
ABSTRACT

Title of dissertation: Improving the Performance and Precision of
Bioinformatics Algorithms

Xue Wu, Doctor of Philosophy, 2008

Dissertation directed by: Professor Chau-Wen Tseng
Department of Computer Science

Recent advances in biotechnology have enabled scientists to generate and col-

lect huge amounts of biological experimental data. Software tools for analyzing both

genomic (DNA) and proteomic (protein) data with high speed and accuracy have

thus become very important in modern biological research. This thesis presents

several techniques for improving the performance and precision of bioinformatics

algorithms used by biologists.

Improvements in both the speed and cost of automated DNA sequencers have

allowed scientists to sequence the DNA of an increasing number of organisms. One

way biologists can take advantage of this genomic DNA data is to use it in con-

junction with expressed sequence tag (EST) and cDNA sequences to find genes and

their splice sites. This thesis describes ESTmapper, a tool designed to use an eager

write-only top-down (WOTD) suffix tree to efficiently align DNA sequences against

known genomes. Experimental results show that ESTmapper can be much faster

than previous techniques for aligning and clustering DNA sequences, and produces

alignments of comparable or better quality.

Peptide identification by tandem mass spectrometry (MS/MS) is becoming the

dominant high-throughput proteomics workflow for protein characterization in com-

plex samples. Biologists currently rely on protein database search engines to identify

peptides producing experimentally observed mass spectra. This thesis describes two

approaches for improving peptide identification precision using statistical machine

learning.

HMMatch (HMM MS/MS Match) is a hidden Markov model approach to

spectral matching, in which many examples of a peptide fragmentation spectrum

are summarized in a generative probabilistic model that captures the consensus and

variation of each peak’s intensity. Experimental results show that HMMatch can

identify many peptides missed by traditional spectral matching and search engines.

PepArML (Peptide Identification Arbiter by Machine Learning) is a machine

learning based framework for improving the precision of peptide identification. It

uses classification algorithms to effectively utilize spectra features and scores from

multiple search engines in a single model-free framework that can be trained in an

unsupervised manner. Experimental results show that PepArML can improve the

sensitivity of peptide identification for several synthetic protein mixtures compared

with individual search engines.

Improving the Performance and Precision of Bioinformatic

Algorithms

by

Xue Wu

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2008

Advisory Committee:
Professor Chau-Wen Tseng, Chair/Co-Advisor
Professor Nathan Edwards, Co-Advisor
Professor Steven L. Salzberg
Professor Samir Khuller
Professor Mihai Pop
Professor Stephen Mount

Acknowledgments

During the years of my Ph.D. study, so many dramatic changes have happened

in the school, in the outside world and in myself. I owe my gratitude to all the people

who have made it possible for me to complete this journey.

First and foremost I’d like to thank my advisor, Professor Chau-Wen Tseng for

giving me such an invaluable opportunity to work him on all kinds of challenging

and extremely interesting projects over the past five years. He has always made

himself available for help and advice. Most importantly, he demonstrated to me

what scientific research should be like by not only his own words and action, by also

his attitude toward research. It has been a pleasure to work with and learn from

such an extraordinary individual.

I would also like to thank my co-advisor, Dr. Nathan Edwards. Without his

extraordinary theoretical ideas and computational expertise, this thesis would have

been a distant dream. I also owe great gratitude to Professor Steven Salzberg and

Professor Stephen Mount, who spent time with me on my various projects and give

me valuable suggestions. I also owe great thanks to Professor Samir Khuller and

Professor Mihai Pop for spending their valuable time to serve on my committee.

I would also like to acknowledge help and support from the staff members from

UMIACS and CS department. Without their help, I wouldn’t be able to do all of

the experiments in this thesis.

Lastly, and most importantly, I wish to thank my parents. They bore me,

raised me, supported me, taught me and loved me. To them I dedicate this thesis.

ii

Table of Contents

List of Tables vi

List of Figures viii

1 Introduction 1
1.1 Genomics . 2

1.1.1 DNA Contains Basic Genetic Information 2
1.1.2 Genome Sequencing and Assembly 3
1.1.3 Gene Structure and Genomic Annotation 4
1.1.4 Gene Finding . 5

1.2 Proteomics . 6
1.2.1 Proteins are Produced From DNA 6
1.2.2 Major Disciplines in Proteomics 7

1.3 Bioinformatics . 8
1.3.1 Computational Processing of Biological Information 8
1.3.2 Major Bioinformatics Research Topics 9

1.4 High Performance Computing . 10
1.5 Statistical Machine Learning . 11
1.6 Outline of Thesis . 12

2 High-throughput EST/cDNA to Genome Mapping 14
2.1 Background . 14
2.2 Related Work . 16

2.2.1 Pairwise Sequence Alignment 16
2.2.2 cDNA to Genome Alignment 18
2.2.3 EST Clustering . 21
2.2.4 WOTD Suffix Tree . 23

2.3 ESTmapper: Efficiently Aligning DNA Sequences to Genomes 24
2.3.1 Algorithm . 25
2.3.2 Mapping Statistics . 28
2.3.3 Implementation . 32
2.3.4 Parallelization . 32

2.3.4.1 Multithreaded ESTmapper 32
2.3.4.2 Message-passing ESTmapper 33

2.4 Experimental Results . 34
2.4.1 Evaluation Environment . 34
2.4.2 Mapping Parameters . 35
2.4.3 Basic Performance . 35
2.4.4 Genome Mapping Performance Comparison 37
2.4.5 Genome Mapping Precision Comparison 39
2.4.6 EST Clustering Performance Comparison 43
2.4.7 EST Clustering Precision Comparison 44
2.4.8 Scalability . 45

iii

2.4.9 Discussion . 46
2.5 Conclusion . 46

3 Mass Spectrometry Based Peptide Identification 47
3.1 Background . 47

3.1.1 Mass Spectrometry . 47
3.1.2 Computer Algorithms for Peptide Identification 49

3.1.2.1 Database Search Based Peptide Identification 50
3.1.2.2 De Novo Sequencing 54
3.1.2.3 Spectral Matching 56

3.2 HMMatch: Peptide Identification by Spectral Matching of Tandem
Mass Spectra Using Hidden Markov Models 58
3.2.1 Related Work . 58

3.2.1.1 HMM and Its Application to Peptide Identification . 58
3.2.2 Motivation . 60

3.2.2.1 HMMER for Multiple Sequence Alignment 60
3.2.2.2 MS/MS Intensity Profile 61
3.2.2.3 HMM for Spectral Matching 63

3.2.3 Training Data Selection . 63
3.2.3.1 Mass Spectra Libraries 63
3.2.3.2 Data Selection . 64

3.2.4 Spectra Pre-processing . 66
3.2.4.1 Spectra Normalization 66
3.2.4.2 Spectra Discretization 68

3.2.5 HMMatch Algorithm . 68
3.2.5.1 Hidden States . 70
3.2.5.2 Emission Probabilities 70
3.2.5.3 Transition Probabilities 70

3.2.6 Statistical Significance of HMMatch Score 71
3.2.6.1 HMMatch Score . 71
3.2.6.2 Random Spectra . 71
3.2.6.3 Score Distribution and p-value Estimation 73

3.2.7 Implementation . 73
3.2.8 Experimental Results . 74

3.2.8.1 Experimental Data 74
3.2.8.2 Training . 74
3.2.8.3 Basic Performance 79
3.2.8.4 Comparative Performance 82

3.2.9 Model Extrapolation . 90
3.2.10 Conclusion . 94

3.3 PepArML: An Unsupervised, Model-Free, Combining Peptide Iden-
tification Arbiter for Tandem Mass Spectra Via Machine Learning . . 96
3.3.1 Related Work . 96

3.3.1.1 Combining Multiple Search Engines 96
3.3.1.2 Applying Machine Learning To Improve Scoring . . . 97

iv

3.3.1.3 Re-estimating Statistical Significance 99
3.3.2 Motivation . 100
3.3.3 Performance Metric Definitions 101

3.3.3.1 Definitions . 102
3.3.3.2 Calculating FDR and Estimated FDR (eFDR) 103
3.3.3.3 Experimental Metrics 104

3.3.4 Heuristics For Combining Search Engine Results 105
3.3.5 PepArML Framework . 109

3.3.5.1 Supervised Machine Learning Algorithm 109
3.3.5.2 Unsupervised Learning 112
3.3.5.3 Unsupervised Learning Algorithm 113

3.3.6 Implementation . 115
3.3.7 Experimental Framework . 115

3.3.7.1 Mass Spectra Data Sets 115
3.3.7.2 Tandem Mass Spectra Search Engines and Protein

Sequence Database 120
3.3.8 Experimental Results . 123

3.3.8.1 Search Engine E-value vs. Estimated False Discov-
ery Rate . 123

3.3.8.2 Heuristic Combiner Comparisons 124
3.3.8.3 Voting Heuristics vs. Search Engine Comparisons . . 132
3.3.8.4 Supervised Machine Learning Performance 136
3.3.8.5 Machine Learning Method Comparisons 152
3.3.8.6 InfoGain For Machine Learning Features 157
3.3.8.7 Generality of Machine Learning Model 158
3.3.8.8 Unsupervised Machine Learning Performance 162
3.3.8.9 Discussion of Experimental Results 168

3.3.9 Conclusion . 171

4 Conclusion and Future Work 174
4.1 Two Classes of Algorithms Demonstrate Good Performance and Pre-

cision . 174
4.1.1 Genomics . 174
4.1.2 Proteomics . 175

4.1.2.1 HMMatch . 175
4.1.2.2 PepArML . 176

4.1.3 Benefits of High Performance Computing and Machine Learning177
4.2 Future Work . 178

4.2.1 ESTmapper . 178
4.2.2 HMMatch . 179
4.2.3 PepArML . 179

Bibliography 181

v

List of Tables

2.1 Precision Comparison with 36,298,530 Arabidopsis Nucleotides and 1,811,944

Human Nucleotides . 40

2.2 Precision Comparison with 155,970 Arabidopsis Exons and 5,176 Human

Exons . 40

2.3 Precision Comparison with 28,952 Arabidopsis Genes and 936 Human

Genes . 40

2.4 Precision Comparison with 1.4 million Human ESTs by Chromosome . . 41

2.5 Precision Comparison with 1000 Arabidopsis UniGene Clusters 44

3.1 Model peptides and spectral data set sizes. Cysteines alkylated with
iodoacetamide. * indicates oxidized methionine. 75

3.2 Time (in seconds) for HMMatch training. 78

3.3 Time (in seconds) to compute HMMatch scores. 80

3.4 Average % recall at 99% precision for 8 model-peptide spectrum data
sets with respect to various synthetic reference labels. Training spec-
tra and spectra with no reference score excluded. 85

3.5 Peptide ID feature vector, with features from Tandem, Mascot, and
OMSSA. 111

3.6 Proteins in Calibrant protein mixture (C8). 118

3.7 Proteins in Sashimi protein mixture (S17). 119

3.8 Search Engine Parameters for Spectra Data Sets 122

3.9 Sensitivity vs. False Positive Rate (FPR) for Heuristic Combiners.
Best sensitivity for each FPR & data set in bold. 131

3.10 Sensitivity vs. False Positive Rate (FPR) for Classifiers. Best sensi-
tivity for each FPR & data set in bold. 140

3.11 Machine Learning Classification Algorithms 153

3.12 InfoGain (Rank) of features with respect to each data set. 159

3.13 Parameters for Unsupervised Learning 163

vi

3.14 Sensitivity vs. true FDR for supervised & unsupervised classifiers.
Best sensitivity for each FDR & data set in bold. 165

3.15 Sensitivity vs. estimated FDR for supervised & unsupervised classi-
fiers. Best sensitivity for each eFDR & data set in bold. 166

vii

List of Figures

1.1 Gene Structure . 4

1.2 Protein Generation . 7

2.1 ESTmapper Algorithm . 29

2.2 Performance Comparison of EST Mapping and Clustering Algorithms . . 38

2.3 Clustering 5.5 × 106 Human ESTs . 45

3.1 Mass Spectrum . 49

3.2 Normalized intensity distribution (before log10 transformation) of low-
mass peaks in m/z regions between (I0, . . .) and near singly charged b
(b1, . . .) and y (y1, . . .) ions from training spectra for peptide DLATVYVD-
VLK. Average peak frequency, per spectrum, in each m/z region is
indicated above each normalized intensity box-plot. 62

3.3 Discretization of m/z axis into regions. Valid m/z region emissions,
for each non-silent HMM hidden state, also shown. 69

3.4 The HMMatch hidden Markov model for peptide fragmentation mass
spectra. 69

3.5 HMMatch forward scores for spectra with high-confidence identifi-
cations (X!Tandem E-value < 10−4). High-Confidence Train (HC-
Train) ⋆; High-Confidence Test (HC-Test) ◦; High-Confidence Other
(HC-Other) 3. 77

3.6 HMMatch forward score based p-values of low-confidence and un-
known spectra (X!Tandem E-value > 10−4). Low-Confidence (LC)
⋆; Low-Confidence Other (LC-Other) ◦; Unknown 3. 81

3.7 Precision-recall curves for Mascot (), MS Search (), and HM-
Match () for synthetic reference labels defined by X!Tandem E-
value threshold 0.01. Training spectra and spectra with no X!Tandem
E-value for the model peptide are excluded. 84

3.8 Case study fragmentation spectra of peptide DLATVYVDVLK. (a)
Mascot E-value: 1.07, X!Tandem E-value: 0.0013, MS Search match
factor: 0.844, HMMatch p-value: 7.341 × 10−12; (b) Mascot E-value:
5.7, X!Tandem E-value: 0.16, MS Search match factor: 0.994, HM-
Match p-value: 1.738 × 10−12. 89

viii

3.9 Normalized intensity boxplots for peaks in each m/z value region from
HC-Train spectra of DFLAGGVAAAISK and DFLAGGIAAAISK. . . 92

3.10 Comparison of p-values of HC-Test spectra scored with the peptide’s
HMMatch model and the extrapolated HMMatch model of its related
“twin” peptide. 93

3.11 Feature Vector . 110

3.12 Correlation between FDR, E-value and estimated FDR 125

3.13 Heuristics for C8 Spectra Set . 128

3.14 Heuristics for S17 Spectra Set . 129

3.15 Heuristics for AURUM Spectra Set 130

3.16 Heuristics vs. Single Search Engine Comparison for C8 Spectra Set . 133

3.17 Heuristics vs. Single Search Engine Comparison for S17 Spectra Set . 134

3.18 Heuristics vs. Single Search Engine Comparison for AURUM Spectra
Set . 135

3.19 ROC curves for C8. Classifiers (solid line) and search engines (dotted
line) are presented in each graph. C-TMO classifier (dash-dotted line)
and Voting combiner (dashed line) are included in all graphs. 137

3.20 ROC curves for S17. Classifiers (solid line) and search engines (dotted
line) are presented in each graph. C-TMO classifier (dash-dotted line)
and Voting combiner (dashed line) are included in all graphs. 138

3.21 ROC curves for AURUM. Classifiers (solid line) and search engines
(dotted line) are presented in each graph. C-TMO classifier (dash-
dotted line) and Voting combiner (dashed line) are included in all
graphs. 139

3.22 AUROC for each classifier and search engine. The y-axis represents
the area under the ROC curve (AUROC) for each classifier. Each
classifier is displayed as a bar and arranged along the x-axis. Classi-
fiers are arranged in three groups, one for each data set. 142

3.23 Sensitivity vs. FDR curves for C8. Classifiers (solid line) and search
engines (dotted line) are presented in each graph. C-TMO classifier
(dash-dotted line) is included in all graphs. 144

ix

3.24 Sensitivity vs. FDR curves for S17. Classifiers (solid line) and search
engines (dotted line) are presented in each graph. C-TMO classifier
(dash-dotted line) is included in all graphs. 145

3.25 Sensitivity vs. FDR curves for AURUM. Classifiers (solid line) and
search engines (dotted line) are presented in each graph. C-TMO
classifier (dash-dotted line) is included in all graphs. 146

3.26 Sensitivity vs. eFDR curves for C8. Classifiers (solid line) and search
engines (dotted line) are presented in each graph. C-TMO classifier
(dash-dotted line) is included in all graphs. 149

3.27 Sensitivity vs. eFDR curves for S17. Classifiers (solid line) and search
engines (dotted line) are presented in each graph. C-TMO classifier
(dash-dotted line) is included in all graphs. 150

3.28 Sensitivity vs. eFDR curves for AURUM. Classifiers (solid line) and
search engines (dotted line) are presented in each graph. C-TMO
classifier (dash-dotted line) is included in all graphs. 151

3.29 Machine Learning Classifiers for C8 Spectra Set 154

3.30 Machine Learning Classifiers for S17 Spectra Set 155

3.31 Machine Learning Classifiers for AURUM Spectra Set 156

3.32 InfoGain For Features . 160

3.33 ROC curves for C-TMO trained with S17 or C8, both applied to S17. 161

3.34 Left: supervised C-TMO (dotted), unsupervised C-TMO (solid), and
Voting (dashed). Right: unsupervised C-TMO starting with con-
sensus proteins (solid), or starting with single random true protein
(dotted). 164

x

Chapter 1

Introduction

Since the discovery of the DNA double helix in 1953 by James Watson and

Francis Crick, scientists have been trying to understand biology in molecular terms.

Subsequently, the discovery of automated techniques to sequence DNA in the late

1970s and the fast development of protein chemistry in 1980s have mad study-

ing organisms at the molecular level increasingly effective. Today, the continuous

advances in molecular biology and corresponding experimental techniques have pro-

duced a huge amount of biological data generated by different types of automated

techniques. As a result, computational tools have become essential in both genomics

and proteomics for analyzing these biological data with high speed and accuracy.

In this thesis, three carefully designed algorithms are presented to demonstrate

that computer scientists can contribute to the area of computational biology by

finding ways to improve the performance and precision of bioinformatics algorithms

commonly used by biologists, in ways that yield practical benefit for their biological

research. These three algorithms were especially designed to demonstrate the ability

of high performance computing and statistical machine learning in boosting both

the performance and precision of bioinformatics algorithms.

The remainder of this chapter will begin by providing a brief introduction to

genomics, proteomics and bioinformatics. In addition to providing basic background

1

knowledge for the rest of the thesis, we also present reasons why high performance

computing and statistical machine learning techniques are helpful for solving molec-

ular biology problems. Our motivation for designing the algorithms is provided at

the end of the chapter.

1.1 Genomics

Genomics is the study of the entire genome of an organism. It includes both

determining the entire set of DNA sequences of an organism and understanding

an organism’s genetic mapping. Since DNA sequence stores genetic information of

all known living organisms, it is very important to understand its structure and

function.

1.1.1 DNA Contains Basic Genetic Information

DNA is a macromolecule composed of a sequence of deoxyribonucleotides each

containing a base, a sugar, and a phosphate group. Since DNA contains four different

kinds of nucleotide bases (adenine (A), guanine (G), thymine (T) and cytosine (C)),

DNA sequences may be written as strings constructed from an alphabet of four

letters, namely A, C, G, and T.

DNA’s three-dimensional structure is a double helix, which was discovered by

James Watson and Francis Crick in 1953. In this structure, sugar and phosphate

groups form the backbone and complementary bases (A-T, C-G) are connected by

hydrogen bond.

2

DNA contains the basic genetic information that each organism needs to live

and reproduce. The complete set of DNA that contains entire hereditary information

of an organism is called the genome of the organism. The part of the genome that

contains the hereditary information (producing proteins) are called genes. Human

genome is believed to contain up to 20,000–25,000 genes (this estimate may change

as human genome sequencing projects progress).

1.1.2 Genome Sequencing and Assembly

Since the genome contains such important information about organisms, ob-

taining the genome sequences of living organisms is widely considered to be the first

step towards a deeper understanding of genetics and biology in general. Early DNA

sequencing methods were slow and labor intensive. For instance, Maxim-Gilbert

chemical sequencing involved gel electrophoresis and radioactive labeling [MG77].

Development of the Sanger (dideoxy termination) method greatly increased

the ease of DNA sequencing [SNC77]. The method can be used to determine short

(500–1000) nucleotides sequences off the end of a DNA fragment (called reads).

Once the process was automated using capillary electrophoresis by companies such

as Applied Biosystems, fast and inexpensive large-scale DNA sequencing become

feasible and eventually led to sequencing of the genomes of many species.

Because DNA sequencers only produce many short DNA sequences, assembly

techniques were developed to reconstruct the original DNA sequence by looking

for overlaps between the short reads. The success of assembly tools enabled entire

3

genomes to be sequenced [ISF+04] using shotgun sequencing, where many random

fragments from a long DNA sequence are sequenced and assembled to construct the

original sequence [SCH+82].

1.1.3 Gene Structure and Genomic Annotation

Sequencing genomes is only one goal of genomic research. Once a genome has

been sequenced, genome annotation seeks to label each part of the genome with

its function. An important part of genome annotation is discovering what genes

are present and where they are located in the genome. The structure of a gene is

described in Figure 1.1.

Figure 1.1: Gene Structure

As shown in the figure, genes are composed of sections of DNA known as exons

and introns. Exons are regions that remain in mature mRNA and are later translated

into proteins. Introns are regions that are spliced out of mRNA before translation

to protein. The boundaries between introns and exons are called splice sites. Ge-

nomic annotation includes identification of the initiator of translation, splice sites,

promoter and regulatory regions, and several other biologically important elements.

4

1.1.4 Gene Finding

Gene finding is the process of discovering genes in the genome. One problem

with gene finding is caused by splicing. Since genes usually contain multiple introns,

they may be produced from multiple regions of genomic DNA, depending on what

introns have been spliced out. The issue is difficult because splice sites are not

unique, and can occur in many different places in the genome.

Exacerbating the problem is alternative splicing, a process where the same

genomic DNA can be spliced in different ways to produce multiple protein isoforms.

In fact, alternative splicing is quite common, and makes determining the location

of genes and correct splice sites even more difficult.

Experimental methods exist for accurate genome annotation (such as produc-

ing full-length cDNAs), but these methods are expensive, and too slow to keep up

with the accelerating speed with which genomic sequence is being produced. For

this reason computational methods play an essential part in gene finding.

Researchers have devised many algorithms for finding genes and their splice

sites, some using statistic modeling techniques such as Hidden Markov Models. But

since the types and location of splice sites are not completely known, the algorithms

cannot locate all genes accurately using only statistic modeling.

Another computational approach to finding genes relies on a type of experi-

mentally acquired data—short expressed DNA sequences called Expressed Sequence

Tags (ESTs). ESTs are short (400-800 bases) single-pass sequences generated from

expressed DNA and relatively easy to collect and sequence in the laboratory. How-

5

ever, despite their fragmentary and error-prone nature, ESTs are of interest because

they can be collected from mature mRNA, and can thus be used as evidence for

finding genes, their splice sites, and isoforms created from alternative splicing.

Because of the large size of genomes and enormous number of ESTs, developing

algorithms to efficiently use EST information to find genes poses a computational

challenge. Our first proposed algorithm targets mapping cDNA to genomes and

demonstrates how to solve this problem with high performance computing tech-

niques.

1.2 Proteomics

1.2.1 Proteins are Produced From DNA

Most of the properties of living organisms arise from the class of molecules

known as proteins. Proteins are composed of hundreds to thousands of amino acid

subunits connected in long chains. There are 20 different amino acids, so each can

be represented by a single character in [A, . . . , Z]. Because proteins are a product

of DNA transcription and RNA translation as described by Figure 1.2, the order

of amino acids is determined by genes encoded in the genome. Each amino acid

chain folds in a different way to form a complicated 3 dimensional structure for each

protein.

Proteomics is the study of all proteins of an organism. It strives to provide

detailed information about protein structure, function and control of disease of bio-

logical systems. In the early stages of proteomics, protein chemistry was the major

6

Figure 1.2: Protein Generation

research approach to studying protein and the link between gene and protein. In the

1980s and early 1990s, analytical protein chemistry mainly targeted improving the

sensitivity of techniques for identifying proteins separated by gels. These protein se-

quencing results led to important information about proteins and their relationship

with genes. At the same time, mass spectrometry became one of the major experi-

mental techniques for analytical chemists to analyze small molecules. Advances in

analytical protein chemistry, plus mass spectrometry and protein databases, have

made large scale high throughput protein studies possible.

1.2.2 Major Disciplines in Proteomics

Currently there are three major disciplines in proteomics: mass spectrometry

based proteomics, chip based proteomics, and genetic methods for studying the pro-

teome. Among them, mass spectrometry based proteomics is a rapidly developing

research area. Protein mass spectrometry is used for analyzing functional protein

7

complexes by identifying not only the members of the complexes, but also the in-

teractions among the members. It is expected to become the main quantitative

technology for systematical protein study.

However, because of the low quality of spectra data and high data generation

speed, the analysis and interpretation of enormous amounts of protein mass spec-

tra data is a major computational challenge. Even though computer scientists and

statisticians have developed many algorithms and techniques for identifying pro-

teins using experimental mass spectra, more precise and efficient algorithms are still

needed.

1.3 Bioinformatics

1.3.1 Computational Processing of Biological Information

Defined as techniques for computational processing of biological information,

bioinformatics requires knowledge from two areas: computer science and biology.

Many fundamental biology problems from the early days of molecular biology have

already demonstrated their need for computational solutions. Topics such as DNA

structure, encoding of genetic information in protein, protein structure, biochemical

pathways, etc., have motivated and defined the development agenda of bioinformat-

ics and computational biology.

Bioinformatics as a research area started with combining computational and

experimental information to better understand biological molecules. Construction

of phylogenetic trees, understanding of DNA sequence properties and protein align-

8

ment properties were some early approaches for solving biology problems with com-

putational algorithms. Later, with rapid development of automated experimental

techniques, efficient computer algorithms were developed to cope with the fast grow-

ing amounts of biology data. Bioinformatics and computational biology became an

independent discipline. Researchers in the area of bioinformatics are now striving

to solve biology problems that pose great computational challenges.

1.3.2 Major Bioinformatics Research Topics

Some current bioinformatics research topics include:

• Pairwise and multiple sequence alignments

• Genome assembly

• Gene identification and annotation

• Gene expression analysis

• Protein sequencing

• Protein structure prediction

• Protein interaction

• Phylogenetic analysis

In general, bioinformatics algorithms strive to provide either the most accu-

rate mathematical models for solving the biology problem, or techniques that can

efficiently process large amount of experimental data in a reasonable period of time.

9

Bioinformaticians help biologists avoid or reduce expensive and lengthy wetlab ex-

perimental procedures.

In the remainder of the thesis, I will describe three algorithms to demonstrate

the strength of using high performance computing and statistical modeling tech-

niques in bioinformatics applications.

1.4 High Performance Computing

Two techniques widely used in the bioinformatics field are high performance

computing and statistical machine learning. Both techniques play key roles in bio-

logical data analysis.

The necessity of high performance computing techniques arises from the ad-

vance of automated biological experimental techniques producing large data sets.

In recent years, the amount of biological data coming from both genomics and

proteomics have grown at a rapidly increasing rate. As a result bioinformatics

researchers have started to take advantage of high performance computing architec-

tures, including both distributed and shared memory platforms.

Many early high performance computing bioinformatics applications were in

the area of pairwise sequence alignment. AGBLAST, NCBI BLAST [NCB], WU

BLAST [WUB], mpiBLAST [DCF03], and UM-BLAST are different high perfor-

mance versions of BLAST, a very popular sequence alignment tool. These versions

of BLAST use parallel and distributed computer architectures to speed up the se-

quence alignment process. Later tools such as BLAST++ [WOOT03], megaBLAST,

10

TGICL, and PaCE exploit data properties and design new algorithms based on spe-

cific data structures to improve sequence alignment performance. Both approaches

are necessary to improve the throughput and processing speed of bioinformatics

tools such as BLAST.

More recently with increasing amounts and types of experimental data, high

performance computing tools have been used in the realms of microarray gene ex-

pression data analysis, genetic networks, protein-protein interactions, phylogeny

reconstruction, protein structure predictions, etc.

1.5 Statistical Machine Learning

Statistical machine learning is another key technique used in bioinformatics. It

provides methods which make it possible to find patterns and automatically generate

predictive models from large data sets, thus helping people understand and analyze

the underlying biological information and mechanisms hidden in the data.

Machine learning plays a vital role in genomics research. Many machine learn-

ing algorithms have been developed to perform splice site prediction, alternative

splicing form recognition, gene annotation and gene function prediction. In the

area of proteomics, machine learning is used to aid protein structure and function

prediction.

More recently, researchers have started to apply machine learning methods to

peptide identification based on tandem mass spectrometry data. Machine learning

has also been used to process microarray data to identify expression pattern and

11

study gene networks. In the area of system biology, machine learning has been used

to model biological network to study genetic networks, signal transduction networks

and metabolic pathways. In the area evolutionary biology, machine learning meth-

ods help reconstruct phylogenetic trees to study the evolution of many organisms.

In addition, machine learning has also been used in primer design for PCR and to

help analyze biological images.

Where high performance computing has increased the speed of bioinformatics

algorithms, statistical machine learning has improved the accuracy of bioinformatics

algorithms. Both classes of techniques are are very important tools for bioinformat-

ics research.

1.6 Outline of Thesis

To demonstrate the application of both high performance computing tech-

niques and machine learning techniques in bioinformatics research, two classes of

algorithms are presented to solve two popular problems in genomics and proteomics

fields.

The first class of algorithms are designed for aligning cDNA sequences to

genomes. In genomics, the results of aligning cDNA sequences to genomes can be

used to answer a number of important questions such as gene finding, EST cluster-

ing, finding alternative splicing isoforms, and identifying gene function. However,

because of large genome sizes (thousands to millions of bases) and the huge num-

ber of available cDNA sequences (millions), aligning DNA to genomes can pose

12

a challenge for both accuracy and computation speed. In response we developed

ESTmapper, an efficient cDNA to genome alignment algorithm that is carefully

designed to align DNA to genomes with high accuracy and speed.

The second class of algorithms are designed to identify peptides by analyzing

tandem mass spectra from protein samples. Tandem mass spectrometry is a key

technique used for high-throughput protein identification. But due to limitations

of current database search based protein identification algorithms, it is not easy to

improve the accuracy of the results.

We present the design of two algorithms (HMMatch and PepArML) for im-

proving peptide identification accuracy. HMMatch recognizes previously observed

peptide fragmentation patterns to complement database search based methods.

PepArML enhances database search by distinguishing between true and false posi-

tive protein identifications by combining multiple search engine results and exploring

a large feature space.

The final part the thesis summaries the proposed algorithms and concludes

with possible directions for future research.

13

Chapter 2

High-throughput EST/cDNA to Genome Mapping

2.1 Background

Recent advances in molecular biology techniques such as automated DNA

sequencing have allowed scientists to quickly gather huge amounts of DNA sequence

data. Two types of DNA sequence data are particularly interesting: genomic DNA

and expressed sequence tags (ESTs). Genomes are long (thousands to millions of

bases) DNA sequences representing the complete DNA of an organism, carefully

constructed with high accuracy from many experiments. In comparison, ESTs are

short (400-800 bases) single-pass DNA sequences that can be collected from mature

mRNA that have already been spliced (introns excised). ESTs are relatively easy

to collect and sequence in the laboratory but are more error-prone since each EST

represents a single read.

With the increasing number of species whose genomes have been sequenced and

the growing collection of EST sequence libraries (the August 2008 version of dbEST

contained 54 million EST sequences from 1605 species), efficiently and accurately

mapping large numbers of ESTs and other DNA sequences to genomes has become a

challenging problem, but one of increasing importance to biologists. Such mappings

may be used to answer a number of important questions, such as:

14

Gene finding. Determining which portions of the genome are actual genes is quite

difficult. Many computational gene finding techniques exist for classifying and pre-

dicting genes based on the genomic DNA sequence alone. However, the accuracy of

these techniques can generally be improved by including ESTs from mature mRNAs.

To use this information, ESTs need to be mapped to the appropriate locations in

the genome for inclusion gene finding [SKG04].

EST clustering. Algorithms also exist for finding genes based on ESTs alone, by

forming clusters of overlapping ESTs and assemble the sequences in each clus-

ter [BDH99, MCJ03, PGB02, LHP+00, PHL+03, KAKB03]. EST clusters may

be formed by comparing ESTs against each other to find similarity and overlaps.

Alternatively, clusters may also be formed from ESTs mapped to overlapping and

nearby locations in the genome [CRL+04, LB04].

Alternative splicing. A major source of complexity for gene finding is the fact

that genes can consist of non-contiguous sections of genomic DNA formed through

splicing [DL99, SCK04]. Even worse, variations in splicing can cause a gene to

produce multiple transcripts. Mapping ESTs to the genome can help point out

splice sites and predict alternative splicing [GMXL04, CHV02].

Gene regulation. Whether genomic DNA is actually expressed depends on a num-

ber of factors, but it is known that gene regulation can be affected by DNA sequences

near to but not actually part of the gene. Mapping ESTs and genes to the genome

thus allows biologists to examine the DNA surrounding each gene to look for factors

15

affecting gene regulation.

Gene function. Using a number of unique markers in the genome, biologists have

calculated linkage maps predicting the location in the genome of genes responsible

for a number of genetic traits. Mapping genes to a location in the genome thus

improves the ability of biologists to predict gene function to aid in disease diagnosis

and drug design [PSL+04].

2.2 Related Work

Since the ability to align DNA sequences to the genome is so useful, researchers

have investigated many techniques for performing such alignments. One way is to

use traditional pairwise sequence alignment method.

2.2.1 Pairwise Sequence Alignment

Pairwise sequence alignment compares two sequences to find and align the

most similar substrings based on some metric. It is probably the most commonly

performed computation in bioinformatics, and many algorithms have been devel-

oped. Basic Local Alignment Search Tool (BLAST) [AGM+90] is the most popular

and widely used tool for sequence alignment and similarity search. The search strat-

egy is based on using scoring matrices to compare short subsequences (words) in

the query sequence against the entire target DNA or protein sequence database to

find statistically significant matches, then attempting to extend these matches to

find the most similar sequences or subsequences.

16

BLAST speeds up local sequence alignment in 3 algorithmic steps. First, it

compiles a list of words of length w. For proteins, the list only consists those words

that score at least T when compared to some word in the query sequence. Next,

BLAST scans through every database sequence to find all the occurrences of the

words in the list. In the third step, the matching words are extended into ungapped

local alignments between the query sequence and the sequence from the database.

Extensions are continued until the score of the alignment drops below a threshold.

The top-scoring alignments are combined into local alignments.

Researchers also designed high performance BLAST algorithms to improve its

throughput when processing large sequence databases. Threaded BLAST [NCB,

WUB], mpiBLAST [DCF03] and BLAST++ [WOOT03] represent three typical

kinds of methods that are used to speed up the BLAST searching further. However,

due to the large size of many genomes (around 3 billion bases for Human and Mouse)

and the large number of DNA sequences collected by biologists, aligning DNA to

genomes pose a computational challenge. Even using high performance BLASTs can

be too expensive when a single high-throughput automated DNA sequencer (e.g.,

ABI Prism 3730xl) can output two million bases of sequence per day.

Producing accurate DNA to genome alignments is also problematic, since

genomes contain many very similar if not duplicate DNA sequences that can re-

sult in multiple plausible alignments to different portions of the genome. Careful

analysis is needed to distinguish between the possible alignments and calculate the

most plausible mapping.

A second (somewhat subtle) issue can also reduce the effectiveness of pairwise

17

alignment tools when used to align DNA to genomes. Tools such as BLAST are typ-

ically designed and tuned to find homology between nearby sequences, for instance

the same gene in Human and Mouse. As a result scores and statistical significance of

matches (for instance, BLAST’s substitution/scoring matrix) is usually calculated

based on the similarity of two sequences after an evolutionary period.

In comparison, for DNA to genome alignments we can usually assume the

DNA actually came from the genome, so the sequences should be highly similar. Any

differences arise from splicing and sequencing errors, not as a process of mutation and

evolution. As a result, we expect to find much longer identical common substrings

when comparing query sequences to genomes when compared to typical BLAST

searches. Techniques that take advantage of these observations may be able to

improve the accuracy of their alignments.

2.2.2 cDNA to Genome Alignment

As we have thus seen, standard pairwise sequence alignment techniques face

obstacles when applied to cDNA to genome alignment. As a result researchers

have designed several other alignment techniques ([FHZ+98, Ken02, OM02, WW05,

WCO01]).

megaBLAST. MegaBLAST is a program from the NCBI BLAST software suite

that uses a greedy algorithm to align nucleotide sequences [ZSWM00]. The program

provides good performance for highly similar sequences with minor differences, and

is thus frequently used for genome alignments.

18

BLAT. BLAT is an alternative pairwise sequence alignment algorithm [Ken02].

BLAT maintains a precomputed hash table index of the locations of all non-overlapping

substrings (words) of length k. Performance is dramatically improved because

queries do not need to scan the entire sequence database. Only the sections of

the sequence database with hits in the index need to be examined to compute more

detailed local alignments and scores. Substrings that yield too many (hundreds or

more) hits to the genome can be filtered out and ignored, or alignment time may

increase dramatically.

Sim4. Sim4 is one of the oldest and most frequently used programs for aligning

spliced DNA sequence with genomic sequence, allowing introns and a small number

of sequencing errors [FHZ+98]. Unlike BLAST, it attempts to recognize biological

valid splice sites for non-contiguous alignments to the genome. Sim4 was created

because of the inefficiency of BLAST when mapping large numbers of cDNA se-

quences to genomes. Researchers use Sim4 for studying gene-to-genome annotation

and alternative splicing. However, Sim4 can be slow since it uses dynamic program-

ming. Older EST alignment tools such as est genome [Mot97] and est2gen [GMP96]

also use dynamic programming, and too slow to search entire genomes.

Spidey. Spidey is a computer program to align spliced sequences to genomic se-

quences [WCO01]. It is incorporated in the NCBI Toolkit for biologists to study

gene annotation and alternative splicing. To find good alignments, Spidey uses

NCBI BLAST to produce a list of candidate alignments, then refines the alignments

19

while considering splice sites.

Squall. Squall is a tool similar to BLAT, but especially designed to map ESTs to

genomes [OM02]. Squall uses lookup tables to quickly find candidate substrings (21

bases) within 300 bases of the beginning and end of each EST sequence. It improves

efficiency by discarding all candidates that map to more than ten locations in the

genome. If the distance between the start and stop candidates is less than 3 million

bases, a more precise algorithm is used to calculate and score possible EST to genome

alignments.

The authors claim Squall is 100 times faster than BLAT. However, we find

BLAT to be much faster than reported in their paper, indicating the authors may

have not filter out excessively common substrings from the BLAT hash index as

recommended. The authors report 0.03, 1.69, and 12 seconds to align each RefSeq

sequence to human chromosome 22 using Squall, BLAT, and sim4 on a PrimePower

1000. In comparison, for the same data set on a SunFire 6800 we found it takes

0.02, 0.054, and 31 seconds using ESTmapper, BLAT, and sim4.

GMAP. GMAP is a recently developed tool for mapping and aligning cDNA se-

quences to genomes ([WW05]). It achieves high precision and efficiency by using a

minimal sampling strategy for genomic mapping, starting with an index of 24-mers

(stored as a pair of 12-mers). Matching oligomers between cDNA and the genome

are chained together for approximate alignment, then dynamic programming (DP)

is performed from both ends of the cDNA (sandwich DP) for splice site detection. In

20

addition, GMAP can attempt to identify microexons [VHS03] using statistical sig-

nificance testing. GMAP also requires less memory by keeping a very small lookup

table in memory and only reading in portions of the genome with high probability

of alignments. In experiments GMAP was able to identify splice sites more accu-

rately than BLAT, sim4, Spidey, and GeneSeqer for sets of human and Arabidopsis

cDNAs. GMAP also proved to be highly efficient, providing about a 6-fold speed

improvement over BLAT.

ESTmapper/sim4. We recently discovered another sequence alignment software

also called ESTmapper which we will refer to here as ESTmapper/sim4. It was de-

veloped by Florea and Walenz [FW] and is referenced elsewhere [ISF+04, FFM+05].

ESTmapper/sim4 is also a software package for aligning cDNA onto genomic se-

quences. It uses a k-mer based algorithm to pre-compute indices for each genome,

while we use suffix trees to pre-compute indices for each genome. ESTmapper/sim4

also couples with sim4 for generating spliced alignment results.

2.2.3 EST Clustering

Clustering is usually the first step in using ESTs for gene finding. Historically

clustering algorithms compare ESTs against each other to form clusters. NCBI also

maintains UniGene, a reference list of EST clusters automatically generated from

ESTs in dbEST [WBB+03].

21

TGICL. TGICL (TIGR Gene Indices CLustering tools) is an example of a pop-

ular software system for clustering large EST data sets using pairwise compar-

isons [PHL+03]. TGICL uses mgBLAST, a modified version of megaBLAST that

provides additional output filtering and uses a dynamic offset within a database for

incremental searches. MgBLAST is used to quickly perform an all-to-all pairwise

comparisons between EST sequences. Processing can be performed in parallel by

partitioning the database, then merging compressed sorted files.

Clustering uses a greedy algorithm based on the best alignments, and known

full-length cDNAs can be used as seeds to improve efficiency and produce larger

clusters for incremental updates. Clusters output are passed to the CAP3 assembly

tool [HM99] as multi-FASTA files and then assembled into high-quality consensus

sequences. TGICL is used to generate the TIGR Gene Indices for 60 different species

with between 10 thousand and 4 million EST sequences [LHP+00]. TGICL has been

parallelized for PC clusters using PVM.

PaCE. PaCE (Parallel Clustering of ESTs) is one of the first clustering tools de-

signed to exploit the power of suffix trees to avoid the need for all-to-all pairwise

comparisons [KAKB03]. It first constructs (in parallel) a generalized suffix tree

consisting of all EST sequences by first sorting ESTs and sending each to the ap-

propriate processor. Once the suffix tree is complete, a variation of the algorithm

for finding longest repeated substrings can be used to find all pairs of ESTs with

common substrings above a certain threshold. The clustering algorithm then starts

with pairwise comparisons between ESTs with long common substrings, greatly

22

increasing the likelihood of forming a cluster.

By using an on-demand algorithm for generating promising EST pairs, the

PaCE approach generally requires only O(n) number of pairwise comparisons, though

O(n2) are still needed in the worst case. Additional refinements are needed to create

and maintain clusters in parallel. Clusters produced by PaCE are of high quality

when compared to a benchmark EST set from Arabidopsis created by aligning ESTs

directly to the genome. A weakness of the PaCE system is that building a suffix

tree for the input EST data set requires a large amount of memory, proportional to

the number and size of ESTs. The authors were able ameliorate this problem by

parallelizing their algorithm to run on a PC cluster, splitting the suffix tree so that

each node only needs to hold a portion of the suffix tree in memory.

2.2.4 WOTD Suffix Tree

A suffix tree is a data structure that allows many problems on strings (se-

quences of characters) to be solved quickly and efficiently [Gus77]. It is formed by

calculating and storing all the suffixes of a string in a trie structure. Suffix trees

may be also compressed and compacted, storing entire substrings as indices to the

original string to reduce storage.

Suffix trees are very efficient data structures. They can be constructed in O(n)

time, and finding longest common substrings between two sequences and longest

repeated substrings only require O(n) time. Unfortunately, there is a large (30+)

multiplicative factor in the size of the suffix tree relative to the original sequence.

23

Researchers have investigated different efficient implementations and algo-

rithms on suffix trees. One recently developed variation is called a write-only, top-

down (WOTD) suffix tree [GJS03]. WOTD suffix trees are more expensive to build

in that they require O(nlog(n)) expected and (O(n2)) worst time to construct, but

they require only a 10 to 12-fold increase in memory relative to the original sequence,

and display good cache locality in performing searches.

WOTD suffix tree implementations may be eager (build the full WOTD tree

immediately) or lazy (build portions of the WOTD tree as needed as queries are

processed). In our research, we used the eager version of the WOTD implementation

to avoid the expensive tree building overhead by building suffix trees once and

using them whenever we need to align cDNA sequences to genomes. For eager

implementation, the suffix tree is built starting from the root. The sub-trees are

built recursively following the order of from top to bottom. The built suffix tree are

stored in two flat arrays: root’s children table and suffix tree table. This property

of WOTD suffix tree makes it easy to build tree once and store the tree on the disk

to use later.

2.3 ESTmapper: Efficiently Aligning DNA Sequences to Genomes

The traditional hash table based algorithms (BLAST [BPC+99], Spidey [WCO01],

BLAT [Ken02], Sim4 [FHZ+98], etc.) usually return too many hits in the word

searching step, thus causing the algorithms to spend a long time selecting and stitch-

ing together hits in the following steps. To speed up cDNA to genome alignment,

24

we designed ESTmapper [WLT05], our algorithm for aligning DNA sequences to

genomes based on WOTD suffix tree for indexing the genomes.

The principle behind ESTmapper algorithm is still based on local sequence

similarity. The assumption is that DNA sequences which can be mapped back

onto genome should share a high degree of local sequence similarity with some

specific area of genomic sequence, even considering introns and sequencing errors.

The advantage of ESTmapper (in addition to fast substring search speed) is that

the algorithm can filter out most short common substrings shared between DNA

sequence and genome sequence, and only deal with a very small number of long

common substrings that lead to high quality alignments. As a result, ESTmapper

can process the sequences much faster than other algorithms, but hopefully without

sacrificing the precision of the results.

2.3.1 Algorithm

The algorithm used by ESTmapper consists of the following steps:

Preprocess the genome. The genome sequence is read from a file and converted

into a eager WOTD suffix tree. Preprocessing the genome only needs to take place

once per genome, since the eager WOTD suffix tree can be stored as two flat arrays

(root’s children table and suffix tree table). The root’s children table has a fixed

maximum size, and suffix tree table has variable size. So after the suffix tree is built

for each genome, the root’s children table, suffix tree table size and the actual suffix

tree table are written out to disk as a single file. When ESTmapper needs to use

25

the genome suffix tree, the two tables can be quickly read back into memory in the

order they are stored on the disk.

Map DNA sequences to the genome. Each DNA sequence is mapped using the

suffix trees for the genome, considering both its minus and plus strand. Mappings

are computed as follows:

1. Find long common substrings

Suffixes of each EST sequence are compared to the suffix tree for the genome

to find long common substrings. Performance is improved in several ways.

First, we discard common substrings that are below a user-specified minimal

length, or that appear too often in the genome according to a user-specified

frequency threshold. This step limits the number of random matches for the

same common substrings, and reduces the need to examine common substrings

that probably lead to low-quality alignments.

Second, we avoid checking all suffixes of each EST sequence, by skipping past

suffixes where possible. Skipping means the next long common string search

will start from the current starting matching position plus a skip offset. The

WOTD suffix tree does not maintain suffix links in order to reduce storage, so

we do not know the ideal skip offset. Instead, we choose either the length of

the current common substring on the query EST sequence, or a user-specified

skip offset, whichever is greater. Since we extend common substrings in the

next step, we do not need to find the longest common substring, just one long

enough to be extended.

26

When the search is completed, the long common substring lengths and loca-

tions on both DNA and genome sequence are stored for next step of processing.

We expect such long common substrings to be common, since the query EST

sequence was most likely expressed by the genome in the first place.

2. Extend long common substrings

Each long common substring found in the first step is extended in both di-

rections. This substring extension step is similar to NCBI BLASTN’s match

extension step except ESTmapper’s extension is based on long common sub-

strings instead of matched k-mers. Then the extended substrings are sorted

in order of their locations.

3. Build (spliced/gapped) mappings

To handle splicing and gaps, the ESTmapper algorithm examines the list of

long substrings and locations, and combines them into a single spliced/gapped

mapping region if two substrings’ mapping location on genome are sufficiently

close to each other.

4. Refine the mappings/alignments

ESTmapper looks through the mappings’ component substrings to determine

whether two substrings are close enough on both DNA and genome sequence

that they can be merged into one with small gaps and/or mismatches in be-

tween. After the check, each substring should correspondent to one exon.

Boundaries of substrings are then adjusted so that they abut good splice

27

donor and acceptor sites. Splice sites are also chosen in ways designed to

avoid changes to the alignment.

Choose the best mappings. In the final step of the algorithm, each mapping will be

assigned a score based on match reward, mismatch and gap penalties. The E-value

is calculated based on [AG96] and [KA93]. The best mapping(s) will be selected

based on the E-values for each DNA sequence.

The full algorithm used by ESTmapper is presented in Figure 2.1.

2.3.2 Mapping Statistics

As a metric for the accuracy of mapping results, most current DNA mapping

algorithms [FHZ+98, Ken02, WCO01] simply report the percentage identity and

coverage percentage for each mapping. As far as we know, current tools do not

provide statistical significance estimates for mapping results similar to E-values

produced by pairwise sequence alignment algorithms such as BLAST.

With only percentage identity and coverage percentages, it is difficult to dis-

tinguish two mappings with the same percentage identity and coverage percent-

ages, but with different intron size (on genome) and gap size (on DNA sequence),

both of which are very important for selecting the best mapping(s) since the best

mappings tend to have the smallest intron size and gap size. To provide accurate

mapping results, in ESTmapper we borrow and modify the “sum statistics” theory

[AG96, KA93] from BLAST to assign an E-value for each mapping. We then use

these to compare mappings and select the best mapping with the E-value as the

28

// preprocess genome

for each (subset) genome sequence

build & store suffix tree T

// map DNA sequence

for each (subset) genome (if genome is partitioned)

{

load suffix tree T

// find long common substrings and

// build spliced/gapped matching regions

for each DNA sequence E

{

// examine suffixes of E

while offset F < length(E)

for suffix of E beginning at offset F,

find longest common substring S in T

if length of S >= MIN_MATCH_SUBSTRING and

frequency of S in genome <= MAX_MATCH_FREQ

store S & its location in T

increase offset F by MAX(length(S), MIN_SKIP)

// extend long common substrings

for each S

extend it in both directions

// build spliced/gapped mappings

for all S

examine locations of S1, S2

if S1 near S2 with gap G <= MAX_GAP

form/extend matching region M for S1,S2

form mapping MAP based on M

// refine mappings

for each MAP

refine mapping considering gaps and splice sites

calculate alignment score and E-value

assign to E the MAP with the smallest E-value

}

}

find and output each DNA’s best mapping location(s)

}

Figure 2.1: ESTmapper Algorithm

29

final output DNA-to-genome alignment.

According to [AG96], the optimal scores from ungapped local alignments follow

an extreme value distribution. The probability that the optimal ungapped local

alignment has a score S of at least x is:

P (S ≥ x) = 1 − exp(−Kmne−λx) (2.1)

where K is a constant given by a geometrically convergent series depending on score

matrix and the probabilities of varies amino acid/nucleotide types, m is the number

of letters in query sequence, n is the number of letters in database sequence(s) and

λ is a positive scalar to convert the alignment raw score to a normalized score. The

number of alignments expected by chance (E) during a sequence database search

can then be estimated by:

E = Kmne−λS (2.2)

These equations can also be extended to scoring gapped local alignments.

However, equations 2.1 and 2.2 only apply to the single highest score region of

the sequence. When mapping DNA sequences to genome sequence, there are usually

several high score regions because of the exon/intron structure in genome sequence.

Under this condition, it is necessary to assess the combined statistics of multiple

high score regions. If Sr is the rth highest score, the sum of the r highest score is

Tr=
r∑

i=1

(λSi) − ln (Kmn) −

(r − 1)(ln (K) + ln (G) + ln (g)) − log (r!) (2.3)

where G is the largest intron size in genome and g is the largest gap size in DNA

sequence. ESTmapper calculated Si for each extended long “common” substring

30

based on BLAST like local alignment score with match reward as 1, mismatch

penalty as −3, gap opening penalty as −10 and gap extension penalty as −5. Then

for large mn, the probability for Tr is:

f(t) =
e−t

r!(r − 2)!

∫
∞

0
yr−2exp(−e(y−t)/r)dy (2.4)

To obtain the tail probability for Tr ≥ x, ESTmapper will integrate f(t) for t from

x to infinity with the function from NCBI BLAST:

Pr(S ≥ x) =
rr−2

(r − 1)!(r − 2)!

∫
∞

x
e−t

∫
∞

0
y(r−2)exp(−e(y−t/r))dydt (2.5)

Usually, P ′

r(S ≥ x) = Pr(S ≥ x)/β(r−1)(1−β) is used instead of Pr(S ≥ x) to correct

the results for the statistic significance test. This is because only if Pr(S ≥ x) is

less than P (S ≥ x) of any component high score region, these r region alignment

is the optimal alignment and can be used to replace the P value of single highest

score region. However, for mapping DNA sequence to genome sequence, since all

the found exons should be part of the alignment, the correction function is not

necessary. The final E value is calculated by E = − ln(1 − Pr). ESTmapper uses

this E value to select the best mapping result.

Note that though we found it useful in ESTmapper to utilize both BLAST’s

statistical model for scoring matches and BLASTN’s match extension algorithm for

extending long common substrings, the underlying biological model for BLAST (ho-

mology, mutations) and ESTmapper (expressed DNA, splicing, sequencing errors)

are different. We have been fortunate in that the two models are sufficiently similar

31

that ESTmapper appears to perform well in practice. It would be interesting to

see whether adjusting both algorithms to DNA-to-genome mappings would improve

mapping precision.

2.3.3 Implementation

ESTmapper is written in C and implemented on top of the WOTD suffix tree

software (version 1.1) implemented by Stefan Kurtz [GJS03]. The WOTD suffix tree

implementation was downloaded from http://bibiserv.techfak.uni-bielefeld.

de/download/tools/Wotd_11.html. The WOTD suffix tree source code was mod-

ified and used as our main data structure for storing and indexing genomes.

2.3.4 Parallelization

Being able to exploit the power of parallel computing is a major advantage

for computationally intensive applications such as mapping large number of DNA

sequences onto genomes. It turns out that the ESTmapper algorithm, like many

problems in computational biology, is embarrassingly parallel and can be easily par-

allelized at a coarse-grain level for efficient parallel execution. The parallel versions

of ESTmapper work as follows.

2.3.4.1 Multithreaded ESTmapper

On shared-memory multiprocessors (SMPs) ESTmapper may be parallelized

according to the master-worker parallel paradigm using pthreads. The master thread

32

first reads the suffix tree of the genome into memory sequentially. Next, the master

thread spawns workers (pthreads) and assigns DNA sequences to each worker to

find mappings. When all sequences have been mapped to the genome, the master

thread collects and outputs the result.

Load balancing is simple since the bulk of the computation is mapping DNA

sequences to the genome, and the mapping time is usually proportional to the num-

ber of bases being mapped. So the master thread just needs to assign roughly the

same number of bases to each thread to ensure an even division of work.

2.3.4.2 Message-passing ESTmapper

On message-passing machines such as PC clusters, ESTmapper may be paral-

lelized using the MPI communications library to communicate between processors.

To reduce communication costs, each processor reads the suffix tree into memory in-

dependently. The master node assigns and sends DNA sequences each node. Every

node then finds genome mappings for its sequences locally, without any need for in-

terprocessor communication. Once mappings are computed for assigned sequences,

each node sends its mappings to the master node to be collected and output.

ESTmapper is very efficient on clusters, since little communication is needed,

just at the beginning and end of the overall computation to send out DNA sequences

and retrieve their mappings. Performance can be improved further if each node

stores a copy of the suffix tree in its local disk.

33

2.4 Experimental Results

2.4.1 Evaluation Environment

To evaluate ESTmapper, we compared its performance and precision with

other mapping and clustering algorithms. We downloaded and installed the latest

versions of BLAT, Sim4, Spidey, TGICL, PaCE, and the NCBI BLAST software

suite and toolkit on a Sun SunFire 6800 SMP with 24 processors (UltraSparc III

750Mhz) and 72 GB memory. For message-passing speedups we also ran ESTmapper

on a Linux PC cluster with 1.6 GHz AMD Athlon processors and 1 GB memory per

node.

For test data, we downloaded EST, gene, and genome sequences for Arabidop-

sis Thaliana (mustard plant) and Homo Sapiens (human) from NCBI, UCSC genome

browser and Sanger Institute. The Arabidopsis genome is about 115 million bases,

and the Human genome is about 3 billion bases. The EST and gene DNA sequences

we use were chosen because they were previously mapped to the genome by biolo-

gists (or put in widely accepted clusters). We can thus used them to evaluate the

precision of mapping and clustering algorithms used by ESTmapper and other tools.

Three data sets used in many of our experiments are:

• DataSet1: 263, 255 EST and cDNA sequences (average length 734 bases) from

Arabidopsis UniGene build #44 from NCBI

• DataSet2: 28, 952 Arabidopsis genes (average length 1322 bases) and 5 Ara-

bidopsis chromosomes from NCBI.

34

• DataSet3: 936 Human genes (average length 1936 bases) mapped to chromo-

some 22 and Build #30 of Human chromosome 22 from Sanger Institute.

• DataSet4: 1, 383, 818 Human EST sequences (average length 686 bases) and

Human genome Build #35 from NCBI.

2.4.2 Mapping Parameters

ESTmapper requires users to input basic mapping parameters. The default

value for minimum common substring length is 25 bases, for maximum number of

mapping locations is 30, for maximum human intron size is 500,000, for maximum

Arabidopsis intron size is 6000, skip step size is 10.

2.4.3 Basic Performance

We begin by examining the time and memory required by ESTmapper with

respect to suffix trees and multiple processors. WOTD suffix trees can be more

expensive to build than other suffix trees in that they require O(nlog(n)) expected

and O(n2) worst time to construct. However, they can yield good performance for

substring searches because the WOTD data structures provide good cache locality.

Since the WOTD suffix tree is stored in a flat array, users can also build the suffix

tree once and store it on disk for later use.

When constructing a WOTD suffix tree for the genome, we need to select

the number of trees we plan to use. ESTmapper can build a single suffix tree for

the entire genome (by concatenating the DNA sequence of each chromosome), one

35

tree per chromosome, or any number of trees (by first concatenating, then splitting

the DNA sequences of all chromosomes). Some additional bookkeeping is required

to keep track of the original chromosomal locations of each sequence. When the

genome is partitioned into multiple suffix trees, ESTmapper can iteratively compare

nucleotide sequences against each suffix tree, record the mappings found, and select

the best overall mapping at the end.

Figure 2.2a shows the result of using multiple suffix trees to map Arabidopsis

ESTs from DataSet1 to the entire genome. We find ESTmapper runs faster with

fewer suffix trees, but trees are larger and require more memory. We thus have a

classic memory/speed tradeoff in choosing how to use ESTmapper. Choosing the

proper number of trees to use depends on the available memory. If insufficient

memory is available to hold the suffix tree for the entire genome, ESTmapper can

reduce its memory usage at the expense of longer running times by partitioning the

genome and building separate suffix trees for each portion of the genome.

Figure 2.2b shows the performance of multithreaded ESTmapper on the Sun-

Fire 6800 SMP and message-passing ESTmapper on a Linux PC cluster when map-

ping DataSet1 to the entire Arabidopsis genome. We find that ESTmapper obtains

fairly good 8-processor speedup for the SMP (6.9) and PC cluster (5.7).

We believe speedups are lower on the PC cluster because (sequential) file I/O

to load suffix trees is both slower (44 seconds on PC cluster, versus 14 seconds on

SMP), and takes up a larger portion of total execution time on the faster PCs (186

ESTs mapped/second on PC nodes, versus 83 ESTs mapped/second on the SMP).

If the file I/O time is eliminated, ESTmapper achieves a 8-processor speedup of 7.5

36

on the SMP and 8.0 on the PC cluster. We thus expect ESTmapper speedups to

improve for larger input data sets, where file I/O is less important. Memory use

remains constant for ESTmapper relative to the number of processors, since each

processor maintains a local copy of the suffix tree.

2.4.4 Genome Mapping Performance Comparison

The performance of six DNA-to-genome alignment tools (ESTmapper, BLAT,

Sim4, Spidey, BLAST and megaBLAST) were evaluated with Arabidopsis and Hu-

man data. We mapped 936 Arabidopsis genes from DataSet2 onto chromosome I,

and 936 Human genes in DataSet3 onto chromosome 22. All tools were run sequen-

tially on a single processor of the SunFire 6800. Running times are shown in Figure

2.2c. “ESTmap” stands for ESTmapper and “megaB” stands for megaBLAST. Note

that running times are presented using log scale along the Y-axis.

Results show that ESTmapper is the fastest among six evaluated software

tools, and has reasonable memory usage. It is about 3–6 times as fast as BLAT, 21–

45 times as fast as megaBLAST, 1000 times as fast as Spidey and 4000 times faster

than Sim4. These results seem reasonable when we remember that only ESTmapper

and BLAT preprocess the genome to improve performance. ESTmapper is likely

more efficient than BLAT because it is able to find the longest common substrings

directly, rather than extending hits.

Figure 2.2d presents the memory used by each of the alignment tools. We

find megaBLAST and BLAST use the most memory, while BLAT requires the least

37

0

400

800

1200

1600

2000

0 1 2 3 4 5 6 7 8 9
0

200

400

600

800

1000

1200
R

un
ni

ng
 T

im
e

(s
ec

on
ds

)

M
em

or
y

U
sa

ge
 (

M
 b

yt
es

)

Number of Trees

ESTmapper Performance with Difference Number of Trees

Running Time
Memory Usage

(a)

0

1

2

3

4

5

6

7

8

9

0 1 2 3 4 5 6 7 8 9

Sp
ee

du
p

Number of Processors

ESTmapper Speedup on SMP and PC Cluster

Linear Speedup
Multithreaded ESTmapper

Message-passing ESTmapper

(b)

1

10

100

1000

10000

100000

ESTmapBLAT megaB Spidey Sim4 BLAST

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Running Time Comparison

Arabidopsis

Human

(c)

0

500

1000

1500

2000

2500

3000

ESTmap BLAT megaB Spidey Sim4 BLAST

M
em

or
y

U
sa

ge
 (

M
 B

yt
es

)

Memory Usage Comparison

Arabidopsis

Human

(d)

10

100

1000

10000

100000

50000 100000 150000 200000

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Number of Sequences

Performance Comparison with TGICL and PaCE

PaCE
TGICL

ESTmapper

(e)

10

100

1000

10000

100000

1e+06

1e+07

1e+08

2000 4000 6000 8000 10000 12000 14000 16000

R
un

ni
ng

 T
im

e
(s

ec
on

ds
)

Number of Sequences

Performance Comparison with BLAT, megaBLAST and Spidey

BLAT
megaBLAST

Spidey
ESTmapper

(f)

Figure 2.2: Performance Comparison of EST Mapping and Clustering Algorithms

38

memory. ESTmapper requires about 4 times more memory than BLAT.

2.4.5 Genome Mapping Precision Comparison

Next, we compared the precision of the DNA-to-genome mappings found by

four tools (ESTmapper, BLAT, Sim4, Spidey) for all 28, 952 Arabidopsis genes and

936 Human genes from DataSet2 and DataSet3. We used the Arabidopsis gene

annotation information provided by biologists at TIGR and Human gene annotations

from biologists at Sanger Institute as the correct mapping. Results about percentage

of correctly mapped individual nucleotides, complete exons and genes are shown in

Tables 2.1, 2.2 and 2.3.

Results show that Sim4 is the most precise mapping software, on both nu-

cleotide level and exon level, and for both Arabidopsis sequences and Human se-

quences. On gene level, BLAT is most precise for Arabidopsis data (95.4% correct)

and Sim4 is most precise for Human data (94.8% correct). So overall, for human

sequences, Sim4 provides the best accuracy rate. ESTmapper is close behind, while

BLAT and Spidey lag (< 90% correct on three levels).

39

Spidey BLAT Sim4 ESTmapper

Arabidopsis 99.6% 97.3% 99.7% 99.4%

Human 80.5% 82.9% 99.9% 98.6%

Table 2.1: Precision Comparison with 36,298,530 Arabidopsis Nucleotides and 1,811,944

Human Nucleotides

Spidey BLAT Sim4 ESTmapper

Arabidopsis 97.8% 97.0% 97.7% 96.1%

Human 86.6% 84.8% 98.0% 95.4%

Table 2.2: Precision Comparison with 155,970 Arabidopsis Exons and 5,176 Human Exons

Spidey BLAT Sim4 ESTmapper

Arabidopsis 94.6% 95.4% 94.3% 90.6%

Human 87.4% 86.3% 94.8% 91.8%

Table 2.3: Precision Comparison with 28,952 Arabidopsis Genes and 936 Human Genes

40

Chromosome # # of ESTs on chromosome ESTmapper BLAT

1 130,366 94.9% 90.3%

2 86,773 97.5% 92.4%

3 71,532 95.1% 91.8%

4 49,292 94.8% 95.1%

5 59.857 98.0% 92.9%

6 83,144 95.8% 89.9%

7 67,656 88.5% 41.8%

8 46,542 96.6% 93.5%

9 52,959 97.5% 92.7%

10 45,973 98.0% 93.1%

11 91,849 96.6% 93.7%

12 98,265 95.6% 96.5%

13 19,404 97.3% 93.0%

14 45,299 97.1% 93.0%

15 45,948 94.8% 91.9%

16 54,449 96.2% 91.6%

17 94,430 95.7% 87.1%

18 17,966 98.2% 91.7%

19 89,527 96.2% 92.0%

20 37,647 98.5% 95.7%

21 12,155 95.8% 92.7%

22 39,816 96.9% 92.3%

X 40,175 95.6% 92.8%

Y 2,794 97.7% 94.3%

Total 1,383,818 95.9% 89.1%

Table 2.4: Precision Comparison with 1.4 million Human ESTs by Chromosome

41

There is only one Human gene ESTmapper mapped incorrectly because there

is one exon which is too small to be found with the default ESTmapper settings.

Most such small exons can be found by ESTmapper with a finer grain search, at the

cost of reduced processing speed. Fortunately, very small exons usually do not occur

often in large genomes [DL99, SCK04]. For Arabidopsis sequences, Sim4 and BLAT

are the most precise. ESTmapper provides the similar accuracy rate on nucleotide

level, very close on exon level (∼ 1% difference) and not far behind on gene level

(∼ 4% difference).

To further analyze precision of ESTmapper’s mapping results, we compared

ESTmapper and BLAT’s mapping results on gene/EST level for all 1.4 million

human EST sequences from DataSet4. The annotation information for these ESTs

are obtained from NCBI Mapview database. We only used BLAT for comparison

because of the processing speed limitation of other tools. Results are shown in

Table 2.4. We find ESTmapper correctly mapped 96% of the 1.4 million ESTs to

the human genome, while BLAT correctly mapped 89% of the ESTs, a difference

of 94, 350 sequences. It seems ESTmapper has better precision than BLAT when

mapping human ESTs.

While the precision of EST alignment is similar for most chromosomes, it is

very different for chromosome 7. One possibility is that it has some very large

introns, so it is hard for either tool to map all of the exons on the same EST

sequence to the chromosome. Another possibility is that chromosome 7 has some

unusual splicing motifs not found elsewhere, so it is difficult for either tool to detect

exact exon boundaries. In either case ESTmapper still performs better than BLAT.

42

2.4.6 EST Clustering Performance Comparison

Next, we compared the performance and precision of using genome mappings

to cluster ESTs against other clustering algorithms such as PaCE and TGICL. We

form EST clusters out of all ESTs mapped to nearby or overlapping locations in the

genome. For the comparison, we used genome mappings from ESTmapper, Spidey

and BLAT.

In Figure 2.2e, we compared ESTmapper performance with TGICL and PaCE

for 190,740 Arabidopsis ESTs mapped to the Arabidopsis genome preprocessed as a

single suffix tree. All three tools were timed using 8 processors on the SunFire 6800.

Note that running time is displayed in log scale along the Y-axis. We discover that

ESTmapper is significantly faster for large numbers of ESTs. Figure 2.2f shows the

performance of BLAT, Spidey, and megaBLAST when used to cluster ESTs using

one processor on the SunFire 6800. Due to the slow processing speed of Spidey and

high memory usage of megaBLAST, for the second set of experiment we were only

able to use 15,293 EST sequences. We note once again that ESTmapper is the most

efficient clustering algorithm.

We also found ESTmapper has almost constant memory usage of about 1 GB.

In comparison, memory usage for PaCE and megaBLAST increases very quickly

as the number of ESTs increases. PaCE used 1.4 GB memory on each processor

when processing 190, 740 sequences. megaBLAST used about 4 GB memory when

processing 15, 293 sequences and ran out of memory when the number of ESTs was

increased.

43

2.4.7 EST Clustering Precision Comparison

To compare the precision of the clusters produced by the different algorithms,

we used BLAT, Spidey, PaCE, TGICL and ESTmapper to cluster ESTs from Ara-

bidopsis UniGene build #44 in DataSet1. Because of the memory limitation with

PaCE and speed limitation with Spidey, we only used the 15, 293 EST sequences

from the first 1000 Arabidopsis clusters in UniGene. We measured the percentage

of clusters exactly matching UniGene, the number of clusters produced by each al-

gorithm, and the number of singleton clusters (with a single EST). The results are

shown in Table 2.5.

Spidey BLAT TGICL PaCE ESTm.

% identical 80.5% 81.4% 72.6% 60.5% 97.1%

clusters 930 1152 1006 1575 1006

singletons – 101 296 573 9

Table 2.5: Precision Comparison with 1000 Arabidopsis UniGene Clusters

Again, ESTmapper produced clusters that are most similar (97%) to UniGene

clusters. The other clustering techniques based on mapping ESTs to the genome

were next (80%), while EST-only techniques produced significantly different clus-

ters. ESTmapper also produced the smallest number of singletons clusters when

compared to other algorithms. In addition to the results in Table 2.5, we also have

clustering comparisons results for TGICL, BLAT and ESTmapper using the total

20640 Arabidopsis UniGene clusters. Among the three algorithms, TGICL found

44

2

4

8

16

256 512 1024 2048 4096 8192
R

un
ni

ng
 T

im
e

(h
ou

rs
)

Number of Sequences (thousand)

0.25

0.57

0.96

2.23

4.63

10.80

Figure 2.3: Clustering 5.5 × 106 Human ESTs

53.8% exactly matched clusters, BLAT found 66.5% exactly matched clusters, and

ESTmapper found 83.6% exactly matched clusters. Though all three algorithms

are less precise for the full set of Arabidopsis UniGene clusters, ESTmapper still

provides the results closest to UniGene.

2.4.8 Scalability

Finally, to evaluate the scalability of ESTmapper, we also measured the com-

putation time and memory usage of ESTmapper when used (on a SunFire 6800

with 8 processors) to cluster all 5.5 million human EST sequences by mapping them

against the human genome (Build 35). To reduce memory use, the genome was split

into 30 equal-sized pieces requiring about 1 GB suffix trees for each piece. Results

are shown in Figure 2.3. ESTmapper was able to cluster all ESTs in 10.8 hours

(0.056 seconds per EST for each processor), with the processing time increasing

fairly linearly with the number of ESTs. Performance can be improved by using

more memory and fewer trees.

45

2.4.9 Discussion

Our experimental evaluation of ESTmapper shows it is quite efficient and

precise when compared with other sequence alignment techniques such as BLAT.

For the purpose of EST clustering, ESTmapper also performed very well compared

to other clustering algorithms.

2.5 Conclusion

Our experimental evaluation of ESTmapper shows it is quite efficient and

precise when compared with other sequence alignment techniques such as BLAT.

The only disadvantage is that ESTmapper requires more memory and disk storage

to hold and store the suffix tree needed for the genome. Fortunately the amount of

memory and disk space available in computers is quickly increasing while genome

size stays constant, so memory use should become less of an issue as time goes on.

For the purpose of EST clustering, ESTmapper also performed very well compared

to other clustering algorithms. The main disadvantage here is that ESTmapper can

only be used to cluster ESTs for organisms with sequenced genomes. As a result

ESTmapper will probably serve simply to complement tools such as TGICL and

PaCE.

46

Chapter 3

Mass Spectrometry Based Peptide Identification

3.1 Background

Mass spectrometry (MS) is an analytical technique used to identify chemical

composition of the sample. More recently, with the advance of high throughput

equipment design, it has been used to identify protein content of biological samples.

Tandem mass spectrometry technique (MS/MS), when used in conjunction with

liquid chromatography (LC), can quickly determine the protein content of biological

samples in wide variety of context.

Since automated high-throughput mass spectrometry equipment can generate

huge amount of mass spectra data on a daily basis, analyzing results using efficient

and precise computer tools becomes an important step in mass spectrometry based

peptide identification. Despite presence of large amounts of noise in mass spec-

tra data, researchers have successfully used many different statistical models and

computer algorithms to improve peptide identification accuracy.

3.1.1 Mass Spectrometry

Mass spectrometers work by splitting biological samples into collections of

charged gas particles (ions) with different mass/charge ratios, then measuring their

relative abundance by magnetically accelerating the ions and sending them to a

47

detector. Information on the mass of all ions detected can then be used to identify

the chemical composition of the original sample.

In tandem mass spectrometry, ions are fragmented using techniques such as

collision-induced-disassociation (CID), which shoots ions at high speed through a

cloud of inert gas particles. The ions resulting from collisions are fragments of the

original (precursor) peptide fragment, and can be used to identify its amino acid

sequence.

The peptide fragmentation pattern usually depends on the physical and chemi-

cal properties of the peptide sequence. Because the CO-NH bonds connecting amino

acids are weak, they tend to break most frequently when a peptide is fragmented.

Ions containing the N-terminus are known as bi ions, where i indicates the number

of amino acids composing the ion. Similarly, fragments containing the C-terminus

are labeled as yi ions.

Almost all peptide identification algorithms rely heavily on identifying b and y

ions in mass spectra. Other types of ions may also be created during fragmentation

(a and x ions if the CH-CO bond is broken, c and z ions if the NH-CH bond is

broken), but with much lower probability since those bonds are stronger than the

CO-NH bond.

The mass spectrometer measures the mass-to-charge ratio (m/z) of ionized gas

phase molecules. When the input are protein molecules, peptides are ionized and

their m/z values measured. The measured m/z values of the peptide fragment ions

form the so called tandem mass spectrum of the peptide, as shown in Figure 3.1.

In the figure, the x-axis is the mass/charge ratio of the ions and the y-axis is the

48

intensity of the ions (number of particles detected).

Figure 3.1: Mass Spectrum

In a high-throughput setting, a complex mixture of unknown proteins are

cut into short amino acid sequences (peptides) using a digestion enzyme such as

trypsin; fractionated into reduced complexity samples on the basis of some physical

or chemical property such as hydrophobicity; and then a tandem mass spectrum

is taken for selected observed peptides in each fraction. The end result of such an

experiment is a set of a few hundred to a few thousand tandem mass spectra, each

of which represents a peptide of about 6-20 amino acid residues. Typically, amino

acid sequences of 8-10 residues carry sufficient information to determine the protein

from which the peptide is derived. This experimental protocol can reliably identify

hundreds of proteins from a complex mixture in several hours of instrument time.

3.1.2 Computer Algorithms for Peptide Identification

With recent developments in peptide identification algorithms, the mass spec-

tra interpretation process has been automated. Now the effectiveness of mass spec-

49

trometry is determined by the ability of software tools to correctly identify peptides.

There are three main classes of software algorithms for mass spectra based peptide

identification. The first class of algorithms are designed to identify peptides and

proteins through protein database searches. The second class of algorithms are de-

signed to identify peptides and proteins using de novo sequencing techniques. The

third class of algorithms are designed to detect peptide through spectral matching.

3.1.2.1 Database Search Based Peptide Identification

The most popular approach for identifying peptides using mass spectra is based

on searching protein databases. Sequence database search algorithms [YECB96,

PPCC99, CB04, GMK+04, TSF+05] use protein sequence databases to suggest pep-

tide candidates for each spectrum. The peptide identification algorithms in category

generally follow three steps to identify peptides.

The first step is to computationally digest protein sequences with specific en-

zymes. In another word, the peptide identification algorithms predict what peptides

can be produced if the protein is entirely or partially digested by an enzyme. Then

the mass of the peptides are computed and compared with the spectrum mass. Only

those peptides whose mass falls within specified mass tolerance are selected as can-

didate peptides for the next algorithmic step. In the second step, the algorithms

create a hypothetical spectrum for each peptide candidate by predicting the peptide

fragmentation pattern and computing the masses of the fragments. The third step

is to compare the experimental spectrum with the list of hypothetical spectra.

50

The algorithms use different match metrics (such as number of matched peaks,

number of matched ions, mass difference, etc.) to measure the similarity between

experimental spectrum and hypothetical spectrum. A score is generated to sum-

merize the comparison results. For each experimental spectrum, a list of potential

peptides are ranked according their scores. The highest score peptide is usually

considered as the one that matches the experimental spectrum most closely. The

database search based peptide identification approach has been very successful in

practice.

SEQUEST [YECB96] is one of the first algorithms to identify proteins by

correlating peptide tandem mass spectrum with amino acid sequence in protein

database. It constructs the hypothetical spectra by predicting the mass-charge

ratio of the fragment ions. The relative intensity of the ions is assigned according to

authors’ empirical knowledge of the appearance of tandem mass spectra for peptides.

For mass-charge ratios that represent b ion or y ion, it assigns a magnitude of

50.0; for mass-charge ratios that are within 1 distance to b or y ions, it assigns a

magnitude of 25.0; for mass-charge ratio that represent neutral losses of ammonia,

water, carbon monoxide and those within 1 distance, it assigns a magnitude of 10.0.

It then compares the experimental mass spectrum with hypothetical spectrum based

on a cross-correlation function between the two spectra.

Mascot [PPCC99], developed by Perkins et al., is one of the most widely used

protein identification softwares. It is based on MOWSE [PHB93] algorithm with

addition of probability based scoring. MOWSE algorithm considers the relative

frequency of a peptide with a given molecular weight being within a protein that

51

falls in a given range of molecular weights. Mascot algorithm is based on MOWSE, it

uses additional probability-based score. The details of the algorithm are not released

to the public. But the authors claim the absolute score is the probability that a

match between experimental spectrum and peptide is a random event. To avoid the

confusion when directly reporting absolute probability score, Mascot reports the

scores as −10 log10(P), where P is the absolute probability score.

OMSSA [GMK+04] is a probability-based protein identification method from

NCBI. After selecting the peptide candidates, it calculates a score based on the

statistic significance of a match. The basic assumption used by OMSSA is that

the number of product ion matches follows a Poisson distribution. It calculates an

E-value based on the number of random matches against N theoretical spectra.

X!Tandem [CB04] is a multi-step algorithm for quick peptide identification

from mass spectra. It filters out sequence candidates in multiple searching steps,

while considering more stringent searching criteria in each step. The central as-

sumption used by X!Tandem to improve the performance of filtering is that for each

identifiable protein, there is at least one detectable tryptic peptide. It can thus use

a quick match algorithm to look for fully digested tryptic peptides, and then look

for a more comprehensive list of peptides using heuristics limited to the proteins

where at least one match has been found.

The score function used by X!Tandem is based on a hypergeometric distribu-

tion calculated as the dot product of the intensities of the matching ions, multiplied

by the factorials of the number of matched b and y ions. The E-value calculated by

X!Tandem is based on just how unlikely a greater hyperscore is to be found, based

52

on statistical analysis of current hyperscores.

InsPecT [TSF+05] is an algorithm that performs high-throughput identifi-

cation of peptide mass spectra. Its emphasis is on efficiently identifying post-

translational modifications and mutations with high confidence. It uses peptide

sequence tags as filters to select a small number of database sequences that contain

the peptide which produced experimental spectrum with very high probability. In-

sPecT is able to search a broad range of post-translational modifications efficiently

by searching within the largely reduced search space.

PepHMM [WYC06] is an algorithm that uses HMMs for peptide identification.

It builds a HMM to capture the correlation among matched and unmatched ions to

improve the precision of peptide identification.The proposed HMM can be used as a

general post-process model for any experimental spectrum to theoretical spectrum

matching scheme. Once trained, HMM can be used to reassess spectra comparison

results.

One weakness of database search engines is that they do not fully use peak

intensity information in the mass spectra when computing scores. An even greater

flaw of database search based peptide identification is that the results are limited to

known protein sequences in the database. It is thus impossible to identify new pro-

tein sequences using database search engines. Researchers are trying to compensate

this by incorporating six-frame translation of nucleotide sequences (EST, SNP, etc.)

into the protein sequence search space. An alternative relies on de novo sequencing.

53

3.1.2.2 De Novo Sequencing

De novo peptide identification algorithms [DAC+99, BE03, CKT+01, MZL+03,

TJ97] attempt to determine the peptide sequence using only the peptide fragment

information of the tandem mass spectrum. Candidate peptides are generated with-

out using protein sequence databases. The typical de novo algorithms starts by

creating a spectrum graph for each experimental spectrum after filtering the noise

peaks. The spectrum graph is a graph representation of experimental spectrum.

The application of graph theory in de novo sequencing was first proposed by

Bartels [Bar90]. In the spectrum graph, each peak in the experimental spectrum is

represented as a vertex (or several vertices). The algorithms connect two vertices

with an edge if the mass difference between two vertices equals the mass of an amino

acid (within some mass tolerance). The edge is then labeled with the name of the

amino acid. The weight of the edge is given by a score function that measures the

mass difference between the theoretical mass and the experimental mass of the edge.

Using the de novo approach, the problem of peptide identification then be-

comes the problem of finding the longest path in the spectrum graph. Some al-

gorithms also use spectrum graphs to generate possible peptide sequences. The

peptide sequences set is extended and trimmed in an iterative procedure based on

the design of the algorithm. A different class of algorithms use score functions to

optimize over the space of possible peptide sequences.

Researchers in the field use graph theoretic algorithms, Markov chain Monte

Carlo heuristic optimization, or HMMs to perform de novo peptide identification.

54

The advantage of de novo algorithms is that it works without requiring known

protein sequences. De novo algorithms can thus be used to discover novel peptides.

Tools such as GutenTag [TSY03] demonstrate other advantages of de novo

algorithms. First, by accounting for mass differences between vertices due to post-

translational modifications (PTMs), de novo algorithms can detect many PTMs in

a computationally efficient way. Second, de novo algorithms may be able to detect

very short peptide sequences (tags) with high confidence, even if the entire peptide

sequence cannot be determined, providing useful information to complement other

peptide identification methods.

A weakness of de novo sequencing is that the percentage of spectra in a data set

that can be identified conclusively using novo analysis is usually quite low, because

tandem mass spectra often do not contain enough fragments to draw unambiguous

conclusions. As a result, de novo peptide identification techniques only work well

with high quality mass spectra. In addition, since the observed peptide sequences

represent only a small portion of possible amino acid sequences, de novo interpreta-

tions typically produce a long list of equally possible peptide sequences.

Some researchers have proposed methods that combine both de novo sequenc-

ing techniques and a database search based peptide identification strategy. Mann et

al. use a sequence tag of three or so amino acids derived directly from the tandem

mass spectrum to search a protein sequence database [MW94]. This approach has

not been widely adopted due to the lack of an automated technique for sequence

tag derivation.

55

3.1.2.3 Spectral Matching

The spectral matching approach identifies peptides by comparing new exper-

imental mass spectra with a reference mass spectra library. The mass spectra li-

brary is built with previously observed and identified spectra. Spectra in the library

usually represent a consensus of several experimental mass spectra that have been

identified and mapped to the same known peptide. Spectral matching is different

from both database search based and de novo sequencing methods in that it makes

no attempt at predicting the unknown spectra. Instead, it compares the unknown

spectra with library spectra – the observed spectra consensus.

One advantage of spectral matching approach is it can use more information in

each mass spectrum, such as the peak intensity information observed in previously

identified spectra. In comparison, both database search based and de novo sequenc-

ing peptide identification algorithms usually consider peak intensity to be a minor

factor when matching experimental spectrum with hypothetical spectrum generated

from protein sequence. One reason is the unpredictability of the peak intensity. The

unknown ion types, missing ions, noise, isotopic ions and machine errors all make

peak intensity vary from run to run. However, with identified spectra, it is much

easier to use peak intensity, which can contains important information about the

peptide sequence.

With both ion mass and peak intensity information, spectral matching may

be able to make peptide identifications with higher confidence than by using mass

alone. Under some circumstances, a spectrum with only a few peaks can be strongly

56

identified because of the fragmentation characteristic of that peptide. In contrast,

a small number of peaks can only provide very limited information for traditional

database search based methods to disambiguate similar peptide sequences.

Traditional spectral matching approaches use a library of spectra and a spec-

tral similarity measure to evaluate the quality of the spectrum-spectrum match

[Ste94, SS94, Ste95]. Library spectra can be real spectra, identified using traditional

sequence database search tools, or consensus spectra that summarize the most im-

portant features of spectra from a particular peptide. Spectral comparison functions

have traditionally been based on the dot-product of a vectorized representation of

each spectrum.

Recently, a number of groups have described spectral libraries of high-quality

real spectra with high-confidence identifications [YMG+98, JCL+06, FMW+06, LDE+07]

and consensus spectra [SKN+06, LDE+06, CCFB06]. Results indicate spectral

matching can be both precise and efficient, identifying many spectra missed database

search based algorithms. NIST’s MS Search software [MSS05] is a dot-product based

spectral matching search engine, it searches libraries of peptide fragmentation spec-

tra [SKN+06] to identify unknown mass spectra.

However, the traditional dot-product and consensus based spectra matching

approach do not fully utilize all the information contained in the spectra. The dot

product, for example, weights the contribution of each spectra peak only by its in-

tensity, without considering its consistency. Using a consensus spectrum assumes

that a single intensity value is sufficient to represent the range of intensities observed

in the experimental spectra. So a probabilistic model that can capture the spec-

57

tra peak intensity consensus and variation pattern can potentially provide better

accuracy.

3.2 HMMatch: Peptide Identification by Spectral Matching of Tan-

dem Mass Spectra Using Hidden Markov Models

As described in section 3.1.2, the traditional peptide identification algorithms

tend to ignore the ion peak intensity information or only use partial intensity in-

formation. Even though some algorithms [BE01, SKSS03, Zha04, WYC06] have

tried to predict the probability of observing an ion or its intensity, when applied to

analyzing real life experimental spectra, the improvement made by these algorithms

seems limited.

Based on experimental observation, a hidden Markov model (HMM) [Rab89]

approach for spectral matching is designed and implemented. The approach uses

hidden Markov models to summarize the peak intensity consensus and variation

of example peptide fragmentation spectra. The unknown mass spectrum can be

identified by comparing with these peptide mass spectrum HMMs.

3.2.1 Related Work

3.2.1.1 HMM and Its Application to Peptide Identification

The HMM [Rab89, JR90, JR85] was initially introduced in late 1960s and early

1970s and was used for human speech recognition. It includes a class of statistical

58

models used to capture statistical characteristics of time series and linear sequences.

HMM is basically a double embedded stochastic process with first order Markov

chain as underlying (hidden) stochastic process and state dependent probabilistic

function as the observable stochastic process. Because of the nice mathematical

properties of HMM, it was introduced into computational biology in late 1980s and

used to profile protein sequences [Edd98, KBM+94]. Later, HMM was also used to

model gene structure and predict protein structure by fold recognition.

Researchers have used HMM for peptide identification only recently. PepHMM

[WYC06] is one of these algorithms. It builds a HMM to capture the correlation

among matched and unmatched ions, which has not been proposed by any other

researcher. The proposed HMM is a general post-process model for any experimen-

tal spectrum to theoretical spectrum matching scheme, and it is used to re-access

experimental spectrum vs. theoretical spectrum comparison results. However, the

proposed model only distinguishes ions at the start, end and middle positions. As

shown by the preliminary results in the following results section, the intensity pat-

terns for ions change from peptide to peptide, so using one model can over-generalize

the hidden intensity information.

Other researchers have proposed a generative HMM of mass spectra for de novo

peptide sequencing called NovoHMM [FRR+05]. The model emulates the whole

mass spectra generation process in a probabilistic way. The results show NovoHMM

outperforms other de novo sequencing algorithms that use mass spectrum graphs

for generating candidate peptides. Researchers in signal processing area have also

used HMMs or similar models to correct mass spectra alignment along time axis, so

59

as to extract the non-noise peaks using multiple alignment of continuous time series

[LNRE05, LE05].

3.2.2 Motivation

The motivation for using HMM for spectral matching starts with multiple

sequence alignment with HMM. Because of the similarities existing between two

problems, we found it natural to adapt the probability model and apply it to spectral

matching for tandem mass spectra.

3.2.2.1 HMMER for Multiple Sequence Alignment

Hidden Markov models have proved to be a powerful technique in statistical

machine learning, and have been used extensively in de novo gene finding and protein

family clustering and prediction [KBM+94, Edd98, FMSB+06]. In particular, the

use of hidden Markov models for protein families, as in Pfam [FMSB+06], suggests

that they may find application in spectral matching. Given a multiple alignment of

protein sequences that belong to the same protein family, the Pfam hidden Markov

model represents a statistical consensus for the amino acids observed at each po-

sition. Conserved positions tightly constrain protein family membership, while the

contribution of highly variable positions are down-weighted. The model also permits

the insertion or deletion of amino acids to align diverged sequences at positions of

significant conservation. The Pfam hidden Markov model, as a statistical signature

of a protein family, is more sensitive than sequence alignment with any single mem-

60

ber of the family, and more specific than aligning against all protein family members.

Because of the similarity between statistical consensus of amino acids observed at

each position and statistical consensus of peak intensity at differetn m/z position,

it motivates us to use HMM to model mass spectra peak intensity consensus and

variation.

3.2.2.2 MS/MS Intensity Profile

Figure 3.2 summarizes the statistical properties of the low-mass region of a

set of spectra. These spectra are identified as peptide DLATVYVDVLK with high

confidence. The figure shows the distribution of normalized peak intensities before

log10 intensity transformation with box-plot. Regions denoted I0, I1, . . . represent

m/z value regions between singly charged b and y ions of peptide DLATVYVDVLK,

while the regions denoted b1, b2, . . . and y1, y2, . . . represent m/z values within 0.5 Da

of the corresponding b and y ions. Above each box-plot is the average frequency of

selected peaks, per spectrum, in each m/z region. While there is a lot of consistency

in the intensity of some ions, other ions’ intensity show considerable variation, and

some b and y ions are completely absent. The peak intensity consensus and variation

here is very similar to the consensus and variation of amino acids at each multiple

sequence alignment position. So the hidden Markov models are used to capture this

complexity peak intensity pattern for each peptide.

61

0

20

40

60

80

100

 11%

17%

 6%

94%

8%

0%

 11%

86%

17%

0%

 6%

92%

19%

3%

3% 3%

0%

I0 I1 I2 I3 I4 I5 I6 I7 I8b1 b2 b3 b4y1 y2 y3 y4

Figure 3.2: Normalized intensity distribution (before log10 transformation) of low-

mass peaks in m/z regions between (I0, . . .) and near singly charged b (b1, . . .) and

y (y1, . . .) ions from training spectra for peptide DLATVYVDVLK. Average peak

frequency, per spectrum, in each m/z region is indicated above each normalized

intensity box-plot.

62

3.2.2.3 HMM for Spectral Matching

The hidden Markov models are trained with a set of mass spectra that are con-

fidently assigned to a specific peptide X!Tandem [CB04]. Then the hidden Markov

models are used to evaluate additional mass spectra, and the results compared with

X!Tandem, Mascot and NIST’s MS Search software. This approach is different from

PepHMM [WYC06], which uses a single hidden Markov model to evaluate the qual-

ity of any peptide-spectrum match. The results show that the HMM MS/MS Match

(HMMatch) approach identifies many mass spectra left unidentified by Mascot and

X!Tandem. It is also more flexible and robust than MS Search. In the following

sections, the HMMatch design and the experimental evaluation of HMMatch for

peptide identification are described in details.

3.2.3 Training Data Selection

Both training and testing data (mass spectra) are processed and provided by

Professor Nathan Edwards. The following paragraphs are data selection method

described by Professor Nathan Edwards.

3.2.3.1 Mass Spectra Libraries

Public LC/MS/MS data sets derived from human samples are downloaded

from their respective data repositories. Sources include PeptideAtlas [DDK+06] and

Human Proteome Project (HUPO) Plasma Proteome Project (PPP) [OSA+05]. In

all, there are more than 2.3 million spectra stored locally for searching. These 722

63

data files represent work from 33 different labs or projects. Tandem mass spectra are

re-searched using conservative search parameters: 1 missed cleavage, tryptic N and

C-terminals, methionine oxidation and cysteine alkylation modifications only, pre-

cursor mass tolerance 2 Da, and fragment mass tolerance 0.4 Da. The computation

is done with a computational grid of approximately 250 Linux CPUs managed by

the Condor scheduling infrastructure, and the X!Tandem search engine. The Mas-

cot search engine [PPCC99], tied to a single processor, is used for benchmarking,

comparison studies, specific identifications confirmation.

3.2.3.2 Data Selection

The results of re-searching public LC/MS/MS spectra are stored in a rela-

tional database. A small set of frequently observed peptides (in a particular charge

state) with many high-confidence peptide identifications are chosen. One HMMatch

model is constructed for each of these peptides. For each peptide model, the set of

MS/MS spectra extracted are with precursors within 2 Da of the peptide’s theoret-

ical monoisotopic m/z value.

These spectral sets are partitioned into five classes based on their X!Tandem

search results: High confidence identifications of the model peptide (denoted HC),

low confidence and non-significant identifications of the model peptide (LC), high

confidence identifications of a non-model peptide (HC-Other), low confidence and

non-significant identifications of a non-model peptide (LC-Other), and spectra with

no peptide identification with E-value less than 1 (Unknown). A 10−4 X!Tandem

64

E-value threshold is used to delineate high-confidence identifications from other

peptide identifications. Approximately half of the model peptides’ high confidence

identifications are randomly selected for training (HC-Train), and the remaining

peptides are reserved for testing (HC-Test).

However, there is a problem when extracting evalues from search results. While

the E-values of high-scoring peptide identifications of model peptides are easy to

extract from Mascot and X!Tandem search results, E-values from low-scoring and

non-significant scores are more difficult to obtain, because the search engines output

only the top few best scoring peptides for each spectrum.

To obtain E-values with respect to the model peptides of weak identifica-

tions, a special decoy protein sequence database is constructed following [EHFG05a].

This sequence database consists of reversed protein sequences of the IPI-Human

[KDW+04] protein sequence database, plus (forward) protein sequences that contain

the model peptides. The size of this decoy database is consistent with IPI-Human,

and high-confidence identifications by X!Tandem and Mascot have similar E-values

as for a IPI-Human search.

The X!Tandem source code is modified to output all peptide identifications

with hyperscores within 80% of the best scoring peptide. Lastly, the precursor mass

tolerance parameter is increased to 4.5 (6.5) Da for spectra from charge 2 (3) peptide

spectra data sets. Using these techniques, it is able to obtain valid E-value estimates

for many spectra with respect to the model peptides, even when the identifications

are very weak or missing from our original re-search results. These E-value estimates

are later used in Section 3.2.8.4.

65

3.2.4 Spectra Pre-processing

3.2.4.1 Spectra Normalization

While the fragmentation spectra of peptides that subject to collision induced

dissociation are widely believed to be reproducible under a variety of experimental

and instrumental conditions, this reproducibility is difficult to observe without con-

siderable normalization of each spectrum. As described in [Ste94, SS94, YMG+98,

WYC06, CCFB06, FMW+06, LDE+06, SKN+06, LDE+07], a number of techniques

have been proposed to pre-process and normalize the spectra, whose peaks are rep-

resented by a list of positive real-valued (m/z,int) pairs, ordered by m/z. These

techniques include intensity normalization relative to the base peak or rank, m/z

binning and blurring, transformations such as the square root or logarithm of peak

intensity, and elimination of insignificant ions by intensity or ranking. However,

there seems to be little consensus, to date, on spectrum normalization techniques

for spectral matching, although the work of [WLM+05] provides some basis for

evaluating many possibilities.

For the proposed spectral matching framework, a number of normalization

procedures were tested and the procedure which produced good results was selected

to pre-process spectra data, although the selection is not based on comprehensive

examination of all the possibilities. This issue will be revisited in future work. The

following spectrum normalization techniques used by HMMatch are restricted to

those can be carried out without knowledge of the model peptide or global properties

of the training spectra, with the hope that these techniques might be useful in other

66

settings.

Peak Intensity Normalization. The absolute value of peak intensities varies sig-

nificantly between mass spectra of the same peptide, due to peptide abundance

variation and different instrument technologies. The intensity of each peak in the

peak list is normalized by the 3rd most intense peak. The normalized intensity of

the 1st and 2nd peaks are reset to 100%. The 3rd most intense peak, rather than

the base peak, is used to avoid creating spurious variation due to a non-reproducible

base peak (often the precursor ion).

Peak Selection. To ensure that only the most informative peaks are used in HM-

Match training, only the top 10 peaks are kept with normalized intensity at least

1%. The selection of a small number of peaks ensures that the significant variation

in the number of small, insignificant, “grass” peaks in each spectrum is eliminated.

The resulting fixed length peak list ensures that HMMatch scores for different spec-

tra are consistent in magnitude. This aggressive peak selection does not compromise

HMMatch’s performance.

Intensity Transformation. Normalized intensities are transformed using the base

10 logarithm, which helps to moderate the larger variance observed in more intense

peaks. After transformation, retained normalized intensity values range from 0 to

2.

67

3.2.4.2 Spectra Discretization

Normalized peak intensities are discretized with respect to 4 equal-sized bins

between the minimum and maximum normalized intensity values. For the spectrum

normalization described above, normalized intensities range from [0, 2], resulting in

normalized intensity bins [0.0, 0.5], (0.5, 1.0], (1.0, 1.5], and (1.5, 2.0]. We denote

these intensity bins I.

Each m/z value in the peak list is transformed from a positive real-valued

number to a symbol describing a region of the m/z axis. Let M = (m1, . . . , mk) be

an ordered sequence of theoretical m/z values of expected or commonly observed

ions, and ε be a suitable mass tolerance for matching observed peaks with the

elements of M . The values m0 = −ε and mk+1 = +∞ are added to M for notational

convenience. The m/z axis is then partitioned into 3k+1 regions: RL
j = [mj −ε, mj]

for j = 1, . . . , k, RH
j = (mj , mj + ε] for j = 1, . . . , k, and Rj,j+1 = (mj + ε, mj+1 − ε)

for j = 0, . . . , k. Figure 3.3 shows these regions on the m/z axis. ε = 0.5 Da is used

throughout. The set of all such regions are denoted as R.

3.2.5 HMMatch Algorithm

The HMMatch hidden Markov model for peptide fragmentation spectra is

based on the protein family hidden Markov model used by the Pfam database, and

is shown in Figure 3.4.

68

Figure 3.3: Discretization of m/z axis into regions. Valid m/z region emissions, for

each non-silent HMM hidden state, also shown.

Figure 3.4: The HMMatch hidden Markov model for peptide fragmentation mass

spectra.

69

3.2.5.1 Hidden States

The hidden Markov model represents each of a peptide’s commonly observed

or expected ions, with m/z value mj ∈ M , by a hidden state Sj. Initially states

only represent singly charged b and y ions for 2+ peptides. But later it is found

that by adding some doubly charged b and y ions and dropping rarely observed

ions, the predictive performance for 3+ peptides can be improved. These hidden

states, represented by squares in Figure 3.4, are ordered as in M . Insertion states

Ij,j+1 (diamonds in Figure 3.4) represent additional, unexpected, or unmodeled ions

between expected m/z values mj , mj+1 ∈ M . The absence of expected m/z values

is modeled by zero emission of intensity for ion states.

3.2.5.2 Emission Probabilities

Each non-silent state emits a discrete valued m/z value-intensity pair (m/z, int)

from R×I. The m/z value and intensity emission probabilities are modeled as inde-

pendent, so that PS(m/z, int) = PS(m/z)PS(int) for each non-silent state S. Each

ion state Sj, for mj ∈ M , emits peaks such that m/z ∈ {RL
j , RH

j }. Similarly, each

insertion state Ij,j+1 between states Sj and Sj+1, for mj , mj+1 ∈ M emits peaks such

that m/z ∈ {RH
j , Rj,j+1, R

L
j+1}. Figure 3.3 shows the valid m/z regions that may be

output by each non-silent state.

3.2.5.3 Transition Probabilities

Non-zero transition probabilities are shown as directed edges in Figure 3.4.

70

3.2.6 Statistical Significance of HMMatch Score

3.2.6.1 HMMatch Score

Once trained, the HMMatch hidden Markov model is used to assess the extent

that unknown spectra are consistent with the training spectra. Unknown spectra

are normalized and discretized, as above, and fed into the trained models. There are

several metrics that can be used to measure probability that the model generate the

given sequence: the Viterbi distance and Forward distance. The Viterbi algorithm

is used to compute the probability of the most likely path through the hidden

Markov model. The Forward algorithm is used to probability of a particular output

sequence. For HMMatch, both metrics are tested as HMMatch score, which equals

to − log10(p), where p is the probability of the Viterbi path or the probability of

Forward probability. The experimental results will show that both metrics have

similar behavior for the selected data sets.

However, because the HMMs are different for different peptide mass spectra

patterns, HMMatch score cannot be used for the comparison across different mod-

els. Random spectra are needed to normalize HMMatch score and give statistical

significance for the spectra identification results.

3.2.6.2 Random Spectra

Generating random spectra for statistical significance models must be done

with care. Naively generated random spectra are so unlike peptide MS/MS spectra

that even poor HMMatch scores appear statistically significant. To provide good

71

statistical significance estimation of the results, it is required that the random spec-

tra look enough like true peptide fragmentation spectra so that poor HMMatch

scores are not statistically significant, while good HMMatch scores are still unlikely

to be observed.

The intensity and m/z value properties of discretized, normalized training

spectra are extracted independently. Each peak list contains 10 peaks, 3 of which

have normalized intensity 100%, by construction. The discrete intensities of the

remaining peaks in each training spectrum are tabulated to construct an empirical

probability density for peak intensity.

The probability density of the discretized training spectra m/z values is deter-

mined from the m/z values of the top N most intense peaks in each spectrum, for

some N ≥ 10. As with the intensities, the m/z regions are tabulated to construct an

empirical probability density. For small N , the probability density strongly favors

m/z regions corresponding to very abundant ions, while for large N , the probability

density weights m/z regions according to their size. If the probability density favors

abundant ions from the training set too heavily, even for large N , pseudo-counts

are added to the m/z regions. As the pseudo-counts increase, the m/z regions are

sampled according to their size and all information about the m/z values of the

abundant ions in the training spectra is lost.

Once the empirical distribution of m/z values and intensities from the training

spectra are established, random spectra are generated by choosing 10 peaks accord-

ing to the discrete intensity and m/z region probability densities. Three peaks are

assigned intensity 100%, with the rest drawing their intensity independently from

72

the empirical intensity distribution. Each of the peaks draws their m/z value from

the empirical m/z value distribution independently of each other, and their intensity

values.

The parameters of this random spectrum generation technique serve to favor,

or discount, the selection of abundant training spectra m/z values. Initially set the

pseudo-counts are set to zero and the parameter N is adjusted until the distribution

of the HMMatch scores of random spectra matches the distribution of the HMMatch

scores of HC-Other spectra. Pseudo-counts are used if no value of N is sufficient.

3.2.6.3 Score Distribution and p-value Estimation

Experiments results show that the normal distribution, with appropriately

chosen mean and variance, is a good fit to the empirical shape of the HMMatch

scores from random spectra. The mean and variance of HMMatch scores of 1000

random spectra are easily computed, and are used to transform HMMatch scores to

normal distribution z-scores to estimate p-values.

3.2.7 Implementation

HMMatch was written in C++. It is implemented on top of LAMP HMM

v. 0.9. LAMP HMM is a general implemtation of HMM algorithm. It is imple-

mented by Daniel DeMenthon and Marc Vuilleumier. The code was downloaded

from http://www.cfar.umd.edu/~daniel/Site_2/Code.html. It allows observa-

tions to be vectors and the observation probabilities to be modeled by histograms

73

or Gaussians. It also provides both Baum-Welch method and segmental k-means

method for training. The other implementation properties not related to HMMatch

are listed on the software website.

The mass spectra data used for training and testing HMMatch are processed

and provided by Professor Nathan Edwards. The data selection approach is de-

scribed in section 3.2.3.

3.2.8 Experimental Results

3.2.8.1 Experimental Data

For our experiements, we selected eight peptide/charge state combinations

of mass spectra from the relational database of identified spectra. The peptides,

their m/z value, and the number of spectra in each category is shown in Table 3.1.

Peptides were selected from those with the most high-confidence identifications in

the relational database.

3.2.8.2 Training

After training the HMMatch models using the Baum-Welch algorithm the

performance of each model on each spectrum class is evaluated. Given the relatively

small number of training examples for each peptide, special attention must be paid

to the possibility of over-fitting the model. This issue is carefully considered in

the hidden Markov model design, particularly in the spectrum discretization and

emission probability independence assumption, and in the initialization of intensity

74

Peptide

m/z z HC-Train HC-Test LC HC-Other LC-Other Unknown

DFLAGGVAAAISK

610.34 2 36 23 59 48 879 22481

DFLAGGIAAAISK

617.35 2 33 36 14 113 804 5001

DLATVYVDVLK

618.35 2 36 40 61 159 772 4615

AVMDDFAAFVEK

671.82 2 110 82 143 205 820 5543

LNDLEDALQQAK

679.35 2 28 28 45 169 741 7591

AVM*DDFAAFVEK

679.82 2 56 50 52 116 723 7585

SHCIAEVENDEMPADLPSLAADFVESK

992.12 3 27 25 140 162 1317 6208

SHCIAEVENDEM*PADLPSLAADFVESK

997.45 3 40 40 125 128 1192 6074

Table 3.1: Model peptides and spectral data set sizes. Cysteines alkylated with

iodoacetamide. * indicates oxidized methionine.

75

emission probability distributions. Plotting the distribution of HMMatch scores

(Figure 3.5) for the HC-Train and HC-Test spectra shows that there is no evidence of

over-fitting. In each case, the distribution of training scores match the distribution

of testing scores. Furthermore, it is observed that there is excellent separation

between the HMMatch scores of the spectra with high-confidence identifications to

the model peptide (HC-Test) compared with that of other peptides (HC-Other).

This implies that HMMatch has similar specificity as X!Tandem with respect to

spectra with high-confidence identifications. Because the distribution of viterbi

scores and forward scores are very similar, only results for forward scores are shown

here. This is mainly because of the proposed data pre-processing and model building

algorithm, which give very sparse transition matrix with most non-zero elements lie

along the diagonal.

The time to train each HMMatch model varies depending on the number of

states, the number of training spectra, and the number of Baum-Welch iterations

required for convergence. Table 3.2 shows these statistics for each model. Most of

the HMMatch models were trained in less than 10 seconds, with the longest training

time less than one minute.

Computation of the HMMatch score (for both viterbi score and forward score)

is also quite fast. Table 3.3 shows the time to compute HMMatch scores for each

peptide’s spectra. Viterbi distance evaluation time depends primarily on the num-

ber of states in the hidden Markov model. While more time-consuming than the

sequence and dot-product based search engines, the time to compute HMMatch

scores is not prohibitive, even for very large spectral data sets, despite the use of a

76

0 50 100 150
0

5

10

15

20

25

30
DFLAGGVAAAISK

Sp
ec

tr
a

0 50 100 150
0

10

20

30

40

DFLAGGIAAAISK

Sp
ec

tr
a

0 20 40 60 80
0

20

40

60

80
DLATVYVDVLK

Sp
ec

tr
a

0 20 40 60 80 100
0

10

20

30

40

50
AVMDDFAAFVEK

Sp
ec

tr
a

0 20 40 60 80 100
0

10

20

30

40

50

60
LNDLEDALQQAK

Sp
ec

tr
a

0 20 40 60 80 100
0

10

20

30

40

50

60
AVM*DDFAAFVEK

Sp
ec

tr
a

0 20 40 60 80 100
0

20

40

60

80

100
SHCIAEVENDEMPADLPSLAADFVESK

HMMatch Score

Sp
ec

tr
a

0 20 40 60 80 100
0

10

20

30

40
SHCIAEVENDEM*PADLPSLAADFVESK

HMMatch Score

Sp
ec

tr
a

Figure 3.5: HMMatch forward scores for spectra with high-confidence identifica-

tions (X!Tandem E-value < 10−4). High-Confidence Train (HC-Train) ⋆; High-

Confidence Test (HC-Test) ◦; High-Confidence Other (HC-Other) 3.

77

Peptide

Time (s) Iterations States Spectra

DFLAGGVAAAISK

6 2 81 36

DFLAGGIAAAISK

5 2 81 33

DLATVYVDVLK

4 2 69 36

AVMDDFAAFVEK

16 2 75 110

LNDLEDALQQAK

3 2 75 28

AVM*DDFAAFVEK

8 2 75 56

SHCIAEVENDEMPADLPSLAADFVESK

16 2 120 27

SHCIAEVENDEM*PADLPSLAADFVESK

44 2 141 40

Table 3.2: Time (in seconds) for HMMatch training.

78

generic hidden Markov model codebase that does not take advantage of our model’s

sparsity.

3.2.8.3 Basic Performance

The sensitivity of HMMatch is evaluated by plotting the distribution of HM-

Match score p-values for spectra with weak or no identifications. Figure 3.6 give the

p-values for Forward scores. Because Viterbi scores and Forward scores have very

similar distribution, their p-values have similar distribution too, here only p-values

for Forward scores are shown. Performance wise, a large proportion of the spec-

tra with weak identifications to the model peptide (LC) have very small p-values,

demonstrating higher confidence than X!Tandem for these peptides. A few weak

identifications to other peptides (LC-Other) have quite significant HMMatch scores

which suggests the weak X!Tandem identifications are incorrect. Lastly, a consid-

erable fraction of the spectra with no identification with E-value ≤ 1 (Unknown)

have significant HMMatch scores. A number of thes cases are manually examined

and discussed in the following paragraphs. In each case it is found that spectra with

significant HMMatch scores are an excellent match to high confidence spectra from

the model peptide.

The performance of HMMatch is tested as the number of training spectra

is reduced. HMMatch models for the peptides LNDLEDALQQAK and DFLAG-

GIAAAISK are constructed using training sets consisting of 5, 10, 20, and 40 ran-

domly selected HC spectra. For peptide LNDLEDALQQAK, the distribution of

79

Peptide

Time (s) Spectra Spectra/s

DFLAGGVAAAISK

586 23526 36.47

DFLAGGIAAAISK

143 6001 41.11

DLATVYVDVLK

90 5683 62.46

AVMDDFAAFVEK

137 6903 48.96

LNDLEDALQQAK

175 8602 48.87

AVM*DDFAAFVEK

172 8582 48.49

SHCIAEVENDEMPADLPSLAADFVESK

629 7879 13.33

SHCIAEVENDEM*PADLPSLAADFVESK

919 7599 8.45

Table 3.3: Time (in seconds) to compute HMMatch scores.

80

5 10 15 20 25 30 35 40
0

20

40

60

80

100
DFLAGGVAAAISK

Sp
ec

tr
a

5 10 15 20 25 30 35 40
0

20

40

60

80

100
DFLAGGIAAAISK

Sp
ec

tr
a

4 6 8 10 12 14
0

20

40

60

80

100
DLATVYVDVLK

Sp
ec

tr
a

4 6 8 10 12 14
0

20

40

60

80

100
AVMDDFAAFVEK

Sp
ec

tr
a

4 6 8 10 12 14
0

20

40

60

80

100
LNDLEDALQQAK

Sp
ec

tr
a

4 6 8 10 12 14
0

20

40

60

80

100
AVM*DDFAAFVEK

Sp
ec

tr
a

4 6 8 10 12
0

20

40

60

80

100
SHCIAEVENDEMPADLPSLAADFVESK

−log
10

(p−value)

S
pe

ct
ra

4 6 8 10 12
0

20

40

60

80

100

120
SHCIAEVENDEM*PADLPSLAADFVESK

−log
10

(p−value)

S
pe

ct
ra

Figure 3.6: HMMatch forward score based p-values of low-confidence and unknown

spectra (X!Tandem E-value > 10−4). Low-Confidence (LC) ⋆; Low-Confidence

Other (LC-Other) ◦; Unknown 3.
81

HMMatch scores for HC-Test and HC-Other overlap a little for 5 training spec-

tra, but are completely separated for 10, 20, and 40 training spectra. For peptide

DFLAGGIAAAISK, the HC-Test and HC-Other scores are well separated for all

training set sizes from 5 to 40. As with all machine-learning techniques, HMMatch

training is more effective as the number of training examples increases, however,

these experiments demonstrate that good performance is possible even with a rela-

tively small number of training spectra per peptide.

3.2.8.4 Comparative Performance

Because of the absence of a sufficiently rich data set with known correct peptide

identifications, it is not easy to establish performance in terms of sensitivity and

specificity. To provide reasonable performance results, HMMatch is compared with

sequence database search engines X!Tandem and Mascot, and spectral matching

search engine MS Search from NIST with consensus spectra from the NIST library

of peptide fragmentation spectra. Precision-recall statistics are used to compare the

tools’ peptide identification scores. Some of the cases are manually examined to

show that HMMatch is able to confidently identify some spectra, while the other

tools cannot.

Performance Comparison. Each tool orders the spectra in each data set according

to some spectrum-peptide match score. For X!Tandem and Mascot, this is the E-

value, for NIST’s MS Search this is the match factor, and for HMMatch this is the

HMMatch score described above. Given a reference labeling as positive or negative

82

with respect to the model peptide, it can be evaluated that, with respect to any

spectrum-peptide match score threshold, the extent to which the partition of the

spectra using this threshold is consistent with the reference labels. The spectrum-

peptide match score and threshold and the reference labels partition the spectra

into true-positive (TP), false-positive (FP), false-negative (FN), and true-negative

(TN) sets. Precision, then, is defined as |TP |/(|TP |+ |FP |), while recall is defined

as |TP |/(|TP | + |FN |). Perfect correspondence with the reference labels, for a

particular match score and threshold, results in 100% precision and 100% recall. The

precision-recall curve, which plots the precision-recall statistics for all thresholds,

captures the extent to which the ranking of spectra by some match score is consistent

with the reference partition of the spectra into positive and negative examples.

Perfect correspondence with the reference labels results in a square precision-recall

curve.

Each tool is compared to the others by using each tool and some spectrum-

peptide score threshold, in turn, to construct synthetic reference labels. As such,

these precision-recall statistics and curves do not represent true measures of sensitiv-

ity and specificity, instead they capture the extent that each tool’s spectrum-peptide

match score ranks the spectra in an order that is consistent with the synthetic ref-

erence. Figure 3.7 show a complete set of precision-recall curves for the synthetic

reference based on X!Tandem E-value and significance threshold 0.01. To summa-

rize the comparative behavior more comprehensively, table 3.4 show the % recall

at 99% precision for each tool averaged across the eight data sets, with respect to

synthetic reference labels derived from each tool’s spectrum-peptide match score.

83

0 0.2 0.4 0.6 0.8 1
0.9

0.92

0.94

0.96

0.98

1
DFLAGGVAAAISK

0 0.2 0.4 0.6 0.8 1
0.94

0.95

0.96

0.97

0.98

0.99

1
DFLAGGIAAAISK

0 0.2 0.4 0.6 0.8 1
0.88

0.9

0.92

0.94

0.96

0.98

1
DLATVYVDVLK

0 0.2 0.4 0.6 0.8 1
0.75

0.8

0.85

0.9

0.95

1
AVMDDFAAFVEK

0 0.2 0.4 0.6 0.8 1
0.88

0.9

0.92

0.94

0.96

0.98

1
LNDLEDALQQAK

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1
AVM∗DDFAAFVEK

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1
SHCIAEVENDEMPADLPSLAADFVESK

0 0.2 0.4 0.6 0.8 1
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
SHCIAEVENDEM∗PADLPSLAADFVESK

Figure 3.7: Precision-recall curves for Mascot (), MS Search (), and HMMatch

() for synthetic reference labels defined by X!Tandem E-value threshold 0.01.

Training spectra and spectra with no X!Tandem E-value for the model peptide are

excluded.

84

Reference Threshold Pos./Neg. X!Tandem Mascot MS Search HMM

X!Tandem 0.1 93 / 12 - 59% 54% 53%

(E-value) 0.05 90 / 15 - 56% 54% 54%

0.01 79 / 26 - 48% 37% 43%

0.001 61 / 44 - 38% 14% 32%

Mascot 0.1 38 / 67 38% - 33% 40%

(E-value) 0.05 34 / 71 42% - 35% 34%

0.01 26 / 79 45% - 26% 33%

MS Search 0.8 52 / 63 46% 61% - 60%

(Match Factor) 0.9 62 / 53 36% 55% - 49%

0.95 72 / 43 32% 42% - 46%

Table 3.4: Average % recall at 99% precision for 8 model-peptide spectrum data

sets with respect to various synthetic reference labels. Training spectra and spectra

with no reference score excluded.

85

The precision-recall curves and statistics show only a moderately good corre-

spondence between the ranking imposed by any pair of tools. Table 3.4 shows that

for high precision identification, the HMMatch score is more like X!Tandem and

Mascot than MS Search, particularly for the smaller E-value synthetic label thresh-

olds. For spectral matching synthetic labels from MS Search, HMMatch shows a

similar degree of correspondence as Mascot, with X!Tandem showing quite a bit less.

The precision-recall curves in Figure 3.7 show there is no tool that is uniformly more

consistent with X!Tandem than the others. For four of the eight data sets, the HM-

Match score recalls the most spectra at 100% agreement with X!Tandem, Mascot

and MS Search recall the most for two each of the remaining data sets. Peptide SH-

CIAEVENDEMPADLPSLAADFVESK shows considerable disagreement between

the search engine tools and the spectral matching based tools, with strong agree-

ment between the spectral matching based tools. On the other hand, peptide

AVM∗DDFAAFVEK shows considerable difference between the spectra matching

based tools, as compared to X!Tandem. On the strength of the precision-recall

curves and statistics, it is not hard to conclude that HMMatch shows a similar

level of concordance with the other tools as they do to each other. It also shows

that HMMatch does not seem to be overtrained or biased towards the X!Tandem

identifications, despite the use of these identifications in HMMatch training.

Case Study. Our data sets contain many spectra with highly significant HMMatch

scores but with poor scores from X!Tandem and Mascot. HMMatch confidently

identifies, with HMMatch score p-value < 10−5, 3537 spectra with both Mascot and

86

X!Tandem E-values greater than 0.05. By way of comparison, NIST’s MS Search

confidently identifies, with match factor threshold 0.9, only 673 spectra with both

Mascot and X!Tandem E-values greater than 0.05. A number of these spectra are

manually examined to determine whether or not HMMatch was likely correct and

to try to explain the poor scores from other tools.

A considerable proportion (3̃50) of the spectra were correctly identified by

HMMatch and misidentified by the search engines due to peptide candidate selection

issues. It was observed that there were a large number of misidentified spectra with

precursor molecular weight outside of the allowed search engine precursor tolerance

of 2 Da. The spectral matching techniques also use a precursor tolerance of 2

Da, but it is applied to the m/z value of the precursor. When the search engine

parameter is increased to 4 Da (6 Da) for charge 2 (charge 3) peptides, these spectra

are usually confidently identified as the corresponding model-peptide by X!Tandem

and Mascot. So, while these spectra are confidently identified by HMMatch, they

are not a good demonstration of the strength of HMMatch scores as compared

to the peptide sequence based scoring. However, it does suggest that the usual

2 Da precursor tolerance used for sequence searching is perhaps too aggressive.

Nevertheless, increasing the precursor tolerance increases Mascot and X!Tandem

E-values by a similar factor, further reducing their sensitivity.

Another class of spectra correctly assigned by HMMatch, but with poor X!Tandem

and Mascot scores, are noisy spectra with many extraneous peaks, as in the frag-

mentation spectrum of peptide DLATVYVDVLK in Figure 3.8(a). This spectrum,

confidently identified by HMMatch with p-value 7.341 × 10−12 has Mascot E-value

87

1.07 and X!Tandem E-value 0.0013. While X!Tandem’s E-value is less than typical

significance thresholds, the E-value does not indicate the same degree of confidence

as HMMatch. The sequence database search engines have trouble with these spectra

as the extra peaks tend to match fragment ions whether or not the correct peptide

is being evaluated. The MS Search spectral matching search engine computes a

match factor of 0.844 for this spectrum-peptide combination, well below match fac-

tors for other high-confidence peptide identifications. The dot-product based match

factor is affected by noisy spectra, as documented by [MSS05]. It is believed that

the aggressive peak selection strategy used for spectrum normalization makes the

HMMatch robust with respect to the presence of extraneous noise peaks, without

compromising identification performance.

The fragmentation spectrum, also of peptide DLATVYVDVLK, in Figure 3.8(b)

represents another interesting failed identification by Mascot and X!Tandem that is

correctly identified by HMMatch. The HMMatch score has significance 1.738×10−12,

while MS Search computes a match factor of 0.994. Mascot, on the other hand,

computes an E-value of 5.7 and X!Tandem an E-value of 0.16, neither of which

is statistically significant. Close examination of the search engine results revealed

that the spectrum received poor scores due to the fragment ion mass tolerance pa-

rameter. The X!Tandem and Mascot searches were conducted using a fragment ion

match tolerance of 0.4 Da, a relatively conservative fragment tolerance appropriate

for the ion trap spectra that makes up the majority of publicly available MS/MS

spectra. However, for the spectrum of Figure 3.8(b), b4 and y3 ions, amongst others,

were observed more than 0.4 Da from their theoretical value, which was sufficient

88

to drive down the search engine scores. Increasing the fragment tolerance increases

Mascot and X!Tandem E-values, further reducing their sensitivity. HMMatch uses

a fragment tolerance of 0.5 Da, and matched b4, but didn’t even use the peak that

matched y3 as it was outside of the 10 most intense peaks. The MS Search match

factor was computed using the default bin-size of 0.8 Da, so the measurement error

apparent in these fragment ions did not affect its score. We believe that the use of

peak intensity by HMMatch makes it possible to use a larger fragment ion tolerance

and more aggressive peak selection, without sacrificing identification performance.

a)

b)

Figure 3.8: Case study fragmentation spectra of peptide DLATVYVDVLK. (a)

Mascot E-value: 1.07, X!Tandem E-value: 0.0013, MS Search match factor: 0.844,

HMMatch p-value: 7.341 × 10−12; (b) Mascot E-value: 5.7, X!Tandem E-value:

0.16, MS Search match factor: 0.994, HMMatch p-value: 1.738 × 10−12.

89

3.2.9 Model Extrapolation

Traditional spectral matching, which uses dot-product based similarity scores,

essentially treats the reference spectra as bitmapped images with no semantic con-

tent. The use of artificial consensus spectra, which implicitly encodes semantics

by retaining only frequently observed or expected peaks and permits asymmetric

variants of the dot-product based similarity measures, is the approach adopted by

NIST for its GC/MS [SS94] and peptide fragmentation spectral libraries, as well as

the MS Search spectral matching search engine.

The construction of a probability model, such as HMMatch, to abstract and

semantically summarize the behavior of a set of peptide fragmentation spectra makes

it possible to extrapolate the model to spectra from other, related, peptides. Two

peptides that differ by a single amino acid or by the addition or removal of a post-

translational modification will, in many cases, have similar normalized intensities,

once an appropriate offset is applied to some of the ions. For example, the peptides

DFLAGGVAAAISK and DFLAGGIAAAISK differ by a Val to Ile substitution, a

mass shift of +14.02 Da, which affects the m/z value of all the fragment ions that

contain the changed residue, including b7, . . . , b12 and y7, . . . , y12, and of course the

precursor. Other than this mass shift, however, the peptide fragmentation spectra

of these peptides are very similar. Figure 3.9 shows the spectral box-plot of HC-

Train spectra, defined as for Figure 3.2, for each of these peptides. This figure,

which plots the distribution of intensities in each of the discrete m/z regions of R,

abstracts away the shift introduced by the amino acid substitution and makes the

90

similarity apparent.

Given the semantic abstraction of our trained HMMatch model, it is straight-

forward to compute the HMMatch scores of spectra of one peptide using the HM-

Match model of the other. Our set of spectra includes three such pairs: DFLAG-

GVAAAISK and DFLAGGIAAAISK, AVMDDFAAFVEK and AVM∗DDFAAFVEK;

and SHCIAEVENDEMPADLPSLAADFVESK and SHCIAEVENDEM∗PADLPSLAADFVESK.

The last two pairs differ by an oxidized methionine (+15.99), indicated by ∗, while

the first pair has an amino acid substitution, as already described. For each pep-

tide, we compute the p-value of the HMMatch score of HC-Test spectra using both

the original HMMatch model and the extrapolated model of its twin. Figure 3.10

plots the original Viterbi score based p-value vs the extrapolated Viterbi score based

p-value for each of the six paired peptides. The line y = x is added to provide a

visual aid for estimating the number of HC-Test spectra with increased or decreased

significance.

It is observed that while the p-values are somewhat scattered, most spectra

with statistically significant HMMatch scores computed using the correct model are

still statistically significant with respect to the extrapolated twin peptide’s HM-

Match model. In fact, a good number of the HC-Test spectra are more significant

(lie above the y = x line) when scored using the twin’s model. The success of this

model extrapolation suggests that HMMatch models may be created and used to

identify peptides from a specific isoform or modification, even when their spectra

have not previously been identified by other tools. Similarly, it may be possible

to train a single HMMatch model using fragmentation spectra from two related

91

1.5

2

b3 b4 b5 b6 b7 b8 b9 b10 b11y2 y3 y4 y5 y6 y7 y8 y9 y10 y11

DFLAGGVAAAISK

1.5

2

b3 b4 b5 b6 b7 b8 b9 b10 b11y2 y3 y4 y5 y6 y7 y8 y9 y10 y11

DFLAGGIAAAISK

Figure 3.9: Normalized intensity boxplots for peaks in each m/z value region from

HC-Train spectra of DFLAGGVAAAISK and DFLAGGIAAAISK.

92

0 10 20 30 40
0

10

20

30

40
DFLAGGVAAAISK

−
lo

g
1
0
(e

x
tr

ap
ol

at
io

n
p
-v

al
u
e)

− log
10

(p-value)
0 20 40 60 80 100

0

20

40

60

80

100
DFLAGGIAAAISK

−
lo

g
1
0
(e

x
tr

ap
ol

at
io

n
p
-v

al
u
e)

− log
10

(p-value)

0 2 4 6 8 10
0

2

4

6

8

10
AVMDDFAAFVEK

−
lo

g
1
0
(e

x
tr

ap
ol

at
io

n
p
-v

al
u
e)

− log
10

(p-value)
0 2 4 6 8 10

0

2

4

6

8

10
AVM∗DDFAAFVEK

−
lo

g
1
0
(e

x
tr

ap
ol

at
io

n
p
-v

al
u
e)

− log
10

(p-value)

0 5 10 15 20
0

5

10

15

20
SHCIAEVENDEMPADLPSLAADFVESK

−
lo

g
1
0
(e

x
tr

ap
ol

at
io

n
p
-v

al
u
e)

− log
10

(p-value)
0 5 10 15 20

0

5

10

15

20
SHCIAEVENDEM∗PADLPSLAADFVESK

−
lo

g
1
0
(e

x
tr

ap
ol

at
io

n
p
-v

al
u
e)

− log
10

(p-value)

Figure 3.10: Comparison of p-values of HC-Test spectra scored with the peptide’s

HMMatch model and the extrapolated HMMatch model of its related “twin” pep-

tide.

93

peptides, useful when there are too few high-confidence training spectra for each

individual peptide.

While many related peptides have similar (up to mass shift) spectra, this is

clearly not true for all amino acid substitutions (in particular, the insertion of a basic

residue) and post-translational modifications. While it is not necessarily be able to

predict which related peptides will have similar spectra, the statistical significance

computation ensures that extrapolated model assignments are not accepted when

they are unlikely to be correct.

A larger problem for HMMatch is the linear, ordered, structure of the expected

ion hidden states. If the masses of expected or common fragments ions after the

mass shift is applied are no longer correctly ordered, then it is unclear how the

hidden Markov model’s transition probabilities should be adjusted to compensate.

For each of the peptide pairs above, the mass shift is small enough that this is not

an issue.

3.2.10 Conclusion

HMMatch is a novel approach for spectral matching based peptide identifi-

cation. It uses a hidden Markov model to summarize the statistical variation and

consensus in a peptide’s fragmentation spectra and applys this model to the identi-

fication of unassigned spectra.

The experiments results indicate that HMMatch has good specificity and su-

perior sensitivity, compared to sequence database search engines such as X!Tandem.

94

The HMMatch design achieves good results from relatively few training spectra, is

fast to train, and can evaluate many spectra per second. A statistical significance

model permits HMMatch scores to be compared with each other (and with other

peptide identification tools) on a unified scale. HMMatch shows a similar degree

of concordance with X!Tandem, Mascot, and NIST’s MS Search, as they do with

each other. This suggests that each tool can assign peptides to spectra that the

others miss. Finally, it is shown that it is possible to extrapolate HMMatch models

beyond a single peptide’s training spectra to the spectra of related peptides, thus

expand the application of spectral matching techniques beyond the set of peptides

previously observed.

As the popularity of protein characterization by tandem mass spectrometry

grows and the public repositories of peptide fragmentation spectra to increase in

size, covering a larger proportion of more organisms’ proteomes with more examples

of mass spectra from a variety of instruments, the hidden Markov model approach

to spectral matching will become increasingly useful in the analysis of peptide frag-

mentation spectra.

95

3.3 PepArML: An Unsupervised, Model-Free, Combining Peptide

Identification Arbiter for Tandem Mass Spectra Via Machine

Learning

3.3.1 Related Work

As mass spectrometry techniques advance, many database search algorithms

and tools are being developed to provide more precise peptide identification results.

However, current algorithms for peptide identification have much room for improve-

ment. Researchers have proposed many different approaches for enhancing existing

proteomics tools. A variety of techniques have been applied to protein sequence

database search engine outputs in order to improve the reliability of peptide identi-

fication. In general, these techniques treat the search engines as “black boxes”, and

try to do a better job at distinguishing correct from incorrect peptide identifications

by directly processing search engines’ peptide identification results. These black-

box tools employ one or more of the following techniques: combining or merging of

search engine results, supervised and semi-supervised machine learning scoring and

prediction, statistical significance re-estimation.

3.3.1.1 Combining Multiple Search Engines

One of the important techniques that researchers proposed is to combine re-

sults from multiple peptide identification tools. These result combiners [RMAM+04,

STN08, HKB+07] rely on peptide identification results from multiple search engines

96

to improve sensitivity and specificity, with the assumption that search engine agree-

ment increases the likelihood that the identification is correct.

Higgs et al. [HKB+07] uses blackbox techniques to combine peptide identifi-

cation results from multiple search engines (SEQUEST and X!Tandem). They use

reverse database search results as null models to re-estimate the statistical signifi-

cance of the peptide identifications.

Scaffold [STN08] is a commercial tool from Proteome Software that uses sta-

tistical algorithms to combine results from multiple search engines to calculate the

probability that proteins are actually in a biological sample. Statistical significance

re-estimation techniques are used to normalize and compare scores from multiple

search engines. Scaffold also provides an interface for displaying proteins identified

in a tandem mass spectrometry experiment.

3.3.1.2 Applying Machine Learning To Improve Scoring

Supervised machine learning techniques [KNKA02, UZQA06, HKB+07, ALPN03,

BBIK04] have been applied to existing and novel features derived from search en-

gines’ results. These derived score functions demonstrate better sensitivity and

specificity for specific data sets.

PeptideProphet [KNKA02] was designed to re-estimate the statistical signifi-

cance of SEQUEST’s peptide identification results. It uses expectation maximiza-

tion algorithm to learn to distinguish correct from incorrect database search results.

The author claims this approach also applies to other database search based peptide

97

identification algorithm. PeptideProphet first uses a supervised training phase to es-

tablish the optimal linear weighting of the various SEQUEST peptide identification

properties and scores. Then it uses an unsupervised empirical fit of a bimodal mix-

ture model to the discriminant scores to establish the likelihood of correct peptide

identifications.

Ulintz et al. [UZQA06] try to classify the database search engines’ peptide

identification results by applying machine learning algorithms (Boosting and Ran-

dom Forest) on peptide identification results. They not only directly use the peptide

identification results given by the search engines, but also design new metrics to be

incorporated in the feature vector correspondent to each peptide identification re-

sult. The machine learning framework show significant improvement over original

search engines peptide identification results.

Anderson et al. [ALPN03] use machine learning algorithms, support vector

machine, and 13 carefully constructed metrics as features to distinguish correct from

incorrect peptide identifications output by SEQUEST. The results show machine

learning based approach improves sensitivity compared with the original SEQUEST

scores.

Baczek et al. [BBIK04] use artificial neural network (ANN) to re-analyze SE-

QUEST’s peptide identification results based on a series of calculated peptide identi-

fication metrics. The results show ANN can be used to automate peptide identifica-

tion results’ classification even though they applied strict restriction when selecting

the training and testing data.

Supervised machine learning techniques are also often combined with statisti-

98

cal significance re-estimation techniques [KNKA02, HKB+07] to normalize the class

prediction probabilities.

3.3.1.3 Re-estimating Statistical Significance

There have been several techniques to estimate statistical significance of pep-

tide identification results. The unsupervised E-M algorithm phase of Peptide-

Prophet [KNKA02] uses empirical properties of the underlying search engine results

as a null-model to re-estimate the statistical significance or likelihood associated

with peptide identification results. Its unsupervised significance re-estimation algo-

rithm helps to make its probabilities quite robust, as long as the underlying linear

discriminant model generalizes well enough to distinguish correct and incorrect iden-

tifications.

Other tools such as Qscore [MYL02] use a theoretical model to re-estimate the

significance of peptide identification results. Qscore was one of the first algorithms

that tries to use blackbox techniques to re-classify database search engines’ peptide

identification results. The scoring system incorporated more metrics about peptide

matching quality other than original SEQUEST scores. The results show that the

re-estimated statistical significance score performs better for distinguishing correct

from incorrect peptide identifications.

A current popular strategy is to use a decoy database [EHFG05a, EHFG05b,

HKB+07] to re-estimate the statistical significance of search engine outputs. A decoy

protein sequence database is constructed using either reversed or shuffled protein

99

sequences. Peptide sequences in the decoy databases are assumed to be non-existent

and will not match experimental mass spectra. Any peptide identifications from

sequences in the decoy databases can thus be assumed to be false. By measuring

the proportion of peptide identifications that are generated by the decoy database

at different score thresholds, the statistical significance of search engine scores may

be re-estimated.

Elias et al. [EHFG05a, EHFG05b] mentioned several approaches for estimating

false discovery rates in their papers. They provided detailed descriptions of different

approaches in the supplementary section of their papers. We use the method they

propose for calculating false discovery rates since they seem to be the research group

performing the most extensive studies on estimating false discovery rates.

3.3.2 Motivation

A major concern with supervised machine learning techniques is the question of

how to generalize the trained machine learning model to peptide identification results

from a different instrument or search engine. One solution is to use unsupervised

or semi-supervised training. This approach makes it possible for the training to be

applied on the fly to each new data set. The procedure can also be adapted to

the particular features of a given set of results as needed. Semi-supervised machine

learning has recently emerged [CN08, KCW+07] as a solution to the concerns about

the generality of supervised machine learning. This type of approach uses decoy

database hits as known false peptide identifications to guide the machine learning

100

approach.

A second concern with the black-box output re-analysis techniques is that

they require the correct (and incorrect) peptide identifications follow some under-

lying mathematical model. Sometimes these model assumptions are explicit, espe-

cially when using LDA [KNKA02] and SVM [ALPN03] machine learning techniques.

While in other cases they are implicit, such as the assumption that incorrect peptide

identifications from different search engines are uncorrelated [RMAM+04, STN08,

HKB+07].

To ally these concerns, we propose and test PepArML, a model-free, result

combining, unsupervised machine-learning approach to improving the sensitivity of

peptide identifications. Because PepArML does not rely on a fixed model or require

pre-labeled training data, it can be adapted to individual data sets on the fly auto-

matically. Experimental results indicate it outperforms each of the described basic

techniques.

3.3.3 Performance Metric Definitions

Throughout this section, a number of standard performance metrics are used

to evaluate the peptide identification results from different algorithms and database

search engines. For brevity we refer to an individual mass spectrum to peptide

identification generated by a search engine as a peptide ID.

101

3.3.3.1 Definitions

We define the ground truth as the correctness of each peptide ID. We can

determine ground truth only for a synthetic protein mixture where we know the

identity of each protein in the mix. A peptide ID is considered to be true if the

spectrum is assigned a peptide from one of the proteins known to be in the synthetic

protein mix. A peptide ID is considered to be false if the spectrum is assigned to a

peptide from any other protein in the database. For the selected peptide IDs, the

number of true positives (TP), false positives (FP), false negatives (FN), and true

negatives (TN) is counted with respect to the known ground truth.

Sensitivity, defined as TP/(TP+FN), is also known as true positive rate (TPR).

It measures the percentage of true cases that are correctly classified (identified).

Specificity is defined as TN/(FP+TN). It measures the percentage of false cases that

are correctly classified. The false positive rate (FPR) is defined as (1−specificity).

False discovery rate (FDR), defined as FP/(FP+TP), measures the percentage

of false positives among classified true cases. Alternatively, FDR can be viewed as

the expected proportion of false positives among the declared significant results.

Notice that FDR and FPR are two different values.

FDR is a method commonly used in multiple hypothesis testing in order to

correct statistical significance for multiple comparisons. It is needed since E-values

reported for each peptide ID only reflect the statistical significance of individual

predictions. When combining results for thousands of peptide IDs, FDR provides

a more accurate prediction of the statistical significance of the entire collection of

102

predictions.

3.3.3.2 Calculating FDR and Estimated FDR (eFDR)

To compute FDR requires knowledge of ground truth for each data set, which

is not possible for experiments with unknown proteins. Fortunately, decoy databases

(described in Section 3.3.1.3) may be used to compute an estimated false discovery

rate (estimated FDR, or eFDR) for each peptide identification algorithm [EHFG05a],

by considering all peptide IDs from sequences in the decoy database to be false pos-

itives. When calculating eFDR using decoy protein sequence databases, the original

(true) protein sequences are referred to as the forward database, and searching the

original database is referred to as a forward database search.

We use #F to represent the number of peptide IDs from the forward database

search. #Ft then represents the number of true positives in forward database search,

and #Ff represents the number of false positives in forward database search. Since

#F = #Ft + #Ff, FDR can calculated as:

FDR = #Ff/#F = #Ff/(#Ft + #Ff)

Similarly, we use #R to represent the number of peptide IDs from the decoy

database. It turns out that #R can also be used to estimate the number of false

positives in forward database search (#Ff), based on assumption that the random

matches appear with equal frequency in searches against both the forward and decoy

database sequences.

Based on this assumption, FDR can be represented as either:

103

FDR = #R/#F

or

FDR’ = 2#R’/(#F’ + #R’)

if the forward and decoy database (of equal size) are concatenated. #F’ and #R’

are number of peptides IDs from forward and decoy database when the forward

and decoy databases are concatenated, so their values can be smaller than #F

and #R. In practice, no method for calculating estimated FDR has been proven

optimal. Theoretically, concatenated database and using #R/#F provides better

FDR estimations. But in real experiments, especially when results with FDR ≤

0.2 are most important, using either concatenated or separate forward & decoy

databases (and either #R/#F or 2#R/(#F+#R)) seem to provide similar results.

However, since scores (E-values) from different search engines need to be calibrated,

in the thesis we use the method suggested by Elias et al. [EHFG05a] to calculate

estimated FDR as 2#R’/(#F’ + #R’).

3.3.3.3 Experimental Metrics

To the experiment evaluation section, we use a number of different metrics to

evaluate the performance of each peptide identification algorithm:

Receiver Operating Characteristic (ROC) curves. ROC are plots of the sensitivity

vs. (1–specificity), which equals to the true positive rate vs. the false positive rate,

for all possible threshold values. ROC curves provide a global view of the sensitiv-

ity/specificity tradeoff of a particular predictor,and evaluate the predictor’s ability

104

to separate true from false peptide IDs.

Area under ROC (AUROC). AUROC is a single-value summary of a ROC curve,

where higher values are desirable. A predictor that separates true and false peptide

IDs perfectly will have a square ROC curve and AUROC of 1.

Sensitivity for given FDR. The sensitivity of each predictor is evaluated at score

thresholds for different values of FDR or estimated FDR. These graphs are similar

to ROC curves, but somewhat more practical since eFDR may be computed without

knowing actual ground truth (which is needed for computing ROC and true FDR).

This metric can be used to evaluate predictor performance on a data set derived

from real biological samples, even though estimated FDR may not approximate true

FDR very well.

3.3.4 Heuristics For Combining Search Engine Results

To test whether machine learning is necessary to achieve good performance,

we designed several simple heuristic algorithms for combining search engine results.

The assumption of the algorithms are based on a widely used notion that when

different search engines give the same peptide identification, the identification is

more likely to be correct [RMAM+04].

A heuristic combiner must choose two outputs. First, the combiner must

decide which peptide to assign to each spectrum, choosing among all the peptide IDs

for that spectrum produced by the individual search engines. We tested combiners

105

that selected peptide assignments based on either consensus (voting) or purely based

on peptide ID scores. Second, the combiner must assign a score to the peptide ID

selected. We tested combiners that used either E-values or eFDR scores, selected

in a variety of ways.

Except for MIN-Evalue and MIN-eFDR, heuristic combiners are majority vot-

ing based, where peptide IDs for a spectrum are chosen based on the largest number

of agreeing search engines. For instance, for a given spectrum if two search engines

select peptide x and one search engine selects peptide y, a voting heuristic always

assigns peptide x to the spectrum, regardless of the scores assigned by each search

engine (even if the peptide ID for y has a much higher confidence score than the

two peptide IDs for x).

Note that for our experiments, since we only use results from three search

engines there can be only 1-1-1 (three way) or 1-1 (two way) ties in voting. When

breaking ties we can simply use the E-value or eFDR score of the single search

engine peptide ID in each voting bloc.

Initially, peptide IDs are gathered for all spectra from all search engines. Either

the search engine E-value or its eFDR score is used. Estimated FDR scores are

calculated for each search engine, per spectrum, based on search results for a decoy

(shuffled) database. The differences between voting heuristics are in how ties are

broken, and what scores are assigned to the selected peptide ID. The following

heuristics were tested:

106

MIN-Evalue Combiner. Select peptide ID with the minimum (best) search engine

E-value, regardless of number of votes. Does not rely on voting or consensus.

MIN-eFDR Combiner. Select peptide ID with the minimum (best) estimated FDR,

regardless of number of votes. Does not rely on voting or consensus.

V-Evalue Combiner. Select peptide ID with the largest number of votes. Break ties

by selecting peptide ID with minimum (best) search engine E-value. Assign score

as minimum E-value among agreeing peptide IDs. Intuitively, the E-value combiner

relies on the accuracy of unnormalized scores output by each search engine. Search

engines reporting more optimistic scores will have a greater effect on the scores

output by the E-value combiner heuristic.

V-MIN eFDR Combiner. Select peptide ID with the largest number of votes.

Break ties by selecting peptide ID with minimum (best) eFDR. Assign score as

minimum eFDR among agreeing peptide IDs. Intuitively, selecting the minimum

eFDR represents an optimistic estimate of statistical significance of the selected

peptide ID.

V-MAX eFDR Combiner. Select peptide ID with the largest number of votes.

Break ties by selecting peptide ID with minimum (best) eFDR. Where there are

multiple agreeing peptide IDs, assign score as the maximum eFDR among the agree-

ing peptide IDs. Intuitively, selecting the maximum eFDR represents a conservative

estimate of statistical significance of the selected peptide ID. Note that V-MIN and

107

V-MAX will always assign the same peptide ID to a spectrum. The only difference

is in the score assigned to the peptide ID.

V-Random Combiner. Select peptide ID with the largest number of votes. Break

ties by randomly selecting peptide ID with equal probability. Assign score by ran-

domly selecting scores from agreeing peptide IDs (with equal probability). Intu-

itively, the random combiner represents a middle-of the road estimate of statistical

significance of the selected peptide ID.

Pre-determined Combiners. Select peptide ID with the largest number of votes.

Break ties based on a predetermined ordering between search engines. V-TMO

(Tandem > Mascot > OMSSA), V-MTO (Mascot > Tandem > OMSSA), and

V-OMT (OMSSA > Mascot > Tandem) represent three possible fixed orderings

between search engines. Assign score among agreeing peptide IDs using the same

ordering. Intuitively, the pre-determined combiner represents a preference for a

particular search engine.

Vote-3 Combiner. Similar to the V-MIN eFDR combiner, but only selects peptide

IDs if all three search engines agree on the peptide selected. Intuitively, the Vote-3

Combiner is the most conservative consensus-based combiner.

Vote-2 Combiner. Similar to the V-MIN eFDR combiner, but only selects peptide

IDs if all three search engines agree on the peptide selected, or if two search engines

select the same peptide and the third search engine does not select any peptide.

108

Intuitively, the Vote-2 Combiner is a conservative consensus-based combiner which

allows a single search engine to veto any peptide ID if it chooses a different peptide

for a spectrum.

3.3.5 PepArML Framework

3.3.5.1 Supervised Machine Learning Algorithm

The machine learning combiner PepArML (Peptide identification Arbiter by

Machine Learning) models the peptide identification problem as a classification prob-

lem. PepArML classifies each spectrum’s peptide IDs, generated by one or more

search engines, as either true or false with some confidence. For each spectrum, the

peptide ID classified as true with highest confidence is the predicted correct peptide

ID.

Feature vector. In addition to raw scores and E-values, search engines compute

(and report) many additional metrics characterizing peptide IDs (e.g., number of

matched ions). Using a machine learning framework makes it possible to use these

additional metrics to predict the correctness of peptide IDs with little additional

effort. A feature vector is constructed for each peptide identification, per spectrum

(peptide-spectrum pair). Figure 3.11 shows the structure of vector. It consists

of scores, E-values and additional metrics from each search engine. When search

engines assign spectra to different peptides, the score, E-value, and other metrics

computed by a search engine may be absent for particular peptide-spectrum pair, in

109

which case the values are set to sentinels. An additional sentinel feature, per search

engine, is set to indicate the presence or absence of the search engine’s features for

a particular peptide-spectrum pair. Scores and other metrics can be extracted or

computed directly from the search engines’ outputs, and easily added to the feature

vector. At current stage of PepArML design, there is no effort made to eliminate fea-

tures that may be correlated or have poor predictive performance. Current peptide

ID feature vector is shown in Table 3.5.

Figure 3.11: Feature Vector

Random Forest training (5-fold) and testing. For PepArML we chose to use the

Random Forest algorithm, developed by Leo Breiman, a statistician at the Univer-

sity of California Berkeley. It is a meta machine learning classifier which builds

multiple decision trees. Each tree is built with random training samples and ran-

domly selected attributes set at each tree node. The final decision is made by the

result of majority vote. We chose Random Forest because it doesn’t impose any

statistical models on the attribute distribution, and thus should yield better oppor-

110

Search Engine Sequence # Description

—
1 Peptide length

Tandem

2 Hyperscore

3 Precursor mass delta

4 # of matched y-ions

5 # of matched b-ions

6 # of missed cleavage

7 Sum of matched intensity

8 E-value

9 Sentinel

Mascot

10 Score

11 Precursor mass delta

12 # of matched ions

13 # of matched peaks

14 # of missed cleavages

15 E-value

16 Sentinel

OMSSA

17 p-value

18 # of matched ions

19 E-value

20 Sentinel

Table 3.5: Peptide ID feature vector, with features from Tandem, Mascot, and

OMSSA.

111

tunities for actual data properties to decide the peptide identification results.

The classifiers were trained with all possible combinations of search engines.

Classifiers using only the features of Mascot, OMSSA, and Tandem, are denoted

C-M, C-O, and C-T, respectively. Classifiers C-MO, C-TM, and C-TO use features

from Mascot and OMSSA; Tandem and Mascot; and Tandem and OMSSA, respec-

tively. Classifier C-TMO uses features from all three search engines. Each classifier

is trained and tested using 5-fold cross validation. Since the number of false peptide

IDs is larger than the number of true peptide IDs, the false peptide IDs were down-

sampled before training so that each training data set has equal number of true and

false examples.

3.3.5.2 Unsupervised Learning

For tandem mass spectra data sets derived from synthetic protein mixes, train-

ing peptide IDs can be classified as true or false based on the identity of proteins

known to be in a sample. In practice, however, the protein content of biological

samples is not known in advance. Peptide ID training sets thus cannot be con-

structed based on ground truth. One of the major novel features of PepArML is an

unsupervised training procedure developed for this case.

The unsupervised training procedure relies on two key observations. First,

many proteins in a sample can typically be confidently identified by database search

engines, even if not all the peptides or spectra from these proteins can be confidently

identified. For instance, in experiments biologists frequently consider a protein to

112

be positively identified if two or mass spectra are assigned with high confidence to

peptides from that protein.

Once a protein is positively identified (based on some quality criteria), PepArML

can then also label all other peptide IDs assigned to the protein as correct peptide

IDs in the training data. This property is where peptide identification differs from

generic machine learning classification problems. Since a single protein sequence is

longer than and can thus contain multiple short peptide sequences, assuming a pro-

tein to be correct based on two or more peptide IDs allows us to potentially assign

true labels to many other peptide IDs for the protein, despite their lower confidence.

The second observation on which the PepArML unsupervised training pro-

cedure is based is that for peptide identification, machine learning models can be

successfully trained even if the training labels are not completely correct. Classifica-

tion results from interim machine learning models may be used to re-label training

data and iteratively build more accurate models. PepArML takes advantage of this

observation to begin training models initially based on one or more high-confidence

putative true proteins, then iteratively improve the accuracy of each model by using

its classification results to label training data for newer models.

3.3.5.3 Unsupervised Learning Algorithm

The unsupervised peptide identification is carried out in an iterative procedure.

A set of putative true positive proteins are selected based on input search engines’

results, and are used to label peptide IDs. Machine learning is then applied and

113

a peptide ID classifier is trained. The trained peptide ID classifier is then used

to select new putative true positive proteins. The procedure is then iterated until

convergence. The algorithmic steps are:

Select putative true positive proteins by consensus. First, consensus peptides that

all search engines agree on are selected as initial putative true peptides. Proteins that

contain at least two such peptides and have a significant fraction of their sequence

(e.g., 10%) covered by these peptides are selected as initial putative true positive

protein set.

Iteratively refine the putative true positive proteins. Given putative true positive

proteins, all peptide IDs associated with these proteins are labeled true, with all

other peptide IDs labeled false. A classifier is trained based on the labeled data

with 5-fold cross-validation. Peptide IDs predicted as true, below some estimated

FDR value (e.g., 0.2), are selected. Proteins that contain at least two such peptides

and have certain sequence (e.g., 10%) covered by predicted true peptides are selected

to form a new putative true positive protein set.

Termination. The iterative procedure continues until the content of putative true

positive protein set is stable.

We emphasize that the set of putative true positive proteins need not to be

completely correct in order for this iterative training procedure to be successful. In

fact, we will show later in Section 3.3.8.8 that the unsupervised PepArML iterative

training method can robustly handle omission of true positive proteins, even to the

114

extent of starting training with only peptide IDs from a single true protein labeled

as true.

3.3.6 Implementation

PepArML is implemented using the software package Weka [WF05]. (Waikato

Environment for Knowledge Analysis). Weka was developed by a machine learning

research group at the University of Waikato at New Zealand for data mining. The

whole package is written in Java, and contains tools for data pre-processing, clas-

sification, regression analysis, clustering, association rules, and visualization. The

code was downloaded from http://www.cs.waikato.ac.nz/ml/weka/. We selected

Weka because of its popularity in the machine learning community.

Weka contains implementations of a number of machine learning classification

algorithms. We tested several, including Logistic Regression, support vector ma-

chines (SVM), Random Forest, AdaBoost, and naive Bayes. We chose to use the

Random Forest classifier for PepArML since it consistently outperformed the others.

3.3.7 Experimental Framework

3.3.7.1 Mass Spectra Data Sets

Three LC-MS/MS data sets were selected for evaluating the proposed ap-

proach. They were generated with known protein mixtures by three different in-

struments. The instruments use a variety of ionization, mass measurement, and

fragmentation technologies. The data sets are labeled as C8, S17, and AURUM.

115

C8 A mixture of 20ng each of eight protein standards (Table 3.6 lists the 8 pro-

teins in the sample plus Trypsin) was prepared. Urea and DTT were added

with final concentrations of 8 M and 1 mg/mL, respectively, and incubated at

37℃ for 2 hr under nitrogen. Iodoacetamide was added to a concentration of 2

mg/mL and kept at room temperature for 1 hr in the dark. Trypsin was added

at a 1:20 (w/w) enzyme to substrate ratio and incubated overnight at 37℃.

The protein digest was desalted using a reversed-phase trap column (Michrom

Bioresources, Auburn, CA) and lyophilized to dryness using a SpeedVac (Ther-

moSavant, San Jose, CA), and then stored at -80℃.

For LC-MS the peptide mixture was injected onto a trap column (3 cm x 200

micron i.d. x 365 micron o.d.) packed with 5 micron porous C18 reversed-

phase particles. The peptide fraction was subsequently analyzed by nano-

RPLC equipped with an Ultimate dual-quaternary pump (Dionex, Sunnyvale,

CA) connected to a fused-silica capillary (50 micron i.d. x 365 micron o.d.).

This 15-cm long capillary was packed with 3-micron Zorbax Stable Bond (Ag-

ilent, Palo Alto, CA) C18 particles.

Nano-RPLC separation was performed at a flow rate of 200 nL/min using a

5-45% linear acetonitrile gradient over 100 min with the remaining 20 min for

column regeneration and equilibration. The peptide eluants were monitored

using a linear ion-trap mass spectrometer (LTQ, ThermoFinnigan, San Jose,

CA) operated in a data dependent mode. Full scans were collected from 400–

1400 m/z and 5 data dependent MS/MS scans were collected with dynamic

116

exclusion set to 30 sec.

C8 contains a total of 3812 MS/MS spectra, including 504 (13.2%) true positive

spectra assignable to peptides from the expected proteins.

S17 1244 MS/MS spectra from the Sashimi project data repository (http://sashimi.

sourceforge.net) data set 17mix test2, representing a tryptic digest of stan-

dard proteins (Table 3.7 lists proteins in the sample) analyzed with a Micro-

mass Q-TOF Ultima. The S17 data set contains 247 (19.9%) true positive

spectra assignable to peptides from the expected proteins.

AURUM 10082 MS/MS spectra from the Aurum 1.0 data set [FVK+07]. Spectra

were generated using a MALDI TOF-TOF instrument, (Applied Biosystems

4700) from 246 commercially sourced human proteins synthetically expressed

in E. coli, checked for purity, digested with trypsin, and spotted, one protein

per MALDI spot, for analysis. All spectra from spots with AURUM peptide

identification annotations were used. The AURUM data set contains 4061

(40.3%) true positive spectra assignable to peptides from the AURUM anno-

tation proteins.

117

Name Accession Description Organism

1. ADH1 YEAST P00330 Alcohol dehydrogenase 1 S. cerevisiae

2. PYGM RABIT P00489 Glycogen phosphorylase O. cuniculus

3. CAH2 BOVIN P00921 Carbonic anhydrase II B. taurus

4. ALBU BOVIN P02769 Serum albumin B. taurus

5. SODC BOVIN P00442 Superoxide dismutase B. taurus

6. CYC HORSE P00004 Cytochrome c E. caballus

7. MYG HORSE P68082 Myoglobin E. caballus

8. RNAS1 BOVIN P61823 Ribonuclease pancreatic B. taurus

9. ADH2 YEAST P00331 Alcohol dehydrogenase 2 S. cerevisiae

10. TRYP PIG P00761 Trypsin S. scrofa

Table 3.6: Proteins in Calibrant protein mixture (C8).

118

Name Accession Description Organism

1. AMY BACLI P06278 Alpha-amylase B. licheniformis

2. BGAL ECOLI P00722 Beta-galactosidase E. coli

3. PPB ECOLI P00634 Alkaline phosphatase E. coli

4. OVAL CHICK P01012 Ovalbumin G. gallus

5. G3P RABIT P46406 Glyceraldehyde-3-phosphate O. cuniculus

dehydrogenase

6. MLE1 RABIT P02602 Myosin O. cuniculus

7. PYGM RABIT P00489 Glycogen phosphorylase O. cuniculus

8. ALBU BOVIN P02769 Serum albumin B. taurus

9. MYSS RABIT P02562 Myosin heavy chain O. cuniculus

10. CAH2 BOVIN P00921 Carbonic anhydrase B. taurus

11. CASB BOVIN P02666 Beta-casein B. taurus

12. CATA BOVIN P00432 Catalase B. taurus

13. LACB BOVIN P02754 Beta-lactoglobulin B. taurus

14. LALBA BOVIN P00711 Alpha-lactalbumin B. taurus

15. TRFE BOVIN Q29443 Serotransferrin B. taurus

16. ACTA HUMAN P62736 Actin H. sapiens

17. ALBU HUMAN P02768 Serum albumin H. sapiens

18. MYG HORSE P68082 Myoglobin E. caballus

19. PHS2 RABIT Glycogen Phosphorylase O. cuniculus

20. MLRS RABIT P02608 Myosin regulatory light chain 2 O. cuniculus

21. MLRT RABIT P24732 Myosin regulatory light chain 2 O. cuniculus

22. MYH2 RABIT Myosin O. cuniculus

23. MYH1 RABIT Myosin O. cuniculus

24. MYH13 RABIT Myosin O. cuniculus

25. MYH4 RABIT Q28641 Myosin-4 O. cuniculus

26. MYH8 RABIT Myosin O. cuniculus

Table 3.7: Proteins in Sashimi protein mixture (S17).

119

3.3.7.2 Tandem Mass Spectra Search Engines and Protein Sequence

Database

Three sequence database search engines were used to identify the tandem

mass spectra: X!Tandem [CB04], Release 2007.07.01; MASCOT [PPCC99], version

2.1.03; and OMSSA [GMK+04], version 2.1.0. Search parameters are summarized

in Table 3.8. For X!Tandem, refinement mode is turned off to make sure X!Tandem

doesn’t take advantage of the refined search procedure.

Two protein sequence databases were used: UniProtKB/Swiss-Prot (version

53.0) and Human International Protein Index (IPI-Human) (version 3.32). Data sets

C8 and S17 were searched against Swiss-Prot, while data set AURUM was searched

against IPI-Human. For each sequence database, a decoy database was also created.

It consists of randomly shuffled sequences. Search results from the decoy database

were used for estimating false discovery rates (FDR), using the method described

by Elias et al. [EHFG05a].

When searching tandem mass spectra data sets against protein sequence databases,

each search engine generates zero, one, or more peptide IDs for each spectrum. Also

because each search engine has its own algorithm for selecting candidate peptides,

filtering noisy spectra, assigning peptide ID score and assessing the quality and sta-

tistical significance of peptide-spectrum match, the peptide IDs are different among

search engines.

For the proposed approach, only the top ranked peptide ID is extracted from

each search engine for each spectrum. Peptide IDs corresponding to an expected

120

protein, which belongs to the synthetic protein mix or the selected putative true

protein set, are considered correct. The vector corresponding to this peptide is

assigned as “true”, regardless of E-value, score or number of agreeing search engines.

All other peptide IDs are considered incorrect and the corresponding vectors are

assigned as “false”.

121

Search Parameter C8 S17 AURUM

Data Base Swiss-Prot Swiss-Prot IPI Human

Mass Error Unit Dalton Dalton Dalton

Fragment Mass Tolerance 0.6 0.2 0.4

Parent Mass Tolerance 2.0 2.0 2.0

Maximum Missed Cleavages 1 1 1

Enzyme Trypsin Trypsin Trypsin

Fixed Modification Carbamidomethyl(C) Carbamidomethyl(C) Carbamidomethyl(C)

Variable Modification Oxidation(M) Oxidation(M) Oxidation(M)

Table 3.8: Search Engine Parameters for Spectra Data Sets

122

3.3.8 Experimental Results

3.3.8.1 Search Engine E-value vs. Estimated False Discovery Rate

We first briefly examine the peptide identification scoring technique for each

search engine. In Figure 3.12, the left column compares each search engine’s esti-

mated statistical significance (E-values) and false discovery rate (FDR). The results

are collected based on three spectra data sets searched with three search engines.

Since E-value for certain score S is defined as the estimated number of false peptide

identifications with score equal or better than S, and FDR is defined as the per-

centage of false positives among the declared significant results, E-value and FDR

represent similar concepts when measuring the sensitivity of peptide identification

results.

Ideally, there should be linear correspondence between E-values calculated

by each search engine and experimentally measured FDR. However, we see in Fig-

ure 3.12 that the actual result are quite different. E-values for both Tandem and

Mascot tend to increase quickly for low FDR values, then level out and grow much

more slowly. OMMSA E-values are linear but fairly flat. In addition, we see that

E-values do not correspond to actual measured FDR. For instance, an E-value of 0.5

implies that half of all predictions are correct. However, the graph for each search

engine E-value=0.5 does not yield the appropriate FDR for each data set.

Comparing E-values produced by different search engines is also difficult. Be-

cause the statistical models for estimating E-values are different in each search

engine, the same E-value given by different search engines may correspond to differ-

123

ent FDR. In practice results show E-values of search engines were frequently overly

optimistic or pessimistic. E-values thus do not appear to be sufficiently precise to

estimate the number of false hits by each search engine. Even worse, not only is the

correlation between E-values and FDR poor, the relative accuracy for each search

engine changes for different data sets. We can conclude that E-values are unlikely

to be a good metric for comparing search engine performance or combining multiple

search engine results.

In comparison, we found that estimated FDR (eFDR) values were better cor-

related to true FDR values. The right column of Figure 3.12 presents the true

FDR values for corresponding eFDR values for all three data sets. The correla-

tion between eFDR and FDR is much better than between E-values and FDR. We

see that eFDR values computed from decoy databases are somewhat pessimistic

(under-predicting true FDR) but generally linearly correlated, and more consistent

than E-values across all three data sets. Estimating FDR based on experimental

decoy (reverse/shuffle) database search thus appears to be a better approach for

predicting the statistical significance of peptide IDs.

3.3.8.2 Heuristic Combiner Comparisons

Next, we compare the sensitivity of the different heuristics for combining search

engine results. Figures 3.13, 3.14 and 3.15 show the ROCs of different heuristics for

each mass spectra data set. Table 3.9 lists sensitivity at 10% and 20% FPR for each

heuristic combiner.

124

0 0.5 1
0

0.5

1
Tandem FDR vs. e−value

T
ru

e
F

D
R

0 0.5 1
0

0.5

1
Tandem FDR

T
ru

e
F

D
R

0 0.5 1
0

0.5

1
Mascot FDR vs. e−value

T
ru

e
F

D
R

0 0.5 1
0

0.5

1
Mascot FDR

T
ru

e
F

D
R

0 0.5 1
0

0.5

1
OMSSA FDR vs. e−value

T
ru

e
F

D
R

E−value

C8
S17
Aurum

0 0.5 1
0

0.5

1
OMSSA FDR

T
ru

e
F

D
R

Estimated FDR

C8
S17
Aurum

Figure 3.12: Correlation between FDR, E-value and estimated FDR

125

The main observation is that both the absolute and relative performance of

each heuristic combiner is data set dependent. For C8 V-MIN and MIN-eFDR tend

to be the most sensitive, and Vote-3 and V-MAX the least. For S17 Vote-3 and

Vote-2 are the most sensitive, while V-MAX is significantly worse than all other

combining heuristics (except for very small FPR values, where it is the best). For

AURUM V-MIN and MIN-eFDR are again the most sensitive. V-MAX and V-OMT

are the least sensitive, but only by a small margin.

Overall, we see that the V-MAX combiner tends to be less accurate than the

other heuristics. Apparently always conservatively selecting higher (worse) eFDR

values for its output appears to reduces the heuristic’s sensitivity. Vote-3 appears

to be too conservative for C8, but not for the other data sets.

The performance of the voting heuristic V-MIN and the non-voting heuristic

MIN-eFDR are very similar. Both heuristics choose the minimum (best) eFDR

value, but V-MIN only does so among the peptide IDs with the greatest agreement.

For our datasets the similarity in the output of the two heuristics indicate the best

eFDR values usually occurs only in the largest group of agreeing peptide IDs. In

other words, agreement and high eFDR scores are very well correlated in our data

sets.

Similar to V-MIN and Min-eFDR, the sensitivity of the voting heuristic V-

Evalue and the non-voting heuristic MIN-Evalue are also very similar. Both heuris-

tics choose the minimum (best) E-value, but V-Evalue only does so among the

peptide IDs with the greatest agreement.

The power of consensus is demonstrated by the sensitivity of the Vote-3 and

126

Vote-2 heuristics for the S17 data set, where for FPR values between 0.02 and

0.1 either Vote-3 or Vote-2 is significantly more sensitive than the other heuristics.

However, Vote-3 and Vote-2 do not perform as well for the C8 and AURUM data

sets.

In most cases, results seem to indicate that except for V-MAX, the perfor-

mance of the eFDR based heuristic combiners (V-MIN, V-Random, V-TMO, V-

MTO, and V-OMT) are about the same, with V-MIN slightly more sensitive overall.

This seems to indicate that search engine eFDR scores are fairly similar when the

same peptide ID is selected.

Finally, comparing the use of E-values (V-Evalue and MIN-evalue) versus

eFDR scores (V-MIN, MIN-eFDR, etc.), we see that heuristics using E-values per-

form well for AURUM (tied with eFDR) but are slightly less sensitive for C8 and

S17.

Since the V-MIN combiner usually achieves the best sensitivity, we will refer

to it as Voting and use it as the representative voting heuristic for comparisons with

machine learning methods in the remainder of the chapter.

127

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1
C8 Heuristic ROC

False Positive Rate

T
ru

e
Po

si
tiv

e
R

at
e

V−MIN
MIN−eFDR
V−Random
V−TMO
V−MTO
V−OMT
V−Evalue
MIN−Evalue
Vote−2
Vote−3
V−MAX

Figure 3.13: Heuristics for C8 Spectra Set

128

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1
S17 Heuristic ROC

False Positive Rate

T
ru

e
Po

si
tiv

e
R

at
e

V−MIN
MIN−eFDR
V−Random
V−TMO
V−MTO
V−OMT
V−Evalue
MIN−Evalue
Vote−2
Vote−3
V−MAX

Figure 3.14: Heuristics for S17 Spectra Set

129

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1
Aurum Heuristic ROC

False Positive Rate

T
ru

e
Po

si
tiv

e
R

at
e

V−MIN
MIN−eFDR
V−Random
V−TMO
V−MTO
V−OMT
V−Evalue
MIN−Evalue
Vote−2
Vote−3
V−MAX

Figure 3.15: Heuristics for AURUM Spectra Set

130

C8 S17 AURUM

Classifiers 10% FPR 20% FPR 10% FPR 20% FPR 10% FPR 20% FPR

MIN-Evalue 0.74 0.77 0.69 0.81 0.85 0.88

MIN-eFDR 0.78 0.82 0.76 0.80 0.86 0.89

V-Evalue 0.73 0.75 0.70 0.79 0.84 0.87

V-MIN 0.78 0.81 0.75 0.79 0.85 0.88

V-MAX 0.65 0.73 0.57 0.65 0.79 0.83

V-Random 0.72 0.75 0.68 0.76 0.80 0.83

V-TMO 0.69 0.72 0.72 0.77 0.83 0.87

V-MTO 0.67 0.71 0.72 0.78 0.79 0.81

V-OMT 0.76 0.80 0.64 0.70 0.77 0.80

Vote-2 0.73 0.75 0.76 0.80 0.81 0.84

Vote-3 0.57 0.61 0.71 0.77 0.76 0.79

Table 3.9: Sensitivity vs. False Positive Rate (FPR) for Heuristic Combiners. Best

sensitivity for each FPR & data set in bold.

131

3.3.8.3 Voting Heuristics vs. Search Engine Comparisons

We now compare the sensitivity of some voting heuristics (V-MIN, Vote-2,

Vote-3) with that of the individual search engines (Tandem, Mascot, OMSSA).

Figures 3.16, 3.17, and 3.18 show the resulting ROC curves.

We see that even relatively simple heuristic combiners can improve sensitivity.

except for very low FPR values (< 0.01), heuristic combiners are more sensitive

than any individual search engine. At higher FPR values, only the Vote-3 heuristic

combiner is less sensitive than individual search engines. This result is in line with

earlier observations that individual search engines miss many correct peptide IDs

found by other search engines. In fact, no single search engine is consistently more

sensitive than the others across all three data sets. OMSSA is most sensitive for C8,

Mascot for S17, and Tandem for AURUM.

132

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1
C8 Heuristic ROC

False Positive Rate

T
ru

e
Po

si
tiv

e
R

at
e

V−MIN
Vote−2
Vote−3
Tandem
Mascot
OMSSA

Figure 3.16: Heuristics vs. Single Search Engine Comparison for C8 Spectra Set

133

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1
S17 Heuristic ROC

False Positive Rate

T
ru

e
Po

si
tiv

e
R

at
e

V−MIN
Vote−2
Vote−3
Tandem
Mascot
OMSSA

Figure 3.17: Heuristics vs. Single Search Engine Comparison for S17 Spectra Set

134

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1
Aurum Heuristic ROC

False Positive Rate

T
ru

e
Po

si
tiv

e
R

at
e

V−MIN
Vote−2
Vote−3
Tandem
Mascot
OMSSA

Figure 3.18: Heuristics vs. Single Search Engine Comparison for AURUM Spectra

Set

135

3.3.8.4 Supervised Machine Learning Performance

Having seen that heuristic combiners work quite well, we now explore whether

machine learning is really needed to combine search engine results. We present our

experimental evaluation in three sets of graphs: ROC curves, sensitivity vs. FDR

plots, and sensitivity vs. estimated FDR (eFDR) plots. Results for each data set are

placed in six separate graphs to make comparisons easier (with data for the voting

heuristic and overall combined classifier C-TMO replicated on all graphs).

ROC Curves

We begin with classic ROC curves that compare sensitivity and selectivity

tradeoffs for each algorithm. Classifier and search engine ROC curves for each data

set are shown in Figures 3.19 (C8), 3.20 (S17), and 3.21 (AURUM), with six sets

of graphs for each data set. In each graph, the y-axis represents true positive rate

(sensitivity), and the x-axis represents false positive rate (1-specificity). The three

graphs on the left of each figure present ROC curves for classifiers C-T, C-M, and

C-O (displayed as solid lines) and for search engines Tandem, Mascot, and OMSSA

(displayed as dotted lines). The three graphs on the right of each figure present ROC

curves for classifiers C-TM, C-MO, and C-TO (displayed as solid lines). ROC curves

for C-TMO (displayed as dash-dotted lines) and Voting (V-MIN eFDR) (displayed

as dashed lines) are included in all graphs for comparison. Note that the ROC

curves only display smaller false positive rates from 0 to 0.2, which are the most

interesting to biologists.

136

0 0.1 0.2
0

0.5

1
MASCOT ROC

T
ru

e
Po

si
tiv

e
R

at
e

0 0.1 0.2
0

0.5

1
OMSSA ROC

False Positive Rate

T
ru

e
Po

si
tiv

e
R

at
e

0 0.1 0.2
0

0.5

1
Tandem ROC

T
ru

e
Po

si
tiv

e
R

at
e

0 0.1 0.2
0

0.5

1
MASCOT_OMSSA ROC

T
ru

e
Po

si
tiv

e
R

at
e

0 0.1 0.2
0

0.5

1
OMSSA_Tandem ROC

False Positive Rate

T
ru

e
Po

si
tiv

e
R

at
e

0 0.1 0.2
0

0.5

1
Tandem_MASCOT ROC

T
ru

e
Po

si
tiv

e
R

at
e

Figure 3.19: ROC curves for C8. Classifiers (solid line) and search engines (dotted

line) are presented in each graph. C-TMO classifier (dash-dotted line) and Voting

combiner (dashed line) are included in all graphs.

137

0 0.1 0.2
0

0.5

1
MASCOT ROC

T
ru

e
Po

si
tiv

e
R

at
e

0 0.1 0.2
0

0.5

1
OMSSA ROC

False Positive Rate

T
ru

e
Po

si
tiv

e
R

at
e

0 0.1 0.2
0

0.5

1
Tandem ROC

T
ru

e
Po

si
tiv

e
R

at
e

0 0.1 0.2
0

0.5

1
MASCOT_OMSSA ROC

T
ru

e
Po

si
tiv

e
R

at
e

0 0.1 0.2
0

0.5

1
OMSSA_Tandem ROC

False Positive Rate

T
ru

e
Po

si
tiv

e
R

at
e

0 0.1 0.2
0

0.5

1
Tandem_MASCOT ROC

T
ru

e
Po

si
tiv

e
R

at
e

Figure 3.20: ROC curves for S17. Classifiers (solid line) and search engines (dotted

line) are presented in each graph. C-TMO classifier (dash-dotted line) and Voting

combiner (dashed line) are included in all graphs.

138

0 0.1 0.2
0

0.5

1
MASCOT ROC

T
ru

e
Po

si
tiv

e
R

at
e

0 0.1 0.2
0

0.5

1
OMSSA ROC

False Positive Rate

T
ru

e
Po

si
tiv

e
R

at
e

0 0.1 0.2
0

0.5

1
Tandem ROC

T
ru

e
Po

si
tiv

e
R

at
e

0 0.1 0.2
0

0.5

1
MASCOT_OMSSA ROC

T
ru

e
Po

si
tiv

e
R

at
e

0 0.1 0.2
0

0.5

1
OMSSA_Tandem ROC

False Positive Rate

T
ru

e
Po

si
tiv

e
R

at
e

0 0.1 0.2
0

0.5

1
Tandem_MASCOT ROC

T
ru

e
Po

si
tiv

e
R

at
e

Figure 3.21: ROC curves for AURUM. Classifiers (solid line) and search engines

(dotted line) are presented in each graph. C-TMO classifier (dash-dotted line) and

Voting combiner (dashed line) are included in all graphs.

139

C8 S17 AURUM

Classifiers 5% FPR 10% FPR 5% FPR 10% FPR 5% FPR 10% FPR

C-TMO 0.79 0.86 0.76 0.85 0.87 0.91

C-TM 0.73 0.77 0.79 0.81 0.86 0.91

C-MO 0.74 0.82 0.73 0.80 0.80 0.83

C-TO 0.76 0.84 0.75 0.79 0.86 0.88

C-T 0.67 0.70 0.71 0.74 0.84 0.88

C-M 0.65 0.70 0.71 0.77 0.78 0.83

C-O 0.68 0.78 0.60 0.69 0.69 0.73

Voting 0.73 0.78 0.63 0.75 0.81 0.85

Table 3.10: Sensitivity vs. False Positive Rate (FPR) for Classifiers. Best sensitivity

for each FPR & data set in bold.

140

Table 3.10 presents the sensitivity at 5% and 10% FPR for each classifier and

Voting heuristic combiner. These values correspond to the height of each curve at

the 0.05 and 0.1 points on the x-axis of each of the ROC graphs.

The main observation is that C-TMO (dash-dotted line), the classifier built

using all three search engines, generally yields the best sensitivity overall. Minor

exceptions exist for very small values of FPR, particularly when compared to C-T

for S17. C-TMO outperforms not just single search engine scores and classifiers,

but also the V-MIN heuristic combiner. Differences are small for very small FPR

values, but by 10% FPR the increase in sensitivity is significant. Combining results

using machine learning thus appears more successful than heuristic combiners.

As previous researchers have discovered, results also show classifiers using only

features from a single search engine (solid lines on left) are generally more sensitivity

than the original search engines (dotted lines on left). Gains are consistent for C-T

and C-M; however, C-O (the classifier built using features from OMSSA) is less

sensitive than OMSSA for AURUM and for low FPR values for C8, possibly due to

the small number of features output by OMSSA.

Finally, results demonstrate that classifiers built using features from two search

engines (C-TM, C-MO, C-TO, solid lines on right) are almost as sensitive as C-

TMO. Overall, sensitivity results vary somewhat depending on the data set tested,

but general trends remain mostly consistent.

Similar observations may be drawn from the area under ROC (AUROC) plots

in Figure 3.22. Note that our ROC graphs display the section of ROC of greater

interest to biologist (FPR values between 0 and 0.2), but AUROC is computed as

141

Figure 3.22: AUROC for each classifier and search engine. The y-axis represents the

area under the ROC curve (AUROC) for each classifier. Each classifier is displayed

as a bar and arranged along the x-axis. Classifiers are arranged in three groups, one

for each data set.

142

the area under the full ROC graph (FPR values between 0 and 1). Results show that

when compared using AUROC, C-TMO is more sensitive than all other algorithms

for all three data sets.

Sensitivity vs. FDR

Previous ROC graphs measured sensitivity with respect to the false positive

rate (FPR). We now examine sensitivity achieved with respect to different values for

the false discovery rate (FDR). Because of the differences between FPR and FDR,

these results focus on sensitivity for score thresholds corresponding to very small

FPR values (on the far left) of ROC graphs.

Figures 3.23, 3.24 and 3.25 show relationship of sensitivity vs. FDR, with six

sets of graphs for each data set. In each graph, the y-axis represents sensitivity, and

the x-axis represents FDR. The three graphs on the left of each figure present the

curves for classifiers C-T, C-M, and C-O (displayed as solid lines) and for search

engines Tandem, Mascot, and OMSSA (displayed as dotted lines). The three graphs

on the right of each figure present the curves for classifiers C-TM, C-MO, and C-TO

(displayed as solid lines). The curve for C-TMO (displayed as dash-dotted lines) is

included in all graphs for comparison.

143

0 0.2 0.4
0

0.5

1
MASCOT

T
ru

e
Po

si
tiv

e
R

at
e

0 0.2 0.4
0

0.5

1
OMSSA

False Discovery Rate

T
ru

e
Po

si
tiv

e
R

at
e

0 0.2 0.4
0

0.5

1
Tandem

T
ru

e
Po

si
tiv

e
R

at
e

0 0.2 0.4
0

0.5

1
MASCOT_OMSSA

T
ru

e
Po

si
tiv

e
R

at
e

0 0.2 0.4
0

0.5

1
OMSSA_Tandem

False Discovery Rate

T
ru

e
Po

si
tiv

e
R

at
e

0 0.2 0.4
0

0.5

1
Tandem_MASCOT

T
ru

e
Po

si
tiv

e
R

at
e

Figure 3.23: Sensitivity vs. FDR curves for C8. Classifiers (solid line) and search

engines (dotted line) are presented in each graph. C-TMO classifier (dash-dotted

line) is included in all graphs.

144

0 0.2 0.4
0

0.5

1
MASCOT

T
ru

e
Po

si
tiv

e
R

at
e

0 0.2 0.4
0

0.5

1
OMSSA

False Discovery Rate

T
ru

e
Po

si
tiv

e
R

at
e

0 0.2 0.4
0

0.5

1
Tandem

T
ru

e
Po

si
tiv

e
R

at
e

0 0.2 0.4
0

0.5

1
MASCOT_OMSSA

T
ru

e
Po

si
tiv

e
R

at
e

0 0.2 0.4
0

0.5

1
OMSSA_Tandem

False Discovery Rate

T
ru

e
Po

si
tiv

e
R

at
e

0 0.2 0.4
0

0.5

1
Tandem_MASCOT

T
ru

e
Po

si
tiv

e
R

at
e

Figure 3.24: Sensitivity vs. FDR curves for S17. Classifiers (solid line) and search

engines (dotted line) are presented in each graph. C-TMO classifier (dash-dotted

line) is included in all graphs.

145

0 0.2 0.4
0

0.5

1
MASCOT

T
ru

e
Po

si
tiv

e
R

at
e

0 0.2 0.4
0

0.5

1
OMSSA

False Discovery Rate

T
ru

e
Po

si
tiv

e
R

at
e

0 0.2 0.4
0

0.5

1
Tandem

T
ru

e
Po

si
tiv

e
R

at
e

0 0.2 0.4
0

0.5

1
MASCOT_OMSSA

T
ru

e
Po

si
tiv

e
R

at
e

0 0.2 0.4
0

0.5

1
OMSSA_Tandem

False Discovery Rate

T
ru

e
Po

si
tiv

e
R

at
e

0 0.2 0.4
0

0.5

1
Tandem_MASCOT

T
ru

e
Po

si
tiv

e
R

at
e

Figure 3.25: Sensitivity vs. FDR curves for AURUM. Classifiers (solid line) and

search engines (dotted line) are presented in each graph. C-TMO classifier (dash-

dotted line) is included in all graphs.

146

We see that as with ROC curves, in all three data sets the dash-dotted line

(representing C-TMO) is generally above all other lines (demonstrating greater sen-

sitivity). For AURUM C-TMO is almost always best, but for C8 and S17, some

Tandem-based classifiers (C-T, C-TO) have better sensitivity at smaller FDR val-

ues. These results confirm our earlier conclusions that combining search engine

results using machine learning is very sensitive.

A problem that is noticeable in these graphs is that for the C8 and AURUM

data sets at very small FDR values, even individual search engines have better

sensitivity than any classifier. It turns out that the sensitivity problem with very

low FDR values is caused by the underlying Random Forest algorithm employed by

classifiers. Setting the threshold at a very low FDR value is equivalent to selecting a

very small number of high-confidence peptide IDs. Search engines have no problems

with doing so, since they can just pick peptide IDs with very low E-values (e.g.,

10−60). Peptide ID scores generated by Random Forest, in comparison, are between

0 and 1.0 based on the fraction of decisions tree voting for the peptide ID. The best

score is 1.0, indicating all trees voted for the correctness of the peptide ID.

Since the current PepArML implementation uses 100 trees, with a large num-

ber of spectra we will find several peptide IDs with the highest score (1.0). Without

using additional trees, PepArML cannot distinguish the “best” peptide ID from this

top group. As a result the proportion of true peptide IDs within this top-scoring

group establishes the baseline minimum FDR reported in our experiments, prevent-

ing the classifier from improving performance for small FDR values.

For instance, assume 20 peptide IDs all receive the highest score from Random

147

Forest (1.0, indicating unanimous yes votes from all trees). However, only 19 of the

peptide IDs are correct, meaning that the lowest FDR possible is 0.05 (1 in 20). In

comparison, when using just the search engine score, it is possible to achieve a FDR

of 0.0 if the highest scoring peptide ID is correct.

Using larger numbers of trees or other methods to distinguish between these

top-scoring, high confidence peptide IDs can ameliorate this problem for Random

Forest classifiers.

Sensitivity vs. Estimated FDR

We now examine sensitivity achieved for score thresholds representing different

estimated FDR (eFDR) values. Figures 3.26, 3.27 and 3.28 show relationship of

sensitivity vs. estimated FDR (eFDR), with six sets of graphs for each data set.

In each graph, the y-axis represents sensitivity, and the x-axis represents estimated

false discovery rate. The three graphs on the left of each figure present the curves

for classifiers C-T, C-M, and C-O (displayed as solid lines) and for search engines

Tandem, Mascot, and OMSSA (displayed as dotted lines). The three graphs on

the right of each figure present the curves for classifiers C-TM, C-MO, and C-TO

(displayed as solid lines). The curve for C-TMO (displayed as dash-dotted lines) is

included in all graphs for comparison.

148

0 0.2 0.4
0

0.5

1
MASCOT

T
ru

e
Po

si
tiv

e
R

at
e

0 0.2 0.4
0

0.5

1
OMSSA

False Discovery Rate

T
ru

e
Po

si
tiv

e
R

at
e

0 0.2 0.4
0

0.5

1
Tandem

T
ru

e
Po

si
tiv

e
R

at
e

0 0.2 0.4
0

0.5

1
MASCOT_OMSSA

T
ru

e
Po

si
tiv

e
R

at
e

0 0.2 0.4
0

0.5

1
OMSSA_Tandem

False Discovery Rate

T
ru

e
Po

si
tiv

e
R

at
e

0 0.2 0.4
0

0.5

1
Tandem_MASCOT

T
ru

e
Po

si
tiv

e
R

at
e

Figure 3.26: Sensitivity vs. eFDR curves for C8. Classifiers (solid line) and search

engines (dotted line) are presented in each graph. C-TMO classifier (dash-dotted

line) is included in all graphs.

149

0 0.2 0.4
0

0.5

1
MASCOT

T
ru

e
Po

si
tiv

e
R

at
e

0 0.2 0.4
0

0.5

1
OMSSA

False Discovery Rate

T
ru

e
Po

si
tiv

e
R

at
e

0 0.2 0.4
0

0.5

1
Tandem

T
ru

e
Po

si
tiv

e
R

at
e

0 0.2 0.4
0

0.5

1
MASCOT_OMSSA

T
ru

e
Po

si
tiv

e
R

at
e

0 0.2 0.4
0

0.5

1
OMSSA_Tandem

False Discovery Rate

T
ru

e
Po

si
tiv

e
R

at
e

0 0.2 0.4
0

0.5

1
Tandem_MASCOT

T
ru

e
Po

si
tiv

e
R

at
e

Figure 3.27: Sensitivity vs. eFDR curves for S17. Classifiers (solid line) and search

engines (dotted line) are presented in each graph. C-TMO classifier (dash-dotted

line) is included in all graphs.

150

0 0.2 0.4
0

0.5

1
MASCOT

T
ru

e
Po

si
tiv

e
R

at
e

0 0.2 0.4
0

0.5

1
OMSSA

False Discovery Rate

T
ru

e
Po

si
tiv

e
R

at
e

0 0.2 0.4
0

0.5

1
Tandem

T
ru

e
Po

si
tiv

e
R

at
e

0 0.2 0.4
0

0.5

1
MASCOT_OMSSA

T
ru

e
Po

si
tiv

e
R

at
e

0 0.2 0.4
0

0.5

1
OMSSA_Tandem

False Discovery Rate

T
ru

e
Po

si
tiv

e
R

at
e

0 0.2 0.4
0

0.5

1
Tandem_MASCOT

T
ru

e
Po

si
tiv

e
R

at
e

Figure 3.28: Sensitivity vs. eFDR curves for AURUM. Classifiers (solid line) and

search engines (dotted line) are presented in each graph. C-TMO classifier (dash-

dotted line) is included in all graphs.

151

Because we can calculate estimated FDR using decoy databases, these graphs

indicate what sensitivity can be achieved in practice with real biological samples

for different algorithms. We find that unlike ROC curves, the data set chosen has

a significant impact on the relative performance of different algorithms. For the

AURUM data set C-TMO consistently achieves the best performance. C-TMO

performs almost as well for the S17 data set, except for very small eFDR values.

However, for the C8 data set C-TMO underperforms both the C-T, C-TM, and C-M

classifiers and individual search engines for small values of eFDR.

Note that the actual sensitivity of the classifier remains unchanged. The prob-

lem is caused by the difficulty of using eFDR to selecting the appropriate score

threshold for the desired sensitivity. These results point out potential difficulties

with using eFDR when ground truth is not known.

3.3.8.5 Machine Learning Method Comparisons

We also used Weka to compare different machine learning methods (Random

Forest, Logistic Regression, AdaBoost and Naive Bayes) to measure their perfor-

mance on all three data sets when when combining all three search engine results.

Table 3.11 describes the machine learning methods and their default parameters.

The performance of these machine learning methods for combining all three

search engines are compared in Figures 3.29, 3.30 and 3.31. Each figure gives the

ROC curves of different machine learning methods. Results for SVM on data set

AURUM are omitted because of its long running time.

152

Algorithms Description

Logistic Regression Build multinomial logistic regression model with a ridge

estimator. The log-likelihood of ridge value is 1.0E-8 and

maximum number of iterations is -1.

SVM The polynomial kernel:

K(x, y) =< x, y >p or K(x, y) = (< x, y > +1)p, p = 4

John Platt’s sequential minimal optimization algorithm

for training.

Random Forest Construct a forest of random trees with unlimited depth

of trees and the number of trees to be generated is 10.

AdaBoost Boost a nominal class classifier DecisionStump using the

Adaboost M1 method without resampling. Number of

iteration is 10 and weight threshold is 100.

Naive Bayes Naive Bayesian classifier using estimator classes.

Table 3.11: Machine Learning Classification Algorithms

153

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1
Machine Learning Methods ROC for C8 Spectra Set

False Positive Rate

T
ru

e
Po

si
tiv

e
R

at
e

Random Forest
Logistic Regression
AdaBoost
SVM
Bayes

Figure 3.29: Machine Learning Classifiers for C8 Spectra Set

154

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1
Machine Learning Methods ROC for S17 Spectra Set

False Positive Rate

T
ru

e
Po

si
tiv

e
R

at
e

Random Forest
Logistic Regression
AdaBoost
SVM
Bayes

Figure 3.30: Machine Learning Classifiers for S17 Spectra Set

155

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1
Machine Learning Methods ROC for Aurum Spectra Set

False Positive Rate

T
ru

e
Po

si
tiv

e
R

at
e

Random Forest
Logistic Regression
AdaBoost
Bayes

Figure 3.31: Machine Learning Classifiers for AURUM Spectra Set

156

The performance of Random Forest appears to be best for all data sets, except

for smaller FPR values for C8. AdaBoost and Logistic Regression are almost as sen-

sitive, and naive Bayes and SVMs perform poorly. It is possible SVM performance

can be improved with a higher order polynomial kernel, but would be even more

computationally intensive.

3.3.8.6 InfoGain For Machine Learning Features

We assess the discriminating ability of each element of the feature vector us-

ing the information gain metric. The information gain of a feature measures the

reduction in entropy or randomness when the data set is subdivided according to

the feature’s values. Information gain, called InfoGain by Weka, is one of many

useful techniques for assessing the relative importance of each feature in machine

learning classifiers, and is a property of the data set, independent of the particular

classification algorithm used. Larger InfoGain values indicate a feature is likely to

be more useful in making accurate predictions.

The InfoGain values of search engine sentinels are of particular interest. Search

engine sentinels have value 0 or 1 depending on whether the search engine result con-

tains a particular peptide-spectrum assignment as a top-ranked peptide ID. Search

engine features, which take sentinel values when missing, also provide this infor-

mation, but the significance of the sentinel values is masked by the real feature

values. The InfoGain values for sentinels can therefore help gage the benefit of the

additional search engine features; features need to achieve larger InfoGain than the

157

sentinels to demonstrate benefit over voting or consensus peptides.

Table 3.12 and Figure 3.32 shows InfoGain values computed by Weka for each

feature of the feature vector. We see that sentinels provide low InfoGain scores, indi-

cating that whether a search engine managed to make any prediction for a spectrum

to be not particularly useful. Similarly, the low InfoGain score for peptide length

indicates it is not a useful predictor of correctness. E-values and raw search engine

scores have among the highest InfoGain scores and thus provide important infor-

mation. Number of ions matched is also useful. Surprisingly, precursor mass delta

(the difference between expected vs. measured precursor mass) is a good indicator.

3.3.8.7 Generality of Machine Learning Model

Table 3.12 shows large variation in InfoGain and relative rank for each feature

between data sets. This suggests that a classifier model trained on one data set may

perform poorly when applied to another. To demonstrate this effect, we applied the

classifier trained on the C8 data set to the S17 data set, and compared its sensitivity

to a classifier actually trained on the S17 data set. The performance comparison

between two models are shown by ROC curves in Figure 3.33.

158

Search Engine Feature C8 S17 AURUM

—
Peptide length 0.12 (14) 0.06 (20) 0.00 (20)

Tandem

Hyperscore 0.14 (9) 0.33 (6) 0.55 (2)

Precursor mass delta 0.13 (12) 0.31 (9) 0.47 (6)

of matched y-ions 0.10 (16) 0.30 (10) 0.47 (7)

of matched b-ions 0.07 (18) 0.19 (14) 0.36 (12)

of missed cleavages 0.14 (11) 0.23 (13) 0.31 (13)

Sum of matched intensity 0.15 (8) 0.17 (16) 0.29 (14)

E-value 0.28 (5) 0.38 (3) 0.58 (1)

Sentinel 0.07 (19) 0.16 (17) 0.23 (16)

Mascot

Score 0.30 (3) 0.40 (2) 0.51 (4)

Precursor mass delta 0.12 (15) 0.33 (5) 0.43 (9)

of matched ions 0.17 (6) 0.37 (4) 0.42 (11)

of matched peaks 0.13 (13) 0.24 (12) 0.22 (17)

of missed cleavages 0.14 (10) 0.18 (15) 0.26 (15)

E-value 0.28 (4) 0.40 (1) 0.52 (3)

Sentinel 0.06 (20) 0.10 (18) 0.19 (18)

OMSSA

p-value 0.34 (2) 0.32 (7) 0.47 (8)

of matched ions 0.17 (7) 0.27 (11) 0.42 (10)

E-value 0.34 (1) 0.32 (8) 0.47 (5)

Sentinel 0.10 (17) 0.10 (19) 0.13 (19)

Table 3.12: InfoGain (Rank) of features with respect to each data set.

159

0

0.1

0.2

0.3

0.4

0.5

0.6

Feature InfoGain Compare

Pe
pt

id
e

le
ng

th

Ta
nd

em
 H

yp
er

sc
or

e

Pr
ec

ur
so

r m
as

s d
el

ta

of

 m
at

ch
ed

 y
−i

on
s

of

 m
at

ch
ed

 b
−i

on
s

of

 m
is

se
d

cl
ea

va
ge

S
um

 o
f m

at
ch

ed
 in

te
ns

ity
E

−v
al

ue

Ta
nd

em
 S

en
tin

el
M

as
co

t S
co

re

P
re

cu
rs

or
 m

as
s

de
lta

of

 m
at

ch
ed

 io
ns

of

 m
at

ch
ed

 p
ea

ks

of

 m
is

se
d

cl
ea

va
ge

s
E

−v
al

ue
M

as
co

t S
en

tin
el

O
M

S
S

A
 p

−v
al

ue

of

 m
at

ch
ed

 io
ns

E
−v

al
ue

O
M

S
S

A
 S

en
tin

el

C8
S17
Aurum

Figure 3.32: InfoGain For Features

160

0 0.05 0.1 0.15 0.2
0

0.2

0.4

0.6

0.8

1
C8 Trained vs. S17 Trained ROC

False Positive Rate

T
ru

e
Po

si
tiv

e
R

at
e

S17_Trained
C8_Trained

Figure 3.33: ROC curves for C-TMO trained with S17 or C8, both applied to S17.

161

The C8 classifier appears to be not very accurate when used to classify spectra

in the S17 data set, performing worse than the S17 classifier. This difference may

have many causes, ranging from differences in protein content, sample preparation,

mass spectrometers, search engine parameters, number of mass spectra, percentage

of true positive spectra, etc.

In general, when applying a classifier to a completely different data set, not

only could the machine learning algorithms choose sub-optimal features, but the

weights and thresholds estimated by training would be invalid if the characteristics

of the feature values changed too much. For example, E-values change with sequence

database size and precursor mass tolerance, and search engine scores tend to depend

heavily on the instrument fragment mass tolerance. We thus believe it is difficult

to generalize machine learning models trained on one data set for new data sets.

3.3.8.8 Unsupervised Machine Learning Performance

Since it appears difficult to construct generalized classifiers for use on a range

of data sets, for machine learning tools to be useful in practice, models must be

able to be automatically trained on the specific characteristics of each data set in an

unsupervised fashion. The unsupervised PepArML training procedure is designed

to be able to automatically predict correct labels for peptide IDs, making it possible

to train the classifier without supervision.

Section 3.3.5.3 describes the PepArML unsupervised training approach in de-

tail. Table 3.13 lists the actual parameters used by the current PepArML implemen-

162

Initial Parameter Iterative Run Parameter

Non-overlap Protein eFDR Non-overlap Protein

peptides Coverage peptides Coverage

C8 ≥ 2 ≥ 0.3 ≤ 0.2 ≥ 2 ≥ 0.1

S17 ≥ 2 ≥ 0.1 ≤ 0.2 ≥ 2 ≥ 0.1

AURUM ≥ 2 ≥ 0.1 ≤ 0.5 ≥ 2 ≥ 0.1

Table 3.13: Parameters for Unsupervised Learning

tation of unsupervised training for each data set. Initially, only peptide IDs agreed

on by all three search engines are used to calculate the number of non-overlapping

peptides and protein coverage percentage. After the first classifier is trained, only

peptides with eFDR values below 0.2 (for C8 and S17) or 0.5 (for AURUM) are used

to calculate the number of non-overlapping peptides and protein coverage percent-

age.

To demonstrate the effectiveness of the unsupervised PepArML training proce-

dure, we compare its sensitivity to the supervised version of PepArML. The left side

of Figure 3.34 shows the ROC curves of supervised (dotted line) and unsupervised

(solid line) learning C-TMO classifiers applied to each data set.

These results clearly demonstrate the sensitivity of the unsupervised PepArML

classifier, since little is lost by using the heuristic unsupervised training procedure,

which is carried out without knowledge of the true proteins and peptide IDs.

163

0 2 4 6
0.7

0.8

0.9

1
AUROC for C8 Spectra Set

A
U

R
O

C

0 0.1 0.2
0

0.5

1
ROC for C8 Spectra Set

T
ru

e
Po

si
tiv

e
R

at
e

0 2 4 6
0.7

0.8

0.9

1
AUROC for S17 Spectra Set

A
U

R
O

C

0 0.1 0.2
0

0.5

1
ROC for S17 Spectra Set

T
ru

e
Po

si
tiv

e
R

at
e

0 2 4 6
0.7

0.8

0.9

1
AUROC for Aurum Spectra Set

Iteration

A
U

R
O

C

0 0.1 0.2
0

0.5

1
ROC for Aurum Spectra Set

False Positive Rate

T
ru

e
Po

si
tiv

e
R

at
e

Figure 3.34: Left: supervised C-TMO (dotted), unsupervised C-TMO (solid), and

Voting (dashed). Right: unsupervised C-TMO starting with consensus proteins

(solid), or starting with single random true protein (dotted).

164

C8 S17 AURUM

Classifiers 10% FDR 20% FDR 10% FDR 20% FDR 10% FDR 20% FDR

Unsup 0.00 0.89 0.70 0.83 0.83 0.83

C-TMO 0.00 0.63 0.67 0.75 0.77 0.79

C-TM 0.50 0.68 0.65 0.78 0.76 0.79

C-TO 0.00 0.55 0.66 0.72 0.75 0.77

C-MO 0.00 0.00 0.63 0.72 0.70 0.73

C-T 0.00 0.62 0.67 0.71 0.74 0.77

C-M 0.00 0.50 0.51 0.69 0.69 0.73

C-O 0.00 0.00 0.00 0.56 0.60 0.64

Tandem 0.46 0.55 0.46 0.62 0.73 0.77

Mascot 0.26 0.52 0.46 0.53 0.69 0.72

OMSSA 0.26 0.35 0.20 0.26 0.37 0.39

Table 3.14: Sensitivity vs. true FDR for supervised & unsupervised classifiers. Best

sensitivity for each FDR & data set in bold.

165

C8 S17 AURUM

Classifiers 10% eFDR 20% eFDR 10% eFDR 20% eFDR 10% eFDR 20% eFDR

Unsup 0.69 0.84 0.60 0.69 0.82 0.83

C-TMO 0.00 0.50 0.67 0.72 0.76 0.78

C-TM 0.59 0.64 0.65 0.72 0.73 0.75

C-TO 0.00 0.00 0.61 0.69 0.85 0.94

C-MO 0.00 0.00 0.56 0.60 0.69 0.71

C-T 0.47 0.59 0.54 0.64 0.72 0.75

C-M 0.00 0.50 0.47 0.62 0.66 0.71

C-O 0.00 0.00 0.00 0.54 0.56 0.61

Tandem 0.52 0.56 0.42 0.49 0.72 0.74

Mascot 0.50 0.52 0.43 0.46 0.68 0.70

OMSSA 0.29 0.32 0.18 0.23 0.37 0.37

Table 3.15: Sensitivity vs. estimated FDR for supervised & unsupervised classifiers.

Best sensitivity for each eFDR & data set in bold.

166

Tables 3.14 and 3.15 present the sensitivity of the unsupervised learning

PepArML classifier compared to other algorithms for at different FDR and eFDR

values.

While the performance evaluation results demonstrate that the unsupervised

learning PepArML procedure achieves similar sensitivity as the supervised learning

approach on all three data sets, its rate of convergence and tolerance for a poor

initial putative true protein set still needs to be established. If too many iterations

are required, or if small errors in initial protein set can result in large number of

nonsense predictions, then whether the technique can be applied to real experimental

data sets may be in doubt.

The graphs in the right column of Figure 3.34 show the convergence rate of

the unsupervised PepArML training procedure. The x-axis represents the training

iteration of the unsupervised classifier. The y-axis represents the AUROC of the

classifier after each iteration of training, evaluated with respect to the current pu-

tative true protein set. The solid line shows the convergence rate for the C-TMO

classifier using an initial putative true protein set selected based on the PepArML

algorithm (i.e., peptide IDs agreed on by all three search engines). The AUROC of

the classifier converges quickly, stabilizing within three iterations of training.

The robustness of the unsupervised learning PepArML is also tested by choos-

ing more challenging initial true positive protein sets representative of various types

of potential errors. The dotted lines in the graphs in the right column of Figure 3.34

show the rate of convergence when the initial putative true protein set consists of

just one randomly selected true positive protein for C8 and S17 data set (and ten

167

randomly selected true positive proteins for AURUM data set). These cases repre-

sent starting from very conservative assumptions, where many true positive proteins

are falsely labeled as incorrect.

Despite many incorrectly labeled peptide IDs, with the PepArML unsupervised

training algorithm convergence of AUROC is quick and shows little evidence of

instability. This is particularly impressive for the AURUM data set which contains

hundreds of true positive proteins and for which the unsupervised learning PepArML

stabilizes after only three iterations. For data sets with a small number of true

positive proteins (C8), convergence is almost as quick as when using the full set

of putative true proteins. Similar quick convergence is also achieved with other

difficult initial putative true protein sets. As a result, we believe that unsupervised

PepArML is quite robust with respect to the choice of initial putative true protein

set, at least for synthetic protein mixes.

3.3.8.9 Discussion of Experimental Results

To recap, our experimental evaluation of the sensitivity and selectivity of in-

dividual search engines, combining heuristics, and machine learning classifiers pro-

vided considerable insight on their relative performance. Our major observations

were:

Comparing peptide identifications using estimated FDR (eFDR) is more effective

than comparisons using E-values. Results show eFDR is more closely correlated

to true FDR than search engine E-values, and heuristic combiners based on eFDR

168

are more sensitive than combiners based on E-values.

Heuristic combiners can improve on single search engine scores. Improvement in

sensitivity based on The best-performing heuristic combiners demonstrate clear im-

provements in sensitivity over individual search engines for all three data sets tested.

If a machine learning framework such as PepArML cannot be readily applied, im-

plementing an eFDR-based voting heuristic combiner is still worthwhile.

Machine learning classifiers outperform single search engine scores. By exploiting

information in additional features, classifiers can significantly improve sensitivity be-

yond search engine scores, particularly when search engines provide many additional

useful features.

Classifiers based on multiple search engines outperform voting heuristic combiners.

The ability of machine learning classifiers to achieve greater sensitivity when com-

bining search engine results is likely due to a combination of more accurate modeling

of individual search engines, and ability to use non-score features.

Classifiers based on multiple search engines outperform classifiers based on features

from a single search engine. Classifiers generally benefit from additional informa-

tion. The best overall performance is generally achieved by C-TMO, the classifier

trained using data from all three search engines. It is unclear whether the perfor-

mance boost is due to complementary properties of features from different search

engines, or the incorporation of agreeing peptide ID information in the feature vec-

169

tor.

Adding features does not guarantee improved classifier performance. While addi-

tional features generally improve classifier performance, some features may provide

poor discrimination and interfere with machine learning, degrading performance. In

other cases, additional features may be highly correlated with existing features and

the benefit of additional peptide ID agreement is minimal.

Combining two search engines may be sufficient. Even though C-TMO usually

yields the most accurate results, classifiers constructed using only data from two

search engines (C-TM. C-MO, C-TO) often achieve similar sensitivity. This result

is particularly interesting from a commercial perspective, as C-TO, a classifier built

using only open source software, can approach the sensitivity of classifiers (C-TMO,

C-TM) that utilize features from Mascot, a commercial search engine. This suggests

that the machine learning combination of open-source search engines may be a viable

alternative to commercial search engines.

Unsupervised learning works well. Overall, we observe that the sensitivity of un-

supervised classifiers is very similar to that of supervised classifiers, sometimes even

better. Unsupervised PepArML performs well even for the AURUM data set, which

contains hundreds of proteins.

Applicability for biological samples. Our current success has been achieved with

data sets derived from synthetic protein mixes. Real biological samples are likely

170

to be more complicated, and may require more robust algorithms, particularly for

unsupervised learning. Nonetheless, we believe PepArML demonstrates the poten-

tial for using machine learning to automatically combine search engine results and

features.

3.3.9 Conclusion

A highly sensitive and specific new technique is demonstrated here for sepa-

rating true from false peptide identifications on three synthetic protein mixture data

sets from both electrospray and MALDI instruments. PepArML uses machine learn-

ing to combine the search results from many search engines, achieving better results

than machine-learning or result combining alone. PepArML uses the model-free

random forest machine learning technique, which ensures that the relative contri-

butions of search engine agreement and peptide-spectrum match scores can be used

optimally for each combination of spectra, search engines, and search engine pa-

rameters. It is shown that PepArML can be trained effectively in an unsupervised

manner, making it possible to removes the need for extensive libraries of pre-trained

models based on experimental spectra from synthetic protein mixtures from all

instrument, search engine, and parameter combinations. Unsupervised PepArML

training also alleviates concerns about sub-optimal machine learning models being

applied beyond their ability to generalize effectively.

PepArML does not rely on specialized features or difficult to compute scores,

but these can be easily added to the model if desired. Similarly, PepArML can be

171

used with any number of different search engines, or even multiple searches from

the same search engine. The model-free nature of PepArML combining even makes

it possible to combine results from disparate peptide identification techniques, such

as spectral matching, alongside search engine results, or to use paired searches with

conservative and aggressive search parameters.

The unsupervised training procedure could be manipulated in a variety of

ways to exercise more control over PepArML learning. Users could hand select the

initial set of putative true proteins, or apply a species constraint to the putative

true protein set, if the sample is known to come from a particular organism. It

would also be straightforward to incorporate peptide IDs to decoy peptides as known

false identifications just as other semi-supervised learning approaches have done.

However, the addition of known false peptide IDs is less powerful in this context

than correctly guessing true labels on a smaller number of spectra.

The excellent performance of PepArML applied to the results of Tandem and

OMSSA, both open-source, freely available search engines, raises the tantalizing

possibility that a PepArML based meta-search-engine might offer superior identi-

fication performance than costly commercial search engines. Such a meta-search-

engine could wrap Tandem, OMSSA, and other free search engines behind a single

user interface.

It remains to be seen whether the iterated unsupervised learning procedure

proposed here can be applied, as described, across the rich variety of experimen-

tal data sets. Our experiments to investigate the robustness of the procedure are

encouraging, but it is possible our simple technique for selecting putative true pro-

172

teins, in particular, may find too few true positive proteins for successful training.

In future work, the plan is to investigate whether protein identification tools, such

as Protein Prophet [NKKA03], or an expectation-maximization (E-M) approach,

which would fit naturally into the iterative PepArML framework, might provide

additional robustness for PepArML when applied to experimental data sets.

The algorithm design and experimental results show that the proposed PepArML

machine-learning framework has the potential to solve the critical problems of com-

bining multiple search engine results and the use of machine-learning tools beyond

training data sets, resulting in robust, effective and reliable tools for peptide spec-

trum assignment.

173

Chapter 4

Conclusion and Future Work

4.1 Two Classes of Algorithms Demonstrate Good Performance and

Precision

In this thesis, three algorithms in the areas of genomics and proteomics were

designed, implemented and evaluated to demonstrate that applying high perfor-

mance computing techniques and statistical machine learning techniques can im-

prove both the performance and precision of bioinformatics algorithms. In addition

to developing several novel techniques, this thesis has performed extensive experi-

mental evaluation significantly beyond the scope of previously published research.

4.1.1 Genomics

In area of genomics, ESTmapper, a DNA to genome alignment algorithm was

designed and implemented to efficiently align cDNA sequences to genome(s) with

high speed and precision. It also provides flexibility of aligning cDNA sequences

to multiple chromosomes with high speed and accuracy. Experiment evaluation

results show that ESTmapper has comparable global alignment precision, and at

least 2–3 times faster compared to previous algorithms. With a more accurate

splice site model, ESTmapper can be used to find alternative splicing isoforms,

174

cluster EST/cDNA sequences and help with gene finding.

The main contributions of ESTmapper are demonstrating the feasibility of

using suffix trees for entire genomes, techniques for estimating the statistical signif-

icance of DNA to genome alignments.

4.1.2 Proteomics

In the area of proteomics, two different algorithms for mass spectra based pep-

tide identification are designed and implemented to improve peptide identification

accuracy.

4.1.2.1 HMMatch

HMMatch was designed to use hidden Markov model to capture the mass

spectra peak intensity consensus and variation pattern. Each model summarizes

many examples of a peptide’s fragmentation spectrum in a generative probabilistic

model. The unassigned mass spectrum can be compared with HMMs to find its

peptide identification. Our preliminary experiment results show that HMMatch

has good specificity and superior sensitivity, compared to sequence database search

engines such as X!Tandem. As the size of publicly available mass spectra databases

continues to grow, it is possible to build a library of HMMs for peptide fragmentation

pattern. A relatively complete HMM mass spectra library can be a very good

complement to current database search based peptide identification methods.

The main contributions of HMMmatch are techniques for calculating statistical

175

significance of HMM scores, and model extrapolation to peptides without experi-

mental mass spectra.

4.1.2.2 PepArML

PepArML is a machine learning based, model-free framework for peptide iden-

tification. It uses the Random Forest method to combine peptide identification

results from multiple peptide identification tools. Multiple matrices that compare

the similarity between theoretical and experimental spectra are combined under the

framework to distinguish true and false peptide identifications. An unsupervised

training approach makes it possible for PepArML to learn the properties of each data

set on the fly, removing the need to build a comprehensive library of pre-built models

based on instrument, search engine, and search parameter combinations. Our pre-

liminary results based on three search engines (X!Tandem, MASCOT, OMSSA) and

three synthetic protein mixture data sets from both electrospray and MALDI instru-

ments show the machine learning based framework outperforms machine learning

techniques applied to a single search engine’s output.

The main contributions of PepArML are demonstrating the effectiveness of

machine learning for combining features and scores from multiple search engines,

and techniques for unsupervised training for unlabeled mass spectra.

176

4.1.3 Benefits of High Performance Computing and Machine Learn-

ing

Both high performance computing and machine learning techniques have been

widely applied to solving problems in bioinformatics field.

Currently, many bioinformatics problems (such as microarray gene expression

data analysis, genetic network, protein-protein interactions, phylogeny reconstruc-

tion, protein structure predictions, etc.) require computationally intensive operation

on a large data domain. It is impractical to solve these problems with only tradi-

tional sequential algorithms. Here both parallel computing techniques and carefully

designed data structure and algorithms are needed to save data processing time. So

high performance computing plays a very important role in solving these problems.

In this thesis, a novel sequence alignment algorithm is presented to demonstrate

the power of high performance computing techniques by aligning millions of cDNA

sequences to genomes within hours. The algorithm not only uses multiple processors

on both shared memory and distributed memory architecture, but also utilize suffix

tree data structure’s linear search speed for string match to speed up each cDNA

to genome alignment procedure. The results shows at least 2 - 3 times speed up

compared with other current popular sequence alignment softwares.

Machine learning techniques play key role in all bioinformatics research areas,

especially in genomics and proteomics areas. In this thesis, two machine learning

frameworks are designed and implemented to demonstrate machine learning’s appli-

cation in tandem mass spectra based peptide identification. HMMatch uses hidden

177

Markov model’s probabilistic strength to capture the mass spectra peak intensity

consensus and variation pattern for spectral matching based peptide recognition.

It show superior sensitivity and specificity compared with current peptide identi-

fication methods. PepArML fully utilize the properties of mass spectra data and

random forest algorithm to design a unsupervised machine learning framework for

combining peptide identification results from multiple search engines. The machine

learning framework provides a more accurate method for classifying true from false

peptide identifications and improve peptide identification results.

4.2 Future Work

4.2.1 ESTmapper

ESTmapper is an efficient algorithm to align cDNA sequences to genome with

high accuracy and speed. It can help with identifying genome structure and provide

more accurate splice site information for training gene finding algorithms. Splice

site discovery is one of the most important issues in computational gene finding.

Some well-designed models have been built to predict splice sites. However, with

only a limited amount of accurate exon/intron boundary data available, most current

program use consensus sequences to predict splice sites. ESTmapper can be adapted

to include more accurate splice site model and branch site model to improve the

alignment accuracy. The improved ESTmapper can be used to identify a large

number of exon/intron boundaries, which can be used as training data for creating

more accurate splice site model and gene finders. It can also be used to detect

178

alternative splicing isoforms and micro-exon, which is a challenging problem in the

field of bioinformatics.

4.2.2 HMMatch

HMMatch uses hidden Markov model to catch peptide fragmentation patterns

(mass spectra peak intensity and variation). It provides a more accurate solution

to the problem of recognizing seen peptide fragmentation patterns and thus a very

good complement algorithm for current database search based peptide identification

methods. As more and more mass spectra available to public, the next step work is

to build relatively comprehensive HMM libraries for certain species (Human, yeast,

etc.). Since it is fast to build single HMMs and using model extrapolation can

help avoid building HMM from scratch for some peptides (with single nucleotide

difference or post translational modification), mass spectra HMM libraries can be

built in reasonable amount of time. Such libraries can be used as the first step

of peptide identification by recognizing observed peptide mass spectra and thus

improve peptide identification accuracy. Database search based methods can then

be used to further identify the previously unobserved mass spectra patterns.

4.2.3 PepArML

PepArML uses random forest method to build model free framework to com-

bine peptide identification results from multiple peptide identification softwares

and provides better solution to separate true from false identifications. Current

179

PepArML implementation is based on three search engines: X!tandem, MASCOT

and OMSSA and 20 metrics extracted from three search engines’ output results.

There is no feature design or selection involved in the whole process. So for the next

step of the work,

• More novel features (retention time, etc.) can be designed and included in the

PepArML framework. Poorly performing features can be removed.

• Different types of search engines (Sequest, Myrimatch, NIST MS-Search, HM-

Match, etc.) can be included to provide a more comprehensive view of the

peptide identification results.

• More stringent procedures may be designed to select true proteins for the

unsupervised iterative procedure.

• Can refine statistical model to assess the significance of peptide identification

results from PepArML.

After these refinements, PepArML can be used as a comprehensive framework

to combine current peptide identification softwares.

Bioinformatics is a relatively new research area. Both high performance com-

puting and machine learning techniques are widely used to solve challenge research

problems in this field. This thesis presented two typical problems and three carefully

designed solutions to demonstrate the power of both techniques for improving both

speed and precision of bioinformatics applications and algorithms. These techniques

can help biologists benefit from computer science research.

180

Bibliography

[AG96] S. Altschul and W. Gish. Local alignment statistics. Methods in En-
zymology, 266:460–80, 1996.

[AGM+90] S. Altschul, W. Gish, E. Miller, E. Myers, and D. Lipman. A basic
local alignment search tool. Journal of Molecular Biology, 215:403–
410, 1990.

[ALPN03] D. C. Anderson, W. Li, D. G. Payan, and W. S. Noble. A new algo-
rithm for the evaluation of shotgun peptide sequencing in proteomics:
Support vector machine classification of peptide ms/ms spectra and
sequest scores. J. Proteome Res., 2(2):137–146, April 2003.

[Bar90] C. Bartels. Fast algorithm for peptide sequencing by mass spectrom-
etry. Biomedical and Environmental Mass Spectrometry, 19:363–368,
1990.

[BBIK04] T. Baczek, A. Bucinski, A. R. Ivanov, and R. Kaliszan. Artificial
neural network analysis for evaluation of peptide ms/ms spectra in
proteomics. Anal. Chem., 76(6):1726–1732, March 2004.

[BDH99] J. Burke, D. Davison, and W. Hide. d2 cluster: a validated method
for clustering EST and full-length cDNA sequences. Genome Res,
9(11):1135–1142, Nov 1999.

[BE01] V. Bafna and N. J. Edwards. SCOPE: A probabilistic model for scor-
ing tandem mass spectra against a peptide database. Bioinformatics,
17:13–21, 2001.

[BE03] Vineet Bafna and Nathan Edwards. On de novo interpretation of tan-
dem mass spectra for peptide identification. In Proceedings of the 7th
annual international conference on computational molecular biology
(RECOMB), 2003.

[BPC+99] R. C. Braun, K. T. Pedretti, T. L. Casavant, T. E. Scheetz, C. L.
Birkett, et al. Three complementary approaches to parallelization
of local BLAST service on workstation clusters. In 5th International
Conference on Parallel Computing Technologies (PaCT), volume 1662.
Lecture Notes in Computer Science (LNCS), 1999.

[CB04] R. Craig and R. C. Beavis. Tandem: matching proteins with tandem
mass spectra. Bioinformatics, 20:1466–1467, 2004.

[CCFB06] R. Craig, J. C. Cortens, D. Fenyo, and R. C. Beavis. Using annotated
peptide mass spectrum libraries for protein identification. Journal of
Proteome Research, 5(8):1843–1849, 2006.

181

[CHV02] E. Coward, S. Haas, and M. Vingron. SpliceNest: visualization of
gene structure and alternative splicing based on EST clusters. Trends
Genet, 18(1):53–55, 2002.

[CKT+01] T. Chen, M. Y. Kao, M. Tepel, J. Rush, and G. M. Church. A dy-
namic programming approach to de novo peptide sequencing via tan-
dem mass spectrometry. J. Comput. Biol., 8(3):325–337, 2001.

[CN08] H. Choi and A. I. Nesvizhskii. Semisupervised model-based validation
of peptide identifications in mass spectrometry-based proteomics. J
Proteome Res, 7(1):254–265, January 2008.

[CRL+04] Ronghua Chen, Archie Russell, Guoya Li, Nicholas Tsinoremas, and
Guy Cavet. Human transcript clustering. Poster at RECOMB’04,
2004.

[DAC+99] V. Dancik, T. Addona, K. Clauser, J. Vath, and P. A. Pevzner. De
novo peptide sequencing via tandem mass spectrometry. Journal of
Computational Biology, 6:327–342, 1999.

[DCF03] A. Darling, L. Carey, and W.-C. Feng. The design, implementation,
and evaluation of mpiBLAST. In ClusterWorld Conference & Expo
and the 4th International Conference on Linux Clusters: The HPC
Revolution 2003, San Jose, CA, June 2003.

[DDK+06] F. Desiere, E. W. Deutsch, N. L. King, A. I. Nesvizhskii, P. Mallick,
J. Eng, S. Chen, J. Eddes, S. N. Loevenich, and R. Aebersold. The
PeptideAtlas project. Nucleic Acids Res, 34:D655–8, 2006.

[DL99] M. Deutsch and M. Long. Intron-exon structures of eukaryotic model
organisms. Nucleic Acids Research, 27(15):3219–28, Aug 1999.

[Edd98] S. R. Eddy. Profile hidden markov models. Bioinformatics, 14(9):755–
763, July 1998.

[EHFG05a] Joshua E Elias, Wilhelm Haas, Brendan K Faherty, and Steven P
Gygi. Comparative evaluation of mass spectrometry platforms used
in large-scale proteomics investigations. Nature Methods, 2:667–675,
2005.

[EHFG05b] Joshua E Elias, Wilhelm Haas, Brendan K Faherty, and Steven P
Gygi. Comparative evaluation of mass spectrometry platforms used
in large-scale proteomics investigations. Nature Methods, 2:667–675,
2005.

[FFM+05] L. Florea, V. Di Francesco, J. Miller, R. Turner, A. Yao, M. Harris,
B. Walenz, C. Mobarry, G.V. Merkulov, R. Charlab, I. Dew, Z. Deng,
S. Istrail, P. Li, and G. Sutton. Gene and alternative splicing annota-
tion with AIR. Genome Research, 15(1):54–66, 2005.

182

[FHZ+98] L. Florea, G. Hartzell, Z. Zhang, G. M. Rubin, and W. Miller. A
computer program for aligning a cdna sequence with a genomic dna
sequence. Genome Research, 8(9):967–74, Sep 1998.

[FMSB+06] R. D. Finn, J. Mistry, B. Schuster-Bockler, S. Griffiths-Jones, V. Hol-
lich, T. Lassmann, S. Moxon, M. Marshall, A. Khanna, R. Durbin,
S. R. Eddy, E. L. L. Sonnhammer, and A. Bateman. Pfam: clans, web
tools and services. Nucleic Acids Res, 34:D247–D251, 2006.

[FMW+06] Barbara E. Frewen, Gennifer E. Merrihew, Christine C. Wu,
William Stafford Noble, and Michael J. MacCoss. Analysis of pep-
tide MS/MS spectra from large-scale proteomics experiments using
spectrum libraries. Analytical Chemistry, 78(16):5678–5684, 2006.

[FRR+05] Bernd Fischer, Volker Roth, Franz Roos, Jonas Grossmann, Sacha
Baginsky, Peter Widmayer, Wilhelm Gruissem, and Joachim M Buh-
mann. Novohmm: A hidden markov model for de novo peptide se-
quencing. Analytical Chemistry, 77:7266–7273, November 2005.

[FVK+07] Jayson A. Falkner, Donna M. Veine, Maureen Kachman, Angela
Walker, John R. Strahler, and Philip C. Andrews. Validated MALDI-
TOF/TOF mass spectra for protein standards. Journal of the Amer-
ican Society of Mass Spectrometry, 18(5):850–855, 2007.

[FW] L. Florea and B. Walenz. in prep.

[GJS03] R. Giegerih, S. Jurtz, and J. Stoye. Efficient implementation of lazy
suffix trees. Software—Practice ad Experience, 33:1035–1049, 2003.

[GMK+04] L. Y. Geer, S. P. Markey, J. A. Kowalak, L. Wagner, M. Xu, D. M.
Maynard, X. Yang, W. Shi, and S. H. Bryant. Open mass spectrometry
search algorithm. Journal of Proteome Research, 3:958–964, 2004.

[GMP96] M. Gelfand, A. Mironov, and P. Pevzner. Spliced alignment: A new
approach to gene recognition. Proc. Natl. Acad. Sci., 93:9061–9066,
1996.

[GMXL04] C. Grasso, B. Modrek, Y. Xing, and C. Lee. Genome-wide detection of
alternative splicing in expressed sequences using partial order multiple
sequence alignment graphs. Pacific Symposium of Biocomputing, 9:29–
41, 2004.

[Gus77] D. Gusfield. Algorithms on Strings, Trees and Sequences: Computer
Science and Computational Biology. Cambridge University Press,
1977.

183

[HKB+07] R. E. Higgs, M. D. Knierman, A. Bonnerfreeman, L. M. Gelbert, S. T.
Patil, and J. E. Hale. Estimating the statistical significance of pep-
tide identifications from shotgun proteomics experiments. J. Proteome
Res., 6(5):1758–1767, May 2007.

[HM99] X. Huang and A. Madan. CAP3: A DNA sequence assembly program.
Genome Res, 9:868–877, 1999.

[ISF+04] S. Istrail, G. G. Sutton, L. Florea, A. L. Halpern, C. M. Mobarry,
R. Lippert, B. Walenz, H. Shatkay, I. Dew, J. R. Miller, M. J. Flani-
gan, N. J. Edwards, R. Bolanos, D. Fasulo, B. V. Halldorsson, S. Han-
nenhalli, R. Turner, S. Yooseph, F. Lu, D. R. Nusskern, B. C. Shue,
X. H. Zheng, F. Zhong, A. L. Delcher, D. H. Huson, S. A. Kravitz,
L. Mouchard, K. Reinert, K. A. Remington, A. G. Clark, M. S. Water-
man, E. E. Eichler, M. D. Adams, M. W. Hunkapiller, E. W. Myers,
and J. C. Venter. Whole genome shotgun assembly and comparison
of human genome assemblies. PNAS, 101:1916–1921, 2004.

[JCL+06] J. R. Johnson, G. T. Cantin, B. Lu, J. D. Venable, D. Cociorva, and
J. R. Yates. Reference library searching strategies in proteomics. Pre-
sentation at 54th ASMS Conference on Mass Spectrometry, May 2006.

[JR85] B. H. Juang and L. R. Rabiner. A probabilistic distance measure
between hmms. IEEE Transactions on Acoustics, Speech, and Signal
Processing, 64(2):391–408, February 1985.

[JR90] B. H. Juang and L. R. Rabiner. The segmental k-means algorithm for
estimating parameters of hidden markov models. IEEE Transactions
on Acoustics, Speech, and Signal Processing, 38:1639–1641, 1990.

[KA93] S. Karlin and S. Altschul. Applications and statistics for multiple
high-scoring segments in molecular sequences. Proc Natl Acad Sci U
S A, 90(12):5873–7, Jun 1993.

[KAKB03] A. Kalyanaraman, S. Aluru, S. Kthari, and V. Brendel. Efficient clus-
tering of large EST data sets on parallel computers. Nucleic Acids
Research, 31(11):2963–2974, 2003.

[KBM+94] Anders Krogh, Michael Brown, I. Saira Mian, Kimmen Sjolander,
and David Haussler. Hidden markov models in computational biol-
ogy: applications to protein modeling. Journal Molecular Biology,
235(5):1501–1531, February 1994.

[KCW+07] Lukas Käll, Jesse D. Canterbury, Jason Weston, William S. Noble, and
Michael J. Maccoss. Semi-supervised learning for peptide identification
from shotgun proteomics datasets. Nature Methods, 4(11):923–925,
October 2007.

184

[KDW+04] P. J. Kersey, J. Duarte, A. Williams, Y. Karavidopoulou, E. Birney,
and R. Apweiler. The International Protein Index: An integrated
database for proteomics experiments. Proteomics, 4(7):1985–1988,
2004.

[Ken02] W. Kent. Blat–the blast-like alignment tool. Genome Research,
12(4):656–64, Apr 2002.

[KNKA02] A. Keller, A. I. Nesvizhskii, E. Kolker, and R. Aebersold. Empirical
statistical model to estimate the accuracy of peptide identifications
made by ms/ms and database search. Anal Chem, 74(20):5383–5392,
October 2002.

[LB04] Barbara Lin and Timothy Burcham. Using the human genome as a
framework for sequence clustering and microarray design. Poster at
RECOMB’04, 2004.

[LDE+06] Henry Lam, Eric Deutsch, James Eddes, Jimmy Eng, Nichole King,
Sara Yang, Jeri Roth, Lisa Kilpatrick, Pedatsur Neta, Steve Stein,
and Ruedi Aebersold. SpectraST: An open-source MS/MS spectra-
matching library search tool for targeted proteomics. Poster at 54th
ASMS Conference on Mass Spectrometry, May 2006.

[LDE+07] Henry Lam, Eric W. Deutsch, James S. Eddes, Jimmy K. Eng, Nichole
King, Stephen E. Stein, and Ruedi Aebersold. Development and vali-
dation of a spectral library searching method for peptide identification
from MS/MS. Proteomics, 7(5):655–667, 2007.

[LE05] Jennifer Listgarten and Andrew Emili. Statistical and compu-
tational methods for comparative proteomic profiling using liquid
chromatography-tandem mass spectrometry. Molecular and Cellular
Proteomics, 17, 2005.

[LHP+00] F. Liang, I. Holt, G. Pertea, S. Karamycheva, S. Salzberg, and
J Quackenbush. An optimized protocol for analysis of est sequences.
Nucleic Acids Research, 28:3657–3665, 2000.

[LNRE05] Jennifer Listgarten, Radford M. Neal, Sam T. Roweis, and Andrew
Emili. Multiple alignment of continuous time series. Advances in
Neural Information Processing Systems, 4:419–434, 2005.

[MCJ03] K. Malde, E. Coward, and I. Jonassen. Fast sequence clustering using
a suffix array algorithm. Bioinformatics, 19:1221–1226, 2003.

[MG77] A. M. Maxam and W. Gilbert. A new method for sequencing dna.
Proceedings of the National Academy of Science, 74:560–564, 1977.

185

[Mot97] R. Mott. EST GENOME: a program to align spliced DNA sequences
to unspliced genomic DNA. Computer Applications in the Biosciences,
13(4):477–478, 1997.

[MSS05] W. Gary Mallard, O. David Sparkman, and Joan A. Sparkman.
NIST/EPA/NIH Mass Spectral Library (NIST 05) and NIST Mass
Spectral Search Program (Version 2.0d). National Institute of Stan-
dards and Technology, June 2005. Available from http://chemdata.

nist.gov/mass-spc/Srch_v1.7/Ver20Man.pdf.

[MW94] M. Mann and M. Wilm. Error-tolerant identification of peptides in
sequence databases by peptide sequence tags. Analytical Chemistry,
66:4390–4399, 1994.

[MYL02] R. E. Moore, M. K. Young, and T. D. Lee. Qscore: an algorithm for
evaluating sequest database search results. J Am Soc Mass Spectrom,
13(4):378–386, April 2002.

[MZL+03] B. Ma, K. Zhang, G. Lajoie, C. Doherty-Kirby, C. Hendrie, C. Liang,
and M. Li. Peaks: Powerful software for peptide de novo sequenc-
ing by tandem mass spectrometry. Rapid Communication in Mass
Spectrometry, 17(20):2337–2342, 2003.

[NCB] National Center for Biotechnology Information. NCBI BLAST.
http://www.ncbi.nih.gov/BLAST/.

[NKKA03] A. I. Nesvizhskii, A. Keller, E. Kolker, and R. Aebersold. A statistical
model for identifying proteins by tandem mass spectrometry. Analyt-
ical Chemistry, 75:4646–4658, 2003.

[OM02] J. Ogasawara and S. Morishita. Fast and sensitive algorithm for align-
ing ESTs to human genome. In IEEE Computer Society Bioinformat-
ics Conference (CSB’02), Stanford, CA, August 2002.

[OSA+05] G S Omenn, D J States, M Adamski, T W Blackwell, R Menon,
H Hermjakob, R Apweiler, B B Haab, R J Simpson, J S Eddes, E A
Kapp, R L Moritz, D W Chan, A J Rai, A Admon, R Aebersold,
J Eng, W S Hancock, S A Hefta, H Meyer, Y K Paik, J S Yoo,
P Ping, J Pounds, J Adkins, X Qian, R Wang, V Wasinger, C Y
Wu, X Zhao, R Zeng, A Archakov, A Tsugita, I Beer, A Pandey,
M Pisano, P Andrews, H Tammen, D W Speicher, and S M Hanash.
Overview of the HUPO Plasma Proteome Project: Results from the
pilot phase with 35 collaborating laboratories and multiple analytical
groups, generating a core dataset of 3020 proteins and a publicly-
available database. Proteomics, 5:3326–3245, August 2005.

186

[PGB02] J. Parkinson, D. Guiliano, and M. Blaxter. Making sense of EST
sequences by CLOBBing them. BMC Bioinformatics, 3(31), October
2002.

[PHB93] D. J. Pappin, P. Hojrup, and A. J. Bleasby. Rapid identification of
protein by peptide-mass fingerprinting. Current Biology, 3:327–332,
1993.

[PHL+03] G. Pertea, X. Huang, F. Liang, V. Antonescu, R. Sultana, S. Karamy-
cheva, Y. Lee, J. White, F. Cheung, B. Parvizi, J. Tsai, and J Quack-
enbush. TIGR Gene Indices clustering tools (TGICL): a software
system for fast clustering of large EST datasets. Bioinformatics,
19(5):651–652, 2003.

[PPCC99] D. N. Perkins, D. J. Pappin, D. M. Creasy, and J. S. Cot-
trell. Probability-based protein identification by searching sequence
databases using mass spectrometry data. Electrophoresis, 20:3551–
3567, 1999.

[PSL+04] T. Pohar, H. Sun, S. Liyanarachchi, S. James, S. Stapleton, and
R. Davuluri. A bioinformatics approach toward identification of genes
involved in hematopoiesis and leukemia. Poster at RECOMB’04, 2004.

[Rab89] Lawrence R. Rabiner. A tutorial on hidden markov models and se-
lected applications in speech recognition. Proceedings of the IEEE,
77(2):257–286, February 1989.

[RMAM+04] K. A. Resing, K. Meyer-Arendt, A. M. Mendoza, L. D. Aveline-Wolf,
K. R. Jonscher, K. G. Pierce, W. M. Old, H. T. Cheung, S. Russell,
J. L. Wattawa, G. R. Goehle, R. D. Knight, and N. G. Ahn. Improv-
ing reproducibility and sensitivity in identifying human proteins by
shotgun proteomics. Anal. Chem., 76(13):3556–3568, July 2004.

[SCH+82] F. Sanger, A. R. Coulson, G. F. Hong, D. F. Hill, and G. B. Petersen.
Nucleotide sequence of bacteriophage λ dna. Journal of Molecular
Biology, 162:729–773, 1982.

[SCK04] M. K. Sakharkar, V. Chow, and P. Kangueane. Distributions of exons
and introns in the human genome. In Silico Biology, 4:32, 2004.

[SKG04] Alexander Sczyrba, Jan Krüger, and Robert Giegerich. e2g - a web-
based tool for efficiently aligning genomic sequence to EST and cDNA
data. Poster at RECOMB’04, 2004.

[SKN+06] Steve Stein, Lisa Kilpatrick, Pedatsur Neta, Jeri Roth, and Xiaoyu
Yang. A reference library of peptide ion fragmentation spectra. Poster
at 54th ASMS Conference on Mass Spectrometry, May 2006.

187

[SKSS03] F. Schutz, E. A. Kapp, R. J. Simpson, and T. P. Speed. Deriving
statistical models for predicting peptide tandem MS product ion in-
tensities. Biochem. Soc. Trans., 31:1479–1483, 2003.

[SNC77] F. Sanger, S. Nickolen, and A. R. Coulson. Dna sequencing with
chain-terminating inhibitors. Proceedings of the National Academy of
Science, 74:5463–5467, 1977.

[SS94] S. Stein and D. Scott. Optimization and testing of mass spectral
library search algorithms for compound identification. Journal of the
American Society of Mass Spectrometry, 5:859–866, 1994.

[Ste94] S. Stein. Estimating probabilities of correct identification from results
of mass spectral library searches. Journal of the American Society of
Mass Spectrometry, 5:316–323, 1994.

[Ste95] S. Stein. Chemical substructure identification by mass spectral library
searching. Journal of the American Society of Mass Spectrometry,
6:644–655, 1995.

[STN08] Brian C. Searle, Mark Turner, and Alexey I. Nesvizhskii. Improving
sensitivity by probabilistically combining results from multiple ms/ms
search methodologies. J. Proteome Res., 7(1):245–253, January 2008.

[TJ97] J. A. Taylor and R. S. Johnson. Sequence database searches via de
novo peptide sequencing by tandem mass spectrometry. Rapid Com-
mun Mass Spectrom, 11(9):1067–1075, 1997.

[TSF+05] Stephen Tanner, Hongjun Shu, Ari Frank, Ling-Chi Wang, Ebrahim
Zandi, Marc Mumby, Pavel A. Pevzner, and Vineet Bafna. Inspect:
Fast and accurate identification of post-translationally modified pep-
tides from tandem mass spectra. Analytical Chemistry, 77:4626–4639,
2005.

[TSY03] D.L. Tabb, A. Saraf, and J.R. Yates. GutenTag: high-throughput se-
quence tagging via an empirically derived fragmentation model. Ana-
lytical Chemistry, 75(23):6415–6421, December 2003.

[UZQA06] P. J. Ulintz, J. Zhu, Z. S. Qin, and P. C. Andrews. Improved classifica-
tion of mass spectrometry database search results using newer machine
learning approaches. Mol Cell Proteomics, 5(3):497–509, March 2006.

[VHS03] Natalia Volfovsky, Brian Haas, and Steven Salzberg. Computational
discovery of internal micro-exons. Genome Research, 13:1216–1221,
2003.

[WBB+03] D. Wheeler, T. Barrett, D. A. Benson, S. H. Bryant, K. Canese, et al.
Database resources of the national center for biotechnology. Nucleic
Acids Research, 31:28–33, 2003.

188

[WCO01] S. Wheelan, D. Church, and J. Ostell. Spidey: a tool for mrna-to-
genomic alignments. Genome Research, 11(11):1952–7, Nov 2001.

[WF05] Ian H. Witten and Eibe Frank. Data Mining: Practical machine learn-
ing tools and techniques, 2nd Edition. Morgan Kaufmann, San Fran-
cisco, 2005.

[WLM+05] W.E. Wolski, M. Lalowski, P. Martus, R. Herwig, P. Giavalisco,
J. Gobom, A. Sickmann, H. Lehrach, and K. Reinert. Transformation
and other factors of the peptide mass spectrometry pairwise peak-list
comparison process. BMC Bioinformatics, 6(1):285, 2005.

[WLT05] X. Wu, W.-J. Lee, and C.-W. Tseng. Estmapper: Efficiently aligning
dna sequences to genomes. In Fourth IEEE International Workshop
on High Performance Computational Biology (HiCOMB 2005), 2005.

[WOOT03] H. Wang, T. Ong, B. Ooi, and K. Tan. BLAST++: A Tool for
BLASTing Queries in Batches. In Proceedings of the 1st Asia-Pacific
Bioinformatics Conference, Adelaide, Australia, February 2003.

[WUB] Washington University School of Medicine. WU BLAST.
http://blast.wustl.edu/blast/README.html.

[WW05] Thomas Wu and Colin Watanabe. GMAP: a genomic mapping and
alignment program for mRNA and EST sequences. Bioinformatics,
21(9):1859–1875, May 2005.

[WYC06] Yunhu Wan, Austin Yang, and Ting Chen. PepHMM: A hidden
markov model based scoring function for tandem mass spectrometry.
Analytical Chemistry, 78(2):432–437, January 2006.

[YECB96] J. R. Yates, J. K. Eng, K. R. Clauser, and A. L. Burlingame. Search of
sequence databases with uninterpreted high-energy collision-induced
dissociation spectra of peptides. Journal for the American Society of
Mass Spectrometry, 7:1089–1098, 1996.

[YMG+98] J. R. Yates, S. F. Morgan, C. L. Gatlin, P. R. Griffin, and J. K. Eng.
Method to compare collision-induced dissociation spectra of peptides:
potential for library searching and subtractive analysis of peptide tan-
dem mass spectra. Analytical Chemistry, 70(17):3557–65, September
1998.

[Zha04] Z. Zhang. Prediction of low-energy collision-induced dissociation spec-
tra of peptides. Analytical Chemistry, 76(14):3908–3922, 2004.

[ZSWM00] Z. Zhang, S. Schwartz, L. Wagner, and W. Miller. A greedy algorithm
for aligning DNA sequences. Journal of Computational Biology, 7:203–
214, 2000.

189

