
  

 

ABSTRACT 

 

Title of Document: Highly Scalable Short Read Alignment with the 
Burrows-Wheeler Transform and Cloud Computing 

  
 
Benjamin Langmead, Master of Science, 2009 

  

Directed By: Professor Steven L. Salzberg  
Department of Computer Science 

 

Improvements in DNA sequencing have both broadened its utility and 

dramatically increased the size of sequencing datasets.  Sequencing instruments are 

now used regularly as sources of high-resolution evidence for genotyping, 

methylation profiling, DNA-protein interaction mapping, and characterizing gene 

expression in the human genome and in other species.  With existing methods, the 

computational cost of aligning short reads from the Illumina instrument to a 

mammalian genome can be very large: on the order of many CPU months for one 

human genotyping project.  This thesis presents a novel application of the Burrows-

Wheeler Transform that enables the alignment of short DNA sequences to 

mammalian genomes at a rate much faster than existing hashtable-based methods.  

The thesis also presents an extension of the technique that exploits the scalability of 

Cloud Computing to perform the equivalent of one human genotyping project in 

hours. 

 

 



  

 
HIGHLY SCALABLE SHORT READ ALIGNMENT WITH THE 

BURROWS-WHEELER TRANSFORM AND CLOUD COMPUTING.  
 

By 

Benjamin Thomas Langmead. 

 

 
Thesis submitted to the Faculty of the Graduate School of the  
University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 
 
 
 

Master of Science 
2009 

 

 

 

 

 

 

 

Advisory Committee: 

Professor Steven L. Salzberg, Chair 
Professor Mihai Pop 
Professor Carl Kingsford 
 
 
 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by 

Benjamin Thomas Langmead 

2009 



 ii 

 

Dedication 

To Sara. 



 iii 

 

Table of Contents 

Table of Contents.......................................................................................................... ii 

List of Tables ................................................................................................................ v 

List of Figures .............................................................................................................. vi 

Chapter 1: Introduction ................................................................................................. 1 

Bowtie ....................................................................................................................... 1 

Crossbow .................................................................................................................. 3 

Chapter 2: The Burrows-Wheeler Transform and FM Index ....................................... 5 

Burrows-Wheeler Transform.................................................................................... 5 

EXACTMATCH and the FM Index ......................................................................... 8 

Making EXACTMATCH efficient with checkpointing ........................................... 9 

Mapping rows to reference offsets.......................................................................... 10 

The FM Index is small ............................................................................................ 13 

Chapter 3: Short read alignment atop the FM Index................................................... 16 

Adding inexactness to EXACTMATCH ................................................................ 16 

Excessive backtracking........................................................................................... 19 

Phased 2-mismatch search ...................................................................................... 22 

Phased 3-mismatch search ...................................................................................... 23 

Maq-like search....................................................................................................... 25 

Backtracking limit................................................................................................... 29 

Phased versus interleaved search ............................................................................ 30 

Depth-first search.................................................................................................... 32 

Best-first search and top-level best-first search ...................................................... 34 



 iv 

 

Considering the reverse-complement reference strand........................................... 36 

Strand bias............................................................................................................... 38 

Paired-end alignment .............................................................................................. 39 

Results..................................................................................................................... 42 

Comparison to SOAP, Maq and BWA ................................................................... 43 

Read length and performance ................................................................................. 46 

Paired-end performance .......................................................................................... 48 

Parallel performance ............................................................................................... 49 

Chapter 4: Time-space tradeoffs in Burrows-Wheeler indexing ................................ 51 

Blockwise index construction ................................................................................. 51 

Effect of block size on indexing performance ........................................................ 54 

Effect of difference cover and period on indexing performance ............................ 56 

Performance for human genome............................................................................. 58 

Chapter 5:  Improved scalability and convenience with Cloud Computing ............... 60 

Introduction............................................................................................................. 60 

Variation detection in MapReduce ......................................................................... 61 

Simple Storage Service ........................................................................................... 62 

Adapting Bowtie to Hadoop ................................................................................... 63 

Results..................................................................................................................... 64 

Bibliography ............................................................................................................... 66 

 



 v 

 

 

List of Tables 

Table 1. Performance and sensitivity of Bowtie, SOAP and Maq  45 

Table 2. Performance and sensitivity of Bowtie, Maq on filtered read set  46 

Table 3. Performance and sensitivity for varying-length reads  47 

Table 4. Performance and sensitivity for paired-end alignment  49 

Table 5. Performance of Bowtie for 1, 2 and 4 threads   49 

Table 6. Impact of maximum block size on indexing performance  54 

Table 7. Impact of difference-cover period on indexing performance  56 

Table 8. Performance of indexing the human genome    58 



 vi 

 

List of Figures 

Figure 1: Computing BWT(T)       6 

Figure 2: Steps taken by the UNPERMUTE algorithm    6 

Figure 3: Steps taken by the EXACTMATCH algorithm    9 

Figure 4: One naïve solution for resolving a row’s reference offset   11 

Figure 5: Another naïve solution for resolving a row’s reference offset  11 

Figure 6: An example of Ferragina and Manzini’s hybrid scheme   12 

Figure 7: Example of how exact and 1-mismatch algorithms might proceed 19 

Figure 8: Two cases considered by Bowtie searching for 1-mismatch alignments 21 

Figure 9: Three cases considered by Bowtie searching for 2-mismatch alignments 23 

Figure 10: Four cases considered by Bowtie searching for 3-mismatch alignments 24 

Figure 11: One case explored by Bowtie for 0-mismatch Maq-like alignment 27 

Figure 12: Two case explored by Bowtie for 1-mismatch Maq-like alignment 28 

Figure 13: Three cases explored by Bowtie for 2-mismatch Maq-like alignment 29 

Figure 14: Four cases explored by Bowtie for 3-mismatch Maq-like alignment 29 

Figure 15: A greedy depth-first search for a read having a 2-mismatch alignment 33 

Figure 16: Case-outer phased search using forward and reverse-complement read 38 

Figure 17: Alternate definition of the Burrows-Wheeler Transform BWT(T) 51 

 



 1 

 

Chapter 1: Introduction 

Bowtie 

Improvements in DNA sequencing have both broadened its applications 

and dramatically increased the size of sequencing datasets.  Technologies from 

Illumina and Applied Biosystems have been used to profile methylation patterns 

(Methyl-Seq) [1], to map DNA-protein interactions (ChIP-Seq) [2], and to 

identify differentially expressed genes and novel splice junctions (RNA-Seq) [3] 

in the human genome and other species.  The Illumina instrument was recently 

used to re-sequence three human genomes, one from a cancer patient and two 

from previously unsequenced ethnic groups [4-6].  Each of these studies required 

the alignment of large numbers of short DNA sequences, “short reads,” onto the 

human genome. For example, two of the studies [4, 5] used the short read 

alignment tool Maq [7] to align more than 130 billion bases (about 45× coverage) 

of short Illumina reads to a human reference genome in order to detect genetic 

variations.  The third human re-sequencing study [6] used the SOAP program [8] 

to align more than 100 billion bases to the reference genome.  In addition to these 

projects, the 1,000 Genomes project is in the process of using high-throughput 

sequencing instruments to sequence a total of about six trillion base pairs of 

human DNA [9]. 

The computational cost of aligning many short reads to a mammalian 

genome using the computational methods employed by Maq and SOAP is very 

large.  For example, extrapolating from the results presented here in Tables 1 and 



 2 

 

2, Maq would require more than 5 CPU-months and SOAP more than 3 CPU-

years to align the 140 billion bases from the study by Ley and coworkers [5]. 

Although using Maq or SOAP for this purpose is feasible by parallelizing the 

work across many CPUs, there is a clear need for new methods that can keep pace 

with the growing throughput of these instruments while making more economical 

use of computational resources. 

Maq and SOAP take a similar basic algorithmic approach to many other 

recent read mapping tools such as RMAP [10], ZOOM [11], and SHRiMP [12].  

These tools build a hash table of short oligomer subsequences present in either the 

reads (SHRiMP, Maq, RMAP, and ZOOM) or the reference (SOAP).  Some 

employ recent theoretical advances to align reads quickly without sacrificing 

sensitivity.  For example, ZOOM uses “spaced seeds” to significantly outperform 

RMAP, which is based on a simpler algorithm due to Baeza-Yaetes and Perleberg 

[13].  Spaced seeds have been shown to yield higher sensitivity than contiguous 

seeds of the same length [14, 15].  SHRiMP employs a combination of spaced 

seeds and the Smith-Waterman [16] algorithm to align reads with high sensitivity 

at the expense of speed.  Eland is a commercial alignment program available from 

Illumina that also uses a hash-based spaced-seed algorithm to align reads. 

Chapters 2-4 of this thesis present Bowtie, a short read aligner that 

exploits an indexing strategy similar to the Full-text Minute-space (FM) Index 

[17, 18] to achieve ultrafast and memory-efficient alignment of short reads to 

mammalian genomes.  In experiments using reads from the 1,000 Genomes 

project, Bowtie aligns 35-base reads to the human genome at a rate of more than 



 3 

 

25 million reads per CPU-hour, which is more than 35 times faster than Maq and 

300 times faster than SOAP under the same conditions (see Tables 1 and 2).  A 

typical memory footprint for the Bowtie aligner is 2.2 gigabytes for single-end 

alignment and 2.9 gigabytes for paired end, small enough to run on a workstation 

with 4 gigabytes of physical memory.  Bowtie also supports a mode where the 

memory footprint is limited to about 1.1 gigabytes, at the expense of some 

efficiency and features.  The space-efficiency of the Bowtie index is such that 

indexes can be distributed over the Internet and stored on disk for re-use. 

Bowtie was conceived and implemented primarily by the author, with help 

from Cole Trapnell, Mihai Pop and Steven L. Salzberg.  A paper describing the 

Bowtie tool appeared in the journal Genome Biology [19]. 

Crossbow 

With the advent of robust implementations of cloud computing software 

and services such as Hadoop [20, 21] and Amazon Web Services [21], it is 

increasingly possible to solve data-intensive problems efficiently without having 

to own and maintain a large pool of computer equipment.  At the same time, DNA 

sequencing instruments are now producing enough high-resolution data to 

regularly resequence entire human genomes.  Cases in point are three papers that 

appeared in the Nov. 6, 2008 issue of Nature [4-6], and the 1000 Genomes 

Project, to which aims to sequence a total of about six trillion base pairs of human 

DNA [9]. 

Crossbow is a software tool that combines the Bowtie aligner with a 

simple variant caller, both customized to work together in a MapReduce [22] 



 4 

 

context.  Crossbow runs in any environment that supports the Hadoop 

MapReduce implementation, including Hadoop-enabled virtual machines 

provided by Amazon for use within the Elastic Compute Cloud (EC2) web 

service.  Chapter 5 of this thesis presents the design of Crossbow along with 

results demonstrating that it is capable of aligning about 14.3×-coverage worth of 

human Illumina reads in 1 hour and 11 minutes using an EC2 cluster of 20 Extra-

Large High-CPU nodes, incurring a total of about $32 in cluster rental fees.  Since 

Amazon EC2 is available to anyone with an Amazon AWS account, the technique 

and the results achieved are easily reproducible by others. 

The author performed the work described in Chapter 5.  Ongoing work on 

Crossbow is a collaboration between the author and Michael Schatz. 



 5 

 

Chapter 2: The Burrows-Wheeler Transform and FM Index 

 This chapter establishes the theoretical underpinnings of the Burrows-

Wheeler Transform and the FM Index and describes how the FM Index 

potentially represents an improvement over indexing techniques used previously 

for short read alignment. 

Burrows-Wheeler Transform 

The Burrows-Wheeler Transform (BWT) of a text is a reversible 

permutation of its characters.  Originally developed within the context of data 

compression, BWT-based indexing allows large texts to be searched efficiently in 

a small memory footprint.  It has been applied previously to bioinformatics 

applications including oligomer counting [23], whole-genome alignment [24], 

tiling microarray probe design [25], and Smith-Waterman alignment to a large 

reference [26]. 

The Burrows-Wheeler Transform of a text T, BWT(T), can be constructed 

as follows.  The character $ is appended to T, where $ is a character not in T that 

is lexicographically less than all characters in T.  The Burrows-Wheeler Matrix of 

T, BWM(T), is obtained by computing the matrix whose rows comprise all cyclic 

rotations of T sorted lexicographically.  BWT(T) is the sequence of characters in 

the rightmost column of BWM(T) (Figure 1). 



 6 

 

 

Figure 1 Computing BWT(T) (right) from the input text T (left) via the Burrows-
Wheeler Matrix of T (center). 

 

Burrows-Wheeler Matrices have a property called the Last First (LF) 

Mapping.  The property is: the ith occurrence of character c in the last column 

corresponds to the same text character as the ith occurrence of c in the first 

column.  Burrows and Wheeler [27] prove the property as follows.  Given a 

Burrows-Wheeler Matrix M, construct matrix M’ by cyclically rotating all rows 

of M to the right by one position.  By construction, M’ is the matrix of all cyclic 

rotations of T sorted lexicographically and cyclically by their second character.  

Consider just the rows of M’ beginning with character c.  These rows must appear 

in lexicographical order with respect to each other, since they are “tied” with 

respect to their first character and sorted with respect to their second.  For a 

character c, rows beginning with c in M appear in the same order as rows 

beginning with c in M’.  Since the first column of M’ is the same as the last 

column of M, the LF Mapping property follows. 

The LF mapping underlies key algorithms that use BWT(T) to navigate or 

search in T.  The UNPERMUTE algorithm applies it repeatedly to re-create T 

from BWT(T).  Consider a function LF(r) that, given row index r into the 

Burrows-Wheeler Matrix, returns the index of the corresponding row according to 



 7 

 

the LF mapping property.  For instance, if the last character of row r is the jth 

occurrence of character c in the last column, LF(r) returns the index of the row 

whose first column contains the jth occurrence of c in the first column.   Since the 

first character of row LF(r) corresponds to the same text character as the last 

character of row r, the last character of row LF(r) must correspond to the text 

character that precedes that character in the text (cyclically).  By applying r  = 

LF(r) repeatedly starting in the row whose last character corresponds to the last 

character of T (i.e. the row beginning with $, which is always the first row), we 

follow the sequence of Burrows-Wheeler rows corresponding to consecutive text 

characters from right to left.  We recreate T by performing this walk and 

aggregating the visited text characters in a buffer. 

LF(r) can be implemented in terms of an array C[c] and a function Occ(c, 

r) as shown in Algorithm 1 below.  Elements of C are pre-calculated so that C[c] 

equals the total number of occurrences of all alphabet characters lexicographically 

less than character c in T.  The Occ(c, r) function counts the number of 

occurrences of character c in a prefix of BWT(T) up to but not including the rth 

character.  UNPERMUTE is implemented in terms of LF(r) as shown in 

Algorithm 2 below.  Figure 2 illustrates how the UNPERMUTE algorithm 

reconstructs the original string “acaacg$” from the permuted string “gc$aaac”. 

 



 8 

 

 

 

Figure 2 Steps taken by the UNPERMUTE algorithm to recreate the original text T from 
the Burrows-Wheeler Transformed text BWT(T). 

 

EXACTMATCH and the FM Index 

Ferragina and Manzini observe that the Burrows-Wheeler Transform and 

the LF Mapping can also be used to perform exact matching of a query string P 

within the text T [17].  Because the rows of the Burrows-Wheeler Matrix are 

sorted lexicographically, all rows having P as a prefix must appear consecutively, 

i.e., within a contiguous range of rows.  The EXACTMATCH algorithm 

(Algorithm 3 below) iteratively calculates ranges of Burrows-Wheeler rows 

prefixed by successively longer suffixes of the query.  At each step, the length of 

the suffix under consideration grows by one character and the size of the range 

either shrinks or remains the same.  Like UNPERMUTE, EXACTMATCH makes 

use of a helper function based on the LF mapping, called LFC.  Unlike LF, LFC 

takes a second argument c, where c is a character drawn from the text alphabet.  

LFC performs the same calculation as LF, but as though the character in the last 



 9 

 

column of row r is c, which it may or may not be.  LFC is shown in Algorithm 4 

below.  Figure 3 illustrates of the steps taken by the EXACTMATCH algorithm to 

match the pattern “aac” in the text “acaacg.”  The correctness of EXACTMATCH 

is established in appendix B of the paper by Ferragina and Manzini [17]. 

 

 

 

Figure 3 Steps taken by the EXACTMATCH algorithm to match the pattern “aac” in the 
text “acaacg”.  Successive pairs of red arrows delimit ranges of Burrows-Wheeler rows 
prefixed by increasingly longer suffixes (also red) of the query string. 
 

Making EXACTMATCH efficient with checkpointing 

It remains unclear whether UNPERMUTE and EXACTMATCH scale 

well to large texts.  The problem is that each call to LF(r) or LFC(r, c) triggers a 



 10 

 

call to Occ(c, r), which, naively implemented, examines a number of characters 

proportional to the length of T in the worst case.  Ferragina and Manzini [17] 

propose accelerating Occ(c, r) by pre-calculating and storing character occurrence 

counts for each character in the alphabet up to certain regular positions throughout 

BWT(T).  If the pre-calculated positions (“checkpoints”) are chosen such that the 

space between consecutive checkpoints is bounded by a constant B, then an 

efficient implementation of Occ(c, r) need examine at most B characters of 

BWT(T) per call.  Thus, Occ(c, r) can be made to operate in constant time at the 

cost of having to pre-calculate and store checkpoints that occupy space 

proportional to the length of T times the cardinality of the alphabet.  Note that if 

Occ(c, r) is constant-time, the overall EXACTMATCH algorithm is linear-time in 

the length of the query P.  

Mapping rows to reference offsets 

The final output of the EXACTMATCH algorithm is a range of matrix 

rows beginning with a given query string P (delimited by the sp and ep variables 

from Algorithm 4).  Each row corresponds to an exact match of P somewhere in 

the text, but more work is required to determine, for a given row, which text offset 

it corresponds to.  One naïve solution is: given row r, calculate r = LF(r) 

repeatedly zero or more times until r equals the row with $ in the last column.  

The original row’s (0-based) offset into the reference text equals the number of 

times LF(r) was called before reaching that row.  A simple example is shown in 

Figure 4.  This approach is not time-efficient, since calculating a row’s offset 

requires a number of calls to LF that is linear in the length of T. 



 11 

 

 

Figure 4 One naïve solution for resolving a row’s reference offset: repeatedly apply rule 
r = LF(r) until the row with $ in the last column is reached.  The number of calls made to 
LF(r) is the row’s 0-based reference offset. 

 

 
Another naïve solution is to, at index building time, simply pre-compute 

and store an array parallel to BWT(T) containing the reference offsets of each 

row.  This array is equivalent to the suffix array of T.  To resolve the reference 

offset of row r, we simply look up element r in the pre-calculated array (see 

Figure 5).  This solution is not space-efficient: if n is the length of T, storing the 

suffix array of T requires an amount of space proportional to n log2(n), which, for 

the approximately 3-gigabase human genome, necessitates about 12 gigabytes of 

storage. 

 

Figure 5 Another naïve solution for resolving the reference offset for a given row: pre-
calculate the offset for every row and store the pre-calculated offsets in an array parallel 
to BWT(T).  This requires as much memory as the suffix array of T. 
 



 12 

 

 
Ferragina and Manzini [17] propose a hybrid scheme whereby a subset of 

the rows of the matrix are “marked” with pre-calculated text offsets.  To retrieve a 

row r’s text offset, we first check if r is marked.  If so, we report r’s pre-

calculated text offset.  If not, we calculate r = LF(r) repeatedly until r becomes a 

marked row, at which point we report the pre-calculated offset for r plus the 

number of times LF(r) was called before reaching r.  Marking a larger fraction of 

the rows allows text offsets to be calculated faster on average, but marking a 

smaller fraction reduces the overall size of the index.  Bowtie adopts this scheme 

with a default (but configurable) policy of marking every 32nd row.  Figure 6 

illustrates an example where LF(r) is called exactly once, causing the walk to 

enter a row marked with offset 1. 

 
 

Figure 6 An example of Ferragina and Manzini’s hybrid scheme where the offset is 
calculated by calling r = LF(r) zero or more times (once in this case) to reach a marked 
row.  The final 0-based result is the sum of the number of calls to LF(r) required to reach 
the marked row plus the marked row’s pre-calculated offset. 

 
 

Bowtie’s scheme of marking every 32nd row does not provide a sublinear 

worst-case guarantee for the number of times LF must be called to calculate the 

offset for a given row.  Ferragina and Manzini’s originally proposed scheme does 

provide such a guarantee by selecting rows to mark according to a regular 



 13 

 

periodic sample of characters in T (as opposed to Bowtie’s scheme of regularly 

sampling characters in BWT(T)).  Bowtie’s scheme was selected because 

Ferragina and Manzini’s is more complex to implement and because the expected 

number of calls to LF (as opposed to the worst-case number) is not very different 

between the two. 

The FM Index is small 

The major components of an FM Index include the string BWT(T), the 

checkpoint data, and the data structure encoding the mapping between marked 

rows and their corresponding reference offsets.  Bowtie’s version of the FM Index 

stores a few additional structures, including, for example, a lookup table used to 

quickly calculate the matrix range corresponding to a given 10-mer. 

Under Bowtie’s default settings, the largest single component of the FM 

Index is the BWT(T) sequence.  Bowtie stores BWT(T) in a 2-bit-per-base 

format, causing it to occupy about 680 megabytes in the case of the assembled 

human genome.  The checkpoints occupy another approximately 14% the space of 

the packed BWT(T) string, assuming Bowtie’s default policy of storing a 

checkpoint every 448 BWT characters.  The text offsets for marked rows occupy 

about 50% the space of the packed BWT(T) string, assuming Bowtie’s default 

policy of marking every 32nd row.  With some other small structures, the overall 

FM Index for a given genome is about 65-70% larger than the packed BWT(T) 

string alone.  A Bowtie FM Index for the assembled human genome sequence 

occupies about 1.1 gigabytes.  In practice, Bowtie often keeps two FM Indexes 

resident in memory at a time, for reasons discussed later.  Thus, the total memory 



 14 

 

footprint is about 2.2 gigabytes in practice.  When the reference string is also 

resident in memory (i.e. for paired-end alignment), the total memory footprint is 

about 2.9 gigabytes. 

The FM for the human genome is significantly smaller than what can be 

achieved with other indexing techniques such as suffix trees, suffix arrays, and k-

mer hashtables.  All of these alternatives require at least 4 bytes per character for 

the human genome.  Some, like the suffix tree, require much more (a compact 

suffix-tree representation described by Kurtz in 1999 [28] reports a ratio of 20 

bytes per base).  

A compact indexing scheme like the FM Index removes the need for some 

of the painful compromises made by tools with larger indexes.  Maq, for instance, 

uses a spaced-seed k-mer hashtable, but, perhaps because such a hashtable 

calculated over the reference genome would occupy roughly 12 gigabytes of 

RAM, it chooses to index the reads rather than the genome.  This is a significant 

compromise since it requires the user to provide reads to Maq in batches and Maq 

must then scan the reference three times per batch to perform seed-and-extend.  

Also, since an index calculated over reads is relevant only with respect to that 

batch of reads, it is not as re-usable as a genome index.  SOAP also uses a spaced-

seed k-mer hashtable, but it indexes the genome rather than the reads.  However, 

the size of the hashtable is such that SOAP requires a computer with about 16 

gigabytes of RAM to align reads to the human genome.  The larger the index, the 

more significant the compromises made.  In contrast, Bowtie runs effectively on a 

computer with 4 gigabytes of RAM.  A Bowtie index can be re-used across any 



 15 

 

number of batches of reads, and each read need only be aligned against a single 

index. 



 16 

 

 

Chapter 3: Short read alignment atop the FM Index  

 This chapter describes how the Bowtie aligner uses search to build the FM 

Index’s exact-matching facility into an inexact-matching facility.  The overall 

search strategy and the associated pruning strategies are described in detail, along 

with some examples of particular strategies used to enforce alignment policies.  

Other significant features of the Bowtie aligner are also described.  Finally, 

empirical performance results using human read data from the Short Read 

Archive are presented. 

Adding inexactness to EXACTMATCH 

EXACTMATCH is not sufficient for aligning genomic short reads 

because the best local alignment of a read may contain differences.  Such 

differences may be due to sequencing errors, genuine differences between 

reference and subject organisms, or a combination of the two.  To allow for 

differences, we design an algorithm that conducts a search through the space of 

possible alignments to quickly find those satisfying the desired alignment policy.  

Though a completely unpruned search space has size exponential in the length of 

the read, extensive pruning is possible in practice.  Pruning the space to include 

only those paths with at most 2 mismatches, for example, yields a space that is 



 17 

 

quadratic in the length of the read1.  We find that the method described is 

generally tractable for up to (at least) three mismatches in practice.  Though the 

technique can be made to deal with gaps as well as mismatches, the Bowtie 

implementation currently deals only with mismatches.  Thus, only mismatches 

will be considered in the subsequent discussion. 

The search makes use of numeric quality values on the Phred scale [29], 

where, if the sequencing instrument predicts that the probability of a base having 

been miscalled is p, the Phred quality value of the base is reported as -10 log10 p.  

Quality values are used to assess the likelihood of candidate alignments under a 

model where all differences are assumed to be due to sequencing error.  Quality 

values direct the search to the most likely candidates first. 

Inexact search proceeds similarly to EXACTMATCH, calculating 

Burrows-Wheeler ranges for successively longer query suffixes.  The difference is 

that when the search arrives at an empty Burrows-Wheeler range (indicating that 

the corresponding suffix does not occur in the text), the algorithm may select a 

previously examined query position and substitute a different base there, 

introducing a hypothetical mismatch into the alignment at that position.  This is 

called a “backtrack.”  After executing a backtrack, the EXACTMATCH search 

                                                

1 The number of unpruned edges in a search space for all alignments of a read of 

length n with at most 2 mismatches assuming no pruning besides policy pruning 

is ½ (9n2 – 21n + 14).  The same for alignments with at most 1 mismatch is ½ 

(3n2 – n). 



 18 

 

resumes from just to the left of the substituted position.  The search performs only 

those backtracks that are consistent with the user-configurable alignment policy.  

For example, if the alignment policy imposes a maximum of two mismatches in 

the entire alignment and the search procedure is at a position P in the search space 

where two mismatches have already been hypothesized along the path from the 

root to P, and an empty Burrows-Wheeler range is obtained at P, the search will 

not attempt to hypothesize a third mismatch as doing so would violate the 

alignment policy.  This is called “policy pruning.”  Also, the search will never 

backtrack to points in the search space that are already known to be associated 

with empty Burrows-Wheeler ranges.  Doing so is futile, since the emptiness of 

the range implies that no alignments of the hypothesized type are possible in the 

reference.  This is called “empty-range pruning.”  Figure 7 illustrates a simple 

example of how exact and 1-mismatch search strategies might proceed for a read 

with a 1-mismatch alignment to the reference.  In practice, maximizing the 

amount of pruning possible is critical to minimizing the running time of the 

search. 



 19 

 

 

Figure 7 Example of how exact and 1-mismatch algorithms might proceed.  In this case, 
the query “ggta” does not have an exact match in the text, but does have a 1-mismatch 
alignment where a “g” in the reference is substituted for “a” in the read.  Pairs of numbers 
represent the sp, ep pairs calculated in an iteration of EXACTMATCH (Algorithm 4).  
Vertical sets of four pairs represent the pairs calculated for A, C, G and T (top to bottom).  
Blue numbers and letters represent hypothetical mismatches introduced as part of a 
backtrack.  Empty ranges are shown in red if they trigger a backtrack, or in gray if they 
do not.  Empty boxes correspond to ranges left uncalculated due to policy pruning.  The 
final reported range is shown in green. 

Excessive backtracking 

The strategy described has the drawback that some inputs cause excessive 

backtracking.  Excessive backtracking occurs when the two pruning strategies are 

not sufficient to prevent the aligner from performing so many backtracks that 

performance is adversely affected.  Since relatively short suffixes of the read 

(corresponding to the neighborhood around the root of the search space) are likely 

to occur in the reference simply by coincidence, excessive backtracking is 



 20 

 

particularly prevalent in first several levels of the search space.  Consider an 

attempt to find an alignment with up to 2 mismatches for a 20-mer against a 

reference sequence containing every possible 10-mer (e.g. the human genome 

[30]).  If no such alignment exists, the search is forced to explore all combinations 

of 2 backtracks within that first ten levels of the search space.  A lower bound on 

the total number of backtracks performed in this case is 4352. 

Bowtie mitigates excessive backtracking using “double indexing.”  With 

double indexing, two Burrows-Wheeler indexes of the genome are created: one 

indexing the normal genome sequence, called the “forward index,” and a second 

indexing the reverse of that sequence (not the reverse complement), called the 

“mirror index.”  To see how this helps, consider a matching policy that allows up 

to one mismatch in the alignment.  A valid alignment falls into one of two cases 

according to which half of the alignment contains the mismatch; by convention, 

we lump the case where the alignment has no mismatches in with the first 

enumerated case.  To identify alignments falling into Case 1, where either there 

are no mismatches or the left half contains exactly one mismatch, we use the 

forward index and invoke the search routine with the constraint that it may not 

backtrack to any of the positions in the right half of the alignment.  To identify 

alignments falling into Case 2, where the right-hand side of the alignment 

                                                

2 The worst-case number of backtracks in a stretch of k bases in an alignment 

where the alignment policy allows 2 mismatches and no empty-range pruning is 

possible is given by: 3k + 9 × ½ × (k2 - k) 



 21 

 

contains exactly one mismatch, we use the mirror index and invoke the search 

routine on the read with its character sequence reversed, with the constraint that 

the aligner may not backtrack to positions in the right half of the alignment.  Note 

that because the read sequence has been reversed, the right half of the alignment 

in Case 2 corresponds to the left half in Case 1.  Figure 8 illustrates the two cases. 

By forbidding backtracks to positions close to the right-hand side of the 

alignment, this strategy avoids a great deal of backtracking. 

 

 

Figure 8 Two cases considered by Bowtie searching for 1-mismatch alignments.  
Numbers shown below the alignment segments indicate permitted numbers of 
substitutions in those segments. 

 

As an implementation matter, Bowtie translates valid alignments obtained 

in the mirror index back into the forward coordinate system before reporting them 

to the user. 

The technique as described so far does not specify whether cases are 

explored one-after-the-other (and, if so, in what order they are explored) or 

whether they are explored concurrently.  These are implementation issues 

considered in later sections. 

It is important to note that excessive backtracking is still not entirely 

eliminated with double indexing.  Using the search strategy just described, some 



 22 

 

excessive backtracking may still occur in the left half of the alignment, especially 

in those positions just to the left of the halfway mark.  Still, we find that double 

indexing leads to good performance in practice. 

Phased 2-mismatch search 

Excessive backtracking is more problematic when the alignment policy 

permits 2 or more substitutions.  This is because (a) even with double indexing, it 

is not possible to avoid allowing substitutions in the right half of the alignment in 

some cases, and (b) if two or more stretches of the alignment are permitted to 

contain a substitution and many substitutions are possible along two or more of 

those stretches, the number of potential backtracks is related to their product in 

the worst case.  This multiplicative effect can have a drastic impact on 

performance. 

Bowtie’s 2-mismatch search strategy is divided into three cases.  Case 1 

uses the forward index and constrains the right half of the alignment to contain no 

mismatches while the left half may contain up to 2 mismatches.  Case 2 uses the 

mirror index (and the reversed read) and constrains the right half of the alignment 

to contain no mismatches while the left half may have either 1 or 2 mismatches.  

Case 3 uses the forward index and constrains the right and left halves to contain 

exactly one mismatch each.  Figure 9 illustrates these cases.  Any given 2-

mismatch alignment can be uniquely assigned to one of these three cases. 

 



 23 

 

 

Figure 9 Three cases considered by Bowtie searching for 2-mismatch alignments.  
Numbers shown below the alignment segments indicate number of allowed substitutions 
in those segments. 

 

The 3-case approach is relatively simple and allows substantial pruning.  

However, case 3 allows a mismatch in the right half of the alignment, and so is 

particularly vulnerable to excessive backtracking.  In practice we find that while 

the overhead of excessive backtracking is onerous for some reads, the overall 

running time of the search across many reads is good in practice.  The addition of 

more cases could improve results further; exploring more complex case 

decompositions is future work. 

Phased 3-mismatch search 

3-mismatch proceeds similarly to 2-mismatch search, but with one 

additional case.  Case 1 uses the forward index and constrains the right half of the 

alignment to contain no mismatches while the left half may contain up to 3.  Case 

2 uses the mirror index (and the reversed read) and constrains the right half of the 

alignment to contain no mismatches while the left half may have 1-3 mismatches.  

Case 3 uses the forward index and constrains the right half to contain exactly 1 



 24 

 

mismatch each and the left half to contain 1 or 2 mismatches.  Case 4 uses the 

mirror index (and the reversed read) and constraints the right half to contain 

exactly 1 mismatch and the left half to contain exactly 2 mismatches.  Figure 10 

illustrates these cases.  Any given 3-mismatch alignment can be uniquely assigned 

to one of the four cases 

 

 

Figure 10 Four cases considered by Bowtie searching for 3-mismatch alignments.  
Numbers shown below the alignment segments indicate number of allowed substitutions 
in those segments. 
 

Excessive backtracking is still worse a problem in the 3-mismatch case than in 

the 2-mismatch case for the same reasons that 2-mismatch is worse than 1-

mismatch.  Still, we find that overall performance of the search is still acceptable 

in practice.  



 25 

 

Maq-like search 

The search strategies described so far handle alignment policies where 1-3 

mismatches are permitted in the entire alignment and quality values are not 

considered.  The family of alignment policies enforced by Maq [7] is different in 

two ways.  First, Maq enforces a ceiling on the sum of the Phred quality values at 

all mismatched positions.  The default ceiling is 70.  For example, an alignment 

with two mismatches, both at positions with Phred quality 30, is permissible by 

default.  A similar alignment where both mismatched positions have Phred quality 

40 is not permissible by default, since the sum, 80, exceeds the default ceiling of 

70.  Second, Maq constrains the number of mismatches permitted, but only in the 

first several bases of the read (the “seed”), not in the entire alignment.  Maq 

permits up to two mismatches in the first 28 bases of the read by default.  Any 

number of mismatches is permitted outside the seed, though the overall alignment 

is still subject to the quality ceiling. 

These differences require changes to Bowtie’s search strategy.  First, 

Bowtie must keep track of the sum of the Phred quality values at positions where 

hypothetical mismatches have been introduced so far.  Policy pruning must be 

broadened to additionally prune paths that, if followed, would violate the quality 

ceiling.  Bowtie must also treat the seed and non-seed portions of the alignment 

appropriately.  Since the seed is more constrained, an efficient strategy is for 

Bowtie to align the seed portion first, then relax the mismatch ceiling and extend 

the alignment through the non-seed portion. 



 26 

 

Strategies presented in previous sections (extended to handle the quality 

ceiling) suffice for aligning the seed portion.  A complication arises when the 

index used to align the seed cannot be used to extend the seed.  For example, if 

the seed portion of the read aligns to a single location on the reference and that 

alignment contains two mismatches in the left half of the seed, the 2-mismatch 

search strategy described previously will use the forward index to find the seed 

alignment (case 1), yielding a range of Burrows-Wheeler rows in the forward 

index.  The non-seed portion of the read is to the right of the seed, but 

EXACTMATCH can only be used to extend right-to-left.  To translate a range of 

rows in the forward index into a corresponding range of rows in the mirror index 

(or vice versa), Bowtie simply re-matches the string of characters that led to the 

initial range.  Consider a situation where the read is the 9-character string 

“taacccagg,” the seed length is 6, and aligning just the seed (“taaccc”) yields a 1-

mismatch alignment in the forward index where “a” in the reference is substituted 

for “t” in the seed.  The range obtained by aligning the seed cannot be extended 

through the non-seed portion because the non-seed portion lies to the right in the 

context of the forward index.  Bowtie handles this by switching to the mirror 

index and re-matching the string “cccaaa,” which is the mirror image of the 6 seed 

characters including the substitution introduced during the seed alignment.  

Bowtie then relaxes the substitution limit and extends the alignment through the 

non-seed portion of the read in the usual way. 

The set of cases used by Bowtie to align reads using the Maq-like 

alignment policy for 0-seed-mismatches, 1-seed-mismatch, 2-seed-mismatches, 



 27 

 

and 3-seed-mismatches are shown in the following Figures 11-14.  Dashed lines 

highlight instances where the seed portion of the alignment is re-matched in order 

to bridge the gap between forward and mirror indexes. 

 

 

Figure 11 One case explored by Bowtie for 0-mismatch Maq-like alignment. 

 

 

Figure 12 Two cases explored by Bowtie for 1-mismatch Maq-like alignment. 
 

 



 28 

 

 

Figure 13 Three cases explored by Bowtie for 2-mismatch Maq-like alignment. 



 29 

 

 

Figure 14 Four cases explored by Bowtie for 3-mismatch Maq-like alignment. 
 

Backtracking limit 

Even with the above measures, we observe that excessive backtracking 

can have a significant adverse impact on performance when a read has many low-

quality positions and does not align or aligns poorly to the reference.  These cases 

can trigger many hundreds of backtracks per read.  We mitigate this cost by 

enforcing a limit on the number of backtracks allowed before search is terminated 

(default: 125 in the depth-first mode, 800 in best-first mode).  The limit prevents 



 30 

 

some legitimate, low-quality alignments from being reported, but we expect that 

this tradeoff is desirable for most applications.  The limit is only in effect when 

the alignment policy selected by the user is either the 2-seed-mismatch Maq-like 

or 3-seed-mismatch Maq-like policy. 

Phased versus interleaved search 

 So far, search strategies have been expressed in terms of a handful of cases 

where each case defines a constrained search.  There is still the question of how or 

in what order the searches are conducted.  One strategy is to explore each case’s 

space completely, case-by-case, stopping as soon as the desired alignment(s) have 

been reported or all cases have been exhausted.  This is a “phased” strategy.  

Phased search has at least two advantages: it is simple, and it potentially obviates 

the need to store both the forward and mirror indexes in memory at all times.  

Exploiting the latter can drastically reduce alignment memory footprint. 

To see how memory footprint can be reduced, consider two ways of 

organizing the alignment computation for a given set of reads: (a) for each read, 

conduct a phased search for that read, or (b) for each case in the search strategy, 

iterate through all reads and conduct a search for that read/case combination.  

Option (a) is “read-outer” phased search (since the “outer loop” is a loop over 

reads), while option (b) is “case-outer” phased search.  If only one index resides 

in memory at a time, read-outer phased search is very inefficient.  The problem is 

that a given read’s phased search may require one or more turnovers between the 

forward and mirror indexes.  The 4-case 3-mismatch Maq-like search, for 

instance, could trigger up to four index turnovers per read.  For a human index, a 



 31 

 

turnover involves loading more than 1 gigabyte of data from the disk to memory; 

thus, the overhead incurred is unacceptably large.  In contrast, case-outer phased 

search requires only a handful of index turnovers overall, irrespective of the 

number of reads.  The 4-case 3-mismatch Maq-like search, for instance, requires 

only four index turnovers total.  Thus, memory savings is achievable at a 

reasonable cost as long as the alignment computation is organized as a case-outer 

phased search. 

Phased search also has disadvantages.  If the best possible alignment has 

at least one mismatch, a phased search is not guaranteed to encounter that 

alignment before other, less optimal alignments.  Consider a phased 3-case 2-

mismatch Maq-like search where the best alignment has a single mismatch in the 

left half of the seed, but the second-best alignment has two mismatches in the 

right half of the seed.  A phased search that follows the three cases of Figure 13 in 

order will encounter the second-best before the best.  This is an inherent drawback 

of phased search combined with double indexing. 

Case-outer phased search has an additional drawback.  Depending on the 

type of alignment(s) requested by the user, the search may have to maintain a 

substantial amount of state across iterations of the outer case loop.  For instance, 

if the user requests at most one alignment per read, the case-outer phased search 

routine must maintain sufficient state to know which reads are “done” (have 

already had an alignment reported) to avoid reporting extraneous alignments.  For 

Maq-like search, where it is possible for a seed alignment to be identified in one 

case and then extended in the next, the search routine must persist the set of all 



 32 

 

seed alignments for all reads from one case to the next so that they can be 

extended.  This overhead quickly becomes unwieldy. 

Early versions of Bowtie used case-outer phased search in order to exploit 

the memory savings, but Bowtie has since moved toward unphased or 

“interleaved” search, though phased search can still be enabled via the Bowtie 

aligner’s –z/--phased option.  “Interleaved” refers to any strategy where cases are 

not necessarily explored one-after-the-other.  Rather, many cases can be explored 

concurrently and each individual case search can be resumed and suspended.  

Best-first search (described below) is interleaved in order to guarantee that it only 

ever extends the lowest-cost path currently active in any of the cases.  The 

memory savings that was possible with case-outer phased search is not generally 

possible with interleaved search. 

Depth-first search 

 Separate from the question of whether the search is phased or interleaved 

is the question of how the search space for a given case is explored.  Bowtie 

implements two strategies: greedy, quality-guided depth-first search, and quality-

guided best-first search.  In the depth-first search, Bowtie only ever extends the 

deepest active path through the space, operating on the principle that deep paths 

are more likely to result in valid alignments sooner than shallow paths.  When 

there are multiple ways to extend a path, the greedy depth-first search greedily 

extends in whichever way yields the lowest cumulative cost.  When backtracks 

occur, the position at which the next substitution is hypothesized is selected 

according to a greedy, quality-aware heuristic.  The heuristic selects from among 



 33 

 

the positions to the left of the last hypothesized substitution (exclusive) and to the 

right of the position that triggered the backtrack (inclusive).  Within that interval, 

it selects the leftmost position having the minimal quality value of the interval.  

Previously exhausted subtrees of the search space are marked as done so that they 

are not re-visited.  See Figure 15 for an example of how a greedy depth-first 

strategy could proceed. 

 

Figure 15 A greedy depth-first search for a read having a 2-mismatch alignment.  Purple 
lines show the progress of EXACTMATCH along the length of the read, and red circles 
show positions where the Burrows-Wheeler range becomes empty, triggering a 
backtrack.  Positions shown in red are where substitutions have been hypothesized.  
When backtracking, the search backtracks to the leftmost just-visited position with 
minimal quality value. 

 

 The greedy strategy has the advantage that its implementation can be 

simple (e.g. a recursive function), and it generally arrives at valid alignments 

quickly.  Its usefulness, however, is limited by the fact that alignments are not 

necessarily encountered in best-to-worst order.  If a user demands the best 

alignment, a depth-first search is forced to buffer potentially reportable 

alignments until all opportunities to find better alignments have been provably 

exhausted or until buffered alignments are superseded by better alignments.  

Another potential drawback is that the recursive-function implementation of the 



 34 

 

greedy strategy is difficult to adapt to an interleaved context, since recursive 

functions cannot (straightforwardly) be suspended and resumed. 

 Quality-guided, greedy depth-first search is the default search mode for 

Bowtie, both in Bowtie’s default mode and phased mode (-z/--phased option).  

Results show that it is generally about 1 to 2.5 times faster than best-first search 

using real human data, though it provides fewer guarantees regarding the quality 

of the alignments reported. 

Best-first search and top-level best-first search 

Depth-first search is efficient, but it cannot make the desirable guarantee 

that valid alignments are encountered in best-to-worst order.  Best-first search 

does make this guarantee.  It does so by only ever extending the path through the 

overall search space with the lowest cumulative cost.  Path costs are calculated 

according to the alignment policy.  If the alignment policy allows up to 3 

mismatches in the entire alignment, then the cost of a path equals the number of 

mismatches introduced along it so far.  If the alignment policy allows up to 2 

mismatches in the seed portion of the alignment and enforces an overall quality 

ceiling of 70, then the cost of a node equals the pair (m, q), where m equals the 

number of mismatches introduced in the seed so far, and q equals the total of the 

Phred qualities of all mismatched positions (both seed and non-seed) introduced 

so far.  Note that whether m is more or less significant than q when comparing 

two costs depends on the definition of “best.”  Bowtie assumes that m is more 

significant than q. 



 35 

 

Whereas depth-first search can be implemented with a recursive function, 

best-first search demands a more complex implementation.  Best-first requires a 

mechanism for suspending and resuming its progress along valid paths, since 

valid paths may alternate between being best and non-best throughout the search.  

Also, mechanisms are required to sort valid paths according to their cost (e.g. with 

a min heap), to remove from consideration paths that are no longer valid, and to 

insert new paths as they become relevant.  These are all implemented in Bowtie. 

Best-first search guarantees that valid alignments within a given case are 

encountered in best-to-worst order, but the overall search space is partitioned into 

many distinct per-case spaces.  The best-first principle must be extended to 

operate among as well as within cases.  Bowtie addresses this with a “top-level” 

best-first search that coordinates the per-case best-first searches in a way that 

maintains the overall guarantee. 

To this end, each per-case best-first search maintains a variable “minCost” 

that always holds the cost of the current lowest-cost alignment that could possibly 

emerge from that space in the future.  Note that this is not necessarily equal to the 

cost of the lowest-cost path active in the search.  To see why, consider Case 2 for 

the 1-mismatch policy depicted in Figure 8.  Any alignment emerging from that 

per-case space is bound to have at least one mismatch in the left half, even if the 

current cumulative low-cost path in that space does not yet include a mismatch. 

minCost is therefore equal to the maximum of (a) the cost of the current lowest-

cost path and (b) the projected minimum-cost alignment given the constraints 

imposed by the case (and the read’s quality values). 



 36 

 

The top-level search instructs a per-case search to make progress by 

calling a per-case “advance” function.  By reading each case’s minCost variable, 

the top-level search can maintain a min heap that organizes per-case searches 

according to which should be advanced next.  The top-level search only ever 

advances the per-case search that resides at the top of the heap (i.e. with the 

lowest minCost).  When the advance function for a case is called by the top-level 

search, it resumes exploring the case’s search space until a valid range is 

encountered or until the minCost variable changes, or both.  If a valid range is 

returned by the per-case search, the top-level search simply returns it.  If the 

minCost variable changes, the top-level search removes and then re-inserts the 

per-case search in the top-level min heap. 

Bowtie’s best-first search mode is implemented as described, and is 

enabled with the --best option.  In practice, best-first search is usually about 1 to 

2.5 times slower than greedy depth-first search, though unlike depth-first search it 

makes a strong guarantee about the quality of the alignments reported. 

Considering the reverse-complement reference strand 

The reference index is built using the forward reference strand only.  

Bowtie aligns the reverse-complement of the read to the forward reference strand 

as a proxy for aligning the original read to the reverse-complement reference 

strand.  Handling the reverse-complement of the read requires adding a new, 

parallel set of reverse-complement cases to each of the strategies outlined above.  

Each new case corresponds to one old case, but uses the reverse-complement of 

the read rather than the original read.  Reverse-complementing the read in the 



 37 

 

context of a Maq-like alignment policy also shifts the seed to the opposite end of 

the alignment.  Thus, the reverse-complement cases will use the opposite index 

from the corresponding forward cases. 

Recall that case-outer phased search (enabled via -z/--phased) examines 

cases in the outer loop and iterates through reads in the inner loop.  This 

organization allows one index to be resident in memory at a time while 

minimizing the total number of forward/mirror index turnovers required during 

alignment.  The introduction of the new reverse-complement cases potentially 

doubles the number of turnovers required in this mode.  Bowtie avoids most of 

this cost by interleaving processing of the forward and reverse-complement cases, 

effectively “packing” them into a schedule requiring as few turnovers as possible.  

Figure 16 illustrates Bowtie’s strategy for interleaving the forward and reverse-

complement cases for Maq-like 2-mismatch search.  Only one additional turnover 

is needed compared with the forward-only version.  Other alignment policies are 

interleaved similarly. 



 38 

 

 

Figure 16 Case-outer phased search using both forward and reverse-complement read.  
The search requires only one additional index turnover compared to the search using only 
the forward read. 

Strand bias 

Strand bias occurs when (a) a read aligns equally well to several sites on 

both the forward and reverse-complement strands of the reference, and (b) the 

number of such sites on one strand differs from the number on the other strand.  

When this happens, Bowtie first chooses one strand or the other with 50% 

probability, then reports a random alignment for that read from among those 

possible on the selected strand.  This tends to over-assign alignments to the sites 



 39 

 

on the strand with fewer sites and under-assign to sites on the strand with more 

sites.  The effect is mitigated, though it may not be eliminated, when reads are 

longer or when paired-end reads are used. 

Bowtie counteracts strand bias by selecting a strand with a probability 

proportional to the number of sites on that strand.  This requires knowing the 

number of equally good sites on each strand, which in turns requires calculating 

Burrows-Wheeler ranges for both strands.  This is strictly more work than is 

required otherwise; an aligner that simply allows strand bias need only obtain one 

of the two ranges in order to report an alignment. 

Bowtie’s strand bias correction is active only in best-first mode (--best).  

Strand bias is still an outstanding issue in Bowtie’s default, depth-first search 

mode. 

Paired-end alignment 

Paired-end reads comprise two separate reads (“mates”) that are 

sequenced from either end of a longer sequence (“insert”).  Mate and insert 

lengths depend on parameters of the library preparation process.  Typical mate 

lengths range from 35 up to more than 75 bases, depending on the library.  

Typical insert sizes range from 250 bases up to more than 10,000 bases, also 

depending on the library.  Within a given library, paired-end reads are typically of 

uniform length and insert sizes vary somewhat from pair to pair. 

No search strategy presented so far is practical for aligning a paired-end 

read.  Handling both mates and the gap between them as part of a single search 

process requires traversing an intractable number of long paths between the mates 



 40 

 

in the worst case.  A more tractable alternative is to align the mates separately and 

combine pairs of individual mate alignments into paired-end alignments 

according to the insert-length constraint.  When the search process discovers new 

alignments for one mate, a higher-level process intervenes and attempts to pair the 

new alignments up with previously observed alignments for the opposite mate 

such that the insert-length constraint is satisfied.  In practice, this alternative is 

still very slow.  This is for two reasons.  First, the process of finding pairs of 

alignments that satisfy the insert-length constraint is quadratic in the total number 

of alignments.  This becomes onerous when both mates align to repetitive 

sequences in the reference.  Second, resolving the insert-length constraint requires 

knowing the reference offset of both mates, which in turn requires several 

repeated invocations of the LF(r) function.  This can become onerous when either 

mate aligns to a repetitive sequence in the reference. 

A yet more tractable alternative is to align the mates separately and 

concurrently as before, but, when a new alignment is identified for one “anchor” 

mate (which could be either mate), to immediately scan the appropriate section of 

the reference genome for a valid alignment for the “opposite” mate.  This is how 

Bowtie performs paired-end alignment.  The section of the reference to scan is 

determined by the location of the anchor alignment together with the insert-length 

constraint.  The reference section is scanned starting in the center and radiating 

out to the left and right; this is because, if multiple alignments for the opposite 

mate exist within the section, we prefer to report those that are closest to the mean 

insert length.  The algorithm used to find alignments for the opposite mate is 



 41 

 

similar in spirit to Maq’s.  We store a 2-bit-per-base representation of the mates’s 

seed portion in a 64-bit word and “slide” the word window across the reference.  

At each window position, a 64-bit word is built from the corresponding reference 

substring and the two words are exclusive-or’ed to obtain a mismatch mask.  If 

the number of non-0 bit-pairs in the mask exceeds the seed limit, we proceed to 

the next window position.  If the limit is not exceeded, we attempt to extend the 

alignment through the non-seed portion.  Using 64-bit arithmetic makes this 

process relatively efficient. 

Mates that align to repetitive sequences in the reference still pose a 

problem, since many reference-scanning trials may be necessary to find a satisfied 

paired-end alignment (or to determine that there is none).  The problem is 

mitigated when one of the mates aligns uniquely or almost uniquely.  If one mate 

aligns a small number of times, it is beneficial to choose that mate as the anchor 

since we need only perform a small number of total trials before we find a 

satisfied alignment or prove that none exists.  But if both mates align to repetitive 

regions of the genome, we are forced to perform at least as many trials as there 

are alignments for the less ambiguous mate.  To address this, Bowtie imposes a 

limit on the number of trials performed for a given paired-end read before giving 

up and declaring the pair unalignable.  This may lead to some alignable pairs 

being declared unalignable, but this should only occur when both ends of the pair 

align to repetitive sequences in the reference; such alignments are not typically 

useful to the user.  The user can configure or disable this limit via the --pairtries 



 42 

 

and -y/--tryhard arguments.  The insert-length constraint is configurable via the -I 

and -X options. 

Because Bowtie’s paired-end alignment strategy requires scanning the 

reference, the reference must be stored in the Bowtie index and must be present in 

memory when paired-end reads are being aligned.  This increases Bowtie’s 

memory footprint by the size of the 2-bit-per-base-encoded reference sequence, 

which for the human genome contributes another 680 megabytes of disk space 

and memory.  Bowtie’s total memory footprint when aligning paired-end reads 

against the human genome is therefore about 2.9 gigabytes. 

Results 

Performance results were obtained using reads from the 1000 Genomes 

project pilot [NCBI Short Read Archive:SRR001115].  A total of 8.84 million 

reads, about 1 lane of data from an Illumina instrument, were trimmed to 35 bases 

and aligned to the human reference genome [NCBI build 36.3].  Unless specified 

otherwise, read data is not filtered or modified (besides trimming) from how it 

appears in the Archive.  This leads to about 70-75% of reads aligning somewhere 

to the genome.  This is typical for raw data from the Archive.  More aggressive 

filtering leads to higher alignment rates and faster alignment. 

All runs were performed on a single CPU.  Bowtie speedups were 

calculated as a ratio of wall-clock alignment times.  Both wall-clock and CPU 

times are given to demonstrate that I/O load and CPU contention are not 

significant factors. 



 43 

 

The time required to build the Bowtie index was not included in the 

Bowtie running times.  Prior to the alignment step, the user must compute an 

index for the reference genome, which can then be re-used across many alignment 

runs.  We anticipate most users will simply download such indices from a public 

repository.  The Bowtie website [31] provides indices for current builds of the 

human, chimp, mouse, dog, rat, and Arabidopsis thaliana genomes, among others. 

Results were obtained on two hardware platforms: a desktop workstation 

with 2.4 GHz Intel Core 2 processor and 2 gigabytes of RAM; and a large-

memory server with a 4-core 2.4 GHz AMD Opteron processor and 32 gigabytes 

of RAM.  These are denoted “PC” and “server” respectively.  Both PC and server 

run Red Hat Enterprise Linux AS release 4. 

Comparison to SOAP, Maq and BWA 

Maq is a popular aligner [1, 4, 5, 32, 33] that is among the fastest 

competing open source tools for aligning millions of Illumina reads to the human 

genome.  SOAP is another open source tool that has been published and used in 

short-read projects [6, 34].  Table 1 presents the performance and sensitivity of 

Bowtie v0.9.6, Bowtie v0.9.9.3 (for --best results), SOAP v1.10 and Maq v0.6.6.  

SOAP v1.10 could not be run on the PC because SOAP’s memory footprint 

exceeds the PC’s physical memory.  The “soap.contig” version of the SOAP 

binary was used.  For comparison with SOAP, Bowtie was invoked with “-v 2” to 

mimic SOAP’s default matching policy (which allows up to 2 mismatches in the 

alignment and disregards quality values), and with “--maxns 5” to simulate 

SOAP’s default policy of filtering out reads with 5 or more no-confidence bases. 



 44 

 

For the Maq comparison Bowtie is run with its default policy, which mimics 

Maq’s default policy of allowing up to 2 mismatches in the first 28 bases and 

enforcing an overall limit of 70 on the sum of the quality values at all mismatched 

read positions.  To make Bowtie’s memory footprint more comparable to Maq’s, 

Bowtie is invoked with the “-z” option in the experiments where the “--best” 

option is not specified to ensure only the forward or mirror index is resident in 

memory at one time.  To demonstrate Bowtie’s performance when best-first 

search is used, we also show results using the latest version of Bowtie (0.9.9.3) 

with the “--best” option specified.  For those runs, Bowtie is not invoked with “-

z”, since “-z” is incompatible with best-first search. 

The number of reads aligned indicates that SOAP (67.3%) and Bowtie –v 

2 (67.4%) have comparable sensitivity.  Of the reads aligned by either SOAP or 

Bowtie, 99.7% were aligned by both, 0.2% were aligned by Bowtie but not 

SOAP, and 0.1% were aligned by SOAP but not Bowtie.  Maq (74.7%) and 

Bowtie (without --best) (71.9%) also have roughly comparable sensitivity, though 

Bowtie lags by 2.8 percentage points.  Of the reads aligned by either Maq or 

Bowtie, 96.0% were aligned by both, 0.1% were aligned by Bowtie but not Maq, 

and 3.9% were aligned by Maq but not Bowtie.  Of the reads mapped by Maq but 

not Bowtie, almost all are due to some flexibility in Maq’s alignment algorithm 

that allows some alignments to have 3 mismatches in the seed.  The remainder of 

the reads mapped by Maq but not Bowtie are due to Bowtie’s backtracking 

ceiling.  Note that Bowtie --best makes up some (0.1 percentage points) of the gap 

by having a higher backtracking ceiling. 



 45 

 

Maq’s documentation mentions that reads containing “poly-A artifacts” 

can impair Maq’s performance.  Table 2 presents performance and sensitivity of 

Bowtie and Maq when the read set is filtered using Maq’s “catfilter” command to 

eliminate poly-A artifacts.  The filter eliminates 438,145 out of 8,839,010 reads.  

Other experimental parameters are identical to those of the experiments in Table 

1, and the same observations about the relative sensitivity of Bowtie and Maq 

apply here. 

Table 1 Performance and sensitivity of Bowtie v0.9.6, SOAP v1.10 and Maq v0.6.6 
when aligning 8.84M reads from the 1000 Genome project [NCBI Short Read 
Archive:SRR001115] trimmed to 35 base pairs.  The “soap.contig” version of the SOAP 
binary was used. SOAP could not be run on the PC because SOAP’s memory footprint 
exceeds the PC’s physical memory.  For the SOAP comparison, Bowtie was invoked 
with “-v 2” to mimic SOAP’s default matching policy (which allows up to 2 mismatches 
in the alignment and disregards quality values).  For the Maq comparison Bowtie is run 
with its default policy, which mimics Maq’s default policy of allowing up to 2 
mismatches in the first 28 bases and enforcing an overall limit of 70 on the sum of the 
quality values at all mismatched positions.  To make Bowtie’s memory footprint more 
comparable to Maq’s, Bowtie is invoked with the “-z” option in all experiments to ensure 
only the forward or mirror index is resident in memory at one time. 

 CPU time 
Wall clock 

time 

Reads 
mapped 
per hour 

(millions) 

Peak 
virtual 

memory 
footprint 

(MB) 
Bowtie 
speedup 

Reads 
aligned 

(%) 

Bowtie –v 2 (server) 15m:07s 15m:41s 33.8 1,149 - 67.4 

SOAP (server) 91h:57m:35s 91h:47m:46s 0.10 13,619 351x 67.3 

Bowtie (PC) 16m:41s 17m:57s 29.5 1,353 - 71.9 

Maq (PC) 17h:46m:35s 17h:53m:07s 0.49 804 59.8x 74.7 

Bowtie (server) 17m:58s 18m:26s 28.8 1,353 - 71.9 

Bowtie ==best (server) 46m:54s 47m:23s 11.2 2,383 2.6x 72.0 

Maq (server) 32h:56m:53s 32h:58m:39s 0.27 804 107x 74.7 

 



 46 

 

Table 2 Performance and sensitivity of Bowtie v0.9.6 and Maq v0.6.6 when the read set 
is filtered using Maq’s “catfilter” command to eliminate poly-A artifacts.  The filter 
eliminates 438,145 out of 8,839,010 reads.  Other experimental parameters are identical 
to those of the experiments in Table 1. 

 CPU time 
Wall clock 

time 

Reads 
mapped 
per hour 

(millions) 

Peak 
virtual 

memory 
footprint 

(MB) 
Bowtie 
speedup 

Reads 
aligned 

(%) 

Bowtie (PC) 16m:39s 17m:47s 29.8 1,353 - 74.9 

Maq (PC) 11h:15m:58s 11h:22m:02s 0.78 804 38.4x 78.0 

Bowtie (server) 18m:20s 18m:46s 28.3 1,352 - 74.9 

Bowtie --best (server) 42m:38m 43m:28s 12.2 2,383 2.3x 75.1 

Maq (server) 18h:49m:07s 18h:50m:16s 0.47 804 60.2x 78.0 

Read length and performance 

As sequencing technology improves, read lengths are growing beyond the 

30-50 bases commonly seen in public databases today.  Bowtie, Maq, and SOAP 

support reads of lengths up to 1024, 63, and 60 bases respectively, and Maq 

versions 0.7.0 and later support read lengths up to 127 bases.  Table 3 shows 

performance results when the three tools are each used to align three sets of 2M 

untrimmed reads, a 36-base set, a 50-base set and a 76-base set, to the human 

genome on the server platform.  Each set of 2M is randomly sampled from a 

larger set [NCBI Short Read Archive: SRR003084 for 36-base, SRR003092 for 

50-base, SRR003196 for 76-base].  Reads were sampled such that the three sets of 

2M have uniform per-base error rate, as calculated from per-base Phred qualities.  

All reads pass through Maq’s “catfilter”. 

Bowtie is run both in its Maq-like default mode and in its SOAP-like “-v 

2” mode.  Bowtie is also given the “-z” option to ensure only the forward or 

mirror index is resident in memory at one time.  Maq v0.7.1 was used instead of 



 47 

 

Maq v0.6.6 for the 76-base set because v0.6.6 cannot align reads longer than 63 

bases.  SOAP was not run on the 76-base set because it does not support reads 

longer than 60 bases. 

The results show that Maq’s algorithm scales better overall to longer read 

lengths than Bowtie or SOAP.  However, Bowtie in SOAP-like “-v 2” mode also 

scales very well.  Bowtie in its default Maq-like mode scales well from 36- to 50-

base reads but is substantially slower for 76-base reads, though it is still more than 

an order of magnitude faster than Maq. 

Table 3 The performance of Bowtie v0.9.6, SOAP v1.10, Maq versions v0.6.6 and v0.7.1 
on the server platform when aligning 2M untrimmed reads from the 1000 Genome 
project [NCBI Short Read Archive: SRR003084 for 36-base, SRR003092 for 50-base, 
SRR003196 for 76-base].  For each read length, the 2M reads were randomly sampled 
from the FASTQ file downloaded from the Archive such that the average per-base error 
rate as measured by quality values was uniform across the three sets. All reads pass 
through Maq’s “catfilter”.  Maq v0.7.1 was used for the 76-base reads because v0.6.6 
does not support reads longer than 63 bases.  SOAP is excluded from the 76-base 
experiment because it does not support reads longer than 60 bases.  Other experimental 
parameters are identical to those of the experiments in Table 1. 

Length 
(bases) Program CPU time 

Wall clock 
time 

Peak virtual 
memory 
footprint 

(MB) 
Bowtie 
speedup 

Reads 
aligned (%) 

36 Bowtie 6m:15s 6m:21s 1,305 - 62.2 

 Maq 3h:52m:26s 3h:52m:54s 804 36.7x 65.0 

 Bowtie –v 2 4m:55s 5m:00s 1,138 - 55.0 

 SOAP 16h:44m:03s 18h:01m:38s 13,619 216x 55.1 

50 Bowtie 7m:11s 7m:20s 1,310 - 67.5 

 Maq 2h:39m:56s 2h:40m:09s 804 21.8x 67.9 

 Bowtie –v 2 5m:32s 5m:46s 1,138 - 56.2 

 SOAP 48h:42m:04s 66h:26m:53s 13,619 691x 56.2 

76 Bowtie 18m:58s 19m:06s 1,323 - 44.5 

 Maq 0.7.1 4h:45m:07s 4h:45m:17s 1,155 14.9x 44.9 

 Bowtie –v 2 7m:35s 7m:40s 1,138 - 31.7 



 48 

 

 

Paired-end performance 

Table 4 presents the performance and sensitivity of Bowtie v0.9.9.3 and 

Maq v0.6.6 when aligning 6 million human paired-end reads with mates of length 

48 and 40.  The paired-end reads are taken from the Short Read Archive (Run 

accession SRR001802).  Bowtie is run both in “-v 2” mode, where neither mate is 

permitted to align with more than 2 mismatches, and in “-n 2” mode, which 

enforces the Maq-like alignment policy on both mates, where no more than 2 

mismatches are permitted in the seed and the quality ceiling is 70.  Maq’s paired-

end aligner uses an approach that, like Bowtie’s, first aligns one mate as an 

anchor, then searches for the opposite mate by scanning the relevant region of the 

reference.  If the opposite mate cannot be found in the initial pass, Maq makes a 

second attempt using Smith-Waterman [16] to scan the region, enforcing a looser 

alignment policy that allows gaps.  Bowtie uses a sliding seed-and-extend window 

that enforces the same alignment policy as for the anchor mate.  As shown in 

Table 4, Maq’s more sensitive policy (both for the anchor and for the opposite 

mate) allows it to align more pairs than Bowtie. 

Note that since Bowtie’s paired-end alignment strategy requires scanning 

regions of the reference, the reference string must be present in memory.  This 

leads to a larger memory footprint.  As shown in Table 4, Bowtie’s memory 

footprint is significantly larger than Maq’s, though it is still small enough to be 

run on a workstation with 4 gigabytes of RAM. 

Table 4 The performance of Bowtie v0.9.9.3 and Maq v0.6.6 on the server platform 
when aligning 6M untrimmed 48x40-base paired-end reads from the 1000 Genome 
project [NCBI Short Read Archive: SRR001802].  All reads pass through Maq’s 



 49 

 

“catfilter”.  Bowtie speedup for the Maq row is calculated with respect to Bowtie with its 
default options (not with –v 2, which is further from Maq’s default).  Other experimental 
parameters are identical to those of the experiments in Table 1. 

 

 CPU time Wall clock time 

Pairs 
mapped per 

hour 
(millions) 

Peak 
virtual 

memory 
footprint 

(MB) 
Bowtie 
speedup 

Pairs 
aligned 

(%) 

Additional 
pairs SW 

aligned (%) 

Bowtie –v 2 1h:32m:44s 1h:33m:21s 1.3 3,029 - 42.8 - 

Bowtie 2h:14m:01s 2h:14m:56s 0.89 3,021 - 57.4 - 

Maq 20h:24m:35s 20h:26m:07s 0.074 1,131 9.1x 65.6 4.1 

 

Parallel performance 

Alignment can be parallelized by distributing reads across concurrent 

search threads.  Bowtie allows the user to specify a desired number of threads 

(option –p); Bowtie then launches the specified number of threads using the 

pthreads library.  Bowtie threads synchronize with each other when fetching 

reads, outputting results, switching between indices, and performing various 

global bookkeeping, such as marking a read as “done.”  Otherwise, threads are 

free to operate in parallel, substantially speeding up alignment on computers with 

multiple processor cores.  The memory image of the index is shared by all 

threads, so footprint does not increase substantially when multiple threads are 

used.  Table 4 shows performance results for running Bowtie v0.9.6 on the 4-core 

server with 1, 2, and 4 threads. 

Table 5 Performance results for running Bowtie v0.9.6 on the 4-core server with 1, 2, 
and 4 threads.  Other experimental parameters are identical to those of the experiments in 
Table 1. 

 



 50 

 

 CPU time 
Wall 

clock time 

Reads 
mapped per 

hour 
(millions) 

Peak virtual 
memory 
footprint 

(MB) Speedup 

Bowtie, 1 thread (server) 18m:19s 18m:46s 28.3 1,353 - 

Bowtie, 2 threads (server) 20m:34s 10m:35s 50.1 1,363 1.77x 

Bowtie, 4 threads (server) 23m:09s 6m:01s 88.1 1,384 3.12x 

 



 51 

 

Chapter 4: Time-space tradeoffs in Burrows-Wheeler 
indexing 
 

This chapter explores Burrows-Wheeler index construction.  First we 

introduce a recently discovered blockwise technique that makes it possible to 

construct the suffix array and Burrows-Wheeler index in a relatively small 

memory footprint.  We measure some of the approach’s tradeoffs and show that, 

for blockwise index construction, the difference cover sample appears to be a 

critical factor in achieving good performance for genomes as repetitive as the 

human genome.  Finally, we present performance results achieved using the 

Bowtie index builder on the human genome. 

Blockwise index construction 

 We previously visualized building the Burrows-Wheeler Transform as the 

process of (a) building the Burrows-Wheeler Matrix, i.e. the matrix whose rows 

are all cyclic rotations of the input text followed by $ sorted lexicographically, 

and then (b) reading the characters of BWT(T) from the last column of the matrix 

(Figure 1).  But the relationship between the Burrows-Wheeler Matrix and the 

Suffix Array (SA) suggests an alternate way to define and build BWT(T) in terms 

of the text T and the suffix array SA: 

 

Figure 17 Alternate definition of the Burrows-Wheeler Transform BWT(T) in terms of 
the original text T and the suffix array of the original text, SA. 

 



 52 

 

There are well known ways of constructing the suffix array efficiently.  

However, for the human genome, the memory footprints of these techniques 

generally exceed the physical memory of a typical workstation.  About 11-12 

gigabytes of space is required simply to store the final answer.  Since most 

techniques calculate the answer in memory, their footprint will be at least this 

large.  Popular suffix-sorting algorithms like Larsson-Sadakane [35] and Manber-

Myers [36] construct the suffix array and the inverse suffix array in tandem, 

incurring a peak memory footprint about twice the size of the suffix array: ~22-24 

gigabytes for the human genome. 

Recent work by Kärkkäinen [37] proposes a blockwise technique that 

builds the suffix array block-by-block, discarding each block after calculating the 

corresponding block of the BWT.  This can reduce peak memory usage by 

obviating the need to store the entire suffix array in memory.  The maximum size 

of a block is given by a parameter bmax.  The overall blockwise BWT construction 

algorithm is as follows: 

 

1. From the set of all suffixes, choose a random sample of "splitter" suffixes.  

Include the lexicographically greatest and least suffixes as splitters. 

2. Sort the splitters lexicographically 

3. For each consecutive pair of splitters, starting with lexicographically 

smallest, do: 

a. For each suffix of the input text, add it to list L if it falls 

lexicographically between the two splitters 



 53 

 

b. Sort all suffixes in L, thus making L a contiguous block of the 

suffix array 

c. Compute the BWT block corresponding to L and discard L 

4. Output the concatenation of all BWT blocks computed in 3c 

 

Care must be taken to choose splitters that yield a relatively even 

distribution of sizes for the suffix array blocks.  Bowtie’s implementation uses 

something akin to the heuristic suggested by Kärkkäinen [37] of choosing more 

splitters than are needed, determining the sizes of the resulting buckets using 

Manber-and-Myers binary search [36], then doing a round of splitting and 

merging and, if any blocks have more than bmax elements, iterating the process 

again. 

Kärkkäinen's goal is an algorithm with sub-quadratic time and sub-linear 

space complexity.  The potentially problematic steps are 2, 3a, and 3b.  

Kärkkäinen proposes an algorithm based on Z boxes for step 3a that is linear in 

the length of the input text.  Two problems remain.  First, the Z-box-based 

algorithm requires space linear in the length of the text in order to store the Z 

values.  Second, neither of the suffix sorting steps (2 and 3b) can be performed 

straightforwardly in both sub-quadratic time and sublinear space. 

Kärkkäinen's solution to both problems is the difference cover (DC) 

sample, a concept first applied to suffix sorting by Burkhardt and Kärkkäinen 

[38].  The idea is to first sort a relatively small subset (sample) of the suffixes, 

then use the lexicographical ordering of the samples to help break difficult “ties” 



 54 

 

in later stages.  A key parameter is the “period” of the difference cover sample, v, 

which dictates the density of the sample, and also ultimately dictates the worst-

case amount of work that must be done to determine the relative lexicographical 

ordering of two strings given the sample.  With the help of the sample, the sorting 

steps (2 and 3b) run in O(n log n + vn) time, and the binary-search step (3a) runs 

in O(v) space.  The sample itself can be calculated in O(n log n + v) time [38]. 

Effect of block size on indexing performance 

Table 5 shows the impact of maximum block size (bmax) on the time and 

memory performance of an early version of the Bowtie blockwise indexer.  

Results are shown for three texts of different sizes: human chromosomes 21 (25 

Mbases) 11 (131 Mbases) and 1 (226 Mbases).  All DNA sequences used were 

downloaded from the contig version of NCBI human genome build 36.3.  

Experiments were performed on a server with 32GB of physical RAM and 4 dual-

core 2.2 GHz AMD Opteron 875 Processors. 

Table 6 Impact of maximum block size on the time and memory performance of the 
Bowtie blockwise indexer.  The difference cover period is fixed at 1024 for all runs. 

Run Description Wall clock 
running time 

Peak virtual memory 
footprint 

Chromosome 21 (25 Mbases) 

Max block size: 32M (2 blocks) 0m:51s 329 MB 

Max block size: 16M (3 blocks) 0m:56s 192 MB 

Max block size: 8M (6 blocks) 0m:58s 124 MB 

Max block size: 4M (13 blocks) 1m:19s Not measured 

Max block size: 2M (25 blocks) 1m:47s Not measured 

Max block size: 1M (49 blocks) 2m:51s Not measured 



 55 

 

Chromosome 11 (131 Mbases) 

Max block size: 128M (2 blocks) 3m:39s 977 MB 

Max block size: 64M (4 blocks) 4m:18s 562 MB 

Max block size: 32M (5 blocks) 3m:56s 381 MB 

Max block size: 16M (10 blocks) 5m:55s 264 MB 

Max block size: 8M (22 blocks) 7m:11s 206 MB 

Max block size: 4M (44 blocks) 9m:54s 185 MB 

Chromosome 1 (226 Mbases) 

Max block size: 128M (3 blocks) 10m:07s 1,155 MB 

Max block size: 64M (5 blocks) 11m:17s 870 MB 

Max block size: 32M (9 blocks) 11m:26s 543 MB 

Max block size: 16M (19 blocks) 13m:28s 434 MB 

Max block size: 8M (38 blocks) 18m:13s 387 MB 

Max block size: 4M (77 blocks) 27m:25s 374 MB 

 
The results exhibit a consistent, direct relation between the number of 

blocks and the running time of the algorithm.  This is expected, since the 

construction of each block requires a separate pass over the entire input text (step 

3a).  There is also an inverse relation between the number of blocks and memory 

usage.  This too is expected since fewer and larger blocks lead to more peak and 

average memory usage for storing and sorting those blocks. 

For each chromosome, there seems to be a point of diminishing returns in 

the time/space tradeoff as the number of blocks increases.  Beyond that point, 

peak and average memory usage decrease very little while runtime increases 

substantially.  This implies that for a given input text there will generally be a 

"sweet spot" where the blockwise construction yields a substantial space savings 



 56 

 

without affecting runtime too badly.  In these experiments, that point lies at 

roughly 10 blocks. 

The number of blocks for a particular run does not correspond cleanly to 

the maximum block size (e.g. halving the block size from 64M to 32M leads to 

only 1 additional block for Chromosome 11).  This is owing to randomness in the 

process of selecting samples, as well as the tendency of the splitter heuristic to 

settle quickly on a “good enough” set of bucket boundaries. 

Effect of difference cover and period on indexing performance 

The difference cover sample breaks lexicographical "ties" between two 

suffixes in constant time when those suffixes share a sufficiently long prefix.  In 

Kärkkäinen's algorithm, the difference cover sample is constructed up front and 

then used to reduce the asymptotic complexity of sorting (in steps 2 and 3b) and 

block accumulation (step 3a).  Like Kärkkäinen's, Bowtie’s implementation 

constrains the period to be a power of 2 to avoid costly division and modulus 

operations.  Table 6 shows how disabling the difference cover sample and 

adjusting its period affects runtime and memory usage for experiments using 

chromosomes 1, 11 and 21. 

Table 7 Impact of difference-cover period on the time- and memory-performance of the 
Bowtie blockwise indexer.  The maximum block sizes are set to 16 M for all 
Chromosome 21 runs, 32 M for all Chromosome 11 runs, and 64M for all Chromosome 1 
runs. 

Run Description Wall clock 
running time 

Peak virtual memory 
footprint 

Chromosome 21 (25 Mbases) 

No difference cover 1m:00s 154 MB 

Difference cover period = 4096 1m:01s 176 MB 



 57 

 

Difference cover period = 2048 1m:01s 157 MB 

Difference cover period = 1024 0m:56s 192 MB 

Difference cover period = 512 1m:00s 168 MB 

Difference cover period = 256 0m:51s 193 MB 

Chromosome 11 (131 Mbases) 

No difference cover 4m:32s 337 MB 

Difference cover period = 4096 4m:30s 338 MB 

Difference cover period = 2048 5m:18s 348 MB 

Difference cover period = 1024 3m:56s 375 MB 

Difference cover period = 512 4m:46s 379 MB 

Difference cover period = 256 4m:34s 386 MB 

Chromosome 1 (226 Mbases) 

No difference cover 23m:00s 830 MB 

Difference cover period = 4096 16m:29s 867 MB 

Difference cover period = 2048 12m:27s 836 MB 

Difference cover period = 1024 11m:17s 870 MB 

Difference cover period = 512 10m:47s 833 MB 

Difference cover period = 256 9m:10s 980 MB 

 
 

While the difference cover does not significantly affect the time or memory 

performance of indexing Chromosomes 21 or 11, it substantially improves the 

running time for indexing Chromosome 1.  As expected, the improvement grows 

as the period decreases.  That the effect is observed only for Chromosome 1 is 

likely owing to Chromosome 1’s repeat content.  In no experiment did the 

construction and use of the difference cover have an obvious effect on memory 



 58 

 

footprint, though such an effect would likely be visible for periodicities less than 

512. 

Use of difference cover seems to be critical in keeping the runtime of highly 

repetitive sequences under control, and a periodicity in the neighborhood of 512 

seems to be a reasonable trade between added memory overhead and runtime 

improvement. 

Performance for human genome 

Table 7 presents memory footprints and wall clock times for a human-

genome run of the indexer under parameters selected to satisfy different physical 

memory constraints.  These runs were performed on a server with a 2.4 GHz 

AMD Opteron processor and 32 gigabytes of RAM.  “Number of blocks” 

indicates how many blocks the blockwise algorithm used.  “Difference cover 

period” indicates the periodicity of the up-front difference-cover-based pre-sort.  

“2-bit-per-base references” indicates whether a bit-packed representation of the 

reference sequence was used.  The bit-packed representation reduces memory 

footprint but increases running time. 

Table 8 Memory footprints and wall clock times for a human-genome run of the indexer 
under parameters selected to satisfy different physical memory constraints.  Runs were 
performed on a server with a 2.4 GHz AMD Opteron processor and 32 gigabytes of 
RAM.  “Number of blocks” indicates how many blocks the blockwise algorithm used.  
“Difference cover period” indicates the periodicity of the up-front difference-cover-based 
pre-sort.  “2-bit-per-base references” indicates whether a bit-packed representation of the 
reference sequence was used. 

Physical memory 
Target (gigabytes) 

Actual peak 
memory 
footprint 

(gigabytes) 

# suffix array 
blocks 

Difference 
cover period 

Bit-packed 
reference 

Wall 
clock time 

16 14.4 1 256 no 4h:36m 

8 5.84 6 1024 no 5h:05m 



 59 

 

4 3.39 34 4096 no 7h:40m 

2 1.39 34 4096 yes 21h:30m 

 

 

 

 

 

 

 



 60 

 

Chapter 5:  Improved scalability and convenience with Cloud 

Computing 

 This chapter presents the design of Crossbow, an adaptation of Bowtie to a 

Cloud Computing context.  Performance results are reported showing that 

Crossbow is capable of aligning about 14.3x coverage of human reads in about 1 

hour and 11 minutes of wall-clock time. 

Introduction 

With the advent of robust implementations of cloud computing software 

and services such as Hadoop [20] and Amazon Web Services [21], it is 

increasingly possible to solve very data-intensive problems efficiently without 

ever buying or maintaining sophisticated computer equipment.  This chapter 

presents a framework called Crossbow that combines the speed advantage of 

Bowtie with the computational capacity available from Amazon’s Elastic 

Compute Cloud (EC2) service to align reads and detect single-nucleotide 

variations in human datasets. 

Crossbow combines the Bowtie aligner with a simple single-nucleotide 

variant detector.  Both the aligner and the variant detector have been customized 

to work together in a MapReduce [22] context.  Crossbow runs in any 

environment that supports the Hadoop [20] MapReduce implementation, 

including on Hadoop “instances” (virtual machines) provided by Amazon for use 

within the Elastic Compute Cloud (EC2) web service.  We present results 

demonstrating that Crossbow is capable of aligning about 14.3x-coverage worth 



 61 

 

of human Illumina reads in 1 hour and 11 minutes using an EC2 cluster of 20 

Extra-Large High-CPU nodes (1 master, 19 slaves), incurring a total of about $32 

in cluster rental fees.  Since Amazon EC2 is available to anyone with an Amazon 

AWS account, and because our work uses publicly available EC2 machine images 

in combination with scripts that can be downloaded from the Bowtie website, our 

technique and results are readily reproducible by others. 

Variation detection in MapReduce 

The insight behind Crossbow is that variation detection problem can be 

factored into a Map function: alignment, and a Reduce function: variant detection 

over a contiguous stretch of the reference.  Crossbow’s Map function takes as 

input a key/value pair representing a single read with quality values (in FASTQ 

format) and aligns the read to the human genome using the Bowtie alignment 

algorithm with its default arguments, which reports at most one alignment per 

read or read pair.  The output of the Map function is empty if Bowtie reports no 

alignments.  If Bowtie reports an alignment, the output is a key/value pair where 

the key is an identifier that uniquely identifies the contiguous stretch of the 

reference text that was aligned to (e.g., offsets 100,000-200,000 of human 

Chromosome 1), and the value is the alignment itself.  Crossbow’s Reduce 

function takes a bundle of key/value pairs output by the Map function where all 

bundled pairs share a particular key (indicating that all bundled alignments are 

located along the same contiguous stretch of the reference genome).  The Reduce 

function then sorts the bundled alignments along the length of the reference, 

forming a multiple alignment including the reads and the reference, then examines 



 62 

 

each column of the multiple alignment and detects variations using a simple 

model that scores the significance of a hypothetical homozygous single-

nucleotide variation.  The output of the Reduce function is a (possibly empty) list 

of key/value pairs where each pair describes a single detected variant. 

Organizing Crossbow as Map and Reduce functions enables it to run in the 

context of a MapReduce implementation such as Hadoop.  Hadoop applications 

can be readily scaled to a very large number of computers.  The Hadoop 

infrastructure abstracts away a number of the engineering questions about, for 

example, how to recruit a set of computers into a cluster, how to spawn Map and 

Reduce tasks on those computers, how to forward the input key/value pairs to the 

mappers, how to bundle the output key/value pairs output by the mappers, how to 

kill the mappers, how to spawn the reducers, how to forward the bundled mapper 

outputs to the appropriate reducers, and how to collect and store the output 

key/value pairs output by the reducers. 

Another advantage is that Hadoop applications can be run “in the cloud” 

using Amazon’s EC2 service.  Any researcher with an Amazon AWS account and 

sufficient funds can run large-scale applications on EC2.   Because the EC2 

infrastructure is generic and not tied to vagaries of a particular cluster setup, 

results obtained in EC2 are easy for other researchers to recreate. 

Simple Storage Service 

Datasets provided as input to Crossbow are typically quite large.  For the 

experiment described in this paper, the input consists of about 130 GB of 

uncompressed FASTQ files.  We first upload the input data to Amazon’s Simple 



 63 

 

Storage Service (S3).  Using 10 EC2 nodes to simultaneously download the input 

data from the Short Read Archive and upload it into S3 takes about 3-5 hours.  

During this time, fees are assessed for use of the nodes (about $1 per hour) and 

for the amount of data transferred (about $13 for this dataset).  Once the transfer 

is complete, a monthly fee is assessed per gigabyte of data stored in S3 (about $20 

per month for this dataset).  If the time delay and/or fees are undesirable the user, 

the user always has the option of running Crossbow on a local Hadoop cluster 

where the data is available locally. 

Adapting Bowtie to Hadoop 

Several minor customizations were made to the Bowtie aligner to allow it 

to operate within Hadoop.  These included (a) adding an option to take read input 

from standard-in, (b) changing the output to optionally include a “partition key,” 

which acts as the key for pairs emitted by the mapper. 

Crossbow’s Reduce function takes a bundle of all key/value pairs having a 

particular key, so the Bowtie aligner had to be modified to output this key.  The 

key consists of a chromosome identifier followed by an ASCII space character 

followed by the offset of the alignment within the chromosome divided by the 

partition size.  The partition size is simply an upper bound on the length of 

genome that may be represented by a particular key.  Crossbow sets the partition 

size to an appropriate value (the experiments described in this thesis used a value 

of 100,000) via a command-line option when it invokes the Bowtie aligner. 

A problem arises when an alignment generated by the Bowtie aligner 

spans multiple partitions.  Assigning the read to only one or the other of the two 



 64 

 

partitions creates an artificial “breakpoint” in the overall multiple alignment at the 

junction and deprives the variant detector of some relevant information.  This in 

turn could cause spurious mispredictions in the reducer.  Thus, Bowtie generates a 

separate alignment report (with the same value but a different key) for each 

partition overlapped by a particular alignment. 

Results 

To test Crossbow’s ability to detect variations with respect to a large 

dataset, an experiment was performed using 20 High-CPU Extra Large Instances 

(1 master, 19 slaves) from Amazon’s EC2 service; each instance has 7 GB RAM 

and 8 cores, each approximately 3.0 Ghz.  The input data consisted of 129 GB of 

FASTQ reads from the 1000 Genomes pilot project, obtained from the NCBI 

Short Read Archive; this constitutes 14.3x coverage of the human genome (before 

alignment).  The input data, binaries for the Bowtie aligner and variant caller, and 

a Bowtie index of the human genome (NCBI Build 36.3, assembled) were all 

initially uploaded to S3.  12 mappers were run on each instance and 12 reducers 

were run in total.  Output was written directly to a directory in S3. 

At 80¢ per node per hour, the experiment cost $16 per hour for all 20 

nodes. 12 mappers were run per instance even though each instance has only 8 

cores in an attempt to oversubscribe each instance to better hide the latency of 

fetching data from S3 and the idleness that co-occurs with task switchovers. 

The experiment required 1 hour and 11 minutes to run.  The overall 

experiment detected about 727,000 single-base substitutions.  This number is 

lower than the expected total number of SNPs per individual, which is 



 65 

 

approximately 3-4 million.  This is not surprising since (a) only about 60-70% of 

the reads aligned, (b) coverage of the reads that do align is not evenly distributed 

over the whole genome, and (c) the variation detector only detects homozygous 

single-base substitutions, whereas many human substitutions are observed to be 

heterozygous.  Extending the Crossbow SNP caller to detect heterozygous SNPs 

is future work.  



 66 

 

Bibliography 

 
1. Down TA, Rakyan VK, Turner DJ, Flicek P, Li H, Kulesha E, Graf S, 

Johnson N, Herrero J, Tomazou EM, Thorne NP, Backdahl L, Herberth 
M, Howe KL, Jackson DK, Miretti MM, Marioni JC, Birney E, Hubbard 
TJ, Durbin R, Tavare S, Beck S: A Bayesian deconvolution strategy for 
immunoprecipitation-based DNA methylome analysis. Nat Biotechnol 
2008, 26:779-785. 

2. Johnson DS, Mortazavi A, Myers RM, Wold B: Genome-wide mapping 
of in vivo protein-DNA interactions. Science 2007, 316:1497-1502. 

3. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y: RNA-seq: An 
assessment of technical reproducibility and comparison with gene 
expression arrays. Genome Res 2008. 

4. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, 
Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR, Boutell JM, 
Bryant J, Carter RJ, Keira Cheetham R, Cox AJ, Ellis DJ, Flatbush MR, 
Gormley NA, Humphray SJ, Irving LJ, Karbelashvili MS, Kirk SM, Li H, 
Liu X, Maisinger KS, Murray LJ, Obradovic B, Ost T, Parkinson ML, 
Pratt MR et al: Accurate whole human genome sequencing using 
reversible terminator chemistry. Nature 2008, 456:53-59. 

5. Ley TJ, Mardis ER, Ding L, Fulton B, McLellan MD, Chen K, Dooling D, 
Dunford-Shore BH, McGrath S, Hickenbotham M, Cook L, Abbott R, 
Larson DE, Koboldt DC, Pohl C, Smith S, Hawkins A, Abbott S, Locke 
D, Hillier LW, Miner T, Fulton L, Magrini V, Wylie T, Glasscock J, 
Conyers J, Sander N, Shi X, Osborne JR, Minx P et al: DNA sequencing 
of a cytogenetically normal acute myeloid leukaemia genome. Nature 
2008, 456:66-72. 

6. Wang J, Wang W, Li R, Li Y, Tian G, Goodman L, Fan W, Zhang J, Li J, 
Zhang J, Guo Y, Feng B, Li H, Lu Y, Fang X, Liang H, Du Z, Li D, Zhao 
Y, Hu Y, Yang Z, Zheng H, Hellmann I, Inouye M, Pool J, Yi X, Zhao J, 
Duan J, Zhou Y, Qin J et al: The diploid genome sequence of an Asian 
individual. Nature 2008, 456:60-65. 

7. Li H, Ruan J, Durbin R: Mapping short DNA sequencing reads and 
calling variants using mapping quality scores. Genome Res 2008. 

8. Li R, Li Y, Kristiansen K, Wang J: SOAP: short oligonucleotide 
alignment program. Bioinformatics 2008, 24:713-714. 

9. Kaiser J: DNA sequencing. A plan to capture human diversity in 1000 
genomes. Science 2008, 319:395. 

10. Smith AD, Xuan Z, Zhang MQ: Using quality scores and longer reads 
improves accuracy of Solexa read mapping. BMC Bioinformatics 2008, 
9:128. 

11. Lin H, Zhang Z, Zhang MQ, Ma B, Li M: ZOOM! Zillions Of Oligos 
Mapped. Bioinformatics 2008. 



 67 

 

12. SHRiMP - SHort Read Mapping Package. 
http://compbiocstorontoedu/shrimp/. 

13. Baeza-Yates RA, Perleberg CH: Fast and practical approximate string 
matching. Inf Process Lett 1996, 59:21-27. 

14. Burkhardt S, Kärkkäinen J: Better Filtering with Gapped q-Grams. 
Fundam Inf 2003, 56:51-70. 

15. Ma B, Tromp J, Li M: PatternHunter: faster and more sensitive 
homology search. Bioinformatics 2002, 18:440-445. 

16. Smith TF, Waterman MS: Identification of common molecular 
subsequences. J Mol Biol 1981, 147:195-197. 

17. Ferragina P, Manzini G: Opportunistic data structures with 
applications. In: Proceedings of the 41st Annual Symposium on 
Foundations of Computer Science. IEEE Computer Society; 2000. 

18. Ferragina P, Manzini G: An experimental study of an opportunistic 
index. In: Proceedings of the twelfth annual ACM-SIAM symposium on 
Discrete algorithms. Washington, D.C., United States: Society for 
Industrial and Applied Mathematics; 2001. 

19. Langmead B, Trapnell C, Pop M, Salzberg SL: Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome. 
Genome Biol 2009, 10:R25. 

20. Welcome to Apache Hadoop Core! http://hadoopapacheorg. 
21. Amazon Web Services. http://awsamazoncom/. 
22. Dean JaG, S.: MapReduce: simplified data processing on large 

clusters. Commun ACM 2008, 51. 
23. Healy J, Thomas EE, Schwartz JT, Wigler M: Annotating large genomes 

with exact word matches. Genome Res 2003, 13:2306-2315. 
24. Lippert RA: Space-efficient whole genome comparisons with Burrows-

Wheeler transforms. J Comput Biol 2005, 12:407-415. 
25. Graf S, Nielsen FG, Kurtz S, Huynen MA, Birney E, Stunnenberg H, 

Flicek P: Optimized design and assessment of whole genome tiling 
arrays. Bioinformatics 2007, 23:i195-204. 

26. Lam TW, Sung WK, Tam SL, Wong CK, Yiu SM: Compressed indexing 
and local alignment of DNA. Bioinformatics 2008, 24:791-797. 

27. Burrows M, Wheeler DJ: A block sorting lossless data compression 
algorithm. Digital Equipment Corporation, Palo Alto, CA 1994, 
Technical Report 124. 

28. Kurtz S: Reducing the Space Requirement of Suffix Trees. Software – 
Practice and Experience 1998, 29:1149 - 1171. 

29. Ewing B, Green P: Base-calling of automated sequencer traces using 
phred. II. Error probabilities. Genome Res 1998, 8:186-194. 

30. Herold J, Kurtz S, Giegerich R: Efficient computation of absent words 
in genomic sequences. BMC Bioinformatics 2008, 9:167. 

31. Bowtie: An ultrafast, memory-efficient short read aligner. 
http://bowtie-biosourceforgenet/indexshtml. 

32. Campbell PJ, Stephens PJ, Pleasance ED, O'Meara S, Li H, Santarius T, 
Stebbings LA, Leroy C, Edkins S, Hardy C, Teague JW, Menzies A, 



 68 

 

Goodhead I, Turner DJ, Clee CM, Quail MA, Cox A, Brown C, Durbin R, 
Hurles ME, Edwards PA, Bignell GR, Stratton MR, Futreal PA: 
Identification of somatically acquired rearrangements in cancer using 
genome-wide massively parallel paired-end sequencing. Nat Genet 
2008, 40:722-729. 

33. Holt KE, Parkhill J, Mazzoni CJ, Roumagnac P, Weill FX, Goodhead I, 
Rance R, Baker S, Maskell DJ, Wain J, Dolecek C, Achtman M, Dougan 
G: High-throughput sequencing provides insights into genome 
variation and evolution in Salmonella Typhi. Nat Genet 2008, 40:987-
993. 

34. Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D, Gerstein M, Snyder 
M: The transcriptional landscape of the yeast genome defined by RNA 
sequencing. Science 2008, 320:1344-1349. 

35. Larsson N, Sadakane, K.: Faster Suffix Sorting. Theoretical Computer 
Science 2007, 387:258 - 272. 

36. Manber U, Myers G: Suffix arrays: a new method for on-line string 
searches. In: Proceedings of the first annual ACM-SIAM symposium on 
Discrete algorithms. San Francisco, California, United States: Society for 
Industrial and Applied Mathematics; 1990. 

37. Kärkkäinen J: Fast BWT in small space by blockwise suffix sorting. 
Theor Comput Sci 2007, 387:249-257. 

38. Burkhardt S, Kärkkäinen J: Fast lightweight suffix array construction 
and checking. In: 14th Annual Symposium on Combinatorial Pattern 
Matching: 2003; 2003. 

 
 


