
ABSTRACT

Title of dissertation: RESPONSE DYNAMICS OF
INTEGRATE-AND-FIRE
NEURON MODELS

Joanna Pressley
Doctor of Philosophy, 2008

Dissertation directed by: Professor Todd W. Troyer
Department of Psychology

One of the fundamental problems in neuroscience is characterizing the transfer

function that converts noisy synaptic inputs into output firing rates. A common

assumption is that the membrane time constant is the dominant factor governing

the time course of firing rate responses. However, previous studies have shown that

neural response times can be faster than expected from voltage dynamics alone.

If the membrane time constant does not determine response time, what are the

parameters that describe the transformation of inputs into output firing rates?

We investigate this question using integrate-and-fire models (IF), the simplest

neuron models that capture the essential properties of neuronal signaling while re-

maining simple enough to analyze. Noisy synaptic inputs are modeled as a white

noise process with drift, characterized by a time-varying mean and variance. De-

pending on the baseline levels of the mean and variance of the input, IF models

exhibit two basic regimes of neural firing. In the Regular Regime, the drift to

threshold is dominant and the neuron produces a regular train of action potentials.



In the Random Regime, the noise in the input dominates and the output is highly

variable. We use linear perturbation techniques to analyze the response dynamics of

several different IF models, for signals encoded in the mean and the variance of the

input, and for models operating in the Regular and Random regimes of behavior.

In the simplest IF model, the perfect integrate-and-fire model (PIF), the sub-

threshold membrane dynamics perfectly mimic the integral of the input current.

Utilizing linear perturbation techniques, we prove that the model acts like a high-

pass filter to variance perturbations and a low-pass filter to perturbations of the

mean. Moreover, the sum of the two filters adds perfectly to one. Since changes in

the rate of Poisson distributed inputs lead to proportional changes in the mean and

variance, these results demonstrate that the PIF produces a perfect replica of the

time-varying input rate for Poisson distributed input.

Next we survey the response properties of the leaky integrate-and-fire model

(LIF). Our survey covers a wide range of baseline input parameter values as well

as for perturbations in either the mean or variance of the input. We find that

response dynamics are highly dependent on regime, as well as which input parameter

encodes the signal. When the mean level of input is perturbed, the LIF exhibits

low-pass behavior. Responses in the Regular Regime display resonances that peak

at baseline firing rates. Contrarily, when the input variance is perturbed, the LIF

filtering properties are highly regime-dependent, and resonances are found across

regimes. Unexpectedly, the resonances do not peak at the underlying firing rate

of the model. Many of these response properties can be readily understood by

noting that the output firing rate depends on a multiplicative, and hence non-linear



interaction between two factors. One factor is proportional to the present value of

the input variance and the other factor depends on past values of both the variance

and the mean of the input current.

Additionally we investigate how synaptic dynamics affect LIF response. We

model each synaptic input as causing an instantaneous rise and then exponential

decay in the total current. This model is the combination of two transformations,

one that takes pre-synaptic rates to current and the next that takes current to output

firing rates. Considering the entire transformation, the new model is low-pass for

both perturbations in the mean as well as the variance. This stems from the low-pass

filtering of the transformation from pre-synaptic rates to current. After removing

the response properties due to the transformation from pre-synaptic rates to current,

we find a striking reduction in the overall gain for variance encoded signals in the

Regular Regime. Moreover, the high-frequency gain in the Regular Regime goes to

zero, as opposed to one in the previous model. Mean encoded signals elicit responses

with finite high-frequency gain across regimes, and reduced resonances.

Finally we focus on nonlinear responses, examining the time course of onset

and offset responses for two different IF models, the LIF and the more realistic ex-

ponential integrate-and-fire model (EIF). The EIF includes a fast voltage-dependent

current active near threshold. In both models, offset responses have a steeper initial

slope, but a slower approach to equilibrium. The responses of the models differ in

that the EIF shows a slight delay before responding to a step increase in input, a

delay that is not found for the LIF nor for the response to step decreases in input

for either model.



These results constitute the first systematic exploration of IF dynamics across

different qualitative regimes of behavior, focusing on the model and parameters

of the input. Our results indicate that the multiplicative form of the expressions

derived in these simple models may capture a fundamental nonlinearity governing

neural responses to stochastic inputs.
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Chapter 1

Introduction

The brain is a complex network containing more than 1010 neurons, each

of which makes myriad connections with other neurons at physiological structures

known as synapses. Neurons transmit information with pulse-like electrical signals

called action potentials or spikes. Although the timing of spikes can be very precise

in certain brain structures [Rieke et al., 1997, Hutcheon and Yarom, 2000], in the

cerebral cortex neuronal spike times are highly irregular [Softky and Koch, 1993].

A dominant hypothesis for how the brain computes in the face of such noise is that

information is encoded in the rate of spikes, or firing rate, produced across popula-

tions of neurons. Conceptually, the firing rate can be defined as the instantaneous

probability that any given neuron will produce a spike, or alternatively as the por-

tion of an ensemble of neurons that spike during a given period of time. To begin

to understand dynamic processing in circuits composed of noisy neurons, we must

decipher which parameters of the transformation from noisy input to output firing

rates determine how quickly neurons respond to changing input.

Our investigation of neural response dynamics focuses on integrate-and-fire

neuron models (IF) [Abbott, 1999]. Models of this class are frequently used as

building blocks for larger network models, and are the simplest models that contain

the basic biological features of neuronal signalling: the integration of subthreshold
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inputs by a capacitive cell membrane, a voltage threshold which when reached results

in a spike in the membrane potential, and a resetting of the membrane potential to

a subthreshold level after the spike. IF models separate the voltage dynamics by

timescale. Since action potentials have a stereotyped shape [Rieke et al., 1997] and

are fast relative to the slower subthreshold membrane dynamics, the action potential

is not described dynamically. Instead when V reaches the threshold level, a spike is

recorded, and the membrane potential is reset to a chosen level.

In the most widely used IF model, the leaky integrate-and-fire model (LIF),

the slow subthreshold membrane dynamics are given by

C
dV

dt
= gL(VL − V ) + Is(t), (1.1)

where C is the membrane capacitance, V is the membrane potential, and Is(t) is the

synaptic input current from the pre-synaptic neurons. gL(VL−V ) is the leak current,

which flows through a resistive channel with constant conductance gL, reversing

sign when V equals the reversal potential, VL. For a fixed input current Is(t) = I,

voltage trajectories of equation (1.1) are given as an exponential decay from the

initial voltage toward voltage equilibrium V∞ = VL +RI. The time constant of this

decay, τm = RC, is known as the membrane time constant and R = 1/gL is the leak

channel resistance. For dynamically changing inputs Is(t) the voltage trajectory

can be calculated as a convolution of the input current with an exponential function

with time constant τm.

Based on the notion that neural dynamics were dominated by a transformation

of inputs to membrane voltage, early researchers created firing rate models based
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on simple filtering with a time constant equal to τm [Wilson and Cowan, 1973].

However, such models ignore the contribution of crucial nonlinearities to a neu-

ron’s response, namely the threshold and resetting of the membrane potential. In-

deed, previous research has shown that neural response times can be faster than

expected from the voltage time course described by the membrane time constant

[Holt et al., 1997, Fourcaud and Brunel, 2002, Silberberg et al., 2004].

In this dissertation, we address the follow general question: If the firing rate re-

sponses of IF models are not determined by the membrane time constant τm, what are

the parameters that govern neural response dynamics to changing inputs? Although

this is our goal, previous research indicates that this question is under-determined

in at least two different ways. First, we must be careful to specify the nature of the

input signal. Under the rate coding hypothesis, neurons respond to the combined

input from all neurons synapsing on that neuron. Under the assumption that these

inputs are independent in time and each individual input results in a voltage change

that is small compared with the distance to threshold, we can approximate the total

input as a white noise process with a time-varying mean and variance. Note that the

mean current for excitatory and inhibitory inputs will subtract while the variance in

current contributed by these two inputs will add [Lánský and Sacerdote, 2001]. In

the simplest case, keeping the total input rate constant and varying the proportion

of excitatory and inhibitory inputs will alter only the mean current whereas adding

or subtracting a balanced number of excitatory and inhibitory inputs will alter only

the variance. Therefore, in this dissertation, we consider perturbations in both the

mean and the variance of the input and study how neural response differs based on
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which input parameter is modulated.

A second complicating factor in addressing the general question is that a model

with the same set of neural parameters can act very differently based on the baseline

input parameter values. There are two extreme regimes of behavior, the Regular and

Random Regimes [Abeles, 1991, Troyer and Miller, 1997]. In the Regular Regime, a

suprathreshold mean input drives the neuron to spike and the mean period between

action potentials is shorter than τm. Because of this strong driving force, the neuron

acts like an oscillator, producing a regular train of action potentials. Conversely in

the Random Regime, the mean driving force is not sufficient to drive the neuron to

spike threshold. Rather, action potentials occur when fluctuations randomly accu-

mulate and drive the potential over threshold. The mean period between spikes is

typically longer than τm and the times between consecutive spikes is highly irregu-

lar. Given the qualitatively different nature of spiking in these regimes, we survey

neural response over a wide range of baseline input values.

In order to compare IF dynamics across different regimes of model behavior, as

well as for encoding signals in both the mean and variance of the input, we take a lin-

ear systems approach [Knight, 1972a, Knight, 2000, Nykamp and Tranchina, 2000,

Fourcaud and Brunel, 2002]. In doing so, we study the firing rate response due to

constant baseline input values plus a sinusoidal perturbation of frequency ω in either

the mean or the variance of the input. We decompose the response into the baseline

firing rate plus the firing rate component at frequency ω. For small perturbations,

the firing rate response to any pattern of input can be reconstructed as a linear

combination of these response components. We look at both the amplitude of the
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response, or the gain, and the phase shift of the response. Characterizing the linear

response in terms of the gain and phase for different modulation frequencies provides

a single set of metrics that can be applied across situations.

In chapter 3, we study the response dynamics of the perfect integrate-and-fire

model (PIF). Desirable because of its simplicity, the PIF omits leak channels causing

a membrane response which is perfectly proportional to the integral of the input cur-

rent since the last spike. The PIF approximates firing rate response dynamics well

when the mean current is large compared to the amount of current needed to drive

the voltage to threshold. Here, we utilize diffusion approximation formalism intro-

duced by Gerstein and Mandelbrot in 1964 [Gerstein and Mandelbrot, 1964], which

allows the firing rate to be determined from a deterministic PDE, the Fokker-Planck

or Forward Kolmogorov equation [Ricciardi, 1977, Risken, 1989, Omurtag et al., 2000,

Allen, 2003]. Using FP formalism, we show that if the signal is encoded in both the

mean and the variance of the input, the linear response of the PIF is a scaled replica

the input.

To study a more realistic model of membrane dynamics, we investigate the

response of the LIF model, in chapter 4. Previous researchers have studied the

linear response properties of the LIF model for specific sets of input parameters

[Brunel et al., 2001, Lindner and Schimansky-Geier, 2001, Fourcaud and Brunel, 2002].

In this chapter, we integrate these disparate results into a comprehensive taxonomy

of LIF responses, examining signals encoded in either the mean or the variance of the

input, and surveying the linear response over a wide range of baseline parameters.

We argue that the key to understanding this taxonomy is the fact that the firing
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rate decomposes into a product of two terms. The first term is directly proportional

to the input variance. The second term describes the amount of trajectories in a

boundary layer near threshold, which is affected by both the mean and the variance

of the input.

In chapter 5, we examine how synaptic dynamics affect the response of the

LIF. We model synaptic dynamics as a linear transformation from pre-synaptic

spike times into current, where each input causes an instantaneous rise and then an

exponential decay in the total current. The added complexity of the input adds a

second transformation to the model. The new transformation takes input rates to

current, and a second transformation takes current to output rates. We make two

comparisons with the LIF model having instantaneous inputs. First, we compare

the overall transfer function, from input rates to output rates. Next, we divide out

the low-pass filtering resulting of the transformation from input rates to current,

and compare the transformation from current to output rate with the instantaneous

synapse model. As with our other studies, we analyze signals encoded in both the

mean and the variance of the input and survey different regimes of behavior.

In chapter 6 we focus on nonlinear responses, examining the time course of the

response to the onset and offset of a step change in input. We examine responses

for two different IF models: the LIF model discussed above, and the exponential

integrate-and-fire model (EIF) in which the leak current is supplemented by a fast,

voltage-dependent current meant to mimic the sodium channel dynamics near the

onset of the action potential. For both models, offset responses have a steeper

initial slope, but a slower approach to equilibrium. In the EIF, but not the LIF
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model, onset and offset differ also in that there is a short delay before firing rates

change after an increase in input firing rates. Comparing the linear component of

the response to square-wave vs. sine-wave inputs indicates that in both models, gain

was slightly smaller for square-wave inputs at frequencies above 40 Hz, but phase

was relatively unchanged.
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Chapter 2

Modeling

2.1 Integrate-and-Fire Model

There are many models of neuronal voltage dynamics, which vary in biological

realism and complexity. Integrate-and-fire models (IF), dating back to Lapicque

in 1907, capture the essential components of neuronal signaling, while seemingly

remaining simple enough to analyze [Abbott, 1999, Burkitt, 2006b, Burkitt, 2006a].

Rather than a single specific model, Integrate-and-fire models are a class of models

sharing the following basic assumptions. First, the cell membrane is iso-potential,

with a single number describing the membrane voltage. This simplifying assump-

tion focuses the model on the integrative properties of the soma, ignoring the mem-

brane potential gradients that exist in spatially extended dendritic trees. Second,

action potentials are triggered when the membrane voltage reaches a specific thresh-

old value. Third, there is a separation of timescales, with fast neuronal dynamics

generating stereotyped action potentials. The fast spiking dynamics and the slow

membrane integration are assumed to be completely separate, and action potential

dynamics are not explicitly modeled. Rather, when threshold is reached, a stereo-

typed action potential is “pasted” on to the voltage trace and the slow dynamics

are suspended for a short refractory period trefract. After the refractory period, the

voltage is set to a fixed “reset potential” Vr, and the slow dynamics resumes.
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The slow, subthreshold dynamics can be written in general form as

C
dV

dt
= f(V ) + Is(t), (2.1)

where C is the membrane capacitance, V is the membrane potential or voltage,

and Is(t) is the external (usually synaptic) current. The form of f(V ) distinguishes

the different IF models. In some models, action potentials trigger slow time de-

pendent currents that affect membrane integration after a spike [Izhikevich, 2003,

Izhikevich, 2004]. These currents, which are modeled by incorporating additional

terms on the right hand side of the equation, are not considered here.

The most widely studied IF model is the leaky integrate-and-fire model (LIF):

C
dV

dt
= gL(VL − V ) + Is(t), (2.2)

where gL is the leak conductance and VL is leak channel reversal potential (described

below). Leak channels are always open, allowing K+, Na+ and Cl− ions to flow

through the membrane. Many more leak channels are selective for K+ than for

Na+ or Cl− (figure 2.1). There are two forces acting on the ions which determine

whether they flow through the membrane. The first force is the electromotive force,

determined by the present value of the membrane potential. An energy consuming

pump maintains the resting potential of the membrane at around −70 mV and

keeps the quantity of K+ cells larger on the inside than outside and Na+ cells

larger on the outside than inside. Since the membrane potential is negative, the

electromotive force will draw the positively charged ions into the cell and repel

the negatively charged ions. The other force is diffusive and due to the chemical
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gradient. Overall, these forces combine to produce the reversal potential of the leak

channels VL, at which the direction of ion flow switches.

Figure 2.1: From Kandel and Schwartz [Kandel et al., 2000]. Leak channels allow

K+, Na+ and Cl− ions to flow through the membrane. Channels are selective for

each ion type.

It is common to divide through by the leak conductance and write the model

as

τm
dV

dt
= −V + VL +RI(t). (2.3)

In this form, it is clear that for constant input, the voltage decays exponentially to

a voltage V∞ = VL +RI with a time constant τm = RC. Here, R = 1/gL is the leak

channel resistance. This model is studied in chapters 4, 5 and 6.

In this thesis we also consider two other IF models. In chapter 3, we ana-

lyze the simplest IF model, the perfect integrate-and-fire model (PIF). The PIF

model contains no intrinsic currents and the membrane voltage is proportional to
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the integral of the input current since the time tsp at the end of the last spike:

C
dV

dt
= I(t) (2.4)

V (t− tsp) = Vreset +
1

C

∫ t

tsp

I(t′)dt′. (2.5)

The lack of intrinsic currents simplifies the dynamics and allows closed form expres-

sions to be derived in some cases [Knight, 1972a, Abbott and van Vreeswijk, 1993,

Fourcaud and Brunel, 2002] and see chapter 3. The behavior of this model approxi-

mates that of the LIF model when input currents are strong and excitatory, driving

the membrane potential monotonically toward threshold at rates significantly faster

than 1/τm.

In chapter 6, along with the LIF, we study the exponential integrate-and-fire

model (EIF) [Fourcaud-Trocmé et al., 2003, Fourcaud-Trocmé and Brunel, 2005]. The

EIF’s peri-threshold voltage dynamics more closely match models containing a

sodium current whose activation triggers the onset of an action potential. The

model consists of the leak channels plus an instantaneous voltage-dependent spiking

current ψ(V ) that is only activated for voltages near threshold:

C
dV

dt
= gL(VL − V ) + ψ(V ) + I(t) (2.6)

ψ(V ) = gL∆T exp

(
(V − θ)

∆T

)
. (2.7)

∆T is the “spike slope factor” which determines the voltage sensitivity of the spiking

current. θ is the voltage threshold at which the slope of the I-V curve, which

describes the intrinsic currents versus the membrane potential, vanishes and the

equation becomes unstable. Conceptually, spikes are triggered at the time at which
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voltage diverges to infinity. Practically, the time at which voltage crosses a triggering

threshold (= -30 mV) is recorded, and the time from -30 mV to infinity is calculated

analytically, by assuming the noise is negligible once the intrinsic current is highly

activated. After the spike, the voltage is reset immediately to Vr = −68 mV , and

voltage integration resumes after waiting for a refractory period trefract = 1.7 msec.

2.2 Stochastic Input Model

The majority of the studies in this thesis consider “instantaneous synapses”,

where the synaptic input consists of a series of instantaneous pulses of current:

Is(t) =
∑

k

Qδ(t− tk). (2.8)

Here, Q is the total charge carried by one input and tk is the arrival time of the

kth pre-synaptic spike. The arrival times follow a Poisson process with average rate

λ(t). Inputs are pulse like and are modeled by δ(t − t′), the Dirac delta function.

δ(t− t′) is zero everywhere except t = t′, and has an integral of 1 in time.

The current is a stochastic process whose mean at any time is given by µ(t) =

Qλ(t). The input spike train is a Poisson process, with a variance given by λ(t).

Since each input has size Q, the variance of the current is Q
2
λ(t), which has units

nC2/msec. This can be thought of as the accumulation of the variance of the charge

over time.

If synaptic inputs are instantaneous, weak, and uncorrelated in time, we can

adopt a diffusion approximation, and write the input current Is(t) as

Is(t) = µ(t) + σ(t)η(t). (2.9)
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µ(t) = Qλ(t) is the mean current, σ(t) = Q
√
λ(t), and η(t) is Gaussian white

noise process (〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = δ(t − t′)) [Brunel and Hakim, 1999,

Knight, 2000, Fourcaud and Brunel, 2002, Silberberg et al., 2004]. Therefore, we

consider the stochastic differential equation:

C
dV

dt
= f(V ) + µ(t) + σ(t)η(t), (2.10)

where f(V ) = gL(VL − V ) for the LIF, f(V ) = 0 for the PIF, and f(V ) = gL(VL −

V ) + ψ(V ) for the EIF.

2.2.1 Numerical Simulations

In chapter 6, we rely on direct simulation of the SDE (2.10) to compare the

responses of the LIF and EIF. First, we specify a fixed time course for the mean µ(t)

and variance σ2(t) of the stochastic input. A particular voltage path is obtained

by numerically solving equation (2.10) until the voltage reaches threshold and then

resetting the voltage to the chosen reset level, repeatedly for the length of the trial.

Firing rates are determined by forming the peri-stimulus time histogram (PSTH) of

spike times obtained from repeated trials (on the order of 750,000) using different

noise seeds. The post-synaptic firing rate is estimated by calculating the probability

of having a spike in each small time bin of the PSTH (bins usually 1 msec wide).

To numerically solve equation (2.10), we use a 2nd order Stochastic Runge-

Kutta method engineered by Honeycutt [Honeycutt, 1992]. All simulations are per-

formed using MATLAB (Mathworks, Natick, MA). Step size is taken as dt = 2−4 =

0.0625 msec, and noise currents η(t) are assumed constant over each time step. The
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amplitudes of these currents are chosen from a zero-mean Gaussian distribution with

standard deviation equal to σ = 2µA
√
msec/cm2 [Fourcaud-Trocmé et al., 2003].

To more accurately simulate the rapid spike dynamics in the EIF model, during any

time step in which voltage went above the voltage threshold, θ, the dynamics are

re-simulated using a reduced time step of 1/5 ∗ 2−4 = 0.0125 msec. (Noise currents

are still assumed constant over the larger 2−4 msec time step.)

The LIF model uses identical parameters, except ψ(V ) = 0. A spike is regis-

tered immediately when the voltage reached spike threshold, set at θ = −59.9 mV.

We find that by adding a 3.5 msec refractory period, the LIF’s f-I curve, which plots

the steady-state firing rate as a function of current, matched that of the EIF model

surprisingly well. The refractory period is implemented by resetting voltage to Vr =

-68 mV, waiting 3.5 msec after the spike, and then resuming integration according

to the LIF SDE.

2.2.2 Fokker-Planck Formalism

Instead of directly tracking individual trajectories with the stochastic dif-

ferential equation (2.10), in chapters 3 and 4 we use the Fokker-Planck (forward

Kolmogorov) formalism to study the dynamics of the probability density function

over voltage, ρ(V, t) [see Appendix for derivation] [Arnold, 1974, Ricciardi, 1977,

Risken, 1989, Brunel and Hakim, 1999, Fourcaud and Brunel, 2002, Allen, 2003].

ρ(V, t) represents the probability that a given trajectory is near the voltage V

at time t. For any given voltage the net flux or “rate of flow” JV (V, t) across that
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voltage can be calculated as

JV (V, t) = −R
2σ2(t)

2τ 2
m

∂ρ(V, t)

∂V
+
VL − V (t) +Rµ(t)

τm
ρ(V, t). (2.11)

The probability density obeys the following dynamics:

τm
∂ρ(V, t)

∂t
= τm

−∂JV (V, t)

∂V
(2.12)

=
R2σ2(t)

2τm

∂2ρ(V, t)

∂V 2
− ∂

∂V
[VL − V (t) +Rµ(t)]ρ(V, t). (2.13)

The first term on the right-hand side is the diffusion term, which describes how the

ensemble’s voltage distribution spreads out due to noise, and the second term is the

drift or driving force, which describes how the mean input and leak forces affect the

distribution.

For the Fokker-Planck equations, boundary conditions are imposed to account

for the voltage threshold and reset. The threshold condition is modeled as an ab-

sorbing boundary imposed at the threshold θ, and the firing rate is simply the

flux crossing threshold, r(t) = JV (θ, t). This probability flux is then re-injected at

voltage reset [Brunel and Hakim, 1999, Brunel, 2000, Fourcaud and Brunel, 2002].

More specifically, the boundary conditions are as follows:

1. Under the standard diffusion approximation, the density must be equal to

zero at an absorbing boundary, lest the flux becomes infinite [Brunel, 2000].

Therefore,

ρ(θ, t) = 0. (2.14)

2. The firing rate is given as the flux across threshold:

r(t) = JV (θ, t) =
R2σ2(t)

2τ 2
m

(
− ∂ρ

∂V
(θ, t)

)
. (2.15)
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3. The probability density that crosses threshold is injected back at the reset

voltage Vr. To conserve the total flux, the flux leaving Vr from the right,

JV (Vr+, t), must be equal to the sum of the firing rate plus the flux arriving

from the left, JV (Vr−, t) + r(t). That is,

JV (Vr+, t) − JV (Vr−, t) = r(t). (2.16)

4. The final condition imposed is that the total probability must remain at unity:

∫ θ

−∞
ρ(V, t)dV = 1. (2.17)

2.2.3 Numerical Solution of the Fokker-Planck Model

When simulating the Fokker-Planck equation, firing rate responses are deter-

mined using numerical simulation of equations (2.13) and (2.15). We use the Crank-

Nicholson method in time and central differencing in voltage as approximations to

the derivatives [Vreugdenshil, 1989, Larsson and Thomée, 2003]. The resulting lin-

ear system has the form Aρt+dt = Bρt where A and B are tridiagonal except for one

other nonzero pixel due to the resetting of the flux over threshold. The three nonzero

diagonals are caused by central differencing, which approximates the derivatives at

any voltage in the FP equation using weighted values of itself and the voltages to

directly to the left and right. Except for small and large frequency modulations, the

voltage bin dv = 2−2 = 0.25 mV, while the the time bin dt = 2−6 = 0.015625 msec.

The final condition imposed is that the total probability,
∫ θ

−∞ ρ(V, t)dV , must

equal unity is used to set initial conditions and to solve for the firing rate. To

obtain the firing rate, we first solve Aρt+dt = Bρt for ρt+dt. Then the integral of
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ρ(V, t + dt)dV is approximated using the trapezoidal rule, with each bin having

area of width dv and height measured as the average of the height of the density

endpoints. To rectify the numerical problem of having an infinite left boundary, the

density is forced to zero and an absorbing boundary is placed at −90 mV , where

the density was known from pilot simulations to be nearly zero. Since without

the boundary conditions the discretization would conserve volume, the flux is then

determined by how much area is lost from the left and right (threshold) boundaries.

Any flux passing over the left boundary is replaced into the first voltage bin above

that boundary. The flux over threshold is replaced into the voltage reset bin.

To compare LIF dynamics across the regimes of model behavior, we take a

linear systems approach, measuring the gain and phase of the response to sinusoidal

perturbations in the input parameters µ(t) and σ2(t). We use the subscript ‘0’ to

denote the baseline value of the parameter (the ‘0th’ harmonic), and the subscript ‘1’

to denote the amplitude of the sinusoidal modulation (the 1st harmonic). To cover

all regimes of model behavior, we vary the baseline level of mean input µ0 between

0.5 µA/cm2 and 2.5 µA/cm2 in 0.125 µA/cm2 steps, and the baseline variance σ2
0

between 0.4 µA2msec/cm4 and 3 µA2msec/cm4 in steps of 0.1 µA2msec/cm4. The

mean and variance of the input are modulated separately, varying one parameter

while holding the other constant. At each combination of these baseline parameters,

we ran simulations in which we added small amplitude sinusoidal modulations across

a range of input frequencies ω (µ(t) = µ0 + µ1 cos(ωt) or σ2(t) = σ2
0 + σ2

1 cos(ωt)).

For the initial survey, we examine the frequencies 0.5Hz ≤ ω ≤ 500Hz. In several

cases, we examine higher frequency responses (up to 10,000 Hz). These cases include
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determining the high-frequency response for a subset of total baseline parameter

space and determining cutoff frequencies for mean perturbations.

2.3 LIF Model - Equation of Order Two

In addition to instantaneous synapses, we study a model in which synaptic

currents have a finite timescale. In this more realistic model, each pre-synaptic

spike causes the release of an instantaneous pulse of neurotransmitter. The neu-

rotransmitter binds with receptors on the post-synaptic membrane causing the as-

sociated channels to open and ions to flow through. We assume that neurotrans-

mitter becomes unbound from post-synaptic receptors at a fixed rate, leading to

an exponential decay in the number of bound receptors with decay constant τs

[Destexhe et al., 1998, Brunel and Sergi, 1998, Haskell et al., 2001]. The dynamics

of this process are

dB

dt
=

−B(t)

τs
+

∑

tk

Nδ(t− tk), (2.18)

where B is the number of bound receptors at time t, N is the peak number of

bound receptors for each pulse of transmitter, and tk are the arrival times of a train

of presynaptic spikes. If we consider a single input arriving at time t′, the average

number of bound receptors is given by

B(t) = Ne
−(t−t′)

τs Θ(t′), (2.19)

where Θ(t′) represents the Heaviside function. Assuming each receptor yields a

current Î, the input current from the single input at any time, I(t), is given by

I(t) = ÎB = ÎNe
−(t−t′)

τs Θ(t′). (2.20)
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If we let the peak current be I = ÎN , we note that each input contributes a total

charge of Q = Iτs = ÎNτs.

Applying the diffusion approximation to the event arrival times in this model,

we let µs(t) (spikes/time) be the mean number of pre-synaptic spikes per time,

and σ2
s(t) (spikes2/time) be the variance of the number of spikes per time. Then

equation (2.18) becomes

τs
dB

dt
= −B(t) + τsNµs(t) + τsNσs(t)η(t), (2.21)

where η(t) is a unit variance white noise process. Multiplying through by Î, and

using I(t) = ÎB we find:

τs
dIs
dt

= −Is(t) + ÎτsNµs(t) + ÎτsNσs(t)η(t) (2.22)

= −Is(t) +Qµs(t) +Qσs(t)η(t). (2.23)

If we let µ(t) = Qµs(t) and σ(t) = Qσs(t) then we get

τs
dIs
dt

= −Is(t) + µ(t) + σ(t)η(t) (2.24)

[Brunel et al., 2001, Fourcaud and Brunel, 2002, Moreno-Bote and Parga, 2004].

In chapter 5, we study (2.3) when the synaptic input is given by equation

(2.24). The following system of equations tracks the current evolution and the

sub-threshold membrane dynamics [Fourcaud and Brunel, 2002]:

C
dV

dt
=

1

R
(VL − V ) + Is(t) (2.25)

τs
dIs
dt

= −Is + µ(t) + σ(t)η(t). (2.26)

We call this the 2D LIF model since the state space for the coupled differential

equations (2.25) and (2.26) yield a two-dimensional state space.
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2.3.1 Fokker-Planck for the 2D Model

For the 2D LIF neuron model, the probability density ρ(V, Is) is a function of

both the voltage and synaptic current. The flux in the current direction is given by

JIs
(V, Is, t) =

−1

τs

[
σ2

2τs

∂ρ

∂Is
+ (Is − µ)ρ(V, Is)

]
(2.27)

and the flux in the voltage direction is

JV (V, Is, t) =
(RIs + VL − V )ρ

τm
. (2.28)

Changes in the probability density depend on the sum of the partial derivatives of

the flux in these two directions:

∂ρ

∂t
= − ∂

∂Is
JIs

− ∂

∂V
JV (2.29)

=
1

τs

[
σ2

2τs

∂2ρ

∂I2
s

+
∂

∂Is
(Is − µ)ρ

]
− 1

τm

∂

∂V
(RIs + VL − V )ρ. (2.30)

The flux over threshold for a given level of input current Is is

JV (θ, Is, t) = Θ(RIs(t) + VL − θ)
(RIs(t) + VL − θ)ρ

τm
, (2.31)

where the Heaviside function Θ captures the fact that there is no flux across thresh-

old when the net current is negative. The flux over threshold is re-injected at voltage

reset in a manner that conserves total flux:

JV (Vr+, Is, t) = JV (θ, Is, t) + JV (Vr−, Is, t). (2.32)

The firing rate is then calculated as the summed flux over all current values:

r(t) =

∫ ∞

−∞
JV (θ, Is, t)dIs. (2.33)
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The boundary conditions for this system are simply the conditions that bound

the probability density [Fourcaud and Brunel, 2002]:

lim
Is→±∞

JIs
(V, Is, t) = 0 (2.34)

lim
V →−∞

JV (V, Is, t) = 0, (2.35)

plus the condition that total probability density is conserved. Note that because

there is no diffusion in the voltage direction, ρ(V, Is, t) can take on finite values for

V = θ.

2.4 Numerical Simulations for the 2D Model

Numerical solutions are calculated for a two dimensional rectangular grid with

a spacing of 0.5mV in the voltage direction and 0.5 µA/cm2 in the current direction.

The domain in the continuous case is (−∞,∞) for Is and (−∞, θ) for V. We know

that lim
Is→±∞

ρ(V, Is, t) = 0 and lim
V →−∞

ρ(V, Is, t) = 0. So we bound Is from above

and below and V from below by values where from pilot simulations we knew the

density would be nearly zero. These values are dependent on σ2
0 and τs and range

from −5µA/cm2 to 6µA/cm2 for Is and −78mV to −71mV for V . Any flux over

the Is boundaries is re-inserted at the point right above or below the boundary. Any

flux over the left V boundary is re-inserted at the point to the right of the boundary.

The density at the boundaries is forced to exactly zero.

For the 2D model, we use Euler’s method or if that is not stable, Crank-

Nicholson, as an approximation to the derivative ∂ρ
∂t

and central differencing for the

derivatives ∂ρ
∂Is

and ∂2ρ
∂I2

s
. Given the lack of diffusion in the voltage parameter, central
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differencing for the voltage derivatives causes oscillations in the solutions. Therefore,

we use a mixed forward/backward differencing scheme for the derivative in voltage.

The direction of forcing is determined by the total current I(Is, V ) = RIs +VL −V .

For positive net current, I > 0, the voltage flux is determined by the flow from lower

voltage values. Therefore, we use backward differencing in this region. For negative

net currents, I < 0 the flux is determined by the flow from higher voltage values,

so we use forward differencing. Finally, to conserve volume, the voltage flux at the

points where I = 0 is taken as the sum from the left and right. The grid is arranged

so that for each Is value there is a voltage at which I = 0.

The firing rate is calculated as the amount of density flux over threshold. Flux

over threshold only occurs for values of I > 0 and is calculated as the volume not

conserved by the backward differencing scheme. We approximate volume as the

sum of the volume above each voxel on the grid. The height above each voxel was

approximated as the average of the two density values at the right corners, thinking

of voltage as going from left to right and current going from bottom to top. The right

values are used so that firing rate was only dependent on the density at threshold.
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Chapter 3

PIF Response to Stochastic Input Rates

The focus of this chapter is determining the linear response properties of the

perfect integrate-and-fire neuron model (PIF) when the input is modeled by a white

noise process plus drift. The simplest of the IF models, the PIF omits leak channels

causing the membrane voltage to be perfectly proportional to the integral of the

input current since the last spike.

PIF response to deterministic sinusoidal input was determined by Knight in

his seminal work from 1972 [Knight, 1972a]. Knight first discussed the single neuron

PIF response, defined as the inverse of the interval between two spikes. Utilizing

linear perturbation theory, he then derived the PIF response to small sinusoidal

perturbations of the input current. He found that the response perturbation was

proportional to the input perturbation averaged over an interval whose length was

equal to the baseline inter-spike interval, T0. This averaging caused the PIF to act

as a low-pass filter and for the gain to go to zero when the period of the sinusoidal

input was a multiple of T0 (figure 3.1). Knight then described the firing rate response

of a large population of PIF neurons, proportional to the fraction of the population

firing at any given time. Again using linear perturbation theory, Knight exhibited

that in contrast to the single neuron response, the population response was an exact

scaled replica of the input signal.
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Figure 3.1: From Knight 1972 [Knight, 1972a]. Single unit response to sinusoidal

modulations in the signal. PIF acts like a low-pass filter with amplitude going to

zero at multiples of the steady state firing rate, f0
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More recently, Fourcaud and Brunel furthered Knight’s work by studying PIF

response to stochastic white noise inputs, using methods introduced by Gerstein and

Mandelbrot [Gerstein and Mandelbrot, 1964, Fourcaud and Brunel, 2002]. Fourcaud

and Brunel showed that the linear response to sinusoidal perturbations in the mean

input current was low-pass, dropping to zero for input modulations significantly

faster than σ2/µ2, where σ2 is the variance and µ is the mean of the input at base-

line.

But changes in the pre-synaptic firing rate will cause changes in both the

mean and the variance of the input current. For example, for Poisson-distributed

pre-synaptic spike trains, changes in the variance of the current are proportional

to changes in the mean. To reconstruct the linear response to changes in input

rates, we therefore derive the linear response properties for modulations of the input

variance. Combining these results with Fourcaud and Brunel’s, we find that for small

modulations in the Poisson input rate, the PIF population response is a scaled replica

of the input, mirroring Knight’s original result for deterministic input.

3.1 Perturbations of the Variance

Previous work has produced solutions of the PIF when µ and σ are held

constant [Abbott and van Vreeswijk, 1993], as well as for solutions of the dynami-

cal probability density function due to sinusoidal perturbations in the mean of the

synaptic input [Fourcaud and Brunel, 2002]. Here we extend the derivation of Four-

caud and Brunel (2002) to examine the firing rate response of the PIF to sinusoidal
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perturbations in the input variance. As a stochastic differential equation, the PIF

is written as

C
dV

dt
= µ(t) + σ(t)η(t). (3.1)

Using the Fokker-Planck formalism (see Methods),

C
∂ρ

∂t
=

σ2

2C

∂ρ2

∂2V
− µ

∂ρ

∂V
. (3.2)

We examine the response dynamics of the PIF when the input variance is perturbed

by sinusoids of frequency ω (complex notation is used to simplify calculations):

σ2(t) = σ2
0(1 + εeiωt). (3.3)

To simplify notation, we make the following change of variables:

u =
2µ0V C

σ2
0

, uθ =
2µ0θC

σ2
0

, ur =
2µ0VrC

σ2
0

, τe =
σ2

0

2µ2
0

. (3.4)

After making these change of variables the Fokker-Planck equation becomes

τe
∂ρ(u, ω)

∂t
= (1 + εeiωt)

∂ρ2

∂2u
− ∂ρ

∂u
. (3.5)

Note that σ2
0 has units of charge2/time and µ has units of charge/time. Therefore,

the ratio of the variance to mean squared sets a characteristic timescale τe for the

PIF.

The boundary conditions (see methods) in the new variables are:

• The density is equal to zero at an absorbing boundary (threshold) to prevent

an infinite flux:

ρ(uθ, t) = 0. (3.6)
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• Similarly, the density must be continuous at the reset potential to prevent an

infinite flux:

ρ(ur−, t) = ρ(ur+, t). (3.7)

• The firing rate is given as the flux across threshold:

dρ

du
(uθ, t) = −r(t)τe. (3.8)

• The firing rate is injected back at the reset voltage Vr:

dρ

du
(ur+, t) −

dρ

du
(ur−, t) = −r(t)τe. (3.9)

• The integrated probability is equal to one:

∫ θ

−∞
ρ(u, t)du = 1. (3.10)

To characterize the perturbations to the output, ρ(u, ω, t) and r(t) are ex-

panded in terms of a small parameter ε:

ρ(u, ω, t) = ρ0(u) + εeiωtρ̂(u, ω) +O(ε2) (3.11)

r(t) = r0(1 + εeiωtn̂(ω)) +O(ε2). (3.12)

After plugging (3.11) into (3.5) we separate the terms into two equations, the steady-

state equation and the 1st order equation, which describes the PIF response to the

sinusoidal component of variance.

The steady state solution is given by [Abbott and van Vreeswijk, 1993]

ρ0 = r0τe[1 − eu−uθ − Θ(ur − u)(1 − eu−ur)]. (3.13)
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Note that ∂nρ0

∂un = ∂ρ0

∂u
for n > 1.

The 1st order equation is a nonhomogeneous ordinary differential equation:

iτeωρ̂ =
d2ρ0

du2
+
d2ρ̂

du2
− dρ̂

du
. (3.14)

The boundary conditions for the 1st order equations are:

ρ̂(uθ) = 0 (3.15)

ρ̂(ur+) = ρ̂(ur−) (3.16)

(
∂ρ0

∂u
(uθ) +

∂ρ̂

∂u
(uθ, ω)

)
= −r0n̂(ω)τe (3.17)

∂ρ0

∂u
(ur+) − ∂ρ0

∂u
(ur−) +

∂ρ̂

∂u
(ur+, ω) − ∂ρ̂

∂u
(ur−, ω) = −r0n̂(ω)τe (3.18)

∫ θ

−∞
ρ̂(u, ω)du = 0. (3.19)

The solution is determined by finding the general solution to the correspond-

ing homogeneous equation and adding to this a particular solution ρ̂p. First we

guess that the particular solution has the form ρ̂p = K ∂ρ0

∂u
, due to the particular

solution for mean perturbations [Fourcaud and Brunel, 2002]. Plugging ρ̂p = K ∂ρ0

∂u

into (3.14):

iτeωK
∂ρ0

∂u
=
∂ρ0

∂u
+K

∂ρ0

∂u
−K

∂ρ0

∂u
. (3.20)

So K = 1
iωτe

and ρ̂p = 1
iωτe

∂ρ0

∂u
.

Next we find the general solution of the homogeneous ODE:

d2ρ̂

du2
− dρ̂

du
− iτeωρ̂ = 0. (3.21)
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We assume that the solution is of the form ezu, and find:

z2 − z − iωτe = 0 (3.22)

z ± (ω) =
1 ±

√
1 + 4iωτe
2

. (3.23)

After some algebra (Appendix A.2.1), we find that the solution for ρ̂ is

ρ̂ =
r0
iω

[−eu−uθ + Θ(ur − u)(eu−ur) + ez+(ω)(u−uθ) − Θ(ur − u)ez+(ω)(u−ur)] (3.24)

and from the boundary conditions, the solution for the firing rate modulations n̂(ω)

is

n̂(ω) = 1 −
√

1 + 4iωτe − 1

2iωτe
. (3.25)

3.2 Perturbations of the Mean

The derivation of the first order response to modulations in the mean is similar

[Fourcaud and Brunel, 2002]. Letting

µ(t) = µ0(1 + εeiωt), (3.26)

the Fokker-Planck equation in the transformed coordinates is

τe
∂ρ(u, ω)

∂t
=
∂ρ2

∂2u
− (1 + εeiωt)

∂ρ

∂u
. (3.27)

Breaking out the first order terms, we arrive at the nonhomogeneous differential

equation:

iτeωρ̂ =
d2ρ̂

du2
− dρ̂

du
− dρ0

du
. (3.28)

Again, we assume the particular solution has the form ρ̂p = K ∂ρ0

∂u
, and find

iτeωK
∂ρ0

∂u
= K

∂ρ0

∂u
−K

∂ρ0

∂u
− ∂ρ0

∂u
, (3.29)
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which yields and ρ̂p = −1
iωτe

∂ρ0

∂u
. Again trying solutions of the form ezu to the corre-

sponding homogeneous equation:

d2ρ̂

du2
− dρ̂

du
− iτeωρ̂ = 0 (3.30)

we find

z2 − z − iωτe = 0 (3.31)

z ± (ω) =
1 ±

√
1 + 4iωτe
2

. (3.32)

The following equations replace boundary conditions (3.17) and (3.18):

∂ρ̂

∂u
(uθ, ω) = −r0n̂(ω)τe (3.33)

∂ρ̂

∂u
(ur+, ω) − ∂ρ̂

∂u
(ur−, ω) = −r0n̂(ω)τe. (3.34)

Using these boundary conditions along with (3.15), (3.16), and (3.19) to solve

for the homogenous solution coefficients, we find (Appendix A.2.2) that the solution

for ρ̂ is [Fourcaud and Brunel, 2002]

ρ̂ =
r0
iω

[eu−uθ − Θ(ur − u)(eu−ur) − ez+(ω)(u−uθ) + Θ(ur − u)ez+(ω)(u−ur)] (3.35)

and the solution for the firing rate modulations n̂(ω) is

n̂(ω) =

√
1 + 4iωτe − 1

2iωτe
. (3.36)

3.2.1 Gain and Phase of the Response

Figure 3.2 shows that for perturbations in the variance, the PIF acts like a

high-pass filter. The response grows as
√

1
ωτe

for high frequencies. The response
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is synchronous for high frequencies, showing little phase shift. However, for lower

frequencies, the phase shift goes to 90◦. Notice that as µ0 increases, τe decreases,

and therefore the overall gain curve is attenuated.
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Figure 3.2: Gain and phase curves for the PIF model due to perturbations in the

variance. The PIF model acts like a high-pass filter independent of regime. Phase

shifts are 90◦ in the low-frequency limit and go to zero in the high-frequency limit.

Figure 3.3 shows that when µ is perturbed, the PIF acts like a low-pass filter.

The response is synchronous for low-frequency perturbations in the mean, showing

little phase shift. As the perturbation frequency increases, the phase shift becomes

larger eventually reaching values of −45◦. For mean perturbations, increasing τe

increases the overall gain of the model. Letting ω = 1
τe

, the gain is equal to 0.69

for all τe. Therefore, 1
τe

acts as a natural cutoff frequency for the gain due to mean

perturbations.
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Figure 3.3: Gain and phase curves for the PIF model due to perturbations in the

mean. The PIF model acts like a low-pass filter independent of regime. Phase shifts

are zero in the low-frequency limit and go to −45◦ in the high-frequency limit.
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3.3 Perturbations in Both Parameters Concurrently

Assuming inputs are Poisson, the mean and the variance of the pre-synaptic

input rate, λ(t), are equal. Once we move to the diffusion approximation, the

mean and variance of the input are proportional, µ(t) = Qλ(t) and σ2(t) = Q
2
λ(t)

(see chapter 2). Therefore changes in the pre-synaptic input rate would cause pro-

portional changes in the mean and variance of the input. For mean and variance

perturbations, ε is used equivalently since µ0 and σ2
0 are factored out (see equations

(3.3) and (3.26). Since we expect proportional changes in the rate for Poisson inputs,

the 1st order response is then the sum of the 1st order responses to the parameters

varied separately.

Upon closer examination of equations (3.25) and (3.36), we see that the re-

sponse to perturbations in the variance is 1 minus the response to perturbations in

the mean. Summing these two quantities gives a gain of 1 at all frequencies. Thus,

the population firing rate response of the PIF is a scaled replica of the input rate

signal for Poisson distributed inputs.

3.4 Discussion

Previous work by Fourcaud and Brunel showed that by sinusoidally perturbing

the mean of the synaptic input, the PIF in FP form acted like a low-pass filter.

However, Knight has previously shown that the PIF acted like a perfect replicator

of sinusoidal signals to deterministic input. In this chapter, we have shown that

when the variance of the input is sinusoidally perturbed, the PIF response is the
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compliment of the response to mean perturbations, acting like a high-pass filter.

Considering both excitatory and inhibitory input rates, we can independently

alter the total mean and variance of the current. In the simplest case, if we hold

the total input rate constant, while varying the ratio of excitatory to inhibitory

input, the mean of the current will change. Alternatively, if we change the total

rate of input, while keeping the ratio of excitatory to inhibitory input the same, the

variance will change. The PIF responds oppositely to changes in the mean versus the

variance, low-pass versus high-pass respectively. Neurons may utilize the different

input parameters to encode signals of different speeds.

In this chapter, we have shown that PIF in FP form can respond like an all-

pass synchronous filter by considering simultaneous perturbations in the mean and

the variance of the synaptic input. Since input is frequently modeled as Poisson,

it makes sense to alter the mean and the variance of our Gaussian approximated

white noise process together and by the same amount. Therefore symmetric with

the deterministic case, we have shown that the response of a population of PIF

neurons will exactly replicate a stochastic signal.

The response due to perturbations in either parameters is dependent on the

time constant τe, which is the ratio of the variance of the signal to two times the

squared mean. For mean perturbations, 1
τe

acts as a natural cutoff frequency for the

low-pass filtering. Future work will focus on studying the relationship between this

new time constant and the response of more realistic models.
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Chapter 4

Response Dynamics of the LIF Model

4.1 Introduction

The leaky integrate-and-fire (LIF) model is the simplest neuron model that

captures the essential properties of neuronal signaling: integration of inputs by

a capacitive cell membrane, a voltage threshold leading to the generation of a

stereotyped action potential, and a subsequent re-polarization of the membrane.

Because of its simplicity and analytic tractability, the LIF has been used as the

basic building block in models of large networks [Hansel and van Vreeswijk, 2002,

Koene and Hasselmo, 2005, Hasselmo, 2005, Barak and Tsodyks, 2006] as well as

to investigate fundamental properties of neuronal spiking behavior [Tuckwell, 1988,

Burkitt, 2006b, Burkitt, 2006a]. Yet basic properties of LIF dynamics remain poorly

understood. For example, a common intuition is that the low-pass filtering of the

membrane voltage should carry over to firing rate dynamics [Wilson and Cowan, 1973].

However, it has been shown that the response time of simple model neurons can be

much faster than the membrane time constant [Holt et al., 1997, Silberberg et al., 2004],

and that the LIF can display complex resonance effects [Gammaitoni et al., 1998,

Plesser and Geisel, 1999, Plesser and Gerstner, 2000, Plesser and Geisel, 2001]. Lack-

ing a deeper understanding of the LIF model, it can be difficult to determine if the

dynamics of more realistic neuron models stem from greater biological detail, or

35



follow directly from the basic dynamics of integrate, fire, and reset.

One complication in understanding LIF dynamics is that the same LIF model

can operate in two qualitatively distinct regimes of behavior, depending on the

input [Abeles, 1991, Troyer and Miller, 1997]. If the mean input current is large

and synaptic noise is small, the model operates in the Regular Regime. Voltage is

driven monotonically across spike threshold, and spikes are produced at regular in-

tervals determined mostly by the mean input [Salinas and Sejnowski, 2002]. In this

regime, the model acts like an oscillator and, like many oscillators, displays resonant

behavior for input modulations near its baseline firing frequency [Knight, 1972a].

If the mean input is subthreshold but the noise is large, the model operates in

the Random Regime. Voltage trajectories follow a random walk with occasional

threshold crossings and spike times are irregular [Gerstein and Mandelbrot, 1964,

Shadlen and Newsome, 1994]. Since the probability of producing a spike depends

on the amplitude of noise fluctuations as well as the mean input, it is possible to

transmit signals by changing the input variance. It has been shown that LIF-like

models respond more rapidly to changes in the variance than to the mean of the

input current [Lindner and Schimansky-Geier, 2001], and this rapid response has

been confirmed in real neurons [Silberberg et al., 2004].

Although many aspects of LIF dynamics have been illustrated in previous stud-

ies e.g. [Brunel et al., 2001, Fourcaud and Brunel, 2002, Fourcaud-Trocmé et al., 2003,

Lindner and Schimansky-Geier, 2001, Naundorf et al., 2005], these results are often

presented in the context of other specific research questions. To obtain a coherent

picture of the full range of LIF behavior, we systematically studied the response
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dynamics of LIF neurons driven by stochastic inputs. We consider input signals

carried by changes in both the variance and mean of the input current, and choose

baseline parameters that cover the range of LIF behavior. Exploiting the simplic-

ity of the LIF model and using methods from stochastic differential equations, we

reduce the analysis to a consideration of the probability density as a function of volt-

age and time [Brunel and Hakim, 1999, Knight, 2000, Fourcaud and Brunel, 2002,

Silberberg et al., 2004]. We then characterize model output using the ensemble fir-

ing rate, the instantaneous probability of crossing threshold and producing a spike,

calculated over an ensemble of neurons subject to input with the same noise statis-

tics.

To facilitate the comparison across input signals and regimes of behavior, and

as a first step to understanding the full non-linear response of the LIF, we focus

on characterizing the linear response to sinusoidal modulations of the mean and

variance of the input current. We find that low pass membrane filtering dominates

the response dynamics for changes in the mean current, but that modulations in

the variance can lead to qualitatively different response properties depending on the

regime of model behavior. We argue that the differences between modulating the

variance versus the mean of the input current can be understood by noting that the

analytic expression for the ensemble firing rate decomposes into the product of two

terms: the first term captures the fast noise jitter, which depends exclusively on the

input variance; the second term is dependent on the integrative properties of the

membrane and involves both the mean and the variance of the input.
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4.2 Methods

We investigate the response dynamics of the leaky integrate-and-fire model

(LIF):

C
dV

dt
= gL(VL − V ) + I(t), (4.1)

where V is the membrane voltage, I(t) is the time-varying stochastic input current,

the membrane time constant τ(= C
gL

) is set to 10 msec, C(= 1µF/cm2) is the mem-

brane capacitance, gL(= 0.1mS/cm2) is the leak conductance, and VL(= −70mV )

is the reversal potential of the leak channels. The neuron spikes when the volt-

age reaches a threshold voltage (θ = −60mV ), after which the voltage is reset

(Vr = −70mV ). For simplicity, we did not include an absolute refractory period.

Adding a fixed refractory period does little to the dynamics other than slow the

mean firing rate and push the model further toward regular spiking behavior. Fur-

thermore, an LIF model with a relatively strong after-spike reset but short refractory

period has similar behavior as a model with a longer refractory period but weaker

reset.

4.2.1 Stochastic Differential Equation

Since spiking in real neurons is noisy, the synaptic current I(t) is commonly

modeled as stochastic (see chapter 2. If individual synaptic inputs are instantaneous,

weak, and uncorrelated in time, we can adopt a diffusion approximation in which

the input current I(t) is decomposed into the mean current µ(t) plus fluctuations

σ(t)η(t), where η(t) is a Gaussian white noise process [Brunel and Hakim, 1999,
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Knight, 2000, Fourcaud and Brunel, 2002, Silberberg et al., 2004]. µ(t) represents

the mean charge accumulating per time and has units nC/(cm2msec) = µA/cm2.

σ2(t) measures the variance of the charge accumulating per time and has units

nC2/(cm4msec) = µA2msec/cm4.

We use the Fokker-Planck (forward Kolmogorov) approach [Ricciardi, 1977,

Brunel and Hakim, 1999, Fourcaud and Brunel, 2002, Allen, 2003] to track the prob-

ability density function over voltage, ρ(V, t), as it changes in response to modulations

in the input. ρ(V, t) represents the probability that a given trajectory is near the

voltage V at time t. For any given voltage the net flux or “rate of flow” JV (V, t)

across that voltage can be calculated as:

JV (V, t) = −R
2σ2(t)

2τ 2
m

∂ρ(V, t)

∂V
+

(VL − V (t)) +Rµ(t)

τm
ρ(V, t) (4.2)

The probability density obeys the following dynamics:

τm
∂ρ(V, t)

∂t
= τm

−∂JV (V, t)

∂V
(4.3)

=
R2σ2(t)

2τm

∂2ρ(V, t)

∂V 2
− ∂

∂V
[(VL − V (t)) +Rµ(t)]ρ(V, t). (4.4)

Boundary conditions are needed to account for spike threshold and voltage

reset. Threshold is modeled as an absorbing boundary imposed at a voltage θ, and

the firing rate is simply the flux crossing threshold, r(t) = JV (θ, t). This probabil-

ity flux is then re-injected at voltage reset [Brunel and Hakim, 1999, Brunel, 2000,

Fourcaud and Brunel, 2002]. Under the standard diffusion approximation, the den-

sity must be equal to zero at an absorbing boundary, so the firing rate equation

becomes

r(t) = JV (θ, t) =
R2σ2(t)

2τ 2
m

(
− ∂ρ

∂V
(θ, t)

)
. (4.5)
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Note that the firing rate equation is a product of two terms. Since the density goes to

zero at threshold, the second term is proportional to the area under the probability

density function near threshold. We interpret this term as indicating the probability

that the voltage lies within a small boundary layer near threshold and denote it

B(t) = −∂ρ/∂V (θ, t). The first term is proportional to the instantaneous level of

input variance. Thus, the firing rate is equal to the probability that a trajectory

lies near threshold multiplied by the probability that the trajectory will “jump”

across threshold. The multiplicative constitution of the firing rate equation is key

in understanding the nature of the dynamic response of the LIF model to changing

inputs. Numerical simulations were performed using MATLAB (Mathworks, Natick,

MA) For a description of the numerical simulations see chapter 2.

4.3 Linear Systems Analysis

To compare IF dynamics across the regimes of model behavior, we took a

linear systems approach, measuring the gain and phase of the response to sinusoidal

perturbations in the input parameters µ(t) and σ2(t). We will use the subscript ‘0’

to denote the baseline value of the parameter (the ‘0th’ harmonic), and the subscript

‘1’ to denote the amplitude of the sinusoidal modulation (the 1st harmonic), except

in chapter 3 where the normalized 1st harmonic of the response is denoted n̂(ω)

following Fourcaud and Brunel’s notation [Fourcaud and Brunel, 2002].

To measure the gain and the phase of the response, we performed a Fourier

decomposition of the firing rate r(t) and found the dominant component of the
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response modulation r1(ω) cos(ωt+φ). Since the baseline firing rate r0 varies widely

over the range of parameters µ0 and σ2
0, we characterized the response gain as the

fractional change in firing rate from baseline, r1(ω)/r0, divided by the fractional

change in the input, µ1/µ0 or σ2
1/σ

2
0:

Gµ(ω) =
r1(ω)/r0
µ1/µ0

, (4.6)

Gσ2(ω) =
r1(ω)/r0
σ2

1/σ
2
0

. (4.7)

The response phase φ was calculated as the difference between the phase of the

input and response. Phase lags were assigned negative values and phase advances

positive values.

Since larger input perturbations can result in non-linear firing rate responses of

integrate-and-fire type models [Pressley and Troyer, 2006], we set input modulations

sufficiently small to stay within the linear regime of response, (µ1 to 0.0625 µA/cm2

and of σ2
1 to 0.0625 µA2msec/cm4; > 95% of response power at the input modulation

frequency).

The LIF acts like a low-pass filter to mean perturbations. The cutoff frequency

of the filter is calculated as the frequency at which the gain is reduced to 1√
2

times

the the low-frequency gain.
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4.4 Results

4.4.1 Range of Model Response

The two basic regimes of model behavior are illustrated in figure 4.1. In the

Random Regime, the membrane voltage follows a random walk below threshold (top

left). The distribution of voltages has a near Gaussian shape, with only slight distor-

tions due to the occasional spiking and reset (bottom left). In the Regular Regime,

the voltage is driven to suprathreshold levels and spiking is nearly oscillatory (top

right). The distribution of voltages is almost entirely confined between reset and

spike thresholds (bottom right). More probability is near threshold because the

voltage trajectories are slowed due to increases in the leak current as the membrane

is depolarized.

To illustrate the wide range of response dynamics that can be displayed by

a single LIF model, we simulated the effect of step-like increases in the mean and

variance of the input. The pre-step levels of the mean and variance (µ0 and σ2
0

respectively) were set so that the model was operating in the two basic regimes

of behavior (Fig. 4.2). In the left column, input levels are such that the model

shows Random Regime behavior (µ0 = 0.25 µA/cm2 and σ2
0 = 1.5 µA2msec/cm4);

in the right column the model operates in the Regular Regime (µ0 = 1.5 µA/cm2

and σ2
0 = 0.5 µA2msec/cm4). The top row shows the response to changes in the

mean current with the noise held fixed (∆µ/µ0 = 20%); the bottom row shows the

response to changes in the input variance (∆σ2/σ2
0 = 20%).
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Figure 4.1: Two regimes of behavior. Top: typical voltage traces. Left: Random

Regime; Right: Regular Regime. Bottom: typical probability density functions in

the two regimes.

4.4.2 Perturbations of the Mean

A common intuition is that the capacitive filtering of the membrane voltage

should carry over to firing rate dynamics, an intuition that is largely correct for

perturbations in the mean (but see Fig. 4.3; [Brunel et al., 2001]). As can be seen

in figure 4.3, the gain of the response is low-pass, roughly constant for low frequencies

and then decaying toward zero at higher frequencies.

However, when the the model is in the Regular Regime, the cutoff frequency is

systematically related to the steady-state firing rate (4.4 top right. Here the cutoff

frequency is measured as the frequency at which the gain is reduced to 1√
2

times

the low-frequency gain. Figure 4.3 also shows the phase of responses in both the

Regular and Random Regime. These will be discussed after the presentation of the
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Figure 4.2: Response to step changes in input parameters at time = 0 msec. Top:

increases in the mean input. Bottom: increases in input variance. Left: Random

Regime; Right: Regular Regime. Firing rate dynamics depend strongly on the

regime of LIF behavior and on which parameter is increased.
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phase response for variance modulations.

An additional property of LIF response dynamics to perturbations in the mean

is the existence of resonances in the response. Early work by Knight [Knight, 1972a,

Knight, 1972b] revealed amplifications of the response when the mean of the input

is modulated at a frequency equal to the underlying firing rate of the neuron (the

firing rate when the mean and variance are constant in time). Such resonances

are commonly seen in oscillatory systems when driven at their natural frequency.

Accordingly, the resonances found for modulations of the mean occur in the Regular

Regime, where the firing is nearly oscillatory (figure 4.3). In the Random Regime,

where firing is unpredictable and the mean input is subthreshold, resonances are

not found.

4.4.3 Perturbations of the Variance

The LIF model responds quite differently to modulations in the variance than it

does to modulations in the mean input current (Fig. 4.5). Perhaps the most striking

difference is the large gain at high frequencies [Lindner and Schimansky-Geier, 2001].

The underlying reason for large high-frequency gain becomes clear if one examines

the multiplicative nature of the firing rate (equation (4.5)). The firing rate r(t) is

proportional to the instantaneous variance, σ2(t), times the probability lying within

a boundary layer just below threshold, B(t) (see Methods). For very high-frequency

modulations, the integrative nature of membrane dynamics limits shifts in the volt-

age distribution, causing B(t) to remain essentially constant. Therefore, in the
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Figure 4.3: LIF response to perturbation in the mean. Top: gain; Bottom: phase.

Left: Random Regime; Right: Regular Regime. The gain is constant at low frequen-

cies and decays to zero in the high-frequency limit. Black dots show the steady-

state firing frequency. The phase shift goes to −45◦ in the high-frequency limit

[Brunel et al., 2001]. Squares on the phase curves mark the peak frequency of the

resonance in the gain curve.
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high-frequency limit, the firing rate is proportional to the instantaneous variance,

σ2(t). Proportionality implies that a fractional change in the variance leads to the

same fractional change in firing rate. It follows that

lim
ω→∞

Gσ2(ω) = 1. (4.8)

Figure 4.5 also shows that the gain increases toward 1 at high frequencies in the

Regular Regime and decreases toward 1 in the Random Regime. The boundary be-

tween the two happens when µ0 > 1µA/cm2, ie when the mean input is just sufficient

to depolarize the cell to threshold (fig. 4.5 top). Thus the division between increas-

ing or decreasing gain for high frequencies corresponds to a common dividing line

between the Random and Regular Regimes of LIF behavior [Bulsara et al., 1996].

At very low frequencies, we can assume that the firing rate can be approxi-
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Figure 4.5: LIF response to perturbation in the input variance. Panels and markings

same as fig. 4.3. In both regimes, the gain stays finite at high frequencies, and the
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gain goes to zero in the Regular Regime (“high-pass” behavior), but stays large in

the Random Regime (“all-pass” behavior).
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mated by the steady-state behavior for the current value of the input. Let r̃(σ2)

denote the steady-state firing rate for input with constant variance σ2. (The mean

input is assumed fixed at µ0.) Then for small and slow changes in the variance

r(t) = r̃
(
σ2

0 + σ2
1 cos(ωt)

)
= r̃

(
σ2

0

)
+ σ2

1 cos(ωt)
∂r̃

∂σ2
(σ2

0) (4.9)

and

lim
ω→0

G(ω) =
r1/r0
σ2

1/σ
2
0

=
(σ2

1∂r̃/∂σ
2) / (r̃(σ2

0))

σ2
1/σ

2
0

=
∂r̃

∂σ2
(σ2

0)
σ2

0

r̃(σ2
0)
. (4.10)

Therefore, the gain will be proportional to ∂r̃/∂σ2, the derivative of the steady-

state firing rate as a function of the variance. In the Regular Regime, changing the

variance has little effect on the firing rate since the mean return time to threshold

depends mostly on mean input current [Salinas and Sejnowski, 2002]. Thus, ∂r̃/∂σ2

is small and the gain is near zero (Fig. 4.5, top right). In the Random Regime,

increasing the variance leads to a significant increase in the probability of a random

crossing threshold event, and the low-frequency gain is finite (Fig. 4.5, top left).

To further understand the low-frequency gain, we again exploit the multiplica-

tive decomposition of the firing rate. We write r̃(σ2) = (R2σ2/2τ 2
m)B̃(σ2), where

the second term is the boundary layer term at equilibrium for input with variance

σ2. Then

∂r̃

∂σ2
(σ2

0) =
R2B̃(σ2

0)

2τ 2
m

+
R2σ2

0

2τ 2
m

∂B̃

∂σ2
(σ2

0) (4.11)

lim
ω→0

Gσ2(ω) = 1 +
R2σ4

0

2τ 2
mr̃(σ

2
0)

∂B̃

∂σ2
(σ2

0). (4.12)

Since the high-frequency gain is equal to 1, we conclude that the low-frequency gain

is larger than the high-frequency gain when ∂B̃/∂σ2 > 0 and vice versa.
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To interpret this result, first consider a model operating in the Regular Regime.

The drift toward threshold dominates the dynamics, and as long as the model stays

in the Regular Regime, changing the variance will have little effect on the steady

flow of trajectories entering the subthreshold boundary layer. However, increasing

the variance does cause individual trajectories to cross threshold and leave the sub-

threshold boundary layer with greater probability, i.e. it increases R2σ2(t)/(2τ 2
m).

Since changing the variance does not change the overall firing rate, it must be the

case that increasing the variance causes a decrease in the number of trajectories

within the boundary layer, i.e. ∂B̃/∂σ2 < 0.

Now consider a model operating in the Random Regime. The mean input is

significantly below threshold and spikes occur only for fluctuations into the tails of

the voltage distribution (eg fig. 4.1, bottom left). An increase in input variance will

immediately increase the firing rate by increasing the probability of jumping from the

boundary layer across threshold, but will also eventually lead to a broadening of the

voltage distribution. If the model is far into the Random Regime, the broadening

of the distribution will lead to a greater number of trajectories remaining the in

the boundary layer below threshold, even in the face of greater rate of jumping

across threshold. This net increase in the density within the boundary layer can

be written as ∂B̃/∂σ2 > 0, and indicates that subthreshold random behavior has

become dominant relative to the effects of spiking and reset.

The parameter dependence of the high and low-frequency gain in response to

modulations in the variance are summarized in figure 4.6. The contour lines indicate

level curves of the low-frequency gain, and darker gray indicates parameters where
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this frequency gain exceed the high-frequency gain (ie low-frequency gain > 1). For

these parameters, ∂B̃/∂σ2 > 0 and Random Regime behavior dominates. We pro-

pose that parameters in the white area between these extremes should be considered

as an intermediate regime between Regular and Random spiking behavior. The light

gray area shows parameter values (Rµ0 > 10 mV ) leading to high-frequency gains

that approach the limiting value of 1 from below (Fig. 4.5, top right). These values

are in the Regular Regime.
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Figure 4.6: Contour plot of low-frequency gain due to variance modulations. Region

where gain is greater than 1 is the Random Regime, where LIF acts like an all-pass

filter (dark grey). Region where Rµ0 > 10 mV (suprathreshold mean input) is

the Regular Regime, where the low-frequency gain is small and the LIF acts like a

high-pass filter (light grey). White region signifies an Intermediate Regime.
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4.4.3.1 Resonances

Perturbations in the variance lead to resonances, in which response gain is

amplified over a specific range of frequencies [Lindner and Schimansky-Geier, 2001].

These resonances differ significantly from the those caused by modulating the mean

input current. For the mean, the resonances are found only in the Regular Regime

and the peak of the resonance closely tracks the oscillation frequency of the under-

lying system (i.e. the firing rate) at steady-state (Figs. 4.3 and 4.7, solid line). For

the variance, the peak frequency of the resonance in the Regular Regime is consis-

tently higher than the mean oscillation frequency, with this difference increasing as

one moves more toward Random Regime behavior (Fig. 4.7, dashed line). Further-

more, modulating the variance also leads to resonances in the Random Regime, a

phenomenon that is completely absent for modulations of the mean, and the mean

oscillation frequency is outside of the resonance band.

4.4.4 Phase Response

Although we have focused on the gain, a complete characterization of linear

response properties requires a specification of the phase lead or lag at each fre-

quency. The firing rate responses of LIF neurons to modulations in the mean are

consistent with those of a leaky integrator (fig. 4.3C): at low frequencies the input

changes much more slowly than the membrane time constant and so the response

follows the signal with near zero phase difference; at higher frequencies, the process

of integration takes time to build up, leading to a phase lag (negative difference)
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between signal and response. In the Regular Regime, the overall trend is the same,

but with additional phase shifts near the resonance frequency (fig. 4.3D). For input

frequencies slightly slower than the resonance frequency, the system tends to “speed

up” the output, leading to more positive phase differences. For inputs slightly faster

than the resonance frequency, the system response is “slowed down” leading to more

negative phase differences.

For variance modulations in the Random Regime, the phase response is dom-

inated by a transition from positive to more negative phase shifts, with the transi-

tion occurring near the peak of the broad resonance found in this regime (fig. 4.5C,

squares). Consistent with gain curves that pass all frequencies, phase shifts are

small overall. Parameters leading to more low-pass gain curves have more negative

phase shifts and those leading to more high-pass behavior have more positive phase

shifts.

In the Regular Regime, phase responses have an overall positive shift consistent

with high-pass behavior (fig. 4.5D). However, a prominent positive peak in the phase

curve is seen at intermediate to high frequencies, with smaller phase shifts at higher

frequencies. On top of this overall trend, additional positive and negative phase

shifts surround the resonance peaks.

4.5 Discussion

This chapter considers how the parameters of time-varying stochastic synaptic

input affect the response dynamics of the leaky integrate-and-fire model. Two fea-
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tures of the input were varied: the baseline input parameter values, which determine

the underlying response regime, and the parameter used to encode the signal, either

the mean or the variance of the input. Other researchers have provided results that

account for a subset of possible combinations of these parameters. In this work, we

surveyed the response dynamics to changes in both the mean and the variance of

the input over a wide range of baseline input parameters to develop a comprehensive

picture of LIF dynamics. We found that LIF response differed depending not only

on which parameter encoded the signal but also the underlying regime of behavior.

Lindner and Schimansky-Geier [Lindner and Schimansky-Geier, 2001] investi-

gated LIF response when the signal was encoded in both the mean and the vari-

ance of the input and then analyzed the response components separately. However,

their focus was determining if stochastic resonances appeared for both encoding

parameters, and since stochastic resonance occurs for weak (subthreshold) signals,

their analysis only included Random Regime baseline parameters. They found that

stochastic resonances occurred for both encoding parameters and that the overall

peak response to the noise-encoded signal occurred at a finite frequency. Addition-

ally, they determined that LIF response was finite for arbitrarily fast signals, if the

signal was encoded in the variance. Their figures show the all-pass behavior of the

LIF to variance encoded signals in the Random Regime and the Random Regime

resonances, that we analyze and confirm in this work. We have extended their re-

sults by analyzing LIF response to noise-encoded signals in the Regular Regime. We

find that in the Regular Regime, LIF response is still finite to arbitrarily fast signal

changes, when the signal is encoded in the variance, however, the model acts like a
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high-pass filter, with the low-frequency gain nearly zero for very Regular baseline

parameters.

The low-frequency response can be used to develop a taxonomy of response

regimes, with a higher low-frequency gain to noise-encoded signals suggesting Ran-

dom Regime behavior and near zero low-frequency gain suggesting Regular Regime

behavior, with threshold mean input acting as a loose boundary between regimes.

Our analysis of the noise-encoded signals in the Random Regime shows that increas-

ing the noise amplitude increases the spread of the pdf, causing a larger amount of

trajectories in the boundary layer near threshold, even as more are jumping across.

The increased number of trajectories in the threshold boundary layer causes the

finite low-frequency gain in the Random Regime. Further analysis shows that not

only does the LIF act all-pass, but low-frequency response can be higher than the

high-frequency responses. We have shown that in the Regular Regime, the increase

in noise amplitude decreases the amount of trajectories in the boundary layer, caus-

ing a decreasing low-frequency response as we move farther into the Regular Regime.

For perturbations in the mean, Brunel and colleagues studied LIF response

for baseline input parameters that accounted for both regimes of neuron behavior

[Brunel et al., 2001, Fourcaud and Brunel, 2002]. They showed that the LIF acts

like a low-pass filter to mean-encoded signals and that the gain decays as 1√
ω

after a

cutoff frequency, with the phase of response shifting as much as −45◦. Here we show

that the cutoff frequency is systematically related to the steady-state firing rate.

And in the Regular Regime, the model responds faster than expected from filtering

due to the membrane time constant. Additionally, Brunel confirmed Knights results
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[Knight, 1972a] that for perturbation frequencies that are multiples of the steady-

state firing rate, resonances exist in the gain and these resonances decrease as the

baseline noise increases.

For noise-encoded signals, we also found resonances in the gain of the response.

Unexpectedly, these resonances peak at frequencies greater than the steady-state fir-

ing rate. The difference of the peak of the resonance from the steady-state firing rate

increases as the baseline parameters become less “Regular”, with lower mean rates

and higher noise. This difference suggests the mechanism for generating resonances

for noise-encoded signals is is different from the that which causes resonances for

mean-encoded signals. We hypothesize that there are two mechanisms, one that

cause the resonances seen in the Random Regime for noise-encoded signals, and

the usual mechanism first described by Knight that causes resonances for mean-

encoded signals. We speculate that both of these mechanisms combine to create the

resonances in the Regular Regime for variance-encoded signals.

Our overall analysis suggests that the differences in LIF response emanate from

the product of two terms in the firing rate equation, the first term is a weighted

version of the input variance and the second term is proportional to the amount

of probability in a boundary layer near threshold and is altered more slowly as the

mean and variance perturbations change the shape of the pdf.
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Chapter 5

The Effect of Synaptic Dynamics on LIF Response

5.1 Introduction

In this chapter, we investigate how the inclusion of synaptic dynamics affects

the response of the LIF model. We assume that neurotransmitter accumulates on

receptors much faster than it becomes unbound, and approximate synaptic currents

with an instantaneous rise and slower decay [Destexhe et al., 1998]. The unbinding

time course differs based on receptor type and typically falls in the range of 2-100

msec [Destexhe et al., 1998]. As a simplifying approximation, we ignore the rise time

of the current, which is caused by the time length of release of neurotransmitter from

the pre-synaptic neuron. Ignoring the rise time is feasible since it is much shorter

than the unbinding time.

We ask two questions about this model. First, how does the response to this

more realistic model (the 2D model), compare with the response of the LIF when the

input is modeled as having an instantaneous time course (the 1D model)? Second,

is the response to the 1D model, the limiting response of the 2D model, if we let the

decay time go to zero? To address these questions, we draw two comparisons. The

linear response dynamics of the 2D equation are governed by two linear filters, one

that takes pre-synaptic rates to current, and the other that takes current to firing

rate. The first comparison we draw is between the linear response of the 1D model
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to the linear response of the 2D model, considering the total transformation which

is also a linear filter that accounts for the full transformation from input rates to

output rates. But since the first transformation is a low-pass filter, which causes the

full transfer function to act as a low-pass filter, we factor out the first transformation

to see if synaptic dynamics affect the voltage response, based on something other

than the low-pass filtering of the current.

As in the previous chapter, we survey the response over the qualitatively dif-

ferent regimes of behavior, as well as for both mean and variance encoding. We note

that the firing rate equation of the 2D model is a product of two terms, one that

includes the current term, and the other which delineates the amount of trajectories

near threshold.

5.2 Setting Parameters for Comparison

The main goal of this chapter is to compare the linear response dynamics of

the LIF model with white noise currents:

τm
dV

dt
= −V + VL +RQS(t) (5.1)

to the response dynamics of the LIF model with finite synaptic dynamics:

τm
dV

dt
= −V + VL +RIs(t) (5.2)

τs
dIs
dt

= −Is +QS(t), (5.3)

where we often approximate the input spike train S(t) as a white noise process

S(t) = µs(t) + σs(t)η(t) (see Methods). Since synaptic dynamics lead to a two-
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dimensional state space, we refer to the latter model as the “2D” model, and to the

model with instantaneous synapses as the “1D” model.

As demonstrated in chapter 4, the response properties of the model are strongly

affected by the baseline level of input. Therefore, a reasonable model comparison of

the 1D and 2D models requires setting baseline levels so that the models operate in

similar firing regimes. To do this, we normalize the input parameters µ(t) and σ2(t)

such that the mean and variance of the voltage distributions will be the same for the

two models, in the absence of spiking (no threshold or reset). We note that without

threshold, the equations (5.1)-(5.3) are linear in the input S(t). Using S(t) = δ(t),

we find that the impulse voltage response for the 1D model is v1D(t) = RQ
τm
e−t/τm .

For the 2D model, the current impulse response is f(t) = Q
τs
e−t/τs , which leads to a

voltage impulse v2D(t) = RQ
(τm−τs)

(
e−t/τm − e−t/τs

)
where we have assumed τm > τs.

With these impulse responses, we can write the voltage response in integral

form:

V (t) = VL + v ∗ S(t) = VL +

∫ 0

−∞
S(t′)v(t− t′)dt′, (5.4)

where ∗ denotes convolution and v is the voltage impulse response. Now let S(t) =

µs(t) + σs(t)η(t) be a white noise process with drift. Since the mean of a weighted

sum of stochastic variables is the sum of the weighted means, we have

µV (t) = VL +

∫ 0

−∞
µs(t

′)v(t− t′)dt′ = VL + v ∗ µs(t). (5.5)

Similarly, for independent random variables, the variance of the weighted sum is the

sum of variances, weighted by the square of the original weighting factors. Therefore,

σ2
V (t) =

∫ 0

−∞
σ2

s (t
′)v2(t− t′)dt′ = v2 ∗ σ2

s (t). (5.6)
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We can use these equations to derive the mean and variance of the voltage distri-

bution for baseline inputs having a constant mean µs and variance σ2
s . For the 1D

model,

µV =

∫ 0

−∞
dt′µs

RQ

τm
e−t′/τm = µsRQ (5.7)

σ2
V =

∫ 0

−∞
dt′σ2

s

R2Q
2

τ 2
m

e−2t′/τm = σ2
s

R2Q
2

2τm
. (5.8)

For the 2D model,

µV =

∫ 0

−infty

dt′µs
RQ

τm − τs

(
e−t′/τm − e−t′/τs

)
= µsRQ (5.9)

σ2
V =

∫ 0

−∞
dt′σ2

s

R2Q
2

(τm − τs)2

(
e−t′/τm − e−t′/τs

)2

= σ2
s

R2Q
2

2 (τm + τs)
. (5.10)

The same level of mean input, µs1D = µs2D, leads to the identical mean in the

voltage distributions, µV 1D = µV 2D. To obtain the same variance of the voltage,

σ2
V 1D = σ2

V 2D we set

σ2
s2D = σ2

s1D

τm + τs
τm

. (5.11)

5.3 Linear Response Properties

In this chapter, we make two distinct comparisons between the 1D and 2D

LIF models. First, we compare the overall transfer function that takes time-varying

input parameters to time-varying output firing rate. For small modulations in the

input, this transformation will be linear and we let f be the linear filter converting

input modulations to output rate modulations: r(t) = (S ∗ f)(t), where we abuse

notation slightly by using S(t) to denote modulation in the either input parameter,

i.e. S(t) = µs(t) or S(t) = σ2
s (t). To characterize this transformation we take

61



Fourier transforms and apply the convolution theorem [r](ω) = [S][f ](ω), where we

use [Z](ω) to denote the fourier transform of the function Z(t). In practice, we use

numerical simulations to obtain [f ](ω) = [r](ω)/[S](ω). In all figures we normalize

the gain by the baseline rates, i.e. we plot [f ](ω)S0/r0.

For the 2D model, we can view the transformation from input modulations to

output rates as a two step process

S(t)
f−→ r(t) = S(t)

g−→ I(t)
h−→ r(t). (5.12)

The transformation g is the simple exponential filtering described by equation (5.3).

Low gain at high frequencies for the 2D model may simply be due to the low-

pass nature of the filtering from input to synaptic current, rather than a difference

in the way the 1D and 2D models convert synaptic current to output spikes. To

examine differences between the two models that are specific to this second trans-

formation, we note that for small modulations, all of the transformations of equa-

tion (5.12) are linear with f = h ∗ g. Again using the convolution theorem, we

write [h2D](ω) = [f2D](ω)/[g2D](ω). We then normalize this filter by baseline val-

ues and plot ([f2D](ω)/[g2D](ω)) (I0/r0) where I0 = Qµs0 for mean modulations and

I0 =
Q

2
σ2

s0

2τs
for variance modulations.

5.4 Mean Perturbations

In this section, we compare the linear response dynamics of the 1D and 2D

models in response to modulations in the mean input. Like the 1D model, the 2D

LIF model displays low-pass filtering behavior to modulations in the mean input
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rate (figures 5.1 and 5.2 left panels). However, the two filters display different phase

behavior in the high-frequency limit, with phase shifts approaching −45◦ for the 1D

model, and −180◦ in the 2D model.

Next we compare the two models after factoring out the direct effects of synap-

tic filtering in the 2D model (figure 5.1 middle and figure 5.2 middle). A major

difference under this comparison is that the high-frequency gain is finite and flat for

the 2D model, instead of decaying to zero as it does for the 1D model and for the

full 2D model response. A second difference is that the overall filtering properties

of the 2D model are regime dependent. In the Random Regime, the low-frequency

gain is more than twice as large as the high-frequency gain for τs = 2. As the

baseline mean input values become even more sub-threshold (not pictured), the

high-frequency gain becomes even smaller, suggesting that neurons in the Random

Regime respond better to slow mean input changes. Here the response is practically

low-pass as it is for the 1D model. Conversely, in the Regular Regime, the model

acts all-pass and interestingly, the high-frequency gain can plateau at a level even

higher than the low-frequency gain (figure 5.1 middle and figure 5.2 middle).

As for the 1D model, resonances for modulations in the mean input only occur

in the Regular Regime where the model acts more like an oscillator (figure 5.1

bottom). The resonance peaks are smaller for the 2D model, and decrease with

increasing τs. However, the bandwidth of the resonances is wider in the 2D model

than in the 1D model.

Finally, the transformation from current to rate in the 2D model has much

smaller phase shifts across frequency, and these approach zero at high frequencies.
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Figure 5.1: Gain curves for 2D model, τs = 2, 5 and 1D model when the

mean of the input is modulated. Top: Random Regime (µ0 = 0.75µA/cm2

and σ2
0 = 3µA2msec/cm4); Bottom: Regular Regime (µ0 = 1.5µA/cm2 and

σ2
0 = 1µA2msec/cm4). Left: Full response; Middle: Response after accounting

for current transformation; Right: Low-frequency response normalized to one.
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Figure 5.2: Phase curves for 2D model, τs = 2, 5 and 1D model when the

mean of the input is modulated. Top: Random Regime (µ0 = 0.75µA/cm2

and σ2
0 = 3µA2msec/cm4); Bottom: Regular Regime (µ0 = 1.5µA/cm2 and

σ2
0 = 1µA2msec/cm4). Left: Full phase shift; Right: Phase shift after account-

ing for current transformation.
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In contrast, high-frequency phase shifts go to −45◦ for the 1D model and for the full

2D transformation. These results are in agreement with those found by Fourcaud

and Brunel (2002), using a model where the mean-encoded modulations were not

filtered through the synapse [Fourcaud and Brunel, 2002].

5.5 Variance Perturbations

Modulating the input variance reveals even greater differences in the behavior

of the 1D and 2D models. The most obvious difference is the fact that amplitude of

the entire gain curve is markedly reduced for the 2D model in the Regular Regime

(figure 5.3 bottom). For very Regular baseline parameters, the high-frequency gain

goes to zero for all values of τs (not shown). This result holds for the transformation

from input current to firing rate, as well as for the full transformation from input

rates to output rates. Therefore, this gain reduction is not simply due to the low-

pass filtering of the input by the synaptic dynamics. Although not as extreme,

the 2D model also shows a marked reduction in gain at high frequencies in the

Random Regime (figure 5.3 top). Again, this effect persists even after dividing out

the low-pass direct effect of synaptic filtering.

The resonance behavior of the 2D model is qualitatively similar to the 1D

model. Resonances occur in both the Random and Regular Regimes, and the peak

of the resonances occurs at frequencies that are higher than the steady-state firing

rate with this difference increasing with increasing noise dominance (figure 5.3). We

speculate that, similar to the 1D model, distinct mechanisms are responsible for
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creating resonances to mean vs. variance modulations.
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Figure 5.3: Gain curves for 2D model, τs = 2, 5 and 1D model when the vari-

ance of the input is modulated. Top: Random Regime (µ0 = 0.75µA/cm2

and σ2
0 = 3µA2msec/cm4); Bottom: Regular Regime (µ0 = 1.5µA/cm2 and

σ2
0 = 1µA2msec/cm4). Left: Full response; Right: Response after accounting for

current transformation.

5.6 Discussion

Although many of the filtering properties of the 2D LIF model match those

of the corresponding LIF model with instantaneous synapses, there are significant

differences. As highlighted by Fourcaud and Brunel (2002), the synapses with finite
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Figure 5.4: Phase curves for 2D model, τs = 2, 5 and 1D model when the vari-

ance of the input is modulated. Top: Random Regime (µ0 = 0.75µA/cm2

and σ2
0 = 3µA2msec/cm4); Bottom: Regular Regime (µ0 = 1.5µA/cm2 and

σ2
0 = 1µA2msec/cm4). Left: Full phase shift; Right: Phase shift after account-

ing for current transformation.
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time constant in the 2D model lead to a finite high-frequency response to modula-

tions in the mean [Brunel et al., 2001, Fourcaud and Brunel, 2002]. It also appears

that the gain is flat across a range of high frequencies in the 2D model, independent

of τs. Smaller values of τs are needed to confirm this conjecture. The difference in

the high-frequency responses of the two models can be explained if we consider the

two firing rate equations. For the 1D model, the mean only enters the firing rate

equation through changes in the density of solutions lying with the boundary layer

near threshold (4.5). Low-pass membrane filtering prevents changes in the mean

from having immediate changes in the boundary layer and hence having any effect

on the firing rate for high-frequency modulations. However, in the 2D model, the

mean current is a component of the voltage flux and hence changes in the mean

current have an immediate effect on the firing rate.

Here we show that the gain in response to variance modulations is reduced

at high frequencies relative to the 1D model, and that there is a particularly large

attenuation of the gain in the Regular Regime. In the Regular Regime, the supra-

threshold mean input forces the membrane potential towards threshold and the

model acts like an integrator [Lundstrom et al., 2008]. The variance has little affect

on the baseline firing rate and we would expect that small changes in the vari-

ance would also evoke little response. We conjecture that the large high-frequency

response of the 1D model is due to the artificial boundary conditions imposed to

prevent the flux from becoming infinite. Because of the zero density threshold con-

dition, the firing rate equation becomes directly proportional the variance in the

Regular Regime. We believe the boundary conditions overemphasize the influence
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that the variance has on the firing rate. Furthermore, these qualitatively different

results between models suggest that the behavior of the 2D model does not approach

that of the 1D model as τs goes to zero. Future work endeavors to determine a 1D

model that is the limit of the 2D model.
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Chapter 6

Integrate-and-Fire Nonlinear Response

6.1 Introduction

In their 2003 work, Fourcaud-Trocmé et al formulated the exponential integrate-

and-fire (EIF) neuron model, whose peri-threshold voltage dynamics more closely

matched models containing an active sodium current [Fourcaud-Trocmé et al., 2003].

They investigated the response of the EIF and other related models to sinusoidal

inputs of varying amplitude and claimed that the model was well-approximated by

a linear low-pass filter, for a range of inputs. The claim of linearity was based only

on the fact that at each frequency, the gain of the response was independent of

the amplitude injected. To determine if the response of the EIF model continued

to be linear for a broader range of inputs, we calculated the temporal response to

square-wave currents constructed with a range of amplitudes and a range of base-

line currents. In a linear model, the onset and offset responses should be identical

except for the sign. Our basic finding is that onset responses show a slower initial

response but more rapidly reach the new equilibrium rate. We also compared the

onset and offset response of the EIF model to the responses of the leaky integrate-

and-fire (LIF) model. Generally, the EIF and LIF showed similar response patterns.

The one substantial difference was that onset responses of the EIF model showed

a greater delay relative to the LIF model. Finally, in a fully linear system, the re-
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sponse to a sum of inputs equals the sum of the responses to the individual inputs.

To investigate this, we performed a Fourier analysis of the square-wave input and

compared the resulting gain and phase calculated from the separate presentation

of the component sinusoidal inputs. At higher frequencies, the gain for the square

wave inputs was reduced relative to the sinusoids, while the phase of the response

was remarkably similar across frequencies.

6.2 Results

To assess the nonlinear components of response, we focused on input currents,

I(t), containing sharp onset and offset transients. In particular, the majority of

our simulations used a 5 Hz square-wave input current. Initially, we compared

the instantaneous firing rate of the model for the onset period and offset period,

averaging 750,000 trials over bins of 1 msec. Figure 1A illustrates the histogram

obtained from the EIF model for a baseline current of 0.25µA/cm2 and a 5 Hz

square-wave input of 0.5µA/cm2 amplitude. If the response of the EIF was linear,

the onset and offset response should have the same shape. However, the time course

of these responses differs significantly (figure 1B). From these simulations, it appears

that there are three stages of the response of EIF models to a transient step in

input current. First, there is a period from one to several milliseconds in which the

response to an onset transient is delayed. While rates do increase slightly during

this period, the increase is slow. The response to the offset transient shows no such

delay, and firing rate immediately shows a rapid decline. In the second stage, the
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response to both onsets and offsets changes rapidly, accounting for roughly 80%

or more of the total change in rate. For the offset response, there is no noticeable

distinction between these first two stages. In the third stage, the change in rate slows

and eventually asymptotes at the steady state firing rate corresponding to the new

level of current. It appears that the transition into this third, slowly changing stage

happens earlier in time for the offset responses, and these rates approach asymptote

more gradually. The response pattern for the LIF model is similar (figure 1C).

However, the onset response does not show a distinct delay phase. Rather, both

onset and offset responses change smoothly from baseline, but the onset response

changes with a smaller slope.
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Figure 6.1: (A) The PSTH of the response of the EIF model to a square-wave input

of 0.5µA/cm2 with a baseline current of 0.25µA/cm2. (B) The onset and offset

responses are depicted together for comparison. Inset shows the first 3 msec of the

response. (C) The onset and offset responses for the LIF model to a square-wave

input of 0.5µA/cm2 and a baseline current of 0.25µA/cm2. Inset shows the first 2

msec of the response

73



6.2.1 Parameter Dependence - Qualitative Results

To characterize the dependence of the onset/offset difference on the amplitude

of the input changes, we held the baseline current constant and varied the amplitude

of the square-wave currents. As expected, for all baseline currents the difference

between the onset and offset responses grew as the amplitude of the square-wave

was increased. The case where I0 = 0.25µA/cm2 is delineated in figure 6.2A and

6.2C.

Next, we varied the baseline current while holding the amplitude of the square-

wave current constant. Figure 6.2B and 6.2D depict the case where the baseline is

0.5µA/cm2 and the amplitude of the square-wave is varied from 0 to 0.5µA/cm2.

The slopes of the initial response for the onset and offset differ less as the baseline

current is increased. However, as the baseline current is increased, the neuron moves

between the Random Regime, in which the mean current is sub-threshold and spikes

are driven by random threshold crossings, and the Regular Regime in which the mean

current is above threshold and the model produces regular trains of action potentials

as the voltage is integrated up to threshold [Abeles, 1991, Troyer and Miller, 1997].

As the neuron moves into the Regular Regime, its response to a step change causes

a predilection for spiking synchronously, creating an oscillation in the firing rate

(figure 6.2B,D last box) [Gerstner, 2000]. It is unclear whether an over-damped

version of this oscillation is related to the faster approach to the new firing rate

demonstrated in the onset responses across the range of input parameters.
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Figure 6.2: (A)The onset vs. offset responses for the baseline current I0 =

0.25µA/cm2. The amplitude of the square-wave is varied from 0.2 to 0.8µA/cm2.

The difference in the onset and offset responses grows as the amplitude of the square-

wave grows. (B) The onset vs. offset responses for square-wave current with ampli-

tude 0.5µA/cm2 and baseline currents varying from 0.25 to 1µA/cm2. (C) Same as

A except for the LIF instead of the EIF model. (D) Same as B except for the LIF

instead of the EIF model.
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6.2.2 Parameter Dependence - Quantitative Results

To more systematically examine how the response changes to changes in the

amplitude and baseline of the input, we fit the onset and offset curves with the

two-parameter hyperbolic ratio:

f(t) =
tn

tn + cn
. (6.1)

To enable the fit, we normalized the curves by dividing by the difference in equilib-

rium firing rates. The c parameter is most associated with the delay: time t equals c

marks the time at which responses are midway between the new and old rates. The

n parameter is associated with the steepness of the response, with a larger value of

n meaning a steeper response function. When the regime starts switching to the

Regular Regime, the response exhibits synchrony effects and this function no longer

fits well. However, even though the function cannot fit the oscillations seen in this

regime, it still fits the initial phases of the response, as well as doing a reasonable

job of characterizing the overall approach to the new firing rate.

Figure 6.3 shows the values of the best-fit parameters as a function of square-

wave amplitude for both low (dashed) and higher (solid) levels of the baseline cur-

rent. The plots on the left show that increasing the amplitude affects the delay

parameter c in opposite directions, increasing the delay for onset responses and

reducing the delay for offset responses. Similar patterns are seen for high and

low baseline simulations in both the EIF and LIF models, although high baseline

currents and the LIF model are associated with lower delay overall. Increasing am-

plitude also causes an increasing difference in the steepness parameter n for both
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the EIF and LIF models at high and low gain (right). However, unlike the delay

parameter, changes in the steepness parameter are much more pronounced for the

onset response; the offset response shows little change in n across parameters.
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Figure 6.3: (A) The EIF model’s onset and offset responses are fit with equation

6.1 and the parameters of f(t) are plotted for square-wave currents with amplitudes

varying (x-axis) from 0.2 to 0.8. The parameters are plotted for 0µA/cm2 (dotted

line) and 0.25µA/cm2 (solid line) baseline currents. (B) Same as A for the LIF

model.

6.2.3 Fourier Analysis

Finally, we disassembled the square-wave input and resulting output into their

Fourier components and calculated the gain and phase for each component. We then

presented the sinusoidal components individually and calculated the gain and phase.
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The comparison between the two calculations for a baseline current of 0µA/cm2 is

shown in figure 6.4. For the model to act linearly, the response of the sums of inputs

should be equal to the sum of the responses of the inputs. For low frequencies,

the gain and phase for square-wave and sinusoidal inputs are very similar. But

as the frequencies increase above approximately 40 Hz, the gains of the responses

diverge. Near 100 Hz, the gain using the EIF model for square-wave inputs is nearly

25% lower than for the corresponding sinusoids and for the LIF model the gain is

around 10% lower for the square-wave components. (The low gain found at higher

frequencies resulted in less reliable measurements of gain and so these results are

not shown.)

6.3 Discussion

Our results indicate that the temporal response of both the EIF and LIF mod-

els have a significant nonlinear component. In particular, offset transients have a

more rapid onset followed by a slower decay as compared to onset transients. The

difference between the onset and offset responses increases as the amplitude of the

square-wave input is increased. Additionally, the gain due to the Fourier components

of the square-wave response do not match the corresponding gain of the response

to the sinusoids presented individually, especially for higher frequencies. With our

parameters, the difference becomes pronounced above about 40 Hz. Although linear

analyses can be a useful first step in characterizing the dynamic responses of model

neurons, these results argue for a cautious interpretation of the results. More com-
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components and corresponding sinusoidal inputs for a baseline of 0µA/cm2 and a

square-wave of 0.3µA/cm2. (B) Same as A for the LIF model.
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plete characterizations will require a parametric exploration of the dynamic range

over which the analysis is valid and/or an exploration of a wider range of stimuli

than simple sinusoids.

Our study using square-wave inputs revealed three basic nonlinearities in the

response of integrate-and-fire models. The most striking non-linearity is a delay in

the onset response of the EIF model. This delay is not seen during offset responses

or in either onset or offset responses of the LIF model. We speculate that this delay

relates to time it takes for trajectories to travel from the voltage to infinity to be

registered as a spike. The second basic nonlinearity is the slightly reduced slope in

the rapidly changing phase of the response for onsets relative to offsets. In the LIF

model, this is the main effect that makes the initial stage of onset responses slower

than offset responses. Finally, a third nonlinearity is seen that results in offset

responses returning more slowly to the new steady state firing rates than onset

responses. Currently, it is unclear whether these different stages of the response

should be considered distinct dynamical mechanisms, or whether they result from a

single dynamical process unfolding over time.
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Chapter 7

Conclusion

In this dissertation, we endeavored to delineate how the baseline pre-synaptic

input values and the choice of encoding parameter (either the mean or variance of

the input) affect neural response time. We also examined how including synaptic

dynamics in the model alters the response dynamics. We focused on integrate-and-

fire models (IF), since they are the simplest models of neuronal membrane dynamics

that incorporate the essential features of signaling. Due to a simplifying approxi-

mation in the model of pre-synaptic input rates, we were able to study the response

the using the Fokker-Planck framework [Ricciardi, 1977, Risken, 1989, Knight, 2000,

Nykamp and Tranchina, 2000, Brunel, 2000, Fourcaud and Brunel, 2002].

We began by studying the response of the simplest IF model, the perfect

integrate-and-fire model (PIF), which provides a good approximation of membrane

dynamics when the mean input current is suprathreshold. Building on Knight’s

seminal work, which showed that the response of a population of PIF neurons is

a scaled replica of a deterministic signal [Knight, 1972a], we used linear response

theory to evaluate the response of the PIF to a stochastic signal. Fourcaud and

Brunel have previously shown that the PIF acts like a low-pass filter for mean-

encoded stochastic signals [Fourcaud and Brunel, 2002]. Following their derivation,

we analytically solved for the linear response of the PIF to sinusoidal perturbations
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in the variance. We found that the PIF acts like a high-pass filter when the variance

was modulated. Moreover, variance perturbations elicit a response which is the

exact compliment of the PIF response to the same size mean perturbations.

We exhibited that for the PIF, mean and variance perturbations elicit com-

plimentary linear population responses. A common assumption is that pre-synaptic

spike trains are Poisson distributed. Under this assumption, the mean and variance

of the pre-synaptic rates will change proportionally. Therefore by perturbing the

mean and variance concurrently, we found that the PIF response is a scaled replica

of not only deterministic signals but of stochastic signals as well.

To survey neural response over a wider set of baseline mean input values, we

next investigated the response properties of the leaky integrate-and-fire model (LIF),

which better approximates membrane dynamics. Since the LIF is known to act very

differently based on baseline input parameters values, we surveyed the response over

a wide space, making sure to evaluate response for input parameters that put the

model in qualitatively different response regimes. We did so for both mean and vari-

ance perturbations, to deduce how encoding the signal in the different parameters

affected the response. Other researchers had provided partial results to this problem

[Knight, 1972a, Lindner and Schimansky-Geier, 2001, Fourcaud and Brunel, 2002]

but we strived to produce a compendium of LIF response.

We found that LIF response is dependent on both our choice of encoding

parameter as well as the baseline input values. For variance perturbations, LIF

filtering is regime dependent, all-pass in the Random Regime and high-pass in the

Regular Regime. Because of this, we proposed a boundary between regimes based
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on the low-frequency gain of the response due to variance perturbations.

When the signal was encoded in the variance, the high-frequency gain is equal

to one, independent of baseline parameters. The finite high-frequency response to

variance perturbations stems directly from the form of the firing rate equation, which

is a product of two terms, the first of which is a weighted version of the variance

and the second is a measure of the amount of trajectories near threshold. For high-

frequency perturbations, the firing rate changes instantly due to the first term in

the product, while the second term stays fixed.

Like the PIF, the LIF acts low-pass for mean perturbations [Brunel et al., 2001,

Fourcaud and Brunel, 2002]. We showed that the cutoff frequency of the low-pass

filter is systematically related to the steady-state firing rate. For the PIF, a natu-

ral cutoff frequency is the inverse of the time constant τe =
σ2
0

2µ2
0
. Future work will

investigate how the cutoff frequency of the LIF is related to this new time constant.

Contrasting the PIF response to perturbations in the mean, the LIF shows

resonances in the gain, as seen by Knight in his work using deterministic input

[Knight, 1972a, Fourcaud and Brunel, 2002]. These resonances exist only in the

Regular Regime and occurr at the steady-state firing rate, behavior expected from

oscillatory mechanisms [Knight, 1972a, Brunel et al., 2001, Fourcaud and Brunel, 2002].

The addition of background noise reduces the size of the resonances. As for mean

perturbations, variance perturbations elicit response resonances, but unexpectedly,

resonances occurr in the Random Regime where firing is nonoscillatory. Resonances

in the gain also occurr in the Regular Regime but as mean input decreases towards

threshold, the resonances peak at frequencies much higher than the steady-state fir-
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ing rate. For Random Regime resonances, the resonance peaks were also far above

the steady-state firing rate.

We conjecture that there are two mechanisms that cause resonances when the

signal is encoded in the variance. The first is the standard mechanism which causes

resonances in oscillatory systems driven at their intrinsic frequency. The second

mechanism may be solely responsible for Random Regime resonances and affect the

placement of the peak of resonances when mean input is near threshold. Future

work will analyze the dissected response, separating the flux due to drift and flux

due to diffusion into separate terms and determine the response due to each term,

trying to discover the mechanism behind Random Regime resonances.

Next we discussed how including synaptic dynamics in the model affected the

response of the LIF. We included an equation for synaptic dynamics that represented

the unbinding time course of neurotransmitter in the synapse [Brunel and Sergi, 1998,

Haskell et al., 2001, Fourcaud and Brunel, 2002, Moreno-Bote and Parga, 2004]. We

compared the 1D and 2D models using two measures. The 2D model exhibited low-

pass filtering for both mean and variance perturbations, partly due to the low-pass

synaptic filtering from input rates to synaptic current. To consider only the effect

of the transformation from current to output firing rate, we used the convolutions

that define the mean and variance of the current to divide out the effects of synap-

tic filtering. We found that under this reduced transformation, the LIF responds

to arbitrarily fast modulations in the mean, unlike the 1D model. Fourcaud and

Brunel found similar results in a model where the background input was filtered

through the synapse but the signaling input was directly injected into the neuron
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[Fourcaud and Brunel, 2002]. We also found resonances still arise, but are decreased

in size as τs increases. Furthermore, the resonances are wider than for the 1D model.

For variance changes, the model responded as an all-pass filter, when in the Ran-

dom Regime. Strikingly, for the Regular Regime, the gain of the response due to

variance perturbations is highly attenuated for all frequencies, and goes to zero

in the high-frequency limit. Neurons act like integrators in the Regular Regime,

with mean input predominantly determining return time to threshold. Therefore, it

makes sense that variance changes would not greatly affect the firing rate response

and little gain should be observed.

There are two components of our results that suggest that the 1D model is

not the limit of the 2D model as τs → 0. First, in the Regular Regime, all values

of τs elicit a flat high-frequency response to gain perturbations, as opposed to the

limiting zero response of the 1D model. Additionally, the markedly reduced gain in

the response due to variance perturbations suggests that the boundary conditions

in the 1D model overemphasize the role of the noise. It remains to be seen, if these

results will hold as the response is analyzed for values of τs much closer to zero. In

the 1D model, the threshold boundary condition (ρ = 0) was imposed to prevent the

flux from becoming infinite, which is a direct result of the white noise assumption.

We endeavor to discover boundary conditions that better approximate the flow of

trajectories over threshold, while keeping the model unidimensional. To do so, we

will have to alter our assumptions about the nature of the stochastic input, at least

in the boundary layer near threshold.

Finally, as a first step to understanding the full nonlinear response of neurons,
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we studied the time course of onset and offset responses to transient inputs. We

found that two IF models, although they behave slightly differently, both show

offset responses with a steeper initial slope, but a slower approach to equilibrium

than onset. Since these results exhibit nonlinearities in the response for realistic

input parameter values, we wonder how the nonlinearities affect the full response

to time-varying inputs. A future goal is to develop a better understanding of the

essential aspects of the nonlinear response of IF models and construct a reduced

model that incorporates these features as well as the linear features we have studied

here.

Our work provides a stepping stone for understanding the response of network

models composed of noisy neurons. We have shown that special care must be taken

to choose proper parameters to transmit signals between the nodes of the network,

with the input portraying the correct baseline and encoding mechanisms of the

system.
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Appendix A

Mathematical Formulations

A.1 Fokker-Planck Derivation

The following is a derivation of the 1D Fokker-Planck equation. It follows

a general derivation from An Introduction to the Theory of Random Processes

[Gikman and Skorokhod, 1965]. We will need the Chapman-Kolmogorov equation

(CK):

ρ(y, s; x, t) =

∫ ∞

−∞
ρ(y, s; z, u)ρ(z, u; x, t)dz, t < u < s, (A.1)

where ρ is the transition probability density function. The CK equation says that

the pdf of transitioning from x to y from times t to s can be expressed as the sum

over all the paths from x to z from times t to u and then from z to y in times u to s.

We will also use the following identity:

1 =

∫ ∞

−∞
ρ(z, t; x, t− ∆t)dz, ∆t > 0. (A.2)

To begin the derivation, assume the membrane voltage follows a diffusion

process, V , which satisfies 3 conditions:

1. Large changes in short amounts of time are improbable

2. A well-definied function exists for the infinitesimal mean (the drift term), f(V )
τm

3. A well-definied function exists for the infinitesimal variance (the diffusion
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term), R2σ2

τ2
m

.

As an example, for the LIF:

f(V ) = VL − V +Rµ(t). (A.3)

The drift and diffusion terms are determined from the SDE, equation (2.10). Math-

ematically the assumptions are:

lim
∆t→0+

1

∆t

∫

|y−V |>ε

ρ(y, t+ ∆t;V, t)dy = 0 (A.4)

lim
∆t→0+

1

∆t

∫

|y−V |≤ε

(y − V )ρ(y, t+ ∆t;V, t)dy =
f(V )

τm
(A.5)

lim
∆t→0+

1

∆t

∫

|y−V |≤ε

(y − V )2ρ(y, t+ ∆t;V, t)dy =
R2σ2

τ 2
m

. (A.6)

Note, all higher order moments are assumed to be zero.

Assume also, that there exist continuous partial derivatives of the transition

pdf: ∂ρ(y,s;x,t)
ds

, ∂
dV

[f(V )
τm

ρ(y, s; x, t)], and ∂2

dV 2 [
R2σ2

τ2
m
ρ(y, s; x, t)].

Then, let h ∈ C3((−∞,∞)) be a test function where, h(x) = 0 for V /∈

[A,B], h(A) = 0 = h(B) and h′(A) = 0 = h′(B). For any A and B satisfying

−∞ < A < B <∞,

∫ ∞

−∞
h(y)

∂ρ(y, s; x, t)

∂s
dy =

∂

∂s

∫ ∞

−∞
h(y)ρ(y, s; x, t)dy (A.7)

= lim
∆t→0

1

∆t

∫ ∞

−∞
h(y)[ρ(y, s+ ∆t; x, t) − ρ(y, s; x, t)]dy.

(A.8)

Apply the Chapman-Kolmogorov equations to (A.8) and get

= lim
∆t→0

1

∆t

[∫ ∞

−∞
h(y)

∫ ∞

−∞
ρ(V, s; x, t)ρ(y, s+ ∆t;V, s)dV dy −

∫ ∞

−∞
h(V )ρ(V, s; x, t)dV

]
.

(A.9)
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Then change the order of integration and apply equation (A.2):

= lim
∆t→0

[
1

∆t

∫ ∞

−∞
ρ(V, s; x, t)

∫ ∞

−∞
ρ(y, s+ ∆t;V, s)[h(y) − h(V )]dydV

]
. (A.10)

Then we expand h(y) about V:

= lim
∆t→0

1

∆t
[

∫ ∞

−∞
ρ(V, s; x, t)

∫ ∞

−∞
ρ(y, s+ ∆t;V, s)[(y − V )h′(V )

+
(y − V )2

2
h′′(V ) +

(y − V )3

6
h′′′(ξ)]dydV ]. (A.11)

Apply the assumptions for our diffusion process, equations (A.4) to (A.6):

=

∫ ∞

−∞
ρ(V, s; x, t)

[
f(V )

τm
h′(V ) +

1

2

R2σ2

τ 2
m

h′′(V )

]
dV. (A.12)

Integrate each term by parts (the second one twice) and apply the assumptions

about h(y), which makes all terms multiplied by h(y) evaluated at ∞ or −∞ equal

zero:

∫ ∞

−∞
ρ(V, s; x, t)

f(V )

τm
h′(V )dV =

−
∫ ∞

−∞
h(V )

∂

∂V

[
f(V )

τm
ρ(V, s; x, t)

]
dV (A.13)

∫ ∞

−∞
ρ(V, s; x, t)

1

2

R2σ2

τ 2
m

h′′(V )dV =

∫ ∞

−∞
h(V )

∂2

∂V 2

[
1

2

R2σ2

τ 2
m

ρ(V, s; x, t)

]
dV. (A.14)

Substitute the preceding terms back into equation (A.12):

∫ ∞

−∞
h(V )

∂ρ(V, s; x, t)

∂t
dV = −

∫ ∞

−∞
h(V )

∂

∂V

[
f(V )

τm
ρ(V, s; x, t)

]
dV+

∫ ∞

−∞
h(V )

∂2

∂V 2

[
1

2

R2σ2

τ 2
m

ρ(V, s; x, t)

]
dV. (A.15)
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And since we started with equation (A.7):

0 =

∫ ∞

−∞
h(V )

[
∂ρ(V, s; x, t)

∂t
+

∂

∂V

[
f(V )

τm
ρ(V, s; x, t)

]
− ∂2

∂V 2

[
1

2

R2σ2

τ 2
m

ρ(V, s; x, t)

]]
dV.

(A.16)

Since h is any test function:

∂ρ(V, s; x, t)

∂t
= − 1

τm

∂[f(V )ρ(V, s; x, t)]

∂V
+

1

2

R2σ2

τ 2
m

∂2ρ(V, s; x, t)

∂V 2
. (A.17)

Letting F0(x) be the distribution function for this diffusion process at time =

0. We integrate equation (A.17) for ρ(V, t; x, 0) with respect to x. Then we arrive

at the probability density function evolution equation, the Fokker-Planck equation,

for the LIF with instantaneous synapses:

τm
∂ρ(V, t)

∂(t)
= − ∂

∂V
[f(V )ρ(V, t)] +

R2σ2

2τm

∂2ρ(V, t)

∂V 2
. (A.18)

A.2 PIF Solutions

A.2.1 Variance Perturbations

To determine the linear response of the PIF to perturbations in the mean

of the input, we need to solve the 1st order nonhomogeneous ordinary differential

equation:

iτeωρ̂ =
d2ρ0

du2
+
d2ρ̂

du2
− dρ̂

du
. (A.19)
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The boundary conditions for the 1st order equations are

ρ̂(uθ) = 0 (A.20)

ρ̂(ur+) = ρ̂(ur−) (A.21)

(
∂ρ0

∂u
(uθ) +

∂ρ̂

∂u
(uθ, ω)

)
= −r0n̂(ω)τe (A.22)

∂ρ0

∂u
(ur+) − ∂ρ0

∂u
(ur−) +

∂ρ̂

∂u
(ur+, ω) − ∂ρ̂

∂u
(ur−, ω) = −r0n̂(ω)τe (A.23)

∫ θ

−∞
ρ̂(u, ω)du = 0. (A.24)

In chapter 3 we showed that the general solution to equation (A.19) is

ρ̂ =
r0
iω

[−eu−uθ + Θ(ur − u)(eu−ur)]+

Cezp(u−uθ) +DΘ(ur − u)ezp(u−ur) + Eezn(u−uθ) + FΘ(ur − u)ezn(u−ur), (A.25)

where zp = z+(ω) and zn = z−(ω) given by

z ± (ω) =
1 ±

√
1 + 4iωτe
2

. (A.26)

F must equal zero else the density in boundary condition A.24 is not integrable

because the modulus of the exponential multiplied by F will blow up.

Solving (A.20) for E:

− r0
iω

+ C + E = 0 (A.27)

E =
r0
iω

− C. (A.28)

Using the second boundary condition, equation (A.21), we solve for D:

− r0
iω

−D − F = 0 (A.29)

D = − r0
iω
. (A.30)
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Equation (A.23) is used to solve for the 1st order response component n̂(ω):

−r0τe −
r0
iω

−Dzp = −r0n̂(ω)τe (A.31)

−r0τe − r0

iω
+ r0

iω
zp

−r0τe
= n̂(ω) (A.32)

n̂(ω) = 1 −
√

1 + 4iωτe − 1

2iωτe
. (A.33)

Finally, we use equation (A.22) to solve for C:

− r0τe −
r0
iω

+ Czp+ Ezn = −r0n̂(ω)τe (A.34)

− r0τe −
r0
iω

+ Czp+
( r0
iω

− C
)
zn = −r0n̂(ω)τe (A.35)

C(zp− zn) = −r0
(
n̂(ω)τe − τe −

1

iω
+
zn

iω

)
(A.36)

C(
√

1 + 4iωτe) = −r0
(
−
√

1 + 4iωτe − 1

2iω
− 1

iω
+

1 −
√

1 + 4iωτe
2iω

)
(A.37)

C =
r0
iω
. (A.38)

Therefore, the final solution is

ρ̂ =
r0
iω

[−eu−uθ + Θ(ur − u)(eu−ur) + ez+(ω)(u−uθ) − Θ(ur − u)ez+(ω)(u−ur)] (A.39)

A.2.2 Mean Perturbations

To determine the linear response of the PIF to perturbations in the variance

of the input, we need to solve the 1st order nonhomogeneous ordinary differential

equation:

iτeωρ̂ =
d2ρ̂

du2
− dρ̂

du
− dρ0

du
. (A.40)
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The boundary conditions for the 1st order equations are:

ρ̂(uθ) = 0 (A.41)

ρ̂(ur+) = ρ̂(ur−) (A.42)

∂ρ̂

∂u
(uθ, ω) = −r0n̂(ω)τe (A.43)

∂ρ̂

∂u
(ur+ , ω) − ∂ρ̂

∂u
(ur−, ω) = −r0n̂(ω)τe (A.44)

∫ θ

−∞
ρ̂(u, ω)du = 0. (A.45)

In chapter 3 we showed that the general solution to equation (A.40) is

ρ̂ =
r0
iω

[eu−uθ − Θ(ur − u)(eu−ur)]+

Cezp(u−uθ) +DΘ(ur − u)ezp(u−ur) + Eezn(u−uθ) + FΘ(ur − u)ezn(u−ur), (A.46)

where zp = z+(ω) and zn = z−(ω) given by

z ± (ω) =
1 ±

√
1 + 4iωτe
2

. (A.47)

F must equal zero else the density in boundary condition A.45 is not integrable

because the modulus of the exponential multiplied by F will blow up.

Solving (A.41) for E:

r0
iω

+ C + E = 0 (A.48)

E = − r0
iω

− C. (A.49)

Using the second boundary condition, equation (A.42), we solve for D:

r0
iω

−D = 0 (A.50)

D =
r0
iω
. (A.51)
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Equation (A.44) is used to solve for the 1st order response component n̂(ω):

r0
iω

−Dzp = −r0n̂(ω)τe (A.52)

r0

iω
− r0

iω
zp

−r0τe
= n̂(ω) (A.53)

n̂(ω) =

√
1 + 4iωτe − 1

2iωτe
. (A.54)

Finally, we use equation (A.43) to solve for C:

r0
iω

+ Czp + Ezn = −r0n̂(ω)τe (A.55)

r0
iω

+ Czp +
(
− r0
iω

− C
)
zn = −r0n̂(ω)τe (A.56)

C(zp− zn) = −r0
(
n̂(ω)τe +

1

iω
− zn

iω

)
(A.57)

C(
√

1 + 4iωτe) = −r0
(√

1 + 4iωτe − 1

2iω
+

1

iω
− 1 −

√
1 + 4iωτe
2iω

)
(A.58)

C =
−r0
iω

. (A.59)

Therefore, the final solution is

ρ̂ =
r0
iω

[eu−uθ − Θ(ur − u)(eu−ur) − ez+(ω)(u−uθ) + Θ(ur − u)ez+(ω)(u−ur)] (A.60)
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