

University of Kentucky UKnowledge

Theses and Dissertations--Civil Engineering

Civil Engineering

2014

Quantifiying The Effectiveness of a Grout Curtain Using a Laboratory-Scale Physical Model

Elliot N. Magoto
University of Kentucky, elliot.magoto@gmail.com

Click here to let us know how access to this document benefits you.

Recommended Citation

Magoto, Elliot N., "Quantifying The Effectiveness of a Grout Curtain Using a Laboratory-Scale Physical Model" (2014). *Theses and Dissertations--Civil Engineering*. 18. https://uknowledge.uky.edu/ce_etds/18

This Master's Thesis is brought to you for free and open access by the Civil Engineering at UKnowledge. It has been accepted for inclusion in Theses and Dissertations--Civil Engineering by an authorized administrator of UKnowledge. For more information, please contact UKnowledge@lsv.uky.edu.

STUDENT AGREEMENT:

I represent that my thesis or dissertation and abstract are my original work. Proper attribution has been given to all outside sources. I understand that I am solely responsible for obtaining any needed copyright permissions. I have obtained needed written permission statement(s) from the owner(s) of each third-party copyrighted matter to be included in my work, allowing electronic distribution (if such use is not permitted by the fair use doctrine) which will be submitted to UKnowledge as Additional File.

I hereby grant to The University of Kentucky and its agents the irrevocable, non-exclusive, and royalty-free license to archive and make accessible my work in whole or in part in all forms of media, now or hereafter known. I agree that the document mentioned above may be made available immediately for worldwide access unless an embargo applies.

I retain all other ownership rights to the copyright of my work. I also retain the right to use in future works (such as articles or books) all or part of my work. I understand that I am free to register the copyright to my work.

REVIEW, APPROVAL AND ACCEPTANCE

The document mentioned above has been reviewed and accepted by the student's advisor, on behalf of the advisory committee, and by the Director of Graduate Studies (DGS), on behalf of the program; we verify that this is the final, approved version of the student's thesis including all changes required by the advisory committee. The undersigned agree to abide by the statements above.

Elliot N. Magoto, Student Dr. L. Sebastian Bryson, Major Professor Dr. Ed Wang, Director of Graduate Studies

QUANTIFIYING THE EFFECTIVENESS OF A GROUT CURTAIN USING A LABORATORY-SCALE PHYSICAL MODEL

-		
	THESIS	

A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Civil Engineering in the College of Engineering at the University of Kentucky

By

Elliot Nicholas Magoto

Lexington, Kentucky

Director: Dr. L. Sebastian Bryson, Associate Professor of Civil Engineering

Lexington, Kentucky

2014

Copyright[©] Elliot Nicholas Magoto 2014

ABSTRACT

QUANTIFIYING THE EFFECTIVENESS OF A GROUT CURTAIN USING A LABORATORY-SCALE PHYSICAL MODEL

In the past decade, the grouting industry has made significant technological advancements in real-time monitoring of flow rate and pressure of pumped grout, stable grout mix design, and with grout curtain concepts dealing with placement and orientation. While these practices have resulted in improved construction practices in the grouting industry, current design guidelines for grout curtains are still predominately based on qualitative measures such as engineering judgment and experience or are based on proprietary methods. This research focused on the development of quantitative guidelines to evaluate the effectiveness of a grout curtain in porous media using piezometric and hydraulic flow data. In this study, a laboratory-scale physical seepage model was developed to aid in the understanding and development methodology to evaluate the effectiveness of a grout curtain. A new performance parameter was developed based on a normalization scheme that utilized the area of the grout curtain and the area of the improved media. The normalization scheme combined with model-based Lugeon values that correspond to pore pressure and flow rate measurements at different soil unit weights and grout curtain spacings, produced a mathematical equation that can be used to quantify the effectiveness of a grout curtain. This study found a relationship that takes into account soil unit weight, grout curtain spacing and a new performance parameter that can be used to help predict the effectiveness of a grout curtain.

KEYWORDS: Grout Curtain; Seepage Cutoff; Lugeon Value; Hydraulic Conductivity; Pore Pressure

Elliot Nicholas Magoto	_
_	
3/10/2014	

QUANTIFIYING THE EFFECTIVENESS OF A GROUT CURTAIN USING A LABORATORY-SCALE PHYSICAL MODEL

By

Elliot Nicholas Magoto

L. Sebastian Bryson, Ph.D., P.E.
Director of Thesis
Ed Wang, Ph.D., P.E.
Director of Graduate Studies
3/10/2014

To

My Parents: Nicholas and Jill Magoto

My Brother: Zach Magoto

My Grandparents: Pete and Helen Magoto, Purcell and Louise Grilliot

Girlfriend: Kelsey Peters

For all their love, support and guidance.

ACKNOWLEDGEMENTS

I first off would like to send my gratitude's to Dr. L. Sebastian Bryson for his unwavering support and guidance. His knowledge and guidance has given me the opportunity to learn the skills necessary to become a successful engineer. His relentlessness has taught me to never give up and to keep moving forward. I appreciate all the time and effort that he has given me throughout my graduate career here at the University of Kentucky.

I would also like to show my appreciation to all my professors who have given me the opportunity to learn under, specifically Dr. L Sebastian Bryson, Dr. Michael Kalinski and Dr. Edward Woolrey. Without their time and effort, I wouldn't be where I am today. They have provided me with a solid technical background that I will be able to take with me as a practicing engineer.

My colleagues Kirk Jenkins, Xu Zhang, Joshua Wells, Ryan Ortiz and Travis Greenwell have all been valuable assets to the completion of my research. Their assistance with testing and preparation played a major role in the successful completion of my research.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS	iii
LIST OF TABLES	vii
LIST OF FIGURESv	'iii
Chapter 1: Introduction	. 1
1.1 Proposed Concept	. 4
1.2 Objectives of Research	. 5
1.3 Relevance of Research	. 6
1.4 Contents of Thesis	. 7
Chapter 2: Literature Review	. 9
2.1 Introduction to Grout Curtains	. 9
2.2 Grout Installation Techniques	10
2.3 Current Methodologies to Assess Grout Curtain Effectiveness	14
2.3.1 Monitoring Lugeon Values	14
2.3.2 Measuring Hydraulic Conductivity	20
2.3.3 Monitoring Pore Pressures	21
2.3.4 Grout Mix Design	21
2.3.5 Willowstick	22
2.4 Associated Technology	23
2.5 Case History Studies	25

2.6	Su	mmary	27
Chapte	r 3:	Experimental Methods and Materials	28
3.1	Tes	st Material – Index Testing and Material Characterization	28
3.2	Ph	ysical Model	30
3.3	Por	re Pressure Measurements	31
3.3	3.1	Pore Pressure Transducers	32
3.3	3.2	Pore Pressure Transducer Calibration	33
3.4	Flo	w Rate Measurements	35
3.5	Lu	geon Value Determination	35
Chapte	r 4:	Modeling the Grout Curtain	37
4.1	Lin	near Representation of Grout Curtain-Acrylic Slats Testing and Results	37
4.1	1.1	Initial Equilibrium Testing.	38
4.1	1.2	Procedures Testing With Grout Curtain and Results	40
4.2	De	velopment of a New Performance Parameter–Linear Replacement Ratio	45
4.3	Are	ea Representation of Grout Curtain-Polyvinyl Chloride Pipe Testing and	
Resu	lts		48
4.4	De	velopment of a New Performance Parameter – Area Replacement Index	49
4.5	Ne	sted Pore Pressure Transducers	54
4.6	Por	re Pressure Transducers Located at Bottom of Test Box	56
4.7	Sui	mmary	76

Chapter 5:	Relationship Verification	77
Chapter 6:	Summary and Conclusions	82
Appendix A:		85
Appendix B:		90
Appendix C:		115
REFERENC	ES	136
VITA		142

LIST OF TABLES

Table 2.1: Site conditions and grouting properties of four case history studies (Hong et al.
2003)
Table 3.1: Ohio River Valley sand and Kentucky River sand soil properties
Table 4.1: Grout curtain orientations for Tests 1 through 7 along with their corresponding
hydraulic conductivity and pore pressure measurements
Table 4.2: Grout curtain orientations for Tests 1, 8, 9 and 10 along with their
corresponding hydraulic conductivity and pore pressure measurements
Table 4.3: Grout curtain orientations for Tests 11 through 16 along with their
corresponding hydraulic conductivity and pore pressure measurements
Table 4.4: Raw data from corresponding to S/D=1 and dry unit weight= 12.56 kN/m ³ 55
Table 4.5: Sigmoidal curve fitting constants from Table Curve
Table 4.6: Unit weight, S/D ratio, slope, Y-intercept and R ² values for linear best fit lines
of normalized average pore pressure versus normalized average Lugeon value plots 68
Table 4.7: Unit weight, S/D ratio, slope, Y-intercept and R ² values for linear best fit lines
of normalized q/L versus normalized average Lugeon value plots
Table 4.8: Unit weight, S/D ratio, slope, Y-intercept and R ² values for linear best fit lines
of area replacement index versus normalized average Lugeon value plots
Table 5.1: Site conditions and grouting properties of four case history studies (Hong et al.
2003)
Table 5.2: Calculated absolute percent errors for all case history studies

LIST OF FIGURES

Figure 1.1: Schematic of general grout curtain wall (Weaver, K. and Bruce, D., 2007) 1
Figure 2.1: Teton Earthen Dam Failure in 1976 (Arthur, 1977)
Figure 2.2: Installation of a soilcrete column using jet-grouting (Hayward Baker, 2014).
Figure 2.3: Illustration of the high-mobility grouting technique (Hayward Baker, 2014).
Figure 2.4: Compaction grouting technique (Hayward Baker, 2014)
Figure 2.5: Typical real time monitoring and equipment and data acquisition system
(Quinones-Rozo, 2010)
Figure 2.6: Schematic Lugeon test set-up (Quinones- Rozo, 2010)
Figure 2.7: Houlsby's (1976) grouting applicability flow chart
Figure 2.8: Magnetic field mapped using Willowstick technology (White Paper, 2012). 23
Figure 2.9: Relationship between area replacement ratio and ground improvement factor.
(Priebe, 1995)
Figure 3.1: Site locations where the Kentucky River sand and Ohio River Valley sand
were collected
Figure 3.2: The composition of the working physical model
Figure 3.3: Three pore pressure transducers connected to the National Instruments data
acquisition system. 32
Figure 3.4: Kulite's XCL-11-250-150SG sealed gauge pore pressure transducer model
used in this study

Figure 3.5: Calibration curve and equation associated with the three pore pressure
transducers. 34
Figure 4.1: Effect of a simple grout curtain on pore pressure with respect to time 39
Figure 4.2: Eight possible slat locations along the proposed grout curtain line
Figure 4.3: Pore pressure versus distance from pore pressure transducer for Tests 1-7 42
Figure 4.4: Hydraulic conductivity versus distance from pore pressure transducer for
Tests 1 through 7
Figure 4.5: Graphical representation of the linear replacement relationship
Figure 4.6: Linear replacement ratio versus pore pressure graph with grout curtain on (A)
left hand side, and (B) right hand side
Figure 4.7: Geometric configurations used in the development of the area replacement
index. (A) Tangent Planer, (B) Tangent Circular, (C) Tangent Primary-Secondary and
(D) Discontinuous Primary-Secondary. 50
Figure 4.8: Components of grout region where $A_{TOT} = (b_{TOT})(L_{TOT})$, $b_{TOT} =$ width of the
grout region and L_{TOT} = length of the grout region
Figure 4.9: Relationship between normalized grouted area versus pore pressure for
various geometric configurations
Figure 4.10: Relationship between area replacement index versus pore pressure grouped
by geometric configuration
Figure 4.11: Influence of the drain on the three pore pressure transducers 57
Figure 4.12: Area replacement index versus normalized average pore pressure, grouped
by S/D ratios for a dry unit weight of (A) 12.56 kN/m ³ , (B) 13.03 kN/m ³ , (C) 13.35
kN/m ³ and (D) 13.82 kN/m ³

Figure 4.13: Area replacement index versus normalized q/L, grouped by S/D ratios for a
dry unit weight of (A) 12.56 kN/m^3 , (B) 13.03 kN/m^3 , (C) 13.35 kN/m^3 and (D) 13.82
kN/m^3 .
Figure 4.14: (A) Fitted curves showing the relationship between area replacement index
versus normalized average pore pressure, grouped by S/D ratios for a dry unit weight of
12.56 kN/m ³ . (B) Fitted curves showing the relationship between area replacement index
versus normalized q/L, grouped by S/D ratios for a dry unit weight of 12.56 kN/m ³ 61
Figure 4.15: Linear relationship between normalized average pore pressure and
normalized q/L grouped by S/D ratios for a dry unit weight of (A) 12.56 kN/m³, (B)
13.03 kN/m ³ , (C) 13.35 kN/m ³ and (D) 13.82 kN/m ³
Figure 4.16: Relationship between average pore pressure and q/L grouped by S/D ratios
for a dry unit weight of (A) 12.56 kN/m^3 , (B) 13.03 kN/m^3 , (C) 13.35 kN/m^3 and (D)
13.82 kN/m ³
Figure 4.17: Relationship between normalized average pore pressure and normalized
average Lugeon values grouped by S/D ratios for a dry unit weight of (A) 12.56 kN/m ³ ,
(B) 13.03 kN/m ³ , (C) 13.35 kN/m ³ and (D) 13.82 kN/m ³
Figure 4.18: Relationship between normalized q/L and normalized average Lugeon
values grouped by S/D ratios for a dry unit weight of (A) 12.56 kN/m^3 , (B) 13.03 kN/m^3 ,
(C) 13.35 kN/m ³ and (D) 13.82 kN/m ³
Figure 4.19: Relationship between area replacement index and normalized average
Lugeon values grouped by S/D ratios for a dry unit weight of (A) 12.56 kN/m³, (B) 13.03
kN/m^3 , (C) 13.35 kN/m^3 and (D) 13.82 kN/m^3
Figure 4.20: S/D ratio versus m ₁ , grouped by dry unit weight

Figure 4.21: Dry unit weight versus b ₂ .	74
Figure 5.1: Case history data versus predicted values plotted at dry unit weights of (A)	
22.77 kN/m ³ and (B) 23.56 kN/m ³	79
Figure 5.2: Relationship between predicted normalized average Lugeon value versus	
actual normalized average Lugeon values.	80

Chapter 1: Introduction

Grout curtains, also known as cut-off walls are vertically drilled tangent shafts that are filled with cementatious material that create a barrier to help prevent excessive seepage under a dam. Grout curtains are intended to be impervious walls that typically exist below infrastructure to minimize water seepage. Along with seepage minimization under dams, grout curtains are also found in karst terrain to minimize groundwater infiltration and subsequent erosion of the geologic formation. A generalized depiction of a grout curtain wall can be seen in Figure 1.1.

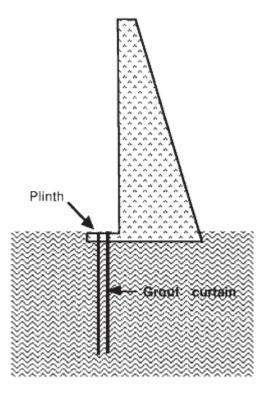


Figure 1.1: Schematic of general grout curtain wall (Weaver, K. and Bruce, D., 2007).

Dams dating back to the 1900's were predominately constructed in geologic areas consisting of karst terrain. Karst terrain is the resulting landform that is produced when

groundwater dissolves and washes away existing rock material within the underlying soil structure. Cracks, voids, sinkholes and caves are a result of this dissolving behavior. The materials susceptible to dissolving include rock such as limestone, dolomite and gypsum according to research done by Veni et al. (2001). This dissolving behavior can cause significant problems with the structural integrity of various impoundments, specifically dams. Dams located in karst terrain often times deal with significant groundwater seepage issues. Given sufficient time, groundwater will eventually erode enough of the underlying soil structure to create conditions where dam failures can occur. To prevent dam failures from occurring in karst terrain, grout curtains are typically installed. As previously mentioned, grout curtains are installed to prevent excessive seepage under dams and to minimize groundwater infiltration.

In the past decade, the grouting industry has made significant technological advancements in real-time monitoring of flow rate and pressure of pumped grout, stable grout mix design, and with grout curtain concepts dealing with placement and orientation. While these practices have resulted in a renewed appreciation of the grouting industry, current design guidelines are still predominately based on qualitative measures such as engineering judgment, experience and rules-of-thumb. Not being able to use quantifiable means to assess the effectiveness of a grout curtain, has left many engineers spending lots of valuable time and money. Even though previous studies in the past few decades such as the studies conducted by Uromeihy and Farrokhi (2012) and Ajalloeian et al. (2012) both of which evaluate the groutability of Iranian dams have shown that qualitative based approaches have worked; being able to quantify the effectiveness of a grout curtain would seem to be more beneficial.

Today, most grout curtain designs and installations are performed based on local rules-of-thumb and experience combined with adequate engineering judgment. Even though using these qualitative approaches have shown to work in the past, many engineers and designers have questioned whether or not qualitative approaches are the most efficient way in determining the effectiveness of a grout curtain. According to Bruce (1992), the utilization of qualitative approaches previously discussed is not the most efficient approach when considering the effectiveness of a grout curtain. It is believed that lots of money, time and effort are lost when performing an extensive grouting program using qualitative approaches as the predominate basis. Qualitative based approaches have shown to work with the utilization of excessive materials and time. However, with today's society combined with the economical issues encountered, clients today do not have the unlimited resources at their disposal as they once did. Thus, it is important to develop a quantitative approach to predict the effectiveness of a grout curtain prior to installation. A quantitative approach would help engineers and designers optimize grout curtain performance while minimizing factors such as time, labor and cost.

Therefore, this research focused on the development of quantitative guidelines to evaluate the effectiveness of a grout curtain design in porous media using piezometric and hydraulic flow data. In this study, a laboratory-scale physical seepage model was developed to aid in the understanding and development methodology to evaluate the effectiveness of a grout curtain. A new performance parameter was developed based on a normalization scheme that utilized the area of the grout curtain and the area of the improved media. The normalization scheme combined with model-based Lugeon values

that correspond to pore pressure and flow rate measurements at different soil unit weights and grout curtain spacings, produced a mathematical equation that can be used to quantify the effectiveness of a grout curtain. This study found a relationship that takes into account soil unit weight, grout curtain spacing and a new performance parameter that can be used to help predict the effectiveness of a grout curtain.

1.1 Proposed Concept

In order to develop a quantifiable relationship that assesses the effectiveness of a grout curtain, a new performance parameter had to be established as previously mentioned. Through much deliberation it was believed that a performance parameter similar to Priebes (1991) and Priebes (1995) area replacement ratio on vibro replacement columns for ground improvement could be utilized to help develop a new performance parameter that would aid in the quantification of a grout curtain. The area replacement ratio parameter presented in Priebes (1991) and Priebes (1995) research utilized various areas with respect to the improved and unimproved ground. This research uses an area replacement ratio combined with other parameters such as poisson's ratio and friction angle to help determine ground improvement effects on non-compactible cohesive soils utilizing load bearing columns of well compacted coarse grained backfill. Unfortunately, no data has been presented using the area replacement ratio as a parameter to help quantify the effectiveness of a grout curtain. However, since the installation of vibro replacement columns for ground improvement is similar to the installation of grout columns for a grout curtain, a new performance parameter based on the area replacement ratio seemed applicable. Therefore, this research utilized a new performance parameter similar to the area replacement ratio presented in Priebe (1991) and Priebe (1995) as a key component to quantifying the effectiveness of a grout curtain.

Along with the development of a new performance parameter, a laboratory-scale seepage model was an essential component to this research. The laboratory-scale seepage model will be used to investigate various piezometric and hydraulic flow data corresponding to various simulated grout curtain concepts. Previous research has been conducted using laboratory-scale models (Luofenga et al., 2012) to explore various seepage behaviors that develop with the presence of a highly permeable sand foundation. Similar to Luofenga et al., 2012 study, a research team explored seepage behavior with respect to slope stability upon failure of a dam (Awal et al., 2009). Additionally, another study (Liua et al., 2003) successfully utilized a laboratory-scale model to determine water flow patterns through foundations similar to seepage through a concrete dam. All three previous studies mentioned the difficulty in modeling highly complex geological insitu field conditions based on numerical modeling. Thus, it was concluded that laboratoryscale models were a necessity in the understanding and development of seepage behaviors with their corresponding situations. Since, it has been proven that laboratoryscale models can successfully aid in the understanding of seepage behavior, the use of a laboratory-scale seepage model seems applicable for quantifying the effectiveness of a grout curtain.

1.2 Objectives of Research

The goal of this research was to develop a laboratory-scale physical seepage model that would help elucidate general seepage behavior that could be used to establish

a means of evaluating the effectiveness of grout curtain quantitatively rather than qualitatively. Therefore, the objectives of this research were as follows:

- Analyze current methods used to assess the effectiveness of a grout curtain
- Develop a laboratory-scale physical seepage model that would help investigate specific behavior related to seepage in porous media
- Develop a new performance parameter that would aid in the quantification of effectiveness of a grout curtain
- Develop a quantifiable relationship between the performance parameter and fundamental design parameters associated with the grout curtain
- Assess the general applicability of the new quantifiable relationship using case history studies to show that the quantifiable relationship can be scaled

1.3 Relevance of Research

As mentioned previously, lots of money and time are spent on developing and performing extensive grouting programs to improve the integrity of dams and impoundments based on qualitative measures. The current methods used to assess the effectiveness of a grout curtain, combined with today's current economical issues have created a need for a quantifiable relationship to assess the effectiveness of a grout curtain. Therefore, this research was established to develop a quantifiable relationship to assess the effectiveness of a grout curtain that could be used by engineers to help minimize factors such as time, cost and labor while providing an adequate solution. The quantifiable relationship that assesses the effectiveness of a grout curtain can be used to predict the behavior of simulated grout curtains prior to installation. This relationship

allows engineers to have more control while optimizing the design of a grout curtain. This relationship avoids the use of rules-of-thumb and qualitative approaches currently used by industry to assess the effectiveness of a grout curtain. It is believed that this quantifiable relationship can also be used in ground improvement.

1.4 Contents of Thesis

Chapter 2 introduces the idea of grout curtains and current methodologies used to assess the effectiveness of grout curtains which entail Lugeon, hydraulic conductivity and pore pressure values. Accompanying this information, case histories are presented that are the primary bases for which the quantifiable relationship presented in this research is verified.

Chapter 3 describes the test materials used in this research. Along with test material descriptions, the development and description of the laboratory-scale physical seepage model is discussed herein.

Chapter 4 describes the associated test procedures that aided in the development of a quantifiable relationship. Test data and results associated with the testing procedures are presented as well. The development of a new performance parameter is described and addressed. Chapter 4 also presents the analysis that was performed during this research. This chapter describes and evaluates the trends observed during the experimentation portion of this research. These generalized trends were used in the development of a quantifiable relationship that can be used in assessing the effectiveness of a grout curtain.

Chapter 5 presents case history data that was used to verify the new quantifiable relationship. Case history studies will help assist in determining the accuracy of this relationship.

Chapter 6 recaps the discussion presented in this research in its entirety. Final conclusions brought forth by this research are summarized and discussed. A brief discussion of future research recommendations is presented.

Chapter 2: Literature Review

2.1 Introduction to Grout Curtains

Groundwater seepage under dams and other impoundments is a significant problem that geotechnical engineers are encountering more and more every day. As dams continue to age, groundwater seepage issues are becoming more prevalent. If groundwater seepage issues are left unaccounted for, significant problems can cultivate. Past history has shown that groundwater seepage under dams and other impoundments can cause significant problems not just for the owner, but to the surrounding communities. Problems associated with prolonged groundwater seepage under dams and impoundments have led to breaches. For example, the Teton Earthen Dam located in the eastern part of Idaho failed due to excessive seepage through the earth fill dam. The permeable loess core material combined with rock fissures along the abutments of the dam, allowed for significant seepage through and around the dam (Arthur, 1977). Figure 2.1, shows a picture of the Teton Earthen Dam failure.

Figure 2.1: Teton Earthen Dam Failure in 1976 (Arthur, 1977).

The seepage through the earthen dam caused structural degradation ultimately leading to the breach of the dam. Tremendous damage resulted in the breach of the Teton Earthen Dam. Significant flooding occurred in the communities just downstream of the dam. Damages were estimated to be nearly one billion dollars. Unfortunately, the flooding due to the breach of the dam claimed 14 lives. As can be seen, groundwater seepage under dams can introduce significant issues to the structural integrity of dams and other impoundments.

To avoid such horrific circumstances like the Teton Earthen Dam failure, the use of grout curtains has been proven to successfully mitigate groundwater seepage issues that are typically encountered at dams and other impoundments. Grout curtain walls are being incorporated in more dam construction designs since it is currently the most effective approach to mitigating seepage problems. Grout curtains are a cost effective way to diffuse seepage issues due to the low cost of the grout material. It is important to note that prior to the 1950's steel sheet piles were utilized to create impermeable walls similar to grout curtains as pointed out by Powers et al. (2007). However, literature (Powers et al., 2007) has shown that grout curtain walls outperform impermeable walls constructed of steel sheet piles with respect to factors such as cost and seepage mitigation. The mere cost of steel has precluded the use of steel sheet piles as a viable solution for seepage mitigation.

2.2 Grout Installation Techniques

There are three primary grout installation techniques that are widely used today in the civil engineering industry. The three grout curtain techniques that are commonly used today which are highlighted in the research done by Yong-Jiang and Xing-Wang (2012) include jet-grouting, high-mobility grouting, and compaction grouting. The goal of all three installation techniques is to simply prevent seepage from occurring under water-retaining structures, specifically dams.

Jet-grouting is a technique that uses high velocity and high pressure jets to hydraulically replace poor rock or in-situ soil material with a cementatious material known as grout. Specialized machinery connected to a grout monitoring system allow for the placement of grout. The process of jet-grouting is fairly simplistic. High velocity grout jets connected to a drill-stem allow for insitu soil to be eroded then mixed. The composition of insitu soil and grout is commonly referred as soilcrete (Hayward Baker, 2014). Figure 2.2 illustrates the installation of a soilcrete column using jet-grouting.

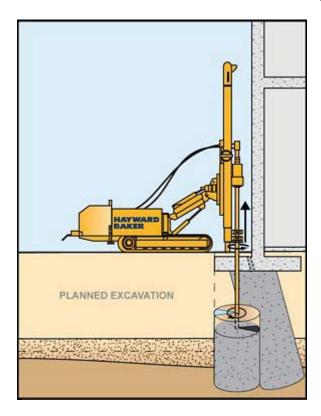


Figure 2.2: Installation of a soilcrete column using jet-grouting (Hayward Baker, 2014).

Given adequate time for set-up, the soilcrete columns cure and become high strength, low permeability material. Soilcrete columns are installed at predetermined locations where seepage issues are expected. Soilcrete columns are installed to help prevent groundwater seepage from occurring under dams and other impoundments. This technique is very versatile since grouting can take place above or below the ground water table and can be used in a wide range of soils from high plasticity clays to cohesionless sands.

High-mobility grouting uses the flow of a pressurized cementatious grout material. Over time, the grouting material enters into the crevices of the underlying soil causing the grout and soil to bind together. Figure 2.3 presents the high-mobility grouting technique.

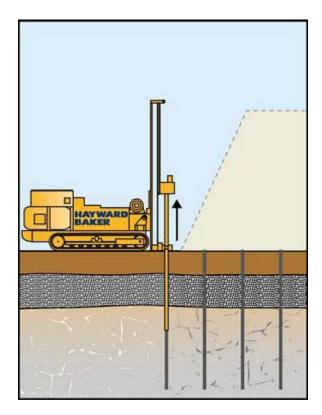


Figure 2.3: Illustration of the high-mobility grouting technique (Hayward Baker, 2014).

When performing high-mobility grouting for dams or other impoundments, it is imperative that the size of the pores or void spaces of the underlying soil material are matched to the particle size of the grout being applied. Having the appropriate grout with respect to particle size will allow for the grout material to enter the pore and void spaces of the underlying soil material. If the particle size of the grout is larger than the pore and void spaces of the underlying soil, grout will unable to enter the pore and void spaces. This type of grouting allows for increased strength properties such as cohesion, as well as decreased permeability.

Compaction grouting is another common technique used by industry today. Compaction grouting utilizes low viscosity grout to displace and densify loose soils. Also, compaction grouting is performed to stabilize large void spaces known as sinkholes by using a low-mobility grout mixture (Hayward Baker, 2014). The pressurized grout is injected into the ground by a pipe. As the grout is continuously injected, the pipe is slowly raised, forming a bulb like structure. For further clarity refer to Figure 2.4, which illustrates the compaction grouting technique.

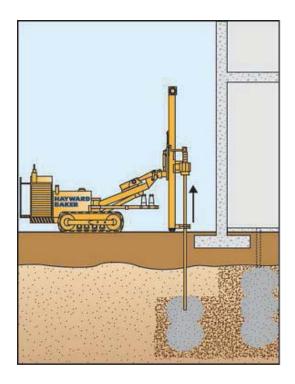


Figure 2.4: Compaction grouting technique (Hayward Baker, 2014).

The injected grout displaces the loose surrounding material. During the displacement and expansion of the grout material, geotechnical properties such as density, friction angle, and stiffness are increased. This technique reduces permeability while providing additional strength to existing underlying stratigraphy.

2.3 Current Methodologies to Assess Grout Curtain Effectiveness

2.3.1 Monitoring Lugeon Values

Monitoring Lugeon values during the installation of a grout curtain is the current state-of-the-practice for assessing grout curtain effectiveness. Lugeon values are defined as the injected volume of water in a length of time per length of rock beneath the reference elevation (Lugeon, 1933). The most common units attributed to the Lugeon value is 1 liter/minute per meter at a reference pressure of 1 MPa. Although the Lugeon

value is similar to hydraulic conductivity, the Lugeon value is typically used in rock masses in which water travels through cracks in rocks, whereas hydraulic conductivity is used in conjunction with water traveling through soil pore space. Monitoring Lugeon values has many benefits. Benefits of ascertaining Lugeon values include the determination of flow characteristics, provide a sound basis for the selection of an appropriate grout mix, and most importantly for quality control purposes (Weaver, K. and Bruce, D., 2007). Lugeon values are used combined with qualitative measures such as engineering judgment and rules-of-thumb (Bruce, 1982; Quinn et al., 2011; Berhane and Walraevens, 2013) to address the effectiveness and structural integrity of grout curtain walls. Lugeon values have been increasingly used as a means to assess quality control of grouting operations due to technological advancements in data acquisition systems and real time monitoring equipment. According to Houlsby (1976), quality assurance of a grout curtain with the use of Lugeon values is a key component to assessing the effectiveness of a grout curtain. A typical real time monitoring equipment and data acquisition system currently used in industry can be seen in Figure 2.5. The combination of real time monitoring equipment and data acquisition systems have allowed researchers (Sasaki and Tosaka, 2012; Sadeghiyeh et al., 2013) to monitor Lugeon values during grout curtain installation procedures. As the costs for real time monitoring systems and data acquisition systems start to decline due to competitive markets, Lugeon values are going to become even more widely used.

Figure 2.5: Typical real time monitoring and equipment and data acquisition system (Quinones-Rozo, 2010).

2.3.1.1 Lugeon Test Procedures

The most common insitu testing procedure used to assess the need for foundation grouting at dams and other impoundments is the Lugeon test, also known as the packer test. The original Lugeon test was developed by Maurice Lugeon in 1933. With technological advancements in real time monitoring equipment, much research has been conducted on the applicability of the original Lugeon test over the years. Research done by Houlsby (1976) resulted in an updated Lugeon test that allows for tests to be conducted over a wider range of pressures, while using the same principles used in the development of the original Lugeon test. The updated Lugeon test, commonly referred to as the modified Lugeon test, is the current industry standard for ascertaining Lugeon values. Unlike the original Lugeon test developed by Maurice Lugeon, the modified Lugeon test consists of 5 consecutive stages. The first three stages are completed at increasing pressures while the last two stages are completed at decreasing pressures.

During each stage, water pressure is held constant, while pumping as much water through the test interval as possible. A schematic figure illustrating a Lugeon test configuration is presented in Figure 2.6.

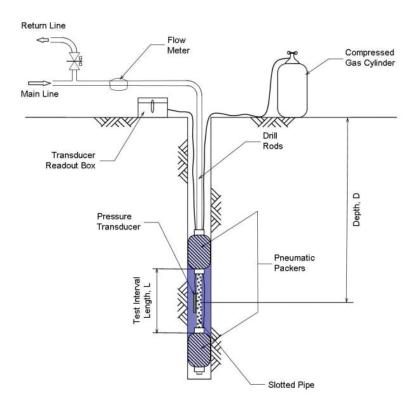


Figure 2.6: Schematic Lugeon test set-up (Quinones-Rozo, 2010).

During each stage, flow rate and pore pressure measurements are taken. These measurements are subsequently used to calculate a Lugeon value based on an equation presented in Houlsby (1976) and Quinones-Rozo (2010). The equation presented in Houlsby (1976) and Quinones-Rozo (2010) is the standard equation that is currently being used by industry to determine Lugeon test values, which can be seen in Equation 1.

$$LV = \alpha \left(\frac{q}{L}\right) \left(\frac{P_0}{P}\right) \tag{1}$$

where LV = Lugeon value, α = unit system coefficient, q = flow rate = Q/t where Q = total volume of water discharged and t = total time of test, L = test interval length of the representative test sample, P_0 = reference pressure = 1 MPa and P = water injection pressure.

The calculated Lugeon values are then assessed using Houlsby (1976) flow chart which can be seen in Figure 2.7 to determine whether or not grouting is warranted.

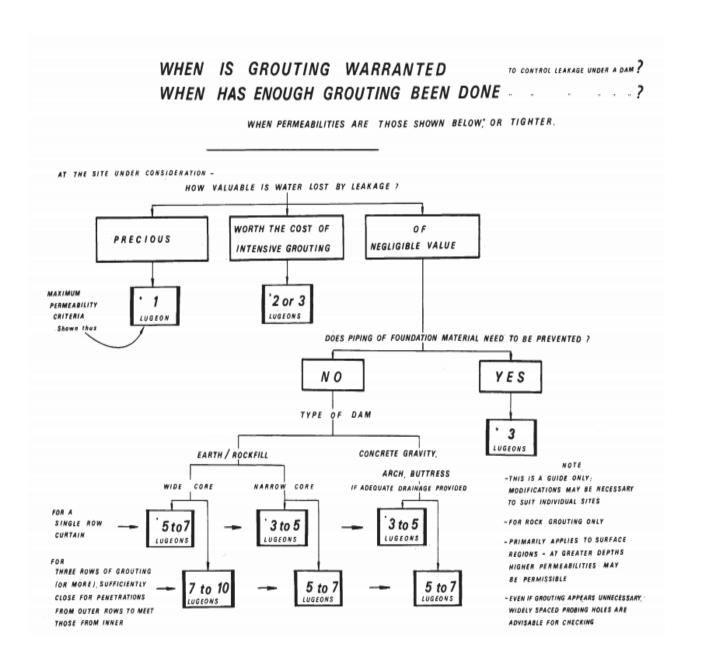


Figure 2.7: Houlsby's (1976) grouting applicability flow chart.

However, the use of Houlsby (1976) chart is more of a qualitative based approach or rule-of-thumb rather than a quantitative based approach. Lugeon values are not the only factor when determining if grouting is appropriate. Houlsby's (1976) research pointed out that other qualitative factors exist that should be taken in consideration, such as geological and other local factors. The grouting industry finds itself in an unfortunate situation where grout curtain effectiveness is determined by a qualitative based approach rather than a quantitative based approach.

2.3.1.2 Shortcoming of the Lugeon Test

Selecting an appropriate representative sample at a test site is a major drawback to the Lugeon test. The range of a single Lugeon test with a length interval of 10 feet is said to only encompass a 30 foot radius around the bore hole of interest (Bliss and Rushton, 1984). Since a Lugeon test only accurately depicts a limited area surrounding a bore hole, it is imperative to have a proper representative sample that takes into account the underlying soil material. However, if proper representative samples of the underlying soil material are obtained, Lugeon values are an appropriate measure to help aid in the quantification of the effectiveness of a grout curtain.

2.3.2 Measuring Hydraulic Conductivity

Grout curtain effectiveness is sometimes evaluated based on the degree of which in-situ hydraulic conductivity is reduced. In a previous study (Cotton and Matheson, 1990) conducted to evaluate the effectiveness of a grout curtain, hydraulic conductivity measurements were used to quantify effectiveness. In this study, effectiveness of a grout

curtain was based on hydraulic conductivity measurements with varying grout curtain depths. This study found that an effective grout curtain is not achieved until the grout curtain hydraulic conductivity values is three to four orders of magnitude less than that of the surrounding material. However, the Cotton and Matheson (1990) study used hydraulic conductivity values through a homogenous soil mass as opposed to a fractured mass often times seen while grouting.

2.3.3 Monitoring Pore Pressures

Determining the effectiveness of a grout curtain using solely pore pressure measurements is uncommon. However, one researcher compared predicted and observed behavior of pore water pressure inside an Alavian earthfill dam in Iran (Aminfar et al., 2009). This study also investigated the effects pore water pressures had on the foundation of the dam by looking at the distribution of pore water pressures. Beyond this study, there is little data that has been presented using solely pore pressures to evaluate the effectiveness of a grout curtain.

2.3.4 Grout Mix Design

Early studies evaluating the effectiveness of a grout curtain were primarily based on the performance of the grout mix design. There were several researchers (Bodocsi and Bowers, 1991; Anagnostopoulos and Kadjispyrou, 2004; Ozgurel and Vipulanandam, 2005; Lirer et al., 2006) who investigated various grout mix design parameters, such as workability, strength, and durability of the grout material under different conditions, to help evaluate the performance of grout curtains. However, these researchers did not evaluate the influence of the installation sequence of grout curtains on the overall effectiveness.

2.3.5 Willowstick

Willowstick is a recently developed technology that attempts to define and model complex subsurface water systems using electromagnetic fields (White Paper, 2012). Willowstick technology utilizes the placement of strategically placed electrodes in conjunction with a power supply to help enhance magnetic fields that can assist in modeling preferential groundwater flow paths (White Paper, 2012). Figure 2.8 illustrates modeling done by Willowstick technology. Unlike typical electromagnetic and resistivity methods, the Willowstick technology understands that flow paths can be effectively modeled using electrode probes due to their thorough understanding of water content and subsurface electrical conductivity (White Paper, 2012). This technology was developed to be a cost effective method to modeling complex subsurface water systems. The traditional method of direct observation through the drilling of wells is too time consuming, labor intensive and expensive. The Willowstick technology capitalizes on low cost and increased safety factors. However, this may be considered state-of-the-art, it is not currently widely used by consultants. The research presented herein focused on readily available technologies currently used in industry. The Willowstick Technology was not used for this research. It is presented briefly herein for completeness. Further, future research using this technology is recommended.

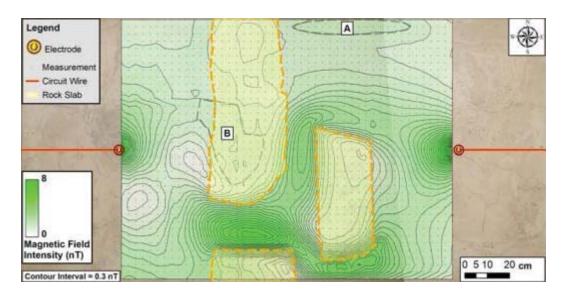


Figure 2.8: Magnetic field mapped using Willowstick technology (White Paper, 2012).

2.4 Associated Technology

As mentioned earlier in Chapter 1, the development of a new area performance parameter to assess the effectiveness of a grout curtain is essential to the success of this research. However, earlier studies (Bruce, D., 1982; Bruce, D., 1992; Uromeihy and Farrokhi, 2012; Gurocak and Alemdag, 2012) fail to use a performance parameter based on areas to assess the effectiveness of a grout curtain. These studies solely utilized Lugeon values to assess the effectiveness of a grout curtain. However, the studies conducted by Heinz Priebe in 1991 and 1995, utilized an area replacement ratio to determine an improvement factor which helps quantify the effectiveness with respect to ground improvement. Priebe (1991) and Priebe (1995) defined the area replacement ratio as the area of the improved ground divided by the total area of the unimproved ground. Equation 2 shows the area replacement ratio expression.

Area replacement ratio =
$$\frac{A}{A_C}$$
 (2)

where A = total area of the improved ground (area of the column(s)) and $A_C = \text{total}$ area of the unimproved area.

The area replacement ratio is an expression that identifies the proportionality between the improved ground and unimproved ground. With further analysis, Priebe (1995) discovered a relationship that relates the area replacement ratio to an improvement factor (n) seen in Equation 3.

$$n = 1 + \left(\frac{A_C}{A}\right) \left(\frac{5 - A_C/A}{4(\tan^2(45 - \varphi_C/2))(1 - A_C/A)} - 1\right)$$
(3)

where n = improvement factor, A = total area of the improved ground, A_C = total area of the unimproved area and φ_c = friction angle of the backfill material.

As can be seen by the relationship expressed in Equation 3, the ground improvement factor is a function of the reciprocal of the area replacement ratio and friction angle of the associated backfill material. Going a step further, Priebe discovered that the ground improvement factor was a function of poisson's ratio as well. Figure 2.9 illustrates the relationship from Equation 3 as a function of poisson's ratio.

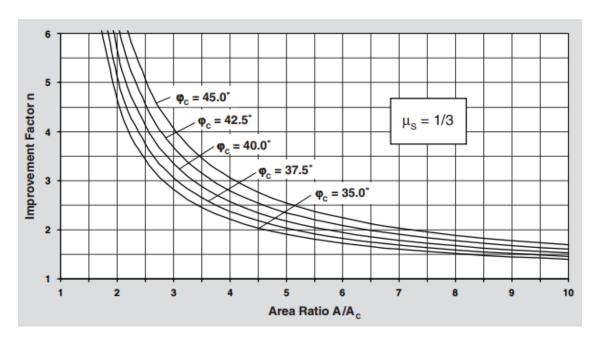


Figure 2.9: Relationship between area replacement ratio and ground improvement factor. (Priebe, 1995).

As seen in Figure 2.9, at a given area replacement ratio, friction angle and poisson's ratio, a ground improvement factor can be determined. This area replacement ratio provides a means to quantify the effectiveness of ground improvement. Little data has been presented using the area replacement ratio to evaluate the effectiveness of a grout curtain. However, it is believed that some type of area replacement ratio similar to the one Priebe (1991) and Priebe (1995) presented on ground improvement methods could be utilized in quantifying the effectiveness of a grout curtain.

2.5 Case History Studies

Four case history studies were investigated during this research. Case history data was obtained, to be used as the primary basis for which findings presented herein could be verified. Four separate dam structures were investigated in Hong et al. (2003)

research, which will later be used in thesis. The Hong et al. (2003) research investigated cut-off effects that are associated with rock grouting at various dam facilities using several parameters such as rock quality designation (RQD), injected cement volume, grout pressure and Lugeon values. The relationships that developed between these parameters were used in an attempt to develop a standard dam construction management program. Site properties, conditions and grouting properties can be seen in following table.

Table 2.1: Site conditions and grouting properties of four case history studies (Hong et al. 2003).

	Site 1	Site 2	Site 3	Site 4
Tyme of Dom	Concrete Face	Gravity Concrete	Concrete Face	Concrete Face
Type of Dam	Rock Fill Dam	Dam	Rock Fill Dam	Rock Fill Dam
Type of Rock	Metamorphic	Sedimentary	Sedimentary	Sedimentary
Number of Holes	231	35	28	41
Depth of Holes (m)	40	20	20	40
Grout Spacing	1 column with 1.5 m spaced holes	2 columns at 3.0 m zigzag interval; 3.0 m spaced holes	1 column with 1.5 m spaced holes	2 columns at 3.0 m zigzag interval; 3.0 m spaced holes
Span of Grout Curtain (m)	347	105	42	123
Average Lugeon Value Before Grouting	3	3.9	11	2.37
Average Lugeon Value After Grouting	1	1.9	3	1
Injection Pressure (Mpa)	0.39-2.45	0.15-0.59	0.15-0.59	0.29-2.45
Assumed Grout Column Diameter (m)	1.016	1.016	1.016	1.016

However, the conclusions made in this research were predominately qualitatively based rather than quantitatively based. For research to be beneficial, relationships and behavior must be quantifiable. The research presented herein assessed the effectiveness of a grout curtain quantifiably.

2.6 Summary

As previously mentioned earlier in this thesis, monitoring Lugeon values during the installation of a grout curtain is the current state-of-practice when assessing the effectiveness of a grout curtain. It is believed that Lugeon values combined with a new performance parameter similar to the one presented by Priebe (1991) and Priebe (1995) could lead to a quantifiable relationship that helps predict the effectiveness of a grout curtain prior to installation. With very little data relating Lugeon values to a performance parameter that takes into account area, the need for further experimentation is proven necessary. However, this experimentation needs to be done using a laboratory-scale physical seepage model. The shear amount of equipment needed along with the associated costs, deemed a field monitoring program impractical.

Chapter 3: Experimental Methods and Materials

3.1 Test Material – Index Testing and Material Characterization

All testing during the study was performed on two natural sands that were taken from sites located in the state of Kentucky. The first test sand used came from the banks of the Ohio River, near Newport, Kentucky. The second test sand was found along the banks of the Kentucky River directly North of Frankfort, Kentucky. The test sands herein will be referenced as Ohio River Valley sand and Kentucky River sand. The exact site locations where the Ohio River Valley sand and Kentucky River sand was found can be seen in Figure 3.1.

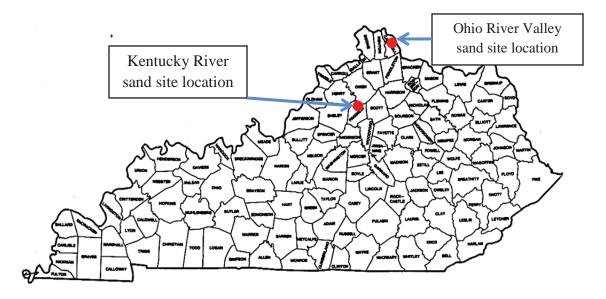


Figure 3.1: Site locations where the Kentucky River sand and Ohio River Valley sand were collected.

Initial index testing on the Ohio River Valley sand and Kentucky River sand consisted of four separate ASTM tests. The ASTM tests performed on the sand include

particle-size distribution of soils using sieve analysis (ASTM D6913), specific gravity (ASTM D854), maximum index unit weight using a vibratory table (ASTM D4253) and minimum index unit weight (ASTM D4254). Both test sands were a coarse, poorly graded sand (SP) according to the Unified Soil Classification System (USCS). However, the particle grain sizes of the Kentucky River sand were much finer than the Ohio River Valley sand. The test results from the various ASTM tests performed on the Ohio River Valley sand and Kentucky River sand are populated in Table 3.1. To view recorded data from the particle-size distribution sieve analysis and specific gravity test refer to Appendix A.

Table 3.1: Ohio River Valley sand and Kentucky River sand soil properties.

Test Sand	Classification	Gs	D ₁₀ (mm)	<i>D</i> ₃₀ (mm)	<i>D</i> ₆₀ (mm)	Maximum Dry Unit Weight (kN/m^3)	Minimum Dry Unit Weight (kN/m^3)
Ohio River Valley Sand	SP	2.65	0.30	0.50	0.81	19.08	15.27
Kentucky River Sand	SP	2.67	0.11	0.17	0.21	18.42	12.01

Where D_{10} = the diameter in the particle-size distribution curve corresponding to 10 percent finer, D_{30} = the diameter in the particle-size distribution curve corresponding to 30 percent finer, D_{60} = the diameter in the particle-size distribution curve corresponding to 60 percent finer and Gs = specific gravity.

3.2 Physical Model

A laboratory-scale physical seepage model was developed to aid in the understanding and development of geotechnical trends that evaluate the effectiveness of a grout curtain. All testing during this study was performed in a non-conductive test box. The inside width, length and height dimensions are 595-mm, 595-mm and 610-mm respectively. The box was constructed using polycarbonate for the sides, fiberglass angles and shims and an acrylic base (Huff, 2010). A silicon based product was used to prevent water from leaking through the cracks in between the polycarbonate siding and acrylic base. Figure 3.2 shows the configuration of the physical model from plan view.

Figure 3.2: The composition of the working physical model.

The model consisted of upstream and downstream drainage media, with the test sand sandwiched in between. The drainage media consisted of vertical layers of gravel that were approximately 75-mm thick. The test sand section was approximately 445-mm thick. A thin piece of geosynthetic fabric was used between the sand and the gravel on both the upstream and downstream side to prevent infiltration of fines into the gravel. Seepage was achieved by pumping water into the physical model on the upstream side and being drained on the downstream side.

To reach a desired test unit weight, the weight of oven dry test sand was measured. The sand was oven dried for 24 hours. The test sand was placed in three separate layers. Each layer was approximately 17.3-cm thick. Upon placement of each layer, the test sand was compacted. A 22.68 kg weight dropped from half a meter high onto a flat surface was used to reach the necessary test unit weights. A flat surface was used to allow for equal force distribution across the entire area of the test media. This allowed for a uniform compaction effort.

3.3 Pore Pressure Measurements

To measure various pore pressures within the physical model for this study, three miniature pore pressure transducers were utilized as piezometers and installed at predetermined locations in the test box. In this study, pore pressure values were measured using Kulite XCL-11-250-150SG sealed gauge miniature pore pressure transducers connected to a National Instruments data acquisition system. Figure 3.3 shows three transducers connected to the National Instruments data acquisition system.

Figure 3.3: Three pore pressure transducers connected to the National Instruments data acquisition system.

LabVIEW 2012 software was utilized to acquire and analyze the data. The data acquisition system combined with the development of a program within the LabVIEW 2012 software, made it possible to convert electrical readings to their corresponding pore pressure measurements. To further understand the step-by-step process of creating the program, refer to Appendix B.

3.3.1 Pore Pressure Transducers

The specific miniature pore pressure transducer model utilized in this study of the evaluation of the effectiveness of a grout curtain was a XCL-11-250-150SG sealed gauge pore pressure transducer manufactured by Kulite which can be seen in Figure 3.4. Each individual pore pressure transducer had a fully active four arm Wheatstone Bridge. The

XCL-11-250-150SG miniature sealed gauge pore pressure transducers were rated at 1.03 MPa well within the ranges of pressures that are expected in the physical model.

Figure 3.4: Kulite's XCL-11-250-150SG sealed gauge pore pressure transducer model used in this study.

3.3.2 Pore Pressure Transducer Calibration

Self-verification of the calibration of the XCl-11-250-150SG pore pressure transducers was essential in producing reliable data for this study. According to Kulite, the XCL-11-250-150SG was calibrated in a water-filled pressure tank. To verify that the XCL-11-250-150SG transducers would provide reliable data for this study, the pore pressure transducers were placed at various heights in a acrylic cylindrical tube that was filled with saturated test sand. Several readings were taken at different known pressure increments to verify that the pore pressure readings coming from the pore pressure transducers were indeed accurate. Known pressure increments were determined by multiplying the unit weight of water by the height. Pore pressure measurements taken by the pore pressure transducers were compared to various known pore pressures to develop

a calibration equation. Pore pressure measurements were taken at the corresponding actual pressure readings of 0, 2.76, 4.14, 5.52 and 6.90 kPa. Figure 3.5 shows the calibration curves associated with the three pore pressure transducers used in this study.

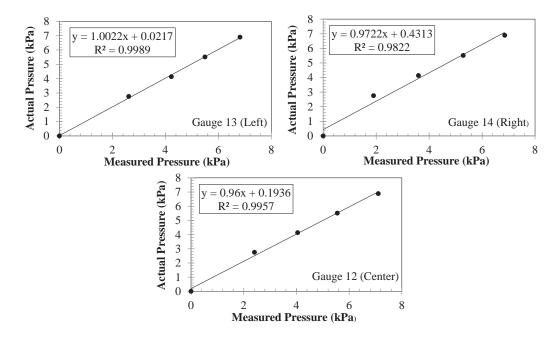


Figure 3.5: Calibration curve and equation associated with the three pore pressure transducers.

Each pore pressure transducer was calibrated individually, thus each pore pressure transducer has a corresponding calibration equation. The calibration equations used in this study are given as:

$$U_{ACT,13} = 1.022(U_{MEA,13}) + 0.0217 \tag{4}$$

$$U_{ACT,12} = 0.96(U_{MEA,12}) + 0.1936 \tag{5}$$

$$U_{ACT,14} = 0.9722(U_{MEA,14}) + 0.4313 \tag{6}$$

where U_{ACT} = actual pore pressure in kPa and U_{MEA} = measured pore pressure in kPa.

Manually calibrating the three pore pressure transducers assured that the measured pore pressures in the test box were in fact accurate.

3.4 Flow Rate Measurements

Along with pore pressure measurements, flow rate measurements were also utilized to evaluate the effectiveness of a grout curtain. Measuring flow rates is a common measurement that is taken when trying to assess the efficiency of a grout curtain. Flow rate is an easy parameter to measure since there is no need for extensive equipment. Also, measurements can be taken in timely fashion. Several studies (Bruce, D., 1982; Nappi, M. et al., 2005; Saeidi, O. et al., 2013) used flow rate measurements to help assist in determining the effectiveness of a grout curtain, similar to this study. Flow rate values were determined using an approach similar to a constant head test. The water level on the upstream side of the box was held constant, while being drained on the downstream side. The volume of water coming out of the box was captured and measured over a specified time interval. A flow rate measurement is calculated using the following equation:

$$q = \frac{Q}{t} \tag{7}$$

where q = flow rate, Q = total volume of water discharged and t = total time interval of test.

The flow rate measurements were used as an input parameter in the Houlsby (1976) and Quinones-Rozo (2010) Lugeon value equation presented in Chapter 2, which helps in the quantification of the effectiveness of a grout curtain.

3.5 Lugeon Value Determination

Lugeon values were a key component to this study of quantifying the effectiveness of a grout curtain. Studies such as Hong (2003), Ajalloeian et al. (2012),

and Parrock et al (2010) used Lugeon values as the primary factor in determining the effectiveness of a grout curtain under a dam. With this being said, Lugeon values were incorporated into this study to not only be consistent with the current state-of-thepractice, but also to allow for model verification which will be discussed later in this thesis. Since the study was conducted in a laboratory-scale physical seepage model as opposed to out in the field, slight modifications in the determination of Lugeon values were taken. This research measured flow rates similar to a standard Lugeon test. The volume of water flowing through the porous test media was measured over a specified time interval. However, the type of pressure measurements utilized in this research varied slightly from the pressure measurements of a standard Lugeon test. A standard Lugeon test measures a water injection pressure (P), which is the pressure at which water is pumped through a porous media. However, the equipment available for this research was unable to measure a water injection pressure. Pore pressure measurements were utilized to help determine corresponding Lugeon values instead. Since this research did not measure water injection pressures directly, "true" Lugeon values were unable to be obtained. However, allowing sufficient time for pore pressure measurements to reach a state of equilibrium, allowed for pore pressure measurements to be used as water injection pressures. Although this research did not strictly measure "true" Lugeon values, it is still a reasonable approximation.

Chapter 4: Modeling the Grout Curtain

Two separate test procedures were used to model the grout curtains for this study. The first test procedure utilized flat acrylic slats to simulate grout columns while using Ohio River Valley sand as the test media. The second test procedure used polyvinyl chloride (PVC) pipes and Kentucky River sand. Flat acrylic slats were used in an attempt to quantify the effectiveness of a grout curtain based on lengths. PVC pipes were used in a similar fashion as the flat acrylic slats. However, PVC pipes were utilized to address the effectiveness of grout curtain based on areas. Using PVC pipes allowed for an accurate geometric representation of a true grout curtain. The test media changed between the two test procedures due to quantity issues. Both these sands classified as a poorly graded sand (SP) according to Unified Soil Classification System (USCS). However, comparing the D_{10} values for both of the test samples, it is evident that particle grain size of the Kentucky River sand is much finer than the particle grain size of the Ohio River Valley sand. Both procedures measure pore pressures and volume of discharge as subsequent simulated grout columns are placed in the test media in various orientations.

4.1 Linear Representation of Grout Curtain-Acrylic Slats Testing and Results

For this study, only one of three calibrated pore pressure transducers was installed at a pre-determined location within the soil profile. The pore pressure transducer was placed directly in the center of the test media. Pore pressure measurements along with corresponding volume discharge measurements were subsequently taken during the various installation sequences of the simulated grout curtain under a constant head. The volume discharge measurements were taken to calculate corresponding hydraulic

conductivity values based on constant head methodology. The combination of volume discharge measurements and several known dimensional parameters of the test media within the laboratory-scale physical seepage model allowed for the determination of hydraulic conductivity values based on the following equation.

$$K = \left(\frac{Q}{t}\right) \left(\frac{\Delta H}{L}\right) \left(\frac{1}{A}\right) \tag{8}$$

where K = hydraulic conductivity, Q = volume of water being discharged, t = time interval, ΔH = total head, L = length of the test media and A = cross-sectional area of test media.

Hydraulic conductivity values were determined in an attempt to identify different trends that could be used to help quantify the effectiveness of a grout curtain. Hydraulic conductivity values were believed to be a possible parameter to assess the effectiveness of a grout curtain similar to the research presented by Cotton and Matheson (1990).

4.1.1 Initial Equilibrium Testing

Before the grout curtain was placed, the test box was flooded by closing the drain and filling the box with water until the water level was 25-mm above the soil surface. After flooding the physical model with water, the drain was opened and the water was pumped into the physical model at a rate that kept the inflow rate equal to the outflow rate. In essence, the physical model was held at a constant head for 30 minutes before any initial testing was completed to provide adequate time for saturation. Running the initial test with no grout curtain present produced a hydraulic conductivity value of 0.0085 cm/s and a pore pressure value 3.17 kPa.

Another initial test that was conducted was a test that showed the change in pore pressure with respect to time with the presence of a simple grout curtain. The purpose of this test was to ascertain the amount of time required for pore pressures to reach equilibrium. The grout curtain consisted of two-acrylic slats, 76.2 mm-wide, inserted 25.4 mm upstream of the pore pressure transducer. Figure 4.1 shows the effects the simple grout curtain had on the pore pressure with respect to time. It also shows that approximately 20 minutes after the grout curtain was inserted 25.4 mm upstream of the pore pressure transducer, the pore pressure values began to level off and stay constant. This figure shows that pore pressure readings should be taken at least 20 minutes after the grout curtain is inserted into the Ohio River Valley sand to allow it to reach an equilibrium state.

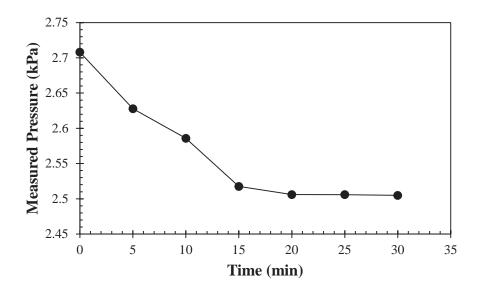


Figure 4.1: Effect of a simple grout curtain on pore pressure with respect to time.

It is important to note that the initial pressure at time zero in Figure 4.1 is not equal to the initial pressure without the presence of a simple grout curtain. Two separate tests were conducted using two different amounts of porous media.

4.1.2 Procedures Testing With Grout Curtain and Results

Experimentation was performed to ascertain the effect of installation sequence on the performance parameters. For this series of tests, pore pressure and hydraulic conductivity were used as performance parameters. The testing consisted of five sets of tests that used three orientation schemes. Each set of tests in this test series utilized two-acrylic slats, 76.2-mm wide, inserted 25.4-mm upstream of the transducer. Each set of tests had its own grout curtain placement scheme along the proposed grout curtain line. The proposed grout curtain line within the physical model can be seen in Figure 4.2. In the figure, the numbers represent possible slat locations. Pore pressure and hydraulic conductivity values were measured during each test set.

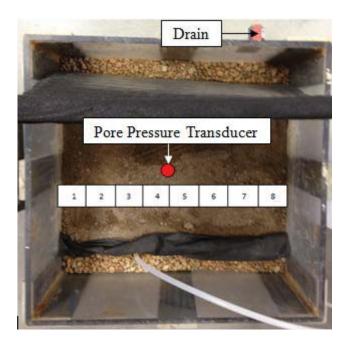


Figure 4.2: Eight possible slat locations along the proposed grout curtain line.

The first orientation scheme used in this test series was to move two 76.2-mm wide acrylic slats across the length of the proposed grout curtain line. Table 4.1 shows

the various grout orientations associated with Tests 1 through 7, along with their corresponding pore pressure and hydraulic conductivity measurements.

Table 4.1: Grout curtain orientations for Tests 1 through 7 along with their corresponding hydraulic conductivity and pore pressure measurements.

		Right		
	Left Slat	Slat	Pore Pressure	Hydraulic Conductivity
Tests	Location	Location	(kPa)	(cm/s)
1	4	5	3.09	0.0078
2	2	3	2.79	0.0081
3	1	2	2.40	0.0074
4	3	4	3.03	0.0071
5	5	6	2.82	0.0065
6	6	7	2.51	0.0069
7	7	8	2.32	0.0067

During Tests 1 through 4, the two-76.2 mm wide acrylic slats started directly in the middle of the box and moved to the left. However, during Tests 1, 5, 6 and 7 the two-76.2 mm wide acrylic slats started directly in the middle of the box and moved to the right. By looking at Figure 4.3, the effects of the location of the drain can be seen. Tests 1 through 4, with the grout curtain on the left hand side, experienced higher pore pressures than Tests 1, 5, 6 and 7, with the grout curtain on the right hand side, because the flow of water had a more direct path to the drain. Plotting pore pressure versus distance from the pore pressure transducer, Tests 1 through 4 and Tests 1, 5, 6 and 7 both follow the same trend. As the two-76.2 mm wide acrylic slats get further and further away from the pore pressure transducer, the lower the pore pressure became. The assumption is that the lower the pore pressure, the more effective the grout curtain was.

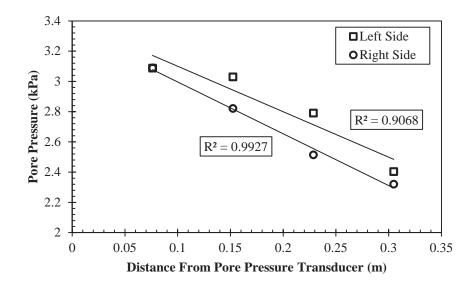


Figure 4.3: Pore pressure versus distance from pore pressure transducer for Tests 1-7.

The effect of the drain can also be seen in Figure 4.4 which plots hydraulic conductivity versus distance from the pore pressure transducer.

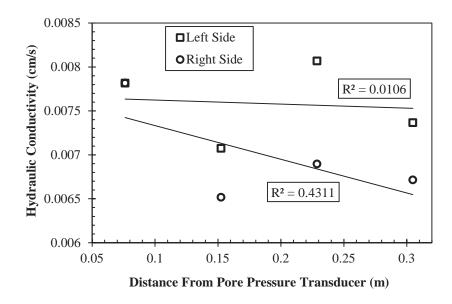


Figure 4.4: Hydraulic conductivity versus distance from pore pressure transducer for Tests 1 through 7.

Tests 1 through 4 with the grout curtain on the left hand side, experienced higher hydraulic conductivity values than Tests 1, 5, 6 and 7 with the grout curtain on the right hand side because the flow of water had a more direct path to the drain. Other than the observed behavior previously discussed, no further trends developed with respect to hydraulic conductivity in this study.

The second orientation scheme used in this study started out with one-76.2 mm wide acrylic slat on each end of the proposed grout curtain line. The slats then preceded inwards towards the pore pressure transducer. This orientation scheme was conducted to help determine whether or not changes in sequencing had any kind of effect on pore pressure and hydraulic conductivity. Table 4.2 shows the various grout curtain orientations for Tests 1, 8, 9 and 10 along with their corresponding pore pressure and hydraulic conductivity measurements. For further clarity on this specific grout curtain orientation scheme, refer to Table 4.2 and Figure 4.2.

Table 4.2: Grout curtain orientations for Tests 1, 8, 9 and 10 along with their corresponding hydraulic conductivity and pore pressure measurements.

			Pore	
	Left Slat	Right Slat	Pressure	Hydraulic
Tests	Location	Location	(kPa)	Conductivity (cm/s)
8	1	8	2.41	0.0065
9	2	7	2.63	0.0065
10	3	6	3.10	0.0063
1	4	5	3.09	0.0078

The results obtained from this series of tests, showed that sequencing does have an effect on pore pressure and hydraulic conductivity. As the acrylic slats propagated towards the pore pressure transducer, higher pore pressures resulted. Hydraulic conductivity stayed fairly constant as the acrylic slats preceded inward, with the exception of Test 1.

The third orientation scheme used in this study was holding one-76.2 mm-wide acrylic slat stationary in the middle next to the pore pressure transducer, while moving the other 76.2 mm wide acrylic slat outward along the proposed grout curtain line. This orientation scheme was conducted to help determine the effects on pore pressure and hydraulic conductivity with respect to which side the simulated grout curtain was placed. Table 4.3 shows the various grout curtain orientations for Tests 11-16 along with their corresponding pore pressure and hydraulic conductivity measurements.

Table 4.3: Grout curtain orientations for Tests 11 through 16 along with their corresponding hydraulic conductivity and pore pressure measurements.

		Right		
	Left Slat	Slat	Pore Pressure	Hydraulic
Tests	Location	Location	(kPa)	Conductivity (cm/s)
11	4	8	2.30	0.0064
12	4	7	2.69	0.0067
13	4	6	3.04	0.0071
14	1	5	2.39	0.0064
15	2	5	2.78	0.0067
16	3	5	3.13	0.0071

Test results associated with this test series showed that when the simple grout curtain was placed on the right hand side of box along the proposed grout curtain line, pore pressures were lower compared to when grout curtain was on the left hand side. Upon speculation it was believed that the observed pore pressure behavior was a result of the water flow path. Since the water had a more direct path to the drain when the simulated grout curtain was

positioned on the left hand side, higher pore pressures resulted as compared to when the grout curtain was positioned on the right hand side. Hydraulic conductivity stayed constant, when comparing measurements with the grout curtain on the left and right hand sides.

4.2 Development of a New Performance Parameter–Linear Replacement Ratio

As was discussed earlier in Chapter 2, it was hypothesized that an area replacement ratio could be used to quantify effectiveness. However, the use of flat acrylic slats precluded the use of areas. Therefore, a linear replacement ratio was developed. The linear replacement ratio was equal to the width of the installed slats divided by the total width of the model. Unfortunately, this relationship was inadequate because it did not take into account the various installation sequences. In addition, initial testing showed the location of the pore pressure transducer and drain influenced the results.

To evaluate the effectiveness of a grout curtain, this study utilized a linear replacement $\operatorname{ratio}(\overline{x}_2)$ based on a double normalization scheme. The linear replacement ratio takes into account the distance the centroids of the acrylic slats are from the pore pressure transducer and drain, respectively. This normalization scheme was conducted to understand the influence of the drain within the laboratory-scale physical model. The linear replacement ratio equation that was developed is given in Equation 9 and is graphically presented in Figure 4.5

$$\bar{x}_{2} = \frac{\left(\frac{d_{1} + d_{2}}{L_{1} + L_{2}}\right)}{\left(\frac{d_{1} + d_{2}}{D_{1} + D_{2}}\right)}$$
(9)

where \bar{x}_2 =double normalization value, d_1 =the distance between the centroid of the first slat and the midpoint of the pore pressure transducer, d_2 = the distance between the centroid of the second slat and the midpoint of the pore pressure transducer, L_1 = the length of the first slat, L_2 = the length of the second slat, D_1 = the distance from the centroid of the first slat to the midpoint of the drain, and D_2 = the distance from the centroid of the second slat to the midpoint of the drain.

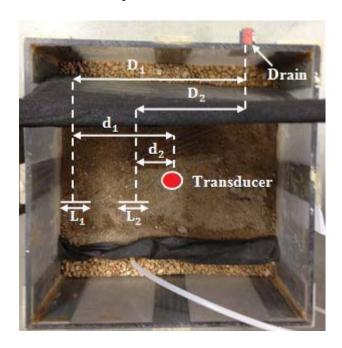


Figure 4.5: Graphical representation of the linear replacement relationship.

Figure 4.6 presents a plot of the linear replacement ratio versus pore pressure for all tests in this study. Refer back to Table 4.1, Table, 4.2 and Table 4.3 for further clarity on grout curtain orientations for all tests in this study. It can be seen in Figure 4.6 that the data produced well-defined curves. Figure 4.6 shows as the total length of the slats got further away from the pore pressure transducer the pore pressure decreased. The lower the pore pressure, the more effective was the grout curtain.

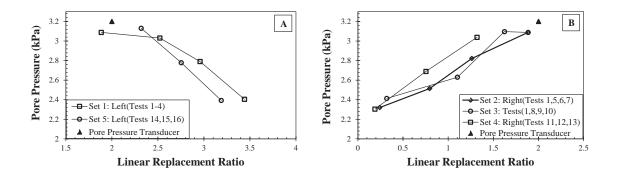


Figure 4.6: Linear replacement ratio versus pore pressure graph with grout curtain on (A) left hand side, and (B) right hand side.

The effects of the positioning of the drain within the laboratory-scale physical seepage model can be seen as well. Comparing tests with the same sequence, but on opposite sides of the physical model show the effects the drain position has on pore pressure measurements. When the grout curtain was placed on the left hand side of the physical model, pore pressure measurements tended to be higher than when the grout curtain was placed on the right hand side. This trend was consistent for all tests completed in this study since the flow of water had a more direct path to the drain when the grout curtain was on the left hand side of the physical model. The linear replacement ratio coupled with pore pressure measurements produced trends that will help contribute to quantification of the effectiveness of a grout curtain. However, the use of flat acrylic slats to represent a grout curtain wall does not encapsulate the true geometry of a grout curtain wall. Thus, the study used polyvinyl chloride (PVC) piping to take into account area as opposed to just length.

4.3 Area Representation of Grout Curtain-Polyvinyl Chloride Pipe Testing and Results

Similar to the acrylic slats testing, pore pressure transducers were utilized and installed at a pre-determined location within the test media. However, it is important to note that three pore pressure transducers were utilized, the test media used was the Kentucky River sand and the simulated grout columns were PVC pipes. Just like the acrylic slats testing, pore pressure measurements along with volume discharge measurements were subsequently performed during the various installation sequences of the simulated grout curtain. Measurements were taken every 25 minutes after the placement of PVC piping to allow for pore pressures to reach an equilibrium state. This time interval was determined from monitoring pore pressures and times in the manner presented in the "Initial Equilibrium Testing" section. However, it is noted that the time intervals were slightly different. Testing with the Kentucky River sand required measurements to be taken at 25 minutes instead of 20 minutes. The slight difference in time interval is due to a lower hydraulic conductivity.

Twenty sets of tests were performed during this test series. The twenty sets of tests were comprised of five spacing-to-diameter ratios (S/D) at four different dry unit weights. The spacing-to-diameter ratio is the ratio of the center-to-center spacing between grout columns along the proposed grout curtain line to the diameter of grout column itself. The diameter of all grout columns was 22 mm. The five different S/D ratios used in this study include 1, 1.18, 1.45, 1.62 and 2.17. These S/D ratios were selected to accommodate for equal spacing between grout columns. Not only did these S/D ratios accommodate for equal spacing, but they also allowed for the two grout columns at the ends of the proposed grout curtain line to touch the sides of the test box. The four dry

unit weights that were tested were 12.56, 13.03, 13.35, and 13.82 kN/m³. The dry unit weights were selected to fit within the maximum and minimum relative unit weights tabulated earlier in Table 3.1. But before PVC testing was performed, it was essential for this research that a new performance parameter utilizing areas be developed. By using the development of a new performance parameter combined with measured Lugeon values, it was believed that a grout curtain's effectiveness could be quantified prior to installation.

4.4 Development of a New Performance Parameter – Area Replacement Index

As mentioned earlier in Chapter 2, it was believed that an area replacement ratio similar to the one presented by Priebe (1991) and Priebe (1995) for ground improvement could be utilized to help in the quantification of the effectiveness of a grout curtain. Through experimentation with various proposed area replacement approaches, a new performance parameter was developed, which will be referenced throughout the remainder of this thesis as the area replacement index (λ) .

To evaluate the effectiveness of a grout curtain, this study utilized a area replacement index value based on a double normalization scheme. The double normalization scheme was developed to take into account the amount of grout curtain placed within the area of improved ground and geometric configuration. The development of the area replacement index was based on four separate geometric configurations which are illustrated in Figure 4.7. Pore pressure measurements were subsequently taken as each additional grout column was installed following one of the geometric configurations.

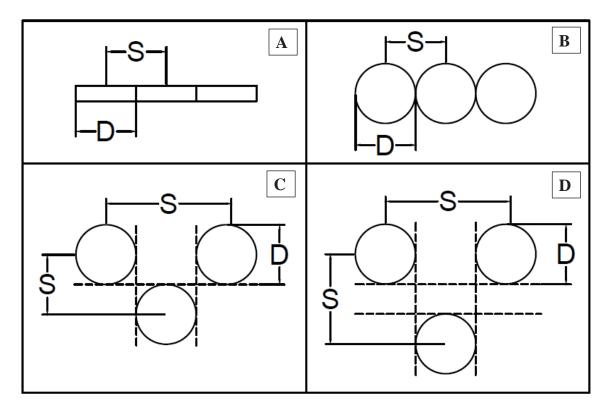


Figure 4.7: Geometric configurations used in the development of the area replacement index. (A) Tangent Planer, (B) Tangent Circular, (C) Tangent Primary-Secondary and (D) Discontinuous Primary-Secondary.

Seen in Figure 4.7, the tangent planer configuration is a rectangular trench section similar to a slurry wall panel. Testing was completed using flat acrylic slats, similar to the ones discussed earlier in this chapter. Tangent circular configuration is composed of a single row of circular grout columns placed tangent to one another. Both, tangent primary-secondary and discontinuous primary-secondary configurations are composed of two rows of circular grout columns. The only difference is the second row of grout columns for the discontinuous primary-secondary configuration is offset by a distance of half the diameter of a grout column. It is important to note that configurations identified

in Figure 4.7 as B, C and D utilized the same 2.2-cm diameter PVC piping for grout columns.

The area replacement index utilizes a double normalization scheme. The first normalization scheme utilized is illustrated by the following:

$$\overline{A}_G = \left(\frac{\sum_{1}^{i} A_{GC}}{A_{TOTAL}}\right) \tag{10}$$

where \overline{A}_G = the normalized grouted area, A_{GC} = summation of the area of the grout columns, i = the number of grout columns installed at a specific time, A_{TOTAL} = total area of ground to be improved given the width of grout column by the total length of the grout region. For further clarification, Figure 4.8 shows a generalized graphical representation of the proposed grout curtain region and components.

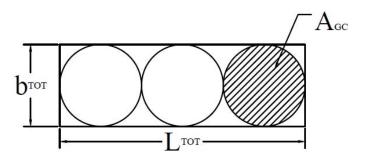


Figure 4.8: Components of grout region where $A_{TOTAL} = (b_{TOT})(L_{TOT})$, $b_{TOT} =$ width of the grout region and $L_{TOT} =$ length of the grout region.

Normalizing A_{GC} by A_{TOTAL} , allows for the evaluation of the effects of the area with respect to the area of improved ground. The relationship between normalized grouted area versus pore pressure for the four geometric configurations are shown in Figure 4.9.

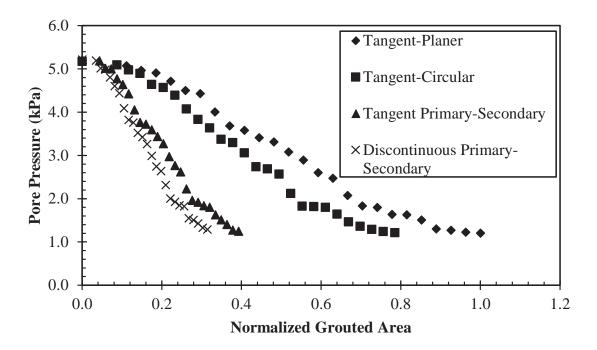


Figure 4.9: Relationship between normalized grouted area versus pore pressure for various geometric configurations.

As seen in Figure 4.9, in addition to varying with the normalized grouted area, pore pressure also varied consistently with respect to the geometric configuration. Thus, further normalization was done to take into account geometric configuration. The second normalization scheme takes into account geometric configuration and is given in the following form:

$$\lambda = \left[\frac{\left(\sum_{1}^{i} A_{GC} / A_{TOTAL} \right)}{\left(A_{GC(MAX)} / A_{TOTAL} \right)} \right]$$
(11)

where λ = area replacement index, $A_{GC(MAX)}$ = the maximum area of the grout columns that will fit within the grouted region at a specific S/D ratio.

Normalizing Equation 11 by $A_{GC(MAX)}/A_{TOTAL}$ takes into consideration geometric configuration. For example, if the geometric cross-section of the grout column is anything other than circular, this ratio will take this into consideration. Figure 4.10 shows the relationship between area replacement index versus pore pressure grouped by geometric configuration.

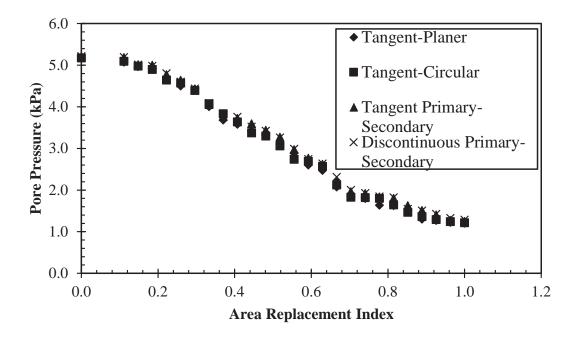


Figure 4.10: Relationship between area replacement index versus pore pressure grouped by geometric configuration.

As seen in Figure 4.10, the curves presented in Figure 4.9, collapsed to one curve after further normalization. At a constant area replacement index, pore pressure measurements at different geometric configurations seem to be equal. This is an indication that the area replacement index takes into consideration the amount of grout curtain placed within the area of improved ground and the geometric configuration. Thus,

to simply testing procedures, all further testing was completed using the tangent circular geometric configuration only.

4.5 Nested Pore Pressure Transducers

Nested pore pressure testing with PVC pipes was similar to the acrylic slats testing. However, it is important to note that the test media used was the Kentucky River sand, the simulated grout columns were PVC pipes with a diameter of 22 mm, and three pore pressure transducers were utilized and positioned differently than when performing the acrylic slats testing. The pore pressure transducers were situated in a manner within the porous media, where all three transducers were within the same column at various known pressures, hence the word nested. The three pore pressure transducers were nested directly in the center of the box. Gauge 12, Gauge 13 and Gauge 14 were placed in a vertical column at known reference pressures of 2.29 kPa, 3.62 kPa and 5.17 kPa, respectively. Known reference pressures were determined by multiplying the unit weight of water by the height. This series of tests was performed to determine a pore pressure gradient with respect to depth. Having this data would help illustrate the effects on pore pressure with respect to depth at different S/D ratios and dry unit weights.

Pore pressure and volume discharge measurements were taken, as each additional PVC pipe was placed along the proposed grout curtain line within the test box. Upon completion of the initial test, three-22 mm diameter PVC pipes were placed into the center of the test box along the proposed grout curtain line at the desired S/D ratios. Pore pressure and volume discharge measurements were again taken 25 minutes after the placement of PVC pipes. With these two measurements, corresponding Lugeon values

were calculated by utilizing Equation 1 presented in Chapter 2. This process was repeated adding one additional PVC pipe at the same desired S/D ratio, while alternating sides of the proposed grout curtain line until the grout curtain reached the sides of the test box. The entire process was repeated for all tests. Table 4.4 shows raw data corresponding to the test where the S/D ratio = 1 and a dry unit weight = 12.56 kN/m^3 . For additional test data corresponding to nested pore pressure transducer testing see Appendix C.

Table 4.4: Raw data from corresponding to S/D=1 and dry unit weight= 12.56 kN/m³.

Test	# of PVC Pipes	Pore Pressure- Gauge 12(kPa) Top	Pore Pressure- Gauge 13(kPa) Middle	Pore Pressure- Gauge 14(kPa) Bottom	Discharge Volume (mL)
Run 0	0	2.352	3.690	5.159	5520
Run 1	3	2.101	3.390	5.098	5423
Run2	4	2.167	3.515	5.075	5215
Run 3	5	1.937	3.287	4.952	5193
Run 4	6	1.841	3.127	4.683	4956
Run 5	7	1.840	3.222	4.652	4720
Run 6	8	1.831	3.262	4.503	4631
Run 7	9	1.512	3.087	4.213	4321
Run 8	10	1.343	3.058	4.243	3812
Run 9	11	0.905	2.335	3.975	3561
Run 10	12	0.425	1.857	3.721	3389
Run 11	13	Dry	1.471	3.521	3251
Run 12	14	Dry	1.052	3.275	3000
Run 13	15	Dry	0.845	2.875	2651
Run 14	16	Dry	0.642	2.683	2563
Run 15	17	Dry	0.411	2.596	2312
Run 16	18	Dry	0.213	2.318	2015
Run 17	19	Dry	Dry	2.136	1875
Run 18	20	Dry	Dry	2.006	1623
Run 19	21	Dry	Dry	1.945	1452
Run 20	22	Dry	Dry	1.842	1261
Run 21	23	Dry	Dry	1.812	1205
Run 22	24	Dry	Dry	1.625	1195
Run 23	25	Dry	Dry	1.425	1182
Run 24	26	Dry	Dry	1.358	1099
Run 25	27	Dry	Dry	1.309	1082

It is observed that Gauge's 12 and 13 were unable to record pore pressures for all tests. Gauge 12 and Gauge 13 were able to record data until Run 10 and Run 16, respectively. Two of the pore pressure transducers read "Dry" because the pore pressure transducers were located above the ground water table. This same problem was encountered for several tests at different S/D ratios and dry unit weights. Aware that this would present a problem, it was determined that pore pressure transducers be placed at the bottom of the test box as the research moved forward. Placing the pore pressure transducers at the bottom of the box prevented them from reading "Dry".

4.6 Pore Pressure Transducers Located at Bottom of Test Box

Due to pore pressure transducers drying out, it was determined that the three pore pressure transducers be placed at the bottom of the test box in a line parallel to the proposed grout curtain seen in Figure 3.2. They were placed 25.4-mm downstream of the proposed grout curtain, equal distant from one another. The test procedure outlined in the "Nested Pore Pressure Transducers" section was followed. The only difference was the placement of the three pore pressure transducers. Gauge 12, 13, and 14 were placed in the center, left and right hand sides of the box looking downstream, respectively. The pore pressure transducers were placed in such a fashion in hopes to see if there were any influences from the drain. However, it was determined through plotting pore pressure for all three transducers versus area replacement index, the drain had little influence on the readings of the pore pressure transducers. Figure 4.11 illustrates the influence of the drain from one test set (S/D =1 and dry unit weight = 12.56 kN/m³).

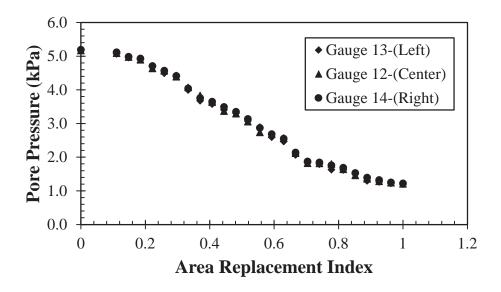


Figure 4.11: Influence of the drain on the three pore pressure transducers.

As observed in Figure 4.11, there was no significant variance in the pore pressure readings between the three transducers. Since this was consistent across all 20 tests, it was determined that an average pore pressure from the three transducers be used for further analysis.

Once test data was collected for all 20 test sets (five S/D ratios at four various unit weights), the data was analyzed for the intent of developing a quantifiable relationship between the area replacement index, Lugeon value, S/D ratio, and dry unit weight. To do so, various plots were developed to help in the understanding. The area replacement index was plotted versus several combinations and variations of parameters. It was determined through experimentation that combinations of average pore pressure, Lugeon values, and flow loss would provide the most correlation.

Flow loss is a typical parameter measured when calculating Lugeon values and can be seen in Equation 12:

$$Flow Loss = \frac{q}{L} \tag{12}$$

where q = flow rate out of the test box = Q/t and Q = volume of discharge, t = total time interval with which volume of discharge was collected and L = test interval length of the representative test sample.

In order to scale the results from the test box, average pore pressure, flow loss and Lugeon values were normalized as:

Normalized Average Pore Pressure =
$$\frac{P}{P_0}$$
 (13)

Normalized Lugeon Value =
$$\frac{LV}{LV_0}$$
 (15)

where P_0 , q_0/L_0 , LV_0 = initial test measurements with no PVC pipes.

The normalization factors utilized in this research where from the initial test measurements described earlier in this chapter, when no PVC pipes were present, just the test media itself. Plots using these parameters are shown throughout the remainder of this chapter.

Figure 4.12 shows the relationship between area replacement index and normalized average pore pressure and shows how that relationship varies as the S/D ratio varies.

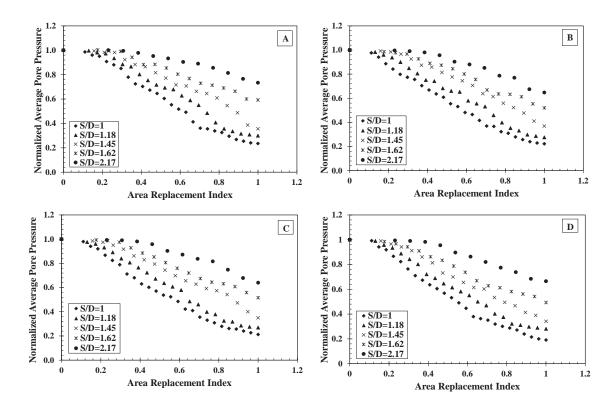


Figure 4.12: Area replacement index versus normalized average pore pressure, grouped by S/D ratios for a dry unit weight of (A) 12.56 kN/m 3 , (B) 13.03 kN/m 3 , (C) 13.35 kN/m 3 and (D) 13.82 kN/m 3 .

For all 20 tests, as the area replacement index increases, the normalized average pore pressure decreases. Furthermore, at a constant area replacement index, the S/D ratio has a large effect on the normalized average pore pressure. For a given area replacement index, the relationship between the change in normalized average pore pressure and the change in S/D ratio do not appear to be proportional. However, there does seem to be some correlation between the shapes of the curves. All tests performed, display a similarly shaped curve.

Figure 4.13 illustrates the relationship between area replacement index and normalized q/L and shows how that relationship varies as the S/D ratio varies.

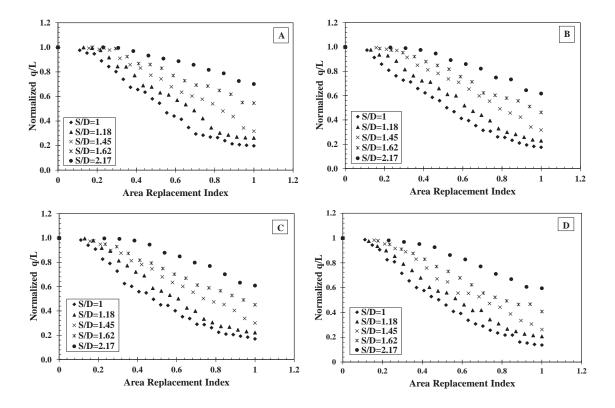


Figure 4.13: Area replacement index versus normalized q/L, grouped by S/D ratios for a dry unit weight of (A) 12.56 kN/m^3 , (B) 13.03 kN/m^3 , (C) 13.35 kN/m^3 and (D) 13.82 kN/m^3 .

At a constant area replacement index, the S/D ratio has an effect on normalized q/L seen in Figure 4.13. Also, at a constant S/D ratio, as the area replacement index increases, the normalized q/L decreases. Looking at Figure 4.12 and Figure 4.13, the relationship between area replacement index and normalized q/L and the relationship between area replacement index and normalized average pore pressures are quite similar. The behavior of these curves presented seem to be consistent crossed all S/D ratios and dry unit weights.

The curves presented in Figure 4.12 and Figure 4.13, were curve fitted using a fitting program, Table Curve (SYSTAT, Chicago, IL). The curves presented in these figures, were curve fit to identify the general equation form that describes the behavior of these curves. Figure 4.14 illustrates fitted curves showing the relationship between area replacement index and normalized average pore pressure, and area replacement index versus normalized q/L at a dry unit weight of 12.56 kN/m³. It should be noted that similar behavior was witnessed across all dry unit weights. However, for simplicity only results for a dry unit weight of 12.56 kN/m³ were presented.

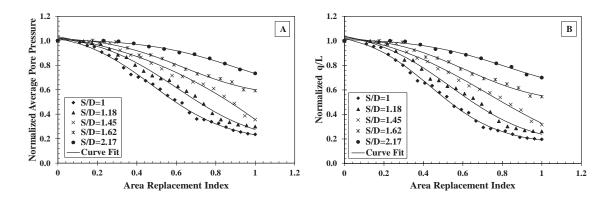


Figure 4.14: (A) Fitted curves showing the relationship between area replacement index versus normalized average pore pressure, grouped by S/D ratios for a dry unit weight of 12.56 kN/m³. (B) Fitted curves showing the relationship between area replacement index versus normalized q/L, grouped by S/D ratios for a dry unit weight of 12.56 kN/m³.

The general equation describing the behavior of the curves presented in Figure 4.14 were identified as a sigmoid. The specific equation that was identified having the highest R² values across all S/D ratios and dry unit weights can be seen in following equation:

$$y = a + \left(\frac{b}{1 + \exp\left(-\left(\frac{x - c}{d}\right)\right)}\right)$$
 (16)

where y = normalized average pore pressure or normalized q/L, x = area replacement index, and a,b,c,d = constants.

Constants a, b, c and d were unable to be identified as specific properties of the curve through further analysis. However, for completeness constants a, b, c, d and R^2 values corresponding to the curve-fit plots of area replacement index versus normalized average pore pressure, and area replacement index versus normalized q/L are tabulated in Table 4.5. The constants and R^2 values are tabulated for all four dry unit weights.

Table 4.5: Sigmoidal curve fitting constants from Table Curve.

	Dry Unit Weights	C/D D 4		,		,	_ 2
	(kN/m^3)	S/D Ratio	a	b	С	d	\mathbb{R}^2
		1	0.17	0.92	0.48	-0.19	1.00
		1.18	0.14	0.93	0.61	-0.22	0.99
	12.56	1.45	-1.37	2.55	1.36	-0.48	0.99
		1.62	0.53	0.52	0.63	-0.20	0.99
		2.17	0.54	0.48	0.91	-0.23	0.99
		1	0.10	1.10	0.43	-0.26	1.00
		1.18	0.07	1.06	0.59	-0.27	0.99
	13.03	1.45	0.07	1.01	0.77	-0.28	1.00
A D 1 (7.1		1.62	0.47	0.55	0.65	-0.17	0.99
Area Replacement Index vs		2.17	0.48	0.54	0.84	-0.20	0.99
Normalized Average Pore Pressure		1	0.14	1.04	0.40	-0.23	1.00
riessuie	13.35	1.18	0.17	0.90	0.53	-0.20	1.00
		1.45	-0.12	1.28	0.82	-0.37	0.99
		1.62	0.49	0.55	0.59	-0.18	0.99
		2.17	0.44	0.58	0.87	-0.21	0.99
	13.82	1	0.14	1.04	0.40	-0.22	1.00
		1.18	0.19	0.92	0.49	-0.21	0.99
		1.45	0.25	0.83	0.58	-0.22	0.99
		1.62	0.48	0.54	0.56	-0.16	1.00
		2.17	0.62	0.39	0.70	-0.15	1.00
		1	0.15	0.94	0.44	-0.17	1.00
		1.18	0.14	0.96	0.54	-0.21	0.99
	12.56	1.45	0.00	1.13	0.73	-0.30	0.99
		1.62	0.48	0.57	0.61	-0.20	0.99
		2.17	0.55	0.47	0.82	-0.23	0.99
		1	0.08	1.15	0.38	-0.25	1.00
		1.18	0.10	1.00	0.53	-0.23	1.00
	13.03	1.45	0.09	1.00	0.69	-0.26	0.99
		1.62	0.42	0.60	0.63	-0.17	0.99
Area Replacement Index vs.		2.17	0.51	0.51	0.76	-0.18	0.99
Normalized q/L		1	0.13	1.10	0.33	-0.21	0.99
		1.18	0.17	0.93	0.47	-0.18	1.00
	13.35	1.45	0.11	1.01	0.61	-0.28	1.00
		1.62	0.37	0.70	0.57	-0.23	1.00
		2.17	0.51	0.51	0.75	-0.18	0.99
		1	0.09	1.14		-0.21	0.99
		1.18	0.12	1.04		-0.23	0.99
	13.82	1.45	0.18	0.92		-0.22	0.99
		1.62	0.38	0.65			1.00
		2.17	0.53	0.48	0.69	-0.16	1.00

Figure 4.15 shows the relationship between normalized average pore pressure and normalized q/L. The normalized average pore pressure and normalized q/L values that

are were shown seem to be proportional. Normalized average pore pressure was plotted versus normalized q/L to determine whether or not the two parameters were indeed proportional. This proportionality seems to occur over all five S/D ratios and four unit weights.

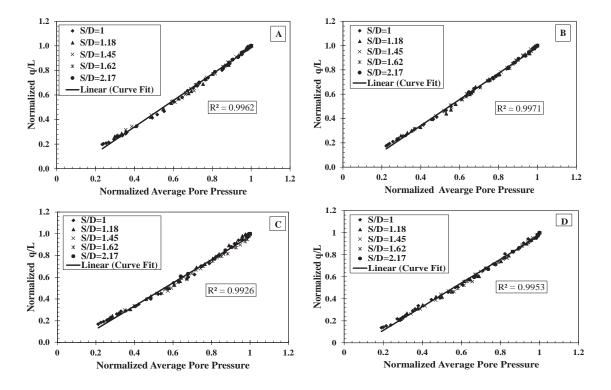


Figure 4.15: Linear relationship between normalized average pore pressure and normalized q/L grouped by S/D ratios for a dry unit weight of (A) 12.56 kN/m^3 , (B) 13.03 kN/m^3 , (C) 13.35 kN/m^3 and (D) 13.82 kN/m^3 .

Looking at Figure 4.15, the proportionality between normalized average pore pressure and normalized q/L seems to occur over all five S/D ratios and four dry unit weights. The R² values presented in Figure 4.15, suggest that the relationship between normalized pore pressure and normalized q/L is highly linear for all S/D ratios and dry unit weights. For all five S/D ratios at all four dry unit weights, R² values were greater than 0.99. As the

normalized pore pressure decreases, the normalized q/L decreases. According to Quinones-Rozo (2010) research, a linear relationship between pore pressure and q/L describes laminar flow. Laminar flow occurs when fluid is moving at low velocity. When fluids move at low velocities, no lateral mixing takes place. Also, Quinones-Rozo (2010) research found out that Lugeon values are approximately equal regardless of pore pressure during laminar flow. Figure 4.16 was developed to verify that the flow within the laboratory-scale physical seepage model was indeed laminar.

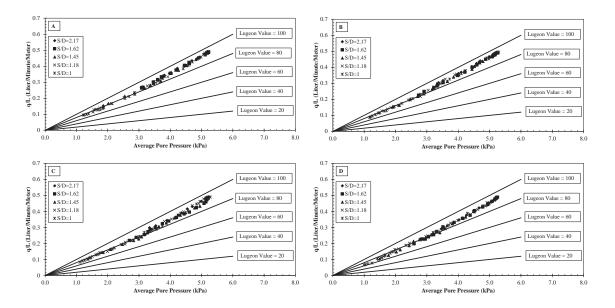


Figure 4.16: Relationship between average pore pressure and q/L grouped by S/D ratios for a dry unit weight of (A) 12.56 kN/m³, (B) 13.03 kN/m³, (C) 13.35 kN/m³ and (D) 13.82 kN/m³.

As seen in Figure 4.16, most data points across all S/D ratios and dry unit weights fell within the boundaries corresponding to a Lugeon value of 80 and 100. This figure illustrates that Lugeon values seen within the laboratory-scale psychical seepage model were fairly constant at various average pore pressures. This behavior is consistent with the characterization of laminar flow described in Quinones-Rozo (2010) research.

Now that the flow behavior within the test box has been characterized, normalized pore pressure and normalized q/L were plotted versus normalized Lugeon values. As stated earlier in this thesis, Lugeon values are used in this study to help quantify the effectiveness of a grout curtain. Utilizing Lugeon values in this study allows implementation of the proposed efficiency parameters using current field techniques. Figure 4.17 illustrates the relationship between normalized average pore pressure versus normalized average Lugeon value grouped by S/D ratio at various dry unit weights.

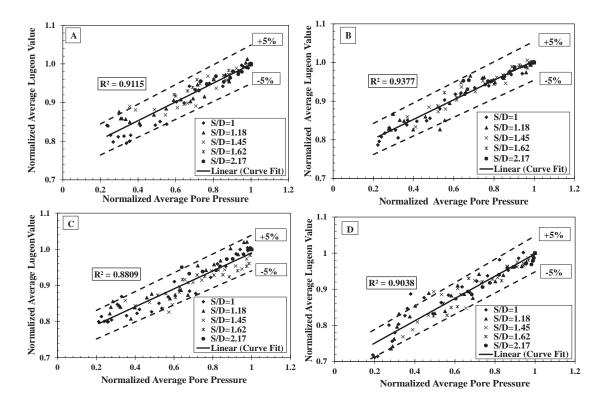


Figure 4.17: Relationship between normalized average pore pressure and normalized average Lugeon values grouped by S/D ratios for a dry unit weight of (A) 12.56 kN/m³, (B) 13.03 kN/m³, (C) 13.35 kN/m³ and (D) 13.82 kN/m³.

As seen in Figure 4.17, it appears that there is a linear relationship between normalized average pore pressure and normalized average Lugeon value. However, the figure does

show some variability with respect to normalized Lugeon values. The normalized Lugeon values for all S/D ratios at various different dry unit weights do have some scatter. The scatter in these plots deal with the pressure range that was observed in the box. The maximum pore pressure that was observed in the box was 5.30 kPa. Looking back at the equation that was utilized to calculate Lugeon values for this study presented in Chapter 2, the equation uses a reference pressure of 1 MPa. Since, the test box is operating at such small pressures compared to the reference pressure; small changes in pore pressure can result in much larger changes in Lugeon values. Even though test data appears to scatter a little, a consistent trend has developed for all S/D ratios at all dry unit weights. As the normalized average pore pressure decreases, so does the normalized average Lugeon values. Linear curve fitting for the individual test data shown in Figure 4.17, produced high R² values. R² values for all S/D ratios at all dry unit weights were greater than 0.82 and can be seen in Table 4.6. These high R² values imply that a linear relationship between normalized average pore pressure and normalized average Lugeon value exists. Further analysis shows that at constant unit weight, as the S/D ratio increases, the slope of the linear best fit line decreases.

Table 4.6: Unit weight, S/D ratio, slope, Y-intercept and R² values for linear best fit lines of normalized average pore pressure versus normalized average Lugeon value plots.

Dry Unit Weight (kN/m³)	S/D Ratio	Slope	Y-Intercept	R^2
	1	0.26	0.73	0.92
	1.18	0.22	0.78	0.92
12.56	1.45	0.21	0.78	0.84
	1.62	0.19	0.81	0.96
	2.17	0.18	0.81	0.82
	1	0.26	0.74	0.97
13.03	1.18	0.24	0.76	0.87
	1.45	0.25	0.75	0.95
	1.62	0.21	0.79	0.92
	2.17	0.15	0.84	0.88
	1	0.26	0.79	0.90
	1.18	0.25	0.74	0.90
13.35	1.45	0.25	0.73	0.85
	1.62	0.21	0.76	0.84
	2.17	0.19	0.80	0.83
13.82	1	0.34	0.68	0.89
	1.18	0.33	0.67	0.93
	1.45	0.31	0.69	0.91
	1.62	0.30	0.69	0.96
	2.17	0.29	0.70	0.89

A similar relationship was developed between normalized q/L and normalized average Lugeon value. Looking back at an earlier relationship developed between normalized average pore pressures versus normalized q/L seen in Figure 4.15, it appears that the relationship is highly linear. Knowing this relationship, a plot comparing normalized q/L versus normalized average Lugeon value should produce a plot that has a similar relationship to the normalized average pore pressure versus normalized average Lugeon value plot seen in Figure 4.17. Figure 4.18 shows the relationship between

normalized q/L versus normalized average Lugeon value grouped by S/D ratio at various dry unit weights.

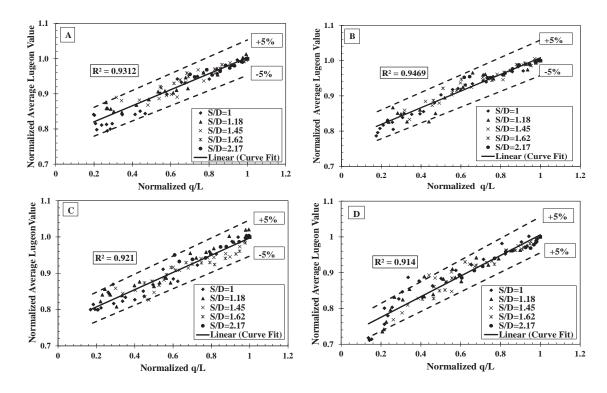


Figure 4.18: Relationship between normalized q/L and normalized average Lugeon values grouped by S/D ratios for a dry unit weight of (A) 12.56 kN/m^3 , (B) 13.03 kN/m^3 , (C) 13.35 kN/m^3 and (D) 13.82 kN/m^3 .

As seen in Figure 4.18, a linear relationship between normalized q/L and normalized average Lugeon value developed. The behavior of this relationship was quite similar to the relationship illustrated in Figure 4.17, as expected. As normalized q/L decreases, the normalized average Lugeon value decreases. This trend was consistent across all S/D ratios and dry unit weights. Linear curve fitting produced best fit lines with high R² values which can be seen in Table 3.10. All R² values were greater than 0.87.

Table 4.7: Unit weight, S/D ratio, slope, Y-intercept and R² values for linear best fit lines of normalized q/L versus normalized average Lugeon value plots.

Dry Unit Weight (kN/m³)	S/D Ratio	Slope	Y-Intercept	R^2
	1	0.25	0.75	0.94
	1.18	0.21	0.79	0.95
12.56	1.45	0.20	0.79	0.89
	1.62	0.17	0.83	0.97
	2.17	0.17	0.83	0.87
	1	0.25	0.76	0.97
13.03	1.18	0.23	0.77	0.91
	1.45	0.23	0.78	0.96
	1.62	0.19	0.81	0.94
	2.17	0.14	0.86	0.91
	1	0.25	0.75	0.94
	1.18	0.25	0.76	0.94
13.35	1.45	0.23	0.75	0.90
	1.62	0.19	0.78	0.89
	2.17	0.18	0.82	0.88
	1	0.32	0.70	0.89
13.82	1.18	0.28	0.72	0.90
	1.45	0.28	0.72	0.93
	1.62	0.28	0.72	0.95
	2.17	0.25	0.74	0.97

Plotting normalized average pore pressure and normalized q/L versus area replacement index and normalized average Lugeon value produced two distinct shapes. Normalized average pore pressure and normalized q/L plotted against area replacement index established non-linear sigmoidal shaped curves. While normalized average pore pressure and normalized q/L plotted against normalized average Lugeon value produced linear relationships.

Trends and relationships between normalized average pore pressure, normalized q/L, area replacement index and normalized average Lugeon values have been observed. To aid in the quantification in the effectiveness of a grout curtain, area replacement index was plotted versus normalized average Lugeon value for all S/D ratios at all dry unit weights. Figure 4.19 illustrates this relationship. Linear best fit lines forced through a normalized average Lugeon value of one are also seen in Figure 4.19. Equations for the linear best fit lines along with their corresponding R² values are tabulated in Table 4.8. Linear best fit lines were forced through a Lugeon value of one to allow for proper scaling and comparison to various case history data which will be discussed later.

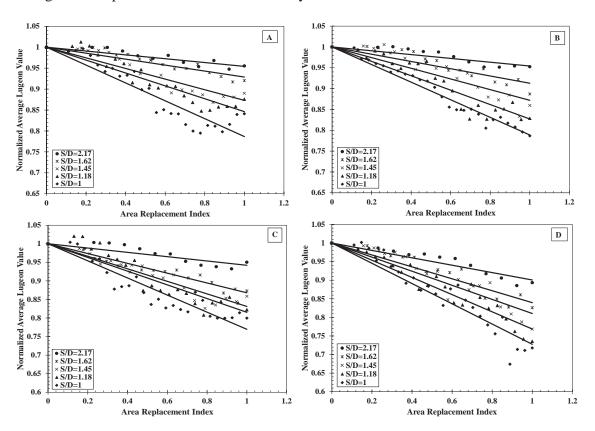


Figure 4.19: Relationship between area replacement index and normalized average Lugeon values grouped by S/D ratios for a dry unit weight of (A) 12.56 kN/m^3 , (B) 13.03 kN/m^3 , (C) 13.35 kN/m^3 and (D) 13.82 kN/m^3 .

Table 4.8: Unit weight, S/D ratio, slope, Y-intercept and R² values for linear best fit lines of area replacement index versus normalized average Lugeon value plots.

Dry Unit Weight (kN/m³)	S/D Ratio	Slope	Y-Intercept	R^2
	1	-0.21	1.00	0.86
	1.18	-0.15	1.00	0.87
12.56	1.45	-0.13	1.00	0.85
	1.62	-0.07	1.00	0.86
	2.17	-0.05	1.00	0.81
	1	-0.21	1.00	0.96
13.03	1.18	-0.17	1.00	0.84
	1.45	-0.13	1.00	0.82
	1.62	-0.09	1.00	0.82
	2.17	-0.05	1.00	0.78
	1	-0.23	1.00	0.86
	1.18	-0.18	1.00	0.83
13.35	1.45	-0.17	1.00	0.90
	1.62	-0.13	1.00	0.92
	2.17	-0.06	1.00	0.75
	1	-0.27	1.00	0.90
13.82	1.18	-0.23	1.00	0.91
	1.45	-0.19	1.00	0.86
	1.62	-0.16	1.00	0.89
	2.17	-0.10	1.00	0.88

 R^2 values for all linear best fit lines were greater than 0.81, with the exception of two tests, S/D = 2.17 at a dry unit weight of 13.03 kN/m³ and S/D = 2.17 at a dry unit weight of 13.35 kN/m³. High R^2 values imply that a linear correlation between area replacement index and normalized average pore pressure as a function of S/D ratio exists. At this point, at a given S/D ratio, the relationship between area replacement index and normalized average Lugeon value can be described as shown in Equation 17.

$$LV_n = m_1(ARI) + 1 \tag{17}$$

where LV_n = normalized average Lugeon value, m_1 = slope of linear best fit line from the area replacement index versus normalized average Lugeon value plot and ARI = area replacement index.

Looking at the slopes of the linear best fit lines in Figure 4.19, at a constant S/D ratio, it appears that the slopes increase, as dry unit weight increases. Upon speculation, it is believed that as the dry unit weight increased, the void space between soil particles decreased resulting in less volume discharge, hence a decreased Lugeon value. This relationship is evident for all S/D ratios. Plotting S/D ratio versus m₁ as a function of dry unit weight shows another linear correlation seen in Figure 4.20.

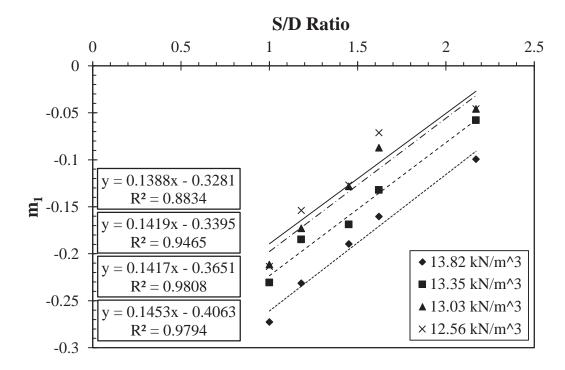


Figure 4.20: S/D ratio versus m₁, grouped by dry unit weight.

As seen in Figure 4.20, R_2 values for all 4 dry unit weights showed high linear correlation. Also, the slopes of the S/D ratio versus m_1 as a function of dry unit weight

were approximately equal. Since the slopes of the best fit lines were approximately equal, an average slope value was obtained. The average slope obtained from the S/D ratio versus m_1 plot will be referred to as m_{2avg} which is equal to 0.1419. Equation 18 shows the linear relationship between S/D ratio versus m_1 as a function of dry unit weight.

$$m_1 = m_{2avg} \left(\frac{S}{D}\right) + b_2 \tag{18}$$

where S/D = spacing-to-diameter ratio and b_2 = y-intercept as a function of dry density. Now, substitute Equation 18 into Equation 17 to get Equation 19 which takes into account S/D ratio and area replacement index.

$$LV_{n} = \left(m_{2avg}\left(\frac{S}{D}\right) + b_{2}\right)ARI + 1 \tag{19}$$

The next step to this analysis was plotting dry unit weight versus b_2 . This relationship can be seen in Figure 4.21.

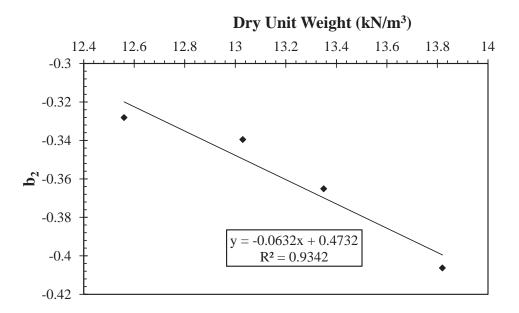


Figure 4.21: Dry unit weight versus b₂.

Once again, a highly linear correlation between dry unit weight and b_2 resulted. The equation for the best fit line through the test data is shown in Figure 4.21, which displays a relationship where dry unit weight increases as b_2 decreases. The slope and y-intercept presented in Figure 4.21 were assumed to be material constants of the test media used in this research and will be referred to as m_3 and b_3 , respectively. For this research $m_3 = -0.0632$ and $b_3 = 0.4732$. However, further research should be focused on determining m_3 and b_3 material constants for various materials. Equation 20 shows the linear relationship between dry unit weight and b_2 .

$$b_2 = m_3 \left(\gamma_{dry} \right) + b_3 \tag{20}$$

where m_3 = material constant, b_3 = material constant and γ_{dry} =dry unit weight.

At this point substitute Equation 20 into Equation 19 to get Equation 21 which gives the final relationship that calculates a normalized average Lugeon value.

$$LV_n = \left(m_{2avg}\left(\frac{S}{D}\right) + m_3\left(\gamma_{dry}\right) + b_3\right) ARI + 1$$
 (21)

where LV_n = normalized average Lugeon value, ARI = area replacement index, m_3 = material constant = -0.0632, b_3 = material constant = 0.4732, m_{2avg} = 0.1419, S/D = spacing-to-diameter ratio and γ_{dry} = dry unit weight.

Equation 21 is a function of S/D ratio, dry unit weight and area replacement index. This relationship quantifies the effectiveness of a grout curtain as a function of three parameters which include S/D ratio, dry unit weight and area replacement index.

4.7 Summary

It is possible to quantifiably predict the effectiveness of a grout curtain using a physical model knowing a few properties of the underlying soil material and grout curtain. Several trends and relationships developed when comparing normalized average pore pressure, normalized q/L, area replacement index and normalized average Lugeon values to one another at various S/D ratios and dry unit weights. These relationships along with further analysis, assisted in the creation of a new mathematical equation that helps predict the effectiveness of a grout curtain in a physical model. However, this new relationship has yet to be proven accurate using data from real life structures. To show that this relationship can be scaled up to real life structures, case history data needed to be obtained to assess the validity of this proposed relationship.

Chapter 5: Relationship Verification

To verify the accuracy of the newly developed relationship, case history data was collected and analyzed. The use of actual field data from different case history studies will further validate the relationship. Using case history data presented in Chapter 2 will help demonstrate that it is possible to predict the effectiveness of a grout curtain using additional data that was not used in the creation of this quantifiable relationship.

All four case history studies that were analyzed to assess the applicability of the proposed relationship (Equation 21) are dam structures located in South Korea. The specific names of the dams were not identified in the Hong et al. (2003) research, but rather identified as Site 1, Site 2, Site 3 and Site 4. Site 1, Site 3 and Site 4 are all concrete-faced rock fill dams while Site 2 is a gravity concrete dam. Metamorphic and sedimentary rock formations underlie all four dam structures. Table 2.1 presented in Chapter 2 provided pertinent information about the case history dams. This table is presented again here as Table 5.1 for continuity.

Table 5.1: Site conditions and grouting properties of four case history studies (Hong et al. 2003).

	Site 1	Site 2	Site 3	Site 4
Tymo of Dom	Concrete Face	Gravity Concrete	Concrete Face	Concrete Face
Type of Dam	Rock Fill Dam	Dam	Rock Fill Dam	Rock Fill Dam
Type of Rock	Metamorphic	Sedimentary	Sedimentary	Sedimentary
Number of Holes	231	35	28	41
Depth of Holes (m)	40	20	20	40
Grout Spacing	1 column with 1.5 m spaced holes	2 columns at 3.0 m zigzag interval; 3.0 m spaced holes	1 column with 1.5 m spaced holes	2 columns at 3.0 m zigzag interval; 3.0 m spaced holes
Span of Grout Curtain (m)	347	105	42	123
Average Lugeon Value Before Grouting	3	3.9	11	2.37
Average Lugeon Value After Grouting	1	1.9	3	1
Injection Pressure (Mpa)	0.39-2.45	0.15-0.59	0.15-0.59	0.29-2.45
Assumed Grout Column Diameter (m)	1.016	1.016	1.016	1.016

Four separate parameters for each site had to be identified, which included normalized average Lugeon value, S/D ratio, area replacement index and dry unit weight. S/D ratios and area replacement index values were calculated for all four sites based on the geometry of the individual grout curtains which was presented in Chapter 2. The diameters of the grout columns include allowances for horizontal spread of the grout material. Horizontal spread is the maximum distance the grout material can penetrate the soil media. Typical grout curtain designs account for 1.016 m of horizontal spread (Hacker, 2014). Thus, the diameters of the grout columns for the case histories were assumed to be 1.016 m. Normalized average Lugeon values were calculated by dividing the average Lugeon value after grouting by the average Lugeon value before grouting. Dry unit weights of the underlying material were not presented. However, underlying rock types were given. With this knowledge, average dry unit weights for these underlying rock formations were assumed based on research done by Magner (1963) and

Akeinyemi et al. (2012). Metamorphic and sedimentary rocks were assumed to have unit weights of 23.56 kN/m³ and 22.77 kN/m³, respectively. These unit weights are well outside the unit weights tested in this research. To accommodate the assumed unit weights of the metamorphic and sedimentary rock formations, predicted curves were developed holding the S/D ratio and ARI constant in Equation 21. Predicted curves matching the unit weights of the underlying rock material allowed for easy comparison.

Figure 5.1 illustrates the case history data plotted against predicted values.



Figure 5.1: Case history data versus predicted values plotted at dry unit weights of (A) 22.77 kN/m³ and (B) 23.56 kN/m³.

As seen in Figure 5.1, all case history studies have S/D ratios between 1 and 3. Since the underlying rock material seen at Site 2, Site 3 and Site 4 were similar; these sites were plotted together, seen in Figure 5.1A. Site 1 composed of metamorphic rock, was plotted by itself seen in Figure 5.1B. To truly assess the applicability of the proposed relationship, predicted normalized average Lugeon values were plotted versus actual normalized average Lugeon values for all four case histories. Predicted values are compared to actual values in Figure 5.2.

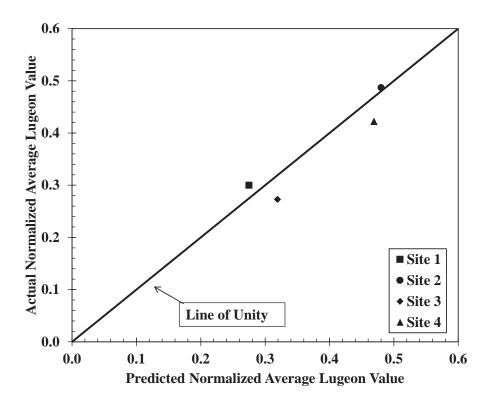


Figure 5.2: Relationship between predicted normalized average Lugeon value versus actual normalized average Lugeon values.

Figure 5.2 illustrates the applicability of the relationship presented in Equation 21 using data from four separate case histories. As is seen in the figure, all four points plot near the line of unity. The absolute percent error was calculated for all four case histories using Equation 22.

Absolute %
$$Error = \left| \frac{Actual\ Value - Expected\ Value}{Actual\ Value} \right| \times 100$$
 (22)

Table 5.2, tabulates absolute percent error for each of the 4 case histories.

Table 5.2: Calculated absolute percent errors for all case history studies.

	Predicted Normalized	Actual Normalized	Absolute percent
	average Lugeon value	average Lugeon value	error (%)
Site 1	0.27	0.30	8.40
Site 2	0.48	0.49	1.42
Site 3	0.32	0.27	17.07
Site 4	0.47	0.42	11.20

Evaluating the absolute percent error values tabulated in Table 5.2, it is evident that the relationship presented in Equation 21 is reliable when predicting normalized average Lugeon values. Site 3 shows the highest absolute percent error of 17.1 percent. Site 2 on the other hand shows the lowest absolute percent error of 1.42 percent. Site 1 and Site 4 have absolute percent error values that fall in between the absolute percent errors of Site 2 and Site 3.

Normalized average Lugeon values can be predicted as a function of three parameters, S/D ratio, dry unit weight and area replacement index to assess the effectiveness of a grout curtain. Case history data further validates that the relationship that developed while testing in a box, can be scaled up to real life structures. Being able to reliably predict Lugeon values will prove very beneficial when designing grout curtain structures in the future.

Chapter 6: Summary and Conclusions

This thesis presented the results of a laboratory study that quantified the effectiveness of a grout curtain using a laboratory-scale physical seepage model. This study investigated changes in pore pressures and discharge volumes to determine corresponding Lugeon values at various unit weights and spacings. The development of a new performance parameter similar to the area replacement ratio used in ground improvement methods was utilized to help develop a quantifiable relationship. This research discovered a linear relationship that takes into account soil unit weight, grout curtain spacing and a new performance parameter that can be used to help predict the effectiveness of a grout curtain. Verification of this relationship was done by using various case history studies.

The information presented in Chapter 2, discussed the current methodologies in which grout curtains are assessed. However, it is pointed out that most of the prior research was predominately based on qualitative means such as prior experience and rules of thumb rather than quantitative means. Quantifying the effectiveness of a grout curtain prior to installation would prove very beneficial. It would help engineers minimize factors such as time, cost and labor.

Chapter 3 presented the development of a physical model. This physical model was used to help determine and illustrate various geotechnical trends that exist within the test media with various grout curtain configurations. Measurements of pore pressure and discharge volume for various S/D ratios at different dry unit weights were taken. These measurements were subsequently used to calculate Lugeon values, which were the primary basis for quantification.

It was presented in Chapter 2, that an area replacement parameter similar to Priebes (1991) and Priebes (1995) area replacement ratio for ground improvement, could be used as a means to quantify the effectiveness of a grout curtain. Therefore, a new performance parameter known as the area replacement index was developed and presented in Chapter 4.

The main goal of this research was to generate a new quantifiable relationship to predict the effectiveness of a grout curtain based on Lugeon values and area replacement index values. This research illustrated a linear relationship that is a function of three parameters S/D ratio, dry unit weight and area replacement index. Knowing these three parameters allows for the prediction of the effectiveness of a grout curtain.

Case history data was obtained and analyzed for four various sites to assess the accuracy of the newly developed quantifiable relationship. Plotting actual data from four various case histories versus predicted data utilizing the newly developed quantifiable relationship exemplified a fairly accurate relationship. This comparison provided the necessary evidence to show the relationship can be scaled.

Thus, it is possible to accurately predict the effectiveness of a grout curtain knowing three parameters S/D ratio, dry unit weight and area replacement index. Quantifying the effectiveness of a grout curtain gives engineers the ability to optimize their design, while providing an adequate solution.

The research that was presented in this thesis only covered five S/D ratios at five dry unit weights for one test media. This does not cover a wide enough spectrum to consider this a relationship to be used by industry for design. However, there is evidence presented in this thesis that supports the use of this newly developed quantifiable

relationship to assess the effectiveness of a grout curtain. This is a significant step forward in the direction of assessing the effectiveness of a grout curtain quantifiably rather than qualitatively. The time and money that would be saved, further justify more research to be completed for this quantifiable relationship.

Future research should be aimed at further understanding the relationship between normalized Lugeon values with respects to S/D ratio and dry unit weight. This research showed that normalized average Lugeon values vary linearly as a function of S/D ratio, dry unit weight and area replacement index. However, the ranges of S/D ratios and dry unit weights were limited. Having a wider range of tests will allow for a better understanding of this relationship. Along the same lines, more test medias should be tested following the same procedures outlined in this research. As mentioned earlier, the quantifiable relationship that predicts the effectiveness of a grout curtain takes into account two material constants b₃ and m₃. Using different test medias will help determine these material constants and will provide further understanding of this quantifiable relationship. This proposed research could ultimately lead to a more accurate and useful relationship.

Appendix A:

Index Testing on Test Sand

Table A.1: Particle grain size analysis data (ASTM D6913) for Kentucky River sand.

Sieve Number	Opening (mm)	Weight Retained Each Sieve (g)	Weight of Soil Retained (g)	Weight of Soil Passed (g)	Percent Finer
3/8"	9.500	0.00	0	1471	100.000
No. 4	4.750	0.00	0	1471	100.000
No. 10	2.000	0.00	0	1471	100.000
No. 20	0.850	11.80	11.8	1459.2	99.198
No. 40	0.425	18.10	29.9	1441.1	97.967
No. 60	0.250	183.20	213.1	1257.9	85.513
No. 100	0.150	997.10	1210.2	260.8	17.729
No. 140	0.106	127.60	1337.8	133.2	9.055
No. 200	0.075	66.30	1404.1	66.9	4.548
Pan	0.000	66.90	1471	0	0.000
	Total	1471			·

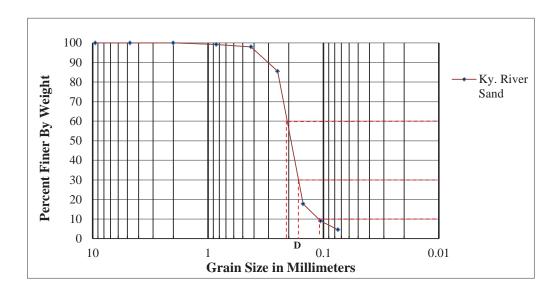


Figure A.1: Graphical representation of the particle grain size analysis test for Kentucky River sand.

Table A.2: Specific gravity data (ASTM D854) for Kentucky River sand.

Specific Gravity							
Soil Description	Ky. River Sand		Ky. River Sand		Ky. River Sand		
Test number	1		2		3		
Nominal Pycometer Volume	500	ml	500	ml	500	ml	
Oven Dry Weight of Soil	100	g	96.3	g	89.2	g	
Weight of Pycometer+ Water	665	g	660.7	g	662.6	g	
Weight of Pycometer+ Water+Soil	727.4	g	721.1	g	718.4	g	
Temperature	20	deg. Cels	20	deg. Cels	20	deg. Cels	
Correction Factor K	1		1		1		
Specific Gravity	2.	66	2.	68	2.	67	

Table A.3: Particle grain size analysis data (ASTM D6913) for Ohio River Valley Sand.

Sieve Number	Opening (mm)	Weight Retained Each Sieve (g)	Weight of Soil Retained (g)	Weight of Soil Passed (g)	Percent Finer
3/8"	9.500	0.00	0	1073.58	100.000
No. 4	4.750	38.92	38.92	1034.66	96.375
No. 10	2.000	139.27	178.19	895.39	83.402
No. 20	0.850	228.65	406.84	666.74	62.104
No. 40	0.425	451.43	858.27	215.31	20.055
No. 60	0.250	179.37	1037.64	35.94	3.348
No. 100	0.150	32.46	1070.1	3.48	0.324
No. 140	0.106	1.35	1071.45	2.13	0.198
No. 200	0.075	0.33	1071.78	1.8	0.168
Pan	0.000	1.80	1073.58	0	0.000
	Total	1073.58			

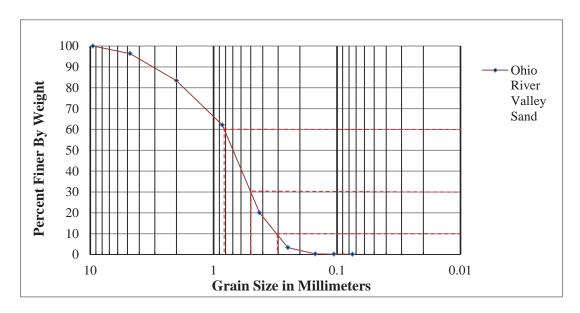


Figure A.2: Graphical representation of the particle grain size analysis test for Ohio River Valley sand.

Table A.4: Specific gravity data (ASTM D854) for Ohio River Valley sand.

Specific Gravity								
Soil Description	Ohio River Valley Sand		Ohio River Valley Sand		Ohio River Valley Sa			
Test number	1		2		3			
Nominal Pycometer Volume	500	ml	500	ml	500	ml		
Oven Dry Weight of Soil	103.2	g	112.3	g	110.8	g		
Weight of Pycometer+ Water	678	g	683	g	664	g		
Weight of Pycometer+ Water+Soil	742.3	g	753.1	g	732.6	g		
Temperature	20	deg. Cels	20	deg. Cels	20	deg. Cels		
Correction Factor K	1		1		1			
Specific Gravity		2.65		2.66	-	2.63		

Appendix B:

Step-by-step Manual for Program Development in LabVIEW 2012

The pore pressure transducers used in this research were the Kulite XCL-11-250-150SG sealed gauge pore pressure transducers rated at 150 pounds per square inch. The three pore pressure transducers used in this research all contained calibration certificates provided by the manufacturer Kulite. The various information Kulite provided on these certificates will be essential data for the verification of Kulites calibration.

Wiring Modules

The first step in the calibration process of the Kulite XCL-11-250-150SG sealed gauge pore pressure transducers is to correctly assemble the module in the chaise from National Instruments(NI). The module that was used in the proper calibration of the Kulite XCL-11-250-150SG sealed gauge pore pressure transducers was the NI 9237 module. The NI 9237 module is a 4-channel, 24-Bit Half/Full-Bridge Analog Input Module. Figure B.1 shows the proper location within the NI chaise for the NI 9237 module.

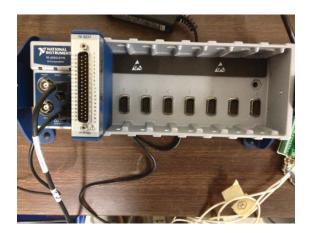


Figure B.1: Proper Location for the NI 9237 Module in the NI chaise

The second step is to properly wire the three Kulite XCL-11-250-150SG sealed gauge pore pressure transducers to the sub-connector that will eventually be inserted into the NI 9237 module. The three Kulite pore pressure transducers were wired in a fully active four arm wheatstone bridge. Each pore pressure transducer has five individual

wires running from the pore pressure head with their own distinct color. Figure B.2 is showing the five different wires running from the Kulite XCL-11-250-150SG sealed gauge pore pressure transducer.

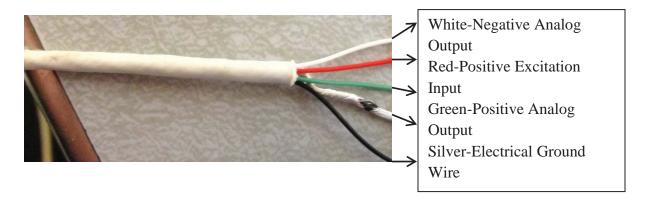


Figure B.2: Wires within each Kulite XCL-11-250-150SG sealed gauge pore pressure transducer

The red wire corresponds to the positive excitation input, the black wire corresponds to the negative excitation input, the green wire corresponds to the positive analog output, the white wire corresponds to the negative analog output, and the thick silver wire is the electrical ground wire.

Once one is familiar with the different types of wires that are within each Kulite XCL-11-250-150SG sealed gauge pore pressure transducer, it is time to wire all three pore pressure transducers to the NI sub-connector. Figure B.3 shows the proper way to wire each of the three Kulite XCL-11-250-150SG sealed gauge pore pressure transducers in a fully active four arm wheatstone bridge configuration.

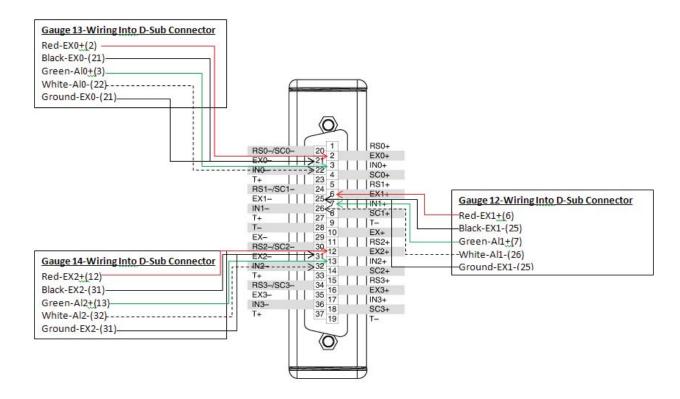
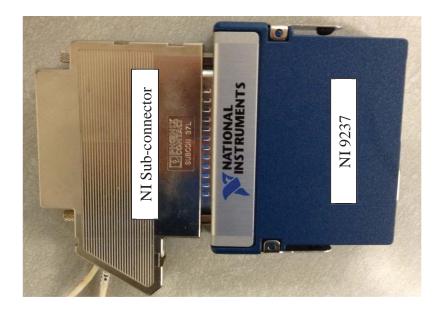



Figure B.3: Wiring diagram for pore pressure transducers in a fully active four arm Wheatstone bridge configuration

It is important to note that the ground wires for each of the three Kulite XCL-11-250-150SG sealed gauge pore pressure transducers were connected to the negative excitation input pin due to grounding issues. A voltmeter was used to check that there was no significant voltage difference between the ground wire and the negative excitation input pin.

Once the wires are correctly connected to the NI sub-connector, insert the NI Sub-connector into the NI 9237 Module as seen in Figures B.4 and B.5.

Figures B.4 (Top) and B.5 (Bottom): Show the connection of the NI sub-connector to the NI 9237 Module

Once the NI sub-connector is inserted into the NI 9237 Module which is then inserted into the NI chaise like Figure 1 shows, it is time to start acquiring data through National Instruments LabVIEW 2012 software.

LabVIEW Program Set-Up

Now it is time to install National Instruments LabVIEW 2012 software into the computer. The LabVIEW 2012 software comes with two cd-ROMs, both of which need to be installed for full use of the software. Once both cd-ROMs are installed, open up NI MAX to make sure that the modules are being read by the LabVIEW 2012 software, after being connected through the USB port. Once the NI MAX user menu opens up, there will be a box along the left hand side of the window. Now click on Devices and Interfaces. The following window should look like the Figure B.6 if the LabVIEW 2012 software is recognizing the NI chaise and NI 9237 Module correctly.

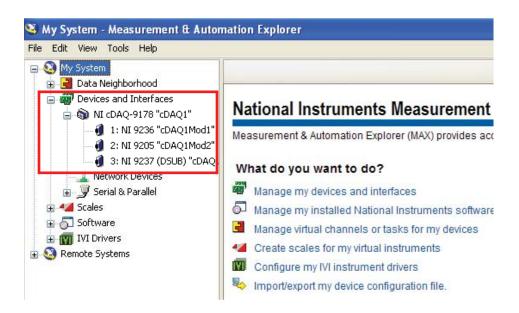


Figure B.6: NI Max user window showing the NI chaise and NI 9237 Module being recognized by LabVIEW 2012.

The next step in getting the data aquistion system working is to open up a brand new VI page in LabVIEW 2012 software. Once you open up a new VI work page, two windows should appear; the first being the Block Diagram, and the second being the

Front Panel. The Block Diagram is where the actually computer code is written and the Front Panel is where all the data is displayed. The figure below shows the two windows that appear when you open up a new VI work page.

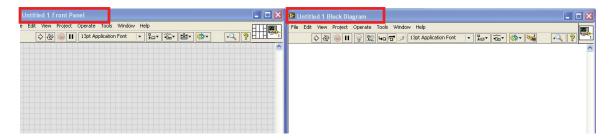


Figure B.7: Shows the Front Panel and the Block Diagram windows once opening up a new VI work page in LabVIEW 2012.

To begin writing code for the data aquistion system, the functions window must be opened in the Block Diagram window. To open the functions window, right click anywhere in the Block Diagram window and click on the push pin in the upper left hand corner of the functions window. Now the functions window should appear and look like the Figure B.8

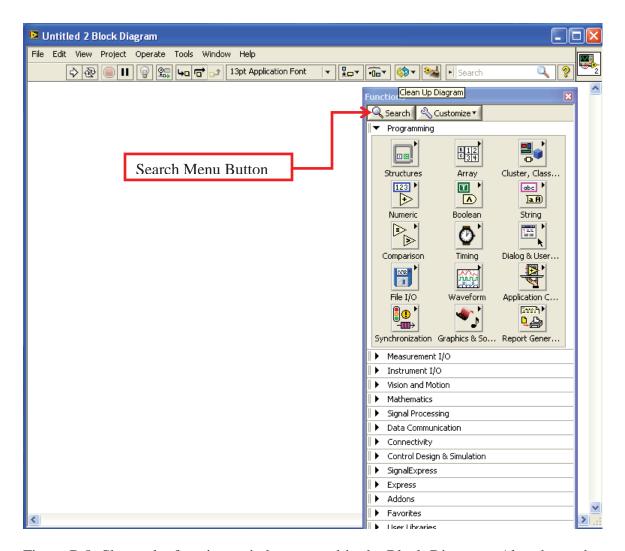


Figure B.8: Shows the functions window opened in the Block Diagram. Also shows the location of the search menu button.

Now that the function window is opened in the Block Diagram, it is time to start configuring functions to acquire pressure data from our three pore pressure transducers. The first function needed is the DAQ Assistant. To find the DAQ Assistant function, click on the "Search" button in the top left corner of the functions and type in "DAQ Assistant". This can be seen in Figure 8 above. Click and drag the DAQ Assistant Input Icon anywhere on the Block Diagram. A window will appear asking what type of signal it is. Click on Acquire Signals. More options will appear under Acquire Signals. Click

on Analog Input. Once again more options will appear under Analog Input. Click on Pressure then Pressure(Bridge). Now a new window will appear asking for what channels are going to be used. Click on the plus sign to the left of where it shows the NI 9237 Module. This will allow you to see all the different channels within the NI 9237 Module. Since we will only be using three pore pressure transducers, we only need to select channels ai0, ai1, and ai2. Then click the finish button in the bottom of the window. The window for selecting the channels should look like Figure B.9.

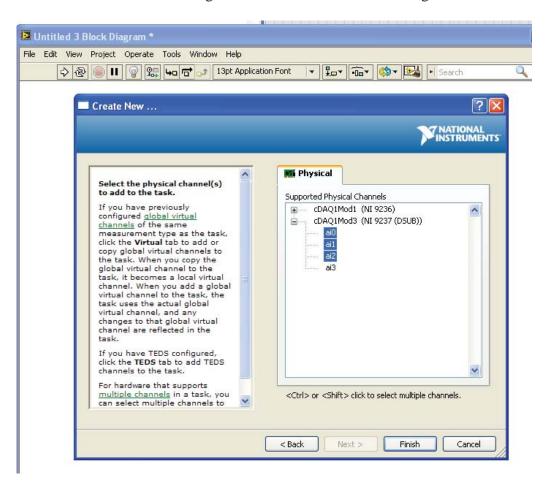


Figure B.9: This figure is showing the three channels that need to be selected to acquire data from the three different pore pressure transducers.

After clicking the finish button, the DAQ Assistant window will appear. On the left hand side of the DAQ Assistant Window, a little box titled "Channel Settings" should appear.

Make sure to highlight all three channels named Pressure_0, Pressure_1, and Pressure_2 so that all three channels can be set up the exact same way. Under the tab "Settings" there are many boxes for user input. Under "Signal Input Range", the maximum input is 150, the minimum input is 0 and the scaled units are pounds per square inch(psi). The bridge type selected should be Full Bridge and the Vex Source selected should be Internal. The Vex Value is 10 volts and the bridge resistance is 1000 ohms(1k ohms). Select <No Scale> for Custom Scaling. Under "Time Settings" the acquisition mode selected should be Continuous Samples, the Samples to Read should be 1613(1.613k) and the Rate should be 1613 hertz(1.613k). Figure B.10 below shows all the user input under the settings tab in the DAQ Assistant window.

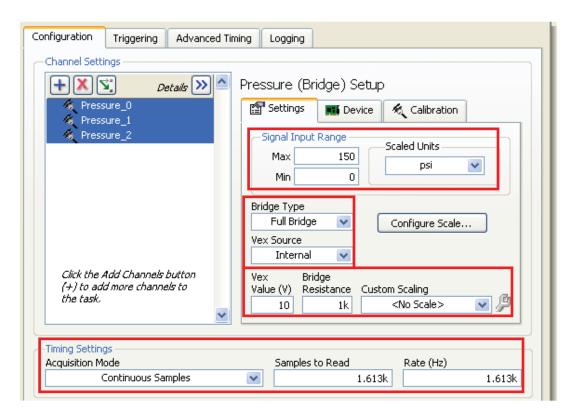


Figure B.10: Shows all the user input that are required for all three channels. By highlighting all three channels at once all the user inputs for all channels will be changed.

After inputing all the user inputs under the settings tab, highlight the first pore pressure transducer (Pressure_0) and click on the "Configure Scale" button which can be seen in Figure B.11.

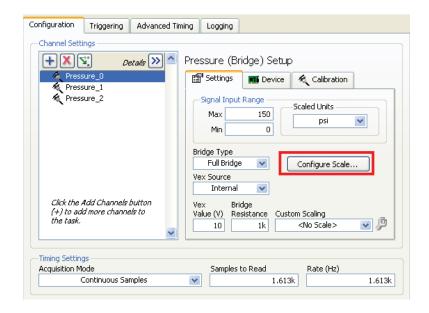


Figure B.11: Shows the location of the configure scale button for pore pressure transducer Pressure_0.

Upon clicking the "Configure Scale" button for the first pore pressure transducer, a new window will appear asking for more user input. Under scale type select "Two-Point Linear". Under electrical, type in 0 for the "First Value" box and 0.0737 for the "Second Value" box. The 0.0737 value is the sensitivity value that comes from the calibration sheet provided by the pore pressure transducer manufactureer divided by 10. Under physical, type in 0 for the "First Value" box and 1 for the "Second Value" box. Make sure the units under the electrical section is mV/V and units under the physical section are psi. Then click the "OK" button. Figure B.12 shows the exact user input for the first pore pressure transducer.

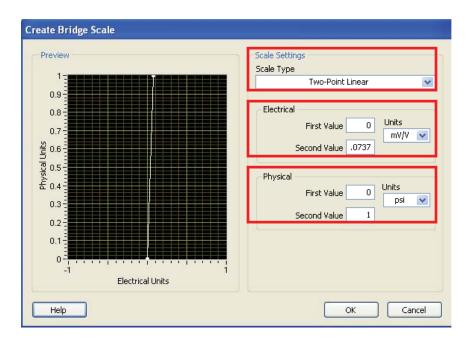


Figure B.12: Shows the user inputs for the first pore pressure transducer(Pressure_0).

Now repeat the same process to configure the scale for the second pore pressure transducer (Pressure_1). Highlight the second pore pressure transducer (Pressure_1) and click on the "Configure Scale" button which can be seen in Figure B.13.

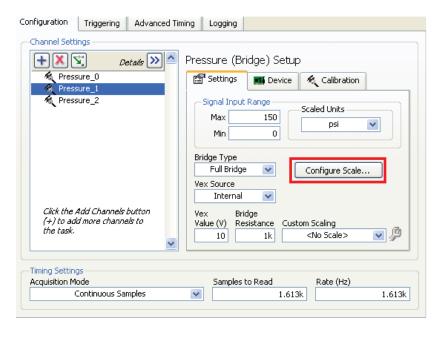


Figure B.13: Shows the location of the configure scale button for pore pressure transducer Pressure_1.

Upon clicking the "Configure Scale" button for the second pore pressure transducer, a new window will appear asking for more user input. Under scale type select "Two-Point Linear". Under electrical, type in 0 for the "First Value" box and 0.0738 for the "Second Value" box. The 0.0738 value is the sensitivity value that comes from the calibration sheet provided by the pore pressure transducer manufactureer divided by 10. Under physical, type in 0 for the "First Value" box and 1 for the "Second Value" box. Make sure the units under the electrical section is mV/V and units under the physical section are psi. Then click the "OK" button. Figure B.14 shows the exact user input for the second pore pressure transducer.

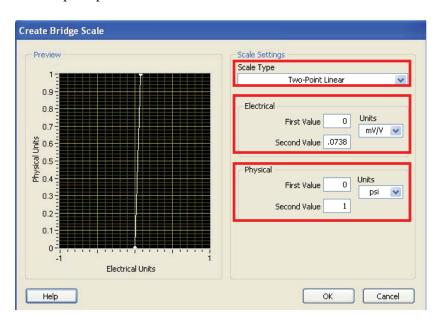


Figure B.14: Shows the user inputs for the second pore pressure transducer (Pressure_1).

Finally repeat this same procedure for the third pore pressure transducer(Pressure_2). Highlight the third pore pressure transducer (Pressure_2) and click on the "Configure Scale" button which can be seen in Figure B.15.

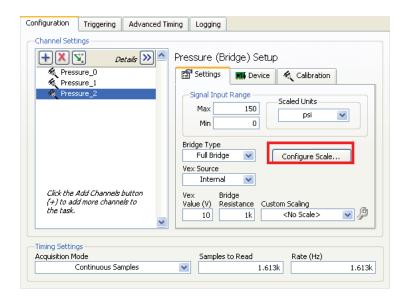


Figure B.15: Shows the location of the configure scale button for pore pressure transducer Pressure_2.

Upon clicking the "Configure Scale" button for the third pore pressure transducer, a new window will appear asking for more user input. Under scale type select "Two-Point Linear". Under electrical, type in 0 for the "First Value" box and 0.0674 for the "Second Value" box. The 0.0674 value is the sensitivity value that comes from the calibration sheet provided by the pore pressure transducer manufactureer divided by 10. Under physical, type in 0 for the "First Value" box and 1 for the "Second Value" box. Make sure the units under the electrical section is mV/V and units under the physical section are psi. Then click the "OK" button. Figure B.16 shows the exact user input for the third pore pressure transducer.

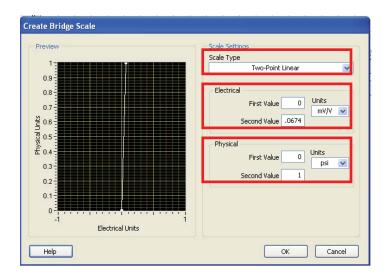


Figure B.16: Shows the user inputs for the third pore pressure transducer (Pressure_2).

Initial Pore Pressure Calibration

Now that all the settings are correct for all three pore pressure transducers the next step in this process is to calibrate all three pore pressure transducers at once. To make sure all three pore pressure transducers get calibrated at the same time, make sure all three channels are selected in the channel settings like in Figure B.17. Then click on the "Calibration" tab inside the DAQ Assistant window. After clicking on the "Calibration" tab the window you should be seeing should look like the figure below.

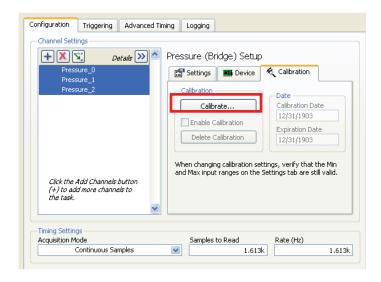


Figure B.17: This figure shows the window that should appear when the "Calibration" tab is clicked within the DAQ Assistant window.

Once this window appears click on the "Calibrate..." button which can be seen in Figure B.17. The user will be asked to type in the calibrator's name then click the "Next" button. Then the Channel Calibration Wizard Window should appear. NI LabVIEW 2012 will ask for additional user input for the number of samples to average and the sample rate at which the software will acquire data. However, it is important to note that the user should not have to input any information since the NI LabVIEW 2012 software has defaulted values for this criteria. The defaulted values for the number of samples to average and the sample rate both are 25000. Figure B.18 shows all the user input, in our case the defaulted values in the Channel Calibration Wizard window.

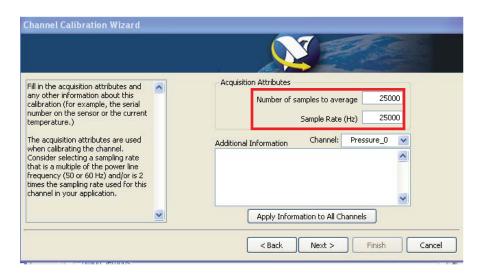


Figure B.18: This figure shows all the user input for the Channel Calibration Wizard window.

After all the user input is in the Channel Calibration Wizard window click the "Next" button to proceed in the calibration process. Now a new user panel within the Channel Calibration Wizard window will appear. There will be a table that will appear in this new

user panel. There should be three columns, a Reference column, an Uncalibrated column and a Difference column. You will be able to see this table in Figure B.19. The Reference column is the only column that user input is required.

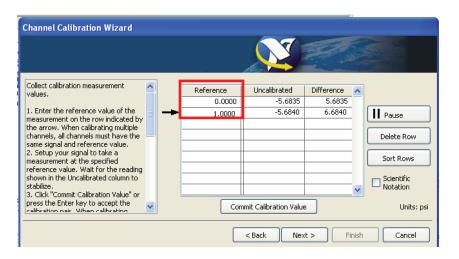


Figure B.19: Shows the values that should be inserted into the Reference Column of the Channel Calibration Wizard window.

Before proceeding any further with the calibration of these three pore pressure transducers within the NI LabVIEW software, one should find a tall narrow cylinder that is approximately 32 inches tall. This cylinder will be used to help in the calibration of these pore pressure transducers. Put a thin piece of tape along the length of the cylinder. Now make marks on this piece of tape that correspond to 0.1 psi increments starting at 0 psi and ending at 1.0 psi. To find the correct heights for different pressure heads use the following equation:

$$\sigma = \gamma H \tag{B.1}$$

Where $\sigma = pressure$, $\gamma = unit weight of water$, and H = height

Once all the pressure increments are marked on the calibration test tube, the calibration test tube should look similar to Figure B.20.

Figure B.20: Shows the bottom half of the calibration test cylinder. Also shows the incremental pressure markings along the outside of the calibration test cylinder.

Once all the pressure increments are marked on the calibration test tube, continue with the calibration process within the NI LabVIEW 2012 software. User input is only required in the Reference column of the Channel Calibration Wizard window. Once all three pore pressure are correctly wired like Figure 3 to the NI sub-connector, and the NI sub-connector is plugged into the NI 9237 Module like Figure 5 and the NI 9237 Module is inserted into the correct location of the NI chaise seen in Figure 1, place all three pore pressure transducers at the bottom of the calibration test tube where the test tube marking should indicate 0 psi. In the first row of the Reference column insert the value 0. The Reference column is the so called "theoretical" pressure values that the pore pressure transducers should be reading. The Uncalibrated column shows the raw data values that are coming from the pore pressure transducers. Once the Reference value for the 0 psi marking is inputted, click the "Commit Calibration Value" button at the bottom of the window. Now fill the calibration test tube up with room temperature water to the 1.0 psi

marking. In the second row of the Reference column type in the number 1, then click the "Commit Calibration Value" button at the bottom of the window. Click the "Next" button until you see a window that shows a "Finish" button. Once you see the finish button at the bottom of the window click it. Then inside the DAQ Assistant window click the "OK" button in the bottom right hand corner. The Block Diagram should now look similar to Figure B.21.

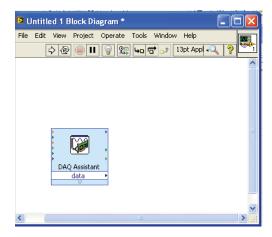


Figure B.21: Shows the DAQ Assistant function icon on the block diagram after being calibrated.

Once the DAQ Assistant function is in the Block Diagram, the next function to insert into the block diagram is the Sample Compression function. To insert the Sample Compression function, go back to the functions tool bar, click on the "Search" button and type in "Sample Compression". When the icon for the function appears, drag and drop the function anywhere in the Block Diagram window. A window will appear after inserting the Sample Compression function. The window that pops up should look like Figure 22. The only user input in this window is the reduction factor. The reduction factor should be set to 1613 and the reduction method should be mean. After these user

inputs are inserted click the "OK" button. The outlined red boxes in Figure B.22 show the user where all the user inputs are located for the Sample Compression function.

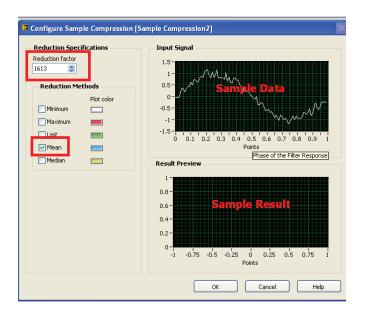


Figure B.22: Shows the window that pops up after inserting the Sample Compression function into the block diagram. The red boxes indicate where user input is required.

The next function to be inserted into the Block Diagram is the Dynamic Data Type function. To insert the Dynamic Data Type function, go back to the functions tool bar, click on the "Search" button and type in "Dynamic Data Type". When the icon for the function appears, drag and drop the function anywhere in the Block Diagram window. A window will appear after inserting the Dynamic Data Type function and should look similar to Figure B.23. Under resulting data type, select "2D array of scalars-columns are channels". Also, under Scalar Data Type select "Floating point numbers (double)". The red outlined boxes show where user inputs are required.

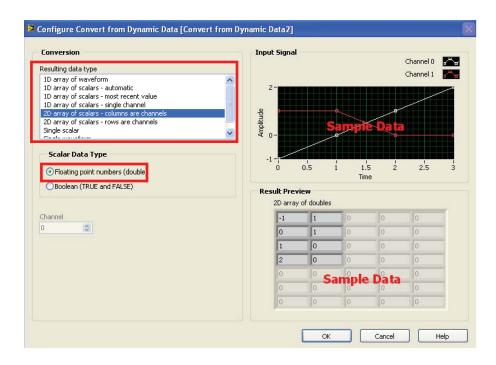


Figure B.23: Shows the window that pops up after inserting the Dynamic Data Type function into the block diagram. The red boxes indicate where user input is required.

Now insert the Insert Into Array function into the Block Diagram. Go back to the functions tool bar, click on the "Search" button and type in "Insert Into Array". When the icon for the function appears, drag and drop the function anywhere in the Block Diagram window. Do the exact same procedure but for the Output Array. Once all the functions are in the Block Diagram enclose the functions within a while loop so continuous measurements can be taken.

Once all the functions are within the while loop in the Block Diagram, take a look at Figure B.24 to see the correct wiring connections between functions.

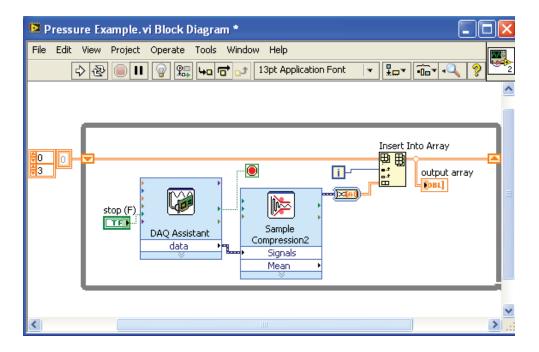


Figure B.24: Shows the correct wiring connections between functions within the Block Diagram.

Once all the connections are made similar to Figure B.24, it's time to start acquiring data from the three pore pressure transducers. By hitting the "Run" button on the Block Diagram, a table of numbers will appear which should look similar to Figure B.25. The first column shows pressure values coming from the pore pressure transducer in channel ai0, the second column shows pressure values coming from the pore pressure transducer in channel ai1, and the third column shows pressure values coming from the pore pressure transducer in channel ai2.

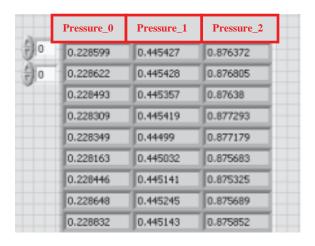


Figure B.25: Shows the table that will appear after hitting the "Run" button in the Block Diagram. This table will appear in the Front Panel.

Secondary Calibration

Once values are appearing in the table, it's time to verify that these readings from the pore pressure transducers are in fact reading the correct pressure. First secure all three pore pressure transducers with a piece of tape to the bottom of the calibration test tube. Next start filling up the calibration test tube with water, to levels that correspond to the different 0.1 psi incremental markings. First start with 0.1 psi and start working your way up until you reach 1 psi. All three pore pressure transducers should be reading similar numbers at every 0.1 psi increment. If this is not the case, a secondary calibration must be performed to verify that the readings are accurate. The secondary calibration is similar to the first calibration that we performed in NI LabVIEW 2012. The first step in the secondary calibration is to make sure all the pore pressure transducers are at the same moisture content. To make sure all three pore pressure transducers are at the same moisture content, dip them into water for approximately one minute. Once the pore pressure transducers have been sitting in water for one minute, let all three pore pressure transducers are at the same

moisture content, secure them to the bottom of the calibration test tube with a piece of tape. Then fill the calibration test tube with water up to the 0.4 psi marking. Run the code in NI LabVIEW 2012 and pick a number from each column that is representative of the pressure readings for each pore pressure transducer. Formulate three tables, one for each pore pressure transducer in Microsoft Excel. All three tables should have a column for LabVIEW pressure readings and a column for theoretical pressure values. The theoretical pressure values are the markings on the side of calibration test tube. Once you have picked a representative number for each pore pressure transducer at the 0.4 psi marking on the calibration test tube, insert values into your Excel table under the LabVIEW pressure readings column. Continue the above procedure at every 0.2 psi marking starting at 0.4 psi and ending at 1.0 psi on the calibration test tube. Thus, you should have a total of 5 different LabVIEW pressure readings and 5 different theoretical pressure values for each pore pressure transducer. Now, plot LabVIEW pressure readings versus theoretical pressure values for all three pore pressure transducers. Insert a linear trendline and display the equation of the trendline on the graph. Each pore pressure transducer will have a separate linear equation.

Now, the raw values that come from LabVIEW have to run through the specific equation for that pore pressure transducer that came from the secondary calibration. Once the secondary calibration is complete, nest the three different pore pressure transducers at different pressure markings inside the calibration test tube. Run the NI LabVIEW software, grab representative pressure readings for all three pore pressure transducers and then calculate the new pressure values by using the equations from the secondary calibration. These new pressure readings should match up to the pressure

markings on the calibration test tube where the pore pressure transducers are nested. The pore pressure transducers are now calibrated and ready to be used for application.

Appendix C:

Raw Data

폴										\$2.0 \$2.0 \$3.0 \$3.0 \$3.0 \$3.0 \$3.0 \$3.0 \$3.0 \$3		PVCSde8ySde	PVCPipe-Prim	PVCPipe-Primary and Secondary-Touching	PVC Ripe-Arimary US [†]	PVC Rpe-Almay and Secondary-Spaing of OS*Disc of Pipe										
40,0	Pore Pressu and PAC Pipes 13(k)	Esure-Gauge Porre F	Ne Presure-Gage (Noe Presure: Pove Presure 13(10a) Gage 12(10a) Gage 14(10a)	Avg. Pore (Presure (PPs)	re Normalized Pore re Pressure-Gauge 13(92a)	re Normalized Pore pe Pressure-Gauge 12)P29)	ore Normalized ove ge Presure-Gauge L4(M2)	Pore Normalised Aug. Pore (4) (As) Pressure (As)	Normalized Normalized Grouted Area MPa) Agg Alocal	Area Replacement Rational Multiphy Unite inverse of Materian Aggl Atotal	o Nomelized of Gruted Area Agr/Arocal	AreaReplacementRatio- Multiplyby the inverse of Maximum Agr(Albital	- Normalized if Groubed Area Agri Abotal	AreaRejlacement Ratio- Multiply by the inverse of Maximum Agy Auttal	Nomalized Grouted Area Agg/Atotal	Area Replazement Ratio- Muticipy by the inverse of C Maximum Aga, Abotal	Qout (mt.)	Time (mins) Le	Lengthinterval(m) (Q	Flow loss (Qout/Time/length) No (Vinin/meter)	Normalized Flow Loss	Average Lugan Value	Normalized Average Lugeon Value	lugeonYalue- Gauge 13	Lugeon Value Gauge 12	lugeonYalue- Gauge 14
Rund	0 5.11	5.184 5	5172 5212	5708		11	-	1	0	0	0	0	0	0	0	0	6155	×2	970	04790308	1	92.40067385		925781857	92,79061165	920784811
Run1	3 50	2001	5002 5188	SIIS	0197830216	0.99453096	1888460 9	17 (1985739979	111111111	IIIIIIII I	0.08726463	OTHITITI	10049633231	IIIIIIIII	0.03490685	OTHER	88	19	940	0.468086957	0.975.57855	91.5065818	1989457891	9230663706	91.9286376	9031197309
Run2	4 49	4961 4	4976 5.014	1984	50000000	0.962103635	S 0962010744	QV78008742	42 0.148148148	0.148148148	0.116355283	0.148148148	0.058177642	0148148148	0.046542113	0.148148148	1905	100	940	0.457472051	0.95355401	91.79551753	0.929137	9221492852	91,999483	9124017967
Run3	5 49	498 4	4894 4997	1881	09579753	0.945249033	3 0.958749041	41 099020931	31 0.185185185	0.185185185	0.14544104	0.185185185	0.072723052	0185185185	0.058177642	0.1818185	59	83	960	0.65947836	867,948	92.1348848	0.9909083	9266731105	92.83773499	900011989
Run4	6 47.	472 4	4641 4771	100	0908950617	0.897331787	7 0915387567	67 090745622	250 0.0000000	0,000,000	0.174532925	0.000000	0.087265463	03333333	0.06981317	0.000000	808	83	960	0,405782609	0.889291538	90.6061162	0.99020038	9057355872	91,999197	8945349166
RunS	7 44	4.68	458 468	885	0.857669753	0.883217324	4 0.88986552	32 0890057215	0.292929	0.292929	0.009621746	0.2929299	0.101810873	0282828	0.081448698	0.292929	158	83	960	0.404/94783	0.842725131	88.5365108	0.957351492	8991455807	88.53651108	873002988
Run6	8 44	4477	430 4421	1 4413	0853973765	0.849187935	5 0.84823498	48 0350452487	90000000	0.29629636	0.232710567	0.296296296	0.116355288	0.296296296	17274006000	0.29629620	174	100	960	0.384494783	0.001050915	87.10757914	0.941900351	96.8396776	87.5306821	M1239638
Run 7	9 40	4001	4073 4053	960	0.7717784	0.78750967	7 0.77762855	22 077899881	381 0.33333333	0.33388888	0.061799388	0.33388888	0.130899694	033333333	0.104719755	0.33333333	700	100	960	035495622	U73962FW	87.8098095	0.99499522	887169512	87.14866736	812181248
Run8	10 3.66		3331 3761	378	0710362346	0.740719258	8 0721603991	91 0724177801	780780787	0.37087087	0.2988209	037037037	0.14544104	0.37087087	0.116355283	037087087	3330	19	9/0	0329478261	0.674035151	86.0772812	0.9975901	878535461	844370372	850087774
Run 9	11 35	339	3637 3719	392	0.69036519	0.7030999	07135864	64 CTM/0254	54 0.407407407	7 0.407407407	0.31997703	0.407407407	0.15998515	0.407407407	0.127990812	0.407407407	3017	19	9/0	0314521739	927,65990	96.28854297	0.9304035	8787978182	86.4789465	845715889
Run 10	12 34		3373 3892	346	0.6577921	0.65216597	7 0.7886311	11 0.67255573	0,4444444	1 (Jammin)	03400682	O.WWWW	0.174532925	D44444444	0.13962634	0,4444444	686	19	9/0	0300087	0.633991665	87.13915119	מאזאכמאנט	892260146	90.20482347	8241085308
Run11	13 33		326 3487	33%	06389998	0.637277649	HZ46846300 6	SH 0645189579	579 0.481481	1481481481	0.378154671	0.481481481	0.189077336	0.481481481	0.151261889	0.481481	333	22	960	027836887	U579815184	83112668	0.89870199	8404133783	8442381751	80909096
Run 12	14 30		3009 3398	3135	039357099	0.9145988	3 0627014582	80 0.60M03909	909 0.518518519	0.518518519	0.407248492	0.518518519	0.203621746	0.518518519	0.162897397	0.518518519	300	22	940	0.061391304	0.54663888	88.38727276	0.901672418	8495005016	85.499197	79989935
Run 13	15 28	2881 2	1789 2971	1982	0557677469	0.529682367	7 057000698	98 055347946	95555555	999999999999999999999999999999999999999	0.49630213	0.55555556	0.218166156	95555550	0.174522925	03333336	233	22	940	0.22373913	0.466307646	78 0394562	0.843846139	77.39160513	81.68542951	753078948
Ru 14	16 2.99	2599 2	2003 2763	3884	020130303	0.519914927	PC2202294	94 051719066	99266688	1999999	0.465/21134	0.999999	0.232710567	0.9929299	0.186168454	0.5929259	3438	100	940	0211130435	0.489994771	78,67237664	0.83089016	81285571	78.5163871	7641347622
Run 15	17 24	2471 2	2567 2618	320	047658951	0.496306373	3 050230279	900000000000000000000000000000000000000	900	0.6362963	0.494509955	06296398	0.24725977	0.62962963	0.197803982	9626290	150	19	9/0	0119808896	0.413843088	77.834734	0.84524188	8037583798	77.3896325	758275617
Run 16	18 200	2002	222 1212	2139	039991338	0.410092807	7 040899463	68 0.4122591	H 0.66666667	/ (1 6666666)	0.523598776	(19999999)	0.061799388	199999990	1399961	19999990	1913	19	9/0	0166977256	0.34620765	77.7568528	0.840790287	802836985	78.42896091	WA3059
Run 17	18	1882	182 192	1833	032338062	0.352861562	2 037643897	87 0.36093582	SE CITEMBRA	HUENEUU I	0.553687596	ACEDIENCE O	0.276343798	ACENERO D	0.221075039	ACEDERO D	1634	19	9/0	0141217391	0.29256206	75.3963482	17199051810	7108372888	77.379925	71,976,0429
Run 18	30 173	1.38	1918 1915	180	034004815	0.351508121	1 0357421335	X 0.355021.04	LAUPUPUL KI	140H0H1	0.581776417	0.740740741	0.2988209	D-TAUTAUTAL	0.232710567	0.740741	1993	22	960	013636087	0.283928248	73.96102936	0.799745787	759596197	74,95097396	7115491108
Run 19	21 16	1689 1	180 1834	178	0315007716	0.348027842	2 0.5189076	76 0.338322199	E99 0.77777778	8 0.000	0.610865238	0.7777778	0.305433619	0.7777778	0.24646095	0.77777778	150	19	9/0	012909478	0.068889292	73.50113679	0.79477829	79,0223819	71.6902136	7136176568
Run 30	22 16	1665	161 1799	1988	0313464506	0.31726588	3 0345165004	04 0325346855	96 0.814814815	0.814814815	0.63954039	0.814814815	031997703	0814814815	0.25981624	0.814814815	140	22	960	010895622	0.054540578	75.19638036	0.813105508	781270903	77.3653927	300007207
Run 21	23 150	1504	1463 1623	1530	03013957	0.28286296	6 0311396777	77 0.2948356	66 (1818)182	1818182	0.6694288	0.851851852	033452144	0.851851852	0.057617152	0.818182	1330	22	960	0114783609	0.239173763	75.02131287	0.811210708	7631822387	78-4570121	7172249458
Run 22	М 13	1301 1	130 151	130	02099209	036295487	0.28971604	TE1207600 N	0.0000000000000000000000000000000000000	(188888889	0.698131701	(18888888	03490688	033333333	0.27925368	0.88888889	1180	22	960	010090896	0.213806849	73.8015073	0.79000855	788909735	75.4475788	6795277858
Run 23	25 128	1367 1	1289 14	139	0.24405854	0.24923605	5 0.068510898	98 0.25411097	906262600	906262610	0.72720522	0.9292936	03630061	90626550	0.29088209	0.9292936	MI	22	960	0.099472351	0.007283928	75.42851997	0.815721991	7851480732	77.1747563	710590062
Run3A	35 12	1235	12/8 1273	130	0236304012	024033256	02044244022	52 0240300617	196362963	8 (1929-2963	0.75630948	0.962963	0.378154671	09090963	0.30553737	0.95362963	Ħ	22	960	0096783609	0.001666969	77.61235661	0.83927785	7900621118	77.8621148	760718672
Run 25	71 17	12 1	1212 1244	1209	0231481481	0.29838747	7 023879989	69 0,234840699	799 1		0.78538163		0.30999002		0.314159365	1	1000	2	940	0094782609	0.197499547	77.7756639	0.84099995	789859775	78.3094752	76.19181763

Figure C.1: Raw Data from S/D=1, Unit weight = 12.56 $\rm kN/m^3$

														O// Dina. Driman	nd Complan, Cracing of									
									SSE SSE		PVCSde8ySide	PVC Ripe-Prins	PVC Ripe-Arimary and Secondary-Touching	MUNIDE-MINAY 05°0	ricripe-minayanoseomaay-spongor OS'toka di Alpe									
My Pare Normalized Pare Normal	Avg. Pare Normalized Pare Normalized Pare Marmalized Base Marmalized Aus Base	Avg. Pare Normalized Pare Normalized Pare Marmalized Base Marmalized Aus Base	Nomalized Pare Nomalized Pare Normalized Brea	Normalized Page Normalized Bros Mamalized Aus Bros	Memoly of Box	Mornelizadus Bros	\vdash	38	Area Replacement Rebio-	io- Nomdized	Area Replacement Ratio-	- Nomalized	Area Replacement Ratio-	Normalized A	Are a Replacement Ratio-				Flowloss			mont account for family	limam Valia.	linom Value.
Pressure Pressure-Gauge Pressure-Gauge Pressure-Gauge Lilloral Pressure (Gouled-Area Mea)	Pressure Pressure-Gauge Pressure-Gauge Pressure-Gauge Lilloral (Souted-Area Massure) (So	Pressure Pressure-Gauge Pressure-Gauge Pressure-Gauge Lilloral (Souted-Area Massure) (So	Presure-Gage Presure-Gage Usilos Presure Page 19/04)	Presure-Gauge 14(Pd) Presure (Pd) Accume (Pd) Accume (Pd)	Presure Gage 14(Pa) Presure (Pa)	Pressure (PPa) April Apr	Groubed Area Aed Atotal		Multiphybythe inverse of Maximum Ascillatel	e of Grouted Area	Mutiphyby the inverse of Maximum Ascillated	of Grouted Area Agr/Atotal	Multiply by the inverse of Maximum Aer/Atotal	Gouted Area N Aec.Abbtal	Multiply bythe inverse of Maximum Aes/Atotal	Qout(ml,)	Time (mins)	Length Interval(m) (Q	(Qout/Time/length) No (Unin/meter)	Normalized Flow to ss	Uge on Value	Value		Gauge 12
	5.209 1				1 1 0	1 1	1 0	H	0	0	0	0	0	0	0	Sign and the sign	Q.	910	0.485130435	1	981771896		1 93,60031541	92,70598792
1111111111 0 099014660 0 00000016 0 00000010 0 0000166688 0 1111111111	S.191 0.99977615 0.995416688 0.99587107 0.995416688	0.999070615 0.995604816 0.99587107 0.995416688	0.999070615 0.995604816 0.99587107 0.995416688	0.99504816 0.99587107 0.995416688	0.995387107 0.996416688	0.996416688		Ħ	0.130434783	0.087265463	0.130494783	0.049633231	0130434783	0034906385	0130494783	1255	Ю	940	0.484434783	1998266021	74080559	1,002157093	3 93.646778	92,9817411
\$113 S.110 C.095529516 C.09704078 C.09704072 C.0990673 C.118148148	S.110 0.995529516 0.978024078 0.97909723 0.9909733	0.900000 0.9000000 0.9000000 0.9000000 0.90000000	0.900000 0.9000000 0.9000000 0.9000000 0.90000000	0.9900078 0.99006723 0.99006773	0.9996733 0.99967673	0.980857673		25	0.173913048	0.116355283	0.173913043	0.058177642	0173913043	0.046542113	0173913048	図	ю	940	0.481826087	U993188744	94.2969705	101261399	9 9432773825	94.14848239
5.072 5.083 0.97742078 0.99545899 0.97420061 0.972649039 0.155155155	5.088 0.977212778 0.99612899 0.971221051 0.97286209	0.97252078 0.969615899 0.97220261 0.9723993039	0.97252078 0.969615899 0.97220261 0.9723993039	0.99615899 0.971220561 0.97289309	0.971230361 0.972869339	0.972869309	Ŧ	912	0.217391304	0.14544104	0.217391304	0.072723052	0217391304	0.058177642	0217391304	丟	19	970	0.473391304	0.975802115	9840791325	10001469	7 93.40791325	98.2976848
488 483 486 0947239 0950779 0955556	4.866 0.94172287 0.950177189 0.95254543 0.99402866	0.9472059 0.9347299 0.923659	0.9472059 0.9347299 0.923659	0.9302000 0.9236543 0.93020666	0.9354548 0.93403866	0.994028666		81	0.260869565	0.174532925	0.260899665	0.087266463	030089966	0.0981317	03088888	9118	19	970	0.4489966	7120107120	91/903/125	1236/179521	1 91.14311928	90.91999232
463 463 13057109 137941971 10897083 108966163 11295259	4.608 0.8057108 0.87919071 0.8937083 0.894566163	0.8907088 0.89041971 0.8930883 0.894566163	0.8907088 0.89041971 0.8930883 0.894566163	U87N1971 U883N833 U8866663	0.8970833 0.894566163	0.884566163	Ŧ	89	0.30437836	0.203621746	0.30497826	0.101810873	0304947836	0.08144898	030947835	07,6	19	970	0.40966217	0.84237319	83813403	0.95408334	4 89.73021591	88.972238
4.59 4.59 4.510 (1873/71)6 (1862/78)18 (1861/98)2 (18675/77) (1.962/02)6	4510 (186753716 (186278048 (186415952) (186753775	0.8578776 0.85578775 0.85419622 0.85753775	0.8578776 0.85578775 0.85419622 0.85753775	0.86278048 0.864159622 0.86575375	0.854159622 0.865753775	0.865753775		25	0.347826087	0.232710567	1347826087	0.116355283	0347826087	/ZZN8066010	0347826087	88 88	19	970	0.40808957	0.8411901.77	90/48/91275	10971627501	1 90.7363314	90.1252115
4.173 4.199 4.179 0.0000000777 0.0000000000000000000000	4179 0.030335777 0.737433277 0.030540329 0.0302149397	1,895,1276.0 (1,791,499.0) (1,791,499.0) (1,895,149.0)	1,895,1276.0 (1,791,499.0) (1,791,499.0) (1,895,149.0)	7 0.79749327 0.80564029 0.80214987	0.805640829 0.802149997	0.802149987		88	0.391304348	0.061799388	0.391304348	0.130899694	0301304348	0104719755	0.391304548	88	19	970	0.373913048	07707446	8948142393	0.96085083	3 89.7960036	80 6029338
3.922 3.915 3.923 0.7508755 0.75155699 0.75115119 0.75115598 0.37007077	3.923 (17569755 (175135439 (17515119 (175155398	0.756975 0.7513549 0.751519 0.7513539	0.756975 0.7513549 0.751519 0.7513539	0.7535539 0.7515119 0.7515538	0.751519 0.7515538	0.75135398		65	0.494782609	0.2988209	0.434782609	0.14544104	0494783609	0116355283	0.434782509	% %	19	970	0.334434783	0689370855	85.2425104H	0.915394556	6 85,24975341	85.054024056
3.715 3.715 0.4074070 0.708005879 0.708005879 0.40740707	3.721 0.72621279 0.70801087 0.72621270 127.6	0.710831738 0.70800879 0.71789121 0.71083149	0.710831738 0.70800879 0.71789121 0.71083149	0.70000679 0.71292170 0.715159499	0.721987721 0.726150499	0.716150499		707	047826087	0.31997703	047826087	0.159988515	0.47836087	0127990812	0.47826087	3381	19	970	0.328782609	0,677720022	8812971999	0.946337428	8 88.28748891	88.74024536
3.611 3.605 0.09485591 0.089279572 0.08263452 0.08263105 0.44444444	3.606 0.69435541 0.699279572 0.69220422 0.692155106	0.03212590 0.0320200 0.0320200 0.032155105	0.03212590 0.0320200 0.0320200 0.032155105	0.69279572 0.69262452 0.692155106	0.00000000 0.00000000	0.692155106		#	052173913	0.34906365	052173913	0.174532925	0.52173913	0.13962634	0.52173913	3216	19	970	0.30573913	0.63023977	8479405409	0.910519136	6 84511377	84.76271983
3.528 3.581 3.555 0.675-075.23 0.672,07594 0.670,08304 0.670,080711 0.481,481,481	3.555 0.67547523 0.67327594 0.687083304 0.678589711	0.6754723 0.67227594 0.68708394 0.67828711	0.6754723 0.67227594 0.68708394 0.67828711	U67227594 U6870830H U6722759	0.637063304 0.67859711	0.67889711		- F	0.96217391	0.378154671	0.565217391	0.189077336	18217391	0151261889	182173950	348	ю	940	0.297217391	0612654598	9407346996	0.90255083	3 84,8949894	84.3548578
3.264 3.31 3.269 0.023571799 0.023733996 0.053072999 0.027145527 0.05303509	3.209 0.023571739 0.023733996 0.0559779399 0.027465527	TGGGRFT0.0 0.053733996 0.053072909 0.057742520	TGGGRFT0.0 0.053733996 0.053072909 0.057742520	0.62373396 0.655072909 0.62775530	0.653072909 0.6274555.77	0.627463627		55	0.60899562	0.407243492	0.608995672	0.203621746	0,608,995,522	0.162897397	0.608995622	3178	ю	940	0.276347826	028696136	845451135	0.907839438	8 85,50365906	84.66538789
3.109 3.057 3.099 0.599019773 0.594014275 0.596551002 0.598019874 0.555555556	3.009 0.599918773 0.594114275 0.596531002 0.599198874	0.59919773 0.594114275 0.595531082 0.599198874	0.59919773 0.594114275 0.595531082 0.599198874	0.59414275 0.586531002 0.599198874	U.59551002 0.59919874	0.589198874		150	0.652173913	0.496332313	0.652173913	0.218166156	0652173913	0.17453205	0652173913	883	ю	940	0.25909478	199968850	8439731047	M252061)	4 85.15564703	83 30051408
2913 2203 2203 (150046544 (154065469 (154065469 (154065469	2.863 0.55054594 0.5565966 0.54054889 0.549554486	0.550545344 0.55655956 0.541534599 0.54953495	0.550545344 0.55655956 0.541534599 0.54953495	0.5965996 0.541634899 0.549654456	0.5463469 0.549654466	0.549654466		88	0.69562174	0.465421134	U-69862174	0.232710567	M1239560	0.185168454	M1239590	11.7	Ю	940	0.23573913	0.485929378	82338131	0.884063367	7 82.5995516	80,9253099
256 250 250 UARIDIAS DASCONI DASCESON DASCESON DESCRIPE	2.525 0.478(0)(486 0.48652783)4 0.48659024 0.484770934	0.478101496 0.485527804 0.489539294 0.484779924	0.478101496 0.485527804 0.489539294 0.484779924	U-95577894 U-99539294 U-9457739A	0.48659594 0.494779204	0.484770924		æ	0.739130435	0.49499955	0.739(30435	0.24725977	0730130435	0.197803982	0.739130455	338	19	970	0.004173913	0400863954	90,850,8236	0.868170786	6 82.3945303	80.199957
2.162 2.099 2.122 0.41192396 0.413147394 0.39898834 0.4073479 0.666666667	2.122 0.41192596 0.413147334 0.39998834 0.40734579	0.411923396 0.413147334 0.39698534 0.40734579	0.411923396 0.413147334 0.39698534 0.40734579	0.413147394 0.396965534 0.40734579	0.39696534 0.40734579	0.40734579	Ŧ	590	0.78260899	0.523598776	0.723608696	0.061799388	969090270	0.20943951	0.722608996	1999	19	970	0.167478361	0345223158	785547237	0.847494112	2 78.4415029	77.4680549
URTHORN 1887-035.0 0.5500000 0.0500000 0.5500000 0.55000000 0.55000000 0.55000000 0.550000000 0.5500000000	1.856 (1.35944837) (1.3552702) (1.35600136) (1.3564738)	0.35944837 0.355251 0.3560035 0.35644837	0.35944837 0.355251 0.3560035 0.35644837	0.555702 0.55001305 0.55597501	0.355101305 0.355347581	0.36347381		HQ1.	0.826089957	0.552687596	0.83688857	0.276348798	755986957	0221075039	083908957	689	19	970	0.14889966	030240427	741180942	0.846570596	78.8987855	733885417
177 17 178 (135646) (1351547) (1351547) (1351547) (136467)	1.74 0.3368461 0.3315478 0.33576522 0.33481738	0.356,0461 0.3315,978 0.335,032 0.3369173	0.356,0461 0.3315,978 0.335,032 0.3369173	0.335.978 0.3576.562 0.3369173	0.335763622 0.334591738	0.394991758		Z	0.889565217	0.581776417	0.89956217	0.2988209	088966217	0232710567	088986217	190	19	970	0.139130435	0.286789747	713622867	0.85713328	8 79,776,2545	80.19045222
1.64 1.650 (33,489678 (33,5298)88 (33,753654 (33,475567 (13,475567 (13,47567)	1.640 0.314489678 0.312249188 0.31753654 0.31475567	0.314489678 0.312249188 0.31753454 0.31475557	0.314489678 0.312249188 0.31753454 0.31475557	0.3122/8138 0.31755654 0.31475567	0.31755654 0.314755567	0.314755567		80	0.913043478	0.610865238	0.91304378	0.305480619	091304378	0.244346095	091304378	200	19	970	0.131130435	027029937	2997383713	0.85879511	1 80.481195	80.25118408
1603 1617 1604 0.3036078 0.3056050 HO3 0.3076050 0.30760505	1.60H 0.309960778 0.3052524H 0.31024599	0.309950778 0.30525204 0.310245587 0.377844894	0.30965078 0.305252AW 0.31026587 0.37784894	0.3052554H 0.31024587 0.3054894	0.310245587 0.307844894	0.307844894		붫	0.95621739	0.63954059	0.99621739	0.31997703	099621739	NZ91865Z0	099621739	달	ю	970	0.12829087	0.04884298	139797564	0.85823075	5 80.61651135	81.01301907
CSKISKISKU CSSKICOCO CCKINSOCO NODICICIO SSKISSOCO 6821 5831 1251							Ī	1									:		A 4504.00 about	A A-MAN 14.70	A property	010000000	00 000000	A1 A1100000

Figure C.2: Raw Data from S/D=1.18, Unit weight= 12.56 $\rm kN/m^3$

	Luge on Yalue- Gauge 14	68 93.2391221	87 92,8416776	34 92.4723227	31 92.5234889	15 92.1344496	83 90.57971014	81 89.31915752	51 87.3405696	57 90.280116	58 87.00236071	87 83.06574476	G 83.757/B762	84 83.4905784	48 82,655,36972	38 81,93460195	52 82,24160577	26 82.12322761	56 82.97413793
	Lugeon Value Gauge 12	93.00740568	92.62796187	93 1205289	92.84871331	91.7528215	1 90.83597483	88,8990281	1 88 0157251	5 88.20876357	88.66155158	88.335.2026	845772903	82.7278684	82 0605278	83.09247438	84600252	88.4955406	7 8442982456
	Lugeon Value- Gauge 13	9313303276	936156824	93888673	9284871331	9152466166	9012994331	8939814829	89270404	F89017.09	89082294	83902083	86.19083473	8368981878	826032198	8201372998	8337174169	8240697036	813523077
	Momalized Average Lugeon Value		0.995737363	0.99175021	0.992324861	0.988152214	0.97147751	0.957957940	0.936737366	0.98264329	0.933110037	0.890889392	0.88830585	0.89544835	10058487001	0.858033547	0.82050409	0.8877877	0.8899688
	Lugeon Value	93 2391221	92.8416776	924723277	92.5234889	921344496	9057971014	8931915752	87.3405696	90280116	8700236071	8306574476	83.75703762	8349067584	8265536972	8093460195	822A160577	8212322761	8297413793
	Normalized Flow loss		0.992493298	0.982841823	0.977301162	0.909562109	0.857908847	0.831099196	0.772296693	0.742805077	0.678462913	0.639423699	0.60357462	0.5769437	0.539231457	0.480428954	0.43645126	0.343163539	0.316532618
	How Loss (Qout/Time/Length) (L/min/meter)	0.486521739	0.48289966	0.478173913	0.475478261	0.442521739	0.417391304	0.404347826	037573913	0.361391304	0.330086957	0.308173913	0.293552174	0.280695652	0.262347826	023373913	0.212347826	0.166956522	1510
	(m) knadh Interval (m)	9/0	900	940	0.46	900	0.46	0.46	0.46	0.46	900	0.46	0.46	940	0.46	0.46	940	0.46	970
	Time (mins)	S	Ŋ	Ŋ	N	S.	ĸ	Ю	Ю	N	S.	Ю	N	22	N	Ю	Ŋ	N	Ю
	Quut(ml.)	9888	8993	2488	2488	6806	4800	4690	4321	4156	3736	354	3377	3228	3017	388	2442	1930	171
PVC Pipe Primary and Secondary Spacing of OSFOI a of Pipe	AreaReplazement Ratio- Matiply by the inverse of Maximum Agol Abotal	0	0.157894737	0.210526316	0.263157895	0.315789474	0.368421053	0.421052632	0.473684211	0.526315789	0.578947368	0.631578947	0.684210526	0.736842105	0.789473684	0.842105263	0.894736942	0.947368421	
PVC Pipe Prima	Normalized Groubed Area Agc(Atostal	0	0034906585	0.046542113	0.058177642	006981317	0.081448698	0.093084227	0.104719755	0.116355283	0.127990812	013963634	0.151261889	0.162897397	0.17632925	0.186168454	0.197803982	020943951	0221075039
PVC Pipe Primary and Secondary-Touching	Area Replacement Ratio- Matiply by the inverse of Maximum Ago / Arodal	0	0.157894737	0.210526316	0.263157895	0.315789474	0.368421053	0.421053632	0.473684211	0.526315789	0.578947368	0.631578947	0.684210536	0.736842105	0.789473684	0.842105263	0.894736842	0.947369421	
РУСРфеРита	Normalized Groubed Area Agy Atotal	0	0.049633231	0.058177642	0.072723052	0.087265463	0.101810873	0.116355283	0.130899694	0.14544104	0.159988515	0.17632925	0.189077336	0.203621746	0.218166156	0.232710567	0.24725977	0.061799388	0.276343798
PVCSideBySide	Area Replacement Ratio- Multiply by the Inverse of Maximum Agg (Atotal	0	0.157894737	0.210526316	0.263157895	0.315789474	0.368421053	0.421052632	0.473684211	0.526315789	0.578947368	0.631578947	0.684210526	0.736942105	0.789473684	0.842105263	0.894736842	0.947368421	
M	Nomalized Grouted Area Agr/Atotal	0	0.087265463	0.116355283	0.14544104	0.174532925	0.203621746	0.232710567	0.261799388	0.29088209	0.31997703	0.34906585	0.378154671	0.407243492	0.436332313	0.465421134	0.494509955	0.523598776	0.552687596
Slats	AreaReplacement Ratio- Multiply by the inverse of Maximum Agg (Atobtal	0	0.157894737	0.210526316	0.263157895	0.31578947A	0.368421053	0.421052632	0.473684211	0526315789	0.578947368	0.631578947	0.684210526	0.736842105	0.789473684	0.842105263	0.894736842	0.947368421	
	Nomalized Grouted Area Agc/Allotal	0	0.11111111	0.148148148	0.185185185	0.2222222	0.292929	0.296296296	0.333333333	0.37037037	0.407407407	0.4444444	0.481481481	0.518518519	955555550	0.59292593	0.62962963	0.66666667	O 703703704
	Normalized Avg. Pore Pressure (APa)	1	0.993555797	0.982517706	0.981369294	0.92269959	0.88266465	0.85416512	0.815415045	0.771007465	0.716072256	0.707012059	0.66260479	0.64994577	0.609136732	0.545587954	0.487398711	0.386652304	0.3557969
	Normalized Pore Pressure-Gauge 14()/2/a)		0.996742047	0.990992718	0.9848501	0.930467612	0.883096972	0.867573783	0.824453814	0.767152166	0.727098505	0.711000383	0.67190/944	0.64308164	0.608279034	0.553468762	0.494825604	0.389612878	0.35591836
	Namalized Pare Pressure-Gauge 12(NPa)	-1	0.99658975	0.981647868	0.978971516	0.922003441	0.878417129	0.859873829	0.816096349	0.783215446	0.711718801	0.7069394	0.663735423	0.648633149	0.611164213	0.53775587	0.479831772	0.382527241	0.348590499
	Mormalized Pore Pressure-Gauge 13(Ma)		0.987366003	0.97492343	0.980283308	0.92535988	0.886485452	0.85811639	0.805704441	0.762633997	0.70941807	0.703101072	0.652182236	0.642036753	0.607963247	0.546558959	0.487557427	0.387825421	0.36236003
	Avg. Pare Resure (199)	5.234	5.191	5.133	212	4830	4611	4516	4290	4028	3741	3.694	3.462	3330	3.182	2850	2546	2020	188
	Pare Presure. Gauge 14(kPa)	5.218	5.201	5.171	5.139	4.803	4608	423	4302	4003	3.794	3.71	3.506	3362	3.174	7 888	2582	2033	188
	Gauge 12(20 a) Gauge 14(20 a)	5.231	5.213	5135	5.121	4833	4.595	4.488	436	4097	3723	3.698	3.472	3383	3.197	2.813	721	7007	1834
	Pore Presure. Gauge Presure. Pore Presure 13(0-a) Gauge 12(0-a) Gauge 14(0-a)	5234	5.158	5.093	5.121	482	4631	453	4309	3.984	3.705	3.673	3.407	3354	3176	782	2547	2 0 0 5	1883
\$0:146	# of PVC Ripss	0		=7	S	9	-		6	93	п	12	13	14	22	91	13	18	13
-		Run0	Run1	Pun2	Run3	Run 4	RunS	Run 6	Run 7	Run 8	Run 9	Run 10	Run 11	Run 12	Run 13	Run 14	Run 15	Run 16	Run 17

Figure C.3: Raw Data from S/D=1.45, Unit weight= 12.56 kN/m³

	Sp:-08										Stats		PVCSide By Side	PVCPipe-Prim.	PVC Pipe-Primary and Secondary-Touching	PVCPipe-Primar 0.5	PVC Pipe-Primary and Secondary-Spaing of U.S*Dia. of Pipe											
		Pore Pressure-Gause Pore Pressure. Pore Pressure-	uee PorePres	ure. Pore Press	_	-	-	ee Normalized Pore	ne Normalized Ave. Pore	-						Normalized								Normalized Average Lugeron	Lueson Value-	Lueson Value	useanValue	d
	#ofPVC Apes	13(0°a)	Gauge 12(APa)	()Pa) Gauge 14(Pa)	(kPa) (kPa)	e Presure-Gauge 13\PPa)	ge Pressure-Gaug 12(kPa)	8. E	_	(Pa) Groubed Area Agr.(Atotal	a Multiplybythe inverse of Maximum Agc, Attotal	Gouted Area Agc/Atotal	Multiply by the inverse of MaximumAgc/Atotal	Grouted Area Agg/Abbtal	Muliphy by the inverse of Maximum Ag d'Abotal	Grouted Area Agy/Atotal	Multiply by the inverse of Maximum Agg/Abbtal	One (ml.)	Time (mins) Ler	Length interval(m) (Op ((Qout/Time/length) No (L/min/meter)	Normalized Flow Loss	UgeonYalue	Value	Gauge 13	Gage 12		
Run0	0	5.213	5.231	2.198	5.214		-1	-		0	0	0	0	0	0	0	0	2852	22	046	0.488 899565	1	93.76094461	1	93.7789306	9345623499	80558016 6	88
Run 1	8	5208	523	3 5.244	1 5.228	0.999040859	100332336	1.03899538	1.0027/9009	00 0.11111111	1 0.176470538	0.087265463	0.176470588	0.005633231	0.176470588	0.034906385	0.176470588	2625	Ю	0.46	0.489130455	1000533618	98.55.37989	0.997790822	93.9190548	9347036782	2 93.2743010	9010
Pun2	47	5.19	5.201	1 5.172	5.188	0.99587953	0.99426939	0.994938076	0.999985	95 0.148148148	8 0.25294118	0.116355283	0.235.294118	0.058177642	0.235294118	0.006542113	0.255294118	2388	Ю	046	0.486347826	0.994841693	93.75078573	0.993831651	93,70963701	935104632	2 94.0347691	916
Run 3	s	5181	5.178	8 5.132	5.164	0.993615	0.98888394	0.987302809	0.990345503	0.185185185	5 0.29417677	0.14544104	0.294117647	0.072723052	0.29417647	0.058177642	0.294117647	8238	K	046	0.483391304	0.988794023	93.61396379	0.998432388	93.30077289	9335482896	94.19160256	99
Run 4	9	4941	4912	2 4877	4910	0.947822751	0939017395	0.938245479	0.94169543	85 0.22222222	2 0.3524176	0.174532925	0.35294176	0.087265463	0352941176	0.09381317	0.352941176	5195	Ŋ	046	0.45173913	0.924048381	92.01389522	0.981260338	91.4266088	91966833	5 92,62,64364	92
RunS	7	4612	4557	7 4631	1 4600	0.884711.299	0871152NB	0.890919584	0.88224012	23 0.2925929	8 0.411764705	0.203621746	0.411764705	0.101810873	0.411764705	0.081448698	0.411764705	4875	NG.	0.46	0.423913043	0.85729136	92.15500945	0.982873025	91.91523059	9302488711	1 91538122	2211
Run 6		4593	4584	4 465	4609	0.88106554	0.87631428	0.894574836	0.88396545	MS 0.296296296	6 0.470588235	0.232710567	0.470588235	0.116355283	0.470588235	0.093084227	0.470588235	4830	NG.	0.46	0.42	0.839124867	91.13605771	0.97189782	91.4435038	916230366	5 903225908	906
Run 7	6	4392	4.451	1 4511	4.65	0.842509112	21900825800	0.857833782	0.85436449	м9 0.333333333	8 0.529411765	0.261799388	0.529411765	0.130899694	0529411765	0.104719755	0.529411765	4690	Ю	0.46	0.405217391	0.828886517	91,9549425	1189/10/6811	92.26261186	908322005	2 89.828727	238
Run 8	10	4038	4169	9 4297	4.188	0.785111644	079899545	0.826664102	0.83322399	84 037087087	7 0.588235.294	0.29088309	0.588.25294	0.14544104	0588235294	0.116355283	0.58825594	4338	Ю	046	0.376.347826	0.7698328	89.86337777	0.958430307	91.83695122	9027292542	2 87.5838552	252
Run 9	п	402	3.981	1 4009	4003	0.77114905	0.761039954	0.771258176	0.767804629	70M70M70A70	7 0.647058824	0.31997703	0.647058204	0.159988515	0.647058824	0.127990812	0.647058824	4083	K	046	0.355913043	0.728032.729	88.90417405	0.942200465	88 53558296	8940292478	6 88.778992	282
Punto	12	3736	3.798	3.857	3800	0.716699854	0726056203	0.743939977	0.72837098	88 0.4444444	M 0.705882353	0.3490535	0.705882353	0.17632925	0.705882353	0.1395,2634	0.705882353	3830	NG.	0.46	0.33826087	0.091924582	89.03821057	0.948310088	90.5409178	890628935	1 87.47.37185	683
Puntt	13	3718	3.723	3 3.713	3.718	0.713216958	108171170	0.714313197	0.713080169	69 0.481481481	0.764705882	0.378154671	0.764705882	0.189077336	0.764705882	0.151261869	0.764705882	3845	Ю	0.46	0.334347826	0.683920313	89.92679561	0.999107185	89.93679561	8980602356	6 90.0478928	3383
Run12	M	3573	3.621	1 3.601	3.58	0.68540188	1946122690	0.69276549	0.69012913	39 0.518518519	9 0.823529412	0.407243492	0.823529412	0.203621746	0823529412	0.162897397	0.823529412	364	NG.	0.46	0.316889565	0.648167912	88.05009223	0.939198006	88.69457	875088555	5 87.994830	906
Run13	3 15	3471	3,498	3.404	3.458	0.665835411	0.668705792	0.654867257	0.663150492	92 0.555555556	0.882352941	0.436332313	0.882352941	0.218166157	0882352941	0.17632925	0.882552941	3467	Ю	0.46	0.301478361	0.616684454	87.19124483	0.929931382	86.85631255	861858900	5 88 55 5881	3157
Pun14	97	3141	3.129	3.113	3128	0.602532131	0598164787	0.598884186	0.59989953	53 0.9929298	8 0.941176471	0.465421134	0.94176471	0.232710567	0941176471	0.186168454	0.94117671	3033	S	0.46	0.368956522	0.550160085	85.99270551	0.917148466	85.62767327	85.9560532	2 85.3978547	25
Run15	17	3075	3.101	308	3.087	0.583871475	0592812082	0.59368881	0.592123769	69 062962963		0.494509955	1	0.3475/877		0.197833982	-1	3054	Ю	0.46	0.266434783	0.545001779	86.29932497	0920418681	86655776	8591838336	6 86.3366113	8

Figure C.4: Raw Data from S/D=1.62, Unit weight=12.56 $\rm kN/m^3$

o/s	\$/0-2.17										45 Kg	M	PrC Side By Side	PVC Pipe-Primar	PVC Pipe-Primary and Secondary-Touching	PVCPipe-Primary 0.5*	PVCPipe-Primary and Secondary-Spacing of 0.5*Dia. of Ripe										
	# of PVC Ripes	Pore Pressure-Gauge 13 (IPa)	Pore Pressure-Gauge Rone Pressure-Pore Pressure- 13/89) Gauge 12/893 Gauge 14/893	ore Pressure- iauge 14(kPa)	Avg.Pore h Pressure (92a)	Normalized Pore Pressure-Gauge 13 (APa)	Normalized Pore Pressure-Gauge 12(97a)	Normalized Pore Pressure-Gauge 14(1/2)	Normalized Aug. Pore Pressure (APa)	Normalized Grouted Area Agc/Atotal	Area Replacement Ratio- Multiply by the inverse of Maximum Agc/Atotal	Normalized Grouted Area Agc/Atotal	Area Replacement Ratio- Multiply by the inverse of Maximum Agd Abotal	Nomalized Grouted Area Agd Atotal	Area Replacement Ratio- Multiply by the inverse of Maximum Agr/Atotal	Normalized Groubed Area In Agy Anotal	AreaReplazementRatio- Multiply bythe inverse of O Maximum Agr(Atotal	Quit (mt.)	Time (mins)	Length Interval(m)	How boss (Qout/Time/Length) Normalized Flow Loss (Lénigh Interval(m)) (Lénighmeter)	Normalized Flow Loss	Lugeon Yalue	Normalized Average Lugeon Value	Luge on Value Gauge 13	Lugeon Value - Gauge 12	Lugeon Value- Gauge 14
Run0	0	5.17	5.165	5248	5.193	1	1	1	1	0	0	0	0	0	0	0	0	6896	92	970	0.490347826	1	94.43383055	1	94,848,4054	94,9966558	93.52.428497
Run 1	3	5.168	5.152	1275	5.197	0.999613153	0.997483059	1.005340454	10083451	0.11111111	0.230769231	0087365463	0.230769231	0.043633231	0230769231	0.034905585	0.290769231	561	KQ.	0.46	0.490521739	1,00354673	94.38555638	0.99520563	94.9151972	95,20995489	93.05.047033
Run2	7	5.097	5.163	5.248	5.168	7.00838800	0.999612778	1	0.995185518	0.148148148	0.307692308	0116355283	0.307692308	0.058177642	0307692308	0.04552113	0.307692308	6096	12	0.46	0.48773913	0.994679938	94.38285437	116181818181818181818181818181818181818	95.69141268	91.481639	93.0267275
Run 3	2	5.053	2089	2005	5.078	0.977369439	0.984704743	0.971962617	0.977981769	0.185185185	0.394615385	014544104	0.384615385	0.072723052	0384615385	0.058177642	0.384615385	5465	23	0.45	0.475217391	0.999143455	93.57743183	0.990962711	94.04658417	93.43637265	93.25.30307
Run 4	9	4831	490	2.018	48#	0.934(294	0.954569216	0.957085638	0.95204776	0.2222222	0.461538462	0174532925	0.461538462	0.08736463	0.46153846.2	0.09981317	0.461538462	5223	23	0.46	0.457304348	0.932612165	92.50307083	0.979585484	94,6603,977	91.79131831	91.1327915
RunS	_	4.742	4897	4892	484	0.9172147	0.948112294	0.93305.3595	0.932 789832	0.2592929	0.538461538	0203621746	0.538461538	0.101810873	0538461538	0.081448698	0.5384615.38	2120	N	0.46	0.445217391	0.907962435	91.917039	0.973383686	93.8331045	91,91635518	91.0092788
Pun 6	∞	4,665	469	4717	4694	0.902321083	0.909777348	0.899675758	0.90390294	0.296296296	0.615384615	0232710567	0.615384615	0.116355283	0.615384615	0.093084227	0.615384615	4998	Ŋ	0.46	0.434608995	0.886327363	92.594708.26	0.98055902	93.16370754	92,48951389	92.1366749
Run7	6	4.613	458	464	4600	0.892263056	0.88925-4598	0.887659737	0.889716367	0.333333333	0.692307692	0261799388	0.692307692	0.133899594	0.692307692	0.104719755	0.692307692	4836	23	0.46	0.420521739	0.8575,98865	91.02302145	M2106:301524	91.1601.4289	91.5570539	90.35 705611
Run 8	9	4.481	4422	4418	448	0.866731141	0.85938.3253	0.842547339	0.85575812	0.37037037	0.769230769	0290888309	0.769230769	0.14544104	0769230769	0.116355.283	0.769230769	4902	12	0.46	0.400173913	0.816102146	90.05489004	0.95.369832	88.3346001	90.29194789	90.5780999
Run 9	п	4255	4211	4213	4236	0.823017408	0.815295257	0.805547587	0.813904224	0.407497497	0.845153846	0.31997703	0.846153846	0.159988515	0.846153846	0.127990812	0.846153846	4844	12	0.45	0.385494783	0.788082993	91.43493865	0.958274854	90.81898534	91.76793598	91734372
Run 10	12	4004	4018	3895	3973	0.774468085	0.777928364	0.743086019	0.76905328	0,4444444	0.923 076923	0.34906585	0.92.3076923	0.17633925	0.923076923	0.1395.3634	0.923076923	4088	23	0.46	0.355478261	0.724951232	89.48101885	0.947583673	88.78778443	88.4714872	91.24185341
Run 11	13	3.792	3.824	381	3.839	0.733462282	0.740367861	0.726683197	0.733470279	0.481481481		0378154671	1	0.189077336		0.151261899	1	3921	N	0.46	0.343565217	0.70055645	90,20616595	0.955261838	90.60364172	88,8446051	VT697.1.00

Figure C.5: Raw Data from S/D=2.17, Unit weight=12.56 kN/m^3

	Ugeon Value- Gauge 14	92.9929317	93.68961939	90.5036384	88.89672535	88 90604642	89.32170522	86.9562174	87.21436168	88 2269914	86.08283076	82,71897109	83.74565744	84.72762935	82 52502402	81,7054/786	81,5557,2068	79.05852767	79.38546012	73.66273322	71.51474207	72.11753486	73.79312368	71.78410795	73.1 1500381	73.75332742	7285348922
		93.74922904	93.16530465	905398471	90.97333284	90,61577808	88.55470095	88.60245394	88.48245719	85.5422364	88.04875324	86.59333818	85.0053475	84.9890473	82,67233752	79.69894013	78.70159852	79.41739625	81.07802573	76.38951332	74.7089433	78.94309383	81.6903641	75.37071435	N. 37231504	W60995704	74257296
	ugeon'dabe Gauge 13	9417673835	53.53627057	91.73360958	91,2465,3603	90.10612804	89.32170522	88.40886353	89.08544214	88.8238238	87.424825	89,72515288	89.31428411	83.9529436	82.05712877	78.9903907	78.35489544	79,70884362	78.4665434	86.70892344	81.4292451	81.37523123	78.47440536	83.26956522	77.544268	75.22716577	73.90933689
	Nomalized Avangetugeon lugoon Value lugoon Value Value Gauge 13 Gauge 12	1	099810784	0.971002234	0.98852477	0.959772305	095474302	0.939611437	114050911	0.994553039	0.931017293	0.921112409	0.91788776	0.902999769	0.830178498	0.85599902	0.849149425	0.847884042	0.85039729	083851519	0.804991236	0.825361447	0.83136579	0.817153659	175697.08.0	0.795881545	0.7863469
	Average Luge on Value	93.63705.056	93,4598,842,4	90,9217,9503	90.717.065	89.8702.4812	89 3992 3631	87.98245304	88.2588941	87.5087995	87.1777.2361	86.202839	85.9570.2149	845543402	82.4173.7734	80.11545717	79.5118561	79.3933.6942	79 5287 2495	7852546135	75.37701.222	77.27505609	77.8372654	76.51577.299	75.6312521	74 52391 484	73,65815918
	Flow Loss Qouy Time/lengsth) Normalited Flow Loss (L/min/meter)	1	0974035088	0913157895	0.858245614	5710708080	0.761929825	0.72.7192982	0.71.2105.363	0.65 7894737	062 2280702	0585614035	0558245614	0500175439	0.467192982	0.41 2280702	0.394736842	0.35.2982456	0314561404	0307192982	970	N748872 SZ10	0.23 2105263	021	0.193694211	0182280702	0.174912281
	_	0.49562174	0.48.2782609	0.45.2608696	0425391304	0400521739	M12597 TEG	0.36.0434783	0.35.2956522	0.326,086957	0.308434783	0.29026087	027699562	0.247913048	0231565217	0.204347826	M19562174	017495622	0.15.9913043	0.15226087	0128899565	0126782609	0115049478	0.104089957	9600	0.090347826	008699652
	Length Interval (m)	0.46	970	0.46	0.46	0.46	0.46	0.45	0.46	0.46	0.45	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.45	0.46
	.) Tme(rrins)	22	Ю	100	K	82	10	23	82	10	23	82	100	K	82	Ю	Ю	82	100	K	82	100	Ю	82	10	23	Ŋ
'lo	of Qout(ml,)	2005	2005	5005	4865	909	4943	4145	4009	3750	3547	3338	3182	3851	996	2380	2280	3012	138	131	1482	1458	1333	1197	1104	1039	283
P/C fipe-Primary and Secondary-Spaing of 05*title of Pipe	Area Replacement Redio- Multiply by the inverse of Maximum Agy/Asstal	0	0.11111111	0.148148148	0.185185185	0.22222222	0.2929299	0.296296296	0.33333333	0.37037037	0.407407407	0.488888	0.481481481	0.518518519	0.55555556	0.5929293	0.62962963	0.66666667	0.703703704	0.740740741	0.77777778	0.814814815	0.851851852	0.888888899	0.92992926	0.962962963	
РИСЯре-Рrim (Normalzed Grouted Area Agy/Atotal	0	0.034906385	0.046542113	0.058177642	0.06981317	0.081448698	0.093084227	0.104719755	0.116355283	0.127990812	0.13962634	0.151361889	0.162897397	0.174532925	0.185168454	0.197803982	0.20943951	0.221075039	0.232710567	0.24346095	0.25981624	0.357617152	0.27925268	0.29888309	0.302523737	0.314159365
P/CPipe-Primary and Secondary-Touching	Area Replacement Ratio- Multiply by the inverse of Maximum Agg/Abotal	0	0.11111111	0.148148148	0.185185185	0.2222222	0.2929299	0.296296296	0.333333333	0.37037037	0.407407407	0.4888884	0.481481481	0.518518519	0.55555556	0.9929293	0.62962963	0.66666667	0.703703704	0.740740741	0.77777778	0.814814815	0.851851852	0.888888889	0.9292936	0.962962963	1
Р/СРіре-Янтач	Normalized Grouted Area Agy/Atotal	0	0.043633231	0.058177642	0.072723052	0.087265463	0.101810873	0.116355283	0.13089994	0.14544104	0.159988515	0.17632925	0.189077336	0.203621746	0.218166156	0.232710567	0.347254877	0.061799388	0.276343798	0.29088209	0.305433619	0.31997703	0.33452144	0.34906585	192019696 0	0.378154671	0.30369082
PVC Side By Side	Area Replacement Ratio- Multiplybythe inverse of Maximum Ags/Nootal	0	0.111111111	0.148148148	0.185185185	0.22222222	0.2929259	0.296296296	0.333333333	0.37037037	0.407407407	0.43333344	0.481481481	0.518518519	0.555555556	0.9929293	0.6295963	0.66666667	0.703703704	0.740740741	0.77777778	0.814814815	0.818182	0.888888889	0.929929926	0.962962963	1
PVCS	Nomaized A Groubed-Area M Agg/Atotal	0	0.087365463	11636283	11544104	0.17632925	0.203621746	0.232710567	0.261799388	0.2988209	0.31997703	0.34906585	0.378154671	0.407243492	0.496332313	0.465/21134	0.494509955	1523598776	0.552687596	0.581776417	0.610865238	0.63954059	0.69904288	0.698131701	0.727230522	0.756309383	0.785398163
Slats	Area Replacement Ratio- h Multiphybythe inverse of G Maximum Ago, Naotal	0	0.11111111 0	0.148148148 0	0.185185185 0	0.2222222	0.2929259	0.296296296	0.33333333 0	0.37037037 0	0.407407407	0.44444444	0.481481481 0	0.518518519 0	0.55555556	0.5929293 0	0 62962963	0.66666667	0.703703704 0	0.740740741 0	0.77777778 0	0.814814815 0	0.851851852	0.888888899	0.9292926	0.962962963 0	1 0
25	Nomalized Are SoutedArea Mul Agr(Atotal M	0	0.11111111	0.148148148	0.185185185	0.2222222	0.2929299	0.29629620	0.33333333	0.37087037	0.407407407	0.44444444	0.481481481	0.518518519	0.55555556	0.9929293	0.62962963	09999990	D 703703704	0.740741	0.77777778	0.814814815	0.851851852	0.888888899	0.92992936	0.962962963	
	Mornalize d Avearge Group Pore Pressure (90-a)	1	0.975881612 0.11	0.940428212 0.14	0.886020151 0.18	0.841939547 0.22	0.788047859 0.25	0.73929471 0.29	0.75541562 0.33	0.703967254 0.37	0.668387909 0.40	0.635768262 0.44	0.608123426 0.48	0.553904282 0.51	0.530793451 0.55	0.48186398 0.59	0.454851461 0.63	0.416303824 0.66	0.363899244 0.70	0.36309824 0.74	0.322984887 0.77	0.3399495.22 0.81	0.279219144 0.85	0.2568992A 0.88	0.239788489 0.92	0.22930227 0.96	0.222355164
	Normalized Pore Non Pressure-Gauge 14(kPa) Pon	1	0.966791745	0.938273921	0.837804878	0.84521576	0.79206779	0.777673546	0.759287054	0.69343336	0.672233545	0.658348968	0.61988743	0.548968105	0.52654034	0.499230769	0.450093809	0.415196938	0.3694933	0.387804878	0.338085304	0.329831144	0.29249531	0.272045028	0.245341463	0.229831144	0.2226454
	Nomalized Pore Pressure-Gauge 12(9/8-a)	-1	0.980139966	0.945526764	0.88433516	0.836012862	0.797616796	0.76949462	0.75492151	0.721013807	0.66258564	0.634007944	0.615651055	055173066	0.529790051	0.484963117	0.470209949	0.416682429	0.3637223.38	0.377151504	0.336271988	0.303763949	0.266502743	0.061206733	0.23752979	0.229052393	0.230919236
	Nomalzed Poe Pressure-Gage 13(XPa)	1	N2H080860	0.937488125	0.885806574	0.8457537	0.803.3441	0.77465324	0.752802584	0.6975 10925	0.67034011	0.61466844	0.5886.37659	0.5610.86833	0.536196086	0.491544746	0.47444233	0.417062512	0.377541306	0.33365001	0.304389132	0.2960.28881	0.278548356	0.237507125	0.2352,27057	0.228196846	0.2228.76686
	Avg. Pore Pressure (APa)	5.28	5.166	4.978	4690	4457	424	4097	3399	3726	3538	3365	3.219	2932	2810	2551	2461	2304	1988	1939	1710	161	1478	1380	139	1212	1177
	Gouge 13/02) Gauge 13/02) Gauge 14/02) Pressure (03)	2330	5.153	1005	4.732	4505	4238	4145	4047	3,896	3583	3509	3304	2936	2805	2501	2399	2233	1361	2007	180	1.78	1539	1,480	1313	1225	1190
	PorePressure- Gauge 12(PPa)	5.287	5182	4999	4676	4420	4217	4058	3389	3812	3503	3352	3255	2917	2801	2564	2486	2303	1923	1994	1725	1906	1409	1381	1237	171	1168
	Pore Pressure- Gauge 13(APa)	5.263	2,162	488	4662	446	4238	400	3962	367	3.528	328	3.038	2983	787	2587	2487	2195	1387	1756	1602	1588	1466	120	1738	1701	1173
S/D=1	AofPVCRipes	0	m	47	w	9	7	00	6	10	=======================================	12	13	==	15	39	13	18	13	83	71	22	23	ĸ	Ŋ	×	23
٠,٠		Run 0	Run1	Run2	Run 3	Run 4	RunS	Run 6	Run 7	Run 8	Run 9	Run 10	Run 11	Run 12	Run 13	Run 14	Run 15	Run 16	Run 17	Run 18	Run 19	Run 30	Run 21	Run 22	Run 23	Run 24	Run25

Figure C.6: Raw Data from S/D=1, Unit weight=13.03 kN/m³

	Luge on Value- Gauge 14	93.672.07367	92.941.99276	91.17072699	92,768,84175	91.327.92833	90,427,76212	88.31775701	89 660 95355	90.414.25926	90.478.20057	85.79611387	83.45672365	83.20545125	79.072.7755	77.64307778	81 69191695	79.56861413	81.191.18523	81.47414939	81 573 76321	76.512.65751	77.64514604
	Lugeon Value - L Gauge 12	94.242.91853	93.771.34905	91 531 37039	93.145.03332	92 996 19519	90 999 18558	90.02143367	91.61411094	90,903,99345	90.75512327	86.557.98139	295 00 00 00 00 00 00 00 00 00 00 00 00 00	84.078.85489	819535351	78 939 47763	80.30332839	75.89963751	78 56517128	79.842.80171	82.68181563	80.121.25175	80.405.42628
	Lugeon Value L Gauge 13	94.5678868	94.03842169	92.53831414	93.86826815	93.51262002	89.74546568	89.61593172	90.38541236	89.88390273	91.5474124	88.95316.84	89.2052938	85.50772931	80.21246755	77.03799535	8193590121	78.11913794	80.05073638	79.16348122	81,61737347	76.76319011	76.1338444
	Normalized Average Lugeon Lu Value		0.993759972	0.974339524	0.990433749	0.983470366	0.99940025	0.94855482	0.951633446	0.950052865	0.965638468	0.924835648	0.918477118	0.894800188	0.850421824	0.826955202	0.859920519	0.82611181	0.8-4878772	0.851201442	0.856891619	0.82585562	0.82806855
	Luge on Value	94.15.923737	93.57.168105	91.7A306655	93.25.88847	92.60281027	90.38723065	89.31.343601	90.54667195	90,39878855	90,92,378174	87.08181932	86.48310494	84.25.370329	85070270,08	77.85547113	8096949964	7783307837	799212045	80.14847859	81.62585374	77.76478834	78.020.98951
	Normalized Flow Loss	1	0.976805482	82093516078	0.928307855	0.894730276	0.814795291	0.763837638	0.722363652	0.71217122	0.699110877	0.610513249	0.599191705	0.518538043	0.472324723	0.439455823	0.39482516	0.329291854	0.299420137	0.282024249	0.28830283	0.236865236	0.22806572
	Flow Loss (Oput/Time (Length) (Vritin (meter)	0.494899565	0.4833913.04	0.462782509	0.4593913.04	0.437829087	0.403217391	0.378	0.357478261	0.352434783	0.336173913	0.302173913	0.296521739	0.25608595	0.23373913	0.213478261	0.195217391	0.162956522	0.148173913	0.139565217	0.127829087	0.117217391	0.113130435
	Length Interval (m)	0.45	0.45	0.45	0.46	0.46	0.46	0.46	0.46	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.46	0.46	0.46	0.46	0.46	0.45
	Qout(mt) Time (mins)	22 1885	22 8333	5322 25	5283	2009	4637 25	87 25	4111 25	403 25	3751 25	3475 25	3410 25	2821 25	22 22	201 25	2345 25	1874 ZS	1704 25	1605 25	1470 25	1348 25	1301 25
PVC Ripe-Primary and Second ary-Spacing of 05*00s. of Ripe	Area Replacement Ratio- Multiply by the inverse of O Nesimum Agc/Abbt al	0	0.130434783	0.173913043	0.217391304	0.260899565	0.304347826	0.347826087	0.391304348	0.434782609	0.47826.087	0.52173913	0.565.217391	0.608 695652	0.652173913	0.69562174	0.739130435	0.78.2608596	0.826089957	0.89956217	0.91304378	0.956521739	1
PVC Ripe-Primary 05*	Normalized Grouted Area Agc/Abotal	0	0.034906585	0.046542113	0.058177642	0.09381317	0.081448938	0.093084227	0.104719755	0.116355283	0.127990812	0.13962634	0.151.361899	0.162897397	0.174532925	0185168454	0.197833982	0.20943951	0.221075039	0.232710567	0.244346095	0.255881624	0.267617152
PVCPipe-Primary and Secondary-Touching	Ares Replacement Ratio- Mality by the inverse of Maximum Ags, Rt. odal	0	0.130434783	0.173913043	0.2173913.04	0.260895565	0.3043478.26	0.347828087	0.391304348	0.434782609	0.47826087	0.52173913	0.565217391	0.608995652	0.652173913	0.695652174	0.739130435	0.782608595	0.826089957	0.89956217	0.913043478	0.996521739	1
РУСРІре-Ріппату	Normalized Grouted Area Agc/Asotal	0	0.043633.231	0.058177642	0.072722052	0.087265463	0.101810873	0.116355283	0.130899694	0.14544104	0.159988515	0.17632925	0.189077.336	0.203621746	0.218166156	0.232710567	0.247254977	0.261799388	0.276343738	0.29388.209	0.305432619	0.31997703	0.33452144
PVC Side By Side	Are a Replacement Retio- Multiply by the inverse of Meximum Agy (Alotal	0	0.130434783	0.173913043	0.217391304	0.260899565	0.30437826	0.347826087	0.391304348	0.434782609	0.47826087	0.52173913	0.565217391	0.608695652	0.652173913	0.695652174	0.739130435	0.782608595	0.826089957	0.899565217	0.913043478	0.956521739	1
PVCS	Nomaized A Grouted Area M Agg/Abstal	0	0.087265463	0.116355283	0.14544104	0.17632925	0.203621746	0.232710567	0.261799388	0.29388209	0.31997703	0.34906585	0.378154671	0.407243492	0.436332313	0.465421134	0.494509955	0.523598776	0.552687596	0.581776417	0.610855238	0.6395409	0.66904288
Slats	Area Replacement Ratio- Multiply by the inverse of C Maximum Agr. (Abbtal	0	0.130434783	0.173913043	0.217391304	0.3608.69565	0.3043-0226	0.3478,26087	0.3913.04348	0.434782609	0.47836087	0.52173913	0.565217391	0.6096.95652	0.652173913	0.695652174	0.7391.30435	0.7826.08596	0.826089957	0.8995 65217	0.913043478	0.9565.21739	1
	Nomalized A Souted Area N Agr, At coal	0	111111111	0.148148148	185185185	0.222.2222	12929299	1296296296	133333333	03 7037037	1,40740707	0.4444444	0.481481481	0.518518519	15555 55556	159259283	0.62962963	799999991	MX8703704	17074071	877777777	1814814815	0.851851852
	Normalized Awarge Pore Pressure (APa)	1	0.98293935	0.959789434	0.937274053	0.89900431	0.848798123	0.8052895.29	0.751189193	0.741803499	0.682554851	0.660239741	0.652375214	0.57950149	0.55540052	0.531426397	0.458742944	0.398363671	0.352752098	0.331324919	0.297954102	0.2868015-48	0.275892687
	Normalized Pore Pressure-Gauge 14 (99a)	1	0.98478516	0.960817717	0.937346205	0.907438955	0.844028014	0.810145751	0.754584838	0.737838349	0.682377437	0.66666667	0.672534545	0.583759228	0.55953057	0.530191179	0.452394473	0.387658527	0.34547662	0.304247587	0.29611734	0.28998675	0.275790271
	Normalized Pone Pressure-Gauge 12(10°a)		0.981717768	0.952854216	0.9392/9667	0.89691125	0.843839269	0.799657208	0.743096553	0.738335555	0.684441059	0.664825747	0.649309674	0.581222624	0.54900038	0.524651969	0.45.2959436	0.4088745	0.359169682	0.33 2888974	0.2942011	0.278613597	0.267948962
	Normalized Pore Pressure-Gauge 13(4Pa)	1	0.982610357	0.95565956	0.935218804	0.894706669	0.858589719	0.806038601	0.755780523	0.749283394	0.693871393	0.649149527	0.635199894	0.573476018	0.556850755	0.539461112	0.460921078	0.338524116	0.353716797	0.33690044	0.302885534	0.291803026	0.283957132
	Avg. Pare Pressure (APa)	5.256	5.166	5.044	4.936	4.728	4.461	4.232	3.948	3.899	3.587	3.470	3.429	3.046	2.919	2.793	2.411	2.094	1854	1741	1566	1703	1.450
	Pore Pressure. Pone Pressure. Gauge 14(100) 6	5.283	5.201	5.076	4.952	4.34	4.459	4280	3.987	3.838	3.605	3522	3.563	3.084	2,956	2.831	2330	2.048	1825	1713	1367	1532	1457
	Pore Pressure- Gauge 12(9Pa)	1275	5.155	2.056	4.922	4708	4481	4199	3.902	3.877	3.994	3.491	3.409	3.052	2.887	2755	2.431	2.147	1886	1.78	1546	1.463	1.407
	Pore Pressure- Gauge 13(6Pa)	5.23	5.142	2001	4894	4.682	4.483	4.218	3.955	3.921	3.563	3.397	3.334	3.001	2.914	2823	2.412	2.086	181	1.763	1.585	1233	1.486
S/D=1.18	a of PVC Ripes	0	3	47	ın	9	-		6	10	11	12	13	М	15	16	17	18	19	20	77	22	23
		Pund	Run1	Run2	Run3	Run4	RunS	Pun6	Pun7	Run8	Run9	Run 10	Run 11	Run 12	Run 13	Run 14	Run 15	Run 16	Run 17	Run 18	Run 19	Run 30	Run 21

Figure C.7: Raw Data from S/D=1.18, Unit weight=13.03 $\rm kN/m^3$

		-	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	Lugeon Value- Gauge 14	92.09336451	92.28796545	91.9103878	91.94808771	91.63865584	8936401937	8637642486	87.342033.29	86.9397747	87.40440493	84.60252819	8653330679	83.87645784	80.88422249	79.5991466	82.14916932	77.80973863	01 (1717) 10
	Lugeon Value- Gauge 12	92,610,04173	92.68358806	92.05456095	92.9601239	91.05627199	90.41699933	88.46157654	89.4712775	87.77931751	88.052.09246	84.483 16954	86.45737554	83.218.50938	82.059.95978	815948528	82.45081865	75.093.36702	Or O'The Party
	Lugeon Value- Gauge 13	92.77160218	93.11905302	92.58.100195	94 12 801198	91.44705342	90.17641955	87.64322712	90.05.239383	88.43997499	88.89243173	87.49.338822	86.95.652174	83.45.418229	81.13541573	80.9593334	80.80.246162	78.3692527	CONTROL OF STREET, ST. ST.
	Normalizal Average Ligoon Value Ligoon Value Value Gauge 13 Gauge 12	-1	1.002215356	0.996652144	1.005 544577	0.988027422	0.97289354	0.95881947	0.961608258	0.948352279	0.952694834	0.924473881	0.936843598	0.93296071	0.879655857	0.87284677	0.884353547	0.833209956	0.000,030243
	Lugeon Value	92.48072954	92.69562558	92.18108401	93.00355161	91.38337719	89.98359115	87.4853114	88.93984939	87.71379426	88.11544333	85.50536378	86.64934791	83.51550357	81.35031204	80.73003183	81.7945048	77.06.391933	O DETUNDAD OF
	Howloss (QouyTime/length) Normshaed Flow loss (L/min/meter)	1	0.993822674	0.980922965	0.97056685	0.913880814	0.84974564	0.81199157	0.78215843	0.736555233	0.70912054	0.652979551	0.597928779	0.554142442	0.49127907	0.456213563	0.422238372	0.341599767	TO SECURITY OF A
	Row Loss (Clout/Time/Length) (L/min/meter)	0.478608696	0.475652174	0.469478261	0.454521739	0.437391304	0.406995652	0.388494783	0.374347826	0.352521739	0.339391.304	0.312521739	0.286173913	0.265217391	0.235130435	0.218347826	0.202086957	0.163478.261	O 1 C103C037
	Length Interval(m)	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46
	Time (mins)	Z	35	25	25	25	S	25	25	25	25	N	25	25	25	25	25	25	
***	f Qout(mt,)	5304	5430	888	295	000	4677	4457	4935	4024	3933	3394	3391	3030	2704	2511	2334	1830	7467
PVC Pipe-Primary and Secondary-Spacing of 0.5*titla. of Pipe:	Area Replacement Ratio- Multiply by the inverse of Maximum Agg/Atotal	0	0.157894737	0.210536316	0.263157895	0.315789474	0.358421053	0.421052632	0.473684211	0.526315789	0.578947368	0.631578947	0.684210526	0.736842105	0.789473884	0.842105263	0.894736842	0.947368421	
РУСЯре-Ріт	Normalized Grouted Area Agc/Atotal	0	0.034906585	0.046542113	0.058177642	0.09381317	0.081448698	0.093084227	0.104719755	0.116355283	0.127993812	0.13952634	0.151261869	0.162897397	0.1745339.25	0.186168454	0.197803982	0.33943951	O THEORY OF D
PVC Pipe-Prinary and Secondary-Touching	Area Replacement Ratio- Multiply by the inverse of Medimum Ag d'Anstal	0	0.1578.94737	0.2105.26316	0.263157895	0.315789474	0.368421053	0.421052632	0.473584211	0.526315789	0.578947368	0.631578947	0.6842 10526	0.736842105	0.789473684	0.842105263	0.894736942	0.947368421	,
PVC Rpe-Prima	Normalized Grouted Area Agc/Atotal	0	0.043633231	0.058177642	0.072723552	0.087265463	0.101810873	0.116355283	0.130899694	0.14544104	0.159988515	0.174532925	0.189077336	0.333621746	0.218166156	0.232710567	0.20725877	0.061799388	O THE LEVEL OF
PvCSide BySide	Area Replacement Ratio- Multiply by the inverse of Maximum Agc/Atotal	0	0.157894737	0.210526316	0.263157895	0.31578.9474	0.36842.1053	0.42105.3632	0.47383.4211	0.526315789	0.578947368	0.631578947	0.684210526	0.73684.2105	0.78947.3584	0.842105263	0.894736842	0.947368421	
6	Normalized Grouted Area Ago;Mtotal	0	0.087266463	0.116355283	0.145444104	0.1763.2925	0.203621746	0.232710967	0.361799388	0.29388239	0.31997703	0.34906585	0.378154671	0.407243492	0.436332313	0.465421134	0.494509955	0.523598776	A PERSONAL PROPERTY.
Slats	Area Replacement Radio- Multiply by the inverse of Maximum Ago, Rost al	0	0.157894737	0.210536316	0.263157895	0.315789474	0.368421053	0.421052632	0.473684211	0.5.26315.789	0.578947368	0.631578947	0.684210526	0.736842105	0.789473684	0.842105.263	0.894736842	0.947368421	
	Normalized Groubed Area Agc/Abotal	0	0.11111111	0.148148148	0.185185185	0.2222222	0.29329329	0296296296	0.333333333	0.37037037	0.407407407	0.445551451	0.481481481	0.518518519	0.555555556	0.592992993	0.6295293	299999990	**********
	Normalized Ave arge Pore Pressure (167a)	1	0.99162587	0.984217985	0.965215151	0.92855909	0.873421799	0.858036282	0.8133857.25	0.776668384	0.74831358	0.706325689	0.638237568	0.6136949.24	0.55849038	0.522674568	0.477454264	0.40994389	000000000
	Normalized Pore Pressure-Gauge 14(9Pa)	-	0.991725996	0.982874735	0.972099288	0.91841447	0.875697518	0.865309308	0.824705561	0.780257841	0.747161824	0.710794689	0.636328651	0.608427939	0.5986117	0.527419665	0.47335001	0.404271695	0.000000
	Nomalized Pore Pressure-Gauge 12(kPa)	1	0.993034056	0.985842105	0.96911765	0.929373065	0.870356037	0.849651703	0.8095.97523	0.777089783	0.745743334	M7027207A	0.640479876	0.616679567	0.554373055	0.517801858	0.474264705	0.42124613	CONTRACTOR OF
	Nomalized Pore Pressure-Gauge 13 (9Pa)	-	0.990114363	0.982942431	0.956580733	0.927117658	0.874200426	0.859081217	0.805776313	0.772630355	0.740063904	0.692382245	0.637914324	0.616010855	0.56173571	0.52275732	0.484783873	0.404341927	20000000
	Avg. Pore Pressure (k.Pa)	5.175	5.131	2,093	4995	4.785	4500	4.440	4339	4019	3.852	3,655	3.303	3.176	2830	2.705	2471	2.121	* 010
	Pore Pressure- Gauge 14(167a)	5.197	5.154	5.108	2.052	4773	4551	4.497	4286	4055	3.883	3.694	3.307	3.162	2937	2.741	2.45	2.101	* 0.0
	Pore Pressure - Pore Pressure - Ang, Pore Gauge 13(401) Gauge 13(401) Gauge 14(401) Pressure (API)	5.168	5.132	5.1	4397	4.833	4.488	4391	4.184	4016	3.854	3.699	331	3.187	2865	2676	2451	2177	4.00.0
	Pore Pressure- Gauge 13(kPa)	5.159	5.108	2.071	4935	4.783	451	4.432	4157	3.985	3.818	3.572	3.291	3.178	2.838	2.697	2.901	508	2001
5/0-1-45	# of PVC Pipes	0 .	3	4	5	9	1		6	00	11	0 12	1 13	2 14	3 15	1 16	5 17	138	9
		Run 0	Run1	Run2	Run3	Run 4	RunS	Run 6	Run 7	Run 8	Run 9	Run 10	Run 11	Run 12	Run 13	Run 14	Run 15	Run 16	D A.T.

Figure C.8: Raw Data from S/D=1.45, Unit weight=13.03 $\rm kN/m^3$

	ė .	æ	-	19	æ	ヌ	32	e	99	100	52	20	52	2	1/2	×	22
	- Lugeon Value Gauge 14	92.58821289	92,4725487	92 188 39356	91.04959239	92,9535234	91.68241956	83.5273123	88.16531716	86.22613565	87.45790053	87.33090401	88.93445751	85.280,25144	85.16192185	85.938.08504	81.99717633
	- Lugeon Yalue - Gauge 12	92.93757074	93.33109074	92.5544039	91.55824063	92.09777272	92.66995111	90,92035179	93,66,6035,26	88.03363921	88.41093898	85.93684549	88.65693507	85.03173345	8492293575	86.17556507	83.1759034
	Lugeon Value Gauge 13	93.52398371	93.548.22395	93.67441304	92.43980333	92.13547136	91.59482287	90.5433393	91.141.70105	89.159.28043	87.56766195	85.44253568	85.812.84305	84.21488245	83 593 56233	85.088.08352	83.421.70378
	Normalized Awange Lugson Lugson Value Sauge 13	1	1001147253	0.997812516	0.985743595	0.99339465	0.98906393	0.971166336	0.967353899	0.943891044	0.944110882	0.930589342	0.947420233	0.915715311	0.909100031	0.921760733	0.8872012.67
	Eugeon Value	93.03825913	93.11496317	92.8048.0508	91.6822.9573	9233390703	91.97646205	90.32648927	89.97190214	87.78956285	87.81010954	86.5524.9466	88.1179.0556	85.16938897	8455381127	85.73136112	82.51704536
	Normalized Flow loss	-	0.985488889	0.974222222	0.953096667	0.930355556	0.87946667	0.848177778	0.8168888899	0.755555556	0.713.244444	0.62204444	0.602488889	0.57884444	0.5568	0.510044444	0.451511111
	RowLoss (Qout/Time/Length) (L/min/meter)	0.489130435	0.4825.21739	0.476521739	0.466173913	0.450173913	0.430173913	0.4148 69565	0.399565217	0.3995.65217	0.3488 69565	0.30426087	0.2346.95652	0.283130435	0.2723.47826	0.249478261	0.22573913
	Longth Interval(m)	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.46	0.45	0.45	0.45	0.45	0.45	0.46	0.45
	Time (mins)	Ø	S	22	22	22	22	S	22	Ŋ	22	22	22	Ø	22	Ŋ	22
76	· Oput(ml.)	5295	5549	248)	2361	5177	4947	4771	488	4230	4012	3489	3383	3226	3132	2969	2395
PVC Ripe-Primaryand Secondary-Spacing of 0.5*Cita of Ripe	Area Replacement Ratio- Multiply by the inverse of Maximum Agc/Alotal	0	0.176470588	0.23529.4118	0.294117647	0.352941176	0.411764705	0.470588235	0.529411765	0.588235294	0.647058824	0.705882353	0.764705882	0.82352.9412	0.88235.2941	0.941176471	1
PvC Ripe-Prima 0	Normalized Groubed Area Agc/Abotal	0	0.034906585	0.046542113	0.058177642	0.00981317	0.081449598	0.093084227	0.104719755	0.116355283	0.127990812	0.13952634	0.151261869	0.162897397	0.1745329.25	0.186168454	0.197803982
PVC Pipe-Primary and Secondary-Touching	Area Replacement Ratio- Multiply by the inverse of Nexmum Agrik total	0	0.176470588	0.235294118	0.294117647	0.352941176	0.411764705	0.470588235	0.529411765	0.588235294	0.6470588.24	0.705882353	0.764705882	0.823529412	0.882352941	0.941176471	1
PvCPipe-Prima	Normalized Grouted Area Agr, Atotal	0	0.043533231	0.058177642	0.072723052	0.087265453	0.101810873	0.116355283	0.133899994	0.145444104	0.159988515	0.174532925	0.189077336	0.333521746	0.218166157	0.232710567	0.247254977
PVCSIde BySide	Area Replacement Ratio- Multiply by the inverse of Maximum Ag d'Arotal	0	0.176470588	0.235294118	0.294117647	0.352941176	0.411764706	0.470588235	0.529411765	0.5882.3529.4	0.647058824	0.705882353	0.764705882	0.8235.2941.2	0.882352941	0.941176471	1
hd.	Normalized Groubed Area Agc/Atobal	0	0.087266463	0.116355283	0.14544104	0.174532925	0.203521745	0.232710567	0.261799388	0.290888.209	0.31997703	0.34906585	0.378154671	0.407243492	0.435332313	0.465421134	0.494509955
Slats	Area Replacement Ratio Multiply by the inverse of Newmum Agc/Atotal	0	0.176/70588	0.235294118	0.294117647	0.35294176	0.411764705	0.470588235	0.529411765	0.588235.294	0.647058824	0.705882353	0.764705882	0.823529412	0.882352941	0.941176471	1
	Normalized Grouted Area Agr, Albotal	0	0.111111111	0.148148148	0.185185185	0.222.2222.2	0.299.29259	0.295295296	0.333333333	0.37037037	0.407407407	0.45445544	0.481481481	0.518518519	0.555555556	0.592592593	0.62952963
	Noms fized Awarge Fore Pressure (APa)	1	0.985358433	0.976357989	0.966830479	0.926475249	0.889332573	0.873359954	0.844457121	0.800469037	0.755466819	0.668411402	0.639925715	0.63212271	0.612473854	0.553337136	0.520187615
	Nomsized Fore Pressure-Gauge IM(APa)	1	0.987509463	0.978236185	0.968952907	0.9165405	0.887963664	0.876987131	0.857683573	0.811127933	0.754830515	0.69948978	0.627176382	0.628311885	0.605223316	0.548394338	0.527441332
	Normalized Pore Pressure-Gauge 12(90-a)	1	0.98232947	0.978149344	0.95731902	0.928747862	0.88200546	0.866 99601	0.837355121	0.797643929	0.74976.2493	0.665309956	0.631578947	0.625308759	0.60934828	0.590056902	0.51567547
	Normalized Pore Pressure-Gauge 13(89a)	1	0.98523327	0.972657744	0.964244742	0.934225621	0.898087954	0.876099426	0.838240918	0.792543021	0.761759082	0.680879541	0.648139579	0.642829828	0.622944551	0.5 6051 1855	0.517399618
	Avg. Pore Pressure (APa)	5.29	5.182	5.135	2082	4872	4677	4.588	441	4210	3.973	3.515	3344	3334	3.221	2910	2.736
	- Pore Pressure-	5.284	5.218	5.169	5.12	4.843	4.692	4634	4532	4286	3.989	3.484	3.314	3.32	3.198	2.903	2.787
	Pore Pressure- Gauge 12(9/a)	5.263	5.17	5.148	5.091	4888	4.642	4.563	4.407	4.198	3.946	3.901	3.324	3.291	3.207	2.895	2.714
		5.23	5.158	2.087	5.043	4886	4697	4582	4384	4.145	3.984	3.561	3395	3.352	3.258	2332	2.706
5/0:162	# of PVC Pipes	0	3	47	s	9	1	00	6	10	11	12	13	14	15	16	17
S		Run0	Run1	Run2	Run3	Run 4	RunS	Run 6	Run7	Run 8	Run 9	Run 10	Run 11	Run 12	Run 13	Run 14	Run 15

Figure C.9: Raw Data from S/D=1.62, Unit weight=13.03 $\rm kN/m^3$

S/0=2.17										SSES	W	PvC Side By Side	РVСРіре-Ритал	PVCPipe-Primary and Secondary-Touching	PVCRpe-Prima 0.	PVC Rips-Primary and Secondary-Spacing of 0.5*Dia. of Pipe										
# of PVCPipes	l .	ssure. Pore Press (VP-a) Gauge 12(Pore Pressure. Pore Pressure. Aug. Pore Gage 13(44) Gauge 12(44)	ne Avg. Pore a) Presure (APa)	Normalized Pone Pressure-Gauge 13(9/a)	Normalized Pone Pressure-Gauge 12)(Pa)	Normalized Pore Pressure-Gauge 14)(Pa)	Normalized Aveange Pore Pressure (APa)	Normalized A Grouted Area In Agc/Abstal	Are a Replace ment Ratio- Multiply by the inverse of Maximum Agr. (N. chal	Nomalized Grouted Area Agd/Anotal	Area Replacement Ratio- Multiply by the inverse of Maximum Agy. Futut al	Normalized Groubed Area Agr, Ax otal	Area Replacement Ratio- Multiply by the inverse of Maximum Agd/Abotal	Normalized Grouted Area Agc/Atotal	AreaReplacementRatio- Multiplybythe inverse of Maximum Agc(Atotal	Qout(mi) Ti	Time (mins) hite	Flov (Qout/Tir hterval (m)	Flow Loss (Que/Time Length) Normalized Flow Loss (L/min/meter.)		Lugeon Value	Vamalzed Average Lugson Value- Value Gauge 13	Ugeon Yalue - L Gage 13	Ugeon Value- Gage 12	Lugeon Value- Gauge 14
0	5.185	5 5.209	8.34	5.211	-		1	1	0	0	0	0	0	0	0	0	896	22	0.45 0.492	1.483434783 1	6	94,49305035	1	11/262/516	9453537773	93.97610355
en	5.164	4 5.178	5.234	5.192	0.995949855	0.994048762	0.938554962	099529037	0.11111111	0.230769231	0.087265463	0.230769231	0.043633231	0.2.30769231	0.034906855	0.230769.231	2893	10	0.46 0.490	149173913 0.995408794	_	94,40945937	0.999115375	9492136194	94.65471863	93.65187487
-7	5.038	8 5.171	5.208	5.159	0.98322.0829	0.992704934	0.99389313	0.989957784	0.148148148	0.3076923.08	0.116355283	0.307692338	0.058177642	0307692308	0.046542113	0.307692.338	6095	10	0.45 0.48	0.48773913 0.99046412	_	34.54140927	1.000511773	95.6726423	94.3220132.3	93.6519.0577
s	2.02	2 5.108	5.142	5.106	0.978206365	0.979650805	177821890	0.979723679	0.185185185	0.384615385	0.14544104	0.394615385	0.072723052	0384615385	0.058177642	0.384615.385	2255	S	0.45 0.430	1,480173913 0,975101530	_	34.04725071	0.995282197	9467151282	910963983	93.38271354
9	4981	1 5.002	4387	4.983	0.956798457	0.960351087	0.951717557	0.9562492	0.22,222,222	0.461538462	0.174532925	0.451538462	0.087266463	0.461538462	0.09381317	0.461538462	2302	1Cl	0.45 0.455	0.45552174 0.945611867		93.44190781	0.988879981	93.862562.77	93.0931975	93.3732.0512
2	469	4714	4.713	4705	0.904532305	0.90872164	0.899427481	0.90296789	0.2592929	0.5384615.38	0.303621746	0.538461538	0.101810873	0538461538	0.081448938	0.538461538	3021	10	0.45 0.439	0.439217391 0.891930072	_	93.33797354	0.987778068	93.649.7636	93.172972.7	93.1927A163
00	4527	7 461	4.621	4586	0.873095468	0.885006719	0.8818702.29	0880005117	0.296296296	0.615384615	0.232710567	0.615384615	0.116355283	0.615384615	0.093084227	0.615384615	4967	S	0.45 0.423	1,422217391 0,85943848		92.28464704	0.976628935	93.48739487	91.80420536	91,5856,7221
6	4333	3 4428	4364	4438	0.833751205	0.850057191	0.870992366	0851669438	0.33333333	0.692307692	0.261799388	0.692307692	0.1338.99994	0.692307692	0.104719755	0.692307692	4690	S	0.45 0.404	0.404977826 0.82111954		91.10352822	0.954129404	93.534079.99	91.31613055	88 5950 5392
10	3967	7 4035	4297	4100	0.76509161	0.774520849	0.820338168	0.785682371	0.37037037	0.769230769	0.29388209	0.7692.30769	0.145444104	0.769230769	0.116355283	0.769230.769	4240	19	0.46 0.368	0.36865.652 0.74871976		99 33 33 30 346	0.951742812	92.9406736	91.37438716	85.80303.751
11	4038	8 4007	4026	4014	0.772999336	0.769245537	0.768320511	0.770183376	0.40 7407407	0.845153846	0.31997703	0.846153846	0.159988515	0845153946	0.127990812	0.845153846	4150	10	0.45 0.350	1360899565 0.732827123	_	99 91 019813	0.951500543	90.03731667	93.05978668	89.63476533
12	3.613	3534	3.413	3.517	0.696817743	0.676521405	0.651335878	067811309	0.41455551	0.9230769.23	0.34906585	0.923076923	0.1763.2925	0.923076923	0.13962634	0.923076923	360	22	0.46 0.317	1317130435 0.64410494		30.17927055	0.95434818	87.7748228	89.99161032	92.91838113
13	3.436	3383	3305	3375	0.66269381	0.64945287	0.630725191	0647563004	0.481481481		0.378154671		0.189077336		0.151261899		3483	10	0.45 0.30	0.33373913 0.616810878		90.0056884	0.95251099	88.39904844	89.78395815	919029139

Figure C.10: Raw Data from S/D=2.17, Unit weight=13.03 kN/m^3

	lugeon Yalue- Gauge IA	92.28706444	92,90212367	93.495)0351	91.1913.9951	88 22444055	88 9912 9238	85.37549407	80.45531274	81.4168.3355	81.1851.8519	82,9881.0817	78,708,4606	75.9482181	76.29314266	76.3611.2095	75.8102.0728	75.41783144	74.385.0413	77.32118581	76.39751553	72,2355,3578	73.8285900	70.95240453	72.5973.4188	74.0651.6102	72 8821 9407
	Lugeon Value - Gauge 12	93.21607033	93.84198951	92.23554624	91.830,34395	89,728,04634	89.13443095	87.1050928	81.877.32253	81.777.67072	82.70449743	84,979,61313	81.917.36239	78.67937689	79.60183233	75.71473978	79.181.85711	76.64101221	77.58396251	81.57206119	78 500 19944	75.45370564	74.041561	73.285.50085	74.426.562A	75.11194599	N.654726
	Lugeon Yalue- Gauge 13	94.21820094	94.05158855	93.855.42885	93.17419484	58.59075707	90.25431444	85.49821879	83 2 959433	8430347727	84.20405655	86.84428357	82.33396789	79.44407936	82.24023581	79.31594389	78.2490947	78.125309	76.45016048	84.60775615	82.3798527	77.52.602572	75.79014921	79.85.393823	77.03483222	78,6389414	76.216.23772
	Normalized Average Lugeon Value	-1	1003919307	0999425849	0.987387586	0.952977348	0.999485553	0.922299737	0.877755136	0.894310457	0.895798142	0.910701257	0.88285416	0.89637115	0.8505.8319	0.839943879	0.833612206	0.822793082	0.816407.25	0.89935.331	0.847500721	0.804516861	0.7955.2974	0.7992.3583	0800390405	0813968172	0799671521
	Average Lugeon A	93.23377825	93 5991 9005	93 1802 4801	92.0578.7521	88.84315239	88.45546325	85.987.983	81.83542769	82.41%0909	82,6795,4134	84 9081 1908	81,955,2389	77.995.191	79.33338454	77.0991.0277	77,7308,1556	76.71210777	76.11985355	81,050,7921	73.01569429	75.00814662	MS81785	ALS1577615	74.64206828	75.8893.2806	7455639722
	Normalized Flow Loss	1	0.982813.607	0.939336215	0.90804394	0.826009922	0.793396882	0.72714387	0.62/91141	0.601523742	0.558291991	0.54836995	0.495393338	0.49681077	0.44897.236	0.400956768	0.351878101	0.33995039	0.29336882	0.287207654	0.261516655	0.234309001	0.20924876	0.205173636	0.192933935	0.184266478	0.169737775
	How Loss (Qout/Time/length) (L/min/meter)	0.490782.609	0.482347826	0.461304348	0.49552174	0.405391304	0.387913043	0.356899565	0.305695.652	0.295217391	0.274	0.299130435	0.243130435	0.230995652	0.218347826	0.195782.609	0.172895.652	0.165391.304	0.142521739	0.140956522	0.128347826	0.110086.957	0.103995.652	0.100935652	0.094521739	0.090434783	0.083304348
	Length Interval (m)	0.45	0.46	0.46	0.46	0.45	0.45	0.45	0.45	0.45	0.45	0.46	0.45	0.45	0.45	0.46	0.45	0.45	0.45	0.45	0.46	0.45	0.45	0.45	0.45	0.46	0.45
	Time (mins)	R	10	K	K	N	N	N	N	N	N	Ŋ	N	N	N	Ŋ	N	N	N	N	Ŋ	N	N	N	N	Ю	Ŋ
şol	o' Qout(ml.)	364	2547	2302	212	4662	4461	4104	357	3392	3151	3082	2395	223	2211	2363	1995	1912	1639	1621	1476	136	1181	1158	1087	1040	88
PAC Pipe. Primary and Secondary-Spaing of OSFIX a of Pipe	Area Replacement Ratio- Multiply by the inverse of Maximum Ag of Abstal	0	0.11111111	0.148148148	0.185185185	0.222.22222	0.2929293	0.295295295	0.33333333	0.37037037	0.407407407	0.4845558	0.481481481	0.518518519	0.555555556	0.59259293	0.62952963	0.66666667	0.703703704	0.740740741	0.77777778	0.814814815	0.851851852	0.888888899	0.92992936	0.952952953	1
PVCPipe-Pri	Nomalized Grouted Area Agoldictal	0	0.034906585	0.046542113	0.058177642	0.05981317	0.081448698	0.093084227	0.104719755	0.116355283	0.127990812	0.13963634	0.151261889	0.162897397	0.17532925	0.185168454	0.197803382	0.30943951	0.221075039	0.232710567	0.2434995	0.25981624	0.35%17152	0.27925368	0.29383339	0.302523737	0.314159265
PVC RpePrimayand Secondary-Toudring	Area Replacement Ratio- Multiply by the inverse of Maximum Agy/Abotal	0	0.11111111	0.148148148	0.185185185	0.2222222	0.2592929	0.296296296	0.33333333	0.37037037	7047047040	0.8444454	0.481481481	0.518518519	0.55555556	0.99299393	0.62962963	0.66666667	0.703703704	0.740740741	0.77777778	0.814814815	0.851851852	0.888888899	0.925925926	0.962962963	1
РУСЯре-Рима	Nomalized Grouted Area Agr(Atotal	0	0.043633231	0.058177642	0.072723052	0.087265463	0.101810873	0.116355283	0.133899994	0.14544104	0.159988515	0.174532925	0.189077336	0.203621746	0.218166156	0.232710567	0.34725877	0.261799388	0.276343738	0.29388239	0.305430519	0.31997703	0.33452144	0.34906585	0.363610361	0.378154671	0.39269982
PrC Side By Side	Area Replacement Ratio Multiply by the inverse of Maximum Agy Atotal	0	0.11111111	0.148148148	0.185185185	0.22222222	0.259259259	0.296296296	0.333333333	0.37037037	0.407407407	0.444444444	0.481481481	0.518518519	0.55555556	0.59292593	0.62962963	0.66666667	0.703703704	0.740740741	87.777777.0	0.814814815	0.851851852	0.888888889	0.925925926	0.962962963	1
. M	Normalized Grouted Area Agc/Atotal	0	0.087.265463	0.116.355283	0.14544104	0.174532925	0.038621746	0.232710567	0.361799388	0.291888309	0.31997703	0.34906585	0.378154671	0.407243492	0.406332313	0.465421134	0.494509955	0.523598776	0.552687596	0.581776417	0.610865238	0.639954039	0.66904288	0.698131701	0.72723822	0.756309343	0.785.398163
Slats	Area Replacement Ratio- Multiply by the inverse of Maximum Agc/Rt chal	0	0.111111111	0148148148	018385185	02222222	0259259259	0296296296	033333333	0.37037037	0407407407	0.445555444	0.481481481	0518518519	0555555555	059292593	0.62962963	199999990	0.703703704	0.740740741	87.777777.00	0814814815	0.851851852	0.8 8888888 89	0.92992936	0962962963	1
	Normalized Ar Gouted Area MA Agc/Alotal	0	0.11111111	0.148148148	0.185185185	0.2222222	0.2592929	1296296296	0.39333333	0.37037037	0.407407407	0.44444444	0.481481481	0.518518519	0.55555556	0.5929293	0.6296363	799999990	0.703703704	0.740740M1	0.7777778	0.814814815	0.851851852	188888889	0.92592936	0.962962963	
	omalized Average Gro	1	0.978976697 0.	0.94047619 0.	0.919542857 0.	0.866831307 0.	0.82377153 0.	0.788437183 0.	0.711942756 0.	0.690217832 0	0.628559271 0.	0.602140324 0.	0.570542047 0.	0.537550659 0.1	0.523049545 0.1	0.48485755 0.1	0.422112452 0	0.409574458 0.1	0.35586424 0.	0.33055748 0.	0.30873961 0.	0.27881.2057 0.1	0.261714792 0.1	0.256712259 0.1	0.240564843 0.1	0.225380445 0.1	0.212259372
	Namalized Pare N Pressure-Garge 14(Pa) P	1	0.976.305882	0.927792403	0.918954494	0.854045534	0.819699049	0.785009778	0.716810831	0.681835276	0.634637082	0.60381572	0.590857465	0.546446032	0.538172245	0.484530569	0.42835625	0.412373073	0.360,285822	0.342738044	0.315 908236	0.2865739	0.261554488	0.266829635	0.244828883	0.229597938	0.214930425
	Nomalized Pore Pressure-Gauge 12(90-a)	-	0.97625831	0.950237417	0.921747388	0.838119658	0.826590693	0.778157645	0.712050779	0.685660019	0.629249763	0.601519468	0.563722697	0.532763533	0.530987654	0.483637227	0.414245014	0.408876543	0.348907882	0.328205.128	0.310541311	0.27711301	0.363487797	0.260968661	0.241215575	0.228579952	0.211965812
	Normalize ditore Pressure-Gauge 13(8ºa)		0.9844899	0.943559234	0.91821.8468	0.878479555	0.825110386	0.801305433	0.706853523	0.673055848	0.62468934	0.594831849	0.56903436	0.533307737	0.509694759	0.476291035	0.423689768	0.405411979	0.357842196	0.31983 1062	0.29997715	0.272805107	0.26012.6704	0.242081014	0.23555.3849	0.230771741	0.33382.9142
	Avg. Pore Pressure (kPa)	5.264	5.153	4921	4841	4563	439	4190	3.748	3581	3314	3.170	303	2830	273	2552	222	2.156	1872	1739	1634	1.468	1378	131	136	1192	1117
	Pore Pressure- Pore Pressure- Pore Pressure- Aug. Pore Gauge 13(Pda) Gauge 14(APa) Pressure (Pda)	5.318	5.192	494	4887	4.995	439	4.180	3.812	3636	3375	338	3.089	2905	2,852	2577	2.278	2.193	1916	1833	1690	1534	1331	1419	1302	121	1.18
	Pore Pressure	2.365	5.140	2003	483	4518	4352	4097	3.749	3.610	3313	3.167	2988	2802	2.743	2399	2.181	2158	1837	1738	165	1489	1387	1374	1200	1304	1116
		5209	5.128	4915	4.783	45%	428	4134	3.682	3306	3254	3099	2923	2778	792	2481	2307	2117	184	1000	1538	1400	136	130	1733	1150	1033
1:0/5	# of PVC Ripes	0	3	=7	2	9	7		6	00	==	13	13	M	12	95	13	200	13	00	77	22	23	×	Ŋ	×s	Ü
		Run 0	Run 1	Run2	Run3	Run 4	RunS	Run6	Run7	Run 8	Run9	Run 10	Run 11	Run 12	Run 13	Run 14	Run 15	Run 16	Run 17	Run 18	Run 19	Run 30	Run 21	Run 22	Run 23	Run 34	Run 25

Figure C.11: Raw Data from S/D=1, Unit weight=13.35 kN/m³

	Luge on Value- Gauge 14	92 14012 122	93.40393192	92.74125544	90.2673.1598	91,9993,3985	88.8538.0445	87.278.285	8435303306	87.63453342	29.70511692	80.76536007	78.49310131	76.7697.1816	79,10857.975	78.50971733	78.28172.245	73.65122967	77.91548151	78.69983.278	77.57719581	76.2632.1974	76.13281.957
	Lugeon Value Lu Gauge 12	92.5767215	94 181845W	93.9807.219	91.01908522	92.40857234	89 58562 235	89.7695.763	87.88957134	87.18138991	8053429056	8148157668	80.99738561	81.18059857	8124330482	8135282736	812/310169	75.78333738	76.22360248	76.83734413	813346554	77.73385034	78.49935.48
	Lugeon Value- Gauge 13	92.7876265	95.58892699	96.25078765	92.3890532	93.7792067	90.31936257	88.86057915	89.409934	90.3108585	82.24395355	83.93793359	83.2645755	81 9 42602 28	82.96291152	80.62194069	73.65405745	74.75821208	79.16397884	78.88947093	78.70224413	79.31803599	73.74718635
	Average Luge on Normalized Average Value Luge on Value		1.02034778	1.019472636	0.986118778	1.002400763	0.958485384	0.958091508	0.942312044	0.955173551	0.87369814	0.886904585	0.874183126	0.863755772	0.876470773	0.8554119	0.838905581	0.83778565	0.840522535	0.844542494	0.856095313	0.8405522.27	0.822279847
	erage Lugeon Yalue	92.503N792	9438293276	9430198127	91.21672454	92.72283331	89 5 85 6223 5	88.62418106	87.16456886	88.35426787	8) 81418518	82.03933747	80.86304619	79.89805489	81.07420307	8).14545811	77.5999965	W.73077682	77.74896309	78.12081233	79.18945679	77.75170968	76.06150387
	Nomalized FlowLoss	1	0.995549226	0.97899 2345	0.91739.3626	0.893181414	0.812889443	0.772654402	0.721025458	0.690226099	0.587146163	0.56455.8198	0.529998.22	0.500445077	0.425316005	0.33878 9389	0.334164145	0.305901157	0.273099519	0.368114652	0.24436532	0.231084209	0.221648567
	Flow loss (Qout/filme/Length) (Umin/meter)	0.488434783	0.4852.6087	0.478173913	0.4808957	0.4952.6087	0.39704578	0.377.391304	0.352173913	0.337130435	0.286782609	0.275652174	0.23889955	0.244434783	0.3077.3913	0.194782609	0.163217391	0.149.217391	0.133391304	0.130956522	0.119391304	0.112899565	0.1082.6087
	Length interval (m.)	0.45	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46
	Time (mins)	S	Ŋ	Ŋ	23	Ŋ	Ŋ	ю	Ŋ	23	23	23	ю	53	53	53	13	13	13	13	13	13	Ю
***	Qout (mt.)	2017	2895	5489	5153	2017	4866	4940	4050	3877	3398	3170	7162	2311	2389	2240	1877	1716	1534	1906	1373	1298	1345
PVC Ripe-Primary and Secondary-Spading of 0.5° Dia. of Pipe	Area Replacement Ratio Multiply by the inverse of Maximum Ags/Abstal	0	0.130434783	0.173913043	0.217391304	0.2608.69565	0.304347826	0.3478.25087	0.3913.04348	0.434782839	0.47825087	0.52173913	0.96217391	0.608695652	0.652173913	0.695652174	0.7391.30435	0.7825.08995	0.826089957	0.8995.65217	0.913043478	0.956521739	
WCRpe-Primary 0.5	Normalized Grouted Area Agc/Atotal	0	0.034906585	0.046542113	0.058177642	0.09381317	0.081448998	0.093084227	0.104719755	0.116355283	0.127990812	0.13952634	0.151261869	0.162897397	0.174532925	0.186168454	0.197803982	0.23943951	0.221075039	0.232710567	0.244346095	0.255981624	0.267617152
PVCPipe-Primary and Secondary-Tourbing	Are a Replacement Ratio- Multiply by the inverse of Maximum Agy/Abotal	0	0.130434783	0.173913043	0.217391304	0.260889565	0.304347826	0.347826087	0.391304348	0.434782609	0.4782.6087	0.5217.3913	0.565217391	0.608695652	0.652173913	0.695652174	0.739130485	0.782.608996	0.826089957	0.89956217	0.913043478	0.956521739	
PVC Pipe-Primary	Nomalized A Groubed Area M Agd Abotal	0	0.043533.231	0.058177642	0.072722052	0.087266463	0.101810873	0.116355.283	0.130899694	0.145444104	0.159388515	0.17632.925	0.189077335	0.303521745	0.218166156	0.232710567	0.247254977	0.261799388	0.276343738	0.293883339	0.335432619	0.31997703	0.3345.2144
PVCSIde By Side	Area Replacement Ratio- Multiply by the inverse of Maximum Agg/Atotal	0	0.130/84783	0.173913043	0.2173913.04	0.260899565	0.3043478.26	0.347826087	0.391304348	0.434782509	0.47826087	0.52173913	0.565217391	0.608895652	0.652173913	0.695652174	0.739130435	0.782608595	0.8.26086957	0.8 695 652 17	0.913043478	0.95621739	
PVCS	Normalized A Grouted Area In Agy/Atotal	0	0.087266463	0.116355283	0.145444104	0.1763.2925	0.203621746	0.232710567	0.261799388	0.29388239	0.31997703	0.34906585	0.37815.4571	0.407243492	0.43633.2313	0.455421134	0.494509955	0.523598776	0.552687596	0.581776417	0.610855238	0.6395.4059	0.69904288
Slats	Area Replacement Ratio- Multiply by the inverse of (C Maximum Agc/Abbtal	0	0.130/84783	0.17391.3043	0.217391304	0.260869565	0.3043/325	0.34782.6087	0.391304348	0.434782.609	0.47826087	0.52173913	0.565217391	0.608695622	0.652173913	0.695652174	0.739130435	0.782608696	0.826086957	0.899565217	0.913043478	0.95621739	
	Normalized Grouted Area Agr, Arotal	0	011111111	0.148148148	0.185185185	0222222	0.292.99299	0.295295295	0.3333.33333	0.37037037	0.407407407	0.455145551	0.481481481	0.518518519	955555550	0.5925.92593	0.62962963	0.66666667	0.703703704	0.740740741	0.777.7778	0.814814815	0.851851852
	Normalized Average Pore Pressure (APa)	1	0.975 695979	0.990292911	0.93030743	0.891042232	0.839340951	0.805451613	0.765196341	0.722618522	0.672.053532	0.636323464	0.605274836	0.579382615	0.485.239769	0.460261347	0.338333439	0.378195821	0.324916356	0.317467332	0.285524904	0.274919513	0.39955399
	Normalized Pore Pressure-Gauge 14(A9a)	1	0.982078853	0.97264667	0.936427089	0.894548198	0.8428.59838	0.8156.95152	0.787587248	0.72571.213	0.67873.985	0.6438.41785	0.622335408	0.600541388	0.495378231	0.453024931	0.3933 22015	0.382193039	0.322957932	0.313903037	0.2909.22581	0.279192605	0.368251273
	Normalized Pore Pressure-Gauge 12(49a)	1	0.978582259	0.954366945	0.933093252	0.894806672	0.840030326	77518967.0	0.759476876	0.732941622	0.67494339	0.641205499	0.605761941	0.570697438	0.48454746	0.453752843	0.380783895	0.373199393	0.331690575	0.323161486	0.278051554	0.275.238491	0.261561789
	Norma Fized Pore Pressure-Gauge 13 kPa]	1	0.95637538	0.943768997	0.921352584	0.883739902	0.835105383	0.805800912	0.7482.90274	0.709156535	0.662424012	0.623860182	0.590515502	0.56673331	0.475683891	0.458966565	0.420972544	0.379179331	0.330098784	0.315349544	0.288183891	0.2703.26748	0.27887538
	Avg. Pore Pressure (APa)	5.280	5.152	5.071	4.912	4.705	4482	4.28	400	3.816	358	3.360	3.001	3.059	2.962	243)	2.103	1397	1716	1676	1508	1.62	143
	Gauge 13(k9) Gauge 12(k9) Presure - Mug. Pone Gauge 13(k9) Gauge 12(k9) Gauge 14(k9) Presure (k9)	100'5	2306	5.156	4994	470	4.488	4334	4175	3.847	3.538	3.413	328	3.184	2636	2.481	2082	2036	1712	1991	1539	1.48)	1422
	Pore Pressure Gauge 12(9°a)	5.276	5.163	2.088	4.923	4721	4482	4304	4007	3.857	3.561	3.383	3.196	3.011	2557	2394	5003	1989	1730	1705	1457	1.452	1380
	Pore Pressure- Gauge 13(kPa)	5.364	2087	498	4830	4652	4396	430	3.939	3.733	3.487	3.284	3.109	2.383	2504	2.416	2.216	1996	1685	1660	1517	143	1488
S/0=1.18	#of PVC Pipes	0	3	4	s	9	1	80	6	10	п	12	13	M	12	99	13	88	13	93	77	22	23
		Run0	Run 1	Run2	Run3	Run 4	RunS	Run 6	Run 7	Run 8	Run9	Run 10	Run 11	Run 12	Run 13	Run 14	Run 15	Run 16	Run 17	Run 13	Run 19	Run 30	Run 21

Figure C.12: Raw Data from S/D=1.18, Unit weight=13.35 $\rm kN/m^3$

		Nomatzad Awrage Lugeon Value Lugeon Value Lugeon Value Gauge 13 Gauge 12 Gauge 14	Ugeon Value - Lugeon Yalue - Gauge 12 Gauge 12 92 95999 135 92 440 26555	Cauge 13 Gauge 12 Gauge 12 Gauge 13 Gau	Gauge 13 Gauge 12 Cauge 12 Cauge 13 Cau	Lugeon Válue Lugeon Válue - Lugeon V	Capp 13 Gage 12 Gage 1	Cayge 13 Gage 12 Gage 13 Gage 12 91 9889 13 91 937055 91 05538-49 91 057 2223 91 10558-49 91 057 2223 91 10505 81 1185096 81 13505 1185096	Lageon Yalue Lageon Yalue Lug Gayge 13 92 9599 USS 91 0858 84 9105 78257 9 81 12090 65 87 185996 87 25551 11 85 694771 81 17897 75 87 98 99698	Caype 13 Gage 12 Gage 13 Gage 12 Gage 13 Gag 13 G	Ligeon Yaloe Ligeon Yaloe Lige Chap E3 Gage E2 Cage E3	Ligenv Valve Ligens Valve Light Capp 13 Gage 12 Capp 13 Gage 12 Capp 12 Gage 12 Capp 1	Ligenov Vales Igenov Vales Ige	LIGOROV VAIRE INPROVINCE: LIN CONTRIBUTION OF A PROVINCE	Legen Vale Spen Vale Spe	Legen Vite agren Vite agree vite	Ligen's Victor (1990) 1941 - 1	(1992) Gog/12 Go	Control Cont
	Normalized flow toss Average Lugeon Normalized Average Value Lugeon Value		1 92,483576	w m	92.4835.76 91.2938353 90.028523	92.4936.76 91.29583533 1 90.022523	92.493576 91.2938353 1 90.023623 1 87.429378 7 88.2332909	92.6935.% 91.2938333 1 90.028523 1 87.2023.88 7 88.2822.09 2 87.27234.39	92.4936.N 91.2938333 90.0236.23 1 87.4233.48 8 2.7323.03 8 2.7323.03 8 8 2.7323.03 8 8 2.7323.03 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	92.4895.76 91.29885.75 91.29885.73 91.0026.55 91.7503.48 87.7503.48 87.7503.68 87.7503.65 88.6918705.5	92.4895.76 91.29885.76 91.29885.83 90.0265.83 92.28829.09 92.28829895 93.28829095 93.28829095 94.28829095 94.28829095 94.28829095 94.28829095 94.28829095 94.28829095 94.28829095 94.28829095 94.28829095 94.28829095 94.28829095 94.28829095	10.028.57 10.028.57	9.2.489576 91.288833 91.288833 91.288833 91.288339 91.28	92.489567 91.2988157 91.0208513 91.2983148 88.1282008 88.1282008 88.1282008 88.1282008 88.1282008 88.1282008 88.128208 88.128208 88.128208 88.128208 88.128208	92-8895/7 91-28885/2 91-28885/2 81-28988 81-28989 81-2899 81-2999	9,2,898.7.9 9,1,2988.7.9 9,1,2988.7.9 9,1,2988.7.9 8,1,282.0.0 8,1	1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,	9.2 (2008) 25 (2	9.2 4895 X, 9.2 48
How loss	nop)		0.48238387	0.48355652	0.48255087 0.48355622 0.45704.3478	0.4235087 0.42356522 0.45734378 0.4209552	0.4825087 0.48355622 0.47313178 0.4282687	0.4825087 0.48355522 0.4733.478 0.4289.952 0.4282.0837	0.4823097 0.48895622 0.6709378 0.04289582 0.0428087 0.378	0.48220957 0.4855622 0.67043478 0.423820957 0.423820987 0.423820987 0.423820987 0.423820987 0.423820987	0.4823997 0.4825922 0.4825939 0.4282987 0.43872 0.43872 0.43872 0.43872 0.43872 0.43872 0.43872	0.4823007 0.4825622 0.452957 0.422687 0.422687 0.75697 0.75697 0.75697 0.75697 0.75697 0.75697 0.75697 0.75697	0.4825907 0.4895922 0.4289992 0.4289992 0.4289992 0.428992 0.4289130 0.42892097 0.42892097	0.4822087 0.67241498 0.62262882 0.62262882 0.7262882 0.7262882 0.7262627 0.7262627 0.7262627 0.7262627 0.7262627 0.7262627 0.7262627	847.289(1) 847.289(1) 847.289(1) 147.588(2) 147.588(2) 147.588(2) 147.588(2) 147.588(2) 147.588(2) 147.588(2) 147.588(2) 147.588(2) 147.588(2) 147.588(2) 147.588(2) 147.588(2) 147.588(2) 147.588(2) 147.588(2) 147.588(2)	8666827) 2014/2014/10 2014/2014/2014/2014/2014/2014/2014/2014/	(142000) (142000) (142000) (142000) (142000) (142000) (142000) (142000) (142000) (142000) (142000) (142000) (142000) (142000) (142000) (142000) (142000) (142000) (142000)	808 (1985) 1.00 (1	(142000) (142000)
	Time (mins) Length Imprval (m)		25 0.45																
	Qout (mt.) Ti		5546	5393	5546 5393 5256	5546 5293 5256	5546 5393 5256 4876	5393 5256 4876 4851 4508	5393 5393 5256 4876 4831	5516 5393 5256 4976 4851 4832 4332	5546 5203 5256 4976 4851 4832 4139 3770	5546 5293 5256 4976 4851 4832 4139 3770 5314	5946 5393 5256 4976 4538 4332 4139 3770 3833	5946 5393 5256 6976 6851 693 493 3770 514 514 505 505	5546 5393 5256 6876 6851 6832 4832 4832 4832 4833 3710 3814 3833 3055	5546 5593 6256 4876 4851 4832 4139 3770 3714 3833 3055 2779	5546 5793 6708 6708 6708 6708 6708 6708 6708 6708	5365 5256 6256 6276 6276 6276 6277	5546 5256 6251 6261 631 632 633 632 633 633 633 633 633
Apa Berlament Bath-	Multiply by the inverse of Maximum Ago,(A total		0	0.0157894737	0.157894737.0.210538316	0 0.157894737 0.210508316 0.263157895	0 0.157890737 0.210530336 0.253157895 0.31578947N	0 0.157894737 0.2105203.16 0.263157895 0.315789474 0.358421053	0 0.15789477 0.21053516 0.263157895 0.315789474 0.35824053	0 0.15784737 0.21025316 0.231578474 0.331578474 0.35824053 0.4210553 0.4210553 0.4210553	0.01.08.09.07.00.00.00.00.00.00.00.00.00.00.00.00.	0 10 78473 0 10 05516 0 10 05516 0 10 055178 0 10 056178 0 10 056178 0 10 056178 0 10 056178	0 (15 78417) 0.02 (15 78417) 0.02 (15 78417) 0.02 (15 78417) 0.02 (15 78417) 0.02 (15 78417) 0.03 (15 78417) 0.04 (15 78417) 0.04 (15 78417) 0.05 (15 78417)	0 10 70 70 70 70 70 70 70 70 70 70 70 70 70	0.000000000000000000000000000000000000	0 0.21058316 0.21058316 0.21058316 0.231078914 0.231078914 0.23107891 0.62107891 0.62107894 0.63107894 0.63107894 0.63107894 0.63107894 0.63107894 0.63107894 0.63107894	0 15 784777 0 15 784777 0 15 784777 0 15 784777 0 15 784777 0 15 784777 0 15 784777 0 15 784777 0 15 784777 0 15 784777 0 15 784777 0 15 784777 0 15 784777 0 15 784777 0 15 784777 0 15 784777 0 15 784777 0 15 78477 0 15	2000.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 5100 80 TO 10 10 10 10 10 10 10 10 10 10 10 10 10
Nomalisad	Grouted Area Agc/Atotal		0	0.034906585	0.03490535	0 009490585 0045542113 008177642	0 0.034.905385 0.046.542113 0.058.177642 0.06881317	0 0.034906855 0.036542113 0.038177642 0.06881317 0.081448958	0 0.094905855 0.094542113 0.058177642 0.0981317 0.08148998	0 0.034905835 0.04554213 0.058177642 0.0581317 0.08148998 0.093094227 0.10471975 5	0 0.00490585 0.00524213 0.00817642 0.0081317 0.00144898 0.03108427 0.03108427 0.106755 0.11635283	0 0.00490585 0.005.52113 0.00817642 0.00681317 0.00148998 0.00310527 0.116.35283 0.116.35283	0 000490585 000552113 00081317 00148998 00910577 0.104719755 0.116.35283 0.127990812 0.1362633	0 0.004.90585 0.005.52113 0.008.17842 0.008.18117 0.001.48598 0.031.90523 0.115.5053 0.115.5053 0.115.5053 0.115.5053 0.115.5053	0 0.00490585 0.004552113 0.008177642 0.016801317 0.0148998 0.03148998 0.0316927 0.10470575 0.11670534 0.11790812 0.1176083	0 0.004.90583 0.005.2113 0.008.17762 0.008.0427 0.009.09427 0.107.90812 0.107.	0 0.00490585 0.00552113 0.008177642 0.00148998 0.00148998 0.00148998 0.00148998 0.1157593 0.1157599 0.1157599 0.1157599 0.1157599 0.1157599 0.1157599 0.1157599 0.1157599 0.1157599 0.1157599 0.1157599 0.1157599 0.1157599 0.1157599 0.1157599 0.1157599 0.1157599 0.1157599 0.1157599 0.115759	0.00490283 0.0065GEII 0.00817842 0.00810177 0.00140898 0.01089027 0.01087037 0.01087037 0.01087037 0.01087037 0.01087037 0.01087037 0.01087037	0.0990885 0.09650113 0.083177642 0.0831047955 0.08310479755 0.10578283 0.10578283 0.10578283 0.10578283 0.10578283 0.10578283 0.10578283 0.10578283 0.1078282 0.1078282
PVC Ripe-Primary and Secondary-Touching Normalized Axea Benkinement Ratio-	Multiply by the inverse of Maximum Ags/Anotal		0	0.157894737	0 0.157834737 0.210536316	0 0.157894737 0.210536316 0.263157885	0 0.157894737 0.210556316 0.263157895 0.315789474	0 0.15 7894 737 0.21 0526 316 0.26 7315 785 0.31 5789 474 0.36 9421 053	0 0.157894737 0.21026316 0.263157885 0.315789474 0.35821053 0.421052632	0 0.1578477 0.21053316 0.5315788474 0.35782474 0.5582102 0.42105262 0.47384211	0 0.105894737 0.21055316 0.531578847 0.315789474 0.35821053 0.4205522 0.473954211 0.24655789	0 0.2105/364/777 0.2105/316 0.2315/386-474 0.25105/3165 0.42105/386-474 0.47386-421 0.521613/386 0.521613/386	0.55.784.777 0.21035.316 0.21035.316 0.2157.884.41 0.2157.884.41 0.47594.211 0.57594.70 0.6157.7897 0.6157.789.70	0.05 784177 0.210583186 0.210583186 0.3157885 0.3157885 0.4105262 0.4105262 0.47384121 0.51617783 0.51617783 0.51617783 0.51617783	0.0 0.5 784 777 0.2 1056 346 0.2 157 884 44 0.3 157 884 44 0.3 157 884 173 0.4 105 173 884 173 0.5 151 788 738 173 89 0.5 157 884 738 173 89 0.5 157 884 738 173 89 0.5 157 884 738 173 89 738 173 89 738 173 89 738 173 89 738 173 89 738 173 89 738 173 89 738 173 89 738 173 89 738 173 89 738 173 89 73	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0 0.5 784 777 0.2 0.5 784 777 0.2 0.5 784 777 0.2 0.2 0.5 5.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1	0.00 S S8177 0.00 S S8177 0.00 S S8107 0.00	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Romalized	Grout ed Area Agc/Atotal	ĺ	0	0.043533231	0.0043633231	0 0.043633231 0.058177642 0.072723052	0 0.043633231 0.058177642 0.072723052 0.087265463	0 0.058177642 0.07272052 0.08726463 0.08726463	0 000363231 005817642 007272052 008726463 0.10310873 0.11635283	0 009363231 005817542 0072723052 008726463 0.00310873 0.116352283 0.11635269	0 0.00.958231 0.00.8772052 0.00.7722052 0.00.978466 0.00.980873 0.00.999594 0.00.999594	0 0.004353231 0.005877542 0.007722052 0.008705463 0.01655283 0.01655283 0.01655283 0.01655283 0.01655283 0.01655283 0.01655283	0 0.004553231 0.005877542 0.007722052 0.007722052 0.007722052 0.007722053 0.007722053 0.007722053 0.007722053 0.007722053 0.007722053	0 0004333331 000817642 000722052 000726463 01081007 011625238 011082654 014544104 015988519 01762925	0 000353231 0003777042 000777704 000777704 000777548 01165528 01165528 01165528 01165528 01165528 01165528 01165528 01165528 01165528 0116552	0 000353231 0003777442 000777705 000777546 000375648 01165528 01165528 01165295 01165295 01165295 01165295 01165295 01165295 01165295 01165295 01165295 01165295	0.00 5323231 0.058177642 0.07772054 0.0087258463 0.110825883 0.110825883 0.110825883 0.11082583 0.11082583 0.11082583 0.1108251748 0.1108251748 0.1108251748 0.1108251748	000 53121 000 35121 000 772020 000 772020 000 7000 000 7000	0.00 5512.11 0.05317%-0 0.077235/2 0.077235/2 0.05725/3
Area Benkrement Retio-	Multiply by the inverse of Maximum Agc/Atotal		0	0.157894737	0 0.157894737 0.210536316	0 0.157894737 0.210536316 0.263157885	0 0.157894737 0.210505316 0.263157885 0.315789474	0 0.157834737 0.2.10556316 0.263157895 0.3.15789474 0.3.03421.053	0 0.15789477 0.2 10558316 0.2 63157885 0.3 15788478 0.3 65421053 0.4 21052632	0 0.15784737 0.2 10536316 0.2 6115785 0.3 15785470 0.3 21052632 0.4 2105263 0.4 2105263	0 0.15784777 0.2 10583477 0.2 1058346 0.2 15788474 0.3 15788474 0.4 2052532 0.4 2052532 0.5 20315788	0 0.1578/477 0.2105/836 0.2105/836 0.31578/474 0.368/21053 0.4758/421 0.4758/421 0.578/678 0.578/678	0 10.1578/316 0.2.1026/316 0.2.1026/316 0.2.1026/316 0.3.1026/31 0.4.2026/32 0.4.2026/32 0.4.2026/32 0.4.2026/32 0.4.2026/32 0.4.2026/32 0.4.2026/32 0.4.2026/32 0.4.2026/32 0.4.2026/32 0.4.2026/32 0.4.2026/32 0.4.2026/32	0.1578477 0.21056316 0.21056316 0.31578474 0.31578647 0.31578647 0.77584711 0.775847788 0.53857788 0.53857788 0.53857788 0.53857788	0 0.5584777 0.24657855 0.24657855 0.24657855 0.24657855 0.2465785473 0.2465785473 0.526578 0.5265789 0.526578947 0.536578947 0.536578947 0.536578947	0.15788-177 0.210036336 0.26157885 0.3157884-144 0.358612053 0.4738542 0.738542 0.52851789 0.538518987 0.738542 0.73854389 0.73854389 0.73854389 0.73854389 0.73854389	0.15784777 0.15784777 0.15784777 0.15784777 0.15784778 0.15784778 0.15784778 0.15784778 0.15784778 0.15784778 0.15784778 0.15784778 0.15784778 0.15784778 0.15784778 0.15784778 0.15784778 0.15784778 0.15784778 0.15784778	0.01598137 0.21058318 0.21058318 0.210584A 0.210584A 0.210584A 0.210584A 0.210584A 0.210584A 0.210584A 0.210584A 0.210584A 0.210584A 0.210584A 0.210584A 0.210584A 0.210584A 0.210584A 0.210584A 0.210584A 0.210584A	0.01788477 0.2100528 0.01788477 0.01788478 0.01788478 0.01788478 0.01788478 0.0788478 0.0788478 0.0887884 0.0887884 0.0887884 0.0887884
Normalibed Area Benlare		ĺ	0	0.087265463	0.03726463	0 0.08726463 0.116352283 0.14544104	0 0.087265463 0.116355283 0.14544104	0 0.008728463 0.116352283 0.1174532325 0.0174532325	0 0.08726463 0.116352283 0.116329.25 0.20321746	0 0.08726463 0.116352283 0.1176329.25 0.203321746 0.23710567 0.25179388	0 0.08726463 0.116252283 0.1762325 0.20321746 0.23710567 0.261799388 0.29088209	0 0.00735463 0.0163528 0.0176329.5 0.03521746 0.03521746 0.03721767 0.0373938 0.03083209 0.03083209	0 0.00735466 0.11655238 0.1765295 0.2371056 0.2371056 0.2078323 0.20883209 0.3199708	0 0.00735466 0.1165528 0.105325 0.20710567 0.20710567 0.20710567 0.2088209 0.3199708 0.3199708 0.3199708 0.3199708 0.3199708 0.3199708	000 000 000 000 000 000 000 000 000 00	000755465 011675283 014574104 01745282 023770567 025770567 025770567 025770567 02577388 02770567 0277582 0277582 0277582 0277582 0277582 0277582 02775847 02775472	0.007/26466 0.116/552/26 0.17/522/25 0.20/352/17/65 0.20/352/17/65 0.20/352/20/26 0.20/352/20/26 0.20/352/20/26 0.20/352/20/26 0.20/352/20/26 0.20/352/20/26 0.20/352/20/26 0.20/352/20/26 0.20/352/20/26 0.20/352/20/26 0.20/352/20/26	0.00756165 0.116575283 0.04544104 0.0735235 0.033521746 0.023710567 0.02170567 0.02170567 0.02170567 0.02170567 0.02170567 0.02170567 0.02170567 0.02170567 0.02170567 0.02170567 0.02170567 0.02170567 0.02170567 0.02170567 0.02170567 0.02170567 0.0217057 0.	0.00785461 0.11655281 0.11554010 0.17771557 0.17771557 0.17771557 0.17757 0.17757 0.177557 0.17757 0.177557 0.1
Appa Benkoment Ratio.			0	0.157894737															
Mormaliped Apa Be			0	011111111	0.11111111	0.0111111111	0.0011111111	0.011111111 0.148148148 0.185185185 0.2222222	0111111111 0.148148148 0.185185185 0.2722222 0.2592329 0.256296296	0 0.11111111 0.148148148 0.185185185 0.222222 0.2592929 0.25629429 0.33623933	0.000000000000000000000000000000000000	0.000000000000000000000000000000000000	0.011111111 0.14818148 0.222222 0.259229 0.259229 0.259229 0.333333 0.3433037 0.4444444	0.011111111 0.14818148 0.0222222 0.0222222 0.0259239 0.0262299 0.0333333 0.0370707 0.04444444	0.011111111 0.14318148 0.2222222 0.2522232 0.252223 0.252223 0.252223 0.252223 0.252223 0.252223 0.252223 0.252223 0.252223 0.25223 0.	0.011111111 0.143848148 0.018382185 0.0282222 0.0282229 0.0382239 0.0382239 0.0382239 0.0382239 0.0482239 0.0482239 0.0482239 0.0482239 0.0482239 0.0482239 0.0482239	0.011111111 0.145148148 0.18518185 0.222222 0.255229 0.355229 0.355229 0.45544444 0.45444444 0.45444444 0.45444444 0.45444444 0.45444444 0.45444444 0.45444444	0.011111111111111111111111111111111111	11111111111111111111111111111111111111
	Normalized Average Gro Pore Pressure (APa)		-	0.985231123 0.	31123														
	Normalized Pore Pressure-Garge 14(kPa)		_	0.99159639	0.99159639	0.991.9963.9 0.990519481 0.995455309	1 0.991595639 0.990519481 0.956455309 0.900114691	1 0.991598639 0.990515981 0.9905465309 0.90014691 0.98115555	1 0.991.9963.9 0.990.5941 0.990.11499.1 0.901.1499.1 0.961.8795.2	0.991.9963.9 0.990.51948.1 0.990.51948.1 0.900.1169.1 0.981.1059.2 0.985.9175.7 0.885.9175.7	0.991.9963.9 0.990.51948.1 0.990.51948.1 0.900.11499.1 0.881.1575.2 0.885.9175.7 0.895.0382.0 0.744.616.2.1	1 0.99156819 0.99016981 0.99016991 0.99016991 0.99016931 0.9901693 0.9901693 0.9901693 0.9901693	0.991.966.99 0.991.966.99 0.991.169.1 0.954.653.99 0.991.169.1 0.86.3117.7 0.805.0832 0.74.4616.1 0.661.965.7	0.991.366.9 0.990.566.9 0.900.1691 0.901.1691 0.861.555.2 0.863.307.7 0.863.307.7 0.861.5384.2 0.861.5384.2	0.9915969 0.99059891 0.99019891 0.99019891 0.99019892 0.99019892 0.9901993 0.9901993 0.9901993 0.9901993 0.9901993 0.9901993 0.9901993 0.9901993 0.990199	0.99159639 0.9951981 0.9951981 0.9011691 0.9011691 0.9011691 0.901082 0.901082 0.901082 0.901082 0.901082 0.901082 0.901082 0.901082 0.901082 0.901082 0.901082 0.901082 0.901082 0.901082 0.901082 0.901082 0.901082	0.991.96639 (0.991.96639 (0.991.96639 (0.991.9691 (0.9	0.99159821 0.99159821	0.09136639 0.09156841 0.09159841 0.09159841 0.09159841 0.08159841 0.08159842
Normalized Pose				0.981405939	0.981405939	0.981,059.99	0.981405939 0.972781292 0.947096032 0.928119609	0.981405939 0.972781232 0.947096032 0.928119609 0.857389304	1 0.981405839 0.97281282 0.94709603 0.92819609 0.857389304 0.805510638	0.981405939 0.97281282 0.94708622 0.92819609 0.85738934 0.808510638 0.789400422	0.981405939 0.97281232 0.94708032 0.9281900 0.85728934 0.805510683 0.78590342	0.98,0599 0.97,728,22 0.97,728,22 0.97,728,22 0.92,109,609 0.92,728,34 0.78,93,39 0.78,93,39 0.78,93,39	0.98000589 0.9728122 0.94705602 0.9281903 0.8278934 0.8578934 0.87893042 0.75831339 0.75831339 0.75831339 0.75831339	0.9840589 0.9728120 0.9728120 0.97281909 0.8728934 0.88501638 0.7558139 0.7558139 0.7558139 0.7578139 0.7578139	0.98105599 0.9728122 0.94705602 0.94705602 0.94705602 0.94705602 0.75593.39 0.75593.39 0.75593.39 0.75593.39 0.75593.39 0.75693.39 0.75693.39 0.75693.39 0.75693.39	0.9840599 0.9778120 0.92409902 0.92409903 0.9240903 0.9240139 0.9791137 0.924030 0.924030 0.924030 0.924030 0.924030 0.924030 0.924030 0.924030 0.924030	0.5788.29 0.5788.29 0.5788.29 0.5789.34 0.5789.34 0.5789.34 0.5789.34 0.5789.34 0.5789.34 0.5789.34 0.5789.34 0.5789.34 0.5789.34 0.5789.34 0.5789.34 0.5789.34 0.5789.34 0.5789.34 0.5789.34 0.5789.34 0.5789.34 0.5789.34	0.8728.22 0.8728.22 0.8728.22 0.8728.22 0.8728.23 0.8728	0.0884/958 0.07881/20 0.07881/20 0.07881/20 0.0281/900 0.0281/900 0.0281/900 0.0781
Normal Page	Pressure-Gauge 13(<i>P</i> -a)		-	0.98265 2274	0.982652274	0.997810332 0.957810332 0.94624535	0.98265.2274 0.95781.0332 0.94429.4536 0.92270.6245	1 0.9826.274 0.9429.453 0.9429.453 0.9220.0559	1 0.98265.274 0.96781.032 0.94234526 0.922706245 0.922344226 0.922344226 0.922344226	1 09826 274 0 99781 032 0 99781 032 0 99781 032 0 99781 032 0 99781 032 0 98280 0 98280 957 0 9989 0 9989 0 98880 957 0 988288 957 0 98221 2399	0.0900 ZZA 0.90781032 0.90770545 0.90770545 0.80594475 0.80594475 0.707057 0.707057 0.707057 0.707057 0.707057 0.707057	0.9805.274 0.9878.032 0.9878.035 0.9879.035 0.8728.035 0.7390.154 0.7390.154 0.7390.154	0.9825.27A 0.9781.032 0.9429.626 0.9227.0245 0.7420.1279 0.7420.1279 0.7420.1279 0.7420.1279	0.9805.274 0.9478.035 0.9478.035 0.9478.035 0.9478.778 0.9478.778 0.9478.778 0.9478.778 0.9478.778	0.9886.274 0.94634636 0.94634636 0.925704246 0.925704246 0.73217799 0.7321779 0.05448.778 0.057544177	0.9886.274 0.9473.082 0.9473.082 0.9823.0426 0.8239.425 0.823.877 0.720.1779 0.0579.877 0.0579.853 0.5792.857 0.5792.853	0.9826.774 0.9728.032 0.9402-655 0.9402-655 0.8208.677 0.7221.779 0.7221.779 0.6738.177 0.6738.177 0.6738.177 0.5736.654 0.5736.654 0.5736.654 0.5736.654	0.9826.2X 0.9878.032 0.9878.056 0.9878.056 0.9878.056 0.9878.056 0.9878.056 0.9878.056 0.9878.056 0.9789.056 0.9789.056 0.9789.056 0.9789.056 0.9789.056 0.9789.056 0.9789.056 0.9789.056 0.9789.056 0.9789.056 0.9789.056	0.98265.27M 0.9978.0332 0.9970.245 0.9270.025 0.8228.577 0.9270.1799 0.17970.159 0.17970.159 0.17970.159 0.17970.159 0.17970.159 0.17970.159 0.17970.159 0.17970.159 0.17970.159 0.17970.159 0.17970.159 0.17970.159 0.17970.159
	Avg. Pore Pressure (kPa)	V 23/4	3.4.05	5.137	5137	5.137	5.137 5.077 4.948 4.781	5.137 5.077 4.781 4.481	5.137 5.077 4.048 4.781 4.491	5.137 5.037 4.98 4.781 4.491 4.322	5.137 5.077 4.948 4.781 4.481 4.322 4.137 3.876	5137 5077 438 438 432 4137 3386 368	5.137 5.007 4.081 4.081 4.081 4.092 4.092 4.092 3.003 3.400	5.137 5.007 4.98 4.781 4.491 4.491 4.491 4.302 3.400 3.200	5.137 5.037 4.98 4.91 4.92 4.92 4.92 4.93 3.03 3.03 3.03 3.03 3.03 3.03	5.137 5.097 4.98 4.72 4.32 4.32 4.32 4.32 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3	5.177 5.077 5.077 4.781 4.781 4.302 4.312 4.312 3.430 3.400 3.400 3.400 3.400 3.400 3.400 3.400 3.400 3.400 3.400 3.400 3.400 3.400	5.177 5.077 4.081 4.081 4.081 4.081 4.081 3.085 3.085 2.085 2.085 2.489	5.137 5.077 4.086 4.137 4.137 4.137 4.137 3.000
		1	5.236	5.236	5.192	5.236 5.192 5.134 5.008	5.236 5.192 5.038 4.733	5.236 5.192 5.134 5.038 4.713	5.236 5.192 5.134 5.038 4.713 4.939	5.236 5.192 5.194 5.008 4.713 4.509 4.406 4.215	5.236 5.192 5.194 5.008 4.713 4.209 4.405 4.215 3.888	5.236 5.137 5.134 5.038 4.73 4.435 4.435 3.338 3.338	5.236 5.134 5.038 4.713 4.256 4.456 4.256 3.383 3.467	5.236 5.134 5.038 4.713 4.435 4.435 4.435 3.437 3.437 3.457	5.236 5.134 5.134 4.03 4.03 4.03 4.03 3.03 3.03 3.03 3.	5.236 5.134 5.134 4.03 4.03 4.03 4.03 3.03 3.03 3.03 3.	5.236 5.192 5.194 4.03 4.03 4.03 4.03 3.63 3.63 3.63 3.63 3.63 3.63 3.03 2.03 2.03 2.03 2.03 2.03 2.03 2.0	5.236 5.234 5.038 4.05 4.05 4.05 3.06 3.06 3.06 3.06 3.06 3.06 3.06 3.06	5.236 5.192 5.038 4.05 4.05 4.05 4.05 4.05 3.03 3.03 3.03 3.03 3.03 3.03 3.03 3
	ore Pressure. Po auge 12 (IPPa) Gz.	l	5.217	5217	5.227	5.217 5.12 5.075 4.941	5.12 5.02 5.07 4.94 4.842	5.27 5.07 4.94 4.82	5.22 5.03 4.941 4.842 4.473	5.22 5.02 5.03 4.941 4.82 4.73 4.28	5.22 5.075 4.941 4.842 4.473 4.218	5.12 5.05 5.07 6.94 4.82 4.473 4.28 4.087 3.921 3.821	5.12 5.05 5.07 6.94 4.473 4.473 4.087 1.392 1.383 3.433	5.227 5.075 4.941 4.842 4.473 4.473 4.087 3.089 3.483 3.253	5.227 5.075 4.941 4.842 4.473 4.473 4.473 4.087 3.921 3.921 3.923 3.036	5.277 5.075 4.941 4.842 4.473 4.473 4.087 3.921 3.931 3.931 3.931 3.935 3.036 3.036 2.991	5.217 5.025 4.941 4.473 4.473 4.473 4.087 3.921 3.689 3.256 3.256 2.991 2.852	5.217 5.027 5.007 6.007	217 207 207 207 207 207 207 207 207 207 20
	Pare Pressure- Pare Pressure- Pore Pressure- Gauge 13(PPa) Gauge 12(PPa) Gauge 14(PPa)		2188	5.038	5.038 5.021	5.038 5.021 4.899	5.028 5.021 4.899	5.038 5.021 4.787 4.492	5.188 5.021 4.899 4.492 4.321	5.188 5.021 4.899 4.492 4.411	5.038 5.021 4.899 4.787 4.492 4.321 4.11	5.188 5.021 4.899 4.787 4.11 4.11 3.303 3.603	5.188 5.022 4.899 4.787 4.111 3.303 3.303 3.303	5.188 5.022 4.899 4.787 4.11 3.038 3.038 3.038 3.038	5.188 5.021 4.897 4.787 4.422 4.321 4.321 3.838 3.838 3.938	5.188 5.021 4.895 4.787 4.422 4.321 4.321 3.838 3.838 3.838 3.938	5.188 5.021 4.899 4.787 4.422 4.411 3.038 3.038 3.038 3.034 2.097 2.793	5.188 5.008 6.407 7.707	5.188 5.038 6.038
5/0:146	# of PVC Pipes Gau	•	-	3 0	o € 4	5 m 4 m	5 m 4 m 40	D 10 15 10 10 1-	5 m 4 m 70 1~ 80	> m 4 m 10 r 10 m	> m 4 70 0r 80 08								
· ·			Runo	Run 1	Run 1 Run 2	Run 1 Run 2 Run 3	Run 1 Run 2 Run 3 Run 4	Run 1 Run 2 Run 3 Run 4 Run 5	Run 1 Run 2 Run 3 Run 4 Run 5 Run 6	Run 2 Run 2 Run 3 Run 4 Run 5 Run 6 Run 6	Run 1 Run 2 Run 3 Run 3 Run 5 Run 6 Run 6 Run 6 Run 7 Run 8	Run 1 Run 2 Run 3 Run 4 Run 6 Run 6 Run 9 Run 9	Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 6 Run 7 Run 9 Run 9	Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 6 Run 8 Run 9 Run 10 Run 10	Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 6 Run 7 Run 8 Run 9 Run 9 Run 11 Run 11 Run 11	Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 6 Run 7 Run 9 Run 9 Run 10 Run 11 Run 12 Run 13	Run 1 Run 1 Run 3 Run 3 Run 3 Run 6 Run 6 Run 7 Run 9 Run 9 Run 11 Run 12 Run 13 Run 13 Run 13	Run 1 Run 2 Run 3 Run 3 Run 4 Run 5 Run 6 Run 7 Run 9 Run 11 Run 12 Run 13 Run	Run 0 Run 1 Run 3 Run 3 Run 4 Run 5 Run 6 Run 9 Run 10 Run 11 Run 11 Run 12 Run 13 Run 13 Run 14 Run 15 Run

Figure C.13: Raw Data from S/D=1.45, Unit weight=13.35 $\rm kN/m^3$

	Lugeon Value · Gauge 14	92.53448877	90.79308418	88.60037574	88.304.28811	87.1714946	85.49191179	84.71.26062	84.78159237	85.945.39939	88.64561565	8436043565	82.80014107	81.055.08376	79.613.04483	81.553.45602	81.3255489
	Luge on Value L	93.282458.08	91.65459873	88.56793054	88.66961318	88.39156774	86.19922566	86.03894701	88.268593.86	849552134	84,35387899	84.8571734	86.17035938	85.04034761	79.73728492	81.41371398	80.45719408
	Lugeon Value- Gauge 13	93.15.895794	91,9751939	89.86584775	88.87973075	86.9.3079597	86.0305483	88 5 809 4016	86.04879055	87.2469995	86.37665696	84.00216653	86,666,9339	83.94607843	82.59885576	81 9472817	818127053
	wenge Lugeon Normalized Average Value Lugeon Yalue	1	0.98369371	0.960762426	0.952974483	0.94085153	0.923830445	0.929933742	0.928511285	0.9252549	0.92.9044859	0.907713742	0.915980245	0.89597051	0.367042635	0.877919917	0.873152728
	Average Lugeon Value	92,99014878	91.47156113	89.34144033	88.61723893	87.4899238	85.90620057	86.4349129	86.342.41252	86.03954572	86.392.01954	84.4084359	85.17713925	83.316403	816264239	816373175	81.1946021
	Normalized Flow loss	1	0.976488027	0.947613922	0.928597058	107.1882.79.0	0.816828131	0.792429135	0.748295658	0.701471116	0.668101902	0.612127736	0.5897021.89	0.565303193	0.527090061	0.490132759	0.450843.01
	FlowLoss (Qoul/Time,length) (L/min/meter)	0.484995652	0.473304348	0.459304348	0.45008957	0.423130435	0.395913043	0.384086957	0.362895652	0.34	0323826087	0.296995672	0.285826087	0.274	0.255478261	0.237565217	0.218521739
	(ш) हम्मा भावताल (ш)	046	0.46	046	046	046	046	0.46	0.46	046	046	0.46	0.46	046	046	046	0.46
	Time (mins)	52	52	52	52	52	52	52	52	52	100	52	52	52	52	52	52
gof	io Oput (mi)	NSS	248	2382	5176	4899	4223	4417	4171	3910	3734	3412	3287	3151	2938	2732	2513
PVCPipe-Primary and Secondary-Spaingof 0.5°Dia. of Pipe	Area Replacement Ratio- Multiply by the inverse of Maximum Agg/Alotal	0	0176470588	0235294118	0294117647	0352941176	0.411764705	0.470588235	052941765	058823594	0.647058324	0.705882353	0.764705882	0823529412	0882352941	0941176471	
PVC Pipe -Prim: 0	Normalized Groubed Area Agc/Atotal	0	0.034906585	0.046542113	0.058177642	0.09981317	0.081448698	0.093084227	0.104719755	0.116355283	0.127990812	0.13962634	0.151261899	0.162897397	0.174532925	0.185168454	0.197803982
PVC Fipe Primary and Secondary-Touching	AreaReplacement Razio- Multiply by the inverse of Maximum Ago, Atotal	0	0.176470588	0.255291118	0.29417647	0.35241176	0.411764705	0.470588235	0.529411765	0.588235.294	0.647058824	0.705822.353	0.764705882	0.825529412	0.882352941	0.94176471	
РУСЯре-Рита	Normalized Grouted Area Agc/Atotal	0	0.043633231	0.058177642	0.072723052	0.087265463	0.101810873	0.116355283	0.130899694	0.145444104	0.15938515	0.174532925	0.189077336	0.203621745	0.218166157	0.23.2710567	0.347.55877
PVC Side By Side	Area Rejdacement Ratio- Multiply by the inverse of Maximum Agr./ Abbtal	0	0.176470588	0.235.294118	0.294117647	0.35294176	0.411764705	0.470588235	0.529411765	0.588.235294	0.647058824	0.70588253	0.764705882	0.823529412	0.882.352941	0.94176471	
9/0	Nomalized Grouted Area Agg/Atotal	0	0.087265463	0.116355283	0.14544104	0.17632925	0.203621746	0.232710567	0.261799388	0.293882.09	0.31997703	0.34906585	0.378154671	0.407243492	0.436332313	0.465421134	0.49403955
Stats	Area Replacement Ratio Muldiply by the inverse of Maximum Agr, (Atobal	0	0.176470588	0.235294118	0.29117647	0.35341176	0.411764706	0.470588235	0.529411765	0.58825594	0.647058224	0.705882353	0.764705882	0.823529412	0.882552941	0.941176771	1
	Normalized Groubed Area Agr,Atrobal	0	0.111111111	0.148148148	0.185185185	0.222.2222	0.292,99299	0.295295295	0.33333333	0.37037037	0.407407407	0.45544554	0.481481481	0.518518519	0.555555556	0.99259299	0.62952963
	Mormalized Average Pore Pressure (APa)	1	0.992709599	0.98531451	0.974419546	0.927863401	0.884184945	0.855.2928	0.805909052	0.75813775	0.71912.771	0.67436209	0.643793567	0.6309.39439	0.60791.712	0.5582.91232	0.516339451
	Normalized Pore Pressure-Gauge 14(1993)	1	0.995.227186	0.989690722	0.973 081329	0.926689576	0.884116075	0.865597556	0.81672.394	0.755,25035	0.69740539	0.671439481	0.659030164	0.64528446	0.612638412	0.556128293	0.512982054
	Nomalized Pore Pressure-Gauge 12(PPs)	-	0.993841416	0.9991301	0.976905312	0.921285604	0.883949192	0.8555035	0.790800516	0.770307852	0.73960739	0.67282525	M2575850	0.620092379	0.616628176	0.561585835	0.52.2709777
	Nomaited Pore Pressure-Gauge a) 13(kPa)	1	0.989044782	0.982317894	0.973.284643	0.935614099	0.894489717	0.833365365	0.810109552	0.748990967	0.720545839	0.678839131	0.633855078	0.627330385	0.594464732	0.557178551	0.513357678
	e- Avg.Pare a) Pressure (AP	2775	5.174	5.141	5.079	4836	4609	448	4301	3352	3.748	3.515	3356	3.289	3.169	2910	2691
	Gage 13 (PPa) Gauge 12)(PPa) Gauge 14)(PPa) Pressure (PPa)	5.238	5213	5.184	5.097	4824	481	4234	4278	3356	3,653	3517	3,452	338	3309	2.913	2.687
	ure: Pore Pressu Pa) Gauge 12)kf	5.196	5.164	5.128	5.076	4787	458	4461	4109	400	388	3.496	3317	322	3.304	2.918	2.716
		5203	5.146	SIII	2084	488	4602	439	4215	3.897	3.749	3522	328	3.264	3083	5883	2671
S/D=1-62	# of PVC Pipes	0	8	77	s	9	-	00	6	00	п	12	13	14	52	99	17
		Run 0	Run 1	Pur2	Run 3	Run 4	RunS	Run6	Run 7	Run 8	Run 9	Run 10	Run 11	Run 12	Run 13	Run 14	Run 15

Figure C.14: Raw Data from S/D=1.62, Unit weight=13.35 kN/m^3

	\$/0:2.17										Slats	λM	PVCSide By Side	PvC Rpe-Prima	PVC Ripe-Primary and Secondary-Touching	PVCPipe-Primar 0.5	PVC Pipe - Primary and Secondary-Spacing of 0.5** Dis. of Pipe										
	#of PVC Ripes		Gauge 13(APa) Gauge 12(APa) Gauge 14(APa)	Pone Pressure - Pone Pressure- Gauge 12(MPa) Gauge 14(MPa)	re- Avg. Pore 7a) Pressure (kPa)	Nomalized Pore Pressure-Gage 13(Pa)	Normalized Pore Pressure-Gauge 12(kR)	Normalized Pore Pressure-Gauge 14(kPa)	Normalized Average Pore Pressure (APa)	Normalized A Grouted Area M Agr./Anotal	Area Replacement Ratio Multiply by the inverse of Maximum Agd Atotal	Normalized Grouted Area / Agr, Atotal	Area Replacement Ratio- Multiply by the inverse of Maximum Agd/Atotal	Normalized Grouted Area Agr, Mootal	Area Replacement Ratio- Multiply by the inverse of Naximum Agd Atotal	Normstred Grouted Area Agc/Arotal	Area Replacement Ratio- Multiply by the inverse of Oput Maximum Agr/Atotal	Qout(mt) Time (mins)	ins) Length Interval (m)	Row.Loss ((m) (Qou,/Time/Longth) ((Lynin/meter)	() Nomalized Flow Loss	Awerage Lugeon Value	n Nomalized Average Lugeon Yalue	Gauge 13	Lugeon Yalue- Gauge 12	Lugeon Yalue- Gauge 14	,
8nn0	0	5.198	8 5.214	5.231	5.214	-1	1	1	1	0	0	0	0	0	0	0	0 38	5536 2.5	0.46	0.490386857	-	93.98842099	1 1	9428375462	93.994(297)	93.6889512	i en
Run 1	3	5.16	5.173	5138	5.177	0.99283986	0.992136555	0.993691455	0.992840248	0.11111111	0.230769231	0.087265463	0.230769231	0.043633231	0.230%9231	0.034905585	0.230%9231 56	554 25	0.46	0.488173913	0.99095522	94.2956801	1003279757	94.6073.4749	943699463	93.9157300	- 775
Run2	47	5.142	12 5.184	5.165	5.164	0.989226626	0.99424626	0.98738291	0.990283194	0.148148148	0.307692308	0.116355283	0.307692308	0.058177642	0.307692308	0.046542113	0.307692308	22 888	0.45	0.486347826	0.992370476	94.18653626	1.002107762	9458339675	93.81709508	94 162 2122	
Run3	2	5.087	37 5.166	2090	5.114	0.978645633	0.990794016	0.973045307	0.980822093	0.185185185	0.384615385	0.14544104	0.384615385	0.072722052	0.384615385	0.038177642	0.384615385 55	5514 25	0.46	0.479478361	0.978353442	93.7518996	55 0.99748308	94.25560465	92.81423007	942000512	LO.
Run 4	9	4.954	54 4981	2002	4.996	0.953058869	0.95531262	0.965780921	0.95805431	02222222	0.461538462	0.174532925	0.461538462	0.087,265463	0.461538462	0.05981317	0.461538462 53	5336 25	0.46	0.463130435	0.94895451	92.7054325	3 0.986360145	93.48615963	92,97940871	91672609	
RunS	7	4.673	73 4.632	4810	4.705	0.898999615	0.888377445	0.919518257	0.902330527	0.299299299	0.538461538	0.203621746	0.538461538	0.101810873	0.538461538	0.081448598	0538461538 49	4949 25	0.46	0.430347826	0.878105039	91.4660629	13 0.973163038	92.09240875	92.90756176	89.4694025	
Run 6		4.488	38 4568	4603	4.546	0.89956137	0.8761028	0.879946473	0.871891581	0.2952952.06	0.615384615	0.232730567	0.615384615	0.116355283	0.615384615	0.0930842.27	0.615384615 47	4779 25	0.46	0.415565217	0.847941803	91.4066738	17 0.972531243	99,0092,2502	9197312115	90.2813854	775
Run 7	6	4.307	77 4293	4.494	4.365	0.828587918	0.823360184	0.899 1091 57	0.837051716	0.333333333	0.692307692	0.261799388	0.692307692	0.130899594	0.692307692	0.104719755	0.692307892 48	484 25	0.46	0.390782609	0.7973.740.24	89.533,20804	M 0.952398279	90.73197323	91.02 785133	86,9955217-	
Run 8	00	4.165	55 4221	4386	4.257	0.801269719	0.809551208	0.838.453109	0.81646743	0.37037037	0.769230769	0.2908882.09	0.769230769	0.145-44104	0.769230769	0.116355283	0.769230769 43	4335 25	0.46	0.376956522	0.793162527	88.5428733	12 0.942051494	9050576752	88.30502766	85.96393	775
Run 9	п	3.919	3876	3.897	3.897	0.753943825	0.743383199	0.744981839	0.747426954	0.407407407	0.846153846	0.31997703	0.845153846	0.159988515	0.846153846	0.127990812	0.846153846 39	3952 25	0.46	0.343652174	0.701205529	88.17623347	17 09381605	87.68874047	88.66155158	88.183775	
Run 10	12	3.91	3518	3.503	3.537	0.690842632	0.674721903	0.669661633	0.678386499	0.454455444	0.923076923	0.34906585	0.923076923	0.174532925	0.923076923	0.13952634	0.923076923 35	3965 25	0.46	031	0.6325.40809	87.63663777	7 0.932419513	86.32892843	88.1183/901	88.4955752	-
Run 11	13	331	3394	3312	3.339	0.636783378	0.690939778	0.633148538	0.64028639	0.481481481	1	0.378154671	1	0.189077336	1	0.151261869	1 34	3429 25	0.45	0.298173913	0.60841022	89.33927937	77 0.950215762	90,08275319	87.85334486	90.02835539	-

Figure C.15: Raw Data from S/D=2.17, Unit weight=13.35 $\rm kN/m^3$

		l																									
	\$(D+1										Slats	PVC	PVCSIde BySide	PVC Pipe-Primary:	PVC Ripe-Armary and Secondary-Tourbing	PVC Ripe-Primary 0.5*	PVC Ripe-Primary and Secondary-Spading of 0.5*Dia. of Ripe										
	#of PVCPipes		sure- Pore Press (Pa) Gauge 12)	Por Presure- Pore Presure- Pore Presure- Aug. Pore Gauge 13(904) Gauge 13(904) Gauge 14(904) Presure (904)	re- Avg. Pore b) Pressure (6	Normalized Pore Pressure -Gauge (9)	Normalized Pore Pressure-Gauge 120/99	Normalized Pore Pressure -Gauge 14(J/Pa)	Nomalized Average Pare Pressure (IPIa)	Normalized Ave Groubed Area Mu Agc, Nobbal	Are a Rept age ment. Ratio- Multiply by the inverse of Maximum Age, Root al	Normalized A Ground Area M Agg/Abdal	Are a Rept accement Ratio - Multiply by the inverse of G Maximum Agr. (Abotal	Namelized Ar Grouted Area IM Agy/Rodal	Area Replacement Rabo- Matigly by the investe of Maximum Agy Abotal	Nomelited A Grouted Ares II Agr/Atotal	Ares Red acement Ratio- Multiply by the inverse of Maximum Agd Atotal	Qout(ml.) Time (mins)		Length (Qout)	How Loss Qou(Time, Length) (Vmin/meter)	Normalized Flow to ss	Average Luge on Value	Nomalized Average Luge on Value	Luge on Value - Gu ge 13	Luge on Volue-Gouge 12	Ligen Vaue Gauge 14
æ	Pun0 0	5.231	5.187	8775	2225		1	1	1	0	0	0	0	0	0	0	0	5255	70	0.05	-80434783	1	92 0020584	1	91.84377416	92.6228615	9154626193
ä	Runt 3	5187	5.136	5.209	S177	00885060	7277210600	8658952660	0.99144545	011111111	0.11111111	0.087265463	0.11111111	0.043633231	0.1111111	0.03490685	011111111	845	20	0.46	143836087	0.98534344	91.51933.76	0.994753019	91.34877327	92,2588815	H59629636
Ru	Run2 4	4918	492	492	4917	0940164405	0.946982842	0.937881.098	0.941657092	0.148148148	0.148148148	0116355283	0.148148148	0.058177642	0.148148148	0.04692113	0.148148148	2211	22	0.46 0.	143130435	0.94367421	92.14962746	1.001603906	92.13713599	9224968135	9206225818
P.	Run3 S	4756	480	487	4797	0909195183	1266573020	0.919778963	0.918549736	0185185185	0.185185185	014544104	0.185185185	0.072722052	0.18185185	0.05877642	0.185185185	2003	22	0.46 0.	1.85043478	0.90550362	90.69704033	0.985815288	91.472554	905000778	5012709307
PJ.	Pund 6	4553	4.86	4531	4523	0.870388071	0.854854444	0.863376524	0.856207078	02222222	0.22222222	017632925	0.22222222	0.087265463	0.22222222	0.09381317	02222222	4827	22	0.46 0.0	139629087	0.82479638	87.60372945	0.9528308	87.03291666	88.33278412	87/65/6979
P.	PunS 7	4265	4.33	4294	4297	0815331677	088557625	0.818216463	0.822928636	02992929	0.2929293	0203621746	0.292929	0.101810873	0.2825929	0.08148998	0.259259259	4462	22	0.46	0388	0.80760181	90.28859.04	0.981375268	90.97303634	8954534964	9032863996
P.	Run6 8	4025	3.85	3999	3986	0.769451348	0.758627338	0.762004573	0.763372909	029629620	0.296296296	0232710567	0.296296296	0.116355283	0.296296296	0.09384227	029629620	3962	22	0.46 0.3	1343652174	0.71594118	86.20758006	0.937017949	85.37942209	87.33219159	85.9345.2711
PJ.	Run7 9	3651	3.705	3.757	3705	0697954502	0.714478504	0.715891768	0.709434441	0.333333333	0.33333333	0261799388	0.333333333	0.130899694	0.338333333	0.104739755	0.333333333	3614	22	0 900	031426087	0.65417647	848283794	0.922026908	86.0752861	8479786011	83.64675794
.e	Pun8 10	3427		3595	3516	0655132862	0.679969154	0.685022866	0.67285908	0.37037037	0.37037037	0.29088209	0.3037037	0.14544108	037037037	0.11635283	0.37037037	3318	22	_	138521739	0.600542986	82.05187886	0.891848178	8119076135	81.8037253	80,25639475
P.	Run9 11	3218	3.302	3.401	3330	0615178742	0.64303065	0.648056402	0.63883597	0.407407407	0.407407407	031997703	0.40740707	0.159988515	0.40707407	0.127990812	0.407407407	3184	22	0.45 0.0	12889565	0.576289593	83.3860736	0.9053004	86.03777664	82,84547134	81.40828145
Rur	Run 10 12	3005	3.54	3.265	3158	0.594018352	0.609059608	0.622141768	0.604749138	0.44444444	0.45555559	03400685	0.4555555	0.174532925	0.4855555	0.13962634	0.055555555	2912	22	0.46 0.2	D25962174	0.52363801	80.32051106	0.873029439	80,02853483	80422376	77.68826154
Rui	Run II 13	2906	291	3054	2967	0555594315	0565066512	0.583841463	0.568173134	0.481481481	0.481481481	0378154671	0.48148181	0.189077336	0.49.481481	0.151261889	0.481481481	2774	22	0.46 0.0	1,241217391	0.502081448	81.30009818	0.883676896	800067285	82,2986643	78.72630265
Rui	Run 12 14	2691	2.85	787	2778	0514433187	0.538268749	054846122	0.532043977	0518518519	0.518518519	0.407243492	0.518518319	0.203621746	0.53513519	0.162897397	0518518519	233	22	0.46 0.0	3090999	0.45918552	79.4032/878	0.863059432	8,98019162	79.01457581	77.35227758
Rur	Run 13	2474	2.588	269	2560	0.472948723	0.49122977	02099900	0.490297459	955555550	0.55555556	0.436332313	0.55558556	0.218166156	0.59555556	0.17482925	0.55555556	2254	22	0.46	9610	0.40763801	76.55.55.222	0.832074067	78.22392886	76,92307692	73,711921.78
Run	Run M 16	2307	2.31	2.438	2332	0.421907857	0.453248506	0.464557927	0.446572195	0.9929293	0.5929293	0.465421134	0.9929293	0.232710567	0.59592593	0.186168454	059259283	2163	20	0.46 0.	18808957	0.39193213	80.6547841	0.8766276	85.22290735	968567008	77.14805436
Ruc	Run 15 17	2015	1.95	1991	1381	0.385203594	0373048005	0379954268	0.379420401	0.62952963	0.6292963	0.494509955	0.6962963	0.24725/977	062962963	0.197803982	0.62962963	1839	22	0.46 0.	M1652174	0.33670588	81.5875795	0.8880152	80.22440393	8354117515	8109329484
Ruc	Run 15 18	1854	1.92	1700	1895	03540554	0370541739	0.963757622	0.362887722	299999990	0.66666667	0523598776	0.6666667	0.261799388	0.66666667	0.20943951	09999990	1697	22	0.46 0.	19756217	0.307/49321	77.87082712	0.845403037	78.59288964	76.77690811	27.2997A719
Rui	Run D 19	1805	180	1887	1831	0345058305	0.3470214	0.359565549	0.350568109	0.703703704	0.703703704	0552687596	0.73378704	0.276343788	0.78703704	0.221075039	0.703703704	1001	22	0.46 0.	1.139217391	0.289773756	76.04737255	0.826583331	77.12874865	77.34299517	73.77710191
Ruc	Run 18 20	1557	1.69	1730	1992	0.297648633	0325621747	0.333460366	0.318907188	0.740740741	0.740740741	0581776417	0.74074071	0.29088209	0.740740741	0.232710567	0.740740741	1415	22	0.46 0.	123043478	0.25608597	73.88515511	0.803081923	79.025936	72.84989832	7031055901
Rui	Tun 19 21	1001	127	1652	1570	0.286943223	030017511	0.314786585	0.300651092	0.77777778	0.77777778	0610865238	0.77777778	0.305432619	0.7777778	0.244396095	0.77777778	1736	22	0.06 0.	11208996	0.23438914	71.7252885	0.779605153	75.022488	7232414621	100/05/189
Rus.	Run 22	1413	1.84	1595	1201	0270120436	0.288027762	0303625305	0.28737393	0.814814815	0.814814815	0639954059	0.814814815	031997703	0.814814815	0.2559862A	0.814814815	1300	20	0.46 0.	1.109347826	021719457	68.53431325	0.7559079	73.84842611	698469577	65,42183454
Rui	Run 23	1374	138	1508	1417	0.262664882	0.263736264	0.287347561	0.27128814	0.851851852	0.851851852	82706990	0.851851872	033452144	0.83,851,852	0.2678.7152	0.851851852	1300	22	0.46 0.3	3.104347826	021719457	73.657289	0.800604738	75.9455047	76.27765065	6819617115
Rut	Run 22	1179	128	1310	1248	0225387115	0.241951031	0.249618902	0.238988899	0.8888888899	0.888888899	10/18/19/10	0.000000000	034806385	0.88888889	0.27925268	0.888888889	068	20	0.46 0.1	107391304	0.161085973	620123631	0.67403121	£.64147951	61,66637797	9907733156
Run	Run 25	1055	127	1152	1121	0.201682279	0223057644	0219512195	0.2147325@	9285285260	0.9292936	0727230522	98526560	0.363610261	0.9282836	0.29088209	92828380	242	20	0.46 0.1	1.073652174	0.153303167	65.6826759	0.713926106	60.81248712	636788594	63.9341787M
Ruc	Run 26	1000	101	1099	108	0.191168037	0.198766146	0.20941311	0.199795736	1962962963	0.962962963	0.756309313	0.96296363	0.378154671	0.962962963	0.30293737	0.962962963	£2	20		0.06826087	0.142081448	66.4257538	0.711135535	68.26089957	66.20940889	621118012N
Rui	Run 27	0388	0.0%	1023	960	0.18887402	0.188162714	0.194931402	0.1906768		1	0.785398163		0.39269902	1	0.31419065	1	320	25 07	0.46 0.0	106573913	0.13832579	66.0252981	0.71768558	66.53758141	6735366643	6426112457

Figure C.16: Raw Data from S/D=1, Unit weight= 13.82 kN/m^3

		_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
	Lugeon Value -Gauge 14	91.5149363	90.78839011	90.21586621	88.41141559	88.33796927	86.28717111	85.55200408	85.85416218	79.88727416	80.60933037	81.55794907	73,675,13828	75.59640607	74.72826087	80.45737323	77.97798413	74.93991698	75.04814027	71.84581225	67.0334345	65.6452726	9885112.99
	Lugeon Value - Gauge 12	92.8910905	91.0701366	89.64089953	88 654916	89.19970971	86.97636577	85.7836975	86.10961695	91.89697587	81.65837223	8458051125	82.38139573	78.41696892	78.00759814	82.09802114	78.089/3/54	76.83175414	78.09739763	73.28276893	71.79633867	71.01051123	69 5995999
	Lugeon Value - Gauge 13	93.1244853	91.42/50962	90.98179837	90.23414157	89.37407925	87.39519257	84 6423896	88.43753305	82 21299186	83.76424652	86.59303789	82.87815891	78.9483575	78.67981403	84.3336187	80,95511716	77.05999214	77.81426507	77.02023746	72.99694534	69.39013715	90000000
	Vormalized Average Lugeon	1000	0.985	0.976	0.963	0.962	0.939	0.922	0.942	0.875	0.896	0.910	0.882	0.839	0.833	0.899	0.854	0.824	0.832	96.0	0.762	0.742	0.7%
	Average lu geon Value	92.505	91.094	90.276	98 096	88.988	95.894	85.27	87.126	80.985	81.990	84.193	81.620	77.625	77.099	82.266	78.983	76.269	76.962	73.630	70.513	68.607	68.037
	Normalized Flow to ss	1000	0975	0.934	0899	0854	0.791	0.739	6290	090	0573	650	0513	0.462	0.417	0.418	0343	0310	0.067	0.248	0226	0215	0.902
	Flow Loss (Qoutyffme, kengsh) (L/min/me ter)	0.482	0470	0.450	0.433	0411	0381	0356	0327	1620	0.276	0269	0.247	0223	1020	1020	0.165	0149	6210	0119	0109	0103	UIU
	Length Interval (m)	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.06
	Qout (mt.) Time (mins)	IG.	Ю	Ю	Ŋ	ĮÇ	ĮÇ	Ю	Ю	ΙQ	ĮÇ	Ю	Ю	ю	ΙQ	Ю	Ю	ю	ΙQ	ĮÇ	Ю	Ю	к
		3541	2402	5176	4883	4732	4383	4096	3762	3342	3172	3097	28/2	2862	2310	2315	1905	1715	1481	1372	1255	1189	1105
PVCPipe Primery and Secondary-Spacing of 0.5**Disa of Ripe	AreaReplacementRato- Malbiptyby the inverse of MaximumAg(Abbtal	0	0.13043783	0.17913043	0.277391304	0.20899565	0.309347826	0.34826887	0.39(304348	0.437782609	0.47826087	052173913	0.95217391	0.609695652	0.62173913	0.69652174	0.73030435	0.72509595	0.826095957	0.89565217	0.913043478	0.99521739	-
PVCPipePrim (Normalized Groubed Area Agr, Rubotal	0	003/806585	0.0045542113	0.058177642	0.09981317	0.081449998	0.093084227	0.104719755	0116355283	0.127990812	0.13962634	0.151261889	0.162897397	017632925	0.185168454	0.197803982	0.20943951	0221075039	0.232710567	0.234346095	N23186240	0363612152
PVCP1pe-Primary and Secondary-Touching	Area Replacement Ratio- MAIS ply by the inverse of Maximum Agg/ Abdol	0	0.13030783	0.17813043	0.20391304	0.20869565	0.30347826	0.34826087	0.39304348	0.434782509	0.47826087	052173913	0.56217391	0.609999552	0.62173913	0.69652174	0.730130435	0.72509596	0.826089957	0.89565217	0.930478	0.99521739	-
ис Ріре-Ритат	Nomelized GoubedArea Agc,Rootal	0	1043633231	3058177642	250222200	1087265463	1101810873	1116355283	1133899694	114544104	3159988515	117632925	3189077336	303621746	3218166156	732710567	785700	1261799388	0276343798	53088800	1305430619	0.31997/03	0.3349148
PVC Side By Side	Area Replacement Ratio- MAIGHV by the inverse of Maximum Agy Atotal	0	0.130437783	0.173913043	0.21739(304	0.26098565	0.304347826	0.347826087	0.391309348	0.434782609	0.47826087	052173913	0.56527391	0.608999552	0.652178913	0.69562174	0.739130435	0.782608596	0.82608957	0.89956217	0.91308478	0.95622739	-
D//d	Normalized Groubed Area Agr, Rubot al	0	1087265453	1116355283	114544104	117632925	333921746	793710557	1261799388	129088209	0.31997703	0.3/906585	1378154671	1407243492	1436332313	0.465421134	3,494509955	1523598776	965/89255	0.581776417	1610865238	1639954059	0.66918288
Slats	Area Replacement Ratio- MAIGHV by the inverse of Maximum Agy Atotal	0	0.13043783	0.1739(30)(3	0.217391304	0.260899565	0.304347826	0.347826087	0.391304348	0.434782609	0.47826087	052173913	0.56527391	0.60985652	0.65273913	0.69562174	0.739130435	0.782609596	0.83689957	0.86965217	0.913013478	0.95621739	-
	Normalized Goubed Area Agc, Atotal	0	011111111	0148148148	0185185185	02222222	6262620	029629670	0.33333333	0.37037037	0.407407407	0.0000000000	0.481481481	0518518519	955555550	05929293	0.6292963	299999990	0.703703704	0.740740741	877777770	0814814815	081851852
	Normalize d Avverage Pore Pressure (APa)	1	0390016639	U.95718574	0.933700243	0.887943172	0.8421861	0.802050568	0.720849956	8985558890	0.64548625	0.614104697	0581914757	0551004736	0500191988	0.469793933	0.402022271	0.375399974	0321259439	0.311084091	0.297132983	0.289325483	0.281199303
	Normalized Pore Pressure-Gauge 14(3/24)	1	0.982716049	0.947578348	0.930854198	0.894710351	0.838936372	0.79292593	0.715289649	0.691547958	0.650522317	0.627160894	0.58974359	0.559734093	0.510541311	0.475213675	0.4028/8003	0.377967711	0.32925926	0.319848053	0.309211776	0.299145299	0.283360684
	Normalized Pore Pressure-Gauge 12(IPa)		0.994091	0.96796915	0.942631	0.88938731	0.844804318	0.800462695	0.732/07943	0.6932/1641	0.651221862	0.613812298	0.578917368	0.54775542	0.49583391	0.472700362	0.408228514	0.374204743	0.31791016	0.313851577	0.29300293	0.280701754	O 27N/Walto
	Normalized Pore Pressure-Gauge 13(APs)	1	0.993042131	0.956126788	0.928102049	0.889833781	0.842868187	0.813297256	0.714920738	0.683803634	0.63703131	0.601082335	0.576923077	0.545419405	0.493428682	0.461345187	0.39485891	0.373985311	0.319868574	0.299381523	0.288944724	0.287978353	0.283756304
	Avg. Pore Pressure (99)	5.209	2.57	4.96	4.863	465	4387	4.08	3.22	3.59	3.367	3.199	3.03	2.870	2.605	2.45	2.091	198	1.63	1.620	1.58	1.50	1.0%
	Pore Pressure- Gaugo 14(3/9a)	2.265	SIN	4589	4901	4658	4417	4173	3766	3641	3425	3302	3105	2947	2688	2502	2121	1930	1716	1684	1628	1575	1.093
	Pore Pressure- Sauge 12(9P a)	5187	5.158	2.021	4.887	4.613	4.382	4.152	3.799	3.596	3.381	3.184	3.003	2841	2575	2.452	2.118	1767	1.68	1.628	1.530	1.456	1.822
	Pare Pressure - Pare Pressure - Pare Pressure - Avg. Pare Gauga 13(20-3) Gauga 14(20-3) Pressure (90-3)	SIM	2138	4917	4802	4604	4361	4208	3699	3538	3296	3110	2362	2822	2553	2387	208	1935	1,655	1549	797	1480	1.008
S/Dr1.18	Il of PVC Rpss 6	0	3	7	S	9	- 1		6	10	11	12	13	14	SI IS	91	- 17	18	19	90	17 21	22	×
		Pun0	Punt	Run2	Run3	Run4	RunS	Pun6	Pun7	Pun8	Run9	Run 10	Run 11	Run 12	Run 13	Run 14	Run 15	Run 16	Run 17	Run 18	Run 19	Run 20	Rim 21

Figure C.17: Raw Data from S/D=1.18, Unit weight=13.82 kN/m^3

	1	г																	
	LugeonValue-Gauge 14	92.47889486	91.50930717	90.32732748	88.49125377	90.27211694	87.05120436	87.1224693	85.12537624	84.3455899	77.2454954	81.9952434	8125276451	81.15528393	80.4191784	74.5589662	73.50227214	73.67210054	71.50414606
	Lugeon Value -Gauge 12	92 1958684	92.09647538	91.68034317	89.97091992	89.18246392	90.39781331	86.79120516	83.09129094	85.57133134	78.5594875	83.52832345	81.8299991	82.09247956	82.28433136	77.43/94/91	75.50092745	72.6563397	72.03410837
	Lugeon Value-Gauge 13	92.81754	91.88208999	91.85381394	9127376734	911554834	89.88961782	84.69791078	86.37588257	86.47383219	79.3749033	85.89334676	81.58375635	82.38983836	853536725	77.88.721.409	75.7178708	722650428	6976688554
	Normalized Average Luge on Yol Lie	1	0.9927782	0.989904234	0.971901167	0.975128531	0.963151552	0.931821776	0.9172/94/7	0.923860371	0.847415679	0.901818946	0.87444001	0.885175907	0.893391363	0.828120072	0.809174494	0.787701235	0.768551409
	Average Lugaon Value	92.49654172	91.82854946	91,28532645	88.89759399	90.19611432	89.08828403	86.19038488	84.84249349	85.45398173	78.38310443	83.41522396	80.88313943	81.87578875	82.6357078	76.59832556	74.84592328	72.85971892	71.08942428
	Normalized Flow Loss	1	0.982692859	0.952372362	0.915388779	0.899049251	0.829334296	0.7577238	0.670936316	0.645403866	0.555294967	0.553851705	0.526970954	0.471946599	0.41638102	0.387335378	0.3341151	0.306151903	0.262132419
	How Loss (Qout/Time /Length) (Lifnin/meter)	0.482	0.473652174	0.459043478	0.441217391	0.428521739	0.39973913	0.365217391	0323391304	0311565217	0.267652174	0.266956522	0.254	0.227478261	0212899565	0.186695.652	0.161043478	0.147565217	0126347826
	Length Interval (m)	0.46	0.46	0.46	0.45	0.45	0.45	0.46	0.45	0.45	0.46	0.45	0.45	0.45	0.46	0.45	0.45	0.46	0.46
	Quut (ml.) Time (mins)	R	ю	Ŋ	Ю	Ŋ	ĸ	Ŋ	Ю	Ŋ	S	Ю	Ю	ĸ	Ŋ	Ю	Ŋ	Ŋ	Ю
76		885	SH	5279	MUS	4828	4897	4200	3719	3283	3078	3070	2821	2616	248	2147	1823	1697	1453
PVC Rpe-Primary and Secondary-Spaing of 0.5*D(a. of Ripe	Are a Replacement Ratio- Multiply by the inverse of Maximum Agr, Rub tal	0	0.157894737	0210526316	0.263157895	0.315789474	0.368421053	0.421052632	0.47368421.1	0536315789	0.578947368	0.631578947	0.684210526	0.736842105	0.789473684	0.842105263	0.894736842	0.947369421	
PVC Rpe-Prin	Normalized Groubed Area Agy(Abbtal	0	0.034906585	0.046542113	0.058177642	0.06981317	0.08144959	0.093084227	0.104719755	0.116355283	0.127990812	013962634	0.151261889	0.162897397	0.174532925	0.185168454	0.197803982	020943951	0.221075039
PVC Pipe Primary and Secondary-Touching	Area Replacement Ratio- Multiply by the inverse of Maximum Ago, Nubtal	0	0.157894737	0210536316	0.263157895	0.315789474	0.368421053	0.421052632	0.473584211	0536315789	0578947368	0.631578947	0.684210526	0.736842105	0.789473694	0.842105263	0.894736942	129897360	
РИСРіреРита	Normalized Groubed Area Agy/Atotal	0	0.043633231	0.058177642	0.072722052	0.087265463	0.101810873	0.116355283	0.130899694	0.14544104	0.159988515	0.17632925	0.189077336	0.203621746	0.218166156	0.232710567	0.247254977	0.061799388	0.276343798
PrC Side By Side	Are a Replacement Ratio- Multiply by the inverse of Maximum Agy/Atotal	0	0.157894737	0210526316	0.263157895	0.315789474	0.368421053	0.421052632	0.473684211	0536315789	0578947368	0631578947	0.684210526	0.736842105	0.789473684	0.842105263	0.894736942	0.947368421	-
DVG	Normalized Grouted Area Agg/Abotal	0	1.087266463	1116355283	114544104	117632925	3,203621746	1232710567	1261799388	129088209	0.31997703	0.34906585	1378154671	3,407243492	1.436332313	1465421134	3.494509955	1523598776	0.552687596
Stats	Are a Replacement Ratio- Matigly by the inverse of C Maximum Agy (Abbit al	0	0.157894737	0.210526316	0.263157895	0.315789474	0.369421053	0.421053632	0.473684211	0.536315789	0.578947368	0.631578947	0.694210526	0.736942105	0.789473684	0.842105263	0.894736842	0.947358421	
	Normalized Srouted Area Agg/Atotal	0	0.11111111	0.148148148	0.185185185	0.2222222	0.292929	0.296296296	0.33333333	0.37037037	0.407407407	0.4444444	0.481481481	0.518518519	955555550	0.5929293	0.62962963	0.66666667	0.703703704
	Normalize d Average P one Pressure (APa)	1	0.989829307	0.965009915 0	0.941853771 0	0.911725197 0	0.851053136 0	0.813151666 0	0.73145549 0	0.699673767 0	0.655280496 0	0.614149555 0	0.602635451 0	0.533167018 0	0.494338998 0	0.467728523 0	0.412908591 0	0.38965004 0	0.34107337 0
	Nomalized Pare Pressure-Gauge 14()Pa)		0.99309 2863	0975057599	0.95663.8526	0.91078.2809	0.881043745	U8042977W	0.72889 4858	0.708749041	0654811972	0.6325 78665	0.6072.52494	0537797391	0507866462	0.48042.9777	0420376055	0.3843.05449	033002336
	Nomalized Pore Pressure-Gauge 12(9Pa)	1	0.983741393	0.957727621	0.938026014	0.919089518	0.845830145	0.80489671	0.74452946	0.695402234	0.651683244	0.611323542	0.59372609	0.530030604	0.494835501	0.45117052	0.407995409	0.38948508	0.335501148
	Nomalized fore Presure-Gauge 13(9/a)	-1	0.993682457	0.962256894	0.933858477	0.905257077	0.85634508	0.830348546	0.720970537	0.693818902	0.648335644	0.538487978	0.606970922	0.531677258	0.490261891	0.4615829	0.4103601	0.393221645	0.348738687
	- Avg. Pore) Pressure (IØ3)	5.211	5.158	5.029	4308	4.51	4.487	4237	3.812	3.646	3.415	3300	3.140	2.778	2576	2487	212	2025	1721
	. Pore Pressure Gauge 14(Pa)	5.212	5176	2082	4385	4747	4592	4192	3799	3694	3,465	3297	3165	2803	2617	2504	2191	2003	1767
	Pare Presure - Pare Presure - Pare Presure - Sugy 13(P4) Sugy 13(P4)	5.228	5.143	2003	4304	4805	4422	4.208	3.892	3.641	3.407	3.196	3.104	2771	2587	2.411	2133	2.031	1721
	Pore Pressure. Pore Pressure. Forepressure. Gauge 13(PP) Gauge 12(PP) (Sauge 14(PP))	5133	5.155	4397	4894	4.701	447	4312	3.744	3.603	3372	3.108	3.152	2.761	2.494	2397	2.131	2002	11811
\$\p-1.45	# of PvC Pipes	0	8	7	s	9	7		6	10	11	12	13	N	15	16	17	18	19
		Pun0	Run1	Run2	Run3	Run4	RunS	Pun6	Pun7	Run8	Run9	Pun 10	An 11	Run 12	Run 13	PJn 14	Run 15	Run 16	Pun 17

Figure C.18: Raw Data from S/D=1.45, Unit weight=13.82 kN/m³

	Luge on Value -Gauge 14	92.80539286	92.03708982	89.83989681	89.17275258	89.27971831	88.05340996	85.26077098	84.94919904	84.97162037	86.73317451	81,62625418	78.171.9116	77.88450736	75.52629675	78.56361375	75 95 92 970
	Lugeon Value Gauge 12	931771896	9193072955	91,07614465	903888808	89.2424541	90,4736,536	8502150538	87.10505655	8551996588	85.92395914	82.31894058	78,65832371	78.74932553	76.77825499	8316638884	76 030282355
	Lugeon Value-Gauge 13	93.01747907	93.00552374	92.73505761	89.85800325	88.97457519	89.8113/887	86.39705882	86.91417622	86.32213356	86.80749599	82.92190901	79,7169804	80.35002825	78.69504915	81.48482059	77 60366787
	Normali ze d Average Lugaon Value	1	0992711336	030066275	0965631 674	0962342785	0.961662.638	0923556117	0928085 372	0920442999	09299631	0884793537	0851399923	0848365259	0827721466	080095221	50,500,000
	Average Luggoon Value	92,9997682	92.32192414	91.20164327	89.80352184	89.49765597	89.43440804	85.89050484	86.3117245	85.60098557	86.48555273	82.28559388	79.17995549	78.98147225	76.9779049	80.05375605	36.82110215
	Normalized Flow Loss	1	0.977.21.2035	0948549048	0309738294	0.875734378	0.82.891.2231	0.769.805946	0.73 081 7162	NZ0828790	0.62 2218266	0556168773	0521452733	0.4936799	0.464 660851	0.466619192	0.002512007
	Flow loss (Cloud/Time/Length) (V/min/meter)	0.488434783	0.477304348	0.463304348	0.44547826	0.42773913	0.404899565	0.376	0.356956522	0.331304348	0.303913043	0.271652174	0.25499552	0.241130435	0.226956522	0.227913043	0.1003/12/22
	Length Interval (m)	970	046	046	0.46	0.46	0.46	0.46	046	046	0.46	046	046	046	0.46	0.46	0.06
	Qout(mil) Time (mins)	2	93	92	Ю	Ю	Ю	Ю	93	92	Ю	Ю	Ю	93	92	Ю	×
ingof		2017	5489	2338	2110	4819	4656	4334	4105	3810	3882	3124	2829	2773	2610	2621	2200
PVC Pipe Primary and Secondary-Spacing of 05*tita. of Pipe	A reaReplacementRado- los Maligiques de inverse of Maximum Agg.(At dal	0	5 0.176470588	3 0.235294118	2 0.29417647	7 0.35294176	8 0.411764705	7 0.470588235	5 0.52941765	3 0.588235294	2 0.647058824	0.70582253	0.764705882	7 0.823529412	5 0.882352941	4 0.941176721	
	Normalized Groubed Area Agr, Rubbal	0	0.034906585	0.046542113	0.058177642	0.05981317	0.081448998	0.093084227	0.104719755	0.116355283	0.127990812	0.13962634	0.151261899	0.162897397	0.17632925	0.185169454	0.107813227
PVC Pipe Primary and Secondary-Touching	Are a Replacement Ratio- Multiply by the inverse of Mooimum Ago, Muotal	0	0.176470588	0235294118	0.294117647	0.352941176	0.411764705	0.470588235	0529411765	0.588235294	0.647058824	0.705882353	0.764705882	0823529412	0.8823529.41	0.941176471	-
РИСРіреРіп	Nomalized Ground Area Agy/Abstal	0	0.043633231	0.058177642	0.072723052	0.087265463	0.101810873	0.116355283	0.130899694	0.14544104	0.159988515	0.17632925	0.189077336	0.203621746	0.218166157	0.232710567	0.38735,6077
PVC Side By Side	Area Replacement Ratio- Matiply by the inverse of Maximum Agy Abotal	0	0.176470588	0.235294118	0.29417677	0.352941176	0.411764706	0.470588235	0.529411765	0.588235294	0.647058824	0.705882353	0.764705882	0.825529412	0.882552941	0.94176471	
М	Normalized Grouted Area Agc/Arozal	0	0.087266463	0.116355283	0.14544104	0.174532925	0.203621746	0.232710567	0.261799388	0.29088209	0.31997703	0.34906585	0.378154671	0.407243492	0.436332313	0.465421134	0.404500005
Slats	A ea Replace ment Rado- Multiply by the inverse of Maximum Agc, Robbtal	0	0.176470588	0.235294118	0.294117647	0.35291176	0.411764705	0.470588235	0.529411765	0.588235294	0.647058824	0.705882353	0.764705882	0.823529412	0.882352941	0.941176471	-
	Normalized Grouted Area Agr, Rootal	0	0.11111111	0.148148148	0.185185185	0.2222222	0.2929299	0.296296296	0.33333333	037037037	0.407407407	0.44444444	0.481481481	0.518518519	955555550	0.5929293	063063063
	Normalized Average Pore Pressure (APa.)	1	0.9843899	0.96729571	0.942117289	0.910002539	0.86195735	0.833523737	0.787446052	0.736925616	0.669078445	0.628585936	0.612465093	0.581302361	0.561373445	0.542079208	0.402235977
	Normalized Pone Pressure-Gauge 14()/Pa)	1	0.985369561	0.979859396	0.945738404	0.91031731	0.873546209	0.837925138	0.798403952	0.740832255	0.665779973	0.63233897	0.611248337	0.588257648	0.570967129	0.551206536	0.428534957
	Normalized Pore Pressure-Gauge 12(90)	-1	0.990461656	0.970431133	0.937839996	0.91434567	0.853681801	0.833842045	0.781762696	0.739030904	0.674742465	0.629530713	0.617703167	0.594128195	0.56300906	0.542350248	0.003513036
	Normalized Pore Pressure-Gauge 13(20)	1	0.97733765	0.951437821	0.941725385	0.905351362	0.858503142	0.828794515	0.782136736	0.730908398	0.666730147	0.623881165	0.608455532	0.571510189	0.549228718	0.532660446	O ARTHURSA
	Avg. Pare Pressure (APa)	5.252	5.170	2.080	4.948	473	4527	4.378	4136	3.870	3.514	3.301	3.217	3.053	2.948	2.847	2 001
	Pare Pressure- Gage 14(1/Pa)	5.263	5.186	5.157	4.983	4.791	4.588	4.41	4.302	3.899	3.504	3.328	3.217	3.096	3.005	2 901	NC9 C
	Pore Pressure- Gauge 12()/9 a)	2025	5.192	2.087	4.916	4.793	4475	4371	408	3.874	3.537	33	3.238	3.062	2996	2.843	283
	Pore Pre sure - Gauge 13(APa)	1275	5132	4996	4945	4754	4508	4352	4107	3838	3501	3276	3195	3001	2884	2797	2000
5/0-1-62	#of PVC Ripes	0	8	47	2	9	-		6	10	11	12	13	14	15	16	12
3/5		Pun 0	Run 1	Run2	Run 3	And A	Run S	Pun 6	Run 7	Run 8	Pun 9	Run 10	Run 11	Run 12	Run 13	Run 14	9 m 15

Figure C.19: Raw Data from S/D=1.62, Unit weight=13.82 kN/m^3

	Luge on Value Gauge 14	93.83161039	92.36514036	91.84930235	91.708913	91.1014729	88.47023636	88 6353575	87.62370738	84.2573033	84.76907812	82.06536798	84.21078148
	Lugeon Válue-Gauge 12	94.0120211	92.8299156	91.81367423	89.77564179	91.26667776	91.8810906	89.91455807	88.0330826	86.71789905	86.04094899	83.12487035	83.41338656
	Lugeon Value-Guge 13	94.1568494	93.00992319	922280739	91.66845149	91.28507089	91.02850387	91.75017754	89.43273973	87.85575856	84 65930305	845727907	84.33294232
	Momalized Average Luge on Value	1	1629534294	0978322709	0968517153	0970400986	1963090951	0.958311448	0.939962148	0917492762	0.905871005	960553870	0.89944103
	Average Luge on Value	93.99997214	92.73419616	91.96230739	91.04058538	91.21765565	90.43652261	90.08124937	88.35641573	86.24429409	85.1518/8022	83.24168439	83.98373077
	Normalized Flow Loss	1	0.98097101.2	0968166459	0.951449404	0906373822	M2002000	0827138538	0.770762938	0710653677	0.668504357	0.605725481	0.594522497
	Flow loss (Qout/Time/length) (L/min/meter)	0.488956522	0.479652174	0.473391304	0.465217391	0.452956522	0.421836387	0.404/34783	0.376899565	0.347478261	0.326899565	0.296173913	0.20085652
	Length Interval (m)	0.45	0.45	0.46	0.46	0.45	0.46	0.46	0.45	0.46	0.46	0.45	940
		22	Ю	Ю	Ю	Ю	Ю	Ю	Ю	Ю	Ю	Ю	Ю
	Qod (ml.) Tme(mins)	8795	5216	SAM	2380	8005	4821	1999	4834	3666	3759	3406	3343
PVCPipe-Primary and Secondary-Spacing of 05°Dita of Pipe	AreaReplacement Rabb- Multiphy by the inverse of Mooimum Agy /Rodal	0	0.230769231	0.307692308	0.384615385	0.461538462	0.538461538	0.615384615	0.692307692	0.769230769	0.846153846	0.923076923	1
VСРфеРліта 0	Normalized Goubed Area Agc,Atostal	0	0034906585	0.046542113	0.058177642	0.06981317	0.081449698	0.093084227	0.104719755	0116355283	0127990812	0.13962634	0.151261869
PVC Ripe-Primary and Secondary-Touching	WeaReplacementRatio- Multiply bythe inverse of G MaximumAgg/Atotal	0	0.230769231	0.307692308	0.384615385	0.461538462	0538461538	0.615384615	0.692307692	0.769230769	0.846153846	0923076923	1 (
VC Ripe-Primary	Nomalized Grouted Area Agr/Rotal	0	1043633231	1058177642	1072723052	1087265463	1.101810873	1116355283	13089994	114544104	15998515	0.174532925	0.189077336
PVC Side By Side	Area Replacement Ratio- Multiply by the inverse of G Maximum Agr, Robbtal	0	0.230769231	0.307692308	0.394615385	0.461538462 (0.538461538	0.615384615	0.692307692	0.769230769	0.846153846	0.923076923	1 (
DVG	Normalized Grouted Area Agr/Austal	0	108726463	116355283	0.14544104	117632925	303621746	0.232710567	1361799388	50088830671	031997703	034906585	0.378154671
Slats	Area Replacement Ratio- Matiphy by the inverse of G Maximma Agr, Robbital	0	0.230769231	0.307692308	0.384615385	0.461538462	0.538461538	0.615384615	0.692307692	0.769230769	0.846153846	0.923076923	1
	Normalized Groubed Area Agr, Atotal	0	011111111	0.148148148	0185185185	02222222	0292929	9629629670	033333333	037037037	0.407407407	04444444	0.481.481.481
		1	0.994360782	0.989618712	0.98237748	0.954629926	0.89669976	0.863120795	0.819993592	0.774559436	0.7379686	0.684011535	0.665427748
	Normalized Pore Normalized Average Persure - Gauge 14(3/2-a) Pore Presure (3/2-a)	1	0.99545769	0.9890616	0.973517559	0.954135483	0.914987526	0.875647668	0.825369411	0.791402802	0.739973134	0.692573402	0.662444828
	Normalized Pore Pressure-Gauge 12()/29)	1	0933452796	0.991347818	0995945856	0.954239569	0.88271.4963	0864833686	0.82311094	0.770428764	0.730436455	0685080565	0.67006349
	Namalaad Pore Pressure-Gauge 13(APa)	1	0.993057591	0.988445985	0.977277104	0.955517042	0.892355093	0.84883497	0.811476388	0.761794724	0.745500857	0.67436943	0.663778163
	- Avg. Pare) Pressure (89	2700	2.172	5.148	5.110	4966	4894	4490	436	4039	3839	3558	3.461
	Pore Pressure Garge 14(kPa)	5.211	5.193	5154	5.073	4972	4768	4563	4301	4134	3856	3609	3452
	ne Pessure- age 12(APa)	5.201	5.167	5.26	5.12	498	458	4.48	428	400	3.79	358	3.45
	Gauge 13(0-a) Gauge 13(0-a) Gauge 14(0-a) Presure (0-a)	5193	5.157	5.133	5.075	4.962	4634	4408	4214	3,956	3.861	3.502	3.447
\$/0:217	RofPVCRipes Ga	0	3	-7	2	9	7	00	6	10	11	12	13
a)s		Pun0	Run1	Rur2	Run3	- Bund	RunS	Pun6	Run7	Run8	Pun9	An 10	Pun II

Figure C.20: Raw Data from S/D=2.17, Unit weight=13.82 $\rm kN/m^3$

REFERENCES

- Ajalloeian, R., Habibi, V., Sharifipour, M., and Azimian, A. (2012). "Evaluation Engineeing Geology Properties of Jamishan Dam Site with Emphais on Its Groutability." *Electronic Journal of Geotechnical Engineering* 17: 2777-2793.
- Akinyemi, O., Alabi, A., Ojo, A., and Adewusi, O. (2012) "Characterization of Unit weight and Porosity of Rocks Samples from Ogun State of Nigeria", *Canadian Center of Science and Education*, 1(2), 98-105.
- Aminfar, M. H., B. F. Azar, H. Ebadi, and H. Ahmadi. (2009). "Change of pore water pressure inside the foundation of alavian earthfill dam, iran: A comparison between observed and predicted values." *Journal of Applied Sciences* (Faisalabad) 9, (8): 1489-1495.
- Anagnostopoulos, C., and Hadjispyrou, S. (2004) "Laboratory Study of an Epoxy Resin Grouted Sand." *Grouted Improvement*, 8(1), 39-45.
- Arthur, H. (1977). "Teton Dam Failure." *Engineering Foundation Conference Proceedings*, New York, pg. 523.
- ASTM D4253-00, 2006, "Standard Test Methods for Maximum Index Unit weight and Unit Weight of Soils Using a Vibratory Table," *Annual Book of ASTM Standards*, Vol. 4.08, ASTM International, West Conshohocken, PA.
- ASTM D4254-00, 2006, "Standard Test Methods for Minimum Index Unit weight and Unit Weight of Soils and Calculation of Relative Unit weight," *Annual Book of ASTM Standards*, Vol. 4.08, ASTM International, West Conshohocken, PA.
- ASTM D6913-04, 2009, "Standard Test Methods for Particle-Size Distribution of Soils Using Sieve Analysis," *Annual Book of ASTM Standards*, Vol. 4.09, ASTM

- International, West Conshohocken, PA.
- ASTM D854-10, 2009, "Standard Test Methods for Specific Gravity of Soil Solids by

 Water Pycnometer," *Annual Book of ASTM Standards*, Vol. 4.08, ASTM

 International, West Conshohocken, PA.
- Awal, R., Nakagawa, H., Kawaike, K., and Baba Y. (2009) "Three Dimensional Transient Seepage and Slope Stability Analysis of Landslide Dam," *Annuals of Disaster Prevention Research Institute*, Kyoto University, Kyoto, Japan, 52(B), 989-696.
- Beckhaus, K., Schmitz, S., and Schwarz, W. (2008). "Deep Cut-Off Walls constructed Under Dams with Trench Cutters." *Long Term Behavior of Dams*. 305-310.
- Berhane, G. and Walraevens, K. (2013). "Evaluating core drilling and lugeon test for the proposed geba dam site, northern ethiopia." *Abstracts Colloquium of African Geology (CAG)* 24: 279-281.
- Bliss, J., Rushton, K. (1984). "The reliability of packer tests for estimating the hydraulic Conductivity of aquifers." *Quarterly Journal of Engineering Geology*. 17: 81-91.
- Bodocsi, A. and Bowers, M.T. (1991) "Permeability of Acrylate, Urethane, and Silicate Grout Sands with Chemicals." *Journal of Geotechnical Engineering*, 117(8), 1227-1244.
- Bruce D.A. (1982). "Aspects of Rock Grouting Practice on British Dams." *ASCE Geotechnical Engineering Specialty Conference on Grouting*, New Orleans, LA February 10-12, 1982, pp. 301-316.

- Bruce D.A (1992). "Current Technologies in Ground Treatment and In Situ Reinforcement." *Proc.* 2nd *Interagency Symposium on Stabilization of Soils and Other Minerals*, Metairie, LA. November 2-5, pp. 271-295.
- Cotton, E.N. and Matheson, G.M., (1990) "Numerical Simulation of Concrete Dam

 Foundation Seepage and Uplift Pressure Distribution", *Rock Mechanics*Contributions and Challenges, Hustrulid and Johnson, Eds., Balkema, Rotterdam.
- Gurocak, Z. and Alemdag, S. (2012). "Assessment of permeability and injection depth at the Atasu dam site (Turkey) based on experimental and Numerical analyses." *Bull Eng. Geol. Environ* 71:221-229.
- Hacker, Adam. (2014), *Personal Conversation*, Stantec Consulting Services, Lexington, KY, February, 2014.
- Hayward Baker. (2014), *Website*, http://www.haywardbaker.com/WhatWeDo/ Techniques/Default.aspx, February 15th, 2014.
- Hong, W., Yea, G., and Lee, H. (2003). "Cut-off effect by rock grouting in the area of dam foundation". *ISOPE-2003:Thirteenth* (2003) *International Offshore and Polar Engineering Conference;Honolulu, HI; USA;25-30 May 2003* (May 25): 635-639.
- Houlsby, A.C., (1976). "Routine Interpretation of Lugeon Water-Test." *Quaterly Journal of Engineering Geology*, (9):303-313.
- Huff, J. (2010). "Investigation of Humboldt Geogauge for Quality Control of Compacted Subgrades." *Master's Thesis*, University of Kentucky, Lexington, KY.
- KGS (2012). "Sand and Gravel Resources." *Mineral and Fuel Resources Map of Kentucky*, Kentucky Geological Survey, Lexington, KY,

- http://www.uky.edu/KGS/im/sandgravel.htm.
- Lirer, S., Flora, A., Evangelista A., Verdolotti, L., Lavorgna, M., Iannance, S. (2006)

 "Permeation Grouting of a Fine-Grained Pyroclastic Soil," *Ground Improvement*,

 10(4), 135-145.
- Liua, J., Fenga, X., Ding, X., Zhang, J., and yueb, D. (2003). "Stability Assessment of Three-Gorges Dam Foundation, China, using Physical and Numerical Modeling—Part I: Physical Model Tests," *International Journal of Rock Mechanines and Mining Sciences*, 40(2003), 609-631.
- Lugeon, M. (1933). Barrage et Geologie. Dunod. Paris.
- Luofenga, X., Xiangbaoa, D. Yangchao. (2012). "Study of Physical Model Experimetr of Dam's Seepage Stability base on Coastal Sand," *Proceedings of the 2012 International Conference on Modern Hydraulic Engineering*, Nanjing, Jiangsu Province, China.
- Nappi, M., L. Esposito, V. Piscopo, and G. Rega. (2005). "Hydraulic characterisation of some arenaceous rocks of molise (southern italy) through outcropping measurements and lugeon tests." *Engineering Geology*, 81, (1): 54-64.
- Powers, P., Corwin, A., Schmall, P. and Kaeck, E. (2007). "Construction Dewatering and Groundwater Control-New Methods and Applications," *John Wiley and Sons*, *Inc.*, Hoboken, New Jersey, Third Edition, 410-431.
- Priebe, H. J., (1991). "Vibro Replacement-Design Criteria and Quality Control," *Deep Foundation Improvements: Design, Construction, and Testing, ASTM STP 1089*, Melvin I. Esrig and Robert C, Bachus, Eds., American Society for Testing and Materials, Philadelphia.

- Priebe, H. J., (1995). "The Design of Vibro Replacement." Ground Engineering, 1-16.
- Quinn, P. M., J.A. Cherry and B.L. Parker, (2011). "Quantification of non-Darcian flow observed during packer testing in fractured sedimentary rock." *Water Resources Research*, 47,(9): 1-15
- Quinones-Rozo, C. (2010). "Lugeon Test Interpretation, Revisted." *Collaborative Management of Integrated Watersheds*. 405-414.
- Sadeghiyeh, S. M., M. Hashemi, and R. Ajalloeian. (2013). "Comparison of permeability and groutability of ostur dam site rock mass for grout curtain design." *Rock Mechanics and Rock Engineering*, 46, (2) (03): 341-357.
- Saeidi, O., Ramezanzadeh, A., Sereshki, F., and Jalali, M. 2013."Numerical modeling of the effects of joint hydraulic aperture, orientation and spacing on rock grouting using UDEC: A case study of Bakhtiary Dam of Iran." *Journal of Mining & Environment*, 4(1): 15-26.
- Sasaki, Kenji and Tosaka, Hiroyuki. (2012). "The study of quantification method for non-darcy effect in lugeon-test." *Journal of Japan Society of Dam Engineers*, 22, (3): 160-171.
- Uromeihy, A. and Farrokhi, R. (2012). "Evaluating groutability at the Kamal-Saleh Dam based on Lugeon tests." *Bull Eng. Geol. Environ*, 71:215-219.
- Veni, G., DuChene, H., Crawford, N., Groves, C., Huppert, G., Kastning, E., Olson, R. and Wheeler, B. (2001). "Living With Karst, A Fragile Foundation." *AGI Environmental Awareness Series*, 4: 1-64.
- Weaver, D. and Bruce, D. (2007) "Dam Foundation Grouting." *American Society of Civil Engineers Press*, Reston, Virginia, 321-331.

- Willowstick, (2012) "Willowstick Technology Used For Mapping and Modeling Groundwater Systems." White Paper, Willowstick Technologies, LLC, Draper, Utah.
- Zou, Y.J. and Zhou, X.W. (2012). "Study and application of key technology to simultaneous shaft drilling and grouting." *Tunnels & Tunneling International* (04): 130-133.

VITA

Elliot Nicholas Magoto graduated from the University of Kentucky with a Bachelors of Science in Civil Engineering. He graduated on December 2012 with Magna Cum Laude honors. Elliot passed the Fundamentals of Engineering exam and was awarded the Engineer in Training certificate in the Spring of 2012.

Personal Publications:

Magoto, E.N. and Bryson, L.S.(2013), "Evaluation of the Effectiveness of a Grout Curtain using a Physical Model", *Dam Safety 2013*, The Association of State Dam Safety Officials, Providence, RI, 8-12 September, 2013.

"Evaluation of the Effectiveness of a Grout Curtain using a Physical Model", Dam Safety 2013, The Association of State Dam Safety Officials, *Poster Presentation*. Providence, RI, 8-12 September, 2013.