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Chapter 1

Introduction and Background

1.1 Introduction

The VIX index measures the one-month risk-neutral forward volatility of the S&P500

(SPX) index. While Lévy processes, such as the CGMY process, can price options on

the underlying stock or index for a given maturity, they implicitly assume a constant

forward volatility due to stationarity. This makes them unsuitable for pricing options

on the VIX. Options on VIX can also be used to replicate the variance swap contract,

which pays the realized variance in exchange for a �xed coupon. The same contract

can also be replicated using options on the SPX. These two replicating portfolios

show di¤erent prices for the variance swap contract, thus introducing the possibility

of arbitrage. This arbitrage can be avoided by using a consistent model for pricing

options on the VIX and the SPX. We propose such a model within a one dimen-

sional Markovian framework for pricing VIX and SPX options. We introduce space

dependence of volatility by scaling the CGMY process with leverage function. Space
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scaling introduces uncertainty in volatility which allows us to price options on VIX.

The resultant process can consistently price options on SPX and VIX of a given ma-

turity. We also perform surface calibrations of options on the two indices separately.

We explore the properties of the implied distribution of the SPX from both indices

and conclude that the VIX index under-weighs small jumps as compared to large

jumps as well as skewness of the SPX index . The main di¢ culty we encounter is

in the calculation of the (sti¤ness) matrix used in the computation of option prices.

We devise numerical schemes to minimize the computational burden arising from this

issue. Another di¢ culty was in calculating the volatility (VIX) function as a function

of the stock price since no closed form was available. We worked around this issue by

implementing a two stage numerical scheme in which we calculated the VIX function

numerically in the �rst stage and priced options on it in the second stage.

There has been signi�cant growth in the use of �nancial derivatives in the last

three decades. The initial growth was led by plain vanilla derivative contracts where

the payo¤s were based on the level of the underlying stock price (or an index) at some

time in the future. However, over time, more exotic contracts became very popular

as well. Exotic contracts are contingent claims on the realized path of the underlying

asset. These contracts can be customized to o¤er a play on any speci�c aspect of the

stock price process. These derivative contracts are either traded over an exchange or

over the counter (OTC). According to a survey by the Bank of International Settle-

ments in 2007 [4], the derivative notionals outstanding in worldwide OTC markets

are over 500 trillion dollars and over 300 trillion dollars for exchange traded deriva-

tives (ETD) . Given the amount of activity in this area, there has been an increasing
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demand for processes which can not only calibrate to the current market prices of

exchange traded derivatives but also give realistic prices for more exotic derivatives.

This basically translates into a demand for pricing processes with more realistic as-

sumptions on transition probabilities and higher moments of marginal distributions

of the underlying asset.

Louis Bachelier [1] sowed the seeds of �nancial engineering in 1900 by describing

the distribution of stock prices as through a Gaussian distribution. This is consis-

tent with modeling the stock price process as a Brownian motion. The next major

breakthrough in option pricing came seven decades later from Black, Merton and

Scholes (BMS) [6] and [43]. The BMS model assumed that the stock return process

was one with independent and identical Gaussian increments with a constant drift.

In continuous time, the stock price dynamics can be written as:

dSt = �Stdt+ �StdWt (1.1)

Here St is the stock process, � is the drift of the process and � is the instantaneous

volatility of the stock. If r denotes the risk free interest rate, Black-Merton-Scholes

showed that vanilla European options can be priced using r; irrespective of the level

of �: See Musiela & Rutkowski [45] and Bjork [8] for a detailed description of the

BMS and the Bachelier models. Harrison & Kreps [29] and Harrison & Pliska [30]

further showed that the absence of arbitrage is equivalent to the existence of a risk

neutral probability measure under which the discounted asset prices are martingales.

See Delbaen and Schachermayer [20] for more details.
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While their work heralded the beginning of modern option pricing theory, the

de�ciencies of their model soon became increasingly clear. These de�ciencies are very

well documented in the �nancial literature, for instance, in the survey by Bates [5] and

Bakshi, Cao and Chen [2]. Their assumptions of constant volatility and symmetric

return distributions have been shown to be inconsistent with the market data. See

Hull [32] for more details. The discrepancy appears both in the statistical (historical)

returns data and in risk neutral distributions implied by option prices. This led to

the development of two classes of models. One class focussed on modeling volatility

as a stochastic process. The �rst model of this type was introduced by Heston [31].

Stochastic volatility models have been very popular and have become an industry

standard in many asset classes like �xed income, foreign exchange and commodities.

Other popular models in this class are Lewis�3=2model [36] and Hagan et. al.�s SABR

model [28]. See Fouque, Papanicolaou & Sircar [26] for a comprehensive overview of

stochastic volatility models. The other class consisted of models which jumps. The

early development of jump models was in a jump-di¤usion framework developed by

Merton [44]. A class of models emerged later where the di¤usion component was

abandoned and the stock price was modeled as a pure jump process with an in�nite

activity of small jumps in an arbitrary interval of time. The �rst such model was the

Variance Gamma (VG) process, introduced by Madan and Milne [38], and Madan

and Seneta [39]. The VG process belongs to the class of pure jump Lévy processes.

Lévy processes are processes with independent and identical increments. In their

most general form, they also have a di¤usion component. We will describe them in

greater detail below.
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The VG process was generalized by Carr, Madan and Chang [13] to allow for non

symmetric return distributions. Carr, Geman, Madan and Yor [10] later generalized

the VG process to also allow for in�nite variation of the return process. The new

process, which became known as the CGMY process [10] after the authors�initials,

has a parameter which governs the properties of �nite or in�nite variation. Being a

Lévy process, the CGMY process also has stationary and independent increments. We

will discuss the CGMY process in detail below. Other popular models in the class of

Levy processes are the Meixner process by Schoutens [51], the Generalized Hyperbolic

model by Eberlein, Keller & Prause [24], Barndor¤-Nielen�s Normal Inverse Gaussian

model [3] and Kou�s Jump-Di¤usion model [34].

1.2 Volatility and Option Pricing

Assumptions on the second moment or variance of the stock price dynamics plays

the most critical role in derivative pricing. This is because under the no-arbitrage

assumption, the drift of the stock price process must equal the risk free rate under

a change of measure. Thus, �uctuations in stock price volatility have the highest

e¤ect on the prices of derivatives. It is no surprise, therefore, that a need was felt in

the markets to hedge volatility exposure. This led to the development of products

like variance swaps, options on variance and volatility, and to some extent volatility

swaps. See Javaheri [33] for a discussion on volatility hedging strategies.

However, pricing derivatives on volatility and the underlying index simultaneously

is non-trivial. Any model for pricing volatility derivatives has to be consistent with the
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underlying stock price process to avoid arbitrage. At the same time, the model has to

capture features of volatility dynamics observed in the market. One such feature is the

leverage e¤ect. This is based on the observation that volatility increases as the stock

prices go down and vice-versa. The leverage e¤ect has been studied extensively in the

�nancial literature. See Matacz & Potters [42], Yu [53] and Bollerslev, Litvinova &

Tauchen [9] for more details and references. Finally, the model has to be parsimonious

enough to allow for accurate and e¢ cient computation.

Stochastic volatility models usually assume a negative correlation between the

volatility and stock innovations. However, such models don�t model the leverage

e¤ect since they don�t have an explicit dependence on the level of the stock price.

Some of these models also assume that the underlying stock price process has no

jumps. This leads to underestimation of the prices of options of short maturity.

We believe that a reasonable model which captures the leverage e¤ect should

be able to capture prices of volatility derivatives in a one-dimensional framework.

However, whether there is any need to include stochastic volatility as a hidden Markov

process is a more profound question, which we will discuss in the section related to

further research.

We propose a pure jump model which satis�es all our requirements to a signi�cant

extent. The dynamics of our model are governed by a pure jump Lévy process which

is scaled by a function dependent on the underlying stock price. This scaling func-

tion captures the leverage e¤ect. It also allows us to stay within a one-dimensional

Markovian world since instantaneous volatility is modeled as a deterministic function

of underlying stock price. This puts our model within the class of parametric pure
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jump local volatility models. Local volatility models aim to calibrate option surfaces

using a one-dimensional Markov model where the volatility is modeled as a function

of the stock price and time. This approach was �rst used by Derman & Kani (see [21]

and [22]), and Dupire [23]. Carr, Geman, Madan &Yor [14] later applied this tech-

nique to pure jump models. We will show that our model allows us to simultaneously

and consistently price options on the stock and its volatility, for a given maturity.

1.3 VIX Index and Volatility Derivatives

The market for volatility derivatives had been over the counter (OTC) for a long

time. Su¢ cient demand for volatility products has moved them into the mainstream

of derivative products. Some of these volatility derivatives have even started trading

in standardized form over the exchanges. One such exchange-traded volatility product

is the VIX index. The VIX index tracks the expected one-month risk neutral volatility

of the S&P500 (SPX) index in the market. In 2004, VIX futures started trading on

the Chicago Board Options Exchange (CBOE); and in 2006, VIX options started

trading on the CBOE options exchange. The development of this market has led to

a demand for better models to calibrate VIX and SPX options simultaneously. We

show that Lévy processes, which have been successful in calibrating to SPX options,

are not suitable for pricing VIX options. We generalize the Lévy model by introducing

space dependence in the pure jump framework. Our aim is to use these models for

pricing options on VIX and SPX and then test them on market data.
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1.3.1 De�nition of the VIX Index

We start with the de�nition of the VIX index as de�ned by CBOE. We then generalize

the de�nition to be consistent with a continuous time process. The CBOE de�nes

the VIX index at time T as the market expectation of the average volatility over the

next one month, that is volatility between T and T + h; where h = 1=12 (one month,

measured in years). By market convention, the volatility is de�ned as the average

quadratic variation over a one month period under the risk neutral measure . Let ~h

be the number of days between T and T +h. The VIX index at time T; VT is de�ned

as

VT : =

r
365
~h

vuutET

"
~T+hP

t= ~T+1

x2t

#
; (1.2)

xt : = ln (St=St�1) : (1.3)

Here ~T is the number of days in T: The VIX index is quoted in annualized percent

terms. Note that the square-root is outside the expectations since it is the expected

variance that is backed out from option prices, and the volatility is reported as the

square-root of that number. The options with one month maturity on the SPX index

are used for calculating the VIX index. (see [56] for the details of the methodology).

As an example, if the VIX index is quoted as 30%, it means that the one-month

volatility implied by option prices is approximately 30%=
p
12 = 8:66%: The one

month variance backed out from option prices is :08662 = 7:55%:

We note that the VIX index is a discrete time approximation of the quadratic
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variation of the log-stock process lnSt, since it tracks the increments in the return

process, xt; once per day. We can generalize the de�nition of VIX above to measure

the expected quadratic variation over any arbitrary window of time h (not necessarily

1=12), with any arbitrary frequency (not just once per day). Let h be a window of

time, de�ne �t such that 1=�t is the sampling frequency. Then the h-period VIX

index at time T is de�ned as the T -conditional expected volatility for a period h

VT : =

r
365
~h

vuutET

"
~T+~hP

t= ~T+1

x2t

#
; where (1.4)

xt : = ln (St=St��t) :

Here ~h := h=�t and ~T := T=�t are the number of�t-intervals in h and T respectively.

This de�nition is consistent with a continuous time process in the sense that if we let

�t! 0; the VIX index will give us the expected quadratic variation of a continuous

price process, and not just its approximation. However, we will continue to assume

that �t = 1 day for the remaining part of our thesis.

1.3.2 Motivation Through The Variance Swap Arbitrage

A Variance Swap (VS) is a contract that pays the average realized variance over a

period of time in exchange for a �xed coupon ~c: The payo¤ is de�ned as

V S payoff =
t= ~TX
t=1

�
x2t
~T
365� ~c2

�
(1.5)
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Here xt is the same as in (1.2) and ~T is the maturity of the swap measured in days.

A variance swap contract can be replicated by options on the VIX index using the

methodology of Carr & Madan [16]. It can also be replicated with options on SPX

(see Carr & Madan [11]). However, the two methodologies give di¤erent prices for the

variance swap contract in the market (a visible arbitrage!). This can only be avoided

by using a model consistent with both SPX and the VIX option surfaces.

1.3.3 Derivatives on VIX

Most derivatives traded on VIX are quoted on its square-root. The most common

ones are calls and puts. A call or a put option on the square-root of VIX with

a strike price K and maturity T has a payout equal to (VT �K)+ or (K � VT )
+ ;

respectively. Note that the payo¤ depends only on the risk neutral expectations of

quadratic variance and not on the realized quadratic variance. This is because the T -

conditional expectation of the quadratic variation is known at T; as this expectation

can be backed out of option prices on SPX. This means that the VIX option payo¤

is completely determined at T: The realized variance between T and T + h does not

contribute to the payo¤.
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1.3.4 Approximation of VIX

We observe that

ex = 1 + x+
x2

2
+ o(x3);

~T+~hP
t= ~T+1

x2t � 2
~T+~hP

t= ~T+1

(ext � 1)� 2
~T+~hP

t= ~T+1

xt

~T+~hP
t= ~T+1

x2t � 2
~T+~hP

t= ~T+1

�
St
St�1

� 1
�
� 2 ln(S ~T+h) + 2 ln(S ~T ) (1.6)

We note that the error induced by truncation of the Taylor series is insigni�cant. To

put this in perspective, daily changes of stock price are of the order of 1% of the

stock price: Thus, terms of order x3 are in the order of 0:0001% per day or about

30 � 10�6 � 0:001% for the one month period. This error will converge to zero as

�t! 0 in (1.4), as the magnitude of the returns will also approach zero as �t! 0:

If the risk-free rate r is assumed to be constant, it is clear that

2
~T+~hP

t= ~T+1

ET [St=St�1 � 1] = 2
~T+~hP

t= ~T+1

ET [Et�1 [St=St�1 � 1]] (1.7)

= 2
~T+~hP

t= ~T+1

ET
�
er=365 � 1

�
= 2h

�
er=365 � 1

�
:

Thus, the price, c(r; h); of this cash�ow at T is:

c(r; h) := 2h
�
er=365 � 1

�
:
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Taking T -conditional expectations, ET [�] ; on both sides of (1.6) yields:

VT � c(r; h)� 2ET [ln(ST+h)] + 2 ln(ST ): (1.8)

We will rely on equation (1.8) heavily for pricing options on VIX. Most models for

pricing volatility derivatives use the approach by Carr and Madan [16]. They �rst

price options on variance using the log contract, which itself is priced as a portfolio of

Out of The Money (OTM) calls and puts on the underlying stock. OTM call options

are de�ned as options with strike price greater than the current stock price. OTM

puts are options with strike price less than the current stock price. The volatility

derivatives are then priced as a portfolio of options on variance.

1.3.5 Stationary processes and VIX modeling

From (1.8), we see that

VT � c(r; h)� 2ET [XT+h] + 2XT : (1.9)

If Xt follows a stationary process, then the innovation XT+h �XT is independent of

the time T: Thus, we have that

VT � c(r; h)� 2ET [XT+h �XT ]

VT � c(r; h)� 2E [Xh]

VT � constant. (1.10)
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A result more precise than (1.10) above can be arrived at by noting that the quadratic

variation of a Lévy process is also a Lévy process (see [17]) and hence is a stationary

process. The reason for keeping the above equation is that it gives a better overview

of di¤erent approaches that can be applied to model the VIX index. Essentially,

all approaches will model the increment at T; ET [XT+h �XT ] : In our approach we

assume that ET [XT+h �XT ] = f(XT ): Models based on stochastic volatility assume

that ET [XT+h �XT ] = f(v), where v is a hidden Markov process. The more general

approach would make

ET [XT+h �XT ] = f(t;XT ; v; YT ); (1.11)

which incorporates the e¤ects of time decay, stock level, stochastic volatility as well

as other hidden or observed processes, captured in YT :

The above result in (1.10) holds irrespective of the level of XT as there is no

dependence of the increments on XT due to stationarity. This shows that stationary

processes are unable to capture any uncertainty in VIX. Such processes can only value

a VIX option as its intrinsic value without attributing any time value to it. We would

ideally need a model that maintains dependency of ET [XT+h �XT ] on (T;XT ): Our

model takes a step in this direction by modeling dependence on XT :We leave out an

explicit dependence on T for reasons we will explain later in this dissertation. Our

model proposes space-dependency in a pure jump processes framework.
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1.3.6 Leverage E¤ect and VIX modeling

Since our aim is to provide a model which can price volatility derivatives, we want to

be able to capture the commonly observed features of volatility and stock returns. It

is a common observation that volatility rises as stock prices fall and vice-versa. One

possible reason for this e¤ect is the �fear-factor�- increase in uncertainly and fear if

stock prices fall. This relationship between volatility and stock-level is also known as

the leverage-e¤ect and has been widely studied in the �nancial literature. We capture

this relationship in our model through the (innovatively named!) �leverage function�

a(x); where x is the log-stock level. We model the leverage function as a bounded

quadratic function in the log-stock variable. We de�ne it formally in equation (3.5)

below. However, as we will see from the estimations, only the negative arm of the

parabola is required to capture the leverage function.
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Chapter 2

Lévy Processes

All Lévy processes are processes with in�nitely divisible distributions. These processes

have homogenous and independent increments. A Lévy process Z(t) is best charac-

terized by the Lévy-Khintchine formula which describes the characteristic function

for the marginal distributions as:

E(expiuZ(t)) = exp(iu�t� 1
2
�2u2t+ t

Z 1

�1
(eiuz � 1� iuz1fjzj�1g)k(z)dz): (2.1)

where � is the drift coe¢ cient, � is the di¤usion coe¢ cient, k(z) gives the Lévy

density (which we will de�ne and discuss in greater detail below) and 1f�g is the

indicator function. We note that if k(z) � 0; we get a di¤usion process with mean

� and variance �2: Lévy processes can be seen as a generalization of the di¤usion

process. On the other hand if the the di¤usion coe¢ cient � is zero, the resulting

process is a pure jump Lévy process. The Lévy density k(z) is assumed to have �nite
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quadratic variation, which is equivalent to the condition that

Z 1

�1
(jzj2 ^ 1)k(z)dz <1; (2.2)

where ^ is the minimum operator. If the Lévy density satis�es the following condition:

Z 1

�1
z2k(z)dz <1; (2.3)

then we can rewrite the Lévy-Khintchine formula as

E(expiuZ(t)) = exp(iu�t� 1
2
�2u2t+ t

Z 1

�1
(eiuz � 1� iuz)k(z)dz): (2.4)

If the Lévy process has �nite variation whereby
R1
�1(jzj ^ 1)k(z)dz < 1; the above

formula can be further simpli�ed to

E(expiuZ(t)) = exp(iu�t� 1
2
�2t+ t

Z 1

�1
(eiuz � 1)k(z)dz): (2.5)

For further details, see [7] and [50]. Let " > 0: A pure jump process with �nite

variation can always be approximated by a compound Poisson process with the arrival

rate

� =

Z
jzj>"

k(z)dz <1 (2.6)

and the jump density, conditional on arrival, is given by

g(z) =
k(z)1fjzj>"g

�
(2.7)
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The convergence in distribution occurs as " ! 0: When
R1
�1 k(z)dz = 1; we say

that the Lévy process has in�nite activity. This means that an in�nite number of

jumps occur in any arbitrarily small interval of time. Most pure jump Lévy processes

used in �nancial modeling are in�nite activity processes. We now describe two of the

pure jump Lévy processes used for modeling stock returns. We will start with a brief

description of the Variance Gamma process. We then describe the CGMY process

and show the relation between the VG and the CGMY processes. We will construct

our space scaled process from the CGMY process.

2.1 Variance Gamma (VG) Process

The �rst model using symmetric pure jumps to appear in the literature was the

symmetric Variance Gamma (VG) model by Madan and Seneta [39] and Madan and

Milne [38]. It is a process of in�nite activity and �nite variation. Madan, Carr and

Chang [13] later generalized the VG process to one with asymmetric jumps. They use

numerical estimations over options and daily returns data to show that this process

is better suited to describing stock price dynamics than a di¤usion based model with

no jumps. They showed that this model can be viewed as a time-changed Brownian

motion evaluated at Gamma time. They also show that the Lévy density of the VG

process is given by

k(z) =

8>><>>:
C exp(Gz)

jzj for z < 0

C exp(�Mz)
jzj for z > 0

:
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2.2 CGMY Process

The CGMY Process was introduced by Carr, Geman, Madan and Yor [10]. It is an

extension of the VG process with an extra parameter Y . This parameter controls

the activity, variation and monotonicity properties of the pure jump component. The

Lévy measure for a CGMY process is given by

v(x) =

8>><>>:
C exp(�Gjzj)

jzj1+Y for x < 0

C exp(�M jzj)
jzj1+Y for x > 0

:

We provide the result for the characteristic function of the CGMY process.

Theorem 1 The characteristic function of the CGMY process is given by

�CGMY (u; t) =

8>><>>:
exp

�
Ct�(�Y )(

�
(M � iu)Y �MY

��
�

exp
�
Ct�(�Y )

�
(G+ iu)Y �GY

�� :

Proof. For the proof, see Carr, Geman, Madan & Yor [10].

2.3 Numerical Methods in Derivative Pricing

The Black-Scholes process has closed form solutions for European Call and Put op-

tions as well as some barrier options. However for more general processes, one re-

quires numerical methods to price options. There are three main numerical approaches

used in �nance: numerical partial (integro) di¤erential equations (PDEs or PIDEs),

Monte Carlo simulations of the stochastic di¤erential equation and Fourier methods.

Processes based on di¤usion equations are generally easy to implement numerically
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using any of these methods. This is because the numerical solutions to PDEs gener-

ated by these processes are based on solving linear systems with sparse matrices. In

case of Monte Carlo simulations, the underlying process can be generated by simulat-

ing standard normal random variables which is also easy and e¢ cient to implement.

Further, one has access to closed form solutions of the characteristic function of the

stock price process which allows the use of Fourier methods.

The choice of numerical implementation is based on three main issues: the com-

plexity of the underlying derivative contract payo¤, the speed restrictions on compu-

tation (i.e. live pricing and calibration requirements) and the accuracy required. Let

us analyze these methods in the context of our problem.

2.3.1 Simulation Methods

Simulation based methods rely on being able to simulate the stock price process

through its stochastic di¤erential equation. The main advantage of simulation based

methods is that they are very versatile in pricing complex payo¤s. However, since one

may require large number of simulation paths for convergence, one has to compromise

on speed or accuracy in the process. Simulation methods become prohibitively expen-

sive when one needs to calibrate the underlying model to market prices as one would

then need to run the simulation inside a parameter optimizing iterative program to

minimize the error between model and market prices. Since this is precisely what we

aim to do with our model, we will have to rule out using a simulation scheme.
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2.3.2 Fourier Methods

The second method of pricing derivatives is through the characteristic function (Fourier

transform) of the underlying stock process. Madan and Carr [12] invented the method-

ology to obtain option prices e¢ ciently through the characteristic function of the mar-

ginal stock price distributions using Fast Fourier Transforms (FFT). This method is

robust and e¢ cient, but only works when the characteristic function is known in

closed form. In a pure jump process setting, the characteristic function is usually

computable when the increments in the stock price process do not dependent on

the level of the stock price, that is, there is no space dependence in the stock price

process. However, in our model, we do have space dependence through the leverage

function, thus don�t have a closed form formula for the characteristic function. This

comprehensively rules out using the Fourier methods.

2.3.3 Numerical Partial (Integro) Di¤erential Equations

The third method to price derivatives is through numerical PDEs or PIDEs. This

method used to be computationally intensive when the underlying process is a pure

jump Lévy process. However, recent advances in �nite element method using wavelet

compression technology devised by Matache, von Petersdor¤ and Schwab [41] , and

von Petersdor¤ and Schwab [47] have greatly increased the e¢ ciency of this method-

ology and it compares well with FFT methods. This methodology is also preferable in

cases where the characteristic function is not available in closed form. This is usually

the case whenever the transition densities of the stock price process depend on the
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level of the stock. This is the situation we will face with our proposed model.

We use Finite Element Method for solving the PIDE of the pure jump space scaled

process. Our aim in this dissertation is to show the advantages of such a model. We

do not yet focus on the e¢ ciency of our numerical solver. We do however highlight

schemes which can be used in making our solver more e¢ cient so it can be used for

real-time calibration and pricing.

2.4 Stock Price Dynamics under Lévy Processes

Our aim is to describe the stock price dynamics under our space scaled Lévy process.

Since our model is a generalization of Lévy processes, we start by describing the stock

price process under Lévy processes. For this we follow the derivation of the stock price

dynamics in Cont and Tankov [18] and Protter [49]. We assume that the stock price

follows an exponential Lévy process under the risk neutral measure Q given by

St = S0e
rt+Yt+!t: (2.8)

Here Yt is a pure jump Lévy process. We need the convexity correction term !t to

ensure that the stock has a mean growth rate of r, i.e.

EQ[St] = S0e
rt; or

! = t�1 ln(1=EQ[eYt ]):
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The dynamics of the stock price process is then given by (see [18] and [19])

dSt = (r + !)St�dt+ St�

Z 1

�1
(ez � 1� z) JY (dz; dt):

where JY (dz; dt) is the counting measure of random jumps of size between z and

z + dz in the time interval dt. For Lévy processes, the compensator of this measure

is k(z)dzdt where k(z) is the Lévy density. We de�ne

~JY (dz; dt) := JY (dz; dt)� k(z)dzdt (2.9)

to be the compensated pure jump process. We can then rewrite the above equation

as

dSt = (r + !)St�dt+ St�

Z 1

�1
(ez � 1� z) ~JY (dz; dt) (2.10)

+

Z 1

�1
(ez � 1� z) k(z)dzdt:

Since we want this process to grow at the rate r; we impose the drift condition

! +

Z 1

�1
(ez � 1� z) k(z)dz = 0: (2.11)

Let f(t; St) be the price of a contingent claim on ST with the payo¤ at time T given

by ~h(ST ): Then by an extension of Ito�s lemma for Lévy processes (see Cont and
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Voltchkova [19]), the dynamics of f(t; St) are given by

df(t; St) =
@f(t; St�)

@t
dt+

Z 1

�1
(f(t; St�e

z)� f(t; St�))dJY (dz; dt)

=
@f(t; St�)

@t
dt+ (r + !)St�

@f(t; St�)

@S
dt

+

Z 1

�1
(f(t; St�e

z)� f(t; St�)� zSt�
@f(t; St�)

@S
)d ~JY (dz; dt)

+

Z 1

�1
(f(t; St�e

z)� f(t; St�)� zSt�f(t; St�))k(z)dzdt:

We can rewrite the above equation as

df(t; St�) = �(t; St�)dt+ dMt; where

dMt =

Z 1

�1
(f(t; St�e

z)� f(t; St�)� zSt�
@f(t; St�)

@S
)d ~JY (dz; dt); and

�(t; St�) =
@f(t; St�)

@t
+ (r + !)St�

@f(t; St�)

@S

+

Z 1

�1
(f(t; St�e

z)� f(t; St�)� St�zf(t; St�))k(z)dz:

By the above condition on !;

�(t; St�) =
@f(t; St�)

@t
+ rSt�

@f(t; St�)

@S

+

Z 1

�1
(f(t; St�e

z)� f(t; St�)� St�
@f(t; St�)

@S
(ez � 1))k(z)dz:

Since asset prices grow at the mean rate of r under the risk neutral measure,
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equating �(t; St) to rf(t; St) gives the PIDE for Lévy Processes

@f(t; S)

@t
+ rS

f(t; S)

@S
+Z 1

�1
(f(t; Sez)� f(t; S)� Sf 0(t; S) (ez � 1))k(z)dz � rf(t; S) = 0; (2.12)

f(T; ST ) = ~h(ST ): (2.13)

2.5 Stock Price Process with Dividends

When the dividend rate is positive, the stock price is given by

St = S0e
(r�q)t+Yt+!t: (2.14)

This gives us the dynamics

dSt = (r � q + !)St�dt+

Z 1

�1
(ez � 1� z) ~JY (dz; dt)

+

Z 1

�1
(ez � 1� z) k(z)dzdt:

Since the martingale condition implies that the expected future stock price (along

with the accumulated dividends), i.e. Steqt discounted by the risk free rate, is the
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spot price, applying this at time zero we get

S0 = e�rtEQ
�
S0e

(r�q+!)t+Yteqt
�
; or

! = t�1 ln(1=EQ[eYt ]):

This implies the same drift condition as above

! +

Z 1

�1
(ez � 1� z) k(z)dz = 0:

Similarly, the dynamics f(t; St) of a contingent claim paying f(T; ST ) = h(ST ) at

time T; are given by

df(t; St�) = �(t; St�)dt+ dMt; where

dMt =

Z 1

�1
(f(t; St�e

z)� f(t; St�)� zSt�
@f(t; St�)

@S
)d ~JY (dz; dt); and

�(t; St�) =
@f(t; St�)

@t
+ (r � q + !)St�

@f(t; St�)

@S

+

Z 1

�1
(f(t; St�e

z)� f(t; St�)� St�z
@f(t; St�)

@S
)k(z)dz:

Again the risk neutral growth rate of r implies that �(t; St�) = r; giving us the PIDE

@f(t; S)

@t
+ (r � q)S

@f(t; S)

@S
(2.15)

+

Z 1

�1
(f(t; Sez)� f(t; S)� S

@f(t; S)

@S
(ez � 1))k(z)dz � rf(t; S) = 0:

f(T; ST ) = h(ST ):

25



We see that f(t; St) = Ste
qt satis�es the equation above since

LHS = qSt + (r � q)St +

Z 1

�1
(Ste

z � St � S(ez � 1))k(z)dz � rS = 0:

Also the Bond Price B(t; T ) = e�r(T�t) satis�es the PIDE since

LHS = rB(t; T ) +

Z 1

�1
(B(t; T )�B(t; T )� 0)k(z)dz � rB(t; T ) = 0:

Let x = ln(S): Also let f(t; S) = g(t; x) and ~h(S) = h(x). We would like to re-derive

the equation (2.15) in terms of g and x: We note that @g
@t
= @f

@t
and @g

@x
= @g

@x
=S: Using

these in (2.15) gives

@g

@t
(t; x) + (r � q)

@g

@x
(t; x)+Z 1

�1
(g(t; x+ z)� g(t; x)� @g

@x
(t; x) (ez � 1))k(z)dz � rg(t; x) = 0: (2.16)

g(t; x) = h(x) (2.17)

Rewriting the price dynamics in terms of time to maturity w(� ; x) = g(T � t; x); we

have the PIDE

@w

@�
(� ; x)� (r � q)

@w

@x
(� ; x) + rw(� ; x) (2.18)

�
Z 1

�1
(w(� ; x+ z)� w(� ; x)� @w

@x
(� ; x) (ez � 1))k(z)dz = 0; (2.19)

w(0; x) = h(x) (2.20)
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To simplify our notation, let us de�ne the two operators A and Â as

Â[w](�) : = �
Z 1

�1
(w(� ; �+ z)� w(� ; �)� @w

@x
(� ; �) (ez � 1))k(z)dz and

A[w](�) : = Â[w](� ; �)� (r � q)
@w

@x
(� ; �) + rw(� ; �)

2.6 PIDE under no drift condition

We follow the steps described in Matache, von Petersdor¤ and Schwab (see [41]) in

setting up the variational formulation. We �rst describe the case when interest rate

and dividend rate are both zero, i.e. r = 0 and q = 0. We note that in this case

A = Â: For a pure jump process, the PIDE reduces to

@g

@�
(� ; x) + Ag(� ; x) = 0; (2.21)

Ag(� ; �) := �
Z 1

�1

�
g(� ; �+ z)� g(� ; �)� @g

@�
(� ; �)(ez � 1)

�
k(z)dz;

g(0; x) = h(x):

We transform the PIDE to solve for the excess value function u(� ; x) := g(� ; x)�h(x):

This transformation gives us a PIDE with a homogenous initial condition

@u

@�
(� ; x) + Au(� ; x) = �Ah(x);

h(x) = 0:
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2.6.1 Variational Formulation

While the call option payo¤ in log-stock variable grows exponentially as x ! 1;

Matache, von Petersdor¤ and Schwab [41] show that the transformed value function

u(� ; x) decays exponentially as x ! 1: Hence, we assume that the solution u(� ; x)

as a function of x, belongs to L2(R): We consider a test function v 2 C10 (R); the

space of all in�nitely di¤erentiable functions with bounded support. De�ne the inner

product

(u; v) =

Z 1

�1
u(x)v(x)dx: (2.22)

Multiplying both sides of (2.18) with v(x) and integrating over R

(
@u

@�
(x); v(x)) + (Au(x); v(x)) = �(Ah(x); v(x)): Or (2.23)

@(u; v)=@� + ~a(u; v) = �(Ah; v); where

~a(u; v) = (Au; v):

This gives us the weak form of the PIDE under a driftless stock price process.

2.7 PIDE under positive interest and dividend rate

assumption

When interest rates are positive, the asymptote for the solution u(� ; x) is no longer

h(x) but h(x + (r � q)�)e�r� : We de�ne the excess value function as u(x) = w(x) �

h(x+ (r� q)�)e�r� . We transform the PIDE to solve for the excess value function to
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get

u(x) = w(x)� h(x+ (r � q)�)e�r� (2.24)

@u

@�
(x) + Au(x) = �Âxh(x+ r�)e�r� ;

Initial Condition : h(x) = 0:

2.7.1 Variational Formulation

Proceeding as above by multiplying a test function v 2 C10 (R) on both sides and

integrating, we get the �weak form�of the PIDE

(
@u

@�
(�); v(�)) + (Au(�); v(�)) = �(Âh(�+ r�)e�r� ; v(�)): (2.25)

@(u; v)=@� + ~a(u; v) = ( ~f� ; v); where

~a(u; v) = (Au(�); v(�))

( ~f� ; v) = �(Âh(�+ r�)e�r� ; v(�))

For Lévy processes, without loss of generality one can transform the case r > 0 to

r = 0 with the transformation ~u(� ; x) = er�u(� ; x + (r � q)�): See Matache, von

Petersdor¤ and Schwab [41] for more details. We can therefore restrict our attention

to the case with zero interest rate for Lévy processes. We will take up the case of

positive interest rates where we deal with the space-scaled Lévy processes in the next

chapter.
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2.7.2 Localization of the PIDE

We restrict the PIDE to J � 
R; where 
R = [�R;R] � R: Let AR[�] denote the

restriction of the operatorA[�] to 
R and uR denote the solution of the PIDE restricted

to 
R

(
@uR
@�

; v) + (ARuR; v(x)) = �(Ah; v)j
R : Or

@(uR; v)=@t+ aR(uR; v) = (f; v); where

uR(x) =

8>><>>:
u(x); x 2 
R

0; x 2 @
R;

aR(uR; v) = (ARuR; v); and

(f; v) = �(ARh; v):

If U(t; x) is the solution of the PIDE (2.18) and UR(t; x) is the restriction of the

solution over the solution, it has been shown in [41] that for "R = U(t; x)�UR(t; x);

there exists an � > 0 and a C = C(T ) such that for all R > 0;

k"R(� ; �)kL2(
R) +
Z �

0

k"R (s; �)kH1(
R)
ds < Ce��R

Thus the localization error is decreases exponentially as one increases the diameter

of the localized space.
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2.8 Overview of Finite Element Method for solv-

ing PIDEs

2.8.1 Discretization of the PIDE

We assume r = 0 since the case r > 0 can be transformed to r = 0 as described above.

Let HN be the space of all continuous and piecewise linear functions on a grid xj;

j = 0; 1; :::; N+1; with compact support. Let f�ig
N
i=1 be a set of �hat functions�which

span HN . We look for a solution to the PIDE in this subspace. The hat function �j

has support in [xj�1; xj+1] and attains the value 1 at xj

�j(x) =

8>><>>:
(x�xj�1)

hj
for x 2 [xj�1; xj]

(xj+1�x)
hj+1

for x 2 [xj; xj+1]
(2.26)

�0j(x) =

8>><>>:
1
hj
for x 2 [xj�1; xj]

�1
hj+1

for x 2 [xj; xj+1]

Let m denote the time-step index: m = 0; 1; :::;M ; �t = T=M . We look for the

approximate solution um(x) at time t = m�t

um(x) =

NX
i=1

umi �i(x); (2.27)
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If we let v = �i; i = 1; :::; N and substitute (2.27) in equation (2.23) we get

�t�1
NX
j=1

umj (�j; �i)��t�1
NX
j=1

um�1j (�j; �i) (2.28)

+
NX
j=1

�
�umj + (1� �)um�1j

�
~a(�j; �i) = (ft; �i) for i = 1; :::; N:

Here � 2 [0; 1]. The value of � denotes the time-stepping scheme. We get the backward

Euler for � = 1; the Crank-Nicholson for � = :5 and the forward Euler method for

� = 0: For more details, please refer to [54].

2.8.2 Matrix form of the PIDE

The above equation (2.28) can be rewritten in a matrix form as

�t�1(Mum �Mum�1) + �Aum + (1� �)Aum�1 = F; (2.29)

um = ((M +�t�A))�1
�
Mum�1 +�tF ��t(1� �)Aum�1

�
Mij := (�j; �i);

Aij := ~a(�j; �i);

F i := �(Ah; �i):

We call M the mass matrix, A the sti¤ness matrix and F the RHS vector.

E¢ cient schemes for solving the PIDE above have been constructed in Matache,

von Petersdor¤ and Schwab in [41]. These schemes rely on using a wavelet basis

instead of the basis of hat functions. This basis allows for compression of the sti¤ness
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matrix to the order of N lnN non-zero entries as compared to N2 entries on a sti¤ness

matrix based on hat functions. It also has the advantage that the sti¤ness matrix has

a condition number which does not depend on the step size of the space discretization.

This allows for the use of iterative methods for the solution without compromising

on numerical accuracy or e¢ ciency. This method is the method of choice when one

needs large degrees of freedom (greater than 100) in space. We �nd that for our

purpose, around 28degrees of freedom were su¢ cient. Hence this did not necessitate

the use of wavelet compression. This is however a powerful avenue to be explored for

computations involving greater accuracy, like the option Greeks.

2.8.3 Existence of a Solution

We give the theoretical setting for the existence of the weak solutions of the parabolic

problem (2.23). We formulate the result for r = 0 and q = 0:We give the justi�cation

why the result holds even when r > 0 and q > 0 as well. Let A : V ! V � be an

elliptical operator of order Y which maps a space V to its dual space V �: We have

the relation, known as the Gelfand triple, that

V � H � V �;

with V = ~H
Y
2 (
); H = L2(
) and V � = ~H

�Y
2 (
): Here ~Hs is a Sobolev space of

order s such that all functions in ~Hs are zero on @
: See Matache, von Petersdor¤

and Schwab [41] for more details on Sobolev spaces. Then under the assumptions of
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continuity, de�ned as

j(Au; v)V ��V j � C0 kukV kvkV ; for all u; v 2 V; for some C0; (2.30)

and coercivity, which is de�ned as

j(Au; u)j � C1 kuk2V ; for all u 2 V; for some C1; (2.31)

a solution to the parabolic problem (2.23) exists. See von Petersdor¤ and Schwab

[41] for the characterization of the solution. In the case where r > 0 and q > 0; one

can use an exponential transformation ~u=e�Ctu to transform the parabolic equation

into another equation which satis�es (2.30) and (2.31).

2.8.4 Error Estimates

Let U(t; x) be the approximate solution and u(t; x) be the true solution. For a par-

abolic equation with smooth initial conditions, it has been shown in Thomée [55],

Theorem 1.5 that,

kUm � u (T; �)kL2 �

8>><>>:
C1 (�x)

2 + C2�t for � 6= 1
2

C1 (�x)
2 + C2 (�t)

2 for � = 1
2

: (2.32)

34



Here In Theorem 5.4 of Schwab and von Petersdor¤ [47], it has been shown that for

� 6= 1
2
for smooth initial conditions that

 
k

MX
m=0

kUm � u(tm; �)k2Hs

!1=2
� C3 (�x)

2�s + C4�t: (2.33)

This result is generalized for non-smooth initial data in Schwab and von Petersdor¤

[48].
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Chapter 3

Space Scaled Lévy Processes

3.1 Introduction

We aim to introduce space dependence though scaling jumps of a Lévy process. It

has been observed that when stock prices go down, volatility rises and vice versa.

Our aim is to capture this dependence of volatility on the underlying stock. Since

Lévy processes are stationary, their volatility is independent of the level of the stock

price. At the same time, they exhibit other features like skewness and kurtosis which

are desirable in our density. We propose a model which generalizes the Lévy process

framework by introducing space dependence. The space dependence parameters allow

for di¤erent levels of dependence and include the possibility of stationary and homoge-

nous increments. We start with a Lévy process. We work with the CGMY model

for the Lévy process because of its relative ease in computing numerical solutions.

We call the resulting process CGMY Spaced-Scaled-Lévy Process (CGMYSSL). Let

Xt = log(St); where the dynamics of St are given by (2.14). We now de�ne the
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process Yt in (2.14). Let ~Yt be a Lévy process. We de�ne the scaled-Lévy process by

the relation

�Yt := a(Xt�)�~Yt; (3.1)

where a(x) is a leverage function. We assume that 0 < a(x) < � for all x for some

� > 0: The boundedness of a(x) is required to ensure that the stock price process has

�nite moments. Let z be the Lévy-jump size and ~z denote the corresponding jump

in the scaled process Yt. Let a(x) be the leverage function described above. Then

~z = a(x)z (3.2)

Let kl�evy(z) denote the Lévy density of the Lévy process ~Yt. We use it to derive the

Lévy system density of the scaled-Lévy process Yt:

kl�evy(z)dz = kl�evyssl

�
~z

a(x)

�
d~z

a(x)
: (3.3)

3.2 CGMY Space Scaled Process

We derive the Lévy-system density CGMY Space Scaled Volatility (CGMYSSL)

process from the Lévy density of the CGMY process.

kcgmyssl(z; x) = kcgmy (z=a(x)) =a(x) (3.4)

=

8>><>>:
Ca(x)Y

exp(� M
a(x)

z)

z1+Y
for z < 0

Ca(x)Y
exp(� G

a(x)
jzj)

jzj1+Y for z > 0:
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We assume that the scaling function a(x) is a capped-quadratic.

a(x) =

8>><>>:
min(�+ �(x� �)2; �)

� = min(G;M)� ";

(3.5)

where " > 0; and � > 0; � � 0 => a(x) > 0:

The cap by � is due to the integrability requirement that
R1
�1 e

zk(z; x)dz <1: Note

that � = 0 gives us a CGMY process with ~G = G=�; ~M = M=� and ~C = C�Y : In

addition, if we have � = 1; we get back the original CGMY process.

3.2.1 Scaling function: some properties

Without loss of generality, we only consider z > 0: This is because the jump activity

of both positive and negative jumps has the same functional form and our analysis

for the e¤ect of the scaling function on jump activity holds for negative jump as well,

with the parameter M replaced by G. We note that

kcgmhssl(z; x) = a(x)Y kcgmy

�
z;

M

a(x)

�
: (3.6)

When a(x) � 0, the intensity of jumps decreases. Jump sizes also decay faster as

M=a(x) is large. When a(x) > 1; the jump intensity increases and so does the

probability of large jumps due to smaller decay by M=a(x): Thus a(x) changes the

behavior of the jump sizes based on the level of the log-stock.
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3.3 PIDE for Space Scaled Processes

We derived the PIDE for the pure jump Lévy processes in (2.15) above. For a space-

scaled process, the Lévy density k(z) is replaced by the Lévy system density k(z; x)dz

of the space-scaled process to get the PIDE.

w� (� ; x) + Aw(� ; x) = 0; (3.7)

Aw(� ; x) = �(r � q)wx(� ; x) + rw(� ; x) + Âw(� ; x); where

Âw(� ; x) = �
Z 1

�1
(w(� ; x+ z)� w(� ; x)� wx(� ; x)(e

z � 1)) k(z; x)dz;

w(0; x) = h(x):

3.3.1 Variational Formulation

We note that the instantaneous dynamics of the space scaled process are dependent

on the level of the underlying stock price through the Lévy system density k(z; x).

Thus the elliptical operator A loses its space invariant property. As a consequence,

we cannot reduce the case of positive interest and dividend rates to that of zero drift.

As mentioned above, the asymptote of the price for a payo¤ function h(x) is given by

e�r�h(x+ (r� q)�): We solve for u(� ; �) = w(� ; �)� h(�+ (r� q)�)e�r� : This gives us

the PIDE for the space scaled process:

u� (� ; �) + Au(� ; �) = �e�r� Âh(�+ (r � q)�)

39



We multiply both sides with our usual test function v(x) 2 C10 and integrate to get

the variational form

(u� (x); v(x)) + (Au(x); v(x)) = �e�r� (Âh(�+ (r � q)�); v(x))

We will describe the work around this problem in order to minimize the computational

burden.

3.3.2 Discretization of the PIDE

We discretize the PIDE for space scaled processes in the same way as the PIDE for

Lévy processes. This gives us the matrix equation for the FEM solution:

���1(Mum �Mum�1) + �Aum + (1� �)Aum�1 = F� ; (3.8)

um = ((M +���A))�1
�
Mum�1 +��F ��t(1� �)Aum�1

�
Mij = (�j; �i);

Aij = ~a(�j; �i);

F i� = �(e�r� Âh(�+ (r � q)�); �i):

3.3.3 Two Stage PIDE solution for VIX

We can solve the pricing PIDE (3.7) numerically with h(x) = x from T + h to time

T to get e�rhET [ln(ST+h)] :We use the solution in (1.8) to approximate VT :We then

solve a second PIDE with h(x) = (VT �K)+ or (K � VT )
+ to get prices for calls and
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puts on the square-root of VIX. Our method of choice for solving the PIDEs is the

Finite Element Method (FEM).

3.4 Computation of the sti¤ness matrix

We compute the sti¤ness matrix Aij = (A�j; �i) in two parts. We �rst compute

A�j(x) for each j:We then compute the outer integral (A�j; �i) through quadrature.

We start by proving a lemma and a theorem which will help us in computing A�j(x).

Lemma 2 Let ~M =M=a(x); ~G = G=a(x); and 0 � Y < 2; then

(i) lim
z�!0+

z�Y
�
e�(

~M�1)z � e�
~Mz � ze�

~Mz
�
= 0

(ii) lim
z�!0+

z1�Y
�
�
�
~M � 1

�
e�(

~M�1)z + ~Me�
~Mz(1 + z)� e�

~Mz
�
= 0

(iii) lim
z�!0�

y�Y
�
e�(

~G+1)y � e�
~Gy + ye�

~Gy
�
= 0

(iv) lim
z�!0�

y1�Y
�
�
�
~G+ 1

�
e�(

~G+1)y � ~Ge�
~Gy(y � 1) + e� ~Gy

�
= 0

Proof.

(i) Using Taylor expansion we see that

lim
z�!0+

z�Y
�
e�(

~M�1)z � e�
~Mz � ze�

~Mz
�

= lim
z�!0+

z�Y 1� ( ~M � 1)z + ( ~M � 1)2z2=2

�(1� ~Mz + ~M2z2=2)� z + ~Mz2 ++o(z3))

= lim
z�!0+

((2 ~M2 � 1=2)z2�Y + o(z3
�Y
)

= 0 as Y < 2:
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(ii) By Taylor expansion

lim
z�!0+

z1�Y
�
�
�
~M � 1

�
e�(

~M�1)z + ~Me�
~Mz(1 + z)� e�

~Mz
�

= lim
z�!0+

z1�Y (�
�
~M � 1

�
+
�
~M � 1

�2
z + ( ~M � ~M2z)(1 + z)

�(1� ~Mz) + o(z2))

= lim
z�!0+

z1�Y (
�
~M � 1

�2
z � ~M2z + 2 ~Mz + o(z2))

= lim
z�!0+

z2�Y + o(z3�Y )

= 0 as Y < 2:

(iii) By Taylor expansion

lim
z�!0�

y�Y
�
e�(

~G+1)y � e�
~Gy + ye�

~Gy
�

= lim
z�!0�

y�Y (1� ( ~G+ 1)y + ( ~G+ 1)2y2=2� (1� ~Gy + ~G2y2=2)

+y(1� ~Gy) + o(y3))

= lim
z�!0�

y�Y
�
( ~G+ 1)2y2=2� ( ~G2y2=2) + y( ~Gy) + o(y3)

�
= lim

z�!0�
y2�Y =2 + o(y3�Y )

= 0 as Y < 2:
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(iv) By Taylor expansion

lim
z�!0�

y1�Y
�
�
�
~G+ 1

�
e�(

~G+1)y � ~Ge�
~Gy(y � 1) + e� ~Gy

�
= lim

z�!0�
y1�Y (�

�
~G+ 1

�
+ ( ~G+ 1)2y)� ( ~G� ~G2y)(y � 1)

+(1� ~Gy) + o(y2))

= lim
z�!0�

y2�Y + o(y3�Y )

= 0 as Y < 2:

Theorem 3 Let k(z; x) be the Lévy system density of a scaled CGMY process and

let ~M and ~G be as de�ned above. De�ne W (x) :=
R1
�1(e

z � 1� z)k(z; x)dz: Then

W (x) = Ca(x)Y
�(2� Y )

Y (Y � 1)���
~G+ 1

�Y
� ~GY�1

�
~G+ Y

�
+
�
~M � 1

�Y
� ~MY�1

�
~M � Y

��
:

Proof. We look at two cases, z > 0 and z < 0:

Case 1: z > 0

43



Consider the integral

I1(a) =

Z 1

a

(ez � 1� z)k(z; x)dz

=

Z 1

a

(ez � 1� z)Ca(x)Y e�
~Mzz�1�Y dz

= Ca(x)Y
z�Y

�Y

�
e�(

~M�1)z � e�
~Mz � ze�

~Mz
�����1
a

�
Z 1

a

Ca(x)Y
z�Y

�Y

�
�
�
~M � 1

�
e�(

~M�1)z + ~Me�
~Mz(1 + z)� e�

~Mz
�
dz

= Ca(x)Y
z�Y

�Y

�
e�(

~M�1)z � e�
~Mz � ze�

~Mz
�����1
a

+
Ca(x)Y

Y

Z 1

a

z�Y
�
�
�
~M � 1

�
e�(

~M�1)z + ~Me�
~Mz(1 + z)� e�

~Mz
�
dz

= Ca(x)Y
z�Y

�Y

�
e�(

~M�1)z � e�
~Mz � ze�

~Mz
�����1
a

+
Ca(x)Y

Y

�
z1�Y

(1� Y )

�
�
�
~M � 1

�
e�(

~M�1)z + ~Me�
~Mz(1 + z)� e�

~Mz
�����1
a

�
� Ca(x)Y

Y (1� Y )

Z 1

a

z1�Y
�
�
�
~M � 1

�2
e�(

~M�1)z � ~M2e�
~Mz(1 + z) + 2 ~Me�

~Mz

�
dz:

Letting a �! 0+ and using Lemma (2) above, we get

I1(0) = lim
a�!0+

I1(a)

=
Ca(x)Y

Y (Y � 1)

Z 1

0

z1�Y
�
�
�
~M � 1

�2
e�(

~M�1)z � ~M2e�
~Mz(1 + z) + 2 ~Me�

~Mz

�
dz

=
Ca(x)Y

Y (Y � 1)�(2� Y )
�
(M � 1)Y �MY�1 (M � Y )

�

Case 2: z < 0
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Consider the integral

I2(b) =

Z b

�1
(ez � 1� z)k(z; x)dz

=

Z b

�1
(ez � 1� z)Ca(x)Y e

~Gz(�z)�1�Y dz: Let y = �z: Then

I2(b) =

Z 1

b

(e�((
~G+1)y � e�

~Gy + ye�
~Gy)Ca(x)Y y�1�Y dy

= Ca(x)Y
y�Y

�Y

�
e(
~G+1)y � e

~Gy + ye
~Gy
�����1
b

� Ca(x)Y
Z 1

b

y�Y

�Y

�
�
�
~G+ 1

�
e�(

~G+1)y � ~Ge�
~Gz(y � 1) + e� ~Gy

�
dy

= Ca(x)Y
y�Y

�Y

�
e(
~G+1)y � e

~Gy + ye
~Gy
�����1
b

+ Ca(x)Y
y1�Y

Y (1� Y )

�
�
�
~G+ 1

�
e�(

~G+1)y � ~Ge�
~Gz(y � 1) + e� ~Gy

�����1
b

dy

� Ca(x)Y
Z 1

b

y1�Y

Y (1� Y )

��
~G+ 1

�2
e�(

~G+1)y + ~G2e�
~Gz(y � 1)� 2 ~Ge� ~Gy

�
dy:

Letting b �! 0� and again using Lemma (2) above,

I2(0) = lim
b�!0�

I2(b)

= Ca(x)Y
Z 1

b

y1�Y

Y (Y � 1)

��
~G+ 1

�2
e�(

~G+1)y + ~G2e�
~Gz(y � 1)� 2 ~Ge� ~Gy

�
dy

=
Ca(x)Y

Y (Y � 1)�(2� Y )

��
~G+ 1

�Y
� ~GY�1

�
~G+ Y

��
:

This completes the proof since W (x) = I1(0) + I2(0):

We note that since a(x) > 0, W (x) is free of non-integrable singularities.
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3.4.1 Jump Operator Applied to Hat Functions

Now that we have a closed form non-singular solution ofW (x), we look at the integral

part bAu(x) of the PIDE operator in equation (3.7) applied to the hat function �j
bA�j(x) := Z 1

�1

�
�j(x+ z)� �j(x)� �

0

j(x)(e
z � 1)

�
k(z; x)dz: (3.9)

Case 1: x 2 (xj�1; xj):

bA�j(x) = Z 1

�1

��
�j(x+ z)� �j(x)� �

0

j(x)z
��

k(z; x)dz (3.10)

��0j(x)
Z 1

�1
(ez � 1� z) k(z; x)dz

= I2 � I1:

I2 =

��
xj�1
hj

+
xj+1
hj+1

�
� x

�
1

hj
+

1

hj+1

��Z xj+1�x

xj�x
k(z; x)dz (3.11)

�
�
1

hj
+

1

hj+1

�Z xj+1�x

xj�x
zk(z; x)dz

�
�
x� xj�1

hj

�Z xj�x

�1
k(z; x)dz � 1

hj

Z xj�1�x

�1
zk(z; x)dz

�
�
x� xj�1

hj

�Z 1

xj+1�x
k(z; x)dz � 1

hj+1

Z 1

xj+1�x
zk(z; x)dz; (3.12)

I1 = ��
0

j(x)W (x); (3.13)
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Case 2: x 2 (xj; xj+1):

bA�j(x) = Z 1

�1

��
�j(x+ z)� �j(x)� �

0

j(x)z
��

k(z; x)dz (3.14)

��0j(x)
Z 1

�1
(ez � 1� z) k(z; x)dz

= I3 � I1:

I3 = x

�
1

hj
+

1

hj+1

�Z xj�x

xj�1�x
k(z; x)dz � (3.15)�

xj�1
hj

+
xj+1
hj+1

�Z xj�x

xj�1�x
k(z; x)dz +

�
1

hj
+

1

hj+1

�Z xj�x

xj�1�x
zk(z; x)dz

�
�
xj+1 � x

hj+1

�Z xj�1�x

�1
k(z; x)dz +

1

hj+1

Z xj�1�x

�1
zk(z; x)dz

�
�
xj+1 � x

hj+1

�Z 1

xj+1�x
k(z; x)dz +

1

hj+1

Z 1

xj+1�x
zk(z; x)dz:

Case 3: x < xj�1 or x > xj+1

bA�j(x) = Z 1

�1

��
�j(x+ z)� �j(x)� �

0

j(x)z
��

k(z; x)dz (3.16)

��0j(x)
Z 1

�1
(ez � 1� z) k(z; x)dz

= I4 � I1:

I4 =

�
x� xj�1

hj

�Z xj�x

xj�1�x
k(z; x)dz +

�
xj+1 � x

hj+1

�Z xj+1�x

xj�x
k(z; x)dz (3.17)

+
1

hj

Z xj�x

xj�1�x
zk(z; x)dz � 1

hj+1

Z xj+1�x

xj�x
zk(z; x)dz:
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Note that all the integrals in the cases above are of the type
R b
a
k(z; x)dz or

R b
a
zk(z; x)dz;

where a; b 2 [�1;1]: To solve these integrals, we de�ne the �rst and second tail in-

tegrals of the Lévy and Lévy-SSL densities as

K�1(z; x) : =

8>><>>:
�
R1
z
k(s; x)ds if z > 0;R z

�1 k(s; x)ds if z < 0

; (3.18)

K�2(z; x) : =

8>><>>:
�
R1
z
K�1(s; x)ds if z > 0;R z

�1K�1(s; x)ds if z < 0:

:

We note that these tail integrals are precisely the �rst and second anti-derivatives of

the Lévy density. These anti-derivatives vanish at z = �1: Given this fact, we can

easily solve the above integrals as

Z b

a

k(z; x)dz = K�1(b; x)�K�1(a; x) (3.19)Z b

a

zk(z; x)dz = bK�1(b; x)

�aK�1(a; x)� (K�2(b; x)�K�2(a; x)) :

3.4.2 Tail integrals of CGMY and CGMYSSL Lévy system

densities.

We de�ne a Matlab implementable function similar to an incomplete gamma function

by

~�(x; �;G) =

Z 1

x

z��1e�Gzdz: (3.20)
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We use this function to calculate the derivatives of the CGMY process

Theorem 4 The �rst and second tail integrals of the CGMYSSL process are given

by

K�1(z; x) =

8>>>>>><>>>>>>:
�a(x)Y C

Y
z�Y e�

~Mz � a(x)Y C ~M
Y (1�Y )z

1�Y e�
~Mz

+a(x)Y C ~M2

Y (1�Y )
~�(z; 2� Y; ~M)):

if z > 0

a(x)Y C
Y
(jzj�Y e� ~Gjzj � ~G~�(jzj ; 1� Y; ~G)) if z < 0;

(3.21)

~M = min(M=a(x); 1) and ~G = min(G=a(x); 1):

K�2(z; x) =

8>><>>:
C
~M
a(x)Y z�Y e�

~Mz + (Y= ~M + z)K�1(z; x) if z > 0

(z � Y= ~G)K�1(z; x) +
C
~G
a(x)Y (�z)�Y e ~Gz if z < 0:

Proof. Case 1: z > 0

Integrating by parts twice, we get

K�1(z; x) : = �
Z 1

z

k(s; x)ds

= �Ca(x)Y
Z 1

z

e�
~Mss�1�Y ds

= �Ca(x)Y
 
e�

~Ms s
�Y

�Y

����1
z

�
~M

Y

Z 1

z

e�Mss�Y ds

!

= �a(x)Y C
Y
z�Y e�

~Mz � a(x)Y
C ~M

Y (1� Y )
z1�Y e�

~Mz

+a(x)Y
C ~M2

Y (1� Y )

Z 1

z

s1�Y e�
~Msds

= �a(x)Y C
Y
z�Y e�

~Mz � a(x)Y
C ~M

Y (1� Y )
z1�Y e�

~Mz

+a(x)Y
C ~M2

Y (1� Y )
~�(z; 2� Y; ~M)): (3.22)
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Since Y < 2; the function ~� has an integrable singularity at zero.

By de�nition of K�1(z; x);

K�2(z; x) : = �
Z 1

z

K�1(t; x)dt

= Ca(x)Y
Z 1

t=z

Z 1

s=t

s�Y�1e�
~Msdsdt

= Ca(x)Y
Z 1

s=z

Z s

t=z

s�Y�1e�
~Msdtds

= Ca(x)Y
�Z 1

z

s�Y e�
~Msds� z

Z 1

s

e�Mss�Y ds

�
= Ca(x)Y

 
s�Y

e�
~Ms

� ~M

�����
1

z

� Y
~M

Z 1

z

s�Y�1e�
~Msds+ zK�1(z; x)

!

=
C
~M
a(x)Y z�Y e�

~Mz +
Y
~M
K�1(z; x) + zK�1(z; x)

=
C
~M
a(x)Y z�Y e�

~Mz +

�
Y
~M
+ z

�
K�1(z; x): (3.23)

Case 2: z < 0

K�1(z; x) : =

Z z

�1
k(s; x)ds

= Ca(x)Y
Z z

�1
e
~Gs(�s)�1�Y ds

=

Z 1

�z
e�

~Gtt�1�Y dt

= �K�1(�z; x) (3.24)

By case 1,

K�1(z; x) = a(x)Y
C

Y
(�z)�Y e ~Gz + a(x)Y

C ~G

Y (1� Y )
(�z)1�Y e ~Gz

�a(x)Y C ~G2

Y (1� Y )
~�(�z; 2� Y; ~G)):
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For K�2(z; x)

K�2(z; x) : =

Z z

�1
K�1(t; x)dt

�
Z z

�1
K�1(�t; x)dt

= �
Z 1

�z
K�1(s; x)ds

=
C
~G
a(x)Y (�z)�Y e ~Gz +

�
Y
~G
� z

�
K�1(�z; x)

C
~G
a(x)Y (�z)�Y e ~Gz +

�
z � Y

~G

�
K�1(z; x): (3.25)

The last step follows from eqn (3.24).

3.5 RHS Vector for the Linear Equation

3.5.1 RHS function for call option payo¤

We need the RHS Fi(t) = �(e�rtÂh(x+ (r� q)t); �i(x)) for our FEM algorithm. We

show that the RHS can be reduced to a simple form where the formulae and methods

derived to calculate the sti¤ness matrix can be e¢ ciently applied for calculations.

Lemma 5 De�ne  (�;K; r; q; �) := Âh(�+(r�q)� ;K); for h(x;K) = (exp(x)�K)+ :

Here Â is the pure jump operator de�ned above. Let r = 0 and q = 0. Then

51



 (x;K; 0; 0; �) for the CGMYSSL process is given by

 (x;K; 0; 0; �) =

8>>>>>>>>>><>>>>>>>>>>:

exK�1(lnK � x;M=a(x)� 1)

�KK�1(lnK � x;M=a(x)) when x < lnK

exK�1 (lnK � x;G=a(x) + 1)

�KK�1 (lnK � x;G=a(x)) when x > lnK

Proof. Case 1: x < lnK

In this case, h(x) = 0 and h0(x) = 0: Let ~M =M=a(x) and ~G = G=a(x): Then

 (x;K; 0; 0; �) := Âh(x;K)

= �
Z 1

�1

�
h(x+ z)� h(x)� (ez � 1)h0(x)

�
k(z; x)dz

= �
Z 1

lnK�x

�
ex+z �K

�
k(z; x)dz

= �
Z 1

lnK�x

�
ex+z �K

�
Ca(x)Y e�Mz=a(x)z�1�Y dz

= �exCa(x)Y
Z 1

lnK�x
e�(

~M�1)zz�1�Y dz

+KCa(x)Y
Z 1

lnK�x
e�

~Mzz�1�Y dz

= exK�1(lnK � x; ~M � 1)�KK�1(lnK � x; ~M):

Case 2: x > lnK
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In this case, h(x) = ex �K and h0(x) = ex:

 (x;K; 0; 0; �) := Âh(x;K)

�
Z 1

�1

�
h(x+ z)� h(x)� (ez � 1)h0(x)

�
k(z; x)dz

=

Z lnK�x

�1

Z 0

lnK�x

Z 1

0

�
h(x+ z)� h(x)� (ez � 1)h0(x)

�
k(z; x)dz:

=

Z lnK�x

�1
(0� (ex �K)� (ez � 1)ex) k(z; x)dz

+

Z 0

lnK�x

Z 1

0

��
ex+z �K

�
� (ex �K)� (ez � 1)ex

�
k(z; x)dz

=

Z lnK�x

�1

�
ex+z �K

�
Ca(x)Y eGz=a(x)(�z)�1�Y dz

= exCa(x)Y
Z lnK�x

�1
e(G=a(x)+1)z(�z)�1�Y dz

�KCa(x)Y
Z lnK�x

�1
eGz=a(x)(�z)�1�Y dz

= exK�1

�
lnK � x;

G

a(x)
+ 1

�
�KK�1

�
lnK � x;

G

a(x)

�
:

Lemma 6 Let r > 0 and q > 0. Then for the  (x;K; r; q; �) is given by

 (x;K; r; q) = e�qt (x;K; 0; 0)
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Proof.

h(x+ (r � q)� ;K): =
�
ex+(r�q)� �K

�+
= e(r�q)�

�
ex �Ke�(r�q)�

�+
= e(r�q)�h(x;Ke�(r�q)� ): Now

 (x; r) = �
Z 1

�1
(h(x+ (r � q)� + z;K)� h(x+ (r � q)� ;K)

�(ez � 1)h0(x+ (r � q)� ;K))k(z; x)dz

= �e(r�q)�
Z 1

�1
(h(x+ z;Ke�(r�q)� )� h(x;Ke�(r�q)� )

�(ez � 1)h0(x;Ke�(r�q)� ))k(z; x)dz

= e(r�q)� Âh(x;Ke�(r�q)� ):

These two lemmas directly give us the following theorem:

Theorem 7 Let r > 0: The RHS Fi(�) = �(e�rtÂh(x + (r � q)�); �i(x)) for the

CGMY process is given by

Fi(t) = (e
�qtÂ0h(x;Ke

�(r�q)t); �i(x)):

This theorem is very useful in simplifying the generation of the time dependent

RHS. Now we can get the RHS simply by using the formulae for r = 0; applied to a

payo¤ function with a di¤erent strike.
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3.5.2 RHS for log payo¤

Theorem 8 Let  (x; r; q; �) be de�ned as above for h(x) = x, where x = lnS. Then

the RHS function Fi(�) = �(e�r� (x; r; q; �); �i(x)) is given by

Fi(�) = �(e�r�W (x); �i(x)):

Proof.

 (x; r; q; �) = Âh(x+ (r � q)�)

= �
Z 1

�1
(h(x+ (r � q)� + z)� h(x+ (r � q)�)

�(ez � 1)h0(x+ (r � q)�))k(z; x)dz

= �
Z 1

�1
((x+ (r � q)� + z � (x+ (r � q)�)� (ez � 1)) k(z; x)dz

=

Z 1

�1
(ez � 1� z) k(z; x)dz

= W (x):

The result follows directly from the above equality.
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3.5.3 RHS for derivatives of VIX

Theorem 9 Let  (x; r; q; �) be de�ned as above for h(x) =
PN

j=1 �j�j(x): Then the

RHS function Fi(�) = �(e�r� (x; r; q; �); �i(x)) is given by

e�r�
NX
j=1

�j(Â�j(x); �i(x)); (3.26)

where �i = h(xj + (r � q)�):

Proof.

 (x; r; q; �) = Âh(x+ (r � q)�)

= �
Z 1

�1
(h(x+ (r � q)� + z)� h(x+ (r � q)�)

�(ez � 1)h0(x+ (r � q)�))k(z; x)dz

= �
Z 1

�1

NX
j=1

�j�j(x+ (r � q)� + z)k(z; x)dz

�
Z 1

�1

NX
j=1

�j�j(x+ (r � q)�)k(z; x)dz

�
Z 1

�1
(ez � 1)

NX
j=1

�j�
0

j(x+ (r � q)�)k(z; x)dz

= �
Z 1

�1

NX
j=1

�j

�
�j(x+ z)� �j(x)� (ez � 1)�

0

j(x)
�
k(z; x)dz:

= �
NX
j=1

�jÂ�j(x):

Here we note that �j = h(xj): Since h(x) is a piece-wise linear function, its translation

by (r� q)� is also a piece-wise linear function with coe¢ cients �i = h(xj + (r� q)�):
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Thus

Fi(�) = �(e�r� (x; r; q; �); �i(x))

= e�r�

 
NX
j=1

�jÂ�j(x); �i(x)

!

= e�r�
NX
j=1

�j(Â�j(x); �i(x)):

Like the above results, this result simpli�es the RHS computation for the second

stage of the VIX PIDE. Since the VIX index is computed as a piece-wise linear

function, the above result applies. We note that the inner product (Â�j(x); �i(x))

is already calculated for the jump component of the sti¤ness matrix. Thus the RHS

computation in this case boils down to a matrix-vector multiplication of the sti¤ness

matrix and the coe¢ cient vector � =
�
�j
	
:

3.6 Geometric Quadrature and Outer Integration

While we could �nd closed form formulae of the jump operator applied to that hat

functions, we need to compute another outer integral (�i(x); A�j(x)) to get the sti¤-

ness matrix of our �nite element scheme. However, we note that the function A�j(x)

is singular at three points, xj�1;xj and xj+1: We note that there is no closed form

solution of the outer integral because of the functional form of A�j(x). Our aim

was to come up with a good numerical scheme to calculate this outer integral which

can integrate near singularities. A bene�t of a numerical scheme is that it is easily
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portable to another Lévy process. We chose the methodology formulated in Schwab

[52] for numerical quadrature of integrals near singularity.

To understand the main idea, assume that we have to integrate a continuous in-

tegral which contains a singularity at the right end point. We subdivide the integral

into left and right sub intervals such that the length of the singular subinterval (in-

terval containing the singularity) to the non-singular subinterval is close to 0, say :1.

We then use regular Gaussian quadrature on the left subinterval with n points (we

use n = 15). For the right subinterval, since it contains the singularity, we further

subdivide it into left and right subintervals such that the new left subinterval is sin-

gularity free and the new right interval contains the singularity at the right end point.

In other words, we repeat the same subdivision scheme on the right subinterval which

contains the singularity at each iteration. One continues to apply Gaussian scheme

with n = q(l) points, with l being the level of iterations for some function q. One can

continue this scheme for a �xed number of iterations or adaptively, until convergence

is reached up to a tolerance level. We choose the later scheme and observe that we

rarely go beyond the �fth or sixth level of subdivision. The convergence result in

Schwab shows that

Theorem 10 Let f be an integrable function over an interval 
; such that f contains

an integrable singularity on @
: Then for every geometric ratio �; 0 < � < 1 and a

linear degree vector p

pj = max f2; bj�c+ 1g 2 < j < n+ 1

58



with slope � > �; for some �; there exist constants b; c > 0 independent of N such

that the convergence of the quadrature scheme Qn;p� is exponential, that is,

����Z



f(x)dx�Qn;p� f

���� � c exp(�bn1=3):

Proof. For a proof, see Theorem 4.1 in Schwab [52].
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Chapter 4

Numerical Implementation and

Results

4.1 Data on VIX and SPX options

We use 70 days of available data on SPX and VIX options from August 22, 2007 to

November 29,2007. The SPX data gives option prices for SPX for di¤erent maturities

ranging from one month to one year, along with the applicable interest and dividend

rates for each maturity. We observe that the applicable interest rate is not constant

across maturities in the data which is consistent with the observations in the market.

Since our PIDE assumes constant interest rates, we work around the interest rate

term structure by solving a di¤erent PIDE for each maturity. Since the sti¤ness

matrix related to the jump component does not depend on the interest or dividend

rates, we only need to compute it once for option prices on a given day. We calibrate

our model to out-of-the-money (OTM) options since they are the most liquid. We
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also convert the OTM VIX options into in-the-money (ITM) options using put-call

parity. The VIX forward prices are provided in the dataset.

4.2 Overview of the Numerical Scheme

Our numerical implementation scheme has two parts. The �rst part relates to the

computation of option prices on SPX and VIX. The second part relates to the cali-

bration algorithm used to calibrate the parameters to the market data on SPX and

VIX options. Let us discuss both these parts brie�y.

4.2.1 Stage I: Calculation of Option Prices

We have di¤erent algorithms for calculating options on SPX and VIX. Let us describe

both of them brie�y. We start with options on the VIX index

VIX Option Price Calculation

Part (i): For the VIX option prices, we start with a strike price K and a maturity T .

We choose a spatial grid vector in log-stock prices. For this grid vector, we compute

the mass matrix, the sti¤ness matrix (see section 3.4) and the RHS function F (see

3.5) for the payo¤ equal to the log of the stock price (h(x) := ln(S)). We then solve

a sequence of matrix equations (3.8) to get the price of the log contract. We plug

in this price in equation (1.8) to get the VIX function VT (x) as a function of the log

stock variable x:

Part (ii): We �rst truncate the function VT (x) at the boundaries to minimize the

61



numerical error coming from the boundaries. We take the function VT (x) obtained in

Part (i) above and use it to compute the VIX call option payo¤h(x) := (VT (x)�K)+

or the VIX put option payo¤ h(x) := (K � VT (x))
+ : We are now ready to run a

second PIDE. We compute the RHS for this new PIDE for the new payo¤ function

h(x) := (VT (x)�K)+ or h(x) := (K � VT )
+ (see section 3.4). We use the same

sti¤ness and mass matrices that we calculated in Part (i). We now solve a series of

matrix equations (3.8) for the new RHS to obtain the price of VIX options.

SPX Option Price Calculation

This algorithm is simpler than the one for calculating VIX options. We compute the

sti¤ness matrix (see section 3.4) and the RHS function F (see 3.5) for the call option

payo¤ h(x) := (ex �K)+ : We solve the matrix equations (3.8) to obtain call option

prices. We price put options using the put call parity

CP � PP = Se�qT �Ke�rT ;

where CP is the call price, PP is the put price and the other variables are as de�ned

above.

4.2.2 Stage II: Model Calibration to Market Prices

We use the option prices computed in Stage I above for di¤erent strikes and maturi-

ties in the Matlab optimization function �fminunc�to minimize the mean square error

between the model and market prices. We use a tolerance setting of 1e�6 for the
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matlab parameters TolX and TolFun. We run three di¤erent kinds of calibrations

which are described in detail below. Each calibration took about 3-4 hours and

around 600 iterations. We realize that this is quite slow for a real-time implementa-

tion. However, we note that all the code was written in Matlab and can be easily be

made very e¢ cient by coding in C or C++.

4.2.3 General Setting for Numerical Calculations

We perform three di¤erent types of calibrations. We �rst calibrate our model to

SPX surface of option prices and also to VIX surface separately. We also do a joint

calibration of options on SPX and VIX for a given maturity on a given day. We

provide details of our estimation results below. Since the VIX option maturities

don�t always coincide with the SPX option maturities, we �rst use a CGMY self-

decomposable model (see [10], [15] and [25]) to parametrize the SPX option surface.

We then extract SPX option prices to match VIX maturities.

We used 28 degrees of freedom in the PIDE for SPX. The number of degrees of

freedom was based on our numerical experiments with di¤erent grid sizes. We wanted

to optimize the computational speeds without introducing signi�cant errors. We used

a uniform grid in stock with a range from $600 to $2500: The number of SPX options

ranged from 200 to 250 for di¤erent days and the number of VIX options ranged

from 50 to 100:We eliminated option prices with prices less than :00075S0; to remove

illiquid options. We used 6 points for Gaussian quadrature on intervals containing

singularity and 15 points for quadrature over other intervals. We use the geometric
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ratio for re�nement equal to 0:1.

For SPX options, we use 5 time steps for all options. Thus options with longer

maturity have bigger time steps. We did this to obtain reasonable computation

speeds. Since the initial function has a singularity at the log-strike, we use backward

Euler (BE) method for the �rst two steps to have better accuracy near the singularity.

We use Crank-Nicholson scheme for the remaining time steps for faster convergence.

Since this changes the LHS matrix, this would normally force us to compute the LU

decomposition twice. However, if we make the BE time-steps half the size of the CN

time-steps, the LHS matrices remain the same for the BE and CN time steps, thus

avoiding the extra LU decomposition.

For VIX Options, we �rst compute the price of the log contract with 36 degrees

of freedom. We use the solution to get VIX index function. We then ignore the three

outermost values of VIX function on both sides to avoid errors on the boundary. This

reduces our degrees of freedom to 30.

Since there are no singularities in the linear payo¤ function, we use the CN scheme

for faster convergence. We use the log contract solution to generate the payo¤ func-

tions for options on VIX as described above. We then use CN scheme again with 5

time steps to get the price of options on VIX.

4.3 Reduction in Independent Parameters

We note that even though our model is speci�ed in terms of seven parameters, four

CGMY parameters and three scaling parameters, we only have six degrees of freedom.
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To see why this is the case, assume without loss of generality that z > 0: Then

kcgmyssl(z; x) = C
�
�+ �(x� �)2

�Y
exp

�
� M

(�+ �(x� �)2)
z

�
z�1�Y (4.1)

= C�Y
�
�

�
+ (x� �)2

�Y
e

 
� M

�(��+(x��)2)
z

!
z�1�Y

Let ~C = C�Y ; ~G = G
�
; ~M = M

�
; Y; ~� = �

�
and �: In our calibrations, we freeze C = 1

to estimate the six degrees of freedom. We report the other parameters G;M; Y; �; �

and �:

4.4 Calibration Results

4.4.1 CGMY performance

While we know that time homogenous models are unsuitable for pricing options on

VIX as the volatility of volatility in these models is constant, we still calibrate the

CGMY model to benchmark the performance of our space-dependent pure jump

model. We perform a joint estimation of the SPX and VIX marginal distributions for

the same day that was randomly selected above. We report the parameters and the

errors for three option maturities in 4.1 below.

We observe that the errors are fairly high for both short and medium term matu-

rities. This result supports our theoretical argument that the CGMY model cannot

price the time value of the VIX index. We do the above calibration solely to bench-

mark the performance of our model.
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Date Maturity C G M Y errspx errvix
10/24/07 12/19/07 0.21 4.40 21.31 0.93 11.08% 12.10%
10/24/07 1/16/08 0.71 6.76 23.94 0.58 8.89% 12.94%
10/24/07 3/19/08 0.50 5.34 26.42 0.62 10.26% 16.08%

Table 4.1: This table show the performance of the CGMY model in simultaneously
pricing VIX and SPX options of a given maturity. We chose options with three
di¤ernt maturities between one month and one year from the market data as of
a randomly selected day (10/24/2007) from our dataset. We then calibrated the
CGMY parameters to these option prices. We see signi�cant errors in pricing both
SPX and VIX options based on the estimated parameters. While a poor performance
is expected of a Lévy process as discussed in the �rst chapter, we do this calibration
solely to benchmark the performance of our space scaled model. The joint estimation
results of the space scaled model are provided in the next section.

4.4.2 Joint Calibration of SPX and VIX

Our purpose in implementing this model is to see how far a one-dimensional Markov

model can go in pricing options on SPX and its expected future volatility, VIX. To

see this, we calibrate our model to options on SPX and VIX simultaneously for all

strikes and a single maturity on a given day. We follow Eberlein and Madan [25] by

parametrizing the SPX option surface using the CGMY Self-Decomposable model.

We then extract the vector of SPX option prices of all OTM strikes for the same

maturities as the ones available in the VIX surface and optimize our model against

these two option price vectors (SPX and VIX). See the Tables 4.2, 4.3, 4.4, 4.5, 4.6

below for the estimated parameters of our model. We also report the errors in terms of

Average Percentage Errors (APEs), which is de�ned as the sum of absolute deviations

of the model prices vs. the market prices divided by the sum of market prices. We use

this metric since it places higher weights on errors in option prices near ATM strikes as

compared to OTM strikes. One estimation was performed for each option maturity.
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Since each day has options of multiple maturities, we perform the estimations for

only �ve di¤erent days in our dataset. We chose the four days on which we got the

best and worst APEs upon calibration to the SPX (11/21/07 and 10/09/07) and VIX

option surfaces (11/20/07 and 09/27/07). These calibrations, which are described

in greater detail in Sections 4.4.3 and 4.4.4, are separate calibrations of each surface

(not to be confused with the joint calibration reported in this section). The �fth day

(10/24/07) was chosen randomly from the dataset.

Date Mty S0 G M Y � � � errspx errvix
9/27/07 11/21/07 1,531 66.8 186.8 0.55 0.03 17.37 7.77 11.4% 3.5%
9/27/07 12/19/07 1,531 71.6 198.4 0.52 0.00 20.63 7.77 8.6% 8.7%
9/27/07 1/16/08 1,531 94.8 250.9 0.48 0.00 20.30 7.84 9.7% 6.1%
9/27/07 2/19/08 1,531 73.3 177.6 0.38 0.03 15.67 7.94 4.0% 2.9%
9/27/07 5/21/08 1,531 98.9 196.6 0.41 0.10 13.94 8.02 3.5% 5.7%

Table 4.2: This table shows the joint calibration results for the space scaled model
(CGMYSSV) based on the market prices of options on 09/27/2007. We optimized
the model separately for each option maturity. We chose �ve di¤erent dates from
the dataset for our joint calibrations. Four of the �ve days were chosen based on the
best and worst performances of the (separate) calibration of the VIX and SPX option
surfaces in terms of the APEs. The �fth day was chosen randomly from our dataset.
The estimation results of the separate VIX and SPX surface calibrations are given in
the next section. This date had the worst performance in terms of the VIX surface
calibration.

We observe that our model passes the test of joint calibration of the SPX and

VIX options of a given maturity. The estimated parameters vary across maturities.

This points to the need for a time dependency (i.e. a term structure) of parameters.

This is a possible direction for future research. We provide one such formulation in

terms of forward prices of options on stock forwards. That model can be seen as an

extension of our model expressed in terms of forward prices. In that formulation, we

will only need a term structure for the space centering parameter �: The details of
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Date Mty S0 G M Y � � � errspx errvix
10/9/07 11/21/07 1,566 43.7 138.3 0.52 0.00 19.95 7.71 13.4% 6.6%
10/9/07 12/19/07 1,566 52.7 153.9 0.55 0.00 22.58 7.71 10.0% 9.1%
10/9/07 1/16/08 1,566 58.1 203.2 0.52 0.02 18.93 7.77 10.6% 6.2%
10/9/07 2/15/08 1,566 73.5 137.3 0.49 0.00 23.59 7.76 10.6% 9.4%
10/9/07 5/21/08 1,566 107.1 130.3 0.44 0.00 21.06 7.86 7.4% 12.0%

Table 4.3: This table shows the joint calibration results for the space scaled model
(CGMYSSV) based on the market prices of options on 10/09/2007. We optimized
the model separately for each option maturity. We chose �ve di¤erent dates from
the dataset for our joint calibrations. Four of the �ve days were chosen based on the
best and worst performances of the (separate) calibration of the VIX and SPX option
surfaces in terms of the APEs. The �fth day was chosen randomly from our dataset.
The estimation results of the separate VIX and SPX surface calibrations are given in
the next section. This date had the worst performance in terms of the SPX surface
calibration.

Date Mty S0 G M Y � � � errspx errvix
10/24/07 12/19/07 1,516 14.3 57.4 0.68 0.00 5.70 7.79 7.3% 2.0%
10/24/07 1/16/08 1,516 67.2 194.4 0.51 0.02 16.83 7.85 3.9% 1.4%
10/24/07 2/15/08 1,516 77.6 187.2 0.49 0.02 16.45 7.89 3.3% 1.9%
10/24/07 3/19/08 1,516 84.5 196.6 0.48 0.01 15.86 7.94 3.3% 2.9%
10/24/07 5/21/08 1,516 101.8 164.0 0.45 0.01 16.09 7.97 2.9% 5.0%

Table 4.4: This table shows the joint calibration results for the space scaled model
(CGMYSSV) based on the market prices of options on 10/24/2007. We optimized
the model separately for each option maturity. We chose �ve di¤erent dates from
the dataset for our joint calibrations. Four of the �ve days were chosen based on the
best and worst performances of the (separate) calibration of the VIX and SPX option
surfaces in terms of the APEs. The �fth day was chosen randomly from our dataset.
The estimation results of the separate VIX and SPX surface calibrations are given in
the next section. This date was randomly chosen from our dataset.
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Date Mty S0 G M Y � � � errspx errvix
11/20/07 2/19/08 1,439 74.5 150.2 0.48 0.01 17.84 7.87 5.4% 2.5%
11/20/07 3/19/08 1,439 74.4 139.8 0.45 0.00 17.95 7.88 3.0% 3.5%
11/20/07 5/21/08 1,439 74.3 125.2 0.30 0.14 20.62 7.94 4.2% 7.6%

Table 4.5: This table shows the joint calibration results for the space scaled model
(CGMYSSV) based on the market prices of options on 11/20/2007. We optimized
the model separately for each option maturity. We chose �ve di¤erent dates from
the dataset for our joint calibrations. Four of the �ve days were chosen based on the
best and worst performances of the (separate) calibration of the VIX and SPX option
surfaces in terms of the APEs. The �fth day was chosen randomly from our dataset.
The estimation results of the separate VIX and SPX surface calibrations are given
in the next section. This date had the best performance in terms of the VIX surface
calibration.

Date Mty S0 G M Y � � � errspx errvix
11/21/07 2/19/08 1,417 100.5 203.2 0.56 0.00 19.71 7.84 4.2% 3.1%
11/21/07 3/19/08 1,417 91.0 159.3 0.53 0.01 18.22 7.85 2.9% 3.8%
11/21/07 5/21/08 1,417 101.9 142.5 0.43 0.01 19.25 7.91 3.2% 6.9%

Table 4.6: This table shows the joint calibration results for the space scaled model
(CGMYSSV) based on the market prices of options on 11/21/2007. We optimized
the model separately for each option maturity. We chose �ve di¤erent dates from
the dataset for our joint calibrations. Four of the �ve days were chosen based on the
best and worst performances of the (separate) calibration of the VIX and SPX option
surfaces in terms of the APEs. The �fth day was chosen randomly from our dataset.
The estimation results of the separate VIX and SPX surface calibrations are given in
the next section. This date had the best performance in terms of the SPX surface
calibration.
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that model are described in the conclusion and future research section.

4.4.3 Calibration of SPX surface

We also perform a calibration of the SPX surface across strikes and maturities. We

report the optimized parameters in Tables 4.7, 4.8 and 4.9 below. We also report the

Average Percentage Error (APE) in the last column of each table.

4.4.4 Calibration of VIX surface

We reported the optimized parameters of the VIX surface calibration in Tables 4.10,

4.11 and 4.12. The APE are given in the last column of the table. The VIX options

are quoted as annualized volatility in percent. So we scale the VIX function by
p
12

and multiply it by 100 before determining the option payo¤s. We also report a �gure

which shows what the SPX and VIX implied VIX function looks like for the randomly

selected day (October 24, 2007).

4.4.5 SPX Distribution Properties implied by VIX and SPX

Calibrations

Jump Activity

We look at the distribution of the Y parameter by SPX and VIX. As noted earlier, a

value of Y > 1 implies that the process is of in�nite variation where as Y < 1 implies

�nite variation. We observe that the VIX surface consistently implies a process of

�nite variation for most days. The SPX on the other hand implies that the stock price
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Date G M Y � � � APE
8/22/2007 0.1239 1.4442 1.3880 0.0289 0.1127 8.0765 7.11%
8/23/2007 0.1129 0.8623 1.3880 0.0068 0.1483 8.0516 6.87%
8/24/2007 0.1028 0.8405 1.3331 0.0065 0.1037 8.1803 7.36%
8/27/2007 0.1172 0.9604 1.3917 0.0161 0.1948 7.9292 6.86%
8/28/2007 0.1412 1.2384 1.4316 0.0070 0.2090 7.9829 6.32%
8/29/2007 0.1242 0.9849 1.3935 0.0057 0.1817 8.0129 6.72%
8/30/2007 0.1307 1.0727 1.4122 0.0055 0.1953 8.0029 6.58%
8/31/2007 0.1225 0.9909 1.4043 0.0069 0.1705 8.0355 6.98%
9/4/2007 0.1177 1.0241 1.3963 0.0054 0.1604 8.0612 7.45%
9/5/2007 0.1328 1.3185 1.4463 0.0086 0.1950 8.0089 7.35%
9/6/2007 0.1288 1.2545 1.4272 0.0077 0.1782 8.0398 7.46%
9/7/2007 0.1458 1.4724 1.4508 0.0098 0.2237 7.9820 7.02%
9/10/2007 0.1506 1.4863 1.4632 0.0107 0.2392 7.9647 6.95%
9/11/2007 0.1373 1.3807 1.4473 0.0064 0.2018 8.0185 7.37%
9/12/2007 0.1361 1.3414 1.4455 0.0092 0.1996 8.0103 7.25%
9/13/2007 0.1342 1.2892 1.4400 0.0126 0.2124 7.9761 7.17%
9/14/2007 0.1339 1.2744 1.4379 0.0078 0.2096 7.9965 7.23%
9/17/2007 0.1418 1.3348 1.4601 0.0146 0.2455 7.9353 7.18%
9/18/2007 0.1063 0.8235 1.3312 0.0088 0.1204 8.1430 7.76%
9/19/2007 0.0712 5.5340 1.2801 0.0022 0.8920 7.7901 7.02%
9/20/2007 0.0425 130.5821 0.9879 0.1160 5.9125 7.8413 6.63%
9/21/2007 0.0390 88.5232 0.9677 0.0011 3.6070 7.9443 6.66%
9/24/2007 0.0477 50.5986 1.0293 0.0140 2.1153 7.9544 6.34%
9/25/2007 0.0475 41.2045 1.0290 0.0040 1.6527 7.9945 6.13%
9/26/2007 0.0467 24.5190 1.0263 0.0634 0.8710 8.0721 6.39%

Table 4.7: This table shows the parameters of the space scaled model (CGMYSSV)
calibrated to the SPX options surface (option prices across di¤erent strikes and ma-
turities). We did not use any VIX option prices for this calibration. The model was
calibrated to all OTM SPX options with maturities between one month and one year.
One calibration was performed for each day. We also report the Average Percent-
age Error (APE) of the option prices based on the estimated parameters. We see a
reasonable �t of our model to the SPX surface. We note that this is a signi�cant
improvement over Lévy process based models as they do not calibrate well to the
surface of option prices across di¤erent maturities and strikes.

71



Date G M Y � � � APE
9/27/2007 0.0442 22.7379 1.0343 0.0003 0.9349 8.0759 6.44%
9/28/2007 0.0431 31.4266 1.0273 0.0016 1.2988 8.0353 6.43%
10/1/2007 0.0438 35.8966 1.0131 0.0010 1.2780 8.0730 6.66%
10/2/2007 0.0445 35.0020 1.0135 0.0001 1.3148 8.0716 6.10%
10/3/2007 0.0449 46.9780 0.9934 0.0004 1.6658 8.0619 5.98%
10/4/2007 0.0899 0.5652 1.2533 0.0088 0.0889 8.2209 7.18%
10/5/2007 0.0808 0.4570 1.2233 0.0180 0.1091 8.0426 8.25%
10/8/2007 0.0831 0.5121 1.2358 0.0146 0.0854 8.1739 8.09%
10/9/2007 0.0764 0.4013 1.2091 0.0221 0.1062 8.0022 8.93%
10/10/2007 0.0818 0.4493 1.2233 0.0169 0.0945 8.1039 8.48%
10/12/2007 0.0875 0.4485 1.2263 0.0001 0.0897 8.2642 8.06%
10/15/2007 0.0984 0.6220 1.2700 0.0148 0.1047 8.1625 6.71%
10/16/2007 0.1046 0.7471 1.3008 0.0125 0.0969 8.2357 6.23%
10/17/2007 0.0951 0.5588 1.2391 0.0070 0.0971 8.2254 5.91%
10/18/2007 0.0565 14.6725 1.0309 0.0622 0.5659 8.1568 5.05%
10/19/2007 0.0457 181.3094 0.9102 0.0183 4.4411 8.0894 4.48%
10/22/2007 0.0454 126.9806 0.9210 0.0000 4.2219 8.0208 4.75%
10/23/2007 0.0546 37.6734 0.9796 0.0031 1.3405 8.1133 5.15%
10/24/2007 0.0676 14.2210 1.0821 0.0042 0.8536 8.0231 5.05%
10/25/2007 0.0579 48.1957 0.9989 0.0024 1.9166 8.0326 5.25%
10/26/2007 0.0608 14.6591 1.0214 0.0086 0.6781 8.1437 5.93%
10/29/2007 0.0632 11.1187 1.0572 0.0056 0.6691 8.0817 6.07%
10/30/2007 0.0636 18.3149 1.0495 0.0020 1.0429 8.0355 5.56%
10/31/2007 0.0549 8.6767 0.9984 0.0055 0.5187 8.1572 7.14%
11/1/2007 0.0577 95.1224 0.9746 0.0000 3.9010 7.9631 5.12%

Table 4.8: This table shows the parameters of the space scaled model (CGMYSSV)
calibrated to the SPX options surface (option prices across di¤erent strikes and ma-
turities). We did not use any VIX option prices for this calibration. The model was
calibrated to all OTM SPX options with maturities between one month and one year.
One calibration was performed for each day. We also report the Average Percent-
age Error (APE) of the option prices based on the estimated parameters. We see a
reasonable �t of our model to the SPX surface. We note that this is a signi�cant
improvement over Lévy process based models as they do not calibrate well to the
surface of option prices across di¤erent maturities and strikes.
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Date G M Y � � � APE
11/2/2007 0.0578 94.7307 0.9723 0.0000 3.9224 7.9636 5.23%
11/5/2007 0.0908 8.0512 1.2465 0.0016 1.1774 7.8019 5.48%
11/6/2007 0.0610 73.5668 0.9558 0.2539 2.4647 7.9876 5.58%
11/7/2007 0.1161 1.3354 1.2108 0.0608 0.3257 7.7337 6.29%
11/8/2007 0.1176 1.6215 1.2057 0.0680 0.4131 7.6760 6.18%
11/9/2007 0.1421 3.4072 1.3168 0.0833 0.6155 7.6249 5.13%
11/12/2007 0.1450 3.1253 1.2527 0.0935 0.6163 7.5745 6.68%
11/13/2007 0.0684 71.2021 0.9840 0.0107 3.0411 7.9541 5.37%
11/14/2007 0.1167 1.5639 1.2604 0.0789 0.7234 7.5564 6.22%
11/15/2007 0.1371 2.1191 1.3020 0.0677 0.5056 7.6750 5.37%
11/16/2007 0.0825 60.6879 1.0289 0.0000 3.5263 7.8594 5.37%
11/19/2007 0.1245 2.2720 1.2395 0.0725 0.5980 7.6429 5.91%
11/20/2007 0.0830 38.4240 1.0807 0.0000 2.8266 7.8343 5.24%
11/21/2007 0.0675 98.9019 0.9929 0.0000 5.3142 7.8631 4.38%
11/22/2007 0.1197 2.9551 1.3223 0.0722 0.9129 7.6087 5.07%
11/23/2007 0.0717 54.3701 1.0340 0.0000 3.2975 7.8794 4.43%
11/26/2007 0.1436 2.2793 1.2777 0.0959 0.4512 7.6080 6.07%
11/27/2007 0.0647 87.5431 1.0080 0.0009 4.7795 7.8736 4.51%
11/28/2007 0.0608 43.7528 0.9996 0.0000 2.4932 7.9613 5.41%
11/29/2007 0.0581 51.8948 0.9802 0.0001 2.9906 7.9495 5.30%

Table 4.9: This table shows the parameters of the space scaled model (CGMYSSV)
calibrated to the SPX options surface (option prices across di¤erent strikes and ma-
turities). We did not use any VIX option prices for this calibration. The model was
calibrated to all OTM SPX options with maturities between one month and one year.
One calibration was performed for each day. We also report the Average Percent-
age Error (APE) of the option prices based on the estimated parameters. We see a
reasonable �t of our model to the SPX surface. We note that this is a signi�cant
improvement over Lévy process based models as they do not calibrate well to the
surface of option prices across di¤erent maturities and strikes.
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Date G M Y � � � APE
8/22/2007 0.0176 0.0315 0.2490 0.0001 0.0296 7.7237 4.41%
8/23/2007 0.0224 0.0405 0.2834 0.0000 0.0405 7.7202 5.58%
8/24/2007 0.0151 0.0256 0.2454 0.0001 0.0256 7.7241 4.55%
8/27/2007 0.0310 0.0633 0.2910 0.0004 0.0603 7.6979 5.17%
8/28/2007 0.1042 0.4559 0.7559 0.0000 0.4546 7.6354 7.18%
8/29/2007 0.0295 0.0568 0.3165 0.0001 0.0558 7.7234 5.67%
8/30/2007 0.0156 0.0399 0.2436 0.0001 0.0391 7.6715 5.87%
8/31/2007 0.0416 0.0738 0.2976 0.0008 0.0738 7.7029 4.29%
9/4/2007 0.0195 0.0380 0.2556 0.0001 0.0362 7.7268 3.82%
9/5/2007 0.0210 0.0474 0.2654 0.0001 0.0465 7.6942 5.02%
9/6/2007 0.0011 0.0024 0.1356 0.0000 0.0024 7.6785 4.99%
9/7/2007 0.0040 0.0125 0.1695 0.0000 0.0110 7.6555 6.09%
9/10/2007 0.0301 0.0289 0.2472 0.0016 0.0288 7.7753 7.02%
9/11/2007 0.0117 0.0324 0.2326 0.0000 0.0317 7.6739 5.77%
9/12/2007 0.0307 0.0925 0.3320 0.0001 0.0906 7.6752 5.89%
9/13/2007 0.0289 0.0959 0.3274 0.0008 0.0958 7.6521 5.58%
9/14/2007 0.0255 0.0765 0.3265 0.0001 0.0760 7.6830 5.74%
9/17/2007 0.0405 0.0403 0.3386 0.0003 0.0401 7.8609 6.73%
9/18/2007 0.0354 0.0640 0.3952 0.0001 0.0633 7.7762 2.86%
9/19/2007 0.0842 0.1606 0.6432 0.0008 0.1606 7.7886 2.21%
9/20/2007 0.0724 0.1648 0.6224 0.0004 0.1643 7.7651 2.37%
9/21/2007 0.0504 0.1037 0.4314 0.0000 0.0902 7.7775 2.89%
9/24/2007 0.0198 0.0334 0.3186 0.0003 0.0332 7.7578 2.14%
9/25/2007 0.0842 0.1724 0.6533 0.0014 0.1723 7.7633 2.37%
9/26/2007 0.3123 0.1812 0.5678 0.0000 0.1666 7.8456 5.31%

Table 4.10: This table shows the parameters of the space scaled model (CGMYSSV)
calibrated to the VIX options surface (option prices across di¤erent strikes and ma-
turities). We did not use any SPX option prices for this calibration. The model
was calibrated to all ITM VIX options with maturities between one month and one
year. Since OTM options are more liquid, we used the ITM option prices implied
by OTM options using put-call parity. One calibration was performed for each day.
We also report the Average Percentage Error (APE) of the option prices based on
the estimated parameters. We see a very good �t of our model to the VIX surface.
We note that this is a signi�cant improvement over Lévy process which cannot price
options on VIX as they assume that volatility is completely deterministic.
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Date G M Y � � � APE
9/27/2007 0.0014 0.0013 0.1436 0.0000 0.0013 7.7870 8.75%
9/28/2007 0.0303 0.0611 0.3633 0.0011 0.0607 7.7276 2.54%
10/1/2007 0.0973 0.1363 0.6024 0.0005 0.1362 7.8166 2.19%
10/2/2007 0.0979 0.1949 0.7251 0.0006 0.1931 7.7967 2.19%
10/3/2007 0.0897 0.1241 0.3097 0.0002 0.0922 7.8175 2.29%
10/4/2007 0.0397 0.0512 0.3138 0.0001 0.0508 7.7902 2.89%
10/5/2007 0.5213 0.5177 1.0224 0.0009 0.3726 7.8137 3.54%
10/8/2007 0.1131 0.0640 0.2888 0.0001 0.0639 7.8223 5.91%
10/9/2007 0.0308 0.0552 0.3219 0.0001 0.0548 7.7306 4.80%
10/10/2007 0.1816 0.4688 1.1238 0.0001 0.3808 7.7579 3.22%
10/12/2007 0.0807 0.0995 0.3043 0.0012 0.0908 7.7828 2.79%
10/15/2007 0.1648 0.3037 0.8284 0.0000 0.2872 7.8060 2.37%
10/16/2007 0.0492 0.0780 0.3266 0.0003 0.0776 7.7681 2.62%
10/17/2007 0.0686 0.1052 0.3472 0.0017 0.1052 7.7534 2.58%
10/18/2007 0.2364 0.4341 1.1348 0.0000 0.4341 7.7437 4.17%
10/19/2007 0.0290 0.0589 0.3175 0.0001 0.0584 7.7370 3.17%
10/22/2007 0.0183 0.0296 0.2971 0.0003 0.0295 7.7672 2.50%
10/23/2007 0.0250 0.0424 0.3318 0.0004 0.0421 7.7716 2.29%
10/24/2007 0.0434 0.0864 0.4147 0.0001 0.0826 7.7745 2.37%
10/25/2007 0.0373 0.0736 0.4053 0.0002 0.0732 7.7687 2.44%
10/26/2007 0.0266 0.0397 0.2977 0.0007 0.0396 7.7669 2.41%
10/29/2007 0.0370 0.0517 0.3099 0.0011 0.0516 7.7682 2.45%
10/30/2007 0.0270 0.0476 0.3098 0.0006 0.0475 7.7601 2.62%
10/31/2007 0.0390 0.0410 0.2948 0.0005 0.0410 7.8062 2.77%
11/1/2007 0.0199 0.0411 0.3028 0.0002 0.0410 7.7446 2.84%

Table 4.11: This table shows the parameters of the space scaled model (CGMYSSV)
calibrated to the VIX options surface (option prices across di¤erent strikes and ma-
turities). We did not use any SPX option prices for this calibration. The model
was calibrated to all ITM VIX options with maturities between one month and one
year. Since OTM options are more liquid, we used the ITM option prices implied
by OTM options using put-call parity. One calibration was performed for each day.
We also report the Average Percentage Error (APE) of the option prices based on
the estimated parameters. We see a very good �t of our model to the VIX surface.
We note that this is a signi�cant improvement over Lévy process which cannot price
options on VIX as they assume that volatility is completely deterministic.
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Date G M Y � � � APE
11/2/2007 0.0350 0.0689 0.3458 0.0004 0.0687 7.7583 2.78%
11/5/2007 0.0286 0.0527 0.3037 0.0007 0.0526 7.7470 2.64%
11/6/2007 0.0323 0.0520 0.3332 0.0001 0.0514 7.7902 3.01%
11/7/2007 0.0277 0.0646 0.2964 0.0002 0.0609 7.7321 2.91%
11/8/2007 0.0494 0.1102 0.3896 0.0002 0.1095 7.7334 2.89%
11/9/2007 0.0215 0.0521 0.2753 0.0001 0.0519 7.7008 2.87%
11/12/2007 2.9447 2.6073 0.8180 0.0000 0.8217 7.9684 6.88%
11/13/2007 0.4688 1.7173 0.7765 0.0000 0.5977 7.8047 2.41%
11/14/2007 0.0257 0.0710 0.2978 0.0002 0.0705 7.6925 2.63%
11/15/2007 0.0856 0.3561 0.6127 0.0001 0.3531 7.6702 2.54%
11/16/2007 0.1469 0.4909 0.8032 0.0014 0.4247 7.7226 2.27%
11/19/2007 0.0530 0.1481 0.3259 0.0032 0.1479 7.6355 1.96%
11/20/2007 0.0347 0.0721 0.3302 0.0001 0.0716 7.7297 1.79%
11/21/2007 0.0603 0.1240 0.3869 0.0001 0.1239 7.7124 2.03%
11/22/2007 0.0713 0.1478 0.4205 0.0002 0.1475 7.7128 2.00%
11/23/2007 0.0848 0.1911 0.4345 0.0000 0.1712 7.7338 2.12%
11/26/2007 0.0359 0.0741 0.3291 0.0000 0.0702 7.7174 2.51%
11/27/2007 0.0245 0.0503 0.2944 0.0001 0.0496 7.7215 2.78%
11/28/2007 0.7417 2.9898 0.6595 0.0174 0.7664 7.7859 2.31%
11/29/2007 0.0870 0.2063 0.4916 0.0000 0.1768 7.7572 2.63%

Table 4.12: This table shows the parameters of the space scaled model (CGMYSSV)
calibrated to the VIX options surface (option prices across di¤erent strikes and ma-
turities). We did not use any SPX option prices for this calibration. The model
was calibrated to all ITM VIX options with maturities between one month and one
year. Since OTM options are more liquid, we used the ITM option prices implied
by OTM options using put-call parity. One calibration was performed for each day.
We also report the Average Percentage Error (APE) of the option prices based on
the estimated parameters. We see a very good �t of our model to the VIX surface.
We note that this is a signi�cant improvement over Lévy process which cannot price
options on VIX as they assume that volatility is completely deterministic.
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process is of in�nite activity. Thus VIX implied SPX distribution underestimates the

amount of small jump activity of the underlying index. This may be explained by

the fact that since VIX measures the expectations of square returns, the process

of squaring returns underweighs small jumps activity versus the large jumps of the

underlying SPX index.

Skewness

While we are unable to calculate the skewness in closed form, we use a proxy to

qualitatively measure the skewness of the underlying index. We observe that the

parameters G and M exponentially dampen the amount of negative and positive

jump activity. Thus if G < M; the model would imply greater dampening of positive

jumps, or negative skewness. On the other hand, G > M implies a positive skewness

and G = M implies a symmetric return distribution. We, therefore, use G �M as

a proxy for skewness. Based on this measure, we note that the SPX index implies

very high levels of skewness whereas skewness of the VIX implied SPX distribution is

close to symmetric. This is again not surprising since volatility does not distinguish

between positive or negative jumps.

We observe that the VIX index as a function of SPX level implied by the two

option surfaces is very di¤erent. We plot the implied VIX index from the two surface

calibrations for each of the �ve days.
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Figure 4-1: This graph shows the model implied VIX as a function of the S&P500
levels as of 9/27/2007. The VIX function is estimated from the model (see equations
(1.8) and (1.2)). The parameters are based on the calibration to SPX option prices
(green graph) and the VIX option prices (red graph). We chose 9/27/2007 as this
was the day of the worst VIX calibration performance in terms of APEs.
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Figure 4-2: This graph shows the model implied VIX as a function of the S&P500
levels as of 10/9/2007. The VIX function is estimated from the model (see equations
(1.8) and (1.2)). The parameters are based on the calibration to SPX option prices
(green graph) and the VIX option prices (red graph). We chose 10/9/2007 as this
was the day of the worst SPX calibration performance in terms of APEs.
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Figure 4-3: This graph shows the model implied VIX as a function of the S&P500
levels as of 10/24/2007. The VIX function is estimated from the model (see equations
(1.8) and (1.2)). The parameters are based on the calibration to SPX option prices
(green graph) and the VIX option prices (red graph). We chose 10/24/2007 as a
randomly selected day from our dataset. Four other days were chosen based on the
worst and best performances of the calibration to the SPX and VIX surfaces.
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Figure 4-4: This graph shows the model implied VIX as a function of the S&P500
levels as of 11/20/2007. The VIX function is estimated from the model (see equations
(1.8) and (1.2)). The parameters are based on the calibration to SPX option prices
(green graph) and the VIX option prices (red graph). We chose 11/20/2007 as this
was the day of the best VIX calibration performance in terms of APEs.
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Figure 4-5: This graph shows the model implied VIX as a function of the S&P500
levels as of 11/21/2007. The VIX function is estimated from the model (see equations
(1.8) and (1.2)). The parameters are based on the calibration to SPX option prices
(green graph) and the VIX option prices (red graph). We chose 11/21/2007 as this
was the day of the best SPX calibration performance in terms of APEs.
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Figure 4-6: This graph shows the VIX function as implied by the model based on
SPX option prices for �ve di¤erent days . For each of these �ve days, we calibrate
our model to the SPX option price surface. We plot the implied VIX function (see
equations (1.8) and (1.2)) based on the calibrated parameters. The details of the
calibration are in Section 4.4.3. Four of the �ve days were chosen based on the best
and worst performances of the calibration of the VIX and SPX option surfaces in
terms of the APEs. The �fth day was chosen randomly from our dataset. We see
that the VIX function implied by SPX option is di¤erent across di¤erent days. This
period (August to November, 2007) was when the VIX index became prominent after
the start of the sub-prime crisis. When compared with the following graph which
shows the VIX function as implied by VIX options, one sees that the SPX options do
not provide a stable estimate of the VIX function across di¤erent days.
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Figure 4-7: This graph shows the VIX function as implied by the model based on
VIX option surface for �ve di¤erent days. For each of those �ve days, we calibrate
our model to the VIX option price surface. We plot the implied VIX function (see
equations (1.8) and (1.2)) based on the calibrated parameters. The details of the
calibration are in Section 4.4.4. Four of the �ve days were chosen based on the best
and worst performances of the calibration of the VIX and SPX option surfaces in
terms of the APEs. The �fth day was chosen randomly from our dataset. We see
that the VIX function implied by the VIX options�based parameters is fairly stable
across di¤erent days as compared to the VIX function implied by the SPX options in
the previous graph.
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Figure 4-8: This graph gives the SPX OTM option prices on 10/24/2007. The hori-
zontal axes represent the option strikes in terms of SPX levels and maturities in years.
The strikes lower (higher) than around 1516 represent put (call) options. The red
dots represent market prices and the surface represents the model prices based on the
calibrated parameters.
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Figure 4-9: This graph gives the VIX ITM option prices on 10/24/2007. The hori-
zontal axes represent the option strikes (volatilities) and maturities.The strike prices
are given as annualized volatilities in percentage terms. The option maturities are
given in years. The strikes lower (higher) than around 20 (percent) represent call
(put) options. The red dots represent market prices and the surface represents the
model prices based on the calibrated parameters.
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Chapter 5

Conclusion and Future research

5.1 Conclusion

Our model is the �rst attempt to generalize a Lévy processes to create a space-

dependent pure jump process. We achieve this in a one-dimensional Markov setting

using six degrees of freedom. Our model successfully calibrates option prices on SPX

and VIX indices simultaneously for any given maturity. Our model is also able to

capture the SPX and VIX surfaces separately. This is a huge improvement over

Lévy processes which implicitly assume a deterministic volatility (VIX) function. We

estimate our model on the SPX and VIX option surfaces as well and note that the

model calibrates well to both these surfaces separately. We explored the properties

of the implied distribution of the SPX from both indices and conclude that the VIX

index under-weighs small jumps as compared to large jumps as well as skewness of

the SPX index . We also devised a multi-stage scheme to numerically calculate the

VIX function as a function of the underlying stock price since no closed form was
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available.

We also note that since our model can price both SPX and VIX options simultane-

ously, it will show no-arbitrage prices for the variance swap contract. This is because

the VIX option prices are computed directly from the price of the log contract using

equation (1.8). Hence a portfolio of VIX options will return the same price for the log

contract. Since we use the same (jointly calibrated) parameters for pricing the SPX

options, the SPX options will also return the same price for the log contract. This

will ensure a no-arbitrage price of the variance swap as both replication schemes will

price the variance swap contract through equation (1.8).

5.2 Numerical Computation Using Wavelets

While the results of our model are quite satisfactory, a lot more can be done to improve

the computational e¢ ciency of our model. If one needs to work with more than 40-50

grid points, it would be better to implement the solution using a wavelet basis, on

the lines of Matache, von Petersdor¤, Schwab [41] and. They have shown that for the

Lévy process, one can reduce the number of non-zero entries in the sti¤ness matrix

from O(N2) to O(N logN�) for some � > 0. Matache, von Petersdor¤, Schwab [41]

show that their results can be applied to space-dependent processes as well. One can

further improve the e¢ ciency of the numerical solution by using iterative methods for

solving the linear system of equations and also by using higher order time stepping

schemes (see Matache, Schwab, Wihler [40] for implementation of this idea in the

context of Lévy processes).
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5.3 Skewness and Kurtosis Properties

It has been observed in Madan [37] that creating stochastic volatility through time

scaling leads to an inverse relationship between skewness and volatility whereas space

scaling leads to a direct relationship between the two. The market data also implies

a direct relationship between volatility and skewness. One future area of research

is to perform mode detailed analysis of the nature of this relationship in our model

setting.

5.4 Model Extensions

5.4.1 Model Formulation in Forward Space

One can further generalize our model by introducing time dependence along with

space-dependence. This would be the next logical step towards creating a local Lévy

model. We provide one natural extension of our model in forward space. We start

with the PIDE for option prices for space-scaled Lévy processes given in (3.7)

w� (� ; x) + Aw(� ; x) = 0; (5.1)

Aw(� ; x) = �(r � q)wx(� ; x) + rw(� ; x) + Âw(� ; x); where

Âw(� ; x) = �
Z 1

�1
(w(� ; x+ z)� w(� ; x)� wx(� ; x)(e

z � 1)) k(z; x)dz;

w(0; x) = h(x):
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We transform this equation to solve for forward option prices in terms of forwards on

the underlying, that is, if we let u(y)=er�w(x); with y = x + (r � q)� ; we transform

the equation into

u� (� ; y) + ~Au(� ; y) = 0; (5.2)

~Au(� ; y) = �
Z 1

�1
(u(� ; y + z)� u(� ; y)� uy(� ; y)(e

z � 1)) k(z; y � (r � q)�)dz;

u(0; y) = ~h(y):

By the de�nition of our space scaled density function for the CGMY process, we have

for z > 0

k(z; y � (r � q)�) = a(y � (r � q)�)Y e�Mz=a(y�(r�q)�)z�1�Y ;

a(y � (r � q)�) = �+ �(y � (r � q)� � �)2

= �+ �(y � �� )
2; where

�� = (r � q)� + �

Thus we see that our model has a natural generalization in terms of forward prices

through a term structure of �� ; while keeping � and � constant. This would put

the new model in a parametric space-time local volatility framework. We currently

have only space dependence in our local volatility model. Such a model would impose

numerical challenges in computing a di¤erent sti¤ness matrix for each time step. One

way to overcome such an issue would be to employ a parallel computing framework

since the same sti¤ness matrix will be used for all options of the same maturity.
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5.4.2 The Need for Stochastic Volatility

While our model tries to stay in the one dimensional Markovian framework, a per-

tinent question that still needs to be answered is whether the VIX index prices in

the stochasticity of volatility. After all, it can be argued that the solution of the

log contract follows equation (1.11), which makes VIX a function of time, stock level

and stochastic volatility. Indeed, if VIX was a deterministic function of the SPX

index, it would imply that no price discovery takes place in the VIX market, thus

eliminating the very reason for its existence. On the other hand, stochastic volatility

models which don�t take into account the space dependence are unable to capture the

leverage e¤ect. Thus, they will most likely be inaccurate in determining the hidden

volatility process as the e¤ect of leverage cannot be �ltered out before determining

the innovation coming from the second hidden dimension. We also observe that the

market implied leverage function for VIX and SPX calibrations are not very di¤er-

ent. We test this by freezing the G;M; Y parameters and calibrating the �; � and

� parameters to the SPX and VIX surface. We plot the leverage function for the

randomly selected day (10/24/2007). We observe that VIX options imply a higher

leverage than SPX options (see Figure 5-1).

5.4.3 Time Dependence

It is reasonable to assume that the leverage e¤ect decays in time; volatility subsides

over time as the stock moves to a new level and the leverage gets priced in. A distinct

time component would be necessary to model this e¤ect. However, time dependence
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Figure 5-1: Leverage function plots based on SPX and VIX calibration of �; � and �
parameters while setting G = 5;M = 10 and Y = :75. The option surfaces are as of
10/24/2007.
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will mean that our jump operator is no longer time-invariant. This would mean that

the PIDE from such a process would involve a di¤erent operator in each-time step.

Implementing such a model by brute force may be ine¢ cient as a new sti¤ness matrix

will need to be calculated for each time step. However, the problem may be resolved

by using a parallel-computing framework or the wavelet methodology described above.
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