
ABSTRACT

Title of dissertation: ADIABATIC QUANTUM COMPUTATION:
NOISE IN THE ADIABATIC THEOREM
AND USING THE JORDAN-WIGNER
TRANSFORM TO FIND EFFECTIVE
HAMILTONIANS

Michael James O’Hara, Doctor of Philosophy,
2008

Dissertation directed by: Professor Dianne P. O’Leary
Department of Computer Science
Institute for Advanced Computer Studies

This thesis explores two mathematical aspects of adiabatic quantum computa-

tion. Adiabatic quantum computation depends on the adiabatic theorem of quantum

mechanics, and (a) we provide a rigorous formulation of the adiabatic theorem with

explicit definitions of constants, and (b) we bound error in the adiabatic approxima-

tion under conditions of noise and experimental error. We apply the new results to

a standard example of violation of the adiabatic approximation, and to a supercon-

ducting flux qubit.

Further, adiabatic quantum computation requires large ground-state energy gaps

throughout a Hamiltonian evolution if it is to solve problems in polynomial time. We

identify a class of random Hamiltonians with non-nearest-neighbor interactions and a

ground-state energy gap of O(1/
√
n), where n is the number of qubits. We also iden-

tify two classes of Hamiltonians with non-nearest-neighbor interactions whose ground

state can be found in polynomial time with adiabatic quantum computing. We then



use the Jordan-Wigner transformation to derive equivalent results for Hamiltonians

defined using Pauli operators.



ADIABATIC QUANTUM COMPUTATION: NOISE IN THE
ADIABATIC THEOREM AND USING THE JORDAN-WIGNER

TRANSFORM TO FIND EFFECTIVE HAMILTONIANS

by

Michael James O’Hara

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2008

Advisory Committee:
Professor Dianne P. O’Leary, Chair/Advisor
Professor Christopher Monroe
Professor G. W. Stewart
Dr. Stephen S. Bullock
Professor Thomas D. Cohen, Dean’s Representative



c© Copyright by
Michael James O’Hara

2008



Acknowledgements

I would like to thank my adviser, Dianne O’Leary, for taking on a student with an

obscure research agenda, being a dedicated adviser and teaching me to read more

carefully and write more clearly, as well teaching me lots of useful matrix theory. I

would like to thank my employer and numerous individuals who work there for fund-

ing my education, paying for attending conferences, and being generally supportive of

external endeavors. I am grateful to Stephen Bullock for numerous discussions of adi-

abatic quantum computing, and Chris Monroe and Ming-Shien Chang for discussions

about using ion traps to simulate quantum many-body systems. I am grateful to Tom

Cohen for a great quantum mechanics course and Pete Stewart for writing a great

book on matrix perturbation theory, and to all my committee members for serving

on my committee. Also I would like to thank James Yorke for access to the Keck lab,

Alfredo Nava-Tudela for access to luciteserver, P. Aaron Lott, Carter Price, Poorani

Subramanian, and Elana Fertig for being great officemates, and Alverda McCoy for

navigating complex administrative issues. I would like to thank my wife Jocelyn

Rodgers for encouragement, help with LaTeX and proofreading, and general support,

and Ben Reichardt, Eite Tiesinga, Gavin Brennen, Charles Clark, Ana Maria Rey,

and an anonymous journal referee for helpful comments and feedback.

I would like to express my gratitude to my high school math teacher Richard Hop-

kinson for taking me into his 12th grade honors math class in 8th grade and sharing

an unbridled enthusiasm for the subject as well as diverse mathematical explorations

outside the scope of a typical high school math curriculum. I also thank my su-

pervisor Tom Carbone at Fairchild Semiconductor for trusting a high-school student

ii



with expensive equipment and teaching me to design and execute experiments, and

my undergraduate research adviser Karl Berggren, who integrated me into the su-

perconductive electronics research group at MIT Lincoln Laboratory as a freshmen

and introducted me to quantum computing, and from whom I learned how to con-

tribute to professional research. Finally I would like to thank my family and friends

for advocating for me and encouraging my wonkish pursuits over the years.

iii



Table of Contents

List of Figures v

List of Tables vi

1 Introduction 1

2 The Adiabatic Theorem 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Properties of projection operators . . . . . . . . . . . . . . . . . . . . 10
2.3 Schrödinger’s equation . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Essential lemmas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 The Adiabatic Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Adiabatic Theorems for Noisy Hamiltonian Evolutions 32
3.1 Coherent or incoherent errors . . . . . . . . . . . . . . . . . . . . . . 32
3.2 Decoherent errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3 Application to the spin-1/2 particle in a rotating magnetic field . . . 49
3.4 Application to a superconducting flux qubit . . . . . . . . . . . . . . 52

4 Clifford Algebras and the Jordan-Wigner Transformation 62
4.1 Clifford algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.2 Pauli operators and the standard model . . . . . . . . . . . . . . . . 63
4.3 Fermi operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4 The Jordan-Wigner transformation . . . . . . . . . . . . . . . . . . . 76
4.5 One-dimensional Ising model . . . . . . . . . . . . . . . . . . . . . . . 81

5 Finding Effective Hamiltonians for Adiabatic Quantum Computing 84
5.1 A class of Hamiltonians with a large ground-state energy gap . . . . . 84
5.2 Hamiltonians in the standard Pauli model with large ground-state gaps 93

6 Conclusions and Future Work 101

Bibliography 105

iv



List of Figures

2.1 The resolvent contour in the proof of the adiabatic theorem . . . . . . 23

3.1 Adiabatic approximation for a spin-1/2 particle . . . . . . . . . . . . 52

3.2 Circuit schematic for a superconducting flux qubit . . . . . . . . . . . 53

3.3 Adiabatic approximation for a superconducting flux qubit . . . . . . . 57

5.1 Ground-state energy gap distribution for certain random Hamiltonians 86

5.2 Ground-state energy gaps compared to other gaps . . . . . . . . . . . 88

5.3 Energies for a random Hamiltonian evolution . . . . . . . . . . . . . . 90

6.1 Illustration of an NP-complete classical Ising model . . . . . . . . . . 102

v



List of Tables

5.1 Fermi occupations for H = σx
1σ

z
2σ

x
3 − σz

2 . . . . . . . . . . . . . . . . . 98

vi



Chapter 1

Introduction

Some combinatorial problems such as protein folding or algebraic problems such as

factoring may require more logic operations than classical computers will be able to

perform. However, quantum mechanics gives us the potential for massively-parallel

computing, so that some of these problems may be within reach of future quantum

computers.

The state of a classical register represents one number, and gate operations on that

register may only operate on one number at a time. A quantum register may contain a

superposition of all possible numbers of a fixed length, and a quantum gate operates on

all those states at once. If that were the whole story, quantum computers could solve

all problems in NP, namely those problems whose solution can be verified quickly,

in polynomial time. Unfortunately, when measured, a quantum register reveals only

one of the states contained in it, so quantum algorithms are carefully constructed

to ensure the state likely to be measured is the solution. Two well-known quantum

computing algorithms are Shor’s algorithm for factoring numbers [50], which provides

an exponential speedup over classical algorithms, and the Grover search algorithm,

which searches N items in O(
√
N) operations [23]. For a well-written introduction

to quantum computing, see [38].

Adiabatic quantum computing (AQC) [18] is an approach to quantum computa-
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tion where a problem is encoded as the ground state of some Hamiltonian HP , and

then a physical system is evolved slowly from a simple Hamiltonian H0 to HP . It is

assumed that it is feasible to prepare this system in the ground state of H0. Under

the right conditions and if the evolution is done sufficiently slowly, then at the end of

the evolution the state of the system will be the ground state of HP . Measurement

of this final state reveals the solution to the original problem. There is an analogy

between homotopy methods [56, p. 562] in numerical analysis and AQC, and a weaker

analogy between classical simulated annealing [12, p. 55] and AQC.

As an approach to quantum computing, AQC is known to be equivalent to stan-

dard gated quantum computing, in that each can be efficiently simulated by the other

[3, 62]. Also, a simple AQC evolution corresponds to the Grover search algorithm

[42]. AQC has been implemented in NMR qubits [36, 54] and superconducting flux

qubits [63]. Further, ground-state quantum adiabatic evolution has been used as a

scheme for coupling superconducting flux qubits in a standard quantum computing

experiment [39], and proposed as a method for realizing a cluster state [51], a pre-

requisite for measurement-based quantum computing, which is another formulation

of quantum computing.

The biggest hurdles facing many potential implementations of a quantum com-

puter are the errors due to interaction of the qubits with the environment. However,

the effects of such errors are different in AQC than in standard quantum computing.

AQC is robust against dephasing in the ground state, for instance [11], and some

have suggested that noise in some regimes might actually assist adiabatic quantum

computation [21].
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The physical principle underlying AQC is the adiabatic approximation, whose

error is established by the adiabatic theorem (AT). The AT bounds the run-time of

the algorithm in terms of the minimum ground-state energy gap of the system during

the evolution. The AT is often formulated imprecisely in the AQC literature, e.g. [42],

and the existence of counterexamples to these imprecise formulations has stimulated

recent controversy [35, 60, 64].

In Chapter 2, we prove a version of the AT that includes explicit definitions of

constants, so that we may compare the predictions of theorems derived from it to

example evolutions. Our version is based most closely on that of Reichardt [41],

which is based on that by Avron [5] (with later corrections [6, 26, 31]). We chose this

approach over others (e.g., [4, 24, 27, 61]) because it can be used to derive a specific

and relatively tight error bound for finite τ . The differences between our theorem

and Reichardt’s theorem are

• Our version of the theorem includes an explicit definition of constants, necessary

to obtain quantitative bounds.

• Our version of the theorem applies to subspaces rather than only a single non-

degenerate state.

• We also present an integral formulation which provides better bounds when the

energy gap is small for a very brief interval.

Unfortunately, rigorously-formulated adiabatic theorems cannot be applied di-

rectly to systems with noise or decoherence. There have been some numerical studies

of AQC in the presence of noise [11, 21], and an analytic study using random matrix
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theory [43]. Several recent studies have focused on the adiabatic approximation in

open quantum systems using the density operator formalism [20, 46, 58, 59, 70]. How-

ever, it is difficult to derive rigorous bounds with this approach because the dynamics

involve a non-Hermitian operator without a complete set of orthonormal eigenstates.

Some progress has been made for the AQC equivalent of the Grover search algo-

rithm, where (ideally) the dynamics are contained in a two-dimensional subspace of

the Hilbert space [1, 2, 59].

Experimental error, including noise and decoherence, for quantum computing ex-

periments can be conveniently divided into three categories [66]:

1. Coherent errors, due to a systematic implementation error such as miscalibration

in a magnetic field generator.

2. Incoherent errors, due to deterministic qubit-level differences in the evolution

such as those caused by manufacturing defects.

3. Decoherent errors, which are are random qubit-level errors due to coupling with

the environment.

In Chapter 3, we prove several extensions of the AT to handle these different types

of error. For coherent errors, we provide a theorem for perturbations in the initial

state of the system and a theorem for systematic time-dependent perturbations in the

Hamiltonian. In the case of decoherent errors, we provide two new theorems, one for

open quantum systems and one for noise modeled as a time-dependent perturbation

in the Hamiltonian. We apply the new theorems to the spin-1/2 particle in a rotating

magnetic field, a standard example for controversy regarding the AT [10, 34, 60, 69].
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We show our theorems make correct predictions about the error of the adiabatic

approximation. Finally we apply the new theorems to the superconducting flux qubit

[40], which has been proposed for AQC [28]. We use our theorems to determine a

range of evolution times where the adiabatic approximation is guaranteed to perform

well for a typical set of physical parameters and an apparently reasonable physical

noise source. This provides the experimentalist with analytic tools for determining

parameters to guarantee the adiabatic approximation works well, without the need

to perform numerical simulations.

It is an open question whether the AQC approach will lead to the identification of

new problems that can be solved efficiently by quantum computation. AQC succeeds

in polynomial time only if the inverse of the ground-state energy gap is bounded

by a polynomial in the problem size. A typical Hamiltonian must fit exponentially-

many energy levels into a polynomial-sized energy range, so most energy gaps must

be exponentially small, and it is not clear a priori why the ground-state energy

gap should ever be larger than the rest. Since the dimension of the problem is

exponentially large in the number of qubits, it is usually difficult to determine the

minimum ground-state energy gap for large problems. Thus we examine when one

might expect a large ground-state energy gap in an AQC evolution.

We expect an AQC evolution to undergo a quantum phase transition where the

gap vanishes [32]. A quantum phase transition is a discontinuity in some derivative

of the ground state energy in the limit as the number of qubits goes to infinity,

which is usually accompanied by a qualitative change in the nature of the ground

state. Perhaps the best-known example of a quantum phase transition is the one-
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dimensional Ising model [44, p. 8]. If we define the matrices

σx =







0 1

1 0







σy =







0 −i

i 0







σz =







1 0

0 −1







, (1.1)

then the Pauli operator σα
j , for α = x, y, z, has matrix representation

j−1
︷ ︸︸ ︷

I2 ⊗ I2 ⊗ · · · ⊗ I2 ⊗σα ⊗
n−j

︷ ︸︸ ︷

I2 ⊗ · · · ⊗ I2 , (1.2)

where I2 represents the 2×2 identity matrix and ⊗ represents the Kronecker product,

in the basis where the operators {σz
k : k = 1 . . . n} are diagonal. Then the one-

dimensional Ising model is

H(s) = (1 − s)
n∑

j=1

σz
j + s

n−1∑

j=1

σx
j σ

x
j+1 . (1.3)

A technique due to Lieb et al. [33] reveals the energy levels of H(s) for all 0 ≤ s ≤ 1.

This Hamiltonian evolution has been studied extensively. For instance, we know:

1. The minimum energy gap between the ground state and the first excited state

scales as O(1/n) [49].

2. There is a second-order quantum phase transition at s = 0.5 [52].

3. The entanglement of the system has been studied, under various definitions of

entanglement [13, 52].

The Hamiltonian evolution specified by Equation (1.3) is a useful example of an

AQC evolution since H(0) is uncoupled and simple to analyze, and H(1) is coupled.
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Further, it exhibits a ground-state energy gap that scales polynomially with the num-

ber of qubits. So we begin our search for Hamiltonians evolutions with large ground-

state energy gaps with understanding the analysis of this example. In Chapter 4, we

review facts about Clifford algebras, Fermionic commutation relations (FCRs), a the-

orem by Lieb et al. [33], and the Jordan-Wigner transform – all the tools necessary

to analyze (1.3).

In Chapter 5, we identify a more general class of Hamiltonian evolutions whose

ground-state energy gap can be found analytically. These Hamiltonian evolutions are

more complex than (1.3) in that they allow terms with interactions between qubits

with non-adjacent indices (“non-nearest-neighbor interactions”). We then identify

a class of random Hamiltonians with O(1/
√
n) ground-state energy gaps, where n

is the number of qubits, and identify two large classes of Hamiltonians with non-

nearest-neighbor interactions whose ground-state can be found in polynomial time

with AQC. We use the Jordan-Wigner transformation [53] to derive equivalent results

for Hamiltonians defined using Pauli operators.

Throughout the paper we will use the following notation. A Hamiltonian H is

a Hermitian operator on a Hilbert space. We will use † to denote the Hermitian

adjoint. The eigenfunctions of H we will call the eigenstates of the system, and the

eigenvalues are their associated energies. States in the Hilbert space are denoted

using Dirac bra-ket notation, e.g. |ϕ〉 and 〈ϕ| = |ϕ〉†.

Since we are interested in applications to quantum computing, we can assume the

Hilbert space has countable degrees of freedom. For instance, a system of n qubits

has 2n degrees of freedom. Then we can represent the states as a linear combination
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of some set of basis states. In this way we can represent states as complex column

vectors with unit 2-norm, and operators as complex square matrices. In this work,

every norm is the 2-norm.
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Chapter 2

The Adiabatic Theorem

2.1 Introduction

Our proof of the AT follows closely those by Avron et al. [5] (later corrections exist

[6, 31]), Reichardt [41], and Jansen et al. [26]. The purpose of revisiting the proof is

to have explicit definitions of constants, so we can have quantitative bounds.

We begin with a Hamiltonian evolution H(s) parametrized by s ∈ [0, 1]. If we

define τ to be the total evolution time, then the Hamiltonian at time t is H(t/τ).

Thus, as τ grows, H(s) describes a slower evolution. Assume H(s) has countable

eigenstates {|ψj(s)〉} and eigenvalues λ0(s) ≤ λ1(s) ≤ . . . , and consider the subspace

Ψ(s) = Span {|ψm(s)〉, . . . , |ψn(s)〉} , (2.1)

for some 0 ≤ m ≤ n. Then the adiabatic approximation states that if the state of

the system is contained in Ψ(0) at t = 0, then at time t = s/τ the state is contained

in Ψ(s). The AT stated and proved in Section 2.5 makes this statement precise.

Notice that while the ground state |ψ0(s)〉 may be important for physical reasons, the

definition above allows consideration of a more general set of states.

After reviewing some properties of projection operators, we will introduce the ver-

sion of Schrödinger’s equation that will be used and the assumptions that it requires.

Then we will introduce some essential lemmas, and finally the AT and its proof.

9



2.2 Properties of projection operators

Before embarking on the proof, it will be helpful to review some properties of pro-

jection operators. First, we will enumerate some elementary properties. Then, we

will introduce the resolvent formalism for rewriting projection operators as a contour

integral.

Define the commutator [A,B] as [A,B] = AB − BA, and Ȧ = dA/ds. Let H(s)

be some Hamiltonian with countable eigenstates {|ψj(s)〉} and eigenvalues {λj(s) :

j ≥ 0}. Let P (s) be the orthogonal projection operator onto the subspace

Ψ(s) = Span {|ψm(s)〉, . . . , |ψn(s)〉} , (2.2)

for some 0 ≤ m ≤ n. Thus

P (s) =
n∑

i=m

|ψi(s)〉〈ψi(s)| . (2.3)

Let Q(s) = I−P (s) be the projection onto the orthogonal complement of Ψ(s). Then

the following properties hold:

Property 1: P (s) = P 2(s).

Property 2: Ṗ (s) = Ṗ (s)P (s) + P (s)Ṗ (s), obtained by differentiating both sides

of Property 1.

Property 3: P (s)Ṗ (s)P (s) = 0, obtained by multiplying Property 2 from the left

by P .

Property 4: Q(s)P (s) = 0, using the definition of Q and Property 1.
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Property 5: P †(s) = P (s) and Q†(s) = Q(s), where † indicates the conjugate

transpose. This is evident from Equation (2.3).

Property 6: ||P (s)|| = ||Q(s)|| = 1. Recall that the norm of an operator P (s)

is defined to be the maximum of ||P (s)|x〉|| for choices of normalized states

|x〉. For a projection operator, the maximal choice is a vector in the plane of

projection, and in that case P (s)|x〉 = |x〉. So ||P (s)|| = 1. For Q(s), choose

|x〉 orthogonal to the plane of projection.

Property 7: [H(s), P (s)] = 0. To prove this, take some state |φ〉 and rewrite it as

|φ〉 =
∑

j≥0Cj|ψj(s)〉. Then

H(s)P (s)|φ〉 =
∑

j≥0

CjH(s)P (s)|ψj(s)〉 (2.4)

=
n∑

j=m

CjH(s)|ψj(s)〉 (2.5)

=
n∑

j=m

Cjλj(s)|ψj(s)〉 , (2.6)

and

P (s)H(s)|φ〉 =
n∑

j=m

P (s)H(s)Cj|ψj(s)〉 +
∑

j 6∈[m,n]

P (s)H(s)Cj|ψj(s)〉 (2.7)

=
n∑

j=m

CjP (s)λj(s)|ψj(s)〉 +
∑

j 6∈[m,n]

CjP (s)λj(s)|ψj(s)〉 (2.8)

=
n∑

j=m

Cjλj(s)|ψj(s)〉 . (2.9)

We will make use of the resolvent formalism to bound the projection operators.

Define the resolvent of a Hamiltonian H(s) to be

R(z;H(s)) = (H(s) − zI)−1 . (2.10)
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Suppose we can draw a contour Γ(s) in the complex plane whose enclosed region

includes the eigenvalues corresponding to Ψ(s) and excludes the rest of the spectrum

of H(s). Then we can rewrite the projection operator P (s) in terms of a line integral

of the resolvent R(s, z) = (H(s) − zI)−1 around this contour:

P (s) = − 1

2πi

∮

Γ(s)

R(s, z)dz . (2.11)

2.3 Schrödinger’s equation

We rewrite Schrödinger’s equation in terms of unitary evolution operators and the

scaled time s, rather than using state vectors and real time t. Doing so will introduce

the assumption that H(s) has a continuous, bounded second derivative.

The usual expression of the time-dependent Schrödinger’s equation is

i~
d|ψ(t)〉
dt

= H(t)|ψ(t)〉 . (2.12)

Setting t = sτ , |φ(s)〉 = |ψ(sτ)〉 = |ψ(t)〉, and Hτ (s) = H(sτ) = H(t), we can

substitute and apply the chain rule for derivatives to get

~|φ̇(s)〉 = −iτHτ (s)|φ(s)〉 , (2.13)

where the dot indicates the s-derivative. Throughout the paper, we use units where

~ = 1. Also we will assume that all subsequent state vectors, Hamiltonians, and time

evolution operators are functions of the normalized time parameter s, so we can drop

the subscript τ from Hτ . Thus we will write

|φ̇(s)〉 = −iτH(s)|φ(s)〉 . (2.14)
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Now define U(s) so that for any |φ(0)〉, we have U(s)|φ(0)〉 = |φ(s)〉 where |φ(s)〉

is the solution to this equation. Then we proceed as in [45, p. 68]. Assume that H(s)

has a continuous bounded derivative; then |φ(s)〉 has a continuous bounded second

derivative. Thus the remainder for the first-order Taylor expansion is well-defined.

For some point s∗ ∈ [s, s+ ∆s], we get

U(s+ ∆s)|φ(0)〉 = |φ(s+ ∆s)〉 (2.15)

= |φ(s)〉 + |φ̇(s)〉∆s+ |φ̈(s∗)〉∆s
2

2
(2.16)

= |φ(s)〉 − iτH(s)|φ(s)〉∆s+ O(∆s2) (2.17)

= U(s)|φ(0)〉 − iτH(s)U(s)|φ(0)〉∆s+ O(∆s2) . (2.18)

Since this is true for any |φ(0)〉 we can write

lim
∆s→0

U(s+ ∆s) − U(s)

∆s
= −iτH(s)U(s) , (2.19)

or, equivalently,

U̇(s) = −iτH(s)U(s) . (2.20)

Equation (2.20) is the form of Schrödinger’s equation that we will rely on for the rest

of the proof of the AT.

2.4 Essential lemmas

Recall that the adiabatic approximation states that a system with Hamiltonian H(s),

initially in some state in Ψ(0), evolves to approximately some state in Ψ(s) at time

t = sτ . To compute bounds on the error of this approximation, we will identify a
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Hamiltonian HA(s) that has exactly this property. Define

HA(s) = H(s) +
i

τ

[

Ṗ (s), P (s)
]

, (2.21)

where P (s) is the projection operator onto Ψ(s). Evidently HA(s) is a 1/τ pertur-

bation of H(s), where τ is the scale factor between normalized time and unnormal-

ized time. Define UA(s) to be the unitary evolution operator that is the solution to

Schrödinger’s equation for HA(s), namely

U̇A(s) = −iτHA(s)UA(s) . (2.22)

The important property of HA(s) can be restated as follows. If a system is initial-

ized in Ψ(0) at time s = 0, the state at time s under evolution by the Hamiltonian

HA(s) is entirely contained in Ψ(s). We can write this property, known as the inter-

twining property, using P (s) and UA(s) as defined in the previous paragraph.

Theorem 2.4.1 (The Intertwining Property). For s ∈ [0, 1], let H(s) be Hermitian,

twice differentiable, non-degenerate, and have a countable number of eigenstates. Let

UA(s) and P (s) be defined as previously. Then

UA(s)P (0) = P (s)UA(s) . (2.23)

Proof. Noticing that UA(s) is unitary, we can rewrite the claim as P (0) = U †
A(s)P (s)UA(s).

Since UA(0) = I this is certainly true for s = 0. So it is sufficient to show that

d

ds

[

U †
A(s)P (s)UA(s)

]

= 0 . (2.24)

14



Applying the product rule for derivatives we get

d

ds

[

U †
A(s)P (s)UA(s)

]

=
d

ds

[

U †
A(s)P (s)

]

UA(s) + U †
A(s)P (s)U̇A(s) (2.25)

=
(

U †
A(s)Ṗ (s) +

˙
U †

A(s)P (s)
)

UA(s) + U †
A(s)P (s)U̇A(s) .

(2.26)

Now observe that
˙
U †

A(s) = (U̇A(s))† since the derivative of a matrix operator is the

derivative of its matrix entries. Further, recall that U̇A(s) = −iτHA(s)UA(s). So

˙
U †

A(s) = (U̇A(s))† (2.27)

= (−iτHA(s)UA(s))† (2.28)

= +iτU †
A(s)H†

A(s) (2.29)

= iτU †
A(s)HA(s) , (2.30)

since HA(s) is Hermitian. Substituting, we get

d

ds

[

U †
A(s)P (s)UA(s)

]

=
(

U †
A(s)Ṗ (s) + iτU †

A(s)HA(s)P (s)
)

UA(s)

+ U †
A(s)P (s)(−i)τHA(s)UA(s) (2.31)

=U †
A(s)

(

Ṗ (s) + iτHA(s)P (s) − iτP (s)HA(s)
)

UA(s) (2.32)

=U †
A(s)

(

Ṗ (s) + iτ [HA(s), P (s)]
)

UA(s) . (2.33)

Now we will work on the inner term. We use the properties that [H(s), P (s)] = 0,
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P (s)Ṗ (s)P (s) = 0, P 2(s) = P (s), and Ṗ (s) = Ṗ (s)P (s) + P (s)Ṗ (s).

[HA(s), P (s)] =HA(s)P (s) − P (s)HA(s) (2.34)

=

(

H(s) +
i

τ

(

Ṗ (s)P (s) − P (s)Ṗ (s)
))

P (s)

− P (s)

(

H(s) +
i

τ

(

Ṗ (s)P (s) − P (s)Ṗ (s)
))

(2.35)

=[H(s), P (s)] +
i

τ
Ṗ (s)P 2(s) − i

τ
P (s)Ṗ (s)P (s)

− i

τ
P (s)Ṗ (s)P (s) +

i

τ
P 2(s)Ṗ (s) (2.36)

=
i

τ
Ṗ (s)P 2(s) +

i

τ
P 2(s)Ṗ (s) (2.37)

=
i

τ
Ṗ (s)P (s) +

i

τ
P (s)Ṗ (s) (2.38)

=
i

τ
Ṗ (s) . (2.39)

We can substitute this into the original expression to get

d

ds

[

U †
A(s)P (s)UA(s)

]

= U †
A(s)

(

Ṗ (s) + iτ [HA(s), P (s)]
)

UA(s) (2.40)

= U †
A(s)

(

Ṗ (s) − Ṗ (s)
)

UA(s) (2.41)

= 0 . (2.42)

Notice that this implies an intertwining property for the orthogonal complement:

UA(s)Q(0) = Q(s)UA(s) . (2.43)

In the proof of the AT we will make use of the twiddle operation. Let P (s) be a

projection operator onto Ψ(s), and assume the eigenvalues corresponding to Ψ(s) are

separated by a gap from the rest of the eigenvalues. Define

X̃(s) =
1

2πi

∮

Γ(s)

R(s, z)X(s)R(s, z)dz , (2.44)
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where Γ(s) is a contour in the complex plane around the eigenvalues associated with

the eigenstates onto which P (s) projects, whose enclosed region excludes any other

eigenvalues of H(s). We will need the following property of the twiddle operation.

Lemma 2.4.2 (The Twiddle Lemma). Assume ~ = 1. For a fixed s, let P be a

projection operator onto Ψ(s), and assume the eigenvalues corresponding to Ψ(s) are

separated by a gap from the rest of the eigenvalues. Define Q = I − P , and let X be

a bounded linear operator. Then

QXP = −Q
([

HA, X̃
]

− i

τ

[

Ṗ , X̃
])

P . (2.45)

Proof. We begin by observing that since P 2 = P and QP = 0,

−Q[X,P ]P = −Q(XP − PX)P (2.46)

= −QXP . (2.47)

Further, since the identity operator commutes with everything, [zI, R(z)XR(z)] = 0.

Then

[H, X̃] = H
(

1

2πi

∮

Γ

R(z)XR(z)dz

)

−
(

1

2πi

∮

R(z)XR(z)dz

)

H (2.48)

=
1

2πi

∮

Γ

(HR(z)XR(z) −R(z)XR(z)H) dz (2.49)

=
1

2πi

∮

Γ

[H, R(z)XR(z)]dz (2.50)

=
1

2πi

∮

Γ

[H− zI, R(z)XR(z)]dz . (2.51)

Now we use the fact that (H − zI)R = I, that X does not depend on z, and Equa-
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tion (2.11) to write

[H, X̃] =
1

2πi

∮

Γ

(XR(z) −R(z)X) dz (2.52)

=
1

2πi

[

X,

∮

Γ

R(z)dz

]

(2.53)

= −[X,P ] . (2.54)

Also, using the definition of HA in (2.21), we have

QXP = Q[X,P ]P (2.55)

= −Q[H, X̃]P (2.56)

= −Q
([

HA, X̃
]

− i

τ

[[

Ṗ , P
]

, X̃
])

P . (2.57)

All we need to finish the proof is to show

Q
[[

Ṗ , P
]

, X̃
]

P = Q
[

Ṗ , X̃
]

P . (2.58)

Using PṖP = 0, P 2 = P , and Ṗ = ṖP + PṖ , we have

Q
[[

Ṗ , P
]

X̃
]

P = Q
[

ṖP − PṖ , X̃
]

P (2.59)

= Q
(

ṖP − PṖ
)

X̃P −QX̃
(

ṖP − PṖ
)

P (2.60)

= (I − P )
(

ṖP − PṖ
)

X̃P − (I − P )X̃
(

ṖP − PṖ
)

P (2.61)

= ṖP X̃P − PṖ X̃P + PṖ X̃P − X̃ṖP + PX̃ṖP (2.62)

= Ṗ X̃P − PṖ X̃P − X̃ṖP + PX̃ṖP (2.63)

= (I − P )Ṗ X̃P − (I − P )X̃ṖP (2.64)

= QṖX̃P −QX̃ṖP (2.65)

= Q
[

Ṗ , X̃
]

P . (2.66)
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2.5 The Adiabatic Theorem

Now we are ready to prove the AT. To compute the error of the adiabatic approxima-

tion, we apply P (0) to obtain the component of the initial state contained in Ψ(0),

evolve it forward in time by applying U(s), and then apply I − P (s) to compute the

component of the state outside Ψ(s). For convenience, we define Q(s) = I −P (s), so

the error operator is Q(s)U(s)P (0).

In fact it will be most useful to bound the 2-norm of this operator, denoted

||Q(s)U(s)P (0)||. The 2-norm of an operator A is the square root of the largest

eigenvalue of A†A, and in this case yields a bound on the magnitude of the out-

put state, given a normalized input state. The AT guarantees an upper bound on

||Q(s)U(s)P (0)||.

Theorem 2.5.1 (The Adiabatic Theorem). Assume for s ∈ [0, 1] that H(s) is twice

differentiable, and let

∣
∣
∣

∣
∣
∣Ḣ(s)

∣
∣
∣

∣
∣
∣ ≤ b1(s) ,

∣
∣
∣

∣
∣
∣Ḧ(s)

∣
∣
∣

∣
∣
∣ ≤ b2(s) . (2.67)

Further assume that H(s) has a countable number of eigenstates, with eigenvalues

λ0(s) ≤ λ1(s) ≤ . . . , and that P (s) projects onto the eigenspace associated with the

eigenvalues {λm(s), λm+1(s), . . . λn(s)}. Define

w(s) = λn(s) − λm(s) , γ(s) =







min{λn+1(s) − λn(s), λm(s) − λm−1(s)} m > 0

λn+1(s) − λn(s) m = 0

,

D(s) = 1 +
2w(s)

πγ(s)
, Q(s) = I − P (s) . (2.68)
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Finally, assume γ(s) > 0 for s ∈ [0, 1]. Then we have

||Q(s)U(s)P (0)|| ≤8D2(0)b1(0)

τγ2(0)
+

8D2(s)b1(s)

τγ2(s)

+

∫ s

0

8D2(r)

τγ2(r)

(
8(1 +D(r))b21(r)

γ(r)
+ b2(r)

)

dr . (2.69)

Proof. By multiplying by the identity and applying Theorem 2.4.1 (the intertwining

property), we can write

Q(s)U(s)P (0) = Q(s)UA(s)U †
A(s)U(s)P (0) (2.70)

= UA(s)Q(0)U †
A(s)U(s)P (0) . (2.71)

Since ||UA(s)|| = 1, if
∣
∣
∣

∣
∣
∣Q(0)U †

A(s)U(s)P (0)
∣
∣
∣

∣
∣
∣ is small the magnitude of the error in

the adiabatic approximation is small. In fact, if we define

W (s) = U †
A(s)U(s) , (2.72)

then W (s) satisfies a useful integral equation, and we prove the AT by bounding

||Q(0)W (s)P (0)|| instead of working directly on Q(s)U(s)P (0). To find the inte-

gral equation, we need to compute Ẇ (s). Using the product rule for derivatives,

Schrödinger’s equation, and the definition of HA(s) in (2.21), we have

Ẇ (s) = U †
A(s)U̇(s) + U̇ †

A(s)U(s) (2.73)

= −iτU †
A(s)H(s)U(s) + iτU †

A(s)HA(s)U(s) (2.74)

= −U †
A(s)

[

Ṗ (s), P (s)
]

U(s) (2.75)

= −U †
A(s)

[

Ṗ (s), P (s)
]

UA(s)W (s) . (2.76)

Clearly W (0) = I and so

W (s) = I −
∫ s

0

U †
A(r)[Ṗ (r), P (r)]UA(r)W (r)dr . (2.77)
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It will be useful sometimes to refer to the kernel of this integral equation, so we define

K(r) = U †
A(r)

[

Ṗ (r), P (r)
]

UA(r) . (2.78)

Now we can use Equation (2.77) to rewrite ||Q(0)W (s)P (0)||. Using the fact that

Q(0)P (0) = 0, we can write

Q(0)W (s)P (0) = −
∫ s

0

Q(0)K(r)W (r)P (0)dr . (2.79)

Our plan is to rewrite the integrand to obtain an expression where all but one

term has a 1/τ factor. Integration by parts on the remaining term will ensure all

terms have a 1/τ factor. Then we can factor out the 1/τ and bound the operators in

each term to yield the AT.

To obtain this expression, we need to introduce a P (0) in the middle of Equa-

tion (2.79) so that we can apply Lemma 2.4.2. To do so, we will use the fact that

Q(0) = Q(0)2 to introduce another Q(0), and then use the fact that Q(0)K(r) =

K(r)P (0).

To show that Q(0)K(r) = K(r)P (0), we use intertwining properties, the fact that
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Q(r)P (r) = 0, and the properties P 2(r) = P (r) and P (r)Ṗ (r)P (r) = 0:

Q(0)K(r) = Q(0)U †
A(r)[Ṗ (r), P (r)]UA(r) (2.80)

= U †
A(r)Q(r)[Ṗ (r), P (r)]UA(r) (2.81)

= U †
A(r)

(

Q(r)Ṗ (r)P (r) −Q(r)P (r)Ṗ (r)
)

UA(r) (2.82)

= U †
A(r)Q(r)Ṗ (r)P (r)UA(r) (2.83)

= U †
A(r)

(

Ṗ (r)P 2(r) − P (r)Ṗ (r)P (r)
)

UA(r) (2.84)

= U †
A(r)

[

Ṗ (r), P (r)
]

P (r)UA(r) (2.85)

= U †
A(r)

[

Ṗ (r), P (r)
]

UA(r)P (0) (2.86)

= K(r)P (0) . (2.87)

Then we can rewrite

Q(0)W (s)P (0) = −
∫ s

0

Q(0)K(r)W (r)P (0)dr (2.88)

= −
∫ s

0

Q(0)2K(r)W (r)P (0)dr (2.89)

= −
∫ s

0

Q(0)K(r)P (0)W (r)P (0)dr . (2.90)

Now we use the definition of K(r), the properties P 2(r) = P (r) and Q2(r) = Q(r),

and the intertwining property again:

Q(0)W (s)P (0) = −
∫ s

0

Q(0)2U †
A(r)

[

Ṗ (r), P (r)
]

UA(r)P (0)2W (r)P (0)dr (2.91)

= −
∫ s

0

Q(0)U †
A(r)Q(r)

[

Ṗ (r), P (r)
]

P (r)UA(r)P (0)W (r)P (0)dr .

(2.92)

We would like to apply Lemma 2.4.2 with

X(r) =
[

Ṗ (r), P (r)
]

. (2.93)
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Figure 2.1: Visualization of the resolvent contour Γ(r). The eigenvalues of H(r)
(represented with black dots) all lie along the real axis since H(r) is Hermitian. Notice
Γ(r) lies at least γ(r)/2 from any eigenvalues. The length of Γ(r) is πγ(r) + 2w(r) =
D(r)πγ(r). Observe that D(r) is the ratio of the length of Γ(r) to the circumference
of a circle of radius γ(r)/2.

In order to apply the lemma, we need to show X(r) is a bounded linear operator.

Clearly X(r) is linear, and since P (r) has unit norm then it is sufficient to show that

∣
∣
∣

∣
∣
∣Ṗ (r)

∣
∣
∣

∣
∣
∣ has a bound.

To bound the norm of Ṗ (r) we will use the resolvent formalism. We first need to

bound the norm of the resolvent R(r, z). Notice that if the eigenstates of H(r) are

{|ψj(r)〉 : j ≥ 0}, then

R(r, z) =
∑

j≥0

1

λj(r) − z
|ψj(r)〉〈ψj(r)| , (2.94)

so the norm of R(r, z) equals the inverse of the minimum distance of z to an eigenvalue

of H(r). So we need to choose the contour Γ(r) around the eigenvalues of Ψ(r) to

maximize the minimum distance of Γ(r) to any eigenvalue. Also, to obtain the best

bound on the path integral, we will want to minimize the length of Γ(r), given that

maximum minimum distance. We choose Γ(r) consisting of two semicircles connected

by lines, forming a pill-shape. The semicircles are centered at λm(r) and λn(r), and
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they have radius γ(r)/2. Figure 2.1 illustrates this choice, which bounds the norm of

R(r, z) at 2/γ(r) and the length at D(r)πγ(r).

We can check the tightness of this choice by using it to bound the norm of P (r),

which we know is unity. We have

||P (r)|| =

∣
∣
∣
∣

∣
∣
∣
∣
− 1

2πi

∮

Γ(r)

R(r, z)dz

∣
∣
∣
∣

∣
∣
∣
∣

(2.95)

≤ 1

2π
D(r)πγ(r)

2

γ(r)
(2.96)

= D(r) , (2.97)

so the approximation is tight for D(r) = 1. When D(r) > 1, it is complicated by the

fact that the closest eigenvalue is not always the same at different points on Γ(r).

The elements of R(r, z) are rational functions of the elements of H(r), which are

assumed to be differentiable. So we can apply the quotient rule for derivatives to

determine that R(r, z) is differentiable for z not an eigenvalue of H(r).

We proceed by differentiating both sides of the equation

R(r, z)(H(r) − zI) = I , (2.98)

and multiplying both sides by R(r, z) on the right. We thus obtain

Ṙ(r, z) = −R(r, z)Ḣ(r)R(r, z) . (2.99)

So by Equation (2.11)

Ṗ (r) =
1

2πi

∮

Γ(r)

R(r, z)Ḣ(r)R(r, z)dz . (2.100)

Also, recall that
∣
∣
∣

∣
∣
∣Ḣ(r)

∣
∣
∣

∣
∣
∣ ≤ b1(r), so we can bound the norm of the integral in

Equation (2.100) with a rectangle approximation. Using our formula for the length
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of Γ(r), we get

∣
∣
∣

∣
∣
∣Ṗ (r)

∣
∣
∣

∣
∣
∣ ≤ 1

2π
D(r)πγ(r)

4b1(r)

γ(r)2
(2.101)

=
2D(r)b1(r)

γ(r)
. (2.102)

Finally, we can bound ||X(r)||. Using the definition of X we have

||X(r)|| =
∣
∣
∣

∣
∣
∣[Ṗ (r), P (r)]

∣
∣
∣

∣
∣
∣ (2.103)

≤ 2
∣
∣
∣

∣
∣
∣Ṗ (r)

∣
∣
∣

∣
∣
∣ ||P (r)|| (2.104)

=
4D(r)b1(r)

γ(r)
. (2.105)

Thus we can apply Lemma 2.4.2. We remove the extra Q(r) and P (r) the same

way they were introduced, and use Schrödinger’s equation.

Q(0)W (s)P (0) =

∫ s

0

Q(0)U †
A(r)

([

HA(r), X̃(r)
]

− i

τ

[

Ṗ (r), X̃(r)
])

× UA(r)P (0)W (r)P (0)dr (2.106)

=

∫ s

0

Q(0)U †
A(r)HA(r)X̃(r)UA(r)P (0)W (r)P (0)dr

−
∫ s

0

Q(0)U †
A(r)X̃(r)HA(r)UA(r)P (0)W (r)P (0)dr

− i

τ

∫ s

0

Q(0)U †
A(r)

[

Ṗ (r), X̃(r)
]

UA(r)P (0)W (r)P (0)dr (2.107)

=

∫ s

0

Q(0)U †
A(r)HA(r)X̃(r)UA(r)P (0)W (r)P (0)dr

− i

τ

∫ s

0

Q(0)U †
A(r)X̃(r)U̇A(r)P (0)W (r)P (0)dr

− i

τ

∫ s

0

Q(0)U †
A(r)

[

Ṗ (r), X̃(r)
]

UA(r)P (0)W (r)P (0)dr . (2.108)

Evidently the last two integrals have a 1/τ factor, and we only need to work on

25



the first integral. We will integrate it by parts, using

A(r) = X̃(r)UA(r)P (0)W (r) , (2.109)

dA = X̃(r)UA(r)P (0)Ẇ (r)dr +
(

˙̃X(r)UA(r) + X̃(r)U̇A(r)
)

P (0)W (r)dr , (2.110)

B(r) = U †
A(r) , (2.111)

dB = iτU †
A(r)HA(r)dr . (2.112)

Applying the integration by parts to
∫
dBA yields

∫ s

0

U †
A(r)HA(r)X̃(r)UA(r)P (0)W (r)dr = − i

τ
U †

A(r)X̃(r)UA(r)P (0)W (r)

∣
∣
∣
∣

s

r=0

+
i

τ

∫ s

0

U †
A(r)X̃(r)UA(r)P (0)Ẇ (r)dr

+
i

τ

∫ s

0

U †
A(r) ˙̃X(r)UA(r)P (0)W (r)dr

+
i

τ

∫ s

0

U †
A(r)X̃(r)U̇A(r)P (0)W (r)dr .

(2.113)

When we substitute, we see that the last integral cancels with the second integral in

Equation (2.108), so we obtain

Q(0)W (s)P (0) = − i

τ
Q(0)U †

A(r)X̃(r)UA(r)P (0)W (r)P (0)

∣
∣
∣
∣

s

r=0

+
i

τ
Q(0)

∫ s

0

U †
A(r)X̃(r)UA(r)P (0)Ẇ (r)P (0)dr

+
i

τ
Q(0)

∫ s

0

U †
A(r)

(
˙̃X(r) − [Ṗ (r), X̃(r)]

)

UA(r)P (0)W (r)P (0)dr .

(2.114)

To finish the proof, we need to bound each of the three terms on the right. We will

do this by applying the triangle inequality to all the operators in Equation (2.114).

Unitary operators and projection operators have unit norm, and we have bounded
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Ṗ (r) already, so it remains to bound the norms of X̃(r), ˙̃X(r), and Ẇ (r). As depen-

dencies we will also need to find the norms of P̈ (r) and Ẋ(r).

1.
∣
∣
∣

∣
∣
∣P̈ (r)

∣
∣
∣

∣
∣
∣: To bound P̈ (r) we need to compute R̈(r, z). Using the product rule

for derivatives,

−R̈(r, z) =
d

dr
R(r, z)Ḣ(r)R(r, z) (2.115)

=
d

dr

(

R(r, z)Ḣ(r)
)

R(r, z) +R(r, z)Ḣ(r)Ṙ(r, z) (2.116)

=
(

Ṙ(r, z)Ḣ(r) +R(r, z)Ḧ(r)
)

R(r, z) +R(r, z)Ḣ(r)Ṙ(r, z) (2.117)

=Ṙ(r, z)Ḣ(r)R(r, z) +R(r, z)Ḧ(r)R(r, z) +R(r, z)Ḣ(r)Ṙ(r, z) .

(2.118)

Since
∣
∣
∣

∣
∣
∣Ṙ(r)

∣
∣
∣

∣
∣
∣ ≤ ||R(r)||2

∣
∣
∣

∣
∣
∣Ḣ(r)

∣
∣
∣

∣
∣
∣ ≤ 4b1(r)/γ(r)

2, we have

∣
∣
∣

∣
∣
∣R̈(r, z)

∣
∣
∣

∣
∣
∣ ≤ 16b1(r)

2

γ(r)3
+

4b2(r)

γ(r)2
(2.119)

=
4

γ(r)2

(
4b1(r)

2

γ(r)
+ b2(r)

)

. (2.120)

So, following the reasoning used to bound
∣
∣
∣

∣
∣
∣Ṗ (r)

∣
∣
∣

∣
∣
∣,

∣
∣
∣

∣
∣
∣P̈ (r)

∣
∣
∣

∣
∣
∣ =

∣
∣
∣
∣

∣
∣
∣
∣
− 1

2πi

∮

Γ(r)

R̈(r, z)dz

∣
∣
∣
∣

∣
∣
∣
∣

(2.121)

≤ 1

2π
πγ(r)D(r)

4

γ(r)2

(
4b1(r)

2

γ(r)
+ b2(r)

)

(2.122)

=
2D(r)

γ(r)

(
4b1(r)

2

γ(r)
+ b2(r)

)

. (2.123)
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2.
∣
∣
∣

∣
∣
∣X̃(r)

∣
∣
∣

∣
∣
∣: By Equation (2.44), we have

∣
∣
∣

∣
∣
∣X̃(r)

∣
∣
∣

∣
∣
∣ ≤ 1

2π

∮

Γ(r)

||R(r, z)|| ||X(r)|| ||R(r, z)|| dz (2.124)

≤ 1

2π
πγ(r)D(r)

2

γ(r)

4D(r)b1(r)

γ(r)

2

γ(r)
(2.125)

=
8D(r)2b1(r)

γ(r)2
. (2.126)

3.
∣
∣
∣

∣
∣
∣Ẋ
∣
∣
∣

∣
∣
∣: Notice Ẋ(r) =

[

P̈ (r), P (r)
]

, so

∣
∣
∣

∣
∣
∣Ẋ(r)

∣
∣
∣

∣
∣
∣ =

∣
∣
∣

∣
∣
∣[P̈ (r), P (r)]

∣
∣
∣

∣
∣
∣ (2.127)

≤ 2
∣
∣
∣

∣
∣
∣P̈ (r)

∣
∣
∣

∣
∣
∣ ||P (r)|| (2.128)

=
4D(r)

γ(r)

(
4b1(r)

2

γ(r)
+ b2(r)

)

. (2.129)

4.
∣
∣
∣

∣
∣
∣

˙̃X(r)
∣
∣
∣

∣
∣
∣: We have

∣
∣
∣

∣
∣
∣

˙̃X(r)
∣
∣
∣

∣
∣
∣ =

1

2π

∣
∣
∣
∣

∣
∣
∣
∣

d

dr

∮

Γ(r)

R(r, z)X(r)R(r, z)dz

∣
∣
∣
∣

∣
∣
∣
∣

(2.130)

=
1

2π

∣
∣
∣
∣

∣
∣
∣
∣

∮

Γ(r)

d

dr
R(r, z)X(r)R(r, z)dz

∣
∣
∣
∣

∣
∣
∣
∣

(2.131)

=
1

2π

∣
∣
∣
∣

∣
∣
∣
∣

∮

Γ(r)

R(r, z)X(r)Ṙ(r, z) (2.132)

+
(

Ṙ(r, z)X(r) +R(r, z)Ẋ(r)
)

R(r, z)dz
∣
∣
∣

∣
∣
∣ (2.133)

=
1

2π

∣
∣
∣
∣

∣
∣
∣
∣

∮

Γ(r)

−R(r, z)X(r)R(r, z)Ḣ(r)R(r, z)

−R(r, z)Ḣ(r)R(r, z)X(r)R(r, z) +R(r, z)Ẋ(r))R(r, z)dz
∣
∣
∣

∣
∣
∣ .

Now since ||R(r, z)|| ≤ 2/γ(r), we get

∣
∣
∣

∣
∣
∣

˙̃X(r)
∣
∣
∣

∣
∣
∣ ≤ 1

2π
πγ(r)D(r)

(
16b1(r)

γ(r)3
||X(r)|| + 4

γ(r)2

∣
∣
∣

∣
∣
∣Ẋ(r)

∣
∣
∣

∣
∣
∣

)

(2.134)

=
8D(r)2

γ(r)2

(
8b1(r)

2

γ(r)
+ b2(r)

)

. (2.135)
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5.
∣
∣
∣

∣
∣
∣Ẇ (r)

∣
∣
∣

∣
∣
∣: Recall from Equation (2.76) that

Ẇ (r) = − U †
A(r)

[

Ṗ (r), P (r)
]

U(r)W (r) . (2.136)

We know that ||W (r)|| =
∣
∣
∣

∣
∣
∣U

†
A(r)

∣
∣
∣

∣
∣
∣ = ||U(r)|| = 1, and remember that X(r) =

[

Ṗ (r), P (r)
]

. So we can apply the triangle inequality to get

∣
∣
∣

∣
∣
∣Ẇ (r)

∣
∣
∣

∣
∣
∣ ≤ ||X(r)|| (2.137)

≤ 4D(r)b1(r)

γ(r)
. (2.138)

The resulting bounds are

∣
∣
∣

∣
∣
∣Ṗ (r)

∣
∣
∣

∣
∣
∣ ≤ 2D(r)b1(r)

γ(r)
,

∣
∣
∣

∣
∣
∣X̃(r)

∣
∣
∣

∣
∣
∣ ≤ 8D(r)2b1(r)

γ(r)2
, (2.139)

∣
∣
∣

∣
∣
∣Ẇ (r)

∣
∣
∣

∣
∣
∣ ≤ 4D(r)b1(r)

γ(r)
,

∣
∣
∣

∣
∣
∣

˙̃X(r)
∣
∣
∣

∣
∣
∣ ≤ 8D(r)2

γ(r)2

(
8b1(r)

2

γ(r)
+ b2(r)

)

. (2.140)

Now let us apply these bounds to Equation (2.114) by taking the norm of both

sides:

||Q(0)W (s)P (0)|| ≤ 1

τ

∣
∣
∣

∣
∣
∣Q(0)U †

A(r)X̃(r)UA(r)P (0)W (r)P (0)
∣
∣
∣

s

r=0

∣
∣
∣

∣
∣
∣

+
1

τ

∣
∣
∣
∣

∣
∣
∣
∣
Q(0)

∫ s

0
U

†
A(r)X̃(r)UA(r)P (0)Ẇ (r)P (0)dr

∣
∣
∣
∣

∣
∣
∣
∣

+
1

τ

∣
∣
∣
∣

∣
∣
∣
∣
Q(0)

∫ s

0
U

†
A(r)

(
˙̃

X(r) + [Ṗ (r), X̃(r)]
)

UA(r)P (0)W (r)P (0)dr

∣
∣
∣
∣

∣
∣
∣
∣

.

(2.141)

We can further simplify this by noting that the norm of each integral is less than

the integral of the norm of its integrand. Further, we use the triangle inequality and
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the fact that the norm of unitary operators and projection operators are unity:

||Q(0)W (s)P (0)|| ≤1

τ

[∣
∣
∣

∣
∣
∣X̃(0)

∣
∣
∣

∣
∣
∣+
∣
∣
∣

∣
∣
∣X̃(s)

∣
∣
∣

∣
∣
∣

+

∫ s

0

(∣
∣
∣

∣
∣
∣X̃(r)

∣
∣
∣

∣
∣
∣

∣
∣
∣

∣
∣
∣Ẇ (r)

∣
∣
∣

∣
∣
∣+
∣
∣
∣

∣
∣
∣

˙̃X(r)
∣
∣
∣

∣
∣
∣+
∣
∣
∣

∣
∣
∣[Ṗ (r), X̃(r)]

∣
∣
∣

∣
∣
∣

)

dr

]

≤8D2(0)b1(0)

τγ2(0)
+

8D2(s)b1(s)

τγ2(s)

+

∫ s

0

8D2(r)

τγ2(r)

(
8(1 +D(r))b21(r)

γ(r)
+ b2(r)

)

dr . (2.142)

Finally, from Equation (2.71), we get

||Q(s)U(s)P (0)|| ≤ ||Q(0)W (s)P (0)|| (2.143)

≤8D2(0)b1(0)

τγ2(0)
+

8D2(s)b1(s)

τγ2(s)

+

∫ s

0

8D2(r)

τγ2(r)

(
8(1 +D(r))b21(r)

γ(r)
+ b2(r)

)

dr . (2.144)

We also know that ||Q(s)U(s)P (0)|| ≤ 1 by the triangle inequality.

Notice that the first two terms in Equation (2.144) do not go to zero as s → 0,

which is a consequence of simplifications that were made to determine this bound.

However, since AQC is the intended application of our results, we are only interested

in the error bound at the end of the evolution, namely s = 1. Also, we will usually

assume there are b̄1 ≥ b1(s), b̄2 ≥ b2(s), γ̄ ≤ γ(s), and D̄ ≥ D(s) for s ∈ [0, 1]. Then

we can find a constant upper bound for the integrand in Equation (2.144) and thus

bound the integral, resulting in the simpler expression

||Q(s)U(s)P (0)|| ≤ 8D̄2

τ γ̄2

(

2b̄1 + sb̄2 + s
8(1 + D̄)b̄21

γ̄

)

. (2.145)

In fact, we will usually be interested in the AT for non-degenerate ground states, in
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which case m = n = 0 and D̄ = 1, and we can use the inequality

||Q(s)U(s)P (0)|| ≤ 8

τ γ̄2

(

2b̄1 + sb̄2 + s
16b̄21
γ̄

)

. (2.146)

Also notice our statement of the AT is consistent with the common interpretation

of the theorem: if τ ≫ 1/γ̄2 then the error in the adiabatic approximation is small.

Having derived the AT with explicit definitions of constants, we are ready to bound

the error of the adiabatic approximation under various conditions of experimental

error.
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Chapter 3

Adiabatic Theorems for Noisy Hamiltonian Evolutions

Now we provide new variants of the adiabatic theorem that apply under conditions

of experimental error, and demonstrate their usefulness in examples. In Section 3.1,

we provide an AT for perturbations in the initial state of the system and an AT

for systematic time-dependent perturbations in the Hamiltonian. In Section 3.2, we

provide an AT for certain open quantum systems and an AT for noise modeled as a

time-dependent perturbation in the Hamiltonian. The rest of the chapter is dedicated

to two examples. The spin-1/2 particle in a rotating magnetic field, a standard

example for controversy regarding the AT [10, 60, 69, 34], is discussed in Section 3.3.

Finally in Section 3.4, we consider an adiabatic evolution of the superconducting flux

qubit [40].

3.1 Coherent or incoherent errors

Coherent or incoherent errors, due to systematic or deterministic perturbations, may

occur in one of two ways: either as a perturbation in the initial condition or as a

smooth perturbation in the Hamiltonian. Let us explore how such errors affect the

adiabatic approximation for a non-degenerate ground state.

Let us first consider a perturbation in the initial state,

|φ(0)〉 = η (|ψ0(0)〉 + δ|φ⊥〉) , (3.1)

32



where η−2 = 1+ |δ|2 is a normalization factor, |ψ0(0)〉 is the ground state of H(0), and

|φ⊥〉 is some state orthogonal to |ψ0(0)〉. It is not sufficient here to define the error of

the adiabatic approximation as the norm of the operator Q(s)U(s)P (0), where P (s)

is the projection onto |ψ0(s)〉, since this does not depend on the initial state. The

component of the final state which lies outside the ground state at normalized time

s is Q(s)U(s)|φ(0)〉, and so here we take this as the error.

Theorem 3.1.1 (AT for Error in the Initial State (AT-Initial)). Let H(s) have the

properties required by the AT, and let the initial state |φ(0)〉 be as in Equation (3.1).

Then the error is bounded as

||Q(s)U(s)|φ(0)〉|| ≤ |η|
(

|δ| + 8

τ γ̄2

(

2b̄1 + sb̄2 + s
16b̄21
γ̄

))

. (3.2)

Proof. Using the AT and the triangle inequality for operator norms, and noting that

the norm of unitary and projection operators is unity, we have

||Q(s)U(s)|φ(0)〉|| = ||Q(s)U(s)η (|ψ0(0)〉 + δ|φ⊥〉)|| (3.3)

= ||η (Q(s)U(s)P (0)|ψ0(0)〉 + δQ(s)U(s)|φ⊥〉)|| (3.4)

≤ |η| (||Q(s)U(s)P (0)|| + |δ|) (3.5)

≤ |η|
(

|δ| + 8

τ γ̄2

(

2b̄1 + sb̄2 + s
16b̄21
γ̄

))

. (3.6)

Now suppose there is a smooth perturbation in the Hamiltonian caused by a

systematic error, so that

Hǫ(s) = H(s) + ǫ∆(s) , (3.7)
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where ǫ > 0. Then we can use the AT on Hǫ by observing that

∣
∣
∣

∣
∣
∣Ḣǫ(s)

∣
∣
∣

∣
∣
∣ ≤

∣
∣
∣

∣
∣
∣Ḣ(s)

∣
∣
∣

∣
∣
∣+ ǫ

∣
∣
∣

∣
∣
∣∆̇(s)

∣
∣
∣

∣
∣
∣ , (3.8)

∣
∣
∣

∣
∣
∣Ḧǫ(s)

∣
∣
∣

∣
∣
∣ ≤

∣
∣
∣

∣
∣
∣Ḧ(s)

∣
∣
∣

∣
∣
∣+ ǫ

∣
∣
∣

∣
∣
∣∆̈(s)

∣
∣
∣

∣
∣
∣ . (3.9)

However, we must account for the difference in ground state between Hǫ(s) and H(s).

Since we want to measure error from the intended eigenstates of the system, not the

perturbed eigenstates, the error operator is Q(s)Uǫ(s)P (0), where we introduce the

following notation:

Uǫ(s) The solution to U̇ǫ(s) = −iτHǫ(s)Uǫ(s).

Pǫ(s) The projection operator onto the ground state of Hǫ(s).

Qǫ(s) I − Pǫ(s).

γ̄ǫ The minimum energy gap between the ground state and first excited

state of Hǫ(s).

Theorem 3.1.2 (AT for Systematic Error (AT-Error)). Assume that Hǫ(s) has the

properties required by the AT, and let

∣
∣
∣

∣
∣
∣Ḣǫ(s)

∣
∣
∣

∣
∣
∣ ≤ b̄1 ,

∣
∣
∣

∣
∣
∣Ḧǫ(s)

∣
∣
∣

∣
∣
∣ ≤ b̄2 , (3.10)

√

1 − |〈ψ0(0)|φ0(0)〉|2 = δ0 ,

√

1 − |〈ψ0(1)|φ0(1)〉|2 = δ1 , (3.11)

where |ψ0(s)〉 is the ground state of Hǫ(s) and |φ0(s)〉 is the ground state of H(s). If

γ̄ǫ > 0, then we have

||Q(1)Uǫ(1)P (0)|| ≤ 8

τ γ̄2
ǫ

(

2b̄1 + b̄2 +
16b̄21
γ̄ǫ

)

+ δ0 + δ1 + δ0δ1 . (3.12)

Proof. We know from AT that

||Qǫ(1)Uǫ(1)Pǫ(0)|| ≤ 8

τ γ̄2
ǫ

(

2b̄1 + b̄2 +
16b̄21
γ̄ǫ

)

, (3.13)
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but we want to find ||Q(1)Uǫ(1)P (0)||. So define

∆P (s) = Pǫ(s) − P (s) . (3.14)

Then we have

Q(1)Uǫ(1)P (0) = (Qǫ(1) + ∆P (1))Uǫ(1) (Pǫ(0) − ∆P (0)) (3.15)

=Qǫ(1)Uǫ(1)Pǫ(0) −Qǫ(1)Uǫ(1)∆P (0) + ∆P (1)Uǫ(1)Pǫ(0)

− ∆P (1)Uǫ(1)∆P (0) . (3.16)

Now, the 2-norm of unitary and projection operators is unity, so

||Q(1)Uǫ(1)P (0)|| ≤ 8

τ γ̄2
ǫ

(

2b̄1 + b̄2 +
16b̄21
γ̄ǫ

)

+ ||∆P (0)|| + ||∆P (1)|| + ||∆P (0)|| ||∆P (1)|| . (3.17)

It remains to find ||∆P (s)||. We hope to write

|φ0(s)〉 = M(s)|ψ0(s)〉 , (3.18)

for some unitary transformation M(s) that is close to the identity provided ψ0(s) and

φ0(s) are close to each other. We use the Givens rotation, where the first basis state

is |φ0(s)〉 and the second is the complement of the projection of |ψ0(s)〉 onto the first

basis state:

ê1 = |φ0(s)〉 , ê2 =
(1 − |φ0(s)〉〈φ0(s)| ) |ψ0(s)〉
√

1 − |〈φ0(s)|ψ0(s)〉|2
. (3.19)

The remaining basis states are chosen arbitrarily so long as the resulting basis is

orthonormal and spans the Hilbert space. In that basis, Equation (3.18) is realized
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by























C∗(s) S(s)

−S(s) C(s)

1

1

. . .

1













































C(s)

S(s)

0

0

...

0























=























1

0

0

0

...

0























, (3.20)

where we define

C(s) = 〈φ0(s)|ψ0(s)〉 , (3.21)

S(s) =

√

1 − |〈φ0(s)|ψ0(s)〉|2 . (3.22)

We see that

M(s)Pǫ(s)M
†(s) = M(s)|ψ0(s)〉〈ψ0(s)|M †(s) (3.23)

= |φ0(s)〉〈φ0(s)| (3.24)

= P (s) . (3.25)

Letting E(s) = I −M(s), we have

∆P (s) = Pǫ(s) − P (s) (3.26)

= M †(s)P (s)M(s) −M †(s)M(s)P (s) (3.27)

= M †(s) [P (s),M(s)] (3.28)

= M †(s) [E(s), P (s)] . (3.29)
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But we know E(s) and P (s):

E(s) =























1 − C∗(s) −S(s)

S(s) 1 − C(s)

0

0

. . .

0























, P (s) =























1 0

0 0

0

0

. . .

0























,

(3.30)

so

[E(s), P (s)] =























0 S(s)

S(s) 0

0

0

. . .

0























. (3.31)

Finally,

||∆P (s)|| = ||Pǫ(s) − P (s)|| (3.32)

= || [E(s), P (s)] || (3.33)

= S(s) . (3.34)

Combining Equations (3.34) and (3.17) yields the theorem.

When it is inconvenient to compute δ0 and δ1 exactly, they can be bounded using
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the “sin(Θ) theorem” [55, p. 251]:

δ0 ≤
ǫ ||∆(0)||

λ1(0) − λǫ
0(0)

, δ1 ≤
ǫ ||∆(1)||

λ1(1) − λǫ
0(1)

, (3.35)

where λǫ
0(s) is the energy of the ground state of Hǫ(s). If λǫ

0(s) is difficult to find, we

can use the Bauer-Fike theorem [55, p. 192] to get

δ0 ≤
ǫ ||∆(0)||

γ(0) − ǫ ||∆(0)|| , δ1 ≤
ǫ ||∆(1)||

γ(1) − ǫ ||∆(1)|| , (3.36)

where γ(s) is the energy gap of the unperturbed Hamiltonian H(s).

A remarkable feature of AT-Error is that it does not depend directly on the mag-

nitude of the perturbation term ǫ∆(s) except at the endpoints. It does not matter

which path we take through state space, so long as we begin and end near the correct

Hamiltonians and do not accumulate too much error along the way.

3.2 Decoherent errors

Now we consider decoherent errors induced, perhaps, by noise in the environment.

We first consider noise modeled as a coupled quantum system where the environ-

ment Hamiltonian is independent of time, and then as a classical time-dependent

perturbation in the Hamiltonian.

For the environment Hamiltonian Henv and interaction Hamiltonian ǫ∆(s), we

can write the combined Hamiltonian Hǫ(s) as

Hǫ(s) = H(s) ⊗ I + I ⊗Henv + ǫ∆(s) . (3.37)

Direct application of the AT yields a very pessimistic result because the ground state

of the composite system has, in the weak coupling limit, both the target system
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and the environment in the ground state of their respective Hamiltonians. The target

system remaining in the ground state and the environment tunneling to its first excited

state will be considered a failure of the adiabatic approximation. An experimentalist

probably cannot achieve the environmental ground state, and the energy gap between

environment states is likely quite small so that the AT produces a very large error

bound.

One way to resolve this problem in the interpretation of the adiabatic approxima-

tion is to work with the density operator that results from the partial trace [46]:

ρ(s) = Trenv(ρǫ(s)) , (3.38)

where ρǫ(s) is the density operator associated with the state of the composite system

Hǫ(s). Usually we can write

ρ̇(s) = L(s)ρ(s) , (3.39)

where L(s) is a linear operator but not generally Hermitian. We might try to use

this differential equation to prove an adiabatic theorem restated in terms of the ex-

pectation 〈φ0(s)|ρ(s)|φ0(s)〉, where |φ0(s)〉 is the ground state of H(s). The problem

is that L(s) does not have a complete set of orthonormal eigenstates, which is of

great assistance in proving the AT. A rigorous bound on the error of the adiabatic

approximation has yet to be found using this approach [20, 46, 58, 59, 70].

The density operator approach sums together the set of states in the composite

system whose measurement on the system of interest yields the ground state. Instead,

below we will simply consider that set of states a subspace, and identify conditions

where the usual AT for evolution of a subspace applies.
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For adiabatic quantum computation, we expect the energy gap γ̄ to be significantly

larger than the temperature kBT . When the system is significantly coupled to only a

small number N of nearby particles, then the range of relevant environmental energy

levels is on the order of NkBT , so ||Henv|| is also order NkBT . If ||Henv|| < γ̄, we

may use the AT.

More generally, we must determine the error operator for evolution in the com-

posite system. The projection operator of interest projects states in the composite

system onto those states whose measurement reveals the original system to be in the

ground state. If P (s) is the projection onto the ground state of H(s), then this op-

erator is P (s) ⊗ I. Its complement is Q(s) ⊗ I = I ⊗ I − P (s) ⊗ I, since Kronecker

products distribute. Then the error operator is (Q(s) ⊗ I) Uǫ(s) (P (0) ⊗ I).

Theorem 3.2.1 (AT for Coupling to Low-Temperature Environment (AT-Env)).

Suppose we are given

Hǫ(s) = H(s) ⊗ I + I ⊗Henv + ǫ∆(s) , (3.40)

and suppose we can choose w so that

||Henv|| + 2ǫ ||∆(s)|| ≤ w < γ̄ , (3.41)

where γ̄ is the minimum energy gap between the ground state and first excited state

of H(s). Assume that Hǫ(s) has the properties required by the AT, and assume that

Henv has M states and its ground state has zero energy. Let

∣
∣
∣

∣
∣
∣Ḣǫ(s)

∣
∣
∣

∣
∣
∣ ≤ b̄1 ,

∣
∣
∣

∣
∣
∣Ḧǫ(s)

∣
∣
∣

∣
∣
∣ ≤ b̄2 , (3.42)
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δ0 =
ǫ ||∆(0)||

γ̄ − ||Henv|| − ǫ ||∆(0)|| , δ1 =
ǫ ||∆(1)||

γ̄ − ||Henv|| − ǫ ||∆(1)|| , (3.43)

γ̄ǫ =







γ̄ − w : ǫ > 0

γ̄ : ǫ = 0

, D̄ =







1 + 2w
πγ̄ǫ

: ǫ > 0

1 : ǫ = 0

. (3.44)

Then we have

||(Q(1) ⊗ I) Uǫ(1) (P (0) ⊗ I)|| ≤ 8D̄2

τ γ̄2
ǫ

(

2b̄1 + b̄2 +
8(1 + D̄)b̄21

γ̄ǫ

)

+ δ0 + δ1 + δ0δ1 ,

(3.45)

where τ is the total evolution time.

Proof. For ǫ = 0, we can ignore Henv and this theorem is simply the AT. So let us

consider ǫ > 0. We will do this by considering ǫ > 0 as a perturbation of the ǫ = 0

case.

For ǫ = 0, the eigenstates of Hǫ(s) are simply the eigenstates of H(s) tensored to

the eigenstates of Henv, and the energy of those states is the sum of the energy of the

state in H(s) and the energy of the state in Henv.

Define the ground state energy of H(s) as λ0(s), the energy of the first excited

state as λ1(s), and γ(s) = λ1(s) − λ0(s). Recall that the M energies of the Henv

states are non-negative and less than γ̄. Then the first M eigenstates of Hǫ(s) are

the ground state of H(s) tensored with different eigenstates of Henv, and the rest of

the states are some excited state of H(s) tensored with an environment state.

In particular, the M th state of Hǫ is the ground state of H tensored with the most

energetic state of Henv, and thus has energy λ0(s) + ||Henv||. The M + 1 state is the

first excited state of H tensored with the ground state of Henv, and has energy λ1(s).
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So the energy gap between the first M states and the rest of the spectrum is exactly

γ(s) − ||Henv||.

For positive ǫ, these eigenstates are perturbed. Using the Bauer-Fike theorem

[55, p. 192], we see that the gap is reduced by at most 2ǫ ||∆(s)|| in the presence of

coupling, so the gap is still at least γ̄ǫ.

What we want is the adiabatic approximation of the evolution of the subspace

formed by these M eigenstates, with a spectral width at most w and an energy gap

of γ̄ǫ. Following the proof of AT-Error, define

∆P (s) = Pǫ(s) − P (s) ⊗ I . (3.46)

Then we have

(Q(1) ⊗ I) Uǫ(1) (P (0) ⊗ I) = (Qǫ(1) + ∆P (1))Uǫ(1) (Pǫ(0) − ∆P (0)) (3.47)

=Qǫ(1)Uǫ(1)Pǫ(0) −Qǫ(1)Uǫ(1)∆P (0) + ∆P (1)Uǫ(1)Pǫ(0)

− ∆P (1)Uǫ(1)∆P (0) . (3.48)

We can bound ||∆P (s)|| using the fact that the singular values of ∆P (s) are given

by the sines of the canonical angles between Pǫ(s) and P (s)⊗I [55, p. 43], the “sin(Θ)

theorem” [55, p. 251], and the Bauer-Fike theorem [55, p. 192]:

∆P (s) ≤ ǫ ||∆(s)||
γ(s) − ||Henv|| − ǫ ||∆(s)|| , (3.49)

so

∆P (0) ≤ δ0 , ∆P (1) ≤ δ1 . (3.50)
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Now we are ready to apply the AT:

||(Q(1) ⊗ I) Uǫ(1) (P (0) ⊗ I)|| ≤ ||Qǫ(1)Uǫ(1)Pǫ(0)|| + δ0 + δ1 + δ0δ1 (3.51)

≤ 8D̄2

τ γ̄2
ǫ

(

2b̄1 + b̄2 +
8(1 + D̄)b̄21

γ̄ǫ

)

+ δ0 + δ1 + δ0δ1 .

(3.52)

Now let us consider another model of decoherent noise, namely a time-dependent

perturbation in the Hamiltonian. There is a problem applying the AT directly, be-

cause the time-dependent perturbation is a function of true time t, not the unitless

evolution parameter s. So as τ grows, more noise fluctuations are packed into the in-

terval s ∈ [0, 1], causing ||dH/ds|| to diverge. Then there is no bound b̄1 greater than

||dH/ds|| that is independent of τ . In fact this problem was the source of confusion

in the recent controversy surrounding the adiabatic theorem [35, 60, 64].

We will need to consider Hamiltonians Hτ (s) that depend on both s and t. We

define the following notation:

Uτ (s) The solution to U̇τ (s) = −iτHτ (s)Uτ (s) for a fixed τ .

Pτ (s) The projection operator onto the ground state of Hτ (s).

Qτ (s) I − Pτ (s).

γτ (s) The energy difference between the ground state and first excited state of Hτ (s).

Theorem 3.2.2 (Adiabatic Theorem for Hamiltonian Evolutions on Two Time Scales

(AT-2)). Suppose, for any fixed τ , that Hτ (s) has the properties required by the AT.

Further assume there are real functions g1(τ) and g2(τ) such that

∣
∣
∣

∣
∣
∣Ḣτ (s)

∣
∣
∣

∣
∣
∣ ≤ g1(τ) ,

∣
∣
∣

∣
∣
∣Ḧτ (s)

∣
∣
∣

∣
∣
∣ ≤ g2(τ) , (3.53)
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for all τ . If there is a γ̄min so that

0 < γ̄min ≤ γτ (s) (3.54)

for s ∈ [0, 1] and τ , then we have

||Qτ (s)Uτ (s)Pτ (0)|| ≤ 8

τ γ̄2
min

(

2g1(τ) + sg2(τ) + s
16g2

1(τ)

γ̄min

)

. (3.55)

Proof. The theorem we are trying to prove is the union of special cases of the AT,

when the AT is applied to one-parameter projections of the original Hamiltonian.

For fixed τ , we consider Hτ (s) as a one-parameter Hamiltonian to which the usual

AT will apply. Then by the AT, we can write

||Qτ (s)Uτ (s)Pτ (0)|| ≤ 8

τ γ̄2
min

(

2g1(τ) + sg2(τ) + s
16g2

1(τ)

γ̄min

)

. (3.56)

But we can do this for any τ , so the result holds.

Now we can apply AT-2 to the case where there is an evolution performed on some

scaled time s, with an additive noise Hamiltonian Hnoise(t) that is a function of real

time t = sτ :

Hτ (s) = H(s) + Hnoise(sτ) . (3.57)

We define the error operator for the noisy Hamiltonian as Q(s)Uτ (s)P (0). The pro-

jection operators refer to the unperturbed Hamiltonian because success should be

defined in terms of the intended states.

Theorem 3.2.3 (Adiabatic Theorem for Noisy Hamiltonian Evolutions (AT-Noise)).

Suppose for any fixed τ , that Hτ (s) = H(s) + Hnoise(sτ) has the properties required
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by the AT. Assume

∣
∣
∣
∣

∣
∣
∣
∣

d

ds
H(s)

∣
∣
∣
∣

∣
∣
∣
∣
≤ c1 ,

∣
∣
∣
∣

∣
∣
∣
∣

d2

ds2
H(s)

∣
∣
∣
∣

∣
∣
∣
∣
≤ c2 , (3.58)

∣
∣
∣
∣

∣
∣
∣
∣

d

dt
Hnoise(t)

∣
∣
∣
∣

∣
∣
∣
∣
≤ d1 ,

∣
∣
∣
∣

∣
∣
∣
∣

d2

dt2
Hnoise(t)

∣
∣
∣
∣

∣
∣
∣
∣
≤ d2 , (3.59)

√

1 − |〈ψ0(0)|φ0(0)〉|2 = δ0 ,

√

1 − |〈ψ0(1)|φ0(1)〉|2 = δ1 , (3.60)

where |ψ0(s)〉 is the ground state of Hτ (s) and |φ0(s)〉 is the ground state of H(s).

Further assume that there is a γ̄noise so that

0 < γ̄noise ≤ γτ (s) (3.61)

for s ∈ [0, 1] and τ . Then we have

||Q(1)Uτ (1)P (0)|| ≤ 8

γ̄2
noise

[(

d2 +
16d2

1

γ̄noise

)

τ + 2d1

(

1 +
16c1
γ̄noise

)

+

(

2c1 + c2 +
16c21
γ̄noise

)
1

τ

]

+ δ0 + δ1 + δ0δ1 . (3.62)

Proof. Evidently

d

ds
Hτ (s) =

d

ds
H(s) + τ

d

dt
Hnoise(t) , (3.63)

∣
∣
∣
∣

∣
∣
∣
∣

d

ds
Hτ (s)

∣
∣
∣
∣

∣
∣
∣
∣
≤ c1 + τd1 , (3.64)

d2

ds2
Hτ (s) =

d2

ds2
H(s) + τ 2 d

2

dt2
Hnoise(t) , (3.65)

∣
∣
∣
∣

∣
∣
∣
∣

d2

ds2
Hτ (s)

∣
∣
∣
∣

∣
∣
∣
∣
≤ c2 + τ 2d2 . (3.66)

Substitution of Equation (3.64) and Equation (3.66) into AT-2 yields, for s ∈ [0, 1]

and τ ,

||Qτ (s)Uτ (s)Pτ (0)|| ≤ 8

γ̄2
noise

[(

d2 +
16d2

1

γ̄noise

)

τ + 2d1

(

1 +
16c1
γ̄noise

)

+

(

2c1 + c2 +
16c21
γ̄noise

)
1

τ

]

.

(3.67)
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As in the proof of AT-Error, we define

∆P (0) = Pτ (0) − P (0) , ∆P (1) = Pτ (1) − P (1) . (3.68)

Then for s = 1 we have

Q(1)Uτ (1)P (0) = (Qτ (1) + ∆P (1))Uτ (1) (Pτ (0) − ∆P (0)) (3.69)

=Qτ (1)Uτ (1)Pτ (0) −Qτ (1)Uτ (1)∆P (0) + ∆P (1)Uτ (1)Pτ (0)

− ∆P (1)Uτ (1)∆P (0) . (3.70)

Now we bound the norm of the error:

||Q(1)Uτ (1)P (0)|| ≤ 8

γ̄2
noise

[(

d2 +
16d2

1

γ̄noise

)

τ + 2d1

(

1 +
16c1
γ̄noise

)

+

(

2c1 + c2 +
16c21
γ̄noise

)
1

τ

]

+ ||∆P (0)|| + ||∆P (1)|| + ||∆P (0)|| ||∆P (1)|| . (3.71)

Using the Givens rotation just as in the proof of AT-Error, we have

||∆P (0)|| = δ0 , ||∆P (1)|| = δ1 , (3.72)

which, when substituted into Equation (3.71), completes the proof.

Several observations can be made about this result:

1. As with AT-Error, if it is inconvenient to compute δ0 and δ1 exactly, they can

be bounded using the “sin(Θ) theorem” combined with the Bauer-Fike theorem

[55, p. 192]:

δ0 ≤
||Hnoise(0)||

γ(0) − ||Hnoise(0)|| , δ1 ≤
||Hnoise(1)||

γ(1) − ||Hnoise(1)|| , (3.73)

where γ(s) is the energy gap between the ground state and first excited state

of H(s). Also, δ0 and δ1 can be taken as zero if Hnoise(0) = Hnoise(τ) = 0.
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In general, we expect them to be quite small if Hnoise(t) is several orders of

magnitude smaller than H(s).

2. When τ is small, the 1/τ term dominates. This term is exactly the bound

from the (noiseless) AT. It shows there is always a positive lower bound on

the running time of the adiabatic algorithm to guarantee a particular error

tolerance.

3. When τ is large, the first term dominates. In fact, we can see that in the presence

of noise, there is always some sufficiently large τ beyond which the adiabatic

approximation may perform poorly. So given an error tolerance, there is always

an upper bound on the running time for the adiabatic algorithm, beyond which

the theorem cannot guarantee the tolerance to be met. This observation has

also been made in studies of open systems in, for example, [46, 47, 48, 58].

4. If there is a great deal of noise, and thus d1 is large, the constant term (with

respect to τ) could become as large as O(1) and there could be no running time

for the adiabatic algorithm which results in an accurate calculation.

We are also interested in a lower bound on the error of the adiabatic approximation

in the presence of noise. A lower bound could be used to prove that a certain amount

of noise was unacceptable for AQC, because it would guarantee failure of the algorithm

for some level of noise. However, it will be difficult to get a non-trivial lower bound,

since there are time-dependent perturbations which yield zero error in the adiabatic
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approximation, better than might exist without the perturbation. To see this, define

HA(s) = H(s) + i/τ [Ṗ (s), P (s)] , (3.74)

where the term i/τ [Ṗ (s), P (s)] is the perturbation. We proved in Theorem 2.4.1 that

the evolution of HA(s) satisfies

UA(s)P (0) = P (s)UA(s) , (3.75)

where UA(s) is the unitary operator associated with HA(s), and P (s) is the projection

onto the ground state of H(s). Then

Q(s)UA(s)P (0) = Q(s)UA(s)P (0) (3.76)

= Q(s)P (s)UA(s) (3.77)

= 0 , (3.78)

since Q(s)P (s) = 0, so the adiabatic approximation is perfect for H(s) if the pertur-

bation term i/τ [Ṗ (s), P (s)] is added to it. Notice further that the perturbation gets

arbitrarily small as τ grows.

Finally, we also observe that noise that commutes with the Hamiltonian does not

cause any state transitions, because it has no effect on the eigenstates - in other

words, it causes no coupling between states. For instance, consider the Hamiltonian

on N particles

H(s) = M(s)
N∑

j=1

σz
j , (3.79)

where M(s) is a real scalar function representing a time-dependent applied magnetic

field. Noise in the magnetic field M(s) results in a perturbation that commutes with

H(s), and has no effect on the error of the adiabatic approximation.
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3.3 Application to the spin-1/2 particle in a rotating magnetic field

Recently Tong et al. [60] presented an example of a Hamiltonian evolution for which

the adiabatic approximation performs poorly. The Hamiltonian is for a spin-1/2

particle in a rotating magnetic field. Here we apply AT-Noise to their example.

Their evolving Hamiltonian is

H(t) = −ω0

2
(σx sin θ cosωt+ σy sin θ sinωt+ σz cos θ) , (3.80)

which we represent in the basis where σz is diagonal as

H(t) = −ω0

2







cos θ e−iωt sin θ

eiωt sin θ − cos θ







. (3.81)

Suppose θ is small. We can think of the time-independent diagonal component of

the Hamiltonian as the intended Hamiltonian, and the wobbling off-diagonal compo-

nent as a noise term operating on an independent timescale.

The eigenstates of H(t) depend on t, but the eigenvalues do not. So the energy

gap is constant and in fact equal to ω0. Thus one might think that the adiabatic

approximation works well, predicting that a particle starting out in the spin-down

state stays in the spin-down state under this Hamiltonian evolution.

We will see below that if the wobble is at a resonant frequency with respect to

the energy difference between the spin-up and spin-down states, the wobble induces

a complete transition from the spin-down to spin-up state. So the adiabatic approxi-

mation eventually fails in the most complete sense possible in this example. However,

we will also see that the AT-Noise correctly provides an increasing error bound with

time, because the s-derivatives in this example increase with τ .
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We can rewrite the Hamiltonian using t = sτ as

Hτ (s) = −ω0

2







cos θ e−iωsτ sin θ

eiωsτ sin θ − cos θ







. (3.82)

We can also compute the first two derivatives:

d

ds
Hτ (s) = −ωω0τ sin θ

2







0 −ie−iωsτ

ieiωsτ 0







, (3.83)

and

d2

ds2
Hτ (s) =

ω2ω0τ
2 sin θ

2







0 −e−iωsτ

eiωsτ 0







. (3.84)

We can compute the norms of these matrices exactly, giving

H†
τ (s)Hτ (s) =

ω2
0

4







1 0

0 1







, (3.85)

(
dHτ (s)

ds

)†(
dHτ (s)

ds

)

= −ω
2ω2

0τ
2 sin2 θ

4







1 0

0 1







, (3.86)

and

(
d2Hτ (s)

ds2

)†(
d2Hτ (s)

ds2

)

= −ω
4ω2

0τ
4 sin2 θ

4







1 0

0 1







. (3.87)

Thus we can write

∣
∣
∣
∣

∣
∣
∣
∣

dk

dsk
Hτ (s)

∣
∣
∣
∣

∣
∣
∣
∣
≤ |ω0|

2

(
1 + |ω sin θ| τ + ω2 |sin θ| τ 2

)
, (3.88)

for s ∈ [0, 1] and for k = 0, 1, 2. Also, γτ (s) = ω0 for any s, τ [60], so we let γ̄noise = ω0.
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Schrödinger’s equation can also be solved exactly for the Hamiltonian in Equa-

tion (3.82). Define ω̄ =
√

ω2
0 + ω2 + 2ω0ω cos θ. From Tong et al. [60] the unitary

time evolution operator for this system is

Uτ (t) =







(
cos
(

ω̄t
2

)
+ iω+ω0 cos θ

ω̄
sin
(

ω̄t
2

))
e−iωt/2 iω0 sin θ

ω̄
sin
(

ω̄t
2

)
e−iωt/2

iω0 sin θ
ω̄

sin
(

ω̄t
2

)
eiωt/2

(
cos
(

ω̄t
2

)
− iω+ω0 cos θ

ω̄
sin
(

ω̄t
2

))
eiωt/2







.

(3.89)

Therefore the error operator for the adiabatic approximation is

Q(t)Uτ (t)P (0) =







0 0

0 1






Uτ (t)







1 0

0 0







(3.90)

=







0 0

iω0 sin θ
ω̄

sin
(

ω̄t
2

)
eiωt/2 0







, (3.91)

so

||Q(t)Uτ (t)P (0)|| =

∣
∣
∣
∣

ω0 sin θ

ω̄
sin

(
ω̄t

2

)∣
∣
∣
∣
. (3.92)

If the perturbation is resonant, then ω = −ω0 cos θ so ω̄ = |ω0| sin θ. Then we have

||Q(t)Uτ (t)P (0)|| =

∣
∣
∣
∣
sin

(
ω0 sin(θ)t

2

)∣
∣
∣
∣
. (3.93)

As an example, assume that θ = 0.001, ω = 10 µs−1, ω0 = −10 µs−1. Let

χ(τ) be the error bound defined by the adiabatic theorem. Then we can calculate

||Pτ (s) − P (s)|| exactly to get δ0 = δ1 = 0.0005, and so we have

χ(τ) = 0.00900025 + (0.04 µs−1) · τ (3.94)

and

||Q(s)Uτ (s)P (0)|| =
∣
∣sin((0.005 µs−1) · sτ)

∣
∣ . (3.95)
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Figure 3.1: A plot of the error bound χ(τ) for parameters θ = 0.001, ω = 10 µs−1,
and ω0 = −10 µs−1, compared to the true error for the Tong et al. [60] example. We
can see that the adiabatic approximation gets worse as τ gets larger, as observed by
Tong et al. [60]. However, our error bound from AT-Noise remains valid.

Figure 3.1 illustrates our result. Not only is the bound consistent with the true

error, it has the same qualitative behavior, increasing linearly with τ .

3.4 Application to a superconducting flux qubit

Next we apply AT-Noise to the superconducting flux qubit of Orlando et al. [40], pro-

posed for use in adiabatic quantum computation [28]. With this qubit, the adiabatic

evolution may be as simple as monotonically varying an applied magnetic field.

Consider the four-junction qubit shown in Figure 3.2. We will follow the analysis

of Orlando et al. [40]. The dynamical variables are the phases φi across the four

Josephson junctions, however flux quantization in each loop gives us two constraints:

φ1 − φ2 + φ3 = −2πf1 and φ4 − φ3 = −2πf2, where f1 and f2 are the magnetic
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Figure 3.2: (Adapted from Orlando et al. [40]) The circuit schematic for the super-
conducting flux qubit. The X’s represent Josephson junctions, and the main qubit
loop is formed by junctions J1, J2, and J3. Junction J4 allows tuning of the effective
properties of junction J2 through control of the frustration f2.

frustrations in each loop. So there are two degrees of freedom, which we define as

φp = (φ1 + φ2) /2 and φm = (φ1 − φ2) /2, where fa = f2, and fb = f1 + f2/2. Then

the Hamiltonian can be written as

H = − ~
2

2Mp

∂2

∂φ2
p

− ~
2

2Mm

∂2

∂φ2
m

+ U(φp, φm) , (3.96)

where Mp and Mm are constants, and the potential U(φp, φm) is defined as

U(φp, φm) = EJ [2 + 2β − 2 cos(φp) cos(φm) − 2β cos(πfa) cos(2πfb + 2φm)] , (3.97)

where EJ and β are constants.

At f1 = f2 = 1/3, we have fb = 1/2 and fa = 1/3, and U(φp, φm) has minima, or

wells, at φp = 0 and φm = ± cos−1(β/2), symmetric about the φp axis. By varying

f1 and f2, we can tilt the potential so that one well is deeper than the other, and we

can adjust the barrier height. We can approximate the Hamiltonian with a two-state
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system. A Hamiltonian evolution that begins at the degeneracy point and varies f1

can can be written:

H(s) = −t1σx + sǫr1σ
z , (3.98)

where t1 and r1 are parameters that can be estimated with the WKB approximation.

For the qubit parameters recommended by Orlando et al. [40], r1 = 4.8EJ and

t1 = 10−3EJ , where EJ is a constant. A typical value for EJ is (200 GHz) · h =

(1.256 · 106 µs−1) · ~. We choose ǫ = −.0002, so that the Hamiltonian changes from

proportional to σx at s = 0 to equally-weighted σx and σz terms at s = 1, because this

seems a natural milestone in the evolution to the σz-dominated final Hamiltonian.

There are a couple of sources of noise in this qubit. One source of noise in a

superconducting flux qubit is noise in the critical current of the Josephson junctions

[67], which decreases as 1/T where T is temperature. Such noise would result in

variations in the weights of the terms in Equation (3.97). Another source is noise

in the magnetic flux bias generated by nearby current-carrying wires on the chip.

Current carrying wires could be used for nearby measurement devices or to perform

a gate operation on the qubit with an RF pulse. Since we have from above a two-

state Hamiltonian parametrized by flux bias, we consider this latter noise. Orlando

et al. [40] estimated that a nearby wire of typical dimensions and carrying 100nA

current would cause a difference in either f1 or f2 of ∆f = 10−7. Let us assume

that there is there is approximately 0.5 nA of noise on the wire introduced by the

current source. Further suppose the power of the noise scales as inverse frequency

1/ν from νmin = 2.5 GHz to νmax = 3.5 GHz, so that we include the qubit frequencies
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throughout the evolution.

There are clever means of simulating 1/ν noise with discrete models, such as by

summing independent bistable fluctuators (a.k.a. Random Telegraph Noise) [17].

However, this results in non-differentiable Hamiltonians so is not appropriate for us.

Instead, suppose we want to write down a formula for a noise source with 1/ν power

spectrum in the range νmin to νmax. Let n be an integer, with n = 100 in the following

example. Define ∆ν = (νmax − νmin)/n and νj = νmin + j∆ν for j = 1 . . . n. Then we

can define two independent noise functions, representing variation in the magnetic

frustration in our qubit, as

N1(t) = C
n∑

j=1

cos(2πνjt+ ξ1,j)∆ν√
νj

, (3.99)

N2(t) = C

n∑

j=1

cos(2πνjt+ ξ2,j)∆ν√
νj

, (3.100)

where ξ1,j and ξ2,j are phase factors chosen uniformly at random and C = 10−10 MHz−1/2,

chosen to agree with the 0.5 nA noise. The Hamiltonian for noise in the magnetic

frustration is

Hnoise(t) = N1(t)r1σ
z +N2(t)(r2σ

z − wσx) , (3.101)

where w = 2.4EJ for the chosen qubit parameters.

Evaluating the functions numerically over an interval much larger than the longest

wavelength reveals the bounds |Ni(t)| ≤ 4.9100 · 10−10,
∣
∣
∣Ṅi(t)

∣
∣
∣ ≤ 9.1100 · 10−6 µs−1,

and
∣
∣
∣N̈i(t)

∣
∣
∣ ≤ 0.1667 µs−2.

Recalling that t = sτ , where s is unitless, we are ready to compute derivatives
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and norms of the whole Hamiltonian:

Hτ (s) = H(s) + Hnoise(sτ) (3.102)

= −t1σx + sr1ǫσ
z + N1(t)r1σ

z + N2(t) (r2σ
z − wσx) , (3.103)

∣
∣
∣

∣
∣
∣Ḣτ (s)

∣
∣
∣

∣
∣
∣ =

∣
∣
∣
∣

∣
∣
∣
∣
r1ǫσ

z + τ
d

dt
N1(t)r1σ

z + τ
d

dt
N2(t)(r2σ

z − wσx)

∣
∣
∣
∣

∣
∣
∣
∣

(3.104)

≤ (1206.4 µs−1) + τ · (84.7149 µs−2) , (3.105)

∣
∣
∣

∣
∣
∣Ḧτ (s)

∣
∣
∣

∣
∣
∣ =

∣
∣
∣
∣

∣
∣
∣
∣
τ 2 d

2

dt2
N1(t)r1σ

z + τ 2 d
2

dt2
N2(t)(r2σ

z − wσx)

∣
∣
∣
∣

∣
∣
∣
∣

(3.106)

≤ τ 2 (1.5502 · 106 µs−3) . (3.107)

Observe that since s is unitless, H(s) and its s-derivatives all have units of energy,

but since ~ = 1, energy units are inverse time units.

We also need to compute the minimum energy gap. In this case, it occurs at

s = 0, and the energy gap is γ̄noise = 2t1 = 2513 µs−1.

Finally, we need to find δ0 and δ1. We compute the projection operators directly

and obtain the bounds δ0 = 1.800 · 10−6 and δ1 = 9.117 · 10−7. From AT-Noise, we

have

||Qτ (s)Uτ (s)P (0, τ)|| ≤ (1.9634 µs−1) · τ + 0.0019 +
(0.0148 µs)

τ
. (3.108)

This generates a hyperbolic curve with a vertical asymptote at τ = 0 and a linear

asymptote for large τ , shown in Figure 3.3. Recall this curve represents the norm of

the error operator and its square represents the probability of error in this system.

To check our results, we would like to compute the error of the adiabatic approx-

imation numerically. However efficient numerical simulation of this system requires
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Figure 3.3: A plot of the error bound χ(τ) for the superconducting flux qubit example.
The crosses represent results of numerical simulations of the error. Since the noise
commutes with the dominant term in the final Hamiltonian, the bound is a substantial
overestimate. Nonetheless the qualitative shape between the bound curve and the
simulation data agree.

some care. A straightforward solution to Schrödinger’s equation

i
d

dt
|ψ(t)〉 = Hτ (t/τ)|ψ(t)〉 (3.109)

will have rapidly oscillating phases that make the solutions very unstable and time-

consuming to compute. Instead, we will rewrite Schrödinger’s equation for this system

in a basis whose phase rotates with time.

To begin, we choose a time-dependent eigenbasis of Hτ (t/τ) with the property

〈φn(t)|φ̇n(t)〉 = 0.

Lemma 3.4.1. There is a time dependent eigenbasis {|φn(t)〉} with the property that

〈φn(t)|φ̇n(t)〉 = 0 for all n [10].

Proof. Suppose {|φn(t)〉} does not have this property. Then for each n, define the
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variable ξn(t) as follows:

ξn(t) = i

∫ t

0

〈φn(w)|φ̇n(w)〉dw , (3.110)

and let

|αn(t)〉 = eiξn(t)|φn(t)〉 . (3.111)

Then {|αn(t)〉} has the desired property. To see this, we simply compute it:

〈αn(t)|α̇n(t)〉 = 〈φn(t)|e−iξn(t)
[

iξ̇n(t)eiξn(t)|φn(t)〉 + eiξn(t)|φ̇n(t)〉
]

(3.112)

= iξ̇n(t) + 〈φn(t)|φ̇n(t)〉 (3.113)

= i · i〈φn(t)|φ̇n(t)〉 + 〈φn(t)|φ̇n(t)〉 (3.114)

= 0 . (3.115)

Let us write the solution |ψ(t)〉 in terms of the basis states |φn(t)〉 with energies

En(t) as follows:

|ψ(t)〉 =
∑

n

cn(t)e−i
R

t

0
En(w)dw|φn(t)〉 . (3.116)

Then in the case of two states, assuming the eigenstates are labeled in increasing

order with respect to their eigenvalues, the norm of the adiabatic error operator is

simply |c1(t)|.

Let us substitute the representation in Equation (3.116) into Schrödinger’s equa-

tion (Equation (3.109)), and left multiply by 〈φm(t)|. After simplification, this yields

ċm(t) = −
∑

n

cn(t)e−i
R

t

0
(En(w)−Em(w))dw〈φm(t)|φ̇n(t)〉 . (3.117)

Evidently the n = m term in the sum is zero in the chosen basis.
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Since we have

Hτ (t/τ) = (−t1 −N2(t)s2)σ
x +

(
t r1 ǫ

τ
+ N1(t)r1 + N2(t)r2

)

σz , (3.118)

if we define

a(t) = −t1 −N2(t)s2 , (3.119)

b(t) =
t r1 ǫ

τ
+ N1(t)r1 + N2(t)r2 , (3.120)

θ(t) = cot−1

(
b(t)

a(t)

)

, (3.121)

then we can diagonalize the Hamiltonian easily in terms of a(t) and b(t). We choose

the cotangent for numerical stability because b(0) ≈ 0. Then

E0(t) = −
√

a2(t) + b2(t) , E1(t) =
√

a2(t) + b2(t) , (3.122)

|φ0(t)〉 =







− sin
(

θ(t)
2

)

cos
(

θ(t)
2

)







, |φ1(t)〉 =







cos
(

θ(t)
2

)

sin
(

θ(t)
2

)







. (3.123)

It is easy to check that 〈φ0(t)|φ̇0(t)〉 = 〈φ1(t)|φ̇1(t)〉 = 0. Now, we would like to

compute 〈φ0(t)|φ̇1(t)〉 and 〈φ1(t)|φ̇0(t)〉:

〈φ0(t)|φ̇1(t)〉 =







− sin
(

θ(t)
2

)

cos
(

θ(t)
2

)







†





−1
2
sin
(

θ(t)
2

)

θ̇(t)

1
2
cos
(

θ(t)
2

)

θ̇(t)







(3.124)

=
θ̇(t)

2
, (3.125)

〈φ1(t)|φ̇0(t)〉 =







cos
(

θ(t)
2

)

sin
(

θ(t)
2

)







†





−1
2
cos
(

θ(t)
2

)

θ̇(t)

−1
2
sin
(

θ(t)
2

)

θ̇(t)







(3.126)

= − θ̇(t)
2

. (3.127)
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It remains to compute θ̇(t), which can be done with implicit differentiation:

cot(θ(t)) =
b(t)

a(t)
, (3.128)

− csc2(θ(t))θ̇(t) =
ḃ(t)a(t) − b(t)ȧ(t)

a2(t)
, (3.129)

θ̇(t) = sin2(θ(t))
ȧ(t)b(t) − a(t)ḃ(t)

a2(t)
(3.130)

=
a2(t)

a2(t) + b2(t)

ȧ(t)b(t) − a(t)ḃ(t)

a2(t)
(3.131)

=
ȧ(t)b(t) − a(t)ḃ(t)

a2(t) + b2(t)
. (3.132)

Finally, the equations of motion are

ċ0(t) = −c1(t)e−2i
R

t

0

√
a2(w)+b2(w)dw θ̇(t)

2
, (3.133)

ċ1(t) = c0(t)e
2i

R

t

0

√
a2(w)+b2(w)dw θ̇(t)

2
. (3.134)

We provide these equations to a differential equation solver, ode23, in Matlab.

Care must be taken with the integral in the exponent. We need not recompute the

integral entirely at each time; rather we cache the intermediate values of this integral.

Thus at each evaluation we only integrate on the interval from the last cached time

to the current time.

This method was used to produce the numeric results in Figure 3.3. The param-

eters of the system are those previously described in the example. There are 571

noiseless data points and 125 noisy data points. A new set of random phases was

generated for each noisy point, and each point took up to 5.5 CPU hours to com-

pute. The workstation used had dual Xeon 3.06 GHZ processors with hyperthreading

enabled (thus four effective CPUs) and 6GB of RAM, running Red Hat Enterprise 3.
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The simulation data in Figure 3.3 is several orders of magnitude less than the

bound. The fact that the bound is an overestimate is not surprising since the noise

term commutes with the dominant term in the final Hamiltonian of the evolution.

However the qualitative shape between the bound curve and the simulation data is

the same, and the bound does provide a simulation-free guarantee of error for an

interval of τ .

In the bounds on the error of the adiabatic approximation in the preceding sec-

tions, the minimum evolution time τ required to guarantee a given error tolerance, if

any evolution time achieves the tolerance, is a polynomial in 1/γ, where γ is the min-

imum ground-state energy gap. Evidently if γ is exponentially small in the number

of qubits, then the required evolution time is exponentially long.

Since a typical Hamiltonian of n qubits must fit 2n energy levels into a polynomial-

sized energy range, most energy gaps must be exponentially small, and it is not clear

a priori why the ground-state energy gap should ever be larger than the rest. In the

following chapters we identify new classes of Hamiltonians and Hamiltonian evolutions

with large ground-state energy gaps.
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Chapter 4

Clifford Algebras and the Jordan-Wigner Transformation

We begin our search for Hamiltonians evolutions with large ground-state energy gaps

with understanding the analysis of the one-dimensional Ising model. In Section 4.1,

we review facts about Clifford algebras, which we use as a framework to understand

Pauli operators in Section 4.2. Also in that framework we introduce the Fermionic

commutation relations (FCRs) and their properties in Section 4.3, and the Jordan-

Wigner transform in Section 4.4. Finally, in Section 4.5 we show how to use the tools

developed in this chapter to analyze the one-dimensional Ising model.

4.1 Clifford algebras

Operators on two-state interacting particles, or qubits, can be described using Clifford

algebras. We begin with an introduction to Clifford algebras, closely following [25,

p. 179]. Let {g1, . . . , gL} be a set of L elements, which we identify as generators,

satisfying the following anti-commutation relation:

{gi, gj} = gigj + gjgi = 2Qi,j , (4.1)

where Q is an L× L matrix. Usually we will take Q = IL but sometimes, if L = 2n,

we consider

Q = QF
n ≡ 1

2







0 In

In 0







. (4.2)
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We can take products of these generators, and for either choice of Q we can use

Equation (4.1) to simplify the results so that in each product, the generators appear

in order of increasing index, and no generator occurs twice in any product. Evidently

there are 2L linearly-independent products; let us label them {e1, . . . , e2L}. The usual

Clifford algebra CL is the 2L-dimensional vector space

CL(Q) =







2L

∑

j=1

Ajej : Aj ∈ R






. (4.3)

It is an algebra as well as a vector space, because we can multiply elements. However,

in this setting, it will be easier to instead consider the complexification:

ClL(Q) =







2L

∑

j=1

Ajej : Aj ∈ C






, (4.4)

as in [65].

4.2 Pauli operators and the standard model

Define the Pauli operators σx and σy by their standard matrix representation:

σx =







0 1

1 0







σy =







0 −i

i 0







. (4.5)

If we take these as generators, g1 = σx and g2 = σy, then Equation (4.1) is satisfied

with Q = I2. There are 22 linearly independent products of g1 and g2, namely

I, σx, σy, and σxσy, thus defining a four-dimensional vector space. Let us define

σz = −iσxσy, with matrix representation

σz =







1 0

0 −1







. (4.6)
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Since we are working in a complex vector space, we could instead use I, σx, σy, and

σz as a basis for the vector space.

One consequence of Equation (4.1) and the definition of σz that we will need

frequently is

(σz)2 = (−iσxσy)(−iσxσy) (4.7)

= −σxσyσxσy (4.8)

= (σxσx)(σyσy) (4.9)

= I . (4.10)

A more general identity that we can derive from Equation (4.1) and the definition of

σz is, for α, β, and γ distinct,

σασβ = iǫαβγσ
γ , (4.11)

where ǫαβγ is the Levi-Civita symbol defined here as

ǫαβγ =







+1 when (α, β, γ) is a cyclic permutation of (x, y, z)

−1 otherwise

. (4.12)

Referring to (4.4), we then define the standard model, or the algebra of Pauli

operators on n qubits, as Cl2(I2)
⊗n, and label the generators σx

j , σy
j , etc. for j =

1 . . . n. Because of the basic properties of Kronecker products, we have the useful fact

that Pauli operators on different qubits commute:

[

σα
j , σ

β
k

]

= 0 , (4.13)

for j 6= k and α, β ∈ {x, y, z}. The algebra of Pauli operators is a common algebra

used to describe Hamiltonians or gate operations in quantum computing.
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4.3 Fermi operators

Another kind of particle operators, Fermi operators, generate Cl2n(QF
n ). The first n

generators we will label {cj : j = 1 . . . n}, and for the remaining generators we will

take {c†j : j = 1 . . . n}. Equation 4.1 with Q = QF
n represents a set of equations

known as the the Fermionic commutation relations (FCRs), which can be written:

{cj, c†k} = δj,k , {cj, ck} = 0 . (4.14)

Operators obeying the FCRs have many useful properties. Our presentation is in-

spired by an excellent posting in Michael Nielsen’s blog [37]; see also [9].

The following observations about Fermi operators are essential to the rest of the

discussion and follow from (4.14):

Property 1: (c†jcj)
2 = c†jcj, and so the only eigenvalues of c†jcj are zero and one.

Property 2: c†j is a “raising” operator for c†jcj, since if |ψ〉 is an eigenstate of c†jcj

with zero eigenvalue, then c†j|ψ〉 is an eigenstate of c†jcj with unit eigenvalue.

Property 3: For any state |ψ〉, the state cj|ψ〉 is an eigenstate of c†jcj with zero

eigenvalue, since c2j = 0. Thus cj is a “lowering” operator for c†jcj.

Property 4: If k 6= j and |ψ〉 is an eigenstate of c†jcj, then ck|ψ〉 and c†k|ψ〉 are

also eigenstates of c†jcj with the same eigenvalue.

Property 5: If c†jcj|ψ〉 = 0, then using c2j = 0 we can show cj|ψ〉 = 0.

Property 6: If c†jcj|ψ〉 = |ψ〉, then using (c†j)
2 = 0 it is clear c†j|ψ〉 = 0.
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Property 7: [c†jcj, c
†
kck] = 0, where the bracket notation indicates the commutator:

[a, b] = ab − ba. Thus there is a basis for the Hilbert space on which these

operate where each basis state is an eigenstate of c†jcj for all j.

Property 8: By Property 7, we can find a state |ψ〉 that is an eigenstate of c†jcj for

all j. Suppose c†jcj|ψ〉 = |ψ〉, and define |ψ′〉 = cj|ψ〉. By Property 4, |ψ′〉 has

the same eigenvalue as |ψ〉 for c†kck for k 6= j, but by Property 3, c†jcj|ψ′〉 = 0.

Now, pick a subset of indices {k1, k2, k3 . . . }, and define

|φ〉 = c
(†)
k1
c
(†)
k2
c
(†)
k3
. . . |ψ〉 , (4.15)

where there is a † on ckl
if and only if c†kl

ckl
|ψ〉 = 0. Then, using Properties 2,

3, and 4, we conclude that |φ〉 is also an eigenstate of c†jcj for all j, but it has

different eigenvalues than |ψ〉 for c†k1
ck1

, c†k2
ck2

, etc. We could have picked any

of the 2n subsets of indices, and each subset results in a state with different

combinations of eigenvalues.

Sometimes it is convenient to think of these states as representing a binary

configuration with n sites, where site j is “occupied” in state |φ〉 if c†jcj|φ〉 =

|φ〉, and site j is “unoccupied” if c†jcj|φ〉 = 0. Therefore we call this basis the

Fermi occupation basis. It is a complete basis if there are no other quantum

particles in the system, and in that case it is unique up to phase.

Suppose we have a Hamiltonian of the form

H =
n∑

j=1

Cjc
†
jcj , (4.16)
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where the coefficients Cj are real. Evidently the 2n states in the Fermi occupation

basis are all eigenstates of H. The eigenvalue of H corresponding to a state |φ〉 can

be obtained by summing a subset of the coefficients, where Cj is included in the sum

provided site j is “occupied” in |φ〉. Further, if Cj ≥ 0 for all j, then the ground-state

energy of H is zero, and the first excited state energy is the least positive coefficient.

To decide whether an arbitrary value is an eigenvalue of H for arbitrary coefficients

is NP-complete however, as it is equivalent to the subset-sum problem (also known

as the knapsack problem) [37].

A critical property of FCRs that will help us shoehorn Hamiltonians of interest

into Equation (4.16) is that the FCRs are preserved through certain unitary trans-

formations. We can think of these transformations as the symmetries of the bilinear

form QF
n .

Theorem 4.3.1 (Unitary transformations). Suppose the operators {cj : j = 1, . . . , n}

obey the FCRs. Let

T =







U V

V U






, (4.17)

where U and V are real n× n matrices, and suppose T is unitary. Define the set of
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operators {ηj : j = 1, . . . , n} by































η1

η2

...

ηn

η†1

η†2

...

η†n































= T































c1

c2

...

cn

c†1

c†2

...

c†n































, (4.18)

where Equation (4.18) is interpreted as

ηj =
∑n

k=1 Ujkck + Vjkc
†
k

η†j =
∑n

k=1 Vjkck + Ujkc
†
k







j = 1 . . . n . (4.19)

Then {ηj : j = 1, . . . , n} also obey the FCRs.

Proof. First observe that the jth equation from Equation (4.18) is

ηj =
n∑

k=1

Ujkck + Vjkc
†
k , (4.20)

which is indeed the Hermitian adjoint of the (n+ j)th equation. Therefore our use of

the notation ηj and η†j is justified.
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Let us verify the first FCR:

{ηk, η
†
m} =ηkη

†
m + η†mηk (4.21)

=

(
n∑

i=1

Ukici + Vkic
†
i

)(
n∑

j=1

Umjc
†
j + Vmjcj

)

+

(
n∑

r=1

Umrc
†
r + Vmrcr

)(
n∑

s=1

Ukscs + Vksc
†
s

)

(4.22)

=
n∑

i,j=1

UkiUmjcic
†
j + UkiVmjcicj + VkiUmjc

†
ic

†
j + VkiVmjc

†
icj

+
n∑

r,s=1

UmrUksc
†
rcs + UmrVksc

†
rc

†
s + VmrUkscrcs + VmrVkscrc

†
s . (4.23)

First, we apply the FCRs to all the terms in the second sum:

{ηk, η
†
m} =

n∑

i,j=1

UkiUmjcic
†
j + UkiVmjcicj + VkiUmjc

†
ic

†
j + VkiVmjc

†
icj

+
n∑

r,s=1

−UmrUksc
†
scr − UmrVksc

†
sc

†
r − VmrUkscscr − VmrVkscsc

†
r

+
n∑

s=1

UmsUks + VmsVks . (4.24)

Then we can combine the sums, ordering terms so that r = j and s = i. Most terms

cancel, leaving us with:

{ηk, η
†
m} =

n∑

i=1

UkiUmi + VkiVmi . (4.25)

This equals the entry in the kth row and mth column of the real n× n matrix UU † +

V V †. Since T is unitary we know TT † = I2n, and in particular

UU † + V V † = In , (4.26)

so we have

{ηk, η
†
m} = δk,m , (4.27)
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yielding the first FCR. For the second FCR, an identical procedure yields

{ηk, ηm} =
n∑

i=1

VkiUmi + VmiUki . (4.28)

This is the entry in the kth row and mth column of the real n×n matrix V U † +UV †.

But T is unitary, so

UV † + V U † = 0 ; (4.29)

thus we conclude {ηk, ηm} = 0.

Using Theorem 4.3.1, we can find a unitary transformation to convert more general

Hamiltonians into the form of (4.16). Suppose we have a Hamiltonian H defined as

H =
n∑

j,k=1

Aj,k

(

c†jck − cjc
†
k

)

+Bj,k

(

c†jc
†
k − cjck

)

, (4.30)

for some set of real coefficients Aj,k and Bj,k. For convenience, sometimes we will

gather these coefficients into real n × n matrices that we label A and B. It can be

quickly verified using the FCRs that H is Hermitian for any choice of real A and B,

and if A and B are not real, then H is not necessarily Hermitian.

It is also clear, using the FCRs, that different choices of A and B may represent

the same Hamiltonian. However, we will establish that for any given Hamiltonian in

this form, A can be chosen to be symmetric and B anti-symmetric.

Lemma 4.3.2 (Choice of A and B). For any Hamiltonian in the form of (4.30), A

can be chosen to be symmetric and B can be chosen to be anti-symmetric.

Proof. Define

Ψ =
{

c†jck − cjc
†
k , c

†
jc

†
k − cjck : j, k = 1 . . . n

}

. (4.31)
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Then the span of Ψ is the set of Hamiltonians represented by Equation (4.30). Now

define

Φ =
{

c†jck − cjc
†
k + c†kcj − ckc

†
j , c

†
jc

†
k − cjck − c†kc

†
j + ckcj : j ≤ k

}

. (4.32)

The span of Φ is the subset of Hamiltonians represented by Equation (4.30) where A

is restricted to be symmetric and B is restricted to be anti-symmetric, since

Aj,k

(

c†jck − cjc
†
k

)

+ Ak,j

(

c†kcj − ckc
†
j

)

=

(
Aj,k + Ak,j

2

)(

c†jck − cjc
†
k + c†kcj − ckc

†
j

)

,

Bj,k

(

c†jc
†
k − cjck

)

+Bk,j

(

c†kc
†
j − ckcj

)

=

(
Bj,k −Bk,j

2

)(

c†jc
†
k − cjck − c†kc

†
j + ckcj

)

,

(4.33)

for any Aj,k, Ak,j, Bj,k, and Bk,j. These two identities show that Span(Φ) is identical

to Span(Ψ).

Theorem 4.3.3 establishes the unitary transformation that puts the Hamiltonian

in (4.30) into the form of (4.16), and is due to Lieb et al. [33].

Theorem 4.3.3 (Principal axis transformation on Fermi operators). Consider the

Hamiltonian in (4.30) where A is an n×n real symmetric matrix, B is an n×n real

anti-symmetric matrix, and the operators {ck : k = 1, . . . , n} satisfy the FCRs. Then

we can find non-negative diagonal Λ and unitary X so that X(A−B)(A+B) = Λ2X,

and unitary Y so that Y (A + B)(A − B) = Λ2Y . Define the operators {ηk : k =
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1, . . . , n} by






























η1

η2

...

ηn

η†1

η†2

...

η†n































=
1

2







X + Y X − Y

X − Y X + Y





































c1

c2

...

cn

c†1

c†2

...

c†n































. (4.34)

Then {ηj : j = 1, . . . , n} satisfy the FCRs, and

H =
n∑

j=1

2Λjη
†
jηj −

(
n∑

j=1

Λj

)

I2n , (4.35)

where Λj denotes the jth entry on the diagonal of the matrix Λ.

Proof. We write Equation (4.30) as

H =

(

c†1 c†2 ... c†n c1 c2 ... cn

)







A B

−B −A





































c1

c2

...

cn

c†1

c†2

...

c†n































, (4.36)
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The theorem is equivalent to showing there are solutions to







A B

−B −A







=

1

2







(X + Y ) (X − Y )

(X − Y ) (X + Y )







†





Λ 0

0 −Λ







1

2







(X + Y ) (X − Y )

(X − Y ) (X + Y )







, (4.37)

for some non-negative real n × n diagonal matrix Λ, where X and Y are unitary. If

so, then substituting Equation (4.37) into Equation (4.36) and using the definition of

ηk, we get

H =
n∑

k=1

(

Λkη
†
kηk − Λkηkη

†
k

)

. (4.38)

Further, by Theorem 4.3.1, {ηk : k = 1 . . . n} satisfy the FCRs. So we can apply the

FCRs to the second term in each summand to get Equation (4.35).

Now we set about finding solutions to Equation (4.37). We rewrite it for conve-

nience as:






X + Y X − Y

X − Y X + Y













A B

−B −A







=







Λ 0

0 −Λ













X + Y X − Y

X − Y X + Y







.

(4.39)

Equation (4.39) is equivalent to the following four equations:

(X + Y )A− (X − Y )B = Λ(X + Y ) , (4.40)

(X + Y )B − (X − Y )A = Λ(X − Y ) , (4.41)

(X − Y )A− (X + Y )B = −Λ(X − Y ) , (4.42)

(X − Y )B − (X + Y )A = −Λ(X + Y ) . (4.43)
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Evidently only two of the equations are independent. Adding and subtracting Equa-

tions (4.40) and (4.42) yields

X(A−B) = ΛY , (4.44)

Y (A+B) = ΛX . (4.45)

We can left-multiply by Λ to get

ΛX(A−B) = Λ2Y , (4.46)

ΛY (A+B) = Λ2X , (4.47)

and then substitute Equation (4.45) into Equation (4.46) and Equation (4.44) into

Equation (4.47) to get the pair of eigen-decomposition equations

Y (A+B)(A−B) = Λ2Y , (4.48)

X(A−B)(A+B) = Λ2X . (4.49)

Since A is real symmetric and B is real anti-symmetric, (A + B)† = A − B and so

(A−B)(A+B) and (A+B)(A−B) are symmetric positive semi-definite. So there is

always a unitary X and Y with non-negative diagonal Λ2 satisfying Equations (4.48)

and (4.49).

As a final comment, we could negate entries of Λ and recover the same energies of

H, but this is more confusing than enlightening. So we will take Λ as non-negative.

Note that since (A + B)† = A − B, Λj is a singular value of A + B, and 2Λj

corresponds to the coefficient Cj in (4.16). If A + B is non-singular, then twice the

least singular value is the ground-state energy gap of H. If A + B is singular, then
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H has a degenerate ground state, and twice the least non-zero singular value is the

energy gap between the ground-state subspace and the higher energy levels of the

Hamiltonian.

We can efficiently compute the ground-state energy gap of the Hamiltonian in

(4.30), but what can we say about the ground state itself? It is the eigenstate with

zero eigenvalue on {η†jηj : j = 1 . . . n}, but what is that state in the original basis?

We now show that it can be constructed.

Consider the operator

η̂ = η1η2 . . . ηn . (4.50)

We will show that η̂ applied to a random state yields a ground state of H almost surely.

Using Properties 3 and 4, we can see that if we apply η̂ to the most excited state of

H, which is the state with unit eigenvalue on all the operators {η†jηj : j = 1 . . . n},

then we will get a ground state of H, namely the state with zero eigenvalue on all the

operators {η†jηj : j = 1 . . . n}.

Further, suppose |ϕ〉 is an eigenstate of H, not the most excited state. Then for

some k we have η†kηk|ϕ〉 = 0. Using Property 5 in conjunction with the FCRs, we see

η̂|ϕ〉 = η1η2 . . . ηn|ϕ〉 (4.51)

= (−1)n−k

except ηk

︷ ︸︸ ︷
η1η2 . . . ηn ηk|ϕ〉 (4.52)

= 0 . (4.53)

So the algorithm to find the ground state is the following: pick a random state

|ψ〉, and compute η̂|ψ〉. Define |φ〉 to be the most excited state, in particular the

(unknown) state with unit eigenvalue on all of {η†jηj : j = 1 . . . n}. Then since |ψ〉
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is random, almost surely 〈ψ|φ〉 6= 0. So |ψ〉 = α|φ〉 + β|φ⊥〉 for some 〈φ⊥|φ〉 = 0 and

α 6= 0. Then compute

η̂|ψ〉 = η̂
(
α|φ〉 + β|φ⊥〉

)
(4.54)

= α|φ̄〉 , (4.55)

where |φ̄〉 is a ground state of H, in particular the state with zero eigenvalue on all

of {η†jηj : j = 1 . . . n}.

If the ground state is degenerate, then Λk = 0 for some k. Let |φ̄k〉 = η†k|φ̄〉. Then

using Property 2 and Property 4, |φ̄k〉 has zero eigenvalue on η†jηj for j 6= k, and

unit eigenvalue on η†kηk. While |φ̄k〉 is orthogonal to |φ̄〉, it has the same energy since

Λk = 0. Extending this reasoning, we can recover a basis for the whole ground state

subspace.

In general, an n-qubit quantum state requires 2n space to store, and 2n work to

operate on. So it takes exponential space to represent the random state |ψ〉 and ex-

ponential work to compute η̂|ψ〉, unless there is some special structure in the problem

that we may leverage.

4.4 The Jordan-Wigner transformation

Now we explore the Jordan-Wigner transformation, which relates Fermi operators

to Pauli operators. We begin with the Brauer-Weyl construction, which constructs

generators for Cl2n(I2n) using elements of Cl2(I2)
⊗n.

Theorem 4.4.1 (Brauer-Weyl construction). Define the generators {ḡj : j = 1, . . . , 2n}
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by







ḡ1 = σx
1 ḡ2 = σy

1

ḡ3 = σz
1σ

x
2 ḡ4 = σz

1σ
y
2

ḡ5 = σz
1σ

z
2σ

x
3 ḡ6 = σz

1σ
z
2σ

y
3

...
...







. (4.56)

Then the elements ḡj satisfy (4.1) with Q = I2n.

The proof splits into 12 cases of (4.1), taking j and k odd and even and j < k,

j = k, and j > k. To verify each of the twelve cases, the properties needed are (4.10),

(4.11), and (4.13). Here we simply work out an example:

{ḡ3, ḡ4} = ḡ3ḡ4 + ḡ4ḡ3 (4.57)

= σz
1σ

x
2σ

z
1σ

y
2 + σz

1σ
y
2σ

z
1σ

x
2 (4.58)

= (σz
1)

2σx
2σ

y
2 + (σz

1)
2σy

2σ
x
2 (4.59)

= σx
2σ

y
2 + σy

2σ
x
2 (4.60)

= σx
2σ

y
2 − σx

2σ
y
2 (4.61)

= 0 . (4.62)

We can use the Brauer-Weyl construction to establish an isomorphism between

Cl2(I2)
⊗n and Cl2n(I2n).

Theorem 4.4.2 (Isomorphism of algebras). The algebra Cl2(I2)
⊗n is isomorphic to

Cl2n(I2n).

Proof. The outline of the proof is the following:
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1. We use the Brauer-Weyl construction to define a complete map F from Cl2n(I2n)

to Cl2(I2)
⊗n.

2. We show that F is an homomorphism, i.e. it respects addition and multiplica-

tion.

3. Finally, we show that F is invertible.

First, define F on the generators gj of Cl2n(I2n) by F (gj) = ḡj. Then, by con-

struction, F respects Equation (4.1) with Q = I2n in the sense

{F (gi), F (gj)} = F (gi)F (gj) + F (gj)F (gi) = 2δij . (4.63)

Next, we extend F to the linearly independent products of generators {ej : j =

1 . . . 22n} in the following way. Suppose ej = gj1gj2 . . . in the canonical form where

the indices of the generators are increasing and non-repeating. Then define

F (ej) = F (gj1)F (gj2) . . . (4.64)

For any ej, ek, we can use (4.1) for Q = I2n to simplify the product ejek into the form

ejek = ±el , (4.65)

for some other product of generators el. The sign is determined by the number of

swaps required to sort the generators in ej and ek into canonical form. We can see

using (4.64) and (4.63) that the same simplification may be performed for F to achieve

F (ej)F (ek) = ±F (el) . (4.66)
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Finally, we extend F to the rest of Cl2n(I2n) by asserting that it is linear on the basis

vectors ek:

F

(
22n

∑

j=1

Ajej

)

=
22n

∑

j=1

AjF (ej) . (4.67)

Now we can check that F is an algebra homomorphism. F is an algebra homo-

morphism if the following three properties hold:

• F (kx) = kF (x), for a scalar k.

• F (x+ y) = F (x) + F (y).

• F (xy) = F (x)F (y).

It is obvious that F satisfies the first two properties, because we defined it to be

linear. To check that F respects multiplication, we only need to write x and y as

linear combinations of basis elements {ej}, and apply (4.67) and (4.66).

Finally, we check that F is invertible. First, observe using (4.56) that

σz
j = −iḡ2j−1ḡ2j . (4.68)

Then, using this fact and (σz
j )

2 = I, we can invert the left equations in (4.56):

σx
j = σz

j−1σ
z
j−2 . . . σ

z
1 ḡ2j−1 (4.69)

= (−i)j−1(ḡ2j−3ḡ2j−2)(ḡ2j−5ḡ2j−4) . . . (ḡ1ḡ2) ḡ2j−1 . (4.70)

Similarly, we can invert the right equations in (4.56):

σy
j = σz

j−1σ
z
j−2 . . . σ

z
1 ḡ2j (4.71)

= (−i)j−1(ḡ2j−3ḡ2j−2)(ḡ2j−5ḡ2j−4) . . . (ḡ1ḡ2) ḡ2j . (4.72)

79



Now we can construct F−1. First, define

F−1(σx
j ) = (−i)j−1(g2j−3g2j−2)(g2j−5g2j−4) . . . (g1g2) g2j−1 , (4.73)

F−1(σy
j ) = (−i)j−1(g2j−3g2j−2)(g2j−5g2j−4) . . . (g1g2) g2j . (4.74)

We can use a similar procedure to extend F−1 to the whole Pauli algebra: first extend-

ing to products of Pauli operators, and then linear combinations of such products.

We can identify generators {cj, dj : j = 1 . . . n} for Cl2n(QF
n ) using {ḡj : j =

1 . . . 2n} by a simple change of basis:

cj =
(−1)j−1

2
(ḡ2j−1 − iḡ2j) ,

dj =
(−1)j−1

2
(ḡ2j−1 + iḡ2j) . (4.75)

We can verify that {cj, dj : j = 1 . . . n} satisfy (4.1) with Q = QF
n , using the fact

that {ḡj : j = 1 . . . 2n} satisfy (4.1) with Q = I2n. Since ḡj is Hermitian, we can take

dj = c†j, and then cj and c†j satisfy the FCRs. Substituting (4.56) into (4.75) and

setting dj = c†j yields the Jordan-Wigner transformation, e.g. [53]:

cj = (−1)j−1σz
1σ

z
2...σ

z
j−1

(
σx

j − iσy
j

2

)

,

c†j = (−1)j−1σz
1σ

z
2...σ

z
j−1

(
σx

j + iσy
j

2

)

, (4.76)

or, defining

aj =
σx

j − iσy
j

2
, (4.77)

we can write

cj = (−1)j−1σz
1σ

z
2 ...σ

z
j−1aj ,

c†j = (−1)j−1σz
1σ

z
2 ...σ

z
j−1a

†
j . (4.78)
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4.5 One-dimensional Ising model

Now we are ready to analyze the Hamiltonian

H(s) = (1 − s)
n∑

j=1

σz
j + s

n−1∑

j=1

σx
j σ

x
j+1 , (4.79)

that defines the one-dimensional Ising model. We can verify from (4.77) the following

transformation:

σx
j = aj + a†j , σy

j = i
(

aj − a†j

)

,

σz
j = 2a†jaj − I2n . (4.80)

Then (4.79) can be expressed with the operators aj and a†j as

H(s) =(1 − s)
n∑

j=1

(

2a†jaj − I2n

)

+ s
n−1∑

j=1

(aj + a†j)(aj+1 + a†j+1) (4.81)

=(1 − s)
n∑

j=1

(

2a†jaj − I2n

)

+ s
n−1∑

j=1

(

a†jaj+1 + aja
†
j+1 + a†ja

†
j+1 + ajaj+1

)

.

(4.82)

Now we apply the Jordan-Wigner transformation (4.78). We make use of the following

identities:

c†jcj = a†jaj , cjcj+1 = −ajaj+1 ,

c†jcj+1 = a†jaj+1 , cjc
†
j+1 = −aja

†
j+1 ,

c†jc
†
j+1 = a†ja

†
j+1 . (4.83)
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These identities can be checked using the same properties that we used to verify the

Brauer-Weyl construction. So we have

H(s) =(1 − s)
n∑

j=1

(

2c†jcj − I2n

)

+ s
n−1∑

j=1

(

c†jcj+1 − cjc
†
j+1 + c†jc

†
j+1 − cjcj+1

)

(4.84)

=(1 − s)
n∑

j=1

(

c†jcj − cjc
†
j

)

+
s

2

n−1∑

j=1

(

c†jcj+1 − cjc
†
j+1 + c†jc

†
j+1 − cjcj+1

+c†j+1cj − cj+1c
†
j − c†j+1c

†
j + cj+1cj

)

. (4.85)

Taking Aj,j = (1− s), Bj,j+1 = −Bj+1,j = Aj,j+1 = Aj+1,j = s/2, and setting the rest

of A and B to zero, then we have

H =
n∑

j,k=1

Aj,k

(

c†jck − cjc
†
k

)

+Bj,k

(

c†jc
†
k − cjck

)

. (4.86)

Now, by finding the singular values of A + B, we can use Theorem 4.3.3 to find

the ground-state energy and the ground-state energy gap. Since (A + B)(A − B) is

Toeplitz (constant diagonal elements) tri-diagonal, we can even find these singular

values analytically. What is remarkable about this technique, though, is that H(s) is

2n dimensional, and yet to apply Theorem 4.3.3 we only had to diagonalize an n× n

matrix.

The reason this technique does not obviously extend past nearest-neighbor in-

teractions is that we depend on the simple relationships in (4.83) to apply the

Jordan-Wigner transformation. Those relationships are not so simple for non-nearest-

neighbor interactions. If our Hamiltonian has a term such as σx
j σ

x
j+2, then after we

substitute aj and a†j we will have terms such as a†jaj+2. Now, instead of Equation

(4.83) we have to use the relationship

a†jaj+2 = −c†jσz
j+1cj+2 . (4.87)
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But when we make this substitution, our Hamiltonian will not be in the necessary

form to apply Theorem 4.3.3.

We have developed the tools necessary to analyze the one-dimensional Ising model.

Now we are ready to identify new classes of Hamiltonians and Hamiltonian evolutions

with large ground-state energy gaps.
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Chapter 5

Finding Effective Hamiltonians for Adiabatic Quantum Computing

Now we use the tools developed in Chapter 4 to identify some classes of Hamiltonian

evolutions with large ground-state energy gaps. Section 5.1 focuses on such Hamil-

tonians defined with Fermi operators, and Section 5.2 considers those Hamiltonians

represented with Pauli operators.

5.1 A class of Hamiltonians with a large ground-state energy gap

In this section, we consider Hamiltonian evolutions with a simple starting Hamiltonian

and whose final Hamiltonian is in the form of (4.30). We prove that certain random

Hamiltonians in the form of (4.30) have an O(1/
√
n) ground-state energy gap, where

n is the number of qubits. We also identify two classes of Hamiltonians whose ground

state can be found in polynomial time with AQC.

Suppose {cj : j = 1 . . . n} satisfy the FCRs, and consider the Hamiltonian evolu-

tion

H(s) = (1 − s)
n∑

j=1

(2c†jcj − I2n) + s
n∑

j,k=1

(

Aj,k

(

c†jck − cjc
†
k

)

+Bj,k

(

c†jc
†
k − cjck

))

,

(5.1)

or equivalently,

H(s) = (1 − s)
n∑

j=1

(c†jcj − cjc
†
j) + s

n∑

j,k=1

(

Aj,k

(

c†jck − cjc
†
k

)

+Bj,k

(

c†jc
†
k − cjck

))

.

(5.2)
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At s = 0, the Hamiltonian is uncoupled and easy to analyze. At s = 1, there are

interactions between qubits, and the ground state is not so obvious. If A and B are

tri-diagonal, then H(1) is the Hamiltonian for a one-dimensional chain of interacting

spin 1/2 particles [33]; we considered a special case of this in Section 4.5, namely the

one-dimensional Ising model. If B = 0 and the non-zero entries of A correspond to the

adjacency matrix for a lattice, then H(1) is the Hamiltonian for free non-interacting

electrons tunneling on a lattice [14, p. 251], namely a Hubbard model with no on-

site interaction terms, e.g. terms such as c†jcjc
†
kck. However, our purpose here is

not to model physical phenomena, but rather exhibit Hamiltonians and Hamiltonian

evolutions with many degrees of freedom and large ground-state energy gaps, that

have potential applications in AQC.

Let us define

Ă(s) = (1 − s)I2n + sA

B̆(s) = sB . (5.3)

Then we can rewrite Equation (5.1) as

H(s) =
n∑

j,k=1

(

Ăj,k(s)
(

c†jck − cjc
†
k

)

+ B̆j,k(s)
(

c†jc
†
k − cjck

))

. (5.4)

Let {Λj(s) : j = 1 . . . n} be the singular values of Ă(s) + B̆(s). By Theorem 4.3.3,

there is a set of time-dependent operators {ηj(s) : j = 1 . . . n, s ∈ [0, 1]} satisfying

the FCRs so that

H(s) =
n∑

j=1

2Λj(s)η
†
j(s)ηj(s) −

(
n∑

j=1

Λj(s)

)

I2n . (5.5)
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Figure 5.1: The ground-state energy gap γ is computed for 1000 random n = 10 (10-
qubit) Hamiltonians. Each Hamiltonian was chosen randomly as in Theorem 5.1.1.
The resulting estimated probability density function for nγ2/4 is compared with ρ(x).
Even with only n = 10, the numerical gaps have a distribution very close to ρ(x).

Note that H(s) must fit 2n eigenvalues in a range polynomial in n. Even so, we

have reason to be optimistic that the ground-state energy gap is not exponentially

small, because the ground state energy gap is twice the smallest non-zero singular

value of the matrix Ă(s) + B̆(s), which is only n× n. We now show that for certain

random Hamiltonians of the form of (4.30), the ground-state energy gap is O(1/
√
n).

Theorem 5.1.1 (Ground-state energy gap for random Hamiltonians). Let C be an

n×n matrix with independent N(0,1) coefficients, and let A be the symmetric part of

C, and B be the anti-symmetric part of C, so

A =
C + C†

2
B =

C − C†

2
, (5.6)
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and C = A+B. Define

H =
n∑

j,k=1

(

Aj,k

(

c†jck − cjc
†
k

)

+Bj,k

(

c†jc
†
k − cjck

))

, (5.7)

and let γ be the ground-state energy gap of H. Then, for large n, nγ2/4 converges in

distribution to the probability density function

ρ(x) =
1 +

√
x

2
√
x
e−(x/2+

√
x) . (5.8)

Proof. From [16, Corollary 3.1], if γ/2 is the least singular value of C, then nγ2/4

converges in distribution to ρ(x) for large n. This means that C is non-singular with

probability one and thus γ is the ground-state energy gap.

Note that in Theorem 5.1.1, A and B have independent Gaussian upper-triangular

entries since Cj,k +Ck,j and Cj,k −Ck,j are independent and Gaussian. In particular,

the diagonal of A has unit variance, and the off-diagonal entries of A and B have

variance of one-half.

Figure 5.1 compares the ground-state energy gap computed for 1000 randomly-

generated 10-qubit Hamiltonians with the distribution predicted by ρ(x). Even with

only n = 10, the energy gaps found numerically are very close to those predicted by

ρ(x).

Since there must be 2n distinct energy levels in an energy range of O(n2), most of

the energy gaps must be exponentially small. In fact it can be shown that the Hamilto-

nians in Theorem 5.1.1 are almost surely non-degenerate, so these exponentially small

gaps are also non-zero. Figure 5.2 illustrates the difference between the distribution

of the ground-state energy gaps and the rest of the gaps for 1000 randomly-generated
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Figure 5.2: All the energy levels are computed for 1000 random n = 10 (10-qubit)
Hamiltonians. Each Hamiltonian was chosen randomly as described in Theorem 5.1.1.
The ground-state energy gap distribution is compared to the distribution for the other
energy gaps. As predicted by Theorem 5.1.1, the ground-state energy gaps are much
larger than the other gaps.

10-qubit Hamiltonians, and indeed the ground-state energy gaps are typically much

larger than the other gaps.

We may be interested in the case where B = 0 and A is a random symmetric

matrix. That case may be interpreted as a disordered Hubbard model with no on-

site interactions. We can immediately derive a class of random Hamiltonians with

random symmetric A and B = 0, for whom AQC evolution has a minimum ground-

state energy gap of O(1/n).

Theorem 5.1.2 (Ground-state energy gap for random Hamiltonian evolutions). Let

C be an n× n matrix with independent N(0,1) coefficients, and let A = CC†. Define

HP =
n∑

j,k=1

Aj,k

(

c†jck − cjc
†
k

)

, (5.9)
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and

H(s) = (1 − s)
n∑

j=1

(2c†jcj − I2n) + sHP . (5.10)

Then the ground-state energy gap for H(s) is

γ̆(s) = 2(1 − s) + sγ , (5.11)

where nγ/2 converges in distribution to ρ(x) (see Equation (5.8)) for large n.

Proof. Since A = CC†, if
√

γ/2 is the least singular value of C then by [16, Corollary

3.1], for large n, nγ/2 converges in distribution to the density function ρ(x), and is

non-zero with probability one. Since A is symmetric positive semi-definite, γ/2 is

also its least singular value. Thus γ is the ground-state energy gap of HP .

Define

Ă(s) = (1 − s)In + sA , (5.12)

then the ground-state energy gap γ̆(s) of H(s) is twice the least non-zero singular

value of Ă(s). Since A and I are symmetric positive semi-definite, and (1 − s) and s

are non-negative, Ă(s) is symmetric and positive semi-definite. So the singular values

of Ă(s) are the eigenvalues of Ă(s). Since γ/2 is the least eigenvalue of A, the least

eigenvalue of Ă is

γ̆(s)

2
= (1 − s) + s

(γ

2

)

. (5.13)

Figure 5.3 illustrates the energy levels for an 8-qubit instance of a random evo-

lution as in (5.10). To generate the figure we actually took A = CC†/n, so that
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Figure 5.3: Eigenvalues of H(s) as a function of s, where H(s) was defined as in (5.10)
with A = CC†/n for n = 8. The division by n is so that ||H(0)|| ≈ ||H(1)||, resulting
in a better visualization although making the ground-state energy gap O(1/n2) in-
stead of O(1/n). We can see that the ground-state energy gap is linearly decreasing
with s as predicted by Theorem 5.1.2, and is much larger than most of the other
energy gaps.

||H(0)|| ≈ ||H(1)||. It is easy to check that the same proof holds, although the

ground-state energy gap is then O(1/n2) instead of O(1/n).

Now, we consider the special case where A and B are circulant. A circulant matrix

is a matrix where each row is a cyclic shift of the previous row, such as these A and

B matrices:

A =











0 1/2 1/2

1/2 0 1/2

1/2 1/2 0











, B =











0 1/2 −1/2

−1/2 0 1/2

1/2 −1/2 0











. (5.14)

In general, for n qubits, there are n degrees of freedom in choosing Hamiltonians of

the form of Equation (4.30) such that A and B are circulant.
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Theorem 5.1.3 (Ground-state energy gap for Hamiltonians with circulant A and B

matrices). Let

H =
n∑

j,k=1

(

Aj,k

(

c†jck − cjc
†
k

)

+Bj,k

(

c†jc
†
k − cjck

))

, (5.15)

where A is a real circulant n × n symmetric matrix, and B is a real circulant anti-

symmetric n× n matrix. Then the ground-state energy gap of H is bounded below by

a polynomial in n−1.

Proof. Circulant matrices form a commutative ring [22, p. 201], so if A and B are

circulant, then so is G = (A−B)(A+B). Also, G is symmetric positive semi-definite,

and the ground-state energy gap of H is twice the square root of the least non-zero

eigenvalue of G.

Circulant matrices also have the nice property that their eigenvalues are given by

the discrete Fourier transform of their first column. Recall we label the eigenvalues

of G as Λ2
k. Labeling the entries in the first column of G as gk, we can write:



















Λ2
1

Λ2
2

Λ2
3

...

Λ2
n



















=
1√
n



















e(0·0)2πi/n e(0·1)2πi/n e(0·2)2πi/n ...

e(1·0)2πi/n e(1·1)2πi/n e(1·2)2πi/n ...

e(2·0)2πi/n e(2·1)2πi/n e(2·2)2πi/n ...

...

e((n−1)1·0)2πi/n e((n−1)·1)2πi/n e((n−1)·2)2πi/n ...





































g1

g2

g3

...

gn



















(5.16)
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Also, G is symmetric so gk = gn+2−k for k ≥ 2. Then we have, for n odd:

Λ2
k =

1√
n



g1 +

(n+1)/2
∑

j=2

gj

(
e((j−1)·(k−1))2πi/n + e((n−j+1)·(k−1))2πi/n

)



 (5.17)

=
1√
n



g1 +

(n+1)/2
∑

j=2

gj

(
e((j−1)·(k−1))2πi/n + e−((j−1)·(k−1))2πi/n

)



 (5.18)

=
1√
n



g1 +

(n+1)/2
∑

j=2

gj cos (2π(j − 1)(k − 1)/n)



 . (5.19)

For n even we have a leftover term, but it simplifies:

Λ2
k =

1√
n



g1 + gn/2+1e
((n/2)·(k−1))2πi/n +

n/2
∑

j=2

gj cos (2π(j − 1)(k − 1)/n)



 (5.20)

=
1√
n



g1 + (−1)(k−1)gn/2+1 +

n/2
∑

j=2

gj cos (2π(j − 1)(k − 1)/n)



 . (5.21)

For n ≥ 1, we have 1/n ≤ 1/
√
n. So whether n is even or odd, Taylor expansion on

cosine makes it clear that if Λk 6= 0 then Λk is bounded below by a polynomial in n−1.

So the ground-state energy gap of H is bounded below by a polynomial in n−1.

We can extend this result to a whole Hamiltonian evolution:

Corollary 5.1.4 (Hamiltonian evolutions with circulant A and B matrices). Let

H(s) = (1 − s)
n∑

j=1

(2c†jcj − I2n) + s

n∑

j,k=1

(

Aj,k

(

c†jck − cjc
†
k

)

+Bj,k

(

c†jc
†
k − cjck

))

,

(5.22)

where A is a real circulant n × n symmetric matrix, and B is a real circulant anti-

symmetric n× n matrix. Then the ground-state energy gap of H(s) is bounded below

by a polynomial in n−1 and s.

Proof. First rewrite H(s) as in (5.4). The elements of the matrix

Ğ(s) =
(

Ă(s) − B̆(s)
)(

Ă(s) + B̆(s)
)

(5.23)
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are quadratic functions of s. Then we can follow the proof of Theorem 5.1.3 to see

that the eigenvalues of Ğ(s) are bounded by a polynomial in s and n−1, and so the

ground-state energy gap of H(s) is bounded below by a polynomial in n−1 and s.

5.2 Hamiltonians in the standard Pauli model with large ground-state

gaps

It is well known that the Hamiltonians in the previous section include those describing

nearest-neighbor interactions, but the class is considerably larger than that. In this

section we study one subclass of these Hamiltonians, related to a specific definition

of {cj}. Theorem 5.2.1 is equivalent to the result in [65, p. 4], but using a different

basis representation.

Theorem 5.2.1 (Representation with Pauli operators of quadratic forms in Fermi

operators). There is a bijection between Hamiltonians on n qubits of the form

H =
n∑

j=1

Wj,jσ
z
j +

n−1∑

j=1

(
Wj,j+1σ

x
j σ

x
j+1 +Wj+1,jσ

y
jσ

y
j+1

)

+
n−2∑

j=1

(
Wj,j+2σ

x
j σ

z
j+1σ

x
j+2 +Wj+2,jσ

y
jσ

z
j+1σ

y
j+2

)

+
n−3∑

j=1

(
Wj,j+3σ

x
j σ

z
j+1σ

z
j+2σ

x
j+3 +Wj+3,jσ

y
jσ

z
j+1σ

z
j+2σ

y
j+3

)
+ . . .

+W1,nσ
x
1σ

z
2 . . . σ

z
n−1σ

x
n +Wn,1σ

y
1σ

z
2 . . . σ

z
n−1σ

y
n , (5.24)

where the coefficients Wj,k are real, and Hamiltonians of the form

H =
n∑

j,k=1

Aj,k

(

c†jck − cjc
†
k

)

+Bj,k

(

c†jc
†
k − cjck

)

, (5.25)
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where {cj : j = 1, . . . , n}, defined by (4.76), satisfy the FCRs, A is a real symmetric

n × n matrix, and B is a real anti-symmetric matrix. The bijection is given by the

invertible transformation

Aj,j = Wj,j ,

Aj,j+m = Aj,j+m =
(−1)m+1

2
(Wj,j+m +Wj+m,j) ,

Bj,j+m = −Bj,j+m =
(−1)m+1

2
(Wj,j+m −Wj+m,j) . (5.26)

Proof. It will be helpful to rewrite Equation (5.25) so that we only have to consider

terms with j ≤ k. Using the FCRs, we get

H =
n∑

j=1

Aj,j

(

2c†jcj − I2n

)

+
∑

1≤j<k≤n

2
[

Aj,k

(

c†jck − cjc
†
k

)

+Bj,k

(

c†jc
†
k − cjck

)]

. (5.27)

Now we apply the Jordan-Wigner transformation from Equation (4.76). Let us sim-

plify each term in (5.27) separately. Using the fact that (σz
j )

2 = I2n , we get

2c†jcj − I2n = 2

(
σx

j + iσy
j

2

)(
σx

j − iσy
j

2

)

− I2n . (5.28)

Since (σx
j )2 = (σy

j )
2 = I2n and −iσx

j σ
y
j = iσy

jσ
x
j = σz

j , Equation (5.28) simplifies to

2c†jcj − I2n = σz
j . (5.29)
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Now for j < k, using commutativity and the fact that (σz
j )

2 = I2n , we get:

c†jck = (−1)j+k

(
σx

j + iσy
j

2

)

σz
jσ

z
j+1 . . . σ

z
k−1

(
σx

k − iσy
k

2

)

, (5.30)

cjc
†
k = (−1)j+k

(
σx

j − iσy
j

2

)

σz
jσ

z
j+1 . . . σ

z
k−1

(
σx

k + iσy
k

2

)

, (5.31)

c†jc
†
k = (−1)j+k

(
σx

j + iσy
j

2

)

σz
jσ

z
j+1 . . . σ

z
k−1

(
σx

k + iσy
k

2

)

, (5.32)

cjck = (−1)j+k

(
σx

j − iσy
j

2

)

σz
jσ

z
j+1 . . . σ

z
k−1

(
σx

k − iσy
k

2

)

. (5.33)

Now, we eliminate σz
j using the identities σx

j σ
z
j = −iσy

j and σy
jσ

z
j = iσx

j :

c†jck = (−1)j+k

(−iσy
j − σx

j

2

)

σz
j+1 . . . σ

z
k−1

(
σx

k − iσy
k

2

)

, (5.34)

cjc
†
k = (−1)j+k

(−iσy
j + σx

j

2

)

σz
j+1 . . . σ

z
k−1

(
σx

k + iσy
k

2

)

, (5.35)

c†jc
†
k = (−1)j+k

(−iσy
j − σx

j

2

)

σz
j+1 . . . σ

z
k−1

(
σx

k + iσy
k

2

)

, (5.36)

cjck = (−1)j+k

(−iσy
j + σx

j

2

)

σz
j+1 . . . σ

z
k−1

(
σx

k − iσy
k

2

)

. (5.37)

When we subtract (5.35) from (5.34) and (5.37) from (5.36), the imaginary terms

cancel, and factoring out a minus we get:

c†jck − cjc
†
k =

(−1)j+k+1

2

(
σx

j σ
z
j+1σ

z
j+2 . . . σ

z
k−1σ

x
k + σy

jσ
z
j+1σ

z
j+2 . . . σ

z
k−1σ

y
k

)
, (5.38)

c†jc
†
k − cjck =

(−1)j+k+1

2

(
σx

j σ
z
j+1σ

z
j+2 . . . σ

z
k−1σ

x
k − σy

jσ
z
j+1σ

z
j+2 . . . σ

z
k−1σ

y
k

)
. (5.39)

Observing that (−1)k+j+1 = (−1)k−j+1, we are ready to rewrite the Hamiltonian in

(5.27):

H =
n∑

j=1

Aj,jσ
z
j +

∑

1≤j<k≤n

(−1)j−k+1Aj,k

(
σx

j σ
z
j+1σ

z
j+2 . . . σ

z
k−1σ

x
k + σy

jσ
z
j+1σ

z
j+2 . . . σ

z
k−1σ

y
k

)

+
∑

1≤j<k≤n

(−1)j−k+1Bj,k

(
σx

j σ
z
j+1σ

z
j+2 . . . σ

z
k−1σ

x
k − σy

jσ
z
j+1σ

z
j+2 . . . σ

z
k−1σ

y
k

)
.

(5.40)
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It is evident we can set, for j ≤ k,

Wj,j = Aj,j (5.41)

Wj,k = (−1)k−j+1 (Aj,k +Bj,k) Wk,j = (−1)k−j+1 (Aj,k −Bj,k) , (5.42)

and that all values of W are possible through appropriate choices of A and B. Now

we invert the transformation to obtain:

Aj,j = Wj,j (5.43)

Aj,j+m =
(−1)m+1

2
(Wj,j+m +Wj+m,j) Bj,j+m =

(−1)m+1

2
(Wj,j+m −Wj+m,j) .

(5.44)

Through appropriate choice of W we can realize any real symmetric A and real anti-

symmetric B.

Observe that, up to sign, the elements of the matrix W are the same those of

A+B. So to find the ground-state energy gap for a Hamiltonian that can be written

in the form of (5.24), we only need to arrange the W coefficients into an n×n matrix,

apply the necessary sign changes, and find twice the least non-zero singular value of

the resulting matrix.

Let us now work out a simple example to demonstrate Theorem 5.2.1. Consider

H = σx
1σ

z
2σ

x
3 − σz

2 . (5.45)

To find the spectrum of H, normally we must diagonalize its 8 × 8 matrix represen-
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tation 





























−1 0 0 0 0 1 0 0

0 −1 0 0 1 0 0 0

0 0 1 0 0 0 0 −1

0 0 0 1 0 0 −1 0

0 1 0 0 −1 0 0 0

1 0 0 0 0 −1 0 0

0 0 0 −1 0 0 1 0

0 0 −1 0 0 0 0 1































. (5.46)

Instead, we will demonstrate how to find the eigenvalues by diagonalizing a 3 × 3

matrix. The W matrix for H is

W =











0 0 1

0 −1 0

0 0 0











, (5.47)

and by Theorem 5.2.1, the associated A and B matrices are

A =











0 0 −1/2

0 −1 0

−1/2 0 0











B =











0 0 −1/2

0 0 0

1/2 0 0











. (5.48)

To apply Theorem 4.3.3, we need to find the singular values of A+B, which turn out

to be Λ1 = 0, Λ2 = 1, and Λ3 = 1. Table 5.1 illustrates how to find the energy levels

of H using these values.

If HP is in the form of (5.24), then so is the Hamiltonian evolution

H(s) = (1 − s)
n∑

j=1

σz
j + sHP , (5.49)
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Λ1 = 0 Λ2 = 1 Λ3 = 1 Energy
-1 -1 -1 -2
-1 -1 1 0
-1 1 -1 0
-1 1 1 +2
1 -1 -1 -2
1 -1 1 0
1 1 -1 0
1 1 1 +2

Table 5.1: Table of the different Fermi occupations with their corresponding energies,
computed from the application of Theorem 5.2.1 and Theorem 4.3.3 to H = σx

1σ
z
2σ

x
3 −

σz
2 . Each row represents a different occupation configuration for sites 1, 2, and 3.

To compute the energy of a row, start with zero, and for each site j, if site j is
occupied (a “1” entry) add Λj to the energy; otherwise subtract Λj. There is perfect
correspondence between the energy levels computed this way and the energy levels
computed directly from the matrix representation of H.

for 0 ≤ s ≤ 1. As in the previous section, we have reason to expect the ground-state

energy gap to be polynomial in n. We can use Theorem 5.2.1 to restate Theorem 5.1.1,

to show that the ground-state energy gap is O(1/
√
n) for certain random Hamiltoni-

ans on n qubits:

Theorem 5.2.2 (Random Hamiltonians using Pauli operators). Let H be defined by

(5.24), where the elements of W are N(0,1) and independent. Let γ be the ground-

state energy gap of H. Then, for large n, nγ2/4 converges in distribution to the

probability density function

ρ(x) =
1 +

√
x

2
√
x
e−(x/2+

√
x) . (5.50)

Proof. Observe that the entries of W are, up to sign, those of A + B as defined by

Theorem 5.2.1. Thus A + B has independent N(0,1) entries, so we have the same

proof as Theorem 5.1.1.
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We can also restate Theorem 5.1.2:

Theorem 5.2.3 (Random Hamiltonian evolutions using Pauli operators). Let C be

an n × n matrix with independent N(0,1) elements, and let A = CC†. Let HP be

defined by (5.24), where Wj,k = (−1)k−j+1Aj,k for j 6= k and Wj,j = Aj,j, and define

the Hamiltonian evolution

H(s) = (1 − s)
n∑

j=1

σz
j + sHP . (5.51)

Then the ground-state energy gap of H(s) is

γ̆(s) = 2(1 − s) + γ , (5.52)

where nγ/2 converges in distribution to the probability density function

ρ(x) =
1 +

√
x

2
√
x
e−(x/2+

√
x) (5.53)

for large n.

Proof. Apply Theorem 5.2.1 to Theorem 5.1.2.

Further, if the A and B matrices of HP , as defined by Theorem 5.2.1, are circulant,

then we can use Theorem 5.1.3 to conclude that the ground-state energy gap is

bounded below by a polynomial in n−1 and s for the whole evolution specified by

Equation (5.49). For instance, suppose

HP = σx
1σ

x
2 + σx

2σ
x
3 − σy

1σ
z
2σ

y
3 . (5.54)

Then, by Theorem 5.2.1, HP has the A and B matrices given in (5.14) which are

circulant, and Theorem 5.1.3 tells us that AQC finds the ground state of HP in

polynomial time, using the evolution specified by (5.49).
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Theorem 5.2.4 (Hamiltonian evolutions with circulant matrices using Pauli opera-

tors). Let W̃ be circulant, and let HP be defined by (5.24), where Wj,k = (−1)k−j+1W̃j,k

for j 6= k, and Wj,j = W̃j,j. Define the Hamiltonian evolution

H(s) = (1 − s)
n∑

j=1

σz
j + sHP . (5.55)

Then the ground-state energy gap of H(s) is bounded below by a polynomial in n−1

and s.

Proof. If W̃ is circulant then so is W̃ †. By Theorem 5.2.1, W̃ = A+ B, and since A

is symmetric and B is anti-symmetric, W̃ † = A − B, so we have A = (W̃ + W̃ †)/2

and B = (W̃ − W̃ †)/2. Since circulant matrices form a closed algebra, A and B are

circulant. Then we can apply Corollary 5.1.4 to H(s) to conclude the whole evolution

has a minimum energy gap bounded below by a polynomial in n−1 and s.
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Chapter 6

Conclusions and Future Work

We proved a version of the Adiabatic Theorem that includes explicit definitions of

constants, so that we could compare the predictions of theorems derived from it to

examples, and we provided rigorous bounds for the adiabatic approximation under

four sources of experimental error: perturbations in the initial condition, systematic

time-dependent perturbations in the Hamiltonian, coupling to low-energy quantum

systems, and decoherent time-dependent perturbations in the Hamiltonian. We ap-

plied the new results to the spin-1/2 particle in a rotating magnetic field, which is

a standard example for discussing controversy in the adiabatic theorem [10, 60, 69].

We showed that our theorem makes correct predictions about the error of the adi-

abatic approximation as a function of time. We also applied the new results to the

superconducting flux qubit proposed by Orlando et al. [40], with time-dependent

perturbations in the applied magnetic field. This qubit has properties that make it

a candidate for quantum adiabatic computation [28]. Because our version of the adi-

abatic theorem does not have unspecified constants, we are able to make numerical

predictions about this qubit. We showed that for a particular amount of noise on su-

perconducting wires near a qubit with ideal physical parameters, we could guarantee

a small error in the adiabatic approximation provided that the evolution time was set

within a particular interval.
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Figure 6.1: A two-level grid with n nodes representing spins {Sj : j = 1 . . . n}.
Non-zero interaction coefficients Jj,k ∈ {−1, 1} are permitted only if there is an edge
between Sj and Sk in the grid. Then minimizing the cost function E(S1, . . . , Sn) =
∑n

j,k=1 Jj,kSjSk over inputs Sj ∈ {±1} is NP-complete.

We used the technique developed by Lieb et al. [33] for analyzing the one-

dimensional XY model to identify a class of random Hamiltonians with non-nearest-

neighbor interactions whose ground-state energy gap is O(1/
√
n), where n is the

number of qubits, and two classes of Hamiltonians with non-nearest-neighbor inter-

actions whose ground state can be found in polynomial time with AQC. We used the

Jordan-Wigner transformation to derive equivalent results for Hamiltonians defined

using Pauli operators.

On the subject of the adiabatic theorem under noisy conditions, it remains to

determine a bound on the error of the adiabatic approximation, for finite τ and with

explicit definitions of constants, for general open quantum systems. Also, it may be

possible to develop tighter bounds on AT-Noise, that take advantage of additional

information about the Hamiltonian evolution, e.g., if the commutator between the

noise term and the intended Hamiltonian is small.

For the purposes of AQC, it would be useful to know how to use the Hamiltonians
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in Chapter 5 to model known classical problems. One possible starting point may

be the relationship between the Hubbard model and the graph coloring problem [68].

Another is the relationship of the Hamiltonians in Chapter 5 to the knapsack problem

[37].

It may be possible to analyze classical spin-glass models [7] by approximating

their energy functions using Hamiltonians from Chapter 5. The classical spin-glass

problem is to minimize the cost function

E(S1, . . . , Sn) =
n∑

j,k=1

Jj,kSjSk , (6.1)

over all possible inputs Sj ∈ {±1}, where Jj,k ∈ {−1, 0, 1} are coefficients. Under the

restrictions on Jj,k illustrated in Figure 6.1, this problem is known to be NP-complete

[7]. So solutions to this problem can be used to solve any problem whose solution

can be efficiently verified, and even approximate solutions may be useful. It can be

shown that minimizing E is equivalent to finding the ground state of

HE =
n∑

j,k=1

Jj,kσ
x
j σ

x
k . (6.2)

Through a combination of approximations to various terms and use of ancillary qubits

[29] we hope to approximate the ground state of HE and thus the solution to the

corresponding classical problem.

It is likely that we could extend the class of Hamiltonians whose ground-state

energy gap can be determined efficiently, by considering other ways to construct Fermi

operators. One alternative generalizes the Jordan-Wigner transform from a chain-like

construction to a tree-like construction, thus facilitating analysis of multi-dimensional
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lattices instead of one-dimensional systems [57]. Another alternative generalizes the

Jordan-Wigner transformation to larger-spin operators, e.g. qudits [8, 15, 19, 30].
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