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ABSTRACT

This thesis summarizes our efforts to develop and explore potential routes for the dis-

covery of new superconductors. The development of viable solutions for sulfur-bearing

compounds is presented. It also provides the details of searching for quantum critical

points (QCPs) and possible superconductors by suppressing ferromagnetic states via

chemical substitution and the application of pressure. By pressure, the ferromagnetism

in La(VxCr1−x)Ge3 was successfully suppressed, and, in addition, a potential QCP at

ambient pressure was discovered for x = 0.16. On the other hand, the La(VxCr1−x)Sb3

series is likely to evolve into new magnetic state with V-substitution with the Cr-based

magnetism appearing to be more local-moment like than for the case of LaCrGe3. We

also performed detailed characterization on BaSn5 superconductor, giving further un-

derstanding of its superconducting state, and on R3Ni2−xSn7 and RNi1−xBi2±y series

putting to rest spurious claims of superconductivity.
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CHAPTER 1. INTRODUCTION

Over a century ago, superconductivity was discovered by the observation of a sudden

transition to zero resistance in high-purity mercury [Onnes, 1911]. Since then, supercon-

ducting has been one of the most actively studied states in condensed matter physics as

well as a source of many industrial applications. It has attracted immense experimental

and theoretical efforts. Although the first few superconductors were found in simple el-

ements and alloys, during the last 100 years, more and more superconductors appear in

the compounds that once were considered improbable, if not impossible, such as: organic

compounds, oxides, magnetic compounds, and most recently whole families of FeAs- and

FeSe-based compounds. The discovery of superconductivity is often tightly coupled to

the design, discovery, and growth of novel materials. Where to look for and how to find

superconductors are the key questions associated with searching for new superconduc-

tors. Given that we (as a community) can not yet accurately predict the occurrence of

superconductivity, it is of great importance to develop and explore new, potential routes

for the discovery of new superconductors. In addition, since superconductivity often oc-

curs in proximity to, and competition with, other novel phases, the exploration of these

routes can lead to a plethora of interesting compounds.

Recently, with the discovery of high temperature superconductivity in FeAs-based

materials [Hosono, 2008; Rotter et al., 2010], chalcogen (S, Se, Te, etc.) and pnictogen

(N, P, As, etc.) based compounds have attracted people’s attention. It is believed that

compounds with these less-explored N, P, As and S, Se, Te elements as constituents

will have electronic density of states that can be tuned and bandwidths that can be
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adjusted. However, unlike Nb3Sn, MgB2, etc., which shows robust superconductivity

for well-ordered, stoichiometric, line compounds, the superconductivity in FeAs- and

FeSe-based materials manifests in such a way that the parent compounds have to be

doped/modified in the correct way. For example, superconductivity can only appear in

BaFe2As2 when Co or Ni are substituted for Fe [Ni et al., 2008c], but not when Mn

or Cr are substituted [Thaler et al., 2011]. Therefore, it is very difficult to discover

superconductivity by accident, as a minority phase of a multi-phase sample. Instead

specific samples, with systematically controlled compositions, need to be studied. Hence,

the growth of new materials, particularly in bulk crystalline form, is an important part

of improving the chances of finding new superconductors.

High-temperature solution growth is viewed as one of he most powerful synthetic

tools for growing single crystalline samples [Canfield and Fisk, 1992; Canfield, 2010] for

basic as well as applied physics. For each specific growth, it is crucial to have a readily

accessible and well understood solution. Sometimes growths can be complicated due

to the specific properties of the constituent elements, such as high-vapor pressure, high

melting point, etc. Arsenic for example, has a very high vapor pressure and is also

toxic in both its elemental and oxide forms. Thus, to grow FeAs-based superconductors

out of solution, a large effort has been made to develop versatile and safe methods.

As we start to examine chalcogen and pnictogen based compounds and search for new

superconductors, it becomes an urgent need to develop a wide range of chalcogen and

pnictogen based solutions. Whereas some viable solutions have been developed for the

use of P and As [Canfield and Fisk, 1992; Ni et al., 2008a], and Se and Te can be used as

solvents by themselves, in this thesis, I will mostly focus on the development of S-based

solutions that can be utilized for growths of S-bearing compounds.

Another possible route is to search for new superconductors in the vicinity of a quan-

tum critical point (QCP). A QCP is thought to be a singularity in the ground state. At

a QCP, the system goes through a quantum phase transition (QPT) which is driven by
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non-thermal parameters at zero temperature [Sachdev, 2001]. Superconductivity is often

discovered in the vicinity of a QCP and accompanied with non-Fermi liquid behavior.

The discoveries of QCP and superconductivity in the ferromagnetic UGe2 [Taufour et al.,

2010; Saxena et al., 2000] and UCoGe [Huy et al., 2007] are considered as providing a

better understanding of magnetically mediated superconductivity and non-Fermi liquid

behavior. UGe2 was reported to show coexistence of superconductivity and magnetism in

high quality single crystals at pressures from 10 to 16 kbar with its maximum supercon-

ducting transition temperature at about 0.7 K [Saxena et al., 2000]. Theoretically, on the

boundary of a ferromagnetic state at low temperatures, the superconducting state is due

to the strong longitudinal magnetic susceptibility and magnetic interaction [Saxena et al.,

2000]. Therefore, suppressing ferromagnetism to drive the criticality offers a potential

route for the discovery of new superconductors. Chemical doping, pressure and magnetic

field can be used to suppress the magnetic order. For example, by chemical substitution,

a QCP is discovered in CePd1−xNix when the doping level is 0.95 [Stewart, 2001]. By

applying magnetic field, QCPs were successfully introduced in YbAgGe [Bud’ko et al.,

2004], YbBiPt [Mun et al., 2013] and YbRh2Si2 [Trovarelli et al., 2000]. In the case of

MnSi [Stewart, 2001], itinerant-electron magnetism disappears at a first order transition

and a QPT appears as pressure is applied. In this thesis, two stoichiometrically similar

sets of compounds La(VxCr1−x)Ge3 and La(VxCr1−x)Sb3 were studied. Both LaCrGe3

and LaCrSb3 are ferromagnetic, and with V-substitution and the application of pressure,

we were aiming to suppress the ferromagnetism, search for possible QCPs and hopefully

superconductivity.

In addition, re-examination of known or reported superconductors that were poorly

studied can also offer opportunities to understand the mechanism of superconductivity

and discovery of new physics. With careful thermodynamic and transport measure-

ments, BaSn5 has been characterized in detail, and evolution of superconductivity under

the application of pressure has also been studied. Growth and study of R3Ni2−xSn7 and
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RNi1−xBi2±y series, on the other had, revealed that reports of superconductivity associ-

ated with these compounds are very probably spurious and associated with second phase

impurities.

This thesis is organized as following: Chapter 2 provides some background about

materials growth and a description of some of the theoretical physics associated with the

states and effects found in the materials studied in this thesis, covering superconductivity,

magnetism, spin glass, quantum phase transition and de Haas-van Alphen effect. Chapter

3 covers details about the specific growth methods and techniques I used and provides

a brief review of the measurement techniques. In Chapter 4, the development of viable

solutions for the synthesis of sulfur bearing single crystals is presented in the form of

the published paper. Chapter 5 gives the physical properties of single crystalline BaSn5

(presented in the form of the published paper). In Chapters 6 and 7 efforts to clarify

claims of superconductivity in rare earth based systems are presented. In Chapter 6, the

published form of my paper ”Anisotropic magnetization, resistivity and heat capacity

of single crystalline RNi2−xSn7 (R = La, Ce, Pr and Nd)” is presented. Chapter 7

presents the published form of my paper ”Anisotropic magnetization and resistivity of

single crystalline RNi1−xBi2±y (R = La – Nd, Sm, Gd – Dy)”. Chapter 8 presents the

suppression of ferromagnetism in the La(VxCr1−x)Ge3 system. This manuscript has been

accepted for publication to Phys. Rev. B. Finally, the data, results and discussion on the

suppression of ferromagnetism in the La(VxCr1−x)Sb3 system is presented in Chapter 9.

In the final chapter, I briefly summarize and discuss future directions for ongoing work.
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CHAPTER 2. OVERVIEW

2.1 Crystal Growth

The availability of high quality samples is crucial for many classes of experimental

measurements. Although the discovery and preliminary characterization of novel mate-

rials are often managed with polycrystalline samples, high purity single crystals are vital

for more detailed and sophisticated characterization of the intrinsic properties. First, sin-

gle crystals with well defined orientation are the basis for anisotropic studies. Secondly,

single crystalline samples do not possess grain boundaries, and (at least for solution

grown crystals) often have less internal strain and stress as compared with the polycrys-

talline samples. Also solution grown single crystals can have fewer impurities, resulting

in very low residual resistivity. This is critical for many experiments, such as the the

observation of quantum oscillations, which can provide information about the topology

of the Fermi surface. In addition, as opposed to polycrystalline samples, single crystals

have larger crystalline and atomically ordered surfaces, which are vital for many surface

sensitive measurements, such as scanning tunnelling microscopy (STM), angle resolved

photon emission spectroscopy (ARPES), etc. Finally, single crystal growth from high

temperature solutions can, sometimes, be used as a method of new materials discovery.

The model Fe-based superconductor parent compound, CaFe2As2 [Ni et al., 2008b], as

well as the binary quasicrystals Sc-Zn [Canfield et al., 2010] and i-R-Cd [Goldman et al.,

2013] were discovered as the result of single crystal growth out of non-stoichiometric

melts.
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Many techniques have been developed to growth single crystalline samples, and can

be roughly classified into three groups: growth from the melt, growth from a vapor phase

and growth from solution [Brice, 1973, 1986; Pamplin, 1975]. Growth from the melt, in-

cluding Czochralski, Bridgman and skull-melting methods, can be used to grow large

single crystals, such as sapphire and silicon used for computer chips. These techniques

allow for crystal growth to be monitored and controlled by computer, and these tech-

niques have been widely accepted and optimized by industrial. However, growth from

the melt method requires the composition of the melt to be the same, or very similar,

to that of the expected product. For the Czochralski method, given that crystals may

be grown only at a single, extremely high temperature, the melt can, sometimes become

inhomogeneous, and any significant vapor pressure can lead to poorly controlled stoi-

chiometry. A disadvantage of Bridgman method is that a layer of impurities grows at

the interface between melt and the solid as this surface moves up the melt, and the impu-

rities become concentrated in the higher part of the crystal. In addition, the crucible can

often strain or simply crack the grown crystal upon cooling. On the other hand, growth

via vapor transport can provide very high purity crystals with relatively few defects, but

this growth method is often very slow (diffusion limited) and requires volatile phases of

all the components as well as a transport agent (if self transport is not possible).

High temperature solution growth is perhaps the most common industrial crystal

growth technique (e.g. hydrothermal growth of SiO2 crystals) and is also the method

most widely used for exploratory growth of samples for basic characterization and is

recognized as a powerful technique for obtaining single crystals of complex materials. It

can be used to grow a large variety of congruently and incongruently melting materials

with ease, with relatively simple equipment and over relatively short time scales [Canfield

and Fisk, 1992; Canfield, 2010]. Take CeSb2 as an example, as the compound does not

melt congruently, it can not be synthesized by growth from the melt method. However,

via high temperature solution method, single crystals of CeSb2 can be grown out of excess



7

Sb below 1200 ◦C [Canfield and Fisk, 1992; Canfield, 2010] in as little as 12 hours. The

high temperature solution method can also help reduce the growth temperature, as in the

case of CeSb, although it is a congruently melting compound, its melting temperature

is about 1400 ◦C. The high temperature needed for growing CeSb from a stoichiometric

melt puts extra requirement on the experiment equipment and conditions. In this case,

by using Sn as a solvent, the growth temperature can reduced to below 1150 ◦C [Canfield

and Fisk, 1992; Wiener and Canfield, 2000; Canfield, 2010]. Another advantage of high

temperature solution growth is the ability to incorporate volatile elements into solutions

and as a result, reduce their vapor pressure. Elemental As, for instance, sublimes at 615

◦C. As a consequence, growing the As-based compounds via direct melting can cause

explosions of the growth ampoule due to As’s high vapor pressure. A safer technique for

growing As-based compounds is strongly desired. Given the essentially full solubility of

As in Sn solvent, this issue has been successfully solved by introducing Sn as a solvent

for some As-based compounds in the high temperature solution growth of AFe2As2 (A

= Ca, Sr, and Ba) [Ni et al., 2008a,b; Yan et al., 2008].

A significant part of this thesis work focused on the development of S-based melts

that could serve as the high temperature solution for the growth of S-based compounds.

2.2 Superconductivity

2.2.1 Zero resistance and Meissner effect

The discovery of superconductivity was made in 1911 during Onnes’ investigation of

the electrical resistance of pure metals at low temperatures [Onnes, 1911]. When the

specimen was cooled to 4.2 K, the electrical resistance of mercury was found to drop

suddenly to 10−5 Ω or less, that is to about one ten-thousandth of the value which it

had at 4.3 K. DC electrical currents have been observed to flow without attenuation in

superconducting rings, also indicating zero resistivity. This phenomena – zero resistivity,
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is known as one of the basic characteristics of superconductivity. At a critical temperature

Tc, the material undergoes a phase transition from a state of normal resistivity to a

superconducting state, seen in Fig. 2.1 [Onnes, 1911].

Figure 2.1 Resistance as a function of temperature of mercury. This plot was obtained
by Kamerlingh Onnes when he discovered superconductivity in Leiden in
1911 [Onnes, 1911].

The infinite conductivity, i.e. zero resistivity, by itself does not adequately describe

the magnetization of a superconductor. In 1933, Meissner and Ochsenfeld [Meissner

and Ochsenfeld, 1933] found that if a superconductor is cooled in a magnetic field to

below the transition temperature, it will expel the induction B at the phase transition

rather than trapping it (as would be expected for a simple, perfect conductor). This

second characteristic of superconductivity, the Meissner effect, is shown in Fig. 2.2.

Zero induction implies perfect diamagnetism, as (in CGS unit)

B = H + 4πM.

This suggests that the magnetization M inside the sample is directly opposite to the
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applied field H, i.e. H = −4πM. There are two manifestations of this perfect diamag-

netism in superconductors. The first aspect is flux expulsion, as mentioned earlier. The

field cooled (FC) sample expels the magnetic field, and show Meissner effect. The second

is flux exclusion: if the same sample in the normal state is zero field cooled (ZFC), that

is cooled below Tc to the superconducting state without any magnetic field present, and

is then placed in an external magnetic field (less than the critical field – see below), the

field will be excluded from the superconductor as well.

Figure 2.2 Diagram of the Meissner effect in a superconducting sphere cooled in a
constant applied magnetic field; on passing below the transition temperature
the induction B is repelled from the sphere.

Considering an infinite sample with negligible penetration depth (see below), the

work done by the external magnetic field H0 can be written as:

−
∫ H0

0

MdH =
1

4π

∫ H0

0

HdH =
H2

0

8π
.

Subsequently, the Helmholtz free energy is:

Fs(H) = Fs(0) +
H2

0

8π
,



10

where Fs(0) is the free energy of a superconductor in superconducting state in zero

magnetic field. When

Fs(Hc) = Fn(0) = Fs(0) +
H2

c

8π
,

here Fn(0) is the free energy of the material in normal state in zero magnetic field, the

normal state is energetically favored, and the superconducting state can be destroyed.

This external field Hc, is called thermodynamic critical field.

2.2.2 Type I and type II superconductivity

Experiments show that even when the magnetic induction is expelled from the whole

sample, there is some penetration in a small surface layer, the thickness of which is the

so-called penetration depth λ. The magnetic field exponentially decays over this length

scale as we go in from the surface.

One of the other key characteristic length scales for a superconductor is called coher-

ence length ξ. It was first introduced in the Ginzburg-Landau theory, in which the wave

function of the superconducting electrons is given as [Ginzburg and Landau, 1950]:

ψ(r) = |ψ(r)|eiφ.

The coherence length is a measure of the range over which the wavefunction of supercon-

ducting condensate cannot change drastically in a spatially-varying magnetic field, and

is also a measure of the minimum spatial extent of a transition layer between normal

and superconducting state.

The coherence length and the penetration depth depend on the mean free path of

the electrons measured in the normal state. It should be noted that the electron mean

free path, l, is a third important length scale. The ratio λ/ξ is denoted by κ, which

subsequently is used to classify type I and type II superconductors [Abrikosov, 1957;

Tinkham, 2004].
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κ <
1√
2

for Type I

κ >
1√
2

for Type II

For the type I superconductor, the superconducting phase and the normal state only exist

as spatially separated regions. Most elemental superconductors are type I superconduc-

tors. In the case of type II superconductor, when H < Hc1, the magnetic induction B

inside the sample is zero, manifesting the Meissner effect. When Hc1 < H < Hc2, the

sample can only exclude the magnetic field partially, the magnetic vortices, called flux-

oids, penetrate the sample. The sample remains electrically superconducting, but the

vortex cores are in a normal state. The density of the vortices increases with increasing

external field. When H > Hc2 (the upper critical field), the sample transits to the normal

state (seen in Fig. 2.3).

Figure 2.3 Diamagnetic responses to the external field for type I and type II supercon-
ductors.

2.2.3 BCS Theory

The theory of Bardeen, Cooper and Schieffer (BCS) [Bardeen et al., 1957] gave the

foundation of our present understanding of basic superconductivity. This theory has a

wide range of applicability, and can be used to explain diverse superconducting phenom-

ena, such as the Meissner effect, zero resistance, vortex formation, quantum interference,

etc. It consists of three fundamental ingredients: the effective attractive electron-electron
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interaction as a consequence of interaction with the positively charged ions; the Cooper

pair with k ↑ and −k ↓ forming a bound state, and the pair-pair correlations which give

rise to the long range coherence and all the characteristic properties of superconductors

[Finnemore, 1992]. A fair amount of assumptions have been made in the derivation of

the BCS theory, such as assuming the Fermi surface is spherical, the electron-phonon

interaction potential is a constant over a range of energy about the Fermi surface, etc.

Hence, it is not appropriate to use it to predict the existence of a superconducting state,

nor can it be a first principle calculation of a physical property, such as Tc. However, the

BCS theory does provide at least a model that explains the fundamental facts related

with superconductivity fairly well.

In 1950, Cooper showed that any net attraction between two electrons near the Fermi

surface can lower the total energy of the electron system. This attractive interaction,

could lead to an instability in the electron gas leading to bound pairs [Cooper, 1956].

The electron pair with momenta (k, −k) and antiparallel spins is called Cooper pair,

(k ↑, −k ↓), which was supposed to form the singlet coupling to lower energy (L = 0 and

S = 0). By solving the two particle Schrödinger’s equation, Cooper found the existence

of a bound state with negative energy. Regardless of how small the attractive potential

is, it can lead to binding, as the negative contribution to the energy of this attractive

potential is bigger than the increased kinetic energy associated with the Cooper pair

[Cooper, 1956].

The electron-phonon interaction was first proposed by Fröhlich in 1950 [Fröhlich,

1954] to be the origin of such an attractive interaction. A simple semiclassical picture

can be used to illustrate this interaction. As an electron (Electron 1 in Fig. 2.4 (a)) moves

through the lattice, the lattice moves towards its path as a consequence of Coulomb inter-

action. Assuming the motion of the lattice and electrons have sufficient amplitude, then

the region of the electron can actually acquire a net positive charge. This overscreening

by the lattice, therefore, provides the source of attraction for the other moving electrons.
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Thus, another electron (Electron 2 in Fig. 2.4 (b)) passing in the opposite direction

then is attracted to this displacement of the lattice. In a quantum mechanical view,

the motion of the lattice can be understood as the emission and absorption of phonons.

Hence, the indirect coupling of electrons through the phonons arises by the emission of

a phonon by one electron and its absorption by another. Given that the deformations of

the lattice – phonon is characterized by its frequencies, the cutoff energy ~ωc is expected

to be of the order of the Debye energy ~ωD = kBΘD [Tinkham, 2004].

Figure 2.4 Diagram of electron-phonon interaction in superconductors.

On the basis of Cooper pair formation and the electron-phonon interaction, Bardeen,

Cooper and Schieffer developed a microscopic theory, the so-called BCS theory [Bardeen

et al., 1957]. Several assumptions have been made to simplify the theoretical calculation.

The Fermi surface is assumed to be a sphere, i.e. isotropic in k-space. The electron-

phonon interaction potential −V , is assumed to be a constant over a range around ~ωD

about the Fermi energy EF. The excitation energy Ek of a quasi-particle (an electron

participating in the pairing) of momentum ~k can be express as [Tinkham, 2004]:

Ek = (∆2
k + ξ2

k)1/2,

where ξk = εk−EF, the single-particle energy relative to the Fermi energy; and ∆k is the

energy gap, and hence is the minimum excitation energy and essentially k-independent.
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The BCS theory also gives:

∆ ≈ 2~ωDe
−1/V D(EF),

here D(EF) is the density of states per spin at the Fermi level. This approximation is

under the condition that ~ωD � kBTc, which is called the weak-coupling limit.

The gap ∆ is associated with the energy needed for Cooper pair breaking. As tem-

perature increases, more and more pairs break, and the gap becomes smaller. At the

critical temperature Tc, the gap ∆ drops to zero. At a finite temperature, one can get

the following expression [Tinkham, 2004]:

1

V D(EF)
=

∫ ~ωD

0

tanh[(∆2
k + ξ2

k)1/2/(2kBT )]

(∆2
k + ξ2

k)1/2
dξ.

This gives:

kBTc ≈ 1.13~ωDe
−1/V D(EF),

and

∆(0) ≈ 1.764kBTc.

The specific heat jump at the critical temperature,

Cs − Cn
γTc

≈ 1.43,

where γ = 2π2

3
D(EF)k2

BT ;

at very low temperature, the specific heat can be approximated as

C ∝ ∆(0)2.5

T 1.5
exp(−∆(0)

kBT
).
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2.3 Magnetism

2.3.1 Larmor diamagnetic susceptibility and Curie law

In the presence of a uniform magnetic field, the contribution of an isolated moment

to the Hamiltonian of an ion (atom) is [Ashcroft and Mermin, 1976]

4H = µB(L + g0S) ·H +
e2

8mc2
H2

∑
i

(x2
i + y2

i ).

Here L and S represent the total electronic orbital and spin angular momenta of the

unfilled shell(s) of the atom respectively; µB, the Bohr magneton, is given by

µB =
e~

2mc
= 0.579× 10−8eV/Oe

and g0, the electronic g-factor, is given by

g0 = 2[1 +
α

2π
+O(α2) + ...] = 2.0023,

α =
e2

~c
≈ 1/137

and
∑
i

(x2
i + y2

i ) is the perpendicular distance of the electron from the field axis through

the nucleus and is summed over all the electrons in the atom.

It is clear that the first term in the Hamiltonian is the contribution from the angular

momenta. For simplicity, we start with examining an ion with zero spin and orbital

angular momentum in its ground state |0 >, i.e., an ion with all electronic shells filled.

In this case, we have J|0 > = L|0 > = S|0 >= 0. Consequently only the second term in

the Hamiltonian contributes to the field-induced shift in the ground-state energy:

4E0 =
e2

8mc2
H2

∑
i

(x2
i + y2

i ) =
e2

12mc2
H2 < 0|

∑
i

r2
i |0 >,

where ri is the the distance between the electron and the nucleus and is summed over

all the electrons in the atom.
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Accordingly the susceptibility of a solid with a volume of V , composed of N such

ions is given by

χ = −N
V

∂24 E0

∂H2
= − e2

6mc2

N

V
< 0|

∑
i

r2
i |0 > .

This negative susceptibility is known as the Lamor diamagnetic susceptibility, and

also frequently referred to as the Langevin susceptibility. It is used to describe the

magnetic response of the core electrons, i.e. electrons in filled shells, and can be rewritten

in the form of molar susceptibility [Ashcroft and Mermin, 1976]:

χmolar = −ZiNA
e2

6mc2
< r2 >= −Zi

e2

~c
NAa

3
0

6
< (r/a0)2 >,

here Zi is the total number of electrons in the ion. Given a0 = 0.529 Å, e2

~c = 1/137, and

NA = 0.6022 ×1024, we can get

χmolar = −0.79Zi × 10−6 < (r/a0)2 > cm3/mole.

The quantity < (r/a0)2 > is of order unity, hence, χmolar is typically of order 10−5,

which is very small compared with the angular momentum contribution to the mag-

netic susceptibility (see discussion below). It also should be noted that the Larmor

diamagnetic susceptibility is solely determined by the ion, i.e., Zi and r, and has no

temperature dependence. The noble gas atoms He, Ne, Ar, etc. have full filled shells,

thus, their magnetic susceptibility can be best described by the the Lamor diamagnetic

susceptibility.

If the shell does not have J = 0, the first term in the Hamiltonian will almost always

become dominant, and other contributions to the Hamiltonian can often be ignored.

With gJJ = L + g0S, by using the Wigner-Eckart theorem [Gottfried, 1966], the ground

state energy can be written as [Ashcroft and Mermin, 1976]:

< JLSJz|L + g0S|JLSJ
′

z >= gJ(JLS) < JLSJz|J|JLSJ
′

z >,

where gJ is the Landé g-factor, which can be computed as:

gJ(JLS) =
3

2
+

1

2
[
S(S + 1)− L(L+ 1)

J(J + 1)
].
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If only the lowest 2J + 1 states are thermally excited with appreciable probability,

the the free energy is given by:

e−βF =
J∑

Jz=−J

(e−βγHJz),

where β = 1
kBT

, γ = gJ(JLS)µB, and µB = e~
2mc

, is the so-called Bohr magneton.

This gives the magnetization as the following:

M = −N
V
gJµBJBJ(βgJµBJH),

where BJ(x) is the known Brillouin function.

In the low temperature limit (kBT � gJµBH), the magnetization becomes saturated,

i.e., each moment is perfectly aligned with the applied field and |Jz| = J , and we can

define the saturated moment as:

Msat = gJJµB.

In the high temperature (or low field) limit (kBT � gJµBH), the Brillouin function

can be expanded in power series, and the magnetic susceptibility can be approximated

as:

χ =
∂M

∂H
' NAJ(J + 1)g2

Jµ
2
B

3kBT
=
NAp

2
effµ

2
B

3kBT
=
C

T
.

This variation of the susceptibility with respect to the inverse of temperature is known

as the Curie law [Ashcroft and Mermin, 1976]. Here peff is the effective number of Bohr

magnetons, defined as

peff = [J(J + 1)]1/2gJ,

and the effective moment µeff = peffµB. The Curie constant C can be written as a

function of µeff :

C =
NAJ(J + 1)g2

Jµ
2
B

3kB

=
NAµ

2
eff

3kB

.

Comparisons of the experimental values of the effective moment and the saturated

moment with the theoretical calculations for trivalent rare earth ions (summarized in
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Table 2.1 Components of the orbital angular momentum L; the spin angular mo-
mentum S; the total angular momentum J ; the calculated values of the
Landé g-factor gJ, saturated moment µsat = gJJµB; effective moment
µeff = [J(J + 1)]1/2gJµB; and de Gennes factor dG for the trivalent rare
earth ions.

4f R3+ L S J gJ µsat/µB µeff/µB dG

0 La 0 0 0 - - - -

1 Ce 3 1/2 5/2 6/7 2.14 2.54 0.18

2 Pr 5 1 4 4/5 3.20 3.58 0.80

3 Nd 6 3/2 9/2 8/11 3.27 3.62 1.84

4 Pm 6 2 4 3/5 2.40 2.68 3.20

5 Sm 5 5/2 5/2 2/7 0.71 0.84 4.46

6 Eu 3 3 0 - - - -

7 Gd 0 7/2 7/2 2 7.00 7.94 15.75

8 Tb 3 3 6 3/2 9.00 9.72 10.50

9 Dy 5 5/2 15/2 4/3 10.00 10.64 7.08

10 Ho 6 2 8 5/4 10.00 10.61 4.50

11 Er 6 3/2 15/2 6/5 9.00 9.58 2.55

12 Tm 5 1 6 7/6 7.00 7.56 1.17

13 Yb 3 1/2 7/2 8/7 4.00 4.54 0.32

14 Lu 0 0 0 - - - -

Table 2.1) are useful in the experimental analysis of rare earth based compounds, such

as in the case of determining the concentration of rare earth elements, distribution of

moments in materials exhibiting metamagnetic transitions, etc.

2.3.2 Hund’s Rules

The total spin S, total orbital momentum L and total angular momentum J quantum

numbers are crucial for the theoretical determination of the magnetic properties of a local

moment material. The Russel-Saunders rule results in the total angular momentum J

with a quantum number | L+S |, | L+S−1 |,..., | L−S |. For each J value, there is 2J

+ 1 degeneracy with Jz = J , J-1,..., -J . Without considering the interactions between

the electrons, the ionic ground state would be degenerate, i.e., there would be plenty of
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ways of putting the electrons into the 2J + 1 levels. Nevertheless, this degeneracy is

considerably lifted by electron-electron, Coulomb interactions, as well as by the electron

spin-orbital interaction. The three Hunds rules as applied to electrons in a given shell of

an atom outline how electrons will occupy orbitals in such a way that the ground state

is characterized by the following [Ashcroft and Mermin, 1976; Kittel, 2005]:

• The ground state has the largest value of total spin S that is consistent with the

exclusion principle.

• For the maximum possible S value, the electrons are distributed between all possible

states in accordance with the exclusion principle, and such that the resulting L value is

maximum.

• For shells that are less than half-filled, the total angular momentum is given by J

= | L − S |. For shells that are more than half-filled, J = | L + S |. For the half-full

shell, the application of the first rule gives L = 0, and J = S.

The first Hund’s rule reflects the exclusion principle and the Coulomb repulsion be-

tween electrons. The exclusion principle prevents two electrons of the same spin from

occupying the same state at the same time. Therefore, the electrons with the same spins

are kept apart. Also being ”kept” apart results in lowering the Coulomb potential energy

for parallel spin electrons. The second rule can be best approached by model calcula-

tions, whereas the third rule is a consequence of the sign of the spin-orbital interaction

[Kittel, 2005]. The third rule deals with reducing the repulsion between electrons. It

can be understood from the classical picture that if all electrons are orbiting in the same

direction (higher orbital angular momentum) they meet less often than if some of them

orbit in opposite directions.

Using these rules, the ground state of the electronic configuration for the rare earth

ions can be determined. The calculated magnetic properties for the free, trivalent ions

are shown in Table 2.1.
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2.3.3 Mean Field Theory and Curie-Weiss Law

The Curie law has been derived to describe the paramagnetic behavior for the iso-

lated magnetic moments, i.e., moments without interactions. For materials having non-

negligible magnetic interactions, the mean field theory (also called Weiss’ molecular

theory) takes the interactions into account by postulating an effective internal field —

exchange field Heff — in addition to the external field H. This Heff is assumed to arise

from the thermal average of the surrounding moments and acts on each local moment.

Also, Heff is supposed to be proportional to the magnetization of the local moment which

it is acting on, and gives the following relation:

Heff = αM,

where α is a constant, independent of temperature.

Accordingly, the total magnetic field acting on each moment is H + Heff , and one

can substitute this into the Curie law and get:

M =
C

T
(H +Heff) =

C

T
(H + αM).

Solving for M and the susceptibility, one can get the Curie-Weiss law [Ashcroft and

Mermin, 1976] (seen in Fig. 2.5 ):

χ =
C

T − αC
=

C

T − θ
,

where θ = αC, representing the Curie-Weiss temperature. The sign of θ can be either

positive or negative, depending on the sign of α – the type of the interaction. α > 0

implies the internal interaction tending to line up the magnetic moments parallel to each

other, i.e., a ferromagnetic interaction, whereas α < 0 is the case that the magnetic

moments prefer to be antiparallel to each other, manifesting an antiferromagnetic inter-

action. The ordering temperature of an antiferromagnetic transition is called the Néel

temperature TN and is often identified by a well defined kink in the curve of χ(T ). The
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ratio of θ/TN can vary over a fairly large range around 1.0 especially when next-nearest-

neighbor interactions are provided for, and when possible sublattice arrangements are

considered is determined by the interactions between the magnetic moments [Kittel,

2005].

0 TTN

Curie - Weiss law  
        (T > TN) 

Antiferromagnetism

 C
T - 

0 T

Complex
behavior

Ferromagnetism

Curie - Weiss law  
        (T > TC) 

 C
T - 

 

 

T

Paramagnetism
Susceptibility 

Curie law

0

 C
T

Figure 2.5 Schematic diagrams of the temperature dependent magnetic susceptibility
of paramagnetic, ferromagnetic and antiferromagnetic systems. Note: TN

is the Néel temperature, the ordering temperature of an antiferromagnetic
transition [Kittel, 2005].

The Curie-Weiss law can be rewritten as:

1/χ =
1

C
(T − θ).

Thus, by plotting 1/χ(T ) (as shown in Fig. 2.6), one can obtain the effective moment

µeff from the slope and the Curie-Weiss temperature θ via extrapolating 1/χ to zero.

Consequently, the type and strength of the internal interaction in the paramagnetic

state can be evaluated via θ. It should be mentioned that although the Curie-Weiss

law is derived based on local moments system, it can be widely used for many itinerant

magnetic system as well, such as ZrZn2 [Seeger et al., 1995], MnSi [Wernick, 1972], etc.

2.3.4 de Gennes Scaling

The interaction of two spins can be written as

JijSi · Sj.
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Figure 2.6 Schematic diagrams of the inverse magnetic susceptibility as a function of
temperature of paramagnetic, ferromagnetic and antiferromagnetic systems.

For isotropic interaction, the spin momentum may be written in terms of the total

momentum J by combining J = L + S with L + 2S = gJJ, so that

S = (gJ − 1)J.

Consequently, one can get:

< |S · S| >= S(S + 1) = (gJ − 1)2J(J + 1).

Here we can define dG = (gJ − 1)2J(J + 1), which is the well-known de Gennes factor.

Within the mean field approximation, θ = αC ∝ S(S + 1), thus, one can find that the

Curie-Weiss temperature θ scales as the following:

θ ∝ (gJ − 1)2J(J + 1).

Therefore, the Curie-Weiss temperature can be simply viewed as directly proportional

to the de Gennes factor, which is determined by the quantum numbers, S, L and J . The

values of the de Gennes factor for each trivalent rare earth ion are listed in Table. 2.1.

Within the same framework of the mean field theory, if the crystal electric field (CEF)

is neglected, the Curie temperature TC (for ferromagnetic ordering) or Néel temperature
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TN (for antiferromagnetic ordering), can also be proportional to the de Gennes factor.

As shown in Table.2.1, Gd has the highest de Gennes factor, thus, compounds containing

Gd can be expected to have the highest ordering temperature in the series. It should

be mentioned that deviations from this scaling may occur when a strong CEF splitting

constrains the moments to be either along an axis or within a plane.

2.3.5 Pauli paramagnetism and Landau diamagnetism

The previous discussions of magnetism were developed to explain the magnetic prop-

erties of spatially localized moments. They are appropriate to understand the magnetism

of the insulators and semiconductors associated with 4f electrons. However, they do not

bear on the problem of the contribution of conduction electrons to the magnetic prop-

erties of metallic compounds. The 3d electrons in the transition metals often become

part of the conduction band, propagating in the materials, thus, their magnetic moments

can be remarkably different from those carried by the isolated atoms with partially filled

shells.

Figure 2.7 Diagram of Pauli paramagnetism. (a) No field applied; (b) Non-equilibrium
state in an applied field H; (c) Equilibrium state in H.

Within the independent electron approximation, the conduction electron system can

be viewed as a Fermi sea, which follows the Fermi-Dirac distribution f(ε) = 1
exp[(ε−µ)/kBT ]+1

(µ is the chemical potential), and obeys the Pauli exclusion principle. If the orbital re-

sponse can be neglected, the magnetic contribution from the conduction electrons can be
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considered as only coming from the spins. We can define n+ as the number of conduc-

tion electrons with spin moment parallel to the applied field H, and n− as the number

of conduction electrons with spin moment antiparallel to the applied field H. Then the

total magnetic moment of the system is:

M = µB(n+ − n−),

here we take g0 = 2. At T = 0, without applied field, n+ should equal to n−, as shown

in Fig. 2.7 (a). The total density of states (D(ε)) is equally distributed into spin up

and spin down parts, i.e., D+ = D− = 1
2
D(ε). Hence, the total magnetization is zero.

For H 6= 0, if the electrons interact with field only through their magnetic moments,

then the only effect of the field is to shift the energy of each electronic level by ±µBH,

according to whether the spin moment is parallel (+) or antiparalle (−) to H. Thus, the

density of state in the presence of H can be modified as:

D+(ε) =
1

2
D(ε− µBH),

and

D−(ε) =
1

2
D(ε+ µBH).

The number of electrons of each spin moment species is given by:

n± =

∫
dεD±(ε)f(ε).

The electrons with higher energy (+) will flow to the lower energy state (−) (Fig. 2.7

(b)), and reach the equilibrium state (Fig. 2.7 (c)). Most conduction electrons in a metal

have no possibility of flipping with the applied field, because most orbitals in the Fermi

sea with parallel moments are already occupied. Only the electrons within a range kBT

of the the top of the Fermi distribution have a chance to turn over in the field. Since

µBH is only of order 10−4 EF at 104 Oe, and EF is about 10−4kBT , the density of state

can be expanded as:

D±(ε) =
1

2
D(ε± µBH) =

1

2
D(ε)± 1

2
µBHD

′
(ε).
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Consequently, this gives

n± =
1

2

∫ EF

0

dεD(ε)± 1

2
µBHD(EF).

Therefore, at zero temperature the one can get the magnetization:

M = µ2
BHD(EF) =

3Nµ2
B

2kBTF

H,

with D(EF) = 3N
2kBTF

, and kBTF = EF. Correspondingly, the magnetic susceptibility is

given by:

χ =
3Nµ2

B

2kBTF

.

This is called the Pauli paramagnetic susceptibility. In contrast to the paramagnetic

susceptibility derived from the Curie law, it is essentially independent of temperature

and proportional to the density of state at the Fermi level. The Pauli paramagnetic

susceptibility can also be rewritten as:

χPauli = (
2.59

r/a0

)× 10−6.

As r/a0 is of order unity, χPauli has the minute size characteristic of Larmor diamagnetic

susceptibility, which is remarkably smaller than the paramagnetic susceptibility of the

magnetic ions. For T 6= 0, a contribution from the thermal excitation can be added:

χPauli = µ2
BD(EF)[1− π2

12
(
kBT

EF

)2].

Since kBT � EF, the second term can usually be ignored. However, temperature depen-

dence of χPauli can be observed for the case that sharp features of density of states exists

near the Fermi level EF.

The above discussion on the magnetism of conduction electrons mainly focuses on the

coupling of the spin moments and the magnetic field. In fact, there are also diamagnetic

effects arising from the coupling of the field to the orbital motion of the electrons. The

wavefunctions of the electrons can be modified by the magnetic field, which leads to a net
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non-vanishing magnetization antiparallel to H. Landau showed that for free electrons,

this diamagnetic susceptibility is:

χLandau = −1

3
χPauli.

Therefore, the total contribution of the conduction electrons to the magnetic suscepti-

bility is a combination of the Pauli paramagnetism and Landau diamagnetism. In a real

solid, the diamagnetic response for conduction electrons can be more complicated.

2.3.6 The RKKY interaction

The various types of mechanisms developed to describe the magnetic interactions

between the local moments can be roughly classified into two groups, depending on

whether the interaction is direct or indirect. The direct exchange interaction originates

from the direct Coulomb interaction among electrons from the two ions. However, for

rare earth interametallic compounds, the 4f electrons are very strongly bound, and

the 4f orbitals are relatively compact. Consequently, the possibility of direct exchange

interaction between the 4f orbitals on different sites is very small. Rather the primary

interaction of the magnetic moments in metallic compounds is via the polarization of

the conduction electrons, one type of the indirect exchange interaction. According to

Pauli paramagnetism, the magnetic susceptibility of conduction electrons arises from the

coupling of spins with the magnetic field. When a conduction electron is in the vicinity of

a rare earth ion, its spin interacts with the spins of the rare ions. An electron interacting

with one rare earth ion site will become polarized and in turn carry this information to

other 4f sites; all in a self-consistent manner. This coupling between conduction electrons

and the localized magnetic moments is generally known as the Ruderman-Kittel-Kasuya-

Yoshida (RKKY) interaction [Kittel, 2005].

In this model, the exchange interaction energy between a conduction electron with
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Figure 2.8 The polarization of the conduction electrons via the RKKY interaction
(where x = 2kF|RI −RJ |.

spin s and a local moments with spin S is:

4E = 2Jsfs · S,

where Jsf is the exchange parameter, which depends on the positions of the magnetic

moments RI and RJ . The magnitude of Jsf is between 10−1 and 10−2 eV. Assuming a

free electron like dispersion of the conduction electrons, one can get the following relation:

Jsf (RI −RJ) ∼ F (2kF|RI −RJ |),

where kF is the Fermi wavevector, and F (x) is given by:

F (x) =
x cosx− sinx

x4
.

As Jsf oscillates from positive to negative, as the distance between the two local moments

changes, the interaction varies from ferromagnetic to antiferromagnetic accordingly [El-

liott, 1972] (see in Fig. 2.8). The total exchange energy of the RKKY interaction is

given by:

E =
9πn2Γ2

2EF

∑
I 6=J

SI · SJF (2kF|RI −RJ |),
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where n is the average density of conduction electrons, Γ represents the interaction

coefficient and EF is the Fermi energy. Again, this damped oscillatory behavior of the

exchange energy with respect to the values of 2kF|RI −RJ |, indicates that the magnetic

ordering can be ferromagnetic or antiferromagnetic, and the ordering temperature also

can increase or decrease with changing R−R spacing.

2.3.7 Stoner theory

The discussion on the Pauli paramagnetism (section 2.3.5) did not take into account

the Coulomb repulsion and exchange interactions between electrons. For the transition

metals with their relatively large exchange interaction, the band can spontaneously split

for spin-up and spin-down electrons, which can lead to ferromagnetic ordering. Although

it is very complicated to solve the problem of electrons moving in the potential created

by all the other electrons, the Stoner theory was developed to explain this band ferro-

magnetism by proposing an exchange energy I between the d-band electrons which is

independent with their wave vectors. Based on the Pauli exclusion principle, the overall

wavefunctions of all the electrons must be antisymmetric. Consequently, two electrons

with the same spin can never be in the same place at the same time, whereas two electrons

with opposite spins can. Therefore, the electrons with opposite spins can be spatially

closer to each other, and hence on average will have a larger exchange energy I than two

electrons with the same spin. The total exchange energy of the system with N electrons

and magnetization M is given by

Eex = IN↑N↓ =
1

4
IN2 − 1

4
IM2,

N = N↑ +N↓,M = (N↑ −N↓)µB,

where N↑ is the number of electrons with up-spins, and N↓ is the number of electrons

with down-spins.
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Figure 2.9 Diagram of Stoner theory. (a) Spin-up spin-down balance state with an
exchange interaction; (b) Non-equilibrium state; (c) Ferromagnetic equilib-
rium state.

As shown in Fig. 2.9 (a), with the same number of spin-up and spin-down electrons,

the total magnetization M is zero, the total exchange energy has the maximum value

1
4
IN2. However, the interaction often can cause instability of the Fermi surface (Fig.

2.9 (b)), In this case, energy is minimized when electrons are transferred from one spin

state to the other. If a slice of thickness δE, i.e. the amount of D(EF)δE electrons are

transferred, the kinetic energy of the electrons will increase by:

4Ek =
1

2
D(EF)(δE)2,

and the total exchange energy will decrease by:

4Eex =
1

4
IM2 =

1

4
ID2(EF)(δE)2.

Accordingly, the total energy difference will be:

4E = 4Ek −4Eex =
1

2
D(EF)[1− ID(EF)

2
](δE)2.

As the spin-down electrons within the range of δE of the Fermi level are moved to the

spin-up band, the energy difference is proportional to (δE)2.

When ID(EF)
2

> 1, the so-called Stoner’s criterion, 4E < 0. This is the criterion for

instability with respect to ferromagnetism; if ID(EF)
2

> 1, then the system will exhibit

spontaneous magnetization, i.e. order ferromagnetically (Fig. 2.9 (c)). The saturated
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moment of the system in a ferromagnetic ground state may assume non-integral values,

corresponding to the band filling. The exchange energy I in this model is very difficult

to evaluate, and in practice it is adjusted to fit experiment data.

When ID(EF)
2

< 1, 4E > 0, the non-magnetic state is stable, and the system will

manifest paramagnetic behavior. With the applied field H, the change of the energy will

be:

2δE = IN↑ + µBH − (IN↓ − µBH) = I(N↑ −N↓) + 2µBH = ID(EF)δEµBH.

One can obtain the susceptibility as the following:

χ = µ2
B

D(EF)

1− ID(EF)
2

.

Therefore, the Pauli paramagnetic susceptibility is enhanced by the factor 1

1− ID(EF)

2

. And

the factor :

Z =
ID(EF)

2
.

is known as the Stoner enhancement factor. By adjusting Z, the magnetism can be tuned

systematically, as in the case of Y(FexCo1−x)2Zn20 and Gd(FexCo1−x)2Zn20 [Jia et al.,

2007]. The increase of Fe-concentration leads to the increases of Z value, which conse-

quently gives rise to a monotonic increase of the enhanced magnetic susceptibility of the

Y-based series and the magnetic ordering temperature and the saturated magnetization

of the Gd-based series.

The Stoner theory successfully explains the observed, non-integral, saturated mo-

ments for 3d transition metal elements (Fe, Co and Ni). Interesting magnetic behavior

may be observed for systems (Pd and Pt) close to the Stoner criterion, where Z . 1).

The Stoner theory is useful for describing the ground state of correlated, itinerant elec-

trons systems. However this theory is not able to explain the observed magnetic behavior

of these itinerant electron systems at finite temperature, specifically for T > TC.
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2.3.8 Arrott Plot

By definition, a ferromagnetic material possesses spontaneous magnetization within

a single domain below its Curie temperature TC. The magnetic susceptibility is given

by χ = M
Hi

= M
H0−4πDM

, and should go to infinity for T 6 TC; here Hi is the internal

field in the sample, H0 is the intensity of the applied field, and D is the demagnetization

factor. However, the determination of the Curie temperature via observing spontaneous

magnetization in M(H) measurements or tracking the divergent point of χ(T ) experi-

mentally is not without ambiguity. First, the true Curie temperature is found only in the

limit of H0 = 0, whereas H0 is always finite experimentally, resulting a higher transition

temperature than the true TC. Secondly, the presence of ferromagnetic impurities with a

higher TC or inhomogeneities in the case of alloys and compounds can also set obstacles

for approaching the H0 = 0 limit. To tackle these problems, a method was proposed to

determine the onset temperature of ferromagnetism, TC, by analysis of the isothermal

magnetization data, which is the so-called Arrott plot [Arrott, 1957].

M
2

H/M

T < Tc

T > T

T = T

c

c

Figure 2.10 Schematic diagram of the Arrott plot in the vicinity of TC.

For simplicity, we first examine a local moment with spin 1/2 system. In the param-

agnetic state, according to the Weiss’s molecular field theory, the magnetization is given



32

by:

M = M0 tanh(
M0(H + αM)

NAkBT
),

where M0 = NAgJµBJ is the spontaneous magnetization at zero temperature. This

equation can be rewritten as:

M0(H + αM)

NAkBT
= tanh−1(

M

M0

).

The right-hand side can be expanded in a power series for values of M �M0, giving:

M0(H + αM)

NAkBT
=

M

M0

+
1

3
(
M

M0

)3 +
1

5
(
M

M0

)5 + ...,

for which the inverse susceptibility, 1/χ, in the limit of zero field is given by: 1/χ =

NAkBT
M2

0
− α. As 1/χ = 0 at the Curie point, we can have TC =

αM2
0

NAkB
. Hence at T = TC,

M0H

NAkBTC

=
1

3
(
M

M0

)3 +
1

5
(
M

M0

)5 + ...

This equation shows the cubic relation between the field and magnetization where the

condition M � M0 is satisfied. Accordingly, this relation can be rewritten as: H/M ∝

M2 at TC. Figure 2.10 shows a schematic diagram of the isothermal magnetization in the

vicinity of TC for the data plotted as M2 versus H/M . Thus, the ferromagnetic ordering

temperature TC can be inferred from the magnetization data by noting the temperature

at which the low-field data pass though the origin.

In fact, the above relation is not only valid for a local moment system. Based on the

Landau theory of second order phase transitions, as long as the magnetization reverses

without change in magnitude when the effective field Heff is reversed, the magnetization

is an odd function of Heff and vice versa. Hence, for small values of M , we can have the

following expansion:

Heff = 1/χ+ β(
M

M0

)3 + γ(
M

M0

)5 + ...

Again, at TC, 1/χ = 0, and the relation H/M ∝M2 is valid for small values of M in both

local and itinerant magnetic systems. In addition, the coefficient of the M3 term β can
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also give information as to what models of magnetization are most suitable for describing

the results. It should be noted that deviations from linearity in the M2(H/M) data are

often observed experimentally. The curvatures in the Arrott plot may be associated with

the CEF effect, domain wall pinning, the coupling of magnetic impurity clusters with the

homogeneous maxtrix or other complex magnetic phenomena which can not be simply

defined as Landau type second order phase transition. Nevertheless, the isothermal

magnetization data crossing the origin is a criteria of the FM ordering based on the

mean field theory.

2.4 The de Haas-van Alphen effect

The de Hass-van Alphen (dHvA) effect is the oscillation of the magnetic moment

of a metal as a function of the static magnetic field intensity. The effect can only be

observed in high purity samples at low temperatures and high fields. The observation of

this phenomena is one of the powerful experimental methods that has been developed

for the determination of Fermi surface dimensions

Onsager and Lifshiz made a semiclassical approach in explaining the quantum os-

cillation phenomena. It is assumed the orbits of a electron in the magnetic field are

quantized by the Bohr-Sommerfeld relation [Kittel, 2005]∮
p · dr = (n+ γ)2π~,

here p is the momentum of the particle; n is an integer; and γ is a phase correction that

for free electrons has value 1/2. As the momentum of an electron in the magnetic field

can be expressed as:

p = ~k + eA/c,

here A is the vector potential, the above momentum path integral can be rewritten as∮
p · dr =

∮
~k · dr +

∮
eA/c · dr = (n+ γ)2π~ = −e

c
Φ,
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where Φ is the magnetic flux contained within the orbit in real space. Based on the

above relation, one can find the orbit of an electron is quantized, and the magnetic flux

can be written as:

Φn = (n+ γ)2π~c/e.

The flux unit 2π~c/e = 4.14 × 10−7 G cm2. By converting the orbit into wavevector

space, one can obtain the famous Onsager relation [Onsager, 1952]

4(
1

H
) =

2π~e
c

1

Ae(EF)
,

where Ae is any extremal cross-sectional area of the Fermi surface in a plane normal

to the magnetic field. From measurements of 1/H, we can deduce the corresponding

extremal cross-sectional areas. This periodicity in 1/H gives rise to striking oscillatory

effects, as what can be observed in the dHvA effect. The population of orbits on or near

the Fermi surface oscillates as H is varies, therefore, via the observation of the oscillatory

effects, one can reconstruct the Fermi surface.

As the temperature increases, the addition of extra scattering can attenuate the dHvA

feature, by causing the electrons to be scattered out of their orbits. As a consequence,

the Fermi surface is smeared. The Lifshitz-Kosevich (LK) equation has been developed

to tackle the effects of finite temperature and impurity scattering on the dHvA effect

[Shoenberg, 1984]:

M = −2.602× 10−6(
2π

HA′′ )
1/2 × GFT exp(−αpx/H)

p3/2 sinh(−αpT/H)
× sin[(

2πpF

H
)− 1/2± π

4
]

where α = 1.47(m/m0)× 105 G/K, A
′′

is the second derivative of the cross sectional area

of the Fermi surface with respect to wave vector along the direction of the applied field,

G is the reduction factor arising from electron spin, ρ is the number of harmonic of the

oscillation, and x is the Dingle temperature which is used to characterize the effect of

the smearing of Fermi surface due to the increase of temperature. From the slope of

ln(A/T ) plotted as a function of temperature, the effective masses can be calculated.
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2.5 Spin Glass

2.5.1 Definition

A spin glass can be defined as “a random, mixed-interacting, magnetic system char-

acterized by a random, yet co-operative, freezing of spins at a well-defined temperature

Tf below which a highly irreversible, metastable frozen state occurs without the usual

long-range spatial magnetic order” [Mydosh, 1993]. There are three important factors of

a spin glass system: randomness, mixed interactions and frustration. Randomness can

be either site randomness with a distribution of distances between the magnetic spins, or

bond randomness where the signs of the neighbouring couplings vary between ferro and

antiferromagnetic interactions. Randomness is needed to create disorder, and without

disorder, the magnetic ordering will lead to the standard ferromagnetic, ferrimagnetic

or antiferromagnetic type of long range order rather than spin glass. For a crystalline

system, site randomness can be introduced by substituting local moment bearing im-

purities onto the sites of a non-magnetic host. For example, substitution of Tb for Y

in (Y1−xTbx)Ni2Ge2 gives rise to spin glass states for x < 0.30 [Wiener et al., 2000].

The mixed interactions are needed to give rise to the competition between ferro and

antiferromagnetic interactions. Frustration is the consequence of the disorder and mixed

interactions, which creates a multdegenerate, metastable and frozen ground state for the

spin glass.

It is clear that the concentration of the magnetic moments is of great importance

in determining the magnetic state. As seen in Fig. 2.11, the schematic graph presents

the various concentration regimes for a canonical spin glass, which shows the different

types of magnetic behavior that exist as the concentration changes. At the very dilute

magnetic concentration (ppm), the magnetic impurities are isolated, and only couple

with the conduction electrons, which for hybridizing moments, can result in the Kondo

effect. Below the Kondo temperature, the moment disappears and the impurity appears
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Figure 2.11 Various concentration regimes for a canonical spin glass illustrating the
different types of magnetic behavior that exist. [Mydosh, 1993]

non-magnetic. Thus, for hybridizing impurities, the Kondo effect can prevent the for-

mation of spin glass (It should be noted, though, that for local moment impurities such

as Gd, this hypothetical Kondo temperature is probably indistinguishable from absolute

zero). As the concentration increases up to a few thousand ppm (' 0.5 at. %), the sys-

tem enters a new magnetic state, where the magnetic spins start interacting with each

other without any clustering. At this stage, the measurable properties (magnetization,

susceptibility, specific heat, and remanences) are universal functions of the concentra-

tion scaled parameters T/x and Hext/x, and in addition Tf ∝ x. With more and more

magnetic impurities, clusters of pairs and triplets (and higher) of spins are formed and

begin to influence the system. Around 1/2 at % , theses scaling laws can break down;

a non-scaling spin-glass regime occurs with Tf ∝ x2/3. As the concentration reaches 10

– 15 at. %, the magnetic state is dominated by these clusters, and is called mictomag-

netism. Finally, the percolation limit is reached, and system can form long-range ferro-
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or antiferromagnetic order with a well-defined TC or TN. The term “spin glass” can cover

the low-temperature state of the system from the dilute limit almost up to the perco-

lation limit for long-range order. It also should be noted that the transformation from

one regime to the next is gradual and smooth, without a sharp separation, i.e, critical

concentration.

Figure 2.12 Generic T − x phase diagram for a dilute magnetic alloy. [Mydosh, 1993].

A generic T −x phase diagram (ordering temperature versus the concentration of the

magnetic impurities) is presented in Fig. 2.12. Tk is the ‘average’ Kondo temperature,

and decreases as the concentration x increases. For Tk > Tf , it is called the weak moment

concentration regime. For x > x0, the spin-glass regime appears with first linear, fol-

lowed by a less than linear Tf dependence on x. As x is higher than xp, the percolation

limit is reached, and the system forms long-range magnetic ordering. The transition

temperature TC or TN increases as the concentration increases. Therefore, the magnetic

state can be tuned systematically via controlling the concentration of the magnetic im-

purities x. As in the case of the YxTb1−xNi2Ge2 compounds [Wiener et al., 2000], four

regions of magnetic states evolute successively as the Y-concentration increases. For

x < 0.375, the system has no long-range antiferromagnetic order and possess a magnetic

spin-glass state. In the region of 0.375 < x < 0.45, the antiferromagnetic transition and

the irreversibility temperature coincide. As x increase to the 0.45 – 0.75 region, both
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antiferromagnetic transition and irreversibility in χ(T ) can be observed, but not at the

same temperature. Finally, as x is above 0.75, two antiferromagnetic transitions exist,

along with an irreversibility temperature.

2.5.2 DC magnetic properties

Given the combination of the randomness, the competing interactions, and the mul-

tidegenerate and metastable ground state, a spin glass system exhibits many interesting

properties related to its co-operative but frustrated nature. In the following, we will

examine the DC magnetic properties of a spin glass system.

Figure 2.13 The reciprocal susceptibility as a function of temperature of CuMn: the
dashed lines are a linear extrapolation to determine θ and the solid line
represents the fit to the model calculations [Mydosh, 1993].

At high temperatures, the magnetic moments can be viewed as isolated moments,

showing standard paramagnetic behavior. In the paramagnetic state, the temperature

dependence of the magnetic susceptibility (χ = M/H) should follow the Curie-Weiss

law. Figure 2.13 shows 1/χ as a function of temperature of dilute Mn in a Cu host
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(CuMn) as an example. As temperature decreases, χ starts to deviate from the linear

behavior, indicating that the ferromagnetic clusters are beginning to develop out of the

paramagnetic background. The spin glass state can be considered as being built from

these clusters and short range correlations with in the random system. The starting

point of deviation moves to higher temperature as the concentration of Mn increases.

Given that the Curie-Weiss temperature represents a sum of all exchange interactions

in the paramagnetic state, the enhancement of the ferromagnetic interactions by Mn

substitution is also manifested by the increasing θ, as shown in Fig. 2.14. On the other

hand, the effective Bohr magneton number p0 stays relatively the same with various

concentrations, probably indicating a degree of local ferromagentism.

Figure 2.14 Effective Bohr-magneton number p0 and the Curie-Weiss temperature θ
as a function of concentration in CuMn: p0 and θ are determined from
least-squares fitting of the susceptibility at high temperatures [Mydosh,
1993].

Characteristic features of a spin glass transition can also be observed in the zero-field

cooled (ZFC) and small field cooled (FC) dc magnetization measured at temperatures

spanning Tf . As shown in Fig. 2.15, the magnetization of two concentrations of CuMn

were measured in an applied field of 6 Oe. Below Tf , the FC data ((a) and (c)) show a

tendency to saturation, and are fully reversible as temperature varies, whereas the ZFC

magnetization ((b) and (d)) decreases upon cooling, and is highly sensitive to the rate
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of temperature increase, dT/dt [Mydosh, 1993]. The temperature at which the FC and

ZFC magnetization data deviate from each other is used as the determination of the

freezing temperature Tf . And it is clearly shown that the Tf increases as Mn concentra-

tion increases, again implying strong interactions with more magnetic impurities. The

magnetization irreversibility at Tf and its field-history dependence clearly demonstrates

the existence of a multidegenerate groundstate in the spin glass system. In Fig. 2.16,

the dc susceptibility is shown for YxTb1−xNi2Ge2 with (a) x = 0.25 and (b) x = 0.30

in an applied field of 50 Oe for both ZFC and FC histories for H ‖ c [Wiener et al.,

2000]. As is shown, the ZFC and FC susceptibility data deviate from each other at the

low temperatures. Below Tf , the ZFC susceptibility decreases with temperature whereas

the FC susceptibility is nearly temperature independent — a clear manifestation of spin

glass state. The freezing temperature Tf is defined as the peak in the ZFC magnetization

data, and it increases as x increases: for x = 0.25, Tf = 2.5 ± 0.1 K and for x = 0.30, Tf

= 3.0 ± 0.1 K.

Figure 2.15 Field cooled ((a) and (c)) and zero-field cooled ((b) and (d)) magnetizations
(χ ≡ M/6 Oe) for CuMn (1 and 2 at. % as a function of temperature
[Mydosh, 1993].

A generic sketch on the ZFC magnetization isotherms of a spin glass at T � Tf is

presented in Fig. 2.17. The small initial slope near the origin is claimed to be comparable

with the ac-susceptibility. The virgin M(H) curve shows a S-shaped form, and hysteresis
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Figure 2.16 The low-temperature dc susceptibility of YxTb1−xNi2Ge2 with (a) x = 0.25
and (b) x= 0.30 in an applied field of 50 Oe for both zero-field-cooled (ZFC)
and field-cooled (FC) histories for H ‖ c [Wiener et al., 2000].

Figure 2.17 Schematic of zero-field cooled hysteresis loop for T � Tf illustrating the
S-shape, the lack of saturation, and the isothermal remanent magnetization
(IRM) [Mydosh, 1993].
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with the isothermal remanent magnetization (IRM) can be observed for both increasing

and decreasing field. The magnetization exhibits a tendency towards saturation as the

magnetic field increases. However, a full saturation Msat = gµBS can be hardly attained

for a spin glass system even at the lowest temperatures and concentrations. As T � Tf ,

the moments ‘freeze’, and the external fields are required to rotate and re-orient the

spins.

2.6 Quantum phase transition

A phase transition occurs when the equilibrium state of a system changes qualita-

tively, and the thermodynamic system transforms from one phase or state of matter to

another. A phase transition can be driven by many parameters – temperature, pressure,

chemical composition, magnetic or electric field etc. Based on Paul Ehrenfest, a phase

transition can be classified based on the behavior of the thermodynamic free energy as a

function of other thermodynamic variables. The lowest derivative of the free energy that

is discontinuous at the transition is used to identify the order of the phase transition.

A first-order phase transition exhibits a discontinuity in the first derivative of the

free energy with respect to some thermodynamic variable. The most common example

of this type of transition is boiling or freezing water. In this case, the phase transition

is accompanied by absorbing or releasing heat (latent heat), whereas the temperature of

the system will stay constant. All the other thermodynamic quantities (internal energy,

entropy, enthalpy, volume etc.) are discontinuous as well.

On the other hand, a second-order phase transition is continuous in the first derivative

whereas exhibiting discontinuity in a second derivative of the free energy. In particular,

the specific heat has a pronounced anomaly at the transition, such as superconducting

transition. The system having a second order phase transition should be either one

state or the other, i.e. the two states can not coexist in the same system with the same
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transition parameter. Landau gave a phenomenological theory of second order phase

transitions. An order parameter is introduced and the thermodynamic energy can be

expanded in power series in terms of this order parameter. The order parameter is a

function of temperature, defined as zero in the higher symmetry phase, and non-zero in

the lower symmetry ordered phase. A ferromagnetic transition can be a good example,

and the spontaneous magnetization can be identified as the order parameter, which

vanishes for temperatures above TC.

In a classical system, as the temperature approaches zero, the thermal fluctuations

will die out, and the system will be in its ground state. On the other hand, in a quantum

system, quantum fluctuations due to the Heisenberg uncertainty principle will always be

present, even at T = 0. Therefore, as the system gets close to zero temperature, quan-

tum fluctuations will dominate the system’s behavior, and possibly drive changes in the

ground state. A quantum phase transition (QPT) occurs at T = 0, when a non-thermal

parameter such as pressure, chemical composition, magnetic or electric field drives the

system through a phase change from one state to another state. For a system having

a second order QPT, its Hamiltonian H(g) considered as a function of a dimensionless

coupling g [Sachdev, 2001]. At a critical gc, there can be a level-crossing where an excited

level becomes the ground state, creating a point of non-analyticity of the ground state

energy. These non-analytical points in the ground state energy (g = gc) are defined as

the quantum critical points (QCP). Although the definition of a QPT is strictly valid

only for T = 0, the system’s behavior can still be determined by the QCP, as long as the

temperature is sufficiently close zero.

In the vicinity of a QCP, non-Fermi-liquid (nFL) behaviors can often be observed,

and the scaling analysis was developed as a theoretical model to describe these unusual

low-temperature phenomena. The scaling analysis is said to be an extension of the scaling

formalism in the Landau model, which describes critical behavior near a second order

phase transition at Tc [Stewart, 2001]. In the scaling analysis, at the QCP, the correlation
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Table 2.2 Critical exponents for magnetically ordered systems. The order parameter
as stated before is the magnetization, m, with the magnetic field H as the
conjugate field. t is the proximity to the quantum critical point and d is the
spatial dimensionality of the system [Vojta, 2003].

Exponent Definition Conditions

Specific heat α C ∝ |t|−α t→ 0, H = 0

Order parameter β m ∝ (−t)−β t→ 0 from below, H = 0

Susceptibility γ χ ∝ |t|−γ t→ 0, H = 0

Critical isotherm δ H ∝ |m|δsign(m) B →, t = 0

Correlation length ν ξ ∝ |t|−ν t→ 0, H = 0

Correlation function η G(r) ∝ |r|−d+2−η t = 0, H = 0

Dynamic z τc ∝ ξz t→ 0, H = 0

length, ξ, diverges as ξ ∝ t−ν , where ν is the critical exponent, and t is a dimensionless

measure of the proximity to the QCP and defined as t = |g − gc|/gc [Sachdev, 2001;

Vojta, 2003]. The correlation time (time needed for the fluctuations to decay) at the

QCP is found as: τc ∝ ξz, here z is the dynamic critical exponent. As a consequence,

many other physical properties show power law dependencies on the parameter t. The

set of the corresponding exponents, α, β, γ, etc., the so-called critical exponents are

summarized in Table. 2.2. These critical exponents are not independent on each other,

and they are connected by scaling relations: 2− α = 2β + γ, and 2− α = β(δ + 1); and

the hyperscaling relations: 2− α = dν as well as γ = (2− η)ν [Vojta, 2003].

The renormalization-group theory has been used to describe the quantum critical

phenomena, particularly in a ferromagnetically or antiferromagnetically ordered system

[Stewart, 2001]. The results of the model proposed by Hertz and Millis (seen in Table.

2.3), depend on the dimension d, the critical exponent z, the reduced temperature t, and

a control parameter g [Hertz, 1976; Millis, 1993]. For the itinerant magnetic systems, a

self-consistent renormalization study of the spin fluctuation near magnetic transition was

performed by Moriya and Takimoto [Moriya and Takimoto, 1995]. It is used to explain

the critical behavior in itinerant magnetic systems, and the application of this model
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Table 2.3 Temperature dependence of non-Fermi liquid behavior according to spin fluc-
tuation theories by Hertz, Millis, and Moriya [Hertz, 1976; Millis, 1993;
Moriya and Takimoto, 1995; Stewart, 2001].

Hertz-Millis

AFM z = 2 AFM z = 2 FM z = 3 FM z = 3

d = 3 d = 2 d = 3 d = 2

C/T γ − a
√
T c log(T0/T ) c log(T0/T ) T−1/3

∆χ T 3/2 χ0 − dT
∆ρ T 3/2 T T

TN/C (gc − g)2/3 (gc − g) (gc − g)3/4 (gc − g)

Moriya

AFM AFM FM FM

d = 3 d = 2 d = 3 d = 2

Cm/T γ0 − a
√
T −logT −logT T−1/3

∆χQ T−3/2 −(logT )/T T−4/3 −T−1logT

∆ρ T 3/2 T T 5/3 T 4/3

in a local moment system has limited satisfactory description of the low temperature

properties. It gives a more systematic treatment of couplings among different modes of

spin fluctuations. The critical exponents predicted by the self-consistent renormalization

model is also presented in Table. 2.3.

The itinerant ferromagnetic systems showing QPTs have attracted tremendous at-

tention, as a QCP in itinerant electron system is believed to be associated with enigmatic

quantum phases like magnetically mediated superconductivity and nFL behavior. Chem-

ical doping (e.g. NixPd1−x [Stewart, 2001] and UxTh1−xCu2Si2 [Stewart, 2001]), pressure

(e.g. MnSi [Thessieu et al., 1995] and UGe2 [Taufour et al., 2010]) are often used to tune

the magnetic orderings to zero and expose the non-Fermi liquid behavior. Take CePd

as an example [Stewart, 2001], it orders ferromagnetically at 6.5 K. By substituting Ni

for Pd, the Curie temperature is suppressed to zero for 95% Ni substitution. C/T varies

as − log T for CePd0.05Ni0.95 between 0.9 and 0.4 K. Pressure, another powerful method

of driving criticality, has an advantage of introducing clean (without disorder) pertur-
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bations into the system. ZrZn2, for instance, is a ferromagnet below 17 K at ambient

pressure. The Curie temperature can be driven to 0 K with applying pressure: pc ≈

7.5 kbars [Stewart, 2001]. At the critical pressure, nFL behavior is manifested: ρ is

∼ ρ0 +ATα for 1 K < T < 20 K. The critical component is temperature dependent: α ≈

1.6 for 10 K < T < 20 K and α becomes smaller as T < 10 K.
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CHAPTER 3. EXPERIMENTAL METHODS

3.1 High temperature solution growth method

The growth of single crystals of interest via the high-temperature solution method

depends on several important factors: solvent, initial concentrations and the temperature

profile [Canfield and Fisk, 1992; Canfield, 2010]. Solvent, also called flux in the high

temperature solution method, should have a relatively low melting temperature and offer

good solubility for the other components in the growth. A good solvent can decrease

the growth temperature, hold the volatile components to reduce the vapor pressure,

and incorporate all the constituent elements to create a homogeneous solution for the

synthesis. Choosing or developing a good solvent is vital for successful single crystal

synthesis via high temperature solution method, and more discussion on developing

solutions for sulfur-based compounds will be presented in Chapter 4 [Lin et al., 2012b].

Binary and ternary phase diagrams (if available or in existence) provide a map of the

initial concentrations and temperature profile for the high temperature solution growths.

For simplicity we can examine the Ba – Sn binary phase diagram shown in Fig. 3.1 as an

example [Massalski, 1990]. If the compound BaSn5 is to be grown, then, given that it is

a peritectically melting compound, methods that use cooling of stoichiometric (or near

stoichiometric) melt of BaSn5 will not give single phase BaSn5. With high temperature

solution method, BaSn5 can be readily grown in a solution rich in Sn without introducing

extra phases such as BaSn3. As long as the initial composition is more Sn-rich than that

of the composition of the liquidius line at the peritectic temperature (indicated by the
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star on diagram), then the primary solidification (on cooling) will be BaSn5. The starting

materials can be slowly heated up to high temperatures, for example 700 ◦C, and kept at

700 ◦C for a few hours to obtain a homogeneous solution. Then the growth can be quickly

cooled to about 425 ◦C, during which the liquid stoichiometry does not change. Once

the temperature drops below 425 ◦C, crystalline BaSn5 starts to form and the remaining

solution becomes increasingly Sn-rich. The cooling should be stopped at a temperature

above the eutectic temperature so that the excess solution can be decanted off. Also

since rapid cooling can cause multiple nucleation and dendritic growth, which will result

in small and distorted single crystals, slow cooling should begin at a temperature clearly

above the temperature at which the crystals start to nucleate. In the case of BaSn5, the

slow cooling begins at about 425 ◦C, and the material was cooled to 270 ◦C over a period

of 40 hours, at which temperature the excess flux was decanted. Long rod-shaped BaSn5

single crystals can be obtained from the growth [Lin et al., 2012c].

Figure 3.1 Binary phase diagram of Ba – Sn [Massalski, 1990].
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In the above case, an excess of one of the constituent elements of the desired com-

pound was used as the solvent, this is sometimes referred to as the self-flux method.

However, self-flux is not always a viable choice. In many cases, the the temperature

range associated with the primary solidification (between the peritectic temperature and

the eutectic temperature) can be limited, either too high, too narrow or non-existent. It

should be noted that the maximum temperature that can be used with growths in fused

silica tubes is very close to 1200 ◦C (at which point the fused silica starts to soften and

loose its structural integrity, and leads to collapse or explosion of the growth ampoules).

In other cases, a solvent with better solubility of the volatile elements is desired to reduce

the possible high vapor pressure. Therefore, an extra element (or combination of ele-

ments) is needed to act as a flux. A schematic, pseudo-binary phase diagram is presented

in Fig. 3.2 [Canfield, 2010]. To grow compound AB, C is used as a third element flux.

By growing AB out of C, the starting materials can be heated upto T1, quickly cooled

to certain temperature above T2, then followed by a slow cooling to T3, at which point

the crystals AB can be separated from the remaining liquid. For example C can be Sn

and AB can be CeSb as outlined in ref. [Canfield and Fisk, 1992].

Due to the lack about many information of phase diagrams, the specific nature of each

compound and the experimental conditions, growing single crystals via high temperature

solution method can be a process of trial and error. The growth profile can usually be

modified and optimized based on the previous growths.

3.1.1 Experimental Technique for Flux Growth

Generally, the starting materials were placed inside a 2 ml or 5 ml alumina crucible,

called the “growth crucible” (Fig. 3.3). Another crucible, called the ”catch crucible”,

is filled with quartz wool and placed, inverted on top of the growth crucible. The

crucibles were subsequently sealed in a quartz ampoule, under partial argon (high purity)

pressure. The materials were heated up to the desired maximum temperature, at which
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Figure 3.2 Schematic pseudo-binary phase diagram for the C – AB system. The dotted
curve represents a possible cooling curve and the associated composition of
the solution [Canfield, 2010].

the liquid solution homogenizes for a couple of hours. Then the ampoule is slowly cooled

to the decanting temperature, at which point the flux must be removed from the growth

crucible. This is done by quickly removing the ampoule from the furnace and inserting

it, inverted, into a centrifuge. During the spin, the quartz wool in the catch crucible acts

as a strainer which allows the excess flux to flow to the bottom where it solidifies, and

holds any crystals that may have detached from the growth crucible. In the following, the

experimental details of LaCrGe3 are presented as examples of growing single crystalline

ternary compounds by high temperature solution method.

A relatively deep eutectic point exists at 895 ◦C with a ratio of Cr : Ge = 15: 85 in

the Cr-Ge binary (indicated by the red star) [Massalski, 1990]. Cr15Ge85 can be used as a

flux, and by dissolving La in this flux, it is possible to grow La-Cr-Ge ternary compounds

via high-temperature solution method. Thus, the target compound LaCrGe3 (shown as

a red square in Fig. 3.5) was synthesized with an initial stoichiometry of La : Cr :

Ge = 13 : 13 : 74. High purity (> 3N) elements La, Cr and Ge were pre-mixed by
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Figure 3.3 Diagram of the ampoule used for crystal growth

Figure 3.4 Binary phase diagram of Cr – Ge [Massalski, 1990].
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Figure 3.6 Photo of a single crystalline LaCrGe3 sample on a millimeter grid.
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arc-melting to ensure the homogeneity. The ingot was then loaded into a 2 ml alumina

crucible and sealed in a fused silica tube under a partial pressure of high purity argon

gas. The ampoule containing the growth materials was heated up to 1100 ◦C over 3

h and held at 1100 ◦C for another 3 h. The growth was then cooled to 825 ◦C over

65 h at which temperature the excess liquid was removed. Single crystals of LaCrGe3

grew as hexagonal rods with typical size of ∼ 0.7 × 0.7 × 5 mm3 (shown in Fig. 3.6).

A considerable amount of second phase material was grown as the result of secondary

solidification, which was identified to be Cr-Ge binaries by powder x-ray diffraction.

3.2 Measurement Methods

3.2.1 Powder x-ray diffraction measurements

Powder x-ray diffraction data were collected on a Rigaku MiniFlex II diffractometer

with Cu Kα radiation at room temperature. Samples with clean surface were selected

for the measurement and ground into powder for the diffraction. In general, data col-

lection was performed with a counting time of 2 s for every 0.02 degree. refinement of

the data was conducted using the program Rietica [Howard and Hunter, 1998]. Error

bars associated with the values of the lattice parameters were determined by statistical

errors, and Si powder standard (a = 5.4301 Å) was used as an internal reference. For

air-sensitive samples, powder x-ray diffraction data on both non-oxidized and oxidized

sample were collected. Using BaSn5 as an example, the diffraction pattern of the non-

oxidized BaSn5 was taken from the powder of single crystals which was ground in the

glovebox. The sample powder was sealed by Kapton film during the measurement to

protect it from oxidization, as shown in Fig. 3.7. To study the oxidation effect, a sec-

ond x-ray diffraction was performed on the same powder after removal of a Kapton film

and a seven-hour exposure to the air. By comparing the diffraction patterns of both

non-oxidized and oxidized samples, we found that the diffraction pattern associated with
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BaSn5 phase completely disappeared, whereas the diffraction peaks associate with Sn

seemed unchanged. It is likely that the oxidized phase became the nanocrystalline small

or too disordered to diffract (see Chapter 5 for more details).

Figure 3.7 Air-sensitive sample for powder X-ray diffraction sealed by Kapton film.

3.2.2 Resistivity measurements

Measurements of the electrical resistivity were made by using a standard ac, four-

probe technique. For the non-air-sensitive compounds, the samples were usually polished

or cleaved into the desired bar shape. Platinum wires were attached to the bars with

Epotek H20E silver epoxy, and cured at 120◦C for ∼ 40 minutes. For the air-sensitive

compounds, to avoid oxidization, samples were usually not polished. Dupont 4929 silver

paint was used to attach the platinum wires, and generally ∼ 10 min drying in the air

is enough to create the electrical and mechanical connection. For the extremely air-

sensitive samples, glovebox is needed for whole process of sample preparation. Efforts

were made to reduce the contact resistance. With about 100 mA current flowed though

the contacts, the typical contact resistances can drop to less than 2 Ω. Temperature and

field dependent resistivity was measured using a Quantum Design, Physical Property

Measurement System (PPMS) and with LR700 AC resistance bridge in a Quantum
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Design, Magnetic Property Measurement System (MPMS). For measurements in PPMS,

the AC transport option was used with a frequency of 17 Hz and a current of 1 mA.

The temperature ranges from 1.85 K to 300 K, and the applied magnetic field can be

up to 50 kOe, 70 kOe, 90 kOe and 140 kOe depending on the equipment used. The

absolute values of resistivity are commonly accurate to ± 20% due to the irregularity of

the sample geometry and accuracy of measurements of electrical contacts’ position. The

residual resistivity ratio (RRR) is usually determined as ρ(300 K)/ρ(1.8 K). However,

in the presence of minority phase superconductivity, such as in the case of RNi1xBi2±y,

RRR is chosen as ρ(300 K)/ρ(5 K) so as to avoid any contamination from the minority

phase superconductivity.

3.2.3 Magnetization measurements

Measurements of field and temperature dependent magnetization were performed in

a Quantum Design MPMS in applied field 6 55 kOe or 70 kOe and in the temperature

range from 1.85 K to 300 K. For the superconducting and ferromagnetic materials, to

avoid the errors associated with demagnetization effects, rod-like samples were measured

with the magnetic field applied along the long edge. This minimized the demagnetization

factor and thereby the demagnetizing field.

3.2.4 Specific heat measurements

Temperature dependent specific heat measurements were performed in a Quantum

Design PPMS using the heat capacity option. The samples were attached to the heat

capacity platform with Aiezon N grease. To minimize the sample’s thermal contact with

the environment, the sample chamber was evacuated to ∼ 0.01 mTorr. A relaxation

technique was used for the specific heat measurements. For the measurement cycle, a

known amount of heat is applied at a constant power for a fixed time (heating process);

and then the sample is cooled for the same amount of time (cooling process). After
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each cycle, the heat capacity value can be obtained by fitting the entire temperature

response of the sample platform to a model which includes both thermal relaxation of

the sample platform to the bath temperature and the thermal relaxation between the

platform and the sample itself. To subtract the contribution of the sample platform and

grease from the final measurements, their thermal responses were measured separately

for the appropriate temperature ranges.

3.3 Experimental techniques in collaboration

Besides the experimental methods mentioned above, work in this thesis is based on

collaborations with researchers using other experimental techniques.

3.3.1 Wavelength dispersive spectroscopy

Given the nature of solution growth, the nominal concentration of the chemical sub-

stitution does not have to be the actual concentration in a grown crystal. Therefore,

elemental analysis was performed to determine the stoichiometry of the samples by us-

ing wavelength-dispersive x-ray spectroscopy (WDS) in a JEOL JXA-8200 electron probe

microanalyzer. The measurement was conducted with an accelerating voltage of 20 kV,

a probe current of 25 nA and a spot size of 5 µm. The integration time on peak, low

background and high background is 10 s, 5 s and 5 s, respectively. Only clear and shiny

surface regions were selected for determination of the sample stoichiometry, i.e., regions

with residual flux were avoided. For each compound, the WDS data were collected from

multiple points on the same sample. Counting statistics suggest there should be 1% or

less relative error due to counting. For the calculation of physical quantities, such as the

magnetization and specific heat, the actual stoichiometry xWDS was used in this thesis

as x rather than xnominal.
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3.3.2 Single crystal x-ray diffraction

Single crystal x-ray diffraction data were collected by Bruker APEX diffractometer

equipped with a CCD detector, using monochromated Mo Kα radiation (λ = 0.71073

Å). Reflections were gathered by taking three sets of 606 frames with 0.3◦ scans in ω

and with an exposure time of 10 s per frame at room temperature. The range of 2θ

extended from ∼ 4 to 57◦. The reflection intensities were integrated with the SAINT

program. The measured intensities were corrected for Lorentz and polarization effects

and were further corrected for absorption using the SADABS program as implemented in

the SAINT [SMART, 2005] program package. Intensity statistics and space group deter-

mination were carried out using XPREP, a subprogram in the SHELXTL software pack-

age. The structural models were obtained from direct methods using SHELXS -97 and

refined by fullmatrix, leastsquares procedures on F 2 as implemented in the SHELXTL

[SHELXTLPlus, 2003] package.

3.3.3 Magnetization under pressure

To study the pressure effect, low field magnetization under pressures can be measured

in MPMS. In the case of BaSn5 [Lin et al., 2012c], magnetization under pressures up to

∼ 10 kbar was measured using a commercial, HMD, Be-Cu pistion cylinder pressure cell

[QuantumDesign, 2012] with Daphne oil 7373 as a pressure medium and superconducting

Pb as a low temperature manometer [Eiling and Schilling, 1981]. With a moissanite anvil

cell [Alireza et al., 2007], pressures of up to 5.3 GPa can be achieved. The body of the

cell is made of Cu-Ti alloy and the gasket is made of Cu-Be. Daphne 7474 was used as

a pressure transmitting medium, and the pressure was determined at 77 K by the ruby

fluorescence technique. It should be noted that the data analysis of measurements with

high applied magnetic field are limited to the large background of the pressure cell (This

is the most likely source of apparent diamagnetic shifts in higher pressure data).
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CHAPTER 4. DEVELOPMENT OF VIABLE SOLUTIONS

FOR THE SYNTHESIS OF SULFUR BEARING SINGLE

CRYSTALS1

4.1 Abstract

The discovery of high temperature superconductivity in FeAs and FeSe based com-

pounds has once again focused the condensed matter community on the need to sys-

tematically explore compounds containing chalcogens and pnictogens. Whereas some

solution growth techniques have been developed to handle P and As, and Sb and Bi are

versatile solvents in their own right, S has remained a problematic element to incorpo-

rate into conventional solution growth. To a large extent its low boiling point, combined

with its polymeric nature in a molten state have made S an uninviting solvent. In this

paper we present our development of a range of binary sulfur bearing solutions (some

even sulfur rich) and demonstrate how we have been able to use these as useful starting

points for growth of wide range of transition metal – sulfur – X ternary compounds. We

present growth details and basic characterization data for Ni3Bi2S2, Co3Sn2S2, Fe2GeS4,

CoSSb, and CePd3S4. In addition we present a remarkably simple method for growth of

single crystalline Co with crystallization taking place below the Curie temperature.

1This chapter is a version of the published article: Lin, X., Bud’ko, S. L., and Canfield, P. C.,

“Development of viable solutions for the synthesis of sulfur bearing single crystals”, Philos. Mag., 92

(2012): 2436-2447.
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4.2 Introduction

Solution growth of single crystalline samples [Fisk and Remeika, 1989; Canfield and

Fisk, 1992; Canfield and Fisher, 2001; Canfield, 2010] for basic as well as applied physics

continues to be one of the most powerful synthetic tools in the field of superconductivity,

or more broadly, in the field of correlated electron materials. As implied in the name

of the technique, the need for a readily accessible and well understood solution to grow

the materials out of is a key, first step. Some compounds naturally lend themselves to

growth out of certain solutions; RSb2 or RAgSb2 out of Sb [Bud’ko et al., 1998; Myers

et al., 1999], YbAl3 out of Al [Canfield and Fisk, 1992; Hiess et al., 1995], RT2Zn20

out of Zn [Jia et al., 2007], (R = rare earth, T = Fe and Co columns). In other cases

the choice of solution is not as obvious, at least not to the novice: e.g. the growth of

CeSb or Yb14MnSb11 out of Sn [Canfield and Fisk, 1992; Fisher et al., 1999]. Sometimes

growths can be complicated by the special requirements imposed by one or more of

the constituent elements. For example the refractory nature of boron, combined with

limited, low temperature solubility, often restricts the choice of possible solutions; this

being said, the growths of RB6 out of Al [Canfield and Fisk, 1992] or RNi2B2C out of the

NiB eutectic [Canfield and Fisher, 2001] show that this can be overcome in many cases.

Recently, with the discovery of high temperature superconductivity in FeAs based

materials [Hosono, 2008; Rotter et al., 2008], there has been a large effort to develop

versatile and safe methods for growing As bearing compounds out of solution. Arsenic

presents an unpleasant pairing of high vapor pressure with toxicity in both its elemental

and oxide forms. The first solution grown single crystals of FeAs based superconductors

were synthesized using Sn as a solvent [Ni et al., 2008b], allowing for greatly reduced

vapor pressure as well as relatively dilute As solutions. A second, now commonly used,

solution was binary FeAs which, despite its high melting point, can be used between 1200

◦C and 1050 ◦C, although care does need to be taken in the preparation of the FeAs phase
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to minimize any free As that could cause unwanted partial pressure Ni-PRB08.

Given the precedent of FeAs-based superconductivity, combined with lessons learned

from earlier discoveries of high temperature and novel superconductivity in the cuprates,

MgB2 and the RNi2B2C compounds [Canfield, 2011], both the chalcogen and pnictogen

elements are being viewed as useful components in materials, specifically to tune the

band width. Whereas some viable solutions have been developed for the use of P and As

[Canfield and Fisk, 1992; Ni et al., 2008b,c], and whereas Sb and Bi are powerful solvents

in their own right [Canfield and Fisk, 1992; Canfield and Fisher, 2001; Canfield, 2010;

Bud’ko et al., 1998; Myers et al., 1999], there is a growing need to develop a wide range

of S-based solutions that can be utilized for growth of S-bearing materials, specifically,

transition metal – sulfur based binaries and ternaries. Although there is also a need

to try to develop Se- and Te- based solutions, these elements can be used as solvents,

at least over carefully monitored temperature and composition ranges [Sacchetti et al.,

2006].

In this paper we outline the use of S-X (X = non-transition metal) as well as S-

TM (TM = transition metal) solutions for the growth of S-bearing compounds. The

samples we have been able to grow: Bi2S3, Pd4S, Ni3Bi2S2, Co3Sn2S2, Fe2GeS4, CoSSb,

and CePd3S4 should be viewed as proof of principle compounds rather than defining

any significant subset of what can (and hopefully will) be grown from these and other,

related solutions.

4.3 Experimental Details

Powder x-ray diffraction data on all samples were collected by a Rigaku Miniflex

diffractometer with Cu Kα radiation at room temperature. The error bars were de-

termined by systematic errors which had been characterized by Si standard. Magnetic

field and temperature dependent DC magnetization measurements were performed in a
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Quantum Design MPMS-5 SQUID magnetometer. Measurements of the electrical resis-

tivity were made by using the standard ac four-probe method with Pt wires attached by

Epotek H20E silver epoxy. Both Quantum Design MPMS-5 SQUID magnetometer with

LR-700 resistance bridge and Quantum Design PPMS instrument with the ACT option

were used in the resistivity measurement.

4.4 Results

4.4.1 Sulfur – non-transition metal binaries

A survey of binary phase diagrams [Massalski, 1990] reveals that several metal /

metalloid elements have limited to moderately accessible liquidus lines (temperature

below 1200 ◦C, relatively low vapor pressure and broad range in concentration) on the

metal / metalloid rich side. Of these Bi is the most promising (see Fig 4.1) with a wide

range of solubility on the Bi-rich side of Bi2S3. Given our initial concern about possibly

high partial pressure of sulfur vapor above this melt, we performed several trial growths

(using furnaces in vented containment boxes) with increasing amounts of sulfur relative

to bismuth. We have found that we can safely bring a mixture of S40Bi60 up to 1000 ◦C

without any detectable condensation of S outside of the growth crucible and also without

any indication of high vapor pressures. Upon cooling such mixtures to 400 ◦C over 36

hours we grew single crystals of Bi2S3 that could be separated from the remaining liquid

via our standard centrifugal decanting method [Canfield and Fisk, 1992; Canfield and

Fisher, 2001; Canfield, 2010]. The inset to Fig 4.1 shows the blade-like rod-shaped single

crystals with mirrored surfaces.

Having established that a Bi-S melt can be heated to at least 1000 ◦C we proceeded

to grow a transition metal – bismuth – sulfur ternary compound: Parkerite, Ni3Bi2S2,

out of a Bi-rich melt. Whereas this is a known mineral it has primarily been synthe-

sized in polycrystalline form, or in very small single crystalline form via chemical vapor
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transport [Sakamoto et al., 2006; Baranov et al., 2001]. Elemental Bi, Ni and S can be

combined in a 2 ml Al2O3 crucible with an initial stoichiometry ranging from Bi88Ni6S6

to Bi70Ni17S13, sealed in an amorphous silica ampoule, and heated to 1050 ◦C over 2-6

hours, followed by a slow cooling to 550 ◦C and a decanting. The resultant single crystals

have typical dimensions of ∼ 1 × 4 × 0.5 mm3, but can have much bigger surface areas

(see inset to Fig 4.3, below). The powder x-ray diffraction data refines to a monoclinic

cell with a = 11.051(2) Å, b = 8.075(1) Å, c = 7.931(1) Å, and β = 133.9(1) ◦, consistent

with the reported unit cell [Sakamoto et al., 2006; Baranov et al., 2001]. The temper-

ature dependent electrical resistivity data are shown in Fig 4.2, manifesting a residual

resistivity ratio (RRR) = ρ(300 K) / ρ(2.0 K) of greater than 17. The inset to Fig 4.2

shows the low temperature resistivity and clearly shows a sharp transition to the super-

conducting state near 0.80 K, a value consistent with earlier reports on polycrystalline

samples [Sakamoto et al., 2006]. Figure 4.3 presents anisotropic Hc2(T ) data for the

applied field parallel to the a axis and for the field applied within the bc plane. There is

relatively little anisotropy, approximately 1.3, with the Hc2(0) curves based on the offset

criterion extrapolating to values between 200 and 300 Oe. The onset and offset criteria

used for determining transition temperatures are shown in the inset to Fig 4.2.

Although the Sn-S binary phase diagram (shown schematically in Fig 4.4) offers a

much smaller region of solubility on the Sn-rich side, this solution can still be used to

grow S-based compounds; for example Co3Sn2S2, a Shandite structural variant [Zabel

et al., 1979; Natarajan et al., 1988] can be readily grown (inset to Fig 4.5b). These single

crystals were grown from a ternary melt with an initial composition of Sn86Co8S6 that was

heated to 1050 ◦C and then slowly cooled to 700 ◦C over 60 hours. Once the excess liquid

was decanted, the resulting, large, thin, hexagonal plates were readily removed from the

growth crucible. Powder x-ray diffraction data refines to a hexagonal cell with a =

5.373(1) Å and c = 13.178(2) Å, consistent with the reported unit cell [Natarajan et al.,

1988; Weihrich and Anusca, 2006]. Anisotropic, temperature dependent magnetization
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data (Fig 4.5a) reveal a ferromagnetic phase transition. The T > TC data, plotted as

H/M(T ) data in Fig 4.5b, reveal a clear Curie-Weiss behavior with an effective moment

of ∼ 0.96 µB per Co for the field along the c axis. Temperature dependent resistivity (in

zero applied magnetic field) data (Fig 4.6) reveal a clear loss of spin disorder scattering

below 175 K.
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Figure 4.4 The Sn – S binary phase diagram (based on ref. [Massalski, 1990]) [Lin
et al., 2012b]

The S-Sb binary phase diagram (shown schematically in Fig 4.7) also offers a range

of S-solubility, especially for Sb-rich solutions, albeit at higher temperatures (due to

the higher melting temperature of Sb relative to Bi and Sn). We have been able to

grow CoSSb (paracostibite) as well as the non-Sb-bearing Fe2GeS4 using Sb-rich melts.

Whereas previous synthesis CoSSb has been in polycrystalline form, often utilizing high

pressure solid state reactions [Carlini et al., 2011; Henry et al., 1975], we were able to
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grow CoSSb by cooling a Sb60Co20S20 melt from 1000 ◦C to 650 ◦C over 18 hours. Even

with this relatively high cooling rate, large single crystals could be removed from the

excess liquid via decanting (see inset to Fig 4.8). Powder x-ray diffraction data refines

to an orthorhombic cell with a = 5.835(1) Å, b = 5.950(1) Å, and c = 11.661(2) Å, con-

sistent with the reported unit cell [Carlini et al., 2011; Henry et al., 1975]. Temperature

dependent magnetization measurements were made on these semiconducting samples in

an applied field of 50 kOe (Fig 4.8) showing that CoSbS is essentially non-magnetic

(showing a slight Curie tail at low temperatures, most likely attributable to residual flux

/ impurities).
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Figure 4.7 The Sb – S binary phase diagram (based on ref. [Massalski, 1990]). [Lin
et al., 2012b]

Fe2GeS4 (a sulfide variant of the Mg2SiO4, olivine, structure) can also be grown in

single crystalline form from excess Sb by combining elements in the ratio Sb65Ge14S14Fe7,
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heating to 900 ◦C and then cooling to 600 ◦C over 40 hours. The plate-like single crystals

remaining in the growth crucible after decanting are shown in the upper inset to Fig 4.9.

Powder x-ray diffraction data refines to an orthorhombic cell with a = 12.477(2) Å, b =

7.205(1) Å, and c = 5.902(1) Å, consistent with the reported unit cell [Junod et al., 1995].

Multiple crystals were chosen for the temperature dependent magnetization measurement

of Fe2GeS4, as shown in the main body of Fig 4.9 and the higher temperature, inverse

susceptibility data for T > 100 K are shown in the lower inset. These data are consistent

with the reported cascade of magnetic transitions, TN ∼ 150 K followed by a lower

temperature, first order phase transition to a state with a net ferromagnetic component

below T > 70 K [Junod et al., 1995].
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Two other S-based binary phase diagrams that are promising for use as sulfur bearing

liquids are the Pb-S and In-S binaries. For the case of Pb-S (see Fig 4.10a) we have been

able to grow single crystals of PbS by cooling Pb90S10 from 1000 ◦C to 600 ◦C over 15

hours. The crystals (inset to Fig 4.10a) grow as well faceted cubes with twinning along

the 111 direction. To date we have not grown a ternary compound of any significant size

out of this melt, but there is no reason to doubt its use. The In-S binary phase diagram

(Fig 4.10b) also appears to be promising (to some extent resembling a lower temperature

variant of the Sb-S binary) and will be explored further in the near future.
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Figure 4.10 (a) The Pb – S binary phase diagram (based on ref. [Massalski, 1990]).
Inset: picture of single crystalline PbS on a millimeter grid. (b) The In –
S binary phase diagram (based on ref. ?]). [Lin et al., 2012b]

4.4.2 Sulphur – transition metal binaries

Although S-X (X = Bi, Sn, Sb, Pb, In) binary solutions can be used for the growth

of transition metal based compounds, especially ternary compounds that contain X as

the third element, more versatile solutions can be found for the growth of Ni, Co, and

Pd bearing sulfide compounds; the use of the relatively deep eutectics in the transition

metal – sulfur binaries potentially allows for the growth of a wide range of TM – S –
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X compounds. Figure 4.11 shows the Pd-rich side of the Pd-S binary phase diagram,

specifically the deep eutectic near 28% S. Binary melts can be made from elemental

mixtures of powdered Pd and S, combined in alumina crucibles. For sulfur content

ranging from 20 to 50 % atomic heating slowly to slightly above 1000 ◦C is sufficient to

reach a liquid state.
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et al., 2012b]

As an example, Pd4S was grown by cooling a melt of Pd77S23 from 780 ◦C to 660

◦C and decanting. Powder x-ray diffraction data refines to a tetragonal unit cell with a

= 5.117(1) Å, and c = 5.599(1) Å, consistent with the reported unit cell [Raub et al.,

1965]. Figure 4.12 presents the temperature dependent normalized electrical resistivity

of Pd4S. As reported in earlier work [Raub et al., 1965], there is no superconductivity

detected down to our base temperature of 1.8 K, but the substantial RRR value, 754
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and the large magnetoresistance both indicate that the crystals grow with a very low

number of impurities / defects. At 1.8 K, a power law fit shows that4ρ(H)/ρ(0) ∝ H1.7,

this is possibly due to the multi-sheet Fermi surface. At 90 kOe, the magnetoresistance

decreases as temperature increases. This is probably a consequence of the magnetoresis-

tance following the Kohler’s rule, and is similar to the behaviour of RAgSb2 compounds

[Myers et al., 1999].
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Figure 4.12 Temperature dependent resistivity of Pd4S in zero field, and in 90 kOe.
Inset: magnetoresistance of Pd4S at T = 1.8 K, the red dashed line corre-
sponds to 4ρ(H)/ρ(0) ∝ H1.7. [Lin et al., 2012b]

Ready access to a Pd-S melt offers the possibility of exploring Pd – S – X ternaries.

For example, well formed single crystals of the ternary compound, CePd3S4 were grown

were grown out of a melt with an initial stoichiometry of Ce5Pd58.8S36.2 that was slowly

cooled from 1000 ◦C to 700 ◦C over 65 hours. Powder x-ray diffraction data refines

to cubic cell with a = 6.728(1) Å, consistent with the reported unit cell [Abe et al.,
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1999]. Figures 4.13 and 4.14 present the temperature dependent electrical resistivity and

low field magnetization of a single crystal of CePd3S4. Upon cooling below 6.4 K, a

ferromagnetic state develops [Abe et al., 1999]. This phase transition is exquisitely clear

in the resistivity data as well as in the sudden increase in magnetization. CePd3S4 is

one of a small number of known ferromagnetic, Ce-based, intermetallic compounds; it

will be of great interest to study the effects of applied pressures on the low temperature,

magnetic state, specifically to search for possible pressure induced, quantum critical

points [Colombier et al., 2011].
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Figure 4.13 Temperature dependent resistivity of CePd3S4 in zero field. Inset: picture
of single crystalline CePd3S4 on a millimeter grid. [Lin et al., 2012b]

Co-S and Ni-S also have very compelling (and deep) eutectics, as shown in Fig 4.15.

For Ni-S we have been able to grow single crystals of elemental Ni by slow cooling of

Ni80S20 melts from 1100 ◦C to 725 ◦C over 50 hours. We have been able to do this
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starting with stoichiometric mixtures of either (a) NiS and elemental Ni (powder) or (b)

elemental sulfur and elemental Ni. For the case of Co-S, single crystals of elemental Co

were grown by cooling a mixture of Co65S35 from 1150 ◦C to 900 ◦C over 50 hours. In

this case, given the very high Curie temperature of elemental Co, we have been able to

grow single crystals of a ferromagnetic compound, in the ferromagnetic state. This opens

up a range of experiments that allow for the exploration of how applied magnetic field

affects the nucleation and growth of highly magnetic compounds.
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Figure 4.15 (a) The Co – S binary phase diagram (based on ref. [Massalski, 1990]). (b)
The Ni – S binary phase diagram (based on ref. [Massalski, 1990]). [Lin
et al., 2012b]

The fact that we can create and handle Ni-S and Co-S liquids for temperatures ranging

from 1100 ◦C to 700 ◦C, with as much as 50% S content, means that Ni – S – X and Co

– S – X ternary compounds are as accessible as the Pd – S – X compounds discussed

above. Although Pd, Co and Ni represent the majority of the readily accessibly phase

space for S – transition metal binaries, they also represent the most promising of the

3d and 4d elements for the discovery of compounds with reduced (or fragile) moment

magnetic ordering, the kind of compounds that are thought to be promising parent

materials for possible high temperature superconductivity [Canfield, 2011]. In addition,
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Co-, Ni-, and Pd-S based compounds represent a large number of the promising mineral

based compounds that exhibit metallic or semi-metallic properties, again making them

promising for exploration for correlated electron states [Roberts et al., 1990].

4.5 Summary

In this paper we present the results of our initial development of S-based solutions

for the exploration of S-based compounds as possible hosts for high temperature super-

conductivity. We have been able to grow ternary compounds out of Bi-S, Sn-S, Sb-S,

and Pd-S and have shown that Pb-S, In-S, Ni-S and Co-S hold comparable potential.

We anticipate the use of these solutions will allow for the discovery of new phases as well

as ground states.
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CHAPTER 5. PHYSICAL PROPERTIES OF SINGLE

CRYSTALLINE BaSn5
1

5.1 Abstract

We present a comprehensive study of the binary intermetallic superconductor, BaSn5.

High-quality single crystalline BaSn5 was grown out of Sn flux. Detailed themodynamic

and transport measurements were performed to study BaSn5’s normal and supercon-

ducting state properties. This material appears to be a strongly coupled, multiband

superconductor. Hc2(T ) is almost isotropic. De Haas-van Alphen oscillations were ob-

served and two effective masses were estimated from the FFT spectra. Hydrostatic

pressure causes a decrease in the superconducting transition temperature at the rate of

≈ −0.053 ± 0.001 K/kbar.

5.2 Introduction

To search for new superconductors, one of many ways is to look for compounds that

share similar features with the already reported superconductors. On the one hand,

BaSn5 has a similar band dispersions near the Fermi level (EF) as A15 type supercon-

ductors, such as V3Si and Nb3Sn [Fassler et al., 2001]. On the other hand, BaSn5 forms

1This chapter is based on the published article: Lin, X., Bud’ko, S. L., and Canfield, P. C., “Physical

properties of single crystalline BaSn5”, Philos. Mag., 92 (2012): 3006-3014, including the Corrigendum:

Lin, X., Jesche, A., Bud’ko, S. L., and Canfield, P. C., “Physical properties of single crystalline BaSn5”,

Philos. Mag., 92 (2012): 3006
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in P6/mmm structure, a variant of AlB2 structure, the prototype of MgB2 which super-

conducts at ∼ 40 K [Nagamatsu et al., 2001; Kwok et al., 2003; Canfield and Bud’ko,

2005; Wilke et al., 2010].

The first study of BaSn5 can be traced back to 1979 [Moos and Shuppe, 1979], how-

ever, only recently has its structure been solved [Fassler et al., 2001]. As one of the

alkaline earth stannides group of superconductors (for SrSn4, SrSn3, BaSn3 the super-

conducting transition temperatures are ∼ 4.8 K [Hoffmann and Fassler, 2003; Lin et al.,

2011], ∼ 5.4 K [Fassler and Hoffmann, 2000] and ∼ 2.4 K [Fassler and Kronseder, 1997]

respectively), BaSn5’s superconducting transition temperature is reported to be ∼ 4.4 K

[Fassler et al., 2001]. So far, only its low temperature and low field magnetization has

been characterized on polycrystalline samples [Fassler et al., 2001].

In this article we report the growth of single crystalline BaSn5, and the measurement

of its thermodynamic and transport properties. Both the superconducting and normal

states are characterized. We also present the effect of pressure on the superconduct-

ing properties of BaSn5, and the observation of low temperature de Haas-van Alphen

oscillations.

5.3 Experimental Details

Single crystals of BaSn5 were grown out of excess Sn by the high-temperature solution

technique [Canfield and Fisk, 1992]. Elemental Ba and Sn with an atomic ratio of

Ba8Sn92 were placed in a 2 ml alumina crucible. A second catch crucible stuffed with

silica wool was placed on the top of the growth crucible. Both crucibles were sealed

in a silica ampoule under approximately 1/3 atmosphere of high purity argon gas. To

prevent oxidization of the growth materials, the packing and assembly of the ampoule

was performed in a glovebox with a nitrogen atmosphere. This ampoule was heated up

to 700 ◦C, then cooled to 425 ◦C, followed by a slow cool over a period of 40 hours to
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270 ◦C, at which temperature the excess flux was decanted from the crystals. Crystals of

BaSn5 grown in this manner form in rod-like shape of a few mm in length and sub-mm

in the other two dimensions. Due to the samples’ air-sensitivity, crystals were kept in

the glovebox, and efforts were made to minimize their exposure during measurement.
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Powder x-ray diffraction data on both non-oxidized and oxidized sample were col-

lected by a Rigaku Miniflex diffractometer with Cu Kα radiation at room temperature.

The diffraction pattern of the non-oxidized BaSn5 was taken from the powder of BaSn5

single crystals which was ground in the glovebox. The sample powder was sealed by

Kapton film during the measurement to protect it from oxidization. To study the oxida-

tion effect, a second x-ray diffraction was performed on the same powder after removal of

Kapton film and a seven-hour exposure to the air. The lattice constants of non-oxidized

BaSn5 were statistically determined by measurements of multiple samples with Si (a =
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5.4301 Å) as an internal standard.

Temperature- and magnetic-field dependent dc magnetization data were measured in

a Quantum Design MPMS-5 SQUID magnetometer. The ac resistance was measured via

a standard four-probe method in a Quantum Design PPMS instrument with the ACT

option. Platinum wires were attached to the sample using Dupont 4929 silver paint

with the current approximately flowing along the longest dimension (crystal’s c-axis).

Resistance as a function of temperature was measured at different magnetic fields with

field’s direction parallel to c-axis and ab-plane respectively. A relaxation technique was

applied in the heat capacity measurements in a PPMS instrument. For the measurement

of low field dc magnetization under pressure, a commercial, HMD, Be-Cu piston-cylinder

pressure cell [QuantumDesign, 2012] was used. The highest pressure reached ∼ 10 kbar

with Daphne oil 7373 as a pressure medium and superconducting Pb as a low temperature

pressure gauge [Eiling and Schilling, 1981].

5.4 Results and discussion

Figure 5.1 presents the comparison of powder x-ray diffraction on both non-oxidized

and oxidized sample. The diffraction pattern from the non-oxidized sample confirms

that the synthesized crystals are BaSn5 with P6/mmm structure. The obtained lattice

parameters are a = 5.368(4) Å, c = 7.097(4) Å, consistent with the reported data [Fassler

et al., 2001]. Together with BaSn5’s diffraction peaks, several peaks from Sn flux residue

are also visible in the diffraction pattern. In contrast, after a seven-hour exposure to

air, the same specimen lost all its diffraction peaks of BaSn5. As shown in Fig 5.1, only

Sn’s diffraction peaks survived, with their intensities essentially unchanged. The disap-

pearance of BaSn5 under the powder x-ray diffraction is probably due to the oxidization

of BaSn5, resulting in phases that are too small or too disordered to diffract. Similar

phenomena was also observed in the powder x-ray diffraction data of non-oxidized and
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oxidized single crystalline SrSn4 [Lin et al., 2011].

0 100 200 300
0.00

0.25

0.50

0.75

1.00

0 2 4 60.0000

0.0005

0.0010

 

 

(3
05

K
)

T (K)

BaSn5

RRR  1200

H = 0
I  (ab)

 

 

(3
05

K
)

T (K)

Tc 4.4 K

Figure 5.2 The temperature-dependent, normalized resistivity of BaSn5. Inset: low
temperature data showing the superconducting transition. [Lin et al., 2012c]

Zero-field, in-plane resistivity of BaSn5 as a function of temperature is presented in

Fig 5.2. Due to the sample’s irregular shape in cross section and its air-sensitivity, its

resistivity is normalized with respect to the room temperature value. To within factor of

25%, the room temperature resistivity reaches approximately 100 µΩ cm. In the higher

temperature region, the resistivity manifests a typical metallic behaviour, increasing

linearly as the temperature rises. The very substantial residual resistivity ratio (RRR)

= ρ(305 K) / ρ(5.0 K) ∼ 1200 indicates that the crystals grow with a very low number

of impurities/defects (a conclusion further supported by the observation of quantum

oscillations, discussed below). The inset to Fig 5.2 shows the low temperature resistivity

and a sharp transition to the superconducting state with offset at about 4.4 K, which is

consistent with the literature data [Fassler et al., 2001].

The temperature dependent dc magnetic susceptibility, M/H, with the magnetic field
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[Lin et al., 2012c]

parallel to c-axis and ab-plane is shown in Fig 5.3. For an applied field of 50 kOe, the

normal state of BaSn5 exhibits diamagnetic behavior in both directions, and essentially

does not change with temperature in the higher temperature region. Small anisotropy can

be detected above 20 K, with absolute value of |(M/H)ab| > |(M/H)c|. However, in the

low temperature region, a dramatic enhancement of the diamagnetic feature, especially

with field parallel to c-axis, is clearly seen in the inset to Fig 5.3. These sudden changes

in M/H are most likely brought by de Haas-van Alphen oscillations are shown in the

upper inset to Fig 5.4.

To study de Haas-van Alphen oscillations in BaSn5, dc magnetization as a function of

applied magnetic field at several different temperatures was measured (Fig. 5.4). How-

ever, due to the sample’s air-sensitivity and irregular shape in ab-plane, only studies

with field parallel to c-axis are included in this work. The oscillations in the magneti-

zation can be observed at multiple temperatures, superimposed on the nearly constant
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magnetic background. The upper inset of Fig. 5.4 gives an example of these oscillatory

behaviours as a function of inverse field up to 70 kOe at 1.85 K. Linear extrapolation of

the M(1/H) data was performed to obtain evenly spaced data. Fast Fourier transform

(FFT) was used to convert the oscillations to their Fourier spectra in Fig. 5.4. Four

peaks can be resolved from the spectra with frequencies of 1.84 MG(α), 2.01 MG(β),

4.02 MG(γ) and 5.46 MG(δ). Figure 5.4 also represents the evolution of the spectra with

respect to temperature. It can be clearly seen that the amplitudes of spectra gradually

attenuate and finally fade away at about 15 K. For a certain frequency F, the ampli-

tude of the oscillation in the magnetization M is given by the Lifshitz-Kosevitch (LK)

equation [Shoenberg, 1984]:

M = −2.602× 10−6(
2π

HA′′ )
1/2 × GFT exp(−αpx/H)

p3/2 sinh(−αpT/H)
× sin[(

2πpF

H
)− 1/2± π

4
]

where α = 1.47(m/m0)× 105 G/K, A
′′

is the second derivative of the cross sectional area

of the Fermi surface with respect to wave vector along the direction of the applied field,

G is the reduction factor arising from electron spin, ρ is the number of harmonic of the

oscillation, and x is the Dingle temperature. Thus, the temperature dependence of the

amplitude (A) of frequency α, β, γ and δ plotted in the lower inset to Fig. 5.4, can be

used to determine the effective mass of the orbits via the LK formula, described above.

From the slope of ln(A/T ) plotted as a function of temperature, the effective masses

were found to be mα ≈ 0.10 m0, mβ ≈ 0.13 m0, mγ ≈ 0.20 m0, and mδ ≈ 0.22 m0, where

m0 is the bare electron mass. Since the frequency of the γ orbit is twice that of the β,

it is probably that the γ is the second harmonic of the β orbit. However, for further

understanding of the oscillations and topology of the Fermi surface, angular dependence

of the spectra as well as detailed calculations of band structure and Fermi surfaces of

BaSn5 are needed.

The zero-field-cooled (ZFC) susceptibilities measured at a set of different low fields

are presented in Fig 5.5 (no corrections for demagnetization factor were employed). At 25
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Oe, a sharp superconducting transition is clearly seen with the onset of ≈ 4.4 K. To infer

an anisotropic upper superconducting critical field for BaSn5, the first data point that

deviates from the normal state is chosen as the criterion of superconducting transition.

Alternatively, anisotropic Hc2(T ) can be evaluated from the shifts of resistively measured

superconducting transitions in different applied magnetic fields (Fig 5.6). R = 0 is chosen

as the TR=0 criteria in resistivity data. Multiple M(T ) and R(T ) measurements were

carried out on different samples, and the data are consistent with each other. The

resulting anisotropic Hc2(T ) curves are shown in Fig 5.7, in which Hc2(T ) obtained from

the magnetization data agrees with Hc2(T ) obtained from the resistivity data quite well.

Linear extrapolations yielded a upper critical field of ∼ 550 Oe at T = 0 K from M(T )

measurement, and Hc2(T = 0) ≈ 950 Oe from R(T ) data. Both measurements clearly

show that BaSn5 maintains a rather small upper critical field. Despite of the difference

in the Hc2 values, both M(T ) and R(T ) support that BaSn5 shows almost isotropic

behaviour in its superconducting state as seen in Fig 5.7. It should be noticed that Tc

and superconducting critical fields obtained for BaSn5 in this work are different from

that for elemental Sn used as flux (Tc(Sn) ≈ 3.7 K, and Hc2(Sn, T = 0) = 305 Oe),

which rules out traces of Sn flux in the crystals as the source of the superconducting

behaviour.

The low temperature heat capacity of BaSn5 was measured in both zero and applied

magnetic field (Fig 5.8). It is clearly seen that the superconductivity is completely

suppressed in 10 kOe without changing its normal state properties. A clear jump at

about 4.4 K in the zero-field heat capacity data is associated with the superconducting

transition, which gives ∆Cp/Tc ≈ 16.7 mJ/mol K2. The lower left inset to Fig 5.8

shows the low temperature (down to 0.4 K), in-field (20 kOe), heat capacity data, the

Sommerfeld coefficient for BaSn5 is estimated to be γ ≈ 10.8 mJ/mol K2, and the Debye

temperature ΘD ≈ 182.5 K. Thus, ∆Cp/γTc can be estimated to be about 1.55. This

value is slightly higher than the canonical 1.43 value expected for isotropic weakly coupled
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BCS superconductor and suggests that BaSn5 might be strongly coupled superconductor

[Carbotte, 1990]. Finally, the Cp(T ) behaviour in the superconducting state (Fig 5.8,

upper right inset) appears to be non-exponential and reasonably well described by Cp ∝

T 2.8 function. If intrinsic, such dependence might point to deviations from isotropic

single band superconductivity for this material.

The superconducting transition temperature of BaSn5 linearly decreases under pres-

sure up to ∼ 8 kbar (Fig 5.9). The pressure derivative dTc/dP ≈ −0.053 ± 0.001 K/kbar,

is rather small, similar in sign and order of magnitude to those measured for a number

of elemental and binary superconductors [Brandt and Ginzburg, 1965]. Such pressure

dependence is possibly the result of rather weak dependence of the density of states on

energy near the Fermi level as well as possibly opposing changes to Tc caused by shift in

phonon spectrum by hydrostatic pressure.
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log-log scale, the solid line corresponds to Cp ∝ T 2.8. [Lin et al., 2012c]
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5.5 Summary

In this paper we present the synthesis of high quality single crystalline BaSn5, as well

as detailed studies on its thermodynamic and transport properties. BaSn5 manifests

metallic behavior in its normal state with (RRR) ∼ 1200. Its normal-state magnetic sus-

ceptibility is diamagnetic and slightly anisotropic. De Haas-van Alphen oscillations were

observed in low temperatures and high fields with the applied magnetic fields parallel

to c-axis, two effective masses were resolved via FFT. BaSn5 superconducts at ∼ 4.4 K

with the upper critical field not exceeding 1 kOe. Hc2 shows almost isotropic behaviour.

Tc decreases slowly under hydrostatic pressure up to 10 kbar. The heat capacity data

suggest that superconductivity in BaSn5 may be more complex than isotropic BCS.

Since both Haas-van Alphen oscillation and superconducting state are observed for

these high-quality BaSn5 single crystals, detailed study on angular dependence of the

oscillatory behavior, Fermi topology and the symmetry of the superconducting state

could be of interest.
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CHAPTER 6. ANISOTROPIC MAGNETIZATION,

RESISTIVITY AND HEAT CAPACITY OF SINGLE

CRYSTALLINE R3Ni2−xSn7 (R = La, Ce, Pr and Nd)1

6.1 Abstract

We present a detailed study of R3Ni2−xSn7 (R = La, Ce, Pr and Nd) single crystals

by measurements of crystal structure, stoichiometry, temperature dependent magnetic

susceptibility, magnetization, electrical resistivity, magnetoresistance, and specific heat.

This series forms with partial Ni occupancy with x varying from ∼ 0.1 for R = La to ∼

0.7 for R = Nd. The electrical resistivity of this series follows metallic behavior at high

temperatures. Determination of clear anisotropies as well as antiferromagnetic ordering

temperatures for R3Ni2−xSn7 (R =Ce, Pr and Nd) have been made. For Pr3Ni1.56Sn7

and Nd3Ni1.34Sn7, multiple magnetic transitions take place upon cooling. Metamagnetic

transitions in this family (R = Ce, Pr and Nd) were detected for applied magnetic fields

below 70 kOe. An H − T phase diagram of Ce3Ni1.69Sn7 was assembled to shed light on

its low field properties and to rule out possible quantum critical effects.

1This chapter is a version of the published article: Lin, X., Bud’ko, S. L., Thimmaiah, S. and

Canfield, P. C. “Anisotropic magnetization, resistivity and heat capacity of single crystalline R3Ni2−xSn7

(R = La, Ce, Pr and Nd)” J. Magn. Magn. Mater., 331 (2013):53
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6.2 Introduction

Rare earth (R) compounds have always been of great interest to experimentalists

and theorists for their various unusual magnetic, electronic and structural properties

[Szytula and Leciejewicz, 1994; Gschneidner and Eyring, 978 ; Bud’ko et al., 1999; Sefat

et al., 2008; Mun et al., 2010; Bud’ko and Canfield, 2000]. For the majority of rare-earth

elements and compounds, the 4f electrons are shielded from the 5s-, 5p- and 4d -shell

electrons, and thus do not participate in chemical bonding. However, since the magnetic

moments are from the 4f electrons, the R-bearing compounds can manifest vastly dif-

ferent magnetic properties. By varying the R elements in a compound, it is possible to

tune the magnetism and other physical properties. Known as the lanthanide contraction,

the unit cell volume of isostructural R3+-bearing families shrink across the series. This

contraction can lead to systematic changes in the lattice constants a, b, c, and maybe

eventually drive the series out of its structural stability. In addition, the crystalline elec-

tric field (CEF) also plays a significant role in determining the temperature-dependent

thermodynamic and transport properties of a compound. Associated with the point

symmetry of the R ions, the CEF splitting can cause anisotropy, and influence the spin

arrangements in the ordered state, often affecting the details of metamagnetic transi-

tions. In terms of the ordering temperature and energy scales, the CEF splitting affects

the amount of entropy (associated with the 4f electrons) that can be removed. Thus, a

comparative study of a series of rare-earth compounds can give an insight into the evo-

lution of the rich and complex physics. Here, we present a study of physical properties

of single crystalline samples of the R3Ni2−xSn7 (R = La, Ce, Pr and Nd) series.

The early report of R3Ni2−xSn7 can be traced back to late 1980s [Skolozdra et al.,

1987]. The structure was solved based on polycrystalline samples of R3Ni2Sn7 (R =

La, Ce, Pr and Nd). Based on neutron diffraction [Schobinger Papamantellos et al.,

2001], Ni and Sn sites were reported to have partial occupancies. Although magnetic



94

susceptibility, electrical resistivity and thermopower of this series were measured between

78-350 K, practically no low-temperature properties were reported for R = La, Pr and

Nd.

Later studies were focused on Ce3Ni2Sn7 polycrystalline samples [Schobinger Papa-

mantellos et al., 2001; Chevalier and Etourneau, 1999; Chevalier et al., 2001; Matar

et al., 2003]. The ground state of Ce-based intermetallic compounds is often governed by

the competition between the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction and

the Kondo interaction. Depending on the strength of the hybridization between 4f and

conduction electrons relative to their coupling strength, the ground state can be either

a non-magnetic state dominated by the Kondo interaction or a long-range magneticly

ordered state governed by the RKKY interaction. Ce3Ni2Sn7 is reported to order an-

tiferromagneticly at TN ∼ 3.8 K [Schobinger Papamantellos et al., 2001; Chevalier and

Etourneau, 1999]. Ce3Ni2Sn7 crystallizes in the orthorhombic structure (Cmmm, No.

65) [Skolozdra et al., 1987; Schobinger Papamantellos et al., 2001] and Ce occupies two

different crystallographic sites (the Ce1 2c site: mmm and the Ce2 4i site: m2m), but

studies have shown that only the Ce2 atoms with a trigonal prism arrangement partici-

pate in the magnetic ordering [Schobinger Papamantellos et al., 2001]. Moreover, based

on measurements on polycrystalline Ce3Ni2Sn7, metamagnetic transitions at low tem-

peratures were inferred, indicating a complex spin arrangement [Chevalier et al., 2001].

Since metamagnetism in rare earth compounds is usually very anisotropic, single crystals

are required for systematic studies.

In this paper, we present a systematic study of the anisotropic properties of the

R3Ni2−xSn7 series with R = La, Ce, Pr and Nd. Since this system shows partial occu-

pancy of the Ni site, a detailed structural study and refinement of the site occupancies

are also provided in this work. Measurements and analyses of the field and tempera-

ture dependence of magnetization, resistivity and specific heat were performed on single

crystalline samples. Measurements of the magnetization parallel to the b-axis and the
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ac-plane show anisotropic behavior, and the magnetization of some of the compounds

manifest metamagnetic transitions.

6.3 Experimental details

Single crystals of R3Ni2−xSn7 (R = La, Ce, Pr and Nd) were grown out of excess

Sn flux via the high-temperature solution method [Canfield and Fisk, 1992]. High pu-

rity elements (>3N), with an initial composition of 9:18:73 (R:Ni:Sn) were used in the

synthesis. The constituent elements were placed in an alumina crucible and sealed in

a silica tube under a partial pressure of high purity argon gas. This was then heated

up to 1100◦C and slowly cooled to 800◦C, at which temperature the excess solution

was decanted using a centrifuge. Single crystals of R3Ni2Sn7 grew in plate-like shape

with their largest dimensions limited to the size of the crucible (see inset of Fig. 6.1).

The crystallographic b-axis is perpendicular to the plane of the plate-like single crystals.

Most of the samples had shiny surfaces that were partially covered by secondary phase

materials. Since HCl was found to attack the surface material as well as R3Ni2−xSn7,

and due to Sn’s malleable nature, the samples were not etched or polished in the fol-

lowing measurements. Although all samples in this study were grown from the same

initial stoichiometry, a significant and variable Ni deficiency (R3Ni2−xSn7) develops as R

changes from La to Nd.

Powder x-ray diffraction data were collected on a Rigaku MiniFlex diffractometer with

Cu Kα radiation at room temperature. The error bars were determined by statistical

errors, and standard Si powder was used as the internal reference.

Single crystal x-ray diffraction data were collected by Bruker APEX diffractometer

equipped with a CCD detector, using monochromated Mo Kα radiation (λ = 0.71073

Å). Reflections were gathered by taking three sets of 606 frames with 0.3◦ scans in ω

and with an exposure time of 10 s per frame at room temperature. The range of 2θ



96

extended from ∼ 4 to 57◦. The reflection intensities were integrated with the SAINT

program. The measured intensities were corrected for Lorentz and polarization effects

and were further corrected for absorption using the SADABS program as implemented in

the SAINT [SMART, 2005] program package. Intensity statistics and space group deter-

mination were carried out using XPREP, a subprogram in the SHELXTL software pack-

age. The structural models were obtained from direct methods using SHELXS -97 and

refined by fullmatrix, leastsquares procedures on F 2 as implemented in the SHELXTL

[SHELXTLPlus, 2003] package.

Elemental analysis of the samples was performed using wavelength dispersive x-ray

spectroscopy (WDS) in the electron probe microanalyzer of a JEOL JXA-8200 Super-

probe. For each compound, the WDS data were collected from multiple locations on

multiple samples. To determine the bulk concentration, only clear and shiny surface

regions were selected for these measurement, i.e. regions with residual Sn flux were

avoided.

Measurements of field dependent magnetization and temperature dependent suscep-

tibility were performed in a Quantum Design, Magnetic Property Measurement System

(MPMS). The ac resistivity was measured by a standard four-probe method in a Quan-

tum Design, Physical Property Measurement System (PPMS) and with LR700 ac resis-

tance bridge in MPMS. Platinum wires were attached to the sample using either Dupont

4929 silver paint or Epotek H20E silver epoxy with the current flowing in the ac-plane.

As mentioned above, given the malleable nature of the flux and fragile samples, no pol-

ishing was done prior to the resistivity measurement. The room temperature resistivity

of this series ranges from 50 - 100 µΩ cm. The absolute values of resistivity are accu-

rate to ± 50% due to the irregularity of the sample geometry and positions of electrical

contacts. For data presentation, the basal plane resistivity is normalized with respect

to the room temperature value assuming that current density was uniformly distributed

throughout the cross section. The residual resistivity ratio is determined as (RRR) =
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Table 6.1 Refined unit cell parameters refined from powder x-ray diffraction for
R3Ni2−xSn7 (R= La, Ce, Pr and Nd) compounds. [Lin et al., 2013a]

R a (Å) b (Å) c (Å) V (Å3)

La 4.599(16) 27.549(24) 4.602(10) 583(3)

Ce 4.564(11) 27.276(76) 4.558(10) 567(4)

Pr 4.547(15) 27.2162(10) 4.546(5) 563(2)

Nd 4.530(12) 27.111(49) 4.529(7) 556(2)

ρ(300 K) / ρ(6.5 K) for La3Ni1.89Sn7; and (RRR) = ρ(300 K) / ρ(1.8 K, 0.5 kOe) for

R3Ni2−xSn7 (R = Ce, Pr and Nd). To remove the high frequency noise caused by digital

differentiation of closely spaced data points, an FFT filter method provided by Origin

8.5 program was used in calculating the temperature and field derivatives of ρ and M

[Origin-8.5, ].

A relaxation technique was used in the heat capacity measurements in the PPMS. The

specific heat data of La3Ni1.89Sn7 was used to estimate the non-magnetic contributions

to the specific heat of R3Ni2−xSn7 (R = Ce, Pr and Nd). Here we assume the differences

in non-magnetic specific heat brought by different Ni site deficiencies are negligible. The

magnetic contribution to specific heat from the R ions was calculated by the relation of

CM = Cp (R3Ni2−xSn7) - Cp (La3Ni1.89Sn7). A linear extrapolation was used to estimate

CM ’s behavior down to zero temperature. The magnetic entropy SM for R = Ce, Pr and

Nd members was calculated by integrating CM/T per mole R with the measured and

extrapolated data.

6.4 Results

6.4.1 Crystal stoichiometry and structure

Powder x-ray diffraction patterns were collected on ground single crystals from each

compound. Figure 6.1 shows a La3Ni1.89Sn7 x-ray pattern as an example. The main

phase was resolved to be La3Ni1.89Sn7, and small traces of Sn residue as well as LaSn3
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Table 6.2 Unit cell parameters and Ni site occupancies obtained from single crystal
x-ray diffraction for R3Ni2−xSn7 (R= La, Ce, Pr and Nd). [Lin et al., 2013a]

R a (Å) b (Å) c (Å) V (Å3) 2-x (Ni) Stoichiometry

La 4.6033(6) 27.578(4) 4.6133(6) 585.66(13) 1.89(1) La3Ni1.89Sn7

Ce 4.5565(15) 27.300(9) 4.5720(15) 568.7(3) 1.69(1) Ce3Ni1.69Sn7

Pr 4.5260(16) 27.173(10) 4.5475(16) 559.3(3) 1.56(1) Pr3Ni1.56Sn7

Nd 4.5193(17) 27.091(10) 4.5408(17) 555.9(4) 1.34(1) Nd3Ni1.34Sn7

can be detected in the diffraction pattern. Similar results (R3Ni2−xSn7 with minority

phases of RSn3 and Sn) were obtained for the other members of the series. The analysis

of powder x-ray diffraction data indicates that the lattice parameters a, b and c are

monotonically decreasing as the series progresses from La to Nd (presented in Table

6.1).

Since site occupancy was identified as a potential problem [Schobinger Papamantellos

et al., 2001], room-temperature single crystal diffraction data were also collected. Table

6.2 summarizes the lattice constants and Ni site occupancies. The refined positional

parameters for R3Ni2−xSn7 (R=La, Ce, Pr and Nd) series are included in Table 6.3.

Proceeding from the larger to the smaller rare-earth elements, all lattice parameters

decrease almost linearly: 1.8% for a; 1.8% for b and 1.6% for c (as shown in Fig. 6.2),

which is consistent with the results of powder x-ray analysis (Table 6.1) and previously

reported data [Skolozdra et al., 1987]. Furthermore, the overall volume decreases by

5.1%. These results are due to the lanthanide contraction that occurs across the 4f

series as well as the decreasing Ni occupancy. The ionic radius of trivalent rare-earth

was taken from ref. [Shannon, 1976] for 9 coordination number (CN=9).

The stoichiometry of the R3Ni2−xSn7 (R = La, Ce, Pr and Nd) samples was also

inferred from WDS analyses. The averaged atomic percentages of each element in each

compound are normalized to R3.00 (Table 6.4). The results show that although the ratio

of R:Ni:Sn is close to 3:2:7, significant Ni deficiency develops as the atomic number of
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Table 6.3 Atomic coordinates and isotropic displacement parameters for R3Ni2−xSn7

(R= La, Ce, Pr and Nd) single crystals. [Lin et al., 2013a]

Atom Site Occupancy x y z Ueq

La1 2c 1 0.5 0 0.5 0.09(1)

La2 4i 1 0 0.1843(1) 0 0.09(1)

Ni1 4j 0.95(1) 0 0.3718(1) 0.5 0.11(1)

Sn1 2a 1 0 0 0 0.15(1)

Sn2 4i 1 0 0.4102(1) 0 0.12(1)

Sn3 4j 1 0 0.0900(1) 0.5 0.12(1)

Sn4 4j 1 0 0.2813(1) 0.5 0.12(1)

Ce1 2c 1 0.5 0 0.5 0.10(1)

Ce2 4i 1 0 0.1846(1) 0 0.11(1)

Ni1 4j 0.85(1) 0 0.3718(1) 0.5 0.13(1)

Sn1 2a 1 0 0 0 0.11(1)

Sn2 4i 1 0 0.4098(1) 0 0.14(1)

Sn3 4j 1 0 0.0902(1) 0.5 0.14(1)

Sn4 4j 1 0 0.2821(1) 0.5 0.16(1)

Pr1 2c 1 0.5 0 0.5 0.09(1)

Pr2 4i 1 0 0.1851(1) 0 0.10(1)

Ni1 4j 0.78(1) 0 0.3716(1) 0.5 0.13(1)

Sn1 2a 1 0 0 0 0.12(1)

Sn2 4i 1 0 0.4090(1) 0 0.14(1)

Sn3 4j 1 0 0.0912(1) 0.5 0.14(1)

Sn4 4j 1 0 0.2823(1) 0.5 0.18(1)

Nd1 2c 1 0.5 0 0.5 0.10(1)

Nd2 4i 1 0 0.1855(1) 0 0.11(1)

Ni1 4j 0.67(1) 0 0.3715(1) 0.5 0.13(1)

Sn1 2a 1 0 0 0 0.14(1)

Sn2 4i 1 0 0.4084(1) 0 0.15(1)

Sn3 4j 1 0 0.0919(1) 0.5 0.16(1)

Sn4 4j 1 0 0.2830(1) 0.5 0.21(1)
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Figure 6.1 Powder x-ray diffraction pattern of La3Ni1.89Sn7. Inset: picture of single
crystalline La3Ni1.89Sn7 on a millimeter grid. [Lin et al., 2013a]

rare earth elements increases. The stoichiometries inferred from the WDS and single

crystal diffraction data are qualitatively similar (Table 6.2 and 6.4). Although there are

slight quantitative differences, the clear trend in all increasing Ni deficiency from La to

Nd is clear.

Given this series of compounds does not maintain a fixed, stoichiometric composition

for all rare-earth samples, the calculation of physical quantities, such as the magnetiza-

tion and specific heat, the actual stoichiometries from Table 6.2 will be used.

6.4.2 La3Ni1.89Sn7

The magnetic susceptibility of La3Ni1.89Sn7 measured in an applied field of 50 kOe

(Fig. 6.3(a)), is negative and exhibits an almost temperature independent behaviour

from 2 K to 300 K. It also manifests a relatively large anisotropy between the magnetic
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Figure 6.2 The change of unit cell lattice parameters vs. ionic radius of R3+ [Shannon,
1976] in R3Ni2−xSn7 compounds, refined from single crystal x-ray diffraction
data. [Lin et al., 2013a]

Table 6.4 WDS elemental analysis (in atomic %) for R3Ni2−xSn7 single crystals. [Lin
et al., 2013a]

Compound R Ni Sn Stoichiometry (WDS)

La 23.67 15.78 57.23 La3Ni2.00Sn7.25

Ce 25.73 14.80 59.47 Ce3Ni1.72Sn6.93

Pr 25.47 13.83 60.70 Pr3Ni1.63Sn7.15

Nd 26.39 12.44 61.16 Nd3Ni1.41Sn6.95
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field parallel to the b-axis and the ac-plane, with |(M/H)b| > |(M/H)ac|. Neither the

diamagnetism nor anisotropy is uncommon, similar behaviors have been reported for

other La-based compounds [Sefat et al., 2008; Myers et al., 1999].

In Fig. 6.3(b), the temperature dependence of the normalized zero-field resistivity

ratio of La3Ni1.89Sn7 displays metallic behaviour with (RRR) ' 3.2 for current in the

ac-plane. To within a factor of 20%, the room temperature resistivity value ρ(300 K)

reaches ∼ 50 µΩ cm. We assume that this small RRR is at least partially due to the

deficiencies at the Ni site. At low temperatures, two resistive anomalies are observed

near 6.2 K and 3.8 K (inset of fig. 6.3(b)). When measured in an applied magnetic

field of 1.0 kOe, the higher-temperature anomaly shifts to lower temperature and the

lower one disappears. The ZFC and FC superconducting fractions are also estimated by

magnetization measurement at 25 Oe with the field parallel to the ac-plane, as shown

in the inset of Fig. 6.3(a). The small values of FC superconducting fractions, ∼ 1.4%,

and ZFC fraction, as well, < 15% indicate that superconductivity is filamentary and the

anomalies in the resistivity can be attributed to impurities. In fact, it is highly likely

that these two anomalies are related to the superconducting transitions of LaSn3 (Tc ≈

6.2 K [Gambino et al., 1968]) and Sn (Tc ≈ 3.7 K); both phases being seen in the powder

diffraction pattern shown in Fig. 6.1.

Figure 6.4 shows the temperature-dependent specific heat Cp for La3Ni1.89Sn7. Cp

increases smoothly up to 50 K showing no resolvable features at low temperatures, con-

firming the anomalies seen in zero-field resistivity are brought by the impurity phases.

The electronic specific heat coefficient (γ) and Debye temperature (ΘD) were estimated

using the relation Cp/T = γ+βT 2 by extrapolating data Cp/T vs. T 2 below 7 K (shown

in the inset of Fig. 6.4). The calculated values are γ ≈ 10 mJ/mol-formula-unit K2

(or less than 1 mJ/mole-atomic K2), and β ≈ 1.5 mJ/mol-formula-unit K4, which gives

ΘD ≈ 250 K.
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6.4.3 Ce3Ni1.69Sn7

The temperature-dependent magnetic susceptibility χ(T ) = M(T )/H and inverse

magnetic susceptibility of Ce3Ni1.69Sn7 were measured with H = 1 kOe applied both

parallel to the b-axis and the ac-plane, and are plotted in Fig. 6.5(a). The sharp peaks

seen at low temperature suggest that this material has an AFM transition, with a larger

value of M(T )/H for H ‖ ac-plane for T < 15 K. The ordering temperature, consistent

with the reported value [Schobinger Papamantellos et al., 2001; Chevalier and Etourneau,

1999], was estimated to be ∼ 3.7 K (here and in Table 6.5 the values of the magnetic

ordering temperatures obtained from the maximum of the derivatives d(χT )/dT , dρ/dT ,

and/or the specific heat data are quoted). The polycrystalline averaged susceptibility was

estimated by χave = 1
3

(χb + 2χac). The high-temperature magnetic susceptibility can be

fitted with the Curie-Weiss law with θb = -43.6 K, θac = -75.4 K and θave = -57.1 K. The

inferred effective moment from the polycrystalline averaged data: µeff = 2.44(1) µB/Ce

is slightly smaller than the expected Hund’s rule (J = 5/2) ground-state value, 2.54 µB,

but larger than previously reported, 2.33 µB/Ce [Chevalier and Etourneau, 1999]. It

should be noted that the anisotropy changes its sign upon cooling in the paramagnetic

state (as can be seen by comparing Fig. 6.5(a) inset to main body of 6.5(a)).

The temperature-dependence of the normalized electrical resistivity ratio ρ(T )/ρ(300

K) for Ce3Ni1.69Sn7 is shown in Fig. 6.5(b). To within a factor of 50%, the room

temperature resistivity ρ(300K) reaches approximately 70 µΩ cm, with (RRR) ' 3.0.

A broad feature is found at around 60 K, which is probably associated with thermal

population of the CEF levels. A dramatic drop in the zero-field resistivity value at ∼

3.7 K can be attributed to the near simultaneous occurrence of the Tc of the minority Sn

phase and a bulk AFM transition. The inset of Fig. 6.5(b) shows ρ(T )/ρ(300 K) below 8

K measured at zero field, 1 kOe and 70 kOe for field parallel to the ac-plane. The sharp

drop in resistivity below 4 K is due, in part, to traces of Sn, but as shown in Fig. 6.5(b)

TN ∼ 3.7 K as well. The 1 kOe data show the decrease in resistivity is smaller than
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with H ‖ ac-plane. [Lin et al., 2013a]
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in zero field, however, the transition temperature does not change significantly. For the

two possible secondary phases in this material, whereas Sn has an upper critical field of

305 Oe at 0 K, no magnetic ordering or superconductivity has been observed for CeSn3

down to low temperatures [Shenoy et al., 1970]. Thus, the sharp drop at 3.7 K for H = 1

kOe is primarily caused by the loss of spin disorder scattering. In a higher applied field,

70 kOe, the magnetic ordering has been completely suppressed and no anomaly can be

seen (see discussion of metamagnetism below).

The specific heat data manifest a sharp rise with decreasing temperature below 6 K,

which peaks at ∼ 3.7 K (Fig. 6.6(a)). The AFM ordering temperature can be clearly

determined as shown in Fig. 6.6(b), which displays the d(χT )/dT , dρ/dT (to suppress

Sn’s superconducting feature, data of H = 0.5 kOe was used), and CM(T ) curves. Each

of these data sets gives TN = 3.7 ± 0.1 K.

Due to the AFM ordering and the broad feature associated with the CEF splitting at

higher temperatures, γ and ΘD of Ce3Ni1.69Sn7 cannot be estimated by the same method

used with La3Ni1.89Sn7. On the other hand, though, the magnetic contribution to specific

heat from the Ce ions was calculated by the relation of CM = Cp (Ce3Ni1.69Sn7) - Cp

(La3Ni1.89Sn7). CM data show a broad maximum centered around 45 K, indicating a

significant magnetic contribution from the Ce ions above TN. This broad peak is likely

brought by an electric Schottky contribution due to the CEF splitting of the Hund’s rule

ground state multiplet. The magnetic entropy per mole Ce ion is shown in the inset of

Fig. 6.6(a). The SM reaches about 60% of Rln(2) at TN and recovers the full doublet

entropy, Rln(2), by 25 K. This might be caused by the Kondo screening of Ce magnetism,

or as suggested by a previous neutron study [Schobinger Papamantellos et al., 2001], not

all the Ce ions are participating in the AFM ordering.

The measurements of the low-temperature M(T ) with H ‖ ac-plane for various ap-

plied fields are plotted in Fig. 6.7. With increasing magnetic field AFM transition

systematically shifts to lower temperatures and eventually drops below 2 K for H >
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Figure 6.6 (a) Specific heat of Ce3Ni1.69Sn7 and La3Ni1.89Sn7 single crystals and the
magnetic specific heat of Ce3Ni2Sn7. Inset: magnetic entropy per mole Ce
ion divided by R. (b) Low-temperature d(χT )/dT for H = 1 kOe, dρ/dT
for H = 0.5 kOe and CM(T ) for Ce3Ni1.69Sn7. The dashed line indicates
CM(T ) extrapolated to T = 0. The antiferromagnetic ordering temperature
marked by dotted line shows up as a sharp, well-defined peak in all three
data sets. [Lin et al., 2013a]
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8 kOe. For H = 5.5 kOe and 6.5 kOe, another feature emerges at low temperatures,

shown as a cusp at ∼ 2 K. However, the origin of this feature and its absence at 6.0

kOe are currently unknown. At higher fields, H > 8 kOe, M(T ) does not reveal any

signature of a phase transition and instead displays a tendency toward saturation at low

temperatures.
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Figure 6.7 M(T ) of Ce3Ni1.69Sn7 for H ‖ ac-plane in selected magnetic fields. [Lin
et al., 2013a]

The anisotropic M(H) isotherms of Ce3Ni1.69Sn7 are plotted in the inset of Fig. 6.8.

The observed curves show significant anisotropic behavior at 2 K. For H ‖ b-axis, M(H)

linearly increases with field up to 40 kOe, followed by a broad metamagnetic transition,

then linearly rises to about 0.36 µB per Ce ion near 70 kOe. On the other hand, for H ‖

ac-plane, at least two metamagnetic transitions take place below 10 kOe, which can be

clearly seen in the main body of Fig. 6.8 and also indicated in the dM(H)/dH analysis

in Fig. 6.9(a). In higher fields, M(H) with H ‖ ac-plane linearly approaches to 0.81 µB



110

per Ce near 70 kOe, which is well below the expected full moment of 2.14 µB/Ce.
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Figure 6.8 Magnetization isotherms of Ce3Ni1.69Sn7 for H ‖ (ac) at T = 1.85, 2.00,
2.25, 2.50, 2.50, 2.75, 2.85, 2.90, 3.00, 3.25 and 3.50 K. The arrow indicates
the direction of increasing temperature. Inset: anisotropic field-dependent
magnetization of Ce3Ni1.69Sn7 at 2 K. [Lin et al., 2013a]

Figure 6.8 presents the temperature-dependent evolution of the metamagnetic tran-

sitions for H ‖ ac-plane. As temperature increased, both metamagnetic transitions were

gradually broadened and eventually smeared out at 3.5 K. An examination of the hys-

teresis associated with metamagnetic transitions is shown in Fig. 6.9(a), M(H) at 1.85

K and dM(H)/dH are plotted for Ce3Ni1.69Sn7. The two metamagnetic transitions man-

ifest as two distinct steps, and the hysteresis can been clearly resolved in M(H). Corre-

spondingly, the derivatives reveal the metamagnetic transitions at lower and higher field

(indicated as 1 and 2 in the subscript, respectively) during the process of increasing and

decreasing magnetic fields (indicated as up and down in the superscript, respectively):
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Hdown
1 = 5.25 kOe, Hup

1 = 5.41 kOe, Hdown
2 = 6.95 kOe and Hup

2 = 6.96 kOe (Fig. 6.9(a)).

Similarly, the derivatives dM(H)/dH at different temperatures provide the temperature

evolution of metamagnetic transitions in Fig. 6.9(b). As temperature increases, the two

metamagnetic transition peaks systematically shift to lower fields and broaden. At 3.0

K, the two metamagnetic transitions merge into one and eventually vanishes at ∼ 3.5 K.
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Figure 6.9 (a) Magnetization hysteresis data and dM(H)/dH for H ‖ (ac) at T = 1.85
K. Hdown

1 , Hup
1 , Hdown

2 and Hup
2 indicate lower-field metamagnetic transi-

tion measured in decreasing fields, lower-field metamagnetic transition mea-
sured in increasing fields, higher-field metamagnetic transition measured in
decreasing fields and higher-field metamagnetic transition measured in in-
creasing, respectively. (b) dM(H)/dH for H ‖ (ac) at T = 1.85, 2.00, 2.25,
2.50, 2.50, 2.75, 2.85, 2.90, 3.00, 3.25 and 3.50 K. [Lin et al., 2013a]

In order to correlate features in ρ(H) and M(H), as well as establish in-plane

anisotropic response to applied field [Myers et al., 1999; Canfield et al., 1997], the field

dependence of mangetoresistance at T = 1.8 K and magnetization at T = 2.0 K are

shown together in Fig. 6.10 from measurements on the same sample in the same in-
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plane orientation of H ‖ ac. Two metamagnetic transitions can be clearly seen and are

in good agreement when derived from the magnetoresistance and magnetization curves.

The observed metamagnetic transitions fields are lower than previously discussed (see

Fig. 6.8), this is possibly due to the in-plane anisotropy [Myers et al., 1999; Canfield

et al., 1997].
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Figure 6.10 Magnetoresistance (left axis) as a function of magnetic field for T = 1.8 K
and magnetization (right axis) as a function of magnetic field at 2.0 K for
H ‖ ac-plane. Note: both measurements were done on the same sample
in the same orientation; dashed lines indicate the magnetic fields where
dM/dH peaks. [Lin et al., 2013a]

Based on the above discussion, an H −T phase diagram is constructed (presented in

Fig. 6.11), where the metamagnetic transition points are extracted from the temperature

dependent magnetic susceptibilities and magnetization isotherms for one, arbitrary field

orientation in the ac-plane. From the data presented in Figs. 6.7 and 6.8, for 0 < H . 5

kOe TN is gradually suppressed from TN ≈ 3.7 K at H = 0 to TN ≈ 3.1 K at H = 5 kOe.
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For 5 kOe . H . 7.2 kOe a second line in the H − T phase diagram appears. Where

as the outer envelop of the H − T diagram continues to show a gradual, but non-linear

suppression of TN with H, a second, near vertical line appears for H ∼ 5.2 kOe.

Figure. 6.11, taken together with the implicit in ac-plane anisotropy suggested by

comparison to Fig. 6.10, make it clear that Ce3Ni1.69Sn7 will have a rich M(T,H, θ) (θ

being in plane angle of field with respect to a-axis) phase diagram.
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Figure 6.11 H − T phase diagram of Ce3Ni1.69Sn7 for H ‖ (ac), measured on the same
sample in the same orientation. The transition points are taken from the
derivatives of M(H) at constant temperatures in the process of increasing
fields sweep and the derivatives of M(T ) at constant fields in the process
of increasing temperature. The error bars are taken as the full width at
half maximum of the derivatives. [Lin et al., 2013a]
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6.4.4 Pr3Ni1.56Sn7

The anisotropic magnetic properties of Pr3Ni1.56Sn7 are shown in Fig. 6.12. As

revealed by the inverse magnetic susceptibility measured at 1 kOe, the magnetic suscep-

tibility follows the Curie-Weiss law at high temperatures, θb = -5.2 K, θac = -26.7 K and

θave = -17.7 K. This anisotropy in the paramagnetic state results in (M/H)b > (M/H)ac

over the whole temperature range measured. The effective moment obtained from the fit

of polycrystalline average susceptibility is µeff = 3.58(2) µB per Pr3+ ion (see Table 6.5),

identical to the free ion value for Pr3+. In the low temperature region (shown in the left

inset of Fig. 6.12), sharp peaks in χ(T ), at T ∼ 4.8 K, indicate AFM transition. The

anisotropic field-dependent magnetization isotherms of Pr3Ni1.56Sn7 measured at 2 K are

shown in the right inset of Fig. 6.12. For both orientations, M(H) linearly increases as

the applied field increases, followed by a broad metamagnetic transition occurring at ∼

16 kOe for H ‖ b and ∼ 17.5 kOe for H ‖ (ac). Since up to 50 kOe M(H) for both

orientations does not show saturation and the values of the magnetization at 50 kOe

are much lower than expected for Pr3+ (3.2 µB), it is likely that in higher fields more

metamagnetic transitions will occur.

The temperature-dependence of the normalized resistivity ratio for Pr3Ni1.56Sn7 is

shown in Fig. 6.13. To within factor a of 50%, the room temperature resistivity ρ(300

K) reaches approximately 60 µΩ cm, with (RRR) ' 1.5. Resistivity decreases with de-

creasing temperature and shows a broad feature at around 50 K, which can be attributed

to the thermal population of CEF levels. The enlarged low-T resistivity in zero field re-

veals three successive anomalies (see inset of Fig. 6.13), occurring at 3.7 K, 4.7 K and

7.8 K. The sharp transition at 3.7 K is suppressed by H = 0.5 kOe making it probable

that it is due to a small amount of residual Sn. The 4.7 K feature is seen as a subtle drop

in resistivity, but manifests itself as a sharp peak in dρ/dT . This feature coincides with

the AFM transition seen in the magnetic susceptibility and is associated with the loss

of the spin-disorder scattering. Although difficult to see in the resistivity data, dρ/dT



115

0 100 200 300
0

50

100

 

 

H
/M

 (O
e/

em
u 

m
ol

e)

T (K)

 ac
 b
 ave.

Pr3Ni1.56Sn7

eff  3.58(2) B/Pr

 H = 1 kOe

0 5 10 15
0.00

0.25

0.50

 

 

M
/H

 (e
m

u/
O

e 
m

ol
e)

T (K)
0 20 40

0.0

0.5

1.0

1.5

 ac
 b

T=2K

 

 

M
 (

B/P
r)

H (kOe)

Figure 6.12 Inverse magnetic susceptibility H/M(T ) of Pr3Ni1.56Sn7 for H ‖ b-axis, in
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shows a clear step-like anomaly at ' 6.8 K. At 7.8 K, the resistivity changes its slope,

and exhibits a step-like feature in dρ/dT as well.
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Figure 6.13 Temperature dependence of the normalized electrical resistivity ratio
ρ(T )/ρ(300 K) of Pr3Ni1.56Sn7 with ρ(300 K) ∼ 60 µΩ cm. Inset: low
temperature ρ(T )/ρ(300 K) (left axis) measured at H = 0, 0.5 kOe with
H ‖(ac) and dρ/dT (right axis) at H = 0.5 kOe. Arrows indicate the
transition temperature 4.7 and 7.8 K, respectively. [Lin et al., 2013a]

Specific heat of Pr3Ni1.56Sn7 initially decreases with decreasing temperature, and re-

veals three anomalies, which peak at ∼ 7.6 K, 6.6 K and 4.7 K (Fig. 6.14(a)). Enlarged

low temperature data of d(χT )/dT , dρ/dT and CM(T ) are shown in Fig. 6.14(b). It is

clear that two more anomalies are seen in the derivative d(χT )/dT , which corroborates

the specific heat results very well. dρ/dT exhibits a peak at 4.7 K and two step-like

features at 6.8 and 7.6 K. Based on the results of thermodynamic and transport mea-

surements, for Pr3Ni1.56Sn7, the magnetic ordering temperatures are 7.6 K, 6.6 K and

4.7 K. The magnetic contribution to specific heat from Pr+3 ions was calculated by the
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relation of CM = Cp (Pr3Ni1.56Sn7) - Cp (La3Ni1.89Sn7). The magnetic entropy SM per

mole Pr3+ (shown in the inset of Fig. 6.14(a)) is roughly about Rln(2) at T = 6.8 K,

and becomes Rln(3) by 14.3 K.

The field dependence of the magnetoresistance and magnetization for Pr3Ni1.56Sn7

are shown in Fig. 6.15(a). To get rid of an off-set associated with superconducting

Sn, the magnetoresistance was normalized to ρ(0.5 kOe), i.e. 4ρ/ρ0 = (ρ(H) - ρ(0.5

kOe))/ρ(0.5 kOe). There are two clear metamagnetic transitions visible in the 1.8 K

data, one at ∼ 17 kOe and a second one near 38 kOe. Although both are clearly seen in

the magnetoresistance data, the higher field transition is more clearly seen magnetization

via dM/dH plots (Fig. 6.15(b)).

6.4.5 Nd3Ni1.34Sn7

For Nd3Ni1.34Sn7, magnetization with the applied magnetic field H = 1 kOe is found

to be anisotropic with (M/H)bt > (M/H)ac (Fig. 6.16). At high temperatures, the

magnetic susceptibility follows the Curie-Weiss law, resulting in θave = -36.8 K and µeff

= 3.97(6) µB per Nd3+ ion (see Table 6.5), slightly larger than 3.87 µB, the expected

value for Nd3+ free ion. At low temperatures, Nd3Ni1.34Sn7 enters antiferromagnetic

state at ∼ 3.8 K, seen by a subtle cusp in the magnetic susceptibility curve (left inset

of Fig. 6.16). Magnetization isotherms of Nd3Ni1.34Sn7 measured at 2 K are provided in

the right inset of Fig. 6.16.

The temperature dependence of the normalized resistivity ratio for Nd3Ni1.34Sn7 is

shown in Fig. 6.17. To within a factor of 50%, the room temperature resistivity ρ (300

K) reaches approximately 100 µΩ cm, with (RRR) ' 4.4 in zero magnetic field. A similar

broad feature is seen at the higher temperatures and implies the thermal population of

CEF levels. The enlarged low-T resistivity ratio measured at several selected magnetic

fields is plotted in the left inset of Fig. 6.17. The higher-temperature feature, the break

in slope of the resistivity occurring at 4.6 K, does not shift with different magnetic fields.
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Figure 6.14 (a) Specific heat of Pr3Ni1.56Sn7 and La3Ni2Sn7 single crystals and magnetic
specific heat of Pr3Ni1.56Sn7. Inset: magnetic entropy per Pr3+ ion divided
by R. The arrows indicate the transition temperatures. (b) Low-temper-
ature d(χT )/dT for H = 1 kOe, dρ/dT for H=0.5 kOe and CM(T ) for
Pr3Ni1.56Sn7. The dashed line indicates CM(T ) extrapolated to T = 0.
The dotted lines mark the transitions in all three plots. [Lin et al., 2013a]
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Figure 6.16 Inverse magnetic susceptibility H/M(T ) of Nd3Ni1.34Sn7 for H ‖ b-axis and
ac-plane and polycrystalline average at H = 1 kOe. Left inset: enlarged
anisotropic magnetic susceptibility below 15 K. Right inset: anisotropic
M(H) of Nd3Ni1.34Sn7 at T = 2 K. [Lin et al., 2013a]

A second anomaly at ∼ 3.8 K in zero field almost disappears when measured with applied

fields. This indicates the anomaly is possibly associated with the residual Sn. However,

in dρ/dT (see right inset of Fig. 6.17), the cusp at ∼ 3.6 K, does not disappear or shift

with applied fields. Thus, it is likely that Nd3Ni1.34Sn7 has a second, lower-temperature

magnetic transition at TN ∼ 3.6 K, overlapping with the Tc (H = 0 ) of Sn.

The specific heat data of Nd3Ni1.34Sn7 are shown in Fig. 6.18 (a). Two anomalies are

observed at 3.8 K and 4.3 K. Enlarged low temperature data of d(χT )/dT , dρ/dT and

CM(T ) are shown in Fig. 6.18(b). The transition at 3.8 K coincides in both magnetic

susceptibility and specific heat data, the corresponding transition shifts to 3.6 K in

transport measurement. This sharp feature in the specific heat data further indicates



121

2 4 6

0 100 200 300
0.00

0.25

0.50

0.75

1.00
Nd3Ni1.34Sn7

/
30

0 
K

T (K)

I in ac-plane
H (ac)

2 4 6
0.0

0.2

0.4

 H = 0
 0.5 kOe
 1.0 kOe
 1.5 kOe

/
30

0 
K

T (K)

  H= 0
  0.5 kOe
  1.0 kOe
  1.5 kOe

 

 

d
/d

T 
(a

.u
.)

T (K)

Figure 6.17 Temperature dependence of the normalized electrical resistivity ratio
ρ(T )/ρ(300 K) of Nd3Ni1.34Sn7 with ρ(300 K) ∼ 100 µΩ cm. Left inset:
low temperature ρ(T )/ρ(300 K) (left axis) measured at H = 0, 0.5 kOe,
1.0 kOe and 1.5 kOe with H ‖(ac). Arrows indicate the anomalies at 3.8
K and 4.6 K. Right Inset: dρ/dT at H = 0, 0.5 kOe, 1.0 kOe and 1.5 kOe.
[Lin et al., 2013a]

Nd3Ni1.34Sn7 has a transition at ∼ 3.8 K. The higher-temperature (4.3 K) anomaly in

the specific heat seems to find its counterpart at T = 4.2 K in the transport data. There

is a subtle change of change of slope in the similar temperature region seen in d(χT )/dT .

The magnetic contribution to specific heat from Nd+3 ions was calculated by the relation

of CM = Cp (Nd3Ni1.34Sn7) - Cp (La3Ni1.89Sn7). The magnetic entropy SM per mole Nd3+

(shown in the inset of Fig. 6.18(a)) reaches approximately Rln(2) at T = 4.3 K, the full

doublet entropy.
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Figure 6.18 (a) Specific heat of Nd3Ni1.34Sn7 and La3Ni1.89Sn7 single crystals and mag-
netic specific heat of Nd3Ni1.34Sn7. Inset: magnetic entropy per mole Nd3+

ion divided by R. The arrow indicates the anomaly at T = 4.3 K. (b)
Low-temperature d(χT )/dT for H=1 kOe, dρ/dT for H=0.5 kOe and
CM(T ). The dashed line indicates CM(T ) extrapolated to T=0. The dot-
ted lines mark the transitions in all three plots. [Lin et al., 2013a]
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Table 6.5 Magnetic ordering temperatures, anisotropic Curie temperatures and effec-
tive magnetic moment in paramagnetic state for R3Ni2−xSn7. [Lin et al.,
2013a]

Compound θb (K) θac (K) θave (K) µeff (µB) TM (K)

Ce -43.6 -75.4 -57.1 2.44 3.7

Pr -5.2 -26.7 -17.7 3.58 7.6, 6.6, 4.7

Nd -90.8 -14.6 -36.8 3.97 4.3, 3.8

6.5 Summary and conclusions

Motivated by previous studies of rare-earth compounds [Bud’ko et al., 1999; Sefat

et al., 2008; Mun et al., 2010], we have synthesized single crystalline R3Ni2−xSn7 (R =

La, Ce, Pr and Nd) samples via self-flux Sn. Detailed thermodynamic and transport

measurements were performed to study the properties of R3Ni2−xSn7 series. The crys-

tals form as plates (inset of Fig. 6.1), and can be identified as having an orthorhombic

La3Co2Sn7-type structure. We have determined the degree of Ni-site vacancy and see

clear evidence of the associated, disorder scattering manifest in the low RRR values.

Despite the partial Ni site occupancy there are sharp magnetic transitions and metam-

agnetic transitions. Although rich and complex H − T phase diagrams are likely, the

combination of orthorhombicity and partial Ni site occupancy makes this a less than

ideal system for detailed studies.
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CHAPTER 7. ANISOTROPIC MAGNETIZATION AND

RESISTIVITY OF SINGLE CRYSTALLINE RNi1−xBi2±y (R =

La–Nd, Sm, Gd–Dy)1

7.1 Abstract

We present a detailed study of RNi1−xBi2±y (R = La–Nd, Sm, Gd–Dy) single crystals

by measurements of stoichiometry and temperature dependent magnetic susceptibility,

magnetization, and electrical resistivity. This series forms with partial Ni occupancy,

0.72 ≤ (1 − x) ≤ 0.84, as well as a variable Bi occupancy, 1.76 ≤ (2 ± y) ≤ 2.14.

For R = Ce–Nd, Gd–Dy, the RNi1−xBi2±y compounds show local-moment like behavior

and order antiferromagnetically at low temperatures. Determination of anisotropies as

well as antiferromagnetic ordering temperatures for RNi1−xBi2±y (R = Ce–Nd, Sm, Gd–

Dy) have been made. Crystalline samples from this family exhibit minority, second

phase superconductivity at low temperatures, which can be associated with Ni-Bi and

Bi contamination. No evidence of bulk superconductivity has been observed.

7.2 Introduction

The interesting physical properties of Ce-based intermetallic compounds have been

the concern of numerous studies [Steglich, 1985; Myers et al., 1999; Balicas et al., 2005;

1This chapter is a version of the published article: Lin, X., Straszheim, W. E., Bud’ko, S. L. and

Canfield, P. C. “Anisotropic magnetization and resistivity of single crystalline RNi1−xBi2±y (R = La–

Nd, Sm, Gd–Dy)” J. Alloys Compd., 554 (2013):304



125

Phelan et al., 2012; Bud’ko et al., 1999; Petrovic et al., 2003]. The ground state of

Ce-based intermetallic compounds is often governed by the competition between the

Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction and the Kondo interaction. De-

pending on the strength of the hybridization between 4f and conduction electrons relative

to their coupling strength, the ground state can be either a non-magnetic state dominated

by the Kondo interaction or a long-range magnetically ordered state governed by the

RKKY interaction. Various exotic phenomena have been observed in these compounds,

for example: CeCu2Si2 was classified as a heavy fermion superconductor [Steglich, 1985],

CeAgSb2 [Myers et al., 1999] and CeAgBi2 [Petrovic et al., 2003] were reported to be

strongly correlated electron compounds with a magnetically ordered ground state.

It is often enlightening to study not just the Ce-member of a rare earth, intermetallic

series, but rather a wide sampling of the whole series. As exhibited in many rare earth

series [Myers et al., 1999; Bud’ko et al., 1999; Petrovic et al., 2003; Szytula and Leciejew-

icz, 1994; Gschneidner and Eyring, 978 ], the 4f electrons are often shielded from the

5s-, 5p- and 4d -shell electrons, and thus do not participate in chemical bonding. On the

other hand, the 4f electrons have direct influences on the compounds’ magnetic prop-

erties, since the magnetic moments originate in the partially filled f -shell. As a result,

by varying the R elements in a compound, it is possible to tune the magnetism and

other physical properties. Moreover, the unit cell volume of isostructural R3+-bearing

families shrinks from R = La to R = Lu, which is known as the lanthanide contraction.

This contraction leads to systematic changes in the lattice constants a, b, c and unit cell

volume V.

Recently CeNi0.8Bi2 has attracted particular attention: a polycrystalline sample was

synthesized and reported as a heavy fermion superconductor [Mizoguchi et al., 2011].

Its Tc was found to be ∼ 4.2 K. The superconductivity was said to be associated with

the light effective mass electrons, whereas the antiferromagnetic (AFM) transition, oc-

curring at ∼ 5 K, was related to the strong interactions between the heavy electrons
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and Ce 4f electrons [Mizoguchi et al., 2011]. The superconductivity was claimed to be

introduced by the Ni deficiency, as the “parent” compound CeNiBi2 did not manifest

bulk superconductivity [Kodama et al., 2011]. Earlier results on CeNiBi2 suggested it to

be a moderately heavy fermion antiferromagnet [Thamizhavel et al., 2003; Jung et al.,

2002]. Magnetic susceptibility was measured on single crystalline samples with no dia-

magnetic signal being observed, and the zero resistivity was attributed “to the thin films

of bismuth” [Thamizhavel et al., 2003].

Given that Ni occupancy in the sample is claimed to play a key role in superconduc-

tivity, single crystalline samples of CeNi0.8Bi2 are likely to offer further understandings

of the superconducting features in this system. Hence, we present a study of physical

properties of single crystalline CeNi0.8Bi2 samples.

The early work on the polycrystalline RNi1−xBi2±y samples (R = Ce, Nd, Gd, Tb, Dy

and Y) solved the structure and reported the Ni site deficiency [Zeng and Franzen, 1998;

Lu et al., 2005]. This series of compounds was found to have a tetragonal ZrCuSi2-type

structure (space group P4/nmm). Later superconductivity with Tc ∼ 4 K was reported

in this family for R = Y, La, Ce and Nd [Mizoguchi et al., 2011, 2012]. The results were

based on the polycrystalline samples containing partial occupancy of the Ni site. Other

than for CeNi0.8Bi2, no detailed, anisotropic results were shown for other members in

this family.

In this paper, we present a systematic study of the anisotropic properties of the

RNi1−xBi2±y series with R = La–Nd, Sm, Gd–Dy. Since this system shows partial

occupancy of the Ni site, chemical elemental analysis was performed to determine the

stoichiometry of the samples. Analyses of the field and temperature dependence of

the magnetization and resistivity were performed on the single crystalline samples. No

evidence of bulk superconductivity was observed in this series of compounds. For R

= Ce–Nd, Gd–Dy, compounds show local-moment like behavior with an AFM ordering

at low temperatures. Measurements of the magnetization parallel to the ab-plane and
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the c-axis show anisotropic behavior, and the magnetization of some of the compounds

indicate the existence of metamagnetic transitions.

7.3 Experimental details

Single crystals of RNi1−xBi2±y were grown out of excess Bi flux via the high-temperature

solution method [Canfield and Fisk, 1992; Canfield, 2010]. Given that this series of com-

pounds is known to have Ni site deficiency, and that the Ni deficiency was considered

to be crucial for CeNi1−xBi2 to become superconducting [Mizoguchi et al., 2011], we

varied the composition of the starting materials, resulting in crystals with different Ni

concentrations. Single crystals of CeNi1−xBi2 with (1-x ) varying from 0.64 to 0.85 (as

determined from wavelength-dispersive x-ray spectroscopy, see below) were synthesized.

Irreproducible and incomplete transitions in resistivity data were seen for (1-x ) = 0.64,

0.75, 0.80 and 0.85. They are very likely associated with minority, second phase supercon-

ductivity. No qualitative differences were observed for these samples with different (1-x )

values. In this work the starting stoichiometry that gives the resulting crystal with the

ratio of Ce:Ni:Bi = 1:0.8:2 was selected. This initial stoichiometry was Ce10.4Ni14.6Bi75.

The same initial stoichiometry was used for R = La, Pr, Nd and Sm. For R = Gd, Tb

and Dy, to avoid RBi as an impurity, the stoichiometry was adjusted to R4.5Ni9.1Bi86.4.

For R = Eu and Ho – Lu, there are no reported data on the isostructural compounds.

Our attempts to grow these R-members of the series often resulted in poorly-formed

R-Bi binaries. Hence, it is likely that this series does not form under the similar growth

conditions for R = Eu and Ho – Lu.

High purity (>3N) elements were placed in an alumina crucible and sealed in a fused

silica tube under a partial pressure of high purity argon gas. This was then heated up to

1000◦C and cooled to 500◦C in 65 hours, at which temperature the excess solution was

decanted using a centrifuge [Canfield and Fisk, 1992; Canfield, 2010]. Single crystals of
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RNi1−xBi2±y grew in plate-like shapes with their sizes varying from ∼ 10×10×1.5 mm3

for R = La to ∼ 2×2×0.6 mm3 for R = Dy. The crystallographic c-axis is perpendicular

to the plate-like single crystals. Most of the samples had shiny surfaces that were partially

covered by secondary phase materials. Due to the samples’ air-sensitivity, crystals were

kept in an argon glove-box, and efforts were made to minimize their exposure to air during

samples’ manipulation and measurements. They were neither etched nor polished, and

only cleaved samples with fresh surface were used in the resistivity measurements.

Powder x-ray diffraction data were collected on a Rigaku MiniFlex diffractometer

with Cu Kα radiation at room temperature. The sample was ground in a glove-box and

the powder was protected from atmosphere by Kapton film during the measurement so

as to protect it from oxidation. Data collections were performed with the counting time

of 2 seconds for every 0.02 degree. The refinement was conducted using the program

Rietica [Howard and Hunter, 1998]. The error bars associated with the values of the

lattice parameters were determined by statistical errors, and Si powder standard was

used as the internal reference.

Elemental analysis of the samples was performed using wavelength-dispersive x-ray

spectroscopy (WDS) in a JEOL JXA-8200 electron probe microanalyzer. The measure-

ment was conducted with an accelerating voltage of 20 kV, a probe current of 25 nA and

a spot size of 5 µm. The integration time on peak, low background and high background

is 10 s, 5 s and 5 s, respectively. Only clear and shiny surface regions were selected

for determination of the sample stoichiometry, i.e. regions with residual Bi flux were

avoided. For each compound, the WDS data were collected from multiple points on the

same sample. Counting statistics suggest there should be 1% or less relative error due

to counting.

Measurements of field dependent magnetization and temperature dependent suscep-

tibility were performed in a Quantum Design, Magnetic Property Measurement System

(MPMS). The ac resistivity was measured by a standard four-probe method in a Quan-
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tum Design, Physical Property Measurement System (PPMS) or with LR700 ac resis-

tance bridge in MPMS. Platinum wires were attached to the sample using Dupont 4929

silver paint with the current flowing in the ab-plane. The absolute values of resistivity

are accurate to ± 20% due to the irregularity of the sample geometry and accuracy of

measurements of electrical contacts’ position. The residual resistivity ratio is determined

as (RRR) = ρ(300 K) / ρ(5.0 K), so as to avoid any contamination from the minority

phase superconductivity.

7.4 Results and analysis

7.4.1 Crystal stoichiometry and structure

The stoichiometry of the RNi1−xBi2±y samples was inferred from WDS analyses.

Table 7.1 summarizes the atomic percent of each element determined from the weight

percent obtained from the analysis. The precision of the analysis was calculated by

SD/
√
N , where SD is the standard deviation of measurements, and N is the number

of points taken in analysis. A higher level of oxygen contamination was detected in

DyNi0.74Bi1.76 compound, which results in a lower accuracy of its analysis. The aver-

aged atomic concentrations of each element in each compound were normalized to the

rare earth element to have R1.00. The result shows that although the ratio of R:Ni:Bi

is grossly 1:1:2, a significant Ni deficiency develops across the series, and the Bi con-

centration varies from slight excess to slight deficiency. Given this series of compounds

does not maintain a fixed, stoichiometric composition, for the calculation of physical

quantities, the stoichiometries from Table 7.1 were used. It should be noted that if the

Bi stoichiometry is simply set to 2.00, the values for effective moments vary significantly

as the molar mass changes. For this reason the Bi nonstoichiometry is also shown.

Powder x-ray diffraction patterns were collected on ground single crystals from each

compound. Figure 7.1 shows a CeNi0.80Bi2.03 x-ray pattern as an example. The main
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Figure 7.1 Powder x-ray diffraction pattern of CeNi0.80Bi2.03. [Lin et al., 2013b]
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Table 7.2 Refined unit cell parameters from powder x-ray diffraction for RNi1−xBi2±y
compounds. [Lin et al., 2013b]

Compound a (Å) c (Å) V (Å3)

La 4.56 ± 0.01 9.78 ± 0.02 204.02 ± 0.03

Ce 4.54 ± 0.01 9.64 ± 0.02 199.57 ± 0.03

Pr 4.52 ± 0.01 9.60 ± 0.02 196.68 ± 0.03

Nd 4.52 ± 0.01 9.53 ± 0.02 194.96 ± 0.03

Sm 4.50 ± 0.01 9.42 ± 0.02 191.27 ± 0.03

Gd 4.49 ± 0.01 9.37 ± 0.02 189.20 ± 0.03

Tb 4.48 ± 0.01 9.30 ± 0.02 187.52 ± 0.03

Dy 4.47 ± 0.01 9.29 ± 0.02 185.82 ± 0.03

phase was fitted with CeNiBi2’s diffraction pattern (site occupancy was not analysed),

small traces of Bi residue can be detected, whereas no evidence of Ni-Bi binaries was

found. Similar results (RNiBi2 with minority phase of Bi) were obtained for the other

members of the series. The analysis of powder x-ray diffraction data indicates that the

lattice parameters a and c are monotonically decreasing as the series progresses from

La to Dy (presented in Table 7.2). Proceeding from the larger to the smaller rare-

earth elements, all lattice parameters decrease almost linearly: 2.1% for a and 5.3%

for c (as shown in Fig. 7.2), which is consistent with the previously reported data

[Mizoguchi et al., 2011; Zeng and Franzen, 1998; Lu et al., 2005]. In progressing from

LaNi0.84Bi2.04 to DyNi0.74Bi1.76, the overall volume decreases by 9.8%. These results

are likely associated with the lanthanide contraction that occurs across the 4f series. In

addition, the deficiencies at the Ni site can possibly lead to smaller unit cell volumes as

well [Mun et al., 2010].

7.4.2 Resistivity of RNi1−xBi2±y

The temperature dependent electrical resistivity for LaNi0.84Bi2.04 is shown in Fig. 7.3

(a). To within a factor of 20%, the room temperature resistivity value ρ(300 K) reaches

∼ 0.15 mΩ cm. For current in the ab-plane, the resistivity displays metallic behavior



133

1.08 1.12 1.16 1.20
4.44

4.48

4.52

4.56

 a
 c

R3+ Ionic Radius

a 
(Å

)

La
Ce

PrNd

Sm
GdTb

Dy

9.2

9.4

9.6

9.8

10.0

 c
 (Å

)

a

c

RNi1-xBi2 y

Figure 7.2 The change of unit cell lattice parameters vs. ionic radius of R3+ for 9
coordination number (CN=9) [Shannon, 1976] in RNi1−xBi2±y compounds.
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with RRR ≈ 1.3. We assume that this small RRR value is at least partially due to the

deficiencies at the Ni and Bi sites. Although the high temperature (T > 5 K) resistivity

is quite reproducible, sample to sample, below 5 K the sizes of the two resistive anomalies

(observed near 4.2 K and 3.0 K) are very sample dependent (Fig. 7.3 (a) inset). Whereas

the resistivity of Sample 2 does not reach zero above T = 1.8 K, the higher-temperature

anomaly is barely seen for Sample 3. Such incomplete and irreproducible transitions

suggest that the superconductivity is extrinsic in both cases and the anomalies in the

resistivity can be attributed to minority phases. In fact, it is highly likely that the higher-

temperature anomaly is related to the superconducting transition of the Ni-Bi binaries

(NiBi with Tc ≈ 4.25 K and NiBi3 with Tc ≈ 4.06 K)[Fujimori et al., 2000; Zhu et al.,

2012]. The lower-temperature anomaly is probably caused by filamentary, thin film, Bi

presented in the sample, which is consistent with the previous work [Thamizhavel et al.,

2003]; the Tc of Bi film can vary from 2 K to 5 K depending on its thickness [Strongin

et al., 1970]. Moreover, the drop of resistivity at ∼ 4.2 K is always much smaller then

the drop at ∼ 3.0 K. This is possibly due to smaller amount of Ni-Bi binaries than Bi

film in the sample, which is consistent with the x-ray diffraction data (where Bi is clearly

detected, and no Ni-Bi binary diffraction lines can be resolved). The low temperature

resistivity data, measured in different magnetic fields, are plotted in Fig. 7.3 (b). As can

be seen, both of the superconducting features are shifting to lower temperatures as the

applied field increases.

The temperature dependent electrical resistivity for CeNi0.80Bi2.03 is shown in Fig.

7.4 (a). To within a factor of 20%, the room temperature resistivity value ρ(300 K)

reaches ∼ 0.22 mΩ cm with RRR ≈ 1.2. A broad hump at ∼ 80 K and a local mini-

mum at ∼ 20 K are found. These features are readily associated with the interplay of

the thermal population of the crystal electric field (CEF) levels and the Kondo effect,

which are often seen in the Ce-based compounds [Myers et al., 1999; Petrovic et al.,

2003]. At low temperatures, three successive resistive anomalies are detected near 5.1
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Figure 7.3 (a) Temperature dependence of the electrical resistivity of LaNi0.84Bi2.04.
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et al., 2013b]
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K, 4.2 and 2.5 K (see inset of Fig. 7.4 (a)). The criteria for determining the transition

temperatures are shown in the inset of Fig. 7.4 (a). The highest transition temperature

(T1 ≈ 5.1 K) coincides with the AFM transition, which will be shown in the magnetic

susceptibility data discussed in the next section. It is likely caused by the loss of the

spin-disorder scattering upon entering into the magnetically ordered state. Since the

resistivity does not reach zero above 1.8 K, it implies that CeNi0.80Bi2.03 does not show

bulk superconducting behavior, and the two lower-temperature anomalies are probably

associated with minority second phase of Ni-Bi binaries and Bi present in the sample.

The low temperature resistivity data measured in different magnetic fields are plotted

in Fig. 7.4 (b). As can be seen, whereas the highest transition, T1, is almost invariant

under these fields, whereas both T2 and T3 decrease as the applied field increases.

The upper critical fields for the superconductivity associated with the second phase

in LaNi0.84Bi2.04 and CeNi0.80Bi2.03 have been obtained from the magnetotransport data

(shown in Fig. 7.5). To estimated the Hc2(T ) values of the higher-temperature feature of

LaNi0.84Bi2.04, the first data point deviated from the normal state is chosen as the criterion

(shown in the inset of Fig. 7.3 (b)). The criterion for determining T2 of CeNi0.80Bi2.03 is

illustrated in the inset of Fig. 7.4 (a). The resulting Hc2(T ) curves are plotted in Fig.

7.5. As can be seen, the two Hc2(T ) curves are essentially the same. In addition, they

are also quite consistent with the reported Hc2(T ) phase diagram for NiBi3 [Zhu et al.,

2012]. The fact that Hc2 values in this work are larger is probably due to the difference

of the Hc2 criteria and difference between single crystalline and polycrystalline samples.

Hence, it is very likely that the superconducting features are not of bulk properties of

LaNi0.84Bi2.04 or CeNi0.80Bi2.03, but most likely due to Bi and Ni-Bi binary impurities.

The two resistive anomalies (the higher-temperature one occurring ∼ 4.2 K and the

lower-temperature one varying from 2 to 3 K) are detected in other members of the

RNi1−xBi2±y series (R = Pr, Nd, Sm, Gd–Dy) as well. Similar to LaNi0.84Bi2.04 and

CeNi0.80Bi2.03, the superconductivity associated with these two features are partial and
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very sample dependent. It is most likely that these two anomalies are related to the

superconducting transitions of Ni-Bi binaries and films of Bi as well. No evidence of

bulk superconductivity has been found in this family from the electrical resistivity data.

Unfortunately, the two anomalies often manifest as stronger features than those related

to the magnetic transitions, such as in the case of CeNi0.80Bi2.03. Hence, the transport

data for the rest of the series are not shown in this work.

7.4.3 Magnetic properties of RNi1−xBi2±y

The low temperature magnetic susceptibility of LaNi0.84Bi2.04 for T ≤ 8 K is shown

in Fig. 7.6 (a). With H = 50 Oe parallel to the c-axis, both of the zero-field-cooled

(ZFC) and field-cooled (FC) magnetic susceptibilities reveal abrupt drops at around 4.1

K and 2.5 K. This is consistent with the anomalies found in the resistivity data. The

small superconducting volume fractions in both ZFC (< 3%) and FC (< 2%) data at 2.0

K further support that LaNi0.84Bi2.04 does not manifest bulk superconductivity.

The anisotropic temperature-dependent magnetic susceptibility of LaNi0.84Bi2.04 mea-

sured from 2 K to 300 K is shown in Fig. 7.6 (b). For H = 50 kOe, LaNi0.84Bi2.04 shows

weak paramagnetism for both orientations. With a larger value for H ‖ ab-plane than

H ‖ c-axis, the magnetic susceptibility shows very subtle change as temperature de-

creases from 300 K. The small up-turn at low temperatures, seen in both orientations,

is probably caused by small levels of paramagnetic impurities.

The low temperature magnetic susceptibility of CeNi0.80Bi2.03 for T ≤ 10 K is shown

in Fig. 7.7 (a). With H = 50 Oe parallel to the c-axis, CeNi0.80Bi2.03 shows positive

susceptibility in both ZFC and FC measurements. Two sudden breaks, occurring at

∼ 5.1 K and 4.0 K can be seen, which are consistent with the anomalies observed in

the resistivity data. No anomaly is detected for temperatures between 2.0 and 4.0 K.

Exhibiting positive magnetic susceptibility together with the missing feature at low tem-

peratures strongly support that the superconductivity observed in the resistivity data of
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CeNi0.80Bi2.03 is related to minority phases.

The anisotropic temperature-dependent magnetic susceptibility of CeNi0.80Bi2.03, χ(T )

= M(T )/H, measured with H = 1 kOe applied both parallel to the ab-plane and the

c-axis are plotted in Fig. 7.7(b). χc is significantly larger than χab over the whole tem-

perature range measured. The sharp peaks seen at low temperature suggest that this

material has an AFM transition. The ordering temperature, consistent with the reported

value [Thamizhavel et al., 2003; Jung et al., 2002], was estimated to be ∼ 4.8 K (here

and in Table 7.3 the values of the magnetic ordering temperatures obtained from the

maximum of the derivatives d(χT )/dT [Fisher, 1962] are quoted). The polycrystalline

averaged susceptibility was estimated by χave = 1
3

(χc + 2χab). A modified Curie-Weiss

law with inclusion of a temperature-independent term χ0: χ = χ0 + C
T−θ , was used to

fit the magnetic susceptibility in the temperature range from 50 K to 300 K, where C

is the Curie constant and θ is the paramagnetic Curie temperature. θave, θab and θc are

extracted from the polycrystalline averaged susceptibility, the magnetic susceptibility for

H ‖ ab and H ‖ c, respectively. Considering the presence of impurities, Bi nonstoichiom-

etry and accuracy of measuring sample’s mass, the values of the effective moments in this

series are accurate to ±3%. For CeNi0.80Bi2.03, it gives θab = -156 K, θc = -6 K and θave

= -17 K, suggesting the presence of CEF splitting and AFM interaction. The inferred

effective moment from the polycrystalline averaged data: µeff = 2.4 µB/Ce is consistent

with the expected Hund’s rule (J = 5/2) ground-state value, 2.54 µB. The anisotropic

field-dependent magnetization isotherms of CeNi0.80Bi2.03 measured at 2 K are shown

in the inset of Fig.7.7 (b). For both orientations, M(H) increases as the applied field

increases. The magnetization is found to be very anisotropic with Mc > Mab, and a cusp

at ∼ 43 kOe for H ‖ c is most likely associated with a metamagnetic transition.

The anisotropic temperature-dependent magnetic susceptibility data χ(T ) = M(T )/H

for R = Pr, Nd, Sm, Gd–Dy measured at 1 kOe are shown in Fig. 7.8 and 7.9. As can

be seen in Fig. 7.8 (a), PrNi0.79Bi1.98 manifests anisotropy with χc > χab over the whole
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temperature range measured. At low temperatures, sharp peaks are found at ∼ 6.4 K,

indicating an AFM transition. At high temperatures, its magnetic susceptibility follows

the modified Curie-Weiss law, giving θab = -18 K, θc = -7 K and θave = -12 K. The

effective moment obtained from the fit of polycrystalline averaged susceptibility is µeff

= 3.6 µB per Pr3+ (see Table 7.3), almost identical to the free ion value for Pr3+. The

anisotropic field-dependent magnetization isotherms of PrNi0.79Bi1.98 measured at 2 K

are shown in the inset of Fig. 7.8 (a). For both orientations, M(H) increases as the

applied field increases up to 70 kOe. For H ‖ c, an anomaly is seen at ∼ 41 kOe. For

H ‖ ab-plane, an inflection point in M(H) curve is detected at a higher field. Higher

magnetic field (H > 70 kOe) is needed for PrNi0.79Bi1.98 to be fully saturated.

For NdNi0.72Bi2.14, the magnetic susceptibility behaves anisotropically (χc > χab) but

with reduced anisotropy as compared to CeNi0.80Bi2.03 or PrNi0.79Bi1.98 (shown in Fig.

7.8 (b)). At low temperatures, a sharp peak is found at ∼ 3.8 K, which is likely associated

with an AFM transition. At high temperatures, fitting with the modified Curie-Weiss

law results in θab = -33 K, θc = -3 K and θave = -16 K. The polycrystalline averaged

susceptibility gives µeff = 3.8 µB per Nd3+ (see Table 7.3), which is consistent with 3.62

µB, the expected value for Nd3+ free ion. The anisotropic field-dependent magnetization

isotherms of NdNi0.72Bi2.14 measured at 2 K are shown in the inset of Fig. 7.8 (b).

For both orientations, M(H) increases as the applied field increases up to 70 kOe. A

subtle inflection in the M(H) curve can be observed for both orientations, indicating the

possible existence of metamagnetic transitions.

The magnetic susceptibility of SmNi0.78Bi2.08 exhibits very subtle anisotropic behavior

(Fig.7.8 (c)). An anomaly is found at ∼ 3.3 K (left inset of Fig.7.8 (c)). When measured

with different magnetic fields, the transition temperature shows very little variance. It is

probably related to an AFM ordering. Different from PrNi0.79Bi1.98 and NdNi0.72Bi2.14,

the χ(T ) of SmNi0.78Bi2.08 does not follow Curie-Weiss law but shows a tendency to

saturation at high temperatures. This is commonly seen in the Sm-bearing intermetallic
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compounds [Bud’ko et al., 1999; Petrovic et al., 2003]. This behavior may be due to

Sm ion’s valence fluctuation between 3+ and 2+ and/or Sm ion’s excitation to upper

Hund’s-rule state and the associated Van Vleck paramagnetism. The field-dependent

magnetization curves for SmNi0.78Bi2.08 show small anisotropy and increase linearly (or

close to linearly) with no traces of the field-induced transitions (right inset of Fig.7.8

(c)).

The temperature-dependent magnetic susceptibility of GdNi0.72Bi1.91 manifests typi-

cal behavior of an antiferromagnet with no CEF effect (Fig. 7.9 (a)). Due to the S -state

(L = 0, S = 7/2) of the Gd3+ ion, χ(T ) is virtually isotropic in the paramagnetic state.

Below TN = 9.8 K, χab(T ) decreases with decreasing temperature and χc(T ) stays almost

constant. These data suggest that the Gd moment orders in the basal ab-plane. The

high-temperature χ(T ) follows the Curie-Weiss law with θave = -51 K and µeff = 7.9 µB

per Gd3+ (see Table 7.3), essentially identical to the expected value for Gd3+ free ion.

The negative sign of the paramagnetic Curie temperature suggests the presence of the

antiferromagnetic correlations. The anisotropic field-dependent magnetization isotherms

of GdNi0.72Bi1.91 measured at 2 K are shown in the inset of Fig. 7.9 (a). M(H) almost

linearly increases as the applied field increases up to 50 kOe with a small anisotropy.

The magnetic susceptibility of TbNi0.74Bi1.90 is highly anisotropic (Fig. 7.9 (b)), and

manifests the highest ordering temperature among the members of this family with TN

' 10.2 K. At high temperatures, χ(T ) follows the modified Curie-Weiss law, giving θab =

-109 K, θc = -19 K and θave = -40 K. The effective moment obtained from polycrystalline

averaged susceptibility is µeff = 10.0 µB per Tb3+ (see Table 7.3), which is consistent

with 9.72 µB, the expected value for Tb3+ free ion. The field-dependent magnetization

curve for TbNi0.74Bi1.90 behaves anisotropically (inset of Fig.7.9 (b)). An inflection in

the M(H) curve for H ‖ c suggests the possible existence of a metamagnetic transition.

In the case of DyNi0.74Bi1.76, the magnetic susceptibility is found to be anisotropic

(Fig. 7.9 (c)). At low temperatures, DyNi0.74Bi1.76 enters its AFM state at ∼ 5.4 K,
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Table 7.3 Magnetic ordering temperatures, anisotropic Curie temperatures and effec-
tive magnetic moment in paramagnetic state for RNi1−xBi2±y. Note: the
high temperature data (50 K ≤ T ≤ 300 K) were selected to fit the modified
Curie-Weiss law. [Lin et al., 2013b]

R θab (K) θc (K) θave (K) µeff (µB) χ0 (10−4 emu/mole) TM (K)

Ce -156± 2.9 -6 ± 0.1 -17 ± 0.3 2.4 10 ± 0.2 4.8

Pr -18± 0.5 -7 ± 0.1 -12 ± 0.3 3.6 1 ± 0.6 6.4

Nd -33± 0.3 -3 ± 0.2 -16 ± 0.1 3.8 2 ± 0.1 3.8

Sm 3.3

Gd -51± 0.1 -51± 0.1 -51 ± 0.1 7.9 10 ± 0.1 9.8

Tb -109± 1.8 -19± 0.6 -40 ± 0.5 10 -12 ± 1.5 10.2

Dy -33± 0.4 -12± 0.4 -24 ± 0.1 10.8 28 ± 0.7 5.4

seen by a cusp in the magnetic susceptibility curve. χ(T ) at high temperatures fits

the modified Curie-Weiss law, giving θab = -33 K, θc = -12 K and θave = -24 K. The

observed effective moment from the polycrystalline averaged susceptibility is µeff = 10.7

µB per Dy3+ (see Table 7.3), consistent with the expected Hund’s rule ground-state value,

10.65 µB. The field-dependent magnetization curve for DyNi0.745Bi1.76 shows anisotropic

behavior, which is shown in the inset of Fig.7.9 (c).

7.5 Discussion and conclusions

Motivated by the recent claims about CeNi0.8Bi2 [Mizoguchi et al., 2011; Kodama

et al., 2011; Mizoguchi et al., 2012] and previous studies of rare-earth compounds [Myers

et al., 1999; Bud’ko et al., 1999; Petrovic et al., 2003], we have synthesized single crys-

talline RNi1−xBi2±y (R = La–Nd, Sm, Gd–Dy) samples by using Bi as a flux. Detailed

resistivity, magnetic susceptibility and magnetization measurements were performed to

study the properties of RNi1−xBi2±y. The crystals form as plates, and can be identified

as having a P4/nmm structure. We have determined the Ni and Bi concentrations and

seen clear evidence of the associated, disorder scattering manifest in the low RRR values.

Superconducting features have been observed in the transport measurements for
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LaNi0.84Bi2.04 and CeNi0.80Bi2.03, as well as the other members in this family. How-

ever, the transition temperatures coincide with the Tc of film Bi, NiBi and/or NiBi3,

and the features are irreproducible and sample-dependent. Moreover, for LaNi0.84Bi2.04,

both of the ZFC and FC superconducting volume fractions at 50 Oe are < 3%. The

low-field magnetic susceptibility of CeNi0.80Bi2.03 is positive. All these strongly suggest

that the superconductivity in RNi1−xBi2±y (R = La–Nd, Gd–Dy) is due to minority,

second phases.

The high-temperature magnetic susceptibilities of RNi1−xBi2±y (R = Ce–Nd, Gd–

Dy) show local-moment like behaviors. For the whole RNi1−xBi2±y family, Ni is non-

moment bearing. The values of the effective magnetic moment in the paramagnetic

state are close to the theoretical values of the trivalent rare earth ion. µeff , θab, θc

and θave values, obtained by fitting with the modified Curie-Weiss law are summarized

in Table 7.3. The local-moment ordering is likely governed by the indirect exchange

interactions between the rare earth ions mediated by the conduction electrons (RKKY

interaction). The negative sign of the paramagnetic Curie temperatures θab, θc and

θave indicates the dominate interactions in this system are antiferromagnetic. Based

on the Weiss molecular field theory, both θave and the magnetic ordering temperature

TM are expected to be proportional to the de Gennes factor DG = (gJ − 1)2J(J + 1).

Here gJ is the Landé g factor and J is the total spin angular momentum [De Gennes,

1962]. As shown in Fig. 7.10, by removing the CEF effect, the paramagnetic Curie

temperature θave follows the DG scaling quite well except for R = Ce. This deviation is

probably related to the hybridization between 4f and the conduction electrons. However,

significant deviations from linearity are present for the scaling of the magnetic ordering

temperatures TM. This can occur when a strong CEF constrains the moments to either

along the c-axis or within the basal plane [Noakes and Shenoy, 1982]. This may be

responsible for the higher value of TbNi0.74Bi1.90, as it shows strong anisotropy in Fig.

7.9 (b). The decreasing unit cell volume in this series (lanthanide contraction) may lead to
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changes in the conduction electron density and/or the exchange constants (due to shorter

atomic distances), and these changes could also be responsible for this deviation from

the de Gennes scaling. Similar to their isostructural compounds RAgSb2 [Myers et al.,

1999] and RAgBi2 [Petrovic et al., 2003], most of the RNi1−xBi2±y members manifest

antiferromagnetic ordering at low temperatures. RNi1−xBi2±y shows more anisotropy in

their magnetic properties than the RAgBi2 series, but less than the RAgSb2 family’s.

θave/TM values characterizing the level of frustration [Ramirez, 1994] for RNi1−xBi2±y

although enhanced, between 1.9 and 5.2, are not significantly different from those found

for either the RAgBi2 or the RAgSb2 compounds, which means the values are not clearly

related to the site disorder.
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CHAPTER 8. SUPPRESSION OF FERROMAGNETISM IN

THE LaVxCr1−xGe3 SYSTEM 1

8.1 Abstract

We report the synthesis of hexagonal LaVxCr1−xGe3 (x = 0 – 0.21, 1.00) single

crystals, and present a systematic study of this series by measurements of temperature

and field dependent magnetic susceptibility, magnetization, resistivity, and specific heat.

Ferromagnetism has been observed for x = 0 – 0.21. The Curie temperature declines

monotonically as the V-concentration increases. Single crystalline samples could only

be grown for x-values up to 0.21 for which the transition temperature was suppressed

down to 36 K. Although we could not fully suppress TC via V-substitution, for x = 0.16,

we performed magnetization measurements under pressure. The ferromagnetic state is

suppressed under pressure at an initial rate of dTC/dp ' – 11.7 K/GPa and vanishes by

3.3 GPa. The increase of the Rhodes-Wolfarth ratio suggests that the ferromagnetism

in this system evolves toward itinerant as the V-concentration increases.

8.2 Introduction

Transition metals and their compounds, can manifest itinerant magnetic behavior,

with their magnetic properties originating from delocalized d-electrons [du Tremolet de

Lacheisserie, 2005; Uhlarz et al., 2004; Thessieu et al., 1995]. Unlike the localized 4f -

1This chapter is based on the submitted article: Lin, X., Taufour, V., Bud’ko, S. L., and Canfield,

P. C., “Suppression of ferromagnetism in the LaVxCr1−xGe3 system” Phys. Rev. B, 88 (2013):094405



152

electrons in the lanthanide series or the multiconfigurational 5f -electrons in some of the

actinide elements [Booth et al., 2012; Troc et al., 2012], the d-electrons’ orbitals can be

significantly altered by the formation of chemical bonds. The d electrons often become

part of the conduction band, propagating in the materials, thus, their wavefunctions are

very different from those of localized electrons. This gives rise to the relatively large

exchange interactions between the d-electrons. Based on the Stoner criterion [Stoner,

1933], at a critical value of the density of states (DOS) and on-site repulsion, d-electrons

can spontaneously split into spin-up and spin-down sub-bands, which leads to ferro-

magnetic ordering. Although the Stoner theory [Stoner, 1933] provides the grounds for

understanding the itinerant ferromagnetic state, there are still questions left to be an-

swered about the role of spin fluctuations and the quantum criticality in the itinerant

ferromagnetic systems.

Itinerant ferromagnets are of particular interest for studying the mechanism of mag-

netism and superconductivity near a quantum critical point (QCP). Unlike the classical

phase transitions driven by temperature, a quantum phase transition (QPT) at zero tem-

perature is driven by non-thermal parameters [Sachdev, 2001]. A QCP is thought to be

a singularity in the ground state, at which point the characteristic energy scale of fluc-

tuations above the ground state vanishes [Sachdev, 2001]. In itinerant ferromagnets, the

temperature dependence of the magnetic properties has often been interpreted in terms

of spin fluctuations [Lonzarich, 1986, 1988; Hertz, 1976]. With the spin fluctuations, an

ordered ground state can change into a non-ordered state by crossing a QCP. Non-Fermi

liquid behaviors of the materials associated with a QCP can often be observed, such as

the temperature divergences of the physical properties [Stewart, 1984, 2001, 2006; Bud’ko

et al., 2004, 2005; Mun et al., 2013]. Moreover, superconductivity has been discovered

in the vicinity of a QCP in weakly ferromagnetic systems, such as in the case of UGe2

[Taufour et al., 2010; Saxena et al., 2000; Huxley et al., 2001] and UCoGe [Huy et al.,

2007]. On the boundary of a ferromagnetic state at low temperatures, a strong longitu-
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dinal magnetic susceptibility and magnetic interactions may lead to a superconducting

state [Saxena et al., 2000; Fay and Appel, 1980; Miyake et al., 1986]. The parallel-spin

quasiparticles in the ferromagnetic system should form pairs in odd-parity orbitals, based

on the Pauli exclusion principle. Theories suggest that this type of superconductivity

should be spin-triplet and magnetically mediated [Saxena et al., 2000; Fay and Appel,

1980; Miyake et al., 1986]. Thus, the suppression of ferromagnetism and the search

for a QCP in the itinerant ferromagnetic systems may offer a better understanding of

the magnetically mediated superconductivity and non-Fermi liquid behaviors. Chemical

doping, pressure and magnetic field are often used to tune the magnetic orderings, and

drive the criticality. For example, a QCP emerges in Zr1−xNbxZn2 when the doping

level reaches xc = 0.083 [Sokolov et al., 2006], and in CePd1−xNix when the doping level

is 0.95 [Stewart, 2001]. YbAgGe [Bud’ko et al., 2004], YbPtBi [Mun et al., 2013] and

YbRh2Si2 [Trovarelli et al., 2000] can be driven to field induced QCPs associated with a

non-Fermi-liquid behavior in the resistivity. In the case of MnSi [Thessieu et al., 1995]

and UGe2 [Taufour et al., 2010], itinerant-electron magnetism disappears at a first order

transition and a QPT appears as pressure is applied.

Both LaCrGe3 and LaVGe3 were reported to form in a hexagonal perovskite type

(space group P63/mmc) structure [Bie et al., 2007; Bie and Mar, 2009]. The structure

consists of chains of face-sharing Cr-centered (or V-centered) octahedra extended along

the c-direction. The short Cr-Cr (or V-V) distances have been taken as an indication

of weak metal-metal bonding [Bie et al., 2007; Bie and Mar, 2009]. It is suggested

that by applying the conventional geometric arguments for stabilizing perovskite-related

structures, the hexagonal form is favored over the more common cubic form with the

Goldschmidt tolerance factor t > 1 [Bie and Mar, 2009; Goldschmidt, 1926]. Whereas

LaVGe3 is found to be non-magnetic above 2 K [Bie and Mar, 2009]. LaCrGe3 was

reported to order ferromagnetically at 78 K [Bie et al., 2007; Cadogan et al., 2013].

Previous work suggests LaCrGe3 is an itinerant ferromagnet, with an estimated effective
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moment, 1.4 µB/f.u., that is significantly lower than the expected values of Cr4+ (2.8 µB)

or Cr3+ (3.8 µB) [Bie and Mar, 2009]. Based on the band structure calculated for both

compounds, it is claimed that they have very similar DOS features and can probably be

explained by the rigid band model [Bie et al., 2007; Bie and Mar, 2009]. For LaCrGe3,

the d-state of Cr manifests as a sharp peak near the Fermi level in the DOS, consistent

with itinerant ferromagnetism as suggested by the Stoner model [Stoner, 1933]. LaVGe3,

with fewer electrons, fills the band up to a lower energy level. Thus, the Fermi level of

LaVGe3 lies at a local minimum of the DOS, and shows paramagnetic behavior.

To suppress the ferromagnetism in this system, substituting V for Cr in LaVxCr1−xGe3

is one of the rational choices, since this is expected to tune the DOS by changing the posi-

tion of the Fermi level. Studies of polycrystalline samples show that V-substitution does

change the magnetic exchange interactions, and the long-range magnetic ordering is sup-

pressed [Bie and Mar, 2009]. Only the temperature dependence of magnetization was

measured on the polycrystalline samples, and the precise stoichiometry of this doped

system was not analyzed by chemical or physical measurement. The V-concentration

dependence of Curie temperature was not reported, and it is not clear at which concen-

tration the ferromagnetism is fully suppressed. Detailed measurements of transport and

thermodynamic properties of the doped system are needed, in the hope that they will

allow one to follow the evolution of the ferromagnetism and distinguish between itinerant

and local moment magnetism.

Besides chemical substitution, an itinerant magnetic system can often be perturbed

by applying pressure. Thus, for the LaVxCr1−xGe3 series, pressure can also be used to

suppress the magnetic state and discover a possible QCP.

In this work, we report the synthesis of single crystalline LaVxCr1−xGe3 (x = 0 –

0.21, 1.00) samples, and present a systematic study of their transport and thermody-

namic properties. A ferromagnetic transition has been confirmed. Both the effective

moment and the saturated moment per Cr decrease systematically as V-concentration
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increases with the saturated moment decreasing much more rapidly, indicating that the

Cr moment is fragile. The associated increase of the Rhodes-Wolfarth ratio suggests that

the ferromagnetism in this system becomes more and more itinerant as x increases. The

Curie temperature decreases with V-substitution. The magnetic ordering is suppressed

down to 36 K for the highest level of V-substitution obtained (x = 0.21), other than the

non-magnetic LaVGe3. Given that ferromagnetism is not completely suppressed by our

highest level of V-substitution, measurements of magnetization under pressure were per-

formed on the x = 0.16 sample. The ferromagnetic state is suppressed by the increasing

pressure and vanishes by 3.3 GPa.

8.3 Experimental Details

The relatively deep eutectic in the Cr-Ge binary [Massalski, 1990] provides an oppor-

tunity to grow LaVxCr1−xGe3 compounds out of high-temperature solutions [Canfield

and Fisk, 1992; Canfield, 2010]. Single crystals of LaVxCr1−xGe3 were synthesized with

a ratio of La:V:Cr:Ge = (13+2x):10x:(13–13x):(74+x) (0 ≤ x ≤ 0.6). High purity (>

3N) elements La, V, Cr and Ge were pre-mixed by arc-melting. The ingot was then

loaded into a 2 ml alumina crucible and sealed in a fused silica tube under a partial

pressure of high purity argon gas. The ampoule containing the growth materials was

heated up to 1100 ◦C over 3 h and held at 1100 ◦C for another 3 h. The growth was then

cooled to 825 ◦C over 65 h at which temperature the excess liquid was decanted using

a centrifuge [Canfield and Fisk, 1992; Canfield, 2010]. For x = 1.0, i.e. LaVGe3, excess

Ge flux was used with an initial composition of La:V:Ge = 15:10:75, and the decanting

temperature was adjusted to 880 ◦C accordingly. Single crystals of LaVxCr1−xGe3 grew

as hexagonal rods with typical size of ∼ 0.7 × 0.7 × 5 mm3 (seen in the inset of Fig. 8.1).

A considerable amount of second phase material was grown as the result of secondary so-

lidification, which was identified to be V11Ge8 by powder X-ray diffraction. For growths
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Figure 8.1 Powder X-ray diffraction pattern of LaCrGe3. Inset: Photo of a single crys-
talline LaCrGe3 sample on a millimeter grid [Lin et al., 2013c].

with initial composition of 0.6 < x < 1.0, the sizes of crystals dramatically decreased

to submillimeters, and could not be visually distinguished from the secondary solidifi-

cation (V11Ge8). Despite multiple attempts, single crystalline LaVxCr1−xGe3 samples

with higher x, which are distinguishable from the secondary solidification, could not be

grown.

Powder X-ray diffraction data were collected on a Rigaku MiniFlex II diffractometer

with Cu Kα radiation at room temperature. Samples with rod-like shape were selected

for the measurement. Data collection was performed with a counting time of 2 s for every

0.02 degree. The Le Bail refinement was conducted using the program Rietica [Howard

and Hunter, 1998]. Error bars associated with the values of the lattice parameters were

determined by statistical errors, and Si powder standard was used as an internal reference.

Elemental analysis of the samples was performed using wavelength-dispersive X-ray
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spectroscopy (WDS) in a JEOL JXA-8200 electron probe microanalyzer. Only clear and

shiny, as grown surface regions were selected for determination of the sample stoichiom-

etry, i.e. regions with residual Ge flux were avoided. For each compound, the WDS data

were collected from multiple points on the same sample.
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Figure 8.2 The lattice parameters a and c of single crystalline LaVxCr1−xGe3 com-
pounds vs. V-concentration xWDS measured by WDS. Inset: xWDS vs.
xnominal [Lin et al., 2013c].

The ac resistivity was measured by a standard four-probe method in a Quantum

Design, Physical Property Measurement System (PPMS). Platinum wires were attached

to the sample using Epo-tek H20E silver epoxy, with the current flowing along the c-

axis. The absolute values of resistivity are accurate to ±15% due to the accuracy of

measurements of electrical contacts’ positions.

Measurements of field and temperature dependent magnetization were performed in

a Quantum Design, Magnetic Property Measurement System (MPMS). Magnetization

measurements were made by mounting the single crystal samples in a pair of transparent
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plastic straws. For the applied field H ‖ c the crystal was placed between the outer

diameter of the inner straw and the inner diameter of the outer straw with both being

completely uniform along their lengths. In this field direction there was no addenda

associated with the sample mounting. For the applied field H ‖ ab the crystal was

placed between two halves of the split, inner straw with a < 2 cm2 of transparent plastic

film covering the two open ends, providing an effective support for the crystal. The

addendum associated with this mounting was less than ∼ 10% of our smallest signal at

the highest temperature. The effective moments calculated for H ‖ c, H ‖ ab and for

an effective polycrystalline average (χave = 1
3

(χc + 2χab)) are all within 0.1 µB/Cr of

each other, demonstrating basic isotropy of the high-temperature, paramagnetic state of

these samples. For this work we will use the results of the polycrystalline average data.

Temperature-dependent specific heat in zero field was measured in a PPMS using the

relaxation technique for representative samples. The specific heat of LaVGe3 was used

to estimate the non-magnetic contributions to the specific heat of LaVxCr1−xGe3. The

magnetic contribution to specific heat from the Cr ions was calculated by the relation:

CM = Cp(LaVxCr1−xGe3) – Cp(LaVGe3).

The temperature dependent, field-cooled magnetization of a single crystal for x = 0.16

under pressure was measured in a Quantum Design MPMS-SQUID magnetometer in a

magnetic field of 20 Oe, 50 Oe and 1 kOe applied along the c-axis. Pressures of up to 4.9

GPa were achieved with a moissanite anvil cell [Alireza et al., 2007]. The body of the

cell is made of Cu-Ti alloy and the gasket is made of Cu-Be. Daphne 7474 was used as

a pressure transmitting medium, and the pressure was determined at 77 K by the ruby

fluorescence technique.
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8.4 Results and Analysis

8.4.1 Crystal Stoichiometry and Structure

The stoichiometry of the LaVxCr1−xGe3 samples was inferred by WDS analysis. Table

8.1 summarizes the normalized results showing the atomic percent of each element. The

ratio of La:(V+Cr):Ge stays roughly as 1:1:3. The variation is induced by systematic

error, and the counting statistics suggests that there should be 2% or less relative error

due to counting. As shown in the inset of Fig. 8.2, the ratio of xWDS over xnominal is

approximately 0.4, and the small 2σ-values suggest that the samples are homogeneous.

In the following, the measured, xWDS, rather than nominal x values will be used to index

the stoichiometry of the compounds in this series.

Powder X-ray diffraction patterns were collected on ground single crystals from each

compound. Figure 8.1 presents the LaCrGe3 X-ray pattern as an example. The main

phase was refined with the known P63/mmc (No. 194) structure. Small traces of Ge

residue can be detected, whereas no clear evidence of La-Ge, V-Ge, or Cr-Ge binaries was

found. Similar results (P63/mmc structure with minority phase of Ge) were obtained

for the rest of the series. The lattice parameters, obtained by the analysis of the powder

X-ray diffraction data, are presented in Fig. 8.2. As is shown, a and c are monotonically

changing as the x increases, which is consistent with the reported data [Bie and Mar,

2009]. Crystallographically, transition metal elements in LaCrGe3 and LaVGe3 occupy

the same unique site 2a [Bie et al., 2007; Bie and Mar, 2009].

8.4.2 Effects of chemical substitution on the physical properties

Figures 8.3(a)–8.3(f) present the anisotropic field-dependent magnetization isotherms

for the LaVxCr1−xGe3 (x = 0 – 0.21) series. The measurements were performed with

H parallel to the ab-plane and the c-axis at 2 K. For H ‖ c, the magnetization of all

compounds saturates very rapidly as the magnetic field increases from H = 0, which is
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Figure 8.3 Anisotropic field-dependent magnetization data for LaVxCr1−xGe3 (x = 0
– 0.21) taken at 2 K. Fine solid lines through the high field H ‖ c data
extrapolate back to H = 0, µS values shown in Table 8.2 [Lin et al., 2013c].
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Table 8.1 The WDS data (in atomic %)for LaVxCr1−xGe3. N is the number of points
measured on one sample, xnominal is the nominal concentration, xWDS is the
average x value measured, and 2σ is two times the standard deviation of
xWDS from the N values measured [Lin et al., 2013c].

xnominal N La V Cr Ge xWDS 2σ

0.00 13 20.06 0.01 19.80 60.13 0.00 0

0.08 14 20.00 0.83 18.74 60.42 0.04 0.01

0.25 12 19.98 1.76 17.89 60.36 0.09 0.01

0.34 12 20.01 3.06 16.50 60.43 0.16 0.01

0.43 16 20.04 3.69 16.09 60.19 0.19 0.02

0.54 12 20.41 4.29 15.75 59.49 0.21 0.01

1.00 14 19.66 20.46 0.09 59.79 1.00 0.01

a manifestation of a typical ferromagnetic behavior. For H ‖ ab, the magnetization rises

more slowly as the applied field increases. As can be seen, in low fields, Mc � Mab;

at H = HEqual, Mc equals Mab; and in high fields, Mc < Mab. Also as x increases,

HEqual decreases monotonically as shown in Fig. 8.4. We identify the c-axis as the easy

axis in low fields, and the x-dependence of HEqual presents a calliper of the diminishing

range of the low-field Mc > Mab anisotropy. These data suggest that the LaVxCr1−xGe3

compounds may have a complex magnetic structure with a ferromagnetic component

along the c-axis. The change of anisotropy is probably caused by field induced spin

reorientation, which is consistent with the previous neutron study [Cadogan et al., 2013].

For H ‖ c, the saturated moment µS per Cr is determined by linear extrapolations of

the magnetization from high fields to H = 0. For x = 0, µS is found to be about 1.25

µB/Cr, essentially identical to the reported value 1.22 µB [Cadogan et al., 2013]. It

monotonically decreases as the V concentration increases and drops to 0.30 µB/Cr for

x = 0.21. The values of the saturated moment µS with H ‖ c are summarized in Table

8.2. Again, the decrease of the saturated moment implies that the LaVxCr1−xGe3 series

probably is an itinerant ferromagnetic system [Bie et al., 2007].

To estimate the Curie temperature TC from the magnetization measurements, we
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studied the temperature-dependent, field-cooled (FC) magnetization of the LaVxCr1−xGe3

series, with H ‖ c at 50 Oe, as shown in Fig. 8.5. The magnetization for LaCrGe3 ex-

hibits a sudden increase near 90 K, indicating a transition to a ferromagnetic state.

However, at around 68 K, its value starts declining, then saturates at low temperatures,

leaving a peak seen in its magnetization. This is probably associated with the changes

of the magnetic domains and the demagnetization field upon cooling. A similar feature

was not observed for the V-doped compounds. It is possibly due to the pinning effect

brought by the V-substitution. For the other members of the series, the susceptibility

shows the expected, rapid increase and the tendency to saturation at low temperatures,

which indicate the existence of a ferromagnetic state in this series for x up to 0.21. The

Curie temperature was estimated by extrapolating the maximum slope in M/H to zero,

as shown by the arrow in the inset of Fig. 8.5; the TC values are listed in Table 8.2.

Given that these are very low field M(T ) data, these values should not be too different

from those inferred from the Arrott plots; see Fig. 8.6. The monotonic change of the

Curie temperature demonstrates that the ferromagnetism in the LaVxCr1−xGe3 series is

systematically suppressed by the V-substitution.

Given that a ferromagnet possesses a spontaneous magnetization below its Curie

temperature, even without external magnetic field applied, the determination of the Curie

temperature from the temperature-dependent magnetization is not without ambiguity.

To better evaluate the Curie temperature, magnetization isotherms in the vicinity of TC

were measured for x = 0.16 [Fig.8.6 (a)]. Since the ferromagnetic component is believed

to be along the c-axis, the magnetic field was applied along the c-axis. In addition in this

orientation we also reduce the uncertainty caused by the demagnetization signal along

the long axis of the rod-like sample.

As can be seen in Fig. 8.6 (a), spontaneous magnetization can be easily observed for

M(H) measured at 43, 46, 48 and 49 K, indicating that the system possesses a state with

a ferromagnetic component at least up to 49 K. To further refine our determination of
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the Curie temperature, an Arrott plot for x = 0.16 is presented in Fig.8.6 (b). According

to Arrott [Arrott, 1957], at TC, the relation between the magnetic field H and the

magnetization M can be written in the form of a power law expansion:

M0H

NAkBTC

= a1(
M

M0

)3 + a2(
M

M0

)5 + ...

Here a1 and a2 are the expansion coefficients, M0 is the saturated magnetization at zero

temperature, and NA is Avogadro’s number. This relation is valid under the condition:

M �M0, i.e., in the low field region. Therefore, further approximation can be made by

only considering the first term in the expansion which leads to the Arrott-Noakes [Arrott

and Noakes, 1967] relation: (H/M) ∝ M2 at TC. It suggests that the ferromagnetic

ordering temperature TC can be inferred from the magnetization data by noting the

temperature at which the low-field data pass though the origin. As shown in Fig. 8.6

(b), the Curie temperature for x = 0.16 is about 50 ± 1 K, which is very close to the

value obtained from the low field magnetization measurement (also seen in Table 8.2).

Therefore, the TC determined from the low field magnetization data appears to be reliable

for these materials.

The isothermal curves shown in Fig. 8.6 (b) are found to be deviated from the

linearity in the Arrott plot. It should be noted that the theoretical justification on the

Arrott plot is based on a simple and clearly defined Landau type second order phase

transition [Arrott, 1957]. In the real materials, such deviations can be observed in a

disordered system with complex magnetic phenomena, and can be affected by many

factors, such as the coupling between the homogeneous matrix and the magnetic clusters,

domain wall pinning, or even proximity to field stabilized states, etc [Yeung et al., 1986;

Hilscher, 1982; Jia et al., 2008].

The inverse of the polycrystalline averaged susceptibility H/M measured at 1 kOe

is shown in Fig. 8.7. The polycrystalline averaged susceptibility was estimated by χave

= 1
3

(χc + 2χab). At high temperatures, all of the compounds follow the Curie-Weiss

behavior. It should be mentioned that the susceptibility of LaVGe3 is about three orders
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of magnitude smaller than those of LaVxCr1−xGe3 (x = 0 – 0.21), thus its possible

Pauli paramagnetic contribution is negligible. On the other hand, evident deviations

from the Curie-Weiss law can be observed below 130 K for x = 0.19 and 0.21. Further

investigations are needed to understand the origin of these deviations. The temperature

range of 150 to 300 K was selected for fitting the high-temperature magnetic susceptibility

with 1/χ = (T − θ)/C, where θ is the Curie-Weiss temperature and C is the Curie

constant. The effective moments µeff and θ are summarized in Table 8.2. Considering

the presence of small amount of Ge and V11Ge8 as well as the accuracy of measuring

the sample’s mass, the values of µeff in this series are accurate to ±5%. Shown in Fig.

8.7, as x increases, µeff per Cr decreases systematically, the slope of the H/M curve rises

gradually, and the Curie-Weiss temperature decreases from 91.7 K for x = 0 to 6.7 K for

x = 0.21 monotonically. The positive θ values indicate that ferromagnetic interactions

are dominant in this series. The decrease in θ suggests that the ferromagnetic interaction

is suppressed by V doping. Based on all of these results, it is highly likely that the Cr ions

in the LaVxCr1−xGe3 compounds manifest non-local-moment like behavior. It should be

noted that, for x = 0, the µeff = 2.5 µB/Cr, value we found is significantly larger than

the reported value (1.4 µB) inferred from the data on polycrystalline samples [Bie et al.,

2007]. Not only is the Ref. [Bie-JSSC07] value different from our x = 0 value, but it is

inconsistent with µeff evolution across the whole series (Fig. 8.7 and Table. 8.2). It is

also inconsistent with the µeff that we measured on polycrystalline samples: µeff = 2.5

µB/Cr for x = 0.07 and µeff = 2.3 µB/Cr for x = 0.13.

The electrical resistivity as a function of temperature for LaVxCr1−xGe3 is presented

in Fig. 8.8 (a). At high temperatures, the electrical resistivity drops linearly upon

cooling, characteristic of normal metallic behavior. For LaCrGe3, due to the loss of spin

disorder scattering, a clear break in resistivity occurs at about 84 K. With the subtraction

of the residual resistivity ρ0 (listed in Table 8.2), the evolution of the ferromagnetic

transition with increasing x can be clearly seen in Fig. 8.8 (b). As the V-doping level
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increases, the spin disorder scattering associated with the Cr moment ordering becomes

broadened . For x = 0.19 and 0.21, the feature is too subtle to be clearly detected. Due to

the broadening transition feature, determining TC via dρ/dT is problematic. Instead, the

point at which the slope of ρ(T ) changes is used to infer the critical temperature in the

resistivity data, as indicated by the arrows in Fig. 8.8 (b). The inferred T ρC is summarized

in Table 8.2, and it is clear that the Curie temperature decreases monotonically as

the V-concentration increases. In addition, ρ0 seems to show a broad maximum as x

increases, which is likely due to more disorder/impurities induced by substitution. The

nonmonotonic behavior of ρ0 is common for substitution series where x = 0 and x = 1

are well ordered, stoichiometric compounds. The broad maximum located closer to the

Cr side is not unexpected given that Cr magnetism (and any scattering associated with

it) appears to be dramatically suppressed by V-substitution.

The temperature-dependent specific heat data for the LaVxCr1−xGe3 (x = 0, 0.04,

0.09, 0.16 and 1.00) series are presented in Fig. 8.9(a) – 8.9(d). The specific heat can

be estimated by the relation Cp(T ) = Ce + Cph + CM, where Ce is the conduction

electron contribution, Cph is the phonon contribution, and CM is the magnetic contribu-

tion. Since LaVGe3 is non-magnetic, Ce + Cph can be approximated by the Cp data of

LaVGe3. Thus, the magnetic contribution CM can be evaluated by the relation: CM =

Cp(LaVxCr1−xGe3) – Cp(LaVGe3). For a clearer presentation of the transition feature,

Cp(T ) of all compounds were normalized with respect to the specific heat of LaVGe3,

Cp(LaVGe3), with the highest temperature Cp values set to be equal [as seen in Fig.

8.9(a) – 8.9(d)]. The changes induced by the normalization are less than 3%. An anomaly

can be observed in the Cp(LaVxCr1−xGe3) with the comparison of Cp(LaVGe3). This

anomaly, associated with the ferromagnetic transition, can be best seen in the LaCrGe3

sample, at ∼ 85 K. As the V-doping level increases, the feature becomes less obvious

and systematically shifts to lower temperatures. For x ≥ 0.19, this feature is no longer

detectable. To estimate the ordering temperature, 4Cp/T for x = 0, 0.04, 0.09, and
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Figure 8.9 Temperature-dependent of specific heat for LaVxCr1−xGe3 with (a) x = 0
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and 1.00. (e) Magnetic contributions to the specific heat as a function of
temperature for LaVxCr1−xGe3 (x = 0 – 0.16). The arrows show the criteria
used to infer the transition temperature [Lin et al., 2013c].
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0.16 are plotted in Fig. 8.9 (e). The magnetic phase transition manifests itself as a local

maximum. The change of slope seen at ∼ 87 K for x = 0 and ∼ 73 K for x = 0.04 may

indicate the on-set of the transition. The mid-point on the rise of 4Cp/T was chosen

as the criteria for T
Cp

C , as indicated by the arrows in the plot. These T
Cp

C values are

also presented in Table 8.2. Again, we observe that with the increasing amount of V

substituted for Cr, the ferromagnetic state in this series is gradually suppressed.

8.4.3 Effects of pressure on the magnetic properties of LaVxCr1−xGe3
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Figure 8.10 Temperature dependence of the field-cooled magnetization for x = 0.16
under different pressures with H ‖ c at (a) 20 Oe, (b) 50 Oe and (c) 1 kOe.
Arrows indicate the criteria for the determination of the Curie temperature
TC [Lin et al., 2013c].

Given that (i) we could only grow single crystals for x ≤ 0.21 and (ii) up to x = 0.16,

the ferromagnetic transition can be confirmed in different measurements, we decided to

evaluate the potential for quantum critical behavior by using pressure as a second tuning

parameter. Figure 8.10(a) – 8.10(c) show the temperature dependence of the field-cooled

magnetization for x = 0.16 measured under different pressures. The measurements were

performed with H ‖ c and H = 20 Oe, 50 Oe and 1 kOe. The Curie temperature TC is
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revealed by a rather sharp increase of the magnetization. Due to the loss of the signal,

there is a serious limitation to the determination of TC close to the critical pressure. For

higher field, H = 1 kOe [Fig. 8.10 (c)], measurements and data analysis are limited

to the large background of the pressure cell (this is the most likely source of apparent

diamagnetic shifts in higher pressure data). By comparing Fig.8.10(a) – 8.10(c), the

magnetization under 3.3 GPa is not considered as a ferromagnetic behavior. The pres-

sure dependences of the Curie temperature measured at different fields show consistent

behaviors, as plotted in Fig.8.11. The result shows TC decreases with applied pressure

at an initial rate of dTC/dp ' – 11.7 K/GPa below 2.8 GPa, and no ferromagnetic

transition can be detected in our measurements above 3.3 GPa. Similarly, the low tem-

perature magnetization decreases as TC decreases with applied pressure as shown in Fig.

8.10(a) – 8.10(c). Although the low temperature signal is not necessarily equal to the

saturation magnetization, the decrease of the low temperature magnetization following

the decrease of TC is expected for an itinerant ferromagnet [Moriya and Takimoto, 1995]

and was experimentally observed in ZrZn2 [Uhlarz et al., 2004; Huber et al., 1975].

8.5 Discussion and Conclusions

The growth of single crystalline LaVxCr1−xGe3 (x = 0 – 0.21, 1.00) samples has

allowed for the detailed study of the anisotropic properties, the determination of the

easy axis and the estimate of the effective moment and saturated moment. In addition,

careful chemical analysis was performed to determine the precise concentration of this

doped system. This offers a clearer understanding of the chemical substitution effect on

the suppression of the ferromagnetism in this system, and is also crucial for calculating

the saturated and effective moment per Cr ion.

We have been able to suppress the ferromagnetism in the LaVxCr1−xGe3 series via

chemical substitution. The ordering temperatures inferred from low field magnetization,
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resistivity, and specific heat measurements are summarized in Table 8.2. A phase diagram

of the x-dependent TC for LaVxCr1−xGe3 was assembled in Fig. 8.12. For x = 0.19

and 0.21, magnetic transitions can only be detected in M(T ), and not in ρ(T ) and

Cp(T ) measurements. We can see that for the LaVxCr1−xGe3 series, the ferromagnetic

transition temperature is suppressed almost linearly by V doping: TC = 88 K for x = 0,

and TC = 36 K for x = 0.21. Since single crystalline LaVxCr1−xGe3 compounds with 0.21

< x < 1.00 were not synthesized, the exact concentration xc at which the ferromagnetism

in this series is completely suppressed via V substitution is not determined. Based on the

our data, a critical concentration is likely to exist near x = 0.3. It is worth noting that

this is the substitution range in which a linear extrapolation of the HEqual data shown

in Fig. 8.4 reaches zero.

The estimated µS and µeff per Cr as a function of x are plotted in Fig. 8.13 (a). As

is shown, both µS and µeff decrease in a clear manner as the V-concentration increases.

Consistent with the Stoner model, this suggests that the system possesses a fragile fer-

romagnetism which can be easily perturbed. The criterion for the ferromagnetic state is

given by the relation UD(εF ) ≥ 1, where U and D(εF ) are Coulomb repulsion and the

DOS at the Fermi level, respectively [Stoner, 1933]. Given the fact that TC decreases

as x increases, it is likely that U and/or D(εF ) is changed by V-substitution in the

LaVxCr1−xGe3 system. With the increasing level of V-doping, the ferromagnetism is

continuously suppressed, and will eventually disappear at a critical V-concentration xc.

However, due to the lack of higher V-doped samples, xc can not be identified precisely

in this study. Similarly, in the case of Curie-Weiss temperature, clear suppression in θ

by V-doping can be observed, as shown in Fig. 8.13 (a). Again, this implies that the

ferromagnetic interaction is weakened by V-substitution. Given the values of µS and

µeff , the Rhodes-Wolfarth ratio (RWR) [Rhodes and Wohlfarth, 1963] can be calculated,

as seen in Fig. 8.13 (b). According to Rhodes and Wolfarth, RWR = µc/µS, where µc

is related to the number of moment carriers, and can be obtained from µc(µc+1)=µ2
eff .
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While RWR = 1 is an indication of localized magnetism, larger RWR values suggest

the existence of itinerant ferromagnetism. In our case, for x = 0, RWR ' 1.4, slightly

larger than 1, indicting the possibility of the itinerant ferromagnetism. As x increases,

RWR increases accordingly, and reaches ' 3.9 for x = 0.21, which is much larger than

the RWR = 1 criterion. Therefore, it is clear that the ferromagnetism in this series

evolves towards itinerant as the V-concentration increase. In addition, as x increases,

the change of RWR as a function of TC exhibits very similar behavior as seen in the orig-

inal Rhodes-Wohlfarth plot [Rhodes and Wohlfarth, 1963]. It should be noted that the

suppression of ferromagnetism does not necessarily lead to a QPT, and a new magnetic

state, such as spin glass, may also emerge [du Tremolet de Lacheisserie, 2005; Mydosh,

1993]. However, in the case of the LaVxCr1−xGe3 series, given the RWR ratio and the

fact that both µS and µeff decrease as the V-concentration increases, it is promising that

it may be a potential QCP system [Sokolov et al., 2006; Rhodes and Wohlfarth, 1963].

We further suppressed the ferromagnetism for x = 0.16 by pressure up to 4.9 GPa. As

seen in Fig. 8.11, the Curie temperature decreases as the applied pressure increases, at an

initial rate of dTC/dp ' – 11.7 K/GPa below 2.8 GPa. The ferromagnetic signal vanishes

at ' 3.3 GPa, and the ferromagnetism in x = 0.16 appears to be completely suppressed.

Our data clearly show that this system can be brought to a QPT and, hopefully a QCP.

It will be very interesting to study the compounds via transport measurements under

pressure and evaluate their critical exponents at pc. In addition, alternative methods of

growing higher x compounds or pressure studies on pure LaCrGe3 will be possible ways

to tune the potential QCP system as well.
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CHAPTER 9. SUPPRESSION OF FERROMAGNETISM IN

THE La(VxCr1−x)Sb3 SYSTEM

9.1 Abstract

To explore the possibility of quantum phase transitions and even quantum criticality

in LaCrSb3 based compounds, we performed measurements under pressure as well as

a vanadium substitution study. The Curie temperature of LaCrSb3 was found to be

invariant under pressure. Although pressure was not able to suppress the ferromagnetism,

chemical substitution was used as another parameter to tune the magnetism. We grew

La(VxCr1−x)Sb3 (x = 0 – 1.0) single crystals, and studied the series by measurements of

temperature and field dependent magnetic susceptibility, magnetization, resistivity, and

specific heat. Ferromagnetism has been observed for x ≤ 0.22, and the system manifests

a strong anisotropy in its ordered state. The Curie temperature decreases monotonically

as the V concentration increases. For 0.42 ≤ x ≤ 0.73, the system enters a new magnetic

state at low temperatures, and no magnetic ordering above 1.8 K can be observed for

x ≥ 0.88. The effective moment µeff/Cr varies only slightly as the V concentration

increases, from 3.9 µB for x = 0 to 2.9 µB for x = 0.88. Features related to quantum

criticality have not been observed in the La(VxCr1−x)Sb3 system.

9.2 Introduction

The study of ferromagnetic materials has long been a focus of research in condensed

matter physics. The suppression of an itinerant ferromagnetic transition temperature to
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zero is of specific interest, since it may lead to the discovery of a quantum critical point

(QCP) [Stewart, 1984, 2001, 2006; Taufour et al., 2010; Saxena et al., 2000; Huxley et al.,

2001] which exhibits exotic physical properties, such as non-Fermi liquid behavior and

even superconductivity. The Stoner model has been developed to describe a mechanism

of an itinerant ferromagnetic system, and is based on the premise that the magnetic

properties of the itinerant ferromagnets originate from de-localized electrons [Stoner,

1933]. In particular these de-localized electrons become part of the conduction band and

influence the density of state (DOS) at the Fermi level. Based on the Stoner criterion,

UD(εF) > 1, where U and D(εF) are Coulomb repulsion and the DOS at the Fermi level

respectively, itinerant ferromagnetism can be suppressed by tuning U and/or D(εF). The

suppression of itinerant ferromagnetism not only results in the decrease of the ordering

temperature, but is also accompanied by decrease of the effective and saturated moments

per magnetic species. On the other hand, ferromagnetic ordering can also arise from the

interactions of local magnetic moments [du Tremolet de Lacheisserie, 2005; Ashcroft

and Mermin, 1976]. As the exchange interaction favors parallel spin alignments, the

materials show spontaneous magnetization. Suppressing the ferromagnetism by diluting

the local moments, does not reduce the size of effective or saturated moments (per

moment bearing ion) and, does not necessarily lead to a QCP [Jia et al., 2007; Szytula

and Leciejewicz, 1994]. New magnetic states, such as spin glass, may also emerge in the

diluted magnetic system [Mydosh, 1993; Wiener et al., 2000]. Therefore, the suppression

of ferromagnetism by substitution may offer an opportunity to approach a QCP, or

may result a glassy state, and in doing so, sheds light onto the nature of the ordering

mechanism of a specific ferromagnetic system.

LaCrSb3 has been reported to order ferromagnetically below TC ∼ 125 – 142 K,

with the differences arising from the sample preparation methods [Hartjes et al., 1997;

Leonard et al., 1999, 2000; Raju et al., 1998; Jackson et al., 2001]. LaCrSb3 crystallizes

in an orthorhombic structure (space group Pbcm), where Cr occupies one single crys-



182

tallographic site 4c [Brylak and Jeitschko, 1995]. Extensive investigations into LaCrSb3

have been undertaken, and the compound is found to have a rich magnetic phase diagram

[Jackson et al., 2001; Granado et al., 2002; MacFarlane et al., 2006; Crerar et al., 2012;

Choi et al., 2007]. LaCrSb3 exhibits unconventional magnetic behavior with a canted

ferromagnetism in bc-plane. A spin-reorientation transition can be observed in the bc-

plane at ∼ 95 K, and can be suppressed by a small applied magnetic field ∼ 250 Oe

[Jackson et al., 2001]. Whereas some studies claim LaCrSb3 is an itinerant ferromagnet

[Raju et al., 1998; Jackson et al., 2001], the nature of its magnetic moments is still under

debate. A neutron scattering study suggests a coexistence of localized and itinerant spins

in LaCrSb3 [Granado et al., 2002]. As La is not moment-bearing, the Cr ion plays the

primary role in the magnetism of LaCrSb3. Band structure calculations and the X-ray

photoelectron spectroscopy studies find that the 3d electrons of the Cr exhibit a large

DOS peak at/near the Fermi level in the paramagnetic state [Crerar et al., 2012; Choi

et al., 2007; Richter et al., 2004], which, based on the Stoner criterion, has a possibility

of inducing the ferromagnetic instability.

An itinerant magnetic system can often be perturbed by applying pressure or via

chemical substitution. Take MnSi [Thessieu et al., 1995], UGe2 [Taufour et al., 2010]

and La(VxCr1−x)Ge3 [Lin et al., 2013c] as examples; in each, the ferromagnetic state

disappears as pressure is applied. Thus, pressure might be able to suppress the ferro-

magnetic phase and lead to a QCP or quantum phase transition (QPT) in LaCrSb3. Also

the DOS can be changed by chemical substitutions for the Cr atoms. LaVSb3, which is

an isostructural compound to LaCrSb3, has no magnetic ordering down to 2 K [Brylak

and Jeitschko, 1995; Jackson et al., 2001; Sefat et al., 2008]. It is found that the Fermi

level in LaVSb3 is shifted away from the highest peak of the DOS [Choi et al., 2007].

Thus, the ferromagnetism in LaCrSb3 may also be suppressed by substituting V for Cr

atom.

Previous work on polycrystalline samples showed that V substitution does suppress
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the ferromagnetic transitions, and claimed that the mechanism of the ferromagnetic

ordering can not be explained by a simple localized magnetic moment model [Dubenko

et al., 2001]. Only the temperature dependence of magnetization was measured on the

V-doped polycrystalline samples. The nominal V substitution reached only up to 20%,

and the precise stoichiometry of this doped system was not analyzed experimentally. It is

also not clear at which concentration the ferromagnetism was fully suppressed. In order

to better understand the effects of V substitution on the magnetic state of this system,

detailed measurements of the transport and thermodynamic properties of systematically

substituted single crystals are necessary.

In this work, we report the synthesis of single crystalline La(VxCr1−x)Sb3 (x = 0

– 1.0) samples, and present a systematic study of their transport and thermodynamic

properties. In addition, measurements of magnetization under pressure were performed

on the LaCrSb3 sample. Whereas the Curie temperature is essentially invariant under

pressure, the ferromagnetic ordering is systematically suppressed as the V concentration

increases from x = 0 to x = 0.36. For 0.42 ≤ x ≤ 0.73, the system enters into a

new magnetic ground state, possibly a complex glassy state. For even higher V-doped

compounds, x ≥ 0.88, the samples stay in the paramagnetic state down to 2 K. The

magnetic anisotropy also changes with the V substitution. Although the effective moment

per Cr varies slightly as the V concentration increases, possibly suggesting a valence

change of Cr ion induced by V substitution, there is no indication of µeff decreasing

toward zero and the Cr moment appears to be robust and fundamentally local-moment

like in nature. No experimental features expected in the vicinity of a QCP have been

observed by either applied pressure or chemical substitution.
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9.3 Experimental Details

Single crystalline La(VxCr1−x)Sb3 samples were synthesized via high-temperature

solution method with excess Sb as self-flux [Jackson et al., 2001; Sefat et al., 2008;

Canfield and Fisk, 1992; Canfield, 2010]. High purity (> 3N) elements with the starting

stoichiometry of La : V : Cr : Sb = 8 : x : 8-x : 84, were placed in a 2 mL alumina

crucible and sealed in a fused silica tube under a partial pressure of high purity argon

gas. The ampoule containing the growth materials was heated up to 1180 ◦C over 3 h

and held at 1180 ◦C for another 3 h. The growth was then cooled to 750 ◦C over ∼

85 h at which temperature the excess liquid was decanted using a centrifuge [Canfield

and Fisk, 1992; Canfield, 2010]. Single crystals of La(VxCr1−x)Sb3 grew as rectangular

plates, with shiny surfaces that had a few drops of residual Sb-rich flux on them. An

example of such a crystal is shown in the inset of fig 9.1. The sizes of crystals increase

as the V-concentration increases, varying from ∼ 3.5 × 1.5 × 0.7 mm3 for LaCrSb3 to

being crucible limited, ∼ 8 × 6 × 2 mm3 for LaVSb3.

Powder X-ray diffraction data were collected at room temperature on a Rigaku Mini-

Flex II diffractometer with Cu Kα radiation. Samples with rod-like shape were selected

for measurement. Data collection was performed with the counting time of 2 s for ev-

ery 0.02 degree. The refinement was conducted using the program Rietica [Howard and

Hunter, 1998]. Error bars associated with the values of the lattice parameters were deter-

mined by statistical errors, and a Si powder standard was used as an internal reference.

To identify the crystallographic orientation, real-time back-scattering Laue diffraction

measurements were performed with Mo source (λ ∼ 0.7093Å). The structural solutions

were refined by the Cologne Laue Indexation Program [Schumann, 2011].

Elemental analysis of the samples was performed using wavelength-dispersive X-ray

spectroscopy (WDS) in a JEOL JXA-8200 electron probe microanalyzer. Only clear and

shiny surface regions were selected for determination of the sample stoichiometry, i.e.
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regions with residual Sb flux droplets were avoided. For each composition, the WDS

data were collected from multiple points on the same sample.

Measurements of field and temperature dependent magnetization were performed in

a Quantum Design, Magnetic Property Measurement System (MPMS) superconducting

quantum interference device (SQUID) magnetometer. The ac resistivity was measured

by a standard four-probe method in a Quantum Design, Physical Property Measurement

System (PPMS). Samples were polished into long rectangular bars. Platinum wires were

attached to the sample using Epo-tek H20E silver epoxy, with the current flowing along

the c-axis. The absolute values of resistivity are accurate to ±15% due to the accuracy

of measurements of electrical contacts’ positions. The residual resistivity ratio is defined

as RRR = ρ (300 K)/ρ (2.0 K).

Temperature dependent specific heat data were measured in the PPMS using the

relaxation technique in zero field for representative samples. The specific heat of LaVSb3

was used to estimate the non-magnetic contribution to the specific heat of LaCrSb3. The

magnetic contribution to specific heat from the Cr ions was calculated by the relation of

CM = Cp(LaCrSb3)-Cp(LaVSb3).

The temperature dependent field-cooled magnetization of a single crystal under pres-

sure was measured in the MPMS magnetometer in a magnetic field of 100 Oe applied

along the c-axis. Pressures of up to 5.3 GPa were achieved with a moissanite anvil cell

[Alireza et al., 2007]. The body of the cell is made of Cu-Ti alloy and the gasket is made

of Cu-Be. Daphne 7474 was used as a pressure transmitting medium [Murata et al.,

2008], and the pressure was determined at 77 K by the ruby fluorescence technique.
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9.4 Results and Analysis

9.4.1 Crystal Stoichiometry and Structure

The stoichiometry of the La(VxCr1−x)Sb3 samples was inferred from WDS measure-

ments. Table 9.1 summarizes the atomic percent of each element determined from the

weight percent obtained from the analyses. The error bar is taken as twice the standard

deviation σ. As shown in fig. 9.2 (a), the actual V-concentration xWDS follows the ini-

tial stoichiometry xnominal systematically, ranging from 0 to 1, and the small 2σ-value

suggests that the samples are homogeneous, at least on the length scale probed by the

WDS measurements ∼ 1 µm. In the following, the measured, xWDS, rather than xnominal

values will be used to indicate the composition of the compounds in this series.

The crystal structure and orientation were confirmed by back-scattering Laue diffrac-

tion. Consistent with the reported data [Brylak and Jeitschko, 1995; Jackson et al., 2001;

Sefat et al., 2008], this series of compounds form in an orthorhombic structure, Pbcm

(No. 57). As shown in the inset of fig. 9.1, the a-axis was verified to be perpendicular

to the rectangular plate, and the c-axis is parallel to the longest side, consistent with

the reported data [Sefat et al., 2008]. Powder X-ray diffraction patterns were collected

on ground single crystals from each compound. Fig. 9.1 gives powder X-ray diffraction

pattern for x = 0.13 as an example. The main phase can be refined with LaCrSb3’s

reflection pattern (Pbcm structure), consistent with the Laue diffraction. No clear trace

of Sb residue or other secondary solidification can be detected, and similar results (Pbcm

structure) were obtained for the rest of the series. The lattice parameters obtained by

the analysis of the powder X-ray diffraction data are presented in fig. 9.2 (b) – (d). The

lattice parameters a, b and c all manifest systematic changes as the x increases, which

is consistent with the reported data [Brylak and Jeitschko, 1995; Jackson et al., 2001].

Crystallographically, the transition metal elements in LaCrSb3 and LaVSb3 occupy the

same unique site 4c [Brylak and Jeitschko, 1995].
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9.4.2 Physical properties of La(VxCr1−x)Sb3 (x = 0 and 1.0)
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Figure 9.3 Anisotropic field-cooled (FC) magnetization as a function of temperature
for LaCrSb3 at 50 Oe.

The anisotropic, temperature-dependent, field-cooled (FC) magnetization of LaCrSb3

is shown in fig. 9.3. The measurements were performed with the applied field parallel

to b- and c-axes at 50 Oe. As is shown, the magnetization rises sharply near 130 K for

both H ‖ b and H ‖ c, indicating a transition to a low-temperature ferromagnetic state.

A second anomaly can be observed in both directions at around 100 K, which can be

associated with spin reorientation, as suggested by previous studies [Jackson et al., 2001;

Granado et al., 2002]. Below roughly look, the magnetization data in both directions

remain almost constant as temperature is lowered.

The anisotropic magnetic susceptibility of LaVSb3 was measured at 1 kOe, as shown

in fig. 9.4. It is clear that the magnetic susceptibility has weakly positive values in

all three directions, and M(T )/H is essentially temperature independent. It is evident
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Figure 9.4 Anisotropic magnetic susceptibility as a function of temperature of LaVSb3

measured at 1 kOe.
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that LaVSb3 follows Pauli magnetic behavior, and is consistent with the reported data

[Jackson et al., 2001; Sefat et al., 2008].
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Figure 9.5 The electrical resistivity ρ as a function of temperature for La(VxCr1−x)Sb3

(x = 0 and 1.0).

Figure 9.5 presents the electrical resistivity data of La(VxCr1−x)Sb3 (x = 0 and 1.0)

as a function of temperature. To within 15%, the room temperature resistivity values ρ

(300 K) are about 105 µΩ cm for x = 0 and 87 µΩ cm for x = 1.0. At high temperatures,

the electrical resistivity decreases linearly upon cooling, characteristic of normal metallic

behavior. For x = 0, a dramatic anomaly occurs at about 132 K, which is most likely

due to the loss of spin disorder scattering and can be associated with the ferromagnetic

transition. For x = 1.0, no anomaly was observed for temperatures above 1.8 K.

The temperature-dependent specific heat data for the La(VxCr1−x)Sb3 (x = 0 and 1)

are presented in fig. 9.6. The specific heat can be estimated by the relation Cp(T ) = Ce

+ Cph + CM, where Ce is the conduction electron contribution, Cph is the phonon con-
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Figure 9.6 Temperature-dependent of specific heat of La(VxCr1−x)Sb3 (x = 0 and 1).
Inset: magnetic contributions to the specific heat 4Cp as a function of
temperature for x = 0. The dashed line indicates the ordering temperature.
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tribution, and CM is the magnetic contribution. Ce + Cph can be roughly approximated

by the Cp data of LaVSb3. Thus, the magnetic contribution CM was, to the specific

neat of LaCrSb3, evaluated as 4Cp = Cp(LaCrSb3)-Cp(LaVSb3). A cusp can be seen

in 4Cp, as shown in the inset of fig.9.6. This is the first time that the ferromagnetic

transition of LaCrSb3 has been observed in the specific heat data. This anomaly can

be associated with the ferromagnetic transition. The ordering temperature TC obtained

from 4Cp data for x = 0 is about 132 K, as indicated by the dash line in the inset of

fig. 9.6.

9.4.3 Effects of pressure on the magnetic properties of of LaCrSb3

In an attempt to suppress the ferromagnetism in LaCrSb3, hydrostatic pressures

up to 5.3 GPa were applied. Figure 9.7 (a) shows the temperature dependence of the

filed-cooled magnetization of LaCrSb3 under different pressures. At lower pressures, the

ferromagnetic transition is revealed by a rather sharp increase of the magnetization.

Defined here as a minimum point in dM(T )/dT (as seen in fig. 9.7 (b)), the Curie

temperature, TC, is plotted as a function of applied pressure in fig. 9.7 (c). TC changes

only very slightly with applied pressure with dTC/dp ≈ 0.1 ± 0.3 K/GPa, suggesting

that the ferromagnetism is robust with respect to pressure, at least up to 5.3 GPa. At

ambient pressure, the spin reorientation is seen as a sharp decrease of the field-cooled

magnetization measured along the c-axis (fig. 9.7 (a) and fig. 9.3). A decrease of the

magnetization is still observed for pressure of 0.6 and 1 GPa, although the plateau can

not be observed. The decrease of magnetization cannot be detected above 3 GPa.

9.4.4 Effects of chemical substitution on the physical properties

Given that accessible pressures appear to have little or no effect on the ferromagnetic

transition temperature of LaCrSb3, we decided to study the effects of chemical substitu-

tion on the physical properties of the La(VxCr1−x)Sb3 series. The electrical resistivity
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data, as a function of temperature for La(VxCr1−x)Sb3 are presented in fig. 9.8 (a) and

(b). The room temperature resistivity values ρ (300 K) of all compounds are in the range

of 80 – 140 µΩ cm. For low x-value samples, the distinct drop in the resistivity below

150 K is probably associated with the ferromagnetic transition. This anomaly moves to

lower temperatures and is broadened as the V concentration increases up to 0.36 (seen in

fig. 9.8 (a)). For x ≥ 0.42, this feature can no longer be clearly observed, as shown in fig.

9.8 (b). The inset of fig. 9.8 (a) provides the criterion used to infer Curie temperature

TC — the peak position in the dρ/dT indicated by the arrow, and the inferred TC values

are summarized in Table 9.2 (below). With current along c-axis, samples for x = 1.0 and

0 have RRR of ' 6.8 and 5.6, respectively. The lower RRR values for the intermediate

x-value compounds are due to increased site disorder caused by the substitution.

Figure 9.9 x-dependent transition temperatures for La(VxCr1−x)Sb3 determined by
ρ(T ) and Cp(T ) measurements.

Based on the resistivity and specific heat data, a T – x phase diagram was assem-
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bled. As shown in fig. 9.9, the Curie temperature decreases systematically as the V

concentration increases. For lower V-doped compounds, x < 0.36, the system possess a

paramagnetic state at high temperatures, and transits into a magnetically ordered state

at low temperatures. For higher V-doped compounds, x > 0.42, as no feature can be

observed in the resistivity data, the magnetic state in this region is not clear.

To better understand the magnetic state of the V-doped compounds, systematic mag-

netization measurements were also performed. Figures 9.10 – 9.14 present magnetization

isotherms, hysteresis loops, zero-field-cooled (ZFC) and field-cooled (FC) M(T ) for se-

lected compounds. Figure 9.10 (a) shows the anisotropic, ZFC, magnetization isotherms

for LaCrSb3 measured at T = 2 K. The magnetization shows clear ferromagnetic behav-

ior – spontaneous spin alignment in both b and c directions as the applied field increases

from zero. At T = 2 K, in the ordered state, the magnetization is anisotropic, with

Mb > Mc > Ma. The value of the magnetization measured at 50 kOe in the b direction

is taken as the saturated moment (µS). For x = 0, µS is about 1.61 µB per Cr, consistent

with the reported value [Jackson et al., 2001; Granado et al., 2002]. Figure 9.10 (b)

shows the hysteresis loop of LaCrSb3 measured at 2 K for H ‖ b. The spontaneous spin

alignment can be clearly seen, whereas hysteresis can hardly be observed. This probably

suggests that LaCrSb3 is a soft ferromagnet. Compared to the V-doped compounds (see

below), LaCrSb3 exhibits negligible pinning effect that is associated with the disorder

induced by substitution.

Similar magnetization isotherms can be observed for x = 0.22, see in fig. 9.11 (a).

The b-axis can still be identified as the easy axis and Ma has the lowest value of all

three directions, however, the differences in magnetization between different directions

becomes slightly less obvious. The saturated moment is 1.37 µB/Cr for H ‖ b. The

hysteresis loop for x = 0.22 is shown in fig. 9.11 (b). Clear hysteresis can be observed,

and the coercivity is about 1.63 kOe. At low fields, the magnetization in the virgin curve,

instead of showing spontaneous spin alignment, rises slowly with the applied field. This
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Figure 9.10 (a) Zero-field-cooled (ZFC) anisotropic field-dependent magnetization
isotherms taken at 2 K. (b) Hysteresis loop measured at 2 K with H ‖ b
for the LaCrSb3. The applied magnetic field changes from zero to 50 kOe,
to -50 kOe, and then up to 50 kOe again.
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is probably caused by domain pinning effects. In addition, a discrepancy can be seen

in the low-field magnetization for H ‖ b between fig. 9.11 (a) and fig. 9.11 (b). It is

possibly due to the remnant field in a superconducting magnet giving rise to different

virgin curve starting points. Based on the behavior of the field-dependent magnetization,

it is evident that La(VxCr1−x)Sb3 (x = 0.22) possesses a ferromagnetic state at low

temperatures. Figure 9.11 (c) shows the ZFC and FC magnetization as a function of

temperature. The measurements were performed at 50 and 100 Oe with H ‖ b. As can

be seen, the FC M/H increases dramatically upon cooling and continuously rising at low

temperatures, indicating the existence of a ferromagnetic state. The complex feature in

the ZFC M(T )/H at low temperatures is probably due to domain pinning effects. Hence,

with increasing V substitution up till x = 0.22, the La(VxCr1−x)Sb3 series maintains a

ferromagnetic state at low temperatures.

Starting from x = 0.33, two major differences can be found in the magnetization

isotherms, as shown in fig. 9.12 (a) and fig. 9.13 (a). First of all, a spontaneous

spin alignment can not be observed for any direction of applied field measured. The

magnetization for H ‖ b rises much slower as field increases (compared with the case of

x = 0), whereas Ma and Mc seem to show rather broad shoulders. With the increased V

concentration, even Mb shows a shoulder-like feature, and no saturation can be observed.

These data might suggest that the magnetic state for x ≥ 0.33 in the La(VxCr1−x)Sb3

series is no longer ferromagnetic. The second difference found is the change of anisotropy.

Although the b-axis is still the easy axis, Ma is larger than Mc for x ≥ 0.33. Hysteresis

can still be observed for x = 0.33 and 0.52, as shown in fig. 9.12 (b) and fig. 9.13 (b).

However the coercivity decreases as the V concentration increases. It drops to 1.47 kOe

for x = 0.33 and 0.58 kOe for x = 0.52.

Figures 9.12 (c) and 9.13 (c) also present the ZFC and FC magnetization as a function

of temperature measured at 50 and 100 Oe with H ‖ b. Besides the initial increase in both

ZFC and FC M(T )/H upon cooling, a local maximum can be observed in both of the
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Figure 9.11 (a) Zero-field-cooled (ZFC) anisotropic field-dependent magnetization
isotherms taken at 2 K. (b) Hysteresis loop measured at 2 K with H ‖ b.
The applied magnetic field changes from zero to 50 kOe, to -50 kOe, and
then up to 50 kOe again. The arrows indicate the directions of the field
sweeping. (c) Zero-field-cooled (ZFC) and field-cooled (FC) temperature
dependence of the magnetic susceptibility taken at 50 and 100 Oe with H
‖ b for the La(VxCr1−x)Sb3 (x = 0.22).
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ZFC and FC curves. This feature is more obvious for the higher V-doped compound, x =

0.52 (fig. 9.13 (c)). As is shown, the ZFC and FC M(T )/H are split at low temperatures,

and the ZFC curves exhibit a dramatic decrease as T decreases. These might imply some

degree of frustration which leads to some form of cluster or spin-glass state [Mydosh,

1993]. It is possible that with the continuous suppression of ferromagnetism, the magnetic

state in this series evolves into a new magnetic state, which is often observed in the local

magnetic moment systems [Mydosh, 1993; Buschow, 1990].

As vanadium content increases, the moment along a-axis continuously gets closer to

Mb. As shown in fig. 9.14 (a), Ma and Mb becomes almost identical for x = 0.73. At 2

K, the magnetization gradually increases with the increasing field, exhibiting no feature

of spontaneous spin alignment. No saturation or hysteresis can be observed for x = 0.73

(fig. 9.14 (b)). It is evident that La(VxCr1−x)Sb3 series does not possess a ferromagnetic

order above 2.0 K for x > 0.73.

Given that the magnetization along b-axis shows typical ferromagnetic behavior for

the lower V-doped compounds, and given that the b-axis is the easy axis in almost the

whole x range (0 ≤ x ≤ 0.73), in the following, our study of the evolution of the magnetic

state in the La(VxCr1−x)Sb3 system is presented with the magnetization data along b-

axis. The temperature-dependent FC magnetization curves of the La(VxCr1−x)Sb3 (x =

0.06 – 0.73) series, with H ‖ b at 50 Oe are shown in fig. 9.15 (a) and (b). Magnetization

for x = 0.06 – 0.36 shows the expected rapid increase of the magnetization as well as the

saturation at low temperatures (fig. 9.15 (a)). The Curie temperature decreases as V

concentration increases, and the transition shifts to lower temperature, as can be clearly

seen in fig. 9.15 (b). With increasing amounts of V substituted for Cr, from x = 0.42, the

temperature-dependent magnetic susceptibility starts deviating from the ferromagnetic

behavior (fig.9.15). As the temperature decreases, the magnetization rises in a much

slower manner compared with the lower V-doped compounds, and a local maximum at

low temperatures can be observed. It can be inferred that instead of the ferromagnetic
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Figure 9.12 ((a) Zero-field-cooled (ZFC) anisotropic field-dependent magnetization
isotherms taken at 2 K. (b) Hysteresis loop measured at 2 K with H ‖ b.
The applied magnetic field changes from zero to 50 kOe, to -50 kOe, and
then up to 50 kOe again. The arrows indicate the directions of the field
sweeping. (c) Zero-field-cooled (ZFC) and field-cooled (FC) temperature
dependence of the magnetic susceptibility taken at 50 and 100 Oe with H
‖ b for the La(VxCr1−x)Sb3 (x = 0.33).
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Figure 9.13 (a) Zero-field-cooled (ZFC) anisotropic field-dependent magnetization
isotherms taken at 2 K. (b) Hysteresis loop measured at 2 K with H ‖ b.
The applied magnetic field changes from zero to 5 kOe, to -5kOe, and then
up to 5 kOe again. The arrows indicate the directions of the field sweeping.
(c) Zero-field-cooled (ZFC) and field-cooled (FC) temperature dependence
of the magnetic susceptibility taken at 50 and 100 Oe with H ‖ b for the
La(VxCr1−x)Sb3 (x = 0.52).
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state, a new magnetic state may emerge for higher V-doped compounds.

The Curie temperature can be estimated by d(M/H)/dT for low values of applied

field (H = 50 Oe in this case), as indicated by the arrow in fig. 9.16 (a), where the

transition temperature T1 is determined by the sharp anomaly in d(M/H)/dT . The

obtained T1-values are listed in Table 9.2. The transition temperature systematically

decrease to lower temperatures as the V-concentration increases, from 133 K for x = 0

to 24 K for x = 0.36 with H ‖ b. On the other hand, for higher V-doped compounds (x >

0.33), two features can be observed in d(M/H)/dT . Besides the minimum point, the

maximum point in d(M/H)/dT is chosen as the criterion to characterize the transition

temperature of a potential new magnetic state (shown in fig.9.15 (b)). Again the obtained

transition temperatures T1 and T2 are listed in Table 9.2.

The polycrystalline average of M/H measured at 1 kOe is shown in fig. 9.17. It

is obtained by χave = 1
3

(χa + χb + χc). A modified Curie-Weiss law with inclusion of

a temperature-independent term χ0: χave = χ0 + C/(T − θpoly), was used to fit the

magnetic susceptibility, where θpoly is the Curie-Weiss temperature estimated by the

polycrystalline averaged data and C is the Curie constant. Considering the accuracy of

measuring sample’s mass, the values of the effective moments in this series are accurate

to ±10%. The fitting parameters χ0 and the calculated µeff and θpoly are summarized

in Table 9.2. For x = 0, µeff is found to be about 3.9 µB/Cr, close to the calculated

value for Cr3+: 3.8 µB, and is consistent with the reported value [Jackson et al., 2001].

As shown in Table 9.2, the effective moment gradually decreases as the V concentration

increases. However, µeff does not approach zero for some critical x value, or even as x

gets close to 1, unlike the ferromagnetic system dominated by solely itinerant moments

[Rhodes and Wohlfarth, 1963]. Instead, µeff falls to 2.9 µB/Cr for x = 0.88, which is

close to Cr4+: 2.8 µB. It is possible that the Cr ion in the La(VxCr1−x)Sb3 compounds

has a valence changed in compounds with higher V substitution. In addition, it is found

that the Curie-Weiss temperature, θpoly in this series are all positive, indicating the
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ferromagnetic interaction as the dominant interaction in these compounds. Also the fact

that θpoly decreases as x increases implies the ferromagnetic interaction is weakened by

the V substitution.
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Figure 9.18 x-dependent transition temperatures for La(VxCr1−x)Sb3 determined by
anisotropic M(T ), ρ(T ) and Cp(T ) measurements. The dashed lines out-
line three potential regions of the low temperature magnetic behavior: fer-
romagnetic state (FM), complex magnetic state I (CMSI) and complex
magnetic state II (CMSII).

We have been able to suppress the ferromagnetism in the La(VxCr1−x)Sb3 series via

chemical substitution. The ordering temperatures inferred from low field magnetization,

resistivity and specific heat measurements are summarized in Table 9.2. A phase diagram

of x-dependent transition temperature for La(VxCr1−x)Sb3 is assembled in fig. 9.18. For

x 6 0.36, the transition temperatures that are determined by different measurements and

different orientations are fairly consistent. For x > 0.42, only the points inferred from the

magnetization data are shown in the phase diagram, since other measurements do not
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manifest clear anomalies. As can be seen, for the La(VxCr1−x)Sb3 series, ferromagnetism

can be clearly observed for x up to 0.22, and the ferromagnetic transition temperature

is suppressed monotonically by the V substitution: TC = 133 K for x = 0, and TC =

52 K for x = 0.22 (based on the low field M(T ) data with H ‖ b). If T1 is used as a

criterion for determining the transition to a low-temperature magnetic state for the whole

series, it seems that the magnetic transition temperature gets gradually suppressed by V

substitution and drops below our base-temperature of 2.0 K. If T2 is used as the criterion

for higher V-doped samples, then considering the features observed in M(H), M(T )/H

and ρ(T ) for x = 0.33 and 0.36, it seems that x = 0.33 – 0.36 is a region for the system to

transition from the ferromagnetic state to a new magnetic state. Similar phenomena have

also been observed in the LiHoxY1−xF4 family: for 0.25 ≤ x ≤ 0.5, the system is claimed

to be in a “ferroglass” regime, where spin glass and ferromagnetic phase coexist [Ancona-

Torres et al., 2008; Gingras and Henelius, 2011]. In fig. 9.18 we identify three potential

regions of the low temperature magnetic behavior: (1) ferromagnetic state (FM) for 0

≤ x ≤ 0.22, (2) complex magnetic state I (CMSI) for 0.22 ≤ x ≤ 0.42, and (3) complex

magnetic state II (CMSII) for x ≥ 0.42. Further investigations are needed to determine

the exact concentration at which the transition occurs. In the region of CMSII, given

that i) M(T ) exhibits a local maximum at low temperature, and ii) field-cooled and zero-

field-cooled M(T ) deviate from each other, it is possible that this new magnetic ground

state is a complex glassy state. As the V concentration reaches even higher, x ≥ 0.88, no

magnetic ordering can be observed and the system shows paramagnetic behavior down

to our base temperature of 2.0 K.

Based on our data, the La(VxCr1−x)Sb3 system has a phase diagram consistent with

dominantly local moment like behavior of Cr. The progression from well defined magnetic

ordering to complex magnetic state, to something that may be glassy state and gradually

has a freezing temperature drop toward zero is similar to what has been found for local

moment systems such as (TbxY1−x)Ni2Ge2 [Wiener et al., 2000]. At no point were
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features consistent with a quantum critical point observed.

9.5 Discussion and Conclusions

Our efforts to suppress ferromagnetism in LaCrSb3 started with applications of pres-

sures up to 5.3 GPa. As seen in fig. 9.7, the ferromagnetic ordering temperature, TC, is

essentially insensitive to p < 5.3 GPa. On the contrary, the feature of spin reorientation

evolves systematically and vanishes as the applied pressure increases.

Given that we could not suppress the ferromagnetism in the LaCrSb3 compound

by applying pressure, we evaluated the potential for quantum critical behavior by using

chemical substitution as an alternative tuning parameter. The growth of single crystalline

La(VxCr1−x)Sb3 samples has allowed for the detailed study of the anisotropic properties,

the determination of the easy axis as well as the estimate of the effective moment. In

addition, careful chemical analysis was performed to determine the precise concentration

of this doped system. This offers a certain understanding of chemical substitution effect

on the suppression of the ferromagnetism and the evolution of the magnetic state in this

system.

The estimated Curie-Weiss temperature θpoly and the effective moment µeff per Cr as

a function of the V-concentration x are plotted in fig. 9.19. It is clearly seen that θpoly

decreases monotonically from about 141 K to almost zero as x increases, implying that

the ferromagnetic interaction is suppressed by the V substitution. The effective moment

also decreases as x increases, but in a more subtle way. Instead of quickly approaching to

zero as seen in the suppression of ferromagnetism in the itinerant ferromagnets [Stewart,

1984, 2001, 2006; Taufour et al., 2010], µeff per Cr varies slightly as x increases, from 3.9

µB for x = 0 to 2.9 µeff for x = 0.88. Whereas the former value is close to the theoretical

effective moment of Cr3+, the latter one is close to Cr4+. Hence, the decrease of µeff

is more likely as a consequence of the valence change due to the V substitution than
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Figure 9.19 The Curie-Weiss temperature θpoly and the effective moment µeff per Cr as
a function of x for La(VxCr1−x)Sb3.
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Figure 9.20 The saturated moment µS as a function of x for the La(VxCr1−x)Ge3 and
La(VxCr1−x)Sb3 series. Note: for La(VxCr1−x)Sb3 compounds with x >
0.22, the saturated moment is replaced by the value of magnetization at
50 kOe with field along the b-axis. Data on La(VxCr1−x)Ge3 are from Ref.
[Lin et al., 2013c].
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Figure 9.21 The Rhodes-Wohlfarth ratio µc/µS as a function of Curie tempera-
ture TC for the La(VxCr1−x)Ge3 and La(VxCr1−x)Sb3 series. Data on
La(VxCr1−x)Ge3 are from Ref. [Lin et al., 2013c].
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manifesting an itinerant-moment behavior.

The saturated moment values for the La(VxCr1−x)Sb3 compounds are presented in

fig. 9.20. µS shows a slight decrease with the increase of the V concentration, from 1.61

µB/Cr for x = 0 to 1.37 µB/Cr for x = 0.22. For higher V-doped compounds (x > 0.22),

the La(VxCr1−x)Sb3 systems does not have a ferromagnetic state at low temperatures,

hence, µS is replaced by the value of magnetization at 50 kOe with field along the b-axis.

The arrows in fig. 9.20 imply that M(H = 50 kOe) is the lower limit of the possible

saturated moment of the higher V-doped compounds. It is clear that Cr’s moment stays

well above zero as the V concentration approaches to 1.

To learn more about Cr’s magnetic moment, we can compare the saturated moments

of both La(VxCr1−x)Ge3 and La(VxCr1−x)Sb3 series (as shown in fig. 9.20). It can be

clearly seen that µS of the La(VxCr1−x)Ge3 compounds quickly decreases as the V con-

centration increase, that is associated with the itinerant magnetism [Lin et al., 2013c].

For the La(VxCr1−x)Sb3 series, µS has a slower decreasing rate as the V concentration

increases. This possibly implies that the magnetic moment associated with Cr in the

La(VxCr1−x)Sb3 compounds is mainly of local character. Based on the values of µeff and

µS obtained, one can calculate the Rhodes-Wolfarth ratio (RWR) [Rhodes and Wohl-

farth, 1963], seen in fig. 9.21. According to Rhodes and Wolfarth, RWR = µc/µS, where

µc is related to the number of moment carriers, and can be obtained from µc(µc+1)=µ2
eff .

While RWR = 1 is an indication of localized magnetism, larger RWR values suggest the

existence of itinerant ferromagnetism. In our case, RWR equals to ' 1.9 for x = 0 and

' 2.2 for x = 0.22. Although this seems suggesting the ferromagnetism is itinerant, the

change of RWR as a function of TC shows very different behavior compared with the

La(VxCr1−x)Ge3 system [Lin et al., 2013c] (fig. 9.21) and the original Rhodes-Wohlfarth

plot [Rhodes and Wohlfarth, 1963]. Therefore, unlike La(VxCr1−x)Ge3, La(VxCr1−x)Sb3

is less likely to be dominated solely by itinerant magnetic moments. Probably the mag-

netism in this family is of predominantly local character.
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CHAPTER 10. CONCLUSIONS

As part of my thesis work, potential routes for the discovery of new superconduc-

tors have been developed and explored. We developed the use of S-X (X = non-

transition metal) as well as S-TM (TM = transition metal) solutions for the growth

of S-bearing compounds. We suppressed the ferromagnetism in the La(VxCr1−x)Ge3

and La(VxCr1−x)Sb3 via chemical substitution and the application of pressure. Whereas

La(VxCr1−x)Sb3 is found to possess a local-moment-like magnetism, La(VxCr1−x)Ge3

manifests more and more itinerant ferromagnetic behavior as the V-concentration in-

creases. The ferromagnetism in La(VxCr1−x)Ge3 was successfully suppressed by pressure,

and a potential QCP was discovered for x = 0.16. In addition, we performed detailed

characterization on BaSn5 superconductor, giving further understanding of their nature

of superconductivity, and on R3Ni2−xSn7 and RNi1−xBi2±y series putting to rest spurious

claims of superconductivity.

To incorporate sulfur into the high-temperature solution growth, we explored a range

of binary sulfur bearing solutions and demonstrated how we have been able to use these

as useful starting points for growth of wide range of transition metal – sulfur – X ternary

compounds. Bi was found to be one of the most promising candidates as a solvent for S.

We were able to safely bring a mixture of S40Bi60 up to 1000 ◦C without any detectable

condensation of S outside of the growth crucible and also without any indication of

high vapor pressure. With Bi as a flux, single crystalline Ni3Bi2S2 has been successfully

grown. Similarly, Sn, Sb, Pb and In were also identified as potential solvents for S-based

compounds growth. The growths of Co3Sn2S2, Fe2GeS4, CoSSb and PbS have been



219

given as examples. In addition, we found the use of the relatively deep eutectics in the

transition metal – sulfur binaries potentially allows for the growth of a wide range of TM

– S – X compounds. Given that Pd-S binary phase diagram exhibits a deep eutectic near

28% S, a liquid state with a content of 20 – 50% S can be achieved via slow heating to

slightly above 1000 ◦C. By utilizing this liquid state, single crystalline samples of Pd4S

and CePd3S4 can be grown with high purity. We also found that Ni-S and Co-S hold

comparable potential. The use of the relatively deep eutectics gives a remarkably simple

method for growth of single crystalline Co with crystallization taking place below the

Curie temperature.

The re-examination of the known superconductor BaSn5 was enabled by the synthesis

of single crystalline samples, and detailed studies of the thermodynamic and transport

properties were made. The superconductivity in BaSn5 was found to be more complex

than isotropic BCS type. De Haas-van Alphen oscillations were observed in BaSn5, and

three effective masses were resolved via FFT. The Tc-value for BaSn5 was suppressed by

pressure and this route (to higher Tc) can be considered as a dead-end.

Motivated by previous claims and observations of superconductivity in two specific

series of rare-earth compounds, we have synthesized single crystalline R3Ni2−xSn7 (R =

La, Ce, Pr and Nd) samples via self-flux Sn and RNi1−xBi2±y (R = La–Nd, Gd–Dy)

via self-flux Bi. Detailed characterizations were performed to study their properties.

However, the superconducting feature in La3Ni1.89Sn7 was found to be filamentary and

the anomalies in the resistivity can be attributed to impurities. It is likely that these

features are related to the superconducting transitions of LaSn3 and Sn. Similarly, for

RNi1−xBi2±y compounds, the the superconducting features observed in the transport

measurements were found to be related to minority, second phase, possibly Bi film, NiBi

and/or NiBi3.

The Ni occupancy in the R3Ni2−xSn7 (R = La, Ce, Pr and Nd) series varies from

∼ 0.1 for R = La to ∼ 0.7 for R = Nd. The electrical resistivity of this series follows



220

metallic behavior at high temperatures. Determination of clear anisotropies as well as

antiferromagnetic ordering temperatures for R3Ni2−xSn7 (R =Ce, Pr and Nd) have been

made. For Pr3Ni1.56Sn7 and Nd3Ni1.34Sn7, multiple magnetic transitions take place upon

cooling. Metamagnetic transitions in this family (R = Ce, Pr and Nd) were detected

for applied magnetic fields below 70 kOe. An H − T phase diagram of Ce3Ni1.69Sn7

was assembled to shed light on its low field properties and to rule out possible quantum

critical effects.

The RNi1−xBi2±y (R = La–Nd, Gd–Dy) series forms with partial Ni occupancy,

0.72 ≤ (1 − x) ≤ 0.84, as well as a variable Bi occupancy, 1.76 ≤ (2 ± y) ≤ 2.14.

The high-temperature magnetic susceptibilities of RNi1−xBi2±y (R = Ce–Nd, Gd–Dy)

show local-moment like behaviors. For the whole RNi1−xBi2±y family, Ni is non-moment

bearing. The values of the effective magnetic moment in the paramagnetic state are close

to the theoretical values of the trivalent rare earth ion. The local-moment ordering is

likely governed by the indirect exchange interactions between the rare earth ions mediated

by the conduction electrons (RKKY interaction). The negative sign of the paramagnetic

Curie temperatures θab, θc and θave indicates the dominant interactions in this system

are antiferromagnetic.

These two series of rare-earth compounds turned out not to be promising systems

for the study of superconductivity, as none of the compounds show bulk superconduc-

tivity. Similar phenomena have also been observed in the (RxCa1−x)Fe2As2 (R = La –

Nd) and LaO0.5F0.5BiS2 compounds, where it is difficult to distinguish bulk supercon-

ductivity from filamentary superconductivity. Careful characterizations and a though

literature search are needed to confirm the existence of a new bulk superconductor. The

examination of these spurious superconducting phase again showed the importance of

high-quality single crystals for the search for new superconductors.

Given that search for QCPs is another potential route for the discovery of new super-

conductors, we examined two ferromagnetic systems La(VxCr1−x)Ge3 & La(VxCr1−x)Sb3
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The growth of single crystalline La(VxCr1−x)Sb3 and La(VxCr1−x)Ge3 samples has al-

lowed for the detailed study of the anisotropic properties, the determination of the easy

axis as well as the estimate of the effective moment and saturated moment. In addition,

careful chemical analysis was performed to determine the precise concentration of this

doped system. This offers a clearer understanding of chemical substitution effect on the

suppression of the ferromagnetism and the evolution of the magnetic state in this system.

The suppression of the ferromagnetism in the La(VxCr1−x)Ge3 (x = 0 – 0.21, 1.00)

series starts with chemical substitution. The ferromagnetic transition temperature is

suppressed almost linearly by V doping: TC = 88 K for x = 0, and TC = 36 K for x

= 0.21. Consistent with the Stoner model, this suggests the system possesses a fragile

ferromagnetism which can be easily perturbed. Also the Curie-Weiss temperature is

clear suppressed by V-doping can be observed, implying the ferromagnetic interaction is

weakened by V-substitution. However single crystalline LaVxCr1−xGe3 compounds with

0.21 < x < 1.00 were not synthesized, the exact concentration xc at which the ferro-

magnetism in this series is completely suppressed via V substitution is not determined.

Based on the existing data, a critical concentration is likely to exist near x = 0.3. We

further suppressed the ferromagnetism for x = 0.16 by pressure up to 4.9 GPa. The Curie

temperature decreases as the applied pressure increases, at an initial rate of dTC/dp '

– 11.7 K/GPa below 2.8 GPa. The ferromagnetic signal vanishes at ' 3.3 GPa, and the

ferromagnetism in x = 0.16 appears to be completely suppressed. It can be clearly seen

that this system can be brought to a QPT and, hopefully a QCP.

The estimated µS and µeff per Cr in the La(VxCr1−x)Ge3 series decrease in a clear

manner as the V-concentration increases. In addition, the Rhodes-Wohlfarth ratio

(RWR) of La(VxCr1−x)Ge3 ranges from ' 1.4 for x = 0 to ' 3.9 for x = 0.21, sug-

gesting the ferromagnetism evolves towards itinerant as V-concentration increases. Also

the change of RWR as a function of TC exhibits very similar behavior as seen in the

original Rhodes-Wohlfarth plot, again implying that the Cr in the LaVxCr1−xGe3 series
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holds an itinerant magnetic nature. Given the RWR ratio and the fact that both µS

and µeff decrease as the V-concentration increases, it is promising for it being a potential

QCP system.

The suppression of the ferromagnetism in the La(VxCr1−x)Sb3 series gives a rather

different picture. With the application of pressure up to 5.3 GPa, the ferromagnetic

ordering temperature TC of LaCrSb3 almost does not change. Therefore, chemical sub-

stitution was used as a second parameter to evaluate the potential for quantum critical

behavior. The ferromagnetism can be observed for x up till 0.36, and the ferromagnetic

transition temperature is suppressed monotonically by the V-substitution: TC = 133 K

for x = 0, and TC = 24 K for x = 0.36 (based on the low field M(T ) data with H ‖ b).

As the level of the V-concentration increases, for 0.42 ≤ x ≤ 0.73, the system enters into

a new magnetic ground state. As the V-concentration reaches even higher, x ≥ 0.88, no

magnetic ordering can be observed and the system shows paramagnetic behavior. Based

on our data, the phase boundary between the ferromagnetic and spin-glass state is at

about x = 0.3, and the spin-glass state vanishes at around x = 0.8. However, in the

vicinity of these phase boundaries, no feature of a QCP has been observed.

The effective moment in the La(VxCr1−x)Sb3 series decreases as x increases, but in

a very subtle way. Instead of quickly approaching to zero as seen in the suppression of

ferromagnetism in the itinerant ferromagnets, µeff per Cr varies slightly as x increases,

from 3.9 µB for x = 0 to 2.9 µeff for x = 0.88. It probably implies that Cr in the

LaVxCr1−xSb3 possesses a non-itinerant nature. The saturated moment µS for x = 0

and 0.22 are found to be 1.60 µeff and 1.29 µeff , respectively. Accordingly, the Rhodes-

Wohlfarth ratio (RWR) is found to be ' 1.9 for x = 0 and ' 2.2 for x = 0.22. Although

this seems suggesting the ferromagnetism is itinerant, the change of RWR as a function of

TC shows very different behavior compared with the the original Rhodes-Wohlfarth plot.

Therefore, La(VxCr1−x)Sb3 is more likely to be dominated by local moment magnetism.

In summary, we have been able to grow ternary compounds out of Bi-S, Sn-S, Sb-S,
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and Pd-S and have shown that Pb-S, In-S, Ni-S and Co-S melts hold comparable po-

tential. Hopefully, with these solutions, new phases, as well as ground states, can be

discovered. We are continuing working on the development of S-based solutions for the

exploration of S-based compounds as possible hosts for high temperature superconduc-

tivity. Incorporated with the double-flux method, these solutions lead to new ways of

growing single crystalline S-based compounds, such as MoS2.

The suppression of ferromagnetism in the La(VxCr1−x)Ge3 series demonstrates a po-

tential route for the discovery of a QCP and hopefully superconductivity. It will be very

interesting to study the compounds via transport measurements under pressure and eval-

uate their critical exponents at pc. Alternative methods of growing higher x compounds

or pressure studies on pure LaCrGe3 will be possible ways to tune to the potential QCP

system as well. Given that the two stoichiometrically similar series La(VxCr1−x)Ge3

and La(VxCr1−x)Sb3 respond differently to chemical substitution and pressure, theoret-

ical calculations will be very helpful in the understanding of these differences as well as

the effects of chemical substitution and the application of pressure, which hopefully can

provide guidance for the future search for new QCP systems and superconductors.
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APPENDIX A. Lists of growths

Listed here are exploratory growths of chalcogen and pnictogen elements-based com-

pounds (mostly S-bearing compounds), and growths of R3Ni2−xSn7, RNi1−xBi2±y, SrSn4,

BaSn5, La(VxCr1−x)Ge3 and La(VxCr1−x)Sb3 compounds. The purpose is to provide

useful data and information for the future work. The growths are roughly organized

into different groups based on the starting materials, the targeted compounds, or the

fluxes/eutectic points that were used. The rules used to group these growths are not

mutually exclusive. Each table gives our internal batch growth number, concentration

of starting materials and the comments on the growth results.

Tests of Bi and/or Sb used as fluxes

Batch No. Initial concentration Comments

PM989 S.08(Bi.75Sb.25).92 Nothing

PM990 S.08(Bi.5Sb.5).92

Needle shaped crystals, probably Bi2S3, m

= 0.1730g, x-ray shows Bi2S3 and Bi-Sb-S

ternery

SA483 S25Bi75

needles stuck in a chunk, m= 1.6284g,

spin=4.67g
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Exploratory growths of Fe-S based compounds

Batch No. Initial concentration Comments

KQ006 Fe3S6(Bi.75Sb.25)91

x-ray separately. Bubble-dot feather-

like. Non-magnetic

KQ007 Fe3S6(Bi.5Sb.5)91

more plate. Feather-like, wings. X-ray.

Cool down more. Get colder or more

materials.

KQ008 Fe6S6(Bi.75Sb.25)88

x-ray: non magnetic. More feather.

Less bubbles.

KQ009 Fe6S6(Bi.5Sb.5)88 x-ray. Broken feather and bubbles.

KQ169 Fe.1S.3Bi.45Sb.15

ampule brakes–oxidized? a big hard

nest

KQ186 FeS9Sb81

flux comes out of the catch, looks crap.

some little irregular and leaf-like stuff

KQ193 FeS9Sb54 a cluster of irregular dots

KQ207 FeS9Sb54

hard cylinder-chunk, holes on the sur-

face, looks like moon. Breaking it:

shiny plates in it, or shiny dots.

KQ229 Fe3S6(Bi.7Zn.3)91

shiny dust. some Zinc seems not

melted.

KQ252 Fe3S6(Bi.75Zn.25)91 shiny cluster, some Zn not melt

KQ253 Fe3S6(Bi.5Sn.5)91

thin shiny rectangular plates and

thicker more squared-liked plates.

Continued on next page
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Table A.2 – continued from previous page

Batch No. Initial concentration Comments

KQ329-A (Fe.28Ge.15S.57).1(Bi.67Sb.33).9

shining, different shapes, feather like,

cubic dots stick together, some brown

shining color inside, colorful dots on the

crucible

KQ329-B (Fe.28Ge.15S.57).05(Bi.67Sb.33).95 shining dots and dendrites

KQ339 (Ge2FeS2).1Sb.9

quartz tube breaks during spin, lots of

dots and some plates covered by yellow

powder like stuff. Maybe some raw ma-

terials haven’t melted yet? The inside

surface of the crucible turned yellow-

brown

KQ344 (Ge2FeS2).1(Bi.5Sb.5).9 lumps of little dots

KQ345 (Ge4FeS2).1(Bi.5Sb.5).9
lumps of dots, shinning rectangular

plates, very thin

KQ351 (Ge4FeS2).05Sb.95

ampoule broke during spin, a lot of yel-

low powder (S) inside, delta-small clus-

ters of little dots!

KQ357 (Ge4FeS2).1Sb.9
shining plates and clusters of little dots,

no yellow stuff. Pulled out at 570C

KQ358 (Ge4FeS2).1(Bi.1Sb.9).9

thicker plates and thinner feather like

plates, very flat, no yellow stuff. Pulled

out at 570C

Continued on next page
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Table A.2 – continued from previous page

Batch No. Initial concentration Comments

KQ367 (Ge2FeS2).1Sb.9
few little plates and clusters of little

dots

KQ372 (Ge2FeS2).1Sb.9
almost crap, saver little plates attached

on the inside surface

KQ373 (Ge2FeS2).05Sb.95 crap, inside crucible surface looks pink

KQ556 FeSbBi4S0.5 needles+packages of little brown dots

KQ558 Cu10Ge4Fe1.9S14 no spin

KQ735 Fe10Sb40S50 dendrite crystals

SA166 (Ge2FeS2)3Sn94 red like plates and polycrystals

SA179 Fe5S5In95 Fe did not melt

Exploratory growths of Co-S-Bi-Sb based compounds

Batch No. Initial concentration Comments

KQ023 Co6S3(Bi.75Sb.25)91 small plates. Dots. Non-magnetic

KQ024 Co9S3(Bi.75Sb.25)88 lumps small plates. Non magnetic.

KQ025 Co6S3(Bi.5Sb.5)91 a big lump. Non magnetic.

KQ026 Co9S3(Bi.5Sb.5)88

bigger crystals. Surrounded by the sim-

ilar smaller ones and rods. Non mag-

netic. X-ray needed.

Continued on next page
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Table A.3 – continued from previous page

Batch No. Initial concentration Comments

KQ035 Co3S6(Bi.75Sb.25)91

broken ampoule. Water goes in. small

plates. Two different shapes

KQ036 Co3S9(Bi.75Sb.25)88

huge lumps. Small mirror plate. Non

magnetic.

KQ037 Co3S6(Bi.5Sb.5)91

broken ampoule. Water goes in. (seems

not affect sample yet)lots of mirrored

plates. Non magnetic.

KQ038 Co3S9(Bi.5Sb.5)88 large mirrored plates and needles

KQ062 (Co.1S.9).1(Bi.75Sb.25).9 lots of dots. Strong S smell

KQ063 (Co.1S.9).15(Bi.75Sb.25).85 irregular shaped dots. Great S smell

KQ087 (Co.4S.6).35(Bi.75Sb.25).65 feather or leaves- like. Non magnetic

KQ088 (Co.4S.6).45(Bi.75Sb.25).55

a cluster of feather or tree leave like.

Not magnetic

KQ094 (Co.25S.65).4(Bi.75Sb.25).6
strange transparent glass in the flux

side. Tree leaves

KQ095 (Co.1S.9).35(Bi.75Sb.25).65 Same as KQ094

KQ105 ((Co1−x).4S.6).35(Bi.75Sb.25).65

thin rod twisted into a nest. Non-

magnetic
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More exploratory growths of Co-S-Sb/Sn based compounds

Batch No. Initial concentration Comments

KQ912 Co9S6Sn94 some thicker plates, some thinner ones

KQ914 Co6Ni3S6Sn94 plates +needles

KQ915 Ni6Co3S6Sn94 big plates + small plates +some needles

KQ916 Co5S6Sn94 lots of needles+poly-chunk

KQ917 Co12S6(Bi0.25Sn0.75)94 more plate(Co3S2Sn2?)+lots of needles

KQ932 Co11NiS6Sn94 less plates, more needles

KQ933 Co11NiS6(Bi0.25Sn0.75)94 chunk of crystals, grows dirty

KQ934 Co12S6Sn84In10 broke during spin, oxidized, huge crystals

KQ948 Co10Ni2S6(Sn0.75Bi1.25)94 plates + needles

KQ949 Co9Ni3S6(Sn0.75Bi0.25)94 needles

KQ950 Co12S6Sn84In10 plates+rods

KQ951 Co12S6Sn89In5 few plates, rods

MC083 (Co0.5Ni0.5)3S2Sn2

MC104a (Ni1.5Co1.5Sn2S2)0.1Sn0.9 little polycrystals not very pretty. m=0.67g

SA002 Co9Ni3S3Sn94

SA003 Co12S6Sn74In20

SA004 Co12S6Sn64In30

SA159 Co9S6In91 rhombohedral

SA160 Ni2S6In88 plates and rod like stuff crumpled together

Continued on next page
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Table A.4 – continued from previous page

Batch No. Initial concentration Comments

SA715 Co10Ni10S20Sb60 no spin, remelt at 600C

SA716 Co10Gd10S20Sb60 no spin, remelt at 600C, remelt m=5.1504g

SA746 Co20S20Sb60

no spin put back in furnace spun at 650C

crystals m=1.5g

SA797 Co10Ni10S20Sb60

some dentritic cubes form large plates. Not

magnetic, m=2.4g

SA798 Co15Fe5S20Sb60

many small crystals formed. Some bigger

cubes. Not magnetic

SA799 Co15Gd5S20Sb60

large plates/chunks. Some were not melted,

not magnetic. Big resistance.m= 2.54g

SA824 Co15Mn5S20Sb60

Clear ampoule strong S smell pen work gone

plates something at the bottom not melt not

magnetic

SA825 Co15Cr5S20Sb60

Ampoule broke during spin, crystals got oxi-

dized large plates some are more 3D a chunk

of stuff of the bottom seems no melt

SA174 S4Zn50Sb50 junk
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Exploratory growths of Ni-S-Bi based compounds

Batch No. Initial concentration Comments

KQ106 Ni.06S.06Bi.88 long thin plates. Non-magnetic

KQ107 Ni.03S.06Bi.91 rods+plates+little chunks. Non magnetic

KQ108 Ni.03S.06Bi.88 pieces of plates. Non-magnetic

KQ133-1 Ni.06S.06Bi.88 nothing

KQ134 Ni.03S.06Bi.91 nothing

KQ135 Ni.03S.09Bi.88 nothing. 700C is too high.

KQ145 Ni.06S.06Bi.88

small pieces of plates tightly crumbled to-

gether.

KQ146 Ni.03S.06Bi.91 nothing

KQ147 Ni.03S.09Bi.88 nothing

KQ156 Ni.05S.25Bi.7 a soft nest at the bottom

KQ168 Ni.2S.05Bi.75 shiny irregular plates and rods

KQ227 Co3S6(Bi.25Sn.25)91 shiny plates and flat rods, non-magnetic

KQ550 Ni9Bi2S8 shining little dots stack in big gray chunk

KQ751 Ni9Bi2S8 NiS and Ni3Bi2S2

MC084 (Ni5Cu0.5)3S2Bi2

SA056 Ni20S15Bi80 big huge plates

SA066 Ni19Cu1S15Bi80 shining plates

SA067 Ni18Cu2S15Bi80 shiny plates

Continued on next page
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Table A.5 – continued from previous page

Batch No. Initial concentration Comments

SA068 Ni19Pd1S15Bi80 huge amount of shiny plates

SA069 Ni18Pd2S15Bi80 same as SA068, irregular plates

SA070 Ni19Co1S15Bi80 plates on polycrystalline puck

SA071 Ni18Co2S15Bi80

same as SA070, plates on polycrystalline

puck

SA084 Ni19Rh1S15Bi80

long rectangular plates + more squared

plates + little dentritics

SA085 Ni18Rh2S15Bi80

wired shaped plates, look like triangles, but

with bad edges.

SA086 Ni19Pt1S15Bi80 completely different, thicker plates and rods

SA087 Ni18Pt2S15Bi80 poorly formed irregular thin plates.

SA104 Ni16Cu4S15Bi80 smaller, irregular plates

SA105 Ni16Pd4S15Bi80 smaller, irregular plates

SA128 Pd20S15Bi80

maybe spin temp is low, a core made of nee-

dles and plates

SA135 Pb18S12Bi70 Cubes-PbS

SA136 Ni7S7(Pb0.8Bi0.2)86 poly crystals, with cubes and plates

SA139 Pd20S30Bi50

SA157 Cu20S15Bi80

SA158 Ni10Cu10S15Bi80 wasn’t able to spin immediately. Big pieces

Continued on next page
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Table A.5 – continued from previous page

Batch No. Initial concentration Comments

SA390 Cu10Ni10S15Bi80

NiCu arc-melting after mass= 0.4399, plates

dentiitic crystals not magnetic, a few loose

large crystals and a few attached to the wall

of crucible and getting large

Exploratory growths of Ni-S-X compounds

Batch No. Initial concentration Comments

KQ179 Ni0.01S0.02Sn.97

pinkish, red transparent plates with shining

metallic lines

KQ180 Ni0.01S0.02In.97

few things came out, yel-

low/green/transparent plates and some

shining dots, yellow dots on quartz before

spin

KQ181 Ni0.01S0.02Ga.97

shining irregular plate, some feather and leaf

like

KQ552 CuNi2S1.2 a collection of polycrystal like particles

KQ753 Ni9Sb2S8 NiS and NiSb and NiSbS

KQ913 Ni9S6Sn94 some big plates + needles

SA173 (Ni9S8)Sb92 junk

Continued on next page
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Table A.6 – continued from previous page

Batch No. Initial concentration Comments

SA427 (NiS)40In60 total spin foggy crucible

SA443 Ni5S5Sb90 total spin

SA453 (Ni.5S.5)30Sb70 dentrictics

Exploratory growths of RE-S based compounds

Batch No. Initial concentration Comments

KQ136 Lu.06S.04Bi.9

looked crap. Gray power like cover. Cut-

golden brown inside. Cut deeply - solid

chunk.

KQ155 Lu.05S.05Bi.9
cut Cu into small pieces. Wrapped with non-

melted Lu

KQ137 Sc.06S.04Bi.9
red-yellows chunk covered with a layer of

gray stuff. Looks like melted zinc.

KQ138 La.06S.04Bi.9
crucible cracks. Brown on the top quartz

chunk and plates covered with mud powder.

KQ223 (Nd4NiS7).01Sb.99

colorful cluster of irregular shaped stuff. red,

green and sliver.

KQ228 (Nd4NiS7).02Sb.98

solid chunk. Breaking it: shiny spots. some

part is red gray.

Continued on next page
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Table A.7 – continued from previous page

Batch No. Initial concentration Comments

KQ645 La3CoAlS7Zn9Bi16

CRUCIBLE BROKE INSIDE THE

QUARTZ TUBE. DARK LUMPS. RED

NEEDLES

KQ646 La3NiFeS7Sb9Bi16

crucible cracks inside the quartz tube. Dark

lumps.

KQ658 BaLa1.8Bi0.2CoS5

KQ660 BaLa1.8Bi0.2NiS5

KQ683 LaMo6S8Ni18Sb72

Loose polycrystalline chunk with a metal

core (Mo?)some small cubes

SA198 Ni10Yb10S15Bi80 Plates and solid chunk (Yb?)

SA387 Bi0.26S0.6Ce0.14

solid chunk no spin see book No.12 for more

temperatures

SA408 Bi.26S.6Ce.14 stink polycrystal. Crystal =1.14g

SA442 La10(Ni0.61S0.39)90 needles, silver and golden chunk magnetic

SA448 Ce10(Ni0.61S0.39)90

polycrystalline chunk, m=0.9023g, every-

thing has melted
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Exploratory growths of BaS-based compounds

Batch No. Initial concentration Comments

KQ141 (BaS).05S.05Ni.05Bi.85 yellow powder+shining plates

KQ142 (BaS).1S.1Ni.1Bi.7
yellow powder, gray junk. Some shining

pieces of plate buried in

KQ143 (BaS).05S.045Ni.05Bi.855

not melted yellow powder gathered at the

bottom + lots of shining irregular plates

KQ144 (BaS).1S.09Ni.1Bi.71

seems not melt. Yellow powder. A big lump,

contains tiny pieces of irregular shape plates.

KQ154 (BaS).05S.05Ni.05Bi.85

still have a disk at the bottom with not

melted yellow powder. More plates a rods

KQ157 (BaS).05S.15Ni.15Bi.75

one big disk chunk stuck at the bottom some

little yellow dot sparkled on it. It seems like

most BaS melted. Several thick plates and

rods on the top

KQ167 (BaS).12Ni.47S.41

without spin a huge chunk with shiny little

dots. Ground into powder, pressed into a

pellet

KQ194 (BaS).12Ni.47S.41

part shiny, part gray, when broken, big ex-

panded cylinder with holes in. brown gray

coloured stuff covers shiny plates

KQ211 (BaS)Co4S4

melted chunk, dark black. Breaking it: dark

shiny stuff, maybe form some regular shape

– hard to tell

Continued on next page
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Table A.8 – continued from previous page

Batch No. Initial concentration Comments

MC009 (BaS)6((Cu0.9Ni0.1)2S)10 crap

MC010 (BaS)6((Cu0.9Fe0.1)2S)10 crap with some small plates

SA906 (BaS)6(Cu2S)10 after arc melting, m=1.4216g

SA964 (BaS)6(Cu2S)10 m = 1.5577g after pellet

SA985 (BaS)6((Cu0.9Ni0.1)2S)10

after pellet m = 1.8863g. Total spin. It

seems materials flow out.

SA989 (BaS)6((Cu0.95Ni0.05)2S)10 m = 1.5475g

KQ684 (BaS)0.3Cr0.15Sn1.35 solid chunk

KQ685 BaSCrSn9

a chunk of yellow powder with some metallic

stuff on the top

KQ634 BaCrS2Sb9

black chunk inside layer of the crucible gets

red

KQ656 CrSbS3Bi12 dark lump (Cr didn’t melt)

KQ657 CrSb19S3 metallic chunk

Exploratory growths of Cu-S-X compounds

Batch No. Initial concentration Comments

KQ280 Cu8S6Bi88 a cluster of little dots

Continued on next page
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Table A.9 – continued from previous page

Batch No. Initial concentration Comments

KQ398 (CuFeS2)Sb.9 several chunks

KQ571 Cu60Ge40Fe17S50 no spin

KQ591 CuNiBi7S3 total spin

KQ605 Cu26Ge6Fe4S35 solid chunk no spin

KQ614 CuRh2S4Pb36

marks gone, waxy surface crucible little dots

form. Plates

KQ615 CuRh2S4Bi18 shiny chunks, like cubic phase

KQ625 CuFeS2Sb9 solid chunks polycrystalline

KQ752 CuMo2S5 Quartz tube coated by S

SA469 (CuFe2S3)2Sb94

non-regular shaped crystals m=0.1712g,

spin=4.6355g

SA479 (CuFe2S3)2Sb98

irregular shape plates m=0.1834g,

spin=4.79g

SA480 (CuFe2S3)4Sb96 bubble like stuff m=0.182g, spin=2.27g

SA481 (CuFe2S3)6Sb94 bubbles m=0.21g, spin=1.76g

SA535 Cu(Bi0.65S0.35)9

formed chunk like a cheese, m=1.054g, flux=

5.05g

SA536 Cu2(Bi0.65S0.35)8

one side of quartz tube gets smoked pencil

mark gone, thin tiny needle nest, m=0.467g,

flux=5.38

SA540 Cu5(Bi0.6S0.4)95 total spin, remelt spin at 500C, m=1.95g

Continued on next page
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Table A.9 – continued from previous page

Batch No. Initial concentration Comments

SA541 Cu10(Bi0.6S0.4)90 total spin, remelt spin at 500C, m=2.29g

SA570 Cu5(Bi0.6S0.4)95 rods

SA690 (Cu0.75Ni0.25)5(Bi0.6S0.4)95 rods, not magnetic m=1.87g

SA691 (Cu0.75Fe0.25)5(Bi0.6S0.4)95 m= 2.1624g

SA710 (Cu0.5Fe0.5)5(Bi0.6S0.4)95 Bi5CuS8 + CuS2

SA711 (Cu0.75Pt0.25)5(Bi0.6S0.4)95 smaller rods.

SA712 (Cu0.75Gd0.25)5(Bi0.6S0.4)95 smaller rods.

SA744 (Cu0.75Mn0.25)5(Bi0.6S0.4)95 Rods mass = 1.57g

SA745 (Cu0.75Tb0.25)5(Bi0.6S0.4)95 Rods mass = 1.65g

SA764 Cu40(Bi0.6S0.4)60 Polycrystalline

SA765 Cu20(Bi0.6S0.4)80 Total Spin

Exploratory growths of Pb-S-based compounds

Batch No. Initial concentration Comments

KQ445 (Pb.2Cu.2S.6)12Bi88 Needles

KQ446 (Pb.2Cu.2S.6)8Bi92 Needles

KQ447 (Pb.2Te.4S.4)18Bi82

KQ448 (Pb.2Te.4S.4)12Bi88

Continued on next page
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Table A.10 – continued from previous page

Batch No. Initial concentration Comments

KQ464 Pb2.4Cu3.6S7.2Bi88

more short needles than other two,

PbCuBiS3 and PbS

KQ465 Pb3.6Cu3.6S7.2Bi88 PbCuBiS3 and PbS

KQ466 Pb3.6Cu4.8S7.2Bi88 PbS and Bi

KQ470 Ni7.5S5Pb95 total spin

KQ475 S5Pb95

lose markings, shining cubic crystal, trans-

parent “wax” like inside the crucible

KQ476 S10Pb90 lost markings

KQ477 Pt5S5Pb90

lost markings, shining cubic, transparent

wax turns brown on the top, may have plate

like crystal

KQ478 Pt10.5S5Pb95

shining cubs and plates formed by cubes.

Wax and discolouration

KQ479 Pt24S5Pb95

KQ480 S5Pb95 shining cubs and wax

KQ486 Pt63.3S5Pb95

almost no spin, marks stays “spin crys-

tal”=5.1166g chunk broken can see rods and

plates

KQ487 Ni7.5S5Pb95

marks gone, a layer of crust grown and crys-

tals grown from beneath the crust

KQ489 S10Pb90

Continued on next page
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Table A.10 – continued from previous page

Batch No. Initial concentration Comments

KQ497 Ni7S7Pb86

clean crucible, marks gone, ’wax’ a chunk,

break: a thick layer of crust like powers stuff

grown from beneath the layer have many

plates or cubes, the crust is pretty soft

KQ498 Ni14S7Pb86

clean crucible, marks gone, ’wax’ a chunk,

break: a thick layer of crust like powers stuff

grown from beneath the layer have many

plates or cubes, the crust is pretty soft

KQ499 Mn5S10Pb90

mark stays! A thin layer of rust, shining dots,

cubs, plates, and some ’gray ashes’

KQ500 Cu5S10Pb90

hundreds of little dots covered the inside sur-

face of the crucible, grows dirty, little dots

mixed with melted stuff, like ’grapes’ marks

gone,

KQ501 Pd50S3Pb50

mark all gone, not much wax, a little bit of

yellow stuff in the catch side, a broken thin

crust in the crucible shisning cubs a layer of

cubs has grown attached to inside surface of

crucible, not much crystal grown out

KQ502 Ti5S10Pb90

marks stay, dark gray crust on the top a little

light gray dots

Continued on next page
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Table A.10 – continued from previous page

Batch No. Initial concentration Comments

KQ503 V5S10Pb90

shining plates grown from beneath the crust,

wax, mark stays, cubs, non-melted stuff and

little dots, layered cubs

KQ519 Cu10S10Pb90 crucibles look like ’wet painted’

KQ567 Ni4S5(Bi0.9Pb0.1)91

shinning long rectangular plates + cubic

plates, the ampoule is extremely clean

KQ568 Ni4S5(Bi0.75Pb0.25)91

shining rectangular, cubic, even rod-like

plates m=0.377g

KQ581 Pb1/3Mo2S8/3Bi98Ge98 gray staff with little shining clots

KQ848 Co5Ge10S10Pb90 several thin plates, dirty stuff

KQ850 Fe6Ge12S12Pb88 almost nothing

KQ899 Co5Ge10S10Pb90 cubes and poly

KQ900 Fe6Ge12S12Pb88 triangles+cubes+poly

KQ606 PbMo6S8Al594 polyhedron thick plates m=0.099g

KQ612 Pb90S10MoGe99 almost nothing, same small irregular plates
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Exploratory growths of Alkali and Alkali earth elements based

compounds

Batch No. Initial concentration Comments

KQ549 (K1.1Fe3.7S5.2)(Bi.5S.5)90

quartz tube is foggy, quartz wool turned yel-

low, some little shining plates or dots

KQ723 Na20Mn20Sb60

KQ725 NaCrS2Sb19

black drop-like chunk at the bottom of cru-

cible.

SA193 KNi2Se2 Al2O3 crucible attacked

SA194 KCo2Se2 Al2O3 crucible attacked

SA197 KCo2Se2

Se+Co solid reactions. Co+Se after first

solid state reaction (growth profile shown

left).K added: 8hr to 400C, stay 4hr, 10hr

to RT. Reground, final temperature profile:

10hr to 750C stay 72hours, 10 hours RT

Exploratory growths of V-S based compounds

Batch No. Initial concentration Comments

KQ616 V3S97

brown liquid sulfur condensed on the top of

the ampoule. Dark chunks seems not melt

Continued on next page
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Table A.12 – continued from previous page

Batch No. Initial concentration Comments

KQ617 VS4Bi36 shiny needles nest. Some chunks not melt

Exploratory growths of Ag-S based compounds

Batch No. Initial concentration Comments

KQ748 Ag6CuBiS4 AgBiS2 and Ag? and Bi

KQ749 AgFeS2 FeS2 and ?

KQ750 AgFe8S8 Fe7S8

Exploratory growths of Mn-S based compounds

Batch No. Initial concentration Comments

KQ810 (FeMnS)1Sb9 no spin

KQ811 (FeMn2S)1Sb9 no spin

KQ812 (FeMnS2)1Sb9 polycrystals, some MN seems not melt

KQ827 (Fe0.3Mn0.3Sb0.6)(Bi0.75Sb0.25)9

polycrystals, Mn doesn’t melt, cov-

ered with polycrystals and green stuff,

Sulfur-smell, something magnetic

Continued on next page
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Batch No. Initial concentration Comments

KQ829 (Fe0.6Mn0.6S1.2)(Bi0.85Ge15)9

some polycrystals, some non-melted

stuff covered with a thick metallic layer

KQ838 (Fe0.5MnS)(Bi0.75Sb0.25)9

poly and chunk seems not congruently

melt

KQ839 (Fe0.5MnS)Sb9

lots of small needles+ chunk at the bot-

tom

KQ837 (MnS)15Bi85 ugly polycrystals

KQ842 (Ge2MnS2)0.1Sb0.9 polycrystals

KQ843 (Ge2Mn.5Fe.5S2)0.1Sb0.9 polycrystals

KQ844 (Fe0.29Mn0.71)S black snowflakes

KQ849 Mn4Ge6S8Pb92 not much left, some polycrystal staff

SA167 (GeMnS2)3Sn94 rod like plates and solid clunk

KQ583 (CoMn1)5Sn95 little dots, few rods

Exploratory growths of Mg-B based compounds

Batch No. Initial concentration Comments

MC038 Mg5(Bi0.6S0.4)95 thick rods than Bi2S3

Continued on next page
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Table A.15 – continued from previous page

Batch No. Initial concentration Comments

MC039 B5(Bi0.6S0.4)95

crucibles get really dark.some sulfur con-

dense to the door side. Smell very bad and

strong. Bi2S3 needles. Brown inside of cru-

cible wall.

MC046 (Mg1/3B2/3)5(Bi0.6S0.4)95

very bad smell. Ampoule turns dark before

spun. The inner wall got smoked. Both cru-

cibles turn yellow-black, the inner wall turns

black too, with white spots at the bottom.

Bubbles?!... See book No.12, pg 257

MC047 (Mg1/3B2/3)10(Bi0.6S0.4)90

not much stuff left in, some shiny little

things are embedded, but no long structure.

The bottom of the crucible has some yellow,

transparent small plates See book No.12, pg

257

MC056 (Mg1/3B2/3)5(Bi0.6S0.4)95

very similar to MC047 except lots of rods

forming a nest. And some irregular shape

stuff on top of the nest.

MC057 (Mg1/3B2/3)10(Bi0.6S0.4)90

very similar to MC047 but no needles formed.

An ugly shaped stuff m=0.128g dark and

stuffed with shiny plates.

KQ374 (GeMg2S4).05Sb.95 chunk, shining surface, dark grey inside
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Exploratory growths based on Ni-S eutectic

Batch No. Initial concentration Comments

SA293 Ni67S33

star-like crystals, m=0.2022g, spn-out mass

m=0.8895g, magnetic

SA330 V10(NiS)45

Still no spin. Sit at 737C for 3h and spin

again. Very small powder-like polycrystal.

Magnetic.

SA331 V10(Ni3S2)18 Spin out mass 1.7260g

SA343 Ni2S1

after pressed a pellet with 1.2826g. Spin-out

mass 1.0979g. Crystal mass 0.1765g. Adding

more NiS, push to the right. Ni2S1 left over

1.2744g. NiS= 0.9629g. Total spin. Green-

ish. See book No.12, pg 127

SA346 Ni63S37

dentritic crystal mass 0.0348g. Malleable Ni.

Spin out mass 0.9469g

SA351 Ni61S39

spin out mass 0.9946g, ”crystal” mass

0.0128g (leftover in the crucible). Remelt

spin mass 0.9463g (see book No.12 for remelt

program, pg 129)

SA354 V3.5(Ni0.61S0.39)96.5

dark ashed burries thin plates crystals

m=0.2380g, magnetic spin out 2.6310g

SA355 V7(Ni0.61S0.39)93

shiny polycrystal non-congruently melt,

magnetic, crystal was 0.8660g, spin was

1.9540g

Continued on next page
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Table A.16 – continued from previous page

Batch No. Initial concentration Comments

SA367 Co7(Ni0.61S0.39)93 dark blue purple crap and definite crystals

SA373 Ba5(Ni61S39)95

dentritic crystals (Ni?), nice cylinder (not

melt?)

SA376 NiV2S4

then stayed at 800 for 11hrs and 7 days, more

notes in book

SA383 (BaS)5(Ni0.61S0.39)95

ugly fish-egg like stuff some even transparent

(quartz wool fall in?)

SA403 In5(Ni.61S.39)95 almost no spin

SA404 Sn5(Ni.61S.39)95 almost no spin

SA429 NiV2S4

arc-melted, out in furnace annealed, see book

No.12 for more notes

Exploratory growths based on Co-S eutectic

Batch No. Initial concentration Comments

SA763 Co65S35

SA763-2 Co65S35

Crucible turns blue. Form into a puck (blue)

magnetic. M = 1.1009g. The book has mul-

tiple instances of SA763

Continued on next page
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Table A.17 – continued from previous page

Batch No. Initial concentration Comments

SA770 Co15Ni5S20Sb60

Beautiful Plates! M = 2.0131. Together with

SA716, not congruently melt (m = 2.315g)

SA771 Co65S35

No sign of S vapor attack. Crucibles turn

blue spin out crystals m = 0.48g. Plus

SA763, m = 1.081g

SA785 Ge5(Co.6S.4)95

Ampoule turns foggy, white. Growth side

crucibles bottom turns into blue. All quartz

wool turns into powder material falls into

catch crucible. Magnetic, m = 3.126g as a

puck

SA786 Ge10(Co.6S.4)90

Crucibles do not have blue color. Ampoule

turns foggy – white. Quartz wool turns to

powder no spin, no quartz wool in catch side

materials stay in grow side. Not magnetic.

M = 3.16g

SA809 Sb5(Co.6S.4)95

little foggy, both crucibles turned blue, al-

most total spin, but the quartz wool stays in

the catch, some powder left in growth purple

side, some are dentritics m= 0.04 magnetic

SA810 Sb10(Co.6S.4)90

little foggy, both crucibles turned blue total

spin since quartz wool in gone not magnetic

SA818 Ge10(Co.6S.4)90

quartz tube turns foggy strong S smell cru-

cible has very little blue not magnetic

Continued on next page
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Batch No. Initial concentration Comments

SA828 Sb20(Co.6S.4)80

severe attack on the quartz tube, a layer of

thick crust formed. Quartz tube gets thinner,

crucible turned a little blue. Total spin, spin

is not magnetic. quartz wool got attacked,

but not gone.

SA829 In10(Co.6S.4)90

total spin. Less foggy, not yellow, lots of at-

tack on wool, crucible (growth side) breaks

when hit it. magnetic.

SA830 Sn10(Co.6S.4)90

very foggy, yellow ampoule, crucible gets

blue, quartz wool stays, not gone.

SA850 Co60S40

very little foggy on the quartz tube, no smell,

both crucibles turns blue crystals turn blue

crystal forward, quartz wool stay in the catch

top part gets crunchy bottom part seems fine

SA950 Sn10(Co.6S.4)90

SA951 In10(Co.6S.4)90

Several dentrities. Magnetic. Spin at 850

degrees c



251

Exploratory growths based on Pd-S eutectic

Batch No. Initial concentration Comments

MC369 S28Pd72 a small pellet, slightly sulfur-smell

MC374 S23Pd78 polycrystals, m=2.067g

MC376 PdS

forms a puck, m=3.1722g, some yellow stuff

condensed on both top and bottom of the

ampoule

MC379 Ce5Pd58.8S36.2

polycrystals, little cubes, m=1.0066g,

spin=0.54g, spill-out=2.3918g

MC404 Ce3.75Pd63.58S32.9

polycrystals, mostly CePd3S4, red stuff:

Ce2S3, rods: CePd3S4 and lots of 2nd phase

stuff.

MC410 Ce8Pd50S42

plycrystls, even smaller, CePd3S4 is the main

phase, Pd16S7 might be the 2nd phase.

MC419 Ce3Pd52S45 almost no spin

MC431 S24.5Pd75.5 m=3.72g

MC435 S23.7Pd76.3 almost the same as MC431

MC439 Ce5Pd58.8S36.2

pencil mark gone, strong sulfur smell, clear

bubles formed. small polycrystals, some red

stuff

Continued on next page
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Batch No. Initial concentration Comments

MC440 Ce8Pd50S42

some big crystals, not sure whether it is the

right stuff. pencil mark gone, strong sulfur

smell, clear bubles formed. small polycrys-

tals, some red stuff

MC441 S23Pd77 total spin

MC446 Ce3.75Pd63.58S32.9

centrifuge stuck. spin didn’t start right away.

similar to MC447, colorful thin crust, clear

formation of bubbles, dentritics formed in the

bottom.

MC447 Ce1.9Pd67.6S30.5

purple blue thin crust on top, hollow bottom

with dentritics, spin=1.7221g

MC466 Ba5Pd58.5S36.2

polycyrstals (dust), some shiny crystals at

the bottom (PdS). The noise is a little bit

loud when crack open the ampoule (high

pressure?)

MC481 Pd60S40

formed into a puck of crystals, bigger, but

not in a good shape.
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Exploratory growths of Mo-S based compounds

Batch No. Initial concentration Comments

KQ582 Sn1/3Mo2S8/3Bi98Ge98 similar with KQ581

KQ662 Mo3Ge57Sn39 numerous little needles

SA887 Mo6S8Ge60Sn40

pencil marks gone hexagonal soft crystals

SSn? Some polycrystal, crystals stuck with

flux in the catch side

Exploratory growths of Te-based compounds

Batch No. Initial concentration Comments

KQ543 Co10S20Te90

S vaporized out of the crucible lots of yellow

stuff appeared on top of the ampole before

spin, after spin, yellow stuff was mixed with

flux. Lots of shining dots in hexagonal shape

KQ557 Co10S20Te90

shining cubes, bigger than KQ543,

m=0.4962g

KQ580 Ni9TeS8Bi36

total spin at 670C. Irregular plates m=0.69g

at 500C

KQ588 Ni3SbTe17 total spin

KQ589 Ni2SbTe11.3 total spin

Continued on next page
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Table A.20 – continued from previous page

Batch No. Initial concentration Comments

KQ659 BaCrS2Te9

all black, seems sth melt and flow out of cru-

cible, some hex-plates stacked together

KQ661 (Fe2SiS4)10Te90

stinky. Yellow power left. Lots of shining

polycrystals attracted to a magnet.

KQ736 Fe20Si10Te80 lots of hex-rods

KQ744 Fe20Sr20Te80 long rods and polycrystalline stuff

SA515 (La4MnS7).04Te0.95 dark brown smelly crap, La4S7 and Te

Exploratory growths of Se-based compounds

Batch No. Initial concentration Comments

KQ569 (Cu5Sn5Se10)Bi80 a few plates m=0.26g

KQ570 (Ag5Sn5Se10)Bi80 long thin plates m=0.29g

KQ743 Ag4SeS can not identify with x-ray

SA417 LaSe4Sn95 SeSn

SA418 La2Se3Sn95 α SeSn

SA419 La3Se4Sn93

soft plates and rods some hard stuff seems

not melt like plates attached to crucibles

crystal m=0.469

Continued on next page
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Table A.21 – continued from previous page

Batch No. Initial concentration Comments

SA439 La2Se50Sn48

some crystals form on top of the ampoule

before spin (Se?) all melt almost no spin

seems forming plates

SA444 La3Se50Sn47

aluminium crucible cracks inside the am-

poule little spin a big hole in crystal side,

less needle and golden color stay

SA527 Pd8Se5 polycrystal, m=0.5735g, flux=1.2700g

SA563 KCo2Se2

after heating m=0.898g add K=0.125g then

out back into furnace see notebook for more

notes

Exploratory growths of P-based compounds

Batch No. Initial concentration Comments

KQ584 (Co0.5CuP)10Sn90 lump. Little shining cubes. Magnetic

KQ585 (CoPS)5Sn95 rods. Plates+lumps. Non-magn

KQ613 Nb5P5S4Sn50Sb95

some chunks seem not melted. Shining cubes

and shining plates. Ampoule’ s bottom gets

a little biowa a glass-like ring form on the

connection part of the two crucible

Continued on next page
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Table A.22 – continued from previous page

Batch No. Initial concentration Comments

KQ619 Ge57Mo3Sn39P1 plates+cubes form clusters

KQ620 Ge57Mo3Sn29P1 small plates form clusters

KQ626 NbPSTe19Sn8

quartz tube turns yellow and brown. Little

shiny dots, a silver chunks gold-brown color

spotted inside.

KQ632 Mo3PGe57Sn39 5ml. Lots of flax dots, few plates

KQ635 NbPS thin shiny plates

KQ643 Mo3PGe57Sn39

KQ654 Mn0.9Ba0.1PS3 green transparent plates

KQ655 Fe0.9Ba0.1PS3 shiny black plates

KQ664 FeP0.9Si0.1S3 lots of dark shining hex-plates+ a lump

KQ668 CoPS a dark sticky lump

KQ678 (NaPMn)10Sn90 shining plates, dark red stuff, lumps

KQ695 (MoP)3Fe7Sn28 total spin. Everything dissolved

KQ696 (Mo3P)6Fe4Sn76 needle-like crystals

KQ722 MoPFe3Sn57 needle crystals - very thin crystals in flux

KQ746 FeP0.5Si0.5S3 black thin plates, something not transported

KQ747 Fe0.9Co0.1PS3

much smaller plates, something was not

transported

Continued on next page
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Table A.22 – continued from previous page

Batch No. Initial concentration Comments

SA752 Sr1.3Ni2P2.3Sn16

crystals attached tot the crucible can’t mea-

sure mass, square plates and long rectangle

plates

SA753 Tb1.3Ni2P2.3Sn16

crap. m=0.8432g, something seemed to not

melt

SA754 Sr1.2Fe2P2Sn20 no crystals, crap, m=0.1900g

SA847 Sr7.5Pt72.5P20

used SA823 Pt80P20 see book No.12 for more

notes

SA926 (SrPPt3)7Sn9 few plates, but all seem oxidized

SA927 (SiPPt3)7Sn93

It seems the materials spill out from the cru-

cible, leaving some needle like stuff in the

crucible

SA928 Sr10Pt65P25 pre-react Pt-P. m=4.1143g

SA936 (SrPPt3)4Sn96 a chunk, some polycrystalline stuff

SA937 (SrPPt3)7Sn93 layers of polycrystalline stuff
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Exploratory growths of As-based compounds

Batch No. Initial concentration Comments

SA662 Pt72As28

when break, two pellets formed, loose powder

beneath. remelt at 700C, the same. remelt

again at 1150C, m=3.7697g

SA682 Sr8(Pt0.72As0.28)92

total spin, reseal=3.4558g, 0.3g spin, 3.5g

puck

Growths of SrSn4 and BaSn5

Batch No. Initial concentration Comments

SA658 Sr3.5Sn96.5

good spin, one nice plate m=0.2g, few small

plates and goo

SA679 Sr3.5Sn96.5 m=0.588g

MC165 Sr3.5Sn96.5

SA693 Ba8Sn92

quartz, wool, polycrystal, rods, total

mass=2.26g
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Growths of R3Ni2−xNi7

Batch No. Initial concentration Comments

SA447 Ce10Ni20Sn80

SA457 Ce10Ni20Sn80

shining big plates m=0.6264g, the spin stuck

in the crucible cant measure mass

SA462 Nd10Ni20Sn80

plates not very clean m=0.3578g

spin=3.3596g

SA463 Sm10Ni20Sn80 almost total spin

SA466 Ce12Ni8Sn80

lots of cubic crystals m=2.4361g cannot get

the spin out

SA474 Ce10Ni10Sn80 cubic crystals, m=1.859g

SA475 Ce10Ni15Sn80

cubes with plates some are shiny, some are

dark grey, m=2.47g

SA476 Ce10Ni25Sn80

remelt m=2.88g spin at 750C not much

change m=2.7307g

SA477 Ce10Ni20Sn80

same as SA478 spin temp is low, cubes and

plates stuck in flux, remelt m=2.1739g, spin

at 750C bigger better crystals, but still dirty

m=1.9254g

SA478 Sm10Ni20Sn80

the edge of crucible turns pink, the spin temp

is low, plates, rods, cubes, stuck in the flux

m=2.17, remelt m=2.1775 spin at 750C still

not much spin, crystal m=1.8351g

Continued on next page
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Table A.25 – continued from previous page

Batch No. Initial concentration Comments

SA494 Ce10Ni25Sn80

ugly plates, some attached to the crucible

m=0.92g

SA495 Sm10Ni20Sn80 ugly crystal like m=0.3156g

SA496 Pr10Ni20Sn80

SA497 La10Ni20Sn80

SA501 La10Ni20Sn80

flux floated out from crucible, during spin

quartz, tube top, breaks after spin crack

sound, big plates facet dirty and oxidized

m=0.6066

SA502 Pr10Ni20Sn80 small plates ugly stuff chunks m=0.6g

SA522 Eu10Ni25Sn65

Eu oxidized before put into growth purple,

several yellow dots on the quartz tube, seems

attacked, alumina crucible attacked, the in-

ner wall turns yellow and brown, outside has

yellow brown outside has yellow spots

SA523 Gd10Ni25Sn65 quartz tube looks fine, thick rods m=0.6406g

SA542 Eu10Ni25Sn80 thin sharp needles m=0.365g

SA543 Gd10Ni25Sn81

inside crucible gets yellow and brown leaf like

stuff

SA549 Ce10Ni25Sn65 plate stuck into flux m=1.658g

Continued on next page
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Table A.25 – continued from previous page

Batch No. Initial concentration Comments

SA505 Sm10Ni25Sn65

a few dirty plates formed m=0.2992g flux

breaks the quartz ampoule

SA565 Ce10Ni30Sn60 total spin

SA572 Ce10Ni30Sn60

crystal flow to the thin side, mixed with flux

chunk, small plates, Ce3Ni2Sn7?

SA578 Gd10Ni20Sn80 plate, m=0.1668g

SA579 Tb10Ni20Sn80 thin needles, m=0.114g

SA592 La10Ni20Sn80

SA593 Pr10Ni20Sn80

SA594 Sm10Ni25Sn65

SA758 Dy10Ni20Sn80

long needles attached to the crucibles, do not

measure mass

SA759 Ho10Ni20Sn80 tiny rods, mass 0.5g

SA807 Sm10Ni25Sn65 rods formed plates. m=0.4593g.

SA808 Tb10Ni20Sn90 thin rods and some crap. m=0.2474g
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Growths of RNi1−xBi2±y

Batch No. Initial concentration Comments

MC033 Ce14Ni14Bi72

big shiny plates, m=2.57g, growth crucible

cracked

MC034 Ce14Ni10Bi72 big shiny plates, m=2.17g

MC035 Ce14Ni7Bi72 even bigger plates, m=2.44g

MC080 Ce10Ni14Bi72

bottom crucible cracked, big plates,

m=1.377g

MC081 Ce7Ni14Bi72 big plates, m=1.298g

MC233 Nd7Ni7Bi86 big shiny plates

MC234 Gd7Ni7Bi86 almost total spin, some 3d stuff left

MC235 Yb14Ni14Bi72

almost total spin, several thin irregular

plates left.

MC261 Gd14Ni14Bi72

thermite reaction, crucible has a hole, mate-

rials came out.

MC262 Ho14Ni14Bi72 tiny plates

MC263 Tb14Ni14Bi72

crucible cracks, but nothing got out. Tiny

crystals

MC264 Yb20Ni20Bi60 big nice plates

MC272 Gd14Ni7Bi72

MC273 Gd14Ni14Bi72

MC274 Gd4.5Ni9.1Bi86.4 small plates

Continued on next page
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Table A.26 – continued from previous page

Batch No. Initial concentration Comments

MC325 Tb4.5Ni9.1Bi86.4 small plates

MC326 Dy4.5Ni9.1Bi86.4 small plates

MC332 Ho4.5Ni9.1Bi86.4 nothing

MC333 Er4.5Ni9.1Bi86.4 nothing

MC349 HoNiBi72 failed

MC405 Yb4.5Ni9.1Bi86.4

MC416 YbNiBi72 arc melting

MC454 La10Ni14Bi72 big plates

MC455 Pr10Ni14Bi72 big plates

MC462 Eu10Ni14Bi72

crucible cracks, very small polycrystalline

stuff.

MC465 Eu4.5Ni9.1Bi86.8 total spin

Growths of La(VxCr1−x)Ge3

Batch No. Initial concentration Comments

MC519 La13V9Ge78

much worse than MC520, even thinner and

shorter rods, polycrystals

Continued on next page
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Table A.27 – continued from previous page

Batch No. Initial concentration Comments

MC520 La15V10Ge75

some long rods, most are short rods, clusters,

polycrystals

MC524 La17V11Ge72

P.A.M. = 4.4908g, loss about 0.05 %, heavily

inter-grown plates, thin needles and dentrit-

ics and polycrystals.

MC525 La14V14Ge72

polycrystals in the shape of arc-melted puck,

as if not melt. But there is spin.

MC534 La15V10Ge75

almost total spin, a small lump stuck in the

spin side stuffed with rods, plates and poly-

crystals

MC535 La15(V .9Cr.1)10Ge76

polycrystal chunk and lots of very thin crys-

tals

MC536 La15(V .8Cr.2)10Ge75

polycrystals, chunk of lots of very thin nee-

dles

MC543 La15V10Ge75

flux flew out of crucible while spun, ampoule

cracked

MC544 La15V10Ge75

a chunk left in the catch side, rods and poly-

crystal chunk, looks like MC534, the chunk is

crumbled with serveral pieces, as if the ma-

terials never completely melted.

MC552 La15V10Ge75 after spin, growth = 0.588g

MC559 La15Cr10Ge75 a nest of dirty rods with small shiny dots

Continued on next page
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Table A.27 – continued from previous page

Batch No. Initial concentration Comments

MC560 Cr13La13Ge74

a larger nest of dirty rods with little trigonals

inside.

MC572 Cr13La13Ge74 P.A.M. = 3.7302g, loss 0.2%

MC579 La13(V.9Cr.1)13Ge74 loss 0.1%

MC580 La13(V.8Cr.2)13Ge74 loss 0.1%

MC604 (LaCrGe3)2Sb90 total spin

MC605 (LaCrGe3)3Sb85 long rectangles glued together

MC611 (LaCrGe3)2Bi90

almost total spin, plates, trigonals, some-

thing didn’t melt.

MC612 (LaCrGe3)3Bi85

plates and trigonals, looks like something did

not melt

MC613 La11Cr11Ge89

reseal at 850C, total spin, go lower.P.A.M =

4.0345g, loss 0.2%

MC614 La13Cr15Ge85 P.A.M. = 4.9112g, loss 0.3%

MC618 La15Cr15Ge85 rods and plycrystals

MC619 La8Cr15Ge85 triangles and plates

MC646 La13V1.8Cr10.4Ge74.8

P.A.M. = 3.3464g, rods, looks similar to

MC634, but thinner

MC647 La13V4.5Cr6.5Ge76 P.A.M. = 3.3895g, rods and plycrystals

MC658 La13.6V3Cr9.1Ge74.3 P.A.M. = 3.4437g, strange thin rods

Continued on next page
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Table A.27 – continued from previous page

Batch No. Initial concentration Comments

MC659 La13.8V3Cr7.8Ge74.4

P.A.M. = 3.4272g, rods grown out of poly-

crystal chunk

MC660 La14V5Cr6.5Ge74.6

P.A.M. = 3.4488g, rods grown out of poly-

crystal chunk

MC661 La14.2V6Cr5.2Ge74.6

P.A.M. = 3.4156g, rods grown out of poly-

crystal chunk

MC674 La14.6V7Cr3.9Ge74.7 P.A.M. = 3.4128g, thin rods and plycrystals

MC675 La14.8V8Cr2.6Ge74.8 P.A.M. = 3.3557g, thin rods and plycrystals

MC676 La14.8V9Cr1.3Ge74.9 few rods, mostly polycrystals

MC681 La13(V.7Cr.3)13Ge74 P.A.M. = 3.3074g

MC682 La13(V.8Cr.2)13Ge74 P.A.M. = 3.4447g

MC683 La13(V.9Cr.1)13Ge74 P.A.M. = 3.4049g

MC684 La13V13Ge74 P.A.M. = 3.3634g

MC702 La15V10Ge75 polycrystals

MC703 La14.4V7Cr3.9Ge74.7 rods and plycrystals

MC719 La14.3V6.5Cr4.5Ge74.7

P.A.M. = 3.4864g, polycrystals, seems not

completely melt

MC720 La14.3V7.5Cr3.2Ge74.7

P.A.M. = 3.3829g, polycrystals, seems not

completely melt

MC754 LaV0.9Cr0.1Ge3 P.A.M. = 0.9402g, loss 0.2%

MC755 LaV0.8Cr0.2Ge3 P.A.M. = 0.9151g, loss 1.0%

Continued on next page
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Table A.27 – continued from previous page

Batch No. Initial concentration Comments

MC756 LaV0.7Cr0.3Ge3 P.A.M. = 0.9184g, loss 0.2%

MC757 LaV0.6Cr0.4Ge3 P.A.M. = 0. 9662g, loss 0.7%

MC758 LaV0.5Cr0.5Ge3 P.A.M. = 0.9407g, loss 0.6%

MC760 La4V4Ge92

almost total spin, several long rods, and a

nest of small rods

MC765 La14.7V7Cr3.9Ge74.7

Arc-melt V7Cr3.9, Cr=0.5938g, V=1.0439g.

P.A.M. = 1.6053g, 0.2%, rods and polycrys-

tals

MC766 La6V3Cr3Ge92

ampoule cracks, did not spin well, most stuff

did not go to the spin, but outside made

quartz cracked. several big rods, heavily ox-

idized.

MC779 La6(V7Cr3.9)0.5Ge92 lots of thin rods

MC780 La6V3Cr3Ge92 2 big rods, turn to be V11Ge8

MC781 (La.2Cr.2Ge.6)5Sn95 total spin

MC782 (La.2V.2Ge.6)5Sn95 total spin

MC787 LaVGe3

no cracks on crucible. Sample material all

melt. Pellet = 1.1426g

MC788 LaCrGe3

Crucible cracked inside puck looks homoge-

neous. Pellet = 1.0651g

Continued on next page
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Batch No. Initial concentration Comments

MC789 La10.9V7Cr3.9Ge32.7

Crucible cracked (reacted) inside puck looks

homogeneous. Pellet = 1.1097g

MC795 LaV.3Cr.7Ge3

MC796 LaV.4Cr.6Ge3

MC837 LaV.4Cr.8Ge3 P.A.M. = 0.9373g

MC838 LaV.3Cr.7Ge3 P.A.M. = 0.9562g

MC844 LaV.1Cr.9Ge3 P.A.M. = 0.9489g

MC893 LaV.55Cr.45Ge3 P.A.M. = 1.1836g

Growths of La(VxCr1−x)Sb3

Batch No. Initial concentration Comments

MC545 La10Cr20Sb70

a chunk of plates left in catch side. very thin

and small plates compared to LaVSb3.

MC586 La8Cr8Sb84 several big thick plates and rods

MC587 La8V4Cr4Sb84

one big plate with several small ones. The

big one looks like several wide plates glued

together

MC588 La8V6Cr2Sb84 one big, thick, plate. With several rods

MC589 La8V2Cr6Sb84 total spin

Continued on next page
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Batch No. Initial concentration Comments

MC594b La20Cr15Sb65

chunks of crystals (plates) stuck inside cru-

cibles, the spin temperature seems not high

enough.

MC595 La15Cr25Sb60 La attacks crucible, leaked out, nothing left.

MC596 La8V2Cr6Sb84 flat plates, long rectangles, needles

MC597 La8V3Cr5Sb84

stronger and wider and thicker plates, some

fell into catch side.

MC598 La8V1Cr7Sb84

long plates, some are narrower, some are

wider, some malleable plates, maybe differ-

ent phase.

MC797 La8V3.5Cr4.5Sb84 thick rectangle plates

MC798 La8V2.5Cr5.5Sb84 thick rectangle plates

MC799 La8V.75Cr7.25Sb84

thick rectangle plates, malleable thin bigger

plates

MC800 La8V.5Cr7.5Sb84 thick rectangle plates

MC801 La8V.25Cr7.75Sb84 thick rectangle plates

MC802 La8Cr8Sb84

thick rectangle plates, rod-like-rectangle-

plates

MC865 La8V1Cr7Sb84 thick rectangle plates

MC866 La8V2Cr6Sb84 thick rectangle plates
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tivity on the Border of Weak Itinerant Ferromagnetism in UCoGe. Phys. Rev. Lett.,

99:067006.

Jackson, D. D., Torelli, M., and Fisk, Z. (2001). Anisotropy in magnetic and transport

properties of LaTSb3 (T = Cr, V). Phys. Rev. B, 65:014421.

Jia, S., Bud’ko, S. L., Samolyuk, G. D., and Canfield, P. C. (2007). Nearly ferromag-

netic Fermi-liquid behaviour in YFe2Zn20 and high-temperature ferromagnetism of

GdFe2Zn20. Nat. Phys., 3(5):334–338.



278

Jia, S., Ni, N., Samolyuk, G. D., Safa-Sefat, A., Dennis, K., Ko, H., Miller, G. J., Bud’ko,

S. L., and Canfield, P. C. (2008). Variation of the magnetic ordering in GdT2Zn20 (T

= Fe, Ru, Os, Co, Rh and Ir) and its correlation with the electronic structure of

isostructural YT2Zn20. Phys. Rev. B, 77:104408.

Jung, M. H., Lacerda, A. H., and Takabatake, T. (2002). Magnetic and transport

properties of the antiferromagnetic Kondo-lattice compound CeNiBi2. Phys. Rev. B,

65:132405.

Junod, A., Wand, K. Q., Triscone, G., and Lamarche, G. (1995). Specific-heat, magnetic-

properties and critical-behavior of Mn2SiS4 and Fe2GeS4. J. M, 146(1-2):21–29.

Kittel, C. (2005). Introduction to Solid State Physics. John Wiley & Sons, 8th edition.

Kodama, K., Wakimoto, S., Igawa, N., Shamoto, S., Mizoguchi, H., and Hosono, H.

(2011). Crystal and magnetic structures of the superconductor CeNi0.8Bi2. Phys. Rev.

B, 83:214512.

Kwok, W., Crabtree, G., Bud’ko, S. L., and Canfield, P. C. (2003). Superconductivity

in MgB2: Electrons, Phonons and Vortices. (eds.), Physica C, 385.

Leonard, M., Saha, S., and Ali, N. (1999). Magnetic properties of RTSb3. J. Appl. Phys.,

85:4759.

Leonard, M. L., Dubenko, I. S., and Ali, N. (2000). Investigation of the ferromagnetism

in RCrSb3 (R = La, Ce, Pr, Nd). J. Alloys Compd., 303-04(0):265–269.

Lin, X. Jesche, A., Bud’ko, S. L., and Canfield, P. C. (2012a). Corrigendum: Physical

properties of single crystalline BaSn5. Philos. Mag., 92:3006.

Lin, X., Bud’ko, S. L., and Canfield, P. C. (2012b). Development of viable solutions for

the synthesis of sulfur bearing single crystals. Phil. Mag., 92:2436.



279

Lin, X., Bud’ko, S. L., and Canfield, P. C. (2012c). Physical properties of single crystalline

BaSn5. Phil. Mag., 92:3006.

Lin, X., Bud’ko, S. L., Samolyuk, G. D., Torikachvili, M. S., and Canfield, P. C. (2011).

Physical properties of SrSn4 single crystals. J. Phys.: Condens. Matter, 23:455703.

Lin, X., Bud’ko, S. L., Thimmaiah, S., and Canfield, P. C. (2013a). Anisotropic mag-

netization, resistivity and heat capacity of single crystalline R3Ni2−xSn7 (R = La, Ce,

Pr and Nd). J. Magn. Magn. Mater., 331:53–61.

Lin, X., Straszheim, W. E., Bud’ko, S. L., and Canfield, P. C. (2013b). Anisotropic

magnetization and resistivity of single crystalline RNi1−xBi2y (R = La, Ce-Nd, Sm,

Gd-Dy). J. Alloys Compd., 554:304.

Lin, X., Taufour, V., Bud’ko, S. L., and Canfield, P. C. (2013c). Suppression of ferro-

magnetism in the LaVxCr1−xGe3 system. Phys. Rev. B, 88:094405.

Lonzarich, G. G. (1986). The magnetic equation of state and heat-capacity in weak

itinerant ferromagnets. J. Magn. Magn. Mater., 54-7(2):612–616.

Lonzarich, G. G. (1988). Magnetic oscillations and the quasiparticle bands of heavy

electron-systems. J. Magn. Magn. Mater., 76-7:1–10.

Lu, Y., Liang, Y., Yang, X., Chen, H., and Zhao, J. (2005). Chin. J. Struct. Chem.,

24:769.

MacFarlane, W. A., Chow, K., Salman, Z., Tkachuk, A., and Mar, A. (2006). A µ

SR study of the unusual magnetism of LaCrSb3. Physica B: Condensed Matter, 374-

375(0):71–74.

Massalski, T. B. (1990). Binary Alloy Phase Diagrams. ASM International, New York,

2nd edition.



280

Matar, S. F., Chevalier, B., Isnard, O., and Etourneau, J. (2003). Electronic band

structure calculations on the antiferromagnetic ternary compounds Ce3Ni2X7 (X =

Ge and Sn) and CeNiGe3. J. Mater. Chem., 13(4):916–920.

Meissner, W. and Ochsenfeld, R. (1933). Ein neuer Effekt bei Eintritt der

Supraleitfhigkeit. Naturwissenschaften, 21:787–788.

Millis, A. J. (1993). Effect of a nonzero temperature on quantum critical points in

itinerant fermion systems. Phys. Rev. B, 48:7183–7196.

Miyake, K., Schmitt-Rink, S., and Varma, C. M. (1986). Spin-fluctuation-mediated

even-parity pairing in heavy-fermion superconductors. Phys. Rev. B, 34:6554–6556.

Mizoguchi, H., Kamiya, T., and Hosono, H. (2012). Superconducting compounds with

metallic square net. Solid State Comm., 152(8):666–670.

Mizoguchi, H., Matsuishi, S., Hirano, M., Tachibana, M., Takayama-Muromachi, E.,

Kawaji, H., and Hosono, H. (2011). Coexistence of Light and Heavy Carriers Associ-

ated with Superconductivity and Antiferromagnetism in CeNi0.8Bi2 with a Bi Square

Net. Phys. Rev. Lett., 106:057002.

Moos, E. and Shuppe, G. N. (1979). Izv. AN SSSR, Ser. Fizicheskaya, 43:1843.

Moriya, T. and Takimoto, T. (1995). Anomalous Properties around Magnetic Instability

in Heavy Electron Systems. J. Phys. Soc. Jpn., 64(3):960–969.

Mun, E. D., Bud’ko, S. L., Ko, H., Miller, G. J., and Canfield, P. C. (2010). Physical

properties and anisotropies of the RNiGe3 series (R = Y, Ce – Nd, Sm, Gd – Lu). J.

Magn. Magn. Mater., 322(21):3527–3543.

Mun, E. D., Bud’ko, S. L., Martin, C., Kim, H., Tanatar, M. A., Park, J.-H., Murphy, T.,

Schmiedeshoff, G. M., Dilley, N., Prozorov, R., and Canfield, P. C. (2013). Magnetic-



281

field-tuned quantum criticality of the heavy-fermion system YbPtBi. Phys. Rev. B,

87:075120.

Murata, K., Yokogawa, K., Yoshino, H., Klotz, S., Munsch, P., Irizawa, A., Nishiyama,

M., Iizuka, K., Nanba, T., Okada, T. Yoshitaka Shiraga, ., and Aoyama4, S. (2008).

Pressure transmitting medium Daphne 7474 solidifying at 3.7 GPa at room tempera-

ture. Rev. Sci. Instrum., 79(8):085101.

Mydosh, J. A. (1993). Spin Glasses: An Experimental Introduction. Taylor & Francis,

London.

Myers, K. D., Bud’ko, S. L., Fisher, I. R., Islam, Z., Kleinke, H., Lacerda, A. H., and Can-

field, P. C. (1999). Systematic study of anisotropic transport and magnetic properties

of RAgSb2 (R = Y, La – Nd, Sm, Gd – Tm). J. Magn. Magn. Mater., 205(1):27–52.

Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., and Akimitsu, J. (2001).

Superconductivity at 39 K in magnesium diboride. Nature, 410:63–64.

Natarajan, S., Rao, G. V. S., Baskaran, R., and Radharishnan, T. S. (1988). Synthesis

and electrical-properties of Shandite-Parkerite phase, A2M3CH2. J. Less-Common

Met., 138(2):215–224.

Ni, N., Bud’ko, S. L., Kreyssig, A., Nandi, S., Rustan, G. E., Goldman, A. I., Gupta, S.,

Corbett, J. D., Kracher, A., and Canfield, P. C. (2008a). Anisotropic thermodynamic

and transport properties of single-crystalline (Ba1−xKx)Fe2As2 ( x = 0 and 0.45). Phys.

Rev. B., 78:014507.

Ni, N., Nandi, S., Kreyssig, A., Goldman, A. I., Mun, E. D., Bud’ko, S. L., and Canfield,

P. C. (2008b). First-order structural phase transition in CaFe2As2. Phys. Rev. B,

78:014523.



282

Ni, N., Tillman, M. E., Yan, J.-Q., Kracher, A., Hannahs, S. T., Bud’ko, S. L., and

Canfield, P. C. (2008c). Effects of Co substitution on thermodynamic and transport

properties and anisotropic Hc2 in Ba(Fe1−xCox)2As2 single crystals. Phys. Rev. B,

78:214515.

Noakes, D. K. and Shenoy, G. K. (1982). The effect of a crystalline electric field on

the magnetic transition temperatures of rare-earth rhodium borides. Phys. Lett. A,

91(1):35–36.

Onnes, H. K. (1911). The resistance of pure mercury at helium temperatures. Commun.

Phys. Lab. Univ. Leiden, 12.

Onsager, L. (1952). Interpretation of the de Haas-van Alphen effect. Phil. Mag., 43:1006.

Origin-8.5. Originlab. Northampton, MA.

Pamplin, B. R. (1975). Crystal growth. Oxford.

Petrovic, C., Bud’ko, S. L., Strand, J. D., and Canfield, P. C. (2003). Anisotropic

properties of rare earth silver dibismites. J. Magn. Magn. Mater., 261(1):210–221.

Phelan, W. A., Nguyen, G. V., DiTusa, J. F., and Chan, J. Y. (2012). Synthesis,

magnetic, transport, and thermodynamic investigation of CeCo(Sb, Sn)3. J. Alloys

Compd., 523(0):176–181.

QuantumDesign (2012). Quantum Design – High Pressure Cell Kit for the MPMS.

[Online; accessed 23-January-2012].

Raju, N. P., Greedan, J. E., Ferguson, M. J., and Mar, A. (1998). LaCrSb3: A New

Itinerant Electron Ferromagnet with a Layered Structure. Chem. Mater., 10(11):3630–

3635.



283

Ramirez, A. P. (1994). Strongly Geometrically Frustrated Magnets. Annu. Rev. Mater.

Sci., 24:453.

Raub, C. J., Compton, V. B., Geballe, T. H., Matthias, B. T., Maita, J. P., and Hull,

G. W. (1965). Occurence of superconductivity in sulfieds tellurides of Pt-group metals.

J. Phys. Chem. Solids, 26(12):2051.

Rhodes, P. and Wohlfarth, E. P. (1963). The Effective Curie-Weiss Constant of Ferro-

magnetic Metals and Alloys. Proc. R. Soc. Lond. A., 273:247.

Richter, M., Rusz, J., Rosner, H., Koepernik, K., Opahle, I., Nitzsche, U., and Eschrig,

H. (2004). Unconventional metallic magnetism in LaCrSb3. J. Magn. Magn. Mater.,

272(0):E251 – E252.

Roberts, W. L., Campbell, T. J., and Rapp, G. R. (1990). Encyclopedia of Minerals.

Van Nostrand Reinhold, New York.

Rotter, M., Hieke, C., and Johrendt, D. (2010). Different response of the crystal structure

to isoelectronic doping in BaFe2(As1−xPx)2 and (Ba1−xSrx)Fe2As2. Phys. Rev. B,

82:014513.

Rotter, M., Tegel, M., and Johrendt, D. (2008). Superconductivity at 38 K in the iron

arsenide (Ba1−xKx)Fe2As2. Phys. Rev. Lett., 101:107006.

Sacchetti, A., Degiorgi, L., Giamarchi, T., Ru, N., and Fisher, I. R. (2006). Chemical

pressure and hidden one-dimensional behavior in rare-earth tri-telluride charge-density

wave compounds. Phys. Rev. B., 74(12):125115.

Sachdev, S. (2001). Quantum Phase Transitions. Cambridge University Press.

Sakamoto, T., Wakeshima, M., and Hinatsu, Y. (2006). Superconductivity in ternary

chalcogenides Bi2Ni3X2 (X = S, Se). J. Phys.: Condens. Matter, 18(17):4417–4426.



284

Saxena, S. S., Agarwal, P., Ahilan, K., Grosche, F. M., Hasselwimmer, R. K. W., Steiner,

M. J., Pugh, E., Walker, I. R., Julian, S. R., Monthoux, P., Lonzarich, G. G., Huxley,

A., Sheikin, I. Braithwaite, D., and Flouquet, J. (2000). Superconductivity on the

border of itinerant-electron ferromagnetism in UGe2. Nature, 406:587.

Schobinger Papamantellos, P., Andre, G., Rodriguez-Carvajal, J., Buschow, K. H. J., and

Durivault, L. (2001). Magnetic ordering of CeNi0.78Sn2 and Ce3Ni2Sn7 compounds by

neutron diffraction. J. Alloys Compd., 325(1-2):29–36.

Schumann, O. J. (2011). The Cologne Laue Indexation Program. Gnu general public

license.

Seeger, M., Kronmtiller, H., and Blythe, H. (1995). The magnetic phase transition in

ZrZn2. J. Magn. Magn. Mater., 139:312–322.

Sefat, A. S., Bud’ko, S. L., and Canfield, P. (2008). Magnetization, resistivity and heat

capacity of the anisotropic RCrSb3 crystals (R = La – Nd, Sm, Gd – Dy). J. Magn.

Magn. Mater., 320(3):120–141.

Shannon, R. D. (1976). Revised effective ionic-radii and systematic sutudies of inter-

atomic distances in halides and chalcogenides. Acta Cryst. A, 32(SEP1):751–767.

SHELXTLPlus (2003). Bruker AXS, Inc. Madison, WI, USA.

Shenoy, G. K., Dunlap, B. D., Kalvius, G. M., Toxen, A. M., and Gambino, R. J. (1970).

Magnetic and structural properties of some rare-earth-Sn3 compound. J. Appl. Phys.,

41(3):1317.

Shoenberg, D. (1984). Magnetic Oscillations In Metals. Cambridge University Press,

Cambridge, England.

Skolozdra, R. V., Yasnitskaya, I. V., and Akselrud, L. G. (1987). Properties of new rem

stannides of the La3Co2Sn7 structure. Ukr. Fiz. Zh., 32(5):729–732.



285

SMART (1997-2005). Bruker AXS, Inc. Madison, WI, USA.

Sokolov, D. A., Aronson, M. C., Gannon, W., and Fisk, Z. (2006). Critical Phenomena

and the Quantum Critical Point of Ferromagnetic Zr1−xNbxZn2. Phys. Rev. Lett.,

96:116404.

Steglich, F. (1985). Theory of Heavy Fermion Systems and Valence Fluctuations, vol-

ume 62. Springer Series in Solid State Sciences.

Stewart, G. R. (1984). Heavy-fermion systems. Rev. Mod. Phys., 56:755–787.

Stewart, G. R. (2001). Non-Fermi-liquid behavior in d- and f -electron metals. Rev. Mod.

Phys., 73:797–855.

Stewart, G. R. (2006). Addendum: Non-Fermi-liquid behavior in d- and f -electron

metals. Rev. Mod. Phys., 78:743–753.

Stoner, E. C. (1933). Atomic moments in ferromagnetic metals and alloys with non-

ferromagnetic elements. Phil. Mag., 15(101):1018–1034.

Strongin, M., Thompson, R. S., Kammerer, O. F., and Crow, J. E. (1970). Destruction

of Superconductivity in Disordered Near-Monolayer Films. Phys. Rev. B, 1:1078–1091.

Szytula, A. and Leciejewicz, J., editors (1994). Handbook of Crystal Structures and

Magnetic Properties of Rare Earth Intermetallics. CRC Press.

Taufour, V., Aoki, D., Knebel, G., and Flouquet, J. (2010). Tricritical Point and Wing

Structure in the Itinerant Ferromagnet UGe2. Phys. Rev. Lett., 105:217201.

Thaler, A., Hodovanets, H., Torikachvili, M. S., Ran, S., Kracher, A., Straszheim, W.,

Yan, J. Q., Mun, E., and Canfield, P. C. (2011). Physical and magnetic properties of

BaFe1−xMnx)2As2 single crystals. Phys. Rev. B, 84:144528.



286

Thamizhavel, A., Galatanu, A., Yamamoto, E., Okubo, T., Yamada, M., Tabata, K.,

Kobayashi, T. C., Nakamura, N., Sugiyama, K., Kindo, K., Takeuchi, T., Settai, R.,

and Onuki, Y. (2003). Low Temperature Magnetic Properties of CeTBi2 (T: Ni, Cu

and Ag) Single Crystals. J. Phys. Soc. Jpn., 72(10):2632–2639.

Thessieu, C., Flouquet, J., Lapertot, G., Stepanov, A. N., and Jaccard, D. (1995).

Magnetism and spin fluctuations in a weak itinerant ferromagnet: MnSi. Solid State

Comm., 95(10):707–712.

Tinkham, M. (2004). Introduction to Superconductivity. Dover Publications.

Troc, R., Gajek, Z., and Pikul, A. (2012). Dualism of the 5f electrons of the ferromagnetic

superconductor UGe2 as seen in magnetic, transport, and specific-heat data. Phys.

Rev. B., 86(22):224403.

Trovarelli, O., Geibel, C., Mederle, S., Langhammer, C., Grosche, F. M., Gegenwart,

P., Lang, M., Sparn, G., and Steglich, F. (2000). YbRh2Si2: Pronounced Non-Fermi-

Liquid Effects above a Low-Lying Magnetic Phase Transition. Phys. Rev. Lett., 85:626.

Uhlarz, M., Pfleiderer, C., and Hayden, S. M. (2004). Quantum phase transitions in the

itinerant ferromagnet ZrZn2. Phys. Rev. Lett., 93(25):256404.

Vojta, M. (2003). Quantum phase transitions. Rep. Prog. Phys., 66(12):2069.

Weihrich, R. and Anusca, I. (2006). Half Antiperovskites. III. Crystallographic and

Electronic Structure Effects in Sn2xInxCo3S2. Z. Anorg. Allg. Chem., 632:1532.

Wernick, J. H. (1972). Magnetic behavior of the monosilicides of the 3d-transition ele-

ments. Mater. Res. Bull., 7:1431 –1441.

Wiener, T. A. and Canfield, P. C. (2000). Magnetic phase diagram of flux-grown single

crystals of CeSb. J. Alloys Compd., 303-304(0):505–508.



287

Wiener, T. A., Fisher, I. R., Bud’ko, S. L., Kracher, A., and Canfield, P. C. (2000). Design

of a metallic Ising spin glass in the y1−xtbxni2ge2 system. Phys. Rev. B, 62:15056–

15066.

Wilke, R. H. T., Bud’ko, S. L., Canfield, P. C., and Finnemore, D. K. (2010). High Tem-

perature Superconductors, chapter Superconductivity in MgB2. WILEY-VCH Verlag

GmbH & Co. KGaA, Weinheim.

Yan, J.-Q., Kreyssig, A., Nandi, S., Ni, N., Bud’ko, S. L., Kracher, A., McQueeney,

R. J., McCallum, R. W., Lograsso, T. A., Goldman, A. I., and Canfield, P. C. (2008).

Structural transition and anisotropic properties of single-crystalline SrFe2As2. Phys.

Rev. B, 78:024516.

Yeung, I., Roshko, R. M., and Williams, G. (1986). Arrott-plot criterion for ferromag-

netism in disordered systems. Phys. Rev. B, 34:3456–3457.

Zabel, M., Wandinger, S., and Range, K. J. (1979). Ternary metallic Chalcogenides

M3M
′
2X2 (M = Ni, Co, Pd, Rh), (M

′
= In, Tl, Sn, Pb, Bi), (X = S, Se) with Shandite

and Parkerite structure. Z. Naturforsch. B, 149(1-2):157.

Zeng, L. and Franzen, H. F. (1998). Crystal structure of a new compound Bi2NdNi. J.

Alloys Compd., 266:155–157.

Zhu, X., Lei, H., Petrovic, C., and Zhang, Y. (2012). Surface-induced magnetic fluctua-

tions in a single-crystal NiBi3 superconductor. Phys. Rev. B, 86:024527.


	2013
	Development and exploration of potential routes of discovery of new superconductors
	Xiao Lin
	Recommended Citation


	tmp.1391222012.pdf.A2OnB

