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Software testing is an indispensable activity in quality assurance and an endur-

ing topic of research. For decades, researchers have been inventing new and better

techniques to test software. However, no testing technique will ever be a panacea

for all software defects. Therefore, while researchers should continue to develop new

testing techniques, they also need to deeply understand the abilities and limitations

of existing techniques, the ways they complement each other, and the trade-offs

involved in using different techniques. This work contends that researchers cannot

sufficiently understand software testing without also understanding software defects.

This work is the first to show that simple, automatically-measurable charac-

teristics of defects affect their susceptibility to detection by software testing. Unlike

previous attempts to characterize defects, this work offers a characterization that

is objective, practical, and proven to help explain why some defects and not others

are detected by testing.

More importantly, this work shows that researchers can and should account

for defect characteristics when they study the effectiveness of software-testing tech-

niques. An experiment methodology is presented that enables experimenters to



compare the effectiveness of different techniques and, at the same time, to measure

the influence of defect characteristics and other factors on the results. The method-

ology is demonstrated in a large experiment in the domain of graphical-user-interface

testing.

As the experiment shows, researchers who use the methodology will under-

stand what kinds of defects tend to be detected by testing and what testing tech-

niques are better at detecting certain kinds of defects. This information can help

researchers develop more effective testing techniques, and it can help software testers

make better choices about the testing techniques to use on their projects. As this

work explains, it also has the potential to help testers detect more defects, and more

important defects, during regression testing.
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Chapter 1

Introduction

Delivering high-quality software is a crucial and difficult undertaking, and the field

of software testing is still struggling the meet the challenge. A 2002 NIST report [62]

estimates the “annual costs of an inadequate infrastructure for software testing” in

the U.S. to be $22.2 billion to $59.5 billion. (To put this in perspective, consider

that the total software sales in 2000 were $180 billion [62].) Inadequate testing leads

to defective software, and defective software costs society. For every software defect

that makes headlines—by crashing an expensive spacecraft, taking down telephone

service, or administering lethal doses of radiation [24]—countless more mundane

defects waste users’ time and compromise their data, tarnish companies’ reputations,

and compel developers to distribute costly patches. Most of those defects could have

been prevented from ever reaching users if software testers had been able to test more

effectively.

Software testing is an indispensable activity in quality assurance (QA), com-

plementary to other QA activities like formal modeling, static analysis, and inspec-

tions. Donald Knuth famously illustrated this when he wrote, “Beware of bugs in

the above code; I have only proved it correct, not tried it” [33].

Testing mainly serves two purposes: to establish confidence that the software

under test behaves as intended and to detect cases where it does not. Testing is not a
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single technique, but rather a class of techniques that involve executing the software

under some input conditions and observing the result. To fulfill its purposes, any

testing technique must be good at detecting defects.

No single software-testing technique—or any QA technique—will ever be a

panacea for all defects. Nor will any single testing technique be a “silver bullet” to

productivity, instantly slashing the 50% of development effort required for adequate

testing [11]. But testers in practice are willing to spend a reasonable amount of

time to detect a reasonable number of defects—preferably the most severe ones. For

many testers, the goal is “not zero defects but zero defections and positive flow of

new customers” [63].

Therefore, while researchers should continue to develop new techniques for

software testing, they also need to deeply understand the abilities and limitations

of existing techniques, the ways they complement each other, and the trade-offs

involved in using different techniques. This work contends that researchers cannot

sufficiently understand software testing without also understanding software defects.

Thesis statement. Simple, automatically-measurable characteristics of de-

fects affect their susceptibility to detection by at least one form of software testing.

Accounting for these characteristics in empirical studies of software testing increases

the validity of study results and is feasible to do.
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1.1 Basic concepts and terminology

1.1.1 Software testing

Some terms are commonly used in the literature on software testing. A test case is

an element of the input space of the software under test. For example, one test case

for the function

int remainder(int dividend, int divisor) {

if (divisor == 0)

throw exception;

else

return dividend % divisor;

}

would be 〈dividend = 1, divisor = 0〉. Usually, more than one test case is required

to test the software thoroughly. A set of test cases to be run together is called a

test suite. The oracle or oracle information is the behavior, or an abstraction of

the behavior, that should result from a test case. It is specified a priori, often at

the time when the test case is written. The oracle procedure compares the oracle

information to the actual result of a test case to decide whether the test case detects

a defect. The process of creating test cases and running the oracle procedure may

be as informal as clicking through an application and eyeballing the output. Or it

may be as formal as systematically, even algorithmically, identifying program paths

to test and comparing the result to an output specification.
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Most research on software testing has focused on the inter-related problems

of creating test suites and deciding when enough testing has been done. For the

problem of creating test suites, techniques have been developed to help human

testers systematically write test cases or test specifications [41, 45], to generate test

cases automatically [14, 21, 27, 37, 61, 67], and to select a subset of test cases from

an existing test suite in order to retest specific parts of the software [2, 28, 54]. For

the problem of deciding when to stop testing, much research has focused on coverage

metrics, which, in various ways, measure the proportion of the software that a test

suite executes, or covers. For example, statement coverage or line coverage measures

the proportion of executable statements in the source code that a test suite covers.

An X-coverage-adequate test suite is one that covers every X in the software under

test, where X is some kind of program element. For example, one of many possible

statement-coverage-adequate test suites for the remainder function above would be

{〈dividend = 1, divisor = 0〉, 〈dividend = 1, divisor = 1〉}.

Many of the steps in testing—generating, executing, and measuring the cov-

erage of test suites—have, to a great extent, been automated. However, the process

of testing can never be automated fully because of the oracle problem. Someone

has to specify the correct behavior that should result from each test case; writing

a program to do so would amount to writing a defect-free version of the software

under test (although perhaps in a higher-level language) [15]. The best the oracle

procedure can do without human assistance is to use heuristics, such as reporting

uncaught exceptions [66], looking for unusual software states [19], or comparing the

output to that of an earlier version of the software [2].
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Usually, a software product is developed in a series of versions. Each version

after the initial version may introduce defect fixes, new features, and restructuring

of the code to accommodate future changes [38]. In any case, the changes made

to the software since the previous version need to be tested. An important part

of this process is regression testing, which the IEEE Standard Glossary of Software

Engineering Terminology [50] defines as follows:

Selective retesting of a system or component to verify that modifications

have not caused unintended effects and that the system or component

still complies with its specified requirements.

1.1.2 Software defects

Software defects also have their technical terms. In common parlance, these terms

are often used interchangeably, and even among experts they have different meanings

in different communities [50]. In this work, mistakes, faults, and failures are treated

as distinct, following one version of the definitions in the IEEE Standard Glossary of

Software Engineering Terminology [50]. Here, a mistake is considered to be a flaw in

a programmer’s mental conception of a program that leads to one or more problems

in the software. Each of those problems, as it is manifested in the source code of

the software, is called a fault. A fault may cause one or more failures, or incorrect

behaviors in the software. This work uses the term defects to refer generally to

problems with software—mistakes, faults, or failures.

When researchers study the abilities of testing techniques to detect defects,
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they usually need to collect or create some defective software on which to try the

techniques. They can accomplish this in several ways. They can collect natural

defects (sometimes called real defects), which are defects made accidentally by the

developers of a software product. If the developers have kept good records through a

version-control system and a defect-tracking system, then researchers can isolate and

reconstruct the defects that have been fixed over time, although this is a painstaking

process. Alternatively, researchers can seed defects into a software product—that

is, insert them intentionally. Defects can either be seeded by hand or by automated

mutation. A mutation fault is a small, typo-like fault in the code, such as changing

a plus sign to a minus sign.

1.2 Contribution: Methodology to account for fault characteristics

in empirical studies of software testing

Software-testing techniques need to be good at detecting defects in software. Re-

searchers evaluate testing techniques to determine if they are good—relative to

other techniques, within some domain of software and defects, by some measurable

definition of “good” that considers the resources used and the defects detected.

Anyone who has dealt with software defects before knows that not all defects

are equal; some are more susceptible to detection than others. Yet, for decades,

evaluations of testing techniques have not been able to take this into account very

well. This work offers a remedy: a methodology for empirical evaluations that

accounts for the impact that defect characteristics have on evaluation results.
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As motivation, consider the well-known experiment on data-flow- and control-

flow-based testing techniques by Hutchins et al. [31]. The experiment compared test

suites covering all def-use pairs1, suites satisfying predicate (“edge”) coverage2, and

random suites3. Test suites were created and run for seven C programs with a total of

130 hand-seeded faults. In order to compare the techniques, each fault was classified

according to which kinds of test suites (i.e., techniques) were most likely to detect

it. It turned out that few faults were equally likely to be detected by all techniques;

instead, most faults clearly lent themselves to detection by just one or two of the

techniques. This is a tantalizing conclusion, one that could potentially help testers

to choose a testing technique based on the kinds of faults they hope or expect to

detect. Unfortunately, the authors “were not able to discern any characteristics of

the faults, either syntactic or semantic, that seem to correlate with higher detection

by either method.”

At least one other empirical study, by Basili and Selby [8], has shown that

1Def-use-pair coverage has to do with data flow in a program. A def-use pair is a def (defini-

tion/write) of a variable together with a subsequent use (read) of that variable, such that there

is a path in the program from the def to the use with no intervening def. A test suite satisfying

def-use-pair coverage executes at least one such path for each def-use pair.
2Predicate coverage has to do with control flow in a program. It is more rigorous than branch

coverage, which requires that each if condition be executed at least once with a value of true

and at least once with a value of false. Because an if condition may consist of a conjunction or

disjunction of individual predicates, predicate coverage additionally requires that each predicate

be executed at least once with a value of true and at least once with a value of false.
3Test suites randomly selected from a large set of test cases have often been used in software-

testing studies as a control.

7



different defects can be “harder” to detect with one testing technique and “easier”

with another. Based on one’s experience testing software, one might also suspect

that some faults are “harder” or “easier” than others in a more general sense. Of-

futt and Hayes [43] formalized this notion, and they and others have observed it

empirically [5, 31, 53].

Thus, the defects against which testing techniques are evaluated can make

the techniques look better or worse—both absolutely, in defect-detection rates, and

relatively to other techniques. Without understanding defects, it is difficult to inte-

grate results from different experiments [9], and it is usually impossible to explain

why one technique outperforms another.

To understand fully how evaluations of testing techniques may depend on the

defects used, one must be familiar with the typical procedure for such evaluations.

Although some analytical approaches have been proposed [23], by far the most

common and practical way to evaluate testing techniques continues to be empirical

studies. Typically, these studies investigate hypotheses like “Technique A detects

more defects than technique B” or “A detects more than zero defects more often

than B” [32].

Empirical studies, by their very nature as sample-based evaluations, always

face the risk that different samples might lead to different results. An empirical

study must select a sample of software to test, a sample of the test suites that can

be generated (or recognized) by each technique for the software, and a sample of

the defects (typically faults) that may arise in the software. Because different stud-

ies usually use different samples, one study might report that technique A detects
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more faults than B, while another would report just the opposite. More and more,

published empirical studies of software testing are acknowledging this as a threat to

external validity [5, 26, 53].

This threat to external validity can be mitigated by replicating the study with

different samples of test suites and fault-ridden software. But, while replicated

studies are necessary for scientific progress [9, 68], they are not sufficient. It is not

enough to observe differing results in replicated studies; it is necessary to explain and

predict them, for several reasons. First, explanation and prediction of phenomena

are goals of any science, including the science of software testing. Second, the ability

to predict situations in which a software-testing technique might behave differently

than in a studied situation would aid researchers by pointing to interesting situations

to study in the future [9]. Third, it would aid practitioners by alerting them if a

testing technique may not behave as expected for their project.

If evaluators of testing techniques are to explain and predict the techniques’

performance outside the evaluation, then they must identify and account for all

the characteristics of the studied samples of software, test suite, and faults that

can significantly affect the evaluation’s results. Some previous work has identified

and accounted for characteristics of the software (e.g., size) and the test suites

(e.g., granularity) [18, 39, 53, 65]. Characteristics of faults, however, have resisted

scrutiny. Few characteristics of faults have been identified, even fewer have been

practical and objective to measure, and none of those have been demonstrated to

help explain testing techniques’ behavior [59]. In the words of Harrold et al. [29],

“Although there have been studies of fault categories. . . there is no established
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correlation between categories of faults and testing techniques that expose those

faults.”

Since characteristics of faults must be identified before they can be accounted

for, this work provides a more adequate characterization of faults. In this work,

a fault is characterized by a vector of characteristics: the fault’s method of cre-

ation, the faulty code’s distance from the program’s initial state, the faulty code’s

tendency to be executed repeatedly, the degrees of freedom in executing the faulty

code, and the size of the component containing the faulty code. Each characteristic

can be measured automatically, without the need for formal specifications or other

documents, making it feasible to use in large empirical studies. While the charac-

terization is not intended to be complete or definitive, it is a reasonable starting

point toward explaining faults’ susceptibility to detection.

More importantly, this work shows how these fault characteristics—or any

vector of one or more fault characteristics—can be accounted for in empirical studies

of testing techniques. The challenge here is that, for a given piece of software

under test, fault characteristics and test-suite characteristics may both affect fault

detection. To account for both kinds of characteristics, this work presents a new

methodology, or template for designing empirical studies. The methodology shows

how a study’s inputs (test suites and faulty software) can be assembled and analyzed

to discover how well different kinds of test suites cover different parts of the software

and detect different kinds of faults.
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1.3 Contribution: Experiment applying the methodology

This work presents an experiment that applies the methodology, demonstrating that

the methodology is viable and useful. Using automated techniques for graphical-

user-interface (GUI) testing and for fault seeding, the experiment studies the char-

acteristics and fault-detection properties of 3200 unique 〈test suite, fault〉 pairs.

The experiment is among the first ever to statistically model the relationship

between characteristics of 〈test suite, fault〉 pairs and test suites’ ability to detect

faults. In addition, it is the first to study empirically the conditional probability

that a test suite detects a fault given that it covers the faulty code. The models

developed in this experiment show that each of the fault characteristics proposed

in this work helps explain differences in faults’ susceptibility to detection in one

domain of testing.

1.4 Contribution: Practical applications to regression testing

This work describes several ways that statistical models like the ones developed in

the experiment can be used to improve regression testing. These are packaged as a

set of scenarios, with concrete examples and demonstrations.

Unlike previous research on regression testing, which has typically focused on

improving the cost or speed of fault detection without changing the set of faults

detected, these scenarios show how to detect more faults or more important faults.

The key idea is to use the statistical models, along with feedback from previous

versions of the software under test, to predict how effective different kinds of test
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suites would be on the current version.

1.5 Summary of contributions

In summary, this dissertation makes the following research contributions:

• A methodology to account for both test-suite and fault characteristics in em-

pirical studies of software testing (Chapter 3)

• A way to empirically explore the relationship between execution of faulty code

and detection of faults (Chapter 3)

• An application of the methodology in a large experiment studying the effects

of test-suite and fault characteristics on fault detection (Chapter 4)

• A simple, practical fault characterization for software-testing studies (Chap-

ter 4)

• Evidence that the fault characterization helps explain faults’ susceptibility to

detection by GUI testing (Chapter 4)

• A set of scenarios showing how statistical models like the ones developed in

the experiment could be used to improve regression testing (Chapter 5)

• A demonstration of the scenarios using models developed in the experiment

(Chapter 5)
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1.6 Intellectual merit and broader impacts

This work has important implications for software-testing researchers. It points out

a problem in the way empirical studies of fault detection are typically conducted:

characteristics of the sample of faults can impact the results. It also provides a solu-

tion: an experiment methodology that accounts for fault characteristics. Using the

methodology, researchers will be better able to explain and predict the performance

of testing techniques. This will help them interpret the results of empirical studies,

choose the contexts in which to replicate empirical studies, and develop new testing

techniques that address weaknesses of existing techniques.

This work can also help software-testing practitioners. When evaluations of

testing techniques follow the methodology presented here, testers will better under-

stand how the evaluated techniques would perform on their own software projects.

This will help them choose the most efficient and effective techniques for their

projects. Furthermore, using the scenarios for regression testing presented in this

work, testers may be able to detect more faults or more important faults in evolving

software. Being able to choose the best testing techniques and to detect more faults

in software, testers might recover some of the billions of dollars wasted each year

because of inadequate software testing and poor software quality.
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Chapter 2

Background and Related Work

This chapter begins with necessary background information on GUI testing (Sec-

tion 2.1) and on characteristics of faults (Section 2.2), test suites (Section 2.3), and,

for completeness, software products and processes (Section 2.4). Section 2.5 goes

on to describe models of failure propagation that inspired this work’s treatment of

faulty-code coverage and fault detection. Finally, Section 2.6 describes approaches

to software testing and related activities that, like this work’s scenarios for regression

testing, are adaptive.

2.1 GUI testing

Experiments in software testing have often focused on a particular domain of soft-

ware (e.g., UNIX utilities) and of testing (e.g., JUnit test cases). This work focuses

on GUI-intensive applications and model-based GUI testing [37, 61], a form of sys-

tem testing. GUI-intensive applications make up a large portion of today’s software,

so it is important to include them as subjects of empirical studies. Conveniently,

model-based GUI testing lends itself to experimentation because test cases can be

generated and executed automatically, enabling experimenters to create large sam-

ples of test cases. Because test cases are generated automatically and in a model-

based way, experiment results are not influenced by the skill of testers.
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The basic unit of interaction with a GUI is an event. Some examples of

events are clicking on a button or typing “hello” in a text box. As the latter

example suggests, some events are parameterized—e.g., text entry in a text box

is parameterized by the text string entered. In actual GUI testing, only a finite

set of parameter values can be tested for each event. This work uses just one

parameter value for each event, thus eliminating, in effect, the distinction between

unparameterized and parameterized events.

A GUI can be modeled by an event-flow graph (EFG), in which each node

represents a GUI event. Figure 2.1 shows a GUI and, superimposed on it, some of

the nodes and edges in its EFG. In an EFG, a directed edge to node n2 from node n1

means that the corresponding event e2 can be executed immediately after event e1.

(The term event will be used to mean both an actual event and a node representing

an event.) In Figure 2.1, for example, the event “click Suggest Word button” in the

larger window can be performed immediately after the event “click OK button” in

the smaller window. The portion of the application code that executes in response

to a GUI event is called the event handler.

The state of the GUI when it first appears after the application is launched is

called its initial state1. The EFG has a set of initial events, which can be executed

in the GUI’s initial state. A length-l test case consists of any path through l events

1While GUIs in general can have more than one initial state—the initial state on a particular

run of the application being decided by data outside of the software, such as a configuration file—

the GUIs in this work are restricted to just one initial state. Also, in this work, temporary states

while starting up the GUI (e.g., splash screens) are ignored.
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Figure 2.1: A GUI and part of its EFG

16



in the EFG, starting at an initial event. The depth of an event in the EFG is the

length of the shortest test case containing the event, counting the event itself; initial

events have a depth of 1.

In model-based GUI testing, the oracle information consists of a set of observed

properties (e.g., title, background color) of all windows and widgets in the GUI. The

oracle procedure compares these properties to their expected values after each event

in the test case is executed. In contrast to batch-style applications (e.g., compilers),

where most of the application’s state tends to be hidden from the user, many GUI-

based applications, sometimes called GUI-intensive applications, expose much of

their state during execution.

The main steps in GUI testing—including reverse-engineering an EFG from

a GUI, generating and executing test cases, and applying the oracle—have been

automated in the GUI Testing Framework (GUITAR)2, which was developed by

the author’s advisor and research group. GUITAR is used in the experiment in

Chapter 4 and the empirical demonstration in Chapter 5. The applications used in

both are GUI-intensive.

2.2 Characterizing faults

How should faults in software-testing studies be characterized? This is an open

question. One or more of three approaches to characterizing faults are usually

taken:

2http://guitar.sourceforge.net
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1. Characterize faults by their origin (natural, hand-seeded, or mutation). Often,

all faults in a study share a common origin, but some studies [5, 16] have

compared results for faults of different origins.

2. Describe each fault and report results individually for each one [40]. This is

only practical if few faults are used.

3. Calculate the “difficulty” or “semantic size” of each fault relative to the

test cases used in the study and compare results for “easier” and “harder”

faults [31, 43, 53].

The third approach comes closest to characterizing faults to help explain and predict

results from other studies and real situations. But the “difficulty” of a fault can only

be calculated relative to a set of test cases. Two different sets of test cases—e.g., a

huge test pool in an empirical study and an early version of a test suite in practice,

or test sets generated from two different operational profiles—would assign different

“difficulty” values, and possibly different “difficulty” rankings, to a set of faults.

A fourth approach has occasionally been used:

4. Characterize faults by some measure intrinsic to them, such as the type of

programming mistake [8, 7] or the fault’s effect on the program dependence

graph [29].

Basili and Selby [8] use a two-dimensional fault classification proposed orig-

inally by Basili and Perricone [7]. In one dimension, a fault falls into one of five

categories of programming mistakes (which are “only roughly defined”) [7]:
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• initialization—”failure to initialize or reinitialize a data structure properly

upon a module’s entry/exit”,

• control—a mistake that ”cause[s] an ’incorrect path’ in a module to be taken”,

• interface—a mistake “associated with structures existing outside the module’s

local environment but which the module used” (e.g., “incorrect subroutine

call”),

• data—”incorrect use of a data structure” (e.g., “use of incorrect subscripts for

an array”), and

• computation—a mistake “that cause[s] a computation to erroneously evaluate

a variable’s value”.

In the other dimension, there are two categories of programming mistakes:

• commissive—mistakes “present as a result of an incorrect executable state-

ment”, and

• omissive—mistakes “that are a result of forgetting to include some entity

within a module”.

With this characterization, faults are classified by manually examining them.

Harrold et al. [29] take a disparate approach. Instead of classifying faults by

the type of programming mistake, they consider the change the fault induces on the

program dependence graph—a model of the control dependencies and data depen-

dencies in a program. At a coarse level, their taxonomy classifies faults as either
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structural—altering the structure of the program dependence graph—or statement-

level—altering a statement but leaving the graph structure unchanged. Each cate-

gory is further broken down by the way the program dependence graph or statement

is changed. To study their fault classification, they use a tool that seeds faults of

each type into C programs.

Basili and Selby [8] and Harrold et al. [29] each compare the ability of different

testing techniques to detect faults, reporting the number of faults of each category

detected by each technique. The fault characterization schema used by Basili and

Selby [8] proves to be relevant to the testing and inspecting techniques studied—

certain techniques better detected certain kinds of faults—but the characterization

is labor-intensive and not entirely objective. Conversely, the schema used by Harrold

et al. [29] is objective, allowing faults to be seeded automatically, but has not been

shown to help explain why some faults were more likely to be detected than others.

(Unfortunately, this result could not be re-evaluated in this work because no tools

were available for Java software.)

In summary, fault characterization remains an open problem, but, for software-

testing studies, objective and quick-to-measure characteristics have certain advan-

tages. When described by such characteristics, large samples of faults can be char-

acterized efficiently, and faults can be grouped into types or clusters that retain

their meaning across studies and situations. Section 4.1 identifies several such char-

acteristics, and the experiment of Chapter 4 evaluates their ability to explain why

some faults are more likely to be detected than others.
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A disadvantage of objective, quick-to-measure characteristics is that they can-

not very well describe certain properties of interest to practitioners, such as the

type of programming mistake. While the experiment in Chapter 4 does have this

disadvantage, the more general approach to experiment design in Chapter 3 does

not. It allows for any number of fault characteristics—including, for example, the

fault classes defined by Basili and Perricone [7]—to be used.

2.3 Characterizing test suites

Test-suite characteristics and their effects on fault detection have been studied much

more intensively than fault characteristics. Probably the most studied characteristic

of test suites is the technique used to generate or recognize them. In many studies,

a sample of test suites from a technique has been used to evaluate the technique

empirically against other testing or validation techniques. Techniques that have

been compared in this way include code reading, functional testing, and structural

testing [8]; data-flow- and control-flow-based techniques [31]; regression test selection

techniques [26]; and variations of mutation testing [44].

Often, the technique used to create a test suite is closely tied to the proportion

of the software it covers, which in turn may affect the proportion of faults it detects.

A study by Morgan et al. [39] finds that the proportion of coverage (measured

in blocks, decisions, and variable uses) and, to a lesser extent, the test-suite size

influence fault detection. A study of regression testing by Elbaum et al. [18] finds

that, of several test-suite characteristics studied, two related to coverage—the mean
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percentage of functions executed per test case and the percentage of test cases that

reach a changed function—best explain the observed variance in fault detection. In

the domain of GUI testing, McMaster and Memon [36] show that some coverage

criteria (call-stack and event-pair coverage) are more effective than others (event,

line, and method coverage) at preserving test suites’ fault-detecting abilities under

test-suite reduction. In addition, certain faults are detected more consistently by

some coverage criteria than by others.

Another important way in which test suites can differ is in their granular-

ity—the amount of input given by each test case. Rothermel et al. [53] show that

granularity significantly affects (sometimes increasing, sometimes decreasing) the

number of faults detected by several regression-testing techniques. For GUI testing,

Xie and Memon [65] have found that more faults are detected by test suites with

more test cases, while different faults are detected by suites whose test cases are

a different granularity (length). They posit that longer test cases are required to

detect faults in more complex event handlers.

In summary, several studies concur that the coverage, size, and granularity of

test suites can affect their ability to detect faults. The experiment in Chapter 4

bolsters the empirical evidence about these test-suite characteristics and, for the

first time, looks for interaction effects between them and fault characteristics.
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2.4 Characterizing software products and processes

Although this work focuses on test-suite and fault characteristics, one other kind of

factor can influence fault detection in testing: characteristics of the software under

test. Researchers have found that measures of the size and complexity of software

help explain why some software products seem to be more testable than others. The

studies by Elbaum et al. [18] and Morgan et al. [39], mentioned above for their results

on test-suite characteristics, also consider software characteristics. Of the software

characteristics studied by Elbaum et al. [18], the mean function fan-out and the

number of functions changed together explain the most variance in fault detection.

Morgan et al. [39] find that software size—measured in lines, blocks, decisions, or

all-uses counts—contributes substantially to the variance in fault detection.

The configuration with which a software product is deployed and the system

on which it is deployed can also affect defect detection in testing. Additional defects

may arise because of incompatibilities between the software and the system it is

running on—a common issue for Web applications, for example [17]. The number

of configurations available for a product can also greatly increase the complexity of

testing [48].

The process by which the software is developed may also affect fault detection

in testing by affecting the faults present in the software to be tested. One would

expect fewer faults, and perhaps a different distribution of faults, to exist at the time

of testing if other defect-removal or defect-prevention techniques had been applied

prior to testing.
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2.5 Models of failure propagation

Part of this work is concerned with understanding the conditional probability that

a test suite detects a fault, given that the test suite covers the code containing the

fault. As Chapter 4 explains, this conditional probability separates the concerns of

fault detection and fault coverage. It shows how susceptible a fault is to detection,

regardless of whether the code it lies in is frequently or rarely executed.

The relationship between fault detection and coverage has previously been

viewed from the perspective of the RELAY model and PIE analysis. The RELAY

model of Richardson and Thompson [51] traces the steps by which a fault in source

code leads to a failure in execution: from the incorrect evaluation of an expression

to unexpected internal states to unexpected output. RELAY is the basis for prop-

agation, infection, and execution (PIE) analysis of program testability proposed by

Voas [64]. PIE uses the probability that a given program element is executed and

the probability that a fault in that element is detected to determine how testable

that element is.

Like RELAY, the current work is concerned with the relationship between

faults and failures. This work, however, ignores internal program state. In con-

trast to this work’s empirical approach, Richardson and Thompson use RELAY to

compare test adequacy criteria analytically.

PIE differs from this work because it estimates execution probabilities with

respect to some fixed input distribution and infection probabilities with respect

to some fixed distribution of faults. In contrast, the current work studies how
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variations in the input distribution (test suite) and the type of fault affect the test

suite’s likelihood of executing and detecting the fault.

2.6 Adaptive testing techniques

In the proposed scenarios for regression testing in Chapter 5, information about

past regression-testing iterations is used to inform and improve future iterations.

However, the idea that feedback from iterative processes can be used to improve

them is not new. This principle underlies traditional regression-testing techniques

that carry over coverage information from one iteration to the next. On a smaller

scale, iterative learning has been used to generate test cases. On a larger scale, it is

the basis of the Improvement Paradigm.

In regression testing, one key idea has been that test cases being reused from a

previous version only need to be re-executed if they exercise part of the software that

has changed. As Harrold et al. [28] and Rothermel and Harrold [54], among others,

have shown, this can be accomplished by examining coverage data collected during

testing of previous versions. Another key idea has been that coverage data can be

used to eliminate redundant test cases—those that cover no parts of the program

uniquely [28]. In each of the approaches just described, the aim is to reduce the

cost of re-executing a test suite without reducing the number of faults it detects.

Another approach, test-suite prioritization, aims to re-execute test cases in an order

that maximizes the rate at which they detect faults. Described by Rothermel et

al. [55], several prioritization techniques similarly use coverage data from previous
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iterations of regression testing.

In the Improvement Paradigm, the cycle of observing and improving processes

occurs at the level of software projects. When planning a new project, an organiza-

tion draws from its experience with past projects, taking into account the context

of the new project (e.g., available resources, product size). During and after the

project’s lifetime, the knowledge gained about the methods and techniques used by

the project is structured for reuse and added to an experience base [6].

Several test-case-generation techniques similarly operate in cycles of observa-

tion and improvement. For these, the objects of interest are not software projects

or regression-test suites, but individual test cases. Interleaving test execution with

test-case generation, these techniques progressively find test inputs to cover appli-

cation states that have not yet been tested. The selection of test inputs may be

guided by various kinds of information gained from test execution, including data

dependencies [21], numerical constraints [27], and GUI-state changes [67]. Cai et

al. [12] also use feedback from test execution to select additional test cases, but

their goal is to accurately estimate defect-detection rates using as few test cases as

possible.

Like other adaptive techniques for software testing and software engineering,

this work uses feedback from an iterative process to improve later iterations. But

unlike existing techniques for regression testing, which try to reduce the cost or time

to detect a fixed set of faults, the scenarios for regression testing proposed in this

work show how to detect more faults or more important faults.
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Chapter 3

Methodology to Account for Fault Characteristics in Empirical

Studies of Software Testing

The most important contribution of this work is to provide a new way of doing

empirical studies of software testing, particularly evaluations of testing techniques.

It is a template for experiment designs, or methodology for short. The methodology

enables experimenters to compare the effectiveness of different testing techniques

and, at the same time, to measure the influence of other factors on the results.

3.1 Requirements

In a given software product, two kinds of factors can influence a testing technique’s

ability to detect a fault: characteristics of the test suite used (other than testing

technique) and characteristics of the fault. Thus, the methodology cannot account

for just fault characteristics, even though they are the focus of this work. It must

simultaneously account for both test-suite and fault characteristics. In other words,

it must be able to show that certain kinds of test suites generally detect more faults,

and certain kinds of faults are generally more susceptible to detection, and certain

kinds of test suites are better at detecting certain kinds of faults.

The key observation leading to the methodology is that fault characteristics

and test-suite characteristics, including the testing technique, can be accounted
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for simultaneously with the right kind of multivariate statistical analysis. The ex-

periment in this work uses logistic-regression analysis, although the methodology

remains general so that other types of analysis could be substituted, depending on

the goals of the experiment. (Possible alternatives include latent class analysis [25]

and Bayesian belief networks [20].) Hence, the methodology must at least satisfy

the requirements of logistic regression.

As Section 4.2.2 will explain, the input to logistic regression is a data set in

which each data point consists of a vector of some independent variables and a bi-

nomial dependent variable. The output is a vector of coefficients, which estimate

the strength of each independent variable’s effect on the dependent variable. If each

data point consists of a vector of characteristics of a 〈test suite, fault〉 pair and a

value indicating whether the test suite detects the fault, then the output is just what

we want: an estimate of each characteristic’s effect on the likelihood that a given

test suite detects a given fault. (For example, in the special case where the inde-

pendent variables are just the testing technique and one fault characteristic, logistic

regression would show how likely each technique would be to detect a hypothetical

fault having any given value for the fault characteristic.)

Logistic-regression analysis is a flexible technique, able to model different kinds

of relationships between the independent variables and the dependent variable. The

main requirement is that each data point must be independent of the other data

points. If each data point consists of characteristics of a 〈test suite, fault〉 pair, then

the same test suite or the same fault cannot be used in more than one data point.

This leads to a somewhat unusual (for software-testing studies) experiment design,
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Figure 3.1: Methodology and experiment procedure

in which each test suite is paired with a single fault.

3.2 Methodology

Now that the requirements of the methodology have been described, Figure 3.1

illustrates the methodology (darker gray box) and its instantiation in the experiment

in the next chapter (lighter gray box). For now, let us focus on the methodology

itself, moving from left to right through the figure. The objects of study are a sample

of N test suites (T1, . . . , TN) for one or more software applications and a sample of

N faults (F1, . . . , FN) in those applications. Each test suite is paired with exactly

one fault (T1 with F1, T2 with F2, etc.) to form a 〈test suite, fault〉 pair.

Each test suite in a pair is run to see whether it (1) executes (covers) the piece

of code containing the fault in the pair and (2) if so, whether it detects the fault.

These facts are recorded in the dependent variables, Cov (which is 1 if the suite

covers the fault, 0 otherwise) and Det (which is 1 if the suite detects the fault, 0

otherwise). In addition, certain characteristics of each fault (F.C1, . . . , F.Cn) and
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each test suite (T.C1, . . . , T.Cm) are recorded. Determined by the experimenters,

these characteristics may include the main variable of interest (e.g., testing tech-

nique) as well as factors that the experimenters need to control for. All of these

characteristics together comprise the independent variables. As the next part of

Figure 3.1 shows, the data collected for the independent and dependent variables

form a table structure. For each of the N 〈test suite, fault〉 pairs, there is one data

point (row in the table) consisting of a vector of values for the independent and

dependent variables.

The data points are analyzed, as the right half of Figure 3.1 shows, to build

one or more statistical models of the relationship between the independent variables

and the dependent variables. The models estimate the probability that a given test

suite (i.e., a given vector of values for T.C1, . . . , T.Cm) covers or detects a given fault

(i.e., a given vector of values for F.C1, . . . , F.Cn) as a function of the test-suite and

fault characteristics. Additionally, if only data points with Cov = 1 are considered,

then models of Det can be built from them to estimate the conditional probability

of fault detection given fault coverage (Pr(Det|Cov)).

The methodology offers experimenters several choices: in the test-suite and

fault characteristics to use as independent variables, in the way the samples of test

suites and faults are provided, and in the analysis technique. For this experiment in

this work, the choice of independent variables is explained in Section 4.1. The test

suites were generated randomly using a GUI-testing technique (Section 4.2.1.2), and

the faults were generated by mutation of single lines of source code (Section 4.2.1.3).

Because all faults in the experiment were confined to one line, a fault was considered
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to be covered by a test suite if the line containing it was covered. The chosen analysis

technique was logistic regression (Section 4.2.2).

The methodology could be trivially extended to consider a broader class of

defect characteristics, including the characteristics of the failures caused by a fault.

However, the preceding description emphasized fault characteristics because they

are the focus of the experiment in the next chapter.
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Chapter 4

Experiment Applying the Methodology

This experiment applies the methodology described in the previous chapter, as

shown in Figure 3.1. It serves multiple purposes:

• as a stand-alone experiment, testing hypotheses about the influence of test-

suite and fault characteristics on fault detection;

• as a proof of concept, showing that the methodology is viable;

• as a concrete example for potential users of the methodology to follow; and

• as a validation of the fault characterization described in Section 4.1, showing

empirically that the fault characteristics chosen can affect faults’ susceptibility

to detection.

The data and artifacts from the experiment have been made available to other

researchers as a software-testing benchmark (Section 4.2.1).

This experiment significantly extends, and resolves major problems with, a

preliminary study of several test-suite characteristics and just two fault character-

istics [58, 60]. (The preliminary study is presented in Appendix A.) The results of

the preliminary study raised intriguing questions about the relationship between the

execution (coverage) of faulty code and the detection of faults: Are certain kinds

of faults more likely to be detected just because the faulty code is more likely to

32



be covered during testing? Or are these faults harder to detect even if the code

is covered? This work pursues those questions by studying not just the likelihood

of detecting faults, but the likelihood of detecting them given that the faulty code

has been covered. This perspective echoes existing models of failure propagation

(Section 2.5), but its use to study faults empirically is unprecedented; our novel

methodology makes it possible.

For each fault characteristic studied in the experiment, the experiment tests

the following null hypotheses:

• H1: The characteristic does not affect a fault’s likelihood of being detected by

a test suite.

• H2: No interaction effect between the characteristic and a test-suite character-

istic affects a fault’s likelihood of being detected by a test suite. (Certain kinds

of faults are not more likely to be detected by certain kinds of test suites.)

• H3: The characteristic does not affect a fault’s likelihood of being detected by

a test suite, given that the test suite covers the faulty code.

• H4: No interaction effect between the characteristic and a test-suite charac-

teristic affects a fault’s likelihood of being detected by a test suite, given that

the test suite covers the faulty code.

Analogous hypotheses are tested for each test-suite characteristic. The main concern

of the experiment, however, is the fault characteristics because they need to be

evaluated to determine whether they really are relevant to software testing.
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Like any experiment, this one restricts itself to a limited domain of applica-

tions, testing techniques, and faults. In choosing this domain, important factors

were the cost and replicability of the experiment. Since existing data did not fit the

requirements of this experiment, and since creating test suites and faults by hand

is expensive and hard to replicate, test suites and faults needed to be generated

automatically. For faults, this led us to choose the domain of mutation faults. For

test suites (and consequently applications), the author’s experience with automated

GUI testing made this domain an obvious choice. As Section 2.1 explained, GUI

testing is a form of system testing in which test cases are generated by traversing

an event-flow-graph (EFG) model of a GUI. Considering that many computer users

today use GUIs exclusively and have encountered GUI-related failures, research on

GUIs and GUI testing is timely and relevant.

4.1 Test-suite and fault characterization

The independent variables in this experiment are characteristics of faults and test

suites hypothesized to affect the probability of fault detection. Since there is cur-

rently no standard way to choose these characteristics, the selection was necessarily

somewhat improvised but was driven by earlier research (Sections 2.2 and 2.3). Al-

though the literature does not directly suggest viable fault characteristics, it does

clearly point to certain test-suite characteristics. Because the test suites and faults

in this experiment were generated automatically, characteristics related to human

factors did not need to be considered. To make this experiment practical to per-
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form, replicate, and apply in practice, only characteristics that can be measured

objectively and automatically were considered.

It should be noted that, while truly objective measures of faults—measures

of intrinsic properties, independent of any test set used to measure them—would

be derived from static analysis, static analysis of GUI-based applications is still

under development [57]. In this experiment, most characteristic measures were

derived from execution data from the test pool, the set of all test cases used in

the experiment. This is not entirely objective because a different test pool would

result in different measurements. Also, it threatens the assumption of independent

sampling of data points—an issue examined in Section 4.4.6. However, measures

that are closely tied to the test pool (e.g., those averaged across the test cases in the

pool) were avoided. The test pool can be seen as an instrument used to estimate

the true values of the measures (e.g., the minimum number of GUI events that must

be executed to reach the faulty code). As the test pool size increases, the estimates

converge to the true values.

Each characteristic describes some property of a fault or a test suite, such

as the degrees of freedom in execution of the faulty code or the proportion of the

application covered by the test suite. There are often multiple metrics to measure

a characteristic, and prior to analyzing the data it is not clear which best predicts

Cov or Det. The rest of this section lists the fault and test-suite metrics explored

in this experiment, organized by the characteristic they are intended to measure.

These are summarized in Table 4.1.
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Table 4.1: Fault and test-suite characteristics studied
Characteristic Metric Definition

Fault

Method of F.MutType 1 if a method-level mutant,
creation 0 if a class-level mutant
Distance from F.CovBef Est. minimum lines covered before first
initial state execution of faulty line,

normalized by total lines
F.Depth Est. minimum EFG depth of first event

executing faulty line in each test case,
normalized by EFG depth

Repetitions F.SomeRep 1 if est. minimum executions of faulty line
by each executing event is > 0, 0 otherwise

F.AllRep 1 if est. maximum executions of faulty line
by each executing event is > 0, 0 otherwise

Degrees of F.MinPred Est. minimum EFG predecessors of events
freedom executing faulty line,

normalized by total events in EFG
F.MaxPred Est. maximum EFG predecessors of events

executing faulty line,
normalized by total events in EFG

F.MinSucc Est. minimum EFG successors of events
executing faulty line,
normalized by total events in EFG

F.MaxSucc Est. maximum EFG successors of events
executing faulty line,
normalized by total events in EFG

F.Events Est. number of distinct events executing
faulty line,
normalized by total events in EFG

Size of event F.MinWith Est. minimum lines covered in same event
handlers as faulty line, normalized by total lines

F.MaxWith Est. maximum lines covered in same event
as faulty line, normalized by total lines

Test suite

Granularity T.Len Length (number of events) of each
test case

Size T.Events Number of events,
normalized by total events in EFG

Proportion T.Class Percent of classes covered
of coverage T.Meth Percent of methods covered

T.Block Percent of blocks covered
T.Line Percent of lines covered
T.Pairs Percent of event pairs in EFG covered
T.Triples Percent of event triples in EFG covered
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4.1.1 Fault characteristics

One fault characteristic studied is the method of creation, which for this exper-

iment is some form of mutation. Although there are too many mutation operators

to study each individually, they fall into two categories: class-level (e.g., changing

the type of a data member) and method-level (e.g., inserting a decrement operator

at a variable use). Class-level and method-level mutations were previously studied

by Strecker and Memon [58, 60], whose results were inconclusive but suggested that

class-level and method-level faults may be differently susceptible to detection. The

label for the metric of mutation type is F.MutType.

Another fault characteristic is the distance of faulty code from the initial

state. Faults residing in code that is “closer”, in some sense, to the beginning of

the program are probably easier to cover and may be easier to detect. One metric

measuring this is the minimum number of source-code lines that must be covered

before the faulty line is executed for the first time (F.CovBef). This can be estimated

by running the test pool with program instrumentation to collect coverage data.

In a GUI-based application, a faulty line may lie in the event handler of one

or more events. These events can be associated with the line by collecting coverage

data for each event in each test case of the test pool. The minimum EFG depth

of the events associated with a faulty line (F.Depth) is another way to measure the

distance of the line from the initial state.

The repetitions in which the faulty code is executed may affect fault

detection. Faults that lie in code that, when executed, tends to be executed multiple
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times by iteration or recursion may be easier to detect. Since, for the applications

studied, the exact number of times a line is executed depends closely on the test

case, two binomial metrics are studied instead. One is whether the the line is ever

executed more than once by an event handler (F.SomeRep). The other is whether

the line is always executed more than once by an event handler (F.AllRep).

Another fault characteristic that may affect fault detection is the degrees of

freedom in execution of the faulty code. In GUI-based applications, an event

handler can typically be executed just after any of several other event handlers.

Faulty code executed by an event that can be preceded or succeeded by many other

events may be easier to cover, and it is not clear whether it would be more or less

susceptible to detection. The minimum or maximum number of event predeces-

sors or successors associated with a faulty line (F.MinPred, F.MaxPred, F.MinSucc,

F.MaxSucc) can be estimated by associating coverage data from the test pool with

the EFG. Faulty code executed by more events may also be easier to cover and

either more or less susceptible to detection. The number of events executing the

faulty code (F.Events), too, can be estimated with coverage data from the test pool.

Morgan et al. [39] report that program size affects fault detection in testing, so

the size of the event handler(s) that execute a faulty line may similarly have

an effect. Event-handler size can be measured as the minimum or maximum number

of lines covered by each event handler that executes the faulty line (F.MinWith,

F.MaxWith).
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4.1.2 Test-suite characteristics

For test suites, one interesting characteristic is the granularity of test cases—

the amount of input provided by each test case. In GUI testing, granularity can

easily be measured by the length (number of events) of a test case (T.Len). In this

experiment, the length of the test cases in a test suite could be measured either by

taking the average of different-length test cases in a suite or by constructing each

suite such that its test cases have a uniform length. The latter approach is chosen

because it has a precedent in previous work [53, 65] and because the assumption

of uniform-length test cases, though unnecessary, is not unrealistic for model-based

GUI testing. Suites made up of longer test cases may reach “deeper” program states,

enabling them to cover and detect more faults [65].

Clearly, the characteristic of test-suite size can affect fault detection: larger

test suites are likely to cover and detect more faults. An important question studied

in this experiment is whether they do so when other factors, such as the suite’s

coverage level, are controlled for. In some studies, test-suite size is measured as the

number of test cases. But for this experiment, since different suites have different

test-case lengths, a more meaningful metric is the total number of events in the

suite, which is the product of the test-case length and the number of test cases

(T.Events).

Another test-suite characteristic that can affect fault detection is the propor-

tion of the application covered. Obviously, the more of an application’s code

a test suite covers, the more likely it is to cover a specific line, faulty or not. It
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may also be likely to detect more faults [39]. The proportion of coverage may be

measured by any of the myriad coverage metrics proposed over the years. This

experiment considers several structural metrics—class (T.Class), method (T.Meth),

block (T.Block), and line coverage (T.Line)—because of their popularity and tool

support. For GUI-based applications, additional coverage metrics based on the

event-flow graph (EFG) are available. Event coverage (coverage of nodes in the

EFG) turns out not to be a useful metric for this experiment because each suite is

made to cover all events. However, coverage of event pairs (EFG edges or length-2

event sequences; T.Pairs) and event triples (length-3 event sequences; T.Triples) is

considered. (Longer event sequences could have been considered as well, but length

3 seemed a reasonable stopping point for this experiment. Since this experiment

does show coverage of length-2 and length-3 sequences to be influential variables,

future experiments can study coverage of longer sequences.)

4.2 Procedure

4.2.1 Data collection

The first stage of the experiment involves building and collecting data from a sample

of test suites and a sample of faults. One of the contributions of this work is to make

data and artifacts from this experiment—products of thousands of computation-

hours and hundreds of person-hours—available to other researchers as a software-

testing benchmark1. The artifacts—including source code and configuration files for

1http://www.cs.umd.edu/~atif/Benchmarks/UMD2007b.html
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Table 4.2: Applications under test
Lines Classes Events EFG edges EFG depth Data points

CrosswordSage 0.3.5 2171 36 98 950 6 2230

FreeMind 0.7.1 9382 211 224 30146 3 970

the applications under test, GUI models created by GUITAR and tailored by the au-

thor, and scripts used by the author—describe the experiment setup more precisely

than prose ever could. Furthermore, the test suites, faults, and data about them

provided in the benchmark can be reused by researchers to perform new studies.

4.2.1.1 Applications under test

Two medium-sized, open-source applications were studied: CrosswordSage 0.3.52, a

crossword-design tool; and FreeMind 0.7.13, a tool for creating “mind maps”. (A

screenshot of CrosswordSage was shown in Figure 2.1.) Both are implemented in

Java and rely heavily on GUI-based interactions. Table 4.2 gives each application’s

size as measured by executable lines of code, classes, and GUI events modeled in

testing; the depth and number of edges of its EFG; and the number of data points

(〈test suite, fault〉 pairs) generated for it.

GUI testing of the applications was performed with tools in the GUITAR

suite [65]. To make the applications more amenable to these tools, a few modifi-

cations were made to the applications’ source code and configuration files (e.g., to

make file choosers open to a certain directory and to disable automatic saves). The

modified applications are referred to as the clean-uninstrumented versions. Each

2http://crosswordsage.sourceforge.net

3http://freemind.sourceforge.net
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application was made to have the same configuration throughout the experiment. A

simple input file was created for each application; it could be opened by performing

the correct sequence of events on the GUI. Using GUITAR, an EFG was created for

each application. GUI events that could interfere with the experiment (e.g., events

involved in printing) were removed from the EFG. The applications, configuration

files, input files, and EFG are provided in the software-testing benchmark described

at the beginning of Section 4.2.1.

To collect coverage data, each clean-uninstrumented application was instru-

mented with Instr4 and Emma5. The instrumented applications are referred to as

the clean versions. Instr reports how many times each source line was executed,

while Emma reports (among other information) the proportion of classes, methods,

blocks, and lines covered. Coverage reports from Instr were collected after each

event in a test case; a report from Emma was collected at the end of the test case.

To identify lines in initialization code—code executed before any events are

performed—an “empty” test case (with no GUI events) was run on each application

and coverage reports were collected. The initialization code was treated as an initial

event in the EFG having depth 0, no in-edges, and out-edges extending to all depth-1

events.

4http://www.glenmccl.com/instr/index.htm

5http://emma.sourceforge.net
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4.2.1.2 Test suites

The sample of test suites used in this experiment should be large and replicable (not

influenced by the skill of the tester). These criteria suggest an automated testing

technique. For this experiment, a form of automated GUI testing (Section 2.1) is

chosen.

Not only should the sample of test suites be large and replicable, but it should

also be an independent sample. In other words, the test suites in different 〈test

suite, fault〉 pairs should not be related to one another. For this reason, a unique

set of tests was generated for each 〈test suite, fault〉 pair. (The alternative would

be to form each test suite by selecting, with replacement, a subset of a large pool of

test cases, as was done in the preliminary study in Appendix A.)

Each test suite satisfies two requirements. First, it covers every event in the

application’s EFG at least once. This is to avoid obvious conclusions—i.e., that

faults in code only executed by one event cannot be covered or detected if the event

is not executed. Second, its test cases are all the same length. This is so that test-

case length can be studied as an independent variable. The length must be greater

than or equal to the depth of the EFG to ensure that all events can be covered. The

maximum test-case length studied in this experiment is 20.

Model-based GUI testing has the advantage of being automated, but this is

tempered by the fact that existing tools for generating and executing GUI test cases

are immature. Also, the EFG is only an approximation of actual GUI behavior;

because of enabling/disabling of events and other complex behavior in the actual
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GUI, not every test case generated from the EFG model is executable [67]. For

these reasons, each test suite must be generated carefully to ensure that every test

case runs properly.

Each test suite was generated in two stages.

• Stage 1: First, a test-case length L between the EFG depth and 20 (inclusive)

is randomly chosen. The list E of events that remain to be covered is initialized

to include all events in the EFG. A length-L test case is generated to cover a

randomly-selected event e ∈ E. Then the test case is run on the application.

If it runs successfully, then e and all other events it covers are removed from E;

otherwise, it is discarded and a new test case is generated. Test cases continue

to be generated until E is empty.

• Stage 2: The mean and variance of the total number of events in the test suites

generated in Stage 1 scales with test-case length—an undesirable feature for

this experiment, in which the number of events and the test-case length should

be independent. Stage 2 adds random test cases to the suite to make test-suite

size and test-case length independent. In preparation for the experiment, 100

test suites of each test-case length were generated for each application using

the procedure in Stage 1. The number of events per suite was observed to

be approximately normally distributed for each length; a mean and variance

for each normal distribution was estimated from these test suites. During the

experiment, Stage 2 for each test suite begins by calculating the quantile on

the normal distribution for length L corresponding to the suite’s number of
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events after Stage 1. The number of events corresponding to the same quantile

on the normal distribution for length 20 is then found; this becomes the target

number of events for the suite. Test cases are generated by randomly traversing

the EFG and are added to the suite to reach the target number.

It should be noted that, while both stages of test-case generation were randomized,

they favored certain events. Because of the complex structures of the EFGs of the

applications under test, some events were more likely than others to be encountered

in a random traversal. For example, events available in the initial state of the GUI

appeared in more test cases, and more often per test case, than other events.

4.2.1.3 Faults

An important consideration in any empirical study of fault detection is whether

to use natural, manually-seeded, or automatically-seeded faults [5, 16]. To achieve

this experiment’s large sample size (Table 4.2) with the resources available, using

automatically-seeded faults was the only feasible option. Even apart from resource

considerations, automatically-seeded faults offer some advantages for experimen-

tation: unlike natural or hand-seeded faults, automatically-seeded faults are not

influenced by the person (accidentally or intentionally) seeding the fault. The tool

MuJava6 was used to seed mutation faults (syntactically-small changes to the source

code, such as replacing one operator or identifier with another; a full list of the mu-

tation types is available at the referenced URL). Although the use of mutation faults

6http://www.ise.gmu.edu/~ofut/mujava/
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is a threat to external validity, it should be noted that in at least some cases muta-

tion faults turn out to be about equally difficult to detect as natural faults [5, 16],

and a fault’s syntactic size has little to do with its difficulty of detection [43].

Using MuJava, all possible faults within MuJava’s parameters were gener-

ated for each application. Of those, faults that spanned multiple lines and faults

in application classes corresponding to events deliberately omitted from the ap-

plication’s EFG (e.g., crosswordsage.PrintUtilities; see Section 4.2.1.1) were

omitted. Faults not inside methods (i.e., in class-variable declarations and initializa-

tion) were also omitted because their coverage is not tracked by Emma or Instr and

because most extra-method faults turned out to be either trivially detectable (e.g.,

removing a necessary variable initialization) or not faults at all (e.g., removing an

unnecessary variable initialization). For CrosswordSage, all 2230 of the remaining

faults were used. For FreeMind—which requires much more time to generate and

run each test suite because of its larger GUI—1000 of the 5729 single-line faults

in acceptable classes were initially selected at random, and of those the 970 faults

located inside methods were used. (It should be noted that the number 970 is no

more arbitrary than 1000.)

For each fault, MuJava generates a source file, which differs from the clean-

uninstrumented source code only by the single mutation, and the corresponding

class file(s). A faulty version of the application can be created by substituting (in

the classpath) one fault’s class file(s) for the clean class file(s). Having just one fault

per faulty version is of course unrealistic, but it is a ubiquitous practice in empirical

studies of software testing because it makes it easy to determine whether a test case

46



detects a particular fault. While it is not yet clear how much this practice affects

experiment results, a somewhat related study showed that test suites that detected

a high percentage of a sample of mutation faults also detected a high percentage of

more complex faults (composed of two mutations along the same program path) [42].

4.2.1.4 Measurement of independent and dependent variables

A test suite was generated for each fault in the sample. For each 〈test suite, fault〉

pair, each test case was executed on the clean version of the application and, if it

covered the line containing the fault, on the faulty version. Test cases were executed

by GUITAR on a cluster of Linux machines. Most of the computation time for the

experiment was spent running test cases. With the parameters set for GUITAR, a

test case of length L took at least 5 + 2.5L seconds to run on the clean version. For

CrosswordSage, test suites consisted of 18 to 101 test cases (306 to 680 events); for

FreeMind, 45 to 343 test cases (770 to 1178 events).

To determine whether a test suite covered a faulty line (Cov), the coverage

report from Instr was examined. To determine whether a test suite that covered a

faulty line also detected the fault (Det), the oracle information collected by GUITAR

for the clean and faulty versions was compared.

When the experiment was run, some false reports of fault detection were antic-

ipated. Because of timing problems in the current version of the test-case-replayer

component of GUITAR (an issue in other GUI-testing tools as well [1]), test cases

sometimes fail to run to completion, making it appear as if a fault has been detected
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when really it has not been. In addition, GUITAR by default detects even trivial

differences in oracle information, such as in the coordinates of GUI components,

which may not actually indicate fault detection.

To reduce false reports of fault detection, usually-trivial differences (e.g., any

changes to the size or absolute position of GUI components) were ignored. The

test-step number (e.g., 4 for the 4th event in the test case) of the first non-trivial

difference was determined. To find and fix false reports of fault detection, the test-

step number at which fault detection was reported was checked against coverage

reports to make sure that no fault was supposedly detected before its line had been

covered. For CrosswordSage, only one test case supposedly detected a fault before

covering it (but this did not affect Det for the suite), and no false reports of fault

detection were found in a manual inspection of the first 100 〈test suite, fault〉 pairs,

so no further checking was done. For FreeMind, there were more false reports of

fault detection, so all 〈test suite, fault〉 pairs with Det = 1 were manually inspected

and corrected.

Some metrics of the faults and test suites could be measured before test ex-

ecution. For faults, the mutant type was apparent from MuJava’s output. The

test-case length, size, event-pair coverage, and event-triple coverage of test suites

were also known prior to execution. The remaining metrics were calculated from

the coverage reports generated by Instr and Emma during execution. To allow com-

parison between results for CrosswordSage and FreeMind, metrics that vary with

application size (e.g., number of events in a test suite, number of lines covered before

a faulty line) were normalized (e.g., by number of events in the EFG, by number of
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executable lines in the application).

4.2.2 Data analysis

The goal of this experiment is to evaluate the strength and significance of the effects

of test-suite and fault characteristics on coverage (Cov) and detection (Det) of faults.

For data of this structure, logistic regression [3, 25, 52] is the most popular analysis

technique (although other techniques, such as Bayesian belief networks, are avail-

able [20]). Logistic regression is commonly used to evaluate the effects of several

explanatory variables on a binomial response variable (e.g., the effects of race and

medication usage on the presence of AIDS symptoms [3]). It has occasionally been

used in software-testing research [10, 22], although never to study test-suite and

fault characteristics simultaneously. Given a data set, logistic-regression analysis

finds the function (in a certain class of functions) that best describes the relation-

ship between the explanatory (independent) variables and the probability of the

response (dependent) variable for that data set.

Logistic regression is so named because it uses the logit function,

logit(x) = log

(

x

1− x

)

,

to map probabilities—values between 0 and 1—onto the entire range of real numbers.

For a dependent variable Y and a vector of independent variables ~X, the logistic-

regression model has the form

logit(Pr(Y )) = α + ~β · ~X. (4.1)

The intercept term α is related to the overall probability of Y , and, as explained
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Figure 4.1: Predicted probabilities for example logistic-regression models

below, the coefficients ~β show the strength of relationship between each element

of ~X and Y . Note that logit(Pr(Y )) equals the log of the odds of Y . Rewritten,

Equation 4.1 expresses the probability of the dependent variable as a function of

the independents:

Pr(Y ) =
exp(α + ~β · ~X)

1 + exp(α + ~β · ~X)
. (4.2)

Figure 4.1 plots this function for ~X = X, α = 0, and ~β = β ∈ {−10,−1,−0.1, 0.1, 1, 10}.

In logistic-regression analysis, a data set consists of a set of data points, each a

vector of values for ~X (here, test-suite and fault characteristics) paired with a value

for Y (here, Cov or Det). The goal of logistic regression is to find values for the

intercept α and coefficients ~β that maximize the likelihood that the set of observed

values of Y in the data set would have occurred given α, ~β, and the observed values

of ~X. The process of choosing values for α and ~β is called model fitting and is

accomplished by a maximum-likelihood-estimation algorithm.

Coefficients in a logistic-regression model indicate the magnitude and direction

of each independent variable’s relationship to the log of the odds of the dependent
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variable. If βi = 0, then there is no relationship between Xi and Y ; if βi < 0, then

the odds and probability of Y decrease as Xi increases; if βi > 0, then the odds and

probability of Y increase as Xi increases. However, the increase or decrease in the

odds of Y is multiplicative, not additive; it is a factor not of βi but of exp(βi). More

precisely, the quantity

OR = exp(βi∆) (4.3)

(called the odds ratio) is an estimate, calculated during model fitting, of the ratio

of the odds of Y when Xi = xi + ∆ to the odds of Y when Xi = xi, when all other

Xj ∈ ~X are held constant.

Associated with each coefficient is a p-value for the chi-square test of deviance,

a statistical test of whether the independent variable is actually related to the depen-

dent variable, or whether the apparent relationship (non-zero coefficient) is merely

due to chance. A p-value ≤ 0.05, indicating that there is only a 5% chance of seeing

a fitted coefficient value that extreme under the null hypothesis, is typically consid-

ered to be statistically significant. For exploratory analysis (as in this experiment),

p-values ≤ 0.10 may also be considered.

4.2.2.1 Data sets

For each application, three data sets were constructed. These are summarized in

Table 4.3. The first data set, AllFaults, includes all 〈test suite, fault〉 pairs and

all test-suite metrics, but only those fault metrics that can be computed without

using execution data. This is because some faulty lines were not covered by any
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Table 4.3: Data sets
Data set Description

AllFaults

All 〈test suite, fault〉 pairs
All test-suite metrics
Fault metrics not requiring execution data

PoolCovFaults

Pairs where test pool covers fault
All test-suite metrics
All fault metrics

SuiteCovFaults
Pairs where test suite covers fault
All test-suite metrics
All fault metrics

test case in the experiment, so no execution data was available for them. (Even

though the test suites cover every GUI event, they do not cover every line of code.)

The second data set, PoolCovFaults, includes all test-suite and fault metrics

but only those 〈test suite, fault〉 pairs where the fault was covered by at least one

test case in the test pool (not necessarily in that test suite). The third data set,

SuiteCovFaults, includes all test-suite and fault metrics but only those 〈test

suite, fault〉 pairs where the test suite covered the faulty line. This data set is used

to understand the conditional probability of Det given that Cov = 1.

4.2.2.2 Model fitting

For each data set, two kinds of logistic-regression models were fitted: univariate and

multivariate. Each univariate model, which assesses the effect of an independent

variable Xi by itself on the dependent variable Y , has the form

logit(Pr(Y )) = α + βiXi.

Each multivariate model, which assesses the contribution of each independent vari-

able toward explaining the dependent variable in the context of the other indepen-
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dent variables, has the form in Equation 4.1, with ~X consisting of some subset of

the independent variables for the data set. For the AllFaults and PoolCov-

Faults data sets, Y can be either Cov or Det; for SuiteCovFaults, Y can only

be Det since Cov is always 1. Before model-fitting, all non-categorical data was

centered—the mean was subtracted. Model-fitting and other statistical calculations

were performed with the R software environment7.

A potential problem in fitting multivariate logistic-regression models—for which

other studies of fault detection have been criticized [20]—is that strongly correlated

(“multicolinear”) independent variables can result in models with misleading coef-

ficients and significance tests. If two or more multicolinear variables are included

as parameters in a multivariate model, then none may appear to be statistically

significant even if each is significant in its respective univariate model. Also, the

fitted coefficients may be very different from those in the univariate models, even

changing signs. Although some correlation among model parameters is acceptable—

indeed, the intention of multivariate analysis is to control for such correlation—for

the purposes of this work it is desirable to avoid serious multicolinearity.

To avoid multicolinearity, as well as to provide multivariate models that are

small enough to comprehend, a subset of the metrics in Table 4.1 needs to be selected

for each model. There is no standard way to do this; to some extent, it is a process of

trial and error [56]. Only metrics that are statistically interesting in their univariate

models (p <= 0.10) are considered. Correlations among these metrics turn out

to be complex. The strongest correlations are, not surprisingly, within groups of

7http://www.r-project.org/
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metrics measuring the same characteristic, but not all variables in each group are

strongly correlated. For example, T.Class, T.Meth, T.Block, and T.Line are strongly

correlated with each other but not as correlated with T.Pairs. Correlations also

arise between groups, for example between T.Pairs and T.Len, and vary in strength

across data sets. To re-group the data according to correlation, principal-component

analysis was tried, but it proved unhelpful: many metrics did not fall neatly into

one component or another. For each data set, then, the problem of selecting the

subset of metrics that form the best-fitting multivariate model for the dependent

variable, while not being too strongly correlated to each other, was an optimization

problem. Because there were few enough metrics, a brute-force solution could be

applied. A program was written in R to fit logistic-regression models using various

combinations of metrics, and the model with the lowest AIC (see Section 4.2.2.3)

and without severe multicolinearity—i.e., unexpected coefficient signs—was chosen.

This is the main-effects model.

Each main-effects model was expanded to include interaction effects of interest—

namely, those between a test-suite metric and a fault metric. The models were then

reduced by stepwise regression based on AIC to eliminate independent variables and

interactions whose contribution toward explaining the dependent variable is negli-

gible. The result is the interaction-effects model. This is the multivariate model

presented in the next section.
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4.2.2.3 Goodness of fit

To evaluate the multivariate models’ goodness of fit to the data, several measures

were used. One was deviance, which indicates how much of the variance in the

dependent variable fails to be explained by the model8; lower deviance means better

fit. (R2, a similar measure for linear-regression models that is more directly related

to variance, is not applicable to logistic-regression models.) The deviance can be

compared to the null deviance, which is the deviance of a model consisting of just

a constant term (intercept). Another goodness-of-fit measure used was Akaike’s

“an information criterion” (AIC), a function of the deviance and the number of

independent variables in the model that balances model fit with parsimony (fewer

variables); lower AIC is better.

Other measures of goodness of fit used, which may be more familiar outside

the statistics community, were sensitivity and specificity. These have to do with

the number of correct classifications (“predictions”) made by the model on the data

to which it was fit. Although probabilities predicted by logistic-regression models

may fall anywhere between 0 and 1, they can be classified as 0 (“negative”) or 1

(“positive”) using the sample mean of the dependent variable as the cutoff. For

example, for the AllFaults data set for CrosswordSage, 27.0% of Det values are 1,

so model predictions < 0.270 are considered to be 0 and those > 0.270 are considered

8More precisely, deviance is a function of “the probability that the observed values of the

dependent may be predicted by the independents” [25]. This probability is called the likelihood.

The deviance of a model is actually −2(LM − LS), where LM is the log of the likelihood for the

model and LS is the log of the likelihood for a perfectly-fitting model.
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Table 4.4: Data summary: AllFaults
CrosswordSage FreeMind 0.7.1

Min. Mean Max. Min. Mean Max.

F.MutType 0 0.474 1 0 0.705 1

T.Len 6 13.0 20 3 11.6 20

T.Events 3.12 5.00 6.94 3.44 4.35 5.26

T.Class 0.556 0.697 0.750 0.749 0.795 0.815

T.Meth 0.328 0.454 0.490 0.521 0.569 0.595

T.Block 0.361 0.509 0.552 0.419 0.485 0.524

T.Line 0.345 0.484 0.525 0.423 0.488 0.525

T.Pairs 0.192 0.272 0.338 0.0141 0.0230 0.0286

T.Triples 0.0198 0.0337 0.0499 0.0000554 0.0001540 0.0002132

to be 1. Sensitivity is the proportion of actual positives (e.g., Det = 1) correctly

classified as such. Specificity is the proportion of actual negatives correctly classified

as such.

4.3 Results

Tables 4.4, 4.5, and 4.6 summarize the three data sets to be analyzed, which were

described in Table 4.3. These tables list the minimum, mean, and maximum of each

independent variable in each data set. Understanding the range of the data will help

to interpret the logistic-regression models presented below. Some key observations

about the data sets can also be made.

One observation is that the values for test-suite metrics are nearly the same for

the AllFaults and PoolCovFaults data sets. Recall that the AllFaults data

set includes all 〈test suite, fault〉 pairs, while the PoolCovFaults data set includes

only the 〈test suite, fault〉 pairs where the faulty line is covered by the test pool.

It makes sense, then, for the two data sets to differ in their fault metrics but not

in their test-suite metrics. Certainly the PoolCovFaults data set includes more
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Table 4.5: Data summary: PoolCovFaults
CrosswordSage FreeMind 0.7.1

Min. Mean Max. Min. Mean Max.

F.MutType 0 0.448 1 0 0.759 1

F.CovBef 0.0000 0.0736 0.2165 0.000 0.138 0.292

F.Depth 0.000 0.291 0.833 0.000 0.397 1.000

F.SomeRep 0 0.323 1 0 0.745 1

F.AllRep 0 0.304 1 0 0.176 1

F.MinPred 0.0000 0.0293 0.2041 0.00000 0.02450 0.77679

F.MaxPred 0.0000 0.1560 0.2041 0.00000 0.67410 0.77679

F.MinSucc 0.0102 0.0592 0.2041 0.00446 0.14032 0.75893

F.MaxSucc 0.0204 0.1660 0.2041 0.01786 0.66597 0.75893

F.Events 0.0102 0.0698 0.4388 0.00446 0.54611 0.96429

F.MinWith 0.000461 0.060423 0.171350 0.000107 0.041343 0.143253

F.MaxWith 0.00322 0.12423 0.17181 0.0576 0.1552 0.1768

T.Len 6 12.9 20 3 11.6 20

T.Events 3.12 5.02 6.89 3.44 4.34 5.22

T.Class 0.556 0.694 0.750 0.749 0.795 0.815

T.Meth 0.328 0.453 0.487 0.521 0.568 0.595

T.Block 0.361 0.508 0.552 0.420 0.484 0.524

T.Line 0.345 0.483 0.525 0.424 0.487 0.525

T.Pairs 0.192 0.272 0.336 0.0141 0.0230 0.0286

T.Triples 0.0198 0.0337 0.0460 0.0000554 0.0001545 0.0002132

metrics, and for the one metric the two data sets have in common—F.MutType—

there is a small but perhaps significant difference. (Statistical analysis will tell for

sure whether observed differences are indeed significant.)

A second observation is that there are noticeable differences in the test-suite

metrics of the SuiteCovFaults data set and the other two data sets. (The differ-

ences are small but generally greater than those between the other two data sets.)

This, too, is as expected. Recall that the SuiteCovFaults data set includes only

the 〈test suite, fault〉 pairs where the test suite covers the faulty line. Thus, the test

suites in SuiteCovFaults are generally better at covering the application code.

Another observation is that among all three data sets some of the fault metrics
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Table 4.6: Data summary: SuiteCovFaults
CrosswordSage FreeMind 0.7.1

Min. Mean Max. Min. Mean Max.

F.MutType 0 0.429 1 0 0.711 1

F.CovBef 0.0000 0.0716 0.2165 0.000 0.116 0.238

F.Depth 0.000 0.283 0.833 0.000 0.330 0.667

F.SomeRep 0 0.319 1 0 0.731 1

F.AllRep 0 0.306 1 0 0.166 1

F.MinPred 0.0000 0.0277 0.2041 0.00000 0.00931 0.02679

F.MaxPred 0.0000 0.1631 0.2041 0.00000 0.65850 0.77679

F.MinSucc 0.0102 0.0589 0.2041 0.00446 0.12396 0.75893

F.MaxSucc 0.0204 0.1718 0.2041 0.01786 0.65450 0.75890

F.Events 0.0102 0.0729 0.4388 0.00446 0.59915 0.96429

F.MinWith 0.000461 0.057481 0.171350 0.000107 0.038661 0.137178

F.MaxWith 0.00322 0.12132 0.17181 0.0666 0.1596 0.1768

T.Len 6 12.9 20 3 11.5 20

T.Events 3.12 5.02 6.89 3.44 4.34 5.22

T.Class 0.556 0.703 0.750 0.763 0.796 0.815

T.Meth 0.328 0.457 0.487 0.521 0.569 0.595

T.Block 0.361 0.514 0.552 0.420 0.486 0.524

T.Line 0.345 0.489 0.525 0.424 0.489 0.525

T.Pairs 0.192 0.272 0.336 0.0141 0.0230 0.0286

T.Triples 0.0198 0.0337 0.0460 0.0000553 0.0001539 0.0002132

differ notably. Since additional coverage constraints are placed on the faults from

the AllFaults data set to the PoolCovFaults data set (the test pool must cover

them) and from the PoolCovFaults data set to the SuiteCovFaults data set

(the test suite paired with them must cover them), the three data sets represent

progressively more “coverable” sets of faults. It is not surprising that their metrics

differ.

It is also worth noting that the levels of coverage in this experiment are rather

low, by research standards if not by industrial standards. Even though each test

suite executes each event in the EFG an average of 3 to 7 times (T.Events), class

coverage (T.Class) falls at less than 82% and line coverage (T.Line) at less than 53%.
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Table 4.7: Data summary: Cov and Det
CrosswordSage

Cov Det Total
0 1 Mean 0 1 Mean

AllFaults 1147 1083 0.486 1629 601 0.270 2230

PoolCovFaults 101 1083 0.915 583 601 0.508 1184

SuiteCovFaults 0 1083 1.000 482 601 0.555 1083

FreeMind 0.7.1

Cov Det Total
0 1 Mean 0 1 Mean

AllFaults 506 464 0.478 800 170 0.175 970

PoolCovFaults 137 464 0.772 431 170 0.283 601

SuiteCovFaults 0 464 1.000 294 170 0.366 464

With a few tweaks in test-case generation, coverage could have been improved (e.g.,

by providing more input files or forcing more test cases to open input files), but only

at the expense of the randomness and replicability of the test suites. Since fault

detection seems to increase super-linearly with coverage [31], different results might

be obtained with greater coverage levels.

Table 4.7 summarizes the dependent variables, Cov and Det, for each data set,

giving the frequency of each value (0 or 1), the mean (proportion of 1 values), and

the total number of data points. With each successive data set, from AllFaults

to PoolCovFaults to SuiteCovFaults, more data points with Cov = 0 (and

therefore Det = 0), are eliminated, so the proportion of Cov and Det grows.

In the rest of this section, the three data sets are used to test the hypotheses

listed at the beginning of this chapter by fitting logistic-regression models to them.

For hypotheses H1 and H2, the question is whether fault and test-suite character-

istics, or interactions between them, affect the likelihood that a test suite detects a

fault (Det = 1). For hypotheses H3 and H4, the question is whether these same vari-
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ables affect the likelihood that a test suite detects a fault (Det = 1), given that the

test suite covers the faulty line (Cov = 1). Both of these questions are addressed, in

Sections 4.3.2 and 4.3.3, respectively. But first, as a stepping stone toward answering

the other questions, Section 4.3.1 explores whether fault and test-suite character-

istics affect the likelihood that a test suite covers a faulty line (Cov). In addition,

that section explains how the logistic-regression models should be interpreted.

4.3.1 What characteristics affect whether a test suite covers a faulty

line?

For this work, understanding the fault and test-suite characteristics that affect cov-

erage of faulty lines is not an end in itself. Rather, it assists in understanding the

characteristics that affect detection of faults.

In fact, a study whose end goal was to understand characteristics affecting

coverage of lines would probably want to study each line of code in the applications

under test. This experiment, in contrast, studies only the sample of lines where faults

happen to be seeded, and the sample is biased toward lines with more opportunities

for seeding. Therefore, while the results in this section provide information about

coverage that proves helpful in later sections, the information should be used with

caution outside the experiment.

For some metrics, it is obvious even without empirical evidence that they

affect coverage of faulty lines. The probability of Cov is bound to increase, on

average, as T.Class, T.Meth, T.Block, and T.Line increase, and it cannot decrease as
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Table 4.8: Univariate models: AllFaults, Cov
CrosswordSage FreeMind 0.7.1

Int. Coef. Sig. Int. Coef. Sig.

F.MutType 0.108 -0.349 *** -0.126 0.0558

T.Len -0.0575 -0.0131 -0.0867 -0.00588

T.Events -0.0574 0.0901 -0.0867 -0.107

T.Class -0.0581 2.16 *** -0.0874 12.3 *

T.Meth -0.0582 4.28 *** -0.0868 4.85

T.Block -0.0582 3.28 *** -0.0869 4.27

T.Line -0.0582 3.54 *** -0.0869 4.28

T.Pairs -0.0574 1.15 -0.0867 0.265

T.Triples -0.0574 2.45 -0.0867 -76.4

T.Events, T.Pairs, and T.Triples increase. Certainly F.CovBef, F.Depth, F.MinPred,

and F.MaxPred affect coverage as well: all faults with a value of 0 for these variables

are guaranteed to be covered, since they lie in initialization code that is executed by

every test case. For other metrics, like those measuring the size of event handlers

(F.MinWith and F.MaxWith), their relationship to coverage can only be discovered

by analyzing the data.

Two of the data sets—AllFaults and PoolCovFaults—can be used to

show which characteristics affect whether a test suite covers a faulty line. All-

Faults includes all of the 〈test suite, fault〉 pairs but only one fault metric, while

PoolCovFaults includes all fault metrics but a subset of 〈test suite, fault〉 pairs

that is biased toward easier-to-cover faulty lines. Whether the independent variables

come from AllFaults or PoolCovFaults, the dependent variable of interest is

Cov.
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Table 4.9: Univariate models: PoolCovFaults, Cov
CrosswordSage FreeMind 0.7.1

Int. Coef. Sig. Int. Coef. Sig.

F.MutType 2.84 -0.875 *** 2.50 -1.54 ***

F.CovBef 2.48 -14.1 *** 2.93 -43.3 ***

F.Depth 2.53 -4.34 *** 1.91 -6.70 ***

F.SomeRep 2.46 -0.255 1.50 -0.361

F.AllRep 2.35 0.0888 1.28 -0.30

F.MinPred 2.41 -6.34 *** -1.11 -197 ***

F.MaxPred 2.81 13.1 *** 1.25 -1.25 **

F.MinSucc 2.37 -1.09 1.23 -0.874 **

F.MaxSucc 2.95 21.7 *** 1.24 -1.09 *

F.Events 2.90 27.8 *** 1.34 1.99 ***

F.MinWith 2.62 -18.4 *** 1.24 -6.79 **

F.MaxWith 2.62 -14.7 *** 1.33 24.3 ***

T.Len 2.37 -0.0164 1.22 -0.0205

T.Events 2.37 -0.0314 1.22 -0.00992

T.Class 3.37 19.6 *** 1.25 28.7 ***

T.Meth 3.28 36.5 *** 1.23 14.8 *

T.Block 3.31 28.1 *** 1.24 12.5 **

T.Line 3.30 30.2 *** 1.24 12.7 **

T.Pairs 2.37 0.86 1.22 -22.3

T.Triples 2.37 -3.83 1.22 -2150

4.3.1.1 Univariate models

Univariate logistic-regression models were fit to each of these two data sets. Re-

call from Section 4.2.2 that a univariate model shows how much an independent

variable (fault or test-suite metric) affects the likelihood of the dependent variable

(Cov), without controlling for any other independent variables. Tables 4.8 and 4.9

summarize the univariate models, giving intercepts, coefficients, and significance

levels. For example, the first row of Table 4.8 for CrosswordSage represents the

model

logit(Pr(Cov)) = 0.108− 0.349F.MutType.
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Figure 4.2: Predicted probabilities for CrosswordSage T.Block model in Table 4.8

Metrics with significance levels of “◦”, “*”, “**”, and “***” have p-values less than

or equal to 0.1, 0.05, 0.01, and 0.001, respectively. The smaller the p-value, the

more likely it is that the theoretical (true) coefficient value is non-zero and has the

same sign as the estimated coefficient.

This section first explains how to interpret the models, then describes the main

results learned from these models. To understand how to interpret the coefficients

in these models, consider T.Block for CrosswordSage in Table 4.8. The coefficient,

3.28, means that the odds of Cov are expected to increase by a factor of exp(3.28)∆

when T.Block increases by ∆ (Equation 4.3). For example, if T.Block increases from

0.4 to 0.5, the odds of covering a given faulty line are expected to increase by a factor

of exp(3.28)0.5−0.4 ≈ 1.39. Figure 4.2 shows how this translates to probabilities. The

plotted curve represents the predicted probability of Cov across the range of T.Block

(similar to Figure 4.1). (The near-linear shape of the curve demonstrates the ability

of logistic-regression functions to mimic other functions, such as linear functions.)

For comparison, the curve is superimposed on a bar plot of the sample probabilities
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of Cov at different levels of T.Block in the AllFaults data set. (No T.Block

values fall between 0.45 and 0.5, so no bar is drawn.) The predicted probability

for a particular value of T.Block is found by subtracting the mean of T.Block for

the data set (0.509)—since the models are fit to centered data—to get X, and then

plugging X, the intercept (−0.0582), and the coefficient (3.28) into Equation 4.2. For

instance, for a T.Block value of 0.540, X is 0.540− 0.509 = 0.031, and the predicted

probability of Cov is exp(−0.0582+3.28∗0.031)/(1+exp(−0.0582+3.28∗0.031)) =

0.511.

For certain metrics—F.MutType, F.SomeRep, and F.AllRep—X can only be 0

or 1. In Table 4.9 for FreeMind, for example, the predicted probability of Cov for

method-level mutation faults (encoded as 1) is exp(2.50+−1.54∗1)/(1+exp(2.50+

−1.54 ∗ 1)) = 0.724, whereas for class-level mutation faults (encoded as 0) it is

exp(2.50 +−1.54 ∗ 0)/(1 + exp(2.50 +−1.54 ∗ 0)) = 0.924.

While it is important to understand how to interpret the magnitude of model

coefficients—or at least to understand that they do not denote a linear relationship

with the probability of the dependent variable—the analysis below focuses on the

significance levels, the signs, and occasionally the relative magnitudes of coefficients.

Now let us return to the question at hand: what characteristics affect the

likelihood that a test suite covers a faulty line? In Tables 4.8 and 4.9, most of

the fault characteristics have statistically significant effects: the method of creation

(F.MutType, except for FreeMind in Table 4.8), the distance from the initial state

(F.CovBef and F.Depth), the degrees of freedom in execution (F.MinPred, F.MaxPred,

F.MinSucc for FreeMind, F.MaxSucc, and F.Events), and the size of enclosing event
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handlers (F.MinWith and F.MaxWith). For the characteristic of distance from the

initial state, the results are as expected and are consistent across applications: the

metrics F.CovBef and F.Depth have negative coefficients, indicating that faulty lines

lying farther from the initial state are less likely to be covered. For most of the

other characteristics, the direction of their effect on coverage is inconsistent: the

signs of coefficients differ across metrics or across applications. But for F.MutType,

the results are fairly consistent and surprising: more class-level mutation faults than

method-level were seeded in code covered by the test pool. This portends (somewhat

incorrectly, it turns out) that the logistic-regression models of Det later in this

section will show class-level mutation faults to be more susceptible to detection.

One fault characteristic does not affect Cov: the repetitions in which the faulty

code is executed (F.SomeRep and F.AllRep). This makes sense because a faulty line

only needs to be executed once to be covered.

As for test-suite characteristics, Tables 4.8 and 4.9 show that the code-coverage

metrics (T.Class, T.Meth, T.Block, and T.Line) of course affect Cov. The event-

coverage metrics (T.Pairs and T.Triples), the length of test cases (T.Len), and the

size of the test suite (T.Events) do not have a significant effect on Cov for the ranges

of these metrics studied.

4.3.1.2 Multivariate models

Multivariate models were also fit to the AllFaults and PoolCovFaults data

sets, again with Cov as the dependent variable, in order to assess each independent
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Table 4.10: Multivariate models: AllFaults, Cov
CrosswordSage FreeMind 0.7.1

Coef. Sig. Coef. Sig.

Intercept 0.105 -0.0874

F.MutType -0.346 ***

T.Class 12.3 *

T.Block 3.25 ***

Null deviance 3089.6 1342.9

Deviance 3056.8 1338.6

AIC 3062.8 1342.6

Sensitivity 444/1083 = 0.410 395/464 = 0.851

Specificity 785/1147 = 0.684 99/506 = 0.196

variable’s contribution to explaining Cov in the context of the other independent

variables. Recall from Section 4.2.2.2 that each multivariate model uses the subset of

all metrics that provides the best balance of model fit and parsimony (i.e., the lowest

AIC) without severe symptoms of multicolinearity. (For each “best” multivariate

model, often several similar models are nearly as good; for example, for a model

that includes T.Line, models with T.Block, T.Meth, or T.Class in its place often have

similar AIC values.) A test-suite or fault metric’s coefficient in a multivariate model

shows how much it affects Cov, relative to the other metrics in the model, when the

other metrics are held constant.

Tables 4.10 and 4.11 summarize the multivariate models for the two data sets.

For example, the model for CrosswordSage in Table 4.10 is

logit(Pr(Cov)) = 0.105− 0.346F.MutType + 3.25T.Block.

The lower portion of each table lists several measures of goodness of fit (Sec-

tion 4.2.2.3).

Let us consider how to interpret the models. As with the univariate models,
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Table 4.11: Multivariate models: PoolCovFaults, Cov
CrosswordSage FreeMind 0.7.1

Coef. Sig. Coef. Sig.

Intercept 10.6 3.19

F.MutType -1.16 ***

F.CovBef -142 *** -50.9 ***

F.MinPred -106 ***

F.MaxPred 67.2 ***

F.MinWith -13.7 *

F.MaxWith -113 ***

T.Class 110 ***

T.Block -39.6 ***

T.Class× F.CovBef -1150 ***

T.Block× F.CovBef 2350

T.Block× F.MaxPred -1940 ***

T.Block× F.MaxWith 3260 ***

Null deviance 690.36 645.22

Deviance 58.81 308.82

AIC 74.81 322.82

Sensitivity 1059/1083 = 0.978 376/464 = 0.810

Specificity 100/101 = 0.990 122/137 = 0.891

predicted probabilities of the dependent variable, Cov, can be calculated by plug-

ging values for the independent variables into Equation 4.2. Coefficients should

be interpreted relative to other coefficients. For example, in the model for Cross-

wordSage in Table 4.11, the coefficient of F.CovBef (−90.2) is about twice that of

F.MaxWith (−45.0). Thus, the model estimates that a change of ∆ in F.CovBef

would increase or decrease the odds of Cov by nearly the same factor that a change

of 2∆ in F.MaxWith would. For instance, when F.CovBef increases from 0.05 to 0.10

and all other metrics are held constant, the odds of Cov are predicted to decrease

by a factor of exp(−90.2)0.05 = 0.011. When F.MaxWith increases from 0.05 to 0.15

and all other metrics are held constant, the odds of Cov are expected to decrease

by the same factor, exp(−45.0)0.10 = 0.011.
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Figure 4.3: Predicted probabilities for FreeMind model in Table 4.11

Interaction effects in a model can be understood by looking at the signs of

their coefficients or by calculating predicted probabilities. Consider the interaction

between T.Class and F.CovBef (T.Class×F.CovBef) for FreeMind in Table 4.11. The

positive coefficient of T.Class and the negative coefficient of F.CovBef imply that

the probability of Cov generally increases as T.Class increases or F.CovBef decreases.

But when these metrics have opposite signs in the centered data (i.e., one is above

its mean and the other is below its mean in the original data), their product is

negative, and this multiplied by the negative coefficient of T.Class × F.CovBef is

positive—boosting the probability of Cov. Conversely, if T.Class and F.CovBef have

the same sign in the centered data, the interaction effect diminishes the probability

of Cov. To illustrate, the contour plot in Figure 4.3 shows the predicted probabilities

at various levels of T.Class and F.CovBef when F.MutType is held constant at 0 and

F.MinPred and F.MinWith are held constant at their respective means. The basic

idea is that test suites with high class coverage (T.Class) are especially good at

covering lines at a small distance from the initial state (F.CovBef), and test suites
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with low class coverage are especially bad at covering lines at a great distance from

the initial state.

Now, in the multivariate models, which fault and test-suite characteristics

affect whether a test suite covers a faulty line? In the model for FreeMind in

Table 4.10, the only characteristic included is the proportion of coverage (T.Class);

it was the only characteristic significant in the univariate models for that data set.

But in the other models in Tables 4.10 and 4.11, it is a combination of faulty-

line and test-suite characteristics that best explains Cov. For both applications in

Table 4.11, the distance of the faulty line from the initial state (F.CovBef), the

degrees of freedom in the faulty line’s execution (F.MinPred or F.MaxPred), the size

of the event handlers containing the fault line (F.MinWith or F.MaxWith), and the

proportion of code coverage (T.Class or T.Block) contribute to explaining Cov. For

FreeMind, the type of mutation (F.MutType) also contributes. For CrosswordSage

in Table 4.10, the characteristics chosen for the model are the type of mutation

(F.MutType) and the proportion of coverage (T.Block). In all of the models in

Tables 4.10 and 4.11—with the exception that F.MutType is left out of the model

for CrosswordSage in Table 4.11—the set of characteristics included in the models

is the same as the set that were significant in the univariate models. Additionally,

the multivariate models in Table 4.11 include interaction effects between test-suite

coverage and some fault characteristics.

The models for the PoolCovFaults data set (Table 4.11) fit the data well.

For CrosswordSage, the fit is nearly perfect, with sensitivity and specificity at 97.8%

and 99.0%. For FreeMind, the fit is not quite as good, with sensitivity and specificity
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Table 4.12: Univariate models: AllFaults, Det
CrosswordSage FreeMind 0.7.1

Int. Coef. Sig. Int. Coef. Sig.

F.MutType -1.10 0.211 * -1.16 -0.577 **

T.Len -0.997 -0.00597 -1.55 0.0120

T.Events -1.00 0.230 ** -1.55 0.362

T.Class -0.999 1.07 ◦ -1.55 -4.10

T.Meth -0.999 2.41 * -1.55 -0.128

T.Block -0.999 1.85 * -1.55 0.177

T.Line -0.999 2.01 * -1.55 0.154

T.Pairs -1.00 5.78 ** -1.55 39.9

T.Triples -0.999 23.2 ** -1.55 2520

at 81.0% and 89.1%. The models for the PoolCovFaults data set, with its

additional fault metrics, fit the data much better than those for the AllFaults

data set (Table 4.10).

4.3.2 What characteristics affect whether a test suite detects a fault?

Considering the widespread use of code coverage as a predictor of fault detection,

one might assume that the same characteristics that affect whether a test suite cov-

ers faulty code would also affect whether a test suite detects a fault. To investigate

whether this is actually the case, the same data sets (AllFaults and PoolCov-

Faults) are used as in the previous section, but now the dependent variable is Det

instead of Cov.

4.3.2.1 Univariate models

Tables 4.12 and 4.13 summarize the univariate models of Det for the two data sets.

The set of fault characteristics significant in these models of Det is a superset of

the fault characteristics significant in the corresponding models of Cov in Tables 4.8
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Table 4.13: Univariate models: PoolCovFaults, Det
CrosswordSage FreeMind 0.7.1

Int. Coef. Sig. Int. Coef. Sig.

F.MutType -0.209 0.536 *** -0.124 -1.12 ***

F.CovBef 0.0296 -6.56 *** -1.10 -12.1 ***

F.Depth 0.0305 -1.05 ** -1.12 -3.79 ***

F.SomeRep -0.112 0.444 *** -0.606 -0.445 *

F.AllRep -0.131 0.537 *** -1.03 0.532 *

F.MinPred 0.0293 -3.87 ** -3.07 -144 ***

F.MaxPred 0.0292 3.76 *** -0.971 -2.00 ***

F.MinSucc 0.0304 0.744 -0.935 -0.531

F.MaxSucc 0.0202 10.3 *** -0.972 -2.25 ***

F.Events 0.0409 7.89 *** -0.953 -0.984 ***

F.MinWith 0.0293 -8.83 *** -0.965 10.9 ***

F.MaxWith 0.0304 0.699 -0.930 -0.209

T.Len 0.0304 0.00198 -0.931 0.012

T.Events 0.0305 0.246 * -0.936 0.504 ◦

T.Class 0.0303 2.30 ** -0.931 -3.16

T.Meth 0.0302 4.89 *** -0.930 1.43

T.Block 0.0302 3.70 *** -0.930 1.41

T.Line 0.0302 4.01 *** -0.930 1.45

T.Pairs 0.0305 7.35 ** -0.934 41.1

T.Triples 0.0305 31.0 * -0.932 2450

and 4.9; some characteristics affect fault detection without affecting faulty-line cov-

erage. These are the mutation type (F.MutType) for FreeMind in the AllFaults

data set and the repetitions in execution (F.SomeRep and F.AllRep) for both appli-

cations in the PoolCovFaults data set.

For CrosswordSage, some test-suite characteristics also affect fault detection

without affecting faulty-line coverage. These are the size (T.Events) and the coverage

as measured by event-based metrics (T.Pairs and T.Triples).

For FreeMind, the opposite happens for test-suite characteristics. The one

test-suite characteristic that affects faulty-line coverage, the proportion of test-suite

coverage (T.Class), does not affect fault detection.
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To some extent, the significant coefficients in Tables 4.12 and 4.13 can be

compared to those in Tables 4.8 and 4.9 to see whether a metric has a stronger

effect on Det or Cov. This must be done cautiously: differences in the magnitude of

coefficients are statistically meaningful only if both coefficients are statistically sig-

nificant and the confidence intervals surrounding the two coefficients do not overlap.

(This is implied if the coefficients have opposite signs.) The 95% Wald confidence

interval for a coefficient βi is βi ± 1.96SE, where SE is the standard error for βi.

For the AllFaults data set for CrosswordSage, the apparent differences in

coefficients for the coverage metrics (T.Class, T.Meth, T.Block, and T.Line) between

the models of Cov and Det are not meaningful. Only the difference for F.MutType

is; method-level mutation faults are less likely than class-level ones to be covered

but more likely to be detected. For the PoolCovFaults data set, most of the

apparent differences are statistically meaningful, with the exception of F.MinPred

for CrosswordSage and F.MutType, F.MinPred, and F.MaxPred for FreeMind. Thus,

for example, F.CovBef really does have a stronger effect on Cov than on Det for both

applications. For FreeMind, two metrics—F.Events and F.MinWith—have opposite

effects on Cov and Det, but other measures of the same characteristics do not.

4.3.2.2 Multivariate models

Tables 4.14 and 4.15 summarize the multivariate models of Det for the two data sets.

Not every characteristic that was significant in the univariate models of Det (Ta-

bles 4.12 and 4.13) is included in these models, although most are. In the model for
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Table 4.14: Multivariate models: AllFaults, Det
CrosswordSage FreeMind 0.7.1

Coef. Sig. Coef. Sig.

Intercept -1.11 -1.16

F.MutType 0.213 * -0.577 **

T.Line 0.363 *

T.Pairs 5.82 **

T.Line× F.MutType 3.22

Null deviance 2599.1 900.40

Deviance 2580.2 889.91

AIC 2590.2 893.91

Sensitivity 296/601 = 0.493 68/170 = 0.400

Specificity 974/1629 = 0.598 582/800 = 0.728

FreeMind in Table 4.13, the repetitions in which a faulty line is executed (F.SomeRep

and F.AllRep) and the size of event handlers containing the faulty line (F.MinWith)

are excluded. In the models for CrosswordSage, test-suite size (T.Events) is ex-

cluded; it does not contribute to explaining fault detection beyond what is already

explained by the test suite’s coverage level. (In the model for FreeMind in Ta-

ble 4.13, test-suite size is included, but perhaps only because no coverage metrics

had significant effects on fault detection.) For CrosswordSage, several interaction

effects between test-suite coverage (T.Line and T.Pairs) and various fault metrics are

also included.

The multivariate models of Det for the AllFaults data set (Table 4.14) fit

the data about as well as the corresponding models of Cov (Table 4.10), when good-

ness of fit is measured as the ratio of deviance to null deviance. But the multivariate

models of Det for the PoolCovFaults data set (Table 4.15) fit decidedly worse

than the corresponding models of Cov (Table 4.11). Thus, while the set of charac-

teristics in PoolCovFaults is nearly sufficient to explain coverage of faulty lines,
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Table 4.15: Multivariate models: PoolCovFaults, Det
CrosswordSage FreeMind 0.7.1

Coef. Sig. Coef. Sig.

Intercept -0.561 -1.24

F.MutType 0.910 *** -0.711 ***

F.CovBef -15.4 *** -7.68 ***

F.AllRep 0.387 ***

F.MinPred -49.9 ***

F.MaxSucc 11.7 ***

F.MinWith -8.94 ***

T.Events 0.506 ◦

T.Line 5.17 ***

T.Pairs 9.02 **

T.Line× F.MutType 4.93 **

T.Line× F.CovBef 95.2 *

T.Line× F.MaxSucc -109 ***

T.Line× F.MinWith 150 ***

T.Pairs× F.CovBef 235 **

Null deviance 1641.1 715.95

Deviance 1398.1 588.07

AIC 1424.1 598.07

Sensitivity 428/601 = 0.712 102/170 = 0.600

Specificity 399/583 = 0.684 352/431 = 0.817

it is not sufficient to explain detection of faults.

4.3.3 What characteristics affect whether a test suite detects a fault,

given that the test suite covers the faulty line?

The previous section asked a similar question: What characteristics affect whether a

test suite detects a fault? Some of those characteristics might affect the probability

that a fault is detected primarily because they affect the probability that the faulty

code is covered. For example, some faults may be harder to detect simply because

they lie in a part of the program that is harder to cover. But other faults may

be harder to detect even if code containing them is covered, which is why it is
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Table 4.16: Univariate models: SuiteCovFaults, Det
CrosswordSage FreeMind 0.7.1

Int. Coef. Sig. Int. Coef. Sig.

F.MutType -0.104 0.778 *** 0.0299 -0.834 ***

F.CovBef 0.221 -3.94 * -0.596 -9.03 ***

F.Depth 0.221 -0.251 -0.607 -2.74 ***

F.SomeRep 0.0488 0.554 *** -0.274 -0.380 ◦

F.AllRep 0.0479 0.582 *** -0.682 0.760 **

F.MinPred 0.221 -2.70 ◦ -0.602 -116 ***

F.MaxPred 0.221 1.25 -0.563 -1.90 ***

F.MinSucc 0.221 1.08 -0.548 -0.256

F.MaxSucc 0.223 6.72 *** -0.564 -2.30 ***

F.Events 0.229 5.54 *** -0.586 -2.05 ***

F.MinWith 0.223 -6.16 *** -0.568 15.1 ***

F.MaxWith 0.222 2.69 ** -0.555 -10.3 **

T.Len 0.221 0.00537 -0.549 0.021

T.Events 0.222 0.273 * -0.553 0.583 *

T.Class 0.221 -0.814 -0.551 -17.4 ◦

T.Meth 0.221 -1.12 -0.548 -4.29

T.Block 0.221 -0.846 -0.548 -3.40

T.Line 0.221 -0.891 -0.548 -3.44

T.Pairs 0.222 7.92 ** -0.552 54.3 ◦

T.Triples 0.222 34.8 * -0.55 3540

interesting to ask the question for this section.

To answer this question, a different data set than in previous sections is needed:

SuiteCovFaults. Unlike the AllFaults and PoolCovFaults data sets, this

data set includes only the 〈test suite, fault〉 pairs where the test suite covers the

faulty line (Cov = 1). This data set is ideal for understanding the conditional

probability that a test suite detects a fault given that it covers the faulty line. The

dependent variable of interest is, of course, Det.
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4.3.3.1 Univariate models

Table 4.16 summarizes the univariate models of Det given Cov. As in the models

of Det for the PoolCovFaults data set (Table 4.13), all fault characteristics in

these models have a significant effect on fault detection. Thus, not only do all of

these fault characteristics affect faults’ likelihood of detection, but they affect faults’

likelihood of detection even controlling for whether the faulty code is covered.

The test-suite metrics that turn out to be statistically significant (p ≤ 0.05)

in these models are exactly those that are statistically interesting (p ≤ 0.10) in the

models of Det for the PoolCovFaults data set (Table 4.13) but not in the corre-

sponding models of Cov (Table 4.9). This reinforces the idea that these metrics—

T.Events (both applications) and T.Pairs and T.Triples (CrosswordSage)—affect fault

detection without affecting code coverage very much.

As in Section 4.3.2, the confidence intervals surrounding coefficients in Ta-

ble 4.16 (SuiteCovFaults data set) can be compared to those in Table 4.13

(PoolCovFaults data set) to learn whether the coefficients differ meaningfully in

magnitude—that is, whether the independent variables have significantly stronger

effects on Det or on Det given Cov. The only metrics for which the difference is

meaningful are F.MaxSucc for CrosswordSage and F.CovBef and F.Depth for Free-

Mind (which have a stronger effect on Det) and F.Events for FreeMind (which has a

stronger effect on Det given Cov).
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Table 4.17: Multivariate models: SuiteCovFaults, Det
CrosswordSage FreeMind 0.7.1

Coef. Sig. Coef. Sig.

Intercept -0.310 -0.395

F.MutType 0.940 *** -0.472 ***

F.CovBef -11.062 ***

F.Depth -1.552

F.AllRep 0.503 ** 0.669 ***

F.MinPred -53.810 ***

F.MaxSucc 5.328 ***

F.MinWith -7.275 ***

F.MaxWith -15.226 ***

T.Class -20.190 ◦

T.Pairs 8.806 ** 90.017 *

T.Pairs× F.CovBef 173.314 ◦

Null deviance 1488.3 609.7

Deviance 1365.9 526.4

AIC 1381.9 542.4

Sensitivity 393/601 = 0.654 105/170 = 0.618

Specificity 312/482 = 0.647 222/294 = 0.755

4.3.3.2 Multivariate models

Table 4.17 summarizes the multivariate models. Every fault characteristic takes part

in these models. Every test-suite characteristic that was significant in the univariate

models (Table 4.16) also takes part, with the exception of test-suite size (T.Events).

(Once again, a test suite’s size does not explain much about its fault-detecting

abilities that is not also explained by its coverage level.) For CrosswordSage, the

model also includes an interaction effect between a test suite’s event-pair coverage

and a fault’s distance from the initial state (T.Pairs× F.CovBef).

These multivariate models of Det given Cov fit the data slightly worse than the

corresponding models of Det (Table 4.15), when fit is again measured by the ratio

of deviance to null deviance. This is consistent with the earlier observation that

Cov is better predicted than Det, since Det in the models of Table 4.15 is partially
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determined by Cov.

4.4 Discussion

Sections 4.4.1, 4.4.2, and 4.4.3 sum up the effects of faults characteristics, test-suite

characteristics, and interactions between them on coverage and fault detection. In

Section 4.4.4, implications of the fit of the logistic-regression models are considered.

Section 4.4.5 discusses differences in the results for CrosswordSage and FreeMind.

Finally, Section 4.4.7 considers threats to validity.

4.4.1 Fault characteristics

Every fault characteristic, and every fault metric but F.MinSucc, turned out to

significantly affect the likelihood of fault detection in at least one logistic-regression

model. Furthermore, there were some cases where the likelihood of fault detection

depended only on fault characteristics, not on test-suite characteristics (i.e., the

models for FreeMind in Tables 4.12 and 4.14). These facts suggest that the kinds

of faults used to evaluate the effectiveness of testing techniques can significantly

impact the percentage of faults they detect.

However, the experiment results do not tell conclusively how to define “kinds

of faults”. For many characteristics, the effect on fault detection was inconsistent—

for the two different applications, for different data sets, or for different metrics

measuring the characteristic. This section, as well as the subsequent section on

test-suite characteristics, aims to synthesize the often inconsistent results across
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applications and data sets. It identifies the characteristics and metrics that are

relatively consistent predictors of fault detection for the limited set of situations

studied in this experiment. But the more important result at this early stage of

research is not which metrics best predict fault detection but whether each metric

can predict fault detection. That fault metrics can predict fault detection, and that

they do so often in this experiment, tells us that different “kinds of faults” must

exist even though it is not yet clear how to define them.

The characteristics provide a fairly orthogonal classification of faults for stud-

ies of fault detection, as most or all fault characteristics were represented in each

multivariate model of fault detection. The rest of this section considers each char-

acteristic in turn.

4.4.1.1 Method of creation

F.MutType had a different effect on fault detection for the two applications. For

CrosswordSage, method-level mutation faults were easier to detect, while for Free-

Mind, class-level mutation faults were easier. Strangely, for both applications class-

level mutation faults were easier to cover. Actually, the mutation type was not

expected to be significant for either Cov or Det; the hypothesis from preliminary

work [58, 60] was only that class-level mutation faults in class-variable declara-

tions/initializations would be easier to detect, and such faults were omitted from

this experiment. That F.MutType makes a difference in Cov and Det seems to be

a quirk of the way CrosswordSage and FreeMind are structured—in providing op-
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portunities to seed mutation faults—not an inherent difference between class- and

method-level mutation faults. But it is something for experimenters to be aware of.

4.4.1.2 Distance from initial state

F.CovBef and F.Depth behaved just as expected: faults lying “closer” to the initial

state were easier to cover and detect. Interestingly, these faults were easier to detect

even given that they had been covered.

4.4.1.3 Frequency of execution

F.AllRep and F.SomeRep significantly affected fault detection, although the direc-

tion of that effect was mixed. Faulty lines that, when executed by an event, were

only sometimes executed more than once (F.SomeRep = 1) were easier to detect for

CrosswordSage but harder for FreeMind. Faulty lines that, when executed, were

always executed more than once (F.AllRep = 1) were easier to detect for both ap-

plications. Since F.AllRep was chosen over F.SomeRep for the multivariate models,

its effect on fault detection was not only more consistent but also more important.

4.4.1.4 Degrees of freedom

It was not clear at the outset which measures of degrees of freedom in execution

of a faulty line—F.MinPred, F.MaxPred, F.MinSucc, F.MaxSucc, or F.Events—would

be most closely associated with fault detection. Nor was it clear whether faults in

code with more degrees of freedom—code that could be executed in many different
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contexts—would be easier or harder to cover and detect. For FreeMind, the mini-

mum number of EFG predecessors of a faulty event (F.MinPred) turned out to be the

most influential of these metrics, having been selected for each multivariate model

of Det and of Det given Cov (Tables 4.15 and 4.17). Faulty code with fewer EFG

predecessors—fewer degrees of freedom—was consistently more likely to be covered

and detected for both applications. For CrosswordSage, F.MaxSucc was the metric

chosen to represent the degrees-of-freedom characteristic in the multivariate models

of Det and of Det given Cov (Tables 4.15 and 4.17). In contrast to FreeMind, faulty

code with more EFG successors—more degrees of freedom—was consistently more

likely to be detected.

4.4.1.5 Size of event handlers

The size of event handlers executing a faulty line could either be measured by the

minimum or the maximum number of lines executed in the same event (F.MinWith

or F.MaxWith). For CrosswordSage, F.MinWith was the better predictor of fault

detection, with faults in larger event handlers being harder to detect. For FreeMind,

the results are inconsistent. In the univariate models of the SuiteCovFaults data

set, for example, event handlers with a larger F.MinWith are associated with greater

fault detection, but event handlers with a larger F.MaxWith are associated with less

fault detection.
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4.4.2 Test-suite characteristics

4.4.2.1 Proportion of coverage

The code-coverage metrics—T.Class, T.Meth, T.Block, and T.Line—were, of course,

associated with the probability of covering a given faulty line. Interestingly, greater

coverage did not necessarily increase the likelihood of detecting a given fault—at

least for the range of coverage levels considered in this experiment. For FreeMind,

in fact, code coverage seemed to add no statistically significant value to testing.

Had a broader range of code coverage levels been studied, however, code coverage

would almost certainly have been shown to increase the likelihood of fault detection

significantly.

The event-coverage metrics—T.Pairs and T.Triples—behaved in nearly the op-

posite fashion. While they did not increase the likelihood of covering a given faulty

line, they did (for CrosswordSage and sometimes for FreeMind) significantly increase

the likelihood of detecting a given fault.

4.4.2.2 Size

As expected, test suites with a greater size (T.Events) were more likely to detect

a given fault. (They were not any more likely to cover a given faulty line.) An

important question in studies of test-suite characteristics is whether code coverage

still affects fault detection when test-suite size is controlled for. In this study, the

only case where test-suite size influenced fault detection more than coverage (i.e.,

when T.Events was chosen for a multivariate model) was in the model for FreeMind
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in Table 4.15, in which no coverage metrics were significant at all.

4.4.2.3 Granularity

Contrary to previous experiments [53, 65], granularity (T.Len) had no effect what-

soever on coverage or detection. In this experiment, the minimum test-case length

was equal to the depth of the EFG. In the previous experiment on GUI testing [65],

shorter test cases were allowed. Thus, test-case length appears to only affect fault

detection to the extent that higher-granularity test suites reach deeper into the EFG;

once the granularity exceeds the EFG depth, no further benefit is gained.

4.4.3 Interactions between test-suite and fault characteristics

Interaction effects between test-suite and fault characteristics indicate cases where

certain kinds of test suites are better at detecting certain kinds of faults. In practice,

this information may be used to design test suites that target kinds of faults that

tend to be more common or more severe. Interaction effects can also influence the

results of evaluations of testing techniques because, if certain techniques are better

at detecting certain kinds of faults, the sample of faults may be biased for or against

a technique.

Only for CrosswordSage did interactions between test-suite and fault charac-

teristics significantly affect fault detection. For the PoolCovFaults data set (Ta-

ble 4.15), method-level mutation faults (F.MutType = 1), faults lying farther from

the initial state (higher F.CovBef), and faults lying in larger event handlers (higher
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F.MinWith) were better targeted by test suites with greater line coverage (T.Line).

Both for that data set and for the SuiteCovFaults data set (Table 4.17), faults

lying farther from the initial state (higher F.CovBef) were also better targeted by

test suites with greater event-pair coverage (T.Pairs).

4.4.4 Model fit

The multivariate models of Cov for the PoolCovFaults data set (Table 4.11) fit

the data well, with sensitivity and specificity between 81% and 99%. For Cross-

wordSage, the fit was nearly perfect. This suggests that the set of metrics studied

is nearly sufficient to predict whether a test suite will cover a given line—a prereq-

uisite to predicting whether the suite will detect a fault in the line. But, at least for

applications like FreeMind, some influential test-suite or fault metrics remain to be

identified.

The multivariate models of Det for the PoolCovFaults data set (Table 4.15)

and of Det given Cov for the SuiteCovFaults data set (Table 4.17) did not fit

as well, with sensitivity and specificity between 60% and 82%. This shows that

predicting whether a test suite will detect a fault is harder than predicting whether

the test suite covers the faulty code; more factors are at work.

Finally, the multivariate models of Cov and Det for the PoolCovFaults

data set, which includes all fault characteristics, fit much better than those for the

AllFaults data set, which includes just one fault characteristic (F.MutType). This

provides additional evidence that at least some of the fault characteristics studied
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besides F.MutType are important predictors of fault coverage and detection.

For different applications and data sets, the fit of the multivariate models

was, of course, different. When more fault metrics were available as independent

variables—in the PoolCovFaults and SuiteCovFaults data sets, as opposed to

the AllFaults data set—the models, not surprisingly, fit better. The models also

fit better when the dependent variable was Cov than when the dependent was Det

(a variable influenced by Cov), and better when the dependent was Det than when

it was Det given Cov (a variable not influenced by Cov); fault coverage is evidently

easier to predict than fault detection. As for the two applications, the models of Cov

fit the data for CrosswordSage better, while the models of Det and of Det given Cov

fit the data for FreeMind better (when fit is measured as the ratio of deviance to

null deviance). In all cases but one, however, the difference is small (less than 0.06).

The exception is the models of Cov for the PoolCovFaults data set (Table 4.11);

the model for CrosswordSage fits markedly better. The reason must be that some

additional, unknown test-suite or fault characteristics affect coverage for FreeMind,

which is the larger and more complex of the two applications.

Even though the set of fault and test-suite characteristics studied did not

result in perfectly-fitting models, the experiment results are still of value. While the

characteristics studied do not comprise a complete list of factors that influence fault

detection in software testing, they are certainly some of the factors that empirical

studies of testing should account for.
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4.4.5 Differences between applications

There were numerous minor differences between the results for CrosswordSage and

FreeMind—cases where the significance, magnitude, or even the direction of a met-

ric’s influence on coverage or fault detection differed for the two applications. But

there was only one metric, mutation type (F.MutType), that was influential enough

to be included in the multivariate models yet influenced fault detection in opposite

ways for the two applications. For CrosswordSage, method-level mutation faults

were consistently more likely to be detected (even though they were less likely to

be covered). For FreeMind, method-level mutation faults were less likely to be

detected. The proportion of faults that were method-level mutations also differed

widely between the applications: 47% for CrosswordSage and 70% for FreeMind.

These differences seem to result from the structure of the applications and the

nature of the test oracle, with FreeMind having more opportunities to seed method-

level mutation faults and with those opportunities lying in code that is less likely to

affect the GUI state (as checked by GUITAR). For example, FreeMind contains a

method called ccw that helps calculate the coordinates of an object in the GUI. Since

the test oracle ignored the coordinates of GUI objects, faults in ccw were unlikely

to be detected if they only changed the calculated coordinate values. And since ccw

mainly operates on primitive types, nearly all of the mutation opportunities were

for method-level faults. Thus, in the experiment, all 21 of the faults sampled from

ccw were method-level mutations, and only 2 were detected by their corresponding

test suite.
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Another notable difference between the applications was in the total percent-

age of faults covered and detected in each data set (Table 4.7). Even though the

percentage of all faults covered was nearly the same (49% for CrosswordSage, 48%

for FreeMind), the percentage of faults detected was lower for FreeMind in every

data set. This suggests at least one of the following explanations:

1. the sample of faults selected for FreeMind, out of the population of mutation

faults for that application, happened to be especially hard to detect;

2. the structure of FreeMind makes it less testable, in the sense that randomly

seeded faults are harder to detect; or

3. event-coverage-adequate GUI test suites are less effective for FreeMind than

for CrosswordSage.

The experiment offers some evidence of the second explanation (e.g., the mean value

of F.CovBef is greater for FreeMind), but the other explanations cannot be ruled

out.

4.4.6 Assumption of independent sampling

A key assumption of logistic regression is that the error terms of different data

points are independent. The error term is the distance between the actual value of

the dependent variable for a data point (0 or 1) and the predicted value for that

data point (a probability between 0 and 1), and it can be measured in various ways.

For logistic regression, the error term is usually not measured by the raw residual—

which is simply the difference between the predicted and actual values—but rather
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Figure 4.4: Pearson residuals vs. predictions for a model with fault and test-suite

metrics

by alternatives such as the Pearson residual—which is the raw residual divided by

the square root of the variance. Unlike linear regression, logistic regression does not

assume that error terms are normally distributed, only that they are independent.

As Section 4.1 mentioned, the use of the test pool to calculate most of the

fault characteristics threatens the assumption of logistic regression that the error

terms of different data points are independent: the test-suite characteristics in one

data point may be related to the fault characteristics in another data point. The

threat, however, is negligible. Each test suite consists of no more than 1% of the

test cases in the test pool, and most test suites are at least an order of magnitude

smaller. Thus, each test suite’s impact on the calculation of fault characteristics is

tiny.

For logistic regression, plots of residuals can give some information about
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Figure 4.5: Pearson residuals vs. predictions for a model with only fault metrics

Figure 4.6: Pearson residuals vs. predictions for a model with fault and test-suite

metrics
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independence of error terms, although they can also be misleading [47]. As an

example, Figure 4.4 plots the Pearson residuals from the multivariate model of Det

for the PoolCovFaults data set for CrosswordSage (Table 4.15) against the actual

values of Det for that same data set. (Plots for other data sets and for FreeMind

were similar.) As expected, because of the binary nature of the predicted values, the

plot shows two distinct curves. However, the linear trend line for the data is nearly

flat, and the mean of the data is close to 0 (actually 0.009), suggesting that the

error terms are indeed independent. Since the visually-apparent downward curve

of the data is suspicious, two additional plots were drawn. Figure 4.5 plots the

Pearson residuals from a multivariate model made up of just the fault metrics from

the model in Figure 4.4. Figure 4.6 plots the Pearson residuals from a model made

up of just the test-suite metrics from that same model. The downward curvature

also appears in these plots, so it must not be a product of any non-independence

between test-suite characteristics in some data points and fault characteristics in

other data points.

4.4.7 Threats to validity

Four kinds of threats to validity are possible for this experiment.

Threats to internal validity are possible alternative causes for experiment re-

sults. Since one aim of the experiment was to identify characteristics of faults that

make them easier or harder to detect, threats to internal validity here would cause

certain kinds of faults to seem easier or harder to detect when in fact they are not.
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For example, it could be that faults seeded nearer to the initial state of the program

happened to be easier for reasons independent of their location in the program. But,

because faults were seeded objectively and randomly, there is no reason to suspect

that this is the case. Furthermore, studying Cov separately from Det (Section 4.3.1)

helped to nullify one potential threat to validity: that class-level mutation faults

appeared to be significantly easier to cover, even though this is not an inherent

property of such faults. One threat to internal validity that remains, however, is

that just two applications were studied. Since each had different results, some of

those inconsistent results may have arisen by chance or through quirks of one or the

other of the applications.

Threats to construct validity are discrepancies between the concepts intended

to be measured and the actual measures used. The experiment studied metrics of

faults and test suites that were intended to measure some more abstract character-

istics (Table 4.1). These characteristics could have been measured in other ways.

Indeed, if static analysis had been feasible for the applications studied, then it would

have been a better way to measure certain fault metrics than using estimates based

on the test pool. However, because care was taken to define the metrics such that

they would not depend too much on the test pool (e.g., by using minima and max-

ima rather than averages), and because the test pool was much larger than any test

suite, the author contends that the threats to validity posed by these estimates are

not severe.

Threats to conclusion validity are problems with the way statistics are used.

Because the experiment was designed to meet the requirements of logistic regression,
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it does not violate any of those requirements. The only known threat to conclusion

validity is the sample size. While it is not recommended that the sample size or

power be calculated retrospectively from the experiment data [34], the required

theoretical sample size would probably be very large because so many independent

variables were used. The sample size for this experiment was chosen not to achieve

some desired level of power but to generate as many data points as possible in a

reasonable amount of time and then perform an exploratory analysis, focusing on

the fault characteristics. Since the fault characteristics frequently showed up as

statistically significant, the sample size apparently served its purpose.

Threats to external validity limit the generalizability of experiment results.

Any empirical study must suffer from these threats to some degree because only a

limited sample of all possible objects of study (here, software, faults, and test suites)

can be considered. In this experiment, only GUI-intensive applications, mutation

faults, and event-coverage-adequate GUI test suites (with line and block coverage

around 50%) were studied; different results might be obtained for different objects

of study. Besides the limitations of the objects of study, the experiment is also unre-

alistic in that some of the faults are trivial to detect (they cause a major failure for

every test case) and in real life would likely be eliminated before the system-testing

phase. However, it is crucial to note that this experiment is more generalizable in

one respect than most other studies of software testing. This work characterized

the faults used in the experiment, and it presented the results in terms of those

characteristics, to make clear precisely what impact the particular sample of faults

had on the results. The same was done for test suites and their characteristics. This
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Table 4.18: Calculated sample size at three effect sizes based on the PoolCov-

Faults data set and Det
CrosswordSage FreeMind

0.318 0.477 0.953 0.318 0.477 0.953

F.MutType 809 809 809 281 281 281

F.CovBef 576 256 64 824 366 92

F.AllRep 1080 1080 1080 1613 1613 1613

F.MinPred 3118 1386 347

F.MaxSucc 673 299 75

F.MinWith 612 272 68 838 372 93

T.Events 1167 519 130 1558 693 173

T.Line 508 226 57 833 370 93

T.Pairs 1165 518 130 1856 825 207

Table 4.19: Calculated sample size at three effect sizes based on the SuiteCov-

Faults data set and Det
CrosswordSage FreeMind

0.318 0.477 0.953 0.318 0.477 0.953

F.MutType 399 399 399 447 447 447

F.CovBef 580 258 65 2091 929 233

F.AllRep 926 926 926 742 742 742

F.MinPred 2063 917 230

F.MaxSucc 664 295 74

F.MinWith 593 263 66 1066 474 119

T.Events 1201 534 134 1331 592 148

T.Line 544 242 61 749 333 83

T.Pairs 1198 533 133 1637 728 182

work can serve as a model to help other researchers improve the external validity of

their experiments.

4.4.8 Sample size for future experiments

While it is not recommended that the sample size of this experiment be used retro-

spectively to draw conclusions about its power [34], the data from this experiment

can be used to calculate the required sample size at desired levels of significance,
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power, and effect size for future experiments in similar contexts. Appendix B ex-

plains the calculation.

Because the required sample size grows with the number of independent vari-

ables, it would make sense in a future experiment to study only the subset of test-

suite and fault metrics that most influenced fault detection in this study. Table 4.18

lists one reasonable choice of these metrics. For each characteristic, in most cases,

one metric was chosen. Exceptions are the characteristics of test-case length, which

is omitted because it never influenced fault detection, and proportion of coverage,

which is represented by the two somewhat orthogonal metrics of T.Line and T.Pairs.

For some characteristics, other metrics than the ones chosen were nearly as influen-

tial. Because these metrics are highly correlated with the chosen metrics, the sample

size calculated with them instead would be about the same.

Tables 4.18 and 4.19 show the influential metrics’ calculated sample sizes at

three reasonable effect sizes. The effect size is the smallest coefficient magnitude

of interest, or practical significance, to experimenters. Unlike for power and signif-

icance, there is no standard value for effect size to use in experiments; it depends

entirely on how the results will be used. In this case, since there is little or no prece-

dent for such effect sizes in the software-testing literature, three effect sizes were

chosen somewhat arbitrarily but in a range that seems reasonable. Recall that most

of the metrics in Tables 4.18 and 4.19 range from 0 to 1. If incrementing or decre-

menting any of these metrics by a moderate amount—say, 0.3, 0.2, or 0.1—increases

a test suite’s odds of detecting a fault by a small but not tiny amount—say, a factor

of 1.1—then experimenters may want to discover this effect, but they may not be
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interested in any weaker effects. Therefore, effect sizes of 0.318, 0.477, and 0.953

were chosen because they correspond to the odds of Det increasing by a factor of

1.10 when the metric in question is incremented or decremented by 0.3, 0.2, or 0.1,

respectively. The smaller the effect size, the greater the calculated sample size, and

the more likely that weak relationships between the independent and dependent vari-

ables will turn up as statistically significant. (For the binomial variables F.MutType

and F.AllRep, the effect size is irrelevant.) The sample sizes were calculated using

the customary significance and power values of 0.05 and 0.80 [3].

Even though the number of independent variables in these tables is still rather

large, the calculated sample sizes are quite attainable, especially at the largest effect

size (0.953). The metrics with the greatest calculated sample size at that effect size

are F.AllRep and F.MutType because these metrics had uneven proportions of 0 and

1 values in the data sets. A future experiment could reduce the required sample

size by better balancing these metrics in the data. When F.AllRep and F.MutType

are ignored, the calculated sample sizes at the effect size of 0.953 are well below the

actual sizes of the data sets in this experiment.

4.5 Conclusions

The experiment in this work tested hypotheses about faults in GUI testing. It

showed that, in the context studied, certain kinds of faults were consistently harder

to detect:

• faults in code that lies further from the initial program state (“deep faults”),
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• faults in code that is not always executed more than once by an event handler,

and

• faults in event handlers with more predecessors (in-edges) in the event-flow

graph.

These results have implications for stakeholders in GUI testing. First, the results

provide a picture of the faults most likely to go undetected. For users of GUI

testing, this gives valuable information about reliability. (For example, deep faults

are more likely to survive testing, but they may also be less likely to affect users

of the software; therefore, additional effort to target them may not be warranted.)

For researchers, understanding the faults often missed by GUI testing can guide

the development of new testing techniques. The second implication is that the

results suggest ways to target harder-to-detect faults. They show that these faults

are more likely to reside in certain parts of the code (e.g., event handlers with

more predecessors), so testers can focus on these parts. The results also show that

increasing the line coverage or event-pair coverage of GUI test suites may boost

detection of deep faults.

The experiment also tested hypotheses about GUI test suites, with several

surprising results. Test suites with modestly greater code coverage (line, block,

method, or class) did not necessarily detect more faults. Test suites with greater

event-pair and event-triple coverage were not more likely to execute faulty code, yet

they sometimes were more likely to detect faults; evidently, these suites executed

more different paths within the covered portion of the code. Test-case granularity
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did not affect fault detection.

While results like these may interest the GUI-testing community, the exper-

iment has broader implications. The results support the claims made by the the-

sis statement in Chapter 1. First of all, they show that simple, automatically-

measurable characteristics of defects affect their susceptibility to detection by at

least one form of software testing. This work proposed a new defect characteriza-

tion. Unlike previous attempts to characterize defects, this work used characteristics

that are objective, practical to measure, and—as the experiment shows—can signif-

icantly affect defects’ susceptibility to detection. While the characterization here is

not intended to be complete or definitive, it is an important first step from which

further progress can be made.

Secondly, the results show that accounting for defect characteristics in empir-

ical studies of software testing is feasible to do. The experiment serves as a proof

of concept that the proposed methodology for accounting for defect characteristics

is feasible. While it would be very difficult to compare the effort required for ex-

periments done with different goals by different people in different contexts, it can

be noted that this experiment was carried out by one student, with guidance from

her advisor, in about half a year. Since many empirical studies are carried out by

teams of experienced researchers, and some even have support personnel for tasks

such as writing test cases, the amount of effort required for this experiment seems

reasonable.

Finally, the results show that accounting for defect characteristics in empirical

studies of software testing increases the validity of study results. Because, as the
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experiment showed, characteristics of the defects used in a study can impact the

results, studies that do not account for defect characteristics will suffer threats to

internal and external validity. Depending on the sample of defects, a studied testing

technique may appear to be better or worse at detecting defects—either absolutely

or relative to other techniques.

This is especially a problem when the goal of an empirical study is to evaluate

testing techniques. It is imperative that evaluations of testing techniques be as

accurate and effective as possible. Effective evaluations can convince practitioners

that a new technique is worth adopting, or prevent them from wasting resources

if it is not. Effective evaluations can illuminate the strengths and weaknesses of

different, possibly complementary, techniques. They can even direct the invention

of new techniques. Only if evaluations of testing techniques account for defect

characteristics can they satisfactorily explain and predict the performance of testing

techniques.
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Chapter 5

Practical Applications to Regression Testing

The preceding chapters presented and demonstrated a better way to conduct em-

pirical studies of fault detection in software testing. A key improvement was to use

a statistical model, such as a logistic-regression model, to quantify the relationship

between test-suite and fault characteristics and a test suite’s ability to detect a fault.

The statistical model can be used to show which test-suite and fault characteristics

have important (statistically significant) effects on fault detection, and the direction

and magnitude of those effects. This information can, as Chapter 1 explained, im-

prove the science of testing. It can also, as this chapter shows, improve the practice

of testing—specifically, the practice of regression testing.

Regression testing is an important step in the software-maintenance cycle that

tests modifications made to previously tested software. An iteration of regression

testing is an opportunity to catch changes that break the software. It is also an

opportunity to learn how to make the next regression-testing iteration more effective.

To date, research has paid much attention to the problem of constructing a

test suite initially but little attention to improving upon the initial suite’s fault

detection given some experience. Much research has studied the choice of testing

technique and other factors that make for an effective test suite, without necessar-

ily considering regression testing (Section 2.3). Research specifically on regression
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testing has typically focused on selecting or prioritizing test cases from the initial

test suite in order to improve the speed or cost of fault detection [28, 55, 54]. But,

so far, no one has used feedback from previous iterations of regression testing to

design a test suite that detects more faults, or more important faults, in the current

iteration.

This chapter shows how feedback—in the form of test-suite and fault histories

from previous iterations of regression testing—together with statistical models of

fault detection can help testers detect more, and more important, faults as regression

testing progresses. The next section describes three such scenarios. To make the

descriptions more palpable, each scenario is illustrated with a simple example based

on fictitious feedback and models. While fictitious data, in its contrived neatness,

helps to clearly explain the scenarios, real data can better show their strengths and

weaknesses. That is why Section 5.2 demonstrates the scenarios with data from

two versions of a real application. Section 5.3.1 outlines a more comprehensive

evaluation of these scenarios and describes several additional scenarios.

5.1 Scenarios

Suppose that a team of testers needs to test version n of a software product. For

versions 1, . . . , n−1, the test suites used, the faults found by each test suite, and the

faults found after testing (e.g., by users) have been recorded. This section describes

three ways that testers could use this information with a statistical model of fault

detection to better test version n.
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Statistical model (fabricated, not based on real data):

logit(Pr(Det)) = 0.3T.Events + 3T.Pairs− 10F.CovBef + 40T.Pairs× F.CovBef

Characteristics of test suites used for versions 1, . . . , n− 1:

T.Events T.Pairs

2.0 0.20

Known faults in version 1:

F.CovBef = 0.3 F.CovBef = 0.7 Total
Found by GUI testing 30 30 60

Known faults in versions 1, . . . ,n− 1 :

F.CovBef = 0.3 F.CovBef = 0.7 Total
Found by GUI testing 200 200 400
Found by users, etc. 100 400 500

Figure 5.1: Statistical model and other data used in examples

Three scenarios are described, and each is illustrated with at least one example.

To be concrete, the examples use fictitious data. (The next section demonstrates

the scenarios with real data.) While the scenarios make no assumptions about the

testing technique or statistical model being used, the examples assume that the

testers are using GUI testing and a logistic-regression model similar to the ones

developed in the previous chapter. The logistic-regression model and other data

used in the examples are summarized in Figure 5.1.

5.1.1 Scenario 1: Varying test-suite characteristics

The coefficients of test-suite characteristics in the model can tell the testers how

many more or fewer faults they can expect to detect by varying those character-

101



istics, assuming that the distribution of faults does not change much from version

to version. After exploring their options of which test-suite characteristics to vary,

the testers can specify that the test suite for version n should have certain values

for its characteristics. Whether the testers are creating the test suite for version n

manually or automatically, and whether they are adding to the suite from version

n − 1 or generating a new suite, they can use the specified characteristic values as

an adequacy criterion for the version-n test suite.

Example: The testers want to detect more faults in version n and are willing

to spend up to 25% more time running test cases. One way to accomplish this would

be to increase the normalized test-suite size (T.Events) from 2.0 to 2.5 (assuming

that the number of GUI events in version n is the same as in version n − 1). The

statistical model predicts that this will increase the odds of fault detection (ratio

of faults detected to faults undetected) by at least a factor of e(0.3)(0.5) ≈ 1.2. (The

odds will increase even more if the larger test suite happens to cover additional

event pairs.) For versions 1, . . . , n − 1, the empirical odds of the suite detecting a

fault were 400/500 = 0.8—corresponding to an empirical probability of detection

of about 0.45. With the increased test-suite size, the odds of the suite detecting a

fault should then be (1.2)(0.8) = 0.96—corresponding to a probability of detection

of about 0.5.
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5.1.2 Scenario 2: Simulating testing

By plugging values for test-suite and fault characteristics into the model, the testers

can run simulations to try out different kinds of test suites on different kinds of

faults. They can do this descriptively, as the next scenario shows, to understand

the correctness of the software. They can also do it prescriptively, as this scenario

shows, to compare the effectiveness of hypothetical test suites.

Example: The testers want to simulate what would have happened if dif-

ferent test suites had been applied to versions 1, . . . , n − 1, in order to help them

specify the test suite for version n. They try plugging various combinations of test-

suite characteristic values into the model: T.Events ∈ {1.5, 2, 2.5, 3} and T.Pairs ∈

{0.15, 0.20, 0.25, 0.30}. For each combination of test-suite characteristic values,

they calculate the predicted probability of detecting each known fault in versions

1, . . . , n − 1 by plugging in its characteristic values. For testing version n, the

testers might choose a combination of test-suite characteristic values that improves

each known fault’s detection probability, or one that reduces the cost of the test

suite without decreasing the sum of detection probabilities.

5.1.3 Scenario 3: Understanding correctness

Using the model and the history of known faults, the testers can better understand

the correctness of the tested software. The coefficients of fault characteristics show

which kinds of faults are less likely to be detected during testing and, therefore, if

present in the software are more likely to remain there. This is not a reliability esti-
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mate, since it considers faults rather than failure probabilities. But, like a reliability

estimate, it helps the testers understand how incorrect the software is.

Example: The testers want to evaluate the correctness of version 1 after it

has been GUI-tested but before other techniques (such as beta testing) have been

applied. Because this is the first version of the software, the testers cannot use

previous versions as a guide. Instead, they turn to the information they have for

version 1 and the statistical model.

The summary of known faults in versions 1, . . . , n − 1 makes the simplifying

assumption that there are just two kinds of faults: shallow faults (F.CovBef = 0.3)

and deep faults (F.CovBef = 0.7). The test suite for version 1 found 30 shallow

faults and 30 deep faults. According to the model, the probability of detecting a

shallow fault with this test suite is about 0.65 and the probability of detecting a

deep fault is about 0.45. Thus, while the numbers of shallow and deep faults found

by GUI testing were equal, the model predicts that about 16 shallow faults and

about 37 deep faults remain in the software.

Example: This example makes the simplifying assumption that, to test ver-

sions 2, . . . , n− 1, the testers have gradually augmented the test suite from version

1 rather than generating a new test suite for each version. (This avoids the problem

of calculating a fault’s joint probability of detection by multiple test suites.)

Suppose that version n−1 has been tested and released. In versions 1, . . . , n−1,

testing found 200 of the 300 known shallow faults and 200 of the 400 known deep

faults. The model estimates that there were originally about 307 shallow faults and

444 deep faults in total in versions 1, . . . , n−1. The testers can use this information
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in one of two ways, depending on whether they are more confident that the model

is accurate or that all faults have been found. If they believe the model is accurate,

then they can presume that some faults, especially deep faults, remain in version

n−1 of the software, to be carried over to version n. If, on the other hand, they trust

that virtually all faults in versions 1, . . . , n − 1 are known, then they may be able

to adjust the model to better fit their situation; this is an area for future research.

5.2 Empirical demonstration

This section demonstrates the scenarios as applied to the regression testing of a real

application. The purpose of the demonstration is not to evaluate the effectiveness

of these scenarios—evaluation lies beyond the scope of this dissertation, though it

is discussed in Section 5.3.1—but simply to illustrate them with concrete data and

explore their current limitations.

5.2.1 Data collection

This demonstration shows how testers might use the proposed scenarios to test a

new version of FreeMind. It simulates the testing of two versions of FreeMind by

using automatically-generated GUI test suites and seeded faults. The statistical

models used in the demonstration come from Section 4.3. This section describes in

more detail the hypothetical test situation in the demonstration and the actual data

involved.
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Table 5.1: Applications under test
Lines Classes Events EFG edges EFG depth

FreeMind 0.7.1 9382 211 224 30146 3

FreeMind 0.8.0 15692 332 541 56102 4

Univariate model with T.Pairs (from Table 4.16):

logit(Pr(Det|Cov)) = 54.3T.Pairs

Multivariate model (from Table 4.17):

logit(Pr(Det|Cov)) = −0.395 − 0.472F.MutType − 1.55F.Depth + 0.669F.AllRep −

53.8F.MinPred− 15.2F.MaxWith− 20.2T.Class + 90.0T.Pairs

Figure 5.2: Statistical models used in demonstration

5.2.1.1 Application under test and statistical models

Section 4.3 presented several logistic-regression models, each fit to data from one of

two applications: CrosswordSage (version 0.3.5) or FreeMind (version 0.7.1). Be-

cause these models are immature—the study in Chapter 4 not having been replicated

yet—they cannot be expected to make accurate predictions about other applications.

Therefore, it makes sense for this demonstration to consider only CrosswordSage or

FreeMind. FreeMind is chosen because, with more versions and a larger user base,

it is arguably the more interesting application.

The testers in this demonstration need to test FreeMind version 0.8.0. They

have data on the test suite and known faults from the previously released version,

0.7.1. Table 5.1 gives vital statistics on these two versions.

The testers realize, of course, that a test suite will fail to detect any faults in

code it does not cover. They are more interested in whether a test suite will fail to

detect faults in code it does cover. (This assumption greatly reduces the number of
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Table 5.2: Summary of test suites and fault detection
T.Events T.Pairs T.Class Pr(Det) odds(Det)

FreeMind 0.7.1 2.70 0.0142 0.763 27/91 = 0.297 27/64 = 0.422

FreeMind 0.8.0 baseline 2.32 0.0142 0.765 30/93 = 0.323 30/63 = 0.476

FreeMind 0.8.0 improved 4.34 0.0216 0.777 32/93 = 0.344 32/61 = 0.525

seeded faults required for the demonstration.) Therefore, of the statistical models

presented in Section 4.3, the models of the conditional probability of fault detection

given coverage are most appropriate. Figure 5.2 shows the models that are relevant

to this demonstration, which are a subset of those shown in Tables 4.16 and 4.17.

5.2.1.2 Test suites

For FreeMind 0.8.0, the testers want to compare the predicted effectiveness of a

hypothetical baseline test suite, similar to the suite used for FreeMind 0.7.1, to that

of a hypothetical improved test suite. The testers will then choose to create an actual

test suite for FreeMind 0.8.0 whose characteristic values match either the baseline

suite or the improved suite. Table 5.2 gives the characteristics of each suite.

This demonstration provides actual examples of the FreeMind 0.7.1 suite, the

FreeMind 0.8.0 baseline suite, and the FreeMind 0.8.0 improved suite. The purpose

is to compare the predicted effectiveness of the FreeMind 0.8.0 suites, relative to the

FreeMind 0.7.1 suite, to their actual effectiveness. The demonstration only shows

what happens in one case—one of many possible choices of test suites having the

characteristic values of the FreeMind 0.7.1, FreeMind 0.8.0 baseline, and FreeMind

0.8.0 improved suites. (Section 5.3.1 describes a more effective evaluation in which

multiple instantiations of the test suites are created and their average fault-detection
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Table 5.3: Summary of faults (average characteristic values)
F.MutType F.Depth F.AllRep F.MinPred F.MaxWith

FreeMind 0.7.1 0.637 0.253 0.198 0.01246 0.152

FreeMind 0.8.0 0.366 0.226 0.194 0.00495 0.133

abilities are compared.)

The improved suite was generated first, following the procedure in Section 4.2.1.2

and aiming for a normalized size (T.Events) equal to the normalized size for the Free-

Mind 0.7.1 SuiteCovFaults data set (the basis for the logistic-regression models

in Figure 5.2). The baseline suite was created by reducing the improved suite, pre-

serving event coverage. In other words, certain test cases from the improved suite

were chosen to be copied to the baseline suite, using a greedy algorithm that covers

all events with nearly as few test cases as possible [35]. The test suite for FreeMind

0.7.1 was constructed to resemble the FreeMind 0.8.0 baseline suite in event coverage

and event-pair coverage. Like the FreeMind 0.8.0 baseline suite, it was constructed

by again following the procedure in Section 4.2.1.2 and then reducing the suite until

its event-pair coverage (T.Pairs) was the same as for the baseline suite.

5.2.1.3 Faults

To compare the effectiveness of the example test suites in this demonstration, faults

in FreeMind 0.7.1 and 0.8.0 needed to be found or seeded. Seeded faults, as op-

posed to natural faults, were chosen for two reasons. First, the models used in the

demonstration can only deal with a limited class of faults: those confined to a single

line of source code. Many natural faults would fall outside this class. Second, the

FreeMind project does not provide an easy way to reconstruct natural faults; the
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version-control system does not closely correspond with the defect-tracking system.

(Section 5.3.1 describes a more effective evaluation that uses natural faults.)

Because the logistic-regression models used in this demonstration model the

conditional probability of fault detection given fault coverage, faults were only seeded

in lines covered by the FreeMind 0.7.1 suite or the FreeMind 0.8.0 baseline suite.

And because new faults in version 0.8.0 would only arise in parts of the code that had

been changed since version 0.7.1, faults were only seeded in changed files. With those

restrictions, faults were seeded in FreeMind 0.7.1 and 0.8.0 following the procedure

in Section 4.2.1.3. Table 5.3 summarizes the relevant characteristics of the faults.

Assuming that most faults in version 0.7.1 have been found, either during testing

or after release, the testers of version 0.8.0 would know the characteristics of faults

in version 0.7.1 (other than F.MutType, which is an artifact of this demonstration).

In the table, items known to the testers are shaded in gray.

5.2.1.4 Measurement of fault detection

The test suites were run to find out which faults they detected. To remove spurious

reports of fault detection, all 〈test suite, fault〉 pairs where the fault is detected by

a minority of test cases in the suite were checked manually. Table 5.2 summarizes

the test suites’ ability to detect the faults. As above, data items that would actually

be available to the testers before testing FreeMind 0.8.0 are shaded in gray. (The

testers would not know the exact values for Pr(Det) and odds(Det), but they would

be able to estimate them based on faults found after testing.) The rest of the values
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in the table are used to compare the models’ predictions to the actual fault-detecting

abilities of the example test suites.

5.2.2 Demonstration of scenario 1: Varying test-suite characteristics

This scenario showed how testers could use a statistical model to estimate how many

more or fewer faults they would detect by varying a test suite’s characteristics.

This scenario assumes that the fault distribution does not change much from

version to version. In reality, this is something that empirical studies or the FreeMind

testers themselves would have to determine. In this demonstration, as Table 5.3 and

the multivariate model in Figure 5.2 show, the faults in FreeMind 0.8.0 may actually

be easier to detect than those in FreeMind 0.7.1 because they have notably smaller

averages for F.MutType and F.MinPred.

Nevertheless, suppose that the testers decide to use the models to estimate

the effect of varying the event-pair coverage (T.Pairs). They do not assume that

the other important test-suite characteristic, T.Class, is held constant; if they vary

T.Pairs, they would vary T.Class as a side effect. Therefore, the most appropriate

model for them to use is the univariate model for T.Pairs in Figure 5.2.

When T.Pairs increases from 0.0142 to 0.0216, as it does from the FreeMind

0.8.0 baseline suite to the improved suite, the model predicts that the odds of fault

detection will increase by a factor of e(54.3)(0.0216−0.0142) ≈ 1.5. The test suite for

FreeMind 0.7.1 has the same event-pair coverage as the baseline suite, and its odds

of fault detection are 0.422. Therefore, based on the model, the testers estimate
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that the baseline suite’s odds of detection are also about 0.422, and the improved

suite’s odds of detection are about (1.5)(0.422) = 0.633. For the example baseline

and improved suites, the difference in odds turns out to be smaller: 0.476 for the

baseline suite and 0.525 for the improved suite.

5.2.3 Demonstration of scenario 2: Simulating testing

This scenario showed how testers could plug values for test-suite and fault charac-

teristics into the model to simulate running different kinds of test suites on different

kinds of faults.

The testers would do well to begin by checking the accuracy of the model—

comparing the predicted probabilities of fault detection for the FreeMind 0.7.1

known faults against the actual proportion of known faults detected by testing.

For the FreeMind 0.7.1 test suite and known faults, using the definition of a correct

prediction from Section 4.2.2.3, the testers find that the model correctly predicts

Det for 62 of the 91 faults. In reality, the testers might consider the predictions too

inaccurate, but suppose for this demonstration that they proceed anyway.

If the testers are assuming that the distribution of faults does not change much

from version to version, then they can plug the characteristics of each known fault in

FreeMind 0.7.1 and characteristics of the baseline or improved suite into the model

to compare the predicted effectiveness of the two suites. For each known fault in

FreeMind 0.7.1, the predicted probability of detection turns out to be between 0.01

and 0.11 higher with the improved suite than with the baseline suite.
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Table 5.4: Faults detected by the improved suite but not the baseline suite
Fault F.MutType F.Depth F.AllRep F.MinPred F.MaxWith

1 1 0.5 0 0.00185 0.164

2 0 0.5 0 0.00185 0.164

If the testers are not assuming that the distribution of faults is stable from

version to version, then they can instead plug characteristics of various hypothetical

faults into the model. For characteristics they do not care to set, they can assume

average values (i.e., 0 for centered, continuous data). For example, the testers can

compare the baseline and improved suites’ predicted effectiveness at detecting faults

lying 2 events deep in the EFG (the maximal value of F.Depth for the FreeMind 0.7.1

faults) and in code that is not executed repeatedly (F.AllRep = 0). They find that

the improved suite, relative to the baseline suite, is predicted to raise the probability

of detecting these rather difficult faults by either 0.09 or 0.10, depending on whether

F.MutType is 0 or 1.

Let us compare this prediction to what actually happens with the example

baseline and improved suites. The improved suite detects two faults that the baseline

suite does not. Their characteristics are shown in Table 5.4. As in the example

above, these two faults lie 2 events deep in the EFG (the maximum fault depth for

the FreeMind 0.8.0 faults as well as the FreeMind 0.7.1 faults) and in non-repeating

code. A total of 22 of the FreeMind 0.8.0 faults have the same values for these

characteristics. Of these 22, the baseline suite detects 3 (14%) and the improved

suite detects 5 (23%). Thus, the difference in detection rates for these faults is just

as predicted by the model (9% to 10%).

Because the statistical model is still immature, its predictions are often not
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as perfect as that. For example, the model only correctly predicts Det for 37 of 93

faults for the baseline suite and 33 of 93 faults for the improved suite. Some of this

inaccuracy could possibly be remedied by adding a term to the model that accounts

for the change in testability from version to version. This can be seen in the fact

that changing the intercept term in the model from −0.395 to −2.5 (a value chosen

by trial and error) increases the number of correct predictions for the baseline and

improved suite each to 63 of 93.

5.2.4 Demonstration of scenario 3: Understanding correctness

This scenario showed how testers could use statistical models and the history of

known faults to better understand the correctness of the tested software.

As in the demonstration of the previous scenario, consider faults lying 2 events

deep in the EFG and in non-repeating code, like the two faults in Table 5.4. If the

testers choose to test FreeMind 0.8.0 with the baseline suite used in this demon-

stration, then they will detect 3 such faults. Depending on the value of F.MutType,

the model predicts that the baseline suite will have detected 22% to 31% of such

faults. If instead they use the improved suite, then they will detect 5 such faults.

The model predicts that the improved suite will have detected 31% to 41% of such

faults. Thus, for both test suites, the model predicts that about 7 to 11 such faults

remain undetected.

As mentioned in the demonstration of the previous scenario, for this demon-

stration there are actually 22 such faults in FreeMind 0.8.0. Thus, while the model
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correctly predicts that neither test suite has detected the majority of such faults, it

underestimates the number of such faults that remain undetected.

5.3 Extensions of this work

This section describes two logical extensions of this work: a more comprehensive

evaluation of Scenarios 1–3 (Section 5.3.1) and a list of additional scenarios that

could be implemented and evaluated (Section 5.3.2).

5.3.1 Evaluation

The previous section demonstrated some of the practical applications of this work

in a simulated iteration of regression testing. This simulation differed from reality

in several major ways:

• The faults were seeded mutation faults instead of real mistakes made by de-

velopers.

• The faults were spread fairly evenly across the files changed between versions

0.7.1 and 0.8.0. In reality, faults tend to be concentrated in a few compo-

nents [46, 49, 63].

• The testing technique was similar to the one used in the experiment in Chap-

ter 4: GUI testing by random traversal of the EFG (optionally with test-suite

reduction). Real testers might use a more systematic traversal of the EFG,

and they would probably use other techniques besides GUI testing, such as

unit testing.
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• The test suites for version 0.8.0 try to cover the whole application, whereas

real testers might only try to test the portions changed since version 0.7.1.

• The statistical model had been fit to data from FreeMind 0.7.1, one of the

versions of FreeMind used in the demonstration. Real testers would probably

need to use a model fit to data from software products other than their own.

• The statistical model’s predictions had limited accuracy. To be useful in real

situations, it would need to make better predictions.

The rest of this section outlines a more realistic evaluation of the proposed

regression-testing scenarios. The next chapter lays out future work needed to make

this evaluation possible.

The evaluation of the proposed regression-testing scenarios would need to ad-

dress two perspectives often encountered in software engineering: validation and

verification [63]. Validation asks: Did we build the right thing? That is, would

these scenarios really help testers? Verification asks: Did we build the thing right?

That is, do the scenarios work?

The scenarios could be verified with one or more case studies of the following

design. The case study would look at a real, industrial software product with an

actual history of test suites and known faults. Each test suite would be linked to

the version of the software on which it was run, and each fault would be linked to

each version of the software in which it appeared. A mature statistical model, built

from software products other than the one being tested, would be available.
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Like the demonstration in the previous section, the case study would compare

the performance of “baseline” test suites to “improved” test suites. The study

would answer the following research question: Are the improved suites better than

the baseline suites at detecting faults that testers most want to detect, to the degree

that the model predicts?

The researchers conducting the study would have a choice as to how they

would create the baseline and improved suites. In the simplest case, they would use

the actual test suite for each version as the baseline and create an improved suite to

pair with each baseline suite. The improved suite would be predicted by the model

to detect some greater percentage of faults, or of important faults, than the baseline

suite. The researchers would then compare the model’s predictions to the actual

differences in fault detection between the baseline and improved suite. Alternatively,

instead of creating just one baseline and one improved suite per software version, the

researchers could see what happens in the aggregate by creating multiple baseline

and improved suites. The baseline suites would include the original suite for the

version and a number of “equivalent” suites—equivalent in the sense that the model

predicts them to have similar fault-detecting abilities. The improved suites would

consist of another set of equivalent suites, each predicted to improve similarly upon

the fault detection of the baseline suites.

The case study would answer other important questions: How much does the

distribution of faults change from version to version? How does the accuracy of the

model change as the software evolves? The answers would help in understanding

limitations to the way the model can be used. They might also point to ways to
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overcome these limitations, such as adding parameters to the model to account for

software characteristics that change over time.

The scenarios would need to be validated by real testers in realistic situations.

This part of the evaluation would need to ask: What is the learning curve for using

these scenarios? Can tools be created to aid in carrying out the scenarios? How

accurate must the statistical models be to help testers?

Another crucial issue in validation is whether these scenarios would comple-

ment or compete with existing regression-testing techniques, such as test selec-

tion and test prioritization. It may be that each have their niche: the test-suite-

improvement scenarios for automatically-generated, “throw-away” test suites and

the traditional regression-testing techniques for test suites that have been run on

previous versions. Or maybe they can be used together. For example, when testing

a version that adds a new feature, test cases from the previous version could be

selected and prioritized, and the addition of new test cases to exercise the feature

could be guided by a statistical model. The validation of the scenarios would need

to look at the regression-testing process used by real testers to understand which of

these possibilities would benefit them.

Before the scenarios can be verified and validated, major challenges must be

overcome. Described more fully in the next chapter, they include developing more

mature statistical models of fault detection and finding software projects with suit-

able histories of faults and test suites.
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5.3.2 Additional scenarios

The three regression-testing scenarios described and demonstrated earlier in this

chapter are just a few of the ways that statistical models and feedback from previous

iterations of regression testing may improve regression testing. This section lists

several additional scenarios. Like Scenarios 1–3, the examples for these scenarios

refer to the testing situation and statistical model in Figure 5.1.

5.3.2.1 Scenario 4: Varying alternative test-suite characteristics

The relative magnitudes of coefficients of test-suite characteristics in the model can

help testers evaluate alternative ways to modify a test suite. They can find that

varying one characteristic by some amount is expected to have the same effect on

fault detection as varying another characteristic by some other amount. The testers

can choose which characteristic to manipulate.

Example: The testers wonder how much of an increase in event-pair cover-

age (T.Pairs) would be required to effect the same improvement in fault detection

as a 25% increase in test-suite size; they may be able to increase event-pair cov-

erage by this amount without increasing the test-suite size as much (or at all).

The model estimates that increasing the normalized test-suite size from 2.0 to 2.5

(holding event-pair coverage constant) has the same effect as increasing the event-

pair coverage from 0.20 to 0.25 (holding test-suite size constant). This is because

e(0.3)(2.5−2.0) = e(3)(0.25−0.20) = 1.2.
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5.3.2.2 Scenario 5: Targeting common or elusive kinds of faults

Interaction effects in the model can tell testers how to vary test-suite characteristics

to improve detection of certain kinds of faults. Using the history of known faults,

the testers can learn which kinds of faults should be targeted. They can look for

characteristic values that arose commonly among all known faults, or among faults

that eluded their previous test suites. Then they can look at interaction effects

between fault characteristics and test-suite characteristics in the model to see how

varying those test-suite characteristics would improve the odds of detecting those

common or elusive faults. Alternatively, if no reasonable variation in test-suite

characteristics would sufficiently improve those faults’ odds of detection, then the

testers can decide to target those faults with other techniques, such as inspections.

Example: Recall that the summary of known faults in versions 1, . . . , n − 1

makes the simplifying assumption that there are just two kinds of faults: shallow

faults (F.CovBef = 0.3) and deep faults (F.CovBef = 0.7). Deep faults, in this

example, turn out to be the more common and the more elusive kind. Therefore,

the testers want to improve detection of deep faults. Looking at the model, they

see that they can achieve this by increasing event-pair coverage (T.Pairs) because it

has a positive interaction effect with fault depth. Increasing a test suite’s event-pair

coverage should increase the likelihood of detecting any fault, but it should give an

extra boost to deeper faults.

Using the model and Equation 4.2, the testers can predict the probability that

a shallow fault or a deep fault would be detected by various test suites. If the
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testers start with a test suite like the one for versions 1, . . . , n − 1 and increase its

event-pair coverage to 0.25, the predicted probability of detecting a shallow fault

increases from 0.65 to 0.79. The predicted probability of detecting a deep fault sees

a greater increase, from 0.45 to 0.79. Thus, with event-pair coverage at 0.25, the

deep faults (F.CovBef = 0.7) should no longer be any more elusive than the shallow

faults (F.CovBef = 0.3).

5.3.2.3 Scenario 6: Targeting severe faults

Some fault characteristics may be related to the severity of the fault. As in the

previous scenario, interaction effects in the model can show how to target more

severe faults or how to avoid wasting resources on less severe faults.

Example: The testers consider shallow faults to be more severe because users

are more likely to encounter them. Since the interaction effect between event-pair

coverage (T.Pairs) and fault depth (F.CovBef) in the model only shows the testers

how to target less severe faults—those with higher F.CovBef values—they may

choose not to take advantage of it like they did in the previous scenario’s example.

Instead, they may increase event-pair coverage or test-suite size just enough to reach

a targeted detection probability for shallow faults (e.g., 0.70 with T.Pairs = 0.215)

without worrying about reaching a corresponding probability for deeper faults.
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5.3.2.4 Scenario 7: Optimizing test-suite characteristics

It may be possible to optimize the function expressed by the statistical model to

find the best values for the test-suite characteristics under given cost constraints.

This will require cost functions for test-suite characteristics (What is the cost of

increasing the characteristic by X amount?) and fault characteristics (What is the

cost of failing to detect a fault with characteristic value X, and how likely is such a

fault to occur?).

5.3.2.5 Scenario 8: Targeting fault-prone areas of the software

In other research, models have been developed to predict which areas of a software

product are most fault-prone [46, 49]. Some of the logistic-regression models devel-

oped in the previous chapter predict the probability that a test suite covers a piece

of code with certain characteristic values. It may be possible to combine these two

lines of research: interaction terms in the model could show testers how to adjust

their test suites to target fault-prone code.

5.4 Summary

This chapter presented potentially the first approach to regression testing that uses

feedback from previous iterations of regression testing to detect more, and more

important, faults in the current iteration. Before this potential can be realized,

however, more mature statistical models of fault detection must be developed and

other challenges must be overcome.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

Recall this dissertation’s thesis statement:

Simple, automatically-measurable characteristics of defects affect their

susceptibility to detection by at least one form of software testing. Ac-

counting for these characteristics in empirical studies of software testing

increases the validity of study results and is feasible to do.

Do simple, automatically-measurable characteristics of defects affect their sus-

ceptibility to detection? Yes. The experiment in Chapter 4 proposed and studied a

set of such defect characteristics. It showed that the defect characteristics studied—

each of which was simple and automatically measurable—affect defects’ suscepti-

bility to detection in at least one domain of testing. This set of characteristics

improves upon the state of the art in defect characterization because it is practical

to apply—whether in empirical studies or in practice—and proven to help explain

defect detection in software testing.

Is accounting for defect characteristics in empirical studies of software test-

ing feasible? Yes. The experiment applied the general methodology presented in

Chapter 3, which showed how to control for defect characteristics and test-suite char-
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acteristics simultaneously in empirical studies of software testing. The experiments

provided a proof of concept that the methodology works, as well as an example to

its potential users.

Does accounting for defect characteristics in empirical studies of software test-

ing increase the validity of study results? Yes. Chapter 1 explained the importance

of being able to explain and predict the performance of testing techniques, which

is only possible if all factors that significantly affect their performance are under-

stood. The experiments showed that defect characteristics are among those factors.

Furthermore, Chapter 5 showed how an understanding of defect and test-suite char-

acteristics’ effect on defect detection could help improve regression testing. Unlike

existing approaches to regression testing, the approach taken in that chapter could

help testers detect more faults, and more important faults, in evolving software.

6.2 Future Work

Although this dissertation makes substantial contributions toward understanding

the role of defect characteristics in software testing, the field is fairly untrodden and

much exploration remains.

6.2.1 Immediate future work

Immediate future work should focus on replicating the experiment in different con-

texts, honing the methodology, and expanding the fault characterization.
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6.2.1.1 Experiments applying the methodology

To lend external validity to the experiment results on GUI testing, the experiment

should be replicated with different GUI-based applications. One weakness of this

experiment was that it explored only a narrow range of test-suite coverage levels; in

the replicated experiment, a different strategy for GUI-test-suite generation, such as

augmenting automatically-generated test suites with manually-generated test cases,

could be used.

To lend even broader external validity to the experiment, it should be repli-

cated in domains other than GUI testing and with faults other than one-line muta-

tions. Especially interesting would be natural faults made by programmers.

To make this possible, analogues of the GUI-testing-specific metrics used in

this experiment will need to be found for other testing domains. One metric, test-

case length, already has an analogue: test granularity. For other metrics based on

GUI events and the event-flow graph, function calls or “test grains” [53] might be

substituted for events. A different graph representation, such as the control-flow

graph, might be substituted for the event-flow graph.

The assumption that faults affect just one line of code will also need to be re-

laxed. This should be straightforward. For example, “coverage of the line containing

a fault” could be generalized to “coverage of all the lines altered by a fault”.
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6.2.1.2 Methodology to account for fault characteristics in empirical

studies of software testing

Instantiations or variations of the methodology could be developed to perform ex-

periments more efficiently, requiring fewer test cases or fewer faults. For example, a

factorial design may be more appropriate in some situations than this experiment’s

method of randomly generating data points.

6.2.1.3 Fault characterization

Additional relevant characteristics should be identified to more fully explain faults’

susceptibility to detection. In particular, characteristics of the failures caused by a

fault should be identified and studied. These may help explain faults’ susceptibility

to detection in ways that static fault characteristics cannot.

6.2.2 Long-term future work

In the long term, research should focus on further refining the methodology and the

fault characterization, as well as bringing them into general use by researchers. Also,

research in the future needs to evaluate the effectiveness of the regression-testing

scenarios proposed in this work.

6.2.2.1 Practical applications to regression testing

Section 5.3.1 outlined a comprehensive evaluation of the scenarios for regression test-

ing proposed in that chapter. Before the evaluations, and the scenarios themselves,
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can become a reality, several major challenges must be resolved.

The most important challenge is to continue developing the statistical models

presented in this work until they become sufficiently mature. A mature model would

be based on data from a wide variety of testing situations, including non-GUI test

suites and real faults. It would be parameterized by a set of test-suite, fault, and

other characteristics that together predict fault detection with a high degree of

accuracy. Developing mature statistical models will require many studies like the

one in Chapter 4 and contributions from many researchers, but the benefit to the

science and practice of software testing will be worthwhile.

Until the statistical models become sufficiently mature, testers who wanted

to try the scenarios could create data points from some version(s) of the software

they are testing and fit a model to them. At first glance, it seems possible to

use the history of test suites and known faults in an evolving software product as

those data points. Unfortunately, this would not work for most software products

if logistic regression is used. Logistic regression requires that each data point be

independent, but usually the test suites from version to version are offshoots of the

previous versions’ test suites. Even if the test suites from version to version were

independent, each test suite could only be paired with one fault as a data point.

If, however, the testers were using an automated testing technique, they could run

their own mini-experiment—generating and executing a unique test suite for each

known fault in some version(s) of the software. Whether the testers would stand to

gain more by spending the human and computational resources to generate those

data points, and subsequently using the fitted statistical model, or to spend the
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same amount of resources just running more test cases on the version under test

remains to be seen.

Another temporary solution while statistical models of fault detection remain

immature might be to provide a way to calibrate an existing model to a new software

product or organization (as with COCOMO II [13]). As the Section 5.2 showed, even

just adjusting the intercept term in the model may dramatically improve the model’s

accuracy.

Besides developing mature statistical models, other challenges remain before

an evaluation like the one proposed in Section 5.3.1 can be performed. Software

products must be found for which the history of test suites and faults can be readily

extracted from code repositories, modification requests or defect trackers, and other

sources. Some strategy for grouping versions that have very few faults may need to

be devised. If sets of equivalent baseline and improved suites are to be generated,

an algorithm must be developed to do this.

6.2.2.2 Methodology to account for fault characteristics in empirical

studies of software testing

The methodology should be extended to account for program characteristics as well

as test-suite and fault characteristics. One solution seems to be to look at 〈test

suite, fault, program〉 triples rather than 〈test suite, fault〉 pairs. But the solution

is not so straightforward: the fundamental rule of logistic regression—independent

data points—would dictate that each 〈test suite, fault, program〉 tuple must refer to
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a different program. Clearly, a better way to account for program characteristics is

needed.

In some cases, it may be more interesting to study test cases than test suites.

A variation of the methodology could be developed that replaces test suites with

test cases. Since a single test case would not usually be expected to exercise all

of the software under test, restrictions might be placed on the faults that may be

paired with a test case.

Both for efficiency and for goodness of fit, alternatives to logistic-regression

analysis, such as Bayesian networks, may be tried. Last but not least, the method-

ology should be further validated by using it in evaluations of testing techniques

conducted by people other than the author.

6.2.2.3 Fault characterization

Future work for the short term included identifying additional relevant character-

istics of faults. Even better for the long term would be to develop an underlying

theory of fault types in software testing, rather than the somewhat ad hoc list of

characteristics currently being used.

The characterization could be made even more applicable to practice by incor-

porating fault severity. Although severity is highly subjective, perhaps one or more

fault characteristics (such as the distance of faulty code from the initial program

state) could approximate it. Characteristics of the failures caused by a fault may

help establish a connection to fault severity.
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Eventually, the fault characterization, as well as test-suite and software char-

acterizations, should mature to the point where these characteristics can accurately

predict whether a given kind of fault in an application will be detected by a given

test suite. The more accurate those predictions are, the more effective evaluations

of testing techniques can be.
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Appendix A

Preliminary Experiment

This appendix describes a first attempt to use the methodology of Chapter 3 in an

experiment. The experiment studies the effects of a preliminary set of test-suite and

fault characteristics on the probability that a test suite detects a fault. Data points

were generated for two GUI-intensive applications using GUI testing.

Section A.1 describes the test-suite and fault characteristics studied. Sec-

tions A.2–A.4 present the experiment procedure, results, and conclusions. Through-

out the appendix and in Section A.5, weaknesses in the experiment are brought to

light. These weaknesses are instructive in understanding the proper use of the

methodology, and they motivate the improved experiment in Chapter 4.

Table A.1: Test-suite and fault characteristics studied
Abbrev. Description

Test

suite

T.Len’ Length of test cases
T.Events’ Number of events
T.Pairs’ Event-pair coverage / number of events

T.Triples’ Event-triple coverage / event-pair coverage

Fault

F.MutType Mutant type (0 for class-level, 1 for method-level)
F.InMethod In method (0 if not inside method, 1 if inside method)
F.Branch Branch points in faulty method’s bytecode
F.StmtDet Estimated probability of detection by statement-coverage-

adequate test suite
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A.1 Test-suite and fault characterization

The test-suite and fault characteristics studied in this experiment were chosen based

on two principles. First, the choice should be informed by previous research. Al-

though the literature has little to say about fault characteristics (Section 2.2), it

suggests several potentially relevant test-suite characteristics (Section 2.3). Second,

all characteristics chosen should be measurable automatically and without special

artifacts such as specifications. Otherwise, use of the characteristics in replications

of this experiment or in practice would be impractical.

Table A.1 summarizes the characteristics studied. Some characteristics are

marked with a prime (’) to distinguish them from characteristics in Chapter 4 that

intend to measure the same property but measure it somewhat differently.

A.1.1 Fault characteristics

As the next section explains, all faults in this experiment were mutation faults gener-

ated by a tool called MuJava. The characteristics F.MutType is the type of mutant,

as classified by MuJava. Method-level mutants result from the more traditional

mutation operators, which can operate on non-object-oriented code (e.g., inserting

a decrement operator in front of a variable use). Class-level mutants operate on

classes (e.g., changing the type of a data member). Prior to this study, there is no

evidence to suggest that one type of fault is more difficult to detect than another,

but this is an easy characteristic to include because it comes directly from the output

of MuJava. MuJava further classifies each mutant by the specific mutation operator
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used to create it, but there are too many different mutation operators to study this

as a characteristic.

An earlier version of this experiment [58, 60] found the mutation type (F.MutType)

to be related to fault detection but hypothesized that the relationship really had

more to do with the fault’s location in the software—specifically, whether it lies

inside a method or not. Class-level mutations are more likely than method-level

mutations to occur in parts of a class other than its methods, such as declarations

and initializations of data members. Therefore, this version of the experiment tests

the hypothesis by including the characteristic F.InMethod, which is 1 if the fault lies

inside a method and 0 otherwise.

Another fault characteristic, F.Branch, is the number of branch points in the

method containing the fault, as counted in the method’s bytecode. (The applications

in this study were written in Java.) If the fault is not inside a method, F.Branch is

0. This characteristic is meant to approximate the number of branch points in the

event handler(s) containing the fault, since prior work [65] hypothesized that faults

in event handlers with more complex branching can only be detected by longer test

cases.

Previous work by the author [59] has asserted that an effective way to char-

acterize the faults detected by a testing technique is in terms of their susceptibility

to detection by other techniques. Therefore, the third fault characteristic studied

is F.StmtDet, a fault’s estimated probability of detection by statement-coverage-

adequate test suites.

132



A.1.2 Test-suite characteristics

Earlier research inspired each of the test-suite characteristics studied here. T.Len’,

the length or granularity of test cases, has affected fault detection in previous stud-

ies [53, 65]. Although it is a characteristic of a test case, not necessarily a test

suite, this experiment studies it by making all test cases in a suite have the same

length. In this experiment, the length of a test case is the number of events minus

the number of reaching events; this is explained in the next section.

Clearly, T.Events’, the size of a test suite, affects fault detection—as previous

studies [39] have confirmed. In this experiment, test-suite size is measured as the

total number of events in all of its test cases. This makes more sense, for the

applications studied, than measuring the number of test cases because the time

required to test them depends mostly on the number of events to be executed.

Many previous empirical studies have looked at the coverage of test suites.

Some have found that test-suite coverage is a better predictor of fault detection than

test-suite size [39]. Although there are many ways to measure coverage, this experi-

ment considers two coverage metrics: GUI-event-pair coverage and GUI-event-triple

coverage. These are, respectively, the number of unique length-two and length-three

event sequences executed by a test suite. The characteristic T.Pairs’ is event-pair

coverage normalized by test-suite size. T.Triples’ is event-triple coverage normalized

by event-pair coverage. These characteristics are normalized to avoid confound-

ing their influence on fault detection with that of test-suite size and each other.

Although there was no clear stopping point in the length of event sequences to con-
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sider for coverage—this work could have looked at coverage of length-four and longer

event sequences—length-two and length-three sequences seemed a reasonable choice

for this experiment. If coverage of length-two and length-three sequences turned

out to affect fault detection, then coverage of longer sequences could be studied in

future experiments.

Because all test suites in this experiment are constructed to cover each GUI

event at least once, no information about the events executed by a test suite, such

as their complexity or content, is included among the characteristics studied.

A.2 Procedure

The experiment design follows the methodology from Chapter 3. A random sample

of 〈test suite, fault〉 pairs was created, their characteristics and fault detection were

measured, and the resulting data points were analyzed using logistic regression.

Details follow.

A.2.1 Data collection

Data and other artifacts from this experiment have been packaged as a software-

testing benchmark, available for download1.
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Table A.2: Sizes of the applications under test, their test suites, and their test pools
Application Size Cases in Suite Cases in Pool

Lines Classes Events Min. Max. Len.-2 Len.-20

CrosswordSage 0.3.5 2171 36 98 8 46 402 226

FreeMind 0.8.0 15692 332 541 117 424 1093 455

A.2.1.1 Applications under test

Two medium-sized, open-source applications were studied: CrosswordSage2 (version

0.3.5), a crossword-design tool; and FreeMind3 (version 0.8.0), a tool for creating

“mind maps”. Both are implemented in Java and rely heavily on GUI-based inter-

actions. Table A.2 gives each application’s size as measured by executable lines of

code and classes, along with information about its test suites that will be explained

later.

A.2.1.2 Sample size

For this experiment, an attempt was made to choose a sample size large enough to

guarantee, with high probability, that the right test-suite and fault characteristics

would be identified as statistically significant. Appendix B explains how sample size

is calculated for logistic regression.

The sample-size calculation takes several parameters. For the level of signif-

icance and the power, the standard values of 0.05 and 0.80 were chosen [3]. The

effect size is typically set at the smallest value of practical significance. Since the

software-testing literature offered no precedent, an effect size of 0.3 was chosen be-

1http://www.cs.umd.edu/~atif/Benchmarks/UMD2007b.html

2http://crosswordsage.sourceforge.net

3http://freemind.sourceforge.net
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cause it seemed to provide a reasonable balance between identification of practically-

significant relationships and feasible sample size.

The sample-size calculation also requires sample data from a pilot study. For

this experiment, the pilot study consisted of 100 〈test suite, fault〉 pairs for Cross-

wordSage. These data points were generated following a procedure very similar to

the one described in the rest of this section.

The calculated sample size turned out to be 146. Therefore, 146 〈test suite,

fault〉 pairs were generated for the experiment.

Unfortunately, some problems with the calculation were discovered after the

experiment was completed. First, errors were found in the implementation of the

formulas in Appendix B. In particular, α was not divided by the number of indepen-

dent variables (test-suite and fault characteristics). These errors were subsequently

corrected, and the implementation was tested using the inputs and outputs in [30].

Second, as explained later in this section, the rate of false reports of fault detection

in the data was unacceptably high. Some of the same steps taken to correct the

experiment data were also taken to correct the pilot-study data: reports of detection

were checked against coverage data (if a test case does not cover the faulty code,

it should not detect the fault), and the corrected oracle procedure was used. Ta-

ble A.3 gives the recalculated sample size for each independent variable, using the

same parameters as in the original calculation. The recalculated sample size for the

experiment is the maximum of these: 13745.

That the actual sample size is much smaller than the recalculated sample

size does not invalidate the experiment. It only implies that there is a greater-
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Table A.3: Recalculated sample size for each independent variable

T.Len’ T.Events’ T.Pairs’ T.Triples’ F.MutType F.InMethod F.Branch F.StmtDet

4205 13745 3500 7825 394 127 768 12874

than-expected chance of failing to identify test-suite and fault characteristics as

statistically significant.

A.2.1.3 Test pool

Following a common practice in software-testing studies (e.g., [65]), this experiment

constructed test suites by selecting test cases from a fixed set, called the test pool.

A test case may appear in more than one test suite. Therefore, while the test pool

must be small enough that all of its test cases can be executed in a reasonable

amount of time, it must also be large enough that test suites picked from the pool

are sufficiently different from each other. The latter requirement depends on the

number of test cases per test suite. Table A.2 lists the minimum and maximum

number of test cases per test suite for each application studied.

Algorithm 1 shows the algorithm used to construct the test pool, which re-

sulted in 19 “buckets” of test cases, one for each length. Test cases did not exceed 20

events because the current version of the test-case-replayer component of GUITAR,

the tool used to execute the test cases, often fails spuriously from timing problems

with longer test cases. The minimum test-case length was set at 2, rather than 1,

because the targeted number of test cases in each bucket exceeded the number of

possible length-1 test cases—yet it was desired that each bucket in the test pool

initially contain an equal number of test cases with no duplicates.
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The test cases were built such that each length-2 to length-19 test case was a

prefix of a length-20 test case, which permitted a time-saving shortcut in test-case

execution: the experiment only needed to run the length-20 test cases, checking

the GUI state after each intermediate event, to obtain results for the length-2 to

length-19 test cases as well. This shortcut has been used previously by Xie and

Memon [65].

It was desired that each GUI event be part of bucket1, yet, technically, not

every GUI event can be the first in a test case because not every GUI event can be

executed in the initial state of the application. Sometimes a sequence of reaching

events had to be prefixed to an event in bucket1 to bridge the gap between the

initial state and the “first” event in the test case. The reaching events did not count

toward the length of the test case.

The number of iterations, iters, was chosen to limit the probability that two

test suites picked from the pool would share more than a small percentage of test

cases. After the test cases were executed, however, the pool size had to be reduced.

Test cases that failed spuriously on the ith event (as determined by examining state-

ment coverage of lines with seeded faults) were removed from bucketi to bucket20.

Table A.2 shows the resulting number of length-2 and length-20 test cases in the

pool.
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Algorithm 1 Algorithm for constructing the test pool. succs(event) is the set of

successors of the event in the EFG. For a test case in bucketi, last(testCase) is the

ith (i.e., last) event in the test case. and covSuccs(testCase) is the set of events

such that testCase ◦ event ∈ bucketi+1.

1: bucket1 ← {all events in application}

2: i← 0

3: while i <iters do

4: for tc ∈ bucket1 do

5: tc′ ← tc

6: for i from 2 to 20 do

7: uncov ← succs(last(tc′))− covSuccs(tc′)

8: if uncov = ∅ then

9: covSuccs(tc′)← ∅

10: uncov ← succs(last(tc′))

11: end if

12: e← random event in uncov

13: covSuccs(tc′)← covSuccs(tc′) ∪ e

14: tc′ ← tc′ ◦ e

15: bucketi ← bucketi ∪ tc′

16: end for

17: end for

18: i← i + 1

19: end while

139



A.2.1.4 Test suites

Each test suite was constructed by randomly selecting test cases from some fixed,

randomly chosen bucket in the test pool until the test suite covered all GUI events

that the test pool covered. A test case was only added to the suite if it contained

some event that the suite did not yet cover.

A.2.1.5 Faults

To obtain a sample of faults, experimenters typically use one of three approaches:

identifying actual faults made by developers, seeding faults by hand, or seeding

faults mechanically. Each approach has its pros and cons, discussed elsewhere [4].

Because of the large number of faults needed for this study, the third approach,

automatic seeding, was chosen. Fault seeding was done with the tool MuJava4. Mu-

Java seeds a fault in a Java class by applying a mutation operator, which makes a

syntactically small change to the source code (e.g., replacing a relational operator

with another relational operator or changing the access level of an instance vari-

able). As explained in Section A.1, the mutation operators fall under two main

categories: class-level and method-level. Method-level mutants can be seeded inside

the methods of a class, while class-level mutants can be seeded either inside methods

or elsewhere in a class.

For each application studied, all possible mutants were created, and 146 of

those mutants were randomly selected. Correspondingly, 146 faulty versions of each

4http://www.ise.gmu.edu/~ofut/mujava/
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application were created, each containing one fault.

No attempt was made to eliminate equivalent mutants—those that do not af-

fect the semantics of the application. In the results, this might affect the intercept

term in the logistic-regression models—a fairly minor detail. It would only affect the

more important part of the logistic-regression models—the coefficients, specifically

the coefficient for F.MutType and any correlated characteristics—if different propor-

tions of the class-level and method-level mutation faults were equivalent mutants.

Since opportunities for seeding different types of mutants (i.e., mutants gener-

ated by different mutation operators) are more common for some types of mutants

than others, some mutant types in the sample were more common than others.

However, this should not affect the experiment.

A.2.1.6 Measurement of independent and dependent variables

Several of the characteristics of 〈test suite, fault〉 pairs listed in Table A.1 could be

observed before any test cases were executed. This was true of all of the test-suite

variables, which were straightforward to measure. F.MutType was easily obtained

from the output of MuJava. F.InMethod and F.Branch were both found by identifying

the method (if any) in which a fault resides. For F.Branch, the control-flow graph

created by Sofya5 for that method was analyzed.

The dependent variable in this experiment is fault detection, Det. If, for a 〈test

suite, fault〉 pair, the test suite detects the fault, then Det = 1; otherwise, Det = 0.

To determine this, of course, the test cases in the test pool had to be executed.

5http://sofya.unl.edu
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Using GUITAR (Section 2.1), each test case was executed on the original, or clean,

version of the application and on each faulty version. If the oracle information

gathered by GUITAR when running a test case differed between the clean version

and a faulty version, then GUITAR reported that the test case detected that fault.

Since length-2 through length-19 test cases in the test pool were merely prefixes of

length-20 test cases, the data for each shorter test case were gotten while running

the length-20 test case by capturing oracle information after each event in the test

case. In addition, for each length-20 test case, a listing of all program statements

it covered in the clean version was collected by Instr6. Because execution of all test

cases in the pool required hundreds of hours of computation time, execution was

distributed across multiple computers.

When the experiment was run, some false reports of fault detection were an-

ticipated. Because of timing problems in GUITAR, test cases sometimes fail to

run to completion, making it appear as if a fault has been detected when really it

has not been. In addition, GUITAR by default detects even trivial differences in

oracle information, such as in the coordinates of GUI components, which may not

actually indicate fault detection. When this work was originally published [58, 60],

several steps had been taken to eliminate false reports of detection. GUITAR had

been set to ignore usually-trivial differences in oracle information, such as the co-

ordinates of components. Reports of fault detection had been checked against the

statement-coverage data for length-20 test cases; if the test case did not cover the

line containing the fault, then it (and the length-2 to length-19 test cases inside it)

6http://www.glenmccl.com/instr/index.htm
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could not have detected the fault. As mentioned in the procedure for constructing

the test pool, if the statement-coverage data showed that a length-20 test case failed

spuriously on the ith event, then the length-i and longer test cases inside it had been

discarded from the test pool.

After the work was published, several contributing factors to the incorrect

fault-detection results were diagnosed and mitigated. The timing problems with

GUITAR had been exacerbated by running it on a publicly available distributed

system called Condor7, so test cases with questionable results were rerun on a pri-

vate cluster at the University of Maryland. The component of GUITAR that imple-

mented the oracle procedure, which compares two files of oracle information to see

if they differ, had contained logic errors causing it to report non-existent differences,

so those were corrected. Also, the fault-detection data were checked more rigorously.

A statement-coverage report was collected after each event in each test case, rather

than just at the end of each length-20 test case, and reports of fault detection were

checked against it. Each supposedly-detected fault was also manually inspected to

determine if it really could be detected by GUI testing; if not, reports of its detection

were eliminated. For CrosswordSage, 20 of 58 reports of Det = 1 turned out to be

incorrect; for FreeMind, 53 of 76. The results reported here use the corrected data

for Det.

F.StmtDet was calculated using the fault-detection data and the statement-

coverage data. Recall that this characteristic estimates a fault’s susceptibility to

detection by statement-coverage-adequate test suites. To make this estimate, 100

7http://www.cs.wisc.edu/condor/
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test suites of length-20 test cases were constructed using a procedure similar to the

one for the other test suites in the experiment, except that a different coverage

criterion was used: instead of covering all events, these test suites were made to

cover all statements covered by the test pool.

A.2.2 Data analysis

For each application under test, the data set of 146 〈test suite, fault〉 pairs was

analyzed with logistic-regression analysis (Section 4.2.2). Two kinds of logistic-

regression models were fit to the data: univariate and multivariate. In each univari-

ate model, one test-suite or fault characteristic was the independent (explanatory)

variable and Det was the dependent (response) variable. A multivariate model for

each application was created as follows:

1. An initial multivariate model, using all test-suite and fault characteristics as

independent variables, was built.

2. The model was reduced using stepwise regression based on AIC.

3. Each two-way interaction between a fault characteristic and a test-suite char-

acteristic in the reduced model was added to the reduced model.

4. The model was reduced again using stepwise regression.

Stepwise regression based on AIC removes superfluous independent variables from

the model, leaving the set of independent variables that provides the best balance

between model fit and parsimony. Before model-fitting, all non-categorical data was
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Table A.4: Data summary
CrosswordSage FreeMind

Min. Mean Max. Min. Mean Max.

T.Len’ 2 11.4 20 2 10.6 20

T.Events’ 16 308.2 551 824 1776 2580

T.Pairs’ 0.694 0.952 2.688 0.774 0.896 0.926

T.Triples’ 0.762 1.161 1.348 0.397 0.900 1.043

F.MutType 0 0.411 1 0 0.568 1

F.InMethod 0 0.911 1 0 0.945 1

F.Branch 0 17.6 58 0 16.1 94

F.StmtDet 0.000 0.253 1.000 0.000 0.147 1

Det 0 0.260 1 0 0.158 1

centered (the mean was subtracted). Model-fitting and other statistical calculations

were performed with the R software environment8.

A.3 Results

Before analyzing data, it is worthwhile to look it over. Table A.4 gives an overview

of the data collected for CrosswordSage and FreeMind. The table reveals a number

of slight differences between the two applications but only a few major differences:

• T.Events’, the number of events per test suite, is much greater for FreeMind

because it is a larger application. However, when T.Events’ is normalized by

the number of events per application (Table A.2), FreeMind’s test suites turn

out to be only slightly larger than CrosswordSage’s.

• F.MutType is less than 0.5 for CrosswordSage but greater than 0.5 for Free-

Mind. This means that the majority of CrosswordSage’s faults are class-level

mutations, while the majority of FreeMind’s faults are method-level mutations.

8http://www.r-project.org/
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Table A.5: Univariate models of Det
CrosswordSage FreeMind

Int. Coef. Sig. Int. Coef. Sig.

T.Len’ −1.06 0.0450 −1.68 0.00767

T.Events’ −1.06 0.00210 −1.68 0.000235

T.Pairs’ −1.05 −0.598 −1.71 9.62

T.Triples’ −1.05 1.66 −1.68 0.758

F.MutType −1.01 −0.0910 −1.25 −0.854 ◦

F.InMethod 0.154 −1.35 * −0.511 −1.26

F.Branch −1.10 −0.0250 * −1.70 0.00112

F.StmtDet −2.16 8.00 *** −2.50 8.89 ***

• The mean values of F.StmtDet and Det are larger for CrosswordSage than

for FreeMind, indicating that CrosswordSage’s faults are more susceptible to

detection.

A.3.1 Univariate models

Table A.5 gives the univariate logistic-regression models that were fitted to the data.

Each row of the table holds a compact representation of a univariate model for each

application. For example, the first row of the left side of the table represents this

model for CrosswordSage:

logit(Pr(Det)) = −1.06 + 0.0450T.Len′.

The table also shows the level of statistical significance for each independent variable

in the model, as determined by a chi-square test of deviance. Independent variables

with significance levels of “◦”, “*”, “**”, and “***” have p-values less than or equal

to 0.1, 0.05, 0.01, and 0.001, respectively. The smaller the p-value, the more likely

it is that the theoretical (true) coefficient value is non-zero and has the same sign

as the estimated coefficient.
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For both applications, F.StmtDet is the most significant independent variable.

(The large magnitude of its coefficient does not necessarily indicate that it is more

important than other variables, since the variables have different means and ranges.)

Its coefficient of 8.00 (CrosswordSage) or 8.89 (FreeMind) indicates that a unit

increase in F.StmtDet is predicted to increase the odds of Det by a factor of e8.00 or

e8.89. But, since F.StmtDet only ranges from 0 to 1, it only makes sense to look at

smaller increments. If F.StmtDet increases by 0.1, say from 0.3 to 0.4, then the odds

of Det are predicted to increase by a factor of e(8.00)(0.1) ≈ 2.23 (CrosswordSage) or

e(8.89)(0.1) ≈ 2.43 (FreeMind).

Additional fault characteristics, but no test-suite characteristics, turn out to

be statistically interesting. For CrosswordSage, these are F.InMethod and F.Branch:

faults not inside methods and faults surrounded by less branching are more likely to

be detected. More precisely, the odds of detecting an intra-method fault are e−1.35 ≈

0.259 times the odds of detecting an extra-method fault, and the odds of detecting

a fault decrease slightly, by a factor of e−0.0250 ≈ 0.975, with each additional branch

point in the enclosing method. For FreeMind, the other statistically interesting

characteristic is F.MutType: the odds of detecting a method-level mutation fault are

less than half (e0.854 ≈ 0.426) the odds of detecting a class-level mutation fault.
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Table A.6: Multivariate models of Det
CrosswordSage FreeMind

Coef. Sig. Coef. Sig.

Intercept −13.4 −7.18

T.Len’ −0.346 *

T.Events’ 0.0588 **

T.Triples’ −41.6 * −1.14 *

F.MutType 3.17

F.InMethod 6.41 *

F.Branch −0.0890

F.StmtDet 21.5 *** 101.1 ***

T.Triples′ × F.StmtDet 12.2 ***

Null deviance 167.4 127.2

Deviance 28.6 17.5

AIC 42.6 27.5

Sensitivity 37/38 = 0.974 23/23 = 1.000

Specificity 101/108 = 0.935 117/123 = 0.951

A.3.2 Multivariate models

Table A.6 shows the multivariate models and the significance level of each indepen-

dent variable in them. The multivariate model for CrosswordSage is

logit(Pr(Det)) = −13.4 + 0.0588T.Events′ +−41.6T.Triples′ + 3.17F.MutType +

6.41F.InMethod +−0.0890F.Branch + 21.5F.StmtDet.

For FreeMind, the multivariate model is

logit(Pr(Det)) = −7.18 +−0.346T.Len′ +−1.14T.Triples′ + 101.1F.StmtDet +

12.2T.Triples′ × F.StmtDet.

Additionally, the table shows some measures of goodness of fit for each model (Sec-

tion 4.2.2).
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Table A.7: Univariate models of Det with F.StmtDet
CrosswordSage FreeMind

Coef. Sig. Coef. Sig.

Intercept −2.16 −2.50

F.StmtDet 8.00 *** 8.89 ***

Null deviance 167.4 127.2

Deviance 56.5 38.8

AIC 60.5 42.8

Sensitivity 37/38 = 0.974 18/23 = 0.783

Specificity 99/108 = 0.917 122/123 = 0.992

When interpreting multivariate logistic-regression models, it is important to

consider strong correlations among the independent variables, a condition known

as multicolinearity. Multicolinearity can, as in the models in Table A.6, lead to

extreme values or unexpected signs for coefficients. For both applications, T.Len’,

T.Events’, T.Pairs’, and T.Triples’ are all strongly correlated with each other (corre-

lation values of magnitude 0.63 to 0.97)—despite the attempt to normalize T.Pairs’

and T.Triples’ (Section A.1). F.MutType, F.InMethod, F.Branch, and F.StmtDet are

also correlated with each other, though less so (correlation values of magnitude 0.10

to 0.39). Multivariate models suffering symptoms of multicolinearity are not totally

invalid, but they are harder to interpret and less likely to be accurate for other data

sets.

Different sets of independent variables are chosen for the two applications’

multivariate models. For both, a mixture of test-suite and fault characteristics help

predict fault detection. Interestingly, the model for FreeMind includes a positive

interaction effect between T.Triples’ and F.StmtDet, partly offsetting the unexpected

negative coefficient of T.Triples’.

The multivariate models fit the data remarkably well, with sensitivity and
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Table A.8: Multivariate models of Det without F.StmtDet
CrosswordSage FreeMind

Coef. Sig. Coef. Sig.

Intercept −0.179 −145

T.Events’ 0.00234 0.00290 *

T.Pairs’ 11200 *

T.Triples’ −21.7

F.InMethod −1.03 * 144

F.Branch −0.0193 0.0154

T.Pairs′ × F.InMethod −11100 **

Null deviance 167.4 127.2

Deviance 158.0 107.2

AIC 166.0 121.2

Sensitivity 22/38 = 0.579 12/23 = 0.522

Specificity 69/108 = 0.639 85/123 = 0.691

specificity close to 1. This is mostly due to the influence of F.StmtDet, which has

a correlation of 0.837 (CrosswordSage) or 0.866 (FreeMind) with Det. When all

other variables are dropped from the model, leaving just the univariate model for

F.StmtDet, as shown in Table A.7, the sensitivity and specificity remain high: 0.974

and 0.917 (CrosswordSage) or 0.783 and 0.992 (FreeMind), respectively. On the

other hand, when a multivariate model is fit without using F.StmtDet, as shown in

Table A.8, the sensitivity and specificity drop to 0.579 and 0.639 (CrosswordSage)

or 0.522 and 0.691 (FreeMind).

A.4 Discussion

This section interprets the results and discusses their implications.
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A.4.1 Threats to validity

The results should be interpreted while keeping in mind possible threats to the

validity of the experiment.

Threats to internal validity are possible alternative causes for experiment re-

sults. The main threat to internal validity here is the possibility of incorrect data

for fault detection (Det). As Section A.2.1 explained, numerous steps were taken

to clean the data. However, there were simply too many 〈test case, fault〉 pairs

involved in the calculation of Det to examine every one in detail. A few incor-

rect values for Det may remain. As long as the characteristics of the 〈test suite,

fault〉 pairs corresponding to those incorrect values are randomly distributed, this

should not affect the results. Characteristics for which this may not be the case are

F.InMethod—because tracking of coverage of extra-method faulty lines, and there-

fore corrections of Det results for this faults, were approximate—and the rest of the

fault characteristics—because they are modestly correlated with F.InMethod.

Threats to construct validity are discrepancies between the concepts intended

to be measured and the actual measures used. Two fault characteristics raise con-

cerns here. One is F.Branch, the number of branch points in the bytecode of the

method containing a fault. It is intended to approximate the complexity of the event

handler(s) containing a fault. However, there is no definite relationship between

methods and event handlers. The other is F.StmtDet, a fault’s estimated prob-

ability of detection by statement-coverage-adequate test suites. What F.StmtDet

actually measures in this experiment is the fault’s probability of detection by a test
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suite selected from the test pool that covers all statements covered by the pool.

Threats to conclusion validity are problems with the way statistics are used.

This experiment faces two main threats to conclusion validity. First, the sample

size is much smaller than the sample size required to achieve the desired level of

accuracy in results (significance = 0.05, power = 0.80, effect size = 0.3). With the

current sample size, it is likely that not all independent variables that “should” be

statistically significant are identified as such. This is especially true for independent

variables whose coefficients in the logistic-regression models are very small.

The other major threat to conclusion validity is a consequence of the require-

ment in logistic-regression analysis that all data points be independent. Because the

test suites in this experiment are built from a test pool, and furthermore because

some test cases in the pool are prefixes of others, the test suites in the experiment

are not independent. The problem is compounded by the fact that the pools of

longer test cases had to be substantially reduced because of test cases failing to run

to completion (Section A.2.1). Consequently, each length-20 test case consisted of

a large portion of the length-20 test pool: on average, 10% for CrosswordSage and

40% for FreeMind. This serious problem is corrected in the experiment in Chapter 4.

Threats to external validity limit the generalizability of experiment results.

Like any software-testing experiment, this one considers a limited sample of test

suites, faults, and software under test. It is not yet clear how conclusions drawn from

the study would apply to other forms of testing, other kinds of software, and real

faults. However, this experiment has greater external validity than many previous

studies of software testing because it characterizes the faults used and shows how
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they, along with test-suite characteristics, affected the results.

A.4.2 Fault characteristics

By far the independent variable most strongly related to fault detection in this

experiment is F.StmtDet, a fault’s estimated probability of detection by a statement-

coverage-adequate test suite. This fault characteristic is strongly correlated with

fault detection. The question is, to what extent is this information useful? It

may indicate that event-coverage-adequate suites and statement-coverage-adequate

suites mostly detect the same faults. However, because of the way F.StmtDet was

calculated, we cannot be sure. The statement-coverage-adequate suites used to

calculate it were selected from the same test pool as the experiment suites, and

they only covered statements that were covered by the test pool. This is just too

incestuous: even random test suites from the test pool would have fault-detection

abilities not unlike the experiment suites. Thus, the results for F.StmtDet may not

tell us much after all.

For CrosswordSage, F.InMethod, whether or not a fault resides inside a method,

and F.Branch, the amount of branching surrounding a fault, also appear to affect

fault detection. Both are statistically significant in their univariate models (Ta-

ble A.5), and F.InMethod is significant in the full multivariate model (Table A.6)

and the model without F.StmtDet (Table A.8). Except in the full multivariate model

(Table A.6), where F.InMethod apparently has an unexpected sign because of multi-

colinearity with F.StmtDet and F.Branch, F.InMethod has a negative effect on fault
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detection—faults inside methods are less likely to be detected—and F.Branch has a

slight negative effect on fault detection—faults in methods with more branching are

slightly less likely to be detected.

For FreeMind, the only fault characteristic that shows up as statistically in-

teresting is F.MutType, and only in its univariate model (Table A.5). That model

suggests that class-level mutation faults in FreeMind are more likely to be detected

than method-level mutation faults.

Section A.1 suggested that faults in methods with more branching might only

be detected by longer test cases. This would have appeared in the logistic-regression

models as an interaction effect between F.Branch and T.Len’. However, no such

interaction appeared in any of the models.

A.4.3 Test-suite characteristics

Surprisingly, test-suite characteristics in this experiment did not seem to affect fault

detection very much. No test-suite characteristics show up as statistically significant

in their univariate models (Table A.5). However, T.Events’ and perhaps other char-

acteristics must affect fault detection at least some; either the range or the number

of test suites studied is apparently insufficient to reveal the true effects of these

characteristics. As Table A.3 shows, the calculated sample sizes for the test-suite

characteristics are higher than for most of the fault characteristics.

There were a few statistically significant results for test-suite characteristics,

although none is consistent across all models. In the full multivariate model for
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CrosswordSage (Table A.6) and the multivariate model without F.StmtDet for Free-

Mind (Table A.8), T.Events’, the test-suite size measured in events, has a positive

statistically significant effect on fault detection. In the multivariate model without

F.StmtDet for FreeMind (Table A.8), T.Pairs’, the event-pair coverage, also has a

positive, statistically significant effect, although its coefficient is inflated by multi-

colinearity. In both applications’ full multivariate models (Table A.6), T.Triples’,

the event-triple coverage, has a significantly significant but unexpectedly negative

effect on fault detection. This suggests either that multicolinearity is an issue or

that dividing by event-pair coverage is not a very good way to normalize event-triple

coverage. T.Len’, the length of test cases, is not significant in any models.

A.5 Lessons learned

This experiment was the first attempt to show that simple, automatically-measurable

characteristics of faults affect their susceptibility to detection. Furthermore, it was

the first proof of concept of the experiment methodology presented in Chapter 3.

Of the test-suite and fault characteristics studied, a fault’s estimated probabil-

ity of detection by statement-coverage-adequate test suites turns out to be the best

predictor by far of whether a given test suite will detect a given fault. The results

for one of the two applications studied suggest that faults inside methods may be

less susceptible to detection, and faults in methods with more branching may be

slightly less susceptible to detection.

Unfortunately, the validity of this experiment’s results is compromised by
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many weaknesses in its implementation. Each is resolved in the improved experi-

ment presented in Chapter 4.

A.5.1 Choice of fault and test-suite characteristics

Most of the fault characteristics chosen for this experiment turned out to be prob-

lematic. F.StmtDet is difficult to estimate—to do it properly, a new test pool of

non-GUI test cases would need to be created—and may not help testers in practice.

F.InMethod is problematic because extra-method faults make up a small proportion

of faults, driving up the sample size. Additionally, their coverage must be approxi-

mated because it is not tracked by the available coverage tools, making them more

likely to be associated with false reports of fault detection. F.Branch is a promising

start toward measuring the degrees of freedom in execution of faulty event handlers,

but better measures could be obtained.

For the test-suite characteristics, the main weakness is the lack of commonly-

used coverage metrics like statement coverage. Use of coverage metrics other than

event-based measures would make the experiment more applicable to those outside

the GUI-testing community.

The experiment in Chapter 4 considers a much larger set of fault and test-suite

characteristics. Problematic characteristics like F.StmtDet are omitted, and many

interesting characteristics are added. Characteristics are also normalized against

measures of the application under test to facilitate comparison between applications.
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A.5.2 Sample size

Although an attempt was made to choose an adequate sample size for this exper-

iment, the sample size turned out to be too small. Since the sample size grows

with the number of independent variables, a statistician consulted for this work [56]

recommends that the study of test-suite and fault characteristics be carried out in

two phases. In the first phase, an exploratory study of many independent vari-

ables is conducted, using as many data points as can be collected with the resources

available. In the second phase, replications of the study, with sample sizes calcu-

lated from the exploratory study, examine the small subset of independent variables

that turned out to be most important in the exploratory study. The experiment in

Chapter 4 implements the first phase; the second phase lies beyond the scope of this

dissertation.

A.5.3 Handling of false reports of fault detection

False reports of fault detection are inevitable with the current version of GUITAR,

and this experiment took several steps to correct them. For example, reports of fault

detection were checked against reports of the statements covered by each length-20

test case in the pool. The experiment in Chapter 4 goes even further, by collecting

coverage data after each event in each test case and checking reports of fault detec-

tion against that finer-grained data. Also, because accurate coverage data cannot

be collected for extra-method faults with the tools available, they are omitted.
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A.5.4 Construction of test suites

In this experiment, the logistic-regression models may not have been valid because

the test suites in the data points were not independent; they were picked from

a relatively small test pool. It turns out that, for this experiment design, it is

more efficient anyway to generate a new test suite for each fault. This is what the

experiment in Chapter 4 does.

Another problem in this experiment was that many test cases failed to run

to completion on the clean version of the applications, for two reasons: timing

problems in GUITAR and the approximate nature of the EFG model of the GUI. In

this experiment, a test pool with desired properties was generated and then run—

and then spuriously-failing test cases were excised from the pool, destroying the

pool’s desirable properties. In the experiment in Chapter 4, the test cases in each

test suite are generated and run one at a time, and only added to the suite if they

work on the clean version, until the test suite has the desired properties.

A.5.5 Handling of multicolinearity

Strong correlations among independent variables arose in the data and were not

handled during data analysis, leading to multivariate models with extreme and

unexpected coefficients. In particular, the test-suite characteristics turned out to be

strongly correlated with each other, despite attempts to normalize some of them. In

the improved experiment, test suites are constructed more carefully to reduce some

of these correlations. The data analysis handles the multicolinearity that does arise
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in the data.
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Appendix B

Sample-size calculation for logistic regression

To calculate the sample size for an experiment, several inputs are required:

• α, the level of significance (usually 0.05),

• β, where 1− β is the power (usually 0.80),

• β∗, the effect size, which is the smallest coefficient magnitude of interest, and

• data from a pilot study that used the same independent and dependent vari-

ables as the experiment.

The values of α and β are, respectively, the probability of Type I and Type II

errors in the experiment’s statistical tests. Both errors have to do with “unlucky”

samples. A Type I error occurs when there is a statistical relationship between

an independent variable and the dependent variable in the sample but not in the

general population (i.e., the null hypothesis is spuriously rejected). A Type II error

occurs when a statistical relationship of magnitude greater than or equal to the

effect size exists in the population but does not show up in the sample (i.e., the null

hypothesis should be rejected but is not).

The following formulas are due to Hsieh et al. [30] and were implemented for

this work in the R software environment1. The sample size n required to statistically

1http://www.cs.umd.edu/~strecker/samplesize/
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test one independent variable, X, in the presence of the other independent variables

is

n =
n1

1− R2

where n1 is the sample size that would be required to test X if it were the only

independent.

For a continuous independent variable,

n1 =
(Z1−α/2 + Z1−β)2

rX̄(1− rX̄)β∗2

where Zu is the uth percentile of the standard normal distribution and rX̄ is the

probability of the dependent variable at the mean value of X. (In Chapter 4 and

Appendix A, the value of rX̄ is estimated by fitting a univariate logistic-regression

model of the dependent with explanatory variable X to the pilot-study data, then

plugging the sample mean of X in for X.)

For a dichotomous (Boolean) independent variable,

n1 =
(Z1−α/2V

1/2 + Z1−βW
1/2)2

(r0 − r1)2(1− s1)
, where

V =
r(1− r)

s1

W = r0(1− r0) +
r1(1− r1)(1− s1)

s1

In these formulas, s1 is the proportion of the pilot-study data with X = 1; r0

and r1 are the empirical probabilities of fault detection when X = 0 and X = 1,

respectively; and r = (1 − s1)r0 + s1r1 is the overall empirical probability of fault

detection.
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This takes care of n1, leaving R2, the squared multiple correlation coefficient

relating X to the rest of the independents. In the R environment, R2 is calculated

as a side effect of fitting a linear model, in which X is predicted by the rest of the

independents, to the pilot-study data.

When V independent variables are studied, the sample size required for each

independent variable can be calculated using the formulas above, except that α

should be replaced with α/V [56]. The sample size for the study, then, is the

maximum value of n for the independent variables.
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