
Abstract

$\begin{array}{ll}\text { Title of dissertation: } & \text { METASTABILITY IN NEARLY- } \\ & \text { HAMILTONIAN SYSTEMS }\end{array}$ Dwijavanti Athreya, Doctor of Philosophy, 2009 Dissertation directed by: Professor Mark Freidlin Department of Mathematics

We characterize the phenomenon of metastability for a small random perturbation of a nearly-Hamiltonian dynamical system with one degree of freedom. We use the averaging principle and the theory of large deviations to prove that a metastable state is, in general, not a single state but rather a nondegenerate probability measure across the stable equilibrium points of the unperturbed Hamiltonian system. The set of all possible "metastable distributions" is a finite set that is independent of the stochastic perturbation. These results lead to a generalization of metastability for systems close to Hamiltonian ones.

METASTABILITY IN NEARLY-HAMILTONIAN SYSTEMS

by

Dwijavanti Athreya

Dissertation submitted to the Faculty of the Graduate School of the University of Maryland, College Park in partial fulfillment of the requirements for the degree of Doctor of Philosophy
 2009

Advisory Committee:
Professor Mark Freidlin, Chair/Advisor
Professor Sandra Cerrai
Professor Leonid Koralov
Professor Eric Slud
Professor Alexander Roytburd
(C) Copyright by

Dwijavanti Athreya
2009

In memory of my mother

Parvathi Mani Athreya
November 7, 1949—May 2, 1975

Acknowledgments

First and foremost, I wish to thank my advisor, Dr. Mark Freidlin, for his guidance during every stage of my doctoral program. I am humbled by the depth and breadth of his knowledge and by his patience and generosity. He answered every one of my questions, gave me much-needed encouragement when I was stuck, and helped me fix error after error in my proofs. Indeed, he provided all the key ideas and machinery used in this thesis. It has been an extraordinary privilege to learn from him.

I also found his own life story inspiring: as a Refusenik in the former Soviet Union, Dr. Freidlin remained committed to mathematics in particular, and to intellectual and political freedom in general, in the face of crushing restrictions imposed on him and his family by Soviet authorities for more than a decade. The conditions under which he labored are scarce imaginable to someone like me, who grew up cocooned in the comparative luxury of the West. His struggles have heightened my own appreciation of the freedom and security that, far too often, I simply take for granted.

I am indebted to my professors at the University of Maryland for their expertise as teachers and scholars, and I wish to thank the members of my committee-Dr. Sandra Cerrai, Dr. Leonid Koralov, Dr. Eric Slud, and Dr. Alexander Roytburdfor their advice and suggestions. Dr. Jonathan Rosenberg and Dr. William Goldman provided generous departmental GAANN and VIGRE funding, for which I am very grateful. I would also like to thank Dr. Michael Jakobson for his lively course
in ordinary differential equations; Dr. Matei Machedon for the care and attention he gave to every proof in partial differential equations; Dr. Stuart Antman and Dr. David Levermore for their enthusiasm during the RIT in Applied PDE; and Dr. Slud for teaching a rich and detailed statistics class. My fellow students Hyejin Kim, Kostas Spiliopoulous, Christopher Manon, David Shoup, Jeff Heath, Chris Flake, and Eleni Agathocleous listened to me when I practiced talks, gallantly proofread drafts, and buoyed my spirits.

My parents and grandparents gave me their unfailing love and support. My father first nurtured my interest in probability theory and was ever willing to discuss mathematics with me - in short, he made my academic ventures possible. My sister and brothers, my extended family, and my friends offered good advice and endless mirth. My husband Ryan and daughter Leela kept me happier than I have any right to be, and I could never have done this without them.

Table of Contents

1 Introduction 1
1.1 Overview 1
1.2 Outline of results 6
2 The averaging principle in Hamiltonian systems 13
2.1 Auxiliary results and background on the averaging principle 13
2.1.1 Examples of the averaging principle in deterministic systems 13
2.1.2 Examples of the averaging principle in single-well Hamiltonian systems with stochastic perturbations 26
2.2 The Freidlin-Wentzell generalization of the averaging principle for multiwell Hamiltonians 40
3 Metastability and large deviations in certain dynamical systems 53
3.1 Overview of Freidlin-Wentzell theory of metastability 53
3.1.1 The qualitative behavior of \tilde{X}^{ϵ} for small ϵ 54
3.1.2 Metastability for perturbations of a two-dimensional diffusion process 57
3.1.3 Definitions of metastability 60
3.1.4 Computing metastable states explicitly 61
3.1.5 An example of a metastable state as a probability distribution 68
3.2 Results on metastable distributions for nearly-Hamiltonian systems 72
3.2.1 Estimates for probabilities of large deviations for the process Q^{κ} on Γ 74
3.2.2 The set of possible metastable distributions 94
3.2.3 Metastable states as probability distributions 98
3.2.4 Remarks and generalizations 101
Bibliography 104

Chapter 1

Introduction

1.1 Overview

Consider a Hamiltonian system with one degree of freedom

$$
\begin{equation*}
\dot{X}(t)=\bar{\nabla} H(X(t)), \quad X(0)=x_{0} \in \mathbb{R}^{2} . \tag{1.1}
\end{equation*}
$$

where the Hamiltonian $H(x)=H\left(x_{1}, x_{2}\right): \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a smooth function with bounded second derivatives, and $\bar{\nabla} H$ represents the skew-gradient, that is,

$$
\bar{\nabla} H(X(t))=\left[\frac{\partial H}{\partial x_{2}},-\frac{\partial H}{\partial x_{1}}\right] .
$$

An oscillator is a typical example of such a system:

$$
\begin{equation*}
\ddot{q}(t)+f(q(t))=0, \quad q(0)=q_{0}, \quad \dot{q}(0)=p(0)=p_{0}, \tag{1.2}
\end{equation*}
$$

where $X(t)=(q(t), p(t)) \in \mathbb{R}^{2}$. The Hamiltonian of this system is

$$
\begin{equation*}
H(q, p)=\frac{p^{2}}{2}+F(q) \tag{1.3}
\end{equation*}
$$

where $F(q)=\int_{0}^{q} f(u) d u$ is the potential and $p=\dot{q}$. In addition to the assumptions of smoothness and bounded second derivatives, we impose the following restrictions on H : for $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$, we assume that $\lim _{|x| \rightarrow \infty} H(x)=\infty$; we assume H is a generic smooth function with a finite number of critical points, all of which are nondegenerate; and we assume that there exist constants K_{1} and K_{2} such that for
$x=\left(x_{1}, x_{2}\right)$ with $|x|$ sufficiently large, $K_{1}|x|<|\nabla H(x)|<K_{2}|x|$, so the gradient of H grows linearly for $|x|$ sufficiently large.

The Hamiltonian in Figure 1 has four minima, at O_{1}, O_{3}, O_{5}, and O_{7}, and three saddle points, at O_{2}, O_{4}, and O_{6}. The corresponding phase portrait for the system is also shown. Except for the separatrix trajectories, all trajectories are periodic closed curves, and each of them forms a connected component of a level set of H. If

Figure 1.1: $H\left(x_{1}, x_{2}\right)$ and the Graph Γ
we identify all the points of each connected component of each level set, we get a set, Γ, homeomorphic to a graph (see Figure 1). The vertices of Γ correspond to critical points of H : exterior vertices to minima, and interior vertices to saddle points (see [16], [18], [19]). Each edge of Γ is indexed by a number, $I_{1}, I_{2}, \ldots I_{m}$, and each point y on Γ is indexed by the pair (z, i), where z is the value of the Hamiltonian on the level set corresponding to y, and i is the edge number containing y. The pair (z, i)
forms a global coordinate system on Γ.
Let $Q: \mathbb{R}^{2} \rightarrow \Gamma ; Q\left(x_{1}, x_{2}\right)=\left(H\left(x_{1}, x_{2}\right), i\left(x_{1}, x_{2}\right)\right)$ be the projection onto Γ of a point $\left(x_{1}, x_{2}\right)$ in \mathbb{R}^{2}. We denote the images in Γ of the critical points O_{r} under Q as simply O_{r}, and we write $I_{k} \sim O_{r}$ if O_{r} lies at the boundary of an edge I_{k}. We endow Γ with the natural topology, so a set U is open in Γ if and only if $Q^{-1}(U)$ is open in \mathbb{R}^{2}.

Now, consider a small deterministic perturbation of system (1.2):

$$
\begin{equation*}
\dot{X}^{\epsilon}(t)=\bar{\nabla} H\left(X^{\epsilon}(t)\right)+\epsilon B\left(X^{\epsilon}(t)\right), \quad X(0)=x, 0<\epsilon \ll 1 \tag{1.4}
\end{equation*}
$$

We assume that B is a smooth vector-valued function on \mathbb{R}^{2} with bounded derivatives, and that $\operatorname{div}(B(x))<0$ for all $x \in \mathbb{R}^{2}$. The assumption of negative divergence is analogous to the case of classical friction:

$$
\begin{equation*}
\ddot{q}^{\epsilon}(t)+f\left(q^{\epsilon}(t)\right)=-\epsilon \dot{q}(t) \tag{1.5}
\end{equation*}
$$

For any finite time interval $[0, T], X^{\epsilon}(t)$ converges uniformly to $X(t)$ as $\epsilon \rightarrow 0$. Significant deviations between the perturbed and unperturbed trajectories occur only on much longer time intervals, say of order ϵ^{-1}. To investigate the behavior of $X^{\epsilon}(t)$ on intervals of such order, it is convenient to rescale time: let $\tilde{X}^{\epsilon}(t)=X^{\epsilon}(t / \epsilon)$, so that equation (3) becomes

$$
\begin{equation*}
\dot{\tilde{X}}^{\epsilon}(t)=\frac{1}{\epsilon} \bar{\nabla} H\left(\tilde{X}^{\epsilon}(t)\right)+B\left(\tilde{X}^{\epsilon}(t)\right), \quad \tilde{X}^{\epsilon}(0)=x \tag{1.6}
\end{equation*}
$$

Since H is a first integral for the unperturbed system (1.1), for ϵ small, the value of H changes slowly in time. As a result, the deterministically-perturbed and rescaled system (1.6) has two components: first, a "fast" component which is,
roughly, motion along the unperturbed trajectories with speed of order ϵ^{-1} as $\epsilon \downarrow 0$; and a "slow" component which characterizes motion in the direction transverse to the unperturbed trajectories. The slow component has speed of order 1 and can be described by the evolution of the map $Q\left(\tilde{X}^{\epsilon}(t)\right)$. As a result, the slow component corresponds to motion on the graph Γ. We can use the averaging principle in this situation to describe the long-time evolution of the slow motion $Q\left(\tilde{X}^{\epsilon}(t)\right)$.

The behavior of the slow component is very sensitive to small changes in ϵ, and the slow component $Q\left(\tilde{X}^{\epsilon}(t)\right)$ has no limit when $\epsilon \downarrow 0$ and t is sufficiently large. It is reasonable to consider small random perturbations of (1.6). Such perturbations exist naturally in any physical system.

In particular, we can add a white-noise-type perturbation to the system (1.6). For $\kappa>0$, define $\tilde{X}^{\epsilon, \kappa}(t)$ as the diffusion process in \mathbb{R}^{2} governed by the operator

$$
\begin{equation*}
\mathcal{L}^{\epsilon, \kappa}(u(x))=\frac{\kappa}{2} \operatorname{div}(a(x) \nabla u(x))+B(x) \cdot \nabla u(x)+\frac{1}{\epsilon} \bar{\nabla} H(x) \cdot \nabla u(x) \tag{1.7}
\end{equation*}
$$

The diffusion matrix $a(x), x \in \mathbb{R}^{2}$, is a uniformly positive definite 2×2 matrix with bounded smooth coefficients. The arguments in [3], [15], [16] demonstrate that the slow component of (1.7) converges, first as ϵ converges to zero and then as κ converges to zero, to a stochastic process on the graph Γ. This limiting stochastic process is independent of the choice of random perturbation characterized by the diffusion matrix $a(x)$, provided that $a(x)$ is nondegenerate, and the stochasticity of the limiting process is concentrated at the interior vertices of Γ. In Theorems (2.1.4), (2.1.6), and (2.1.10) of Chapter 2, we prove certain results about averaging for the processes under study and we summarize the relevant background.

We show in (3.1.1) that under our assumptions on $B(x)$, for sufficiently small ϵ, the equilibrium points of the deterministically-perturbed system (1.6) are in one-to-one correspondence with the equilibrium points of the unperturbed Hamiltonian system (1.1). The equilibrium points corresponding to the minima of H (the centers of the Hamiltonian system) become asymptotically stable equilibrium points in the system (1.6); the saddle points remain saddle points. Moreover, all non-separatrix trajectories are attracted to one of the asymptotically stable equilibrium points.

For fixed ϵ sufficiently small, put $F^{\epsilon}=\frac{1}{\epsilon} \bar{\nabla} H+B$, and define $Z^{\kappa}(t)$ to be the solution to the stochastic differential equation

$$
\begin{equation*}
\dot{Z}^{\kappa}(t)=F^{\epsilon}\left(Z^{\kappa}(t)\right)+\sqrt{\kappa} \sigma\left(Z^{\kappa}(t)\right) \dot{W}_{t}, \quad Z(0)=z \tag{1.8}
\end{equation*}
$$

where $\kappa>0$ is a small parameter. The process Z^{κ} is a white-noise perturbation of a deterministic dynamical system with finitely many asymptotically stable fixed points which are attractors for all non-separatrix trajectories. When such a system, with a small but fixed deterministic perturbation of size ϵ, is further perturbed by white noise, then for each initial position of the randomly-perturbed trajectory, there exists a particular stable equilibrium point near which the trajectory remains, with overwhelming probability, on a given timescale. Such an equilibrium position is called a metastable state corresponding to the given initial position z and timescale λ. Formally, let $\lambda>0$ and $T=T(\kappa)$ be such that

$$
\begin{equation*}
\lim _{\kappa \rightarrow 0} \kappa \ln T(\kappa)=\lambda \tag{1.9}
\end{equation*}
$$

An equilibrium point $K_{(z, \lambda)}$ is a metastable state for the initial condition z and
timescale λ if for any $\delta>0$ and $A>0$,

$$
\begin{equation*}
\lim _{\kappa \downarrow 0} P_{z}\left\{\Lambda\left\{t \in[0, A]: \rho\left(Z^{\kappa}(t T(\kappa)), K_{(z, \lambda)}\right)>\delta\right\}\right\} \rightarrow 0 \tag{1.10}
\end{equation*}
$$

where Λ denotes Lesbegue measure in \mathbb{R}^{2}.
Metastability is a consequence of large deviations for the process $\tilde{X}^{\epsilon, \kappa}(t)$. The process $\tilde{X}^{\epsilon, \kappa}(t)$ makes transitions from one neighborhood of an asymptotically stable equilibrium to another, and with probability close to one, each of these transitions takes an exponentially long time. The asymptotics as $\kappa \downarrow 0$ of the position of $\tilde{X}^{\epsilon, \kappa}(t)$ at times of order $T(\kappa)$ depend on how rapidly $T(\kappa)$ grows as κ becomes small. In the first section of Chapter 3, we provide a brief overview of the Freidlin-Wentzell theory of large deviations and metastability.

We then show that because of the sensitivity of the deterministically-perturbed system (1.6) to values of $\epsilon \ll 1$, certain distributions between the asymptotically stable equilibrium points should be considered as the "final states" of such a system. This leads to a modification of metastability for systems that are close to Hamiltonian ones. In particular, certain probability distributions across asymptotically stable equilibrium points are metastable.

1.2 Outline of results

We outline some of the specific results in this thesis. In Chapter 2, we prove results about the averaging principle for Hamiltonian systems in which the Hamiltonian has a single well (so the unperturbed system has no saddle points, only stable equilibrium points). In such single-well Hamiltonian systems, each non-extremal
level set

$$
C(z)=\left\{x \in \mathbb{R}^{2}: H(x)=z\right\}
$$

is a simple closed curve, and there exists a unique normalized invariant measure μ_{z} on $C(z)$ defined by

$$
\begin{equation*}
\mu_{z}(A)=\frac{1}{T(z)} \oint_{A} \frac{1}{\nabla H(x)} d l \tag{1.11}
\end{equation*}
$$

where A is a measurable subset of $C(z), T(z)$ is the period of the trajectory on level set z, and x is in \mathbb{R}^{2}.

1. Theorem (2.1.4). We show that if \tilde{X}_{t}^{ϵ} satisfies (1.6), namely

$$
\begin{equation*}
\dot{\tilde{X}}_{t}^{\epsilon}=\frac{1}{\epsilon} \bar{\nabla} H\left(\tilde{X}_{t}^{\epsilon}\right)+B\left(\tilde{X}^{\epsilon}(t)\right), \quad \tilde{X}_{0}^{\epsilon}=x_{0} \tag{1.12}
\end{equation*}
$$

then on any finite time interval, $H\left(\tilde{X}_{t}^{\epsilon}\right)$ converges uniformly to \bar{Y}_{t}, where \bar{Y}_{t} is the solution to

$$
\begin{equation*}
\dot{\bar{Y}}_{t}=\bar{B}\left(\bar{Y}_{t}\right) \tag{1.13}
\end{equation*}
$$

and $\bar{B}(z)$ is defined as

$$
\begin{equation*}
\bar{B}(z)=\frac{1}{T(z)} \oint_{C(z)} \frac{B(x) \cdot \nabla H(x)}{|\nabla H(x)|} d l \tag{1.14}
\end{equation*}
$$

2. Theorem (2.1.6) Suppose X_{t}^{ϵ} satisfies the stochastic differential equation

$$
\begin{equation*}
\dot{X}_{t}^{\epsilon}=\frac{1}{\epsilon} \bar{\nabla} H\left(X_{t}^{\epsilon}\right)+B\left(X_{t}^{\epsilon}\right)+\sigma\left(X_{t}^{\epsilon}\right) \dot{W}_{t}, \quad X_{0}^{\epsilon}=x_{0} \tag{1.15}
\end{equation*}
$$

for a smooth bounded matrix $\sigma(x)$ with $a(x)=\sigma(x) \sigma^{T}(x)$ uniformly positive definite, and initial condition x_{0} which is not the minimum of H. Let Y_{t} be a process which satisfies the stochastic differential equation

$$
\begin{equation*}
\dot{Y}_{t}=\bar{B}\left(Y_{t}\right)+\overline{L H}\left(Y_{t}\right)+\sqrt{\bar{A}\left(Y_{t}\right)} \dot{W}_{t}, \quad Y_{0}=H\left(x_{0}\right) \tag{1.16}
\end{equation*}
$$

with \bar{B} given in (2.37), and $\overline{L H}$ and \bar{A} defined by

$$
\begin{align*}
\overline{L H}(z) & =\frac{1}{T(z)} \oint_{C(z)} \frac{\sum_{i, j} a_{i j}(x) \frac{\partial^{2} H(x)}{\partial x_{i} \partial x_{j}}}{|\nabla H(x)|} d l \tag{1.17}\\
\bar{A}(z) & =\frac{1}{T(z)} \oint_{C(z)} \frac{a(x) \nabla H(x) \cdot H(x)}{|\nabla H(x)|} d l \tag{1.18}
\end{align*}
$$

Then there exists a process Y^{ϵ} equivalent to Y such that for any fixed time interval $[0, T]$ and for any $\delta>0$,

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} P\left\{\sup _{0 \leq t \leq T}\left|H\left(X_{t}^{\epsilon}\right)-Y_{t}^{\epsilon}\right|>\delta\right\}=0 \tag{1.19}
\end{equation*}
$$

As a useful corollary, the process $H\left(X_{t}^{\epsilon}\right)$ converges weakly in $C_{0 T}$ to Y_{t}.
3. Theorem (2.1.10) We consider a single-well Hamiltonian system written in action-angle coordinates, with fast and slow motion separated, in which only the fast component has a stochastic perturbation. Let $\left(I^{\epsilon}, \phi^{\epsilon}\right)$ satisfy

$$
\begin{align*}
& \dot{I}^{\epsilon}=\beta_{1}\left(I^{\epsilon}, \phi^{\epsilon}\right) \tag{1.20}\\
& \dot{\phi}^{\epsilon}=\frac{1}{\epsilon} \omega\left(I^{\epsilon}\right)+\frac{1}{\sqrt{\epsilon}} \sigma\left(I^{\epsilon}, \phi^{\epsilon}\right) \dot{W}_{t}+\beta_{2}\left(I^{\epsilon}, \phi^{\epsilon}\right) \tag{1.21}
\end{align*}
$$

and assume the coefficients $\omega, \beta_{1}, \beta_{2}$, and σ are smooth and bounded and that $\sigma \sigma^{T}$ is uniformly positive definite. We explicitly solve for the invariant density $m_{I}(\phi)$ on each level set I and prove that on any finite time interval,

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} P\left\{\sup _{0 \leq t \leq T}\left|I_{t}^{\epsilon}-\bar{I}_{t}\right|>\delta\right\}=0 \tag{1.22}
\end{equation*}
$$

where \bar{I}_{t} is the solution to the equation

$$
\begin{equation*}
\dot{\bar{I}}_{t}=\bar{\beta}\left(\bar{I}_{t}\right), \text { with } \bar{\beta}_{1}(I)=\int_{0}^{2 \pi} \beta_{1}(I, \phi) m_{I}(\phi) d \phi \tag{1.23}
\end{equation*}
$$

More general results concerning stochastically-peturbed systems were proved by Khasminskii (see [22]), in which the fast and slow components are separated.

For Hamiltonians with multiple wells, the structure of the graph corresponding to the level sets is no longer a single interval, and as noted above, there are two first integrals for the unperturbed system: (H, i). In this case, in order to prove that the graph-valued slow component $Q\left(\tilde{X}^{\epsilon, \kappa}(t)\right)$ of the perturbed process actually converges to a limiting process (see [16], [19]), Freidlin and Wentzell use martingale methods (see [27]) and they prove that the limiting process on the graph can be uniquely determined by generators on each edge and gluing conditions - which are restrictions on the domains of the generator-at interior vertices. We conclude Chapter 2 by summarizing these results and those of Freidlin and Brin (see [3]) on the convergence of the graph-valued slow component $Q\left(\tilde{X}^{\epsilon, \kappa}(t)\right)$ to a limiting process. A key result, on which we rely heavily and which is proved in [3], is the following:

Theorem ([3]). Let $\tilde{X}^{\epsilon, \kappa}(t)$ be the two-dimensional diffusion processes defined by (1.7). The slow component $Q\left(\tilde{X}^{\epsilon, \kappa}(t)\right)$ converges weakly in $C_{0 T}(\Gamma)$, first as $\epsilon \downarrow 0$, to a stochastic process Q^{κ}, defined by generators L_{i}^{κ} along each edge of Γ and gluing conditions at the interior vertices. Next, as $\kappa \downarrow 0, Q^{\kappa}$ converges weakly to a process $Q(t)$ which consists of deterministic motion along each edge of Γ and stochastic branching at the interior vertices, with probabilities of branching that depend only on B and not on the diffusion coefficients $a(x)$.

In Chapter 3, we review the Freidlin-Wentzell theory of large deviations and metastability and define metastability for deterministic systems subject to whitenoise perturbations. We show that for a nearly-Hamiltonian system perturbed by
noise, in which the Hamiltonian H and associated graph Γ have the structure of Figure (1.1), the notion of metastability must be generalized to include probability measures concentrated on stable equilibrium points.

1. In Lemma (3.1.1) We prove that for sufficiently small ϵ, the deterministic system in (1.6) consists of separatrix trajectories and trajectories converging to an asymptotically stable equilibrium. Hence the ω-limit sets for any initial condition have a simple structure.
2. In Example (3.1.4) We give a motivating example of a one-dimensional diffusion with potential drift in which metastability corresponds to a nondegenerate probability distribution over equilibrium points. Suppose X_{t}^{ϵ} satisfies

$$
\begin{equation*}
\dot{X}_{t}^{\epsilon}=-U^{\prime}\left(X_{t}^{\epsilon}\right)+\sqrt{\epsilon} \dot{W}_{t} \tag{1.24}
\end{equation*}
$$

where $U\left(a_{1}\right)=U\left(a_{2}\right)$ and $U(x)>U\left(a_{i}\right)$ for all $x \notin\left\{a_{1}, a_{2}\right\}, U^{\prime}(x) \neq 0$ except at a_{1} and a_{2}, and a_{1} and a_{2} are nondegenerate critical points with $U^{\prime \prime}\left(a_{1}\right) \neq U^{\prime \prime}\left(a_{2}\right)$. Suppose that for each ϵ,

$$
\begin{equation*}
\int_{\mathbb{R}} \exp \left[-\frac{2 U(x)}{\epsilon}\right] d x=C^{\epsilon}<\infty \tag{1.25}
\end{equation*}
$$

Then there exists an invariant measure μ^{ϵ} on \mathbb{R} for this process which converges as $\epsilon \downarrow 0$ to a probability measure concentrated on a_{1} and a_{2}, and for certain initial conditions and timescales, this limiting measure will be a metastable distribution.
3. In Section (3.2), we analyze large deviations for the process $Q^{\kappa}(t)$ on the graph Γ. Recall that Q^{κ} is the weak limit as $\epsilon \downarrow 0$ of the projection onto the graph
Γ of the two-dimensional process $\tilde{X}^{\epsilon, \kappa}(t) . Q^{\kappa}$ is defined through second-order differential operators L_{i}^{κ} along each edge I_{i} of Γ, and these operators have degeneracies at interior and exterior vertices. To prove estimates for probabilities of large deviations, we analyze the behavior of $Q^{\kappa}(t)$ in small neighborhoods of exterior and interior vertices separately. We define the quasipotential $\bar{V}_{x, y}=\bar{V}(x, y)$ for any two points (x, y) along an edge I_{i} of Γ and show that for $x<y$, it can be computed as

$$
\begin{equation*}
\bar{V}_{x, y}=\int_{x}^{y} \frac{-2 \tilde{B}_{i}(s)}{A_{i}(s)} d s \tag{1.26}
\end{equation*}
$$

where \tilde{B} is defined as

$$
\begin{equation*}
\tilde{B}_{i}(s)=\oint_{C_{i}(s)} \frac{\nabla H(x) \cdot B(x)}{|\nabla H(x)|} d l \tag{1.27}
\end{equation*}
$$

and $C_{i}(s)$ is the connected component of the level set $H=s$ corresponding to edge i on Γ.
4. In Theorem (3.2.5), we prove the following: Let $I_{k_{i}}$ be an exterior edge with exterior vertex $O_{k_{i}}$ and interior vertex O_{j} in Γ. Suppose the three edges $I_{k_{1}}$, $I_{k_{2}}$, and I_{j} meet at interior vertex O_{j}. Put $\bar{V}_{i j}^{\max }=\max \left\{\bar{V}_{k_{1} j}, \bar{V}_{k_{2} j}\right\}$ where $\bar{V}_{k_{i} j}=\bar{V}\left(O_{k_{i}}, O_{j}\right)$. Let $\tau_{z}^{\kappa}=\inf \left\{t>0: Q^{\kappa}(t)=z\right\}$. For any $\alpha>0$ there exists $\delta>0$ sufficiently small such that if $y \in I_{k_{i}},\left|y-H\left(O_{k_{i}}\right)\right|<\delta, y \neq O_{k_{i}}$, and $z \in I_{j},\left|z-H\left(O_{j}\right)\right|<\delta, z \neq O_{j}$, then

$$
\begin{equation*}
\lim _{\kappa \downarrow 0} P_{y}\left\{\exp \left[\frac{\bar{V}_{i j}^{\max }-\alpha}{\kappa}\right]<\tau_{z}^{\kappa}<\exp \left[\frac{\bar{V}_{i j}^{\max }+\alpha}{\kappa}\right]\right\}=1 \tag{1.28}
\end{equation*}
$$

5. In Theorem (3.2.7) we show that there exist initial conditions z and timescales λ such that for any fixed $t>0, \delta>0$, and $\theta>0$, there exists κ_{0} sufficiently
small such that if $F_{\theta, O_{i}}$ is the neighborhood $F_{\theta, O_{i}}=\left\{y \in I_{i}: V\left(O_{i}, y\right)<\theta\right\}$, $i \in\{1,3,5,7\}$, of exterior vertex O_{i}, and $\kappa<\kappa_{0}$, then

$$
\begin{equation*}
\left|P\left\{Q^{\kappa}(t T(\kappa)) \in F_{\theta, O_{i}}\right\}-\tilde{p}_{i}\right|<\delta \tag{1.29}
\end{equation*}
$$

for probabilities $\tilde{p}_{i} \in(0,1)$ which can be explicitly calculated and depend only on B.
6. In Theorem (3.2.1) we show that for any initial condition $\left(x_{1}(0), x_{2}(0)\right) \in \mathbb{R}^{2}$ and all but finitely many timescales λ, the process $\tilde{X}_{T_{\lambda}(\kappa)}^{\epsilon, \kappa}$ converges weakly in the space $C_{0 T}\left(\mathbb{R}^{2}\right)$, first as $\epsilon \downarrow 0$ and then as $\kappa \downarrow 0$, to a probability measure concentrated on the stable equilibrium points of the unperturbed Hamiltonian system. In particular, there exist certain initial conditions $w=$ $\left(x_{1}(0), x_{2}(0)\right)$ and time scales λ such that $\tilde{X}_{T_{\lambda}(\kappa)}^{\epsilon, \kappa}$ converges weakly to a nondegenerate probability distribution $\mu_{w, \lambda}$ concentrated on the stable equilibrium points $\left\{O_{1}, O_{3}, O_{5}, O_{7}\right\}$ of the unperturbed Hamiltonian system, with weights $\tilde{p}_{i}(w, \lambda)=\mu_{w, \lambda}\left(O_{i}\right), i \in\{1,3,5,7\}$ that can be explicitly computed and depend only on B.

Chapter 2

The averaging principle in Hamiltonian systems

2.1 Auxiliary results and background on the averaging principle

2.1.1 Examples of the averaging principle in deterministic systems

In this chapter, we examine the limiting behavior of $Q\left(\tilde{X}^{\epsilon, \kappa}(t)\right)$, where $\tilde{X}^{\epsilon, \kappa}(t)$ is the diffusion process in \mathbb{R}^{2} governed by the operator $L^{\epsilon, \kappa}$ in (1.7), namely:

$$
\mathcal{L}^{\epsilon, \kappa}(u(x))=\frac{\kappa}{2} \operatorname{div}(a(x) \nabla u(x))+B(x) \cdot \nabla u(x)+\frac{1}{\epsilon} \bar{\nabla} H(x) \cdot \nabla u(x),
$$

in which the matrix $a(x)=\sigma(x) \sigma^{T}(x)$ is smooth, bounded, and uniformly positive definite. The diffusion process $X_{t}^{\epsilon, \kappa}$ is the solution to the stochastic differential equation

$$
\begin{align*}
\dot{X}^{\epsilon, \kappa}(t) & =\frac{1}{\epsilon} \bar{\nabla} H\left(\tilde{X}^{\epsilon, \kappa}(t)\right)+B\left(\tilde{X}^{\epsilon, \kappa}(t)\right)+\frac{\kappa}{2}\left[\begin{array}{l}
\frac{\partial a_{11}\left(\tilde{X}^{\epsilon, \kappa}(t)\right)}{\partial x_{1}}+\frac{\partial a_{21}\left(\tilde{X}^{\epsilon, \kappa}(t)\right)}{\partial x_{2}} \\
\frac{\partial a_{12}\left(\tilde{X} \epsilon x^{\epsilon, \kappa}(t)\right)}{\partial x_{1}}+\frac{\partial a_{22}\left(\tilde{X}^{\epsilon, \kappa}(t)\right)}{\partial x_{2}}
\end{array}\right] \tag{2.1}\\
& +\sqrt{\kappa} \sigma\left(\tilde{X}^{\epsilon, \kappa}(t)\right) \dot{W}_{t}, \quad \tilde{X}^{\epsilon, \kappa}(0)=\left(x_{1}(0), x_{2}(0)\right) \tag{2.2}
\end{align*}
$$

and $Q: \mathbb{R}^{2} \rightarrow \Gamma$ is the projection of any point $x=\left(x_{1}, x_{2}\right)$ in the plane to the corresponding point $(H(x), i(x))=\left(H\left(x_{1}, x_{2}\right), i\left(x_{1}, x_{2}\right)\right)$ on the graph Γ associated to the Hamiltonian H. We assume that B is a smooth vector-valued function with bounded derivatives and negative divergence, and that $\nabla H(x) \cdot B(x)<0$. Also, we impose the following restrictions on H : first, H is a smooth function with bounded
second derivatives and a finite number of nondegenerate critical points; second, there exist K_{1} and K_{2} such that for $|x|$ sufficiently large, $K_{1}|x|<|\nabla H(x)|<$ $K_{2}|x|$; and third, $\lim _{|(x)| \rightarrow \infty}|H(x)|=\infty$. We examine the limiting behavior of $Q^{\epsilon, \kappa}=$ $Q\left(\tilde{X}^{\epsilon, \kappa}(t)\right)$ first as $\epsilon \downarrow 0$ and then as $\kappa \downarrow 0$. When both ϵ and κ are small, the process $\tilde{X}^{\epsilon, \kappa}(t)$ represents a nearly-Hamiltonian dynamical system with a small random perturbation.

The central result of [3] is that one can associate to $\tilde{X}^{\epsilon, \kappa}(t)$ a stochastic process on the graph Γ which converges, first as ϵ and then as κ tend to zero, to a stochastic process $Q(t)$ on the graph. The limiting process $Q(t)$ is independent of the choice of diffusion coefficients $a(x)$. The convergence to a stochastic process is a consequence of the classical averaging principle and instability near saddle points of a Hamiltonian system in which H has multiple wells.

We summarize the relevant background on the averaging principle and diffusion processes on graphs from [3], [18], and we prove certain results on the averaging principle for our particular case. For a more complete treatment of the classical averaging principle in Hamiltonian systems, see $[1, \S 6]$. For full details on the averaging principle for multiwell Hamiltonian systems, see [18, §8], [3], and [16].

First we state a version of the averaging principle applicable to deterministic systems. Let ϵ be a small positive parameter, and suppose ψ_{t} is a continuous realvalued function. For $x \in \mathbb{R}^{n}$ and $y \in \mathbb{R}$, let $b(x, y)=\left(b^{1}(x, y), \cdots, b^{n}(x, y)\right)$: $\mathbb{R}^{n+1} \rightarrow \mathbb{R}^{n}$ be a bounded, continuous vector-valued function satisfying a Lipschitz condition independent of $y:\left|b\left(x_{1}, y\right)-b\left(x_{2}, y\right)\right| \leq K\left|x_{1}-x_{2}\right|$. Assume also that there exists a bounded continuous function \bar{b} such that for any T the following limit
exists uniformly in $t_{0} \in \mathbb{R}$ and $x \in \mathbb{R}^{n}$:

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0}\left|\int_{t_{0}}^{t_{0}+T}\left[b\left(x, \psi \frac{s}{\epsilon}\right)-\bar{b}(x)\right] d s\right|=0 \tag{2.3}
\end{equation*}
$$

Let X_{t}^{ϵ} satisfy the differential equation

$$
\begin{equation*}
\dot{X}_{t}^{\epsilon}=b\left(X_{t}^{\epsilon}, \psi_{t / \epsilon}\right) ; \quad X_{0}^{\epsilon}=x \tag{2.4}
\end{equation*}
$$

and suppose \bar{x}_{t} solves the ordinary differential equation

$$
\begin{equation*}
\dot{\bar{x}}_{t}=\bar{b}\left(x_{t}\right) ; \quad \bar{x}_{0}=x \tag{2.5}
\end{equation*}
$$

Theorem 2.1.1. Let X_{t}^{ϵ} and \bar{x}_{t} be defined as in (2.4) and (2.5). Then

$$
\begin{equation*}
\lim _{\epsilon \downarrow 0}\left[\sup _{0 \leq t \leq T}\left|X_{t}^{\epsilon}-\bar{x}_{t}\right|\right]=0 \tag{2.6}
\end{equation*}
$$

Proof. It is clear that \bar{b} is Lipschitz continuous with the same Lipschitz constant as b. Indeed, let x and y be given, and let $T>0$ and $\delta>0$ be arbitrary and positive. By (2.3), given any arbitrary $\delta>0$, we can find ϵ sufficiently small so that

$$
\begin{equation*}
\left|\int_{0}^{T}\left[\bar{b}(x)-b\left(x, \psi \frac{s}{\epsilon}\right)\right] d s\right|<\frac{\delta}{2} \text { and }\left|\int_{0}^{T}\left[b\left(y, \psi_{\frac{s}{\epsilon}}\right)-\bar{b}(y)\right] d s\right|<\frac{\delta}{2} \tag{2.7}
\end{equation*}
$$

and by the Lipschitz continuity of b, there exists K such that for any x and y,

$$
\begin{equation*}
\left|\int_{0}^{T}\left[b\left(x, \psi_{\frac{s}{\epsilon}}\right)-b\left(y, \psi_{\epsilon}\right)\right] d s\right| \leq \int_{0}^{T} K|x-y| d s \tag{2.8}
\end{equation*}
$$

So we conclude that

$$
\begin{align*}
T|\bar{b}(x)-\bar{b}(y)| & =\left\lvert\, \int_{0}^{T}\left[\bar{b}(x)-b\left(x, \psi \frac{s}{\epsilon}\right)\right] d s-\int_{0}^{T}\left[b\left(x, \psi \frac{s}{\epsilon}\right)-b\left(y, \psi \frac{s}{\epsilon}\right)\right] d s\right. \tag{2.9}\\
& \left.+\int_{0}^{T}\left[b\left(y, \psi \frac{s}{\epsilon}\right)-\bar{b}(y)\right] d s \right\rvert\, \tag{2.10}\\
& \leq\left|\int_{0}^{T}\left[\bar{b}(x)-b\left(x, \psi \frac{s}{\epsilon}\right)\right] d s\right|+\left|\int_{0}^{T}\left[b\left(x, \psi \frac{s}{\epsilon}\right)-b\left(y, \psi \frac{s}{\epsilon}\right)\right] d s\right| \tag{2.11}\\
& +\left|\int_{0}^{T}\left[b\left(y, \psi \frac{s}{\epsilon}\right)-\bar{b}(y)\right] d s\right| \tag{2.12}\\
& \leq \delta+T K|x-y| \tag{2.13}
\end{align*}
$$

Hence (2.5) has a unique solution. Also, if (2.3) holds, then

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{0}^{T} b\left(x, \psi_{s}\right) d s=\bar{b}(x) \tag{2.14}
\end{equation*}
$$

and we regard \bar{b} as the "long-run" average of $b(x, y)$ over the second component y for each fixed x. Taking the difference between X_{t}^{ϵ} and \bar{x}_{t}, we get

$$
\begin{array}{r}
X_{t}^{\epsilon}-\bar{x}_{t}=\int_{0}^{t}\left[b\left(X_{s}^{\epsilon}, \psi_{\frac{s}{\epsilon}}\right)-b\left(\bar{x}_{s}, \psi \frac{s}{\epsilon}\right)\right] d s+\int_{0}^{t}\left[b\left(\bar{x}_{s}, \psi \frac{s}{\epsilon}\right)-\bar{b}\left(\bar{x}_{s}\right)\right] d s \\
\Longrightarrow \sup _{0 \leq t_{1} \leq t}\left|X_{t_{1}}^{\epsilon}-\bar{x}_{t_{1}}\right| \leq \int_{0}^{t} K \sup _{0 \leq u \leq s}\left|X_{u}^{\epsilon}-\bar{x}_{u}\right| d s+\sup _{0 \leq t_{1} \leq t}\left|\int_{0}^{t} b\left(\bar{x}_{s}, \psi_{\frac{s}{\epsilon}}\right)-\bar{b}\left(\bar{x}_{s}\right) d s\right| \tag{2.15}
\end{array}
$$

Applying Gronwall's inequality (see [24, §2.5]), we get

$$
\begin{equation*}
\sup _{0 \leq t \leq T}\left|X_{t}^{\epsilon}-\bar{x}_{t}\right| \leq \exp (K T)\left[\sup _{0 \leq t \leq T}\left|\int_{0}^{t} b\left(\bar{x}_{s}, \psi \frac{s}{\epsilon}\right)-\bar{b}\left(\bar{x}_{s}\right) d s\right|\right] \tag{2.17}
\end{equation*}
$$

Observe that

$$
\begin{align*}
\int_{0}^{t}\left[b\left(\bar{x}_{s}, \psi_{\frac{s}{\epsilon}}\right)-\bar{b}\left(\bar{x}_{s}\right)\right] d s & =\sum_{k=0}^{n-1} \int_{\frac{k t}{n}}^{\frac{(k+1) t}{n}}\left[b\left(\bar{x}_{\frac{k t}{n}}^{n}, \psi_{\frac{s}{\epsilon}}\right)-\bar{b}\left(\bar{x}_{\frac{k t}{n}}\right)\right] d s \tag{2.18}\\
& +\sum_{k=0}^{n-1} \int_{\frac{k t}{n}}^{\frac{(k+1) t}{n}}\left[b\left(\bar{x}_{s}, \psi_{\frac{s}{\epsilon}}\right)-b\left(\bar{x}_{\frac{k t}{n}}, \psi_{\frac{s}{\epsilon}}\right)\right] d s \tag{2.19}\\
& +\sum_{k=0}^{n-1} \int_{\frac{k t}{n}}^{\frac{(k+1) t}{n}}\left[\bar{b}\left(\bar{x}_{\frac{k t}{n}}\right)-\bar{b}\left(\bar{x}_{s}\right)\right] d s \tag{2.20}
\end{align*}
$$

Lipschitz continuity, boundedness of \bar{b} and b, and the mean value theorem imply

$$
\begin{equation*}
\int_{0}^{t}\left[b\left(\bar{x}_{s}, \psi_{\frac{s}{\epsilon}}\right)-\bar{b}\left(\bar{x}_{s}\right)\right] d s \leq \sum_{k=0}^{n-1} \int_{\frac{k t}{n}}^{\frac{(k+1) t}{n}}\left[b\left(\bar{x}_{\frac{k t}{n}}, \psi_{\frac{s}{\epsilon}}\right)-\bar{b}\left(\bar{x}_{\frac{k t}{n}}\right)\right] d s+\rho_{n, t}^{\epsilon} \tag{2.21}
\end{equation*}
$$

where $\left|\rho_{n, t}^{\epsilon}\right|<\frac{C}{n}$ and C is a constant depending on T and on the Lipschitz constant for b and \bar{b}. Hence $\left|\rho_{n, t}^{\epsilon}\right|$ can be made arbitrarily small for all ϵ by choosing n large.

Note that

$$
\begin{equation*}
\left|\sum_{k=0}^{n-1} \int_{\frac{k t}{n}}^{\frac{(k+1) t}{n}}\left[b\left(\bar{x}_{\frac{k t}{n}}, \psi \frac{s}{\epsilon}\right)-\bar{b}\left(\bar{x}_{\frac{k t}{n}}\right)\right] d s\right| \tag{2.22}
\end{equation*}
$$

converges to zero for any fixed n sufficiently large as $\epsilon \downarrow 0$ by (2.3). Therefore

$$
\begin{equation*}
\lim _{\epsilon \downarrow 0}\left\{\sup _{0 \leq k \leq n}\left|\int_{0}^{K t / n}\left[b\left(\bar{x}_{s}, \psi \frac{s}{\epsilon}\right)-\bar{b}\left(\bar{x}_{s}\right)\right] d s\right|\right\}=0 \tag{2.23}
\end{equation*}
$$

Since $G(t)=\int_{0}^{t}\left[b\left(\bar{x}_{s}, \psi_{\epsilon}\right)-\bar{b}\left(\bar{x}_{s}\right)\right] d s$ is continuous, its supremum on the interval $[0, T]$ is attained at some point t^{*}, and we can choose n sufficiently large and ϵ small to guarantee that for any $\eta>0$

$$
\begin{equation*}
\sup _{0 \leq t \leq T} G(t)=\int_{0}^{\frac{k T}{n}}\left[b\left(\bar{x}_{s}, \psi_{\frac{s}{\epsilon}}\right)-\bar{b}\left(\bar{x}_{s}\right)\right] d s+\eta \tag{2.24}
\end{equation*}
$$

for some $k \in\{0,1, \cdots, T / n\}$.

In the above analysis, we consider $\psi_{\frac{t}{\epsilon}}$ the "fast" motion and X_{t}^{ϵ} the "slow" motion for small ϵ. The averaging principle implies that the slow component con-
verges uniformly on finite time intervals to the solution of a differential equation involving the average of a function with respect to the fast motion.

Now consider the case of a Hamiltonian system with a single-well potential, $F\left(x_{1}\right)$, with $H(x)=H\left(x_{1}, x_{2}\right)=F\left(x_{1}\right)+\frac{x_{2}^{2}}{2}$, as shown in the figure, and let X_{t} satisfy $\dot{X}_{t}=\bar{\nabla} H\left(X_{t}\right)$. Without loss of generality we assume that the unique minimum O is such that $H(O)=0$.

Figure 2.1: A single-well Hamiltonian and phase portrait

The phase portrait consists of periodic trajectories along level sets of H. These level sets are simple closed curves. Let $C(z)=\left\{x \in \mathbb{R}^{2}: H(x)=z\right\}$ denote the closed curve for level set $H=z$. Each trajectory X_{t} on $C(z)$ has a finite period $T(z)$. Since $\operatorname{div}(\bar{\nabla} H)=0$, the flow is area-preserving; that is, if Λ is Lebesgue
measure in \mathbb{R}^{2} and Φ_{t} is the flow, then for any $t>0$ and any measurable A,

$$
\begin{equation*}
\Lambda(A)=\Lambda\left[\Phi_{t}^{-1}(A)\right] \tag{2.25}
\end{equation*}
$$

As a consequence, there exists a unique invariant measure μ concentrated on each level set $C(z)$. For any measurable subset A of $C(z), \mu_{z}(A)$ is given by

$$
\begin{equation*}
\mu_{z}(A)=\frac{1}{T(z)} \oint_{A} \frac{d l}{|\nabla H(x)|} \tag{2.26}
\end{equation*}
$$

where $d l$ is the length element and $T(z)$ is the period of the trajectory concentrated on $C(z)$. The measure μ_{z} of a set A is the ratio of the occupation time of X_{t} in A during a single rotation to the period of the trajectory on the curve $C(z)$. The periodicity of each trajectory X_{t} on the level set $C(z)$ guarantees the equality of time- and space-averages on level sets.

Theorem 2.1.2 (Equality of time- and space-averages on level sets). Let $f: \mathbb{R}^{2} \rightarrow$ \mathbb{R} be continuous and let X_{t} be a solution to $\dot{X}_{t}=\bar{\nabla} H\left(X_{t}\right)$ with initial condition $X_{0}=x_{0}$; let $H\left(x_{0}\right)=z$. Then

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} f\left(X_{s}\right) d s=\frac{1}{T(z)} \oint_{C}(z) \frac{f(x)}{|\nabla H(x)|} d l \tag{2.27}
\end{equation*}
$$

Proof. Let $T(z)=T$ be the period of X_{t} on $C(z)$. For any t large, we can find $n \in \mathbb{N}$ such that $t=n T+\gamma$ where $0 \leq \gamma<T$. Since $f\left(X_{s}\right)$ is periodic, we have

$$
\begin{align*}
\frac{1}{t} \int_{0}^{t} f\left(X_{s}\right) d s & =\frac{1}{n T+\gamma}\left\{\int_{0}^{n T} f\left(X_{s}\right) d s+\int_{n T}^{n T+\gamma} f\left(X_{s}\right) d s\right\} \tag{2.28}\\
& =\left[\frac{n T}{n T+\gamma}\right]\left\{\frac{1}{T} \int_{0}^{T} f\left(X_{s}\right) d s+\frac{1}{n T} \int_{0}^{\gamma} f\left(X_{s}\right) d s\right\} \tag{2.29}\\
& \rightarrow \frac{1}{T} \int_{0}^{T} f\left(X_{s}\right) d s \text { as } n \rightarrow \infty \tag{2.30}
\end{align*}
$$

Over a single period T, we parameterize $C(z)$ by the curve X_{t} and immediately derive that

$$
\begin{equation*}
\int_{0}^{T} f\left(X_{s}\right) d s=\oint_{C(z)} \frac{f(x)}{|\bar{\nabla} H(x)|} d l \tag{2.31}
\end{equation*}
$$

As in (1.4), consider a small deterministic perturbation of the system $\dot{X}_{t}=$ $\bar{\nabla} H\left(X_{t}\right):$

$$
\dot{X}_{t}^{\epsilon}=\bar{\nabla} H\left(X_{t}^{\epsilon}\right)+\epsilon B\left(X_{t}^{\epsilon}\right), \quad X_{0}^{\epsilon}=\left(x_{1}(0), x_{2}(0)\right)
$$

We continue to assume that B is smooth, has bounded derivatives and negative divergence, and that $\nabla H(x) \cdot B(x)<0$. As above, let X_{t} denote the solution to the unperturbed Hamiltonian system. Fix an initial point $w=\left(x_{1}(0), x_{2}(0)\right)$; the trajectory through $\left(x_{1}(0), x_{2}(0)\right)$, denoted $X_{t, w}$, forms a closed curve in whose interior lies the single minimum of H-that is, exactly one stable center. Since the Hamiltonian is a first integral, the motion of $X_{t, w}$ can be expressed through actionangle coordinates, i.e. the value of a first integral I, the action, and an angular coordinate $\phi \in[0,2 \pi]$, the angle (see [1]):

$$
\begin{align*}
& \dot{I}=0 \tag{2.32}\\
& \dot{\phi}=\omega(I) \tag{2.33}
\end{align*}
$$

with initial conditions $\phi(0)=\theta_{0}$ and $I(0)=I_{0}$.
We rescale by time, so let $\tilde{X}_{t}^{\epsilon}=X_{t / \epsilon}^{\epsilon}$. In these local coordinates, the rescaled
perturbed system (1.6) can be written:

$$
\begin{align*}
& \dot{I}^{\epsilon}=\beta_{1}\left(I^{\epsilon}, \phi^{\epsilon}\right) \tag{2.34}\\
& \dot{\phi}^{\epsilon}=\frac{1}{\epsilon} \omega\left(I^{\epsilon}\right)+\beta_{2}\left(I^{\epsilon}, \phi^{\epsilon}\right) \tag{2.35}
\end{align*}
$$

with the same initial conditions $\phi^{\epsilon}(0)=\theta_{0}$ and $I^{\epsilon}(0)=I_{0}$). In this instance we can separate the fast and slow motion. For small ϵ, near the given energy level $z=H\left(x_{1}(0), x_{2}(0)\right)$, the fast motion for \tilde{X}_{t}^{ϵ} is characterized by the invariant measure concentrated on the closed curve $C(z)$ that forms the level set $H^{-1}(z)$. The slow motion satisfies the equation

$$
\begin{equation*}
H\left(\tilde{X}_{t}^{\epsilon}\right)-H\left(\tilde{X}_{0}^{\epsilon}\right)=\int_{0}^{t} \nabla H\left(\tilde{X}_{s}^{\epsilon}\right) \cdot B\left(\tilde{X}_{s}^{\epsilon}\right) d s \tag{2.36}
\end{equation*}
$$

On a time interval $[t, t+\Delta]$, where Δ is independent of $\epsilon, H\left(\tilde{X}_{t}^{\epsilon}\right)$ changes by an amount of order Δ, uniformly in ϵ. The number of "revolutions" made by the fast component along $C(z)$ is of order $\Delta \epsilon^{-1}$. This is precisely the type of situation in which the averaging principle applies.

Because $T(z)$ is the period of the trajectory of the unperturbed system $\dot{X}_{t}=$ $\bar{\nabla} H\left(X_{t}\right)$ on $C(z)$, we have $T(z)=\oint_{C(z)} \frac{d l}{|\nabla H(x)|}$. Let $\bar{B}(z)$ be defined as

$$
\begin{equation*}
\bar{B}(z)=\frac{1}{T(z)} \oint_{C(z)} \frac{\nabla H(x) \cdot B(x)}{|\nabla H(x)|} d l \tag{2.37}
\end{equation*}
$$

We state the following useful lemma from [18]:

Lemma 2.1.3. Let $f(x)$ be a function that is continuously differentiable in the interval $\left\{x \in \mathbb{R}^{2}: 0<z_{1} \leq H(x) \leq z_{2}\right\}$. Then for any $z \in\left(z_{1}, z_{2}\right)$,

$$
\begin{equation*}
\frac{d}{d z}\left[\oint_{C(z)} f(x)|\nabla H(x)| d l\right]=\oint_{C(z)}\left[\frac{\nabla f(x) \cdot \nabla H(x)}{|\nabla H(x)|}+f(x) \frac{\Delta H(x)}{|\nabla H(x)|}\right] d l \tag{2.38}
\end{equation*}
$$

Proof. See [18], $\S 8$.

Applying this lemma to the functions $f_{1}(x)=\frac{B(x) \cdot \nabla H(x)}{|\nabla H(x)|^{2}}$ and $f_{2}(x)=\frac{1}{|\nabla H(x)|^{2}}$, we get that $\bar{B}(z)$ is $(k-1)$-times continuously differentiable in the interval $z: z>0$ if H is k-times continuously differentiable. Hence $\bar{B}(z)$ is Lipschitz continuous on compact sets.

Let $\tilde{B}(z)$ denote

$$
\begin{equation*}
\tilde{B}(z)=\oint_{C(z)} \frac{\nabla H(x) \cdot B(x)}{|\nabla H(x)|} d l \tag{2.39}
\end{equation*}
$$

By the divergence theorem, we can write

$$
\begin{equation*}
\tilde{B}(z)=\int_{G(z)} \operatorname{div}(B(x)) d x \tag{2.40}
\end{equation*}
$$

where $G(z)$ is the closed, simply connected region bounded by $C(z)$. Then $\bar{B}(z)=$ $\tilde{B}(z) / T(z)$. In (2.2.1) we show that $\lim _{z \rightarrow H(O)} T(z)=C>0$, and therefore $\bar{B}(H(O))=$ 0.

Theorem 2.1.4 (An averaging principle for a deterministic perturbation of a sin-gle-well Hamiltonian system). Let \tilde{X}_{t}^{ϵ} satisfy

$$
\begin{equation*}
\dot{\tilde{X}}_{t}^{\epsilon}=\frac{1}{\epsilon} \bar{\nabla} H\left(\tilde{X}_{t}^{\epsilon}\right)+B\left(\tilde{X}_{t}^{\epsilon}\right), \quad \tilde{X}_{0}^{\epsilon}=\left(x_{1}(0), x_{2}(0)\right)=w \tag{2.41}
\end{equation*}
$$

Then for any finite time interval $[0, T]$, the slow component $Y_{t}^{\epsilon}=H\left(\tilde{X}_{t}^{\epsilon}\right)$ converges uniformly as $\epsilon \downarrow 0$ to the solution \bar{Y}_{t} of the averaged system

$$
\begin{equation*}
\dot{\bar{Y}}_{t}=\bar{B}\left(\bar{Y}_{t}\right), \quad \bar{Y}_{0}=H(w) \tag{2.42}
\end{equation*}
$$

where

$$
\begin{equation*}
\bar{B}(z)=\frac{1}{T(z)} \oint_{C(z)} \frac{\nabla H(x) \cdot B(x)}{|\nabla H(x)|} d l \tag{2.43}
\end{equation*}
$$

Proof. We will show that for each fixed T, there exists a constant M_{T} such that

$$
\begin{equation*}
\max _{0 \leq t \leq T}\left|H\left(\tilde{X}_{t}^{\epsilon}\right)-\bar{Y}_{t}\right| \leq M_{T} \epsilon \tag{2.44}
\end{equation*}
$$

We apply the Newton-Leibniz formula to $H\left(X_{t}^{\epsilon}\right)$:

$$
\begin{align*}
H\left(\tilde{X}_{t}^{\epsilon}\right)-H(w) & =\int_{0}^{t} \nabla H\left(\tilde{X}_{s}^{\epsilon}\right) \cdot \dot{\tilde{X}}_{s}^{\epsilon} d s \tag{2.45}\\
& =\int_{0}^{t} \nabla H\left(\tilde{X}_{s}^{\epsilon}\right) \cdot \frac{1}{\epsilon} \bar{\nabla} H\left(\tilde{X}_{s}^{\epsilon}\right) d s+\int_{0}^{t} \nabla H\left(\tilde{X}_{s}^{\epsilon}\right) B\left(\tilde{X}_{s}^{\epsilon}\right) d s \tag{2.46}\\
& =0+\int_{0}^{t} \nabla H\left(\tilde{X}_{s}^{\epsilon}\right) B\left(\tilde{X}_{s}^{\epsilon}\right) d s \tag{2.47}
\end{align*}
$$

Since $\nabla H(x) \cdot B(x)<0, H\left(\tilde{X}_{t}^{\epsilon}\right) \leq H(w)$ for all $0 \leq t \leq T$ and for all $0 \leq \epsilon \leq \epsilon_{0}$. From the assumption that $\lim _{|x| \rightarrow \infty} H(|x|)=\infty$, this implies that there exists a compact set $N \in \mathbb{R}^{2}$ such that $\left|\tilde{X}_{t}^{\epsilon}\right| \in N$ for all $0 \leq t \leq T$ and for all $0<\epsilon<\epsilon_{0}$.

We next establish a claim that is essential to this and subsequent proofs.

Claim 2.1.5. Given a smooth function $g(x)=g\left(x_{1}, x_{2}\right): \mathbb{R}^{2} \rightarrow \mathbb{R}$, the first-order partial differential equation

$$
\begin{equation*}
\nabla u(x) \cdot \bar{\nabla} H(x)=g(x) \tag{2.48}
\end{equation*}
$$

has a solution u if and only if on each level set $H=z$, the integral of g with respect to the invariant density $m_{z}(x)=\frac{1}{T(z)} \frac{1}{\bar{\nabla} H(x)}$ vanishes:

$$
\begin{equation*}
\frac{1}{T(z)} \int_{C(z)} \frac{g(x)}{|\nabla H(x)|} d l=0 \tag{2.49}
\end{equation*}
$$

Furthermore, if this condition is satisfied, the solution u is twice-continuously differentiable.

Proof. Suppose first that a solution u to (2.48) exists. Let $X_{t} \in \mathbb{R}^{2}$ be the solution to $\dot{X}_{t}=\bar{\nabla} H\left(X_{t}\right)$ with initial condition $X_{0}=w_{0}$, and let T denote the period of X_{t} on the level set $H=H\left(w_{0}\right)$. We get

$$
\begin{equation*}
0=u\left(X_{T}\right)-u\left(w_{0}\right)=\int_{0}^{T} \nabla u\left(X_{s}\right) \cdot \bar{\nabla} H\left(X_{s}\right) d s=\int_{0}^{T} g\left(X_{s}\right) d s \tag{2.50}
\end{equation*}
$$

Since (2.1.2) implies

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \frac{1}{t} \int_{0}^{t} g\left(X_{s}\right) d s=\frac{1}{T(z)} \int_{C(z)} \frac{g(x)}{|\nabla H(x)|} d l \tag{2.51}
\end{equation*}
$$

(2.50) forces necessity. For sufficiency, consider the ordinary differential equation

$$
\begin{equation*}
\dot{F}_{t}=\nabla H\left(F_{t}\right) ; F_{0}=a=\left(a_{1}, a_{2}\right) \in \mathbb{R}^{2} \tag{2.52}
\end{equation*}
$$

where a is not the unique minimum of H. The trajectory F_{t} intersects each level set of H precisely once, at some point $f(z)$, and $\lim _{t \rightarrow \infty} F_{t}=\infty, \lim _{t \rightarrow-\infty} F_{t}=O$. For any point $x=\left(x_{1}, x_{2}\right)$ on $f(z)$, define

$$
\begin{equation*}
u(x)=\int_{f(z)}^{x} \frac{g(y)}{|\nabla H(y)|} d l \tag{2.53}
\end{equation*}
$$

where the line integral is taken along $C(z)$ in the direction of the vector field $\bar{\nabla} H(x)$. Since the integral of g with respect to the invariant density vanishes, and since g is smooth, u is twice-continuously differentiable and solves (2.48) with initial condition $u(f(z))=0$.

Now put $g(x)=\nabla H(x) \cdot B(x)-\bar{B}(H(x))$. By construction the integral of g with respect to the invariant density on each level set vanishes, and therefore there exists a solution u to the partial differential equation

$$
\begin{equation*}
\nabla u(x) \bar{\nabla} H(x)=g(x) \tag{2.54}
\end{equation*}
$$

Evaluating the function $u(x)$ along the perturbed trajectories \tilde{X}_{t}^{ϵ}, we get

$$
u\left(\tilde{X}_{t}^{\epsilon}\right)-u(w)=\frac{1}{\epsilon} \int_{0}^{t} \nabla u\left(\tilde{X}_{t}^{\epsilon}\right) \cdot \bar{\nabla} H\left(\tilde{X}_{s}^{\epsilon}\right) d s+\int_{0}^{t} \nabla u\left(\tilde{X}_{s}^{\epsilon}\right) \cdot B\left(\tilde{X}_{s}^{\epsilon}\right) d s
$$

Define the functions R and A as follows:

$$
\begin{aligned}
& R\left(\tilde{X}_{t}^{\epsilon}\right)=\int_{0}^{t} \nabla u\left(\tilde{X}_{s}^{\epsilon}\right) \cdot \bar{\nabla} H\left(\tilde{X}_{s}^{\epsilon}\right) d s=\int_{0}^{t} g\left(\tilde{X}_{s}^{\epsilon}\right) d s \\
& A\left(\tilde{X}_{t}^{\epsilon}\right)=\int_{0}^{t} \nabla u\left(\tilde{X}_{s}^{\epsilon}\right) \cdot B\left(\tilde{X}_{s}^{\epsilon}\right) d s
\end{aligned}
$$

We deduce that

$$
\begin{aligned}
& R\left(\tilde{X}_{t}^{\epsilon}\right)=\epsilon u\left(\tilde{X}_{t}^{\epsilon}\right)-\epsilon u(w)-\epsilon A\left(\tilde{X}_{t}^{\epsilon}\right) \\
& \Rightarrow \int_{0}^{t} g\left(\tilde{X}_{s}^{\epsilon}\right) d s=\epsilon\left[u\left(\tilde{X}_{t}^{\epsilon}\right)-u(w)-A\left(\tilde{X}_{t}^{\epsilon}\right)\right] \\
& \Rightarrow\left|\int_{0}^{t} g\left(\tilde{X}_{s}^{\epsilon}\right) d s\right| \leq K_{t} \epsilon \leq K_{T} \epsilon
\end{aligned}
$$

The final implication holds because u and A are continuous and X_{t}^{ϵ} lies in the compact set N for all $0 \leq t \leq T$ and all $\epsilon<\epsilon_{0}$. Note that

$$
\begin{aligned}
H\left(\tilde{X}_{t}^{\epsilon}\right)-H(w) & =\int_{0}^{t} \nabla H\left(\tilde{X}_{s}^{\epsilon}\right) \cdot B\left(\tilde{X}_{s}^{\epsilon}\right) d s \\
& =\int_{0}^{t} \bar{B}\left(H\left(\tilde{X}_{s}^{\epsilon}\right)\right) d s+\int_{0}^{t}\left(\nabla H\left(\tilde{X}_{s}^{\epsilon}\right) \cdot B\left(\tilde{X}_{s}^{\epsilon}\right)-\bar{B}\left(H\left(\tilde{X}_{s}^{\epsilon}\right)\right)\right) d s
\end{aligned}
$$

The second integral is bounded:

$$
\left|\int_{0}^{t}\left(\nabla H\left(\tilde{X}_{s}^{\epsilon}\right) \cdot B\left(\tilde{X}_{s}^{\epsilon}\right)-\bar{B}\left(H\left(\tilde{X}_{s}^{\epsilon}\right)\right)\right) d s\right|=\left|\int_{0}^{t} g\left(\tilde{X}_{s}^{\epsilon}\right) d s\right| \leq K_{t} \epsilon
$$

Let $Y_{t}^{\epsilon}=H\left(\tilde{X}_{t}^{\epsilon}\right)$. Because of the previous bound,

$$
Y_{t}^{\epsilon}-Y_{0}^{\epsilon}=\int_{0}^{t} \bar{B}\left(Y_{s}^{\epsilon}\right) d s+\rho_{\epsilon}(t)
$$

where $\left|\rho_{\epsilon}(t)\right| \leq K_{t} \epsilon$. From the Lipschitz continuity of \bar{B}, we conclude that

$$
\begin{aligned}
Y_{t}^{\epsilon}-\bar{Y}_{t} & =\int_{0}^{t}\left(\bar{B}\left(Y_{s}^{\epsilon}\right)-\bar{B}\left(\bar{Y}_{s}\right)\right) d s+\rho_{\epsilon}(t) \\
\Rightarrow & \left|Y_{t}^{\epsilon}-\bar{Y}_{t}\right| \leq C \int_{0}^{t}\left|Y_{s}^{\epsilon}-\bar{Y}_{s}\right| d s+K_{t} \epsilon
\end{aligned}
$$

So by Gronwall's inequality, we obtain

$$
\max _{0 \leq t \leq T}\left|Y_{t}^{\epsilon}-\bar{Y}_{t}\right| \leq \exp \left[\left(C_{f} T\right)\right] K_{T} \epsilon
$$

as required.

2.1.2 Examples of the averaging principle in single-well Hamiltonian systems with stochastic perturbations

We next consider a stochastic perturbation. Suppose X_{t}^{ϵ} is the solution to the following stochastic differential equation:

$$
\begin{equation*}
\dot{X}_{t}^{\epsilon}=\frac{1}{\epsilon} \bar{\nabla} H\left(X_{t}^{\epsilon}\right)+B\left(X_{t}^{\epsilon}\right)+\sigma\left(X_{t}^{\epsilon}\right) \dot{W}_{t}, \quad X_{0}^{\epsilon}=x_{0} \tag{2.55}
\end{equation*}
$$

where B and H are the same functions from (2.1.4); \dot{W}_{t} represents white noise; and $a(x)=\sigma(x) \sigma^{T}(x)$ is a smooth, bounded, positive definite 2×2 matrix. Define the partial differential operator L as follows: for any function u,

$$
\begin{equation*}
L u=\frac{1}{2} \sum_{i, j} a_{i j}(x) \frac{\partial^{2} u(x)}{\partial x_{i} \partial x_{j}}, \tag{2.56}
\end{equation*}
$$

and for any level set $H=z, z \neq H(O)$, let $\overline{L u}(z)$ denote

$$
\begin{equation*}
\overline{L u}(z)=\frac{1}{T(z)} \oint_{C(z)} \frac{L u(x)}{|\nabla H(x)|} d l \tag{2.57}
\end{equation*}
$$

Define $\bar{A}(z)$ and $\bar{B}(z)$ as

$$
\begin{align*}
& \bar{A}(z)=\frac{1}{T(z)} \oint_{C(z)} \frac{a(x) \nabla H(x) \cdot H(x)}{|\nabla H(x)|} d l \tag{2.58}\\
& \bar{B}(z)=\frac{1}{T(z)} \oint_{C(z)} \frac{B(x) \cdot \nabla H(x)}{|\nabla H(x)|} d l \tag{2.59}
\end{align*}
$$

Again, from Lemma (2.1.3) $\bar{A}(z), \bar{B}(z)$ and $\overline{L H}(z)$ are $(k-1)$-times continuously differentiable in the interval $0<z$ if H is k-times continuously differentiable.

Let Y_{t} be the one-dimensional process satisfying

$$
\begin{equation*}
\dot{Y}_{t}=\bar{B}\left(Y_{t}\right)+\overline{L H}\left(Y_{t}\right)+\sqrt{\bar{A}\left(Y_{t}\right)} \dot{W}_{t}, \quad Y_{0}=H\left(x_{0}\right) \tag{2.60}
\end{equation*}
$$

Theorem 2.1.6 (An averaging principle for a stochastic perturbation of a single-well Hamiltonian system). Let X_{t}^{ϵ} be as given in (2.55). For any fixed time interval $[0, T]$ and for any $\delta>0$, there exists a process Y_{t}^{ϵ} identical in distribution to Y_{t} such that

$$
\begin{equation*}
\lim _{\epsilon \downarrow 0} P\left\{\sup _{0 \leq t \leq T}\left|H\left(X_{t}^{\epsilon}\right)-Y_{t}^{\epsilon}\right|>\delta\right\}=0 \tag{2.61}
\end{equation*}
$$

Proof. First, we show that for any $T>0$ and $\eta>0$, there exists a compact set N_{η} and $\epsilon_{\eta}>0$ such that for any $0<\epsilon<\epsilon_{\eta}$,

$$
\begin{equation*}
P\left\{\sup _{0 \leq t \leq T}\left|X_{t}^{\epsilon}\right| \in N_{\eta}\right\}>1-\eta \tag{2.62}
\end{equation*}
$$

Since we assume $\lim _{|x| \rightarrow \infty} H(x)=\infty$ and that H has a single nonnegative minimum, to prove (2.62) it suffices to prove that for every $\delta>0$ and $T>0$, there exists H_{0} and ϵ_{0} such that

$$
\begin{equation*}
P\left\{\max _{0 \leq t \leq T} H\left(X_{t}^{\epsilon}\right)>H_{0}\right\}<\delta \tag{2.63}
\end{equation*}
$$

for all $\epsilon<\epsilon_{0}$.

To establish (2.63), we apply the Ito formula to H :

$$
\begin{align*}
H\left(X_{t}^{\epsilon}\right)-H(x) & =\int_{0}^{t} \nabla H\left(X_{s}^{\epsilon}\right) \cdot B\left(X_{s}^{\epsilon}\right) d s+\frac{1}{2} \int_{0}^{t} \sum_{i j} a_{i j}\left(X_{s}^{\epsilon}\right) \frac{\partial^{2} H\left(X_{s}^{\epsilon}\right)}{\partial x_{1} \partial x_{2}} d s \tag{2.64}\\
& +\int_{0}^{t} \nabla H\left(X_{s}^{\epsilon}\right) \sigma\left(X_{s}^{\epsilon}\right) d W_{s} \tag{2.65}
\end{align*}
$$

By the boundedness assumptions on both $a(x)$ and the second derivatives of H, we can find a constant A_{1} such that

$$
\begin{equation*}
\left|\frac{1}{2} \int_{0}^{t} \sum_{i j} a_{i j}\left(X_{s}^{\epsilon}\right) \frac{\partial^{2} H\left(X_{s}^{\epsilon}\right)}{\partial x_{1} \partial x_{2}} d s\right| \leq A_{1} t \tag{2.66}
\end{equation*}
$$

Since $\nabla H(x) \cdot B(x)<0$ and the expectation of the stochastic integral term is zero,

$$
\begin{equation*}
E\left[H\left(X_{t}^{\epsilon}\right)\right]<H\left(x_{0}\right)+A_{1} t \tag{2.67}
\end{equation*}
$$

By our assumptions on $\nabla H(x)$, there exists a constant C_{1} such that for $|x|$ sufficiently large, $H(x)>C_{1}|x|^{2}$. As a result, (2.67) implies that there exist constants C_{2}, C_{3} and ϵ_{0} such that for all $\epsilon<\epsilon_{0}$,

$$
\begin{equation*}
E\left[\left|X_{t}^{\epsilon}\right|^{2}\right]<C_{2}+C_{3} t \tag{2.68}
\end{equation*}
$$

Let $H_{0}>H\left(x_{0}\right)+A_{1} T$. Applying the Kolmogorov-Doob inequality (see [25], §3.2), we get

$$
\begin{align*}
& P\left\{\max _{0 \leq t \leq T} H\left(X_{t}^{\epsilon}\right)>H_{0}\right\} \tag{2.69}\\
& \leq P\left\{\sup _{0 \leq t \leq T}\left|\int_{0}^{t} \nabla H\left(X_{s}^{\epsilon}\right) \sigma\left(X_{s}^{\epsilon}\right) d s\right|>H_{0}-H\left(x_{0}\right)-A_{1}\right\} \tag{2.70}\\
& \leq \frac{E\left[\int_{0}^{T}\left|\nabla H\left(X_{s}^{\epsilon}\right) \sigma\left(X_{s}^{\epsilon}\right)\right|^{2} d s\right]}{\left(H_{0}-H\left(x_{0}\right)-A_{1} T\right)^{2}} \tag{2.71}\\
& \leq \frac{E\left[\int_{0}^{T} A_{2}\left|\nabla H\left(X_{s}^{\epsilon}\right)\right|^{2} d s\right]}{\left(H_{0}-H\left(x_{0}\right)-A_{1} T\right)^{2}} \tag{2.72}
\end{align*}
$$

By assumption, there exists a constant K_{1} such that for all $|x|$ sufficiently large, $|\nabla H(x)|>K_{1}|x|$. By (2.68), this implies that there exist constants A_{3} and A_{4} for which

$$
\begin{equation*}
E\left[\int_{0}^{T} A_{2}\left|\nabla H\left(X_{s}^{\epsilon}\right)\right|^{2} d s\right]<A_{3}+A_{4} T \tag{2.73}
\end{equation*}
$$

for all $\epsilon<\epsilon_{0}$. This ensures that for any fixed T and $\delta>0$, we can choose H_{0} sufficiently large to guarantee (2.63).

In light of (2.62), to prove the theorem, it suffices to prove that for any $N<\infty$,

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} P\left\{\sup _{0 \leq t \leq t}\left|H\left(X_{t}^{\epsilon}\right)-Y_{t}^{\epsilon}\right|>\delta, \sup _{0 \leq t \leq T}\left|X_{t}^{\epsilon}\right|<N\right\}=0 \tag{2.74}
\end{equation*}
$$

Let f be a twice continuously differentiable function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, and let \hat{f} denote the average value of f on each level set $C(z)$ of H :

$$
\begin{equation*}
\hat{f}(z)=\frac{1}{T(z)} \oint_{C(z)} \frac{f(x)}{|\nabla H(x)|} d l \tag{2.75}
\end{equation*}
$$

We prove the following claim:

Claim 2.1.7. Let f satisfy the aforementioned assumptions and let \hat{f} be defined as in (2.75). For any $N<\infty$, define the event $A_{N}^{\epsilon}=\left\{\omega: \sup _{0 \leq t \leq T}\left|X_{t}^{\epsilon}\right|<N\right\}$. Then the following limits hold:

$$
\begin{equation*}
\lim _{\epsilon \downarrow 0} P\left\{\sup _{0 \leq t \leq T}\left|\int_{0}^{t}\left[f\left(X_{s}^{\epsilon}\right)-\hat{f}\left(H\left(X_{s}^{\epsilon}\right)\right)\right] d s\right|>\delta, \sup _{0 \leq t \leq T}\left|X_{t}^{\epsilon}\right|<N\right\}=0 \tag{2.76}
\end{equation*}
$$

and also

$$
\begin{equation*}
\lim _{\epsilon \downarrow 0}\left\{\sup _{0 \leq t \leq T} E\left[\left(\int_{0}^{t}\left[f\left(X_{s}^{\epsilon}\right)-\hat{f}\left(H\left(X_{s}^{\epsilon}\right)\right)\right] d s\right) 1_{A_{N}^{\epsilon}}\right]^{2}\right\}=0 \tag{2.77}
\end{equation*}
$$

Proof. To justify this, let u be a solution of the partial differential equation

$$
\begin{equation*}
\bar{\nabla} H(x) \nabla u(x)=f(x)-\hat{f}(H(x)) \tag{2.78}
\end{equation*}
$$

This equation is solvable for u because again, by construction, the right hand side integrates to zero with respect to the invariant density on each level set. The solution u is also twice continuously differentiable. By the Ito formula for u, we have

$$
\begin{equation*}
u\left(X_{t}^{\epsilon}\right)-u(x)=\frac{1}{\epsilon} \int_{0}^{t}(\nabla u \cdot \bar{\nabla} H)\left(X_{s}^{\epsilon}\right) d s+\int_{0}^{t} \nabla u \cdot \sigma\left(X_{s}^{\epsilon}\right) d W_{s}+\frac{1}{2} \int_{0}^{t} L u\left(X_{s}^{\epsilon}\right) d s \tag{2.79}
\end{equation*}
$$

which implies

$$
\begin{align*}
\int_{0}^{t}(\nabla u \cdot \bar{\nabla} H)\left(X_{s}^{\epsilon}\right) d s & =\epsilon\left[u\left(X_{t}^{\epsilon}\right)-u(x)+\int_{0}^{t} \nabla u \cdot \sigma\left(X_{s}^{\epsilon}\right) d W_{s}+\frac{1}{2} \int_{0}^{t} L u\left(X_{s}^{\epsilon}\right) d s\right] \tag{2.80}\\
\int_{0}^{t}\left(f\left(X_{s}^{\epsilon}\right)-\hat{f}\left(H\left(X_{s}^{\epsilon}\right)\right) d s\right. & =\epsilon\left[u\left(X_{t}^{\epsilon}\right)-u(x)+\frac{1}{2} \int_{0}^{t} L u\left(X_{s}^{\epsilon}\right) d s+\int_{0}^{t} \nabla u \cdot \sigma\left(X_{s}^{\epsilon}\right) d W_{s}\right] \tag{2.81}
\end{align*}
$$

and this implies

$$
\begin{equation*}
\int_{0}^{t}\left(f\left(X_{s}^{\epsilon}\right)-\hat{f}\left(H\left(X_{s}^{\epsilon}\right)\right) d s=\epsilon\left[u\left(X_{t}^{\epsilon}\right)-u(x)+\frac{1}{2} \int_{0}^{t} L u\left(X_{s}^{\epsilon}\right) d s\right]+\epsilon\left[\int_{0}^{t} \nabla u \cdot \sigma\left(X_{s}^{\epsilon}\right) d W_{s}\right]\right. \tag{2.82}
\end{equation*}
$$

Let $\rho_{t}^{\epsilon}(f)$ denote the right-hand side of this expression:

$$
\begin{equation*}
\rho_{t}^{\epsilon}(f)=\epsilon\left[u\left(X_{t}^{\epsilon}\right)-u(x)+\frac{1}{2} \int_{0}^{t} L u\left(X_{s}^{\epsilon}\right) d s+\int_{0}^{t} \nabla u \cdot \sigma\left(X_{s}^{\epsilon}\right) d W_{s}\right] \tag{2.83}
\end{equation*}
$$

On the event $A_{N}^{\epsilon}=\left\{\sup _{0 \leq t \leq T}\left|X_{t}^{\epsilon}\right|<N\right\}$, the continuity of the integrand implies that the Riemann integral on the right-hand side is bounded. By the Kolmogorov-Doob inequality, for any $\eta>0$,

$$
\begin{equation*}
P\left\{\sup _{0 \leq t \leq T}\left|\int_{0}^{t} \nabla u \cdot \sigma\left(X_{s}^{\epsilon}\right) d W_{s}\right|>\eta, A_{N}^{\epsilon}\right\} \leq \frac{1}{\eta^{2}} E\left[\left(\int_{0}^{T} \nabla u \cdot \sigma\left(X_{s}^{\epsilon}\right) d W_{s}\right) 1_{A_{N}}\right]^{2} \tag{2.84}
\end{equation*}
$$

and by the Ito isometry,

$$
\begin{equation*}
E\left[\left(\int_{0}^{T} \nabla u \cdot \sigma\left(X_{s}^{\epsilon}\right) d W_{s}\right) 1_{A_{N}^{\epsilon}}\right]^{2}=E\left[\left(\int_{0}^{T}\left(\nabla u \cdot \sigma\left(X_{s}^{\epsilon}\right)\right)^{2} d s\right) 1_{A_{N}^{\epsilon}}\right] \tag{2.85}
\end{equation*}
$$

and the right-hand side of the above equality is again bounded since ∇u and σ are continuous. Therefore

$$
\begin{equation*}
P\left\{\sup _{0 \leq t \leq T} \mid \int_{0}^{t}\left(f\left(X_{s}^{\epsilon}\right)-\hat{f}\left(H\left(X_{s}^{\epsilon}\right)\right) d s \mid>\delta, A_{N}^{\epsilon}\right\} \rightarrow 0\right. \tag{2.86}
\end{equation*}
$$

as $\epsilon \downarrow 0$. Also, squaring both sides and taking expectations in (2.82), we get

$$
\begin{align*}
E\left[\left(\int_{0}^{t}\left(f\left(X_{s}^{\epsilon}\right)-\hat{f}\left(H\left(X_{s}^{\epsilon}\right)\right) d s\right) 1_{A_{N}^{\epsilon}}\right]^{2}\right. & \leq 2 \epsilon^{2} E\left[\left(u\left(X_{t}^{\epsilon}\right)-u(x)+\frac{1}{2} \int_{0}^{t} L u\left(X_{s}^{\epsilon}\right) d s\right) 1_{A_{N}^{\epsilon}}\right]^{2} \tag{2.87}\\
& +2 \epsilon^{2} E\left[\left(\int_{0}^{t} \nabla u \cdot \sigma\left(X_{s}^{\epsilon}\right) d W_{s}\right) 1_{A_{N}}\right]^{2} \tag{2.88}
\end{align*}
$$

and again by the Ito isometry and the smoothness of u and σ, both the expectations on the right-hand side are uniformly bounded for $0 \leq t \leq T$. Hence the right-hand side converges to 0 uniformly in $0 \leq t \leq T$ as $\epsilon \downarrow 0$. This completes the proof of the claim.

Continuing now with the proof of the theorem, applying the Ito formula to the process $H\left(X_{t}^{\epsilon}\right)$, we get

$$
\begin{align*}
H\left(X_{t}^{\epsilon}\right)-H(x) & =\int_{0}^{t} \nabla H\left(X_{s}^{\epsilon}\right) \cdot B\left(X_{s}^{\epsilon}\right) d s+\frac{1}{2} \int_{0}^{t} \sum_{i j} a_{i j}\left(X_{s}^{\epsilon}\right) \frac{\partial^{2} H\left(X_{s}^{\epsilon}\right)}{\partial x_{1} \partial x_{2}} d s \tag{2.89}\\
& +\int_{0}^{t} \nabla H\left(X_{s}^{\epsilon}\right) \sigma\left(X_{s}^{\epsilon}\right) d W_{s} \tag{2.90}
\end{align*}
$$

By the random-time change formula and the self-similarity of the Wiener process (see [25], §8.5), the stochastic integral can be written as

$$
\begin{equation*}
\tilde{W}^{\epsilon}\left[\int_{0}^{t} a\left(X_{s}^{\epsilon}\right) \nabla H\left(X_{s}^{\epsilon}\right) \cdot \nabla H\left(X_{s}^{\epsilon}\right) d s\right] \tag{2.91}
\end{equation*}
$$

where \tilde{W}^{ϵ} is a one-dimensional Wiener process.
We have the following formula for the evolution of $H\left(X_{t}^{\epsilon}\right)$:

$$
\begin{array}{r}
H\left(X_{t}^{\epsilon}\right)=H(x)+\int_{0}^{t} \bar{B}\left(H\left(X_{s}^{\epsilon}\right)\right)+\int_{0}^{t} \overline{L H}\left(H\left(X_{s}^{\epsilon}\right)\right) d s \\
+\tilde{W}^{\epsilon}\left[\int_{0}^{t} \bar{A}\left(H\left(X_{s}^{\epsilon}\right)\right) d s+\int_{0}^{t} a\left(X_{s}^{\epsilon}\right) \nabla H\left(X_{s}^{\epsilon}\right) \cdot \nabla H\left(X_{s}^{\epsilon}\right) d s-\int_{0}^{t} \bar{A}\left(H\left(X_{s}^{\epsilon}\right)\right) d s\right] \\
-\tilde{W}^{\epsilon}\left[\int_{0}^{t} \bar{A}\left(H\left(X_{s}^{\epsilon}\right)\right) d s\right]+\tilde{W}^{\epsilon}\left[\int_{0}^{t} \bar{A}\left(H\left(X_{s}^{\epsilon}\right)\right) d s\right] \\
+\int_{0}^{t}\left[\nabla H\left(X_{s}^{\epsilon}\right) B\left(X_{s}^{\epsilon}\right)-\bar{B}\left(H\left(X_{s}^{\epsilon}\right)\right)\right] d s+\int_{0}^{t}\left[L H\left(X_{s}^{\epsilon}\right)-\overline{L H}\left(H\left(X_{s}^{\epsilon}\right)\right)\right] d s \tag{2.94}
\end{array}
$$

Define the random variable η_{t}^{ϵ} as

$$
\begin{align*}
\eta_{t}^{\epsilon} & =\tilde{W}^{\epsilon}\left[\int_{0}^{t} \bar{A}\left(H\left(X_{s}^{\epsilon}\right)\right) d s+\int_{0}^{t} a\left(X_{s}^{\epsilon}\right) \nabla H\left(X_{s}^{\epsilon}\right) \cdot \nabla H\left(X_{s}^{\epsilon}\right) d s-\int_{0}^{t} \bar{A}\left(H\left(X_{s}^{\epsilon}\right)\right) d s\right] \tag{2.96}\\
& -\tilde{W}^{\epsilon}\left[\int_{0}^{t} \bar{A}\left(H\left(X_{s}^{\epsilon}\right)\right) d s\right] \tag{2.97}
\end{align*}
$$

By the uniform continuity of the Wiener process and (2.1.7),

$$
\begin{equation*}
\sup _{0 \leq t \leq T}\left|\eta_{t}^{\epsilon}\right| 1_{A_{N}^{\epsilon}} \rightarrow 0 \text { in probability, and } \sup _{0 \leq t \leq T} E\left[\left(\left|\eta_{t}^{\epsilon}\right|^{2}\right) 1_{A_{N}^{\epsilon}}\right] \rightarrow 0 \tag{2.98}
\end{equation*}
$$

as $\epsilon \downarrow 0$. We have

$$
\begin{align*}
H\left(X_{t}^{\epsilon}\right) & =H(x)+\int_{0}^{t} \bar{B}\left(H\left(X_{s}^{\epsilon}\right)\right)+\int_{0}^{t} \overline{L H}\left(H\left(X_{s}^{\epsilon}\right)\right) d s \tag{2.99}\\
& +\eta_{t}^{\epsilon}+\tilde{W}^{\epsilon}\left[\int_{0}^{t} \bar{A}\left(H\left(X_{s}^{\epsilon}\right)\right) d s\right] \tag{2.100}\\
& +\int_{0}^{t}\left[\nabla H\left(X_{s}^{\epsilon}\right) B\left(X_{s}^{\epsilon}\right)-\bar{B}\left(H\left(X_{s}^{\epsilon}\right)\right)\right] d s+\int_{0}^{t}\left[L H\left(X_{s}^{\epsilon}\right)-\overline{L H}\left(H\left(X_{s}^{\epsilon}\right)\right)\right] d s \tag{2.101}
\end{align*}
$$

By the random-time change formula, there exists another Wiener process $\tilde{\tilde{W}}^{\epsilon}$ such that

$$
\begin{equation*}
\tilde{W}^{\epsilon}\left[\int_{0}^{t} \bar{A}\left(H\left(X_{s}^{\epsilon}\right)\right) d s\right]=\int_{0}^{t} \sqrt{\bar{A}\left(H\left(X_{s}^{\epsilon}\right)\right.} d \tilde{W}_{s}^{\epsilon} \tag{2.102}
\end{equation*}
$$

Let Y_{t}^{ϵ} be the process defined by

$$
\begin{equation*}
Y_{t}^{\epsilon}-H\left(x_{0}\right)=\int_{0}^{t} \bar{B}\left(Y_{s}^{\epsilon}\right)+\overline{L H}\left(Y_{s}^{\epsilon}\right) d s+\int_{0}^{t} \sqrt{\bar{A}\left(Y_{s}^{\epsilon}\right)} d \tilde{\tilde{W}}_{s}^{\epsilon} \tag{2.103}
\end{equation*}
$$

This process is identical in distribution to Y_{t} for each $\epsilon>0$. Let $\bar{D}=\bar{B}+\overline{L H}$, and put $Z_{t}^{\epsilon}=H\left(X_{t}^{\epsilon}\right)$. Then

$$
\begin{align*}
Z_{t}^{\epsilon}-Y_{t}^{\epsilon} & =\int_{0}^{t}\left[\bar{D}\left(Z_{s}^{\epsilon}\right)-\bar{D}\left(Y_{s}^{\epsilon}\right)\right] d s \tag{2.104}\\
& +\eta_{t}^{\epsilon}+\int_{0}^{t}\left[\sqrt{\bar{A}\left(Z_{s}^{\epsilon}\right)}-\sqrt{\bar{A}\left(Y_{s}^{\epsilon}\right)}\right] d \tilde{W}_{s}^{\epsilon} \tag{2.105}\\
& +\int_{0}^{t}\left[\nabla H\left(X_{s}^{\epsilon}\right) B\left(X_{s}^{\epsilon}\right)-\bar{B}\left(Z_{s}^{\epsilon}\right)\right] d s+\int_{0}^{t}\left[L H\left(X_{s}^{\epsilon}\right)-\overline{L H}\left(Z_{s}^{\epsilon}\right)\right] d s \tag{2.106}
\end{align*}
$$

By Lipschitz continuity of \bar{D}, we get

$$
\begin{align*}
\left|Z_{t}^{\epsilon}-Y_{t}^{\epsilon}\right| & \leq \int_{0}^{t} K_{1}\left|Z_{s}^{\epsilon}-Y_{s}^{\epsilon}\right| d s \tag{2.107}\\
& +\left|\eta_{t}^{\epsilon}\right|+\left|\int_{0}^{t}\left[\sqrt{\bar{A}\left(Z_{s}^{\epsilon}\right)}-\sqrt{\bar{A}\left(Y_{s}^{\epsilon}\right)}\right] d \tilde{W}_{s}^{\epsilon}\right| \tag{2.108}\\
& +\left|\int_{0}^{t}\left[\nabla H\left(X_{s}^{\epsilon}\right) B\left(X_{s}^{\epsilon}\right)-\bar{B}\left(Z_{s}^{\epsilon}\right)\right] d s\right|+\left|\int_{0}^{t}\left[L H\left(X_{s}^{\epsilon}\right)-\overline{L H}\left(Z_{s}^{\epsilon}\right)\right] d s\right| \tag{2.109}
\end{align*}
$$

In what follows, we assume all expectations to be taken over the set $A_{N}^{\epsilon}=\{\omega$: $\left.\sup _{0 \leq t \leq T}\left|X_{t}^{\epsilon}\right|<N\right\}$. (For notational convenience, we suppress the repeated use of the indicator function $1_{A_{N}^{\epsilon}}$ within the expectation.)

By Claim (2.1.7), the terms

$$
\begin{align*}
\sup _{0 \leq t \leq T} E\left[\rho_{t}^{\epsilon}(B)\right]^{2} & =\sup _{0 \leq t \leq T} E\left[\int_{0}^{t}\left[\nabla H\left(X_{s}^{\epsilon}\right) B\left(X_{s}^{\epsilon}\right)-\bar{B}\left(H\left(X_{s}^{\epsilon}\right)\right)\right] d s\right]^{2} \text { and } \tag{2.110}\\
\sup _{0 \leq t \leq T} E\left[\rho^{\epsilon}(L H)\right]^{2} & =\sup _{0 \leq t \leq T} E\left[\int_{0}^{t}\left[L H\left(X_{s}^{\epsilon}\right)-\overline{L H}\left(H\left(X_{s}^{\epsilon}\right)\right)\right] d s\right]^{2} \tag{2.111}
\end{align*}
$$

converge to zero as $\epsilon \downarrow 0$.
Let K_{2} be the Lipschitz constant for $\sqrt{\bar{A}}$. Squaring and taking expectations, we get:

$$
\begin{align*}
E\left|Z_{t}^{\epsilon}-Y_{t}^{\epsilon}\right|^{2} & \leq 8 E\left[\int_{0}^{t} K_{1}\left|Z_{s}^{\epsilon}-Y_{s}^{\epsilon}\right| d s\right]^{2} \tag{2.112}\\
& +8 E\left[\left|\eta_{t}^{\epsilon}\right|^{2}\right]+8 E\left[\int_{0}^{t}\left[\sqrt{\bar{A}\left(Z_{s}^{\epsilon}\right)}-\sqrt{\bar{A}\left(Y_{s}^{\epsilon}\right)}\right] d \tilde{\tilde{W}}_{s}^{\epsilon}\right]^{2} \tag{2.113}\\
& +8 E\left[\int_{0}^{t}\left[\nabla H\left(X_{s}^{\epsilon}\right) B\left(X_{s}^{\epsilon}\right)-\bar{B}\left(Z_{s}^{\epsilon}\right)\right] d s\right]^{2} \tag{2.114}\\
& +8 E\left[\int_{0}^{t}\left[L H\left(X_{s}^{\epsilon}\right)-\overline{L H}\left(Z_{s}^{\epsilon}\right)\right] d s\right]^{2} \tag{2.115}
\end{align*}
$$

From the Ito isometry, Fubini's theorem, and Lipschitz continuity, we derive

$$
\begin{align*}
E\left[\int_{0}^{t}\left[\sqrt{\bar{A}\left(Z_{s}^{\epsilon}\right)}-\sqrt{\bar{A}\left(Y_{s}^{\epsilon}\right)}\right] d \tilde{\tilde{W}}_{s}^{\epsilon}\right]^{2} & =E \int_{0}^{t}\left[\sqrt{\bar{A}\left(Z_{s}^{\epsilon}\right)}-\sqrt{\bar{A}\left(Y_{s}^{\epsilon}\right)}\right]^{2} d s \tag{2.116}\\
& \leq \int_{0}^{t} K_{2}^{2} E\left[\left|Z_{s}^{\epsilon}-Y_{s}^{\epsilon}\right|^{2}\right] d s \tag{2.117}
\end{align*}
$$

Put $m_{\epsilon}(s)=\sup _{0 \leq u \leq s} E\left[\left|Z_{u}^{\epsilon}-Y_{u}^{\epsilon}\right|^{2}\right]$. From Holder's inequality and (2.107), (2.112),
and (2.116), we deduce that

$$
\begin{aligned}
m_{\epsilon}(t) & \leq 8 T K_{1}^{2} \int_{0}^{t} m_{\epsilon}(s) d s+8 K_{2}^{2} \int_{0}^{t} m_{\epsilon}(s) d s \\
& +8 \sup _{0 \leq t \leq T} E\left[\left(\eta_{t}^{\epsilon}\right)^{2}\right]+8 \sup _{0 \leq t \leq T} E\left[\left(\rho_{t}^{\epsilon}(B)\right)^{2}\right]+8 \sup _{0 \leq t \leq T} E\left[\left(\rho_{t}^{\epsilon}(L H)\right)^{2}\right]
\end{aligned}
$$

By Gronwall's inequality, $m_{\epsilon}(t) \rightarrow 0$ as $\epsilon \downarrow 0$.
From (2.107), we have

$$
\begin{align*}
\left|Z_{t}^{\epsilon}-Y_{t}^{\epsilon}\right| & \leq \int_{0}^{t} K_{1}\left|Z_{s}^{\epsilon}-Y_{s}^{\epsilon}\right| d s+\left|\eta_{t}^{\epsilon}\right| \tag{2.118}\\
& +\left|\int_{0}^{t}\left[\nabla H\left(X_{s}^{\epsilon}\right) B\left(X_{s}^{\epsilon}\right)-\bar{B}\left(Z_{s}^{\epsilon}\right)\right] d s\right|+\left|\int_{0}^{t}\left[L H\left(X_{s}^{\epsilon}\right)-\overline{L H}\left(Z_{s}^{\epsilon}\right)\right] d s\right| \tag{2.119}\\
& +\left|\int_{0}^{t}\left[\sqrt{\bar{A}\left(Z_{s}^{\epsilon}\right)}-\sqrt{\bar{A}\left(Y_{s}^{\epsilon}\right)}\right] d \tilde{W}_{s}^{\epsilon}\right| \tag{2.120}
\end{align*}
$$

We have established that the second, third, and fourth terms of the right-hand side of the above inequality converge to zero uniformly in probability. To estimate the stochastic integral, we once again apply Kolmogorov's inequality:

$$
\begin{array}{r}
P\left\{\sup _{0 \leq t \leq T}\left|\int_{0}^{t}\left[\sqrt{\bar{A}\left(Z_{s}^{\epsilon}\right)}-\sqrt{\bar{A}\left(Y_{s}^{\epsilon}\right)}\right] d \tilde{W}_{s}^{\epsilon}\right|>\delta\right\} \\
\leq \frac{E\left[\int_{0}^{T} \sqrt{\bar{A}\left(Z_{s}^{\epsilon}\right)}-\sqrt{\bar{A}\left(Y_{s}^{\epsilon}\right)} d \tilde{W}_{s}^{\epsilon}\right]^{2}}{\delta^{2}} \leq \frac{1}{\delta^{2}} \int_{0}^{T} K_{2} E\left|Z_{s}^{\epsilon}-Y_{s}^{\epsilon}\right|^{2} d s \tag{2.122}
\end{array}
$$

Since

$$
\begin{equation*}
\sup _{0 \leq t \leq T} E\left|Z_{t}^{\epsilon}-Y_{t}^{\epsilon}\right|^{2} \rightarrow 0 \tag{2.123}
\end{equation*}
$$

as $\epsilon \downarrow 0$, we conclude that as $\epsilon \downarrow 0$,

$$
\begin{equation*}
P\left\{\sup _{0 \leq t \leq T}\left|\int_{0}^{t}\left[\sqrt{\bar{A}\left(Z_{s}^{\epsilon}\right)}-\sqrt{\bar{A}\left(Y_{s}^{\epsilon}\right)}\right] d \tilde{\tilde{W}}_{s}^{\epsilon}\right|>\delta\right\} \rightarrow 0 \tag{2.124}
\end{equation*}
$$

Let $R^{\epsilon}(t)$ be defined as

$$
\begin{align*}
R^{\epsilon}(t) & =\left|\eta_{t}^{\epsilon}\right|+\left|\int_{0}^{t}\left[\nabla H\left(X_{s}^{\epsilon}\right) B\left(X_{s}^{\epsilon}\right)-\bar{B}\left(Z_{s}^{\epsilon}\right)\right] d s\right|+\left|\int_{0}^{t}\left[L H\left(X_{s}^{\epsilon}\right)-\overline{L H}\left(Z_{s}^{\epsilon}\right)\right] d s\right| \tag{2.125}\\
& +\left|\int_{0}^{t}\left[\sqrt{\bar{A}\left(Z_{s}^{\epsilon}\right)}-\sqrt{\bar{A}\left(Y_{s}^{\epsilon}\right)}\right] d \tilde{\tilde{W}}_{s}^{\epsilon}\right| \tag{2.126}
\end{align*}
$$

We have established that $\sup _{0 \leq t \leq T} R^{\epsilon}(t)$ converges to zero in probability as $\epsilon \downarrow 0$. Put $r^{\epsilon}(t)=\sup _{0 \leq t \leq T}\left|Z_{t}^{\epsilon}-Y_{t}\right|$. We conclude from the above analysis that

$$
\begin{equation*}
r^{\epsilon}(t) \leq \int_{0}^{t} K_{1} r^{\epsilon}(s) d s+\sup _{0 \leq t \leq T} R^{\epsilon}(t) \tag{2.127}
\end{equation*}
$$

So by Gronwall's inequality, we conclude that

$$
\begin{equation*}
\lim _{\epsilon \downarrow 0} P\left\{\sup _{0 \leq t \leq T}\left|H\left(X_{t}^{\epsilon}\right)-Y_{t}^{\epsilon}\right|>\delta, A_{N}^{\epsilon}\right\}=0 \tag{2.128}
\end{equation*}
$$

as required. From (2.74), this proves the theorem.

Corollary 2.1.8. The process $H\left(X_{t}^{\epsilon}\right)$ converges weakly in $C_{0 T}$ to the process Y_{t}.

We also address the case when the fast motion is stochastic. Consider a single-well Hamiltonian system, with both deterministic and stochastic perturbations, written in action-angle coordinates:

$$
\begin{align*}
& \dot{\tilde{I}}^{\epsilon}=\epsilon\left(\beta_{1}\left(\tilde{I}^{\epsilon}, \tilde{\phi}^{\epsilon}\right)\right) \tag{2.129}\\
& \dot{\dot{\phi}}^{\epsilon}=\omega\left(\tilde{I}^{\epsilon}\right)+\sigma\left(\tilde{I}^{\epsilon}, \tilde{\phi}^{\epsilon}\right) \dot{\tilde{W}}_{t}+\epsilon \beta_{2}\left(\tilde{I}^{\epsilon}, \tilde{\phi}^{\epsilon}\right) \tag{2.130}
\end{align*}
$$

We assume smoothness, boundedness, and non-degeneracy of the diffusion coefficient σ and smoothness and boundedness of the drift coefficients β_{1} and β_{2}. Rescaling
time by the transform $t \rightarrow t / \epsilon$, we get the system

$$
\begin{align*}
& \dot{I}^{\epsilon}=\beta_{1}\left(I^{\epsilon}, \phi^{\epsilon}\right) \tag{2.131}\\
& \dot{\phi}^{\epsilon}=\frac{1}{\epsilon} \omega\left(I^{\epsilon}\right)+\frac{1}{\sqrt{\epsilon}} \sigma\left(I^{\epsilon}, \phi^{\epsilon}\right) \dot{W}_{t}+\beta_{2}\left(I^{\epsilon}, \phi^{\epsilon}\right) \tag{2.132}
\end{align*}
$$

Consider the one-dimensional family of diffusions parameterized by I on each level set:

$$
\begin{equation*}
\dot{\phi}=\omega(I)+\sigma(I, \phi) \dot{W}_{t} \tag{2.133}
\end{equation*}
$$

Lemma 2.1.9. On each level set I, there exists a unique invariant density m_{I}.

Proof. Let L be the second-order differential operator associated to the one-dimensional diffusion in (2.133). The invariant density is the appropriately normalized kernel of the forward Kolmogorov operator, which corresponds to the formal adjoint of L. The invariant density m must therefore satisfy

$$
\begin{equation*}
\frac{1}{2} \frac{d^{2}}{d \phi^{2}}\left(\sigma^{2} m\right)-\omega \frac{d m}{d \phi}=0 \tag{2.134}
\end{equation*}
$$

and since ω is a solely a function of I, we get

$$
\begin{equation*}
\frac{d}{d \phi}\left(\frac{\sigma^{2}}{2} m\right)-\omega m=C_{1} \tag{2.135}
\end{equation*}
$$

Setting $y=\left(\sigma^{2} m\right) / 2$ gives the equation $\frac{\sigma^{2}}{2} y^{\prime}-\omega y=C_{1} \frac{\sigma^{2}}{2}$. From the non-degeneracy conditions, this equation has solution

$$
\begin{equation*}
y(\phi)=y(0) \exp \left(\int_{0}^{\phi} \frac{2 \omega}{\phi^{2}} d s\right)+C_{1} \int_{0}^{\phi} \exp \left(\int_{\tau}^{\phi} \frac{2 \omega}{\sigma^{2}} d s\right) d \tau \tag{2.136}
\end{equation*}
$$

Because the trajectories on each level set are periodic, we must choose $y(0)=y(2 \pi)$, which implies that

$$
\begin{equation*}
y(0)=\frac{C_{1} \int_{0}^{2 \pi} \exp \left(\int_{\tau}^{2 \pi} \frac{2 \omega}{\sigma^{2}} d s\right) d \tau}{1-\exp \left(\int_{0}^{2 \pi} \frac{2 \omega}{\sigma^{2}} d s\right)} \tag{2.137}
\end{equation*}
$$

and replacing this into the equation for $y(\phi)$ and recalling that $y=\frac{\sigma^{2} m}{2}$, we get

$$
\begin{equation*}
m(\phi)=C_{1} \frac{2}{\sigma^{2}}\left[\left(\frac{C_{1} \int_{0}^{2 \pi} \exp \left(\int_{\tau}^{2 \pi} \frac{2 \omega}{\sigma^{2}} d s\right) d \tau}{1-\exp \left(\int_{0}^{2 \pi} \frac{2 \omega}{\sigma^{2}} d s\right)}\right) \exp \left(\int_{0}^{\phi} \frac{2 \omega}{\phi^{2}} d s\right)+\int_{0}^{\phi} \exp \left(\int_{\tau}^{\phi} \frac{2 \omega}{\sigma^{2}} d s\right) d \tau\right] \tag{2.138}
\end{equation*}
$$

where C_{1} is uniquely chosen to satisfy $\int_{0}^{2 \pi} m(\phi) d \phi=1$.

Theorem 2.1.10 (An averaging principle for stochastic fast motion). Define

$$
\begin{equation*}
\bar{\beta}_{1}(I)=\int_{0}^{2 \pi} \beta_{1}(I, \phi) m_{I}(\phi) d \phi \tag{2.139}
\end{equation*}
$$

where $m_{I}(\phi)$ is the invariant density on level set I, and \bar{I}_{t} satisfies the differential equation

$$
\begin{equation*}
\dot{\bar{I}}_{t}=\bar{\beta}_{1}\left(\bar{I}_{t}\right) \tag{2.140}
\end{equation*}
$$

Then for all $T<\infty$ and $\delta>0$,

$$
\begin{equation*}
\lim _{\epsilon \rightarrow 0} P\left\{\sup _{0 \leq t \leq T}\left|I_{t}^{\epsilon}-\bar{I}_{t}\right|>\delta\right\}=0 \tag{2.141}
\end{equation*}
$$

Proof. Since the initial conditions for I_{t}^{ϵ} and \bar{I}_{t} are the same, we have

$$
\begin{align*}
\left|I_{t}^{\epsilon}-\bar{I}_{t}\right| & =\left|\int_{0}^{t} \beta_{1}\left(I_{s}^{\epsilon}, \phi_{s}^{\epsilon}\right)-\bar{\beta}_{1}\left(\bar{I}_{s}\right) d s\right| \tag{2.142}\\
& =\left|\int_{0}^{t} \beta_{1}\left(I_{s}^{\epsilon}, \phi_{s}^{\epsilon}\right)-\bar{\beta}_{1}\left(I_{s}^{\epsilon}\right) d s+\int_{0}^{t} \bar{\beta}_{1}\left(I_{s}^{\epsilon}\right)-\bar{\beta}_{1}\left(\bar{I}_{s}\right) d s\right| \tag{2.143}
\end{align*}
$$

Put $m(t)=m^{\epsilon}(t)=\sup _{0 \leq s \leq t}\left|I_{s}^{\epsilon}-\bar{I}_{s}\right|$. By the Lipschitz continuity of $\bar{\beta}_{1}$, we find

$$
\begin{equation*}
m(t) \leq K \int_{0}^{t} m(s) d s+\sup _{0 \leq t_{1} \leq t}\left|\int_{0}^{t_{1}} \beta_{1}\left(I_{s}^{\epsilon}, \phi_{s}^{\epsilon}\right)-\bar{\beta}_{1}\left(I_{s}^{\epsilon}\right) d s\right| \tag{2.144}
\end{equation*}
$$

By Gronwall's inequality, this implies

$$
\begin{equation*}
m(T) \leq \exp K T\left[\sup _{0 \leq t_{1} \leq t}\left|\int_{0}^{t_{1}} \beta_{1}\left(I_{s}^{\epsilon}, \phi_{s}^{\epsilon}\right)-\bar{\beta}_{1}\left(I_{s}^{\epsilon}\right) d s\right|\right] \tag{2.145}
\end{equation*}
$$

So it suffices to prove that

$$
\begin{equation*}
\sup _{0 \leq t_{1} \leq t}\left|\int_{0}^{t_{1}} \beta_{1}\left(I_{s}^{\epsilon}, \phi_{s}^{\epsilon}\right)-\bar{\beta}_{1}\left(I_{s}^{\epsilon}\right) d s\right| \rightarrow 0 \tag{2.146}
\end{equation*}
$$

in probability as $\epsilon \downarrow 0$. As in the previous proof, our conditions on the drift and diffusion coefficents guarantee that for any $\eta>0$, there exists a compact set K_{η} and a positive real number ϵ_{0} such that for all $0 \leq t \leq T$ and $\epsilon<\epsilon_{0}$,

$$
\begin{equation*}
P\left\{\left(I_{t}^{\epsilon}, \phi_{t}^{\epsilon}\right) \notin K_{\eta}, \quad 0 \leq t \leq T\right\}<\eta \tag{2.147}
\end{equation*}
$$

so we can again restrict our attention to the case when the trajectories $\left(I_{t}^{\epsilon}, \phi_{t}^{\epsilon}\right)$ belong to a compact set in \mathbb{R}^{2} for $0 \leq t \leq T, \epsilon<\epsilon_{0}$.

Let L be the second-order differential operator $L=\omega(I) \frac{d}{d \phi}+\frac{1}{2} \sigma^{2}(I, \phi) \frac{d^{2}}{d \phi^{2}}$, and let u solve the ODE

$$
\begin{equation*}
L u=\left(\omega(I) \frac{d}{d \phi}+\frac{1}{2} \sigma^{2}(I, \phi) \frac{d^{2}}{d \phi^{2}}\right) u=\beta_{1}(I, \phi)-\bar{\beta}_{1}(I) \tag{2.148}
\end{equation*}
$$

where ϕ is any point on the circle and I is viewed as a parameter. Note that a solution u exists by the Fredholm alternative (see [7]): the right-hand side is orthogonal to the solution space of $L^{*} m=0$ because L^{*} is precisely the forward Kolmogorov operator and the invariant density $m_{I}(\phi)$ is the unique normalized element of its kernel. Since the coefficients of L are smooth, u is smooth, and we apply Ito's formula to u :

$$
\begin{align*}
u\left(I_{t}^{\epsilon}, \phi_{t}^{\epsilon}\right)-u\left(I_{0}^{\epsilon}, \phi_{0}^{\epsilon}\right) & =\frac{1}{\sqrt{\epsilon}} \int_{0}^{t} \frac{\partial u}{\partial \phi} \sigma d W_{s}+\frac{1}{\epsilon} \int_{0}^{t} \frac{\sigma^{2}}{2} \frac{\partial^{2} u}{\partial \phi^{2}}+\omega \frac{\partial u}{\partial \phi} d s \tag{2.149}\\
& +\int_{0}^{t} \frac{\partial u}{\partial I} \beta_{1}+\frac{\partial u}{\partial \phi} \beta_{2} d s \tag{2.150}
\end{align*}
$$

which implies

$$
\begin{align*}
\int_{0}^{t} \beta_{1}\left(I_{s}^{\epsilon}, \phi_{s}^{\epsilon}\right)-\bar{\beta}_{1}\left(\bar{I}_{s}\right) d s & =\epsilon\left(u\left(I_{t}^{\epsilon}, \phi_{t}^{\epsilon}\right)-u\left(I_{0}^{\epsilon}, \phi_{0}^{\epsilon}\right)-\left[\int_{0}^{t} \frac{\partial u}{\partial I} \beta_{1}+\frac{\partial u}{\partial \phi} \beta_{2} d s\right]\right) \tag{2.151}\\
& -\sqrt{\epsilon}\left(\int_{0}^{t} \frac{\partial u}{\partial \phi} \sigma d W_{s}\right) \tag{2.152}
\end{align*}
$$

By the smoothness of u, β_{1}, and β_{2},

$$
\begin{equation*}
\sup _{0 \leq t \leq T}\left(u\left(I_{t}^{\epsilon}, \phi_{t}^{\epsilon}\right)-u\left(I_{0}^{\epsilon}, \phi_{0}^{\epsilon}\right)-\left[\int_{0}^{t} \frac{\partial u}{\partial I} \beta_{1}+\frac{\partial u}{\partial \phi} \beta_{2} d s\right]\right) \tag{2.153}
\end{equation*}
$$

is bounded with probability one by some constant C_{T}. By Kolmogorov's inequality and the Ito isometry, we deduce

$$
\begin{equation*}
P\left\{\sup _{0 \leq t \leq T}\left(\int_{0}^{t} \frac{\partial u}{\partial \phi} \sigma d W_{s}\right)>\delta\right\} \leq \frac{1}{\delta^{2}} E\left[\int_{0}^{T}\left|\frac{\partial u}{\partial \phi} \sigma\right|^{2} d s\right] \tag{2.154}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
\sup _{0 \leq t \leq T}\left[\left|\int_{0}^{t} \beta_{1}\left(I_{s}^{\epsilon}, \phi_{s}^{\epsilon}\right)-\bar{\beta}_{1}\left(I_{s}^{\epsilon}\right) d s\right|\right] \rightarrow 0 \tag{2.155}
\end{equation*}
$$

in probability as $\epsilon \downarrow 0$.

2.2 The Freidlin-Wentzell generalization of the averaging principle for multiwell Hamiltonians

In this section, we consider deterministic and stochastic perturbations of a Hamiltonian system in which $H\left(x_{1}, x_{2}\right)$ has multiple wells. Suppose H has the form shown in Figure (1.1), reproduced below.

Here Γ represents the graph obtained by identifying all points of every connected component of each level set of the Hamiltonian, as described in Chapter 1.

Figure 2.2: $H\left(x_{1}, x_{2}\right)$ and the Graph Γ

The vertices of Γ correspond to critical points of H : exterior vertices to minima (or maxima of H, if they exist), and interior vertices to saddle points. Each edge of Γ is indexed by a number, $I_{1}, I_{2}, \ldots I_{m}$, and each point y on Γ is indexed by the pair (z, i), where z is the value of the Hamiltonian on the level set corresponding to y, and i is the edge number containing y. The pair (z, i) forms a global coordinate system on Γ.

Let $x \in \mathbb{R}^{2}$ denote $x=\left(x_{1}, x_{2}\right)$. Let $Q: \mathbb{R}^{2} \rightarrow \Gamma ; Q(x)=(H(x), i(x))$ be the projection onto Γ of a point x in \mathbb{R}^{2}. We denote the images in Γ of the critical points O_{r} under Q as simply O_{r}, and we write $I_{k} \sim O_{r}$ if O_{r} lies at the boundary of an edge I_{k}. We endow Γ with the natural topology, so a set U is open in Γ if and only if $Q^{-1}(U)$ is open in \mathbb{R}^{2}.

Let $X(t)$ with initial condition $X_{0}=x_{0}$ denote the solution to the unperturbed

Hamiltonian system (1.2) and let $\tilde{X}^{\epsilon}(t)$ denote the solution to (1.6), the rescaled Hamiltonian system with a small deterministic perturbation. Again, since H is a first integral for the unperturbed system (1.2), the non-separatrix trajectories of $X(t)$ consist of periodic motion around closed curves. Now, however, non-separatrix level sets can have multiple connected components. Let $C(z)=\left\{x \in \mathbb{R}^{2}: H(x)=z\right\}$ be the level set corresponding to $H=z$, and let $C_{i}(z)$ be the connected components of $C(z)$, so $C(z)=\bigcup_{i} C_{i}(z)$. There exists a unique invariant measure $\mu_{z, i}$ for the dynamical system (1.2) concentrated on each connected component $C_{i}(z)$ of every non-separatrix level set z, given as before by

$$
\begin{equation*}
\mu_{z, i}(A)=\frac{1}{T_{i}(z)} \oint_{A} \frac{d l}{|\nabla H(x)|} \tag{2.156}
\end{equation*}
$$

where $d l$ is the length element and $T_{i}(z)$ is the period of the trajectory concentrated on $C_{i}(z)$. The evolution of $H\left(\tilde{X}^{\epsilon}(t)\right)$ along any given edge I of the graph Γ is identical to what we described in the previous section, namely:

$$
\begin{equation*}
H\left(\tilde{X}^{\epsilon}(t)\right)-H\left(\tilde{X}^{\epsilon}(0)\right)=\int_{0}^{t} \nabla H\left(\tilde{X}^{\epsilon}(s)\right) \cdot B\left(\tilde{X}^{\epsilon}(s)\right) d s \tag{2.157}
\end{equation*}
$$

Near a level set z, the fast motion can be approximated by averaging with respect to the invariant measure concentrated over the trajectory $C_{i}(z)$, where $i=$ $i\left(x_{0}\right)$.

We denote by $T_{i}(z)$ the period of the trajectory on $C_{i}(z)$, so again we have

$$
T_{i}(z)=\oint_{C_{i}(z)} \frac{d l}{|\nabla H(x)|}
$$

and we denote by $G_{i}(z)$ the region bounded by $C_{i}(z)$. Let $S_{i}(z)=$ Area $\left[G_{i}(z)\right]$. Put

$$
\begin{equation*}
\bar{B}_{i}(z)=\frac{1}{T_{i}(z)} \oint_{C_{i}(z)} \frac{\nabla H(x) \cdot B(x)}{|\nabla H(x)|} d l \tag{2.158}
\end{equation*}
$$

and again by the divergence theorem, we define $\tilde{B}_{i}(z)$ as

$$
\begin{equation*}
\tilde{B}_{i}(z)=\oint_{C_{i}(z)} \frac{\nabla H(x) \cdot B(x)}{|\nabla H(x)|} d l=\int_{G_{i}(z)}[\operatorname{div} B(x)] d x_{1} d x_{2} \tag{2.159}
\end{equation*}
$$

Fix any initial point $x=\left(x_{1}(0), x_{2}(0)\right)$ and let $\tilde{X}^{\epsilon}(t)$ be the solution of (1.6) with $\tilde{X}^{\epsilon}(0)=x=\left(x_{1}(0), x_{2}(0)\right)$. Let $Q(X(0))=(z, i)$ where $z=H(X(0))$ and i is the edge number corresponding to $X(0)$. For any finite time interval $[0, T]$ such that $\tilde{X}^{\epsilon}(t)$ does not intersect the level set of a saddle point, Theorem (2.1.4) guarantees that the slow component $H\left(\tilde{X}^{\epsilon}(t)\right)$ converges uniformly as $\epsilon \downarrow 0$ to the solution $\bar{H}_{i}(t)$ of the averaged system

$$
\begin{equation*}
\dot{\bar{H}}_{i}(t)=\overline{B_{i}}\left(H_{i}(t)\right) \tag{2.160}
\end{equation*}
$$

where $\overline{H_{i}}(0)=H(X(0))=z_{0}$.
We apply the averaging principle inside certain edges of the graph Γ to describe the limiting slow motion $H\left(\tilde{X}^{\epsilon}(t)\right)$ as $\epsilon \downarrow 0$. Since we assume $\operatorname{div}(B(x))<0$, $\tilde{B}_{i}(z)$ is negative and does not change sign, so the limiting slow motion within each edge is monotone. Note that $\lim _{z \rightarrow H\left(O_{j}\right)^{+}} \tilde{B}_{i}(z)=0$ for any saddle point O_{j} and $\lim _{z \rightarrow H\left(O_{k}\right)^{+}} \tilde{B}_{i}(z)=0$ for any stable fixed point O_{k}, where $I_{i} \sim O_{j}$ and $I_{i} \sim O_{k}$. By linearizing in a small neighborhood of any saddle point O_{j}, we see that if $H(x)>$ $H\left(O_{j}\right)$, the averaged trajectory $\bar{H}_{i(x)}(t)$ beginning at $(H(x), i(x))$ will reach $H\left(O_{j}\right)$ in finite time.

Lemma 2.2.1. Let $T_{i}(z), \tilde{B}_{i}(z)$, and $A_{i}(z)$, and $G_{i}(z)$ be defined as above. Then

- For any non-saddle level set, $S_{i}^{\prime}(z)=T_{i}(z)$;
- If O is a saddle point of H and $z_{0}=H(O)$, there exists a constant C such
that

$$
\begin{equation*}
\lim _{z \rightarrow z_{0}^{+}} \frac{T_{i}(z)}{\ln \left(\left|z-z_{0}\right|\right)^{-1}}=C \tag{2.161}
\end{equation*}
$$

- If O_{e} is a minimum of H, there exists a constant $D>0$ such that $T_{i}(z) \rightarrow D$ as $z \rightarrow H\left(O_{e}\right)$.

Proof. For (i), let x be some point on the level set $H=z$, and let $C_{i}(z)$ be the corresponding closed curve containing x; similarly let $C_{i}(z+\Delta z)$ be the closed curve corresponding to the level set $H=z+\Delta z$. We assume for simplicity that $G_{i}(z) \subset G_{i}(z+\Delta z)$. Let Δl be the arc length element along $C_{i}(z)$. Let Δx be the width of the annular region $G_{i}(z+\Delta z) \backslash G_{i}(z)$ at the point x. We have

$$
\begin{align*}
& \Delta z=|\nabla H(x)| \Delta x+o(\Delta z) \tag{2.162}\\
& \Rightarrow \Delta S_{i}(z)=\oint_{C_{i}(z)} \frac{d l}{|\nabla H(x)|} \cdot \Delta(z)+o(\Delta z) \tag{2.163}\\
& \Rightarrow S_{i}^{\prime}(z)=\oint \frac{d l}{|\nabla H(x)|} \tag{2.164}
\end{align*}
$$

More generally, this argument can be applied to show that if

$$
\begin{equation*}
F(z)=\int_{G(z)} f(x) d x_{1} d x_{2} \tag{2.165}
\end{equation*}
$$

for a continuous function f, then

$$
\begin{equation*}
F^{\prime}(z)=\oint_{C_{i}(z)} \frac{f(x)}{|\nabla H(x)|} d l \tag{2.166}
\end{equation*}
$$

For (ii), let N_{a} be a small neighborhood of the saddle point O and note that $T_{i}(z)$ can be separated into two pieces: $T_{i, N_{a}}(z)$, i.e. the time the trajectory spends in N_{a}, and $T_{i, N_{a}^{G}}(z)$, the time the trajectory spends outside of $N_{a} . T_{i, N_{a}^{C}}(z)$ is bounded uniformly in the region $z-z_{0}$ because $|\nabla H(x)|>\delta$ for some positive δ in N_{a}^{C}, and

Figure 2.3: Local coordinates near a saddle point and annular regions
the length of the curve $C_{k}(z)$ is bounded uniformly in z. Since saddle points are hyperbolic fixed points, there exists a smooth, nondegenerate change of coordinates within N_{a} such that the dynamical system $\dot{X}=\bar{\nabla} H(X)$ can be written

$$
\begin{align*}
& \dot{x_{1}}=\lambda x_{1}+x_{1} g\left(x_{1}, x_{2}\right) \tag{2.167}\\
& \dot{x_{2}}=-\lambda x_{2}+x_{2} h\left(x_{1}, x_{2}\right) \tag{2.168}
\end{align*}
$$

In these coordinates, the separatrices of a saddle point become the coordinate axes, the saddle point O becomes the origin, and g and h are continuously differentiable and satisfy $g(0,0)=h(0,0)=0$. We bound the time $T_{A B}$ for the trajectory to travel from $A=\left(c\left(z-z_{0}\right), d a\right)$ to B where B has x_{1}-coordinate $e a$ and c, d, and e are constants depending on $z-z_{0}$, but with finite limits \bar{c}, \bar{d}, and \bar{e} as $z-z_{0} \rightarrow 0$. For every $0<b \ll 1$, we can choose a sufficiently small that within N_{a}, we have

$$
\begin{equation*}
(\lambda(1-b)) x_{1}(t) \leq \dot{x}_{1}(t) \leq(\lambda(1+b)) x_{1}(t) \tag{2.169}
\end{equation*}
$$

and we deduce

$$
\begin{equation*}
-\frac{\ln \left(\left|z-z_{0}\right|\right)+\ln \bar{c}-\ln \bar{e} a}{1+b} \leq \lambda T_{A B}\left(z-z_{0}\right) \leq-\frac{\ln \left(\left|z-z_{0}\right|\right)+\ln \bar{c}-\ln \bar{e} a}{1-b} \tag{2.170}
\end{equation*}
$$

so that

$$
\begin{equation*}
\frac{1}{\lambda(1+b)} \leq \varliminf_{z \rightarrow z_{0}^{+}} \frac{T_{A B}\left(z-z_{0}\right)}{\ln \left(\left|z-z_{0}\right|^{-1}\right)} \leq \varlimsup_{z \rightarrow z_{0}^{+}} \frac{T_{A B}\left(z-z_{0}\right)}{\ln \left(\left|z-z_{0}\right|^{-1}\right)} \leq \frac{1}{\lambda(1-b)} \tag{2.171}
\end{equation*}
$$

For (iii), let $\left[\frac{\partial^{2} H(x)}{\partial x_{1} \partial x_{2}}\right]$ denote the Hessian matrix of partial derivatives of H at x. Observe that for values z near z_{0}, the Hamiltonian can be approximated by a quadratic form because $\nabla H=0$ and the Hessian is nondegenerate. We claim

$$
\begin{equation*}
\oint_{C_{i}(z)} \frac{1}{|\nabla H(x)|} d l \rightarrow \frac{C}{\sqrt{\operatorname{det}\left[\frac{\partial^{2} H(0)}{\partial x_{1} \partial x_{2}}\right]}}>0 \tag{2.172}
\end{equation*}
$$

as $z \rightarrow H\left(O_{e}\right)$ with O_{e} a minimum of H. Without loss of generality, we can take $H\left(O_{e}\right)=0$. Since O_{e} is a nondegenerate mininum, the Hessian of H at O_{e} is symmetric and positive definite. For any sufficiently small δ-neighborhood of O_{e}, there exists a change of coordinates so that $H\left(x_{1}, x_{2}\right)$ can be written

$$
\begin{equation*}
H\left(x_{1}, x_{2}\right)=A x_{1}^{2}+B x_{2}^{2}+o\left(\delta^{2}\right) \tag{2.173}
\end{equation*}
$$

for $\left|\left(x_{1}, x_{2}\right)-O_{e}\right|<\delta$, with

$$
\begin{equation*}
\sqrt{A B}=\sqrt{\left[\frac{\partial^{2} H\left(O_{e}\right)}{\partial x_{1} \partial x_{2}}\right]} \tag{2.174}
\end{equation*}
$$

For E a nonzero constant, parameterizing the ellipses $A x_{1}^{2}+B x_{2}^{2}=E$ by

$$
\begin{equation*}
x_{1}=\frac{\sqrt{E}}{\sqrt{A}} \cos t, \quad x_{2}=\frac{\sqrt{E}}{\sqrt{B}} \sin t \tag{2.175}
\end{equation*}
$$

and computing the line integral, we get

$$
\begin{equation*}
\lim _{z \rightarrow H\left(O_{e}\right)} T_{i}(z)=\frac{2 \pi}{\sqrt{\left[\frac{\partial^{2} H\left(O_{e}\right)}{\partial x_{1} \partial x_{2}}\right]}}>0 \tag{2.176}
\end{equation*}
$$

The behavior of the slow component $Q\left(\tilde{X}^{\epsilon}(t)\right)$ is very sensitive to small changes in ϵ, and as described in [3], $Q\left(\tilde{X}^{\epsilon}(t)\right)$ does not have a limit as $\epsilon \downarrow 0$ for t large enough. Also, since interior vertices are accessible for $H\left(\tilde{X}^{\epsilon}(t)\right)$, the behavior of the process at each interior vertex must be specified. In [3], it is proved that in a certain sense, $Q\left(\tilde{X}^{\epsilon}(t)\right)$ tends to a stochastic process on the graph Γ as $\epsilon \rightarrow 0$. To give this a rigorous meaning, we let $\tilde{X}^{\epsilon, \kappa}(t)$ be a two-dimensional diffusion with generator $\mathcal{L}^{\epsilon, \kappa}$, as in (1.7):

$$
\mathcal{L}^{\epsilon, \kappa}(u(x))=\frac{\kappa}{2} \operatorname{div}(a(x) \nabla u(x))+B(x) \cdot \nabla u(x)+\frac{1}{\epsilon} \bar{\nabla} H(x) \cdot \nabla u(x)
$$

We assume that $a(x)$ is a smooth, uniformly positive definite 2×2 diffusion matrix.

Fix an initial point $x=\left(x_{1}(0), x_{2}(0)\right)$. Suppose $\tilde{X}^{\epsilon, \kappa}(0)=x$, and let $Q(x)=$ $(H(x), i(x))$ be the projection of x onto the graph Γ. Since $\tilde{X}^{\epsilon, \kappa}(t)$ has a random component, the trajectory can, over time, move from one connected component of a level set to another. As $\epsilon \downarrow 0$, we can still apply the averaging principle to determine the limiting motion of the first component of $Q\left(\tilde{X}^{\epsilon, \kappa}(t)\right)=\left(H\left(\tilde{X}^{\epsilon, \kappa}(t)\right), i\left(\tilde{X}^{\epsilon}(t)\right)\right)$, but only within each edge of Γ; that is, as long as $i\left(\tilde{X}^{\epsilon, \kappa}(t)\right)=i(x)$.

Fix an edge I_{i} on Γ. We apply the Ito formula to $H\left(\tilde{X}^{\epsilon, \kappa}(t)\right)$ and average with
respect to the invariant measure concentrated on $C_{i}(z)$ for each level set $H=z$:

$$
\begin{array}{r}
H\left(\tilde{X}^{\epsilon, \kappa}(t)\right)-H\left(\tilde{X}^{\epsilon, \kappa}(0)\right)=\int_{0}^{t} \nabla H\left(\tilde{X}^{\epsilon, \kappa}(s)\right) \cdot B\left(\tilde{X}^{\epsilon, \kappa}(s)\right) d s \\
+\int_{0}^{t} \frac{\kappa}{2}\left[\begin{array}{l}
\frac{\partial a_{11}\left(\tilde{X}^{\epsilon, \kappa}(s)\right)}{\partial x_{1}}+\frac{\partial a_{21}\left(\tilde{X}^{\epsilon, \kappa}(s)\right)}{\partial x_{2}} \\
\left.\frac{\partial a_{12}\left(\tilde{X}^{\epsilon, \kappa}(s)\right)}{\partial x_{1}}+\frac{\partial a_{22}\left(\tilde{X}^{\epsilon, \kappa}(s)\right)}{\partial x_{2}}\right] \\
\\
+\int_{0}^{t} \frac{\kappa}{2}\left[\sum_{i, j=1}^{2} a_{i j}\left(\tilde{X}^{\epsilon, \kappa}(s)\right) \frac{\partial H\left(\tilde{X}^{\epsilon, \kappa}(s)\right) d s}{\partial x_{i} \partial x_{j}}\right] d s \\
+\tilde{W}\left[\int_{0}^{t} \kappa a\left(\tilde{X}^{\epsilon, \kappa}(s)\right) \nabla H\left(\tilde{X}^{\epsilon, \kappa}(s)\right) \cdot \nabla H\left(\tilde{X}^{\epsilon, \kappa}(s)\right) d s\right]
\end{array}\right.
\end{array}
$$

where \tilde{W} is a Wiener process.
So we get

$$
\begin{align*}
H\left(\tilde{X}^{\epsilon, \kappa}(t)\right)-H\left(\tilde{X}^{\epsilon, \kappa}(0)\right) & =\int_{0}^{t} \nabla H\left(\tilde{X}^{\epsilon, \kappa}(s)\right) \cdot B\left(\tilde{X}^{\epsilon, \kappa}(s)\right) d s \tag{2.181}\\
& +\int_{0}^{t} \frac{\kappa}{2} \operatorname{div}\left[a\left(\tilde{X}^{\epsilon, \kappa}(s)\right) \cdot \nabla H\left(\tilde{X}^{\epsilon, \kappa}(s)\right)\right] d s \tag{2.182}\\
& +\tilde{W}\left[\int_{0}^{t} \kappa a\left(\tilde{X}^{\epsilon, \kappa}(s)\right) \nabla H\left(\tilde{X}^{\epsilon, \kappa}(s)\right) \cdot \nabla H\left(\tilde{X}^{\epsilon, \kappa}(s)\right) d s\right] \tag{2.183}
\end{align*}
$$

We compute the average value of each of the integrands over a level set $H=z$. Define $\tilde{B}(z)$ as before, and put

$$
\begin{align*}
A_{i}(z) & =\oint_{C_{i}(z)} \frac{a(x) \nabla H(x) \cdot \nabla H(x)}{|\nabla H(x)|} d l \tag{2.184}\\
& =\int_{G_{i}(z)} \operatorname{div}(a(x) \nabla H(x)) d x_{1} d x_{2} \tag{2.185}
\end{align*}
$$

so that $A_{i}^{\prime}(z)$ is given by

$$
\begin{equation*}
A_{i}^{\prime}(z)=\oint_{C_{i}(z)} \frac{\operatorname{div}(a(x) \nabla H(x))}{|\nabla H(x)|} d l \tag{2.186}
\end{equation*}
$$

Along any edge I_{i} of $\Gamma, Q\left(\tilde{X}^{\epsilon, \kappa}(t)\right)$ can be approximated as $\epsilon \downarrow 0$ by a diffusion process on I_{i} with generator L_{i}^{κ} :

$$
\begin{equation*}
L_{i}^{\kappa}\left(u_{i}(z)\right)=\frac{\kappa}{2 T_{i}(z)} \frac{d}{d z}\left\{A_{i}(z) \frac{d u_{i}(z)}{d z}\right\}+\frac{\tilde{B}_{i}(z)}{T_{i}(z)} \frac{d u_{i}(z)}{d z} \tag{2.187}
\end{equation*}
$$

Let Q^{κ} be a process on Γ with generator L^{κ} such that on each edge I_{i}, L^{κ} is given by L_{i}^{κ}. To complete the description of Q^{κ}, we specify certain gluing conditions (see $\S 8,[18])$ at each interior vertex O_{j}. These conditions are restrictions are on the domain of the generator L^{κ}.

For any interior vertex O_{j} with edges $I_{k} \sim O_{j}$, let γ_{j}^{k} represent the separatrix curves that meet at O_{j}, and $G_{k}\left(O_{j}\right)$ the interior regions bounded by the separatrices γ_{j}^{k}, as in the figure below.

Figure 2.4: Separatrices γ_{j}^{k} and interior regions $G_{k}\left(O_{j}\right)$

Define constants $\beta_{j k}$ as follows:

$$
\begin{equation*}
\beta_{j k}=\oint_{\gamma_{j}^{k}} \frac{a(x) \nabla H(x) \cdot \nabla H(x)}{|\nabla H(x)|} d l \tag{2.188}
\end{equation*}
$$

We say that a continuous function $u(z): \Gamma \rightarrow \mathbb{R}$, belongs to the domain of definition of the generator L^{κ} of diffusion process $Q^{\kappa}(t)$ if:

1. The function $u(z)$ is smooth on the interior of I_{i};
2. At each interior vertex O_{j}, with corresponding edges I_{k} meeting at O_{j}, the
following gluing condition is satisfied:

$$
\begin{equation*}
\sum_{k: I_{k} \sim O_{j}} \pm \beta_{j k} D_{k} u\left(O_{j}\right)=0 \tag{2.189}
\end{equation*}
$$

where the $(+)$ or $(-)$ is chosen according to whether the value of H increases or decreases along edge I_{k} as we approach O_{j}, and D_{k} represents the derivative in the direction of the edge I_{k}.
3. The function $v_{i}(z)=L_{i}^{\kappa}\left(u_{i}(z)\right)$ is continuous on Γ.

In $\S 8$ of [18] and in [19], it is proved that the generators on each edge and gluing conditions at each interior vertex uniquely determine the process $Q^{\kappa}(t)$ on Γ, and $Q^{\kappa}(t)$ is a continuous strong Markov diffusion process on Γ. As we show in the next chapter, exterior vertices are inaccessible for $Q^{\kappa}(t)$.

For any arbitrary but fixed time interval $[0, T]$, let $C_{0 T}(\Gamma)$ be the continuous functions $\phi:[0, T] \rightarrow \Gamma$. It is proved in [18] and [16] that $Q\left(\tilde{X}^{\epsilon, \kappa}(t)\right)$ converges weakly in $C_{0 T}(\Gamma)$ to the process $Q^{\kappa}(t)$ as $\epsilon \downarrow 0$.

An edge $I_{k} \sim O_{j}$ is an exit edge for O_{j} if $H\left(Q^{-1}(z, k)\right)$ increases as (z, k) approaches O_{j} along I_{k}; otherwise I_{k} is an entrance edge. For example, edge I_{6} on the graph in Figure (2.2) is an entrance edge for O_{6}, and edges I_{4} and I_{2} are exit edges for O_{6}.

For any interior vertex $O_{j}, G_{k}\left(O_{j}\right)$ denotes the interior of the region bounded by the separatrix γ_{j}^{k} (see previous figure). Define $\tilde{B}_{k}\left(O_{j}\right)$ according to the formula

$$
\begin{equation*}
\tilde{B}_{k}\left(O_{j}\right)=\int_{G_{k}\left(O_{j}\right)} \operatorname{div}(B(x)) d x \tag{2.190}
\end{equation*}
$$

In [3], it is established that as $\kappa \downarrow 0, Q^{\kappa}(t)$ converges weakly in $C_{[0 T]}(\Gamma)$, for any fixed $T>0$, to a process $Q(t)$, defined as follows:

1. In the interior of any edge I_{i} of $\Gamma, Q(t)$ is deterministic motion satisfying

$$
\begin{equation*}
\frac{d Q(t)}{d t}=\frac{1}{T_{i}(Q(t))} \int_{G_{i}(Q(t))} \operatorname{div}(B(x)) d x \tag{2.191}
\end{equation*}
$$

2. If there is only one exit edge for an interior vertex O_{j}, the process leaves O_{j} without delay along the exit edge.
3. If there are multiple exit edges $I_{k_{s}} \sim O_{j}, s \in S$, the process $Q(t)$ leaves O_{j} without delay along exit edge $I_{k_{r}}$ with probability

$$
\begin{equation*}
p_{r}=\frac{\left|\tilde{B}_{k_{r}}\left(O_{j}\right)\right|}{\sum_{s \in S}\left|\tilde{B}_{k_{s}}\left(O_{j}\right)\right|} \tag{2.192}
\end{equation*}
$$

independently of the past.

We refer to these probabilities of motion along any edge as limiting edge-access probabilities. We stress that these probabilities depend only on B and not on the diffusion coefficients $a(x)$.

These results establish the following theorem from [3]:

Theorem 2.2.2. Let $\tilde{X}^{\epsilon, \kappa}(t)$ be the two-dimensional diffusion processes defined by (1.7). The slow component $Q\left(\tilde{X}^{\epsilon, \kappa}(t)\right)$ converges weakly in $C_{0 T}(\Gamma)$, first as $\epsilon \downarrow 0$, to the stochastic process Q^{κ}, defined by generators L_{i}^{κ} along each edge of Γ and gluing conditions at the interior vertices. Next, as $\kappa \downarrow 0, Q^{\kappa}$ converges weakly to a process $Q(t)$ which consists of deterministic motion along each edge of Γ and stochastic branching at the interior vertices, with probabilities of branching that depend only on B and not on the diffusion coefficients $a(x)$.

Proof. See [3].

Chapter 3

Metastability and large deviations in certain dynamical systems

3.1 Overview of Freidlin-Wentzell theory of metastability

Metastable states arise in dynamical systems subject to random perturbations. For instance, let Y_{t}^{κ} be the diffusion process in \mathbb{R}^{n} corresponding to the operator D^{κ} :

$$
\begin{equation*}
D^{\kappa} u^{\kappa}=\frac{\kappa}{2} \sum_{i, j} a^{i j}(x) \frac{\partial^{2} u^{\kappa}}{\partial x^{i} \partial x^{j}}+\sum_{i} b^{i}(x) \frac{\partial u^{\kappa}}{\partial x^{i}} \tag{3.1}
\end{equation*}
$$

We assume that the coefficients of the operator D^{κ} are bounded and smooth; the matrix $\left(a^{i j}(x)\right)$ is uniformly positive definite; and $b(x)$ is Lipschitz continuous and bounded. In studying the behavior of Y_{t}^{κ} as both $t \rightarrow \infty$ and $\kappa \downarrow 0$, it is natural to assume that that the two paramaters t and κ are connected: $t=t(\kappa)$. Under certain assumptions, the transition probabilities $P^{\kappa}(t, x, A)=P_{x}\left(Y_{t}^{\kappa} \in A\right)$, for some measurable $A \in \mathbb{R}^{n}$, have different limits as $\kappa \downarrow 0$ for different relationships $t(\kappa)$ and initial points x.

On any fixed time interval $[0, T]$ the diffusion process Y^{κ} converges uniformly in probability to the solution Y_{t} of the differential equation $\dot{Y}_{t}=b\left(Y_{t}\right)$. If, on the other hand, Y^{κ} has a unique normalized invariant measure μ^{κ}, then the invariant measure characterizes the long-term behavior of Y^{κ} in the sense that

$$
\begin{equation*}
\lim _{t \rightarrow \infty} P^{\kappa}(t, x, A)=\mu^{\kappa}(A) \tag{3.2}
\end{equation*}
$$

but this holds only if $t \rightarrow \infty$ much faster than $\kappa \rightarrow 0$.
In the case of a small white-noise perturbation of deterministic dynamical with finitely many stable equilibrium points, there exists an invariant measure concentrated at each stable equilibrium. Intuitively, we expect the invariant measure μ^{κ} of the process Y^{κ} to converge as $\kappa \rightarrow 0$ to one of the invariant measures for the unperturbed system, but the question of which one is more delicate. The long-time behavior of the system depends in an essential way on the relationship between t and κ. As in Chapter 1, we consider the case when $t(\kappa)=\exp \left[\frac{\lambda}{\kappa}\right]$ for some fixed $\lambda>0$. For different values λ and different initial conditions y_{0}, certain sublimiting distributions exist, that is, δ-measures $\mu_{K(z, \lambda)}$ concentrated at an equilibrium point $K(z, \lambda)$ such that

$$
\begin{align*}
& \lim _{\kappa \downarrow 0} P_{z}\left\{Y_{t(\kappa)} \in A\right\}=1 \text { if } K(z, \lambda) \in A, A \text { open, and } \tag{3.3}\\
& \lim _{\kappa \downarrow 0} P_{z}\left\{Y_{t(\kappa)} \in A\right\}=0 \text { if } K(z, \lambda) \notin A, A \text { open } \tag{3.4}
\end{align*}
$$

Such an equilibrium point $K(z, \lambda)$ is called a metastable state for the process Y_{t}^{κ} with initial condition z and timescale λ.

3.1.1 The qualitative behavior of \tilde{X}^{ϵ} for small ϵ

In particular, let us fix the value of ϵ in the nearly-Hamiltonian system (1.6):

$$
\dot{\tilde{X}}^{\epsilon}(t)=\frac{1}{\epsilon} \bar{\nabla} H\left(\tilde{X}^{\epsilon}(t)\right)+B\left(\tilde{X}^{\epsilon}(t)\right), \quad \tilde{X}^{\epsilon}(0)=\left(q_{0}, p_{0}\right)
$$

We assume that the Hamiltonian H has the form shown in Figure 1.1, so H has four wells. For small ϵ, this is a deterministic dynamical system with finitely many asymptotically stable fixed points and finitely many saddle points.

Lemma 3.1.1. Assume that $H(x)$ is a generic smooth function with bounded second derivatives. Assume also that $\lim _{|x| \rightarrow \infty} H(x)=\infty$ and that there exist K_{1} and K_{2} such that for all x with $|x|$ sufficiently large, $K_{1}|x|<\nabla H(x)<K_{2}|x|$. Suppose that $B(x)$ is smooth, has bounded derivatives, and satisfies div $(B(x))<0$ and $\nabla H(x) \cdot B(x)<0$. Then there exists ϵ_{0} such that for all $\epsilon<\epsilon_{0}$, the equilibrium points of the deterministically-perturbed system (1.6), given by $\dot{\tilde{X}}^{\epsilon}(t)=$ $\frac{1}{\epsilon} \bar{\nabla} H\left(\tilde{X}^{\epsilon}(t)\right)+B\left(\tilde{X}^{\epsilon}(t)\right)$, are in one-to-one correspondence with the equilibrium points of the unperturbed Hamiltonian system (1.1). The minima of H correspond to asymptotically stable fixed points in the perturbed system (1.6) and the saddle points to saddle points. Furthermore, for any compact set K, there exists an $\epsilon_{K}>0$ such that for $\epsilon<\epsilon_{K}$, all trajectories of $\tilde{X}^{\epsilon}(t)$ with initial values in K are either separatrix trajectories or trajectories attracted to one of the asymptotically stable fixed points. Proof. Since the critical points of H are non-degenerate, for ϵ sufficiently small, the fixed points of the Hamiltonian system (1.1) are in one-to-one correspondence with the fixed points of the perturbed system (1.6). For convenience, we denote the fixed points of both systems identically; it is clear from context to which system we refer. Let O_{k} be a minimum of H. Putting $x=\left(x_{1}, x_{2}\right)$ in \mathbb{R}^{2} and linearizing the perturbed system about its perturbed fixed point O_{k}, we get the matrix

$$
\left(\begin{array}{cc}
\frac{\partial^{2} H}{\partial x_{2} \partial x_{1}}+\epsilon \frac{\partial B_{1}}{\partial x_{1}} & \frac{\partial^{2} H}{\left(\partial x_{2}\right)^{2}}+\epsilon \frac{\partial B_{1}}{\partial x_{2}} \tag{3.5}\\
-\frac{\partial^{2} H}{\left(\partial x_{1}\right)^{2}}+\epsilon \frac{\partial B_{2}}{\partial x_{1}} & -\frac{\partial^{2} H}{\partial x_{1} \partial x_{2}}+\epsilon \frac{\partial B_{2}}{\partial x_{2}}
\end{array}\right)
$$

At minima of H, the Hessian matrix of H is positive definite. Since the divergence $\left[\frac{\partial B_{1}}{\partial x_{1}}+\frac{\partial B_{2}}{\partial x_{2}}\right]$ of $B(x)$ is negative, the eigenvalues of the above matrix have negative real parts at the minima of H. Hence, any minimum O_{k} of H corresponds
to an asymptotically stable fixed point (also denoted O_{k}) of the perturbed system (1.6).

To prove that all non-separatrix trajectories of the perturbed system are attracted to one of the asymptotically stable equilibrium points, we use Theorem (2.1.4). Let $\tilde{X}^{\epsilon}(0)=\left(x_{1}(0), x_{2}(0)\right)$ where $\left(x_{1}(0), x_{2}(0)\right)$ is not a saddle point. Let $Q\left(\tilde{X}^{\epsilon}(0)\right)=\left(z_{0}, i_{0}\right) \in \Gamma$. There exists $T>0$ and ϵ_{1} sufficiently small such that $i\left(\tilde{X}^{\epsilon}(t)\right)=i_{0}$ for all $t \in[0, T]$ and $\epsilon \leq \epsilon_{1}$. On such a time interval, the slow motion $H\left(\tilde{X}^{\epsilon}(t)\right)$ converges uniformly as $\epsilon \downarrow 0$ to the solution of the averaged system:

$$
\begin{equation*}
\dot{\bar{H}}_{i}(t)=\frac{\tilde{B}_{i}\left(\bar{H}_{i}(t)\right)}{T_{i}\left(\bar{H}_{i}(t)\right)} ; \quad H_{i}(0)=H\left(\tilde{X}^{\epsilon}(0)\right)=z \tag{3.6}
\end{equation*}
$$

where again $\tilde{B}_{i}(z)=\int_{G_{i}(z)} \operatorname{div}(B(x)) d x_{1} d x_{2}$. Fix z sufficiently large that the compact set $F_{z}=\{x: H(x) \leq z\}$ contains K and all critical points of H. Let $\eta>0$ and $\delta>0$ be given; let x be any arbitrary point in F_{z}, and let $N_{\delta}(x)$ denote the δ neighborhood of x. For each fixed finite time interval $[0, T]$, we can find a positive ϵ such that for any point y in $N_{\delta}(x)$, the perturbed trajectory with initial point y and the averaged trajectory along the corresponding edges, with initial point $H(y)$, differ by less than η in the supremum norm on $C_{0 T}(\mathbb{R})$. By compactness we can find $\epsilon_{2}>0$ such that $\epsilon<\epsilon_{2}$ implies that for all x in $F_{z}, \sup _{t \in[0, T]}\left|\bar{H}(t)_{H(x)}-H\left(\tilde{X}^{\epsilon}(t)\right)_{x}\right|<\eta$, where $\bar{H}=\bar{H}_{i}$ for the appropriate values of t and edge number i.

Since $\operatorname{div}(B(x))<0, \bar{H}_{i}(t)$ is monotone decreasing along each edge $I_{i} \in \Gamma$. The only fixed points for the averaged system correspond to the minima and saddle points of H, all contained in F_{z}. Thus for sufficiently small ϵ, all non-separatrix trajectories which originate in a fixed compact set are eventually attracted to one
of the asymptotically stable equilibrium points.

Put $F(z)=\frac{1}{\epsilon} \bar{\nabla} H(z)+B(z)$. Consider the system

$$
\begin{equation*}
\dot{Z}=F(z), Z_{0}=z_{0} \tag{3.7}
\end{equation*}
$$

(Since ϵ is fixed, for notational ease we suppress the dependence on ϵ in what follows in this section.)

We introduce a white-noise-type perturbation to this system: in the equation below, $\dot{W}(t)$ represents white noise. We continue to assume that $\sigma(z): \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is smooth, Lipschitz continuous, and bounded; that $a(z)=\sigma(z) \sigma^{T}(z)$ is positive definite; and that $0<\kappa \ll 1$. Let $Z^{\kappa}(t)$ satisfy the stochastic differential equation

$$
\begin{equation*}
\dot{Z}^{\kappa}(t)=F\left(Z^{\kappa}(t)\right)+\sqrt{\kappa} \sigma\left(Z^{\kappa}(t)\right) \dot{W}_{t}, \quad Z_{0}=z_{0} \tag{3.8}
\end{equation*}
$$

3.1.2 Metastability for perturbations of a two-dimensional diffusion

 processWe recall the notion of metastability for the process $Z^{\kappa}(t)$ as $\kappa \downarrow 0$, following [13], [12], [18, §6]. Qualitatively, Z^{κ} forms a Markov process which transitions between the basins of attraction for the stable equilibrium points. Beginning at some initial position z_{0}, the process moves toward the nearest attracting equilibrium. It remains in a small neighborhood of this equilibrium for considerable time before moving to the basin of attraction for another equilibrium. These transitions occur on exponentially large timescales.

Observe that $Z^{\kappa}(t)$ induces a measure μ^{κ} on $C_{0 T}\left(\mathbb{R}^{2}\right)$, the space of \mathbb{R}^{2}-valued
continuous functions on the interval $[0, T]$ endowed with the uniform norm. We are interested in the limiting behavior of these measures both as $T \rightarrow \infty$ and as $\kappa \downarrow 0$. It is natural to suppose that T and κ are related: as before, let $\lambda>0$ be such that

$$
\begin{equation*}
\lim _{\kappa \downarrow 0} \kappa \ln T(\kappa)=\lambda>0 \tag{3.9}
\end{equation*}
$$

We call λ a timescale. The logarithmic asymptotics of the measures μ^{κ} as $\kappa \downarrow 0$ are governed by the action functional $[18, \S 3, \S 5]$ defined on $C_{0 T}\left(\mathbb{R}^{2}\right)$.

Definition 1. A nonnegative functional $S_{0 T}(\phi)$ defined on $C_{0 T}$ is the action functional for the family of processes Z^{κ} in $C_{0 T}$ with normalizing factor $\frac{1}{\kappa}$ if the following conditions are satisfied:

1. For each $s \geq 0$, the set $\Phi_{s}=\left\{\phi: S_{0 T}(\phi) \leq s\right\}$ is compact;
2. For any $\delta>0, \gamma>0$, and $\phi \in C_{0 T}$, there exists κ_{0} such that for all $\kappa<\kappa_{0}$

$$
\begin{equation*}
P\left\{\rho\left(Z^{\kappa}, \phi\right)<\delta\right\} \geq \exp \left[-\frac{1}{\kappa}\left(S_{0 T}(\phi)+\gamma\right)\right] \tag{3.10}
\end{equation*}
$$

3. For all $\delta>0, \gamma>0, s>0$ there exists κ_{0} such that

$$
\begin{equation*}
P\left\{\rho\left(Z^{\kappa}, \Phi_{s}\right) \geq \delta\right\} \leq \exp \left[-\frac{1}{\kappa}(s-\gamma)\right] \tag{3.11}
\end{equation*}
$$

where ρ denotes the supremum norm on $C_{0 T}$.

The following theorem, proved in [18], §5, gives the explicit form of the action functional for a wide class of diffusion processes. Let $\tilde{a}_{i j}(z)$ denote the inverse of the diffusion coefficient matrix for (3.8): $\tilde{a}_{i j}(z)=\left[\left(\sigma(z) \sigma^{T}(z)\right)_{i j}\right]^{-1}$.

Theorem 3.1.2. The normalized action functional for the family of processes Z^{κ} is given by $(1 / \kappa) S_{0 T}(\phi)$, where S is defined as follows: for absolutely continuous functions ϕ which satisfy $\phi_{0}=z_{0}$,

$$
\begin{equation*}
S_{0 T}(\phi)=\frac{1}{2} \int_{0}^{T} \sum_{i, j=1}^{2} \tilde{a}_{i j}\left(\phi_{s}^{i}\right)\left(\dot{\phi}_{s}-F^{i}\left(\phi_{s}\right)\right)\left(\dot{\phi}_{s}^{j}-F^{j}\left(\phi_{s}\right)\right) d s \tag{3.12}
\end{equation*}
$$

For all other $\phi \in C_{0 T}, S_{0 T}(\phi)=\infty$.

Using the action functional, we define the quasipotential V :

Definition 2. The quasipotential associated to the dynamical system (3.8) is the function $V: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by

$$
\begin{equation*}
V(z, y)=\inf \left\{S_{0 T}(\phi): \phi_{0}=z, \phi_{T}=y, T \geq 0\right\} \tag{3.13}
\end{equation*}
$$

We note that the upper endpoint of $[0, T]$ is not fixed, and the infimum is taken over intervals $[0, T]$ of arbitrary length. We say two points z and y are equivalent (denoted $z \sim y)$ if $V(z, y)=V(y, z)=0$.

The quasipotential is the solution to a variational problem, and for many diffusion processes, the quasipotential cannot be explicitly computed. However, when the drift is a potential with a unique minimum O, the quasipotential $V(O, x)$ differs from the potential only by a constant.

Theorem 3.1.3. Let X_{t}^{ϵ} be a diffusion process given by

$$
\begin{equation*}
\dot{X}_{t}^{\epsilon}=b\left(X_{t}^{\epsilon}\right)+\epsilon \dot{W}_{t} \tag{3.14}
\end{equation*}
$$

where the vector field $b(x)=-\nabla U(x)$ and $U(O)=0, U(x)>0$ for $x \neq O$, and $-\nabla U(x) \neq 0$ for any $x \neq O$. Then the quasipotential $V(x)=V(O, x)=2 U(x)$.

Proof. See 4.3.1 in [18], $\S 4$.

The deterministic system (3.7) has, in general, l asymptotically stable equilibrium points and $l-1$ saddle points (for the Hamiltonian system in Figure $1, l=4$). All non-separatrix trajectories have ω-limit sets consisting of a single stable equilibrium. Let $\mathcal{L}=\left\{K_{1}, \ldots, K_{l}\right\}$ be the set of stable equilibrium points, and for a point z not belonging to a separatrix trajectory, let $K_{i(z)}$ be the stable equilibrium to which the trajectory starting at z is attracted. In the discussion below, we refer to the j th stable equilibrium in \mathcal{L} both as K_{j} and, for convenience, as simply j, its index in the set \mathcal{L}. (Observe that in the notation we have suppressed the dependence of (3.7) on the parameter ϵ; of course, all the points K_{j} in \mathcal{L} actually depend on ϵ.)

3.1.3 Definitions of metastability

Now consider the randomly perturbed system (3.8), where $0<\kappa \ll 1$, with the action functional and quasipotential for Z^{κ} defined as above. We will define metastability for this sytem.

Metastable states can be viewed in two related but different ways. First, the metastable state $K_{(z, \lambda)}$ is the point in a small neighborhood of which Z^{κ} remains for "most" of the time between $[0, A T(\kappa)]$ for any $A>0$. Second, the metastable state $K_{(z, \lambda)}$ is the point in a small neighborhood of which, for any fixed t, the process Z^{κ} at time $t T(\kappa)$, i.e. $Z^{\kappa}(t T(\kappa))$, is "most" likely to be found. In the current context, these two notions of metastability are equivalent (see [13]).

Definition 3. (First characterization of a metastable state) Let $T(\kappa)$ be such that
$\lim _{\kappa \downarrow 0} \kappa \ln T(\kappa)=\lambda>0$, and let Λ denote Lebesgue measure in \mathbb{R}. The metastable state for initial condition z and timescale λ, denoted $K_{(z, \lambda)}$, is an asymptotically stable equilibrium point such that for any $\delta>0$ and $A>0$,

$$
\begin{equation*}
\lim _{\kappa \downarrow 0} P_{z}\left\{\Lambda\left\{t \in[0, A]: \rho\left(Z^{\kappa}(t T(\kappa)), K_{(z, \lambda)}\right)>\delta\right\}\right\} \rightarrow 0 . \tag{3.15}
\end{equation*}
$$

Definition 4. (Second characterization of a metastable state) Suppose $K_{(z, \lambda)}$ is the metastable state for (z, λ). Let $\delta>0, t>0$, and $\theta>0$ be arbitrary but fixed. Let $F_{\theta,(z, \lambda)}=\left\{y \in \mathbb{R}^{2}: V\left(K_{(z, \lambda)}, y\right) \leq \theta\right\}$. Then there exists $\kappa_{0}=\kappa_{0}(\delta, \theta, t)>0$ such that for all $\kappa<\kappa_{0}$, and $T(\kappa)$ as above,

$$
\begin{equation*}
P_{z}\left\{Z^{\kappa}(t T(\kappa)) \in F_{\theta,(z, \lambda)}\right\}>1-\delta \tag{3.16}
\end{equation*}
$$

3.1.4 Computing metastable states explicitly

A proof of the existence of a metastable state for each z and λ, and a recipe to find it, are given in [12] and $\S 6$ of [18]. We review the concepts here and refer to [12], [13], and [18] for a full discussion.

Put $V_{i j}=V(i, j)=V\left(K_{i}, K_{j}\right)$, and let $J(i)$ be the index $j \in \mathcal{L}$ such that

$$
\begin{equation*}
V_{i J(i)}=\min \left\{V_{i k}: k \in \mathcal{L}, k \neq i\right\} \tag{3.17}
\end{equation*}
$$

We assume that for each $i \in \mathcal{L}$, the minimum above, and all similar maxima and minima of the quasipotential between a given fixed point K_{i} and any other fixed point K_{k} from a finite set M, is achieved at exactly one point $K \in M$. Such a system is called generic.

With i and $J(i)$ as above, we say that the point $J(i)$ follows i or that i is followed by $J(i)$. Once the process Z^{κ} leaves the basin of attraction for K_{i}, it moves
with overwhelming probability to the basin of attraction for $K_{j(i)}$ [18, p.171]. Define $J^{2}(i)$ as the index j such that

$$
\begin{equation*}
V_{J(i) j}=\min \left\{V_{J(i) k}: k \in \mathcal{L}, k \neq J(i)\right\} \tag{3.18}
\end{equation*}
$$

Proceeding inductively, let $J^{k+1}(i)=J\left(J^{k}(i)\right)$. Let $m=\min \left\{k>0: J^{k}(i)=\right.$ $\left.J^{n}(i), n<k\right\}$. This enables us to define 0 - and 1-cycles.

Definition 5. For a given state $i \in \mathcal{L}$, the 0 -cycle containing i is simply the equilibrium K_{i}. The equilibrium points (or equilibrium "states") in the collection

$$
\begin{equation*}
\mathcal{J}=\left\{J^{n}(i), J^{n+1}(i), \ldots, J^{m}(i)=J^{n}(i)\right\} \tag{3.19}
\end{equation*}
$$

form a cycle of rank 1, or 1-cycle. If this collection includes i, then we say this is the 1-cycle containing i. If this collection does not include i, we define the point K_{i} to be both a 0 - and 1-cycle.

The cycles of rank zero are simply the points K_{1}, \ldots, K_{l} themselves, and a 1 -cycle is an ordered collection of states in \mathcal{L}. Equivalently, a 1-cycle is an ordered collection of 0-cycles. It is also possible for a single point to be both a 0 -cycle and a 1-cycle: suppose there exists a point K_{j} which is followed by a point K_{r}, where the 1-cycle beginning with K_{r} does not include K_{j}. Then the single point K_{j} forms a 1-cycle.

Within a given 1-cycle and a given time scale, there is, in general, one equilibrium state near which the process principally remains. Accordingly, we define the main state, stationary distribution rate, rotation rate, and exit rate for 1-cycles as follows.

Definition 6. For a 1-cycle C,

1. The main state of $C, M(C)$, is the state $k^{*} \in \mathcal{L}$ such that
$V_{k^{*} J\left(k^{*}\right)}=\max _{i \in C} V_{i J(i)}$.
We assume this maximum is attained at a single point $i=k^{*}=M(C) \in C$.
2. The stationary distribution rate for state $i, m_{C}(i)$, is given by $m_{C}(i)=V_{i J(i)}-V_{k^{*} J\left(k^{*}\right)}$, where k^{*} is the main state.
3. The rotation rate $R(C)$ is defined as $R(C)=\max _{i \in C} V_{i J(i)}$.
4. The exit rate, $\mathcal{E}(C)$, is defined as $\mathcal{E}(C)=\min _{i \in C, j \notin C}\left(m_{C}(i)+V_{i j}\right)$, where we again assume that the minimum is attained for precisely one value of $i \in C$ and precisely one value of $j \notin C$.

By induction, we can define cycles of higher rank. For example, a cycle of rank 2 consists of transitions between cycles of rank 1 , so a cycle of rank 2 is an ordered collection of cycles of rank 1. Formally, assume that for some $r \geq 1$, all the cycles for $\operatorname{rank} l \leq r$ are defined. Let \mathfrak{C}^{r} be the set of all r-cycles. For any r-cycle $C_{1} \in \mathfrak{C}^{r}$, define $C_{2} \in \mathfrak{C}^{r}$ to be the r-cycle containing the point $j^{*} \in \mathcal{L}$ at which the following minimum is achieved:

$$
\begin{equation*}
\min _{i \in C_{1}, j \notin C_{1}}\left[m_{C_{1}}(i)+V_{i j}\right] \tag{3.20}
\end{equation*}
$$

As before, we assume that the minimum is attained at precisely one $j^{*} \in \mathcal{L}$ and precisely one $i^{*} \in C_{1}$. Intuitively, $K_{j^{*}}$ is the "nearest" state in \mathcal{L} external to the cycle C_{1} : conditional on the process Z^{κ} exiting the cycle C_{1}, the basin of attraction
for $K_{j^{*}}$ is the most likely set into which Z^{κ} will move. We say $i^{*}=i\left(C_{2}\right)$ is the exit point for the cycle C_{1} and $j^{*}=j\left(C_{2}\right)$ is the entrance point for C_{2}. Let $C_{2}=J\left(C_{1}\right)$, and consider the ordered sequence of r-cycles

$$
\begin{equation*}
C_{1}, J\left(C_{1}\right), J^{2}\left(C_{1}\right), \ldots, J^{n}\left(C_{1}\right), \ldots \tag{3.21}
\end{equation*}
$$

Following our previous notation, let $m^{*}=\min \left\{m>0: J^{m}\left(C_{1}\right)=J^{n}\left(C_{1}\right), n<\right.$ $m\}$. Then the ordered sequence (which we refer to as a cyclical ordering) of r-cycles $J^{n}\left(C_{1}\right), J^{n+1}\left(C_{1}\right), \ldots, J^{m *}\left(C_{1}\right)$ forms an $r+1$-cycle. By induction, we can define exit rates, stationary distribution rates, rotation rates, and main states for $r+1$ cycles. Again, a single r-cycle can also form an $r+1$-cycle.

For any point z, we get a sequence of cycles $C(z)$ containing z:

$$
\begin{equation*}
\mathcal{C}(z): C^{(0)}(z) \subset C^{(1)}(z) \subset \ldots \subset C^{(n)} \tag{3.22}
\end{equation*}
$$

The highest-rank cycle is the unique cycle which contains all the equilibrium points. This cycle is independent of the original point from which the cycles are first constructed.

Since we have defined an $r+1$-cycle as an ordered collection of r-cycles, the elements of an $r+1$-cycle are themselves r-cycles. Nevertheless, all cycles are ultimately composed of equilibrium points from the set \mathcal{L}, and we use the notation $i \in C$ to represent any point i in \mathcal{L} which belongs to any of the potentially lower-rank cycles that comprise C.

We can give inductive definitions of main states, rotation rates, and exit rates; these concepts can also be defined directly through i-graphs, which are useful in describing the asymptotic behavior of $Z^{\kappa}(t)$ on large time intervals [18, p.177].

Definition 7. Let \mathbf{F} be a finite set, and let i be an element of \mathbf{F}. A graph consisting of arrows of the form $(m \rightarrow n)$, for $n \in \mathbf{F}, m \in \mathbf{F} \backslash\{i\}, n \neq m$, is said to be an i-graph if:

1. Every point $m \in \mathbf{F} \backslash\{i\}$ is the initial point of exactly one arrow;
2. For any point $m \in \mathbf{F} \backslash\{i\}$, there exists a sequence of arrows leading from m to the point i.

For each point $i \in \mathcal{L}$, let $G_{i}(\mathcal{L})$ denote the set of all i-graphs for the finite set of equilibrium points \mathcal{L}. Similarly, $G_{i}(C)$ consists of the set of all possible i-graphs for the finite set of elements within a cycle C.

Suppose inductively that the main state, stationary distribution rate, rotation rate, and exit rate have been defined for all cycles up to and including rank r. We can introduce the corresponding defintions for higher-rank cycles.

Definition 8. For higher-rank cycles,

1. The main state $M(C)$ for an r-cycle C is the assumed-unique state $j^{*}(C)$ that achieves the minimum

$$
\begin{equation*}
\min _{j \in C} \min _{g \in G_{j}(C)} \sum_{(m \rightarrow n) \in g} V_{m n} . \tag{3.23}
\end{equation*}
$$

2. The rotation rate $R(C)$ for an $r+1$-cycle is defined as

$$
\begin{equation*}
R(C)=\max _{i: C_{i}^{r} \in C} \mathcal{E}\left(C_{i}^{r}\right) \tag{3.24}
\end{equation*}
$$

where C_{i}^{r} are the r-cycles that form the $r+1$-cycle C and $\mathcal{E}\left(C_{i}^{r}\right)$ is the exit rate for the r-cycle C_{i}^{r}.
3. The stationary distribution rate $m_{C}(i)$ for an $r+1$-cycle C, where $i \in C$, is defined by

$$
\begin{equation*}
m_{C}(i)=\min _{g \in G_{i}(C)} \sum_{(m \rightarrow n) \in g} V_{m n}-\min _{g \in G_{j} *(C)} \sum_{(m \rightarrow n) \in g} V_{m n} \tag{3.25}
\end{equation*}
$$

where $j *=M(C)$ is the main state of C defined above.
4. The exit rate $\mathcal{E}(C)$ for $C \in \mathcal{C}^{r+1}$ is given by

$$
\begin{equation*}
\mathcal{E}(C)=\min _{i \in C, j \notin C}\left(m_{C}(i)+V_{i j}\right), \tag{3.26}
\end{equation*}
$$

where we assume uniqueness of the indices $i^{*}=i^{*}(C)$ and $j^{*}=j^{*}(C)$ at which the minimum is attained. We call i^{*} the exit point of C, and j^{*} the entrance point for the $r+1$-cycle containing $K_{j^{*}}$. For the highest-rank cycle C containing all the points of $\mathcal{L}=\left\{K_{1}, \ldots, K_{l}\right\}$, we define $\mathcal{E}(C)=+\infty$.

In the preceding definitions, we make the genericity assumption that each one of the maxima and minima is attained at a single equilibrium point in \mathcal{L}.

Let D_{j} be the domain of attraction for K_{j}. For any cycle C, let $D(C)=\bigcup_{i \in C} D_{i}$. Let τ_{C}^{κ} be the exit time for $Z^{\kappa}(t)$ from $D(C)$, (where $Z_{0}=z_{0}=z \in D(C)$); that is,

$$
\begin{equation*}
\tau=\inf \left\{t: Z^{\kappa}(t) \notin D(C)\right\} \tag{3.27}
\end{equation*}
$$

We can compute the expected value of τ_{C}^{κ} through the exit rate for the cycle C. By Theorem 6.6.2 [18, p.201], we note that

$$
\begin{equation*}
\lim _{\kappa \downarrow 0} \ln E_{z}\left(\tau_{C}^{\kappa}\right)=\mathcal{E}(C) \tag{3.28}
\end{equation*}
$$

Furthermore, according to [18, p.201], for any $\gamma>0$,

$$
\begin{equation*}
\lim _{\kappa \downarrow 0} P_{z}\left\{\exp \left(\kappa^{-1}[\mathcal{E}(C)-\gamma]\right)<\tau_{C}^{\kappa}<\exp \left(\kappa^{-1}[\mathcal{E}(C)+\gamma]\right)\right\}=1 \tag{3.29}
\end{equation*}
$$

uniformly for all $z \in B$, where B is any compact subset of $D(C)$.
As before, let $T(\kappa)$ be a function such that

$$
\begin{equation*}
\lim _{\kappa \downarrow 0} \kappa \ln T(\kappa)=\lambda>0 \tag{3.30}
\end{equation*}
$$

Let $\{\mathcal{C}(z)\}$ represent the ordered sequence of cycles containing z, as in (3.22), up to the cycle of highest rank $n(z)=n$. Let e_{k} denote the exit rate for the $k^{t h}{ }_{-}$ rank cycle containing z, so $e_{k}=\mathcal{E}\left(C^{k}(z)\right)$. It is clear that the numbers e_{k} form an increasing sequence, with

$$
\begin{equation*}
e_{0}=V_{i J(i)}<e_{1}<e_{2}<\ldots<e_{n-1}<e_{n}=\infty \tag{3.31}
\end{equation*}
$$

Let $r_{k}=R\left(C^{(k)}(z)\right)$ denote the rotation rates. The sequence r_{k} is also increasing and $r_{k}<e_{k}$.

Let m^{*} be a positive integer with $e_{m^{*}}<\lambda<e_{m^{*}+1}$.
We conclude by describing how to find the metastable state for (z, λ).

Proposition 1. The metastable state $K_{(z, \lambda)}$ for the process Z^{κ} with initial position z and timescale λ is given as follows.

1. Case 1: $\lambda>r_{m^{*}+1}$. In this instance, $r_{m^{*}+1}<\lambda<e_{m^{*}+1}$, and $K_{(z, \lambda)}=$ $M\left(C^{\left(m^{*}+1\right)}(z)\right)$, the main state of the cycle $C^{\left(m^{*}+1\right)}(z)$.
2. Case 2: $\lambda<r_{m^{*}+1}$. Let $C^{\left(m^{*}\right)}(z)$ be the m^{*}-cycle containing z, and let $C^{\left(m^{*}+1\right)}(z)$ be the $m^{*}+1$-cycle generated by $C^{\left(m^{*}\right)}(z)$. Consider the m^{*}-cycles in $C^{\left(m^{*}+1\right)}(z)$ that follow $C^{\left(m^{*}\right)}(z)$, denoted (in cyclic order)

$$
C_{1}^{m^{*}}(z), C_{2}^{m^{*}}(z), \ldots, C_{p}^{m^{*}}(z) .
$$

Since $\lambda<r_{m *+1}=\max _{C_{i}^{m^{*}}(z) \in C^{\left(m^{*}+1\right)}(z)} \mathcal{E}\left(C_{i}^{\left(m^{*}\right)}\right)$, there exists at least one cycle $C_{i}^{\left(m^{*}\right)}$, where $i \in\{1, \ldots, p\}$, for which $\mathcal{E}\left(C_{i}^{\left(m^{*}\right)}\right)>\lambda$. Let i^{*} be the minimum of those indices $i ; C_{i^{*}}^{\left(m^{*}\right)}(z)$ is the first cycle after $C^{\left(m^{*}\right)}(z)$ for which the exit rate exceeds λ.

If $\lambda>r\left(C_{i^{*}}^{\left(m^{*}\right)}(z)\right)$, then the metastable state $K_{(z, \lambda)}$ is the main state of $C_{i^{*}}^{\left(m^{*}\right)}(z)$. If $\lambda<r\left(C_{i^{*}}^{\left(m^{*}\right)}(z)\right)$, then, of the $\left(m^{*}-1\right)$-rank cycles that comprise the m^{*}-cycle $C_{i^{*}}^{\left(m^{*}\right)}(z)$, there exists one $\left(m^{*}-1\right)$-cycle, denoted $\tilde{C}^{\left(m^{*}-1\right)}(z)$, containing the entrance state for $C_{i^{*}}^{\left(m^{*}\right)}(z)$. Cyclically ordering the $\left(m^{*}-1\right)$ cycles that follow $\tilde{C}^{\left(m^{*}-1\right)}(z)$ in $C_{i^{*}}^{\left(m^{*}\right)}(z)$, there exists a first cycle in the sequence, say $C^{\prime\left(m^{*}-1\right)}(z)$, whose exit rate exceeds λ. If $\lambda>R\left(C^{\prime}\left(m^{*}-1\right)(z)\right)$, the the metastable state $K_{(z, \lambda)}$ is the main state of $C^{\prime}\left(m^{*}-1\right)(z)$. If not, proceed inductively to consider the collection of $\left(m^{*}-2\right)$-order cycles which comprise $C^{\prime}\left(m^{*}-1\right)(z)$, until reaching a cycle C of some nonnegative order for which $\mathcal{E}(C)>\lambda>R(C)$. Such a cycle always exists, because the rotation rates of zero-cycles are, by definition, zero. The metastable state $K_{(z, \lambda)}$ is the main state of the cycle C.

Proof. See [18], §6.

3.1.5 An example of a metastable state as a probability distribution

For a generic dynamical system subject to white-noise perturbations, a metastable state is a fixed equilibrium point. In the next section, we generalize metastability to a nearly-Hamiltonian system in which the underlying deterministic system is
generic, but the limiting dynamical system is stochastic. We conclude that in such a setting, nondegenerate probability distributions across equilibrium points, rather than equilibrium points themselves, serve as metastable states.

In this section, we consider a non-generic dynamical system-specifically, a one-dimensional potential with two wells of identical depth-in which metastability nevertheless corresponds to a probability distribution. This provides a simple illustration of this phenomenon.

Example 3.1.4 (A one-dimensional example of a metastable "state" as a probability distribution).

Let X_{t}^{ϵ} be the diffusion process in \mathbb{R}

$$
\begin{equation*}
\dot{X}_{t}^{\epsilon}=-U^{\prime}\left(X_{t}^{\epsilon}\right)+\sqrt{\epsilon} \dot{W}_{t} \tag{3.32}
\end{equation*}
$$

where the potential $U(x)$ has two wells. Let $S_{0 T}(\phi)$ and $V(x, y)$ be the action functional and quasipotential, respectively, associated to the process X_{t}^{ϵ}. Suppose the two local minima of U are equal, so $U\left(a_{1}\right)=U\left(a_{2}\right)$. Assume that $U(x)>U\left(a_{i}\right)$ for all other x, that $U^{\prime}(x) \neq 0$ for $x \notin\left\{a_{1}, a_{2}\right\}$, and that a_{1} and a_{2} are nondegenerate critical points with $U^{\prime \prime}\left(a_{1}\right) \neq U^{\prime \prime}\left(a_{2}\right)$. Finally, assume that

$$
\begin{equation*}
\int_{\mathbb{R}} \exp \left[-\frac{U(x)}{\epsilon}\right] d x=C^{\epsilon}<\infty \tag{3.33}
\end{equation*}
$$

Claim 3.1.5. Let X_{t}^{ϵ} solve (3.32) and let U satisfy the above assumptions. Then the process X_{t}^{ϵ} has a unique normalized invariant measure μ^{ϵ} given by

$$
\begin{equation*}
\mu^{\epsilon}(A)=\frac{1}{C^{\epsilon}} \int_{A} \exp \left[-\frac{2 U(x)}{\epsilon}\right] d x \tag{3.34}
\end{equation*}
$$

and μ^{ϵ} converges weakly as $\epsilon \rightarrow 0$ to the measure $\mu=\frac{p_{1}}{p_{1}+p_{2}} \delta_{a_{1}}+\frac{p_{2}}{p_{1}+p_{2}} \delta_{a_{2}}$ with $p_{i}=\frac{1}{\sqrt{U^{\prime \prime}\left(a_{i}\right)}}$ and δ_{a} the δ-measure at the point a. Furthermore, if $\lambda>V_{12}=V_{21}$, the metastable distribution for any initial condition x_{0} with timescale λ is given by this limiting measure.

Proof. A substitution into the forward Kolmogorov equation immediately gives the expression for the density $m(x)$ of the unique invariant measure:

$$
\begin{equation*}
L^{*} m(x)=0 \Rightarrow \frac{d}{d x}\left(m(x) U^{\prime}(x)\right)+\frac{\epsilon}{2} \frac{d^{2} m(x)}{(d x)^{2}}=0 \tag{3.35}
\end{equation*}
$$

Define $A_{i}(\delta)=\left(a_{i}-\delta, a_{i}+\delta\right), i=1,2$, and put $A_{3}(\delta)=\left[A_{1}(\delta) \cup A_{2}(\delta)\right]^{c}$. Put $f(x)=2 U(x), \lambda=2 U\left(a_{1}\right)=2 U\left(a_{2}\right)$ and define $m_{i}^{\epsilon}(\delta)$ as

$$
\begin{equation*}
m_{i}^{\epsilon}(\delta)=\int_{A_{i}(\delta)} \exp \left[-\frac{f(x)}{\epsilon}\right] d x, \quad i=1,2,3 \tag{3.36}
\end{equation*}
$$

We prove that for $\delta>0$ sufficiently small,

$$
\begin{align*}
& \frac{m_{i}^{\epsilon}(\delta) \exp \left[\frac{\lambda}{\epsilon}\right]}{\sqrt{\epsilon} \sqrt{2 \pi}} \rightarrow p_{i}, \quad i=1,2 \tag{3.37}\\
& \frac{m_{3}^{\epsilon}(\delta) \exp \left[\frac{\lambda}{\epsilon}\right]}{\sqrt{\epsilon} \sqrt{2 \pi}} \rightarrow 0 \tag{3.38}
\end{align*}
$$

as $\epsilon \rightarrow 0$. The result follows from this and from the fact that for δ sufficiently small,

$$
\begin{align*}
\mu^{\epsilon}\left(A_{i}(\delta)\right) & =\frac{m_{i}^{\epsilon}(\delta)}{m_{1}^{\epsilon}(\delta)+m_{2}^{\epsilon}(\delta)+m_{3}^{\epsilon}(\delta)} \tag{3.39}\\
& =\frac{\frac{m_{i}^{\epsilon}(\delta) \exp \left(\frac{\lambda}{\epsilon}\right)}{\sqrt{\epsilon} \sqrt{2 \pi}}}{\left[m_{1}^{\epsilon}(\delta)+m_{2}^{\epsilon}(\delta)+m_{3}^{\epsilon}(\delta)\right] \frac{\exp \left(\frac{\lambda}{\epsilon}\right)}{\sqrt{\epsilon} \sqrt{2 \pi}}} \tag{3.40}
\end{align*}
$$

Note that

$$
\begin{equation*}
\frac{m_{3}^{\epsilon}(\delta)}{m_{1}^{\epsilon}(\delta)}=\frac{\int_{A_{3}} \exp \left[-\frac{2 U(x)}{\epsilon}\right] d x}{\int_{A_{1}} \exp \left[-\frac{2 U(x)}{\epsilon}\right] d x} \tag{3.41}
\end{equation*}
$$

Put $\lambda=\inf _{x \in \mathbb{R}} f(x)=f\left(a_{1}\right)=f\left(a_{2}\right)$. Let $\lambda_{3}(\delta)=\inf \left\{f(x): x \in A_{3}(\delta)\right\}$. By hypothesis, $\lambda_{3}>\lambda$. Expanding f in a Taylor series around each of the point a_{1}, we get

$$
\begin{equation*}
f(x)-\lambda=f^{\prime}\left(a_{1}\right)\left(x-a_{1}\right)+f^{\prime \prime}\left(a_{1}\right)\left(x-a_{1}\right)^{2}\left(1+h\left(\left(x-a_{1}\right)\right)\right. \tag{3.43}
\end{equation*}
$$

where $h\left(\left(x-a_{1}\right)\right)<C_{1} \delta_{1}^{2}$ if $\left|x-a_{1}\right|<\delta_{1}$. We have

$$
\begin{align*}
m_{1}^{\epsilon}(\delta) \exp \left[\frac{\lambda}{\epsilon}\right] & =\int_{a_{1}-\delta}^{a_{1}+\delta} \exp -\left[\frac{f(x)-\lambda}{\epsilon}\right] d x \tag{3.44}\\
& =\int_{a_{1}-\delta}^{a_{1}+\delta} \exp \left[-\frac{f^{\prime \prime}\left(a_{1}\right)\left(x-a_{1}\right)^{2}\left(1+h\left(x-a_{1}\right)\right)}{2 \epsilon}\right] d x \tag{3.45}
\end{align*}
$$

By the change of variable

$$
\begin{equation*}
u=\frac{\sqrt{\epsilon}}{\sqrt{f^{\prime \prime}\left(a_{1}\right)}}\left(x-a_{1}\right) \tag{3.46}
\end{equation*}
$$

we deduce that

$$
\begin{equation*}
m_{1}^{\epsilon}(\delta) \exp \left[\frac{\lambda}{\epsilon}\right]=\int_{-\frac{\delta \sqrt{f^{\prime \prime}\left(a_{1}\right)}}{\sqrt{\epsilon}}}^{\frac{\delta \sqrt{f^{\prime \prime}\left(a_{1}\right)}}{\sqrt{\epsilon}}} \exp \left[-\frac{u^{2}}{2}\left(1+h\left(\sqrt{\frac{\epsilon}{f^{\prime \prime}\left(a_{1}\right)}} u\right)\right] d u\right. \tag{3.47}
\end{equation*}
$$

By the dominated convergence theorem,

$$
\begin{equation*}
\lim _{\epsilon \downarrow 0} \frac{m_{1}^{\epsilon}(\delta) \exp \left[\frac{\lambda}{\epsilon}\right]}{\sqrt{\epsilon} \sqrt{2 \pi}}=\frac{1}{\sqrt{2 \pi f^{\prime \prime}\left(a_{1}\right)}} \int_{-\infty}^{\infty} \exp \left[\frac{-u^{2}}{2}\right] d u=\frac{1}{\sqrt{f^{\prime \prime}\left(a_{1}\right)}} \tag{3.48}
\end{equation*}
$$

The identical result holds for a_{2}. Now consider

$$
\begin{align*}
m_{3}^{\epsilon}(\delta) & =\int_{A_{3}(\delta)} \exp \left[-\frac{f(x)}{\epsilon}\right] d x \tag{3.49}\\
& =\exp \left[-\frac{\lambda_{3}(\delta)}{\epsilon}\right] \int_{A_{3}(\delta)} \exp \left[-\frac{f(x)-\lambda_{3}}{\epsilon}\right] \tag{3.50}\\
\Rightarrow \frac{m_{3}^{\epsilon}(\delta) \exp \left[\frac{\lambda}{\epsilon}\right]}{\sqrt{\epsilon}} & =\left[\frac{\exp \left[-\frac{\lambda_{3}(\delta)-\lambda}{\epsilon}\right]}{\sqrt{\epsilon}}\right] \int_{A_{3}(\delta)} \exp \left[-\frac{f(x)-\lambda_{3}(\delta)}{\epsilon}\right] d x \tag{3.51}
\end{align*}
$$

and for $\epsilon<\epsilon_{0}$, we have

$$
\begin{equation*}
\int_{A_{3}(\delta)} \exp \left[-\frac{f(x)-\lambda_{3}(\delta)}{\epsilon}\right] d x \leq \int_{\mathbb{R}} \exp \left[-\frac{f(x)-\lambda_{3}(\delta)}{\epsilon_{0}}\right] d x=C<\infty \tag{3.52}
\end{equation*}
$$

and since $\lambda_{3}(\delta)-\lambda>0$, L'Hôpital's rule implies

$$
\begin{equation*}
\frac{1}{\sqrt{\epsilon}} \exp \left[-\frac{\lambda_{3}(\delta)-\lambda}{\epsilon}\right] \rightarrow 0 \tag{3.53}
\end{equation*}
$$

as $\epsilon \downarrow 0$.
Let V_{12} and V_{21} be the quasipotential between the two minima of U; since the two minima of U are equal, by Theorem (3.1.3), $V_{12}=V_{21}$. Now, for any initial position x_{0} belonging to the domain of attraction for a_{1}, and for a timescale $\lambda<V_{12}$, Proposition (1) ensures that the metastable state is simply a_{1}; similarly, for any initial position x_{0} belonging to the domain of attraction for a_{2} and timescale $\lambda<V_{21}$, the metastable state is a_{2}. However, for any position x_{0} and timescale $\lambda>V_{12}, \lambda$ is greater than the rotation rate for the maximal-rank cycle (a cycle of rank 1). Due to the non-genericity of the system, however, this cycle has two main states: a_{1} and a_{2}, and from the convergence of the invariant measures μ^{ϵ} to μ, the metastable distribution is the limiting probability measure μ.

3.2 Results on metastable distributions for nearly-Hamiltonian systems

While the previous example illustrates a metastable distribution, the potential U, with two identical minima, is non-generic. Furthermore, the property of identical minima is not preserved under small perturbations of the potential. However, the nearly-Hamiltonian system we consider is both generic and stable under small perturbations, and we prove that in this case probability distributions serve as metastable states.

Recall that $\tilde{X}^{\epsilon, \kappa}(t)$ is the two-dimensional diffusion process with generator

$$
\mathcal{L}^{\epsilon, \kappa}(u(x))=\frac{\kappa}{2} \operatorname{div}(a(x) \nabla u(x))+B(x) \cdot \nabla u(x)+\frac{1}{\epsilon} \bar{\nabla} H(x) \cdot \nabla u(x),
$$

where H is the four-well Hamiltonian with associated graph and phase portrait given in Chapters 1 and 2 and reproduced below.

Figure 3.1: $H\left(x_{1}, x_{2}\right)$ and the Graph Γ

Our goal is to establish the following theorem.

Theorem 3.2.1. Let $\lambda>0$ and $T(\kappa)$ be such that

$$
\begin{equation*}
\lim _{\kappa \downarrow 0} \kappa \ln T(\kappa)=\lambda \tag{3.54}
\end{equation*}
$$

For any initial condition $\left(x_{1}(0), x_{2}(0)\right) \in \mathbb{R}^{2}$ and all but finitely many timescales λ, the process $\tilde{X}_{T_{\lambda}(\kappa)}^{\epsilon, \kappa}$ converges weakly in the space $C_{0 T}\left(\mathbb{R}^{2}\right)$, first as $\epsilon \downarrow 0$ and then as $\kappa \downarrow 0$, to a probability measure concentrated on the stable equilibrium points of the unperturbed Hamiltonian system. In particular, there exist initial conditions
$w=\left(x_{1}(0), x_{2}(0)\right) \in \mathbb{R}^{2}$ and timescales λ such that process $\tilde{X}_{T_{\lambda}(\kappa)}^{\epsilon, \kappa}$, converges weakly in the space $C_{0 T}\left(\mathbb{R}^{2}\right)$, first as $\epsilon \downarrow 0$ and then as $\kappa \downarrow 0$, to a nondegenerate probability measure $\mu_{w, \lambda}$ concentrated on the stable equilibrium points $\left\{O_{1}, O_{3}, O_{5}, O_{7}\right\}$ of the unperturbed Hamiltonian system, with weights $p_{i}(w, \lambda)=\mu_{w, \lambda}\left(O_{i}\right), i \in\{1,3,5,7\}$ that can be explicitly computed and depend only on B.

To prove this theorem, we rely upon the results in [3], [18], and [19], and certain large-deviation estimates which we prove below.

As before, let Q be the projection of a point $x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}$ onto the graph Γ associated to the Hamiltonian H. We will use the notation O_{k} to represent both a zero of ∇H in \mathbb{R}^{2} (a stable equilibrium or saddle point of the unperturbed Hamiltonian system $\dot{X}_{t}=\bar{\nabla} H\left(X_{t}\right)$ in the plane) and the corresponding interior or exterior vertex on the graph Γ associated to the Hamiltonian. That is, we use the notation O_{k} to represent both the point O_{k} in the plane and the point $H\left(O_{k}\right)$ on the graph Γ. It will be clear from context to which we refer.

Recall that the process $Q^{\kappa}(t)$ on the graph Γ is the weak limit in $C_{0 T}(\Gamma)$ of $Q^{\epsilon, \kappa}(t)$ as $\epsilon \downarrow 0$, and Q^{κ} is defined through generators L_{i}^{κ} along each edge and gluing conditions at each interior vertex (see (2.187), (2.188), and (2.189) in Chapter 2).

3.2.1 Estimates for probabilities of large deviations for the process Q^{κ} on Γ

We estimate probabilities of large deviations for the process Q^{κ} on the graph Γ. In particular, we determine the logarithmic asympotics of the exit time $\tau_{i}^{\kappa}(y)$ for
the process Q^{κ} to leave an exterior edge $I_{k_{i}}$ starting from some point y in a small neighborhood of the exterior vertex $O_{k_{i}}$. Recall from Chapter 2 that Q^{κ} is defined through second-order ordinary differential operators along each edge. Because these operators have degeneracies at interior and exterior vertices, we analyze the behavior of Q^{κ} in three parts: first, in closed subintervals of an edge (i.e., away from the vertices); next, in small neighborhoods of exterior vertices; and finally, in small neighborhoods of interior vertices.

Along each edge $i, Q^{\kappa}(t)$ is a process with infinitesimal generator L_{i}^{κ} :

$$
L_{i}^{\kappa}\left(u_{i}(z)\right)=\left\{\frac{\kappa A_{i}^{\prime}(z)}{2 T_{i}(z)}+\frac{\tilde{B}_{i}(z)}{T_{i}(z)}\right\} \frac{d u_{i}(z)}{d z}+\frac{\kappa A_{i}(z)}{2 T_{i}(z)} \frac{d^{2} u_{i}(z)}{(d z)^{2}}
$$

The drift and diffusion coefficients vanish only at interior and exterior vertices. As $z \rightarrow H\left(O_{j_{i}}\right)$ for an interior vertex $O_{j_{i}}, \tilde{B}_{i}(z)$ and $A_{i}(z)$ have finite non-zero limits, and from Lemma (2.2.1), $T_{i}(z) \sim \ln \left(z-H\left(O_{j_{i}}\right)\right)^{-1}$. By Lemma (2.2.1), as $z \rightarrow H\left(O_{k}\right)$ for a minimum O_{k} of H in the plane (i.e. an exterior vertex of Γ), $T_{k}(z)$ approaches a constant. At exterior vertices, it is easy to see that $\tilde{B}_{k}(z)$ and $A_{k}(z)$ converge to zero linearly: for any minimum O_{k} of H, the curve $C\left(H\left(O_{k}\right)\right)$ consists of a single point, so the area of the enclosed region $G\left(H\left(O_{k}\right)\right)$ is zero. However,

$$
\begin{align*}
A_{k}(z) & =\int_{G_{k}(z)} \operatorname{div}(a(x) \nabla H(x)) d x \tag{3.55}\\
\text { and } \tilde{B}_{k}(z) & =\int_{G_{k}(z)} \operatorname{div} B(x) d x \tag{3.56}
\end{align*}
$$

and the integrands in each of the above integrals are bounded away from zero. Let $S_{k}(z)=$ Area $\left(G_{k}(z)\right)$. Then since $S_{k}^{\prime}(z)=T_{k}(z)$ and $T_{k}(z)$ approaches a constant as $z \rightarrow H\left(O_{k}\right)$, the conclusion follows.

Let $E=\left\{O_{k_{1}}, \ldots O_{k_{l}}\right\}$ be the set of exterior vertices.

Lemma 3.2.2. Any exterior vertex $O_{k_{i}}$ is inaccessible for $Q^{\kappa}(t)$.

Proof. Following Mandl [23], the criterion for inaccessibility of an endpoint for the one-dimensional diffusion process with generator $L_{k_{i}}^{\kappa}$ on an exterior edge $I_{k_{i}}$ is that the integral

$$
\begin{equation*}
\int \exp \left[-\int\left\{\frac{\frac{\kappa A_{k_{i}}^{\prime}(z)}{2 k_{k_{i}}(z)}+\frac{\tilde{B}_{k_{i}}(z)}{T_{k_{i}}(z)}}{\frac{\kappa A_{k_{i}}(z)}{2 T_{k_{i}}(z)}}\right\} d z\right] d z \tag{3.57}
\end{equation*}
$$

diverge at the exterior vertex O_{i}; note that

$$
\begin{equation*}
\int \exp \left[\int-\frac{A_{k_{i}}^{\prime}(z)}{A_{k_{i}}(z)} d z\right] d z=\int \frac{1}{A_{k_{i}}(z)} d z \tag{3.58}
\end{equation*}
$$

which diverges at any exterior vertex because $A_{k_{i}}(z)$ converges to zero linearly as $z \downarrow H\left(O_{k_{i}}\right)$, so the singularity at $O_{k_{i}}$ is not integrable.

Let $I_{k_{i}}$ be an exterior edge of Γ with exterior vertex $O_{k_{i}}$ and corresponding interior vertex $O_{j_{i}}$. Without loss of generality we can take $H\left(O_{k}\right)=0$. In the analysis that follows, we focus on the interval $I_{k_{i}}$ and the associated differential operator L_{i}^{κ} defined on $I_{k_{i}}$. Let δ_{1} be arbitrary and positive. For any such δ_{1}, denote by $I_{k_{i}} \backslash \delta_{1}$ the subinterval of $I_{k_{i}}$

$$
\begin{equation*}
I_{k_{i}} \backslash \delta_{1}=\left\{z \in I_{k_{i}}: \delta_{1}<z<H\left(O_{j_{i}}\right)-\delta_{1}\right\} \tag{3.59}
\end{equation*}
$$

so $I_{k_{i}} \backslash \delta_{1}$ is the open subinterval of $I_{k_{i}}$ with δ_{1} neighborhoods of each vertex removed.
Using an approximation to the identity (see [7]), we can construct nonzero smooth, bounded functions $A_{k_{i}}^{F}(z)$ and $T_{k_{i}}^{F}(z)$ defined on the closed interval $\bar{I}_{k_{i}}$ (including the endpoints $O_{j_{i}}$ and $O_{k_{i}}$) such that $A_{k_{i}}^{F}(z), A_{k_{i}}^{F}, T_{k_{i}}^{F}(z)$ coincide with the functions $A_{k_{i}}(z), A_{k_{i}}^{\prime}(z)$, and $T_{k_{i}}(z)$ on $I_{k_{i}} \backslash\left[\delta_{1} / 4\right]$.

Let $F_{k_{i}}^{\kappa}(t)$ be the one-dimensional diffusion process on the positive half-line with generator

$$
\begin{equation*}
L_{k_{i}}^{F, \kappa}(u)=\frac{\kappa}{2} A_{k_{i}}^{F}(z) \frac{d^{2} u}{d z^{2}}+\left\{\frac{\kappa}{2} \frac{A_{k_{i}}^{\prime F}(z)}{T_{k_{i}}^{F}(z)}+\frac{\tilde{B}_{k_{i}}(z)}{T_{k_{i}}^{F}(z)}\right\} \frac{d u}{d z} \tag{3.60}
\end{equation*}
$$

and reflection at the origin.
The drift and diffusion coefficients for $F_{k_{i}}^{\kappa}$ coincide with the drift and diffusion coefficients for the process $Q_{k_{i}}^{\kappa}$ on the subinterval $I_{k_{i}} \backslash\left[\delta_{1} / 4\right]$. However, the process $F_{k_{i}}^{\kappa}$ has a diffusion coefficient that is uniformly nondegenerate on $I_{k_{i}}$.

Lemma 3.2.3. The action functional for the process $F_{k_{i}}^{\kappa}(t)$ in the space $C_{0 T}\left(I_{k_{i}}\right)$ is given by:

$$
\begin{equation*}
S_{k_{i}}^{F}(\phi)=\frac{1}{2} \int_{0}^{T}\left[\dot{\phi}(s)-\frac{\tilde{B}_{k_{i}}(\phi(s))}{T_{k_{i}}^{F}(\phi(s))}\right]^{2} \frac{T_{k_{i}}^{F}(\phi(s))}{A_{k_{i}}^{F}(\phi(s))} d s \tag{3.61}
\end{equation*}
$$

Proof. Let \tilde{F}_{i}^{κ} be the diffusion process with generator

$$
\tilde{L}_{k_{i}}^{F, \kappa}(u(z))=\frac{\tilde{B}_{i}(z)}{T_{k_{i}}^{F}(z)} \frac{d u}{d z}+\frac{A_{k_{i}}^{F}(z)}{T_{k_{i}}^{F}(z)} \frac{d^{2} u}{d z^{2}}
$$

Since the diffusion coefficient $\frac{A_{k_{i}}^{F}(z)}{T_{k_{i}}^{F}(z)}$ is uniformly nondegenerate, Theorem (3.1.2) implies that the the action functional $S_{0 T}^{\tilde{F}_{k_{i}}}$ for the process $\tilde{F}_{k_{i}}^{\kappa}$ is given by (3.61).

The diffusion process $F_{k_{i}}^{\kappa}$ defined by $L_{k_{i}}^{F, \kappa}$ differs from the diffusion process $\tilde{F}_{k_{i}}^{\kappa}$ defined by $\tilde{L}_{k_{i}}^{F, \kappa}$ only in the drift, by a term of order κ. The measures induced by the two processes on $C_{0 T}\left(I_{k_{i}}\right)$ are absolutely continuous with respect to one another; by Girsanov's formula the Radon-Nikodym derivative $\frac{d \mu_{F_{k_{i}}}}{d \mu_{F_{k_{i}}}}$ is given by

$$
\begin{equation*}
\exp \left[\frac{\sqrt{\kappa}}{\sqrt{2}}\left(\int_{0}^{T} f\left(\tilde{F}_{k_{i}}^{\kappa}(s)\right) d W_{s}-\frac{1}{2} \int_{0}^{t}\left|f\left(\tilde{F}_{k_{i}}^{\kappa}(s)\right)\right|^{2} d s\right)\right] \tag{3.62}
\end{equation*}
$$

where $f(z)=\frac{A_{k_{i}}^{\prime F}(z) \sqrt{T_{k_{i}}^{F}(z)}}{\sqrt{A_{k_{i}}^{F}(z)}}$. The Radon-Nikodym derivative can be made arbitrarily close to one for κ sufficiently small, and hence the action functionals for the two processes coincide.

Lemma 3.2.4. The quasipotential $V_{i}^{F}(z, w)$ between any two points z and w on I_{i} is given by

$$
\begin{equation*}
V_{i}^{F}(z, w)=\int_{z}^{w}-2 \frac{\tilde{B}_{i}(s)}{A_{i}^{F}(s)} d s \tag{3.63}
\end{equation*}
$$

Proof. Since the quasipotential is defined as

$$
\begin{equation*}
\inf \left\{S_{T_{1} T_{2}}^{F}(\phi), \phi_{T_{1}}=x, \phi_{T_{2}}=y\right\} \tag{3.64}
\end{equation*}
$$

where the infimimum is taken over time intervals of arbitrary length, the quasipotential for a process is invariant with respect to time changes, so we employ the random time-change formula to rewrite the diffusion process F_{i}^{κ}. Let X_{t} be the diffusion process defined by

$$
\begin{equation*}
X_{t}=\int_{0}^{t} \frac{\tilde{B}_{i}\left(X_{s}\right)}{T_{i}^{F}\left(X_{s}\right)} d s+\int_{0}^{t} \frac{\sqrt{A_{i}^{F}\left(X_{s}\right)}}{\sqrt{T_{i}^{F}\left(X_{s}\right)}} d W_{s} \tag{3.65}
\end{equation*}
$$

Define α_{t} as

$$
\begin{equation*}
\alpha_{t}=\int_{0}^{t} \frac{A_{i}^{F}\left(X_{s}\right)}{T_{i}^{F}\left(X_{s}\right)} d s \tag{3.66}
\end{equation*}
$$

and note that α_{t} is strictly increasing for almost all ω because the integrand is positive. Hence α_{t} is invertible, and by the random time change formula there exists a Wiener process \tilde{W} such that X can be written:

$$
\begin{equation*}
X_{\alpha^{-1}(u)}-X_{0}=\int_{0}^{u} \frac{\tilde{B}_{i}\left(X_{\alpha^{-1}(s)}\right)}{A_{i}^{F}\left(X_{\alpha^{-1}(s)}\right)} d s+\int_{0}^{u} d \tilde{W}_{s} \tag{3.67}
\end{equation*}
$$

If we put $\tilde{X}_{u}=X_{\alpha^{-1}(u)}$, then \tilde{X} has unit diffusion, and according to Theorem (3.1.3), the quasipotential is given by

$$
\begin{equation*}
V_{i}^{F}(z, w)=\int_{z}^{w}-2 \frac{\tilde{B}_{i}(s)}{A_{i}^{F}(s)} d s \tag{3.68}
\end{equation*}
$$

Note that $A_{k_{i}}^{F}(z)=A_{k_{i}}(z)$ on $I_{k_{i}} \backslash\left[\delta_{1} / 4\right]$; for $z, w \in I_{k_{i}} \backslash\left[\delta_{1} / 4\right]$,

$$
\begin{equation*}
V_{i}^{F}(z, w)=\int_{z}^{w}-2 \frac{\tilde{B}_{k_{i}}(s)}{A_{k_{i}}(s)} d s \tag{3.69}
\end{equation*}
$$

The integrand $\frac{\tilde{B}_{k_{i}}(s)}{A_{k_{i}}(s)}$ has a singularity at the exterior vertex $O_{k_{i}}$, but because both $\tilde{B}_{k_{i}}$ and $A_{k_{i}}$ converge to zero linearly, this singularity is removable, and the integrand is in fact bounded. Thus we define the function $\bar{V}: \Gamma \times \Gamma \rightarrow \mathbb{R}$ as follows.

Definition 9. Let (z, i) and $\left(z^{\prime}, i^{\prime}\right)$ be two points on Γ.

- If $i=i^{\prime}$ (i.e. the two points lie on the same edge), then

$$
\begin{equation*}
\bar{V}((z, i),(w, i))=\int_{z}^{w}-2 \frac{\tilde{B}_{i}(s)}{A_{i}(s)} d s \tag{3.70}
\end{equation*}
$$

- If $i \neq i^{\prime}$, there exists a shortest path from (z, i) to $\left(z^{\prime}, i^{\prime}\right)$ which intersects any interior vertex at most once; denote this path by

$$
(z, i) \rightarrow O_{j_{1}} \rightarrow O_{j_{2}} \rightarrow \ldots \rightarrow O_{j_{M}} \rightarrow\left(z^{\prime}, i^{\prime}\right)
$$

The quasipotential is equal to

$$
\begin{equation*}
\bar{V}\left((z, i),\left(z, i^{\prime}\right)\right)=\bar{V}\left((z, i), O_{j_{1}}\right)+\bar{V}\left(O_{j_{1}}, O_{j_{2}}\right)+\ldots+\bar{V}\left(O_{j_{M}},\left(z^{\prime}, i^{\prime}\right)\right) \tag{3.71}
\end{equation*}
$$

For any two points (z, w) belonging to the same edge, it is clear that $\bar{V}(z, w)$ is Lipschitz continuous.

According to our genericity assumption, if $\bar{V}\left(O_{i}, O_{j}\right) \neq 0$ and $\bar{V}\left(O_{k}, O_{m}\right) \neq 0$, then $\bar{V}\left(O_{i}, O_{j}\right) \neq \bar{V}\left(O_{k}, O_{m}\right)$ for any two different pairs of vertices.

Next, define the functional $S_{0 T}^{i}(\phi)$ for functions $\phi \in C_{0 T}\left(I_{i}\right)$ as follows:

$$
\begin{equation*}
S_{0 T}^{i}(\phi)=\frac{1}{2} \int_{0}^{T}\left[\dot{\phi}(s)-\frac{\tilde{B}_{i}(\phi(s))}{T_{i}(\phi(s))}\right]^{2} \frac{T_{i}(\phi(s))}{A_{i}(\phi(s))} d s \tag{3.72}
\end{equation*}
$$

Since $A_{k_{i}}\left(H\left(O_{k_{i}}\right)\right)=0$, and $A_{k_{i}}(z)$ converges to zero linearly at $O_{k_{i}}$, the functional $S_{0 T}^{i}(\phi)$ is finite for absolutely functions $\phi \in C_{0 T}\left(I_{k_{i}}\right)$ such that $\phi_{t} \neq O_{k_{i}}, t \in$ $[0, T]$. For functions ϕ_{t} with $\phi_{t}=O_{k_{i}}$ for some $t \in[0, T], S_{0 T}^{i}(\phi)$ is finite provided $\dot{\phi}$ decays at $O_{k_{i}}$ sufficiently quickly.

We prove the following theorem about exit times for the process Q^{κ} from a small neighborhood of an exterior vertex.

Theorem 3.2.5. Let $I_{k_{i}}$ be an exterior edge with exterior vertex $O_{k_{i}}$ and interior vertex O_{j} in Γ. Suppose the three edges $I_{k_{1}}, I_{k_{2}}$, and I_{j} meet at interior vertex O_{j}. Let $\tau_{z}^{\kappa}=\inf \left\{t>0: Q^{\kappa}(t)=z\right\}$. Put $\bar{V}_{i j}^{\max }=\max \left\{\bar{V}\left(O_{k_{i}}, O_{j}\right), i=1,2\right\}$. For any $\alpha>0$ there exists $\delta>0$ sufficiently small such that if $y \in I_{k_{i}},\left|y-H\left(O_{k_{i}}\right)\right|<\delta$, $y \neq O_{k_{i}}$, and $z \in I_{j},\left|z-H\left(O_{j}\right)\right|<\delta, z \neq O_{j}$, then

$$
\begin{equation*}
\lim _{\kappa \downarrow 0} P_{y}\left\{\exp \left[\frac{\bar{V}_{i j}^{\max }-\alpha}{\kappa}\right]<\tau_{z}^{\kappa}<\exp \left[\frac{\bar{V}_{i j}^{\max }+\alpha}{\kappa}\right]\right\}=1 \tag{3.73}
\end{equation*}
$$

Proof. From our genericity assumption, $\bar{V}_{i j}^{\max }$ is achieved for only one edge $i=i_{\max }$. Denote the other edge by $i_{\min }$. We first consider the case when $i=i_{\max }$ and $y \in I_{i_{\max }}$.

To prove the lower bound in (3.73), note that by the continuity of \bar{V} in both arguments, for any $\alpha>0$ there exists a $\delta>0$ and a modified diffusion process F_{t}^{κ}
on the interval $I=I_{k_{i}} \cup\left[O_{j}, O_{j}+2 \delta\right]$ such that (a) F_{t}^{κ} coincides with Q_{t}^{κ} on $I_{k_{i}} \backslash \frac{\delta}{4}$; (b) F_{t}^{κ} has drift B_{i}^{F} that coincides with the drift for Q_{t}^{κ}; (c) F_{t}^{κ} has nondegenerate diffusion $A_{i}^{F}((z, i)) \geq \frac{A_{i}(z)}{T_{i}(z)}$; and (d) For $(z, j):\left|z-O_{j}\right|<\delta,\left|V^{F}\left(O_{k_{i}}, z\right)-\bar{V}_{i j}^{\max }\right|<\frac{\alpha}{2}$. Let $\tau_{z}^{\kappa}=\inf \left\{t>0: Q^{\kappa}(t)\right\}=z$ where $\left(z, O_{j}\right)$ is a point on the interior edge with $\left|z-H\left(O_{j}\right)\right|<\delta, z \neq H\left(O_{j}\right)$. Similarly, let $\tau_{z}^{F, \kappa}=\inf \left\{t>0: F_{t}^{\kappa}=z\right\}$. Theorem 4.1.2 in [18] it is proved that for any $\alpha>0$,

$$
\begin{equation*}
\liminf _{\kappa \downarrow 0} P_{y}\left\{\tau_{z}^{F, \kappa}<\exp \left[\frac{V^{F}\left(O_{k_{i}}, z\right)-\frac{\alpha}{2}}{\kappa}\right]\right\}=0 \tag{3.74}
\end{equation*}
$$

Since F^{κ} has the identical drift as Q_{t}^{κ} but uniformly greater positive diffusion, we get

$$
\begin{align*}
& P_{y}\left\{\tau_{z}^{F, \kappa}<\exp \left[\frac{V^{F}\left(O_{k_{i}}, z\right)-\frac{\alpha}{2}}{\kappa}\right]\right\} \tag{3.75}\\
& \geq P_{y}\left\{\tau_{z}^{\kappa}<\exp \left[\frac{V^{F}\left(O_{k_{i}}, z\right)-\frac{\alpha}{2}}{\kappa}\right]\right\} \tag{3.76}\\
& \geq P_{y}\left\{\tau_{z}^{\kappa}<\exp \left[\frac{\bar{V}_{i j}^{\max }-\alpha}{\kappa}\right]\right\} \tag{3.77}
\end{align*}
$$

The lower bound in (3.73) now follows from this and (3.74). It remains to prove the upper bound.

Since the diffusion coefficient $A_{k_{i}}\left(O_{k_{i}}\right)=0$ and $\frac{1}{A_{k_{i}(z)}}$ is not integrable near the exterior vertex $O_{k_{i}}$, we first consider the behavior of the process in a small neighborhood of $O_{k_{i}}$.

Let $\delta>0$ be positive and fixed, and sufficiently small that $I_{k_{i}} \backslash \delta$ contains a nontrivial interval. Without loss of generality we can consider $I_{k_{i}}$ to be a bounded interval with one endpoint at the origin; the origin corresponds to the exterior vertex $O_{k_{i}}$.

Let $x \in(0, \delta)$ be some point in the δ-neighborhood of the origin, and put $\tau_{x, \delta, k_{i}}^{\kappa}=\inf \left\{t>0: Q^{\kappa}(t)=\delta, Q^{\kappa}(0)=\left(x, k_{i}\right)\right\}$. That is, $\tau_{x, \delta, k_{i}}^{\kappa}$ is the first time the process Q^{κ} hits δ after starting at some point $x<\delta$ on edge k_{i}.

It is well-known (see [10]) that the solution to certain Dirichlet problems can be expressed through the expected values of functionals of associated diffusion processes; conversely, the expected values of exit times from bounded domains for diffusion processes can be expressed through the solutions of corresponding Dirichlet problems. In general, for a domain $D \in \mathbb{R}^{n}$ with smooth boundary, consider the Dirichlet problem

$$
\begin{align*}
L(u(x))-c(x) u(x) & =f(x) ; \tag{3.78}\\
\lim _{x \in D, x \rightarrow y \in \partial D} u(x) & =\psi(y) ; \tag{3.79}
\end{align*}
$$

where L is the second-order differential operator

$$
\begin{equation*}
L=\frac{1}{2} \sum_{i, j} a_{i j}(x) \frac{\partial^{2} u}{\partial x_{i} \partial x_{j}}+\sum_{i} b_{i}(x) \frac{\partial u}{\partial x_{i}} \tag{3.80}
\end{equation*}
$$

and the coefficients are smooth, bounded, and $\left(a_{i j}\right)$ is positive definite; ψ is bounded and continuous.

Let X_{t} be the diffusion process corresponding to the operator L, and let $\tau_{D}=$ $\inf \left\{t>0: X_{t} \in \partial D, X_{0}=x\right\}$. In [10], $\S 2$, it is proved that the solution u to (3.78) is given by:

$$
\begin{align*}
u(x) & =-E_{x}\left[\int_{0}^{\tau_{D}} f\left(X_{t}\right) \exp \left\{-\int_{0}^{t} c\left(X_{s}\right) d s\right\} d t\right] \tag{3.81}\\
& +E_{x}\left[\psi\left(X_{\tau_{D}}\right) \exp \left\{-\int_{0}^{\tau_{D}} c\left(X_{s}\right) d s\right\}\right] \tag{3.82}
\end{align*}
$$

In particular, if we take $c(x)=0$ and $f(x)=-1$, and $\psi(y)=0$ for $y \in \partial D$, then the solution $u(x)$ is given by $u(x)=E\left[\tau_{D}\right]$.

To determine $E\left[\tau_{x, \delta, k_{i}}^{\kappa}\right]$, we consider the one-dimensional operator

$$
\begin{equation*}
L_{k_{i}}^{\kappa} u(z)=\left\{\frac{\kappa A_{k_{i}}^{\prime}(z)}{2 T_{k_{i}}(z)}+\frac{\tilde{B}_{k_{i}}(z)}{T_{k_{i}}(z)}\right\} \frac{d u_{(}(z)}{d z}+\frac{\kappa A_{k_{i}}(z)}{2 T_{k_{i}}(z)} \frac{d^{2} u(z)}{(d z)^{2}} \tag{3.83}
\end{equation*}
$$

and the associated Dirichlet problem

$$
\begin{equation*}
L_{k_{i}}^{\kappa} u=-1, \quad u(\delta)=0 \tag{3.84}
\end{equation*}
$$

with u defined for $x \in(0, \delta)$. The operator $L_{k_{i}}^{\kappa}$ has a degeneracy at the point $H\left(O_{k_{i}}\right)$; on any closed subinterval of I_{k} it is positive definite. It is proved in [10] that the minimal positive solution of (3.84) is $u(x)=E\left[\tau_{x, \delta, k_{i}}^{\kappa}\right]$.

For δ sufficiently small, the coefficients $\tilde{B}_{k_{i}}(z)$ and $A_{k_{i}}(z)$ are approximately linear, and $\tilde{B}_{k_{i}}(z)<0$ and $A_{k_{i}}^{\prime}(z)>0$ for $z \in(0, \delta]$. Also $T_{k_{i}}(z)$ is nonzero and approximately constant for z near $H\left(O_{k_{i}}\right)$, so we consider the following linearized second-order ordinary differential equation:

$$
\begin{equation*}
\kappa z u^{\prime \prime}+\kappa u^{\prime}+b z u^{\prime}=-1 \tag{3.85}
\end{equation*}
$$

Since $\operatorname{div} B<0$ and the diffusion matrix $a(x)$ is uniformly positive definite, b must be strictly negative. Putting $v=z u^{\prime}$ and integrating, we obtain

$$
\begin{equation*}
v=\frac{C_{1}}{b} \exp \left\{\frac{-b}{\kappa} z\right\}-\frac{1}{b} \tag{3.86}
\end{equation*}
$$

We require u to be the minimal positive solution to (3.85). There exists a unique bounded solution u of (3.85) which satisfies $u(\delta)=0$, and this solution u is minimal. Since $u^{\prime}=\frac{v}{z}$, the constant of integration C_{1} is chosen so that $v(0)=0$. This implies $C=1$.

We have

$$
\begin{align*}
u(\delta)-u(x) & =\int_{x}^{\delta} u^{\prime}(s) d s \tag{3.87}\\
\Rightarrow u(x) & =\int_{x}^{\delta}\left[\frac{-1}{b s}\left\{\exp \left(-\frac{b}{\kappa} s\right)-1\right\}\right] d s \tag{3.88}
\end{align*}
$$

For δ small, $u(x)$ is approximately

$$
\begin{equation*}
u(x)=\frac{-1}{b x}\left[\exp \left(-\frac{b}{\kappa}(x)\right)-1\right](\delta-x) \tag{3.89}
\end{equation*}
$$

Hence we conclude

$$
\begin{equation*}
\limsup _{\kappa \downarrow 0} \frac{E\left[\tau_{x, \delta, k_{i}}^{\kappa}\right]}{\left[\exp \left(\frac{d_{1}}{\kappa}\right)\right]}<C \tag{3.90}
\end{equation*}
$$

where $d_{1}>0$ and $C>0$ are constants and d_{1} can be made arbitrarily small for δ small.

By Chebyshev's inequality, we deduce that

$$
\begin{equation*}
P\left\{\tau_{x, \delta, k_{i}}^{\kappa}>\exp \left[\frac{3 d_{1}}{\kappa}\right]\right\}<\exp \left[\frac{-d_{1}}{\kappa}\right] \tag{3.91}
\end{equation*}
$$

for κ sufficiently small. Of course, this bound holds in the neighborhood $\mid z-$ $H\left(O_{k_{i}}\right) \mid<\delta$ if $H\left(O_{k_{i}}\right) \neq 0$. Furthermore, by the maximum principle, this bound holds for variable coefficients (in our case, $\frac{\tilde{B}_{k_{i}}(z)}{T_{k_{i}}(z)}$ and $\frac{A_{k_{i}}(z)}{T_{k_{i}}(z)}$) provided the coefficients behave linearly near $O_{k_{i}}$ (see [10], $\S 3$).

Hence we have an exponential bound for the exit time for Q^{κ} from a small neighborhood of any exterior vertex.

We next consider the behavior of the process near the interior vertex O_{j}, at which three edges intersect: the two edges $I_{k_{1}}$ and $I_{k_{2}}$, which are exit edges for the vertex O_{j}, and the edge I_{j}, which is an entrance edge (see diagram). Recall that an
edge I containing a vertex O is an entrance edge or an exit edge if the value of $H(x)$ decreases or increases, respectively, along that edge as x approaches O. Let $N\left(O_{j}, h\right)$ be the h-neighborhood of O_{j} in Γ, so $N\left(O_{j}, h\right)=\left\{(z, l) \in \Gamma:\left|z-H\left(O_{j}\right)\right|<h, l=\right.$ $\left.k_{1}, k_{2}, j\right\}$. Again for ease of notation (and without loss of generality) we consider the case when $H\left(O_{j}\right)=0$, and $z<0$ for $\left(z, k_{i}\right), i=1,2$ and $z>0$ for (z, j).

Figure 3.2: An interior vertex O_{j}, entrance edge I_{j}, and two exit edges $I_{k_{1}}, I_{k_{2}}$ Q_{t}^{κ} has generators $L_{k_{i}}^{\kappa}, i=1,2$ on each exit edge and generator L_{j}^{κ} on the entrance edge, and gluing conditions

$$
\begin{equation*}
\pm \sum_{m: I_{m} \sim O_{j}} \beta_{j m} D_{m}\left(O_{j}\right)=0 \tag{3.92}
\end{equation*}
$$

with

$$
\begin{equation*}
\beta_{j m}=\oint_{\gamma_{j}^{m}} \frac{a(x) \nabla H(x) \cdot \nabla H(x)}{|\nabla H(x)|} d l \tag{3.93}
\end{equation*}
$$

where $\gamma_{j}^{m}, m=1,2$ are the two separatrices that meet at O_{j}, and + is taken when $H(x)$ increases as x approaches O_{j} along a given edge (i.e. along edges k_{1} and k_{2}) and - is taken when $H(x)$ decreases as x approaches O_{j} along a given edge (i.e. along edge I_{j}).

For any point $(z, l) \in N\left(O_{j}, h\right)$, define τ_{h}^{κ} to be

$$
\begin{equation*}
\tau_{h}^{\kappa}=\inf \left\{t>0: Q^{\kappa}(t) \notin N\left(O_{j}, h\right)\right\} \tag{3.94}
\end{equation*}
$$

Define $v_{k i}^{\kappa}(z, l)$ and $v_{j}^{\kappa}(z, l)$ for $i=1,2$ and $l=k_{1}, k_{2}, j$, to be

$$
\begin{align*}
& v_{k i}^{\kappa}(z, l)=P_{(z, l)}\left\{Q^{\kappa}\left(\tau_{h}^{\kappa}\right) \in I_{k_{i}}\right\}, i=1,2 \tag{3.95}\\
& v_{j}^{\kappa}(z, l)=P_{(z, l)}\left\{Q^{\kappa}\left(\tau_{h}^{\kappa}\right) \in I_{j}\right\} \tag{3.96}
\end{align*}
$$

We see that $v_{k i}^{\kappa}(z, l)$ is the probability that, starting from (z, l), the process Q^{κ} exits $N\left(O_{j}, h\right)$ through edge k_{i}, and $v_{j}^{\kappa}(z, l)$ is the probability that, starting from (z, l), the process Q^{κ} exits $N\left(O_{j}, h\right)$ through edge I_{j}. These probabilities can be expressed as solutions to corresponding Dirichlet problems.

Specifically, $v_{k i}^{\kappa}(z, l)$ is the unique continuous solution of the Dirichlet problem

$$
\begin{align*}
L_{l}\left(v_{k i}^{\kappa}(z, l)\right) & =0 \tag{3.97}\\
\text { with boundary conditions } v_{k i}^{\kappa}\left(z, k_{i}\right) & =1 \text { if }\left(z, k_{i}\right) \in \partial N\left(O_{j}, h\right) \tag{3.98}\\
\text { and } v_{k i}^{\kappa}(z, l) & =0 \text { if }(z, l) \in \partial N\left(O_{j}, h\right), l \neq k_{i} \tag{3.99}\\
\text { and } \pm \sum_{m: I_{m} \sim O_{j}} \beta_{j m} D_{m}\left(v_{k i}^{\kappa}\left(O_{j}\right)\right) & =0 \tag{3.100}
\end{align*}
$$

Note that D_{m} represents the derivative of $v_{k i}^{\kappa}$ in the direction of edge $I_{k_{i}}$. Similarly, $v_{j}^{\kappa}(z, l)$ is the unique continuous solution of the Dirichlet problem

$$
\begin{equation*}
L_{l}\left(v_{j}^{\kappa}(z, l)\right)=0 \tag{3.101}
\end{equation*}
$$

with boundary conditions $v_{j}^{\kappa}(z, j)=1$ if $(z, j) \in \partial N\left(O_{j}, h\right)$

$$
\begin{equation*}
\text { and } \pm \sum_{m: I_{m} \sim O_{j}} \beta_{j m} D_{m}\left(v_{j}^{\kappa}\left(O_{j}\right)\right)=0 \tag{3.103}
\end{equation*}
$$

We wish to estimate the probability of exit through the interior edge j given that $Q^{\kappa}(0)=(z, i)$ where i is an exterior edge. Since the drift $\frac{\tilde{B}_{l}(z)}{T_{l}(z)}$ is negative, the process $Q^{\kappa}(t)$ will exit with probability close to one through edge k_{1} or edge k_{2}. We give a lower bound on the probability of exit through the interior edge j.

We assert that for any $d_{2}>0$, we can choose $h>0$ and κ sufficiently small that for any $\left(z, k_{i}\right):\left|z-H\left(O_{j}\right)\right|<h, i=1,2$, and $z \neq H\left(O_{j}\right)$,

$$
\begin{equation*}
P_{(z, i)}\left\{\left(Q^{\kappa}\left(\tau_{h}^{\kappa}\right) \in I_{j}\right\}>\exp \left[\frac{-d_{2}}{\kappa}\right]\right. \tag{3.105}
\end{equation*}
$$

The intuition behind this bound arises by analogy with the one-dimensional case. To see the parallel, consider the homogeneous problem on the interval $[0, h]$:

$$
\begin{gather*}
L^{\kappa}\left(w^{\kappa}(z)\right)=\frac{\kappa}{2} a(z) \frac{d^{2} w^{\kappa}(z)}{d z^{2}}+\frac{\kappa}{2} a^{\prime}(z) \frac{d w^{\kappa}(z)}{d z}+b(z) \frac{d w^{\kappa}(z)}{d z}=0 \tag{3.106}\\
w(0)=0, \quad w(h)=1 \tag{3.107}
\end{gather*}
$$

and let Y_{t}^{κ} be the diffusion process with generator L^{κ}. Suppose $b(z)<0$ and the diffusion coefficient $a(z)$ is positive definite. Then the solution $w^{\kappa}(z)$ to the above boundary-value problem is precisely the probability that the first exit out of $[0, h]$ for Y_{t}^{κ} occurs through h when the drift is negative (directed toward 0). In this instance, $w^{\kappa}(z)$ is given by

$$
\begin{align*}
& \qquad w^{\kappa}(z)=C \int_{0}^{z} \frac{1}{a(t)} \exp \left[\int_{0}^{t} \frac{-2 b(s)}{\kappa a(s)} d s\right] d t \tag{3.108}\\
& \text { where } C=\int_{0}^{h} \frac{1}{a(t)} \exp \left[\int_{0}^{t} \frac{-2 b(s)}{\kappa a(s)} d s\right] d t \tag{3.109}
\end{align*}
$$

From the expression for C and the fact that b is negative, for any $d_{2}>0$, we can choose $h>0$ and κ sufficiently small to guarantee that $w^{\kappa}(z)>\exp \left[\frac{-d_{2}}{\kappa}\right]$. In particular, for the case when $a(z)$ and $b(z)$ are constants, the bound is straightforward.

The situation at an interior vertex on the graph is similar, except that gluing conditions must be taken into account because of the degeneracy of the drift and diffusion coefficients at O_{j}. Recall that \tilde{B}_{l} and $A_{l}(s)$ are both nonzero at $H\left(O_{j}\right)$, but $T_{l}(z) \rightarrow \infty$ as $z \rightarrow O_{j}$. However, this singularity is integrable.

First, fix the edge $r=j$. Along edge l, where $l=k_{1}, k_{2}$, or j, we have the homogeneous equation

$$
\begin{array}{r}
L_{l}^{\kappa}\left(v_{r}^{\kappa}(z, l)\right)=0 \\
\Rightarrow \frac{\tilde{B}_{l}(z)}{T_{l}(z)} \frac{d v_{r}^{\kappa}}{d z}+\frac{\kappa}{2} \frac{A_{l}(z)}{T_{l}(z)} \frac{d^{2} v_{r}^{\kappa}}{d z^{2}}+\frac{\kappa}{2} \frac{A_{l}^{\prime}(z)}{T_{l}(z)} \frac{d v_{r}^{\kappa}}{d z}=0 \tag{3.111}
\end{array}
$$

Solving this equation for $v_{r}^{\kappa}(z, l)$ we get

$$
\begin{align*}
& v_{r}^{\kappa}(z, l)=C_{2, l}^{r, \kappa}+\int_{-h}^{z} \frac{C_{1, l}^{r, \kappa}}{A_{l}(t)}\left(\exp \left[\int_{-h}^{t} \frac{-2 \tilde{B}_{l}(s)}{\kappa A_{l}(s)} d s\right]\right) d t, \text { for } l=k_{1}, k_{2}, r=j \tag{3.112}\\
& v_{r}^{\kappa}(z, l)=C_{2, l}^{r, \kappa}+\int_{0}^{z} \frac{C_{1, l}^{r, \kappa}}{A_{l}(t)}\left(\exp \left[\int_{0}^{t} \frac{-2 \tilde{B}_{l}(s)}{\kappa A_{l}(s)} d s\right]\right) d t, \text { for } l=j, r=j \tag{3.113}
\end{align*}
$$

and we determine the constants $C_{1, l}^{r, \kappa}$ from the continuity conditions and boundary and gluing conditions in (3.101).

From the boundary conditions $v_{j}^{\kappa}\left(-h, k_{1}\right)=v_{j}^{\kappa}\left(-h, k_{2}\right)=0$, we get

$$
\begin{equation*}
v_{j}^{\kappa}\left(z, k_{1}\right)=\int_{-h}^{z} \frac{C_{1, k_{1}}^{j, \kappa}}{A_{k_{1}}(t)}\left(\exp \left[\int_{-h}^{t} \frac{-2 \tilde{B}_{k_{1}}(s)}{\kappa A_{k_{1}}(s)}\right] d s\right) d t \tag{3.115}
\end{equation*}
$$

and similarly for $v_{j}^{\kappa}\left(z, k_{2}\right)$.
From the boundary condition $v_{j}^{\kappa}(h, j)=1$, we get

$$
\begin{equation*}
C_{2, j}^{j, \kappa}=1-C_{1, j}^{j, \kappa} \int_{0}^{h} \frac{1}{A_{j}(t)} \exp \left[\int_{0}^{t} \frac{-2 \tilde{B}_{j}(s)}{\kappa A_{j}(s)} d s\right] d t \tag{3.116}
\end{equation*}
$$

From the continuity condition

$$
\begin{equation*}
\lim _{z \rightarrow 0} v_{j}^{\kappa}\left(z, k_{1}\right)=\lim _{z \rightarrow 0} v_{j}^{\kappa}\left(z, k_{2}\right)=\lim _{z \rightarrow 0} v_{j}^{\kappa}(z, j) \tag{3.117}
\end{equation*}
$$

we derive

$$
\begin{align*}
& C_{2, j}^{j, \kappa}= C_{1, k_{1}}^{j, \kappa} \int_{-h}^{0} \frac{1}{A_{k_{1}}(t)} \exp \left[\int_{-h}^{t} \frac{-2 \tilde{B}_{k_{1}}(s)}{\kappa A_{k_{1}}(s)} d s\right] d t \tag{3.118}\\
&-C_{1, j}^{j, \kappa}= \frac{C_{1, k_{1}}^{j, \kappa}\left[\int_{-h}^{0} \frac{1}{A_{k_{1}}(t)} \exp \left[\int_{-h}^{t} \frac{-2 \tilde{B}_{k_{1}}(s)}{\kappa A_{k_{1}}(s)} d s\right] d t\right]-1}{\int_{0}^{h} \frac{1}{A_{j}(t)} \exp \left[\int_{0}^{t} \frac{-2 \tilde{B}_{j}(s)}{\kappa A_{j}(s)} d s\right] d t} \tag{3.119}\\
& C_{1, k_{2}}^{j, \kappa}=C_{1, k_{1}}^{j, \kappa} \frac{\int_{-h}^{0} \frac{1}{A_{k_{1}}(t)}\left(\exp \left[\int_{-h}^{t} \frac{-2 \tilde{B}_{k_{1}}(s)}{\kappa A_{k_{1}}(s) d s}\right]\right) d t}{\int_{-h}^{A_{k_{2}}(t)}\left(\exp \left[\int_{-h}^{t} \frac{-2 \tilde{B}_{k_{2}}(s)}{\kappa A_{k_{2}}(s)} d s\right]\right) d t} \tag{3.120}
\end{align*}
$$

From the gluing condition

$$
\begin{equation*}
\beta_{j k_{1}} D_{k_{1}} v_{j}^{\kappa}\left(O_{j}\right)+\beta_{j k_{2}} D_{k_{2}} v_{j}^{\kappa}\left(O_{j}\right)-\beta_{j j} D_{j} v_{j}^{\kappa}\left(O_{j}\right)=0 \tag{3.122}
\end{equation*}
$$

and the fact that $\beta_{j m}=\lim _{(z, m) \rightarrow O_{j}} A_{m}(z)=A_{m}(0)$, we get

$$
\begin{equation*}
-C_{1, j}^{j, \kappa}+C_{1, k_{1}}^{j, \kappa}\left[\exp \left(\int_{-h}^{0}-\frac{-2 \tilde{B}_{k_{1}}(s)}{\kappa A_{k_{1}}(s)} d s\right)\right]+C_{1, k_{2}}^{j, \kappa}\left[\exp \left(\int_{-h}^{0}-\frac{-2 \tilde{B}_{k_{2}}(s)}{\kappa A_{k_{2}}(s)} d s\right)\right]=0 \tag{3.123}
\end{equation*}
$$

We derive

$$
\left.\begin{array}{rl}
& \frac{C_{1, k_{1}}^{j, \kappa}\left[\int_{-h}^{0} \frac{1}{A_{1}(t)} \exp \left[\int_{-h}^{t} \frac{-2 \tilde{B}_{k_{1}}(s)}{\kappa A_{k_{1}}(s)} d s\right] d t\right]-1}{\int_{0}^{h} \frac{1}{A_{j}(t)} \exp \left[\int_{0}^{t} \frac{-2 \tilde{B}_{j}(s)}{\kappa A_{j}(s)} d s\right] d t} \\
+ & C_{1, k_{1}}^{j, \kappa}\left[\exp \left(\int_{-h}^{0}-\frac{-2 \tilde{B}_{k_{1}}(s)}{\kappa A_{k_{1}}(s)} d s\right)\right] \\
+ & C_{1, k_{1}}^{j, \kappa} \exp \left[\int_{-h}^{0} \frac{-2 \tilde{B}_{k_{2}}(s)}{\kappa A_{k_{2}}(s)} d s\right] \frac{\int_{-h}^{0} \frac{1}{A_{k_{1}}(t)}\left(\exp \left[\int_{-h}^{t} \frac{-2 \tilde{B}_{k_{1}}(s)}{\kappa A_{k_{1}}(s)} d s\right]\right) d t}{A_{k_{2}(t)}}\left(\exp \left[\int_{-h}^{t} \frac{-2 \tilde{B}_{k_{2}}(s)}{\kappa A_{k_{2}}(s)} d s\right]\right) d t \tag{3.126}
\end{array}=0\right)
$$

and this gives

$$
\begin{align*}
C_{1, k_{1}}^{r, \kappa} & =\left[\int_{0}^{h} \frac{1}{A_{j}(t)} \exp \left(\int_{0}^{t} \frac{-2 \tilde{B}_{j}(s)}{\kappa A_{j}(s)} d s\right) d t\right]^{-1} \tag{3.127}\\
& \times\left\{\left[\frac{\int_{-h}^{0} \frac{1}{A_{1}(t)} \exp \left[\int_{-h}^{t} \frac{-2 \tilde{B}_{k_{1}}(s)}{\kappa A_{k_{1}}(s)} d s\right] d t}{\int_{0}^{h} \frac{1}{A_{j}(t)} \exp \left[\int_{0}^{t} \frac{-2 \tilde{B}_{j}(s)}{\kappa A_{j}(s)} d s\right] d t}\right]\right. \tag{3.128}\\
& +\exp \left(\int_{0}^{h} \frac{-2 \tilde{B}_{k_{1}}(s)}{\kappa A_{k_{1}}(s)} d s\right) \tag{3.129}\\
& \left.\left.\left.+\left[\exp \left[\int_{-h}^{0} \frac{-2 \tilde{B}_{k_{2}}(s)}{\kappa A_{k_{2}}(s)} d s\right] \frac{\int_{-h}^{0} \frac{1}{\int_{k_{1}}(t)}\left(\operatorname { e x p } \left[\int_{-h}^{0} \frac{1}{A_{k_{2}}(t)}\left(\exp \left[\int_{-h}^{t} \frac{-2 \tilde{B}_{k_{1}}(s)}{\kappa A_{k_{1}}(s)} d s\right]\right) d t\right.\right.}{\kappa \tilde{B}_{k_{2}}(s)} d s\right]\right) d t\right]\right\}^{-1} \tag{3.130}
\end{align*}
$$

Observe that we can choose $h>0$ sufficiently small that the functions $\tilde{B}_{l}(s)$ and $A_{l}(s), l=k_{1}, k_{2}, j$, are nonzero in $N\left(O_{j}, h\right)$. Since we seek a lower bound for the probability of exit through edge j and the functions $\tilde{B}_{j}, \tilde{B}_{k_{i}}$ are negative, we can replace the functions $\tilde{B}_{k_{1}}(s), \tilde{B}_{k_{2}}(s)$, and \tilde{B}_{j} by a constant $\beta<0$ such that

$$
\begin{equation*}
|\beta|>\max _{l=k_{1}, k_{2}, j} \sup _{I_{l} \cap N\left(O_{j}, h\right)}\left|\tilde{B}_{l}(s)\right| \tag{3.131}
\end{equation*}
$$

and we can similarly replace the functions $A_{k_{i}}$ by a positive constant α for which

$$
\begin{equation*}
|\alpha|<\min _{l=k_{1}, k_{2}, j} \inf _{I_{l} \cap N\left(O_{j}, h\right)}\left|A_{l}(s)\right| \tag{3.132}
\end{equation*}
$$

and the bound in (3.105) follows from the negativity of β and the form of the solution and explicit values of the constants in (3.112).

In Lemma 2.3 of [3], it is proved that there exists h_{0} and a constant $C>0$ and $\kappa_{0}>0$ such that for any $h \in\left(0, h_{0}\right],(z, i) \in N\left(O_{j}, h\right)$ and $\kappa<\kappa_{0}$,

$$
\begin{equation*}
E_{(z, i)}\left[\tau_{h}^{\kappa}\right] \leq C h|\ln h| \tag{3.133}
\end{equation*}
$$

From this we immediately derive a much weaker bound: namely, for any $d_{3}>$

0 , we can choose h and κ_{0} sufficiently small such that for all $\kappa<\kappa_{0}$,

$$
\begin{equation*}
E\left[\tau_{h}^{\kappa}\right]<\exp \left[\frac{d_{3}}{\kappa}\right] \tag{3.134}
\end{equation*}
$$

Again from Chebyshev's inequality, (3.134) implies that for any positive d_{4}, d_{5}, $d_{5}<d_{4}$, we can find h and κ_{0} sufficiently small so that for all $\kappa<\kappa_{0}$,

$$
\begin{equation*}
P\left\{\tau_{h}^{\kappa}>\exp \left[\frac{d_{4}}{\kappa}\right]\right\}<\frac{E\left[\tau_{h}^{\kappa}\right]}{\exp \left[\frac{d_{4}}{\kappa}\right]}<\exp \left[\frac{-d_{5}}{\kappa}\right] \tag{3.135}
\end{equation*}
$$

We conclude that for any $d_{2}>0, d_{4}>0, d_{5}>0$ with $d_{5}<d_{4}, d_{2}<d_{5}$, we can find $h>0$ and κ_{0} sufficiently small to ensure that for all $(z, i) \in N\left(O_{j}, h\right), i=i_{\max }$ and $\kappa<\kappa_{0}$,

$$
\begin{align*}
P_{(z, i)}\left\{Q^{\kappa}\left(\tau_{h}^{\kappa}\right) \in I_{j}, \tau_{h}^{\kappa}<\exp \left[\frac{d_{4}}{\kappa}\right]\right\} & =P_{(z, i)}\left\{Q\left(\tau_{h}^{\kappa}\right) \in I_{j}\right\} \tag{3.136}\\
& -P\left\{Q^{\kappa}\left(\tau_{h}^{\kappa}\right) \in I_{j}, \tau_{h}^{\kappa}>\exp \left[\frac{d_{4}}{\kappa}\right]\right\} \tag{3.137}\\
& >\exp \left[\frac{-d_{2}}{\kappa}\right]-\exp \left[\frac{-d_{5}}{\kappa}\right] \tag{3.138}
\end{align*}
$$

Since d_{2} and d_{5} are at our disposal, for any $d_{6}>0$ we can choose $d_{2}=d_{6} / 2$ and $d_{5}=d_{6}$ to guarantee that for all κ sufficiently small, we have

$$
\begin{equation*}
\exp \left[\frac{-d_{2}}{\kappa}\right]-\exp \left[\frac{-d_{5}}{\kappa}\right]>\exp \left[\frac{-d_{6}}{\kappa}\right] \tag{3.139}
\end{equation*}
$$

From the results of [3],

$$
\begin{equation*}
P_{O_{j}}\left(Q^{\kappa}\left(\tau_{h}^{\kappa}\right) \in I_{k_{i}}\right)=p_{i}^{\kappa} \tag{3.140}
\end{equation*}
$$

where $p_{i}^{\kappa} \rightarrow p_{i}>0$ as $\kappa \downarrow 0$.
Therefore, the logarithmic asymptotics of the transition time τ_{z} from any point $y \in I_{k_{i}}$, whether $i=i_{\min }$ or $i=i_{\max }$, to a point $z \in I_{j}, z \neq H\left(O_{j}\right),\left|z-H\left(O_{j}\right)\right|<h$, depend on $\bar{V}_{i j}^{\max }$.

We construct a Markov process with state space consisting of three points: one point on the interior edge O_{j}, one point on edge $k_{i_{\max }}$, and one point on edge $k_{i_{\min }}$. Let $\delta>0$ be arbitrary. Fix points the $\Delta_{1}=\left(\delta+H\left(O_{k_{i_{\max }}}\right), i_{\max }\right), \Delta_{2}=$ $\left(\delta+H\left(O_{k_{i_{\min }}}\right), i_{\min }\right)$. Put $\gamma_{1}=\left(\frac{\delta}{2}+H\left(O_{k_{i_{\max }}}\right), i_{\max }\right), \gamma_{2}=\left(\frac{\delta}{2}+H\left(O_{k_{i_{\min }}}\right), i_{\min }\right)$. Let z on I_{j} satisfy $\left|z-H\left(O_{j}\right)\right|=\delta / 2$. Let x be any point in $I_{k_{1}} \cup I_{k_{2}}$ and suppose $Q^{\kappa}(0)=x$. Following [18], §4, define the sequence of Markov times $\tau_{n}: \tau_{0}=0$, $\sigma_{n}=\inf \left\{t>\tau_{n}: Q_{t}^{\kappa} \in \Delta_{1} \cup \Delta_{2}\right\}, \tau_{n}=\inf \left\{t>\sigma_{n-1}: Q_{t}^{\kappa} \in \gamma_{1} \cup \gamma_{2} \cup z\right\}$.

Put $Z_{n}=Q_{\tau_{n}}^{\kappa}$. The Markov chain Z_{n} is a discrete-time, discrete-state-space Markov chain. For each integer n, Z_{n} is equal to γ_{1}, γ_{2}, or z. We estimate the transition probabilities for this chain. To prove the upper bound in (3.2.5), it suffices to prove that for any $d_{7}>0$ and $\alpha>0$, we can find $\delta>0$ such that if γ_{i} and Δ_{i} are defined as above,

$$
\begin{equation*}
P_{\gamma_{i}}\left\{Z_{1}=z, \tau_{z}^{\kappa}<\exp \left[\frac{d_{7}}{\kappa}\right]\right\} \geq \exp \left[-\frac{\bar{V}_{i j}^{\max }+\alpha}{\kappa}\right], i=1,2 \tag{3.141}
\end{equation*}
$$

Now, by continuity of the function \bar{V}, for any $\alpha>0$ we can choose $\delta>0$ and $h>0$ such that if $i=i_{\max }$ and $y, y^{\prime} \in I_{k_{i}}$ satisfy $\frac{\delta}{2}<\left|y-H\left(O_{k_{i}}\right)\right|<\delta$ and $\left|y^{\prime}-H\left(O_{j}\right)\right|<h$, then

$$
\begin{equation*}
\bar{V}_{i j}^{\max }>\bar{V}\left(y, y^{\prime}\right)>\bar{V}_{i j}^{\max }-\frac{\alpha}{4} \tag{3.142}
\end{equation*}
$$

Without loss of generality we can choose $\delta<\alpha$.
We can then find a finite time $T\left(y^{\prime}\right)<\infty$ and a smooth function ϕ satisfying

$$
\begin{equation*}
\phi(0)=y, \quad \phi(T)=y^{\prime}+\delta / 16, \quad \phi(t) \in\left[y-\delta / 8, y^{\prime}+\delta / 8\right], 0 \leq t \leq T \tag{3.143}
\end{equation*}
$$

for which $S_{0 T}(\phi)<\bar{V}\left(y, y^{\prime}\right)+\frac{\delta}{32}$.

Put $\tau_{y^{\prime}}^{\kappa}=\inf \left\{t>0: Q^{\kappa}(t)=y^{\prime}\right\}$. From the nondegeneracy of the process $Q^{\kappa}(t)$ in the interval $\left[y-\delta / 4, y^{\prime}+\delta / 4\right]$ and Lemma (3.2.3), we conclude that for sufficiently small κ,

$$
\begin{align*}
P_{y}\left\{\tau_{y^{\prime}}^{\kappa}<T\left(y^{\prime}\right)\right\} & \geq P_{y}\left\{\sup _{0 \leq t \leq T\left(y^{\prime}\right)}\left|Q^{\kappa}(t)-\phi(t)\right| \leq \frac{\delta}{32}\right\} \tag{3.144}\\
& \geq \exp \left[-\frac{\left(S_{0 T}(\phi)+\frac{\delta}{32}\right)}{\kappa}\right] \tag{3.145}\\
& \geq \exp \left[-\frac{\bar{V}\left(y, y^{\prime}\right)+\frac{\alpha}{4}}{\kappa}\right] \tag{3.146}\\
& \geq \exp \left[-\frac{\bar{V}_{i j}^{\max }+\frac{\alpha}{2}}{\kappa}\right] \tag{3.147}
\end{align*}
$$

Hence, starting at $y, y \in i=i_{\max }$, the process $Q^{\kappa}(t)$ can hit y^{\prime} in finite time with probability bounded from below by $\exp \left[-\frac{\bar{V}_{j j}^{\text {max }}+\frac{\alpha}{2}}{\kappa}\right]$.

Thus, to prove (3.141), note that as a consequence of (3.91), (3.136), (3.144), and the strong Markov property for Z_{n}, for any positive $d_{1}, d_{2}, d_{4}, \alpha$ we can choose $\delta>0$ and $\gamma=\delta / 2$ and κ_{0} such that if $\left|z-H\left(O_{j}\right)\right|<\delta, z \neq O_{j}$, and $\left|y-H\left(O_{k_{i}}\right)\right|<\delta$, $y \neq O_{k}$, and $\kappa<\kappa_{0}$, then

$$
\begin{equation*}
P_{\gamma_{i_{\max }}}\left\{Z_{1}=z, \tau_{z}^{\kappa}<\exp \left[\frac{d_{4}}{\kappa}\right]\right\}>\exp \left\{\left[\frac{-d_{1}}{\kappa}\right]+\left[\frac{-d_{2}}{\kappa}\right]+\left[\frac{-\left(\bar{V}_{i j}^{\max }+\alpha\right)}{\kappa}\right]\right\} \tag{3.148}
\end{equation*}
$$

An identical bound holds for the initial point y belonging to the second edge $i=i_{\text {min }}$:

$$
\begin{equation*}
P_{\gamma_{i_{\min }}}\left\{Z_{1}=z, \tau_{z}^{\kappa}<\exp \left[\frac{d_{4}}{\kappa}\right]\right\}>\exp \left\{\left[\frac{-d_{1}}{\kappa}\right]+\left[\frac{-d_{2}}{\kappa}\right]+\left[\frac{-\left(\bar{V}_{i_{\min } j}+\alpha\right)}{\kappa}\right]\right\} \tag{3.149}
\end{equation*}
$$

Since $V_{i j}^{\max }>\bar{V}_{i_{\min } j}$, this establishes (3.141), from which the theorem follows.

Corollary 3.2.6. Let $\tau_{O_{j}}^{\kappa}=\inf \left\{t>0: Q^{\kappa}(t)=O_{j}\right\}$. For any point z along edge
k_{i}, and for any $\alpha>0$,

$$
\begin{equation*}
\lim _{\kappa \rightarrow 0} P_{z}\left\{\exp \left[\frac{\bar{V}\left(O_{i}, O_{j}\right)-\alpha}{\kappa}\right]<\tau_{O_{j}}^{\kappa}<\exp \left[\frac{\bar{V}\left(O_{i}, O_{j}\right)+\alpha}{\kappa}\right]\right\}=1 \tag{3.150}
\end{equation*}
$$

and if (z, j) and $\left(z^{\prime}, j\right)$ are two points on the same interior edge O_{j} with with $z<z^{\prime}$, then for any α,

$$
\begin{equation*}
\lim _{\kappa \rightarrow 0} P_{z}\left\{\exp \left[\frac{\bar{V}^{\max }-\alpha}{\kappa}\right]<\tau_{z^{\prime}}^{\kappa}<\exp \left[\frac{\bar{V}^{\max }+\alpha}{\kappa}\right]\right\}=1 \tag{3.151}
\end{equation*}
$$

where $\bar{V}^{\max }=\max \left\{\bar{V}\left(O_{k}, z^{\prime}\right)\right\}$ and this maximum is taken over all exterior vertices O_{k} such that $H\left(O_{k}\right)<H\left(O_{j}\right)$ and O_{k} can be reached from O_{j} along a path which does not intersect any interior vertex O_{r} satisfying $H\left(O_{r}\right)>H\left(O_{j}\right)$.

Proof. The corollary follows from (3.149) and the fact that the exterior vertex O_{i} is an asymptotically stable equilibrium for the limiting process $Q(t)$ along edge I_{i} whose domain of attraction is the entire edge I_{i} (see Lemma 2.1, [18]).

3.2.2 The set of possible metastable distributions

The process $Q^{\kappa}(t)$ converges to the limiting stochastic process $Q(t)$, which consists of deterministic motion along each edge and stochastic branching at each interior vertex. Let p_{k}^{j} represent the probability of the process $Q(t)$ branching toward vertex O_{k} from the interior vertex O_{j}; for any j we must have $\sum p_{k}^{j}=1$, where k ranges over all edges $I_{k} \sim O_{j}$. For ease of notation, we abbreviate these p_{k}, and the vertex from which the branching occurs is understood to be the vertex $O_{j} \sim I_{k}$ with $H\left(O_{j}\right)>H\left(O_{k}\right)$. Let O_{h} be the vertex with maximal Hamiltonian value, so $H\left(O_{h}\right)>H\left(O_{r}\right)$ for every other (interior or exterior) vertex O_{r}. In our example, $h=6$.

Since $Q^{\kappa}(t)$ converges weakly to a stochastic process, metastability corresponds not to single equilibrium states but to probability distributions μ across exterior vertices. The set of such distributions is finite and independent of the diffusion matrix $a(x)$ for the two-dimensional process $\tilde{X}^{\epsilon, \kappa}(t)$.

We describe the distributions in our case of a four-well Hamiltonian in Figure (3.2); this can be generalized to any finite number of wells.

1. The delta-distributions at each fixed exterior vertex O_{k} : these are $\mu_{k}\left(O_{k}\right)=1$, $\mu_{k}\left(O_{r}\right)=0$ for all exterior vertices O_{r} with $r \neq k ;$
2. The distributions over any fixed pair of exterior vertices $O_{k_{1}}, O_{k_{2}}$ such that $I_{k_{i}} \sim O_{j}:$ these are $\mu\left(O_{k_{1}}\right)=p_{k_{1}}, \mu\left(O_{k_{2}}\right)=p_{k_{2}}$, and $\mu\left(O_{r}\right)=0$ for other exterior vertices O_{r}. (Not all of these probability distributions will necessarily correspond to metastable distributions.)
3. The distributions over any three exterior vertices: $\mu\left(O_{k}\right)=0$ for some fixed exterior vertex O_{k}, and if the exit edges I_{k}, I_{r} meet at interior vertex O_{j}, then $\mu\left(O_{r}\right)=p_{j}$. For all other exterior vertices $O_{m}, m \neq k, r$, let $\left\{O_{l_{1}}, \ldots O_{l_{m}}\right\}$ be the interior vertices in the shortest path between O_{m} and the interior vertex O_{h}.Then $\mu\left(O_{m}\right)=p_{l_{1}} p_{l_{2}} \ldots p_{l_{m}}$. (Not all of these vertices will necessarily correspond to metastable distributions.)
4. The distributions over all four exterior vertices: For any exterior vertex O_{k}, let $O_{l_{1}}, \ldots, O_{l_{k}}$ be the interior vertices along the shortest path from O_{h} to O_{k}. Then $\mu\left(O_{k}\right)=p_{l_{1}} p_{l_{2}} \ldots p_{l_{k}}$.

Theorem 3.2.7. Let $\lambda<\min \left\{\bar{V}\left(O_{1}, O_{2}\right), \bar{V}\left(O_{3}, O_{2}\right), \bar{V}\left(O_{5}, O_{4}\right), \bar{V}\left(O_{7}, O_{4}\right)\right\}$. Let $T(\kappa)$ be any time parameter such that

$$
\lim _{\kappa \downarrow 0} \kappa \ln T(\kappa) \leq \lambda
$$

Let $(z, 6)$ be any point on Γ with $z>H\left(O_{6}\right)$. Then the metastable state for the initial point (z, i) and the timescale λ is the nondegenerate probability distribution μ across all four exterior vertices O_{1}, O_{3}, O_{5}, and O_{7}, with associated weights given by: $\mu\left(O_{1}\right)=p_{2} p_{1} ; \mu\left(O_{3}\right)=p_{2} p_{3} ; \mu\left(O_{5}\right)=p_{4} p_{5} ; \mu\left(O_{7}\right)=p_{4} p_{7}$.

Proof. Let positive η and α, and $\theta>0$ be given. By Theorem (3.2.5), we can choose $\delta>0$ such that the following hold: first,

$$
\begin{equation*}
\left\{x \in I_{i}: V\left(O_{i}, x\right)<\theta\right\} \supset\left\{x \in I_{i}:\left|x-O_{i}\right|<\delta\right\} \tag{3.152}
\end{equation*}
$$

and second, if (x, i) and (y, j) are two points along any exterior edge i with exterior vertex O_{i} and interior vertex O_{j} such that $\left|x-H\left(O_{i}\right)\right|<\delta, x \neq H\left(O_{i}\right)$, and $\left|y-H\left(O_{j}\right)\right|<\delta, y \neq H\left(O_{j}\right)$, then there exists κ_{0} such that for all $\kappa<\kappa_{0}$,

$$
\begin{equation*}
P_{x}\left\{\exp \left[\frac{\bar{V}_{i j}^{\max }-\alpha}{\kappa}\right]<\tau_{y}^{\kappa}<\exp \left[\frac{\bar{V}_{i j}^{\max }+\alpha}{\kappa}\right]\right\}>1-\eta \tag{3.153}
\end{equation*}
$$

where $\tau_{y}^{\kappa}=\inf \left\{t>0: Q^{\kappa}(t)=y\right\}$. let $N_{\delta}\left(O_{i}\right)$ be the δ-neighborhood of the exterior vertex O_{i} on the graph Γ. Since λ is the timescale, let $T(\kappa)$ be such that

$$
\begin{equation*}
\lim _{\kappa \rightarrow 0} \kappa \ln T(\kappa)=\lambda \tag{3.154}
\end{equation*}
$$

The results of [3] imply that for any fixed $t>0$, there exists a $\kappa_{1}<\kappa_{0}$ such
that:

$$
\begin{aligned}
& \left|P_{(z, 6)}\left\{Q^{\kappa_{1}}\left(t T\left(\kappa_{1}\right)\right) \in N_{\delta}\left(O_{1}\right)\right\}-p_{2} p_{i}\right|<\eta, \quad i=1,3 \\
& \left|P_{(z, 6)}\left\{Q^{\kappa_{1}}\left(t T\left(\kappa_{1}\right)\right) \in N_{\delta}\left(O_{5}\right)\right\}-p_{4} p_{i}\right|<\eta, \quad i=5,7
\end{aligned}
$$

and p_{i} are the probabilities calculated explicitly in (2.192). Recall that the numbers p_{i} depend only on B.

Figure 3.3: Asymptotic probabilities for small neighborhoods of exterior vertices

Let $A_{i}, i=1,3,5,7$ be the event $\left\{Q^{\kappa_{1}}\left(t T\left(\kappa_{1}\right) \in N_{\delta}\left(O_{i}\right)\right\}\right.$. On each set A_{i}, for any $x \in N_{\delta}\left(O_{i}\right),(3.153)$ implies that

$$
\begin{equation*}
\lim _{\kappa \rightarrow 0} P_{x}\left\{Q^{\kappa}\left(t T(\kappa) \in I_{i}\right\}=1\right. \tag{3.155}
\end{equation*}
$$

and thus $Q^{\kappa}\left(t T(\kappa)\right.$ is governed by the one-dimensional operator L_{i}^{κ}. There exists a unique invariant measure associated to the process governed by L_{i}^{κ}, and this measure converges as $\kappa \downarrow 0$ to the delta measure concentrated at O_{i}. By the results of Proposition (1), we conclude that the metastable state is O_{i}, so that if $F_{\theta, O_{i}}=$
$\left\{(x, i): V\left(O_{i}, x\right)<\theta\right\}$, then

$$
\begin{equation*}
\lim _{\kappa \rightarrow 0} P_{(z, i)}\left\{Q^{\kappa}(t T(\kappa)) \in F_{\theta, O_{i}}\right\}=1 \tag{3.156}
\end{equation*}
$$

which establishes the second characterization of metastability. Hence the metastable distribution $\mu_{(z, 6), \lambda}$ is a probability distribution across exterior vertices with weights $p_{2} p_{i}$ for $i=1,3$ and $p_{4} p_{i}$ for $i=5,7$.

At times of order $T(\kappa)$, then, Q^{κ} lies within a small neighborhood of the exterior vertex O_{i} with asymptotic probabilities $p_{j} p_{i}$ above. Rather than the metastable state being a single point, for this initial position and timescale it is a probability distribution across all four exterior vertices.

3.2.3 Metastable states as probability distributions

We stress that the metastable state (or distribution) depends both on initial position and timescale λ. If λ remains as before, but the initial position (z, i) is such that $H\left(O_{4}\right)<z<H\left(O_{6}\right)$, then the metastable distribution for (z, λ) is a distribution between O_{5} and O_{7}, with associated probabilities p_{5} and p_{7}, respectively. An analogous result holds for $H\left(O_{2}\right)<z<H\left(O_{6}\right)$. Finally, if the initial position (z, i) lies on any exit edge I_{1}, I_{3}, I_{5} or I_{7}, the metastable state is the single exterior vertex on the corresponding edge.

Theorem 3.2.8. Let (z, i) be an initial position with $z>H\left(O_{6}\right)$. Assume that $\bar{V}\left(O_{5}, O_{4}\right)<\bar{V}\left(O_{7}, O_{4}\right)<\bar{V}\left(O_{3}, O_{2}\right)<\bar{V}\left(O_{1}, O_{2}\right)$ and that $\bar{V}\left(O_{2}, O_{6}\right)>\bar{V}\left(O_{4}, O_{6}\right)$. Suppose λ satisfies $\bar{V}\left(O_{5}, O_{4}\right)<\lambda<\bar{V}\left(O_{7}, O_{4}\right)$. The metastable distribution for this
initial position and timescale is the probability distribution μ across O_{1}, O_{3}, and O_{7} with $\mu\left(O_{1}\right)=p_{2} p_{1} ; \mu\left(O_{3}\right)=p_{2} p_{3} ;$ and $\mu\left(O_{7}\right)=p_{4}$.

Proof. It follows from [3] that

$$
\begin{equation*}
\lim _{\kappa \downarrow 0} P_{O_{4}}\left\{Q^{\kappa}\left(\tau_{h}^{\kappa}\right) \in I_{7}\right\}=p_{7}>0 \tag{3.157}
\end{equation*}
$$

From Corollary (3.2.6), since $\bar{V}\left(O_{7}, O_{4}\right)>\lambda>\bar{V}\left(O_{5}, O_{4}\right)$, we derive that

$$
\begin{equation*}
\lim _{\kappa \downarrow 0} P_{O_{4}}\left\{Q^{\kappa}\left(t T(\kappa) \in I_{7}\right\}=1\right. \tag{3.158}
\end{equation*}
$$

and thus, as in Theorem (3.2.7), since $z>H\left(O_{6}\right)$, the metastable distribution is concentrated on the exterior vertices O_{7}, O_{1}, and O_{3}. The associated probabilities are given explicitly in (2.192) and depend only on B.

The above results illustrate the main steps in finding metastable distributions for any initial condition $(z, i) \in \Gamma$ with $z>H\left(O_{6}\right)$ and for all but finitely many values of λ. Formally, we restate (3.2.1), whose proof follows immediately from the previous results.

Theorem 3.2.9. Let $\lambda>0$ and $T(\kappa)_{\lambda}$ be such that

$$
\begin{equation*}
\lim _{\kappa \downarrow 0} \kappa \ln T(\kappa)=\lambda \tag{3.159}
\end{equation*}
$$

For any initial condition $\left(x_{1}(0), x_{2}(0)\right) \in \mathbb{R}^{2}$ and all but finitely many timescales λ, the process $\tilde{X}_{T_{\lambda}(\kappa)}^{\epsilon, \kappa}$ converges weakly in the space $C_{0 T}\left(\mathbb{R}^{2}\right)$, first as $\epsilon \downarrow 0$ and then as $\kappa \downarrow 0$, to a probability measure concentrated on the stable equilibrium points of the unperturbed Hamiltonian system. In particular, there exist initial conditions $w=\left(x_{1}(0), x_{2}(0)\right) \in \mathbb{R}^{2}$ and timescales λ such that process $\tilde{X}_{T_{\lambda}(\kappa)}^{\epsilon, \kappa}$, converges weakly
in the space $C_{0 T}\left(\mathbb{R}^{2}\right)$, first as $\epsilon \downarrow 0$ and then as $\kappa \downarrow 0$, to a nondegenerate probability measure $\mu_{w, \lambda}$ concentrated on the stable equilibrium points $\left\{O_{1}, O_{3}, O_{5}, O_{7}\right\}$ of the unperturbed Hamiltonian system, with weights $p_{i}(w, \lambda)=\mu_{w, \lambda}\left(O_{i}\right), i \in\{1,3,5,7\}$ that can be explicitly computed and depend only on B.

Proof. The proof follows from the weak convergence results of [3], Theorem (3.2.5), Corollary (3.2.6), and Theorems (3.2.7) and (3.2.8). We can determine the metastable distribution for λ such that $\lambda \neq \bar{V}\left(O_{k}, O_{j}\right)$ for any exterior vertex O_{k} and interior vertex O_{j}.

For initial condition $z>H\left(O_{6}\right)$, if there exists λ such that $\bar{V}\left(O_{3}, O_{2}\right)>\lambda>$ $\bar{V}\left(O_{7}, O_{6}\right)$, the metastable distribution is the probability measure concentrated at O_{3} and O_{1} with weights p_{3} and p_{1}; for $\lambda>\bar{V}\left(O_{3}, O_{2}\right)$, the metastable state is O_{1}.

For initial condition (z, i) with $z<H\left(O_{4}\right), i=5$ and $\lambda<\bar{V}\left(O_{5}, O_{4}\right)$, the metastable state is O_{5}.

For initial condition $z<H\left(O_{4}\right), i=7$ and $\lambda<\bar{V}\left(O_{7}, O_{4}\right)$, the metastable state is O_{7}.

For initial condition $z<H\left(O_{4}\right), i=5$ and $\bar{V}\left(O_{5}, O_{4}\right)<\lambda<\bar{V}\left(O_{7}, O_{4}\right)$, the metastable state is O_{7}.

The corresponding results hold for initial conditions $z<H\left(O_{2}\right), i=1,3$ and timescales λ satisfying $\lambda<\bar{V}\left(O_{3}, O_{2}\right)$ and $\bar{V}\left(O_{3}, O_{2}\right)<\lambda<\bar{V}\left(O_{1}, O_{2}\right)$.

For initial conditions (z, i) satisfying $H\left(O_{4}\right)<z<H\left(O_{6}\right)$ and $i=4$, for $\lambda<$ $\bar{V}\left(O_{5}, O_{4}\right)$ the metastable distribution is concentrated on the two exterior vertices O_{7} and O_{5} with weights p_{7} and p_{5}, respectively. For $\bar{V}\left(O_{5}, O_{4}\right)<\lambda<\bar{V}\left(O_{7}, O_{6}\right)$,
the metastable state is O_{7}. If there exists λ such that $\bar{V}\left(O_{3}, O_{2}\right)>\lambda>\bar{V}\left(O_{7}, O_{6}\right)$, the metastable distribution is concentrated on O_{3} with probability p_{3} and O_{1} with probability p_{1}; if no such λ exists and $\lambda>\bar{V}\left(O_{7}, O_{6}\right)$ automatically implies $\lambda>$ $\bar{V}\left(O_{3}, O_{2}\right)$, then the metastable state is O_{1}.

Corresponding results hold for initial conditions (z, i) satisfying $H\left(O_{2}\right)<$ $z<H\left(O_{6}\right)$ and timescales $\lambda<\bar{V}\left(O_{3}, O_{2}\right)$, for which the metastable distribution is concentrated on O_{3} with probability p_{3} and O_{1} with probability p_{1}, and $\bar{V}\left(O_{3}, O_{2}\right)<\lambda<\bar{V}\left(O_{1}, O_{6}\right)$, for which the metstable state is O_{1}.

For any (z, i), if $\lambda>\bar{V}\left(O_{3}, O_{6}\right)$ (so that, by hypothesis, we automatically have $\left.\lambda>\bar{V}\left(O_{7}, O_{6}\right)\right)$, the metastable state is O_{1}.

3.2.4 Remarks and generalizations

The above results can be generalized to the case of a Hamiltonian with finitely many wells and the same generic structure; namely, with three edges meeting at each interior vertex and the property that the numbers $\bar{V}\left(O_{k}, O_{i}\right)$ are distinct for any two pairs of exterior and interior vertices with $H\left(O_{k}\right)<H\left(O_{i}\right)$.

We hope to investigate further questions about averaging, large deviations, and metastability for nearly-Hamiltonian systems. Some extensions and generalizations of these results include:

1. The case of weaker assumptions on B : i.e. when $\operatorname{div}(B)$ changes sign. This introduces additional "fixed points" for the limiting process $Q(t)$ on the graph.
2. The construction of an action functional for the process $Q^{\kappa}(t)$ on the graph.

We hypothesize that the action functional for the process $Q^{\kappa}(t)$ takes the following form. First we define the action functional along each edge: for absolutely continuous functions $\phi(s):[0, T] \rightarrow I_{i}$, where $\phi(0)=Q^{\kappa}(0)$, the edge action functional $S_{0 T}^{i}(\phi)$ along edge I_{i} for the process with generator L_{i}^{κ} is given as

$$
S_{i}(\phi)=\frac{1}{2} \int_{0}^{T}\left[\dot{\phi}(s)-\frac{\tilde{B}_{i}(\phi(s))}{T_{i}(\phi(s))}\right]^{2} \frac{T_{i}(\phi(s))}{A_{i}(\phi(s))} d s
$$

and $S_{0 T}^{i}(\phi)$ is defined to be infinite for all other functions ϕ. Next, since the process $Q^{\kappa}(t)$ has no delay at interior vertices-that is, only first-order terms appear in the gluing conditions-the action functional $S_{0 T}(\phi)$ on the graph is given as follows: for functions ϕ that are not absolutely continuous along each edge I_{i} or for functions $\phi(t)$ which intersect the set of interior vertices at an uncountably infinite number of time points $t \in[0, T]$, the action functional $S_{0 T}(\phi)$ associated to Q^{κ} is infinite. For all other $\phi \in C_{0 T}(\Gamma)$, let $t_{1}<t_{2}<\ldots<t_{N} \ldots$ be the points such that $\phi\left(t_{n}\right)=O_{j}$, where $1 \leq n$ and O_{j} is an interior vertex. For $t: t_{n}<t<t_{n+1}, \phi(t)$ lies entirely within an edge I_{n}. Let $S_{\left[t_{n}, t_{n+1}\right]}^{n}$ be the edge action functional along edge I_{n}. We define $S_{0 T}(\phi)$ by

$$
\begin{equation*}
S_{0 T}(\phi)=\sum_{n} S_{\left[t_{n}, t_{n+1}\right]}^{n}(\phi) \tag{3.160}
\end{equation*}
$$

If the sum diverges, the action functional is defined to be infinite. Once this result is proved, a shorter proof of Theorem (3.2.1) can be obtained by invoking the results of $\S 4, ~[18]$. The degeneracies of the diffusion and drift coefficients along an exterior edge prevent us from directly applying Theorem 3.2, §5, in [18] to get the form of the action functional along each edge.
3. More precise asymptotics for the behavior of $Q\left(\tilde{X}^{\epsilon, \kappa}(t)\right)$ in the double limit as ϵ and $\kappa \downarrow 0$. We surmise that if $\epsilon<\sqrt{\kappa}$, then Theorem (3.2.1) still holds, but if $\kappa<\epsilon^{2+\delta}, \delta>0$, then sublimiting distributions may not exist.
4. The case of Hamiltonians with multiple degrees of freedom. The situation in this instance is fundamentally different from the case of one degree of freedom because of the possible existence of multiple invariant measures on each level set (and consequent difficulties in averaging). Freidlin and Wentzell treat the case of n-independent one-degree-of-freedom oscillators and show that in this case, the slow component converges to a process on an open book space, with a description of the behavior of the process along the "binding." We would like to characterize metastability in this setting.

Bibliography

[1] V.I. Arnold, V.K. Kozlov, and A.I. Neishtadt. Mathematical Aspects of Classical and Celestial Mechanics, 3rd edition, Springer-Verlag, New York, 2006.
[2] N.M. Bolgolyubov and Y.A. Mitropolskii. Asymptotic Methods in the Theory of Nonlinear Oscillations, Gordon and Breach, New York, 1981.
[3] Michael Brin and Mark Freidlin. On stochastic behavior of perturbed Hamiltonian systems. Ergodic Theory and Dynamical Systems. 20 (2000), 55-76.
[4] I.P. Cornfeld, S.V. Fomin, and Ya. G. Sinai. Ergodic Theory. Springer-Verlag, Berlin, 1980.
[5] Richard Durrett. Stochastic Calculus: A Practical Introduction. CRC Press, Boca Raton, FL, 1996.
[6] Stuart Ethier and Thomas Kurtz. Markov Processes: Characterization and Convergence. Wiley, New York, 1986.
[7] Lawrence Evans. Partial Differential Equations. American Mathematical Society Press, Providence, RI, 1994.
[8] William Feller. Generalized second order differential operators and their lateral conditions. Illinois Journal of Math. 1 (1957) 459-504.
[9] Mark Freidlin. The Dynkin Festschrift: Markov Processes and their Applications. Birkhauser, Boston, 1994.
[10] Mark Freidlin. Functional Integration and Partial Differential Equations, Princeton University Press, Princeton, NJ 1985
[11] Mark Freidlin. Markov Processes and Differential Equations: Asymptotic Problems, Birkhauser, Basel, Switzerland, 1996.
[12] Mark Friedlin. Sublimiting Distributions and stabilization of solutions of parabolic equations with a small parameter. Soviet Math. Dokl., 18, No. 4, (1977), 1114-1118.
[13] Mark Freidlin. Quasi-deterministic approximation, metastability, and stochastic resonance. Physica D, 137 (2000), 333-352.
[14] Mark Freidlin. Reaction-Diffusion in Incompressible Fluid: Asymptotic Problems. Journal of Differential Equations, 179 (2002), 44-96.
[15] Mark Freidlin and Matthias Weber. Random Perturbations of Nonlinear Oscillators. Annals of Probability, 26, No. 3, (1998), 925-967.
[16] Mark Freidlin and Aleksandr Wentzell. Diffusion Processes on Graphs and the Averaging Principle. Annals of Probability, 21, No. 4, (1993), 2215-2245.
[17] Mark Freidlin and Aleksandr Wentzell. Long-Time Behavior of Weakly Coupled Oscillators. Journal of Statistical Physics, 123, No. 6, (2006), 1311-1337.
[18] Mark Freidlin and Aleksandr Wentzell. Random Perturbations of Dynamical Systems, 2nd ed., Springer-Verlag, Heidelberg, Germany, 1998.
[19] Mark Freidlin and Aleksandr Wentzell. Random Perturbations of Hamiltonian Systems. Memoirs of the American Mathematical Society, 523, (1994), 1-82.
[20] Avner Friedman. Partial Differential Equations of Parabolic Type. PrenticeHall, Englewood Cliffs, NJ, 1964.
[21] Ioannis Karatzas and Steven Streve. Brownian Motion and Stochastic Calculus, 2nd ed. Springer-Verlag, New York,
[22] R.Z. Khasminskii. On processes defined by differential equations with a small parameter. Theory of Probability and Applications, 11, 2, 211-228.
[23] Petr Mandl. Analytical Treatment of One-Dimensional Markov Processes, Springer-Verlag, Heidelberg, Germany, 1968.
[24] Nelson Markley. Principles of Differential Equations, Wiley, New York, 2004.
[25] Berndt Oksendal. Stochastic Differential Equations: An Introduction with Applications, 5th ed. Springer-Verlag, New York, 2003.
[26] Enzo Olivieri and Maria Eulalia Vares. Large Deviations and Metastability, Encyclopedia of Mathematics, Cambridge University Press, Cambridge, UK, 2004.
[27] Daniel Stroock and S.R.S. Varadhan. Multidimensional Diffusion Processes. Springer-Verlag, Berlin, 1979.
[28] S.R.S. Varadhan. Large Deviations and Applications, SIAM Lecture Notes, Philadephia, PA, 1984.

