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tion problem that has many applications. Due to its intrinsic difficulty and the size of

problems encountered in practice, most solution methods for the VRP are heuristic

in nature and lead to high quality, yet probably not optimal solutions. When one

considers the additional constraints that can be encountered in practice, the need for

high quality heuristic methods is clear.

We present two new variations of the VRP suggested to us by industry con-

tacts, the Consistent VRP and the Balanced Billing Cycle VRP. We develop solution
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tionally, we develop a highly effective cooperative parallel algorithm for the classical

VRP that generates new best solutions to a number of well-studied benchmark in-

stances. We present extensive computational results and describe the C/C++ library

that we developed to solve these vehicle routing problems. We describe the features



and design philosophy behind this library and discuss how the framework can be used

to implement additional heuristic algorithms and incorporate additional constraints.
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Chapter 1

Introduction

The efficient distribution of goods and services lies at the heart of many daily

activities. These distribution problems often involve the routing of vehicles, and

examples abound: a child being picked up by a school bus, a garbage truck traversing

the streets of a residential neighborhood, the electric company reading the meters of

its customers once a month, or the mailman visiting all the houses in a neighborhood.

The cumulative costs of operating the vehicles participating in these activities can

be very large, and so it is important to route these vehicles as efficiently as possible.

However, developing efficient solutions to these types of problems requires us to solve

a combinatorial optimization problem that has proven to be extremely difficult.

Problems of this type were first formally introduced in 1959 by Dantzig and

Ramser [25], and hundreds of papers have been published on this topic in the last

fifty years. In the classical VRP, we are given a fleet of homogeneous vehicles and

a set of customer locations where each customer has a known demand. The task

is to construct a minimum cost set of routes that meets all customer demand while

also ensuring that the individual routes adhere to vehicle capacity and route length

restrictions. Although the VRP is simple to state and easy to understand, experience

has shown it to be very difficult to solve in practice. Furthermore, there are many

additional complications that occur in practice: the firm may have more than one type
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of vehicle (the Heterogeneous VRP), certain customers may require service during a

certain time period (the VRP with Time Windows), or the planning horizon may

involve several days at a time (the Period VRP).

Because of the difficulty in solving the VRP and the number of additional

considerations that arise in practice, problems of realistic size must typically be solved

via heuristic methods. Exact solution methods for the VRP typically use integer

programming or dynamic programming [9, 66], and even with modern computing

resources, these methods are typically unable to solve to optimality problems with

more than 100 customer locations. As real-world VRP instances can have several

thousand nodes and can involve many additional constraints that complicate the

problem even further, the need for high quality heuristic solvers is clear.

While the necessity of heuristic methods is undeniable, recent improvements in

commercial mixed integer programming (MIP) solvers as well as increases in cheaply

available computing power permit one to judiciously combine exact and heuristic

methods. This combination of heuristic and exact methods is a powerful technique

for solving the VRP that has become increasingly prevalent in recent years [17, 30, 79].

In this dissertation, we continue this trend of combining heuristic methods with

exact integer programming methods. We create fast, powerful algorithms for the

VRP and two real-world variations. Our procedures involve heuristic and integer

programming methods, and we are able to solve problems of practical sizes using

both real and simulated data.

The first contribution of this dissertation is the introduction of a new variant of

the VRP that was suggested to us by UPS. We call this variation the Consistent VRP
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(ConVRP). Here, we are presented with several days worth of service requirements

for a large set of customers. Along with solving a VRP for several individual days, we

must also satisfy consistency constraints: each customer must always be visited by

the same driver at roughly the same time each day. In other words, if we are presented

with a one week planning horizon and a particular customer requires service on three

days, then we must ensure that the same driver visits this customer on each of these

days at roughly the same time. We formulate the ConVRP as an integer program and

solve small instances to optimality. We also develop a heuristic solution algorithm

that we apply to larger problems. This procedure constructs a template of the most

frequently visited customers and then modifies this template for each of the individual

days in order to ensure that the consistency constraints are satisfied. We develop a

set of benchmark problems for the ConVRP and also apply our solution algorithm

to a real-world data set provided by UPS. We run a large number of computational

experiments in order to measure the impact of these consistency constraints in terms

of increased overall route length over the entire period. Finally, we use the UPS data

to demonstrate that a solution to the ConVRP can be used to create consistent routes

for future weeks of data with little loss in overall solution quality.

Next, we introduce a second VRP variant called the Balanced Billing Cycle

VRP (BBCVRP). This variant is derived from a commercial application in the meter-

reading industry where a utility must visit a large number of customer locations over

the course of a one month billing period. The goal is to take an existing set of routes

for each day of the billing cycle and then create a new, more efficient set of routes

that is more balanced in terms of the distance traveled and the number of customers
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visited on each day of the billing cycle. Additionally, we must adhere to certain

regulatory constraints that forbid a utility from changing a customer’s billing day by

more than a few days from one month to the next. We develop a solution algorithm

for this complex VRP variant that combines heuristic and exact methods and apply

our procedure to a real-world data set provided by RouteSmart Technologies, Inc.

Next, we present a cooperative parallel algorithm for solving the classical VRP.

We develop and implement a completely asynchronous parallel algorithm. The ma-

jority of the processors are devoted to generating solutions to the VRP instance via a

metaheuristic algorithm based on record-to-record travel [29]. We devote a second set

of processors to solving a set covering integer program. These use routes extracted

from the solutions generated by other processors and attempt to combine them in

order to discover new solutions that are superior to any of the individual solutions. A

single master processor stores the best solutions discovered during the search, man-

ages the distribution of parameters to the other processors, and is responsible for the

overall direction of the search. Our algorithm is able to quickly find solutions of high

quality, and we find a number of new best solutions to benchmark problems that have

been studied for decades. We run our procedure under a number of different scenarios

in order to study the role of cooperation in the search as well as the influence of the

number of processors on solution quality and computing time.

The three problems that we solved in this dissertation, the Consistent VRP, the

BBCVRP, and the classical VRP, are different in several ways. However, they share

enough similarities that we were able to develop a single C/C++ library to perform

a great deal of the computational work. The final contribution of this dissertation
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is the description of our VRPH library (a library for VRP Heuristics). This library

provides a large number of routines for creating and modifying solutions to VRP

instances and offers a generic metaheuristic solver that can be used to solve nearly

any instance of the classical VRP. The VRPH code will be released to the open source

community and we document the library’s design, describe several different ways to

use the library, and discuss how VRPH can be further extended to handle additional

VRP variants with relatively little modification.

The dissertation is organized as follows. We describe the Consistent VRP in

Chapter 2 and the Balanced Billing Cycle VRP in Chapter 3. We present the parallel

algorithm for the classical VRP in Chapter 4 before presenting the VRPH library in

Chapter 5 and then giving our conclusions. Appendix A contains additional infor-

mation and solutions related to the Consistent VRP. Appendix B contains additional

information, data, and solutions related to the parallel algorithm. We include the

best solutions that we found for the standard benchmark problems taken from the

literature. Finally, Appendix C contains technical information about the VRPH li-

brary.
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Chapter 2

The Consistent Vehicle Routing Problem

In the small package shipping industry (as in other industries), companies try

to differentiate themselves by providing high levels of customer service. This can be

accomplished in several ways including on-line tracking of packages, ensuring on-time

delivery, and offering residential pick ups. Some companies want their drivers to

develop relationships with customers on a route and would like the same drivers to

visit the same customers at roughly the same time on each day that the customers need

service. These service requirements together with traditional constraints on vehicle

capacity and route length define a variant of the classical capacitated vehicle routing

problem (VRP) that we call the Consistent VRP (ConVRP). In this chapter, we

formulate the problem as a mixed integer program (MIP) and develop an algorithm

to solve the ConVRP that is based on the record-to-record travel algorithm. We

compare the performance of our algorithm to the optimal MIP solutions for a set of

small problems and then apply our algorithm to five simulated data sets with 1,000

customers and a real-world data set with more than 3,700 customers. We provide a

technique for generating ConVRP benchmark problems from VRP instances given in

the literature and provide our solutions to these instances. The solutions produced

by our algorithm on all problems do a very good job of meeting customer service

objectives with routes that have a low total travel time.
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2.1. Introduction

The traditional vehicle routing problem has been studied by researchers and

practitioners for nearly 50 years, dating back to the early work of Dantzig and Ramser

[25]. For the most part, the focus has been on developing a set of routes for a

homogeneous fleet of vehicles that minimizes the total cost or the total distance

traveled by the fleet, subject to a set of constraints.

Over the last five years or so, there has been a shift in practice from fleet-focused

considerations to those that are customer-focused. Drivers for United Parcel Service

(UPS) “. . . form a real bond with customers [and] take tremendous ownership of their

customers and routes” [81]. This is a significant competitive advantage for UPS

as drivers have gathered sales leads that have generated an additional “. . . volume of

more than 60 million packages a year.” Each day 103,500 UPS drivers visit 7.9 million

customers and handle an average of 15.6 million packages [81]. In the last year, UPS

acknowledged the following customer-service issue [59].

“One of the weaknesses of existing research on [the] classical VRP is that

not much attention is paid to the benefits of customers getting service from

the same service provider at about the same time over multiple days. This

service provider consistency is very important for UPS to provide good

and efficient service.”

We combine the service provider consistency requirements (the same driver visits

the same customers at roughly the same time on each day that these customers need

service) with traditional constraints on vehicle capacity and route length and define
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a variant of the traditional vehicle routing problem that we call the Consistent VRP

(ConVRP). The ConVRP is the same problem faced by UPS over a multiple-day

delivery period.

In Table 2.1, we show the modeling focus for traditional VRP variants including

the ConVRP. In the past, researchers and practitioners considered the fleet, the driver,

and the demand in their models. Customer service considerations are now being added

to variants of the VRP. Campbell and Thomas [15] present a number of industry

statistics and discuss the importance of both on-time delivery and consistent service

within the highly competitive package delivery industry. The ConVRP is the first

VRP variant that we have come across whose primary focus is customer satisfaction.

For companies like UPS, providing consistent service (with respect to time) can be

more important in practice than saving an incremental one, two, or three percent in

travel costs.

The rest of this chapter is organized as follows. In Section 2.2, we model the

ConVRP as a mixed integer program. In Section 2.3, we develop an algorithm for

solving the ConVRP. In Section 2.4, we report computational results on test problems.

In Section 2.5, we give our conclusions.

2.2. Modeling the ConVRP

In the standard version of the VRP, a homogeneous fleet of vehicles is based at

a single depot. Each vehicle has a fixed capacity and must leave from and return to

the depot. There are N customers and each customer has a known demand and is
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Problem Objective Focus Comments
Traditional
VRP

Minimize
cost or
distance

Fleet Toth and Vigo [80] provide an overview of the VRP and
its variants. Cordeau et al. [22] review new heuristics
that solve the VRP.

VRP with
balance

Balance
routes on
each day

Driver On a given day, each driver should have about the same
amount of work. Levy and Bodin [49] present several
criteria for generating good solutions including balanced
daily work schedules. Levy and Bodin [50], Sniezek and
Bodin [74], and Jozefowiez, Semet, and Talbi [41, 42, 43]
extend this work.

Period
vehicle
routing
problem
(PVRP)

Account
for time-
sensitive
demands

Demand In the PVRP, routes are produced over several days to
visit customers with known frequencies of service (e.g.,
a customer requires service on Tuesday and Thursday).
Francis et al. [31] define operational complexity as the
difficulty in implementing a solution to the PVRP. They
present measures of operational complexity including ar-
rival span (the variability of the time of day when cus-
tomers are serviced) and crewsize (the number of differ-
ent drivers to visit a customer) which are similar to our
consistency requirements.

Inventory
routing
problem
(IRP)

Ensure
that
customers
do not run
out of
product

Demand In the IRP, demands are stochastic and there are no
customer orders. Instead, the delivery company decides
when to visit each customer, based on forecasts, com-
munications, and monitoring. The planning horizon is
multiple days in length. Campbell et al. [14] discuss a
wide variety of practical aspects. Moin and Salhi [55]
provide a detailed overview of the IRP.

Consistent
VRP
(ConVRP)

Be
consistent
from one
day to the
next with
customers

Customer According to UPS (2007), many of its drivers have
worked the same route for 20 years or longer. Customer
schedule consistency is an important service criterion
for UPS according to Wong [82]. Wong [83] discusses a
number of additional practical issues.

Table 2.1: Modeling focus for the vehicle routing problem
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serviced by exactly one visit of a single vehicle. A route must be developed for each

vehicle so that all customers are serviced and the total distance traveled by the fleet

is minimized.

In the ConVRP, there are D days of service requirements. Each customer must

be serviced on a specific day (the days are known in advance) and each customer can

receive service at most once on any day from any one of at most K identical vehicles.

When a customer receives service, the same driver visits the customer at roughly

the same time over the D-day planning horizon, so that the maximum arrival time

variation (between latest and earliest arrival times) is no more than L time units. The

service time at customer i on day d is denoted by sid and the demand at customer i

on day d is denoted by qid. We define tij to be the deterministic, symmetric travel

time between any two locations i and j. On each day, a vehicle has a capacity of Q

units and can operate for no more than T units of time. The objective is to develop

a set of routes for the fleet of vehicles that minimizes the total vehicle operating time

over the D days.

We point out that the fleet is homogeneous: all K vehicles have the same

capacity and are capable of servicing any customer. This matches the practice of

many small package shipping companies which use a standard size vehicle to provide

deliveries (e.g., the UPS Big Brown Truck c©). In addition, we do not account for

hard time windows. In practice, most residential customers do not have hard time

windows for delivery. In the ConVRP, by adhering to consistency requirements, we

are able to guarantee that a customer will be serviced at roughly the same time over

the next D days.
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We formulate the ConVRP as a mixed integer program and we are able to use

this formulation to solve several small problems. Set wid = 1 if customer i requires

service on day d and wid = 0 otherwise (i = 0 is the depot). Let aid equal the arrival

time at customer i on day d and set aid = 0 if customer i does not require service on

day d. The decision variable xijkd equals 1 if vehicle k visits customer j immediately

after customer i on day d and equals 0 otherwise. The decision variable yikd equals

1 if customer i is visited by vehicle k on day d and equals 0 otherwise. Using this

notation, the objective function and constraints of the MIP are as follows:

Minimize
D∑

d=1

K∑
k=1

N∑
i=0

N∑
j=0

tijxijkd (2.1)

s.t. y0kd = 1 for all k, d (2.2)
a0d = 0 for all d (2.3)

K∑
k=1

yikd = wid for i ≥ 1 and all d (2.4)

N∑
i=1

qidyikd ≤ Q for all k, d (2.5)

N∑
i=0

xijkd =
N∑

i=0

xjikd = yjkd for all j, k, d (2.6)

widα + widβ
− 2 ≤ yikdα − yikdβ

≤ −(widα + widβ
− 2) for all days

dα and dβ, α 6= β, and all i, k (2.7)
aid + xijkd(sid + tij)− (1− xijkd)T ≤ ajd for all d, k; i ≥ 0, j ≥ 1 (2.8)
aid + xijkd(sid + tij) + (1− xijkd)T ≥ ajd for all d, k; i ≥ 0, j ≥ 1 (2.9)∑

i∈S,j∈S

xijkd ≤ |S| − 1 for S ⊆ {1, 2, . . . , N},

with 2 ≤ |S| ≤ N for all k, d (2.10)
0 ≤ aid + wid(sid + ti0) ≤ Twid for all i ≥ 1 (2.11)

−L + T (widα + widβ
− 2) ≤ aidα − aidβ

≤ L− T (widα + widβ
− 2) for

all i and days dα and dβ , α 6= β (2.12)
xijkd ∈ {0, 1}; yikd ∈ {0, 1}; aid ≥ 0 for all i, j, k, d (2.13)
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The objective function (2.1) minimizes the total travel time of the vehicles over

all days. In (2.2) and (2.3), we require that the depot is visited at time 0 by all

vehicles on all days. Constraint (2.4) ensures that customers are visited exactly once

when they require service and (2.5) guarantees that each vehicle carries no more than

Q units on any given day. In (2.6), each customer has only one predecessor and one

successor and (2.7) ensures that each customer is served by the same driver whenever

a customer requires service. Note that the quantity (widα + widβ
− 2) is negative

unless customer i requires service on both days, in which case this quantity is zero.

Constraints (2.8) and (2.9) determine the arrival times at the individual customers

and (2.8) also serves to eliminate sub-tours in the individual daily routes (we prove

this in Appendix A). Although they are redundant in this case, we also include the

usual sub-tour elimination constraints (2.10). In our computational experiments with

small problems, we found that including these constraints allowed us to halve our

computation times. We note that constraint (2.9) could be removed if we wanted to

allow the driver to wait at a location before traveling to the next customer in order

to provide consistent arrival times. The vehicle travel time limit is defined in (2.11).

In (2.12), the difference between arrival times at customer i on any two days α and

β is no more than L units. As in (2.7), constraint (2.12) is redundant when customer

i does not require service on both days.
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2.3. Solving Large ConVRPs

We now describe an algorithm for solving large-scale ConVRPs containing up

to several thousand customer locations (solving our MIP is only practical for very

small problems with a dozen or so customer locations). Many of the most successful

metaheuristic algorithms for solving the standard VRP are quite complicated and

involve many parameters. As the ConVRP adds several complicating constraints to

the VRP, we wanted to develop an algorithm with a simple structure and relatively few

parameters. The main feature of our procedure is a precedence principle, originally

proposed by UPS: If customers a and b are both served by the same vehicle on a

specific day and a is serviced before b, then customer a must receive service before

customer b from the same vehicle on all days that they both require service. UPS

believed that routes created by following this precedence principle would tend to

adhere to the consistency constraints. In other words, if we consider only those

customers that require service on more than one day and ensure that these customers

are visited in the same order, then the resulting routes should lead to consistent

service, even after we introduce additional customers that require service on only one

of the D days. A key goal of this chapter is to study the performance of the precedence

principle as a relatively simple heuristic approach to the problem of creating consistent

routes.

Our algorithm has two stages. In the first stage, we generate a set of template

routes by considering only those customers that require service on multiple days.

In the second stage, using the template routes, we create routes for all days by
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removing customers from the template who do not require service on day d and then

inserting customers who require service on only day d. This procedure guarantees

that customers are always visited by the same vehicle when they require service and

that the order of the customer visits will adhere to the precedence principle. Our

hope is that the customers will also receive service at roughly the same time each day

that they are serviced. We examine additional properties of the template such as the

expected number of insertions and removals in Appendix A.

The template routes provide the primary structure of the routes for each of the

D days and our procedure applies local search in an attempt to improve these routes.

However, because the template routes themselves are never actually traversed by the

vehicles, it is unclear how to treat the restrictions on a vehicle’s total travel time and

capacity. Thus, the actual travel time required to traverse a template route may be

substantially larger than the time limit T , and the load allowed on a template route

may be larger than the actual allowed capacity Q. To address these issues, when

we are constructing and improving the template routes, we periodically derive each

daily route from the template and check its feasibility with respect to travel time

and capacity. If the total travel time of any daily route exceeds T or if a particular

vehicle’s load exceeds Q, then we decrease the bound on the length or capacity of

a template route and regenerate the template routes until the daily route becomes

feasible. On the other hand, if the template routes lead to daily routes that have

travel times that are substantially smaller than T or capacities that are smaller than

Q, then we increase the relevant limit and regenerate the template routes, thereby
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(a) One-Point Move (b) Two-Point Move

(c) Two-Opt Move (d) Two-Opt Move

Figure 2.1: Improvement operators used in ConRTR

allowing the daily routes to either have larger total travel times or greater vehicle

loads.

Our algorithm is based on the record-to-record (RTR) travel algorithm used by

Li et al. [51] to solve very large-scale VRPs and is denoted by ConRTR (ConVRP

Record-to-Record travel). We improve solutions using the following local search op-

erators: one-point move, two-point move, and two-opt move. In a one-point move,

we try to move each customer in the existing solution to a new position on the same

route or on a different route. In a two-point move, we try to exchange the positions

of two customers. We try the usual two-opt moves within a route and between routes

by replacing two existing edges with two new edges. These improvement moves are

shown in Figure 2.1.

The ConRTR algorithm attempts to create a high-quality solution to the Con-

VRP by creating a set of template routes that can be used to construct feasible routes

for each of the days through simple removal and insertion procedures. The template
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is improved by repeatedly applying these three local search operators in a diversifica-

tion phase followed by an improvement phase. In the diversification phase, we try to

explore new areas of the solution space by accepting both improving and deteriorat-

ing moves. In the improvement phase, we attempt to improve the current solution as

much as possible by accepting only improving moves until we reach a local minimum.

Step 1. Initialization

1.a We are given N total customers, a fleet of vehicles each with maximum
total travel time T and capacity Q, and D days of service requirements.
C denotes the current set of template routes being considered, F denotes
the most recently generated set of template routes that is known to lead to
feasible routes for each day, and F ∗ represents the set of template routes
that leads to the lowest total travel time for the D days. The value of I
is the number of iterations in the diversification phase, J is the maximum
number of non-improving iterations allowed before returning a solution, α
represents a tolerance for the amount of deterioration allowed in the local
search, and λ is a parameter [84] used in the Clarke-and-Wright algorithm
[21] to quickly generate multiple initial solutions. Given a set of template
routes S, let f(S) represent the total travel time of all D routes if they are
feasible.

1.b Set I = 30, J = 5, α = .01, l = 1, and λ = {0.6, 1.0, 1.4}.
1.c Set C = F = F ∗ = ∅.
1.d Partition the set of N customers into two groups, G1 containing all cus-

tomers requiring service on two or more days and G2 containing all cus-
tomers requiring service on only one day.

1.e Compute an expansion factor E = |G1|/µdaily where µdaily is the mean
number of stops required on each day and |G1| is the number of customers
in the template. Make an initial estimate for the maximum capacity of
the template routes by setting Qtemplate = Q × E = Q0 and estimate
the maximum travel time for the template routes by setting Ttemplate =
T/
√

E = T0.

1.f For all customers in G1, set the demand amount and service time to be
the mean values of these quantities taken across all days that the customer
requires service.

Step 2. Create an initial set of template routes.

2.a Generate an initial set of template routes C for the customers in G1 us-
ing the modified Clarke-and-Wright algorithm with parameter λ[l], vehicle
capacity Qtemplate = Q0, and maximum travel time Ttemplate = T0.
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2.b For each day d, create routes by removing customers from C not requiring
service on day d and then inserting customers from G2 requiring service
only on day d.

2.c If the routes for all D days are feasible, set F = C, Qold = Qtemplate,
Told = Ttemplate. Go to Step 3.

2.d If at least one route on the D days is not feasible, then calculate the
mean capacity violation (VQ) and mean travel time violation (VT ) across
all routes, and tighten the template constraints by setting Qtemplate =
Qtemplate − VQ/2 and Ttemplate = Ttemplate − VT /2. Return to Step 2.a and
try to generate a set of feasible template routes.

Step 3 Diversification Phase: Modify the current feasible template routes C =
F . If f(C) < f(F ∗), set F ∗ = C.

3.a Set Record equal to the total travel time of all routes in the current tem-
plate C. Set Deviation = α×Record.

3.b For i = 1 to I

Apply the one-point move, two-point move, and two-opt move with
record-to-record travel to the current template routes C. Accept any
improving move and only those deteriorating moves where the total
travel time of all template routes is less than Record+Deviation and
all routes satisfy the template constraints.

Step 4. Improvement Phase: Improve the current solution C. Set k = 0.

4.a Apply the one-point move, two-point move, and two-opt move, accepting
only improving moves until no further improvements can be found.

4.b Construct routes for each of the D days by applying the customer removal
and insertion procedures.

4.c If the routes for all D days are feasible, set F = C. Compute the minimum
slack amount across all daily routes in terms of capacity (SQ) and travel
time (ST ). Relax the template constraints by setting Qtemplate = Qtemplate+
SQ/2 and Ttemplate = Ttemplate + ST /2. Go to Step 5.

4.d If at least one route on the D days is not feasible, then compute the mean
violations (VQ and VT ) as in Step 2.f and tighten the template constraints
by setting Qtemplate = Qtemplate−VQ/2 and Ttemplate = Ttemplate−VT /2. Set
k = k + 1. If k < 5, continue to find feasible improvements by returning
to Step 4.a. Otherwise, return to the last known feasible template, setting
C = F and go to Step 5.

Step 5. If f(C) < f(F ∗), set F ∗ = C. If the objective function value of the
current template routes C is less than Record, set j = 0. Set j = j +1. If j < J ,
return to Step 3 and continue modifying the template. Otherwise, we have been
unable to improve the current solution for J iterations, so stop modifying the
current template and go to Step 6.
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Step 6. Set l = l + 1 and return to Step 2 to generate a new initial solution
if l ≤ 3. Otherwise, use the best set of template routes (F ∗) found during the
search to generate the routes for each of the D days and return.

Before discussing the computational performance of our algorithm, we highlight

a few of its more important features. The initial template routes that lead to feasible

daily routes are generated by the modified Clarke-and-Wright algorithm using the λ

parameter proposed by Yellow [84]. We make initial estimates of the template travel

time and capacity limits in Step 1.e by comparing the number of template customers

with the average number of stops per day and then computing an expansion factor

E. After a template is found that leads to feasible routes for all D days, we run an

improvement procedure while periodically altering the constraints on the template

routes when we encounter daily routes that either violate the actual constraints or

have significant slack. If a daily route violates a capacity limit or a travel time

limit, then the offending limit (either Q or T ) is decreased by one-half the mean

violation amount (see Steps 2.d and 4.d). When the template is regenerated using

this constraint, the idea is that since the template satisfies a tighter constraint, the

daily routes will then be more likely to obey the actual constraints. On the other

hand, if we have slack in all of the daily routes, then we increase each limit by one-

half the mean amount of slack (see Step 4.c). This allows for more flexibility in the

improvement operations and will hopefully lead to better solutions as the template

is modified. At the end of ConRTR, we return to the template that led to the best

solution across the D days and return these routes. Because the routes for each day

are constructed from the template routes, the precedence principle holds on these
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final routes – any two customers requiring service on the same day more than once

during the D days will be served in the same order and they will be serviced by the

same driver.

2.4. Computational Experiments

In this section, we conduct several computational experiments that are designed

to test the performance of ConRTR. First, we solve a set of small problems with 10

or 12 customer locations and compare the ConRTR solutions to the optimal solutions

found by solving the mixed integer program given in Section 2. Second, we solve

40 randomly generated problems with 1,000 customer locations and examine the

performance of ConRTR as we change the customers’ service probabilities. Third,

we construct a set of test problems from existing problems in the literature and solve

them using ConRTR. Finally, we solve a problem with 3,715 customer locations that

is based on five weeks of actual customer data provided by UPS. We coded ConRTR

in C/C++ and all experiments were conducted on a machine with a 1.4 GHz Intel

processor and 512 MB of RAM.

2.4.1 Small Problems

We generated five problems with 10 customer locations and five problems with

12 customer locations using the parameters below. The problem instances and the

optimal solutions are given in Appendix A.
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• Customer locations are generated uniformly at random within the square with

vertices (0, 0), (10, 0), (10, 10), (0, 10).

• Travel times are defined to be the Euclidean distances.

• Depot is located at (0, 0).

• There are three days of known service requirements.

• Customers require service on each day with probability 0.7.

• For customers requiring service on a given day, demand is uniformly distributed

on [1, 3] and all service times are set to one unit.

• The maximum travel time is T = 30 and vehicle capacity is Q = 15 for all

problems.

• The maximum arrival time differential is L = 5.

We compared the solutions produced by ConRTR on these 10 problems to

the optimal solutions found by solving our MIP (we provide a modeling language

formulation of the ConVRP in Appendix A). ConRTR does not explicitly account for

the maximum arrival time differential L. Instead, it relies on the precedence principle

to address this aspect of consistent service. To account for this, we assessed the

performance of ConRTR in two ways. First, we solved each problem using ConRTR

and calculated the largest arrival time differential (Lmax) across all customers and then

solved the MIP by setting L = Lmax. Next, we ran ConRTR again, but discarded
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ConRTR Optimal Optimal
Number of Solution Solution ConRTR Solution

Nodes L = 5 L = 5 Gap Solution Lmax L = Lmax Gap
10 142.03 142.03 0 142.03 3.70 142.03 0
10 121.07 121.07 0 121.07 4.40 121.07 0
10 149.41 149.41 0 149.41 3.48 149.41 0
10 150.89 150.89 0 150.89 2.87 150.89 0
10 140.23 132.31 5.99% 130.77 12.37 130.77 0
12 171.05 171.02 0.02% 171.05 3.96 171.05 0
12 111.54 111.54 0 111.54 4.25 111.54 0
12 150.09 145.69 3.02% 145.67 5.26 145.67 0
12 168.45 166.37 1.25% 165.23 5.47 165.23 0
12 146.52 140.42 4.34% 140.29 7.90 139.75 0.38%

Table 2.2: Results for ConRTR and MIP on 10 small problems

all solutions that had L > 5 and compared these solutions to the optimal solutions

produced by solving the MIP with L = 5.

In Table 2.2, we give the results produced by ConRTR and the MIP to these

10 problems. Columns 2 and 3 give the optimal and ConRTR solutions for the case

of a fixed maximum arrival time differential of L = 5. The fourth column gives the

best solution found by ConRTR when we ignore the L = 5 constraint along with

the observed maximum arrival time differential Lmax, and the final column lists the

optimal solutions to the MIP with L = Lmax. Note that, in several cases Lmax < 5,

so that the ConRTR solution satisfies the L < 5 constraint. The computing times

for the MIP were very long, requiring up to several days using a state-of-the-art MIP

solver (CPLEX 11.0), while ConRTR took less than one second to solve each problem.

Nevertheless, the gap between the heuristic and optimal solutions is generally quite

small and ConRTR finds the optimal solution in 14 of the 20 instances.
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One interesting feature of the optimal solutions is that for all problems except

one, the optimal solution adheres to the precedence principle and can be generated

from a set of template routes. In other words, there is only one case where customers

who require more than one visit over the three days are visited in a different order.

2.4.2 Large Simulated Problems

Next, we generated a set of random problems to assess ConRTR under a number

of different scenarios. In particular, we were interested in the effect of the frequency

of service requirements on its performance. For example, if all customers required

service on every single day, then the template itself could be traversed by the vehi-

cles, leading to a situation where the customers would be serviced at identical times

across the different days. However, if customers required service with lower proba-

bilities on each day, then the performance of ConRTR would suffer due to a larger

number of modifications to the template as customers are inserted and removed when

constructing the routes for each individual day.

In generating these problems, we set the travel time (in minutes) between two

customers equal to the Euclidean distance. The service time was one minute and

the maximum daily travel time for a vehicle was 500 minutes (this was based on

discussions with Wong [82]). The demand at each customer was uniformly distributed

on [0, 10] and the vehicle capacity was 500 units. In order to produce problems that

would lead to routes similar to those found by a package delivery company on a

typical day over D = 5 days of known service requirements, we generated customer
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locations randomly, according to a uniform distribution, in a quarter circle with a

radius of 80 centered at the origin. With this distribution of customers and travel

time and capacity restrictions specified above, there were 100 to 150 customers on a

route, typical for a package delivery company.

First, we developed 35 homogeneous test problems. Here, we have only one

type of customer and this customer is visited on each of the five days with a fixed

probability p. We varied p from 0.6 to 0.9 in steps of 0.05 and generated five homo-

geneous test problems with 700 customers for each value of p. Second, we developed

five heterogeneous test problems. Here, we envision two types of customers – com-

mercial and residential. The commercial customers have a high probability of being

visited each day and residential customers have a much lower probability of being

visited each day. Consistent service by the same driver at the same time is not as

important to residential customers (many are not present to receive a delivery) as it

is to commercial customers. (We also point out that there is a very low probability

that residential customers require service on more than one day.) We generated five

heterogeneous test problems with 1,000 customer locations for each problem. Based

on our discussions with Wong [82], each heterogeneous test problem has 70% com-

mercial customers (there is a 0.9 chance that a commercial customer is visited each

day) and 30% residential customers (there is a 0.1 chance that a residential customer

is visited each day). For the five heterogeneous problems, there were an average of

659 commercial and residential customers who required service on a given day.

For both sets of test problems, we ran ConRTR to generate consistent routes

and we calculated the mean maximum arrival time differential, the overall maximum
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arrival time differential, and the total travel time of the routes. Also, in order to

get a sense for the increase in travel time resulting from the consistency constraints,

we ran a generic record-to-record-travel (RTR) algorithm on each problem. This

algorithm generally produces solutions that are within 1% to 2% of the best-known

solutions on standard benchmark problems (see [51]). By comparing the total travel

time of the ConRTR routes to the total travel time of the RTR routes, we get a

sense of the increased cost added by the consistency constraints. In particular, we

compare the total number of vehicles and the total travel time required in the different

solutions. We point out that ConRTR and RTR each take roughly one to two minutes

to generate the routes for all five days.

In Table 2.3, we show the results produced by ConRTR and RTR on the 35

homogeneous test problems. The results suggest that our precedence principle does a

very good job preserving consistent arrival times for those customers requiring service

on multiple days. For all 35 problems, taking into account the consistency require-

ments (denoted by consistent routes in Table 2.3), the average maximum arrival time

differential for all 700 customers was between 4 minutes (p = 0.9, problem sets 2-5)

and 11 minutes (p = 0.6, problem set 1) with an overall average of 7 minutes. In

the worst case for one customer, the maximum arrival time differential was between

9 minutes (p = 0.9, problem set 3) and 50 minutes (p = 0.65, problem set 1) with an

overall average of 22 minutes. In other words, using the routes generated by ConRTR,

when a customer requires service on multiple days, the same driver visited a customer

within 7 minutes (on average) of the same time each day. In the worst case for one

customer, this time increased to 22 minutes (on average).
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ConRTR Results RTR Results
Average Overall Total Total Average

Problem Maximum Maximum Travel Number Travel Number
p Set Differential Differential Time of Routes Time of Routes

0.6 1 11 42 6717 5 6312 4.8
2 9 28 6691 5 6472 5.0
3 8 25 6777 5 6458 5.0
4 10 31 6764 5 6364 4.8
5 10 28 7026 5 6523 4.8

0.65 1 10 50 7463 5 6576 5.0
2 9 28 7397 5 6624 5.0
3 8 22 6982 5 6655 5.0
4 9 25 7349 5 6800 5.0
5 7 30 7498 5 6683 5.0

0.7 1 7 18 7441 6 7383 5.4
2 7 21 7900 6 7049 5.2
3 9 24 7529 6 7188 5.4
4 9 29 7714 6 7110 5.4
5 7 20 7990 6 7171 5.2

0.75 1 7 19 7638 6 7160 5.6
2 8 24 7995 6 7271 6.0
3 7 30 7767 6 7519 6.0
4 7 17 7558 6 7400 6.0
5 7 33 7967 6 7430 6.0

0.8 1 5 14 8226 6 7701 6.0
2 6 20 8391 6 7751 6.0
3 6 15 7924 6 7691 6.0
4 6 16 8225 6 7736 6.0
5 6 16 8347 6 7613 6.0

0.85 1 6 16 8501 7 8046 6.4
2 5 13 8695 7 8093 6.4
3 7 23 8642 7 8125 6.6
4 5 13 8557 7 8324 6.8
5 6 21 8280 7 8114 6.4

0.9 1 6 14 9252 7 8316 7.0
2 4 12 8652 7 8269 7.0
3 4 9 8601 7 8414 7.0
4 4 12 8776 7 8265 7.0
5 4 12 8526 7 8342 7.0

Table 2.3: Results for ConRTR and RTR on homogeneous simulated problems
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ConRTR Results RTR Results
Average Overall Total Total

Maximum Maximum Travel Travel
Problem Differential Differential Time Time

1 8 43 9581 8630
2 7 24 9079 8522
3 5 16 9069 8507
4 7 20 9584 8614
5 8 28 9464 8518

Table 2.4: Results for ConRTR and RTR on heterogeneous simulated problems

Over all 35 problems, the total travel time of the ConRTR-generated routes was

slightly longer than the total travel time of the routes generated by RTR. On average,

the total travel time of the consistent routes was 6.6% longer (the increased times

were between 0.8% and 13.5%). Additionally, on several occasions RTR was able

to produce solutions requiring one less vehicle. However, unless all of a particular

driver’s customers do not require service on a particular day, the consistent driver

constraint implies that we must always have the same number of vehicles operating

each day. As expected, we observe that, for the routes produced by ConRTR, the

average arrival time differential decreases as p increases since the template routes

account for more and more customers and are therefore able to do a better job of

approximating each daily route.

In Table 2.4, we show the results produced by ConRTR and RTR on the five

heterogeneous test problems. For all five problems, taking into account the consis-

tency requirements, the average maximum arrival time differential for all commercial

customers who require service on more than one day (recall that consistency is more

important to the commercial customers than the residential customers) was between
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5 minutes and 8 minutes with an overall average of 7 minutes. In the worst case

for one customer, the maximum arrival time differential was between 16 minutes and

43 minutes with an overall average of 26 minutes. In other words, using the routes

generated by ConRTR, when a customer requires service on multiple days, the same

driver visited a customer within 7 minutes (on average) of the same time each day.

In the worst case for one customer, this time increased to 26 minutes (on average).

Over all five problems, the total travel time of the ConRTR routes was slightly

longer than the total travel time of the routes generated by RTR. On average, the

total travel time of the consistent routes was 9.3% longer than the total travel time of

the inconsistent routes (the increased times were between 6.5% and 11.3%). Finally,

we note that for these five instances, ConRTR and RTR always generated solutions

that contained seven routes.

2.4.3 Modified Benchmark Problems

There are a number of well-known benchmark problems for the classical VRP

(see Christofides et al. [19, 20], Golden et al. [36], Li et al. [51]). Given an n-

node VRP benchmark problem, some number of days D, and a service probability

p, we developed a simple procedure to randomly generate a ConVRP benchmark

from this existing problem. We took the VRP benchmark problems of Christofides

et al. [19, 20] and constructed a single five day ConVRP benchmark from problems

1 to 12 using a daily service probability of p = 0.7 (these problems are available at

http://www.rhsmith.umd.edu/faculty/bgolden/vrp_data.htm).

27

http://www.rhsmith.umd.edu/faculty/bgolden/vrp_data.htm


In Table 2.5, we present the solutions found by our algorithm as well as the

best total route length found when consistency is not taken into account (Appendix

A contains figures and details for all of these solutions). We also include the mean

maximum arrival time differential as well as the overall largest maximum arrival time

differential for the routes created by ConRTR.

ConRTR ConRTR RTR
Total Number Arrival Time Total RTR Mean

Number of Travel of Differentials Travel Number of
Problem Customers Time Vehicles Average Maximum Time Vehicles

1 50 2282.14 5 8.36 24.38 1963.39 3.4
2 75 3872.86 11 6.85 34.26 3182.31 7.8
3 100 3628.22 7 8.21 22.87 3127.77 5.8
4 150 4952.91 12 4.93 27.53 4121.73 8.6
5 199 6416.77 16 3.32 26.93 5108.19 12.2
6 50 4084.24 5 19.19 63.47 3954.32 4.6
7 75 7126.07 12 14.19 83.96 6325.39 8.6
8 100 7456.19 9 22.70 73.04 6902.10 6.8
9 50 11033.54 14 22.19 106.43 9932.90 10.4

10 199 13916.80 18 18.47 60.17 12399.40 13.2
11 120 4753.89 7 4.78 16.10 4244.48 5.2
12 100 3861.35 10 3.00 17.58 3209.88 6.6

Table 2.5: Results for ConRTR and RTR on 12 new benchmark problems

The solutions presented in Table 2.5 are different from those in Table 2.3 in

several ways. First, it is difficult to assess the consistency of the arrival times as we

have a much larger disparity in the total travel times and arrival time differentials

from one problem to the next. For example, we have average maximum arrival time

differentials ranging from 3.3 in problem 5 to more than 22 in problems 8 and 9.

However, if we view the arrival time differential in proportion to the average route

duration, then the average maximum arrival time differential is less than 10% in all

12 problems.
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A second way that these solutions differ from those in Table 2.3 is that the

solutions generated by RTR without regard for consistency generally require fewer

vehicles and require roughly 15% less total travel time. Because the routes created

by RTR are generally less costly than the ConRTR routes, we ran an experiment

to transform the RTR solution into a solution that tries to satisfy the consistency

constraints. To do so, we must first assign a single driver to each route on each of the

D days so that as many customers as possible receive consistent service throughout

the D days. Given this assignment of drivers to routes, we must then traverse each

route in one of the two possible ways (i.e., clockwise or counterclockwise) in order to

minimize the mean maximum arrival time differential for the customers that always

receive service from the same driver.

The RTR-generated solutions sometimes require a different number of routes

(drivers) on each day and so it is not clear how to analyze the consistency of these

solutions. One option is to assign multiple drivers to individual vehicles on those days

that require fewer routes. Another option is to have some drivers only work certain

days. We chose to analyze the second option, reasoning that a firm would be unlikely

to pay for more than a single driver per vehicle. Assuming that we have v total

drivers on each day (those who do not work on a particular day are assigned a trivial

depot-to-depot route), we then can find the optimal assignment of drivers to routes

in the D-day RTR solution by solving a set partitioning problem with an additional

constraint (we provide the details of this set partitioning problem in Appendix A).

After assigning drivers to routes, we next try to provide consistent service in

terms of the arrival time differential. Each of the v vehicles traverses D routes, and
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Proportion of
Customers
Receiving Arrival Time

Number of Consistent Differentials
Problem Customers Service Average Maximum

1 50 0.48 14.60 132.21
2 75 0.41 8.56 95.33
3 100 0.48 11.22 138.93
4 150 0.46 8.65 107.58
5 199 ≤ 0.46 - -
6 50 0.55 23.42 167.75
7 75 0.39 11.83 141.18
8 100 0.47 22.34 165.97
9 150 ≤ 0.51 - -

10 199 ≤ 0.49 - -
11 120 0.68 15.17 179.97
12 100 0.54 4.82 82.07

Table 2.6: Assigning drivers to routes in the optimal way

so there are 2D different orientations of these routes. By examining all orientations,

we are able to find the optimal orientation that minimizes the mean maximum arrival

time differential over those customers that receive service from only one driver. We

present the results of these computations in Table 2.6.

By assigning drivers to routes in this way, we are able to provide consistent

service to between 39% and 68% of the customers in Table 2.6, with an average of

50% (we are only able to provide an upper bound for problems 5, 9, and 10 due to

the size of the set partitioning problem.) In terms of the arrival time differentials,

the mean maximum arrival time differential is more than 50% larger and the overall

maximum arrival time differential is larger by a factor of more than 4.5. Thus, given

efficient, inconsistent routes, this experiment suggests that it may not possible to

transform these routes into consistent ones.
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2.4.4 Real-World Problem

Finally, we tested ConRTR on a data set provided by UPS. This data set con-

tained service requirements, demand amounts, and travel times for 3,715 customer

locations over five weeks (five days per week). Although some of the customer loca-

tions had hard time windows, these were ignored because ConRTR does not account

for this type of constraint.

We have two key interests in solving the real-world problem with ConRTR: (1)

test the effectiveness of the precedence principle in handling actual service require-

ments and (2) examine the consistency of the arrival times at individual customers.

Mean Number of
Number of Number of Customers With k Stops Template

Week Stops Per Day k = 1 k = 2 k = 3 k = 4 k = 5 Customers
1 597 838 213 100 60 132 505
2 591 801 215 98 58 133 504
3 566 755 216 84 52 135 487
4 573 807 219 96 44 123 482
5 572 818 201 94 43 130 468

Table 2.7: Properties of the five-week data set provided by UPS

Important properties of the data set are summarized in Table 2.7. The second

column gives the mean number of stops per day and the remaining columns describe

the distribution of customer stops per week. While most customers are visited on

only one day (k = 1), there are a significant number of customers requiring service on

every day of the week (k = 5). The right-most column gives the number of customers

in the template (these customers require service on two or more days per week). A

typical customer had a daily demand of three packages (some commercial customers
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required up to 90 packages) with a mean service time of three minutes. In general,

the template contained roughly 85% as many customers as serviced on a typical day,

implying that we will make more customer insertions than deletions to the template.

After reviewing the existing UPS routes, we set the maximum total travel time

to 9.5 hours and the total vehicle capacity to 350 packages. We applied ConRTR

to each of the five weeks and generated routes for each day in the week. As in

previous experiments, we used RTR to generate routes that did not consider consistent

service. In Table 2.8, we report the results of this experiment. For the consistent

routes, the average maximum arrival time differential was between 19 minutes and 35

minutes with an overall average of 26 minutes. In the worst case for one customer, the

maximum arrival time differential was between 64 minutes and 176 minutes with an

overall average of 101 minutes. With the exception of the routes for week 4, ConRTR

performed quite well with customers being visited within 25 minutes (on average)

of the same time each day. In the worst case, this time increased to 83 minutes

(on average). The consistency of the routes for the fourth week suffered due to a

larger number of insertions on one day (causing late arrival times at some template

customers) and a large number of deletions on another day (causing early arrival

times for these same template customers).

The routes generated by RTR were slightly more efficient in terms of total travel

time. However, the difference was only about 1%; this was quite different from the

simulated problems where the difference was generally about 9%. A visual inspection

of these routes indicates that there is significant clustering in the UPS data, and our
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ConRTR Results RTR Results
Average Overall Total Total

Maximum Maximum Travel Travel
Week Differential Differential Time Time

1 19 64 6206 6107
2 29 101 6064 5998
3 24 81 5794 5755
4 35 176 5959 5910
5 25 85 5828 5777

Table 2.8: Results for ConRTR and RTR on the UPS data set

template-based approach seems to work well with clustered data as the insertion of

customers into the template does not substantially increase the travel time.

In the final computational experiment with the UPS data, we tested ConRTR’s

performance in generating a template for a future planning horizon using historical

data. We produced a set of template routes from the first four weeks (20 days) of

service requirements and then used this template to generate routes for each day of

the fifth week. We modified the criterion for including a customer in the template,

now requiring that a customer need service on four or more days during this 20-

day period. This criterion would allow us to provide consistent service to the most

frequently visited customers by including them in the template routes.

The key point of this experiment is that the set of template routes was generated

without ever considering the service requirements for the fifth week. Thus, we are

trying to generate consistent routes for those customers requiring service in the fifth

week by using only the historical service requirements from the first four weeks of

data. This allows us to more accurately model the situation where a delivery company
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Routes derived from Routes derived from
Day week 5 template weeks 1 to 4 template RTR solution
1 1190 1197 1183
2 1132 1136 1119
3 1147 1164 1136
4 1133 1137 1124
5 1226 1265 1214

Table 2.9: Generating consistent routes from historical data

wishes to provide consistent service over a longer horizon than the fixed D-day period

that we have previously considered.

In Table 2.9, we provide the results of the final experiment. We compare the

routes derived from the historical template to the routes produced from the template

that used the actual data from the fifth week. The second column gives the total

travel time if we generate consistent routes by creating a set of template routes from

the service requirements for the fifth week. The third column gives the total travel

time of the routes that were created by constructing a template from the first four

weeks of data and then removing and inserting customers as determined by the ser-

vice requirements for the fifth week. The final column gives the total travel time if

consistency is disregarded and routes are generated for each day

The results of this experiment are encouraging in terms of the efficiency of the

routes that we were able to produce. Using the template generated from the first four

weeks of data, the routes are 1% longer (on average) in total travel time than the

routes produced from the week five template. In terms of consistent arrival times, the

maximum differential for customers requiring service on more than one day in week

five was about 55 minutes. However, the overall maximum arrival time differential is
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much larger at just over three hours. This large time is due to the fact that there were

several customers in the week five data set who required service on two or more days,

but were not included in the template routes as they required service on less than

four total days during the first four weeks. We expect that such large times would

decrease as the number of weeks of historical data increased. Our results for the UPS

data set indicate that the service requirements from one week to the next are quite

similar. Thus, after choosing an appropriate criterion for including customers in the

template, an effective template that leads to high-quality routes can be generated

solely from historical data.

2.5. Conclusion

In today’s highly competitive, small package shipping industry, companies are

looking for ways to improve customer service. By providing consistent service, small

package shipping companies can improve their relationships with customers by estab-

lishing a personal connection in the form of the same driver delivering packages at

nearly the same time each day.

In this chapter, we developed a method for generating consistent delivery routes.

The routes produced by ConRTR were very successful in achieving customer service

objectives with a low total travel time. ConRTR performed well on randomly gener-

ated problems by producing routes on which drivers visited a customer within seven

minutes (on average) of the same time each day. These consistent routes were only
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slightly longer in total travel time (less than 10% on average) than the corresponding

inconsistent routes.

Furthermore, ConRTR performed well on four of five weeks of actual service

requirements provided by UPS with customers being visited within 25 minutes (on

average) of the same time each day. The total travel time of the consistent routes

was only about 1% greater than the total travel time of the inconsistent routes gen-

erated without regard for the additional customer service constraints. Finally, we

demonstrated that ConRTR generated high-quality, consistent routes by using purely

historical data.

We presented our results to UPS managers in late 2006 and they remarked

[59]: “We found their results very interesting and their approach novel and easy to

implement. Their research also provides independent confirmation that our service

constraints make good business sense.”
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Chapter 3

The Balanced Billing Cycle Vehicle Routing Problem

Utility companies typically send their meter readers out each day of the billing

cycle in order to determine each customer’s usage for the period. Customer churn

requires the utility company to periodically remove some customer locations from its

meter-reading routes. On the other hand, the addition of new customers and locations

requires the utility company to add new stops to the existing routes. A utility that

does not adjust its meter-reading routes over time can find itself with inefficient routes

and, subsequently, higher meter-reading costs. Furthermore, the utility can end up

with certain billing days that require substantially larger meter-reading resources

than others. However, remedying this problem is not as simple as it may initially

seem. Certain regulatory and customer service considerations can prevent the utility

from shifting a customer’s billing day by more than a few days in either direction.

Thus, the problem of reducing the meter-reading costs and balancing the workload

can become quite difficult. We describe this Balanced Billing Cycle Vehicle Routing

Problem in more detail and develop an algorithm for providing solutions to a slightly

simplified version of the problem. Our algorithm uses a combination of heuristics and

integer programming via a three-stage algorithm. We discuss the performance of our

procedure on a real-world data set.
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3.1. Introduction

A typical utility company issues bills to its customers on a monthly basis. How-

ever, because each customer’s usage varies from one month to the next, the utility

company must accurately determine the amount of each bill by physically inspecting

the customer’s meter. While some utility companies are using technological advances

such as RFID to simplify this task [40], many others still send out a fleet of workers

each day to individually read each customer’s meter. These meter readers begin their

day at a central location, visit a set of specified locations, and then return to this

central facility.

Because of the periodic and largely predictable nature of this activity, we expect

that most utility companies are very efficient in accomplishing this monthly meter-

reading task. However, because the utility’s customer set changes as accounts are

closed and new accounts are added, there is the potential for the quality of these

meter-reading routes to deteriorate over time if the routes and billing day assignments

are not closely monitored.

As an example, consider a fixed customer location and assume that the meter

belonging to this customer is read on the 10th day of each month. Since the utility

company clearly wishes to minimize the total cost of the meter-reading process, the

company will attempt to minimize the total driving time required to read all the

necessary meters. Thus, we expect that many meters in the immediate vicinity of

this particular location will also be read on the 10th. After a period of time, suppose

that the current resident moves away and cancels service with the utility company. A

38



new resident moves in at a later date and begins service, say on the 20th day of the

month. We expect that this new resident’s meter will be read on the 10th day of each

month instead of the 20th as it is logical to believe that the meter reader servicing

this particular area will simply add this new customer to the existing route. However,

in practice, this is not always the case as the new resident’s meter is sometimes read

on the 20th of the month, rather than on the 10th day.

Over time, as specific meters are transferred among different customers and

accounts are canceled and renewed, the utility company’s meter-reading routes be-

come less efficient as new customers are added to old, inappropriate routes. Thus,

utility companies that fail to adjust their routes and billing day assignments in re-

sponse to this customer turnover end up with inefficient, fractured routes, as well as

meter-reading workloads that are not balanced across the billing cycle.

We expect that once a utility realizes that its routes are inefficient and are in-

creasing its operating costs, it would simply adjust certain customers’ monthly meter-

reading dates in order to quickly cut costs by shifting customers to more appropriate

routes. However, certain regulatory constraints forbid a utility company from shifting

a given customer’s billing date by more than a few days [12]. In addition, some util-

ities wish to avoid significant changes in billing dates as many customers resent the

potentially large increases in their bills. Thus, even if the utility company knew that

it could immediately reduce routing costs by shifting a customer’s meter-reading day

from the 20th to the 10th day of the month, there are often external considerations

that prevent it from making such a change in a single billing period. After months

and even years of this route fracturing phenomenon, a utility can find itself with ter-
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ribly inefficient and unbalanced routes and faced with the daunting task of creating

efficient and balanced routes. Some utilities resort to manual methods and attempt

to repair such configurations by hand. Other approaches include a technique called

string indexing that attempts to balance routes in terms of the number of customers.

A single, giant tour is constructed and then partitioned into routes containing roughly

the same number of customers by simply splitting the giant tour in certain places [46].

Clearly, these methods are ad hoc at best, and this chapter attempts to provide an

effective and automated procedure for repairing such fractured configurations.

We now consider the goals of the utility. First and foremost, the utility would

like to minimize its meter-reading costs by creating more efficient routes. By im-

proving the routes for each billing day, the utility can reduce its operating costs by

decreasing the total mileage traveled by individual meter readers. Additionally, it is

possible that the utility can reduce its labor costs since the more efficient routes may

also require fewer overall meter readers.

The utility company has two secondary goals related to balancing the workload

across the different days of the billing cycle. First, the utility company wants to

ensure that the number of required meter readers is constant across the billing cycle.

In other words, the utility would like to develop meter-reading routes and billing day

assignments that do not require extra meter readers or increased (overtime) labor

costs on certain days of the billing cycle. Second, the utility wants to ensure that

the actual number of customers requiring meter-reading service on any given day

of the billing cycle is roughly constant. In certain cases, the billing data and other

customer information are stored on older mainframe computer systems. When the
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meter readers download each day’s billing data onto their personal hand-held devices

and then upload the new readings to the main database, a particularly large number

of customers on any given day can slow down the system to the point where the next

day’s meter reading is delayed [46].

In this chapter, we consider the following problem. We are given a set of existing

meter-reading routes for each day of the billing cycle. We create meter-reading routes

for each billing day and assign customers to these routes with the goal of reducing

the total length of the meter-reading routes while observing regulatory and customer

service considerations when assigning customers to new billing days. We have the

secondary goal of balancing the meter readers’ routes in terms of both total route

length and the number of meters read per day.

The remainder of this chapter is organized as follows. In Section 3.2, we provide

a mathematical formulation of this problem. In Section 3.3, we develop a method

for obtaining solutions to this problem. In Section 3.4, we present the results of our

solution algorithm on a real-world data set. We summarize our progress and presents

ideas for future research in Section 3.5.

3.2. Problem Statement

The Vehicle Routing Problem (VRP) has been studied by the operations re-

search community for nearly 50 years. The addition of real-world constraints to the

problem has led to many variants including the VRP with Time Windows, the In-

ventory Routing Problem, and the Period Routing Problem [10, 11, 13, 18]. While
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our current problem shares some characteristics with well-known VRP variants, the

Balanced Billing Cycle VRP (BBCVRP) has several aspects that are quite different.

In many VRP variants, the problem is solved from scratch. However, in the

BBCVRP, we start with an existing set of unbalanced and inefficient routes and

then move towards a more efficient solution that satisfies the routing and billing day

constraints.

A second aspect of the BBCVRP that is largely absent from problems in the

VRP literature is the notion of balancing the routes. Any company that employs

multiple drivers to read meters or deliver goods would like each driver to individually

work near capacity on each day, implying some degree of balance across the work days.

Despite the simplicity and necessity of this objective in a wide variety of scenarios,

it appears that only a handful of papers have considered the issue of balance in any

detail.

Renaud, Boctor, and Laporte [71] use the notion of balance when constructing

2-petals as they develop their routes. The notion of balance is also addressed by

the heuristic proposed in [6], but the problem they consider involves fewer than 30

nodes. More recently, balancing route length has been addressed in a series of papers

by Jozefowiez, Semet, and Talbi [41, 42, 43]. They treat the problem as a multi-

objective optimization problem and formally propose the Vehicle Routing Problem

with Route Balancing (VRPRB). In this problem, the goal is to minimize the total

route length as well as the difference between the longest route and shortest route.

They solve this problem with a genetic algorithm and a local search method they refer
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to as Target Aiming Pareto Search. They report the performance of their procedure

on some of the classical benchmark problems given in [19] and [20].

We now discuss two different approaches to solving the BBCVRP. An itera-

tive approach takes the existing configuration and tries to create the routes for the

following billing period without considering future periods. After successively modi-

fying several billing periods in this fashion, trying to balance the routes in the length

and customer dimensions, this procedure ends when no further improvements can be

made, thereby reaching a local minimum. A targeted approach has a longer term per-

spective and begins by constructing an efficient and balanced routing and billing day

configuration while ignoring the initial routes altogether. This approach transitions

to this final target configuration via a series of intermediate billing periods.

We adopted the targeted approach for two reasons. First, we can be certain

that we will eventually reach a desirable configuration after a number of intermediate

periods. Second, by ignoring the initial configuration altogether, we can use powerful

VRP heuristics when creating the final target configuration from scratch, rather than

relying on ad hoc methods to improve an existing set of routes. We note that the

targeted approach does not explicitly account for the potential addition and removal

of customer locations that may occur during the intermediate transition periods.

However, because the number of such locations is likely to be small in any given

month, it should be possible to accommodate these changes by slightly modifying

the intermediate routes. We envision that our targeted procedure would be applied

periodically to correct a severely fractured routing and billing day configuration.
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Notation Definition
N The number of meters that must be read during each

billing cycle
(C, C) The minimum and maximum number of customers that

an individual meter reader can visit in a given day
(L, L) The minimum and maximum allowed route length for

an individual meter reader
D The number of days in the billing cycle
S The maximum number of days that we are allowed to

shift a customer’s billing day in either direction
M The number of meter readers used daily by the utility

in its existing routes
Lt(r, d) The length of route r on day d in billing cycle t
Ct(r, d) The number of customers on route r on day d in billing

cycle t
dt(i) The billing day of customer i during billing cycle t
f(i) The final billing day of customer i

Table 3.1: Notation used to describe the BBCVRP

Using the notation presented in Table 3.1, we now state our objectives more

precisely. In the targeted approach, we require a number of intermediate periods

to reach the final configuration. The primary objective is to minimize the cost of

the routes in the final configuration, and a secondary objective is to minimize the

number of intermediate periods so that the transition to the new routes and billing

day assignments is as short as possible. We let K − 1 denote the number of required

intermediate periods and LK(r, d) denote the length of route r on billing day d in the

final set of target routes. We wish to minimize the value of K as well as the quantity

M∑
r=1

D∑
j=1

LK(r, j). (3.1)

We now turn to the constraints. For all billing periods 1 ≤ t ≤ K, all routes r,

and days d ∈ {1, 2, . . . , D}, we must satisfy the individual meter-reading length and
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capacity constraints

Lt(r, d) ≤ L (3.2)

Ct(r, d) ≤ C. (3.3)

We also attempt to satisfy the balance constraints imposed by the lower bounds

Lt(r, d) ≥ L (3.4)

Ct(r, d) ≥ C. (3.5)

In order to address the constraint that we cannot shift any customer’s billing

day by more than ±S days from one month to the next, we introduce the notion of

billing distance. Given two billing days 1 ≤ u, v ≤ D, we define ||u, v||D as

||u, v||D = ||v, u||D = min(u− v mod D, v − u mod D). (3.6)

In other words, ||u, v||D is simply the minimum number of billing days separating u

and v in a D-day cycle if we allow for wraparounds. Thus, when we assign some

customer i to a new billing day in period t + 1, we must ensure that

||dt(i), dt+1(i)||D ≤ S. (3.7)
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3.3. Solution Algorithm

As mentioned earlier, our approach to solving the BBCVRP is targeted. We

construct an idealized set of target routes and then transition to this configuration

through a series of intermediate routes. Before describing our three-phase procedure,

we discuss our assumptions.

3.3.1 Assumptions

First, we assume that only a single meter reader operates on each day of the

billing cycle. Although this clearly makes the problem simpler as we are now required

to create only a single meter-reading route for each day of the billing cycle, we ar-

gue that this assumption is not very restrictive. Given existing routes for M meter

readers, we can simply run our procedure M separate times, thereby producing a set

of balanced target routes for each meter reader. Since the original customer sets for

each meter reader are assumed to be disjoint, we produce a set of M routes per day

that are balanced and efficient. If the initial routes are highly fractured and imbal-

anced so that this approach is not easy to execute, we could still proceed under the

assumption of having a single (very fast) meter reader and then partition each route

in the resulting solution into M separate routes.

Second, we treat the meter-reading problem as a node routing problem rather

than an arc routing problem where a street network is traversed. While this assump-

tion allows us to use many of the standard solution techniques developed for the VRP,

many parts of our procedure would apply to an arc routing setting as well.
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Third, we assume that the utility is willing to employ additional meter readers

during the transition periods, if needed. Because we are able to present a final,

balanced set of routes that will be reached after a bounded number of intermediate

periods, this assumption is reasonable in that these additional resources are required

for only a few months.

3.3.2 Phase 1

In Phase 1 of the algorithm, we completely ignore the existing routing configu-

ration and create a set of target routes. Since there is only a single meter reader, we

create a single meter-reading route for each day. We generate the routes by applying

a modified version of the VRP record-to-record travel algorithm (see [16] and [51]).

We chose this metaheuristic for its simplicity, its ability to handle different types of

constraints, and its ability to quickly generate high-quality solutions for large VRPs

as demonstrated in [51]. We modified the general VRP algorithm given in [51] by

forbidding certain moves and including penalties and rewards for moves that hurt or

improve the balance of the routes, and develop our own variant of their record-to-

record travel algorithm, given in Algorithm 3.1.

We begin by generating a set of exactly D routes that obey the limits imposed

by (3.2) and (3.3). Algorithm 3.1 does not explicitly attempt to reduce the number

of routes. However, the algorithm’s performance on benchmark problems indicates

that it typically finds solutions with a minimum number of routes [51]. We rely

on this property of the record-to-record travel procedure in Algorithm 3.2 where we

47



Algorithm 3.1 Record-to-Record Travel for the VRP

1: Input: An existing feasible solution to an N -node VRP
2: Output: An improved feasible solution to the VRP
3: Set S = 30, T = 5, t = 0, set R equal to the current objective function value, and

D = (1.01)× Record
4: Operators = {One Point Move, Two Point Move, Two-Opt Move}
5: for i = 1 to S do
6: for j = 1 to 3 do
7: for k = 1 to N do
8: Apply Operators[j] and search node number k’s neighbor list for moves

that obey the length and capacity constraints, accepting the first improving move
if one is found. If no improving moves are found, then accept the best deteriorating
move if the resulting objective function is less than D

9: end for
10: end for
11: if The current solution is a new record then
12: Update Record and Deviation
13: end if
14: end for
15: while Improving moves can be found do
16: for j = 1 to 3 do
17: for k = 1 to N do
18: Apply Operators[j] and search node number k’s neighbor list for im-

proving moves that obey the length and capacity constraints, accepting the first
improving move that is found.

19: end for
20: end for
21: end while
22: if The current solution is a new record then
23: Update Record and Deviation
24: Set t = 0
25: end if
26: t = t + 1
27: if t = T then
28: Return the best solution found
29: else
30: Return to Start
31: end if
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attempt to find a solution with exactly D routes. Additionally, we note that since we

are typically provided with an initial (unbalanced and potentially inefficient) solution

with D routes, we expect to encounter little difficulty in finding a solution with the

desired number of routes.

Algorithm 3.2 Generate Initial Routes

1: Input: A set of N customer locations
2: Output: A set of D routes that visit all N locations and obey the length and

capacity upper bounds L and C.
3: Construct an initial solution S using the Clarke-Wright algorithm [21], stopping

if we reach a solution with D routes.
4: while The number of routes in S is greater than D do
5: Apply Algorithm 3.1
6: end while

At the conclusion of Algorithm 3.2, we have a set of exactly D routes, one for

each day of the billing cycle. Each of these routes is feasible in terms of the maximum

route length and the maximum number of customers, but typically is not feasible in

terms of the minimums imposed by constraints (3.4) and (3.5). The next step is to

try to modify the existing routes in order to meet these balancing constraints.

We again utilize the general record-to-record travel framework, except that we

now guide the search by forbidding certain moves and perturbing the evaluation of

other types of moves. We focus solely on those moves that involve the exchange of

nodes between two separate routes.

First, when we consider the acceptance of any inter-route move, we check to

see if constraints (3.4) and (3.5) are satisfied by the current solution. If not, then

we reject any move that decreases either the current minimum route length or the

current minimum number of customers on a route. Second, as long as constraints (3.4)
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and (3.5) are violated by some route, we perturb the evaluation of certain moves as

follows. Suppose we have some inter-route move m that involves route r. Let δ(m)

represent the change in the objective function value if the move were made. If route r

is currently the shortest route in the solution and the length of route r increases after

making the move m, then we would like to reward m. Similarly, if route r contains

the fewest number of customers and the number of customers in route r increases if

we make the move m, then we would also like to reward this move. In either case,

we set δ(m) = δ(m)− β × |δ(m)| where β ∈ (0, 1) is a fixed balance parameter. This

modification has the effect of making m appear more attractive when compared to

other potential moves.

On the other hand, if our guided record-to-record travel search discovers a

solution that does not violate constraint (3.4) or (3.5), then we refrain from rewarding

any more moves but we forbid any moves that lead to violations of these constraints.

Computational experiments (discussed in Section 3.4) have shown that this procedure

is typically able to find solutions that satisfy constraints (3.4) and (3.5) with little

sacrifice in quality.

3.3.3 Phase 2

At the end of Phase 1, we have D different meter-reading routes, one for each

day of the billing cycle. Each of the customers on a route had an original billing

day. The goal of Phase 2 is to assign a single billing day to each of our target routes
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so that the transition from our initial routes and billing day configuration will be as

quick and efficient as possible.

A simple way of assigning billing days to our target routes would be to use the

modal value. For each route, we find the most common original billing day among

all customers in this route, and then assign this billing day to each customer in this

route. However, there are two problems with this approach. First, we could encounter

two different routes with the same modal billing day. Second, if we choose this modal

billing day for all the customers in this target route, there could be some customers

that can only reach this billing day following many billing day shifts due to the shifting

constraint (3.7). In other words, this strategy does not account for those customers

which are far away from the modal value in terms of the billing day distance.

In order to address these problems, we formulate an assignment problem with

an appropriate cost function to determine how to allocate our D possible billing days

among the D different routes. We define bij to be the cost of assigning billing day j

to customer i. This cost is calculated in terms of the billing distance:

bij =


0, if ||d0(i), j||D ≤ S

||d0(i), j||D, otherwise.

If customer i can be shifted from the original billing day to day j in a single

shift of size less than or equal to S, then we incur no cost. If the shift is greater than

S, then we simply use the billing distance. We let CRj denote the cost of assigning

billing day j to all the customers in target route R and set this quantity to be the
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sum of these billing shift costs for each customer in the route, that is, CRj =
∑

i∈R bij.

Letting xRj = 1 if day j is assigned to route R and xRj = 0 otherwise, we have the

following assignment problem.

Minimize
D∑

R=1

D∑
j=1

CRjxRj

s.t.
D∑

R=1

xRj = 1 for j = 1, 2, . . . , D (3.8)

D∑
j=1

xRj = 1 for R = 1, 2, . . . , D

xRj ∈ {0, 1} for R = 1, 2, . . . , D and j = 1, 2, . . . , D.

In Table 3.2, we show how the solutions to the assignment problem change as

we increase S in an illustrative example with a 10-day billing cycle. We give the

original billing day mixtures, modal value, and assigned final billing days for a subset

of the 10 days.

(Original billing day, Number of customers)
(1,43) (1,13) (3,31) (1,23) (1,1) (1,10) (1,6) (1,2) (1,1) (1,1)

Original (2,62) (3,19) (9,13) (2,38) (6,62) (4,27) (5,36) (5,64) (3,70) (4,36)
Billing (9,6) (4,37) (10,51) (6,1) (8,29) (7,39) (6,16) (6,1) (9,12) (7,41)
Day (9,29) (8,54) (9,2) (9,20) (8,37) (9,9) (9,24)

Mixture (9,1) (9,4) (10,20)
(10,9)

Final billing day assignment
Mode 2 4 10 8 6 7 8 5 3 7
S = 1 1 3 10 9 7 8 6 4 2 5
S = 2 3 2 1 10 8 9 6 7 4 5
S = 3 4 2 10 9 5 7 8 3 1 6
S = 4 1 10 6 4 7 5 9 3 2 8

Table 3.2: Change in final billing day assignments as the value of S is varied
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In Table 3.2, the modal value is not unique as day 7 is assigned to the two

target routes corresponding to columns 7 and 11, and day 8 is assigned to the two

target routes corresponding to columns 5 and 8. As an example of the effect of the

shift size on the solution to the assignment problem, consider the fourth column that

represents a route where 31 customers have original billing day 3, 13 customers have

original billing day 9, and the remaining 51 customers have original billing day 10.

For S = 2, 3, and 4, all customers are able to transition to the assigned final billing

day in a single move. However, the actual final billing day itself varies as larger shifts

are allowed. For S = 3, we see that these customers are assigned the final day of 10

and receive the billing day 6 for S = 4. Billing day 10 is given to the customers in the

third column when S = 4, as this assignment allows all of these customers to transfer

to their final day in a single shift.

After solving the assignment problem for a specific value of S, we have a set of

D different target routes that have now been assigned a unique billing day. In other

words, for each customer i, we now have a final billing day f(i). Next, we construct

a sequence of intermediate transition routes that allow us to move customers from

their original routes and billing days to their final routes and billing days.

3.3.4 Phase 3

In Phase 3, we start with the initial routes at time t = 0 and iteratively construct

the routes for billing period t + 1 in terms of the period t routes until all customers

are transitioned to their final billing days. We first find all customers that can be
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transitioned from their billing day at time t to their final billing day in a single shift

that does not violate (3.7). In terms of billing distance, we find all customers i

such that ||dt(i), f(i)||D ≤ S. Letting A denote this set of assigned customers and

U represent the complementary set of unassigned customers, we create routes for

the next period by first constructing a set of skeleton routes. We do this by taking

each target route and restricting it to only those customers that are in A. Having

constructed these skeleton routes, we take the unassigned customers in U and place

them in an appropriate intermediate route while trying to ensure that these routes

are as efficient and balanced as possible.

For the remaining unassigned customers in U , we assign them to the existing

skeleton routes by solving a sequence of mixed integer programs (MIPs). Given

customer i ∈ U and skeleton route j, we let xij = 1 when customer i is inserted

into route j and xij = 0 otherwise. We let cij represent the cheapest cost of feasibly

inserting customer i into route j. One approach is to try to minimize the sum of

all these insertion costs while attempting to maintain feasible and balanced routes.

Letting Lj and Cj represent the length and number of customers on skeleton route j,

we have the following MIP denoted by INT-ROUTES :
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Minimize
∑
i∈U

R∑
j=1

cijxij (3.9)

s.t.
R∑

j=1

xij = 1 for i ∈ U (3.10)

Cj +
∑
i∈U

xij ≤ C for all routes j (3.11)

Cj +
∑
i∈U

xij ≥ C for all routes j (3.12)

Lj +
∑
i∈U

cijxij ≤ L for all routes j (3.13)

Lj +
∑
i∈U

cijxij ≥ L for all routes j (3.14)

xij = 0, if ||dt(i), j||D > S (3.15)

xij = 0, if ||dt(i), f(i)||D < ||j, f(i)||D (3.16)

xij ∈ {0, 1}. (3.17)

In (3.9), we minimize the sum of the individual insertion costs. Constraint (3.10)

ensures that each customer in U is assigned to a route, (3.11) and (3.12) require that

we maintain balance across the routes in terms of the number of customers, and (3.13)

and (3.14) attempt to ensure that each route remains feasible and balanced in terms of

total length. Finally, constraint (3.15) restricts the choices of customer i’s new billing

day to only those days that can be reached by a feasible shift. Constraint (3.16)

ensures that whenever we shift an unassigned customer’s billing day, we are always

moving this customer’s billing day closer to the final billing day. We incorporate this
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constraint into the formulation in an attempt to minimize the number of required

transition periods.

However, given skeleton route j with length Lj, the value Lj +
∑

i cijxij in (3.13)

and (3.14) can sometimes overestimate this route’s length following the insertions that

we made. For example, if two customers that are very near one another are inserted

into a particular route, then the sum of these minimum insertion costs can be nearly

double the actual increase in the route’s length. We address this issue in two ways.

First, rather than solving INT-ROUTES for all |U| customers at once, we solve a

related formulation several times, each time using only a portion or batch of the

customers in U . Second, we initially solve a relaxation of the problem and then

gradually tighten the constraint until no feasible solution can be found.

In order to determine which subset of customers from U to insert, we define

a batch size B. We then select B customers at a time from U by considering their

insertion costs. In particular, for each customer in U , there is a particular subset of

skeleton routes into which we can insert this customer without violating constraints

(3.15) and (3.16). We compute the cheapest insertion costs for all these possibilities,

find the largest insertion cost for each customer, and then sort the list of customers

in U in terms of this largest insertion cost. We then solve a related integer program

for the first B customers in this list. Our reasoning is that the customers with the

largest insertion costs are potentially the most troublesome for our procedure and we

would like to insert them early on while there is still some slack in the skeleton routes.

After removing B customers from the set U , we apply intra-route improvements to

the individual routes that were affected by the insertion of these particular customers.
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Then we recalculate the insertion costs for the remaining customers in U and sort the

customers as before in order to select the next set of B customers.

The second part of our strategy in solving the MIP involves the right-hand side

of constraint (3.13). Because of the potential error involved in the left-hand side of

this constraint, we replace the route length maximum L with a larger value L̃. This

change leads to the following alternative formulation of INT-ROUTES, denoted by

BATCH-ROUTES :

Minimize
B∑

i=1

R∑
j=1

cijxij (3.18)

s.t.
R∑

j=1

xij = 1 for i = 1, 2, . . . , B (3.19)

Cj +
B∑

i=1

xij ≤ C (3.20)

Lj +
B∑

i=1

cijxij ≤ L̃ for all routes j (3.21)

xij = 0, if ||dt(i), j||D > S (3.22)

xij = 0, if ||dt(i), f(i)||D < ||j, f(i)||D (3.23)

xij ∈ {0, 1}. (3.24)

In BATCH-ROUTES, we reduce the number of customers under consideration,

remove constraints (3.12) and (3.14), and relax (3.13). We embed this alternative

formulation into Algorithm 3.3. Notice that we begin with some L̃ > L for which a
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feasible solution can be found, and then gradually decrease this value until either no

solution can be found, or L̃ ≤ L.

Algorithm 3.3 Generate Intermediate Routes

1: Input: A set of skeleton routes and a set U of unassigned customers at time t
2: Output: A set of intermediate routes for time t + 1
3: Set B = 20, α = .05
4: while |U| > 0 do
5: for all i ∈ U do
6: for j = 1..D do
7: Calculate cij, the minimum cost of inserting customer i into route j,

for all routes j for which (3.22) and (3.23) are feasible
8: end for
9: end for

10: Sort the list of customers in U in terms of the largest cij

11: Select the first min(B, |U|) customers from the list
12: Set L̃ = 2× L
13: while BATCH-ROUTES is infeasible do
14: Set L̃ = L̃ + α× L̃
15: end while
16: while BATCH-ROUTES is feasible and L̃ > L do
17: Set L̃ = L̃− α× L̃
18: end while
19: Make the insertions determined by the xij variables from the last feasible

solution to BATCH-ROUTES
20: Apply intra-route improvement operations to the resulting routes
21: Update U by removing the just inserted min(B, |U|) customers from the list
22: end while

Given the routes and billing period assignments at time t, we are able to use

Algorithm 3.3 to generate new routes and billing period assignments for time t + 1.

Since constraint (3.23) requires that a customer is always moving closer to the final

billing day, this procedure will terminate after a finite number of iterations. We begin

with the original routing and billing day configuration of time t = 0 and repeatedly

apply Phase 3 of our algorithm in order to generate a sequence of intermediate billing

periods and routes before finally arriving at the target configuration.
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3.3.5 Additional Considerations

For a problem that is tightly constrained in terms of maximum length L and

maximum number of customers C, the intermediate routes of Phase 3 may be infeasi-

ble. This is simply due to the fact that these intermediate routes must be stretched in

order to include customers which are temporarily visited on the corresponding billing

day. Since our procedure guarantees that each customer’s billing day moves closer

by at least one day during successive billing periods, the maximum number of inter-

mediate periods is bounded by bD/2c − 1. Furthermore, because of the temporary

nature of these intermediate routes as well as the promise of efficient balanced routes

in the near future, it is reasonable for a utility to use additional meter-reading re-

sources during the intermediate periods, especially since the exact number of required

intermediate periods is completely determined upon the completion of Phase 3.

Finally, we note that after the intermediate routes are generated via Phase 3,

the utility company can transition to the target routes at its own pace. If the utility

is concerned about shifting a customer’s billing day for several successive months, the

utility can choose to slow down this process by using the same set of intermediate

routes for two or more periods in order to prevent these successive shifts. In practice,

utility companies are typically hesitant to shift customers’ billing days several times

in succession. Stretching out the transition period is a response to this hesitancy [46].
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3.4. Computational Results

In this section, we conduct computational experiments with our procedure. We

coded our algorithm in C/C++ and used the GMPL modeling language in conjunction

with CPLEX 10.2 to handle the MIPs of Phase 3. When run on an existing set of

routes containing between 3, 000 and 4, 000 customers, the entire procedure required

roughly one hour of computing time on a 2GHz Intel processor. The MIPs themselves

presented little difficulty and the construction of the balanced target routes generally

required about half of the total computing time.

We had the opportunity to test the performance of our procedure on a real-

world data set provided by Routesmart Technologies, Inc. Confidentiality agreements

prevent us from describing all of the specifics of the data set, but we are able to offer

the following details. The 17, 775 customer locations are shown in Figure 3.1 where the

depot is represented by the large circle in the bottom center. These meter locations

are serviced by a total of 13 meter readers over the standard 20 day (monthly) billing

period. Four of these meter readers service the region on all 20 days of the billing

cycle and nine readers visit customers anywhere from only one day per cycle to 10

days per cycle.

We focused on the four full-time meter readers, and ran our procedure on each of

the four sets of 20 routes. The four data sets contain 2, 894, 3, 011, 3, 942, and 3, 972

customers, accounting for 13, 819 of the 17, 775 total customer locations. For each

meter reader, we were provided with the customer latitude and longitude coordinates

along with the existing billing day assignments. Because we treat the problem from a

60



Figure 3.1: Original customer set

node-routing perspective rather than an arc-routing perspective, we did not use the

existing routes that traversed a street network. Instead, we used the TSPLIB GEO

[70] norm to calculate a symmetric distance matrix (in km) by using the customer

coordinates. We then used these distances to create daily routes for each individual

meter reader by computing a TSP tour traversing all customers on each day of the

billing cycle. We used our record-to-record travel algorithm to generate these tours.

In Table 3.3, we summarize important properties of the existing routes. It is clear

that the existing routes are very imbalanced in terms of both the number of customers

serviced each day as well as the total route length. For example, on one billing day,

meter reader 1 visits 22 customers and travels 35 km. On another day of the cycle,

this same meter reader visits 359 customers and travels 382 km (in this case, many of

these locations are very near one another, possibly in an apartment complex where

the meters are in a single location).
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Meter Number of Total (Min, Max) Total Length (Min,Max)
Reader Stops Number of Customers of all Routes Route Lengths

1 2894 (22,359) 3214 (35,382)
2 3011 (78,306) 3496 (94,324)
3 3942 (69,355) 4522 (89,381)
4 3792 (12,342) 4157 (31,366)

Table 3.3: Details of the existing routes

Next, we determined appropriate upper and lower bounds on the route length

and number of customers per route. The maximum number of customers per route

C is based on the existing routes from the data set. Determining the route length

maximum L was more difficult. In order to generate solutions containing exactly 20

routes, we set (L, C) = (170, 160) for meter readers 1 and 2, and (L, C) = (225, 205)

for readers 3 and 4. It is clear from Table 3.3 that these limits are substantially lower

than the current maximum values. The balancing lower bounds C and L were set to

0.8 times the upper bounds.

We ran our procedure and generated a set of 20 target routes for each of the

four meter readers using a balance parameter β = 0.99. Setting β = 1 causes unusual

behavior in the record-to-record travel algorithm due to the distinction between de-

teriorating and improving moves, so we set β very close to 1 in order to reward

balancing moves as much as possible. Our Phase 1 algorithm was able to construct

routes that were well-balanced and efficient. We also ran a general record-to-record

VRP algorithm on each of the four data sets, disregarding the lower bounds L and

C, in order to gain some measure of how the balancing constraints affect the final

solution. The results of these computational experiments are presented in Table 3.4.

Using the guided record-to-record procedure of Phase 1, we were able to find solutions
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Meter Total Length (Min, Max) (Min, Max) Total Length
Reader (Balanced) Route Length Number of Customers (Unbalanced)

1 3200 (137,170) (126,150) 3205
2 3342 (146,170) (135,157) 3342
3 4325 (187,224) (177,200) 4322
4 4176 (183,225) (166,205) 4174

Table 3.4: The quality of the target routes

that satisfy the upper and lower bound constraints with only one exception where a

single route for meter reader 1 visited 126 customers compared to the lower bound

of 128. Interestingly, we found that the balanced routes were very competitive with

routes generated without using the lower bounds, and were even more efficient in

certain cases (due to the nature of heuristics).

Phase 2 of the procedure provided billing day assignments for each of the target

routes by solving the assignment problem (3.8). When running Phase 3 of the algo-

rithm, we found that we were not always able to meet the balancing constraint (3.20),

especially for small shift sizes when there are relatively few possibilities for each billing

day shift. When we encountered such a situation where BATCH-ROUTES was in-

feasible, we increased the value of C by the minimum amount in order to produce a

feasible solution and continued the procedure. The required increase was relatively

modest. Due to the temporary nature of these intermediate routes, a small increase

in C would seem tolerable, even if the utility company had to pay for additional

overtime costs during some of the intermediate periods.

We ran our algorithm four times on each of the four data sets, using shift sizes

S = 2, 3, 4, and 5. Each data set contains the customer locations, billing day assign-

ments, and existing routes for one of the four full-time meter readers. The results
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are summarized in Table 3.5. The first column gives the instance and the maximum

allowed shift size (2, 3, 4, or 5), the second column lists the total length of the original

routes and the total length of the final target routes, and the third column gives

the number of required intermediate periods. In column four, we count the number

of customers who are not yet in their final route during each intermediate period.

Column five lists the total length of all 20 routes during each required intermediate

period, and the rightmost two columns list the minimum and maximum route lengths

and the minimum and maximum number of customers across all intermediate periods.

As expected, we found that larger shift sizes led to fewer intermediate periods

as well as more efficient and balanced intermediate routes. For meter readers 1 and

3, a shift size of S = 2 requires seven intermediate periods while meter readers 2

and 4 require five intermediate periods for this shift size. The routes for S = 2 are

generally more costly and less balanced than the routes for larger shift sizes, and we

were unable to meet the constraints regarding the route length and the number of

customers, particularly for meter readers 3 and 4. If we allow shifts of size S = 5, we

require at most three intermediate periods with meter readers 2 and 3 requiring no

intermediate periods at all as we are able to transfer all customers from their original

billing days to their final billing days in a single shift of fewer than five days.

In terms of total route length, the general trend is an initial increase over the

target route length in the first intermediate period with the total route length of

the subsequent intermediate periods then gradually decreasing before reaching the

final configuration. In general, we were somewhat surprised at the high quality of

the intermediate routes in terms of total length as we were typically able to avoid
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expensive insertions. In terms of percentage increase over the length of the target

routes, the worst set of routes is the first set of intermediate routes for meter reader 4

and S = 2 with a total length of 4264 km compared to the target routes with a length

of 4176 km. While this increase is very modest at just over 2%, it is important to

note that these efficient intermediate routes do come at the expense of occasionally

violating the maximum route length L and maximum number of customers per route

C, as seen in the rightmost two columns of Table 3.5. However, when compared to

the existing extremes found in the original routes given in Table 3.3, these temporary

violations would seem to be quite tolerable.

In Figures 3.2–3.7, we present a sequence of plots (produced by http://www.

gpsvisualizer.com) derived from the data set for meter reader 4 with shift size

S = 4. In these plots, the route for each billing day is represented by a different color

and we have removed the edges radiating from the depot for clarity. In this example,

the TSP tours that we computed for each of the existing billing days provide an initial

solution with a total length of 4157 km. The intermediate routes are quite efficient,

increasing the total route length by less than 0.3% over both the initial and target

configurations. A visual inspection of the routes indicates that our procedure creates

these efficient intermediate routes by moving clusters of customers from one route to

the next, incurring minimal insertion costs. In other words, groups of neighboring

customers are generally assigned the same final billing day and our procedure creates

intermediate routes that preserve these clusters of customers.
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Figure 3.2: The original routes provided by the utility
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Figure 3.3: The routes for the first intermediate period
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Figure 3.4: The routes for the second intermediate period
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Figure 3.5: The routes for the third intermediate period
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Figure 3.6: The routes for the fourth intermediate period
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Figure 3.7: The final target routes
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3.5. Conclusion

The Balanced Billing Cycle Vehicle Routing Problem is a new problem in the

VRP literature. In the BBCVRP, we start with an initial billing day configuration

that can be extremely poor. We are not allowed to start from scratch as is assumed

in the typical vehicle routing problem. We developed a relatively simple heuristic

method that produces solutions to the standard VRP with routes that are balanced

in both the number of customers and length. Our procedure combines heuristic and

exact methods to generate solutions to a new variant of the standard VRP that has

unusual complicating constraints.

We tested the performance of our algorithm on a utility company’s data set.

Our algorithm produced efficient and balanced target routes along with a set of inter-

mediate routes. In general, our procedure performed very well, allowing the utility to

move from its existing, imbalanced initial configuration to a more efficient and more

balanced configuration in a small number of steps. Furthermore, we found that the

required intermediate routes remained quite balanced with a relatively small increase

in cost.

In future work, we hope to investigate a modification of our approach that

relaxes our assumption of having only one meter reader per day as this would possibly

allow for a more efficient configuration when all the meter readers are taken into

account. This modified approach may allow us to achieve a better balance of the

workload across the different meter readers as well as across the different days of the

billing cycle.
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Finally, we note that some of our techniques may be useful for solving vari-

ants of the standard VRP. Our procedure for constructing balanced routes could be

applied to any VRP where balancing is an important issue. In practice, balancing

is rarely unimportant. Furthermore, there are real-world problems such as commer-

cial sanitation collection which exhibit the features of the well-known Period Vehicle

Routing Problem (PVRP) [16]. In such PVRP instances, some customers are visited

once a week while others require more frequent service. In the literature, the PVRP

is always solved from scratch. In practice, however, a current, inefficient set of daily

routes may exist and the challenge is to improve these routes while minimally dis-

rupting the current solution. The techniques presented in this chapter can be applied

to such a scenario.
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Chapter 4

A Cooperative Parallel Algorithm for the Vehicle Routing Problem

In this chapter, we develop a cooperative parallel algorithm for solving the

classical VRP that combines a heuristic local search improvement procedure with a set

covering formulation. We run our parallel algorithm with as many as 129 processors

and are able to quickly find high-quality solutions to standard benchmark problems.

We assess the impact of parallelism by analyzing our procedure’s performance using

different numbers of processors, and we assess the importance of the cooperative

nature of the algorithm by running our procedure with different levels of information

sharing among the various processors.

4.1. Introduction

Since its proposal by Dantzig and Ramser in 1959 [25], the classical vehicle

routing problem has been the subject of a great deal of research. Given customers

with known locations and demands, the goal is to find the minimum cost set of routes

that satisfies all customer demands. Additionally, the vehicles assigned to these routes

must carry no more than a fixed quantity of goods and can travel no more than a

maximum distance. Although many variants of the VRP have been proposed over the

last 50 years, even the simplest version of the classical VRP remains computationally

difficult.
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Because of its wide applicability and practical importance, many algorithms

have been developed for solving the VRP. Over time, researchers have developed

more powerful algorithms that find better and better solutions to both real-world

VRP instances and well-studied benchmark instances by building on previous work

and by taking advantage of faster computational resources. Despite the computational

difficulty of the VRP, the literature contains relatively few algorithms that use the

power of modern parallel computing resources.

Parallel computing allows the user to simultaneously run multiple processes or

threads on several processors with the common goal of solving a particular prob-

lem instance. “Parallelism thus follows from a decomposition of the total workload

and the distribution of the resulting tasks to the available processors” [24]. The

power of parallel processing has become increasingly available with the advent of

computing clusters. These clusters are networked computers that contain commodity

hardware components that run standard operating systems. We take advantage of a

high-performance computing environment to develop, implement, and test a parallel

algorithm for solving the VRP.

Our parallel solver combines local search methods with a set covering formu-

lation for the VRP. Some processors improve existing solutions by running a meta-

heuristic algorithm, and other processors attempt to combine existing solutions into

improved solutions by solving a set covering problem. The resulting parallel algo-

rithm quickly generates solutions to benchmark problems that are highly competitive

with the best-known solutions reported in the literature. We analyze the parallel
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algorithm in several ways by measuring its performance as we vary the number of

processors and the degree of cooperation among them.

This chapter is organized as follows. In Section 4.2, we summarize several

serial algorithms for solving the VRP, review parallel algorithms, and discuss several

algorithms that combine both heuristic and exact methods. We describe the details

of our parallel algorithm in Section 4.3, present computational results in Section 4.4,

and give our conclusions in Section 4.5.

4.2. Literature Review

There is an extensive body of literature describing algorithms for solving the

VRP and its variants. A broad summary of recent work is given in the book by

Golden, Raghavan, and Wasil [35]. We review some of the most powerful serial algo-

rithms that have been developed for the VRP over the last 15 years. This summary is

not intended to be exhaustive, and we refer to [22] and [33] for more detailed, recent

reviews. We finish by discussing parallel algorithms for the VRP as well as several

algorithms that combine heuristic and exact methods.

4.2.1 Powerful Serial Algorithms

The Taburoute algorithm of Gendreau, Hertz, and Laporte [32] uses the tabu

search heuristic to solve the VRP. The algorithm allows infeasible intermediate solu-

tions that are later discouraged by adding dynamic penalties to the objective function.

Certain solution features are kept in short-term memory and the placement of certain

77



nodes into certain routes is sometimes forbidden (tabu) for a number of iterations.

Solutions are modified by applying two advanced local search operators (GENI and

US). A total of nine parameters must be set to run the algorithm. When published in

1994, Taburoute was responsible for many of the best-known solutions to the bench-

mark problems of Christofides et al. [19, 20].

The algorithm of Rochat and Taillard [72] is one of the most powerful in the

VRP literature. This procedure begins by generating a large number of initial solu-

tions and then stores the individual routes contained in these solutions. Routes are

extracted from this set in order to create new solutions that are improved by a local

search procedure that uses tabu search. At each iteration, the routes are chosen prob-

abilistically according to the quality of the solution containing the route. This allows

routes from better quality solutions to be selected with a higher probability. This

procedure concludes by solving a set covering problem where a single set of minimum

cost routes is chosen from a large subset of all the routes found during the search.

The D-Ants algorithm of Reimann et al. [69] uses an ant colony optimization

algorithm to create high-quality solutions to the VRP. After generating a set of initial

solutions to a problem containing several hundred nodes, the problem is decomposed

into smaller instances containing between 50 and 75 nodes. The information gained

from solving these smaller problems is used to update the global memory which is

used to aid in the search for solutions to the original problem instance.

Prins [64] presents a hybrid genetic algorithm (GA) for solving the VRP. This

procedure was the first to demonstrate that a genetic algorithm could be competitive

with tabu search and other sophisticated metaheuristics. The algorithm uses a simple
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local search procedure as a mutation operator and incorporates ideas from other

successful GAs developed for solving different combinatorial optimization problems.

At the time of its publication, the algorithm was able to produce several new best

solutions to the benchmark problems presented in Golden et al. [36].

The SEPAS algorithm introduced by Tarantilis [78] shares many characteris-

tics with the procedure of Rochat and Taillard [72]. Rather than constructing new

solutions to be improved from routes, SEPAS uses smaller elite parts of previous so-

lutions. These elite parts are connected strings of nodes that appear to be essential

parts of high-quality solutions. A sophisticated tabu search algorithm improves full

solutions by using short- and long-term memories. The algorithm requires a total of

eight parameters.

The algorithm of Li et al. [51] improves the procedure given in [36] and is based

on the record-to-record travel (RTR) procedure first suggested by [29] in the context

of computational physics. Their algorithm alternates between a diversification phase

and an improvement phase. In the diversification phase, three local search operators

are applied and worsening moves are accepted as long as the objective function does

not deteriorate by more than a threshold amount. The improvement phase applies

the same local search techniques but allows only improving moves, i.e., those that

decrease the total route length. The algorithm has a simple structure and requires

only four parameters.

Pisinger and Røpke [62] develop a flexible heuristic that is capable of solving

several different variants of the classical VRP. For each type of VRP variant, the au-

thors transform the problem into what they call a “rich pickup and delivery problem
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with time windows.” Then they apply adaptive large neighborhood search to itera-

tively improve solutions. Their procedure generates very good solutions to benchmark

problems for several VRP variants, but requires fairly long computing times.

Two recent algorithms have established themselves as the clear leaders in terms

of solution quality and are responsible for most of the best solutions to the standard

benchmark problems. The active-guided evolution strategy (AGES) algorithm devel-

oped by Mester and Bräysy [53, 54] uses a set of well-known local search operators

as part of a two-phase algorithm. In the first phase, edges are penalized according to

certain strategies in an attempt to diversify the search and escape local minima. In

the second phase, customers are ejected from the solution and then reinserted into

new positions. Several different strategies are used to select the customers to eject,

and the algorithm quickly produces high-quality solutions. The procedure is rather

intricate and involves up to 10 parameters.

The memetic edge assembly crossover algorithm of Nagata [57] and Nagata and

Bräysy [58] uses a genetic crossover operation that was first introduced as an effec-

tive approach for solving the traveling salesman problem in [56]. After creating an

initial population, solutions are selected and merged to produce an offspring solution.

This solution is improved by a local search algorithm that accommodates infeasi-

ble intermediate solutions using penalties as in [32]. A drawback of this procedure

is that the genetic crossover operation is only capable of handling vehicle capacity

constraints and not route-length restrictions. Nevertheless, this procedure is quite

different from the other successful VRP algorithms and demonstrates that a cleverly

designed genetic algorithm can provide very high-quality solutions.
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4.2.2 Parallel Algorithms

In reviewing the literature, we were surprised to find that relatively few parallel

VRP algorithms have been proposed. This view is shared by Crainic [24] who provides

a survey of exact and heuristic parallel algorithms for the VRP and its variants. We

describe some of the more notable parallel algorithms developed for solving the VRP

and its variants.

Rego [68] presents a parallel tabu search algorithm that uses the ejection chain

neighborhood as a component of the local search. His implementation uses four slave

processors and a single master. Initial diversity is created by providing each slave

with the same initial solution and then running the serial tabu search procedure

with different parameters. The evaluation of some of the more complex ejection

chain moves is done in parallel, and a post-optimization procedure is accelerated

by determining high-quality TSP tours for each of the individual routes by sending

individual routes to different slave processors.

Alba and Dorronsoro [2] propose a parallel cellular genetic algorithm where

genetic crossover and mutation operations are combined with a local search procedure.

The algorithm allows for infeasible intermediate solutions using a penalized objective

function. The population is arranged in a mesh that limits the choice of mating

solutions to four neighbors. The population is regenerated at each generation in

parallel, leading to decreased computation time and better solution quality. This work

is improved and extended in Dorronsoro et al. [28] where the authors run a modified

procedure on a grid platform containing 125 machines and conduct computational
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experiments requiring up to 75 hours of computing time. The algorithm produces

very competitive solutions for the large-scale problems proposed in Li et al. [51].

This work represents the only research that we are aware of where the VRP is solved

in a modern, high-performance computing environment. Additional details on cellular

genetic algorithms can be found in the book [3].

A parallel implementation of the D-Ants algorithm is presented by Doerner et

al. [27]. The authors explore several different parallelization strategies, but their

primary goal is the speedup obtained by parallelizing the search and they do not

attempt to improve solution quality in their parallel implementation.

Finally, we mention two parallel algorithms that solve the VRP with Time Win-

dows (VRPTW). Schulze and Fahle [73] develop an effective algorithm for solving the

VRPTW that combines a tabu search metaheuristic with a set covering formulation.

In this algorithm, each processor begins with a set of solutions to the problem and

then improves the solution by running tabu search. After completing the tabu search

procedure, each processor broadcasts out a subset of routes discovered during tabu

search and receives a set of routes sent out by other processors. Each processor then

runs a heuristic algorithm to solve a set covering problem that attempts to recover a

new solution that can be better than any of the individual solutions. The individual

processors then update their set of solutions and repeat this process until a stopping

condition is met. The authors report very competitive results when running their

algorithm with eight processors.

Le Bouthillier and Crainic [47] develop a powerful parallel solver for the VRPTW

that uses two different tabu search metaheuristics and four different methods for con-
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structing initial solutions. After creating an initial solution, each processor improves a

solution using one of the two metaheuristics and sends the best solution that it found

to a central solution pool or warehouse. Post-optimization procedures are run on the

solutions in this central pool, and the individual processors proceed by running one of

the two tabu search metaheuristics on a new solution obtained from this central pool.

The algorithm produces very competitive solutions to a large number of VRPTW

benchmark problems. This algorithm was subsequently improved in Le Bouthillier

et al. [48] where they extended the algorithm by considering sets of directed edges

shared by the best solutions.

4.2.3 Combining Exact and Heuristic Methods

We now present several algorithms for solving the VRP that combine exact and

heuristic methods. Many of these algorithms involve the set covering formulation

of the VRP. Let R = {1, 2, . . . , R} denote the set of all feasible routes, and let cr

represent the cost of route r. The decision variable xr = 1 if route r is chosen and

xr = 0 otherwise. Then, with air = 1 if node i is contained in route r and air = 0

otherwise, the set covering formulation (SC) for the VRP is given by

Minimize
R∑

r=1

xrcr (4.1)

s.t.
R∑

r=1

xrair ≥ 1 for all nodes i, (4.2)

xr ∈ {0, 1}.
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The objective function (4.1) minimizes the sum of the costs of the selected

routes. Constraint (4.2) guarantees that every node is contained in at least one

route. If the triangle inequality is not satisfied, then (4.2) must be replaced by an

equality constraint. When the triangle inequality is satisfied, if we encounter a set of

routes where some node is contained in more than one route, we modify this set of

routes so that the node is contained in only one route and choose the set of routes

with lowest cost.

Because the set R contains only feasible routes, this formulation can handle

additional constraints with no modification and is the foundation for many exact

solution methods for the VRP and several variants. The typical exact algorithm

solves the linear programming (LP) relaxation of SC via column generation and then

attempts to find an optimal or near-optimal integer solution by solving SC as an inte-

ger program with the final set of columns from the solution to the column generation

problem. For examples of this approach, see [1, 7, 26, 38]. Recent work is summarized

by Bramel and Simchi-Levi [9].

Heuristic algorithms have also used this set covering formulation. The algorithm

of Rochat and Taillard [72] solves the set covering formulation as a final optimization

step. Taillard and Boffey [77] combine the set covering formulation with a tabu

search heuristic to produce very high-quality solutions to the heterogeneous fleet VRP.

Alvarenga et al. [4] develop a serial algorithm that combines local search and genetic

crossovers to generate solutions to the VRPTW. The individual routes from these

solutions are added to a large set of routes that is used as input to a set partitioning

solver as in [72]. The authors use an integer programming solver as an integral part
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of their algorithm, whereas Rochat and Taillard use the set covering formulation only

as a post-optimization procedure.

Recent research has attempted to incorporate more complicated integer pro-

gramming formulations into heuristic methods. DeFranceschi et al. [30] develop a

technique for improving very good VRP solutions by extracting certain nodes and

then inserting them into new positions by solving an integer program. Toth and

Tromantani [79] extend this technique by considering the column generation prob-

lem in more detail. In both cases, very good solutions are obtained with fairly long

computing times.

4.3. Description of the Parallel Algorithm

In this section, we provide the details of our parallel algorithm. We incorporate

a heuristic algorithm and the set covering formulation described in Section 4.2.3 into

a cooperative parallel search procedure. We begin this section by classifying our

parallel algorithm according to the taxonomy suggested by Crainic and Nourredine

[23]. We then describe our serial heuristic algorithm and the details of our parallel

algorithm.

Crainic and Nourredine use three dimensions to classify parallel metaheuris-

tic strategies. The first dimension is search control cardinality and measures how

the search is controlled. The second dimension deals with the type and amount of

information exchanged among the processors. The third dimension addresses the sim-

ilarities and differences of the search strategies employed by the different processors.
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According to this system, our algorithm fits into the pC/KC/MPDS classification.

The pC classification indicates that the global search is controlled by multiple, col-

laborating processors. KC stands for Knowledge Collegial information exchange and

indicates that multiple processors exchange information asynchronously and that new

solutions are created from the exchanged information (this is achieved by solving the

set covering problem). Finally, our procedure fits the MPDS classification (Multiple

Points, Different Strategies) since the heuristic solvers run a different strategy from

different points in the solution space.

4.3.1 A Serial VRP Algorithm

In our parallel algorithm, we implement the record-to-record travel algorithm

(RTR) used by Chao et al. [16] to solve the period vehicle routing problem and

later used by Golden et al. [36] and Li et al. [51] to solve the classical VRP. These

RTR-based algorithms all have a very simple structure, require a small number of

parameters, and perform consistently well on a variety of benchmark problems. Our

implementation maintains the basic structure of these previous algorithms, and en-

hances them by adding more local search operators and by using randomly generated

parameters.

The RTR algorithm given in Li et al. [51] uses the three local search operators

shown in Figure 4.1: one-point move, two-point move, and two-opt move. The one-

point move shifts a single node to a new location, the two-point move swaps the
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(a) One-Point Move (b) Two-Point Move

(c) Intra-route Two-Opt Move (d) Inter-route Two-Opt Move

Figure 4.1: The improvement operators used in Li et al. [51]

locations of two nodes, and the two-opt move removes two edges from the existing

solution and replaces them with two new edges.

In addition to the three local search operators shown in Figure 4.1, we use three

more in our implementation: Or-opt move, three-opt move, and three-point move.

These operators are shown in Figure 4.2. In the Or-opt move [60], we remove a

string of two, three, or four customers from the solution and insert this string into a

new position. The three-opt move [52] removes three edges from a single route and

adds three new edges so that a feasible route is maintained. The three-point move

is a special case of the λ-interchange operator of Osman [61] where we exchange the

positions of two consecutive nodes with the position of a third node.

For all six local search operators, we perform the local search in a straightfor-

ward way. For each node i, we create a list Li that contains i’s nearest N neighbors

(N is a parameter). In the diversification phase, for any local search operator and

a given node i, we search the list Li for a feasible move. If we find an improving
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(a) Or-Opt Move (b) Three-Opt Move

(c) Three-Point Move

Figure 4.2: Additional improvement operators used in our serial algorithm

move, then we make this move. If no improving move is found, then we search Li

and store the feasible move with the least amount of deterioration. If this move does

not increase the total route length by more than a fixed amount based on the best

solution (known as the record), then we make the move. This fixed amount of allowed

deterioration changes as we find better and better records.

In the improvement phase, we use all six operators, and look for an improving

move for each node i, again by searching the neighbor list Li. If no improving move is

found, then we perform no modifications and move to the next node. We generate the

parameters for each run of the RTR algorithm at random within a reasonable range.

This eliminates the need for parameter tuning and adds diversity to the search. We

refer to our implementation of the algorithm as Randomized RTR (RRTR).

In the RRTR algorithm, after generating a set of random parameters in steps

1 to 3, steps 5 to 11 attempt to diversify the solution by accepting deteriorating

moves according to the record-to-record travel strategy. Steps 12 to 18 represent
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Algorithm 4.1 The Randomized RTR algorithm for the VRP

1: Generate random parameters I ∈ {25, 75}, P ∈ {5, 6, . . . , 10}, N ∈
{25, 26, . . . , 75}, δ ∈ (0.005, 0.015), and K ∈ {5, 6, . . . , 10}

2: Let V denote the set of six local search operators, and randomly select a subset
of operators, U ⊆ V

3: Set the record R equal to the current total route length, set the threshold T =
(1 + δ)R, and set k = p = 0

4: while p < P do
5: for i = 1 to I do
6: for all Operators u ∈ U do
7: for j = 1 to n do
8: Apply operator u to node j using record-to-record travel
9: end for

10: end for
11: end for
12: while Improving moves can be found do
13: for all Operators v ∈ V do
14: for j = 1 to n do
15: Apply operator v to node j accepting only improving moves
16: end for
17: end for
18: end while
19: if The current solution is a new record then
20: Update R and T and set k = 0
21: end if
22: k + +
23: if k == K then
24: Perturb the solution
25: p + +
26: end if
27: end while
28: Return a list of the 50 best solutions found

the improvement phase where only improving moves are accepted and we reach a

local minimum in the search space. We apply all six local search operators in the

improvement phase and only a randomly selected subset of these operators in the

diversification phase. If the local minimum at the end of the improvement phase is

a new record, then we update this value and the threshold in step 20 and reset the

counter (k) that keeps track of the number of times we have been unable to escape a
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particular local minimum. In steps 23 to 26, we check to see if we have been unable to

improve the current record after K times through the main loop of the algorithm. If

there is no improvement, then we perturb the solution by removing a set of customers

from the solution and reinserting them into new locations (this technique is given in

Li et al. [51]). Once we have perturbed the solution P times, we return the 50 best

solutions found during the search.

In preliminary experiments on several benchmark problems, we ran the RRTR

algorithm using all six local search operators and a single processor. We found that

the solution quality was equivalent to the results given in [51] where only three local

search operators were used. Our motivation in using these additional operators is

simple: we want to have each processor running a slightly different algorithm using

different parameters in order to diversify the search.

4.3.2 Architecture of the Parallel Algorithm

We begin with a general outline of the parallel algorithm and then provide a

detailed description of the roles played by the individual processors. Each processor

is devoted to one of three different tasks or processes. We have a single master

processor to guide the search and distribute solutions (the master), a set of processors

dedicated to generating solutions with the RRTR algorithm (heuristic solvers), and a

group of processors that solve the set covering formulation (set covering solvers). We

exchange information among the different processors in an attempt to improve the

overall solution quality and reduce the time required to reach a high-quality solution.
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Our overall strategy uses the heuristic solvers to generate many solutions to

a problem. We then send the routes produced by the heuristic solvers to the set

covering solvers by a completely asynchronous mechanism. This allows the different

processors to complete their tasks at different times without having to wait for the

others to finish. We transfer this information from the heuristic solvers to the set

covering solvers by using a file-based approach. In particular, we create a single file

directory for each set covering solver and assign a number of heuristic solvers to each

set covering solver.

After a heuristic solver completes the RRTR algorithm, it writes a large set of

routes discovered in the most recent run to a file in the appropriate directory. The

heuristic solver then sends a set of solutions to the master, receives a new solution

to be improved from the master, generates a new set of parameters, and repeats

the RRTR algorithm. Meanwhile, each set covering solver searches for new routes

(columns) by reading the files written by the heuristic solvers in its directory and

then attempts to solve the current set covering problem to optimality. After solving

the problem to optimality or stopping after reaching a pre-determined time limit,

the set covering solver sends the best solution that it has found back to the master.

This series of steps continues until a time limit is reached, at which point the master

writes the overall best solution discovered during the search to a file. The overall flow

of information amongst the processors is illustrated in Figure 4.3. The dashed lines

represent the flow of information between the heuristic solvers and the set covering

solvers, and the solid lines represent information sent to and from the master (we

omit some lines that involve the master to keep the diagram simple).
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Figure 4.3: The architecture of the parallel algorithm

With the general outline and structure of the parallel algorithm as background,

we now provide a more detailed description of the roles played by the heuristic solvers,

the set covering solvers, and the master processor.

4.3.3 The Role of the Heuristic Solvers

After generating an initial solution with the Clarke-Wright algorithm using a

randomly generated shape parameter λ as described by Yellow [84], the heuristic

solvers repeatedly perform the following steps: 1) receive a solution from the master,

2) attempt to improve the procedure by running the RRTR algorithm, 3) write a

file containing a set of routes discovered during the search, and 4) send the 50 best

unique solutions produced during the most recent run to the master.

When running the RRTR algorithm, we keep track of the 50 best unique so-

lutions found during the search. We also store the solutions that are found at the
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end of the while loop in step 18 of the RRTR algorithm since each of these solutions

represents a local minimum in the search space and can contain promising routes.

Next, we take this set of solutions, perform three-opt improvement on each route

until no improvements can be found, and then create a list of all unique routes found

in this set of solutions. We sort these routes by the total route length of the solution

containing the route, and then write these routes to a file. By sorting the list of

routes in this way, when the set covering solver reads this file and adds the routes to

the integer program, routes derived from higher quality solutions are selected first.

After creating this sorted list of unique routes, the heuristic solver writes a file named

u v.rte, where u is the total route length of the best solution found during the search

and v is the average total route length of the solutions. By naming the files in this

way, when the set covering solvers search for files, they can select files that contain

routes derived from better quality solutions simply by inspecting the name of the file.

4.3.4 The Role of the Set Covering Solvers

Our heuristic solvers are quite fast. They complete the RRTR algorithm in 5 to

20 seconds, depending on the problem size. In contrast, an integer program (IP) can

be very difficult to solve, even with the best commercial solvers. In order to combine

heuristic procedures and IP solvers into a single, cooperative, parallel VRP algorithm,

we must ensure that the computation times for both methods are roughly equivalent.

Otherwise, if the set covering problems grow too large and become difficult to solve,

the IP solver may spend all of its time solving a single problem that contains routes
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derived from heuristic solutions generated very early on in the search. In order to

increase the cooperation among the heuristic solvers and the set covering solvers, we

must carefully manage the number of columns or routes we allow into the set covering

problem.

We initially set two parameters: s, the maximum number of seconds allowed

to solve a single set covering problem, and m, the minimum number of new columns

that must be found before attempting to solve a new set covering problem. We

control the total number of columns in the set covering formulation by monitoring

the time required to solve the integer program. Each set covering solver keeps track

of a quantity Mj, the maximum number of columns allowed when solving integer

program j. We set an initial value M0 = 500 and then, after solving this initial

problem, we set Mj+1 in terms of Mj via a simple rule:

Mj+1 =


Mj, if problem j required between s/2 and s seconds,

b1.1 ∗Mjc, if problem j required less than s/2 seconds, (4.3)

b.9 ∗Mjc, if problem j was not solved to optimality in s seconds.

After initially finding M0 columns and then solving this first problem, M1 is

computed using this rule and the set covering solver starts the search for additional

columns by reading the files written by the heuristic solvers. After finding m new

columns, the problem is solved again. Note that recursion (4.3) implies that, in some

cases, we remove existing columns from the integer program. In these cases, we select
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columns to remove at random, except that we never remove a column that was once

part of an optimal solution to a set covering problem.

4.3.5 The Role of the Master

The master processor is responsible for storing the solutions and for coordinating

the overall search. The master keeps track of the 1000 best unique solutions and is

responsible for sending new solutions to the other processors when they complete

their tasks.

When the master receives a new solution from a set covering solver, it sends

the 10 best solutions to the set covering solver. This ensures that each set covering

solver always has the routes from the current 10 best solutions.

When the master receives new solutions from the heuristic solvers, it adds them

to the list of the 1000 best unique solutions (we use a hash table to increase efficiency)

and sorts this list in increasing order by the total route length. After adding these

solutions to its list, the master then determines which solution(s) to send back to the

heuristic solver.

In the simplest case, the master selects one solution and sends it back to the

heuristic solver. We experimented with two different strategies to select this solution.

In the first case, the master selects the best solution found so far. In the second

strategy, the master selects a random solution whose quality is biased in favor of

better solutions as the search progresses. In particular, if, after s seconds, the master
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has k total unique solutions and a total allowed time of t seconds, we select solution

j, where j is generated by the following procedure:

• Generate r ∈ (0, 1) uniformly at random;

• Compute j = bk(1− s/t)r+2c;

• Return solution j from the sorted list.

This procedure tends to send out worse solutions early on in the search, and better

solutions near the end. In Figure 4.4, we show the average value of j for k = 1000

and t = 100 as time progresses from 0 to 100.

20 40 60 80
Time

200

400

600

800

Average value of j

Figure 4.4: The average rank of the randomly selected solution

We also employed two strategies to divide the problem into smaller subproblems

that contain fewer nodes than the original problem. By running the RRTR algorithm

on these smaller problems, we hope to find additional routes that might not be dis-

covered when running the algorithm on the entire original problem. We use these

strategies in the second half of the search process after we have (hopefully) created a

very high-quality set of solutions. In the first strategy, the master selects one of the
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10 best solutions, and a second, inferior solution that is chosen at random from the

remaining pool of solutions. The master then attempts to create a smaller problem

for the heuristic solver by taking the superior solution and removing any routes that

are shared with the inferior solution. The master sends the resulting sub-problem

to the heuristic solver. The logic behind this idea is straightforward. At some point

in the search, certain routes become obvious and are shared by many solutions. By

removing routes shared by the two solutions, we can focus more intensely on the

“non-obvious” parts of the problem. In Figure 4.5, we show an example of this route

removal procedure where two solutions (17 routes, 199 nodes) have four routes in

common. After removing these four routes, we have a smaller subproblem with 13

routes and 158 nodes.

In the second strategy, the master selects a single solution at random and then

draws a single randomly generated line through the depot in order to split the problem

in two disjoint parts. We accept this splitting if the two parts are roughly equal in

size, so that each part has 40–60% of the total number of nodes. Then, in order to

preserve some of the routes found in the initial solution, we create two problems by

first selecting all routes that have at least one node above the line and then selecting

all routes that have at least one node below this line. The master then sends the

larger of the two resulting subproblems to the heuristic solver. This procedure is

illustrated in Figure 4.6 where two routes are removed from the solution, creating a

problem instance with 28 fewer nodes.
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Figure 4.5: The route removal operation

4.4. Computational Results

We implemented our algorithm in C/C++, using the well-known Message Pass-

ing Interface (MPI) to handle the inter-process communication and CPLEX 11.1 as

the IP solver for the set covering problems. We had access to two different computing

clusters: the heterogeneous 1200 compute core Linux-based Deepthought cluster at

the University of Maryland, and a separate 50-node Windows-based Microsoft Com-

98



-20 0 20

-20

0

20

40

100 nodes    826.14    8 routes

(a) Solution before splitting

-20 0 20

-20

0

20

40

100 nodes    826.14    8 routes

(b) Splitting the solution

-20 0 20

-20

0

20

40

72 nodes    593.41    6 routes

(c) Solution after splitting

Figure 4.6: The solution splitting operation

pute Cluster with 200 compute cores (2.3 GHz Intel Xeon processors). We conducted

a large part of the development and testing of our algorithm on the Deepthought

cluster. Our final computational results are generated from runs on the Microsoft

Compute Cluster.

We provide computational results for our parallel algorithm’s performance on

55 problems taken from four well-known sets of benchmark problems: 14 problems
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from Christofides et al. [19, 20], 9 problems from Taillard [75], 20 problems from

Golden et al. [36], and 12 problems from Li et al. [51].

In the first subsection, we report the solutions found by our parallel algorithm

and compare them to the results reported in the literature. In the second subsection,

we solve selected problems with our parallel algorithm under different scenarios in

order to analyze the impact of the parallelism and cooperation on the algorithm’s

speed and performance. In the third subsection, we vary the number of processors

but use a fixed amount of total computing time to measure the parallel speedup of

our algorithm.

4.4.1 Solutions to Benchmark Problems

We ran our cooperative parallel algorithm on the 55 benchmark problems with

the following parameters: 129 total processors, 16 set covering solvers, 5 second time

limit for each set covering problem, and 600 seconds of total wallclock time. We ran

our procedure five times on each problem and report the best solution found during

these runs.

In Tables 4.1–4.4, we present the results of our computational experiments. The

cooperative parallel algorithm generated very high-quality solutions to all 55 bench-

mark problems, discovering 13 new best solutions. We found 31 solutions that equaled

the existing best-known solutions. On the remaining 11 problems, our algorithm pro-

duced solutions that were slightly worse than the best-known solutions (an average

deviation of 0.15%). Appendix B contains the details of these solutions.
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A key aspect of our algorithm is its cooperative nature. In order to assess the

importance of this cooperation, we ran a non-cooperative parallel version of our al-

gorithm on the 55 benchmark problems. We used 129 processors for 600 seconds

and ran the procedure five times on each problem. In this version, we remove all

cooperation among the processors and use 128 heuristic solvers and no set covering

solvers. In this variant of our algorithm, each heuristic solver repeatedly generates

a new random initial solution using the parameterized Clarke-Wright algorithm and

then improves this solution by running the RRTR algorithm. When the time limit

is reached, each heuristic solver sends back the best solution it found and the mas-

ter records the best overall solution discovered during the search. This strategy is

equivalent to running the serial algorithm 128 times for 600 seconds each time on a

single processor and then returning the best solution. In this case, parallel processing

allows us to complete this computational task 128 times faster.

In Tables 4.1–4.4, the first two columns give some details about the problem, and

the third column provides the previous best-known solution along with the earliest

source that we could find in the literature. The fourth column contains the solutions

found by our cooperative parallel algorithm and the fifth column contains the solutions

found by the parallel algorithm using no cooperation among the nodes (an entry in

bold indicates a new best-known solution and an entry in italics indicates a solution

equal to the current best-known solution). The sixth column gives the lowest value

of the LP relaxation solution found by the set covering solvers. The LP relaxation

cannot be used to provide a lower bound for the solution to the VRP as we solve

it using only a subset of columns without considering the reduced cost. However,
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we found it interesting that the gap between the best VRP solution and the lowest

LP relaxation was smaller for the more structured geometric problems, particularly

the large benchmark problems of [51]. For 10 of these 12 problems, the lowest LP

relaxation was equal to the best solution that our algorithm found. We do not have

an explanation for this observation.

The cooperative version of our algorithm finds a better solution than the non-

cooperative version for 44 of the 55 problems. On average, the solutions are 0.10%

better with the largest gap being 0.84% (problem 12 from [36]). The non-cooperative

version produces a better solution than the cooperative algorithm for problems 2

and 7 from [36]. For both problems, the non-cooperative version finds a new best-

known solution, while our cooperative parallel algorithm finds the same solutions

as several serial algorithms. These are probably very good solutions from which it is

very difficult to escape. Because the non-cooperative version of our parallel algorithm

solves the problem from scratch many times using different initial solutions, sometimes

it is able to find parts of the solution space that have not been discovered by other

VRP algorithms.

4.4.2 Analyzing the Effect of Parameters on Performance

In order to study the importance of certain parameters in our parallel algorithm,

we ran our procedure with different settings on three benchmark problems: problem

15 from [36], problem 385 from [76], and problem 25 from [51] (we refer to these

problems as G15, T385, and L25). These three problems are dissimilar in problem
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Number Best Best
of Nodes, Previous Solution Solution Minimum
Number of Best-known (With (Without LP

Problem Routes Solution Cooperation) Cooperation) Relaxation
1 50, 5 524.61a 524.61 524.61 523.67
2 75,10 835.26a 835.26 835.26 819.82
3 100, 8 826.41a 826.41 826.41 807.32
4 150,12 1028.42a 1028.42 1028.42 1016.04
5 199,16 1291.29b 1291.45 1293.24 1286.52
6 50, 6 555.43a 555.43 555.43 539.80
7 75,11 909.68a 909.68 909.68 897.35
8 100, 9 865.94a 865.94 865.94 846.68
9 150,14 1162.55a 1162.55 1162.55 1145.97

10 199,18 1395.85a 1395.85 1399.93 1389.88
11 120, 7 1042.11a 1042.11 1042.11 1041.18
12 100,10 819.56a 819.56 819.56 816.57
13 120,11 1541.14a 1541.14 1541.25 1491.06
14 100,11 866.37a 866.37 866.37 846.52

aRochat and Taillard [72]; bMester and Bräysy [54]

Table 4.1: Solutions to the problems of Christofides et al. [19, 20]

Number Best Best
of Nodes, Previous Solution Solution Minimum
Number of Best-known (With (Without LP

Problem Routes Solution Cooperation) Cooperation) Relaxation
100A 100,11 2041.34a 2041.34 2041.34 1993.48
100B 100,11 1939.90a 1939.90 1939.90 1896.04
100C 100,11 1406.20a 1406.20 1406.20 1340.42
100D 100,11 1580.46b 1580.46 1580.46 1572.62
150A 150,15 3055.23a 3055.23 3055.23 3027.72
150B 150,14 2727.20b 2727.20 2728.32 2716.34
150C 150,15 2341.84a 2358.66 2358.92 2298.81
150D 150,14 2645.40a 2645.40 2646.10 2594.36
385 385,47 24369.13b 24366.69 24462.71 24296.64

aMester and Bräysy [54]; bNagata and Bräysy [58]

Table 4.2: Solutions to the problems of Taillard [76]

size, spatial construction, and constraints. They also appear to be difficult in the sense

that there is considerable variation in the best solutions reported in the literature.

We ran our algorithm 10 times on each problem, varying the following param-

eters:
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Number Best Best
of Nodes, Previous Solution Solution Minimum
Number of Best-known (With (Without LP

Problem Routes Solution Cooperation) Cooperation) Relaxation
1 240, 9 5627.54a 5623.47 5628.95 5608.52
2 320,10 8447.92b 8447.92 8435.00 8372.73
3 400,10 11036.22b 11036.22 11037.42 11036.22
4 480,10 13624.52b 13624.52 13625.72 13624.52
5 200, 5 6460.98b 6460.98 6460.98 6460.98
6 280, 7 8412.80b 8412.90 8412.90 8412.90
7 360, 9 10181.75c 10195.59 10195.59 10183.30
8 440,10 11663.55a 11663.55 11649.89 11662.31
9 255,14 580.02d 579.71 582.30 577.68

10 323,16 738.44d 737.28 740.24 736.29
11 399,18 914.03d 913.35 918.63 912.47
12 483,19 1104.84d 1102.76 1112.02 1102.17
13 252,26 857.19d 857.19 859.44 851.00
14 320,30 1080.55d 1080.55 1083.43 1076.91
15 396,33 1340.24d 1338.19 1342.89 1335.83
16 480,37 1616.33d 1613.66 1622.74 1611.38
17 240,22 707.76d 707.76 707.96 702.79
18 300,27 995.13d 995.13 1000.27 993.65
19 360,33 1365.99d 1365.60 1369.39 1359.57
20 420,38 1819.99d 1818.25 1826.47 1815.55

bMester and Bräysy [54]; bPrins [64]; cPisinger and Røpke [62]; dNagata and Bräysy
[58]

Table 4.3: Solutions to the problems of Golden et al. [36]
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Number Best Best
of Nodes, Previous Solution Solution Minimum
Number of Best-known (With (Without LP

Problem Routes Solution Cooperation) Cooperation) Relaxation
21 560,10 16212.74a 16212.83 16214.03 16207.43
22 600,15 14597.18a 14584.42 14611.10 14553.28
23 640,10 18801.12a 18801.13 18802.33 18801.13
24 720,10 21389.33a 21389.43 21391.83 21389.43
25 760,19 16902.16b 16763.72 16835.12 16763.72
26 800,10 23971.74a 23977.73 23980.13 23977.73
27 840,20 17488.74a 17433.69 17528.58 17433.69
28 880,10 26565.92a 26566.03 26568.43 26566.03
29 960,10 29154.34c 29154.34 29155.54 29154.34
30 1040,10 31742.51a 31742.64 31745.04 31742.64
31 1120,10 34330.84a 34330.94 34333.34 34330.94
32 1200,11 36919.24c 37185.55 37256.25 37185.55

aMester and Bräysy [54]; bPisinger and Røpke [62]; cEstimated solution from Li et
al. [51]

Table 4.4: Solutions to the problems of Li et al. [51]

• Number of processors (8, 16, 32, or 64);

• Number of set covering solvers (up to 8);

• Total time allowed (200 or 400 seconds);

• Strategy used by the master to distribute solutions (randomly selected solutions,

best solution).

We summarize the results of this experiment in Table 4.5 (the complete results

are given in Appendix B). Each row in Table 4.5 corresponds to a particular parameter

setting, and each entry in the table contains two values. The first value is the overall

average solution. The second value is the average best solution using the results of

all runs with a particular parameter setting. For example, the first row shows the

overall average and average best solution values found when using 8 processors and

varying the remaining parameters over their possible settings.
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In the first four rows of Table 4.5, we see that, for all three problems, using

more processors usually leads to better solutions, both in terms of the overall average

solution and the average best solution. The next two rows indicate that while doubling

the computing time from 200 to 400 seconds leads to better solutions, the difference

is very slight as the average improvement is less than 0.1%.

The strategy used by the master in distributing solutions appears to have little

effect on the average solution value and the average best solution value. For all three

problems, the average solutions generated by the two strategies are within 0.04% of

each other. The average best solutions of the two strategies differ by at most 0.05%.

It appears that there is little to be gained by trying to inject some diversification into

the procedure by having the master distribute randomly selected solutions, since the

strategy of sending the best solution appears to work equally well.

In the last five rows of Table 4.5, we present the results when the algorithm is

run with 64 processors and the number of nodes assigned to solving the set covering

problem is varied. The results suggest that using more set covering solvers leads to

better solutions. In particular, the configuration with 8 set covering solvers generates

the best results for all three problems based on average solution value and average

best solution value.

4.4.3 Measuring the Parallel Speedup

In our final experiment, we attempted to measure the parallel speedup of the

algorithm. The parallel speedup is defined to be the ratio ts/tp, where ts is the
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G15 T385 L25
Overall Average Overall Average Overall Average

Parameter Setting Average Best Average Best Average Best
8 processors 1344.8 1342.7 24443.3 24406.6 16966.2 16864.8
16 processors 1344.0 1341.8 24440.2 24400.2 16950.0 16821.9
32 processors 1342.8 1340.7 24425.4 24390.3 16889.6 16800.3
64 processors 1342.6 1340.4 24415.0 24383.1 16839.8 16790.1
200 seconds 1343.9 1341.8 24434.3 24396.3 16920.1 16822.4
400 seconds 1343.0 1340.8 24424.6 24391.4 16879.9 16801.8

Random solution 1343.6 1341.4 24431.6 24394.8 16905.8 16808.7
Best solution 1343.3 1341.2 24427.3 24392.9 16894.2 16815.4
64 processors,

1343.4 1341.4 24424.4 24386.8 16847.8 16794.1
0 IP solvers

64 processors,
1343.0 1341.3 24415.8 24381.6 16836.0 16797.8

1 IP solver
64 processors,

1342.2 1339.9 24411.7 24385.7 16828.3 16788.5
2 IP solvers

64 processors,
1341.7 1339.7 24408.1 24378.5 16847.1 16780.0

4 IP solvers
64 processors

1341.6 1339.7 24401.5 24372.4 16825.4 16773.7
8 IP solvers

Table 4.5: Summary of the effect of various parameters

amount of time required by a single sequential computer and tp represents the amount

of time required for the parallel computation when using p processors. For many

computational tasks, this quantity is easy to measure and a linear parallel speedup of

p is typically the goal. However, in our experiments, this measure cannot be applied

as easily since we typically obtain different final solutions from different runs of the

algorithm. Therefore, in our study of the parallel speedup, we fix a total amount of

computing time (i.e., the total wallclock time multiplied by the number of processors),

and then compare the average solution value and best solution value when using a

different number of processors and a fixed amount of computing time.
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In this experiment, we again ran our cooperative parallel algorithm on three

problems (G15, T385, and L25). For each problem, we ran the algorithm 20 times

with four different configurations: 8 processors, 1 set covering solver, 800 seconds; 16

processors, 2 set covering solvers, 400 seconds; 32 processors, 4 set covering solvers,

200 seconds; 64 processors, 8 set covering solvers, 100 seconds. In each case, we have

a total computing time of 6400 seconds, and we use one set covering solver for every

eight heuristic solvers.

Total
Number of Time Average Best

Problem Processors (seconds) Solution Solution
8 800 1342.9 1340.0

G15 16 400 1342.2 1339.4
32 200 1342.0 1339.3
64 100 1342.4 1338.8
8 800 24428.4 24384.5

T385 16 400 24408.6 24371.2
32 200 24409.1 24371.2
64 100 24405.8 24370.6
8 800 16940.0 16809.3

L25 16 400 16906.5 16782.0
32 200 16905.2 16797.2
64 100 16920.4 16796.9

Table 4.6: Analyzing the parallel speedup for three problems

The results of this experiment are summarized in Table 4.6. For all three prob-

lems, we generate solutions of roughly the same quality when using the configurations

with 16, 32, or 64 processors, while the solutions generated with 8 processors for 800

seconds are generally the worst. The configuration with 64 processors finds the best

overall solution to two problems, while the configuration with 16 processors finds the

best solution to the largest problem, L25. These results suggest that the parallel
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speedup of our algorithm is quite satisfactory as we are able to obtain solutions of

equivalent (or better) quality by cutting the computation time in half and doubling

the number of processors. We analyze the parallel speedup in more detail by study-

ing the solution trajectories under the different configurations. For all 20 runs on the

three problems, we had the master record the best solution found every five seconds.

We then calculated the average solution value at each time interval for each of the

configurations. The average solution trajectories are given in Figures 4.7, 4.8, and

4.9. In each figure, there are two key observations. A steep slope indicates more rapid

convergence towards a minimum. The final ending point of the trajectory represents

the average final solution that was generated in the allotted time limit. These plots

clearly show that, by using more processors, our algorithm finds better solutions more

quickly. In addition, it is interesting to note that when running the algorithm with

8 processors, we typically reach a point of diminishing returns with respect to time

where the search trajectory flattens out. In contrast, for the 64 processor runs of 100

seconds, we observe that the solution value decreases almost linearly with time.

200 400 600 800
Time

1345

1350

1355
Total Route Length

64 processors

32 processors

16 processors

8 processors

Figure 4.7: Average solution trajectories for problem G15
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200 400 600 800
Time

24 450
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24 550
Total Route Length
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32 processors

16 processors

8 processors

Figure 4.8: Average solution trajectories for problem T385
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Time

16 950

17 000

17 050

17 100

17 150

17 200
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Total Route Length

64 processors

32 processors

16 processors

8 processors

Figure 4.9: Average solution trajectories for problem L25

Finally, we note that if we continue to double the number of processors and

halve the amount of wallclock time allowed, we will eventually reach a point where

the solutions will begin to worsen. This is due to the fact that the heuristic solvers

generally require at least five seconds per run. For example, if we were to distribute

our 6400 seconds of computing time among 1024 processors and use only 6.25 seconds

of wallclock time, then each heuristic solver would solve the problem at most once,

and the set covering solvers would probably not have enough time to solve a single
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problem to optimality. Thus, we have very little (if any) cooperation among the

processors in this case and the solution quality would almost certainly be worse.

4.5. Conclusion

We developed a parallel algorithm that combines heuristic and exact meth-

ods for solving the vehicle routing problem, and implemented it in a modern, high-

performance computing environment. Our algorithm found high-quality solutions

and produced new, best-known solutions to 15 benchmark problems. We analyzed

the effects of the algorithm’s cooperative nature by comparing its performance with

a non-cooperative version. We assessed the impact of various parameters by running

the algorithm many times on several different types of problems. We found that our

algorithm scales quite well in terms of its parallel speedup.

It is worthwhile to mention some important lessons we learned when develop-

ing, implementing, and testing our procedure. One key to developing a successful

implementation of a parallel algorithm is to minimize the time spent sending and

receiving data amongst the processors. In an early implementation of our parallel

algorithm, we did not have the heuristic solvers write their solutions to files. Instead,

each heuristic solver sent a large number of solutions to the master at the end of each

run of the RRTR algorithm, and the set covering solvers would then obtain routes

by sending a request to the master and then receiving a large set of routes. This

implementation worked reasonably well with a single set covering solver and 10 to

20 heuristic solvers. However, when we ran this implementation with more proces-
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sors, the master quickly became overwhelmed and the other processors experienced

substantial delays of several seconds. We developed the file-based approach in order

to prevent these delays as this allows the set covering solvers to acquire new routes

without direct involvement from the master. However, implementing this file-based

approach required substantial effort as we had to handle the subtleties and speeds of

two different types of file systems when moving our algorithm from the Linux cluster

to the Windows-based cluster.

A second issue we encountered when developing the algorithm was the het-

erogeneity of the computing environment. We conducted a large portion of the de-

velopment and testing on the Linux-based Deepthought cluster at the University of

Maryland. This cluster has nodes that use different computing hardware, and dif-

ferent sets of nodes are connected by different types of networking hardware. We

were not aware of this when testing and timing various parts of our procedure using

a small number of processors. When performance and solution quality decreased, we

did not consider that it was due to a hardware change and instead tried to find algo-

rithmic and parameter changes that could be responsible for the decreases. Although

we eventually discovered that the majority of these fluctuations in performance were

due to hardware changes, we spent a considerable amount of time and effort looking

elsewhere for the sources of the variations.

The parallel structure of the algorithm and the use of the set covering solvers

could be extended to handle richer variants of the VRP, simply by replacing our RRTR

algorithm with one capable of handling additional constraints. In future work, we

would like to study the set covering problem in more detail. In particular, we would

112



like to explore more sophisticated strategies for removing and adding columns, such

as considering the reduced cost obtained by solving the LP relaxation. This may

provide insight into the sizes of the gaps that we observed between the best integer

solution and the solution to the LP relaxation for different problems.
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Chapter 5

The VRPH Library

The vehicle routing problem (VRP) is a difficult and well-studied combinatorial

optimization problem. Real-world instances of the VRP can contain hundreds and

even thousands of nodes, requiring the use of heuristic methods. We present a software

library of heuristics for solving the VRP. Our code uses efficient data structures to

store and modify solutions, and contains implementations of several techniques for

generating initial feasible solutions. Our library includes seven local search operators

that can be used to develop very good solutions to large instances of the VRP. The

code is well-documented, has been compiled on several different platforms, and has

been designed so that it can be easily extended to handle additional constraints.

5.1. Introduction

In the standard form of the VRP, a minimum cost set of routes is constructed for

a fleet of identical vehicles. These routes must satisfy the demands of all customers,

and the vehicles traversing these routes have a fixed capacity. Computational ex-

perience indicates that the VRP is difficult to solve to optimality. Typically, exact

methods are unable to handle problems with more than about 100 nodes. Thus, most

real-world vehicle routing problems are solved using heuristic methods.
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We are aware of only one freely available, non-commercial software package for

solving the VRP. This is the VRP code of Ralphs et al. [66, 67] that is included with

the open source mixed integer programming package, Symphony. In contrast, there

are several open source software packages for generating solutions to the traveling

salesman problem (TSP). The freely available and widely used Concorde package is

an exact solver for the TSP that has been used to produce optimal solutions for

problems with nearly 100,000 nodes [5, 8]. The C source code for Concorde was

developed by a team of seven authors and can be downloaded for academic research.

Concorde also provides an interactive graphical interface for Windows. The code

contains heuristic tour construction techniques and implements fast, specialized linear

and integer programming algorithms in order to find provably optimal solutions.

A second code for solving the TSP is the Lin-Kernighan-Helsgaun (LKH) pack-

age developed by Helsgaun [39]. The author provides an optimized implementation

of the original Lin-Kernighan heuristic [52] and enhances it in several ways. Although

the LKH code does not implement exact methods, it has generated optimal tours to

problems with up to 85,000 nodes. LKH is responsible for the current best-known

solution to the World TSP with nearly two million nodes. The LKH code is freely

available for academic purposes. Users can obtain the source code as well as a pre-

compiled Windows executable from Helsgaun’s website [39].

In this paper, we present an open source software library of heuristics for solving

the VRP. Our library of Vehicle Routing Problem Heuristics (VRPH) is written in

C/C++ and uses efficient data structures to implement methods for constructing an

initial feasible solution and several local search heuristics that can be used to improve
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solutions. Our library provides a solver based on a metaheuristic algorithm that can

be used to quickly generate high-quality solutions. The library’s design is flexible

enough to incorporate new constraints and implement different solution algorithms

with minimal effort.

We describe the main ideas behind the library’s design, summarize the most

important functions, and describe ways that the library can be extended to handle

variants of the standard VRP. This paper is organized as follows. We begin by describ-

ing a standard file format for VRP instances. Next, we show how VRPH represents

solutions to a VRP, describe the most important data structures, and discuss various

functions that are implemented in the library. We conclude by describing our meta-

heuristic solver. In Appendix C, we provide instructions for compiling VRPH and

describe the interfaces between VRPH and the open source PLPlot graphics library

and the commercial mathematical programming software CPLEX.

5.2. Input File Format

The TSPLIB format [70] is a widely-used file format for representing TSP in-

stances that offers several options for representing the VRP. The file format used by

VRPH adheres closely to the TSPLIB format, and we add a few additional options

specifically designed for the VRP.

In Table 5.1, we give the supported keywords and their meanings. For each

keyword, we indicate whether or not the keyword is mandatory (the problem will not
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load successfully without these mandatory fields). The case-sensitive keywords can

be included in any order.

Field Name Mandatory Description
NAME Yes A string describing the problem
TYPE Yes Must be CVRP to denote capacitated

VRP
BEST KNOWN No Floating point number
DIMENSION Yes The total number nodes including the

depot
CAPACITY Yes Vehicle capacity
DISTANCE No Maximum route length - defaults to

VRP INFINITY if not given
SERVICE TIME No The identical service time at each

node (defaults to 0 if not given)
EDGE WEIGHT TYPE Yes Either EXPLICIT or FUNCTION.

This describes how to determine the
inter-node distances

EDGE WEIGHT FORMAT No Describes the distance function used
if EDGE WEIGHT TYPE is FUNC-
TION

NODE COORD SECTION Yes Header that begins the section con-
taining the node coordinates

DEMAND SECTION Yes Header that begins the section con-
taining the demands

DEPOT SECTION Yes Header that begins the section con-
taining the coordinates of the depot.
This section must end with a “-1”

SVC TIME SECTION No Header that begins an optional section
containing the service time at each
non-depot location

TIME WINDOW SECTION No Header that begins an optional section
containing the time window at each
non-depot location

EOF Yes Indicates the end of the file
Table 5.1: Keywords for the VRPH input file

Most of the fields in Table 5.1 are self-explanatory. The 10-node example file in

Figure 5.1 illustrates the most commonly used options.
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NAME: Example-10
TYPE: CVRP
DIMENSION: 11
CAPACITY: 30
EDGE_WEIGHT_TYPE: FUNCTION
EDGE_WEIGHT_FORMAT: EUC_2D
NODE_COORD_TYPE: TWOD_COORDS
NODE_COORD_SECTION
1 37.00000 52.00000
2 49.00000 49.00000
...
10 51.00000 21.00000
DEMAND_SECTION
1 7
2 30
...
10 5
DEPOT_SECTION
30.00000 40.00000
-1
EOF

Figure 5.1: An example of a properly formatted VRPH input file

There are several options not used in this example that are worth mentioning.

First, VRPH supports five of the different distance functions described in the TSPLIB

documentation [70]. Given two points with coordinates, (x1, y1) and (x2, y2), these

distance functions are specified as follows:

• Euclidean distance (EUC 2D):
√

(x1 − x2)2 + (y1 − y2)2 ;

• Geographical distances (GEO) - node locations are latitude and longitude co-

ordinates, and distances are given in kilometers ;

• Manhattan distance (MAN 2D): |x1 − x2|+ |y1 − y2| ;

• Maximum distance (MAX 2D): max(|x1 − x2|, |y1 − y2|) ;

• Rounded Euclidean distance (CEIL 2D): d
√

(x1 − x2)2 + (y1 − y2)2e.
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These distance functions produce a symmetric distance matrix. The user can

specify an explicit distance matrix by adding the line EDGE WEIGHT TYPE: EX-

PLICIT and by then including either a full matrix or half of a symmetric matrix

following the line EDGE WEIGHT SECTION. The files distributed with VRPH in-

clude two examples of this type of problem, VRPH/data/misc/explicit full.vrp and

VRPH/data/misc/explicit upper row.vrp (these directory paths are explained fully in

Appendix C). Finally, VRPH can handle problems where the planning horizon has

multiple days. This is done by adding an additional line NUM DAYS: D for a D-day

problem, and by then providing D days worth of demand and service times in the

appropriate sections. The file VRPH/data/misc/multi-day.vrp gives an example of

this type of problem.

5.3. Solution Representation

We now describe the way that our code stores solutions. Given a feasible solution

to a VRP instance, VRPH attempts to improve it by performing local search, moving

from one feasible solution to another. These operations can occur millions of times

when running a metaheuristic algorithm, so it is necessary to have an efficient and

compact method of storing solutions.

VRPH keeps track of the current solution information as it is modified through-

out the improvement process via the VRP class. This class contains the information

about a VRP instance and contains a number of data structures and methods that can
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be used to access problem information, modify the solution, and output the solution

to buffers and files.

For an n-node problem, the current solution at any stage in the solution pro-

cedure is stored in a doubly linked list contained in two arrays of length (n + 1):

next array and pred array. We use the method suggested in Kytöjoki et al. [45]

where negative indices in these arrays indicate the beginning of a new route. For

example, consider a 10-node VRP with the depot labeled as 0, the 10 customer nodes

numbered 1, 2, . . . , 10, and the three routes given in Table 5.2. This solution is stored

in the next array and pred array as shown in Table 5.3. Along with these two arrays,

the VRP class keeps track of several properties of the current solution such as the

total route length and the number of routes.

Route Ordering
1 0-2-5-8-0
2 0-1-3-4-0
3 0-6-7-9-10-0

Table 5.2: A 10-node VRP example

i 0 1 2 3 4 5 6 7 8 9 10
next array [i] -2 3 5 4 -6 8 7 9 -1 10 0
pred array [i] -10 -8 0 1 3 2 -4 6 5 7 9

Table 5.3: The next array and pred array corresponding to the solution in Table 5.2

In any VRP solution, each customer is assigned to a single route (we do not

allow for split deliveries). VRPH stores this information in the route num array where

route num[i] = j indicates that node i is assigned to route j. In our 10-node example,

we have route num[2] = 1, route num[10] = 3, and so on.
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The VRP class maintains an array of VRPRoute objects. Each VRPRoute

represents a single route and contains the following information:

• start : First non-depot node in the route;

• end : Last non-depot node in the route;

• length: Total length of the route (including any service time);

• load : Total load carried by the vehicle on this route (this is equal to the total

demand of the customers on the route);

• num customers : Number of customers or nodes on the route;

• total service time: Total service time required by all customers visited on this

route.

As an example of how to access this information, suppose we would like to

know the start node and the length of route number 2 in the 10-node example given

in Table 5.2. Assuming that we are using a VRP object called V, then we access this

information by referencing V.route[2].start and V.route[2].length.

An important feature of VRPH is that all information about the solution and

the individual routes is automatically updated whenever the solution is modified by

any of the other routines contained in VRPH. For example, VRPH is capable of

performing a two-opt move that removes two edges from a solution and replaces

them with two new edges (more on this later). When a two-opt move is performed,

the ordering is updated in the next array and pred array, and all information about

121



the solution is automatically updated to reflect the changes resulting from this move.

This updating is completely transparent to the caller of the function, allowing the

user to ignore the rather tedious bookkeeping.

5.4. Creating an Initial Solution

After loading a properly formatted file, VRPH can create an initial feasible

solution with two well-known procedures: the Clarke-Wright algorithm and the sweep

algorithm.

Given an n-node problem, the Clarke-Wright algorithm starts with n routes

where each vehicle visits a single node and returns to the depot. These routes are

then merged together in an order determined by the savings criterion. Representing

the depot with index 0, we let di,j represent the distance between nodes i and j. The

initial solution has a total route length of
∑n

i=1 2d0,i. For each pair of locations (i, j),

we define si,j to be

si,j = (2d0,i + 2d0,j)− (d0,i + di,j + d0,j) = d0,i − di,j + d0,j,

which gives the savings (or reduction) created by merging the two initial routes servic-

ing nodes i and j. The Clarke-Wright algorithm uses these savings values to determine

the order in which the original routes are merged together to form larger routes.

In VRPH, we implement a variant of the Clarke-Wright algorithm [84] that

incorporates a shape parameter λ into the savings, si,j = d0,i − λdi,j + d0,j (see

Algorithm 5.1). In Figure 5.2, we show the solution at various stages of the algorithm.
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Algorithm 5.1 The Clarke-Wright algorithm

1: for all (i, j) with 0 < i < j ≤ n do calculate si,j = d0,i + λdi,j + d0,j

2: end for
3: Create a list L of the triples (i, j, si,j) and sort L in descending order by the value

of si,j.
4: while L 6= ∅ do
5: Select the top entry from the list L, (i, j, si,j)
6: if Nodes i and j are currently adjacent to the depot and are in different routes

then
7: if The route obtained by merging these two routes is feasible then
8: Merge these two routes together by adding the edge linking i and j
9: end if

10: end if
11: Remove the triple (i, j, si,j) from L.
12: end while
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Figure 5.2: Progress of the Clarke-Wright algorithm
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To construct an initial solution using the sweep algorithm, we select a random

seed customer and draw a ray connecting this node to the depot. This seed customer

is the first node on the first route. We then sweep this ray around the depot until the

ray touches another node which we then add to the current route. When the route

is about to become infeasible due to a violation of a capacity constraint or a route

length constraint, we start a new route and repeat the process until all customers are

routed. In Figure 5.3, we show the routes generated by the sweep algorithm.
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Figure 5.3: Progress of the sweep algorithm
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We enhance both the Clarke-Wright and sweep algorithms by allowing the user

to specify different heuristic operations that attempt to improve the solution during

its construction. To do so, the user selects a set of local search operators (discussed

in detail in the next section) and an improvement interval, k. For the Clarke-Wright

algorithm, we apply the selected local search operators after every k-th merging of

two routes. When running the sweep algorithm, we apply the operators after adding

every k-th node to the solution.

5.5. Solution Modification

VRPH contains different routines that allow the user to modify an existing

VRP solution. When any of these routines is called, the relevant fields in the solution

storage arrays are updated to reflect the change in the solution. Thus, the user should

seldom (if ever) have any need to directly modify a field such as a route’s length or

load. The core of VRPH is its flexible implementation of seven different heuristic

local search operators described in the next section.

5.5.1 Local Search Operators

VRPH generates high-quality solutions to vehicle routing problems by applying

seven different local search operators. We describe the general idea behind local

search, discuss each of the operators, and describe how the local search is implemented

and how it can be extended.
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Local search is a commonly used technique in combinatorial optimization. We

are given a general minimization problem,

min f(x)

subject to x ∈ S,

where S is a discrete solution space and f : S 7→ R is the objective function. Given a

feasible solution x ∈ S, we construct a neighborhood of feasible solutions, N(x) ⊂ S,

and then search this neighborhood for a new solution x′ ∈ N(x). When selecting

x′, we may require f(x′) < f(x) if we wish to consider only improving moves, or we

may use a probabilistic acceptance strategy such as simulated annealing [44] where

we may accept the new solution when f(x′) > f(x).

For the VRP, these neighborhoods are typically defined in terms of a heuristic

operation where a node is moved to a new position in the solution, or several edges

are removed and replaced with new edges. In other words, given a solution and a

heuristic operation, the neighborhood consists of all solutions that can be created by

applying the heuristic operation to the current solution. Local search has proven to

be very effective for the VRP and this technique is used in many VRP metaheuristics.

The seven different local search operators are shown in Figure 5.4. For each

operator, we provide a diagram illustrating the change to the solution and a brief

description. Each heuristic operator is implemented as a separate class within VRPH

and is designed to search for and perform solution modifications that meet a set of

user-defined criteria that can incorporate different considerations. For example, these
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(a) One-Point move: Relocate an ex-
isting node into a new position.

(b) Two-Point Move: Swap the
position of two nodes.

(c) Inter-route Two-Opt Move: Remove
one edge from two different routes and replace
them with two new edges.

(d) Intra-route Two-Opt Move:
Remove two edges from a single
route and replace them with two new
edges.

(e) Or-Opt Move: Remove a string of
two, three, or four nodes and insert the
string into a new position.

(f) Three-Opt Move: Re-
move three edges from a route
and replace them with three
new edges.

(g) Three-Point Move: Swap the posi-
tion of a pair of adjacent nodes with the
position of a third node.

(h) Cross-Exchange Move:
Remove four edges from two dif-
ferent routes and replace them
with four new edges.

Figure 5.4: Local search operators in VRPH

criteria can specify that a particular heuristic improvement strategy such as simulated

annealing or record-to-record travel will be used in the local search, they can refine

the neighborhood that is searched by insisting on only inter- or intra-route moves,
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and they can specify that certain edges remain fixed or unchanged when considering

solution modifications.

We represent these criteria as a 32-bit integer, and we reserve a single bit for

each option. We list the most commonly used options in Table 5.4.

Option Meaning
DOWNHILL Accept only those moves that decrease the total

route length.
RECORD TO RECORD Accept moves according to the record-to-record

acceptance strategy [29].
SIMULATED ANNEALING Accept moves according to the simulated anneal-

ing metaheuristic [44].
FIRST ACCEPT Make the first solution modification that is found

that meets the other specifications given in the
current criteria.

BEST ACCEPT Evaluate all moves in the neighborhood and make
the move that leads to a feasible solution with
minimum total route length (this is the best
move).

LI ACCEPT If any improving move is found, make this move.
If no improving move is found, then make the
move that increases the total route length by the
smallest amount (a similar acceptance strategy is
used in [51]).

INTER ROUTE ONLY Search for moves that involve the modification of
more than one route.

INTRA ROUTE ONLY Search for moves that involve only a single route.
USE NEIGHBOR LIST Limit the search to those moves that only involve

a particular node’s neighbor list.
FORWARD Create an ordered solution buffer by concatenat-

ing all routes and search for moves that involve
nodes that are found when moving forward in the
solution buffer (see [54]).

BACKWARD Create an ordered solution buffer by concatenat-
ing all the routes and search for moves that involve
nodes that are found when moving backward in
the solution buffer (see [54]).

RANDOMIZED When examining the search neighborhood for
moves, evaluate these moves in a random order.

(continued on next page)
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Option Meaning
SAVINGS ONLY When comparing two moves, evaluate them by

considering only the savings or improvement of-
fered by the moves.

MINIMIZE NUM ROUTES When comparing two moves that involve more
than a single route, attempt to minimize the num-
ber of routes by trying to maximize the sum of the
squares of the number of nodes in the routes in-
volved in the move.

FIXED EDGES Forbid those moves that disrupt any edges that
are currently set as fixed.

TABU Forbid those moves that result in routes that are
tabu according to the solution’s current memory.

Table 5.4: Different options allowed in the criteria

We now provide additional details about these heuristic operators and then give

a few examples. Each heuristic operator is a single class in VRPH that implements

at least three of the four different methods described below.

• search: Given a specific node and a valid criteria, construct the search neigh-

borhood and find solution modifications that satisfy the given criteria. Modify

the solution if one is found and return true. Return false if no new solution can

be found.

• route search: Given one or more route numbers and a criteria, construct the

search neighborhood and search for acceptable solution modifications involving

the routes. Modify the solution if one is found and return false otherwise.

• evaluate: Given a particular solution modification and a valid criteria, return

true if the move is feasible and satisfies the criteria and false otherwise.
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• move: Given an evaluated, feasible solution modification, modify all data struc-

tures and return true. Return false if an error or infeasibility is encountered.

In order to use a local search operator, we proceed in the following way. The

user selects a particular local search operator, constructs a well-defined criteria by

combining several options from Table 5.4, and chooses a particular node j or one or

more routes (r1 and r2) that are to be involved in the eventual solution modification.

The user then calls search(criteria, j) or route search(criteria, r1, r2). A neighbor-

hood of solutions is constructed by considering the provided criteria, and each new

solution in this neighborhood is evaluated. If an acceptable solution modification is

found, then the move method is called and the solution is modified. Typically, the

user only calls the search method which then internally calls the evaluate and move

functions.

We illustrate the flexibility of this approach with a few examples. We assume

that we have a properly instantiated VRP object, V , and that we have loaded a

100-node problem with a current solution containing 8 routes.

criteria = FIRST_ACCEPT+RECORD_TO_RECORD+RANDOMIZED+USE_NEIGHBOR_LIST;

two_opt.search(V,37,criteria);

In this example, we search the nearest neighbors of node 37 for a valid two opt

move. We construct the search neighborhood consisting of the nearest nodes (the

actual number is an internal parameter that can be modified) and then randomly

permute it before searching for moves. Since our criteria includes FIRST ACCEPT,
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we make the first feasible move that results in a new total route length that is allowed

when using the RECORD TO RECORD travel acceptance strategy.

criteria = FIXED+BEST_ACCEPT+DOWNHILL+INTRA_ROUTE_ONLY;

one_point_move.route_search(V,5,7,criteria);

In this example, we search for the best one point move involving routes five

and seven. VRPH allows the user to fix certain edges to ensure that they remain

in the routes. In this example, since FIXED is part of the criteria, any moves

that remove fixed edges from the solution are forbidden. Since the criteria includes

BEST ACCEPT, we search all moves in the neighborhood before selecting the best

one, and accept only those moves that reduce the current total route length since the

DOWNHILL bit is set.

Finally, we discuss some of the details of how we implemented these local search

operators to give the reader an idea as to how these implementations can be extended

easily. Suppose we are applying two-opt to the current solution, and are evaluating

a particular two-opt move in terms of a particular criteria. If the move results in

a feasible solution, then we store all relevant changes to the current solution in a

VRPMove data structure. This structure contains information such as the change

in the total route length, the change in route loads, and the change in the number

of customers per route. After populating this data structure, we call the function

check move which determines whether or not the VRPMove meets the criteria or not.

As this function is called in the same manner by all seven local search operators, if the

user wanted to try, say a variant of simulated annealing using a different probability

function, then the user would need to incorporate this into the criteria and then
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add code to handle this evaluation in the check move function. The fact that all

seven operators are implemented in a very similar manner allows extensions to be

accomplished easily by modifying a small amount of code.

5.5.2 Miscellaneous Operations

We now discuss some of the additional solution modification functions provided

by VRPH. When solving a VRP with n customers, it may be useful to consider a

smaller problem with fewer nodes. For example, in a multi-day VRP where we visit

customers over a period of several days, we typically would not visit every customer

on every day, so we would be faced with smaller problems on each day. Alternatively,

it may be useful to restrict attention to a certain geographic cluster of nodes in order

to focus more intently on a partial subproblem of a particular VRP instance.

The VRP class contains an array routed [] where routed [i] is true if customer i

is in the current solution, and false otherwise. All heuristic operators discussed in the

previous section handle partial problems and unrouted nodes by checking this array

when evaluating proposed moves, returning false whenever a proposed move involves

an unrouted node. VRPH offers several routines that allow the user to take a solution

and eject and insert nodes and sets of nodes. The routines are described below and

the file VRPH/src/demos/ejection.cpp contains examples of how these routines are

used.

• eject node(j): Remove node j from the solution, replacing the old edges i − j

and j − k with the new edge i− k.

• eject route(r): Remove all nodes contained in route r from the solution.
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• inject node(j): Insert the unrouted node j into the solution so that the increase

in total route length is minimal and all routes remain feasible.

• inject set(a[], k): Insert all k nodes from the array a[] into the solution so that

the total route length increase is minimal and so that the resulting routes are

feasible. VRPH uses several different heuristic approaches to search for an

efficient insertion of the set.

• eject neighborhood(j): Select a random set of nodes near j and remove them

from the solution.

5.6. Solution Input and Output

VRPH allows the user to store solutions to a problem in buffers and to write

solutions to files in a simple format using the commands export solution buff and

write solution file. The formats of the solution are identical for these two commands.

The first entry in the solution buffer or file is the number of non-depot nodes in the

solution. Following this entry, we list the order in which customers are visited, using

a negative index to indicate the first node in each route. Referring to the 10-node

example in Table 5.2, the solution buffer and file have the form

10 -2 5 8 -1 3 4 -6 7 9 10 0.

The buffer or file produced by these functions can then be imported into a prop-

erly initialized VRP object by calling either import solution buff or read solution file.

When these functions are called, the current solution stored by VRPH is discarded

and all internal data structures are updated to reflect this new solution.
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5.6.1 Solution Hashing

Along with providing several ways to export and import solutions, VRPH stores

a large pool of the best s solutions (s is an internal parameter that can be varied).

When a potentially new solution is encountered, we need to quickly determine whether

or not the solution is already in the pool. We do this by using an h-bit hash table

and associate an h-bit integer with each solution. We are unaware of any other uses

of hashing in the VRP literature. Next, we describe the details of our procedure.

The idea behind our hash function is to transform the solution into a standard

form, export the standardized solution into a buffer, and then associate an h-bit

integer with this buffer. We are given an R-route solution to an n-node VRP. For

each j from 1 to R, we represent the j-th route as an ordered list, rj. In particular,

we write rj = {aj, . . . , zj} where aj is the index of the first customer visited in route j

and zj is the index associated with the last customer visited in route j. Additionally,

we store a list of n random 32-bit integers, Y0, Y1, . . . , Yn−1. Given this notation and

this list Y , we associate a positive integer with each solution by performing the steps

given in Algorithm 5.2.

Algorithm 5.2 Hashing a VRP Solution

1: for j = 1 to R do
2: if aj > zj then Reverse the ordering of route j
3: end if
4: end for
5: Create a list L containing the resulting, possibly reversed routes, and sort this

list in terms of the index of the first node visited in the route
6: With L = {r1, r2, . . . , rR}, concatenate these routes into a single list
{m1, m2, . . . ,mn}

7: Return H =
⊕n−1

i=1 Y(mi+mi+1) mod n mod 2h
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In Step 2, we ensure that each route is oriented so that the index of the first

node in each route is smaller than the index of the last node visited in each route

and then concatenate these routes to form a single list in Steps 5 and 6. In Step 7,

we associate a 32-bit integer Y(mi+mi+1) mod n with each pair of nodes in the ordered

list and then sum them together (when computing this sum, we use the bitwise XOR

operation rather than normal addition). We produce the hash value H by taking the

low h bits.

We illustrate this procedure using the example given in Table 5.2. Since the

index of the start node is less than the index of the end node in each of the three

routes, no reversals are required, and so we sort these routes by the start node in

Step 5 and concatenate them together to from the list {1, 3, 4, 2, 5, 8, 6, 7, 9, 10}. We

then associate one of our 10 random numbers Y [0], Y [1], . . . , Y [9] with each pair of

consecutive numbers in this list and XOR them together to compute an h-bit hash

value:

H = (Y [4]⊕ Y [7]⊕ Y [6]⊕ Y [7]⊕ Y [3]⊕ Y [4]⊕ Y [3]⊕ Y [6]⊕ Y [9]) mod 2h.

This provides a very fast method of associating an h-bit integer with a given

solution. When a potentially new solution is encountered, VRPH hashes the solution,

producing an integer H. Then we check the entry in position H in the hash table. If

the location is empty, then we instantly know that the solution is not currently one

of the s best solutions. If entry H in the hash table is not empty, then we perform

additional checks to determine whether or not this is a new solution.
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5.7. Using the Default Solver

Up to this point, we have described some of the most important aspects of the

VRPH library. In this section, we briefly describe a metaheuristic algorithm that we

have implemented using VRPH. This solver is produced when compiling VRPH (see

Appendix A for instructions on compiling VRPH), and we explain the details of how

to use this solver and set the values of various parameters.

We implement a variant of the fast and flexible record-to-record travel (RTR)

algorithm presented in [51]. Typically, our implementation produce solutions to prob-

lems containing several hundred nodes in less than 20 seconds of computing time on

a laptop or desktop machine. When this solver is run on benchmark problems, the

solutions are generally within 3% of the best-known solutions.

This algorithm alternates between two phases, a diversification phase and an

improvement phase. In the diversification phase, the goal is to accept some worsening

moves and explore new parts of the solution space. This is followed by an improve-

ment phase where only improving moves are allowed as we seek a local minimum in

the search space. The algorithm terminates after it has been unable to escape a par-

ticular local minimum after several attempts. The algorithm requires the following

parameters:

• D: Controls the size of the main loop in the diversification phase. A value
between 25 and 50 is reasonable.

• δ: Controls how much deterioration is allowed in the diversification phase. De-
faults to δ = .01.

• K: Number of local minima that must be reached before perturbing the solution
or terminating the algorithm.
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• N : Size of the neighbor list that is searched when running the local search oper-
ators. A larger value will slow the algorithm down as there are more possibilities
to consider.

• P : Number of times the solution is perturbed once the search is stuck in a local
minimum.

Algorithm 5.3 An algorithm for the VRP based on record-to-record travel

1: Generate a random λ ∈ (0.5, 2) and generate an initial feasible solution using
Algorithm 5.1

2: Select a set of local search operators U
3: Set the record R equal to the current total route length, set the threshold T =

(1 + δ)R, and set k = p = 0
4: while p < P do
5: for i = 1 to D do
6: for all Operators u ∈ U do
7: for all Nodes j in the solution do
8: Apply operator u to node j using record-to-record travel
9: end for

10: end for
11: end for
12: while Improving moves can be found do
13: for all Operators u ∈ U do
14: for all Nodes j in the solution do
15: Apply operator u to node j accepting only improving moves
16: end for
17: end for
18: end while
19: if The current solution is a new record then
20: Update R and T and set k = 0
21: end if
22: k + +
23: if k == K then
24: Perturb the solution
25: p + +
26: end if
27: end while
28: Return the best solution found

After compiling VRPH, Algorithm 5.3 can be run by entering the command

RTR from the VRPH/bin directory. Table 5.5 describes the options that can be used

when running this solver.
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Possible
Option Values Description

-a Integer in {0, 1} Accept Type: Can be either first accept (0) or best
accept (1). If first accept is chosen, then the first
acceptable move is accepted when performing local
search in the improvement phase. If best accept is
selected, then the entire neighborhood is searched and
the overall best move is selected.

-d Real in (0, 1) Deviation: Determines the amount of deterioration
allowed when implementing the heuristic operations.
Default is 0.01.

-D Integer > 0 This determines the parameter D which is the number
of times we run through the loop in the diversification
phase of the algorithm. Default is D = 30.

-h String Heuristic: This option designates that a particular
heuristic operation should be used in the search (can
be repeated).

-K Integer≥ 0 This determines the parameter K which is the limit
on the number of times we fail to beat the current
local minimum before stopping. Default is K = 5.

-L Integer > 0 Lambdas: This is the number of different ran-
domly generated λ values used when generating initial
Clarke-Wright solutions. The default setting is to use
three random λ’s.

-N Integer ≥ 0 This is the size of neighbor list, N , that is used when
running the local search operators. Defaults to N =
25 and using the option -N 0 will not use neighbor
lists at all and all nodes will be searched when running
local search.

-out String Output File: The solution will be written to this file.
Default is to write a file named name len where name
is the problem’s name as determined from the input
file, and len is the best total route length found.

-P Integer ≥ 0 The parameter P which is the number of times we
perturb the solution after reaching a local minimum
that we cannot escape. Default is P = 1.

-sol String Starting solution: The algorithm will start with the
solution contained in the provided file. The default
mode does not import an initial solution and starts by
generating an initial solution with the Clarke-Wright
algorithm.

Table 5.5: Options for the RTR solver
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There are many ways to run Algorithm 5.3. We provide an example to demon-

strate some of the options.

RTR -f Christofides_10.vrp -D 50 -L 5 -N 30 -h ONE_POINT_MOVE

-h TWO_OPT -h THREE_OPT -out C10.sol

This command will run the RTR solver on the Christofides 10.vrp benchmark problem

using 5 different initial solutions, three heuristic operations (One-Point Move, Two-

Opt, and Three-Opt), a diversification loop of 50 iterations, neighbor lists of size 30,

with the best solution written to the file C10.sol.

5.8. Conclusions

We developed a C/C++ library for solving the standard vehicle routing prob-

lem. Our library uses a compact, efficient method for storing solutions and provides

a simple interface for importing problem data. It includes well-known techniques for

constructing initial solutions as well as seven local search operators. These heuristic

operators are implemented in a similar, logical way that allows for many extensions.

Our software also provides a solver that is able to generate very good solutions in

a short amount of computing time. We hope that this library will be useful to re-

searchers studying the VRP and that it will provide a flexible tool for solving new

problem variants.
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Chapter 6

Conclusion

In this dissertation, we developed computational algorithms for solving two

new real-world vehicle routing problems. The first problem is the Consistent VRP

which was proposed to us by UPS. Here, we increase customer service quality by

having the same driver visit each customer at roughly the same time each day. The

second new variant is the Balanced Billing Cycle VRP, described to us by RouteSmart

Technologies, Inc. Here, we are given an initial, potentially inefficient and unbalanced

set of routes for each business day of the month, and we must construct a new set of

routes for each day so that the individual routes are balanced, ensuring that we also

respect various regulatory constraints.

For each of these problems, we developed an efficient computational algorithm to

generate solutions. We tested our algorithms on both simulated benchmark problems

as well as real-world data sets provided by contacts in industry. In both cases, our

algorithms generated high quality solutions in a reasonable amount of computing

time.

Next, we developed a very powerful parallel algorithm for solving the classical

VRP. The parallel algorithm combines a set-covering formulation of the VRP with

a metaheuristic algorithm and we implemented it in two different high-performance

computing environments. Our algorithm produced new best-known solutions to fif-
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teen benchmark problems from the literature that have been extensively studied for

more than a decade. We studied the role of cooperation and information sharing

among the different processors by conducting extensive computational experiments

and varying the algorithm’s parameters, and we demonstrated that the algorithm

exhibits a very good parallel speedup.

The majority of the computational work presented in this dissertation was done

with a single software library that we developed. The final contribution of this disser-

tation is a description of this C/C++ library that will be released to other academic

researchers. The source code is well-documented and has been compiled and run on

several different platforms. We provide both a fast executable solver as well as an

application programming interface that allows others to use our code in a variety

of ways. Our hope is that this library will provide an easy-to-use tool to continue

research into using heuristic methods for solving this very difficult combinatorial op-

timization problem.
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Appendix A

Additional Information Related to the Consistent VRP

In this Appendix, we provide additional information and data related to our

work on the Consistent Vehicle Routing Problem (ConVRP) discussed in Chapter 2.

A.1. The redundancy of the sub-tour constraints

In this section, we prove that the sub-tour constraints are redundant in the

integer programming formulation provided on page 11.

Lemma. The subtour constraints (2.10) are redundant in our formulation of the

ConVRP.

Proof. Sub-tours are only relevant for a particular vehicle on a particular day, so fix

k and d and consider a single vehicle on a single day. Then if xijkd = 1, then node j

is visited after node i by the selected vehicle on the selected day. We want to show

that the constraint

aikd + xijkd(sid + tij)− (1− xijkd)T ≤ ajkd for all i ≥ 0, j ≥ 1

guarantees that there are no sub-tours that do not contain the depot. Select some i

and j and assume that the edge i − j is in the solution so that xijkd = 1. Suppose

that we actually do have a sub-tour where we return to node i after visiting node
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j and then some arbitrary number of other locations. If our inter-node travel times

and service times are strictly positive, then aj > ai and so any node k that we visit

after node j will have ak > aj > ai, implying in particular that we cannot return to

node i. We conclude that subtours are prevented by (2.11).

A.2. Implementing the ConVRP Formulation in a Modeling Language

The GNU MathProg Language (GMPL) is an open source modeling language

that is part of the GNU Linear Programming Kit (GLPK) [34]. GMPL is similar

to the widely-used commercial modeling language, AMPL. The model file below de-

scribes the ConVRP formulation.

###############################################
### GMPL: CVRP Formulation for Euclidean ###
### Instances ###
###############################################

##################
### PARAMETERS ###
##################
param N integer > 2; # Number of non-depot nodes
set AllNodes := 0..N;
set Arcs := {i in AllNodes,

j in AllNodes};
param V integer >=1; # Number of vehicles
set Vehicles := 1..V;
param D integer >=1; # Days
set Days := 1..D;
param L >=1; # Maximum Service Time Differential
param T; # The maximum allowed per vehicle daily

# total travel time
param Q; # The maximum load per vehicle
param s{AllNodes, Days}; # The service time at each node
param q{AllNodes, Days}; # The demand at each node
set Depot := {0};
set NonDepotNodes:= AllNodes diff Depot;
param w{AllNodes, Days};
set S := 1 .. (2**(N) - 1);
set Cutset {k in S} := {i in NonDepotNodes:

(k div 2**(i-1)) mod 2 = 1 and i!=0};
param xcoord {AllNodes};
param ycoord {AllNodes};
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# Define the travel time by Euclidean distance
param t {(i,j) in Arcs} := sqrt((xcoord[i] - xcoord[j])^2 +
(ycoord[i] - ycoord[j])^2);

##########################
### Decision variables ###
##########################
var x {i in AllNodes, j in AllNodes,k in Vehicles, d in Days} binary;
var y {i in AllNodes, k in Vehicles, d in Days} binary;
var a{AllNodes, Days};

##########################
### Objective Function ###
##########################
minimize Tourlength: sum {(i,j) in Arcs,k in Vehicles, d in Days}

(t[i,j] + s[j,d])* x[i,j,k,d];

###################
### Constraints ###
###################

#########################
### Constraint (2.2) ###
#########################
subject to DepotService{k in Vehicles, d in Days}: y[0,k,d]=1;
#########################
### Constraint (2.3) ###
##########################
subject to DepotArrival{d in Days}:
a[0,d]=0;
#########################
### Constraint (2.4) ###
#########################
subject to NodeService {i in NonDepotNodes, d in Days}:
sum{k in Vehicles} y[i,k,d]=w[i,d];
#########################
### Constraint (2.5) ###
#########################
subject to DemandConstraint{k in Vehicles, d in Days}:
sum{i in NonDepotNodes} q[i,d]*y[i,k,d] <= Q;
#########################
### Constraint (2.6) ###
#########################
subject to InDegree {j in AllNodes, k in Vehicles, d in Days}:
sum{i in AllNodes} x[i,j,k,d]=y[j,k,d];
subject to OutDegree {j in AllNodes, k in Vehicles, d in Days}:
sum{i in AllNodes} x[j,i,k,d]=y[j,k,d];
#########################
### Constraint (2.7) ###
#########################
subject to SameVehicle1{i in AllNodes, k in Vehicles, d1 in Days,
d2 in Days: d1!=d2}:
w[i,d1]+w[i,d2]-2 <= y[i,k,d1]-y[i,k,d2];
subject to SameVehicle2{i in AllNodes, k in Vehicles, d1 in Days,
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d2 in Days: d1!=d2}:
y[i,k,d1]-y[i,k,d2]<=-w[i,d1]-w[i,d2]+2;

#########################
### Constraint (2.8) ###
#########################
subject to ArrivalTime1{i in AllNodes, j in NonDepotNodes,
d in Days, k in Vehicles}:
a[j,d]>=a[i,d]+x[i,j,k,d]*t[i,j]+x[i,j,k,d]*s[i,d]-T+T*x[i,j,k,d];
#########################
### Constraint (2.9) ###
#########################
subject to ArrivalTime2{i in AllNodes, j in NonDepotNodes,

d in Days, k in Vehicles}:
a[j,d]<=a[i,d]+x[i,j,k,d]*t[i,j]+x[i,j,k,d]*s[i,d]+

T-T*x[i,j,k,d];
##########################
### Constraint (2.10) ###
##########################
subject to Subtours {k in Vehicles, d in Days,
m in S: card(Cutset[m]) >= 2 and card(Cutset[m]) <= N-1}:

sum {(i,j) in Arcs: (i in Cutset[m]) and (j in Cutset[m])}
x[i,j,k,d] <= card(Cutset[m])-1;

##########################
### Constraint (2.11) ###
##########################
subject to BoundArrivalTime{i in NonDepotNodes, d in Days}:
0<=a[i,d]+s[i,d]*w[i,d]+t[i,0]*w[i,d]<=T*w[i,d];
##########################
### Constraint (2.12) ###
##########################
subject to ConsistentMin{i in AllNodes, d1 in Days,

d2 in Days: d1!=d2}:
a[i,d1]-a[i,d2]>= (-L+T*w[i,d1]+T*w[i,d2]-2*T);

subject to ConsistentMax{i in AllNodes, d1 in Days,
d2 in Days: d1!=d2}:
a[i,d1]-a[i,d2]<=L-T*w[i,d1]-T*w[i,d2]+2*T;

end;

A.3. Analysis of the Template Routes

In this section, we analyze several quantities related to our heuristic algorithm

for solving the ConVRP. One of the key properties of this algorithm is the construction

of a set of template routes that consists of all customers that require service on more

than one day over the D-day period. After constructing this template, we determine
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the routes for an individual day by first removing all customers from the template

that do not require service on this day. We then insert all non-template customers

into the resulting routes in order to create a set of routes that visits all customers

requiring service on this day.

Assuming that each customer requires service on a particular day with equal

probability p ∈ [0, 1], we derive the expected values of several quantities related to

this set of template routes. Given n customer locations, we assume that the service

probabilities are independent from one day to the next, and calculate the following

quantities:

• The expected number of customers in the template

• The expected number of removals from the template on a single day

• The expected number of additions to the restricted template on a single day

We compute a closed form expression for these three quantities in terms of D, n,

and p. We begin by giving expressions for the probabilities of various events, and then

use these to compute the expected values of the three quantities of interest.

We first derive the probability that a given customer is in the template. Recall

that a customer is in the template if the customer requires more than one visit during

the D days. Let Xk denote the event that a customer requires service on exactly

k days during the D-day period, and let Y denote the event that a customer is in

the template. Then P (Y ) = 1 − (P (X0) + P (X1)), where P (X0) = (1 − p)D and

P (X1) = D(1− p)D−1p, so that
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P (Y ) = 1− ((1− p)D + D(1− p)D−1p). (A.1)

Next, we derive the probability that a customer in the template requires service

on exactly k days where k ∈ {2, 3, . . . , D} (this probability is 0 by definition when

k = 0 or 1 since customers requiring less than two services are not in the template).

For each such k, we are interested in P (Xk|Y ), the probability that a customer

requires service on exactly k days, given that the customer is in the template. We

use the identity

P (Xk|Y ) =
P (Xk)− P (Xk|Y )P (Y )

P (Y )
. (A.2)

Note that P (Xk|Y ) is the probability that a customer requires service on k ≥ 2

days, given that the customer is not in the template. However, since the template

consists of only those customers that require service on 2 or more days, P (Xk|Y ) = 0,

implying that P (Xk|Y ) = P (Xk)/P (Y ) when k ≥ 2. As we have already computed

P (Y ) in (A.1), we are left with P (Xk), the probability that a customer requires service

on exactly k of the D days. This is simply

P (Xk) =

(
D

k

)
pk(1− p)D−k. (A.3)

Combining (A.2) with (A.3), it follows that the probability that a template

customer requires service on exactly k days is

P (Xk|Y ) =

(
D
k

)
pk(1− p)D−k

1− ((1− p)D + D(1− p)D−1p)
.
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Next, we compute the probability that a template customer does not require

service on a particular day. Denote this event as Z, and note that P (Z) can be

computed by partitioning the customers into groups based on the number of days that

they require service. Suppose that a particular template customer requires service on

exactly 2 ≤ k ≤ D days. Then this customer does not require service on D− k days,

and as we assume that all probabilities are independent from one day to the next,

the probability that this customer does not require service on a particular day is just

D−k
D

. We can then sum across all D − 1 values of k to find the desired probability

P (Z) =
D∑

k=2

(D − k

D

)
P (Xk|Y )

=
D∑

k=2

(D − k

D

) (
D
k

)
pk(1− p)D−k

1− ((1− p)D + D(1− p)D−1p)
,

which simplifies to

P (Z) =
1− ( 1

1−p
)D−2 + p(D − 2)

1− ( 1
1−p

)D−1 + p(D − 1)
. (A.4)

Note that Z represents the event that a customer in the template does require service

on a particular day.

The final quantity we require is the probability that we will have to insert a

non-template customer on a given day. Denoting this event as W , we reason as

follows. The probability that a customer receives service on a given day is p. A

customer that receives service falls into one of two categories. The first category

consists of non-template customers who receive service only on this day. The second
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category consists of customers in the template who are serviced on this day. Thus,

p = P (Y )P (W ) + P (Y )P (Z), and solving for the desired P (W ), we have

P (W ) = (p− P (Y )P (Z))/P (Y ). (A.5)

Combining (A.1), (A.4), and (A.5) and simplifying the resulting expression, we

find that

P (W ) =
p

(1− p) + pd
. (A.6)

Having calculated these various probabilities, we can now compute the desired

expected values. First, we compute the expected number of customers in the template,

nP (Y ) = n− n((1− p)D + D(1− p)D−1p).

Next, we compute the expected number of removals from the template on each

day:

nP (Y )P (Z) = n
(
1− ((1− p)D + D(1− p)D−1p)

)(1− ( 1
1−p

)D−2 + p(D − 2)

1− ( 1
1−p

)D−1 + p(D − 1)

)
.

Finally, we compute the expected number of non-template customers requiring

service on a given day. This is the expected number of additions we have to make to

the template.

nP (Y )P (W ) = n((1− p)D + D(1− p)D−1p)

(
p

(1− p) + pd

)
.
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A.4. Creating a Consistent Solution from an Inconsistent Solution

In this section, we present a set partitioning formulation that allows us to take

a solution generated without regard for the consistency constraints and transform

it into a consistent solution by assigning drivers to routes and by determining the

orientation of each route.

We are given a set of routes that satisfies D days worth of customer demands

and we wish to make them as consistent as possible in terms of both the same driver

constraint and the same time constraint. We assume that there are v routes per day

and add trivial depot-to-depot routes when the number of required routes is less than

v. Next, we enumerate all possible vD assignments of drivers to routes where each

of the v drivers is assigned to one of the v possible routes on each of the D days.

For each assignment i, we let ci be the number of customers that receive consistent

service in terms of the same driver constraint and define the decision variable xi to

be 1 if assignment i is chosen and 0 otherwise. We define air to be 1 if route r is

contained in assignment i and 0 otherwise, with r ranging over all v ×D routes. As

there are vD possible assignments and v × D total routes, we have DvD+1 total air

variables. We assign drivers to routes by solving the following integer program.
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Maximize
∑

i

cixi (A.7)

s.t.
∑

i

xi = v (A.8)∑
i

xiair = 1 for every route r (A.9)

xi ∈ {0, 1} for all i. (A.10)

The objective function (A.7) maximizes the number of customers receiving con-

sistent service. Constraint (A.8) ensures that we assign a single set of D routes to

each of the v drivers. Constraint (A.9) guarantees that each route r is assigned to

exactly one driver.

After assigning drivers to routes in the optimal way, we minimize the maximum

arrival time differential experienced by the customers that receive consistent service

from the same driver. We minimize the mean maximum arrival time differential by

simply taking the D routes and then computing the mean maximum differential if we

traverse the route in either direction. In other words, for each vehicle, we examine

all 2D possible ways of traversing these routes and choose the option that minimizes

the mean maximum arrival time differential. We note that choosing the optimal

orientations for each vehicle across the D days may not be optimal for all customers

since it is possible that some customers are serviced several times by more than one

vehicle.
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A.5. Consistent VRP Benchmark Problems

We first provide the problem instances and optimal solutions for the 10- and

12-node problems. In the second section, we provide solutions we have found to the

benchmark instances that we developed and solved.

A.5.1 Small Benchmark Problems

We provide the details of the 10 small ConVRP problems that we solved to

optimality using a mixed integer program (MIP). For each problem, we describe

the specifics of each customer via a list of the form (k, x, y, q1, q2, q3) where k is the

customer number, x, y represents the location of the customer and qi represents the

demand at this customer on day i. If no service is required on day i, then we set

qi = 0. Whenever a customer requires service, there is a service time of one unit,

and the travel times between nodes are set to the Euclidean distances. The depot is

located at the origin, the total vehicle daily travel time limit is T = 35, the maximum

daily capacity is Q = 15, and the maximum arrival time differential is L = 5.

10-node problems:

• Problem 1. (1, 8.180, 9.781, 3, 3, 1), (2, 0.864, 3.187, 0, 1, 0), (3, 3.660, 2.820, 1, 0,
2), (4, 0.866, 2.470, 1, 3, 0), (5, 3.045, 8.571, 3, 3, 0), (6, 8.371, 8.022, 0, 1, 1), (7,
2.040, 2.697, 0, 3, 0), (8, 1.409, 5.733, 3, 3, 1), (9, 9.236, 1.998, 0, 3, 1), (10, 1.755,
2.412,3, 0, 1)

• Problem 2. (1, 8.954, 5.615, 1, 3, 1), (2, 7.778, 6.524, 3, 2, 0), (3, 4.151, 3.729, 3, 0,
0), (4, 3.880, 1.690, 2, 3, 0), (5, 1.014, 5.966, 3, 3, 3), (6, 7.049, 2.998, 2, 0, 2), (7,
2.434, 4.323, 2, 3, 2), (8, 3.423, 2.062, 3, 2, 1), (9, 1.185, 1.765, 0, 1, 0), (10, 4.220,
4.711,1, 1, 0)

• Problem 3. (1, 0.020, 0.780, 3, 1, 1), (2, 7.609, 3.414, 1, 3, 1), (3, 9.463, 1.078, 2, 3,
3), (4, 6.845, 5.040, 2, 1, 0), (5, 0.435, 6.355, 0, 3, 1), (6, 3.758, 5.630, 0, 2, 3), (7,
2.594, 4.659, 1, 3, 2), (8, 1.410, 2.461, 1, 2, 0), (9, 8.794, 3.059, 1, 2, 1), (10, 0.745,
8.250,1, 2, 1)
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• Problem 4. (1, 5.816, 2.818, 2, 2, 1), (2, 0.599, 6.659, 1, 1, 1), (3, 8.097, 5.370, 0, 3,
0), (4, 1.917, 3.790, 2, 3, 0), (5, 0.969, 4.120, 0, 2, 3), (6, 8.925, 3.601, 3, 3, 0), (7,
4.750, 7.027, 2, 1, 2), (8, 8.097, 6.313, 2, 0, 2), (9, 0.902, 9.245, 3, 2, 2), (10, 3.022,
4.613,3, 1, 2)

• Problem 5. (1, 9.574, 5.474, 1, 0, 0), (2, 0.637, 3.747, 1, 2, 3), (3, 7.541, 3.132, 2, 1,
2), (4, 4.448, 0.854, 2, 3, 2), (5, 2.152, 9.587, 2, 3, 0), (6, 4.914, 4.111, 2, 3, 0), (7,
0.561, 4.104, 3, 0, 3), (8, 2.152, 1.214, 3, 2, 3), (9, 5.801, 0.251, 3, 2, 1), (10, 2.532,
2.137,0, 1, 0)

12-node problems

• Problem 1. (1, 6.052, 3.088, 2, 3, 0), (2, 5.891, 3.533, 2, 2, 0), (3, 5.527, 1.645, 3, 0,
0), (4, 0.802, 9.435, 1, 1, 0), (5, 2.517, 3.295, 0, 1, 2), (6, 9.474, 4.196, 2, 0, 1), (7,
3.135, 6.523, 0, 0, 1), (8, 1.046, 2.026, 1, 1, 3), (9, 8.144, 0.351, 3, 1, 3), (10, 6.816,
9.033,3, 1, 3), (11, 8.537, 2.535, 2, 1, 2), (12, 2.266, 6.815, 0, 3, 2)

• Problem 2. (1, 1.458, 8.872, 0, 3, 0), (2, 4.936, 1.479, 0, 1, 0), (3, 2.792, 4.057, 1, 3,
0), (4, 0.229, 2.017, 2, 0, 0), (5, 2.274, 5.382, 0, 2, 3), (6, 5.940, 5.560, 0, 0, 2), (7,
1.948, 3.185, 2, 0, 3), (8, 8.701, 3.896, 2, 3, 0), (9, 1.720, 1.825, 1, 3, 1), (10, 4.994,
0.400,2, 1, 1), (11, 6.688, 4.925, 0, 2, 3), (12, 6.522, 3.583, 2, 1, 0)

• Problem 3. (1, 6.411, 7.437, 3, 1, 1), (2, 7.263, 5.660, 1, 2, 3), (3, 7.485, 3.395, 3, 1,
0), (4, 1.432, 3.817, 1, 2, 0), (5, 1.921, 4.169, 0, 2, 3), (6, 9.957, 5.770, 2, 0, 1), (7,
2.847, 5.453, 2, 2, 3), (8, 1.674, 0.576, 0, 3, 0), (9, 2.228, 4.792, 3, 1, 1), (10, 5.879,
2.075,3, 3, 0), (11, 4.724, 9.378, 0, 3, 2), (12, 6.587, 8.195, 2, 0, 0)

• Problem 4. (1, 7.444, 2.887, 2, 2, 1), (2, 8.946, 2.130, 2, 0, 0), (3, 7.182, 4.225, 3, 0,
0), (4, 5.843, 9.515, 1, 0, 3), (5, 9.963, 0.776, 3, 2, 3), (6, 1.668, 5.045, 2, 1, 2), (7,
6.246, 4.734, 1, 2, 2), (8, 2.759, 3.211, 0, 3, 0), (9, 9.485, 5.047, 2, 2, 0), (10, 4.494,
3.050,2, 2, 0), (11, 6.972, 7.585, 2, 0, 1), (12, 2.839, 6.113, 0, 2, 1)

• Problem 5. (1, 2.205, 8.162, 0, 0, 2), (2, 2.153, 9.199, 3, 1, 3), (3, 2.467, 3.594, 3, 3,
1), (4, 3.120, 1.909, 1, 1, 1), (5, 5.185, 5.413, 0, 0, 3), (6, 5.504, 5.719, 2, 2, 3), (7,
4.233, 8.845, 2, 2, 3), (8, 6.289, 2.841, 2, 0, 1), (9, 8.490, 9.219, 2, 0, 0), (10, 2.481,
4.513,1, 0, 0), (11, 6.634, 1.767, 0, 0, 1), (12, 7.083, 6.334, 0, 0, 2)

A.5.2 Solutions to ConVRP Benchmark Problems

For each problem, we provide a plot of the solution we found as well as a table

describing the routes. We list the tours traveled by each vehicle in the solution, the

total length of each route, the total load carried by each vehicle, and the sum of the

lengths of all routes. All calculations are performed using double precision floating
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point numbers (64-bit) and we give our results rounded to three decimal places. We

provide the optimal solutions for the 10-node and 12-node problems as well as the best

solutions we found for the 12 larger benchmark problems based on the Christofides

[19, 20] VRP instances.

154



0 2 4 6 8

0

2

4

6

8

10

6 nodes     27.71    1 routes

Figure A.1: Solution for day 1 of problem ConVRP-10-3-1

Problem ConVRP-10-3-1
Vehicle capacity 15
Maximum route length 35.000
Number of nodes 6
Total route length 27.708
Total number of routes 1
Route Length Load Ordering

1 27.708 14 (0, 4, 8, 5, 1, 3, 10, 0)

Table A.1: Details of solution to day 1 of problem ConVRP-10-3-1
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Figure A.2: Solution for day 2 of problem ConVRP-10-3-1

Problem ConVRP-10-3-1
Vehicle capacity 15
Maximum route length 35.000
Number of nodes 8
Total route length 47.914
Total number of routes 2
Route Length Load Ordering

1 27.853 14 (0, 4, 2, 8, 5, 1, 6, 0)
2 20.061 6 (0, 7, 9, 0)

Table A.2: Details of solution to day 2 of problem ConVRP-10-3-1
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Figure A.3: Solution for day 3 of problem ConVRP-10-3-1

Problem ConVRP-10-3-1
Vehicle capacity 15
Maximum route length 35.000
Number of nodes 6
Total route length 46.410
Total number of routes 2
Route Length Load Ordering

1 27.511 6 (0, 8, 1, 6, 3, 10, 0)
2 18.899 1 (0, 9, 0)

Table A.3: Details of solution to day 3 of problem ConVRP-10-3-1
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Figure A.4: Solution for day 1 of problem ConVRP-10-3-2

Problem ConVRP-10-3-2
Vehicle capacity 15
Maximum route length 35.000
Number of nodes 9
Total route length 38.377
Total number of routes 2
Route Length Load Ordering

1 11.869 5 (0, 3, 4, 0)
2 26.508 15 (0, 5, 7, 10, 2, 1, 6, 8, 0)

Table A.4: Details of solution to day 1 of problem ConVRP-10-3-2
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Figure A.5: Solution for day 2 of problem ConVRP-10-3-2

Problem ConVRP-10-3-2
Vehicle capacity 15
Maximum route length 35.000
Number of nodes 8
Total route length 34.843
Total number of routes 2
Route Length Load Ordering

1 8.464 3 (0, 4, 0)
2 26.379 15 (0, 8, 1, 2, 10, 7, 5, 9, 0)

Table A.5: Details of solution to day 2 of problem ConVRP-10-3-2
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Figure A.6: Solution for day 3 of problem ConVRP-10-3-2

Problem ConVRP-10-3-2
Vehicle capacity 15
Maximum route length 35.000
Number of nodes 5
Total route length 25.848
Total number of routes 1
Route Length Load Ordering

1 25.848 9 (0, 5, 7, 1, 6, 8, 0)

Table A.6: Details of solution to day 3 of problem ConVRP-10-3-2
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Figure A.7: Solution for day 1 of problem ConVRP-10-3-3

Problem ConVRP-10-3-3
Vehicle capacity 15
Maximum route length 35.000
Number of nodes 8
Total route length 40.806
Total number of routes 2
Route Length Load Ordering

1 17.657 6 (0, 1, 10, 7, 8, 0)
2 23.149 6 (0, 3, 9, 2, 4, 0)

Table A.7: Details of solution to day 1 of problem ConVRP-10-3-3
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Figure A.8: Solution for day 2 of problem ConVRP-10-3-3

Problem ConVRP-10-3-3
Vehicle capacity 15
Maximum route length 35.000
Number of nodes 8
Total route length 40.806
Total number of routes 2
Route Length Load Ordering

1 17.657 8 (0, 1, 10, 7, 8, 0)
2 23.149 9 (0, 3, 9, 2, 4, 0)

Table A.8: Details of solution to day 2 of problem ConVRP-10-3-3
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Figure A.9: Solution for day 3 of problem ConVRP-10-3-3

Problem ConVRP-10-3-3
Vehicle capacity 15
Maximum route length 35.000
Number of nodes 8
Total route length 40.324
Total number of routes 2
Route Length Load Ordering

1 19.132 8 (0, 1, 5, 10, 6, 7, 0)
2 21.192 5 (0, 2, 9, 3, 0)

Table A.9: Details of solution to day 3 of problem ConVRP-10-3-3
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Figure A.10: Solution for day 1 of problem ConVRP-10-3-4

Problem ConVRP-10-3-4
Vehicle capacity 15
Maximum route length 35.000
Number of nodes 8
Total route length 43.099
Total number of routes 2
Route Length Load Ordering

1 24.520 14 (0, 1, 6, 8, 7, 10, 4, 0)
2 18.578 4 (0, 2, 9, 0)

Table A.10: Details of solution to day 1 of problem ConVRP-10-3-4
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Figure A.11: Solution for day 2 of problem ConVRP-10-3-4

Problem ConVRP-10-3-4
Vehicle capacity 15
Maximum route length 35.000
Number of nodes 9
Total route length 42.598
Total number of routes 2
Route Length Load Ordering

1 23.950 13 (0, 1, 6, 3, 7, 10, 4, 0)
2 18.647 5 (0, 2, 9, 5, 0)

Table A.11: Details of solution to day 2 of problem ConVRP-10-3-4
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Figure A.12: Solution for day 3 of problem ConVRP-10-3-4

Problem ConVRP-10-3-4
Vehicle capacity 15
Maximum route length 35.000
Number of nodes 7
Total route length 41.189
Total number of routes 2
Route Length Load Ordering

1 22.542 7 (0, 1, 8, 7, 10, 0)
2 18.647 6 (0, 2, 9, 5, 0)

Table A.12: Details of solution to day 3 of problem ConVRP-10-3-4
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Figure A.13: Solution for day 1 of problem ConVRP-10-3-5

Problem ConVRP-10-3-5
Vehicle capacity 15
Maximum route length 35.000
Number of nodes 9
Total route length 43.706
Total number of routes 2
Route Length Load Ordering

1 19.700 6 (0, 2, 7, 5, 0)
2 24.005 13 (0, 6, 1, 3, 9, 4, 8, 0)

Table A.13: Details of solution to day 1 of problem ConVRP-10-3-5
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Figure A.14: Solution for day 2 of problem ConVRP-10-3-5

Problem ConVRP-10-3-5
Vehicle capacity 15
Maximum route length 35.000
Number of nodes 8
Total route length 39.492
Total number of routes 2
Route Length Load Ordering

1 19.660 5 (0, 2, 5, 0)
2 19.832 12 (0, 6, 3, 9, 4, 10, 8, 0)

Table A.14: Details of solution to day 2 of problem ConVRP-10-3-5

168



0 2 4 6 8 10

0

2

4

6

8

10

6 nodes     26.12    2 routes

Figure A.15: Solution for day 3 of problem ConVRP-10-3-5

Problem ConVRP-10-3-5
Vehicle capacity 15
Maximum route length 35.000
Number of nodes 6
Total route length 26.115
Total number of routes 2
Route Length Load Ordering

1 8.308 6 (0, 2, 7, 0)
2 17.807 8 (0, 3, 9, 4, 8, 0)

Table A.15: Details of solution to day 3 of problem ConVRP-10-3-5
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Figure A.16: Solution for day 1 of problem ConVRP-12-3-1

Problem ConVRP-12-3-1
Vehicle capacity 15
Maximum route length 35.000
Number of nodes 9
Total route length 50.577
Total number of routes 2
Route Length Load Ordering

1 23.724 14 (0, 1, 2, 6, 11, 9, 3, 0)
2 26.853 5 (0, 4, 10, 8, 0)

Table A.16: Details of solution to day 1 of problem ConVRP-12-3-1
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Figure A.17: Solution for day 2 of problem ConVRP-12-3-1

Problem ConVRP-12-3-1
Vehicle capacity 15
Maximum route length 35.000
Number of nodes 9
Total route length 47.862
Total number of routes 2
Route Length Load Ordering

1 20.259 7 (0, 2, 1, 11, 9, 0)
2 27.603 7 (0, 8, 5, 10, 4, 12, 0)

Table A.17: Details of solution to day 2 of problem ConVRP-12-3-1
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Figure A.18: Solution for day 3 of problem ConVRP-12-3-1

Problem ConVRP-12-3-1
Vehicle capacity 15
Maximum route length 35.000
Number of nodes 8
Total route length 46.586
Total number of routes 2
Route Length Load Ordering

1 22.639 6 (0, 6, 11, 9, 0)
2 23.947 11 (0, 8, 5, 10, 7, 12, 0)

Table A.18: Details of solution to day 3 of problem ConVRP-12-3-1
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Figure A.19: Solution for day 1 of problem ConVRP-12-3-2

Problem ConVRP-12-3-2
Vehicle capacity 15
Maximum route length 35.000
Number of nodes 7
Total route length 22.779
Total number of routes 1
Route Length Load Ordering

1 22.779 12 (0, 4, 9, 7, 3, 8, 12, 10, 0)

Table A.19: Details of solution to day 1 of problem ConVRP-12-3-2
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Figure A.20: Solution for day 2 of problem ConVRP-12-3-2

Problem ConVRP-12-3-2
Vehicle capacity 15
Maximum route length 35.000
Number of nodes 9
Total route length 46.161
Total number of routes 2
Route Length Load Ordering

1 22.314 4 (0, 1, 2, 0)
2 23.847 15 (0, 9, 3, 5, 11, 8, 12, 10, 0)

Table A.20: Details of solution to day 2 of problem ConVRP-12-3-2
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Figure A.21: Solution for day 3 of problem ConVRP-12-3-2

Problem ConVRP-12-3-2
Vehicle capacity 15
Maximum route length 35.000
Number of nodes 6
Total route length 20.601
Total number of routes 1
Route Length Load Ordering

1 20.601 13 (0, 9, 7, 5, 6, 11, 10, 0)

Table A.21: Details of solution to day 3 of problem ConVRP-12-3-2
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Figure A.22: Solution for day 1 of problem ConVRP-12-3-3

Problem ConVRP-12-3-3
Vehicle capacity 15
Maximum route length 35.000
Number of nodes 9
Total route length 40.051
Total number of routes 2
Route Length Load Ordering

1 27.658 14 (0, 1, 12, 2, 6, 3, 10, 0)
2 12.393 6 (0, 4, 9, 7, 0)

Table A.22: Details of solution to day 1 of problem ConVRP-12-3-3
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Figure A.23: Solution for day 2 of problem ConVRP-12-3-3

Problem ConVRP-12-3-3
Vehicle capacity 15
Maximum route length 35.000
Number of nodes 10
Total route length 38.047
Total number of routes 2
Route Length Load Ordering

1 12.414 7 (0, 4, 9, 7, 5, 0)
2 25.632 13 (0, 8, 10, 3, 2, 1, 11, 0)

Table A.23: Details of solution to day 2 of problem ConVRP-12-3-3
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Figure A.24: Solution for day 3 of problem ConVRP-12-3-3

Problem ConVRP-12-3-3
Vehicle capacity 15
Maximum route length 35.000
Number of nodes 7
Total route length 41.589
Total number of routes 2
Route Length Load Ordering

1 12.342 7 (0, 5, 9, 7, 0)
2 29.247 7 (0, 6, 2, 1, 11, 0)

Table A.24: Details of solution to day 3 of problem ConVRP-12-3-3
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Figure A.25: Solution for day 1 of problem ConVRP-12-3-4

Problem ConVRP-12-3-4
Vehicle capacity 15
Maximum route length 35.000
Number of nodes 10
Total route length 52.138
Total number of routes 2
Route Length Load Ordering

1 26.773 12 (0, 1, 2, 5, 9, 7, 10, 0)
2 25.365 8 (0, 3, 11, 4, 6, 0)

Table A.25: Details of solution to day 1 of problem ConVRP-12-3-4
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Figure A.26: Solution for day 2 of problem ConVRP-12-3-4

Problem ConVRP-12-3-4
Vehicle capacity 15
Maximum route length 35.000
Number of nodes 8
Total route length 40.719
Total number of routes 2
Route Length Load Ordering

1 26.684 10 (0, 1, 5, 9, 7, 10, 0)
2 14.035 6 (0, 6, 12, 8, 0)

Table A.26: Details of solution to day 2 of problem ConVRP-12-3-4
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Figure A.27: Solution for day 3 of problem ConVRP-12-3-4

Problem ConVRP-12-3-4
Vehicle capacity 15
Maximum route length 35.000
Number of nodes 7
Total route length 48.513
Total number of routes 2
Route Length Load Ordering

1 24.538 6 (0, 1, 5, 7, 0)
2 23.975 7 (0, 6, 12, 4, 11, 0)

Table A.27: Details of solution to day 3 of problem ConVRP-12-3-4
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Figure A.28: Solution for day 1 of problem ConVRP-12-3-5

Problem ConVRP-12-3-5
Vehicle capacity 15
Maximum route length 35.000
Number of nodes 8
Total route length 49.793
Total number of routes 2
Route Length Load Ordering

1 23.612 12 (0, 3, 10, 2, 7, 6, 4, 0)
2 26.181 4 (0, 8, 9, 0)

Table A.28: Details of solution to day 1 of problem ConVRP-12-3-5
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Figure A.29: Solution for day 2 of problem ConVRP-12-3-5

Problem ConVRP-12-3-5
Vehicle capacity 15
Maximum route length 35.000
Number of nodes 5
Total route length 23.610
Total number of routes 1
Route Length Load Ordering

1 23.610 9 (0, 3, 2, 7, 6, 4, 0)

Table A.29: Details of solution to day 2 of problem ConVRP-12-3-5
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Figure A.30: Solution for day 3 of problem ConVRP-12-3-5

Problem ConVRP-12-3-5
Vehicle capacity 15
Maximum route length 35.000
Number of nodes 10
Total route length 44.016
Total number of routes 2
Route Length Load Ordering

1 25.728 15 (0, 3, 1, 2, 7, 12, 6, 4, 0)
2 18.288 5 (0, 5, 8, 11, 0)

Table A.30: Details of solution to day 3 of problem ConVRP-12-3-5
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Figure A.31: Template for problem ConVRP-1

Problem ConVRP-1
Vehicle capacity 160
Maximum route length N/A
Number of nodes 48
Total route length 521.133
Total number of routes 5
Route Length Load Ordering

1 114.327 155 (0, 2, 3, 36, 35, 20, 29, 21, 50, 16, 11, 0)
2 91.108 142 (0, 6, 23, 43, 24, 14, 25, 18, 0)
3 105.198 145 (0, 12, 17, 42, 19, 40, 41, 13, 4, 47, 0)
4 95.055 133 (0, 27, 48, 7, 26, 8, 31, 28, 22, 1, 32, 0)
5 115.444 158 (0, 37, 44, 15, 45, 33, 39, 10, 30, 9, 38, 5, 46, 0)

Table A.31: Details of template for problem ConVRP-1
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Figure A.32: Solution for day 1 of problem ConVRP-1

Problem ConVRP-1
Vehicle capacity 160
Maximum route length N/A
Number of nodes 30
Total route length 423.361
Total number of routes 5
Route Length Load Ordering

1 98.873 118 (0, 2, 35, 20, 29, 21, 50, 11, 0)
2 76.431 90 (0, 4, 41, 19, 42, 17, 12, 0)
3 87.097 105 (0, 6, 43, 24, 25, 18, 0)
4 70.608 57 (0, 26, 8, 22, 1, 32, 0)
5 90.352 89 (0, 37, 44, 15, 33, 10, 9, 38, 0)

Table A.32: Details of solution to day 1 of problem ConVRP-1
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Figure A.33: Solution for day 2 of problem ConVRP-1

Problem ConVRP-1
Vehicle capacity 160
Maximum route length N/A
Number of nodes 30
Total route length 443.199
Total number of routes 5
Route Length Load Ordering

1 92.336 52 (0, 2, 3, 36, 0)
2 86.796 84 (0, 4, 13, 41, 19, 42, 17, 0)
3 75.135 131 (0, 6, 23, 24, 14, 25, 18, 0)
4 77.189 101 (0, 27, 48, 7, 8, 22, 1, 32, 0)
5 111.744 105 (0, 44, 45, 39, 10, 30, 38, 5, 46, 0)

Table A.33: Details of solution to day 2 of problem ConVRP-1
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Figure A.34: Solution for day 3 of problem ConVRP-1

Problem ConVRP-1
Vehicle capacity 160
Maximum route length N/A
Number of nodes 40
Total route length 492.693
Total number of routes 5
Route Length Load Ordering

1 114.327 155 (0, 2, 3, 36, 35, 20, 29, 21, 50, 16, 11, 0)
2 75.135 131 (0, 6, 23, 24, 14, 25, 18, 0)
3 99.350 80 (0, 17, 42, 40, 13, 4, 47, 0)
4 94.989 116 (0, 27, 7, 26, 8, 31, 28, 22, 1, 32, 0)
5 108.892 131 (0, 37, 44, 15, 39, 30, 34, 9, 5, 46, 0)

Table A.34: Details of solution to day 3 of problem ConVRP-1
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Figure A.35: Solution for day 4 of problem ConVRP-1

Problem ConVRP-1
Vehicle capacity 160
Maximum route length N/A
Number of nodes 35
Total route length 472.593
Total number of routes 5
Route Length Load Ordering

1 114.327 155 (0, 2, 3, 36, 35, 20, 29, 21, 50, 16, 11, 0)
2 85.170 73 (0, 17, 42, 19, 13, 47, 0)
3 72.085 21 (0, 24, 43, 0)
4 87.225 103 (0, 27, 48, 7, 26, 31, 28, 22, 32, 0)
5 113.785 136 (0, 44, 45, 33, 39, 10, 30, 9, 49, 38, 46, 0)

Table A.35: Details of solution to day 4 of problem ConVRP-1
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Figure A.36: Solution for day 5 of problem ConVRP-1

Problem ConVRP-1
Vehicle capacity 160
Maximum route length N/A
Number of nodes 29
Total route length 450.296
Total number of routes 5
Route Length Load Ordering

1 99.097 66 (0, 3, 35, 21, 50, 16, 0)
2 87.070 54 (0, 4, 40, 19, 12, 0)
3 104.935 114 (0, 5, 9, 39, 33, 45, 15, 44, 37, 0)
4 72.276 90 (0, 6, 23, 24, 14, 25, 0)
5 86.918 87 (0, 32, 1, 28, 31, 26, 7, 48, 0)

Table A.36: Details of solution to day 5 of problem ConVRP-1
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Figure A.37: Template for problem ConVRP-2

Problem ConVRP-2
Vehicle capacity 140
Maximum route length N/A
Number of nodes 74
Total route length 863.371
Total number of routes 11
Route Length Load Ordering

1 80.445 135 (0, 2, 21, 61, 28, 62, 6, 0)
2 95.901 117 (0, 3, 24, 49, 56, 23, 63, 16, 51, 0)
3 53.782 127 (0, 4, 45, 29, 5, 48, 30, 0)
4 77.935 128 (0, 11, 66, 65, 38, 58, 0)
5 87.116 133 (0, 12, 72, 10, 31, 39, 9, 17, 0)
6 85.361 135 (0, 26, 7, 53, 14, 59, 19, 35, 0)
7 95.552 135 (0, 33, 1, 43, 41, 42, 64, 22, 73, 0)
8 62.306 126 (0, 34, 52, 27, 13, 54, 8, 46, 0)
9 94.640 134 (0, 40, 32, 25, 55, 18, 50, 44, 0)
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Route Length Load Ordering
10 114.877 134 (0, 57, 15, 37, 20, 70, 60, 71, 69, 36, 47, 68, 0)
11 15.456 50 (0, 67, 75, 0)

Table A.37: Details of template for problem ConVRP-2
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Figure A.38: Solution for day 1 of problem ConVRP-2

Problem ConVRP-2
Vehicle capacity 140
Maximum route length N/A
Number of nodes 54
Total route length 777.300
Total number of routes 11
Route Length Load Ordering

1 92.093 67 (0, 1, 41, 64, 73, 0)
2 77.835 117 (0, 2, 21, 61, 28, 6, 0)
3 77.846 85 (0, 3, 24, 49, 63, 16, 51, 0)
4 53.057 94 (0, 4, 45, 5, 30, 0)
5 77.935 128 (0, 11, 66, 65, 38, 58, 0)
6 82.719 104 (0, 12, 72, 10, 31, 39, 17, 0)
7 84.714 120 (0, 26, 53, 14, 59, 19, 35, 0)
8 72.109 86 (0, 40, 25, 50, 44, 0)
9 38.390 63 (0, 46, 27, 52, 0)
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Route Length Load Ordering
10 114.603 123 (0, 57, 15, 37, 20, 60, 71, 69, 36, 47, 68, 0)
11 6.000 20 (0, 75, 0)

Table A.38: Details of solution to day 1 of problem ConVRP-2
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Figure A.39: Solution for day 2 of problem ConVRP-2

Problem ConVRP-2
Vehicle capacity 140
Maximum route length N/A
Number of nodes 56
Total route length 776.692
Total number of routes 11
Route Length Load Ordering

1 80.445 135 (0, 2, 21, 61, 28, 62, 6, 0)
2 94.002 98 (0, 3, 24, 49, 56, 23, 63, 51, 0)
3 53.782 114 (0, 4, 45, 5, 48, 30, 0)
4 77.843 71 (0, 7, 53, 59, 35, 0)
5 70.445 91 (0, 11, 65, 38, 58, 0)
6 50.424 53 (0, 12, 72, 39, 17, 0)
7 70.583 58 (0, 32, 18, 44, 0)
8 95.552 135 (0, 33, 1, 43, 41, 42, 64, 22, 73, 0)
9 58.038 93 (0, 34, 52, 13, 54, 46, 0)
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Route Length Load Ordering
10 110.121 109 (0, 47, 69, 60, 70, 20, 37, 15, 57, 0)
11 15.456 50 (0, 67, 75, 0)

Table A.39: Details of solution to day 2 of problem ConVRP-2
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Figure A.40: Solution for day 3 of problem ConVRP-2

Problem ConVRP-2
Vehicle capacity 140
Maximum route length N/A
Number of nodes 56
Total route length 797.668
Total number of routes 11
Route Length Load Ordering

1 69.125 70 (0, 2, 61, 28, 0)
2 95.901 117 (0, 3, 24, 49, 56, 23, 63, 16, 51, 0)
3 46.406 106 (0, 4, 45, 29, 48, 30, 0)
4 84.682 117 (0, 12, 72, 10, 31, 9, 17, 0)
5 90.689 114 (0, 22, 64, 42, 43, 1, 33, 0)
6 93.112 73 (0, 25, 55, 18, 50, 44, 0)
7 62.306 126 (0, 34, 52, 27, 13, 54, 8, 46, 0)
8 63.979 78 (0, 35, 19, 14, 53, 0)
9 110.246 102 (0, 57, 37, 20, 71, 69, 36, 47, 68, 0)
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Route Length Load Ordering
10 65.765 30 (0, 58, 65, 0)
11 15.456 50 (0, 67, 75, 0)

Table A.40: Details of solution to day 3 of problem ConVRP-2
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Figure A.41: Solution for day 4 of problem ConVRP-2

Problem ConVRP-2
Vehicle capacity 140
Maximum route length N/A
Number of nodes 45
Total route length 750.728
Total number of routes 11
Route Length Load Ordering

1 69.014 91 (0, 2, 21, 62, 6, 0)
2 93.404 106 (0, 3, 24, 49, 56, 23, 16, 51, 0)
3 37.053 64 (0, 4, 45, 29, 0)
4 81.877 91 (0, 17, 9, 39, 31, 72, 0)
5 90.689 114 (0, 22, 64, 42, 43, 1, 33, 0)
6 61.244 80 (0, 26, 7, 53, 19, 35, 0)
7 70.355 64 (0, 40, 25, 44, 0)
8 59.369 79 (0, 46, 54, 27, 52, 0)
9 99.794 62 (0, 60, 69, 36, 47, 68, 0)
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Route Length Load Ordering
10 72.471 37 (0, 66, 0)
11 15.456 50 (0, 67, 75, 0)

Table A.41: Details of solution to day 4 of problem ConVRP-2
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Figure A.42: Solution for day 5 of problem ConVRP-2

Problem ConVRP-2
Vehicle capacity 140
Maximum route length N/A
Number of nodes 57
Total route length 770.468
Total number of routes 11
Route Length Load Ordering

1 69.496 62 (0, 3, 24, 49, 16, 0)
2 53.782 114 (0, 4, 45, 5, 48, 30, 0)
3 78.683 119 (0, 6, 62, 28, 61, 21, 74, 0)
4 57.672 78 (0, 7, 53, 14, 35, 0)
5 60.948 87 (0, 8, 54, 27, 52, 34, 0)
6 77.935 128 (0, 11, 66, 65, 38, 58, 0)
7 64.896 79 (0, 12, 72, 10, 39, 17, 0)
8 102.985 93 (0, 15, 20, 70, 60, 69, 36, 47, 0)
9 95.552 135 (0, 33, 1, 43, 41, 42, 64, 22, 73, 0)
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Route Length Load Ordering
10 93.062 112 (0, 40, 32, 25, 55, 18, 44, 0)
11 15.456 50 (0, 67, 75, 0)

Table A.42: Details of solution to day 5 of problem ConVRP-2
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Figure A.43: Template for problem ConVRP-3

Problem ConVRP-3
Vehicle capacity 200
Maximum route length N/A
Number of nodes 95
Total route length 795.394
Total number of routes 7
Route Length Load Ordering

1 59.602 200 (0, 6, 96, 99, 59, 93, 85, 100, 97, 95, 13, 53, 0)
2 113.086 197 (0, 12, 54, 4, 25, 55, 24, 29, 80, 68, 79, 3, 77, 76, 28, 0)
3 135.598 204 (0, 18, 7, 82, 48, 47, 36, 46, 8, 45, 17, 61, 5, 84, 83, 60, 89, 0)
4 125.970 200 (0, 27, 31, 10, 32, 90, 63, 64, 49, 19, 11, 62, 88, 52, 0)
5 100.174 207 (0, 40, 21, 72, 56, 39, 67, 23, 75, 22, 74, 73, 58, 0)
6 140.143 207 (0, 50, 33, 51, 9, 81, 78, 34, 35, 71, 65, 66, 20, 30, 1, 69, 0)
7 120.821 202 (0, 87, 42, 15, 43, 14, 44, 38, 86, 16, 91, 98, 37, 92, 94, 0)

Table A.43: Details of template for problem ConVRP-3
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Figure A.44: Solution for day 1 of problem ConVRP-3

Problem ConVRP-3
Vehicle capacity 200
Maximum route length N/A
Number of nodes 70
Total route length 740.199
Total number of routes 7
Route Length Load Ordering

1 55.587 166 (0, 6, 59, 93, 85, 100, 97, 95, 13, 0)
2 112.054 168 (0, 12, 54, 4, 25, 24, 29, 80, 68, 79, 3, 28, 0)
3 126.638 154 (0, 18, 7, 82, 47, 36, 8, 45, 17, 5, 84, 83, 60, 89, 0)
4 96.656 120 (0, 21, 72, 56, 67, 22, 74, 73, 58, 0)
5 114.953 147 (0, 27, 10, 32, 90, 63, 49, 11, 62, 88, 52, 0)
6 104.347 76 (0, 42, 15, 43, 86, 91, 98, 37, 92, 0)
7 129.963 167 (0, 51, 81, 78, 34, 35, 71, 65, 66, 20, 30, 1, 69, 0)

Table A.44: Details of solution to day 1 of problem ConVRP-3
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Figure A.45: Solution for day 2 of problem ConVRP-3

Problem ConVRP-3
Vehicle capacity 200
Maximum route length N/A
Number of nodes 59
Total route length 704.578
Total number of routes 7
Route Length Load Ordering

1 120.636 144 (0, 1, 30, 20, 66, 65, 71, 35, 81, 51, 0)
2 89.663 83 (0, 3, 68, 80, 24, 25, 4, 0)
3 47.376 121 (0, 6, 96, 59, 93, 95, 13, 53, 0)
4 125.650 112 (0, 7, 82, 47, 36, 46, 8, 45, 17, 61, 84, 83, 0)
5 108.170 100 (0, 27, 10, 32, 63, 64, 19, 88, 0)
6 103.889 147 (0, 58, 2, 73, 74, 22, 67, 39, 56, 72, 0)
7 109.194 154 (0, 87, 42, 57, 15, 43, 14, 44, 86, 91, 94, 0)

Table A.45: Details of solution to day 2 of problem ConVRP-3
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Figure A.46: Solution for day 3 of problem ConVRP-3

Problem ConVRP-3
Vehicle capacity 200
Maximum route length N/A
Number of nodes 72
Total route length 721.192
Total number of routes 7
Route Length Load Ordering

1 46.445 81 (0, 6, 99, 97, 95, 13, 53, 0)
2 127.403 124 (0, 7, 82, 47, 36, 8, 17, 61, 5, 84, 83, 60, 0)
3 103.529 140 (0, 12, 4, 25, 55, 29, 80, 68, 3, 77, 28, 0)
4 110.209 146 (0, 27, 31, 10, 32, 63, 64, 19, 62, 88, 0)
5 99.611 199 (0, 40, 21, 72, 56, 39, 67, 23, 75, 22, 73, 58, 0)
6 120.566 171 (0, 50, 33, 51, 81, 78, 34, 35, 71, 66, 20, 30, 1, 69, 0)
7 113.429 177 (0, 87, 42, 15, 14, 38, 86, 16, 91, 98, 37, 92, 94, 0)

Table A.46: Details of solution to day 3 of problem ConVRP-3
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Figure A.47: Solution for day 4 of problem ConVRP-3

Problem ConVRP-3
Vehicle capacity 200
Maximum route length N/A
Number of nodes 63
Total route length 722.269
Total number of routes 7
Route Length Load Ordering

1 56.596 171 (0, 6, 96, 59, 93, 85, 100, 97, 13, 53, 0)
2 114.018 128 (0, 7, 48, 47, 36, 45, 61, 83, 89, 0)
3 118.425 120 (0, 10, 32, 90, 63, 49, 19, 11, 88, 0)
4 112.876 194 (0, 12, 54, 4, 25, 55, 29, 80, 68, 79, 3, 77, 76, 28, 0)
5 106.188 87 (0, 42, 15, 38, 16, 98, 92, 94, 0)
6 128.104 135 (0, 50, 9, 78, 35, 71, 65, 66, 20, 30, 70, 0)
7 86.062 154 (0, 58, 73, 22, 75, 23, 39, 56, 72, 0)

Table A.47: Details of solution to day 4 of problem ConVRP-3

207



-20 0 20

-20

0

20

40

73 nodes    739.98    7 routes

Figure A.48: Solution for day 5 of problem ConVRP-3

Problem ConVRP-3
Vehicle capacity 200
Maximum route length N/A
Number of nodes 73
Total route length 739.981
Total number of routes 7
Route Length Load Ordering

1 130.413 140 (0, 1, 20, 65, 35, 34, 78, 81, 9, 51, 33, 50, 0)
2 109.680 140 (0, 18, 82, 48, 46, 8, 17, 61, 5, 84, 60, 89, 0)
3 106.910 197 (0, 26, 12, 54, 4, 25, 24, 68, 79, 3, 77, 76, 28, 0)
4 124.993 175 (0, 27, 31, 32, 90, 63, 64, 49, 19, 11, 62, 52, 0)
5 93.892 151 (0, 40, 21, 72, 56, 39, 23, 75, 41, 74, 73, 0)
6 53.331 71 (0, 53, 95, 100, 99, 96, 0)
7 120.761 175 (0, 87, 42, 15, 43, 14, 44, 38, 86, 16, 91, 98, 37, 92, 0)

Table A.48: Details of solution to day 5 of problem ConVRP-3
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Figure A.49: Template for problem ConVRP-4

Problem ConVRP-4
Vehicle capacity 200
Maximum route length N/A
Number of nodes 148
Total route length 1053.149
Total number of routes 12
Route Length Load Ordering

1 14.705 35 (0, 5, 103, 0)
2 66.105 200 (0, 11, 126, 127, 53, 129, 131, 83, 2, 100, 51, 32, 77, 0)
3 49.241 198 (0, 12, 144, 145, 109, 148, 135, 143, 149, 4, 56, 0)
4 143.378 203 (0, 21, 79, 128, 84, 35, 85, 36, 115, 121, 116, 3, 59, 20, 101, 22, 0)
5 118.753 204 (0, 27, 48, 112, 7, 61, 114, 99, 43, 86, 69, 23, 57, 6, 102, 46, 0)
6 120.822 199 (0, 37, 92, 42, 93, 64, 88, 40, 136, 13, 67, 134, 110, 18, 146, 0)
7 71.369 188 (0, 38, 62, 9, 104, 30, 34, 74, 50, 118, 16, 78, 0)
8 76.137 203 (0, 47, 55, 111, 66, 41, 94, 19, 141, 150, 87, 142, 147, 17, 63, 0)
9 93.801 202 (0, 68, 132, 98, 97, 24, 96, 95, 25, 58, 14, 133, 139, 0)
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Route Length Load Ordering
10 110.536 201 (0, 76, 49, 10, 54, 105, 75, 39, 89, 117, 73, 106, 123, 71, 90, 0)
11 95.190 191 (0, 81, 138, 60, 8, 26, 113, 140, 82, 31, 28, 70, 80, 120, 1, 119, 0)
12 93.112 199 (0, 108, 52, 15, 122, 124, 125, 33, 72, 91, 45, 65, 107, 44, 137, 0)

Table A.49: Details of template for problem ConVRP-4
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Figure A.50: Solution for day 1 of problem ConVRP-4

Problem ConVRP-4
Vehicle capacity 200
Maximum route length N/A
Number of nodes 117
Total route length 1013.700
Total number of routes 12
Route Length Load Ordering

1 14.705 35 (0, 5, 103, 0)
2 74.132 154 (0, 17, 147, 142, 87, 150, 141, 19, 94, 41, 66, 111, 47, 0)
3 135.858 161 (0, 21, 84, 35, 85, 115, 121, 116, 59, 20, 101, 0)
4 108.072 122 (0, 27, 7, 61, 114, 99, 69, 6, 46, 0)
5 64.230 142 (0, 32, 51, 100, 2, 83, 131, 53, 127, 126, 0)
6 70.821 175 (0, 38, 9, 104, 30, 34, 74, 130, 50, 118, 16, 78, 0)
7 90.112 147 (0, 44, 107, 65, 45, 91, 33, 125, 122, 15, 52, 108, 0)
8 49.212 160 (0, 56, 4, 143, 135, 148, 109, 145, 144, 0)
9 108.983 164 (0, 76, 49, 10, 54, 105, 75, 39, 117, 73, 123, 71, 90, 0)

211



Route Length Load Ordering
10 120.028 183 (0, 92, 42, 93, 64, 88, 40, 136, 13, 67, 110, 18, 146, 0)
11 85.223 141 (0, 119, 1, 120, 80, 31, 82, 140, 113, 26, 8, 60, 138, 0)
12 92.325 154 (0, 132, 97, 24, 96, 95, 25, 58, 14, 133, 139, 0)

Table A.50: Details of solution to day 1 of problem ConVRP-4
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Figure A.51: Solution for day 2 of problem ConVRP-4

Problem ConVRP-4
Vehicle capacity 200
Maximum route length N/A
Number of nodes 110
Total route length 998.307
Total number of routes 12
Route Length Load Ordering

1 95.063 174 (0, 1, 120, 80, 70, 28, 82, 140, 113, 26, 8, 60, 138, 81, 0)
2 47.724 148 (0, 4, 149, 143, 135, 148, 109, 12, 0)
3 14.142 21 (0, 5, 0)
4 62.595 161 (0, 11, 127, 53, 129, 83, 2, 100, 51, 32, 77, 0)
5 140.932 168 (0, 21, 128, 84, 35, 85, 36, 115, 121, 116, 3, 20, 22, 0)
6 114.062 118 (0, 27, 48, 112, 114, 43, 86, 69, 57, 6, 46, 0)
7 114.389 165 (0, 37, 42, 93, 88, 136, 13, 134, 110, 18, 146, 0)
8 61.060 79 (0, 38, 62, 34, 74, 78, 0)
9 72.712 158 (0, 47, 111, 66, 41, 94, 19, 141, 87, 147, 17, 63, 0)
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Route Length Load Ordering
10 87.231 134 (0, 68, 132, 98, 96, 25, 58, 14, 133, 0)
11 110.312 192 (0, 71, 123, 106, 73, 117, 89, 39, 75, 105, 54, 10, 49, 76, 0)
12 78.086 156 (0, 108, 52, 122, 124, 33, 72, 91, 45, 44, 137, 0)

Table A.51: Details of solution to day 2 of problem ConVRP-4
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Figure A.52: Solution for day 3 of problem ConVRP-4

Problem ConVRP-4
Vehicle capacity 200
Maximum route length N/A
Number of nodes 103
Total route length 977.360
Total number of routes 12
Route Length Load Ordering

1 46.089 127 (0, 4, 149, 143, 148, 109, 145, 12, 0)
2 64.579 177 (0, 11, 127, 53, 129, 131, 83, 2, 100, 32, 77, 0)
3 67.526 61 (0, 17, 147, 142, 87, 150, 141, 94, 0)
4 128.046 133 (0, 21, 79, 128, 35, 85, 36, 115, 3, 20, 101, 22, 0)
5 112.641 132 (0, 37, 92, 42, 93, 88, 40, 13, 18, 146, 0)
6 55.261 94 (0, 38, 62, 9, 104, 16, 78, 0)
7 118.501 159 (0, 46, 6, 69, 86, 43, 99, 114, 61, 7, 112, 48, 0)
8 92.067 178 (0, 68, 132, 98, 97, 24, 96, 95, 25, 14, 133, 0)
9 108.163 190 (0, 71, 123, 106, 73, 117, 89, 39, 75, 54, 10, 49, 76, 0)
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Route Length Load Ordering
10 85.915 94 (0, 81, 138, 60, 26, 113, 140, 31, 120, 119, 0)
11 8.944 14 (0, 103, 0)
12 89.629 146 (0, 108, 52, 15, 122, 124, 125, 45, 65, 44, 137, 0)

Table A.52: Details of solution to day 3 of problem ConVRP-4
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Figure A.53: Solution for day 4 of problem ConVRP-4

Problem ConVRP-4
Vehicle capacity 200
Maximum route length N/A
Number of nodes 103
Total route length 980.019
Total number of routes 12
Route Length Load Ordering

1 14.705 35 (0, 5, 103, 0)
2 58.554 134 (0, 11, 126, 127, 53, 129, 2, 51, 32, 0)
3 45.282 93 (0, 12, 145, 148, 143, 149, 56, 0)
4 73.278 144 (0, 17, 147, 142, 150, 19, 94, 66, 111, 55, 47, 0)
5 127.069 137 (0, 22, 101, 20, 59, 3, 116, 85, 84, 128, 79, 0)
6 118.619 194 (0, 27, 48, 112, 7, 61, 114, 99, 43, 86, 69, 23, 6, 102, 0)
7 107.294 135 (0, 37, 92, 42, 64, 40, 136, 13, 67, 134, 110, 146, 0)
8 67.400 84 (0, 38, 62, 104, 30, 74, 50, 0)
9 96.994 150 (0, 49, 10, 54, 105, 75, 39, 89, 73, 106, 123, 71, 0)
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Route Length Load Ordering
10 93.817 115 (0, 81, 138, 60, 113, 140, 82, 70, 120, 1, 119, 0)
11 86.378 85 (0, 97, 24, 25, 58, 133, 0)
12 90.627 160 (0, 108, 52, 15, 122, 124, 125, 33, 45, 65, 107, 137, 0)

Table A.53: Details of solution to day 4 of problem ConVRP-4
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Figure A.54: Solution for day 5 of problem ConVRP-4

Problem ConVRP-4
Vehicle capacity 200
Maximum route length N/A
Number of nodes 111
Total route length 983.521
Total number of routes 12
Route Length Load Ordering

1 14.705 35 (0, 5, 103, 0)
2 81.715 56 (0, 10, 105, 89, 123, 90, 0)
3 42.645 147 (0, 12, 144, 145, 109, 143, 149, 4, 56, 0)
4 134.101 183 (0, 22, 101, 20, 59, 3, 116, 121, 115, 36, 85, 35, 84, 0)
5 64.603 138 (0, 32, 51, 100, 2, 83, 131, 129, 126, 0)
6 119.371 166 (0, 37, 92, 42, 93, 64, 88, 40, 136, 67, 18, 146, 0)
7 70.325 173 (0, 38, 62, 9, 104, 30, 34, 74, 50, 118, 78, 0)
8 110.903 154 (0, 46, 102, 6, 57, 23, 69, 43, 114, 61, 7, 112, 48, 0)
9 72.477 185 (0, 47, 55, 111, 66, 41, 94, 150, 142, 147, 17, 63, 0)
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Route Length Load Ordering
10 89.630 169 (0, 52, 15, 122, 124, 125, 33, 72, 45, 65, 44, 137, 0)
11 91.161 141 (0, 68, 132, 97, 24, 96, 25, 14, 133, 139, 0)
12 91.885 149 (0, 81, 138, 26, 113, 82, 31, 28, 70, 80, 120, 1, 119, 0)

Table A.54: Details of solution to day 5 of problem ConVRP-4
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Figure A.55: Template for problem ConVRP-5

Problem ConVRP-5
Vehicle capacity 200
Maximum route length N/A
Number of nodes 194
Total route length 1331.805
Total number of routes 16
Route Length Load Ordering

1 81.727 198 (0, 2, 101, 64, 28, 156, 114, 142, 91, 141, 22, 93, 186, 86, 112, 0)
2 79.200 197 (0, 3, 181, 147, 73, 146, 18, 118, 72, 106, 44, 55, 151, 95, 0)
3 53.948 189 (0, 4, 87, 111, 27, 179, 99, 167, 102, 8, 176, 175, 0)
4 46.461 193 (0, 6, 33, 195, 53, 198, 192, 184, 158, 193, 0)
5 61.741 191 (0, 17, 130, 109, 39, 57, 9, 161, 97, 187, 76, 0)
6 109.575 198 (0, 26, 100, 129, 52, 11, 170, 164, 85, 134, 84, 132, 60, 0)
7 81.671 182 (0, 29, 103, 88, 37, 138, 122, 36, 155, 47, 120, 152, 0)
8 95.395 195 (0, 34, 65, 178, 78, 177, 14, 133, 19, 70, 128, 123, 13, 83, 58, 0)
9 77.861 198 (0, 54, 30, 48, 59, 5, 171, 21, 82, 121, 140, 94, 0)
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Route Length Load Ordering
10 54.566 171 (0, 61, 96, 104, 23, 183, 67, 159, 16, 188, 0)
11 85.926 190 (0, 66, 196, 197, 43, 190, 41, 90, 115, 62, 116, 144, 74, 49, 182, 0)
12 104.427 194 (0, 81, 71, 119, 38, 165, 77, 10, 80, 131, 189, 162, 75, 12, 168, 0)
13 98.327 197 (0, 105, 160, 185, 89, 137, 143, 68, 113, 42, 199, 136, 191, 1, 194,

0)
14 128.375 198 (0, 117, 63, 107, 24, 145, 135, 92, 148, 163, 25, 56, 110, 169, 50,

126, 0)
15 99.255 191 (0, 125, 98, 45, 153, 79, 15, 154, 124, 20, 166, 174, 173, 139, 0)
16 73.350 191 (0, 127, 46, 35, 180, 69, 108, 150, 7, 51, 149, 0)

Table A.55: Details of template for problem ConVRP-5
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Figure A.56: Solution for day 1 of problem ConVRP-5

Problem ConVRP-5
Vehicle capacity 200
Maximum route length N/A
Number of nodes 142
Total route length 1283.639
Total number of routes 16
Route Length Load Ordering

1 97.784 166 (0, 1, 191, 136, 199, 113, 68, 143, 137, 89, 185, 160, 105, 0)
2 76.839 140 (0, 2, 101, 64, 28, 114, 142, 91, 141, 22, 112, 0)
3 69.795 121 (0, 3, 181, 147, 146, 44, 151, 95, 0)
4 49.974 144 (0, 4, 87, 111, 27, 167, 176, 175, 0)
5 46.393 155 (0, 6, 33, 53, 198, 192, 184, 158, 0)
6 104.481 177 (0, 26, 100, 52, 11, 170, 164, 85, 134, 84, 132, 60, 0)
7 81.131 118 (0, 29, 88, 37, 122, 36, 155, 47, 120, 0)
8 76.355 142 (0, 30, 5, 171, 21, 82, 121, 140, 0)
9 89.670 106 (0, 34, 78, 177, 133, 19, 70, 123, 13, 83, 0)
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Route Length Load Ordering
10 49.865 143 (0, 61, 96, 104, 183, 67, 188, 0)
11 84.374 160 (0, 66, 196, 197, 43, 41, 115, 62, 144, 74, 49, 182, 0)
12 102.564 135 (0, 75, 162, 189, 80, 10, 165, 38, 119, 71, 81, 0)
13 60.147 92 (0, 76, 187, 9, 57, 109, 0)
14 123.858 162 (0, 117, 63, 107, 24, 145, 135, 92, 148, 163, 25, 50, 126, 0)
15 99.255 191 (0, 125, 98, 45, 153, 79, 15, 154, 124, 20, 166, 174, 173, 172, 0)
16 71.154 128 (0, 127, 69, 108, 150, 7, 51, 149, 0)

Table A.56: Details of solution to day 1 of problem ConVRP-5
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Figure A.57: Solution for day 2 of problem ConVRP-5

Problem ConVRP-5
Vehicle capacity 200
Maximum route length N/A
Number of nodes 138
Total route length 1276.913
Total number of routes 16
Route Length Load Ordering

1 60.716 110 (0, 2, 101, 156, 141, 93, 186, 112, 0)
2 75.780 158 (0, 3, 181, 147, 73, 146, 18, 72, 55, 151, 95, 0)
3 52.011 141 (0, 4, 111, 179, 99, 167, 102, 176, 175, 0)
4 41.212 116 (0, 6, 195, 198, 192, 158, 193, 0)
5 54.503 156 (0, 16, 159, 67, 183, 23, 104, 96, 61, 0)
6 104.096 134 (0, 26, 100, 52, 170, 164, 134, 84, 132, 60, 0)
7 92.434 155 (0, 34, 65, 178, 177, 14, 133, 128, 123, 13, 83, 0)
8 75.256 120 (0, 54, 48, 5, 171, 121, 140, 94, 0)
9 127.502 141 (0, 63, 107, 145, 135, 148, 163, 25, 56, 110, 169, 126, 0)
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Route Length Load Ordering
10 61.415 116 (0, 76, 161, 57, 39, 109, 130, 0)
11 99.107 145 (0, 98, 45, 153, 79, 15, 124, 20, 166, 173, 0)
12 79.890 155 (0, 103, 88, 138, 122, 36, 155, 47, 120, 152, 0)
13 95.511 122 (0, 105, 160, 89, 137, 143, 68, 113, 42, 199, 136, 0)
14 103.077 102 (0, 119, 38, 165, 77, 80, 189, 162, 168, 0)
15 69.917 155 (0, 127, 46, 35, 69, 108, 7, 51, 149, 0)
16 84.486 160 (0, 182, 49, 74, 144, 116, 62, 115, 41, 190, 43, 197, 196, 0)

Table A.57: Details of solution to day 2 of problem ConVRP-5
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Figure A.58: Solution for day 3 of problem ConVRP-5

Problem ConVRP-5
Vehicle capacity 200
Maximum route length N/A
Number of nodes 137
Total route length 1279.269
Total number of routes 16
Route Length Load Ordering

1 51.913 110 (0, 4, 87, 111, 179, 99, 8, 176, 0)
2 61.741 191 (0, 17, 130, 109, 39, 57, 9, 161, 97, 187, 76, 0)
3 104.387 120 (0, 26, 100, 52, 11, 164, 134, 132, 0)
4 80.219 106 (0, 29, 88, 138, 122, 47, 0)
5 46.371 147 (0, 33, 195, 53, 198, 192, 184, 158, 0)
6 75.102 137 (0, 54, 30, 48, 5, 171, 82, 140, 0)
7 92.584 173 (0, 58, 83, 13, 128, 70, 19, 133, 14, 177, 78, 178, 65, 0)
8 54.094 168 (0, 61, 96, 104, 23, 183, 67, 16, 188, 0)
9 83.106 84 (0, 66, 43, 190, 90, 115, 144, 0)
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Route Length Load Ordering
10 93.190 153 (0, 71, 38, 165, 77, 10, 80, 131, 12, 168, 0)
11 76.596 116 (0, 86, 93, 22, 91, 142, 114, 101, 2, 157, 0)
12 78.115 154 (0, 95, 151, 55, 44, 72, 118, 18, 73, 147, 181, 0)
13 91.200 140 (0, 105, 160, 185, 89, 137, 68, 42, 136, 1, 194, 0)
14 120.686 167 (0, 117, 63, 107, 24, 145, 135, 92, 148, 163, 25, 110, 126, 0)
15 97.994 153 (0, 125, 98, 153, 79, 15, 154, 124, 20, 166, 174, 0)
16 71.971 149 (0, 127, 46, 35, 69, 150, 7, 51, 149, 0)

Table A.58: Details of solution to day 3 of problem ConVRP-5
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Figure A.59: Solution for day 4 of problem ConVRP-5

Problem ConVRP-5
Vehicle capacity 200
Maximum route length N/A
Number of nodes 151
Total route length 1307.124
Total number of routes 16
Route Length Load Ordering

1 78.483 175 (0, 2, 101, 28, 156, 114, 142, 141, 22, 93, 186, 86, 112, 0)
2 69.156 131 (0, 3, 147, 118, 72, 106, 44, 55, 151, 95, 0)
3 53.948 152 (0, 4, 111, 27, 99, 167, 102, 176, 175, 0)
4 41.248 143 (0, 6, 33, 195, 53, 192, 158, 193, 0)
5 58.197 158 (0, 17, 40, 109, 9, 161, 97, 187, 76, 0)
6 109.566 183 (0, 26, 100, 129, 52, 11, 164, 85, 134, 84, 132, 60, 0)
7 91.890 142 (0, 34, 178, 14, 133, 19, 123, 83, 58, 0)
8 73.055 168 (0, 51, 7, 150, 108, 69, 180, 46, 127, 0)
9 77.075 153 (0, 54, 30, 59, 5, 21, 82, 121, 140, 94, 0)
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Route Length Load Ordering
10 85.125 147 (0, 66, 196, 43, 190, 90, 115, 62, 144, 74, 0)
11 104.427 194 (0, 81, 71, 119, 38, 165, 77, 10, 80, 131, 189, 162, 75, 12, 168, 0)
12 80.490 120 (0, 88, 37, 138, 122, 36, 155, 152, 0)
13 53.896 116 (0, 96, 23, 183, 67, 159, 16, 188, 0)
14 90.210 107 (0, 105, 160, 89, 137, 143, 68, 42, 136, 191, 194, 0)
15 141.482 194 (0, 110, 56, 25, 31, 163, 148, 92, 135, 24, 107, 63, 117, 0)
16 98.877 183 (0, 125, 98, 45, 153, 79, 15, 154, 124, 20, 166, 174, 139, 0)

Table A.59: Details of solution to day 4 of problem ConVRP-5
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Figure A.60: Solution for day 5 of problem ConVRP-5

Problem ConVRP-5
Vehicle capacity 200
Maximum route length N/A
Number of nodes 141
Total route length 1269.830
Total number of routes 16
Route Length Load Ordering

1 79.078 146 (0, 2, 64, 28, 114, 142, 91, 141, 93, 86, 112, 0)
2 78.121 181 (0, 3, 147, 73, 146, 18, 118, 72, 106, 44, 55, 151, 95, 0)
3 53.948 170 (0, 4, 87, 111, 27, 99, 167, 8, 176, 175, 0)
4 40.961 115 (0, 6, 33, 195, 53, 192, 193, 0)
5 61.736 145 (0, 17, 130, 109, 39, 57, 161, 187, 76, 0)
6 92.376 128 (0, 34, 78, 177, 14, 133, 19, 123, 83, 58, 0)
7 66.724 119 (0, 46, 35, 180, 69, 7, 149, 0)
8 121.363 112 (0, 50, 169, 110, 56, 25, 163, 148, 92, 135, 0)
9 75.308 125 (0, 54, 48, 59, 5, 171, 121, 140, 94, 0)
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Route Length Load Ordering
10 50.601 124 (0, 61, 96, 104, 183, 159, 16, 188, 0)
11 84.453 155 (0, 66, 197, 43, 190, 41, 90, 115, 116, 144, 74, 49, 182, 0)
12 92.141 145 (0, 81, 38, 77, 10, 80, 131, 189, 162, 12, 168, 0)
13 79.628 99 (0, 103, 138, 122, 155, 152, 0)
14 98.327 197 (0, 105, 160, 185, 89, 137, 143, 68, 113, 42, 199, 136, 191, 1, 194,

0)
15 87.314 140 (0, 125, 98, 45, 153, 79, 15, 20, 173, 139, 0)
16 107.752 126 (0, 129, 52, 11, 170, 164, 85, 132, 0)

Table A.60: Details of solution to day 5 of problem ConVRP-5
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Figure A.61: Template for problem ConVRP-6

Problem ConVRP-6
Vehicle capacity 160
Maximum route length 200.000
Number of nodes 47
Total route length 515.022
Total number of routes 5
Route Length Load Ordering

1 104.014 158 (0, 5, 49, 10, 39, 33, 45, 15, 44, 37, 17, 12, 0)
2 117.049 167 (0, 6, 14, 25, 24, 43, 23, 7, 26, 8, 48, 0)
3 82.705 115 (0, 11, 16, 29, 21, 34, 50, 9, 38, 46, 0)
4 100.637 127 (0, 18, 13, 40, 19, 42, 4, 47, 0)
5 110.617 136 (0, 27, 1, 22, 31, 28, 3, 36, 35, 2, 32, 0)

Table A.61: Details of template for problem ConVRP-6
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Figure A.62: Solution for day 1 of problem ConVRP-6

Problem ConVRP-6
Vehicle capacity 160
Maximum route length 200.000
Number of nodes 36
Total route length 496.382
Total number of routes 5
Route Length Load Ordering

1 109.357 133 (0, 6, 14, 25, 43, 23, 7, 8, 0)
2 79.979 96 (0, 11, 16, 29, 34, 50, 38, 46, 0)
3 98.048 111 (0, 12, 37, 44, 15, 45, 39, 10, 49, 0)
4 99.156 118 (0, 18, 13, 40, 19, 42, 47, 0)
5 109.843 105 (0, 27, 1, 22, 31, 3, 36, 2, 32, 0)

Table A.62: Details of solution to day 1 of problem ConVRP-6
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Figure A.63: Solution for day 2 of problem ConVRP-6

Problem ConVRP-6
Vehicle capacity 160
Maximum route length 200.000
Number of nodes 34
Total route length 453.003
Total number of routes 5
Route Length Load Ordering

1 92.715 100 (0, 2, 35, 3, 28, 22, 27, 0)
2 100.243 118 (0, 6, 24, 43, 23, 7, 26, 8, 48, 0)
3 70.858 53 (0, 11, 16, 29, 21, 46, 0)
4 98.361 134 (0, 12, 37, 44, 15, 45, 33, 39, 10, 49, 0)
5 90.826 114 (0, 18, 13, 40, 19, 4, 47, 0)

Table A.63: Details of solution to day 2 of problem ConVRP-6
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Figure A.64: Solution for day 3 of problem ConVRP-6

Problem ConVRP-6
Vehicle capacity 160
Maximum route length 200.000
Number of nodes 34
Total route length 467.888
Total number of routes 5
Route Length Load Ordering

1 100.597 102 (0, 4, 42, 19, 40, 13, 18, 0)
2 97.522 109 (0, 5, 49, 10, 39, 45, 37, 17, 12, 0)
3 109.108 132 (0, 6, 14, 25, 24, 43, 26, 8, 48, 0)
4 68.650 78 (0, 11, 16, 21, 50, 9, 38, 0)
5 92.011 73 (0, 27, 1, 22, 28, 35, 32, 0)

Table A.64: Details of solution to day 3 of problem ConVRP-6
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Figure A.65: Solution for day 4 of problem ConVRP-6

Problem ConVRP-6
Vehicle capacity 160
Maximum route length 200.000
Number of nodes 34
Total route length 466.436
Total number of routes 5
Route Length Load Ordering

1 104.281 83 (0, 1, 31, 28, 3, 36, 35, 32, 0)
2 93.271 75 (0, 4, 19, 40, 41, 13, 0)
3 85.682 136 (0, 5, 49, 33, 45, 15, 44, 37, 12, 0)
4 100.516 101 (0, 14, 24, 43, 23, 7, 26, 48, 0)
5 82.685 81 (0, 16, 29, 21, 34, 50, 9, 46, 0)

Table A.65: Details of solution to day 4 of problem ConVRP-6
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Figure A.66: Solution for day 5 of problem ConVRP-6

Problem ConVRP-6
Vehicle capacity 160
Maximum route length 200.000
Number of nodes 35
Total route length 470.530
Total number of routes 5
Route Length Load Ordering

1 81.703 102 (0, 11, 16, 21, 50, 30, 9, 38, 46, 0)
2 100.231 117 (0, 12, 17, 37, 44, 33, 39, 10, 49, 0)
3 113.134 142 (0, 14, 25, 43, 23, 7, 26, 8, 48, 0)
4 67.170 84 (0, 18, 19, 4, 47, 0)
5 108.293 100 (0, 22, 31, 3, 36, 35, 2, 32, 0)

Table A.66: Details of solution to day 5 of problem ConVRP-6
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Figure A.67: Template for problem ConVRP-7

Problem ConVRP-7
Vehicle capacity 140
Maximum route length 160.000
Number of nodes 75
Total route length 944.589
Total number of routes 12
Route Length Load Ordering

1 93.894 102 (0, 1, 43, 41, 42, 64, 22, 0)
2 59.334 124 (0, 4, 45, 29, 5, 47, 48, 0)
3 50.966 106 (0, 6, 33, 73, 62, 2, 68, 0)
4 81.002 141 (0, 7, 35, 14, 59, 19, 8, 67, 0)
5 50.447 89 (0, 12, 40, 44, 3, 51, 0)
6 91.146 94 (0, 16, 49, 24, 56, 23, 63, 0)
7 92.387 104 (0, 17, 32, 50, 18, 55, 25, 0)
8 87.031 136 (0, 26, 58, 10, 31, 9, 39, 72, 0)
9 88.768 132 (0, 30, 21, 69, 61, 28, 74, 75, 0)
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Route Length Load Ordering
10 78.610 132 (0, 34, 52, 27, 15, 57, 13, 54, 46, 0)
11 93.846 75 (0, 36, 71, 60, 70, 20, 37, 0)
12 77.158 129 (0, 38, 65, 66, 11, 53, 0)

Table A.67: Details of template for problem ConVRP-7
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Figure A.68: Solution for day 1 of problem ConVRP-7

Problem ConVRP-7
Vehicle capacity 140
Maximum route length 160.000
Number of nodes 54
Total route length 874.216
Total number of routes 12
Route Length Load Ordering

1 93.894 102 (0, 1, 43, 41, 42, 64, 22, 0)
2 50.322 72 (0, 4, 45, 5, 0)
3 42.374 35 (0, 6, 73, 68, 0)
4 79.693 95 (0, 7, 35, 59, 8, 67, 0)
5 48.523 72 (0, 12, 40, 3, 51, 0)
6 92.353 90 (0, 17, 32, 50, 18, 55, 0)
7 54.544 66 (0, 26, 58, 10, 72, 0)
8 88.768 132 (0, 30, 21, 69, 61, 28, 74, 75, 0)
9 78.417 105 (0, 34, 52, 27, 15, 57, 13, 54, 0)
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Route Length Load Ordering
10 79.800 48 (0, 49, 56, 23, 63, 0)
11 76.855 105 (0, 53, 11, 66, 65, 0)
12 88.671 14 (0, 70, 71, 0)

Table A.68: Details of solution to day 1 of problem ConVRP-7
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Figure A.69: Solution for day 2 of problem ConVRP-7

Problem ConVRP-7
Vehicle capacity 140
Maximum route length 160.000
Number of nodes 60
Total route length 906.544
Total number of routes 12
Route Length Load Ordering

1 93.894 102 (0, 1, 43, 41, 42, 64, 22, 0)
2 59.319 104 (0, 4, 45, 29, 5, 47, 0)
3 80.987 111 (0, 7, 35, 14, 59, 19, 8, 0)
4 90.962 88 (0, 16, 49, 24, 56, 63, 0)
5 85.545 69 (0, 17, 32, 55, 25, 0)
6 81.219 107 (0, 26, 58, 10, 31, 39, 72, 0)
7 86.107 75 (0, 30, 69, 61, 74, 75, 0)
8 67.807 116 (0, 34, 52, 27, 15, 57, 13, 46, 0)
9 91.891 62 (0, 36, 71, 70, 20, 37, 0)
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Route Length Load Ordering
10 77.010 92 (0, 38, 65, 66, 53, 0)
11 47.407 73 (0, 40, 44, 3, 51, 0)
12 44.395 42 (0, 68, 2, 73, 0)

Table A.69: Details of solution to day 2 of problem ConVRP-7
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Figure A.70: Solution for day 3 of problem ConVRP-7

Problem ConVRP-7
Vehicle capacity 140
Maximum route length 160.000
Number of nodes 54
Total route length 824.126
Total number of routes 12
Route Length Load Ordering

1 90.278 87 (0, 1, 43, 42, 64, 22, 0)
2 56.593 82 (0, 4, 29, 47, 48, 0)
3 50.966 106 (0, 6, 33, 73, 62, 2, 68, 0)
4 37.039 61 (0, 7, 8, 67, 0)
5 50.447 89 (0, 12, 40, 44, 3, 51, 0)
6 75.429 62 (0, 16, 56, 23, 63, 0)
7 87.218 91 (0, 17, 32, 50, 55, 25, 0)
8 86.952 122 (0, 30, 21, 69, 61, 28, 75, 0)
9 76.562 72 (0, 31, 10, 58, 0)

245



Route Length Load Ordering
10 67.807 116 (0, 34, 52, 27, 15, 57, 13, 46, 0)
11 90.983 53 (0, 36, 71, 60, 70, 37, 0)
12 53.852 24 (0, 38, 0)

Table A.70: Details of solution to day 3 of problem ConVRP-7
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Figure A.71: Solution for day 4 of problem ConVRP-7

Problem ConVRP-7
Vehicle capacity 140
Maximum route length 160.000
Number of nodes 59
Total route length 894.163
Total number of routes 12
Route Length Load Ordering

1 81.610 45 (0, 1, 41, 22, 0)
2 50.966 96 (0, 2, 62, 73, 33, 6, 0)
3 47.125 60 (0, 3, 40, 12, 0)
4 59.334 124 (0, 4, 45, 29, 5, 47, 48, 0)
5 80.973 125 (0, 7, 35, 14, 59, 19, 67, 0)
6 80.170 56 (0, 16, 49, 56, 23, 0)
7 87.023 63 (0, 17, 50, 55, 25, 0)
8 87.020 115 (0, 26, 10, 31, 9, 39, 72, 0)
9 72.623 114 (0, 30, 21, 61, 28, 75, 0)
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Route Length Load Ordering
10 76.824 118 (0, 34, 52, 27, 15, 13, 54, 46, 0)
11 93.338 72 (0, 36, 60, 70, 20, 37, 0)
12 77.158 129 (0, 38, 65, 66, 11, 53, 0)

Table A.71: Details of solution to day 4 of problem ConVRP-7
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Figure A.72: Solution for day 5 of problem ConVRP-7

Problem ConVRP-7
Vehicle capacity 140
Maximum route length 160.000
Number of nodes 49
Total route length 867.017
Total number of routes 12
Route Length Load Ordering

1 72.155 29 (0, 1, 42, 0)
2 54.627 69 (0, 4, 47, 48, 0)
3 46.701 88 (0, 6, 33, 73, 2, 68, 0)
4 50.447 89 (0, 12, 40, 44, 3, 51, 0)
5 55.730 41 (0, 14, 35, 0)
6 90.323 83 (0, 16, 24, 56, 63, 0)
7 72.182 63 (0, 21, 61, 75, 0)
8 92.042 62 (0, 25, 55, 18, 32, 0)
9 87.031 136 (0, 26, 58, 10, 31, 9, 39, 72, 0)
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Route Length Load Ordering
10 75.733 106 (0, 34, 52, 27, 15, 54, 46, 0)
11 93.338 72 (0, 36, 60, 70, 20, 37, 0)
12 76.707 68 (0, 53, 66, 65, 0)

Table A.72: Details of solution to day 5 of problem ConVRP-7
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Figure A.73: Template for problem ConVRP-8

Problem ConVRP-8
Vehicle capacity 200
Maximum route length 230.000
Number of nodes 98
Total route length 866.370
Total number of routes 9
Route Length Load Ordering

1 117.928 163 (0, 1, 51, 20, 66, 65, 71, 35, 9, 81, 33, 50, 0)
2 90.255 169 (0, 12, 80, 68, 24, 29, 34, 78, 79, 3, 77, 76, 28, 0)
3 57.494 173 (0, 13, 87, 97, 92, 37, 100, 98, 59, 95, 94, 0)
4 76.929 101 (0, 18, 83, 8, 45, 17, 84, 5, 60, 89, 0)
5 117.947 207 (0, 26, 21, 72, 75, 56, 23, 67, 39, 25, 55, 4, 54, 0)
6 83.232 145 (0, 27, 69, 70, 30, 32, 90, 10, 62, 88, 31, 0)
7 131.249 167 (0, 52, 7, 19, 11, 64, 49, 36, 46, 47, 48, 82, 0)
8 92.444 115 (0, 53, 40, 73, 74, 22, 41, 15, 43, 42, 57, 2, 58, 0)
9 98.890 205 (0, 61, 16, 86, 38, 14, 44, 91, 85, 93, 99, 96, 0)

Table A.73: Details of template for problem ConVRP-8
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Figure A.74: Solution for day 1 of problem ConVRP-8

Problem ConVRP-8
Vehicle capacity 200
Maximum route length 230.000
Number of nodes 77
Total route length 813.381
Total number of routes 9
Route Length Load Ordering

1 116.169 125 (0, 1, 51, 20, 65, 71, 35, 9, 81, 33, 0)
2 119.157 53 (0, 7, 19, 64, 36, 46, 82, 0)
3 90.012 155 (0, 12, 80, 68, 24, 29, 34, 78, 79, 3, 76, 28, 0)
4 57.434 163 (0, 13, 87, 97, 92, 37, 100, 59, 95, 94, 0)
5 64.528 47 (0, 18, 83, 17, 84, 89, 0)
6 106.701 171 (0, 26, 72, 75, 56, 23, 67, 39, 55, 54, 0)
7 83.118 129 (0, 31, 88, 62, 10, 90, 32, 30, 70, 69, 0)
8 87.997 101 (0, 53, 40, 73, 74, 22, 41, 15, 43, 42, 58, 0)
9 88.265 178 (0, 61, 16, 86, 14, 44, 91, 85, 93, 99, 0)

Table A.74: Details of solution to day 1 of problem ConVRP-8
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Figure A.75: Solution for day 2 of problem ConVRP-8

Problem ConVRP-8
Vehicle capacity 200
Maximum route length 230.000
Number of nodes 68
Total route length 791.009
Total number of routes 9
Route Length Load Ordering

1 101.924 77 (0, 1, 51, 65, 81, 33, 0)
2 106.494 154 (0, 4, 55, 25, 39, 67, 75, 72, 21, 26, 0)
3 82.614 132 (0, 12, 80, 68, 24, 29, 78, 3, 77, 76, 28, 0)
4 49.829 113 (0, 13, 37, 100, 98, 59, 94, 0)
5 97.997 172 (0, 16, 86, 38, 14, 44, 91, 85, 93, 0)
6 71.469 71 (0, 18, 8, 17, 84, 5, 89, 0)
7 79.765 117 (0, 31, 62, 10, 32, 30, 70, 69, 0)
8 125.527 79 (0, 52, 11, 64, 36, 46, 47, 82, 0)
9 75.389 103 (0, 53, 40, 73, 74, 22, 41, 15, 57, 2, 58, 0)

Table A.75: Details of solution to day 2 of problem ConVRP-8
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Figure A.76: Solution for day 3 of problem ConVRP-8

Problem ConVRP-8
Vehicle capacity 200
Maximum route length 230.000
Number of nodes 70
Total route length 792.718
Total number of routes 9
Route Length Load Ordering

1 107.296 160 (0, 4, 55, 25, 39, 67, 56, 75, 72, 21, 26, 0)
2 80.402 85 (0, 12, 29, 34, 3, 77, 28, 0)
3 51.682 101 (0, 13, 87, 97, 92, 37, 98, 95, 0)
4 69.933 89 (0, 18, 83, 45, 17, 84, 5, 89, 0)
5 105.737 109 (0, 20, 66, 65, 71, 9, 33, 50, 0)
6 75.958 87 (0, 27, 69, 70, 30, 90, 88, 31, 0)
7 82.420 74 (0, 40, 73, 22, 15, 42, 2, 58, 0)
8 126.550 140 (0, 52, 7, 19, 11, 64, 49, 36, 46, 48, 82, 0)
9 92.738 184 (0, 61, 16, 86, 38, 44, 85, 93, 99, 96, 0)

Table A.76: Details of solution to day 3 of problem ConVRP-8
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Figure A.77: Solution for day 4 of problem ConVRP-8

Problem ConVRP-8
Vehicle capacity 200
Maximum route length 230.000
Number of nodes 70
Total route length 805.995
Total number of routes 9
Route Length Load Ordering

1 101.624 116 (0, 1, 51, 20, 66, 71, 35, 81, 50, 0)
2 106.360 152 (0, 4, 55, 39, 67, 23, 75, 21, 26, 0)
3 116.073 121 (0, 7, 19, 11, 64, 49, 36, 47, 82, 0)
4 90.012 155 (0, 12, 80, 68, 24, 29, 34, 78, 79, 3, 76, 28, 0)
5 86.233 123 (0, 27, 69, 30, 32, 90, 63, 10, 62, 88, 0)
6 69.923 54 (0, 45, 17, 84, 5, 60, 0)
7 87.803 53 (0, 58, 2, 43, 15, 41, 74, 0)
8 97.954 151 (0, 86, 38, 14, 44, 91, 85, 99, 96, 0)
9 50.013 112 (0, 92, 37, 100, 98, 59, 95, 94, 0)

Table A.77: Details of solution to day 4 of problem ConVRP-8
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Figure A.78: Solution for day 5 of problem ConVRP-8

Problem ConVRP-8
Vehicle capacity 200
Maximum route length 230.000
Number of nodes 64
Total route length 763.087
Total number of routes 9
Route Length Load Ordering

1 87.415 164 (0, 6, 61, 86, 14, 44, 91, 85, 93, 96, 0)
2 67.905 76 (0, 8, 45, 84, 5, 60, 89, 0)
3 88.892 141 (0, 12, 68, 24, 34, 78, 79, 3, 77, 28, 0)
4 110.585 134 (0, 21, 75, 56, 23, 67, 25, 55, 4, 54, 0)
5 78.010 102 (0, 27, 69, 70, 30, 32, 90, 62, 88, 0)
6 67.124 72 (0, 40, 74, 22, 41, 57, 2, 58, 0)
7 118.933 142 (0, 48, 47, 46, 36, 49, 11, 19, 7, 52, 0)
8 103.154 52 (0, 50, 33, 35, 65, 0)
9 41.071 60 (0, 95, 59, 97, 0)

Table A.78: Details of solution to day 5 of problem ConVRP-8
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Figure A.79: Template for problem ConVRP-9

Problem ConVRP-9
Vehicle capacity 200
Maximum route length 200.000
Number of nodes 147
Total route length 1206.497
Total number of routes 14
Route Length Load Ordering

1 77.621 191 (0, 5, 71, 122, 106, 73, 125, 33, 72, 124, 123, 90, 103, 0)
2 96.046 157 (0, 10, 54, 39, 89, 117, 75, 105, 30, 104, 49, 0)
3 109.574 118 (0, 11, 128, 84, 35, 85, 36, 115, 121, 59, 0)
4 77.659 175 (0, 12, 144, 146, 4, 149, 109, 147, 52, 15, 45, 91, 108, 0)
5 96.775 195 (0, 18, 55, 13, 136, 40, 88, 64, 150, 87, 142, 0)
6 96.965 138 (0, 27, 138, 48, 112, 61, 114, 7, 69, 23, 46, 0)
7 82.856 158 (0, 32, 120, 80, 31, 82, 140, 113, 26, 8, 60, 81, 0)
8 76.769 117 (0, 37, 44, 107, 65, 93, 42, 92, 137, 17, 63, 0)
9 71.372 160 (0, 38, 62, 130, 50, 118, 21, 79, 74, 34, 9, 76, 0)
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Route Length Load Ordering
10 73.612 205 (0, 47, 143, 135, 111, 66, 41, 94, 19, 141, 148, 145, 0)
11 87.562 105 (0, 51, 101, 3, 116, 28, 70, 22, 1, 119, 0)
12 90.410 110 (0, 68, 133, 14, 58, 96, 95, 25, 67, 134, 110, 0)
13 70.740 208 (0, 78, 126, 16, 127, 53, 129, 29, 20, 131, 83, 2, 100, 0)
14 98.534 164 (0, 102, 6, 57, 99, 43, 86, 97, 24, 98, 132, 0)

Table A.79: Details of template for problem ConVRP-9
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Figure A.80: Solution for day 1 of problem ConVRP-9

Problem ConVRP-9
Vehicle capacity 200
Maximum route length 200.000
Number of nodes 109
Total route length 1174.013
Total number of routes 14
Route Length Load Ordering

1 75.964 168 (0, 5, 71, 122, 73, 125, 33, 72, 90, 103, 0)
2 109.574 118 (0, 11, 128, 84, 35, 85, 36, 115, 121, 59, 0)
3 77.371 145 (0, 12, 144, 4, 109, 147, 52, 15, 91, 108, 0)
4 96.775 187 (0, 18, 55, 13, 136, 40, 88, 64, 150, 142, 0)
5 95.878 72 (0, 23, 7, 114, 112, 138, 0)
6 81.328 98 (0, 32, 120, 80, 31, 140, 26, 8, 60, 0)
7 74.031 78 (0, 37, 44, 107, 65, 93, 92, 17, 63, 0)
8 69.773 132 (0, 38, 130, 50, 118, 21, 74, 34, 9, 76, 0)
9 73.533 178 (0, 47, 143, 135, 111, 66, 94, 19, 141, 148, 145, 0)
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Route Length Load Ordering
10 83.647 67 (0, 51, 101, 116, 70, 1, 119, 0)
11 94.091 83 (0, 54, 117, 105, 30, 104, 0)
12 69.238 179 (0, 78, 126, 16, 127, 53, 20, 131, 83, 2, 100, 0)
13 85.561 102 (0, 98, 24, 97, 86, 6, 102, 0)
14 87.250 42 (0, 110, 67, 95, 96, 58, 133, 0)

Table A.80: Details of solution to day 1 of problem ConVRP-9
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Figure A.81: Solution for day 2 of problem ConVRP-9

Problem ConVRP-9
Vehicle capacity 200
Maximum route length 200.000
Number of nodes 105
Total route length 1149.131
Total number of routes 14
Route Length Load Ordering

1 94.804 139 (0, 10, 54, 39, 89, 117, 75, 105, 30, 49, 0)
2 62.441 64 (0, 14, 58, 95, 110, 139, 0)
3 96.663 160 (0, 18, 55, 13, 40, 88, 64, 150, 87, 142, 0)
4 96.280 121 (0, 27, 138, 48, 112, 61, 114, 7, 23, 46, 0)
5 81.912 155 (0, 32, 120, 80, 31, 82, 113, 26, 8, 60, 81, 0)
6 71.432 98 (0, 37, 44, 65, 42, 137, 17, 63, 0)
7 85.044 81 (0, 51, 3, 116, 70, 22, 1, 119, 0)
8 106.801 60 (0, 59, 121, 115, 36, 128, 0)
9 70.137 88 (0, 62, 130, 21, 79, 74, 34, 76, 0)
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Route Length Load Ordering
10 73.629 102 (0, 71, 122, 106, 73, 124, 123, 103, 0)
11 75.644 63 (0, 91, 45, 109, 149, 146, 0)
12 70.634 192 (0, 100, 2, 83, 131, 20, 29, 129, 53, 127, 16, 126, 0)
13 93.850 106 (0, 102, 57, 99, 24, 98, 132, 0)
14 69.857 147 (0, 143, 135, 66, 41, 94, 19, 141, 148, 0)

Table A.81: Details of solution to day 2 of problem ConVRP-9
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Figure A.82: Solution for day 3 of problem ConVRP-9

Problem ConVRP-9
Vehicle capacity 200
Maximum route length 200.000
Number of nodes 102
Total route length 1135.266
Total number of routes 14
Route Length Load Ordering

1 78.682 64 (0, 1, 22, 70, 28, 3, 101, 0)
2 108.391 85 (0, 11, 128, 84, 85, 36, 115, 121, 0)
3 69.798 136 (0, 16, 127, 129, 29, 20, 131, 83, 100, 0)
4 96.220 152 (0, 18, 13, 136, 40, 88, 64, 87, 142, 0)
5 96.951 133 (0, 23, 69, 7, 114, 61, 112, 48, 138, 27, 0)
6 81.360 125 (0, 32, 120, 80, 31, 140, 26, 8, 60, 81, 0)
7 75.884 110 (0, 37, 44, 65, 93, 42, 92, 137, 17, 63, 0)
8 69.152 143 (0, 38, 62, 50, 118, 79, 34, 9, 76, 0)
9 67.087 104 (0, 47, 143, 94, 19, 148, 145, 0)
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Route Length Load Ordering
10 95.298 119 (0, 49, 104, 30, 75, 117, 39, 54, 0)
11 65.716 86 (0, 71, 122, 106, 125, 72, 124, 0)
12 91.790 129 (0, 102, 6, 43, 86, 97, 24, 98, 132, 0)
13 76.388 109 (0, 108, 91, 45, 147, 109, 4, 144, 0)
14 62.551 62 (0, 133, 95, 25, 134, 0)

Table A.82: Details of solution to day 3 of problem ConVRP-9
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Figure A.83: Solution for day 4 of problem ConVRP-9

Problem ConVRP-9
Vehicle capacity 200
Maximum route length 200.000
Number of nodes 101
Total route length 1080.321
Total number of routes 14
Route Length Load Ordering

1 77.621 191 (0, 5, 71, 122, 106, 73, 125, 33, 72, 124, 123, 90, 103, 0)
2 68.275 80 (0, 9, 34, 74, 79, 50, 130, 38, 0)
3 76.962 119 (0, 12, 56, 149, 109, 52, 15, 45, 91, 108, 0)
4 46.127 44 (0, 32, 120, 81, 0)
5 75.269 91 (0, 37, 44, 107, 65, 93, 42, 92, 137, 0)
6 78.661 90 (0, 39, 89, 75, 105, 30, 49, 0)
7 71.201 143 (0, 47, 143, 111, 66, 41, 94, 19, 148, 0)
8 73.948 82 (0, 51, 101, 3, 70, 22, 1, 119, 77, 0)
9 92.642 110 (0, 55, 13, 136, 40, 150, 142, 0)
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Route Length Load Ordering
10 93.815 73 (0, 59, 121, 85, 35, 84, 128, 0)
11 70.785 79 (0, 68, 14, 58, 25, 67, 134, 0)
12 96.386 102 (0, 69, 7, 114, 61, 112, 48, 138, 0)
13 70.683 154 (0, 78, 126, 16, 127, 129, 29, 20, 131, 100, 0)
14 87.948 97 (0, 102, 6, 43, 24, 98, 132, 0)

Table A.83: Details of solution to day 4 of problem ConVRP-9
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Figure A.84: Solution for day 5 of problem ConVRP-9

Problem ConVRP-9
Vehicle capacity 200
Maximum route length 200.000
Number of nodes 117
Total route length 1154.810
Total number of routes 14
Route Length Load Ordering

1 76.961 155 (0, 5, 106, 73, 125, 33, 72, 124, 123, 90, 103, 0)
2 95.366 119 (0, 10, 39, 89, 117, 75, 105, 104, 49, 0)
3 94.672 67 (0, 11, 128, 85, 36, 121, 59, 0)
4 77.659 175 (0, 12, 144, 146, 4, 149, 109, 147, 52, 15, 45, 91, 108, 0)
5 82.558 142 (0, 32, 120, 80, 31, 82, 140, 113, 26, 8, 81, 0)
6 72.505 110 (0, 37, 44, 107, 65, 42, 92, 137, 17, 63, 0)
7 69.917 151 (0, 38, 62, 130, 50, 118, 21, 74, 34, 9, 76, 0)
8 85.081 54 (0, 40, 64, 150, 87, 142, 0)
9 96.615 123 (0, 46, 23, 69, 7, 114, 61, 112, 48, 138, 0)

267



Route Length Load Ordering
10 71.076 185 (0, 47, 143, 135, 111, 66, 41, 94, 145, 0)
11 87.212 97 (0, 51, 101, 3, 116, 28, 70, 1, 119, 0)
12 82.777 62 (0, 68, 133, 96, 25, 134, 110, 0)
13 67.719 150 (0, 78, 126, 53, 20, 131, 83, 2, 100, 0)
14 94.692 132 (0, 102, 6, 57, 99, 43, 24, 98, 132, 0)

Table A.84: Details of solution to day 5 of problem ConVRP-9
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Figure A.85: Template for problem ConVRP-10

Problem ConVRP-10
Vehicle capacity 200
Maximum route length 200.000
Number of nodes 192
Total route length 1445.264
Total number of routes 18
Route Length Load Ordering

1 70.063 176 (0, 4, 87, 111, 58, 153, 79, 15, 154, 124, 29, 98, 125, 0)
2 56.550 173 (0, 6, 33, 195, 198, 53, 23, 183, 104, 67, 159, 188, 0)
3 82.522 159 (0, 17, 3, 55, 44, 181, 73, 145, 24, 107, 63, 117, 0)
4 103.919 147 (0, 26, 150, 52, 11, 170, 164, 85, 134, 84, 0)
5 73.125 177 (0, 27, 99, 179, 83, 13, 123, 128, 70, 167, 65, 34, 127, 0)
6 74.205 145 (0, 30, 48, 47, 155, 36, 122, 174, 173, 120, 0)
7 95.849 184 (0, 32, 72, 118, 148, 92, 135, 146, 147, 106, 151, 0)
8 108.621 171 (0, 40, 130, 109, 39, 31, 163, 110, 25, 56, 0)
9 80.790 190 (0, 46, 176, 102, 8, 178, 78, 19, 177, 133, 14, 69, 0)
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Route Length Load Ordering
10 91.452 172 (0, 54, 59, 138, 166, 20, 37, 88, 5, 103, 0)
11 57.359 137 (0, 60, 149, 51, 7, 132, 180, 35, 175, 0)
12 78.457 200 (0, 61, 193, 192, 160, 62, 116, 144, 74, 49, 182, 16, 95, 0)
13 77.544 169 (0, 76, 187, 97, 161, 9, 75, 162, 189, 57, 169, 12, 126, 0)
14 82.940 145 (0, 81, 100, 71, 119, 38, 77, 80, 131, 129, 50, 168, 0)
15 82.790 124 (0, 86, 93, 156, 114, 142, 22, 199, 136, 1, 191, 194, 0)
16 95.966 207 (0, 96, 184, 115, 185, 89, 137, 113, 91, 141, 186, 0)
17 69.076 175 (0, 112, 66, 196, 42, 68, 143, 90, 41, 190, 43, 197, 158, 0)
18 64.034 206 (0, 152, 139, 172, 21, 82, 121, 140, 94, 64, 28, 101, 2, 157, 0)

Table A.85: Details of template for problem ConVRP-10
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Figure A.86: Solution for day 1 of problem ConVRP-10

Problem ConVRP-10
Vehicle capacity 200
Maximum route length 200.000
Number of nodes 138
Total route length 1402.254
Total number of routes 18
Route Length Load Ordering

1 59.103 119 (0, 2, 28, 121, 82, 139, 152, 0)
2 81.423 130 (0, 17, 3, 55, 181, 73, 145, 24, 107, 63, 0)
3 65.202 78 (0, 30, 47, 155, 36, 173, 120, 0)
4 108.323 144 (0, 40, 109, 39, 31, 163, 110, 25, 56, 0)
5 80.427 154 (0, 46, 176, 8, 78, 19, 177, 133, 14, 69, 0)
6 91.417 137 (0, 59, 138, 166, 20, 88, 5, 103, 0)
7 57.359 137 (0, 60, 149, 51, 7, 132, 180, 35, 175, 0)
8 78.425 187 (0, 61, 193, 192, 62, 116, 144, 74, 49, 182, 16, 95, 0)
9 89.548 85 (0, 72, 118, 92, 135, 146, 151, 0)
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Route Length Load Ordering
10 80.654 90 (0, 81, 100, 71, 38, 131, 50, 168, 0)
11 103.893 129 (0, 84, 134, 85, 164, 170, 11, 52, 150, 0)
12 72.966 94 (0, 86, 114, 22, 199, 136, 1, 191, 194, 0)
13 69.890 126 (0, 87, 111, 58, 79, 15, 124, 29, 98, 125, 0)
14 69.207 108 (0, 99, 83, 123, 128, 70, 167, 127, 0)
15 94.299 116 (0, 115, 185, 89, 137, 91, 186, 0)
16 75.633 90 (0, 126, 169, 57, 189, 162, 75, 97, 187, 0)
17 68.527 139 (0, 158, 43, 190, 41, 90, 143, 68, 42, 196, 0)
18 55.960 68 (0, 188, 159, 104, 183, 23, 195, 0)

Table A.86: Details of solution to day 1 of problem ConVRP-10
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Figure A.87: Solution for day 2 of problem ConVRP-10

Problem ConVRP-10
Vehicle capacity 200
Maximum route length 200.000
Number of nodes 139
Total route length 1413.326
Total number of routes 18
Route Length Load Ordering

1 62.457 146 (0, 2, 101, 28, 64, 140, 121, 21, 172, 152, 0)
2 70.042 159 (0, 4, 87, 111, 58, 153, 79, 15, 154, 124, 29, 98, 0)
3 56.550 162 (0, 6, 33, 198, 53, 23, 183, 104, 67, 159, 188, 0)
4 78.911 74 (0, 17, 55, 181, 73, 145, 117, 0)
5 103.823 130 (0, 26, 150, 52, 11, 170, 164, 85, 134, 0)
6 70.334 158 (0, 27, 99, 179, 83, 13, 128, 70, 167, 65, 34, 0)
7 73.376 103 (0, 30, 48, 155, 122, 174, 173, 0)
8 95.586 169 (0, 32, 72, 148, 135, 146, 18, 147, 106, 151, 0)
9 105.313 132 (0, 40, 109, 39, 31, 163, 25, 56, 0)
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Route Length Load Ordering
10 63.221 42 (0, 43, 68, 196, 66, 0)
11 80.565 129 (0, 46, 102, 178, 78, 19, 177, 133, 69, 0)
12 91.407 153 (0, 54, 138, 166, 20, 88, 5, 103, 0)
13 56.744 116 (0, 60, 149, 51, 7, 180, 175, 0)
14 78.057 145 (0, 61, 193, 160, 62, 116, 144, 182, 16, 95, 0)
15 75.923 68 (0, 86, 156, 142, 199, 136, 1, 191, 0)
16 82.478 108 (0, 100, 71, 38, 165, 77, 129, 168, 0)
17 73.443 84 (0, 126, 12, 57, 189, 162, 75, 187, 0)
18 95.094 163 (0, 184, 185, 89, 137, 113, 91, 141, 186, 0)

Table A.87: Details of solution to day 2 of problem ConVRP-10
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Figure A.88: Solution for day 3 of problem ConVRP-10

Problem ConVRP-10
Vehicle capacity 200
Maximum route length 200.000
Number of nodes 148
Total route length 1404.027
Total number of routes 18
Route Length Load Ordering

1 70.924 143 (0, 4, 87, 111, 58, 153, 15, 154, 124, 29, 45, 0)
2 54.310 144 (0, 6, 33, 195, 198, 53, 23, 183, 67, 188, 0)
3 81.439 142 (0, 17, 3, 55, 181, 73, 145, 24, 107, 63, 117, 0)
4 89.789 93 (0, 26, 52, 11, 85, 108, 0)
5 69.680 99 (0, 27, 99, 179, 13, 123, 128, 70, 65, 34, 0)
6 74.334 131 (0, 30, 155, 36, 122, 174, 173, 171, 120, 0)
7 95.197 157 (0, 32, 118, 148, 135, 146, 147, 106, 151, 0)
8 77.136 122 (0, 46, 176, 8, 178, 133, 69, 0)
9 91.407 153 (0, 54, 138, 166, 20, 88, 5, 103, 0)
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Route Length Load Ordering
10 108.038 138 (0, 56, 25, 110, 163, 31, 39, 109, 130, 0)
11 78.401 185 (0, 61, 193, 192, 62, 144, 74, 49, 182, 16, 95, 0)
12 79.330 110 (0, 81, 100, 71, 119, 77, 131, 129, 50, 168, 0)
13 80.958 114 (0, 86, 93, 156, 142, 22, 199, 136, 1, 194, 0)
14 95.866 162 (0, 96, 184, 185, 89, 137, 113, 91, 141, 0)
15 68.829 135 (0, 105, 158, 197, 90, 143, 42, 196, 66, 112, 0)
16 71.571 92 (0, 126, 169, 57, 189, 161, 97, 187, 0)
17 53.280 77 (0, 149, 51, 132, 35, 175, 0)
18 63.537 187 (0, 152, 172, 21, 82, 121, 140, 94, 28, 101, 2, 157, 0)

Table A.88: Details of solution to day 3 of problem ConVRP-10
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Figure A.89: Solution for day 4 of problem ConVRP-10

Problem ConVRP-10
Vehicle capacity 200
Maximum route length 200.000
Number of nodes 134
Total route length 1380.605
Total number of routes 18
Route Length Load Ordering

1 60.908 135 (0, 4, 111, 58, 153, 79, 15, 29, 125, 0)
2 88.473 74 (0, 5, 88, 37, 166, 0)
3 53.048 103 (0, 6, 33, 198, 183, 104, 188, 0)
4 75.888 133 (0, 16, 182, 144, 116, 62, 160, 192, 193, 0)
5 81.885 117 (0, 17, 3, 44, 181, 73, 145, 107, 63, 117, 0)
6 69.204 138 (0, 27, 99, 179, 83, 13, 128, 70, 65, 34, 127, 0)
7 80.725 154 (0, 46, 102, 178, 19, 177, 133, 14, 69, 0)
8 73.695 112 (0, 48, 47, 155, 36, 122, 174, 173, 0)
9 100.600 73 (0, 52, 11, 164, 0)
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Route Length Load Ordering
10 108.006 95 (0, 56, 25, 110, 163, 31, 109, 0)
11 56.775 127 (0, 60, 149, 51, 7, 132, 180, 175, 0)
12 74.920 110 (0, 76, 161, 9, 75, 189, 169, 12, 126, 0)
13 78.727 104 (0, 86, 93, 156, 114, 142, 199, 1, 191, 194, 0)
14 76.600 149 (0, 96, 184, 115, 113, 91, 141, 186, 0)
15 75.985 79 (0, 100, 71, 119, 77, 80, 129, 168, 0)
16 67.076 148 (0, 112, 66, 196, 42, 68, 143, 41, 190, 43, 197, 158, 0)
17 94.447 107 (0, 148, 135, 146, 147, 151, 0)
18 63.640 169 (0, 152, 139, 82, 121, 140, 94, 64, 28, 101, 2, 157, 0)

Table A.89: Details of solution to day 4 of problem ConVRP-10
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Figure A.90: Solution for day 5 of problem ConVRP-10

Problem ConVRP-10
Vehicle capacity 200
Maximum route length 200.000
Number of nodes 138
Total route length 1346.590
Total number of routes 18
Route Length Load Ordering

1 82.522 159 (0, 17, 3, 55, 44, 181, 73, 145, 24, 107, 63, 117, 0)
2 87.905 84 (0, 26, 150, 52, 170, 134, 84, 0)
3 70.305 146 (0, 27, 99, 179, 83, 128, 70, 167, 65, 34, 0)
4 64.946 86 (0, 30, 48, 155, 36, 174, 173, 0)
5 46.561 126 (0, 33, 195, 198, 53, 104, 67, 159, 0)
6 95.146 162 (0, 40, 130, 109, 39, 31, 110, 25, 56, 0)
7 76.313 125 (0, 46, 176, 102, 8, 178, 19, 177, 133, 0)
8 49.578 56 (0, 51, 7, 132, 0)
9 76.323 116 (0, 54, 59, 20, 37, 88, 5, 103, 0)
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Route Length Load Ordering
10 77.641 184 (0, 61, 193, 192, 160, 62, 116, 74, 49, 182, 16, 95, 0)
11 75.373 157 (0, 76, 187, 97, 161, 9, 162, 189, 57, 12, 126, 0)
12 76.663 74 (0, 86, 93, 114, 142, 22, 191, 194, 0)
13 94.717 134 (0, 96, 185, 89, 137, 113, 141, 186, 0)
14 69.876 64 (0, 98, 124, 154, 79, 111, 0)
15 82.203 104 (0, 100, 119, 38, 80, 131, 129, 168, 0)
16 66.573 136 (0, 112, 196, 42, 143, 41, 190, 43, 197, 158, 0)
17 89.912 72 (0, 118, 148, 92, 106, 151, 0)
18 64.034 192 (0, 139, 172, 21, 82, 121, 140, 94, 64, 28, 101, 2, 157, 0)

Table A.90: Details of solution to day 5 of problem ConVRP-10
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Figure A.91: Template for problem ConVRP-11

Problem ConVRP-11
Vehicle capacity 200
Maximum route length N/A
Number of nodes 115
Total route length 999.005
Total number of routes 7
Route Length Load Ordering

1 212.552 204 (0, 8, 17, 16, 19, 25, 22, 24, 27, 33, 31, 34, 36, 29, 35, 32, 28, 26,
23, 20, 21, 108, 0)

2 200.638 204 (0, 40, 43, 45, 48, 51, 50, 49, 47, 46, 44, 41, 42, 39, 38, 37, 109, 0)
3 122.061 207 (0, 81, 2, 1, 3, 4, 5, 10, 11, 15, 14, 13, 9, 7, 6, 83, 113, 117, 112, 88,

0)
4 60.427 182 (0, 87, 92, 89, 91, 90, 114, 118, 18, 84, 85, 86, 111, 82, 119, 120, 0)
5 47.212 102 (0, 95, 96, 93, 94, 97, 115, 110, 116, 99, 101, 0)
6 212.230 206 (0, 100, 98, 52, 54, 57, 65, 61, 62, 64, 66, 63, 60, 56, 58, 55, 53, 106,

105, 0)
7 143.885 205 (0, 104, 103, 73, 76, 68, 77, 79, 80, 75, 72, 74, 71, 70, 69, 67, 107,

0)

Table A.91: Details of template for problem ConVRP-11
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Figure A.92: Solution for day 1 of problem ConVRP-11

Problem ConVRP-11
Vehicle capacity 200
Maximum route length N/A
Number of nodes 88
Total route length 951.974
Total number of routes 7
Route Length Load Ordering

1 199.106 129 (0, 16, 25, 24, 27, 31, 36, 29, 35, 32, 28, 26, 23, 20, 21, 108, 0)
2 196.505 164 (0, 40, 45, 51, 50, 49, 47, 44, 41, 42, 39, 38, 37, 109, 0)
3 114.088 140 (0, 81, 2, 1, 3, 4, 5, 11, 15, 6, 83, 117, 112, 88, 0)
4 55.620 136 (0, 87, 92, 91, 90, 114, 118, 18, 84, 85, 111, 82, 120, 0)
5 38.958 66 (0, 95, 96, 94, 97, 116, 101, 0)
6 205.803 167 (0, 100, 98, 52, 54, 57, 61, 62, 64, 66, 63, 60, 56, 55, 53, 105, 0)
7 141.894 162 (0, 104, 103, 76, 68, 79, 80, 78, 75, 74, 71, 70, 69, 67, 107, 0)

Table A.92: Details of solution to day 1 of problem ConVRP-11
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Figure A.93: Solution for day 2 of problem ConVRP-11

Problem ConVRP-11
Vehicle capacity 200
Maximum route length N/A
Number of nodes 85
Total route length 950.799
Total number of routes 7
Route Length Load Ordering

1 200.553 149 (0, 8, 17, 16, 19, 25, 22, 31, 34, 36, 29, 35, 32, 26, 21, 0)
2 200.182 200 (0, 40, 43, 45, 48, 51, 49, 47, 46, 44, 41, 42, 39, 38, 37, 109, 0)
3 121.447 180 (0, 81, 2, 1, 3, 4, 5, 10, 15, 14, 13, 7, 6, 83, 113, 112, 88, 0)
4 47.221 91 (0, 92, 91, 90, 114, 118, 86, 111, 119, 0)
5 45.330 63 (0, 95, 94, 97, 115, 110, 101, 0)
6 203.002 154 (0, 98, 52, 54, 57, 65, 61, 63, 60, 56, 58, 55, 106, 105, 0)
7 133.065 185 (0, 104, 103, 73, 76, 68, 77, 75, 72, 74, 70, 69, 67, 107, 0)

Table A.93: Details of solution to day 2 of problem ConVRP-11
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Figure A.94: Solution for day 3 of problem ConVRP-11

Problem ConVRP-11
Vehicle capacity 200
Maximum route length N/A
Number of nodes 86
Total route length 954.527
Total number of routes 7
Route Length Load Ordering

1 120.287 167 (0, 2, 1, 4, 5, 10, 15, 14, 13, 9, 7, 83, 113, 117, 112, 88, 0)
2 206.469 173 (0, 8, 17, 16, 19, 25, 22, 24, 33, 31, 36, 29, 35, 23, 20, 21, 108, 0)
3 194.535 148 (0, 40, 43, 45, 48, 51, 49, 47, 46, 44, 42, 39, 109, 0)
4 48.266 147 (0, 87, 92, 89, 91, 90, 114, 118, 85, 86, 111, 82, 119, 0)
5 44.475 78 (0, 95, 96, 97, 115, 116, 99, 101, 0)
6 204.955 146 (0, 100, 98, 52, 54, 57, 61, 66, 63, 60, 56, 55, 53, 105, 0)
7 135.540 121 (0, 104, 73, 76, 77, 79, 80, 72, 74, 70, 69, 107, 0)

Table A.94: Details of solution to day 3 of problem ConVRP-11
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Figure A.95: Solution for day 4 of problem ConVRP-11

Problem ConVRP-11
Vehicle capacity 200
Maximum route length N/A
Number of nodes 86
Total route length 951.924
Total number of routes 7
Route Length Load Ordering

1 191.048 167 (0, 17, 16, 19, 22, 24, 27, 33, 30, 31, 34, 36, 32, 28, 26, 23, 20, 21,
108, 0)

2 193.967 123 (0, 40, 50, 49, 47, 46, 41, 42, 38, 37, 109, 0)
3 118.417 163 (0, 81, 2, 1, 3, 4, 5, 10, 11, 14, 9, 7, 83, 113, 117, 88, 0)
4 59.892 149 (0, 92, 89, 91, 90, 114, 118, 84, 85, 86, 111, 82, 119, 120, 0)
5 46.427 66 (0, 95, 96, 93, 94, 115, 110, 99, 0)
6 209.951 159 (0, 102, 98, 52, 59, 61, 62, 66, 63, 60, 56, 58, 55, 106, 0)
7 132.222 143 (0, 103, 68, 77, 79, 80, 75, 72, 71, 67, 107, 0)

Table A.95: Details of solution to day 4 of problem ConVRP-11
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Figure A.96: Solution for day 5 of problem ConVRP-11

Problem ConVRP-11
Vehicle capacity 200
Maximum route length N/A
Number of nodes 80
Total route length 944.672
Total number of routes 7
Route Length Load Ordering

1 188.870 129 (0, 8, 17, 16, 19, 25, 24, 27, 33, 36, 32, 28, 23, 0)
2 189.609 123 (0, 43, 45, 48, 50, 49, 47, 44, 41, 39, 38, 109, 0)
3 113.060 148 (0, 81, 2, 1, 3, 5, 10, 11, 15, 6, 83, 113, 117, 0)
4 55.010 139 (0, 87, 92, 89, 91, 90, 114, 118, 18, 84, 85, 111, 120, 0)
5 44.951 65 (0, 95, 96, 93, 94, 110, 116, 99, 0)
6 211.855 169 (0, 98, 52, 54, 65, 61, 62, 64, 66, 60, 56, 58, 55, 53, 105, 0)
7 141.317 134 (0, 104, 73, 76, 68, 77, 79, 80, 72, 74, 70, 69, 107, 0)

Table A.96: Details of solution to day 5 of problem ConVRP-11
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Figure A.97: Template for problem ConVRP-12

Problem ConVRP-12
Vehicle capacity 200
Maximum route length N/A
Number of nodes 97
Total route length 817.234
Total number of routes 10
Route Length Load Ordering

1 53.940 130 (0, 7, 5, 3, 2, 6, 9, 8, 10, 0)
2 96.321 200 (0, 11, 12, 14, 16, 15, 19, 18, 17, 13, 0)
3 50.804 170 (0, 20, 24, 25, 27, 29, 30, 28, 26, 23, 22, 21, 0)
4 97.227 200 (0, 32, 33, 31, 35, 37, 38, 39, 36, 34, 0)
5 64.807 160 (0, 43, 42, 41, 40, 44, 45, 46, 48, 51, 50, 52, 49, 47, 0)
6 101.883 200 (0, 57, 55, 54, 53, 56, 58, 60, 59, 0)
7 43.590 150 (0, 66, 62, 74, 63, 65, 67, 0)
8 137.019 200 (0, 69, 68, 64, 61, 72, 80, 79, 77, 73, 70, 71, 76, 78, 81, 0)
9 95.574 200 (0, 75, 100, 97, 93, 92, 94, 95, 96, 98, 0)
10 76.070 170 (0, 90, 87, 86, 83, 82, 84, 85, 88, 89, 91, 0)

Table A.97: Details of template for problem ConVRP-12

287



-40 -20 0 20 40

-40

-20

0

20

63 nodes    766.12    10 routes

Figure A.98: Solution for day 1 of problem ConVRP-12

Problem ConVRP-12
Vehicle capacity 200
Maximum route length N/A
Number of nodes 63
Total route length 766.121
Total number of routes 10
Route Length Load Ordering

1 41.647 40 (0, 5, 9, 8, 0)
2 93.434 140 (0, 12, 14, 16, 15, 19, 18, 0)
3 48.904 130 (0, 22, 23, 26, 28, 30, 29, 27, 25, 0)
4 94.138 130 (0, 32, 33, 31, 37, 39, 0)
5 62.351 110 (0, 43, 40, 44, 45, 46, 51, 52, 49, 47, 0)
6 101.662 190 (0, 57, 55, 54, 53, 56, 58, 60, 0)
7 26.013 20 (0, 65, 67, 0)
8 130.121 130 (0, 68, 64, 61, 79, 70, 76, 78, 81, 0)
9 93.454 190 (0, 75, 1, 99, 100, 97, 93, 95, 96, 98, 0)
10 74.398 110 (0, 89, 88, 85, 82, 83, 90, 0)

Table A.98: Details of solution to day 1 of problem ConVRP-12
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Figure A.99: Solution for day 2 of problem ConVRP-12

Problem ConVRP-12
Vehicle capacity 200
Maximum route length N/A
Number of nodes 63
Total route length 776.235
Total number of routes 10
Route Length Load Ordering

1 48.319 80 (0, 2, 6, 8, 10, 0)
2 92.501 150 (0, 11, 12, 14, 16, 18, 17, 13, 0)
3 46.877 150 (0, 20, 24, 25, 27, 29, 28, 26, 22, 21, 0)
4 95.577 150 (0, 32, 33, 31, 35, 39, 36, 34, 0)
5 58.471 90 (0, 43, 41, 40, 44, 46, 51, 47, 0)
6 92.453 90 (0, 57, 55, 56, 59, 0)
7 42.430 70 (0, 65, 74, 66, 0)
8 130.881 110 (0, 68, 77, 73, 71, 76, 78, 81, 0)
9 76.013 140 (0, 90, 87, 83, 82, 85, 88, 89, 91, 0)
10 92.713 160 (0, 97, 93, 92, 94, 95, 96, 98, 0)

Table A.99: Details of solution to day 2 of problem ConVRP-12
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Figure A.100: Solution for day 3 of problem ConVRP-12

Problem ConVRP-12
Vehicle capacity 200
Maximum route length N/A
Number of nodes 68
Total route length 776.222
Total number of routes 10
Route Length Load Ordering

1 47.471 80 (0, 7, 5, 4, 6, 9, 10, 0)
2 94.816 170 (0, 11, 12, 14, 16, 15, 19, 18, 17, 0)
3 48.683 100 (0, 22, 23, 26, 30, 29, 25, 0)
4 89.133 120 (0, 32, 33, 31, 35, 37, 0)
5 58.000 80 (0, 42, 40, 44, 45, 51, 49, 47, 0)
6 101.475 150 (0, 57, 55, 53, 56, 58, 60, 0)
7 43.590 150 (0, 66, 62, 74, 63, 65, 67, 0)
8 137.019 190 (0, 69, 68, 64, 72, 80, 79, 77, 73, 70, 71, 76, 78, 81, 0)
9 92.231 170 (0, 75, 97, 93, 92, 94, 95, 98, 0)
10 63.802 70 (0, 90, 84, 88, 91, 0)

Table A.100: Details of solution to day 3 of problem ConVRP-12
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Figure A.101: Solution for day 4 of problem ConVRP-12

Problem ConVRP-12
Vehicle capacity 200
Maximum route length N/A
Number of nodes 69
Total route length 773.891
Total number of routes 10
Route Length Load Ordering

1 45.436 70 (0, 7, 5, 3, 6, 10, 0)
2 88.273 60 (0, 11, 14, 19, 13, 0)
3 44.635 130 (0, 20, 24, 25, 30, 28, 26, 23, 21, 0)
4 97.227 200 (0, 32, 33, 31, 35, 37, 38, 39, 36, 34, 0)
5 61.423 130 (0, 43, 42, 41, 44, 46, 48, 51, 50, 52, 49, 0)
6 99.940 130 (0, 55, 54, 53, 56, 60, 59, 0)
7 41.665 130 (0, 62, 74, 63, 65, 0)
8 131.921 160 (0, 69, 64, 61, 72, 80, 79, 73, 70, 76, 78, 81, 0)
9 94.592 150 (0, 75, 100, 97, 92, 94, 95, 98, 0)
10 68.780 60 (0, 90, 86, 83, 84, 91, 0)

Table A.101: Details of solution to day 4 of problem ConVRP-12
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Figure A.102: Solution for day 5 of problem ConVRP-12

Problem ConVRP-12
Vehicle capacity 200
Maximum route length N/A
Number of nodes 62
Total route length 768.877
Total number of routes 10
Route Length Load Ordering

1 53.334 110 (0, 7, 5, 3, 2, 6, 9, 10, 0)
2 89.951 100 (0, 11, 16, 19, 18, 17, 0)
3 46.408 120 (0, 20, 24, 25, 27, 30, 26, 23, 22, 0)
4 92.264 160 (0, 32, 33, 31, 37, 38, 34, 0)
5 57.198 90 (0, 43, 42, 41, 44, 45, 48, 51, 50, 0)
6 96.268 170 (0, 57, 54, 56, 58, 60, 59, 0)
7 39.760 90 (0, 66, 62, 63, 67, 0)
8 123.848 90 (0, 69, 68, 64, 79, 77, 73, 81, 0)
9 94.376 130 (0, 75, 100, 97, 93, 92, 0)
10 75.470 100 (0, 87, 86, 82, 88, 89, 91, 0)

Table A.102: Details of solution to day 5 of problem ConVRP-12
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Appendix B

Additional Information Related to the Parallel Algorithm

This Appendix contains additional information and data related to our paral-

lel solver for the VRP. We first provide the results produced by our algorithm on

the standard benchmark problems when using a single computer equipped with a

modern quad-core processor. Next, we provide computational results produced by

our algorithm on two newly proposed benchmark problems containing 2400 and 3600

nodes. We then provide the best solutions we have found to the published benchmark

instances for the classical VRP. For each problem, we provide a plot of the solution

we found, we list the tours traveled by each vehicle in the solution, the total length

of each route, the total load carried by each vehicle, and the sum of the lengths

of all routes. The final section of this Appendix contains additional data from the

computational experiments discussed in Section 4.4.

B.1. Running the parallel solver on a single computer

Multi-core processors are becoming more and more prevalent in the personal

computing marketplace. Loosely speaking, these processors allow one to execute

multiple threads or processes concurrently on a single CPU, effectively allowing for

parallel processing. We ran our parallel solver on a quad-core processor using the

standard mpirun command, specifying four processors with a single master process,
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two heuristic solvers, and a single set covering solver. We made a single run of our

algorithm on the four sets of standard benchmark problems discussed in Chapter

4. We set a time limit for our procedure that is based on the number of nodes in

the problem; this time limit is comparable to the average amount of time required

by other metaheuristic solvers from the literature. For problems with less than 100

nodes, we set a time limit of 60 seconds, for problems with 100-199 nodes, we used

100 seconds, for problems with 200-500 nodes, we used 200 seconds, and we used a

time limit of 300 seconds for problems containing more than 500 nodes.

We present the results of this experiment in Tables B.1–B.4. For each of the

four sets of standard benchmark problems, we compare the solutions found by a single

run of our algorithm with those found by the most powerful serial algorithms in the

literature1. When comparing our results with those found by others, we chose to

restrict our attention to those that publish the results of a single run rather than

those that publish the best result found in multiple runs. For all four problem sets,

the solutions produced by our parallel algorithm when run on a single machine are

very competitive. In terms of average deviation from the best-known solutions, only

the AGES algorithm of Mester and Bräysy[54] is able to produce better solutions

than our algorithm.

1We became aware of the 2009 publication of Prins [65] just one week before the dissertation
defense date.
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Number
of Nodes, D-Ants SEPAS AGES Prins Our Num.

Problem Routes [69] [78] [54] [65] solution secs.
1 50, 5 524.61 524.61 524.61 524.61 524.61 60
2 75,10 840.61 835.26 835.26 835.26 835.26 60
3 100, 8 828.21 826.14 826.14 826.14 826.14 100
4 150,12 1037.57 1028.42 1028.42 1029.48 1028.42 100
5 199,16 1306.91 1311.48 1291.29 1294.09 1291.45 100
6 50, 6 555.43 555.43 555.43 555.43 555.43 60
7 75,11 917.50 909.68 909.68 909.68 909.68 60
8 100, 9 865.94 865.94 865.94 865.94 865.94 100
9 150,14 1173.94 1162.55 1162.55 1162.55 1162.99 100

10 199,18 1415.53 1407.21 1401.12 1401.46 1398.52 100
11 120, 7 1043.46 1042.11 1042.11 1042.11 1042.11 100
12 100,10 819.56 819.56 819.56 819.56 819.56 100
13 120,11 1546.84 1544.01 1541.14 1545.43 1542.86 100
14 100,11 866.37 866.37 866.37 866.37 866.37 100

Avg. deviation from
best known solution 0.48% 0.20% 0.03% 0.03% 0.03%

Table B.1: Solutions to the problems of Christofides et al. [19, 20] found using a single
machine

Number
of Nodes, Num.

Problem Routes AGES [53] Our solution secs.
100A 100,11 2041.34 2041.34 100
100B 100,11 1939.90 1940.61 100
100C 100,11 1406.20 1406.20 100
100D 100,11 1581.25 1581.25 100
150A 150,15 3055.23 3055.23 100
150B 150,14 2727.67 2727.67 100
150C 150,15 2343.11 2362.39 100
150D 150,14 2645.40 2659.12 100
385 385,48 24855.32 24491.78 200

Avg. deviation from
best known solution 0.24% 0.22%

Table B.2: Solutions to the problems of Taillard [76] found using a single machine
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Number
of Nodes, Num.

Problem Routes SEPAS [78] AGES [54] Prins [65] Our solution secs.
1 240, 9 5676.97 5627.54 5644.52 5644.44 200
2 320,10 8459.91 8447.92 8444.50 8447.92 200
3 400,10 11036.22 11036.22 11036.22 11036.22 200
4 480,10 13637.53 13624.52 13624.52 13624.52 200
5 200, 5 6460.98 6460.98 6460.98 6460.98 200
6 280, 7 8414.28 8412.88 8412.90 8412.90 200
7 360, 9 10216.50 10195.56 10195.59 10195.59 200
8 440,10 11936.16 11663.55 11643.90 11691.76 200
9 255,14 585.43 583.39 586.18 584.57 200

10 323,16 746.56 741.56 744.36 741.09 200
11 399,18 923.17 918.45 922.40 919.40 200
12 483,19 1130.40 1107.19 1116.12 1120.31 200
13 252,26 865.01 859.11 860.55 860.40 200
14 320,30 1086.07 1081.31 1084.82 1080.55 200
15 396,33 1353.91 1345.23 1352.39 1340.82 200
16 480,37 1634.74 1622.69 1634.27 1622.35 200
17 240,22 708.74 707.79 707.79 707.79 200
18 300,27 1006.90 998.73 1002.15 1007.65 200
19 360,33 1371.01 1366.86 1371.67 1366.07 200
20 420,38 1837.67 1820.09 1830.98 1823.41 200

Avg. deviation from
best known solution 0.84% 0.23% 0.49% 0.37%

Table B.3: Solutions to the problems of Golden et al. [36] found using a single
machine

B.2. Additional Large Benchmark Problems

In Kytöjoki et al. [45], the authors use the VRP problem generator given in Li

et al. [51] to produce large benchmark VRP instances containing between 2400 and

20,000 nodes. We ran our parallel algorithm on the 2400 and 3600 node problems

and varied the number of processors devoted to solving the set covering problem. Our

interest in this experiment was to test the parallel algorithm’s performance on even

larger problems and to examine the importance of the set covering solvers for these

very large problems.
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Number
of Nodes, Our Num.

Problem Routes VRTR [51] GVNS [45] AGES [54] solution secs.
21 560,10 16602.99 16221.22 16212.74 16212.83 300
22 600,15 14651.27 14654.87 14597.18 14634.04 300
23 640,10 18838.62 18810.72 18801.12 18801.13 300
24 720,10 21616.25 21401.31 21389.33 21389.43 300
25 760,19 17146.41 17358.18 17095.27 16849.08 300
26 800,10 24009.74 23996.86 23971.74 23977.73 300
27 840,20 17823.40 18233.93 17488.74 17764.78 300
28 880,10 26606.11 26592.05 26565.92 26566.03 300
29 960,10 29181.12 29166.32 29160.33 29154.34 300
30 1040,10 31961.58 31805.28 31742.51 31935.56 300
31 1120,10 35355.50 34352.48 34330.84 35322.07 300
32 1200,11 37410.84 37025.37 36928.70 37268.98 300

Avg. deviation from
best known solution 1.17% 0.80% 0.20% 0.60%

Table B.4: Solutions to the problems of Li et al. [51] found using a single machine

We used 65 processors for 600 seconds and varied the number of set covering

solvers, using 1,2,4, or 8 set covering solvers. We ran each configuration five times

and present the results of this experiment in Table B.5. For each configuration, we

provide the mean final solution value obtained over the five runs.

2400 node 3600 node
Configuration problem problem

1 Set Covering Solver 75748.45 114579.49
2 Set Covering Solvers 75747.57 114578.73
4 Set Covering Solvers 75748.26 114580.31
8 Set Covering Solvers 75749.38 114579.19

Solution from Kytojoki et al. [45] 75754.55 114579.08
Visually estimated solution from [45] 75743.77 114568.30

Table B.5: Performance of the parallel algorithm on two very large problems from
Kytöjoki et al. [45]

For both problems, all four configurations perform equally well and the solutions

we find are within 0.01% of the visually estimated solution. There appears to be no
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advantage of using the set covering solvers for problems of this size. In fact, when

examining the logs of these computations, we found that the set covering solvers

were never able to combine routes from different solutions into a better solution.

Intuitively, this makes sense since the routes in these problems each contain several

hundred nodes so that it is more difficult to find a collection of routes from different

solutions that contain all the nodes. Although we find solutions that are slightly

superior to those in Kytöjoki et al. [45], it is important to note that their running

times are very low. Their algorithm requires less than two minutes on a single machine

for each problem.

B.3. Christofides and Eilon Benchmarks

This section contains the best solutions we found for the 14 problem instances

of Christofides et al. [19, 20].
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Figure B.1: Solution for problem Christofides-1

Problem Christofides-1
Vehicle capacity 160
Maximum route length N/A
Number of nodes 50
Total route length 524.611
Total number of routes 5
Route Length Load Ordering

1 98.452 152 (0, 6, 14, 25, 24, 43, 7, 23, 48, 27, 0)
2 118.519 149 (0, 8, 26, 31, 28, 3, 36, 35, 20, 22, 1, 32, 0)
3 99.333 159 (0, 11, 2, 29, 21, 16, 50, 34, 30, 9, 38, 0)
4 99.251 160 (0, 12, 37, 44, 15, 45, 33, 39, 10, 49, 5, 46, 0)
5 109.056 157 (0, 18, 13, 41, 40, 19, 42, 17, 4, 47, 0)

Table B.6: Details of solution to problem Christofides-1
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Figure B.2: Solution for problem Christofides-2

Problem Christofides-2
Vehicle capacity 140
Maximum route length N/A
Number of nodes 75
Total route length 835.262
Total number of routes 10
Route Length Load Ordering

1 120.164 138 (0, 3, 44, 32, 50, 18, 55, 25, 31, 72, 0)
2 92.690 140 (0, 6, 33, 63, 23, 56, 24, 49, 16, 0)
3 86.328 133 (0, 7, 11, 59, 14, 35, 8, 0)
4 52.931 132 (0, 17, 40, 9, 39, 12, 26, 0)
5 107.066 139 (0, 27, 37, 20, 70, 60, 71, 69, 36, 47, 48, 0)
6 74.378 140 (0, 30, 74, 21, 61, 28, 2, 68, 0)
7 89.532 139 (0, 45, 29, 5, 15, 57, 13, 54, 19, 52, 0)
8 100.011 138 (0, 51, 73, 1, 43, 41, 42, 64, 22, 62, 0)
9 83.084 139 (0, 53, 66, 65, 38, 10, 58, 0)
10 29.077 126 (0, 67, 46, 34, 4, 75, 0)

Table B.7: Details of solution to problem Christofides-2
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Figure B.3: Solution for problem Christofides-3

Problem Christofides-3
Vehicle capacity 200
Maximum route length N/A
Number of nodes 100
Total route length 826.137
Total number of routes 8
Route Length Load Ordering

1 82.730 196 (0, 6, 96, 99, 59, 93, 85, 61, 17, 45, 84, 5, 60, 89, 0)
2 40.907 108 (0, 13, 87, 97, 95, 94, 0)
3 138.795 199 (0, 18, 83, 8, 46, 47, 36, 49, 64, 11, 19, 48, 82, 7, 52, 0)
4 106.062 194 (0, 21, 72, 75, 56, 39, 67, 23, 41, 22, 74, 73, 40, 0)
5 113.935 199 (0, 27, 69, 1, 70, 30, 20, 66, 32, 90, 63, 10, 62, 88, 31, 0)
6 98.251 165 (0, 28, 12, 80, 68, 29, 24, 54, 55, 25, 4, 26, 53, 0)
7 118.793 199 (0, 50, 33, 81, 51, 9, 71, 65, 35, 34, 78, 79, 3, 77, 76, 0)
8 126.664 198 (0, 58, 2, 57, 15, 43, 42, 14, 44, 38, 86, 16, 91, 100, 37, 98, 92, 0)

Table B.8: Details of solution to problem Christofides-3
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Figure B.4: Solution for problem Christofides-4

Problem Christofides-4
Vehicle capacity 200
Maximum route length N/A
Number of nodes 150
Total route length 1028.424
Total number of routes 12
Route Length Load Ordering

1 21.316 64 (0, 5, 103, 12, 0)
2 77.473 199 (0, 11, 100, 2, 83, 131, 20, 59, 3, 101, 22, 51, 32, 0)
3 80.691 197 (0, 17, 147, 137, 92, 42, 64, 19, 94, 41, 66, 111, 4, 149, 146, 56, 0)
4 85.461 196 (0, 27, 138, 48, 112, 26, 113, 140, 82, 31, 8, 60, 81, 77, 0)
5 89.823 197 (0, 37, 52, 15, 45, 91, 72, 33, 73, 106, 125, 124, 122, 123, 71, 90, 0)
6 97.050 200 (0, 38, 9, 104, 30, 105, 75, 117, 89, 39, 54, 10, 49, 76, 0)
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Route Length Load Ordering
7 128.707 200 (0, 46, 57, 23, 69, 7, 61, 114, 99, 43, 86, 97, 24, 96, 14, 68, 0)
8 113.819 197 (0, 47, 55, 134, 67, 13, 136, 40, 88, 93, 65, 107, 44, 108, 0)
9 75.759 188 (0, 62, 118, 50, 130, 34, 74, 79, 21, 53, 127, 16, 126, 78, 0)
10 57.315 199 (0, 63, 145, 142, 87, 148, 150, 141, 135, 143, 109, 144, 0)
11 77.333 199 (0, 102, 6, 132, 98, 58, 95, 25, 133, 110, 18, 139, 0)
12 123.676 199 (0, 119, 1, 120, 80, 70, 28, 116, 121, 115, 36, 85, 35, 84, 128, 29,

129, 0)

Table B.9: Details of solution to problem Christofides-4
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Figure B.5: Solution for problem Christofides-5

Problem Christofides-5
Vehicle capacity 200
Maximum route length N/A
Number of nodes 199
Total route length 1291.445
Total number of routes 17
Route Length Load Ordering

1 49.692 199 (0, 4, 87, 111, 58, 27, 179, 99, 167, 65, 46, 175, 0)
2 4.472 19 (0, 6, 0)
3 71.210 194 (0, 30, 48, 59, 138, 37, 88, 103, 5, 29, 98, 125, 0)
4 83.231 195 (0, 34, 176, 102, 8, 35, 178, 78, 19, 70, 128, 123, 13, 83, 45, 0)
5 122.719 200 (0, 50, 71, 119, 38, 165, 170, 164, 85, 134, 84, 14, 133, 177, 149, 0)
6 77.091 199 (0, 51, 7, 132, 180, 69, 108, 11, 52, 150, 100, 0)
7 70.375 197 (0, 54, 120, 172, 21, 173, 174, 82, 121, 140, 94, 64, 28, 101, 0)
8 41.081 199 (0, 61, 33, 193, 194, 196, 66, 112, 157, 2, 152, 0)
9 130.758 200 (0, 72, 118, 56, 25, 110, 163, 148, 92, 135, 146, 18, 73, 145, 181, 0)
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Route Length Load Ordering
10 117.073 194 (0, 86, 93, 156, 114, 142, 113, 137, 89, 185, 62, 116, 183, 159, 16,

188, 0)
11 73.434 200 (0, 95, 187, 97, 9, 161, 32, 147, 106, 44, 55, 3, 151, 0)
12 66.131 195 (0, 96, 67, 182, 49, 74, 144, 24, 107, 63, 117, 0)
13 83.140 200 (0, 104, 23, 160, 115, 90, 41, 143, 68, 42, 91, 141, 22, 186, 0)
14 57.160 197 (0, 105, 195, 198, 53, 192, 184, 190, 43, 199, 136, 197, 1, 191, 158,

0)
15 97.095 200 (0, 109, 39, 57, 189, 75, 162, 31, 131, 80, 10, 77, 129, 169, 0)
16 47.264 198 (0, 126, 17, 76, 40, 130, 12, 168, 81, 26, 60, 127, 0)
17 99.520 200 (0, 139, 171, 47, 155, 36, 122, 166, 20, 124, 154, 15, 79, 153, 0)

Table B.10: Details of solution to problem Christofides-5
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Figure B.6: Solution for problem Christofides-6

Problem Christofides-6
Vehicle capacity 160
Maximum route length 200.000
Number of nodes 50
Total route length 555.430
Total number of routes 6
Route Length Load Ordering

1 198.077 137 (0, 1, 22, 31, 28, 3, 36, 35, 20, 2, 0)
2 199.116 155 (0, 5, 49, 10, 39, 33, 45, 15, 44, 37, 12, 0)
3 190.640 133 (0, 6, 23, 24, 43, 7, 26, 8, 48, 27, 0)
4 189.939 131 (0, 14, 25, 13, 41, 40, 19, 42, 17, 0)
5 82.326 80 (0, 18, 4, 47, 46, 0)
6 195.332 141 (0, 32, 11, 16, 29, 21, 50, 34, 30, 9, 38, 0)

Table B.11: Details of solution to problem Christofides-6
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Figure B.7: Solution for problem Christofides-7

Problem Christofides-7
Vehicle capacity 140
Maximum route length 160.000
Number of nodes 75
Total route length 909.675
Total number of routes 11
Route Length Load Ordering

1 158.759 87 (0, 4, 20, 70, 60, 71, 69, 0)
2 159.921 112 (0, 6, 73, 1, 42, 64, 22, 62, 0)
3 151.356 138 (0, 7, 35, 14, 59, 19, 8, 46, 0)
4 152.971 113 (0, 9, 25, 55, 18, 50, 32, 0)
5 151.686 123 (0, 12, 72, 39, 31, 10, 58, 26, 0)
6 146.839 132 (0, 16, 49, 24, 3, 44, 40, 17, 0)
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Route Length Load Ordering
7 157.543 135 (0, 27, 15, 57, 13, 54, 52, 34, 67, 0)
8 144.378 140 (0, 30, 74, 21, 61, 28, 2, 68, 0)
9 155.243 115 (0, 33, 43, 41, 56, 23, 63, 51, 0)
10 127.158 129 (0, 38, 65, 66, 11, 53, 0)
11 153.820 140 (0, 45, 29, 5, 37, 36, 47, 48, 75, 0)

Table B.12: Details of solution to problem Christofides-7
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Figure B.8: Solution for problem Christofides-8

Problem Christofides-8
Vehicle capacity 200
Maximum route length 230.000
Number of nodes 100
Total route length 865.945
Total number of routes 9
Route Length Load Ordering

1 227.928 163 (0, 1, 51, 20, 66, 65, 71, 35, 9, 81, 33, 50, 0)
2 189.162 93 (0, 6, 5, 84, 17, 45, 46, 8, 83, 60, 89, 0)
3 210.255 169 (0, 12, 80, 68, 24, 29, 34, 78, 79, 3, 77, 76, 28, 0)
4 221.405 191 (0, 13, 87, 42, 43, 14, 44, 38, 86, 16, 61, 99, 0)
5 227.550 178 (0, 18, 82, 48, 47, 36, 49, 64, 11, 19, 7, 52, 0)
6 197.077 153 (0, 26, 4, 56, 23, 67, 39, 25, 55, 54, 0)
7 200.120 155 (0, 27, 69, 70, 30, 32, 90, 63, 10, 62, 88, 31, 0)
8 213.097 157 (0, 53, 40, 21, 73, 72, 74, 75, 22, 41, 15, 57, 2, 58, 0)
9 179.351 199 (0, 94, 95, 97, 92, 98, 37, 100, 91, 85, 93, 59, 96, 0)

Table B.13: Details of solution to problem Christofides-8
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Figure B.9: Solution for problem Christofides-9

Problem Christofides-9
Vehicle capacity 200
Maximum route length 200.000
Number of nodes 150
Total route length 1162.547
Total number of routes 14
Route Length Load Ordering

1 196.132 193 (0, 5, 10, 54, 39, 89, 117, 73, 106, 125, 122, 0)
2 199.641 188 (0, 11, 126, 16, 127, 53, 129, 29, 79, 21, 118, 130, 50, 78, 0)
3 132.006 133 (0, 12, 144, 149, 4, 146, 56, 47, 139, 46, 0)
4 198.803 168 (0, 18, 110, 133, 14, 58, 25, 95, 96, 24, 132, 68, 0)
5 192.646 135 (0, 26, 113, 114, 99, 43, 86, 97, 98, 0)
6 199.991 168 (0, 32, 119, 1, 120, 80, 28, 31, 82, 140, 8, 60, 81, 0)
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Route Length Load Ordering
7 188.325 129 (0, 37, 137, 44, 107, 65, 93, 42, 92, 147, 17, 63, 0)
8 192.387 154 (0, 38, 62, 9, 34, 74, 75, 105, 30, 104, 49, 76, 0)
9 190.028 176 (0, 51, 22, 70, 116, 59, 20, 131, 83, 2, 100, 0)
10 199.744 173 (0, 55, 134, 67, 13, 136, 40, 88, 64, 150, 145, 0)
11 194.600 169 (0, 77, 27, 138, 48, 112, 61, 7, 69, 23, 57, 6, 102, 0)
12 199.240 109 (0, 101, 3, 121, 115, 36, 85, 35, 84, 128, 0)
13 184.604 142 (0, 103, 90, 71, 123, 124, 33, 72, 91, 45, 15, 52, 108, 0)
14 194.400 198 (0, 109, 143, 135, 111, 66, 41, 94, 19, 141, 148, 87, 142, 0)

Table B.14: Details of solution to problem Christofides-9
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Figure B.10: Solution for problem Christofides-10

Problem Christofides-10
Vehicle capacity 200
Maximum route length 200.000
Number of nodes 199
Total route length 1395.853
Total number of routes 18
Route Length Load Ordering

1 198.147 196 (0, 4, 87, 58, 27, 99, 179, 13, 123, 83, 153, 29, 98, 125, 0)
2 47.469 54 (0, 6, 152, 54, 0)
3 199.649 193 (0, 16, 67, 159, 182, 49, 74, 144, 145, 24, 107, 63, 117, 0)
4 191.352 199 (0, 17, 76, 187, 97, 9, 161, 32, 106, 44, 55, 3, 151, 95, 0)
5 199.555 162 (0, 26, 150, 52, 165, 38, 119, 77, 71, 100, 81, 126, 0)
6 194.541 194 (0, 30, 48, 59, 103, 5, 88, 37, 138, 36, 155, 47, 120, 0)
7 199.982 177 (0, 33, 193, 194, 186, 22, 141, 91, 142, 114, 156, 93, 86, 0)
8 197.636 190 (0, 40, 109, 57, 189, 131, 80, 10, 129, 169, 50, 12, 168, 0)
9 197.856 175 (0, 45, 79, 15, 154, 124, 20, 166, 122, 174, 171, 0)
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Route Length Load Ordering
10 199.613 139 (0, 56, 25, 110, 163, 31, 162, 75, 39, 130, 0)
11 188.667 197 (0, 60, 149, 51, 7, 132, 35, 78, 102, 8, 176, 65, 34, 127, 0)
12 191.642 200 (0, 61, 105, 195, 53, 198, 192, 184, 197, 136, 1, 191, 196, 66, 112,

0)
13 199.439 181 (0, 72, 118, 148, 92, 135, 146, 18, 73, 147, 181, 0)
14 195.466 198 (0, 96, 104, 23, 160, 115, 90, 185, 62, 116, 183, 188, 0)
15 194.345 173 (0, 108, 11, 170, 164, 85, 134, 84, 69, 180, 0)
16 195.359 198 (0, 111, 167, 70, 128, 19, 133, 14, 177, 178, 46, 175, 0)
17 195.429 200 (0, 139, 172, 21, 173, 82, 121, 140, 94, 64, 28, 101, 2, 157, 0)
18 199.707 160 (0, 158, 43, 190, 41, 143, 89, 137, 113, 68, 42, 199, 0)

Table B.15: Details of solution to problem Christofides-10
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Figure B.11: Solution for problem Christofides-11

Problem Christofides-11
Vehicle capacity 200
Maximum route length N/A
Number of nodes 120
Total route length 1042.115
Total number of routes 7
Route Length Load Ordering

1 134.964 199 (0, 8, 12, 13, 14, 15, 11, 10, 9, 7, 6, 5, 4, 3, 1, 2, 88, 0)
2 207.944 197 (0, 17, 16, 19, 25, 22, 24, 27, 33, 30, 31, 34, 36, 29, 35, 32, 28, 26,

23, 20, 21, 109, 0)
3 199.626 200 (0, 40, 43, 45, 48, 51, 50, 49, 46, 47, 44, 41, 42, 39, 38, 37, 95, 0)
4 213.630 199 (0, 52, 54, 57, 59, 65, 61, 62, 64, 66, 63, 60, 56, 58, 55, 53, 100, 0)
5 66.959 188 (0, 82, 111, 86, 85, 89, 91, 90, 114, 18, 118, 108, 83, 113, 117, 84,

112, 81, 119, 0)
6 74.564 193 (0, 87, 92, 93, 96, 94, 97, 115, 110, 98, 116, 103, 104, 99, 101, 102,

105, 120, 0)
7 144.429 199 (0, 106, 73, 76, 68, 77, 79, 80, 78, 75, 72, 74, 71, 70, 69, 67, 107, 0)

Table B.16: Details of solution to problem Christofides-11

314



-40 -20 0 20 40

-40

-20

0

20

100 nodes    819.56    10 routes

Figure B.12: Solution for problem Christofides-12

Problem Christofides-12
Vehicle capacity 200
Maximum route length N/A
Number of nodes 100
Total route length 819.558
Total number of routes 10
Route Length Load Ordering

1 56.175 170 (0, 5, 3, 7, 8, 11, 9, 6, 4, 2, 1, 75, 0)
2 96.040 200 (0, 10, 12, 14, 16, 15, 19, 18, 17, 13, 0)
3 50.804 170 (0, 20, 24, 25, 27, 29, 30, 28, 26, 23, 22, 21, 0)
4 97.227 200 (0, 32, 33, 31, 35, 37, 38, 39, 36, 34, 0)
5 64.807 160 (0, 43, 42, 41, 40, 44, 45, 46, 48, 51, 50, 52, 49, 47, 0)
6 101.883 200 (0, 55, 54, 53, 56, 58, 60, 59, 57, 0)
7 43.590 150 (0, 66, 62, 74, 63, 65, 67, 0)
8 137.019 200 (0, 69, 68, 64, 61, 72, 80, 79, 77, 73, 70, 71, 76, 78, 81, 0)
9 76.070 170 (0, 90, 87, 86, 83, 82, 84, 85, 88, 89, 91, 0)
10 95.943 190 (0, 98, 96, 95, 94, 92, 93, 97, 100, 99, 0)

Table B.17: Details of solution to problem Christofides-12
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Figure B.13: Solution for problem Christofides-13

Problem Christofides-13
Vehicle capacity 200
Maximum route length 720.000
Number of nodes 120
Total route length 1541.142
Total number of routes 11
Route Length Load Ordering

1 719.669 148 (0, 2, 1, 3, 4, 11, 15, 14, 13, 9, 10, 5, 6, 0)
2 692.112 92 (0, 7, 8, 12, 27, 30, 33, 34, 36, 31, 28, 0)
3 706.998 106 (0, 26, 32, 35, 29, 49, 46, 44, 41, 37, 115, 0)
4 689.298 127 (0, 38, 39, 42, 47, 50, 51, 48, 45, 43, 40, 0)
5 704.955 135 (0, 53, 58, 60, 63, 66, 64, 62, 61, 65, 59, 0)
6 679.032 162 (0, 67, 69, 70, 71, 74, 75, 72, 78, 77, 76, 73, 0)
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Route Length Load Ordering
7 695.227 155 (0, 87, 92, 89, 91, 90, 18, 118, 114, 97, 94, 93, 96, 95, 0)
8 645.894 116 (0, 88, 82, 111, 86, 85, 112, 84, 113, 83, 117, 81, 119, 0)
9 691.978 102 (0, 98, 68, 79, 80, 56, 55, 57, 54, 52, 110, 0)
10 598.122 99 (0, 102, 101, 99, 100, 116, 103, 104, 107, 106, 105, 120, 0)
11 717.857 133 (0, 108, 17, 16, 19, 22, 24, 25, 23, 20, 21, 109, 0)

Table B.18: Details of solution to problem Christofides-13
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Figure B.14: Solution for problem Christofides-14

Problem Christofides-14
Vehicle capacity 200
Maximum route length 1040.000
Number of nodes 100
Total route length 866.365
Total number of routes 11
Route Length Load Ordering

1 996.704 200 (0, 1, 99, 100, 97, 93, 92, 94, 95, 96, 98, 0)
2 956.175 160 (0, 5, 3, 7, 8, 11, 9, 6, 4, 2, 75, 0)
3 906.040 200 (0, 10, 12, 14, 16, 15, 19, 18, 17, 13, 0)
4 871.559 110 (0, 20, 49, 52, 50, 51, 48, 45, 46, 47, 0)
5 949.409 160 (0, 21, 22, 24, 25, 27, 29, 30, 28, 26, 23, 0)
6 907.227 200 (0, 32, 33, 31, 35, 37, 38, 39, 36, 34, 0)
7 495.471 60 (0, 41, 40, 44, 42, 43, 0)
8 821.883 200 (0, 57, 55, 54, 53, 56, 58, 60, 59, 0)
9 1028.040 200 (0, 63, 80, 79, 77, 73, 70, 71, 76, 78, 81, 0)
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Route Length Load Ordering
10 957.788 150 (0, 67, 65, 62, 74, 72, 61, 64, 68, 66, 69, 0)
11 976.070 170 (0, 90, 87, 86, 83, 82, 84, 85, 88, 89, 91, 0)

Table B.19: Details of solution to problem Christofides-14

B.4. Golden Benchmarks

This section contains the best solutions we found for the 20 problem instances

of Golden et al. [36].

319



-100 0 100

-100

0

100

240 nodes   5623.47    9 routes

Figure B.15: Solution for problem Golden-1

Problem Golden-1
Vehicle capacity 550
Maximum route length 650.000
Number of nodes 240
Total route length 5623.468
Total number of routes 9
Route Length Load Ordering

1 637.745 540 (0, 2, 42, 43, 83, 123, 163, 162, 161, 200, 199, 239, 240, 201, 202,
203, 204, 164, 124, 84, 44, 45, 46, 6, 5, 4, 3, 0)

2 647.160 520 (0, 10, 9, 8, 7, 47, 87, 86, 85, 125, 165, 205, 206, 207, 208, 209, 210,
211, 212, 213, 173, 133, 93, 94, 54, 14, 15, 0)

3 620.113 540 (0, 12, 11, 51, 50, 49, 48, 88, 89, 129, 128, 127, 126, 166, 167, 168,
169, 170, 171, 172, 132, 131, 130, 90, 91, 92, 52, 53, 13, 0)

4 642.621 530 (0, 16, 55, 95, 134, 174, 214, 215, 216, 217, 218, 219, 220, 221, 222,
223, 183, 182, 142, 102, 62, 22, 0)

5 643.651 550 (0, 17, 57, 56, 96, 97, 137, 136, 135, 175, 176, 177, 178, 179, 180,
181, 141, 140, 139, 138, 98, 99, 100, 101, 61, 60, 59, 58, 18, 19, 20,
21, 0)

6 647.160 510 (0, 23, 63, 103, 143, 144, 184, 224, 225, 226, 227, 228, 229, 230,
231, 232, 192, 152, 112, 111, 110, 70, 30, 29, 28, 27, 0)
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Route Length Load Ordering
7 634.235 550 (0, 24, 64, 104, 105, 106, 107, 147, 146, 145, 185, 186, 187, 188,

189, 190, 191, 151, 150, 149, 148, 108, 109, 69, 68, 67, 66, 65, 25,
26, 0)

8 637.745 540 (0, 32, 31, 71, 72, 73, 113, 153, 193, 233, 234, 235, 236, 237, 238,
198, 197, 196, 195, 194, 154, 114, 74, 75, 35, 34, 33, 0)

9 513.037 520 (0, 37, 36, 76, 77, 117, 116, 115, 155, 156, 157, 158, 159, 160, 121,
122, 82, 81, 120, 119, 118, 78, 79, 80, 41, 1, 40, 39, 38, 0)

Table B.20: Details of solution to problem Golden-1
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Figure B.16: Solution for problem Golden-2

Problem Golden-2
Vehicle capacity 700
Maximum route length 900.000
Number of nodes 320
Total route length 8434.997
Total number of routes 10
Route Length Load Ordering

1 888.358 700 (0, 2, 1, 41, 81, 120, 160, 121, 122, 162, 202, 203, 204, 244, 284,
283, 243, 242, 282, 281, 241, 201, 161, 200, 199, 198, 158, 159, 119,
118, 78, 79, 80, 40, 39, 0)

2 899.913 700 (0, 3, 4, 44, 43, 42, 82, 83, 84, 124, 123, 163, 164, 165, 166, 206,
205, 245, 285, 286, 246, 247, 287, 288, 248, 208, 207, 167, 127, 126,
125, 85, 86, 45, 5, 0)

3 897.773 620 (0, 7, 6, 46, 47, 87, 88, 128, 168, 169, 170, 210, 209, 249, 289, 290,
250, 251, 291, 292, 252, 212, 211, 171, 172, 173, 174, 175, 176, 136,
96, 56, 16, 0)

4 508.330 620 (0, 9, 8, 48, 49, 50, 90, 89, 129, 130, 131, 132, 133, 134, 135, 95,
94, 93, 92, 91, 51, 52, 53, 54, 55, 15, 14, 13, 12, 11, 10, 0)

5 891.868 560 (0, 17, 57, 97, 137, 177, 217, 216, 215, 214, 213, 253, 293, 294, 254,
255, 295, 296, 256, 257, 297, 298, 258, 218, 178, 138, 98, 58, 18, 0)
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Route Length Load Ordering
6 854.207 680 (0, 21, 20, 19, 59, 60, 100, 99, 139, 140, 141, 181, 180, 179, 219,

259, 299, 300, 260, 220, 221, 261, 301, 302, 262, 222, 182, 142, 102,
101, 61, 62, 22, 23, 24, 0)

7 869.528 690 (0, 27, 26, 25, 65, 64, 63, 103, 104, 105, 145, 144, 143, 183, 184,
224, 223, 263, 303, 304, 264, 265, 305, 306, 266, 226, 225, 185, 186,
146, 106, 66, 67, 68, 28, 29, 0)

8 868.330 670 (0, 30, 70, 69, 109, 108, 107, 147, 148, 188, 187, 227, 267, 307, 308,
268, 228, 229, 269, 309, 310, 270, 230, 190, 189, 149, 150, 110, 111,
112, 72, 71, 31, 32, 0)

9 860.113 670 (0, 33, 34, 74, 73, 113, 153, 152, 151, 191, 231, 271, 311, 312, 272,
273, 313, 314, 274, 234, 233, 232, 192, 193, 194, 195, 155, 154, 114,
115, 75, 35, 0)

10 896.575 490 (0, 36, 76, 116, 156, 196, 236, 235, 275, 315, 316, 276, 277, 317,
318, 278, 279, 319, 320, 280, 240, 239, 238, 237, 197, 157, 117, 77,
37, 38, 0)

Table B.21: Details of solution to problem Golden-2
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Figure B.17: Solution for problem Golden-3

Problem Golden-3
Vehicle capacity 900
Maximum route length 1200.000
Number of nodes 400
Total route length 11036.222
Total number of routes 10
Route Length Load Ordering

1 1070.669 740 (0, 2, 1, 40, 80, 120, 160, 121, 161, 200, 240, 280, 320, 360, 400,
361, 321, 281, 241, 201, 202, 242, 282, 322, 362, 363, 323, 283, 243,
203, 163, 162, 122, 82, 81, 41, 42, 43, 3, 0)

2 1136.575 860 (0, 4, 44, 84, 83, 123, 124, 164, 204, 244, 284, 324, 364, 365, 325,
285, 245, 205, 206, 246, 286, 326, 366, 367, 327, 287, 247, 207, 167,
166, 165, 125, 126, 127, 87, 86, 85, 45, 46, 47, 7, 6, 5, 0)

3 1164.820 860 (0, 9, 8, 48, 49, 50, 90, 89, 88, 128, 168, 208, 248, 288, 328, 368,
369, 329, 289, 249, 209, 210, 250, 290, 330, 370, 371, 331, 291, 251,
211, 171, 170, 169, 129, 130, 131, 132, 92, 91, 51, 52, 53, 13, 12,
11, 10, 0)
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Route Length Load Ordering
4 1056.547 760 (0, 14, 54, 94, 93, 133, 173, 172, 212, 252, 292, 332, 372, 373, 333,

293, 253, 213, 214, 254, 294, 334, 374, 375, 335, 295, 255, 215, 175,
174, 134, 135, 95, 55, 56, 16, 15, 0)

5 1103.622 800 (0, 17, 57, 97, 96, 136, 137, 138, 178, 177, 176, 216, 256, 296, 336,
376, 377, 337, 297, 257, 217, 218, 258, 298, 338, 378, 379, 339, 299,
259, 219, 179, 139, 99, 98, 58, 59, 60, 20, 19, 18, 0)

6 1103.622 800 (0, 22, 21, 61, 101, 100, 140, 141, 142, 182, 181, 180, 220, 260, 300,
340, 380, 381, 341, 301, 261, 221, 222, 262, 302, 342, 382, 383, 343,
303, 263, 223, 183, 143, 103, 102, 62, 63, 64, 24, 23, 0)

7 1089.500 780 (0, 25, 65, 66, 106, 105, 104, 144, 184, 224, 264, 304, 344, 384, 385,
345, 305, 265, 225, 226, 266, 306, 346, 386, 387, 347, 307, 267, 227,
187, 186, 185, 145, 146, 147, 107, 67, 27, 26, 0)

8 1089.500 740 (0, 28, 68, 108, 148, 188, 228, 268, 308, 348, 388, 389, 349, 309,
269, 229, 230, 270, 310, 350, 390, 391, 351, 311, 271, 231, 191, 190,
189, 149, 150, 151, 111, 110, 109, 69, 70, 30, 29, 0)

9 1103.622 800 (0, 32, 31, 71, 72, 73, 113, 112, 152, 192, 232, 272, 312, 352, 392,
393, 353, 313, 273, 233, 234, 274, 314, 354, 394, 395, 355, 315, 275,
235, 195, 194, 193, 153, 154, 155, 115, 114, 74, 34, 33, 0)

10 1117.745 860 (0, 37, 36, 35, 75, 76, 77, 117, 116, 156, 196, 236, 276, 316, 356,
396, 397, 357, 317, 277, 237, 238, 278, 318, 358, 398, 399, 359, 319,
279, 239, 199, 198, 197, 157, 158, 159, 119, 118, 78, 79, 39, 38, 0)

Table B.22: Details of solution to problem Golden-3
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Figure B.18: Solution for problem Golden-4

Problem Golden-4
Vehicle capacity 1000
Maximum route length 1600.000
Number of nodes 480
Total route length 13624.524
Total number of routes 10
Route Length Load Ordering

1 1395.405 980 (0, 2, 1, 41, 81, 120, 160, 121, 122, 123, 163, 162, 202, 242, 282,
322, 362, 402, 442, 443, 403, 363, 323, 283, 243, 203, 204, 244, 284,
324, 364, 404, 444, 445, 405, 365, 325, 285, 245, 205, 165, 164, 124,
84, 83, 82, 42, 43, 44, 4, 3, 0)

2 1395.405 980 (0, 7, 6, 5, 45, 46, 47, 87, 86, 85, 125, 126, 127, 128, 168, 167, 166,
206, 246, 286, 326, 366, 406, 446, 447, 407, 367, 327, 287, 247, 207,
208, 248, 288, 328, 368, 408, 448, 449, 409, 369, 329, 289, 249, 209,
169, 129, 89, 88, 48, 8, 0)
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Route Length Load Ordering
3 1343.622 960 (0, 12, 11, 10, 9, 49, 50, 90, 130, 131, 171, 170, 210, 250, 290, 330,

370, 410, 450, 451, 411, 371, 331, 291, 251, 211, 212, 252, 292, 332,
372, 412, 452, 453, 413, 373, 333, 293, 253, 213, 173, 172, 132, 92,
91, 51, 52, 53, 13, 0)

4 1395.405 980 (0, 14, 54, 94, 93, 133, 134, 174, 214, 254, 294, 334, 374, 414, 454,
455, 415, 375, 335, 295, 255, 215, 216, 256, 296, 336, 376, 416, 456,
457, 417, 377, 337, 297, 257, 217, 177, 176, 175, 135, 136, 137, 97,
96, 95, 55, 56, 57, 17, 16, 15, 0)

5 1282.424 900 (0, 18, 58, 98, 138, 178, 218, 258, 298, 338, 378, 418, 458, 459, 419,
379, 339, 299, 259, 219, 220, 260, 300, 340, 380, 420, 460, 461, 421,
381, 341, 301, 261, 221, 181, 180, 179, 139, 99, 59, 60, 20, 19, 0)

6 1395.405 980 (0, 22, 21, 61, 62, 63, 103, 102, 101, 100, 140, 141, 142, 182, 222,
262, 302, 342, 382, 422, 462, 463, 423, 383, 343, 303, 263, 223, 224,
264, 304, 344, 384, 424, 464, 465, 425, 385, 345, 305, 265, 225, 185,
184, 183, 143, 144, 104, 64, 24, 23, 0)

7 1409.528 1000 (0, 27, 26, 25, 65, 66, 67, 107, 106, 105, 145, 146, 147, 148, 188,
187, 186, 226, 266, 306, 346, 386, 426, 466, 467, 427, 387, 347, 307,
267, 227, 228, 268, 308, 348, 388, 428, 468, 469, 429, 389, 349, 309,
269, 229, 189, 149, 109, 108, 68, 69, 29, 28, 0)

8 1362.452 960 (0, 32, 31, 30, 70, 71, 111, 110, 150, 151, 191, 190, 230, 270, 310,
350, 390, 430, 470, 471, 431, 391, 351, 311, 271, 231, 232, 272, 312,
352, 392, 432, 472, 473, 433, 393, 353, 313, 273, 233, 193, 192, 152,
153, 113, 112, 72, 73, 33, 0)

9 1362.452 960 (0, 34, 74, 114, 154, 155, 156, 196, 195, 194, 234, 274, 314, 354,
394, 434, 474, 475, 435, 395, 355, 315, 275, 235, 236, 276, 316, 356,
396, 436, 476, 477, 437, 397, 357, 317, 277, 237, 197, 157, 117, 116,
115, 75, 76, 77, 37, 36, 35, 0)

10 1282.424 900 (0, 38, 78, 118, 158, 198, 238, 278, 318, 358, 398, 438, 478, 479,
439, 399, 359, 319, 279, 239, 240, 280, 320, 360, 400, 440, 480, 441,
401, 361, 321, 281, 241, 201, 161, 200, 199, 159, 119, 79, 80, 40, 39,
0)

Table B.23: Details of solution to problem Golden-4
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Figure B.19: Solution for problem Golden-5

Problem Golden-5
Vehicle capacity 900
Maximum route length 1800.000
Number of nodes 200
Total route length 6460.980
Total number of routes 5
Route Length Load Ordering

1 1301.582 830 (0, 2, 1, 20, 40, 21, 41, 61, 81, 101, 121, 141, 161, 181, 200, 180,
160, 140, 120, 100, 80, 60, 59, 79, 99, 119, 139, 159, 179, 199, 198,
178, 158, 138, 118, 98, 78, 58, 38, 39, 19, 18, 0)

2 1282.810 770 (0, 3, 4, 24, 23, 22, 42, 62, 82, 102, 122, 142, 162, 182, 183, 163,
143, 123, 103, 83, 63, 43, 44, 64, 84, 104, 124, 144, 164, 184, 185,
165, 145, 125, 105, 85, 65, 45, 25, 5, 0)

3 1292.196 800 (0, 6, 7, 27, 26, 46, 66, 86, 106, 126, 146, 166, 186, 187, 167, 147,
127, 107, 87, 67, 47, 48, 68, 88, 108, 128, 148, 168, 188, 189, 169,
149, 129, 109, 89, 69, 49, 29, 28, 8, 9, 0)
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Route Length Load Ordering
4 1282.810 790 (0, 10, 11, 31, 30, 50, 70, 90, 110, 130, 150, 170, 190, 191, 171, 151,

131, 111, 91, 71, 51, 52, 72, 92, 112, 132, 152, 172, 192, 193, 173,
153, 133, 113, 93, 73, 53, 33, 32, 12, 0)

5 1301.582 810 (0, 13, 14, 34, 54, 74, 94, 114, 134, 154, 174, 194, 195, 175, 155,
135, 115, 95, 75, 55, 56, 76, 96, 116, 136, 156, 176, 196, 197, 177,
157, 137, 117, 97, 77, 57, 37, 36, 35, 15, 16, 17, 0)

Table B.24: Details of solution to problem Golden-5
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Figure B.20: Solution for problem Golden-6

Problem Golden-6
Vehicle capacity 900
Maximum route length 1500.000
Number of nodes 280
Total route length 8412.901
Total number of routes 7
Route Length Load Ordering

1 1201.843 800 (0, 1, 2, 3, 31, 30, 58, 59, 87, 115, 143, 171, 199, 227, 255, 254, 226,
198, 170, 142, 114, 86, 85, 113, 141, 169, 197, 225, 253, 280, 252,
224, 196, 168, 140, 112, 84, 57, 29, 56, 28, 0)

2 1201.843 800 (0, 5, 4, 32, 33, 61, 60, 88, 116, 144, 172, 200, 228, 256, 257, 229,
201, 173, 145, 117, 89, 90, 118, 146, 174, 202, 230, 258, 259, 231,
203, 175, 147, 119, 91, 63, 62, 34, 35, 7, 6, 0)

3 1221.997 820 (0, 10, 9, 8, 36, 64, 92, 120, 148, 176, 204, 232, 260, 261, 233, 205,
177, 149, 121, 93, 94, 122, 150, 178, 206, 234, 262, 263, 235, 207,
179, 151, 123, 95, 67, 66, 65, 37, 38, 39, 40, 12, 11, 0)
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Route Length Load Ordering
4 1221.997 820 (0, 14, 13, 41, 42, 70, 69, 68, 96, 124, 152, 180, 208, 236, 264, 265,

237, 209, 181, 153, 125, 97, 98, 126, 154, 182, 210, 238, 266, 267,
239, 211, 183, 155, 127, 99, 71, 43, 44, 45, 17, 16, 15, 0)

5 1181.689 780 (0, 19, 18, 46, 74, 73, 72, 100, 128, 156, 184, 212, 240, 268, 269,
241, 213, 185, 157, 129, 101, 102, 130, 158, 186, 214, 242, 270, 271,
243, 215, 187, 159, 131, 103, 75, 47, 48, 20, 0)

6 1201.843 800 (0, 21, 49, 50, 78, 77, 76, 104, 132, 160, 188, 216, 244, 272, 273,
245, 217, 189, 161, 133, 105, 106, 134, 162, 190, 218, 246, 274, 275,
247, 219, 191, 163, 135, 107, 79, 51, 52, 24, 23, 22, 0)

7 1181.689 780 (0, 26, 25, 53, 54, 82, 81, 80, 108, 136, 164, 192, 220, 248, 276, 277,
249, 221, 193, 165, 137, 109, 110, 138, 166, 194, 222, 250, 278, 279,
251, 223, 195, 167, 139, 111, 83, 55, 27, 0)

Table B.25: Details of solution to problem Golden-6
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Figure B.21: Solution for problem Golden-7

Problem Golden-7
Vehicle capacity 900
Maximum route length 1300.000
Number of nodes 360
Total route length 10195.586
Total number of routes 9
Route Length Load Ordering

1 1059.632 720 (0, 5, 4, 40, 41, 77, 113, 149, 148, 147, 183, 219, 255, 291, 327, 328,
292, 256, 220, 184, 185, 221, 257, 293, 329, 330, 294, 258, 222, 186,
150, 114, 78, 42, 43, 7, 6, 0)

2 1117.155 740 (0, 8, 44, 80, 79, 115, 151, 187, 223, 259, 295, 331, 332, 296, 260,
224, 188, 189, 225, 261, 297, 333, 334, 298, 262, 226, 190, 154, 153,
152, 116, 117, 118, 82, 81, 45, 46, 10, 9, 0)

3 1064.862 660 (0, 11, 47, 83, 119, 120, 156, 155, 191, 227, 263, 299, 335, 336, 300,
264, 228, 192, 193, 229, 265, 301, 337, 338, 302, 266, 230, 194, 158,
157, 121, 85, 84, 48, 12, 0)
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Route Length Load Ordering
4 1169.448 860 (0, 14, 13, 49, 50, 86, 122, 123, 124, 160, 159, 195, 231, 267, 303,

339, 340, 304, 268, 232, 196, 197, 233, 269, 305, 341, 342, 306, 270,
234, 198, 162, 161, 125, 126, 90, 89, 88, 87, 51, 52, 16, 15, 0)

5 1148.531 820 (0, 17, 53, 54, 55, 56, 92, 91, 127, 128, 129, 165, 164, 163, 199, 235,
271, 307, 343, 344, 308, 272, 236, 200, 201, 237, 273, 309, 345, 346,
310, 274, 238, 202, 166, 130, 94, 93, 57, 21, 20, 19, 18, 0)

6 1169.448 860 (0, 23, 22, 58, 59, 95, 131, 132, 133, 169, 168, 167, 203, 239, 275,
311, 347, 348, 312, 276, 240, 204, 205, 241, 277, 313, 349, 350, 314,
278, 242, 206, 170, 134, 135, 99, 98, 97, 96, 60, 61, 25, 24, 0)

7 1148.531 860 (0, 26, 62, 63, 64, 65, 101, 100, 136, 172, 171, 207, 243, 279, 315,
351, 352, 316, 280, 244, 208, 209, 245, 281, 317, 353, 354, 318, 282,
246, 210, 174, 173, 137, 138, 139, 103, 102, 66, 30, 29, 28, 27, 0)

8 1132.843 800 (0, 32, 31, 67, 68, 104, 140, 141, 177, 176, 175, 211, 247, 283, 319,
355, 356, 320, 284, 248, 212, 213, 249, 285, 321, 357, 358, 322, 286,
250, 214, 178, 142, 143, 107, 106, 105, 69, 70, 34, 33, 0)

9 1185.136 880 (0, 35, 71, 72, 37, 38, 74, 73, 108, 144, 109, 145, 180, 179, 215, 251,
287, 323, 359, 360, 324, 288, 252, 216, 181, 217, 253, 289, 325, 326,
290, 254, 218, 182, 146, 110, 111, 112, 76, 75, 39, 3, 2, 1, 36, 0)

Table B.26: Details of solution to problem Golden-7
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Figure B.22: Solution for problem Golden-8

Problem Golden-8
Vehicle capacity 900
Maximum route length 1200.000
Number of nodes 440
Total route length 11649.889
Total number of routes 10
Route Length Load Ordering

1 1148.110 890 (0, 4, 5, 49, 48, 92, 136, 180, 181, 182, 226, 225, 224, 268, 312, 356,
400, 399, 355, 311, 267, 266, 310, 354, 398, 397, 353, 309, 265, 221,
222, 223, 179, 178, 134, 135, 91, 90, 89, 45, 46, 47, 3, 2, 1, 44, 0)

2 1199.474 870 (0, 8, 7, 6, 50, 94, 93, 137, 138, 139, 183, 227, 271, 270, 269, 313,
357, 401, 402, 358, 314, 315, 359, 403, 404, 360, 361, 405, 406, 362,
318, 317, 316, 272, 228, 184, 140, 96, 95, 51, 52, 53, 9, 10, 0)

3 1179.852 900 (0, 11, 12, 56, 55, 54, 97, 141, 185, 186, 230, 229, 273, 274, 275,
319, 363, 407, 408, 364, 320, 276, 277, 321, 365, 409, 410, 366, 322,
278, 234, 233, 232, 231, 187, 143, 142, 98, 99, 100, 101, 102, 58, 57,
13, 0)
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Route Length Load Ordering
4 1173.792 900 (0, 14, 15, 59, 103, 147, 146, 145, 144, 188, 189, 190, 191, 235, 279,

323, 367, 411, 412, 368, 324, 280, 281, 325, 369, 413, 414, 370, 326,
282, 238, 237, 236, 192, 193, 149, 148, 104, 105, 106, 107, 63, 62,
61, 60, 16, 17, 0)

5 1118.147 890 (0, 18, 19, 20, 64, 108, 152, 151, 150, 194, 195, 196, 240, 239, 283,
327, 371, 415, 416, 372, 328, 284, 285, 329, 373, 417, 418, 374, 330,
286, 242, 241, 197, 198, 154, 153, 109, 110, 111, 67, 66, 65, 21, 22,
0)

6 1173.792 900 (0, 23, 24, 25, 69, 68, 112, 113, 157, 156, 155, 199, 200, 201, 245,
244, 243, 287, 331, 375, 419, 420, 376, 332, 288, 289, 333, 377, 421,
422, 378, 334, 290, 246, 202, 203, 204, 160, 159, 158, 114, 115, 116,
72, 71, 70, 26, 0)

7 1182.353 900 (0, 27, 28, 29, 73, 74, 75, 119, 118, 117, 161, 205, 249, 248, 247,
291, 335, 379, 423, 424, 380, 336, 292, 293, 337, 381, 425, 426, 382,
338, 294, 250, 251, 252, 253, 209, 208, 207, 206, 162, 163, 164, 120,
76, 32, 31, 30, 0)

8 1199.550 880 (0, 33, 77, 121, 165, 166, 210, 254, 298, 297, 296, 295, 339, 383,
427, 428, 384, 340, 341, 385, 429, 430, 386, 342, 343, 387, 431, 432,
388, 344, 300, 299, 255, 211, 167, 123, 122, 78, 79, 35, 34, 0)

9 1118.148 770 (0, 37, 36, 80, 124, 168, 169, 213, 212, 256, 257, 301, 345, 389, 433,
434, 390, 346, 302, 303, 347, 391, 435, 436, 392, 348, 304, 260, 259,
258, 214, 215, 216, 172, 171, 170, 126, 125, 81, 82, 38, 39, 0)

10 1156.671 900 (0, 40, 41, 85, 84, 83, 127, 128, 129, 173, 217, 218, 219, 263, 262,
261, 305, 349, 393, 437, 438, 394, 350, 306, 307, 351, 395, 439, 440,
396, 352, 308, 264, 220, 177, 133, 176, 175, 174, 130, 131, 132, 88,
87, 86, 42, 43, 0)

Table B.27: Details of solution to problem Golden-8
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Figure B.23: Solution for problem Golden-9

Problem Golden-9
Vehicle capacity 1000
Maximum route length N/A
Number of nodes 255
Total route length 579.713
Total number of routes 14
Route Length Load Ordering

1 10.233 916 (0, 1, 3, 6, 11, 7, 0)
2 4.828 600 (0, 2, 4, 0)
3 15.890 978 (0, 5, 9, 14, 20, 26, 19, 13, 8, 0)
4 43.941 988 (0, 10, 15, 21, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 121, 106,

92, 79, 67, 56, 46, 37, 0)
5 20.999 979 (0, 12, 24, 31, 40, 49, 39, 30, 23, 17, 0)
6 28.820 997 (0, 16, 22, 48, 59, 71, 84, 72, 60, 50, 41, 32, 18, 0)
7 41.797 999 (0, 25, 33, 42, 52, 63, 75, 88, 102, 117, 133, 149, 134, 118, 103, 89,

76, 64, 53, 43, 34, 0)
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Route Length Load Ordering
8 50.499 994 (0, 27, 35, 44, 54, 65, 77, 90, 104, 119, 135, 150, 164, 177, 189, 176,

163, 148, 132, 116, 101, 87, 74, 62, 51, 0)
9 51.245 996 (0, 29, 47, 57, 68, 80, 93, 107, 122, 137, 151, 165, 178, 190, 179,

166, 152, 138, 123, 108, 94, 81, 69, 58, 38, 0)
10 56.127 996 (0, 61, 85, 99, 114, 130, 146, 161, 174, 187, 199, 209, 218, 227, 219,

210, 200, 188, 175, 162, 147, 131, 115, 100, 86, 73, 0)
11 58.923 996 (0, 70, 82, 95, 109, 124, 139, 153, 167, 180, 191, 201, 211, 220, 228,

221, 212, 202, 192, 181, 168, 154, 140, 125, 110, 96, 83, 0)
12 60.737 997 (0, 97, 127, 142, 156, 170, 182, 194, 204, 214, 223, 230, 236, 242,

237, 231, 224, 215, 205, 195, 183, 171, 157, 143, 112, 0)
13 64.879 999 (0, 98, 128, 158, 172, 184, 196, 206, 216, 232, 238, 243, 247, 251,

248, 244, 239, 233, 225, 217, 207, 197, 185, 173, 159, 144, 113, 0)
14 70.795 994 (0, 111, 126, 141, 155, 169, 193, 203, 213, 222, 229, 235, 241, 246,

250, 253, 255, 254, 252, 249, 245, 240, 234, 226, 208, 198, 186, 160,
145, 129, 0)

Table B.28: Details of solution to problem Golden-9
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Figure B.24: Solution for problem Golden-10

Problem Golden-10
Vehicle capacity 1000
Maximum route length N/A
Number of nodes 323
Total route length 737.284
Total number of routes 16
Route Length Load Ordering

1 2.828 300 (0, 1, 0)
2 7.657 960 (0, 2, 5, 8, 4, 0)
3 18.719 988 (0, 3, 6, 10, 15, 21, 29, 22, 16, 7, 0)
4 21.443 984 (0, 9, 14, 19, 26, 34, 42, 33, 25, 18, 13, 0)
5 20.957 998 (0, 11, 23, 31, 40, 50, 41, 32, 24, 12, 0)
6 35.304 1000 (0, 17, 39, 49, 60, 71, 84, 97, 111, 127, 112, 98, 72, 61, 51, 0)
7 49.598 992 (0, 20, 27, 35, 44, 54, 65, 77, 90, 104, 119, 135, 152, 170, 187, 169,

151, 134, 118, 103, 89, 76, 64, 53, 43, 0)
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Route Length Load Ordering
8 60.071 1000 (0, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 188, 204, 219,

233, 246, 234, 221, 207, 175, 157, 140, 124, 109, 95, 82, 70, 0)
9 50.143 998 (0, 30, 38, 47, 57, 68, 80, 93, 107, 122, 138, 155, 173, 189, 172, 154,

137, 121, 106, 92, 79, 67, 56, 46, 37, 0)
10 53.383 997 (0, 48, 58, 69, 81, 94, 108, 123, 139, 156, 174, 190, 205, 220, 206,

191, 192, 176, 158, 141, 125, 110, 96, 83, 59, 0)
11 59.250 998 (0, 52, 63, 75, 88, 102, 117, 133, 150, 168, 186, 203, 218, 232, 245,

257, 244, 231, 217, 202, 185, 167, 149, 132, 116, 101, 87, 74, 62, 0)
12 62.671 996 (0, 73, 114, 130, 147, 165, 183, 200, 215, 229, 242, 255, 267, 277,

266, 254, 265, 253, 241, 228, 214, 199, 182, 164, 146, 129, 99, 85,
0)

13 67.561 996 (0, 86, 100, 115, 131, 148, 166, 184, 201, 216, 230, 243, 256, 268,
278, 287, 295, 286, 276, 285, 275, 264, 240, 227, 213, 198, 181, 163,
145, 113, 0)

14 75.605 997 (0, 126, 160, 177, 194, 209, 223, 236, 248, 259, 270, 280, 289, 297,
304, 310, 315, 319, 316, 311, 305, 298, 290, 281, 271, 260, 249, 237,
224, 210, 178, 143, 0)

15 71.560 996 (0, 128, 162, 180, 197, 212, 226, 252, 263, 274, 284, 293, 301, 294,
302, 308, 313, 307, 300, 292, 283, 273, 262, 251, 239, 211, 196, 179,
144, 0)

16 80.534 995 (0, 142, 159, 193, 208, 222, 235, 247, 258, 269, 279, 288, 296, 303,
309, 314, 318, 321, 323, 322, 320, 317, 312, 306, 299, 291, 282, 272,
261, 250, 238, 225, 195, 161, 0)

Table B.29: Details of solution to problem Golden-10
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Figure B.25: Solution for problem Golden-11

Problem Golden-11
Vehicle capacity 1000
Maximum route length N/A
Number of nodes 399
Total route length 913.345
Total number of routes 18
Route Length Load Ordering

1 7.657 960 (0, 1, 3, 7, 4, 0)
2 2.828 300 (0, 2, 0)
3 18.614 936 (0, 5, 9, 14, 20, 27, 34, 26, 19, 13, 0)
4 23.443 975 (0, 6, 10, 15, 21, 29, 38, 48, 30, 22, 16, 11, 0)
5 16.233 944 (0, 8, 18, 24, 31, 23, 17, 12, 0)
6 28.952 951 (0, 25, 33, 41, 51, 61, 73, 85, 72, 60, 50, 40, 32, 0)
7 58.083 983 (0, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 229,

211, 191, 172, 154, 137, 121, 106, 92, 79, 67, 56, 46, 37, 0)
8 58.083 983 (0, 35, 44, 54, 65, 77, 90, 104, 119, 135, 152, 170, 189, 209, 228,

246, 227, 208, 188, 169, 151, 134, 118, 103, 89, 76, 64, 53, 43, 0)
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Route Length Load Ordering
9 41.686 1000 (0, 39, 59, 83, 97, 112, 127, 144, 161, 180, 162, 145, 129, 113, 98,

84, 71, 49, 0)
10 59.172 997 (0, 42, 74, 87, 101, 116, 132, 149, 167, 186, 206, 225, 244, 262, 279,

263, 245, 226, 207, 187, 168, 150, 133, 117, 102, 88, 75, 63, 52, 0)
11 61.977 975 (0, 47, 57, 68, 80, 93, 107, 122, 138, 155, 173, 192, 212, 230, 247,

264, 280, 265, 248, 231, 213, 193, 174, 156, 139, 123, 108, 94, 81,
69, 0)

12 66.680 996 (0, 58, 95, 109, 124, 140, 157, 175, 194, 214, 232, 249, 266, 281,
295, 309, 322, 310, 296, 282, 267, 250, 233, 215, 195, 176, 158, 141,
125, 82, 70, 0)

13 68.765 994 (0, 62, 100, 115, 131, 148, 166, 185, 205, 243, 261, 278, 294, 308,
321, 333, 344, 332, 320, 307, 293, 277, 260, 242, 224, 204, 184, 165,
147, 130, 114, 86, 0)

14 67.182 999 (0, 96, 126, 160, 198, 218, 236, 254, 270, 286, 300, 313, 326, 337,
348, 338, 327, 314, 301, 287, 271, 255, 237, 219, 199, 179, 143, 111,
0)

15 80.065 992 (0, 99, 146, 182, 202, 222, 240, 258, 275, 291, 305, 318, 330, 342,
353, 362, 352, 361, 370, 378, 371, 363, 354, 343, 331, 319, 306, 292,
276, 259, 241, 223, 203, 183, 164, 0)

16 85.804 1000 (0, 110, 159, 177, 196, 216, 234, 251, 268, 283, 297, 311, 323, 334,
345, 355, 364, 372, 379, 385, 390, 394, 391, 386, 380, 373, 365, 356,
346, 335, 324, 298, 284, 252, 235, 197, 142, 0)

17 79.642 998 (0, 128, 181, 220, 256, 273, 289, 303, 316, 328, 340, 350, 359, 368,
376, 383, 389, 384, 377, 369, 360, 351, 341, 329, 317, 304, 290, 274,
257, 239, 221, 201, 163, 0)

18 88.478 997 (0, 178, 217, 253, 269, 285, 299, 312, 325, 336, 347, 357, 366, 374,
381, 387, 392, 395, 397, 399, 398, 396, 393, 388, 382, 375, 367, 358,
349, 339, 315, 302, 288, 272, 238, 200, 0)

Table B.30: Details of solution to problem Golden-11
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Figure B.26: Solution for problem Golden-12

Problem Golden-12
Vehicle capacity 1000
Maximum route length N/A
Number of nodes 483
Total route length 1102.755
Total number of routes 19
Route Length Load Ordering

1 5.657 900 (0, 1, 4, 2, 0)
2 18.614 936 (0, 3, 6, 10, 15, 21, 29, 22, 16, 11, 0)
3 18.614 936 (0, 5, 9, 14, 20, 27, 34, 26, 19, 13, 0)
4 15.981 996 (0, 7, 17, 23, 31, 24, 12, 8, 0)
5 28.151 998 (0, 18, 32, 40, 50, 61, 73, 62, 42, 51, 41, 33, 25, 0)
6 67.094 1000 (0, 28, 36, 45, 55, 66, 78, 91, 105, 120, 136, 153, 171, 190, 210, 231,

253, 274, 294, 313, 295, 275, 255, 234, 213, 193, 174, 156, 139, 123,
108, 94, 47, 0)

7 36.247 996 (0, 30, 48, 59, 70, 83, 96, 111, 127, 112, 97, 84, 71, 60, 49, 39, 0)
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Route Length Load Ordering
8 64.409 998 (0, 35, 44, 54, 65, 77, 90, 104, 119, 135, 152, 170, 189, 209, 230,

252, 273, 293, 312, 292, 271, 249, 227, 206, 186, 167, 149, 132, 116,
101, 87, 74, 0)

9 58.542 987 (0, 37, 46, 56, 67, 79, 92, 106, 121, 137, 154, 172, 191, 211, 232,
254, 233, 212, 192, 173, 155, 138, 122, 107, 93, 80, 68, 57, 38, 0)

10 58.479 978 (0, 43, 53, 64, 76, 89, 103, 118, 134, 151, 169, 188, 208, 229, 251,
272, 250, 228, 207, 187, 168, 150, 133, 117, 102, 88, 75, 63, 52, 0)

11 69.614 994 (0, 58, 95, 125, 141, 158, 176, 195, 215, 236, 257, 277, 297, 315,
332, 349, 364, 348, 331, 314, 296, 276, 256, 235, 214, 194, 175, 157,
140, 124, 109, 81, 69, 0)

12 66.401 992 (0, 72, 98, 128, 162, 200, 242, 263, 284, 303, 322, 340, 356, 372,
386, 400, 387, 373, 357, 341, 323, 304, 264, 221, 181, 145, 113, 0)

13 76.958 1000 (0, 82, 110, 142, 159, 177, 196, 216, 237, 258, 278, 298, 316, 333,
350, 365, 379, 393, 406, 418, 407, 394, 380, 366, 351, 334, 317, 279,
259, 238, 217, 197, 178, 160, 126, 0)

14 67.241 999 (0, 85, 99, 114, 130, 147, 165, 184, 204, 225, 247, 269, 290, 310,
329, 346, 363, 347, 330, 311, 291, 270, 248, 226, 205, 185, 166, 148,
131, 115, 100, 86, 0)

15 88.505 997 (0, 129, 182, 202, 223, 245, 267, 288, 308, 327, 344, 361, 377, 391,
404, 416, 427, 437, 446, 454, 462, 455, 447, 438, 428, 417, 405, 392,
378, 362, 345, 328, 309, 289, 268, 246, 224, 203, 183, 164, 0)

16 77.237 999 (0, 143, 161, 199, 219, 262, 302, 320, 338, 354, 370, 384, 398, 411,
422, 432, 442, 433, 423, 412, 399, 385, 371, 355, 339, 321, 283, 241,
220, 180, 144, 0)

17 100.919 1000 (0, 146, 244, 266, 287, 307, 326, 360, 376, 390, 403, 415, 426, 436,
445, 453, 461, 468, 473, 477, 480, 482, 483, 481, 478, 474, 469, 463,
456, 448, 439, 429, 419, 408, 395, 381, 367, 352, 335, 299, 280, 260,
239, 0)

18 94.904 997 (0, 163, 222, 265, 286, 306, 325, 343, 359, 375, 389, 402, 414, 425,
435, 444, 452, 460, 467, 472, 476, 479, 475, 470, 464, 457, 449, 440,
430, 420, 409, 396, 382, 368, 336, 318, 300, 281, 261, 218, 0)

19 89.187 998 (0, 179, 198, 240, 282, 301, 319, 337, 353, 369, 383, 397, 410, 421,
431, 441, 450, 458, 465, 471, 466, 459, 451, 443, 434, 424, 413, 401,
388, 374, 358, 342, 324, 305, 285, 243, 201, 0)

Table B.31: Details of solution to problem Golden-12
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Figure B.27: Solution for problem Golden-13

Problem Golden-13
Vehicle capacity 1000
Maximum route length N/A
Number of nodes 252
Total route length 857.189
Total number of routes 26
Route Length Load Ordering

1 13.405 960 (0, 1, 13, 14, 2, 0)
2 12.325 960 (0, 3, 17, 18, 4, 0)
3 12.233 780 (0, 5, 21, 6, 0)
4 13.405 960 (0, 7, 23, 24, 8, 0)
5 12.325 960 (0, 9, 27, 28, 10, 0)
6 12.233 780 (0, 11, 31, 12, 0)
7 30.902 988 (0, 15, 67, 105, 151, 152, 106, 68, 38, 16, 0)
8 30.902 988 (0, 19, 41, 71, 109, 155, 156, 110, 72, 20, 0)
9 28.170 936 (0, 22, 46, 78, 118, 166, 167, 119, 79, 47, 0)
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Route Length Load Ordering
10 30.902 988 (0, 25, 85, 127, 177, 178, 128, 86, 52, 26, 0)
11 30.902 988 (0, 29, 55, 89, 131, 181, 182, 132, 90, 30, 0)
12 28.170 936 (0, 32, 60, 96, 140, 192, 141, 97, 61, 33, 0)
13 37.232 996 (0, 34, 62, 98, 142, 194, 193, 252, 251, 191, 139, 95, 59, 0)
14 42.555 997 (0, 35, 64, 101, 102, 148, 147, 146, 145, 144, 100, 99, 63, 0)
15 50.656 987 (0, 36, 65, 103, 149, 203, 202, 201, 200, 199, 198, 197, 196, 195,

143, 0)
16 38.502 996 (0, 37, 66, 104, 150, 204, 205, 206, 207, 153, 107, 69, 39, 0)
17 38.502 996 (0, 40, 70, 108, 154, 208, 209, 210, 211, 157, 111, 73, 42, 0)
18 50.656 987 (0, 43, 74, 112, 158, 212, 213, 214, 215, 216, 217, 218, 219, 220,

164, 0)
19 42.555 997 (0, 44, 75, 115, 114, 113, 159, 160, 161, 162, 163, 116, 76, 0)
20 37.232 996 (0, 45, 77, 117, 165, 221, 222, 223, 224, 168, 120, 80, 48, 0)
21 42.555 997 (0, 49, 82, 123, 124, 174, 173, 172, 171, 170, 122, 121, 81, 0)
22 50.656 987 (0, 50, 83, 125, 175, 233, 232, 231, 230, 229, 228, 227, 226, 225,

169, 0)
23 38.502 996 (0, 51, 84, 126, 176, 234, 235, 236, 237, 179, 129, 87, 53, 0)
24 38.502 996 (0, 54, 88, 130, 180, 238, 239, 240, 241, 183, 133, 91, 56, 0)
25 50.656 987 (0, 57, 92, 134, 184, 242, 243, 244, 245, 246, 247, 248, 249, 250,

190, 0)
26 42.555 997 (0, 58, 93, 136, 135, 185, 186, 187, 188, 189, 137, 138, 94, 0)

Table B.32: Details of solution to problem Golden-13
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Figure B.28: Solution for problem Golden-14

Problem Golden-14
Vehicle capacity 1000
Maximum route length N/A
Number of nodes 320
Total route length 1080.553
Total number of routes 30
Route Length Load Ordering

1 12.325 960 (0, 1, 13, 32, 12, 0)
2 16.074 840 (0, 2, 16, 15, 14, 0)
3 12.325 960 (0, 3, 17, 18, 4, 0)
4 16.074 840 (0, 5, 19, 20, 21, 0)
5 12.325 960 (0, 6, 22, 23, 7, 0)
6 16.074 840 (0, 8, 24, 25, 26, 0)
7 12.325 960 (0, 9, 27, 28, 10, 0)
8 16.074 840 (0, 11, 31, 30, 29, 0)
9 36.687 980 (0, 33, 61, 97, 141, 193, 253, 254, 194, 142, 98, 62, 34, 0)
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Route Length Load Ordering
10 43.726 964 (0, 35, 64, 100, 144, 196, 197, 257, 256, 255, 195, 143, 99, 63, 0)
11 47.787 997 (0, 36, 65, 102, 148, 147, 199, 200, 201, 202, 203, 149, 103, 66, 0)
12 38.218 980 (0, 37, 67, 105, 151, 205, 267, 268, 206, 152, 106, 68, 38, 0)
13 36.142 980 (0, 39, 69, 107, 153, 207, 269, 270, 208, 154, 108, 70, 40, 0)
14 38.218 980 (0, 41, 71, 109, 155, 209, 271, 272, 210, 156, 110, 72, 42, 0)
15 47.787 997 (0, 43, 74, 113, 159, 160, 216, 215, 214, 213, 212, 158, 112, 73, 0)
16 43.726 964 (0, 44, 75, 115, 163, 219, 218, 282, 283, 284, 220, 164, 116, 76, 0)
17 36.687 980 (0, 45, 77, 117, 165, 221, 285, 286, 222, 166, 118, 78, 46, 0)
18 36.687 980 (0, 47, 79, 119, 167, 223, 287, 288, 224, 168, 120, 80, 48, 0)
19 43.726 964 (0, 49, 82, 122, 170, 226, 227, 291, 290, 289, 225, 169, 121, 81, 0)
20 47.787 997 (0, 50, 83, 124, 174, 173, 229, 230, 231, 232, 233, 175, 125, 84, 0)
21 38.218 980 (0, 51, 85, 127, 177, 235, 301, 302, 236, 178, 128, 86, 52, 0)
22 36.142 980 (0, 53, 87, 129, 179, 237, 303, 304, 238, 180, 130, 88, 54, 0)
23 38.218 980 (0, 55, 89, 131, 181, 239, 305, 306, 240, 182, 132, 90, 56, 0)
24 47.787 997 (0, 57, 92, 135, 185, 186, 246, 245, 244, 243, 242, 184, 134, 91, 0)
25 43.726 964 (0, 58, 93, 137, 189, 249, 248, 316, 317, 318, 250, 190, 138, 94, 0)
26 36.687 980 (0, 59, 95, 139, 191, 251, 319, 320, 252, 192, 140, 96, 60, 0)
27 57.251 957 (0, 101, 145, 146, 198, 258, 259, 260, 261, 262, 263, 264, 265, 266,

204, 150, 104, 0)
28 57.251 957 (0, 111, 157, 211, 273, 274, 275, 276, 277, 278, 279, 280, 281, 217,

161, 162, 114, 0)
29 57.251 957 (0, 123, 171, 172, 228, 292, 293, 294, 295, 296, 297, 298, 299, 300,

234, 176, 126, 0)
30 57.251 957 (0, 133, 183, 241, 307, 308, 309, 310, 311, 312, 313, 314, 315, 247,

187, 188, 136, 0)

Table B.33: Details of solution to problem Golden-14

347



-20 -10 0 10 20

-20

-10

0

10

20

396 nodes   1338.00    33 routes

Figure B.29: Solution for problem Golden-15

Problem Golden-15
Vehicle capacity 1000
Maximum route length N/A
Number of nodes 396
Total route length 1337.995
Total number of routes 33
Route Length Load Ordering

1 13.405 960 (0, 1, 13, 14, 2, 0)
2 12.325 960 (0, 3, 17, 18, 4, 0)
3 13.405 960 (0, 5, 21, 22, 6, 0)
4 13.405 960 (0, 7, 23, 24, 8, 0)
5 12.325 960 (0, 9, 27, 28, 10, 0)
6 13.405 960 (0, 11, 31, 32, 12, 0)
7 26.902 978 (0, 15, 37, 67, 105, 106, 68, 38, 16, 0)
8 24.902 1000 (0, 19, 20, 42, 43, 44, 45, 46, 0)
9 22.902 872 (0, 25, 49, 50, 51, 52, 26, 0)
10 25.730 944 (0, 29, 55, 90, 91, 57, 56, 30, 0)
11 36.142 980 (0, 33, 61, 97, 141, 193, 253, 320, 252, 192, 140, 96, 60, 0)
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Route Length Load Ordering
12 38.218 980 (0, 34, 62, 98, 142, 194, 254, 255, 195, 143, 99, 63, 35, 0)
13 47.787 997 (0, 36, 65, 102, 148, 147, 199, 200, 201, 202, 203, 149, 103, 66, 0)
14 36.142 980 (0, 39, 69, 107, 153, 207, 269, 270, 208, 154, 108, 70, 40, 0)
15 48.957 958 (0, 41, 71, 109, 155, 209, 271, 272, 342, 341, 340, 339, 338, 268,

206, 152, 0)
16 42.955 998 (0, 47, 79, 119, 167, 223, 287, 359, 358, 285, 286, 222, 166, 118, 78,

0)
17 44.740 993 (0, 48, 80, 120, 168, 224, 288, 360, 361, 362, 289, 225, 169, 121, 81,

0)
18 40.558 964 (0, 53, 87, 129, 179, 237, 238, 304, 303, 302, 236, 178, 128, 86, 0)
19 47.983 987 (0, 54, 88, 130, 180, 239, 305, 379, 378, 377, 376, 375, 301, 235,

177, 127, 0)
20 38.218 980 (0, 58, 94, 138, 190, 250, 318, 319, 251, 191, 139, 95, 59, 0)
21 56.097 988 (0, 64, 101, 146, 198, 258, 259, 260, 261, 262, 263, 264, 265, 266,

204, 150, 104, 0)
22 57.679 994 (0, 72, 157, 211, 212, 274, 275, 276, 277, 347, 346, 345, 344, 343,

273, 210, 156, 110, 0)
23 49.632 999 (0, 73, 74, 113, 161, 217, 281, 353, 354, 282, 218, 162, 114, 115, 75,

0)
24 48.611 994 (0, 76, 116, 164, 163, 219, 283, 355, 356, 357, 284, 220, 221, 165,

117, 77, 0)
25 48.460 990 (0, 82, 123, 124, 172, 173, 229, 230, 231, 232, 174, 125, 83, 84, 0)
26 55.819 996 (0, 85, 126, 175, 233, 299, 298, 297, 296, 295, 294, 293, 292, 228,

227, 171, 122, 0)
27 52.398 985 (0, 89, 131, 181, 240, 306, 380, 381, 382, 383, 309, 308, 307, 241,

183, 182, 132, 0)
28 55.769 990 (0, 92, 136, 187, 247, 315, 314, 313, 312, 311, 245, 246, 186, 185,

135, 134, 0)
29 56.440 1000 (0, 93, 137, 189, 249, 317, 393, 394, 395, 396, 321, 322, 323, 324,

256, 196, 144, 100, 0)
30 61.736 1000 (0, 111, 158, 213, 214, 215, 279, 278, 348, 349, 350, 351, 352, 280,

216, 160, 159, 112, 0)
31 63.678 986 (0, 133, 184, 242, 243, 244, 310, 384, 385, 386, 387, 388, 389, 390,

391, 392, 316, 248, 188, 0)
32 65.740 973 (0, 145, 197, 257, 325, 326, 327, 328, 329, 330, 331, 332, 333, 334,

335, 336, 337, 267, 205, 151, 0)
33 65.530 978 (0, 170, 226, 290, 291, 363, 364, 365, 366, 367, 368, 369, 370, 371,

372, 373, 374, 300, 234, 176, 0)

Table B.34: Details of solution to problem Golden-15
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Figure B.30: Solution for problem Golden-16

Problem Golden-16
Vehicle capacity 1000
Maximum route length N/A
Number of nodes 480
Total route length 1613.664
Total number of routes 37
Route Length Load Ordering

1 9.405 600 (0, 1, 2, 0)
2 16.261 916 (0, 3, 17, 39, 40, 18, 0)
3 10.325 900 (0, 4, 5, 6, 0)
4 13.405 960 (0, 7, 23, 24, 8, 0)
5 12.325 960 (0, 9, 27, 28, 10, 0)
6 13.405 960 (0, 11, 31, 32, 12, 0)
7 20.930 924 (0, 13, 33, 34, 35, 15, 14, 0)
8 29.104 964 (0, 16, 37, 36, 64, 65, 66, 67, 38, 0)
9 30.760 945 (0, 19, 42, 43, 74, 112, 73, 72, 41, 0)
10 20.930 924 (0, 21, 20, 44, 45, 46, 22, 0)
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Route Length Load Ordering
11 25.730 944 (0, 25, 49, 50, 84, 85, 51, 26, 0)
12 24.902 1000 (0, 29, 30, 58, 57, 56, 55, 54, 0)
13 36.687 980 (0, 47, 79, 119, 167, 223, 287, 288, 224, 168, 120, 80, 48, 0)
14 36.687 980 (0, 52, 86, 128, 178, 236, 302, 303, 237, 179, 129, 87, 53, 0)
15 36.687 980 (0, 59, 95, 139, 191, 251, 319, 320, 252, 192, 140, 96, 60, 0)
16 48.542 991 (0, 61, 97, 141, 193, 253, 321, 396, 480, 397, 398, 322, 254, 194,

142, 98, 62, 0)
17 51.207 967 (0, 63, 100, 101, 145, 197, 257, 258, 326, 325, 324, 256, 196, 144,

143, 99, 0)
18 48.542 991 (0, 68, 106, 152, 206, 268, 338, 337, 415, 416, 417, 339, 269, 207,

153, 107, 69, 0)
19 48.542 991 (0, 70, 108, 154, 208, 270, 340, 418, 419, 420, 342, 341, 271, 209,

155, 109, 71, 0)
20 51.697 991 (0, 75, 115, 163, 219, 283, 355, 354, 434, 435, 436, 356, 284, 220,

164, 116, 76, 0)
21 48.542 991 (0, 77, 117, 165, 221, 285, 357, 437, 438, 439, 359, 358, 286, 222,

166, 118, 78, 0)
22 51.697 991 (0, 81, 121, 169, 225, 289, 361, 360, 440, 441, 442, 362, 290, 226,

170, 122, 82, 0)
23 55.423 990 (0, 83, 125, 124, 173, 231, 230, 294, 295, 296, 297, 298, 232, 174,

175, 126, 0)
24 53.138 980 (0, 88, 130, 180, 238, 304, 378, 460, 459, 377, 376, 458, 457, 375,

301, 235, 177, 127, 0)
25 49.782 991 (0, 89, 131, 181, 239, 305, 379, 461, 462, 463, 381, 380, 306, 240,

182, 132, 90, 0)
26 54.615 999 (0, 91, 134, 185, 186, 246, 245, 313, 389, 390, 314, 315, 247, 187,

136, 92, 0)
27 55.697 999 (0, 93, 189, 249, 317, 393, 392, 476, 477, 478, 479, 395, 394, 318,

250, 190, 138, 94, 0)
28 62.597 1000 (0, 102, 146, 198, 199, 259, 327, 328, 329, 330, 331, 261, 260, 200,

201, 147, 148, 103, 0)
29 59.121 992 (0, 104, 150, 204, 203, 265, 335, 334, 333, 411, 412, 413, 414, 336,

266, 267, 205, 151, 105, 0)
30 59.121 992 (0, 110, 156, 210, 272, 273, 343, 421, 422, 423, 424, 346, 345, 344,

274, 212, 211, 157, 111, 0)
31 62.597 1000 (0, 113, 159, 160, 214, 215, 279, 278, 348, 349, 350, 351, 352, 280,

216, 217, 161, 114, 0)
32 66.852 1000 (0, 123, 172, 228, 229, 293, 292, 364, 365, 366, 367, 447, 446, 445,

444, 443, 363, 291, 227, 171, 0)
33 64.632 1000 (0, 133, 184, 242, 243, 309, 383, 384, 385, 386, 468, 467, 466, 465,

464, 382, 308, 307, 241, 183, 0)
34 68.724 994 (0, 135, 244, 310, 311, 312, 388, 387, 469, 470, 471, 472, 473, 474,

475, 391, 316, 248, 188, 137, 0)
35 72.451 995 (0, 149, 202, 264, 263, 262, 332, 410, 409, 408, 407, 406, 405, 404,

403, 402, 401, 400, 399, 323, 255, 195, 0)
36 70.451 990 (0, 158, 213, 275, 276, 277, 347, 425, 426, 427, 428, 429, 430, 431,

432, 433, 353, 281, 282, 218, 162, 0)
37 72.146 1000 (0, 176, 233, 299, 373, 372, 371, 370, 369, 368, 448, 449, 450, 451,

452, 453, 454, 455, 456, 374, 300, 234, 0)

Table B.35: Details of solution to problem Golden-16
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Figure B.31: Solution for problem Golden-17

Problem Golden-17
Vehicle capacity 200
Maximum route length N/A
Number of nodes 240
Total route length 707.756
Total number of routes 22
Route Length Load Ordering

1 23.501 200 (0, 1, 61, 121, 181, 234, 174, 114, 54, 0)
2 20.672 190 (0, 2, 62, 122, 141, 86, 27, 26, 81, 21, 0)
3 19.410 170 (0, 3, 63, 123, 149, 94, 89, 34, 29, 0)
4 23.501 200 (0, 4, 64, 124, 184, 210, 150, 90, 30, 0)
5 20.672 190 (0, 5, 65, 125, 165, 110, 51, 50, 105, 45, 0)
6 19.410 170 (0, 6, 66, 126, 173, 118, 113, 58, 53, 0)
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Route Length Load Ordering
7 34.450 200 (0, 9, 96, 155, 214, 215, 156, 69, 101, 100, 40, 0)
8 34.450 200 (0, 12, 120, 179, 238, 239, 180, 72, 77, 76, 16, 0)
9 27.470 200 (0, 13, 73, 18, 19, 20, 7, 85, 144, 84, 25, 24, 23, 14, 0)
10 42.860 200 (0, 15, 75, 135, 195, 196, 197, 192, 240, 132, 137, 136, 17, 0)
11 29.047 200 (0, 22, 31, 82, 142, 91, 92, 151, 202, 183, 209, 154, 95, 36, 35, 0)
12 34.598 200 (0, 28, 8, 88, 68, 153, 212, 211, 152, 93, 33, 32, 0)
13 27.470 200 (0, 37, 97, 42, 43, 44, 10, 109, 168, 108, 49, 48, 47, 38, 0)
14 42.860 200 (0, 39, 99, 159, 219, 220, 221, 189, 216, 129, 161, 160, 41, 0)
15 29.047 200 (0, 46, 55, 106, 166, 115, 116, 175, 226, 186, 233, 178, 119, 60, 59,

0)
16 34.598 200 (0, 52, 11, 112, 71, 177, 236, 235, 176, 117, 57, 56, 0)
17 35.360 200 (0, 74, 83, 134, 143, 194, 182, 203, 204, 145, 67, 80, 79, 0)
18 43.401 200 (0, 78, 138, 139, 140, 127, 205, 187, 200, 199, 198, 193, 133, 0)
19 43.110 200 (0, 87, 147, 148, 128, 213, 188, 208, 207, 206, 201, 146, 0)
20 35.360 200 (0, 98, 107, 158, 167, 218, 185, 227, 228, 169, 70, 104, 103, 0)
21 43.401 200 (0, 102, 162, 163, 164, 130, 229, 190, 224, 223, 222, 217, 157, 0)
22 43.110 200 (0, 111, 171, 172, 131, 237, 191, 232, 231, 230, 225, 170, 0)

Table B.36: Details of solution to problem Golden-17
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Figure B.32: Solution for problem Golden-18

Problem Golden-18
Vehicle capacity 200
Maximum route length N/A
Number of nodes 300
Total route length 995.133
Total number of routes 27
Route Length Load Ordering

1 21.277 200 (0, 13, 1, 73, 18, 78, 133, 121, 61, 114, 15, 54, 0)
2 21.157 200 (0, 14, 74, 23, 24, 83, 134, 122, 62, 2, 21, 0)
3 28.477 200 (0, 16, 17, 12, 77, 72, 120, 119, 60, 59, 58, 113, 0)
4 32.773 200 (0, 19, 79, 138, 193, 181, 241, 294, 195, 234, 135, 174, 75, 0)
5 43.050 200 (0, 20, 80, 67, 140, 127, 205, 264, 263, 204, 145, 84, 0)
6 21.277 200 (0, 22, 31, 82, 63, 123, 149, 94, 34, 89, 3, 29, 0)
7 33.348 200 (0, 25, 7, 85, 144, 203, 254, 242, 182, 194, 143, 0)
8 21.157 200 (0, 30, 90, 39, 40, 99, 150, 124, 64, 4, 37, 0)
9 28.477 200 (0, 32, 33, 8, 93, 68, 88, 87, 28, 27, 26, 81, 0)
10 32.773 200 (0, 35, 95, 154, 209, 183, 243, 262, 211, 202, 151, 142, 91, 0)
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Route Length Load Ordering
11 43.050 200 (0, 36, 96, 69, 156, 129, 221, 280, 279, 220, 161, 100, 0)
12 21.277 200 (0, 38, 47, 98, 65, 125, 165, 110, 50, 105, 5, 45, 0)
13 33.348 200 (0, 41, 9, 101, 160, 219, 270, 244, 184, 210, 159, 0)
14 21.157 200 (0, 46, 106, 55, 56, 115, 166, 126, 66, 6, 53, 0)
15 28.477 200 (0, 48, 49, 10, 109, 70, 104, 103, 44, 43, 42, 97, 0)
16 32.773 200 (0, 51, 111, 170, 225, 185, 245, 278, 227, 218, 167, 158, 107, 0)
17 43.050 200 (0, 52, 112, 71, 172, 131, 237, 296, 295, 236, 177, 116, 0)
18 33.348 200 (0, 57, 11, 117, 176, 235, 286, 246, 186, 226, 175, 0)
19 43.782 200 (0, 76, 136, 137, 196, 255, 256, 197, 132, 180, 179, 178, 118, 0)
20 43.782 200 (0, 86, 146, 147, 148, 128, 213, 272, 271, 212, 153, 152, 92, 0)
21 43.782 200 (0, 102, 162, 163, 164, 130, 229, 288, 287, 228, 169, 168, 108, 0)
22 53.887 200 (0, 139, 199, 200, 187, 265, 247, 260, 259, 258, 253, 198, 0)
23 53.959 200 (0, 141, 201, 206, 261, 266, 267, 268, 248, 273, 188, 208, 207, 0)
24 53.887 200 (0, 155, 215, 216, 189, 281, 249, 276, 275, 274, 269, 214, 0)
25 53.959 200 (0, 157, 217, 222, 277, 282, 283, 284, 250, 289, 190, 224, 223, 0)
26 53.888 200 (0, 171, 231, 232, 191, 297, 251, 292, 291, 290, 285, 230, 0)
27 53.959 200 (0, 173, 233, 238, 293, 298, 299, 300, 252, 257, 192, 240, 239, 0)

Table B.37: Details of solution to problem Golden-18
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Figure B.33: Solution for problem Golden-19

Problem Golden-19
Vehicle capacity 200
Maximum route length N/A
Number of nodes 360
Total route length 1365.603
Total number of routes 33
Route Length Load Ordering

1 19.410 170 (0, 1, 61, 121, 133, 78, 73, 18, 13, 0)
2 19.410 170 (0, 2, 62, 122, 134, 83, 74, 23, 14, 0)
3 19.071 160 (0, 3, 63, 123, 142, 82, 31, 22, 0)
4 23.839 200 (0, 4, 64, 124, 184, 217, 157, 102, 97, 0)
5 23.501 200 (0, 6, 66, 126, 186, 233, 173, 113, 53, 0)
6 29.302 200 (0, 19, 20, 7, 79, 138, 193, 181, 234, 135, 174, 75, 114, 0)
7 28.026 200 (0, 21, 26, 27, 28, 87, 88, 68, 93, 8, 33, 32, 0)
8 32.396 200 (0, 24, 84, 143, 194, 203, 254, 242, 182, 201, 141, 86, 81, 0)
9 42.643 200 (0, 25, 85, 67, 145, 204, 263, 314, 302, 321, 266, 261, 206, 146, 0)
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Route Length Load Ordering
10 32.252 200 (0, 29, 34, 89, 94, 149, 154, 209, 214, 269, 243, 183, 202, 151, 91,

0)
11 28.407 200 (0, 30, 39, 40, 100, 160, 69, 101, 9, 36, 35, 0)
12 28.026 200 (0, 37, 42, 43, 44, 103, 104, 70, 109, 10, 49, 48, 0)
13 19.896 180 (0, 38, 5, 65, 125, 165, 110, 105, 50, 45, 0)
14 53.589 200 (0, 41, 161, 221, 189, 276, 335, 334, 275, 216, 129, 156, 96, 0)
15 28.792 200 (0, 46, 55, 106, 115, 116, 176, 71, 117, 11, 57, 56, 0)
16 32.500 200 (0, 47, 98, 107, 158, 167, 218, 185, 245, 285, 230, 225, 170, 51, 0)
17 53.589 200 (0, 52, 112, 172, 131, 232, 291, 350, 351, 292, 191, 237, 177, 0)
18 28.026 200 (0, 54, 15, 16, 17, 12, 77, 72, 120, 119, 60, 59, 0)
19 39.976 200 (0, 58, 118, 178, 238, 293, 298, 353, 306, 246, 286, 235, 226, 175,

166, 0)
20 41.577 200 (0, 76, 136, 195, 294, 255, 354, 301, 241, 253, 198, 139, 0)
21 53.812 200 (0, 80, 140, 127, 200, 187, 265, 324, 323, 264, 205, 144, 0)
22 40.315 200 (0, 90, 99, 150, 159, 210, 219, 270, 244, 304, 337, 282, 277, 222,

162, 0)
23 42.250 200 (0, 92, 152, 211, 262, 271, 322, 303, 329, 274, 215, 155, 95, 0)
24 42.250 200 (0, 108, 168, 227, 278, 287, 338, 305, 345, 290, 231, 171, 111, 0)
25 67.577 200 (0, 137, 197, 257, 252, 360, 312, 317, 316, 315, 256, 196, 0)
26 52.646 200 (0, 147, 207, 267, 326, 327, 268, 188, 208, 128, 148, 0)
27 67.577 200 (0, 153, 213, 273, 248, 328, 308, 333, 332, 331, 272, 212, 0)
28 52.646 200 (0, 163, 223, 283, 342, 343, 284, 190, 224, 130, 164, 0)
29 67.577 200 (0, 169, 229, 289, 250, 344, 310, 349, 348, 347, 288, 228, 0)
30 52.646 200 (0, 179, 239, 299, 358, 359, 300, 192, 240, 132, 180, 0)
31 67.359 200 (0, 199, 259, 260, 247, 325, 307, 320, 319, 318, 313, 258, 0)
32 67.359 200 (0, 220, 280, 281, 249, 336, 309, 341, 340, 339, 330, 279, 0)
33 67.359 200 (0, 236, 296, 297, 251, 352, 311, 357, 356, 355, 346, 295, 0)

Table B.38: Details of solution to problem Golden-19
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Figure B.34: Solution for problem Golden-20

Problem Golden-20
Vehicle capacity 200
Maximum route length N/A
Number of nodes 420
Total route length 1818.252
Total number of routes 38
Route Length Load Ordering

1 20.585 180 (0, 3, 63, 142, 123, 149, 94, 89, 34, 29, 0)
2 19.896 180 (0, 13, 1, 61, 121, 174, 75, 114, 15, 54, 0)
3 21.277 200 (0, 14, 23, 74, 62, 122, 141, 86, 26, 81, 2, 21, 0)
4 32.500 200 (0, 16, 135, 234, 181, 241, 253, 198, 193, 138, 133, 78, 73, 18, 0)
5 33.654 200 (0, 17, 12, 77, 72, 180, 132, 137, 136, 76, 0)
6 32.955 200 (0, 19, 79, 80, 140, 127, 145, 67, 7, 20, 0)
7 28.407 200 (0, 22, 31, 32, 33, 8, 93, 68, 147, 87, 27, 0)
8 32.545 200 (0, 24, 84, 144, 203, 254, 242, 182, 194, 143, 134, 83, 0)
9 50.986 200 (0, 25, 85, 204, 263, 314, 302, 362, 381, 326, 321, 266, 261, 201, 0)
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Route Length Load Ordering
10 42.606 200 (0, 28, 88, 148, 207, 208, 188, 213, 128, 153, 152, 92, 0)
11 21.277 200 (0, 30, 39, 90, 64, 124, 157, 102, 42, 97, 4, 37, 0)
12 32.469 200 (0, 35, 95, 154, 209, 183, 243, 262, 211, 202, 151, 91, 82, 0)
13 32.292 200 (0, 36, 9, 69, 129, 161, 160, 100, 40, 0)
14 21.278 200 (0, 38, 5, 98, 47, 107, 158, 125, 65, 105, 50, 45, 0)
15 51.443 200 (0, 41, 101, 220, 279, 330, 304, 364, 397, 342, 337, 282, 277, 222, 0)
16 32.773 200 (0, 43, 103, 162, 217, 184, 244, 270, 219, 210, 159, 150, 99, 0)
17 34.257 200 (0, 44, 10, 104, 163, 164, 130, 169, 70, 109, 49, 0)
18 21.277 200 (0, 46, 55, 106, 66, 126, 173, 118, 58, 113, 6, 53, 0)
19 32.773 200 (0, 48, 108, 167, 218, 227, 278, 245, 185, 225, 170, 165, 110, 0)
20 29.714 200 (0, 51, 52, 111, 171, 112, 71, 117, 11, 57, 56, 0)
21 32.773 200 (0, 59, 119, 178, 233, 186, 246, 286, 235, 226, 175, 166, 115, 0)
22 42.853 200 (0, 60, 120, 179, 238, 293, 298, 353, 306, 346, 295, 236, 176, 116, 0)
23 66.986 200 (0, 96, 156, 216, 276, 335, 394, 395, 336, 249, 281, 189, 221, 0)
24 51.208 200 (0, 139, 199, 258, 313, 318, 373, 361, 301, 354, 255, 294, 195, 0)
25 67.800 200 (0, 146, 206, 267, 268, 327, 386, 387, 328, 248, 273, 272, 212, 0)
26 50.852 200 (0, 155, 215, 275, 334, 389, 363, 303, 329, 274, 269, 214, 0)
27 51.209 200 (0, 168, 228, 287, 338, 347, 398, 365, 305, 345, 290, 285, 230, 0)
28 67.265 200 (0, 172, 232, 191, 297, 356, 415, 416, 357, 251, 292, 231, 0)
29 54.257 200 (0, 177, 131, 237, 296, 355, 406, 366, 413, 358, 299, 239, 0)
30 67.575 200 (0, 196, 197, 192, 257, 252, 360, 419, 418, 359, 300, 240, 0)
31 68.664 200 (0, 200, 259, 260, 319, 378, 379, 320, 247, 265, 187, 205, 0)
32 65.808 200 (0, 223, 283, 343, 402, 403, 344, 250, 284, 190, 224, 0)
33 84.472 200 (0, 229, 289, 349, 310, 404, 370, 409, 408, 407, 348, 288, 0)
34 84.199 200 (0, 256, 316, 317, 312, 420, 372, 377, 376, 375, 414, 315, 0)
35 84.199 200 (0, 264, 324, 325, 307, 380, 367, 385, 384, 383, 374, 323, 0)
36 84.767 200 (0, 271, 331, 332, 333, 308, 388, 368, 393, 392, 391, 382, 322, 0)
37 84.199 200 (0, 280, 340, 341, 309, 396, 369, 401, 400, 399, 390, 339, 0)
38 84.199 200 (0, 291, 351, 352, 311, 417, 371, 412, 411, 410, 405, 350, 0)

Table B.39: Details of solution to problem Golden-20
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B.5. Taillard Benchmarks

This section contains the best solutions we found for the 15 problem instances

of Taillard [76].
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Figure B.35: Solution for problem Taillard-75A

Problem Taillard-75A
Vehicle capacity 1445
Maximum route length N/A
Number of nodes 75
Total route length 1618.357
Total number of routes 10
Route Length Load Ordering

1 106.091 1382 (0, 12, 24, 18, 27, 21, 19, 15, 0)
2 219.880 1433 (0, 13, 6, 11, 2, 3, 10, 9, 7, 1, 22, 0)
3 132.325 1404 (0, 16, 4, 5, 8, 17, 0)
4 177.350 1308 (0, 20, 71, 73, 72, 70, 52, 53, 0)
5 192.523 1334 (0, 23, 75, 74, 25, 0)
6 80.331 1438 (0, 26, 67, 66, 0)
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Route Length Load Ordering
7 185.419 1287 (0, 28, 14, 51, 61, 30, 45, 33, 55, 46, 60, 54, 0)
8 163.139 1436 (0, 36, 44, 39, 57, 0)
9 219.473 1421 (0, 50, 47, 38, 43, 35, 49, 48, 37, 32, 34, 41, 40, 42, 29, 31, 68, 59,

69, 65, 0)
10 141.826 1313 (0, 62, 56, 58, 64, 63, 0)

Table B.40: Details of solution to problem Taillard-75A
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Figure B.36: Solution for problem Taillard-75B

Problem Taillard-75B
Vehicle capacity 1679
Maximum route length N/A
Number of nodes 75
Total route length 1344.619
Total number of routes 10
Route Length Load Ordering

1 13.508 1219 (0, 1, 11, 7, 0)
2 32.385 1547 (0, 2, 5, 75, 72, 15, 9, 0)
3 160.700 1662 (0, 3, 52, 38, 19, 45, 41, 71, 0)
4 6.000 687 (0, 4, 0)
5 90.528 1617 (0, 6, 44, 37, 49, 54, 42, 39, 51, 0)
6 321.308 1594 (0, 8, 73, 63, 66, 67, 64, 65, 53, 0)
7 72.761 1590 (0, 13, 43, 50, 48, 0)
8 174.465 1659 (0, 14, 46, 47, 32, 18, 16, 23, 40, 0)
9 214.363 1677 (0, 26, 34, 24, 17, 31, 28, 35, 25, 29, 20, 27, 21, 22, 30, 33, 0)
10 258.599 1654 (0, 36, 70, 68, 59, 62, 60, 57, 58, 61, 56, 55, 69, 12, 10, 74, 0)

Table B.41: Details of solution to problem Taillard-75B
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Figure B.37: Solution for problem Taillard-75C

Problem Taillard-75C
Vehicle capacity 1122
Maximum route length N/A
Number of nodes 75
Total route length 1291.007
Total number of routes 9
Route Length Load Ordering

1 41.677 1115 (0, 4, 53, 1, 51, 0)
2 288.783 1095 (0, 5, 55, 10, 22, 27, 14, 23, 21, 19, 16, 15, 26, 13, 70, 69, 71, 67,

66, 68, 0)
3 164.121 1089 (0, 6, 8, 9, 62, 20, 12, 28, 25, 17, 18, 41, 38, 63, 56, 60, 0)
4 92.401 1109 (0, 7, 36, 50, 48, 0)
5 65.112 916 (0, 11, 59, 72, 74, 73, 0)
6 62.642 856 (0, 24, 0)
7 294.440 1115 (0, 29, 31, 40, 33, 37, 42, 43, 35, 34, 46, 49, 39, 44, 0)
8 198.393 1109 (0, 30, 32, 75, 0)
9 83.440 1116 (0, 57, 2, 54, 64, 3, 52, 47, 45, 61, 58, 65, 0)

Table B.42: Details of solution to problem Taillard-75C
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Figure B.38: Solution for problem Taillard-75D

Problem Taillard-75D
Vehicle capacity 1699
Maximum route length N/A
Number of nodes 75
Total route length 1365.419
Total number of routes 9
Route Length Load Ordering

1 172.041 1678 (0, 2, 5, 4, 3, 6, 11, 0)
2 82.984 1644 (0, 16, 19, 20, 23, 21, 0)
3 289.025 1583 (0, 22, 12, 17, 24, 14, 15, 18, 13, 38, 36, 33, 26, 32, 35, 30, 34, 37,

0)
4 177.865 1657 (0, 27, 25, 29, 39, 31, 28, 51, 59, 45, 43, 0)
5 70.861 1576 (0, 40, 52, 49, 44, 53, 46, 47, 0)
6 59.002 1349 (0, 42, 54, 0)
7 67.656 1452 (0, 57, 41, 50, 56, 55, 48, 58, 0)
8 180.327 1559 (0, 60, 64, 69, 65, 68, 66, 0)
9 265.658 1677 (0, 67, 62, 63, 61, 10, 9, 1, 8, 7, 73, 75, 70, 74, 72, 71, 0)

Table B.43: Details of solution to problem Taillard-75D
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Figure B.39: Solution for problem Taillard-100A

Problem Taillard-100A
Vehicle capacity 1409
Maximum route length N/A
Number of nodes 100
Total route length 2041.336
Total number of routes 11
Route Length Load Ordering

1 282.126 1398 (0, 7, 2, 3, 17, 6, 18, 10, 4, 11, 43, 46, 47, 52, 0)
2 216.660 1394 (0, 19, 22, 23, 36, 27, 32, 33, 31, 24, 74, 68, 73, 30, 38, 25, 65, 0)
3 106.239 1409 (0, 21, 29, 34, 20, 62, 0)
4 87.133 1347 (0, 28, 37, 35, 26, 63, 64, 0)
5 251.395 1344 (0, 42, 45, 44, 39, 41, 48, 50, 51, 49, 100, 0)
6 39.913 1392 (0, 53, 60, 57, 55, 61, 56, 0)
7 116.562 1314 (0, 54, 58, 98, 0)
8 255.647 1408 (0, 59, 67, 40, 75, 66, 69, 71, 72, 70, 0)
9 213.745 1385 (0, 76, 89, 87, 94, 96, 97, 95, 0)
10 253.517 1404 (0, 81, 77, 86, 78, 79, 84, 85, 90, 15, 14, 1, 13, 12, 5, 9, 8, 16, 99, 0)
11 218.398 1408 (0, 91, 88, 82, 92, 83, 80, 93, 0)

Table B.44: Details of solution to problem Taillard-100A
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Figure B.40: Solution for problem Taillard-100B

Problem Taillard-100B
Vehicle capacity 1842
Maximum route length N/A
Number of nodes 100
Total route length 1939.904
Total number of routes 11
Route Length Load Ordering

1 128.345 1834 (0, 13, 12, 98, 100, 27, 0)
2 162.178 1823 (0, 16, 14, 84, 86, 82, 83, 87, 85, 88, 51, 67, 65, 0)
3 222.665 1820 (0, 17, 5, 4, 6, 11, 2, 3, 10, 9, 7, 1, 8, 22, 28, 0)
4 222.255 1748 (0, 18, 97, 92, 89, 95, 99, 96, 90, 94, 0)
5 92.417 1428 (0, 20, 62, 26, 0)
6 140.999 1783 (0, 21, 19, 93, 91, 24, 0)
7 199.203 1775 (0, 23, 15, 74, 75, 76, 25, 0)
8 173.542 1835 (0, 50, 33, 47, 38, 43, 35, 39, 44, 55, 54, 0)
9 167.420 1842 (0, 52, 77, 64, 36, 46, 60, 69, 66, 0)
10 200.601 1798 (0, 53, 56, 58, 81, 80, 79, 78, 70, 72, 73, 71, 0)
11 230.279 1817 (0, 61, 30, 45, 59, 68, 31, 29, 42, 40, 41, 34, 32, 37, 48, 49, 57, 63,

0)

Table B.45: Details of solution to problem Taillard-100B
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Figure B.41: Solution for problem Taillard-100C

Problem Taillard-100C
Vehicle capacity 2043
Maximum route length N/A
Number of nodes 100
Total route length 1406.202
Total number of routes 11
Route Length Load Ordering

1 10.770 1066 (0, 1, 0)
2 17.049 1784 (0, 2, 5, 9, 4, 0)
3 189.175 2029 (0, 3, 19, 16, 23, 31, 35, 28, 17, 24, 34, 26, 45, 71, 0)
4 54.416 2017 (0, 6, 91, 48, 97, 70, 68, 36, 11, 0)
5 61.625 1965 (0, 7, 95, 94, 51, 39, 52, 41, 100, 0)
6 259.736 2012 (0, 8, 73, 59, 63, 62, 60, 57, 58, 61, 56, 55, 69, 12, 10, 74, 0)
7 115.716 1998 (0, 13, 96, 44, 43, 42, 37, 49, 54, 38, 14, 0)
8 38.685 2039 (0, 15, 72, 75, 99, 76, 77, 0)
9 191.838 2042 (0, 40, 18, 25, 29, 20, 27, 32, 46, 0)
10 411.790 2036 (0, 47, 33, 21, 22, 30, 78, 82, 81, 84, 79, 80, 83, 65, 66, 67, 64, 53,

87, 0)
11 55.402 2011 (0, 92, 89, 93, 86, 90, 85, 50, 88, 98, 0)

Table B.46: Details of solution to problem Taillard-100C
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Figure B.42: Solution for problem Taillard-100D

Problem Taillard-100D
Vehicle capacity 1297
Maximum route length N/A
Number of nodes 100
Total route length 1580.458
Total number of routes 11
Route Length Load Ordering

1 222.655 1295 (0, 3, 52, 47, 41, 82, 86, 84, 83, 85, 49, 46, 34, 35, 43, 42, 39, 44,
38, 0)

2 43.619 1294 (0, 4, 64, 53, 54, 1, 2, 57, 0)
3 83.402 1229 (0, 5, 51, 55, 10, 22, 27, 24, 0)
4 335.947 1273 (0, 6, 8, 9, 62, 14, 23, 25, 21, 19, 16, 15, 93, 89, 26, 87, 90, 92, 88,

91, 13, 70, 69, 71, 67, 66, 68, 0)
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Route Length Load Ordering
5 108.222 1292 (0, 7, 50, 95, 94, 0)
6 82.894 1063 (0, 11, 59, 80, 77, 72, 81, 74, 73, 76, 78, 0)
7 128.642 1297 (0, 20, 12, 28, 17, 18, 45, 61, 58, 0)
8 266.350 1278 (0, 37, 33, 40, 30, 29, 100, 0)
9 95.898 1291 (0, 60, 48, 36, 63, 56, 65, 0)
10 168.647 1263 (0, 75, 96, 32, 31, 99, 97, 98, 0)
11 44.181 1017 (0, 79, 0)

Table B.47: Details of solution to problem Taillard-100D
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Figure B.43: Solution for problem Taillard-150A

Problem Taillard-150A
Vehicle capacity 1544
Maximum route length N/A
Number of nodes 150
Total route length 3055.232
Total number of routes 15
Route Length Load Ordering

1 110.198 1540 (0, 19, 22, 23, 36, 20, 34, 28, 0)
2 146.137 1541 (0, 21, 29, 27, 32, 33, 31, 24, 25, 26, 65, 0)
3 184.406 1518 (0, 37, 35, 38, 30, 124, 128, 121, 126, 135, 133, 0)
4 327.050 1537 (0, 52, 47, 40, 67, 75, 66, 69, 71, 72, 70, 130, 0)
5 33.431 895 (0, 53, 60, 54, 0)
6 287.249 1477 (0, 58, 42, 46, 43, 49, 51, 50, 48, 41, 39, 44, 45, 59, 0)
7 40.338 1179 (0, 61, 56, 63, 55, 57, 64, 0)
8 244.327 1544 (0, 62, 134, 74, 68, 73, 118, 115, 114, 125, 120, 116, 136, 0)
9 264.361 1537 (0, 76, 89, 87, 92, 82, 83, 79, 84, 80, 90, 93, 81, 138, 0)
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Route Length Load Ordering
10 279.742 1509 (0, 77, 78, 86, 88, 91, 94, 96, 97, 95, 0)
11 260.533 1542 (0, 85, 143, 148, 141, 142, 149, 139, 140, 145, 150, 146, 0)
12 252.642 1540 (0, 107, 101, 16, 9, 12, 13, 1, 14, 15, 2, 7, 111, 103, 108, 0)
13 138.568 1477 (0, 110, 99, 98, 112, 0)
14 291.877 1451 (0, 113, 106, 104, 100, 102, 109, 105, 8, 5, 11, 4, 10, 18, 6, 17, 3,

144, 147, 0)
15 194.373 1544 (0, 119, 122, 123, 117, 129, 127, 132, 131, 137, 0)

Table B.48: Details of solution to problem Taillard-150A
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Figure B.44: Solution for problem Taillard-150B

Problem Taillard-150B
Vehicle capacity 1918
Maximum route length N/A
Number of nodes 150
Total route length 2728.318
Total number of routes 14
Route Length Load Ordering

1 184.416 1918 (0, 13, 24, 100, 135, 139, 133, 127, 0)
2 241.176 1869 (0, 14, 8, 1, 7, 9, 10, 3, 2, 11, 6, 4, 5, 144, 0)
3 191.563 1903 (0, 20, 18, 130, 93, 91, 101, 134, 132, 138, 12, 123, 0)
4 244.173 1916 (0, 22, 136, 121, 137, 106, 98, 105, 92, 97, 103, 107, 104, 108, 122,

0)
5 9.405 908 (0, 26, 148, 0)
6 53.543 1792 (0, 28, 120, 16, 131, 128, 129, 126, 125, 17, 142, 0)
7 253.001 1884 (0, 51, 61, 30, 45, 31, 29, 42, 40, 41, 34, 32, 37, 48, 49, 35, 38, 50,

54, 53, 0)
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Route Length Load Ordering
8 220.869 1902 (0, 52, 57, 46, 36, 44, 39, 43, 47, 33, 68, 59, 65, 0)
9 156.744 1909 (0, 56, 58, 63, 64, 55, 60, 69, 67, 66, 0)
10 312.588 1915 (0, 74, 76, 75, 112, 115, 118, 111, 109, 116, 141, 0)
11 327.352 1914 (0, 84, 86, 82, 83, 88, 85, 87, 96, 99, 95, 89, 102, 90, 94, 0)
12 258.430 1877 (0, 114, 110, 113, 119, 117, 71, 73, 72, 70, 146, 145, 0)
13 81.556 1865 (0, 124, 27, 21, 19, 25, 15, 23, 140, 143, 147, 0)
14 193.503 1913 (0, 149, 81, 78, 79, 80, 77, 62, 150, 0)

Table B.49: Details of solution to problem Taillard-150B

373



-100 -50 0 50 100

-100

-50

0

50

100

150 nodes   2358.92    15 routes

Figure B.45: Solution for problem Taillard-150C

Problem Taillard-150C
Vehicle capacity 2021
Maximum route length N/A
Number of nodes 150
Total route length 2358.920
Total number of routes 15
Route Length Load Ordering

1 14.285 1402 (0, 1, 11, 6, 7, 0)
2 6.000 1528 (0, 2, 4, 0)
3 69.944 2005 (0, 3, 41, 52, 39, 51, 50, 94, 95, 0)
4 281.616 2006 (0, 8, 70, 68, 149, 145, 147, 150, 144, 64, 67, 66, 65, 53, 89, 92, 0)
5 28.871 1746 (0, 9, 104, 106, 100, 107, 0)
6 22.676 1388 (0, 10, 71, 12, 5, 76, 0)
7 75.931 1997 (0, 13, 36, 48, 96, 43, 44, 42, 0)
8 276.804 1991 (0, 14, 45, 142, 141, 19, 16, 23, 31, 35, 28, 17, 34, 24, 26, 135, 133,

127, 129, 128, 126, 0)
9 282.124 1971 (0, 15, 111, 116, 125, 118, 124, 120, 123, 121, 122, 119, 103, 0)
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Route Length Load Ordering
10 245.145 2019 (0, 33, 20, 29, 25, 18, 140, 139, 138, 0)
11 345.050 2010 (0, 37, 49, 54, 78, 82, 83, 80, 79, 84, 81, 30, 22, 21, 27, 32, 47, 38,

46, 40, 0)
12 291.461 1992 (0, 73, 146, 148, 59, 63, 62, 60, 57, 58, 61, 56, 55, 69, 74, 0)
13 47.482 1990 (0, 77, 72, 75, 108, 105, 101, 102, 99, 110, 0)
14 66.193 2000 (0, 87, 98, 97, 88, 85, 90, 86, 93, 91, 0)
15 305.338 2003 (0, 109, 115, 113, 112, 114, 117, 130, 132, 134, 131, 136, 143, 137,

0)

Table B.50: Details of solution to problem Taillard-150C
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Figure B.46: Solution for problem Taillard-150D

Problem Taillard-150D
Vehicle capacity 1874
Maximum route length N/A
Number of nodes 150
Total route length 2646.095
Total number of routes 14
Route Length Load Ordering

1 223.121 1873 (0, 2, 55, 52, 47, 45, 38, 44, 39, 49, 46, 34, 35, 43, 42, 37, 33, 40,
50, 36, 63, 56, 59, 0)

2 155.785 1800 (0, 6, 8, 9, 3, 62, 20, 12, 28, 14, 27, 24, 0)
3 191.917 1874 (0, 7, 85, 131, 126, 122, 41, 0)
4 210.791 1872 (0, 10, 18, 17, 25, 21, 19, 111, 116, 115, 118, 113, 26, 15, 13, 0)
5 62.616 1873 (0, 11, 5, 1, 53, 64, 58, 61, 65, 4, 51, 57, 0)
6 266.948 1836 (0, 22, 23, 16, 114, 119, 117, 112, 120, 109, 110, 121, 93, 89, 87, 90,

92, 88, 91, 0)
7 220.057 1874 (0, 54, 82, 86, 125, 123, 84, 124, 128, 130, 133, 132, 127, 129, 83,

0)
8 179.969 1856 (0, 60, 48, 96, 94, 95, 0)
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Route Length Load Ordering
9 438.207 1650 (0, 68, 70, 69, 71, 67, 66, 136, 137, 134, 135, 74, 77, 80, 149, 140,

0)
10 221.533 1868 (0, 75, 107, 103, 102, 101, 100, 106, 105, 108, 104, 98, 142, 0)
11 59.761 1784 (0, 78, 76, 72, 81, 73, 79, 0)
12 232.480 1845 (0, 141, 97, 99, 31, 32, 30, 29, 145, 146, 0)
13 95.367 1842 (0, 143, 138, 144, 147, 0)
14 87.542 1731 (0, 148, 139, 150, 0)

Table B.51: Details of solution to problem Taillard-150D
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Figure B.47: Solution for problem Taillard-385

Problem Taillard-385
Vehicle capacity 65
Maximum route length N/A
Number of nodes 385
Total route length 24366.686
Total number of routes 47
Route Length Load Ordering

1 674.838 65 (0, 56, 57, 50, 49, 385, 258, 0)
2 1034.159 65 (0, 71, 64, 65, 15, 17, 16, 29, 13, 24, 22, 23, 20, 21, 30, 31, 12, 11,

10, 9, 8, 7, 25, 26, 14, 370, 377, 68, 66, 67, 110, 0)
3 583.527 65 (0, 84, 83, 80, 79, 78, 58, 59, 76, 77, 75, 81, 82, 88, 87, 0)
4 716.226 65 (0, 90, 103, 74, 73, 61, 60, 19, 18, 63, 62, 69, 72, 188, 0)
5 238.986 65 (0, 91, 89, 100, 99, 92, 0)
6 442.219 65 (0, 93, 96, 101, 102, 104, 105, 108, 371, 129, 97, 0)
7 460.289 65 (0, 95, 98, 125, 107, 70, 106, 124, 376, 0)
8 613.490 65 (0, 121, 146, 114, 115, 118, 113, 112, 123, 130, 126, 0)
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Route Length Load Ordering
9 713.376 65 (0, 122, 109, 111, 119, 120, 28, 27, 6, 369, 117, 116, 147, 154, 152,

144, 135, 134, 0)
10 311.078 65 (0, 132, 128, 127, 131, 2, 136, 137, 0)
11 820.255 65 (0, 133, 145, 151, 150, 149, 148, 155, 156, 157, 160, 159, 158, 4, 5,

198, 201, 197, 366, 161, 162, 163, 164, 166, 153, 143, 141, 0)
12 179.464 64 (0, 138, 318, 0)
13 665.575 65 (0, 139, 173, 142, 168, 167, 165, 192, 196, 204, 206, 205, 209, 190,

183, 184, 0)
14 506.437 65 (0, 140, 171, 170, 172, 169, 194, 176, 177, 178, 179, 180, 0)
15 985.245 65 (0, 174, 175, 193, 203, 210, 211, 212, 215, 365, 218, 217, 220, 219,

33, 32, 216, 214, 213, 207, 200, 195, 191, 381, 0)
16 538.932 63 (0, 181, 182, 186, 185, 345, 189, 344, 202, 367, 208, 343, 340, 339,

338, 378, 0)
17 1377.670 65 (0, 199, 373, 37, 39, 38, 40, 45, 384, 43, 42, 44, 48, 47, 46, 41, 36,

34, 35, 368, 0)
18 763.888 65 (0, 222, 221, 352, 351, 0)
19 834.607 64 (0, 226, 225, 350, 355, 356, 354, 353, 0)
20 599.191 64 (0, 227, 228, 242, 246, 0)
21 664.515 65 (0, 239, 238, 235, 233, 249, 250, 379, 0)
22 732.813 65 (0, 240, 237, 234, 232, 231, 224, 223, 3, 230, 229, 236, 241, 0)
23 387.830 65 (0, 261, 260, 259, 374, 0)
24 591.920 65 (0, 265, 254, 255, 257, 380, 256, 251, 252, 248, 243, 244, 245, 247,

253, 1, 266, 0)
25 483.437 65 (0, 268, 332, 270, 274, 0)
26 264.376 58 (0, 269, 299, 0)
27 630.058 65 (0, 271, 337, 328, 326, 0)
28 261.191 64 (0, 275, 262, 263, 276, 287, 0)
29 492.326 65 (0, 292, 291, 283, 281, 280, 282, 51, 187, 55, 52, 53, 54, 85, 86, 306,

304, 0)
30 335.669 64 (0, 293, 286, 320, 277, 264, 279, 278, 285, 284, 319, 289, 290, 305,

0)
31 165.218 61 (0, 294, 288, 295, 321, 303, 309, 0)
32 263.428 65 (0, 296, 273, 272, 298, 0)
33 472.892 64 (0, 297, 267, 329, 0)
34 847.182 65 (0, 300, 327, 359, 361, 362, 363, 323, 324, 0)
35 141.154 59 (0, 301, 322, 0)
36 73.913 64 (0, 302, 311, 0)
37 85.406 62 (0, 307, 308, 0)
38 22.361 42 (0, 310, 0)
39 162.018 65 (0, 312, 94, 316, 372, 0)
40 78.168 61 (0, 313, 315, 0)
41 17.088 56 (0, 314, 0)
42 65.299 60 (0, 317, 0)
43 941.271 65 (0, 325, 357, 360, 0)
44 516.501 65 (0, 330, 331, 335, 0)
45 441.095 64 (0, 334, 333, 336, 0)
46 1195.941 65 (0, 341, 342, 349, 346, 347, 348, 383, 375, 0)
47 974.168 64 (0, 364, 358, 382, 0)

Table B.52: Details of solution to problem Taillard-385
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B.6. Li Benchmarks

This section contains the best solutions we found for the 12 problem instances

of Li, et al [51].
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Figure B.48: Solution for problem Li-21

Problem Li-21
Vehicle capacity 1200
Maximum route length 1800.000
Number of nodes 560
Total route length 16212.825
Total number of routes 10
Route Length Load Ordering

1 1574.207 1040 (0, 2, 1, 41, 81, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480,
520, 560, 521, 481, 441, 401, 361, 321, 281, 241, 201, 202, 242, 282,
322, 362, 402, 442, 482, 522, 523, 483, 443, 403, 363, 323, 283, 243,
203, 163, 162, 161, 121, 122, 82, 42, 43, 3, 0)
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Route Length Load Ordering
2 1654.235 1180 (0, 4, 44, 84, 83, 123, 124, 164, 204, 244, 284, 324, 364, 404, 444,

484, 524, 525, 485, 445, 405, 365, 325, 285, 245, 205, 206, 246, 286,
326, 366, 406, 446, 486, 526, 527, 487, 447, 407, 367, 327, 287, 247,
207, 167, 166, 165, 125, 126, 127, 87, 86, 85, 45, 46, 47, 7, 6, 5, 0)

3 1654.235 1140 (0, 8, 48, 49, 50, 90, 89, 88, 128, 168, 208, 248, 288, 328, 368, 408,
448, 488, 528, 529, 489, 449, 409, 369, 329, 289, 249, 209, 210, 250,
290, 330, 370, 410, 450, 490, 530, 531, 491, 451, 411, 371, 331, 291,
251, 211, 171, 170, 169, 129, 130, 131, 132, 92, 91, 51, 11, 10, 9, 0)

4 1682.480 1180 (0, 14, 13, 12, 52, 53, 54, 94, 93, 133, 173, 172, 212, 252, 292, 332,
372, 412, 452, 492, 532, 533, 493, 453, 413, 373, 333, 293, 253, 213,
214, 254, 294, 334, 374, 414, 454, 494, 534, 535, 495, 455, 415, 375,
335, 295, 255, 215, 175, 174, 134, 135, 136, 137, 97, 96, 95, 55, 56,
57, 17, 16, 15, 0)

5 1541.254 1060 (0, 18, 58, 98, 138, 178, 177, 176, 216, 256, 296, 336, 376, 416, 456,
496, 536, 537, 497, 457, 417, 377, 337, 297, 257, 217, 218, 258, 298,
338, 378, 418, 458, 498, 538, 539, 499, 459, 419, 379, 339, 299, 259,
219, 179, 139, 99, 59, 60, 20, 19, 0)

6 1574.207 1040 (0, 22, 21, 61, 101, 100, 140, 141, 181, 180, 220, 260, 300, 340, 380,
420, 460, 500, 540, 541, 501, 461, 421, 381, 341, 301, 261, 221, 222,
262, 302, 342, 382, 422, 462, 502, 542, 543, 503, 463, 423, 383, 343,
303, 263, 223, 183, 182, 142, 102, 62, 63, 23, 0)

7 1654.235 1180 (0, 24, 64, 104, 103, 143, 144, 184, 224, 264, 304, 344, 384, 424,
464, 504, 544, 545, 505, 465, 425, 385, 345, 305, 265, 225, 226, 266,
306, 346, 386, 426, 466, 506, 546, 547, 507, 467, 427, 387, 347, 307,
267, 227, 187, 186, 185, 145, 146, 147, 107, 106, 105, 65, 66, 67, 27,
26, 25, 0)

8 1654.235 1140 (0, 28, 68, 69, 70, 110, 109, 108, 148, 188, 228, 268, 308, 348, 388,
428, 468, 508, 548, 549, 509, 469, 429, 389, 349, 309, 269, 229, 230,
270, 310, 350, 390, 430, 470, 510, 550, 551, 511, 471, 431, 391, 351,
311, 271, 231, 191, 190, 189, 149, 150, 151, 152, 112, 111, 71, 31,
30, 29, 0)

9 1588.330 1100 (0, 34, 33, 32, 72, 73, 74, 114, 113, 153, 193, 192, 232, 272, 312,
352, 392, 432, 472, 512, 552, 553, 513, 473, 433, 393, 353, 313, 273,
233, 234, 274, 314, 354, 394, 434, 474, 514, 554, 555, 515, 475, 435,
395, 355, 315, 275, 235, 195, 194, 154, 155, 115, 75, 35, 0)

10 1635.405 1140 (0, 37, 36, 76, 77, 117, 116, 156, 157, 158, 198, 197, 196, 236, 276,
316, 356, 396, 436, 476, 516, 556, 557, 517, 477, 437, 397, 357, 317,
277, 237, 238, 278, 318, 358, 398, 438, 478, 518, 558, 559, 519, 479,
439, 399, 359, 319, 279, 239, 199, 159, 119, 118, 78, 79, 80, 40, 39,
38, 0)

Table B.53: Details of solution to problem Li-21
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Figure B.49: Solution for problem Li-22

Problem Li-22
Vehicle capacity 900
Maximum route length 1000.000
Number of nodes 600
Total route length 14584.422
Total number of routes 15
Route Length Load Ordering

1 995.660 590 (0, 1, 61, 121, 181, 241, 301, 361, 421, 481, 541, 542, 543, 544, 545,
546, 547, 548, 549, 550, 551, 491, 431, 432, 433, 373, 313, 253, 193,
133, 132, 131, 130, 70, 10, 9, 0)

2 995.323 890 (0, 2, 62, 122, 182, 242, 302, 362, 422, 482, 483, 484, 485, 486, 487,
488, 489, 490, 430, 429, 428, 427, 426, 425, 424, 423, 363, 303, 243,
244, 184, 183, 123, 124, 64, 63, 3, 4, 5, 6, 0)

3 944.406 880 (0, 7, 67, 66, 65, 125, 126, 186, 185, 245, 246, 247, 248, 308, 307,
306, 305, 304, 364, 365, 366, 367, 368, 369, 370, 371, 372, 312, 311,
310, 309, 249, 250, 251, 252, 192, 191, 190, 189, 188, 187, 127, 128,
129, 69, 68, 8, 0)
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Route Length Load Ordering
4 973.679 860 (0, 15, 14, 13, 12, 11, 71, 72, 73, 74, 75, 135, 134, 194, 254, 314,

374, 434, 435, 495, 494, 493, 492, 552, 553, 554, 555, 556, 496, 436,
376, 375, 315, 316, 256, 255, 195, 196, 197, 137, 136, 76, 16, 0)

5 979.959 780 (0, 17, 77, 78, 79, 139, 138, 198, 199, 259, 258, 257, 317, 377, 437,
497, 557, 558, 559, 560, 561, 562, 502, 501, 500, 499, 498, 438, 378,
318, 319, 320, 260, 200, 140, 80, 20, 19, 18, 0)

6 998.126 900 (0, 23, 22, 21, 81, 141, 201, 202, 203, 263, 262, 261, 321, 322, 323,
383, 382, 381, 380, 379, 439, 440, 441, 442, 443, 444, 445, 446, 386,
385, 384, 324, 325, 326, 266, 265, 264, 204, 144, 143, 142, 82, 83,
84, 85, 25, 24, 0)

7 992.520 740 (0, 27, 26, 86, 87, 147, 146, 145, 205, 206, 207, 267, 327, 387, 447,
507, 506, 505, 504, 503, 563, 564, 565, 566, 567, 568, 569, 509, 508,
448, 388, 328, 268, 208, 148, 88, 89, 29, 28, 0)

8 970.538 650 (0, 31, 30, 90, 91, 151, 150, 149, 209, 269, 329, 389, 449, 450, 510,
570, 571, 572, 573, 574, 575, 576, 577, 578, 579, 580, 520, 460, 400,
340, 280, 220, 160, 100, 40, 39, 0)

9 884.743 890 (0, 32, 33, 34, 35, 95, 94, 93, 92, 152, 212, 211, 210, 270, 271, 331,
330, 390, 391, 392, 393, 394, 395, 396, 397, 337, 336, 335, 334, 333,
332, 272, 273, 274, 275, 276, 216, 215, 214, 213, 153, 154, 155, 156,
96, 36, 0)

10 985.902 820 (0, 37, 97, 157, 217, 277, 278, 338, 398, 458, 457, 456, 455, 454,
453, 452, 451, 511, 512, 513, 514, 515, 516, 517, 518, 519, 459, 399,
339, 279, 219, 218, 158, 159, 99, 98, 38, 0)

11 992.519 740 (0, 44, 43, 42, 41, 101, 102, 162, 161, 221, 281, 341, 401, 461, 521,
581, 582, 583, 584, 585, 586, 587, 588, 589, 590, 530, 529, 528, 527,
467, 407, 347, 287, 227, 167, 107, 47, 0)

12 967.061 860 (0, 45, 105, 104, 103, 163, 164, 224, 223, 222, 282, 283, 284, 285,
345, 344, 343, 342, 402, 403, 404, 464, 463, 462, 522, 523, 524, 525,
526, 466, 465, 405, 406, 346, 286, 226, 225, 165, 166, 106, 46, 0)

13 998.800 620 (0, 49, 48, 108, 109, 169, 168, 228, 288, 348, 408, 468, 469, 470,
471, 531, 591, 592, 593, 594, 595, 596, 597, 598, 599, 600, 540, 480,
420, 360, 300, 240, 180, 179, 119, 120, 60, 59, 58, 0)

14 919.285 880 (0, 50, 51, 111, 110, 170, 171, 231, 230, 229, 289, 290, 291, 292,
293, 353, 352, 351, 350, 349, 409, 410, 411, 412, 413, 414, 415, 416,
417, 357, 356, 355, 354, 294, 295, 296, 236, 235, 234, 233, 232, 172,
112, 52, 53, 0)

15 985.902 900 (0, 54, 55, 115, 114, 113, 173, 174, 175, 176, 177, 237, 297, 298,
358, 418, 478, 477, 476, 475, 474, 473, 472, 532, 533, 534, 535, 536,
537, 538, 539, 479, 419, 359, 299, 239, 238, 178, 118, 117, 116, 56,
57, 0)

Table B.54: Details of solution to problem Li-22
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Figure B.50: Solution for problem Li-23

Problem Li-23
Vehicle capacity 1400
Maximum route length 2200.000
Number of nodes 640
Total route length 18801.129
Total number of routes 10
Route Length Load Ordering

1 1880.113 1280 (0, 3, 2, 1, 41, 81, 121, 122, 123, 163, 162, 161, 201, 241, 281, 321,
361, 401, 441, 481, 521, 561, 601, 602, 562, 522, 482, 442, 402, 362,
322, 282, 242, 202, 203, 243, 283, 323, 363, 403, 443, 483, 523, 563,
603, 604, 564, 524, 484, 444, 404, 364, 324, 284, 244, 204, 164, 124,
84, 83, 82, 42, 43, 44, 4, 0)

2 1941.311 1380 (0, 7, 6, 5, 45, 46, 47, 87, 86, 85, 125, 126, 127, 167, 166, 165, 205,
245, 285, 325, 365, 405, 445, 485, 525, 565, 605, 606, 566, 526, 486,
446, 406, 366, 326, 286, 246, 206, 207, 247, 287, 327, 367, 407, 447,
487, 527, 567, 607, 608, 568, 528, 488, 448, 408, 368, 328, 288, 248,
208, 168, 128, 129, 89, 88, 48, 49, 50, 10, 9, 8, 0)
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Route Length Load Ordering
3 1833.037 1200 (0, 12, 11, 51, 91, 90, 130, 131, 171, 170, 169, 209, 249, 289, 329,

369, 409, 449, 489, 529, 569, 609, 610, 570, 530, 490, 450, 410, 370,
330, 290, 250, 210, 211, 251, 291, 331, 371, 411, 451, 491, 531, 571,
611, 612, 572, 532, 492, 452, 412, 372, 332, 292, 252, 212, 172, 132,
92, 52, 53, 13, 0)

4 1913.066 1300 (0, 14, 54, 94, 93, 133, 173, 213, 253, 293, 333, 373, 413, 453, 493,
533, 573, 613, 614, 574, 534, 494, 454, 414, 374, 334, 294, 254, 214,
215, 255, 295, 335, 375, 415, 455, 495, 535, 575, 615, 616, 576, 536,
496, 456, 416, 376, 336, 296, 256, 216, 176, 175, 174, 134, 135, 136,
137, 97, 96, 95, 55, 56, 57, 17, 16, 15, 0)

5 1800.085 1220 (0, 18, 58, 98, 138, 178, 177, 217, 257, 297, 337, 377, 417, 457, 497,
537, 577, 617, 618, 578, 538, 498, 458, 418, 378, 338, 298, 258, 218,
219, 259, 299, 339, 379, 419, 459, 499, 539, 579, 619, 620, 580, 540,
500, 460, 420, 380, 340, 300, 260, 220, 180, 179, 139, 99, 59, 60, 20,
19, 0)

6 1913.066 1300 (0, 23, 22, 21, 61, 62, 63, 103, 102, 101, 100, 140, 141, 142, 143,
183, 182, 181, 221, 261, 301, 341, 381, 421, 461, 501, 541, 581, 621,
622, 582, 542, 502, 462, 422, 382, 342, 302, 262, 222, 223, 263, 303,
343, 383, 423, 463, 503, 543, 583, 623, 624, 584, 544, 504, 464, 424,
384, 344, 304, 264, 224, 184, 144, 104, 64, 24, 0)

7 1913.066 1300 (0, 27, 26, 25, 65, 66, 67, 107, 106, 105, 145, 146, 147, 187, 186,
185, 225, 265, 305, 345, 385, 425, 465, 505, 545, 585, 625, 626, 586,
546, 506, 466, 426, 386, 346, 306, 266, 226, 227, 267, 307, 347, 387,
427, 467, 507, 547, 587, 627, 628, 588, 548, 508, 468, 428, 388, 348,
308, 268, 228, 188, 148, 149, 109, 108, 68, 28, 0)

8 1833.037 1240 (0, 29, 69, 70, 110, 150, 151, 191, 190, 189, 229, 269, 309, 349, 389,
429, 469, 509, 549, 589, 629, 630, 590, 550, 510, 470, 430, 390, 350,
310, 270, 230, 231, 271, 311, 351, 391, 431, 471, 511, 551, 591, 631,
632, 592, 552, 512, 472, 432, 392, 352, 312, 272, 232, 192, 152, 112,
111, 71, 31, 30, 0)

9 1941.311 1340 (0, 34, 33, 32, 72, 73, 74, 114, 113, 153, 193, 233, 273, 313, 353,
393, 433, 473, 513, 553, 593, 633, 634, 594, 554, 514, 474, 434, 394,
354, 314, 274, 234, 235, 275, 315, 355, 395, 435, 475, 515, 555, 595,
635, 636, 596, 556, 516, 476, 436, 396, 356, 316, 276, 236, 196, 195,
194, 154, 155, 156, 157, 117, 116, 115, 75, 76, 77, 37, 36, 35, 0)

10 1833.037 1240 (0, 38, 78, 118, 158, 198, 197, 237, 277, 317, 357, 397, 437, 477,
517, 557, 597, 637, 638, 598, 558, 518, 478, 438, 398, 358, 318, 278,
238, 239, 279, 319, 359, 399, 439, 479, 519, 559, 599, 639, 640, 600,
560, 520, 480, 440, 400, 360, 320, 280, 240, 200, 199, 159, 160, 120,
119, 79, 80, 40, 39, 0)

Table B.55: Details of solution to problem Li-23
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Figure B.51: Solution for problem Li-24

Problem Li-24
Vehicle capacity 1500
Maximum route length 2400.000
Number of nodes 720
Total route length 21389.430
Total number of routes 10
Route Length Load Ordering

1 2124.820 1420 (0, 2, 1, 41, 81, 120, 160, 200, 240, 280, 320, 360, 400, 440, 480,
520, 560, 600, 640, 680, 720, 681, 641, 601, 561, 521, 481, 441, 401,
361, 321, 281, 241, 201, 202, 242, 282, 322, 362, 402, 442, 482, 522,
562, 602, 642, 682, 683, 643, 603, 563, 523, 483, 443, 403, 363, 323,
283, 243, 203, 163, 162, 161, 121, 122, 123, 83, 82, 42, 43, 3, 0)

2 2138.943 1440 (0, 4, 44, 84, 124, 164, 204, 244, 284, 324, 364, 404, 444, 484, 524,
564, 604, 644, 684, 685, 645, 605, 565, 525, 485, 445, 405, 365, 325,
285, 245, 205, 206, 246, 286, 326, 366, 406, 446, 486, 526, 566, 606,
646, 686, 687, 647, 607, 567, 527, 487, 447, 407, 367, 327, 287, 247,
207, 167, 166, 165, 125, 126, 127, 87, 86, 85, 45, 46, 47, 7, 6, 5, 0)
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Route Length Load Ordering
3 2171.896 1460 (0, 8, 48, 49, 50, 90, 89, 88, 128, 168, 208, 248, 288, 328, 368, 408,

448, 488, 528, 568, 608, 648, 688, 689, 649, 609, 569, 529, 489, 449,
409, 369, 329, 289, 249, 209, 210, 250, 290, 330, 370, 410, 450, 490,
530, 570, 610, 650, 690, 691, 651, 611, 571, 531, 491, 451, 411, 371,
331, 291, 251, 211, 171, 170, 169, 129, 130, 131, 132, 92, 91, 51, 11,
10, 9, 0)

4 2105.990 1420 (0, 14, 13, 12, 52, 53, 54, 94, 93, 133, 173, 172, 212, 252, 292, 332,
372, 412, 452, 492, 532, 572, 612, 652, 692, 693, 653, 613, 573, 533,
493, 453, 413, 373, 333, 293, 253, 213, 214, 254, 294, 334, 374, 414,
454, 494, 534, 574, 614, 654, 694, 695, 655, 615, 575, 535, 495, 455,
415, 375, 335, 295, 255, 215, 175, 174, 134, 135, 95, 55, 15, 0)

5 2153.066 1460 (0, 17, 16, 56, 57, 97, 96, 136, 137, 138, 178, 177, 176, 216, 256,
296, 336, 376, 416, 456, 496, 536, 576, 616, 656, 696, 697, 657, 617,
577, 537, 497, 457, 417, 377, 337, 297, 257, 217, 218, 258, 298, 338,
378, 418, 458, 498, 538, 578, 618, 658, 698, 699, 659, 619, 579, 539,
499, 459, 419, 379, 339, 299, 259, 219, 179, 139, 99, 98, 58, 59, 60,
20, 19, 18, 0)

6 2124.820 1420 (0, 22, 21, 61, 101, 100, 140, 141, 181, 180, 220, 260, 300, 340, 380,
420, 460, 500, 540, 580, 620, 660, 700, 701, 661, 621, 581, 541, 501,
461, 421, 381, 341, 301, 261, 221, 222, 262, 302, 342, 382, 422, 462,
502, 542, 582, 622, 662, 702, 703, 663, 623, 583, 543, 503, 463, 423,
383, 343, 303, 263, 223, 183, 182, 142, 143, 103, 102, 62, 63, 23, 0)

7 2138.943 1440 (0, 24, 64, 104, 144, 184, 224, 264, 304, 344, 384, 424, 464, 504,
544, 584, 624, 664, 704, 705, 665, 625, 585, 545, 505, 465, 425, 385,
345, 305, 265, 225, 226, 266, 306, 346, 386, 426, 466, 506, 546, 586,
626, 666, 706, 707, 667, 627, 587, 547, 507, 467, 427, 387, 347, 307,
267, 227, 187, 186, 185, 145, 146, 147, 107, 106, 105, 65, 66, 67, 27,
26, 25, 0)

8 2171.896 1460 (0, 28, 68, 108, 148, 188, 228, 268, 308, 348, 388, 428, 468, 508,
548, 588, 628, 668, 708, 709, 669, 629, 589, 549, 509, 469, 429, 389,
349, 309, 269, 229, 230, 270, 310, 350, 390, 430, 470, 510, 550, 590,
630, 670, 710, 711, 671, 631, 591, 551, 511, 471, 431, 391, 351, 311,
271, 231, 191, 190, 189, 149, 150, 151, 152, 112, 111, 110, 109, 69,
70, 71, 31, 30, 29, 0)

9 2105.990 1420 (0, 34, 33, 32, 72, 73, 74, 114, 113, 153, 193, 192, 232, 272, 312,
352, 392, 432, 472, 512, 552, 592, 632, 672, 712, 713, 673, 633, 593,
553, 513, 473, 433, 393, 353, 313, 273, 233, 234, 274, 314, 354, 394,
434, 474, 514, 554, 594, 634, 674, 714, 715, 675, 635, 595, 555, 515,
475, 435, 395, 355, 315, 275, 235, 195, 194, 154, 155, 115, 75, 35,
0)

10 2153.066 1460 (0, 37, 36, 76, 77, 117, 116, 156, 157, 158, 198, 197, 196, 236, 276,
316, 356, 396, 436, 476, 516, 556, 596, 636, 676, 716, 717, 677, 637,
597, 557, 517, 477, 437, 397, 357, 317, 277, 237, 238, 278, 318, 358,
398, 438, 478, 518, 558, 598, 638, 678, 718, 719, 679, 639, 599, 559,
519, 479, 439, 399, 359, 319, 279, 239, 199, 159, 119, 118, 78, 79,
80, 40, 39, 38, 0)

Table B.56: Details of solution to problem Li-24

387



-200 0 200

-200

0

200

760 nodes   16763.72    19 routes

Figure B.52: Solution for problem Li-25

Problem Li-25
Vehicle capacity 900
Maximum route length 900.000
Number of nodes 760
Total route length 16763.719
Total number of routes 19
Route Length Load Ordering

1 887.622 690 (0, 3, 2, 1, 77, 78, 154, 230, 306, 382, 458, 534, 610, 686, 687, 688,
689, 690, 691, 692, 693, 694, 695, 696, 697, 621, 545, 469, 393, 317,
241, 165, 89, 13, 12, 11, 0)

2 899.527 830 (0, 4, 80, 79, 155, 156, 157, 233, 232, 231, 307, 383, 459, 460, 536,
535, 611, 612, 613, 614, 615, 616, 617, 618, 619, 620, 544, 468, 392,
391, 390, 314, 315, 316, 240, 239, 163, 164, 88, 87, 86, 10, 0)

3 869.281 900 (0, 8, 7, 6, 5, 81, 82, 83, 84, 160, 159, 158, 234, 235, 311, 310, 309,
308, 384, 385, 386, 387, 388, 464, 463, 462, 461, 537, 538, 539, 540,
541, 542, 543, 467, 466, 465, 389, 313, 312, 236, 237, 238, 162, 161,
85, 9, 0)
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Route Length Load Ordering
4 895.060 840 (0, 15, 14, 90, 166, 242, 318, 394, 470, 546, 622, 698, 699, 700, 701,

702, 703, 704, 705, 706, 707, 708, 632, 556, 557, 481, 405, 406, 330,
254, 178, 102, 26, 25, 24, 23, 22, 0)

5 899.527 840 (0, 16, 92, 91, 167, 243, 319, 395, 471, 547, 623, 624, 625, 626, 627,
628, 629, 630, 631, 555, 554, 553, 552, 551, 550, 549, 548, 472, 396,
320, 244, 168, 169, 170, 171, 95, 94, 93, 17, 18, 19, 0)

6 836.556 880 (0, 20, 96, 172, 173, 174, 175, 176, 252, 251, 250, 249, 248, 247,
246, 245, 321, 322, 323, 324, 325, 401, 400, 399, 398, 397, 473, 474,
475, 476, 477, 478, 479, 480, 404, 403, 402, 326, 327, 328, 329, 253,
177, 101, 100, 99, 98, 97, 21, 0)

7 895.060 760 (0, 29, 28, 27, 103, 179, 255, 256, 332, 331, 407, 483, 482, 558, 634,
633, 709, 710, 711, 712, 713, 714, 715, 716, 717, 641, 565, 489, 413,
337, 261, 185, 184, 108, 109, 110, 111, 35, 34, 33, 32, 0)

8 897.047 800 (0, 30, 106, 105, 104, 180, 181, 257, 333, 409, 408, 484, 485, 486,
487, 563, 562, 561, 560, 559, 635, 636, 637, 638, 639, 640, 564, 488,
412, 411, 410, 334, 335, 336, 260, 259, 258, 182, 183, 107, 31, 0)

9 890.101 610 (0, 36, 112, 188, 187, 186, 262, 338, 414, 490, 566, 642, 718, 719,
720, 721, 722, 723, 724, 725, 726, 727, 728, 729, 653, 577, 501, 425,
349, 273, 197, 121, 45, 44, 0)

10 892.089 790 (0, 37, 38, 114, 113, 189, 265, 264, 263, 339, 340, 416, 415, 491,
567, 643, 644, 645, 646, 647, 648, 649, 650, 651, 652, 576, 575, 499,
500, 424, 423, 422, 346, 347, 348, 272, 196, 120, 119, 43, 0)

11 851.924 880 (0, 41, 40, 39, 115, 116, 192, 191, 190, 266, 267, 268, 344, 343, 342,
341, 417, 418, 419, 495, 494, 493, 492, 568, 569, 570, 571, 572, 573,
574, 498, 497, 496, 420, 421, 345, 269, 270, 271, 195, 194, 193, 117,
118, 42, 0)

12 892.581 710 (0, 48, 47, 46, 122, 198, 274, 350, 426, 502, 578, 654, 730, 731, 732,
733, 734, 735, 736, 737, 738, 739, 740, 664, 588, 589, 513, 437, 361,
285, 286, 210, 209, 133, 57, 56, 0)

13 897.048 830 (0, 49, 50, 126, 125, 124, 123, 199, 275, 351, 427, 503, 579, 655,
656, 657, 658, 659, 660, 661, 662, 663, 587, 586, 585, 584, 583, 582,
581, 580, 504, 428, 352, 276, 200, 201, 202, 203, 127, 51, 0)

14 806.801 900 (0, 52, 53, 54, 130, 129, 128, 204, 205, 281, 280, 279, 278, 277, 353,
354, 355, 356, 357, 358, 359, 435, 434, 433, 432, 431, 430, 429, 505,
506, 507, 508, 509, 510, 511, 512, 436, 360, 284, 283, 282, 206, 207,
208, 132, 131, 55, 0)

15 895.060 700 (0, 58, 134, 135, 211, 287, 363, 362, 438, 514, 590, 591, 667, 666,
665, 741, 742, 743, 744, 745, 746, 747, 748, 749, 673, 597, 521, 445,
369, 368, 292, 216, 140, 64, 63, 0)

16 892.088 820 (0, 59, 60, 61, 137, 136, 212, 213, 214, 290, 289, 288, 364, 440, 439,
515, 516, 517, 518, 519, 595, 594, 593, 592, 668, 669, 670, 671, 672,
596, 520, 444, 443, 442, 441, 365, 366, 367, 291, 215, 139, 138, 62,
0)

17 897.540 650 (0, 67, 66, 65, 141, 217, 293, 294, 370, 446, 522, 598, 674, 750, 751,
752, 753, 754, 755, 756, 757, 758, 759, 760, 685, 609, 533, 457, 381,
305, 229, 153, 228, 152, 76, 75, 0)

18 889.609 870 (0, 68, 69, 145, 144, 143, 142, 218, 219, 295, 371, 447, 523, 524,
600, 599, 675, 676, 677, 678, 679, 680, 681, 682, 683, 684, 608, 607,
531, 532, 456, 380, 304, 303, 302, 301, 225, 226, 227, 151, 150, 74,
0)
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Route Length Load Ordering
19 879.199 900 (0, 70, 146, 147, 223, 222, 221, 220, 296, 372, 448, 449, 525, 601,

602, 603, 604, 605, 606, 530, 529, 528, 527, 526, 450, 451, 452, 453,
454, 455, 379, 378, 377, 376, 375, 374, 373, 297, 298, 299, 300, 224,
148, 149, 73, 72, 71, 0)

Table B.57: Details of solution to problem Li-25
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Figure B.53: Solution for problem Li-26

Problem Li-26
Vehicle capacity 1700
Maximum route length 2500.000
Number of nodes 800
Total route length 23977.732
Total number of routes 10
Route Length Load Ordering

1 2430.726 1620 (0, 3, 2, 1, 41, 81, 120, 160, 121, 122, 123, 163, 162, 161, 201, 241,
281, 321, 361, 401, 441, 481, 521, 561, 601, 641, 681, 721, 761, 762,
722, 682, 642, 602, 562, 522, 482, 442, 402, 362, 322, 282, 242, 202,
203, 243, 283, 323, 363, 403, 443, 483, 523, 563, 603, 643, 683, 723,
763, 764, 724, 684, 644, 604, 564, 524, 484, 444, 404, 364, 324, 284,
244, 204, 164, 124, 84, 83, 82, 42, 43, 44, 4, 0)

2 2430.726 1620 (0, 7, 6, 5, 45, 46, 47, 87, 86, 85, 125, 126, 127, 167, 166, 165, 205,
245, 285, 325, 365, 405, 445, 485, 525, 565, 605, 645, 685, 725, 765,
766, 726, 686, 646, 606, 566, 526, 486, 446, 406, 366, 326, 286, 246,
206, 207, 247, 287, 327, 367, 407, 447, 487, 527, 567, 607, 647, 687,
727, 767, 768, 728, 688, 648, 608, 568, 528, 488, 448, 408, 368, 328,
288, 248, 208, 168, 128, 129, 89, 88, 48, 8, 0)
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Route Length Load Ordering
3 2350.698 1560 (0, 9, 49, 50, 90, 130, 170, 169, 209, 249, 289, 329, 369, 409, 449,

489, 529, 569, 609, 649, 689, 729, 769, 770, 730, 690, 650, 610, 570,
530, 490, 450, 410, 370, 330, 290, 250, 210, 211, 251, 291, 331, 371,
411, 451, 491, 531, 571, 611, 651, 691, 731, 771, 772, 732, 692, 652,
612, 572, 532, 492, 452, 412, 372, 332, 292, 252, 212, 172, 171, 131,
132, 92, 91, 51, 11, 10, 0)

4 2458.971 1660 (0, 14, 13, 12, 52, 53, 54, 94, 93, 133, 173, 213, 253, 293, 333, 373,
413, 453, 493, 533, 573, 613, 653, 693, 733, 773, 774, 734, 694, 654,
614, 574, 534, 494, 454, 414, 374, 334, 294, 254, 214, 215, 255, 295,
335, 375, 415, 455, 495, 535, 575, 615, 655, 695, 735, 775, 776, 736,
696, 656, 616, 576, 536, 496, 456, 416, 376, 336, 296, 256, 216, 176,
175, 174, 134, 135, 136, 137, 97, 96, 95, 55, 56, 57, 17, 16, 15, 0)

5 2317.745 1540 (0, 18, 58, 98, 138, 178, 177, 217, 257, 297, 337, 377, 417, 457, 497,
537, 577, 617, 657, 697, 737, 777, 778, 738, 698, 658, 618, 578, 538,
498, 458, 418, 378, 338, 298, 258, 218, 219, 259, 299, 339, 379, 419,
459, 499, 539, 579, 619, 659, 699, 739, 779, 780, 740, 700, 660, 620,
580, 540, 500, 460, 420, 380, 340, 300, 260, 220, 180, 179, 139, 99,
59, 60, 20, 19, 0)

6 2430.726 1620 (0, 23, 22, 21, 61, 101, 100, 140, 141, 142, 143, 183, 182, 181, 221,
261, 301, 341, 381, 421, 461, 501, 541, 581, 621, 661, 701, 741, 781,
782, 742, 702, 662, 622, 582, 542, 502, 462, 422, 382, 342, 302, 262,
222, 223, 263, 303, 343, 383, 423, 463, 503, 543, 583, 623, 663, 703,
743, 783, 784, 744, 704, 664, 624, 584, 544, 504, 464, 424, 384, 344,
304, 264, 224, 184, 144, 104, 103, 102, 62, 63, 64, 24, 0)

7 2430.726 1620 (0, 27, 26, 25, 65, 66, 67, 107, 106, 105, 145, 146, 147, 187, 186,
185, 225, 265, 305, 345, 385, 425, 465, 505, 545, 585, 625, 665, 705,
745, 785, 786, 746, 706, 666, 626, 586, 546, 506, 466, 426, 386, 346,
306, 266, 226, 227, 267, 307, 347, 387, 427, 467, 507, 547, 587, 627,
667, 707, 747, 787, 788, 748, 708, 668, 628, 588, 548, 508, 468, 428,
388, 348, 308, 268, 228, 188, 148, 149, 109, 108, 68, 28, 0)

8 2350.698 1560 (0, 29, 69, 70, 110, 150, 151, 191, 190, 189, 229, 269, 309, 349, 389,
429, 469, 509, 549, 589, 629, 669, 709, 749, 789, 790, 750, 710, 670,
630, 590, 550, 510, 470, 430, 390, 350, 310, 270, 230, 231, 271, 311,
351, 391, 431, 471, 511, 551, 591, 631, 671, 711, 751, 791, 792, 752,
712, 672, 632, 592, 552, 512, 472, 432, 392, 352, 312, 272, 232, 192,
152, 112, 111, 71, 31, 30, 0)

9 2458.971 1660 (0, 34, 33, 32, 72, 73, 74, 114, 113, 153, 193, 233, 273, 313, 353,
393, 433, 473, 513, 553, 593, 633, 673, 713, 753, 793, 794, 754, 714,
674, 634, 594, 554, 514, 474, 434, 394, 354, 314, 274, 234, 235, 275,
315, 355, 395, 435, 475, 515, 555, 595, 635, 675, 715, 755, 795, 796,
756, 716, 676, 636, 596, 556, 516, 476, 436, 396, 356, 316, 276, 236,
196, 195, 194, 154, 155, 156, 157, 117, 116, 115, 75, 76, 77, 37, 36,
35, 0)

10 2317.745 1540 (0, 38, 78, 118, 158, 198, 197, 237, 277, 317, 357, 397, 437, 477,
517, 557, 597, 637, 677, 717, 757, 797, 798, 758, 718, 678, 638, 598,
558, 518, 478, 438, 398, 358, 318, 278, 238, 239, 279, 319, 359, 399,
439, 479, 519, 559, 599, 639, 679, 719, 759, 799, 800, 760, 720, 680,
640, 600, 560, 520, 480, 440, 400, 360, 320, 280, 240, 200, 199, 159,
119, 79, 80, 40, 39, 0)

Table B.58: Details of solution to problem Li-26
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Figure B.54: Solution for problem Li-27

Problem Li-27
Vehicle capacity 900
Maximum route length 900.000
Number of nodes 840
Total route length 17481.053
Total number of routes 20
Route Length Load Ordering

1 893.894 790 (0, 4, 3, 87, 88, 89, 90, 174, 258, 342, 426, 510, 509, 593, 677, 676,
760, 761, 762, 763, 764, 765, 766, 767, 768, 769, 685, 601, 517, 516,
432, 348, 347, 263, 179, 178, 94, 95, 11, 10, 0)

2 896.712 870 (0, 5, 6, 7, 91, 175, 259, 343, 344, 345, 429, 428, 427, 511, 595, 594,
678, 679, 680, 681, 682, 683, 684, 600, 599, 598, 597, 596, 512, 513,
514, 515, 431, 430, 346, 262, 261, 260, 176, 177, 93, 92, 8, 9, 0)
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Route Length Load Ordering
3 889.408 780 (0, 16, 15, 14, 13, 12, 96, 97, 98, 99, 183, 182, 181, 180, 264, 265,

266, 350, 349, 433, 434, 518, 602, 686, 770, 771, 772, 773, 774, 775,
776, 777, 693, 692, 608, 609, 525, 441, 357, 273, 189, 188, 104, 20,
19, 0)

4 894.468 900 (0, 17, 101, 100, 184, 185, 186, 270, 269, 268, 267, 351, 352, 353,
437, 436, 435, 519, 520, 604, 603, 687, 688, 689, 690, 691, 607, 606,
605, 521, 522, 523, 524, 440, 439, 438, 354, 355, 356, 272, 271, 187,
103, 102, 18, 0)

5 889.408 870 (0, 23, 22, 21, 105, 106, 190, 274, 358, 442, 526, 610, 694, 778, 779,
780, 781, 782, 783, 784, 785, 786, 787, 788, 789, 790, 706, 622, 538,
454, 370, 286, 202, 201, 117, 33, 32, 31, 0)

6 898.955 890 (0, 24, 25, 26, 110, 109, 108, 107, 191, 192, 193, 194, 278, 277, 276,
275, 359, 360, 444, 443, 527, 611, 695, 696, 697, 698, 699, 700, 701,
702, 703, 704, 705, 621, 620, 536, 537, 453, 369, 285, 284, 283, 199,
200, 116, 115, 114, 30, 0)

7 886.068 900 (0, 27, 111, 112, 196, 195, 279, 280, 364, 363, 362, 361, 445, 446,
447, 448, 449, 450, 534, 533, 532, 531, 530, 529, 528, 612, 613, 614,
615, 616, 617, 618, 619, 535, 451, 452, 368, 367, 366, 365, 281, 282,
198, 197, 113, 29, 28, 0)

8 891.651 840 (0, 34, 118, 119, 203, 287, 371, 455, 539, 623, 624, 708, 707, 791,
792, 793, 794, 795, 796, 797, 798, 799, 800, 801, 802, 718, 634, 550,
466, 382, 298, 214, 130, 46, 45, 0)

9 752.033 870 (0, 35, 36, 120, 204, 288, 372, 373, 374, 458, 457, 456, 540, 541,
542, 543, 544, 545, 546, 547, 463, 462, 461, 460, 459, 375, 376, 377,
378, 294, 293, 292, 291, 290, 289, 205, 206, 207, 208, 124, 123, 122,
121, 37, 38, 39, 0)

10 887.738 750 (0, 40, 41, 125, 209, 210, 211, 212, 296, 295, 379, 380, 464, 548,
632, 631, 630, 629, 628, 627, 626, 625, 709, 710, 711, 712, 713, 714,
715, 716, 717, 633, 549, 465, 381, 297, 213, 129, 128, 127, 126, 42,
43, 44, 0)

11 898.381 850 (0, 48, 47, 131, 215, 299, 383, 467, 551, 635, 719, 803, 804, 805,
806, 807, 808, 809, 810, 811, 812, 813, 814, 815, 731, 647, 563, 479,
395, 311, 227, 226, 225, 224, 140, 141, 57, 56, 0)

12 885.494 830 (0, 49, 133, 132, 216, 217, 301, 300, 384, 468, 552, 636, 720, 721,
722, 723, 724, 725, 726, 727, 728, 729, 730, 646, 562, 478, 477, 476,
475, 391, 392, 393, 394, 310, 309, 308, 307, 306, 222, 223, 139, 138,
54, 55, 0)

13 877.094 900 (0, 51, 50, 134, 135, 219, 218, 302, 303, 387, 386, 385, 469, 470,
471, 555, 554, 553, 637, 638, 639, 640, 641, 642, 643, 644, 645, 561,
560, 559, 558, 557, 556, 472, 473, 474, 390, 389, 388, 304, 305, 221,
220, 136, 137, 53, 52, 0)

14 896.138 730 (0, 60, 59, 58, 142, 143, 144, 228, 312, 396, 480, 564, 648, 732, 816,
817, 818, 819, 820, 821, 822, 823, 824, 825, 826, 827, 743, 659, 660,
576, 492, 408, 407, 323, 239, 238, 154, 70, 0)

15 898.955 870 (0, 61, 62, 146, 145, 229, 313, 397, 481, 565, 649, 733, 734, 735,
736, 737, 738, 739, 740, 741, 742, 658, 657, 656, 655, 654, 653, 652,
651, 650, 566, 482, 398, 314, 230, 231, 232, 148, 147, 63, 64, 65, 66,
67, 0)

16 794.659 900 (0, 68, 152, 151, 150, 149, 233, 234, 235, 319, 318, 317, 316, 315,
399, 400, 401, 402, 403, 404, 488, 487, 486, 485, 484, 483, 567, 568,
569, 570, 571, 572, 573, 574, 575, 491, 490, 489, 405, 406, 322, 321,
320, 236, 237, 153, 69, 0)
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Route Length Load Ordering
17 893.894 860 (0, 72, 71, 155, 156, 157, 158, 242, 241, 240, 324, 325, 326, 410,

409, 493, 577, 661, 745, 744, 828, 829, 830, 831, 832, 748, 747, 746,
662, 663, 664, 580, 579, 578, 494, 495, 411, 327, 243, 159, 75, 74,
73, 0)

18 893.895 610 (0, 76, 160, 244, 328, 412, 496, 497, 581, 665, 749, 833, 834, 835,
836, 837, 838, 839, 840, 757, 758, 759, 675, 591, 592, 508, 424, 425,
341, 257, 173, 172, 171, 170, 86, 2, 1, 84, 0)

19 876.520 890 (0, 77, 78, 162, 161, 245, 246, 330, 329, 413, 414, 498, 582, 666,
750, 751, 752, 753, 754, 755, 756, 673, 674, 590, 589, 672, 671, 670,
669, 668, 667, 583, 499, 415, 331, 247, 248, 164, 163, 79, 80, 81, 0)

20 785.686 900 (0, 82, 166, 165, 249, 333, 332, 416, 500, 584, 585, 586, 587, 588,
505, 506, 507, 423, 422, 421, 504, 503, 502, 501, 417, 418, 419, 420,
337, 338, 339, 340, 256, 255, 254, 253, 336, 335, 334, 250, 251, 252,
169, 85, 168, 167, 83, 0)

Table B.59: Details of solution to problem Li-27
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Figure B.55: Solution for problem Li-28

Problem Li-28
Vehicle capacity 1800
Maximum route length 2800.000
Number of nodes 880
Total route length 26568.431
Total number of routes 10
Route Length Load Ordering

1 2675.434 1800 (0, 3, 2, 42, 43, 83, 82, 122, 123, 163, 162, 202, 242, 282, 322, 362,
402, 442, 482, 522, 562, 602, 642, 682, 722, 762, 802, 842, 843, 803,
763, 723, 683, 643, 603, 563, 523, 483, 443, 403, 363, 323, 283, 243,
203, 204, 244, 284, 324, 364, 404, 444, 484, 524, 564, 604, 644, 684,
724, 764, 804, 844, 845, 805, 765, 725, 685, 645, 605, 565, 525, 485,
445, 405, 365, 325, 285, 245, 205, 165, 164, 124, 125, 126, 86, 85,
84, 44, 4, 0)
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Route Length Load Ordering
2 2651.896 1780 (0, 7, 6, 5, 45, 46, 47, 87, 127, 128, 168, 167, 166, 206, 246, 286,

326, 366, 406, 446, 486, 526, 566, 606, 646, 686, 726, 766, 806, 846,
847, 807, 767, 727, 687, 647, 607, 567, 527, 487, 447, 407, 367, 327,
287, 247, 207, 208, 248, 288, 328, 368, 408, 448, 488, 528, 568, 608,
648, 688, 728, 768, 808, 848, 849, 809, 769, 729, 689, 649, 609, 569,
529, 489, 449, 409, 369, 329, 289, 249, 209, 169, 129, 89, 88, 48, 49,
50, 10, 9, 8, 0)

3 2642.481 1700 (0, 12, 11, 51, 91, 90, 130, 131, 171, 170, 210, 250, 290, 330, 370,
410, 450, 490, 530, 570, 610, 650, 690, 730, 770, 810, 850, 851, 811,
771, 731, 691, 651, 611, 571, 531, 491, 451, 411, 371, 331, 291, 251,
211, 212, 252, 292, 332, 372, 412, 452, 492, 532, 572, 612, 652, 692,
732, 772, 812, 852, 853, 813, 773, 733, 693, 653, 613, 573, 533, 493,
453, 413, 373, 333, 293, 253, 213, 173, 172, 132, 133, 93, 92, 52, 53,
13, 0)

4 2562.453 1680 (0, 14, 54, 94, 134, 174, 214, 254, 294, 334, 374, 414, 454, 494, 534,
574, 614, 654, 694, 734, 774, 814, 854, 855, 815, 775, 735, 695, 655,
615, 575, 535, 495, 455, 415, 375, 335, 295, 255, 215, 216, 256, 296,
336, 376, 416, 456, 496, 536, 576, 616, 656, 696, 736, 776, 816, 856,
857, 817, 777, 737, 697, 657, 617, 577, 537, 497, 457, 417, 377, 337,
297, 257, 217, 177, 176, 175, 135, 95, 55, 15, 0)

5 2695.462 1780 (0, 17, 16, 56, 57, 97, 96, 136, 137, 138, 178, 179, 180, 220, 219,
218, 258, 298, 338, 378, 418, 458, 498, 538, 578, 618, 658, 698, 738,
778, 818, 858, 859, 819, 779, 739, 699, 659, 619, 579, 539, 499, 459,
419, 379, 339, 299, 259, 260, 300, 340, 380, 420, 460, 500, 540, 580,
620, 660, 700, 740, 780, 820, 860, 861, 821, 781, 741, 701, 661, 621,
581, 541, 501, 461, 421, 381, 341, 301, 261, 221, 181, 141, 140, 139,
99, 98, 58, 59, 19, 18, 0)

6 2684.849 1780 (0, 20, 60, 100, 101, 102, 142, 143, 183, 182, 222, 262, 302, 342,
382, 422, 462, 502, 542, 582, 622, 662, 702, 742, 782, 822, 862, 863,
823, 783, 743, 703, 663, 623, 583, 543, 503, 463, 423, 383, 343, 303,
263, 223, 224, 264, 304, 344, 384, 424, 464, 504, 544, 584, 624, 664,
704, 744, 784, 824, 864, 865, 825, 785, 745, 705, 665, 625, 585, 545,
505, 465, 425, 385, 345, 305, 265, 225, 185, 184, 144, 145, 105, 104,
103, 63, 62, 61, 21, 22, 23, 0)

7 2623.651 1740 (0, 24, 64, 65, 66, 106, 146, 147, 187, 186, 226, 266, 306, 346, 386,
426, 466, 506, 546, 586, 626, 666, 706, 746, 786, 826, 866, 867, 827,
787, 747, 707, 667, 627, 587, 547, 507, 467, 427, 387, 347, 307, 267,
227, 228, 268, 308, 348, 388, 428, 468, 508, 548, 588, 628, 668, 708,
748, 788, 828, 868, 869, 829, 789, 749, 709, 669, 629, 589, 549, 509,
469, 429, 389, 349, 309, 269, 229, 189, 188, 148, 108, 107, 67, 27,
26, 25, 0)

8 2667.217 1770 (0, 30, 29, 28, 68, 69, 70, 110, 109, 149, 150, 190, 191, 231, 230,
270, 310, 350, 390, 430, 470, 510, 550, 590, 630, 670, 710, 750, 790,
830, 870, 871, 831, 791, 751, 711, 671, 631, 591, 551, 511, 471, 431,
391, 351, 311, 271, 272, 312, 352, 392, 432, 472, 512, 552, 592, 632,
672, 712, 752, 792, 832, 872, 873, 833, 793, 753, 713, 673, 633, 593,
553, 513, 473, 433, 393, 353, 313, 273, 233, 232, 192, 193, 153, 152,
151, 111, 71, 31, 32, 0)

397



Route Length Load Ordering
9 2675.434 1790 (0, 33, 34, 74, 73, 72, 112, 113, 114, 154, 194, 234, 274, 314, 354,

394, 434, 474, 514, 554, 594, 634, 674, 714, 754, 794, 834, 874, 875,
835, 795, 755, 715, 675, 635, 595, 555, 515, 475, 435, 395, 355, 315,
275, 235, 236, 276, 316, 356, 396, 436, 476, 516, 556, 596, 636, 676,
716, 756, 796, 836, 876, 877, 837, 797, 757, 717, 677, 637, 597, 557,
517, 477, 437, 397, 357, 317, 277, 237, 197, 196, 195, 155, 156, 116,
115, 75, 76, 77, 37, 36, 35, 0)

10 2689.556 1780 (0, 38, 78, 118, 117, 157, 158, 198, 238, 278, 318, 358, 398, 438,
478, 518, 558, 598, 638, 678, 718, 758, 798, 838, 878, 879, 839, 799,
759, 719, 679, 639, 599, 559, 519, 479, 439, 399, 359, 319, 279, 239,
240, 280, 320, 360, 400, 440, 480, 520, 560, 600, 640, 680, 720, 760,
800, 840, 880, 841, 801, 761, 721, 681, 641, 601, 561, 521, 481, 441,
401, 361, 321, 281, 241, 201, 161, 200, 199, 159, 160, 121, 81, 120,
119, 79, 80, 41, 1, 40, 39, 0)

Table B.60: Details of solution to problem Li-28
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Figure B.56: Solution for problem Li-29

Problem Li-29
Vehicle capacity 2000
Maximum route length 3000.000
Number of nodes 960
Total route length 29154.336
Total number of routes 10
Route Length Load Ordering

1 2948.386 1940 (0, 3, 2, 1, 41, 81, 120, 160, 121, 122, 123, 163, 162, 161, 201, 241,
281, 321, 361, 401, 441, 481, 521, 561, 601, 641, 681, 721, 761, 801,
841, 881, 921, 922, 882, 842, 802, 762, 722, 682, 642, 602, 562, 522,
482, 442, 402, 362, 322, 282, 242, 202, 203, 243, 283, 323, 363, 403,
443, 483, 523, 563, 603, 643, 683, 723, 763, 803, 843, 883, 923, 924,
884, 844, 804, 764, 724, 684, 644, 604, 564, 524, 484, 444, 404, 364,
324, 284, 244, 204, 164, 124, 84, 83, 82, 42, 43, 44, 4, 0)
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Route Length Load Ordering
2 2948.387 1940 (0, 7, 6, 5, 45, 46, 47, 87, 86, 85, 125, 126, 127, 167, 166, 165, 205,

245, 285, 325, 365, 405, 445, 485, 525, 565, 605, 645, 685, 725, 765,
805, 845, 885, 925, 926, 886, 846, 806, 766, 726, 686, 646, 606, 566,
526, 486, 446, 406, 366, 326, 286, 246, 206, 207, 247, 287, 327, 367,
407, 447, 487, 527, 567, 607, 647, 687, 727, 767, 807, 847, 887, 927,
928, 888, 848, 808, 768, 728, 688, 648, 608, 568, 528, 488, 448, 408,
368, 328, 288, 248, 208, 168, 128, 129, 89, 88, 48, 8, 0)

3 2868.358 1880 (0, 9, 49, 50, 90, 130, 131, 171, 170, 169, 209, 249, 289, 329, 369,
409, 449, 489, 529, 569, 609, 649, 689, 729, 769, 809, 849, 889, 929,
930, 890, 850, 810, 770, 730, 690, 650, 610, 570, 530, 490, 450, 410,
370, 330, 290, 250, 210, 211, 251, 291, 331, 371, 411, 451, 491, 531,
571, 611, 651, 691, 731, 771, 811, 851, 891, 931, 932, 892, 852, 812,
772, 732, 692, 652, 612, 572, 532, 492, 452, 412, 372, 332, 292, 252,
212, 172, 132, 92, 91, 51, 11, 10, 0)

4 2896.603 1920 (0, 14, 13, 12, 52, 53, 54, 94, 93, 133, 173, 213, 253, 293, 333, 373,
413, 453, 493, 533, 573, 613, 653, 693, 733, 773, 813, 853, 893, 933,
934, 894, 854, 814, 774, 734, 694, 654, 614, 574, 534, 494, 454, 414,
374, 334, 294, 254, 214, 215, 255, 295, 335, 375, 415, 455, 495, 535,
575, 615, 655, 695, 735, 775, 815, 855, 895, 935, 936, 896, 856, 816,
776, 736, 696, 656, 616, 576, 536, 496, 456, 416, 376, 336, 296, 256,
216, 176, 175, 174, 134, 135, 95, 55, 56, 16, 15, 0)

5 2915.434 1920 (0, 17, 57, 97, 96, 136, 137, 138, 178, 177, 217, 257, 297, 337, 377,
417, 457, 497, 537, 577, 617, 657, 697, 737, 777, 817, 857, 897, 937,
938, 898, 858, 818, 778, 738, 698, 658, 618, 578, 538, 498, 458, 418,
378, 338, 298, 258, 218, 219, 259, 299, 339, 379, 419, 459, 499, 539,
579, 619, 659, 699, 739, 779, 819, 859, 899, 939, 940, 900, 860, 820,
780, 740, 700, 660, 620, 580, 540, 500, 460, 420, 380, 340, 300, 260,
220, 180, 179, 139, 99, 98, 58, 59, 60, 20, 19, 18, 0)

6 2948.386 1940 (0, 23, 22, 21, 61, 101, 100, 140, 141, 142, 143, 183, 182, 181, 221,
261, 301, 341, 381, 421, 461, 501, 541, 581, 621, 661, 701, 741, 781,
821, 861, 901, 941, 942, 902, 862, 822, 782, 742, 702, 662, 622, 582,
542, 502, 462, 422, 382, 342, 302, 262, 222, 223, 263, 303, 343, 383,
423, 463, 503, 543, 583, 623, 663, 703, 743, 783, 823, 863, 903, 943,
944, 904, 864, 824, 784, 744, 704, 664, 624, 584, 544, 504, 464, 424,
384, 344, 304, 264, 224, 184, 144, 104, 103, 102, 62, 63, 64, 24, 0)

7 2948.387 1940 (0, 27, 26, 25, 65, 66, 67, 107, 106, 105, 145, 146, 147, 187, 186,
185, 225, 265, 305, 345, 385, 425, 465, 505, 545, 585, 625, 665, 705,
745, 785, 825, 865, 905, 945, 946, 906, 866, 826, 786, 746, 706, 666,
626, 586, 546, 506, 466, 426, 386, 346, 306, 266, 226, 227, 267, 307,
347, 387, 427, 467, 507, 547, 587, 627, 667, 707, 747, 787, 827, 867,
907, 947, 948, 908, 868, 828, 788, 748, 708, 668, 628, 588, 548, 508,
468, 428, 388, 348, 308, 268, 228, 188, 148, 149, 109, 108, 68, 28,
0)

8 2868.358 1880 (0, 29, 69, 70, 110, 150, 151, 191, 190, 189, 229, 269, 309, 349, 389,
429, 469, 509, 549, 589, 629, 669, 709, 749, 789, 829, 869, 909, 949,
950, 910, 870, 830, 790, 750, 710, 670, 630, 590, 550, 510, 470, 430,
390, 350, 310, 270, 230, 231, 271, 311, 351, 391, 431, 471, 511, 551,
591, 631, 671, 711, 751, 791, 831, 871, 911, 951, 952, 912, 872, 832,
792, 752, 712, 672, 632, 592, 552, 512, 472, 432, 392, 352, 312, 272,
232, 192, 152, 112, 111, 71, 31, 30, 0)
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Route Length Load Ordering
9 2929.556 1940 (0, 34, 33, 32, 72, 73, 74, 114, 113, 153, 193, 233, 273, 313, 353,

393, 433, 473, 513, 553, 593, 633, 673, 713, 753, 793, 833, 873, 913,
953, 954, 914, 874, 834, 794, 754, 714, 674, 634, 594, 554, 514, 474,
434, 394, 354, 314, 274, 234, 235, 275, 315, 355, 395, 435, 475, 515,
555, 595, 635, 675, 715, 755, 795, 835, 875, 915, 955, 956, 916, 876,
836, 796, 756, 716, 676, 636, 596, 556, 516, 476, 436, 396, 356, 316,
276, 236, 196, 195, 194, 154, 155, 156, 116, 115, 75, 76, 36, 35, 0)

10 2882.481 1900 (0, 37, 77, 117, 157, 158, 198, 197, 237, 277, 317, 357, 397, 437,
477, 517, 557, 597, 637, 677, 717, 757, 797, 837, 877, 917, 957, 958,
918, 878, 838, 798, 758, 718, 678, 638, 598, 558, 518, 478, 438, 398,
358, 318, 278, 238, 239, 279, 319, 359, 399, 439, 479, 519, 559, 599,
639, 679, 719, 759, 799, 839, 879, 919, 959, 960, 920, 880, 840, 800,
760, 720, 680, 640, 600, 560, 520, 480, 440, 400, 360, 320, 280, 240,
200, 199, 159, 119, 118, 78, 79, 80, 40, 39, 38, 0)

Table B.61: Details of solution to problem Li-29
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Figure B.57: Solution for problem Li-30

Problem Li-30
Vehicle capacity 2100
Maximum route length 3200.000
Number of nodes 1040
Total route length 31742.639
Total number of routes 10
Route Length Load Ordering

1 3193.094 2080 (0, 3, 2, 42, 43, 83, 82, 81, 120, 160, 121, 122, 123, 163, 162, 161,
201, 241, 281, 321, 361, 401, 441, 481, 521, 561, 601, 641, 681, 721,
761, 801, 841, 881, 921, 961, 1001, 1002, 962, 922, 882, 842, 802,
762, 722, 682, 642, 602, 562, 522, 482, 442, 402, 362, 322, 282, 242,
202, 203, 243, 283, 323, 363, 403, 443, 483, 523, 563, 603, 643, 683,
723, 763, 803, 843, 883, 923, 963, 1003, 1004, 964, 924, 884, 844,
804, 764, 724, 684, 644, 604, 564, 524, 484, 444, 404, 364, 324, 284,
244, 204, 164, 124, 84, 44, 4, 0)
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Route Length Load Ordering
2 3174.264 2080 (0, 7, 6, 5, 45, 46, 47, 87, 86, 85, 125, 126, 127, 167, 166, 165, 205,

245, 285, 325, 365, 405, 445, 485, 525, 565, 605, 645, 685, 725, 765,
805, 845, 885, 925, 965, 1005, 1006, 966, 926, 886, 846, 806, 766,
726, 686, 646, 606, 566, 526, 486, 446, 406, 366, 326, 286, 246, 206,
207, 247, 287, 327, 367, 407, 447, 487, 527, 567, 607, 647, 687, 727,
767, 807, 847, 887, 927, 967, 1007, 1008, 968, 928, 888, 848, 808,
768, 728, 688, 648, 608, 568, 528, 488, 448, 408, 368, 328, 288, 248,
208, 168, 128, 88, 48, 8, 0)

3 3160.141 2060 (0, 9, 49, 50, 90, 89, 129, 130, 170, 169, 209, 249, 289, 329, 369,
409, 449, 489, 529, 569, 609, 649, 689, 729, 769, 809, 849, 889, 929,
969, 1009, 1010, 970, 930, 890, 850, 810, 770, 730, 690, 650, 610,
570, 530, 490, 450, 410, 370, 330, 290, 250, 210, 211, 251, 291, 331,
371, 411, 451, 491, 531, 571, 611, 651, 691, 731, 771, 811, 851, 891,
931, 971, 1011, 1012, 972, 932, 892, 852, 812, 772, 732, 692, 652,
612, 572, 532, 492, 452, 412, 372, 332, 292, 252, 212, 172, 171, 131,
132, 92, 91, 51, 11, 10, 0)

4 3188.387 2100 (0, 14, 13, 12, 52, 53, 54, 94, 93, 133, 173, 213, 253, 293, 333, 373,
413, 453, 493, 533, 573, 613, 653, 693, 733, 773, 813, 853, 893, 933,
973, 1013, 1014, 974, 934, 894, 854, 814, 774, 734, 694, 654, 614,
574, 534, 494, 454, 414, 374, 334, 294, 254, 214, 215, 255, 295, 335,
375, 415, 455, 495, 535, 575, 615, 655, 695, 735, 775, 815, 855, 895,
935, 975, 1015, 1016, 976, 936, 896, 856, 816, 776, 736, 696, 656,
616, 576, 536, 496, 456, 416, 376, 336, 296, 256, 216, 176, 175, 174,
134, 135, 136, 96, 95, 55, 56, 16, 15, 0)

5 3155.434 2080 (0, 17, 57, 97, 137, 138, 178, 177, 217, 257, 297, 337, 377, 417,
457, 497, 537, 577, 617, 657, 697, 737, 777, 817, 857, 897, 937, 977,
1017, 1018, 978, 938, 898, 858, 818, 778, 738, 698, 658, 618, 578,
538, 498, 458, 418, 378, 338, 298, 258, 218, 219, 259, 299, 339, 379,
419, 459, 499, 539, 579, 619, 659, 699, 739, 779, 819, 859, 899, 939,
979, 1019, 1020, 980, 940, 900, 860, 820, 780, 740, 700, 660, 620,
580, 540, 500, 460, 420, 380, 340, 300, 260, 220, 180, 179, 139, 99,
98, 58, 59, 60, 61, 21, 20, 19, 18, 0)

6 3193.094 2080 (0, 23, 22, 62, 63, 103, 102, 101, 100, 140, 141, 142, 143, 183, 182,
181, 221, 261, 301, 341, 381, 421, 461, 501, 541, 581, 621, 661, 701,
741, 781, 821, 861, 901, 941, 981, 1021, 1022, 982, 942, 902, 862,
822, 782, 742, 702, 662, 622, 582, 542, 502, 462, 422, 382, 342, 302,
262, 222, 223, 263, 303, 343, 383, 423, 463, 503, 543, 583, 623, 663,
703, 743, 783, 823, 863, 903, 943, 983, 1023, 1024, 984, 944, 904,
864, 824, 784, 744, 704, 664, 624, 584, 544, 504, 464, 424, 384, 344,
304, 264, 224, 184, 144, 104, 64, 24, 0)

7 3174.264 2080 (0, 27, 26, 25, 65, 66, 67, 107, 106, 105, 145, 146, 147, 187, 186,
185, 225, 265, 305, 345, 385, 425, 465, 505, 545, 585, 625, 665, 705,
745, 785, 825, 865, 905, 945, 985, 1025, 1026, 986, 946, 906, 866,
826, 786, 746, 706, 666, 626, 586, 546, 506, 466, 426, 386, 346, 306,
266, 226, 227, 267, 307, 347, 387, 427, 467, 507, 547, 587, 627, 667,
707, 747, 787, 827, 867, 907, 947, 987, 1027, 1028, 988, 948, 908,
868, 828, 788, 748, 708, 668, 628, 588, 548, 508, 468, 428, 388, 348,
308, 268, 228, 188, 148, 108, 68, 28, 0)

403



Route Length Load Ordering
8 3160.141 2060 (0, 29, 69, 70, 110, 109, 149, 150, 190, 189, 229, 269, 309, 349, 389,

429, 469, 509, 549, 589, 629, 669, 709, 749, 789, 829, 869, 909, 949,
989, 1029, 1030, 990, 950, 910, 870, 830, 790, 750, 710, 670, 630,
590, 550, 510, 470, 430, 390, 350, 310, 270, 230, 231, 271, 311, 351,
391, 431, 471, 511, 551, 591, 631, 671, 711, 751, 791, 831, 871, 911,
951, 991, 1031, 1032, 992, 952, 912, 872, 832, 792, 752, 712, 672,
632, 592, 552, 512, 472, 432, 392, 352, 312, 272, 232, 192, 191, 151,
152, 112, 111, 71, 31, 30, 0)

9 3188.387 2100 (0, 34, 33, 32, 72, 73, 74, 114, 113, 153, 193, 233, 273, 313, 353,
393, 433, 473, 513, 553, 593, 633, 673, 713, 753, 793, 833, 873, 913,
953, 993, 1033, 1034, 994, 954, 914, 874, 834, 794, 754, 714, 674,
634, 594, 554, 514, 474, 434, 394, 354, 314, 274, 234, 235, 275, 315,
355, 395, 435, 475, 515, 555, 595, 635, 675, 715, 755, 795, 835, 875,
915, 955, 995, 1035, 1036, 996, 956, 916, 876, 836, 796, 756, 716,
676, 636, 596, 556, 516, 476, 436, 396, 356, 316, 276, 236, 196, 195,
194, 154, 155, 156, 116, 115, 75, 76, 36, 35, 0)

10 3155.434 2080 (0, 37, 77, 117, 157, 158, 198, 197, 237, 277, 317, 357, 397, 437,
477, 517, 557, 597, 637, 677, 717, 757, 797, 837, 877, 917, 957, 997,
1037, 1038, 998, 958, 918, 878, 838, 798, 758, 718, 678, 638, 598,
558, 518, 478, 438, 398, 358, 318, 278, 238, 239, 279, 319, 359, 399,
439, 479, 519, 559, 599, 639, 679, 719, 759, 799, 839, 879, 919, 959,
999, 1039, 1040, 1000, 960, 920, 880, 840, 800, 760, 720, 680, 640,
600, 560, 520, 480, 440, 400, 360, 320, 280, 240, 200, 199, 159, 119,
118, 78, 79, 80, 41, 1, 40, 39, 38, 0)

Table B.62: Details of solution to problem Li-30

404



-500 0 500

-500

0

500

1120 nodes   34330.94    10 routes

Figure B.58: Solution for problem Li-31

Problem Li-31
Vehicle capacity 2300
Maximum route length 3500.000
Number of nodes 1120
Total route length 34330.940
Total number of routes 10
Route Length Load Ordering

1 3466.047 2300 (0, 4, 3, 2, 42, 43, 44, 84, 83, 82, 122, 123, 163, 162, 202, 242, 282,
322, 362, 402, 442, 482, 522, 562, 602, 642, 682, 722, 762, 802, 842,
882, 922, 962, 1002, 1042, 1082, 1083, 1043, 1003, 963, 923, 883,
843, 803, 763, 723, 683, 643, 603, 563, 523, 483, 443, 403, 363, 323,
283, 243, 203, 204, 244, 284, 324, 364, 404, 444, 484, 524, 564, 604,
644, 684, 724, 764, 804, 844, 884, 924, 964, 1004, 1044, 1084, 1085,
1045, 1005, 965, 925, 885, 845, 805, 765, 725, 685, 645, 605, 565,
525, 485, 445, 405, 365, 325, 285, 245, 205, 165, 164, 124, 125, 126,
86, 85, 45, 5, 0)

405



Route Length Load Ordering
2 3414.264 2240 (0, 7, 6, 46, 47, 87, 127, 128, 168, 167, 166, 206, 246, 286, 326, 366,

406, 446, 486, 526, 566, 606, 646, 686, 726, 766, 806, 846, 886, 926,
966, 1006, 1046, 1086, 1087, 1047, 1007, 967, 927, 887, 847, 807,
767, 727, 687, 647, 607, 567, 527, 487, 447, 407, 367, 327, 287, 247,
207, 208, 248, 288, 328, 368, 408, 448, 488, 528, 568, 608, 648, 688,
728, 768, 808, 848, 888, 928, 968, 1008, 1048, 1088, 1089, 1049,
1009, 969, 929, 889, 849, 809, 769, 729, 689, 649, 609, 569, 529,
489, 449, 409, 369, 329, 289, 249, 209, 169, 129, 89, 88, 48, 49, 50,
10, 9, 8, 0)

3 3418.971 2180 (0, 12, 11, 51, 91, 90, 130, 131, 171, 170, 210, 250, 290, 330, 370,
410, 450, 490, 530, 570, 610, 650, 690, 730, 770, 810, 850, 890, 930,
970, 1010, 1050, 1090, 1091, 1051, 1011, 971, 931, 891, 851, 811,
771, 731, 691, 651, 611, 571, 531, 491, 451, 411, 371, 331, 291, 251,
211, 212, 252, 292, 332, 372, 412, 452, 492, 532, 572, 612, 652, 692,
732, 772, 812, 852, 892, 932, 972, 1012, 1052, 1092, 1093, 1053,
1013, 973, 933, 893, 853, 813, 773, 733, 693, 653, 613, 573, 533,
493, 453, 413, 373, 333, 293, 253, 213, 173, 172, 132, 133, 93, 92,
52, 53, 13, 0)

4 3433.094 2240 (0, 14, 54, 94, 134, 174, 214, 254, 294, 334, 374, 414, 454, 494, 534,
574, 614, 654, 694, 734, 774, 814, 854, 894, 934, 974, 1014, 1054,
1094, 1095, 1055, 1015, 975, 935, 895, 855, 815, 775, 735, 695, 655,
615, 575, 535, 495, 455, 415, 375, 335, 295, 255, 215, 216, 256, 296,
336, 376, 416, 456, 496, 536, 576, 616, 656, 696, 736, 776, 816, 856,
896, 936, 976, 1016, 1056, 1096, 1097, 1057, 1017, 977, 937, 897,
857, 817, 777, 737, 697, 657, 617, 577, 537, 497, 457, 417, 377, 337,
297, 257, 217, 177, 176, 175, 135, 136, 137, 97, 96, 95, 55, 56, 57,
17, 16, 15, 0)

5 3433.094 2240 (0, 19, 18, 58, 59, 60, 100, 99, 98, 138, 178, 218, 258, 298, 338, 378,
418, 458, 498, 538, 578, 618, 658, 698, 738, 778, 818, 858, 898, 938,
978, 1018, 1058, 1098, 1099, 1059, 1019, 979, 939, 899, 859, 819,
779, 739, 699, 659, 619, 579, 539, 499, 459, 419, 379, 339, 299, 259,
219, 220, 260, 300, 340, 380, 420, 460, 500, 540, 580, 620, 660, 700,
740, 780, 820, 860, 900, 940, 980, 1020, 1060, 1100, 1101, 1061,
1021, 981, 941, 901, 861, 821, 781, 741, 701, 661, 621, 581, 541,
501, 461, 421, 381, 341, 301, 261, 221, 181, 180, 179, 139, 140, 141,
101, 61, 21, 20, 0)

6 3466.047 2300 (0, 24, 23, 22, 62, 63, 64, 104, 103, 102, 142, 143, 183, 182, 222,
262, 302, 342, 382, 422, 462, 502, 542, 582, 622, 662, 702, 742, 782,
822, 862, 902, 942, 982, 1022, 1062, 1102, 1103, 1063, 1023, 983,
943, 903, 863, 823, 783, 743, 703, 663, 623, 583, 543, 503, 463, 423,
383, 343, 303, 263, 223, 224, 264, 304, 344, 384, 424, 464, 504, 544,
584, 624, 664, 704, 744, 784, 824, 864, 904, 944, 984, 1024, 1064,
1104, 1105, 1065, 1025, 985, 945, 905, 865, 825, 785, 745, 705, 665,
625, 585, 545, 505, 465, 425, 385, 345, 305, 265, 225, 185, 184, 144,
145, 146, 106, 105, 65, 25, 0)

406



Route Length Load Ordering
7 3414.264 2240 (0, 27, 26, 66, 67, 107, 147, 148, 188, 187, 186, 226, 266, 306, 346,

386, 426, 466, 506, 546, 586, 626, 666, 706, 746, 786, 826, 866,
906, 946, 986, 1026, 1066, 1106, 1107, 1067, 1027, 987, 947, 907,
867, 827, 787, 747, 707, 667, 627, 587, 547, 507, 467, 427, 387, 347,
307, 267, 227, 228, 268, 308, 348, 388, 428, 468, 508, 548, 588, 628,
668, 708, 748, 788, 828, 868, 908, 948, 988, 1028, 1068, 1108, 1109,
1069, 1029, 989, 949, 909, 869, 829, 789, 749, 709, 669, 629, 589,
549, 509, 469, 429, 389, 349, 309, 269, 229, 189, 149, 109, 108, 68,
69, 70, 30, 29, 28, 0)

8 3418.971 2180 (0, 32, 31, 71, 111, 110, 150, 190, 230, 270, 310, 350, 390, 430,
470, 510, 550, 590, 630, 670, 710, 750, 790, 830, 870, 910, 950, 990,
1030, 1070, 1110, 1111, 1071, 1031, 991, 951, 911, 871, 831, 791,
751, 711, 671, 631, 591, 551, 511, 471, 431, 391, 351, 311, 271, 231,
232, 272, 312, 352, 392, 432, 472, 512, 552, 592, 632, 672, 712, 752,
792, 832, 872, 912, 952, 992, 1032, 1072, 1112, 1113, 1073, 1033,
993, 953, 913, 873, 833, 793, 753, 713, 673, 633, 593, 553, 513, 473,
433, 393, 353, 313, 273, 233, 193, 192, 191, 151, 152, 153, 113, 112,
72, 73, 33, 0)

9 3433.094 2240 (0, 34, 74, 114, 154, 194, 234, 274, 314, 354, 394, 434, 474, 514, 554,
594, 634, 674, 714, 754, 794, 834, 874, 914, 954, 994, 1034, 1074,
1114, 1115, 1075, 1035, 995, 955, 915, 875, 835, 795, 755, 715, 675,
635, 595, 555, 515, 475, 435, 395, 355, 315, 275, 235, 236, 276, 316,
356, 396, 436, 476, 516, 556, 596, 636, 676, 716, 756, 796, 836, 876,
916, 956, 996, 1036, 1076, 1116, 1117, 1077, 1037, 997, 957, 917,
877, 837, 797, 757, 717, 677, 637, 597, 557, 517, 477, 437, 397, 357,
317, 277, 237, 197, 196, 195, 155, 156, 157, 117, 116, 115, 75, 76,
77, 37, 36, 35, 0)

10 3433.094 2240 (0, 38, 78, 79, 80, 120, 119, 118, 158, 198, 238, 278, 318, 358, 398,
438, 478, 518, 558, 598, 638, 678, 718, 758, 798, 838, 878, 918, 958,
998, 1038, 1078, 1118, 1119, 1079, 1039, 999, 959, 919, 879, 839,
799, 759, 719, 679, 639, 599, 559, 519, 479, 439, 399, 359, 319, 279,
239, 240, 280, 320, 360, 400, 440, 480, 520, 560, 600, 640, 680, 720,
760, 800, 840, 880, 920, 960, 1000, 1040, 1080, 1120, 1081, 1041,
1001, 961, 921, 881, 841, 801, 761, 721, 681, 641, 601, 561, 521,
481, 441, 401, 361, 321, 281, 241, 201, 161, 200, 199, 159, 160, 121,
81, 41, 1, 40, 39, 0)

Table B.63: Details of solution to problem Li-31
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Figure B.59: Solution for problem Li-32

Problem Li-32
Vehicle capacity 2500
Maximum route length 3600.000
Number of nodes 1200
Total route length 37187.943
Total number of routes 11
Route Length Load Ordering

1 3597.773 2240 (0, 1, 41, 81, 121, 161, 200, 199, 239, 279, 319, 359, 399, 439, 479,
519, 559, 599, 639, 679, 719, 759, 799, 839, 879, 919, 959, 999,
1039, 1079, 1119, 1159, 1199, 1200, 1160, 1120, 1080, 1040, 1000,
960, 920, 880, 840, 800, 760, 720, 680, 640, 600, 560, 520, 480, 440,
400, 360, 320, 280, 240, 201, 241, 281, 321, 361, 401, 441, 481, 521,
561, 601, 641, 681, 721, 761, 801, 841, 881, 921, 961, 1001, 1041,
1081, 1121, 1161, 1162, 1122, 1082, 1042, 1002, 962, 922, 882, 842,
802, 762, 722, 682, 642, 602, 562, 522, 482, 442, 402, 362, 322, 282,
242, 202, 162, 122, 82, 42, 2, 0)
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Route Length Load Ordering
2 3597.773 2240 (0, 3, 43, 83, 123, 163, 203, 243, 283, 323, 363, 403, 443, 483, 523,

563, 603, 643, 683, 723, 763, 803, 843, 883, 923, 963, 1003, 1043,
1083, 1123, 1163, 1164, 1124, 1084, 1044, 1004, 964, 924, 884, 844,
804, 764, 724, 684, 644, 604, 564, 524, 484, 444, 404, 364, 324,
284, 244, 204, 205, 245, 285, 325, 365, 405, 445, 485, 525, 565, 605,
645, 685, 725, 765, 805, 845, 885, 925, 965, 1005, 1045, 1085, 1125,
1165, 1166, 1126, 1086, 1046, 1006, 966, 926, 886, 846, 806, 766,
726, 686, 646, 606, 566, 526, 486, 446, 406, 366, 326, 286, 246, 206,
166, 165, 164, 124, 84, 44, 4, 0)

3 3586.047 2300 (0, 5, 45, 85, 125, 126, 127, 167, 207, 247, 287, 327, 367, 407, 447,
487, 527, 567, 607, 647, 687, 727, 767, 807, 847, 887, 927, 967, 1007,
1047, 1087, 1127, 1167, 1168, 1128, 1088, 1048, 1008, 968, 928, 888,
848, 808, 768, 728, 688, 648, 608, 568, 528, 488, 448, 408, 368, 328,
288, 289, 329, 369, 409, 449, 489, 529, 569, 609, 649, 689, 729, 769,
809, 849, 889, 929, 969, 1009, 1049, 1089, 1129, 1169, 1170, 1130,
1090, 1050, 1010, 970, 930, 890, 850, 810, 770, 730, 690, 650, 610,
570, 530, 490, 450, 410, 370, 330, 290, 250, 249, 248, 208, 168, 128,
88, 87, 86, 46, 47, 7, 6, 0)

4 2374.321 1760 (0, 8, 48, 49, 50, 51, 52, 53, 93, 92, 91, 90, 89, 129, 130, 170, 169,
209, 210, 211, 251, 291, 331, 371, 411, 451, 491, 531, 571, 611,
651, 691, 731, 771, 811, 851, 891, 931, 971, 1011, 1051, 1091, 1131,
1171, 1172, 1132, 1092, 1052, 1012, 972, 932, 892, 852, 812, 772,
732, 692, 652, 612, 572, 532, 492, 452, 412, 372, 332, 292, 252, 212,
213, 214, 174, 173, 172, 171, 131, 132, 133, 134, 94, 95, 55, 54, 14,
13, 12, 11, 10, 9, 0)

5 3595.462 2210 (0, 15, 16, 56, 96, 136, 135, 175, 215, 255, 254, 253, 293, 333, 373,
413, 453, 493, 533, 573, 613, 653, 693, 733, 773, 813, 853, 893, 933,
973, 1013, 1053, 1093, 1133, 1173, 1174, 1134, 1094, 1054, 1014,
974, 934, 894, 854, 814, 774, 734, 694, 654, 614, 574, 534, 494,
454, 414, 374, 334, 294, 295, 335, 375, 415, 455, 495, 535, 575, 615,
655, 695, 735, 775, 815, 855, 895, 935, 975, 1015, 1055, 1095, 1135,
1175, 1176, 1136, 1096, 1056, 1016, 976, 936, 896, 856, 816, 776,
736, 696, 656, 616, 576, 536, 496, 456, 416, 376, 336, 296, 256, 216,
176, 177, 178, 138, 137, 97, 57, 17, 0)

6 3575.434 2280 (0, 18, 58, 98, 99, 139, 179, 219, 218, 217, 257, 297, 337, 377, 417,
457, 497, 537, 577, 617, 657, 697, 737, 777, 817, 857, 897, 937, 977,
1017, 1057, 1097, 1137, 1177, 1178, 1138, 1098, 1058, 1018, 978,
938, 898, 858, 818, 778, 738, 698, 658, 618, 578, 538, 498, 458, 418,
378, 338, 298, 258, 259, 299, 339, 379, 419, 459, 499, 539, 579, 619,
659, 699, 739, 779, 819, 859, 899, 939, 979, 1019, 1059, 1099, 1139,
1179, 1180, 1140, 1100, 1060, 1020, 980, 940, 900, 860, 820, 780,
740, 700, 660, 620, 580, 540, 500, 460, 420, 380, 340, 300, 260, 220,
180, 140, 100, 60, 59, 19, 0)

7 3598.971 2270 (0, 20, 21, 61, 101, 141, 181, 221, 261, 301, 341, 381, 421, 461,
501, 541, 581, 621, 661, 701, 741, 781, 821, 861, 901, 941, 981,
1021, 1061, 1101, 1141, 1181, 1182, 1142, 1102, 1062, 1022, 982,
942, 902, 862, 822, 782, 742, 702, 662, 622, 582, 542, 502, 462, 422,
382, 342, 302, 262, 263, 303, 343, 383, 423, 463, 503, 543, 583, 623,
663, 703, 743, 783, 823, 863, 903, 943, 983, 1023, 1063, 1103, 1143,
1183, 1184, 1144, 1104, 1064, 1024, 984, 944, 904, 864, 824, 784,
744, 704, 664, 624, 584, 544, 504, 464, 424, 384, 344, 304, 264, 224,
223, 222, 182, 183, 143, 142, 102, 62, 22, 0)
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Route Length Load Ordering
8 3595.462 2260 (0, 23, 63, 103, 104, 144, 184, 185, 225, 265, 305, 345, 385, 425,

465, 505, 545, 585, 625, 665, 705, 745, 785, 825, 865, 905, 945, 985,
1025, 1065, 1105, 1145, 1185, 1186, 1146, 1106, 1066, 1026, 986,
946, 906, 866, 826, 786, 746, 706, 666, 626, 586, 546, 506, 466, 426,
386, 346, 306, 307, 347, 387, 427, 467, 507, 547, 587, 627, 667, 707,
747, 787, 827, 867, 907, 947, 987, 1027, 1067, 1107, 1147, 1187,
1188, 1148, 1108, 1068, 1028, 988, 948, 908, 868, 828, 788, 748,
708, 668, 628, 588, 548, 508, 468, 428, 388, 348, 308, 268, 267, 266,
226, 186, 146, 145, 105, 106, 66, 65, 64, 24, 0)

9 3599.114 2310 (0, 25, 26, 27, 67, 107, 147, 187, 227, 228, 229, 269, 309, 349, 389,
429, 469, 509, 549, 589, 629, 669, 709, 749, 789, 829, 869, 909, 949,
989, 1029, 1069, 1109, 1149, 1189, 1190, 1150, 1110, 1070, 1030,
990, 950, 910, 870, 830, 790, 750, 710, 670, 630, 590, 550, 510, 470,
430, 390, 350, 310, 270, 271, 311, 351, 391, 431, 471, 511, 551, 591,
631, 671, 711, 751, 791, 831, 871, 911, 951, 991, 1031, 1071, 1111,
1151, 1191, 1192, 1152, 1112, 1072, 1032, 992, 952, 912, 872, 832,
792, 752, 712, 672, 632, 592, 552, 512, 472, 432, 392, 352, 312, 272,
232, 193, 153, 113, 114, 74, 73, 33, 34, 0)

10 2481.538 1830 (0, 28, 29, 30, 31, 32, 72, 71, 70, 69, 68, 108, 109, 110, 111, 112,
152, 151, 150, 149, 148, 188, 189, 190, 230, 231, 191, 192, 233, 273,
313, 353, 393, 433, 473, 513, 553, 593, 633, 673, 713, 753, 793, 833,
873, 913, 953, 993, 1033, 1073, 1113, 1153, 1193, 1194, 1154, 1114,
1074, 1034, 994, 954, 914, 874, 834, 794, 754, 714, 674, 634, 594,
554, 514, 474, 434, 394, 354, 314, 274, 234, 235, 236, 196, 195, 194,
154, 155, 156, 116, 115, 75, 76, 77, 37, 36, 35, 0)

11 3586.047 2300 (0, 38, 78, 118, 117, 157, 197, 237, 277, 276, 275, 315, 355, 395,
435, 475, 515, 555, 595, 635, 675, 715, 755, 795, 835, 875, 915, 955,
995, 1035, 1075, 1115, 1155, 1195, 1196, 1156, 1116, 1076, 1036,
996, 956, 916, 876, 836, 796, 756, 716, 676, 636, 596, 556, 516,
476, 436, 396, 356, 316, 317, 357, 397, 437, 477, 517, 557, 597, 637,
677, 717, 757, 797, 837, 877, 917, 957, 997, 1037, 1077, 1117, 1157,
1197, 1198, 1158, 1118, 1078, 1038, 998, 958, 918, 878, 838, 798,
758, 718, 678, 638, 598, 558, 518, 478, 438, 398, 358, 318, 278, 238,
198, 158, 159, 160, 120, 119, 79, 80, 40, 39, 0)

Table B.64: Details of solution to problem Li-32
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B.7. Additional Data

In the final section of this Appendix, we provide the complete results of several

experiments using our parallel algorithm. We selected problem 15 from [36], problem

385 from [76], and problem 25 from [51] and ran our procedure many times while

varying several parameters. An “R” in the fourth column indicates that the master

selects solutions to send out by using the randomized procedure described in Sec-

tion 4.3, and a “B” indicates that the solution was obtained by having the master

simply send the best solution out each time. For each problem, we ran the algorithm

10 times and present the average solution value and the overall best solution value in

the two right-most columns.
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Number of Seconds Distribution Average Best
Processors IP Solvers Allowed Strategy Solution Solution

8 0 200 R 1348.69 1345.61
8 0 200 B 1348.70 1346.95
8 0 400 R 1346.34 1344.37
8 0 400 B 1346.09 1343.34
8 1 200 R 1343.43 1342.10
8 1 200 B 1344.59 1341.49
8 1 400 R 1343.08 1341.26
8 1 400 B 1343.39 1341.02
8 2 200 R 1343.77 1341.00
8 2 200 B 1344.18 1342.55
8 2 400 R 1343.36 1341.72
8 2 400 B 1342.20 1340.46

16 0 200 R 1346.50 1345.06
16 0 200 B 1347.15 1344.97
16 0 400 R 1345.61 1344.29
16 0 400 B 1344.79 1342.27
16 1 200 R 1343.86 1341.61
16 1 200 B 1342.82 1341.44
16 1 400 R 1343.57 1340.66
16 1 400 B 1342.49 1340.28
16 2 200 R 1342.90 1341.13
16 2 200 B 1343.00 1340.16
16 2 400 R 1342.61 1339.81
16 2 400 B 1342.11 1339.36
32 0 200 R 1345.06 1343.70
32 0 200 B 1344.49 1341.94
32 0 400 R 1344.02 1341.50
32 0 400 B 1344.50 1341.62
32 1 200 R 1343.09 1341.12
32 1 200 B 1342.62 1341.11
32 1 400 R 1342.40 1340.10
32 1 400 B 1342.05 1340.25
32 2 200 R 1342.77 1339.68
32 2 200 B 1343.28 1341.34
32 2 400 R 1342.06 1340.52
32 2 400 B 1341.44 1340.11
32 4 200 R 1342.17 1339.83
32 4 200 B 1341.98 1339.33
32 4 400 R 1341.82 1340.34
32 4 400 B 1341.38 1339.10
64 0 200 R 1343.75 1341.43
64 0 200 B 1342.81 1340.45
64 0 400 R 1344.08 1341.22
64 0 400 B 1342.83 1340.15

(continued on next page)
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Number of Seconds Distribution Average Best
Processors IP Solvers Allowed Strategy Solution Solution

64 1 200 R 1343.12 1341.45
64 1 200 B 1343.58 1342.73
64 1 400 R 1343.04 1340.79
64 1 400 B 1342.16 1340.48
64 2 200 R 1342.40 1340.18
64 2 400 R 1342.65 1339.26
64 2 400 B 1341.52 1340.36
64 4 200 R 1342.22 1340.06
64 4 200 B 1341.80 1339.84
64 4 400 R 1341.82 1339.31
64 4 400 B 1340.78 1338.93
64 8 100 B 1342.39 1338.81
64 8 200 R 1341.83 1337.99
64 8 200 B 1341.59 1340.30
64 8 400 R 1341.27 1340.39
64 8 400 B 1341.53 1340.30

Table B.65: Performance on problem 15 from Golden et al.
[36]
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Number of Seconds Distribution Average Best
Processors IP Solvers Allowed Strategy Solution Solution

8 0 200 R 24470.4 24426.9
8 0 200 B 24465.8 24436.4
8 0 400 R 24477.0 24461.4
8 0 400 B 24471.8 24434.4
8 1 200 R 24435.9 24388.9
8 1 200 B 24445.7 24408.4
8 1 400 R 24429.4 24388.0
8 1 400 B 24404.6 24378.9
8 2 200 R 24438.0 24409.0
8 2 200 B 24428.0 24388.5
8 2 400 R 24431.9 24386.3
8 2 400 B 24420.8 24372.2

16 0 200 R 24466.5 24419.3
16 0 200 B 24468.6 24421.2
16 0 400 R 24484.6 24463.7
16 0 400 B 24450.7 24424.3
16 1 200 R 24438.3 24398.8
16 1 200 B 24430.4 24413.6
16 1 400 R 24429.2 24372.0
16 1 400 B 24433.5 24370.3
16 2 200 R 24438.8 24394.4
16 2 200 B 24430.1 24381.9
16 2 400 R 24402.9 24372.0
16 2 400 B 24408.6 24371.2
32 0 200 R 24444.9 24401.6
32 0 200 B 24474.3 24427.4
32 0 400 R 24445.6 24409.6
32 0 400 B 24440.0 24412.2
32 1 200 R 24423.8 24385.6
32 1 200 B 24418.7 24380.5
32 1 400 R 24423.6 24381.5
32 1 400 B 24418.5 24389.9
32 2 200 R 24427.9 24392.1
32 2 200 B 24422.0 24385.3
32 2 400 R 24415.7 24388.9
32 2 400 B 24421.9 24392.3
32 4 200 R 24424.4 24377.6
32 4 200 B 24410.8 24371.2
32 4 400 R 24402.5 24379.2
32 4 400 B 24394.0 24369.6
64 0 200 R 24420.2 24385.3
64 0 200 B 24429.1 24389.6
64 0 400 R 24416.5 24382.1
64 0 400 B 24431.8 24390.3

(continued on next page)
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Number of Seconds Distribution Average Best
Processors IP Solvers Allowed Strategy Solution Solution

64 1 200 R 24434.0 24378.9
64 1 200 B 24412.0 24386.1
64 1 400 R 24416.3 24382.1
64 1 400 B 24400.9 24379.3
64 2 200 R 24418.2 24383.4
64 2 200 B 24422.5 24397.6
64 2 400 R 24407.6 24379.9
64 2 400 B 24398.3 24381.7
64 4 200 R 24416.3 24388.0
64 4 200 B 24404.7 24378.9
64 4 400 R 24405.2 24378.0
64 4 400 B 24406.0 24369.1
64 8 200 R 24418.7 24379.9
64 8 200 B 24390.3 24371.1
64 8 400 R 24406.6 24368.2
64 8 400 B 24390.5 24370.5

Table B.66: Performance on problem 385 from Taillard [76]
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Number of Seconds Distribution Average Best
Processors IP Solvers Allowed Strategy Solution Solution

8 0 200 R 17014.3 16889.0
8 0 200 B 16984.4 16864.0
8 0 400 R 16942.0 16837.1
8 0 400 B 17029.5 16989.1
8 1 200 R 16944.7 16835.1
8 1 200 B 16888.6 16845.2
8 1 400 R 16989.2 16818.5
8 1 400 B 16937.0 16840.1

16 0 200 R 16945.3 16794.1
16 0 200 B 17017.8 16921.6
16 0 400 R 16989.5 16792.5
16 0 400 B 16912.9 16814.8
16 1 200 R 16926.3 16804.3
16 1 200 B 16932.0 16801.5
16 1 400 R 16919.2 16791.5
16 1 400 B 16913.1 16793.2
16 2 200 R 17024.9 16932.5
16 2 200 B 16972.8 16845.5
16 2 400 R 16930.0 16789.7
16 2 400 B 16916.4 16782.0
32 0 200 R 16995.9 16809.7
32 0 200 B 16950.6 16841.3
32 0 400 R 16879.2 16786.5
32 0 400 B 16873.9 16811.4
32 1 200 R 16907.8 16809.3
32 1 200 B 16871.3 16806.0
32 1 400 R 16856.6 16809.3
32 1 400 B 16835.7 16791.5
32 2 200 R 16905.9 16809.3
32 2 200 B 16892.8 16809.3
32 2 400 R 16844.8 16786.5
32 2 400 B 16841.5 16769.5
32 4 200 R 16925.5 16811.6
32 4 200 B 16913.6 16797.2
32 4 400 R 16879.2 16788.4
32 4 400 B 16859.2 16768.7
64 0 200 R 16877.6 16809.3
64 0 200 B 16863.8 16792.5
64 0 400 R 16833.5 16787.3
64 0 400 B 16816.3 16787.3
64 1 200 R 16855.1 16809.3
64 1 200 B 16855.4 16808.5
64 1 400 R 16826.0 16794.9
64 1 400 B 16807.3 16778.4

(continued on next page)
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Number of Seconds Distribution Average Best
Processors IP Solvers Allowed Strategy Solution Solution

64 2 200 R 16834.9 16789.6
64 2 200 B 16854.1 16791.5
64 2 400 R 16819.9 16791.5
64 2 400 B 16804.3 16781.6
64 4 200 R 16867.9 16763.7
64 4 200 B 16900.3 16791.5
64 4 400 R 16814.9 16786.5
64 4 400 B 16805.4 16778.2
64 8 200 R 16823.2 16768.7
64 8 200 B 16833.9 16776.0
64 8 400 R 16803.5 16763.7
64 8 400 B 16840.8 16786.5

Table B.67: Performance on problem 25 from Li et al. [51]
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Appendix C

Some Technical Details of the VRPH Library

This Appendix contains technical details regarding the VRPH library and pro-

vides instructions for compiling the VRPH library using both Windows and Unix or

Linux operating systems.

C.1. Installing VRPH

In this section, we describe how the files in VRPH are organized and provide

instructions for compiling VRPH on different platforms.

C.1.1 Directory Structure

The first step in using VRPH is to move the files onto the system. VRPH is

distributed as a single zipped file, VRPH.zip. Copying the file VRPH.zip into a direc-

tory and extracting the file will create a root directory VRPH with the subdirectories

given in Table C.1.

C.1.2 Compiling VRPH

In this section, we provide instructions for compiling the VRPH library on

different platforms. We have successfully compiled VRPH on Windows (XP and

Vista) using Visual Studio 2005 and 2008, Linux using g++, and Cygwin running
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Directory Name Purpose
bin Binary executable files generated during the compile pro-

cess
data Subdirectories containing the well-known benchmark

problems of Chrisofides et al. [19, 20], Golden et al. [36],
Taillard [76], and Li et al. [51]

pics Default location for images of the solutions
inc Header files required by VRPH
lib Library file vrph.lib (or vrph.a if Linux or Cygwin)
sols Default location for solution files produced by VRPH
src Source files

temp Directory for temporary files generated by VRPH

Table C.1: Directory structure of VRPH

under Windows, also with the g++ compiler. The source code for VRPH is written

in standard C/C++ and is completely self-contained. No additional dependencies

are required to produce a functional installation. We developed an optional interface

between VRPH and the PLPlot library in order to produce high-quality postscript

images of the solutions. We also developed an optional interface with the commercial

mathematical programming solver CPLEX.

Compiling VRPH results in a static library, named VRPH/lib/vrph.lib on Win-

dows and VRPH/lib/vrph.a on Linux or Cygwin. The binary executable is then built

by linking in this library, producing vrph/bin/RTR.exe on Windows, or vrph/bin/RTR

on Linux or Cygwin.

C.1.2.1 Configuration

VRPH is essentially platform independent, and we have been able to compile

the code without modification on several different platforms. There are only two

options that need to be set. First, if the user has access to CPLEX and wishes
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ClarkeWright.cpp Concatenate.cpp CrossExchange.cpp
Flip.cpp MoveString.cpp OnePointMove.cpp
OrOpt.cpp Postsert.cpp Presert.cpp
RNG.cpp Swap.cpp SwapEnds.cpp
Sweep.cpp ThreeOpt.cpp ThreePointMove.cpp
TwoOpt.cpp TwoPointMove.cpp VRP.cpp
VRPCPX.cpp VRPDebug.cpp VRPGenerator.cpp
VRPGraphics.cpp VRPIO.cpp VRPMove.cpp
VRPNode.cpp VRPRoute.cpp VRPSolution.cpp
VRPSolvers.cpp VRPTabuList.cpp VRPTSPLib.cpp

VRPUtils.cpp

Table C.2: List of source files required by the VRPH library

to solve the VRP as a set partitioning problem, then the HAS CPLEX flag should

be set to 1 in the file VRPH/inc/VRPConfig.h. Second, if the open source PLPlot

library is installed, then the value of HAS PLPLOT should be set to 1. The static

library VRPH/lib/vrph.lib requires the source files from the VRPH/src directory given

in Table C.2. After compiling the VRPH library, the binary executable RTR.exe

requires the source file VRPH/src/RTR.cpp.

C.1.2.2 Building on Windows

If either Visual Studio 2005 or 2008 is available, then the simplest method of

building VRPH on Windows is to load the solution file VRPH.sln from either the

VRPH/vs2005 or the VRPH/vs2008 directory and then build the solution. The

solution should compile with no errors and no warnings. This produces the library

file VRPH/lib/VRPH.lib in the and the VRPH rtr.exe executable in the VRPH/bin

directory.
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If these compilers are not available, then VRPH can be built by creating a

project in another development environment. The first step is to create a project

to build the static library VRPH.lib. This can be done by adding the list of source

files given in Table C.2 and ensuring that the VRPH/inc directory is listed as an

additional directory for the necessary header files. After building this project using

the static library configuration, the binary solver can be built by creating additional

projects that link in the previously created library.

C.1.2.3 Building on Cygwin and Linux

The procedure for building VRPH on either Linux or Cygwin on Windows

is identical. After suitably modifying the VRPConfig.h file, VRPH can be built

using the Makefile that resides in the root VRPH directory. The default compiler

in the makefile must be available on the system (we used the freely available GNU

g++ compiler by setting CC=g++ in the very first line of the Makefile). From

the root VRPH directory, run make in order to create the VRPH/lib/vrph.a and

VRPH/bin/RTR files.

C.2. Plotting Solutions

We developed an interface between VRPH and the open source PLPlot library

[63] for generating high-quality postscript (.ps) images of solutions to VRP instances.

PLPlot is a platform independent library and we have used it in conjunction with
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VRPH on both Windows- and Linux-based systems. The VRP class contains a plot

method that allows the user to plot a VRP solution using several options.

C.3. Using CPLEX with VRPH

The VRP can be formulated as a set partitioning or set covering problem (see

[9]). In [37], we present a parallel algorithm that combines a metaheuristic algorithm

with a set covering formulation. We implemented this algorithm using VRPH by

developing an interface with the commercial mathematical programming software

package CPLEX. The file VRPH/src/demos/set partitioning.cpp demonstrates the

usage of this interface.
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[37] C. Groër, B. Golden, and E. Wasil. A cooperative parallel algorithm for solving
the vehicle routing problem. 2008. (submitted).

[38] E. Hadjiconstantinou, N. Christofides, and A. Mingozzi. A new exact algorithm
for the vehicle routing problem based on q-paths and k-shortest paths relaxation.
Annals of Operations Research, 61:21–43, 1995.

[39] K. Helsgaun. An effective implementation of the Lin-Kernighan traveling sales-
man heuristic. European Journal of Operational Research, 126(1):106–130, 2000.

[40] Itron Inc. http://www.itron.com.

425

http://www.gnu.org/software/glpk/
http://www.gnu.org/software/glpk/
http://www.itron.com


[41] N. Jozefowiez, F. Semet, and E-G. Talbi. Parallel and hybrid models for multi-
objective optimization: Application to the vehicle routing problem. In J. Merelo
et al., editor, Proceedings of the 7th International Conference on Parallel Problem
Solving from Nature, volume 2439, pages 271–280. Springer, 2002.

[42] N. Jozefowiez, F. Semet, and E-G. Talbi. Enhancements of NSGA II and its
application to the vehicle routing problem with route balancing. In E.G. Talbi
et al., editor, Artificial Evolution, volume 3871, pages 131–142. Springer, 2006.

[43] N. Jozefowiez, F. Semet, and E-G. Talbi. Target aiming pareto search and its
application to the vehicle routing problem with route balancing. Journal of
Heuristics, 13:455–469, 2007.

[44] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, 1983.
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