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We characterize the phenomenon of metastability for a small random perturba-

tion of a nearly-Hamiltonian dynamical system with one degree of freedom. We use

the averaging principle and the theory of large deviations to prove that a metastable

state is, in general, not a single state but rather a nondegenerate probability measure

across the stable equilibrium points of the unperturbed Hamiltonian system. The

set of all possible “metastable distributions” is a finite set that is independent of

the stochastic perturbation. These results lead to a generalization of metastability

for systems close to Hamiltonian ones.
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Chapter 1

Introduction

1.1 Overview

Consider a Hamiltonian system with one degree of freedom

Ẋ(t) = ∇H(X(t)), X(0) = x0 ∈ R
2. (1.1)

where the Hamiltonian H(x) = H(x1, x2) : R
2 → R is a smooth function with

bounded second derivatives, and ∇H represents the skew-gradient, that is,

∇H(X(t)) =

[

∂H

∂x2

,−∂H
∂x1

]

.

An oscillator is a typical example of such a system:

q̈(t) + f(q(t)) = 0, q(0) = q0, q̇(0) = p(0) = p0, (1.2)

where X(t) = (q(t), p(t)) ∈ R
2. The Hamiltonian of this system is

H(q, p) =
p2

2
+ F (q), (1.3)

where F (q) =
∫ q

0
f(u)du is the potential and p = q̇. In addition to the assumptions

of smoothness and bounded second derivatives, we impose the following restrictions

on H: for x = (x1, x2) ∈ R
2, we assume that lim|x|→∞H(x) = ∞; we assume H is

a generic smooth function with a finite number of critical points, all of which are

nondegenerate; and we assume that there exist constants K1 and K2 such that for
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x = (x1, x2) with |x| sufficiently large, K1|x| < |∇H(x)| < K2|x|, so the gradient of

H grows linearly for |x| sufficiently large.

The Hamiltonian in Figure 1 has four minima, at O1, O3, O5, and O7, and three

saddle points, at O2, O4, and O6. The corresponding phase portrait for the system

is also shown. Except for the separatrix trajectories, all trajectories are periodic

closed curves, and each of them forms a connected component of a level set of H. If
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Figure 1.1: H(x1, x2) and the Graph Γ

we identify all the points of each connected component of each level set, we get a set,

Γ, homeomorphic to a graph (see Figure 1). The vertices of Γ correspond to critical

points of H: exterior vertices to minima, and interior vertices to saddle points (see

[16], [18], [19]). Each edge of Γ is indexed by a number, I1, I2, . . . Im, and each point

y on Γ is indexed by the pair (z, i), where z is the value of the Hamiltonian on the

level set corresponding to y, and i is the edge number containing y. The pair (z, i)
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forms a global coordinate system on Γ.

Let Q : R
2 → Γ;Q(x1, x2) = (H(x1, x2), i(x1, x2)) be the projection onto Γ of

a point (x1, x2) in R
2. We denote the images in Γ of the critical points Or under Q

as simply Or, and we write Ik ∼ Or if Or lies at the boundary of an edge Ik. We

endow Γ with the natural topology, so a set U is open in Γ if and only if Q−1(U) is

open in R
2.

Now, consider a small deterministic perturbation of system (1.2):

Ẋǫ(t) = ∇H(Xǫ(t)) + ǫB(Xǫ(t)), X(0) = x, 0 < ǫ≪ 1. (1.4)

We assume that B is a smooth vector-valued function on R
2 with bounded

derivatives, and that div(B(x)) < 0 for all x ∈ R
2. The assumption of negative

divergence is analogous to the case of classical friction:

q̈ǫ(t) + f(qǫ(t)) = −ǫq̇(t) (1.5)

For any finite time interval [0, T ], Xǫ(t) converges uniformly to X(t) as ǫ→ 0.

Significant deviations between the perturbed and unperturbed trajectories occur

only on much longer time intervals, say of order ǫ−1. To investigate the behavior of

Xǫ(t) on intervals of such order, it is convenient to rescale time: let X̃ǫ(t) = Xǫ(t/ǫ),

so that equation (3) becomes

˙̃Xǫ(t) =
1

ǫ
∇H(X̃ǫ(t)) +B(X̃ǫ(t)), X̃ǫ(0) = x (1.6)

Since H is a first integral for the unperturbed system (1.1), for ǫ small, the

value of H changes slowly in time. As a result, the deterministically-perturbed

and rescaled system (1.6) has two components: first, a “fast” component which is,
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roughly, motion along the unperturbed trajectories with speed of order ǫ−1 as ǫ ↓ 0;

and a “slow” component which characterizes motion in the direction transverse to

the unperturbed trajectories. The slow component has speed of order 1 and can be

described by the evolution of the map Q(X̃ǫ(t)). As a result, the slow component

corresponds to motion on the graph Γ. We can use the averaging principle in this

situation to describe the long-time evolution of the slow motion Q(X̃ǫ(t)).

The behavior of the slow component is very sensitive to small changes in ǫ,

and the slow component Q(X̃ǫ(t)) has no limit when ǫ ↓ 0 and t is sufficiently large.

It is reasonable to consider small random perturbations of (1.6). Such perturbations

exist naturally in any physical system.

In particular, we can add a white-noise-type perturbation to the system (1.6).

For κ > 0, define X̃ǫ,κ(t) as the diffusion process in R
2 governed by the operator

Lǫ,κ(u(x)) =
κ

2
div(a(x)∇u(x)) +B(x) · ∇u(x) +

1

ǫ
∇H(x) · ∇u(x) (1.7)

The diffusion matrix a(x), x ∈ R
2, is a uniformly positive definite 2×2 matrix

with bounded smooth coefficients. The arguments in [3], [15], [16] demonstrate that

the slow component of (1.7) converges, first as ǫ converges to zero and then as κ

converges to zero, to a stochastic process on the graph Γ. This limiting stochastic

process is independent of the choice of random perturbation characterized by the

diffusion matrix a(x), provided that a(x) is nondegenerate, and the stochasticity

of the limiting process is concentrated at the interior vertices of Γ. In Theorems

(2.1.4), (2.1.6), and (2.1.10) of Chapter 2, we prove certain results about averaging

for the processes under study and we summarize the relevant background.
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We show in (3.1.1) that under our assumptions on B(x), for sufficiently small

ǫ, the equilibrium points of the deterministically-perturbed system (1.6) are in one-

to-one correspondence with the equilibrium points of the unperturbed Hamiltonian

system (1.1). The equilibrium points corresponding to the minima of H (the centers

of the Hamiltonian system) become asymptotically stable equilibrium points in the

system (1.6); the saddle points remain saddle points. Moreover, all non-separatrix

trajectories are attracted to one of the asymptotically stable equilibrium points.

For fixed ǫ sufficiently small, put F ǫ = 1
ǫ
∇H + B, and define Zκ(t) to be the

solution to the stochastic differential equation

Żκ(t) = F ǫ(Zκ(t)) +
√
κσ(Zκ(t))Ẇt, Z(0) = z (1.8)

where κ > 0 is a small parameter. The process Zκ is a white-noise perturbation

of a deterministic dynamical system with finitely many asymptotically stable fixed

points which are attractors for all non-separatrix trajectories. When such a system,

with a small but fixed deterministic perturbation of size ǫ, is further perturbed

by white noise, then for each initial position of the randomly-perturbed trajectory,

there exists a particular stable equilibrium point near which the trajectory remains,

with overwhelming probability, on a given timescale. Such an equilibrium position is

called a metastable state corresponding to the given initial position z and timescale

λ. Formally, let λ > 0 and T = T (κ) be such that

lim
κ→0

κ lnT (κ) = λ (1.9)

An equilibrium point K(z,λ) is a metastable state for the initial condition z and
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timescale λ if for any δ > 0 and A > 0,

lim
κ↓0

Pz{Λ{t ∈ [0, A] : ρ(Zκ(tT (κ)), K(z,λ)) > δ}} → 0. (1.10)

where Λ denotes Lesbegue measure in R
2.

Metastability is a consequence of large deviations for the process X̃ǫ,κ(t). The

process X̃ǫ,κ(t) makes transitions from one neighborhood of an asymptotically stable

equilibrium to another, and with probability close to one, each of these transitions

takes an exponentially long time. The asymptotics as κ ↓ 0 of the position of X̃ǫ,κ(t)

at times of order T (κ) depend on how rapidly T (κ) grows as κ becomes small. In

the first section of Chapter 3, we provide a brief overview of the Freidlin-Wentzell

theory of large deviations and metastability.

We then show that because of the sensitivity of the deterministically-perturbed

system (1.6) to values of ǫ ≪ 1, certain distributions between the asymptotically

stable equilibrium points should be considered as the “final states” of such a system.

This leads to a modification of metastability for systems that are close to Hamil-

tonian ones. In particular, certain probability distributions across asymptotically

stable equilibrium points are metastable.

1.2 Outline of results

We outline some of the specific results in this thesis. In Chapter 2, we prove

results about the averaging principle for Hamiltonian systems in which the Hamilto-

nian has a single well (so the unperturbed system has no saddle points, only stable

equilibrium points). In such single-well Hamiltonian systems, each non-extremal
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level set

C(z) = {x ∈ R
2 : H(x) = z}

is a simple closed curve, and there exists a unique normalized invariant measure µz

on C(z) defined by

µz(A) =
1

T (z)

∮

A

1

∇H(x)
dl (1.11)

where A is a measurable subset of C(z), T (z) is the period of the trajectory on level

set z, and x is in R
2.

1. Theorem (2.1.4). We show that if X̃ǫ
t satisfies (1.6), namely

˙̃Xǫ
t =

1

ǫ
∇H(X̃ǫ

t ) +B(X̃ǫ(t)), X̃ǫ
0 = x0 (1.12)

then on any finite time interval, H(X̃ǫ
t ) converges uniformly to Y t, where Y t

is the solution to

Ẏ t = B(Y t) (1.13)

and B(z) is defined as

B(z) =
1

T (z)

∮

C(z)

B(x) · ∇H(x)

|∇H(x)| dl (1.14)

2. Theorem (2.1.6) Suppose Xǫ
t satisfies the stochastic differential equation

Ẋǫ
t =

1

ǫ
∇H(Xǫ

t ) +B(Xǫ
t ) + σ(Xǫ

t )Ẇt, Xǫ
0 = x0 (1.15)

for a smooth bounded matrix σ(x) with a(x) = σ(x)σT (x) uniformly positive

definite, and initial condition x0 which is not the minimum of H. Let Yt be a

process which satisfies the stochastic differential equation

Ẏt = B(Yt) + LH(Yt) +

√

A(Yt)Ẇt, Y0 = H(x0) (1.16)
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with B given in (2.37), and LH and A defined by

LH(z) =
1

T (z)

∮

C(z)

∑

i,j

aij(x)
∂2H(x)
∂xi∂xj

|∇H(x)| dl (1.17)

A(z) =
1

T (z)

∮

C(z)

a(x)∇H(x) ·H(x)

|∇H(x)| dl (1.18)

Then there exists a process Y ǫ equivalent to Y such that for any fixed time

interval [0, T ] and for any δ > 0,

lim
ǫ→0

P{ sup
0≤t≤T

|H(Xǫ
t ) − Y ǫ

t | > δ} = 0 (1.19)

As a useful corollary, the process H(Xǫ
t ) converges weakly in C0T to Yt.

3. Theorem (2.1.10) We consider a single-well Hamiltonian system written in

action-angle coordinates, with fast and slow motion separated, in which only

the fast component has a stochastic perturbation. Let (Iǫ, φǫ) satisfy

İǫ =β1(I
ǫ, φǫ) (1.20)

φ̇ǫ =
1

ǫ
ω(Iǫ) +

1√
ǫ
σ(Iǫ, φǫ)Ẇt + β2(I

ǫ, φǫ) (1.21)

and assume the coefficients ω, β1, β2, and σ are smooth and bounded and that

σσT is uniformly positive definite. We explicitly solve for the invariant density

mI(φ) on each level set I and prove that on any finite time interval,

lim
ǫ→0

P{ sup
0≤t≤T

|Iǫ
t − I t| > δ} = 0 (1.22)

where I t is the solution to the equation

İ t = β(I t), with β1(I) =

∫ 2π

0

β1(I, φ)mI(φ)dφ (1.23)
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More general results concerning stochastically-peturbed systems were proved by

Khasminskii (see [22]), in which the fast and slow components are separated.

For Hamiltonians with multiple wells, the structure of the graph corresponding

to the level sets is no longer a single interval, and as noted above, there are two first

integrals for the unperturbed system: (H, i). In this case, in order to prove that the

graph-valued slow componentQ(X̃ǫ,κ(t)) of the perturbed process actually converges

to a limiting process (see [16], [19]), Freidlin and Wentzell use martingale methods

(see [27]) and they prove that the limiting process on the graph can be uniquely

determined by generators on each edge and gluing conditions—which are restrictions

on the domains of the generator—at interior vertices. We conclude Chapter 2 by

summarizing these results and those of Freidlin and Brin (see [3]) on the convergence

of the graph-valued slow component Q(X̃ǫ,κ(t)) to a limiting process. A key result,

on which we rely heavily and which is proved in [3], is the following:

Theorem ([3]). Let X̃ǫ,κ(t) be the two-dimensional diffusion processes defined

by (1.7). The slow component Q(X̃ǫ,κ(t)) converges weakly in C0T (Γ), first as ǫ ↓ 0,

to a stochastic process Qκ, defined by generators Lκ
i along each edge of Γ and gluing

conditions at the interior vertices. Next, as κ ↓ 0, Qκ converges weakly to a process

Q(t) which consists of deterministic motion along each edge of Γ and stochastic

branching at the interior vertices, with probabilities of branching that depend only

on B and not on the diffusion coefficients a(x).

In Chapter 3, we review the Freidlin-Wentzell theory of large deviations and

metastability and define metastability for deterministic systems subject to white-

noise perturbations. We show that for a nearly-Hamiltonian system perturbed by
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noise, in which the Hamiltonian H and associated graph Γ have the structure of

Figure (1.1), the notion of metastability must be generalized to include probability

measures concentrated on stable equilibrium points.

1. In Lemma (3.1.1) We prove that for sufficiently small ǫ, the deterministic

system in (1.6) consists of separatrix trajectories and trajectories converging

to an asymptotically stable equilibrium. Hence the ω-limit sets for any initial

condition have a simple structure.

2. In Example (3.1.4) We give a motivating example of a one-dimensional diffu-

sion with potential drift in which metastability corresponds to a nondegenerate

probability distribution over equilibrium points. Suppose Xǫ
t satisfies

Ẋǫ
t = −U ′(Xǫ

t ) +
√
ǫẆt (1.24)

where U(a1) = U(a2) and U(x) > U(ai) for all x /∈ {a1, a2}, U ′(x) 6= 0

except at a1 and a2, and a1 and a2 are nondegenerate critical points with

U ′′(a1) 6= U ′′(a2). Suppose that for each ǫ,

∫

R

exp

[

−2U(x)

ǫ

]

dx = Cǫ <∞ (1.25)

Then there exists an invariant measure µǫ on R for this process which converges

as ǫ ↓ 0 to a probability measure concentrated on a1 and a2, and for certain

initial conditions and timescales, this limiting measure will be a metastable

distribution.

3. In Section (3.2), we analyze large deviations for the process Qκ(t) on the graph

Γ. Recall that Qκ is the weak limit as ǫ ↓ 0 of the projection onto the graph
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Γ of the two-dimensional process X̃ǫ,κ(t). Qκ is defined through second-order

differential operators Lκ
i along each edge Ii of Γ, and these operators have

degeneracies at interior and exterior vertices. To prove estimates for probabil-

ities of large deviations, we analyze the behavior of Qκ(t) in small neighbor-

hoods of exterior and interior vertices separately. We define the quasipotential

V̄x,y = V̄ (x, y) for any two points (x, y) along an edge Ii of Γ and show that

for x < y, it can be computed as

V̄x,y =

∫ y

x

−2B̃i(s)

Ai(s)
ds (1.26)

where B̃ is defined as

B̃i(s) =

∮

Ci(s)

∇H(x) ·B(x)

|∇H(x)| dl (1.27)

and Ci(s) is the connected component of the level set H = s corresponding to

edge i on Γ.

4. In Theorem (3.2.5), we prove the following: Let Iki
be an exterior edge with

exterior vertex Oki
and interior vertex Oj in Γ. Suppose the three edges Ik1 ,

Ik2 , and Ij meet at interior vertex Oj. Put V̄ max
ij = max{V̄k1j, V̄k2j} where

V̄kij = V̄ (Oki
, Oj). Let τκ

z = inf{t > 0 : Qκ(t) = z}. For any α > 0 there

exists δ > 0 sufficiently small such that if y ∈ Iki
, |y −H(Oki

)| < δ, y 6= Oki
,

and z ∈ Ij, |z −H(Oj)| < δ, z 6= Oj, then

lim
κ↓0

Py

{

exp

[

V̄ max
ij − α

κ

]

< τκ
z < exp

[

V̄ max
ij + α

κ

]}

= 1 (1.28)

5. In Theorem (3.2.7) we show that there exist initial conditions z and timescales

λ such that for any fixed t > 0, δ > 0, and θ > 0, there exists κ0 sufficiently
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small such that if Fθ,Oi
is the neighborhood Fθ,Oi

= {y ∈ Ii : V (Oi, y) < θ},

i ∈ {1, 3, 5, 7}, of exterior vertex Oi, and κ < κ0, then

|P {Qκ(tT (κ)) ∈ Fθ,Oi
} − p̃i| < δ (1.29)

for probabilities p̃i ∈ (0, 1) which can be explicitly calculated and depend only

on B.

6. In Theorem (3.2.1) we show that for any initial condition (x1(0), x2(0)) ∈ R
2

and all but finitely many timescales λ, the process X̃ǫ,κ
Tλ(κ) converges weakly

in the space C0T (R2), first as ǫ ↓ 0 and then as κ ↓ 0, to a probability

measure concentrated on the stable equilibrium points of the unperturbed

Hamiltonian system. In particular, there exist certain initial conditions w =

(x1(0), x2(0)) and time scales λ such that X̃ǫ,κ
Tλ(κ) converges weakly to a nonde-

generate probability distribution µw,λ concentrated on the stable equilibrium

points {O1, O3, O5, O7} of the unperturbed Hamiltonian system, with weights

p̃i(w, λ) = µw,λ(Oi), i ∈ {1, 3, 5, 7} that can be explicitly computed and depend

only on B.
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Chapter 2

The averaging principle in Hamiltonian systems

2.1 Auxiliary results and background on the averaging principle

2.1.1 Examples of the averaging principle in deterministic systems

In this chapter, we examine the limiting behavior of Q(X̃ǫ,κ(t)), where X̃ǫ,κ(t)

is the diffusion process in R
2 governed by the operator Lǫ,κ in (1.7), namely:

Lǫ,κ(u(x)) =
κ

2
div(a(x)∇u(x)) +B(x) · ∇u(x) +

1

ǫ
∇H(x) · ∇u(x),

in which the matrix a(x) = σ(x)σT (x) is smooth, bounded, and uniformly positive

definite. The diffusion process Xǫ,κ
t is the solution to the stochastic differential

equation

Ẋǫ,κ(t) =
1

ǫ
∇H(X̃ǫ,κ(t)) +B(X̃ǫ,κ(t)) +

κ

2









∂a11(X̃ǫ,κ(t))
∂x1

+ ∂a21(X̃ǫ,κ(t))
∂x2

∂a12(X̃ǫ,κ(t))
∂x1

+ ∂a22(X̃ǫ,κ(t))
∂x2









(2.1)

+
√
κσ(X̃ǫ,κ(t))Ẇt, X̃ǫ,κ(0) = (x1(0), x2(0)) (2.2)

and Q : R
2 → Γ is the projection of any point x = (x1, x2) in the plane to the

corresponding point (H(x), i(x)) = (H(x1, x2), i(x1, x2)) on the graph Γ associated

to the Hamiltonian H. We assume that B is a smooth vector-valued function with

bounded derivatives and negative divergence, and that ∇H(x) ·B(x) < 0. Also, we

impose the following restrictions on H: first, H is a smooth function with bounded
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second derivatives and a finite number of nondegenerate critical points; second,

there exist K1 and K2 such that for |x| sufficiently large, K1|x| < |∇H(x)| <

K2|x|; and third, lim
|(x)|→∞

|H(x)| = ∞. We examine the limiting behavior of Qǫ,κ =

Q(X̃ǫ,κ(t)) first as ǫ ↓ 0 and then as κ ↓ 0. When both ǫ and κ are small, the process

X̃ǫ,κ(t) represents a nearly-Hamiltonian dynamical system with a small random

perturbation.

The central result of [3] is that one can associate to X̃ǫ,κ(t) a stochastic pro-

cess on the graph Γ which converges, first as ǫ and then as κ tend to zero, to a

stochastic process Q(t) on the graph. The limiting process Q(t) is independent of

the choice of diffusion coefficients a(x). The convergence to a stochastic process is

a consequence of the classical averaging principle and instability near saddle points

of a Hamiltonian system in which H has multiple wells.

We summarize the relevant background on the averaging principle and diffu-

sion processes on graphs from [3], [18], and we prove certain results on the averaging

principle for our particular case. For a more complete treatment of the classical aver-

aging principle in Hamiltonian systems, see [1, §6]. For full details on the averaging

principle for multiwell Hamiltonian systems, see [18, §8], [3], and [16].

First we state a version of the averaging principle applicable to deterministic

systems. Let ǫ be a small positive parameter, and suppose ψt is a continuous real-

valued function. For x ∈ R
n and y ∈ R, let b(x, y) = (b1(x, y), · · · , bn(x, y)) :

R
n+1 → R

n be a bounded, continuous vector-valued function satisfying a Lipschitz

condition independent of y: |b(x1, y) − b(x2, y)| ≤ K|x1 − x2|. Assume also that

there exists a bounded continuous function b such that for any T the following limit

14



exists uniformly in t0 ∈ R and x ∈ R
n:

lim
ǫ→0

∫ t0+T

t0

[b(x, ψ s
ǫ
) − b(x)]ds = 0 (2.3)

Let Xǫ
t satisfy the differential equation

Ẋǫ
t = b(Xǫ

t , ψt/ǫ); Xǫ
0 = x (2.4)

and suppose xt solves the ordinary differential equation

ẋt = b(xt); x0 = x (2.5)

Theorem 2.1.1. Let Xǫ
t and xt be defined as in (2.4) and (2.5). Then

lim
ǫ↓0

[

sup
0≤t≤T

|Xǫ
t − xt|

]

= 0 (2.6)

Proof. It is clear that b is Lipschitz continuous with the same Lipschitz constant as

b. Indeed, let x and y be given, and let T > 0 and δ > 0 be arbitrary and positive.

By (2.3), given any arbitrary δ > 0, we can find ǫ sufficiently small so that

∫ T

0

[b(x) − b(x, ψ s
ǫ
)]ds <

δ

2
and

∫ T

0

[b(y, ψ s
ǫ
) − b(y)]ds <

δ

2
(2.7)

and by the Lipschitz continuity of b, there exists K such that for any x and y,

∫ T

0

[b(x, ψ s
ǫ
) − b(y, ψ s

ǫ
)]ds ≤

∫ T

0

K|x− y|ds (2.8)
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So we conclude that

T |b(x) − b(y)| =

∫ T

0

[b(x) − b(x, ψ s
ǫ
)]ds−

∫ T

0

[b(x, ψ s
ǫ
) − b(y, ψ s

ǫ
)]ds (2.9)

+

∫ T

0

[b(y, ψ s
ǫ
) − b(y)]ds (2.10)

≤
∫ T

0

[b(x) − b(x, ψ s
ǫ
)]ds +

∫ T

0

[b(x, ψ s
ǫ
) − b(y, ψ s

ǫ
)]ds (2.11)

+

∫ T

0

[b(y, ψ s
ǫ
) − b(y)]ds (2.12)

≤δ + TK|x− y| (2.13)

Hence (2.5) has a unique solution. Also, if (2.3) holds, then

lim
T→∞

1

T

∫ T

0

b(x, ψs)ds = b(x) (2.14)

and we regard b as the “long-run” average of b(x, y) over the second component y

for each fixed x. Taking the difference between Xǫ
t and xt, we get

Xǫ
t − xt =

∫ t

0

[

b(Xǫ
s, ψ s

ǫ
) − b(xs, ψ s

ǫ
)
]

ds+

∫ t

0

[

b(xs, ψ s
ǫ
) − b(xs)

]

ds

(2.15)

=⇒ sup
0≤t1≤t

|Xǫ
t1
− xt1 | ≤

∫ t

0

K sup
0≤u≤s

|Xǫ
u − xu|ds+ sup

0≤t1≤t

∣

∣

∣

∣

∫ t

0

b(xs, ψ s
ǫ
) − b(xs)ds

∣

∣

∣

∣

(2.16)

Applying Gronwall’s inequality (see [24, §2.5]), we get

sup
0≤t≤T

|Xǫ
t − xt| ≤ exp(KT )

[

sup
0≤t≤T

∣

∣

∣

∣

∫ t

0

b(xs, ψ s
ǫ
) − b(xs)ds

∣

∣

∣

∣

]

(2.17)
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Observe that

∫ t

0

[

b(xs, ψ s
ǫ
) − b(xs)

]

ds =
n−1
∑

k=0

∫
(k+1)t

n

kt
n

[

b(x kt
n
, ψ s

ǫ
) − b(x kt

n
)
]

ds (2.18)

+
n−1
∑

k=0

∫
(k+1)t

n

kt
n

[

b(xs, ψ s
ǫ
) − b(x kt

n
, ψ s

ǫ
)
]

ds (2.19)

+
n−1
∑

k=0

∫
(k+1)t

n

kt
n

[

b(x kt
n
) − b(xs)

]

ds (2.20)

Lipschitz continuity, boundedness of b and b, and the mean value theorem imply

∫ t

0

[

b(xs, ψ s
ǫ
) − b(xs)

]

ds ≤
n−1
∑

k=0

∫
(k+1)t

n

kt
n

[

b(x kt
n
, ψ s

ǫ
) − b(x kt

n
)
]

ds+ ρǫ
n,t (2.21)

where |ρǫ
n,t| < C

n
and C is a constant depending on T and on the Lipschitz constant

for b and b. Hence |ρǫ
n,t| can be made arbitrarily small for all ǫ by choosing n large.

Note that
∣

∣

∣

∣

∣

n−1
∑

k=0

∫
(k+1)t

n

kt
n

[

b(x kt
n
, ψ s

ǫ
) − b(x kt

n
)
]

ds

∣

∣

∣

∣

∣

(2.22)

converges to zero for any fixed n sufficiently large as ǫ ↓ 0 by (2.3). Therefore

lim
ǫ↓0

{

sup
0≤k≤n

∫ Kt/n

0

[b(xs, ψ s
ǫ
) − b(xs)]ds

}

= 0 (2.23)

Since G(t) =
∫ t

0
[b(xs, ψ s

ǫ
) − b(xs)]ds is continuous, its supremum on the interval

[0, T ] is attained at some point t∗, and we can choose n sufficiently large and ǫ small

to guarantee that for any η > 0

sup
0≤t≤T

G(t) =

∫ kT
n

0

[b(xs, ψ s
ǫ
) − b(xs)]ds+ η (2.24)

for some k ∈ {0, 1, · · · , T/n}.

In the above analysis, we consider ψ t
ǫ

the “fast” motion and Xǫ
t the “slow”

motion for small ǫ. The averaging principle implies that the slow component con-
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verges uniformly on finite time intervals to the solution of a differential equation

involving the average of a function with respect to the fast motion.

Now consider the case of a Hamiltonian system with a single-well potential,

F (x1), withH(x) = H(x1, x2) = F (x1)+
x2
2

2
, as shown in the figure, and letXt satisfy

Ẋt = ∇H(Xt). Without loss of generality we assume that the unique minimum O

is such that H(O) = 0.

Figure 2.1: A single-well Hamiltonian and phase portrait

The phase portrait consists of periodic trajectories along level sets of H. These

level sets are simple closed curves. Let C(z) = {x ∈ R
2 : H(x) = z} denote the

closed curve for level set H = z. Each trajectory Xt on C(z) has a finite period

T (z). Since div(∇H) = 0, the flow is area-preserving; that is, if Λ is Lebesgue
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measure in R
2 and Φt is the flow, then for any t > 0 and any measurable A,

Λ(A) = Λ[Φ−1
t (A)] (2.25)

As a consequence, there exists a unique invariant measure µ concentrated on each

level set C(z). For any measurable subset A of C(z), µz(A) is given by

µz(A) =
1

T (z)

∮

A

dl

|∇H(x)| (2.26)

where dl is the length element and T (z) is the period of the trajectory concentrated

on C(z). The measure µz of a set A is the ratio of the occupation time of Xt in

A during a single rotation to the period of the trajectory on the curve C(z). The

periodicity of each trajectory Xt on the level set C(z) guarantees the equality of

time- and space-averages on level sets.

Theorem 2.1.2 (Equality of time- and space-averages on level sets). Let f : R
2 →

R be continuous and let Xt be a solution to Ẋt = ∇H(Xt) with initial condition

X0 = x0; let H(x0) = z. Then

lim
t→∞

1

t

∫ t

0

f(Xs)ds =
1

T (z)

∮

C

(z)
f(x)

|∇H(x)|dl (2.27)

Proof. Let T (z) = T be the period of Xt on C(z). For any t large, we can find

n ∈ N such that t = nT + γ where 0 ≤ γ < T . Since f(Xs) is periodic, we have

1

t

∫ t

0

f(Xs)ds =
1

nT + γ

{∫ nT

0

f(Xs)ds+

∫ nT+γ

nT

f(Xs)ds

}

(2.28)

=

[

nT

nT + γ

]{

1

T

∫ T

0

f(Xs)ds+
1

nT

∫ γ

0

f(Xs)ds

}

(2.29)

→ 1

T

∫ T

0

f(Xs)ds as n→ ∞ (2.30)
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Over a single period T , we parameterize C(z) by the curve Xt and immediately

derive that
∫ T

0

f(Xs)ds =

∮

C(z)

f(x)

|∇H(x)|
dl (2.31)

As in (1.4), consider a small deterministic perturbation of the system Ẋt =

∇H(Xt):

Ẋǫ
t = ∇H(Xǫ

t ) + ǫB(Xǫ
t ), Xǫ

0 = (x1(0), x2(0)).

We continue to assume that B is smooth, has bounded derivatives and negative

divergence, and that ∇H(x) · B(x) < 0. As above, let Xt denote the solution

to the unperturbed Hamiltonian system. Fix an initial point w = (x1(0), x2(0));

the trajectory through (x1(0), x2(0)), denoted Xt,w, forms a closed curve in whose

interior lies the single minimum of H—that is, exactly one stable center. Since the

Hamiltonian is a first integral, the motion of Xt,w can be expressed through action-

angle coordinates, i.e. the value of a first integral I, the action, and an angular

coordinate φ ∈ [0, 2π], the angle (see [1]):

İ =0 (2.32)

φ̇ =ω(I) (2.33)

with initial conditions φ(0) = θ0 and I(0) = I0.

We rescale by time, so let X̃ǫ
t = Xǫ

t/ǫ. In these local coordinates, the rescaled
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perturbed system (1.6) can be written:

İǫ =β1(I
ǫ, φǫ) (2.34)

φ̇ǫ =
1

ǫ
ω(Iǫ) + β2(I

ǫ, φǫ) (2.35)

with the same initial conditions φǫ(0) = θ0 and Iǫ(0) = I0). In this instance we

can separate the fast and slow motion. For small ǫ, near the given energy level

z = H(x1(0), x2(0)), the fast motion for X̃ǫ
t is characterized by the invariant measure

concentrated on the closed curve C(z) that forms the level set H−1(z). The slow

motion satisfies the equation

H(X̃ǫ
t ) −H(X̃ǫ

0) =

∫ t

0

∇H(X̃ǫ
s) ·B(X̃ǫ

s)ds (2.36)

On a time interval [t, t+ ∆], where ∆ is independent of ǫ, H(X̃ǫ
t ) changes by

an amount of order ∆, uniformly in ǫ. The number of “revolutions” made by the

fast component along C(z) is of order ∆ǫ−1. This is precisely the type of situation

in which the averaging principle applies.

Because T (z) is the period of the trajectory of the unperturbed system Ẋt =

∇H(Xt) on C(z), we have T (z) =
∮

C(z)
dl

|∇H(x)| . Let B(z) be defined as

B(z) =
1

T (z)

∮

C(z)

∇H(x) ·B(x)

|∇H(x)| dl (2.37)

We state the following useful lemma from [18]:

Lemma 2.1.3. Let f(x) be a function that is continuously differentiable in the

interval {x ∈ R
2 : 0 < z1 ≤ H(x) ≤ z2}. Then for any z ∈ (z1, z2),

d

dz

[∮

C(z)

f(x)|∇H(x)|dl
]

=

∮

C(z)

[∇f(x) · ∇H(x)

|∇H(x)| + f(x)
∆H(x)

|∇H(x)|

]

dl (2.38)
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Proof. See [18], §8.

Applying this lemma to the functions f1(x) = B(x)·∇H(x)
|∇H(x)|2 and f2(x) = 1

|∇H(x)|2 ,

we get that B(z) is (k− 1)-times continuously differentiable in the interval z : z > 0

if H is k-times continuously differentiable. Hence B(z) is Lipschitz continuous on

compact sets.

Let B̃(z) denote

B̃(z) =

∮

C(z)

∇H(x) ·B(x)

|∇H(x)| dl (2.39)

By the divergence theorem, we can write

B̃(z) =

∫

G(z)

div(B(x))dx (2.40)

where G(z) is the closed, simply connected region bounded by C(z). Then B(z) =

B̃(z)/T (z). In (2.2.1) we show that lim
z→H(O)

T (z) = C > 0, and therefore B(H(O)) =

0.

Theorem 2.1.4 (An averaging principle for a deterministic perturbation of a sin-

gle-well Hamiltonian system). Let X̃ǫ
t satisfy

˙̃Xǫ
t =

1

ǫ
∇H(X̃ǫ

t ) +B(X̃ǫ
t ), X̃ǫ

0 = (x1(0), x2(0)) = w (2.41)

Then for any finite time interval [0, T ], the slow component Y ǫ
t = H(X̃ǫ

t ) converges

uniformly as ǫ ↓ 0 to the solution Y t of the averaged system

Ẏ t = B(Y t), Y 0 = H(w). (2.42)

where

B(z) =
1

T (z)

∮

C(z)

∇H(x) ·B(x)

|∇H(x)| dl (2.43)
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Proof. We will show that for each fixed T , there exists a constant MT such that

max
0≤t≤T

|H(X̃ǫ
t ) − Y t| ≤MT ǫ. (2.44)

We apply the Newton-Leibniz formula to H(Xǫ
t ):

H(X̃ǫ
t ) −H(w) =

∫ t

0

∇H(X̃ǫ
s) · ˙̃Xǫ

sds (2.45)

=

∫ t

0

∇H(X̃ǫ
s) ·

1

ǫ
∇H(X̃ǫ

s)ds+

∫ t

0

∇H(X̃ǫ
s)B(X̃ǫ

s)ds (2.46)

=0 +

∫ t

0

∇H(X̃ǫ
s)B(X̃ǫ

s)ds (2.47)

Since ∇H(x) · B(x) < 0, H(X̃ǫ
t ) ≤ H(w) for all 0 ≤ t ≤ T and for all 0 ≤ ǫ ≤ ǫ0.

From the assumption that lim
|x|→∞

H(|x|) = ∞, this implies that there exists a compact

set N ∈ R
2 such that |X̃ǫ

t | ∈ N for all 0 ≤ t ≤ T and for all 0 < ǫ < ǫ0.

We next establish a claim that is essential to this and subsequent proofs.

Claim 2.1.5. Given a smooth function g(x) = g(x1, x2) : R
2 → R, the first-order

partial differential equation

∇u(x) · ∇H(x) = g(x) (2.48)

has a solution u if and only if on each level set H = z, the integral of g with respect

to the invariant density mz(x) = 1
T (z)

1
∇H(x)

vanishes:

1

T (z)

∫

C(z)

g(x)

|∇H(x)|dl = 0 (2.49)

Furthermore, if this condition is satisfied, the solution u is twice-continuously dif-

ferentiable.
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Proof. Suppose first that a solution u to (2.48) exists. Let Xt ∈ R
2 be the solution

to Ẋt = ∇H(Xt) with initial condition X0 = w0, and let T denote the period of Xt

on the level set H = H(w0). We get

0 = u(XT ) − u(w0) =

∫ T

0

∇u(Xs) · ∇H(Xs)ds =

∫ T

0

g(Xs)ds (2.50)

Since (2.1.2) implies

lim
t→∞

1

t

∫ t

0

g(Xs)ds =
1

T (z)

∫

C(z)

g(x)

|∇H(x)|dl, (2.51)

(2.50) forces necessity. For sufficiency, consider the ordinary differential equation

Ḟt = ∇H(Ft);F0 = a = (a1, a2) ∈ R
2 (2.52)

where a is not the unique minimum of H. The trajectory Ft intersects each level

set of H precisely once, at some point f(z), and lim
t→∞

Ft = ∞, lim
t→−∞

Ft = O. For any

point x = (x1, x2) on f(z), define

u(x) =

∫ x

f(z)

g(y)

|∇H(y)|dl (2.53)

where the line integral is taken along C(z) in the direction of the vector field ∇H(x).

Since the integral of g with respect to the invariant density vanishes, and since g is

smooth, u is twice-continuously differentiable and solves (2.48) with initial condition

u(f(z)) = 0.

Now put g(x) = ∇H(x) · B(x) − B(H(x)). By construction the integral of g

with respect to the invariant density on each level set vanishes, and therefore there

exists a solution u to the partial differential equation

∇u(x)∇H(x) = g(x) (2.54)
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Evaluating the function u(x) along the perturbed trajectories X̃ǫ
t , we get

u(X̃ǫ
t ) − u(w) =

1

ǫ

∫ t

0

∇u(X̃ǫ
t ) · ∇H(X̃ǫ

s)ds+

∫ t

0

∇u(X̃ǫ
s) ·B(X̃ǫ

s)ds

Define the functions R and A as follows:

R(X̃ǫ
t ) =

∫ t

0

∇u(X̃ǫ
s) · ∇H(X̃ǫ

s)ds =

∫ t

0

g(X̃ǫ
s)ds

A(X̃ǫ
t ) =

∫ t

0

∇u(X̃ǫ
s) ·B(X̃ǫ

s)ds

We deduce that

R(X̃ǫ
t ) =ǫu(X̃ǫ

t ) − ǫu(w) − ǫA(X̃ǫ
t )

⇒
∫ t

0

g(X̃ǫ
s)ds =ǫ[u(X̃ǫ

t ) − u(w) − A(X̃ǫ
t )]

⇒
∫ t

0

g(X̃ǫ
s)ds ≤Ktǫ ≤ KT ǫ

The final implication holds because u and A are continuous and Xǫ
t lies in the

compact set N for all 0 ≤ t ≤ T and all ǫ < ǫ0. Note that

H(X̃ǫ
t ) −H(w) =

∫ t

0

∇H(X̃ǫ
s) ·B(X̃ǫ

s)ds

=

∫ t

0

B(H(X̃ǫ
s))ds+

∫ t

0

(

∇H(X̃ǫ
s) ·B(X̃ǫ

s) −B(H(X̃ǫ
s))
)

ds

The second integral is bounded:

∫ t

0

(

∇H(X̃ǫ
s) ·B(X̃ǫ

s) −B(H(X̃ǫ
s))
)

ds =

∫ t

0

g(X̃ǫ
s)ds ≤ Ktǫ

Let Y ǫ
t = H(X̃ǫ

t ). Because of the previous bound,

Y ǫ
t − Y ǫ

0 =

∫ t

0

B(Y ǫ
s )ds+ ρǫ(t)
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where |ρǫ(t)| ≤ Ktǫ. From the Lipschitz continuity of B, we conclude that

Y ǫ
t − Y t =

∫ t

0

(

B(Y ǫ
s ) −B(Y s)

)

ds+ ρǫ(t)

⇒ |Y ǫ
t − Y t| ≤C

∫ t

0

|Y ǫ
s − Y s|ds+Ktǫ

So by Gronwall’s inequality, we obtain

max
0≤t≤T

|Y ǫ
t − Y t| ≤ exp[(CfT )]KT ǫ,

as required.

2.1.2 Examples of the averaging principle in single-well Hamiltonian

systems with stochastic perturbations

We next consider a stochastic perturbation. Suppose Xǫ
t is the solution to the

following stochastic differential equation:

Ẋǫ
t =

1

ǫ
∇H(Xǫ

t ) +B(Xǫ
t ) + σ(Xǫ

t )Ẇt, Xǫ
0 = x0 (2.55)

where B and H are the same functions from (2.1.4); Ẇt represents white noise; and

a(x) = σ(x)σT (x) is a smooth, bounded, positive definite 2 × 2 matrix. Define the

partial differential operator L as follows: for any function u,

Lu =
1

2

∑

i,j

aij(x)
∂2u(x)

∂xi∂xj

, (2.56)

and for any level set H = z, z 6= H(O), let Lu(z) denote

Lu(z) =
1

T (z)

∮

C(z)

Lu(x)

|∇H(x)|dl (2.57)
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Define A(z) and B(z) as

A(z) =
1

T (z)

∮

C(z)

a(x)∇H(x) ·H(x)

|∇H(x)| dl (2.58)

B(z) =
1

T (z)

∮

C(z)

B(x) · ∇H(x)

|∇H(x)| dl (2.59)

Again, from Lemma (2.1.3) A(z), B(z) and LH(z) are (k − 1)-times continuously

differentiable in the interval 0 < z if H is k-times continuously differentiable.

Let Yt be the one-dimensional process satisfying

Ẏt = B(Yt) + LH(Yt) +

√

A(Yt)Ẇt, Y0 = H(x0) (2.60)

Theorem 2.1.6 (An averaging principle for a stochastic perturbation of a single-well

Hamiltonian system). Let Xǫ
t be as given in (2.55). For any fixed time interval [0, T ]

and for any δ > 0, there exists a process Y ǫ
t identical in distribution to Yt such that

lim
ǫ↓0

P

{

sup
0≤t≤T

|H(Xǫ
t ) − Y ǫ

t | > δ

}

= 0 (2.61)

Proof. First, we show that for any T > 0 and η > 0, there exists a compact set Nη

and ǫη > 0 such that for any 0 < ǫ < ǫη,

P

{

sup
0≤t≤T

|Xǫ
t | ∈ Nη

}

> 1 − η (2.62)

Since we assume lim
|x|→∞

H(x) = ∞ and that H has a single nonnegative minimum,

to prove (2.62) it suffices to prove that for every δ > 0 and T > 0, there exists H0

and ǫ0 such that

P

{

max
0≤t≤T

H(Xǫ
t ) > H0

}

< δ (2.63)

for all ǫ < ǫ0.
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To establish (2.63), we apply the Ito formula to H:

H(Xǫ
t ) −H(x) =

∫ t

0

∇H(Xǫ
s) ·B(Xǫ

s)ds+
1

2

∫ t

0

∑

ij

aij(X
ǫ
s)
∂2H(Xǫ

s)

∂x1∂x2

ds (2.64)

+

∫ t

0

∇H(Xǫ
s)σ(Xǫ

s)dWs (2.65)

By the boundedness assumptions on both a(x) and the second derivatives of H, we

can find a constant A1 such that

|1
2

∫ t

0

∑

ij

aij(X
ǫ
s)
∂2H(Xǫ

s)

∂x1∂x2

ds| ≤ A1t (2.66)

Since ∇H(x) ·B(x) < 0 and the expectation of the stochastic integral term is zero,

E[H(Xǫ
t )] < H(x0) + A1t (2.67)

By our assumptions on ∇H(x), there exists a constant C1 such that for |x| suffi-

ciently large, H(x) > C1|x|2. As a result, (2.67) implies that there exist constants

C2, C3 and ǫ0 such that for all ǫ < ǫ0,

E[|Xǫ
t |2] < C2 + C3t (2.68)

Let H0 > H(x0) +A1T . Applying the Kolmogorov-Doob inequality (see [25], §3.2),

we get

P{max
0≤t≤T

H(Xǫ
t ) > H0} (2.69)

≤ P{ sup
0≤t≤T

|
∫ t

0

∇H(Xǫ
s)σ(Xǫ

s)ds| > H0 −H(x0) − A1} (2.70)

≤
E
[

∫ T

0
|∇H(Xǫ

s)σ(Xǫ
s)|2ds

]

(H0 −H(x0) − A1T )2
(2.71)

≤
E
[

∫ T

0
A2|∇H(Xǫ

s)|2ds
]

(H0 −H(x0) − A1T )2
(2.72)
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By assumption, there exists a constant K1 such that for all |x| sufficiently large,

|∇H(x)| > K1|x|. By (2.68), this implies that there exist constants A3 and A4 for

which

E

[∫ T

0

A2|∇H(Xǫ
s)|2ds

]

< A3 + A4T (2.73)

for all ǫ < ǫ0. This ensures that for any fixed T and δ > 0, we can choose H0

sufficiently large to guarantee (2.63).

In light of (2.62), to prove the theorem, it suffices to prove that for anyN <∞,

lim
ǫ→0

P

{

sup
0≤t≤t

|H(Xǫ
t ) − Y ǫ

t | > δ, sup
0≤t≤T

|Xǫ
t | < N

}

= 0 (2.74)

Let f be a twice continuously differentiable function f : R
2 → R, and let f̂ denote

the average value of f on each level set C(z) of H:

f̂(z) =
1

T (z)

∮

C(z)

f(x)

|∇H(x)|dl (2.75)

We prove the following claim:

Claim 2.1.7. Let f satisfy the aforementioned assumptions and let f̂ be defined as

in (2.75). For any N <∞, define the event Aǫ
N =

{

ω : sup
0≤t≤T

|Xǫ
t | < N

}

. Then the

following limits hold:

lim
ǫ↓0

P

{

sup
0≤t≤T

∫ t

0

[f(Xǫ
s) − f̂(H(Xǫ

s))]ds > δ, sup
0≤t≤T

|Xǫ
t | < N

}

= 0 (2.76)

and also

lim
ǫ↓0

{

sup
0≤t≤T

E

[(∫ t

0

[f(Xǫ
s) − f̂(H(Xǫ

s))]ds

)

1Aǫ
N

]2
}

= 0 (2.77)

Proof. To justify this, let u be a solution of the partial differential equation

∇H(x)∇u(x) = f(x) − f̂(H(x)) (2.78)
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This equation is solvable for u because again, by construction, the right hand side

integrates to zero with respect to the invariant density on each level set. The solution

u is also twice continuously differentiable. By the Ito formula for u, we have

u(Xǫ
t )−u(x) =

1

ǫ

∫ t

0

(∇u·∇H)(Xǫ
s)ds+

∫ t

0

∇u·σ(Xǫ
s)dWs+

1

2

∫ t

0

Lu(Xǫ
s)ds (2.79)

which implies

∫ t

0

(∇u · ∇H)(Xǫ
s)ds =ǫ

[

u(Xǫ
t ) − u(x) +

∫ t

0

∇u · σ(Xǫ
s)dWs +

1

2

∫ t

0

Lu(Xǫ
s)ds

]

(2.80)

∫ t

0

(f(Xǫ
s) − f̂(H(Xǫ

s))ds =ǫ

[

u(Xǫ
t ) − u(x) +

1

2

∫ t

0

Lu(Xǫ
s)ds+

∫ t

0

∇u · σ(Xǫ
s)dWs

]

(2.81)

and this implies

∫ t

0

(f(Xǫ
s)−f̂(H(Xǫ

s))ds = ǫ

[

u(Xǫ
t ) − u(x) +

1

2

∫ t

0

Lu(Xǫ
s)ds

]

+ǫ

[∫ t

0

∇u · σ(Xǫ
s)dWs

]

(2.82)

Let ρǫ
t(f) denote the right-hand side of this expression:

ρǫ
t(f) = ǫ

[

u(Xǫ
t ) − u(x) +

1

2

∫ t

0

Lu(Xǫ
s)ds+

∫ t

0

∇u · σ(Xǫ
s)dWs

]

(2.83)

On the event Aǫ
N =

{

sup
0≤t≤T

|Xǫ
t | < N

}

, the continuity of the integrand implies that

the Riemann integral on the right-hand side is bounded. By the Kolmogorov-Doob

inequality, for any η > 0,

P

{

sup
0≤t≤T

∫ t

0

∇u · σ(Xǫ
s)dWs > η,Aǫ

N

}

≤ 1

η2
E

[(∫ T

0

∇u · σ(Xǫ
s)dWs

)

1Aǫ
N

]2

(2.84)
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and by the Ito isometry,

E

[(∫ T

0

∇u · σ(Xǫ
s)dWs

)

1Aǫ
N

]2

= E

[(∫ T

0

(∇u · σ(Xǫ
s))

2 ds

)

1Aǫ
N

]

(2.85)

and the right-hand side of the above equality is again bounded since ∇u and σ are

continuous. Therefore

P

{

sup
0≤t≤T

∫ t

0

(f(Xǫ
s) − f̂(H(Xǫ

s))ds > δ,Aǫ
N

}

→ 0 (2.86)

as ǫ ↓ 0. Also, squaring both sides and taking expectations in (2.82), we get

E

[(∫ t

0

(f(Xǫ
s) − f̂(H(Xǫ

s))ds

)

1Aǫ
N

]2

≤2ǫ2E

[(

u(Xǫ
t ) − u(x) +

1

2

∫ t

0

Lu(Xǫ
s)ds

)

1Aǫ
N

]2

(2.87)

+2ǫ2E

[(∫ t

0

∇u · σ(Xǫ
s)dWs

)

1Aǫ
N

]2

(2.88)

and again by the Ito isometry and the smoothness of u and σ, both the expectations

on the right-hand side are uniformly bounded for 0 ≤ t ≤ T . Hence the right-hand

side converges to 0 uniformly in 0 ≤ t ≤ T as ǫ ↓ 0. This completes the proof of the

claim.

Continuing now with the proof of the theorem, applying the Ito formula to

the process H(Xǫ
t ), we get

H(Xǫ
t ) −H(x) =

∫ t

0

∇H(Xǫ
s) ·B(Xǫ

s)ds+
1

2

∫ t

0

∑

ij

aij(X
ǫ
s)
∂2H(Xǫ

s)

∂x1∂x2

ds (2.89)

+

∫ t

0

∇H(Xǫ
s)σ(Xǫ

s)dWs (2.90)
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By the random-time change formula and the self-similarity of the Wiener process

(see [25], §8.5), the stochastic integral can be written as

W̃ ǫ

[∫ t

0

a(Xǫ
s)∇H(Xǫ

s) · ∇H(Xǫ
s)ds

]

(2.91)

where W̃ ǫ is a one-dimensional Wiener process.

We have the following formula for the evolution of H(Xǫ
t ):

H(Xǫ
t ) = H(x) +

∫ t

0

B(H(Xǫ
s)) +

∫ t

0

LH(H(Xǫ
s))ds

(2.92)

+W̃ ǫ

[∫ t

0

A(H(Xǫ
s))ds+

∫ t

0

a(Xǫ
s)∇H(Xǫ

s) · ∇H(Xǫ
s)ds−

∫ t

0

A(H(Xǫ
s))ds

]

(2.93)

−W̃ ǫ

[∫ t

0

A(H(Xǫ
s))ds

]

+ W̃ ǫ

[∫ t

0

A(H(Xǫ
s))ds

]

(2.94)

+

∫ t

0

[∇H(Xǫ
s)B(Xǫ

s) −B(H(Xǫ
s))]ds+

∫ t

0

[LH(Xǫ
s) − LH(H(Xǫ

s))]ds

(2.95)

Define the random variable ηǫ
t as

ηǫ
t =W̃ ǫ

[∫ t

0

A(H(Xǫ
s))ds+

∫ t

0

a(Xǫ
s)∇H(Xǫ

s) · ∇H(Xǫ
s)ds−

∫ t

0

A(H(Xǫ
s))ds

]

(2.96)

−W̃ ǫ

[∫ t

0

A(H(Xǫ
s))ds

]

(2.97)

By the uniform continuity of the Wiener process and (2.1.7),

sup
0≤t≤T

|ηǫ
t |1Aǫ

N
→ 0 in probability, and sup

0≤t≤T
E
[(

|ηǫ
t |2
)

1Aǫ
N

]

→ 0 (2.98)
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as ǫ ↓ 0. We have

H(Xǫ
t ) = H(x) +

∫ t

0

B(H(Xǫ
s)) +

∫ t

0

LH(H(Xǫ
s))ds (2.99)

+ ηǫ
t + W̃ ǫ

[∫ t

0

A(H(Xǫ
s))ds

]

(2.100)

+

∫ t

0

[∇H(Xǫ
s)B(Xǫ

s) −B(H(Xǫ
s))]ds+

∫ t

0

[LH(Xǫ
s) − LH(H(Xǫ

s))]ds

(2.101)

By the random-time change formula, there exists another Wiener process ˜̃W ǫ such

that

W̃ ǫ

[∫ t

0

A(H(Xǫ
s))ds

]

=

∫ t

0

√

A(H(Xǫ
s)d

˜̃W ǫ
s (2.102)

Let Y ǫ
t be the process defined by

Y ǫ
t −H(x0) =

∫ t

0

B(Y ǫ
s ) + LH(Y ǫ

s )ds+

∫ t

0

√

A(Y ǫ
s )d ˜̃W ǫ

s (2.103)

This process is identical in distribution to Yt for each ǫ > 0. Let D = B + LH, and

put Zǫ
t = H(Xǫ

t ). Then

Zǫ
t − Y ǫ

t =

∫ t

0

[D(Zǫ
s) −D(Y ǫ

s )]ds (2.104)

+ηǫ
t +

∫ t

0

[

√

A(Zǫ
s) −

√

A(Y ǫ
s )

]

d ˜̃W ǫ
s (2.105)

+

∫ t

0

[∇H(Xǫ
s)B(Xǫ

s) −B(Zǫ
s)]ds+

∫ t

0

[LH(Xǫ
s) − LH(Zǫ

s)]ds (2.106)

By Lipschitz continuity of D, we get

|Zǫ
t − Y ǫ

t | ≤
∫ t

0

K1|Zǫ
s − Y ǫ

s |ds (2.107)

+|ηǫ
t | +

∫ t

0

[

√

A(Zǫ
s) −

√

A(Y ǫ
s )

]

d ˜̃W ǫ
s (2.108)

+

∫ t

0

[∇H(Xǫ
s)B(Xǫ

s) −B(Zǫ
s)]ds +

∫ t

0

[LH(Xǫ
s) − LH(Zǫ

s)]ds

(2.109)
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In what follows, we assume all expectations to be taken over the set Aǫ
N = {ω :

sup
0≤t≤T

|Xǫ
t | < N}. (For notational convenience, we suppress the repeated use of the

indicator function 1Aǫ
N

within the expectation.)

By Claim (2.1.7), the terms

sup
0≤t≤T

E[ρǫ
t(B)]2 = sup

0≤t≤T
E

[∫ t

0

[∇H(Xǫ
s)B(Xǫ

s) −B(H(Xǫ
s))]ds

]2

and (2.110)

sup
0≤t≤T

E[ρǫ(LH)]2 = sup
0≤t≤T

E

[∫ t

0

[LH(Xǫ
s) − LH(H(Xǫ

s))]ds

]2

(2.111)

converge to zero as ǫ ↓ 0.

Let K2 be the Lipschitz constant for
√
A. Squaring and taking expectations,

we get:

E|Zǫ
t − Y ǫ

t |2 ≤8E

[∫ t

0

K1|Zǫ
s − Y ǫ

s |ds
]2

(2.112)

+8E[|ηǫ
t |2] + 8E

[∫ t

0

[

√

A(Zǫ
s) −

√

A(Y ǫ
s )

]

d ˜̃W ǫ
s

]2

(2.113)

+8E

[∫ t

0

[∇H(Xǫ
s)B(Xǫ

s) −B(Zǫ
s)]ds

]2

(2.114)

+8E

[∫ t

0

[LH(Xǫ
s) − LH(Zǫ

s)]ds

]2

(2.115)

From the Ito isometry, Fubini’s theorem, and Lipschitz continuity, we derive

E

[∫ t

0

[

√

A(Zǫ
s) −

√

A(Y ǫ
s )

]

d ˜̃W ǫ
s

]2

=E

∫ t

0

[

√

A(Zǫ
s) −

√

A(Y ǫ
s )

]2

ds (2.116)

≤
∫ t

0

K2
2E
[

|Zǫ
s − Y ǫ

s |2
]

ds (2.117)

Put mǫ(s) = sup0≤u≤sE[|Zǫ
u − Y ǫ

u |2]. From Holder’s inequality and (2.107), (2.112),
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and (2.116), we deduce that

mǫ(t) ≤8TK2
1

∫ t

0

mǫ(s)ds+ 8K2
2

∫ t

0

mǫ(s)ds

+8 sup
0≤t≤T

E[(ηǫ
t)

2] + 8 sup
0≤t≤T

E[(ρǫ
t(B))2] + 8 sup

0≤t≤T
E[(ρǫ

t(LH))2]

By Gronwall’s inequality, mǫ(t) → 0 as ǫ ↓ 0.

From (2.107), we have

|Zǫ
t − Y ǫ

t | ≤
∫ t

0

K1|Zǫ
s − Y ǫ

s |ds+ |ηǫ
t | (2.118)

+

∫ t

0

[∇H(Xǫ
s)B(Xǫ

s) −B(Zǫ
s)]ds +

∫ t

0

[LH(Xǫ
s) − LH(Zǫ

s)]ds

(2.119)

+

∫ t

0

[

√

A(Zǫ
s) −

√

A(Y ǫ
s )

]

d ˜̃W ǫ
s (2.120)

We have established that the second, third, and fourth terms of the right-hand side

of the above inequality converge to zero uniformly in probability. To estimate the

stochastic integral, we once again apply Kolmogorov’s inequality:

P

{

sup
0≤t≤T

∫ t

0

[

√

A(Zǫ
s) −

√

A(Y ǫ
s )

]

d ˜̃W ǫ
s > δ

}

(2.121)

≤
E

[

∫ T

0

√

A(Zǫ
s) −

√

A(Y ǫ
s )d ˜̃W ǫ

s

]2

δ2
≤ 1

δ2

∫ T

0

K2E|Zǫ
s − Y ǫ

s |2ds (2.122)

Since

sup
0≤t≤T

E|Zǫ
t − Y ǫ

t |2 → 0 (2.123)

as ǫ ↓ 0, we conclude that as ǫ ↓ 0,

P

{

sup
0≤t≤T

∫ t

0

[

√

A(Zǫ
s) −

√

A(Y ǫ
s )

]

d ˜̃W ǫ
s > δ

}

→ 0. (2.124)
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Let Rǫ(t) be defined as

Rǫ(t) =|ηǫ
t | +

∫ t

0

[∇H(Xǫ
s)B(Xǫ

s) −B(Zǫ
s)]ds +

∫ t

0

[LH(Xǫ
s) − LH(Zǫ

s)]ds

(2.125)

+

∫ t

0

[

√

A(Zǫ
s) −

√

A(Y ǫ
s )

]

d ˜̃W ǫ
s (2.126)

We have established that sup
0≤t≤T

Rǫ(t) converges to zero in probability as ǫ ↓ 0. Put

rǫ(t) = sup
0≤t≤T

|Zǫ
t − Yt|. We conclude from the above analysis that

rǫ(t) ≤
∫ t

0

K1r
ǫ(s)ds+ sup

0≤t≤T
Rǫ(t) (2.127)

So by Gronwall’s inequality, we conclude that

lim
ǫ↓0

P

{

sup
0≤t≤T

|H(Xǫ
t ) − Y ǫ

t | > δ,Aǫ
N

}

= 0 (2.128)

as required. From (2.74), this proves the theorem.

Corollary 2.1.8. The process H(Xǫ
t ) converges weakly in C0T to the process Yt.

We also address the case when the fast motion is stochastic. Consider a

single-well Hamiltonian system, with both deterministic and stochastic perturba-

tions, written in action-angle coordinates:

˙̃Iǫ =ǫ(β1(Ĩ
ǫ, φ̃ǫ)) (2.129)

˙̃φǫ =ω(Ĩǫ) + σ(Ĩǫ, φ̃ǫ) ˙̃Wt + ǫβ2(Ĩ
ǫ, φ̃ǫ) (2.130)

We assume smoothness, boundedness, and non-degeneracy of the diffusion coefficient

σ and smoothness and boundedness of the drift coefficients β1 and β2. Rescaling
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time by the transform t→ t/ǫ, we get the system

İǫ =β1(I
ǫ, φǫ) (2.131)

φ̇ǫ =
1

ǫ
ω(Iǫ) +

1√
ǫ
σ(Iǫ, φǫ)Ẇt + β2(I

ǫ, φǫ) (2.132)

Consider the one-dimensional family of diffusions parameterized by I on each level

set:

φ̇ = ω(I) + σ(I, φ)Ẇt (2.133)

Lemma 2.1.9. On each level set I, there exists a unique invariant density mI .

Proof. Let L be the second-order differential operator associated to the one-dimensional

diffusion in (2.133). The invariant density is the appropriately normalized kernel

of the forward Kolmogorov operator, which corresponds to the formal adjoint of L.

The invariant density m must therefore satisfy

1

2

d2

dφ2
(σ2m) − ω

dm

dφ
= 0 (2.134)

and since ω is a solely a function of I, we get

d

dφ

(

σ2

2
m

)

− ωm = C1 (2.135)

Setting y = (σ2m)/2 gives the equation σ2

2
y′−ωy = C1

σ2

2
. From the non-degeneracy

conditions, this equation has solution

y(φ) = y(0) exp

(∫ φ

0

2ω

φ2
ds

)

+ C1

∫ φ

0

exp

(∫ φ

τ

2ω

σ2
ds

)

dτ (2.136)

Because the trajectories on each level set are periodic, we must choose y(0) = y(2π),

which implies that

y(0) =
C1

∫ 2π

0
exp

(

∫ 2π

τ
2ω
σ2 ds

)

dτ

1 − exp
(

∫ 2π

0
2ω
σ2 ds

) (2.137)
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and replacing this into the equation for y(φ) and recalling that y = σ2m
2

, we get

m(φ) = C1
2

σ2









C1

∫ 2π

0
exp

(

∫ 2π

τ
2ω
σ2 ds

)

dτ

1 − exp
(

∫ 2π

0
2ω
σ2 ds

)



 exp

(∫ φ

0

2ω

φ2
ds

)

+

∫ φ

0

exp

(∫ φ

τ

2ω

σ2
ds

)

dτ





(2.138)

where C1 is uniquely chosen to satisfy
∫ 2π

0
m(φ)dφ = 1.

Theorem 2.1.10 (An averaging principle for stochastic fast motion). Define

β1(I) =

∫ 2π

0

β1(I, φ)mI(φ)dφ (2.139)

where mI(φ) is the invariant density on level set I, and I t satisfies the differential

equation

İ t = β1(I t). (2.140)

Then for all T <∞ and δ > 0,

lim
ǫ→0

P

{

sup
0≤t≤T

|Iǫ
t − I t| > δ

}

= 0 (2.141)

Proof. Since the initial conditions for Iǫ
t and I t are the same, we have

|Iǫ
t − I t| =|

∫ t

0

β1(I
ǫ
s, φ

ǫ
s) − β1(Is)ds| (2.142)

=|
∫ t

0

β1(I
ǫ
s, φ

ǫ
s) − β1(I

ǫ
s)ds+

∫ t

0

β1(I
ǫ
s) − β1(Is)ds| (2.143)

Put m(t) = mǫ(t) = sup
0≤s≤t

|Iǫ
s − Is|. By the Lipschitz continuity of β1, we find

m(t) ≤ K

∫ t

0

m(s)ds+ sup
0≤t1≤t

|
∫ t1

0

β1(I
ǫ
s, φ

ǫ
s) − β1(I

ǫ
s)ds| (2.144)

By Gronwall’s inequality, this implies

m(T ) ≤ expKT

[

sup
0≤t1≤t

|
∫ t1

0

β1(I
ǫ
s, φ

ǫ
s) − β1(I

ǫ
s)ds|

]

(2.145)
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So it suffices to prove that

sup
0≤t1≤t

|
∫ t1

0

β1(I
ǫ
s, φ

ǫ
s) − β1(I

ǫ
s)ds| → 0 (2.146)

in probability as ǫ ↓ 0. As in the previous proof, our conditions on the drift and

diffusion coefficents guarantee that for any η > 0, there exists a compact set Kη and

a positive real number ǫ0 such that for all 0 ≤ t ≤ T and ǫ < ǫ0,

P{(Iǫ
t , φ

ǫ
t) /∈ Kη, 0 ≤ t ≤ T} < η (2.147)

so we can again restrict our attention to the case when the trajectories (Iǫ
t , φ

ǫ
t) belong

to a compact set in R
2 for 0 ≤ t ≤ T , ǫ < ǫ0.

Let L be the second-order differential operator L = ω(I) d
dφ

+ 1
2
σ2(I, φ) d2

dφ2 , and

let u solve the ODE

Lu =

(

ω(I)
d

dφ
+

1

2
σ2(I, φ)

d2

dφ2

)

u = β1(I, φ) − β1(I) (2.148)

where φ is any point on the circle and I is viewed as a parameter. Note that

a solution u exists by the Fredholm alternative (see [7]): the right-hand side is

orthogonal to the solution space of L∗m = 0 because L∗ is precisely the forward

Kolmogorov operator and the invariant density mI(φ) is the unique normalized

element of its kernel. Since the coefficients of L are smooth, u is smooth, and we

apply Ito’s formula to u:

u(Iǫ
t , φ

ǫ
t) − u(Iǫ

0, φ
ǫ
0) =

1√
ǫ

∫ t

0

∂u

∂φ
σdWs +

1

ǫ

∫ t

0

σ2

2

∂2u

∂φ2
+ ω

∂u

∂φ
ds (2.149)

+

∫ t

0

∂u

∂I
β1 +

∂u

∂φ
β2ds (2.150)
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which implies

∫ t

0

β1(I
ǫ
s, φ

ǫ
s) − β1(Is)ds =ǫ

(

u(Iǫ
t , φ

ǫ
t) − u(Iǫ

0, φ
ǫ
0) −

[∫ t

0

∂u

∂I
β1 +

∂u

∂φ
β2ds

])

(2.151)

−
√
ǫ

(∫ t

0

∂u

∂φ
σdWs

)

(2.152)

By the smoothness of u, β1, and β2,

sup
0≤t≤T

(

u(Iǫ
t , φ

ǫ
t) − u(Iǫ

0, φ
ǫ
0) −

[∫ t

0

∂u

∂I
β1 +

∂u

∂φ
β2ds

])

(2.153)

is bounded with probability one by some constant CT . By Kolmogorov’s inequality

and the Ito isometry, we deduce

P

{

sup
0≤t≤T

(∫ t

0

∂u

∂φ
σdWs

)

> δ

}

≤ 1

δ2
E

[∫ T

0

|∂u
∂φ
σ|2ds

]

(2.154)

and therefore

sup
0≤t≤T

[

|
∫ t

0

β1(I
ǫ
s, φ

ǫ
s) − β1(I

ǫ
s)ds|

]

→ 0 (2.155)

in probability as ǫ ↓ 0.

2.2 The Freidlin-Wentzell generalization of the averaging principle

for multiwell Hamiltonians

In this section, we consider deterministic and stochastic perturbations of a

Hamiltonian system in which H(x1, x2) has multiple wells. Suppose H has the form

shown in Figure (1.1), reproduced below.

Here Γ represents the graph obtained by identifying all points of every con-

nected component of each level set of the Hamiltonian, as described in Chapter 1.
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Figure 2.2: H(x1, x2) and the Graph Γ

The vertices of Γ correspond to critical points of H: exterior vertices to minima (or

maxima of H, if they exist), and interior vertices to saddle points. Each edge of Γ

is indexed by a number, I1, I2, . . . Im, and each point y on Γ is indexed by the pair

(z, i), where z is the value of the Hamiltonian on the level set corresponding to y,

and i is the edge number containing y. The pair (z, i) forms a global coordinate

system on Γ.

Let x ∈ R
2 denote x = (x1, x2). Let Q : R

2 → Γ;Q(x) = (H(x), i(x)) be

the projection onto Γ of a point x in R
2. We denote the images in Γ of the critical

points Or under Q as simply Or, and we write Ik ∼ Or if Or lies at the boundary of

an edge Ik. We endow Γ with the natural topology, so a set U is open in Γ if and

only if Q−1(U) is open in R
2.

Let X(t) with initial condition X0 = x0 denote the solution to the unperturbed
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Hamiltonian system (1.2) and let X̃ǫ(t) denote the solution to (1.6), the rescaled

Hamiltonian system with a small deterministic perturbation. Again, since H is a first

integral for the unperturbed system (1.2), the non-separatrix trajectories of X(t)

consist of periodic motion around closed curves. Now, however, non-separatrix level

sets can have multiple connected components. Let C(z) = {x ∈ R
2 : H(x) = z} be

the level set corresponding to H = z, and let Ci(z) be the connected components

of C(z), so C(z) =
⋃

iCi(z). There exists a unique invariant measure µz,i for the

dynamical system (1.2) concentrated on each connected component Ci(z) of every

non-separatrix level set z, given as before by

µz,i(A) =
1

Ti(z)

∮

A

dl

|∇H(x)| (2.156)

where dl is the length element and Ti(z) is the period of the trajectory concentrated

on Ci(z). The evolution of H(X̃ǫ(t)) along any given edge I of the graph Γ is

identical to what we described in the previous section, namely:

H(X̃ǫ(t)) −H(X̃ǫ(0)) =

∫ t

0

∇H(X̃ǫ(s)) ·B(X̃ǫ(s))ds (2.157)

Near a level set z, the fast motion can be approximated by averaging with

respect to the invariant measure concentrated over the trajectory Ci(z), where i =

i(x0).

We denote by Ti(z) the period of the trajectory on Ci(z), so again we have

Ti(z) =

∮

Ci(z)

dl

|∇H(x)| .

and we denote by Gi(z) the region bounded by Ci(z). Let Si(z) = Area[Gi(z)]. Put

Bi(z) =
1

Ti(z)

∮

Ci(z)

∇H(x) ·B(x)

|∇H(x)| dl (2.158)
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and again by the divergence theorem, we define B̃i(z) as

B̃i(z) =

∮

Ci(z)

∇H(x) ·B(x)

|∇H(x)| dl =

∫

Gi(z)

[divB(x)]dx1dx2 (2.159)

Fix any initial point x = (x1(0), x2(0)) and let X̃ǫ(t) be the solution of (1.6)

with X̃ǫ(0) = x = (x1(0), x2(0)). Let Q(X(0)) = (z, i) where z = H(X(0)) and i is

the edge number corresponding to X(0). For any finite time interval [0, T ] such that

X̃ǫ(t) does not intersect the level set of a saddle point, Theorem (2.1.4) guarantees

that the slow component H(X̃ǫ(t)) converges uniformly as ǫ ↓ 0 to the solution H i(t)

of the averaged system

Ḣ i(t) = Bi(Hi(t)) (2.160)

where Hi(0) = H(X(0)) = z0.

We apply the averaging principle inside certain edges of the graph Γ to describe

the limiting slow motion H(X̃ǫ(t)) as ǫ ↓ 0. Since we assume div(B(x)) < 0,

B̃i(z) is negative and does not change sign, so the limiting slow motion within

each edge is monotone. Note that lim
z→H(Oj)+

B̃i(z) = 0 for any saddle point Oj and

lim
z→H(Ok)+

B̃i(z) = 0 for any stable fixed point Ok, where Ii ∼ Oj and Ii ∼ Ok. By

linearizing in a small neighborhood of any saddle point Oj, we see that if H(x) >

H(Oj), the averaged trajectory H i(x)(t) beginning at (H(x), i(x)) will reach H(Oj)

in finite time.

Lemma 2.2.1. Let Ti(z), B̃i(z), and Ai(z), and Gi(z) be defined as above. Then

• For any non-saddle level set, S ′
i(z) = Ti(z);

• If O is a saddle point of H and z0 = H(O), there exists a constant C such
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that

lim
z→z+

0

Ti(z)

ln(|z − z0|)−1
= C (2.161)

• If Oe is a minimum of H, there exists a constant D > 0 such that Ti(z) → D

as z → H(Oe).

Proof. For (i), let x be some point on the level set H = z, and let Ci(z) be the

corresponding closed curve containing x; similarly let Ci(z + ∆z) be the closed

curve corresponding to the level set H = z + ∆z. We assume for simplicity that

Gi(z) ⊂ Gi(z + ∆z). Let ∆l be the arc length element along Ci(z). Let ∆x be the

width of the annular region Gi(z + ∆z) \Gi(z) at the point x. We have

∆z = |∇H(x)|∆x+ o(∆z) (2.162)

⇒ ∆Si(z) =

∮

Ci(z)

dl

|∇H(x)| · ∆(z) + o(∆z) (2.163)

⇒ S ′
i(z) =

∮

dl

|∇H(x)| (2.164)

More generally, this argument can be applied to show that if

F (z) =

∫

G(z)

f(x)dx1dx2 (2.165)

for a continuous function f , then

F ′(z) =

∮

Ci(z)

f(x)

|∇H(x)|dl (2.166)

For (ii), let Na be a small neighborhood of the saddle point O and note that

Ti(z) can be separated into two pieces: Ti,Na
(z), i.e. the time the trajectory spends in

Na, and Ti,NC
a
(z), the time the trajectory spends outside of Na. Ti,NC

a
(z) is bounded

uniformly in the region z − z0 because |∇H(x)| > δ for some positive δ in NC
a , and
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Figure 2.3: Local coordinates near a saddle point and annular regions

the length of the curve Ck(z) is bounded uniformly in z. Since saddle points are

hyperbolic fixed points, there exists a smooth, nondegenerate change of coordinates

within Na such that the dynamical system Ẋ = ∇H(X) can be written

ẋ1 =λx1 + x1g(x1, x2) (2.167)

ẋ2 = − λx2 + x2h(x1, x2) (2.168)

In these coordinates, the separatrices of a saddle point become the coordinate axes,

the saddle point O becomes the origin, and g and h are continuously differentiable

and satisfy g(0, 0) = h(0, 0) = 0. We bound the time TAB for the trajectory to

travel from A = (c(z − z0), da) to B where B has x1-coordinate ea and c, d, and e

are constants depending on z − z0, but with finite limits c, d, and e as z − z0 → 0.

For every 0 < b << 1, we can choose a sufficiently small that within Na, we have

(λ(1 − b))x1(t) ≤ ẋ1(t) ≤ (λ(1 + b))x1(t) (2.169)
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and we deduce

− ln(|z − z0|) + ln c− ln ea

1 + b
≤ λTAB(z − z0) ≤ − ln(|z − z0|) + ln c− ln ea

1 − b
(2.170)

so that

1

λ(1 + b)
≤ limz→z+

0

TAB(z − z0)

ln(|z − z0|−1)
≤ limz→z+

0

TAB(z − z0)

ln(|z − z0|−1)
≤ 1

λ(1 − b)
(2.171)

For (iii), let
[

∂2H(x)
∂x1∂x2

]

denote the Hessian matrix of partial derivatives of H at x. Ob-

serve that for values z near z0, the Hamiltonian can be approximated by a quadratic

form because ∇H = 0 and the Hessian is nondegenerate. We claim

∮

Ci(z)

1

|∇H(x)|dl →
C

√

det
[

∂2H(0)
∂x1∂x2

]

> 0 (2.172)

as z → H(Oe) with Oe a minimum of H. Without loss of generality, we can take

H(Oe) = 0. Since Oe is a nondegenerate mininum, the Hessian of H at Oe is

symmetric and positive definite. For any sufficiently small δ-neighborhood of Oe,

there exists a change of coordinates so that H(x1, x2) can be written

H(x1, x2) = Ax2
1 +Bx2

2 + o(δ2) (2.173)

for |(x1, x2) −Oe| < δ, with

√
AB =

√

[

∂2H(Oe)

∂x1∂x2

]

(2.174)

For E a nonzero constant, parameterizing the ellipses Ax2
1 +Bx2

2 = E by

x1 =

√
E√
A

cos t, x2 =

√
E√
B

sin t (2.175)

and computing the line integral, we get

lim
z→H(Oe)

Ti(z) =
2π

√

[

∂2H(Oe)
∂x1∂x2

]

> 0 (2.176)
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The behavior of the slow componentQ(X̃ǫ(t)) is very sensitive to small changes

in ǫ, and as described in [3], Q(X̃ǫ(t)) does not have a limit as ǫ ↓ 0 for t large enough.

Also, since interior vertices are accessible for H(X̃ǫ(t)), the behavior of the process

at each interior vertex must be specified. In [3], it is proved that in a certain sense,

Q(X̃ǫ(t)) tends to a stochastic process on the graph Γ as ǫ → 0. To give this a

rigorous meaning, we let X̃ǫ,κ(t) be a two-dimensional diffusion with generator Lǫ,κ,

as in (1.7):

Lǫ,κ(u(x)) =
κ

2
div(a(x)∇u(x)) +B(x) · ∇u(x) +

1

ǫ
∇H(x) · ∇u(x)

We assume that a(x) is a smooth, uniformly positive definite 2 × 2 diffusion

matrix.

Fix an initial point x = (x1(0), x2(0)). Suppose X̃ǫ,κ(0) = x, and let Q(x) =

(H(x), i(x)) be the projection of x onto the graph Γ. Since X̃ǫ,κ(t) has a random

component, the trajectory can, over time, move from one connected component of a

level set to another. As ǫ ↓ 0, we can still apply the averaging principle to determine

the limiting motion of the first component of Q(X̃ǫ,κ(t)) = (H(X̃ǫ,κ(t)), i(X̃ǫ(t))),

but only within each edge of Γ; that is, as long as i(X̃ǫ,κ(t)) = i(x).

Fix an edge Ii on Γ. We apply the Ito formula to H(X̃ǫ,κ(t)) and average with
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respect to the invariant measure concentrated on Ci(z) for each level set H = z:

H(X̃ǫ,κ(t)) −H(X̃ǫ,κ(0)) =

∫ t

0

∇H(X̃ǫ,κ(s)) ·B(X̃ǫ,κ(s))ds (2.177)

+

∫ t

0

κ

2









∂a11(X̃ǫ,κ(s))
∂x1

+ ∂a21(X̃ǫ,κ(s))
∂x2

∂a12(X̃ǫ,κ(s))
∂x1

+ ∂a22(X̃ǫ,κ(s))
∂x2









∇H(X̃ǫ,κ(s))ds (2.178)

+

∫ t

0

κ

2

[

2
∑

i,j=1

aij(X̃
ǫ,κ(s))

∂H(X̃ǫ,κ(s))

∂xi∂xj

]

ds (2.179)

+W̃

[∫ t

0

κa(X̃ǫ,κ(s))∇H(X̃ǫ,κ(s)) · ∇H(X̃ǫ,κ(s))ds

]

(2.180)

where W̃ is a Wiener process.

So we get

H(X̃ǫ,κ(t)) −H(X̃ǫ,κ(0)) =

∫ t

0

∇H(X̃ǫ,κ(s)) ·B(X̃ǫ,κ(s))ds (2.181)

+

∫ t

0

κ

2
div
[

a(X̃ǫ,κ(s)) · ∇H(X̃ǫ,κ(s))
]

ds (2.182)

+W̃

[∫ t

0

κa(X̃ǫ,κ(s))∇H(X̃ǫ,κ(s)) · ∇H(X̃ǫ,κ(s))ds

]

(2.183)

We compute the average value of each of the integrands over a level set H = z.

Define B̃(z) as before, and put

Ai(z) =

∮

Ci(z)

a(x)∇H(x) · ∇H(x)

|∇H(x)| dl (2.184)

=

∫

Gi(z)

div(a(x)∇H(x))dx1dx2 (2.185)

so that A′
i(z)is given by

A′
i(z) =

∮

Ci(z)

div(a(x)∇H(x))

|∇H(x)| dl (2.186)
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Along any edge Ii of Γ, Q(X̃ǫ,κ(t)) can be approximated as ǫ ↓ 0 by a diffusion

process on Ii with generator Lκ
i :

Lκ
i (ui(z)) =

κ

2Ti(z)

d

dz

{

Ai(z)
dui(z)

dz

}

+
B̃i(z)

Ti(z)

dui(z)

dz
(2.187)

Let Qκ be a process on Γ with generator Lκ such that on each edge Ii, L
κ is

given by Lκ
i . To complete the description of Qκ, we specify certain gluing conditions

(see §8, [18]) at each interior vertex Oj. These conditions are restrictions are on the

domain of the generator Lκ.

For any interior vertex Oj with edges Ik ∼ Oj, let γk
j represent the separatrix

curves that meet at Oj, and Gk(Oj) the interior regions bounded by the separatrices

γk
j , as in the figure below.

jj

1 2

Oj
G(Oj1 2

G(Oj ) )

Figure 2.4: Separatrices γk
j and interior regions Gk(Oj)

Define constants βjk as follows:

βjk =

∮

γk
j

a(x)∇H(x) · ∇H(x)

|∇H(x)| dl (2.188)

We say that a continuous function u(z) : Γ → R, belongs to the domain of

definition of the generator Lκ of diffusion process Qκ(t) if:

1. The function u(z) is smooth on the interior of Ii;

2. At each interior vertex Oj, with corresponding edges Ik meeting at Oj, the
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following gluing condition is satisfied:

∑

k:Ik∼Oj

±βjkDku(Oj) = 0 (2.189)

where the (+) or (-) is chosen according to whether the value of H increases or

decreases along edge Ik as we approach Oj, and Dk represents the derivative

in the direction of the edge Ik.

3. The function vi(z) = Lκ
i (ui(z)) is continuous on Γ.

In §8 of [18] and in [19], it is proved that the generators on each edge and

gluing conditions at each interior vertex uniquely determine the process Qκ(t) on Γ,

and Qκ(t) is a continuous strong Markov diffusion process on Γ. As we show in the

next chapter, exterior vertices are inaccessible for Qκ(t).

For any arbitrary but fixed time interval [0, T ], let C0T (Γ) be the continuous

functions φ : [0, T ] → Γ. It is proved in [18] and [16] that Q(X̃ǫ,κ(t)) converges

weakly in C0T (Γ) to the process Qκ(t) as ǫ ↓ 0.

An edge Ik ∼ Oj is an exit edge for Oj if H(Q−1(z, k)) increases as (z, k)

approaches Oj along Ik; otherwise Ik is an entrance edge. For example, edge I6 on

the graph in Figure (2.2) is an entrance edge for O6, and edges I4 and I2 are exit

edges for O6.

For any interior vertex Oj, Gk(Oj) denotes the interior of the region bounded

by the separatrix γk
j (see previous figure). Define B̃k(Oj) according to the formula

B̃k(Oj) =

∫

Gk(Oj)

div(B(x))dx (2.190)
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In [3], it is established that as κ ↓ 0, Qκ(t) converges weakly in C[0T ](Γ), for

any fixed T > 0, to a process Q(t), defined as follows:

1. In the interior of any edge Ii of Γ, Q(t) is deterministic motion satisfying

dQ(t)

dt
=

1

Ti(Q(t))

∫

Gi(Q(t))

div(B(x))dx (2.191)

2. If there is only one exit edge for an interior vertex Oj, the process leaves Oj

without delay along the exit edge.

3. If there are multiple exit edges Iks
∼ Oj, s ∈ S, the process Q(t) leaves Oj

without delay along exit edge Ikr
with probability

pr =
|B̃kr

(Oj)|
∑

s∈S |B̃ks
(Oj)|

(2.192)

independently of the past.

We refer to these probabilities of motion along any edge as limiting edge-access

probabilities. We stress that these probabilities depend only on B and not on the

diffusion coefficients a(x).

These results establish the following theorem from [3]:

Theorem 2.2.2. Let X̃ǫ,κ(t) be the two-dimensional diffusion processes defined by

(1.7). The slow component Q(X̃ǫ,κ(t)) converges weakly in C0T (Γ), first as ǫ ↓ 0, to

the stochastic process Qκ, defined by generators Lκ
i along each edge of Γ and gluing

conditions at the interior vertices. Next, as κ ↓ 0, Qκ converges weakly to a process

Q(t) which consists of deterministic motion along each edge of Γ and stochastic

branching at the interior vertices, with probabilities of branching that depend only

on B and not on the diffusion coefficients a(x).
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Proof. See [3].
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Chapter 3

Metastability and large deviations in certain dynamical systems

3.1 Overview of Freidlin-Wentzell theory of metastability

Metastable states arise in dynamical systems subject to random perturbations.

For instance, let Y κ
t be the diffusion process in R

n corresponding to the operator

Dκ:

Dκuκ =
κ

2

∑

i,j

aij(x)
∂2uκ

∂xi∂xj
+
∑

i

bi(x)
∂uκ

∂xi
(3.1)

We assume that the coefficients of the operator Dκ are bounded and smooth;

the matrix (aij(x)) is uniformly positive definite; and b(x) is Lipschitz continuous

and bounded. In studying the behavior of Y κ
t as both t→ ∞ and κ ↓ 0, it is natural

to assume that that the two paramaters t and κ are connected: t = t(κ). Under

certain assumptions, the transition probabilities P κ(t, x, A) = Px(Y
κ
t ∈ A), for some

measurable A ∈ R
n, have different limits as κ ↓ 0 for different relationships t(κ) and

initial points x.

On any fixed time interval [0, T ] the diffusion process Y κ converges uniformly

in probability to the solution Yt of the differential equation Ẏt = b(Yt). If, on the

other hand, Y κ has a unique normalized invariant measure µκ, then the invariant

measure characterizes the long-term behavior of Y κ in the sense that

lim
t→∞

P κ(t, x, A) = µκ(A) (3.2)
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but this holds only if t→ ∞ much faster than κ→ 0.

In the case of a small white-noise perturbation of deterministic dynamical with

finitely many stable equilibrium points, there exists an invariant measure concen-

trated at each stable equilibrium. Intuitively, we expect the invariant measure µκ

of the process Y κ to converge as κ → 0 to one of the invariant measures for the

unperturbed system, but the question of which one is more delicate. The long-time

behavior of the system depends in an essential way on the relationship between t

and κ. As in Chapter 1, we consider the case when t(κ) = exp[λ
κ
] for some fixed

λ > 0. For different values λ and different initial conditions y0, certain sublimiting

distributions exist, that is, δ-measures µK(z,λ) concentrated at an equilibrium point

K(z, λ) such that

lim
κ↓0

Pz{Yt(κ) ∈ A} = 1 if K(z, λ) ∈ A, A open, and (3.3)

lim
κ↓0

Pz{Yt(κ) ∈ A} = 0 if K(z, λ) /∈ A, A open (3.4)

Such an equilibrium point K(z, λ) is called a metastable state for the process Y κ
t

with initial condition z and timescale λ.

3.1.1 The qualitative behavior of X̃ǫ for small ǫ

In particular, let us fix the value of ǫ in the nearly-Hamiltonian system (1.6):

˙̃Xǫ(t) =
1

ǫ
∇H(X̃ǫ(t)) +B(X̃ǫ(t)), X̃ǫ(0) = (q0, p0)

We assume that the Hamiltonian H has the form shown in Figure 1.1, so H has

four wells. For small ǫ, this is a deterministic dynamical system with finitely many

asymptotically stable fixed points and finitely many saddle points.
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Lemma 3.1.1. Assume that H(x) is a generic smooth function with bounded sec-

ond derivatives. Assume also that lim|x|→∞H(x) = ∞ and that there exist K1

and K2 such that for all x with |x| sufficiently large, K1|x| < ∇H(x) < K2|x|.

Suppose that B(x) is smooth, has bounded derivatives, and satisfies div(B(x)) < 0

and ∇H(x) · B(x) < 0. Then there exists ǫ0 such that for all ǫ < ǫ0, the equi-

librium points of the deterministically-perturbed system (1.6), given by ˙̃Xǫ(t) =

1
ǫ
∇H(X̃ǫ(t)) + B(X̃ǫ(t)), are in one-to-one correspondence with the equilibrium

points of the unperturbed Hamiltonian system (1.1). The minima of H correspond to

asymptotically stable fixed points in the perturbed system (1.6) and the saddle points

to saddle points. Furthermore, for any compact set K, there exists an ǫK > 0 such

that for ǫ < ǫK, all trajectories of X̃ǫ(t) with initial values in K are either separatrix

trajectories or trajectories attracted to one of the asymptotically stable fixed points.

Proof. Since the critical points of H are non-degenerate, for ǫ sufficiently small, the

fixed points of the Hamiltonian system (1.1) are in one-to-one correspondence with

the fixed points of the perturbed system (1.6). For convenience, we denote the fixed

points of both systems identically; it is clear from context to which system we refer.

Let Ok be a minimum of H. Putting x = (x1, x2) in R
2 and linearizing the perturbed

system about its perturbed fixed point Ok, we get the matrix








∂2H
∂x2∂x1

+ ǫ∂B1

∂x1

∂2H
(∂x2)2

+ ǫ∂B1

∂x2

− ∂2H
(∂x1)2

+ ǫ∂B2

∂x1
− ∂2H

∂x1∂x2
+ ǫ∂B2

∂x2









(3.5)

At minima of H, the Hessian matrix of H is positive definite. Since the

divergence
[

∂B1

∂x1
+ ∂B2

∂x2

]

of B(x) is negative, the eigenvalues of the above matrix have

negative real parts at the minima of H. Hence, any minimum Ok of H corresponds

55



to an asymptotically stable fixed point (also denoted Ok) of the perturbed system

(1.6).

To prove that all non-separatrix trajectories of the perturbed system are at-

tracted to one of the asymptotically stable equilibrium points, we use Theorem

(2.1.4). Let X̃ǫ(0) = (x1(0), x2(0)) where (x1(0), x2(0)) is not a saddle point. Let

Q(X̃ǫ(0)) = (z0, i0) ∈ Γ. There exists T > 0 and ǫ1 sufficiently small such that

i(X̃ǫ(t)) = i0 for all t ∈ [0, T ] and ǫ ≤ ǫ1. On such a time interval, the slow motion

H(X̃ǫ(t)) converges uniformly as ǫ ↓ 0 to the solution of the averaged system:

Ḣ i(t) =
B̃i(H i(t))

Ti(H i(t))
; Hi(0) = H(X̃ǫ(0)) = z. (3.6)

where again B̃i(z) =
∫

Gi(z)
div(B(x))dx1dx2. Fix z sufficiently large that the com-

pact set Fz = {x : H(x) ≤ z} contains K and all critical points of H. Let η > 0

and δ > 0 be given; let x be any arbitrary point in Fz, and let Nδ(x) denote the δ-

neighborhood of x. For each fixed finite time interval [0, T ], we can find a positive ǫ

such that for any point y in Nδ(x), the perturbed trajectory with initial point y and

the averaged trajectory along the corresponding edges, with initial point H(y), differ

by less than η in the supremum norm on C0T (R). By compactness we can find ǫ2 > 0

such that ǫ < ǫ2 implies that for all x in Fz, supt∈[0,T ] |H(t)H(x) − H(X̃ǫ(t))x| < η,

where H = H i for the appropriate values of t and edge number i.

Since div(B(x)) < 0, H i(t) is monotone decreasing along each edge Ii ∈ Γ.

The only fixed points for the averaged system correspond to the minima and saddle

points of H, all contained in Fz. Thus for sufficiently small ǫ, all non-separatrix

trajectories which originate in a fixed compact set are eventually attracted to one
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of the asymptotically stable equilibrium points.

Put F (z) = 1
ǫ
∇H(z) +B(z). Consider the system

Ż = F (z), Z0 = z0 (3.7)

(Since ǫ is fixed, for notational ease we suppress the dependence on ǫ in what

follows in this section.)

We introduce a white-noise-type perturbation to this system: in the equation

below, Ẇ (t) represents white noise. We continue to assume that σ(z) : R
2 → R

2

is smooth, Lipschitz continuous, and bounded; that a(z) = σ(z)σT (z) is positive

definite; and that 0 < κ≪ 1. Let Zκ(t) satisfy the stochastic differential equation

Żκ(t) = F (Zκ(t)) +
√
κσ(Zκ(t))Ẇt, Z0 = z0 (3.8)

3.1.2 Metastability for perturbations of a two-dimensional diffusion

process

We recall the notion of metastability for the process Zκ(t) as κ ↓ 0, following

[13], [12], [18, §6]. Qualitatively, Zκ forms a Markov process which transitions

between the basins of attraction for the stable equilibrium points. Beginning at some

initial position z0, the process moves toward the nearest attracting equilibrium. It

remains in a small neighborhood of this equilibrium for considerable time before

moving to the basin of attraction for another equilibrium. These transitions occur

on exponentially large timescales.

Observe that Zκ(t) induces a measure µκ on C0T (R2), the space of R
2-valued
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continuous functions on the interval [0, T ] endowed with the uniform norm. We are

interested in the limiting behavior of these measures both as T → ∞ and as κ ↓ 0.

It is natural to suppose that T and κ are related: as before, let λ > 0 be such that

lim
κ↓0

κ lnT (κ) = λ > 0. (3.9)

We call λ a timescale. The logarithmic asymptotics of the measures µκ as κ ↓ 0 are

governed by the action functional [18, §3,§5] defined on C0T (R2).

Definition 1. A nonnegative functional S0T (φ) defined on C0T is the action func-

tional for the family of processes Zκ in C0T with normalizing factor 1
κ

if the following

conditions are satisfied:

1. For each s ≥ 0, the set Φs = {φ : S0T (φ) ≤ s} is compact;

2. For any δ > 0, γ > 0, and φ ∈ C0T , there exists κ0 such that for all κ < κ0

P{ρ(Zκ, φ) < δ} ≥ exp

[

−1

κ
(S0T (φ) + γ)

]

; (3.10)

3. For all δ > 0, γ > 0, s > 0 there exists κ0 such that

P{ρ(Zκ,Φs) ≥ δ} ≤ exp

[

−1

κ
(s− γ)

]

(3.11)

where ρ denotes the supremum norm on C0T .

The following theorem, proved in [18], §5, gives the explicit form of the action

functional for a wide class of diffusion processes. Let ãij(z) denote the inverse of

the diffusion coefficient matrix for (3.8): ãij(z) = [(σ(z)σT (z))ij]
−1.
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Theorem 3.1.2. The normalized action functional for the family of processes Zκ

is given by (1/κ)S0T (φ), where S is defined as follows: for absolutely continuous

functions φ which satisfy φ0 = z0,

S0T (φ) =
1

2

∫ T

0

2
∑

i,j=1

ãij(φ
i
s)(φ̇s − F i(φs))(φ̇

j
s − F j(φs))ds (3.12)

For all other φ ∈ C0T , S0T (φ) = ∞.

Using the action functional, we define the quasipotential V:

Definition 2. The quasipotential associated to the dynamical system (3.8) is the

function V : R
2 × R

2 → R given by

V (z, y) = inf{S0T (φ) : φ0 = z, φT = y, T ≥ 0}. (3.13)

We note that the upper endpoint of [0, T ] is not fixed, and the infimum is taken

over intervals [0, T ] of arbitrary length. We say two points z and y are equivalent

(denoted z ∼ y) if V (z, y) = V (y, z) = 0.

The quasipotential is the solution to a variational problem, and for many

diffusion processes, the quasipotential cannot be explicitly computed. However,

when the drift is a potential with a unique minimum O, the quasipotential V (O, x)

differs from the potential only by a constant.

Theorem 3.1.3. Let Xǫ
t be a diffusion process given by

Ẋǫ
t = b(Xǫ

t ) + ǫẆt (3.14)

where the vector field b(x) = −∇U(x) and U(O) = 0, U(x) > 0 for x 6= O, and

−∇U(x) 6= 0 for any x 6= O. Then the quasipotential V (x) = V (O, x) = 2U(x).
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Proof. See 4.3.1 in [18], §4.

The deterministic system (3.7) has, in general, l asymptotically stable equilib-

rium points and l− 1 saddle points (for the Hamiltonian system in Figure 1, l = 4).

All non-separatrix trajectories have ω-limit sets consisting of a single stable equilib-

rium. Let L = {K1, . . . , Kl} be the set of stable equilibrium points, and for a point z

not belonging to a separatrix trajectory, let Ki(z) be the stable equilibrium to which

the trajectory starting at z is attracted. In the discussion below, we refer to the

jth stable equilibrium in L both as Kj and, for convenience, as simply j, its index

in the set L. (Observe that in the notation we have suppressed the dependence of

(3.7) on the parameter ǫ; of course, all the points Kj in L actually depend on ǫ.)

3.1.3 Definitions of metastability

Now consider the randomly perturbed system (3.8), where 0 < κ ≪ 1, with

the action functional and quasipotential for Zκ defined as above. We will define

metastability for this sytem.

Metastable states can be viewed in two related but different ways. First, the

metastable state K(z,λ) is the point in a small neighborhood of which Zκ remains for

“most” of the time between [0, AT (κ)] for any A > 0. Second, the metastable state

K(z,λ) is the point in a small neighborhood of which, for any fixed t, the process Zκ

at time tT (κ), i.e. Zκ(tT (κ)), is “most” likely to be found. In the current context,

these two notions of metastability are equivalent (see [13]).

Definition 3. (First characterization of a metastable state) Let T (κ) be such that
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lim
κ↓0

κ lnT (κ) = λ > 0, and let Λ denote Lebesgue measure in R. The metastable

state for initial condition z and timescale λ, denoted K(z,λ), is an asymptotically

stable equilibrium point such that for any δ > 0 and A > 0,

lim
κ↓0

Pz{Λ{t ∈ [0, A] : ρ(Zκ(tT (κ)), K(z,λ)) > δ}} → 0. (3.15)

Definition 4. (Second characterization of a metastable state) Suppose K(z,λ) is the

metastable state for (z, λ). Let δ > 0, t > 0, and θ > 0 be arbitrary but fixed. Let

Fθ,(z,λ) = {y ∈ R
2 : V (K(z,λ), y) ≤ θ}. Then there exists κ0 = κ0(δ, θ, t) > 0 such

that for all κ < κ0, and T (κ) as above,

Pz{Zκ(tT (κ)) ∈ Fθ,(z,λ)} > 1 − δ (3.16)

3.1.4 Computing metastable states explicitly

A proof of the existence of a metastable state for each z and λ, and a recipe

to find it, are given in [12] and §6 of [18]. We review the concepts here and refer to

[12], [13], and [18] for a full discussion.

Put Vij = V (i, j) = V (Ki, Kj), and let J(i) be the index j ∈ L such that

ViJ(i) = min{Vik : k ∈ L, k 6= i}. (3.17)

We assume that for each i ∈ L, the minimum above, and all similar maxima

and minima of the quasipotential between a given fixed point Ki and any other

fixed point Kk from a finite set M , is achieved at exactly one point K ∈ M . Such

a system is called generic.

With i and J(i) as above, we say that the point J(i) follows i or that i is

followed by J(i). Once the process Zκ leaves the basin of attraction for Ki, it moves
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with overwhelming probability to the basin of attraction for Kj(i) [18, p.171]. Define

J2(i) as the index j such that

VJ(i)j = min{VJ(i)k : k ∈ L, k 6= J(i)} (3.18)

Proceeding inductively, let Jk+1(i) = J(Jk(i)). Let m = min{k > 0 : Jk(i) =

Jn(i), n < k}. This enables us to define 0- and 1-cycles.

Definition 5. For a given state i ∈ L, the 0-cycle containing i is simply the equi-

librium Ki. The equilibrium points (or equilibrium “states”) in the collection

J = {Jn(i), Jn+1(i), . . . , Jm(i) = Jn(i)} (3.19)

form a cycle of rank 1, or 1-cycle. If this collection includes i, then we say this is

the 1-cycle containing i. If this collection does not include i, we define the point Ki

to be both a 0- and 1-cycle.

The cycles of rank zero are simply the points K1, . . . , Kl themselves, and a

1-cycle is an ordered collection of states in L. Equivalently, a 1-cycle is an ordered

collection of 0-cycles. It is also possible for a single point to be both a 0-cycle and a

1-cycle: suppose there exists a point Kj which is followed by a point Kr, where the

1-cycle beginning with Kr does not include Kj. Then the single point Kj forms a

1-cycle.

Within a given 1-cycle and a given time scale, there is, in general, one equilib-

rium state near which the process principally remains. Accordingly, we define the

main state, stationary distribution rate, rotation rate, and exit rate for 1-cycles as

follows.
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Definition 6. For a 1-cycle C,

1. The main state of C, M(C), is the state k∗ ∈ L such that

Vk∗J(k∗) = max
i∈C

ViJ(i).

We assume this maximum is attained at a single point i = k∗ = M(C) ∈ C.

2. The stationary distribution rate for state i, mC(i), is given by

mC(i) = ViJ(i) − Vk∗J(k∗), where k∗ is the main state.

3. The rotation rate R(C) is defined as R(C) = max
i∈C

ViJ(i).

4. The exit rate, E(C), is defined as E(C) = min
i∈C,j /∈C

(mC(i) + Vij),

where we again assume that the minimum is attained for precisely one value

of i ∈ C and precisely one value of j /∈ C.

By induction, we can define cycles of higher rank. For example, a cycle of rank

2 consists of transitions between cycles of rank 1, so a cycle of rank 2 is an ordered

collection of cycles of rank 1. Formally, assume that for some r ≥ 1, all the cycles

for rank l ≤ r are defined. Let C
r be the set of all r-cycles. For any r-cycle C1 ∈ C

r,

define C2 ∈ C
r to be the r-cycle containing the point j∗ ∈ L at which the following

minimum is achieved:

min
i∈C1,j /∈C1

[mC1(i) + Vij] (3.20)

As before, we assume that the minimum is attained at precisely one j∗ ∈ L

and precisely one i∗ ∈ C1. Intuitively, Kj∗ is the “nearest” state in L external to the

cycle C1: conditional on the process Zκ exiting the cycle C1, the basin of attraction
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for Kj∗ is the most likely set into which Zκ will move. We say i∗ = i(C2) is the exit

point for the cycle C1 and j∗ = j(C2) is the entrance point for C2. Let C2 = J(C1),

and consider the ordered sequence of r-cycles

C1, J(C1), J
2(C1), . . . , J

n(C1), . . . (3.21)

Following our previous notation, let m∗ = min{m > 0 : Jm(C1) = Jn(C1), n <

m}. Then the ordered sequence (which we refer to as a cyclical ordering) of r-cycles

Jn(C1), J
n+1(C1), . . . , J

m∗(C1) forms an r + 1-cycle. By induction, we can define

exit rates, stationary distribution rates, rotation rates, and main states for r + 1

cycles. Again, a single r-cycle can also form an r + 1-cycle.

For any point z, we get a sequence of cycles C(z) containing z:

C(z) : C(0)(z) ⊂ C(1)(z) ⊂ . . . ⊂ C(n) (3.22)

The highest-rank cycle is the unique cycle which contains all the equilibrium

points. This cycle is independent of the original point from which the cycles are

first constructed.

Since we have defined an r + 1-cycle as an ordered collection of r-cycles, the

elements of an r + 1-cycle are themselves r-cycles. Nevertheless, all cycles are ul-

timately composed of equilibrium points from the set L, and we use the notation

i ∈ C to represent any point i in L which belongs to any of the potentially lower-rank

cycles that comprise C.

We can give inductive definitions of main states, rotation rates, and exit rates;

these concepts can also be defined directly through i-graphs, which are useful in

describing the asymptotic behavior of Zκ(t) on large time intervals [18, p.177].
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Definition 7. Let F be a finite set, and let i be an element of F. A graph consisting

of arrows of the form (m → n), for n ∈ F,m ∈ F \ {i}, n 6= m, is said to be an

i-graph if:

1. Every point m ∈ F \ {i} is the initial point of exactly one arrow;

2. For any point m ∈ F \ {i}, there exists a sequence of arrows leading from m

to the point i.

For each point i ∈ L, let Gi(L) denote the set of all i-graphs for the finite set

of equilibrium points L. Similarly, Gi(C) consists of the set of all possible i-graphs

for the finite set of elements within a cycle C.

Suppose inductively that the main state, stationary distribution rate, rotation

rate, and exit rate have been defined for all cycles up to and including rank r. We

can introduce the corresponding defintions for higher-rank cycles.

Definition 8. For higher-rank cycles,

1. The main state M(C) for an r-cycle C is the assumed-unique state j∗(C) that

achieves the minimum

min
j∈C

min
g∈Gj(C)

∑

(m→n)∈g

Vmn. (3.23)

2. The rotation rate R(C) for an r + 1-cycle is defined as

R(C) = max
i:Cr

i ∈C
E(Cr

i ) (3.24)

where Cr
i are the r-cycles that form the r + 1-cycle C and E(Cr

i ) is the exit

rate for the r-cycle Cr
i .
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3. The stationary distribution rate mC(i) for an r + 1-cycle C, where i ∈ C, is

defined by

mC(i) = min
g∈Gi(C)

∑

(m→n)∈g

Vmn − min
g∈Gj∗(C)

∑

(m→n)∈g

Vmn (3.25)

where j∗ = M(C) is the main state of C defined above.

4. The exit rate E(C) for C ∈ Cr+1 is given by

E(C) = min
i∈C,j /∈C

(mC(i) + Vij), (3.26)

where we assume uniqueness of the indices i∗ = i∗(C) and j∗ = j∗(C) at

which the minimum is attained. We call i∗ the exit point of C, and j∗ the

entrance point for the r + 1-cycle containing Kj∗ . For the highest-rank cycle

C containing all the points of L = {K1, . . . , Kl}, we define E(C) = +∞.

In the preceding definitions, we make the genericity assumption that each one of

the maxima and minima is attained at a single equilibrium point in L.

Let Dj be the domain of attraction for Kj. For any cycle C, let D(C) =
⋃

i∈C

Di.

Let τκ
C be the exit time for Zκ(t) from D(C), (where Z0 = z0 = z ∈ D(C)); that is,

τ = inf{t : Zκ(t) /∈ D(C)} (3.27)

We can compute the expected value of τκ
C through the exit rate for the cycle

C. By Theorem 6.6.2 [18, p.201], we note that

lim
κ↓0

lnEz(τ
κ
C) = E(C) (3.28)

Furthermore, according to [18, p.201], for any γ > 0,

lim
κ↓0

Pz{exp(κ−1[E(C) − γ]) < τκ
C < exp(κ−1[E(C) + γ])} = 1 (3.29)
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uniformly for all z ∈ B, where B is any compact subset of D(C).

As before, let T (κ) be a function such that

lim
κ↓0

κ lnT (κ) = λ > 0. (3.30)

Let {C(z)} represent the ordered sequence of cycles containing z, as in (3.22),

up to the cycle of highest rank n(z) = n. Let ek denote the exit rate for the kth-

rank cycle containing z, so ek = E(Ck(z)). It is clear that the numbers ek form an

increasing sequence, with

e0 = ViJ(i) < e1 < e2 < . . . < en−1 < en = ∞. (3.31)

Let rk = R(C(k)(z)) denote the rotation rates. The sequence rk is also increas-

ing and rk < ek.

Let m∗ be a positive integer with em∗ < λ < em∗+1.

We conclude by describing how to find the metastable state for (z, λ).

Proposition 1. The metastable state K(z,λ) for the process Zκ with initial position

z and timescale λ is given as follows.

1. Case 1: λ > rm∗+1. In this instance, rm∗+1 < λ < em∗+1, and K(z,λ) =

M(C(m∗+1)(z)), the main state of the cycle C(m∗+1)(z).

2. Case 2: λ < rm∗+1. Let C(m∗)(z) be the m∗-cycle containing z, and let

C(m∗+1)(z) be the m∗ +1-cycle generated by C(m∗)(z). Consider the m∗-cycles

in C(m∗+1)(z) that follow C(m∗)(z), denoted (in cyclic order)

Cm∗

1 (z), Cm∗

2 (z), . . . , Cm∗

p (z).
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Since λ < rm∗+1 = max
Cm∗

i (z)∈C(m∗+1)(z)
E(C

(m∗)
i ), there exists at least one cycle

C
(m∗)
i , where i ∈ {1, . . . , p}, for which E(C

(m∗)
i ) > λ. Let i∗ be the minimum

of those indices i; C
(m∗)
i∗ (z) is the first cycle after C(m∗)(z) for which the exit

rate exceeds λ.

If λ > r(C
(m∗)
i∗ (z)), then the metastable state K(z,λ) is the main state of

C
(m∗)
i∗ (z). If λ < r(C

(m∗)
i∗ (z)), then, of the (m∗ − 1)-rank cycles that comprise

the m∗-cycle C
(m∗)
i∗ (z), there exists one (m∗ − 1)-cycle, denoted C̃(m∗−1)(z),

containing the entrance state for C
(m∗)
i∗ (z). Cyclically ordering the (m∗ − 1)

cycles that follow C̃(m∗−1)(z) in C
(m∗)
i∗ (z), there exists a first cycle in the se-

quence, say C ′(m∗−1)(z), whose exit rate exceeds λ. If λ > R(C ′(m∗ − 1)(z)),

the the metastable state K(z,λ) is the main state of C ′(m∗ − 1)(z). If not,

proceed inductively to consider the collection of (m∗ − 2)-order cycles which

comprise C ′(m∗ − 1)(z), until reaching a cycle C of some nonnegative order

for which E(C) > λ > R(C). Such a cycle always exists, because the rotation

rates of zero-cycles are, by definition, zero. The metastable state K(z,λ) is the

main state of the cycle C.

Proof. See [18], §6.

3.1.5 An example of a metastable state as a probability distribution

For a generic dynamical system subject to white-noise perturbations, a metastable

state is a fixed equilibrium point. In the next section, we generalize metastability

to a nearly-Hamiltonian system in which the underlying deterministic system is
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generic, but the limiting dynamical system is stochastic. We conclude that in such

a setting, nondegenerate probability distributions across equilibrium points, rather

than equilibrium points themselves, serve as metastable states.

In this section, we consider a non-generic dynamical system—specifically, a

one-dimensional potential with two wells of identical depth—in which metastabil-

ity nevertheless corresponds to a probability distribution. This provides a simple

illustration of this phenomenon.

Example 3.1.4 (A one-dimensional example of a metastable “state” as a probability

distribution).

Let Xǫ
t be the diffusion process in R

Ẋǫ
t = −U ′(Xǫ

t ) +
√
ǫẆt (3.32)

where the potential U(x) has two wells. Let S0T (φ) and V (x, y) be the action

functional and quasipotential, respectively, associated to the process Xǫ
t . Suppose

the two local minima of U are equal, so U(a1) = U(a2). Assume that U(x) > U(ai)

for all other x, that U ′(x) 6= 0 for x /∈ {a1, a2}, and that a1 and a2 are nondegenerate

critical points with U ′′(a1) 6= U ′′(a2). Finally, assume that

∫

R

exp

[

−U(x)

ǫ

]

dx = Cǫ <∞ (3.33)

Claim 3.1.5. Let Xǫ
t solve (3.32) and let U satisfy the above assumptions. Then

the process Xǫ
t has a unique normalized invariant measure µǫ given by

µǫ(A) =
1

Cǫ

∫

A

exp

[

−2U(x)

ǫ

]

dx (3.34)
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and µǫ converges weakly as ǫ → 0 to the measure µ = p1

p1+p2
δa1 + p2

p1+p2
δa2 with

pi = 1√
U ′′(ai)

and δa the δ-measure at the point a. Furthermore, if λ > V12 = V21,

the metastable distribution for any initial condition x0 with timescale λ is given by

this limiting measure.

Proof. A substitution into the forward Kolmogorov equation immediately gives the

expression for the density m(x) of the unique invariant measure:

L∗m(x) = 0 ⇒ d

dx
(m(x)U ′(x)) +

ǫ

2

d2m(x)

(dx)2
= 0 (3.35)

Define Ai(δ) = (ai − δ, ai + δ), i = 1, 2, and put A3(δ) = [A1(δ) ∪ A2(δ)]
c. Put

f(x) = 2U(x), λ = 2U(a1) = 2U(a2) and define mǫ
i(δ) as

mǫ
i(δ) =

∫

Ai(δ)

exp

[

−f(x)

ǫ

]

dx, i = 1, 2, 3 (3.36)

We prove that for δ > 0 sufficiently small,

mǫ
i(δ) exp

[

λ
ǫ

]

√
ǫ
√

2π
→ pi, i = 1, 2 (3.37)

mǫ
3(δ) exp

[

λ
ǫ

]

√
ǫ
√

2π
→ 0 (3.38)

as ǫ→ 0. The result follows from this and from the fact that for δ sufficiently small,

µǫ(Ai(δ)) =
mǫ

i(δ)

mǫ
1(δ) +mǫ

2(δ) +mǫ
3(δ)

(3.39)

=

mǫ
i(δ) exp( λ

ǫ
)

√
ǫ
√

2π

[mǫ
1(δ) +mǫ

2(δ) +mǫ
3(δ)]

exp(λ
ǫ
)

√
ǫ
√

2π

(3.40)

Note that

mǫ
3(δ)

mǫ
1(δ)

=

∫

A3
exp

[

−2U(x)
ǫ

]

dx

∫

A1
exp

[

−2U(x)
ǫ

]

dx
(3.41)

(3.42)
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Put λ = inf
x∈R

f(x) = f(a1) = f(a2). Let λ3(δ) = inf{f(x) : x ∈ A3(δ)}. By

hypothesis, λ3 > λ. Expanding f in a Taylor series around each of the point a1, we

get

f(x) − λ = f ′(a1)(x− a1) + f ′′(a1)(x− a1)
2(1 + h((x− a1)) (3.43)

where h((x− a1)) < C1δ
2
1 if |x− a1| < δ1. We have

mǫ
1(δ) exp

[

λ

ǫ

]

=

∫ a1+δ

a1−δ

exp−
[

f(x) − λ

ǫ

]

dx (3.44)

=

∫ a1+δ

a1−δ

exp

[

−f
′′(a1)(x− a1)

2(1 + h(x− a1))

2ǫ

]

dx (3.45)

By the change of variable

u =

√
ǫ

√

f ′′(a1)
(x− a1) (3.46)

we deduce that

mǫ
1(δ) exp

[

λ

ǫ

]

=

∫
δ
√

f ′′(a1)
√

ǫ

− δ
√

f ′′(a1)
√

ǫ

exp

[

−u
2

2
(1 + h(

√

ǫ

f ′′(a1)
u)

]

du (3.47)

By the dominated convergence theorem,

lim
ǫ↓0

mǫ
1(δ) exp

[

λ
ǫ

]

√
ǫ
√

2π
=

1
√

2πf ′′(a1)

∫ ∞

−∞
exp

[−u2

2

]

du =
1

√

f ′′(a1)
(3.48)

The identical result holds for a2. Now consider

mǫ
3(δ) =

∫

A3(δ)

exp

[

−f(x)

ǫ

]

dx (3.49)

= exp

[

−λ3(δ)

ǫ

] ∫

A3(δ)

exp

[

−f(x) − λ3

ǫ

]

(3.50)

⇒ mǫ
3(δ) exp

[

λ
ǫ

]

√
ǫ

=





exp
[

−λ3(δ)−λ
ǫ

]

√
ǫ





∫

A3(δ)

exp

[

−f(x) − λ3(δ)

ǫ

]

dx (3.51)

and for ǫ < ǫ0, we have

∫

A3(δ)

exp

[

−f(x) − λ3(δ)

ǫ

]

dx ≤
∫

R

exp

[

−f(x) − λ3(δ)

ǫ0

]

dx = C <∞ (3.52)
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and since λ3(δ) − λ > 0, L’Hôpital’s rule implies

1√
ǫ

exp

[

−λ3(δ) − λ

ǫ

]

→ 0 (3.53)

as ǫ ↓ 0.

Let V12 and V21 be the quasipotential between the two minima of U ; since

the two minima of U are equal, by Theorem (3.1.3), V12 = V21. Now, for any

initial position x0 belonging to the domain of attraction for a1, and for a timescale

λ < V12, Proposition (1) ensures that the metastable state is simply a1; similarly,

for any initial position x0 belonging to the domain of attraction for a2 and timescale

λ < V21, the metastable state is a2. However, for any position x0 and timescale

λ > V12, λ is greater than the rotation rate for the maximal-rank cycle (a cycle of

rank 1). Due to the non-genericity of the system, however, this cycle has two main

states: a1 and a2, and from the convergence of the invariant measures µǫ to µ, the

metastable distribution is the limiting probability measure µ.

3.2 Results on metastable distributions for nearly-Hamiltonian sys-

tems

While the previous example illustrates a metastable distribution, the poten-

tial U , with two identical minima, is non-generic. Furthermore, the property of

identical minima is not preserved under small perturbations of the potential. How-

ever, the nearly-Hamiltonian system we consider is both generic and stable under

small perturbations, and we prove that in this case probability distributions serve

as metastable states.
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Recall that X̃ǫ,κ(t) is the two-dimensional diffusion process with generator

Lǫ,κ(u(x)) =
κ

2
div(a(x)∇u(x)) +B(x) · ∇u(x) +

1

ǫ
∇H(x) · ∇u(x),

whereH is the four-well Hamiltonian with associated graph and phase portrait given

in Chapters 1 and 2 and reproduced below.
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Figure 3.1: H(x1, x2) and the Graph Γ

Our goal is to establish the following theorem.

Theorem 3.2.1. Let λ > 0 and T (κ) be such that

lim
κ↓0

κ lnT (κ) = λ (3.54)

For any initial condition (x1(0), x2(0)) ∈ R
2 and all but finitely many timescales λ,

the process X̃ǫ,κ
Tλ(κ) converges weakly in the space C0T (R2), first as ǫ ↓ 0 and then

as κ ↓ 0, to a probability measure concentrated on the stable equilibrium points of

the unperturbed Hamiltonian system. In particular, there exist initial conditions
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w = (x1(0), x2(0)) ∈ R
2 and timescales λ such that process X̃ǫ,κ

Tλ(κ), converges weakly

in the space C0T (R2), first as ǫ ↓ 0 and then as κ ↓ 0, to a nondegenerate probability

measure µw,λ concentrated on the stable equilibrium points {O1, O3, O5, O7} of the

unperturbed Hamiltonian system, with weights pi(w, λ) = µw,λ(Oi), i ∈ {1, 3, 5, 7}

that can be explicitly computed and depend only on B.

To prove this theorem, we rely upon the results in [3], [18], and [19], and

certain large-deviation estimates which we prove below.

As before, let Q be the projection of a point x = (x1, x2) ∈ R
2 onto the

graph Γ associated to the Hamiltonian H. We will use the notation Ok to represent

both a zero of ∇H in R
2 (a stable equilibrium or saddle point of the unperturbed

Hamiltonian system Ẋt = ∇H(Xt) in the plane) and the corresponding interior or

exterior vertex on the graph Γ associated to the Hamiltonian. That is, we use the

notation Ok to represent both the point Ok in the plane and the point H(Ok) on

the graph Γ. It will be clear from context to which we refer.

Recall that the process Qκ(t) on the graph Γ is the weak limit in C0T (Γ) of

Qǫ,κ(t) as ǫ ↓ 0, and Qκ is defined through generators Lκ
i along each edge and gluing

conditions at each interior vertex (see (2.187), (2.188), and (2.189) in Chapter 2).

3.2.1 Estimates for probabilities of large deviations for the process

Qκ on Γ

We estimate probabilities of large deviations for the process Qκ on the graph

Γ. In particular, we determine the logarithmic asympotics of the exit time τκ
i (y) for
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the process Qκ to leave an exterior edge Iki
starting from some point y in a small

neighborhood of the exterior vertex Oki
. Recall from Chapter 2 that Qκ is defined

through second-order ordinary differential operators along each edge. Because these

operators have degeneracies at interior and exterior vertices, we analyze the behavior

of Qκ in three parts: first, in closed subintervals of an edge (i.e., away from the

vertices); next, in small neighborhoods of exterior vertices; and finally, in small

neighborhoods of interior vertices.

Along each edge i, Qκ(t) is a process with infinitesimal generator Lκ
i :

Lκ
i (ui(z)) =

{

κA′
i(z)

2Ti(z)
+
B̃i(z)

Ti(z)

}

dui(z)

dz
+
κAi(z)

2Ti(z)

d2ui(z)

(dz)2

The drift and diffusion coefficients vanish only at interior and exterior vertices.

As z → H(Oji
) for an interior vertex Oji

, B̃i(z) and Ai(z) have finite non-zero

limits, and from Lemma (2.2.1), Ti(z) ∼ ln(z − H(Oji
))−1. By Lemma (2.2.1), as

z → H(Ok) for a minimum Ok of H in the plane (i.e. an exterior vertex of Γ), Tk(z)

approaches a constant. At exterior vertices, it is easy to see that B̃k(z) and Ak(z)

converge to zero linearly: for any minimum Ok of H, the curve C(H(Ok)) consists

of a single point, so the area of the enclosed region G(H(Ok)) is zero. However,

Ak(z) =

∫

Gk(z)

div(a(x)∇H(x))dx (3.55)

and B̃k(z) =

∫

Gk(z)

divB(x)dx (3.56)

and the integrands in each of the above integrals are bounded away from zero. Let

Sk(z) = Area (Gk(z)). Then since S ′
k(z) = Tk(z) and Tk(z) approaches a constant

as z → H(Ok), the conclusion follows.
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Let E = {Ok1 , . . . Okl
} be the set of exterior vertices.

Lemma 3.2.2. Any exterior vertex Oki
is inaccessible for Qκ(t).

Proof. Following Mandl [23], the criterion for inaccessibility of an endpoint for the

one-dimensional diffusion process with generator Lκ
ki

on an exterior edge Iki
is that

the integral
∫

exp



−
∫ {

κA′
ki

(z)

2Tki
(z)

+
B̃ki

(z)

Tki
(z)

κAki
(z)

2Tki
(z)

}

dz



 dz (3.57)

diverge at the exterior vertex Oi; note that

∫

exp

[∫

−
A′

ki
(z)

Aki
(z)

dz

]

dz =

∫

1

Aki
(z)

dz (3.58)

which diverges at any exterior vertex because Aki
(z) converges to zero linearly as

z ↓ H(Oki
), so the singularity at Oki

is not integrable.

Let Iki
be an exterior edge of Γ with exterior vertex Oki

and corresponding

interior vertex Oji
. Without loss of generality we can take H(Ok) = 0. In the

analysis that follows, we focus on the interval Iki
and the associated differential

operator Lκ
i defined on Iki

. Let δ1 be arbitrary and positive. For any such δ1,

denote by Iki
\ δ1 the subinterval of Iki

Iki
\ δ1 = {z ∈ Iki

: δ1 < z < H(Oji
) − δ1} (3.59)

so Iki
\δ1 is the open subinterval of Iki

with δ1 neighborhoods of each vertex removed.

Using an approximation to the identity (see [7]), we can construct nonzero

smooth, bounded functions AF
ki

(z) and T F
ki

(z) defined on the closed interval Iki

(including the endpoints Oji
and Oki

) such that AF
ki

(z), A′F
ki

, T F
ki

(z) coincide with

the functions Aki
(z), A′

ki
(z), and Tki

(z) on Iki
\ [δ1/4].

76



Let F κ
ki

(t) be the one-dimensional diffusion process on the positive half-line

with generator

LF,κ
ki

(u) =
κ

2
AF

ki
(z)

d2u

dz2
+

{

κ

2

A′F
ki

(z)

T F
ki

(z)
+
B̃ki

(z)

T F
ki

(z)

}

du

dz
(3.60)

and reflection at the origin.

The drift and diffusion coefficients for F κ
ki

coincide with the drift and diffusion

coefficients for the process Qκ
ki

on the subinterval Iki
\ [δ1/4]. However, the process

F κ
ki

has a diffusion coefficient that is uniformly nondegenerate on Iki
.

Lemma 3.2.3. The action functional for the process F κ
ki

(t) in the space C0T (Iki
) is

given by:

SF
ki

(φ) =
1

2

∫ T

0

[

φ̇(s) − B̃ki
(φ(s))

T F
ki

(φ(s))

]2
T F

ki
(φ(s))

AF
ki

(φ(s))
ds (3.61)

Proof. Let F̃ κ
i be the diffusion process with generator

L̃F,κ
ki

(u(z)) =
B̃i(z)

T F
ki

(z)

du

dz
+
AF

ki
(z)

T F
ki

(z)

d2u

dz2

Since the diffusion coefficient
AF

ki
(z)

T F
ki

(z)
is uniformly nondegenerate, Theorem (3.1.2)

implies that the the action functional S
F̃ki

0T for the process F̃ κ
ki

is given by (3.61).

The diffusion process F κ
ki

defined by LF,κ
ki

differs from the diffusion process F̃ κ
ki

defined by L̃F,κ
ki

only in the drift, by a term of order κ. The measures induced by the

two processes on C0T (Iki
) are absolutely continuous with respect to one another; by

Girsanov’s formula the Radon-Nikodym derivative
dµFκ

ki

dµ
F̃κ

ki

is given by

exp

[√
κ√
2

(∫ T

0

f(F̃ κ
ki

(s))dWs −
1

2

∫ t

0

|f(F̃ κ
ki

(s))|2ds
)]

(3.62)
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where f(z) =
A′F

ki
(z)

q

T F
ki

(z)
q

AF
ki

(z)
. The Radon-Nikodym derivative can be made arbitrarily

close to one for κ sufficiently small, and hence the action functionals for the two

processes coincide.

Lemma 3.2.4. The quasipotential V F
i (z, w) between any two points z and w on Ii

is given by

V F
i (z, w) =

∫ w

z

−2
B̃i(s)

AF
i (s)

ds (3.63)

Proof. Since the quasipotential is defined as

inf{SF
T1T2

(φ), φT1 = x, φT2 = y} (3.64)

where the infimimum is taken over time intervals of arbitrary length, the quasipo-

tential for a process is invariant with respect to time changes, so we employ the

random time-change formula to rewrite the diffusion process F κ
i . Let Xt be the

diffusion process defined by

Xt =

∫ t

0

B̃i(Xs)

T F
i (Xs)

ds+

∫ t

0

√

AF
i (Xs)

√

T F
i (Xs)

dWs (3.65)

Define αt as

αt =

∫ t

0

AF
i (Xs)

T F
i (Xs)

ds (3.66)

and note that αt is strictly increasing for almost all ω because the integrand is

positive. Hence αt is invertible, and by the random time change formula there

exists a Wiener process W̃ such that X can be written:

Xα−1(u) −X0 =

∫ u

0

B̃i(Xα−1(s))

AF
i (Xα−1(s))

ds+

∫ u

0

dW̃s (3.67)

78



If we put X̃u = Xα−1(u), then X̃ has unit diffusion, and according to Theorem (3.1.3),

the quasipotential is given by

V F
i (z, w) =

∫ w

z

−2
B̃i(s)

AF
i (s)

ds (3.68)

Note that AF
ki

(z) = Aki
(z) on Iki

\ [δ1/4]; for z, w ∈ Iki
\ [δ1/4],

V F
i (z, w) =

∫ w

z

−2
B̃ki

(s)

Aki
(s)

ds (3.69)

The integrand
B̃ki

(s)

Aki
(s)

has a singularity at the exterior vertex Oki
, but because

both B̃ki
and Aki

converge to zero linearly, this singularity is removable, and the

integrand is in fact bounded. Thus we define the function V̄ : Γ×Γ → R as follows.

Definition 9. Let (z, i) and (z′, i′) be two points on Γ.

• If i = i′ (i.e. the two points lie on the same edge), then

V̄ ((z, i), (w, i)) =

∫ w

z

−2
B̃i(s)

Ai(s)
ds (3.70)

• If i 6= i′, there exists a shortest path from (z, i) to (z′, i′) which intersects any

interior vertex at most once; denote this path by

(z, i) → Oj1 → Oj2 → . . .→ OjM
→ (z′, i′)

The quasipotential is equal to

V̄ ((z, i), (z, i′)) = V̄ ((z, i), Oj1) + V̄ (Oj1 , Oj2) + . . .+ V̄ (OjM
, (z′, i′)) (3.71)
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For any two points (z, w) belonging to the same edge, it is clear that V̄ (z, w)

is Lipschitz continuous.

According to our genericity assumption, if V̄ (Oi, Oj) 6= 0 and V̄ (Ok, Om) 6= 0,

then V̄ (Oi, Oj) 6= V̄ (Ok, Om) for any two different pairs of vertices.

Next, define the functional Si
0T (φ) for functions φ ∈ C0T (Ii) as follows:

Si
0T (φ) =

1

2

∫ T

0

[

φ̇(s) − B̃i(φ(s))

Ti(φ(s))

]2
Ti(φ(s))

Ai(φ(s))
ds (3.72)

Since Aki
(H(Oki

)) = 0, and Aki
(z) converges to zero linearly at Oki

, the func-

tional Si
0T (φ) is finite for absolutely functions φ ∈ C0T (Iki

) such that φt 6= Oki
, t ∈

[0, T ]. For functions φt with φt = Oki
for some t ∈ [0, T ], Si

0T (φ) is finite provided φ̇

decays at Oki
sufficiently quickly.

We prove the following theorem about exit times for the process Qκ from a

small neighborhood of an exterior vertex.

Theorem 3.2.5. Let Iki
be an exterior edge with exterior vertex Oki

and interior

vertex Oj in Γ. Suppose the three edges Ik1, Ik2, and Ij meet at interior vertex Oj.

Let τκ
z = inf{t > 0 : Qκ(t) = z}. Put V̄ max

ij = max{V̄ (Oki
, Oj), i = 1, 2}. For any

α > 0 there exists δ > 0 sufficiently small such that if y ∈ Iki
, |y − H(Oki

)| < δ,

y 6= Oki
, and z ∈ Ij, |z −H(Oj)| < δ, z 6= Oj, then

lim
κ↓0

Py

{

exp

[

V̄ max
ij − α

κ

]

< τκ
z < exp

[

V̄ max
ij + α

κ

]}

= 1 (3.73)

Proof. From our genericity assumption, V̄ max
ij is achieved for only one edge i = imax.

Denote the other edge by imin. We first consider the case when i = imax and y ∈ Iimax .

To prove the lower bound in (3.73), note that by the continuity of V̄ in both

arguments, for any α > 0 there exists a δ > 0 and a modified diffusion process F κ
t
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on the interval I = Iki
∪ [Oj, Oj + 2δ] such that (a) F κ

t coincides with Qκ
t on Iki

\ δ
4
;

(b) F κ
t has drift BF

i that coincides with the drift for Qκ
t ; (c) F κ

t has nondegenerate

diffusion AF
i ((z, i)) ≥ Ai(z)

Ti(z)
; and (d) For (z, j) : |z−Oj| < δ, |V F (Oki

, z)−V̄ max
ij | < α

2
.

Let τκ
z = inf{t > 0 : Qκ(t)} = z where (z,Oj) is a point on the interior edge

with |z − H(Oj)| < δ, z 6= H(Oj). Similarly, let τF,κ
z = inf{t > 0 : F κ

t = z}.

Theorem 4.1.2 in [18] it is proved that for any α > 0,

lim inf
κ↓0

Py

{

τF,κ
z < exp

[

V F (Oki
, z) − α

2

κ

]}

= 0 (3.74)

Since F κ has the identical drift as Qκ
t but uniformly greater positive diffusion, we

get

Py

{

τF,κ
z < exp

[

V F (Oki
, z) − α

2

κ

]}

(3.75)

≥ Py

{

τκ
z < exp

[

V F (Oki
, z) − α

2

κ

]}

(3.76)

≥ Py

{

τκ
z < exp

[

V̄ max
ij − α

κ

]}

(3.77)

The lower bound in (3.73) now follows from this and (3.74). It remains to

prove the upper bound.

Since the diffusion coefficient Aki
(Oki

) = 0 and 1
Aki(z)

is not integrable near

the exterior vertex Oki
, we first consider the behavior of the process in a small

neighborhood of Oki
.

Let δ > 0 be positive and fixed, and sufficiently small that Iki
\ δ contains a

nontrivial interval. Without loss of generality we can consider Iki
to be a bounded

interval with one endpoint at the origin; the origin corresponds to the exterior vertex

Oki
.
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Let x ∈ (0, δ) be some point in the δ-neighborhood of the origin, and put

τκ
x,δ,ki

= inf{t > 0 : Qκ(t) = δ,Qκ(0) = (x, ki)}. That is, τκ
x,δ,ki

is the first time the

process Qκ hits δ after starting at some point x < δ on edge ki.

It is well-known (see [10]) that the solution to certain Dirichlet problems can

be expressed through the expected values of functionals of associated diffusion pro-

cesses; conversely, the expected values of exit times from bounded domains for dif-

fusion processes can be expressed through the solutions of corresponding Dirichlet

problems. In general, for a domain D ∈ R
n with smooth boundary, consider the

Dirichlet problem

L(u(x)) − c(x)u(x) =f(x); (3.78)

lim
x∈D,x→y∈∂D

u(x) =ψ(y); (3.79)

where L is the second-order differential operator

L =
1

2

∑

i,j

aij(x)
∂2u

∂xi∂xj

+
∑

i

bi(x)
∂u

∂xi

(3.80)

and the coefficients are smooth, bounded, and (aij) is positive definite; ψ is bounded

and continuous.

Let Xt be the diffusion process corresponding to the operator L, and let τD =

inf{t > 0 : Xt ∈ ∂D,X0 = x}. In [10], §2, it is proved that the solution u to (3.78)

is given by:

u(x) = − Ex

[∫ τD

0

f(Xt) exp

{

−
∫ t

0

c(Xs)ds

}

dt

]

(3.81)

+Ex

[

ψ(XτD
) exp

{

−
∫ τD

0

c(Xs)ds

}]

(3.82)
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In particular, if we take c(x) = 0 and f(x) = −1, and ψ(y) = 0 for y ∈ ∂D,

then the solution u(x) is given by u(x) = E[τD].

To determine E[τκ
x,δ,ki

], we consider the one-dimensional operator

Lκ
ki
u(z) =

{

κA′
ki

(z)

2Tki
(z)

+
B̃ki

(z)

Tki
(z)

}

du(z)

dz
+
κAki

(z)

2Tki
(z)

d2u(z)

(dz)2
(3.83)

and the associated Dirichlet problem

Lκ
ki
u = −1, u(δ) = 0 (3.84)

with u defined for x ∈ (0, δ). The operator Lκ
ki

has a degeneracy at the point H(Oki
);

on any closed subinterval of Ik it is positive definite. It is proved in [10] that the

minimal positive solution of (3.84) is u(x) = E[τκ
x,δ,ki

].

For δ sufficiently small, the coefficients B̃ki
(z) and Aki

(z) are approximately

linear, and B̃ki
(z) < 0 and A′

ki
(z) > 0 for z ∈ (0, δ]. Also Tki

(z) is nonzero and

approximately constant for z near H(Oki
), so we consider the following linearized

second-order ordinary differential equation:

κzu′′ + κu′ + bzu′ = −1 (3.85)

Since divB < 0 and the diffusion matrix a(x) is uniformly positive definite, b must

be strictly negative. Putting v = zu′ and integrating, we obtain

v =
C1

b
exp

{−b
κ
z

}

− 1

b
(3.86)

We require u to be the minimal positive solution to (3.85). There exists a unique

bounded solution u of (3.85) which satisfies u(δ) = 0, and this solution u is minimal.

Since u′ = v
z
, the constant of integration C1 is chosen so that v(0) = 0. This implies

C = 1.
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We have

u(δ) − u(x) =

∫ δ

x

u′(s)ds (3.87)

⇒ u(x) =

∫ δ

x

[−1

bs

{

exp

(

− b

κ
s

)

− 1

}]

ds (3.88)

For δ small, u(x) is approximately

u(x) =
−1

bx

[

exp

(

− b

κ
(x)

)

− 1

]

(δ − x) (3.89)

Hence we conclude

lim sup
κ↓0

E[τκ
x,δ,ki

]
[

exp
(

d1

κ

)] < C (3.90)

where d1 > 0 and C > 0 are constants and d1 can be made arbitrarily small for δ

small.

By Chebyshev’s inequality, we deduce that

P

{

τκ
x,δ,ki

> exp

[

3d1

κ

]}

< exp

[−d1

κ

]

(3.91)

for κ sufficiently small. Of course, this bound holds in the neighborhood |z −

H(Oki
)| < δ if H(Oki

) 6= 0. Furthermore, by the maximum principle, this bound

holds for variable coefficients (in our case,
B̃ki

(z)

Tki
(z)

and
Aki

(z)

Tki
(z)

) provided the coefficients

behave linearly near Oki
(see [10], §3).

Hence we have an exponential bound for the exit time for Qκ from a small

neighborhood of any exterior vertex.

We next consider the behavior of the process near the interior vertex Oj, at

which three edges intersect: the two edges Ik1 and Ik2 , which are exit edges for the

vertex Oj, and the edge Ij, which is an entrance edge (see diagram). Recall that an
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edge I containing a vertex O is an entrance edge or an exit edge if the value of H(x)

decreases or increases, respectively, along that edge as x approaches O. Let N(Oj, h)

be the h-neighborhood of Oj in Γ, so N(Oj, h) = {(z, l) ∈ Γ : |z −H(Oj)| < h, l =

k1, k2, j}. Again for ease of notation (and without loss of generality) we consider

the case when H(Oj) = 0, and z < 0 for (z, ki), i = 1, 2 and z > 0 for (z, j).

I I

I

k2
k1

N(O
j

j

O
j

,h)

Figure 3.2: An interior vertex Oj, entrance edge Ij, and two exit edges Ik1 , Ik2

Qκ
t has generators Lκ

ki
, i = 1, 2 on each exit edge and generator Lκ

j on the

entrance edge, and gluing conditions

±
∑

m:Im∼Oj

βjmDm(Oj) = 0 (3.92)

with

βjm =

∮

γm
j

a(x)∇H(x) · ∇H(x)

|∇H(x)| dl (3.93)

where γm
j , m = 1, 2 are the two separatrices that meet at Oj, and + is taken when

H(x) increases as x approaches Oj along a given edge (i.e. along edges k1 and k2)

and − is taken when H(x) decreases as x approaches Oj along a given edge (i.e.

along edge Ij).
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For any point (z, l) ∈ N(Oj, h), define τκ
h to be

τκ
h = inf{t > 0 : Qκ(t) /∈ N(Oj, h)} (3.94)

Define vκ
ki(z, l) and vκ

j (z, l) for i = 1, 2 and l = k1, k2, j, to be

vκ
ki(z, l) =P(z,l) {Qκ(τκ

h ) ∈ Iki
} , i = 1, 2 (3.95)

vκ
j (z, l) =P(z,l) {Qκ(τκ

h ) ∈ Ij} (3.96)

We see that vκ
ki(z, l) is the probability that, starting from (z, l), the process Qκ exits

N(Oj, h) through edge ki, and vκ
j (z, l) is the probability that, starting from (z, l),

the process Qκ exits N(Oj, h) through edge Ij. These probabilities can be expressed

as solutions to corresponding Dirichlet problems.

Specifically, vκ
ki(z, l) is the unique continuous solution of the Dirichlet problem

Ll(v
κ
ki(z, l)) =0 (3.97)

with boundary conditions vκ
ki(z, ki) =1 if (z, ki) ∈ ∂N(Oj, h) (3.98)

and vκ
ki(z, l) =0 if (z, l) ∈ ∂N(Oj, h), l 6= ki (3.99)

and ±
∑

m:Im∼Oj

βjmDm(vκ
ki(Oj)) =0 (3.100)

Note that Dm represents the derivative of vκ
ki in the direction of edge Iki

. Similarly,

vκ
j (z, l) is the unique continuous solution of the Dirichlet problem

Ll(v
κ
j (z, l)) =0 (3.101)

with boundary conditions vκ
j (z, j) =1 if (z, j) ∈ ∂N(Oj, h) (3.102)

and vκ
j (z, l) =0 if (z, l) ∈ ∂N(Oj, h), l 6= j (3.103)

and ±
∑

m:Im∼Oj

βjmDm(vκ
j (Oj)) =0 (3.104)
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We wish to estimate the probability of exit through the interior edge j given that

Qκ(0) = (z, i) where i is an exterior edge. Since the drift B̃l(z)
Tl(z)

is negative, the

process Qκ(t) will exit with probability close to one through edge k1 or edge k2. We

give a lower bound on the probability of exit through the interior edge j.

We assert that for any d2 > 0, we can choose h > 0 and κ sufficiently small

that for any (z, ki) : |z −H(Oj)| < h, i = 1, 2, and z 6= H(Oj),

P(z,i) {(Qκ(τκ
h ) ∈ Ij} > exp

[−d2

κ

]

(3.105)

The intuition behind this bound arises by analogy with the one-dimensional

case. To see the parallel, consider the homogeneous problem on the interval [0, h]:

Lκ(wκ(z)) =
κ

2
a(z)

d2wκ(z)

dz2
+
κ

2
a′(z)

dwκ(z)

dz
+ b(z)

dwκ(z)

dz
= 0 (3.106)

w(0) = 0, w(h) = 1 (3.107)

and let Y κ
t be the diffusion process with generator Lκ. Suppose b(z) < 0 and the

diffusion coefficient a(z) is positive definite. Then the solution wκ(z) to the above

boundary-value problem is precisely the probability that the first exit out of [0, h]

for Y κ
t occurs through h when the drift is negative (directed toward 0). In this

instance, wκ(z) is given by

wκ(z) =C

∫ z

0

1

a(t)
exp

[∫ t

0

−2b(s)

κa(s)
ds

]

dt (3.108)

where C =

∫ h

0

1

a(t)
exp

[∫ t

0

−2b(s)

κa(s)
ds

]

dt (3.109)

From the expression for C and the fact that b is negative, for any d2 > 0, we can

choose h > 0 and κ sufficiently small to guarantee that wκ(z) > exp
[−d2

κ

]

. In par-

ticular, for the case when a(z) and b(z) are constants, the bound is straightforward.
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The situation at an interior vertex on the graph is similar, except that gluing

conditions must be taken into account because of the degeneracy of the drift and

diffusion coefficients at Oj. Recall that B̃l and Al(s) are both nonzero at H(Oj),

but Tl(z) → ∞ as z → Oj. However, this singularity is integrable.

First, fix the edge r = j. Along edge l, where l = k1, k2, or j, we have the

homogeneous equation

Lκ
l (v

κ
r (z, l)) =0 (3.110)

⇒ B̃l(z)

Tl(z)

dvκ
r

dz
+
κ

2

Al(z)

Tl(z)

d2vκ
r

dz2
+
κ

2

A′
l(z)

Tl(z)

dvκ
r

dz
=0 (3.111)

Solving this equation for vκ
r (z, l) we get

vκ
r (z, l) =Cr,κ

2,l +

∫ z

−h

Cr,κ
1,l

Al(t)

(

exp

[

∫ t

−h

−2B̃l(s)

κAl(s)
ds

])

dt, for l = k1, k2, r = j

(3.112)

vκ
r (z, l) =Cr,κ

2,l +

∫ z

0

Cr,κ
1,l

Al(t)

(

exp

[

∫ t

0

−2B̃l(s)

κAl(s)
ds

])

dt, for l = j, r = j (3.113)

(3.114)

and we determine the constants Cr,κ
1,l from the continuity conditions and boundary

and gluing conditions in (3.101).

From the boundary conditions vκ
j (−h, k1) = vκ

j (−h, k2) = 0, we get

vκ
j (z, k1) =

∫ z

−h

Cj,κ
1,k1

Ak1(t)

(

exp

[

∫ t

−h

−2B̃k1(s)

κAk1(s)

]

ds

)

dt (3.115)

and similarly for vκ
j (z, k2).

From the boundary condition vκ
j (h, j) = 1, we get

Cj,κ
2,j = 1 − Cj,κ

1,j

∫ h

0

1

Aj(t)
exp

[

∫ t

0

−2B̃j(s)

κAj(s)
ds

]

dt (3.116)
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From the continuity condition

lim
z→0

vκ
j (z, k1) = lim

z→0
vκ

j (z, k2) = lim
z→0

vκ
j (z, j) (3.117)

we derive

Cj,κ
2,j =Cj,κ

1,k1

∫ 0

−h

1

Ak1(t)
exp

[

∫ t

−h

−2B̃k1(s)

κAk1(s)
ds

]

dt (3.118)

−Cj,κ
1,j =

Cj,κ
1,k1

[

∫ 0

−h
1

Ak1
(t)

exp
[

∫ t

−h

−2B̃k1
(s)

κAk1
(s)
ds
]

dt
]

− 1

∫ h

0
1

Aj(t)
exp

[

∫ t

0

−2B̃j(s)

κAj(s)
ds
]

dt
(3.119)

Cj,κ
1,k2

=Cj,κ
1,k1

∫ 0

−h
1

Ak1
(t)

(

exp
[

∫ t

−h

−2B̃k1
(s)

κAk1
(s)ds

])

dt

∫ 0

−h
1

Ak2
(t)

(

exp
[

∫ t

−h

−2B̃k2
(s)

κAk2
(s)
ds
])

dt
(3.120)

(3.121)

From the gluing condition

βjk1Dk1v
κ
j (Oj) + βjk2Dk2v

κ
j (Oj) − βjjDjv

κ
j (Oj) = 0 (3.122)

and the fact that βjm = lim
(z,m)→Oj

Am(z) = Am(0), we get

−Cj,κ
1,j + Cj,κ

1,k1

[

exp

(

∫ 0

−h

−−2B̃k1(s)

κAk1(s)
ds

)]

+ Cj,κ
1,k2

[

exp

(

∫ 0

−h

−−2B̃k2(s)

κAk2(s)
ds

)]

= 0

(3.123)

We derive

Cj,κ
1,k1

[

∫ 0

−h
1

A1(t)
exp

[

∫ t

−h

−2B̃k1
(s)

κAk1
(s)
ds
]

dt
]

− 1

∫ h

0
1

Aj(t)
exp

[

∫ t

0

−2B̃j(s)

κAj(s)
ds
]

dt
(3.124)

+Cj,κ
1,k1

[

exp

(

∫ 0

−h

−−2B̃k1(s)

κAk1(s)
ds

)]

(3.125)

+Cj,κ
1,k1

exp

[

∫ 0

−h

−2B̃k2(s)

κAk2(s)
ds

]

∫ 0

−h
1

Ak1
(t)

(

exp
[

∫ t

−h

−2B̃k1
(s)

κAk1
(s)
ds
])

dt

∫ 0

−h
1

Ak2
(t)

(

exp
[

∫ t

−h

−2B̃k2
(s)

κAk2
(s)
ds
])

dt
= 0 (3.126)
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and this gives

Cr,κ
1,k1

=

[

∫ h

0

1

Aj(t)
exp

(

∫ t

0

−2B̃j(s)

κAj(s)
ds

)

dt

]−1

(3.127)

×
{





∫ 0

−h
1

A1(t)
exp

[

∫ t

−h

−2B̃k1
(s)

κAk1
(s)
ds
]

dt

∫ h

0
1

Aj(t)
exp

[

∫ t

0

−2B̃j(s)

κAj(s)
ds
]

dt



 (3.128)

+ exp

(

∫ h

0

−2B̃k1(s)

κAk1(s)
ds

)

(3.129)

+



exp

[

∫ 0

−h

−2B̃k2(s)

κAk2(s)
ds

]

∫ 0

−h
1

Ak1
(t)

(

exp
[

∫ t

−h

−2B̃k1
(s)

κAk1
(s)
ds
])

dt

∫ 0

−h
1

Ak2
(t)

(

exp
[

∫ t

−h

−2B̃k2
(s)

κAk2
(s)
ds
])

dt





}−1

(3.130)

Observe that we can choose h > 0 sufficiently small that the functions B̃l(s)

and Al(s), l = k1, k2, j, are nonzero in N(Oj, h). Since we seek a lower bound for

the probability of exit through edge j and the functions B̃j, B̃ki
are negative, we can

replace the functions B̃k1(s), B̃k2(s), and B̃j by a constant β < 0 such that

|β| > max
l=k1,k2,j

sup
Il∩N(Oj ,h)

|B̃l(s)| (3.131)

and we can similarly replace the functions Aki
by a positive constant α for which

|α| < min
l=k1,k2,j

inf
Il∩N(Oj ,h)

|Al(s)| (3.132)

and the bound in (3.105) follows from the negativity of β and the form of the solution

and explicit values of the constants in (3.112).

In Lemma 2.3 of [3], it is proved that there exists h0 and a constant C > 0

and κ0 > 0 such that for any h ∈ (0, h0], (z, i) ∈ N(Oj, h) and κ < κ0,

E(z,i) [τκ
h ] ≤ Ch| lnh| (3.133)

From this we immediately derive a much weaker bound: namely, for any d3 >
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0, we can choose h and κ0 sufficiently small such that for all κ < κ0,

E [τκ
h ] < exp

[

d3

κ

]

(3.134)

Again from Chebyshev’s inequality, (3.134) implies that for any positive d4, d5,

d5 < d4, we can find h and κ0 sufficiently small so that for all κ < κ0,

P

{

τκ
h > exp

[

d4

κ

]}

<
E[τκ

h ]

exp
[

d4

κ

] < exp

[−d5

κ

]

(3.135)

We conclude that for any d2 > 0, d4 > 0, d5 > 0 with d5 < d4, d2 < d5, we can

find h > 0 and κ0 sufficiently small to ensure that for all (z, i) ∈ N(Oj, h), i = imax

and κ < κ0,

P(z,i)

{

Qκ(τκ
h ) ∈ Ij, τ

κ
h < exp

[

d4

κ

]}

= P(z,i) {Q(τκ
h ) ∈ Ij} (3.136)

− P

{

Qκ(τκ
h ) ∈ Ij, τ

κ
h > exp

[

d4

κ

]}

(3.137)

> exp

[−d2

κ

]

− exp

[−d5

κ

]

(3.138)

Since d2 and d5 are at our disposal, for any d6 > 0 we can choose d2 = d6/2 and

d5 = d6 to guarantee that for all κ sufficiently small, we have

exp

[−d2

κ

]

− exp

[−d5

κ

]

> exp

[−d6

κ

]

(3.139)

From the results of [3],

POj
(Qκ(τκ

h ) ∈ Iki
) = pκ

i (3.140)

where pκ
i → pi > 0 as κ ↓ 0.

Therefore, the logarithmic asymptotics of the transition time τz from any point

y ∈ Iki
, whether i = imin or i = imax, to a point z ∈ Ij, z 6= H(Oj), |z−H(Oj)| < h,

depend on V̄ max
ij .
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We construct a Markov process with state space consisting of three points:

one point on the interior edge Oj, one point on edge kimax , and one point on edge

kimin
. Let δ > 0 be arbitrary. Fix points the ∆1 = (δ + H(Okimax

), imax), ∆2 =

(δ + H(Okimin
), imin). Put γ1 = ( δ

2
+ H(Okimax

), imax), γ2 = ( δ
2

+ H(Okimin
), imin).

Let z on Ij satisfy |z −H(Oj)| = δ/2. Let x be any point in Ik1 ∪ Ik2 and suppose

Qκ(0) = x. Following [18], §4, define the sequence of Markov times τn: τ0 = 0,

σn = inf{t > τn : Qκ
t ∈ ∆1 ∪ ∆2}, τn = inf{t > σn−1 : Qκ

t ∈ γ1 ∪ γ2 ∪ z}.

Put Zn = Qκ
τn

. The Markov chain Zn is a discrete-time, discrete-state-space

Markov chain. For each integer n, Zn is equal to γ1, γ2, or z. We estimate the

transition probabilities for this chain. To prove the upper bound in (3.2.5), it suffices

to prove that for any d7 > 0 and α > 0, we can find δ > 0 such that if γi and ∆i

are defined as above,

Pγi

{

Z1 = z, τκ
z < exp

[

d7

κ

]}

≥ exp

[

−
V̄ max

ij + α

κ

]

, i = 1, 2. (3.141)

Now, by continuity of the function V̄ , for any α > 0 we can choose δ > 0

and h > 0 such that if i = imax and y, y′ ∈ Iki
satisfy δ

2
< |y − H(Oki

)| < δ and

|y′ −H(Oj)| < h, then

V̄ max
ij > V̄ (y, y′) > V̄ max

ij − α

4
(3.142)

Without loss of generality we can choose δ < α.

We can then find a finite time T (y′) <∞ and a smooth function φ satisfying

φ(0) = y, φ(T ) = y′ + δ/16, φ(t) ∈ [y − δ/8, y′ + δ/8], 0 ≤ t ≤ T (3.143)

for which S0T (φ) < V̄ (y, y′) + δ
32

.
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Put τκ
y′ = inf{t > 0 : Qκ(t) = y′}. From the nondegeneracy of the process

Qκ(t) in the interval [y − δ/4, y′ + δ/4] and Lemma (3.2.3), we conclude that for

sufficiently small κ,

Py

{

τκ
y′ < T (y′)

}

≥ Py

{

sup
0≤t≤T (y′)

|Qκ(t) − φ(t)| ≤ δ

32

}

(3.144)

≥ exp

[

−
(

S0T (φ) + δ
32

)

κ

]

(3.145)

≥ exp

[

− V̄ (y, y′) + α
4

κ

]

(3.146)

≥ exp

[

−
V̄ max

ij + α
2

κ

]

(3.147)

Hence, starting at y, y ∈ i = imax, the process Qκ(t) can hit y′ in finite time with

probability bounded from below by exp
[

− V̄ max
ij +α

2

κ

]

.

Thus, to prove (3.141), note that as a consequence of (3.91), (3.136), (3.144),

and the strong Markov property for Zn, for any positive d1, d2, d4, α we can choose

δ > 0 and γ = δ/2 and κ0 such that if |z−H(Oj)| < δ, z 6= Oj, and |y−H(Oki
)| < δ,

y 6= Ok, and κ < κ0, then

Pγimax

{

Z1 = z, τκ
z < exp

[

d4

κ

]}

> exp

{

[−d1

κ

]

+

[−d2

κ

]

+

[

−(V̄ max
ij + α)

κ

]}

(3.148)

An identical bound holds for the initial point y belonging to the second edge i = imin:

Pγimin

{

Z1 = z, τκ
z < exp

[

d4

κ

]}

> exp

{[−d1

κ

]

+

[−d2

κ

]

+

[−(V̄iminj + α)

κ

]}

(3.149)

Since V max
ij > V̄iminj, this establishes (3.141), from which the theorem follows.

Corollary 3.2.6. Let τκ
Oj

= inf{t > 0 : Qκ(t) = Oj}. For any point z along edge
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ki, and for any α > 0,

lim
κ→0

Pz

{

exp

[

V̄ (Oi, Oj) − α

κ

]

< τκ
Oj
< exp

[

V̄ (Oi, Oj) + α

κ

]}

= 1 (3.150)

and if (z, j) and (z′, j) are two points on the same interior edge Oj with with z < z′,

then for any α,

lim
κ→0

Pz

{

exp

[

V̄ max − α

κ

]

< τκ
z′ < exp

[

V̄ max + α

κ

]}

= 1 (3.151)

where V̄ max = max{V̄ (Ok, z
′)} and this maximum is taken over all exterior vertices

Ok such that H(Ok) < H(Oj) and Ok can be reached from Oj along a path which

does not intersect any interior vertex Or satisfying H(Or) > H(Oj).

Proof. The corollary follows from (3.149) and the fact that the exterior vertex Oi

is an asymptotically stable equilibrium for the limiting process Q(t) along edge Ii

whose domain of attraction is the entire edge Ii (see Lemma 2.1, [18]).

3.2.2 The set of possible metastable distributions

The process Qκ(t) converges to the limiting stochastic process Q(t), which

consists of deterministic motion along each edge and stochastic branching at each

interior vertex. Let pj
k represent the probability of the processQ(t) branching toward

vertex Ok from the interior vertex Oj; for any j we must have
∑

pj
k = 1, where k

ranges over all edges Ik ∼ Oj. For ease of notation, we abbreviate these pk, and

the vertex from which the branching occurs is understood to be the vertex Oj ∼ Ik

with H(Oj) > H(Ok). Let Oh be the vertex with maximal Hamiltonian value, so

H(Oh) > H(Or) for every other (interior or exterior) vertex Or. In our example,

h = 6.
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SinceQκ(t) converges weakly to a stochastic process, metastability corresponds

not to single equilibrium states but to probability distributions µ across exterior

vertices. The set of such distributions is finite and independent of the diffusion

matrix a(x) for the two-dimensional process X̃ǫ,κ(t).

We describe the distributions in our case of a four-well Hamiltonian in Figure

(3.2); this can be generalized to any finite number of wells.

1. The delta-distributions at each fixed exterior vertex Ok: these are µk(Ok) = 1,

µk(Or) = 0 for all exterior vertices Or with r 6= k;

2. The distributions over any fixed pair of exterior vertices Ok1 , Ok2 such that

Iki
∼ Oj: these are µ(Ok1) = pk1 , µ(Ok2) = pk2 , and µ(Or) = 0 for other

exterior vertices Or. (Not all of these probability distributions will necessarily

correspond to metastable distributions.)

3. The distributions over any three exterior vertices: µ(Ok) = 0 for some fixed

exterior vertex Ok, and if the exit edges Ik, Ir meet at interior vertex Oj, then

µ(Or) = pj. For all other exterior vertices Om,m 6= k, r, let {Ol1 , . . . Olm} be

the interior vertices in the shortest path between Om and the interior vertex

Oh.Then µ(Om) = pl1pl2 . . . plm . (Not all of these vertices will necessarily

correspond to metastable distributions.)

4. The distributions over all four exterior vertices: For any exterior vertex Ok,

let Ol1 , . . . , Olk be the interior vertices along the shortest path from Oh to Ok.

Then µ(Ok) = pl1pl2 . . . plk .
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Theorem 3.2.7. Let λ < min{V̄ (O1, O2), V̄ (O3, O2), V̄ (O5, O4), V̄ (O7, O4)}. Let

T (κ) be any time parameter such that

lim
κ↓0

κ lnT (κ) ≤ λ.

Let (z, 6) be any point on Γ with z > H(O6). Then the metastable state for the

initial point (z, i) and the timescale λ is the nondegenerate probability distribution

µ across all four exterior vertices O1, O3, O5, and O7, with associated weights given

by: µ(O1) = p2p1; µ(O3) = p2p3; µ(O5) = p4p5; µ(O7) = p4p7.

Proof. Let positive η and α, and θ > 0 be given. By Theorem (3.2.5), we can choose

δ > 0 such that the following hold: first,

{x ∈ Ii : V (Oi, x) < θ} ⊃ {x ∈ Ii : |x−Oi| < δ} (3.152)

and second, if (x, i) and (y, j) are two points along any exterior edge i with exterior

vertex Oi and interior vertex Oj such that |x − H(Oi)| < δ, x 6= H(Oi), and

|y −H(Oj)| < δ, y 6= H(Oj), then there exists κ0 such that for all κ < κ0,

Px

{

exp

[

V̄ max
ij − α

κ

]

< τκ
y < exp

[

V̄ max
ij + α

κ

]}

> 1 − η (3.153)

where τκ
y = inf{t > 0 : Qκ(t) = y}. let Nδ(Oi) be the δ-neighborhood of the exterior

vertex Oi on the graph Γ. Since λ is the timescale, let T (κ) be such that

lim
κ→0

κ lnT (κ) = λ (3.154)

The results of [3] imply that for any fixed t > 0, there exists a κ1 < κ0 such
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that:

|P(z,6) {Qκ1(tT (κ1)) ∈ Nδ(O1)} − p2pi| < η, i = 1, 3

|P(z,6) {Qκ1(tT (κ1)) ∈ Nδ(O5)} − p4pi| < η, i = 5, 7

and pi are the probabilities calculated explicitly in (2.192). Recall that the numbers

pi depend only on B.
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Figure 3.3: Asymptotic probabilities for small neighborhoods of exterior vertices

Let Ai, i = 1, 3, 5, 7 be the event {Qκ1(tT (κ1) ∈ Nδ(Oi)}. On each set Ai, for

any x ∈ Nδ(Oi), (3.153) implies that

lim
κ→0

Px {Qκ(tT (κ) ∈ Ii} = 1 (3.155)

and thus Qκ(tT (κ) is governed by the one-dimensional operator Lκ
i . There exists

a unique invariant measure associated to the process governed by Lκ
i , and this

measure converges as κ ↓ 0 to the delta measure concentrated at Oi. By the results

of Proposition (1), we conclude that the metastable state is Oi, so that if Fθ,Oi
=
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{(x, i) : V (Oi, x) < θ}, then

lim
κ→0

P(z,i){Qκ(tT (κ)) ∈ Fθ,Oi
} = 1 (3.156)

which establishes the second characterization of metastability. Hence the metastable

distribution µ(z,6),λ is a probability distribution across exterior vertices with weights

p2pi for i = 1, 3 and p4pi for i = 5, 7.

At times of order T (κ), then, Qκ lies within a small neighborhood of the exte-

rior vertex Oi with asymptotic probabilities pjpi above. Rather than the metastable

state being a single point, for this initial position and timescale it is a probability

distribution across all four exterior vertices.

3.2.3 Metastable states as probability distributions

We stress that the metastable state (or distribution) depends both on initial

position and timescale λ. If λ remains as before, but the initial position (z, i)

is such that H(O4) < z < H(O6), then the metastable distribution for (z, λ) is a

distribution between O5 and O7, with associated probabilities p5 and p7, respectively.

An analogous result holds for H(O2) < z < H(O6). Finally, if the initial position

(z, i) lies on any exit edge I1, I3, I5 or I7, the metastable state is the single exterior

vertex on the corresponding edge.

Theorem 3.2.8. Let (z, i) be an initial position with z > H(O6). Assume that

V̄ (O5, O4) < V̄ (O7, O4) < V̄ (O3, O2) < V̄ (O1, O2) and that V̄ (O2, O6) > V̄ (O4, O6).

Suppose λ satisfies V̄ (O5, O4) < λ < V̄ (O7, O4). The metastable distribution for this
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initial position and timescale is the probability distribution µ across O1, O3, and O7

with µ(O1) = p2p1; µ(O3) = p2p3; and µ(O7) = p4.

Proof. It follows from [3] that

lim
κ↓0

PO4 {Qκ(τκ
h ) ∈ I7} = p7 > 0 (3.157)

From Corollary (3.2.6), since V̄ (O7, O4) > λ > V̄ (O5, O4), we derive that

lim
κ↓0

PO4 {Qκ(tT (κ) ∈ I7} = 1 (3.158)

and thus, as in Theorem (3.2.7), since z > H(O6), the metastable distribution is

concentrated on the exterior vertices O7, O1, and O3. The associated probabilities

are given explicitly in (2.192) and depend only on B.

The above results illustrate the main steps in finding metastable distributions

for any initial condition (z, i) ∈ Γ with z > H(O6) and for all but finitely many

values of λ. Formally, we restate (3.2.1), whose proof follows immediately from the

previous results.

Theorem 3.2.9. Let λ > 0 and T (κ)λ be such that

lim
κ↓0

κ lnT (κ) = λ (3.159)

For any initial condition (x1(0), x2(0)) ∈ R
2 and all but finitely many timescales λ,

the process X̃ǫ,κ
Tλ(κ) converges weakly in the space C0T (R2), first as ǫ ↓ 0 and then

as κ ↓ 0, to a probability measure concentrated on the stable equilibrium points of

the unperturbed Hamiltonian system. In particular, there exist initial conditions

w = (x1(0), x2(0)) ∈ R
2 and timescales λ such that process X̃ǫ,κ

Tλ(κ), converges weakly
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in the space C0T (R2), first as ǫ ↓ 0 and then as κ ↓ 0, to a nondegenerate probability

measure µw,λ concentrated on the stable equilibrium points {O1, O3, O5, O7} of the

unperturbed Hamiltonian system, with weights pi(w, λ) = µw,λ(Oi), i ∈ {1, 3, 5, 7}

that can be explicitly computed and depend only on B.

Proof. The proof follows from the weak convergence results of [3], Theorem (3.2.5),

Corollary (3.2.6), and Theorems (3.2.7) and (3.2.8). We can determine the metastable

distribution for λ such that λ 6= V̄ (Ok, Oj) for any exterior vertex Ok and interior

vertex Oj.

For initial condition z > H(O6), if there exists λ such that V̄ (O3, O2) > λ >

V̄ (O7, O6), the metastable distribution is the probability measure concentrated at

O3 and O1 with weights p3 and p1; for λ > V̄ (O3, O2), the metastable state is O1.

For initial condition (z, i) with z < H(O4), i = 5 and λ < V̄ (O5, O4), the

metastable state is O5.

For initial condition z < H(O4), i = 7 and λ < V̄ (O7, O4), the metastable

state is O7.

For initial condition z < H(O4), i = 5 and V̄ (O5, O4) < λ < V̄ (O7, O4), the

metastable state is O7.

The corresponding results hold for initial conditions z < H(O2), i = 1, 3 and

timescales λ satisfying λ < V̄ (O3, O2) and V̄ (O3, O2) < λ < V̄ (O1, O2).

For initial conditions (z, i) satisfying H(O4) < z < H(O6) and i = 4, for λ <

V̄ (O5, O4) the metastable distribution is concentrated on the two exterior vertices

O7 and O5 with weights p7 and p5, respectively. For V̄ (O5, O4) < λ < V̄ (O7, O6),
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the metastable state is O7. If there exists λ such that V̄ (O3, O2) > λ > V̄ (O7, O6),

the metastable distribution is concentrated on O3 with probability p3 and O1 with

probability p1; if no such λ exists and λ > V̄ (O7, O6) automatically implies λ >

V̄ (O3, O2), then the metastable state is O1.

Corresponding results hold for initial conditions (z, i) satisfying H(O2) <

z < H(O6) and timescales λ < V̄ (O3, O2), for which the metastable distribu-

tion is concentrated on O3 with probability p3 and O1 with probability p1, and

V̄ (O3, O2) < λ < V̄ (O1, O6), for which the metstable state is O1.

For any (z, i), if λ > V̄ (O3, O6) (so that, by hypothesis, we automatically have

λ > V̄ (O7, O6)), the metastable state is O1.

3.2.4 Remarks and generalizations

The above results can be generalized to the case of a Hamiltonian with finitely

many wells and the same generic structure; namely, with three edges meeting at

each interior vertex and the property that the numbers V̄ (Ok, Oi) are distinct for

any two pairs of exterior and interior vertices with H(Ok) < H(Oi).

We hope to investigate further questions about averaging, large deviations, and

metastability for nearly-Hamiltonian systems. Some extensions and generalizations

of these results include:

1. The case of weaker assumptions on B: i.e. when div(B) changes sign. This

introduces additional “fixed points” for the limiting process Q(t) on the graph.

2. The construction of an action functional for the process Qκ(t) on the graph.
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We hypothesize that the action functional for the process Qκ(t) takes the

following form. First we define the action functional along each edge: for

absolutely continuous functions φ(s) : [0, T ] → Ii, where φ(0) = Qκ(0), the

edge action functional Si
0T (φ) along edge Ii for the process with generator Lκ

i

is given as

Si(φ) =
1

2

∫ T

0

[

φ̇(s) − B̃i(φ(s))

Ti(φ(s))

]2
Ti(φ(s))

Ai(φ(s))
ds,

and Si
0T (φ) is defined to be infinite for all other functions φ. Next, since

the process Qκ(t) has no delay at interior vertices—that is, only first-order

terms appear in the gluing conditions—the action functional S0T (φ) on the

graph is given as follows: for functions φ that are not absolutely continuous

along each edge Ii or for functions φ(t) which intersect the set of interior

vertices at an uncountably infinite number of time points t ∈ [0, T ], the action

functional S0T (φ) associated to Qκ is infinite. For all other φ ∈ C0T (Γ), let

t1 < t2 < . . . < tN ... be the points such that φ(tn) = Oj, where 1 ≤ n and Oj

is an interior vertex. For t : tn < t < tn+1, φ(t) lies entirely within an edge In.

Let Sn
[tn,tn+1] be the edge action functional along edge In. We define S0T (φ) by

S0T (φ) =
∑

n

Sn
[tn,tn+1](φ). (3.160)

If the sum diverges, the action functional is defined to be infinite. Once this

result is proved, a shorter proof of Theorem (3.2.1) can be obtained by invoking

the results of §4, [18]. The degeneracies of the diffusion and drift coefficients

along an exterior edge prevent us from directly applying Theorem 3.2, §5, in

[18] to get the form of the action functional along each edge.
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3. More precise asymptotics for the behavior of Q(X̃ǫ,κ(t)) in the double limit as

ǫ and κ ↓ 0. We surmise that if ǫ <
√
κ, then Theorem (3.2.1) still holds, but

if κ < ǫ2+δ, δ > 0, then sublimiting distributions may not exist.

4. The case of Hamiltonians with multiple degrees of freedom. The situation in

this instance is fundamentally different from the case of one degree of freedom

because of the possible existence of multiple invariant measures on each level

set (and consequent difficulties in averaging). Freidlin and Wentzell treat the

case of n-independent one-degree-of-freedom oscillators and show that in this

case, the slow component converges to a process on an open book space, with a

description of the behavior of the process along the “binding.” We would like

to characterize metastability in this setting.
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