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This dissertation applies nonparametric statistical techniques to Machine Trans-

lation (MT) Evaluation using data from a MT Evaluation experiment conducted

through a joint Army Research Laboratory (ARL) and Center for the Advanced

Study of Language (CASL) project. In particular, the relationship between human

task performance on an information extraction task with translated documents and

well-known automated translation evaluation metric scores for those documents is

studied. Findings from a correlation analysis of the connection between automet-

rics and task-based metrics are presented and contrasted with current strategies for

evaluating translations. A novel idea for assessing partial rank correlation within

the presence of grouping factors is also introduced. Lastly, this dissertation presents

a framework for task-based machine translation (MT) evaluation and predictive

modeling of task responses that gives new information about the relative predic-



tive strengths of the different autometrics (and re-coded variants of them) within

the statistical Generalized Linear Models developed in analyses of the Information

Extraction Task data.

This work shows that current autometrics are inadequate with respect to the

prediction of task performance but, near adequacy can be accomplished through the

use of re-coded autometrics in a logistic regression setting. As a result, a class of

automated metrics that are best suitable for predicting performance is established

and suggestions are offered about how to utilize metrics to supplement expensive

and time-consuming experiments with human participants. Now users can begin to

tie the intrinsic automated metrics to the extrinsic metrics for task they perform.

The bottom line is that there is a need to average away MT dependence (averaged

metrics perform better in overall predictions than original autometrics). Moreover,

combinations of recoded metrics performed better than any individual metric. Ul-

timately, MT evaluation methodology is extended to create new metrics specially

relevant to task-based comparisons. A formal method to establish that differences

among metrics as predictors are strong enough not to be due by chance remains as

future work.

Given the lack of connection in the field of MT Evaluation between task utility

and the interpretation of automated evaluation metrics, as well as the absence of

solid statistical reasoning in evaluating MT, there is a need to bring innovative and

interdisciplinary analytical techniques to this problem. Because there are no papers

in the MT evaluation literature that have done statistical modeling before or that

have linked automated metrics with how well MT supports human tasks, this work



is unique and has high potential for benefiting the Machine Translation research

community.
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Chapter 1

Introduction

Continual changes in conditions in the world around us produce a high de-

mand for foreign language understanding. Particularly in the wake of the Septem-

ber 11 attacks, the Department of Defense has recognized military needs in docu-

ment processing and evaluation. Translating texts from one language to another is

quite a complex task. However, many systems developed throughout the years by

researchers and industry that have attained some success in achieving this tradi-

tionally human-performed task with a computer. Today, there are many Machine

Translation (MT) systems or “engines” ranging from linguistic knowledge-based en-

gines to statistically rooted engines. There have also been hybrid systems based on

a combination of the two types of engines.

1.1 Motivation

With the increase in production of many reputable language translation soft-

ware engines, users like the US Government need to make choices as to which engines

they should invest in based on which one provides the best output for their specific
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tasks. Researchers have proposed several methods for quality assessment to tackle

such concerns over the years with the introduction of various evaluation strategies.

First, in the early 1990’s, ordinal scale human subjective judgments were introduced

and became the gold standard of translation quality. Eventually, a focus on faster,

more intuitive means for evaluating translations stimulated the development of sev-

eral novel automated algorithms starting in 2001. The main results in this arena

are based on the correspondence of a system translation to predetermined correct

human reference translations and are discussed further in Chapter 2.

1.2 The Problem

Current evaluation methods have considerably furthered the development of

translation engines based on the system developer’s ability to obtain a numerical

estimate of the system’s current capabilities. As a result, there has been the as-

sumption among MT developers that MT engines are “good enough” to support

people performing certain applications in the real world [12]. Yet, none of the cur-

rent methods actually take into account the assessment based on the utility of the

documents the systems produce even though, “there are no absolute standards of

translation quality but only more or less appropriate translations for the purpose

for which they are intended” [56]. More recently, informal reports from operational

and field settings have described successful, but carefully limited, use of MT output

in real-world tasks [23, 29].

Figure 1.1 shows a triangular diagram of the progression of MT Evaluation
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paradigms. There has been extensive work to find the association between the most

popular approaches on the top axis of the diagram. However not much, if any, effort

has been devoted towards pursuing the other possible connections. Thus, although

translation evaluation has evolved and become very important in the research and

development of high caliber machine translation engines, an important part has re-

mained left out—the practical assessment of documents from the user’s perspective.

This dissertation expands the “Task-Based Metrics” node of Figure 1.1 and

focuses on the connections between it and the other two nodes. Work on this prob-

lem makes use of data from an experiment where I participated in both the design

and analysis, in conjunction with the Army Research Lab (ARL) and sponsored by

the Center for Advanced Study for Language (CASL) at the University of Mary-

land [68]. The study, described in detail in Chapter 3, was designed to assess the

translation output of three different MT systems and the performance of multi-level

translation analysts on a Who, Where, When information extraction task using

translated documents produced by these machines.

1.3 Research Questions

This study builds upon existing automated MT Evaluation metrics to con-

nect them to interpretable task-based metrics. Specifically this work examines the

following research questions:

• What is the nature of relationship between extraction task performance and

automated translation evaluation metrics?
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Figure 1.1: Triangle of main MT evaluation paradigms. The bold line represents the
work of past efforts. The dashed line on the right represents the research explored
in this dissertation. The dashed line on the left represents possibilities yet to be
explored in detail.

• Do autometric scores predict user performance on an extraction task? Specif-

ically, are there certain metrics that do a better job in predicting task perfor-

mance?

• From a methodological standpoint, how can the true degree of bivariate cor-

relation between variables of interest (metrics and performance measures) be

summarized in the presence of important classifying variables (MT and WH-

type)?

1.4 Statistical Overview

The data collected from the extraction task is used to build upon the work

already accomplished by established automated metrics, referred to as autometrics

in the remainder of this document, such as: BLEU [52], GTM [50], METEOR [38],
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and TER [58]. These autometrics are computed for each translated document and

serve as data values which are analyzed jointly with task performance rates. The

relationship between task performance results and automated metrics is studied

through an exploration of various aspects of correlation between the metrics and

subject responses. Initial steps in this investigation involve: (1) reviewing the cur-

rent correlation analysis methodologies for comparing evaluation metrics; and (2)

addressing the crude results obtained in studies that use correlations to compare

task response metrics with automated metrics.

This dissertation establishes that there is a positive monotonic relationship be-

tween these variables in the data; however, relationship in the presence of grouping

variables is shown to be weaker than original assumed within the data studied. This

demonstrated weakness motivates the need for extending beyond simple correlation

for the purpose of utilizing autometrics for utility assessments of documents. Partial

rank correlation, which will be discussed in Chapter 4, serves as a tool for document-

ing the reality of within-MT-group relationships which could be very different across

groups. The large data sample distribution of this correlation statistic is approx-

imated and then permutational methods and simulation are used to demonstrate

the implications of the grouping factors associated with the cross-classification of

documents into particular WH-types or MT systems. These grouping factors are

explained in more detail in Chapter 5.

Through logistic regression [1, 30], the utility of a translation given specific

document characteristics (such as the translation quality score) is estimated to pro-

duce statistical models for predicting user responses. By using statistical modelling,
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it is possible to detect coefficients within logistic regression models that are sta-

tistically significantly different from 0. This indicates whether specific predictor

variables have an influence on the responses collected in the experiment. Several lo-

gistic models are fitted to these cross-classified data, using correct subject matching

as response variables and incorporating document and machine effects as predictors

for the probability of correct matching.

Chapter 6 summarizes the specification, fitting, and interpretation of gener-

alized linear models describing the dependence of subject performance on the ex-

traction task on autometrics and other document features. Best fitting fixed effect

models show that autometrics are useful in distinguishing task-based performance

of MT engines and under specific response criteria, certain MT engines do outper-

form others on subject responses for the extraction task. The consequences of such

models, their effectiveness, statistical adequacy, and limitations as a predictive tool

are addressed. The modelling results are analyzed to determine which autometric or

class of autometrics is more useful in predicting document utility. Additionally, this

dissertation outlines how interpretations of the models will aid us in future testing

and evaluation.

1.5 Significance of this Study

Given the lack of connection in the field of MT Evaluation between task utility

and the interpretation of autometrics, as well as the absence of solid statistical

reasoning in evaluating MT, there is a need to bring innovative and interdisciplinary
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analytical techniques to this problem. Because there are no papers in the MT

evaluation literature that have done statistical modelling before or that have linked

autometrics with how well MT supports human tasks, this work is unique and has

high potential for benefiting the Machine Translation research community. We begin

here to address the pertinent needs of users, such as the Department of Defense, in

document processing and evaluation.

Although reliable results are best obtained through task-based experiments

and evaluation methods that analyze real-world task performance using multiple MT

engines, task-based experiments can be quite time-consuming and labor intensive.

As noted in [16], resource considerations such as these have forced the field to rely

heavily on automated metrics. Thus, it is crucial in any evaluation to determine

how well results with these metrics compare to the results found in task-based

analysis. In particular, we want to know whether there is a relationship between

these popular, strictly text-based metrics and the end-to-end (machine and user)

effectiveness metrics of concern to real users. This dissertation proposes a method

for evaluating the performance of a translation system by analyzing how accurately

subjects perform on a task that incorporates output of the translation system.

This work motivates the need to extend beyond limited descriptive statistical

analysis and utilize statistical models to develop other uses of these autometrics for a

more user-centered evaluation. It is the goal that users, as well as researchers, could

benefit from a practical, task-based measure of the operational capability description

of MT performance in terms of autometrics using the predictive modelling strategies

of this dissertation.
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This dissertation directly yields the following contributions:

Applied Statistical Tools and Methodology

• Methodological results on characteristics of bivariate and partial rank

correlation analysis, coupled with permutation tests of significance

Application to Machine Translation Evaluation

• A first, in-depth, user-centered focus of translation evaluation using au-

tometrics and an innovative analysis of data through statistical modelling

techniques to make use of autometrics as tools for assessing translated

documents

• Assessment of document-level correspondence between autometrics and

hit rate, and the refinement of this correspondence to apply within MT

by WH groups

• Identification of autometrics that offer best predictions of user task per-

formance in comparison to competing metrics

1.6 Chapter Overview

The remainder of this dissertation is organized as follows:

• Chapter 2 gives an overview of the existing literature and relevant work on

Machine Translation Evaluation. Background information is presented on the

common automated evaluation metrics that are used in this research, as well

8



as other evaluations and research involving humans-in-the-loop and task based

MT evaluation procedures.

• Chapter 3 provides an overview of the unique, large-scale task-based experi-

ment which yielded the data used in this work. The data collection procedures,

experimental design, and answer set creation are discussed.

• Chapter 4 reviews the correlation analysis methodology that is currently used

in comparing evaluation metrics. Correlations between task-based metrics and

automated metrics are presented and an extension of this analysis is provided

that involves partial correlation results. This chapter presents the primary mo-

tivation for extending beyond simple correlation determining the effectiveness

of automated metrics for assessing document utility.

• Chapter 5 offers a methodological view of the partial Spearman rank correla-

tion. The asymptotic properties of two versions of this statistic are demon-

strated under certain conditions and empirical simulation results are used to

compare power of the statistics against different alternatives.

• Chapter 6 investigates the use of statistical modelling techniques, namely lo-

gistic regression, to acquire a sense of the predictive impact of four known

automated metrics—BLEU, GTM, METEOR, and TER—on performance in

the WH-extraction task. Each model is discussed in detailed along with a

discussion of statistical adequacy as measured by goodness of fit criteria.

• Chapter 7 presents an analysis of the modelling results to determine which
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metric or class of metrics is more useful in predicting document usefulness as

assessed by task performance rates. Interpretations of the models are shown

to enable future testing and evaluation. A summary of the results of this

dissertation and present recommendations for future extensions of this research

are presented.
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Chapter 2

Background and Related Work

Not only has Machine Translation grown as an important research field in

Natural Language Processing, but the sub-area of Machine Translation Evaluation

has also become a very active area of research. Yorick Wilks [71] has often been

quoted for his comment that MT Evaluation is about as studied as MT alone and

that there is more discussion about evaluation of MT than MT itself. The infamous

ALPAC report [4] proved that evaluation results have great potential to influence

the direction of MT research in the future. Dorr [20] provides an in-depth survey

of MT paradigms including evaluation. Organizations such as FEMTI, The Frame-

work for Machine Translation Evaluation, in International Standards for Language

Engineering [32] have organized a comprehensive guide of the various methods that

are used to evaluate MT systems [35].1 In the following sections, the major shifts

in evaluation efforts over the years are outlined and the overarching questions that

drive this dissertation work are discussed.

1Additional information about the FEMTI project and the resources it offers can be found at:
http://www.issco.unige.ch:8080/cocoon/femti/st-home.html
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2.1 Human Translation Evaluation

One bottleneck of MT Evaluation is that most strategies, to some extent,

involve human labor. Whether the role of the human is to provide judgments on the

quality of MT outputs, to translate documents for later comparison to MT output, or

to perform tasks on translated output to obtain utility metrics; the need for humans

is still there. Furthermore, perhaps because translation is a human-oriented task,

it may just be the case that evaluations will always require the humans to support

evaluation methods. In this section, I review the relevant practices involving humans

for MT Evaluation.

2.1.1 Human Quality Judgments

Human judgments of translation quality, although subjective, have been used

as the standard by which to measure any evaluation technique. The idea is that

if a metric can rank system output comparably to a human’s ranking of the texts,

the metric is deemed to be a good marker for measuring translation quality. Thus,

most evaluators show metric reliability by comparing scores to a human ranking of

the same document set. The assessment method followed by human judges most

often involves examining translation quality with respect to adequacy, fluency, and

comprehension. These figures of merit were used by DARPA in its MT evaluations

during the early 1990s and are each described below [70]:

Description of Judgments2

2These measures have since been adapted and refined by the Linguistic Data Consortium (LDC)
for use in current NIST MT evaluations. An in-depth description of the procedure for obtaining
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• Adequacy is judged by comparing each translated segment with the corre-

sponding segment of a human-produced reference translation. The segment’s

score for adequacy is measured according to how well the meaning of the refer-

ence translation is conveyed in the meaning of the system’s translation under

evaluation. The judges are instructed to rate the degree to which items are

preserved between the system and reference translation on a scale of one to

five. If the meaning was absent or not conveyed properly, the score given

should be one and if it was completely present, the score would be five.

• Fluency is scored independently of the source document or of any reference

translation. This can be done by a monolingual speaker of English. This cri-

terion assesses a native speaker’s intuition about the proper English sentence

structure of a text on a segment by segment basis. Evaluators assign a score

between one and five to each unit with five denoting a perfectly structured En-

glish sentence and one denoting a sentence with extremely bad organizational

structure.

• Comprehension measures the amount of information that is correctly conveyed,

i.e., the degree to which a reader can find usable information in text. In the

DARPA study, this evaluation was in the format of a standardized comprehen-

sion test. Questions were developed based on the human reference translations

and then used for the system translation. Evaluators were instructed to base

their answers only on information present in the translation.3

human judgments for translation can be found on their website at: http://projects.ldc.upenn.edu.
3This particular measure has since been referred to as informativeness and serves as a fidelity
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2.1.2 Human Reference Translations

In addition to human judgments of translation outputs, humans are also needed

to create a human reference set of translations for a given source language. Good

human translations are considered the gold standard for translation quality and

are heavily relied upon in evaluation using the automated metrics discussed in the

next section. It is the belief of most of the evaluation community that translations

produced by a system should be considered good only if they are close to a good

human reference translation. Thus, the way to compute an automated metric score

for a document set is to compare to a human produced translation of the same

documents. Initial creations of human reference translations can be very labor-

intensive, but once a set is created, the collection of source/reference translation

pairs can be reused many times for system testing and evaluation. In practice, these

parallel corpora are very valuable and highly sought after in Machine Translation

research.

2.1.3 Task Based Evaluation

Task-based evaluation provides a practical way of evaluating translation by

a measure of effectiveness (MOE) enabling users to identify what types of tasks

can be performed using the output. Church and Hovy [12] gave insight into this

approach by proposing exploration in MT evaluation from the standpoint of what

can be gained from the “crummy MT output.” In the 1990’s new MT research trends

measure for determining if an assessor can find the required ‘information’ in a specific translation.
Many recent evaluations have only focused on the two measures: Adequacy and Fluency.
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emerged, furthering interest in extrinsic metrics. Task-based experiments assuming

an ordering of task difficulty were proposed by users on text-handling tasks [61, 21].

The task hierarchy produced by [61] served as a basis for the task conducted in this

study. MT developers [55, 43] have also conducted prior task-based experiments

evaluating text and speech MT. In the case of [55] the “gisting” or categorization

task was tested among experimental subjects to determine a procedure for how well

subjects can get the gist of website content with and without the use of various

translation tools. The work of [43] evaluated “goal accomplishment” using a speech

to speech translation system. Automated metrics had not yet arrived on the scene,

so both of these studies were strictly task-based.

This alternative approach to document quality evaluation, based not on an in-

trinsic question of what is actually in the document, but more extrinsically on what

one can do with the documents, has formed the basis for this research. This notion

is more forgiving of translation quality in the sense that even weak translations may

still be sufficient for certain tasks. Although this method has not been explored as

much as other approaches, acquiring a connection between intrinsic and extrinsic

metrics for MT evaluation would give users, as well as researchers, a threshold for

task performance relative to machine performance. Vanni et al. [63] have begun

developing a similar connection between evaluation metrics and linguistic assess-

ments of MT output. MT stakeholders also began funding research experiments in

task-based assessment of MT engines, to address users’ needs. 4

4See the 2005 broad agency announcement (BAA) for the Global Autonomous Language Ex-
ploitation program (GALE) released by DARPA, a US government funding agency.
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2.2 Automated Evaluation Metrics Used in This Study

Human judgment evaluations are not only highly expensive and labor inten-

sive but also offer human-error prone subjective judgments. While taking account

of the notion that good human translations are costly but yet still the standard, re-

searchers began developing ways to compare system output to different human refer-

ence translations. The most recent wave of evaluation research put significant effort

into various automated evaluation metrics that compare MT systems using mea-

sures of performance (MOPs), which measure MT output accuracy. This two-part

process requires construction and annotation of an evaluation corpus. Researchers

must first build the collection of multiple (human created) reference translations for

the MT output to be evaluated. Secondly, the method requires specific tagging of

both the human reference translations and the MT output. After this preprocess-

ing, the measures assign a score to a “candidate” or translated output based on a

predetermined algorithm to compare the output and a reference document from the

collection. The individual characteristics of the four automated metrics utilized in

this research are described below.

2.2.1 BLEU

In 2001, IBM researchers Papineni et al. [52] proposed the Bilingual Language

Evaluation Understudy (BLEU) metric,

BP × exp

(

N
∑

n=1

wn log pn

)

(2.1)
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This metric is the most widely used of the automated metrics for MT and is a

measure of “precision.” Candidate translations are scored against a user-selected

number of stored reference translations by counting the number of consecutive word

groups of size n, or n-grams, that overlap between the candidate and reference. A

combination of these matches (n-gram precision) using the geometric mean across

different values of n and a brevity penalty for shorter machine translations produces

a translated document quality score between 0 and 1. Precision is computed by the

following formula:

pn =

∑

i (n-grams in segment i that match in candidate & ref translation)
∑

i (n-grams in candidate segment i)

Uniform weights wn = 1\N , where N = 4 (the highest number of n-grams BLEU

considers), treat n-gram matches of all lengths equally. However by nature of the

geometric average, higher n-grams are favored. That is, the more matches of con-

secutive word sequences, the higher the BLEU score and vice-versa: if high n-gram

matches are not found, the score is low. The brevity penalty (BP) penalizes trans-

lations that differ significantly in length from the reference translations and thus,

prevents gaming that occurs by purposefully produced short translations.

As its creators believed, BLEU has accelerated the MT R&D cycle by allowing

researchers to rapidly home in on effective modelling ideas. This novel automatic

approach was (and still is) perceived as an immense advantage to MT evaluation, es-

pecially in view of the fact that system performance as judged by BLEU appeared to

correlate highly with time consuming and expensive human quality judgments. The

inventors showed that BLEU obtained correlation coefficients against monolingual
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human judgments on a corpus of Chinese-to-English translations as high as 0.99,

while that with the bilingual judgments was 0.96. It is important to note here that

this study was on system-level rankings. The analysis in Chapter 4 demonstrates

why this level of aggregation can be misleading, and shows results for the purpose of

this dissertation at a finer level of granularity. In an effort to get a more “sensitive”

metric for evaluation, Doddington (2002) at NIST introduced an alternative version

of the BLEU algorithm that uses the same co-occurrence statistics approach but

uses the arithmetic mean in place of the geometric mean.

2.2.2 GTM

Turian et al. [62] established another automated approach to MT Evaluation

that warrants mention, the General Text Matcher (GTM), that builds on an earlier

idea by Dan Melamed [49, 50]. Candidate translations are scored with respect to

a reference translation by computing similarity through the number of matching

words. Unlike the BLEU method which scores translations mainly on precision,

Melamed abandons the “precision only” idea altogether by using the F-score, a

scoring function that takes the harmonic mean of precision and recall and provides

a value between 0 and 1.

This method uses a graph theory technique called “maximum matching” to

compute a maximum match size (MMS) by summing the maximum possible word

length of all matching phrases between the candidate and reference translations that

do not use words from any other matching. These values are computed using counts
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of unigrams (hits) or aligned blocks (runs) from a bi-text grid of the candidate and

reference translations. Figure 2.1, as found in [62], offers a graphical explanation

of the concept. The horizontal axis is the reference text and the vertical axis is

the candidate. Here there are three matches, of length 1, 2 and 4. This makes

up the “maximum match” from all possible matches, calculated as MMS(C, R) =

√

(12 + 22 + 42) ≈ 4.6. The square root of the sum of squares is introduced to

reward longer matches and measure fluency of the translation.

Figure 2.1: Example of bitext grid to calculate MMS

Next, precision and recall are calculated by dividing the MMS by the length
of the candidate (|C|) and the length of the reference (|R|), respectively:

Precision(C|R) =
MMS(C, R)

|C| Recall(C|R) =
MMS(C, R)

|R|
The F-score of the two measures is computed to get the final score:

F =
2PR

(P + R)

Turian et al. assert that their F-measure is more reliable than BLEU and that it is

easier to understand in terms familiar to NLP researchers.
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2.2.3 METEOR

Researchers at Carnegie Mellon University introduced the Metric for Evalua-

tion of Translation with Explicit ORdering (METEOR) for MT evaluation in 2004

[38, 7]. At the outset, developers stated that it was designed to address the following

weaknesses found in the other commonly used metrics, especially BLEU:

• The Lack of Recall— As [50] proposed, METEOR inventors also believe that

recall is a better way to measure translation quality than precision alone or

the use of unclear brevity penalty measures.

• Use of Higher Order N-grams—The idea behind METEOR is that explicit

re-ordering, done in one of its modules, better accounts for grammatical cor-

rectness than normal n-gram techniques and thus, does not use higher order

n-grams in its calculation. Basically, a reordering penalty is calculated on

how many chunks in the produced text need to be moved around to get the

reference text.

• Lack of Explicit Word-matching Between Translation and Reference— ME-

TEOR tries to address the fact that incorrect matches can be obtained from

n-grams because they do not require an explicit word-to-word matching by

aligning candidate and reference texts.

• Use of Geometric Averaging of N-grams— This directly addresses BLEU’s

use of the geometric mean that results in zero scores for segments without
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matching n-grams. 5

METEOR heavily relies on an algorithm for finding an optimal word-to-word

matching between a candidate MT translation and a human-produced reference

translation for the same input sentence, and recall is a major contributor to the

score. Like the other metrics, METEOR also produces normalized scores in the

range of (0,1). The score is computed as follows. First, unigram precision (P) is

found by counting the number of unigrams in the candidate translation that are

mapped to unigrams in the reference translation and dividing by the total number

of unigrams in the candidate. Likewise, unigram recall (R) is computed by dividing

the same count by the total number of unigrams in the reference translation. The F-

mean, a combination of the precision and recall via a harmonic-mean, is obtained as

in GTM. However in this case, most of the weight is placed on recall. The resulting

formula used is:

F =
10PR

(R + 9P )
(2.2)

designating recall to be weighted 9 times more than precision.6 Fluency is addressed

via a direct penalty answering the question, “How fragmented is the matching of

the MT output with the reference?” In other words, the fragment count or the num-

ber of phrases of consecutive matching words between the candidate and reference

translation is sought. It is the assumption that the longer the consecutive word

matches, the fewer the number of fragments. In the extreme case, where the en-

5This shortcoming has been addressed by NIST in their alteration of BLEU to use an arithmetic
mean and by BLEU creators, themselves, with a release of a smoothed version of the BLEU code.

6The harmonic mean for values x1, x2, ..., xn is determined by the formula
∑

n

i=1
wi/

∑

n

i=1
(wi/xi). Equation 2.2 results since the weight is 1 for precision and 9 for

recall.
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tire system translation string matches the reference translation, there is only one

fragment. The opposite extreme, if there are only unigram matches between the

candidate/reference pair, yields as many fragments as there are unigram matches.

The final METEOR score incorporates this as:

F ∗ (1 − DF )

where the discounting factor is DF = 0.5 ∗ (frag3) and

frag =
fragment count

# unigrams matched
.

The main value of this metric is that it goes behind the simple strict matching

and also matches words that are simple morphological variants of each other or words

that are synonyms of each other by employing the Porter stemmer and WordNet,

respectively, in modules called by the user. METEOR has been shown to correlate

better with human judgments than other metrics at the system level. Furthermore,

METEOR investigators have specifically shown promising results (although not in

comparison to other metrics) at the desirable sentence/segment level of granularity.

2.2.4 TER

Translation Error Rate (TER) [58] measures the minimum number of edits

required to change a candidate output into one of the available human references.

The score is normalized by the average length of the references and only uses edits

recorded from the closest reference. TER uses an edit distance measure similar to

word error rate to find the translation/reference pair that has the minimal number
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of edits and assigns this score as the translation quality metric for the particular

translation. The objective of TER is to have a repeatable human measure of fluency

and meaning while providing an output that users can understand by measuring the

amount of work needed to make the document both fluent and correct and simply

answering the question, “What is the required number of edits for a human to fix a

translation?”

The possible edits that TER allows include insertion, deletion, and substitu-

tion of single words as well as shifts of word phrases. A shift moves a contiguous

sequence of words within the translated output to another location within the trans-

lation. All edits count as one edit, including a shift of any size or missing punctua-

tion marks or capitalization errors. Once all the edits between the translation and

(closest) reference are determined, TER is calculated using the formula:

TER =
total number of edits

average number of reference words
(2.3)

The calculation can be explained in the following example provided by Snover et

al. Consider the reference/hypothesis pair below, where differences between the

reference and hypothesis are indicated by upper case:

REF: SAUDI ARABIA denied THIS WEEK information published in the AMER-

ICAN new york times

HYP: THIS WEEK THE SAUDIS denied information published in the new york

times

If TER is applied to this hypothesis and reference, the number of edits is 4 (1 Shift,

2 Substitutions, and 1 Insertion), giving a TER score of 4
13

= 31%.
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There is also a non-automatic human-in-the-loop version of TER called HTER

(TER with human targeted references) that requires post-editing of system output.

Here, a fluent speaker of English creates a new reference translation targeted for

the particular system output by editing the translation until it is fluent and has

the same meaning as the reference(s). TER is now computed including the new

(human-targeted) reference. The authors have shown that HTER has the highest

correlation with human judgments at sentence level. However, as the authors point

out, this variation can be quite expensive. Nevertheless, HTER was recently selected

as the metric of choice for the Global Autonomous Language Exploitation (GALE)

research program [51].

For the purposes of this study, an altered version of TER will be used, called

oTER. This measure is the original TER score multiplied by .10 and subtracted

from 1.7 This transformation was done so that TER could be directly comparable

to the other evaluation metrics as they are similarity metrics and TER is an error

metric. Otherwise the TER and other scores are direct opposites in magnitude on

a scale of 0 to 1.

2.3 Discussion

Extrinsic, task-based evaluation of MT engines has long been of interest to

the MT user community which seeks automated support tools to expedite their

decision-making tasks [59]. However, although human evaluation is the ultimate

7The TER code I acquired produced scores ranging from 0 to 100. Later versions of this code
automatically output scores between 0 and 1 so the .10 conversion may not be needed in that case.
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goal, it is very time consuming and not readily re-usable. The introduction of auto-

metrics filled a longstanding gap between MT system development and evaluation

by providing researchers and users quick insight into the assessment of the quality

of a certain translation. Furthermore, the creators of these metrics showed a strong

correlation between the metrics and highly labor intensive and expensive human

judgments. Despite these outstanding advances in MT evaluation, there are still

several drawbacks to approaching MT evaluation solely using autometrics:

Drawbacks of Autometrics

• All four metrics introduced rely heavily on a human reference translation to

produce a similarity score for any system translation. This, in itself, presents

many difficulties. First, there is never just one way to correctly translate a

document. Thus, given any foreign language text in the evaluation corpus,

there will be several possible reference translations making the need for many

references most desirable. Secondly, the beginning step of building the corpus

is highly labor intensive and costly.

• Finding and recruiting qualified bilingual human translators is also an ex-

tremely hard task when you consider assessing a translator’s language compe-

tence while taking into account that very few Americans are equally proficient

in two languages. Still, one could argue that this cost is minuscule compared

to the cost of hiring people to do new judgments repeatedly.

• Lastly, and perhaps most importantly, there is no solid understanding of what

a specific automatic score means. How far off is a score of .35 from a score
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of .50 when you are dealing with translated outputs? Is the .15 BLEU score

difference really that significant? Or better yet, is it the same as the difference

from .60 and .75? Likewise, is a translation quality score of .20 twice as bad

as one with a score of .40? There has been no validation of this linearity of

scores, and likewise, there have been no empirical results indicating how useful

a translation is based on these scores.

Because of questions like these, although autometrics have become standard

and have offered much insight in the evaluation community, their limits, stability,

and interpretation still remain questionable. Natural questions to ask are, How

can these autometrics be employed to improve MT evaluation? Will these metrics

correlate with other evaluation methods and with humans? If so, how?

It is clear that MT evaluation research would benefit from a thorough analysis

of established automated MT evaluation metrics and where they fail to measure

inaccurate translation output as it relates to certain tasks. This research seeks a

comprehensive autometric assessment to test and validate the described automatic

metrics commonly used in MT system evaluation. This entails assessing automated

measurements collectively to determine if metric scores can predict task-based re-

sults from a Name Entity Recognition task in which subjects are asked to extract

proper or important names/entities representing the Who, When, and Where. The

next chapter describes the experiment performed for this research and the data

collected. This dissertation presents an alternative to intrinsic metrics by using

extrinsic metrics to leverage the automated metrics in assessing the quality of MT
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system output based on subject task performance. Conceivably, MT evaluation re-

sults will become more informative if a BLEU score of .20 or a GTM F-score of

.65 can be correlated with specific task ability. This may get the community closer

to the initial purpose of having a translation in the first place, to carry out some

mission or another.
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Chapter 3

Description of Experiment and Project Data

Through an experiment performed in conjunction with the Center for Ad-

vanced Study of Language (CASL) and the US Army Research Lab, I have been

able to design and construct a very rich and unique dataset to use in the analysis

for this research. Data was collected from a large-scale MT evaluation experiment

where 59 subjects extracted who, when, and where-type essential elements of infor-

mation from output generated by three types of Arabic-English MT engines. The

information extraction experiment was one of three experiments performed in the

study as a test of tasks of varying levels of difficulty as originally proposed by [61].

The proposed hierarchy of text handling tasks for MT output is shown in Table 3.1

with a row added for the information extraction task. This paricular task was

chosen after reviewing the task hierarchy and examining the MT output of several

engines. A small, prior pilot experiment to evaluate Arabic-English MT engines

for document exploitation tasks indicated that subjects could extract some named

entities and event participants from noisy MT output, but they could not readily

identify relations within events [67]. Thus, the task was designed as an intermediate
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challenge between event-level analysis and named-entity recognition.

Table 3.1: Task hierarchy by Taylor & White (1998) with extra row inserted for
WH-type extraction task
Publishing Produce technically correct document in fluent English
Gisting Produce a summary of the document
Extraction For documents of interest,capture specified key informa-

tion
Deep Extraction Event identification (scenarios): determine an incident

type and report all pertinent information
Intermediate Extraction Relationship identification: member-of, relative-of,

boss-of

WH-Item Extraction Identification of: who-,when-,where-type ele-

ments

Shallow Extraction Named entity recognition: isolate names of people,
places, organizations, dates, locations

Triage For documents of interest, rank by importance
Detection Find documents of interest
Filtering Discard irrelevant documents

The next sections provide an overview of the experiment with a brief descrip-

tion of the document collection, the experimental design, the task and WH-type

elements to be extracted, and the data collected. The full evaluation study was

conducted on two days, with 30 subjects participating on day 1 and another 29

subjects on day 2. On both days the information extraction experiment, consist-

ing of a training phase, a practice phase, and the evaluation phase took roughly

two hours. The experiment was monitored by several observers and the software,

run from an off-site server, was controlled by an administrator who monitored the

subjects’ progress online in real-time during the experiment.
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3.1 WH-Extraction Task

Subjects were trained to identify who-, when-, and where-type elements in MT

output (see Table 3.2 for a description). Subjects received hard-copy pages during

the training phase with definitions and example WH-type items that they could

refer to at any phase in the experiment.

Table 3.2: Description of WH-type items in extraction task

Who-type: people, roles, organizations, companies,
groups of people, and the government of a country
Where-type: geographic regions, facilities, buildings,
landmarks, spatial relations, distances, and paths
When-type: dates, times, duration or frequency in
time, including proper names for days and common
nouns referring to time periods

During the practice phase with 9 documents (1 original English and 2 trans-

lated English for each of the 3 WH-types), there was no spoken instruction but all

subjects practiced the task on the same sequence of documents and received the

same feedback with correct responses and brief descriptions via their browsers, fol-

lowing their responses. The experiment software was designed to enable subjects to

view all documents via the browser at their individual computer workstations and

simply to click over text they selected as WH-items that would then appear in an

answer box below (see Figure 3.1 for a mock-up of the screenshot subjects saw).

Details of the entire experiment can be found in [69].
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Figure 3.1: Mock-up of screenshot for when-extraction

3.2 Document Collection

A collection of Arabic news documents taken from ten websites was created

in December 2003. Full articles were trimmed from the bottom up to be roughly

comparable in size and fit fully within the software display window after translation,

so that subjects would not need to use a scrollbar to see any portion of the text.

For each of the three WH-item types, native Arabic speakers identified six

different trimmed documents with between six and ten WH-items of that type in the

text. The documentation of these WH-items in this 18 Arabic document collection,

established the “ground truth” (GT) items that encompass the experiment’s answer

set and determines the correct and incorrect response variables analyzed in later

chapters. All 18 Arabic source documents were then run through each of three MT

engines, yielding a full collection of 54 translated documents. This set of documents
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forms the base collection upon which all of the automated metrics and parameters

for analysis are computed.

3.3 Selection of MT Systems

Three distinct types of MT engines were selected as representatives of three

development models, varying in required funding, time, and linguistic resources:1

• MT-1: a rule-based engine with hand-crafted lexicons and symbolic linguistic

processing components (morphological analyzer, parser)

• MT-2: a statistical engine trained on large quantities of monolingual and

parallel Arabic-English texts, but with no traditional symbolic linguistic pro-

cessing components

• MT-3: a substitution-based engine that relies entirely on a pattern-matching

algorithm with a lexicon and morphological analyzer to translate matched

strings into English phrases, replacing the former with the latter but leaving

the original Arabic word order unchanged except as occurs locally within the

substituted phrases.

3.4 Experiment Design

The design for the experiment assumed 60 subjects, 3 MT systems, and 18

Arabic documents to be translated by each system. A diagram of the experimental

1The versions of the systems under study date back to 2003. The developers of the selected
engines provided their most recently released version in November 2003, in preparation for this
experiment conducted in January 2004.
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design is pictured in Figure 3.2. I used a balanced incomplete block design [8], [46],

meaning that all categories (WH and MT) were viewed an equal amount of times

and not all documents were viewed by any one subject. Each subject was assigned

a pre-arranged, randomized sequence of 18 documents out of the full pool of 54

machine-translated documents.

Figure 3.2: Diagram of the Experiment Design: for each WH-type, there were 6
documents of each type called Reps (represented by the circles labeled 1-6) each
translated by the 3 MT systems (represented by the vertical rectangles) and then
distributed to subjects according to certain project constraints. The full expansion
is shown here for when; the who and where types have a similar structure.

The sequences were constructed as follows. First one super-block (a block

containing a complete replicate of all the documents under study) was filled with

three viewing sequences that included the entire 18 document × 3 MT system (54

total machine-translated documents) set, as shown in Table 3.3. Each translated

document was classified and indexed by a unique MT identifier (MT-1, MT-2, or

MT-3), WH identifier (WHEN,WHERE, WHO), and document identifier or Rep
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Table 3.3: One super-block viewing sequence for 54 machine-translated document
set containing distributed to 3 subjects x, y, z. Each document was denoted by
the triple: MT system( 1, 2, or 3), WH-type (WHO, WHERE, or WHEN), and
document number or Rep (1, 2, 3, 4, 5, or 6).

Subject x Subject y Subject z

MT WH-type Rep MT WH-type Rep MT WH-type R
1 WHO 1 3 WHO 1 2 WHO 1
3 WHEN 1 1 WHEN 1 2 WHEN 1
1 WHERE 1 2 WHERE 1 3 WHERE 1
3 WHO 2 1 WHO 2 2 WHO 2
2 WHEN 2 3 WHEN 2 1 WHEN 2
2 WHERE 2 3 WHERE 2 1 WHERE 2
1 WHEN 3 2 WHEN 3 3 WHEN 3
3 WHERE 3 1 WHERE 3 2 WHERE 3
2 WHO 3 3 WHO 3 1 WHO 3
3 WHEN 4 1 WHEN 4 2 WHEN 4
3 WHO 4 2 WHO 4 1 WHO 4
3 WHERE 4 1 WHERE 4 2 WHERE 4
1 WHEN 5 2 WHEN 5 3 WHEN 5
2 WHO 5 1 WHO 5 3 WHO 5
1 WHERE 5 2 WHERE 5 3 WHERE 5
2 WHEN 6 3 WHEN 6 1 WHEN 6
1 WHO 6 2 WHO 6 3 WHO 6
2 WHERE 6 3 WHERE 6 1 WHERE 6

(1-6). To ensure a balance of the number of MT and WH-type viewings per subject

across the document collection, the following set of four constraints were placed on

the experimental design:

1. No subject saw the same document more than once, i.e., as translated by more

than one MT system.

2. Each subject viewed translated documents from each system an equal number

of times.

3. Each subject viewed translated documents from each of the three WH-type
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an equal number of times.

4. Each subject viewed the documents of each WH-type one after another, with-

out shifting back and forth among the three WH-type groups. The order of

these WH-types were randomized for each subject.

After filling the super-block to meet these constraints, the next steps were

to randomize the documents by permuting the elements within each block while

preserving the WH-type grouping of constraint (4) within each viewing sequence of

the super-block, and then including enough replications for all subjects. Random-

ization was done to prevent bias. Two super-blocks were randomized individually.

Then the resulting 6-block randomization was replicated 10 times for the proposed

60-person full experiment. Furthermore, since all documents of a particular type

(such as WH) were viewed consecutively, permuting the order for the 3 types was

considered as an added precaution against ordering effects.

3.5 Data Collected

The complete experiment, with 59 subjects each viewing 18 translated docu-

ments (arranged to include 6 documents from each of the 3 MT engines and 6 from

each of the 3 WH-types), yielded a total of 1062 cases (in each of which one subject

extracted WH-items from one document translated by one MT engine). The study

had 59 subjects because one subject of the originally expected 60 did not show.

Additionally, with one server-client connection crash on day 2, two instances of

translated documents viewed and marked by subjects could not be processed. This
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left 1060 cases for analysis. With more than 100 WH-items total in the 54 translated

collection, well over 10,000 subject-extracted items were collected for evaluation.

3.6 Answer Set

The creation and validation of the WH-item answer set against which the

subjects responses were scored, was constructed in three stages.2First, ground-truth

WH-items (GT) were identified in the original Arabic documents by a native Arabic

speaker who placed them in an inventory spreadsheet, with one item per row. The

original documents were also fully translated by each of four human translators

working on the project, providing reference translations for comparing the task-

based results with automated metric scores in later chapters.

In the second stage, the lead translator and one professionally trained native-

English linguist worked together with the resulting reference translations and the

GT-annotated original documents. They identified the reference-truth WH-items

(RT) in the reference translations and placed each of these alongside the corre-

sponding GT item in the inventory spreadsheet.

In the final stage, six individuals independently examined pairs of the reference

translations and MT outputs side-by-side, and recorded into their separate inventory

spreadsheets the omniscient-truth WH-items (OT) in the MT outputs, that is, those

strings of words found to correspond to the RT items.

The annotation of the GT, RT, and OT items across the Arabic texts, the

reference translations, and the machine-translated texts, respectively, produced two

2For a full explanation of the details, see [65].
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types of extraction-task answers used in the subsequent analysis:3

Set of RT items

• Independent of the MT engines

• Defined in one-to-one correspondence with the GT items4

• Used as denominators to calculate recall metrics (see next section)

Set of OT items

• MT engine-specific

• Defined and annotated in correspondence to the RT items5

• Compared against the subjects’ responses to determine correctness6

For each Arabic document in the document collection, and for each machine-translated

version of that document, the set of RT items was fixed. By contrast, for each

machine-translated version of each Arabic document, the set of OT items could,

and often did, vary both in content of the translated item and in number of trans-

lated items (because some were lost in translation).

3.7 Task Metrics

Three types of task metrics or event counts were tallied for each of the 1060

cases in the evaluation, by comparing and identifying all of each subject’s responses

3The answers described here should be distinguished as established in documents before the
experiment from the responses that subjects provide in the actual experiment.

4These are the English equivalents of the WH-items in the Arabic texts.
5These are the machine-translated equivalents of the WH-items in the Arabic texts.
6This is the case because the OT items are the content of the WH-items as made available to

the subjects by each MT engine.

37



against all of the (OT) answer items in the translated document for that case. Each

response is computed as follows:

• a correct response if a response fully matched an answer item, by covering all

open class words, but possibly under- or over-extending with a determiner or

other closed class word not crucial to the meaning of the WH-item

• an incorrect response if a response did not match any answer item in the

translated document

• a non-response if no part of an answer in the translated document was captured

in any of the subject’s responses.

This dissertation focuses on the correct responses and the correct response

rate derived from the proportion of fully correct responses out of the RT total (the

total number of RT items in the reference translations). It is this collection of

performance responses for documents that is compared with autometrics. The RT

items are chosen as the response rate denominator because these were the gold

standard items identified from the human produced translations. By using this

value, we obtained a coarser response rate (compared to GT) that takes into account

both the subject and machine performance. Each of these RT items is treated as

being independently identified by each gold standard rater viewing the document.
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Chapter 4

Data Analysis Phase 1: Relationship

Establishment, Correlation Analysis and Results

Translation evaluation is primarily conducted using one of the various auto-

metric approaches described in chapter 2. These methods approximate translation

quality and enable developers to rapidly test changes in their system output. Au-

tometrics have been justified as an evaluation tool based on how well they correlate

across an entire document testbed with human judgments of translation quality on

the same data set. With system ranking as the primary objective for such translation

evaluations, real system users have remained out of the loop.

This dissertation demonstrates the applicability of pre-existing automated

evaluation metrics—BLEU, GTM, METEOR, and (o)TER—in determining correct

response rate on our information extraction task. Responses collected from the study

described in Chapter 3 are analyzed in two phases. The first phase of data analy-

sis involves descriptive summaries, correlation analysis, and permutational testing.

Descriptive statistics obtained from scatterplots and nonparametric regression pro-

vide us with relationship summaries that enable our further analyses. Correlation
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analysis indicates the differences between the strength of relationships among the

variables under consideration at corpus versus document level. This analysis moti-

vates the use of a more sophisticated (partial) correlations analysis later on to assess

the strength of hit rate by metric relationships within MT × WH groups of doc-

uments. Permutational testing provides a nonparametric method for determining

significance of our chosen statistics. The overall purpose of this phase of analysis

is to motivate the application of statistical modeling in MT evaluation by exposing

the limitations of descriptive statistics, mainly correlation analysis, generally used

in this area.

This chapter addresses the following Phase 1 research questions:

1. What is the nature of the relationships between extraction task performance

and automated translation evaluation metrics? Is the relationship linear?

What are the magnitude and direction of the correlational patterns? Is the

relationship statistically significant?

2. Is there a statistically significant difference in the utility/quality relationship of

different autometrics (i.e., do certain metrics have evidently stronger relation-

ships with task performance)? Do recodes that average away MT dependence

of the metrics provide more defined, less noisy relationships as opposed to task

performance than the raw metrics?

This analysis shows the need to extend beyond correlations to utilize automet-

rics appropriately. That is, the lack of a clear linear relationship at the document

level which is the natural level for task handling purposes is demonstrated. In Chap-
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ter 6, the second phase of data analysis examines results from the first phase and

extends the work by applying generalized linear modeling techniques to the exper-

iment data. The R statistical language package [53, 66] was used for all statistical

analyses in this thesis.

4.1 Data Description

With 59 subjects each analyzing 18 translated documents, 1062 response cases

were collected. However, with one server-client connection crash during the experi-

ment, two instances of translated documents viewed and marked by subjects could

not be processed. Additionally, it is shown later in this chapter that one MT-doc

combination was found to be an outlier. Taking all this into account, the final data

analyses are computed on 1040 cases.

The data were entered into an R data frame with each row representing one

subject’s analysis of one of the translated documents. Table 4.1 shows a portion

of the data set for twenty of the experimental cases. The first column denotes the

subject who viewed the particular document. The second through fourth columns

represent the document identifier detailing the machine system which produced the

translation, the WH-type category, and the replicate number (1-6) of the category,

respectively. The fifth column is the total number of possible items to extract from

the document (RTMTot). The sixth column is the proportion of correct items the

subject extracted (Hits) out of the total possible items. The remaining columns

correspond to the various autometric scores computed for the document.
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Table 4.1: Random sample of 20 cases from data collected. Column headings are
described in the text.

Subj MT WH Rep RTMTot Hit Rate BLEU METEOR oTER GTM

S43 3 WHERE 4 7 .5714 .040 .421 .214 .432

S30 1 WHERE 3 6 .8333 .074 .333 .247 .567
S29 1 WHERE 6 8 .6250 .084 .445 .302 .601

S56 3 WHERE 6 8 .5000 .050 .354 .167 .476
S9 3 WHO 6 10 .4000 .126 .582 .333 .584
S3 2 WHO 1 7 .1429 .224 .553 .414 .637

S44 1 WHO 2 7 .4286 .095 .505 .245 .556
S57 2 WHEN 4 12 .0000 .099 .383 .297 .540

S59 1 WHERE 6 8 .3750 .084 .445 .302 .601
S1 2 WHO 3 9 .2222 .211 .503 .423 .611

S46 1 WHEN 5 5 .4000 .043 .198 .220 .401
S55 2 WHERE 6 8 .5000 .155 .494 .355 .669

S34 3 WHO 2 7 .2857 .046 .223 .245 .373
S46 1 WHO 1 7 .2857 .060 .468 .257 .532

S15 2 WHERE 4 7 .5714 .188 .595 .396 .547
S52 2 WHERE 6 8 .8750 .155 .494 .355 .669
S14 2 WHEN 3 8 .3750 .283 .567 .376 .692

S48 3 WHO 3 9 .5556 .024 .407 .227 .446
S28 2 WHERE 2 9 .5556 .139 .523 .332 .501

S56 1 WHERE 4 7 .2857 .020 .227 .106 .392
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4.1.1 Summary of Project Data

The task-based study identifies the proportion of correct items out of the

RT items extracted by subjects from the translated documents—the hit rate—and

computed document scores for each autometric. Collection level autometric scores

and task response rates are also compute for the roughly 354 documents across each

of the three MT systems. These are the values presented in Tables 4.2, 4.3 and 4.4.

Summary statistics were computed to provide a synopsis of the data used in

this study. The minimum, maximum, mean, and median of each variable can be

found in Table 4.2. METEOR and GTM scores are slightly more dispersed than

the other two metrics. GTM and oTER scores classify more documents as above

average translations, with 51% (550) and 50% (531) of the responses, respectively,

having higher scores than the mean score. The BLEU scores of 35% (373) responses

were higher than the mean BLEU score while this held true for 38% of METEOR

scores.

Table 4.2: Summary statistics for study variables.

Variable Min Max Mean Median Std. Dev
Hit Rate 0 1 .436 .429 .226
BLEU .016 .283 .106 .080 .075
GTM .264 .709 .528 .540 .097

METEOR .198 .621 .425 .413 .100
oTER .105 .437 .272 .269 .091

Approximately 377 of the document/subject cases yielded 50% or greater hit

rates which means that subjects correctly extracted half or more of the WH items in

roughly one-third of the cases. The responses tallied by MT can be found in Table
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Table 4.3: Hit rates by MT engine, aggregated over all WH-types, subjects and
documents.

MT-1 MT-2 MT-3
# of Correct Extractions (Hits) 1181 1506 1370
Total # of Possible Correct Responses 3091 3066 3086
Hit Rate .382 .491 .444

4.3. MT-1 yielded significantly lower rates of correct answers from subjects. Table

4.4 shows that this pattern does not hold true for the metrics scores calculated by

MT system. MT-1 has the lowest METEOR and oTER scores while MT-3 has the

lowest BLEU and GTM scores. Both subject performance and automated metrics

indicate MT-2 is the best translating engine in terms of utility and translation

quality.

A chi-square test for equality of all three hit rates on 2 degrees of freedom made

under the oversimplifying assumption that all of the observations (xi, yi) within tab-

ulated cells are independent identically distributed (χ2 = 74.89, p < .001), followed

by pairwise comparisons of hit rates would lead to the strong conclusion that the

hit rate of MT-2 is statistically indistinguishable from MT-3 (i.e., the two systems

were approximately equal in performance on this metric) and MT-1 has statistically

significantly lower hit rates than each of the other two engines. More details can

be found in [68], but the p-values here are not strictly meaningful, which is why I

undertake the more complicated analyses in later sections.

1Recall that the automated metric scores here are not just the averages of the document-level
autometric values but a single corpus-level score computed for the entire collection of documents
from each system.
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Table 4.4: Automated metric scores by MT engine, aggregated over all WH-types,
subjects and documents.

Automated Metric1 MT-1 MT-2 MT-3
BLEU .088 .187 .055
GTM .529 .617 .453
METEOR .385 .524 .397
oTER .221 .370 .233

4.2 Correlation Analysis

This dissertation studies the relationship of task performance results and au-

tometrics by exploring various aspects of correlation between the autometrics and

subject responses. Simple correlation analysis between subjective human judgments

of translation quality and autometric scores has played a vital role in MT evalua-

tion. Researchers have heavily relied on the latest correlation results to determine

both a) which system outperforms other systems the most and b) which autometrics

best validate this finding. These results are often reported as Pearson correlation

coefficients. However, to allow for possible non-linear structure in the data, our

alternative choice is also to calculate the more flexible nonparametric Spearman

correlation. In fact, [15] has suggested the use of rank transformation procedures

because applied statisticians often encounter real-world problems in which the data

clearly does not meet normal distributional assumptions often used to motivate the

Pearson correlation.
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4.2.1 Pearson versus Spearman Rank Correlation

Pearson correlation is the standard measure of correlation and is computed

using the formula:

r =
SXY

√

S2
XS2

Y

(4.1)

where SXY is the sample covariance of X and Y , S2
X and S2

Y are the sample

variances of X and Y respectively. Pearson’s r measures the linear association

between two variables, which can be small even when there is a clear non-linear

relationship between the variables.

The Spearman rank correlation is a distribution-free rank statistic that tests

the direction and strength of the relationship between two variables [41]. Both sets

of data are ranked from the highest to the lowest with the smallest observation

having rank 1 and the largest having rank n. Ranks are averaged in the case of ties.

Then, the statistic is defined using the formula:

ρ =

n
∑

i=1

(

R(Xi, X) − n + 1

2

)(

R(Yi, Y ) − n + 1

2

)

√

n
∑

i=1

(

R(Xi, X) − n + 1

2

)2 n
∑

i=1

(

R(Yi, Y ) − n + 1

2

)2
(4.2)

where R(Ai, A) represents the rank of Ai in the subset A and is equal to the number

of elements of A less than or equal to Ai. This method, based on ranking the

two variables, makes fewer assumptions about the distribution of the values and

measures monotone rather than only linear covariation.
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4.2.2 Correlation in Aggregated Evaluation Datasets

In general, autometrics were computed on a document collection translated

by a system, and the collection is then given a system score for each autometric.

Separately, humans are solicited to make quality judgments on the documents ac-

cording to some preassigned numeric scale. Note that human judgments are made

at the individual document level and then averaged across the collection to produce

a ‘system specific’ human judgment score, as well. Thus for any comparison, the

number of total possible data points in a test set is S × (M + 1) where S is the

number of systems and M +1 is the number of metrics plus the human judgment of

the system. For example, if there are 3 systems under consideration (S1 , S2 , and

S3) and 2 different autometrics (M1 and M2) to compare to human judgment scores

(HJ), there are only 9 total data points. Moreover, the pairwise autometric versus

judgment correlation is computed from only 3 data points and in any case, using

this aggregated approach, one would only have as many data points to correlate as

systems under study.

Consider the system level correlation in Table 4.5 between the autometrics

studied in this work and task responses.2 For most metrics, our results show high

correlations in the ‘aggregate’ sense between autometrics and task performance sim-

ilar to those observed between autometrics and human judgments [52, 62, 39, ?]. At

this level of analysis, the METEOR and oTER autometrics correlate highly with hu-

man performance on this task. However, as is true of previous work, the calculated

2For the sake of comparison with previous results, only Pearson correlation is used in this
section for correlating aggregate scores.
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Table 4.5: Autometrics correlated with hit rate for aggregate scores by MT using
Pearson correlation

BLEU GTM METEOR oTER
.6634 .4676 .8654 .8626

‘correlation’ simply represents the normalized inner product of only 3-dimensional

vectors (3 metric values, one for each MT system) for the whole collection.

The conclusions generated from aggregate-level correlations are not useful for

further interpretation because they are a very coarse summary of group differences.

However, more definitive conclusions about the relationship are possible when more

system-level data points are available. Despite this caution, the most widely used

autometric—BLEU—gained its popularity mainly because it has been shown to cor-

relate highly with human judgments at the aggregated system level [52]. Moreover,

the rankings of Machine Translation (MT) systems produced by both BLEU scores

and human judgments were shown to be the same. BLEU’s creators, Papineni et

al. [52] assert that the five MT system BLEU scores obtained from a 500 translated

sentence collection in their study have correlations greater than .96 with both mono-

lingual and bilingual sets of human judgments on the same 500-sentence collection

from the same five systems.

While aggregating scores across collections has given system developers in-

sight into the development of their systems on average for particular collections of

documents, users have not been able to make the connections between individual

document scores and autometrics. Some attempts have been made to utilize auto-

metrics at other levels [50, 7, 58]. As one might expect, lower levels of aggregation
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have not achieved the high correlations that were observed in the aggregated case

with BLEU, but recently some metrics have done well in comparison with others.

For instance, METEOR[39] and CDER [42] were purposely designed to improve cor-

relation at the sentence level, and the authors of both have shown results of higher

correlations at the sentence level with human judgments than other metrics.

Since our goal is to find a relationship between autometrics and subject task

performance, and eventually to calibrate document scores with some degree of

utility for a specific task, it is relevant that the data is analyzed at a level more useful

for task-based comparisons. Next, the differences in correlation results between

task responses and autometrics in the study at the individual document level of

aggregation are shown.

4.2.3 Correlation at Unit Level for Task Performance Evaluation

Although correlation at the aggregated (system) level may be sufficient for

quick system evaluation, when trying to make a strong connection between the util-

ity of the translated documents and autometrics, I want to answer a question that

has not been addressed before: what happens to the relationship between autometrics

and response rates when scores are compared at the document level? To test this

question, the entire set of non-aggregated 1060 individual document scores is com-

pared. It is found that, even though the system rankings are the same, the degree

of correlation between each autometric and task performance drastically changes

[see Table 4.6] from the aggregate-level results. This suggests that useful relation-
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ships between autometrics and task performance at document level may not exist.

However, scatterplot smoothing in the next section indicates quite the contrary.

Table 4.6: Autometric correlation with hit rate on non-aggregate individual docu-
ment scores for the 1060-document set

Method BLEU GTM METEOR oTER
Pearson r .153 .209 .232 .223
Spearman ρ .211 .193 .242 .231

Reeder and White [54] mention that for many reasons, the evaluation issue

is not solved since finer-grained metrics for smaller units of data (i.e., sentences,

documents, etc) are needed. This is true especially in this dissertation because I

try to use the metrics to predict task performance at the document level. The

remainder of this dissertation shows that although a weak correlation exists at this

stage of granularity, that does not necessarily indicate that there is no relationship

between the two variables. One metric may prove to be a better predictor of task

performance although its correlation may be weak. I proceed by using data smooth-

ing techniques as well as the patterns for correlation, scatter, and linearity in the

relationship of variables cross-classified into finer groups to identify which of the

given set of metrics may be better in predicting our extraction task responses.

4.3 Data Smoothing Techniques

I begin to analyze each of the autometrics’ relationship with task performance

in this experiment by asking the most model-free questions. Can anything be gained

from this document level data without the use of rigorous statistical models? This
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will be determined by how much noise there is in the data.

Suppose (xi, yi), i = 1, ..., n are observations with

Yi = f(xi) + εi.

The nonparametric regression problem, as described in [28], is considered to be

an estimate of the structure of the unknown smooth function f , where the εi are

independent errors with mean 0. If the observations

(x1, y1), ..., (xn, yn)

x1 < x2 < ... < xn

are points on a scatterplot, the goal of a scatterplot smoother would be to fit a

smooth function that describes the dependence y has on x. The smoothed points

are (xi, ŷi) where ŷi , the fitted value at xi, estimates the location of Y given X = xi.

A nonparametric regression of Y on X is formed by plotting the smoothed points,

ultimately making the tendency of the cloud of points on the scatterplot become

more apparent.

There are several nonparametric regression techniques for smoothing data in-

cluding: local averaging, kernel estimation, and smoothing splines. I focus on a

widely used method for smoothing scatterplots of noisy data, originally introduced

by [13], called locally weighted scatterplot smoothing. This method builds on classical

approaches, such as linear and nonlinear least squares regression, as well as kernel

estimation, providing weighted combinations of simple models fitted to localized

subsets of the data.
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This very useful technique, referred to as “lowess” or “loess,” partitions the

data into successive windows of x values, to fit least-squares regression lines to the

x versus y points within those windows, and to find a smooth curve fitting those

pieces of fitted lines together across the whole x axis. This gives an overall display

of curvilinear average dependence in settings where no overall linear relationship

and possibly not even a monotonic relationship between x and y variables exists.

The general steps for obtaining a smoothed value for a given x0 are as follows

[24]:

1. Choose the span (fraction of data around x0), 0 < s < 1, to include in each

fit.3

2. Calculate regression weights for each value of xi in the above span using the

formula.4

wi = W

[

xi − x0

hi

]

.

3. Fit the local regression equation

Yi = β0 + β1xi + β2xi
2 + ... + βkxi

k + εi

to minimize:

∑

wiεi
2

3The larger the s value the smoother the fit. The default value for s in the R version of this
algorithm is 2

3
.

4“W” here is referred to as the tricube weight function,

W (z) =

{

(1 − |z|3)3 for |z| < 1
0 for |z| ≤ 1

which gives greater weight to xi closest to x, and hi is the half-width of the points surrounding xi.
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using weighted least squares regression. Let β̂j(x0) denote the estimated re-

gression coefficients.

4. Compute fitted value using the equation:

Ŷ0 = β0(x0) + β̂1(x0)x0 + ... + β̂k(x0)x0
k

Finally, local regressions are estimated using this same procedure for other x-values,

and the fitted values are connected in a nonparametric regression curve.

4.3.1 Relationship Summaries

Scatterplots of each metric plotted against the proportion of correct answers

(hit rate) are displayed in Figure 4.1. Initially, the noisy raw data indicate that there

is no clear picture of a possible association between metrics and task responses.

The lowess smoothing technique described in the previous section enhances the

interpretation of the plot. The bold line shows that in each case, there is a generally

increasing pattern of scores with an increase in hit rate.

It is interesting to point out in Figure 4.1 that there are three outlying points

in the data across all autometrics. These three points represent the same WHEN

document from MT-2 that was viewed by a total of 20 subjects. Each of the auto-

metrics achieve extremely higher scores for this document versus other documents

in the collection while its hit rates are slightly lower than the average hit rates.

This particular document is considered an anomaly since the scores are so extreme

compared to other documents and there is no evident reason for this peculiarity.

Entries of it are omitted from further study and the remainder of our analysis will
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Figure 4.1: Scatterplot of the relationship between autometric scores and hit rate
with smoothed lines denoting the lowess scatterplot smoother

be done on 1040 cases rather than the original 1060 cases to prevent results from

being adversely affected by this phenomenon. Table 4.7 shows that the correlation

between metrics and task performance from Table 4.6 slightly increases once this

outlier is removed. This increase is more apparent for the correlations involving

BLEU and GTM that were much lower than the others. Now all metrics appear to

be on equal footing in relation to hit rate.

Table 4.7: Autometric correlation with Hit rate on individual document scores with
outlier document removed.

Method BLEU GTM METEOR oTER
Pearson r .252 .269 .297 .281
Spearman ρ .249 .230 .281 .270

While scatterplot smoothers are a good tool for lots of data, they are not as

good for smaller sets cross-classified into finer categories. For instance, there is less
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Figure 4.2: Scatterplot of automated metric scores versus Hit rate with lowess lines
for MT system 2

scatter in the relationship cross-classified by MT system 2, but Figure 4.2 shows

that the lowess curves are more nonlinear and are nonmonotonic. When the data is

observed by WH-type and further cross-classified into MT × WH, similar patterns

can be found. Overall, lowess lines for the plots with BLEU and GTM metrics

versus hit rate are nonlinear but for METEOR and oTER, there is a mostly linear

pattern. The latter two metrics have more readily visible increasing tendencies with

hit rate than the former two.

The noisy and mixed patterns of the scatterplots when the data are cross-

classified by MT-2 indicate that the relationship seen in Figure 4.1 may be due

to the MT variable effect on the automated metric scores. This finding is more

confirmatory than surprising because previous evaluation work has shown that au-

tometrics are useful in distinguishing between MT systems of varying quality. It was
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showed in the summary of experimental results in Section 4.1.1 that MT systems

can also be distinguished based on utility via the task response rates. Yet it is not

evident whether autometrics contribute anything beyond being able to distinguish

between systems when it comes to task response rates. Further analysis will help

refine these distinctions.

4.4 Further Correlation Analysis

It has been established in this work that there is a positive and generally mono-

tonic relationship between autometric and task performance variables in our data.

However, the evidence of a strong relationship in the presence of other effects—such

as MT and WH-type—is less apparent. This leads to further correlation analysis,

in which I extend beyond the study of the strict bivariate relationships by using

other categorical variables in the cross-classified data set to determine the extent

of residual correlation between the two variables once the third variable is held

constant.

In this section, I want to know: to what extent does the autometric score still

account for the correct task response rate after adjusting for the MT effect and is

this different for different MT systems? I also go further to explore: are there any

groups other than MT that show interesting document to document variation that will

help quantify the response rate? Studying the within-group and partial relationship

answers such questions better than does population-wide correlation. Permutation

tests, discussed in the next section, are used to determine whether relationships are
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significant.

4.4.1 Permutation Tests

Permutation tests provide a robust nonparametric alternative to using tradi-

tional, model dependent significance testing methods. The main idea of permuta-

tional testing [26] is to estimate the empirical distribution of statistic values over the

ensemble of randomly permuted datasets. Sampling of the permuted data provides

a null hypothesis benchmark and “exact” significance level. Permutation tests of

significance are conducted in this dissertation according to the following procedure

[27]:

1. Compute the correlation of the original observations.

2. Resample the autometric scores, based only on permutations that preserve

groups, and recompute the correlation for these permuted values.

3. Calculate the exact significance level of the test from

p-value =
(#recomputed statistics ≥ original statistic)

n

where n = 5000 is the number of permutations.

In this research, permutational procedures not only facilitate computing the p-value

for testing whether the correlations are significantly greater than zero in the au-

tometrics versus hit rate relationship, but also they aid in summarizing adequate

models achieved in the next phase.
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4.4.2 Within-Group Correlation

The results of the within MT-group correlation between hit rate and automet-

rics can be found in Table 4.8. Documents translated by all MT systems showed

monotonic and significantly positive associations between hit rate and evaluation

metric scores across all autometrics. Thus, there are real within MT-group rela-

tionships in our data. Response rates for extraction within WH-group also showed

a monotonic and statistically significant positive association with evaluation metric

scores across all metrics. Thus similarly, Table 4.9 shows that there are significant

relationships after grouping the data by WH-type.

Table 4.8: Autometric correlation with hit rate on individual document scores cross-
classified by MT system. Permutational significance values are shown in parentheses.

Method MT BLEU GTM METEOR oTER
Pearson r 1 .156(.002) .161(.003) .115(.03) .203(<.001)

2 .169(.01) .256(<.001) .273(<.001) .151(.04)
3 .306(<.001) .358(<.001) .306(<.001) .234(<.001)

Spearman ρ 1 .140(.009) .147(.005) .109(.04) .235(<.001)
2 .134(.002) .303(<.001) .298(<.001) .111(.006)
3 .298(<.001) .323(<.001) .311(<.001) .182(<.001)

When documents are further classified into the 3 × 3 (WH × MT) grouping, it

appears in several of the cases in Table 4.10, with the exception of WHO documents,

the relationship between metrics and hit rate is negative thus, inconsistent.5Also,

more relationships are found to be non-significant at this finer classification. Yet

in some cases, there are very strong relationships between hit rate and automet-

ric as demonstrated by the Spearman correlation value of GTM (.754) for WHO

5Recall that there are about 115 data points within each MT × WH group in this table.
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Table 4.9: Autometric correlation with hit rate on individual document scores cross-
classified by WH type. Permutational significance values are shown in parentheses.

Method WH BLEU GTM METEOR oTER
Pearson r WHO .246(<.001) .342(<.001) .347(<.001) .235(<.001)

WHERE .220(<.001) .221(<.001) .273(<.001) .268(<.001)
WHEN .316(<.001) .244(<.001) .232(<.001) .372(<.001)

Spearman ρ WHO .253(<.001) .292(<.001) .320(<.001) .198(<.001)
WHERE .229(<.001) .185(.001) .252(<.001) .251(<.001)
WHEN .250(<.001) .158(.002) .237(<.001)) .331(<.001)

documents from MT-3.

This section showed that autometrics reflect task performance rates even

within different cross-classifications of our data. However, this relationship is not al-

ways consistent. In the next section, partial correlations reveal the population-wide

association after removing the MT × WH group effects.

4.4.3 Partial Correlation

If X1, X2, and X3 are three random variables, the partial correlation coefficient

of the variables can be calculated by the formula

rx1x2.x3
=

rx1x2
− rx2x3

rx1x3
√

(1 − rx2x3

2)(1 − rx1x3

2)
(4.3)

where rx1x2
, rx2x3

, and rx1x3
are the ordinary Pearson r correlation coefficients ob-

tained between the indicated pairs of variables [14]. I am interested in the Spearman

version of this partial correlation as introduced by [34], but expanded to the case

were variable x3 is a discrete grouping effect. This correction after adjusting for a

grouping effect does not seem to have been studied in the literature.

Such partial correlations are sought for the categorical variable Z representing
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Table 4.10: Autometric correlation with Hit rate on non-aggregate individual doc-
ument scores cross-classified by WH × MT type. Permutational significance values
for non-significance at the .05 level are shown in parentheses.

Method WH MT BLEU GTM METEOR oTER
Pearson WHO 1 .378 .353 .248 .202

2 .350 .389 .524 .240
3 .493 .698 .519 .541

WHERE 1 .189 .256 .160(.07) .284
2 -.174(.07) .075(.42) .014(.88) -.017(.86)
3 .028(.76) .138 -.172(.07) -.182

WHEN 1 -.299 -.205 -.107(.24) .053(.57)
2 .461 .454 .451 .416
3 .398 .273 .263 .223

Spearman WHO 1 .571 .322 .217 .123(.18)
2 .161(.09) .285 .467 .172(.07)
3 .472 .754 .694 .478

WHERE 1 .195 .274 .116(.20) .322
2 -.227 .094(.29) -.020(.83) -.012(.89)
3 .006(.95) .030(.75) -.128(.17) -.111(.24)

WHEN 1 -.220 -.161(.08) -.098(.28) .074(.41)
2 .528 .456 .502 .366
3 .492 .311 .184 .196

the MT, WH, and MT × WH cross-classified groups. Partial correlations can be

thought of as a way to reveal the population-wide correlation after removing the MT

× WH group effects. Our use of partial correlation in this work offers a more gen-

eral methodological perspective of the partial rank correlation statistic since when

considering Z, there is a decision that can be made as to how to actually rank the

data. In general, this within Z stratum detection of relevant variable relationships

is appropriate for many applications such as ecological and social science studies.

I derive two distinct expressions yielding two different statistics for partial

rank correlation after adjusting for categorical grouping effects.
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Method 1: ρ computed from X and Y , linearly corrected for Z by the group mean.

This statistic is called S1. Let IZ(z) denote the indicator function such that

|x| =















1 if z ∈ Z;

0 if z 6∈ Z.

then X∗
i = Xi − cZi

, Y ∗
i = Yi − dZi

and

S1 =
Cov [R(Xi

∗, X∗)R(Yi
∗, Y ∗)]

√

V ar(R(Xi
∗, X∗))V ar(R(Yi

∗, Y ∗))
(4.4)

for j = 1, ..., L indexing the different levels of Z, cj =
∑n

i=1 I[Zi=j]Xi/
∑n

i=1 I[Zi=j]

and similarly dj =
∑n

i=1 I[Zi=j]Yi/
∑n

i=1 I[Zi=j]. Recall that R(Xi
∗, X∗) and

R(Yi
∗, Y ∗) are the ranks of the corresponding X and Y values. This formula

can be equivalently written as

S1 =

n
∑

j=1

(

R(Xi
∗, X∗) − n + 1

2

)(

R(Yi
∗, Y ∗) − n + 1

2

)

√

√

√

√

n
∑

j=1

(

R(Xi
∗, X∗) − n + 1

2

)2 n
∑

j=1

(

R(Yi
∗, Y ∗) − n + 1

2

)2
(4.5)

Method 2: Compute weighted combination of within Z-group ρ. This statistic is

called S2. Let wz be the weight given for group z and X(z) = (xi : i ∈ Jz)

where Jz is the subset of indices i = 1, .....,n for which Zi = z. Then,

S2 =

L
∑

z=1

wzρy,x|Z=z

L
∑

z=1

wz

(4.6)

where ρ in this case is defined as:

ρy,x|Z=z =

∑

i∈Jz

(

R(Xi, X
(z)) − n + 1

2

)(

R(Yi, Y
(z)) − n + 1

2

)

√

√

√

√

∑

i∈Jz

(

R(Xi, X
(z)) − n + 1

2

)2
∑

i∈Jz

(

R(Yi, Y
(z)) − n + 1

2

)2
(4.7)
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Table 4.11: Autometric partial rank correlation with hit rate on non-aggregate indi-
vidual document scores by grouping effect. All values are permutational significant
with p-value equal to .001.

Grouping Factor Statistic BLEU GTM METEOR oTER
MT S1 .156 .251 .232 .178

S2 .193 .255 .237 .179
WH S1 .243 .241 .273 .270

S2 .244 .214 .271 .257
WH × MT S1 .200 .300 .243 .183

S2 .200 .256 .204 .174

4.4.4 Permutational Significance of Partial Correlation for Task Per-

formance Evaluation

The results of the partial correlation between hit rate and autometrics in

the presence of the MT, WH, WH × MT grouping effects, respectively, for statis-

tics S1 and S2 can be found in Table 4.11. The partial correlations between task

performance and autometrics after accounting for groups are slight but all partial

relationships are significant permutationally with p-values equal to .001.

Chapter 5 further expands the idea of partial Spearman rank correlation and

permutation testing by looking at a simulation study to investigate the character-

istics of statistics S1 and S2, above, when permutation tests are conducted for the

conditional bivariate-normal model given Z.

4.5 Recoding Predictor Variables

An additional approach to determine whether autometrics can play a role in

task based evaluation is to recode the metrics to remove their dependence on the MT
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system and to use the new variable to test if the metrics have additional information

concerning the relationship with task response rate. The method proposed is to take

each metric and find a non-MT dependent variant. This is achieved by averaging

across MT systems the ratios of autometric scores divided by the within-MT average

over documents.

4.5.1 Metric Average Variable Recode

The experimental data is classified into 3 groups based on MT and calculate

autometric average scores: BLEUavg, GTMavg, METEORavg, and oTERavg in the

following manner. Let i = 1, .., 18 index document, let j = 1, 2, 3 index MT system,

and let the document scores for a particular metric be denoted uij. Then the system

average scores, Aj, are given by Aj = ū·j = (1/18)
∑18

i=1 uij after which the adjusted

document scores are ADij = uij/Aj, and the final recoded scores become

uavg,i = (1/3)

3
∑

j=1

ADij. (4.8)

4.5.2 Example

An example of the autometric average calculation is shown for BLEU using

the 18 original document scores [see Table 4.12]. Si is computed in step one of our

method to obtain the MT system average scores found on the last row of the table.

These values are used to calculate the new document score adjusted by its MT

system average score found in Table 4.13. Finally, the recoded BLEUavg variable in

column six is computed by dividing column 5 (the sum of the adjusted scores across
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MT systems) by the number of systems. Following this procedure, a document

specific recode of all the autometrics that has been adjusted for all instances of the

translated document across all MT systems results. The recoding of metrics will be

used in the next phase to compare against initial variables in the modeling.

Table 4.12: Document BLEU scores for each MT system

Document MT1 MT2 MT3
When-1 .137 — .078
When-2 .103 .074 .038
When-3 .105 .283 .073
When-4 .063 .099 .045
When-5 .043 .069 .034
When-6 .091 .165 .115
Where-1 063 .272 .06
Where-2 .104 .139 .08
Where-3 .074 .255 .021
Where-4 .02 .188 .04
Where-5 .038 .208 .027
Where-6 .084 .155 .05
Who-1 .06 .224 .016
Who-2 .095 .119 .046
Who-3 .087 .211 .024
Who-4 .209 .27 .044
Who-5 .071 .216 .043
Who-6 .039 .206 .126

System Average(Si) .083 .186 .053

4.6 Phase 1 Summary

This chapter has examined the relationships between WH-extraction task re-

sponse rates and autometrics by utilizing several descriptive statistics including an

in-depth correlation analysis. Most of the statistical tools discussed in this chap-

ter are not original except for the partial rank correlation statistics. However, my
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Table 4.13: MT system adjusted BLEU scores, document summed score, and final
recoded BLEUavg score

Document AD1 AD2 AD3

∑3
j=1 ADj Final BLEUavg

When-1 1.6595 — 1.4625 3.1220 1.5610
When-2 1.2476 0.3990 0.7125 2.3591 0.7864
When-3 1.2719 1.5258 1.3688 4.1665 1.3888
When-4 0.7631 0.5338 0.8438 2.1406 0.7135
When-5 0.5209 0.3720 0.6375 1.5304 0.5101
When-6 1.1023 0.8896 2.1563 4.1482 1.3827
Where-1 0.7631 1.4665 1.1250 3.3547 1.1182
Where-2 1.2598 0.7494 1.5000 3.5092 1.1697
Where-3 0.8964 1.3749 0.3938 2.6650 0.8883
Where-4 0.2423 1.0136 0.7500 2.0059 0.6686
Where-5 0.4603 1.1215 0.5063 2.0880 0.6960
Where-6 1.0175 0.8357 0.9375 2.7907 0.9302
Who-1 0.7268 1.2077 0.3000 2.2345 0.7448
Who-2 1.1507 0.6416 0.8625 2.6549 0.8850
Who-3 1.0538 1.1376 0.4500 2.6415 0.8805
Who-4 2.5316 1.4558 0.8250 4.8124 1.6041
Who-5 0.8600 1.1646 0.8063 2.8309 0.9436
Who-6 0.4724 1.1107 2.3625 3.9456 1.3152

application of correlational and permutational tools here, and in modeling-building

presented in Chapter 6, were customized for this particular MT evaluation applica-

tion and serve as a case study without any precursor in the MT literature.

It was shown that autometric sensitivity to granularity can be exposed when

trying to assess task performance. This study calls for document-level autometrics.

It is found that even though correlations are quite low at this level, there is a slight

relationship when autometrics are considered within the cross-classifications of other

variables in the study, namely the MT system that translated a particular document

or the actual WH-task at hand. There is certainly variety in these relationships,

group by group, and even though they are hard to see by eye and may be weak,
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permutational testing shows that the relationship is one that cannot be ascribed

to chance. These findings motivate the logistic regression models in Phase 2 by

informing us of predictive variables to test. The use of grouping variables in this

study suggests that partial Spearman rank correlation can be used in assessing the

data in Phase 2. The next chapter discusses the asymptotic behavior and power of

our Spearman rank correlation statistics.
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Chapter 5

A Look at Partial Rank Correlation within

Groups

Let X, Y and Z be random variables for which X and Y are jointly distributed

given Z, where Z is a discrete group indicator. How can the true degree of relation-

ship between X and Y conditionally given Z be summarized? A good general class

to consider is

fX,Y |Z(x, y|z) = f0

(

x − µz

σz

)

· g0

(

y − µy − ρz
σy

σz
(x − µz)

σy

√

1 − ρz
2

)

In this chapter, two different expressions are derived for partial rank correlation:

(1) S1—a rank correlation computed from X and Y after linearly correcting by

their group means within levels of Z, and (2) S2—a weighted combination of within

Z-group rank correlations.

The question to investigate is how the statistics (S1 and S2) in equations (4.5)

and (4.7), respectively, perform asymptotically in detecting within group relation-

ships. Thus, the asymptotic properties are approximated under bivariate normality.

The power of each statistic to detect real within group relationships for a broad
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range of within group dependence models is determined. Theoretical expectations

of these statistics are presented and simulations of their relative performance are

shown for various patterns of conditional correlations as a function of Z. Percentage

points of the permutational distribution are estimated.

5.1 Method 1: Rank Correlation Linearly Corrected by Group Mean

As stated in section 4.4, the statistic S1 can be written as

S1 =

n
∑

i=1

(R(Xi
∗, X∗) −R(Xi

∗, X∗))(R(Yi
∗, Y ∗) − R(Yi

∗, Y ∗))

√

n
∑

i=1

(R(Xi
∗, X∗) −R(Xi

∗, X∗))2
n
∑

i=1

(R(Yi
∗, Y ∗) −R(Yi

∗, Y ∗))2

(5.1)

Recall that, IZ(z) denotes the indicator function, X∗
i = Xi − cZi

, Y ∗
i = Yi − dZi

and for j=1,...,L indexing the different levels of Z, cj =
∑n

i=1 I[Zi=j]Xi/
∑n

i=1 I[Zi=j]

and dj =
∑n

i=1 I[Zi=j]Yi/
∑n

i=1 I[Zi=j]. The values of cz and dz that are used to

correct group Z = z are not known in advance as constants and must be supplied

as statistical estimators.

Focusing on the numerator of equation (5.1), the following derivation obtains.
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n
∑

i=1

(R(Xi
∗, X∗) −R(Xi

∗, X∗))(R(Yi
∗, Y ∗) − R(Yi

∗, Y ∗))

=
n
∑

i=1

(R(Xi
∗, X∗) − n + 1

2
)(R(Yi

∗, Y ∗) − n + 1

2
)

=
n
∑

i=1

[R(Xi
∗, X∗)R(Yi

∗, Y ∗) − n + 1

2
[R(Xi

∗, X∗) + R(Yi
∗, Y ∗)] +

(n + 1)2

4
]

=
n
∑

i=1

R(Xi
∗, X∗)R(Yi

∗, Y ∗) − n + 1

2
[n(n + 1)] +

n(n + 1)2

4

=

n
∑

i=1

R(Xi
∗, X∗)R(Yi

∗, Y ∗) − 2n(n + 1)2

4
+

n(n + 1)2

4

=
n
∑

i=1

R(Xi
∗, X∗)R(Yi

∗, Y ∗) − n(n + 1)2

4

Similarly the denominator can be simplified as follows:

n
∑

i=1

(R(Xi
∗, X∗) − R(Xi

∗, X∗))2

=

n
∑

i=1

(R(Xi
∗, X∗)2 − (n + 1)

n
∑

i=1

R(Xi
∗, X∗) +

n(n + 1)2

4

=
n(n + 1)(2n + 1)

6
− n(n + 1)2

2
+

n(n + 1)2

4

=
n(n + 1)[2(2n + 1) − 6(n + 1) + 3(n + 1)]

12

=
n(n2 − 1)

12

Hence, the formula for S1 can be rewritten as:

S1 =

(

n
∑

i=1

R(Xi
∗, X∗)R(Yi

∗, Y ∗) − n(n + 1)2

4

)

/

n(n2 − 1)

12
(5.2)

To find the limiting distribution of S1, it suffices to know the behavior of
n
∑

i=1

R(Xi
∗, X∗)R(Yi

∗, Y ∗). It is known from the Law of Large Numbers that for large

samples, the sample mean, (1/n)
n
∑

i=1

Xi of independent identically distributed ran-

dom variables X1, X2, ..., Xn converges to E(Xi), the true mean of the distribution
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[11]. Furthermore, R(Xi
∗, X∗) /n ≈ FX(Xi

∗). Thus, it follows that

1

n

n
∑

i=1

R(Xi
∗, X∗)

n

R(Yi
∗, Y ∗)

n
≈ E(FX(Xi

∗)FY (Yi
∗))

and
n
∑

i=1

R(Xi
∗, X∗)R(Yi

∗, Y ∗)

≈ n3

n
∑

i=1

FX(Xi
∗)FY (Yi

∗)

≈ n3

∫ ∫

FX(x)FY (y)fX,Y (x, y)dxdy

(5.3)

Now,

FX(Xi
∗) = P (Xi

∗ ≤ x) = P (X − czIZ(z) ≤ x)

=
nz
∑

z=1

P (X − czIZ(z) ≤ x|Z = z) · P (Z = z)

=
nz
∑

z=1

P (X ≤ x + cz|Z = z) · P (Z = z)

=
nz
∑

z=1

Φ

(

x + cz − µx,z

σx,z

)

· P (Z = z)

where IZ(z) is the indicator variable for group z and nz is the number of elements

in group z. Similarly, FY (Yi
∗) =

∑

w Φ((y +dw −µy,w) /σy,w ) ·P (W = w). So that I

can make specific calculations and simulations, the rest of this chapter assumes that

the distribution of (X, Y ) is bivariate normal given Z. From this it follows that,

fX,Y (x, y) =
1

2π
√

1 − ρz

exp

{

− 1

2(1 − ρz
2)

[(

x + cz − µx,z

σx,z

)2

−2ρz

(

x + cz − µx,z

σx,z

)(

y + dz − µy,z

σy,z

)

+

(

y + dz − µy,z

σy,z

)2 ]}

.
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The right hand side of equation (5.3) above becomes

n3

∫ ∫

∑

z

∑

v

∑

w

P (Z = z)P (V = v)P (W = w)Φ

(

x + cv − µx,v

σx,v

)

×Φ

(

y + dw − µy,w

σy,w

)

1

2π
√

1 − ρz

exp

{ −1

2(1 − ρz
2)

[(

x + cz − µx,z

σx,z

)2

−2ρz

(

x + cz − µx,z

σx,z

)(

y + dz − µy,z

σy,z

)

+

(

y + dz − µy,z

σy,z

)2 ]}

dxdy

(5.4)

A change of variable simplifies this formula. Let

σx,zS = X + cz − µx,z

σx,zT = Y + dz − µy,z .

Then

S, T ∼ N









0,









1 ρz

ρz 1

















T − ρzS ∼ N(0, 1 − ρ2
z)

T ∗ =
T − ρzS
√

1 − ρ2
z

(S, T ∗) ∼ N(0, 1).

With these transformations, equation (5.4) can be written as

n3

∫ ∫

∑

z,v,w

P (Z = z)P (V = v)P (W = w)Φ

(

µx,z − cz + cv − µx,v + σx,zs

σx,v

)

Φ

(

µy,z − dz + dw − µy,w + σy,z(ρzs +
√

1 − ρ2
zt

∗)

σy,w

)

1

2π
√

1 − ρz

exp

(

−s2 + (ρzs +
√

1 − ρ2
zt

∗)2 − 2ρzs(ρzs +
√

1 − ρ2
zt

∗)

2(1 − ρz
2)

)

Note that cz = µx,z and dz = µy,z because the former are large sample consistent

estimators of the latter. Finally, this mixture of normal random variables can be

written in the form,

n3

∫ ∫

g(s, t∗)φ(s)φ(t∗)dsdt∗ (5.5)
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where g(s, t∗) =
∑

z

∑

v

∑

w P (Z = z)P (V = v)P (W = w)Φ(σx,zs/σx,v)Φ((σy,z/σy,w)

(sρz+
√

1 − ρ2
z t∗)). This can be approximated using a well-known Gaussian quadra-

ture formula

∑

ij

g(pi

√
2, pj

√
2)

wiwj

π
. (5.6)

where pi and wi are the computed nodes and weights respectively. Once the number

of nodes is chosen, the locations and weights are uniquely determined and provide

well-controlled high accuracy for the integrals in equation (5.5). This approach to

numerical integration will work whenever the function g being integrated can be

approximated accurately by a polynomial over the range of integration [57].

5.2 Method 2: Weighted Sum of Rank Correlations within Groups

Statistic S2 is defined as

S2 =

L
∑

z=1

wzρy,x|Z=z

L
∑

z=1

wz

(5.7)

where L is the number of groups and wz is the weight given for group Z. For the

purposes of this dissertation, it is assumed that wz = 1. In applications different

from the current one, these weights might be chosen to be unequal, to favor some

groups over others. Let X(z) = (xi : i ∈ Jz) where Jz is the subset of values in group

Z. Then ρ in this case is defined as:

ρy,x|Z=z =

∑

i∈Jz

(R(Xi, X
(z)) − R(Xi, X

(z)))(R(Yi, Y
(z)) −R(Yi, Y

(z)))

√

∑

i∈Jz

(R(Xi, X
(z)) −R(Xi, X

(z)))2
∑

i∈Jz

(R(Yi, Y
(z)) − R(Yi, Y

(z)))2

.

(5.8)
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The numerator of equation (5.8) can be written as

∑

z

(

R(Xi, X
(z)) − R(Xi, X

(z))
)(

R(Yi, Y
(z)) − R(Yi, Y

(z))
)

=
∑

z

[ nz
∑

i=1

R(Xi, X
(z))R(Yi, Y

(z)) − nz(nz + 1)2

4

]

.

Similarly the denominator can be simplified as follows:

∑

z

[

R(Xi, X
(z)) − (R(Xi, X

(z)))2
]

=
∑

z

[

nz(n
2
z − 1)

12

]

.

Hence, the formula for S2 can be rewritten as:

S2 =
1

L

L
∑

z=1













nz
∑

i=1

R(Xi, X
(z))R(Yi, Y

(z)) − nz(nz + 1)2 /4

nz(n2
z − 1) /12













(5.9)

To find the limiting distribution of S2, it suffices to know the behavior of
nz
∑

i=1

R(Xi, X
(z))R(Yi, Y

(z)) for each Z.1 Recall that from the Law of Large Numbers,

it follows that

1

nz

nz
∑

i=1

R(Xi, X
(z))

nz

R(Yi, Y
(z))

nz
≈ E(FXz

(Xz)FYz
(Yz))

and

nz
∑

i=1

R(Xi, X
(z))R(Yi, Y

(z)) ≈ nz
3

∫ ∫

FXz
(xz)FYz

(yz)fXz ,Yz
(xz, yz)dxdy (5.10)

Now,

FXz
(xz) = P (Xz ≤ xz) = Φ

(

x− µxz

σxz

)

.

1The random variables X and Y are superscripted with z to indicate that subsequent calcula-
tions are for one particular Z − group.

73



Similarly, FYz
(yz) = Φ ((y − µyz

) /σyz
). The joint distribution fXz ,Yz

(xz, yz) is bi-

variate normal given Z so

fXz ,Yz
(xz, yz) =

1

2π
√

1 − ρ
exp

{

− 1

2(1 − ρ2)

[(

xz − µxz

σxz

)2

−2ρ

(

xz − µxz

σxz

)(

yz − µyz

σyz

)

+

(

yz − µyz

σyz

)2 ]}

.

This expression becomes

n3
z

∫ ∫

Φ

(

xz − µxz

σxz

)

· Φ
(

yz − µyz

σyz

)

· 1

2π
√

1 − ρ

exp

{

− 1

2(1 − ρ2)

[(

xz − µxz

σxz

)2

−2ρ

(

xz − µxz

σxz

)(

yz − µyz

σyz

)

+

(

yz − µyz

σyz

)2 ]}

dxzdyz

(5.11)

This integral is given as in equation (5.5) where now g(s, t∗) = Φ(s)Φ(sρz+
√

1 − ρ2
zt

∗)

and the Gaussian quadrature formula in equation (5.6) again approximates it closely

by choice of appropriate number of nodes. In this method, this formula is calculated

for each Z and S2 is the sum of the resulting values.

5.3 Simulation Study

Simulation results are presented in this section in order to study the behavior

of the test statistics S1 and S2. Simulation provides the tools for examining the

probabilistic behavior of these statistics for a wide variety of inputs and conditions.

The simulation is done to compare the critical values and empirical power of the

suggested rank statistics. The number of groups varied; so were the different mag-

nitudes of within group variances and the patterns of within group correlations in

the simulation. This analysis enables us to determine if one of the two statistics
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systematically outperforms the other and to determine the better choice of rank

correlation statistic, considering the selected factors.

5.3.1 Parameter Selection

The collection of parameters were designed for this study so that a wide range

of possible conditions for the simulated data would be captured. The variances were

chosen in three ways: variances in arithmetic progression scrambled in order (var1),

variances somewhat asymmetrically placed (var2), and constant variances (var3)

(see Table 5.1). All variances have been scaled so that the within group variances

sum to one. For selection of ρ parameters, instances with varied directions and sign

were included. Thus, a large variety of ρ vectors were tested in this research and

I present results only for selected representative cases. For instance, (r1) is peaked

in the middle and all the same sign, (r2) is monotone decreasing, and (r3) is a mix

of negative and positive correlations (See Table 5.2). The magnitude of the within

group correlations in each case are bounded by 2/
√

nz, 4/
√

nz, or 6/
√

nz, where nz

is the number of elements in each group and the number of groups, L = 3, 5, and 9.

This sets the criteria for the hypothesis test as explained in the next section. The

study test set was fully crossed with the 3 × 3 choices of variance and ρ vectors.

However, the distribution choice (Normal), mean vector (µz = 0), and proportion

of samples in each group Z (pz = 1/N) remained constant across cases.
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Table 5.1: Group-wise Variance Parameters

L = 3 var1 var2 var3

.333 .304 .333

.444 .443 .333

.222 .253 .333

L = 5 var1 var2 var3

.176 .120 .20

.059 .287 .20

.117 .185 .20

.294 .167 .20

.353 .241 .20

L = 9 var1 var2 var3

.067 .068 .11

.156 .083 .11

.044 .182 .11

.178 .156 .11

.022 .141 .11

.011 .109 .11

.200 .052 .11

.133 .114 .11

.089 .094 .11

5.3.2 Simulation and Two-sided Test Procedure

The null hypothesis of interest in this study can be expressed as a test for

no correlational relationship written as H0 : all correlations are 0. The alternative

hypothesis is H1 : rz = az/
√

nz, where az represents some constant value (2, 4, or

6 in this dissertation) denoting magnitude of nonzero correlation in units of 1/
√

nz.

These contiguous alternatives (very close to the null value of zero) [40] were tested

to achieve limiting large-sample powers strictly between the α levels (.05 and .10)

and 1.

The Monte Carlo simulation to conduct this test involves several steps. First,

B = 500 samples of size N = 1000 indexed by b = 1, ldots, B, were generated for
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Table 5.2: Group-wise Correlation Parameters bounded by (i) 2/
√

nz , (ii) 4/
√

nz,
and (iii) 6/

√
nz for L = 3, 5, and 9, where nz = 1000/L.

L=3 r1 r2 r3 r1 r2 r3 r1 r2 r3

(i) .050 .100 .060 (ii) .150 .200 .260 (iii) .250 .290 .360
.110 .040 -.070 .220 .140 -.170 .330 .160 -.230

.090 .008 .120 .190 .018 .120 .090 .088 .120

L=5 r1 r2 r3 r1 r2 r3 r1 r2 r3

.007 .160 .001 .017 .310 .001 .210 .460 .100

.050 .070 -.050 .250 .270 -.200 340 .320 -.050

.140 .020 -.019 .280 .120 -.110 .420 .160 -.419

.090 .016 .090 .190 .060 .290 .190 .080 .270

.009 .003 .120 .009 .003 -.220 .090 .015 -.320

L=9 r1 r2 r3 r1 r2 r3 r1 r2 r3

.003 .180 .020 .030 .400 .220 .130 .580 .020

.023 .130 -.080 .123 .330 -.180 .223 .430 -.380

.090 .109 -.190 .290 .209 -.190 .390 .309 -.090

.140 .095 0.130 .340 .165 .330 .440 .250 .530

.190 .060 .010 .380 .120 .410 .570 .160 .410

.100 .052 -.025 .200 .060 -.225 .400 .082 -.136

.070 .043 0.200 .170 .043 .200 .270 .043 .320

.052 .026 -.037 .050 .026 .137 .152 .016 -.370

.006 .008 .004 .006 .008. .240 .060 .008 .040

each variance and ρ parameter combination. Next, the test statistics S1 and S2

was calculated theoretically, by using the asymptotic formulas in sections 5.1 and

5.2, as well as empirically by computing the average statistic across Monte Carlo

replications. This generated the alternative distribution. For every fifth value of

b, R = 750 random (within group) permutations were performed, and the same

statistics were recalculated for each null hypothesis permutation.2 Lastly, empirical

power was calculated as the proportion of the 750 permuted samples of the test

statistic under the alternative hypothesis that exceeded the significance threshold or

P1(|S| ≥ c). This cut-off threshold (c) was calculated from the empirical distribution

2In earlier tests, computed values were shown to be pretty stable so I chose to select every fifth
B for the final calculations to save on computation time.
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under the null hypothesis at each α.

5.3.3 Theoretical Formulas Compared to Empirical Averages

First, the empirical distributions of the test statistics obtained from the simu-

lation were explored. When comparing the computations for the two statistics, the

results for nearby alternatives when L = 3, 5, and 9 are presented in Appendix A. In

general, the agreement between simulated and theoretical expectations is very high

for both statistics with a difference of no more than two empirical standard errors.

The results confirm that the expected values for S2 do not depend on the variance

parameter combinations and hence remain constant throughout. Furthermore, in

the case where the within group variances are constant, it is found that either statis-

tic can be applied because the averages of S1 and S2 are approximately the same and

the results are indistinguishable. In Tables A.1 through A.3 it is observed that for

L = 3, S1 and S2 are comparable in magnitude for all rho parameterizations except

in the mixed-sign case (r3). In fact, there is less difference in S1 and S2 throughout

for smaller numbers of levels of Z. In the cases where L = 5 and L = 9, S2 almost

always yields a systematically larger rank correlation than those from S1.

5.3.4 Empirical Power Results

The critical values simulated from the null distribution for the statistics S1

and S2 for typical levels of significance (α = .05 and .10) are provided in Table

5.3 for each α and Z-level. The critical values for S1 are fairly similar for each
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value of Z and in all cases, the critical values of S2 are slightly lower than those

of S1. Results, using these cut-offs, of the empirical statistical power of the test

for each two-sided test procedure under consideration are shown in Appendix B for

Z-group and significance level. The test with the highest power for a given level of

significance is always preferred.

Table 5.3: Simulated Critical Values for S1 and S2 for α = .05 and .10.

S1 S2

α

.05 .10 .05 .10

L=3 .064 .054 .062 .052
L=5 .069 .058 .062 .052

L=9 .069 .058 .062 .052

A comparison of the power of the tests indicates that for both statistics the

test attains highest power for the case where within group correlation is peaked in

the middle and all the same sign (r1) and lowest power when the correlations are

mixed in sign (r3). There is more of a distinction of this in the case where L = 3. In

general, statistic S2 tends to achieve higher power and this is more evident for cases

where there are more groups (e.g., 5 or 9) and closer alternatives (i.e., correlations

are bounded by 2/
√

nz).

5.4 Comparison of Empirical Power to Normal Distribution

Inspection of the distribution of statistics S1 and S2 in the simulation reveals

that these statistics are approximately normally distributed under both the null and

alternative hypotheses. This is shown via histograms for select parameter choices
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Figure 5.1: Histogram of S1 and S2 for L = 3 with parameter choices: variance =
Var3, rho = r3, and contiguous alternative a = 6. Normal density overlaid for null
((a),(c)) and alternative ((b),(d)) hypotheses.

in Figures 5.1, 5.2, and 5.3. In each case, the normal N(µ0, σ0) and N(µ1, σ1)

density functions for the null and alternative distributions, respectively are overlaid.

Consequently, the empirical power results from section 5.3.4 can be compared with

the normal distribution rejection probability.

Under the normal distribution, the power against the two-sided hypothesis for

my test statistics becomes P1(|S| ≥ µ0 + zα/2σ0) = 1−Φ
(

(µ0 − µ1 + zα/2σ0) /σ1

)

+

Φ
(

(µ0 − µ1 − zα/2σ0) /σ1

)

, where µ0 = 0. Tables in Appendix C show the power of

statistics S1 and S2 re-calculated using the normal critical values zα/2 = 1.645 and

1.96 for α = .10 and .05, respectively. The power calculations of this form generally

track very well with the previous calculations resulting in the Appendix B tables.

This finding is significant in that permutational cut-offs are very costly in terms of

computation time. In the future, the normal approximations for power for the test
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Figure 5.2: Histogram of S1 and S2 for L = 5 with parameter choices: variance =
Var2, rho = r2, and contiguous alternative a = 2. Normal density overlaid for null
((a),(c)) and alternative ((b),(d)) hypotheses.

Figure 5.3: Histogram of S1 and S2 for L = 9 with parameter choices: variance =
Var1, rho = r1, and contiguous alternative a = 4. Normal density overlaid for null
((a),(c)) and alternative ((b),(d)) hypotheses.

81



statistics can be used.

5.5 Summary

In Chapter 4, the partial rank correlation statistics S1 and S2 are used to

summarize the relationship between automated Machine Translation metrics and

task performance on the WH-extraction task. The permutational cut-offs in the

final analyses suggested that the within group correlation structure did remain for

the MT data for both statistics. This chapter explored these two statistics used

under several distributional assumptions in a manner that enables the determination

of the statistic that serves as a better choice for this comparison asymptotically.

The results show that in general, statistic S2 appears to yield a higher power for

detecting differences in within group correlation. Chapter 6 uses the knowledge

that an inherent relationship exists between the metrics and task performance. The

magnitude of the partial rank correlation for each group (MT, WH, or MT X WH)

and autometric (BLEU, METEOR, GTM, and oTER) serve as indicators of factors

that make good predictors in modeling this relationship.

82



Chapter 6

Data Analysis Phase 2: Model Building,

Evaluation, and Results

In Chapter 4, a correlation analysis was applied to establish that autometrics

are indeed associated with subject task performance in the extraction task. This

chapter extends the research beyond correlations and investigates the use of sta-

tistical modelling techniques to identify and characterize the predictive relationship

between machine translated document quality, as judged by the four automated

measures studied, and the outcome of the extraction task performed by subjects

using the same collection of translated documents. Logistic regression, a convenient

instance of a binary response Generalized Linear Model [47], was chosen to develop

relationships between presence/absence of correct matches from subject responses

in this experiment and autometric document-level scores.

This chapter presents general background and discusses the motivation for

selecting this class of models. The specification, fitting, and interpretation of gen-

eralized linear models describing the dependence of subject performance on the

extraction task of autometrics and other document features is summarized. Best
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fitting fixed effect models show that autometrics are useful in distinguishing task-

based performance of MT engines and under specific response criteria, and that

certain MT engines do outperform others on subject responses for the extraction

task. The consequences of such models, their effectiveness, statistical adequacy, and

limitations as predictive tools are addressed. The modelling results are analyzed

to determine which autometric or class of autometrics is more useful in predicting

document utility and outline how interpretations of the models will enable us in

future Machine Translation evaluations.

6.1 Statistical Modelling

Statistical modelling can be used to summarize experimental data. Model

fitting involves the following steps [18]:

• Model specification – the mathematical formula chosen to relate the expected

response (hit rate) to the explanatory variables, and the probability distribu-

tion of the response.

• Parameter estimation – the method of estimation (maximum likelihood in

this dissertation), including the numerical algorithm and output summary

statistics, which are all part of standard statistical software packages for widely

used models like generalized linear models.

• Model validation – the statistics and diagnostic exhibits to be used in mea-

suring the fit of each model to the data.
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• Inference – confirmatory conclusions and interpretations that can be drawn

about the model governing the data.

The sequences of these steps related to this work are discussed in the remainder

of this section.

6.1.1 Logistic Regression

For the generalized linear model the expected response variable µi = E(Yi) for

the i’th observation or case is specified as a known function of a linear combination

ηi = α + β1xi1 + · · · + βpxip (6.1)

of the explanatory variables xi = (xi1, . . . , xip) in the i’th case, where the co-

efficients α (called intercept) and β are unknown parameters, common to all

observations and estimated from the data. The GLM requires further specification

of a known link function g to capture the relationship between E(Yi) and xi, in

the form

g(µi) = ηi.

The modeler chooses the function g as well as the form of the probability

distribution of the response Yi (conditionally given ηi), from a so-called exponen-

tial distributional family [1]. One appropriate choice, associated with the particular

GLM called the Logistic Regression Model , is called the logit link function where

µi = E(Yi) satisfies ηi = g(µi) = log(µi/(1 − µi)) along with the Binomial distri-
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butional family, and implies the relationship

E(Yi) =
exp(α + β1xi1 + · · · + βpxip)

1 + exp(α + β1xi1 + · · · + βpxip)
. (6.2)

The logistic regression model, like all GLM’s, expresses the predicted or ex-

pected behavior of the response variable Yi through an explicit parameterization

(6.2) in terms of the explanatory variables. The number p of predictive terms en-

tering into the model is often changed or updated after looking at the data during

model fitting. The parameters are readily estimated from data using the method

of maximum likelihood, a standard component of most statistical packages. There

are several methods that can be used to assess model fit. A few techniques are

discussed in Section 6.2. All statistical modelling analyses were carried out with

R, a free variant of the S-plus statistical software package [53]. More statistical

background for model-building is the focus of selected chapters in [1].

6.1.2 Logistic Regression for MT Evaluation

The data used for this research has several characteristics that makes logistic

regression an appropriate choice of models; for example, the subjects’ answer is

either correct or incorrect and logistic regression specifies the probability of an event

occurring or not occurring. The data also contains both categorical (qualitative or

discrete) and continuous variables which can be easily handled simultaneously with

logistic regression. Logistic regression then models the logarithm of the odds of a

success in the extraction task.

By using statistical modelling, I am seeking to detect coefficients within logistic
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regression models which are statistically significantly different from 0. This will help

indicate whether specific predictor variables and their interactions (described in the

next section) have an influence on the responses collected in the experiment. MT

system, WH-type, and variables such as autometrics are related to a probability p

through the function g in (6.1), where g(p) = log( p
1−p

).

6.1.3 Model Variables

The goal of any analysis using regression is to find the best-fitting and most

parsimonious, yet reasonable model to describe the relationship between the out-

come (response) variable and a set of independent (predictor or explanatory) vari-

ables [30]. In the extraction experiment described in Chapter 3, several variables

that could potentially summarize the data.

Response Variables

The design of the extraction task allowed subjects to identify specific WH-

type items from each machine translated document. The response is defined

as a success (that is, correct subject mark) or failure (that is, incorrect sub-

ject mark). This analysis focuses on the hits response rate (hit rate) as the

response variable of interest. Recall from Chapter 3 that a ‘hit’ is the event

that a subject selected a correct item (as validated by the reference truth).

In this setting, Yi = Hitsi/RTMtoti is modeled as though RTMtoti, xi

were exogenous random inputs, conditioned on and thereafter fixed in mod-

elling the conditional distribution of y given these variables; the number
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Hitsi of hits is treated as the number of successes in RTMtoti indepen-

dent coin tosses1, each with success probability given by pi = E(Yi) satisfying

g(pi) = log(pi /(1 − pi)). Other event rates collected in the study may also be

modeled. If one were interested in assessing overall performance of subjects

using the three-way possibility of response choices (correct response, incorrect

response, and non-response), this could be accomplished using a regression

setting that enables prediction of polytomous responses or by predicting each

response separately and using a suitable function to combine the results of each

individual prediction. Such models might also incorporate shared parameters

across the probabilities for different responses.

Predictor Variables

Continuous Variables

Studying the relationship between automated metric scores and task per-

formance is of most interest in this study. These metrics provide a sensible

way to assess document quality and are readily accessible. Thus, if they

can be shown to predict task ability, this will provide great insight for

developers and users of MT systems. The scores with suffix ‘avg’, as

introduced in Section 4.5, ‘averaged’ metric scores across documents and

MT systems and attempted to get a document difficulty metric for each

document regardless of the system that translated it. These scores were

1Using the RTMtot value strictly as a number of independent trials and conditioning on it was
a modelling choice. The trials might not be independent, and the proper link might depend upon
the RTMtot value. Although this possibility seems unlikely to affect the predictive properties of
the models studied, it has not been investigated fully.
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introduced to create a metric that could be more successful in drawing

conclusions about documents for difficulty or translatability. Translata-

bility refers to attributes of document quality. This concept of quality

determines whether a document is easy or hard on a given scale of diffi-

culty. Thus, a system could be evaluated based on how well it translated

documents of a specific level and also based on how well certain tasks

are performed in relation to the documents’ degree of difficulty. This

exploits the notion of quality vs. usefulness. The variables that serve as

quantitative predictors in the models are:

• BLEU and BLEUavg

• GTM and GTMavg

• METEOR and METEORavg

• oTER and oTERavg

Categorical Variables

The distinction between documents of varying WH-type and MT sys-

tems was made with the intention of addressing the question of whether

subjects perform better on extracting certain WH-types or output pro-

duced by certain systems. Although the autometric/task-performance

relationship is what was ultimately sought, it is known from the work

in Chapter 4 that document WH and MT classifications are important

in summarizing this relationship. Thus, the categorical variables in the

models are:
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• WH Type– Who, When, Where

• MT System– MT-1, MT-2, MT-3

These categorical variables in the models are represented by what are

called dummy variables for WH-categories and MT systems. If a specific

variable has k levels, then the dummy or indicator for the j’th level (for

j ranging from 1 to k) has value 1 if the categorical variable for a specific

data-record has value j, and is 0 otherwise. For instance, the variable for

MT-2 could be coded as I[MT=2] and would be valued at 1 when relating to

a particular instance of an item from translation system 2. In general, if a

nominal scaled variable has k possible values, then k-1 dummy variables

will be needed [30] to describe the main effect of the categorical variable.

In this case, an example model including MT variables would be

log(
p

1 − p
) = α + β1I[MT=2] + β2I[MT=3]

and both dummy variables would be set to 0 in records corresponding to

MT-1-translated documents.

Interaction Terms

The effect of a single factor in a model is called a main effect [48]. The

variables described above can enter the models not only as main effects,

but two or more factors can have a combined effect called an interaction

effect. This happens when the effect of one of the variables is not con-

stant over levels of the other. For example, an interaction between WH

and BLEU implies that the coefficient for BLEU is different for WHEN,
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WHERE, and WHO categories. Interaction terms are generally repre-

sented as predictor variables coded as products of quantitative predictors

or of dummy variables for categorical predictors. In this work, an exam-

ple model including interaction effects between WH variables and BLEU

scores would be

log(
p

1 − p
) = α + β1I[WH=WHERE] + β2I[WH=WHO] + β3BLEU

+β4I[WH=WHERE] ∗ BLEU + β5I[WH=WHO] ∗ BLEU.

According to [30], any interaction term included in a model should be

based both on statistical considerations (i.e., if the added term signifi-

cantly increases the model’s fit ) as well as practical considerations (i.e.,

the interaction must make sense from the study application).

6.2 Model Evaluation

The generalized linear modelling (GLM) framework helps to summarize the

variation in the data and determine if response can be attributed to different charac-

teristics of the data. Once the models have been fitted, it is necessary to determine

how effective the models are at predicting the response variable. The validity or

‘adequacy’ of a statistical model, with respect to a dataset, is essentially the prop-

erty that the observed data deviate from predicted or expected values by no more

than would occur by chance or with large probability if the event-occurrence data

were actually generated from the given set of predictor variables via the postulated

model.
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There exists an established body of statistical theory and “goodness of fit

tests” [1] to assess the deviations between observations and predictions from fitted

models, taking into account that the fitting of parameters was (or was not) done on

the same dataset being used to test adequacy. Statistical models passing such tests

of adequacy are the gold standard for applied statistical investigations, because most

theoretically based statistical statements (for example, about the uncertainty in an

estimated quantity) depend on using a ‘correct’ model in this sense. To evaluate

the performance of models, several model-checking strategies are employed:

Chi-squared (χ2) test [48] – measures goodness of fit of models to the data by mea-

suring discrepancies between the observed values(o) of the data set and those

predicted(e) by the model. This measure is relative to a specific categoriza-

tion of the data into cells. In this chapter, the 9-cell MT × WH categorization

as well as a 54-cell Document × MT categorization (53 after deletion of one

document) are used. The formula for obtaining the (χ2) statistic is

∑ (o − e)2

e
. (6.3)

Likelihood Ratio Test (LRT) [1]– compares a constrained model 1 with predictors

of interest fixed at nominal values to an unconstrained model 2 without those

predictors in the form

Λ = −2

[

max log likelihood of Model 2

max log likelihood of Model 1

]

(6.4)

where the ‘likelihood’ for discrete response data (as here) is the probability

that the observed values of the response would occur with the observed values
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of the explanatory variables. It is required that the models compared by the

LRT approach be nested. The LRT statistic, under some regularity conditions

which are satisfied here, approximately follows a chi-square distribution under

the Model 1 probability law when data samples are large. Hence, to determine

if the difference in likelihood between two models is statistically significant,

the LRT is compared to a χ2
p critical value from a standard statistical table.2

Akaike’s Information Criterion (AIC) [1] –ranks a series of models by selecting a

good model in terms of estimating quantities of interest rather than through

significance tests. AIC penalizes a likelihood-based criterion of goodness of

fit (“deviance”) by the number of model parameters. Thus, the model that

produces the smallest AIC is selected as the most likely representation of

the given data. The AIC penalty helps offset the apparent increase in model

performance that is attributed simply to a larger number of predictor variables.

References [2] and [1] describe this criterion that selects a model as one that

minimizes

AIC = −2[maximized log likelihood− number of degrees of freedom]. (6.5)

6.3 Univariate Models

Since the ultimate idea is to describe the probability of “success” on the WH-

extraction task as a function of a single autometric score, as an initial screen, a

series of univariate models of the form (6.6) analyzing each predictor separately

2p is the degrees of freedom (difference in parameter dimension between the two models).
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were tested.3

Model 1 log(
pHits

1 − pHits
) = α + β1 ∗ MetricScore (6.6)

The results for each of the univariate models for autometrics and their re-codes are

displayed in Table 6.1. The p-value in the fifth column of the table is associated with

the test applying the Wald Statistic, (β̂/StdErr(β))2. This comparison of the model

parameter estimate to its standard error is a standard procedure for determining

significance of coefficients of parameters in a model [30] and is compared to a chi-

square distribution with 1 degree of freedom. The chi-square statistic in the final

column refers to a different hypothesis and corresponds to the test of fit (observed

vs. predicted) with respect to the 9 MT × WH cells.4 The null hypothesis for

the test on the chi-square statistic here is that the numbers of correct extractions

(hits) follow the logistic regression model. The test statistic is compared with a

χ2 distribution with the degrees of freedom equal to the number of cells (9, in this

work) minus the number of parameters in the logistic regression model. In these

univariate models, the number of parameters is 1 for the intercept plus 1 for the

metric so the degrees of freedom are 7.

The estimated coefficient in such a univariate logistic model is interpreted as

the increment in the linear score due to a unit increase in the predictor variable. For

example, in the METEOR only model, the term METEOR results in a change in

3The steps in this section are analogous to the single-variable correlations (between hit rates and
metrics). The univariate models are presented here only to demonstrate in the logistic regression
setting the ability or inability of individual autometrics to predict hit rates.

4As a disclaimer, these should be interpreted with caution because of the assumptions which
would be needed to justify them, essentially that the translated- document-by-subject cases fall
independently subject to a fixed array of probabilities within MT × WH cells.
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Table 6.1: Logistic Regression results for Univariate Models including estimated
coefficients for each model along with their standard errors and significance as de-
termined by the Wald Statistic p-value and chi-square statistic values for observed
vs. predicted with respect to MT × WH.

Model Variable Est. Coeff. Std. Error p-value χ2
1

BLEU Intercept -.534 .04 <2e-16 449.61

BLEU 2.77 .28 <2e-16

GTM Intercept -1.52 .12 <2e-16 437.69
GTM 2.44 .22 <2e-16

Meteor Intercept -1.44 .10 <2e-16 410.85
Meteor 2.79 .22 <2e-16

oTER Intercept -.952 .07 <2e-16 432.13

oTER 2.61 .24 <2e-16

BLEUavg Intercept -.815 .07 <2e-16 469.32
BLEUavg .584 .07 <2e-16

GTMavg Intercept -1.971 .22 <2e-16 481.27

GTMavg 1.75 .22 2.00e-15

METEORavg Intercept -.950 .19 3.56e-07 498.91
METEORavg .7119 .18 .0001

oTERavg Intercept -.589 .13 9.5e-06 505.67

oTERavg .357 .13 .007

log( pHits
1−pHits

), that is, log-odds of correct task performance, of 2.79 over the intercept

only model. All estimated coefficients in the displayed models are found to be

extremely statistically significant, but none of the single-predictor models works well

in predicting hit rates, according to the goodness of fit chi-square in the final column

of Table 6.1. Although the univariate model with only autometric main effects would

be better for future model interpretation by the MT community, Table 6.1 shows

that even the ’best-fit’ model at this stage, the model including METEOR only, has

an extreme chi-square value of 27.94 on 7 degrees of freedom.5Figure 6.1 confirms

the lack of fit of the autometric only models for 100 randomly selected individual

5The extreme p-values in Table 6.1 have no meaning other than as descriptive statistics since
none of the models are statistically adequate.
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Figure 6.1: Observed(circles) vs. METEOR-predicted(triangles) Hit rates for 100
random values

document cases of observed versus predicted values for METEOR. This indicates

that more predictors are needed to account for task performance. Hence, one can

not deduce from a document’s metric score alone how well subjects will perform on

the extraction task. The finding here confirms that not only does the strength of

the relationships (discussed in Chapter 4) depend on grouping effects of the data,

but so do any possible predictions.

6.3.1 Model Selection

The previous models, as well as the results in Chapter 4, lead us to believe

that other variables in the data set must be useful in describing the hit rate. Several

combinations of main effects variables and their interactions were tested in different

models through a stepwise selection procedure. This approach to model building
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is standard and can be implemented in most statistical packages ([1],[53]). Since

the predictors described in Section 6.1.3 are all of interest in determining task per-

formance, a model was tested with all of these variables as effects, as well as one

with the interactions added. The most richly parameterized models yielded large

standard errors for the estimated coefficients of interaction terms in these models.

The interaction terms were highly correlated (multi-collinear) with the correspond-

ing main-effect terms in the regression equation, making it impossible to disentangle

the relative importance of main- and interaction- effects.

Keeping this in mind, models which support a significant reduction in deviance

as judged by Likelihood Ratio Tests for models with and without parameters of

interest, which have coefficients that are significant as tested by Wald statistics for

significance of coefficients entering a model, and which did well in an external non-

model based comparison (i.e. χ2 of observed vs. expected value) were retained.

Results of the best models fitting these criteria for each autometric are presented

in the next section. The best and most parsimonious models include METEOR or

oTER as predictors. However, if one includes more parameters and allows re-codes,

then BLEUavg and GTMavg fare better. How I arrived at these conclusions is

discussed in the next section.

6.4 Higher Dimensional Models for Each Autometric

After the series of models tested with single predictors (under-parameterized)

and all possible predictors (over-parameterized), stepwise regression allowed us to
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arrive at the best models associating respective autometrics with the probability

of a person correctly marking a WH-item during the extraction task. The same

selection procedure was followed separately for each autometric, allowing only that

autometric and its ‘avg’ version to be considered for main effects and interactions

with the categorical variables. Each model began with no predictors and a forward

selection procedure was used to enter additional parameters, testing for significance

of inclusion of each new variable at each stage. The chi-square for fit and the Wald

chi-square for significance of the individual coefficients (in the presence of all the

others) is displayed in Table 6.2.

In comparison to other models involving the respective autometrics, these

four models (expressed in equation form in Models 2-5 below) proved to be the

best models for each class of autometric based on AIC and the Wald statistic for

individual term significance. Specific results regarding model fits are discussed in

the next section.

Model 2

log(
pHits

1 − pHits
) = −1.15 − .418 × I[MT=2] − .527 × I[MT=3] + 1.78 × METEOR+

1.28 × METEOR × I[MT=2] + 1.86 × METEOR × I[MT=3] (6.7)

Model 3

log(
pHits

1 − pHits
) = −1.57 + .506 × I[MT=2] + .261 × I[MT=3] − .588 × I[WH=WHERE]

− 3.60 × I[WH=WHO] + .960 × GTMavg + .783 × GTMavg × I[WH=WHERE]

+ 3.84 × GTMavg × I[WH=WHO] (6.8)
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Table 6.2: Logistic Regression results for Best Higher Dimensional Models for each
autometric including estimated coefficients for each model along with their Wald
Statistic value and chi-square statistic values for observed vs. predicted with respect
to the 9 MT × WH cells.

Model Variable Est. Coeff. Wald χ2 Num Param χ2
9−numparam

Model 2 Intercept -1.15 48.50 6 21.98

MT2 -.418 1.89
MT3 -.527 3.53

METEOR 1.78 17.55
METEOR*MT2 1.28 3.93

METEOR*MT3 1.86 7.12

Model 3 Intercept -1.57 17.83 8 9.05
MT2 .506 91.70

MT3 .261 24.98
WHERE -.588 1.28
WHO -3.60 34.71

GTMavg .960 7.15
GTMavg*WHERE .783 2.31

GTMavg*WHO 3.84 40.21

Model 4 Intercept -.771 45.04 8 8.31
MT2 .508 91.89

MT3 .260 24.75
WHERE -.064 .108

WHO -1.20 49.72
BLEUavg .177 3.10

BLEUavg*WHERE .243 1.41
BLEUavg*WHO 1.23 65.24

Model 5 Intercept -1.30 70.16 6 14.76

MT2 .658 5.09
MT3 .507 6.20

oTER 3.68 30.09
oTER*MT2 -1.89 4.10

oTER*MT3 -1.20 1.96

Model 4

log(
pHits

1 − pHits
) = −.771 + .508 × I[MT=2] + .260 × I[MT=3] − .064 × I[WH=WHERE]

− 1.20 × I[WH=WHO] + .177 ×BLEUavg + .243 × BLEUavg × I[WH=WHERE]

+ 1.23 × BLEUavg × I[WH=WHO] (6.9)
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Model 5

log(
pHits

1 − pHits
) = −1.30 + .658 × I[MT=2] + .507 × I[MT=3] + 3.68 × oTER

− 1.89 × oTER × I[MT=2] − 1.20 × oTER × I[MT=3] (6.10)

A few points about these models must be clarified. In equations (6.8 and 6.9),

two MT system and WH-type variables are represented. However, there are 3 of

each under investigation in this study. The R software produces n-1 linear predictors

for each variable, where n is the number of factors of the variable. As mentioned in

Section 6.1.3 describing model variables, the predictor in the model is interpreted

as the contrast of the factor MT 2 against the omitted factor MT 1.

The Wald tests for the coefficients of the METEOR metric and the METEOR

× MT-3 interaction indicate that they were the most significant variables in Model

2 as can be seen in Table 6.2. This means that documents with higher METEOR

scores, and in particularly those from MT-3, have a significant effect on the change in

hit rate. Similarly, in Models 3 and 4, with the exception of the WHERE variable

and its interaction, all of the included variables and their interactions are highly

significant. Lastly, in Model 5, higher oTER scores were most likely to result in

correct matches because the oTER metric was the most significant predictor in the

model.
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Table 6.3: Observed vs Predicted Hits totaled over WH × MT

Predicted Hits

MT WH ObsHits RTMTot NumObs Mod2 Mod3 Mod4 Mod5

1 WHEN 293 881 118 327.52 315.72 315.18 326.24
1 WHERE 428 1107 118 414.87 414.87 427.01 404.16

1 WHO 460 1103 118 438.61 437.85 438.80 450.60
2 WHEN 380 735 97 322.47 347.86 349.00 350.82

2 WHERE 563 1094 118 569.64 557.62 558.39 552.99
2 WHO 528 1097 118 578.89 565.53 563.60 567.19
3 WHEN 360 879 117 375.82 369.42 368.81 393.14

3 WHERE 489 1103 118 497.98 494.95 494.59 483.99
3 WHO 521 1104 118 496.19 505.63 506.59 492.87

6.4.1 Goodness of Fit for Higher Dimensional Models

Thus far, the successive stages of model fitting have led to the following pa-

rameters as best predictors with respect to each autometric:

• Model 2: MT, METEOR, METEOR*MT

• Model 3: MT, WH, GTMavg, GTMavg*WH

• Model 4: MT, WH, BLEUavg, BLEUavg*WH

• Model 5: MT, oTER, oTER*MT

Models 2 and 5 have 6 parameters (intercept, 2 binary indicators for MT,

1 for metric, plus 2 for the metric*MT interaction) and Models 3 and 4 have 8

parameters (intercept, 4 binary indicators for MT and WH, 1 for metric, plus 2

for the metric*WH interaction). Table 6.3 displays the observed counts (found in

the Hits column) vs. predicted or expected counts (found in columns Mod2Hits-

Mod5Hits) tabulated across WH and MT. To check whether these discrepancies
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are quantitatively greater than what might occur by chance, a chi-square test for

the Hit rate was performed. The statistic was obtained as described in Section

6.2 over all cells of the table consisting of the 9 WH × MT cells. The chi-square

constructed in this way for Models 3 and 4 is compared to the chi-square percentage

point with 1 degree of freedom, calculated by the formula number of cells - number

of model parameters ( in this case, 9-8). These goodness-of-fit statistics show that

Model 4 comes closest to adequately representing the proportions of hits in the

data, with a chi-square value of approximately 8.31. Even though this value is

extreme for a chi-square with 1 degree of freedom and shows Model 4 would not be

a final model, it is still favorable considering the other model fitting stages. The

chi-square values for models 2, 3, and 5 are 21.98, 9.05 ,and 14.76 on 3, 1, and 3

degrees of freedom respectively. Chi-square would have to be much smaller for the

models to be judged ‘statistically adequate’, which may not be attainable without

introducing other structure such as the between-subject variability into the model

through random effects.

Figure 6.2 displays graphically the fit between the predicted values of the

models in Table 6.3 and the observed data. Each model is very close to capturing

the hit rate event counts, as seen by comparing its predicted counts to the observed

counts by (WH and MT) category. It is evident here that even though the chi-square

values for Models 2 and 5 are more extreme than for Models 3 and 4, the distance

between observed versus predicted is fairly similar across models. Thus, with fewer

parameters and without having to re-code the metric, METEOR and oTER are

comparable in terms of predicting performance.
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Figure 6.2: Observed(circles) vs. Predicted(triangles) Hit Counts–WH by MT for
Models 2-5. The x-axis represents the 9 MT × WH cells and the y-axis represents
the hit count for each cell.

6.5 Combined Autometric Models

Several authors have suggested using combinations of autometrics to determine

translation quality and have reported comparisons with human translations for these

combinations [3, 25, 37, 45]. Table 6.4 shows the results for the univariate models of

Section 6.3, as well as the 3 possible combinations of metrics (pairwise, three a time,

and all metrics). The only variables in these models are the metric (B = BLEU, G

= GTM, M = METEOR, T = oTER) combinations. Combining multiple metrics

in this setting boosted the predictive power for all metrics except METEOR. For

instance, the χ2 over cells from the 9 MT × WH cells demonstrate that METEOR is

as good a predictor by itself as it is when combined with and one of the other three

metrics. In fact it is found that both of the poorer performing individual metrics
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Table 6.4: Logistic Regression Results for Combinations of Autometrics Fitted to
the Data; B = BLEU, G = GTM, M = METEOR, T = oTER

Model Deviance 9 cell χ2 df 53 cell χ2 df

B 1982.89 47.01 7 449.61 51
G 1961.78 70.45 7 410.85 51

M 1915.08 27.94 7 437.69 51
T 1959.21 30.01 7 432.13 51

B, G 1958.59 65.66 6 435.87 50

B, M 1914.81 26.81 6 410.75 50
B, T 1956.45 34.84 6 431.10 50

G, T 1942.75 48.97 6 425.27 50
G, M 1906.95 37.51 6 405.42 50

M, T 1911.78 28.74 6 408.30 50

B, G, M 1898.91 34.53 5 401.56 49
B, G, T 1942.37 48.46 5 425.09 49

B, M, T 1908.88 24.38 5 406.77 49
G, M, T 1906.67 36.83 5 405.59 49

B, G, M, T 1896.53 31.46 4 400.04 48

BLEU and GTM perform considerably better when paired with better performing

metrics.6

Logistic regression models are fit with various combinations of only autometrics

as predictor variables. Stepwise regression is again used to add in MT and WH

effects since from previous results in this dissertation these quantities are important.

I started from the best combination models in Table 6.4, adding or subtracting MT

and WH effects based on their individual term significance as defined by the Wald

test and their contribution to reducing the deviance in the model. Deviance is

defined as the difference in −2 ∗ log(Likelihood) of the current model and −2 ∗

log(Likelihood) of the saturated model where the saturated model is the model

with the number of parameters equal to the sample size [1]. Models that included

6Degrees of freedom in the table are derived as number of cells (9 or 53) minus number of
parameters fitted to each respective model.
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Table 6.5: Deviance results for Best Combined Metric Logistic Regression Models
accounting for MT and WH effects.

Model Num Parameters Deviance

MT + Meteor + GTM 5 1861.85
MT + WH + BLEUavg + Meteor 7 1861.75

MT + WH + METEORavg+BLEUavg+GTMavg 8 1761.15
WH + METEORavg + BLEUavg + GTMavg 6 1849.60

MT + WH + BLEU + oTER + Meteor 8 1851.64

Table 6.6: MT × WH and MT × WH × Rep χ2 Goodness-of-Fit results for Best
Combined Metric Logistic Regression Models accounting for MT and WH effects.

Model 9 cell χ2 df 53 cell χ2 df

MT + Meteor + GTM 25.16 4 388.64 4

MT + WH + BLEUavg + Meteor 17.52 2 400.77 2
MT + WH + METEORavg+BLEUavg+GTMavg 7.83 1 345.82 1

WH + METEORavg + BLEUavg + GTMavg 57.05 3 386.82 3
MT + WH + BLEU + oTER + Meteor 20.69 1 385.14 1

variables that decreased the deviance a significant amount in relation to the number

of additional parameters were favored over those that did not.

The next step of model building involved checking if the re-coded avg metrics

performed better than original metrics in combinations as in cases in earlier trials.

The diagnostic results for the best competing models combining metrics including

MT and WH effects are in Tables 6.5 and 6.6. The latter table displays goodness of

fit results for both observed versus predicted in the 9 MT × WH cells and the 53

MT × WH × Rep cells.7 The ‘best’ model found at this stage for the occurrence of

Hits was:

7Recall that one outlier document was removed so there are now 53 versus 54 total machine
translated documents.
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Model 6

log(
pHits

1 − pHits
) = .570 + .498 × I[MT=2] + .262 × I[MT=3] + .848 × I[WH=WHERE]

+ .741×I[WH=WHO]+1.67×BLEUavg−4.78×METEORavg+1.51×GTMavg
(6.11)

Recall that MT = 1 and WH = WHEN respectively served as baseline cate-

gories for the MT and WH variables. Because there were significant contrasts be-

tween both MT systems MT-2 and MT-3 with MT-1 and both Wh-types Where and

Who with When, these MT and WH predictors were included in the final model.

In addition, the re-coded metrics BLEUavg, METEORavg, and GTMavg proved

useful as predictors for hit rate and can be interpreted as a measure of the degree of

difficulty of a translated document. Additionally, I found that the METEOR metric

in its original form is a highly significant predictor of task performance at different

stages of modelling.

A logical conclusion of the final Model 6 is that the contrast between MT-2 and

MT-3 should be distinguished with respect to success on the information extraction

task, as well as the WH-types Where and Who. Another interesting finding is that

in this model, METEORavg has a negative coefficient. This is puzzling because

all metrics have been coded individually so that at document level a higher metric

score indicates a more linguistically successful translation. It is possible that the

negative METEORavg coefficient is due to the overlapping components of these

metrics, for example, they all include some form of precision and/or recall; and

what Model 6 actually represents is the contrasts among the averaged metrics as
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being of primary predictive value. I stop at this model because through all the

stepwise regression procedures and statistical tests, this model show superior results

in terms of parsimony in comparison to others found. χ2 results presented in this

section need to be smaller in order for these fixed effect models to be adequate. Later

findings show random effects should be included to obtain statistical adequacy.

6.5.1 Modelling Summary

An effective model for predicting aggregated hit rates has been developed, even

as the individual subject-marked translated document hit rates are intrinsically not

predictable from these models. The comparisons between models show that models

that include main effects for MT, WH, BLEUavg, METEOERavg, and GTMavg

show success in reproducing overall hit rates within the 9 categories defined in Table

6.3. The most successful model found does not yet achieve full statistical adequacy

but still promises to be very useful. In the next section, permutational methods

similar to those in previous chapters are utilized to show how the predictors can be

used in the model as true indicators of task performance based on the permutational

significance of their coefficients.

It should be noted that a valid model might not be fully predictive in the sense

that there might be sources of random variation from human subject-to-subject

variability, which could not be modeled specifically. I tried treating each subject as

its own individual variable in a model but this model is highly over-parameterized

because there are 59 subjects. Several possible groupings were also examined based
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on demographic information obtained from the subjects during the study, like job

title, years of experience, or experience with MT systems, but none of these variables

were closely correlated with subject-specific hit rates. Further study could consider

a predictor for subjects in the final model. In this case, a random- or mixed-effect

model might describe the resulting subject-specific increments to event-rate in terms

of a random variable with a specified distribution for subject variations, such as a

normally distributed variate with mean 0 and variance fitted as a model parameter.

6.6 Permutational Significance of Autometric Coefficients

When traditional approaches to determining relevance of models and individ-

ual coefficients are not adequate, it is unclear in the literature what strategies are

best in providing some interpretation for the quality of the model in the absence

of adequacy. Some empirical studies suggest creating a permutation distribution

for tests of individual terms [5], although the exact methods are not settled upon.

Permutation procedures similar to those described in Chapter 5 were used to test

the significance of the β coefficients for individual autometrics in models after ac-

counting for MT and WH groups. A permutation test in this manner calculates

the probability of getting a Wald statistic value (β̂/StdErr(β)) equal to or more

extreme than the observed value of the test statistic in the original model. The

autometric scores were randomly re-shuffled and re-fit the models with the random

re-orderings. In all cases, the coefficients for autometrics in each model were found

to be highly significant with a permutational p-value of less than .001. This result
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Table 6.7: Number of Observed vs. Predicted Hits for Model 6 with respect to the
9 MT × WH cells

MT WH RTMTot NumObs ObsHits Mod6Hits

1 WHEN 881 118 293 314.48

1 WHERE 1107 118 428 429.38
1 WHO 1103 118 460 437.14

2 WHEN 735 97 380 351.75
2 WHERE 1094 118 563 555.50

2 WHO 1097 118 528 563.75
3 WHEN 879 117 360 366.76

3 WHERE 1103 118 489 495.12
3 WHO 1104 118 521 508.11

establishes the significance of the autometric predictors in their respective models.

6.7 Cross-Validation Results

Now that a wide set of logistic regression models have been analyzed, it would

be beneficial to know how well the best fitted model predicts unseen data, for ex-

ample, what the model predicts about the performance of MT systems on an In-

formation Extraction Task under different WH categories and document-difficulty

scenarios. The ability of any of the models presented in this chapter to predict

task performance would be the prediction accuracy. For example, Table 6.7 has

the estimated number of correct marks in the task from Model 6 which yielded the

smallest difference between the known or observed values and the estimated number

of correct marks.

The different classes of models and different choices of predictors were com-

pared within a cross-validation study in which approximately 80% of the experiment

data (833 cases) was used as the Training set and the remaining 20% of the data
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(207 cases) was withheld as the Test set to test the adequacy of the model pro-

duced from the training set. 70 cases were selected across each WH-type to include

a balanced sample across who, where, when categories. This cross-validation was

repeated by randomly sampling the test and training sets 1000 times from the data

and computed the sum of squares error for each run.

The prediction accuracy for these models is estimated by the square root of

the mean of the squared difference between the observed and predicted number of

hits. The process used for calculating sum of squares error (SSE), mean square error

(MSE), and root mean square error (RMSE) is as follows:

1. Compute sum of squares error on each run by using (test set) observed minus

predicted (gotten from training) and place values into an SSE array.

2. Compute MSE at each run as the SSE/ 207 (207 is the total number of cases

in the test set) and place values into an MSE array to produce 1000 MSEs

calculated over all cases for each run.

3. Compute the average of the MSEs for each model and take the square root to

get the RMSE.

Cross validation results for testing the overall error rate of models are high-

lighted in Table 6.8. The best prediction accuracy is given by the final model, Model

6 (in bold).
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Table 6.8: MSE and RMSE values obtained from Cross-validation for Models 1-6

Model MSE RMSE

Mod1METEOR 3.70 1.92

Mod1BLEUavg 3.86 1.96
Mod1GTMavg 3.79 1.95
Mod1oTER 3.82 1.95

Mod2 3.71 1.93
Mod3 3.62 1.90

Mod4 3.54 1.88
Mod5 3.79 1.95

Mod6 3.39 1.84

6.8 Further Model Building with Random Effects

The best model until this point has been obtained by only considering param-

eters entering the model as fixed effects. Subsequent models fit with the inclusion

of a variable for subject (which has 58 parameters) appear to produce a good fit to

the response data and come closer to the observed hit rate.8 However, treating each

subject as its own individual effect is definitely an instance of overfitting because

these models so are highly parameterized. Additionally, there are large standard

errors amongst interaction terms making it difficult, if not impossible, to interpret

what each effect means. Nevertheless, it would be worthwhile to consider a predic-

tor for subjects in the final model. To address this issue, an approach using the

subjects as random effects in a generalized linear mixed model is investigated. Al-

though, adding in random effects do not help with statistical adequacy, the models

do account for a considerable large amount of the variability that contributed to the

lack of fit in fixed effect models.

8The number of parameters is obtained by the formula, Number of Subjects - 1
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Table 6.9: Deviance Comparison between Fixed Effect Model 6 and Mixed Effects
Models with Various Document Level and Subject Random Effects. Variance for
each mixed effect is also given. MixMod3 has two random components, MT ×
Document and Subject, which are given respectively.

Models Mod6 MixMod1 MixMod2 MixMod3

Deviance 1761.1 1493 1306 1176

Deviance Change — 268.15 455.15 585.15
Random Effect Variance .157 .302 .321/.121

6.8.1 Mixed Effect Models

Generalized linear mixed effect models (GLMMs) extend GLMS by adding

random terms in the linear predictor to account for overdispersion [48]. The regres-

sion formula in Section 6.1.1 becomes

log(
p

1 − p
) = α + βX + a + e (6.12)

where a in this work represents one or more random error terms.

Several mixed effect models are tested with Model 6 as the base model. These

models include (i) document cluster random effects (MixedMod1), (ii) MT × doc-

ument cluster random effects (MixedMod2), and (iii) both MT cluster and Subject

random effects (MixedMod3). Table 6.9 displays the results of model fitting through

comparison between deviance of the fixed effect model (Model 6) to that of the model

with random effects added at each level.

6.8.2 Random Effect Model Results

The fitted random effects models show that there are strong and significant

document fixed-effects, beyond the “best model” (Model 6) described in Section
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6.5, if the model keeps the fixed-effect terms in Model 6 and adds a document-level

random intercept effect. Specifically, Model 6 already has 5 document-level fixed

effects and deviance 1761.1 (as shown in Table 6.9) and MixedMod1 has deviance

1493. Results show that with the latter model, METEORavg and BLEUavg vari-

ables are the strongest individual metric related contributions to WH among the

document-level fixed effects.

It is shown in Table 6.9 that the variance is progressively larger in each of

the mixed effect models presented. The best model found with random effects is

the MixedMod3 (deviance 1176 with 4 fixed effects and 2 random intercepts). This

model starts from Model 6, deletes the GTMavg term, and incorporates a Doc-

by-MT level normal random intercept (variance .321), as well as a very significant

subject random effect (variance .121). In this final model, all of the fixed-effect

coefficients other than MT-2 (which could also be deleted, indicating that the model

finds no significant difference between MT systems 1 and 2) remain significant, but

much less than either Model 6 or MixMod1.

6.9 Phase 2 Summary

I have examined in this chapter the predictive ability of autometrics in sig-

nifying WH-extraction task response rates. Best fixed-effect models found include

recoded average autometrics for METEOR, BLEU, and GTM in the presence of

MT and WH effects. These metrics demonstrated the most adequate goodness of fit

statistics in comparison to others. I also show that although completely adequate
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logistic regression models of this relationship were not found, these autometrics do

give insight to correct task response as noted in the high significance of coefficients

found permutationally in the models. This process gave us a basis for determining

if one metric is permutationally more significant than others in predictions. Cross-

validations on the performance of best models summarized the effectiveness [and

limitations] of the models as a predictive tools. Lastly, I discussed the improvement

in model results by introducing document by MT system and subject random effects.

Under this scenario, the BLEUavg and METEORavg variables together are still the

most important document level difficulty variables that describe task performance.
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Chapter 7

Conclusion and Future Work

This dissertation has provided the first in-depth look at the connection between

standard measures of performance of machine translation systems (assessed by auto-

mated machine translation evaluation metrics of quality) and task-based measures

of effectiveness (assessed by task responses in a utility experiment). One goal of

this study was to determine whether a relationship between automated machine

translation evaluation metrics and task-based evaluation metrics exists. Another

goal was to develop a predictive regression model of task performance to assess the

effects of certain categorical (such as, MT system or WH type) or continuous (such

as, BLEU score) characteristics of a translated document on subject performance

on a well-defined task using those documents.

First, findings from an initial correlation analysis of the connection between

these two MT evaluation paradigms were presented and contrasted with current

strategies for evaluating translations. Next, a novel idea for assessing partial rank

correlation within the presence of grouping factors was introduced. Lastly, a frame-

work for task based machine translation (MT) evaluation and predictive modelling
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of task responses was demonstrated. This was accomplished through an iterative ap-

proach to model building, testing, and fitting logistic regression models. The model

building strategy gave new information about the relative predictive strengths of the

different autometrics (and re-coded variants of them) within the statistical GLMs

developed in analyses of the Information Extraction Task data. This work showed

the lack of predictive ability of most current autometrics, as is, to predict task

performance but showed that through the use of re-codes, near adequacy can be

accomplished in a logistic regression setting. The rest of this chapter describes

the contributions of this dissertation, limitations of the work presented here, and

possible future research directions.

7.1 Contributions

The following contributions have been made by this dissertation:

• The investigation of the relationship between document quality and usefulness–

Through a user-centered focus on translation evaluation using autometrics and

an innovative analysis of data through applied statistical techniques, automet-

rics were used as tools for assessing translated documents.

• Correlation analysis on Automated Machine Translation metrics and Task-

Based Responses from an Information Extraction Task—This work identified

that although no one metric stood out in initial comparisons, there is a signif-

icant relationship between autometrics of translation quality as a whole and

document utility in the extraction task.
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• Validation of need to have more granularity with evaluation metrics—This

dissertation demonstrated the need to utilize document level metrics for task

handling purposes rather than system level approaches generally performed

in the MT community. It also exposed the sensitivity to granularity when

trying to assess task performance through correlations which are quite low.

Permutational testing, however, showed that the relationships found were not

ascribed to chance, thereby giving us motivation for going beyond the standard

correlation analysis.

• Introduction and implementation of partial rank correlation statistics for as-

sessing rank correlation in the presence of grouping factors—Methodolgical

results are provided on characteristics of bivariate and partial rank correla-

tions along with permutation tests of significance. Expressions were derived

for partial rank correlation through two statistics and show that one of the

statistics, a weighted combination of within group rank correlations, generally

yielded a higher power for detecting within group correlations.

• Implementation of novel metric from re-coding autometrics—It was shown that

a scheme for averaging autometrics across MT systems produced an overall

document difficulty metric that performs well in indicating the probability of

correct response on an extraction task.

• The first use of logistic regression to predict task performance using auto-

mated metrics as model predictors—Although METEOR appeared to be the

best original metric to have the most interesting relationship with the task re-
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sponse; the best predictor of task performance is found when recoded versions

of METEOR, BLEU, and GTM are combined and coupled with MT and WH

effects.

7.2 Limitations of the Study

The methods and techniques presented in this dissertation have the following

limitations:

• Experiment Design—This study was the first of its kind so there are several

lessons learned stemming from the design of the experiment. Future studies

should address systems of more variable performance and documents yielding

a larger range of metric scores. The systems chosen for this study, although

different in structure, turned out to be very similar in terms of the task per-

formance results and range of automated metrics on documents produced by

each system. It is my belief that if there is a more defined scale of good (high)

versus bad (low) translation quality scores and evident low, medium, and high

performing MT systems (gained from prior knowledge of system performance),

then relationships sought may be easier to tease apart and more applicable on

a wider scale.

• Results for One Specific Task—Given that there are a myriad of uses for ma-

chine translated documents, there are several possible tasks that could have

been chosen for this study. From prior pilot studies, I found that the infor-

mation extraction task seemed to fall in the middle on the hierarchy of text
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handling tasks as developed by [61]. Because one specific task was used in this

study, the findings can not readily be carried over to other tasks of interest.

• Distribution of Partial Rank Statistics—In the methodological look at the be-

havior of the two partial rank statistics introduced, bivariate normality was

used to reach limited conclusions via simulation about when one of the statis-

tics S1 versus S2 was better than the other. For a more robust look at the

asymptotic behavior of these statistics, it would be beneficial to consider other

distributions and re-assess how the statistics behave.

7.3 Future Work

This section describes possible directions for future work arising from the re-

search conducted in this dissertation.

Partial Rank Correlation Statistic: As discussed in the limitations section, in

Chapter 5 the asymptotic behavior of partial rank correlation statistics was studied

for a specific instance of bivariate normality. Further correction of statistics S1 and

S2 by group-Z scale-factors as well as locations may make them generally more

applicable in other settings. Further investigations by simulation about (relative)

power will certainly be worthwhile future work, as will a search for other domains of

applicability. Datasets which are highly cross-classified are often available in several

applications such as ecology, biology, and the social sciences.
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Assessment of Random Effect Models: Chapter 6 ends with the finding that

Document by MT system random effects appear unavoidable in producing statisti-

cally adequate model descriptions. Assessment of statistical adequacy for GLMM

extensions of the best models of this dissertation remains a topic for further research.

Leverage Autometric Features: This dissertation has described approaches

that incorporate automated metrics as ‘black boxes’ in task-based evaluation. Each

of these metrics have been built with specific features often trying to capture some

aspect of translation quality not captured by its predecessor. For instance in Chap-

ter 2, the BLEU metric is described as using a precision only approach to translation

evaluation. Both GTM and METEOR add in recall as a factor with equal emphasis

on precision and recall and more emphasis on recall, respectively. oTER explores

an entirely different approach through the use of string edit distance. Given that

there are obviously certain aspects of each metric that may or may not be benefi-

cial in obtaining translation quality, it may prove valuable to study whether certain

features or combination of features from autometrics offer better insight into task

performance results.

Replication for Additional Tasks: Chapter 3 describes the full study in which

I collected task performance results from subjects on three different text handling

tasks. As noted in the limitations section, this dissertation only used response

results from one of the tasks, information extraction. Although full-scale task-

based experiments such as the one in this dissertation are expensive, more about
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the relationship between other evaluation metrics and task performance would be

found if the nature of this connection as it relates to other tasks was studied. I

could either try to utilize the responses from the other two tasks (Categorization

and Event Template-Filling) in the current experiment or replicate the study for

additional tasks of interest. I would use my current results to leverage predictions

about the other tasks and test the methods developed for more consensus.

Subjective Metrics: In Chapter 1, Figure 7.1 was used to introduce the pro-

gression of MT Evaluation paradigms. The diagram now has only one dashed line

because the results in this dissertation offer insight to the previously un-studied

autometric vs. task-based relationship. Because autometrics are the quickest and

most cost-effective method for obtain translation quality results, it is apparent that

the MT community will continue to use them in MT Evaluations. Furthermore,

since comparison with human subjective judgments is the accepted way of validat-

ing autometrics, it is worth the user community investigating whether the results

and methods presented in this dissertation can be used together with subjective

judgments to obtain further improvements in MT Evaluation. This will provide a

feedback loop between the three paradigms and determine the extent to which they

complement each other.

7.4 Summary

In summary, this dissertation took a unique interdisciplinary look at a portion

of the MT Evaluation problem for which the community currently has no consen-
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Figure 7.1: Triangle of main MT evaluation paradigms. The bold line represents
the work of past efforts, including the newly formed connection between Automated
Metrics and Task-based Metrics as found in this dissertation. The dashed line
represents a possibility for future work.

sus. This research accomplished this through the use of several applied statistical

techniques and showed that model-building strategies in the context of GLM’s are

quite useful. Ultimately, MT evaluation methodology was extended to create new

metrics specially relevant to task-based comparisons. Now users can begin to tie

the intrinsic automated metrics to the extrinsic metrics for task they perform. The

bottom-line was that there was need to average away MT dependence (averaged

metrics performed better in overall predictions than original autometrics). More-

over, combinations of recoded metrics performed better than any individual metric.
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Appendix A

Results Tables for Theoretical versus Empirical

Values of S1 and S2

This section contains the tables described in Section 5.3.3 detailing the results

for nearby alternatives when L = 3, 5, and 9.1

Table A.1: Theoretical and Empirical Values of S1 and S2 for each variance vector:
(a) Var1, (b) Var2, (c) Var3 when L = 3anda= 2. Standard error values are shown
in parentheses.

Rho Theoretical Average
S1 S2 S1 S2

(a) r1 .080 .080 .080 (.001) .079 (.001)
r2 .050 .047 .050 (.001) .047 (.001)
r3 .016 .035 .016 (.001) .035 (.001)

(b) r1 .081 .080 .080 (.002) .079 (.001)
r2 .048 .047 .047 (.001) .047 (.001)
r3 .018 .035 .020 (.001) .036 (.001)

(c) r1 .080 .080 .079 (.001) .079 (.001)
r2 .047 .047 .045 (.001) .045 (.001)
r3 .035 .035 .033 (.001) .033 (.001)

1All theoretical values are calculated using formulas (5.2) and (5.7) for S1 and S2 respectively.
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Table A.2: Theoretical and Empirical Values of S1 and S2 for each variance vector:
(a) Var1, (b) Var2, (c) Var3 when L = 3anda= 4. Standard error values are shown
in parentheses.

Rho Theoretical Average
S1 S2 S1 S2

(a) r1 .178 .179 .179 (.002) .178 (.001)
r2 .126 .114 .127 (.002) .115 (.001)
r3 .040 .067 .041 (.001) .067 (.001)

(b) r1 .180 .179 .181 (.001) .180 (.001)
r2 .120 .114 .120 (.001) .113 (.001)
r3 .036 .067 .038 (.001) .069 (.001)

(c) r1 .179 .179 .178 (.001) .178 (.001)
r2 .114 .114 .114 (.001) .114 (.001)
r3 .067 .067 .069 (.001) .069 (.001)

Table A.3: Theoretical and Empirical Values of S1 and S2 for each variance vector:
(a) Var1, (b) Var2, (c) Var3 when L = 3anda= 6. Standard error values are shown
in parentheses.

Rho Theoretical Average
S1 S2 S1 S2

(a) r1 .235 .214 .234 (.001) .212 (.001)
r2 .178 .172 .180 (.001) .173 (.001)
r3 .048 .080 .048 (.001) .080 (.001)

(b) r1 .231 .214 .228 (.001) .211 (.001)
r2 .172 .172 .172 (.001) .171 (.001)
r3 .041 .080 .044 (.001) .083 (.002)

(c) r1 .214 .214 .213 (.001) .213 (.001)
r2 .172 .172 .171 (.001) .171 (.001)
r3 .080 .080 .081 (.001) .081 (.001)
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Table A.4: Theoretical and Empirical Values of S1 and S2 for each variance vector:
(a) Var1, (b) Var2, (c) Var3 when L = 5anda= 2. Standard error values are shown
in parentheses.

(a) Rho Theoretical Average
S1 S2 S1 S2

r1 .047 .057 .044 (.002) .054 (.001)
r2 .040 .051 .041 (.002) .052 (.001)
r3 -.015 -.019 -.016 (.002) -.019 (.001)

(b) r1 .056 .057 .057 (.002) .057 (.001)
r2 .042 .051 .043 (.001) .052 (.001)
r3 -.029 -.019 -.031 (.001) -.021 (.001)

(c) r1 .057 .057 .055 (.001) .055 (.001)
r2 .051 .051 .053 (.001) .053 (.001)
r3 -.019 -.019 -.016 (.001) -.016 (.001)

Table A.5: Theoretical and Empirical Values of S1 and S2 for each variance vector:
(a) Var1, (b) Var2, (c) Var3 when L = 5anda= 4. Standard error values are shown
in parentheses.

(a) Rho Theoretical Average
S1 S2 S1 S2

r1 .102 .143 .101 (.002) .141 (.001)
r2 .101 .146 .101 (.002) .145 (.001)
r3 -.010 -.046 -.010 (.002) -.045 (.001)

(b) r1 .150 .143 .152 (.001) .143 (.001)
r2 .136 .146 .136 (.001) .145 (.001)
r3 -.074 -.046 -.075 (.001) -.046 (.001)

(c) r1 .143 .143 .144 (.001) .143 (.001)
r2 .146 .146 .147 (.001) .146 (.001)
r3 -.046 -.046 -.046 (.001) -.046 (.001)
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Table A.6: Theoretical and Empirical Values of S1 and S2 for each variance vector:
(a) Var1, (b) Var2, (c) Var3 when L = 5anda= 6. Standard error values are shown
in parentheses.

(a) Rho Theoretical Average
S1 S2 S1 S2

r1 .182 .240 .183 (.002) .238 (.001)
r2 .145 .199 .145 (.002) .196 (.001)
r3 -.058 -.081 -.059 (.002) -.080 (.001)

(b) r1 .239 .240 .242 (.001) .241 (.001)
r2 .179 .199 .179 (.001) .198 (.001)
r3 -.108 -.081 -.108 (.001) -.080 (.001)

(c) r1 .240 .240 .240 (.001) .239 (.001)
r2 .199 .199 .198 (.001) .197 (.001)
r3 -.081 -.081 -.085 (.001) -.085 (.002)

Table A.7: Theoretical and Empirical Values of S1 and S2 for each variance vector:
(a) Var1, (b) Var2, (c) Var3 when L = 9anda= 2. Standard error values are shown
in parentheses.

(a) Rho Theoretical Average
S1 S2 S1 S2

r1 .059 .072 .059 (.002) .070 (.001)
r2 .065 .075 .065 (.002) .071 (.001)
r3 .026 .003 .030 (.002) .004 (.001)

(b) r1 .081 .072 .077 (.002) .066 (.001)
r2 .071 .075 .071 (.002) .074 (.001)
r3 -.012 .003 -.014 (.002) .002 (.001)

(c) r1 .072 .072 .073 (.001) .072 (.001)
r2 .075 .075 .074 (.001) .074 (.001)
r3 .003 .003 .005 (.001) .005 (.001)
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Table A.8: Theoretical and Empirical Values of S1 and S2 for each variance vector:
(a) Var1, (b) Var2, (c) Var3 when L = 9anda= 4. Standard error values are shown
in parentheses.

(a) Rho Theoretical Average
S1 S2 S1 S2

r1 .144 .169 .148 (.002) .169 (.001)
r2 .126 .145 .126 (.002) .145 (.001)
r3 .050 .071 .051 (.002) .071 (.002)

(b) r1 .191 .169 .190 (.001) .167 (.001)
r2 .136 .145 .136 (.001) .143 (.001)
r3 .063 .071 .063 (.002) .071 (.002)

(c) r1 .169 .169 .167 (.001) .166 (.001)
r2 .145 .145 .145 (.001) .144 (.001)
r3 .071 .071 .070 (.001) .069 (.002)

Table A.9: Theoretical and Empirical Values of S1 and S2 for each variance vector:
(a) Var1, (b) Var2, (c) Var3 when L = 9anda= 6. Standard error values are shown
in parentheses.

(a) Rho Theoretical Average
S1 S2 S1 S2

r1 .245 .282 .247 (.002) .281 (.001)
r2 .172 .201 .172 (.002) .197 (.002)
r3 .025 .037 .022 (.002) .034 (.002)

(b) r1 .305 .282 .306 (.001) .278 (.001)
r2 .190 .201 .190 (.002) .199 (.001)
r3 .049 .037 .051 (.002) .040 (.002)

(c) r1 .282 .282 .280 (.001) .278 (.001)
r2 .201 .201 .200 (.001) .199 (.001)
r3 .037 .037 .036 (.001) .036 (.002)
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Appendix B

Results Tables for Empirical Power Results of S1

and S2

This section contains the tables described in Section 5.3.4 detailing the results

of the empirical statistical power for each two-sided test procedure under consider-

ation.
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Table B.1: Estimates of the Power for S1 and S2 for two-sided test of P1(|S| ≥ c)
when L = 3 with variance vectors: (a) Var1, (b) Var2, (c) Var3 and contiguous
alternatives with (i) a = 2, (ii) a = 4, (iii) a = 6

(i) S1 S2 (ii) S1 S2 (iii) S1 S2

(a) α (a) α (a) α

Rho .05 .10 .05 .10 Rho .05 .10 .05 .10 Rho .05 .10 .05 .10

r1 .702 .778 .718 .814 r1 1.00 1.00 1.00 1.00 r1 1.00 1.00 1.00 1.00
r2 .322 .462 .322 .438 r2 .958 .972 .940 .972 r2 1.00 1.00 1.00 1.00

r3 .074 .132 .190 .306 r3 .256 .356 .552 .680 r3 .300 .428 .720 .806

S1 S2 S1 S2 S1 S2

(b) α (b) α (b) α

Rho .05 .10 .05 .10 Rho .05 .10 .05 .10 Rho .05 .10 .05 .10

r1 .676 .772 .798 .962 r1 1.00 1.00 1.00 1.00 r1 1.00 1.00 1.00 1.00
r2 .320 .430 .316 .454 r2 .964 .980 .934 .976 r2 1.00 1.00 1.00 1.00

r3 .100 .150 .194 .312 r3 .226 .342 .592 .704 r3 .272 .384 .730 .822

S1 S2 S1 S2 S1 S2

(c) α (c) α (c) α
Rho .05 .10 .05 .10 Rho .05 .10 .05 .10 Rho .05 .10 .05 .10

r1 .700 .814 .694 .814 r1 1.00 1.00 1.00 1.00 r1 1.00 1.00 1.00 1.00

r2 312 .412 .322 .424 r2 .946 .972 .950 .970 r2 1.00 1.00 1.00 1.00
r3 .198 .304 .192 .316 r3 .572 .718 .582 .696 r3 .726 .832 .720 .800
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Table B.2: Estimates of the Power for S1 and S2 for two-sided test of P1(|S| ≥ c)
when L = 5 with variance vectors: (a) Var1, (b) Var2, (c) Var3 and contiguous
alternatives with (i) a = 2, (ii) a = 4, (iii) a = 6

(i) S1 S2 (ii) S1 S2 (iii) S1 S2

(a) α (a) α (a) α

Rho .05 .10 .05 .10 Rho .05 .10 .05 .10 Rho .05 .10 .05 .10

r1 .234 .346 .392 .534 r1 .810 .892 .998 1.00 r1 .998 .998 1.00 1.00
r2 .204 .320 .368 .492 r2 .814 .890 1.00 1.00 r2 .980 .988 1.00 1.00

r3 .076 .130 .096 .162 r3 .056 .108 .438 .564 r3 .402 .524 .708 .794

S1 S2 S1 S2 S1 S2

(b) α (b) α (b) α

Rho .05 .10 .05 .10 Rho .05 .10 .05 .10 Rho .05 .10 .05 .10

r1 .384 .536 .424 .556 r1 .996 .996 .996 .998 r1 1.00 1.00 1.00 1.00
r2 .254 .358 .368 .494 r2 .984 .992 .992 .994 r2 1.00 1.00 1.00 1.00

r3 .154 .240 .090 .188 r3 .628 .748 .316 .436 r3 .894 .936 .710 .804

S1 S2 S1 S2 S1 S2

(c) α (c) α (c) α
Rho .05 .10 .05 .10 Rho .05 .10 .05 .10 Rho .05 .10 .05 .10

r1 .418 .528 .414 .530 r1 .994 .994 .992 .996 r1 1.00 1.00 1.00 1.00

r2 .378 .506 .378 .502 r2 .998 1.00 .998 .998 r2 1.00 1.00 1.00 1.00
r3 .094 .156 .106 .160 r3 .328 .432 .308 .444 r3 .750 .834 .726 .822
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Table B.3: Estimates of the Power for S1 and S2 for two-sided test of P1(|S| ≥ c)
when L = 9 with variance vectors: (a) Var1, (b) Var2, (c) Var3 and contiguous
alternatives with (i) a = 2, (ii) a = 4, (iii) a = 6

(i) S1 S2 (ii) S1 S2 (iii) S1 S2

(a) α (a) α (a) α

Rho .05 .10 .05 .10 Rho .05 .10 .05 .10 Rho .05 .10 .05 .10

r1 .398 .508 .576 .718 r1 .990 .996 1.00 1.00 r1 1.00 1.00 1.00 1.00
r2 .472 .570 .592 .706 r2 .958 .982 .992 .998 r2 .998 1.00 1.00 1.00

r3 .162 .240 .056 .114 r3 .324 .416 .592 .688 r3 .104 .174 .208 .334

S1 S2 S1 S2 S1 S2

(b) α (b) α (b) α

Rho .05 .10 .05 .10 Rho .05 .10 .05 .10 Rho .05 .10 .05 .10

r1 .640 .736 .556 .670 r1 1.00 1.00 1.00 1.00 r1 1.00 1.00 1.00 1.00
r2 .564 .704 .630 .740 r2 .984 .998 .996 .998 r2 1.00 1.00 1.00 1.00

r3 .086 .130 .058 .100 r3 .468 .572 .608 .706 r3 .374 .476 .276 .382

S1 S2 S1 S2 S1 S2

(c) α (c) α (c) α
Rho .05 .10 .05 .10 Rho .05 .10 .05 .10 Rho .05 .10 .05 .10

r1 .640 .732 .638 .734 r1 1.00 1.00 1.00 1.00 r1 1.00 1.00 1.00 1.00

r2 .648 .748 .636 .736 r2 .994 1.00 .994 .996 r2 1.00 1.00 1.00 1.00
r3 .064 .120 .060 .144 r3 .602 .700 .554 .678 r3 .210 .326 .224 .312
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Appendix C

Results Tables for Normal Power Results of S1

and S2

This section contains the tables described in Section 5.4 detailing the results

of power for statistics S1 and S2 re-calculated using the normal critical values zα/2

= 1.645 and 1.96.
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Table C.1: Normal Distribution estimates of Power for S1 and S2 for two-sided test
of P1(|S| ≥ c) when L = 3 with variance vectors: (a) Var1, (b) Var2, (c) Var3 and
contiguous alternatives with (i) a = 2, (ii) a = 4, (iii) a = 6

(i) S1 S2 (ii) S1 S2 (iii) S1 S2

(a) α (a) α (a) α
Rho .05 .10 .05 .10 Rho .05 .10 .05 .10 Rho .05 .10 .05 .10

r1 .685 .789 .722 .817 r1 1.00 1.00 1.00 1.00 r1 1.00 1.00 1.00 1.00
r2 .338 .463 .328 .450 r2 .962 .981 .942 .970 r2 1.00 1.00 1.00 1.00
r3 .074 .135 .202 .305 r3 .239 .347 .562 .675 r3 .427 .696 .791 .806

S1 S2 S1 S2 S1 S2

(b) α (b) α (b) α
Rho .05 .10 .05 .10 Rho .05 .10 .05 .10 Rho .05 .10 .05 .10

r1 .676 .778 .698 .795 r1 1.00 1.00 1.00 1.00 r1 1.00 1.00 1.00 1.00

r2 .347 .469 .368 .490 r2 .967 .985 .951 .976 r2 1.00 1.00 1.00 1.00
r3 .111 .184 .232 .337 r3 .210 .316 .558 .703 r3 .267 .379 .707 .807

S1 S2 S1 S2 S1 S2

(c) α (c) α (c) α

Rho .05 .10 .05 .10 Rho .05 .10 .05 .10 Rho .05 .10 .05 .10

r1 .729 .821 .726 .818 r1 1.00 1.00 1.00 1.00 r1 1.00 1.00 1.00 1.00
r2 .317 .437 .318 .437 r2 .952 .976 .953 .976 r2 1.00 1.00 1.00 1.00

r3 .183 .278 .184 .279 r3 .610 .720 .600 .708 r3 .717 .818 .711 .807
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Table C.2: Normal Distribution estimates of Power for S1 and S2 for two-sided test
of P1(|S| ≥ c) when L = 5 with variance vectors: (a) Var1, (b) Var2, (c) Var3 and
contiguous alternatives with (i) a = 2, (ii) a = 4, (iii) a = 6

(i) S1 S2 (ii) S1 S2 (iii) S1 S2

(a) α (a) α (a) α
Rho .05 .10 .05 .10 Rho .05 .10 .05 .10 Rho .05 .10 .05 .10

r1 .249 .356 .416 .534 r1 .805 .879 .993 .997 r1 .999 1.00 1.00 1.00
r2 .196 .301 .372 .498 r2 .814 .885 .996 .998 r2 .985 .994 1.00 1.00
r3 .062 .118 .080 .144 r3 .063 .119 .286 .400 r3 .368 .495 .705 .800

S1 S2 S1 S2 S1 S2

(b) α (b) α (b) α
Rho .05 .10 .05 .10 Rho .05 .10 .05 .10 Rho .05 .10 .05 .10

r1 .410 .531 .440 .560 r1 .996 .998 .994 .998 r1 1.00 1.00 1.00 1.00

r2 .313 .429 .422 .547 r2 .984 .993 .996 .999 r2 1.00 1.00 1.00 1.00
r3 .154 .245 .099 .171 r3 .634 .750 .301 .421 r3 .890 .940 .682 .784

S1 S2 S1 S2 S1 S2

(c) α (c) α (c) α

Rho .05 .10 .05 .10 Rho .05 .10 .05 .10 Rho .05 .10 .05 .10

r1 .385 .513 .378 .506 r1 .995 .998 .995 .998 r1 1.00 1.00 1.00 1.00
r2 .370 .494 .374 .498 r2 .997 .999 .997 .999 r2 1.00 1.00 1.00 1.00

r3 .076 .138 .075 .137 r3 .300 .421 .301 .420 r3 .773 .852 .759 .838
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Table C.3: Normal Distribution estimates of Power for S1 and S2 for two-sided test
of P1(|S| ≥ c) when L = 9 with variance vectors: (a) Var1, (b) Var2, (c) Var3 and
contiguous alternatives with (i) a = 2, (ii) a = 4, (iii) a = 6

(i) S1 S2 (ii) S1 S2 (iii) S1 S2

(a) α (a) α (a) α
Rho .05 .10 .05 .10 Rho .05 .10 .05 .10 Rho .05 .10 .05 .10

r1 .373 .497 .570 .688 r1 .984 .993 1.00 1.00 r1 1.00 1.00 1.00 1.00
r2 .443 .564 .619 .728 r2 .956 .978 .995 .998 r2 .998 .999 1.00 1.00
r3 .131 .210 .066 .122 r3 .277 .388 .560 .673 r3 .084 .151 .193 .288

S1 S2 S1 S2 S1 S2

(b) α (b) α (b) α
Rho .05 .10 .05 .10 Rho .05 .10 .05 .10 Rho .05 .10 .05 .10

r1 .672 .771 .598 .706 r1 1.00 1.00 1.00 1.00 r1 1.00 1.00 1.00 1.00

r2 .492 .624 .577 .703 r2 .982 .992 .996 .998 r2 1.00 1.00 1.00 1.00
r3 .079 .141 .063 .119 r3 .443 .570 .583 .695 r3 .329 .446 .247 .350

S1 S2 S1 S2 S1 S2

(c) α (c) α (c) α

Rho .05 .10 .05 .10 Rho .05 .10 .05 .10 Rho .05 .10 .05 .10

r1 .672 .774 .668 .770 r1 .999 1.00 .999 1.00 r1 1.00 1.00 1.00 1.00
r2 .647 .754 .641 .750 r2 .996 .998 .994 .998 r2 1.00 1.00 1.00 1.00

r3 .061 .116 .060 .115 r3 .614 .721 .598 .704 r3 .192 .290 .213 .310
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