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This dissertation proposes and evaluates a novel anomaly detection algorithm 

suite for ground-to-ground, or air-to-ground, applications requiring automatic target 

detection using hyperspectral (HS) data. Targets are manmade objects in natural 

background clutter under unknown illumination and atmospheric conditions. The use 

of statistical models herein is purely for motivation of particular formulas for 

calculating anomaly output surfaces. In particular, formulas from semiparametrics are 

utilized to obtain novel forms for output surfaces, and alternative scoring algorithms 

are proposed to calculate output surfaces that are comparable to those of 

semiparametrics. Evaluation uses both simulated data and real HS data from a joint 

data collection effort between the Army Research Laboratory and the Army 

Armament Research Development & Engineering Center.  

A data transformation method is presented for use by the two-sample data 

structure univariate semiparametric and nonparametric scoring algorithms, such that, 



  

the two-sample data are mapped from their original multivariate space to an 

univariate domain, where the statistical power of the univariate scoring algorithms is 

shown to be improved relative to existing multivariate scoring algorithms testing the 

same two-sample data.  

An exhaustive simulation experimental study is conducted to assess the 

performance of different HS anomaly detection techniques, where the null and 

alternative hypotheses are completely specified, including all parameters, using 

multivariate normal and mixtures of multivariate normal distributions.  

Finally, for ground-to-ground anomaly detection applications, where the 

unknown scales of targets add to the problem complexity, a novel global anomaly 

detection algorithm suite is introduced, featuring autonomous partial random 

sampling (PRS) of the data cube. The PRS method is proposed to automatically 

sample the unknown background clutter in the test HS imagery, and by repeating 

multiple times this process, one can achieve a desirably low cumulative probability of 

taking target samples by chance and using them as background samples. This 

probability is modeled by the binomial distribution family, where the only target 

related parameter—the proportion of target pixels potentially covering the imagery—

is shown to be robust. PRS requires a suitable scoring algorithm to compare samples, 

although applying PRS with the new two-step univariate detectors is shown to 

outperform existing multivariate detectors. 
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Chapter 1  Introduction 
 

1.1 Background 

The field of spectroscopy examines the electromagnetic radiation that each unique 

material reflects, absorbs, and emits. The electromagnetic spectrum is sampled at a 

sufficiently large number of spectral bands to create a discrete spectral signature for 

different materials. In theory, each spectral signature should be unique for each 

unique material owing to its molecular structure. The ability to identify, within certain 

limits, physical materials from their spectral signature is the basis behind remote 

sensing imaging spectroscopy [1]. 

Remote sensing imaging spectroscopy involves using an airborne or space-borne 

platform with a sensor that records the reflected or emitted electromagnetic radiation. 

The sensor collects the radiation over a wide range of contiguous spectral bands, with 

each band corresponding to a unique spectral value. As the sensor moves above a 

region it records the electromagnetic radiation from a narrow swath of land, in many 

different spectral channels. The field of view of the sensor is broken into hundreds of 

thousands of pixels, with each pixel representing from less than one to many squared 

meters of the region of interest depending on the spatial resolution of the sensor and 

the height of the sensor during the data collection. A collection of spatial-spectral 

images is put together resulting in a hyperspectral (HS) data cube, where the length 

and width represent the spatial dimension, and the depth represents the spectral 

dimension [2].  
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The resulting HS data cube consists of hundreds of thousands of pixels. Each 

pixel has tens or hundreds of data points, each point corresponding to a unique 

spectral value. In theory, the spectral signature of each pixel should uniquely 

characterize the physical material in that spatial land area. In practice, the recorded 

spectral signatures will never be identical for samples of the same material. Owing to 

the different illumination conditions, atmospheric effects, sensor noise, etc., the 

resulting spectral signatures for HS data pixels containing similar materials will 

exhibit spectral variability.  

1.2 Application of Statistical Models 

Each spectral signature can be represented by a multidimensional vector, where 

each vector dimension represents a different spectral band. The spectrum of each 

pixel in a HS data cube is a vector lying in a multidimensional space. All pixels 

containing the same material and roughly the same amount of illumination will have 

their vector spectra closely grouped within the vector space, forming a sort of data 

cloud in the multidimensional space. The overall data space may contain many 

different homogeneous data clouds corresponding to the different materials in the HS 

data cube. Provided there are enough pixels in the data cube, or sample, this spectral 

variability can be modeled as a multivariate probability distribution. 

Accurate models for the spectral variability of HS data are useful in many 

applications. Indeed, these models can be used to develop and evaluate algorithms for 

classification and detection, to select proper threshold, and to generate synthetic data. 

Classification algorithms use probability distribution models to group the pixels 

of like material into spectrally homogeneous data sets. Classification algorithms label 
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each pixel in such a way that similar material pixels have the same label and the data 

can be segmented into spectrally homogeneous clusters. The material of each cluster 

can then be determined using available ground truth or comparing the statistical 

nature of the clustered pixels to that of a library of known materials.  

Classification of HS image data has many applications. The classification labels 

can be used to determine the number of pixels of a particular material type in a scene, 

and since each pixel covers a spatial region, it is related to the amount of a material 

present. In commercial applications, this could be used, for instance, to compute 

farming yields, where the number of pixels of a specific crop could be used to 

estimate the amount of crop to be produced.  

Detection algorithms use the probability distribution models to find pixels which 

contain a specific material of interest (target). The target pixels are considered rare 

relative to the number of pixels, which do not contain the target. Otherwise 

classification algorithms are used to segment the pixels. When the exact target 

signature is not known a priori, then the probabilistic models can be used to find 

pixels which are spectrally anomalous. In applications of anomaly detection 

algorithms, one tries to find objects that are significantly different spectrally from the 

other pixels within a scene. 

Probabilistic models are also useful to generate synthetic HS data. The resulting 

synthetic data would have the same spectral variability as real world data and can be 

used to evaluate classification and detection algorithm under different conditions. 
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Classification and detection applications require accurate statistical models of the 

HS data to be effective. Without accurate models, algorithms performance is 

significantly reduced. 

1.3 Statistical Models for Hyperspectral Data 

Statistical signal processing uses a finite number of samples to model the 

probability of the data. The multivariate model defines the probability density 

function of the data. The effectiveness of a data model depends upon how accurately 

it represents all aspects of the data and how widely it applies. 

Most utilized models are parametric, where the shape of a particular model is 

controlled by a set of parameters. If all of the parameters are known a priori, then the 

data model is completely known. When the parameters are not known a priori, they 

need to be estimated from the available data set. 

For HS data, where the model and model parameters are not known a priori, 

typically a model for the spectral variability of the pixels is proposed and the model 

parameters are estimated using an entire HS dataset. The goal is to model the 

multivariate spectral variability of a particular data set as accurately as possible, 

where each pixel ( )CcRrK
rc ≤≤≤≤∈ 1;1 Rx  has K spectral bands, and the complete 

data cube KCR ××∈RX   consists of RC  pixels. The objective of statistical modeling of 

HS data is to propose a spectral probability distribution model and estimate its 

parameters 
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Estimate Model Parameters:    Θ̂  

Since it is not possible to know the exact distribution of the data, real world 

processing of HS data must rely on limited information. The accuracy of the model 

parameter estimates depends on the number of HS data vectors. Due to the variation 

in spectral illumination, the different types of material present during each data 

collection, and other factors, only data collected during a single collection can be 

used to estimate the parameters of the multivariate model. In other words, the models 

must be determined in an adaptive manner from the HS data directly, with each HS 

dataset having different model parameters [3]. 

The primary model used for the spectral variability of HS image data is the 

multivariate normal distribution. While this model might do an adequate job 

modeling the main body of the data, rarely does it do an adequate job in modeling the 

tails of the distributions [3][4]. For detection applications at low probability of false 

alarms, with hundreds of thousands pixels in a HS data cube, to classify incorrectly a 

few hundred might not have a large effect on the overall classification of a scene. 

However, if, for example, a detection threshold is set with the expectation of one or 

two false alarms in the scene, and hundreds of pixels score higher than the threshold 

and are incorrectly labeled as targets, then the results of the detection algorithm 

become unreliable and of little value. 
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1.4 Relevant Work 

In practice, it has been observed [5] that finding accurate models for high 

dimensional HS data may be unrealistic. Implementation of a parametric classifier for 

HS data is often cumbersome, it requires an unreasonably large set of training data to 

adequately characterize the multidimensional probability surface of each scene or 

target set, and it is difficult to store the description of such a surface unless it is well 

behaved [5]. It has also been observed [6] that it is extremely difficult to obtain an 

accurate density estimate non-parametrically in high-dimensional spaces. For these 

reasons, general class-conditional distribution functions are often replaced by a more 

tractable class-conditional distribution function for classification or detection using 

HS data.  

Examples of parametric multivariate-normal-based target detection algorithms are 

the matched filter [7], the kernel spectral matched filter [8], and linear mixture 

models [9], [10], and [11]. Another main limitation of these representative parametric 

algorithms, in addition to assuming normality for HS data, is that they require a 

known target signature, and reliable target signatures are difficult to ascertain due to 

spectral variations already discussed in Section 1.1.  

An alternative approach that does not require a spectral library for targets and has 

potential for invariance to atmospheric and illumination effects is anomaly detection, 

global or local.    

Existing global anomaly detectors require that the HS data cube is first segmented 

into its constituent material classes. Then detection is achieved by applying a cutoff 

threshold and automatically locating pixel clusters with pixel values above the 
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threshold, representing the outliers of these classes. These hybrid algorithms vary in 

the method of segmentation, but tend to use maximum likelihood detection under the 

multivariate normal distribution. Furthermore, since the correct number of material 

classes in the scene is unknown a priori and needed by segmentation algorithms, this 

number is an unknown parameter that significantly affects the output results of such 

algorithms. The stochastic expectation maximization clustering algorithm [12] is a 

related example, see also [13].  

Existing local anomaly detectors process small ( )nn×  windows of the HS data, 

where data sampling is not done in X  (see Subsection 1.3); all the rcx  

),,1;,,1( CcRr LL ==  in X  are used; modeling is only done at the level of the 

nn×  windows, where n << R and n << C (<< denoting many orders of magnitude 

smaller than); and at the level of the pixel area surrounding these windows. Blocks of 

data ( nn×  windows) that are spectrally different from pixels surrounding them score 

high using an effective detector in contrast to blocks of data that are not spectrally 

different from their surrounding pixels. After the detector scores the entire X , it 

yields a 2 dimensional (2-dim) surface Z  [a ( ) ( )1 1 −−×−− nCnR  array of scalars], 

where a cutoff threshold is then compared to the pixel values in Z . Pixels having 

values greater than the threshold are labeled local anomalies. These are all features of 

existing anomaly detectors.  

The most popular local anomaly detector in the HS research community is based 

on maximum likelihood estimation under the multivariate normal distribution; this 

detector is commonly known as the RX algorithm [14]. A kernelized version of RX 

has been also proposed [15]. For nonparametric local anomaly detection, the most 
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prominent multivariate detectors use classic methods, such as, Fisher’s linear 

discriminant [15] and principal component decomposition [16][17].  

Because local anomaly detectors (parametric or nonparametric) process small 

windows across the spatial area of X , these algorithms are vulnerable to transitions 

across distinct regions in X . Region transition events occur once a block of data 

representing a specific material is compared to a surrounding mixture of pixels 

representing the same material and one or more additional, but distinct, material 

types. This sort of events can augment the probability of false alarms in X  because a 

spectral sample consisting of pixels of two or more material types is, indeed, different 

from a spectral sample consisting of pixels of a single material. Since existing local 

anomaly detectors do not directly account for local transitions of distinct regions, 

there is a need to address the problem.  

Finally, local anomaly detectors are limited to applications where the scales of 

targets in X  (relative sizes of targets to other objects in the imagery) are expected to 

be known a priori. This prior knowledge is available in air to ground (top view) 

detection applications, where the sensors look straight down at the ground at a known 

altitude. However, this prior knowledge is not available in ground-to-ground (ground 

view) detection applications, where target scales are dependent on the range between 

sensors and targets. If the goal is to detect targets as spectral local anomalies in the 

scene, one has to ensure that a small window in the imagery (inside window) is 

reasonably separated from its surrounding pixel region (outside window) to avoid 

having a block of target data compared to surrounding pixels that also belong to the 

same target. So, using the inside-outside window method for sample comparison, 



 

 9 
 

properly setting the separation gap between the inside and outside windows must be 

done a priori and is a critical factor, completely removing ground view anomaly 

detection applications, as candidate applications using inside-outside windows. An 

alternative sampling method is needed for ground view anomaly detection 

applications. 

HS image data offer clear advantages over conventional broadband images—each 

pixel has K bands in HS image data versus one band in broadband images, but with 

current detection algorithm vulnerabilities, the topic of robust target detection is still 

open for research.  

1.5 Overview of This Work 

This dissertation focuses on the development and evaluation of algorithm suites 

for ground view (GV) and top view (TV) anomaly detection applications using HS 

data cubes. In this context, a target is any manmade object in a natural clutter 

background, whose spectral signature is not available, and if available, is considered 

unreliable and is not used in the approach.  

An algorithm suite consists of a host of techniques each performing a specific task 

in order to achieve the overall goal of detecting, autonomously, the presence of 

targets in the scene as spectral anomalies in the HS imagery, yielding in the process a 

low false alarm probability.  

If targets are present in the scene, each target is assumed to be represented by 

multiple pixels rcx  ( CcRrK
rc ≤≤≤≤∈ 1;1; Rx , see Subsection 1.3) in data cube X  

( KCR ××∈RX  ), and cover an area in X  greater than or equal to nn× , where n << R  

and n << C.  
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This dissertation analyzes X  for TV anomaly detection applications by sliding a 

nn×  inside window and testing the observed spectral sample against surrounding 

spectra (outside window), as described in Subsection 1.4 for local anomaly detectors. 

For GV anomaly detection applications, this dissertation also analyzes X  by sliding a 

nn×  window, but proposes to test the observed spectral sample in the nn×  window 

against N randomly selected nn×  blocks of data taken from X . The latter testing 

approach addresses the uncertainty on target scales, as discussed in Subsection 1.4 for 

local anomaly detectors, by eliminating the need for an outside window. It also 

automatically addresses the global anomaly detection problem without the need to use 

unreliable segmentation techniques in X , as described in Subsection 1.4 for global 

anomaly detectors.  

However, as also discussed in Subsection 1.4, any testing approach that uses 

sliding windows is vulnerable to transitions across distinct spectral regions in X . 

This dissertation establishes that using a data transformation method that maps 

multivariate spectral samples to univariate samples, and applying univariate detectors 

to test the transformed samples can significantly reduce the probability of false alarms 

in X  compared to multivariate anomaly detectors. 

In order to show a fair comparison between the multivariate anomaly detection 

techniques and the two-step univariate anomaly detection techniques (i.e., data 

transformation step followed by a univariate scoring step), a real HS data cube having 

a target satisfying the assumptions stated in this section is first chosen and 

characterized using human aided segmentation to establish useful nn×  window 

(spatial) models, and later used for assignment of probabilistic models (under the 
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multivariate normal distribution family) for the only data-structure used by the 

detectors in this work—a two-sample data structure. The parametric spectral models 

and null and alternative hypotheses are formulated at the level of the nn×  window 

models and used for simulation studies, where both multivariate and univariate 

anomaly detection approaches are evaluated using a standard statistical method to 

estimate the power of correct detection and the type II error, given a type I error and 

sample size fixed to 2n . 

Since the only data-structure used by the detectors in this work is a two-sample 

data structure, detectors are compared using simulated two-sample data (generated 

independently of each other) that are based on multivariate normal distributions and 

mixtures of multivariate normal distributions. Parameters are estimated using the 

segmented image and the real HS image data for the multivariate normal distributions 

of the different spectral groups in the segmented image. During each trial in the 

simulation experiments, the two-sample data { } Kn
hh Ry ∈=

2

11  and { } Kn
uu Ry ∈=

2

12 —

representing the spectral sample observed via the sliding window and a reference 

spectral sample—are independently generated and shared by all multivariate anomaly 

detectors (older detectors) chosen for these experiments. The two-sample data are 

also transformed to two univariate samples  { } R∈=

2

11
n
hhx  and { } R∈=

2

12
n
uux , where a 

data transformation method (Chapter 3 shows details) is introduced to address the 

need for invariance to the illumination environment  and certain atmospheric 

conditions (e.g., lower visibility, fog). Both univariate samples { } 2

11
n
hhx =  and { } 2

12
n
uux =  
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are shared by all univariate anomaly detectors (new detectors) proposed in this 

dissertation. 

Most of the older anomaly detectors described in this work enters in the 

comparison analysis only as applied to the K-dim HS data, while the new detectors 

operate only on the transformed data. 

The use of statistical models for the development of detectors described in this 

work is purely for motivation of particular formulas for calculating anomaly output 

surfaces. In particular, formulas from semiparametrics are utilized to obtain novel 

forms for output surfaces, and alternative scoring algorithms are also proposed to 

calculate output surfaces that are comparable to those of semiparametrics, using the 

same HS dataset.  

Finally, this dissertation presents a fully operational GV anomaly detection 

algorithm suite and evaluates the suite using real HS data cubes, where targets are 

present in a natural clutter background under different illumination and atmospheric 

conditions. The data were recorded during a recent joint data collection effort 

between Army Research Laboratory and Army Armament Research, Development 

and Engineering Center.  

1.6 Significance of This Work 

To date, a significant amount of research has focused on classification and 

detection algorithms using HS image data, while little has been done to address the 

underlying fundamental problems that affect algorithm performances, and act on 

them. It is beyond the scope of this dissertation to address all of the underlying 

fundamental problems in classification and detection algorithms, as highlighted in 



 

 13 
 

Subsection 1.4, but the ones addressed directly in this work for HS anomaly detection 

are important steps in the right direction, as discussed in Subsection 1.5 and shown 

later on in this dissertation. 

This dissertation directly yields the following contributions: 

• Introduction of a novel GV global anomaly detection algorithm suite, 

featuring autonomous partial random sampling of the data cube. The random 

sampling method is modeled by the binomial distribution family. Parametric 

or nonparametric segmentation is no longer necessary to achieve effective 

global anomaly detection.   

• Introduction of a HS data transformation method for sliding window based 

tests that maps multivariate samples to univariate samples, reducing the 

effects of the illumination and atmospheric conditions on the discriminant 

power among spectral samples of distinct material types.  

• The first use of formulas from semiparametrics on HS image data in order to 

obtain novel forms for output surfaces; also, alternative scoring algorithms are 

proposed to calculate output surfaces that are comparable to those of 

semiparametrics, using the same HS data set. 

• The first use of simulated null and alternative hypothesis tests to assess sliding 

window based HS anomaly detection algorithms. Simulation experiments for 

estimation of the type I error and power of correct detection are conducted in 

twofold: (i) using the data structure of two idealized sample data and (ii) 

idealized multispectral data cubes, where samples are based on a multivariate 

normal distribution or mixtures of multivariate normal distributions.  
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1.7 Organization of Dissertation 

The remainder of this dissertation is organized as follows:  

Chapter 2 covers various relevant materials for later chapters, and fixes the 

notations for most of the discussions through out those chapters. The SOC-700 HS 

imager is described, the sensor used to record the HS data tested in Chapter 7. A brief 

description on the physics of HS sensing is presented making the reader familiar with 

the physical measurement recorded by this sensor modality. A real HS data cube is 

segmented and characterized in this chapter by making assumptions and estimating 

parameters that will be used for simulation experiments in later chapters.  

Chapter 3 proposes a procedure that takes calibrated spectral samples of different 

sizes { } Kn
hh Ry ∈=

1

11  and { } Kn
uu Ry ∈=

2

12 , in units of radiance per band, and maps them 

to { } R∈=
2

11
n
hhx  and { } R∈=

2
12

n
uux , where { } 0

11
0 900 2 ≤≤ =

n
uux  and { } 0

12
0 900 2 ≤≤ =

n
uux  

(both having the same size— 2n ) in units of angular degree. This chapter presents 

experimental results, using the Kolmogorov-Smirnov test on transformed data, that 

assesses whether transformed blocks of data are independent and identically 

distributed when compared to randomly selected spectra (after transformation) from a 

large data set representing a single material type. 

Chapter 4 presents the adaptation of multiple multivariate and univariate 

techniques to the anomaly detection problem using HS data. First, it presents a brief 

discussion on multivariate normal based statistical hypothesis testing, describes the 

state of the art in HS anomaly detection prior to this work, and presents alternative 

multivariate anomaly detection techniques. This chapter adapts univariate techniques 
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for the first time to HS anomaly detection applications, which includes the application 

of a semiparametric model and other alternative data combining metrics. 

Chapter 5 describes and quantifies the effects of spectral magnitude (bias), 

spectral shape, and spectral mixtures (heterogeneous samples) have on the power 

performances of multivariate and univariate anomaly detection techniques. The 

experiment outcome are put in context to what is desired and undesired in anomaly 

detection applications—this discussion should shed some lights on later performances 

of multivariate and univariate detectors on real HS imagery. 

Chapter 6 demonstrates under varying TV background configuration scenarios 

the differences of performances between multivariate and univariate anomaly 

detectors using idealized data cubes. Differently from the simulation experiments 

discussed in Chapter 5, the simulation experiments discussed in this chapter generate 

idealized five-band data cubes, and test for local anomalies using the sliding inside-

outside dual window sampling method. Note that component proportions in mixtures 

observed by the windows do not need to be specified, as in Chapter 5, because they 

would occur naturally as the inside-outside dual window slides across the spatial 

areas of the artificial data.  

Chapter 7 introduces a parallel (repeated) random sampling approach and models 

this approach using the Binomial distribution family. It discusses how this sampling 

approach can be implemented in the context of GV anomaly detection, and presents 

results using real GV HS imagery.  

Chapter 8 summarizes this work, offers limitations and some thoughts on future 

work. 
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Chapter 2     HS Sensing, Data Characterization and Models 

2.1 Background 

This chapter covers various relevant materials for later chapters in this 

dissertation, including fixing the notations for most of the discussions through out 

those chapters. Section 2.2 describes a brief history on the evolution of HS sensors, 

including some of the details on well known HS sensors currently being deployed. 

The SOC-700 HS sensor is of particular interest, because data from this sensor were 

used for experiments results that will be discussed later herein. Section 2.3 presents a 

brief description on the physics of HS sensing so that the reader can better appreciate 

the data recorded by this sensor modality. Section 2.4 characterizes a real HS data 

cube by making assumptions and estimating parameters that will be used later on for 

simulation analysis. Section 2.5 summarizes this chapter.  

2.2 Hyperspectral Sensors 

In the past 35 years, the field of imaging spectrometry has undergone tremendous 

development. Imaging spectrometry refers to the imaging of a scene over a large 

number of discrete, contiguous spectral bands in order to obtain a complete 

reflectance spectrum from the imaged ground surface. This type of imaging is also 

known as hyperspectral imaging. In 1972, NASA launched the first experimental 

Earth Resources Technology Satellite (ERTS). It was the first in a line of remote 

sensing satellites that have been renamed the Landsat series. The first satellites 

carried an instrument called the Multi-Spectral Scanner (MSS). It provided repeated 

coverage of the Earth through an inclined polar orbit that captured images of Earth in 
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4 broad bands of the electromagnetic spectrum. The final image produced by ground 

processing of the instrument-data typically yielded a picture very similar to that 

produced by false-color infrared film (also known as camouflage-detection film). 

MSS satellite images provide synoptic views of the earth that don't require meticulous 

mosaic-ing of many individual scenes. However, each digital picture element (pixel) 

only resolves an object about 80 meters (250 feet) in diameter. 

A decade later, an instrument that offered both higher spatial and spectral 

resolution – called the Thematic Mapper (TM) – was launched on the Landsat 4 

satellite. The TM instrument resolves objects down to less than 30 meters (100 feet) 

and also adds the capability of imaging the ground in 3 additional broad bands in the 

infrared portion of the electromagnetic spectrum; this includes one low-resolution 

thermal band. 

With the advent of TM and more sophisticated computer software, it is possible to 

gain more insight into the minerals and hence the types of rocks present. Not only can 

ferrous oxide powder be recognized, but also clays derived from alteration can be 

identified more reliably than before, by comparing bands (ratioing). Vegetation can 

be discriminated from other surface features by comparing bands of high and low 

reflectance. Additional regions of interest for ground-verification can be identified 

through what is called multispectral classification. Ground-truth or photo-

interpretation is used to identify representative land classes and the computer is 

instructed to search for regions that appear similar in all bands. 

In 1986, SPOT Image (a French company) launched its first commercial remote 

sensing satellite. Its most notable contribution to remote sensing is panchromatic 
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(B&W) images with a resolution of 10 meters (33 feet) per pixel. It also provides 

multispectral imagery, similar to the Landsat MSS instrument, with 20 meter (66 feet) 

resolution.   

We discuss next, three specific HS systems that are well known in the HS 

research community: AIS, AVIRIS, and SOC-700.  

 Hyperspectral Systems 

Airborne Imaging Spectrometer (AIS):  

The Airborne Imaging System (AIS 1, AIS 2) was designed and built in the 

early 1980’s as part of a NASA Jet Propulsion Laboratory (JPL) imaging 

spectrometry program [18]. This instrument was designed explicitly for multispectral 

infrared imaging and used 32 x 32 element mercury cadmium telluride area detector 

array with 10-bit quantization. AIS used a grating spectrometer with push-broom 

style scan to separate the signal into 128 contiguous bands in the spectral region from 

1.2 to 2.4 μm with spectral resolution of 9.3 nm. The spectra were sampled 

sufficiently fine for analysts to identify spectral features of specific minerals for 

unambiguous classification. The early success of AIS enabled NASA to upgrade the 

instrument (AIS II) with a 64 x 64 element HgCdTe array that extends the spectral 

range up to the visible range covering 0.8 to 2.4 μm, but the performance was limited 

by 7.3o FOV, low spatial resolution, and the fact that it was not radiometrically 

calibrated.  

The Airborne Visible/Infrared Imaging Spectrometer (AVIRIS): 

In late 1980’s, the next generation of imaging spectrometer in the NASA 

program was the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Flown 
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first in 1987 and in current use, AVIRIS is designed to image 224 contiguous bands 

in the spectral region from 0.4 μm to 2.5 μm with about 0.01 μm resolution. The 

increased spectral range in the visible region and high resolution compared to AIS 

enable it to detect important absorption features in vegetation and minerals such as 

the shifts in the chlorophyll and the kaolinite doublet at 2.2 μm. AVIRIS is designed 

to have an altitude of about 20 km for an GIFOV of 20 m over a swath width of 12 

km [19]. In order to cover relatively wide spectral range and narrow spectral 

bandwidth, AVIRIS uses four spectrometers, one with a silicon array for the visible 

and near IR region and the other with InSb array for SWIR region [19]. 

Imaging spectrometer data from AVIRIS have been applied to many other 

uses in the field of atmospheric science, botany, hydrology, oceanography and remote 

sensing. The main focus of these applications has been in the identification, 

measurement, and monitoring of constituents of the Earth’s surface and atmosphere 

based on molecular absorption and particle scattering signatures.  

Surface Optics Corp 700 (SOC-700) Hyperspectral Sensor: 

More recently, better signal to noise ratio, higher spectral resolution, and 

lower cost HS systems have been introduced to the market and are commercially 

available. The SOC-700 HS imager [20] is one of those systems, and it was the 

system that recorded all the real HS image data used for the work in this dissertation, 

see Fig. 2.1 and examples of real HS data cubes in Chapter 7. 

The SOC-700 system comprises of a high-speed, low-noise visible camera; a 

high quality visible spectrometer; integrated scanning system; and vector processor 

software. This system can record and process HS imagery at a rate of 64,000 120-
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band elements per second at 12-bit resolution. The system’s spectral response covers 

the visible and near infrared (VNIR) spectral range from 0.43 to 0.97 μm and can be 

used in normal to low lighting conditions with variable exposure times. The system 

can be configured to operate either as an imager or line scanner, producing up to 640 

pixels per line, 640 lines. Under favorable conditions, the SOC-700 camera has a line 

rate of up to 100 lines per seconds (120 wavelength bands). With six programmable 

correlation channels, three integrated channels, on-the-fly dark frame subtraction and 

calibration, the system can be configured to display color, panchromatic, simulated 

sensor and detect or reject with a relatively high degree of confidence up to 6 

spectrally identified elements. 

 

 

Figure 2.1. SOC-700 Hyperspectral Imaging System. 

 

The SOC-700 provides the following output dataset to the user: raw data cubes, 

calibrated data cubes, correlation cubes, RGB or sensor simulated cubes. This 

systemcan be operated on a local machine or remotely over a local area network. 
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Communication between the GUI (graphics user interface) and the system are 

accomplished through sockets and multiple cameras can be controlled from the same 

machine. 

The heart of the SOC-700 system is the so-called MP-1 Midis Processor which 

can perform on-the-fly hyperspectral processing at super computer speeds. Capable of 

processing 128,000 128-band vector per second, the MP-1 can match the processing 

requirements of any currently available hyperspectral imaging system and can be 

configured to work with most systems.  

2.3 Hyperspectral Sensing Model 

This subsection briefly describes a simplified model for the HS reflectance 

phenomenology. This model, although not explicitly used in this dissertation, does 

provide a connection between a spectral sample, which is treated herein as an 

ordinary multivariate sample, and the physics behind the information recorded by a 

HS device.   

As discussed earlier, HS data are produced by a sensor that either scans or uses a 

focal plane array to collect the data in a rectangular grid about the region of interest. 

The sensor filters the data in such a manner as to provide a large number of narrow 

wavelength bands. Each pixel then represents a resolution spot size on the ground.  

In order to appreciate how the atmospheric and illumination conditions affect the 

reflectance of an object in the ground, consider a relationship derived in [21] for the 

spectral radiance reaching an airborne or satellite sensor, it can be expressed in 

simplified form as 
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where Γ  is the spectral region of interest centered at λb (the central wavelength in the 

bth band in units of μm), Lb is the effective spectral radiance in the bth band in units of  

[Wcm-2sδ -1μm-1], Es(λb) is the exoatmospheric spectral irradiance from the Sun in 

units of [Wcm-2μm-1], τ1(λb) is the transmission through the atmosphere along the 

Sun-object path, θ is the angle from the surface normal to the Sun, F is the fraction of 

the spectral irradiance from the sky [Ed(λb)] incident on the object (i.e., not blocked 

by adjacent objects), G is the fraction of direct sunlight incident on the object, τ2(λb) 

is the transmission along the object-sensor path, δ (λb) is the spectral reflectance 

factor for the object of interest (i.e., δ (λb)/π is the bidirectional reflectance in units of 

sδ -1), Lu(λb) is the spectral path radiance [Wcm-2sδ -1μm-1], and βb is the normalized 

spectral response of the bth spectral band of the sensor under study where 

∫Γ
=

λλρ
λρ

d
B

b

bb
b )(

)(
                                                 (2.2) 

with ρb(λb) being the peak normalized spectral response in Γ  of the bth band. 

Atmospheric and illumination conditions will affect all the radiometric terms in (2.1) 

(i.e., Es(λb), τ1(λb), τ2(λb), Ed(λb), and Lu(λb)), which makes the task of predicting the 

responses of a particular object a formidable one. For a particular set of conditions 

during the data collection, the spectral radiance from a pixel-size location at the scene 

observed by a K-band sensor can be expressed as 

    [ ]Kb LLLL ,,,,, 21 LL=x ,                                               (2.3) 
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where scalars ( ),K,kLk L1 =  are radiances, such that, adjacent radiances (e.g., bL  

and 1+bL ) are usually highly correlated.  

Using (2.3), a HS data cube KCR ××∈RX , a CR×  array of K  bands, is 

constructed as 
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where, K
rc Rx  ∈  is an observation vector at pixel row r ),,1( Rr L=  and column 

c ),,1( Cc L= .  

2.4 Data Characterization 

This section uses a real HS data cube of the form in (2.4) and characterizes small 

blocks of data across the spatial area CR× of X . It is worth noting that data 

sampling is not done in X , all the rcx  in X  are used, and that modeling is only done 

at the level of small windows (blocks of data). This is relevant to anomaly detection 

algorithms because they observe data using small windows across X . The data cube 

used for this section was collected by the SOC-700 sensor (Section 2.2), and the 

scene is considered a difficult one for anomaly detection applications. Data 

characterization is covered herein in three subsections: Subsection 2.4.1 (observation 

probability estimation in X ), Subsection 2.4.2 (spatial window modeling), 

Subsection 2.4.3 (null/alternative hypothesis modeling), and Subsection 2.4.4 

(parameter specification). These results will be used later on in Chapter 5 to conduct 

simulation experiments.   
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2.4.1 Event Probabilities Using Small Windows in X 

As modeling is done at the level of small windows in X , certain events, such 

as, the observation of samples of two or more different material types, or samples of 

the same material under different illumination conditions (e.g., shaded and non-

shaded tree regions), can play a major role degrading performance of anomaly 

detectors. These events contradict a popular assumption made for scoring metrics that 

a block of data consists only of a single material type under the same illumination 

condition. In practice, this assumption is not always satisfied using real HS imagery, 

and, because it has been ignored in the HS research community, anomaly detectors 

have been known to yield a high false alarm rate; hence, their utility has been limited 

to preliminary imagery screening tasks. 

Figure 2.2 shows the 2-dim display version of a real HS data cube having the 

format of X  (2.4), where R = C = 640 and K = 120.  

The scene depicted in Fig. 2.2 was recorded using the SOC-700 VNIR HS 

sensor from a ground to ground viewing perspective. The scene consists of an open 

grassy field, trees, bushes, and a motor vehicle in tree shades—a sport utility vehicle 

(SUV), which is encircled in Fig 2.2. From the available ground truth information, 

this SUV (the target) had three of its doors open, including a side-opening backdoor. 

Additional details about this scene from the available ground truth information are 

given in Chapter 7. 
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Figure 2.2. Ground to ground HS scene. 

 

The image shown in Fig. 2.2 represents the radiance sample average per pixel 

location, or  
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where, ∑
=

=
K

k
rckrc L

K
L

1

1  and rckL  is the radiance on the kth frequency band at pixel row 

r )1( Rr ≤≤  and column c )1( Cc ≤≤ .   

If we use an nn×  window, such that n << R and n << C (<< denoting much 

smaller than), to define events within nn×  blocks of data in (2.5), then the events 

can be defined in terms of the pixel values within the whole nn×  window (through a 

rule that 5% or more of the pixels in a window must be in a group for the group to 
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have occurred within that window), and the event is then ascribed to a pixel that is 

the location (the upper-left corner) of that window.  

For instance, letting ij index the left upper corner pixel in this window relative to 

the indexation shown in (2.5), we could set an index to automatically count the 

number m of ij locations in the image a particular event occur within the nn×  

window, where a particular event could be the presence of spectral samples belonging 

to two different material classes (e.g., tree leaves and a particular paint of a motor 

vehicle), as i and j step through ( )1,,1 −− nRL  and ( )1,,1 −− nCL , respectively, 

across the image. Using m, the probability of this event’s occurrence within the CR ×  

image, using the nn×  window, is then the relative frequency of pixels within a whole 

data cube of falling into a designated category, or ( )( )11 −−−− nCnR
m .   

The goal of this subsection is to measure such probabilities for a number of 

different events, which will be described shortly.  

Let em  be the number of the the  event ( )Ee ,,2 ,1 L=  that can occur across an 

CR ×  image within a fixed nn×  window. We are interested in computing the event 

probabilities ef  (relative frequencies), as follows:   

 

( )( )11 −−−−
=

nCnR
m

f e
e .                                             (2.6) 

 

To simplify the computation of (2.6), we must first segment the image shown in 

Fig 2.2. A note about segmentation: since the problem of image segmentation is not a 

solved problem, segmentation techniques discussed in the literature (see, for instance, 
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[22]) are highly sensitive to parameters set by the user (e.g., the desired number of 

different classes in the imagery), we used a combination of an automatic 

segmentation technique and manual editing in order to separate four distinct spectral 

groups in Fig 2.2. A group is defined for this purpose as regions in the image 

consisting of spectra that are relatively closer to one of the few most distinct spectral 

means in the imagery. (Note: single pixels do not belong to more than one group.) In 

particular, since most of the anomaly detectors use spectral mean averages to detect 

anomalies in the imagery, we used the standard k-means approach [22] to decompose 

the scene into multiple spectrally distinct groups. Since the number of groups is a 

parameter using the k-means approach, this parameter was changed from 7 to 3, but 

the target could not be isolated as a group. So, the number of group parameter was set 

to 3 and manual editing was required to isolate the target as a fourth group. In 

addition, since a material class under different illumination condition can play an 

important role on performance degradation of anomaly detectors, samples of a 

material class under similar illumination condition may be considered as a different 

event relative to samples of the same material under a different illumination 

condition.  

Fig. 2.3 shows the final 640640×  segmented image, which has the following 

format: 
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where { }4 ,3 , 2 ,1∈rca  is the observed group number at pixel row r ),,1( Rr L=  and 

column c ),,1( Cc L= , and the block area in A  labeled with “ nn×  window, where 

in this case 2== ji ,” has the pixel at this window’s left upper corner indexed by ij , 

where ( )1,,2,1 −−= nRi L  and ( )1,,2,1 −−= nCj L . (The nn×  window is shown 

in (2.7) because event probability estimations require the use of such a window in 

order to record the observed event at location ij.)  

Groups 1 through 3 (G1, G2, and G3) represent natural clutter background regions 

in the imagery, and group 4 (G4) represents the target. 

With four distinct groups, we define seven events for observations viewed 

through a window: E1, E2, E3, E4, E5, E6, and E7; where E1 denotes samples of a 

single group (G1, G2, G3, or G4); E2 denotes a mixture consisting of samples from 

any two groups (e.g., G1 and G3); E3 denotes a mixture of any three groups; E4 

denotes a mixture of the four groups; E5 denotes any combination of 2 or 3 groups in 

a mixture that excludes G4 (the target); E6 denotes any combination of 2 or 3 groups 
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in a mixture that includes G4; and E7 denotes observation of G4 only. (A group to be 

counted as observed must occupy at least 5% of the spatial window.) 

Table 2.1 shows the estimated probabilities of these events using (2.6) and a 

2020×  window at ij locations across the segmented image, where 

( )19,,3,2,1 −= Ri L , ( )19,,3,2,1 −= Cj L , and 640== CR . The window area 

corresponds to 0.0977% of the CR×  segmented image. 

 

 

 

Figure 2.3. Segmented HS data cube using the k-means approach and manual editing 

to isolate the target as a fourth group (G4). Notice that resulting 

segmentation using pixels of 120 bands may not correspond to results by 

human inspection of Fig. 2.2. Groups G1, G2, and G3 correspond to 

natural clutter background. 

 



 

 30 
 

These events will be used in Subsection 2.4.2 for window spatial modeling, and in 

Subsection 2.4.3 for null and alternative hypothesis modeling. 

The cumulative event probabilities in Table 2.1 involving E2, E3, and E4, 

although relatively small when compared to the probability of event E1, can play a 

major negative role in the value of using anomaly detectors, as these detectors assume 

that E1 models all overlapping blocks of data in X . As discussed in Section 1.3, X  is 

expected to have hundreds of thousands of pixels.  

 

Table 2.1. Event Probabilities Using a Segmented HS Data Cube. 
 

Observed Event 
 

Event Probability  

 

E1 (single group) 

E2 (mixture of 2) 

E3 (mixture of 3) 

E4 (mixture of 4) 

E1+E2+E3+E4 

E5 (mixture of 2 or 3, excluding G4)

E6 (mixture of 2 or 3, including G4) 

E7 (G4) 

 

0.76883078322104 

0.13975357487286 

0.08565095594334 

0.00576468596276 

1.00000000000000 

0.08664897098450 

0.01957448300362 

0.01407498476562 

 
 

In the example shown in Table 2.1, there seems to be an accepted truth classifying 

each nn   ×  block of data as belonging to one or more groups of background clutter 

(G1 to G3) and/or target group (G4). We define mutually exclusive labels E1 to E4 by 

defining pixels according to their categories of group membership (G1 to G4). But 
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there is implicitly a finer subdivision, which we can make use of in defining E5 to E7, 

according to whether G4 is or is not one of the groups a pixel belongs to. Thus, event 

probability is simply the relative frequency of pixels within a whole data cube of 

falling into a designated category. 

The most important fact about the results shown in Table 2.1 is that group 

mixtures (E2, E3, E4, E5, and E6) are always present in real imagery, and, as it will 

be shown in Chapter 5 and Chapter 6 (simulation experiments) and in Chapter 7 

(experiments using real HS imagery), this presence degrades performance of the most 

commonly used multivariate anomaly detectors—false positives increase.  

The specific application will dictate the level of tolerance for false positives. An 

application requiring, for instance, that an image analyst take decisions upon viewing 

the output of anomaly detectors asks for an extremely low number of false positives, 

because false positives are often found scattered across the imagery forming isolated 

pixel clusters of target scales. In many applications, targets occupy less than 0.1% of 

the imagery, while blocks of data consisting of mixtures may occupy a larger portion 

of the imagery relative to targets.  

The ability to deal effectively with sample mixtures is one of the goals in this 

work. Events E5 (potential to increase false alarms) and E6 (potential to decrease 

power of correct detection) are of particular interest. We will model E5 to train 

anomaly detectors and use data modeled for E6 for testing. In practice, anomaly 

detectors are not required to be trained, but for analysis purposes, training will be 

used.  
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2.4.2 Data Models for Small Windows 

This subsection presents models for observed data using a sliding nn×  

window in X . These models will be used in Subsection 2.4.3, where further 

determinations will be made to establish null and alternative hypotheses. 

The data format of X  is shown in (2.4), where r ( )Rr ,,1L=  and c 

( )Cc ,,1L=  index pixels rcx  in the CR×  spatial area X , where n << R and n << C. 

Pixels within a fixed nn×  block of data in X  (i.e., data observed through a nn×  

window) are indexed from the upper left corner of this block using ij relative to rows 

and columns  in X , where ( )1,,1 −−= nRi L  and ( )1,,1 −−= nCj L . A 

representation of an nn×  window at pixel location ( ) ( )2,2, =ji  in X  is 
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As the nn×  window slides across X  in (2.8), different spatial events are 

observed. Using the segmented image in Fig. 2.3 as a reference, an illustration of 

different spatial models of these events is shown in Fig 2.4.    
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Figure 2.4 Spatial models for event observations viewed by an nn×  window across X , where 

( ){ }4
14,3,2,1 == aa GGGGw  and 4321 wwww ≠≠≠ . Events E2, E3, and E4 

correspond to mixtures of 2, 3, and 4 groups, respectively.   

 

Before pixels within a block of data can be used by a detector, they need to be 

rearranged to a sequence of multivariate samples. The rearrangement is made by 

concatenating individual rows in the nn×  window in (2.8), as follows 
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where 1  
1

nK ×∈RW , 2
1 nn = , and ( )11 ,,1 nhK

h L=∈Ry , such that 

)1(1211  , +== jiij xyxy  and so forth until finally )1)(1(1 1 −+−+= njnin xy . Since a window can 

be anywhere in X  and X  represents any HS data cube, { } 1
11  n

hh =y  are considered 

random vectors.  

From the dimensions of the window and spatial area of X , ( )1,,1 −−= nRi L  

and ( )1,,1 −−= nCj L   in X . So, as the location of the left upper corner pixel in the 



 

 34 
 

observation window changes by an unit within X , i.e., { } 1;1
1;111

−−−−

==
= nCnR

jiijxy , the entire 

set of spectra that constitutes X  will be observed through the nn×  window.   

Using the assumption that random vectors in 1W  are independent and 

identically distributed (i.i.d.), and using the data cube in Fig. 2.2 as reference, the 

distribution of data within the window, using (2.9), can be simplified to  

 

  ( ) ( )∑
=

=
4

1
1111 ||  i.i.d.  ~   , ,

1
a

aan gg ρθyθyyy L                            (2.10) 

 

where ( )ag θy |  is a group-conditional PDF with unknown parameter set aθ , 

{ }4,3,2,1∈a  indexes the spectral group, and aρ  is the unknown proportion of 

( )ag θy |  contributing to ( )θy |1g , such that 10 ≤≤ aρ  and 14

1
=∑ =a aρ , and θ  is the 

parameter set ( )4321 ,,, θθθθ . 

We further simplify (2.10) by letting ( )ag θy |  be a family of normal PDFs, 

( )aaN Σμ , , such that, both parameters—mean K
a Rμ ∈  and covariance KK

a
×∈RΣ —

are unknown.  

Groups G1, G2, G3, and G4, discussed in Subsection 2.4.1, are distributed 

under ( )1| θyg , ( )2|θyg , ( )3| θyg , and ( )4|θyg , respectively. And, by a well 

known property of the normal distribution, ( )θy |1g  in (2.10) is also normal, since it 

is the result of a sum of normal PDFs. Notice also that { }4
1=aaρ  in (2.10) determines 

whether 
1111    , , nyy L  is a multivariate sample belonging to a single group, e.g., 

( ) ( )31 || θyθy gg = , or belonging to a mixture of groups, e.g., 
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( ) ( ) ( ) 44111 ||| ρρ θyθyθy ggg += , where in this example 032 == ρρ  and 

141 =+ ρρ . Spatial examples of mixtures are illustrated in Fig. 2.4.  

The data model shown in (2.10) will be used to establish null and alternative 

hypotheses for later use in Chapter 5 for simulation experiments.  

2.4.3 Data Models for Null and Alternative Hypotheses 

In order to decompose subtle factors that affect performances of different 

anomaly detection techniques, flexible hypothesis tests (null and alternative) must be 

modeled and specified for simulation experiments. This subsection addresses this 

topic. 

In defining a hypothesis test, we must first consider that an anomaly detector 

requires two input sets of spectra ( )1  
1

nK ×∈RW  and ( )2  
2

nK ×∈RW  to perform its task 

using X . Independently of the application, or viewing perspective between sensor 

and scene, one of the two inputs ( )1W  is obtained at a fixed location ij in X , as 

shown in (2.8) and (2.9); but the other input set will depend on the application, or 

viewing perspective. For instance, for the ground viewing perspective shown in Fig. 

2.2, the second input set 2W  could be made available from a spectral library, or be 

randomly selected straight out of the testing image cube. In either case, 2W  would be 

a rearranged version of a nn×  block of data. We address both cases in detail in 

Chapter 7, where, in order to make such a test useful for real applications, we propose 

that 1W  be independently compared to multiple spectral sets, 

( )NfnKf ,,1  2  )(
2 L=∈ ×RW , and results from this comparison fused, as it will be 

shown in Chapter 7. 
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Another sampling method is to use pixel vectors surrounding a nn×  block of 

data to construct 2W , where 1W  is constructed from the block of data. Both input 

sets 1W  and 2W  feed the anomaly detector. Although this latter approach is suitable 

for top viewing perspectives, it is unsuitable for ground viewing perspectives, as 

discussed in Section 1.4. (Chapter 6 describes in detail implementation of this inside-

outside window method.) 

Whether the perspective is ground view or top view, mixtures of different 

groups in 1W  and/or in 2W  can significantly degrade anomaly detectors’ 

performances, as discussed in Section 1.4. But since the mixture problem has been 

ignored by the HS research community, we could not find guidance in the literature 

on modeling the problem using a standard statistical method for permutation tests of 

significance.  

After several considerations, including the fact that target group G4 is in tree 

shades, we settled for modeling the mixture problem using combinations of E5 

(mixture of 3, excluding G4) and E1 (G3 only)—see Table 2.1—to represent a 

difficult 0H , and combinations of E5 (mixture of 3, excluding G4) and E6—see 

Table 2.1—to represent 1H . We define next the null and alternative hypotheses, 

where calibration of the rejection thresholds for all anomaly detectors considered in 

this work, for a desired type I error, are discussed in Chapter 5. In particular for the 

hypotheses, using (2.10) as reference, the following null and alternative hypotheses 

will be considered as baselines for simulation experiments: 
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NULL 0H               
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1
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||    ~      , ,
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θyθyyyW

θyθyyyW

ggi.i.d.

ggi.i.d.

n

a
aan

==

== ∑
=

L

L π
           (2.11) 

 

where, ( ){ }3
1| =aag θy  are assumed multivariate normal PDF’s with parameters given in 

Table 2.2 [see also comments on (2.10)], 10 ≤≤ aπ  and ∑
=

=
3

1
0.1

a
aπ ,  { } Kn

uu Ry ∈=
2

12  

are observation vectors available through a spectra library (or randomly selected) 

representing event E5 (G1, G2, and G3), { } Kn
hh Ry ∈=

1

11   are observation vectors at 

pixels in an nn×  window (each pixel with K spectral bands) , such that ijxy =11  (the 

left upper corner pixel of the window) and ij  index rows and columns in X  such that 

only data from G1 can be observed [using notation in (2.10), 

 ,0 ,0 ,1 321 === ρρρ and 04 =ρ ], and 1W  is assumed independent of 2W . 

Parameter specification for ( ){ }3
1| =aag θy  will be discussed in Subsection 2.4.4. 

In essence, using (2.11) as the null hypothesis will enable us to study the 

vulnerability of anomaly detectors through simulation experiments using the most 

difficult null hypothesis that Fig. 2.2 can offer, i.e., compare spectra from a single 

group ( )3| θyg  to spectra from a mixture of three groups ( )∑
=

3

1
|

a
aag πθy , such that, 

( )3| θyg  is included in the mixture.  

For the 0H  in (2.11), it is desired that anomaly detectors can keep their cutoff 

thresholds at a low value relative to the corresponding output results of these 

detectors on the following alternative hypothesis: 
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ALTERNATIVE 1H           
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1
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a
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a
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ρ

π

θyθyyyW

θyθyyyW

L

L
          (2.12) 

 

where 2W  are rearranged pixels from the surrounding area of the nn×  window or 

from a spectral library or from a randomly selected block of data in X , 1W  are 

rearranged pixels from the nn×  window representing E6 or E7 (depending on group 

proportions), group proportions { }4
1=aaρ  sum to one, ( )1,,1 −−= nRi L  and 

( )1,,1 −−= nCj L ; and 1W  is assumed independent of 2W . Parameter specification 

for the normal distributions ( )∑
=

3

1
|

a
aag πθy  and ( )∑

=

4

1
|

a
aag ρθy  will be discussed in 

Subsection 2.4.4. 

It is worth noting that varying proportions { }4
1=aaρ  in (2.12) significantly 

changes the difficulty level of 1H  relative to 0H , as it will be shown in Chapter 5. 

Parameter specification will be discussed next.  

2.4.4 Parameter Specifications 

This section specifies parameters for the group conditional models shown in 

(2.11) and (2.12), which will be used for simulation experiments in Chapter 5. 

Models (2.11) and (2.12) show three groups representing natural clutter background 

( ){ }3
1| =aag θy  and a forth group representing a target ( )4| θyg . Since ( )ag θy |  

{ }4,3,2,1∈a  is a group-conditional normal PDF having unknown parameter set aθ , 

aθ  were approximated by ( )aa Σμ ˆ,ˆ —sample mean 120ˆ Rμ ∈a  and sample covariance 

120120×∈RΣa —using the segmented image shown in Fig 2.3 to mask out the 
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corresponding group regions in X . The HS data cube depicted in Fig. 2.2 was X  for 

these estimations. The target group (G4) used about 6,000 pixel vectors for parameter 

estimations, and each one of the other groups used a significantly higher number of 

pixel vectors for their parameter estimations, especially G1 and G2. But because of 

restrictions imposed by the Army Research Laboratory, we arbitrarily chose to use 

the sample covariance of G3 for both G3 and G4. Proportions 10 ≤≤ aπ  and 

10 ≤≤ aρ  will also be specified in this section, such that, 13

1
=∑ =a aπ  and 

14

1
=∑ =a aρ . 

The estimated covariance matrices for G1, G2, and G3 are displayed in Fig. 

2.5, so that one can visually appreciate the radiance correlation among the 120 

frequency bands for each group. 

Estimated means and estimated variances corresponding to these groups are 

partially shown in Table 2.2 (only the first 10 components are shown for illustration 

purposes).  

Group contributions to a mixture, proportions ( )321 ,, πππ  and ( )4321 ,,, ρρρρ , 

will be specified based on the simulation purpose. Simulation experiments that will 

use 0H  in (2.11), for instance, will arbitrarily use fixed proportions 

( ) ( )3.0,3.0,4.0,, 321 =πππ  in order to expose the detectors to a hard 0H  in X , see 

Fig. 2.2. Based on our own experience working with HS data, an easier 0H  involving 

mixture would not have utility for real applications. On the other hand, using more 

than four groups in 0H  for 2W  would most likely increase the difficulty level for the 

anomaly detectors discussed in this dissertation. So, instead of simulating more 
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variations than the ones presented in this dissertation, we chose to complement the 

results produced by simulation experiments with results yielded on real HS data. The 

latter is presented in Chapter 7.  

 

                     1Σ̂                                           2Σ̂                                        3Σ̂  

 

Figure 2.5. Estimated covariances for G1 ( )1Σ̂ , G2 ( )2Σ̂ , and G3 ( )3Σ̂  of dimensions 
120120×  displayed as intensity images after linear mapping the gray scale of each to the 

range 0-255. The upper left-hand corner of each matrix is the estimated response variance 
at frequency band 1; the lower right-hand corner is the estimated variance at band 120. In 
simulation experiments, 4Σ̂  (G4) will be set to 3Σ̂ , for reasons explained in the text. 

 

 

For the alternative hypothesis 1H  in (2.12), proportion parameters 

( )4321 ,,, ρρρρ  determine the level of difficulty imposed on the detector by 1H  with 

respect to 0H . For instance, 1H  would correspond to 0H  by setting 

( ) ( )0.0,0.0,0.0,0.1,,, 4321 =ρρρρ , and by using small variations on this setting, e.g., 

( ) ( )1.0,0.0,0.0,9.0,,, 4321 =ρρρρ , for ( )3,,1  ˆˆ 4 L=≠ kkμμ , 1H  would represent a 

hard alternative hypothesis for a detector to detect the target; alternatively, by setting 

( ) ( )0.1,0.0,0.0,0.0,,, 4321 =ρρρρ , for ( )3,,1  ˆˆ 4 L=≠ kkμμ , 1H  would represent an 
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easy alternative hypothesis using the same detector. In particular, we discuss in 

Chapter 5 simulation experiment results setting 

 

( ) ( )95.0,01.0,02.0,02.0,,, 4321 =ρρρρ , 

( ) ( )90.0,03.0,03.0,04.0,,, 4321 =ρρρρ ,   

( ) ( )80.0,06.0,07.0,07.0,,, 4321 =ρρρρ , 

( ) ( )60.0,13.0,13.0,14.0,,, 4321 =ρρρρ ,                                (2.13) 

( ) ( )40.0,20.0,20.0,20.0,,, 4321 =ρρρρ ,   

( ) ( )20.0,26.0,27.0,27.0,,, 4321 =ρρρρ ,  and  

( ) ( )05.0,31.0,32.0,32.0,,, 4321 =ρρρρ . 

 

Justification for (2.13) and additional settings will be discussed in Chapter 5. 

It is worth noting that 4μ̂  is relatively close to 3μ̂ . This is because the target, 

as shown in Fig. 2.2, is under tree shades. We use this fact to study in detail the 

detection performance of various detectors as a function of varying magnitude or 

shape of 4μ̂ , everything else fixed. To perform this study, we will modify in Chapter 

5 the target mean vector by applying two parameters to this mean: one that affects 

only the overall magnitude (or bias) of 4μ̂ , and another that affects only the shape of 

4μ̂  (see Chapter 5). 
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Table 2.2. (First 10 Bands Only) Estimated means 1μ̂  (G1), 2μ̂ (G2), 3μ̂  (G3), and 

4μ̂  (G4). Estimates ( )1Σ̂diag , ( )2Σ̂diag , and ( )3Σ̂diag  are the diagonal terms of 1Σ̂  , 

2Σ̂ , and 3Σ̂ , respectively. Dimensions are 1120× . 
 

1μ̂   
(1.0e3) 

2μ̂   
(1.0e3) 

3μ̂   
(1.0e3) 

4μ̂  
(1.0e3) 

( )1Σ̂diag  
(1.0e3) 

( )2Σ̂diag  
(1.0e5) 

( )3Σ̂diag  
(1.0e4) 

 
0.204325  
0.220555  
0.244355   
0.260325   
0.282800   
0.303000   
0.306015  
0.343840   
0.400310   
0.426200   

 
0.175925   
0.190895  
0.216750   
0.236395   
0.260630   
0.285110   
0.295890   
0.329070   
0.385030   
0.414335   

 
0.087980   
0.094050   
0.102410   
0.106035   
0.111530   
0.114955   
0.116005   
0.128410   
0.145650   
0.152510   

 
0.079486 
0.092472 
0.108234 
0.118299 
0.105730 
0.118079 
0.109305 
0.115210 
0.166185 
0.174521 

 

    
   0.160109 
   0.121826 
   0.138863 
   0.158180 
   0.172251 
   0.192190 
   0.155532 
   0.195692 
   0.229260 
   0.253849 
    

  
   0.004161 
   0.005398 
   0.007945 
   0.011452  
   0.016150 
   0.022174 
   0.028275 
   0.039375 
   0.063204 
   0.080857 
    

    
   0.011063 
   0.010110 
   0.012112 
   0.014576 
   0.015648 
   0.018835 
   0.018890 
   0.025303 
   0.033793 
   0.039194 

    
  

2.5 Summary 

This chapter fixed many of the notations for later chapters in this dissertation. For 

the sliding window testing approach, which is the only one used in this dissertation, 

all observation vectors in X  are used, and models and null and alternative hypotheses 

were formulated at the level of the small windows in X .  

Definitions were given to distinguish a material spectral class from a spectral 

group, where a material spectral class refers to spectra of a single material type (e.g., 

asphalt, a particular color paint) under the same illumination condition, and a spectral 

group refers to regions in the imagery having similar spectra—independently of the 

material type (for instance, two material types under the same illumination condition 

may belong to the same group, and the same material type under different 

illumination conditions may belong to different groups). This distinction was 

necessary in order to isolate subtle factors that might degrade anomaly detection 
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performances. These factors will be analyzed in detail in Chapter 5. Ideally, spectral 

sets of the same material type under different illumination conditions should not be 

scored as anomalous to each other.  

A challenging HS data cube X  (i.e., target in tree shades) for anomaly detection 

applications was selected and segmented in four spectral groups, were only four 

groups were chosen to simplify the segmentation process. Event probabilities were 

computed using a 2020×  window across the segmented version of X . Events were 

defined to distinguish different spatial observations using this window. Table 2.1 

shows probability estimates of these events. The most important fact about these 

probabilities is that group mixtures (E2, E3, E4, E5, and E6) are expected to exist in 

real HS imagery. Chapter 5 and Chapter 6 will show detailed analyses on the effect 

these mixtures have on anomaly detection performances.    

Small windows in X  were then modeled as a sequence of i.i.d. random 

multivariate variables under the sum of four normal PDFs, where parameters were 

estimated using the segmented image to mask out the four groups in X . Using this 

model, null and alternative hypotheses were specified. These hypotheses will be used 

later in later chapters for assessment of various anomaly detectors. 
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Chapter 3  HS Data Transformation 

3.1 Introduction 

This chapter starts by making a distinction between HS data preprocessing and 

HS data transformation.  

Data preprocessing has a specific meaning in the HS research community, it may 

consist of (i) rectification of system and sensor distortions in data as it is received 

directly from the Space Segment in preparation for delivery (raw data); (ii) 

registration of such data with respect to features of Earth; and (iii) calibration of 

spectral response with respect to such data, but not manipulation or further 

calculation with such data, or combination such data with other data. Data 

preprocessing leads to calibrated data—a spectral data product produced by applying 

corrections to collected data so that sets in physically interpretable quantities result 

(e.g., flux, radiance, energy and temperature, which relate to the scene or object). The 

data model presented in (2.1), and the subsequent data cube in (2.4), is a simplified 

form of calibrated data, or preprocessed data.  

In this dissertation, the goal of data transformation is to convert multivariate 

samples of preprocessed HS data to univariate samples in order to heighten contrasts 

between the known different types of terrain and targets.   

The remainder of this chapter is organized as follows. Section 3.2 proposes a 

procedure that takes calibrated spectral samples of different sizes { } Kn
hh Ry ∈=

1

11  and 

{ } Kn
uu Ry ∈=

2

12 , in units of radiance per band, and map them to { } R∈=
2

11
n
hhx  and 
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{ } R∈=
2

12
n
uux , where { } 0

11
0 900 2 ≤≤ =

n
uux  and { } 0

12
0 900 2 ≤≤ =

n
uux  (both having the same 

size— 2n ) in units of angular degree. Section 3.3 presents an i.i.d. test experiment 

using the Kolmogorov-Smirnov test [23] on transformed data, as the detection models 

used in this dissertation assume i.i.d. sequences. Finally, Section 3.4 summarizes and 

concludes the chapter.        

3.2 A Data Transformation Method 

We propose a data transformation approach in two steps: (i) spectral differencing 

and (ii) angle mapping. The rationale for (i) is twofold: (a) since HS samples are 

contiguous in the spectral domain (i.e., typical spectral resolution is of the order of 10 

nanometers), we believe that more discriminant information can be found between 

adjacent bands, which could augment the statistical power of detectors; and (b) 

differencing spectra should significantly decrease the importance of spectral 

magnitude (or bias) in anomaly detection applications, while significantly increasing 

the importance of spectral shapes. Spectral magnitude relates to the mean average of 

all measured radiance within a spectral sample, and spectral shape relates to the 

plotted curve of measured radiance as a function of frequency band (Chapter 5 shows 

details.) Existing classification and detection algorithms directly or indirectly exploit 

magnitude and/or shape of spectra in order to perform their tasks. 

Different from the prior art, however (see, for instance, [4]), this dissertation 

treats these features separately and independently, thus, exposing their strengths and 

weaknesses, see Chapter 5.)  The benefit of (ii) is that it reduces the multivariate 

problem to a univariate problem, which avoids the problem of singularity during 

inverse estimations of covariance matrices. Singularity is known to occur (see, for 
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instance, [4]) when the sample size of 2W  and/or 1W  [ see, for instance, (2.11) or 

(2.12)] is smaller than K  (the number of bands) in the HS data cube [see (2.3)]. 

Depending on the application, some of the targets may be relatively small, consisting 

of only a few pixels (e.g., sample size of 1W ) , which would be relatively small 

compared to K. A typical HS sensor usually delivers between 120 and 1,000 bands, 

while targets may vary in number of pixels from as large as in the thousands to as 

small as 1 to 4 pixels, depending on the actual physical sizes of these targets and/or 

distance between the sensor and targets.    

The two-step data transformation approach is discussed next.  

Borrowing from the discussion in Section 2.4, this data transformation 

approach requires two sets of spectra, 1W  and 2W . (Recall that 1W  is a multivariate 

sequence of spectra rearranged from a block of data in X , and 2W  is another 

multivariate sequence rearranged from a spectral library, from a randomly selected 

block of data in X , or rearranged from the area surrounding the nn×  window). 

Sequences 1W  and 2W  are represented in radiance form as 
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where neither the forms of ( )ηy |2g  and ( )θy |1g  (joint PDFs) nor their parameters 

η  and θ  are known, and ukhL  are radiance values (scalars), as shown in (2.3). 

The magnitude of ukhL  depends on the amount of illumination and the 

illumination environment. This dependence can be virtually eliminated by applying a 

first order difference—an approximation of the derivative—to the columns of 1W  

and 2W , or  
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Notice in (3.3) and (3.4) that 1)1(
1  nK ×−∈∇ R  and 2)1(

2  nK ×−∈∇ R . The sample 

averages of 1∇  and 2∇  are, respectively, 

 

12
2

2 2
 1  ×∇=∇ nn

1                                               (3.5) 

  and  

11
1

1 1
 1  ×∇=∇ nn

1 ,                                               (3.6) 

where 1×d1  is a column vector of dimension d.   

If we denote 2W  the reference sample and the columns of its corresponding 

2∇  [i.e., the columns of (3.3), which has K – 1 dimensions] as { } 2

1
)1(

2
n
u

K
u =

−∈∇ R , then 

multivariate samples can be mapped to univariate samples as  

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
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=
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22
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arccos180

u

t
u
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π ,                                 (3.7) 
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where { } 0
11

0 900 2 ≤≤ =
n
uux , { } 0

12
0 900 2 ≤≤ =

n
uux , the operator x  using a column vector 

x  denotes the square root of xx t .  

From (3.7) and (3.8), two univariate sequences are constructed 

 

  ( ) ( )η|  ~     ,    ,  , 2222212 2
xfxxxx nL=                                 (3.9) 

and 

 

  ( ) ( )θ|  ~     ,    ,  , 1112111 2
xfxxxx nL= ,                              (3.10) 

     

where ( )η|2 xf  and ( )θ|1 xf  are unknown joint PDFs having unknown parameter sets 

η  and θ , 2x  (reference) and 1x  (test) are used as input sequences for the univariate 

based anomaly detection techniques that will be discussed in Chapter 4. 

3.3 I.I.D. Test Experiment Using Transformed Data 

Anomaly detection techniques based on the assumption of i.i.d. samples are 

common in the target community. Our approach to anomaly detection also relies on 

this assumption; but, differently from other approaches, we assume that transformed 

calibrated data samples are i.i.d.—not the actual calibrated data samples. This section 

aims at checking the plausibility of i.i.d. data-transformed samples from nn×  blocks 

of data in X —in particular those of a single spectral group. In order to check this 

plausibility, we will compare the normalized histogram of randomly selected spectra 
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of a single material type against the normalized histograms of spectra from blocks of 

data belonging to the same material type.   

We will first segment real HS data cubes, and then select a spectral group that 

covers a large area in these cubes. Pixels of K bands representing this group will be 

randomly selected from a large population of pixels, and the cumulative collection 

will be rearranged into a single sequence as in (3.1), and finally transformed using 

(3.3), (3.5) and (3.7). The distribution of the resulting sequence, which has the 

structure of (3.9), will be empirically estimated. We will then select nn×  blocks of 

data that are significantly apart from each other representing the same spectral group; 

pixels from each block will be rearranged as in (3.1), transformed using (3.3), (3.5), 

and (3.7), and also have their corresponding distributions empirically estimated. 

Estimated distributions using blocks of transformed pixels will be compared to the 

estimated distribution using transformed randomly selected pixels.  

If the data transformation method produces i.i.d. random samples, then our 

conjecture is that empirical distributions using transformed blocks of data are 

statistically equivalent to the empirical distribution using the transformed random 

pixels of the same spectral group. We will draw some conclusions from this 

experiment. Details follow.     

Experiment procedures: We assembled a virtual mosaic of individual HS 

data consisting of a single spectral group—general terrain (i.e., a mixture of grass, 

soil, small rocks). Virtual in the sense that although five HS ( )120640640 ××  data 

cubes consisting of general terrain, trees areas, and manmade materials were 

assembled to form an actual mosaic having a total spatial area corresponding to 



 

 51 
 

6403200× , the virtual mosaic did not include radiances from trees and manmade 

materials—they were masked out from consideration using the segmentation/editing 

approach described in Subsection 2.4.1. Using a standard randomizer to obtain 

random locations within the virtual mosaic, we randomly collected 1,698 spectral 

samples from a single group—this group covered about 60% of the actual mosaic. 

The random drawing mechanism was analogous to the so-called acceptance-rejection 

mechanism, where spectral samples that were drawn from off limit areas were 

rejected. The 1,698 random samples represented about 0.14%, or ( )64032006.0
1001698
⋅⋅

⋅ , of 

the virtual mosaic. 

The independently drawn 1,698 spectral samples from this relatively large 

area of general terrain were transformed using (3.3), (3.5), and (3.7), where 

16982 =n , yielding a sequence as in (3.9). This sequence is considered i.i.d. (IID) in 

this experiment, since the actual spectral samples (calibrated data) were 

independently drawn from a relatively wide area consisting of a single spectral group. 

Figure 3.1 shows some of the intermediate results required to obtain the 

empirical distribution of approximately IID single-group spectral samples using our 

data transformation approach.  

Fig. 3.1 (upper left) shows the average spectral sample mean that was 

estimated using the independently drawn 1,698 spectral samples from a wide area 

representing a spectral group (terrain), and Fig. 3.1 (upper right) shows this average 

response after first order differentiation, where the little circles in the plot are the only 

meaningful points. Fig. 3.1 (lower left) depicts the final data transformed results 

yielding 1,698 IID, features from a single spectral group. And finally Fig. 3.1 (lower 
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right) shows the empirical PDF—this is simply a normalized histogram—using these 

IID features as inputs for the estimation step. For convenience, these IID features will 

be referred herein as IID Terrain and the output features using blocks of data will be 

referred to as Block <number> Terrain. These labels should emphasize that the data 

used for computation are spectral responses from the same spectral group. 

 

 

Figure 3.1. The plot at the upper left shows the mean average of the 1,698 independently 
collected spectral samples of a single group—general terrain. The plot at the upper right 
illustrates the spectral mean average after differentiation. The plot at the lower left shows the 
final transformation results (1,698 univariate features, or sequence) using all of the 
independently collected spectral samples. The lower right shows the normalized histogram 
using the 1,698 IID features from a homogeneous terrain, where the vertical axis shows 
estimated probabilities per angular bin (horizontal axis). 

 We collected another set of spectral samples from the virtual mosaic, but this 

time from a 4040×  block of data, and transformed all spectra ( )16002 =n  from this 
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spatial block using (3.3), (3.5), and (3.7)—the same transformation used to generate 

IID Terrain. (It is worth noting that the sample sizes of results for IID Terrain and 

Block 1 Terrain are significantly larger than the sample size of results obtained for 

typical application-based block sizes, about 1,600 versus, for instance, 400, 

respectively; we wanted to study a good approximation to some ideal PDF (IID 

Terrain) and check for deviations estimating PDFs using terrain spectra from 

equivalently large size blocks.) We collected additional blocks of data of the same 

size (1600 spectra), and made sure these blocks were sufficiently apart from each 

other. After transforming these additional data blocks using the same transformation 

approach, we computed histograms independently using each transformed block of 

data. These histograms are shown Fig. 3.2 as Block 1 Terrain, Block 2 Terrain, 

through Block 8 Terrain.  

 There are some interesting observations that can be made from the results 

shown in Fig. 3.1 and Fig. 3.2. For instance, the histograms for the blocks of 

transformed data tend to be reasonably centered with respect to the empirical 

distribution of the scene IID transformed spectra (IID Terrain), but their spread 

(feature variability) tend to vary depending on whether the blocks of data represented 

patches of terrain that are more representative of the overall mix of materials 

characterizing the general terrain (grass, soil, rocks), or represented patches of terrain 

characterized by a more homogeneous material type (e.g., grass). In the latter case, 

the variance of the transformed data seems noticeably smaller than the variance of the  
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Figure 3.2. Empirical PDFs using 1,600 samples per data block. Data blocks were chosen to 
be significantly apart from each other. 
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scene IID transformed data, as one would expect (see, for instance, the empirical PDF 

of Block 3 and Block 7 in Fig. 3.2 and the empirical PDF of IID Terrain in Fig. 3.1). 

Quantitative comparisons among these histograms are shown in Fig. 3.3.  

 

 

 

Figure 3.3. Kolmogorov-Smirnov (K-S) test results to check IID assumptions. The cumulative 
empirical distribution of IID Terrain is represented by solid lines [ )(xFX ] in the plots, and 
corresponding cumulative empirical distributions of different Block Terrains are represented 
by dashed lines [ )(xFY ]. 
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 We individually compared the empirical PDF of the scene IID transformed 

samples to the empirical PDFs of the blocks using the standard K-S test.  

For each potential value x, the K-S test compares the proportion of first sample (e.g., 

X) values less than x with proportion of the second sample (e.g., Y) values less than x, 

or ( ))()(max xFxF YX − , where )(xF  denotes the cumulative distribution. The K-S 

test results are shown in Fig. 3.3, where the confidence level was set to 99% for each 

K-S test.   

The difference between normalized histograms of the blocks of data compared 

with that of the whole data-cube (IID case) are always significant except in Block 6, 

but it is difficult to draw a distinction between the very large and visually obvious 

differences in Blocks 1, 3, 5, and 7 as compared with the minor differences in Blocks 

2, 4, and 8, because a block of data may not necessarily consist of spectra from a 

single homogenous terrain—although it is assumed that it is, and every effort was 

made in this experiment to select only blocks of terrain data that appeared to be from 

a single terrain. Thus, we settled for quantifying those differences (rather than 

explaining them) through the results shown in Figure 3.3. 

 A non-rejection by the K-S test, in this context, means that the corresponding 

data transformation approach produces approximately IID sample features, for the 

given sample size. Otherwise, it does not produce IID features. The results shown in 

Fig 3.3 indicate that some of the data blocks produced approximately IID features, 

while other blocks did not. This outcome shows that the confidence one may have in 

obtaining IID features from blocks of data using this data transformation approach 

cannot be generalized, because it may depend on the location of blocks of data in the 
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imagery. We could also speculate from these results that blocks of significantly 

smaller sample sizes would deviate even more. It is also worth noting that these 

results may depend on the homogeneity level of material types in the scene—for 

instance, a spectral group (e.g., terrain) often consists of mixtures of different spectral 

classes (i.e., terrain may be represented by soil, grass, small rocks, and other 

materials).   

In summary, this experiment generates a histogram for each 4040×  sampled 

block, summarizing the marginal (not joint) distribution of the transformed data 

values within each block. Thus this experiment investigates the variability of these 

histograms, and compares them with the histogram for the entire large data cube. 

      The experiment does give information about whether 4040×  contiguous 

blocks have marginal distributions (for individual transformed coordinates) that are 

sufficiently close to one another. But this experiment tells nothing about the joint 

distributions of transformed data values within nn×  windows. 

3.4 Summary and Conclusions 

We proposed in this chapter a two-step data transformation approach that maps 

two calibrated spectral sets from their original space to a subspace, where the 

statistical power of detectors can be improved and responses of a given material type 

under different illumination conditions are more likely to cluster. The result is then 

transformed from this multivariate subspace to a univariate domain, where it is 

desired that clusters are preserved. One way to check the plausibility of these desired 

features is to conduct simulation experiments that apply different anomaly detection 
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techniques to transformed data of relevant examples. Chapter 5 discusses such 

simulation experiments, using data characterization results from Subsection 2.4.  

This chapter also presented experiment results that showed that blocks of HS data 

after data transformation, as described in this chapter, does not satisfy the i.i.d. 

assumption made for the development of univariate detectors. This outcome is 

probably also true for other data transformation schemes. The main impact of this 

outcome is that we might have to develop test cutoffs for our scoring metrics by 

simulation and sampling (or by some other means) because no theoretical distribution 

relying on i.i.d. limit theorems can be trusted in the transformed data. Cutoff 

threshold determination will be addressed in Chapters 5-7. 
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Chapter 4  Statistical Anomaly Detection 

4.1. Introduction 

The detectors described in this chapter will be used for a fair comparative 

study in Chapter 5 and Chapter 6, where it will be shown how the rejection thresholds 

(cutoffs) are to be obtained, and where it will be clarified under what specific 

parameter values within the null and alternative hypotheses the desired rejection 

probabilities are calculated in defining size and power of the test. 

Some of the most prominent anomaly detection techniques for HS imagery 

will be discussed in this chapter. These detectors are based on multivariate techniques 

(the older detectors) and use two sets of multivariate samples of the form in (3.1) and 

(3.2) in order to perform their tasks. Multivariate anomaly detectors are the natural 

choice for HS image data, as discussed in Section 1.3, because a HS sample is 

multivariate. 

 This chapter also presents a host of univariate techniques (the new detectors) 

that, to the best of our knowledge, are applied for the first time to the HS anomaly 

detection problem. These detectors take as input two sets of univariate samples of the 

form in (3.9) and (3.10) in order to perform their tasks.  

Note that the older anomaly detectors enter the comparison study only as 

applied to the calibrated K-dim HS data, while the new detectors including all those 

in Sec. 4.3 operate only on the transformed data.  

 The remainder of this chapter is organized as follows: Section 4.2 presents a 

brief discussion on multivariate normal based statistical hypothesis testing 
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(Subsection 4.2.1), describes the industry standard for HS anomaly detection 

(Subsection 4.2.1), and presents alternative multivariate anomaly detection techniques 

(Subsection 4.2.2). 

Section 4.3 introduces univariate techniques for HS anomaly detection, including a 

semiparametric model (Subsection 4.3.1) and other alternative data combining 

techniques (Subsection 4.3.2). Section 4.4 summarizes this chapter.   

4.2. Multivariate Techniques 

Since the most popular older detector is based on a multivariate statistical 

technique, we will start with a brief description on statistical hypothesis testing and 

continues with a discussion on target/anomaly detection based on multivariate normal 

distributions, followed by some of the additional alternative multivariate techniques. 

In particular, the following multivariate detectors are discussed: Reed-Xi (RX) 

detector [14], the kernel-based RX (KRX) detector [15], Fisher’s linear discriminant 

(FLD) detector [16], dominant principal component (DPC) detector [16] and Eigen 

separation transform (EST) detector [16]. These techniques, or variants of them, 

arguably represent a list of the most distinct approaches for HS anomaly detection. 

But conspicuously missing from this list are techniques based on Markov Chain 

Monte Carlo (MCMC). We found only one specific MCMC based anomaly detector 

in the open literature [24], but we excluded it from this effort because its performance 

was shown [24] to be comparable, not improved, to that of the RX detector.  
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4.2.1. Statistical Hypothesis Testing 

A common problem in science is the empirical verification or rejection of a 

hypothesis concerning a population. In essence, a statistical hypothesis test formalizes 

the various actions that can be taken and introduces explicitly a numerical measure of 

the consequence of each action for a given state of Nature. One may interpret this 

formality as a process, where one out of two competing hypotheses regarding the 

population of a random variable will be chosen as the most likely hypothesis. In 

general, one defines two hypotheses (a simple or composite null hypothesis and a 

simple or composite alternative hypothesis [25]) and derives a test statistic under the 

conditions of the simple or composite null hypothesis to show that under this 

hypothesis the test statistic has a known behavior, i.e., it is controlled by a known 

probability distribution function. The test statistic then is itself a random variable 

defined as a function of the random variables that comprise a random sample.  

Since all the detectors used for this work require a two-sample data structure, 

a simple hypothesis, in this context, means that the null or alternative probability law 

for the two-sample data is completely specified including all parameter values. In the 

same context, a composite hypothesis means that the null or alternative probability 

law corresponds to a family of possible distributions with parameter values not fully 

known in advance.  

 We discuss next a target detection test under the multivariate normal 

assumption using the HS imagery.     
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4.2.1.1. Multivariate Normal Target Detection 

In principle, target detection problems can be formalized making use of a 

null hypothesis and an alternative hypothesis, simple or composite. These hypothesis 

tests attempt to answer whether the observed samples correspond to target data or 

non-target data. Depending on how much is known a priori about the target(s), 

implementation of this test may take different forms. For instance, if one uses the 

likelihood ratio method [25] to design a target detector and has a priori knowledge 

that the null and alternative hypothesis distributions are multivariate normal, then, for 

a single background group (e.g., G1—see Subsection 2.4.1) and a particular target 

(G4—see Subsection 2.4.1), the null and alternative hypotheses are:  
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               (4.1) 

 

where K
rc Rx  ∈  is a random column vector at the ( )thcr,   pixel location in X  [see 

(2.4)], the K dimensional mean column vectors 1μ  and 4μ  are different from each 

other, and the KK ×  dimensional covariance matrices 1Σ  and 4Σ  are also different 

from each other.  

If parameters ( )4141 ,,, ΣΣμμ  are completely known a priori, then (4.1) are 

simple hypotheses and the natural logarithm of the likelihood ratio detector [4] is 

known as the quadratic discriminant function, 
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where { } CR

cr
rc

Qd  ,

1,1
)(

==
 are non-negative scalars and 1−Σ  is the inverse of matrix Σ .  

 When the covariance of the two hypothesis distributions are equal 

( )ΣΣΣ == 41 , the quadratic detector simplifies to the matched filter [4],  

 

( )14
1)( μμΣx −= −t

rc
rc

MFd η ,                                          (4.3) 

 

where η  is a normalizing constant. 

 In actual applications, however, the exact distributions are not known a priori. 

Under these conditions, the mean and covariance of each hypothesis normal 

distribution can be replaced with their maximum likelihood (ML) estimates. This is 

known as the generalized likelihood ratio (GLR) detector [4]. When ML estimates are 

used in (4.3), enough data points are required to estimate the mean and covariance for 

both hypothesis distributions. For the sake of this discussion, let assume that enough 

data points are available a priori, then 1μ̂ , 4μ̂ , and Σ̂  could be computed and stored 

in a library. Using this library, unknown vectors { } CR
crrc

 ,
1 ,1 ==x  in X  could be tested 

according to (4.1) via the following adaptive matched filter: 

 

( )14
1)( ˆˆˆ μμΣx −= −t

rc
rc

AMFd η ,                                        (4.4) 

 

where, 1μ̂  is the estimator of 1μ , 4μ̂  is the estimator of 4μ , and Σ̂  is the estimator of 

Σ .  
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However, using (4.4) to test { } CR
crrc

 ,
1 ,1 ==x  in X  might not be reliable, because 

the ML estimates ( )4141
ˆ,ˆ,ˆ,ˆ ΣΣμμ , which are obtained from a pre-stored spectral 

library, are often found not to be robust for all kinds of environmental and/or 

illumination conditions. This problem leads to the need for anomaly detection, where 

all data points in X  would be tested using reference data directly from X  (not from a 

spectral library), such that, any anomalous object in the scene would be declared a 

candidate target.    

4.2.1.2. Multivariate Normal Anomaly Detection 

An anomaly detector that is based on the family of normal distributions is 

derived from the likelihood ratio test [25], where the exact shape Σ  and location μ  

of the target hypothesis 1H  distribution are not known. For simplicity, let’s assume 

again that background spectra belong to a single group (G1) having a K-dimensional 

mean column vector 1μ . Under the assumption of normally distributed hypotheses 

with equal covariances ( )Σ , the binary hypothesis test is   

 

     :
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μμ
μμ
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H
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                                             (4.5) 

 

where the column vector KRμ  ∈  is the mean of a test pixel K
rc Rx  ∈  in X , see (2.4).  

 If 1μ  and Σ  are completely known, the likelihood ratio test simplifies to the 

Mahalanobis distance metric [4],  
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( ) ( )1
1
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MDd ,                                    (4.6) 

 

and the adaptive anomaly detector using the ML estimates μ̂  and Σ̂  is  

 

( ) ( )μxΣμx ˆˆˆ 1)( −−= −
rc

t
rc

rc
AMDd ,                                     (4.7) 

  

where the computations of μ̂  and Σ̂  depend on the sensor’s viewing perspective 

recording X  [for instance, for top view imagery, μ̂  and Σ̂  are estimates using 

pixels (spectra) surrounding rcx  (see Chapter 6); for ground view imagery, μ̂  and Σ̂  

are estimates using spectra from a spectral library]. Pixel rcx  would be declared an 

anomaly when scalar )(rc
AMDd  is greater than a high cutoff threshold.  

 The adaptive anomaly detector in (4.7) forms the basis for the so called Reed-

Xiaoli (RX) algorithm, which is discussed next.  

4.2.1.3.  Reed-Xi (RX) Anomaly Detector 

Based on the material discussed in Subsection 4.2.1.1 and Subsection 

4.2.1.2, a fully adaptive multiband spectral detector was proposed by Reed and Yu in 

[14]. This detector is a generalized version of the adaptive spectral matched filter, 

where the problem was formulated to detect objects of a known spatial pattern, but 

unknown spectral distribution, against a clutter background that is assumed to be 

normally distributed with unknown parameters. If all the assumptions are satisfied 

(i.e., spectra of clutter background are i.i.d. and normal), then this detection test has a 
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constant false alarm rate (CFAR) property over the detector’s response for clutter 

background. 

This detector was employed by the DARPA MUSIC program [26] to 

detect military vehicles in an intense clutter background, and this visibility made the 

RX algorithm the industry standard for anomaly detection in the target community. 

Since then, The RX anomaly detector has become a baseline approach for comparison 

purposes against competing anomaly detection approaches. 

Favorable claims have been made, see [26] and [27], suggesting that the 

RX anomaly detector is robust when used to detect spectral differences between a 

block of data in X —see the nn×  window in (2.8) —and a reference spectra set. But 

for an anomaly detector to be truly robust, or even effective in all types of realistic 

scenarios (see Chapter 7, where real HS data are used), it must be able to handle 

samples from all kinds of data, including from the ones shown in the null and 

alternative hypotheses (2.11) and (2.12), respectively. (Recall that (2.11) and (2.12) 

will be used as baseline hypotheses for the simulation experiments discussed in 

Chapter 5.)  

 Using the two sample implementation method described in Subsection 2.2.3, 

where  ( )
22212    , , nyyW L= ,  column vectors { } Kn

uu Ry ∈=
2

12 , ( )
11111    , , nyyW L= , 

and column vectors { } Kn

hh Ry ∈=
1

11 , a popular version of the RX anomaly detector is 
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index the left upper corner pixel of an nn×  window in X  [see, for instance, (2.8) 

and (2.9)]. 

 Note that in order to test the entire X , all { } R∈
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computed using (4.8), where 1W  and 2W  are obtained as described in Subsection 

2.2.3. A 2-dim output surface can then be constructed using { } 1 ,1
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where )1(  )1( −−×−−∈ nCnR
RX RZ  has a smaller spatial area than X ’s CR×  spatial area.  

Output surfaces having the form of (4.9) will be shown later in Chapter 6 (testing 

results for top view imagery) and Chapter 7 (testing results for ground view imagery) 

for different ways of obtaining 1W  and 2W . 

4.2.1.4. Kernel RX (KRX) Algorithm 

The RX detector does not take into account the higher order relationships 

between the spectral bands at different wavelengths. The nonlinear relationships 
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between different spectral bands within the target or clutter spectral signature were 

exploited in [15] using a kernel-based version of the RX model. The authors named 

this approach: the kernel RX (KRX) algorithm. 

 An interpretation of the KRX algorithm is that it extends the utility of the RX 

algorithm from a lower dimensional data space to a higher dimensional nonlinear 

feature space by applying a well known kernel trick (see, for instance, [15]) in order 

to kernelize the corresponding generalized likelihood ratio test expression of the RX 

approach. The GLR test expression of the kernel RX is similar to the RX approach, 

but every term in the expression is in kernel form, which can be readily calculated in 

terms of the input data in its original data space. 

 The notion of applying nonlinear kernels as a means to extract features from 

data is not new. The most prominent algorithm using this application is the well 

known support vector machine proposed by Vapnik [28]. Many other kernel-based 

versions of existing algorithms have been proposed in the literature, including kernel 

PCA [17] and kernel FLD [29]. The authors of the KRX detector, however, were the 

first ones to present to the HS research community the kernelized version of the RX 

algorithm.  

 The implicit model of the KRX method is very different from the RX method, 

namely that the data values are multivariate normal not as HS measurements, but only 

when those measured values are nonlinearly embedded in some higher dimensional 

space. Using the two sample implementation method described in Subsection 2.2.3, 

where  ( )
22212    , , nyyW L= , { } Kn

uu Ry ∈=
2

12 , ( )
11111    , , nyyW L= , and { } Kn

hh Ry ∈=
1

11 , 

the KRX anomaly detector can be compactly represented by 
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 The rationale for using 1
2
−K  as the normalizing matrix in (4.10) is based on the 

properties of the kernel PCA, which is explained, for instance, in [15].   

 Finally, the atomic kernel function used to implement the KRX detector in 

this effort was the well known Gaussian (radial basis function) RBF kernel [15].  

 To test the entire X , all  
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must be computed, where 1W  and 2W  are obtained as described in Subsection 2.2.3. 

A 2-dim output surface can be constructed using { } 1 ,1
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4.2.2. Alternative Multivariate Anomaly Detection 

This subsection describes three additional multivariate based techniques for 

HS anomaly detection: Fisher’s linear discriminant and two eigen based approaches. 

4.2.2.1. Fisher’s Linear Discriminant (FLD) 

Fisher’s linear discriminant analysis has become a standard technique for 

detection problems involving samples from different object classes. It projects the 

original high dimensional data onto a low dimensional space, where all the classes are 

well separated by maximizing the Rayleigh quotient, i.e., the ratio of between-class 

scatter matrix determinant to within-class scatter matrix determinant. The application 

of the FLD detector to HS imagery has been investigated for anomaly detection [16] 

and for object classification [27], where a classification algorithm was derived based 

on FLD to force different classes to be along different directions in a low dimensional 

space. Multi-object classification is beyond the scope of this dissertation; hence, our 

focus will be limited to adapting FLD to a two class problem in HS imagery. 
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11  as described in Subsection 2.2.3, a version of FLD for the two-class 

(anomaly or not anomaly) problem is shown below: 
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 After testing the entire X , all { } R∈
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and 2W  are obtained as described in Subsection 2.2.3. The corresponding output 

surface FLDZ  can be constructed as follows 
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4.2.2.2. Dominant Principal Component (DPC) 

The DPC technique is based on a basic general principle, that data are 

projected from their original high dimensional space onto a significantly lower 

dimensional space (in our case, only one dimension) using a criterion that promotes 

highest sample variability within each domain in this lower dimensional space. This 

technique has been also adapted to HS anomaly detection and yielded some good 

performances on real HS data (see, for instance, [16]). 

 Using ( )
22212    , , nyyW L= , { } Kn

uu Ry ∈=
2

12 , ( )
11111    , , nyyW L= , and 

{ } Kn
hh Ry ∈=

1

11  as discussed in Subsection 2.2.3, this technique can be adapted to the 

two-class (anomaly or not anomaly) problem as follows: 

 

( )22
)( yyE 1 −= tij

DPCZ ,                                 (4.17) 
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where ∑
=

−=
1

1
1

1
1

n

u
un yy1 , ∑

=

−=
2

1
2

1
22

n

u
un yy , and Kt RE ∈Σ2

ˆ  is the transposed highest 

energy eigenvector (column vector) from the principal component decomposition of 

( ) ∑
=

− −−−=
2

1
2222

1
22 ))((1ˆ

n

u

t
uun yyyyΣ . 

 An output surface DPCZ  using (4.17) can be constructed as follows 
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4.2.2.3. Eigen-Separation Transform (EST) 

The EST detector is a variation of the DPC detector, see [16]. Using 

( )
22212    , , nyyW L= , { } Kn

uu Ry ∈=
2

12 , ( )
11111    , , nyyW L= , and { } Kn

hh Ry ∈=
1

11 , as 

described in Subsection 2.2.3, the EST anomaly detector can be expressed as 

 

( )2
)( yyE 1 −= ΔΣ

tij
ESTZ ,                                 (4.19) 
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1
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1
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u
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2

1
2

1
22

n

u
un yy , and Kt RE ∈ΔΣ  is the transposed highest 

energy eigenvector from the principal component decomposition of 21
ˆˆ ΣΣΔΣ −= , 
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such that, ( ) ∑
=

− −−−=
1

1
1111

1
11 ))((1ˆ

n

u

t
uun yyyyΣ  and 

( ) ∑
=

− −−−=
2

1
2222

1
22 ))((1ˆ

n

u

t
uun yyyyΣ .    

 An output surface ESTZ  using (4.19) can be constructed as follows 
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4.3. Univariate Techniques 

All the univariate techniques presented in this section use results from the data 

transformation presented in Chapter 3. These techniques range from parametric, 

semiparametric, to nonparametric. These univariate techniques will be sometimes 

referred to in this dissertation as a two-step approach for HS anomaly detection, 

because two multivariate data sets are first mapped to two univariate series, then a 

resultant scalar is produced from these univariate series via a score metric.  

The remainder of this section is organized as follows: Subsection 4.2.1 discusses a 

semiparametric model and Subsection 4.2.2 discusses alternative parametric and 

nonparametric techniques, including the well known analysis of variance.  

4.3.1. Semiparametric (SemiP) Anomaly Detection 

A semiparametric model and its application to anomaly detection is discussed 

in this subsection. Using the same two sample implementation method described in 
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Subsection 2.2.3, where  ( )
22212    , , nyyW L= , { } Kn

uu Ry ∈=
2

12 , ( )
11111    , , nyyW L= , 

and { } Kn
hh Ry ∈=

1

11 , these samples will be transformed, as described in Section 3.2,  to 

( ) ( )xfxxx n 22212 ~   , ,
2

L=  and ( ) ( )xfxxx n 11111 ~   , ,
2

L= , where { } 0
11

0 900 2 ≤≤ =
n
uux , 

{ } 0
12

0 900 2 ≤≤ =
n
uux , and ( )xf2  and ( )xf1  are unknown joint PDFs. 

 In order to simplify the anomaly detection problem using mapped data, let ux1  

and ( )22 ,,1 nux u L=  be i.i.d. random variables controlled by unknown marginal 

PDFs 0g  and 1g , respectively, or 

 

 )( ~ i.i.d.  ),...,(

)(~  i.i.d.  ),...,(

11111

02212

2

2

xg xxx

xgxxx

n

n

=

=
,                             (4.21) 

 

where { } 2
12

n
uux =  and { } 2

11
n
uux =  are assumed to be independent from each other.  

  If we assume further that these marginal distributions are exponentially related 

as 

   .)exp(
)(
)(

0

1 x
xg
xg βα += ,                                      (4.22) 

 

but are otherwise unrestricted, then since  g1 is a density, β = 0 must imply that α = 

0. Thus, α merely functions as a normalizing parameter.  Notice also in (4.22) that if 

β = 0 then { } 2
12

n
uux =  and { } 2

11
n
uux =  must belong to the same population (i.e., 01 gg = ). 

Using this fact, an anomaly detection test statistic can be designed by checking the 

following null ( )0H  and alternative ( )1H  hypotheses: 
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 The following test statistic can be obtained [30][31] from (4.21), (4.22), and 

(4.23): 

 

,ˆˆ)1( 222)( vnZ ij
SemiP βρρ −+=                                    (4.24) 

 

where 1,,1 −−= nRi L  and 1,,1 −−= nCj L   index the left upper corner pixel of an 

nn×  window in X  [see (2.8) and (2.9)], ),...,(),...,,,...,(
022 1111221 nnn ttxxxxt ≡= ; 

( ) 2

00
22 )(~̂)(~̂ˆ ∑∑ −=

i iii ii tgttgtv ; 220 nnn += ; using a profiling procedure (see 

[30][31]), 
)ˆˆexp(1

11)(~̂
2

0
i

i tn
tg

βαρ ++
=  estimates ,

)exp(1
11)(~

0
0

i
i tn

tg
βαρ ++

=  

which in turn estimates 0g ; ( )βα ˆ,ˆ  are the ML (maximum likelihood) estimators of 

( )βα , ; and 2)1( −+ ρρ  is a constant related to sample sizes of 2x  and 1x , see 

[30][31].  

 The test statistic in (4.24) will be referred herein as the SemiP test statistic, 

and the two step approach—data mapping (see Section 2.2.3) and application of the 

SemiP test statistic—will be referred herein as the SemiP anomaly detector. (For 
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convenience, we may also refer to results produced by the SemiP anomaly detector as 

)(ij
SemiPZ .) 

Using (4.24), the entire X  will be used for testing, where 1W  and 2W  may be 

obtained as described in Subsection 2.2.3. A 2-dim output surface can be constructed 

from { } 1 ,1
1 ,1

)( −−−−

==

nCnR
ji

ij
SemiPZ , 
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 Examples of )1(  )1( −−×−−∈ nCnR
SemiP RZ  are shown in Chapter 6 (testing simulated 

top view data cubes) and Chapter 7 (testing real ground view HS data cubes) for 

different ways of obtaining 2W . (Recall that 1W  is always obtained using a small 

window at the (ij)th location in the imagery.) 

4.3.2. Alternative Univariate Methods for Anomaly Detection 

Motivated by the advantage and disadvantage of using semiparametric 

inference for anomaly detection, we propose to use three alternative univariate 

scoring metrics. These metrics also combine samples in order to perform their 

functions, but, differently from the SemiP anomaly detector, they do not require 

parameter initialization.   

The scoring metrics described in this subsection are applied for the first time 

to the problem of HS anomaly detection.  
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4.3.2.1. Functional Approximation of SemiP (AsemiP) 

We present a nonparametric score metric that is free from parameter 

initialization and can functionally behave like the semiparametric test statistic in 

(4.24) when introduced with two sequences of univariate data. 

 Starting with two multivariate samples ( )
22212    , , nyyW L=  and 

( )
11111    , , nyyW L= , these samples are transformed, as described in Section 3.2,  to 

univariate sequences ( )
22212    , , nxxx L=  and ( )

21111    , , nxxx L= . We propose to 

combine these sequences in the following way in order to decide whether 1x  is 

anomalous to 2x : 

 

( ) ,
~̂

2
2

2

2

2
11

2
1

2
)(

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+=

−−−

S
S

S
nnZ unionij

AsemiP
β

                              (4.30) 

where, 

( ) ( )
022

,...,,,,,, 1111221 nnn ttxxxxt == LL , 220 nnn += ,              (4.31) 
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and  

 

( )2
21

2~̂ xx −=β .                                        (4.39) 

 

A 2-dim output surface can then be constructed using { } 1 ,1
1 ,1

)( −−−−

==

nCnR
ji

ij
ASemiPZ , or 
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4.3.2.2.  Asymmetric Variance Test (AVT) 

The nonparametric score metric presented in this subsection is arguably 

the most compact expression for combining-sample based anomaly detection. 

Transforming ( )
22212    , , nyyW L=  and ( )

11111    , , nyyW L= , as described in Section 

3.2,  to sequences ( )
22212    , , nxxx L=  and ( )

21111    , , nxxx L= , we propose to 

combine these two sequences in the following way in order to determine whether 1x  

is anomalous to 2x : 

 

( )
2

2

22
2

2
)(

ζ̂
τ−= SnZ ij

AVT                                               (4.41) 

where, 0>τ  a constant chosen by the user, 2
2S  is shown in (4.37), and—for 2x  

shown in (4.38),  
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j

n
Sxxζ                                  (4.42) 

 

 The key in (4.41) is in the choice of τ . Using the sample concatenation shown 

in (4.31), we choose τ  to be 

,
)1(

)(0

1 0

2
2 ∑

= −
−

==
n

i

i
union n

ttSτ                                   (4.43) 

where t  is shown (4.33).    
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 Notice that despite of τ  being treated as a constant in (4.41), the value of τ  

will vary at each testing location (ij) in X . 

 Using (4.41), (4.42), and (4.43), with the data transformation approach 

described in Section 3.2, constitutes the AVT anomaly detector. High values of (4.41) 

indicates that ( )
22212    , , nxxx L=  is anomalous to ( )

21111    , , nxxx L= . 

 A 2-dim output surface can be constructed using { } 1 ,1
1 ,1

)( −−−−

==

nCnR
ji

ij
AVTZ , as shown 

earlier for other detectors, or 
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4.3.2.3.  Analysis of Variance (ANOVA) 

This subsection briefly presents the ANOVA test statistic—a parametric 

approach under the normal distribution—and its application to anomaly detection. 

The ANOVA method [32] attracted our attention because it is one of the most widely 

used statistical techniques in various fields.    

 The same two samples (see Subsection 2.2.3) ( )
22212    , , nyyW L=  and 

( )
11111    , , nyyW L=  are transformed, as described in Section 3.2, to sequences 

( )
22212    , , nxxx L=  and ( )

21111    , , nxxx L= . Both sequences are combined using the 

following formula [32]: 
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where, 2S  is defined in (4.34), ( )2,1 =uxu  are defined in (4.36) and (4.38), and 
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 High values of (4.45) indicate that 1x  is anomalous to 2x .  

 This detector’s output surface testing X  is constructed as 
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4.4. Summary 

Multivariate and univariate techniques and their adaptations to the anomaly 

detection problem were discussed in this chapter. These techniques will be used for 

comparison purposes in later chapters. Multivariate techniques are the natural choice 

for using HS imagery, because this data type is multivariate. Among the various 

multivariate techniques, the anomaly detection technique, known as the RX anomaly 

detector, is the most popular in the industry for its utility and, hence, has become the 

baseline technique for comparison purposes.  
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This chapter also proposed to use a univariate semiparametric model for anomaly 

detection applications, which for the best of our knowledge is done for the first time. 

The motivation for using the semiparametric model is for handling mixtures of HS 

samples for anomaly detection applications, as discussed in Chapter 1, where 

anomaly detectors are constantly faced with testing cases in real HS imagery, such 

that, 10 gg ≠  but 0g  (from a mixture of two or more material types) significantly 

overlaps 1g  (from a material type belonging to that mixture). In the context of 

anomaly detection, it is desirable to relax this difference, because transitions of 

spectral group regions in X  offer these testing cases and, consequently, degrade 

performance of existing anomaly detectors testing X . Performance degradation can 

be clearly observed in Chapter 7 through experiment results testing real HS imagery. 

Alternative univariate scoring metrics (AsemiP, AVT, and ANOVA) were also 

proposed. The multivariate detectors (RX, FLD, DPC, and EST) and univariate 

detectors (SemiP, AVT, AsemiP, and ANOVA) are used for comparison studies in 

later chapters.   
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Chapter 5  Power Using Idealized Spectral Samples 

5.1. Introduction 

Chapter 2 presented, among other topics, the segmentation and characterization of 

a challenging HS data cube, quantifying in the process an important fact: in analyzing 

or testing small blocks of data in X , group mixtures (E2, E3, E4, E5, and E6—see 

Subsection 2.4.1) are expected to exist in real HS imagery, and, as it will be shown in 

Chapter 6 (TV anomaly detection) and Chapter 7 (GV anomaly detection), if they are 

ignored, they can significantly degrade the performances of anomaly detectors. Since 

this fact has been ignored in the HS research community, anomaly detection has been 

playing a minor role in surveillance or targeting applications. This chapter aims at 

quantifying the impact spectral mixtures (heterogeneous samples) have on power 

performances of both classes of anomaly detection approaches (multivariate and 

univariate), via simulation experiments. These outcomes will be put in the context of 

what is desired or undesired for anomaly detection applications in order to shed some 

lights on performance expectations of both classes of detectors on real HS imagery. 

 The sample structure of 2W  and 1W  will be specified using results from 

Chapter 2, and these samples will be shared by all the detectors discussed in the 

Chapter 4. In particular, specific null and alternative hypothesis models will be 

specified as mixtures of multivariate normal distributions representing idealized 

spectral samples. For more flexibility, a bias term and a shape term will be added to 

the estimated spectral mean of G4 (target group) in order to isolate the effect of 
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changing illumination conditions (bias) from that of different spectral shapes 

(material spectral distinction). 

 The remainder of this chapter is organized as follows: Section 5.2 specifies 

parameters for the null/alternative hypothesis models; Section 5.3 presents the plan 

used to conduct simulation experiments for this chapter, Section 5.4 discusses 

simulation results focused on the impact of spectral bias/shape and mixtures on 

detectors’ performances; and Section 5.5 summarizes and concludes this chapter.  

5.2. Heterogeneous Models to Study Detection Power 

This section describes null/alternative hypothesis models whose samples will be 

generated and used as inputs for the detectors described in Chapter 4. In particular, 

the null hypothesis 0H  in (2.11) and the alternative hypothesis 1H  in (2.12) were 

used to conduct simulation experiments for this chapter. For convenience, we repeat 

them here with the trial index w, i.e., 
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where definitions and assumptions are given in (2.11) and (2.12), respectively, and 

parameter specifications are given in Subsection 2.4.4.  
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 Recall from Subsection 2.4.4 that we arbitrarily fixed proportions 

( ) ( )3.0,3.0,4.0,, 321 =πππ  in order to expose the detectors to one of the harder null 

hypotheses observed in X , i.e., a sample representing event E5 with three groups 

(G1, G2, G3) versus event E1 with G3. Recall also from Subsection 2.4.4 that the 

average magnitude of G3 is relatively close to that of G4. 

 Using (5.2) as the alternative, and systematically varying contribution 

proportions { }4,3,2,1 =aaρ , will allow us to check the robustness of these detectors 

as a function of an alternative that becomes gradually harder relative to the null 

hypothesis. Certain combinations of ( )4321 ,,, ρρρρ  can determine the level of 

difficulty imposed on these detectors under 1H  relative to 0H . For instance, 1H  

would correspond to 0H  by setting ( ) ( )0.0,0.1,0.0,0.0,,, 4321 =ρρρρ  and, thus, by 

using a small variation of this setting, e.g., ( ) ( )1.0,9.0,0.0,0.0,,, 4321 =ρρρρ  with 

( )3,,1  ˆˆ 4 L=≠ kkμμ , 1H  would represent a hard alternative hypothesis to detect; 

alternatively, by setting ( ) ( )0.1,0.0,0.0,0.0,,, 4321 =ρρρρ  with ( )3,,1  ˆˆ 4 L=≠ kkμμ , 

1H  would represent an easy alternative hypothesis using the same detector. 

 Since we are also interested in studying the independent effect of spectral 

magnitude from that of spectral shape on detectors’ performances, we added more 

flexibility to 1H  for this chapter. In particular, we decomposed the mean vector 4μ  

(G4) into three parts: a baseline column vector μ  having K dimensions, a bias column 

(not random) vector BΔ  having K dimensions, and a shape column (not random) 

vector SΔ  having K dimensions. The 4th-group mean vector (a column vector) then is 

represented by 
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SB Δ+Δ+= μμ 4 ,                                                     (5.3)  

        

where 0;

 )1(

≥

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=Δ

×

φ

φ
φ
φ
φ
φ

K

B

M

 (scalar), 0;

  )1(

≥

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

=Δ

×

s

s
s

s
s

s

K

S

M

 (scalar), and KRμ∈ . 

 

So, for the simulation experiments presented in this chapter, ( ){ }3
1ˆ =aaμ  estimated 

( ){ }3
1=aaμ , as mentioned in Subsection 2.4.4, but, differently here, 4

~μ  estimates 4μ , 

where 

 

 SB Δ+Δ+= 44 ˆ~ μμ .                                                     (5.4)  

 

Notice that BΔ  changes only the bias of 4
~μ  and SΔ  changes only the shape of 

4
~μ . This decomposition will allow us to show the difference between desired and 

undesired performances of anomaly detectors through the influence of bias and shape 

changes imposed in 4
~μ  under 1H  in (5.2).  

A simulation plan for this chapter is described next. 

5.3. Simulation Plan 

Setting the number of bands 120=K , idealized pseudo samples will be generated 

according to models (5.1),  (5.2), and (5.4) as follows:  
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i. Values of aμ̂  ( )4,,1L=a  and ( )3,,1 L=aaπ   under 0H  and 1H  in (5.1) and 

(5.2), respectively, will be fixed throughout the simulations, but the values of 

4
~μ  in (5.4) will vary according to 

( ) ( ) ( ) ( )27.5,00.0 ,00.0,95.19 , 27.5,95.19, =sφ , see Section 5.4 for more 

details;        and ( )4,,1 L=aaρ  under 1H  will vary as specified in (2.13). See 

Subsection 2.4.4, Section 5.2, and Section 5.4 for specifications and 

justifications. 

ii. Using (i), with fixed sample sizes ,40012 == nn  multivariate random samples 

( ))(
2

)(
21 2

   , , w
n

w yy L  and ( ))(
1

)(
11 1

   , , w
n

w yy L  in (5.1) will be generated independently 

of each other, and, likewise, additional random samples in (5.2) will be 

generated independently of each other. Random samples generated using (5.1) 

will be independently generated from those generated using (5.2). 

Independently of proportions, samples will be generated every trial from 

multivariate normal distributions ( ){ }3

1
ˆ,ˆ =aaaN Σμ  to represent spectral groups 

G1, G2, and G3, respectively, and ( )34
ˆ,~ ΣμN  to represent G4 (recall from 

Subsection 2.4.4 that, because of confidentiality, we use 3Σ̂  to represent 

spectral covariance matrices of G3 and G4). Parameter values for these 

distributions are specified in Subsection 2.4.4 and Section 5.2. Trials are 

indexed by w, where mw ,,1L= , and the sample sizes 2n  and 1n  are fixed at 

once to 400. 
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iii. Attaining Cutoff Thresholds/Estimating Type I Errors: 

( ) ( )3.0,3.0,4.0,, 321 =πππ  is set once and for all, and values of  { }m
w

w
1

)(
2 =W  

and { }m
w

w
1

)(
1 =W  (m = 1500) will be generated according to model (5.1) and 

introduced to the detectors presented in Chapter 4. These detectors will yield 

1500 output results each. Each set of 1500 results will be used to estimate an 

empirical PDF, and a cutoff threshold will be attained by applying the 

standard quantile method to the empirical PDF. The desired type I error 

probability ( )ε  for the quantile method is fixed at once for all the detectors to 

05.0=ε . The detectors’ corresponding cutoff thresholds will be applied to the 

corresponding detectors’ output results in order to estimate the type I error ( )ε̂  

for each detector. The type I error is estimated by counting the number of 

trials 1m  that satisfy the detector’s output values being greater than the 

detector’s cutoff threshold and computing the ratio mm /ˆ 1=ε . (Since the 

sampling variability involved in estimating the quantiles in this way decreases 

as a function of m, a large m [e.g., m = 1500] ensure us that these estimates are 

asymptotically unbiased.) 

iv. Estimating the Type I Error: Additional values of { }m
w

w
1

)(
2 =W  and { }m

w
w

1
)(

1 =W  (m 

= 1500) will be generated according to (ii) and introduced to both detectors, 

where the detectors’ corresponding cutoff thresholds will be applied to the 

corresponding detectors’ output results in order to estimate the type I error ( )ε̂  

of each detector. The type I error is estimated by counting the number of trials 

1m  that satisfy the detector’s output values being greater than the detector’s 
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cutoff threshold and computing the ratio mm /ˆ 1=ε . (Additional samples will 

be generated for this step to ensure that the sample size is adequate for the 

estimation of ε .)      

v. Estimating the Power (1.0 – Type II Error): Using ( ) ( )3.0,3.0,4.0,, 321 =πππ  

and combinations of ( )4,,1L=kkρ  and 4
~μ  from (5.4), additional values of 

{ }m
w

w
1

)(
2 =W  and { }m

w
w

1
)(

1 =W  (m = 1500) will be generated according to model 

(5.2) and introduced to all the detectors, where the detectors’ corresponding 

cutoff thresholds will be applied to the corresponding detectors’ output results 

in order to estimate the power ( )θ̂  of each detector for a given set of 

combinations ( )4,,1L=kkρ  and 4
~μ . The type II error is estimated by 

counting the number 2m  of trials that satisfy the detector’s output values 

being lower then the detector’s cutoff threshold and computing the ratio 

mm /2 , such that ( )mm /0.1ˆ
2−=θ .  

vi. Estimating Performance Confidence Intervals (CI): Variability will be 

checked via confidence interval estimations for (iv) 

( )∑
=

−
−

±
U

u
uU

z
1

2
2/ ˆ

1
1 εεε α  and (v) ( )∑

=

−
−

±
U

u
uU

z
1

2

2/
ˆ

1
1 θθθ α , where 

( )2/11
2/ αα −Φ= −z  is the 2/1 α−  quantile ( )05.0=α  of the standard normal 

distribution, random quantities simulated will be indexed by u for a total 

number of simulation repetitions U = 2000, ∑
=

−=
U

u
uU

1

1 ε̂ε , and ∑
=

−=
U

u
uU

1

1 θ̂θ .     
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5.4. Summary of Results 

We conducted multiple simulation experiments and organized the exposition of 

detectors’ results in two parts: (a) results showing effects of spectral bias/shape on 

detectors’ power performances; and (b) results showing effects of a difficult 0H  

(involving sample mixtures) on the power of these detectors, as they test different 

levels of complexity under 1H  (easy, moderate, and hard) relative to 0H .   

As it will be shown later in Chapter 7, when properly implemented for real 

applications, the two-step univariate anomaly detection approach works significantly 

better suppressing the background clutter in real HS imagery, while accentuating 

anomalous objects, than does the conventional multivariate anomaly detection 

approach. For this reason, we used as a criterion for exploring specific parameter 

combinations under 1H  that of measuring power degradation relative to the calibrated 

performances of the two-step univariate anomaly detectors and, in the process, record 

the behavior of multivariate anomaly detectors, as they shared the same input samples 

used by the two-step univariate detectors.  

 In order to achieve this goal, we initiated the simulation process by arbitrarily 

setting some of the parameters, and followed with systematic changes to other 

parameters, as shown in two subsections within this section, Subsection 5.4.1 and 

Subsection 5.4.2.  

 Subsection 5.4.1 discusses the effects of spectral bias/shape differences on 

these detectors, using the simulation plan outlined in Section 5.3 using a fixed setting 

for ( )321 ,, πππ  in (5.1) and (5.2), a fixed setting for ( )4321 ,,, ρρρρ  in (5.2), and 

three combinations of parameter settings for ( )s,φ , which changes 4
~μ  in (5.4). 
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Subsection 5.4.2 discusses the effect of mixture proportions using the same 

simulation plan over eight combinations of parameter settings for ( )4321 ,,, ρρρρ  and 

seven combinations of parameter settings for ( )s,φ  in 4
~μ .  

 For the results shown in Subsection 5.4.1, it is desired that anomaly detection 

approaches are less sensitive to spectral bias but more sensitive to spectral shape, 

because high sensitivity to bias differences implies that spectral samples of a 

particular material under different illumination conditions may be detected as 

anomalous to each other, on the other hand, low sensitivity to spectral shape 

differences implies that objects that can blend very well within background clutter 

(e.g., camouflaged sniper) may not be detected as scene anomalies, although their 

spectral shapes—not their spectral bias—may be significantly different from those of 

other materials forming the background clutter.    

For results shown in Subsection 5.4.2, it is desired that anomaly detection 

approaches are more sensitive to the presence of target samples (G4) in the 

corresponding sample mixture under 1H , given that 0H  also consists of a sample 

mixture.   

5.4.1. Impact of Spectral Bias/Shape on Detection Performances 

Performance results from an experiment that emphasizes the impacts of 

spectral bias and spectral shape, independently of each other, on anomaly detectors 

are tabulated in Table 5.1 for the multivariate approach and in Table 5.2 for the two-

step univariate approach. The choices of parameter settings labeled as A, B, and C, 

see (5.5) below, were particularly chosen to show extreme performance differences of 

these detectors, as relatively high bias and/or high shape differences are presented 
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under 1H . In particular, through preliminary parameter explorations, we learned that, 

using the minimum component value in 4μ̂  as baseline [see (5.4)], a 25% change on 

bias and a 7% change on shape, were sufficient to cause high impacts on these 

detectors’ performances. Since the minimum component value in 4μ̂  is 79.486 (see 

Table 5.2), these settings correspond to about 95.19=φ  and 56.5=s  in (5.4).  

For this simulation experiment, we used three combinations of parameter 

settings in ( )s,φ  

 

( ) ( ) ( ) ( )56.5,00.0     00.0,95.19     56.5,95.19,
C                   B           A                                

=sφ
.                             (5.5) 

 

 Non-zero parameter values in (5.5) impose significant changes in the 

magnitude and/or shape of 4
~μ  [see (5.4)], which in turn cause 1H  in (5.2) to be 

significantly different from 0H  (5.1) using settings ( ) ( )3.0,3.0,4.0      ,, 321 =πππ  and 

( ) ( )0.1,0.0,0.0,0.0    ,,, 4321 =ρρρρ . The sample size was fixed to 400, the number of 

trials m was fixed to 1500, the number of simulation repetitions R was fixed to 2000, 

and the desired type I error was fixed at 05.0=ε . Using these settings, we estimated 

the 95% confidence intervals (CI 95%) for the estimated type I error ( )20001ˆ L=uuε  

and estimated power ( )20001ˆ L=uuθ  for each of these detectors. Since imposed 

bias/shape changes under 1H  in (5.2) do not interfere with the type I error estimates 

[see (5.1)], the confidence intervals for type I error were estimated only once per 

detector, see Table 5.1.  



 

 94 
 

Table 5.1 tabulates results from testing the multivariate anomaly detectors 

using these settings, and Table 5.2 tabulates results from testing the two-step 

univariate anomaly detectors. All detectors shared the idealized samples. 

 

Table 5.1.  Spectral bias/shape impact on power of multivariate detectors (Det), where 
parameter (Par) combinations of ( )s,φ  are labeled as A, B, and C, according to the scheme 
of (5.5). 

 

 
( ) ( )

( ) ( )0.1,0.0,0.0,0.0    ,,, 
3.0,3.0,4.0      ,,       

4321

321

=
=

ρρρρ
πππ

 

 

05.0
,,1

2000
1500

40012

=
=
=
=

==

ε
Uu

U
m

nn
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    Type I  ( )%95;ˆ CIuε        Power  ( )%95;ˆ CIuθ  

Det Par Lower Bound Upper Bound Lower Bound Upper Bound 
RX 

 
 
 

KRX 
 
 
 

FLD 
 
 
 

EST 
 
 
 

DPC 

 
A 
B 
C 

 
A 
B 
C 

 
A 
B 
C 

 
A 
B 
C 

 
A 
B 
C 

0.048546493 
 
 
 

0.048646478 
 
 
 

0.044824983 
 
 
 

0.047968719 
 
 
 

0.047510460 

0.052733506 
 
 
 

0.052673521 
 
 
 

0.051990016 
 
 
 

0.057469123 
 
 
 

0.056507740 

 
1.000000000 
1.000000000 
0.489456621 

 
1.000000000 
1.000000000 
0.463635719 

 
1.000000000 
1.000000000 
0.460359717 

 
1.000000000 
1.000000000 
0.435351767 
 
1.000000000 
1.000000000 
0.441806302 

 
1.000000000 
1.000000000 
0.530792153 

 
1.000000000 
1.000000000 
0.518152153 

 
1.000000000 
1.000000000 
0.502851367 

 
1.000000000 
1.000000000 
0.488190723 

 
1.000000000 
1.000000000 
0.509452692 

  

Results in Table 5.1 and Table 5.2 show that detector performances within each table 

are comparable among the detectors within these tables, and clearly illustrate the 

sensitivity of each approach (multivariate or two-step univariate) to different spectral 
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features, bias or shape. Multivariate anomaly detectors are sensitive to bias (see, for 

instance, Det RX Par B in Table 5.1) and insensitive to shape (see, for instance, RX 

Par C in Table 5.1). On the other hand, the two-step univariate anomaly detectors 

respond inversely to results shown in Table 5.1 (see, for instance, AsemiP Par B and 

Table 5.2.  Spectral bias/shape impact on power of two-step univariate detectors (Det), where 
parameter (Par) combinations of ( )s,φ  are labeled as A, B, and C, according to the scheme 
of (5.5). 

 

 
( ) ( )

( ) ( )0.1,0.0,0.0,0.0    ,,, 
3.0,3.0,4.0      ,,       

4321
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=
=

ρρρρ
πππ
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=
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    Type I  ( )%95;ˆ CIuε        Power  ( )%95;ˆ CIuθ  

Det Par Lower 
Bound 

Upper Bound Lower 
Bound 

Upper Bound 

 
SemiP 

 
 
 

AsemiP 
 
 
 

AVT 
 
 
 

ANOVA 
 
 
 

 
 

A 
B 
C 
 

A 
B 
C 
 

A 
B 
C 
 

A 
B 
C 

 
0.049689992 

 
 
 

0.048396724 
 
 
 

0.048724038 
 
 
 

0.047864640 
 

 

 
0.054310007 

 
 
 

0.053763275 
 
 
 

0.053715961 
 
 
 

0.052557102 
 

 
 

1.000000000 
0.493442024 
1.000000000 

 
1.000000000 
0.497496015 
1.000000000 

 
1.000000000 
0.491576768 
1.000000000 

 
1.000000000 
0.479205674 
1.000000000 
 

 
 

1.000000000 
0.534620953 
1.000000000 

 
1.000000000 
0.537630861 
1.000000000 

 
1.000000000 
0.536911794 
1.000000000 

 
1.000000000 
0.527917876 
1.000000000 

 
 

 

Par C in Table 5.2). Decomposing these two spectral features made it possible to 

review sensitivity differences between the two classes of detectors; otherwise, perfect 
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performances would have been shown for both classes of detectors, see, for instance, 

KRX Par A in Table 5.1 and AVT Par A in Table 5.2. We attribute these differences 

in sensitivity to the data transformation step in the two-step univariate approach. The 

implication of these differences, however, may be critical for applications using real 

HS imagery, as it will be discussed shortly. 

 Starting with two spectral means, ( ) ( )[ ]00.0,00.0,~
4 =sφμ  and 3μ̂ , that are not 

too distinct from each other, and using mixture proportion 0.14 =ρ  and parameter 

combination A, significant distinction between 0H  in (5.1) and 1H  in (5.2) exist and, 

as shown in Table 5.1 and Table 5.2, both classes of detectors respond with perfect 

power. This experiment using parameter combination B simulates testing cases 

involving samples of a particular material under different illumination conditions by 

removing the average shape difference between i.i.d. random samples using 

( ) ( )333
ˆ,ˆ| Σμθy Ng =  and i.i.d. random samples using ( ) ( )344

ˆ,~| Σμθy Ng = , see (5.1), 

(5.2) and (5.4), while preserving a significant bias difference between both samples. 

Since the data transformation step discussed in Chapter 3 is proposed to remove the 

impact of bias and preserve shape differences, the two-step univariate anomaly 

detectors could not distinguish between sample sets under 0H  in (5.1) and 1H  in 

(5.2), thus, their confidence intervals for power are comparable to their confidence 

intervals for type I errors, see Table 5.2. For real anomaly detection applications, 

however, this performance behavior is in fact desired, because testing cases involving 

samples of a particular material having a distinct spectral shape but under different 

illumination conditions are significantly more common in the real world than samples 
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of materials having similar spectral shapes under a particular illumination condition. 

(Changes on illumination environment influence the bias, or magnitude, in spectra.) 

 On the contrary, conducting this experiment with parameter combination C 

removes the bias, while preserving a significant average shape difference between 

random samples from ( ) ( )333
ˆ,ˆ| Σμθy Ng =  and ( ) ( )344

ˆ,~| Σμθy Ng = . Results in 

Table 5.2 show that the two-step univariate detectors do in fact emphasize on shape 

differences among multivariate samples, while multivariate detectors do not, see 

Table 5.1 for parameter combination C. The advantage of having sensitivity to 

spectral shape is that many categories of the difficult problem detecting camouflaged 

targets falls under the case mimicked by this simulation experiment using parameter 

combination C, i.e., testing samples of different materials having different spectral 

shapes, but similar spectral bias, under any illumination condition. For instance, 

materials composing sniper camouflage suits provide an average spectral magnitude 

that is comparable to the average spectral magnitude of natural canopy, but most of 

these camouflage suits have spectral shapes that are different from natural canopy in 

other regions of the spectrum outside the visible region (e.g., near infrared), these 

findings were reported in [33].  

 In summary, it is desired to have an anomaly detection approach that is 

sensitive to spectral shape and insensitive to spectral bias. These features, however, 

are not sufficient to address another important issue: detection approach’s inability to 

deal with mixtures of spectral samples in HS imagery. A suitable detection approach 

for samples involving mixtures would be able to maintain cutoff thresholds relatively 

low under the challenging null hypothesis in (5.1), hence, becoming potentially more 
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sensitive to the presence of target samples in the alternative hypothesis in (5.2). We 

will address next this particular issue. 

5.4.2. Impact of Spectral Mixtures on Detection Performances 

This subsection shows the benefit of using an anomaly detection approach 

capable of maintaining a relatively low cutoff threshold under a challenging null 

hypothesis in (5.1), as it tests the alternative hypothesis in (5.2) for different 

parameter combinations. This assessment can be made by recording the estimated 

power of these detectors, as a function of decreasing proportion of G4 ( )4ρ  in (5.2) 

from unity to smaller values. For this simulation experiment, a desired detection 

technique is expected to yield a superior power relative to performances of alternative 

approaches. 

 As the two anomaly detection approaches (multivariate and two-step 

univariate) are sensitive to different types of spectral features (bias or shape), we will 

ignore in this part of the simulation whether the detectors’ outcomes for the 

alternative hypothesis are desired or undesired, and calibrate instead their 

performances to a baseline, i.e., using the simulation plan described in Section 5.3, 

we will find a combination of parameters that will cause all the detectors to perform 

about the same, and name it: calibrated performances. We explored various 

combinations of parameter values ( )s,,,,, 4321 φρρρρ  and attained calibrated 

performances using parameter combination ( ) ( )0.1,0.0,0.0,0.0,,, 4321 =ρρρρ  and 

seven labeled combinations of ( )s,φ :  
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )00.0,00.0     97.0,60.5     58.1,34.8     39.2,87.11,
A7                   A6                  A5                   A4                       

60.3,19.15     23.4,68.17     56.5,95.19,            
A3                   A2                    A1                                  

=

=

s

s

φ

φ
,             (5.6) 

 

where, for the given parameter combination ( ) ( )0.1,0.0,0.0,0.0,,, 4321 =ρρρρ , the 

label combination A1 presents the easiest alternative hypothesis for both detection 

approaches to detect, and A7 presents the hardest alternative hypothesis for both 

approaches.   

 Detection performances using the simulation plan outlined in Section 5.3 and 

parameter combinations A1 through A7 in (5.6) for 

( ) ( )0.1,0.0,0.0,0.0,,, 4321 =ρρρρ  led to calibrated results, we created additional 

challenges to these detectors by changing mixture proportions ( )4,,1L=kkρ  under 

1H  in (5.2), as mixture proportions ( )3,,1L=kkπ  under 0H  and 1H  in (5.1) and 

(5.2), respectively, were kept fixed. In particular, ( )3,,1L=kkπ  were arbitrarily set 

to be approximately equal to each other, and 4ρ  was gradually decreased, as 

( )3,,1L=kkρ  were set approximately equal to each other satisfying the requirement 

0.1
4

1

=∑
=k

kρ . (Performance results using different parameter combinations were not 

included in this subsection because they were either redundant or did not show 

significant differences from the results included herein.) Summarized calibrated 

performances are shown in Table 5.3 and Table 5.4 for multivariate detectors and 

two-step univariate detectors, respectively, where the type I error CI estimations are 
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shown only once per detector. Table 5.5 through Table 5.10 show detectors’ 

performances using the same simulation plan and seven parameter combinations of 

( )4321 ,,, ρρρρ , over the seven labeled combinations according to scheme in (5.6). 

Results within each table from Table 5.3 thru Table 5.10 were achieved for a fixed 

parameter combination of ( )4321 ,,, ρρρρ  over the same seven labeled combinations 

of ( )s,φ . Actual differences between results shown in Table 5.3 and Table 5.4 for a 

given parameter combination are unimportant, but the fact that these results gradually 

decrease using combinations A1 through A7. The difficulty level of the alternative 

hypothesis in (5.2) was increased by changing the values of ( )4321 ,,, ρρρρ , as 

follows:  

Multivariate Detectors (Table 5.5): 
( ) ( )
( ) ( )90.0,03.0,03.0,04.0,,,

95.0,01.0,02.0,02.0,,,

4321

4321

=
=

ρρρρ
ρρρρ

, 

Univariate Detectors (Table 5.6): 
( ) ( )
( ) ( )90.0,03.0,03.0,04.0,,,

95.0,01.0,02.0,02.0,,,

4321

4321

=
=

ρρρρ
ρρρρ

, 

Multivariate Detectors (Table 5.7): 
( ) ( )
( ) ( )60.0,13.0,13.0,14.0,,,

80.0,06.0,07.0,07.0,,,

4321

4321

=
=

ρρρρ
ρρρρ

, 

Univariate Detectors (Table 5.8): 
( ) ( )
( ) ( )60.0,13.0,13.0,14.0,,,

80.0,06.0,07.0,07.0,,,

4321

4321

=
=

ρρρρ
ρρρρ

, 

Univariate Detectors (Table 5.9): 
( ) ( )
( ) ( )20.0,26.0,27.0,27.0,,,

40.0,20.0,20.0,20.0,,,

4321

4321

=
=

ρρρρ
ρρρρ

, 

Univariate Detectors (Table 5.10): ( ) ( )05.0,31.0,32.0,32.0,,, 4321 =ρρρρ . 

 

Tables were organized, such that, for a fixed parameter combination of ( )s,φ , 

e.g., A4, the alternative hypothesis ranges from the easiest (Table 5.3 and Table 5.4)  
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Table 5.3.  Multivariate Detectors’ Calibrated Performances 
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    Type I  ( )%95;ˆ CIuε        Power  ( )%95;ˆ CIuθ  

Det Par Lower Bound Upper Bound Lower Bound Upper Bound 
RX 

 
 
 
 
 

  
 

   KRX 
 
 
 
 
 
 
 

FLD 
 
 
 
 
 
 
 

EST 
 
 
 
 
 
 
 

DPC 
 
 
 

 

A1 
A2 
A3 
A4 
A5 
A6 
A7 

 

A1 
A2 
A3 
A4 
A5 
A6 
A7 

 

A1 
A2 
A3 
A4 
A5 
A6 
A7 

 

A1 
A2 
A3 
A4 
A5 
A6 
A7 

 

A1 
A2 
A3 
A4 
A5 
A6 
A7 

0.047847406 
 
 
 
 
 

 
 

0.047019216 
 
 
 
 
 
 
 

0.049634992 
 
 
 
 
 
 
 

0.046972706 
 
 
 
 
 
 
 

0.047973420 
 
 

0.052466579 
 
 
 
 
 
 
 

0.051427223 
 
 
 
 
 
 
 

0.051939022 
 
 
 
 
 
 
 

0.051540783 
 
 
 
 
 
 
 

0.054310907 
 

1.000000000 
0.951231671 
0.841845730 
0.716048622 
0.730833174 
0.670805233 
0.485570856 

 

1.000000000 
0.949160342 
0.861351716 
0.726733423 
0.684823760 
0.637513465 
0.469282102 

 

1.000000000 
0.971265672 
0.863428543 
0.741682689 
0.673028745 
0.622723046 
0.458174234 

 

1.000000000 
0.932634527 
0.896146341 
0.751691624 
0.703926342 
0.646196725 
0.432609245 

 

1.000000000 
0.926298163 
0.826298739 
0.754562215 
0.680272746 
0.610924632 
0.443698265 

1.000000000 
0.980848328 
0.887154269 
0.770871326 
0.789046825 
0.742074766 
0.531229143 

 

1.000000000 
0.992473218 
0.901697124 
0.752097634 
0.736574879 
0.680138637 
0.513426218 

 

1.000000000 
0.999654325 
0.900137528 
0.786720973 
0.699236734 
0.679211037 
0.499305291 

 

1.000000000 
0.957292632 
0.942467833 
0.796222047 
0.760759260 
0.660263981 
0.482932473 

 

1.000000000 
0.971450998 
0.887845417 
0.804520865 
0.750684321 
0.672084098 
0.505234092 
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Table 5.4.  Univariate Detectors’ Calibrated Performances 
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SemiP 
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A3 
A4 
A5 
A6 
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A1 
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A3 
A4 
A5 
A6 
A7 
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A7 
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A2 
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A4 
A5 
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A7 
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0.054604205 
 

 

1.000000000 
0.929022544 
0.864110188 
0.740582052 
0.716606531 
0.681982684 
0.496821036 

 

1.000000000 
0.931021793 
0.870843425 
0.747906238 
0.723217450 
0.688340311 
0.494286565 

 

1.000000000 
0.939854540 
0.867436715 
0.740923484 
0.708943277 
0.681309785 
0.492561163 

 

1.000000000 
0.904538671 
0.832734752 
0.713459863 
0.675814342 
0.659110586 
0.479681125 

1.000000000 
0.978537455 
0.920069811 
0.799857947 
0.760793468 
0.736870315 
0.535907963 

 

1.000000000 
0.986394343 
0.930429148 
0.793700263 
0.772359961 
0.729983092 
0.538417539 

 

1.000000000 
0.982983456 
0.916278640 
0.793429346 
0.759542720 
0.730628767 
0.537230698 

 

1.000000000 
0.958146032 
0.860029434 
0.769620832 
0.728826260 
0.706203245 
0.525821138 
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Table 5.5. Multivariate Detection Performances Using Target Contributions 

95.04 =ρ  and 90.04 =ρ . 

( ) ( )
( ) ( )95.0,01.0,02.0,02.0    ,,, 

3.0,3.0,4.0      ,,       

4321

321

=
=

ρρρρ
πππ

 

( ) ( )
( ) ( )90.0,03.0,03.0,04.0    ,,, 

3.0,3.0,4.0      ,,       

4321

321

=
=

ρρρρ
πππ

 

05.0
,,1

2000
1500

40012

=
=
=
=

==

ε
Uu

U
m

nn

L

 

      Power  ( )%95;ˆ CIuε        Power  ( )%95;ˆ CIuθ  
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FLD 
 
 
 
 
 
 
 

EST 
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A1 
A2 
A3 
A4 
A5 
A6 
A7 

 

A1 
A2 
A3 
A4 
A5 
A6 
A7 

 

A1 
A2 
A3 
A4 
A5 
A6 
A7 

 

A1 
A2 
A3 
A4 
A5 
A6 
A7 

 

A1 
A2 
A3 
A4 
A5 
A6 
A7 

1.000000000 
0.825180772 
0.555990555 
0.463348966 
0.396139002 
0.334816120 
0.301682679 

 

1.000000000 
0.795328748 
0.484275752 
0.385674314 
0.366737011 
0.321346767 
0.328964844 

 

1.000000000 
0.847091342 
0.490452846 
0.423095088 
0.383078521 
0.358779037 
0.309156374 

 

1.000000000 
0.782600875 
0.475666741 
0.443782624 
0.382297420 
0.330616853 
0.308635328 

 

1.000000000 
0.802842413 
0.468507363 
0.439726230 
0.369147613 
0.339664029 
0.317153171 

1.000000000 
0.903339227 
0.621049444 
0.490131033 
0.431491347 
0.369583879 
0.343297320 

 

1.000000000 
0.912645739 
0.536754864 
0.420465197 
0.409743051 
0.367962340 
0.339641464 

 

1.000000000 
0.884873454 
0.534345460 
0.465643454 
0.430396405 
0.386531785 
0.337648751 

 

1.000000000 
0.892773145 
0.526485023 
0.499761458 
0.429237810 
0.386435256 
0.356781011 

 

1.000000000 
0.872417029 
0.518149026 
0.483719095 
0.393171322 
0.385387824 
0.358695472 

1.000000000 
0.825180772 
0.555990555 
0.463348966 
0.396139002 
0.334816120 
0.201682679 

 

1.000000000 
0.795328748 
0.484275752 
0.385674314 
0.366737011 
0.321346767 
0.228964844 

 

1.000000000 
0.847091342 
0.490452846 
0.423095088 
0.383078521 
0.358779037 
0.209156374 

 

1.000000000 
0.782600875 
0.475666741 
0.443782624 
0.382297420 
0.330616853 
0.208635328 

 

1.000000000 
0.802842413 
0.468507363 
0.439726230 
0.369147613 
0.339664029 
0.217153171 

1.000000000 
0.903339227 
0.621049444 
0.490131033 
0.431491347 
0.369583879 
0.243297320 

 

1.000000000 
0.912645739 
0.536754864 
0.420465197 
0.409743051 
0.367962340 
0.239641464 

 

1.000000000 
0.884873454 
0.534345460 
0.465643454 
0.430396405 
0.386531785 
0.237648751 

 

1.000000000 
0.892773145 
0.526485023 
0.499761458 
0.429237810 
0.386435256 
0.256781011 

 

1.000000000 
0.872417029 
0.518149026 
0.483719095 
0.393171322 
0.385387824 
0.258695472 
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Table 5.6.  Univariate Detection Performances Using Target Contributions 

95.04 =ρ  and 90.04 =ρ . 
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      Power  ( )%95;ˆ CIuε        Power  ( )%95;ˆ CIuθ  

Det Pa
r 

Lower Bound Upper Bound Lower Bound Upper Bound 

SemiP 
 
 
 
 
 

 
 
 

AsemiP 
 
 
 
 
 
 
 
 

AVT 
 
 
 
 
 
 
 

Anova 

A1 
A2 
A3 
A4 
A5 
A6 
A7 

 

A1 
A2 
A3 
A4 
A5 
A6 
A7 
 

A1 
A2 
A3 
A4 
A5 
A6 
A7 

 

A1 
A2 
A3 
A4 
A5 
A6 
A7 

1.000000000 
0.909659154 
0.785618764 
0.721621835 
0.631820171 
0.586345942 
0.435402217 

 

1.000000000 
0.915603467 
0.840036175 
0.713634931 
0.660860339 
0.619268476 
0.453980184 

 

1.000000000 
0.933709213 
0.859801046 
0.746831065 
0.688092370 
0.629869185 
0.489722509 

 

1.000000000 
0.882020533 
0.759627628 
0.689158367 
0.611093528 
0.539474725 
0.447016420 

1.000000000 
0.952889404 
0.833496200 
0.779012731 
0.685204027 
0.625283317 
0.479028743 

 

1.000000000 
0.958082184 
0.891523673 
0.769364527 
0.695026209 
0.660771130 
0.514069935 

 

1.000000000 
0.987454674 
0.903526815 
0.798460357 
0.739062780 
0.668237452 
0.539620926 

 

1.000000000 
0.937508645 
0.801957892 
0.739592125 
0.662493658 
0.579035200 
0.488402435 

1.000000000 
0.874303299 
0.775690447 
0.702376401 
0.631657641 
0.585082625 
0.431993225 

 

1.000000000 
0.873649822 
0.780914594 
0.713661081 
0.605455535 
0.532986941 
0.423245019 

 

1.000000000 
0.888579268 
0.803244410 
0.724969739 
0.636852430 
0.519073045 
0.446294217 

 

1.000000000 
0.864772451 
0.756760085 
0.719977948 
0.571830266 
0.454181254 
0.385887644 

1.000000000 
0.911885592 
0.849680672 
0.756155405 
0.671817153 
0.643055772 
0.490968901 

 

1.000000000 
0.899464574 
0.836971818 
0.761853164 
0.658781068 
0.578476305 
0.484886846 

 

1.000000000 
0.933080954 
0.867227484 
0.781469620 
0.692895861 
0.580765283 
0.495503491 

 

1.000000000 
0.912585297 
0.813233072 
0.761886526 
0.648581003 
0.499717765 
0.438742646 
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to the hardest (Table 5.10), where results using parameter combination A1 shown in 

Table 5.3 and Table 5.4 shows results for the absolute easiest alternative hypothesis 

in this simulation and results using A7 in Table 5.10 represent the absolute hardest 

alternative hypothesis.    

 Table 5.5 through Table 5.8 show that anomaly detection power performance 

of all the detectors gradually decline from their calibrated performances (Table 5.3 

and Table 5.4), with dramatic degradation experienced by multivariate detectors 

somewhere between settings 80.04 =ρ  and 60.04 =ρ , see Table 5.8. Decreasing the 

contribution of G4 (target group) in the alternative hypothesis from 1.0 to 0.6 was 

sufficient to cause this dramatic degradation of these multivariate detectors. The 

univariate detectors show a slower degradation in those tables; in fact, a more 

tolerable degradation. As we have been discussing throughout this dissertation, 

tolerance to mixture is a desired capability for effective anomaly detection, as it will 

be shown in Chapter 6 and Chapter 7. 

 We attribute the favorable performances shown in Table 5.6 and Table 5.8 of 

univariate detectors to their sample combining strategy built into their scoring 

metrics. The data transformation step of these univariate detectors may play a role in 

producing favorable detection performances, but we could not isolate that role from 

the sample combining strategy. 
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Table 5.7.  Multivariate Detection Performances Using Target Contributions 

80.04 =ρ  and 60.04 =ρ . 
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A1 
A2 
A3 
A4 
A5 
A6 
A7 

 

A1 
A2 
A3 
A4 
A5 
A6 
A7 

 

A1 
A2 
A3 
A4 
A5 
A6 
A7 

 

A1 
A2 
A3 
A4 
A5 
A6 
A7 

 

A1 
A2 
A3 
A4 
A5 
A6 
A7 

0.733200540 
0.553764986 
0.363348966 
0.196139002 
0.032816120 
0.000000000 
0.000000000 

 

0.731571219 
0.552849573 
0.360089609 
0.198674672 
0.031751518 
0.000000000 
0.000000000 

 

0.739562228 
0.555759078 
0.361961217 
0.194326639 
0.038956255 
0.000000000 
0.000000000 

 

0.725615296 
0.583040725 
0.379437886 
0.071523457 
0.000000000 
0.000000000 
0.000000000 

 

0.728861565 
0.578396968 
0.348908983 
0.079621643 
0.000000000 
0.000000000 
0.000000000 

0.782074667 
0.605471812 
0.391049444 
0.220131033 
0.079814913 
0.000000000 
0.000000000 

 

0.777193378 
0.592645739 
0.416754864 
0.240465197 
0.089743051 
0.000000000 
0.000000000 

 

0.761744099 
0.589873454 
0.404345460 
0.245643454 
0.084396405 
0.000000000 
0.000000000 

 

0.764833090 
0.622773145 
0.426485023 
0.109761458 
0.000000000 
0.000000000 
0.000000000 

 

0.769659348 
0.612417029 
0.398149026 
0.123719095 
0.000000000 
0.000000000 
0.000000000 

0.000000000 
0.000000000 
0.000000000 
0.000000000 
0.000000000 
0.000000000 
0.000000000 

 

0.000000000 
0.000000000 
0.000000000 
0.000000000 
0.000000000 
0.000000000 
0.000000000 

 

0.000000000 
0.000000000 
0.000000000 
0.000000000 
0.000000000 
0.000000000 
0.000000000 

 

0.000000000 
0.000000000 
0.000000000 
0.000000000 
0.000000000 
0.000000000 
0.000000000 

 

0.000000000 
0.000000000 
0.000000000 
0.000000000 
0.000000000 
0.000000000 
0.000000000 

0.000000000 
0.000000000 
0.000000000 
0.000000000 
0.000000000 
0.000000000 
0.000000000 

 

0.000000000 
0.000000000 
0.000000000 
0.000000000 
0.000000000 
0.000000000 
0.000000000 

 

0.000000000 
0.000000000 
0.000000000 
0.000000000 
0.000000000 
0.000000000 
0.000000000 

 

0.000000000 
0.000000000 
0.000000000 
0.000000000 
0.000000000 
0.000000000 
0.000000000 

 

0.000000000 
0.000000000 
0.000000000 
0.000000000 
0.000000000 
0.000000000 
0.000000000 
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Symbol “#” in a table indicates that convergence was not achieved using the 

parameter initialization for the SemiP anomaly detector, see implementation in [31].  

 

Table 5.8.  Univariate Detection Performances Using Target Contributions 80.04 =ρ  and 

60.04 =ρ . Symbol “#” indicates convergence was not achieved using initial parameters. 
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A1 
A2 
A3 
A4 
A5 
A6 
A7 

 

A1 
A2 
A3 
A4 
A5 
A6 
A7 

 

A1 
A2 
A3 
A4 
A5 
A6 
A7 

 

A1 
A2 
A3 
A4 
A5 
A6 
A7 

1.000000000 
0.847330572 
0.760797702 
0.712595065 

# 
# 
# 

 

1.000000000 
0.847674469 
0.758994682 
0.712890934 
0.543391191 
0.411218079 
0.369442180 

 

1.000000000 
0.841896321 
0.759896179 
0.711378531 
0.549103918 
0.417853942 
0.372508762 

 

1.000000000 
0.843689645 
0.751328709 
0.681374569 
0.548981638 
0.410318052 
0.365159282 

1.000000000 
0.880966261 
0.804269901 
0.766212853 

# 
# 
# 

 

1.000000000 
0.887891337 
0.794583920 
0.754461533 
0.590573722 
0.461773307 
0.408530734 

 

1.000000000 
0.872358308 
0.796683731 
0.757163400 
0.603195415 
0.439021960 
0.422576169 

 

1.000000000 
0.885250105 
0.804916698 
0.739190354 
0.598102132 
0.468235759 
0.418096914 

1.000000000 
0.813693839 
0.735067470 
0.683828381 

# 
# 
# 

 

1.000000000 
0.829083671 
0.731571435 
0.677066212 
0.533539469 
0.399786923 
0.324301102 

 

1.000000000 
0.838394976 
0.726182778 
0.677657743 
0.513841817 
0.414720998 
0.329397866 

 

1.000000000 
0.818258933 
0.740077156 
0.672524142 
0.543996648 
0.385480253 
0.311386414 

1.000000000 
0.851066836 
0.779696583 
0.738584439 

# 
# 
# 

 

1.000000000 
0.874565704 
0.782310240 
0.727534560 
0.589997718 
0.440429952 
0.372755923 

 

1.000000000 
0.889014590 
0.777605066 
0.728241211 
0.561613723 
0.458651897 
0.370103762 

 

1.000000000 
0.853094950 
0.790668572 
0.768465956 
0.592347415 
0.430886928 
0.360965917 
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The symbol “#” is shown in Table 5.8 through Table 5.10. 

 We attribute the dramatic power degradation of the multivariate detectors 

shown in Table 5.7 to their inabilities to yield cutoff thresholds that are relatively low 

under 0H  in (5.1) with respect to these detectors’ responses under 1H  in (5.2), using 

the parameter combinations in (5.6), and G4 proportion combinations 

( ) ( )80.0,06.0,07.0,07.0,,, 4321 =ρρρρ  and 

( ) ( )60.0,13.0,13.0,14.0,,, 4321 =ρρρρ .  The consequence of this inability will be 

better appreciated in Chapter 6, where simulated multispectral cubes will be tested 

using all these detectors in the context of a top-view anomaly detection application, 

and in Chapter 7, where real HS data cubes will be tested in an actual ground to 

ground anomaly detection application. 

 Table 5.9 through Table 5.10 tabulates additional power degradation of two 

univariate detectors (SemiP and AsemiP), as their responses under 1H  in (5.2) 

overlaps significantly more their responses under 0H  in (5.1), especially in Table 

5.10 and for parameter combinations A6 and A7 in Table 5.9.  (Performances testing 

AVT and ANOVA using parameter combinations shown in Table 5.9 and Table 5.10 

were comparable to those of AsemiP, thus, we tabulated only AsemiP’s results in 

those tables.)  In Table 5.9, however, under a high shape difference (A1), these 

detectors could still hold a power level corresponding to their calibrated performances 

in Table 5.4, including for parameter combination 

( ) ( )20.0,26.0,27.0,27.0    ,,, 4321 =ρρρρ . Holding power performances as shown 
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illustrates these detectors’ low sensitivity under 0H  in (5.1) and relatively high 

sensitivity to an imposed 20% contribution of G4 to the mixture under 1H  in (5.2).  

 Multivariate detection performances using 60.04 <ρ  were unchanged from 

their results using 60.04 =ρ .    

 

 

Table 5.9.  Univariate Detection Performances Using Target Contributions 40.04 =ρ  and 
20.04 =ρ . (AVT and ANOVA detectors performed comparably with AsemiP detector, thus, their 

results are not included in this table or in Table 5.10.) 
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A1 
A2 
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A7 

 

 
A1 
A2 
A3 
A4 
A5 
A6 
A7 

0.985729013 
0.813993425 

# 
 

 
 

1.000000000 
0.800279305 
0.714281832 
0.633847121 
0.490957338 
0.378573463 
0.289119305 

1.000000000 
0.851844302 

# 
 

 
 

1.000000000 
0.842764417 
0.761782503 
0.687343948 
0.548122835 
0.435264269 
0.338127854 

0.955967351 
0.722426477 

# 
 

 
 

0.928694491 
0.734767327 
0.560643222 
0.473282337 
0.334160903 
0.197696974 
0.113934239 

0.990179398 
0.762676989 

# 
 

 
 

0.970056224 
0.788677427 
0.614028643 
0.531158130 
0.385051201 
0.246697928 
0.171447510 
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Table 5.10.  Univariate Detection Performances Using Target Contribution 05.04 =ρ . 
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A1 
A2 
A3-
A7 

 

A1 
A2 
A3 
A4 
A5 
A6 
A7 

0.129408121 
0.048106337 

# 
 

0.122216924 
0.049159128 
0.012320469 
0.000000000 
0.000000000 
0.000000000 
0.000000000 

0.181614463 
0.054150774 

# 
 

0.179680262 
0.053750184 
0.018847234 
0.000000000 
0.000000000 
0.000000000 
0.000000000 

 

 

 In essence, results tabulated in Table 5.5 through Table 5.14 illustrate the 

robustness of these two anomaly detection approaches, as a function of increased 

complexity under 1H . In this simulation, the complexity level under 1H  could be 

significantly increased by gradually decreasing   4ρ  and adjusting ,, 21 ρρ and 3ρ , 

accordingly. By following this procedure, we could assess detectors’ abilities to 

maintain a rather low cutoff threshold, which in turn yield higher power under 

challenging null and alternative hypotheses. Again, it is difficult for us to separate 

with absolute certainty how much of the univariate detectors’ favorable performances 

are due to their data transformation step or to their scoring metric step. 



 

 111 
 

  

5.5. Summary and Conclusions 

This chapter provided simulation experiment results that show relative strengths 

between two anomaly detection approaches on training and testing hypotheses 

involving spectral mixtures. Having all nine detectors trained with sample mixtures 

under 0H  in (5.1), we examined the impact on their power performances for 

detecting the presence of G4 (target group) by varying key parameters under 1H  in 

(5.2). Through this study, we were able to separate the impact on detection 

performances owing to three factors considered important in this dissertation: spectral 

bias, spectral shape, and varying mixture proportions of G4 under 1H . Under these 

factors, the two-step univariate approach performed better and more desirably relative 

to the multivariate approach, as shown in tabulated results in this chapter. Those 

favorable results by the two-step approach have some key implications: (i) this 

approach is more likely not to detect HS samples of a particular material under 

different illumination conditions as being anomalous to each other (low sensitivity to 

spectral bias); (ii) this approach is more likely to detect the presence of a particular 

material that can blend very well with the background scene, although this material 

may have an average spectral shape that is distinct from those of background spectra 

(high sensitivity to spectral shape); and (iii) this approach is more likely to yield a 

rather low cutoff threshold under difficult null hypotheses (involving sample 

mixtures), which in turn can produce higher power under similarly challenging 

alternative hypotheses, where a target material may be only partially represented in 

the test sample (low sensitivity to mixtures in null hypotheses). The three 
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implications can play a major role in achieving desired performances in real anomaly 

detection applications, as it will be shown in Chapter 7 on real HS imagery. Chapter 6 

implements both anomaly detection approaches to a TV anomaly detection 

application in order to examine (iii) using simulated multivariate data cubes. 



 

 113 
 

 

Chapter 6  Power Using Idealized Top View Cubes 

6.1. Introduction 

We seek to demonstrate in this chapter the differences in performances among 

different anomaly detection techniques using idealized data cubes for the case of 

controlled top-view background configuration scenarios.  

Different from the simulation experiments discussed in Chapter 5, the simulation 

experiment discussed in this chapter uses idealized pseudo cubes representing smaller 

versions of real HS data cubes. This chapter’s main goal is to assess the power of 

detection approaches discussed in Chapter 4 for detecting anomalies using these 

idealized pseudo cubes, and to use the same standard statistical method discussed in 

Chapter 5 to assess power estimates,  at a fixed sample size but varying type I error. 

To achieve this goal, we start by generating a large number of idealized training 

cubes using three different background clutter configurations, and test these cubes 

with various anomaly detectors so that cutoff thresholds and type I errors can be 

estimated from these detectors’ output surfaces. (Each pixel in a given output surface 

corresponds to a trial outcome using the corresponding detector.) We then generate 

another large set of idealized test cubes using the same three background 

configurations and added targets and test these cubes using the same detectors and 

their corresponding cutoff thresholds so that their powers can be estimated from their 

output surfaces. Tabulated results and ROC curves will be shown for this simulation 

experiment.  
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A conjecture: the anomaly detection algorithms that are relatively insensitive to 

increasingly more complex background configurations should produce higher power 

for detecting embedded targets in test cubes. This desired result will not be as obvious 

for a homogeneous clutter background having simple spatial configuration, but more 

obvious for a heterogeneous background having a more complex spatial configuration 

relative to target scales in the imagery.  

Since this simulation experiment was designed to estimate detectors’ power over 

large numbers of experiment trials and repetitions, all the detectors discussed in 

Chapter 4 were used in this simulation experiment, excluding kernel RX, or KRX, 

owing to its prohibitive amount of computational time required to test a single cube.  

6.2. Notations and Definitions 

Many of the notations in this section apply only to this chapter, but an effort was 

made to match key notations already made in previous chapters, as appropriate. Also, 

since the mechanics of testing samples at different window locations in a single data 

cube represent different experimental trials and experimental repetitions require 

independent constructions of data cubes, for computational reasons, we settled for 

generating idealized data cubes having only 5 bands in order to mimic multispectral 

(MS) data cubes rather than HS data cubes (cubes greater than 100 bands). And, since 

we do not have access to actual MS data cubes, the parameter settings used to 

generate idealized samples for cube construction were not based on the physics of 

spectroscopy, but were chosen to generate samples of different classes distinct 

enough from each other in order to illustrate the differences in performance among 

detectors, as a function of varying spatial complexity in background configurations. 
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(A multivariate sample representing a class in this simulation experiment means a 

sample generated by setting parameters to particular values in a corresponding PDF, 

in this case, a normal PDF.) 

Two sets of idealized MS cubes were generated: training )( g
hB  (null hypothesis 

cubes; sometimes also referred to as )( g
hB  in this chapter) and testing )(g

zBT  

(alternative hypothesis cubes; sometimes also referred to as )( gBTz  in this chapter), 

where these cubes have the format of X  in (2.4) with 256== CR  and 5=K ; 

3,,1L=h  indexes three different kinds of training background configurations; 

4,,1L=z  indexes four different kinds of target-background configurations; and 

1500,,1L=g  indexes independent experimental repetitions.  

A random sample representing a single background class in )( g
hB , or )( g

zBT ,  are 

i.i.d. normal, or  

 

{ } ( )Σ== ,    ...   ~,
,

),,(
k

JI
jcir

crg
k NdiiC μ ,                                      (6.1) 

 

where, ),,( crg
kC  and kμ  are column vectors  ( )K

k
Kcrg

kC RR  ; ),,( ∈∈ μ ; KK×∈Σ R ; 

6,,1L=k  indexes a background class;  and 

 , jcir == ( )CJjRIi ≤≤≤≤ ,,1 ;,,1 LL  index the row and column, respectively, in 

)( g
hB . (Note that, since Σ  is shared by all background classes, kμ  determines the kth 

background class, where 654321 μμμμμμ ≠≠≠≠≠ . Parameter specifications are 

presented in Subsection 6.3.2) 
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Using (6.1) and parameter specifications from Subsection 6.3.2, a training cube 

)(
h
gB  can be constructed to spatially represent different background class regions; for 

example, for a particular background configuration (see Figure 6.1 below),  

 

 

[ ] )(
654321

)(
2      gg CCCCCCB = ,                                          (6.2) 

 

where, [ ]CJcRrC crg <=== 1
),,(

11 ,,1 ;,,1: LLC , 

[ ]CJJcRrC crg <+=== 21
),,(

22 ,,1 ;,,1: LLC , 

[ ]CJJcRrC crg <+=== 32
),,(

33 ,,1 ;,,1: LLC , 

,L [ ]CJcRrC crg ,,1 ;,,1: 5
),,(

66 LL +===C . 

  

Fig. 6.1 shows one of the background configurations 2B  (background  

 

Training Cube  2B   

Figure 6.1. A training (null hypothesis) cube 2B  
is shown as the average of five 2-dim surfaces. 
This cube has 6 class regions. The dotted 
boxes show approximately the size of dual 
rectangular windows (see text) in proportion to 
target size, region stripes’ sizes, and cube’s 
spatial area 256256×=×CR  pixels. There 
are no targets in 2B .   

  

 

configurations will be discussed later in Subsection 6.3.2), where the repetition index 

g was dropped for convenience. In Fig. 6.1, the five vector components of each 
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sample within  ( )6,,1 L=kCk  are averaged out and presented in this figure as a 

pixel—see also (2.5). 

Anomaly detectors will test an idealized MS cube using the so-called dual 

rectangular window mechanism (see such a dual rectangular window at locations 

labeled as a,  b and c in Fig. 6.1), where a sample 1  
1

nK ×∈RW  (a K dimensional 

column vector of sample size 2
1 nn = ) is constructed from an nn ×  block of data 

within the idealized MS cube [see, for instance, the inside or interior window at 

location a in Fig. 6.1, and also (2.9)], and tested against another sample 2  
2

nK ×∈RW  

(a K dimensional column vector of sample size 2n ) that is constructed from data 

immediately surrounding this nn ×  block (see the outside window at location a in 

Fig. 6.1). The entire cube can be tested in this context by systematically testing all 

overlapping blocks of data (a pixel movement at a time to the right and/or down 

starting from the upper left hand corner) against their immediate surrounding samples 

across the spatial area of this cube. After testing the entire cube, these detectors 

produce two dimensional output surfaces; see, for instance, the RX multivariate 

detector’s output surface format in (4.9) and the AVT univariate detector’s output 

surface format in (4.44), where 1W  (reconstructed sample from the inside window at 

a given location in the cube) and 2W  (reconstructed samples from the outside 

window from that given location) correspond to 1W  and 2W  used in the detectors’ 

formulas in Chapter 4.  

Notice in Fig 6.1 that as the dual rectangular window is positioned at different 

locations in the cube, the outside window (and/or the inside window) may have 
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samples belonging to different classes. This particular case will be referred to herein 

as a mixture of different classes and denoted by ( )•M . For instance, a hypothetical 

multivariate sample ( ))50,24,(
3

)1,24,(
3

)50,23,(
2

)1,23,(
2 ,,,,, gggg CCCC LL , or 

( ))50,23,(
2

)1,23,(
2

)50,24,(
3

)1,24,(
3 ,,,,, gggg CCCC LL , would be denoted by ( )21,CCM  and 

another hypothetical sample ( ))30,3,(
5

)1,3,(
5

)30,2,(
2

)1,2,(
2

)40,1,(
1

)1,1,(
1 ,,,,,,,, gggggg CCCCCC LLL  

would be denoted by ( )521 ,, CCCM . 

 Shifting the attention to a testing (alternative hypothesis) cube )(g
zBT , this 

cube is constructed by using an independently constructed cube )( g
hB  and embedding 

independently generated target random samples in this cube (see an example in Fig. 

6.2, and construction details in Subsection 6.3.3).  

 

 Testing Cube  2BT   

Figure 6.2. A testing (alternative hypothesis) 
cube 2BT  is shown as the average of five 2-dim 
surfaces. This cube was constructed by using as 
baseline an independently constructed cube 2B  
and embedding independently generated target 
samples (e.g., T3). By design, spatial areas 
representing squared targets are equal to the 
spatial area of the inside square window.    

  

  

Target random samples are also i.i.d. normal, or  

 

{ } ( )Ξ== ,    ...   ~,
,

),,(
w

JI
jcir

crg
w NdiiT τ ;                                      (6.3) 
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where ),,( crg
wT  and wτ  are column vectors  ( )K

w
Kcrg

wT RR  ; ),,( ∈∈ τ , KK×∈Ξ R ; 

5,,1L=w  indexes a different target class; and 

 , jcir == ( )CJjRIi ≤≤≤≤ ,,1 ;,,1 LL  index the row and column, respectively, in 

)( g
zBT . (Here also Ξ  is shared by all target classes, thus, wτ  determines the wth target 

class, where 54321 τττττ ≠≠≠≠ , ( )5,,1;6,,1 LL ==≠ wkwk τμ  and  Σ≠Ξ  (i.e., 

all background classes are different from target classes).   

 An nn ×  block of data representing a target class in )( g
zBT  is labeled as Tw 

( 5,,1L=w ); see, for instance, Fig. 6.1.  

6.3. Simulation Plan and Construction of Cubes 

We provide herein a simulation plan (Subsection 6.3.1) and the details to carry 

out the simulation experiments using idealized MS cubes (Subsection 6.3.2 and 

Subsection 6.3.3.)   

6.3.1. Simulation Plan 

The simulation experiment plan for this chapter uses the data models 

described in Section 6.2 and parameter specifications made in Subsection 6.3.2 and 

Subsection 6.3.3. The plan follows: 

i. From Section 6.2, null hypothesis (training) cubes { }3
1h

)(
h =
gB  (or, for 

convenience, { }3
1hh =B , which excludes the experiment repetition index 

1500,,1L=g ), were constructed according to Subsection 6.3.2, using 

independent realizations of (6.1), and used to determine cutoff thresholds for 

the detectors. These cubes represent three spatial background configurations. 
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Training cubes 1B , 2B , and 3B  increase the difficult level for these detectors 

from easiest 1B  to hardest 3B  in terms of maintaining a relatively low cutoff 

threshold for a given type I error and fixed sample size (dual window size). A 

particular kind of background configuration are attained by determining where 

samples of similar or different classes are placed with respect to each other 

throughout the cube’s spatial area, as described in Subsection 6.3.2; see Fig. 

6.3.    

ii. From Section 6.2, alternative hypothesis (testing) cubes { }4
1

)(
=z

g
zBT  (or, for 

convenience, { }4
1=zBTz , which also excludes the experiment repetition index g) 

were constructed according to Subsection 6.3.3 by first generating 

independent realizations of )(
h
gB , as described in (i), and then replacing at 

predetermined spatial locations in )(
h
gB  some of the background samples 

{ } JI

jcir
crg

kC ,

,
),,(

==  [see (6.1)] with i.i.d. multivariate samples of target classes 

{ } JI

jcir
crg

wT ,

,
),,(

==  [see (6.3)]. (The term predetermined means that the locations 

where targets are found are stored so that we can determine later whether a 

detection is a correct one or a false positive.) Target class samples were 

generated independently from each other.            

In this simulation experiment, )(
1

gBT  uses the background configuration of 

)(
1

gB , )(
2

gBT  uses the background configuration of )(
2
gB  , and )(

3
gBT  and 

)(
4

gBT  use the background configuration of )(
3
gB . The number of targets and 

their locations in the scene background are the same for )(
1

gBT  and )(
2

gBT , but 



 

 121 
 

different from the ones in )(
3

gBT  and )(
4

gBT . Some of the target locations were 

intentionally selected in order to increase the difficulty level for the anomaly 

detectors, as they apply their corresponding cutoff thresholds to alternative 

hypothesis cubes featuring different background configurations, but a fixed 

dual-window size corresponding to the target size in the cube, given that all 

targets have the same spatial size.        

iii. A detector produces multiple trial results testing a cube, since it only tests a 

spatial block location at a trial and the detector is applied to the entire cube.  

A detector trial then, in this simulation experiment, corresponds to 

comparing samples representing a block of data in the imagery to samples 

representing data in the outer ring of this block of data. As described in 

Section 6.2 (see also Subsection 2.4.2),  since 1W  denotes a constructed 

sequence 1,,1 nL  of all samples observed from a block of data in the cube and 

2W  denotes a constructed sequence 2,,1 nL  of samples observed from this 

block’s outer ring, comparing 1W  to 2W  constitutes a trial. Samples 1W  and 

2W  are shared by all the detectors used in this simulation experiment. 

Making similar comparisons across the entire imagery for overlapping 

blocks of data produce multiple trial results from which a cutoff threshold and 

Type I can be estimated for a given detector, or power of the test can be 

assessed, depending on whether it is a training or testing activity. 

Attaining cutoff thresholds and estimating Type I errors will be done 

during a training activity using cubes from (i), and power of the test will be 

estimated during testing activities using cubes from (ii). Sample sizes 1n  and 



 

 122 
 

2n , which depends on the sizes of the inside window and outside window, 

respectively, are fixed at once for this chapter to 811 =n  (from a 99×  area) 

and 2082 =n  (from the extension of 4 pixels beyond the 99×  block).     

Note that depending on which cube (imagery) is used and where in the 

imagery the block of data is located, 1W  and/or 2W  may have homogeneous 

or mixtures of background classes and/or target samples Tw , see Fig. 6.4. 

Note also that, in this simulation experiment, the proportions of different 

classes in a mixture are not predetermined, as they were in Chapter 5; they 

systematically represent change variations in all possible combinations in a 

mixture, as these detectors are systematically applied to all spatial locations in 

the given cube.                 

iv. Since the industry standard RX detector (see Subsection 4.2.1.3) assumes that 

1W  and 2W   consist of i.i.d. multivariate normal samples of unknown means 

and unknown but equal covariance matrices, for this simulation we fixed at 

once covariance matrices of different background classes to Σ  [see (6.1) and 

Subsection 6.3.2], and fixed at once covariance matrices of different target 

classes to Ξ  [see (6.3) and Subsection 6.3.3], where the correlation 

parameters in both Σ  and Ξ  were all arbitrarily set to positive one. 

v. Attaining Cutoff Thresholds: Applying a detector to a training cube hB  in (i) 

will produce 57,121 trial results ( ) ( ) ( ) ( )[ ]17256172561717 −⋅−=−⋅− CR . 

These 57,121 trial results will be used to estimate an empirical PDF. A cutoff 

threshold will be attained using the standard quantile method on the estimated 
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PDF. The desired type I error probability ( )tα  for the quantile method will 

vary, where 4,,1L=t  indexes a set of type I error probabilities. In this 

simulation, we arbitrarily set these error probabilities to four values: 

2
2

1
1 10,10 −− == αα , 3

4 10−=α , and .10 4
4

−=α  This procedure will be 

repeated for each detector, such that, each detector will share the same 

samples across the spatial area of hB . This procedure will also be repeated for 

each background configuration, i.e., 1B , 2B and 3B .  

vi. Estimating the Type I Error: Each detector will be applied to an independently 

generated cube )(
h

gB  according to (i), where each detector’s corresponding 

cutoff threshold will be applied to the corresponding detector’s output trial 

results in order to estimate the type I error )(ˆ g
tα  of each detector for a given 

experiment repetition g. The type I error is estimated by counting the number 

)(
1

gm  of trials that satisfy the detector’s output values being greater than the 

corresponding detector’s cutoff threshold )( g
tε   and computing the ratio 

mm gg
t /ˆ )(

1
)( =α ,  where m = 57,121. (Notice that m is sufficiently large for the 

estimation of the lowest type I error probability 4
4 10−=α .) This procedure is 

also repeated for each background configuration, i.e., )(
1

gB , )(
2

gB and )(
3

gB . 

vii. Estimating the Power (1.0 – Type II Error): A test cube will be generated 

according to (ii) and introduced to each detector, where each detector’s 

corresponding cutoff threshold will be applied to the corresponding detector’s 

output results in order to estimate the power )(ˆ g
tβ  for a given experiment 
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repetition g. The type II error is estimated by counting the number )(
2

gm  of 

trials that satisfy the detector’s output values being lower than the 

corresponding detector’s cutoff threshold )( g
tε , and satisfy also that the trial 

location in the test cube corresponds to the location of a target sample (recall 

that the inserted locations of target samples are known, although these 

detectors do not use that information). The type II error then can be estimated 

by computing the ratio 3
)(

2 / mm g , such that  power ( )3
)(

2
)( /0.1ˆ mm gg

t −=β , 

where 3m  is the total number of target samples that is present in the test 

cube—this number is known for each test cube, although not used by the 

detectors.  

viii. Estimating Performance Confidence Interval (CI): In order to check 

variability using results from (vi) and (vii), confidence intervals for (vi) 

( )∑
=

−
−

±
G

g
t

g
tvt G

z
1

2)(
2/ ˆ

1
1 ααα  and for (vii) ( )∑

=

−
−

±
G

g
t

g
tvt G

z
1

2)(
2/

ˆ
1

1 βββ  will 

be estimated, where ( )2/11
2/ vzv −Φ= −  is the 2/1 v−  quantile ( )05.0=v  of 

the standard normal distribution; estimated quantities ∑
=

−=
G

g

g
tt G

1

)(1 α̂α  and 

∑
=

−=
G

g

g
tt G

1

)(1 β̂β  are indexed by Gg ,,1L=  for 4,,1L=t  and 1500=G . 

Tabulated results will be shown later on for each detector using 

.10,10,10,10 4
4

3
3

2
2

1
1

−−−− ==== αααα  
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6.3.2. Background Cube Construction 

This subsection presents in-depth details on the construction of idealized 

background training cubes )(
1

gB , )(
2

gB and )(
3

gB , where the experiment repetition 

index g will be removed for convenience. In addition to parameter specifications, the 

information contained in this subsection and in follow-on subsections includes 

computer-programming perspective details for estimating power of detectors and 

other metrics discussed in this chapter.  

 As mentioned in Subsection 6.2, the easiest background cube— 1B —has the 

same format of X  in (2.4) with 256== CR  and 5=K ; 1B  has only samples of a 

single background class, or [using (6.1) and dropping the index g] 

 

 { } ( )Σ== ,    ...   ~ 1
,

1,1
),(

1 μNdiiC CR
cr

cr
                               (6.4) 

 

where 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

650
660
720
640
630

1μ  and 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=Σ

0000.101421.140000.201421.140000.10
1421.140000.202843.280000.201421.14
0000.202843.280000.402843.280000.20
1421.140000.202843.280000.201421.14
000.101421.140000.201421.140000.10

. 

  

 The actual component values in 1μ  are unimportant and they are not based on 

spectral physics; however, we arbitrarily and intentionally selected those values 

shown in (6.4) to yield a concave shape on the plot of component values (vertical 

axis) verses their corresponding component number (horizontal axis), i.e., [650  660  
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720  640  630] versus [1  2  3  4  5], because hyperspectral responses from natural 

clutter backgrounds usually show a concave shape. The variances in the diagonal of 

Σ  were arbitrarily set to those values shown in (6.4), and the correlations imbedded 

in Σ  were all arbitrarily set to positive one.     

 Background cube 2B  consists of samples from six classes, see (6.2). In order 

to make these six classes different, the remainder five classes have the following 

parameter specifications:    

  

 

              

,

2000
2000
2000
2000
2000

  ,

800
800
800
800
800

;

1400
1400
1400
1400
1400

   ,
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780
820
780
820

   ,

300
300
300
300
300

3615141312

⎥
⎥
⎥
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⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡
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⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−=

⎥
⎥
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,
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,
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65432
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⎡
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 The pixel average of five co-registered images representing 1B  is shown in 

Fig. 6.3 (left); this figure also shows the average representations for 2B  and 3B  

(center and right, respectively).    
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Training Cube  1B           Training Cube  2B          Training Cube  3B  

    

Figure 6.3. Examples of training cubes 1B , 2B , and 3B  are shown from left to right, 
respectively, as the average of five co-registered images per cube. The dotted boxes show 
approximately the size of a dual rectangular window in proportion to background stripes’ 
sizes and cube’s spatial area. Notice that depending on the window’s position in a cube, the 
outside window may observe multivariate samples of 1 to 3 classes whereas the inside 
window observes only samples of a single class—see, for instance, window positions labeled 
as d and h.     

  

Background cube 3B  was constructed using independent simulated 

realizations of the same six classes used for 2B , but 3B  displays very different spatial 

configurations from those in 2B . Using as reference Fig. 6.3 (right) and denoting i1 

and i2 as the starting column and ending column, respectively, 1C  in 3B  covered 

columns i1 = 1 to i2 = 40, having horizontal extensions of two sizes (9 x 18) and (9 x 

27) located at rows (10, 30, 50, 70, 90, 110, 130, 150, 170, 190, 210, and 230) for a 

total of 12 horizontal extensions of 1C , see 3B  in Fig. 6.1; 2C  covered columns i1 = 

41 to i2 = 109; 3C  covered columns i1 = 110 to i2 = 118; 4C  covered columns i1 = 

119 to i2 = 127; 1C , being used again, covered columns i1 = 128 to i2 = 166; 2C , 

being used again, covered columns i1 = 129 to i2 = 205; 5C  covered columns i1 = 
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206 to i2 = 214; 6C  covered columns i1 = 215 to i2 = 223; 2C , being used again, 

covered columns i1 = 224 to i2 = 256.  

 The column widths of classes ,,, 543 CCC and 6C  in 3B  were chosen to match 

the column width of the inside window—see, for instance, window position labeled 

as h in Fig. 6.3 (right). Recall that the inside-window size was chosen to cover a 9 x 9 

spatial area, which coincides with the arbitrarily chosen target size; the size of the 

outside window was chosen to cover a 17 x 17 spatial area minus the concentric area 

of the inside window within the outside window. Recall also that both windows slide 

concentrically across the spatial area of the given cube.  

6.3.3. Background Target Cube Construction 

As discussed in Section 6.2, background-target cubes (or alternative 

hypothesis cubes) were constructed in order to estimate the power of correctly 

detecting targets. Five target classes were arbitrarily chosen, and i.i.d. samples 

representing these classes were independently generated according to (6.3), using the 

following arbitrarily chosen parameter specifications: 
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 Targets were constructed to form sub-cubes of constant volumes 599 ×× , 

such that, 99×  represents the spatial area of targets, which coincides with the size of 

the inside window. For simplicity, the correlations values in Ξ  were all equal to 1, 

and the variances were all equal to 100. Targets samples were generated 

independently of each other and independently of background samples.  

 Realizations of 1BT   were constructed by first simulating realizations of 1B  

and embedding 599 ××  target sub-cubes using (6.3) in order to generate i.i.d. 

samples. The spatial areas of these targets are labeled in Fig. 6.4 (left) as 

,4TT3,T2,T1, and T5, where ( )5,,1  T L=ww  corresponds to a target class using 

i.i.d. samples according to (6.3). As the particular locations of targets in 1BT  are 

unimportant, they were arbitrarily chosen to be significantly apart from each other 
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(e.g., 35 pixels apart from any other target’s centroid, or greater) in order to avoid 

having two targets being observed at the same time using the given fixed-size dual 

window, see window blocks labeled by i in Fig. 6.4 (left). 

 Similarly, samples of cube 2BT  were formed by simulating realizations of 

2B  and embedding 599 ××  target sub-cubes using (6.3), as shown in Fig. 6.4 

(center). The targets were spatially collocated sufficiently apart from each other and 

apart from any one of the transitions of background classes (greater than 18 pixels 

between target centroids and a transition) in order to ensure that when the inside 

window happens to fully cover a target, the outside window observes samples of a 

single background class.  For convenience, the same targets and their locations in 

1BT   were used for 2BT , see Fig. 6.4 (center). 

 Samples of 3BT  cubes were formed by simulating realizations of 3B  and 

embedding 599 ××  target sub-cubes using (6.3) for ,3,2 TT and 4T , as shown in Fig. 

6.4 (right). The motivation here was to measure performance of anomaly detectors on 

a more challenging background configuration—challenging with respect to class 

transitions and opportunities to have samples of a single class compared to samples of 

two or three classes (see, for instance, window location l in Fig 6.4, right hand side). 

Targets were spatially collocated significantly apart from class transitions (greater 

than 25 pixels between their centroids and background transitions, as shown in Fig. 

6.4.) 

 Samples of 4BT  cubes also use the background configuration of 3BT  (i.e., 

simulated realizations of 3B ), but feature additional targets: ,4,3,2,1 TTTT and 5T , 
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as shown in Fig. 6.5 (right). The motivation here was to augment the testing challenge 

by putting some targets in transitions of different background classes, where (as the 

entire cube is tested by stepping by an unit the dual window across the imagery area) 

some of these targets will eventually be compared to two or three background classes 

(see, for instance, window location a in Fig. 6.5 [ 4BT ] and potential problem areas 

similar to window location b in Fig. 6.5 [ 4BT ]). These targets were collocated 

significantly apart from each other, greater than 35 pixels apart from their centroids, 

and, for targets that were embedded in narrow background stripes, they were put 

perfectly to match the width of those stripes, see Fig. 6.5 [ 4BT ]. Recall that the 

spatial size of these targets matches the spatial area of the inside window ( )99× . 

There are some challenging areas in 4BT  cubes, for instance, the window location b 

in Fig. 6.5 ( 4BT ) shows a case where samples observed by the inside window belong 

to a single class while samples observed through the outside window belong to four 

classes.  

 In this simulation, a 4BT  cube provides the most challenging target to 

background configuration scenario for existing anomaly detectors, as some of 

background stripes’ sizes correspond to the size of the inside window and, 

additionally, as shown in Fig. 6.5 (right), there are horizontal background extensions 

of vertical lengths also corresponding to the inside window’s vertical length (see label 

c in 4BT ).  
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    Testing Cube  1BT          Testing Cube  2BT        Testing Cube  3BT  

    

Figure 6.4. Examples of testing cubes 1BT , 2BT , and 3BT  are shown from left to right, 

respectively, as the average of five co-registered images per cube. The dotted boxes 

show approximately the size of a dual rectangular window in proportion to targets’ 

spatial areas—see, for instance, window positions labeled as i and j. Targets are 

labeled according to their statistical characteristics—discussed in text. 

 

 

Fig. 6.5 also depicts the ground truth mask—a binary image—for 4BT  (shown 

between 3B  and 4BT ), which validates target pixel locations in the imagery  (bright 

squares having pixel values equal to 1). Similar truth masks were generated for the 

other testing cubes shown in Fig. 6.4. Ground truth masks are required in this context 

for type I. and type II error estimations, see Section 6.4.  
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    Training Cube  3B      Ground Truth Mask     Testing Cube  4BT  

 

Figure 6.5. A training cube 3B , shown in far left as the average of five co-registered images, 

was also used to generate the background of a testing cube 4BT , see an example of 4BT  (far 

right) shown as the average of five co-registered images. The binary image (pixels are one or 

zero) shown in the center features the locations of targets in 4BT . Such a binary image is 

known in the target community as a ground truth mask, which is used for type I and type II 

error estimates. In practice, each one of the testing cube types has a corresponding ground 

truth mask.    

 

 

6.4. Type I and Type II Error Estimations 

In order to estimate type I and type II errors, two-dimensional (2D) masks are 

required to validate the spatial locations of targets in the simulated imagery. These 

masks are binary, i.e., the locations of target pixels are 1 and locations of background 

pixels are 0; these masks are often referred to in the target community as ground 

truth., or ground truth masks. Fig. 6.5 shows the ground truth mask for examples of 

4BT . In this simulation, three ground truth masks were generated, one for 1BT  and 
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2BT , as they have the same target locations; a second one for 3BT ; and a third for 

4BT .  

 In a nutshell, after a detector tests an entire simulated cube, it produces a 2D 

output surface of real values. If the cube is a training cube (a given background 

without targets), then a cutoff threshold can be chosen to yield a fixed type I error 

using the corresponding ground truth mask and the detector’s 2D outcome surface; if 

the cube is a testing cube (the same background but with targets), then the detector’s 

corresponding cutoff threshold is applied to the 2D output surface, such that, pixel 

values that are above the threshold and fall within target locations in the 

corresponding ground truth mask are labeled correct target detections; otherwise, they 

are labeled false detections (type II error). The power of the test is 1.0 minus the type 

II error. Additional details will be discussed in the next few subsections. 

 The type II error depends on the sample size, on the detector being used, and 

on the desired type I error. The sample size depends on the window size used for 

sampling.  

Obtaining cutoff thresholds for these detectors are discussed next, followed by a 

discussion on measuring their type II errors. 

6.4.1. Obtaining Cutoff Thresholds 

A single simulated realization of the three background configurations 1B , 

2B , and 3B  (see Subsection 6.3.2) were used to obtain cutoff thresholds based on 

the following set of chosen Type I errors α :  
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( )
( ).10 ,10 ,10 ,10    

,,,
4321

4321
−−−−=

= ααααα
                                       (6.5) 

 

(For the purpose of anomaly detection, Type I errors that are higher than 10-1 have no 

practical value).  

 As described in Subsection 6.3.1, the sample size of 1W  (reconstructed 

samples from the 99×  inside window) and 2W  (reconstructed samples from the 

outer window) were fixed to 2
1 981==n  and 2082 =n , respectively. (See Section 

6.2 and Chapter 4 for explanation on how to apply an anomaly detector to a data 

cube, using the inside-outside dual window, in order to yield a 2D output surface.)   

 Eight detectors were applied to the 3 simulated cubes 1(B , 2B , and )3B , 

using the data transformation described in Section 3.2 for the univariate detectors 

(AsemiP, AVT, and ANOVA), and no data transformation for the multivariate 

detectors (RX, FLD, EST, and DPC). Using the simulation plan discussed in 

Subsection 6.3.1, this procedure yielded 3 sets of cutoff thresholds per detector per 

chosen type I error. A corresponding set of thresholds then per detector was obtained 

for 1B , 2B , and 3B  based on the desired type I errors shown in (6.5). For a given 

type I error, one would expect these thresholds to increase as a function of increasing 

background complexity among 1B , 2B , and 3B . For illustration, Table 6.1 shows 

these sets corresponding to detectors RX (the industry standard multivariate detector) 

and AsemiP (univariate detector). 
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 In reference to Table 6.1 and Table 6.2, it is worth mentioning that a detector 

that is less sensitive to these three background cubes would be more desirable for the 

purpose of anomaly detection. This sensitivity can be noticed by observing the rate of 

increase among the cutoff thresholds for a given type I error among detectors.              

 

 

Table 6.1. Cutoff thresholds produced by the industry standard RX anomaly detector using its 

corresponding 57,121 output results per simulated background cube, ( )3,,1h L=hB . (Note: 

Applying a detector across the spatial area of each cube, given the fixed dual window size, 

produced 57,121 output results representing a 2D output surface per cube.)   
 

Type I Error  Background-Only Simulated Cubes 
α  

1B  2B  3B  
10-1 2.73586756020100 17.14910687789102  30.75813296377958 
10-2 6.69480804231700 29.87601546556457 110.93641256094044
10-3 10.81913096696389 34.61656634779293 164.77893286133680
10-4 16.23242322101338 41.66426583843549 284.76027446709963

    
 
 
            

Table 6.2. Cutoff thresholds produced by the AsemiP anomaly detector using its 

corresponding 57,121 output results per simulated background cube, ( )3,,1h L=hB . 

 

Type I Error  Background-Only Simulated Cubes 
α  

1B  2B  3B  
10-1 0.10714023252450 4.04119537549038 5.41993634110348 
10-2 0.65071118087721 15.31063919196472 19.20618525917164
10-3 1.66063008313870 15.97474497597062 43.95133931745743
10-4 2.60835114791086 16.31042775997816 44.96548124318737

 

 

 Sets of corresponding cutoff thresholds per detector were used to estimate 

type I and type II errors as described next.   
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6.4.2. Estimating Type I and Type II Errors 

This subsection presents a computer programming implementation version for 

estimating Type I and Type II errors in the context of this simulation experiment.  

As described in our simulation plan (Subsection 6.3.1), Type I errors were estimated 

for each detector using their corresponding sets of cutoff thresholds on their output 

surfaces after applying each detector to G  simulated realizations of 

,,, 321 BTBTBT and 4BT , such that, cutoff thresholds obtained using 1B  were only 

used to estimate type I errors on 1BT ; cutoff thresholds obtained using 2B  were only 

used to estimate type I errors on  2BT ; and cutoff thresholds obtained using 3B  were 

only used to estimate type I errors on 3BT  and 4BT , as these target-background 

cubes shared the same background configuration of 3B . 

 A generic null hypothesis 0H  can be stated for this simulation as follows: At 

any given location in a simulated cube, samples observed thru the inside window, 

1W , belong to the same population of samples observed thru the outside window, 

2W . This test will be repeated across the spatial area of the simulated cube, 

generating an output surface for each detector. The whole process is repeated using 

1500=G  independent simulated cubes so that confidence intervals can be estimated 

for types I and type II errors, as discussed in Subsection 6.3.1. 

 The specific steps taken to obtain empirical results for type I and type II errors 

are shown below for a test cube,  in this case 4BT , using a detector. 

• Since the dual rectangular window covers an inside area of 99×  (the area of 

all targets in this simulation experiment) and an outer area of 
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( ) ( )991717 ×−× , the output surface produced by a detector using simulated 

cubes of fixed spatial area ( )256256×  will be ( ) ( )1725617256 −×−  

• Using a standard downsampling method, reduce the total area of the 

corresponding ground truth mask (see Fig. 6.5) from 256256×  to 

( ) ( )1725617256 −×−  in order to have the total area of this mask coinciding 

with the total area of the detector’s output surface. Denote the downsampled 

ground truth mask as TRUTH. 

• For g  = 1 to 1500=G  (G , maximum number of repetitions) 

• Generate a simulated realization of 4BT , as described in Subsection 6.3.3 

• For i = (1+17) to (256-17)   

• For j = (1+17) to (256-17)   

• Using (i,j) to index the upper-left corner of the inside window [see 

(2.8), where 4BT  corresponds to X ], apply a detector (e.g., RX, 

AVT) using constructed sequences 1W  (samples observed thru the 

inside window) and 2W  (samples observed thru the outside 

window) as input [see, for instance,  (4.8) or (4.41)]       

• This process will generate a 2D output surface OUTPUT 

• Intermediate Result: OUTPUT of size ( ) ( )1725617256 −×−  

• For t = 1 to 4 (the maximum number of cutoff thresholds per detector) 



 

 139 
 

• Let ( )41 ,, εεε L=  be the detector’s cutoff thresholds 

corresponding to the desired type I errors α  [see (6.5)], where tε  

has a one to one correspondence with tα . Apply tε  to OUTPUT 

• Let ( )00 , jiv  be the value of a pixel located at ( )00, jjii ==  in 

OUTPUT, Θ  be the set of target pixel locations in TRUTH, and 

cΘ  the mutually exclusive set representing background pixel 

locations in TRUTH; notice that the set of all pixel locations in 

TRUTH is cΘΘU , where U  is the union of sets. Denote cN
Θ  

the total number of locations in cΘ . 

• A type I error is committed when ( ) tjiv ε>00 ,  and 

( ) cji Θ∈00 , , where ∈ denotes belongs to. Add all instances 

when the type I error was committed, denoting this sum faN .  

• Estimate type I error for each tα  at a given g, or    

cN
N fag

t
Θ

=)(α̂                                           (6.6) 

• A type II error is committed when ( ) tjiv ε<00 ,  and 

( ) Θ∈00 , ji . Add all instances when the type II error was 

committed, such that, multiple instances of the same target will be 

counted only once to avoid redundancies. (For instance, if among 
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ten targets, one of them did not have at least a portion of its spatial 

area detected, the estimated type II error would be 1 divided by 10, 

or 0.1; on the other hand, if a target yields a response resembling a 

relatively wide peak, this target would be counted as a single 

detection, as long as a portion of the peak’s footprint coincides 

with the target’s expected spatial location. This procedure is 

widely practiced in the target community because targets often 

produce adjacent artifact responses. Output surfaces will be shown 

later to clarify this point.)     

• Denote the sum of targets that committed type II errors as missN , 

and the total number of individual targets in TRUTH as totalN  (for 

4BT , 10=totalN , see Fig. 6.5); notice that totalmiss NN ≤ , where 

≤  is less or equal to 

• Estimate the power of the correct target detections for each 

tα  at a given g, and denote this estimate 
)(ˆ g

tβ . The 

estimated power is 1.0 minus the estimated type II error, or 

total

missg
t N

N
−= 0.1ˆ )(β                               (6.7) 

• Intermediate results at a given g:  
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• Intermediate results using (6.8) as 1500,,1L=g :   

( )
( ))1500()2()1(

)1500()2()1(

ˆ,,ˆ,ˆˆ
ˆ,,ˆ,ˆˆ

ββββ

αααα

L

L

=

=
                              (6.9) 

• For t = 1 to 4 (total number of desired type I error values) 

• Estimate both type I error mean and power mean using results from all 

1,500  experiment repetitions, which the tth cutoff threshold was used,   
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• Estimate type I error variance and power variance using results from all 

1,500  experiment repetitions, which the tth cutoff threshold was used,    
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• Estimate 95% confidence interval using results from all 1,500  experiment 

repetitions, which the tth cutoff threshold was used, 
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• Final Results: 95% confidence intervals for the power of the test, i.e., 
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• Type I Error Confidence Intervals 
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• Power (1.0 – Type II Error) Confidence Intervals 
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 The results shown in (6.13) and (6.14) were computed for each detector as it 

tested the different kinds of simulated data cubes. Their results are shown next.  

 

 



 

 143 
 

6.5. Summary of Results 

This subsection presents the 95% confidence intervals that were computed for 

each detector as they tested independent realizations of (alternative hypothesis) cubes 

1BT , 2BT , 3BT , and 4BT . The tables are organized such that the first column shows 

the detector’s name, followed by the desired type I error tα  ( )4,,1L=t  using (6.5), 

followed by the type I error’s 95% confidence intervals using (6.13), followed by the 

power’s 95% confidence intervals using (6.14). This organization applies to Table 6.3 

through Table 6.10. 

Table 6.3 shows performance results using multivariate detectors, as they tested 

1,500 simulated realizations (repetitions) of 1BT  (targets in easy background 

configuration). Performance results tabulated in Table 6.3 will be referred to herein as 

calibrated performances of those multivariate detectors, since 1BT  represents the 

easiest target-background configuration. The computation of individual power and 

type I error estimates used 57,121 trials (window locations in the imagery) per 

repetition. The same sample sequences per trial ( 1W  and 2W ) were shared by the 

univariate detectors, which produced the results shown in Table 6.4. Table 6.4 shows 

calibrated performance results using univariate detectors to test 1,500 simulated 

realizations (repetitions) of 1BT , where estimations of power and type I error per 

simulation repetition used 57,121 trial results. 

It is evident from Table 6.3 and Table 6.4 that all the anomaly detectors produce 

a perfect power of the correct target detection, as expected, since 1BT  cubes are 

formed using a single homogeneous background class, which is very distinct from  
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Table 6.3.  Multivariate Detection Calibrated Performance—type I error and power 
performances using 57,121 trials (window locations) per independent repetition of 

background cube )(
1

gB , where g indexes repetitions { }1500
1

)(
1 =g

gB  , and 57,121 trial results per 

target-background cube )(
1

gBT , { }1500
1

)(
1 =g

gBT . 
 

Single Homogeneous Background Region Plus 8 Targets  
Easy background configuration, targets in homogeneous areas

Type I Error 
95% Confidence Interval 

(1.0 – Type II Error) 
95% Confidence Interval 

 
Detectors 

 

tα  

Lower Bound   Upper Bound Lower Bound   Upper Bound 
 
 
RX 

10-1 

10-2 

10-3 

10-4 

   0.155322 
   0.038951 
   0.012227 
   0.002292 

   0.158816 
   0.039978 
   0.012741 
   0.002528 

   1.000000 
   1.000000 
   1.000000 
   1.000000 

   1.000000 
   1.000000 
   1.000000 
   1.000000 

 
 
FLD 

10-1 

10-2 

10-3 

10-4 

   0.170777 
   0.087272 
   0.078813 
   0.077659 

   0.173506 
   0.087644 
   0.078926 
   0.077706 

   1.000000 
   1.000000 
   1.000000 
   1.000000 

   1.000000 
   1.000000 
   1.000000 
   1.000000 

 
 
EST 

10-1 

10-2 

10-3 

10-4 

   0.170015 
   0.077576 
   0.069210 
   0.067697 

   0.172612 
   0.078367 
   0.069504 
   0.067767 

   1.000000 
   1.000000 
   1.000000 
   1.000000 

   1.000000 
   1.000000 
   1.000000 
   1.000000 

 
 
DPC 

10-1 

10-2 

10-3 

10-4 

   0.171855 
   0.087120 
   0.078594 
   0.077440 

   0.175635 
   0.088003 
   0.078854 
   0.077517 

   1.000000 
   1.000000 
   1.000000 
   1.000000 

   1.000000 
   1.000000 
   1.000000 
   1.000000 

 

 

target classes. In many of the error results, however, the desired type I errors 

tα ( )4,,1L=t  do not fall within their corresponding confidence intervals. The reason 

is that since the cutoff thresholds were obtained from a background-only simulated 

cube (in this case 1B ), it produced lower threshold values compared to detectors’ 

artifact responses that can be relatively high owing to the presence of targets in a test 

cube (in this case 1BT ). These artifacts occur when homogenous samples in the inside 

window are compared to a mixture of target-background samples in the outside 
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window—see, for instance, window location i in Fig. 6.4 ( 1BT ), and examples of 

output surfaces’ 3D plots in Fig. 6.6. 

 

Table 6.4 Univariate Detection Calibrated Performances—type I error and power 
performances using 57,121 trials (window locations) per independent repetition of 

background cube )(
1

gB , where g indexes repetitions { }1500
1

)(
1 =g

gB  , and 57,121 trial results per 

target-background cube )(
1

gBT , { }1500
1

)(
1 =g

gBT .  

Single Homogeneous Background Region Plus 8 Targets 
Easy background configuration, targets in homogeneous areas

Type I Error 
95% Confidence Interval 

(1.0 – Type II Error) 
95% Confidence Interval 

 
Detectors 

 

tα  

Lower Bound Upper Bound Lower Bound Upper Bound 
 
 

AsemiP 

10-1 

10-2 

10-3 

10-4 

0.171441 
0.072887 
0.048219 
0.037595 

0.174740 
0.073796 
0.048483 
0.037807 

1.000000 
1.000000 
1.000000 
1.000000 

1.000000 
1.000000 
1.000000 
1.000000 

 
SemiP 

10-1 

10-2 

10-3 

10-4 

0.022617 
0.001783 
0.000579 
0.000579 

0.022708 
0.001813 
0.000589 
0.000589 

1.000000 
1.000000 
1.000000 
1.000000 

1.000000 
1.000000 
1.000000 
1.000000 

 
 

AVT 

10-1 

10-2 

10-3 

10-4 

0.156213 
0.055914 
0.039220 
0.039220 

0.159702 
0.056730 
0.039370 
0.039370 

1.000000 
1.000000 
1.000000 
1.000000 

1.000000 
1.000000 
1.000000 
1.000000 

 
 
ANOVA 

10-1 

10-2 

10-3 

10-4 

   0.121679 
   0.010971 
   0.001161 
   0.000086 

   0.125269 
   0.011928 
   0.001412 
   0.000147 

   1.000000 
   1.000000 
   1.000000 
   1.000000 

   1.000000 
   1.000000 
   1.000000 
   1.000000 

 

 

 

 Fig. 6.6 shows examples of relatively high artifact responses, where 3D views 

of some of the detectors’ output surfaces are exhibited. (The surfaces depicted in Fig. 
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6.6 are examples of the intermediate results denoted as OUTPUT in Subsection 6.4.2 

for different detectors.) 

Table 6.5 shows tabulated results using the same multivariate detectors, but in 

this experiment they tested data cubes having a more challenging background 

configuration—a moderate target-background configuration ( 2BT ). The number of 

trials (window locations) per cube and repetitions are identical to the results presented 

in Table 6.3. 

Tabulated results in Table 6.5 already show some signs of performance losses 

(higher type II error) for three of the algorithms, they are: EST, DPC, and FLD. The 

fundamental cause for these losses is the detectors’ inability to handle transitions of 

regions. Recall that the cutoff thresholds used to test 2BT   were obtained using a 

moderate background configuration 2B , which is a six-class background-only cube. 

As it can be observed in Fig. 6.7, the transitions among these distinct classes yield 

relatively high responses using these detectors, which in turn yield relatively high 

cutoff thresholds for the chosen type I errors. Fig. 6.7 depicts, for instance, that some 

of the target responses using these detectors are comfortably above these detectors’ 

responses on transitions of distinct background classes, and it also shows target 

examples that cannot respond as high. The EST detector suffered the worst 

performance loss testing examples of 2BT . Fig 6.8 shows two 3D viewing 

perspectives of the same output surface produced by the EST detector testing a single 

simulated realization of 2BT . Notice that the same eight targets that could be detected  
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Figure 6.6. Examples of intermediate result OUTPUT, as described in text. The peaks are 
responses from the eight targets as seen by the different detectors testing a single simulated 
realization of 1BT . Notice the artifact responses in the vicinity of these peaks. Those artifacts 
contribute to the type I error, thus, increasing its estimate in respect to the desired type I error.  
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(calibrated performances) in 1BT  (see Fig. 6.5, Fig. 6.6 and Table 6.3), responded 

below the five cutoff thresholds corresponding to the desired type I errors in (6.5) for 

this detector on 2BT , thus, producing zero target detection—or equivalently a type II 

error of unity, as shown in Table 6.5. The FLD and DPC detectors missed 1 out of 8  

 

 

Table 6.5.  Multivariate detection performances—type I error and power performances using 

57,121 trial results per simulated background cube )(
2

gB , where g indexes repetitions { }1500
1

)(
2 =g

gB  , and 

57,121 trial results per target-background cube )(
2

gBT , { }1500
1

)(
2 =g

gBT .   

Six Homogeneous Background Regions Plus 8 Targets 
Moderate background configuration, targets in homogeneous areas

Type I Error 
95% Confidence Interval 

(1.0 – Type II Error) 
95% Confidence Interval 

 
Detectors 

 

tα  

Lower Bound Upper Bound Lower Bound Upper Bound 
 
 

RX 

10-1 

10-2 

10-3 

10-4 

 

0.105908 
0.011534 
0.001980 
0.000258 

 

0.106425 
0.011852 
0.002107 
0.000346 

 

1.000000 
1.000000 
1.000000 
1.000000 

 

1.000000 
1.000000 
1.000000 
1.000000 

 
 
 

FLD 

10-1 

10-2 

10-3 

10-4 

 

0.107706 
0.005343 
0.001772 
0.001767 

 

0.107727 
0.005670 
0.001783 
0.001768 

 

0.875000 
0.875000 
0.875000 
0.875000 

 

0.875000 
0.875000 
0.875000 
0.875000 

 
 
 

EST 

10-1 

10-2 

10-3 

10-4 

 

0.106490 
0.005344 
0.001772 
0.001768 

 

0.106511 
0.005670 
0.001783 
0.001768 

 

0.000000 
0.000000 
0.000000 
0.000000 

 

0.000000 
0.000000 
0.000000 
0.000000 

 
 
 

DPC 

10-1 

10-2 

10-3 

10-4 

 

0.107706 
0.005344 
0.001772 
0.001768 

 

0.107727 
0.005670 
0.001783 
0.001768 

 

0.875000 
0.875000 
0.875000 
0.875000 

 

0.875000 
0.875000 
0.875000 
0.875000 
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targets. Although the detectors FLD, EST, and DPC already show signs of 

performance losses (higher type II errors) in Table 6.5—in contrast to their calibrated 

performances in Table 6.3, the RX detector handled well this moderately challenging 

target-background configuration. Table 6.6 shows performance results using 

univariate detectors to test 1,500 simulated realizations of 2BT . 

 

 

Table 6.6.  Univariate detection performances—type I error and power performances using 
57,121 trial results per simulated background cube )(

2
gB , where g indexes repetitions 

{ }1500
1

)(
2 =g

gB  , and 57,121 trial results per target-background cube )(
2

gBT , { }1500
1

)(
2 =g

gBT .    

Six Homogeneous Background Regions Plus 8 Targets 
Moderate background configuration, targets in homogeneous areas 

Type I Error 
95% Confidence Interval 

(1.0 – Type II Error) 
95% Confidence Interval 

 
Detectors 

 

tα  

Lower Bound Upper Bound Lower Bound Upper Bound 
 
 

AsemiP 

10-1 

10-2 

10-3 

10-4 

0.010186 
0.002429 
0.002429 
0.002429 

0.010240 
0.002429 
0.002429 
0.002429 

1.000000 
1.000000 
1.000000 
1.000000 

1.000000 
1.000000 
1.000000 
1.000000 

 
 

SemiP 

10-1 

10-2 

10-3 

10-4 

0.010248 
0.002450 
0.002450 
0.002449 

0.010305 
0.002473 
0.002473 
0.002470 

1.000000 
1.000000 
1.000000 
1.000000 

1.000000 
1.000000 
1.000000 
1.000000 

 
 

AVT 

10-1 

10-2 

10-3 

10-4 

0.135670 
0.008885 
0.001067 
0.000236 

0.198334 
0.016029 
0.001435 
0.000259 

1.000000 
1.000000 
1.000000 
1.000000 

1.000000 
1.000000 
1.000000 
1.000000 

 
 

ANOVA 

10-1 

10-2 

10-3 

10-4 

 

0.117101 
0.011954 
0.001187 
0.000154 

 

0.119892 
0.012952 
0.001442 
0.000230 

 

1.000000 
1.000000 
1.000000 
1.000000 

 

1.000000 
1.000000 
1.000000 
1.000000 
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Figure 6.7.  Examples of intermediate result OUTPUT, as described in text. The peaks are responses 
from the eight targets as seen by the different detectors testing a single simulated realization of 2BT . 
Notice, in some of these surfaces, M shaped row responses owing to transitions of different 
background classes—see, for instance, window locations a, b, and c in Fig. 6.3 ( 2B ). Location a yields 
a local peak to the left of b, b yields a local valley, and c yields a local peak to the right of b.  
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Figure 6.8. An intermediate result OUTPUT for the EST detector testing an example of 2BT . 
Both surfaces are the same, but shown at different viewing perspectives. Some of the artifacts 
shown for the view at the right hand side were due to the presence of targets T2 and T3 in the 
outside window—these two targets are shown immediately to the right of these artifacts. A 
similar case is shown for window location j in Fig. 6.4 (

2BT ). The responses of all 8 targets 
using the EST detector were below the cutoff thresholds corresponding to this detector for 
this background configuration. 

 

 

 Some of the confidence intervals shown in Table 6.5 and Table 6.6 do not 

include the values of tα , the reason for these apparent discrepancies were explained 

in the text discussion for Table 6.3 and Table 6.4. Univariate detectors AsemiP, 

SemiP, ANOVA, and AVT handled well this moderately challenging target-

background configuration, see Table 6.6 and examples of output surfaces in Fig. 6.7. 

The output surfaces corresponding to AsemiP and ANOVA detectors in Fig. 6.7 

depict how insensitivity these detectors are to those transitions of distinct classes 

(similar results were produced by detectors SemiP and AVT, although their surfaces 

are not shown in Fig. 6.7. Let’s focus our attention to Table 6.7. 
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Table 6.7. Multivariate detection performances—type I error and power performances using 

57,121 trial results per simulated background cube )(
3

gB , where g indexes repetitions { }1500

1
)(

3 =g
gB  , and 

57,121 trial results per target-background cube )(
3

gBT , { }1500

1
)(

3 =g
gBT .    

Nine Homogeneous Background Regions Plus 3 Targets 
Difficult background configuration, targets in homogeneous areas

Type I Error 
95% Confidence Interval 

(1.0 – Type II Error) 
95% Confidence Interval 

 
Detectors 

 

tα  

Lower Bound Upper Bound Lower Bound Upper Bound 
 
 

RX 

10-1 

10-2 

10-3 

10-4 

 

0.099516 
0.010100 
0.001470 
0.000009 

 

0.099962 
0.010353 
0.001488 
0.000032 

 

1.000000 
1.000000 
1.000000 
1.000000 

 

1.000000 
1.000000 
1.000000 
1.000000 

 
 
 

FLD 

10-1 

10-2 

10-3 

10-4 

 

0.098667 
0.010641 
0.001663 
0.000918 

 

0.098757 
0.010773 
0.001768 
0.000954 

 

0.666667 
0.666667 
0.666667 
0.666667 

 

0.666667 
0.666667 
0.666667 
0.666667 

 
 
 

EST 

10-1 

10-2 

10-3 

10-4 

 

0.095054 
0.010278 
0.001663 
0.000918 

 

0.095144 
0.010411 
0.001767 
0.000954 

 

0.000000 
0.000000 
0.000000 
0.000000 

 

0.000000 
0.000000 
0.000000 
0.000000 

 
 
 

DPC 

10-1 

10-2 

10-3 

10-4 

 

0.098667 
0.010641 
0.001663 
0.000918 

 

0.098757 
0.010773 
0.001767 
0.000954 

 

0.666667 
0.666667 
0.666667 
0.666667 

 

0.666667 
0.666667 
0.666667 
0.666667 

 
 

 

 

Table 6.7 shows tabulated results using the same multivariate detectors, but in 

this case they tested data cubes having a significantly more difficult background 

configuration than presented by examples of 2BT , see Fig. 6.4 ( 3BT  and 2BT ).  

Table 6.8 shows performance results produced by the same univariate detectors, as 

they tested 1,500 simulated realizations of 3BT . 
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Table 6.8.  Univariate detection performances—type I error and power performances using 

57,121 trial results per simulated background cube )(
3

gB , where g indexes repetitions { }1500

1
)(

3 =g
gB  , and 

57,121 trial results per target-background cube )(
3

gBT , { }1500

1
)(

3 =g
gBT .    

Nine Homogeneous Background Regions Plus 3 Targets 
Difficult background configuration, targets in homogeneous areas

Type I Error 
95% Confidence Interval 

(1.0 – Type II Error) 
95% Confidence Interval 

 
Detectors 

 

tα  

Lower Bound   Upper Bound Lower Bound   Upper Bound 
 
 
AsemiP 

10-1 

10-2 

10-3 

10-4 

 

   0.107317 
   0.010891 
   0.001047 
   0.000214 
   

   0.107851 
   0.011159 
   0.001141 
   0.000230 
   

   1.000000 
   1.000000 
   1.000000 
   1.000000 
    

   1.000000 
   1.000000 
   1.000000 
   1.000000 
    

 
 
SemiP 

10-1 

10-2 

10-3 

10-4 

 

   0.107367 
   0.010893 
   0.001047 
   0.000216 
   

   0.107903 
   0.011158 
   0.001142 
   0.000234 
    

   1.000000 
   1.000000 
   1.000000 
   1.000000 
    

   1.000000 
   1.000000 
   1.000000 
   1.000000 
   

 
 
AVT 

10-1 

10-2 

10-3 

10-4 

 

   0.100379 
   0.009416 
   0.001003 
   0.000235 
    

   0.101131 
   0.010360 
   0.001247 
   0.000282 
    

   1.000000 
   1.000000 
   1.000000 
   1.000000 
    

   1.000000 
   1.000000 
   1.000000 
   1.000000 
    

 
 

ANOVA 

10-1 

10-2 

10-3 

10-4 

 

0.098873 
0.008414 
0.000853 
0.000069 

 

0.102113 
0.009312 
0.001049 
0.000105 

 

1.000000 
1.000000 
1.000000 
1.000000 

 

1.000000 
1.000000 
1.000000 
1.000000 

 
  

As discussed earlier, for a different set of targets and background 

configuration, Table 6.7 shows that the EST detector using its corresponding cutoff 

thresholds missed all 3 targets in this difficult background configuration. Similarly, 

using their corresponding cutoff thresholds for this difficult background 

configuration, Table 6.7 shows that detectors FLD and DPC missed 1 out of 3 targets. 

On the other hand the multivariate RX detector handled well this relatively more 

difficult target-background configuration.  
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 Results in Table 6.8 also show that all the univariate detectors could also 

maintain a relatively low type I error and correctly detect all 3 targets.  

 The gradual increase of target-background configuration complexity from 1BT  

to 3BT  has shown some performance losses by multivariate detectors FLD, EST, and 

DPC and some performance comparability between multivariate RX and all four 

univariate detectors (AsemiP, SemiP, AVT, and ANOVA). Table 6.9 presents the 

detectors’ performances on cubes representing the most difficult target-background 

configuration in these simulation experiments—examples of 4BT .  

 Table 6.9 shows performance results using the same multivariate detectors, as 

they tested 1,500 simulated realizations of 4BT . 

 The results shown in Table 6.9 for 10 targets included the same 3 targets used 

to obtain results shown in Table 6.7. Table 6.9 shows noticeable target detection 

degradations compared to previous tables, with one exception—the EST detector’s 

performance between Table 6.7 and Table 6.9. The 3 targets that were undetected by 

the EST detector as shown in Table 6.7 were again missed by this detector as shown 

in Table 6.9 (see row for EST, 1
1 10−=α ). The EST detector missed those 3 out of 10 

targets using its correspondent cutoff threshold for 1α , but—ironically—it could 

detect other targets found in more difficult locations, see locations characterized by 

transitions of regions in Fig. 6.5 (window locations a and b in 4BT ). This irony is 

what motivates some users to utilize the EST detector in real HS data. 
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Table 6.9.  Multivariate detection performances—type I error and power performances using 

57,121 trial results per simulated background cube )(
3

gB , where g indexes repetitions { }1500

1
)(

3 =g
gB  , and 

57,121 trial results per target-background cube )(
4

gBT , { }1500
1

)(
4 =g

gBT .   . 

Nine Homogeneous Background Regions Plus 10 Targets 
Difficult background configuration, 7 targets in transition areas

Type I Error 
95% Confidence Interval 

(1.0 – Type II Error) 
95% Confidence Interval 

 
Detectors 

 

tα  

Lower Bound Upper Bound Lower Bound Upper Bound 
 
 

RX 

10-1 

10-2 

10-3 

10-4 

 

0.101381 
0.009608 
0.000851 
0.000921 

 

0.101805 
0.009831 
0.000861 
0.000923 

 

1.000000 
1.000000 
0.700000 
0.500000 

 

1.000000 
1.000000 
0.700000 
0.500000 

 
 
 

FLD 

10-1 

10-2 

10-3 

10-4 

 

0.101444 
0.010374 
0.001120 
0.000072 

 

0.101535 
0.010522 
0.001279 
0.000112 

 

0.666667 
0.500000 
0.500000 
0.500000 

 

0.666667 
0.500000 
0.500000 
0.500000 

 
 
 

EST 

10-1 

10-2 

10-3 

10-4 

 

0.101303 
0.010374 
0.001120 
0.000072 

 

0.101394 
0.010522 
0.001279 
0.000112 

 

0.700000 
0.300000 
0.300000 
0.300000 

 

0.700000 
0.300000 
0.300000 
0.300000 

 
 
 

DPC 

10-1 

10-2 

10-3 

10-4 

 

0.101444 
0.010374 
0.001120 
0.000072 

 

0.101535 
0.010522 
0.001279 
0.000112 

 

0.666667 
0.500000 
0.500000 
0.500000 

 

0.666667 
0.500000 
0.500000 
0.500000 

 
 

 

 As mentioned earlier, anomaly detectors are known for producing relatively 

high responses adjacent to target locations because, at those adjacent locations, 

samples of homogeneous backgrounds in the inside window are compared to a 

mixture of samples in the outside window—this mixture may consist of samples of 

targets, samples of the same background class observed thru the inside window, and 
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from other background classes (see, for instance, window position b in Fig. 6.5 

[ 4BT ].) 

 Table 6.10 shows corresponding results for univariate detectors testing 1,500 

simulated realizations of 4BT . 

 

Table 6.10.  Univariate detection performances—type I error and power performances using 

57,121 trial results per simulated background cube )(
3

gB , where g indexes repetitions { }1500

1
)(

3 =g
gB  , and 

57,121 trial results per target-background cube )(
4

gBT , { }1500
1

)(
4 =g

gBT .    

Nine Homogeneous Background Regions Plus 10 Targets 
Difficult background configuration, 7 targets in transition areas

Type I Error 
95% Confidence Interval 

(1.0 – Type II Error) 
95% Confidence Interval 

 
Detectors 

 

tα  

Lower Bound Upper Bound Lower Bound Upper Bound 
 
 

AsemiP 

10-1 

10-2 

10-3 

10-4 

 

0.111715 
0.011173 
0.001400 
0.000802 

 

0.112103 
0.011399 
0.001496 
0.000817 

 

1.000000 
1.000000 
1.000000 
1.000000 

 

1.000000 
1.000000 
1.000000 
1.000000 

 
 
 

SemiP 

10-1 

10-2 

10-3 

10-4 

 

0.111758 
0.011171 
0.001402 
0.000805 

 

0.112148 
0.011395 
0.001499 
0.000823 

 

1.000000 
1.000000 
1.000000 
1.000000 

 

1.000000 
1.000000 
1.000000 
1.000000 

 
 
 

AVT 

10-1 

10-2 

10-3 

10-4 

 

0.103537 
0.026165 
0.019580 
0.018893 

 

0.104030 
0.026788 
0.019728 
0.018938 

 

1.000000 
1.000000 
1.000000 
1.000000 

 

1.000000 
1.000000 
1.000000 
1.000000 

 
 
 

ANOVA 

10-1 

10-2 

10-3 

10-4 

 

0.100254 
0.009011 
0.000978 
0.000077 

 

0.103467 
0.009827 
0.001151 
0.000107 

 

1.000000 
0.500000 
0.500000 
0.500000 

 

1.000000 
0.500000 
0.500000 
0.500000 
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 Despite the difficult target-background configuration presented in 

examples of 4BT , Results in Table 6.10 shows that the univariate detectors can 

maintain a relatively low type I error while detecting all 10 targets in this simulation, 

except for the ANOVA adaptation to an univariate detector. To better appreciate the 

difference in performance among different detectors, see examples of output surfaces 

shown in Fig. 6.9. 

 

 

Figure 6.9. Examples of intermediate result OUTPUT, as described in text. The peaks are 
responses from the 10 targets as seen by the different detectors testing a single simulated 
realization of 4BT . Notice the artifact responses in the vicinity of some of these peaks. 
Depending on the detector, some of these artifact responses are more accentuated then 
targets’ responses—see, for instance, the responses of targets T1, T4, T5, T2, and T3 
(embedded in narrow background stripes) in the RX output surface. Those artifacts also 
contribute to the type I error, thus, increasing its estimate with respect to the desired type I 
error.  
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 Fig. 6.9 shows that the univariate ANOVA detector suppresses very well the 

transitions of distinct background classes presented in 4BT , but unfortunately it also 

suppresses the most challenging locations in 4BT —where targets are present. All the 

five targets that were located in narrow background stripes were undetected by the 

ANOVA detector (see targets T1, T4, T5, T2, and T3 that are located at narrow 

background stripes in Fig. 6.9 [ 4BT ] and notice that their responses are virtually 

noise in the ANOVA output surface in Fig. 6.9; targets outside those narrow stripes 

were accentuated in this surface, see the other T1, 2 T2s, T3, and T4.) Incidentally, 

for displaying purposes only, the outputs surfaces shown in Fig. 6.9 for univariate 

AsemiP and multivariate RX were clipped at a maximum value of 400, some of those 

peaks continue to significantly higher values. 

 Similar trend can be observed for the multivariate RX detector, see Table 6.9 

and Fig. 6.9. As the desired type I error for the RX detector decreases, its estimated 

type II error increases. For instance, the RX responses for targets T1, T4, and T5 

located at the narrow light-colored background stripe (see Fig. 6.9 [ 4BT ]) were 

undetected at the cutoff thresholds for desired type I errors 3
3 10−=≤α , and the RX 

responses for targets T2 and T3 located at a second narrow background stripe (see 

Fig. 6.9 [ 4BT ] dark narrow band having T2 and T3) were also undetected at the 

cutoff threshold for 4
4 10−=α ; thus, at 4

4 10−=α , the RX detector missed 5 out of 10 

targets, see Table 6.9 (RX, row 4
4 10−=α ).  

Performance losses were observed earlier for the other multivariate detectors FLD, 

EST, and DPC, as shown in Table 6.5 and Table 6.7, now in Table 6.9.   
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 Table 6.10 shows that, in general, the univariate detection approach handled 

well the most difficult target-background configuration in this simulation. The 

AsemiP output surface shown in Fig. 6.9 illustrates the strength of using this 

approach for top-view anomaly detection applications, i.e., with respect to the ten 

target responses seen in that output surface, the AsemiP showed that, as it tested 

simulated data cubes featuring a challenging target-background configuration— 4BT , 

it can (i) suppress window-size background region extensions of a major background 

class over another class, (ii) suppress challenging narrow background regions (see, 

for instance, window location b in Fig. 6.5), and (iii) suppress the local transitions of 

distinct background regions.  

 It is worth mentioning from tabulated results in Fig. 6.9 that the AsemiP 

detector’s signal to noise ratios between target responses (signal) and background 

responses (noise) are not necessarily the same for all targets, or for that matter for the 

same target type located in different local background configurations (see, for 

instance, target responses of T1, T2, and T4 in Fig. 6.9, as they are spatially located at 

two different locations in 4BT —inside a narrow background stripe and outside this 

stripe. The same observation can be made for all the other detectors’ performances as 

well. This issue relates to the ability of a detector to yield a high signal to noise ratio 

involving sample mixtures of different classes, which was addressed in Chapter 5. 

The message here is that the univariate detection approach proposed in this 

dissertation for top-view anomaly detection is not completely insensitive to the 

correspondence between local background configuration and dual window size, but it 

demonstrates a significant amount of insensitivity to difficult background scenarios, 
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which is in contrast to the performances of the multivariate approach normally used 

for this application. More importantly, this contrast in performance between both 

approaches has been consistent using these detectors to test real hyperspectral 

imagery, as shown in Chapter 7. The results presented in Table 6.9 and Table 6.10 

can be readily plotted in terms of Receiver’s Operational Characteristics (ROC) 

curves [35] for each detector. The corresponding ROC curves are shown in Fig. 6.10. 

 

Figure 6.10. ROC curves using estimates shown in Table 6.9 and Table 6.10. The upper left 

side curves exhibit performances for a range between 0.0 and 0.12 (PFA) and between 0.0 

and 1.0 (PD). The upper right side curves depict the same curves shown in the left but limited 

to a PFA range between 0.0 and 0.01. The bottom curves include performances of detectors 

SemiP and AVT. (An ideal ROC curve resembles a step function starting at point [PFA = 0.0, 

PD = 1.0]). 



 

 161 
 

 A ROC curve plots the probability of detection (PD), which is defined as 1.0 

minus the estimated type II error, versus the probability of false alarms (PFA), which 

is defined as the estimated type I error. The estimated mean averages of the type I and 

type II errors from 1,500 experiment repetitions were used to estimate PD and PFA 

for each detector, as they tested examples of 4BT .  

 The curves shown in the upper left side of Fig. 6.10 exhibit performances of 

univarite (AsemiP and ANOVA) detectors and multivariate (RX, FLD, EST, and 

DPC) detectors for a PFA range between 0.0 and 0.12 and a PD range between 0.0 to 

1.0. The curves shown in the upper right side of Fig. 6.10 depicts the same curves but 

limited to a PFA range between 0.0 and 0.01. And the curves showed in the lower 

part of Fig. 6.10 show performances of all four univariate detectors AsemiP, SemiP, 

AVT, and ANOVA for a PFA range between 0.0 and 0.12. An ideal ROC curve 

resembles a step function starting at point (PFA, PD) = (0.0, 1.0). 

6.6. Summary and Conclusions 

This chapter has examined the performance of four two-step univariate anomaly 

detectors and four multivariate anomaly detectors on simulated multivariate data 

cubes, mimicking a target detection application from top-view anomaly detection. 

Results tabulated in Table 6.3 thru Table 6.9 suggest that the overall performance of 

univariate anomaly detectors can be significantly less dependent on, or sensitive to, 

the background configuration of data cubes than the overall performance of popular 

multivariate anomaly detectors. These univariate detectors were also able to 

accentuate better the presence of targets in difficult background configurations (see 

Fig. 6.9, Table 6.9 and Table 6.10) than multivariate detectors. 
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It is also worth mentioning that since the results presented in this chapter were 

obtained from conducting controlled simulations, estimated PD differences for these 

detectors could also be controlled by designed. For instance, if we increased the 

number of targets in regions in 4BT  having benign background configurations, the PD 

results of multivariate detectors—especially the RX detector—could be made to 

correspond to PD results produced by the univariate detectors in Table 6.10. 

Conversely, if we increased the number of targets in difficult local background 

configurations, the multivariate detectors (including the RX detector) could be made 

to produce significantly lower PD results than their performances shown in Table 6.9. 

Hence, results presented in this chapter are intended only for illustration purposes of 

what types of backgrounds (or background configurations) the two-step univariate 

detectors can perform better than popular multivariate detectors. In this illustration, 

the background complexity gradually increased from a relatively simple 

homogeneous class configuration, to a moderately difficult five region class 

configuration, to a difficult nine region class configuration having some of the local 

transitions of regions corresponding to the dual window size. Targets were strategically 

introduced to realizations of these background cubes, so that we could measure the effects of 

these background configuration changes on the anomaly detectors, as they tested these data 

cubes using their corresponding sets of calibrated cutoff thresholds. Performance robustness 

under increasing background configuration complexity, which was shown in this chapter by 

the univariate detectors, is highly desired in the HS research community, since real life 

scenarios present all kinds of unpredictable background configurations. Chapter 7 addresses 

ground view anomaly detection using real HS imagery.    
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Chapter 7  GV Anomaly Detection Using Real HS Data 

7.1. Introduction 

This chapter addresses the problem of anomaly detection from a ground-to-

ground viewing perspective. (The notations presented in Section 2.3 and Section 2.4 

apply to this chapter, unless mentioned otherwise.) 

If an anomalous object (target) is defined as one made of a material that is 

spectrally different from all the materials composing its natural clutter background, 

then the question we attempt to answer in this chapter is the following:  Can an 

algorithm suite be developed to automatically detect (or accentuate) the presence of 

targets in a cluttered environment, given that the imagery was recorded from the 

ground-to-ground viewing perspective and no prior information is known about the 

various materials composing the cluttered environment, the number of targets present 

in the scene (or if targets are present at all), the scales of targets (their relative sizes in 

the imagery), shapes and material types of these targets, the illumination 

environment, and atmospheric conditions. 

Anomaly detection using GV imagery is significantly harder to address than using 

TV imagery, because the distances between the sensor and objects in the scene are 

unavailable for ground view imagery, thus, adding one more unknown variable 

(target scales) to the anomaly detection problem. Note, for instance, that small targets 

at closer range will look large—and vice versa, and multiple targets in the same scene 

may have different scales. The sampling method using a fixed dual rectangular 

window (see Chapter 6) would not be effective in this application because, in the 
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event that target samples are observed in the inside window, it cannot be guaranteed 

that the samples observed through the outside window will always belong to the 

clutter background. Therefore, in the event that target samples are simultaneously 

observed through both inside and outside windows, the detector will likely suppress 

the pixels representing that window location in the resulting output surface. 

To circumvent target scale uncertainties, we propose to automatically take N 

blocks of data from random locations in the imagery and, since the targets are 

expected to cover a significantly small area in the imagery, label these data sets as 

spectral references of clutter background. There is, however, a probability that, if 

targets are present in the scene, some of these spectral reference sets will be 

contaminated, i.e., one of these spectral reference sets includes target pixels. In order 

to decrease the probability of contamination, we propose to repeat independently this 

random sampling process M number of times and will show that the probability of 

taking target samples by chance during these repetitions can be modeled—

approximately—by the Binomial distribution family. We will use this approximation 

to assist on tradeoff decisions. 

The remainder of this chapter is organized as follows: Section 7.2 discusses the 

SOC-700 HS data used for this experiment. Section 7.3 proposes a repeated (parallel) 

random sampling approach and models this approach by a binomial distribution; it 

also discusses how this sampling approach can be implemented in the context of 

anomaly detection and presents results using real GV HS imagery. Section 7.4 gives 

some insights on the detection performances shown in Section 7.3 by applying 

additional detectors on real GV HS imagery, but using, instead, prior information on 
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the clutter background and manual sampling to form a spectral library. Section 7.5 

concludes this chapter. 

7.2. Description of the SOC-700 Hyperspectral Data 

The GV imagery used for this work was recorded using the SOC-700 VNIR HS 

spectral imager from Surface Optics Corporation, see Section 2.2. The system 

produces HS data cubes of dimensions 640 =R  by 640=C  pixels by 120=K  

spectral bands between 0.38 and 0.97 μm. The sensor is commercially available off 

the shelf [20].  

Fig. 7.1 depicts samples of GV imagery recorded with the SOC-700 HS imager; 

each pixel in any of the four cube examples corresponds to the average of all the band 

(120) values at that pixel location, see (2.5). 

Data cubes Cube 1, Cube 2, and Cube 3 were collected during the month of June 

2004 in Fort Hunter-Liggett, California; data cube Cube 4 was collected during the 

month of April 2008 in Picatinny Arsenal, New Jersey. From actual ground truth, it is 

known that the scene in Cube 1 (see Fig. 7.1) contains three motor vehicles and a 

standing person in the center of that scene (i.e., two pick-up trucks to the left in 

proximity to each other, a man slightly forward from the vehicles in the center, and a 

sport utility to the right). The cluttered environment in Cube 1, Cube 2, and Cube 3 is 

dominated by Californian valley-type trees and/or terrain, where in Cube 2 the same 

sport utility vehicle and the same person stand in proximity to each other; they are 

located in the same valley, but at a different area from the one in Cube 2. Cube 3, 

although recorded in the same general geo-location of Cube 1 and Cube 2, depicts a  
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                                        Cube 1                                            Cube 2 
 

 

                                   Cube 3                                               Cube 4 
 

Figure 7.1. Examples of GV imagery. An effective GV anomaly detection algorithm suite 

would allow a machine to accentuate the presence of targets, while suppressing the cluttered 

environment, using no prior information about what constitutes clutter background or target 

in the imagery. 

 

significantly more complex scenario, where, from actual ground truth, it is known 

that a sport utility vehicle is in the shades of a large cluster of trees. Portions of the 

shadowed vehicle can be observed near the center in Cube 3. Cube 4 was recorded in 

a wooded region in Picatinny Arsenal, New Jersey, where (according to the available 
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ground truth) a sport car is located behind several tree trunks and, hence, can be only 

partially observed in this heavy cluttered environment; see Fig 7.1 (left-center in 

Cube 4).  

The four data cubes in Fig. 7.1 are independently displayed as intensity images 

after linear mapping the gray scale of each to the range 0-255. Pixel intensities shown 

in each individual surface is only relative to corresponding values in that surface; in 

other words, pixel values representing the same material (general terrain) may be 

displayed with different intensities in another surface. This fact explains, for instance, 

the difference in brightness between the terrains displayed in Cube 2 and Cube 3, 

given that both the cluttered environment and atmospheric conditions were about the 

same during collection of both data cubes. The strong reflections from certain parts of 

the vehicles captured by the sensor in Cube 1 and Cube 2 are not as dominant in Cube 

3 because the vehicle in Cube 3 is in tree shades; hence, the terrain in Cube 3 is the 

strongest reflector in the scene.    

7.3. Autonomous Sampling of the Cluttered Environment 

A parallel random sampling approach is presented in this section for autonomous 

clutter background characterization. This approach is then incorporated into an 

algorithm suite in order to perform GV anomaly detection, using a favorite detector. 

 Results from testing this anomaly detection algorithm suite on real GV 

imagery are also presented in this section. 
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7.3.1. A Binomial Based Parallel Random Sampling Model 

Assume that target pixels are present in the CR ×  spatial area of a KCR ××   

HS data cube X , see (2.4) and examples in Fig. 7.1, denote a the total number of 

target pixels in X  and q the probability of a pixel in X  being a target pixel out of all 

RCA =  pixels in X , i.e., 
A
aq = . (In most applications q is unknown, and if multiple 

targets are present in the imagery, a will be the total number of all target pixels 

included in the imagery; also, these targets may or may not have the same material 

type.) In order to represent the unknown clutter background in the imagery, let N 

blocks of data—all having a fixed small area ( ) ( )CRnn ×<<×  —be randomly 

selected from the CR ×  area (see Fig. 7.2). In theory, for ( ) ( )1 1 ×=×nn  and using the 

assumption that target pixels in X  are disjoint and randomly located across the CR ×  

imagery area (in practice, this assumption is not satisfied when targets are present in 

the scene), the probability P that at least one block of data has a target pixel is 

 

( ) ( ) ( ) ( )
( ),01               

211
=−=

=++=+==≥
mp

NmpmpmpmP L
.                                  (7.1) 

 

where p  is the binomial density function [23], given parameters q and N, and 

{ }Nm ,,1,0 L∈  is the number of blocks of data containing a target pixel, or 

 

( ) ( ) ( ) mNm qq
mNm

NNqmp −−
−

= 1
!!

!, .                                       (7.2) 
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 (Symbols  and ! denote given parameters and the factorial operator, 

respectively.) 

 For convenience, we will refer to ( )1≥mP  as the probability of contamination 

and, consequently, m as the number of contaminated blocks of data.  

 

 

 

Figure 7.2. N small ( )nn×  blocks of data are randomly (autonomously) selected 
from the imagery ( )CR×  area, as spectral reference sets. In autonomous remote 
sensing applications, since it is unknown a priori whether target pixels are present in 
the imagery, a probability ( )1≥mP  exists of at least a block of data being 
contaminated with target pixels.  

 

 The implementation of this contamination model to the autonomous 

background sampling problem requires that each one of the N ( )nn×  blocks of data 

be regarded as an independent reference set  )(
2

fW  ( )Nf ,,2,1 L=  representing 

clutter spectra, where 2  )(
2  nKf ×∈RW  is a rearranged sequence version of the fth block 
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of data having 2
2 nn =  spectra. By necessity, 2n  must be significantly greater than 

one—for statistical purposes—but yet significantly smaller than CRA  =  (e.g., 

000977.0
640
20

2

2
2 ==

A
n ) in order to be reasonable to regard a nn×  block of data an 

unit area on the CR×  imagery area. A contaminated block of data, then, will be 

treated qualitatively as a block having target pixels covering a large portion of the 

block’s area (e.g., greater than 0.70). In addition—when targets are present, since 

pixels representing a single target are expected to be clustered in the imagery, the 

assumption that each target pixel is randomly located across the imagery area will be 

ignored. Using (7.1), while ignoring the non-clustered target pixel assumption, 

implies that the probability of contamination will be overestimated, as blocks of data 

are less likely to be randomly selected from the same cluster of target pixels. (For the 

autonomous background sampling problem, it is more conservative to overestimate 

the probability of contamination than to underestimate.)  

Fig. 7.3 shows a plot of the probability of contamination ( )1≥mP  versus N, 

for two values of q (0.1 and 0.2). It is highlighted in Fig. 7.3 that, for instance, if 

parameters are set to ( ) ( )22,10.0, =Nq  then ( )1≥mP  = 0.90. Notice that for 

22=N , if target pixels are present but cover less than 10.0=q  of the imagery area, 

( )1≥mP  = 0.90 is overestimated by two fronts: (i) pixels from a single target are not 

randomly spread across the imagery area, but clustered, and (ii) the cumulative 

number of target pixels covers less than 0.10 of the imagery area. So, (7.1) provides 

an upper bound (conservative) approximation of the probability of contamination, 

given parameters q and N. 
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 Fig. 7.3 also shows the trade off between having a larger number of spectral 

sets (increasing N) in order to adequately represent the clutter background, which is 

desired, and the cost of increasing probability of contamination, which is not desired. 

(More directly, contamination implies that once target pixels are randomly selected 

by chance from the imagery area, they will be used by a detector as reference set to 

test the entire imagery, which under the case targets would be suppressed.)  

 

 
 

 

Figure 7.3. The probability ( )1≥mP  of having at least a ( )11×  block of data 

contaminated with a target pixel, as a function of N (the number of randomly selected 

11×  blocks of data), for two given values of q (the probability of randomly selecting 

a target pixel in the imagery area). These curves are conservative upper bounds, 

because target pixels are assumed to be randomly distributed across the imagery area, 

but in practice pixels are clustered per each target.  
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 Since the presence of target pixels in the imagery is unknown a priori, finding 

a way to decrease the probability of contamination becomes a necessity. In order to 

decrease this probability, using an adequately large N and a sensible value for q, we 

propose to independently repeat the random sampling process described in this 

subsection M number of times. Fig. 7.4 illustrates the outcome of M repetitions. If we 

denote the probability of contamination of the gth random sampling process (or 

repetition) as ( )1≥mPg , Mg ≤≤1 , for a fixed q and N, note that each 

( ) ( )11 ≥=≥ mPmPg  and, since ( ) 0.110.0 ≤≥≤ mP  and these processes will be 

repeated independently from each other, the overall probability P~  that all the 

processes will be contaminated with at least a contaminated block of data will 

decrease as a function of increasing M, or 

 

 ( ) ( ) ( ) ( )[ ]MM mPmPmPmPP 1111~
21 ≥=≥≥≥= L .                               (7.3) 

 

 The overall probability of contamination in (7.3) can also be expressed using 

the binomial distribution by letting m~  be the number of independent processes that 

are contaminated out of M repetitions, where { }Mm ,,1,0~ L∈ , and using ( )1≥mP  as 

the probability of contamination per process. It follows:      

( ) ( ) ( )[ ] ( )[ ]

( )[ ]

( )[ ] ,11                    

1                    

111
!~!~

!~~ ~~

MN

M

mMm

q

mP

mPmP
mMm

MMmP

−−=

≥=

≥−≥
−

== −

.                   (7.4) 

for AqMN <<⋅⋅ . 
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Figure 7.4. The probability ( )MmP =~~  that all M random sampling processes 

(repetitions) will have at least a contaminated block of data decreases as a function of 

increasing M, given that each independent process has a probability ( )1≥mPg  of 

being contaminated.   

 

Fig. 7.4 also shows a plot of  P~  as a function of increasing M, for 

( ) 90.01 =≥mP  and ( ) 65.01 =≥mP . Taking, as an example, the P~  curve in Fig. 7.4 

corresponding to using ( ) 90.01 =≥mP  in (7.4), notice that for 40>M , ( )MmP =~~  

decreases to virtually zero. This outcome implies that at least one out of the 40>M  

processes has an extremely high probability of not being contaminated, as long as, 

22=N  and target pixels do not cover significantly more than 10% of the imagery 

area ( )10.0=q . We will show shortly in Subsection 7.3.2 how to use this autonomous 
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random sampling approach in the context of GV anomaly detection, and give some 

guidelines in how to choose parameters q, N, and M. (Since the M processes are 

performed independently of each other, this sampling approach will be also called the 

parallel random sampling approach.)  

7.3.2. GV Anomaly Detection Using No Prior Information 

The GV anomaly detection problem can now be addressed using (i) the 

parallel random sampling approach discussed in Subsection 7.3.2 (needed to 

characterize the unknown clutter background in the imagery), (ii) an effective 

anomaly detector to test reference data against the entire imagery, (iii) a way to fuse 

the results from testing N randomly chosen blocks of data against the entire imagery 

using small windows (this will produce a 2-dim output surface per process), and (iv) a 

way to fuse M independently produced 2-dim output surfaces into a single 2-dim 

decision surface.   

We start by choosing from Chapter 4 a multivariate detector (RX) and a univariate 

detector (AVT), and follow with a discussion on how to approach (iii) and (iv) using 

(i) with these detectors.  

 Let a GV HS data ( )KCR ××  cube X , see (2.4), be available for autonomous 

testing. Let also N  blocks ( )nn×  of data be randomly selected from the X ’s CR×  

spatial area and used as a reference library set )(
2

fW  ( )Nf ,,2,1 L=  representing 

clutter background spectra, where ( ))(
2

)(
21

)(
2 2

   , , f
n

ff yyW L=  is a rearranged sequence 

version of the fth block of data having 2
2 nn =  spectra, where { } Kn

u
f
u Ry ∈=

2

1
)(

2  are K-

dim column vectors. Let ( )
11111    , , nyyW L=  be the rearranged version of a ( )nn×  



 

 175 
 

window of test data at location ij in X —see (2.8) for column vectors { } Kn
hh Ry ∈=

1

11 ;  

first, we would like to automatically test 1W  against all { }N
f

f
1

)(
2 =W , and produce a 

single output (scalar) value 0.0~ )( ≥ij
RXZ  from these N test results. Using in this case the 

RX detector, see (4.8), as the base detector, we propose the following: 

 

( )fij
RXNf

ij
RX ZZ )(

1

)( min~
≤≤

= ,                                                      (7.5) 

where 
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21 nnn == , and ( )1,,1 −−= nRi L  and 

( )1,,1 −−= nCj L  index the left upper corner pixel of an nn×  window in X  [see, 

for instance, (2.8) and (2.9)].  

 Notice that if ( ) ( ) ( )Nij
RX

ij
RX

ij
RX ZZZ )(2)(1)( ,,, L  are placed in ascending order and 

denoted by ( ) ( ) ( )
)()(

2
)(

1 ,,, ij
NRX

ij
RX

ij
RX ZZZ L , such that ( ) ( ) ( )

)()(
2

)(
1

ij
NRX

ij
RX

ij
RX ZZZ ≤≤≤ L , then 

)(
)1(

)(~ ij
RX

ij
RX ZZ = —the lowest order statistics [25].  

 Notice also that if 1W  is significantly different from all { }N
f

f
1

)(
2 =W , then all of 

the corresponding results { }N
f

fij
RXZ 1

))((
=  in (7.6) would yield high values; this outcome 
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means that the lowest order statistics )(~ ij
RXZ in (7.5) would also produce a high value. 

Otherwise, if 1W  is significantly similar to at least one of the samples in  { }N
f

f
1

)(
2 =W , 

then at least one of the corresponding results in { }N
f

fij
RXZ 1

))((
=  would yield a low value; 

this low value would be assigned to )(~ ij
RXZ , according to (7.5).  

 Since it is unknown a priori whether target spectra are present in X , the entire 

X  needs to be tested. In order to do it, all { } 1 ,1

1 ,1
)(~ −−−−

==

nCnR

ji
ij

RXZ  must be computed 

according to (7.5), producing a 2-dim output surface )(~ g
RXZ , or  
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where the index g ( )Mg ≤≤1 has been introduced to results produced by (7.5) in 

order to denote the repetition (or process) number discussed in Subsection 7.3.1. 

(Notice that )1(  )1()(~ −−×−−∈ nCnRg
RX RZ , which for 1>n  is a smaller spatial area than the 

X ’s CR×  spatial area.) 

 The result in (7.7) is our approach to (iii), see the first paragraph in this 

subsection.  

 The procedure discussed thus far in this subsection will be independently 

repeated M number of times, as discussed in Subsection 7.3.1. Using the pixel values 
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))((~ gij
RXZ  from )(~ g

RXZ , our approach to (iv) is to sum M results as follows: (the rationale 

will be explained shortly) 
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Fig. 7.5 illustrates )(~ g
RXZ  (7.7) and  RXZ  (7.8) through a parallel random 

sampling diagram. The diagram shows M independent (parallel) paths, where, in each 

path, independent blocks of data are randomly selected from the input HS data cube 

so that the entire data cube can be tested, against these blocks of data, using a testing 

window of the same block size. Each path, which is indexed by g ( )Mg ≤≤1 , 

produces a 2-dim output surface ( ))(~ g
RXZ , where, at the backend of the diagram, all 

{ }M

g
g

RX 1
)(~

=Z  are summed pixelwise (i.e., only the pixel values at the same pixel location 

are added), producing a final 2-dim surface RXZ , as shown in (7.8).  
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Figure 7.5. Parallel random sampling approach for GV anomaly detection, where 

detector’s output surfaces are fused by summing pixelwise the surfaces.  

 

 For a given repetition g ( )Mg ≤≤1 , assume that the realization of 1W  from a 

window location ij in X  is a spectral sample of a target, and the realizations of 

{ }N
f

f
1

)(
2 =W  are samples of various materials composing the clutter background in X , 

i.e., the randomly selected blocks of data are not contaminated with target spectra. 

Using an effective anomaly detector, (7.5) is expected to yield a high value for that ij 

location. Moreover, if the target scale in X  is larger than nn× , then the target will be 

represented by multiple pixels in )(~ g
RXZ —see (7.7), having high values. These pixels 

are expected to be clustered, hence, accentuating the target spatial location in )(~ g
RXZ . 

However, as discussed in Subsection 7.3.1, the contamination probability ( )1≥mP , 

for a given g, increases as a function of increasing N, see Fig. 7.3. Fig. 7.4 shows 
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further that for a fixed q, N and an adequately large M, if (for instance) results 

( ) ( ) ( )M
RXRXRX ZZZ )22(2)22(1)22( ~,,~,~

L  correspond to the same portion of the target at testing 

window location ( )2,2 == ji , then (7.4) give us the confidence that at least one term 

in ( ) ( ) ( )M
RXRXRX ZZZ )22(2)22(1)22( ~,,~,~

L  will have a high value with high probability 

( )[ ]MmP =− ~~0.1 ; we can capture this high value(s) by summing these terms, or for 

this example ( )∑
=

M

g

g
RXZ

1

)22(~ , as shown in (7.8) for all ij locations. Notice that a target may 

also be represented by multiple (clustered) pixel locations in RXZ  (7.8).        

 The implementation described in this subsection for the RX detector is readily 

applicable to other multivariate or univariate detectors, described in Chapter 4, by 

merely using )(
2

fW  in place of 2W , and applying the corresponding formulas 

accordingly.  

Next, we discuss implementation of the GV anomaly detection approach using the 

univariate AVT detector as base detector.  

 To use the univariate AVT detector, spectral samples must be first 

transformed using the transformation method discussed in Subsection 3.2. We can do 

that by using the N randomly selected blocks of data and arrange to 

( )Nff ≤≤1)(
2W , replacing 2W  in (3.1) with )(

2
fW , and using the index f, 

accordingly, in (3.3), (3.5), and (3.7), or 
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and, denoting the columns of )(
2

f∇  as { } 2

1
)(

2
n
u

f
u =∇ ,  
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 And equivalently for ( )
11111    , , nyyW L= —the rearranged version of a ( )nn×  

window of test data at location ij in X , using (3.2), (3.4), (3.6), and the columns of 

)(
2

f∇  in (7.10)—{ } 2

1
)(

2
n
u

f
u =∇ , we have 
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 From (7.12) and (7.13), the following two univariate sequences will be used 

as inputs to the AVT detector: 
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and 
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)(
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)(
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  ,    ,  , f
n

fff xxxx L= ,                                        (7.15) 

 

where Nf ≤≤1 . 

 Following the discussion that led to (7.5), the AVT detector—see (4.41)—is 

implemented as follows: 

 

( )fij
AVTNf

ij
AVT ZZ )(

1

)( min~
≤≤

= ,                                                  (7.16) 

where, 
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( )
)(2
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2)(2)(2
2

2
))((

ˆ f

f
union

f
fij

AVT
SSnZ

ζ
−= ,                                                 (7.17) 

 

2
2S  is the sample variance of )(

2
fx  in (7.14), )(2 f

unionS  is the sample variance of 

( ))(
1

)(
2 , ff xx  —the combined sample using (7.14) and (7.15), and—for )(

2
fx  denoting 

the sample mean of )(
2

fx —  

 

( )[ ] .
1

2

1 2

2
)(2

2
2)(

2
)(

2)(2
2

ˆ ∑
= −

−−
=

n

u

fff
uf

n
Sxxζ                                        (7.18) 

 

 

 After computing all { } 1 ,1

1 ,1
)(~ −−−−

==

nCnR

ji
ij

AVTZ  using (7.16) and indexing them with the 

given repetition g ( )Mg ≤≤1 , a 2-dim output surface )(~ g
AVTZ  is produced,  
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which leads to AVT’s final output surface AVTZ ,  
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 For the remainder of this chapter, we will refer to parallel random sampling as 

PRS and, consequently, to (7.8) and (7.20) as PRS-RX and PRS-AVT, respectively.  

7.3.3. Summary of Results 

This subsection focuses on the application of the PRS approach, discussed in 

Subsection 7.3.2, to the autonomous GV anomaly detection problem. No prior 

information (e.g., spectral library, expected target scales, any knowledge about the 

scenario) is used, except for the comparative analysis discussed later in this chapter. 

Since this approach requires an effective anomaly detector as its base detector, and 

results from Chapter 5 and Chapter 6 showed that the two-step univariate detection 

techniques are more effective testing difficult simulated cases than existing 

multivariate detection techniques, most of the results presented herein were obtained 

using PRS-AVT. Initial results using PRS-AVT and PRS-RX are shown in 

Subsection 7.3.3.1; additional results are shown in Subsection 7.3.3.2 applying PRS-

AVT to data collected recently (May/June 2008) at Picatiny Arsenal (New Jersey), 

exemplifying various scene conditions (e.g., fog, partially overcast); and finally, 

using prior information (manual sampling of the background clutter), additional 

comparative results are presented in Subsection 7.3.3.3 using multiple multivariate 

and univariate detectors, including RX and AVT. Subsection 7.3.3.1 focuses on first 
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checking whether PRS (using an effective detector) works; Subsection 7.3.3.2 focuses 

on the performance robustness of PRS-AVT to changing illumination environment 

and atmospheric conditions; and Subsection 7.3.3.3 focuses on a comparative analysis 

using the different detection techniques discussed in Chapter 4 for the GV anomaly 

detection problem. 

7.3.3.1.  Initial Results Using No Prior Information 

PRS-AVT was initially applied to Cube 1, Cube 2, Cube 3, and Cube 4 

(see Fig. 7.1) to test for scene (spectral) anomalies, obtaining excellent results—they 

are shown in this subsection. PRS-RX was also applied to Cube 3, since this cube was 

used for the data characterization discussed in Section 2.4.  

We begin by first showing how parameters N and M affect the output of 

PRS-AVT testing Cube 1, see Fig. 7.6. Fig 7.6 (top right and bottom left) represent 

two different outcomes for AVTZ  in (7.20), where nn×  was fixed at once to 

2020 ×  (for all data blocks and window sizes) and parameters q, N, and M were set 

to ( )3;3;1.0 === MNq —top right display—and 

( )40;22;1.0 === MNq —bottom left display. (These output surfaces, which  

for displaying purposes were extended to the size of Cube 1, are displayed using a 

pseudocolor map, such that, the brighter the pixel values in those surfaces, the 

stronger it is the evidence of anomalies at those pixel locations, relative to randomly 

selected blocks of data. Also, for calibration purposes, the single motor vehicle at the 

scene’s center right has about 25,000 pixels, which means that a 2020 ×  window 

would test 63 non-overlapping pixel locations over that target; but this target would 
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yield significantly more than 63 pixels in the output surface since sliding windows 

overlap.) The top right output surface displays an example when N is not set 

sufficiently high in order to adequately represent the clutter background. In this case, 

three blocks of data were randomly selected from the scene (most likely from the 

open field area, since it is the largest area in the scene), and used by the AVT detector 

to suppress [according to ( )Mgg
AVT ,,1~ )( L=Z  in (7.19)] the open field in Cube 1, not 

only once, but most likely 3=M   times. As a result, the three motor vehicles and the 

canopy area on the upper portion of that scene were accentuated relative to the open 

field. Initially, we ignored the Binomial distribution model and set parameters N and 

M intentionally low in order to test Cube 1 and show the undesired result in Fig. 7.6 

(top right). 

If M were set much higher (e.g., 30), with other parameters fixed, one or 

more )(~ g
AVTZ  would most likely have the tree area also suppressed, but since all of 

)(~ g
AVTZ  are pixelwise summed [see (7.20)] that tree area (although smaller than the 

open field, yet significantly larger than individual candidate targets) would still be 

accentuated relative to the open field. The results shown in Fig. 7.6 (top right) gave us 

the initial confidence that PRS seems to work as intended. We then used the Binomial 

distribution model to guide us on setting N and M, given a sensible q. 
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Figure 7.6. PRS-AVT results on Cube 1 (top left) for scene anomalies; output surface (top 

right) using parameters ( )3;3;1.0 === MNq ; and output surface (bottom left) using 

parameters ( )40;22;1.0 === MNq . Brighter pixels values in the output surfaces 

correspond to higher confidence on the presence of anomalies in the imagery, relative to 

randomly selected blocks of data. Also, notice that since AVTZ  is a sum of results, bright 

clusters in those surfaces are smooth clusters.    

 
 

For most remote sensing applications, targets (if present in the scene) will 

not cover more than 10 percent of the imagery spatial area. For instance, the motor 
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vehicle having 25,000 pixels in Cube 1 covers 6.1% of the imagery area ⎟
⎠
⎞

⎜
⎝
⎛

409600
25000 . 

So, we fix at once 1.0=q  as a robust choice. The binomial distribution plot in Fig. 

7.3, for 1.0=q , shows that 22=N  yields an upper bound contamination probability 

( ) 9.01 ≈≥mPg  ( )Mg ≤≤1 , and the plot in Fig. 7.4 shows a corresponding 

cumulative contamination probability ( ) 0.0~~ ≈= MmP  for 40=M . The output 

surface shown in Fig 7.6 (bottom left) is the result using PRS-AVT to test Cube 1 

having parameters set to ( )40;22;1.0 === MNq . That output surface shows the 

manmade objects (3 motor vehicles) clearly accentuated relative to the unknown 

cluttered environment, given that no prior information is used about the materials 

composing the clutter background, or about whether targets are present in the scene, 

or about targets’ scales relative to other object structures in the imagery. But notice in 

Fig. 7.6 that the standing person in the scene center is not detected, possibly because 

the window size might be too large and/or there must have some materials in that 

background (randomly selected) spectrally similar to the materials representing that 

person (e.g., pants, shirt, skin). Fig. 7.7 and Fig. 7.8 show additional results. 

Fig. 7.7 shows results using PRS-AVT to test Cube 2 and Cube 3, and Fig. 

7.8 shows results using PRS-AVT to test Cube 4, which represents a particularly 

difficult case of clutter suppression. Parameters were set to 

( )40;22;1.0 === MNq  for the three cubes.           
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Figure 7.7 PRS-AVT results on Cube 2 (top left) and Cube 3 (bottom left), where 

corresponding output surfaces are shown immediately to the right of the cube displays. 

Parameters were set to ( )40;22;1.0 === MNq . 

 

The output results shown in Fig. 7.6, Fig. 7.7, and Fig. 7.8, using 

parameters set to ( )40;22;1.0 === MNq , are excellent results for the given 

application, especially for Cube 3 and Cube 4, both clearly showing the presence of a 

motor vehicle highly accentuated—one in tree shades and another parked behind a 

heavily cluttered environment. These results ensure to us that the idea behind the PRS 
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approach works, as intended, but the overall results might dependent on the 

effectiveness of its core anomaly detection technique. Fig 7.9 shows a qualitative 

comparison between using PRS-AVT and PRS-RX to test Cube 3—the HS data cube 

used for the data characterization discussed in Chapter 2.    

 

 

 
 

Figure 7.8. PRS-AVT results on Cube 4 (left), and corresponding output surface (right). 

Parameters were set to ( )40;22;1.0 === MNq . Cube 4 exemplifies a hard case for 

autonomous clutter suppression. 
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 For the results presented in Fig. 7.9, the window size ( ) ( )2020×=× nn  and 

parameters ( )100;1.0 == Mq  were fixed, but N varied ( )100,50,10=N . 

Using 100=M  (a high number of repetitions—it took two weeks to obtain results 

shown in Fig. 7.9 using the MATLAB software environment [35] and a Pentium IV 

personal computer), we have confidence that the overall cumulative probabilities of 

contamination for both PRS-AVT and PRS-RX are equally low for the chosen values 

of N. In doing so, we can now check the sensitivity of the AVT and RX detectors to 

different values of N.  Under these settings, the detector that can show the lesser 

sensitivity to varying N is more desired. Sensitivity can be qualitatively checked by 

inspection of Fig. 7.9, i.e., the observed changes on the output surface of a given 

detector as N changes. PRS-RX results are shown in the left column (Fig. 7.9), and 

PRS-AVT output surfaces are shown in the right column (Fig. 7.9), where, from the 

top, N values were changed from 10, 50, to 100. Both sets of output surfaces use the 

same standard pseudo-color map (rainbow, which is available in MATLAB) for 

displaying purposes. By inspection, the output surfaces in Fig 7.9 clearly show a 

higher sensitivity of the RX detector to a varying N compared to the AVT detector. 

These output surfaces were extended to match the approximate size of the imagery 

spatial area of Cube 3 in Fig 7.9. According to available ground truth information 

about the data collection, the visible clusters approximately at the center of all three 

PRS-AVT output surfaces correspond to the pixel locations where a motor vehicle 

happens to be present under tree shades. Similar clusters are also shown at about the 

same pixel locations in PRS-RX output surfaces using 50=N  and 100=N , but 

with the cost of having clusters of similar or greater strength elsewhere in the imagery  
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AVTRX ZZ                               

 

 

Figure 7.9. Comparison results for PRS-AVT and PRS-RX on Cube 3 (bottom center) by 

setting N to three different values (10, 50, and 100); the corresponding PRS-RX output 

surfaces are shown in the left column, and the corresponding PRS-AVT output surfaces are 

shown in the right column. 

 

(false positives) covering some 15% to 20% of the imagery spatial area. Using 

10=N , the corresponding PRS-RX output surface shows that the anomaly strength 
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at the target pixel locations are similar or greater than the strength of no more than 

50% or so of all pixel locations in the imagery, which means that if a threshold is set 

to detect target pixels, about 50% of the imagery would show up as being anomalous 

to the clutter background. Many of the reasons behind the behavior of the RX 

detector, as shown in Fig. 7.9, were discussed in Chapter 5, and will be further 

discussed later in the context of the GV anomaly detection (see Subsection 7.3.3.3).  

We will now address the robustness of the PRS-AVT testing HS data 

collected under various environmental conditions.  

7.3.3.2.  Adaptive Threshold Under Various Environment Conditions 

The goal in this subsection is to establish an adaptive threshold method and 

then to test PRS-AVT for robustness using real HS imagery collected under various 

environmental conditions. But before we address the adaptive threshold requirement, 

we will first briefly introduce the additional dataset used to produce results for this 

subsection, followed by a brief discussion on automatically setting parameters N and 

M, given q. 

Additional Data: Fig. 7.10 depicts photos taken at a target site under 

various environmental conditions at the U.S. Army Armament Research, 

Development and Engineering Center (ARDEC), Picatinny Arsenal, New Jersey. A 

mission of ARDEC is to collect data that exemplify potential challenges to candidate 

target detection/classification algorithms. For successful algorithms, ARDEC finds 

users within the Army. The target site in Fig. 7.10 features heavy clusters of trees, 

surrounding an open grassy field, and a dirt road leading to targets. There are two 

targets at that site; both are validated surrogates of military tanks, which imply that 
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their physical appearances are similar to the actual tanks, and they were painted using 

genuine paints of the targets they represent. Using the SOC-700 HS imaging system 

(see Fig. 2.1), HS VNIR data were recently collected (May/June 2008) from a tower 

standing about 0.7 km from the target site, capturing reflectance of the same site 

under seven different conditions: (i) clear sunny day (noon) at a higher elevation (data 

collected at a higher elevation angle relative to the remainder viewing perspectives in 

this set, except in (vii)), (ii) clear sunny day (afternoon) at a lower elevation, (iii) 

clear sunny late afternoon (sun light is weaker, objects cast long shadows), (iv) 

cloudy day (sun light energy is attenuated by some amount), (v) fog above the targets 

(upper fog), (vi) targets immersed in fog (lower fog), and (vii) partially overcast 

(where the targets are present on the overcastted portion of the scene, and elevation 

angle is the same as in (i)). These various conditions are known to challenge target 

detection/classification algorithms because they can significantly change the spectral 

characteristics of a particular material (e.g., paint), see, for instance, [36] and the HS 

sensing model discussion in Subsection 2.3—in particular the explanation for (2.1).  

 

 

 

 

 

 

 

 



 

 194 
 

 
 

Figure 7.10. A target site under different environmental conditions. 
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  Automatic Parameter Setting: For remote sensing applications, it is often 

desired to enable a machine to automatically set algorithm parameters. On this note, 

we can automate the setting process of parameters N and M, given q.  

 To properly function, the PRS approach requires an adequately large N, which 

undesirably increases the contamination probability ( )1≥mP  per repetition, and an 

adequately large M, which desirably decreases the overall cumulative contamination 

probability ( )MmP =~~  of the PRS approach for M repetitions. From (7.1), (7.2), and 

(7.4), using the log of base 10, direct transformation leads to 

 

( )[ ]
( )q

mPN
−

≥−
=

1log
11log                                                           (7.21) 

  

and 

 

( )[ ]
( )[ ]Nq

MmPM
−−
=

=
11log

~~log .                                                       (7.22) 

 

 For any given q, we can fix the values of ( )1≥mP  and ( )MmP =~~ , and obtain 

N and M directly using (7.21) and (7.22), respectively. As guideline, ( )1≥mP  should 

be set high, but less than 1.0, so that N can also be relatively high and 

( ) 0.1~~ <= MmP ; ( )MmP =~~  should be set very low, near zero. The good news is that 

the actual values of ( )1≥mP  and ( )MmP =~~  are unimportant, as long as the guideline 

is followed. As an example, we could fix ( ) 90.01 =≥mP  and ( ) 01.0~~ == MmP , and 
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for 05.0=q , we obtain directly from (7.21) and (7.22) parameter values 45≈N  and 

44≈M . (Since N and M are defined as integers, these numbers are rounded off ≈ .) 

For consistency with initial results discussed in Subsection 7.3.3.1, we will fix at once 

10.0=q , ( ) 90.01 =≥mP , and ( ) 015.0== MmP RR , which using (7.21) and (7.22) 

yield 22≈N  and 40≈M .  

 Adaptive Cutoff Threshold: An adaptive cutoff threshold is also desired for 

remote sensing applications due to the various environmental conditions a scene can 

be exposed to, and to the diverse clutter background in different geographic locations 

across the world. For the PRS approach, we propose to take the fused output surface, 

in the case of AVT, AVTZ  in (7.20) and estimate both the mean and standard 

deviation (STD) using this surface’s pixel values as input. Denoting 
AVTZμ and 

AVTZσ  

the sample average and the sample STD, respectively, an adaptive cutoff threshold (a 

scalar) is obtained as 

 

( )
AVTAVT

aaT ZZ σμ += ,                                               (7.23)  

 

 where 0.0>a  is a constant and, using (7.19) and (7.20), 
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and  
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If (7.24) and (7.25) happens to be too sensitive to a relatively small number of 

pixels values in AVTZ , then one could use the average median, in place of sample 

mean, and a less sensitive estimate for STD. After experimenting with the latter route, 

we did not see a need to follow it; hence, we chose to use (7.23), (7.24), and (7.25) to 

test the additional data cubes shown in Fig. 7.10. 

 The SOC-700 imaging system can record the HS VNIR data cube of a site 

while taking a photo of the same viewing sight of the HS imager. Fig. 7.10 depicts 

only the photos of the target site. As in Subsection 7.3.3.1, the HS data cubes used for 

this experiment have dimensions 640 =R  by 640=C  pixels by 120=K  spectral 

bands between 0.38 and 0.97 μm.   

 In order to test the additional data depicted in Fig. 7.10, we set the data block 

size and testing window size to be the same, or  ( ) ( )2020×=× nn ; 10.0=q ; 

( ) 90.01 =≥mP , which using (7.21) yields 22=N ;  ( ) 015.0== MmP RR , which 

using (7.22) yields 40=M ; and the adaptive cutoff threshold 

( )
AVTAVT

aaT ZZ σμ += , see (7.23), set initially to ( )10T  and ( )30T . 

 We tested these additional data cubes but exhibited the corresponding results 

differently from the way results were exhibited in Subsection 7.3.3.1. Fig. 7.11 

depicts some of those results using PRS-AVT to test the HS data cube named Cloudy 

Day. In Fig. 7.11, the photo representing this cube is shown at the top left; the top 
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right shows the thresholded fused-output surface using ( )10T ; the bottom right shows 

the thresholded fused surface overlaid on the photo (the fused output surface and its 

thresholded version were automatically extended to the known photo size, as part of 

the overlaying process); and the bottom left shows the thresholded fused-output 

surface using ( )30T . Notice in Fig. 7.11 that at 10 sigma both targets are fully 

detected, and the dirt road shows up as false positives. At 30 sigma, an autonomous 

and untrained machine—having no prior information about the target scales/shapes, 

or materials composing the clutter background—can detect both targets with no false 

alarms, Fig 7.11 (bottom left). Fig. 7.12 shows more results    

 

 
Figure 7.11. PRS-AVT thresholded fused-output surface (top right) using parameters 

( )40;22;1.0 === MNq  and ( )10T ; Overlaid results using threshold ( )10T  (bottom 

right) and ( )30T  (bottom left). At 30 sigma, both targets are fully detected with no false 

positives. Because of the targets’ different angular orientations, they appear to have different 

scales and shapes.    
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Figure 7.12. PRS-AVT overlaid resuls for Lower Fog, using parameters 

( )40;22;1.0 === MNq  and adaptive thresholds ( )5T , ( )10T , ( )20T , ( )30T , and 

( )50T .  
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 Fig. 7.12 depicts the PRS-AVT results using the HS data cube named Lower 

Fog (arguably the most difficult one in this additional dataset for autonomous 

anomaly detection tasks), and applying the following thresholds: ( )5T , ( )10T , ( )20T , 

( )30T , and ( )50T , where the first column in Fig 7.12 shows results for ( )10T  and 

( )30T , and the second column shows ( )5T , ( )20T , and ( )50T . Notice that at 10 

sigma, the fog over the valley causes PRS-AVT to quadruple the false alarm 

proportion relative to results shown in Fig. 7.11 (bottom right) for the same scene on 

a cloudy day. But at 30 sigma, both targets are comparably detected between HS data 

cubes Lower Fog and Cloudy Day, producing negligible false positives (notice in Fig 

7.12, first column bottom surface, one can see very small clusters of false positives at 

the lower left of that surface). At 50 sigma, the detection and false alarm proportions 

are comparable between results using ( )30T  and ( )50T , which strongly suggests that 

PRS-AVT is capable of accentuating scene anomalies under adverse conditions. In 

order to check this, we tested the remainder data cubes using PRS-AVT—see results 

in Fig. 7.13. 

 In Fig. 7.13, tested cubes are shown in rows 1 and 4 (from the top), and—

applying an adaptive threshold at ( )30T —the corresponding overlaid results are 

shown in rows 2 and 3. Both targets are detected with virtually no false positives, 

except for the negligible false positive very small clusters shown on results for Lower 

Fog (lower left in overlaid surface). Those results suggest that the PRS approach, 

having an effective anomaly detection technique as its base detector, seems to be a 

robust approach for different data collection conditions.   
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Figure 7.13. PRS-AVT overlaid results, using parameters ( )40;22;1.0 === MNq  and 

adaptive threshold ( )30T . In all cases, PRS-AVT yielded virtually zero false alarms 

detecting both targets.  
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We address next a comparative performance study among some of the multivariate 

and univariate anomaly detection techniques discussed in Chapter 4. 

7.3.3.3.  Comparative Results Using Prior Information 

For anomaly detection comparison analysis using GV imagery, the PRS 

approach must be decoupled from the anomaly detection technique. Although, we 

would like to preserve the inherent challenges of GV anomaly detection using real HS 

data cubes. In order to do that, we will eliminate the random sampling and the process 

repetition by using a man in the loop, instead, to sample spectral representatives of 

the clutter background from one of the imagery to be tested, i.e., differently from the 

discussion thus far on GV anomaly detection, prior information about the clutter 

background will be provided to the detectors. 

The HS data cube Cube 1 was selected for background sampling by a 

human using prior knowledge about the imagery background (see, for instance, Fig 

7.2). Two ( )2020×  blocks of data were selected, one representing Californian valley 

trees and the other representing valley terrain. These blocks of data will be the only 

ones used as references by anomaly detectors, as these detectors test Cube 1, Cube 2, 

and Cube 3 (recall that these cubes were collected from the same geo-location in 

California, although they represent different scenes). Proceeding thus, we will be able 

to check the performance of these detectors as they attempt to suppress the entire 

clutter background of the same cube where clutter background representatives were 

sampled from, and check these detectors’ robustness as they attempt to suppress the 

clutter background of additional cubes using the limited fixed set of spectral 

references. 
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Using the notation of Subsection 7.3.2, let the rearranged spectral sample 

of California valley trees be denoted by )1(
2W , and the rearranged spectral sample of  

 

 

Cubes                             RX                              AVT 
 

 

Figure 7.14. GV anomaly detection using two reference sets of spectral samples (their 
locations are shown as small squares in the top cube) from California trees )1(

2W  and terrain 
)2(

2W . The RX fused (summed) output surfaces are displayed using the same pseudo color 
map, where white depicts the strongest sign of anomalies, yellow strong, red intermediate, 
and black lowest sign of anomalies. 
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the California valley terrain be denoted by )2(
2W  (note that ( )2,1)(

2 =ffW , or 2=N , 

for this experiment). As discussed in 8.3.2, 1W  denotes the rearranged spectral 

sample using the ( )2020×  test window at location ij in the spatial area of data cube 

X  being tested. For 2=N , the RX detector was implemented according to (7.5) 

through (7.8) for this experiment, and the AVT detector was implemented using (7.9) 

through (7.20). We applied the RX and the AVT detectors to Cube 1, Cube 2, and 

Cube 3, and present their fused (summed) output surfaces in Fig. 7.14, columns 2 and 

3, respectively.      

 In Fig. 7.14, we displayed all fused output surfaces using the same pseudo 

color map to emphasize anomalies with respect to the reference samples by their 

false-color (intensity) levels, i.e., white is equivalent to the strongest anomalies, 

yellow to strong anomalies, red to intermediate anomalies, brown to weak anomalies, 

black to weakest anomalies. The false colors change gradually and are relative only to 

those results within the same surface, for instance, a yellow pixel in one surface does 

not mean necessarily that its value is equivalent to another yellow pixel in another 

surface.   

 The results shown in the first RX surface (row 1, column 2) are consistent 

with the case studies discussed in Chapter 5. A typical multivariate detector performs 

well suppressing objects in the scene having low variability and belonging to the 

same material class of a reference set (e.g., the trees were suppressed). Likewise, it 

performs well for accentuating objects that are significantly different from the 

reference set—for instance, some parts of the vehicle at the right hand side (row 1, 

column 2) were highly accentuated. (One can actually observe white pixels within the 
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boundaries of those vehicles by zooming close enough on both RX surfaces (rows 1 

and 2, column 2), which indicates that those portions are significantly different from 

the reference sets.  Unfortunately, as it was observed in the top-view problem, 

local areas characterized by class mixtures (transition of regions) may be also 

accentuated by these detectors, obscuring therefore the presence of meaningful 

objects in that scene. In fact, for the HS cubes presented in Fig. 7.14, the RX detector 

seems to perform more as an edge detector than as an anomalous object detector.    

 On the other hand, the univariate AVT detector, which uses the data 

transformation discussed in Chapter 3, was able to virtually suppress the entire clutter 

background of Cube 1, and to accentuate large portions of the vehicles and a small 

portion of the standing person’s pants. (Using PRS-AVT with N >> 2 suppressed the 

distinction of the pants.) In a qualitative sense, test samples consisting of, say, a 

mixture of shadowed terrain and terrain were likely suppressed due to the fact that the 

AVT detector combines spectral samples as part of its computation, see (4.41). The 

reason combining samples seems to work well suppressing shadowed patches in the 

ground may be explained by the following: Regions characterized by tree shadows, 

for instance, may be interpreted as partially obscured terrain because tree leaves do 

partially obscure the incident solar light; however, since significant spectral radiances 

are still reflected from the partially shadowed terrain, such a region will be 

suppressed when compared to the union of itself and the reference set of open terrain, 

see (4.41). 

 Let us consider the results shown for Cube 2 in Fig 7.14 (row 2, columns 2 

and 3). The RX surface shown in rows 2, column 2, suggests that the RX detector 
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may be susceptible to subtle spectral differences of the same terrain when observed 

by the same HS sensor in a different area. Recall that Scenes 2 and 3 were tested 

using the same reference sets drawn from Cube 1. The surface shown in row 2, 

column 3, suggests that the AVT detector is significantly more robust to inherent 

spectral differences of the same terrain.  

 For results testing Cube 3, see Fig 7.14 (row 3, column 2 and 3), the 

interpretation of a shadowed object as a partially obscured object is especially 

relevant to the interpretation of output results for Cube 3. The fused output surface 

shown in Fig. 7.14, row 3, column 2, emphasizes the fact that the RX anomaly 

detector performs as expected: it detects local anomalies in the scene. However, as we 

have been discussing throughout the dissertation, these local anomalies are not 

guaranteed to be meaningful to an image analyst in the context of the problem in 

reference. For instance, in reference to the RX output surface for Cube 3, notice that 

some of the tracks made by the shadowed vehicle, and the transition between the 

shadowed and the non-shadowed terrain were the most anomalous regions in the 

scene, as seen by the RX detector. The AVT detector virtually suppressed these same 

regions, while the more meaningful anomalous structure (motor vehicle) was 

accentuated; see the corresponding AVT surface in Fig 7.14 (row 3, column 3). 

 For additional comparative results, we refer to Fig. 7.15, where the 

corresponding fused output surfaces are shown using the univariate detectors AVT 

and AsemiP and the multivariate detectors RX, FLD, and DPC to test Cube 3. 

 As mentioned in Subsection 7.3.2, other multivariate detectors (e.g., FLD, 

DPC) can be readily implemented by merely using )(
2

fW  in place of 2W , then 
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applying the corresponding formulas accordingly (see Chapter 4), and follow with the 

specific detector’s version of (7.19) and (7.20). The FLD detector (see Subsection 

4.2.2.1) and the DPC detector (see Subsection 4.2.2.2) were implemented, 

accordingly, for 2=N . Likewise, the AsemiP detector (see Subsection 4.3.1.1) was 

implemented, accordingly, using )(
2

fW  in place of 2W , applying the data 

transformation as in (7.9) through (7.15), and obtaining AsemiP’s corresponding 

versions of (7.19) and (7.20).    

 

 

 Cube 3                           AsemiP                    AVT 

 

   RX                               FLD                                 DPC 

Figure 7.15 GV anomaly detection using two reference sets of spectral samples from 

California tree leaves and valley terrain. The reference sets were taken from Cube_1. 
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 The RX and AVT fused output surfaces shown in Fig. 7.15 (row 2, column 1) 

and (row 1, column 3) are exactly the same ones corresponding to those detectors in 

Fig. 7.14. Notice that the FLD fused output surface shown in Fig. 7.15 (row 2, 

column 2) emphasizes the spectral differences between the shadowed tree region and 

the two reference sets, which incidentally are the same reference sets drawn from HS 

Cube 1. Notice that the FLD detector accentuates significantly a large portion of the 

shadowed motor vehicle, among other shadowed materials in that region (e.g., 

shadowed tree trunks and leaves). The DPC detector, on the other hand, focused on a 

portion of the vehicle’s tire tracks as being the most anomalous object class in the 

entire scene relative to the reference sets )1(
2W  and )2(

2W  (the tire tracks are observed 

as two approximately parallel bright lines at the left of the vehicle going toward the 

trees, see Cube 3 in Fig. 7.15).  

Taking a closer look at the DPC fused output surface in Fig. 7.15 (row 2, 

column 3) did reveal that about three pixels within the boundaries of the tire tracks 

are actually white (highest intensity). The shadowed vehicle, as well as a large 

portion of the shadowed tree region, produced the next lower intensity values below 

the tire tracks’ white pixels, which indicate that a cutoff threshold would have to be 

set relatively low in order to detect the target in the DPC fused output surface—by 

inspection, it would yield about 20% of the imagery as false positives. This is 

comparable with the FLD detector’s result, see Fig. 7.15. By inspection, in order to 

detect the target using the RX fuses output surface, a cutoff threshold would yield 

about 60% of the imagery as false positives. Both AsemiP and AVT detectors are 

comparable in performance testing Cube 3, and, in order to detect the target using 
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their fused output surfaces (see Fig. 7.15), a high cutoff threshold (e.g., 30 sigma) 

would yield negligible number of pixels as false positives.     

The results shown in Fig. 7.14 and Fig. 7.15 suggest that the univariate anomaly 

detection technique, which uses the data transformation from Chapter 3 and sample-

combining metrics in Chapter 4, seems more effective than conventional multivariate 

techniques for GV anomaly detection applications.  

7.4. Summary and Conclusions 

This chapter has proposed and examined the performance of an autonomous 

approach for the GV anomaly detection problem using real HS data cubes. The 

approach is generalized in the sense that it can be used with any detection technique, 

although this chapter showed that effectiveness of the chosen base detector will 

significantly affect the test results. This approach applies random sampling of the 

imagery and repeats the sampling process in order to mitigate the probability of 

contamination (spectral samples of candidate targets being used as clutter background 

reference samples). As such, this approach requires no prior information (e.g., a 

spectral library of the clutter background and/or target, target size or shape), and, 

therefore, is free from training requirements. This chapter showed that the PRS 

approach can be modeled by the binomial family of distributions, where the only 

target related parameter q (the upper bound proportion of target pixels potentially 

covering the spatial area of the imagery) is robust—thus invariant—to different sizes 

and shapes of targets, number of targets present in the scene, target aspect angle, 

partially obscured targets, or sensor viewing perspective. Binomial distribution plots 

were used to set other parameters: N (number of randomly selected blocks of data) 
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and M (number of process repetitions). This chapter also showed how N and M can be 

automatically set using a simple guideline, and how to implement an adaptive cutoff 

threshold method with PRS. 

The PRS-AVT approach, in particular, was applied to real HS data cubes yielding 

excellent results for different target deployments (target in an open field, target in tree 

shades, and target behind heavy wooded region), different environmental and 

illumination conditions (conditions as diverse as having fog over or immersing the 

targets, partially overcast, different elevation angles and times of the day), and 

different clutter backgrounds (Californian valley, New Jersey wooded areas). Finally, 

a comparative analysis was presented to show the effectiveness of using the 

univariate anomaly detection technique, as proposed in this dissertation, over a more 

conventional multivariate anomaly detection technique (e.g., RX) to the GV anomaly 

detection problem. Chapter 6 showed similar results using TV simulated data cubes.   
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Chapter 8  Conclusions and Future Work 

8.1 Summarized Conclusions 

The objective of this work was to propose and evaluate specific algorithms 

using—as input—transformed HS data in order to obtain novel forms for output 

surfaces, and then use these output surfaces to improve the performance of candidate 

ground view and top view anomaly detection systems.  

To date, a significant amount of research has focused on classification and 

detection algorithms using parametric HS data models as foundation for algorithm 

development, while little has been done to address the underlying fundamental 

problems that affect algorithm performances. One goal of this work was to identify a 

short list of fundamental performance challenges for existing local and global 

anomaly detection algorithms, and then use this list to find from a large population of 

scoring algorithms those metrics that could perform more robustly over these 

fundamental challenges. Another goal was to introduce to the HS research community 

the state of the art in global anomaly detection that would not require segmentation of 

the HS image data, as the state of the art in segmentation is still unreliable. (Global 

anomaly detection requires segmentation in the prior art—see, for instance, [12] and 

[13]).        

This dissertation identified three underlying key factors in spectra that can 

interfere with detection performance, as observed through sliding small windows, and 

studied via simulation their effects on the performance of existing HS anomaly 

detection algorithms on specified null and alternative Simple hypotheses, using two-
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sample data models under multivariate normal and mixtures of multivariate normal 

distributions. These factors are: spectral magnitude (bias), spectral shape, and spectral 

mixture.  

A data transformation method was proposed to reduce algorithm sensitivity to 

spectral magnitude, while preserving high sensitivity to spectral shape; both 

properties are desired for effective anomaly detection, as described in Subsection 

5.4.1. A semiparametric scoring metric and a few alternative scoring algorithms were 

proposed to handle spectral mixtures, where each scoring metric uses two 

transformed spectral samples.  

Results from the simulation experiment study showed that different detectors fall 

into groups that behave differently, essentially because as algorithms they seem to be 

designed to pick up different features; however, as shown in tabular form in Section 

5.4, it is noticeable that the two-step univariate detectors (data transformation 

followed by univariate scoring, as proposed in Subsection 4.3) are significantly less 

sensitive to spectral bias and more sensitive to spectral shape (both are desirable 

features) than the existing multivariate detectors chosen for the study (see Subsection 

4.2.1.3 through Subsection 4.2.2.3). On average, the two-step univariate detectors 

also outperformed existing multivariate detectors on the challenging simulation 

experiments involving idealized spectral mixtures of multivariate normal 

distributions, see Subsection 5.4.2.   

A more realistic simulation experiment was conducted to assess the performance 

of detectors on spectral mixtures by generating idealized multispectral (MS) data 

cubes, under multiple completely specified multivariate normal distributions and their 
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parameters. Idealized null MS data cubes were used for obtaining detectors’ cutoff 

thresholds, conditional to a fixed type I error for all the detectors used in the study; 

and idealized alternative MS data cubes were used for obtaining detectors’ power. A 

key point in this simulation experiment is that the background clutter configuration 

varied in complexity level from relatively easy, moderate, to hard for all the detectors 

used for the study in Chapter 6, such that, an alternative MS data cube corresponding 

to a given null MS data cube used the same clutter background configuration and data 

specification of the given null data cube; alternative data cubes, however, featured 

small blocks of data representing targets. Results tabulated in Table 6.3 through Table 

6.9 suggest that the overall performance of univariate anomaly detectors can be 

significantly less dependent on, or sensitive to, the background configuration of data 

cubes than the overall performance of popular multivariate anomaly detectors. These 

univariate detectors also outperformed the multivariate detectors on alternative data 

cubes having targets in difficult background configurations (see Fig. 6.9, Table 6.9 

and Table 6.10). 

 Finally, this dissertation presented a fully operational GV global anomaly 

detection algorithm and evaluates the approach using real HS data cubes, where some 

targets are present in a natural clutter background under different illumination and 

atmospheric conditions. The uniqueness of this GV anomaly detection approach is 

that a random sampling model was proposed as a parallel process in order to mitigate 

the likelihood that samples of targets are erroneously used as clutter spectral 

references during imagery testing. The cumulative probability P~  of taking target 

samples by chance during parallel processing were modeled by the binomial 
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distribution family, such that ( )[ ]MNqP −−= 11~  [see, (7.4)], where N  is the number 

of randomly selected nn×  blocks of data, taken from data cube X  (per repetition or 

process), M  is the number of parallel processes, and q  (the only target related 

parameter) is a proportion (an upper bound guess) of the maximum total number a  of 

all target pixels over the total number of pixels (RC) in X , i.e., ⎟
⎠
⎞

⎜
⎝
⎛ =

RC
aq . Note that 

q  is invariant to target scale, target shape, or to the number of targets in X . For 

instance, 05.0=q  indicates that targets in the imagery area are not expected to cover 

more than 5% of the entire image area in X . Choosing a sensible q  for the given 

application, one can use ( )[ ]MNqP −−= 11~  to assist on tradeoff decisions between N  

and M for a desired (small) P~  [e.g., 01.0~ =P )]. This dissertation also showed how N 

and M can be automatically set using a simple guideline, and how to implement an 

adaptive cutoff threshold method for the GV global anomaly detection algorithm 

suite. 

The remainder of this chapter summarizes the contributions of this dissertation 

(Subsection 8.2), limitations (Subsection 8.3), future work (Subsection 8.4), and a 

brief summary (Subsection 8.5).   

8.2 Contributions 

The more important findings and developments of this dissertation are 

summarized in the following list: 

• The investigation of underlying fundamental challenges for HS anomaly 

detection: Identified and studied the effect of spectral magnitude, spectral 
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shape, and spectral mixtures on the performance of detection algorithms; and 

determined that—for effective anomaly detection—an ideal detector should be 

sensitive to spectral shape, but insensitive to spectral magnitude, as these 

properties favorably affects the detector performance under unknown 

illumination and atmospheric conditions.   

• Introduction and implementation of a data transformation method to remove 

detectors’ sensitivity to spectral magnitude, while augmenting their sensitivity 

to spectral shape: It was shown via simulation that taking the radiance 

difference between adjacent wavelength bands—followed by angle 

mapping—made univariate detectors insensitive to spectral magnitude but 

sensitive to spectral shape, as desired.     

• The first use of semiparametric algorithm for HS anomaly detection: 

Recognized that an univariate semiparametric scoring algorithm has a natural 

way of handling transitions across distinct regions (spectral mixtures) in HS 

image data, for sliding window based tests. Alternative univariate algorithms 

were also proposed to perform comparably with the semiparametric scoring 

metric using two-sample data as inputs.     

• The first use of simulated null and alternative multivariate data cubes to 

analyze top-view HS anomaly detectors: Conducted innovative analysis by 

generating and using simulated null and alternative multispectral data cubes, 

through statistical modeling under multivariate normal distributions, in order 

to assess sliding window based HS anomaly detectors in their natural 

operating procedure. In was shown that existing multivariate anomaly 
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detectors are sensitive to increased background configuration complexity in 

the null data cubes, which increased their cutoff thresholds for the same 

required type I error and negatively impacted their power on the simulated 

alternative data cubes. On average, the two-step univariate detectors were 

significantly less sensitive to increasing background complexity in the null 

data cubes, hence, outperformed the multivariate detectors in power on the 

alternative data cubes. 

• Introduction of a novel parallel random sampling method for GV global 

anomaly detection applications: The parallel random sampling method was 

modeled by the binomial distribution, and—by using the two-step univariate 

detection technique with this method—it was shown that parametric or 

nonparametric segmentation is not required, as in the prior art, to achieve 

effective global anomaly detection. The overall method was evaluated using 

real HS image data collected under various illumination and atmospheric 

conditions. 

8.3 Limitations 

The methods and techniques presented in this dissertation have the following 

limitations: 

• Anomaly Detection Is Not Target Detection: A key limitation of the new top view 

and ground view HS anomaly detection algorithms presented herein is that the 

correct detection of a target does not mean that the target becomes known, but 

merely that the target is an anomalous object to the background clutter. In 

addition, correct anomaly detection may not always correspond to a correct target 
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(manmade object) detection. Natural objects, such as large isolated rocks, may be 

detected as candidate targets, which in a strict sense should not be regarded as a 

false positive.  

• Sample Data and Cube Data Models: The study conducted in Chapter 5 and 

Chapter 6 were the first of its kind, so there were some lessons learned. In future 

studies there should be a randomizer varying the mixture proportions in the 

multivariate normal distributions for different trials in the simulation experiments 

presented in Chapter 5, and likewise there should be a randomizer varying the 

configuration of the background clutter per experimental trial in the data cubes 

used in the simulation experiments in Chapter 6. Proceeding as so would remove 

the man in the loop determining the mixture proportions in this sort of simulation 

experiments.   

• Full Target Pixels: Although Chapter 5 showed the new anomaly detection 

algorithms being effective in detecting a portion of the target, targets are expected 

to be greater than or equal to n × n, which is the area of the sliding window. 

Moreover, targets that are smaller than the spatial resolution of a pixel (subpixel 

targets) are not expected to be detected using the new algorithms, because a 

mixture in a pixel is quite different from a mixture of pixels representing different 

material types—the latter is the one addressed in this dissertation. 

• Results for the VNIR Region of the Spectrum: The favorable results shown for 

the new GV anomaly detection algorithm on the real HS image data are limited to 

the different illumination and atmospheric conditions described in Chapter 7 and 

to the VNIR (visible to near infrared) region of the spectrum. Those results should 
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not be extrapolated for other regions of the spectrum [e.g., LWIR (longwave 

infrared), MWIR (midwave infrared)], because the emissivity property of different 

material types do not play a major role in the VNIR region, only the reflectivity 

property does (see, for instance, [1]).    

• Data Cube Rate: A sensor to have a practical value must be able to produce a 

digitized representation of a scene in a rate comparable to that of a video rate 

(e.g., 25 to 60 frames per seconds), which is significantly above the rate of the 

state of the art portable HS VNIR imager. This fact would impose a major 

practical constraint using the new GV anomaly detection in conjunction with a HS 

imager for an actual surveillance task. Advances in technology, however, have 

been occurring in remarkable speeds since the 1990’s, especially in the field of 

electronic technology, which make us believe that such a limitation will no longer 

exist in the next few years.  

The concern on HS hardware speed can be also extended to the computational 

time required to execute the new GV anomaly detection algorithm in a computer. 

Algorithms that are developed to perform detection tasks using HS data are 

notorious for being slow (taking hours, sometimes days to operate on a data 

cube); not because of the algorithm itself, but because of the vast amount of data a 

single HS data cube actually represents. A method that is often used to reduce the 

computational time of HS algorithms is known in the HS research community as 

spectral band selection [3], see Section 8.4 (Future Work). 

8.4 Future Work 

In the future, work is needed to develop more insight into the following: 
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• Hybrid of Detectors - Fusion: A natural progression of this work is to extend the use 

of the anomaly detection algorithms presented in this dissertation to include a 

hybrid of detectors, each capturing different features of the data, in order to 

augment robustness. Hybrid of algorithms often requires the need of fusion 

techniques, using as input different output surfaces; this is an open topic of 

research.             

• Cultural Clutter Background: Another natural extension of this work is to evaluate 

the performance of the new GV anomaly detection algorithm on the presence of 

particular targets (e.g., standing personnel, stationary motor vehicles) in an urban 

environment—cultural clutter background. In this context, it would be interesting to 

find out whether the autonomous random selection of blocks of data of a cultural 

cluttered environment (having, for instance, painted walls of buildings, sidewalks 

and asphalt) would have the GV algorithm performing comparably with its 

corresponding performance on natural clutter backgrounds. We are actively 

searching for such a HS dataset of cultural clutter to conduct this evaluation.  

• Further Evaluation of the PRS-AVT Algorithm: The PRS-AVT (a GV anomaly 

detector) will be evaluated more extensively using additional HS datasets, and its 

performance will be compared to existing global anomaly detection algorithms (see, 

for instance, [12] and [13]). Additional evaluation will be conducted using HS 

image data recorded by LWIR and MWIR HS imagers. 

• Spectral Band Selection: A goal in circumventing the speed limitation issue 

discussed in Section 8.3 is to use a sensor that is a compromise between 

hyperspectral and broadband, i.e., a sensor that collects radiance using only a few 
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spectral bands—a multispectral cube (e.g., 10 bands). Notice that a multispectral 

sensor should be able to collect data faster by an order of magnitude or two than a 

HS sensor can for a given swath coverage. In addition, the computational cost of 

detection algorithms due to this reduced amount of data representing a scene may 

decrease by the same order of magnitude. A key decision, however, that must be 

made before manufacturing multispectral sensors is to determine how many of 

these frequency bands are most relevant and which ones should feature in these 

devices. A long list of contributions can be found in the literature (see, for instance, 

[3]) devoted exclusively to answer this question. The conclusions of these 

contributions, however, independently of the method applied share explicitly, or 

implicitly, a common message: It depends. It depends on the specific material one 

is interested in detecting; it depends on the number of material types one expects to 

find in the same scene; it depends on the region of the spectrum the sensor is 

expected to operate, etc. To follow up with our research, we plan to use a favorite 

scoring metric (e.g., AVT), as a decision criterion, and the fact that we would like 

to find all types of manmade objects in different natural clutter backgrounds to 

determine the minimum number of combination of bands that would maximize 

performance on a HS dataset recorded by a particular sensor (e.g., SOC-700).              

8.5 Summary 

The users have an ambitious goal for target detection requirements. They would 

like to have an algorithm suite that can detect a large set of known targets of different 

sizes and shapes, at different ranges between targets and sensors, at different viewing 
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perspectives (top view, ground view), anywhere in the world, under unknown 

illumination environment and unknown atmospheric conditions.  

This dissertation offers specific algorithms that could detect the presence of a 

large set of targets using HS image data, while satisfying many of the users’ 

requirements; however, targets would not be detected as specific manmade objects 

(which are often composed of multiple material types), they would be detected as 

being anomalous to the unknown natural clutter background. Using the specific 

algorithms discussed in this dissertation, all types of manmade objects, including the 

ones of interest to the users, and some natural clutter objects would be detected as 

anomalies in a natural background scene—as long as anomalous objects are present in 

the scene and are spectrally distinct from spectra of the spatially dominant clutter 

background. Another advantage of an effective anomaly detection algorithm is that 

potential targets yet unknown to the user could also be detected using such an 

algorithm. 

The users and researchers could benefit from practical HS anomaly detection 

algorithms using the modeling strategies of this dissertation. 
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