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CHAPTER 1. QUANTUM CHROMODYNAMICS

Quantum Chromodynamics or QCD is a fundamental theory of the strong interaction. It

is a non-Abelian gauge theory which has SU(3) symmetry. The quarks have 3 colors whose

transformation in color space can be described by SU(3) in the fundamental representation.

To have local invariance under the SU(3) transformation, gauge particles (gluons) are intro-

duced into the Lagrangian. The difference between Abelian and non-Abelian gauge theory is

whether gauge particles can carry charge. In a non-Abelian gauge theory, such as QCD, glu-

ons carry charge. Therefore gluons can interact with themselves. Gluons have 8 colors whose

transformation in color space can be described by SU(3) in the adjoint representation.

At short distance, probed with high momentum transfer experiments, the coupling con-

stant of QCD becomes small and this infers that the theory has a property called asymptotic

freedom [1, 2]. Therefore perturbative calculations are allowed for high momentum transfer

experimental quantities such as cross sections. Furthermore, it is frequently the case that the

cross section can be obtained by using a factorization method [3] by which the cross section

can be factorized into a perturbative part and non-perturbative part. In the factorization

approach, the perturbative part can be calculated from the Feynman diagrams ordered by

coupling constant. The non-perturbative part, for the case of multiparticle production, can

be explained as parton distribution functions and fragmentation functions which are universal

and can be determined from the experiment. These non-perturbative components are said to

be universal since they are determined by a limited number of experiments but apply to a

broad class of additional experiments. One of the aims of this thesis is to help pave a pathway

to calculating these non-perturbative quantities for comparison with experiment.

On the other hand, the QCD coupling constant becomes larger when the momentum trans-
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ferred becomes smaller which leads to the phenomenon called confinement. Confinement dic-

tates that there are no free quarks in nature. What we observe are the bound states of quarks

and gluons which are colorless. That is, the colors in the observed bound state systems combine

in such a way as to produce no net color in analogy with white light which is constructed from

a spectrum of colors. To solve for the bound states in this strong interaction regime of QCD,

a suitable non-perturbative method must be found. One of these methods is the Hamiltonian

method. By diagonalizing the Hamiltonian matrix in a suitable Fock space basis, the eigenval-

ues and eigenvectors of bound states of quarks and gluons can be obtained. The eigenstates,

which are then expressed as superpositions of Fock space basis states, can then be analyzed to

yield the non-perturbative parton distribution functions and fragmentation functions.

A major goal here is to define symmetry-restricted Fock space basis spaces suitable for

evaluating the bound states of multiple quarks and gluons in QCD.

1.1 Quarks

The proton and neutron are not fundamental particles. They are understood to be primarily

composed of three constituents called quarks in a simple picture that is best illustrated with

the following simple analysis. The magnetic dipole moment µ of a pointlike particle, such as

the electron, is proportional to the charge q, the total spin S, the constant g, and inversely

proportional to the mass m particle:

µ = g(
q

2m
)S. (1.1)

As a result, if the neutron were pointlike it would have zero magnetic moment since it carries

no charge. However from experiment, the magnetic moment of the neutron is not zero, which

implies it has internal structure. In 1963 Gell-Mann [4] and Zweig [5] independently proposed

the quark model, according to which hadrons (mesons and baryons) are composite particles

composed of two (mesons) or three (baryons) fundamental particles called quarks. According

to QCD, which soon emerged to replace these early quark models, each quark has one of 6

flavors which are u,d,s,c,b and t with charges +2/3, -1/3, -1/3, +2/3, -1/3 and +2/3. By using
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the quark model, the magnetic moment of the neutron, which can be treated in its leading Fock

space basis state as the three valence quark configuration |udd〉, can be calculated as the sums

of magnetic moments arising from the constituent quarks: µn = 4
3µd − 1

3µu. The magnetic

moment of the proton, which has the leading Fock space component |uud〉, is µp = 4
3µu− 1

3µd.

If we assume that the masses of u and d quarks are equal, then µu = −2µd which leads to the

ratio between magnetic dipole moments of a neutron and a proton

µn

µp
=

4
3µd − 1

3µu

4
3µu − 1

3µd
=

2µd

−3µd
= −2

3
. (1.2)

This result is very close to the experimental result which is -0.685.

In order to retain Fermi-Dirac statistics for the known baryons and mesons when con-

structing them from quarks, an additional degree of freedom called color is introduced. The

total wavefunction of three quarks must be antisymmetric for baryons due to the requirement

of Fermi-Dirac statistics. However, the 4++ as a uuu bound state is symmetric under the

interchange of the quark spin and flavor quantum number. With the supplement of an anti-

symmetric wavefunction in color space, the total wavefunction of the 4++ is antisymmetric.

Furthermore, in order to satisfy confinement, the wavefunction of baryons, mesons and even

exotic multiparton hadrons are taken to be singlet states (colorless states) in color space. We

will present detailed methods for constructing color singlet states for arbitrary multiparton

hadrons in chapter 4.

The quark model is very successful since it explains many properties of the mesons and

baryons including the cited example above of the ratio of neutron to proton magnetic moments.

It also predicts the existence of new particles such as the Ω−. However it also has some

problems. For example, the quark model alone does not predict confinement. In addition,

there is no role for interactions (absence of dynamics) in the quark model. For example, we

would like to have interactions that tell us how three quarks are held together to form a proton

or a neutron. For the dynamics which can describe the interaction between quarks, Quantum

Chromodynamics or QCD is adopted in which non-Abelian gauge bosons (gluons) act between

the quarks and among themselves [6, 7].



4

1.2 Lagrangian of QCD

Quantum Chromodynamics or QCD is the widely accepted fundamental theory of the

strong interaction. It describes the interaction between quarks via non-Abelian gauge bosons

called gluons which can also interact with themselves. We will proceed now to introduce the

Lagrangian of QCD in a sequence of steps.

We begin with the free-particle Lagrangian Lf for the quarks which are described by fermion

fields ψ(x), having spin 1/2

Lf = ψ̄(x)(iγµ∂µ −m)ψ(x), (1.3)

where quark field ψ(x) ≡ ψf
i,a(x). “f” represents flavor which can be u, d, s, c, b, t. “i” repre-

sents spinor with i = 1, 2, 3, 4. And “a” represents one of three colors.

In the equation above, γµ are Dirac gamma matrices and m represents the mass of quark.

To account for the quark’s color degree of freedom, ψ(x) has components in color space where

its transformation can be described by SU(3) in the fundamental representation:

ψ(x) → V ψ(x), (1.4)

where V = exp(iαata) and ta are generators of SU(3) transformation and have the commutation

relations in the form

[ta, tb] = ifabctc, (1.5)

and fabc are the structure constants of the SU(3) transformation and the color indices a, b and

c run from 1 to 8. The quantities, αa, are arbitrary coefficients.

In Eqn. (1.4), if αa does not depend on x, then it is obvious that Eqn. (1.3) is invariant

under the SU(3) transformation since ψ̄(x) → ψ̄(x)V † and V †V = 1. However it is not invariant

under a local SU(3) gauge transformation where αa can be a function of x since the derivative

would then play a role. In order to retain the SU(3) local gauge invariance, the gauge particles

are introduced by replacing ∂ in Eqn. (1.3) with the covariant derivative

Dµ = ∂µ − igAa
µta, (1.6)
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where Aa
µ represents the non-Abelian gauge field with color indices a running from 1 to 8. And

g is strong coupling constant.

Under the local SU(3) gauge transformation,

Dµψ → V (x)Dµψ, (1.7)

then ψ̄(iγµDµ −m)ψ is invariant. If the field tensor is defined as

[Dµ, Dν ] = −igF a
µνt

a, (1.8)

then

F a
µν = ∂µAa

ν − ∂νA
a
µ + gfabcAb

µAc
ν . (1.9)

Under the SU(3) transformation,

F a
µνt

a → V (x)F a
µνt

aV †(x). (1.10)

Then the term −1
2tr[(F a

µνt
a)2] = −1

4(F a
µν)

2 is gauge invariant since, with the trace calcula-

tion, V †(x)V (x) = 1.

The gauge invariant QCD Lagrangian is

L = −1
4
F a

µνF
µν
a +

∑
flavor

ψ̄(iγµDµ −m)ψ, (1.11)

where we have summed over the 6 flavors and suppressed the indices on the fermion fields and

covariant derivatives as they are now understood from the previous definitions.

Some comments about Eqn. (1.11):

(1). Under the gauge transformation, the infinitesimal transformation law for Aa
µ is

Aa
µ → Aa

µ +
1
g
∂µαa + fabcAb

µαc. (1.12)

There is no term m2Aa
µAµ

a since it is not gauge invariant under the transformation Eqn. (1.12).

Therefore the gluon is massless.

(2). The QCD Lagrangian is rather simple though it might not seem so simple when it

is first encountered. The Lagrangian has energy dimension 4 - the units are Energy per unit
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space-time volume and space-time volume here is in 4 dimensions. In Eqn. (1.11), ψ has

dimension 3
2 and Aa

µ has dimension 1. We readily see that there can be no higher order gauge

invariant terms which contain ψ, Aa
µ and the covariant derivative.

(3). It is a renormalizable theory. The coupling constant g has dimension 0 which satisfies

the requirement that a renormalizable theory has coupling constant with dimension no less

than 0. This is another reason why there are no higher order gauge invariant terms which

contains ψ, Aa
µ and the covariant derivative in the Lagrangian which would lead to coupling

constants with dimension less than 0.

(4). Under the infinitesimal gauge transformation

F a
µν → F a

µν − fabcαbF c
µν . (1.13)

From the field strength F a
µν , we can define the Non-Abelian electric and magnetic field:

Ei
a = F i0

a ,

Bi
a = −1

2
εijkF jk

a . (1.14)

However unlike QED, the non-Abelian electric field Ei
a and magnetic field Bi

a are not

gauge invariant under the gauge transformation Eqn. (1.13). Therefore they are not physically

observable quantities.

1.3 Fixing the gauge

There are two methods to quantize the field. One method is canonical quantization where

we first obtain the canonical momentum from the Lagrangian. Then using the Poisson bracket,

we obtain the commutation relationship between the field and the canonical momentum. One

then quantizes the field by expanding it in terms of creation and annihilation operators and

applies commutation (Boson) or anti-commutation (Fermion) conditions on these operators.

The resulting fields will then obey the commutation or anti-commutation relations as appro-

priate to their statistics. The other method is the functional integral quantization method:

the Green’s function or propagator is obtained from the generating function.
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However the problem happened in both methods. For example, in functional integral

quantization method, −1
4F a

µνF
µν
a or L is gauge invariant. Consider the functional integral

∫
DAeiS[A],

S =
∫

d4x[−1
4
F a

µνF
µν
a ], (1.15)

where DA represents the functional integral over all field configurations. And S is the action

for the gauge fields A alone.

Under the gauge transformation Eqn. (1.12), S does not change due to the gauge invariance

of −1
4F a

µνF
µν
a . Therefore the functional integral Eqn. (1.15) is divergent due to the integration

over a continuous infinity of equivalent field configurations (equivalent under arbitrary gauge

transformations). Similarly in canonical quantization method, not all the gauge fields are

independent. Therefore, we can not naively obtain the commutation relations between gauge

fields and the conjugate momenta.

To remove this divergence, we need to impose a gauge fixing condition such that we consider

all equivalent fields once. There are a couple of ways to fix the gauge. A common choice is

covariant gauge: ∂uAu = 0. Under this gauge choice, unphysical particles called ghost particles

are required to retain the unitarity of quantum field theory. The argument is given as follows.

Since the gluon is massless, it has only two physical transverse polarizations. However from

the optical theorem, in Fig. 1.1, the left hand side must be equal to the right hand side. But

on the left hand side, the gluon loop has longitudinal polarization. And on the right hand side,

the two gluons in final state have only transverse polarizations. In order to retain unitarity,

the ghost particle is introduced such that on the left hand side, there is one more diagram with

the ghost loop as the intermediate state to remove the longitudinal polarization.

To avoid the ghost particle, the light front gauge can be chosen. Under the light front gauge,

A+ ≡ A0 + A3 = 0 and from the equation of motion for the gauge field, A− ≡ A0 − A3 can

be expressed in terms of A⊥ ≡ (A1, A2), indicating A− is no longer independent. Therefore,

in light front gauge, gluons only have two transverse polarizations which are independent

components. As a result, there is no need for a ghost particle to remove the longitudinal
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2Im =

2

Figure 1.1 From the optical theorem, the left hand side needs to be equal to
the right hand side. However with a covariant gauge, the ghost
particle is required to remove the unphysical degree of freedom
on the left hand side. Therefore the graph on the left hand side
is equal to the graph on the right hand side plus one additional
graph where the ghost particle is sitting in the middle.

polarizations with the light front gauge. We will adopt the light front gauge for simplicity in

what follows.

1.4 Running coupling constant

For a renormalizable theory, the coupling constant is not fixed. To remove the ultraviolet

divergence, the renormalization scale is chosen. However the physical quantities should be in-

dependent of choice of renormalization scale, which implies that the coupling constant evolutes

with external energy in the interaction theory.

In analogy with the fine structure constant, α ∼ 1/137, in Quantum Electrodynamics

(QED), we define coupling constant αs = g2/4π. In QCD, the running coupling constant αs

is determined by the renormalization equation

µ2 ∂αs

∂µ2
= β(αs). (1.16)

β(αs) is calculated and has the perturbative expansion [1, 2, 8, 9]

β(αs) = −b0α
2
s(1 + b1αs + b2α

2
s + O(α3

s)), (1.17)
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where

b0 =
(33− 2nf )

12π

b1 =
(153− 19nf )
2π(33− 2nf )

b2 =
(77139− 15099nf + 325n2

f )
288π2(33− 2nf )

. (1.18)

and nf is the number of flavors.

If we only consider the leading order in Eqn.(1.17), the Eqn.(1.16) gives us the solution

αs(µ2) =
αs(µ2

0)
1 + αs(µ2

0)b0t
, t = ln

µ2

µ2
0

, (1.19)

where µ is renormalization scale.

Unlike QED, in QCD the coupling constant αs becomes smaller when µ2 is larger, which

can be shown in Fig. 1.2. This is known as asymptotic freedom.

0

0.1

0.2

0.3

1 10 10
2

µ GeV

α s(
µ)

Figure 1.2 The QCD running coupling constant as the function of µ:
when µ becomes larger, the running coupling constant becomes
smaller.(Figure comes from ref.[10])

Perturbative calculations are allowed when the momentum transferred is sufficiently large.

For example, in deep inelastic scattering process, when the virtual photon carries very large
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momentum, the cross section can be factorized into a long distance part called parton distri-

bution function and a short distance part which in leading order is the pointlike interaction

between the virtual photon and a quark.

On the other hand, when the momentum transferred becomes smaller, the running coupling

becomes larger, which leads to the phenomena called confinement. Perturbative calculations

fail in this strong coupling regime. In order to solve for experimental quantities such as bound

states in this regime, new methods such as the Hamiltonian method we employ here can be

used.



11

CHAPTER 2. LIGHT FRONT QCD HAMILTONIAN

2.1 The general idea of Hamiltonian method

Before we introduce the light front QCD Hamiltonian, we first discuss the general Hamilto-

nian method. Recall that in non-relativistic quantum mechanics, the Hamiltonian is the sum

of kinetic energy and potential energy. We can then solve the Hamiltonian eigenvalue problem

to obtain the bound state solutions and their respective eigenfunctions as a Hamiltonian ma-

trix eigenvalue problem in a selected basis space. We will work with the Hamiltonian matrix

formulation in this effort. In order to obtain the Hamiltonian, we need to define the canonical

momentum from the Lagrangian.

Suppose we have a general Lagrangian L which is the function of φ(x) and its derivative

∂µφ(x). From the Lagrangian L, the canonical momentum is defined as

πφ(x) =
∂L

∂(∂tφ)
. (2.1)

Once we have the canonical momentum πφ(x), the Hamiltonian is obtained after we inte-

grate over all three-dimensional space,

H(x) =
∫

dx1dx2dx3(πφ(x)φ(x)− L). (2.2)

In quantum field theory, the fields are operators. In order to quantize the fields, the equal

time canonical commutation relation is given by

[φ(x), πφ(y)]x0−y0 = δ(3)(x− y). (2.3)

Here we want to emphasize in Eqn. (2.3), the equal instant time is taken when we quantize

the fields. However the equal light front time quantization can also be used when we quantize

the fields and this will be our choice once we define the light front variables below.
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With canonical commutation relations, the creation operator a†p and annihilation operator

ap can be obtained once we expand the field in terms of plane wavefunctions with different

four-momenta p,

φ(x) =
∫

d3p

(2π)3
1√
2ωp

(ape
ip·x + a†pe

−ip·x), (2.4)

π(x) =
∫

d3p

(2π)3
(−i)

√
ωp

2
(ape

ip·x + a†pe
−ip·x), (2.5)

where ωp =
√

~p2 + m2, where ~p2 is the square of the three-momentum.

Then from Eqn. (2.3), we have

[ap, a
+
q ] = (2π)3δ(3)(p− q). (2.6)

Again we want to emphasize in Eqn. (2.6), the equal instant time is taken.

In the case of a Hamiltonian without interaction, the ground state |0〉 is called the vac-

uum. When ap acts on the vacuum, we obtain zero. Therefore, the ground state of the free

Hamiltonian is trivial. However, with the interaction, the ground state of the full Hamiltonian

|Ω〉 is not the same as the ground state of free Hamiltonian |0〉, in the conventional form of

quantum mechanics where the Hamiltonian governs the time evolution of the system from an

initial instant in time, t0. To see the structure of the ground state of the full Hamiltonian |Ω〉,
we can express it in terms of complete eigenstates of the free Hamiltonian,

〈Ω| = 〈Ω|0〉〈0|+
∑
n

〈Ω|n〉〈n|, (2.7)

where |n〉 are the multiparticle states. As an example, consider a specific term with 3 pairs in

specified momentum states, |3〉, that can be expressed as

|3〉 = (a−p3a
+
p3

)(a−p2a
+
p2

)(a−p1a
+
p1

)|0〉. (2.8)

Therefore, even though the total momentum of ground state is zero, it contains an arbitrary

number of of virtual particle and antiparticle pairs. Actually, 〈Ω| is obtained by evolving |0〉
from time -T to time t0 with the operator U which is defined as U(t, t0) = eiH0(t−t0)e−iH(t−t0)

[11].

〈Ω| = lim
T→∞(1−iε)

〈0|U(T, t0)(e−iE0(T−t0)〈0|Ω〉)−1. (2.9)
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Above we denote H0 as the free Hamiltonian and H as the full Hamiltonian and E0 is the

ground energy of H.

To avoid this complicated ground state of the full Hamiltonian, the light front form is

introduced in the next section where we can see that the structure of the ground state is much

simpler.

2.2 Light front form of Hamiltonian

2.2.1 Light front coordinates

The light front form was introduced by Dirac [12]: the initial surface on which the system

begins its evolution is the three dimensional surface in space-time formed by a plane wave front

advancing with the velocity of light. Such a surface will be called the front for brevity.

If the space-time

x = (x0, x1, x2, x3), (2.10)

then, the light front time is defined as

x+ = x0 + x3, (2.11)

where x0 is the conventional time and x3 is the third component in the three dimensional

coordinate space. And the third component of light front coordinate space is defined as

x− = x0 − x3. (2.12)

In analogy with the light front space-time variables, we define the longitudinal momentum

k+ = k0 + k3, (2.13)

and light front energy

k− = k0 − k3. (2.14)

The relation between light front momentum and light front energy is given by

k− =
k2
⊥ + m2

k+
. (2.15)
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Using the light front coordinates, we have

x· y =
1
2
x+y− +

1
2
x−y+ − x⊥y⊥. (2.16)

In light front coordinates, metric tensor g+− = g−+ = 2, g11 = g22 = −1. Further, we have

g+− = g−+ = 1
2 .

The light front derivatives are given by

∂+ =
∂

∂x+
=

1
2
∂−,

∂− =
∂

∂x−
=

1
2
∂+,

∂i
⊥ =

∂

∂xi
. (2.17)

The dot product of any two four-vectors, A and B, is then given by

A·B =
1
2
(A+B− + A−B+)−A⊥·B⊥. (2.18)

2.2.2 Light front form

In a covariant theory, time and space are different aspects of four-dimensional space-time

and the operators are functions of time and space. However, one can generalize the concepts

of space and time to achieve alternative schemes in which the operators are the functions of

the new defined “space-time”. The requirement of the reparametrization is that the inverse

transformation exists and different forms of reparametrization are not accessible by Lorentz

transformation. Dirac [12] proved that there are no more than three different parametrizations:

the instant form, the point form and the front form. The instant form is the conventional one

we are familiar where the initial time is t = 0. In the point form the hypersphere on which

one sets the “initial conditions” at the same “initial time” has a shape of a hyperboloid. In

the front from, the hypersphere is a tangent plane to the light cone.

The three forms of Hamiltonian dynamics are shown in Fig. 2.1.
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Figure 2.1 Three forms of Hamiltonian dynamics(from left to right): the
instant form; the front form; the point form. In the instant
form, the hypersphere where one quantizes the theory at the
same initial “time” is a the plane with x0 = 0. In the front
form, the hypersphere is the plane with x0 + x3 = 0. And in
the point form, the hypersphere is a hyperboloid.

2.2.3 The Poincaré symmetries in the front form

The Poincaré symmetries involve the generators which satisfy the relationships:

[Pµ, P ν ] = 0,

[Mµν , P ρ] = i(−gµρP ν + gνρPµ),

[mµν ,Mρσ] = i(−gµρMνσ + gνρMµσ − gµσMρν + gνσMρµ), (2.19)

where Pµ is momentum four-vector, Mµν is the angular momentum tensor and gµν is the

metric tensor.

In the instant form, the rotational and boost operators, J i and Ki, are given as Mij =

iεijkJ
k and M0i = Ki which satisfy

[
J i, J j

]
= −iεijkJ

k,

[
J i, Kj

]
= iεijkK

k,

[
Ki,Kj

]
= −iεijkK

k, (2.20)

where εijk is 1 if the space-like indices ijk are in cyclic order, and zero otherwise.
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In light front form, the boost and rotational operators are defined by

K3 = −12M+−, Ei = M+i,

J3 = M12, F i = M−i. (2.21)

2.2.4 Why adopt the light front form?

Once we obtain the light front Hamiltonian, the problem of computing the eigenvalues

and the corresponding wavefunctions can be reduced to solving the Hamiltonian eigenvalue

problem with similarities (and differences) to the one encountered in non-relativistic many-

body theory. The eigenstate of the light font Hamiltonian satisfies (HLF −M2)|M〉 = 0 where

HLF = P−P+ − P 2
⊥. Projecting the Hamiltonian eigenvalue equation onto the various Fock-

space states results in an infinite number of coupled integral eigenvalue equations which must

be truncated to obtain numerical solutions. Equivalently, we can expand the eigenfunctions

in a finite Fock-space basis and diagonalize H in that basis to obtain the eigenvalues and

eigenfunctions.

In light front, the vacuum has eigenvalue 0 when P⊥ and P+ act on it:

P⊥|0〉 = 0,

P+|0〉 = 0. (2.22)

The the light front momentum is nonnegative which is a key difference between light front

quantization and ordinary equal time quantization where the momentum can be negative.

Therefore in equal time quantization, the vacuum of the full Hamiltonian can be filled with an

arbitrary number of particle and antiparticle pairs or quantum fluctuations, which has been

shown in Eqn. (2.7). However in light front quantization each of the particles (neglecting zero

modes which are discussed below) must carry some positive light front momentum and cannot

exist in the vacuum state. Consequently, the vacuum of the free Hamiltonian is also the exact

eigenstate of the full Hamiltonian. Specially in QCD even though the light front vacuum is

potentially more complicated due to the possible filling with zero momentum massless gluons

(occupants of the zero mode mentioned above), the physical vacuum is still simpler in light
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front form than that in instant time since no quarks with finite mass can be present in the

vacuum state.

2.3 From QCD Lagrangian to light front QCD Hamiltonian

In Chapter 1, the QCD Lagrangian is given by Eqn. (1.11). From Eqn. (1.11), the equations

of motion for ψ and Aa
µ are given by

(iγµ∂µ −m + gγµAµ)ψ(x) = 0, (2.23)

∂µFµν
a + gfabcAbµFµν

c + gψ̄γνtaψ = 0. (2.24)

In order to obtain the Hamiltonian of QCD, we need to obtain the canonical momentum

from the Lagrangian. The canonical momentum of Aa
µ is given by

(πA)µ
a(x) =

∂L
∂(∂−Aaµ)

= −1
2
F+µ

a (x). (2.25)

And the canonical momentum of ψ is given by

πψ(x) =
∂L

∂(∂−ψ)
=

1
2
ψ̄γ+. (2.26)

By using light front coordinates, Eqn. (2.23) can be written as

(i∂− + gtaA−a )ψ+ = (iα⊥·D⊥ + βm)ψ−, (2.27)

(i∂+ + gtaA−a )ψ− = (iα⊥·D⊥ + βm)ψ+, (2.28)

where we denote α⊥ = γ0γ⊥, β = γ0 and the quark fields ψ(x) can be decomposed into

ψ(x) = ψ+(x) + ψ−(x) with ψ+(x) = 1
2γ0γ±ψ(x). From the two equations above, we can see

that ψ− is a constraint field which can be expressed in terms of ψ+ field:

ψ− =
1

i∂+
(iα⊥·D⊥ + βm)ψ+. (2.29)

and in the light front gauge A+
a = 0, A−a is not an independent field and can be expressed in

terms of the two transverse components Ai
a from the equation of motion:

1
2
(∂+)2A−a = ∂+∂iAi

a + gfabcAi
b∂

+Ai
c + 2ψ†+taψ+. (2.30)
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Once we have the canonical momentum, the Light front QCD (LFQCD) Hamiltonian den-

sity is given by

H =
1
2
(∂iAj

a)
2 + gfabcAi

aA
j
b∂

iAj
c +

g2

4
fabcfadeAi

bA
j
cA

i
dA

j
e

+[ψ†+{α⊥· (i∂⊥ + gA⊥) + βm}( 1
i∂+

){α⊥· (i∂⊥ + gA⊥) + βm}ψ+]

+g∂iAi
a(

1
∂+

)(fabcAi
b∂

+Ai
c + 2ψ†+taψ+)

+
g2

2
(

1
∂+

)(fabcAi
b∂

+Ai
c + 2ψ†+taψ+)(

1
∂+

)(fabcAi
b∂

+Ai
c + 2ψ†+taψ+), (2.31)

where 1
∂+ is defined by

1
∂+

f(x−) =
1
4

∫
dy−ε(x− − y−)f(y−), (2.32)

and ε(x) = θ(x)− θ(−x). θ(x) is the step function which is equal to 0 when x < 0 and 1 when

x ≥ 0.

Once we have the LFQCD Hamiltonian, we can express it in terms of two-component field.

To do so, we need to introduce the following γ matrices:

γ0 =




0 −i

i 0


 , γ3 =




0 i

i 0


 , γi =



−iεijσj 0

0 iεijσj


 , (2.33)

where εij is 1 when indices ij are in cyclic order and the light front quark fields have the

two-component form:

ψ =




ϕ

ν


 , ψ+ =




ϕ

0


 , ψ− =




0

ν


 =




0

1
i∂+ (σ̂i(i∂i + gAi) + im)ϕ


 , (2.34)

where ϕ(x) is a two-component spinor field and σi are Pauli matrices which are given as follows

σ1 =




0 1

1 0


 , σ1 =




0 −i

i 0


 , σ3 =




1 0

0 −1


 . (2.35)

Here σ̂1 = σ2 and σ̂2 = −σ1.

In the two-component form, the LFQCD Hamiltonian Eqn. (2.31) can be written as

H = H0 +Hint, (2.36)
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where

H0 =
1
2
(∂iAj

a)(∂
iAj

a) + ϕ†(
−∇2 + m2

i∂+
)ϕ, (2.37)

Hint = Hqqg +Hggg +Hqqgg +Hqqqq +Hgggg, (2.38)

and

Hqqg = gϕ†{−2(
1

∂+
)(∂⊥·A⊥) + σ̂⊥·A⊥(

1
∂+

)(σ̂⊥· ∂⊥ + m)

+(
1

∂+
)(σ̂⊥· ∂⊥ −m)σ̂⊥·A⊥}ϕ, (2.39)

Hggg = gfabc{∂iAj
aA

i
bA

j
c + (∂iAi

a)(
1

∂+
)(Aj

b∂
+Aj

c)}, (2.40)

Hqqgg = g2{ϕ†σ̂⊥·A⊥}( 1
i∂+

)σ̂⊥·A⊥}ϕ

+2(
1

∂+
)(fabcAj

b∂
+Aj

c)(
1

∂+
)(ϕ†T aϕ)}

= Hqqgg1 +Hqqgg2, (2.41)

Hqqqq = 2g2{( 1
∂+

)(ϕ†T aϕ)(
1

∂+
)(ϕ†T aϕ)}, (2.42)

Hgggg =
g2

4
fabcfade{Ai

bA
j
cA

i
dA

j
e + 2(

1
∂+

)(Ai
b∂

+Ai
c)(

1
∂+

)(Aj
d∂

+Aj
e)}

= Hgggg1 +Hgggg2. (2.43)

In this section, we have obtained the LFQCD Hamiltonian from the LFQCD Lagrangian.

The Hint is given in terms of Eqn. (2.39), Eqn. (2.40), Eqn. (2.41), Eqn. (2.42), Eqn. (2.43). In

the next section, we will quantize the fields and find the light front Hamiltonian diagrammatic

rules corresponding to Hint.

2.4 Light front Hamiltonian diagrammatic rules

In this section, we present the light front Hamiltonian diagrammatic rules. Before we

obtain the Hamiltonian diagrammatic rules, we list some basic results which will be used in
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the following calculation. At first, we need to adopt an expansion of gauge field which we take

in the conventional form for the present :

Ai(x) =
∑

λ

∫
dk+d2k⊥

2(2π)3k+
[a(k, λ)εi

λe−ik·x + a+(k, λ)(εi
λ)?eik·x], (2.44)

where εi
λ is the gauge field polarization vector: εi

1 = 1√
2
(1, i), εi−1 = 1√

2
(1,−i).

Similarly, we expand the fermion field:

ϕ(x) =
∑

λ

χλ

∫
dk+d2k⊥

2(2π)3
√

k+
[b(k, λ)e−ik·x + d+(k,−λ)eik·x], (2.45)

where χλ is the spin eigenstate:

χ1/2 =




1

0


 , χ−1/2 =




0

1


 . (2.46)

From the commutation relation for bosonic fields and anticommutation relation for fermionic

fields, we have

[a(k1, λ1), a+(k2, λ2)] = 2(2π)3k+
1 δ3(k1 − k2)δλ1λ2 , (2.47)

{b(k, λ1), b+(p, λ2)} = 2(2π)3p+δ3(k − p)δλ1λ2 , (2.48)

{d(k, λ1), d+(p, λ2)} = 2(2π)3p+δ3(k − p)δλ1λ2 . (2.49)

2.4.1 Diagrammatic rule for interaction Hamiltonian Hqqg

α β
P1 S1 P2 S2

(i,a)k,λ

Figure 2.2 Hqqg: quark to quark and gluon transition term in the interac-
tion Hamiltonian.

The quark to quark and gluon transition term in the interaction Hamiltonian Hqqg is given

by Eqn. (2.39). To obtain the diagrammatic rule for this interaction, we define an initial state
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which is |p1, s1〉 and a final state which is |p2, s2; k, λ〉. A diagram to describe this process is

given by Fig. 2.2.

In Eqn. (2.39), when the term ϕ†{( 1
∂+ )(∂·A⊥)ϕ is sandwiched between the initial state and

final state, we have

〈p2, s2; k, λ|ϕ†( 1
∂+

)(∂⊥ ·A⊥)ϕ|p1, s1〉

= 〈0|a(k, λ)b(p2, s2)ϕ†(
1

∂+
)(∂⊥ ·A⊥)ϕb+(p1, s1)|0〉

= χ+
s2χs1

√
p+
1

√
p+
2 〈0|a(k, λ)eip2·x(

1
∂+

)(∂⊥ ·A⊥)e−ip1·x|0〉

= χ+
s2χs1

√
p+
1

√
p+
2 (iki)(εi

λ)?−i

k+
〈0|ei(p2+k1−p1)·x|0〉, (2.50)

and when the term ϕ†σ̂⊥ ·A⊥( 1
∂+ )(σ̂⊥ · ∂⊥ + m)ϕ is sandwiched between the initial state and

final state, we have

〈p2, s2; k, λ|ϕ†σ̂⊥ ·A⊥(
1

∂+
)(σ̂⊥ · ∂⊥ + m)ϕ|p1, s1〉

= χ+
s2χs1

√
p+
1

√
p+
2 〈0|a(k, λ)eip2·xσ̂⊥ ·A⊥(

1
∂+

)(σ̂⊥ · ∂⊥ + m)e−ip1·x|0〉

= χ+
s2χs1

√
p+
1

√
p+
2 σ̂i · (εi

λ)?(−iσ̂j · pj
1 + m)

i

p+
1

〈0|ei(p2+k1−p1)·x|0〉, (2.51)

and, finally, when the last term ϕ†( 1
∂+ )(σ̂⊥ ·∂⊥−m)σ̂⊥ ·A⊥ϕ is sandwiched between the initial

state and final state, we have

〈p2, s2; k, λ|ϕ†( 1
∂+

)(σ̂⊥ · ∂⊥ −m)σ̂⊥ ·A⊥ϕ|p1, s1〉

= χ+
s2χs1

√
p+
1

√
p+
2 〈0|eip2·x(

1
∂+

)(σ̂⊥ · ∂⊥ −m)σ̂i · (εi
λ)?ei(k1−p1)·x|0〉

= χ+
s2χs1

√
p+
1

√
p+
2

−i

k+ − p+
1

(−iσ̂i · (pi
1 − ki)−m)σ̂i · (εi

λ)?〈0|ei(p2+k1−p1)·x|0〉. (2.52)

Therefore, when we combine them together, we obtain the diagrammatic rule for the interaction

Hamiltonian Hqqg:

〈p2, s2; k, λ|Hqqg|p1, s1〉

= −gχ+
s2

√
p+
1

√
p+
2 {−2

ki

k+
− σ̂i

(σ̂i · pi
1 + im)
p+
1

− (σ̂i · pi
2 − im)

p+
1 − k+

σ̂i}(εi
λ)?χs1. (2.53)

Note: If we change final quark with momentum p2 into initial antiquark with same momentum,

we found the result is the same except that the 4-momentum conservation will be p1 + p2 = k.
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2.4.2 Diagrammatic rule for interaction Hamiltonian Hggg

(i,a) (j,b)

(l,c)

k1 k2

k3

Figure 2.3 Hggg: three-gluon interaction Hamiltonian

The Hamiltonian of three-gluon interaction Hggg is given by Eqn. (2.40). The initial state

is |k1, i〉 and the final state is |k2, j; k3, l〉.
In terms of the gauge field expansion in Eqn. (2.44), we have

∂mAn
a
′Am

b
′An

c
′ =

∫
dp+

1 d2p⊥1
2(2π)3p+

1

dp+
2 d2p⊥2

2(2π)3p+
2

dp+
3 d2p⊥3

2(2π)3p+
3

{[a(p1)εn
a′e

−ip1·x(−ipm
1 ) + a+(p1)(εn

a′ )
?eip1·x(ipm

1 )]

[a(p2)εm
b
′ e−ip2·x + a+(p2)(εm

b
′ )?eip2·x]

[a(p3)εn
c′e

−ip3·x + a+(p3)(εn
c′ )

?eip3·x]}. (2.54)

From the expression above, we know that only the following operators have a contribution

for the given initial state and the final state:

a(p1)a+(p2)a+(p3)εn
a
′ (εm

b
′ )?(εn

c
′ )?(−ipm

1 )e−i(p1−p2−p3)·x

+ a+(p1)a(p2)a+(p3)(εn
a′ )

?εm
b′ (ε

n
c′ )

?(ipm
1 )ei(p1−p2+p3)·x

+ a+(p1)a+(p2)a(p3)(εn
a
′ )?(εm

b
′ )?εn

c
′ (ipm

1 )ei(p1+p2−p3)·x, (2.55)

and after we sandwich these operators between the given initial state and the final state, we

have

〈k2, j; k3, l|∂mAn
a′A

m
b′A

n
c′ |k1, i〉

= δp1k1δp2k2δp3k3δniδmjδnlδa′aδb′bδc′c(−ikj
1)

+δp1k1δp2k3δp3k2δniδmlδnjδa
′
aδb

′
cδc

′
b(−ikl

1)
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+δp2k1δp1k2δp3k3δmiδnjδnlδb′aδa′bδc′c(ik
i
2)

+δp2k1δp1k3δp3k2δmiδnlδnjδb
′
aδa

′
cδc

′
b(ik

i
3)

+δp3k1δp1k2δp2k3δniδnjδmlδc′aδa′bδb′c(ik
l
2)

+δp3k1δp1k3δp2k2δniδnlδmjδc
′
aδa

′
cδb

′
b(ik

j
3). (2.56)

Therefore, for the first term of Hggg, we have

gfa
′
b
′
c
′
〈k2, j; k3, l|∂mAn

a
′Am

b
′An

c
′ |k1, i〉

= −igfabc{(k1 + k3)jδil − (k1 + k2)lδij + (k2 − k3)iδlj}. (2.57)

We can use the same procedure to calculate the second term of Hggg, which is given by

gfa
′
b
′
c
′
〈k2, j; k3, l|∂mAm

a
′ (

1
∂+

)(An
b
′∂+An

c
′ )|k1, i〉

= igfabc{kj
2

k+
1 + k+

3

k+
1 − k+

3

δil − ki
1

k+
3 − k+

2

k+
2 + k+

3

δlj + kl
3

−k+
1 − k+

2

k+
1 − k+

2

δij}. (2.58)

Therefore, we have

〈k2, j; k3, l|Hggg|k1, i〉

= −igfabc{[(k2 − k3)i − ki
1

k+
1

(k+
2 − k+

3 )]δjl + [(k1 + k3)j − kj
2

k+
2

(k+
1 + k+

3 )]δil

+[−(k1 + k2)l +
kl

3

k+
3

(k+
1 + k+

2 )]δij}. (2.59)

2.4.3 Diagrammatic rule for interaction Hamiltonian Hqqgg1

α

β

k1

k2

P1,S1

P2,S2

(i,a)

(j,b)

Figure 2.4 Hqqgg1

From Eqn. (2.41), the Hamiltonian Hqqgg1 corresponding to the diagram above is given by

Hqqgg1 = g2ϕ†σ̂⊥ ·A⊥(
1

i∂+
)σ̂⊥ ·A⊥ϕ. (2.60)
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The initial state is |p1, s1; k2〉 and the final state is |p2, s2; k1〉.
In terms of the field expansions given in Eqn.(2.44) and Eqn.(2.45), we have

g2〈p2, s2; k1|ϕ†σ̂⊥ ·A⊥(
1

i∂+
)σ̂⊥ ·A⊥ϕ|p1, s1; k2〉

= g2〈p2, s2|ϕ†σ̂⊥ ·A⊥|k2〉〈k1|( 1
i∂+

)σ̂⊥ ·A⊥ϕ|p1, s1〉

= g2
√

p+
1

√
p+
2 χ+

s2

σ̂j σ̂i

p+
1 − k+

1

χs1(ε
i)?εj . (2.61)

2.4.4 Diagrammatic rule for interaction Hamiltonian Hqqgg2

β
P2,S2P1,S1

k1 k2

α

(i,b) (j,c)

Figure 2.5 Hqqgg2

From Eqn. (2.41), the Hamiltonian Hqqgg2 corresponding to the diagram above is given by

Hqqgg2 = 2g2(
1

∂+
)(fabcAi

b∂
+Ai

c)(
1

∂+
)(ϕ†T aϕ). (2.62)

The initial state is |p1, s1; k1, i〉 and the final state is |p2, s2; k2, j〉.
After we expand the operator An

b′∂
+An

c′ , only the following terms have the contribution for

the given initial state and final state:

a(k
′
)a+(k′′)εn

b
′ (εn

c
′ )?(i(k′′)+) + a+(k

′
)a(k′′)(εn

b
′ )?εn

c
′ (−i(k′′)+). (2.63)

Therefore, the diagrammatic rule for the interaction Hamiltonian Hqqgg2 is given by

〈p2, s2; k2, j|Hqqgg2|p1, s1; k1, i〉

= 2g2fa
′
b
′
c
′
〈p2, s2|( 1

∂+
)(ϕ†T a

′
ϕ)|p1, s1〉〈k2, j|( 1

∂+
)An

b′∂
+An

c′ )|k1, i〉

= 2g2fa
′
b
′
c
′ i

p+
1 − p+

2

√
p+
1

√
p+
2 (T a

′
βαχ+

s2
χs1δa′a)

(δk
′
k1

δk′′k2δniδnjδb
′
bδc

′
c

i

k+
1 − k+

2

(ik+
2 )
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+δk”k1
δk
′
k2

δniδnjδc
′
bδb

′
c

i

k+
1 − k+

2

(−ik+
2 ))

= −2g2
√

p+
1

√
p+
2 fabciT a

βαχ+
s2

χs1

k+
1 + k+

2

(k+
1 − k+

2 )2
δijε

i(εj)?. (2.64)

2.4.5 Diagrammatic rule for interaction Hamiltonian Hqqqq

α β

γ δ

P1,S1 P2,S2

P3,S3 P4,S4

Figure 2.6 Hqqqq: four-quark interaction.

The Hamiltonian corresponding to the diagram above is given by Eqn. (2.42). The initial

state is |p1, s1; p3, s3〉 and the final state is |p2, s2; p4, s4〉.

〈p2, s2; p4, s4|Hqqqq|p1, s1; p3, s3〉

= 2g2
√

(p+
1 p+

2 p+
3 p+

4 )T a
βαT a

δγ

i

p+
1 − p+

2

i

p+
3 − p+

4

χ+
s2

χs1χ
+
s4

χs3

= 2g2
√

(p+
1 p+

2 p+
3 p+

4 )T a
βαT a

δγ

1
(p+

1 − p+
2 )2

χ+
s2

χs1χ
+
s4

χs3 . (2.65)

If we change the quarks with momentum p3 and p4 into antiquarks with the same mo-

mentum, we will have the same Hamiltonian Hqqqq. However only these operators within

Hamiltonian Hqqqq have the contributions to antiquarks instead of quarks:

(
1

∂+
)(ϕ†ϕ)(

1
∂+

)(ϕ†ϕ) → i

k2 − k1

i

k3 − k4
b+(k1, λ1)b(k2, λ2)d(k3, λ3)d+(k4, λ4)

−i

k2 + k1

i

k3 + k4
b+(k1, λ1)d+(k2, λ2)d(k3, λ3)b(k4, λ4)

i

k2 + k1

−i

k3 + k4
d(k1, λ1)b(k2, λ2)b+(k3, λ3)d+(k4, λ4)

i

k1 − k2

−i

k3 − k4
d(k1, λ1)d+(k2, λ2)b+(k3, λ3)b(k4, λ4). (2.66)

Then we have

〈0|b(p2, s2)d(p4, s4)Hqqqqb
+(p1, s1)d+(p3, s3)|0〉
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= 4g2
√

(p+
1 p+

2 p+
3 p+

4 )T a
βαT a

δγ(
i

p+
1 − p+

2

i

p+
3 − p+

4

+
i

p+
1 + p+

3

−i

p+
2 + p+

4

)χ+
s2

χs1χ
+
s4

χs3

= 4g2
√

(p+
1 p+

2 p+
3 p+

4 )T a
βαT a

δγ(
1

(p+
1 − p+

2 )2
+

1
(p+

1 + p+
3 )2

)χ+
s2

χs1χ
+
s4

χs3 . (2.67)

In the parenthesis of the expression above, the first term corresponds to the same diagram as

Fig. 2.6 except that we have changed two quarks with momentum p3 and p4 into two antiquarks

with the same momentum. However the second term in the parenthesis corresponds to the

new diagram which is given by Fig. 2.7.

P1,S1

P4,S4

P2,S2
P3,S3

Figure 2.7 Additional new diagram corresponds to Hqq̄qq̄
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2.4.6 Diagrammatic rule for interaction Hamiltonian Hgggg1

k1 k2

k3k4

Figure 2.8 Hgggg1

The Hamiltonian corresponding to Fig. 2.8 is given by

Hgggg1 =
g2

4
fabcfadeAi

bA
j
cA

i
dA

j
e. (2.68)

The initial state is |k1; k2; k3; k4〉 and the final state is |0〉. Since final state gluons are identical

particles, there are 4!=24 ways to eliminate initial states. The final result is given by

〈0|Hgggg1|k1; k2; k3; k4〉 = g2{fa1a2bfa3a4b[δi1i3δi2i4 − δi1i4δi2i3 ] + (2 → 3) + (2 → 4)}. (2.69)

2.4.7 Diagrammatic rule for interaction Hamiltonian Hgggg2

k

k

k

k

1 2

34

Figure 2.9 Hgggg2

The Hamiltonian corresponding to Fig. 2.9 is given by

Hgggg2 =
g2

2
fabcfade(

1
∂+

)(Ai
b∂

+Ai
c)(

1
∂+

)(Aj
d∂

+Aj
e). (2.70)



28

The initial state is |k1, i1; k4, i4〉 and the final state is |k2, i2; k3, i3〉. And

〈k2, i2|( 1
∂+

)(Ai
b∂

+Ai
c)|k1, i1〉

= δk
′
k1

δk′′k2δii1δii2δba1δca2

i

k+
1 − k+

2

(ik+
2 )

+δk′′k1δk′k2
δii1δii2δba2δca1

i

k+
1 − k+

2

(−ik+
2 ). (2.71)

Therefore

fabc〈k2, i2|( 1
∂+

)(Ai
b∂

+Ai
c)|k1, i1〉

= ifaa1a2
i(k+

1 + k+
2 )

k+
1 − k+

2

δi1i2 . (2.72)

We can follow a similar procedure to obtain

fade〈k4, i4|( 1
∂+

)(Aj
d∂

+Aj
e)|k3, i3〉

= ifaa4a3
i(k+

3 + k+
4 )

k+
4 − k+

3

δi3i4 . (2.73)

Therefore,

〈k2, i2; k3, i3|Hgggg2|k1, i1; k4, i4〉

= g2faa1a2faa4a3
(k+

1 + k+
2 )(k+

3 + k+
4 )

(k+
1 − k+

2 )(k+
4 − k+

3 )
δi1i2δi3i4 . (2.74)

Note that two final gluons can be exchanged. Therefore, if we exchange k2 and k3, we have

〈k2, i2; k3, i3|Hgggg2|k1, i1; k4, i4〉

= g2faa1a3faa4a2
(k+

1 + k+
3 )(k+

2 + k+
4 )

(k+
1 − k+

3 )(k+
4 − k+

2 )
δi1i3δi2i4 . (2.75)

In addition, if we exchange k1 and k4, we have

〈k2, i2; k3, i3|Hgggg2|k1, i1; k4, i4〉

= g2faa4a2faa1a3
(k+

2 + k+
4 )(k+

3 + k+
1 )

(k+
4 − k+

2 )(k+
1 − k+

3 )
δi4i3δi2i1 . (2.76)

Therefore, after we combine all the results together, we have

〈k2, i2; k3, i3|Hgggg2|k1, i1; k4, i4〉

= g2{faa1a2faa4a3
(k+

1 + k+
2 )(k+

3 + k+
4 )

(k+
1 − k+

2 )(k+
4 − k+

3 )
δi1i2δi3i4

+(2 → 3) + (1 → 4)}. (2.77)
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CHAPTER 3. COLOR SINGLET STATES OF MULTIPARTON

HADRONS

3.1 Introduction

Quarks and gluons have a novel degree of freedom called color. In color space, a quark

has three colors and a gluon has eight colors. Free quarks and gluons have not been observed

in nature, which implies the existence of the phenomena called confinement. Confinement

dictates that what we can observe is colorless particles such as mesons and baryons where the

Fock space components each have their color arranged so that that no net color remains. A

meson has a leading Fock space component of one quark and one antiquark while a baryon has

a leading Fock space component of three quarks. In order to know how quarks or antiquarks

are arranged into the color singlet state for the meson and baryon, we need to consider how

the algebra in color space can be used to provide color singlet states. The details about how to

deal with color algebra is given in Appendix A. To obtain the multiparton hadrons, systems of

mesons and baryons that can involve dynamic gluon configurations, we also need to construct

the generic algebra in color space such that we can obtain singlet states of particles constructed

from any arbitrary number of partons in principle. Here we take advantage of the global color

operator F 2 which gives zero eigenvalue when it acts on arbitrary color singlet states and gives

positive eigenvalues when it acts on arbitrary color non-singlet states [13] [14]. F 2 is defined

as

F 2 =
8∑

i=1

FiFi, (3.1)

where in the fundamental representation

Fi =
1
2
λi. (3.2)
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λi is one of 8 Gell-Mann matrices. In the adjoint representation

Fi = ti, (3.3)

(tb)ac = ifabc in the adjoint representation.

In the following parts, we will obtain the color singlet states by using the operator F 2

when we consider systems of varying numbers of quarks and gluons. At first, we list all the

states in the color space for the given number of the quarks and gluons - i.e. all partons have

a specified color in each basis state and the full basis space (in color space) consists of all

possible arrangements of single parton colors for that number of quarks and gluons. The color

singlet state is the eigenstate of F 2 with zero eigenvalue which is the linear combination of

some of these (possibly all of these) states in color space. When we obtain the representation of

operator F 2 in color space, usually we will generate a very large matrix. In order to reduce the

size of the matrix F 2, we can use two additional color operators T3 and Y which are defined

in the Appendix A and which will give zero when they act on the basis states which form

the color singlet states. Therefore, we can initially employ these two operators to limit the

multi-parton basis states in color space for the needed representation of F 2. Finally, we will

diagonalize the resulting matrix of F 2 to obtain the states with zero eigenvalues (if any) which

correspond to color singlet states for that specific assemblage of quarks and gluons.

In the following, we will consider a number of representative systems and find the color

singlet states if they exist.

3.1.1 Mesons

It is well known that one quark and one antiquark can form only one color singlet state,

which is an equally weighted combination of color and anticolor configurations. The operator

F 2 acting on this color singlet state gives zero eigenvalue. On the other hand, F 2 gives positive

eigenvalues when it acts on color non-singlet states of the quark plus antiquark system.

In order to obtain the matrix representation of F 2, we need to find out all the color

configurations for one quark and one antiquark. Each quark can have one of three colors

and each quark can have one of three anticolors. Then, in total, we have 3 × 3 = 9 color
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configurations. Therefore we obtain the F 2
9×9 matrix. In order to reduce the size of matrix,

we can take advantage of two operators T3 and Y . As a result, we only consider three color

configurations for the basis states RR̄,GḠ and BB̄ (where “R” is mnemonic for “red”, “B” for

“blue” and “G” for “green” single parton color states and the bar indicates an anticolor) since

T3 and Y acting on each of them gives zero. Once we define the basis states we need in color

space, we need to diagonalize F 2
3×3.

After diagonalizing F 2, we obtain one color singlet state, which can be expressed as the

symmetric superposition

1√
3
(RR̄ + GḠ + BB̄). (3.4)

The total wavefunction for a meson in the leading Fock space representation would then

consist of a space-spin component for the quark-antiquark system joined with this color space

component. More complicated configurations of the meson will be discussed below.

3.1.2 Baryons

Three quarks can also form a color singlet state which is taken to be the leading Fock space

configuration of a baryon. Using the same methods, we obtain F 2
6×6 instead of F 2

27×27.

After diagonalizing F 2
6×6, we obtain one color singlet state which is given by.

1√
6
(RGB −RBG + BRG−BGR + GBR−GRB). (3.5)

From the expression above, we can see that the wavefunction is completely antisymmetic

in color space.

Here we need to emphasize that the total wavefunction for a system with 3 identical quarks

would be composed of a totally symmetric space-spin component joined with this totally an-

tisymmetric color component to produce and overall antisymmetric wavefunction as required

by the Pauli exclusion principle.

3.1.3 Glueball

Pure gluon systems can form color singlet states which are called glueballs.
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We can find allowed color singlet states of multiple gluons by using F 2. However there are

already 64 color configurations for the two-gluon system. In order to reduce the dimensions of

the representation of F 2, we can again use the operator T3 and Y which reduce the original

matrix into F 2
10×10 matrix.

After the diagonalization, we found there only exists one color singlet state for two gluons.

The color singlet state corresponding to eigenvalue equal to zero is given by

1√
8
(g1g2 + g2g1 + g3g3 + g4g5 + g5g4 + g6g7 + g7g6 + g8g8), (3.6)

where gi represents one of eight colors of gluon when i goes from 1 to 8.

We observe that the color wavefunction is completely symmetric if we exchange the first

gluon with the second gluon.

Again we need to emphasize that pure gluon systems are bosonic system. Therefore the

total wavefunction for the pure gluon system would be composed of a totally symmetric (anti-

symmetric) space-spin component joined with this totally symmetric (anti-symmetric) color

component to produce and overall symmetric wavefunction for gluon systems as required for

boson statistics.

3.1.4 More complicated multiparton hadrons

In the previous sections, we have seen that simple combinations of quarks, antiquarks and

gluons can form the color singlet states. Now we need to consider more complicated cases:

states with mixtures of quarks, antiquark and gluons. For simplicity, we restrict ourselves

to identical quarks and identical antiquarks, each in a distinct space-spin state. The case

of identical fermions occupying the same space-spin configuration is a special case with a

corresponding reduction in the color-space basis.

At first, we consider the state with one quark, one antiquark and one gluon. Taking advan-

tage of operator T3 and Y , we have 12 by 12 matrix for operator F 2. After the diagonalization,

we found there exists one color singlet state which is given by the following linear combination



33

of color configurations:

1
4
(RR̄g3 −GḠg3) +

1√
48

(RR̄g8 + GḠg8 − 2BB̄g8)

+
1√
8
(RḠg2 + RB̄g5 + GR̄g1 + GB̄g7 + BR̄g4 + BḠg6). (3.7)

Next we consider a more complicated case: two quarks and two antiquarks. In this case,

we obtain two color singlet states. One of these color singlet state has a completely symmetric

wavefunction:

|sym〉 =
1√
6
(RRR̄R̄ + GGḠḠ + BBB̄B̄)

+
1√
24

(RGR̄Ḡ + RGḠR̄ + RBR̄B̄ + RBB̄R̄ + GRR̄Ḡ + GRḠR̄

+GBḠB̄ + GBB̄Ḡ + BRR̄B̄ + BRB̄R̄ + BGḠB̄ + BGB̄Ḡ). (3.8)

The other color singlet is completely antisymmetric:

|antisym〉 =
1√
12

(RGḠR̄−RGR̄Ḡ + RBB̄R̄−RBR̄B̄ + GRR̄Ḡ−GRḠR̄

+GBB̄Ḡ−GBḠB̄ + BRR̄B̄ −BRB̄R̄ + BGḠB̄ −BGB̄Ḡ). (3.9)

With these two color singlet states in hand, we can use them to find the two-meson state

as the linear combination of symmetric and antisymmetric color singlet states which is given

by
√

2
3
|sym〉 −

√
1
3
|antisym〉

=
1
3
(RR̄ + GḠ + BB̄)(RR̄ + GḠ + BB̄). (3.10)

Then the other color singlet state which is orthogonal to two-meson state is given by
√

1
3
|sym〉+

√
2
3
|antisym〉, (3.11)

From the example above, we have already seen that within two quark and two antiquark

system, we can build up the intrinsic structure of the two-meson state. In the next example,

we will see how to construct these kinds of intrinsic structures again.

From the previous section, we know that three quarks can form one color singlet state,

the leading configuration for a baryon. One quark and one antiquark can form the leading
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configuration for a meson. Therefore within the four quark and one antiquark system, we

expect to find the intrinsic color structure of an asymptotic baryon plus meson.

At first, using the methods outlined above, we can obtain a 36 by 36 matrix which represents

the operator F 2 in the color basis for these 5 partons. After we diagonalize the matrix, we

obtain three color singlet states. The first color singlet state is given by

0.288673(RRGBR̄−RRBGR̄−GGRBḠ + GGBRḠ + BBRGB̄ −BBGRB̄)

+0.145076(RBRGR̄−RGRBR̄ + GRGBḠ−GBGRḠ−BRBGB̄ + BGBRB̄)

+0.143597(RGGBḠ−GRRBR̄−RBBGB̄ + GBBRB̄ −BGGRḠ + BRRGR̄)

+0.145164(RGBRR̄−RBGRR̄ + GBRGḠ−GRBGḠ + BRGBB̄ −GBRBB̄)

+0.143509(GRBRR̄−BRGRR̄ + BGRGḠ−RGBGḠ + RBGBB̄ −GBRBB̄)

+0.000088(GBRRR̄−BGRRR̄ + BRGGḠ−RBGGḠ + RGBBB̄ −GRBBB̄). (3.12)

The second color singlet state is given by

0.000062(RRGBR̄−RRBGR̄−GGRBḠ + GGBRḠ + BBRGB̄ −BBGRB̄)

+0.149055(RBRGR̄−RGRBR̄ + GRGBḠ−GBGRḠ−BRBGB̄ + BGBRB̄)

−0.148993(RGGBḠ−GRRBR̄−RBBGB̄ + GBBRB̄ −BGGRḠ + BRRGR̄)

−0.139543(RGBRR̄−RBGRR̄ + GBRGḠ−GRBGḠ + BRGBB̄ −GBRBB̄)

+0.139605(GRBRR̄−BRGRR̄ + BGRGḠ−RGBGḠ + RBGBB̄ −GBRBB̄)

−0.288598(GBRRR̄−BGRRR̄ + BRGGḠ−RBGGḠ + RGBBB̄ −GRBBB̄). (3.13)

And the third color singlet state is given by

−0.001110(RRGBR̄−RRBGR̄−GGRBḠ + GGBRḠ + BBRGB̄ −BBGRB̄)

+0.200172(RBRGR̄−RGRBR̄ + GRGBḠ−GBGRḠ−BRBGB̄ + BGBRB̄)

−0.201282(RGGBḠ−GRRBR̄−RBBGB̄ + GBBRB̄ −BGGRḠ + BRRGR̄)

+0.206854(RGBRR̄−RBGRR̄ + GBRGḠ−GRBGḠ + BRGBB̄ −GBRBB̄)

−0.207964(GRBRR̄−BRGRR̄ + BGRGḠ−RGBGḠ + RBGBB̄ −GBRBB̄)

+0.006682(GBRRR̄−BGRRR̄ + BRGGḠ−RBGGḠ + RGBBB̄ −GRBBB̄). (3.14)
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For the special case where the first two identical quarks occupy the same space-spin con-

figuration, we can modify the approach in color space to respect the Pauli principle in the

total basis. To do this, we need to eliminate color configurations in which the first two quarks

have the same colors. After we have done this, we have the reduced matrix for F 2 which

has dimension 30 by 30. Finally we obtain only two color singlet states corresponding to the

requirement that the first two quarks can not have the same color. We list out these two color

singlet states.

The first one is given by

0.015734(−RGRBR̄−RGGBḠ−GBGRḠ−GBBRB̄ −BRRGR̄−BRBGB̄

+RBRGR̄ + RBBGB̄ + GRRBR̄ + GRGBḠ + BGGRḠ + BGBRB̄)

+0.229990(−RGBRR̄−RGBGḠ−GBRGḠ−GBRBB̄ −BRGRR̄−BRGBB̄

+RBGRR̄ + RBGBB̄ + GRBRR̄ + GRBGḠ + BGRGḠ + BGRBB̄)

+0.245724(−RGBBB̄ + RBGGḠ + GRBBB̄ −GBRRR̄−BRGGḠ + BGRRR̄). (3.15)

The second one is given by

0.249504(RGRBR̄ + RGGBḠ + GBGRḠ + GBBRB̄ + BRRGR̄ + BRBGB̄

−RBRGR̄−RBBGB̄ −GRRBR̄−GRGBḠ−BGGRḠ−BGBRB̄)

+0.098002(−RGBRR̄−RGBGḠ−GBRGḠ−GBRBB̄ −BRGRR̄−BRGBB̄

+RBGRR̄ + RBGBB̄ + GRBRR̄ + GRBGḠ + BGRGḠ + BGRBB̄)

+0.151502(RGBBB̄ −RBGGḠ−GRBBB̄ + GBRRR̄ + BRGGḠ−BGRRR̄). (3.16)

We can change these two singlet states into the new forms. The first singlet state is

0.015734(−RGRBR̄−RGGBḠ−GBGRḠ−GBBRB̄ −BRRGR̄−BRBGB̄

+RBRGR̄ + RBBGB̄ + GRRBR̄ + GRGBḠ + BGGRḠ + BGBRB̄

−RGBBB̄ + RBGGḠ + GRBBB̄ −GBRRR̄−BRGGḠ + BGRRR̄)

+0.229990(−RGBRR̄−RGBGḠ−GBRGḠ−GBRBB̄ −BRGRR̄−BRGBB̄

+RBGRR̄ + RBGBB̄ + GRBRR̄ + GRBGḠ + BGRGḠ + BGRBB̄
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−RGBBB̄ + RBGGḠ + GRBBB̄ −GBRRR̄−BRGGḠ + BGRRR̄)

= 0.015734(−RG(RR̄ + GḠ + BB̄)B + RB(RR̄ + GḠ + BB̄)G−BR(RR̄ + GḠ + BB̄)G

+BG(RR̄ + GḠ + BB̄)R−GB(RR̄ + GḠ + BB̄)R + GR(RR̄ + GḠ + BB̄)B)

+0.229990(−RGB + RBG−BRG + BGR−GBR + GRB)(RR̄ + GḠ + BB̄). (3.17)

Using the same method, we can get a very similar structure for the second singlet state.

From these two states, we note that we can construct two color singlet states which then

simulate an interesting intrinsic structure. The first one appears as the color product space of

the baryon and the meson

(−RGB + RBG−BRG + BGR−GBR + GRB)(RR̄ + GḠ + BB̄). (3.18)

The second one appears as an intrinsic state of these 5 partons that does not separate into

the asymptotic state of a meson and a baryon

(−RG(RR̄ + GḠ + BB̄)B + RB(RR̄ + GḠ + BB̄)G−BR(RR̄ + GḠ + BB̄)G

+BG(RR̄ + GḠ + BB̄)R−GB(RR̄ + GḠ + BB̄)R + GR(RR̄ + GḠ + BB̄)B). (3.19)

The above construction was carried out in order to illustrate the challenges of discerning

substructures within complicated multi-parton color space states. We have found no general

method that is guaranteed to reveal substructures of multi-parton color space states.

Next, we consider the case with three quarks and three antiquarks.

Using the operator F 2, we have the conclusion that there exists six color singlet states

which have the required zero eigenvalues.

And we have only one color singlet state with completely symmetric wavefunction which

is given by

1√
10

(RRRR̄R̄R̄ + GGGḠḠḠ + BBBB̄B̄B̄)

+
1√
90

(RRGR̄R̄Ḡ + c.s.p)

+
1√
90

(RRBR̄R̄B̄ + c.s.p)

+
1√
90

(GGRḠḠR̄ + c.s.p)
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+
1√
90

(BBRB̄B̄R̄ + c.s.p)

+
1√
90

(GGBḠḠB̄ + c.s.p)

+
1√
90

(BBGB̄B̄Ḡ + c.s.p)

+
1√
360

(RGBR̄ḠB̄ + c.s.p), (3.20)

where c.s.p represents the complete symmetric partners.

The other five color singlet states are either antisymmetic or possess mixed symmetry.

3.1.5 Summary of multiparton hadrons

In this section, we give a summary of multiparton hadrons. Some of the results we obtained

are displayed in Fig. 3.1. In Fig. 3.1, the upper curves are counts of all color configurations

with zero color projection after we employ the operator constraints provided by T3 and Y .

The lower curves are counts of global color singlet states resulting from diagonalization for the

specified number of quarks and gluons.
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Figure 3.1 Number of color space states that apply to each space-spin con-
figuration of selected multi-parton states for two methods of
enumerating the color basis states. The upper curves are counts
of all color configurations with zero color projection. The lower
curves are counts of global color singlets.

The more complete results are summarized in Tables listed as follows.
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Number of gluons Color singlet projection Number of color singlet states
2 10 1
3 56 2
4 346 8
5 2252 32
6 15184 145

Table 3.1 Number of color singlet states and color singlet projection for
given number of gluons.

Number of quarks Color singlet projection Number of color singlet states
3 6 1
6 90 5
9 1680 42

Table 3.2 Number of color singlet states and color singlet projection for
given number of quarks.

(Quarks, antiquarks) Color singlet projection Number of color singlet states
(1,1) 3 1
(2,2) 15 2
(3,3) 93 6
(4,4) 639 23
(5,5) 4653 103
(1,4) 36 3
(1,7) 630 21
(5,2) 240 11

Table 3.3 Number of color singlet states and color singlet projection for
given number of quarks and antiquarks.
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(Quarks, gluons) Color singlet projection Number of color singlet states

(3,1) 30 2

(3,2) 174 6

(3,3) 1092 22

(3,4) 7188 92

(6,1) 540 16

(6,2) 3450 61

Table 3.4 Number of color singlet states and color singlet projection for
given number of quarks and gluons.

(Quarks, antiquarks,gluons) Color singlet projection Number of color singlet states

(1,1,1) 12 1

(1,1,2) 66 3

(1,1,3) 402 10

(1,1,4) 2598 40

(2,2,1) 78 4

(2,2,2) 468 13

(2,2,3) 3000 50

(3,3,1) 546 17

(3,3,2) 3468 63

Table 3.5 Number of color singlet states and color singlet projection for
given number of quarks and antiquarks and gluons.

3.1.6 Global symmetry of multiparton hadrons

In the previous sections, we mentioned that to obtain the multiparton hadrons, systems of

mesons and baryons that can involve dynamic gluon configurations, we need to construct the

generic algebra in color space such that we can obtain singlet states of particles constructed

from any arbitrary number of partons in principle. However, in the previous section we re-

stricted the discussion to the situation where identical fermions occupy distinct space-spin

single-particle modes such that in color space, identical fermions are able to occupy the same
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state in color. The case where we allow multiple space-spin occupancies by identical fermions

leads to color space restrictions. Therefore we need to consider the situation where identical

fermions occupy the same space-spin single-particle mode and consequently, they need to have

the different colors in color space. In this section, we try to show some results when we put

the restrictions on color spaces.

At first, we consider the case where we have multiquarks and antiquarks. We require that

the first two quarks must have different colors if they are in the same space-spin single-particle

mode. The results are given in Table 3.6.

(Quarks, antiquarks) Color singlet projection Number of color singlet states

(2,2) 12 1

(3,3) 72 3

(4,4) 480 11

(5,5) 3420 47

(1,4) 30 2

(1,7) 480 11

(5,2) 186 6

Table 3.6 Number of color singlet states and color singlet projection for
given number of quarks and antiquarks when we require that
the first two quarks have different colors.

We can see that in Table 3.6, the color singlet states and color singlet projection are reduced

compared with the same configurations in Table 3.3.

We can also require that the first three quarks have different colors if they are in the same

space-spin single-particle mode. The results are given in Table 3.7.

Since the antiquarks are also identical particles, we have the situation where we require

the first two antiquarks in the different colors except that the first two quarks have different

colors. If we put that restrictions in the color space, we have the results which are summarized

in the Table 3.8.
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(Quarks, antiquarks) Color singlet projection Number of color singlet states

(3,3) 36 1

(4,4) 216 3

(5,5) 1440 11

(1,4) 18 1

(1,7) 216 3

(5,2) 90 2

Table 3.7 Number of color singlet states and color singlet projection for
given number of quarks and antiquarks when we require that
the first three quarks have different colors.

(Quarks, antiquarks) Color singlet projection Number of color singlet states

(2,2) 12 1

(3,3) 60 2

(4,4) 216 3

(5,5) 2556 23

Table 3.8 Number of color singlet states and color singlet projection for
given number of quarks and antiquarks when we require that
the first two quarks and antiquarks have different colors.
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CHAPTER 4. CAVITY MODE PHYSICS

Having addressed the background of QCD and many of the technical details for solving

Hamiltonian light front field theory, we now turn our attention to a specific illustrative appli-

cation of a light front cavity mode field theory. It is worth recounting at the outset, some of

the overall motivations for the approach that we will follow and the links to related efforts in

nuclear many-body theory.

4.1 Introduction

Non-perturbative Hamiltonian light-front quantum field theory presents opportunities and

challenges that bridge particle physics and nuclear physics. Major goals include predicting both

the masses and transitions rates of the hadrons and their structures as seen in high-momentum

transfer experiments. Current focii of intense experimental and theoretical research that could

benefit from insights derived within this Hamiltonian approach include the spin structure of

the proton, the neutron electromagnetic form factor, the generalized parton distributions of

the baryons, etc.

Hamiltonian light-front field theory in a discretized momentum basis [15] and in transverse

lattice approaches [16, 17, 18] have shown significant promise. We present here a basis-function

approach that exploits recent advances in solving the non-relativistic strongly interacting nu-

clear many-body problem [19, 20]. We note that both light-front field theory and nuclear

many-body theory face common issues within the Hamiltonian approach - i.e. how to (1)

define the Hamiltonian; (2) renormalize to a finite space; (3) solve for non-perturbative ob-

servables while preserving as many symmetries as possible; and, (4) take the continuum limit.

In spite of the technical hurdles, Ken Wilson has assessed the advantages of adopting advances
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in quantum many-body theory and has long advocated adoption of basis function methods as

an alternative to the lattice gauge approach [21].

There are three main advantages of Hamiltonian light-front quantum field theory motivat-

ing our efforts to overcome the technical hurdles. First, one evaluates experimental observables

that are non-perturbative and relativistically invariant quantities such as masses, form factors,

structure functions, etc. Second, one evaluates these quantities in Minkowski space and, third,

there is no fermion doubling problem.

We begin this chapter with a brief overview of recent advances in solving light nuclei with

realistic nucleon-nucleon (NN) and three-nucleon (NNN) interactions using ab initio no-core

methods in a basis function representation. Then, we introduce our basis function approach to

light-front QCD within the light-front gauge. Renormalization/regularization issues are also

addressed. We present illustrative features of our approach with the example of cavity-mode

QED and sketch its extension to cavity-mode QCD.

The present chapter is an expanded version of a recent paper where we provided an initial

introduction to our approach [22] and itself is the foundation for a recently submitted paper

[23].

4.2 Choice of Representation for Light Front Hamiltonians

It has long been known that light-front Hamiltonian quantum field theory has similarities

with non-relativistic quantum many-body theory. We further exploit this connection, in what

we will term a “Basis Light Front Quantized (BLFQ)” approach, by adopting a light-front

single-particle basis space consisting of the 2-D harmonic oscillator for the transverse modes

(radial coordinate ρ and polar angle φ) and a discretized momentum space basis for the longi-

tudinal modes. Adoption of this basis is also consistent with recent developments in AdS/CFT

correspondence with QCD [28, 29, 30, 31, 32]. In the present application to the non-interacting

problem, we will adopt periodic boundary conditions (PBC) for the longitudinal modes and

we omit the zero mode. For our light-front coordinates, we define, in concert with previous

chapters, x± = x0 ± x3, x⊥ = (x1, x2) and the coordinate pair (ρ, φ) are the usual cylin-
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drical coordinates in (x1, x2). The variable x+ is light-front time and x− is the longitudinal

coordinate. We adopt x+ = 0, the “null plane”, for our quantization surface.

The 2-D oscillator states are characterized by their principal quantum number n, orbital

quantum number m and harmonic oscillator energy Ω. It is also convenient to interpret the

2-D oscillator as a function of the dimensionless radial variable
√

M0Ωρ where M0 has units

of mass and ρ is the conventional radial variable in units of length. Thus, the length scale

for transverse modes is set by the chosen value of
√

M0Ω. The details about 2-D Harmonic

oscillator wavefunctions are discussed in Appendix B.

The properly orthonormalized wavefunctions, Φn,m(ρ, φ) = 〈ρφ|nm〉 = fn,m(ρ)χm(φ), are

given in terms of the Generalized Laguerre Polynomials, L
|m|
n (M0 Ω ρ2), by

fn,m(ρ) =
√

2M0 Ω

√
n!

(n + |m|)! e−M0 Ω ρ2/2
(√

M0 Ω ρ
)|m|

L|m|n (M0 Ω ρ2) (4.1)

χm(φ) =
1√
2π

ei m φ (4.2)

with eigenvalues En,m = (2n + |m|+ 1)Ω. The orthonormalization is fixed by

〈nm|n′m′〉 =
∫ ∞

0

∫ 2π

0
ρ dρ dφ Φn,m(ρ, φ)∗ Φn′,m′(ρ, φ) = δn,n′ δm,m′ (4.3)

which allows for an arbitrary phase factor eiα that we have taken to be unity. One of the signif-

icant advantages of the 2-D oscillator basis is the relative ease for transforming results between

coordinate space and momentum space. That is, the Fourier transformed wavefunctions have

the same analytic structure in both coordinate and momentum space, a feature reminiscent of

a plane-wave basis.

In order to gain an impression of the transverse modes in our light-front basis, we present

in Figs. 4.1, 4.2, 4.3, 4.4 and 4.5 snapshots of selected low-lying modes. As one increases the

orbital quantum number m, pairs of maxima and minima populate the angular dependence of

the basis function. Also, as one increases the principal quantum number n, additional radial

nodes appear as evident in the progression from Fig. 4.1 to Fig. 4.5.
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Figure 4.1 Modes for n = 0 of the 2-D harmonic oscillator. The orbital
quantum number m progresses across the rows by integer steps
from 0 in the upper left to 4 in the lower right.
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Figure 4.2 Modes for n = 1 of the 2-D harmonic oscillator. The orbital
quantum number m progresses across the rows by integer steps
from 0 in the upper left to 4 in the lower right.

Figure 4.3 Modes for n = 2 of the 2-D harmonic oscillator. The orbital
quantum number m progresses across the rows by integer steps
from 0 in the upper left to 4 in the lower right.
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Figure 4.4 Modes for n = 3 of the 2-D harmonic oscillator. The orbital
quantum number m progresses across the rows by integer steps
from 0 in the upper left to 4 in the lower right.

To provide a perspective on the full 3-D basis, we introduce longitudinal modes ψj defined

on −L ≤ x− ≤ L with both periodic boundary conditions (PBC) and antiperiodic boundary

conditions (APBC). We also introduce a purely real form to be used in Fig. 4.6 and Fig. 4.7.

ψk(x−) =
1√
2L

ei π
L

k x− (4.4)

ψk(x−) =
1√
πL

sin
π

L
k x− (4.5)

where k = 1, 2, 3, ... for PBC (neglecting the zero mode) and k = 1
2 , 3

2 , 5
2 , ... in Eqn.(4.4) for

APBC. Similarly, k = 1, 2, 3 in Eqn.(4.5) for reflection antisymmetric amplitudes with box

boundary conditions (amplitude vanishes at x− = ±L). The full 3-D single particle basis state

is defined by the product form

Ψk,n,m(x−, ρ, φ) = ψk(x−)Φn,m(ρ, φ). (4.6)

Then the Fock space expansions for fermion field are

η(x−, ρ, φ) =
∑

k,n,m

(b(k, n, m)Ψk,n,m(x−, ρ, φ) + d†(k, n,m)Ψ?
k,n,m(x−, ρ, φ)) (4.7)
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Figure 4.5 Modes for n = 4 of the 2-D harmonic oscillator. The orbital
quantum number m progresses across the rows by integer steps
from 0 in the upper left to 4 in the lower right.

The commutation relations are

{b(k1, n1,m1), b†(k2, n2,m2)} = δk1,k2δn1,n2δm1,m2

{d(k1, n1, m1), d†(k2, n2,m2)} = δk1,k2δn1,n2δm1,m2 (4.8)

For a first illustration, we select a transverse mode with n = 1, m = 0 joined together with

the k = 1
2 longitudinal APBC mode of Eqn. (4.4) and display slices of the real part of this

3-D basis function at selected longitudinal coordinates, x− in Fig. 4.6. For comparison, we

present a second example with Eqn. (4.5) for the longitudinal mode in Fig. 4.7. Our purpose in

presenting both Figs. 4.6 and 4.7 is to suggest the richness, flexibility and economy of texture

available for solutions in a basis function approach. Note that the choice of basis functions

is rather arbitrary, including which boundary conditions are imposed, except for the standard

conditions of orthonormality and completeness within the selected symmetries.
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Figure 4.6 Transverse sections of the real part of a 3-D basis function
involving a 2-D harmonic oscillator and a longitudinal mode
of Eqn. (4.4) with antiperiodic boundary conditions (APBC).
The quantum numbers for this basis function are given in the
isucaption. The basis function is shown for the full range
−L ≤ x− ≤ L.
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Figure 4.7 Transverse sections of a 3-D basis function involving a 2-D har-
monic oscillator and a longitudinal mode of Eqn. (4.5) with box
boundary conditions (wavefunction vanishes at ±L). The quan-
tum numbers for this basis function are given in the isucaption.
The basis function is shown for positive values of x− and is
antisymmetric with respect to x− = 0

Although our choice of basis functions is not dictated by theory, it is buttressed by the

phenomenological success of the “soft-wall” AdS/QCD model[28, 29] which uses a harmonic

oscillator potential in the fifth dimension of Anti-de Sitter space to simulate color confinement.

As shown in ref. [30] one can use “light-front holography”[31] to transform the bound state

equations for the wavefunction in AdS space[32] to a corresponding bound-state equation in

physical space at fixed light-front time τ . The resulting light-front equation is similar in form

to the Schrödinger radial wave equation at fixed t which describes the quantum-mechanical

structure of atomic systems. However, the formalism at fixed light-front time is relativistic

and frame independent. Thus, for the specific example of a qq̄ pair, one obtains a relativistic
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wave equation applicable to hadron physics, where the light-front coordinate ζ = b⊥
√

x(1− x)

plays the role of the radial variable r of the nonrelativistic theory. Here, x is the light-front

momentum fraction of the quark and b⊥ is the magnitude of the transverse relative separation

coordinate. In this example, the meson eigenvalue equation is[30]
[
− d2

dζ2
− 1− 4L2

4ζ2
+ U(ζ)

]
φ(ζ) = M2φ(ζ), (4.9)

where the complexity of the QCD interactions among constituents is summed up in the addition

of the effective potential U(ζ), which is then modeled to enforce confinement. The potential

in the soft wall model is U(ζ) = κ4ζ2 + 2κ2(J − 1) where J is the total angular momentum of

the hadron. Using the substitutions φ(ζ) = ζ1/2R(ζ), κζ =
√

M0Ωρ and L = |m|, we arrive at

the transverse 2-D harmonic oscillator wave equation whose solution is given in Eqn. (B.25).

There is one additional distinction between our choice of transverse basis functions and the

solutions of the AdS/QCD model: we adopt single-parton coordinates as the basis function

arguments while AdS/QCD adopts a relative coordinate between the constituents. Our selec-

tion is natural for the applications within an external cavity that we present here and is most

convenient for enforcing the boson and fermion statistics when dealing with arbitrary many

partons. In future work without the external cavity, we may invoke a Lagrange multiplier

method, analogous to the method in the NCSM and NCFC approaches [19, 20], to separate

the relative motion from the total system’s motion in the transverse direction.

The solutions of the light-front equation (4.9) determine the masses of the hadrons, given

the total internal spin S, the orbital angular momenta L of the constituents, and the index

n, the number of nodes of the wavefunction in ζ. For example, if the total quark spin S is

zero, the meson bound state spectrum follows the quadratic form M2 = 4κ2(n + L). Thus the

internal orbital angular momentum L and its effect on quark kinetic energy play an explicit

role. The corresponding wavefunctions of the mesonic eigensolutions describe the probability

distribution of the qq̄ constituents for the different orbital and radial states. The separation of

the constituent quark and antiquark in AdS space get larger as the orbital angular momentum

increases. The pion with n = 0 and L = 0 is massless for zero quark mass, in agreement with

general arguments based on chiral symmetry. If the total spin of the constituents is S = 1, the
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corresponding mass formula for the orbital and radial spectrum of the ρ and ω vector mesons

is M2 = 4κ2(n + L + 1/2). The states are aligned along linear Regge trajectories and agree

well with experiment. The resulting light-front wavefunctions also give a good account of the

hadron form factors.

The AdS/QCD model, together with light-front holography, provides a semiclassical first

approximation to strongly coupled QCD. The BLFQ approach in this paper provides a natural

extension of the AdS/QCD light-front wavefunctions to multiquark and multi-gluonic Fock

states, thus allowing for particle creation and absorption. By setting up and diagonalizing the

light-front QCD Hamiltonian on this basis, we incorporate higher order corrections correspond-

ing to the full QCD theory, and we hope to gain insights into the success of the AdS/QCD

model.

4.3 Cavity mode light-front field theory without interactions

For a first application of the BLFQ approach, we consider a non-interacting QED system

confined to a transverse harmonic trap or cavity. For simplicity, we take the spin 1/2 leptons as

massless. The basis functions are matched to the trap so we implement a transverse 2-D har-

monic oscillator basis with length scale fixed by the trap and finite modes in the longitudinal

direction with APBC. Since we are ultimately interested in the self-bound states of the sys-

tem, we anticipate adoption of the NCSM method for factorizing the eigensolutions into simple

products of intrinsic and total momentum solutions in the transverse direction [19]. That is,

with a suitable transverse momentum constraint such as a large positive Lagrange multiplier

times the 2-D harmonic oscillator Hamiltonian acting on the total transverse coordinates, the

low-lying physical solutions will all have the same expectation value of total transverse momen-

tum squared. Therefore, following Ref. [15] we introduce the total invariant mass-squared M2

for these low-lying physical states in terms of a Hamiltonian H times a dimensionless integer

for the total light front momentum K

M2 + P⊥P⊥ → M2 + const = P+P− = KH (4.10)
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where we absorb the constant into M2. The Hamiltonian H for this system is defined by the

sum of the occupied modes i in each many-parton state with the scale set by the combined

constant Λ2 = 2M0Ω:

H = 2M0P
−
c =

2M0Ω
K

∑

i

2ni + |mi|+ 1
xi

. (4.11)

We adopt symmetry constraints and two cutoffs for our many-parton states. For sym-

metries, we fix the total charge Z, the total azimuthal quantum number Mt, and the total

spin projection S along the x− direction. For cutoffs, we select the total light-front momen-

tum, K, and the maximum total quanta allowed in the transverse mode of each many-parton

state, Nmax. For the longitudinal modes, we select those with PBC from Eqn.(4.4). The

chosen symmetries and cutoffs are expressed in terms of sums over the quantum numbers of

the single-parton degrees of freedom contained in each many-parton state of the system in the

following way:

∑

i

qi = Z (4.12)

∑

i

mi = Mt (4.13)

∑

i

si = S (4.14)

∑

i

xi = 1 =
1
K

∑

i

ki (4.15)

∑

i

2ni + |mi|+ 1 ≤ Nmax (4.16)

where, for example, ki is the integer that defines the PBC longitudinal modes of Eqn. (4.4) for

the ith parton. The range of the number of fermion-antifermion pairs and bosons is limited

by the cutoffs in the modes (K and Nmax). Since each parton carries at least one unit of

longitudinal momentum, the basis is limited to K partons. Furthermore, since each parton

carries at least one oscillator quanta for transverse motion, the basis is also limited to Nmax

partons. Thus the combined limit on the number of partons is min(K,Nmax). In principle,

one may elect to further truncate the many-parton basis by limiting the number of fermion-

antifermion pairs and/or the number of bosons but we have not elected to do so here.
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We may refer to the quantity K as the inverse longitudinal harmonic resolution. We reason

that as we increase K, higher longitudinal momenta states become available to the partons,

thus allowing finer detail in the features of the longitudinal coordinate structure to emerge.

In a fully interacting application, the actual choice of symmetry constraints will depend

on those dictated by the Hamiltonian. For example, with QCD we would add color and flavor

attributes to the single particle states and apply additional symmetries such as requiring all

many-parton states to be global color singlets as discussed in previous chapters. Another

example is the choice to conserve total Mt + S rather than conserving each separately as

chosen here. It is straightforward, but sometimes computationally challenging, to modify the

symmetries in a basis function approach such as we adopt here. However, in order to approach

the continuum limit (all cutoffs are removed) as closely as possible with limited computational

resources, one works to implement as many of the known symmetries as possible.

4.3.1 Basis space dimensions

For our defined non-interacting cavity mode problem, we now illustrate the exponential

rise in basis-space dimensions with increasing Nmax at fixed K, with increasing K at fixed

Nmax and with simultaneous increase in both cutoffs. The first two situations involve a parton

number cutoff defined by K and Nmax respectively. Only the case with simultaneous increase

in cutoffs keeps the problem physically interesting at higher excitations since this is the only

case with unlimited number of partons as both cutoffs go to infinity.
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Figure 4.8 State density as a function of dimensionless state energy E from
BLFQ for non-interacting QED in a trap with no net charge
and for a selection of Nmax values at fixed K = 6. The dimen-
sions of the resulting matrices are presented in the legend. The
states are binned in groups of 5 units of energy (quanta) where
each parton carries energy equal to its 2-D oscillator quanta
(2ni + |mi| + 1) divided by its light-front momentum fraction
(xi = ki/K). The dashed line traces an exponential in the
square root of energy that reasonably approximates the his-
togram at larger Nmax values.

In Fig. 4.8 we present the state density in BLFQ for massless QED in the zero coupling

limit for the case with no net charge Z = 0, i.e. for zero lepton number. Thus the cavity is

populated by many-parton states consisting of fermion-antifermion pairs and photons. The

chosen symmetries are M = 0 and S = 0. We show results for K = 6 at various values of Nmax

spanning a range (Nmax = 8− 23) . The states are grouped to form a histogram according to

their energy calculated from the chosen Hamiltonian in Eqn. (4.11) where we omit the constant

preceding the summation for simplicity. Similarly, in Fig. 4.9 we present the state densities

for Z = 3, Mt = 0 and S = 1/2 at the same selected values of Nmax.

Both Figs. 4.8 and 4.9 demonstrate the saturation of low-lying modes with increasing Nmax.
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Figure 4.9 State density as a function of dimensionless state energy E from
BLFQ for non-interacting QED in a trap with net charge of 3
and for a selection of Nmax values at fixed K = 6. The dimen-
sions of the resulting matrices are presented in the legend. The
states are binned in groups of 5 units of energy (quanta) where
each parton carries energy equal to its 2-D oscillator quanta
(2ni + |mi| + 1) divided by its light-front momentum fraction
(xi = ki/K). The dashed line traces an exponential in the
square root of energy that reasonably approximates the his-
togram at larger Nmax values.

That is, in each case, one may observe an excitation energy at which the state density reaches

a value that no longer changes with increasing Nmax. The energy at which this saturation

occurs, increases with Nmax. We show only the lower sections of some of the state density

distributions but it is clear that all distributions must fall off at sufficiently high energy for

fixed Nmax and K.

In Fig. 4.10 we present the state density in BLFQ for QED in the zero coupling limit

again for the case with no net charge Z = 0 but with increasing K at fixed Nmax = 8. In this

case the many-parton states at low energy continue to increase in number with increasing K.

This is understandable from the definition of the Hamiltonian in Eqn. (4.11). In particular,
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Figure 4.10 State density as a function of dimensionless state energy E
from BLFQ for non-interacting QED in a trap with no net
charge and for a selection of K values at fixed Nmax = 8.
The dimensions of the resulting matrices are presented in the
legend. The states are binned in groups of 5 units of energy
(quanta) where each parton carries energy equal to its 2-D
oscillator quanta (2ni + |mi| + 1) divided by its light-front
momentum fraction (xi = ki/K).

a typical fermion-antifermion state with each parton’s light-front momentum fraction close to

xi = 1
2 achieves a low energy. Correspondingly, as one increases K, the population of states

at low E grows since there are more pairs of values of xi near 1
2 to employ for minimizing the

energy. This reasoning easily extends to states with increasing numbers of partons so the net

result is an increasing level density with increasing K at fixed low E and fixed Nmax.

For the final example of state densities, we consider the case where both K and Nmax

increase simultaneously. For simplicity, we remain with the Z = 0 sector and take K = Nmax.

The state densities for this example are presented in Fig. 4.11. Here, we observe trends similar

to those shown in Fig. 4.10 where there is no saturation in state density at low energy.

We take three cases depicted in Fig. 4.11 to illustrate the distribution of many-parton

states over the sectors of the Fock-space. The distributions for the Nmax = K = 8, 10 and 12
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Figure 4.11 State density as a function of dimensionless state energy E
from BLFQ for non-interacting QED in a trap with no net
charge and for K = Nmax. The dimensions of the resulting
matrices are presented in the legend. The states are binned in
groups of 5 units of energy (quanta) where each parton carries
energy equal to its 2-D oscillator quanta (2ni+|mi|+1) divided
by its light-front momentum fraction (xi = ki/K).

examples are shown in Table 4.1. With increasing cutoff, there is a rapid growth in the number

of basis states within each Fock space sector. Overall, there is approximately a factor of 20

increase in the total many-parton basis states with each increase of 2 units in the coordinated

cutoff.

Specific cases in Table 4.1 where no basis states may appear in a given Fock space sector may

seem puzzling at first. However, they are understandable once the symmetries and constraints

are examined. For example, with Nmax = K = 8 there are no states with 4 ff̄ pairs since

the Pauli principle excludes more than 2 pairs from occupying the lowest Nmax and K modes.

Since two ff̄ pairs must be in higher modes, either the total K = 8 or Nmax = 8 constraint

will be violated by having a total of 4 ff̄ pairs.

All our level density results are shown as a function of the dimensionless energy. For the
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ff̄ pairs / bosons 0 1 2 3 4 5 6 7 8 9 10 Total

0 0 0 210 0 1122 0 67 0 1 0 0 1400

0 0 495 0 11318 0 2936 0 69 0 1 14819

0 0 1001 0 73600 0 63315 0 4027 0 69 142013

1 420 1932 8190 1040 588 8 2 0 0 0 0 12180

990 10512 86856 33632 36672 1604 640 8 2 0 0 170916

2002 40810 574860 503040 929064 99962 60518 1770 644 8 2 2212680

2 5961 1560 1133 4 1 0 0 0 0 0 0 8659

64240 59240 97584 4040 1513 4 1 0 0 0 0 226622

427730 942240 2806624 381608 249825 4928 1565 4 1 0 0 4814525

3 218 0 0 0 0 0 0 0 0 0 0 218

25584 1528 554 0 0 0 0 0 0 0 0 27666

808034 222336 200676 2592 602 0 0 0 0 0 0 1234240

4 0 0 0 0 0 0 0 0 0 0 0 0

16 0 0 0 0 0 0 0 0 0 0 16

19325 168 20 0 0 0 0 0 0 0 0 19513

Table 4.1 Number of many-parton basis states in each Fock-space sector for three of the Nmax = K cases
depicted in Fig. 4.11. The counts are organized according to the number of fermion-antifermion (ff̄)
pairs and the number of bosons in each sector. The first line in each ff̄ row corresponds to the
Nmax = K = 8 case which has a total of 22,457 states, while the second line corresponds to the
Nmax = K = 10 case which has a total of 440,039 states. The third line in each ff̄ row corresponds
to the Nmax = K = 12 case which has a total of 8,422,971 states. In this last case, there is a single
12-boson state not listed to save space. The last column provides the total for that row.

non-interacting theory in BLFQ only the kinetic term of the Hamiltonian contributes and the

scale is available through an overall factor Λ2 = 2M0Ω as described above. Without inter-

actions and the associated renormalization program, one cannot relate the scales at one set

of (K, Nmax) values to another. Ultimately, one expects saturation will arise with interac-

tion/renormalization physics included as one increases the set of (K,Nmax) values.

These state densities could serve as input to model the statistical mechanics of the system

treated in the microcanonical ensemble. Of course, interactions must be added to make the

model realistic at low temperatures where correlations are important. After turning on the

interactions, the challenge will be to evaluate observables and demonstrate convergence with

respect to the cutoffs (Nmax and K). Independence of the basis scale, Ω, must also be obtained.

These are the standard challenges of taking the continuum limit. We will address these topics

in a separate investigation. For the current effort, we present a smooth representation for

selected histograms, an exponential fit adopted from the well-known Bethe formula,

ρ(E) = b exp(
√

aE), (4.17)

where the precise values of the fitted constants are provided in the legends. We provide these

exponential fits in Figs. 4.8 and 4.9 where the low-lying state density exhibits saturation.
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4.3.2 Specific heat

In this section, we will use the state density given in Eqn.(4.17) to find the specific heat of

the system.

In the Microcanonical Ensemble, we can obtain the entropy of system from the density of

states. The relationship between entropy S and the density of states ρ is given by well-known

result:

S(E, V ) = klog(ρ(E)). (4.18)

Once we obtain entropy, other statistical properties of the whole system can be easily

derived. For example, we can calculate the specific heat of the system from the entropy.

To obtain the specific heat, we need to take the derivative of energy with respect to tem-

perature. At first, from Eqn.(4.17) and Eqn.(4.18), we have

1
T

=
∂S

∂E
=

k
√

a

2
E− 1

2 . (4.19)

Then we obtain the relation between energy and temperature which is given by

E =
a

4
k2T 2. (4.20)

Finally we obtain specific heat which is given below

cv =
∂E

∂T
=

a

2
k2T. (4.21)

From Eqn.(4.21), we obtain the specific heat which shows a linear relationship with tem-

perature. We found it is very close to an ideal Fermi gas. Recall that internal energy of ideal

Fermi gas in the Grand Canonical Ensemble is

E = −∂log(Zg)
∂β

=
∑
p

ε(p)
eβ(ε(p)−µ) + 1

. (4.22)

If we want to estimate the change in internal energy at a small but finite temperature, one

can argue that there will only be changes of electrons close to the Fermi level. Their excitation

energy is around kT whereas the relative number of excited states is only ρ0(EF )kT . Due to

ρ0(EF ) = 1
EF

, we therefore estimate

E =
3
5

< N > EF + < N > ρ0(EF )(kT )2 + ... (4.23)
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At low temperature. This leads then to a specific heat at constant volume

cv =
1

< N >

∂E

∂T
= 2k2ρ0(EF )T = γT, (4.24)

where

γ =
π2

3
k2ρ0(EF ). (4.25)

Now we can compare Eqn.(4.21) and Eqn.(4.24). In Eqn.(4.21), T is dimensionless which

corresponds to ρ0(EF )T = T
E in Eqn.(4.24). Also we found in Eqn.(4.21) the constant is 3

2

which is around half of constant in Eqn.(4.24) which is π2

3 .

4.3.3 Distribution functions

In order to illustrate the potential value of the BLFQ approach, we present light-front

momentum distribution functions for two simple toy models, based on results presented in Fig.

4.11. In the first example, we consider a model for a weak coupling regime and, in the second

example, we consider a model for strong coupling behavior. In both cases we introduce a simple

state that is an equally-weighted superposition of basis states. In the weak coupling case, we

retain all basis states below a cutoff (Ecut = 25) in the dimensionless energy scale of Fig. 4.11

for a given value of K = Nmax. That is, we imagine a situation where only the low-lying

unperturbed many-parton basis states mix equally to describe a low-lying physical state of a

weakly-coupled physical system. In the strong coupling case we retain all basis states of Fig.

4.11 with equal weights for a given value of K = Nmax. Here, we imagine the coupling is so

strong as to overwhelm the unperturbed spectrum and to produce a simple low-lying physical

state with equal admixtures of all available basis states. These states, labeled |Ψw〉 and |Ψs〉,
where the w (“s”) represents “weak” (“strong”) respectively, are written as normalized sums

over their respective sets of many-parton basis states |Φj〉 as

|Ψa〉 =
1√
Da

∑

j

|Φj〉. (4.26)
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where “a” represents “w” or “s” and the sum runs over the Da respective many-parton states.

For our present application to probability distribution functions, the phases of the individual

terms in expansion are not relevant so we choose all of them to be positive for simplicity.

Selected light-front momentum distributions n(x) for these two model states are shown in

Figs. 4.12 and 4.13. The fermion and antifermion distributions are the same in these limiting

examples. Light-front momentum distributions are probability distributions emerging after

integration over transverse degrees of freedom. With our present selection of basis states, the

light-front momenta take discrete values leading to discrete-valued distributions (histograms).

However, for convenience, we present smooth distributions in Figs. 4.12 and 4.13 generated by

spline interpolations.

The parton distributions at fixed Nmax = K satisfy both the normalization condition:

∑

i

∫ 1

0
ni(x)dx =

1
K

∑

i,k

ni(xk) = 1 (4.27)

and total light-front momentum conservation

∑

i

∫ 1

0
xni(x)dx =

1
K

∑

i,k

xkni(xk) = 1. (4.28)

The index i runs over the parton species (fermion, antifermion, boson) and the index k runs

over the discrete values of light-front momenta corresponding to the integers in Eqn.(4.4) where

xk = k
K .

The top panels of Figs. 4.12 and 4.13 display the light-front momentum distributions at

Nmax = K = 8 for the “weak” and “strong” coupling models, respectively. The lower panels

present the boson distribution functions for three Nmax = K values ranging from 8 to 12 for

the same models.

The fermion distributions are found to track the boson distributions with increasing Nmax =

K and are not shown in the lower panels. We also comment that the total momentum dis-

tribution fractions carried by the separate parton species appear approximately independent

of Nmax = K over the range 8 − 12. About two-thirds of the total light-front momentum is

carried by the fermions plus antifermions. This division is characteristic of both the weak and

strong coupling models over the Nmax = K = 8− 12 range we examined.
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The top panel of Fig. 4.13 indicates a peak in the vicinity of the minimum light-front

momentum fraction carried by a single parton in this basis, x = 1
8 , for both the fermions

and the bosons. This appears to be a characteristic of this strong coupling toy model and

is illustrated in the lower panel of the same figure where the peaks in the boson light-front

momentum distributions appear to track well with the inverse of Nmax = K. Clearly, with

this toy model the distribution functions do not converge with increasing Nmax and K.

For comparison, we note that with the weak coupling toy model the peaks of the boson

distributions shown in Fig.4.12 appear to be stable with increasing Nmax and K, and the

distribution function appears to be reasonably well converged at Nmax = K = 12. Based on

these observations we anticipate good convergence for weakly interacting theories like QED.

The lack of convergence of our strong coupling toy model may be worrisome for applications

in QCD, but one should keep in mind that this toy model is far from realistic: all basis states

are retained with equal weight. Nevertheless, it is interesting to consider the trends of this

model with increasing Nmax = K. For background, one may recall that deep-inelastic lepton

scattering from a hadron in the scaling region Q2 → ∞ provides a measure of the hadron’s

charged quark distribution functions. With more detailed resolution provided by the virtual

photon exchange (increasing Q leads to shorter wavelengths), experiments reveal that the

charged quark distributions evolve to lower values of light-front momentum fraction, x. The

pattern shown in the lower panel of Fig. 4.13 with increasing Nmax = K is reminiscent of this

experimental trend with increasing Q. Given the simplicity of the strong interaction model,

one may infer that the evolution of multi-parton phase space with increasing Nmax = K could

play a significant role in the evolution of light-front momentum distribution functions with

improved resolution through increasing Q.
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Figure 4.12 Light front momentum distribution functions for states repre-
senting a weak coupling paradigm. The top panel displays the
distributions at Nmax = K = 8. The antifermion distribution
is the same as the fermion distribution. The total momentum
fraction carried by the fermion plus antifermion distribution
is 0.66 while the boson distribution carries the remaining frac-
tion 0.34. The bottom panel displays the boson distributions
at three different values of Nmax = K that are labeled.

4.3.4 Extension to color without color restriction

We can extend the approach to QCD by implementing the SU(3) color degree of freedom for

each parton - 3 colors for each fermion and 8 for each boson as we have discussed in previous

chapters. For simplicity, we restrict the present discussion to the situation where identical

fermions occupy distinct space-spin single-particle modes. The case where we allow multiple

space-spin occupancies by identical fermions leads to color space restrictions. We will address

this additional complexity in the following subsection.

We considered two versions of implementing the global color-singlet constraint for the

restricted situation under discussion here. In both cases we enumerate the color space states

to integrate with each space-spin state of the corresponding partonic character.

In the first case, we follow Ref. [33] by enumerating parton states with all possible values

of SU(3) color. Thus each space-spin fermion state goes over to three space-spin-color states.

Similarly, each space-spin boson state generates a multiplicity of eight states when SU(3) color

is included. We then construct all many-parton states having zero color projection. Within

this basis one will have both global color singlet and color non-singlet states. The global color-
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Figure 4.13 Light front momentum distribution functions for states repre-
senting a strong coupling paradigm. The top panel displays
the distributions at Nmax = K = 8. The antifermion dis-
tribution is the same as the fermion distribution. The total
momentum fraction carried by the fermion plus antifermion
distribution is 0.65 while the boson distribution carries the re-
maining fraction 0.35. The bottom panel displays the boson
distributions at three different values of Nmax = K that are
labeled.

singlet states are then isolated by adding a Lagrange multiplier term in many-parton color

space to the Hamiltonian so that the unphysical color non-singlet states are pushed higher

in the spectrum away from the physical color single states. To evaluate the increase in basis

space dimension arising from this treatment of color, we enumerate the resulting color-singlet

projected color space states and display the results as the upper curves in Fig. 3.1.

In the second case, we restrict the basis space to global color singlets and this results in

the lower curves in Fig. 3.1. The second method produces a typical factor of 30-40 lower

multiplicity at the upper ends of these curves at the cost of increased computation time for

matrix elements of the interacting Hamiltonian. That is, each interacting matrix element in the

global color-singlet basis is a transformation of a submatrix in the zero color projection basis.

Either implementation dramatically increases the state density over the case of QED, but the

use of a global color-singlet constraint is clearly more effective in minimizing the explosion in

basis space states.

We note that, for the pure multi-fermion basis space sector, shown in the upper left panel

of Fig. 3.1, we could have produced the lower curve using methods introduced and applied
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successfully in 1 + 1 dimensional QCD [34]. That is, the number of global color singlets

for a given fermion-only basis state, with other (non-color) quantum numbers specified, is

independent of the number of spatial dimensions provided there is at least one.

As the first example to implement the global color-singlet constraint, we consider the system

with no net charge and K = Nmax = 4. The state density for this system without considering

color space was presented in Fig.4.11. We now implement the global color-singlet constraint

and present the new state density in Fig.4.14 where we compare the previous state densities

obtained without considering the color degree of freedom.

Figure 4.14 State density as a function of dimensionless state energy E
from BLFQ for non-interacting QCD in a trap with no net
charge and for a selection of K = Nmax = 4.
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When we compare Fig.4.14 with Fig.4.11, we found that there are a total of 67 states

instead of 55 states after we implement the global color-singlet constraint. With global color-

singlet constraint, one state with 4 gluons needs to be multiplied by 8 because in color space,

4 gluons can form 8 color singlet states. Two states with one quark, one antiquark and two

gluons need to be multiplied by 3 because in color space it can form 3 color singlet states.

Finally, one state with two quarks and two antiquarks needs to be multiplied by 2 . Therefore,

there are 12 more states than the 55 states without the addition of the color degree of freedom.

Furthermore, we found that the 12 additional states are all sitting in the highest energy bin.

Significant new features arise when we consider the global color-singlet constraint for the

same system with K = Nmax = 6. The comparison of state densities without and with the

color degree of freedom is presented in Fig.4.15. After we consider the global color-singlet

constraint, there are 1777 states instead of original 1055 states without the addition of the

color degree of freedom.
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Figure 4.15 State density as a function of dimensionless state energy E
from BLFQ for non-interacting QCD in a trap with no net
charge and for a selection of K = Nmax = 6. The blue his-
tograms are the distribution of state density without global
color-singlet constraint. The red histograms are the distribu-
tion of state density with global color-singlet constraint.

4.3.5 Extension to color with color restriction

In the last section, we have seen how the global color-singlet constraint modifies the state

density: there are more states generated. However we have not yet considered the case where

we allow multiple space-spin occupancies by identical fermions. This case leads to color space

restrictions. For example, if two identical fermions are in same space-spin configuration, they

must have different color in color space in order to respect the Pauli principle.

To see how state density changes when we add the allowed states with space-spin degeneracy

and include the appropriate color singlet states, we again consider the system with no net

charge and for a selection of K = Nmax = 6. When we allow multiple space-spin occupancies

by identical fermions, there are 60 more states generated prior to including the color degree of

freedom. For example, we now include the states where two fermions are in the same space-spin
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configuration and two anti-fermions are in the same space-spin configuration. Once we include

the color singlet configurations for these added states, the state density increases further and

the results are presented in Fig.4.16.
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Figure 4.16 State density as a function of dimensionless state energy E
from BLFQ for non-interacting QCD in a trap with no net
charge and for a selection of K = Nmax = 6. The blue his-
tograms are the distribution of state density without global
color-singlet constraint. The red histograms are the distribu-
tion of state density with global color-singlet constraint but no
allowance to have multiple space-spin occupancies by identical
fermions. The yellow histograms are the distribution of state
density with global color-singlet constraint also with allowance
to have multiple space-spin occupancies by identical fermions.
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CHAPTER 5. SUMMARY AND OUTLOOK

Quantum Chromodynamics (QCD) is a fundamental theory of the strong interaction. At

short distance, due to asymptotic freedom, the perturbative calculation is successful. However,

when the coupling constant becomes larger, the perturbative calculation fails and a suitable

non-perturbative method must be found. Hamiltonian light-front quantum field theory consti-

tutes a framework for the non-perturbative solution of invariant masses and correlated parton

amplitudes of self-bound systems.

By choosing the light-front gauge and adopting a basis function representation, we obtain

a large, sparse, Hamiltonian matrix for mass eigenstates of gauge theories. Full covariance is

recovered in the continuum limit, the infinite matrix limit. There is considerable freedom in the

choice of the orthonormal and complete set of basis functions with convenience and convergence

rates providing key considerations. In this thesis we use a two-dimensional harmonic oscillator

basis for transverse modes that corresponds with eigensolutions of the soft-wall AdS/QCD

model obtained from light-front holography. We outline our approach, present illustrative

features of some non-interacting systems in a cavity and discuss the computational challenges.

Following successful methods of ab initio nuclear many-body theory, we have introduced

a basis light-front quantization (BLFQ) approach to Hamiltonian quantum field theory and

illustrated some of its key features with a cavity mode treatment of massless non-interacting

QED. Cavity mode QED, with a 2D harmonic oscillator for the transverse modes and longi-

tudinal modes chosen with periodic boundary conditions, exhibits the expected dramatic rise

in many-parton basis states as the cutoffs are elevated. With the non-intracting cavity-mode

Hamiltonian, we obtain the state density distributions at various choices of the regulators.

These basis state densities provide initial elements of a quantum statistical mechanics ap-
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proach to systems treated in the BLFQ approach. We then illustrated the access to light front

momentum distribution functions in this approach with simple models of wave functions that

reflect possible interaction effects. In order to extend our method to QCD, we have evaluated

two methods for treating the color degree of freedom. Since large sparse matrices will emerge,

we argue that it is more efficient in storage requirements to adopt multi-parton basis states

that are global color singlets and we presented sample measures of the efficiency gains over

basis states with color-singlet projection alone. To achieve this savings in storage (reduced

matrix size) we will incur an increase in the computational effort for the non-vanishing matrix

elements.
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APPENDIX A. COLOR ALGEBRA

Gell-Mann matrices acting on quark color states

We have employed the feature that the operator F 2 gives zero when acting on the color

singlet states, and positive for all color-nonsinglet states. In this appendix, we will see what

we can obtain with the eight Gell-Mann matrices acting on quark color states separately. In

the calculations, we used these to construct the color singlet state.

We begin with these definitions.

I+ = F1 + iF2, I− = F1 − iF2,

T3 = F3,

U+ = F6 + iF7, U− = F6 − iF7,

V+ = F4 + iF5, V− = F4 − iF5,

Y =
2√
3
F8. (A.1)

Now let us define the quark color state by using two quantum number T3 and Y . Therefore

using SU(3) algebra, we have

F3|t3, y〉 = T3|t3, y〉,

F8|t3, y〉 =
√

3
2

y|t3, y〉,

I+|t3, y〉 =
√

(t− t3)(t + t3 + 1)|t3 + 1, y〉,

I−|t3, y〉 =
√

(t + t3)(t− t3 + 1)|t3 − 1, y〉. (A.2)

Using the relation between F1, F2 and I+, I− and also the result t = 1
2 , we obtain

F1|t3, y〉 =
1
2
(
√

(
1
2
− t3)(

1
2

+ t3 + 1)|t3 + 1, y〉
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+
√

(
1
2
− t3)(

1
2

+ t3 + 1)|t3 + 1, y〉)δ|t3|, 12 ,

F2|t3, y〉 =
1
2i

(
√

(
1
2
− t3)(

1
2

+ t3 + 1)|t3 + 1, y〉

−
√

(
1
2
− t3)(

1
2

+ t3 + 1)|t3 + 1, y〉)δ|t3|, 12 . (A.3)

Then we can define two more new quantum numbers

V3 =
3
4
y +

1
2
t3, U3 =

3
4
y − 1

2
t3. (A.4)

Therefore three quarks carry these two quantum numbers seperately. We have

V R
3 =

1
2
, V G

3 = 0, V B
3 = −1

2
,

UR
3 = 0, UG

3 =
1
2
, UB

3 = −1
2
. (A.5)

Finally if we do a similar calculation as for I+ and I−, we can obtain the result

F4|t3, y〉 =
1
2
(
√

(
1
2
− 1

2
t3 − 3

4
y)(

1
2

+
1
2
t3 +

3
4
y + 1)|t3 +

1
2
, y + 1〉

+
√

(
1
2

+
1
2
t3 +

3
4
y)(

1
2
− 1

2
t3 − 3

4
y + 1)|t3 − 1

2
, y − 1〉)δ| 1

2
t3+ 3

4
y|, 1

2
,

F5|t3, y〉 =
1
2i

(
√

(
1
2
− 1

2
t3 − 3

4
y)(

1
2

+
1
2
t3 +

3
4
y + 1)|t3 +

1
2
, y + 1〉

−
√

(
1
2

+
1
2
t3 +

3
4
y)(

1
2
− 1

2
t3 − 3

4
y + 1)|t3 − 1

2
, y − 1〉)δ| 1

2
t3+ 3

4
y|, 1

2
,

F6|t3, y〉 =
1
2
(
√

(
1
2

+
1
2
t3 − 3

4
y)(

1
2
− 1

2
t3 +

3
4
y + 1)|t3 − 1

2
, y + 1〉

+
√

(
1
2
− 1

2
t3 +

3
4
y)(

1
2

+
1
2
t3 − 3

4
y + 1)|t3 +

1
2
, y − 1〉)δ|− 1

2
t3+ 3

4
y|, 1

2
,

F7|t3, y〉 =
1
2i

(
√

(
1
2

+
1
2
t3 − 3

4
y)(

1
2
− 1

2
t3 +

3
4
y + 1)|t3 − 1

2
, y + 1〉

−
√

(
1
2
− 1

2
t3 +

3
4
y)(

1
2

+
1
2
t3 − 3

4
y + 1)|t3 +

1
2
, y − 1〉)δ|− 1

2
t3+ 3

4
y|, 1

2
. (A.6)

Color matrices acting on gluon color states

In this section, we show what we can obtain when the eight color matrices act on gluon

color states.

Since, in the adjoint representation, gluon eigenstates g3 and g8 cannot be completely

distinguished by two quantum numbers t3 and y (both of them have the same quantum t3 = 0
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and y = 0), we have to add one more quantum number t when we express the color eigenstates.

Therefore we can see that g3 has quantum number t = 1 and g8 has quantum number t = 0.

In the previous section, we have used the following operators:I+, I−, V+, V−, U+ and U−.

In this section, we still take advantage of these operators. And we notice that for I+ and I−,

we have

I+g2 → g3, I+g3 → g1, I+g1 = 0,

I−g1 → g3, I−g3 → g2, I−g2 = 0,

I+g6 → g4, I+g4 = 0,

I−g4 → g6, I−g6 = 0,

I+g5 → g7, I+g7 = 0,

I−g7 → g5, I−g5 = 0. (A.7)

For V+ and V−, we have

V+g7 → g1, V+g1 = 0,

V−g1 → g7, V−g7 = 0,

V+g2 → g6, V+g6 = 0,

V−g6 → g2, V−g2 = 0,

V+g5 → g3 + g8, V+(g3 + g8) → g4, V+g4 = 0,

V−g4 → g3 + g8, V−(g3 + g8) → g5, V−g5 = 0. (A.8)

For U+ and U−, we have

U+g1 → g4, U+g4 = 0,

U−g4 → g1, U−g1 = 0,

U+g5 → g2, U+g2 = 0,

U−g2 → g5, U−g5 = 0,

U+g7 → g3 + g8, U+(g3 + g8) → g6, U+g6 = 0,

U−g6 → g3 + g8, U−(g3 + g8) → g7, U−g7 = 0. (A.9)
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Using procedures we used when we calculated the quark color states, we can obtain the

results which are given below

F1|t3, t, y〉 =
y

2
δ|t3|, 12 (

√
(
1
2
− t3)(

1
2

+ t3 + 1)|t3 + 1, t, y〉+
√

(
1
2

+ t3)(
1
2
− t3 + 1)|t3 − 1, t, y〉)

+
1
2
δt,1δy,0((−1)1−t3(1− t3)|t3 + 1, t, y〉+ (−1)t3(1 + t3)|t3 − 1, t, y〉)

+
1
2
δt,0δy,0(t3 + y)|t3, t, y〉,

F2|t3, t, y〉 =
y

2i
δ|t3|, 12 (

√
(
1
2
− t3)(

1
2

+ t3 + 1)|t3 + 1, t, y〉 −
√

(
1
2

+ t3)(
1
2
− t3 + 1)|t3 − 1, t, y〉)

+
1
2i

δt,1δy,0((−1)1−t3(1− t3)|t3 + 1, t, y〉 − (−1)t3(1 + t3)|t3 − 1, t, y〉)

+
1
2i

δt,0δy,0(t3 − y)|t3, t, y〉,

F3|t3, t, y〉 = t3|t3, t, y〉,

F4|t3, t, y〉 = δ| 3
4
y+ 1

2
t3|, 12 (

1
2
t3 − 1

4
y)(

√
(
1
2
− 3

4
y − 1

2
t3)(

1
2

+
3
4
y +

1
2
t3 + 1)|t3 +

1
2
, t, y + 1〉

+
√

(
1
2

+
3
4
y +

1
2
t3)(

1
2
− 3

4
y − 1

2
t3 + 1)|t3 − 1

2
, t, y − 1〉)

+δt3,0δy,0δt,1((−1
4
)|t3 +

1
2
, t− 1

2
, y + 1〉+

1
4
|t3 − 1

2
, t− 1

2
, y − 1〉)

+δt3, 1
2
δy,1δt, 1

2
((−1

2
)| − t3 +

1
2
, t +

1
2
, y − 1〉 −

√
3

2
| − t3 +

1
2
, t− 1

2
, y − 1〉)

+δt3,− 1
2
δy,−1δt, 1

2
(
1
2
| − t3 +

1
2
, t +

1
2
, y − 1〉+

√
3

2
| − t3 +

1
2
, t− 1

2
, y − 1〉)

+δt3,0δy,0δt,0((−
√

3
4

)|t3 +
1
2
, t +

1
2
, y + 1〉+

√
3

4
|t3 − 1

2
, t +

1
2
, y − 1〉),

F5|t3, t, y〉 = δ| 3
4
y+ 1

2
t3|, 12 (

1
2i

t3 − 1
4i

y)(
√

(
1
2
− 3

4
y − 1

2
t3)(

1
2

+
3
4
y +

1
2
t3 + 1)|t3 +

1
2
, t, y + 1〉

−
√

(
1
2

+
3
4
y +

1
2
t3)(

1
2
− 3

4
y − 1

2
t3 + 1)|t3 − 1

2
, t, y − 1〉)

+δt3,0δy,0δt,1(
i

4
|t3 +

1
2
, t− 1

2
, y + 1〉+

i

4
|t3 − 1

2
, t− 1

2
, y − 1〉)

+δt3, 1
2
δy,1δt, 1

2
((− i

2
)| − t3 +

1
2
, t +

1
2
, y − 1〉 −

√
3i

2
| − t3 +

1
2
, t− 1

2
, y − 1〉)

+δt3,− 1
2
δy,1δt, 1

2
(− i

2
| − t3 +

1
2
, t +

1
2
, y − 1〉 −

√
3i

2
| − t3 +

1
2
, t− 1

2
, y − 1〉)

+δt3,0δy,0δt,0((
√

3i

4
)|t3 +

1
2
, t +

1
2
, y + 1〉+

√
3i

4
|t3 − 1

2
, t +

1
2
, y − 1〉),

F6|t3, t, y〉 = δ| 3
4
y− 1

2
t3|, 12 (−1

2
t3 − 1

4
y)(

√
(
1
2
− 3

4
y +

1
2
t3)(

1
2

+
3
4
y − 1

2
t3 + 1)|t3 − 1

2
, t, y + 1〉

+
√

(
1
2

+
3
4
y − 1

2
t3)(

1
2
− 3

4
y +

1
2
t3 + 1)|t3 +

1
2
, t, y − 1〉)

+δt3,0δy,0δt,1(
1
4
|t3 − 1

2
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2
, y + 1〉 − 1

4
|t3 +

1
2
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2
, y − 1〉)



77

+δt3,− 1
2
δy,1δt, 1

2
(
1
2
|t3 +

1
2
, t +

1
2
, y − 1〉 −

√
3

2
|t3 +

1
2
, t− 1

2
, y − 1〉)

+δt3, 1
2
δy,−1δt, 1

2
((−1

2
)|t3 +

1
2
, t +

1
2
, y − 1〉+

√
3

2
|t3 +

1
2
, t− 1

2
, y − 1〉)

+δt3,0δy,0δt,0((−
√

3
4

)|t3 − 1
2
, t +

1
2
, y + 1〉+

√
3

4
|t3 +

1
2
, t +

1
2
, y − 1〉),

F7|t3, t, y〉 = δ| 3
4
y− 1

2
t3|, 12 (− 1

2i
t3 − 1

4i
y)(

√
(
1
2
− 3

4
y +

1
2
t3)(

1
2

+
3
4
y − 1

2
t3 + 1)|t3 − 1

2
, t, y + 1〉

−
√

(
1
2

+
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4
y − 1

2
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4
y +
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2
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+δt3,0δy,0δt,1((− i

4
|t3 − 1

2
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2
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2
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δy,1δt, 1

2
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|t3 +
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2
, t +
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2
, y − 1〉),

F8|t3, t, y〉 =
√

3
2

y|t3, t, y〉. (A.10)
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APPENDIX B. TWO-DIMENSIONAL HARMONIC OSCILLATOR

Consider the 2-dimensional harmonic oscillator described by the following equation:

(
p2

x + p2
y

2M
+

1
2
MΩ2 (x2 + y2))Ψ = E Ψ. (B.1)

Explicitly, with units h̄ = c = 1, we can rewrite the above equation as the equation in Cartesian

coordinates:

[
− 1

2M

(
∂2

∂x2
+

∂2

∂y2

)
+

1
2
k(x2 + y2)

]
Ψ(x, y) = E Ψ(x, y), (B.2)

or in 2-dimensional polar coordinates:

[
− 1

2M

(
∂2

∂ρ2
+

1
ρ

∂

∂ρ
+

1
ρ2

∂2

∂φ2

)
+

1
2
k ρ2

]
Ψ(ρ, φ) = E Ψ(ρ, φ), (B.3)

where

k = MΩ2, (B.4)

ρ =
√

x2 + y2, (B.5)

and the polar angle φ running from 0 to 2π.

Separation of variables in polar coordinates

Let Ψ(ρ, φ) = f(ρ)χ(φ), then
[

ρ2

f(ρ)
∂2f(ρ)

∂ρ2
+

ρ

f(ρ)
∂f(ρ)

∂ρ
+ 2 M ρ2

(
E − 1

2
k ρ2

)]
+

1
χ(φ)

∂2χ(φ)
∂φ2

= 0, (B.6)

provided that neither f(ρ) nor χ(φ) vanishes.

The angular wavefunction χ(φ) is the solution of

∂2χ(φ)
∂φ2

= −C χ(φ). (B.7)
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Furthermore, we need to put periodic constraint on φ: χ(φ + 2π) = χ(φ). Therefore, a

solution of the angular differential equation is

χ(φ) = A ei m φ, (B.8)

with m2 = C and m has to be integer due to the periodicity of χ. The constant A is an

arbitrary nonzero constant.

Radial wavefunction

With the solution for the angular part of the wavefunction in Eqn.(B8), the equation for

the radial part becomes
[

ρ2

f(ρ)
∂2f(ρ)

∂ρ2
+

ρ

f(ρ)
∂f(ρ)

∂ρ
+ 2 M ρ2

(
E − 1

2
k ρ2

)]
−m2 = 0, (B.9)

or equivalently

∂2f(ρ)
∂ρ2

+
1
ρ

∂f(ρ)
∂ρ

+ 2 M

(
E − 1

2
k ρ2

)
f(ρ)− m2

ρ2
f(ρ) = 0. (B.10)

Anticipating that there will be discrete energy levels, we can define these levels by

En = (2n + |m|+ 1)Ω. (B.11)

Then the radial differential equation can be written as

∂2f(ρ)
∂ρ2

+
1
ρ

∂f(ρ)
∂ρ

+ (4n + 2 |m|+ 2)M Ω f(ρ)−M2 Ω2 ρ2 f(ρ)− m2

ρ2
f(ρ) = 0 (B.12)

Dividing both sides by M Ω in the equation above, we obtain

∂2f(ρ)
MΩ∂ρ2

+
1

MΩρ

∂f(ρ)
∂ρ

+ (4n + 2|m|+ 2)f(ρ)−MΩρ2f(ρ)− m2

MΩρ2
f(ρ) = 0.(B.13)

Defining t =
√

M Ω ρ, we obtain

∂2f(t)
∂t2

+
1
t

∂f(t)
∂t

+ (4 n + 2 |m|+ 2) f(t)− t2 f(t)− m2

t2
f(t) = 0. (B.14)

Next, if we define

f(t) = t−
1
2 h(t), (B.15)
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then, we have

f ′′(t) +
1
t
f ′(t) =

1
4
t−

5
2 h(t) + t−

1
2 h′′(t). (B.16)

In this notation, the differential equation Eqn. (B.14) can be rewritten as

∂2h(t)
∂t2

+ (4n + 2 |m|+ 2)h(t)− t2 h(t) +
1− 4m2

4 t2
h(t) = 0. (B.17)

The solution of Eq. (B.14) is

f(t) = t−
1
2 h(t) = N e−t2/2 t|m| L|m|n (t2), (B.18)

or in terms of ρ = t/
√

M Ω

f(ρ) = N e−M Ω ρ2/2
(√

M Ω ρ
)|m|

L|m|n (M Ω ρ2). (B.19)

Orthonormality

The wavefunctions Ψn,m(ρ, φ) = fn,m(ρ)χm(φ) are normalized according to:

〈nm|n′m′〉 =
∫ ∞

0

∫ 2π

0
ρ dρ dφ Ψn,m(ρ, φ)∗ Ψn′,m′(ρ, φ) = δn,n′ δm,m′ . (B.20)

After the separation into the radial wavefunction

fn,m(ρ) = N e−M Ω ρ2/2
(√

M Ω ρ
)|m|

L|m|n (M Ω ρ2), (B.21)

and the angular wavefunction

χm(φ) =
1√
2π

ei m φ, (B.22)

it is straightforward to prove orthogonality as follows. First for the angular wavefunction, we

have

∫ 2π

0
dφ χm(φ)∗ χm′(φ) = δm,m′ . (B.23)

Next we know already that the angular wavefunctions are orthogonal for m 6= m′. Therefore

we can safely take those quantum numbers equal for the radial wavefunction

∫ ∞

0
ρ dρfn,m(ρ)∗fn′,m(ρ)
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=
∫ ∞

0
ρ dρN N ∗e−MΩρ2

(
MΩρ2

)|m|
L
|m|
n′ (MΩρ2)L|m|n (MΩρ2)∗

=
N N ∗

2M Ω

∫ ∞

0
ds e−s s|m| L|m|n′ (s) L|m|n (s)∗

=
N N ∗

2M Ω
(|m|+ n)!

n!
δn,n′ . (B.24)

Thus the properly normalized wavefunctions Ψn,m(ρ, φ) = fn,m(ρ)χm(φ) are given by

fn,m(ρ) =
√

2M Ω

√
n!

(n + |m|)! e−M Ω ρ2/2
(√

M Ω ρ
)|m|

L|m|n (M Ω ρ2), (B.25)

χm(φ) =
1√
2π

ei m φ. (B.26)

Momentum space

Notice the symmmetry of the harmonic oscillator wave equation
[
p2

x + p2
y

M Ω
+ (M Ω) (x2 + y2)

]
Ψ =

2E

Ω
Ψ, (B.27)

under the transformation p/
√

MΩ ←→ x
√

MΩ. Thus the solution of the 2-d harmonic oscil-

lator in momentum space can be written as Ψ̃n,m(q, θ) = f̃n,m(q)χm(θ) with q the conjugate

of ρ, θ the conjugate of φ (i.e. angle in momentum space), and

f̃n,m(q) = Ñ e−q2/(2 M Ω)
(

q√
M Ω

)|m|
L|m|n (q2/(M Ω)). (B.28)

The normalization of the momentum-space wavefunction is fixed by an orthonormality

condition similar to Eqn. (B.20). But in momentum space there is an extra factor 1/(2π)2 for

the integration measure

〈nm|n′m′〉 =
∫

d2p

(2π)2
Ψ̃nm(p)∗ Ψ̃n′m′(p) = δnn′ δmm′ . (B.29)

Using the same angular wavefunction

χm(θ) =
1√
2π

ei m θ (B.30)

as in coordinate space, the normalization factor Ñ follows from

∫ ∞

0

q dq

(2π)2
f̃n,m(q)∗ f̃n′,m(q)
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=
∫ ∞

0

q dq

(2π)2
Ñ Ñ ∗ e−q2/(M Ω)

(
q2

M Ω

)|m|
L
|m|
n′ (q2/(M Ω)) L|m|n (q2/(M Ω))∗

= Ñ Ñ ∗ M Ω
2 (2π)2

∫ ∞

0
ds e−s s|m| L|m|n′ (s) L|m|n (s)∗

= Ñ Ñ ∗ M Ω
2 (2π)2

(|m|+ n)!
n!

δn,n′ . (B.31)

Thus the properly normalized radial wavefunction in momentum space is

f̃n,m(q) = 2π
√

2
M Ω

√
n!

(|m|+ n)!
e−q2/(2 M Ω)

(
q√
M Ω

)|m|
L|m|n (q2/(M Ω)) (B.32)

With the coordinate-space wavefunction given by Eqs. (B.25) and (B.26), we have

Ψ̃n,m(q, θ)

=

√
2M Ω

2π

√
n!

(n + |m|)!
∫

d2xei ~p·~xe−MΩρ2/2
(√

MΩρ
)|m|

L|m|n (MΩρ2)eimφ. (B.33)
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