced and anchored CRP-195)  

Fig. B.2 Strain profile along depth, at mid-span, SS195 and SSW195 beams.  
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Fig. B.3 Strain profile along depth, at mid-span, SSSC2 beam. 
 

 

0

2

4

6

0

50

100

150

-1000 1000 3000

El
ev

at
io

n,
 y

 (i
n.

)

El
ev

at
io

n,
 y

 (m
m

)

Microstrain, µε

load level=0.125 Load level=0.25
Load level=0.375 Load level=0.5
Load level=0.625 Load level=0.75
Load level=0.875 Load level=1

Max. load, Pmax = 24.23 kN (5.447 kip) 

 S1 

  

S2 

  

S3 

  
S3 malfunctioned at load level=1 

    
  

L/2 

S2 
S1 
S3 

y 

Load level, P/Pmax  

Post-yield, 
neutral axis 



 

272 
 

 
 (a) Tensile strains 

 

 

 

 

(b) Shear stresses 
Fig. B.4 Tensile strain and shear stress distribution along CRP length, beam CS70 

(full-length CRP-070). 
Note: several strain gages malfunctioned at load levels of 0.875 and 1.00, therefore, for those load levels, 
strains and shear stresses were drawn as individual points instead of continuous curves.   
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(a) Tensile strains 

 

 

 

 

 

(b) Shear stresses 

Fig. B.5 Tensile strain and shear stress distribution along CRP length, beam CS195 
(spliced CRP-195). 
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(a) Tensile strains 
 

 

 

 

 

(b) Shear stresses 

Fig. B.6 Tensile strain and shear stress distribution along CRP length, beam SS195 
(spliced CRP-195). 
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 (a) Tensile strains 
 

 

 

 

(b) Shear stresses 

Fig. B.7 Tensile strain and shear stress distribution along CRP length, beam 
SSW195 (spliced and anchored CRP-195).  
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APPEDIX C:   FINTE ELEMENT ANALYSIS OF RC BEAMS BONDED TO 

CFRP ROD PANELS (CRPS) and CFRP LAMINATES 
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(a) Strengthened with full-length CRP-195 (specimen CS195) 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Strengthened with two spliced CRP-195 (specimen SS195) 
 

Figure C.1 Load-mid span deflection comparisons, between experiment and F.E, for 
beams strengthened with CRP-195. 
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(c) Strengthened with two spliced CRP-195, anchored with fabric (specimen SSW195) 
 

Figure C.1 (continued) Load-mid span deflection comparisons, between experiment 
and F.E, for beams strengthened with CRP-195. 

 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

(a) Beam strengthened with full-length CRP-195 (beam CS195) 
Figure C.2 Load vs. strain, at mid-span, of beams strengthened with CRP-195. 
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(b) Beam strengthened with two-spliced CRP-195 (beam SS195) 

 

 

 

 

 

 

 

 

(c) Beam strengthened with two-spliced CRP-195, anchored with fabric (beam SSW195) 

Figure C.2 (continued) Load vs. strain, at mid-span, of beams strengthened with 
CRP-195. 
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(a) Beam strengthened with full-length CRP-195 (beam CS195) 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

(b) Beam strengthened with two-spliced CRP-195 (beam SS195) 

Figure C.3 Strain distribution along CRP-195 surface for loads up to 18 kN. 
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(c) Beam strengthened with two-spliced CRP-195, anchored with fabric (beam SSW195) 
Figure C.3 (continued) Strain distribution along CRP-195 surface for loads up to 18 

kN. 
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(a) P =9 kN (2 kip), (after cracking)  

 

 

 

(b) P =18 kN (4 kip), (before yielding of tension steel) 

 

 

 

(c) P =27 kN (6 kip), (after yielding, also at maximum load) 

Figure C.4 Tensile stress distribution in full-length CFRP laminate [beam CSSC2], 
at constant moment region, for different load levels. 

 
 

 

 

(a) P =9 kN (2 kip), (after cracking) 

 

 

 

 

(b) P =18 kN (4 kip), (before yielding of tensile steel) 

 

 

 

 

(c) P =24 kN (5.5 kip), (after yielding, also at maximum load) 

Figure C.5 Tensile stress distribution in spliced CFRP laminate system [beam 
SSSC2], at total length, for different load levels. 
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(a) P =9 kN (2 kip), (after cracking) 

 

 

 

 

  

 

(b) P =18 kN (4 kip), (before yielding of tensile steel) 

 

 

 

 

 

 

(c) P =27 kN (6 kip), (after yielding of tensile steel) 

 

 

 

 

 

 

(d) P =41 kN (9.15 kip), (at maximum load) 

Figure C.6 Tensile stress distribution in full-length CRP-070 [beam CS70], at 
constant moment region, for different load levels. 
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(a) P =9 kN (2 kip), (after cracking) 

 

 

 

 

 

 

(b) P =18 kN (4 kip), (before yielding of tensile steel) 

 

 

 

 

 

 

(c) P =27 kN (6 kip), (after yielding of tensile steel) 

 

 

 

 

 

 

(d) P =39 kN (8.80 kip), (at maximum load) 

Figure C.7 Tensile stress distribution in spliced CRP-070 [beam SS70], at constant 
moment region, for different load levels. 
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(a) P =9 kN (2 kip), (after cracking) 

 

 

 

 

 

 

(b) P =18 kN (4 kip), (before yielding of tensile steel) 

 

 

 

 

 

 

(c) P =27 kN (6 kip), (after yielding of tensile steel) 

 

 

 

 

 

 

(d) P =45 kN (10.20 kip), (at maximum load) 

Figure C.8 Tensile stress distribution in spliced CRP-070 [beam SSW70, with fabric 
anchorage], at constant moment region, for different load levels. 
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(a) P =9 kN (2 kip), (after cracking) 
 

 

 

 

 

 

(b) P =18 kN (4 kip), (before yielding of tensile steel) 

 

 

 

 

 

 

(c) P =27 kN (6 kip) 

 

 

 

 

 

 

(d) P =35 kN (7.87 kip), (at maximum load) 

Figure C.9 Tensile stress distribution in full-length CRP-195 [beam CS195], at 
constant moment region, for different load levels. 
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(a) P =9 kN (2 kip), (after cracking) 
 

 

 

 

 

 

(b) P =18 kN (4 kip), (before yielding of tensile steel) 

 

 

 

 

 

 

(c) P =27 kN (6 kip) 

 

 

 

  

 

 

(d) P =37 kN (8.32 kip), (at maximum load, also after yielding) 

Figure C.10 Tensile stress distribution in spliced CRP-195 [beam SS195], at 
constant moment region, for different load levels. 
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 (a) P =9 kN (2 kip), (after cracking) 

 

 

 

 

 

 

(b) P =18 kN (4 kip), (before yielding of tensile steel) 

 

 

 

 

 

 

(c) P =27 kN (6 kip) 

 

 

 

 

 

 

(d) P =59.21 kN (13.30 kip), (at maximum load, also after yielding) 

Figure C.11 Tensile stress distribution in spliced CRP-195 [beam SSW195, with 
fabric anchorage], at constant moment region, for different load levels. 
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 (a) Full-length CRP-195 (beam CS195) 

 

 

 

 

 

 

 

 
(b) Two spliced CRP-195 (beam SS195) 

 
 

 

 

 

 

 

 

 
(c) Two spliced CRP-195, anchored with CFRP fabric (beam SSW195) 

Figure C.12 F.E shear stress distribution along CRP/concrete interface, for CRP-
195, at maximum load. 

At fabric  

At fabric  

Near load 
point 

Two spliced 
CRP-195 

Two spliced 
CRP-195 

225 mm 225 mm CFRP fabric 

Full-length 
CRP-195 

Maximum load 
=59.2 kN (13.3 kip) 

Maximum load 
=36.8 kN (8.3 kip) 

Maximum load 
=35.0 kN (7.9 kip) 



 

290 
 

REFERENCES 
 

ACI 318-11 (2011). “Building Code Requirements for Reinforced Concrete,” American 
Concrete Institute, ISO# 193382007E. 

 
ACI Committee 440 (2008), “Guide for the Design and Construction of Externally Bonded 

FRP Systems for Strengthening Concrete Structures”, American Concrete Institute, 
Detroit. 

 
Adhikary, B. B. and H. Mutsuyoshi (2002). "Numerical simulation of steel-plate 

strengthened concrete beam by a nonlinear finite element method model." Construction 
and Building Materials 16(5): 291-301. 

 
Ahn, J. S., K. S. Woo, P. K. Basu and J. H. Park (2006). "p-Version nonlinear analysis of 

RC beams and slabs strengthened with externally bonded plates." Finite Elements in 
Analysis and Design 42(8-9): 726-739. 

 
Alaee, F. J. and B. L. Karihaloo (2003). "Retrofitting of Reinforced Concrete Beams with 

CARDIFRC." Journal of Composites for Construction 7(3): 174-186. 
 
Alagusundaramoorthy, P., Harik, I. E., and Choo, C., (2003).  "Flexural Behavior of R/C 

Beams Strengthened with Carbon Fiber Reinforced Polymer Sheets or Fabric." Journal 
of Composites for Construction 7(4): 292-301. 

 
Alfarabi, S., Al-Sulaimani, G.J. and Ghaleb, B. N., (1994). "Strengthening of Initially 

Loaded Reinforced Concrete Beams using FRP Plates", ACI Structural J., Vol. 91, No. 
2, pp. 160-168, March 1994. 

 
Al-Jelawy, H. (2009). “Experimental and Numerical Investigation on Bond Durability of 

CFRP Strengthened Concrete Members Subjected to Enviromental Exposure.”, 
Master thesis, University of Central Florida, Orlando, Florida. 

 
Alkhadraji, T. (2004). “Structural Strengthening Using External Post-Tensioning 

Systems.” Structural Magazine, http://www.structural.net/article/structural-
strengthening-using-external-post-tensioning-systems 

 
Alkhadraji, T., and Thomas, J. (2009). “Structural Strengthening Using External Post-

Tensioning Systems.”, Structural Magazine, http://www.structuremag.org/?p=5070 
 
Allawi, A. (2006). “Nonlinear Analysis of Reinforced Concrete Beams Strengthened by 

CFRP in Torsion.” Doctoral dissertation, Baghdad University, Iraq. 
 
Al-Mahmoud, F., A. Castel, R. Francois and C. Tourneur (2009). "Strengthening of RC 

Members with Near-Surface Mounted CFRP Rods." Composite Structures 91(2): 138-
147. 

http://www.structural.net/article/structural-strengthening-using-external-post-tensioning-systems
http://www.structural.net/article/structural-strengthening-using-external-post-tensioning-systems
http://www.structuremag.org/?p=5070


 

291 
 

Al-Mahmoud, F., A. Castel, R. Francois and C. Tourneur (2010). "RC Beams Strengthened 
with NSM CFRP Rods and Modeling of Peeling-off Failure." Composite Structures 
92(8): 1920-1930. 

 
Ambrisi, A., and Focacci, F. (2011). “Flexural Strengthening of RC Beams with Cement-

Based Composites." ASCE, Journal of Composites for Construction, 2011.15:707-720. 
 
Andra, H. P., Sander, D., and Meier, M. (2001). “Prestressed CFRP Strips as Surface 

Tendons-Example of Coupling Joint Rehabilitation.”, Beton-und Stahlbetonbau, V.96, 
no.12, pp. 737-747. 

 
ANSYS (2012). Release 14.5 Documentation for ANSYS. Version 14.5, ANSYS Inc., 

Canonsburg, PA, USA. 
 
Aram, M. R., C. Czaderski and M. Motavalli (2008). "Debonding Failure Modes of 

Flexural FRP-Strengthened RC Beams." Composites Part B-Engineering 39(5): 826-
841. 

 
Arduini, M., and Nanni, A., (1997), “Behavior of Precracked RC Beams Strengthened with 

Carbon FRP Sheets”, ASCE Journal of Composites for Construction, Vol. 1, No. 2, pp. 
63-70. 

 
ASTM A370-09 (2009), Standard Test Methods and Definitions for Mechanical Testing of 

Steel Products, ASTM International, West Conshohocken, PA, 2009, www.astm.org. 
 
ASTM C31 / C31M-09 (2009), Standard Practice for Making and Curing Concrete Test 

Specimens in the Field, ASTM International, West Conshohocken, PA, 2009, 
www.astm.org. 

 
ASTM C39 / C39M-09 (2009), Standard Test Method for Compressive Strength of 

Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, 2009, 
www.astm.org. 

 
ASTM C469 / C469M-11 (2011), Standard Test Method for Static Modulus of Elasticity 

and Poisson’s Ratio of Concrete in Compression, ASTM International, West 
Conshohocken, PA, 2011, www.astm.org. 

 
ASTM C805-08 (2008). “Standard Test Method for Rebound Number of Hardened 

Concrete”, ASTM International, West Conshohocken, PA, 2008. 
 
Attari, S. N. Amziane, M. Chemrouk, (2012), “Flexural strengthening of concrete beams 

using CFRP, GFRP and hybrid FRP sheets,” Construction and Building Materials, 
Volume 37, December 2012, Pages 746-757, ISSN 0950-0618. 

 

http://www.astm.org/
http://www.astm.org/
http://www.astm.org/
http://www.astm.org/


 

292 
 

BADAWI, M., (2007). “Monotonic and Fatigue Flexural Behavior of RC Beams 
Strengthened with Prestressed NSM CFRP Rods”, PhD Thesis, University of Waterloo, 
Waterloo, Ontario, Canada 2007, 256 pp. 

 
Badawi, M., and soudki, K (2009). “Flexural strengthening of RC beams with prestressed 

NSM CFRP rods – Experimental and analytical investigation”, Construction and 
Building Materials, Volume 23, Issue 10, October 2009, Pages 3292–3300.  

 
Bajpai, K., and Duthinh, D. (2003)." Bending Performance of Masonry Walls Strengthened 

with Near Surface Mounted FRP Bars," Noth American Masonry Conference, June 1-
4, 2003, Clemson, South Carloina, USA. 

 
Barnes, R. A, Baglin, P. S, Mays, G. C, and Subedi, N. K. (2001). “External Steel Plate 

Systems for the Shear Strengthening of Reinforced Concrete Beams” Engineering 
Structures 23 (2001) 1162–1176. 

 
Ben Ouezdou, M., Belarbi, A., & Bae, S.-W. (2009). Effective Bond Length of FRP Sheets 

Externally Bonded to Concrete. International Journal of Concrete Structures and 
Materials, 3(2), 127–131. 

 
Berset, T. (2002). “Development of a Post-Tensioning System Using Unbonded CFRP 

Tendons.” Proceeding of the 4th International PhD Symposium in Civil engineering, 
Munich, Germany, pp. 32-37. 

 
Bizindavyi, L., and Neale, K. W. (1999). ‘‘Transfer Lengths and Bond Strengths for 

Composites Bonded to Concrete.’’ J. Compos. for Constr., ASCE, 3(4), 153–160. 
 
Blanksvard, T., B. Taljsten and A. Carolin (2009). "Shear Strengthening of Concrete 

Structures with the Use of Mineral-Based Composites." Journal of Composites for 
Construction 13(1): 25-34. 

 
Bonacci, J. F. and M. Maalej (2001). "Behavioral Trends of RC Beams Strengthened with 

Externally Bonded FRP." Journal of Composites for Construction 5(2): 102-113. 
 
 
Brena, S., Wood, S., and Kerger, M., (2003)."Full-Scale Tests of Bridge Components 

Strengthened Using Carbon Fiber-Reinforced Polymer Composites." ACI Structural 
Journal, Vol. 100, No. 6, pp. 775-784. 

 
Capozucca, R. (2014). "On the Strengthening of RC Beams with Near Surface Mounted 

GFRP Rods." Composite Structures 117: 143-155. 
 
Chajes M J, Karbhari V M, Mertz D R, Kaliakin V N and Faqiri A (1993). “Rehabilitation 

of Cracked Adjacent Concrete Box-Beam Bridges”, Proc Symp Practical Solutions for 
Bridge Strengthening and Rehabilitation, NSF, Des Moines, Iowa, 1993, pp 265–274. 

 



 

293 
 

Chajes M J, Thomson T A, Finch W W and Januszka T F (1994). ‘Flexural Strengthening 
of Concrete Beams using Externally Bonded Composite Materials’, Construct Build 
Mater 8(3) 191–201. 

 
Chansawat, K., T. Potisuk, T.H. Miller, S.C. Yim and D.I. Kachlakev, (2009). FE models 

of GFRP and CFRP strengthening of reinforced concrete beams. Adv. Civil Eng., 2009: 
13-13. 

 
Chen, J. F, and Teng, J. G. (2001). ‘‘Anchorage strength models for FRP and steel plates 

bonded to concrete.’’ Journal of Structural Engineering, ASCE, 127(7), July 2001.  

 

Choi, H. T., West, J. S., and Soudki, K. A. (2011). “Effect of Partial Unbonding on 
Prestressed Near-Surface-Mounted CFRP-Strengthened Concrete T-Beams”, ASCE, 
Journal of Composites for Construction, Vol. 15, No. 1, February 1, 2011,ASCE, ISSN 
1090-0268/2011/1-93–102. 

 
 
Daugevicius, M., J. Valivonis and G. Marciukaitis (2012). "Deflection Analysis of 

Reinforced Concrete Beams Strengthened with Carbon Fibre Reinforced Polymer 
Under Long-Term Load Action." Journal of Zhejiang University-Science A 13(8): 571-
583. 

 
Dawood, M., and Rizkalla, S. (2006). “Bond and Splice Behavior of High Modulus CFRP 

Materials Bonded to Steel Structures”. Third International conference on FRP 
Composites in Civil Engineering (CICE 2006), December 13-15 2006, Miami, Florida, 
USA. 

 
Dawood, M., Guddati, M., and Rizkalla, S. (2007). “Bond Behavior of CFRP 

Strengthening System for Steel Structures”. Asia-Pacific Conference on FRP in 
Structures (APFIS 2007). 

 
De Lorenzis, L. and Nanni, A. (2002).  "Bond between Near-Surface Mounted Fiber-

Reinforced Polymer Rods and Concrete in Structural Strengthening." ACI Structural 
Journal, Vol 99(2). 

 
De Lorenzis, L., M. Paggi, A. Carpinteri and G. Zavarise (2010). "Linear Elastic Fracture 

Mechanics Approach to Plate End Debonding in Rectilinear and Curved Plated 
Beams." Advances in Structural Engineering 13(5): 875-889. 

 
De Luca, A., F. Matta and A. Nanni (2010). "Behavior of Full-Scale Glass Fiber-

Reinforced Polymer Reinforced Concrete Columns under Axial Load." Aci Structural 
Journal 107(5): 589-596. 

 



 

294 
 

Demakos C. B, Repapis C. C, and Drivas D, (2013). “Investigation of structural response 
of reinforced concrete beams strengthened with anchored FRPs.” Open Construction 
and Building Technology Journal, 2013; 7:146-57. 

 
Diversified Structural Composites (2016). “Specialty rods, tubes and shapes”                                 

˂ http://www.diversified-composites.com/rdtbshp.php ˃  
 
Ebead, U, and Marzouk, H. (2002). “Strengthening of Two-Way Slabs Subjected to 

Moment and Cyclic Loading.” ACI Structural Journal, V. 99, No. 4, July-August 2002. 
 
Ebead, U. and H. Marzouk (2004). "Fiber-reinforced Polymer Strengthening of two-way 

Slabs." Aci Structural Journal 101(5): 650-659. 
 
Ehsani, M. R. and Saadatmanesh, H. (1996). “Repair and Strengthening of eErthquake-

Damaged Concrete and Masonry Walls with Composite Fabrics,” First International 
Conference on Fiber Composites in Infrastructures, ICCI’96, Tucson, Arizona, January 
1996, pp. 1156-1167. 

 
El Maaddawy, T. and K. Soudki (2008). "Strengthening of Reinforced Cncrete Slabs with 

Mechanically-Anchored Unbonded FRP System." Construction and Building Materials 
22(4): 444-455. 

 
El-Hacha R. and Rizkalla S.H, (2004). “Near Surface Mounted FRP Reinforcements for 

Flexural Strengthening of Concrete Structures,” American Concrete Institute (ACI), 
Structural Journal, Vol. 101, No. 5, pp. 717-726, 2004. 

 
El-Hacha, R., and Aly, M. (2013). “Anchorage System to Prestress FRP Laminates for 

Flexural Strengthening of Steel-Concrete Composite Girders.” Journal of Composites 
for Construction, Journal of Composites for Construction, Vol. 17, No. 3, June 1, 2013. 

 
El-Hacha, R., Wight, R. G., and Green, M. F. (2003). “Innovative System for Prestressing 

Fiber-Reinforced Polymer Sheets.” ACI Struct. J., 100(3), 305–315. 
 
El-Maaddawy, T. and A. S. El-Dieb (2011). "Near-Surface-Mounted Composite System 

for Repair and Strengthening of Reinforced Concrete Columns Subjected to Axial Load 
and Biaxial Bending." Journal of Composites for Construction 15(4): 602-614. 

 
Elsayed, W. E., U. A. Ebead and K. W. Neale (2009). "Mechanically Fastened FRP-

Strengthened Two-Way Concrete Slabs with and without Cutouts." Journal of 
Composites for Construction 13(3): 198-207. 

 
Enochsson, O., J. Lundqvist, B. Taljsten, P. Rusinowski and T. Olofsson (2007). "CFRP 

strengthened openings in two-way concrete slabs - An experimental and numerical 
study." Construction and Building Materials 21(4): 810-826. 

 

http://www.diversified-composites.com/rdtbshp.php


 

295 
 

Esfahani M. R, Kianoush, M. R., and Tajari, A. R. (2007). “Flexural Behavior of 
Reinforced Concrete Beams Strengthened by CFRP Sheets”, Engineering Structures, 
Volume 29, Issue 10, October 2007, Pages 2428–2444. 

 
Eshwar, N., T. J. Ibell and A. Nanni (2005). "Effectiveness of CFRP Strengthening on 

Curved Soffit RC Beams." Advances in Structural Engineering 8(1): 55-68. 
 
Federal Highway Administration (2010). “2010 Status of the Nation’s Highway, Bridges, 

and Transit: Conditions and Performance”, retrieved from Google on February 17, 
2015. http://www.fhwa.dot.gov/policy/2010cpr/chap11.htm#2. 

 
Fawzia, S., Zhao, X. L., & Al-Mahaidi, R. (2010). Bond–Slip Models for Double Strap 

Joints Strengthened by CFRP. Composite Structures, 92(9), 2137-2145. 
 
Federal Highway Administration (2013). “Deficient Bridges by State and Highway System 

2013”, retrieved from Google on February 17, 2015.                                                        
http://www.fhwa.dot.gov/bridge/nbi/no10/defbr13.cfm.                                                                                            

 
Ferrier, E. and P. Hamelin (2002). "Long-time Concrete-composite Interface 

Characterization for Reliability Prediction of RC Beam Strengthened with FRP." 
Materials and Structures 35(253): 564-572. 

 
Ferretti, D. and M. Savoia (2003). "Non-linear Model for R/C Tensile Members 

Strengthened by FRP-Plates." Engineering Fracture Mechanics 70(7-8): 1069-1083. 
 
Florut, S. C., G. Sas, C. Popescu and V. Stoian (2014). "Tests on Reinforced Concrete 

Slabs with cut-out Openings Strengthened with Fibre-Reinforced Polymers." 
Composites Part B-Engineering 66: 484-493. 

 
Foret, G. and O. Limam (2008). "Experimental and Numerical Analysis of RC two-way 

Slabs Strengthened with NSM CFRP Rods." Construction and Building Materials 
22(10): 2025-2030. 

 
Foster, P. B., Gergely, J., Young, D. T., McGinley, W. M, and Corzo, A. (2005). “FRP 

Repair Methods for FRP Repair Methods for Unreinforced Masonry Buildings Subject 
to Cyclic Loading." ACI Special Publication 230. 

 
Franca, P. M., (2007). “Reinforced Concrete Beams Strengthened with Prestressed CFRP 

Laminates.” Doctoral dissertation, Lisbon Technical University, Portugal. 
 
Franca, P., and Costa, A. (2007). “Behaviour of Flexural Strengthened Beams with 

Prestressed CFRP Laminates.” Proceedings of 8th International Symposium on Fiber-
Reinforced Polymer Reinforcement for Cocnrete Structures (FRPRCS-8).  

 

http://www.fhwa.dot.gov/policy/2010cpr/chap11.htm#2
http://www.fhwa.dot.gov/bridge/nbi/no10/defbr13.cfm


 

296 
 

Gharachorlou, A. and A. A. Ramezanianpour (2010). "Resistance of Concrete Specimens 
Strengthened with Frp Sheets to the Penetration of Chloride Ions." Arabian Journal for 
Science and Engineering 35(1B): 141-154. 

 
Guenaneche, B., A. Tounsi and E. A. Bedia (2014). "Effect of shear deformation on 

interfacial stress analysis in plated beams under arbitrary loading." International 
Journal of Adhesion and Adhesives 48: 1-13. 

 
Guo, Y. Y., and Chai, Z. L (2014). “”Flexural Behavior of Stone Slabs Reinforced with 

Prestressed NSM CFRP Bars.” J. Compos. Constr., 18(4), 04014004. 
 
Hajihashiemi, A., Mostofinejad, D., and Mojtaba, A. (2011). “Investigation of RC Beams 

Strengthened with Prestressed NSM CFRP Laminates”, ASCE, Journal of Composites 
for Construction, Vol. 15, No. 6, December 1, 2011,ASCE, ISSN 1090-0268/2011/6-
887–895. 

 
Hamid Y. Omran, and Raafat El-Hacha,  (2012). “Nonlinear 3D finite element modeling 

of RC beams strengthened with prestressed NSM-CFRP strips”, Construction and 
Building Materials, Volume 31, June 2012, Pages 74-85, ISSN 0950-0618. 

 
Harik, I., and Peiris, A. (2014). ‘‘Strengthening of Concrete Bridges using CFRP Rod 

Panels.’’ Proceeding, The 7th International Conference on FRP Composites in Civil 
Engineering, CICI 2014, Vancouver, Canada, Augest 20-22, 2014. 

 
Hassan T. and Rizkalla S., (2003) “Investigation of Bond in Concrete Structures 

Strengthened with Near Surface Mounted Carbon Fiber Reinforced Polymer Strips,” 
American Society of Civil Engineers (ASCE), Journal of Composites for Construction, 
Vol. 7, No. 3, pp. 248-257, 2003. 

 
Hiroyuki, Y. and Wu, Z. (1997). “Analysis of Debonding Fracture Properties of CFS 

Strengthened Member Subject to Tension.” Non-Metallic (FRP) Reinforcement for 
Concrete Structures, Proceedings of the 3rd International Symposium, Sapporo, Japan, 
pp. 287-294. 

 
Hollaway, L. C., and Leeming, M. B. (2000), "Strengthening of Reinforced Concrete 

Structures using Externally Bonded FRP Composites in Structural and Civil 
Engineering.", Boca Raton FL, CRC Press LLC. 

      
Huang, Y., Wu, J., Yen, T., Hung, C, and Lin, Y. (2005). “Strengthening Reinforced 

Concrete Beams Using Prestressed Glass Fiber-Reinforced Polymer-Part I: 
Experimental Study.” Journal of Zhejiang University science (JZUS), pp. 166-174.  

 
Huang, Y., Yen, T., Wu, J., and Ong, C. (2000). “Strengthening Reinforced Concrete 

Beams Using Prestressed Glass Fiber-Reinforced Plastic.” Proceeding of the 4th 
International conference on Repair, Rehabilitation, and Maintenance of Concrete 
Structures, and Innovations in Design and Construction (ACI SP-193), pp 925-936. 



 

297 
 

 
Hutchinson, R., Tadros, G., Kroman, J., and Rizkalla, S. (2003). Use of Externally Bonded 

FRP Systems for Rehabilitation of Bridges in Western Canada. ACI SP-215 (pp. 239-
248). Farmington Hills: ACI. 

 
Hwan, B, O, Cho, J. Y., and Park, D. G. (2003). “Static and Fatigue Behavior of Reinforced 

Concrete Beams Strengthened with Steel Plates for Flexure” JOURNAL OF 
STRUCTURAL ENGINEERING ASCE / APRIL 2003 / 527. 

 
Japan Society of Civil Engineers, JSCE-E 545-200 (2000). ‘‘Test methods for direct pull-

off strength of continuous fiber sheets with concrete.’’ Japan Society of Civil 
Engineers, Tokyo, Japan. 

 
Jones, R., R.N. Swamy and A. Charif, (1988). “Plate Separation and Anchorage of 

Reinforced Concrete Beams Strengthened by Epoxy-Bonded Steel Plates”. The 
Structural Engineering, 66(5): 85-94. 

 
Jones, R., Wamy. R. N, and Ang. T. H. (1982). "Under- and over-reinforced Concrete 

Beams with Glued Steel Plates." The International Journal of Cement Composites and 
Lightweight Concrete 4. 

 
Jumaat, M. Z., Alam, Md. A. (2008). "Strengthening of R.C. Beams Using Externally 

Bonded Plates and Anchorages." Australian Journal of Basic and Applied Sciences 
3(3): 2207-2211. 

 
Kachlakev D., Miller T., and Yim S., (2001). “Finite Element Modeling of Reinforced 

Concrete Structures Strengthened with frp Laminates. “ Oregon Dept. of Transp., USA, 
Res. Group, Final Report SPR, 316, May 2001. 

 
Kamel, A. M. S., Elwi, A. E., and Cheng, J. J. R. (2003). “Experimental and Numerical 

Analysis of FRP Sheets Bonded to Concrete.” Structural Engineering Repor, No. 252, 
University of Alberta. 

 
Kamel, A. S., Elwi, A. A. and Cheng, R. J. (2004). “Experimental investigation on FRP 

sheets bonded to concrete.” Emirates J. Eng. Res. 9, 71–76. 

Kasidit Chansawat, Tanarat Potisuk, Thomas H. Miller, Solomon C. Yim, and Damian I. 
Kachlakev, (2009) “FE Models of GFRP and CFRP Strengthening of Reinforced 
Concrete Beams,” Advances in Civil Engineering, vol. 2009, Article ID 152196, 13 
pages, 2009. doi:10.1155/2009/152196. 

 
Kent, D. C, and Park, R. (1971). “Flexural members with confined concrete.” Journal of 

Structures. Div., ASCE, 97(7), 1969-1990. 
 
Kesavan, K., K. Ravisankar, R. Senthil and A. K. F. Ahmed (2013). "Experimental Studies 

on Performance of Reinforced Concrete Beam Strengthened with CFRP under Cyclic 
Loading using FBG Array." Measurement 46(10): 3855-3862. 



 

298 
 

 
Kheyroddin, A. and H. Naderpour (2008). "Nonlinear Finite Element Analysis of 

Composite RC Shear Walls." Iranian Journal of Science and Technology Transaction 
B-Engineering 32(B2): 79-89. 

 
Kim, Y. J., Longwoth, J. M., Gordon, W. R., and Green, M. F. (2008). “Flexure of Two-

Way Slabs Strengthened with Prestressed or Nonprestressed CFRP Sheets”, ASCE, 
Journal of Composites for Construction, Vol. 12, No.4, August 1, 2008. ASCE, ISSN 
1090-0268/2008/4-366–374. 

 
Kotynia, R., Krzysztof, L., and Staskiewicz, M. (2014). “Flexural Behavior of Preloaded 

RC Slabs Strengthened with Prestressed CFRP Laminates”, ASCE, Journal of 
Composites for Construction, ISSN 1090-0268/A4013004 (11). 

 
Kotynia, R., Walendziak, R., Stoecklin, I., and Meier, U. (2011). “RC Slabs Strengthened 

with Prestressed and Gradually Anchored CFRP Strips under Monotonic and Cyclic 
Loading”, ASCE, Journal of Composites for Construction, Vol. 15, No. 2, April 1, 
2011, ASCE, ISSN 1090-0268/2011/2-168. 

 
Lamanna, A. J. (2002). “Flexural Strengthening of Reinforced concrete Beams with 

Mechanically Fastened Fiber Reinforced Polymer Strips.” Doctoral dissertation, 
University of wisconsin, Madison. 

 
Lamanna, A. J., Bank, L. C., and Borowicz, D. T. (2004). “Mechanically Fastened FRP 

Strengthening of Large Scale RC Bridge T Beams.” Adv. Struct. Eng., 7(6), 525–537. 
 
Lamanna, A. J., Bank, L. C., and Scott, D. W. (2001). “Flexural Strengthening of RC 

Beams Using Fasteners and FRP Strips,” ACI Structural Journal, Vol. 98, No. 3, pp. 
368-376, May-June 2001. 

Lee, H. K., G. Avila and C. Montanez (2005). "Numerical study on retrofit and 
strengthening performance of sprayed fiber reinforced polymer." Engineering 
Structures 27(10): 1476-1487. 

 
Lei, D., G. Chen, Y. Chen and Q. Ren (2012). "Experimental Research and Numerical 

Simulation of RC Beams Strengthened with Bonded Steel Plates." Science China 
Technological Sciences 55(12): 3270-3277. 

 
Lopez, M. M., A. E. Naaman, L. Pinkerton and R. D. Till (2003). "Behavior of RC Beams 

Strengthened with FRP Laminates and Tested under Cyclic Loading at Low 
Temperatures." International Journal of Materials & Product Technology 19(1-2): 108-
117. 

 
Loreto, G., Leardini, L., Arboleda, D., and Nanni, A. (2014). “Performance of RC Slab-

Type Elements Strengthened with Fabric-Reinforced Cementitious-Matrix 
Composites." ASCE, Journal of Composites for Construction, 2014.18. 

 



 

299 
 

Lu, X. Z., L. P. Ye, J. G. Teng and J. J. Jiang (2005). "Meso-Scale Finite Element Model 
for FRP Sheets/Plates Bonded to Concrete." Engineering Structures 27(4): 564-575. 

 
Lu, X.Z., Teng, J.G., Ye, L.P., and Jiang, J.J. (2005b). “Bond-slip models for FRP 

sheets/plates bonded to concrete.” Engineering Structures, Vol. 27, No. 6, pp. 920-937. 
 
Luke, P. S., Leeming, M. B., and Shwarski, A. J. (1998). “Robust results for Cabon Fibre,” 

Concrete Engineering International, 2(2), 19-21.R. 
 
Lunn, D. S., and Rizkalla, S. H. (2011). “Strengthening of Infill Masonry Walls with FRP 

Materials." Journal of Composites for Construction, Vol. 15, No.2, April 1, 2011. 
 
MacDonald, M. D., and Calder, A. J. J. (1982), "Bonded Steel Plating for Strengthening 

Concrete Structures." Int. J. Adhes., 2(2), 119-127. 
 
Macdonald, M.D. (1978). “The Flexural Behavior of Concrete Beams with Bonded 

External Reinforcement”, TRRL Report SR 415 (Department of the Environment, 
Department of Transport), Crowthorne, 1978. 

 
Macdonald, M.D. (1982). “'The Flexural Performance of 3.5 m Concrete Beams with 

Various Bonded External Reinforcements.”, TRRL Report SR 728, (Department of the 
Environment, Department of Transport), Crowthorne, 1982. 

 
Maeda, T., Asano, Y., Sato, Y., Ueda, T., and Kakuta, Y. (1997). “A Study on Bond 

Mechanism of Carbon Fiber Sheet.” Non-Metallic (FRP) Reinforcement for Concrete 
Structures, Proc., 3rd Int. Symp., Vol. 1, 279–286. 

 
Mander, R.F. (1981). “Use of resins in road and bridge construction and repair”, 

International Journal of cement Composites and Lightweight Concrete. Volume 3, No 
1 (February 1981) pp 37-39.  

 
Martin, J. and Lamanna, A. (2008). ”Performance of Mechanically Fastened FRP 

Strengthened Concrete Beams in Flexure.” J. Compos. Constr., 12(3), 257–265. 
 
Meier, U., (1987). “Bridge Repair with High Performance Composite Materials”, Material 

and Technik, Vol. 15, 1987, pp. 125- 128. 
Meier, U., Deuring, M., Meier, H, and Schwengler, G. (1992). "Strengthening of Structures 

with CFRP Laminates", Research and Applications in Switzerland, Proceedings of the 
1st International Conference on Advanced Composite Material in Bridges and 
Structures, Sherbrooke, Quebec, 1992, pp. 243-251. 

 
Micelli F, Nanni A. (2004). “Durability of FRP rods for concrete structures.” Constr 

Building Mater 2004;18(7):491–503. 
 



 

300 
 

Michels, J., Sena-Cruz, J., Czaderski, C., and Motavalli, M. (2013) “Structural 
Strengthening with Prestressed CFRP Strips with Gradient Anchorage”, ASCE, Journal 
of Composites for Construction, Vol. 17, No. 5, October 1, 2013, ISSN 1090-0268. 

 
Miller, B. and Nanni, A., "Bond Between CFRP Sheets and Concrete," Proceedings, ASCE 

5th Materials Congress, Cincinnati, OH, L.C. Bank, Editor, May 10-12, 1999, pp. 240-
247. 

 
Monti, G., and Liotta, M. (2006). “Prestension of Externally Bonded FRP Sheets for 

Flexural Reinforcement of RC Beams: Methods and Design Equations” Proceedings of 
2th fib International congress, ID 10-63.  

 
Myers, J. J., Belarbi, A., and El-Domiaty, K. A. (2004). “Blast Resistance of FRP 

Retrofitted Un-Reinforced Masonry (URM) Walls with and without Arching Action." 
The masonry society (TMS) Journal September 2004. 

 
Nanni, A. (2012). “A New Tool for Concrete and Masonry Repair." Concrete international, 

April 2012. 
 
Narayan, R. S, Jones, R, and Charif, A. (1996). "Contribution of Externally Bonded Steel 

Plate Reinforcement to the Shear Resistence of Reinforced Concrete Beams" ACI- SP 
Publication, No.165. 

 
Nordin, H., and Taljsten, B. (2006). “Concrete Beams Strengthened with Prestressed NSM 

CFRP.” J. Compos. Constr., 10(1), 60–68. 
 
Norris, T., Saadatmanesh, H. and Ehsani, M. R. (1997). “Shear and Flexural Strengthening 

of RC Beams with Carbon Fibre Sheets. Journal of structural engineering, 1997; 
123(7): 903-911. 

 
Nour, A., B. Massicotte, E. Yildiz and V. Koval (2007). "Finite Element Modeling of 

Concrete Structures Reinforced with Internal and External Fibre-Reinforced 
Polymers." Canadian Journal of Civil Engineering 34(3): 340-354. 

 
Obaidat, Y.T. (2010). ”Structural Retrofitting of Reinforced Concrete Beams using Carbon 

Fiber Polymer.” Licentiate dissertation, Structural Mechanics, Lund, Sweden, ISSN 
0281-6679. 

 
Oehlers DJ. (1992). “Reinforced Concrete Beams with Plates Glued to their Soffits. J Struct 

Eng, ASCE 1992;118(8):2023–38. 
 
Ombres, L (2011). “Structural Performances of PBO FRCM-Strengthened RC Beams." 

Proceedings of the Institution of civil Engineers (ICE), Structures and Buildings, 
Volume 164, Issue 4. 

 



 

301 
 

Ombres, L (2012). “Debonding Analysis of Reinforced Concrete Beams Strengthened with 
Fibre Reinforced Cementitious Mortar." Engineering Fracture Mechanics 81 (2012) 
94–109. 

 
Omran, H. Y. and R. El-Hacha (2012). "Nonlinear 3D Finite Element Modeling of RC 

Beams Strengthened with Prestressed NSM-CFRP Strips." Construction and Building 
Materials 31: 74-85. 

 
Oral Buyukozturk, Oguz Gunes, Erdem Karaca, (2004), “Progress on understanding 

debonding problems in reinforced concrete and steel members strengthened using FRP 
composites,” Construction and Building Materials, Volume 18, Issue 1, February 2004, 
Pages 9-19, ISSN 0950-0618. 

 
Park, J. G., K. M. Lee, H. M. Shin and Y. J. Park (2007). "Nonlinear Analysis of RC 

Beams Strengthened by Externally Bonded Plates." Computers and Concrete 4(2): 
119-134. 

 
Peiris, N. A, (2011) “Steel Beams Strengthened with Ultra High Modulus CFRP 

Laminates,” Doctoral dissertation, Paper 
204.http://uknowledge.uky.edu/gradschool_diss/204, 2011. 

 
Pendhari, S. S., T. Kant and Y. M. Desai (2006). "Nonlinear analysis of reinforced concrete 

beams strengthened with polymer composites." Structural Engineering and Mechanics 
24(1): 1-18. 

 
Peng, H., Zhang, J. F., Cai, C. S., and Liu, Y.  (2014). “An Experimental Study on 

Reinforced Concrete Beams Strengthened with Prestressed Near Surface Mounted 
CFRP Strips”, Engineering Structures, Volume 79, 15 November 2014, Pages 222–
233. 

 
Plevris, N. and T. C. Triantafillou (1994). "Time-Dependent Behavior of Rc Members 

Strengthened with Frp Laminates." Journal of Structural Engineering-Asce 120(3): 
1016-1042. 

 
Rabinovitch, O. (2014). "Dynamic Edge Debonding in FRP Strengthened Beams." 

European Journal of Mechanics a-Solids 47: 309-326. 
 
Radfar, S., Foret, G., Saeedi, N., and Sab, K. (2012). "Simulation of concrete cover 

separation failure in FRP plated RC beams." Construction and Building Materials 
journal, 37 (2012) 791-800. 

 
Raj, Rasheed. L. S, and Al-Azawi, T. K. (2013). “Experimental Analysis of Reinforced 

Concrete Slabs Strengthened with Steel Plates” The Iraqi Journal for Mechanical and 
Material Engineering, Vol.13, No.1, 2013. 

 



 

302 
 

Raoof M, and Hassanen M.A.H. (2000). “Peeling failure of reinforced concrete beams with 
fibre reinforced plastic or steel plates glued to their soffits”. Proceedings of the 
Institution of Civil Engineers: Structures and Buildings 2000; 140(8):291–305. 

 
Ren, W., L. Sneed, Y. Gai and X. Kang (2015). "Test Results and Nonlinear Analysis of 

RC T-beams Strengthened by Bonded Steel Plates." International Journal of Concrete 
Structures and Materials 9(2): 133-143. 

 
Ritchie, P. A., Thomas, D. A., Lu, L. W., and Connelly, G. M. (1991). “External 

reinforcement of concrete beams using fiber reinforced plastics.” ACI Struct. J., 88(4), 
490–500. 

 
Ross, C.A., Jerome, D.M., Tedesco, J.W., and Hughes, M.L.,(1999), “Strengthening of 

Reinforced Concrete Beams with Externally Bonded Composite Laminates”, ACI 
Structural Journal, Vol. 96, No. 2, pp:212-220 

 
Saadatmanesh H and Ehsani M R (1991). “RC Beams Strengthened with GFRP Plates I: 

Experimental Study”, J Struct Eng 117(11) 3417–3433. 
Sakar, G., and Tanaslan, h. M. (2014). “Prestressed CFRP Fabrics for Flexural 

Strengthening of Concrete Beams with an Easy Prestressing Technique”, Mechanics of 
Composite Materials, Vol. 50, No. 4, September, 2014. 

 
Savoia, M., B. Ferracuti and C. Mazzotti (2005). "Creep Deformation of Fiber Reinforced 

Plastics-Plated Reinforced Concrete Tensile Members." Journal of Composites for 
Construction 9(1): 63-72. 

 
Schnerch, D. (2007). "Flexural Strengthening of Masonry Facades with Carbon Fiber 

reinforced Polymer (CFRP) Bars." 2007 Symposium on Building Envelope 
Technology. 

 
Sika carboDur plates (2011).  Product data sheet, Sika services, Switzerland.                                                    

˂ https://usa.sika.com/dms/...get/.../pds-cpd-SikaCarboDur-us.pdf ˃ 
 
Sikadur 30 (2014). Product data sheet, Sika services, Switzerland.                                                       

˂ https://usa.sika.com/dms/...get/.../pds-cpd-Sikadur30-us.pdf ˃  
 
Sikadur 300 (2014).  Product data sheet, Sika services, Switzerland.                                                                 

˂ https://usa.sika.com/dms/...get/.../pds-cpd-Sikadur300-us.pdf ˃ 

 

SikaWrap Hex 103C (2014).  Product data sheet, Sika services, Switzerland.                                                         
˂ https://usa.sika.com/dms/.../pds-cpd-SikaWrap103C-us.pdf ˃  

 
Si-Larbi, A., A. Agbossou, E. Ferrier and L. Michel (2012). "Strengthening RC beams with 

composite fiber cement plate reinforced by prestressed FRP rods: Experimental and 
numerical analysis." Composite Structures 94(3): 830-838. 

https://usa.sika.com/dms/...get/.../pds-cpd-SikaCarboDur-us.pdf
https://usa.sika.com/dms/...get/.../pds-cpd-Sikadur30-us.pdf
https://usa.sika.com/dms/...get/.../pds-cpd-Sikadur300-us.pdf
https://usa.sika.com/dms/.../pds-cpd-SikaWrap103C-us.pdf


 

303 
 

 
Sims, F. A. (1985). “Applications of Resins in Bridge and Structural Engineering”, the 

international journal of cement composites and lightweight concrete, volume 7, 
November 4. 

 
Stallings, J. M., and Porter, N. M, (2003), “Experimental investigation of lap splices in 

externally bonded carbon fiber-reinforced plastic plates,” ACI Structural Journal, 2003, 
100 (1), 3-10. 

 
Stallings, J., Tedesco, J., El-Mihilmy, M., and McCauley, M. (2000). ”Field Performance 

of FRP Bridge Repairs.” J. Bridge Eng., 5(2), 107–113. 
 
Supaviriyakit, T., Pornpongsaroj, P., and Pimanmas, A., “Finite-Element analysis of FRP-

Strengthened RC Beams”, Songkhanakarin Journal of Science Technology, V. 26, N. 
4, 2004, pp. 497-507. 

 
Swamy, R. N., Jones, R., and Charif, A., (1989). “The Effect of External Plate 

Reinforcement on the Strengthening of Structurally Damaged RC Beams”, lbid 67 
(1989) 45-56. 

 
Taljsten, B. (1994). “Strengthening of Existing Concrete Structures with Epoxy Bonded 

Plates of Steel or Fibre reinforced Plastics.” Doctoral dissertation, Divission of 
Structural Engineering, Lulea University of Technology, November 1994. 

 
Taljsten, B., and Blanksvard, T. (2007). “Mineral-Based Bonding of Carbon FRP to 

Strengthen Concrete Structures.” ASCE, Journal of Composites for Construction, 
2007.11:120-128. 

 
Taljsten, B., Orosz, K., and Blanksvard, T. (2006). “Strengthening of Concrete Beams in 

Shear with Mineral Based Composites Laboratory Tests and Theory Third International 
Conference on FRP Composites in Civil Engineering (CICE 2006), December 13-15 
2006, Miami, Florida, USA. 

 
 Tedesco, J.W., and Stallings, J. M. (1998). ‘‘Rehabilitation of a reinforced concrete bridge 

using FRP laminates.’’ Final Rep. 930-341, Auburn University Highway Research 
Center, Auburn, Ala. 

 
Tedesco, J.W., Stallings, J. M., El-Mihilmy, M., and McCauley, M. (1996). 

‘‘Rehabilitation of a concrete bridge using FRP laminates.’’ Materials for the New 
Millennium, Proceedings of the Fourth Materials Engineering Conference., 
Washington, DC, November 10-14, 1996, ASCE, New York, NY, 631-637. 

 
Teng, J. G, Smith., Yao, J. and Chen, j.F (2003). “Intermediate crack-induced debonding 

in beams and slabs”, Construction and Building Materials, 17 (6-7), 447-462.   
 



 

304 
 

Teng, X. D. and Y. X. Zhang (2014). "Nonlinear Finite Element Analyses of FRP-
Strengthened Reinforced Concrete Slabs using a New Layered Composite Plate 
Element." Composite Structures 114: 20-29. 

 
Tinazzi, D., C. Modena, and A. Nanni, (2000). "Strengthening of Masonry Assemblages 

with FRP Rods and Laminates,” International Meeting on Composite Materials, 
PLAST 2000, Proceedings, Advancing with Composites 2000, Ed. I.Crivelli-Visconti, 
Milan, Italy, May 9-11, 2000, pp. 411-418. 

 
Tommaso, A., and Focacci, F. (2008). “PBO-FRCM Composites to Strengthen R.C. 

Beams: Mechanics of Adhesion and Efficiency." Fourth International Conference on 
FRP Composites in Civil Engineering (CICE2008), 22-24July 2008, Zurich, 
Switzerland. 

 
Toutanji, H., Zhao, L., and Zhang, Y. (2006). “Flexural Behavior of Reinforced Concrete 

Beams Externally Strengthened with CFRP Sheets Bonded with an Inorganic Matrix.” 
Engineering structures, pp.557-566. 

 
Triantafillou, T. and S. Matthys (2013). "Fibre-Reinforced Polymer Reinforcement enters 

fib Model Code 2010." Structural Concrete 14(4): 335-341. 
 
Triantafillou, T. C., Deskovic, N., and Deuring, M. (1992). “Strengthening of RC Beams 

with Epoxy-Bonded Fibre-Composite Materials,” Materials and Structurals, 25, 201-
21. 

 
Tumialan, G., P.C. Huang, A. Nanni, and P. Silva, (2001)."Strengthening of Masonry 

Walls with Structural Repointing," Non-Metallic Reinforcement for Concrete 
Structures - FRPRCS-5, Cambridge, July 16-18, 2001. 

 
Van Gemert (1980). “Force Transfer in Epoxy Bonded Steel-Concrete Joints.” 

International Journal of Adhesion and Adhesives, Vol 1 (Nr. 2) (Oct. 1980), pp. 67–72. 
 
Van Germert, D. and Maesschalckt, R. (1983). “Structural Repair of a Reinforced Concrete 

Plate by Epoxy Bonded External Reinforcement”, the international journal of cement 
composites and lightweight concrete, volume 5, November 4. 

 
Vasudevan, G. and S. Kothandaraman (2014). "Experimental investigation on the 

performance of RC beams strengthened with external bars at soffit." Materials and 
Structures 47(10): 1617-1631. 

 
Wight, R. G., Green, M. F., and Erki, M. A.  (2001). “ Prestressed FRP Sheets for 

Poststrengthening Reinforced Concrete Beams”, ASCE, Journal of Composites for 
Construction, Vol. 5, No. 4, November 2001, pp. 214-220.  

 



 

305 
 

William, K. J. and Warnke, E. P., (1975). “Constitutive Model for the Triaxial Behavior of 
Concrete,”Proceedings, International Association for Bridge and Structural 
Engineering, Vol. 19, ISMES, Bergamo, Italy, pp. 174, 1975. 

 
Wipf T. J. Klaiber F. W., Dunker K. F. Methods of strengthening existing highway 

bridges. Engineering Structures, 26(5):553–565, 1987. 
 
Wolanski, A.J. (2004), “Flexural behavior of reinforced and prestressed concrete beams 

using finite element analysis”, M.S.Thesis, Marquette University, Wisconsin. 
 
Wu, C. Q., D. J. Oehlers and I. Day (2009). "Layered Blast Capacity Analysis of FRP 

Retrofitted RC Member." Advances in Structural Engineering 12(3): 435-449. 
 
Wu, G., Shi, J., Jing, W., and Wu, Z. (2014). “Flexural Behavior of Concrete Beams 

Strengthened with New Prestressed Carbon-Basalt Hybrid Fiber Sheets”, ASCE, 
Journal of Composites for Construction. 

 
Wu, Z., Yang, S., and Zheng, J. (2006). “An Analytical Predection on RC Beams 

Retrofitted with Prestressed CFRP Plates or Sheets.”, Proceedings of the 2th fib 
International Congress, ID 10-5. 

 
Yang, X., and Nanni, A, (2002) “Lap Splice Length and Fatigue Performance of Fiber-

Reinforced Polymer Laminates,” ACI Materials Journal, 2002, 99(4), 386-392. 
 
Zhang S, Raoof M, and Wood L.A. “Prediction of peeling failure of reinforced concrete 

beams with externally bonded steel plates”. Proceedings of the Institution of Civil 
Engineers: Structures and Buildings 1995; 110(8):257–68. 

 
Zhang, J. W, Teng, J. G, Wong, Y. L., and lu, Z. T. (2001). “Behavior of Two-Way RC 

Slabs Externally Bonded with Steel Plate” Journal of Structural engineering, ACI, April 
2001. 

 
  



 

306 
 

VITA 

 

Name:                                                           Akram Rasheed Jawdhari 

Place of Birth (City, State, country):            Hilla, Babylon, Iraq 

Education:                                                     B.S. (valedictorian) in Civil Engineering 

                                                                      University of Babylon, Hilla, Iraq 

                                                                      (Fall 2000-Spring 2005) 

 

                                                                      M.S. in Civil Engineering (Structures) 

                                                                      University of Babylon, Hilla, Iraq 

                                                                      (Fall 2005-Spring 2008) 

 

 

 

 

 

 

                                                                      Akram Rasheed Jawdhari 

                                                                      April 21, 2016 

 

 

 

 

 

 


	University of Kentucky
	UKnowledge
	2016

	BEHAVIOR OF RC BEAMS STRENGTHENED IN FLEXURE WITH SPLICED CFRP ROD PANELS
	Akram Rasheed Jawdhari
	Recommended Citation


	BEHAVIOR OF RC BEAMS STRENGTHENED IN FLEXURE WITH SPLICED CFRP ROD PANELS
	ABSTRACT OF DISSERTATION
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	CHAPTER 1:   INTRODUCTION
	1.1      Problem Background (The Need for Retrofit)
	1.2     Lap-Spliced FRP Plates (Laminates)
	1.3     CFRP Rod Panels (CRP Strengthening System)
	1.4    Research Objective
	1.5    Research Significance
	1.6    Dissertation Layout

	CHAPTER 2:   LITERATURE REVIEW
	2.1     Conventional Strengthening Methods
	2.2     Adhesively Bonded Plates
	2.2.1 Adhesively Bonded Steel Plates
	2.3    Strengthening of Concrete Members with FRP
	2.3.1 Adhesively Bonded FRP Plates (Laminates, Strips)
	2.3.2 Adhesively Bonded FRP Fabrics (Sheets)
	2.3.3 Near Surface Mounted (NSM) Technique
	2.3.4 Pre-stressed FRP’s
	2.4.5 Other Novel Techniques

	CHAPTER 3:   BOND STUDY ON CFRP ROD PANELS EXTERNALLY ADHERED TO CONCRETE
	3.1     Synopsis
	3.2     Introduction
	3.3     Experimental Program
	3.3.1 Specimen Description and Strengthening Schemes
	3.3.2.1 Concrete Blocks
	3.3.2.2 CFRP Rods and CRP’s
	3.3.2.3 Adhesive

	3.3.3 Surface Preparation and CRP Installation
	3.3.4 Test Setup and Instrumentation
	3.4     Test Results
	3.4.1 Development Length
	3.4.2 Average Bond Strength
	3.4.3 Load Transfer Mechanism along CRP Bond Length
	3.4.4 Shear Stress Distribution along CRP Bond Length
	3.4.5 Shear Stress- Slip Relation
	3.4.6 Effect of Bond (Panel) Width
	3.5     Conclusions

	CHAPTER 4:   FLEXURAL STUDY ON RC BEAMS STRENGTHENED WITH CFRP ROD PANELS AND CFRP LAMINATES
	4.1     Synopsis
	4.2    Introduction
	4.3     Experimental Program
	4.3.1 Dimensions of RC Beams
	4.3.2 Specimen Description and Strengthening Schemes
	4.3.3 Materials
	4.3.4 Surface Preparation and CFRP Installation
	4.3.5 Test Setup and Instrumentation
	4.4     Results and Discussions
	4.4.1 Modes of Failure
	4.4.2 Maximum Loads and Capacity Increase
	4.4.3 Load Mid-Span Behavior
	4.4.4 Cracking Patterns
	4.4.5 Strain Profile along Depth, at Mid-Span
	4.4.6 Strain Behavior across the CRP width
	4.4.7 Strain and shear stress along the CRP and /CFRP laminate
	4.5    Conclusions

	CHAPTER 5:   FINTE ELEMENT ANALYSIS OF RC BEAMS BONDED TO CFRP ROD PANELS AND CFRP LAMINATES
	5.1     Synopsis
	5.2     Introduction
	5.3     Experimental Program
	5.4     FE Analysis
	5.4.1 Modeling of Materials
	5.4.1.1 Concrete Material modeling
	5.4.1.2 Steel Reinforcement
	5.4.1.3 CFRP Material (Rods, Laminates, and Fabrics), and Adhesives
	5.4.2 Geometrical Representation
	5.4.3 Element Types
	5.4.4 Loading Scheme and Boundary conditions
	5.4.5 FE Meshing
	5.4.6 Nonlinear Solution
	5.4.7 Modeling of Debonding
	5.4.7.1 CZM Model for Debonding of CRP
	5.4.7.2 CZM Model for Debonding of CFRP fabric and laminates
	5.5     Results and Discussions
	5.5.1 Load-Deflection Response
	5.5.2 Simulation of Concrete Cover Separation
	5.5.3 Simulation of Debonding and Concrete Crushing Failures
	5.5.4 Load versus Strain in CFRP at Mid-Span
	5.5.5 Strain Profile along CRP and CFRP Laminate Length
	5.5.6 Load versus Concrete Strain at Mid-Span
	5.5.7 Tensile Stress Distribution in CRP and CFRP laminate
	5.5.8 Maximum Tensile Stress in CRP and CFRP laminate
	5.5.9 Interfacial Shear Stress distribution along CFRP Length
	5.6    Conclusions

	CHAPTER 6:   ANALYTICAL INVESTIGATION OF CFRP ROD PANELS BONDED TO CONCRETE MEMBERS
	6.1     Synopsis
	6.2     Introduction
	6.3     Analysis of Double-Lap Shear Tests
	6.3.1 Slip Modulus, k

	6.3.2 Model Verification
	6.3.3 Parametric Study
	6.3.3.1 Development Length
	6.3.3.2 CRP Width Effects

	6.4     Analysis of concrete Cover Separation
	6.4.1 Analytical models
	6.4.1.1 Shear Capacity Based Models
	6.4.1.2 Concrete Tooth Models

	6. 4.2   Application of Analytical Models to RC Beams Strengthened with CRPs
	6.4.2.1 Analytical model No. 2
	6.4.2.2 Analytical model No. 3

	6.4.3   Results of analytical models no.2, and no.3
	6.5     Conclusions

	CHAPTER 7:    CONCLUSIONS AND RECOMMENDATIONS
	7.1     Summary and Conclusions
	7.1.1 Conclusions of Chapter 3 (Double-Lap Shear Tests)
	7.1.2 Conclusions of Chapter 4 (Four-Point Bending Beam Tests)
	7.1.3 Conclusions of Chapter 5 (Finite Element Analysis)
	7.1.4 Conclusions of Chapter 6 (Analytical Models)
	7.2     Study Limitations and Future Recommendations
	7.2.1     Effects of Rod Spacing

	APPEDIX A:   BOND STUDY ON CFRP ROD PANELS EXTERNALLY ADHERED TO CONCRETE
	APPEDIX B:   FLEXURAL STUDY ON RC BEAMS STRENGTHENED WITH CFRP ROD PANELS AND CFRP LAMINATES
	APPEDIX C:   FINTE ELEMENT ANALYSIS OF RC BEAMS BONDED TO CFRP ROD PANELS (CRPS) and CFRP LAMINATES
	REFERENCES
	VITA

