
ABSTRACT

Title of dissertation: Adaptive Constraint Reduction for
Convex Quadratic Programming and
Training Support Vector Machines

Jin Hyuk Jung, Doctor of Philosophy, 2008

Dissertation directed by: Professor Dianne P. O’Leary
Department of Computer Science

Convex quadratic programming (CQP) is an optimization problem of minimiz-

ing a convex quadratic objective function subject to linear constraints. We pro-

pose an adaptive constraint reduction primal-dual interior-point algorithm for convex

quadratic programming with many more constraints than variables. We reduce the

computational effort by assembling the normal equation matrix with a subset of the

constraints. Instead of the exact matrix, we compute an approximate matrix for a

well chosen index set which includes indices of constraints that seem to be most crit-

ical. Starting with a large portion of the constraints, our proposed scheme excludes

more unnecessary constraints at later iterations. We provide proofs for the global

convergence and the quadratic local convergence rate of an affine scaling variant. A

similar approach can be applied to Mehrotra’s predictor-corrector type algorithms.

An example of CQP arises in training a linear support vector machine (SVM),

which is a popular tool for pattern recognition. The difficulty in training a support

vector machine (SVM) lies in the typically vast number of patterns used for the

training process. In this work, we propose an adaptive constraint reduction primal-

dual interior-point method for training the linear SVM with l1 hinge loss. We reduce

the computational effort by assembling the normal equation matrix with a subset

of well-chosen patterns. Starting with a large portion of the patterns, our proposed

scheme excludes more and more unnecessary patterns as the iteration proceeds. We

extend our approach to training nonlinear SVMs through Gram matrix approximation

methods. Promising numerical results are reported.

Adaptive Constraint Reduction for Convex Quadratic

Programming and Training Support Vector Machines

by

Jin Hyuk Jung

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2008

Advisory Commmittee:
Professor Dianne P. O’Leary, Chair/Advisor
Professor Kyu Yong Choi
Professor Hanan Samet
Professor G. W. Stewart
Professor André L. Tits

c© Copyright by
Jin Hyuk Jung

2008

Acknowledgements

I am very pleased to acknowledge individuals and institutions for their support during

my research.

First of all, I owe my deepest appreciation to my academic advisor, Dianne P.

O’Leary. Not only did she give encouragement, advice and support to me, but she

also showed me the attitudes that a researcher, a teacher and a supervisor should

have. Working with her has been a true privilege and a very special experience to

me. Without her help, this thesis could not be completed.

I am in debt to André L. Tits for his time, advice and guidance. He has been

virtually a co-advisor of my research.

Other committee members, Kyu Yong Choi, Hanan Samet and G. W. Stewart,

deserve many thanks. They pleasantly accepted the tight examination schedule. They

also gave plentiful advice and inspiring questions.

I would like to thank my financial supporters. I thank the IITA (Institute for

Information Technology Advancement) and MIC (Ministry of Information and Com-

munication), Republic of Korea, for an Information Technology Scholarship. I thank

Jae-Kwang Bae for his personal financial support. I am very grateful to the US

Department of Energy for supporting my research under grant DEFG0204ER25655.

I would like to thank my UMD (University of Maryland) friends and St. Andrew

Kim Catholic Church friends. From the time when I struggled in settling my family

ii

in Maryland, they have been an infinite source of support and joy.

Finally, my gratitude to my family members, especially my wife, Eun A Lee, is

limitless. Their wordless sacrifice, care, support and love cannot be repaid.

iii

Table of Contents

1 Introduction 1

2 Adaptive Constraint Reduction for Convex Quadratic Programming 5

2.1 Related Work . 7

2.2 Solving Convex Quadratic Programming 10

2.2.1 Standard Form . 10

2.2.2 Duality . 12

2.2.3 Optimality Conditions . 13

2.2.4 Primal-Dual Interior-Point Method 17

2.2.5 Central Path . 19

2.2.6 Primal-Dual Path-Following Interior-Point Method 21

2.2.7 Primal-Feasible Affine-Scaling PDIPM 23

2.3 Adaptive Constraint Reduction . 25

2.3.1 Adaptive Constraint-Reduction for Primal-Feasible Affine-Scaling

PDIPM . 25

2.3.2 Convergence of the Adaptive Constraint-Reduction Algorithm 31

2.4 Extension to Infeasible Problems . 33

2.5 Numerical Results . 46

2.5.1 Choosing Q . 47

iv

2.5.2 Scaling . 47

2.5.3 Data Fitting . 49

2.5.4 Random Problems . 55

2.6 Conclusions . 56

3 Adaptive Constraint Reduction for Training Support Vector Ma-

chines 57

3.1 Introduction to Support Vector Machines 58

3.1.1 Data Representation, Classifier, Feature Space, and Kernel . . 58

3.1.2 Separation Margin Maximization 62

3.1.3 Dual Formulation and Support Vector 65

3.2 Related Work . 67

3.3 Adaptive Constraint Reduction . 69

3.3.1 Primal-Dual Interior-Point Method 69

3.3.2 Constraint Reduction . 73

3.3.3 Differences from Algorithm 1 81

3.3.4 Kernelization . 82

3.4 Numerical Results . 84

3.4.1 Linear SVM Examples . 85

3.4.2 Nonlinear SVM Examples . 92

3.4.3 Visualization of the Iterations 96

3.5 Conclusion . 97

4 Conclusions and Future Directions 102

A Geometric Properties of CQP 107

v

A.1 Definitions . 107

A.2 Properties of Convex Functions . 110

A.3 Geometric Properties of the Solution Set F∗P 111

B Convergence Proof for Constraint Reduced Affine-Scaling PDIPM 122

B.1 Global Convergence Proof . 122

B.2 Local Rate of Convergence . 142

Bibliography 158

vi

LIST OF FIGURES

2.1 Maximizing satisfaction. The filled area is the feasible region in which

all the constraints (nutrient requirements) are satisfied. The dotted cir-

cles are contours of the objective function. The objective function (his

satisfaction) is maximized on the feasible region at the point marked

with a circle. 7

2.2 ith and jth constraints are active at the solution x∗. The gradient of

the objective function f(x) at x∗ can be expressed by the nonnegative

combination of ai and aj. 15

2.3 Two dimensional CQP examples . 25

2.4 Measured signal fit by various methods. Tested with m̄ = 5000 and

n̄ = 99. 52

2.5 Adaptive reduction is compared with nonadaptive reduction on the

data-fitting problem (2.77). The horizontal axis is in log scale. Tested

with m̄ := 20000 and n̄ := 99. 54

2.6 Adaptive reduction is compared with nonadaptive reduction on the

fully random problem (2.77). The horizontal axis is in log scale. . . . 55

vii

3.1 By mapping the patterns in the input space (x1, x2) to a higher dimen-

sional feature space (x2
1, x

2
2,
√

2x1x2), the SVM can find an ellipsoidal

classifier in the original input space by finding a linear classifier in the

feature space. 60

3.2 The learning machine is trained to find a hyperplane with maximal

separation margin. The hyperplane can classify data according to the

predetermined labels. Circles and squares denote positive and negative

patterns, respectively. 63

3.3 Time and iteration count of adaptive reduction with balanced selection

are compared to non-reduction algorithm. qU is set to m (100%) for all

cases. 88

3.4 The adaptive balanced and adaptive nonbalanced algorithms are com-

pared, with the constraint choice based on Ωe. 89

3.5 Letter. The adaptive and nonadaptive balanced algorithms are com-

pared, with the constraint choice based on Ωe. 90

3.6 The two constraint choices are applied to the adaptive balanced reduc-

tion. 91

3.7 Letter. Adaptive balanced reduction based on Ωe constraint choice. . 92

3.8 Timing results of algorithms for linear SVM training on adult data sets. 93

3.9 Gram matrix approximation on adult data sets 99

3.10 Nonlinear SVM training on adult data sets 100

viii

3.11 Snapshots of finding a classifier using the adaptive reduction algorithm

for a randomly generated toy problem in 2-dimensional input space

with patterns eliminated intentionally around a hand-generated ellip-

soid centered at the origin. The mapping associated with the second

order homogeneous polynomial kernel is used to find the surface. The

numbers below each figure indicate (iteration)/(number of patterns used).101

A.1 Geometries of the feasible set and contours of the objective function

in a 2 dimensional space. Examples of unboundedness of the primal

feasible set, the level set {x : f(x) ≤ f(x̄)} of the objective function,

and their intersection FLP (x̄). 117

B.1 Diagram for global convergence proof. Numbers in parentheses denote

assumptions which each lemma, proposition, corollary, and theorem

requires. Because Proposition B.2 guarantees the Algorithm 1 to gen-

erate an infinite sequence, it supports all other Lemmas, Propositions,

Corollaries and Theorems. Since drawing all the outgoing arrows from

Proposition B.2 may complicate this figure, we omit them. 123

B.2 Diagram for local convergence rate proof. Numbers in parentheses de-

note assumptions which each lemma, proposition, and theorem requires.142

ix

LIST OF TABLES

2.1 When H̄ is properly set, the model generated from the CQP (2.77) can

be a compromise between that of LP (minimizing the maximal error)

and least squares (minimizing sum of squared point-wise error). Mean

square error was measured by ‖b̄ − Āx̄‖2
2/m̄. Tested with m̄ := 5000

and n̄ := 99. 53

3.1 Classification of support vectors and nonsupport vectors. Here s∗i is the

slack variable associated with the ith constraints in (3.15) and defined

as s∗i := yi(〈w∗,xi〉 − γ∗) + ξ∗i − 1. 67

3.2 Properties of the problems. ISD: Input space dimension. FSD: Feature

space dimension using the map (3.65). SVs: support vectors. On-SVs:

On-boundary support vectors. 86

3.3 Accuracy shown in percentage of correctly classified testing patterns. 94

x

Chapter 1

Introduction

Optimization is an essential part of our everyday life. Maximizing profit in running

a business, maximizing capital gain in an investment, and finding a shortest path

to a destination on a journey are instances of our optimization activities. Convex

quadratic programming (CQP) has broad applications in modeling such activities.

The CQP is a problem of minimizing a convex quadratic objective function subject

to linear constraints. A linear constraint can be either an equality or an inequality.

In this dissertation, we are mainly concerned with the CQP with very large number

of inequality constraints. An equality constraint can be easily transformed to two

inequality constraints.

There are two widely used classes of algorithms, the active set methods and the

interior-point methods (IPMs). In general, an active set method requires many more

iterations than an IPM, whereas a single iteration for it is much cheaper than that

for an IPM. As the problem size becomes larger, the iteration count of the active set

1

method soars, while that of the IPM increases rather slowly. It is reported that the

active set methods are adequate for solving small to medium sized problems while

the IPMs outperform the active set methods on large problems [NW00]. Since we are

concerned with large problems, we use IPMs in this work.

As it will be explained later, a bulk of work in each iteration of a classical IPM

lies in finding a search direction, requiring matrix computations involving every con-

straint. Thus the computational cost of the work increases as the number of con-

straints increases. However, a large portion of the constraints are not active at the

solution. If we have a prior knowledge identifying such constraints, the true optimal

solution can be found without them. Unfortunately we don’t know which constraints

are required before we start to solve the problem. It becomes clear, however, which

constraints would be active at the solution as the iterate approaches it. This gives a

good reason for adaptively eliminating more and more constraints that are unlikely

to be active at the solution to find the search direction.

In this dissertation, we present an adaptive constraint reduction algorithm for

CQP, extending a constraint reduction algorithm for LP [TAW06]. In addition, we

propose an adaptive scheme for reducing the number of constraints involved in finding

the search direction. In our new scheme for CQP, the size of the relevant constraint

set is determined by how close the current point is to the solution.

Then, we apply adaptive constraint reduction to training support vector machines

(SVMs). The SVM is a useful tool in automating pattern recognition tasks. Rec-

2

ognizing hand written characters or spoken words, discriminating edible mushrooms

from poisonous ones, and determining fraud uses of credit cards are examples of pat-

tern recognition tasks. Before being used in those tasks, the machine is trained with

a set of training patterns represented by points in a certain space, each of which

is assigned a predetermined class label. Through the training process, the machine

builds a separating hyperplane in that space, with which it decides the class of a

future input. The training process is modeled as a CQP problem, where each pattern

corresponds to a constraint. The number of training patterns is often very large, but

the hyperplane depends on a small number of the patterns. Thus training the SVM

can benefit significantly from constraint reduction.

This dissertation is organized as follows. In Chapter 2, we first define the stan-

dard form of CQP. A standard framework of primal-dual interior-point methods is

then discussed. An adaptive constraint reduction algorithm for the standard form

is presented. We discuss the convergence of the constraint reduction applied to the

standard form. We provide an extension to infeasible problems, which includes the

CQP problem of the SVM training. We provide a constraint reduction guideline for

the extension. Convergence is discussed for the extension. Demonstrations of our

algorithm in solving data fitting problems and random problems are then presented.

In Chapter 3, we first introduce the linear SVM and its training. We apply

an adaptively constraint reduced IPM directly to the SVM training and develop

effective heuristics in selecting patterns. We extend our approach to the training of

3

nonlinear SVMs by the use of kernels. Demonstrations of our algorithm in training

the SVM on several real life data sets are presented. Our algorithm is compared with

well developed and widely used algorithms including sequential minimal optimization

[Pla99] and SVMlight [Joa99].

In Chapter 4, we summarize our current contributions and plans for future re-

search. In Appendix A, we provide geometric properties of the CQP. In Appendix

B, we provide full details of the convergence analysis for the constraint reduction

algorithm for CQP.

4

Chapter 2

Adaptive Constraint Reduction for Convex Quadratic

Programming

Convex quadratic programming (CQP) is an optimization problem of minimizing a

convex quadratic objective function subject to linear constraints. For a descriptive

example, suppose that John wants to eat lunch. Today, he has two choices: foods A

and B. After he eats A and B, he feels satisfaction (or utility) independently for A and

B. However, since he gets satiated as he eats more, his marginal satisfaction (derivative

of his satisfaction) decreases, say, linearly. Assume that, after he eats x1 grams of A

and x2 grams of B, his total satisfaction is
∫ x1

0
(500− 2x)dx+

∫ x2

0
(500− 2x)dx. Note

that this function decreases with with xi > 250, i.e., his satisfaction decreases as he

eats more. Meanwhile, A and B have different nutrients. Each gram of A has 0.002g

of nutrient α and 0.01g of nutrient β, whereas each gram of B has 0.004g of α and

0.005g of β. He wants to take at least 1.8g of α and 4.5g of β. Since he has sufficient

money and their prices are cheap and the same, he doesn’t care about the cost. What

5

amount of A and B he should eat so as to maximize his satisfaction?

He is a very smart person, so he formulates the following problem:

max
x

f(x) = 500x1 − x2
1 + 500x2 − x2

2 : Satisfaction

s.t. 0.002x1 + 0.004x2 ≥ 1.8 : At least 1.8g of α,

0.01x1 + 0.005x2 ≥ 4.5 : At least 4.5g of β,

x1, x2 ≥ 0.

(2.1)

In this problem, his satisfaction is the objective function and the nutrient requirements

he sets are the constraints. This is an instance of convex quadratic programming. The

objective function has polynomial terms of up to 2nd order and is concave (or convex

if the function is negated to transform the problem to a minimization formulation),

and the constraints are linear. Geometrically, contours of the objective function are

ellipsoidal and the region formed by the constraints is polyhedral in the example as

presented in Figure 2.1. As seen in the figure, maximal satisfaction is achieved by

eating 300 grams of A and 300 grams of B.

In this chapter, we discuss the following. In section 2.1, we discuss previous

approaches to solving large CQP problems. In section 2.2, we introduce our algorithm.

First, we define a standard form of the convex quadratic programming. We identify

the dual problem, and review necessary and sufficient conditions for optimality of

the CQP. After introducing path-following interior-point methods, we introduce an

primal-dual affine-scaling (PDAS) interior-point method (IPM) to which we apply the

6

x1

x2

900

900

(300, 300)
f(x) = 120000

f(x) < 120000

Figure 2.1: Maximizing satisfaction. The filled area is the feasible region in which all

the constraints (nutrient requirements) are satisfied. The dotted circles are contours

of the objective function. The objective function (his satisfaction) is maximized on

the feasible region at the point marked with a circle.

constraint reduction. In Section 2.3, we present the constraint-reduction algorithm

for CQP. The constraint reduced PDAS IPM for LP [TAW06] is adapted to CQP. In

Section 2.4, an extension of the standard form is introduced. In Section 2.5, numerical

results are presented. Concluding remarks are provided in Section 2.6.

2.1 Related Work

The example (2.1) has only four inequality constraints. In practice, the number of

inequality constraints is often very large. However, a large portion of the constraints

are not active at the solution and thus do not contribute much to deciding the search

7

direction of the later iterations of an IPM used to solve the problem. As will be

explained later, since the major work in computing the search direction involves

forming a matrix involving each constraint, computing the matrix without irrelevant

constraints reduces the entire computational cost.

Reducing computational cost by finding search directions using only a fraction of

the constraints has been actively studied. The most prominent approach is “column

generation”. Ye [Ye90] used this approach with a “build-down” scheme for linear

programming (LP), a special case of the CQP. He proposed a rule which can safely

eliminate inequality constraints that will not be active at the optimum. The author

applied the rule to Karmarkar’s method [Kar84] and the simplex method [Dan63].

Dantzig and Ye [DY91] proposed a “build-up” interior-point method of dual affine-

scaling form. Starting from a strictly dual feasible point, it uses a subset of constraints

to determine the search direction at each iteration. It accepts the direction if taking

the direction violates no constraint. If some constraints are violated, it adds them

to the set for determining the search direction and retries. Ye [Ye92] proposed a po-

tential reduction algorithm allowing column generation for linear feasibility problems

to which linear programs (LP) can be converted. Starting with a polytope including

the feasible domain, at every iteration, the scheme builds a cutting plane for a vio-

lated inequality. Luo and Sun [LS98] proposed a similar scheme for convex quadratic

feasibility problems to which CQP problems can be transformed. Tone [Ton93] pro-

posed an active set strategy for the dual potential reduction algorithm proposed by

8

Ye [Ye91]. The strategy finds the search direction using constraints associated with

small dual slack variables.

Another approach to reduce the computational time for finding a search direction

is to use an iterative solver such as the preconditioned conjugate gradient method

[Saa03, chap. 9] to solve the normal equations arising in the primal-dual interior-point

method (PDIPM). Making a good preconditioner is the most critical part in guaran-

teeing the success of iterative solvers. Wang and O’Leary [WO00] used an adaptive

preconditioner that approximates the LP normal equation matrix with a fraction of

constraints. In their approach, once a preconditioner is formed, its Cholesky factor

is updated or recomputed in the subsequent iterations.

The LP constraint-reduction algorithm of Tits et al. [TAW06] and Winternitz et

al. [WNTO07] chooses constraints from scratch rather than by building-up. Conver-

gence was proven, and experiments demonstrated good performance. An attractive

aspect of the constraint-reduction scheme considered in these papers is its easy ap-

plicability to the state of the art PDIPMs such as the variants of the Mehrotra’s

predictor-corrector algorithm [Meh92, Wri97, NW00].

In this chapter, we present a constraint-reduction algorithm for CQP, inheriting

the good properties of the constraint-reduction algorithm for LP [TAW06]. In addi-

tion, we propose an adaptive scheme for reducing the number of constraints involved

in finding the search direction. Since it becomes more obvious which constraints

would be active as the iterate gets closer to a solution, eliminating more prospec-

9

tively inactive constraints would not impair finding the search direction. In our new

scheme for CQP, the size of the constraint set is determined by how close the cur-

rent point is to the solution. Either the duality gap or a complementarity measure1

provides a good criterion.

2.2 Solving Convex Quadratic Programming

2.2.1 Standard Form

A standard form of the CQP with inequality constraints can be stated as

min
x

f(x) = min
x

1

2
xTHx + cTx,

s.t. Ax ≥ b,

(2.2)

where A ∈ Rm×n, H ∈ Rn×n, x ∈ Rn, c ∈ Rn, and b ∈ Rm. The inequality

constraints are frequently replaced with equality constraints by introducing additional

slack variables. The equivalent standard form is

min
x

f(x) = min
x

1

2
xTHx + cTx,

s.t. Ax− s = b,

s ≥ 0.

(2.3)

The CQP is a special case of quadratic programming in that the objective func-

tion is convex quadratic. Geometric properties of the problem and the solution are

1This is often called the duality measure.

10

reviewed in Appendix A. The objective function is convex if and only if the Hessian

matrix is symmetric and positive semidefinite, as shown in Lemma A.2. If the matrix

is not symmetric, we can easily transform it to a symmetric matrix by replacing it

with 1
2
(H + HT). It is trivial to show that the resulting objective function is the

same as before. So, in the sequel, we assume that the Hessian matrix H is always

symmetric.

The set of points that satisfy the inequality constraints of (2.2) is said to be the

primal feasible set:

FP := {x ∈ Rn : Ax ≥ b}. (2.4)

If a point strictly satisfies the inequality constraints, the point is said to be strictly

primal feasible. We define the set of strictly primal feasible points as

FoP := {x ∈ Rn : Ax > b}. (2.5)

A point that solves the problem (2.2) is said to be a minimizer, an optimal solution,

an optimal point, a global optimum, or a solution. The primal solution set is the set

of optimal solutions:

F∗P := {x∗ ∈ FP : f(x∗) ≤ f(x), ∀x ∈ FP}. (2.6)

Let M := {1, ...,m}, and let aTi be the ith row of A ∈ Rm×n with m � n. For

an index set Q ⊆ M , let AQ be a submatrix of A constructed by deleting rows aTi

for i /∈ Q. The same notation vQ is applied to a column vector v ∈ Rm. Similarly,

11

for an m×m matrix B, we let BQ2 denote a submatrix of B constructed by deleting

both rows and columns indexed by i /∈ Q. We use AT
Q and BT

Q to denote transpose of

AQ and BQ, respectively. Horizontal concatenation of two matrices (or row vectors)

with the same number of rows, H and AT for instance, is denoted by [H, AT]. We

denote by N (H) the nullspace of H. The complement Qc of an index set Q is defined

as Qc := M \Q.

At a primal feasible point x ∈ FP , an inequality constraint is said to be active if it

holds as an equality. We define the active set A(x), the index set of active constraints

at x ∈ FP , as

A(x) := {i ∈M : aTi x = bi}, (2.7)

and the inactive set as

A(x)c := {i ∈M : aTi x 6= bi}.

2.2.2 Duality

Every quadratic programming (QP) problem is associated with a dual problem defined

by the same data with additional variables. The dual associated with the primal (2.2),

which can be derived from the Lagrangian L(x,λ) := f(x)−λT (Ax−b), is as follows:

max
x,λ

fD(x,λ) = max
x,λ
−1

2
xTHx + bTλ,

s.t. Hx + c−ATλ = 0,

λ ≥ 0,

(2.8)

12

where λ ∈ Rm is called the Lagrange multipliers. The duality gap for a given pair

(x,λ) is f(x)− fD(x,λ), the difference between the primal and dual objective func-

tions.

The primal-dual feasible set is defined as the set of points which satisfy the con-

straints of both the primal (2.3) and the dual (2.8):

F := {(x, s,λ) : Ax− s = b, Hx + c−ATλ = 0, s ≥ 0, λ ≥ 0}.

The relative interior of F is defined as

Fo := {(x, s,λ) : Ax− s = b, Hx + c−ATλ = 0, s > 0, λ > 0}.

2.2.3 Optimality Conditions

We can obtain the the first order necessary conditions for the solution of the op-

timization problem (2.2) using the Karush-Kuhn-Tucker (KKT) conditions. For a

proof of the necessity of the conditions, see Nocedal and Wright [NW00, Chapter 12]

or Fletcher [Fle87, Chapter 9].

Theorem 2.1 (KKT conditions). If x is an optimal solution of (2.2), then there exist

s and λ such that

Hx + c−ATλ = 0, (2.9)

Ax− b− s = 0, (2.10)

Sλ = 0, (2.11)

13

s,λ ≥ 0, (2.12)

where S := diag(s). Likewise, if (x,λ) solves the dual (2.8), then there exists s such

that the conditions above hold as well. The points (x, s,λ) that satisfy the conditions

are said to be the KKT points.

In the KKT conditions, (2.9) defines the necessary condition associated with the

gradient of the objective function and the constraints. At an optimal solution (or

point) x, the gradient Hx + c can be expressed as a nonnegative combination of

the gradients of active constraints. The boundary of a constraint aTi x ≥ bi forms a

hyperplane in Rn and ai is perpendicular to the hyperplane directed toward the inside

of the feasible region. This implies that any direction from a KKT point toward the

inside of the feasible region is ascending for the objective function. See Figure 2.2 for

a geometrical interpretation. The second condition is the primal feasibility condition.

The third condition (2.11), which is referred to as the complementarity condition,

states that only the active constraints are involved in the first condition (2.9).

Indeed, the first order necessary conditions are sufficient for global optima in

the convex quadratic programming case. We give a proof from Wright [Wri97, Ap-

pendix. A] here.

Theorem 2.2 (Necessary and sufficient conditions for global optima). x∗ is an op-

timal solution of (2.2) and (x∗,λ∗) is that of (2.8) if and only if there exist s∗ such

that (x∗, s∗,λ∗) satisfies the KKT conditions.

14

∇f

λjaj

aT
i x ≥ bi

aT
j x ≥ bj countour of f(x)

x∗

λiai

Figure 2.2: ith and jth constraints are active at the solution x∗. The gradient of the

objective function f(x) at x∗ can be expressed by the nonnegative combination of ai

and aj.

Proof. Let us show that the KKT conditions are sufficient for the global optima,

which can be proven by showing that, for any x̄ in FP , f(x∗) ≤ f(x̄). Since the

objective function f(x) of the problem (2.2) is convex, we know that, for any feasible

point x̄ other than x∗, for any α ∈ (0, 1], and for v := x̄− x∗ 6= 0,

f(x∗ + αv) = f(αx̄ + (1− α)x∗)

≤ αf(x̄) + (1− α)f(x∗)

= αf(x∗ + v) + (1− α)f(x∗).

Since α > 0, it immediately follows that

f(x∗ + αv)− f(x∗)

α
≤ f(x∗ + v)− f(x∗). (2.13)

By taking the limit as α→ 0, we know, from (2.13), that

f(x∗) + vT∇f(x∗) ≤ f(x̄). (2.14)

Now let us show that vT∇f(x∗) (the scaled directional derivative of f at x∗ in the

15

direction toward x̄) is nonnegative. Since ∇f(x) = Hx + c, from the first KKT

condition (2.9) we get

∇f(x∗)−ATλ = 0. (2.15)

So by multiplying by vT on both sides of (2.15) , we obtain

vT∇f(x∗) = λTAv

=
∑

i∈A(x∗)

λia
T
i v +

∑
i/∈A(x∗)

λia
T
i v,

from which, due to the complementarity condition (2.11), it immediately follows that

vT∇f(x∗) =
∑

i∈A(x∗)

λia
T
i v. (2.16)

Since x̄ = x∗ + v is feasible, it follows that, for all i ∈ A(x∗),

0 ≤ aTi (x∗ + v)− bi = aTi v.

From this and from (2.16) it follows that

vT∇f(x∗) ≥ 0. (2.17)

Therefore, (2.14) and (2.17) yield

f(x∗) ≤ f(x̄), ∀x̄ ∈ FP ,

which implies that x∗ is a global optimum of (2.2).

It can be proven that (x∗,λ∗) is a global optimum of (2.8) in the same way.

16

Furthermore, if H is positive definite, then the objective function is strictly convex.

The contour of the objective function is ellipsoidal. This implies that the optimal

solution is unique in this case.

2.2.4 Primal-Dual Interior-Point Method

In the previous section, it was shown that finding an optimal solution is equivalent to

finding a KKT point that satisfies the first order necessary conditions (2.9)-(2.12). In

other words, the problem is now finding a solution to the following nonlinear equation

with nonnegativity constraints:

F(x, s,λ) :=

Hx + c−ATλ

Ax− b− s

SΛe

= 0, (2.18)

s, λ ≥ 0, (2.19)

where Λ := diag(λ) and e := [1, . . . , 1]T . The primal-dual interior-point method

(PDIPM) uses a Newton-like method applied to the function (2.18) to generate a

sequence of points (xk, sk,λk) that strictly satisfy the non-negativity conditions (2.19)

and converge to a KKT point.

Newton’s method is a well known iterative algorithm for finding a root of a system

of nonlinear equations. It builds the first order Taylor series approximation (or a linear

model) of F(x, s,λ) at the current point (xk, sk,λk) and finds the search direction

17

(∆xk,∆sk,∆λk) by obtaining the solution to the linear approximation:

F(xk, sk,λk) + J(xk, sk,λk)

∆xk

∆sk

∆λk

= 0,

where J is the Jacobian matrix of F at the current point. J is defined as the matrix

of the first order partial derivatives of F; in the case of (2.18),

J(x, s,λ) :=

H 0 AT

A −I 0

0 Λ S

Thus the search direction is obtained from the solution of the following system of

equations:
H 0 AT

A −I 0

0 Λ S

∆xk

∆sk

∆λk

=

−(Hxk + c−ATλk)

−(Axk − b− sk)

−SkΛke

. (2.20)

The direction (∆xk,∆sk,∆λk) is said to be the full Newton step. Since taking the

full step may violate the non-negativity constraints (2.19), a line search along the

step for α ∈ (0, 1] with

(xk+1, sk+1,λk+1) := (xk, sk,λk) + α(∆xk,∆sk,∆λk)

is often performed to keep sk+1 and λk+1 positive. Some algorithms perform the line

search for the dual variables λ separately from the primal variables x and s. If the

18

current iterate is very close to the boundary of F , the line search can result in very

small α. To avoid this trouble, many primal-dual interior-point methods intentionally

keep the iterates from getting too close to the boundary of F or bias sk and λk toward

the interior of nonnegative orthant.

2.2.5 Central Path

The primal central path can be derived from the following optimization problem with

a logarithmic barrier function:

min
x

fB(x) = min
x

1

2
xTHx + cTx− µ

m∑
i=1

log(aTi x− bi), (2.21)

where µ is the barrier parameter and µ > 0. The logarithmic function is not defined

if FoP is empty, so we assume that FoP is nonempty. The first two terms are the

objective function of the standard form (2.2). The inequality constraints of (2.2) are

arguments for the logarithmic function so that the new objective function diverges to

infinity on the boundary of the feasible region FP . As a result, for µ > 0, the barrier

function forces the minimizer for (2.21) to be away from the boundary of FP . As

µ decreases, the effect of the barrier function wanes and the minimizer is allowed to

approach closer to the boundary of FP .

The barrier function g(x) := −µ∑m
i=1 log(aTi x − bi) is strictly convex on the

orthogonal complement of the nullspace of A, from which it follows that the objective

function is strictly convex if the intersection of the two nullspaces of A and H is a

19

trivial set {0}. For the time being, we assume N (A)∩N (H) = {0}. In fact, we can

preprocess the optimization problem (2.2) so that the coefficient matrix A has full

column rank and the trivial nullspace {0} [AA95].

For every µ > 0, since fB(x) of (2.21) is strictly convex and diverges to ∞ as

x approaches the boundary of FoP , the optimal solution x(µ) of the problem lies in

FoP and is unique. The trajectory {x(µ) for µ→ 0} is the primal central path. As µ

converges to 0, the solution of (2.21) converges to F∗P [Wri92, Theorem 8].

Using our slack variables, we see that (2.21) is equivalent to the following equality

constrained optimization problem:

min
x,s

1

2
xTHx + cTx− µ

m∑
i=1

log(si)

s.t. Ax− s = b.

(2.22)

With the vector λ of Lagrange multipliers associated with the equality constraints of

(2.22), we can obtain the first-order necessary (KKT) conditions for (2.22):

Hx + c−ATλ = 0, (2.23)

Ax− b− s = 0, (2.24)

Sλ = σµe, (2.25)

s, λ > 0. (2.26)

These conditions are usually referred to as the perturbed KKT conditions in which the

third condition (2.25) is perturbed from the complementarity condition (2.11). The

positivity constraints (2.26) on s and λ are due to the logarithmic barrier function

20

and the third condition (2.25). The conditions are sufficient for a solution, because

the objective function is convex. Assuming that N (A) ∩ N (H) = {0}, since the

objective function of (2.21) is strictly convex, x is uniquely defined, and s and λ are

also uniquely defined (by (2.24) and (2.25)) for a given barrier parameter µ. The

trajectory,

{(x(µ), s(µ),λ(µ)) where (x(µ), s(µ),λ(µ)) satisfies (2.23)− (2.26) and µ→ 0}

is the primal-dual central path.

2.2.6 Primal-Dual Path-Following Interior-Point Method

The primal-dual path-following method tries to stay within a certain neighborhood

of the central path. The method approximately solves the perturbed-KKT system

for a given µ. Then it reduces µ and repeats solving the system using the previous

solution as the starting point for one step of Newton’s method, setting the barrier

parameter as the complementarity measure:

µ :=
sTλ

m
.

The Newton steps obtained from the perturbed KKT system (2.23)-(2.25) aim toward

the primal-dual central-path, whereas the pure Newton steps (with µ := 0) aim

directly toward the solution of the KKT system (2.9)-(2.11). Most primal-dual path-

following algorithms balance those two aims using an additional parameter σ, the

centering parameter, with σ ∈ [0, 1]. From the first-order Taylor series approximation

21

of the perturbed KKT system, the generic step equations for primal-dual methods

are then obtained as follows:
H 0 AT

A −I 0

0 Λ S

∆x

∆s

∆λ

=

−rc

−rb

−Sλ + σµe

,

where rc := Hx + c−ATλ and rb := Ax− b− s. The residuals rc and rb are 0 in

primal-dual feasible methods.

Various primal-dual path-following IPMs have been proposed. Monteiro and Adler

proposed the short-step path-following (SPF) IPM for LP [MA89a] and extended

the method to CQP in [MA89b]. They showed polynomial complexity bound of

O(
√
n log ε) iterations, where ε is the required accuracy. The SPF method keeps

the iterates in the L2 neighborhood of the primal-dual central path. The long-step

path-following methods are other variants using the L∞ neighborhood. Kojima et

al [KMY89] showed a complexity bound of O(n log ε) for a LPF method for linear

complementarity problems to which CQP problems can be transformed.

Other variants are the predictor-corrector type methods which use the second

order information of the Taylor series approximation. The methods are shown to be

most effective in practice. Wright provided a variant of a Mehrotra-type predictor-

corrector algorithm for LP [Meh92], with the same importance on the predictor and

the corrector steps [Wri97]. However, the computational complexity of the variant has

never been proven. Cartis [Car04] proposed the primal-dual second-order corrector for

22

LP, a variant of the Mehrotra’s algorithm, which gives less importance to the corrector

step. This variant has a polynomial complexity bound. Nocedal and Wright extended

the algorithm to CQP [NW00, Chapter 16]. Y. Zhang and D. Zhang [ZZ95] showed a

polynomial complexity bound for a variant of the Mehrotra-type methods, with less

importance on the corrector step, for the horizontal linear complementarity problem

which is a generalization of LP and CQP.

2.2.7 Primal-Feasible Affine-Scaling PDIPM

In a primal-feasible affine-scaling primal-dual interior-point method, Newton’s itera-

tion is applied to the equalities in the KKT conditions (2.9)-(2.11) to get the solution

of (2.2) with primal feasibility maintained. The search direction is obtained by solv-

ing the linear system (2.20) obtained from the first order Taylor series approximation

at the current point (x, s,λ) to (x + ∆x, s + ∆s,λ + ∆λ):

H∆x−AT∆λ = −(Hx + c−ATλ), (2.27)

A∆x−∆s = 0, (2.28)

S∆λ + Λ∆s = −Sλ. (2.29)

The augmented system is (2.27) along with the equation obtained by substituting

A∆x for ∆s in (2.29): H −AT

ΛA S

 ∆x

∆λ

 =

 −(Hx + c−ATλ)

−Sλ

 , (2.30)

23

where we obtain ∆s from (2.28) by computing

∆s = A∆x. (2.31)

The matrices associated with the Newton system (2.27)-(2.29) and the augmented

Newton system (2.30)-(2.31) will be referred to as Jacobian J and augmented Jacobian

Ja, respectively:

J(A, s,λ) :=

H 0 −AT

A −I 0

0 Λ S

, and Ja(A, s,λ) :=

 H −AT

ΛA S

 . (2.32)

When s > 0, S is nonsingular, and the normal equation is obtained by eliminating

∆λ in (2.30):

(H + ATS−1ΛA)∆x = −(Hx + c), (2.33)

where we obtain ∆s and ∆λ by computing

∆s = A∆x, (2.34)

∆λ = −λ− S−1Λ∆s. (2.35)

The dominant work in (2.33)-(2.35) is forming the matrix

M := H + ATS−1ΛA

which requires approximately mn2/2 multiplications if A is a dense matrix.

24

countour of f(x)

(a) Optimal solution is the point at which

the two red lines meet.

countour of f(x)

(b) Without constraints other than the ac-

tive ones, we still can get the same optimal

solution.

Figure 2.3: Two dimensional CQP examples .

2.3 Adaptive Constraint Reduction

In this section, we present an adaptive constraint-reduction method based on the

constraint-reduced dual-feasible primal-dual affine-scaling algorithm for LP proposed

in [TAW06]. The primal (2.2) corresponds to the dual formulation of [TAW06].

2.3.1 Adaptive Constraint-Reduction for Primal-Feasible Affine-

Scaling PDIPM

Assume for the time being that the solution is unique and strictly complementary,

and we have prior knowledge of which constraints are active at the solution x∗ ∈ F∗P .

So we have Q such that A(x∗) ⊆ Q. As illustrated in Figure 2.3, without other

constraints, we still can get the same solution x∗ by solving the following reduced

25

minimization problem

min
x

1

2
xTHx + cTx,

s.t. AQx ≥ bQ.

We would get a search direction by solving the reduced Newton system

H∆x−AT
Q∆λQ = −(Hx + c−AT

QλQ), (2.36)

AQ∆x−∆sQ = 0, (2.37)

SQ2∆λQ + ΛQ2∆sQ = −SQ2λQ, (2.38)

from which we derive the reduced normal equations

(H + AT
QS−1

Q2ΛQ2AQ)∆x = −(Hx + c). (2.39)

In reality, we do not know which constraints will be active until we get the solution.

Instead we try to include in Q constraints that seem likely to be active. Thus, Q can

vary iteration by iteration, and we need to update the entire vectors s and λ. We

choose to do this using (2.34) and (2.35) for ∆s and ∆λ, thus maintaining the primal

feasibility.

Intuitively, under the strict complementarity assumption, by considering condition

(2.11) in the KKT conditions (2.9)-(2.12), we can notice that, if the ith constraint is

inactive at the solution, then s−1
i λi = 0 at the optimal solution. Therefore, rewriting

the matrix in (2.33) in outer product summation form as

M := H +
m∑
i=1

s−1
i λiaia

T
i ,

26

it is not difficult to see that constraints that are inactive at the optimal solution

make almost no contribution toward computing the matrix as the iterate approaches

an optimal solution. This suggests that good search directions can be found without

involving constraints that are unlikely to be active at the optimal solution.

So in summing the outer products, we only use the constraints which seem to be

most active; that is, we use M(Q)

M(Q) := H +
∑
i∈Q

s−1
i λiaia

T
i

instead of M, where Q contains indices of constraints potentially active at the solu-

tion. Then the cost of matrix formation reduces to |Q|n2/2 multiplications.

Now the most critical part is the selection of Q. Following [TAW06], we set Q to

include indices of the q smallest components of Ax−b, breaking ties in an arbitrary

way; i.e.,

Q ∈ Q(Ax− b, q), (2.40)

where

Q(s, q) := {Q ⊆M : rank([H, AT
Q]) = n and ∃Q′ ⊆ Q s.t.

|Q′| = q and si ≤ sj, ∀i ∈ Q′, ∀j /∈ Q′, },
(2.41)

the set containing all possible candidates of Q. Notice [H, AT
Q] has full rank if and

only ifN (H)∩N (AQ) = {0}. Obtaining Q requires sorting (O(m logm) operations),2

2The complexity can be reduced to O(m log |Q|) by using a binary heap of size |Q| and extracting

the |Q| indices corresponding to the |Q| smallest entries of Ax− b.

27

which is negligible additional work compared to the matrix formation.

To guarantee a successful iteration, we need to ensure that the matrix M(Q) is

positive definite.

Lemma 2.3. (Corresponds to Lemma 2 of [TAW06]) Let λ > 0, s > 0, and Q ⊆M

such that rank([H, AT
Q]) = n. Then M(Q) = H + AT

QS−1
Q2ΛQ2AQ is positive definite.

Proof. If [H, AT
Q] has full rank, then N (H) ∩ N (AQ) = {0}. Since both H and

AT
QS−1

Q2ΛQ2AQ are positive semidefinite, it immediately follows that their sum is pos-

itive definite.

Although using a very small index set Q greatly reduces the cost of matrix assem-

bly, it makes it more likely that Q misses important constraints in early iterations.

As a result, the quality of the search direction could be impaired, particularly in early

iterations, resulting in an increase in the iteration count. To keep the iteration count

low, we use a large number of appropriately selected constraints in early iterations,

but exclude more constraints in later iterations as the complementary measure µ

becomes smaller. Specifically, based on two user-selected parameters qU (an upper

bound for q) and β, with n ≤ qU ≤ m and β > 0, we set

q :=

n , if µβm ≤ n,

dµβme , if n < µβm ≤ qU ,

qU , if qU < µβm.

(2.42)

28

This leads to Algorithm 1, borrowed from [TZ94] with the addition of constraint

reduction and a slight modification in (2.51) as in [TAW06]. Notice q is determined

at each iteration.

Algorithm 1 Primal-Feasible Primal-Dual Affine-Scaling Quadratic Programming

Algorithm

Parameters. η ∈ (0, 1), β ≥ 0, λmax and λ satisfying λmax > λ > 0, qU ∈

{n, . . . ,m}, tol > 0.

Data. x0 ∈ FoP and λ0 > 0.

Set

s0 := Ax0 − b. (2.43)

for k = 0,... do

Compute µ := skTλk/m.

Terminate if

‖Hxk + c−ATλk‖
1 + ‖λk‖ ≤ tol,

‖Axk − b− sk‖
1 + ‖sk‖ ≤ tol, and µ ≤ tol, (2.44)

or if Hxk + c = 0.

Step 1. Choose the index set:

Pick q such that n ≤ q ≤ qU using (2.42) and pick Q ∈ Q(Axk − b, q).

Step 2. Compute a feasible descent direction ∆xk, ∆sk, and ∆λk satisfying the

reduced normal equations (2.39) and (2.34)-(2.35).

29

Set

λ̃
k

:= λk + ∆λ. (2.45)

Set

λ̃
k

− := min{λ̃,0}. (2.46)

Step 3. Updates:

Compute the largest feasible primal step length.

ᾱk :=

∞ if ∆s ≥ 0,

mini{− si
∆si
|∆si < 0, i ∈M} otherwise.

(2.47)

Set

αk :=

ηᾱk , if ᾱk − ‖∆xk‖ ≤ ηᾱk < 1,

ᾱk − ‖∆xk‖ , if ηᾱk < ᾱk − ‖∆xk‖ < 1,

1 , otherwise.

(2.48)

Take the step

xk+1 := xk + αk∆xk, (2.49)

sk+1 := sk + αk∆sk. (2.50)

Notice sk+1 = Axk+1 − b and sk+1 > 0, since, when ∆s 6≥ 0, αk < ᾱk and

s + ᾱk∆s ≥ 0.

30

For i = 1, ...,m, set

λk+1
i :=

‖∆xk‖2 + ‖λ̃k−‖2, if λ̃ki ≤ ‖∆xk‖2 + ‖λ̃k−‖2 ≤ λ,

λ , if λ̃ki ≤ λ < ‖∆xk‖2 + ‖λ̃k−‖2,

λ̃ki , if min(‖∆xk‖2 + ‖λ̃k−‖2, λ) < λ̃ki ≤ λmax,

λmax , if λmax < λ̃ki .

(2.51)

end for

In view of Lemma 2.3, the iteration is well defined and constructs an infinite

sequence if the termination criteria are ignored.

2.3.2 Convergence of the Adaptive Constraint-Reduction Al-

gorithm

For the global convergence proof of the algorithm, we will impose four assumptions.

The first assumption guarantees that M(Q) is nonsingular, a sufficient condition for

solving the reduced normal equations successfully.

Assumption 2.1. [H, AT] has full row rank.

Under this assumption, there exists Q ⊆M such that [H, AT
Q] has full row rank.

Therefore Q(Ax− b, q) is not an empty set.

To guarantee that a starting point for Algorithm 1 and a solution for the problem

exist, we make the following two assumptions.

31

Assumption 2.2. FoP 6= ∅.

Assumption 2.3. F∗P is nonempty and bounded.

We impose a constraint qualification for uniqueness of the associated dual variables

λ.

Assumption 2.4. ∀x ∈ FP , {aTi : i ∈ A(x)} is a linearly independent set.

If {aTi : i ∈ A(x)} is a linearly independent set, then AA(x) has full row rank and

|A(x)| ≤ n. Assumption 2.4 guarantees that A(x) ⊆ Q for any Q ∈ Q(Ax − b, q)

with q ≥ n and x ∈ FP . This is a key property of Q required for the convergence

proof. Under these assumptions, we can prove convergence of the algorithm.

Theorem 2.4. {xk} converges to F∗P .

Proof. See Appendix B.1.

To establish a q-quadratic local convergence rate, we will impose two more as-

sumptions.

Assumption 2.5. F∗P is a singleton.

Assumption 2.6. The Lagrange multipliers λ∗ associated with the optimal solution

x∗ are strictly complementary to s∗ := ATx∗ − b, i.e., λ∗i s
∗
i = 0 and λ∗i + s∗i > 0 for

all i ∈M .

32

Notice Assumption 2.5 implies that N (AA(x∗)) ∩ N (H) = {0}, or equivalently

[H, AA(x∗)] spans Rn for an optimal solution x∗.

With these additional assumptions, we can establish a rate of convergence.

Theorem 2.5. Let λ∗ be the Lagrange multipliers associated with the optimal solution

x∗. If λ∗i < λmax for all i ∈ M , then {(xk,λk)} converges to the primal and dual

optimal solution pair (x∗,λ∗) q-quadratically, i.e., there exist some nonnegative integer

k′ and some constant c such that, for all k ≥ k′,

‖xk+1 − x∗‖ ≤ c‖xk − x∗‖2, and

‖λk+1 − λ∗‖ ≤ c‖λk − λ∗‖2.

Proof. See Appendix B.2.

2.4 Extension to Infeasible Problems

The minimization problem (2.2) can be infeasible, i.e., some constraints may conflict

with others and, thus, no feasible solution exists. Examples include hard margin

support vector machine (SVM) training [CV95, SS01, Bur98]. Despite the infeasibility

we may still want to find a solution by allowing, but limiting, violation of constraints.

By adding a nonnegative relaxation variable yi to each constraint and a penalty for

33

violations, we obtain the extended problem:

min
x,y

fE(x,y) = min
x,y

1

2
xTHx + cTx + dTy (2.52)

s.t. Ax + y ≥ b, (2.53)

y ≥ 0, (2.54)

where y ∈ Rm, d ∈ Rm, and d > 0. In (2.53) yi is the deficit of a violated constraint

and in (2.52) di keeps yi from growing arbitrary large. We might use a small or

large penalty parameter di for each constraint depending on its importance. If the

original problem (2.2) is feasible and each component of d is large enough in (2.52),

then we obtain the same optimal solution x∗ from the original and extended problem

(2.52)-(2.54).

We will see in Chapter 3 that the soft margin SVM [CV95, Bur98, SS01, JOT07]

is derived from the hard margin SVM in this way. Other problems in the extended

standard form (2.52)-(2.54) include support vector regression [SS01, chap. 1], data

fitting with the `1 norm [Wat99], and the dual of equality constrained linear program-

ming (H = 0) with lower and upper bounds on variables [Wri97, chap. 11]. In this

section we investigate how to apply constraint reduction effectively to problems in

this form.

We can convert the extended problem (2.52)-(2.54) to the standard form (2.2) by

34

defining z := [xT , yT]T , b̂ = [bT , 0T]T , ĉ = [cT , dT]T ,

Â :=

 A Im

0 Im

 , and Ĥ :=

 H 0

0 0

 ,
where Im is the m×m identity matrix, Â is 2m×(m+n) and Ĥ is (m+n)×(m+n).

We can obtain the KKT conditions for the converted standard form by defining

t := [sT , wT]T , φφφ := [λT , πT]T , Y := diag(y), W := diag(w), Π := diag(π),

T := diag(t), and Φ := diag(φφφ),

Ĥz− ÂTφφφ + ĉ = 0 ↔

 Hx−ATλ + c = 0

−λ− π + d = 0

 , (2.55)

Âz− b̂− t = 0 ↔

 Ax + y − b− s = 0

y −w = 0

 , (2.56)

Tφφφ = 0 ↔

 Sλ = 0

Wπ = 0

 . (2.57)

We obtain the normal equations of size (m+ n)× (m+ n), as follows:

(Ĥ + ÂTT−1ΦÂ)∆z = −(Ĥz + ĉ), (2.58)

where we compute the other variables by solving

∆t = Â∆z ↔

 ∆s

∆w

 =

 A∆x + ∆y

∆y

 , (2.59)

35

∆π = −φφφ−T−1Φ∆t ↔

 ∆λ

∆π

 =

 −λ− S−1Λ∆s

−π −W−1Π∆w

 . (2.60)

Here we maintain the primal feasibility (2.56). From (2.56) and (2.59) we see that

y +α∆y = w +α∆w and A(x +α∆x) + y +α∆y−b− s−α∆s = 0 for any α ∈ R.

So w and ∆w can be replaced by y and ∆y.

Similarly to the reduced normal equations (2.39) for the original standard form

(2.2), we can derive reduced normal equations of size (m+n)× (m+n) with an index

set, for q̂ ≥ m+ n,

Q̂ ∈ Q̂(Âz− b̂, q̂), (2.61)

where

Q̂(t, q̂) := {Q̂ ⊆ {1, . . . , 2m} : rank([Ĥ, ÂT
Q̂

]) = m+ n, and ∃Q̂′ ⊆ Q̂ s.t.

|Q̂′| = q̂, and ti ≤ tj,∀i ∈ Q̂′, ∀j /∈ Q̂′}. (2.62)

So Q̂ includes the indices of q̂ most nearly active constraints in (2.53) and (2.54).

This definition of Q̂(t, q̂) is consistent with (2.41). We define three index sets derived

from Q̂:

Q1 := Q̂ ∩M,

Q2 := {i > 0 : m+ i ∈ Q̂}, and

Q3 := Q1 ∩Q2.

(2.63)

36

Notice Q1 ∪Q2 = M ; otherwise the rank of [Ĥ, ÂT
Q̂

] is less than m+ n. So it follows

that

|Q3| = |Q1 ∩Q2| = (|Q1|+ |Q2|)− |Q1 ∪Q2| = |Q̂| −m. (2.64)

The indices of the nearly active constraints in (2.53) are contained in Q1. The indices

of the nearly active constraints in (2.54) are contained in Q2.

We begin with the reduced normal equations obtained from (2.58):

(
Ĥ + ÂT

Q̂
T−1

Q̂2
ΦQ̂2ÂQ̂

)
∆z = −(Ĥz + ĉ). (2.65)

This system of equations is of size (m+ n)× (m+ n), but well structured. It would

cost O(|Q̂|(m+ n)2) multiplications to naively form the matrix on the left hand side

of (2.65) (if we do not exploit the structure of Â), and the gain we could achieve

through the constraint reduction would not be impressive. The cost can be reduced

to O(|Q1|n2) when the structure of Â is considered. This will become clear at (2.67).

However, by further exploiting the structure of the matrix, we can make the constraint

reduction even more effective. Let us see how we can derive normal equations that

can most benefit from the constraint reduction.

First we expand (2.65) to
H 0

0 0

+

AT
Q1

0

ITQ1
ITQ2

S−1

Q2
1

0

0 W−1
Q2

2

ΛQ2

1
0

0 ΠQ2
2

AQ1 IQ1

0 IQ2

∆x

∆y

 = −

Hx + c

d

 ,
(2.66)

37

where IQ is the |Q| ×m matrix obtained by including row i of the m × m identity

matrix for all i ∈ Q. Simple calculation in the left hand side of (2.66) yieldsH + AT
Q1

S−1
Q2

1
ΛQ2

1
AQ1 AT

Q1
S−1
Q2

1
ΛQ2

1
IQ1

ITQ1
S−1
Q2

1
ΛQ2

1
AQ1 ITQ1

S−1
Q2

1
ΛQ2

1
IQ1 + ITQ2

W−1
Q2

2
ΠQ2

2
IQ2

∆x

∆y

 = −

Hx + c

d

 .
(2.67)

Notice that IQd = dQ, and IQITQ = IQ2 , where IQ2 is the |Q| × |Q| identity matrix.

By multiplying IQ1 to the second block row in (2.67), we obtainH + AT
Q1

S−1
Q2

1
ΛQ2

1
AQ1 AT

Q1
S−1
Q2

1
ΛQ2

1
IQ1

S−1
Q2

1
ΛQ2

1
AQ1 S−1

Q2
1
ΛQ2

1
IQ1 + IQ1I

T
Q2

W−1
Q2

2
ΠQ2

2
IQ2

∆x

∆y

 = −

Hx + c

dQ1

 .
(2.68)

Since IQS = SQ2IQ for any m ×m diagonal matrix S, by changing the second term

of the (2, 2) entry in the left hand side matrix of (2.68), we deriveH + AT
Q1

S−1
Q2

1
ΛQ2

1
AQ1 AT

Q1
S−1
Q2

1
ΛQ2

1
IQ1

S−1
Q2

1
ΛQ2

1
AQ1 S−1

Q2
1
ΛQ2

1
IQ1 + (ITQ2

W−1
Q2

2
ΠQ2

2
IQ2)Q2

1
IQ1

∆x

∆y

 = −

Hx + c

dQ1

 .
(2.69)

Since IQ∆y = ∆yQ, we get the following system of equations:H + AT
Q1

S−1
Q2

1
ΛQ2

1
AQ1 AT

Q1
S−1
Q2

1
ΛQ2

1

S−1
Q2

1
ΛQ2

1
AQ1 S−1

Q2
1
ΛQ2

1
+ (ITQ2

W−1
Q2

2
ΠQ2

2
IQ2)Q2

1

 ∆x

∆yQ1

 = −

Hx + c

dQ1

 .
(2.70)

38

Since Q1 ∪ Q2 = M and thus S−1
Q2

1
ΛQ2

1
+ (ITQ2

W−1
Q2

2
ΠQ2

2
IQ2)Q2

1
is nonsingular, with a

block elimination to (2.70), we can derive a system of equations of size n× n:(
H + AT

Q1

(
S−1
Q2

1
ΛQ2

1
− S−1

Q2
1
ΛQ2

1

(
S−1
Q2

1
ΛQ2

1
+ (ITQ2

W−1
Q2

2
ΠQ2

2
IQ2)Q2

1

)−1

S−1
Q2

1
ΛQ2

1

)
AQ1

)
∆x

= −Hx− c + AT
Q1

S−1
Q2

1
ΛQ2

1
(S−1

Q2
1
ΛQ2

1
+ (ITQ2

W−1
Q2

2
ΠQ2

2
IQ2)Q2

1
)−1dQ1 . (2.71)

Now consider this diagonal matrix:

Θ := ITQ1

(
S−1
Q2

1
ΛQ2

1
− S−1

Q2
1
ΛQ2

1

(
S−1
Q2

1
ΛQ2

1
+ (ITQ2

W−1
Q2

2
ΠQ2

2
IQ2)Q2

1

)−1

S−1
Q2

1
ΛQ2

1

)
IQ1 .

For i /∈ Q1, θii = 0, for i ∈ Q1 ∩Q2 = Q3,

θii =
λi
si
− λi
si

(
λi
si

+
πi
wi

)−1
λi
si

=

(
si
λi

+
wi
πi

)−1

,

and for i ∈ Q1 \Q2,

θii =
λi
si
− λi
si

(
λi
si

)−1
λi
si

= 0.

Thus, Θ = ITQ3
(SΛ−1 + WΠ−1)

−1
Q3

IQ3 .

Therefore, considering AT
Q1

= AT
Q1

IQ1I
T
Q1

and AT
Q1

IQ1I
T
Q3

= AT
Q3

, we derive the

following reduced normal equations from (2.71):(
H + AT

Q3

(
SΛ−1 + WΠ−1

)−1

Q2
3
AQ3

)
∆x

= −Hx− c + AT
Q1

S−1
Q2

1
ΛQ2

1
(S−1

Q2
1
ΛQ2

1
+ (ITQ2

W−1
Q2

2
ΠQ2

2
IQ2)Q2

1
)−1dQ1 .

(2.72)

These are the normal equations that we actually solve to get the ∆x part of ∆z.

Notice, in forming the normal matrix in the left hand side of (2.72), only the con-

straints (2.53) indexed by Q3 are involved. Thus the cost of forming the matrix is

39

only O(|Q3|n2) multiplications. Compare this cost with that of (2.65) or (2.67). Even

if |Q̂| and |Q1| are large, |Q3| can be small. For example, if |Q̂| is m+n and |Q1| is m,

then, in view of (2.64), |Q3| is only n. If the constraint reduction were not used, the

matrix would be formed fully, costing O(mn2) (i.e., Q3 = M). The cost of forming

the right hand side of (2.72) is O(|Q1|n). This cost is much less than that of the full

formation of the left hand side matrix.

We get ∆y by solving

∆y = (ITQ1
S−1
Q2

1
ΛQ2

1
IQ1 + ITQ2

W−1
Q2

2
ΠQ2

2
IQ2)−1(d− ITQ1

S−1
Q2

1
ΛQ2

1
AQ1∆x), (2.73)

derived from (2.67). To obtain other variables we simply use (2.59) and (2.60). All

these equations including (2.73) consist of matrix-vector products and operations with

diagonal matrices, and the cost of each is at most O(mn). Again, this cost is much

less than the full formation of the normal matrix in (2.72).

Another way to obtain the reduced normal equations (2.72) is to apply block

elimination to the following reduced Newton system:

Ĥ∆z− ÂT
Q̂

∆πQ̂ = −(Ĥz + ĉQ̂ − ÂT
Q̂
φφφQ̂), (2.74)

ÂQ̂∆z−∆tQ̂ = 0, (2.75)

TQ̂2∆πQ̂ + ΦQ̂2∆tQ̂ = −TQ̂2φφφQ̂. (2.76)

Since (2.72) and (2.73) are derived from (2.65), the step ∆z := [∆xT , ∆yT]T gen-

erated from the reduced normal equations (2.72) and (2.73) is the same as the one

40

generated from the standard-form-like reduced normal equations (2.65), and satisfies

the reduced Newton system above.

So we can define a constraint-reduced affine-scaling primal-dual interior-point al-

gorithm for the extended problem (2.52)-(2.54), which actually solves the n by n

normal equations (2.72), by using Q̂ and its by-products Q1, Q2 and Q3 as defined in

(2.62) and (2.63); by solving (2.72), (2.73), (2.59), and (2.60); and by substituting z

for x, t for s, and λ for φφφ in Algorithm 1, where, however, w and ∆w do not need

to be tracked as they are always the same as y and ∆y. Therefore by imposing As-

sumptions 2.1-2.6 to the standard form converted from (2.52)-(2.54), we can extend

the convergence analysis to the algorithm for the extended problem. Assumption 2.2

is not necessary because the problem (2.52)-(2.54) is always strictly feasible.

Here we state the modified assumptions for the convergence proof of the algorithm

for the extended problem (2.52)-(2.54). For this we define

F̃P := {(x,y) ∈ Rn+m : Ax + y ≥ b and y ≥ 0},

F̃oP := {(x,y) ∈ Rn+m : Ax + y > b and y > 0}, and

F̃∗P := {(x∗,y∗) ∈ F̃P : fE(x∗,y∗) ≤ fE(x,y), ∀(x,y) ∈ F̃P},

similarly to (2.4), (2.5) and (2.6). We define Â(z) ⊆ {1, . . . , 2m}, the index set of

41

active constraints at z = [xT , yT]T , similarly to (2.7). We also define its byproducts

A1(x,y) := Â(z) ∩M,

A2(x,y) := {i > 0 : m+ i ∈ Â(z)},

A3(x,y) := A1(x,y) ∩ A2(x,y).

Clearly, under Assumption 2.1, [Ĥ, ÂT] also has full row rank. Thus Q̂(Âz− b̂)

is not empty. Since, for T−1φφφ > 0, Ĥ + ÂT
Q̂
T−1

Q̂2
ΦQ̂2ÂQ̂ in (2.65) is positive definite

due to full row rank of [Ĥ, ÂT
Q̂

], H + AT
Q3

(SΛ−1 + WΠ−1)
−1
Q2

3
AQ3 in (2.72) should

be positive definite as well. The following proposition supports this fact.

Proposition 2.6. Let Q̂ ⊆ {1, . . . , 2m}. Define Q1, Q2 and Q3 as in (2.63). Suppose

that Q1 ∪Q2 = M . Then [H, AT
Q3

] has full row rank if and only if [Ĥ, ÂT
Q̂

] does.

Proof. Let us first prove the sufficiency. Suppose that [H, AT
Q3

] does not have full

row rank. Then, there exists some nonzero vector v ∈ Rn such that Hv = 0 and

AQ3v = 0.

Let u ∈ Rm be such that uQ1\Q3 = −AQ1\Q3v and uQ2 = 0. Use IQu = uQ and

use an (m+ n+ |Q̂|) by (m+ n+ |Q̂|) pivoting matrix P such that

P

 Ĥ

ÂQ̂

 v

u

 =

H 0

0 0

AQ3 IQ3

AQ1\Q3 IQ1\Q3

0 IQ2

 v

u

 =

Hv

0

AQ3v + uQ3

AQ1\Q3v + uQ1\Q3

uQ2

.

42

Then we know [vT , uT][Ĥ, ÂT
Q̂

]PT = 0. Since [vT ,uT]T 6= 0, therefore [Ĥ, ÂT
Q̂

] does

not have full row rank.

Now let us consider the necessity. Let v ∈ Rn, u ∈ Rm be such that

[Ĥ, ÂT
Q̂

]T [vT , uT]T = 0.

We show that [vT , uT]T = 0, proving the claim. Indeed, there exists some pivoting

matrix P such that

P

 Ĥ

ÂQ̂

 v

u

 =

H 0

0 0

AQ3 IQ3

AQ1\Q3 IQ1\Q3

0 IQ3

0 IQ2\Q3

 v

u

 =

Hv

0

AQ3v + uQ3

AQ1\Q3v + uQ1\Q3

uQ3

uQ2\Q3

= 0.

So it follows that Hv = 0 and AQ3v = 0. Since [H, AT
Q3

] has full row rank, it follows

that v = 0 and u = 0.

Assumption 2.7. For all z = [xT ,yT]T in F̃P , {aTi : i ∈ A3(x,y)} is a linearly

independent set.

The following proposition will show the equivalence between Assumption 2.4 (with

x, ai, A(x), FP replaced by z, âi, Â(z), F̃P) and Assumption 2.7.

Proposition 2.7. {aTi : i ∈ A3(x,y)} is a linearly independent set if and only if

{âTi : i ∈ Â(z)} is a linearly independent set.

43

Proof. For convenience, given z = [xT , yT]T , we let Â := Â(z), A1 := A1(x,y),

A2 := A2(x,y) and A3 := A3(x,y). Let us first show the sufficiency. Suppose that

{aTi : i ∈ A3} is not a linearly independent set. This implies that N (AT
A3

) 6= {0}. So

there exists some nonzero vector ū ∈ R|A3| such that AT
A3

ū = 0. Let u ∈ Rm be such

that uA3 = ū and uM\A3 = 0. So we know that uA1 6= 0 and AT
A3

uA3 = 0. Then,

since A1 ⊆M , it follows that AT
A1

uA1 = AT
A1\A3

uA1\A3 + AT
A3

uA3 = 0. Let v := −u

and compute ÂT
Â[uTA1

, vTA2
]T . Since uA1\A3 = 0, vA2\A3 = 0 and uA3 = −vA3 , it

follows that

ÂT
Â

 uA1

vA2

 =

 AT
A1

0

ITA1
ITA2

 uA1

vA2

 =

 AT
A1

uA1

ITA1
uA1 + ITA2

vA2

 =

 0

0

 .
Since [uTA1

,vTA2
]T 6= 0, this means that {âTi : i ∈ Â} is not a linearly independent set.

Now let us prove the necessity. Assume {aTi : i ∈ A3} is linearly independent. Let

u,v ∈ Rm be such that ÂT
Â[uTA1

,vTA2
]T = 0. We show that [uTA1

,vTA2
]T = 0, proving

the claim. Indeed, since

ÂT
Â

uA1

vA2

 =

AT
A1

0

ITA1
ITA2

uA1

vA2

 =

 AT
A1

uA1

ITA1
uA1 + ITA2

vA2

=

AT
A1\A3

uA1\A3 + AT
A3

uA3

ITA1
uA1 + ITA2

vA2

 ,
we conclude that ITA1

uA1 + ITA2
vA2 = 0, from which it immediately follows that

uA1\A3 = 0, vA2\A3 = 0, and uA3 = −vA3 . Then since AT
A1\A3

uA1\A3 + AT
A3

uA3 =

44

AT
A3

uA3 = 0, it follows, from the linear independence of {aTi : i ∈ A3}, that uA3 = 0.

Thus [uTA1
,vTA2

]T = 0.

Theorem 2.8. Let {(xk,yk)} (or {zk}) be the sequence constructed by Algorithm 1

applied to the converted standard form. Under Assumptions 2.1, 2.3 (with F∗P replaced

by F̃∗P) and 2.7, the sequence (xk,yk) converges to F̃∗P .

Proof. Due to Proposition 2.6 (by setting Q̂ := {1, . . . , 2m}), Assumption 2.1 implies

that [Ĥ, ÂT] has full row rank. F̃oP is trivially nonempty. Due to Proposition 2.7,

Assumption 2.7 implies that {âTi : i ∈ Â(z)} is a linearly independent set for all

z ∈ F̃P . Hence Assumptions 2.1-2.4 hold with H, A, ai, x, A(x), FP , FoP , and F∗P
replaced by Ĥ, Â, âi, z, Â(z), F̃P , F̃oP , and F̃∗P . Since the set of index sets Q̂(Âz−b̂, q̂)

is consistent with Q(Ax− b, q), the claim follows from Theorem 2.4.

Assumption 2.8. (Corresponds to Assumption 2.6) Strict complementarity holds at

the optimal solution (x∗,y∗).

Theorem 2.9. Let {(xk,yk)} (or {zk}) be the sequence constructed by Algorithm 1

applied to the converted standard form. Suppose that Assumptions 2.1, 2.3 (with F∗P
replaced by F̃∗P), 2.7, 2.5 (with F∗P replaced by F̃∗P), and 2.8 hold. If λi < φmax and

πi < φmax for all i ∈M , then the sequence {(xk,yk,λk,πk)} (or {(zk,φφφk)}) converges

to the primal-dual solution pair (x∗,y∗,λ∗,π∗) (or (z∗,φφφ∗)) q-quadratically.

Proof. Assumptions 2.1-2.6 hold with H, A, ai, b, x, A(x), FP , FoP , F∗P , λ∗, s∗, x∗,

and M replaced by Ĥ, Â, âi, b̂, z, Â(z), F̃P , F̃oP , F̃∗P , φφφ∗, t∗, z∗, and {1, . . . , 2m}.

45

Then the claim follows directly from Theorem 2.5.

It is possible to extend the convergence results to problems that also include an

`2 penalty term in the objective function. A term yTdiag(g)y would then be added

in the objective function (2.52), where g ∈ Rm, d ≥ 0, g ≥ 0, and d + g > 0. The

same index set choice as defined in (2.62) can be used. By following the same steps, a

constraint reduced algorithm can be devised. Problems of this type include support

vector machine training with squared hinge loss [SS01, FM02].

2.5 Numerical Results

We implemented Algorithm 1 in MATLAB 7.1 R14 SP3 with a dense direct solver

for the normal equations in order to concentrate on the action of the reduction. The

algorithm was tested on a machine with an Intel Pentium IV 2.8GHz processor with

16 KB L1 cache, 1 MB L2 cache, 2.5 GB DDR2-400MHz configured as dual channel,

and Hyper Threading enabled. The machine ran Windows XP SP2.

We set the algorithm to terminate when either convergence was detected or more

than 200 iterations were performed. We set the parameters as β := 4 for controlling

reduction speed, and tol := 10−8. We set λ := 10−6, λmax := 1030, η := .98, and

θ := 102. We varied qU to see how our algorithm would behave depending on it.

Following [TAW06], we also enforced a “safeguard” on s, si := max(10−14, si), for

the purpose of assembling M(Q). This keeps M(Q) from being too ill-conditioned.

46

In addition, when the Cholesky factorization routine chol failed to factor M(Q) for

Q = M due to numerical difficulty, we used the Cholesky infinity factorization cholinc

instead [Zha96].

2.5.1 Choosing Q

We had the algorithm choose a reasonably small Q ∈ Q(s, q) as follows. First Q̄

is taken to be the set of indices of some q̄ := q smallest slacks aTi x − bi. Then, if

rank([H, AQ̄]) = r < n, MQ̄ becomes singular with rank r. With Q := Q̄, solving

the reduced normal equations (2.39) fails. In this event, we may calculate a unique

Cholesky factor whose rows after the rth row are filled with zeros [Hou64, Hig90],

and repeatedly perform a low rank update with the next most active constraints

[WNTO07]. However, for ease of implementation, we instead had the algorithm

repeat doubling q̄ and choosing Q̄ as the set of indices of some q̄ smallest slacks until

MQ̄ becomes nonsingular. Then we set Q := Q̄. Since Q contains the indices of some

q smallest slacks and rank([H, AQ̄]) = n, we know that Q ∈ Q(s, q).

2.5.2 Scaling

Rows or columns of the coefficient matrix A are often associated with different mea-

surement units. For instance, consider an optimization problem of eating food with

various ingredients. Each constraint of the problem may restrict the consumption of

the total amount of a nutrient measured in grams. Various nutrients are contained

47

in an ingredient, which might contain a relatively large amount of carbohydrate, pro-

tein and fat but a very small amount of minerals and vitamins. Then, values in some

rows of the coefficient matrix are large while those in the others may be very small.

Since the condition number of the matrix depends on scaling of rows, bad scaling can

cause numerical instability. To balance the entries in the matrix, we may use different

measurement units for each row.

Let us first consider scaling rows of the matrix A in (2.2). Define D to be an

m×m diagonal matrix with positive entries. By multiplying each constraint by dii,

we see that the constraints Ax ≥ b are equivalent to DAx ≥ Db.

Now consider affine transformation of the problem space including scaling columns

of the matrix DA. Define P to be a nonsingular n× n matrix. Then the equivalent

constraints are (DAP)(P−1x) ≥ Db. If P is diagonal, then it scales columns of A.

Furthermore, we may translate the origin of the problem space to a point v ∈ Rn

before the linear transformation. Then the problem (2.2) is solved in terms of x̄ :=

P−1(x−v). We obtain the following problem, which is equivalent to the original one

up to a constant in the objective function:

min
x̄

1

2
x̄T (PTHP)x̄ + (Hv + c)TPx̄,

s.t. DAPx̄ ≥ D(b−Av).

There is no optimal rule for scaling that fits every problem; insight into the specific

problem is required.

When H = 0, Algorithm 1 and the choice of initial guess can be modified to

48

make the iteration invariant to positive diagonal D, nonsingular diagonal P, and

v [TAW06]. The modification also identically applies to Algorithm 1 with H 6=

0. Another way to make the iteration invariant under some types of scaling is to

preprocess the problem, which we did in our numerical experiments. For this, we

used the following heuristic. We normalized every row of A to length 1, and scaled b

accordingly. In other words, we set dii := 1
‖ai‖ for i = 1, . . . ,m. Since scaling columns

of A affects the normalized rows, we chose not to scale the columns. So we set P := I

and v := 0. Since every constraint is now assumed to be well scaled, the dual initial

point was set as λ0 := e. The Lagrange multipliers for the original problem can be

recovered by using λ := Dλ. This preprocessing makes the iteration mathematically

invariant (under exact arithmetic) to the action of D and v with a proper choice of

a primal initial point.

2.5.3 Data Fitting

Data fitting is a problem of finding a model approximating time series data b̄1, . . . , b̄m̄

measured at times t1, . . . , tm̄. We build a model with a set of basis functions ψ1(t),

. . . ,ψn̄(t):

u(t) :=
n̄∑
j=1

x̄jψj(t).

To find good coefficients x̄1, . . . , x̄n, we can use Chebyshev approximation, minimizing

the maximal error of the model [Atk89, Wat99]. Let Ā be the m̄ × n̄ matrix with

49

entries ākj := ψj(tk). If we form a vector b̄ from the values b̄k and a vector x̄ from

the coefficients x̄j, then the maximal error can be written as

max
k∈{1,...,m̄}

∣∣b̄k − u(tk)
∣∣ =

∥∥b̄− Āx̄
∥∥
∞ ,

and we want to minimize this over all choices of x̄.

A model obtained by solving this min-max problem could be too sensitive to

noise in the measurements. To reduce the sensitivity, we can utilize a regularization

method, first introduced by Tikhonov [TA77]. By adding a regularization term in the

objective function, we obtain the regularized min-max problem,

min
x̄
‖b̄− Āx̄‖∞ +

1

2
α‖x̄‖2

H̄1/2 ,

where H̄1/2 is an n̄ × n̄ symmetric positive semidefinite matrix, ‖x̄‖H̄1/2 :=
√

x̄T H̄x̄

and α is a scalar value. This can be transformed to the standard form:

min
x̄,t

t+
1

2
α‖x̄‖2

H̄

s.t. Āx̄− b̄ ≥ −te

−Āx̄ + b̄ ≥ −te.

(2.77)

If we define x := [x̄T , t]T , b := [b̄T ,−b̄T]T , c := [0, . . . , 0, 1]T , m = 2m̄, and n = n̄+1,

then

A =

 Ā e

−Ā e

 and H =

 αH̄ 0

0 0

 .

50

We used the problem setting of [WNTO07]. For convenience, we restate it here.

For basis functions, we used cosine and sine functions: for j = 0, . . . , n̄,

ψcj(t) := cos(2jπt),

and, for j = 1, . . . , n̄,

ψsj (t) := sin(2jπt).

Then, we set the basis functions as

[ψ1, . . . , ψ2n̄+1] := [ψc0, . . . , ψ
c
n̄, ψ

s
1, . . . , ψ

s
n̄].

The sampling points were, for i = 1, . . . , m̄,

ti := (i− 1)/m̄.

For observed data, we used the following signal function

g(t) := sin(10t) cos(25t2),

and set

b̄i := g(ti) + εi, for i = 1, . . . , m̄,

where εi ∼ N(0, .09) denotes independent random noise following normal distribution

with 0 mean and 0.09 variance. For a strictly feasible initial point, we used x̄0 := 0

and t0 := ‖b̄‖∞ + 1.

51

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

Measured signal
Model(LP)

(a) Model is generated from an

LP problem by setting α = 0 in

(2.77).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

Measured signal
Model(CQP)

(b) Model is generated from

the CQP problem (2.77) with

the diagonal components of H̄

are proportional to the fre-

quency of the corresponding

basis function.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−1.5

−1

−0.5

0

0.5

1

1.5

Measured signal
Model(LS)

(c) Model is generated from

a least squares (LS) problem,

minx̄ ‖b̄− Āx̄‖22.

Figure 2.4: Measured signal fit by various methods. Tested with m̄ = 5000 and

n̄ = 99.

Without the regularization term, the model obtained from (2.77) tends to be too

oscillatory as seen in Figure 2.4a. This tendency is caused by giving too much favor to

basis functions with high frequency. To suppress high frequency components, we used

a penalty weight proportional to the frequency of the basis functions. We let H̄ be a

diagonal matrix with h̄jj := 2(j − 1)π for j := 1, . . . , n̄+ 1, and h̄jj := 2(j − n̄− 1)π

for j = n̄ + 2, . . . , 2n̄ + 1. In our experiment, we set α = 10−6 and n̄ = 99, resulting

in n = 200.

We set m̄ := 5000 (m = 10000) for the comparison of models obtained from

52

Regularized min-max (CQP) Min-max (LP) Least squares

Maximal error 0.328 0.326 0.491

Mean square error 0.0198 0.0217 0.00827

Table 2.1: When H̄ is properly set, the model generated from the CQP (2.77) can be

a compromise between that of LP (minimizing the maximal error) and least squares

(minimizing sum of squared point-wise error). Mean square error was measured by

‖b̄− Āx̄‖2
2/m̄. Tested with m̄ := 5000 and n̄ := 99.

linear programming (using α := 0), the regularized min-max (2.77), and least squares

(using 2-norm instead of infinity norm) problems. Figure 2.4 shows the models.

As illustrated in Table 2.1, the regularized min-max problem can be a compromise

between the min-max and least squares problem.

We set m̄ := 20000 (m = 40000) for the comparison of our adaptive reduction and

nonadaptive reduction which sets q := qU . Timing and iteration counts on varying

qU are measured in Figure 2.5 with the horizontal axis in log scale. The nonadaptive

algorithm with qU := m corresponds to a standard PDAS IPM algorithm. When

qU is small (less than 10−1m), adaptive shrinking of q does not take place until µ

becomes sufficiently small. Up to this point, both algorithms compute the same

primal-dual iterates. Once µ becomes sufficiently small, implying the iterate is close

to the solution, shrinking the index set size does not affect the search direction as

much as it does in early iterations, because the normal matrix is dominated by the

53

10
−2

10
−1

10
0

0

5

10

15

20

T
im

e
(s

ec
)

q
U

/m

10
−2

10
−1

10
0

0

20

40

60

80

100

120

Ite
ra

tio
n

co
un

t

q
U

/m

Adaptive
Nonadaptive

Figure 2.5: Adaptive reduction is compared with nonadaptive reduction on the data-

fitting problem (2.77). The horizontal axis is in log scale. Tested with m̄ := 20000

and n̄ := 99.

diverging λi/s
−1
i . On the other hand, when qU is large, the adaptive algorithm may

use fewer constraints than the nonadaptive even in early iterations. This affects the

search direction at early iterations and may result in a different iteration count.

54

10
−2

10
−1

10
0

0

5

10

15

20

T
im

e
(s

ec
)

q
U

/m

10
−2

10
−1

10
0

0

50

100

150

Ite
ra

tio
n

co
un

t

q
U

/m

Adaptive
Nonadaptive

Figure 2.6: Adaptive reduction is compared with nonadaptive reduction on the fully

random problem (2.77). The horizontal axis is in log scale.

2.5.4 Random Problems

We compared the adaptive reduction with the nonadaptive reduction on random

problems of size m := 50000 and n := 100. We generated A and c by taking random

numbers drawn from a N(0, 1) distribution. Diagonal components of H are taken

from U(0, 1), uniformly distributed random numbers in (0, 1). We set s0 by taking

numbers from U(1, 2) and x0 from U(0, 1). We set b := Ax0 − s0. This is a slight

modification of the random problem in [TAW06], which uses different ranges of initial

55

s0.

Timing and iteration counts are presented in Figure 2.6 with the horizontal axis

in log scale. When qU is very small (less than or equal to 10−1m), adaptive shrinking

of q takes place only for a few of the final iterations after the iterate is close enough to

the solution. This prevents the adaptive reduction scheme from showing advantages

for small qU . It is noticeable that, for a wide range of qU , the iteration count of both

adaptive and nonadaptive reduction is near constant. In the same range of qU , the

timing of the adaptive reduction is near constant, while that of nonadaptive reduction

decreases as qU decreases.

2.6 Conclusions

We proposed an affine-scaling algorithm which significantly reduces computational ef-

fort in solving convex quadratic programming problems having many more constraints

than variables.

We showed how the method can be applied to problems that explicitly include

nonnegative slack variables such as the training of support vector machines with soft

margins. We established convergence and a quadratic local convergence rate.

56

Chapter 3

Adaptive Constraint Reduction for Training Support Vector

Machines

A baby learns from its own experience, or it may learn from what its parents teach.

Then, the baby will cope with a new situation based on what it has learned. Babies

are learning machines! We want to devise such a learning machine which learns from

what we teach. The support vector machine (SVM) learns from a set of training

patterns through a training process. Each pattern is associated with a predetermined

class label which is assigned by humans. After the machine learns from the training

patterns, the machine then can answer ‘yes’ or ‘no’ to new inputs.

In this chapter, we present an efficient algorithm for training of the machine. In

section 3.1, we define the data representation and introduce the basics of training the

support vector machine. We also formulate the training process as a CQP problem.

In section 3.2, we review previous approaches to training the SVM on a large data

set. In section 3.3, we present an interior-point method for training the machine.

57

A constraint-reduction mechanism is then applied to the method. Generalization to

training nonlinear support vector machines is also provided. In section 3.4, promising

numerical results are provided.

3.1 Introduction to Support Vector Machines

In this section, we introduce the support vector machine and its training.

3.1.1 Data Representation, Classifier, Feature Space, and

Kernel

The training patterns are defined as

(x1, y1), . . . , (xm, ym) ∈ X × {−1,+1}, (3.1)

where m is the number of training patterns, yi is the known classification of the ith

pattern xi, X denotes the domain set, often called the input space, in which the

patterns live, and y will be used later for denoting [y1, . . . , ym]T .

A hyperplane classifier or a linear classifier is a hyperplane,

{x : 〈w,x〉 = γ},

separating the negative patterns from the positive patterns. For an input or a pattern

x ∈ X , the decision or prediction y of the classifier is

y := sign(〈w,x〉 − γ).

58

For ease of further discussion, we assume that X is Rl. This can be easily achieved

by first preprocessing the training patterns.

To find a better classifier, we may want to map the training patterns into a vector

space (probably of higher dimension) endowed with an inner product. This mapping

is performed by a feature map Φ(·):

Φ : X → H (3.2)

x 7→ Φ(x), (3.3)

where H is a space endowed with some inner product 〈·, ·〉H and the length or norm

of a vector a ∈ H is defined as ‖a‖H :=
√〈a, a〉H. The image space H of the feature

map is usually referred to as the feature space. A linear classifier determined in the

feature space may induce a nonlinear classifier in the original input space; see Figure

3.1 for an example.

A symmetric and positive definite kernel is a function that measures the similarity

of two vectors:

k : X × X → R

(x, x̄) 7→ k(x, x̄).

It is symmetric if

k(x, x̄) = k(x̄,x),

59

x1

x2

Figure 3.1: By mapping the patterns in the input space (x1, x2) to a higher dimen-

sional feature space (x2
1, x

2
2,
√

2x1x2), the SVM can find an ellipsoidal classifier in the

original input space by finding a linear classifier in the feature space.

for every x, x̄ ∈ X . The kernel is positive definite if the Gram matrix K whose

ith row and jth column component kij := k(xi,xj), induced from an arbitrary num-

ber of patterns x1, . . . ,xm̄ ∈ X (not necessarily the training patterns), is positive

semidefinite.1

Every symmetric and positive definite kernel is associated with the reproducing

kernel map Φ which is defined as

Φ : X → H

x 7→ k(·,x).

(3.4)

Then the space spanned by the images of arbitrary patterns is the reproducing kernel

1Researchers in machine learning field often use “positive definite” to denote ‘positive semidefi-

nite’ and “strictly positive definite” for ‘positive definite’.

60

Hilbert space (RKHS), a feature space corresponding to the reproducing kernel map:

H := {f : f =
∞∑
i=1

αik(·,xi), ∀i : αi ∈ R, and xi ∈ X}.

An inner product associated with the space is defined as

〈f, g〉H :=
∞∑
i=1

∞∑
j=1

αiβjk(xi, x̄j), (3.5)

for f, g ∈ H, xi, x̄j ∈ X , αi, βj ∈ R, and f :=
∑∞

i=1 αik(·,xi) and g :=
∑∞

j=1 βjk(·, x̄j).

It is not difficult to check that this definition leads to the reproducing property:

〈k(·,xi), k(·,xj)〉H = k(xi,xj). This implies that the kernel evaluation between two

input patterns can replace the inner product between their images. This property

plays a central role in generalizing the linear SVM to nonlinear SVM. See [Bur98]

and [SS01] for more details.

Multiple feature spaces can be associated with a kernel. In addition to the RKHS

mapping (3.4), for instance, a feature map from R2 to R3 associated with the 2nd

order homogeneous polynomial kernel k(x, x̄) := (xT x̄)2 can be defined as

Φ : R2 → R3,

[x1, x2]T 7→ [x2
1, x

2
2,
√

2x1x2]T ,

(3.6)

so that the inner-product in the feature space is equivalent to the kernel evaluation

in the input space:

k(x, x̄) = 〈Φ(x),Φ(x̄)〉. (3.7)

61

With the mappings such as (3.4) and (3.6), a linear classifier in the feature space is

equivalent to some nonlinear classifier in the input space as depicted in Figure 3.1.

Accordingly, we first limit our study to linear SVMs, and then extend it in section

3.3.4 to nonlinear SVMs. The numerical results of section 3.4 include nonlinear SVMs

as well.

3.1.2 Separation Margin Maximization

In this section we consider finding a linear classifier where xi ∈ Rn for i = 1, . . . ,m.

We assume that some map has already been applied so that the input space is the

feature space: X := H := Rn whose associated inner product is 〈x1,x2〉 := xT1 x2.

If the training patterns are strictly separable, then there will be infinitely many

hyperplanes that can correctly classify the patterns; see Figure 3.2. To uniquely

define a separating hyperplane, we seek one that maximizes the separation margin.

The separation margin is defined to be the sum of the minimal distances from the

hyperplane to the + patterns (yi = 1) and to the − patterns (yi = −1).

How can we train the machine so that it finds the hyperplane that maximizes

the separation margin? Assuming that the patterns are separable and we already

know the hyperplane with maximal margin, there would exist at least one point

closest to the hyperplane in each class. We define the two hyperplanes parallel to the

separating hyperplane that contain these two points. Then the distance between the

parallel hyperplanes is the separation margin. The two parallel hyperplanes will be

62

(a) Available planes.

1
‖w‖

(b) The one with maximal margin.

Figure 3.2: The learning machine is trained to find a hyperplane with maximal sep-

aration margin. The hyperplane can classify data according to the predetermined

labels. Circles and squares denote positive and negative patterns, respectively.

referred to as the + and − class boundary plane, respectively.

Since the patterns are separable, there is no pattern in between the boundary

hyperplanes. So, for all i ∈ {1, . . . ,m},

〈w,xi〉 − γ ≥ yi, if yi = +1, (3.8)

〈w,xi〉 − γ ≤ yi, if yi = −1, (3.9)

or equivalently

yi(〈w,xi〉 − γ) ≥ 1, (3.10)

where w ∈ Rn and 〈w,x〉 := wTx. So the boundaries of the half spaces defined by

(3.8) and (3.9) are the + and − class boundary planes (or boundaries).

Since the distance between the boundary hyperplanes is 2
‖w‖ , the problem, which

is usually referred to as the hard-margin SVM, can now be modeled as an optimization

63

problem as follows:

min
w,γ

1

2
‖w‖2

2 (3.11)

s.t. Y(Xw − eγ) ≥ e, (3.12)

where X := [x1, . . . ,xm]T ∈ Rm×n, e := [1, . . . , 1]T , and Y := diag(y) denotes the

diagonal matrix version of y. Typically m� n, and that is the case we consider here.

If the data are not separable, however, there is no solution to the optimization

problem. To cope with this situation, we add a misclassification penalty in the ob-

jective function (3.11). By introducing nonegative relaxation variables ξ in order to

tolerate misclassification, we get the relaxed constraints,

yi(〈w,xi〉 − γ) ≥ 1− ξi. (3.13)

After imposing an l1 penalty to the objective function (3.11), we get the primal

formulation of a soft margin SVM proposed by Cortes and Vapnik [CV95]:

min
w,γ,ξ

1

2
‖w‖2

2 + τTξ (3.14)

s.t. Y(Xw − eγ) + ξ ≥ e, (3.15)

ξ ≥ 0, (3.16)

where τ is an m dimensional vector of penalty parameters for the trade-off between

the separation margin maximization and the empirical error minimization. This soft

margin formulation is often preferred to the hard-margin formulation even when the

64

training patterns are strictly classifiable [Bur98]. Notice this formulation is a convex

quadratic program with m nontrivial constraints (3.15), m trivial (bound) constraints

(3.16), m trivial (relaxation) variables ξ, and n nontrivial variables w, where m� n.

While w is associated with the complicated coefficient matrix YX, ξ is associated with

the simple (identity) coefficient matrix in both sets of constraints, is not involved in

the quadratic term, and, thus, can be trivially eliminated in the step equations which

will be explained later. The variables ξ make up for violations in the constraints

(3.15).

3.1.3 Dual Formulation and Support Vector

Every optimization problem has an associated dual. The dual of (3.14)-(3.16) is

max
α
− 1

2
αTYKYα + eTα (3.17)

s.t. yTα = 0, (3.18)

0 ≤ α ≤ τ, (3.19)

where the Gram matrix K ∈ Rm×m is a symmetric and positive semidefinite matrix

whose components are defined over the training patterns as

kij := 〈xi,xj〉, (3.20)

and where αi is the dual variable associated with the ith constraint in (3.15).

If α∗ solves this dual problem, then the solution to the primal problem (3.14)-

65

(3.16) is

w∗ := XTYα∗ =
∑
i∈S

α∗i yixi, for S := {i : 0 < α∗i }, (3.21)

γ∗ :=
1

|Son|
∑
i∈S

(〈w∗,xi〉 − yi) , for Son := {i : 0 < α∗i < τi}, (3.22)

ξ∗i := max {1− yi(〈w∗,xi〉 − γ∗), 0} , for i = 1, . . . ,m, (3.23)

where α∗i and τi are the ith component of α∗ and τ, and |Son| denotes the size of Son.

The equation (3.22) for γ∗ is obtained from (3.15). Since yi(〈w∗i ,xi〉 − γ∗) = 1 for all

i ∈ Son, we know that γ∗ = 〈w∗,xi〉 − yi. We average for all i ∈ Son as in (3.22) to

have better accuracy [Bur98]. In view of (3.21), the Lagrange multiplier αi can be

interpreted as the weight of the ith pattern in defining the classifier.

Support vectors (SVs) are the patterns which contribute to defining the classifier.

Therefore, they are associated with nonzero weight α∗i . Depending on whether the

corresponding weight is equal to its upper bound τi, the support vectors are divided

into two groups [SBS99]. The on-boundary support vectors have weight strictly be-

tween the lower bound 0 and the upper bound τi, and, geometrically, lie on their class

boundary plane (i.e., both (3.15) and (3.16) are active). The off-boundary support

vectors have the maximal allowable weight α∗i = τi and lie on the wrong side of the

class boundary plane (i.e., (3.15) is active but (3.16) is inactive).2 We summarize this

2In the literature [SBS99], the terms in-bound and bound support vectors are used to denote on-

boudary and off-boundary support vectors, respectively. The former terms are based on the bound

constraints (3.19), whereas the latter terms are based on geometry.

66

Pattern type α∗i s∗i ξ∗i

Off-boundary support vector τi 0 (0,∞)

On-boundary support vector (0, τi) 0 0

Nonsupport vector 0 (0,∞) 0

Table 3.1: Classification of support vectors and nonsupport vectors. Here s∗i

is the slack variable associated with the ith constraints in (3.15) and defined as

s∗i := yi(〈w∗,xi〉 − γ∗) + ξ∗i − 1.

classification in Table 3.1.

3.2 Related Work

Inspired by the fact that only a small portion of patterns contribute to forming

the classifier, Osuna et al. [OFG97] proposed a decomposition algorithm for the

dual SVM formulation. It first reduces the problem size by guessing the “active” or

changeable (Lagrangian or dual) variables, a.k.a. the working set, and “nonactive”

or fixed variables, where each variable is associated with a classification condition

(or a primal constraint) for a pattern. The reduced problem is solved by an off-

the-shelf quadratic programming (QP) solver (an active set method or an interior-

point method). Then the fixed variables which violate the classification condition are

67

promoted to the working set by the “build-up” process. To keep the reduced problem

size constant, the same number of variables in the working set are demoted to the

non-working set by the “build-down” process. The rearrangement and the solution of

the reduced QP are repeated until no violating variable is found in the non-working

set. They showed the objective function value increases strictly at every iteration.

Joachims [Joa99] further improved the algorithm of Osuna et al. by shrinking the

problem size if possible and keeping a cache for kernel evaluations (or a submatrix

of the Hessian). Platt [Pla99] proposed a sequential minimal optimization (SMO)

algorithm which maintains a very small working set allowing only two variables to

change. The subproblem of SMO can thus be solved analytically. See the four essays

in [Hea98] for further discussion.

Recently primal-dual interior-point method (PDIPM) based algorithms were pro-

posed. Ferris and Munson [FM02] considered training linear SVMs with l1 and l2

hinge loss. They efficiently applied the Sherman-Morrison-Woodbury (SMW) formula

to solving the normal equations, the most expensive operation in an interior-point

method (IPM). Gertz and Griffin [GG05] proposed a parallel direct solver and a pre-

conditioned conjugate gradient solver tailored for the normal equations in training a

SVM with l1 hinge loss.

Our focus is again on the normal equations. Like Osuna et al., we reduce com-

putational cost by filtering out unnecessary constraints or patterns in assembling the

matrix for the normal equations. However, in contrast to the decomposition based

68

algorithms, we solve only one optimization problem, using constraint selection only

to determine the search direction at each iteration of an IPM used for the training.

3.3 Adaptive Constraint Reduction

In this section we present a standard primal-dual interior-point method for training

our SVM and then develop a way to improve the efficiency of the method by adaptively

ignoring constraints.

3.3.1 Primal-Dual Interior-Point Method

Since the soft margin formulation for the SVM (3.14)-(3.16) is a convex quadratic

program, a solution to the formulation’s KKT conditions is a global optimum and,

thus, defines the separating hyperplane with maximal margin. Therefore, training

the machine is equivalent to finding a solution to the KKT conditions (to the primal

(3.14)-(3.16) and the dual (3.17)-(3.19)) [GG05]:

w −XTYα = 0, (3.24)

yTα = 0, (3.25)

τ− α− u = 0, (3.26)

YXw − γy + ξ− e− s = 0, (3.27)

Sα = 0, (3.28)

69

Uξ = 0, (3.29)

s,u,α,ξ ≥ 0, (3.30)

where S := diag(s), s is a slack variable vector for the inequality constraints (3.15),

U = diag(u), and u is a slack for the upper bound constraints (3.19) or a vector of

multipliers for the non-negativity constraints (3.16). Conditions (3.24)-(3.26) relate

the gradient of the objective function to the constraints that are active at an optimal

solution. The fourth condition is the primal feasibility condition. Conditions (3.28)

and (3.29) enforce complementary slackness.

In order to find a solution, a Newton-like method can be applied to the KKT

conditions with perturbations to the complementarity conditions (3.28) and (3.29).

For the variant of the Mehrotra’s Predictor Corrector (MPC) algorithm discussed

in [Wri97] and [GG05], the search direction is obtained by solving the system of

equations

∆w −XTY∆α = −(w −XTYα) ≡ −rw, (3.31)

yT∆α = −yTα ≡ −rα, (3.32)

−∆α−∆u = −(τ− α− u) ≡ −ru, (3.33)

YX∆w − y∆γ + ∆ξ−∆s = −(YXw − γy + ξ− e− s) ≡ −rs, (3.34)

S∆α + diag(α)∆s = −rsv, (3.35)

diag(ξ)∆u + U∆ξ = −rξu. (3.36)

70

First, an affine-scaling (predictor) direction (∆waff,∆γaff,∆ξaff,∆saff,∆αaff,∆uaff)

is computed, by setting

rsv := Sα, (3.37)

rξu := Uξ. (3.38)

Then the combined affine-scaling and corrector step is obtained by setting

rsv := Sα− σµe + ∆Saff∆αaff, (3.39)

rξu := diag(ξ)u− σµe + ∆Uaff∆ξaff, (3.40)

where

µ :=
sTα + ξTu

2m
(3.41)

is the complementarity measure; σ is the centering parameter; ∆Saff := diag(∆saff),

and ∆Uaff := diag(∆uaff).

These equations can be reduced to the normal equations(
I + XTYΩ−1YX− ȳȳT

yTΩ−1y

)
∆w = −r̄w − 1

yTΩ−1y
r̄αȳ, (3.42)

where

Ω := diag(α)−1S + U−1diag(ξ), (3.43)

and ȳ = XTYΩ−1y = XTΩ−1e. Then, we obtain ∆γ, ∆α, ∆ξ, ∆u, and ∆s by

solving

∆γ =
1

yTΩ−1y

(−r̄α + ȳT∆w
)
, (3.44)

71

∆α = −Ω−1(rΩ + YX∆w − y∆γ), (3.45)

∆ξ = −U−1diag(ξ)(r̄u −∆α), (3.46)

∆u = −diag(ξ)−1(rξu + U∆ξ), (3.47)

∆s = −diag(α)−1(rsv + S∆α), (3.48)

where r̄u := ru + diag(ξ)−1rξu, rΩ := rs + diag(α)−1rsv − U−1diag(ξ)r̄u, r̄w :=

rw + XTYΩ−1rΩ, and r̄α := rα − yTΩ−1rΩ. See [GG05] for detailed derivation.

In designing decomposition methods, it was common to use the dual formulation

(3.17)-(3.19). This was done by discarding w, thus removing (3.24) and replacing

(3.27) with YKYα− γy + ξ− e− s = 0. Fine and Sheinberg [FS02] and Ferris and

Munson [FM02] seem to have followed the tradition. They derived normal equations

involving inversion of an m × m matrix. They avoided the inversion through the

SMW formula, reducing computational complexity from O(m3) to O(mn2). Fine and

Sheinberg used low rank Cholesky factorization with symmetric pivoting to approx-

imate the Gram matrix. Ferris and Munson applied the IPM approach to various

SVM formulations [FM02].

In contrast, Gertz and Griffin [GG05] derived the normal equations (3.42) by

preserving w. Their approach does not involve the SMW formula, and thus, does

not suffer from numerical instability caused by it. Woodsend and Gondzio [WG07]

derived normal equations for SVMs with l1 and l2 hinge loss, and SVM regression.

They considered solving dual formulations in which w is preserved. Their approach

72

with l1 hinge loss also results in the same KKT system and step equations as those of

Gertz and Griffin. However, they applied a different sequence of block eliminations,

resulting in different normal equations. Chapelle discussed relations between the

primal and dual based approaches [Cha07]. He showed both approaches have the

same computational complexity due to the SMW formula. Nevertheless, he argued

that the primal based approach is superior because it directly attempts to maximize

the separation margin.

Forming and solving the normal equations (3.42) is the most time consuming task

in a step of the predictor-corrector algorithm, so we now focus on how to speed this

process.

3.3.2 Constraint Reduction

In Chapter 2 we developed an algorithm for solving convex quadratic programming

problems by replacing the matrix in the normal equations by an approximation to it.

In this section we see how this idea can be applied to the SVM problem by using the

matrix formed by setting small entries ω−1
i of Ω−1 to zero.

Since yi = ±1 and both Y and Ω are diagonal, we know that YΩ−1Y = Ω and

yTΩ−1y = eTΩe. Now consider the matrix of the normal equations (3.42),

M := I + XTYΩ−1YX− ȳȳT

yTΩ−1y

= I +
m∑
i=1

ω−1
i xix

T
i −

(
∑m

i=1 ω
−1
i xi)(

∑m
i=1 ω

−1
i xi)

T∑m
i=1 ω

−1
i

,

(3.49)

73

and the matrix

M(Q) := I + XQ
TYQ2Ω−1

Q2YQ2XQ −
ȳ(Q)ȳ

T
(Q)

yQTΩ−1
Q2yQ

(3.50)

= I +
∑
i∈Q

ω−1
i xix

T
i −

(
∑

i∈Q ω
−1
i xi)(

∑
i∈Q ω

−1
i xi)

T∑
i∈Q ω

−1
i

, (3.51)

where ȳ(Q) := XQ
TYQ2Ω−1

Q2yQ and Q ⊆ M . We use the parenthesized subscript (Q)

to denote that a vector or a matrix is a function of Q. We use YQ2 to denote a

submatrix of any m ×m matrix Y with both rows and columns indexed by Q and,

similarly, XQ for that of any matrix X with rows indexed by Q. The same notation

also applies to any m dimensional column vector.

If Q = {1, . . . ,m}, then M(Q) = M. If Q ⊂ {1, . . . ,m}, then M(Q) is an approx-

imation, accurate if the neglected terms are small relative to those included. Hence,

the approximated matrix reduces the computational cost for the matrix assembly,

which is the most expensive task, from O(mn2) to O(|Q|n2), where |Q| denotes the

size of Q and is expected to be significantly less than m.

How do we obtain a good approximation? We see that patterns associated with

larger ω−1
i make a larger contribution to the matrix. Let’s see which patterns these

are. The quantity

ω−1
i =

αiui
siαi + ξiui

becomes very large if both si and ξi are close to zero because ui and αi sum to τi and

do not converge to zero due to the complementarity conditions. From (3.14)-(3.16)

74

we see that, in the optimal solution, only one of si and ξi should be nonzero. If either

one is nonzero, in view of the complementary slackness (3.28)-(3.29), either αi or ui

is zero, and thus ω−1
i is zero in the optimal solution. Therefore, as seen in Table 3.1,

the important terms in the summation in (3.49) are associated with the on-boundary

support vectors. Identifying on-boundary support vectors is not possible until we find

the maximal margin classifier and its class boundaries. At each iteration, however, we

have intermediate values of ωi’s. So we find prospective on-boundary support vectors

by choosing the patterns with small ωi.

As the intermediate classifier approaches the maximal margin classifier, it becomes

clearer which patterns are more likely to be on-boundary support vectors. This

enables us to adaptively reduce the index set size used in the summation of (3.49).

To measure how close the intermediate classifier is to the optimal one, we can use the

complementarity measure which converges to zero. We set the size q of our index set

to be a value between two numbers qL and qU :

q := max (qL,min (dρme, qU)) , (3.52)

where we define

ρ := µ
1
β

to synchronize decrease of the index set size with that of the optimality measure.

Here β > 0 is a parameter for controlling rate of decrease as µ converges to zero

very fast. At the first iteration we randomly choose qU indices because we have no

75

information about the classifier. Fast clustering algorithms may improve the initial

selection [BC04].

As described in [GG05], in typical primal-dual interior-point methods, a growing

ω−1
i diverges to infinity at an O(µ−1) rate and a vanishing ω−1

i converges to zero at

an O(µ) rate. Therefore we can separate the two different types of ω−1
i using

√
µ.

Having determined q, we now choose patterns. Based on our examination of

ω−1
i , there are several reasonable choices. We define Q(z, q), the set of all subsets of

M := {1, . . . ,m} that contain the indexes of the q smallest components of z:

Q(z, q) := {Q |Q ⊆M, |Q| = q and zi ≤ zj ∀i ∈ Q, j /∈ Q}.

Then we have the following choices of patterns:

• Q(YXw−γy+ξ−e, q): this is a set of sets having indices for q patterns xi whose

“one-sided” distance to the boundary plane is smallest. When primal feasibility

holds, this measures the slacks of the primal constraints (3.15). This choice

is most intuitive because support vectors contribute to defining the classifier,

which is the underlying idea of most decomposition based algorithms. For this

rule, we define

qL := |{i : αi/si ≥ θ
√
µ or si ≤ √µ}|,

where θ is a prescribed parameter.

76

• Q(Ωe, q): this is a set of sets with indices of the q smallest ωi. This choice

reflects that the expression (3.49) for the matrix M is dominated by the terms

with large ω−1. Inspired by [GG05], we define the lower bound on the index set

size qL by counting the number of large ω−1
i :

qL := |{i : ω−1
i ≥ θ

√
µ}|, (3.53)

where θ is a prescribed parameter. The parameter qL will eventually converge

to the number of diverging ω−1
i , or equivalently, the number of on-boundary

support vectors.

Any of these choices, however, may have an imbalance between the number of

patterns chosen from the + and − classes. Not considering the class labels, we might

unknowingly choose no pattern from one class, where on-boundary support vectors

are typically found in both classes. To avoid this unfavorable situation, we might

want to use a balanced choice of patterns, specifying the number q+ and q− chosen

from each class as

q+ := max

(
q+
L ,min

(⌈
min (dρme, qU)

2

⌉
,m+

))
, (3.54)

q− := max

(
q−L ,min

(⌈
min (dρme, qU)

2

⌉
,m−

))
, (3.55)

where m+ and m− are the number of + and − patterns, respectively. Then we adjust

either q+ or q− so that q+ + q− = q. The lower bounds, q+
L and q−L , are determined

77

similarly to (3.53) for each class as

q+
L := |{i : ω−1

i ≥ θ
√
µ and yi = 1}|,

q−L := |{i : ω−1
i ≥ θ

√
µ and yi = −1}|.

(3.56)

Now we define the set of the q+/q− smallest sets for each class:

Q+(z, q+) := {Q |Q ⊆M, |Q| = q+ and zi ≤ zj ∀i ∈ Q, j /∈ Q and di = dj = +1},

Q−(z, q−) := {Q |Q ⊆M, |Q| = q− and zi ≤ zj ∀i ∈ Q, j /∈ Q and di = dj = −1},

The set Q can be any of the union of any two elements, one in Q+(x, q+) and the

other in Q−(x, q−):

Q ∈ Q(z, q+, q−) := {Q |Q = Q+ ∪Q−, Q+ ∈ Q+(z, q+) and Q− ∈ Q−(z, q−)}.

Having determined Q, we construct the reduced normal equation for one step of

our interior-point method by assembling the matrix for the normal equation using a

subset of the patterns:

M(Q)∆w = −r̄w − 1

yTΩ−1y
r̄αȳ. (3.57)

Then we solve (3.44)-(3.48) for ∆γ, ∆α, ∆ξ, ∆u, and ∆s. Before we proceed, we

have to ensure that the reduced matrix M(Q) is positive definite.

Proposition 3.1. Assume that ωi > 0 for all i ∈ Q. The matrix M(Q) is symmetric

and positive definite.

Proof. See Proposition 1 in [GG05].

78

The following proposition explains the asymptotic convergence of the reduced

matrix to the unreduced one.

Proposition 3.2. For q defined in (3.52) and for all Q ∈ Q(Ωe, q), there exists a

positive constant CM satisfying ‖M−M(Q)‖2 ≤ CM
√
µ.

Proof. See Proposition 5 in [GG05].

We state in Algorithm 2 a variant of Mehrotra-type predictor-corrector algorithm

with a constraint-reduction mechanism. This algorithm makes use of the reduced

normal equations (3.57).

Algorithm 2 Constraint reduced SVM (CRSVM)

Parameters: β > 0, τ > 0, θ > 0, integer qU satisfying qU ≤ m, Bal ∈ {false, true},

CC ∈ {‘one-sided dist’, ‘omega’}.

Given a starting point (w, γ,ξ, s,α,u) with (ξ, s,α,u) > 0.

for k = 0,1,2,. . . do

Terminate if convergence is detected:

max {‖rw‖∞, |rα|, ‖ru‖∞, ‖rs‖∞}
max{‖A‖∞, ‖τ‖∞, 1} ≤ tolr, and

µ ≤ tolµ,

or iteration count is reached.

if Bal is true then

Determine q+ and q− to (3.54) and (3.55).

79

Pick Q from Q(YXw − γy − e + ξ, q+, q−) if CC is ‘one-sided dist’ or from

Q(Ωe, q+, q−) if CC is ‘omega’.

else

Determine q according to (3.52).

Pick Q from Q(YXw−γy−e+ξ, q) if CC is ‘one-sided dist’ or from Q(Ωe, q)

if CC is ‘omega’.

end if

Solve (3.57) and (3.44)-(3.48) for (∆waff,∆γaff,∆ξaff,∆saff,∆αaff,∆uaff) using

affine-scaling residuals from (3.37)-(3.38).

Determine predictor step length:

αaff := max
α∈[0,1]

{α : (ξ, s,α,u) + α(∆ξaff,∆saff,∆αaff,∆uaff) ≥ 0}. (3.58)

Set µaff := (s+αaff∆saff)T (α+αaff∆αaff)+(ξ+αaff∆ξaff)T (u+αaff∆uaff)
2m

.

Set σ := (µaff/µ)3.

Solve (3.57) and (3.44)-(3.48) for (∆w,∆γ,∆ξ,∆s,∆α,∆u) using combined

step residuals from (3.39)-(3.40).

Determine the step length for the combined step:

α := 0.99 max
α∈[0,1]

{α : (ξ, s,α,u) + α(∆ξ,∆s,∆α,∆u) ≥ 0}. (3.59)

80

Set

(w, γ,ξ, s,α,u) := (w, γ,ξ, s,α,u) + α(∆w,∆γ,∆ξ,∆s,∆α,∆u) (3.60)

end for

When the matrix X is sparse, the sum of the first two terms of M(Q) could result

in a sparse matrix. However, adding the third term makes the matrix dense. So we

obtain a sparse Cholesky factor for the sum of the first two terms with full pivoting.

Then, to solve the normal equations (3.57), we apply the SMW formula to reflect the

subtraction of the rank 1 matrix in M(Q). For the dense matrix, we fully assemble

M(Q) and obtain its dense Cholesky factor.

Winternitz et al. presented convergence results for a constraint-reduction algo-

rithm of a MPC variant for LP [WNTO07]. Extending the MPC variant and its

convergence to CQP and SVM training is a topic for future research.

3.3.3 Differences from Algorithm 1

Algorithm 2 shows two significant differences from Algorithm 1 (if augmented to the

extended problem). First, Algorithm 2 is based on an MPC variant, while Algorithm

1 is based on a primal-dual affine-scaling algorithm. Second, Algorithm 2 concentrates

only on the approximation of the normal matrix, whereas Algorithm 1 generates a

primal-dual step that satisfies the reduced Newton system (2.74)-(2.76). Due to this,

the right hand side of the reduced normal equations (3.57) for the SVM training is

81

different from that (2.72) for the extended problem. While the right hand side of

(3.57) is not reduced at all, that of (2.72) is. In addition, noting that ξ in (3.14)-

(3.16) corresponds to y in (2.52)-(2.54), the equations (3.46) for obtaining ∆ξ is

not reduced, but (2.73) for ∆y is reduced. Developing an algorithm without these

differences and demonstration of its convergence is a future research topic.

3.3.4 Kernelization

As mentioned in section 3.1.1, due to the reproducing property of a symmetric and

positive definite kernel, k(xi,xj) for two input patterns xi,xj ∈ Rl can replace the

inner product between their images Φ(xi),Φ(xj) ∈ H. So, in defining the Gram

matrix (3.20), replacing 〈xi,xj〉 with k(xi,xj) is equivalent to mapping a point x to

an entity Φ(x) := k(·,x) living in the corresponding RKHS. This is called the “kernel

trick”. Using this trick and the dual formulation (3.17)-(3.19), we can train the SVM

to find a classifier in a feature space that might be infinite dimensional (see [Bur98]).

If a data set has an enormous number of training patterns, building K may not

be feasible. In addition, K is dense for many frequently employed kernels regardless

of whether the input matrix is sparse. For instance, forming K for 100, 000 training

patterns using the Gaussian kernel needs 80GB of storage space. Even worse is that

a single iteration of an IPM could require factoring a m ×m matrix, costing O(m3)

arithmetic operations.

This issue has been tackled in several papers [SS01, FS02, Cha07] through a low

82

rank approximation to the Gram matrix, K ≈ VG2VT , where G is an n×n symmetric

and positive definite matrix and V is an m×n matrix for m� n. These include the

truncated eigenvalue decomposition [GVL96, CSS06], low rank Cholesky factorization

with symmetric pivoting [FS02, BJ05], Nyström method [WS01, DM05], and kernel

PCA map [SS00, HZKM03]. The fast multipole method [YDD05, RYDG05] can be

employed to compute the truncated eigenvalue decomposition.

Let’s see how these results can be applied to the constraint reduction for training

nonlinear SVMs. Consider an approximate dual with K in (3.17)-(3.19) replaced by

VG2VT . What primal problem would induce the dual? We notice that using VG

instead of X in the primal (3.14)-(3.16) leads to the approximate dual. In other

words, before we initiate Algorithm 2 we compute an approximation to K from the

original input X. Then we pass VG as X to Algorithm 2.

If G is only readily available in its squared inverse form G−2, we could think of

letting w̄ := Gw, which leads to the following problem:

min
w̄,γ,ξ

1

2
w̄TG−2w̄ + τTξ (3.61)

s.t. Y(Xw̄ − eγ) + ξ ≥ e, (3.62)

ξ ≥ 0, (3.63)

where X := V. This formulation would be useful if obtaining G is not desirable.

For instance, G−2 = KB2 for some index set B when the empirical kernel map

[SMB+99, SS00] is employed. Applying the constraint reduction to this formulation

83

is straightforward. A simple change of M(Q) as

M(Q) := G−2 + XQ
TYQ2Ω−1

Q2YQ2XQ −
ȳ(Q)ȳ

T
(Q)

yQTΩ−1
Q2yQ

, (3.64)

and the substitution of w̄ for w, ∆w̄ for ∆w, and rw̄ := G−2w̄ −XTYα for rw are

all the required modifications.

3.4 Numerical Results

We implemented Algorithm 2 in Matlab. We tested Algorithm 2 using Matlab

version R2007a on a machine running Windows XP SP2 with an Intel Pentium IV

2.8GHz processor with 16 KB L1 cache, 1 MB L2 cache, 2×1 GB DDR2-400MHz

configured as dual channel, with Hyper Threading enabled.

Both tolr and tolµ were set to 10−8. The iteration limit was set to 200. We set

the parameters as β := 4 to control the rate of decrease of q, θ := 102 to determine

qL, and τi := 1 for i = 1, . . . ,m to penalize misclassification. We vary qU to see how

Algorithm 2 reacts to it. The initial starting point was set as in [GG05]:

w := 0, γ := 0,ξ := s := α := u := 2e.

We compared Algorithm 2 (CRSVM) to LIBSVM [CL01], and SVMlight [Joa99].

We set their termination tolerance parameters as their default value 10−3.

84

3.4.1 Linear SVM Examples

We tested our implementation on problems mushroom, isolet, waveform, and letter,

all taken from [GG05]. Except for the isolet problem, all inputs were mapped to

higher dimensional feature space via the mapping associated with the second order

polynomial kernel k(x, x̄) := (xT x̄ + 1)2 as in [GG05]. The mapping Φ is defined as

Φ : Rl → Rn

[x1, . . . , xl]
T 7→ (3.65)

√
2

[
1√
2
x2

1, . . . ,
1√
2
x2
l , x1x2, . . . , x1xl, x2x3, . . . , x2xl, . . . , xl−1xl, x1, . . . , xl,

1√
2

]T
,

where n :=
(
l+2
2

)
=
(
l
2

)
+ 2l + 1. The ith row of X is set to Φ(xi)

T , where xTi is the

ith training input. We also normalized the resulting matrix using

xij :=
xij

maxkl |xkl| , (3.66)

as directed in [GG05]. Properties of the problems are summarized in Table 3.2.

In our experiment, we compared our algorithms to the standard MPC algorithm,

which uses all the constraints for every iteration. We experimented with several

variants of our algorithms:

• Nonadaptive balanced constraint reduction, which uses fixed q+ and q− through-

out the iteration.

• Adaptive non-balanced constraint reduction, which determines q as in (3.52).

85

Name ISD FSD Patterns (+/−) SVs (+/−) On-SVs (+/−)

mushroom 22 276 8124 (4208/ 3916) 2285 (1146/1139) 52 (31 / 21)

isolet 617 617 7797 (300 / 7497) 186 (74 / 112) 186 (74 / 112)

waveform 40 861 5000 (1692/ 3308) 1271 (633 / 638) 228 (110/ 118)

letter letter 153 20000 (789 /19211) 543 (266 / 277) 40 (10 / 30)

Table 3.2: Properties of the problems. ISD: Input space dimension. FSD: Feature

space dimension using the map (3.65). SVs: support vectors. On-SVs: On-boundary

support vectors.

• Adaptive balanced constraint reduction, which determines q+ and q− as in (3.54)

and (3.55).

In all three reduction algorithms we selected patterns based on two choices, one-sided

distance (YXw − γy + ξ − e) and Ωe, as explained in Section 3.3.2, resulting in 6

possible variations.

In comparing the reduction algorithm with the standard MPC, we used the two

pattern choices with the adaptive balanced reduction. In comparing adaptive reduc-

tion with nonadaptive reduction, we used the balanced scheme with the constraint

choice based on Ωe. In comparing the two constraint choices, we used the adaptive

balanced reduction.

In Figure 3.3a and 3.3b, the time and iteration count of the algorithm with the

86

two constraint choices and the balanced selection scheme are compared to those of

the standard MPC. We set qU := m, Bal := true, and CC := ‘one-sided dist’ or

CC := ‘omega’. Bar graphs are grouped for each problem. Figure 3.3b shows that

the number of iterations for a problem is not much different for the algorithm variants.

As a result, the reduction algorithms with any constraint choice are faster than the

standard MPC algorithm, as seen in Figure 3.3a. In solving hard problems (mushroom

and waveform for instance, which have very many support vectors), it is observed that

the constraint choice based on Ωe shows better performance than the other. This is

because the number of on-boundary support vectors is nevertheless small in the hard

cases as summarized in Table 3.2. Since both relative residual and gap are required

to meet the termination criteria, they are within reasonable ranges in all cases, so we

do not present them.

In Figure 3.4, the adaptive balanced reduction algorithm is compared with the

adaptive nonbalanced algorithm over a range of qU . In solving well balanced problems,

the two algorithms show little difference as seen in Figure 3.4a. On the other hand, for

problems such as isolet having a lot more patterns in one class than the other, balanced

selection shows more stable results, especially for small values of qU , as seen in Figure

3.4b. For training the machine for a data set with more than two classification labels,

a one-class-versus-the-rest approach is frequently employed [SS01, chap. 7], so this

problem characteristic is quite common.

87

mushroom isolet waveform letter
0

5

10

15

20

25

30

35

40
Time

T
im

e
(s

ec
)

Problem

Standard MPC (No reduction)
One−sided distance
 Ωe

(a) Time

mushroom isolet waveform letter
0

5

10

15

20

25

30

35

40

45
Iterations

of

 it
er

at
io

ns

Problem

Standard MPC (No reduction)
One−sided distance
 Ωe

(b) Iteration count

Figure 3.3: Time and iteration count of adaptive reduction with balanced selection

are compared to non-reduction algorithm. qU is set to m (100%) for all cases.

In Figure 3.5, the adaptive balanced reduction algorithm is compared with the

nonadaptive balanced algorithm over a range of qU . Observe that there is little

difference in iteration counts among all of these algorithms. Similarly to nonadaptive

constraint reduction for linear programming demonstrated in [TAW06], the number

of iterations of adaptive and nonadaptive algorithms is almost invariant over a range

of qU , the upper bound of the index set size. The time taken to solve a problem

decreases very slowly or remains almost invariant with the adaptive algorithm as qU

decreases over a range, whereas the nonadaptive algorithm is more expensive for large

values of qU .

In Figure 3.6, the two constraint choices based on one-sided distance and Ωe are

88

0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

T
im

e
(s

ec
)

q
U

/m

mushroom/Ωe

0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

q
U

/m

Ite
ra

tio
ns

mushroom/Ωe

Adaptive balanced
Adaptive nonbalanced

(a) Mushroom. In solving a well balanced prob-

lem, the two algorithms show little difference.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

T
im

e
(s

ec
)

q
U

/m

isolet/Ωe

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

q
U

/m

Ite
ra

tio
ns

isolet/Ωe

Adaptive balanced
Adaptive nonbalanced

(b) Isolet. In solving a poorly balanced prob-

lem, the balanced algorithm shows better sta-

bility.

Figure 3.4: The adaptive balanced and adaptive nonbalanced algorithms are com-

pared, with the constraint choice based on Ωe.

89

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

T
im

e
(s

ec
)

q
U

/m

letter/Ωe

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

q
U

/m
Ite

ra
tio

ns

letter/Ωe

Adaptive balanced
Nonadaptive balanced

Figure 3.5: Letter. The adaptive and nonadaptive balanced algorithms are compared,

with the constraint choice based on Ωe.

applied to the adaptive balanced reduction algorithm and are compared over a range

of qU . In solving easy problems having almost all support vectors on the boundary

hyperplanes, it is hard to say which constraint choice is better than the other. For

hard problems, since the Ωe based constraint choice is capable of filtering out more

patterns at later iterations, it shows better performance.

In Figure 3.7, the number of patterns used and the complementarity measurement

µ are traced for every iteration. It is interesting that the graphs of µ for the algorithm

with high qU values are quite close to each other. From these graphs we see that the

search direction of the adaptive reduction algorithm is not as good as that of the

non-reduction algorithm at early iterations. At later iterations, however, the search

direction of the adaptive reduction algorithm is as good as or sometimes better than

90

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100
T

im
e

(s
ec

)

q
U
/m

isolet/adaptive balanced

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

q
U
/m

ite
ra

tio
ns

isolet/adaptive balanced

One−sided distance
Ωe

(a) Isolet, an easy problem. The two constraint

choices are applied to the adaptive balanced re-

duction.

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

T
im

e
(s

ec
)

q
U
/m

waveform/adaptive balanced

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

q
U
/m

ite
ra

tio
ns

waveform/adaptive balanced

One−sided distance
Ωe

(b) Waveform, a hard problem. The two con-

straint choices are applied to the adaptive bal-

anced reduction.

Figure 3.6: The two constraint choices are applied to the adaptive balanced reduction.

that of the standard MPC algorithm.

We compared our algorithm (CRSVM) to LIBSVM [CL01] and SVMlight [Joa99]

on the adult problem of the UCI repository [AN07]. We obtained a formatted problem

from the LIBSVM web page [CL01]. The problem consists of 9 sparse training sets

with different numbers of sample patterns. Each training set has a corresponding

testing set. For this comparison, we used the linear SVM. In other words, we gave

the algorithms X in a sparse format with no modification except the normalization

(3.66). We used adaptive balanced constraint reduction, choosing patterns based on

Ωe. Figure 3.8 shows the timing results of algorithms on the data sets. Observe

that the timing curve of our algorithm is close to linear, while those of LIBSVM and

91

0 10 20 30 40 50
0

0.5

1

1.5

2
x 10

4

Iterations

of

 p
at

te
rn

s
us

ed

letter/adaptive balanced/Ωe

q
U

 = 100%

q
U

 = 75%

q
U

 = 50%

q
U

 = 25%

0 10 20 30 40 50
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Iterations

µ

letter/adaptive balanced/Ωe

No reduction
q

U
 = 100%

q
U

 = 75%

q
U

 = 50%

q
U

 = 25%

Figure 3.7: Letter. Adaptive balanced reduction based on Ωe constraint choice.

SVMlight are between linear and cubic [Pla99].

3.4.2 Nonlinear SVM Examples

We compared our algorithm to LIBSVM and SVMlight. We used adaptive balanced

constraint reduction, choosing patterns based on Ωe. We tested the algorithms on

the adult problem of the UCI repository. For this comparison, we used a Gaussian

kernel

k(x, x̄) := exp
(−‖x− x̄‖/(2σ2)

)
(3.67)

with σ :=
√
l/2, where l := 123 is the dimension of the input patterns.3

92

0 1 2 3 4
x 10

4

0

50

100

150

200

250

300

of training patterns

T
im

e
(s

ec
)

CRSVM
LIBSVM

SVMlight

(a) Timing results of algorithms

0 1 2 3 4
x 10

4

0

1

2

3

4

of training patterns

T
im

e
(s

ec
)

CRSVM

(b) Timing complexity is almost linear with re-

spect to the number of training patterns.

Figure 3.8: Timing results of algorithms for linear SVM training on adult data sets.

To approximate the Gram matrix K, we used Matlab’s eigs routine. It uses

the Arnoldi iteration [LS96] to generate n eigenvalues Λ := diag(λ1, . . . , λn) and

eigenvectors V := [v1, . . . ,vn]. Each iteration of eigs involves a matrix-vector product

Kp. Naive computation of Kp costs O(m2), but by using the improved fast Gauss

transform (IFGT) [YDD05, RYDG05] we approximate Kp and reduce the cost to

O(m). We use EIGS to denote this approximation method. IFGT is written in C

and its Matlab interface is provided by its authors.

IFGT belongs to the fast multipole methods [GR87]. Given m source points

x1, . . . ,xm in ` dimensions, a target point v in ` dimensions and m coefficients

p := [p1, . . . , pm]T , IFGT uses clustering and truncated multivariate Taylor series

3This is the default setting of Gaussian kernel in LIBSVM.

93

Size LIBSVM SVMLight CRSVM(+EIGS) CRSVM(+CHOL)

1605 83.57 83.57 83.62 83.60

2265 83.94 83.94 83.93 83.95

3185 83.85 83.84 83.85 83.84

4781 83.97 83.97 83.97 83.97

6414 84.15 84.15 84.17 84.19

11220 84.17 84.18 84.21 84.21

16100 84.58 84.58 84.58 84.45

22696 85.01 - 84.82 84.98

32561 84.82 - 84.92 84.85

Table 3.3: Accuracy shown in percentage of correctly classified testing patterns.

to evaluate Ĝ(v), an approximation to the discrete Gauss transform

G(v) :=
m∑
j=1

pjk(v,xj),

where k(·, ·) is the Gaussian kernel (3.67). If the source points are the input patterns

used for the computation of the Gram matrix K, then Ĝ(xi) approximates the ith

component of Kp. Thus [Ĝ(x1), . . . , Ĝ(xm)]T is an approximation of Kp.

In addition to EIGS, we implemented in Matlab the low rank Cholesky factor-

ization with symmetric pivoting [FS02]. It returns a rank n Cholesky factor L and a

pivoting matrix P such that PTLLTP ≈ K. We refer to this approximation method

94

as CHOL.

Figure 3.9 shows results of the Gram matrix approximation on the adult data

set.4 Figure 3.9a and 3.9b show relative error of the low rank approximation to K

measured by ‖K − VΛVT‖∞/‖K‖∞ and ‖K − PTLLTP‖∞/‖K‖∞. As illustrated

in Figure 3.9a, with lower rank EIGS approximates K better than CHOL. However,

since EIGS uses IFGT to approximate Kp, the tolerance to IFGT should be tight-

ened as the rank is increased. In our experiments we set the IFGT tolerance to

min(0.5, 4/
√

rank). As depicted in Figure 3.9b, when the rank is fixed, errors in the

Gram matrix approximation by CHOL are more affected by the number of training

patterns. Figure 3.9c and 3.9d show time to approximate K. In Figure 3.9a and 3.9c,

EIGS and CHOL were tested on the set of 6414 training patterns. In Figure 3.9b and

3.9d, we requested a rank 64 approximation from EIGS and a rank 300 approximation

from CHOL.

Figure 3.10a compares CRSVM with the other methods. Notice both LIBSVM

and SVMlight are implemented in the C language. We expect we can improve CRSVM

and CHOL by implementing them in C. We requested 64 eigenvalues and eigenvectors

from EIGS to form a rank 64 approximation to K. We set CHOL to form a rank 300

approximation. Figure 3.10b shows separated timing results for the approximation

and training. Table 3.3 shows accuracy of the classifier each algorithm generated.

Accuracy denotes the percentage of correctly classified testing patterns. The classifiers

4IFGT supports dense input only.

95

were tested on testing data sets associated with the training set. Notice with a proper

approximation, it is possible to get a classifier performing as well as the one trained

with the exact matrix.

3.4.3 Visualization of the Iterations

To illustrate how our algorithm achieves efficiency, we made a two dimensional toy

problem by generating 2000 uniformly distributed random points in [−1, 1]× [−1, 1].

Then we set an intentional ellipsoidal separation gap and deleted patterns inside the

gap, resulting in 1727 remaining patterns. Figure 3.11 shows snapshots of several

iterations of the adaptive balanced reduction algorithm (with qU := m) in solving

the problem. Patterns are chosen based on Ωe. To find an ellipsoidal classifier,

the mapping (3.6) associated with the second order homogeneous polynomial kernel

is used to map the problem’s 2-dimensional input space to a 3-dimensional feature

space. The dashed ellipsoids are the boundary curves (corresponding to boundary

planes in the feature space). As the iteration count increases, the number of selected

patterns decreases and only the on-boundary support vectors are chosen at the end,

leading to significant time savings.

96

3.5 Conclusion

We presented an algorithm for training SVMs using a constraint reduced IPM with

a direct solver for the normal equations. Significant time saving is reported for all

problems. If we substituted an iterative solver, constraint reduction would reduce the

cost of matrix-vector product.

The Ωe constraint choice proved to be more effective than the one-sided distance,

especially for hard problems which have many off-boundary support vectors. Other

constraint choice heuristics can be used provided that they can include constraints

which seem to be most active at the current point. Blending different constraint

choices is also allowable. We also report that balanced selection is effective in training

SVM for nonbalanced data sets.

We compared our algorithm to other popular algorithms including LIBSVM and

SVMlight. We showed potential of our algorithms on training linear SVMs. In training

nonlinear SVMs, substantial time is consumed in calculating an approximation to the

Gram matrix.

Snapshots of the 2D toy problem were presented to visualize how the adaptive

reduction algorithm works. The algorithm acts as an adaptive filter for excluding

unnecessary patterns.

Parallelization is a challenging topic for the reduction algorithm. Computation

of the matrix arising in the normal equation requires the chosen constraints to be

97

well distributed among multiple processors. This is problematic especially for later

iterations when the chosen constraints might be concentrated on a small number of

processors. For efficiency in essential support vector identification, we might want

to distribute the patterns so that every processor has patterns at a wide range of

distances from the separating hyperplane.

98

0 100 200 300 400 500 600
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

Rank

R
el

at
iv

e
er

ro
r

EIGS
CHOL

(a) Relative errors in the Gram matrix approx-

imation. Tested on the training set with 6414

training patterns.

0 1 2 3 4

x 10
4

10
−4

10
−3

10
−2

of training patterns

R
el

at
iv

e
er

ro
r

EIGS
CHOL

(b) Relative errors in the Gram matrix approx-

imation. We requested rank 64 from EIGS and

rank 300 from CHOL.

0 100 200 300 400 500 600
0

200

400

600

800

1000

1200

1400

Rank

T
im

e
(s

ec
)

EIGS
CHOL

(c) Time to approximate the Gram matrix.

Tested on the training set with 6414 training pat-

terns.

0 1 2 3 4

x 10
4

0

20

40

60

80

100

120

140

of training patterns

T
im

e
(s

ec
)

EIGS
CHOL

(d) Time to approximate the Gram matrix. We

requested rank 64 from EIGS and rank 300 from

CHOL.

Figure 3.9: Gram matrix approximation on adult data sets

99

0 1 2 3 4

x 10
4

0

50

100

150

200

250

of training patterns

T
im

e
(s

ec
)

CRSVM(+EIGS)
CRSVM(+CHOL)
LIBSVM

SVMlight

(a) Timing results of algorithms on adult data

sets. CRSVM result includes Gram matrix ap-

proximation.

0 1 2 3 4

x 10
4

0

20

40

60

80

100

of training patterns

T
im

e
(s

ec
)

Approximation (EIGS)
Training (CRSVM)

(b) Time to approximate the Gram matrix

and train SVMs with a rank 64 approximation

through EIGS.

Figure 3.10: Nonlinear SVM training on adult data sets

100

Iteration: 0, # of obs: 1727

(a) 0/1727

Iteration: 2, # of obs: 1727

(b) 2/1727

Iteration: 4, # of obs: 1092

(c) 4/1092

Iteration: 6, # of obs: 769

(d) 6/769

Iteration: 8, # of obs: 452

(e) 8/452

Iteration: 10, # of obs: 290

(f) 10/290

Iteration: 12, # of obs: 138

(g) 12/138

Iteration: 14, # of obs: 30

(h) 14/30

Figure 3.11: Snapshots of finding a classifier using the adaptive reduction algo-

rithm for a randomly generated toy problem in 2-dimensional input space with

patterns eliminated intentionally around a hand-generated ellipsoid centered at

the origin. The mapping associated with the second order homogeneous polyno-

mial kernel is used to find the surface. The numbers below each figure indicate

(iteration)/(number of patterns used).

101

Chapter 4

Conclusions and Future Directions

In solving convex quadratic programming (CQP) with many inequality constraints,

the primal-dual interior-point methods (PDIPMs) are frequently used due to their

good performance in practice. The most expensive part in these methods is com-

puting a search direction involving every constraint. Time for the computation is

proportional to the number of constraints and this becomes the main bottleneck as

the number of constraints increases.

In Chapter 2, we proposed a very effective mechanism for saving computational

time in finding a search direction, without increasing the total iteration count. The

mechanism is to assemble the matrix for the normal equations with a subset of the

constraints while adaptively reducing the number of constraints involved as the iter-

ate approaches the optimal solution. We first developed a primal-dual affine-scaling

(PDAS) interior-point method (IPM) for the inequality constrained standard CQP

form. We provided the convergence analysis for the method in Appendix B. We

102

discussed an extension to the standard form, to broaden applications of constraint

reduction. Then we demonstrated the potential of our algorithm in solving large

problems including data fitting.

Recently Winternitz et al. [WNTO07] proposed a convergence-proven constraint

reduced Mehrotra’s predictor corrector (MPC) variant for linear programming (LP).

They showed significant performance improvement over a standard MPC algorithm.

Extending the constraint reduced MPC variant to the CQP is also possible.

However, it is still in question whether the constraint reduction algorithms [TAW06,

WNTO07] have a guaranteed polynomial complexity bound. This issue is very critical

in convincing practitioners. Devising constraint-reduced algorithms with polynomial

complexity for LP and CQP is a topic for future research.

In Chapter 3, we applied constraint reduction to SVM training using an MPC

variant [GG05]. We proposed several heuristics to save computational time. Adaptive

balanced selection of training patterns was shown to be effective in training the SVM

on an unbalanced data set. In practice, since the one-class-versus-the-other approach

is frequently used for training the SVM on a data set with more than two classification

labels, unbalanced data sets are quite common. The multicategory support vector

machine is another approach to train the SVM on a data set with multiple class

labels [LLW04]. The approach uses a multi-class objective function and constraints,

thus generating multiple classifiers by solving a single CQP problem. Extending the

constraint reduction to this SVM formula may be investigated in the future.

103

We visualized how the adaptive constraint reduction algorithm works in training

the SVM. The proposed algorithm is realized as adaptive pattern filtering in the

training process. Starting with many training patterns, the algorithm omits more

and more unnecessary patterns in the normal matrix assembly as the intermediate

classifier approaches the optimal one.

As we discussed in section 3.3.3, the constraint reduction algorithm for training

the SVM is not exactly the same as that for solving the extended problem in section

2.4. Developing an algorithm common to all problem formulations and demonstrating

its performance are future research topics.

We discussed generalization of the constraint reduction algorithm to the training

of the nonlinear SVMs through the Gram matrix approximation. As demonstrated

in section 3.4.2, the Gram matrix approximation needs much more time than the

training process. To speed the approximation process, we used the improved fast

Gaussian transform (IFGT) [YDD05, RYDG05], which belongs to the fast multipole

methods. With the IFGT, matrix-vector products involving the Gram matrix can be

approximated only for the Gaussian kernel. Fast multipole methods for other kernels

may be investigated.

In Chapter 2 and 3, we demonstrated effectiveness of the constraint reduction

algorithms when a direct solver is used for the normal equations. In using the direct

solver, we did not consider a multiprocessor environment. It is becoming a norm

that a CPU chip includes multiple processors. Another emerging multiprocessor is

104

the graphics processing unit (GPU), which is often regarded as a coprocessor help-

ing CPU with parallel processing. A single GPU has many more processing units

than a CPU. In [JO07b], we presented an IPM implementation which solves the

normal equations with the use of matrix multiplication and decomposition routines

working on a single GPU [JO07a]. Since the constraint reduction algorithms use ma-

trix computation routines in BLAS (Basic Linear Algebra Subprograms) [BDD+02]

and LAPACK (Linear Algebra PACKage) [ABD+90] to solve the normal equations,

extending the constraint reduction algorithms to the single chip multiprocessor envi-

ronment is rather straightforward.

However, developing an efficient constraint reduction algorithm can be challenging

in a CPU or GPU cluster environment, where CPUs or GPUs are distributed among

multiple machines connected through a network. Since the constraints are dynami-

cally chosen and communication among machines is expensive, load balancing can be

difficult. Thus, naive use of BLAS and LAPACK developed for a cluster system does

not lead to the most efficient constraint reduction algorithm. Dynamic distribution

of constraints should be considered in such environment.

The constraint reduction also reduces computational time required for matrix

vector products in solving the normal equations when an iterative solver such as

the preconditioned conjugate gradient method [Saa03, chap. 9] is used. To guar-

antee the success of an iterative solver, it is critical to use a good preconditioner.

Since the reduced normal matrix (2.39) changes every iteration, the preconditioner

105

should change accordingly. An adaptive updating strategy is considered for a stan-

dard (non-reduced) MPC variant for LP in [WO00]. Some effort may be dedicated

to incorporating an iterative method into the constraint reduction.

In conclusion, we provided convergence analysis of the constraint reduced PDAS

IPM for a standard CQP problem and its extension. We presented an adaptive scheme

which can significantly save computational time. Also we demonstrated the use of the

adaptive constraint reduction algorithm for solving large CQP problems and training

SVMs on large data sets.

106

Appendix A

Geometric Properties of Convex Quadratic Programming

This chapter explains geometric properties of the CQP to aid in understanding of the

convergence proof in Appendix B.

A.1 Definitions

Definition A.1. In Rn, the open ball B of radius r > 0 with center v is defined as

B(v, r) := {x : ‖x− v‖ < r}.

Definition A.2. In Rn, the closed ball B̄ of radius r > 0 with center v is defined as

B̄(v, r) := {x : ‖x− v‖ ≤ r}.

In R, the open ball and closed ball of radii r > 0 centered at x are the intervals

(x− r, x+ r) and [x− r, x+ r], respectively.

Definition A.3. For a set S ⊆ Rn, the closure of S, S̄, is the set of points x such

that the intersection of S and any open ball centered at x is nonempty.

107

Definition A.4. For a set S ⊆ Rn, the interior of S, int(S), is defined to be the set

of points x, for which there exists an open ball centered at x that is contained in S.

In Rn, the closure of an open ball of radius r centered at x is the closed ball of

radius r centered at x. Likewise, the interior of a closed ball of radius r centered at

x is the open ball of radius r centered at x.

Definition A.5. A set S ⊆ Rn is a linear subspace of Rn if and only if it satisfies

(i) For any two vectors v and u in S, their sum v + u is also in S.

(ii) For any vector v ∈ S and for any scalar α ∈ R, their product αv is also in S.

From the definition above, it follows that the set {0} containing only the origin is

a linear subspace of Rn.

Definition A.6. A set S is an affine set of Rn if and only if, for any two points

in S, any point in the (infinite) line passing through the points is contained in the

set. In other words, for any points x1,x2 ∈ S and for any scalar α ∈ R, the point

x := αx1 + (1− α)x2 is also in S.

From the definition above, it follows that a set S is an affine set if and only if

S−v = {x̄ : x̄ = x−v, x ∈ S} is a linear subspace for any vector v in S. In addition,

the set {x} containing only a single point x ∈ Rn is an affine set of Rn.

Definition A.7. For a set S ∈ Rn, the affine hull of S, aff S, is defined to be the

smallest affine set containing S.

108

The affine hull of a set containing only one point in Rn can be defined as the set

itself.

Definition A.8. For a set S, the relative interior of S, riS, is defined to be the

interior of S relative to aff S, the affine hull of S. In other words, for any point x in

riS, there exists some open ball B(x, r) whose intersection with the affine hull of S

is contained in S:

∀x ∈ riS, ∃r > 0 s.t. B(x, r) ∩ aff S ⊆ S.

The relative interior of a set containing only a single point x ∈ Rn is the set itself,

because the affine hull is the set itself which is contained in any open ball centered

at the point.

The constraints of (2.2) form a polyhedron in Rn. The set of all points in and on

the polyhedron is a convex set, and we will minimize convex functions on convex sets.

Definition A.9. A set X is convex if and only if, for any two points x1 and x2 in

X , any convex combination of the two points is also in X .

αx1 + (1− α)x2 ∈ X , ∀α ∈ [0, 1]. (A.1)

Definition A.10. A function f(x) defined on a convex domain set X is convex if

and only if, for any two points x1 and x2 in X and for any α ∈ [0, 1],

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2). (A.2)

109

A.2 Properties of Convex Functions

Convex functions have the following property.

Lemma A.1. The sum of convex functions is also convex.

Proof. Let g(x) and h(x) be convex functions, and let f(x) := g(x) + h(x). Now

check whether f(x) satisfies the conditions of Definition A.10.

f(αx1 + (1− α)x2) = g(αx1 + (1− α)x2) + h(αx1 + (1− α)x2)

≤ αg(x1) + (1− α)g(x2) + αh(x1) + (1− α)h(x2)

= αf(x1) + (1− α)f(x2).

Lemma A.2. The objective function f(x) of the CQP standard form (2.2) is convex

if and only if the Hessian matrix is positive semidefinite.

Proof. Let us check the definition of convexity by subtracting the left-hand side from

the right-hand side in (A.2):

αf(x1) + (1− α)f(x2)− f(αx1 + (1− α)x2)

= αxT1 Hx1 + (1− α)xT2 Hx2 + αcTx1 + (1− α)cTx2

− (αx1 + (1− α)x2)TH(αx1 + (1− α)x2)− cT (αx1 + (1− α)x2)

= α(1− α)(x1 − x2)TH(x1 − x2),

from which, since α(1 − α) ≥ 0, and x1 and x2 are arbitrary, it follows that the

Hessian is positive semidefinite if and only if the objective function is convex.

110

A.3 Geometric Properties of the Solution Set F∗P
Lemma A.3. The line segment connecting two arbitrary points x1 and x2 in F∗P is

parallel to the nullspace of H. In other words, H(x1 − x2) = 0.

Proof. Let x1 and x2 be two arbitrary points in F∗P . Since the objective function is

convex, we know that, ∀x̂ ∈ FP , ∀x∗ ∈ F∗P , ∀α ∈ (0, 1], and for v = x̂− x∗,

f(x∗ + αv) = f(αx̂ + (1− α)x∗)

≤ αf(x̂) + (1− α)f(x∗)

= αf(x∗ + v) + (1− α)f(x∗)

= αf(x∗ + v)− αf(x∗) + f(x∗).

Since α > 0 and f(x∗) ≤ f(x∗ + αv), it immediately follows that

0 ≤ f(x∗ + αv)− f(x∗)

α
≤ f(x∗ + v)− f(x∗). (A.3)

By taking the limit as α→ 0, we know, from (A.3), that

f(x∗) ≤ f(x∗) + vT∇f(x∗) ≤ f(x̂).

This implies that, since the objective function value is the same at any point in F∗P ,

for any two points x1, x2 ∈ F∗P , the directional derivatives from x1 toward x2 at x1

and from x2 toward x1 at x2 are 0, because

f(x1) ≤ f(x1) + (x2 − x1)T∇f(x1) ≤ f(x2) = f(x1),

111

f(x2) ≤ f(x2) + (x1 − x2)T∇f(x2) ≤ f(x1) = f(x2).

So we get

(x1 − x2)T (Hx1 + c) = 0, (A.4)

(x1 − x2)T (Hx2 + c) = 0. (A.5)

By subtracting (A.5) from (A.4), we get

(x1 − x2)TH(x1 − x2) = 0.

Since H is positive semidefinite, it immediately follows that

Hx1 = Hx2.

This implies that the claim holds.

Lemma A.4. F∗P is convex.

Proof. Let x1 and x2 be two arbitrary points in F∗P . For their convex combination

x̄ := αx1 + (1− α)x2, with α ∈ [0, 1], the objective function value is

f(x̄) =
1

2
x̄THx̄ + cT x̄

=
1

2
x̄T (αHx1 + (1− α)Hx2) + cT x̄. (A.6)

Since Hx1 = Hx2 by Lemma A.3, (A.6) can be reduced to

f(x̄) =
1

2
(αx1 + (1− α)x2)THx1 + αcTx1 + (1− α)cTx2 (A.7)

112

= α

(
1

2
xT1 Hx1 + cTx1

)
+ (1− α)

(
1

2
xT1 Hx2 + cTx2

)
(A.8)

= α

(
1

2
xT1 Hx1 + cTx1

)
+ (1− α)

(
1

2
xT2 Hx2 + cTx2

)
(A.9)

= αf(x1) + (1− α)f(x2) = f(x1) = f(x2). (A.10)

Since FP is convex, x̄ is also in FP . Therefore x̄ is also in F∗P , which implies that F∗P
is convex.

Proposition A.5. The relative interior of a nonempty convex set C ⊆ Rn is nonempty

and convex.

Proof. See [Roc72, Chapter 6].

Lemma A.6. The line segment connecting two arbitrary points in F∗P is orthogonal

to c.

Proof. Let x1 and x2 be arbitrary two points in F∗P . Since Hx1 = Hx2 by Lemma

A.3, from the difference of the objective function values at x1 and x2, we can obtain

the following:

0 = f(x1)− f(x2) =
1

2
xT1 Hx1 + cTx1 − 1

2
xT2 Hx2 − cTx2

= cT (x1 − x2).

This implies that the claim holds.

Lemma A.3 and A.6 imply that, assuming F∗P is nonempty, F∗P is a singleton if

the intersection of the nullspace of H and cT is a trivial set {0}, or equivalently if

the columns of [H, c] span Rn.

113

Lemma A.7. All the points in the relative interior of F∗P are associated with the

same active constraints.

Proof. If F∗P is a singleton, then the claim is immediately true. So, in what follows,

we assume F∗P is not a singleton. Since F∗P is not a singleton, there exist at least two

different solutions x1 and x2. Let x̂ be a convex combination of x1 and x2 such that

x̂ = αx1 + (1− α)x2, for some α ∈ (0, 1). By Lemma A.4, x̂ is also in F∗P . For all i

in A(x̂) and for all α ∈ (0, 1), it follows that

bi = aTi x̂ = αaTi x1 + (1− α)aTi x2.

Since aTi x1 ≥ bi and aTi x2 ≥ bi, it then follows that aTi x1 = bi and aTi x2 = bi. Thus

A(x̂) ⊆ A(x1) ∩ A(x2).

Now for all i ∈ A(x1) ∩ A(x2), it follows that

aTi x̂ = αaTi x1 + (1− α)aTi x2 = bi,

which yields

A(x1) ∩ A(x2) ⊆ A(x̂).

Thus A(x̂) = A(x1) ∩ A(x2).

So, for any two points x̄ and x̂ in the relative interior of F∗P , we can pick two

points x1 and x2 from F∗P so that x̄ and x̂ are in the interior of the line segment

connecting x1 and x2. Since A(x̄) = A(x1) ∩ A(x2) and A(x̂) = A(x1) ∩ A(x2), it

follows that A(x̄) = A(x̂).

114

Lemma A.8. Assuming that F∗P is nonempty, F∗P is a singleton (i.e, the solution x∗

is unique) if and only if, for all x∗ ∈ F∗P , the intersection of the nullspace of H and

the nullspace of AA(x∗) is the trivial set {0}.

Proof. First, suppose F∗P is not a singleton. Since, in view of Lemma A.4 and Propo-

sition A.5, the relative interior of F∗P is nonempty and convex, we can arbitrarily pick

two different points x1 and x2 from the relative interior. In view of Lemma A.3, it

follows that

x1 − x2 ∈ N (H). (A.11)

On the other hand, in view of Lemma A.7, it follows that A(x1) = A(x2) = A∗,

from which it follows that

AA∗(x1 − x2) = bA∗ − bA∗ = 0. (A.12)

Thus, from (A.11) and (A.12), it follows that x1 − x2 ∈ N (H) ∩ N (AA∗). So the

intersection of the two nullspaces is nontrivial.

Now let us show the converse. Let s∗ and λ∗ be the slack and multiplier variables

associated with the unique solution x∗ such that the KKT conditions (2.9)-(2.12) are

satisfied at (x∗, s∗,λ∗). Suppose that the intersection of the two nullspaces is not {0};

then there exists a nonzero vector v such that,

Hv = 0,

AA(x∗)v = 0.

115

Thus, for any scalar α,

H(x∗ + αv) = Hx∗, (A.13)

AA(x∗)(x
∗ + αv) = AA(x∗)x

∗ = bA(x∗). (A.14)

Equation (A.13) implies that H(x∗ + αv) −ATλ∗ + c = 0 and (A.14) implies that

A(x∗) ⊆ A(x̄(α)) where x̄(α) = x∗ + αv. Since AA(x∗)cx
∗ > bA(x∗)c , there exists a

sufficiently small α > 0 so that

AA(x∗)cx̄(α) > bA(x∗)c ,

which, together with (A.14), implies x̄ ∈ FP and A(x∗) = A(x̄) for x̄ = x̄(α). Now

let s̄ = Ax̄ − b. Since A(x∗) = A(x̄), s̄i = s∗i = 0 for i ∈ A(x∗), and λ∗i = 0 for

i /∈ A(x∗), it follows that

s̄iλ
∗
i = 0, ∀i ∈ A(x∗),

s̄iλ
∗
i = 0, ∀i ∈ A(x∗)c.

Thus, the KKT conditions are also satisfied at (x̄, s̄,λ∗), so x̄ ∈ F∗P , and F∗P is not a

singleton.

116

v1

v2
v3

(a) The feasible set is unbounded along v1, v2

and v3, i.e., Av1 ≥ 0, Av2 ≥ 0 and Av3 ≥ 0.

v

(b) The objective function has a recession di-

rection v along which the feasible set is un-

bounded. Thus, for any x̄ ∈ FP , the feasible

level set FL
P (x̄) is unbounded along v and no

solution exists.

(c) Contours of the objective function are ellip-

soidal if N (H) = {0}. So, for any x̄ ∈ FP , the

feasible level set FL
P (x̄) is bounded regardless of

the boundedness of the primal feasible set FP .

v

(d) The feasible set is unbounded along v and

v ∈ N (H) ∩ N (cT). As a result, FL
P (x̄) is un-

bounded along v.

Figure A.1: Geometries of the feasible set and contours of the objective function in a

2 dimensional space. Examples of unboundedness of the primal feasible set, the level

set {x : f(x) ≤ f(x̄)} of the objective function, and their intersection FLP (x̄).

Now we focus on conditions required for the boundedness of the solution set. We

117

first define the feasible level set as

FLP (x̄) := {x : f(x) ≤ f(x̄) and x ∈ FP}.

The feasible level set is the intersection of the level set {x : f(x) ≤ f(x̄)} and

the primal feasible set FP . Assume that FoP is not empty and let x̄ be some strictly

feasible point. If there exists a nonzero vector v such that Av ≥ 0, then the feasible

set FP is unbounded along v (see Figure A.1a). The feasible level set FLP (x̄) is

unbounded if there exists v ∈ N (H) ∩ N (cT) such that Av ≥ 0. If the objective

function has a recession direction v which coincidentally satisfies Av ≥ 0, no solution

exists (see Figure A.1b).

Let us investigate the level set {x : f(x) ≤ f(x̄)} in detail. Geometrically, if

N (H) = {0}, then the level set {x : f(x) ≤ f(x̄)} is ellipsoidal and thus FLP (x̄)

is always bounded (see Figure A.1c). If N (H) 6= {0} and N (H) ∩ N (cT) = {0},

the objective function has a recession direction v ∈ N (H) which is obtained by

expressing −c = v + w where w is orthogonal to N (H). Then f(x + αv) < f(x)

for any positive scalar α (see Figure A.1b). If N (H) ∩ N (cT) 6= {0}, then the level

set {x : f(x) ≤ f(x̄)} is unbounded in the direction of ∀v ∈ N (H) ∩ N (cT) (see

Figure A.1d). In the last case, the objective function may have a recession direction

if N (H) * N (cT). And the recession direction is obtained in the same way as in the

second case.

Lemma A.9. Assume that FP is nonempty. For any x̄ ∈ FP , the feasible level set

118

FLP (x̄) is unbounded if and only if there exists a nonzero vector v such that Av ≥ 0,

Hv = 0, and cTv ≤ 0.

Proof. Let us show that the condition is sufficient. Since Av ≥ 0, it follows, for any

nonnegative scalar α, that

A(x̄ + αv) ≥ b, (A.15)

which implies that x̄ + αv is feasible. In addition, since v is in the nullspace of H, it

follows, for any nonnegative scalar α, that

f(x̄ + αv) =
1

2
(x̄ + αv)TH(x̄ + αv) + cT (x̄ + αv)

=
1

2
x̄THx̄ + cT x̄ + αcTv

= f(x̄) + αcTv

≤ f(x̄).

(A.16)

Therefore, by (A.15) and (A.16), FLP (x̄) is unbounded.

Now let us show that the condition is necessary. Suppose that for all nonzero

v ∈ Rn, Av � 0, Hv 6= 0, or cTv > 0. We consider what happens if we take a step

from a feasible point x̄ along a direction v. Let L(x̄) := {x : f(x) ≤ f(x̄)}. The

feasible level set FLP (x̄) can be expressed as FLP (x̄) = L(x̄)∩FP . This proof will show

that either L(x̄) or FP is bounded along v.

First, for any v such that Av � 0, there exists positive α so that A(x̄ +αv) � b.

This implies that FP is bounded along v.

119

Second, for any nonzero v such that Hv 6= 0, since H is positive semidefinite, it

follows that

df(x̄ + αv)

dα
= x̄THv + αvTHv + cTv, (A.17)

and that

d2f(x̄ + αv)

dα2
= vTHv > 0. (A.18)

So (A.17) and (A.18) imply that the objective function is strictly convex and goes

to infinity as |α| → ∞ (see Figure A.2a). Therefore, there exists α > 0 such that

f(x̄ +αv) > f(x̄) and f(x̄−αv) > f(x̄). This implies that L(x̄) is bounded along v

and −v.

Third, for any nonzero v such that cTv > 0, Hv = 0, we get

f(x̄ + αv) = f(x̄) + αcTv > f(x̄),

for α > 0 (see Figure A.2b). This implies that the objective function is linear and

increases along v and, thus, L(x̄) is bounded along v.

Lemma A.10. Assume that FP and F∗P are nonempty. The feasible level set FLP (x̄)

is bounded for any x̄ ∈ FP if and only if F∗P is bounded.

Proof. First consider the sufficiency. Suppose that there exists a point x̄ ∈ FP , for

which the feasible level set FLP (x̄) is unbounded. Then, it follows from Lemma A.9

that there exists a nonzero vector v such that Av ≥ 0, Hv = 0 and cTv = 0. For an

120

f (x̄ + αv)

α = 0 αα∗

(a) For a nonzero v ∈ Rn, if Hv 6= 0, the objec-

tive function is a strictly convex quadratic func-

tion along v.

f (x̄ + αv)

α = 0 α

(b) For a nonzero v ∈ Rn, if Hv = 0 and cT v >

0, the objective function is linear and increases

along v.

Figure A.2

optimal solution x∗ ∈ F∗P , since f(x∗+αv) = f(x∗) and A(x∗+ v) = Ax∗, it follows

that x∗ + αv ∈ F∗P . Thus the primal solution set F∗P is unbounded.

Now consider the necessity. If FLP (x̄) is bounded for any x̄ ∈ FP , then it is

bounded for x̄ ∈ F∗P .

121

Appendix B

Convergence Proof for Constraint Reduced Primal Feasible

Affine-Scaling Primal-Dual Interior-Point Method for CQP

The following proofs for global convergence and the local rate of convergence are

adapted from the proofs provided in [TZ94] and [TAW06]. Many parts are identical

to [TAW06] except for the action of the Hessian matrix.

B.1 Global Convergence Proof

Throughout this section, we use a superscript ∗ to denote a limit point of a sequence,

not necessarily the solution to (2.2). Dependencies among the lemmas, corollary,

propositions, and theorem for the global convergence proof are presented in Figure

B.1.

Lemma B.1. (Corresponds to Lemma 1 of [TAW06]) For s,λ ≥ 0, J(A, s,λ) is

nonsingular if and only if

122

Lemma 2.3
(2.1)

��

Lemma B.1

��

Lemma B.3
(2.2)BC

GF

��

��
Proposition B.2

(2.1, 2.2)
Proposition B.4

(2.1, 2.2)

��

BC
GF

��

ED

BC
oo

Corollary B.5
(2.1, 2.2, 2.3)BC

GF
��

BC
oo

BC
oo

Lemma B.6
(2.1, 2.4)

��sshhhhhhhhhhhhhhhhhhhhhhhhhhh

Lemma B.8
(2.1-2.4)

��

Lemma B.7
(2.1-2.4)

BC
oo

BC
oo

��

Lemma B.9
(2.1-2.4)

��xxpppppppppp
GF

@A BC OO

Lemma B.11
(2.1-2.4)

��<<<<<<<<<<<<<<<<<<<<<

��

Lemma B.10
(2.1-2.4)

oo

��
CD?????????

�����������

&&MMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM

Lemma B.12
(2.1-2.4)

xxqqqqqqqqqqq

��
Lemma B.13

(2.1-2.4)
// Lemma B.14

(2.1-2.4)
// Theorem 2.4

(2.1-2.4)

Figure B.1: Diagram for global convergence proof. Numbers in parentheses denote

assumptions which each lemma, proposition, corollary, and theorem requires. Be-

cause Proposition B.2 guarantees the Algorithm 1 to generate an infinite sequence, it

supports all other Lemmas, Propositions, Corollaries and Theorems. Since drawing

all the outgoing arrows from Proposition B.2 may complicate this figure, we omit

them.

123

(i) ∀i ∈M : si + λi > 0,

(ii) Rows of A{i:si=0} are linearly independent,

(iii) A{i:λi 6=0} and H share a trivial nullspace {0}, i.e.,

{x : A{i:λi 6=0}x = 0} ∩ {x : Hx = 0} = {0}. (B.1)

Proof. Suppose the three conditions hold. Let (uT ,vT ,wT)T be in the nullspace of

J(A, s,λ). Then it holds that

Hu−ATw = 0, (B.2)

Au− v = 0, (B.3)

Λv + Sw = 0. (B.4)

Multiplying uT to (B.2) yields

uTHu− uTATw = 0, (B.5)

which, by (B.3) and the positive semidefiniteness of H, yields

vTw = uTHu ≥ 0. (B.6)

By (B.4), for all i with λi > 0,

vi = − si
λi
wi. (B.7)

124

By (i), for all i with λi = 0, we have si > 0. By (B.4), this leads to siwi = 0 so

wi = 0, for i : λi = 0. (B.8)

Thus, from (B.6), (B.7), (B.8), and non-negativity of s and λ, it follows that

0 ≤ uTHu = vTw =
∑
i:λi 6=0

viwi +
∑
i:λi=0

viwi =
∑
i:λi 6=0

viwi = −
∑
i:λi 6=0

si
λi
w2
i ≤ 0, (B.9)

so the all expressions in (B.9) vanish. In particular, again using the positive semidef-

initeness of H,

Hu = 0, (B.10)

and, using again (B.6) and nonnegativity of s and λ,

vi = −siwi
λi

= 0 for all i such that λi > 0. (B.11)

Together with (B.2), (B.10) leads to

ATw = 0, (B.12)

and, by (B.11), it follows that

Λv = 0, (B.13)

from which it immediately follows, by (B.4), that

Sw = 0. (B.14)

125

Now (B.14) yields

wi = 0 for all i such that si 6= 0, (B.15)

which, together with (B.12), yields

ATw =
∑
{i:si 6=0}

wiai +
∑
{i:si=0}

wiai =
∑
{i:si=0}

wiai = 0. (B.16)

Since the rows of A{i:si=0} are assumed to be linearly independent, (B.15) and (B.16)

yield w = 0. Now (B.3) and (B.13) yield

ΛAu = 0. (B.17)

It then naturally follows that

Λ{i:λi 6=0}A{i:λi 6=0}u = 0, (B.18)

A{i:λi 6=0}u = 0. (B.19)

Since the intersection of the nullspace of A{i:λi 6=0} and the nullspace of H is {0},

u = 0 by (B.10) and (B.19). Now it’s a direct consequence of (B.3) that v = 0. So

the zero vector is the only solution to (B.2)-(B.4), which implies that J(A, s,λ) is

nonsingular.

Now let us prove necessity. Inspecting the last m rows of J(A, s,λ) shows that

the first condition is necessary in order for J(A, s,λ) to be nonsingular. Inspecting

the last m columns shows that the second condition is necessary. Suppose the last

condition doesn’t hold. Then there must exist a nonzero vector u which satisfies

126

both A{i:λi 6=0}u = 0 and Hu = 0. Now let w := 0 and v := Au, then v{i:λi 6=0} =

A{i:λi 6=0}u = 0 by the construction of u, from which it immediately follows that

Λv = 0. Therefore (B.2)-(B.4) are satisfied with this configuration. Since u 6= 0,

this implies that J(A, s,λ) is singular and, thus, a contradiction.

For the following propositions, lemmas, corollaries, and theorems, unless explicitly

stated, it is assumed that Assumptions 2.1, 2.2, 2.3, and 2.4 hold, although some of

the earlier results do not require all of them.

Proposition B.2. (Corresponds to Proposition 3 of [TAW06]) The points generated

by the iteration of Algorithm 1 satisfy:

(i) ∆xk 6= 0 iff Hxk + c 6= 0,

(ii)αk > 0,

(iii) sk+1 = Axk+1 − b > 0 and xk+1 ∈ FoP ,

(iv) λk+1 > 0.

Proof. The first claim is a direct consequence of Lemma 2.3 and (2.39). The second

and the third claims are true due to (2.34), (2.48), (2.49), and (2.50). The fourth is

true due to (2.51); specifically, ‖∆xk‖2 +‖λ̃k−‖2 > 0, λ > 0, λmax > 0, and λ̃ki is taken

only when 0 < min{‖∆xk‖2 + ‖λ̃k−‖2, λ} ≤ λ̃ki ≤ λmax.

127

From the initial point which is strictly primal feasible with λ positive, the algo-

rithm generates the next point which is also strictly primal feasible with λ positive.

Hence the iteration can be repeated. In other words, the sequence generated by Al-

gorithm 1 is well defined and valid so that the interior-point method can generate

infinite sequence of points unless a point xk such that Hxk +c = 0 is found, in which

case xk is the solution of the unconstrained problem and also in FoP . In the sequel it

is assumed that Algorithm 1 generates an infinite sequence of primal-dual points.

Lemma B.3. For any x ∈ FoP , q ≥ n, Q ∈ Q(Ax − b, q) and for every λ̃ and ∆x

generated by Algorithm 1, λ̃
T

QAQ∆x ≤ 0, where the equality holds only when λ̃
T

Q = 0

and AQ∆x = 0.

Proof. From the definition of λ̃ and (2.34), we know that

λ̃
T

QAQ∆x = λ̃
T

Q∆sQ

From (2.35), the above equation continues to

λ̃
T

Q∆sQ = −λ̃
T

QSQ2Λ−1
Q2(λQ + ∆λQ) = −λ̃

T

QSQ2Λ−1
Q2λ̃Q ≤ 0.

since SQ2 and ΛQ2 are diagonal and positive definite. Since ΛQ2 and SQ2 are non-

singular, the equality holds only if λ̃Q = 0. In view of (2.35), ∆sQ = 0 if and

only if λ̃Q = 0. Therefore, from (2.34), we conclude that AQ∆x = 0 if and only if

λ̃Q = 0.

As a first step in the proof of global convergence, we show that the objective

function decreases monotonically on the sequence of points generated by Algorithm 1.

128

Proposition B.4. (Corresponds to Lemma 4 of [TAW06]) If ∆x 6= 0, then

(i) f(x + α∆x) < f(x) for all α ∈ (0, 2),

(ii) d
dα
f(x + α∆x) < 0 for all 0 ≤ α < 1,

(iii) f(x + α∆x) < f(x + α∆x) for all α and α such that 0 ≤ α < α ≤ 1.

Proof. Since f is quadratic, f(x + α∆x) can be exactly expressed by the 2nd order

Taylor expansion

f(x + α∆x) = f(x) + α∇f(x)T∆x +
1

2
α2∆xTH∆x

= f(x) + α∆xT (Hx + c) +
1

2
α2∆xTH∆x

= f(x) + α∆xT
(
−H∆x + AT

Qλ̃Q

)
+

1

2
α2∆xTH∆x (by (2.36))

= f(x)− α(1− 1

2
α)∆xTH∆x + α∆xTAT

Qλ̃Q. (B.20)

By Lemma B.3, ∆xTAT
Qλ̃Q is nonpositive and, since H is positive semidefinite, so is

−∆xTH∆x. By Assumption 2.1 and Lemma B.3, they cannot be zero at the same

time unless ∆x = 0. Since α and 1 − α
2

are both positive when α ∈ (0, 2), the first

claim holds.

Now let us consider the second claim. From (B.20) we derive

d

dα
f(x + α∆x) = −(1− α)∆xTH∆x + λ̃

T

QAQ∆x. (B.21)

Since −(1− α) < 0 for all 0 ≤ α < 1, the claim does hold.

Let us consider the third claim. Since d
dα
f(x+α∆x) < 0 for 0 ≤ α < 1, f(x+α∆x)

strictly decreases with respect to α ∈ [0, 1]. Then the claim immediately follows.

129

Corollary B.5. (Corresponds to Corollary of Proposition 3.1 [TZ94]) The sequence

{xk} is bounded.

Proof. Since, in view of Assumption 2.3, F∗P is bounded, the level set {x ∈ FP :

f(x) < f(x0)} is bounded (Lemma A.10). As f(xk) decreases monotonically by

Proposition B.4, the claim holds.

A point x is said to be stationary for (2.2) if it satisfies the KKT conditions

without nonnegativity constraints on λ, i.e.,

Hx + c−ATλ = 0, (B.22)

Ax− b− s = 0, (B.23)

Sλ = 0, (B.24)

s ≥ 0. (B.25)

A stationary point x is a solution to (2.2) if all the components of its associated

multiplier vector λ are nonnegative.

We proceed by showing that the sequence generated by Algorithm 1 approaches

the set of stationary points. In the following lemma, it will be shown that, if the

sequence converges to some point, the limit point is stationary and the sequence of

modified Newton steps {∆xk} converges to 0.

Lemma B.6. (Corresponds to Lemma 3.5 of [WNTO07]) Suppose that {xk} → x∗

on an infinite index set K and qk ≥ n. Then there exists k′ such that A(x∗) ⊆ Qk

for all Qk ∈ Q(Axk − b, qk) for all k ∈ K and k > k′.

130

Proof. Under Assumption 2.4, it follows that |A(x∗)| ≤ n. Since qk ≥ n and {xk} →

x∗ on K, the claim does hold by the definition of Q(Axk − b, qk) (2.41).

In Step 2 of Algorithm 1, by replacing ∆s in (2.35) with (2.34), we can rewrite

(2.35) as

λ̃
k

= −(Sk)−1ΛkA∆xk, (B.26)

or equivalently

λ̃ki = −λ
k
i

ski
aTi ∆xk. (B.27)

We use this modified form in the following lemmas.

Lemma B.7. (Corresponds to Lemma 6 of [TAW06]) Suppose {xk} converges to

some point x∗ on an infinite index set K. If {∆xk} converges to zero on K, then x∗

is stationary and {λ̃k} converges on K to λ∗, which is the unique multiplier associated

with x∗.

Proof. Suppose {∆xk} → 0 as k →∞, k ∈ K. Since {λk} is bounded by construction

of Algorithm 1 and {ski } is bounded away from 0 for i /∈ A(x∗), it follows from (B.27)

that

∀i ∈ A(x∗)c, {λ̃ki } → 0, as k →∞, k ∈ K. (B.28)

We have shown the convergence of λkA(x∗)c on K so far.

131

Now we need to show the convergence of λA(x∗). At iteration k, the system of

equations (2.36) can be written as

Hxk + c−AT
Qk λ̃

k

Qk = −H∆xk. (B.29)

By Lemma B.6, there exists k′ such that A(x∗) ⊆ Qk for k > k′ and k ∈ K. Then,

since {xk} converges to x∗ on K and {∆xk} converges to zero on K (by assumption),

the equations (B.28) and (B.29) yield

Hxk + c−AT
A(x∗)λ̃

k

A(x∗) → 0 as k →∞, k ∈ K. (B.30)

Since the rows of AA(x∗) are linearly independent by Assumption 2.4, in view of

(B.28), there exists a unique λ∗ to which {λ̃k} converges on K. By taking limits in

(B.26), (B.28), and (B.30) and by using boundedness of {λk} due to construction of

Algorithm 1, it follows that

Hx∗ + c−ATλ∗ = 0, (B.31)

S∗λ∗ = 0. (B.32)

This implies that x∗ is stationary with the unique associated multiplier vector λ∗.

Lemma B.8. (Corresponds to Lemma 7 of [TAW06]) Let K be an infinite index set

such that

inf{‖∆xk−1‖2 + ‖λ̃k−1

− ‖2 : k ∈ K} > 0.

Then {∆xk} → 0 as k →∞, k ∈ K.

132

Proof. By contradiction. Suppose not. First, by (2.51) and by the condition that

inf{‖∆xk−1‖2 + ‖λ̃k−1

− ‖2 : k ∈ K} is greater than 0 (by the assumption on K), λki

(i ∈M) is bounded away from zero on K. Since {xk} (by Corollary B.5) and {λk} (by

construction) are bounded, we may conclude that there is a convergent subsequence

{xk} and {λk}. So there exists some infinite index set K ′ ⊆ K, a point (x∗,λ∗), and

an index set Q∗ such that

inf
k∈K′
‖∆xk‖ > 0,

{xk} → x∗ as k →∞, k ∈ K ′,

{λk} → λ∗ > 0 as k →∞, k ∈ K ′,
(B.33)

and

Qk = Q∗, ∀k ∈ K ′.

By Assumptions 2.1 and 2.4 and the fact that λ∗ > 0, Lemma B.1 tells us that

J(AQ∗ , s
∗
Q∗ ,λ

∗
Q∗) is nonsingular. It then follows from (2.36)-(2.38) and continuity of

J(AQ∗ , sQ∗ ,λQ∗) with respect to sQ∗ and λQ∗ that, for some ∆x∗ 6= 0 and λ̃
∗
,

{∆xk} → ∆x∗, as k →∞, k ∈ K ′, (B.34)

{λ̃kQ∗} → λ̃
∗
Q∗ , as k →∞, k ∈ K ′. (B.35)

Define s∗ := Ax∗ − b. Since sk = Axk − b and {xk} → x∗ on K ′, we know that

{sk} → s∗ on K ′ and s∗ ≥ 0 by construction of Algorithm 1. In addition, since

Q∗ = Qk ∈ Q(Axk − b, qk) for all k ∈ K ′ with qk ≥ n, it follows from Lemma B.6

that A(x∗) ⊆ Q∗. Therefore ski is bounded away from zero for k ∈ K ′, i /∈ Q∗.

133

Therefore, since {∆xk} → ∆x∗ as k →∞ and since ski is bounded away from zero

for i /∈ Q∗ on K ′, we know from (B.27) that

∀i /∈ Q∗, {λ̃ki } → λ̃∗i as k →∞, k ∈ K ′. (B.36)

It then immediately follows from (B.35) and (B.36) that

{λ̃k} → λ̃
∗

as k →∞, k ∈ K ′, (B.37)

implying {λ̃k} is bounded on K ′.

Up to this point we have shown that {∆xk} → ∆x∗ and {λ̃k} → λ̃
∗

as k →∞ on

K ′. With these facts, we will show that f(xk)→∞ as k →∞ on K ′, contradicting

Corollary B.5. For this we will first show that αk is bounded below on K ′. Indeed,

using (B.27), we can restate (2.47) as

ᾱk =

∞ if λ̃ ≤ 0,

mini

{
− ski

∆ski
=

λki
λ̃ki

∣∣∣ s.t. λ̃i > 0, i ∈M
}

otherwise.

(B.38)

Since {λ̃k} is bounded, and each {λki } is bounded away from zero for k ∈ K ′, it

follows that ᾱk is bounded away from zero on K ′ and, since αk ≥ ηᾱk by (2.48), so is

αk. That is, there exists α > 0 such that αk > α ∀k ∈ K ′.

We now combine the lower bound on α with the monotonicity of the objective

function we showed in Proposition B.4. From the second and third claim of Proposi-

tion B.4 (and the expansion of f(xk+α∆xk) similar to (B.20)) it immediately follows,

134

since αk > α > 0 and αk ≤ 1 on K ′, that

f(xk + αk∆xk) < f(xk + α∆xk)

= f(xk)− α(1− 1

2
α)∆xkTH∆xk + αλ̃

kT

QkAQk∆xk.

(B.39)

Our focus from now is showing that α(1 − 1
2
α)∆xkTH∆xk − αλ̃

kT

QkAQk∆xk is

bounded below on K ′, which immediately implies that f(xk)→ −∞ on K ′, since by

Proposition B.4 {f(xk)} is monotonically decreasing. Taking limits in (2.37)-(2.38)

on K ′ yields

S∗Q∗2λ̃
∗
Q∗ = −Λ∗Q∗2AQ∗∆x∗ as k →∞, k ∈ K ′. (B.40)

So, since λ∗ > 0 by (B.33) and s∗ ≥ 0, we know that S∗Q2λ̃
∗
Q∗ ≥ 0 and AQ∗∆x∗ ≤ 0.

So, for i ∈ Q∗, it follows that aTi ∆x∗ < 0 if aTi ∆x∗ 6= 0. Thus we know that

λ̃
∗T
Q∗AQ∗∆x∗ =

∑
i∈Q∗ λ̃

∗
ia

T
i ∆x∗ < 0 if AQ∗∆x∗ 6= 0. From this, since N (AQ∗) ∩

N (H) = {0} under Assumption 2.1 and H is positive semidefinite, we conclude

that ∆x∗TH∆x∗ > 0 or −λ̃
∗T
Q∗AQ∗∆x∗ > 0 , similarly to Lemma B.3. So, since

∆xkTH∆xk → ∆x∗TH∆x∗ and −λ̃
kT

QkAQk∆xk → −λ̃
∗T
Q∗AQ∗∆x∗ as k → ∞ on K ′

and 0 < α < 1, there exists δ > 0 such that, for large enough k ∈ K ′,

α(1− 1

2
α)∆xkTH∆xk − αλ̃

kT

Q∗AQ∗∆xk > δ. (B.41)

Since f(xk) is monotonic decreasing by Proposition B.4, (B.39) yields that for

some large k′

f(xk+1) < f(xk)− δ, ∀k ≥ k′ and k ∈ K ′, (B.42)

135

which implies that f(xk) → −∞ as k → ∞. This contradicts the boundedness of

{xk}.

Lemma B.9. (Corresponds to Lemma 8 of [TAW06]) Suppose {xk} is bounded away

from F∗P on some infinite index set K. Then {∆xk} goes to 0 on K.

Proof. By contradiction. Suppose {∆xk} does not converge to zero as k →∞, k ∈ K.

By Lemma B.8, there exists an infinite index set K ′ ⊆ K such that

∆xk−1 → 0, as k →∞, k ∈ K ′, (B.43)

λ̃
k−1

− → 0, as k →∞, k ∈ K ′. (B.44)

Since, in view of Corollary B.5, {xk} is bounded and, by the assumption, bounded

away from F∗P on K ′, without loss of generality, we can assume that {xk} → x∗ for

some x∗ /∈ F∗P as k → ∞, k ∈ K ′. Since ‖xk − xk−1‖ = ‖αk−1∆xk−1‖ ≤ ‖∆xk−1‖,

it follows that {xk−1} → x∗ as k → ∞, k ∈ K ′. This implies, by Lemma B.7, that

x∗ is stationary and {λ̃k−1} → λ∗ as k →∞, k ∈ K ′, where λ∗ is the corresponding

multiplier vector. Since λ̃
k−1

− = min{λ̃k−1
,0}, it follows from (B.44) that λ∗ ≥ 0, thus

x∗ ∈ F∗P , a contradiction.

We proceed by showing that {xk} approaches the set of stationary points.

Proposition B.10. (Corresponds to Lemma 9 of [TAW06]) {xk} approaches the set

of stationary points of (2.2), i.e., for any ε > 0 there exists k′ so that xk is ε-close to

a stationary point for k > k′.

136

Proof. By contradiction. Suppose not. Then, since {xk} is bounded in view of

Corollary B.5, there exists some infinite index set K and some non-stationary x∗

such that xk → x∗ as k → ∞, k ∈ K. By Lemma B.7, thus, there exists an infinite

index set K ′ ⊂ K such that infk∈K′ ‖∆xk‖ > 0, and this contradicts Lemma B.9.

Now we are about to show that {xk} converges to F∗P , the solution set to (2.2).

For showing this we define a set of all limit points of {xk}:

L := {x : x is a limit point of {xk}}.

We will show that all the points in L are associated with the same multipliers in

Lemma B.14. By Lemma B.10, L is a subset of the set of stationary points implying

every x ∈ L is a stationary point of (2.2). Since {xk} is bounded, so is L. Thus, as

a limit set, it is closed and, thus, compact. The following lemmas help in proving

Lemma B.14.

Lemma B.11. (Corresponds to Lemma A.5 under Lemma 3.6 of [TZ94]) If {xk} is

bounded away from F∗P , then L is connected.

Proof. By contradiction. Suppose not. Since L is compact, there must exist nonempty

sets D,E ⊂ Rn such that L = D∪E, D̄∩E = D∩Ē = ∅, where D̄ is the closure of D.

Since L is compact, D and E must be compact. Thus δ := minx∈D,x′∈E‖x− x′‖ > 0.

By Lemma B.10 the entire sequence {xk} converges to L. A simple contradic-

tion argument using the fact that {xk} is bounded shows that, for k large enough,

137

minx∈L ‖xk−x‖ ≤ δ/3, i.e., either minx∈D ‖xk−x‖ ≤ δ/3 or minx∈E ‖xk−x‖ ≤ δ/3.

Moreover, since both D and E are nonempty (i.e., contain limit points of {xk}), each

of these situations occurs infinitely many times. Thus K := {k : minx∈D ‖xk − x‖ ≤

δ/3,minx∈E ‖xk+1 − x‖ ≤ δ/3} is an infinite index set and ‖∆xk‖ ≥ δ/3 > 0 for all

k ∈ K. On the other hand since {xk}k∈K is bounded and bounded away from F∗P , it

has some limit point x∗ /∈ F∗P . In view of Lemma B.9, this is a contradiction.

Lemma B.12. (Corresponds to Lemma A.3 under Lemma 3.6 of [TZ94]) Let x,x′ ∈

L be such that A(x) = A(x′). Then H(x− x′) = 0.

Proof. Let A∗ := A(x) = A(x′). Since both x and x′ are limit points of {xk}, they

are stationary by Lemma B.10. Thus it follows that

Hx + c−
∑
i∈A∗

λiai = 0,

Hx′ + c−
∑
i∈A∗

λ′iai = 0,

which implies that, for all α ∈ (0, 1),

Hxα + c−
∑
i∈A∗

λ′α,iai = 0, (B.45)

where xα := (1−α)x +αx′, λα := (1−α)λ +αλ′. Now aTi (x′−x) = 0 for all i ∈ A∗

which, together with (B.45), implies that

(x′ − x)T (Hxα + c) = 0, ∀α ∈ (0, 1).

Since xα = x + α(x′ − x), we get, for all α ∈ (0, 1),

0 = (x′ − x)T (Hx + αH(x′ − x) + c)

138

= (x′ − x)T (Hx + c) + α(x′ − x)TH(x′ − x).

Thus (x′−x)TH(x′−x) = 0. Since H is positive semi-definite, the claim follows.

Lemma B.13. (Corresponds to Lemma A.4 under Lemma 3.6 of [TZ94]) If {xk} is

bounded away from F∗P , then for all x,x′ ∈ L, H(x′ − x) = 0.

Proof. Since there are only finitely many possible combinations of binding constraints,

in view of Lemma B.12, L is a finite union of affine sets of the form L ∩ (x +N (H))

with x ∈ L.

Suppose that there are N such distinct affine sets Ai which are in the form L ∩

(x + N (H)) with x ∈ L. Then L = ∪Ni=1Ai. Notice each Ai is a subset of an affine

subspace `i+N (H) for `i ∈ Ai. So, for any distinct i, j ∈ {1, . . . , N}, Ai and Aj lie on

either the same affine subspace (`i +N (H) = `j +N (H)) or parallel affine subspaces

(`i + N (H) 6= `j + N (H)). However, since L is connected in view of Lemma B.11

and there are finitely many Ai’s, they can not lie on distinct parallel affine subspaces.

Therefore all Ai’s lie on the same affine subspace which is parallel to N (H). This

proves the claim.

Lemma B.14. (Corresponds to Lemma 3.6 of [TZ94]) Suppose {xk} is bounded away

from F∗P . Let x∗,x
′∗ ∈ L. Let λ and λ

′
be the associated multiplier vectors. Then

λ = λ
′
.

Proof. In view of Lemma B.10, all points in L are stationary points of (2.2). Given

any x ∈ L, let λ(x) be the multiplier vector associated with x and let B(x) be the

139

index set of “binding” constraints at x, i.e.,

B(x) := {i ∈M : λi(x) 6= 0}. (B.46)

We first claim that, if x,x′ ∈ L are such that B(x) = B(x′), then λ(x) = λ(x′).

Indeed, in view of (B.22), it follows from Lemma B.11 and Lemma B.13 that

∑
j∈B(x)

λj(x)aTj =
∑
j∈B(x)

λj(x
′)aTj .

Then the claim follows from linear independence of {aTj : j ∈ A(x)} under Assump-

tion 2.4 and from the fact that B(x) ⊆ A(x).

To conclude the proof, we show that, for any x,x′ ∈ L, B(x) = B(x′). Let x̄ ∈ L

be arbitrary, and let D := {x ∈ L : B(x) = B(x̄)} and E := {x ∈ L : B(x) 6= B(x̄)}.

We show that both D and E are closed. Let {yl} ⊆ L be a sequence converging to

some point x̂ such that B(yl) = B for all l and for some B. Notice, since L is closed,

x̂ ∈ L. It follows from the first part of this proof that all yl are associated with

some common multiplier λ, i.e., λ(yl) = λ. Due to the complementarity condition of

stationary points, it follows that sj(y
l) := aTj yl − bi = 0 for all l and for all j such

that λj 6= 0. Since {yl} →= x̂, we know that sj(x̂) := aTj x̂− bi = 0 for all j such that

λj 6= 0. This means that B ⊆ A(x̂). Since Hyl = Hx for any l (due to Lemma B.13),

we know from (B.22) that

∑
j∈B

λja
T
j = Hyl + c = Hx̂ + c =

∑
j∈A(x̂)

λj(x̂)aTj , ∀l.

Therefore, from linear independence of active constraints under Assumption 2.4, we

can conclude that x̂ is also associated with the common multiplier λ, i.e., λ(x̂) = λ.

140

Thus, if {yl} ⊆ D, then x̂ ∈ D. Likewise, if {yl} ⊆ E, then x̂ ∈ E. Therefore

both D and E are closed. Since D contains at least x̄, meaning that it is not empty,

connectedness of L by Lemma B.11 implies that E is empty (otherwise D ∩ E 6= ∅).

Thus all points in L are associated with the same multiplier.

We are now ready to prove that {xk} converges to F∗P .

Proof of Theorem 2.4. By contradiction. Suppose that some limit point of {xk} is

not in F∗P . Since f(xk) monotonically decreases in view of Proposition B.4 and since

xk ∈ FP , f takes on the same value at all limit points of {xk}. So {xk} is bounded

away from F∗P . In view of Lemma B.9, {∆x} → 0. Let λ∗ be the common multiplier

vector associated with all limit points of {xk} (see Lemma B.14). Lemma B.7 then

implies that {λ̃k} → λ∗. Since {xk} is bounded away from F∗P , it follows that

λ∗ � 0. Let i0 ∈ M be such that λ∗i0 < 0. So λ̃ki0 < 0 for all k large enough. Since

∆ski0 = aTi0∆x by (2.35), we know from (B.27) that ∆ski0 = −(λki0)−1ski0λ̃
k
i0

. It then

follows that ∆ski0 > 0, since λki0 > 0 and ski0 > 0 by construction of Algorithm 1. Due

to the strict feasibility of xk, α > 0. Since sk+1 = sk + α∆sk, for k large enough,

0 < si0(xk) < si0(xk+1) < · · · .

On the other hand, in view of Lemma B.10, since all the limit points are stationary,

we know that s∗i0 = 0 for i0 such that λ∗i0 < 0. Therefore {ski0} converges to zero as

xk converges to some point. This is a contradiction.

141

Lemma B.6
(2.1, 2.4)

�� ''OOOOOOOOOOO

������������������������

Lemma B.15

��

Lemma B.1

xxqqqqqqqqqqqqq

��

Lemma B.7
(2.1-2.4)

wwooooooooooo

Lemma B.8
(2.1-2.4)

ssgggggggggggggggggggggggggggggg

Lemma B.16
(2.1,2.4,2.6)

++VVVVVVVVVVVVVVVVVVVVVVVVVVVV

Lemma B.17
(2.1-2.6)

''OOOOOOOOOOO
Proposition B.18

��

Lemma B.19
(2.1-2.6)

wwooooooooooo

Theorem 2.5
(2.1-2.6)

Figure B.2: Diagram for local convergence rate proof. Numbers in parentheses denote

assumptions which each lemma, proposition, and theorem requires.

B.2 Local Rate of Convergence

In this section, we will show that, under Assumptions 2.1-2.6, {xk,λk} converges to

the primal-dual solution {x∗,λ∗} q-quadratically. Figure B.2 illustrates the relations

among the lemmas, proposition, and theorem in proving local convergence rate. For

the following lemmas, propositions and theorems, suppose Assumptions 2.1-2.6 hold.

Lemma B.15. (Corresponds to Lemma 1 of [TAW06]) Ja(A, s,λ) in (2.32) is non-

singular if and only if J(A, s,λ) is nonsingular.

Proof. Assume that Ja(A, s,λ) is singular. Then there exists a nonzero vector [uT , wT]T 6=

0 such that

Hu−ATw = 0, (B.47)

142

ΛAu + Sw = 0. (B.48)

Now let v := Au, then it immediately follows from (B.48) that

Λv + Sw = 0, (B.49)

which implies that J(A, s,λ) is also singular since [uT , vT , wT] 6= 0.

Now assume that J(A, s,λ) is singular. Then there exists a nonzero vector

[uT , vT , wT]T 6= 0 such that

Hu−ATw = 0, (B.50)

Au− v = 0, (B.51)

Λv + Sw = 0. (B.52)

Then u and w naturally satisfy (B.47) and (B.48). If u = 0 and w = 0 at the

same time, then v is also a zero vector, a contradiction. Thus Ja(A, s,λ) is also

singular.

From here on, we denote by x∗ the optimal solution to (2.2) (By Assumption 2.5,

it exists and is unique) and by λ∗ its associated Lagrange multiplier. We define

s∗ := Ax∗ − b.

Lemma B.16. (Corresponds to Lemma 13 of [TAW06]) If A(x∗) ⊆ Q then J(AQ, s
∗
Q,λ

∗
Q)

and Ja(AQ, s
∗
Q,λ

∗
Q) are nonsingular.

143

Proof. Let us verify the assumptions of Lemma B.1. First, s∗Q + λ∗Q > 0 due to strict

complementarity Assumption 2.6. Second, the rows of AA(x∗) are linearly independent

by Assumption 2.4, and s∗i = 0 for i ∈ A(x∗) ⊆ Q and s∗i > 0 for i /∈ A(x∗). Third,

AA(x∗) and H share the trivial nullspace due to Assumptions 2.5 and 2.6 which implies

that {j : λ∗j 6= 0} = A(x∗). Thus the conclusion follows from Lemmas B.1 and

B.15.

Lemma B.17. (Corresponds to Lemma 14 of [TAW06]) Under our assumptions,

(i) {∆xk} → 0,

(ii) {λ̃k} → λ∗,

(iii) If λ∗i ≤ λmax for all i ∈M , then {λk} → λ∗.

Proof. Since {xk} → x∗ (Theorem 2.4), the first claim immediately follows. The

second claim follows by Lemma B.7 and the third claim by (2.51).

The q-quadratic convergence will be shown using the following property of New-

ton’s method, which is adapted from Proposition 3.10 of [TZ94].

Proposition B.18. (Corresponds to Proposition 3.10 of [TZ94]) Let Ψ : Rn → Rn

be twice continuously differentiable and let t∗ ∈ Rn be a zero of Ψ, i.e., Ψ(t∗) = 0.

Suppose there exists ε > 0 such that ∂Ψ
∂t

(t) is nonsingular for all t ∈ B(ŝ, ε) :=

{t : ‖t − t∗‖ ≤ ε}. Define ∆Nt to be the Newton increment at t, i.e., ∆Nt :=

144

−(∂Ψ
∂t

(t))−1Ψ(t). Then, given any c > 0, for all t ∈ B(t∗, ε), if t+ ∈ Rn satisfies, for

each i ∈ {1, . . . , n}, either

(i) |t+i − t∗i | ≤ c‖∆Nt‖2

or

(ii) |t+i − (ti + ∆N ti)| ≤ c‖∆Nt‖2,

then there exists ν > 0 such that

‖t+ − t∗‖ ≤ ν‖t− t∗‖2. (B.53)

Proof. See [TZ94].

To use this proposition, we write the first three conditions of the KKT system

(2.9)-(2.11) as Ψ(x,λ) = 0, where

Ψ(x,λ) :=

 Hx−ATλ + c

Λ(Ax− b)

 . (B.54)

Then (2.30) is equivalent to the Newton direction for the solution of Ψ(x,λ) = 0, and

Ja(A,Ax− b,λ) is the Jacobian of Ψ(x,λ). In other words,
H −AT

ΛA S

 ∆Nx

∆Nλ

 =

 −Hx− c + ATλ

−Λs

 . (B.55)

145

Although the direction generated by Algorithm 1 is not the same as the Newton

direction ∆Nt of Ψ, Lemma B.19 will relate the two directions.

We use t to denote the vector containing both x and λ, i.e., tk := [xkT , λkT]T .

Also, we define a strictly feasible set Eo for Ψ:

Eo := {t : x ∈ FoP , λ > 0}. (B.56)

Hence, Eo∩B(t∗, ε) denotes the set of strictly feasible points in a ball around t∗. Given

t ∈ Eo and Q ∈ Q(Ax − b, q), ∆t := [∆xT ,∆λT]T denotes the composite direction

at t generated by Algorithm 1. Superscript + is attached to denote the quantities of

the next iteration. We denote by [∆Nx
T
, ∆Nλ

T
]T ≡ ∆Nt the decomposed Newton

direction for Ψ at t.

Lemma B.19. (Corresponds to Lemma 16 of [TAW06].) Let ε be such that, for all

t ∈ Eo ∩B(t∗, ε) and for all Q ∈ Q(Ax− b, q), Ja(AQ,AQx− b,λQ) is nonsingular

and AQcx > bQc. Then there exists a positive constant ξ such that, for all t ∈

Eo ∩B(t∗, ε) and for any Q ∈ Q(Ax− b, q),

‖∆t−∆Nt‖ ≤ ξ‖t− t∗‖‖∆Nt‖.

Proof. Let t := (xT ,λT)T and let s := Ax− b. By applying block elimination to the

reduced Newton system (2.36)-(2.38), we can obtain an augmented reduced system: H −AT
Q

ΛQ2AQ SQ2

 ∆x

∆λQ

 =

 −Hx− c + AT
QλQ

−ΛQ2sQ

 . (B.57)

146

The Newton direction ∆Nt for (B.54) satisfies (B.55). With a simple rearrange-

ment of (B.55), we obtain
H −AT

Q −AT
Qc

ΛQ2AQ SQ2 0

ΛQc2AQc 0 SQc2

∆Nx

∆NλQ

∆NλQc

=

−Hx− c + ATλ

−ΛQ2sQ

−ΛQc2sQc

. (B.58)

Multiplying AQcS−1
Qc2 to the third block row, adding the multiplied third block row to

the first block row, and then eliminating ∆NλQc from the system of equations above

lead to H + AT
QcS−1

Qc2ΛQc2AQc −AT
Q

ΛQ2AQ SQ2

 ∆Nx

∆NλQ

 =

 −Hx− c + AT
QλQ

−ΛQ2sQ

 . (B.59)

Since (B.57) and (B.59) have the same right-hand side, equating the left hand side of

(B.59) and (B.57) yields

Ja(AQ,AQx− bQ,λQ)

 ∆x−∆Nx

∆λQ −∆NλQ

 =

 AT
QcS−1

Qc2ΛQc2AQc 0

0 0

 ∆Nx

∆NλQ

 .
(B.60)

Then the nonsingularity of Ja(AQ,AQx− bQ,λQ) (by the assumption) leads to ∆x−∆Nx

∆λQ −∆NλQ

 = Ja(AQ,AQx− bQ,λQ)−1

 AT
QcS−1

Qc2ΛQc2AQc 0

0 0

 ∆Nx

∆NλQ

 .
(B.61)

147

Since A(x∗) ∩ Qc = ∅, in view of strict complementarity, λ∗Qc = 0 and Λ∗
Qc2 = 0.

So, there exists some positive constant c0 independent of t such that

‖ΛQc2‖ = ‖ΛQc2 −Λ∗Qc‖ ≤ c0‖λQc − λ∗Qc‖ ≤ c0‖t− t∗‖. (B.62)

By taking the norm of both sides of (B.61) and by using (B.62), we obtain∥∥∥∥∥∥∥∥
∆x−∆Nx

∆λQ −∆NλQ

∥∥∥∥∥∥∥∥ (B.63)

≤ c0‖Ja(AQ,AQx− bQ,λQ)−1‖‖AT
Qc‖‖S−1

Qc2‖‖AQc‖‖t− t∗‖

∥∥∥∥∥∥∥∥
∆Nx

∆NλQ

∥∥∥∥∥∥∥∥ .
In addition, it follows from (B.57) and (B.58), by taking Qc components of ∆Nλ and

∆λ, that

∆λQc −∆NλQc = −S−1
Qc2ΛQc2AQc(∆x−∆Nx). (B.64)

Then taking the norm yields, due to (B.62),

‖∆λQc −∆NλQc‖ ≤ c0‖S−1
Qc2‖‖t− t∗‖‖AQc‖‖∆x−∆Nx‖. (B.65)

Finally, for t ∈ Eo∩B(t∗, ε) and a fixed Q, since Ja(AQ,AQx−bQ,λQ) and SQc2

are nonsingular and continuous, ‖Ja(AQ,AQx−bQ,λQ)−1‖ and ‖S−1
Qc2‖ are bounded

above. In addition, since the number of possible candidates for Q and Qc is finite,

‖Ja(AQ,AQx−bQ,λQ)−1‖, ‖S−1
Qc2‖, ‖AQc‖ and ‖AT

Qc‖ are bounded above for any Q.

148

So, for some positive constant c1 independent of t, we can derive from (B.63)∥∥∥∥∥∥∥∥
∆x−∆Nx

∆λQ −∆NλQ

∥∥∥∥∥∥∥∥ ≤ c1‖t− t∗‖

∥∥∥∥∥∥∥∥
∆Nx

∆NλQ

∥∥∥∥∥∥∥∥ ≤ c1‖t− t∗‖∥∥∆Nt
∥∥ . (B.66)

Moreover, since t is bounded, there exist some positive constants c2 and c3 indepen-

dent of t such that, by (B.65) and (B.66),

‖∆λQc −∆NλQc‖ ≤ c2‖t− t∗‖‖∆x−∆Nx‖

≤ c2‖t− t∗‖

∥∥∥∥∥∥∥∥
∆x−∆Nx

∆λQ −∆NλQ

∥∥∥∥∥∥∥∥
≤ c2c1‖t− t∗‖2

∥∥∆Nt
∥∥

≤ c3‖t− t∗‖∥∥∆Nt
∥∥

(B.67)

Therefore combining (B.66) and (B.67) using the fact that ‖[xT1 , xT2]T‖ ≤ ‖x1‖+

‖x2‖ proves the claim.

We now establish the q-quadratic rate of convergence.

Proof of Theorem 2.5. We confine our interest to t strictly feasible and close enough

to t∗ to make use of Lemma B.19. So we assume t exists inside a ball of radii

ε: ‖t − t∗‖ ≤ ε. We are interested in taking one step from t to t+ according to

Algorithm 1. Note that we will frequently use strict complementarity Assumption 2.6

and the triangle inequality ‖v + u‖ ≤ ‖v‖ + ‖u‖ for any same dimensional vectors

u and v. Also notice ‖u‖ ≤ ‖(uT ,wT)T‖, (‖u‖ + ‖w‖)2 ≤ 2(‖u‖2 + ‖w‖2), and

|ui| ≤ ‖u‖ for any vectors u and w and for any p-norm (p = 1, 2, . . . ,∞).

149

Let s := Ax − b and s∗ := Ax∗ − b. Let Q be fixed and A(x∗) ⊆ Q. Then by

the strict complementarity Assumption 2.6, it follows that S∗Q2λ
∗
Q = 0 and λ∗Qc = 0.

Since Hx∗+c = ATλ∗ by the first KKT condition (2.9), it follows from the definition

of J (2.32) that

J(AQ, s
∗
Q,λ

∗
Q)

0

0

λ∗Q

=

−Hx∗ − c

0

0

.

Also we know from (2.32) and (2.36)-(2.38) that

J(AQ, sQ,λQ)

∆x

∆sQ

λ̃Q

=

−Hx− c

0

0

.

So J(AQ, sQ,λQ) is continuous and nonsingular (due to Lemma B.1 under Assump-

tion 2.1), J(AQ, s
∗
Q,λ

∗
Q) is nonsingular (by Lemma B.16), −Hx − c is continuous,

sQc → s∗Qc > 0 as t→ t∗, s and λ are strictly complementary, and

λ̃Qc = −S−1
Qc2ΛQc2AQc∆x

by (B.26). It follows that

∆x→ 0 as t→ t∗ (B.68)

λ̃→ λ∗as t→ t∗. (B.69)

Notice this holds for any Q ⊇ A(x∗).

150

Now we will first investigate components of λ for i ∈ A(x∗). Note that for t

strictly feasible and close enough to t∗, we can assume, without loss of generality,

that A(x∗) ⊆ Q ∈ Q(Ax − b, q) for q ≥ n. So, since λ̃A(x∗) → λ∗A(x∗) > 0 and

λ̃A(x∗)c → λ∗A(x∗)c = 0 as t → t∗ by strict complementarity, it holds, by (2.46),

that (λ̃−)i = min(0, λ̃i) = 0 for i ∈ A(x∗) and for t close enough to t∗, and that

(λ̃−)i = min(0, λ̃i) → 0 for i ∈ A(x∗)c as t → t∗. From this, we know, for t strictly

feasible and close enough to t∗, that

‖∆x‖2 + ‖λ̃−‖2 < λ̃i, ∀i ∈ A(x∗). (B.70)

Since λ∗i < λmax, it follows from (B.70) and the update rule (2.51) that

λ+
A(x∗) = λ̃A(x∗) = λA(x∗) + ∆λA(x∗), (B.71)

which results in

λ+
A(x∗) − (λA(x∗) + ∆NλA(x∗)) = ∆λA(x∗) −∆NλA(x∗). (B.72)

By Lemma B.19, thus, (B.72) yields

‖λ+
A(x∗) − (λA(x∗) + ∆NλA(x∗))‖ = ‖∆λA(x∗) −∆NλA(x∗)‖

≤ ‖∆t−∆Nt‖

≤ ξ‖t− t∗‖‖∆Nt‖.

(B.73)

This leads to

‖λ+
A(x∗) − λ∗A(x∗)‖ = ‖λ+

A(x∗) − (λA(x∗) + ∆NλA(x∗)) + (λA(x∗) + ∆NλA(x∗) − λ∗A(x∗))‖

151

≤ ‖λ+
A(x∗) − (λA(x∗) + ∆NλA(x∗))‖+ ‖λA(x∗) + ∆NλA(x∗) − λ∗A(x∗)‖

≤ ξ‖t− t∗‖‖∆Nt‖+ ‖λA(x∗) + ∆NλA(x∗) − λ∗A(x∗)‖. (B.74)

Here, let t̂+ := t + ∆Nt. Then, since |t̂+i − (ti + ∆N ti)| = 0 ≤ ‖∆Nt‖, in view of

Proposition B.18, we know that, for some positive constant c1 independent of t,

‖t̂+ − t∗‖ ≤ c1‖t− t∗‖2, (B.75)

which immediately yields

‖λA(x∗) + ∆NλA(x∗) − λ∗A(x∗)‖ = ‖λ̂+

A(x∗) − λ∗A(x∗)‖ ≤ ‖t̂+ − t∗‖ ≤ c1‖t− t∗‖2.

(B.76)

So (B.74) and (B.76) result in, for c2 = max(ξ, c1) independent of t,

‖λ+
A(x∗) − λ∗A(x∗)‖ ≤ c2‖t− t∗‖‖∆Nt‖+ c2‖t− t∗‖2. (B.77)

From this point, we will closely look at the other components of λ, λ+ and λ∗,

i.e., i /∈ A(x∗). Since λi → 0, λ̃i → 0, ∆λi → 0 and ∆x→ 0 as t→ t∗, it holds from

the dual update rule (2.51), for t strictly feasible and close enough to t∗, that either

λ+
i = λi + ∆λi(≡ λ̃i) (B.78)

or,

λ+
i = ‖∆x‖2 + ‖λ̃−‖2. (B.79)

152

Here the first case (B.78) again yields, as we did for (B.71),

|λ+
i − λ∗i | ≤ c2‖t− t∗‖‖∆Nt‖+ c2‖t− t∗‖2. (B.80)

Consider the second case (B.79). For i such that λ̃i ≥ 0, we know that |(λ̃−)i| = 0. For

i such that λ̃i = λi+∆λi < 0, since λi > 0, we know that |(λ̃−)i| = |λi+∆λi| < |∆λi|.

Thus we conclude from the second case that

|λ+
i − λ∗i | = |λ+

i | = ‖∆x‖2 + ‖λ̃−‖2 ≤ ‖∆x‖2 + ‖∆λ‖2 ≤ ‖∆t‖2. (B.81)

This immediately yields, by Lemma B.19,

|λ+
i − λ∗i | ≤ ‖∆t‖2 = ‖∆t−∆Nt + ∆Nt‖2 ≤ (‖∆t−∆Nt‖+ ‖∆Nt‖)2 (B.82)

≤ 2‖∆t−∆Nt‖2 + 2‖∆Nt‖2 ≤ 2ξ2‖t− t∗‖2‖∆Nt‖2 + 2‖∆Nt‖2, (B.83)

Therefore, by combining (B.80) and (B.83) we obtain, for i /∈ A(x∗),

|λ+
i − λ∗i | ≤ max

(
c2‖t− t∗‖‖∆Nt‖+ c2‖t− t∗‖2, 2ξ2‖t− t∗‖2‖∆Nt‖2 + 2‖∆Nt‖2

)
.

(B.84)

Since ‖t − t∗‖ ≤ ε, we know from (B.84), for a constant c3 := max{c2, 2ξ
2ε2 + 2}

independent of t within the ball, that

|λ+
i − λ∗i | ≤ max

(
c3‖t− t∗‖‖∆Nt‖+ c3‖t− t∗‖2, c3‖∆Nt‖2

)
, (B.85)

for i /∈ A(x∗).

Now let us investigate the x component of t. For this, we first obtain the lower

bound of the step size α and then bound the step in (B.87).

153

We will consider three cases: (i) A(x∗) 6= ∅ and ∆s 6≥ 0, (ii) A(x∗) 6= ∅ and

∆s ≥ 0, and (iii) A(x∗) = ∅. Consider the first case, so A(x∗) 6= ∅ and there

exists some i such that ∆si = aTi ∆x < 0. Observing (2.47), we notice that indices

corresponding to ∆si ≥ 0 have no effect in deciding lower bounds on ᾱ and α. So we

focus on indices associated with ∆si < 0.

It follows from (2.34) and (2.35) that

si
aTi ∆x

= − si
∆si

=
λi

λ̃i
, for i : ∆si < 0.

Thus, for all i such that i /∈ A(x∗) and ∆si < 0, since s∗i > 0 and ∆si = aTi ∆x

converges to 0 as t→ t∗ by (B.68), it follows that

λi

λ̃i
= − si

∆si
→∞ as t→ t∗,

implying i such that i /∈ A(x∗) and ∆si < 0 has no effect in determining lower bounds

on ᾱ and α if t is close enough to t∗. Thus indices i such that i ∈ A(x∗) and ∆si < 0

affect the lower bound on ᾱ and α when t is close enough to t∗. Next we investigate

these indices.

Assume there exist some indices i such that i ∈ A(x∗) and ∆si < 0. We can

rewrite (2.47) as

ᾱ = min
i∈A(x∗):∆si<0

λi

λ̃i
.

For i ∈ A(x∗), since λi → λ∗i > 0 (by the definition of t and t∗) and λ̃i → λ∗i by

(B.69) as t → t∗, we know that ᾱ → 1 as t → t∗. Now define j as the index that

154

determines ᾱ. Then we can restate (2.48) as

α = min{1, λj
λ̃j
− ‖∆x‖},

for t strictly feasible close enough to t∗. So it holds that

|1− α| ≤
∣∣∣∣∣1− λj

λ̃j
+ ‖∆x‖

∣∣∣∣∣ ≤ ‖∆x‖+

∣∣∣∣∣ λ̃j − λjλ̃j

∣∣∣∣∣ . (B.86)

Thus

‖x+ − (x + ∆x)‖ = ‖α∆x−∆x‖ = |1− α|‖∆x‖

≤
(
‖∆x‖+

∣∣∣∣∣ λ̃j − λjλ̃j

∣∣∣∣∣
)
‖∆x‖,

which implies, by Lemma B.19 and by the fact that λ̃j → λ∗j > 0 as t → t∗ and

|λ̃j − λj| = |∆λj| ≤ ‖∆λ‖, the existence of some positive constant c4 independent of

t such that

‖x+ − (x + ∆x)‖ ≤ (c4‖∆x‖+ c4‖∆λ‖)‖∆x‖

≤ c4

√
2‖∆t‖2

≤ c4

√
2(‖∆t−∆Nt‖+ ‖∆Nt‖)2

≤ c4

√
2(ξ‖t− t∗‖‖∆Nt‖+ ‖∆Nt‖)2. (B.87)

This also holds when there’s no index i satisfying both i ∈ A(x∗) and ∆si < 0, since

α = 1 and x+ − (x + ∆x) = 0.

Let us consider the other cases. In case (ii), A(x∗) 6= ∅ and ∆s ≥ 0, so ᾱ = ∞

and α = 1 by (2.47) and (2.48). In case (iii), A(x∗) = ∅, so s∗i > 0 for all i ∈M . So,

155

since ∆si = aTi ∆x converges to 0 as t → t∗ by (B.68) and si is bounded away from

0 for all i, ᾱ → ∞ as t → t∗ by (2.47), meaning ᾱ becomes large enough to make

α = 1 for t strictly feasible and close enough to t∗. In these two cases, since α = 1 for

t strictly feasible and close enough t∗, the same inequality as (B.87) naturally holds,

because its left-hand side becomes 0.

Therefore, by (B.87), by Lemma B.19 and by the triangle inequality, it follows

that

‖x+ − (x + ∆Nx)‖ = ‖x+ − (x + ∆x) + (∆x−∆Nx)‖

≤ ‖x+ − (x + ∆x)‖+ ‖∆x−∆Nx‖

≤ c4

√
2(ξ‖t− t∗‖‖∆Nt‖+ ‖∆Nt‖)2 + ξ‖t− t∗‖‖∆Nt‖. (B.88)

Now (B.88) leads to

‖x+ − x∗‖ = ‖x+ − (x + ∆Nx) + (x + ∆Nx)− x∗‖

≤ c4

√
2(ξ‖t− t∗‖‖∆Nt‖+ ‖∆Nt‖)2 + ξ‖t− t∗‖‖∆Nt‖+ ‖(x + ∆Nx)− x∗‖

≤ c4

√
2(ξ‖t− t∗‖‖∆Nt‖+ ‖∆Nt‖)2 + ξ‖t− t∗‖‖∆Nt‖+ c1‖t− t∗‖2, (B.89)

because ‖(x+∆Nx)−x∗‖ ≤ ‖(t+∆Nt)−t∗‖ and every component of t̂+ := t+∆Nt

satisfies condition (ii) of Proposition B.18 leading to (B.75). Since ‖t− t∗‖ ≤ ε, for

some constant c5 := max{c4

√
2(ξε+ 1)2, ξ, c1)},

‖x+ − x∗‖ ≤ c5‖∆Nt‖2 + c5‖t− t∗‖‖∆Nt‖+ c5‖t− t∗‖2. (B.90)

156

We are ready to complete this proof. First consider the case when t satisfies

‖∆Nt‖ ≤ ‖t−t∗‖. Then since ‖t−t∗‖ ≤ ε, it follows from (B.77), (B.85), and (B.90)

that, for some positive constant c6 independent of t within the ball,

‖t+ − t∗‖ ≤ ‖λ+
A(x∗) − λ∗A(x∗)‖+

∑
i/∈A(x∗)

|λ+
i − λ∗|+ ‖x+ − x∗‖

≤ 2c2‖t− t∗‖2 + 2c3|A(x∗)c|‖t− t∗‖2 + 3c5‖t− t∗‖2

≤ c6‖t− t∗‖2, (B.91)

which yields the required result.

On the other hand, when ‖t − t∗‖ ≤ ‖∆Nt‖, since ‖∆Nt‖ is bounded, (B.77),

(B.85), and (B.90) yield

‖t+ − t∗‖ ≤ ‖λ+
A(x∗) − λ∗A(x∗)‖+

∑
i/∈A(x∗)

|λ+
i − λ∗|+ ‖x+ − x∗‖

≤ 2c2‖∆Nt‖2 + 2c3|A(x∗)c|‖∆Nt‖2 + 3c5‖∆Nt‖2

≤ c6‖∆Nt‖2. (B.92)

Since, in view of (B.92) every component of t+ satisfies condition (i) of Proposi-

tion B.18, it holds, for some constant c7, that

‖t+ − t∗‖ ≤ c7‖t− t∗‖2, (B.93)

which, together with (B.91), proves the q-quadratic convergence.

157

BIBLIOGRAPHY

[AA95] Erling D. Andersen and Knud D. Andersen. Presolving in linear pro-

gramming. Mathematical Programming, 71(2):221–245, 1995.

[ABD+90] E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney, J. Du

Croz, S. Hammarling, J. Demmel, C. Bischof, and D. Sorensen. LAPACK:

a portable linear algebra library for high-performance computers. In Su-

percomputing ’90: Proceedings of the 1990 ACM/IEEE conference on Su-

percomputing, pages 2–11, Washington, DC, USA, 1990. IEEE Computer

Society.

[AN07] A. Asuncion and D.J. Newman. UCI machine learning repository, 2007.

[Atk89] Kendall E. Atkinson. An Introduction to Numerical Analysis. John Wiley

& Sons, Washington, DC, USA, 1989.

[BC04] Daniel Boley and Dongwei Cao. Training support vector machines using

adaptive clustering. In Proceedings of the SIAM Conference on Data

Mining, 2004.

[BDD+02] L. Susan Blackford, James Demmel, Jack Dongarra, Iain Duff, Sven Ham-

marling, Greg Henry, Michael Heroux, Linda Kaufman, Andrew Lums-

daine, Antoine Petitet, Roldan Pozo, Karin Remington, and R. Clint

158

Whaley. An updated set of Basic Linear Algebra Subprograms (BLAS).

ACM Transactions on Mathematical Software, 28(2):135–151, June 2002.

[BJ05] Francis R. Bach and Michael I. Jordan. Predictive low-rank decomposi-

tion for kernel methods. In Proceedings of the 22nd International Con-

ference on Machine Learning, pages 33–40, New York, NY, USA, 2005.

ACM Press.

[Bur98] Chris Burges. A tutorial on support vector machines for pattern recog-

nition. Data Mining and Knowledge Discovery, 2(2):121–167, 1998.

[Car04] Coralia Cartis. On Interior Point Methods for Linear Programming. PhD

thesis, University of Cambridge, 2004.

[Cha07] Olivier Chapelle. Training a support vector machine in the primal. Neural

Computation, 19(5):1155–1178, 2007.

[CL01] Chih-Chung Chang and Chih-Jen Lin. LIBSVM: a library for support

vector machines, 2001. Software available at http://www.csie.ntu.

edu.tw/~cjlin/libsvm.

[CSS06] Tat-Jun Chin, Konrad Schindler, and David Suter. Incremental kernel

SVD for face recognition with image sets. In FGR ’06: Proceedings of the

7th International Conference on Automatic Face and Gesture Recognition

159

(FGR06), pages 461–466, Washington, DC, USA, 2006. IEEE Computer

Society.

[CV95] Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine

Learning, 20(3):273–297, Sep 1995.

[Dan63] G. B. Dantzig. Linear Programming and Extensions. Princeton Univer-

sity Press, Princeton, NJ, USA, 1963.

[DM05] Petros Drineas and Michael W. Mahoney. On the Nystrom method for

approximating a Gram matrix for improved kernel-based learning, 2005.

[DY91] G. B. Dantzig and Y. Ye. A build–up interior–point method for linear

programming : Affine scaling form. Technical report, University of Iowa,

Iowa City, IA, USA, July 1991.

[Fle87] R. Fletcher. Practical Methods of Optimization. Wiley-Interscience, New

York, NY, USA, 2nd edition, 1987.

[FM02] Michael C. Ferris and Todd S. Munson. Interior-point methods for mas-

sive support vector machines. SIAM Journal on Optimization, 13(3):783–

804, 2002.

[FS02] Shai Fine and Katya Scheinberg. Efficient SVM training using low-rank

kernel representations. Journal of Machine Learning Research, 2:243–264,

2002.

160

[GG05] E. Michael Gertz and Joshua D. Griffin. Support vector machine classi-

fiers for large data sets. Preprint, October 2005.

[GR87] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations.

Journal of Computational Physics, 73:325–348, 1987.

[GVL96] Gene H. Golub and Charles F. Van Loan. Matrix Computations. The

Johns Hopkins University Press, Baltimore, MD, USA, 3rd edition, 1996.

[Hea98] Marti A. Hearst. Trends and controversies: Support vector machines.

IEEE Intelligent Systems, 13(4):18–28, 1998.

[Hig90] Nicholas J. Higham. Analysis of the Cholesky decomposition of a semi-

definite matrix. In M. G. Cox and S. J. Hammarling, editors, Reliable

Numerical Computation, pages 161–185. Oxford University Press, Ox-

ford, UK, 1990.

[Hou64] Alston S. Householder. The Theory of Matrices in Numerical Analysis.

Blaisdell, New York, NY, USA, 1964. Reprinted by Dover, New York,

1975.

[HZKM03] Stefan Harmeling, Andreas Ziehe, Motoaki Kawanabe, and Klaus-Robert

Müller. Kernel-based nonlinear blind source separation. Neural Compu-

tation, 15(5):1089–1124, 2003.

161

[JO07a] Jin Hyuk Jung and Dianne P. O’Leary. Exploiting structure of symmetric

or triangular matrices on a GPU. In Proceedings of First Workshop on

GPGPU, Boston, MA, USA, October 2007.

[JO07b] Jin Hyuk Jung and Dianne P. O’Leary. Implementing an interior point

method for linear programs on a CPU-GPU system. Submitted for pub-

lication, 2007.

[Joa99] Thorsten Joachims. Making large-scale SVM learning practical. In Bern-

hard Schölkopf, Chris Burges, and Alex Smola, editors, Advances in Ker-

nel Methods: Support Vector Learning, pages 169–184. MIT Press, Cam-

bridge, MA, USA, 1999.

[JOT07] Jin Hyuk Jung, Dianne P. O’Leary, and André L. Tits. Adaptive con-

straint reduction for support vector machines. In preparation, 2007.

[Kar84] N. Karmarkar. A new polynomial-time algorithm for linear programming.

Combinatorica, 4(4):373–395, 1984.

[KMY89] Masakazu Kojima, Shinji Mizuno, and Akiko Yoshise. A polynomial-time

algorithm for a class of linear complementary problems. Mathematical

Programming, 44(1):1–26, 1989.

[LLW04] Yoonkyung Lee, Yi Lin, and Grace Wahba. Multicategory support vec-

tor machines: Theory and application to the classification of microarray

162

data and satellite radiance data. Journal of the American Statistical

Association, 99:67–81, January 2004.

[LS96] R. B. Lehoucq and D. C. Sorensen. Deflation techniques for an implic-

itly restarted Arnoldi iteration. SIAM Journal on Matrix Analysis and

Applications, 17(4):789–821, 1996.

[LS98] Zhi-Quan Luo and Jie Sun. An analytic center based column generation

algorithm for convex quadratic feasibility problems. SIAM Journal on

Optimization, 9(1):217–235, 1998.

[MA89a] Renato D.C. Monteiro and Ilan Adler. Interior path following primal-dual

algorithms. Part I: Linear programming. Mathematical Programming,

44(1):27–41, 1989.

[MA89b] Renato D.C. Monteiro and Ilan Adler. Interior path following primal-

dual algorithms. Part II: Convex quadratic programming. Mathematical

Programming, 44(1):43–66, 1989.

[Meh92] Sanjay Mehrotra. On the implementation of a primal-dual interior point

method. SIAM Journal on Optimization, 2(4):575–601, November 1992.

[NW00] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer,

New York, NY, USA, 2000.

163

[OFG97] Edgar Osuna, Robert Freund, and Federico Girosi. An improved training

algorithm for support vector machines. In Proceedings of IEEE Workshop

on Neural Networks and Signal Processing, Piscataway, NJ, USA, 1997.

IEEE Press.

[Pla99] John C. Platt. Fast training of support vector machines using sequential

minimal optimization. In Bernhard Schölkopf, Chris Burges, and Alex

Smola, editors, Advances in Kernel Methods: Support Vector Learning,

pages 185–208. MIT Press, Cambridge, MA, USA, 1999.

[Roc72] R. T. Rockafellar. Convex Analysis. Princeton University Press, Prince-

ton, NJ, USA, 1972.

[RYDG05] V. C. Raykar, C. Yang, R. Duraiswami, and N. Gumerov. Fast compu-

tation of sums of Gaussians in high dimensions. Technical Report CS-

TR-4767, Department of Computer Science, University of Maryland, Col-

legePark, 2005. http://www.umiacs.umd.edu/~vikas/Software/IFGT/

IFGT_code.htm.

[Saa03] Yousef Saad. Iterative Methods for Sparse Linear Systems. SIAM,

Philadelpha, PA, USA, 2nd edition, 2003.

[SBS99] Bernhard Schölkopf, Chris Burges, and Alex Smola. Introduction to

support vector learning. In Bernhard Schölkopf, Chris Burges, and Alex

164

Smola, editors, Advances in Kernel Methods: Support Vector Learning,

pages 1–16. MIT Press, Cambridge, MA, USA, 1999.

[SMB+99] Bernhard Schölkopf, Sebastian Mika, Chris J. C. Burges, Philipp Knirsch,

Klaus-Robert Müller, Gunnar Rätsch, and Alex J. Smola. Input space

versus feature space in kernel-based methods. IEEE Transactions on

Neural Networks, 5(10):1000–1017, 1999.

[SS00] Alex J. Smola and Bernhard Schölkopf. Sparse greedy matrix approxima-

tion for machine learning. In Proceedings of 17th International Conference

on Machine Learning, pages 911–918. Morgan Kaufmann, San Francisco,

CA, 2000.

[SS01] Bernhard Schölkopf and Alexander J. Smola. Learning with Kernels:

Support Vector Machines, Regularization, Optimization, and Beyond.

MIT Press, Cambridge, MA, USA, 2001.

[TA77] Andrey N. Tikhonov and Vasiliy Y. Arsenin. Solutions of Ill-Posed Prob-

lems. John Wiley & Sons, Washington, DC, USA, 1977.

[TAW06] André L. Tits, P.-A. Absil, and William P. Woessner. Constraint reduc-

tion for linear programs with many inequality constraints. SIAM Journal

on Optimization, 17(1):119–146, 2006.

165

[Ton93] Kaoru Tone. An active-set strategy in an interior point method for linear

programming. Mathematical Programming, 59(3):345–360, 1993.

[TZ94] A. L. Tits and J. L. Zhou. A simple, quadratically convergent interior

point algorithm for linear programming and convex quadratic program-

ming. In W. W. Hager, D. W. Hearn, and P. M. Pardalos, editors, Large

Scale Optimization: State of the Art, pages 411–427. Kluwer Academic

Publishers, 1994.

[Wat99] G. A. Watson. Choice of norms for data fitting and function approxima-

tion. Acta Numerica, pages 337–376, January 1999.

[WG07] Kristian Woodsend and Jacek Gondzio. Exploiting separability in

large-scale support vector machine training. Technical Report MS-

07-002, School of Mathematics, University of Edinburgh The Kings

Buildings, Edinburgh, EH9 3JZ, UK, August 2007. http://www.

optimization-online.org/DB_HTML/2007/08/1750.html.

[WNTO07] Luke Winternitz, Stacey Nicholls, André L. Tits, and Dianne P. O’Leary.

Analysis of a constraint reduced variant of Mehrotra’s predictor-corrector

algorithm. Submitted for publication, 2007.

[WO00] Weichung Wang and Dianne P. O’Leary. Adaptive use of iterative meth-

166

ods in predictor-corrector interior point methods for linear programming.

Numerical Algorithms, 25(1–4):387–406, 2000.

[Wri92] Margaret H. Wright. Interior methods for constrained optimization. Acta

Numerica, pages 341–407, 1992.

[Wri97] Stephen J. Wright. Primal-Dual Interior-Point Methods. SIAM, Philadel-

phia, PA, USA, 1997.

[WS01] Christopher K. I. Williams and Matthias Seeger. Using the Nyström

method to speed up kernel machines. In T. Leen, T. Dietterich, and

V. Tresp, editors, Advances in Neural Information Processing Systems

13, pages 682–688. MIT Press, 2001.

[YDD05] Changjiang Yang, Ramani Duraiswami, and Larry Davis. Efficient kernel

machines using the improved fast Gauss transform. In Lawrence K. Saul,

Yair Weiss, and Léon Bottou, editors, Advances in Neural Information

Processing Systems 17, pages 1561–1568. MIT Press, Cambridge, MA,

USA, 2005.

[Ye90] Y. Ye. A “build-down” scheme for linear programming. Mathematical

Programming, 46(1):61–72, 1990.

[Ye91] Yinyu Ye. An O(n3L) potential reduction algorithm for linear program-

ming. Mathematical Programming, 50:239–258, 1991.

167

[Ye92] Yinyu Ye. A potential reduction algorithm allowing column generation.

SIAM Journal on Optimization, 2(1):7–20, February 1992.

[Zha96] Y. Zhang. Solving large–scale linear programs by interior–point methods

under the MATLAB environment. Technical Report 96–01, Department

of Mathematics and Statistics, University of Maryland Baltimore County,

Baltimore, MD, USA, 1996.

[ZZ95] Yin Zhang and Detong Zhang. On polynomiality of the Mehrotra-type

predictor-corrector interior-point algorithms. Mathematical Program-

ming, 68(3):303–318, 1995.

168

