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ABSTRACT OF THESIS 

UNDERWATER EXPLOSION ENERGY DISSIPATION NEAR WATERBORNE 
INFRASTRUCTURE

Underwater explosions pose a significant threat to waterborne infrastructure though 
destructive pressure waves that can travel significant distances through the water. 
However, the use of bubble screens can attenuate the peak pressure and energy flux 
created by explosions to safe levels. This study investigates the prediction of pressure 
wave characteristics based on accumulated data, the damage potential of underwater 
explosions based on applied loads and effective material strength, and the bubble screen 
parameters required to prevent damage. The results were compiled to form a procedure 
for the design and implementation of a bubble screen the protection of waterborne 
infrastructure. 

KEYWORDS: Bubble Screen, Shock Wave, Underwater Explosion, Attenuation, 
Infrastructure 
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1 Introduction 

1.1 Synopsis of the Problem 

A major concern with waterborne infrastructure is the devastating vulnerability to 

underwater explosions, which can be significantly more destructive than those caused by 

similar explosives out of water. Detonated explosives produce significant blast pressures 

which propagate outward, initially as a shockwave and then as pressure waves. Within a 

certain distance these pressures may be large enough to cause significant damage to the 

structures, and ultimately human lives. The standoff distance is the distance between the 

charge and the structure, though sometimes called radial standoff distance when the 

direction is not strictly horizontal. Increasing the radial standoff distance is one of the 

primary methods currently used to protect waterborne infrastructure. However, the use of 

bubble screens to attenuate, or reduce, potentially damaging pressures to structures, is still 

uncommon even though it is known to be effective.  

Bubble screens are created by pumping air through a submerged manifold that has 

thousands of small orifices to disperse a large, roughly uniform, screen of air bubbles into 

the water. The introduction of air bubbles into the water creates an approximately 

homogenous mixture that possesses a much higher compressibility than the water. The high 

compressibility of the mixture attenuates the pressure wave by two mechanisms. First, the 

mixture has a much lower acoustic velocity, or speed of sound, than the water, this creates 

a different acoustic impedance that reflects a portion of the pressure wave back into the 

water. Second, as the remaining pressure wave enters the bubble screen, the individual 

bubbles absorb some of the energy and dissipate it as heat and reradiated waves into the 

water. The amplitude of the wave that passes through the bubble screen has been shown to 

be attenuated to less than 10 percent of the original amplitude. In many situations, it may 

not be possible or practical to increase the standoff distance to a range that adequately 

reduces pressure waves through natural decay. Therefore, implementing a bubble screen 

will serve to both reduced the required standoff distance and protect the waterborne 

infrastructure. However, since the use of bubble screens largely remains unadopted, there 

are no comprehensive design procedures to direct the implementation on a wide scale. 



2 
 

The purpose of this study is to develop a procedure to optimize the design of bubble screens 

based on underwater explosion characteristics, the response of structural materials to blast 

pressures, and the attenuation properties of bubble screens.  

1.2 Proposed Concepts 

The general concept of this research was to determine both the damage potential 

underwater explosions pose to waterborne structures, and also the necessary characteristics 

a bubble screen should possess to adequately prevent or limit damage. It was also necessary 

to investigate measured underwater blast data and prevailing equations that predict blast 

characteristics in order to develop appropriate predictions for bubble screen design. 

  

Figure 1.1 Schematic of General Scenario and Proposed Concepts 

Pressure wave induced peak pressure and energy flux models were created by plotting 

underwater explosion pressure wave data versus the radial standoff distance from the 

charge, see Figure 1.1.  The data acquired was measured in studies using trinitrotoluene 

(TNT), which produces models that can be readily modified for other high explosives. 

These plots were used to develop empirical equations that represented the measured data 
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used in this analysis. Plotting measured peak pressure versus the respective charge depth 

from each experiment allowed consideration of the effect of charge depth on peak pressure. 

This plot revealed differentiation with depth, which allowed the development of a depth 

coefficient to add to the peak pressure equation. Predicting damage potential occurred  by 

setting the peak pressure equal to the dynamic strength concrete, and by applying the 

dynamic strength of structural steel to static loading and strain energy equations. The 

dynamic strengths of materials were calculated using dynamic increase factors (DIFs) 

presented in UFC 3-340-02 (2008). Development of additional plots determined the 

minimum allowable radial standoff distance to prevent damage versus charge weight. The 

maximum allowable peak pressure and energy flux determined from these plots established 

the required bubble screen attenuation. Bubble screen attenuation rates compared to airflow 

and depth parameters determined the necessary design of the bubble screen. Finally, these 

parameters led to the creation of a procedure to determine the required bubble screen 

characteristics necessary to reduce peak pressure and energy flux to allowable levels for a 

given radial standoff distance and charge weight. The intent of the study was to determine 

what additional attenuation from a bubble screen is required to protect the structure for a 

given radial standoff distance. 

1.3 Objectives of the Research 

The primary objective of this research was to determine the required properties of a bubble 

screen to attenuate underwater blast pressures to levels that will not cause damage to 

waterborne infrastructure. The destructive potential of underwater explosions is generally 

understood, however there is an absence of literature which combines the predicted loads, 

the structural response to pressure waves, and a design to mitigate the destructive waves. 

This research attempted to refine the current method of predicting peak pressure and energy 

flux produced by underwater pressure waves. A discussion and recommendation was made 

to determine the allowable peak pressure and energy flux for various material types and 

strengths. The operation of bubble screens was investigated to determine the parameters 

that most significantly impact performance and the performance required to attenuate 

pressure waves to safe levels. The research considered radial standoff distance and bubble 
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screen parameters to be the variables which may be controlled to prevent or limit damage 

to waterborne structures. 

Individual elements of this research conducted toward the primary objective included: 

• Comparing pressure versus radial standoff distance at various charge weights and 

depths. 

• Comparing energy flux versus radial standoff distance at various charge weights 

and depths. 

• Determining the dynamic strengths of common construction materials.  

• Using peak pressure and energy flux to determine the critical radial standoff 

distances that potentially could cause damage to waterborne structures. 

• Determining the attenuation performance of bubble screens for various parameters, 

specifically focusing on airflow. 

• Creating a design procedure that utilized the results of the preceding research to 

determine the expected pressure wave characteristics, damage potential, and 

required bubble screen design to prevent damage. 

1.4 Relevance of the Research 

The protection of waterborne infrastructure is significant to modern civilization as 

disruption or failure of these services often affects a widespread population. This research 

was conducted with the potential of terrorist attacks as the primary concern, though the 

application of the results are more widely applicable. Bubble screens are commonly used 

to attenuate the acoustic pressure waves due to construction activities and military training, 

specifically to protect aquatic wildlife that are particularly sensitive to disturbances in the 

water. Bubble screens have also been used to protect waterborne structures and watercraft, 

though not regularly. Two of the difficulties facilitating protection of infrastructure are the 

multitude of potential targets, and the unpredictable timing and nature of an intentional 

attack. Therefore, the use of a passive mitigation technique, such as bubble screens, may 

be favorable over a more active approach. The specific criteria relating to damage potential 
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include peak pressure, energy flux, radial standoff distance, material strength, and 

structural response. The accurate presentation of the potential threat caused by underwater 

explosions to waterborne infrastructure and of the necessary parameters of a bubble screen 

to mitigate this threat, may increase the acceptance of such measures of protection. For 

example, using the material strength of a structure to determine the maximum allowable 

peak pressure that will not cause damage, with a prediction of the incident peak pressure, 

allows the design of a bubble screen to achieve adequate attenuation to reduce the incident 

peak pressure to the allowable level. 

There is minimal unclassified research pertaining to the protection of waterborne structures 

by use of a bubble screen. Furthermore, there is a sufficient lack of design aids that include 

provisions concerning the characteristics of pressure waves, the damage potential of 

structures, and the attenuation of damaging pressure wave characteristics in a single 

document. Thus, this research investigated the use of bubble screens for structural 

protection, and compiled the pertinent details into a concise design procedure.  

1.5 Content of the Thesis 

Chapter 2 presents a technical review of underwater blast mechanics, characteristics of 

underwater pressure waves, the damage potential of underwater explosions on structures, 

and the implementation and performance of bubble screens, including case studies. 

Chapter 3 provides a in depth discussion of the analysis conducted including: the 

optimization of similitude equations for the data acquired, the damage potential underwater 

pressure waves pose to structures, and the parameters governing the performance of bubble 

screens. 

Chapter 4 includes two bubble screen design procedures. One to determine the bubble 

screen parameters required given a predetermined scenario, and another to determine the 

expected performance for an existing bubble screen manifold. 

Chapter 5 summarizes the work and presents the conclusion. The results from the analysis 

are also presented. 

Copyright © Paul Raymond Smith 2016  



6 
 

2 Technical Review 

The following technical review was conducted to establish the necessary background and 

theory required to design a bubble screen for the protection of waterborne infrastructure 

from underwater explosions. This review includes: 1) underwater explosion mechanisms, 

2) the general characteristics of pressure waves, 3) the damage potential of pressure waves 

to structures, and 4) the implementation and performance of bubble screens. 

2.1 Underwater Explosion Mechanics 

Underwater explosions are the result of the detonation of an explosive at some distance 

below the surface of the water, see Figure 2.1. The water immediately surrounding the 

explosion is a compressible fluid that lacks sufficient tensile capacity to resist the extreme 

pressures created by the explosion and moves outward. Thus, the response of the system 

possesses similarities to out-of-water explosions, but has unique characteristics as a result 

of the much greater density of water compared to air.   

 

Figure 2.1  Underwater explosion characteristics 

During the explosion process the initial mass of the explosive transforms into a very hot 

mass of gas at exceptionally high pressures. When this occurs underwater, the resulting 

effect to the surrounding water is determined within the field of hydrodynamics.  By 

considering water a homogeneous fluid that is unable to support shear stresses, the water 

subjected to the explosion is capable of re-adjusting via flow to the imposed displacements 

of the water-explosive boundary (Cole 1948).   

Range from Blast

Water Surface

Depth of Explosion

      Explosive Charge
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Water is a compressible fluid, and as such, any localized pressure applied to a region in the 

water transmits as a wave disturbance to other points in the water. The pressure wave will 

propagate with a large yet finite velocity, and the wave will involve local motion of the 

water and changes in pressure. If the local motion is one-dimensional, it will generate plane 

waves which travel without substantial change in shape or magnitude. However, if waves 

are radiated from the source in the characteristically spherical pattern, the amplitude 

decreases with distance from the source, and the motion of the water is affected by the 

pressure differences created from the spherical deviation, which is known as afterflow or 

surge (Cole 1948). Figure 2.2 depicts typical waves created by underwater explosions.  

 

Figure 2.2  Schematic of waves created by underwater explosions (USACE 1991) 

A detonation creates a shock wave by a rapid exothermic chemical reaction occurring 

immediately behind the shock front (Cooper 1996). This shock front is the result of the 

gaseous expansion that occurs as the solid explosive material transforms into a gas product. 

The speed at which this transformation takes place produces extremely large pressures that 

are transferred to the surrounding water nearly instantaneously and propagate radially, 

initially as a shock wave, that travels at speeds greater than the acoustic velocity of the 

water, and then as a compression p-wave, that travels at the acoustic velocity (Hempen 

1993b). Figure 2.2 shows the four primary waves that propagate from the explosion. The 

Direct Wave follows the shortest path to the observation point, with only natural decay 

attenuating the amplitude of the wave. The Bottom Reflected Wave reflects off the bottom 
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boundary of the water, the reflected wave will partially attenuate depending on the density 

of the material. Denser materials will attenuate to a lesser degree. The Bottom Transmitted 

Wave is imparted by a bottom reflected wave, but travels through the substrate before 

returning to the water. The Surface Relief Wave is a rarefaction wave, or tension wave, 

that effectively eliminates the compression component of the Direct Wave or Bottom 

Reflected Wave when they intersect, this is known as surface cutoff. The Surface Relief 

Wave is due to the acoustic impedance introduced by the much more compressible air, 

which causes essentially all of the energy to propagate back into the water, though in 

tension instead of the initial compression wave. (USACE 1991).  

Initially the gas bubble has a much greater pressure than the surrounding ambient 

hydrostatic pressure in the water, which is partially alleviated by the creation of a shock 

wave, and then fully by the outward flow of water (Cole 1948). Following the formation 

of the shockwave, the high pressures within the gas bubble cause the bubble to expand 

forcing the water outward, the inertial effect of the water movement causes the bubble to 

expand until the gas pressure is less than the hydrostatic pressure (Sulfredge et al. 2005). 

As a result, the water collapses on the bubble, recompressing the gas to a pressure greater 

than ambient, though less than the initial gas pressure. This begins a sequence of 

diminishing bubble oscillations in which the bubble expansion and contraction continues, 

decreasing in intensity with each oscillation, until the bubble reaches the water surface or 

are damped out by viscous fluid friction (Sulfredge et al. 2005). Figure 2.3 demonstrates 

the phenomenon related to the peak pressure and bubble oscillations (or pulses). The 

incident shock wave is shown to be much greater than the bubble pulse pressures, which 

diminish with each successive oscillation. 
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Figure 2.3 Pressure Waves and Bubble Phenomenon of Underwater Explosions (Swisdak 

1978) 

The bubble pulses continue to produce pressure waves in the water, but with significantly 

lower peak pressures than the initial explosion shock wave (Misovec 1976). The periods 

of the bubble pulse pressure waves are much longer than the incident pressure wave which 

may cause the overall impulse imparted to a structure to be comparable or even larger than 

that of the primary pressure wave.  The pressure wave characteristics produced by the 

bubble pulses vary as functions of charge weight, range, and depth, just as those produced 

by initial shock wave (Sulfredge et al. 2005).  

2.2 General Characteristics of Pressure Waves 

Initially the wave propagated from an underwater explosion is a shock wave, which by 

definition travels at speeds greater than the acoustic velocity (speed of sound) of the water. 

However, the wave quickly transforms into a seismic p-wave that travels through the water 

at specifically the acoustic velocity (Hempen 1993a). While the common use of the term 

“shock wave” describes both waves, Hempen (1993a) uses “pressure wave” as a general 

term to describe the waves propagating from the explosion without regard to the distance 

from the source, or more specifically the velocity. This study uses the term “pressure 

wave.” 
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Characteristic of the pressure wave is a steep-fronted compression wave that decays rapidly 

in an exponential fashion as it propagates through the medium (Cole 1948). Pressure waves 

produced underwater possess similar characteristics to those caused by in-air explosions; 

however the high compressibility of air rapidly attenuates the pressure wave, while the 

relative incompressibility of water negligibly attenuates the pressure wave. For this reason, 

water is considered incompressible when considering the effects of underwater pressure 

waves (Cole 1948). 

Rude and Lee (2007) present a sample pressure wave trace from an underwater explosion 

that depicts the key features of a pressure wave, see Figure 2.4. The arrival of the pressure 

wave is characterized by a near-instantaneous rise in pressure to a sharp peak (peak 

pressure), which is immediately followed by an exponential decay in pressure, gradually 

deviating from the exponential form. The peak pressure and subsequent decay occurs over 

a period of a few milliseconds. Following the peak pressure wave, a secondary pressure 

wave peak is shown that was created by the bottom reflected wave as indicated in the 

figure. Immediately following is the “Surface Cutoff,” or reflection of the wave from the 

water surface. Since the surface cutoff wave is a tension wave it effectively eliminates the 

bottom reflected wave and any remaining pressure from the incident pressure wave that 

were compression waves. Following the surface cutoff, the ambient pressure of the water 

is just above the vapor pressure of water, placing the water in a state of cavitation (liquid-

free zones or bubbles). The water will remain in this state until the water is returns to 

ambient hydrostatic pressure. Rude and Lee (2007) note that the bottom reflection and 

surface cutoff are nearly coincident because the charge and gauge were located at mid-

depth, and would otherwise be more distinguished. In settings where the explosion occurs 

at great enough depth to contain the gas bubble before it breaches the water surface, the 

pressure waves produced by the bubble pulses will also register on the pressure trace, at 

lower amplitudes than the peak pressure. 
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Figure 2.4 Sample Shock-wave Trace of an Underwater Explosion (Rude and Lee 2007) 

2.2.1 Pressure Wave Parameters 

The primary pressure wave characteristics that define the pressure wave are the peak 

incident pressure, mP ; the decay constant,θ ; the specific impulse (commonly termed 

“impulse”), I ; and the energy flux density, commonly represented with E , but in this study 

is represented by U to avoid term duplication. 

The impulse of the pressure wave is, by definition, the time-integral of the peak pressure, 

shown in Equation 1. 
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where ctPu ρ/)(= , ρ is the density of water, c is the acoustic velocity in the water, and 

the time increment is the same as impulse presented in Equation 1. 

The peak incident pressure, mP , or simply peak pressure, is the measured maximum 

pressure imposed on the water by the pressure wave. The primary factors relating to the 

magnitude of peak pressure are the type of explosive, charge weight, and radial standoff 

distance. Discussion of these factors in greater detail takes occurs in subsequent sections 

of this paper. Peak pressure is the most commonly referenced pressure wave characteristic, 

and is easily applied to determine potential damage to structures. It is also the simplest 

characteristic to comprehend as it acts very similarly to a uniformly distributed load. 

Figure 2.5 shows a schematic of the pressure-time history associated with an underwater 

explosion. Pmax is the peak pressure. The shaded area under the pressure curve represents 

the impulse. The decay constant,θ , is a measure of the time it takes for the pressure wave 

pressure to reduce from mP to ePm / , which represents the location where the pressure decay 

deviates from exponential form. Where e is Euler’s Number which is approximately equal 

to 2.718. The factor 368.0718.2/1 = , implies thatθ is the time required for pressure to 

decrease to 36.8% of mP (Swisdak 1978). Some studies (Chapman 1985) define 𝜃𝜃 as the 

phase duration, which is elapsed time between the initial pressure rise and the point where 

the pressure reduces below the ambient hydrostatic pressure. However, 𝜃𝜃 is generally 

considered a time step as shown in Figure 2.5. 
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Figure 2.5 Illustration of peak pressure and decay constant (after Rude and Lee 2007) 

The actual phase period, or time increment used to calculate impulse and energy flux, will 

vary with charge type and size, but it is typically bounded by at and some multiple of θ to 

create similitude equations. The time increment 6.7θ was used to develop the similitude 

equations presented in Cole (1948), and has been used extensively, though 5θ is also 

common. 

Energy flux density is possibly the most comprehensive pressure wave characteristic to 

determine damage potential to underwater structures (USACE 1961). As the pressure wave 

passes through the water, the water molecules accelerate, gaining kinetic energy, known 

here as energy flux. The significance of energy flux is that it includes the effects of both 

the pressure wave pressure and the particle velocity within the water (Hempen 1993b). 

Energy flux density has units of energy per unit area (J/m2) which represents the energy 

carried by the wave normal to the wave. For example, if the energy flux density of a wave 

is 2000J/m2 and it encounters an object with an area of 4m2 takes place, the object receives 

8000J of energy. While a typical structure will deform elastically and plastically, for a 

simple estimation of the force imparted by energy, it can be assumed that all kinetic energy 
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is converted to elastic strain (elastic deformation) resulting in Equation 3 for maximum 

allowable force, maxF (Beers et al. 2009), 

kkUF 2max =      (3) 

where k is the spring constant of the object and kU is kinetic energy. Note, this is a very 

conservative estimate as some plastic deformation is generally acceptable, which will 

provide a greater allowable maximum force than determined by this equation.  

2.2.2 Similitude Equations 

Unique to each underwater explosion are the explosive type, charge weight, standoff 

distance, and depth of explosion. Each of these parameters is a factor in determining the 

resulting pressure wave characteristics described previously, which possess the potential 

to cause significant damage to waterborne infrastructure. However, development of 

similitude equations in previous studies took place to normalize these parameters in order 

to predict the pressure wave characteristics for a wide range of settings and charge 

properties. Development of these similitude equations rely on the basis of the principle of 

similarity which forms scaling laws. These laws are not physical laws, but rather have 

demonstrated a remarkable capacity to predict pressure wave characteristics in subsequent 

and successive trials (Chapman 1985). The principle of similarity suggests that if the same 

factor by which the charge dimensions change is applied to the scales of length and time at 

which the pressure wave is observed, the resulting characteristics of the wave will remain 

the same. Due to the numerous types of explosives, each possessing unique explosive 

properties, the similitude equations commonly represent the equivalent TNT 

characteristics, which are then applied to other explosives using an equivalency factor. 

2.2.2.1 TNT Equivalences 

TNT has long been the industry standard high explosive, due largely to its low sensitivity, 

low melting point, and substantial energy, making it effective while also relatively safe to 

handle. Many explosive compounds developed as improvements to TNT still contain 

considerable portions of TNT, such as Pentolite which commonly consists of fifty percent 

TNT and fifty percent PETN (Cole 1948). Since TNT has been the prevailing high 
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explosive for a considerable time, other explosives (including nuclear warheads) are often 

represented by an equivalent weight of TNT. The TNT equivalence factor is typically 

calculated by normalizing the energy of explosion for a unit weight of high explosive over 

the energy of explosion of TNT. The weight of the respective explosive is then multiplied 

by the TNT equivalency factor to give the equivalent weight of TNT to obtain the same 

effect, see Equation 4. Other methods are also used, including scaling by the heat of 

detonation (Cooper 1996). 

)(
)()(

)(
exp

exp

TNTU
HEUHEwt

TNTwt equiv

⋅
=     (4) 

where HE represents the high explosive in question, )(xwt is the weight of each respective 

explosive, and )(exp xU is the energy of explosion for each explosive.  

Employing these factors most commonly occurs out of water, and the accuracy varies with 

which pressure wave characteristics are being considered and the distance from the source. 

Therefore, additional consideration is recommended before relying heavily on these factors 

for underwater explosions. Indeed, the pressure wave data from Rude and Lee (2007), 

which used C-4 as the explosive, proved much different than TNT equivalency factor 

predicted. For the current study, it was decided to limit the test data to that measured with 

the use of TNT to ensure consistency. Especially given that the published TNT 

equivalences are not necessarily accurate for any given characteristic at any range (Locking 

2011). The damage potential and resulting attenuation requirement for TNT induced 

pressure waves provides a general form which may be applied for pressure waves induced 

by other high explosives. The damage potential is simply determined by peak pressure and 

energy flux density, and thus is not dependent on explosive type. However, the prediction 

of such characteristics is dependent on the explosive material and thus caution is 

recommended if TNT equivalencies are used for this purpose. In the event an equation does 

not exist for peak pressure, or its accuracy is uncertain, the U.S. Army Corps of Engineers 

(1991) recommends using an upper estimate of 2.0 for the TNT equivalency factor as a 

conservative estimate of the actual effect of common high explosives. However, in shallow 

water, where the initial expansion of the gas bubble breaks the water surface, the actual 

peak pressure may be as much as 10 times less than the similitude equations predict. Thus 
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it is important, when possible, to determine the actual pressures that might be produced, 

especially to avoid severely overdesigning a mitigation system (USACE 1991). 

Table 2.1 displays TNT equivalency factors for several common high explosives. These 

factors scale the weight of TNT required to obtain similar peak pressures created by the 

respective explosive type, but may be inaccurate for other characteristics. 

Table 2.1 TNT Equivalency Factors for Selected High Explosives (USACE 1991) 

Explosive Approximate Equivalency 
Factors by Weight for Pressure 

TNT 1 
Nitromethane 1.1 

Pentolite 1.04 
ANFO 0.3-0.82 

C-4 1.37 
Ammonia Dynamite 0.7-0.9 

Gelatin Dynamite 0.7-0.8 
Nitroglycerin Dynamite 0.9 

 

2.2.2.2 Similitude Equation Formation 
Similitude equations were developed using measured pressure wave characteristics and 

known experimental variables such as charge weight, radial standoff distance, and 

explosion depth. Since similitude equations are experimentally determined, the validity of 

each equation is limited to the experimental constraints used for the development of each 

respective equation (Swisdak 1978). Table 2.2 lists the validity range for the equations of 

several pressure wave characteristics developed by Swisdak (1978). Due to the wide 

variety of scenarios requiring pressure wave predictions, and the relative consistency of the 

equations from different experiments, some exceptions beyond the published validity range 

may be acceptable for rough estimates. For example, if a peak pressure of 150MPa was 

predicted using the equation presented by Swisdak (1978) it would be reasonable to assume 

that the prediction was still relatively accurate. 
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Table 2.2 Validity range for similitude equations variables (Swisdak 1978) 

Parameter Variable Validity Range 

Peak Pressure ( mP ) mP  3.4 – 138MPa 

Peak Pressure Decay t-tpeak < 2τ 

Decay Time Constant (θ) mP  3.4 – 138MPa 

Impulse (I) mP  3.4 – 138MPa 

Energy Flux Density (U) mP  3.4 – 138MPa 

τ = time constant of initial decay 

Many assumptions are made when using similitude equations, some of which are presented 

in Table 2.3. The most critical assumptions are that there are no effects from the boundary 

surfaces and that the structure is beyond the maximum gas bubble radius. (Swisdak 1978). 

Table 2.3  Assumptions Required for Similitude Equations  

Assumption Characteristic 
Affected Impact 

No boundary 
surface effects 

Pressure wave, gas 
bubble, bubble 

pulse 

No reflection of shock wave. No cavitation or 
free surface effects. All similitude equations 

based on explosions that took place 
significantly far away from boundary surfaces. 

Radial standoff 
distance is greater 
than bubble radius 

Pressure wave Pressure wave calculations do not include 
pressures imposed by contact with gas bubble 

Bubble pulses not 
significant 

Pressure-Time 
History Pressure pulses on structure are ignored 

Spherical 
Propagation 

Pressure wave, gas 
bubble 

Pressure waves radiate in all directions at 
equivalent amplitudes 

Incompressible 
Fluid Pressure wave The water does not attenuate the pressure 

wave with distance 

 

To understand the formation of similitude equations, it is important to first understand the 

reduced, or scaled, weight term, 3/1W , that is used to scale radial standoff distance and 

pressure wave characteristics. Cole (1948) observed that the pressure-time histories for 

different charge weights detonated at the same radial standoff distance were identical when 



18 
 

corrected for the difference in time scale. Since the linear dimensions of a spherical charge 

are proportional to the cube root of the volume, and thus weight, the distances in the above 

experiment should be scaled by 3/1W . It was determined by subsequent experiments that 

pressure wave characteristics dependent on the pressure-time history, such as impulse and 

energy flux density, may be scaled by the same factor. By scaling experimental results by 

the cube root of the charge weight, similitude equations can be produced that relatively 

accurately predict the pressure wave behaviors for various charge weights (Cole 1948).  

The scaled distance term, 3/1/WR , is used to normalize the pressure wave characteristics 

given any radial standoff distance and charge weight (within the experimental constraints 

used in the development of the equations). By normalizing these characteristics, data from 

experiments with varying R  and W can be accurately compared, producing a more 

complete data set. This also allows data to be extrapolated to cases that do not have 

experimental data, such that analytical or numerical models can be produced with relative 

confidence. 

The basic similitude equation for peak pressure, mP , after Swisdak (1978), is shown in 

Equation 5. 
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where W is the mass of the charge (kg), R is the radial standoff distance (m), and 1K and 1A

are peak pressure coefficients for this equation. The subsequent decay of the pressure is 

represented as a multiple of the time constant, θ , which is given by Swisdak (1978) as, 
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where W and R are the same as Equation 5, and 2K and 2A are coefficients for the θ 

similitude equations. The values determined for mP  and θ  at R using these equations can 

then be used to approximate the pressure-time history using the following equation from 

Cole (1948), 



19 
 

( ) o

tt

m PePtP
a

+=
−−
θ      (7) 

where oP  is the ambient hydrostatic pressure at depth, z , at  is and the time for the pressure 

wave to reach the structure, or time of arrival.  

The equations for impulse and energy flux density are, 
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where W and R are the same as above, 3K and 3A are coefficients for the impulse similitude 

equations, and 4K and 4A are coefficients for the energy flux density similitude equations. 

Table 2.4 presents the coefficients iK and iA  for several common explosives. These values 

are merely common examples of the coefficients, as they are frequently modified to fit the 

results of supplementary experiments. These were developed experimentally, not using 

TNT equivalencies, and thus are more reliable than using the TNT similitude equation and 

scaling the explosive. 

Table 2.4 Similitude coefficients for various high explosives (after Swisdak 1978) 

Explosive mP  3/1/Wθ  3/1/WI  3/1/WU  Range of 
Validity* K1 A1 K2 A2 K3 A3 K4 A4 

TNT 52.4 -1.13 0.084 0.23 5.75 -0.89 84.4 -2.04 3.4 - 138 
Pentolite 56.5 -1.14 0.084 0.23 5.73 -0.91 92.0 -2.04 3.4 - 138 

H-6 59.2 -1.19 0.088 0.28 6.58 -0.91 115.3 -2.08 10.3 - 138 
HBX-1 56.7 -1.15 0.083 0.29 6.42 -0.85 106.2 -2.00 3.4 - 60 
HBX-3 50.3 -1.14 0.091 0.22 6.33 -0.90 90.9 -2.02 3.4 - 60 

Pm = Peak Pressure (MPa); θ/W1/3 = Reduced Time Constant (ms/kg1/3); I/W1/3 = 
Reduced Impulse (kPa-s/kg1/3); U/W1/3 = Reduced Energy Flux Density (m-kPa-
s/kg1/3); W = Charge Weight (kg); R = Radial Distance (m); I and E are integrated to a 
time of 5θ. 
Note: All equations are of the form:  AWRKParameter )/( 3/1=  
* Validity range of the pressure (in MPa) over which the equations apply 
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2.3 Damage Potential from Underwater Explosions 

The load-structure interaction from explosion induced dynamic loading, on a structure is 

very complicated when considered in its entirety, and is unique for each situation. 

Therefore, conservative approximations and simplifications are commonly implemented to 

convert the effect of dynamic loading to an equivalent static loading. Biggs (1964) 

presented the process and equations, along with tabulated data, to develop equivalent 

systems. However, many of the parameters required to produce an equivalent system are 

dependent on the characteristics of the structure, including but not limited to, material 

strength, stiffness, mass, and natural frequency. Therefore, the development of an 

equivalent system will be discussed, but only the simplest application was applied in the 

analysis. 

In general, the response of a structure will depend on its natural period and the time-

pressure relationship of the pressure wave. In cases where the pressure wave period 

(duration) is much longer than the natural period, the load acts as a quasi-static force and 

damage can be determined using static analysis. In such cases, the deformation is a function 

of the peak pressure and the stiffness of the structure (Cormie et al. 2009). Figure 2.6 shows 

the time-pressure relationship of the wave and the time-displacement relationship of the 

structure. In this case the structure reaches its maximum displacement before the pressure 

wave faces significant decay. 

 

Figure 2.6 Quasi-Static Loading (Cormie et al. 2009) 
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In cases where duration of the pressure wave is much shorter than the natural period of the 

structure, the pressure is applied and decays before significant displacement of the structure 

occurs, as seen in Figure 2.7. In these cases the load is impulsive, and pressure wave 

impulse has been shown to control the damage propagation (Cormie et al. 2009).  

 

Figure 2.7 Impulsive Loading (Cormie et al. 2009) 

The final case, in which the duration of the wave and structure natural period are 

approximately equal, the response is generally quite complex and may require a complete 

assessment of the anticipated motion of the structure, see Figure 2.8.  
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Figure 2.8 Dynamic Loading (Cormie et al. 2009) 

2.3.1 Equivalent Systems 

The use of an equivalent system converts the response of a structure to a dynamic load to 

an equivalent static load. To facilitate the application of an equivalent system it is 

advantageous to model a system as having a single-degree-of-freedom (SDOF). This 

allows the same equivalent system to be applied to a variety of structural systems. The 

equivalent system is usually determined by establishing the deflection that would be caused 

by applying the dynamic load statically. In order to do this, transformation factors were 

developed for mass, load distribution, and resistance that convert the real system into the 

equivalent system (Biggs 1964). These transformation factors are used, with the physical 

properties of the member, to determine a dynamic load factor (DLF) from design figures 

presented by Biggs (1964). The DLF effectively converts the dynamic load applied to the 

structure to the static load that would produce the same response. 

 

Figure 2.9 Maximum Response of SDOF Systems Subjected to a Triangular Load Pulse 

Having Zero Rise Time (after Biggs 1964).  
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Figure 2.9 depicts the DLF values for a system subjected to a triangular load pulse, similar 

to the loading due to explosive pressure waves. From this figure, it was observed that for 

impulsive loading (td << T) the DLF is beneficial to the structure (DLF < 1), and for quasi-

static loading (td >> T) the DLF is detrimental to the structure (DLF > 1). 

2.3.2 Dynamic Increase Factors 

The dynamic strength of concrete and steel is known to increase proportionally as the load-

rate increases. When concrete and steel are subjected to rapid loading, characterized by a 

high strain-rate, there is an immediate strengthening of the material, which can be 

accounted for in design, see Figure 2.10 for the behavior of concrete. 

 

Figure 2.10 Stress-Strain Behavior of Concrete under Rapid Loading (UFC 3-340-02 2008) 

To quantify this increase, a dynamic increase factor (DIF) is determined using the strain 

rate and nominal material strength, and then applied to the nominal design strength to 

increase it accordingly. Since this behavior is predictable, DIFs have been developed to 

more accurately model the yield and ultimate strengths of these materials in design. UFC 

3-340-02 (2008) contains figures and tables, as well as equations, to determine the 

appropriate DIF for various material strengths and loading characteristics. Figure 2.11 for 

concrete and Figure 2.12 for structural steel were used in this study, see below. These 

factors are determined as a function of the strain rate, ε ′ , which in turn is a function of the 

pressure wave characteristics, the structural response, and the material properties. UFC 3-

340-02 (2008) simplifies this criteria by assigning strain rates, sec//3.0 mmmm=′ε  for 
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the near design range (small radial distance from charge) and sec//1.0 mmmm=′ε  for the 

far design range. Additionally, the report states that these strain rates are conservative and 

thus safe for design. For the purpose of this study, sec//3.0 mmmm=′ε  for a near design 

range will be used for all loading and material types, except for tension and compression 

in steel discussed later. 

 

Figure 2.11 Design curve for DIF for ultimate compressive strength of concrete with 17.24 

< f’c < 34.47 MPa, (after UFC 3-340-02 2008) 

Figure 2.11 shows an exponentially increasing curve for the DIF values, for concrete with 

compressive strength between 17.34 and 34.47MPa. Using the strain rate of 

sec//3.0 mmmm=′ε , indicates a DIF of approximately 1.25. While DIF values are 

presented for concrete alone, when considering the structural response of a reinforced 

concrete structure, the DIF values for the reinforcing steel must be considered as well. 

Additional design curves as equations are presented for higher strength concrete in UFC 3-

340-02 (2008). 

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0.001 0.01 0.1 1 10

D
yn

am
ic

 In
cr

ea
se

 F
ac

to
r

Strain Rate (mm/mm/s)

17.34 < f'c < 34.47 MPa



25 
 

 

Figure 2.12 DIFs for yield stresses of ASTM A36 and A514 steels (After UFC 3-340-02 

2008) 

Figure 2.12 presents the DIF values for ASTM A36 and ASTM A514 steels which have 

different yield strengths. While both curves increase exponentially, it is clear that the DIF 

values for A36 steel are significantly higher.  

2.3.3 Damage Potential of Peak Pressure  

When structures are exposed to explosion-induced pressure waves, they undergo rapidly 

applied dynamic loading. The analysis of members under dynamic loading is similar to 

static loading though additional considerations must be made to account for material 

behavior under rapid loading, and the response to kinetic energy imparted from the water.  

In general terms, static equilibrium and conservation of energy must be satisfied. Static 

equilibrium is satisfied using basic static design principles. Kinetic energy imparted by the 

water must equal the strain energy developed within the system. The kinetic energy is 

essentially translated into strain energy within the system, first as elastic strain, and then 

as plastic strain if the kinetic energy is greater than the elastic strain energy. The ductility 

of a member is its ability to deform in the plastic range without rupture. Therefore, with 
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the exception of sufficiently stiff members capable of remaining in elastic strain, higher 

ductility will result in lower required ultimate resistance of the material (UFC 3-340-02 

2008).  

An example of the relationship between peak pressure and radial standoff distance is 

shown in Figure 2.13.  

 

Figure 2.13 Example Calculations based on Allowable Peak Pressure and Scaled Radial 

Standoff Distance. 

In Figure 2.13 the allowable peak pressure was set as the compressive strength of concrete, 

20MPa. Referencing allowable peak pressure in Figure 2.13(A) or using Equation 5, the 

scaled radial standoff distance was calculated. Then by solving for each parameter, 1) the 

minimum radial standoff distance for a 250kg charge was determined to be 14.8m, and 2) 

the maximum charge weight for an 8m radial standoff distance was determined to be 

39.5kg. This is a useful method to determine the required radial standoff distance, or to 

limit the charge weight. However, the concrete compressive strength could be increased 

using a DIF, the similitude equation presented by Swisdak (1978) does not consider the 

effect of depth, and the only method to limit the peak pressure at contact is by increasing 

the standoff distance or by decreasing the charge weight. 
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Sulfredge et al. (2005) presented a study that predicted the damage potential of an 

underwater explosion inside a hydroelectric (or water treatment) intake structure. This 

study determined that in a relatively small and enclosed space such as an intake structure, 

the effects of even a relatively small explosive would likely be significant. Part of the 

analysis investigated the gas bubble produced by the explosive. Within the radius of this 

bubble, the blast pressures exceed 34,000MPa for a 25kg TNT charge. It was predicted that 

within the gas bubble, pipes would be irreparably crushed or bent, and that little of the 

affected infrastructure would remain undamaged. Further from the gas bubble, the pressure 

attenuates quickly and thus the damage is less severe. However, in an enclosed space the 

reflections off water-solid interfaces compounds and the bubble-pulse does not propagate 

to the surface and thus provides more damage potential than in a free-water setting. 

Additionally, it was predicted that damage to concrete would also occur, but the debilitating 

damage in this scenario would be to the metal pipes and mechanical hardware (Sulfredge 

et al. 2005). 

2.3.4 Damage Potential of Impulse 

The damage potential of impulse is closely related to the natural frequency of the structure. 

If the period of the pressure wave, 6.7θ as presented by Cole (1948), is much shorter than 

the natural frequency of the structure, impulse will likely be the primary influence on 

damage. This situation is most common in massive rigid structures such as dams. Impulse 

imparted to a structure causes the structure to vibrate at its natural frequency, if the 

deflection due to these vibrations is excessive, damage is sustained (Langefors and 

Kihlstrom 1978). As mentioned previously, impulse is the integral of pressure over time, 

or the sum of pressures over time (Sulfredge et al. 2005). Thus, the impulse for an explosion 

with a large peak pressure but short time constant could be lower than the impulse 

corresponding to a smaller peak pressure with a long time constant. This being the case, 

mitigation techniques that reduce peak pressure by distributing it over a longer period of 

time may not be effective in reducing impulse.   

2.3.5 Damage Potential of Energy Flux 

The damage potential of energy flux is determined by the strain energy available in the 

structure. Since conservation of energy must be satisfied, the amount of energy imparted 
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to the structure must be accounted for in strain energy (Beers et al. 2009). For very resilient 

structures or minimal energy flux, this will be contained within elastic strain energy, in 

which the energy imparted to the structure only causes elastic deformation. In most cases 

involving explosions, due to the large quantities of energy imparted to the structure, plastic 

deformation (plastic strain energy) will occur, in which some irreversible damage is 

sustained. Many structures that are designed with explosive forces in mind will provide 

weak, non-critical elements to absorb a significant portion of the imparted energy in plastic 

strain, allowing the rest of the structure to remain in elastic strain (AISC 2011). This 

prevents total failure of the structure, and reduces the loss of property and/or life. The 

sacrificial members can be replaced following the damaging event. In many cases, the cost 

of repairs due to some plastic deformation will be less than the cost to limit deformation to 

the elastic range, whether through robust design or mitigation practices. For existing 

structures, the level of plastic deformation permitted should be determined prior to 

determining the allowable energy flux that can be imparted to the structure. For extreme 

events, the available plastic strain energy may not be great enough, leading to rupture 

and/or projectile motion to satisfy energy conservation. Thus, the damage potential of 

energy flux is characterized by what level of deformation is considered acceptable, and by 

the stiffness of the structure which determines the available strain energy.  

Energy flux density is the pressure wave characteristic that best relates the damage causing 

potential of a pressure wave, because it combines peak pressure and shock wave induced 

kinetic energy of the water. Figure 2.14 shows the relationship of scaled energy flux density 

versus the scaled radial standoff distance. Since energy flux is determined in part by the 

integral of pressure with respect to time (Equation 2), it can be scaled by charge weight 

similar to the scaling of standoff distance (Cole 1948). The rate at which the energy flux 

decays in Figure 2.14 is much greater that of peak pressure as seen in Figure 2.13. Equation 

2 demonstrates that energy flux is a function of pressure squared, which explains this 

behavior, but also indicates that the damage potential of energy flux will also be a function 

of pressure squared (Rude and Lee 2007).  
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Figure 2.14 Scaled energy flux density versus scaled radial standoff distance (Swisdak 

1978) 

Using the previously presented similitude equation and parameters for energy flux density, 

the relationship between radial standoff distance and charge weight can be established for 

a specified maximum energy flux. By rearranging the terms in Equation 9, the minimum 

required standoff distance for a given charge weight and specified maximum energy flux 

can be determined, see Equation 10. 
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2.4 Bubble Screens 

The study of bubble screens to attenuate pressure waves characteristics began in the early 

20th century. Possibly the first practical application of a bubble screen was presented by 

Fessenden (1920) to block generation and reception of sound waves on naval ships. 

Extensive testing commenced during World War II and continued in the immediate 
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postwar years, primarily for the use of protecting ships and divers from underwater 

explosions. The first commercial application to protect a waterborne structure occurred in 

1954 by the Electric Power Commission of Ontario during the construction of a 

hydroelectric facility. Following several scaled tests to confirm pressure wave attenuation, 

a bubble screen was implemented during the blasting of a rock mass near the facility, see 

Figure 2.15. Typically this would have required ceasing hydroelectric operations and 

draining the water before blasting, however, by implementing the bubble screen, operations 

continued saving a large sum of money (Domenico 1982a). 

 

Figure 2.15 shows the use a bubble screen to reduce the blast induced pressures while 

removing the rock plug separating the canal from the forebay by the Electric Power 

Commission of Ontario (Domenico, 1982a). 

In recent years, a common, and sometimes required, application of bubble screens is for 

the protection of aquatic wildlife during underwater demolition and pile driving operations 

(Keevin and Hempen 1997). The high amplitude sound pressures produced by explosions 

and the heavy hammering of piles adversely affects animals residing in the surrounding 

water. Historic observations witnessed high levels of fish mortality and permanent hearing 

loss in marine mammals near such operations. Traditional techniques to protect wildlife 

largely relied on the use of small preliminary charges or other acoustic sources to scare the 

wildlife from the vicinity of the commencing operation. However, by adapting bubble 

screens to surround these underwater activities, the attenuation of the resulting sound 
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pressures proved to limit or eliminate any observable damage to the aquatic wildlife 

(Grogan 2005). The theory and the application of bubble screens for protection of aquatic 

wildlife from acoustic pressures is essentially the same as the application of them for 

structural protection, and thus research for both purposes is interchangeable.  

2.4.1 Principles of Operation 

A bubble screen consists of a screen (wall or curtain) of air bubbles that rise through the 

water. It is created by sending compressed air through an underwater manifold of pipes 

that have many small holes or orifices. As the air exits the manifold through these orifices, 

small bubbles form that then rise to the surface. The bubble screen is designed to separate 

a pressure wave creating source (e.g. explosive) from a potential target (e.g. a structure or 

animal).  This has been accomplished by either surrounding the source or barricading the 

target. Thus, the bubble screen effectively creates a protective barrier within the water. In 

free-water (i.e. no boundaries or air), a pressure wave travels at the speed of sound until 

reaching a barrier which will partially reflect and partially attenuate the pressure wave, 

allowing a fraction of the original amplitude pass through.  

2.4.2 Attenuation Mechanisms of Bubble Screens 

The primary pressure wave reducing mechanisms of bubble screens are reflection and 

attenuation. The term “attenuation” commonly refers to the total reduction of amplitude 

beyond the bubble screen, which is attributable to both mechanisms, however a distinction 

will be made in this section to differentiate the two. The bubble screen has a reduced 

density and increased compressibility compared to the surrounding water, which creates a 

different acoustic impedance than the water. This difference in impedance causes a portion 

of the pressure wave to reflect back into the free-water, similar to the rarefaction wave 

reflected from the water-air interface (Hempen 1993b). The remaining energy of the 

pressure wave attenuates though adiabatic compression of the bubbles and reradiation as it 

enters the bubble screen (Domenico 1982a). 

2.4.2.1  Reflection 
Reflection of the pressure wave is due largely to the difference in acoustic impedance 

encountered at the interface of the water and bubble screen.  The equation for acoustic 

impedance was given in Cole (1948) as, 
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cZ ⋅= ρ       (11) 

where Z is the acoustic impedance, ρ is the density of the medium, and c  is the acoustic 

velocity in the medium. 

For known densities of the water and air, the density of the bubble screen, considered a 

homogenous medium, can be determined using the fractional air content present in the 

bubble screen. An equation for the density of air as it relates to the ambient hydrostatic 

pressure, oP , was presented in Domenico (1982a).  

0086.101183.0 oa P⋅=ρ      (12) 

where oP  is in kPa and is the ambient hydrostatic pressure determined by the following 

equation: 

gzPP watmo ρ+=      (13) 

where atmP is the atmospheric pressure at the surface, assumed to equal Pa510013.1 ×

(1atm), wρ  is the mass density of water (the effect of depth is considered negligible), g  is 

the gravitational constant (9.81m/s2), and z is the depth of interest in meters. 

Equation 14 is used to determine the mass density of the mixture, mρ , for a known 

fractional air content af ,  

waaam ff ρρρ )1( −+=     (14) 

The acoustic velocity of the mixture, mc , is determined using the following equation 

presented in Domenico (1982a) for z ≤ 50 m, 

mm
mc

ρβ
1

=       (15) 

where mβ  is the compressibility of the mixture and mρ was previously calculated. mβ is 

determined by scaling the compressibility of air and water by the fractional air content,    

af , similar to mρ . The compressibility of air, aβ , is pressure dependent and differs for 
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adiabatic and isothermal conditions. The ratio of specific heats of air, k (1.4 for the 

adiabatic condition and 1.0 for the isothermal) is included Equation 16 from Gibson (1970) 

to account for the different conditions. 

o
a Pk ⋅
=

1β       (16) 

The compressibility of water, wβ , is subject to change with variations in pressure and 

temperature, however, the effect of these variations are small. The compressibility of water 

from Domenico (1982a) is given as, 

N
m

w

2
1010382.4 −⋅=β        

The equation to calculate the compressibility of the mixture is shown below, 

waaam ff βββ )1( −+=     (17) 

While it is apparent from the previous equations that the acoustic impedance is dependent 

on the fractional air content, the study by Domenico (1982a) demonstrated that it is also 

dependent on the radius of the air bubbles. The acoustic velocity, and thus impedance, is 

very sensitive to the bubble resonant frequency as it approaches and exceeds the frequency 

of the pressure wave. Equation 18 gives the resonant frequency of the bubble, rf . 
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where r is the bubble radius in meters, the Polytropic factor ( )mβµ +≈ 1/1  for 1/1 ≤≤ µτ , 

the adiabatic exponent 4.1=τ , oP  is in pascals, and mρ  is in units of kg/m3. From 

Equation 18, it is apparent that rf  is inversely proportional to the bubble radius, or the 

smaller the bubble radius the higher rf .  

Figure 2.16 demonstrates the effect of rf on both acoustic velocity and attenuation. The 

plot showing the relationship between acoustic velocity and pressure wave frequency 

shows the velocity as approximately constant, corresponding to Equation 15, until it nears
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rf . As rf  is approached, the velocity decreases rapidly, before nearly instantaneously 

increasing past the acoustic velocity of water, wc . Beyond rf , the velocity reaches a 

maximum before falling to the level of wc . The acoustic velocity maintains the same 

shape regardless of the bubble radius, but the frequency where rf  is reached increases 

with decreasing bubble radius. 

 
Figure 2.16 Acoustic Velocity and Attenuation versus Pressure Wave Frequency for 

Different Bubble Radii for 006.0=af  and mz 66.3=  (after Domenico 1982a). 
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The Knott equations presented in Grant and West (1965) are used to determine the 

transmission of wave energy across the bubble screen. Combining these with the 

reflection coefficient given by Kinsler and Frey (1950) for the acoustic impedances of the 

mixture and water, yields the transmission coefficient, 12 / AA , see Figure 2.17. The 

pressure wave amplitude is 1A , the reflected pressure wave amplitude is 1D , and the 

pressure wave amplitude which transmits through the bubble screen is 2A . 

 

Figure 2.17: Derivation of Transmission Coefficient 

Figure 2.18 is a sketch of the expected transmission coefficient versus frequency based 

on the velocities presented in Figure 2.16. As rf is approached, the behavior of the 

transmission coefficient becomes difficult to predict, except when rff >> in which case 

it is approximately unity. Therefore, to ensure the reflection potential of the bubble 

screen may be utilized, it is necessary to produce bubbles that have sufficiently small 

radii, such that rf is much greater than the frequency of the pressure wave. Explosives 
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used for construction and demolition typically have frequencies less that 500Hz 

(Dowding 1985). For a pressure wave frequency of 500Hz, Figure 2.16 indicates that a 

bubble radius of 3mm is roughly the largest that should be used when modeling 

reflection. Since a bubble radius of 3mm should be easily attainable, reflection should be 

considered a major component of the total predicted attenuation.  

 

Figure 2.18 Sketch of the Transmission Coefficient for Reflection versus Frequency (after 

Hempen 1993b)     

2.4.2.2 Attenuation 
As a pressure wave passes through a bubble screen, it causes the bubbles to oscillate in 

cycles of compression and expansion, similar to the explosion gas bubble. As the bubbles 

oscillate, some energy is transformed to heat, which in turn dissipates to the water. 

Additional energy is reradiated back into the water as compression waves. This action of 

effectively absorbing the amplitude of the pressure and energy that passes through the 

bubble screen is called attenuation.  

In the study presented by Domenico (1982a), the theory relating to bubble screen 

attenuation was investigated and empirical equations were presented. Figure 2.16 is the 

result of the study, and the bottom plot depicts attenuation versus pressure wave frequency. 
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As noted previously, the frequency created by common demolition explosions is typically 

less than 500Hz. Therefore from Figure 2.16, the expected attenuation is relatively small 

compared to the reflection coefficient for this frequency.  

The frequency for a bubble radius of 1.52mm at 500Hz is approximately 2.3dB/m 

according to Figure 2.16. The decibel unit (dB) is the logarithmic amplitude ratio that 

produces convenient numbers for amplitude ratios, it is given as, 


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Whereas Hempen (1993b) presented a transmission coefficient less than 0.2 for the same 

pressure wave frequency. As seen in Figure 2.16, near the frequency of the pressure wave, 

the attenuation mechanism of the bubble screen dramatically increases before falling to 

intermediate levels. Thus, for pressure wave frequencies significantly below rf , reflection 

will be the primary attenuating mechanism, while near rf and beyond, adiabatic 

compression of the bubble and reradiation will be the primary attenuation mechanisms. 

Figure 2.16 also demonstrates the increased attenuation due to smaller bubble radius that 

is due to the higher rf . 

2.4.3 Required Performance Parameters of a Bubble Screen 

By considering the maximum expected peak pressure and energy flux density for a given 

structure, and the minimum dynamic and impact strengths of the structure material, 

minimum required attenuation factor of the bubble screen can be determined, which in turn 

will dictate the specific design parameters of the manifold. It has long been known that the 
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effectiveness of a bubble screen is due in large part to bubble radius, screen thickness, and 

the fractional air content of the screen. By determining the required attenuation factor, and 

utilizing the role of each of these attenuation mechanisms, the appropriate bubble screen 

system can be designed and implemented. 

As a note, the pressure wave characteristics for this analysis are assumed to be for 

explosions in free-water, not considering the effects of boundary conditions or the 

explosion gas-bubble, which has significantly higher pressures over a short radius. 

2.4.4 Bubble Screen Case Studies 

There is an appreciable lack of unclassified data available regarding the attenuation 

performance of bubble screens on underwater explosions. There is however, a substantial 

quantity regarding the theory of underwater acoustic attenuation and the attenuation of pile 

driving induced pressure waves. The Shock-Wave Attenuation Properties of a Bubble 

Screen (USACE 1961) was the primary study referenced for attenuation data, due to the 

comprehensiveness of the data collected. Other studies, including Rude and Lee (2007) 

and Hempen (1993b), offer excellent discussion but used explosives other than TNT and 

provided too few data measurements to adequately correlate to TNT for analysis. Table 

2.5, contains peak pressure and energy flux attenuation ratios from three different studies. 

While all three studies indicate significant attenuation can be attained with sufficient 

airflow, significant variability between the studies is also evident. The three highest 

airflows, representing each study, seem to indicate that lower airflow provides greater 

attenuation, while the three airflows tested by USACE (1961) clearly indicate the opposite, 

which confirms theoretical predictions presented by Domenico (1982a). Therefore, the 

likely cause of variation is a combination of different bubble screen characteristics, 

environmental factors (test location, depth, etc.), instrumentation, and other experimental 

differences. Also, the first two studies only provide two data points each, which is not 

sufficient to make accurate correlations, though it does demonstrate the effectiveness of 

bubble screens in pressure wave attenuation. 
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Table 2.5 Attenuation Ratios from Different Studies 

Source 
Airflow Peak Pressure 

Attenuation 
Energy Flux 
Attenuation 

( )msm //3  ( )fwmrm PP ,, /  ( )fwr UU /  

Rude and Lee (2007)1 0.0167 0.41 0.59 
Hempen (1993b)2 0.01364 0.31 - 

USACE (1961)3 
0.00974 0.26 0.18 
0.00122 0.81 0.66 
0.000389 0.92 0.86 

1 10kg C-4 charge, water depth = 12.8m, charge and gauge depth = 
11.8m. 
2 1.81kg TOVEX 700 charge, water and charge depth = 1.52m, gauge 
depth ≈ 1m.  
3 3.63kg TNT charge, water depth = 5.49m, charge and gauge depth = 
2.74m. Attenuations taken from line of best-fit of plotted data. 
4 Estimated based on compressor capacity 

 

Additionally, theoretical approximations presented by Domenico (1982a) were 

investigated, but the results corresponded inadequately to the measured data to make 

conclusions regarding the measured versus theoretical performance. 

2.4.4.1 Shockwave Attenuation Properties of a Bubble Screen (USACE 1961) 
The USACE (1961) study primarily investigated the effects of air content and bubble 

screen thickness on the rate of attenuation. The tests were performed in a blast pond with 

the following dimensions: 39.6m long, 30.5m wide, and 6.71m deep.  The bubble screen 

manifold was submerged to 5.49m deep and produced a bubble screen approximately 6m 

long. TNT charges weighing 3.63kg (8lbs) were detonated at mid-depth between the 

surface and the manifold. Gauges were placed at mid-depth (2.74m), quarter-depth 

(1.37m), and just below the surface (0.076m). The gauges extended linearly away from the 

charge location at regular intervals of 0.223m, beginning 0.610m from the front of the 

bubble screen to 1.91m behind the screen, see Figure 2.19. The screen thicknesses were 

varied between 0.152m, 0.457m, and 0.914m.  
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Figure 2.19 USACE (1961) experimental setup including gauge array 

The air-content was varied for each screen thickness to yield similar airflows, as shown in 

Table 2.6. The charge was placed either 1.83m or 3.66m from the front of the bubble screen 

to determine any discrepancies caused by radial distance to the screen. A control was 
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established by also performing the detonation and measurements in the free-water 

condition (without airflow) to provide accurate attenuation data (USACE 1961). 

Table 2.6 Bubble Screen Thickness, Air Content, and Air Flow (USACE 1961) 

Screen Thickness 
(m) 

Air Content 
(m3/s/m2) 

Air Flow 
(m3/s/m) 

0.91 
0.000427 0.000389 
0.00134 0.00122 
0.0107 0.00974 

0.46 

0.000853 0.000392 
0.00134 0.000616 
0.0107 0.00492 
0.021 0.00966 

0.153 

0.00253 0.000386 
0.01067 0.00163 
0.02134 0.00325 
0.04267 0.00650 

 

The results of this study showed strong correlation between attenuation and airflow. The 

following equations were developed based on the experimental parameters and results, and 

were converted to metric units. 
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Where Ac is the air content (m3/s/m2), Ts is the screen thickness, λ is the scaled radial 

standoff distance (m/kg1/3), and v is the kinematic viscosity of water (1.004m2/s @ 20ºC). 

In subsequent calculations airflow, scf TAA ⋅=  is typically used. Equation 20 and 

Equation 21 are valid for the following conditions: 3/ 3/1 >WR , 12/0 << ss TL , and 

0.110/01.0 5 <⋅< vTA sc λ , where sL  is the screen length. 
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2.4.4.2 San Francisco-Oakland Bay Bridge (CALTRAN 2009) 
During the construction of the San Francisco-Oakland Bay Bridge, bubble screens were 

used to attenuate the acoustic levels caused by the pile driving operation. The results were 

compiled into a report titled, Technical Guidance for Assessment and Mitigation of the 

Hydroacoustic Effects of Pile Driving on Fish (CALTRAN 2009). In this operation, several 

different bubble screen configurations were implemented. The results indicated that single 

stage bubble manifolds were virtually ineffective where currents existed, providing 0-5dB 

of attenuation, but provided 5-15dB of attenuation with no current. Thus, multiple-stage 

and confined bubble screen systems were used in high-current situations. For one 

configuration, a nine-stage manifold was constructed (see Figure 2.20), with each tier 

having a “bubble ring,” or manifold system; but typically only five stages were 

implemented. This system provided 15-30dB of attenuation, even in high current settings. 

Thus, even in strong currents there was a sufficiently high air content to effectively 

attenuate the acoustic noise pressure.  

 

Figure 2.20 Multiple-stage unconfined bubble screen system (CALTRAN 2009) 

In other cases, confinement was added to the bubble screen system by use of either a steel 

pipe or a flexible material, which confined the bubbles to structure vicinity. These systems 

provided 5-25dB of attenuation. It was noted for the confined system, that the confining 

material (rigid or flexible) added negligible effect to the attenuation. It was also suggested 

that it is difficult to predict sound attenuation greater than 10dB (CALTRAN 2009). For 
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these pile driving examples, the most effective systems placed the bubble screens closely 

around the piles and ensured the air content of the bubble screen remained at desired levels, 

either through multiple-stages or confinement. 

In the case of pile driving, the source is effectively surrounded by the bubble screen, 

whereas in structural protection the location of the explosive source may be unknown, 

therefore structure is essentially barricaded by the bubble screen. This is a difference that 

needs to be acknowledged before expecting the same results in underwater blast protection. 

The near proximity available in the CALTRAN (2009) study, and the adaptations made to 

a single-stage bubble screen may be difficult to implement when protecting structures, 

however they provide examples of practical modifications that can be made to improve the 

performance of a bubble screen. 

2.4.4.3 Performance Evaluation of the Roach Cove Bubble Screen Apparatus 
(Rude and Lee 2007) 

In 2007, a study was conducted by Defense Research and Development Canada in Bedford 

Basin, Nova Scotia, Canada, to determine the attenuation properties of a customized bubble 

screen apparatus. The study was birthed from restrictions placed on the Canadian Navy to 

protect aquatic wildlife, which limited the permitted charge size and seasons for underwater 

explosives training. The purpose of the study was to develop a bubble screen apparatus and 

demonstrate its effectiveness at attenuating pressure wave characteristics, in order to solicit 

less stringent requirements when the bubble screen is implemented. Fisheries and Oceans 

Canada (formerly Canadian Department of Fisheries and Oceans) states that acceptable 

overpressures are less than or equal to 100kPa (~1atm) (Wright and Hopky 1998). For a 

10kg C-4 charge, the distance at which natural decay reduces the pressure to this is level 

can exceed 800m. The resulting tests determined that obtaining this level of reduction near 

the charge using a bubble screen was not possible, but the distance at which this reduction 

was attained could be dramatically reduced. The results of the study indicated that this 

bubble screen apparatus, reduced peak pressures up to 60%, energy flux up to 40%, and 

the distance to attain pressure levels of 100kPa levels to 195m or 75%, which corresponded 

to a 94% reduction in the area affected (Rude and Lee 2007). 
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The bubble screen apparatus implemented by Rude and Lee (2007) was circular, intending 

to surround an explosive charge, see Figure 2.21. The main distribution pipe was a 3in 

diameter stainless steel pipe rolled into an 8m circle. Distribution ports were added around 

the perimeter at 75mm spacing, which supplied air to 500mm long diffusers. The diffusers 

were constructed of Ethylene Propylene Diene Monomer (EPDM) which were perforated 

with thousands of slits approximately 1mm in length. These slits would remain closed 

when air was not flowing, preventing particulates in the water from entering the manifold. 

As air was supplied to manifold, the EPDM expanded causing the slits to open and air to 

pass through forming bubbles, see Figure 2.22 (Rude and Lee 2007). While this bubble 

screen manifold was more elaborate than many other designs, it benefitted by remaining 

cleaner when not used and by producing a dense screen of small bubbles, which can be 

difficult to attain from pipes with drilled holes. 

 

Figure 2.21 Diagram of Bubble Screen Manifold (Rude and Lee 2007) 
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Figure 2.22 Picture of Bubble Screen Manifold with and without Airflow (Rude and Lee 

2007) 

2.4.4.4 Other Common Uses of Bubble Screens   
The remaining common uses of bubble screens, which have more to do with the turbulent 

effect on the water than the attenuation properties, include creating a pneumatic barrier to 

contain substances such as oil, to aerate bodies of water to prevent stratification, and 

deicing operations around structures such as dams (Ditmars and Cederwall 1974).The 

implementation of a bubble screen to passively protect structures from underwater 

explosions will inherently incorporate one or more of these additional benefits. For 

example, if a bubble screen manifold is placed at the bottom of relatively deep reservoir to 

protect an intake structure, it will effectively reduce stratification in the reservoir, prevent 

ice buildup on the structure, and reduce acoustic sounds generated by the intake equipment, 

while passively protecting the structure from underwater explosions. 

Several companies have developed proprietary bubble screen systems to fulfill a variety of 

applications. HydroTechnik Lübeck from Lübeck, Germany is one that has developed 

several such systems including one that acts as a pneumatic barrier, or weir, to contain 

surface contaminants such as oil, see Figure 2.23. As seen in the figure, the bubble screen 

not only causes a vertical rise in the water, it also converts the vertical current created by 

the rising bubble into a horizontal current which limits the movement of the contaminant.  

(HydroTechnik Lübeck 2005).  
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Figure 2.23 Bubble Curtain as a Pneumatic Barrier Diagram (Hydrotechnik Lübeck 2005). 

 

Copyright © Paul Raymond Smith 2016 
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3 Analysis 

This analysis was three fold with the intent to use the results to form a step-by-step 

procedure to design a bubble screen system for the protection of waterborne infrastructure. 

The prediction of underwater blast characteristics was the first aspect analyzed. This was 

followed by the damage potential of the pressure wave and structure interaction. The final 

aspect, which relied on the results of the first two, was the attenuation performance of 

bubble screens.  

3.1 Comparison of Underwater Blast Characteristics 

The similitude equations for underwater blast characteristics presented in Swisdak (1978) 

and Cole (1948) form a fairly robust foundation on which to base underwater explosion 

predictions. Therefore, the equations presented in those studies were used as a comparison 

following the development of unique similitude equations for the specific data acquired for 

this analysis. Furthermore, the effect of charge depth was considered, and subsequently 

included, as an improvement over basic form presented by Swisdak (1978). 

3.1.1 Measured Data versus Empirical Equations 

While the coefficients for the similitude equations presented by Swisdak (1978) in Table 

2.4 are generally accepted values, measured data from four other sources were compiled 

for this study, and analyzed to assess the validity of these coefficients. These studies were 

conducted at four different depths which presented an opportunity to determine how depth 

affects the magnitude of pressure wave characteristics. This analysis was limited to studies 

that used TNT charges, all of which used different weights, radial standoff distances from 

the charge, and depths. The charge type in the analysis was limited to TNT to avoid 

potential errors within the equivalency factors for other explosives. Table 3.1 is a summary 

of the test parameters for the data used in this analysis. 
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Table 3.1 Summary of Data Sources 

Source Charge Weight 
(kg) 

Depth 
(m) 

Radial Distance from 
Charge Range 

(m) 

Coles 1946 
34.50 12.19 1.52 – 30.48 
21.79 12.19 1.52 – 30.48 

USACE 1961 3.63 2.743 1.22 – 6.48 

Richmond 19731 
0.454 3.048 14.63 – 25.60 
0.227 3.048 30.48 

Heathcote 1981 3.18 10.67 1.52 – 4.11 
1 It was determined near the completion of this study that the data obtained from 
Richmond (1973) was produced using Pentolite charges, not TNT. The error 
introduced by this mistake appears minimal, as general agreement with TNT 
data was already observed. The TNT equivalency factor for Pentolite is 1.04 as 
presented in Table 2.1, confirming similarity to TNT. 

 

The data from these studies was tabulated and converted to metric units, and are included 

in Appendix B. The pressure wave characteristics measured in these tests were plotted 

against the scaled radial standoff distances to compare the trend of the data to the similitude 

coefficients published by Swisdak (1978). Figure 3.1 presents the plots for the peak 

pressure data. A linear regression of the data was performed that produced a power function 

representing the data, and yielded new similitude coefficients.  To compare the accuracy 

of the equations presented by Swisdak (1978) to the equations developed from the data, 

the R2 values for the equations versus the data were calculated.  

The peak pressure data in Figure 3.1, demonstrated a consistent relationship between the 

peak pressure and scaled radial distance from the charge similar to Figure 2.13. The 

negative slope of the data trend indicated that peak pressure reduces as distance increases, 

and confirmed the general relationship presented in previous studies.  
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Figure 3.1 Measured Peak Pressure Data with Curve-Fitting Equation 

The equation developed for the tabulated study data and the equation presented by Swisdak 

(1978), shown below, contains similar coefficients and high R2 values. The slightly higher 

R2 value for the new equation indicated that it provided an improved representation of this 

data over the previously published equation. However, this comparison also confirmed the 

relative accuracy of the equation presented by Swisdak (1978), even over a wide selection 

of data.  
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The scaled energy flux density data was plotted similarly to peak pressure, as seen in Figure 

3.2. It also followed a negative slope but the rate of reduction was greater. As seen in 

Equation 2 in the previous section, energy flux is a function of pressure squared, which 

likely explains the higher rate of decay. The energy flux data maintained a relatively 
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consistent trend, but was visibly less grouped than the peak pressure data. Additionally, all 

the energy flux data presented by Richmond (1973) was clearly inconsistent with the other 

data. Richmond (1973) stated that the energy flux was calculated using a computer 

program, but failed to describe the time constant or other parameters used for the 

calculation, some variation or error was likely introduced in that process. Due to poor 

grouping and disagreement with other data, the data points from Richmond (1973) were 

excluded from the linear regression analysis and resulting equation. 

 

Figure 3.2 Measured Energy Flux Density with Curve-Fitting Equation 

The equation developed for the tabulated study data, and the equation presented by 

Swisdak (1978), shown below, exhibited similar coefficients, particularly for the slope. 

The R2 values for the equations demonstrated that the equations represent the data well, 

though the R2 value for the new equation was notably higher, and was thus more 

representative. The fact the R2 values for energy flux were lower than the respective values 

for the peak pressure equations, confirmed the larger spread observed in the data. 
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3/1W
U (Swisdak 1978)
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−







=
W

R  967.02 =R   (25) 

The empirical equations developed for the data were used for the remainder of the analysis, 

since they provide a better representation of the data than those presented by Swisdak 

(1978).  

The impulse data corresponding to the presented peak pressure and energy flux density 

data was analyzed and a new equation was developed. However, because the effect of 

impulse is not being discussed in this report, the plot and equations are presented in 

Appendix A for reference.  

3.1.2 Effect of Depth on Peak Pressure and Energy Flux 

While the equations presented by Swisdak (1978) are used in other studies, they do not 

account for the effect of depth on pressure wave characteristics, however depth has been 

shown to influence peak pressures, thus this study accounted for depth. The measured peak 

pressure data was normalized by dividing it by the hydrostatic pressure, zP , at the charge 

depth. This made the representation of peak pressure both dimensionless, and a function of 

depth, since zP wz ⋅= γ , where wγ  is the unit weight of water (9810 N/m3), and z is the 

depth of the charge. The normalized peak pressure was then plotted against the scaled radial 

standoff distance, see Figure 3.3.  

Figure 3.3 showed that the peak pressure data was delineated as a function of depth. This 

implied that the depth of explosion was significant to the peak pressures propagated 

through the water. The behavior of the normalized peak pressures was similar to the 

unaltered data in Figure 3.1, however the spread of the data was slightly increased as 

evidenced by generally lower R2 values; the R2 value for the data at 2.74m was 0.968, at 

3.048m it was 0.979, at 10.67m it was 0.958, and at 12.19m it was 0.996.The data set with 

the greatest spread was for explosions at 10.67m, which was the only data set with varying 

depth of gauges, likely explaining this phenomenon. 
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Figure 3.3 Effect of charge depth on peak pressure 

Regression analyses performed for each of the data sets produced power functions of the 

following form, 
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where coefficient A equals zm PP / when the scaled radial distance is unity, and B is the rate 

of pressure reduction; both were determined from the data plotted in Figure 3.3. The 

functions possess varying values for coefficient A, but approximately equal values for 

coefficient B. This indicated that A was heavily dependent on depth, because the similar 

powers do not explain the discrepancy of the data sets from depth. Subsequently, to develop 

an empirical equation for A, the values of A from each equation were plotted against the 
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respective charge depth, and a power function was fitted to the four data points, see Figure 

3.4. The coefficient B represents the rate of decay, or slope, of the data. Pressure waves 

experience natural decay with time, and since B does not vary with depth, it was concluded 

that depth is not a significant factor of the rate of natural decay. Since the coefficient B 

showed little variation between data sets, it was approximated as -1.1. The resulting 

coefficients for Equation 26 are:  

927.0)(1.4510 −= zA      (27) 

1.1−=B       (28) 

where z is the depth of the charge in meters. 

 

Figure 3.4 Equation for coefficient A 

Due to the lack appropriate data to validate this modification, a fidelity assessment was 

performed to compare the measured data with the prediction determined by Equation 26, 

see Figure 3.5. A fidelity assessment indicates whether the equation developed for data 
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actually represents the data well. From this plot, it appeared that the approximation slightly 

over-estimated most of the actual measurements, but was generally a good fit. 

 

Figure 3.5 Fidelity assessment for predicted normalized peak pressure 

A similar procedure was attempted for energy flux density, but the data did not correlate 

well with depth and thus was abandoned. This is likely due to the methods used by the 

different studies to calculate energy flux. For example, Coles et al. (1946) and USACE 

(1961) used a period of 6.7θ, while Heathcote (1981) used 1.0ms, and Richmond (1973) 

didn’t specify and likely had additional errors mentioned previously. Therefore, for the 

data available for underwater TNT explosions, depth should not be considered in the level 

of energy flux density from the pressure wave without further study. 

All the data used for this portion of the analysis was measured by gauges placed in the 

water at the same depth as the explosive charge, with the exception of the data with charge 

depth of 10.67m which used gauges at various depths (Heathcote 1981), so radial distance 

was used for the equations. The B coefficient for the 10.67m data was greater than the 

other, indicating a greater rate of natural decay. This may be due to the decreasing 

hydrostatic pressure and density of the water. Also, the charges were placed at 
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approximately the mid-depth of the water, with the exception of the charges placed at 

3.048m which were in a total depth of 9.14m. This was considered acceptable since only 

the first and direct (unreflected), pressure wave was considered. 

3.2 Damage Potential 

The damage potential of underwater explosions presented in this analysis was determined 

based on several assumptions and simplifications regarding the nature of the loading, the 

strength of the materials, and the response of the structure. It is generally accepted, and 

often preferred, to simplify the response of dynamic systems, due in part to the intricate 

nature of a rigorous analysis, and in part to the sufficiently high level of accuracy typically 

attained. The development of an equivalent system is an approximate method commonly 

used to model a dynamic system as static with reasonable accuracy (Biggs 1964). The peak 

pressure was assumed to act as a quasi-static load applied normal to the structure, because 

the natural period of structural elements is typically less than the period of the pressure 

wave, which indicates quasi-static loading, and the pressure applied normally will have the 

greatest effect on the structure. The energy flux was conservatively assumed to be fully 

absorbed by the structure. Both load types were assumed to act dynamically for the purpose 

of DIFs, due to the rapid application and decay of the loads. The strength of materials and 

member response were analyzed without load factors but the use of DIFs was assumed to 

be applicable, as the DIFs model the increase in strength, rather than acting as a factor of 

safety. The structures, or elements of the structures, were assumed to act elastically, as 

single degree of freedom systems, with the exception of concrete in compression which 

was considered at ultimate strength. This permitted the demonstration of the general 

concepts of damage potential and required attenuation without becoming overly specific, 

as would be the case with plastic deformations and multiple degree of freedom elements.  

3.2.1 Equivalent Systems 

The equivalent systems presented by Biggs (1964) were briefly investigated in this study. 

Due to the necessary knowledge of a structures physical properties and the general nature 

of the design procedure developed herein, a DLF of 1.0 was used for simplicity. Values for 
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specific structures may be determined using Figure 2.9 and the procedure described by 

Biggs (1964). 

3.2.2 Dynamic Increase Factor 

The dynamic increase factors applied to the materials used in analysis were determined 

using the associated figures and equations presented in UFC 3-340-02 (2008). The original 

figures and equations were modified appropriately to convert from U.S. customary system 

units to metric unit system. Other national codes present different DIFs but were not 

referenced for this analysis (Cormie et al. 2009).    

3.2.2.1 Dynamic Increase Factors for Reinforced Concrete 

The DIFs for reinforced concrete pertain to the material strengths of concrete and 

reinforcing steel separately. The DIF for reinforcing steel were determined in this analysis, 

but the damage potential to concrete only considered the compressive strength of concrete. 

A study by the U.S. Bureau of Reclamation was conducted to compare the static 

compressive strengths and dynamic compressive strengths of concrete in existing dams to 

determine the expected response to earthquakes (Mohorovic et al. 1999). Static and 

dynamic compressive and splitting tensile tests were conducted on concrete cores taken 

from ten dams. The dams tested included: Hoover, Elephant Butte, Folsom, Warm Springs, 

Roosevelt, and five others. This study considered strain rates of 10-6-10-4mm/mm/s to 

imply static loading, and 10-3-10-2mm/mm/s to imply dynamic loading representing 

earthquakes, but also stated strain rates of 102-103 mm/mm/s for blast loading. It was 

determined that the lowest concrete compressive strength of the structures tested was only 

14MPa, though some were more than twice that figure. A static compressive strength, cf ′ , 

of 20MPa was modeled in this analysis to represent the lower range of compressive 

strengths on these existing dams. While the strain rates representing dynamic loading in 

this study were much lower than those representing blast loading, the dynamic compression 

tests produced a dynamic to static strength ratio of 1.07, and the dynamic splitting tensile 

tests produced a ratio of 1.44, indicating a potential significant increase in dynamic strength 

over static strength. Based on the Figure 3.6, the higher strain rates for blast loading should 

produce even larger increases in dynamic strength of concrete. The strain rates for blast 



57 
 

loading presented in Mohorovic et al. (1999) are three to four orders of magnitude larger 

than those recommended in UFC 3-340-02 (2008), implying the recommended strain rates 

are significantly conservative. 

Figure 3.6 shows the design curve for the DIF for the ultimate compressive strength of 

concrete. Based on strain rate, sec//3.0 mmmm=′ε , the DIF for concrete compressive 

strength is approximately 1.25. This factor is applied using the following equation, where

dcf ′  is the concrete dynamic compressive strength. 

cdc fDIFf ′⋅=′       (29) 

Using MPafc 20=′  and the DIF previously determined, the dynamic concrete compressive 

strength is: 

MPaMPafdc 252025.1 =⋅=′      

 

Figure 3.6 Design curve for DIF for ultimate compressive strength of concrete with 17.24 

< f’c < 34.47 MPa, (after UFC 3-340-02 2008) 
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The tensile and compressive strength of reinforcing steel is increased in dynamic loading 

according to Figure 3.7, which shows the DIF design curve for reinforcing steel. For Grade 

60 reinforcement ( MPaksif y 41460 == ) and sec//3.0 mmmm=′ε , 25.1≈DIF . Thus the 

dynamic yield strength can be determined given the following equation, 

ydy fDIFf ⋅=       (30) 

MPaMPafdy 51841425.1 =⋅=      

 

Figure 3.7 Design curves for DIFs for yield and ultimate stresses of ASTM A615 Grade 

40, Grade 60, and Grade 75 reinforcing steel (After UFC 3-340-02 2008) 
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The DIF design curves for ASTM A36 and ASTM A514 structural steels are shown in 

Figure 3.8. The strain rates used by UFC 3-340-02 (2008) for near design range is

sec//3.0 mmmm=′ε  for bending, but is reduced to sec//05.0 mmmm=′ε  for tension and 

compression members. The equation for the dynamic yield stress of structural steel is 
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1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0.0001 0.001 0.01 0.1 1 10 100

D
yn

am
ic

 In
cr

ea
se

 F
ac

to
r

Strain Rate (mm/mm/s)

Grade 40 Yield
Grade 60 Yield
Grade 75 Yield
Grade 40 Ultimate
Grade 60 Ultimate
Grade 75 Ultimate



59 
 

than specified yield stress generally found in steels with a specified minimum yield stress 

of 345MPa (50ksi) or less (AISC 2010). The following equation is for the dynamic yield 

stress of structural steel in the elastic range. 

ydy faDIFf ⋅⋅=      (31) 

where DIF is determined from Figure 3.8, a is the average strength increase factor ( 1.1=a  

for MPaf y 345≤ , otherwise 0.1=a ), and yf  is the static yield stress (after UFC 3-340-02 

2008). Note: for A36 Steel, MPaf y 248= , and for A514 Steel, MPaf y 621= . 

 

Figure 3.8 DIFs for yield stresses of ASTM A36 and A514 steels (After UFC 3-340-02 

2008) 

Using sec//3.0 mmmm=′ε  for bending, and ASTM A36 steel, the 37.1≈DIF and 1.1=a

(since MPaMPaf y 345248 ≤= ). The resulting dynamic yield strength is 

MPaMPaf bdy 3742481.137.1, =⋅⋅= . 

For ASTM A36 steel tension and compression members with sec//05.0 mmmm=′ε ,

25.1≈DIF , and the dynamic strength is MPaMPaf tcdy 3412481.125.1, =⋅⋅= .   
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Table 3.2 contains a summary of the DIFs and dynamic strengths the materials used in this 

analysis. The approximately equal DIF values for concrete, reinforcing steel, and structural 

steel in tension and compression is merely a coincidence based on the nominal design 

strengths selected.  

Table 3.2 Summary of Dynamic Compressive and Yield Stresses for Analysis 

Reinforced Concrete 
MPafc 20=′  25.1≈DIF  MPafdc 25=′  
MPaf y 414=  25.1≈DIF  MPafdy 518=  

ASTM A36 Steel 

MPaf y 248=  
37.1≈DIF , 1.1=a  MPaf bdy 374, =  
25.1≈DIF , 1.1=a  MPaf tcdy 341, =  

 

3.2.3 Damage Modes 

3.2.3.1 Peak Pressure 
In this analysis, using the simplified quasi-static loading scenario, it was assumed that the 

maximum allowable peak pressure was equal to either the dynamic compressive strength 

of concrete determined in Section 3.2.1.1, or to the maximum load permitted by the 

following equations for structural steel. The maximum allowable peak pressure was 

considered the highest pressure that will not cause damage.  

Since the charge weight and the material strength are properties that cannot be controlled, 

the minimum radial distance was determined for concrete and structural steel in order to 

provide values that can aid in the protection of structures. For peak pressure, Equation 32 

provides the minimum radial distance by setting mP  equal to dcf ′  for concrete, and mP  as a 

function of bdyf ,  via Equation 33 for steel. 

)(3/1
/1

mW
AP

PR
B

z

m








=      (32) 

For concrete the minimum radial distance was calculated for various charge weights and 

depths. The results were plotted in Figure 3.9 to graphically demonstrate the effect of 

weight and depth on the minimum radial distance. The maximum depth of explosion of the 
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data used to produce Equation 26 was 12.19m, however liberty was taken to increase the 

maximum depth used in Figure 3.9 to 30m to better show the potential effect of depth on 

peak pressures.  For Figure 3.9 (A), the unscaled charge weight was used to give an easily 

understood representation. Figure 3.9 (B) was provided for scaled charge weight which is 

more convenient for data acquisition. The plots indicate that there was minimal increase in 

minimum radial distance with depth for small charges, with increasing disparity as charge 

weight increased. However with the range of depths given in the figure, the total difference 

in minimum radial distance for a 1000kg charge was approximately 3m, or a factor of 

1.167, which seems minimal for the size of blast produced by that charge. 

Also, it was apparent that the proportion with which the minimum radial distance increased 

due to increasing depth was inversely related, and thus the effect of increasing charge depth 

becomes negligible at some depth. However, as previously stated, Equation 26 was 

developed for data at a maximum depth of approximately 12m, and further study should 

be completed for depths beyond this range. 
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Figure 3.9 (A) Minimum Radial standoff Distance versus Charge Weight for Various 

Depths, (B) Minimum Scaled Radial Distance versus Charge Weight for Various Depths. 
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For structural steel, Equation 33 was developed based on a fixed-fixed rectangular member 

using elastic theory to determine the effect of peak pressure in bending, 

2

2
,

,

2
l

hf
P bdy

allm =      (33) 

where, bdyf , is the dynamic yield stress in bending, h is the member depth, and l  is the length 

of the member. Equation 33 assumes the member or structure acts as a single degree of 

freedom system and only considers the allowable pressure for bending. The derivation of 

Equation 33 is shown in Appendix A. Various charge weights and aspect ratios (h2/l2) were 

used with Equation 33 to calculate respective allowable peak pressures. The resulting peak 

pressures were then used in Equation 32 to determine the minimum radial distances, which 

were subsequently plotted as seen in Figure 3.10. Figure 3.10 (A) depicts the minimum 

radial distance versus unscaled charge weight for easier comprehension, while scaled 

charge weights were used in Figure 3.10 (B) to aid data acquisition. From Figure 3.10, it 

is evident that the thinner and longer a member is, the greater the radial distance must be 

to prevent damage. An increase of charge weight, and thus peak pressure, shows a more 

dramatic increase of the minimum radial distance for smaller aspect ratios. For example, 

with a 200kg charge, the minimum radial distance for a member with 05.0/ 22 =lh  is 

approximately 10m, however for a member with 003.0/ 22 =lh  the minimum radial 

distance is about 170m. However, for the former member, the total range of minimum 

radial distances is about 2-15m. This indicates that member stiffness, which is a function 

of the aspect ratio, versus peak pressure, has greater influence on the potential to sustain 

damage.  

Figure 3.11 depicts the results of a sensitivity analysis for Equation 33. In (A) the aspect 

ratio was held constant as 000225.0/ 22 =lh , and in (B) the dynamic yield strength was 

held constant as MPaf bdy 374, = . The purpose of this analysis was to compare the 

sensitivity of Equation 31 to each variable, considering 22 / lh  as a single variable. From 

the figure it is apparent that allmP ,  is more sensitive to 22 / lh  as the rate of change is more 

significant in Figure 3.11(B). Furthmore, the range of bdyf , for ASTM A36 steel is roughly 
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250-400MPa so to increase allmP ,  without changing the aspect ratio would require choosing 

a higher strength steel, for less impact than increasing the aspect ratio.  

 

Figure 3.10 (A) Minimum Radial standoff Distances versus Charge Weight for Various 

Values of h2/l2, (B) Minimum Radial standoff Distances versus Scaled Charge Weight for 

Various Values of h2/l2. 
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Figure 3.11 Sensitivity Analysis for Equation 33. (A) h2/l2 made constant; (B) fdy,b made 

constant. 
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Figure 3.11 also demonstrates the effect of the DLF on the allowable peak pressure. A DLF 

value of 1.0 was used for this study, but the use of DLF = 2.0 would dramatically reduce 

the allowable peak pressure. This would be the case for structures with short natural 

periods. 

3.2.3.2 Energy Flux 
In order to demonstrate the damage potential of energy flux in this analysis, the analysis 

considers only elastic deformation acceptable. The following equation was derived for an 

element with a rectangular cross-section, fixed-fixed end conditions, a single degree of 

freedom, a uniformly distributed load, responding through bending. The derivation is 

shown in Appendix A, and can be modified for other member cross-sections or end 

conditions. 

'5
2

2

2
,

lEbh
lIf

U bdy
all ⋅

⋅⋅
=      (34) 

where SEU  is the strain energy required to develop within the member to counteract the 

kinetic energy from the pressure wave, bdyf , is the dynamic yield stress in bending, I is the 

moment of inertia of the member, b is the member height or width, h is the member depth,  

E is the modulus of elasticity, l  is the member length, and 'l  is unit length (1m). The 

moment of inertia for a rectangular member ( 12/3bhI = ) was used in Equation 32 to 

provide an example of damage potential, and to create Equation 35, 

'30

2
,

lE
lhf

UU bdy
allSE ⋅

⋅
==      (35) 

Setting allSE UU =  implies that all energy flux is converted into elastic strain energy within 

the structure. This approximation further implies that the strain energy is equally 

distributed, such that there are no localized plastic deformations, and it implies that no 

energy flux is reflected by the structure. Equation 35 was substituted into Equation 24 to 

determine the minimum radial distance for various charge weights and member properties. 
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which is rewritten as, 
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Equation 37 was used to plot minimum radial distances for ASTM A36 steel for various 

member depths, and for GPaE 200= , see Figure 3.12. Unscaled charge weight was used 

for Figure 3.12(A) to provide easy comprehension, and scaled charge weight was used for 

Figure 3.12(B) for ready data acquisition. This figure indicated that minimum radial 

distance increased with increasing charge weight at a decreasing rate which eventually 

became approximately linear. The charge weight at which linearization occurred was 

greater for smaller member depths. Furthermore, the minimum radial distance increased 

exponentially as member depth decreased. For member depths of 0.25-1.00m the depth 

increments were equal but the minimum radial distance was disproportionately larger the 

smaller the depth. This indicated that member stiffness was also the most significant 

property for damage resistance to energy flux. 

Figure 3.13 depicts a sensitivity analysis for Equation 35. For the two plots presented, the 

member thickness was held constant as mh 05.0=  in (A), and the dynamic yield stress was 

held constant as MPaf bdy 374, =  in (B). Figure 3.13(A) shows the exponential effect of 

bdyf , on SEU . However, since MPaf bdy 374, =  is in the upper extreme of bdyf , , a higher 

strength steel would be required to significantly increase SEU  without changing the 

member thickness. A linear increase in SEU  for increasing h was seen in Figure 3.13(B). 

By inspection, increasing h has more influence on SEU  than bdyf ,  for lower strength steels, 

while increasing bdyf ,  has more influence than h for higher strength steels. The significance 

of determining that adjustment in bdyf ,  may be more effective than increase thickness, is 

that it may prompt a more precise determination of DIFs, and specifically the strain-rates 

used to determine DIFs. The recommended strain rates presented in UFC 3-340-02 (2008) 
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were noted to be conservative, thus calculating more exact strain rates for the member in 

question, may increase the DIF, and subsequently increase bdyf , and SEU . 

 

Figure 3.12 (A) Minimum Radial Distance versus Charge Weight for Various Member 

Depths, (B) Minimum Radial Distance versus Scaled Charge Weight for Various Member 

Depths. 
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Figure 3.13 Sensitivity Analysis for Equation 35. (A) h made constant; (B) fdy,b made 

constant. 
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3.3 Bubble Screen Performance 

The data from USACE (1961) was analyzed to determine the effect of airflow from the 

bubble curtain and gauge depth on pressure wave pressure and energy flux reduction. One 

of the primary benefits of this study was that it provided a large number of data points from 

which an analysis could be performed. To simplify the analysis, only the data with a radial 

standoff distance of 1.83m was utilized. The concession of limiting distance was deemed 

acceptable because the primary interest of this analysis was the attenuation of peak pressure 

and energy flux regardless of radial distance to the screen. From these data, the points 

deemed most appropriate to assess the protection provided to structures were the points 

immediately behind the bubble screen, as it was assumed that bubble screens will generally 

be located adjacent to the structure being protected. The average pressure and scaled energy 

flux measurements from these gauges (at each depth) were normalized over the pressure 

and scaled energy flux measurements for the same gauges in the free-water condition, to 

determine the attenuation ratio, see Equation 36. Additionally, the pressure wave impulse 

measurements from this study agreed with data from Rude and Lee (2007) and Hempen 

(1993b), which demonstrated bubble screens may not significantly decrease, and 

sometimes increase, pressure wave impulse. Therefore, impulse was not included in the 

analysis.  

fwm

rm

P
P

P
,

,)( =α , 
fw

r

U
UU =)(α     (38) 

whereα is attenuation, subscripts r and fw represent the reduced and free-water peak 

pressures or scaled energy flux, respectively. The attenuation was plotted versus the 

airflow, fA , for each gauge depth, refer to Figure 3.14. 

The attenuation equations presented in USACE (1961), and previously in Section 2.4.4.1, 

were simplified for the conditions present in the study and multiplied by a coefficient, iβ , 

to account for gauge depth.  
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where, v is the kinematic viscosity of water in m2/s, the standoff distance between the 

charge and front of the bubble screen was made constant at 1.83m, and air content and 

screen thickness were combined to form the airflow term, Af. 

The iβ  coefficients were optimized through an iterative process to determine the 

appropriate value at each gauge depth to best match the data presented in USACE (1961), 

defined by highest respective R2 value, see Figure 3.14(A) for peak pressure and Figure 

3.14(B) for energy flux. Table 3.3 displays the gage depths, the depth ratios based on the 

charge depth of 2.74m, the respective iβ  coefficients, and the R2 values for Equation 39 

and Equation 40 compared to the data, as seen in Figure 3.14. 

Table 3.3 Depth Ratios used in Corrected Attenuation Equations with R2 Values 

Gauge 
Depth, zg 

(m) 

Depth 
Ratio, zg/z 

R2 
(Equation 39) 

R2 
(Equation 40) Pβ  Uβ  

0.076m 0.028 0.947 0.942 0.13 0.040 
1.37m 0.5 1.000 0.997 0.54 0.31 
2.74m 1.0 0.922 0.980 0.99 1.16 

 

In the plots within Figure 3.14, the equation matches the data well until it reaches an airflow 

of 0.00039m3/s/m, which acts as the limit of minimum airflow for attenuation. As the limit 

is approached, the attenuation ratio represented by the data rapidly approaches unity, or 

negligible attenuation, especially for peak pressure. Therefore, for airflows less than this 

limit, attenuation is assumed to be negligible. In Figure 3.14(B), attenuation ratios at this 

limit for the gauge depth of 0.076m is still relatively high, however, the equation fails to 

represent the data at the limit, confirming this limit for the equations.  
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Figure 3.14 (A) Peak Pressure Attenuation versus Airflow for Various Gauge Depths; (B) 

Energy Flux Attenuation versus Airflow for Various Gauge Depths. 
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The iβ  coefficients for each gauge depth, were determined for peak pressure and energy 

flux, see Table 3.3. These values were plotted against the normalized gauge depth, zzg / , 

to develop general equations with respect to depth, see Figure 3.15. 

 

Figure 3.15 βi Coefficients for Attenuation Relationships. 

From Figure 3.15, a linear function was developed for Pβ , see Equation 41, and an 

exponential function was developed for Uβ , see Equation 42. The results of these equations 
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The data in Figure 3.14 indicated that there was greater attenuation at the shallower depths. 

However, due to the geometry of the test, the pressure wave propagated at an angle from 

perpendicular, which increased the total distance the pressure wave travelled through the 
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bubble screen. Thus, while part of the increase in attenuation was likely due to increasing 

bubble radius, the increased distance through the bubble screen effectively increased the 

airflow as well.  

3.3.1 Air Content vs. Attenuation  

In the study by Domenico (1982a), the acoustic velocity was determined to be a factor in 

attenuation. Furthermore, acoustic velocity is a function of the compressibility and density 

of the water-air mixture. The relatively small volume of air in a bubble screen minimally 

reduces the density of the mixture, though compressibility changes significantly. 

In the study performed by the USACE (1961), the performance of bubble screens with 

varying air contents and thicknesses, was investigated to determine the effects of air 

content and screen thickness. Furthermore, the proportions of each were planned such that 

the air flow (the product of air content and screen thickness) was approximately equal for 

different screen thickness. Table 2.6 previously presented in Chapter 2, lists the different 

screen thickness, the air content supplied, and the air flow produced.  

The results of the USACE (1961) study determined that screen thickness is significant to 

the rate of attenuation when the air content (airflow per unit area, m3/sec/m2) was equal for 

each screen thickness. However, it also determined that when the airflow per unit length 

(m3/sec/m) of bubble screen was made equal regardless of screen thickness, the variation 

in the rate of attenuation was minimal. Since airflow is primarily a factor of the compressor 

at the surface, there is not a substantial benefit to increasing the screen thickness.  

3.3.2 Effect of Depth on Bubble Screen Performance 

One of the primary in-situ factors related to the performance of a bubble screen is the depth 

of water at the location the bubble screen was contacted by the pressure wave. 

Geometrically speaking, the greater the difference between the charge depth and depth of 

pressure wave contact, or target depth, the greater the distance the pressure wave will 

travel, both through the water and then through the bubble screen. Furthermore, as the air 

bubbles rise, the hydrostatic pressure decreases causing the volume of the bubbles to 

increase. As discussed previously in Section 2.4.2.1, resonant frequency of the bubble, 

which is a function of the bubble radius, may significantly affect the attenuating properties 
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of the bubble screen. It was concluded that bubbles with radius, mmr 3≤ ,  are most likely 

to provide the expected pressure wave attenuation. However, because bubbles increase in 

size as they ascend to the surface, it is necessary to ensure the radius does not increase 

beyond the maximum intended radius during the ascent.  

The increase in bubble radius and fractional air content can be determined through the 

Ideal Gas Law, shown below, 

2211 VPVP ⋅=⋅       (43)  
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=       (44) 
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where P is hydrostatic pressure, V is air (or bubble) volume, oz is the depth equivalent to 

the piezometric head of ambient pressure, and subscripts 1 and 2 denote the depths, 

pressures, and  bubble volumes at 1) the bubble screen manifold depth and 2) the depth in 

question respectively. 

The change in bubble screen airflow due to change in bubble radius can be determined with 

Equation 48, 
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Combining and reducing Equation 46 and Equation 47 produces an equation to determine 

the change in bubble radius with depth, 
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Using Equation 48 and Equation 50, and using the bubble screen data presented in USACE 

(1961) as an example, the approximate increase in airflow and bubble radius can be 

determined. The average bubble radius was approximately 3mm, the depth of the manifold 

was 5.49m, the assumed oz is 10.34m. Assuming the bubbles all maintain terminal velocity 

at these points (Ditmars and Cederwall 1974), and for an initial airflow of 0.00975m3/s/m, 

The approximate change in airflow (similar to fractional air content) and bubble radius at 

mid-depth is as follows: 

21.1
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Table 3.4 provides a summary of the predicted increases in airflow and bubble radius for 

the three gauge depths used in USACE (1961) and the manifold depth. 

Table 3.4 Summary of Bubble Screen Airflow and Bubble Radius with Depth  

Depth 
(m) 1

2

f

f

A
A

 2fA  

(m3/s/m) 1

2

r
r  2r  

(mm) 
5.49 1.00 0.03 1.00 3.00 

2.74 1.21 0.0363 1.07 3.21 

1.37 1.35 0.0405 1.11 3.33 

0.076 1.52 0.0456 1.15 3.45 

 

While the bubble radius was determined to increase above 3mm at shallower depths, Figure 

3.14 indicates the attenuation rates increase at shallower depths. This is explained as a 

function of increased airflow due to increasing bubble radius, and because the pressure 
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waves must travel further through the bubble screen to reach the shallower gauges, 

effectively increasing the airflow at those locations. 

In the USACE (1961) study, it was determined that the bubble screen profile changed with 

depth. By approximate measurements taken during the experiment, it was determined that 

that the width of the bubble screen initially decreased above the manifold, and then 

increased as it approached the surface, see Figure 3.16.  

 

Figure 3.16 Bubble Screen Profile for a 0.914m manifold (USACE 1961) 

Therefore, the pressure wave not only travelled through the bubble screen at an angle to 

reach the shallower gauges, it also travelled through a thicker screen (higher airflow) 

compared to the perpendicular measurement. Table 3.5 provides an estimate of the bubble 

screen thickness at each gauge depth and the effective bubble screen thickness based on 

the incident angle, for a standoff distance of 1.83m from the front of the bubble screen. As 
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seen in Table 3.5 the effective bubble screen thickness was dramatically greater for the 

gauge near the surface which explains the significantly better attenuation ratio shown in 

Figure 14 for that depth ratio. Therefore, the depth factor included in the iβ  coefficients 

should be only be used when the expected geometry of the charge-bubble screen-structure 

scenario is significantly similar to the geometry used in USACE (1961). If the geometry is 

different, the depth ratio 0.1/ =zzg may be used in Equation 41 and Equation 42. 

Table 3.5 Effective Bubble Screen Thickness due to Incident Angle 

Gauge 
Depth 
(m) 

Gauge Radial Distance 
from Charge 

(m) 

Bubble Screen 
Thickness1 

(m) 

Effective Bubble 
Screen Thickness2 

(m) 
2.74 2.82 0.76 0.76 
1.37 3.14 0.91 1.01 
0.076 3.88 1.4 3.35 

1 Estimated bubble screen thickness based on Figure 3.16 
2 Bubble screen thickness accounting for the incident angle  

 

The predicted attenuation rate of bubble screens was investigated using data from USACE 

(1961). Equations developed in that study were modified to include a coefficient, iβ , that 

is function of target depth. However, through further analysis, it was determined that the 

depth ratio included in the iβ  coefficient is only accurate for settings with similar geometry 

to the experimental setting used in USACE (1961). Therefore, for settings with geometries 

which are different that the experimental geometry, the depth ratio can be set to unity, 

which allows iβ  to be applied conservatively. Additionally, the effect of bubble radius and 

airflow increase with bubble ascent was investigated to determine the extent these 

parameters might change. The bubble radius increase from 3mm to 3.45mm over 

approximately 5.4m, which did not appear significant, but it demonstrated the need to 

ensure bubble radius remains acceptably small for deeper bubble screen systems. The 

bubble screen airflow was shown to increase somewhat significantly at shallower depths, 

but the effect was indeterminate due to the dramatic effective bubble screen thickness that 

was also present at shallower depths. Therefore effect of increased airflow at shallower 

depths could be confidently included in the attenuation equations. As a result of the bubble 
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screen performance analysis, the improved attenuation equations were determined to be 

acceptable for the following design procedures, but with a caveat concerning the use of the 

depth ratios. 

3.3.3 Verification 

In an effort to verify the accuracy of Equation 39, the measured attenuation data from Table 

2.5 was used with Equation 39 or Figure 3.14(A) to estimate the required airflow. The 

results were compared with the actual airflow used in each respective study. The relevant 

data from Table 2.5, additional parameters, and the results are presented in Table 3.6. 

Table 3.6 Summary of Verification Data and Results 

Source Explosive 
Type 

Airflow Peak Pressure 
Attenuation 

Estimated2 
Af (P) 

( )msm //3  ( )fwmrm PP ,, /  ( )msm //3  

Rude and Lee (2007) C-4 0.0167 0.41 0.00667 
Hempen (1993b) Tovex 700 0.01361 0.31 0.0103 

USACE (1961) TNT 
0.00974 0.26 0.0132 
0.00122 0.81 0.00109 
0.000389 0.92 0.000403 

Inputs: 1/ =zzg  => 988.0=Pβ  
1 Estimated based on compressor capacity 
2 Estimated using Equation 39 or Figure 3.14(A) 

 

The estimated airflow required to attain the attenuation rates observed in the study were 

plotted versus the actual airflow used in the studies, see Figure 3.17. It was observed that 

the predicted airflow for the three USACE (1961) cases was approximately equal to the 

actual or conservative. This was expected since Equation 39 was developed from USACE 

(1961) data. Figure 3.17 also shows that Equation 39 underestimates the airflow for Rude 

and Lee (2007) and Hempen (1993). The cause for this discrepancy is unknown, but several 

possible reasons exist. First, these two studies used explosives other than TNT, which 

should not affect the attenuation of the pressure waves, but may be a source of variance. 

Secondly, both studies detonated the charges at or near the bottom of the water, which may 
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have allowed a bottom-transmitted wave to bypass the bubble screen and effect the 

attenuated peak pressure measurement. Thirdly, all three studies used different bubble 

screen manifolds which may demonstrate the effectiveness of one design over another. 

 

Figure 3.17 Actual versus Predicted Airflow per Equation 39 

 

Copyright © Paul Raymond Smith 2016 
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4 Design Procedures 

The primary purpose of this study was to develop a comprehensive procedure to design a 

bubble screen system that will adequately reduce underwater explosion peak pressure and 

energy flux for structures. The earlier sections discussing underwater explosion 

characteristics and bubble screen attenuation rates were all towards this ultimate goal. 

There are two design procedures presented in this section. The first approaches the design 

of the bubble screen system as the desired outcome, based on assumptions of charge size, 

location, and the structural material properties. The second approach is based on known 

bubble screen design and structural material properties, which are then used to determine 

the minimum allowable radial standoff distance and/or maximum charge size. Following 

these approaches for bubble screen implementation, additional recommendations 

concerning construction and operation are presented. Finally, examples of these design 

procedures are presented. 

Due to the intricacies of individual structures and the limited data available for the 

development of the figures and equations used in these procedures, the range of 

applicability is somewhat limited. The conditions for which the respective design aids are 

valid are presented with each step.  

4.1 Design Procedure #1 

Purpose: to determine the required airflow of a bubble screen. 

Step 1: Define the following known and/or assumed parameters: charge weight, radial 

standoff distance, charge depth, target depth (point of interest), material strength, and 

controlling member response (bending, shear, etc.). 

These parameters are necessary for the following steps, however, in the event some of them 

are unknown for the site, it may be acceptable to assume values. For example, if the target 

depth is unknown, assuming it is the same depth as the charge produces the lowest 

attenuation rate, and thus is conservative, see Figure 3.14. For charge size and radial 

standoff distance which may be difficult to predict, a range of each may be used to 
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determine the respective range of bubble screen airflows required for the resulting 

combinations.  

Step 2: Determine the predicted peak pressure, fwmP , , and energy flux density, fwU , for the 

free-water scenario. 

The maximum peak pressure can be predicted using Equation 26, and the maximum energy 

flux density can be predicted using Equation 24. Since these are empirical equations, their 

validity is limited to the conditions present in the experimental studies. The charge depth 

should be between 2.74m and 12.19m. The scaled radial distance should be between 

0.79m/kg1/3 and 50m/kg1/3, with a minimum radial distance greater than the gas bubble 

radius. The explosive type must be TNT.  

Since it is reasonable to expect other explosives might be used, the use of TNT 

equivalencies discussed in Section 2.2.2.1 may be used to estimate the effects of other high 

explosives, but the accuracy within Equation 24 and Equation 26 is unknown. Peak 

pressure and energy flux determined using equations not presented in this study may be 

used here, but the valid conditions should be determined. 

Step 3: Determine DIF and a . 

The DIF value for the compressive strength of concrete can be determined using Figure 

3.6. This figure is valid for f’c values between 17.34MPa and 34.47 MPa. Also, UFC 3-

340-02 (2008), which first presented Figure 3.6 recommends using a strain rate of 

0.3mm/mm/s, though other strain rates may be used. The DIF values for some higher 

compressive strengths beyond the range mentioned above are available in UFC 3-340-02 

(2008).  

The DIF values for reinforcing steel are presented in Figure 3.7 and the same strain rate of 

0.3mm/mm/s is recommended. Three common reinforcing steel grades are presented, both 

for yield strength and ultimate strength. The appropriate selection should be made 

depending on subsequent design calculations.  

Finally, the DIF values for structural steel are presented in Figure 3.8. The two steels 

presented are ASTM A36 and ASTM A514. For the structural steel DIF values, UFC 3-

340-02 (2008) recommends different strain rates based on the response type (bending, 
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shear, etc.). For bending the recommended strain rate remains 0.3mm/mm/s, but for tension 

and compression members, it is reduced to 0.05mm/mm/s. Additionally, for structural 

steels with MPaf y 345≤ , an average strength increase factor, 1.1=a , may be applied for 

a further increase in design strength; for other values of yf , 0.1=a . 

The origination of the strain rates presented above was discussed at greater length in 

Section 2.3.1. While precise strain rates may be calculated following equations presented 

in UFC 3-340-02 (2008), a strain rate of 0.3mm/mm/s is recommended for near-range 

design, as presented above, and a strain rate of 0.1mm/mm/s is recommended for far-range 

design. 

Step 4: Determine the dynamic design strength 

The dynamic material strength is determined using the DIF values and equations applicable 

for each material type. Equation 29 is used to calculated the dynamic compressive strength 

of concrete. Equation 30 is used to calculated the dynamic yield strength of the reinforcing 

steel ( uf  can be substituted for yf  in Equation 30 to calculate dynamic ultimate strength). 

Equation 31 is used to calculate the dynamic yield strength of structural steel. An 

alternative to using the dynamic design strengths is to use the nominal design strengths and 

have a conservative design. 

Step 5: Determine the DLF. 

The DLF can be determined using Figure 2.9 when the pressure wave duration (period) 

and the natural period of the structure are known. Biggs (1964) describes the process of 

determining the natural period at length. 

Step 6: Determine the allowable peak pressure, allmP , , and energy flux, allU .  

allmP ,  is determined by either setting the dynamic strength equal to allmP , , or by determining 

the peak pressure that causes the dynamic strength to be reached in the member through 

static loading. It was assumed that setting allmP ,  equal to the design strength is only 

applicable to concrete which is more likely than steel to sustain surface damage. Equation 

33 was developed to determine allmP ,  for a rectangular structural steel member with fixed-
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fixed end conditions. The intent of Equation 33 was to model a member resembling a plate, 

and to set an example for the development of equations for other members. Thus allmP ,  for 

structural steel members is essentially equal to the maximum allowable uniformly 

distributed load. Finally, value determined for allmP ,  is divided by the DLF. 

allU  is determined by calculating the maximum strain energy, SEU , the member or 

structure can create. In this study, it was assumed that all the strain energy was contained 

in elastic strain, meaning there were no permanent deformations. Equation 34 was 

developed to model a single-degree-of-freedom structural steel member, in elastic strain, 

with fixed-fixed end conditions. Equation 35 was developed from Equation 34 for a 

rectangular member, such as a plate. Similar Equation 33 for peak pressure, these equations 

are merely intended to serve as examples for the development of member specific 

equations, though they are applicable within the constraints mentioned above. 

Additionally, a thorough analysis including determining allowable elasto-plastic strain 

energy may be used to increase allU . 

Step 7: Determine the attenuation ratio required to adequately reduce the free-water 

pressure wave characteristics to the allowable levels. 

Use Equation 38 to determine the required attenuation ratios for peak pressure and energy 

flux.    

Step 8: Determine the minimum bubble screen airflow to attain the required attenuation 

ratios. 

Use Equation 41 and Equation 42 to determine the bubble screen airflow necessary to 

attenuate the free-water pressure wave to the allowable levels for peak pressure and energy 

flux, respectively. Both equations were developed based on data and equations presented 

by USACE (1961), and thus the same constraints apply, which include: R/W1/3 < 3, the 

ratio of the length of the screen versus the thickness must be greater than 12, and the 

quantity, ( ) ( )510/ ⋅⋅ vRAf  must be between, 0.0305m and 0.305m. Additionally, the iβ

coefficients is constrained to depths between 0.076m and 2.74m deep. For instances in 

which zzg ≠ , the ratio zzg / should be approximately equal to those presented in Figure 
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3.14. Setting 1/ =zzg  provides the most conservative airflow requirement, but the other 

ratios are valid when the scenario resembles the setting in USACE (1961). 

 

 

Figure 4.1 Flowchart for Design Procedure #1 
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4.2 Design Procedure #2 

Step 1: Define the nominal material strength and the member response (bending, shear, 

etc.) 

The material strength may be known based on the design specifications, but for concrete 

in particular, current testing will provide more accurate strengths and damage potential. 

Similar to Design Procedure #1, multiple member responses may need to be considered 

individually for a specific structural element, in which case this procedure may be repeated, 

simply modifying the member response and affected parameters in later steps. 

Step 2: Determine DIF and a . 

The DIF and average increase factor are determined using the figures and equations 

presented in UFC 3-340-02 (2008), some of which were presented previously in this study. 

Specifically, Figure 3.6 may be used to determine the DIF for the compressive strength of 

concrete with f’c values between 17.34MPa and 34.47MPa; Figure 3.7 may be referenced 

for the DIF values for reinforcing steel; and Figure 3.8 may be used for the DIF values for 

structural steel. For structural steels with MPaf y 345≤ , an average strength increase 

factor, 1.1=a , may be applied for a further increase in design strength; for other values of 

yf , 0.1=a . 

Additional commentary on this step is made in Step 3 of Design Procedure #1. 

Step 3: Determine the dynamic strength of the materials 

The dynamic material strength is determined using the DIF values and equations applicable 

for each material type. Equation 29 is used to calculated the dynamic compressive strength 

of concrete. Equation 30 is used to calculated the dynamic yield strength of the reinforcing 

steel ( uf  can be substituted for yf  in Equation 30 to calculate dynamic ultimate strength). 

Equation 31 is used to calculate the dynamic yield strength of structural steel. An 

alternative to using the dynamic design strengths is to use the nominal design strengths and 

have a conservative design. 
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Step 4: Determine the DLF. 

The DLF can be determined using Figure 2.9 when the pressure wave duration (period) 

and the natural period of the structure are known. Biggs (1964) describes the process of 

determining the natural period at length. 

Step 5: Determine the allowable peak pressure, allmP , , and energy flux, allU .  

allmP ,  is determined by either setting the dynamic strength equal to allmP , , or by determining 

the peak pressure that causes the dynamic strength to be reached in the member through 

static loading. It was assumed that setting allmP ,  equal to the design strength is only 

applicable to concrete which is more likely than steel to sustain surface damage. Equation 

33 was developed to determine allmP ,  for a rectangular structural steel member with fixed-

fixed end conditions. The intent of Equation 33 was to model a member resembling a plate, 

and to set an example for the development of equations for other members. Thus allmP ,  for 

structural steel members is essentially equal to the maximum allowable uniformly 

distributed load. Finally, divide the value for allmP ,  by the DLF. 

allU  is determined by calculating the maximum strain energy, SEU , the member or 

structure can create. In this study, it was assumed that all the strain energy was contained 

in elastic strain, meaning there were no permanent deformations. Equation 33 was 

developed to model a single-degree-of-freedom structural steel member, in elastic strain, 

with fixed-fixed end conditions. Equation 35 was developed from Equation 33 for a 

rectangular member, such as a plate. Similar Equation 33 for peak pressure, these equations 

are merely intended to serve as examples for the development of member specific 

equations, though they are applicable within the constraints mentioned above. 

Additionally, a thorough analysis including determining allowable elasto-plastic strain 

energy may be used to increase allU . 

Step 5: Define the bubble screen airflow, charge depth, target depth, and the minimum 

standoff distance or the maximum charge weight. 
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For this design procedure the bubble screen airflow, Af, should be known, or may be 

determined through in-place testing. The predicted charge depth and target depth may be 

generally known or assumed, setting the target depth equal to the charge depth yield the 

most conservative attenuation estimation. Either the minimum standoff distance or the 

maximum charge weight should be defined as well, the parameter not defined will be 

determined in subsequent steps. Multiple iterations varying the standoff distance or charge 

weight may be desired to compare the relationship of these two parameters for the specific 

conditions present at the site.  

Step 6: Determine Attenuation Ratios fwmrm PPP ,, /)( =α  and fwall UUU /)( =α . 

Use Figure 3.14(A) or Equation 39 to determine fwmrm PPP ,, /)( =α . Use Figure 3.14(B) or 

Equation 40 to determine fwall UUU /)( =α . If the geometry of the charge location to target 

(point of interest) is significantly different than the setting described previously in Section 

2.4.4.1, use a depth ratio 1/ =zzg  to provide a conservative estimate. 

Step 7: Determine fwmP ,  and fwU . 

Use Equation 38 (a and b) to solve for fwmP ,  and fwU , respectively. At this point the 

reduced peak pressure and energy flux are made equal to the allowable peak pressure and 

energy flux such that, 

fwm

allm

fwm

rm

P
P

P
P

P
,

,

,

,)( ==α   and  
fw

all

fw

r

U
U

U
UU ==)(α  

Step 8: Determine minimum standoff distance, R , or maximum charge weight, W . 

Implementing the previously defined and determine parameters, use Equation 32 to solve 

for either R or W, as appropriate. 
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Figure 4.2 Flowchart for Design Procedure #2 

4.3 Design Examples 
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The plate is 2m long, 30mm thick, and has fixed-fixed end conditions. The average water 

temperature is 20ºC. The perceived threat is assumed to be a single diver. 

Step 1: Define known and/or assumed parameters. 

Charge Weight, kgW 50=  

Charge Depth, mz 10=  

Target Depth, mzg 10=  

Radial Standoff Distance, mR 30=  

Material Strength, MPaf y 248=  

Material Response = Bending 

Step 2: Determine the predicted peak pressure, fwmP , , and energy flux density, fwU , for 

the free-water scenario. 

Peak Pressure: 

B

z

m

W
RA

P
P







= 3/1        (26) 

( ) 927.01.4510 −= zA        (27) 

( ) 6.533101.4510 927.0 == −mA  

1.1−=B         (28) 

Equation 24 rewritten: 

z
W

RAP w

B

m γ⋅





= 3/1         

( )
MPam

m
N

kg
mPm 521.0109810

50
306.533 3

1.1

3/1 =





 ⋅⋅








=

−
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Energy Flux: 

 
08.2

3/1
3/13.94

−







=
W

RWU       (24) 

( )
( )

mkPa
kg

mkgU −=







=

−

43.4
50

30503.94
08.2

3/1
3/1  

Step 3: Determine DIF and average increase factor, a . 

Average increase factor: 

  MPaMPaf y 345248 ≤=  

1.1=a  

 DIF: 

  Determine strain rate for bending and assume near-range design, 

smmmm //3.0'=ε , per UFC 3-340-02 (2008) 

  Use Figure 4.3 (see Figure 3.8) to determine DIF, 

37.1=DIF  

 

Figure 4.3 Dynamic Increase Factors for Yield Stresses of ASTM A36 and A514 Steels 

(after UFC 3-340-02 2008) 
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Step 4: Determine the dynamic design strength 

ydy faDIFf ⋅⋅=        (31) 

MPaMPaf bdy 3742481.137.1, =⋅⋅=  

Step 5: Determine the DLF. 

0.1=DLF  (assumed)         

Step 6: Determine the allowable peak pressure, allmP , , and energy flux, allU . 

Peak Pressure:  

2

2
,

,

2
l

hf
P bdy

allm =        (33) 

mmmh 03.030 ==         

ml 2=           

( )( )
( )

MPa
m

mMPaP allm 168.0
2

03.03742
2

2

, ==  

Energy Flux: 

For solid rectangular member, 

'30

2
,

lE
lhf

UU bdy
allSE ⋅

⋅
==        (35) 

MPaE 000,200=         

( ) mkPa
mMPa
mmMPaUU SEall −=

⋅⋅
⋅⋅

== 40.1
1000,20030
203.0374 2

 

Step 7: Determine the attenuation ratio required to adequately reduce the free-water 

pressure wave characteristics to the allowable levels. 

fwm

allm

P
P

P
,

,)( =α         (38a) 
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322.0
521.0
168.0)( ==

MPa
MPaPα  

fw

all

U
UU =)(α         (38b) 

316.0
43.4
40.1)( =

−
−

=
mkPa
mkPaUα  

Step 8: Determine the minimum bubble screen airflow to attain the required attenuation 

ratios. 

iβ  coefficients, 

103.0885.0 +







=

z
zg

Pβ       (39) 

988.0103.0
10
10885.0 =+






=

m
m

Pβ  





















= z
z

U

g

e
455.3

0419.0β       (40) 

326.10419.0 10
10455.3

==
















m
m

U eβ  

Required bubble screen airflow, 

Kinematic viscosity 
s

mv
2

610004.1 −⋅= at 20ºC 

( ) ( ) P
fwm

rm
mf P

P
vPA β














−










⋅=

−

1100467.0
1

,

,5     (37) 

( ) ( )[ ]( )
m
s

m

s
mPA mf

3

15
2

6 00975.0988.01322.01010004.10467.0 =−



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


⋅⋅= −−  
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( ) ( ) U
fw

r
f U

UvUA β













−










⋅=

−

1100233.0
1

5     (38) 

( ) ( )[ ]( )
m
s

m

s
mUAf

3

15
2

6 00500.0326.11316.01010004.10233.0 =−







⋅⋅= −−  

Design Summary: 

( ) ( )
m
s

m

AUAPA fff

3

00975.0≥∴>  

4.3.2 Design Example #2 

The operators of a large concrete dam have acquired a proprietary bubble screen manifold 

with an anticipated airflow of 0.005m3/s/m. The primary concern from underwater 

explosions is surface damage, which is assumed to occur if the peak pressure exceeds the 

dynamic compressive strength of the structure. Due to the existing site conditions, the 

maximum charge weight is assumed to be 200kg, and the ability to create a large standoff 

distance is impractical. 

Step 1: Define material strength and member response. 

 Material Strength, MPafc 20'=  

 Member Response = compression 

Step 2: Determine DIF and average increase factor, a . 

Average increase factor: 

Not applicable for concrete 

 DIF: 

  Determine strain rate, assumed near-range design, 

smmmm //3.0'=ε , per UFC 3-340-02 (2008) 

  Use Figure 4.4 (see Figure 3.6) to determine DIF, 
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25.1≈DIF  

 

Figure 4.4 Design Curve for DIF for ultimate Compressive Strength of Concrete with 17.24 

< f’c < 34.47 MPa, (after UFC 3-340-02 2008) 

Step 3: Determine the dynamic design strength 

cdc fDIFf ′⋅=′         (29) 

MPaMPafdc 252025.1 =⋅=′  

Step 4: Determine the DLF.  

0.1=DLF  (assumed)        

Step 5: Determine the allowable peak pressure, allmP , , and energy flux, allU . 

Peak Pressure:  

dcallm fP ′=,          

MPaP allm 25, =  

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0.001 0.01 0.1 1 10

D
yn

am
ic

 In
cr

ea
se

 F
ac

to
r

Strain Rate (mm/mm/s)

17.24 < f'c < 34.47 MPa



96 
 

 Energy Flux: 

Not applicable. 

Step 6: Define bubble screen airflow, charge depth, target depth, and minimum standoff 

distance or maximum charge weight. 

Bubble screen airflow, 
m
s

m

Af

3

005.0=  

Charge depth, mz 5.2=  

Target depth, mzg 5.2=  

Charge weight, kgW 200=  

Step 7: Determine Attenuation Ratios fwmrm PPP ,, /)( =α  and fwall UUU /)( =α . 

 Peak Pressure:  

Use Figure 4.5 (see Figure 3.14(A)) to determine fwmrm PPP ,, /)( =α for 

msmAf //005.0 3= . 

48.0)(
,

, ≈=
fwm

rm

P
P

Pα  
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Figure 4.5 Peak Pressure Attenuation versus Airflow for Various Gauge Depths 

Energy Flux: 

Not applicable. 

Step 8: Determine fwmP ,  and fwU . 

Peak Pressure: 

)(
,

, P
P

P allm
fwm α
=         (38a) 

MPaMPaP fwm 1.52
48.0

25
, ==  

Energy Flux: 

Not applicable. 

Step 9: Determine minimum standoff distance, R , or maximum charge weight, W . 

W is known, therefore use Equation 32 to solve for R . 
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)(3/1
/1

, mW
AP

P
R

B

z

fwm








=        (32) 

( ) 927.01.4510 −= zA        (27) 

( ) 19295.21.4510 927.0 == −mA  

1.1−=B         (28) 

     zP wz ⋅= γ  

MPam
m
NPz 0245.05.29810 3 =⋅=  

( ) m
MPa

MPaR 35.5200
19290245.0

1.52 3/1
1.1/1

=







⋅
=

−

 

Design Summary: 

mR 35.5=  

4.4 Additional Recommendations 

While the previous design procedures provide information regarding the required bubble 

screen parameters and/or the effect of a bubble screen to reduce pressure wave 

characteristics, there are many other practical considerations when implementing a bubble 

screen. Some of the following recommendations were generated from previous studies, and 

others address potential challenges raised in this study. 

Due to the complexity of airflow distributions, especially considering output at hydrostatic 

pressure, it is recommended to have an engineer design the bubble screen manifold and 

compressor and/or conduct tests to determine the actual airflow of the system. Ceasing or 

reducing airflow may reduce operational costs during low threat conditions. However if 

reduced airflow causes the air pressure in the manifold to drop below hydrostatic pressure, 

water and particulates may enter the manifold and block the orifices (Rude and Lee 2007). 

Therefore it is recommended that the design include specifications for low airflow 
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situations, and that the manifold be removed from the water if not in use, unless otherwise 

designed.  

Small bubbles provide greater acoustic impedance than larger bubbles and thus increased 

attenuation. Thus small bubbles are preferable (Rude and Lee 2007, Domenico 1982a).  

In turbulent or high-flow settings, multi-stage or multi-level manifolds were shown to 

produce more consistent bubble screens in CALTRAN (2009). Also, if the bubble screen 

is sufficiently deep, multiple screens may need to be implemented in levels to ensure small 

bubble exist throughout the screen. See Section 3.3.1 about bubble radius increase with 

rise. 

Manifold robustness versus flexibility is another consideration, particularly considering a 

multiple explosion event (preliminary explosions may even be specifically planned to 

damage the manifold, leaving the structure unprotected for subsequent explosions). Robust 

manifolds provide a durable design that can withstand high blast pressures, however these 

are expensive to construct and damage to the manifold may be difficult to repair. Flexible 

manifolds (e.g. EPDM) are typically less expensive to construct and may deflect without 

incurring debilitating damage. If damage is incurred, it is likely to be significant, though 

relatively inexpensive and simple to repair. It might be advantageous to attach flexible 

manifolds to a rigid frame with lift cables to facilitate repairs and/or maintenance.  

A redundant design may offer several benefits. Increased bubble screen attenuation may 

be realized by implementing multiple (up to four) parallel bubble screens (Domenico 

1982b). Furthermore, if one screen is damaged from the first of multiple explosions, the 

remaining operational screen(s) will still attenuate the following explosions to some 

degree. 

 

Copyright © Paul Raymond Smith 2016 
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5 Conclusions 

The purpose of this research was to develop a comprehensive procedure to design a bubble 

screen to attenuate pressure waves produced by underwater explosions. Previous research 

and literature was reviewed to determine the current methods available. Data was compiled 

from multiple sources to provide a means to investigate the accuracy of existing equations, 

and to develop improvements that better represent the data. Using the data, new similitude 

equations were developed to predict peak pressure and energy flux density, and the peak 

pressure equation was further modified to include the effects of depth. To accurately 

represent the strength of materials under the high strain rates imposed by blast loads, 

dynamic increase factors were determined and applied to model the dynamic strength of 

materials. The dynamic strengths were then used in conjunction with loading equations to 

determine the allowable peak pressure and energy flux. Using the allowable loads and the 

free-water loads determined with the similitude equations, the required attenuation rates 

for a bubble screen were calculated. The attenuation performance from bubble screens 

tested in USACE (1961) was analyzed and the attenuation equations in that study were 

modified to include a coefficient that incorporates depth. These results were then compiled 

to form two bubble screen design procedures and examples, one for customized bubble 

screens systems, and another for existing bubble screen systems. 

The attenuation equations with the addition of the coefficient correspond well with the 

data. However, it was determined that the test geometry caused the pressure wave to travel 

a much greater distance through the bubble screen to reach the gauges at shallower depths. 

Therefore, the coefficient does not represent depth so much as it represents the angle the 

pressure wave traveled from perpendicular. Therefore it remains valid for the data, and is 

expected to perform well for situations where the target is at a similar angle as in the 

experiment, but it should not be used based on depth alone. In situations where the 

geometry is different the coefficients can still be used by setting the depth ratio equal to 

unity.  
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Limitations to this research stem primarily from lack of additional data to validate the 

equations developed and modified, particularly regarding the attenuation properties of 

bubble screens which was solely based on USACE (1961). Several documents provide 

design recommendations or partial procedures for bubble screen design, but are either 

classified or lack data for comparison (Hempen 1993b, Langefors and Kihlstrom 1978, and 

USACE 1961). 

Recommendations for future research include: physical testing of the equations and 

procedures presented in this study, extensive testing at various depths to better determine 

the effect of depth on bubble screen attenuation performance, and full-size or scale tests of 

structural/material response when exposed to underwater explosions. 
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Appendix A 

Figures and Equation Derivations  
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Figure A.1 Scaled Measured Impulse Data with New Equation 
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Figure A.2 Typical Stress-Strain Curves for Concrete and Reinforcing Steel 
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Figure A.3 Bubble Screen Attenuation for Af = 0.00975m3/s/m and 0.914m Thickness 

(USACE 1961). 
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Allowable Peak Pressure Equation Derivation, Equation 33 

Moment M 

Linear distributed load w 

Member length l 

Peak pressure (not point load) mP  

Member height or width b 

Dynamic yield stress in bending bdyf ,  

Member centroid c 

Member moment of inertia I 

Member depth h 

Allowable load to not exceed yield stress all (subscript) 

Max moment for fixed-fixed member with 
uniform linear load (AISC 2011): 12

2lwM ⋅
=  

Uniform linear load equivalent: bPw m ⋅=  

Allowable dynamic bending stress in member: 
I

cMf all
bdy

⋅
=,  

Member centroid: 
2
hc =  

Member moment of inertia: 3

12
1 hbI ⋅=  

Substituting for allowable bending stress: 

( )

3

2

,

12
1

212
hb

hlbP

f
m

bdy

⋅

⋅
⋅⋅

=  

Reduced allowable dynamic bending stress: 2

2

, 2 h
lPf m

bdy ⋅
⋅

=  

Allowable peak pressure (maximum): 
2

2
,

,

2
l

hf
P bdy

allm

⋅⋅
=  
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Allowable Energy Flux Equation Derivation, Equation 34 (2 pages) 

Strain energy in bending mU  Member segment length x 

Normal stress xσ  Linear distributed load w 

Modulus of elasticity E Member length l 

Member volume V Dynamic yield stress in 
bending 

bdyf ,  

Moment M Member depth h 

Member centroid c Member height or width b 

Member moment of inertia I Allowable energy flux density allU  

Member cross-sectional area A   

Strain energy in bending. ∫= dV
E

U x
m 2

2σ  

Normal stress equivalent. I
cM

x
⋅

=σ  

Substituting. ∫
⋅

= dV
EI

cMUm 2

22

2
 

dV equivalent.  dAdxdV =  

Substituting. Only c is a function of A. ( )∫ ∫= dxdAc
EI
MUm

2
2

2

2
 

Moment of inertia equivalent. ∫= dAcI 2  

Substituting and reducing. ∫= dx
EI

MUm 2

2

 

Moment equation for a single-degree-of-freedom 
beam with fixed-fixed end conditions. Length 
equivalent. 

12

2lwM ⋅
= , xl =  

Substituting. ∫
⋅

=
l

m dx
EI
xwU

0

42

288
 

Solving. EI
lwUm 1440

52 ⋅
=  

Moment and yield stress equivalent. Continue using 
moment equation for fixed-fixed beam. 12

2
, lw
c

If
M bdy ⋅

=
⋅

=  
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Allowable Energy Flux Equation Derivation, Equation 34 (continued) 

Substituting and reducing. Ec
lIf

U bdy
m 2

2
,

10
⋅⋅

=  

Centroid equation for a rectangular section. 2
hc =  

Substituting and reducing. Eh
lIf

U bdy
m 2

2
,

5
2 ⋅⋅

=  

Allowable energy flux density equivalent, ='l unit 
length. 'lb

UU m
all ⋅
=  

Substituting and reducing. Allowable energy flux 
density equation. '5

2
2

2
,

lEbh
lIf

U bdy
all ⋅

⋅⋅
=  
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Table B.1 Pressure Wave Data (Coles 1946) 

  

Coles (1946)

Depth, z  = 12.19m
Charge Weight, W = 21.79kg

R R/W1/3 Pm I U θ I/W1/3 U/W1/3

(m) (m/kg1/3) (Mpa) (kPa-s) (kPa-m) (ms) (kPa-s/kg1/3) (kPa-m/kg1/3)
1.52 0.546 96.5 25.2 735 0.230 9.01 263
2.13 0.764 68.3 20.7 399 0.240 7.41 143
3.05 1.09 45.5 15.6 201 0.280 5.58 72.1
4.57 1.64 26.2 9.17 69.1 0.280 3.28 24.7
5.18 1.86 23.7 9.03 58.5 0.280 3.23 20.9
6.10 2.18 22.2 7.93 44.6 0.290 2.84 16.0
11.6 4.15 11.0 5.17 13.7 0.390 1.85 4.90
14.3 5.13 8.21 4.00 8.61 0.340 1.43 3.08
18.3 6.55 6.36 2.90 4.67 0.340 1.04 1.67
23.8 8.51 4.83 2.41 3.01 0.390 0.864 1.08
26.5 9.49 4.16 2.21 2.29 0.390 0.790 0.821
30.5 10.9 3.34 2.14 1.86 0.420 0.765 0.664

Depth, z  = 12.19m
Charge Weight, W = 34.50kg

R R/W1/3 Pm I U θ I/W1/3 U/W1/3

(m) (m/kg1/3) (Mpa) (kPa-s) (kPa-m) (ms) (kPa-s/kg1/3) (kPa-m/kg1/3)
1.52 0.47 131 38.7 1425 0.260 11.9 438
2.13 0.66 85.5 28.0 695 0.270 8.60 213
3.05 0.94 56.4 22.1 362 0.300 6.80 111
4.57 1.40 31.2 13.6 128 0.350 4.17 39.4
5.18 1.59 29.1 11.2 94.5 0.290 3.45 29.0
6.10 1.87 25.9 10.5 71.6 0.320 3.22 22.0
11.6 3.56 14.6 6.76 23.8 0.350 2.08 7.31
14.3 4.40 11.0 5.03 13.6 0.370 1.55 4.18
18.3 5.62 7.35 4.07 7.72 0.440 1.25 2.37
23.8 7.30 5.61 3.38 5.01 0.430 1.04 1.54
26.5 8.15 5.24 2.83 3.76 0.440 0.868 1.16
30.5 9.36 3.98 2.14 2.54 0.480 0.657 0.779

Notes:
- Charges were suspended 12.19m below the surface in at least 24.38m of water
- TNT loading density ≈ 1.52
- Gauges suspended at same level as charge
- Impulse and energy flux time of integration is 6.7θ
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Table B.2 Pressure Wave Data (USACE 1961) 

 

USACE - Freewater Data (1961)

Depth, z  = 2.743m
Charge Weight, W = 3.63kg

R R/W1/3 Pm I U I/W1/3 U/W1/3

(m) (m/kg1/3) (MPa) (kPa-s) (kPa-m) (kPa-s/kg1/3) (kPa-m/kg1/3)
1.22 0.793 67.6 9.10 203 5.92 132
1.22 0.793 62.1 11.0 252 7.18 164
1.45 0.942 60.7 9.65 217 6.28 141
1.45 0.942 55.8 10.1 228 6.55 148
1.45 0.942 57.9 8.83 147 5.74 95.7
1.68 1.09 51.0 8.14 147 5.29 95.7
1.68 1.09 49.6 8.96 151 5.83 98.0
1.91 1.24 33.8 6.62 80.6 4.31 52.4
1.91 1.24 38.6 7.31 94.6 4.76 61.5
2.13 1.39 34.5 6.34 84.1 4.13 54.7
2.13 1.39 31.0 6.48 77.1 4.22 50.1
2.13 1.39 33.1 6.34 70.1 4.13 45.6
2.36 1.54 31.7 6.48 80.6 4.22 52.4
2.36 1.54 32.4 5.52 63.0 3.59 41.0
2.36 1.54 31.0 5.24 56.0 3.41 36.5
2.59 1.69 24.8 5.10 49.0 3.32 31.9
2.59 1.69 31.7 5.52 49.0 3.59 31.9
2.59 1.69 33.1 5.52 59.5 3.59 38.7
2.82 1.83 24.8 4.69 35.0 3.05 22.8
2.82 1.83 24.8 4.14 29.8 2.69 19.4
2.82 1.83 24.8 5.79 45.5 3.77 29.6
3.05 1.98 22.1 4.14 28.0 2.69 18.2
3.05 1.98 26.9 4.14 31.5 2.69 20.5
3.05 1.98 24.8 3.86 31.5 2.51 20.5
3.05 1.98 24.8 4.83 42.0 3.14 27.3
3.05 1.98 23.4 4.83 31.5 3.14 20.5
3.28 2.13 22.8 4.55 29.8 2.96 19.4
3.28 2.13 19.3 3.45 22.8 2.24 14.8
3.28 2.13 22.8 3.59 24.5 2.33 16.0
3.28 2.13 22.8 4.41 26.3 2.87 17.1
3.28 2.13 20.0 4.69 35.0 3.05 22.8
3.51 2.28 22.1 4.41 35.0 2.87 22.8
3.51 2.28 18.6 3.86 26.3 2.51 17.1
3.51 2.28 22.1 4.41 31.5 2.87 20.5
3.51 2.28 17.9 4.14 24.5 2.69 16.0
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Table B.2 Pressure Wave Data (USACE 1961) cont. 

 

R R/W1/3 Pm I U I/W1/3 U/W1/3

(m) (m/kg1/3) (MPa) (kPa-s) (kPa-m) (kPa-s/kg1/3) (kPa-m/kg1/3)
3.73 2.43 20.0 4.14 33.3 2.69 21.7
3.73 2.43 20.0 3.45 24.5 2.24 16.0
3.73 2.43 17.9 3.59 19.3 2.33 12.5
3.96 2.58 17.9 3.59 19.3 2.33 12.5
3.96 2.58 17.9 3.59 21.0 2.33 13.7
3.96 2.58 18.6 3.86 24.5 2.51 16.0
3.96 2.58 14.5 2.62 17.5 1.70 11.4
3.96 2.58 15.9 4.14 17.2 2.69 11.2
4.19 2.73 17.2 3.59 21.0 2.33 13.7
4.19 2.73 17.2 3.59 19.3 2.33 12.5
4.19 2.73 16.5 3.03 15.1 1.97 9.80
4.19 2.73 17.9 4.41 29.8 2.87 19.4
4.19 2.73 16.5 3.59 21.0 2.33 13.7
4.42 2.88 15.2 3.03 17.2 1.97 11.2
4.42 2.88 13.8 2.21 9.46 1.44 6.15
4.42 2.88 15.2 3.03 14.0 1.97 9.12
4.42 2.88 17.9 4.14 15.1 2.69 9.80
4.42 2.88 16.5 4.14 24.5 2.69 16.0
4.65 3.02 14.5 3.03 15.4 1.97 10.0
4.65 3.02 15.2 3.31 15.8 2.15 10.3
4.65 3.02 14.5 3.03 14.0 1.97 9.12
4.65 3.02 15.2 3.31 16.8 2.15 10.9
4.65 3.02 11.7 3.03 13.3 1.97 8.66
4.88 3.17 13.1 1.93 9.46 1.26 6.15
4.88 3.17 14.5 2.76 13.0 1.79 8.43
5.11 3.32 13.8 3.03 11.6 1.97 7.52
5.33 3.47 11.7 2.62 8.41 1.70 5.47
5.33 3.47 13.8 3.03 14.4 1.97 9.34
5.79 3.77 11.7 2.48 8.76 1.62 5.70
6.02 3.92 11.0 2.21 7.71 1.44 5.01
6.02 3.92 11.0 2.76 12.6 1.79 8.20
6.25 4.07 13.1 2.48 8.06 1.62 5.24
6.25 4.07 11.7 2.76 14.0 1.79 9.12
6.48 4.21 11.0 2.21 7.01 1.44 4.56
6.48 4.21 10.3 2.48 8.76 1.62 5.70

Notes:
- Charges were suspended at mid-depth in 5.486m of water
- TNT loading density - not specified
- Gauges suspended at same level as charge
- Impulse and energy flux time of integration is 6.7θ
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Table B.3 Pressure Wave Data (Richmond 1973) 

 

  

Richmond (1973)

Depth, z  = 3.048m
Charge Weight, W = 0.227kg

R R/W1/3 Pm I/W1/3 U/W1/3 θ I/W1/3 U/W1/3

(m) (m/kg1/3) (Mpa) (kPa-s) (kPa-m) (ms) (kPa-s/kg1/3) (kPa-m/kg1/3)
30.48 50.0 0.641 0.0834 0.0175 0.111 0.137 0.0287
30.48 50.0 0.765 0.0807 0.0210 0.096 0.132 0.0344
30.48 50.0 0.634 0.0793 0.0175 0.112 0.130 0.0287
30.48 50.0 0.669 0.0772 0.0175 0.095 0.127 0.0287
30.48 50.0 0.655 0.0765 0.0175 0.092 0.125 0.0287

Depth, z  = 3.048m
Charge Weight, W = 0.454kg

R R/W1/3 Pm I/W1/3 U/W1/3 θ I/W1/3 U/W1/3

(m) (m/kg1/3) (Mpa) (kPa-s) (kPa-m) (ms) (kPa-s/kg1/3) (kPa-m/kg1/3)
14.6 19.0 1.85 0.314 0.170 0.128 0.408 0.221
14.6 19.0 1.88 0.330 0.175 0.128 0.429 0.228
25.6 33.3 1.05 0.157 0.0508 0.115 0.205 0.0660
25.6 33.3 1.08 0.157 0.0525 0.120 0.204 0.0683
25.6 33.3 1.14 0.150 0.0560 0.120 0.195 0.0729

Notes:
- Charges were suspended 3.048m below the surface in 9.144m of water
- TNT loading density - not specified
- Gauges suspended at same level as charge
- Impulse and energy flux time of integration - not specified
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Table B.4 Pressure Wave Data (Heathcote 1981) 

  

Heathcote (1981)

Depth, z  = 10.67m
Charge Weight, W = 3.18kg

R R/W1/3 Pm I U I/W1/3 U/W1/3

(m) (m/kg1/3) (Mpa) (kPa-s) (kPa-m) (kPa-s/kg1/3) (kPa-m/kg1/3)
1.52 1.04 53.2 9.77 136 6.64 92.2
1.43 0.974 60.7 10.9 166 7.40 113
1.22 0.829 72.1 12.1 223 8.24 152
1.22 0.829 70.5 12.0 217 8.15 148
1.95 1.33 35.2 8.21 91.4 5.58 62.1
2.04 1.39 29.5 7.38 69.8 5.02 47.5
3.29 2.24 17.6 4.81 28.9 3.27 19.6
4.30 2.92 12.2 --- --- --- ---
4.60 3.13 11.0 3.04 11.9 2.07 8.09
2.93 1.99 26.2 4.73 29.8 3.22 20.2
2.80 1.91 25.4 4.76 30.3 3.24 20.6
2.74 1.87 26.6 5.15 35.4 3.50 24.0
2.74 1.87 28.7 5.23 37.1 3.56 25.2
3.08 2.09 24.1 4.70 29.2 3.20 19.9
3.23 2.20 23.4 4.59 27.7 3.12 18.8
5.15 3.50 12.0 2.79 9.63 1.89 6.55
4.39 2.99 17.8 3.25 13.5 2.21 9.16
4.36 2.96 15.9 3.41 14.4 2.32 9.76
4.30 2.92 16.6 3.45 14.7 2.34 10.0
4.54 3.09 15.7 3.21 13.1 2.18 8.93
5.24 3.57 12.1 2.80 9.63 1.90 6.55
4.11 2.80 15.3 3.58 15.8 2.43 10.7

Notes:
- Charges were suspended at mid-depth in m of water 21.34m
- TNT loading density ≈ 1.61 (g/cc)
- Gauges suspended at various depths
- Impulse and energy flux time of integration is 1.0ms
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Table B.5 Attenuated Pressure Wave Data (USACE 1961) 

  

USACE (1961) - Attenuated (Bubble Screen) Data

Depth, z = 2.743m
Charge Weight, W = 3.63kg

zg R R/W1/3 T Ac Af Pfw Ufw Pr Ur

m m m/kg1/3 m m3/s/m2 m3/s/m MPa kPa-m/kN1/3 MPa kPa-m/kN1/3

2.74 1.83 1.19 0.914 4.27E-04 3.90E-04 24.8 107 24.1 105.4
2.74 1.83 1.19 0.914 1.34E-03 1.23E-03 24.8 107 20.0 80.9
2.74 1.83 1.19 0.914 1.07E-02 9.75E-03 24.8 107 7.58 23.4
2.74 3.66 2.38 0.914 4.27E-04 3.90E-04 14.5 45.8 13.1 36.2
2.74 3.66 2.38 0.914 1.34E-03 1.23E-03 14.5 45.8 7.58 21.3
2.74 3.66 2.38 0.914 1.07E-02 9.75E-03 14.5 45.8 2.69 7.56
1.37 2.29 1.49 0.914 4.27E-04 3.90E-04 22.8 128 19.3 78.8
1.37 2.29 1.49 0.914 1.34E-03 1.23E-03 22.8 128 15.2 59.6
1.37 2.29 1.49 0.914 1.07E-02 9.75E-03 22.8 128 4.69 8.73
1.37 3.91 2.54 0.914 4.27E-04 3.90E-04 13.8 44.7 15.2 38.3
1.37 3.91 2.54 0.914 1.34E-03 1.23E-03 13.8 44.7 4.90 12.8
1.37 3.91 2.54 0.914 1.07E-02 9.75E-03 13.8 44.7 1.93 2.13
0.08 3.23 2.10 0.914 4.27E-04 3.90E-04 19.3 40.5 16.5 20.2
0.08 3.23 2.10 0.914 1.34E-03 1.23E-03 19.3 40.5 6.90 6.92
0.08 4.53 2.95 0.914 4.27E-04 3.90E-04 13.8 11.7 4.00 4.37
0.08 4.53 2.95 0.914 1.34E-03 1.23E-03 13.8 11.7 2.90 2.13
0.08 4.53 2.95 0.914 1.07E-02 9.75E-03 13.8 11.7 0.407 0.107
2.74 1.83 1.19 0.457 8.53E-04 3.90E-04 31.7 202 33.8 149
2.74 1.83 1.19 0.457 1.34E-03 6.13E-04 31.7 202 33.1 170.4
2.74 1.83 1.19 0.457 1.07E-02 4.88E-03 31.7 202 14.5 65.0
2.74 1.83 1.19 0.457 2.10E-02 9.62E-03 31.7 202 6.21 34.1
2.74 3.66 2.38 0.457 8.53E-04 3.90E-04 17.2 65.0 16.5 37.3
2.74 3.66 2.38 0.457 1.34E-03 6.13E-04 17.2 65.0 17.2 42.6
2.74 3.66 2.38 0.457 1.07E-02 4.88E-03 17.2 65.0 4.41 14.9
2.74 3.66 2.38 0.457 2.10E-02 9.62E-03 15.9 49.0 6.76 16.0
0.08 3.23 2.10 0.457 8.53E-04 3.90E-04 19.3 40.5 17.9 28.8
0.08 3.23 2.10 0.457 1.34E-03 6.13E-04 19.3 40.5 6.00 4.26
0.08 3.23 2.10 0.457 1.07E-02 4.88E-03 19.3 40.5 2.21 0.746
2.74 1.83 1.19 0.152 2.53E-03 3.86E-04 33.1 234 31.7 213.0
2.74 1.83 1.19 0.152 1.07E-02 1.63E-03 33.1 234 26.2 149.1
2.74 1.83 1.19 0.152 2.13E-02 3.25E-03 33.1 234 22.8 117.2
2.74 1.83 1.19 0.152 4.27E-02 6.50E-03 33.1 234 16.5 72.4

zg = gauge depth, R = radial standoff distance, T = thickness, Ac = air content, Af = air flow, Pfw = 
peak pressure (free-water), Ufw = energy flux (free-water), Pr = peak pressure (attenuated), Ur = 
energy flux (attenuated)
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