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A Barker sequence is a finite length binary sequence with the minimum pos-

sible aperiodic autocorrelation. Currently, only eight known Barker sequences exist

and it has been conjectured that these are the only Barker sequences that exist.

This thesis proves that long sequences (having length longer than thirteen) must

have an even length and be a perfect square. Barker sequences are then used to

explore flatness problems related to Littlewood polynomials. These theorems could

be used to determine the existence or non-existence of longer sequences. Lastly, an

application of Barker sequences is given. Barker sequences were initially investigated

for the purposes of pulse compression in radar systems. This technique results in

better range and Doppler resolution without the need to shorten a radar pulse, nor

increase the power.
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Chapter 1

Introduction and Motivation

1.1 Introduction

Given a real sequence {ai}ni=1 the aperiodic autocorrelation function is defined as

ck =
n−k∑
i=1

aiai+k

and the periodic autocorrelation is defined as

γk =
n−k∑
i=1

aia(i+k) mod n

The modular arithmetic, in the subscript, is computed over {1, 2, ..., n}, instead of

{0, 1, ..., n− 1}. For completeness, define c−k = ck. Also, note that ck + cn−k = γk.

A Barker sequence, {ai}ni=1, is such that ai = ±1 and |ck| ≤ 1 where k ≥ 1 and

c0 = n. Unfortunately, not too many exist. The restrictions mentioned allows for

only eight different sequences known, up to transformations. Below are the known

sequences, assuming a1 = a2 = 1.
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n = 2 ++

3 + +−

4 + + +−

+ +−+

5 + + +−+

7 + + +−−+−

11 + + +−−−+−−+−

13 + + + + +−−+ +−+−+

For all the above sequences, since ai = ±1, we have a2
i = 1, which further implies

c0 = n. For the above sequences I will show that for non-zero k, |ck| ≤ 1.

For n = 2, a = ++ and c1 = 1.

For n = 3, a = + +− and

c1 = 1− 1 = 0

c2 = −1

For n = 4, a = + + +− and

c1 = 1 + 1− 1 = 1

c2 = 1− 1 = 0

c3 = −1

For n = 4, a = + +−+ and

c1 = 1− 1− 1 = −1

c2 = −1 + 1 = 0
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c3 = 1

For n = 5, a = + + +−+ and

c1 = 1 + 1− 1− 1 = 2− 2 = 0

c2 = 1− 1 + 1 = 2− 1 = 1

c3 = −1 + 1 = 0

c4 = 1

For n = 7, a = + + +−−+− and

c1 = 1 + 1− 1 + 1− 1− 1 = 3− 3 = 0

c2 = 1− 1− 1− 1 + 1 = 2− 3 = −1

c3 = −1− 1 + 1 + 1 = 2− 2 = 0

c4 = −1 + 1− 1 = 1− 2 = −1

c5 = 1− 1 = 0

c6 = −1

For n = 11, a = + + +−−−+−−+− and

c1 = 1 + 1− 1 + 1 + 1− 1− 1 + 1− 1− 1 = 5− 5 = 0

c2 = 1− 1− 1 + 1− 1 + 1− 1− 1 + 1 = 4− 5 = −1

c3 = −1− 1− 1− 1 + 1 + 1 + 1 + 1 = 4− 4 = 0

c4 = −1− 1 + 1 + 1 + 1− 1− 1 = 3− 4 = −1

c5 = −1 + 1− 1 + 1− 1 + 1 = 3− 3 = 0

c6 = 1− 1− 1− 1 + 1 = 2− 3 = −1

c7 = −1− 1 + 1 + 1 = 2− 2 = 0

c8 = −1 + 1− 1 = −2 + 1 = −1

c9 = 1− 1 = 0
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c10 = −1

For n = 13, a = + + + + +−−+ +−+−+ and

c1 = 1 + 1 + 1 + 1− 1 + 1− 1 + 1− 1− 1− 1− 1 = 6− 6 = 0

c2 = 1 + 1 + 1− 1− 1− 1− 1− 1 + 1 + 1 + 1 = 6− 5 = 1

c3 = 1 + 1− 1− 1 + 1− 1 + 1 + 1− 1− 1 = 5− 5 = 0

c4 = 1− 1− 1 + 1 + 1 + 1− 1− 1 + 1 = 5− 4 = 1

c5 = −1− 1 + 1 + 1− 1− 1 + 1 + 1 = 4− 4 = 0

c6 = −1 + 1 + 1− 1 + 1 + 1− 1 = 4− 3 = 1

c7 = 1 + 1− 1 + 1− 1− 1 = 3− 3 = 0

c8 = 1− 1 + 1− 1 + 1 = 3− 2 = 1

c9 = −1 + 1− 1 + 1 = 2− 2 = 0

c10 = 1− 1 + 1 = 2− 1 = 1

c11 = −1 + 1 = 0

c12 = 1

The transformations s1(ai) = (−1)iai, s2(ai) = (−1)i+1ai, and s3(ai) = −ai trans-

form one Barker sequence into another. These transformation, along with the iden-

tity function, forms an abelian group under addition. To not confuse the two sepa-

rate ck that will be computere here, denote Aa(k) as ck for the sequece a.

I. s1(ai) = (−1)iai

To show that this preserves Barker sequences, let yi = s1(ai) and note that

Ay(k) =
∑n−k

i=1 yiyn+k. Two cases need to be analyzed- one where k even, the other
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where k odd.

a. k even. Ay(k) =
∑

i=2m aiai+k +
∑

i=2m+1(−ai)(−ai+k) = Aa(k).

b. k odd. Ay(k) =
∑

i=2m ai(−ai+k) +
∑

i=2m+1(−ai)ai+k = −Aa(k).

II. s2(ai) = (−1)i+1ai

As for s1, there are two cases to consider.

a. k even. Ay(k) =
∑

i=2m(−ai)(−ai+k) +
∑

i=2m+1 aiai+k = Aa(k).

b. k odd. Ay(k) =
∑

i=2m(−ai)ai+k +
∑

i=2m+1 ai(−ai+k) = −Aa(k).

III. s3(ai) = −ai

Ay(k) =
∑n−k

i=1 (−ai)(−ai+k) =
∑n−k

i=1 aiai+k = Aa(k).

This paper will provide motivation for finding Barker sequences, then state and

prove the main existence problem known for Barker sequences. Specifically, it is

known that few Barker sequences exist and it is widely conjectured that the above

sequences are the only Barker sequences that exist.
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1.2 Motivation

Signals with low non-zero autocorrelation have many uses in signal processing and

mathematics. A signal is defined as a function f : R → R, or more generally

f : C → C, such that f ∈ L2. This allows for the definition of autocorrela-

tion: Rf (τ) =
∫
f(t)f ∗(t+ τ)dt, where f ∗ denotes the complex conjugate of f .

Also, this can be defined for a periodic discrete signals a : N → C, for a ∈ l2, as

Rx(k) =
∑

i aia
∗
i+k.

Much of this paper will be the study of finite discrete binary sequences and a vari-

ety of applications to engineering and mathematics. A binary sequence is defined

as {ai}ni=1, such that ai = ±1. These types of signals can be implemented easily

as a binary phase shift key signal, with modulation of a constant frequency shifting

between 0 and π phase. A 0 phase represents a 1, while a π phase represents a -1.

Binary sequences with the lowest autocorrelation are Barker sequences.

Pulse Compression Pulse compression radar techniques take advantage of the

received signal strength of long pulse signals, combined with the range resolution

of short pulse signals. Clearly, one cannot send a short pulse and long pulse simul-

taneously. To circumvent this, instead of sending out a simple pulsed signal, the

signal would be modulated as well. This is called pulse compression. The trade off

between long and short pulses is power consumption by the transmitter. For exam-

ple, if you want a resolution of 15cm, using a bandwidth of 1GHz, with pulse energy
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1mJ, without pulse compression, you need a pulse of 1ns with the transmitter power

being 1MW. As a contrast, using pulse compression, requires a pulse of 0.1ms with

the transmitter power being 100W. Using sequences with low autocorrelation and

modulation 180 degrees out of phase allows longer pulses to be sent, while main-

taining the range resolution of the radar system. These restrictions make Barker

sequences an ideal choice.

Flat Polynomial Flat polynomials are polynomials such that there exist 0 < a < b

where for all |z| = 1, a < |f(z)|√
n

< b and n − 1 is the degree of the polynomial.

For unimodular polynomials, which are polynomials haveing coeffiecients |ai| = 1,

for every ε > 0 such that a = 1 − ε and b = 1 + ε, there is a sequence of flat

polynomials. A Littlewood polynomial is a polynomial f(x) =
∑n−1

i=0 aix
i where

ai = ±1. For Littlewood polynomials, it is known that there exist polynomials

satisfying the upper bound where b =
√

2, but it is not known whether there exists

a sequence with a lower bound as well. Having the coefficients of the polynomial form

a Barker sequence suffices for the polynomial to be a flat Littlewood polynomial.

This means that the non-existence of flat Littlewood polynomials implies the non-

existence of long Barker sequences.
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Chapter 2

Even and Odd Length Sequences

2.1 Even Length

The first thing to do is to see what consequences follow by merely considering

whether or not the length of a Barker sequence is even or odd. This section states

and proves some interesting and surprising results that follow from the length of the

sequence. First, if a sequence has an even length, n, then n is a perfect square. Sec-

ond, if n is odd, then n ≤ 13. Surprisingly, the two conditions defining Barker codes-

1) they are binary (±1) and 2) the magnitude of all non-zero autocorrelation is less

than one- are enough to admit seemingly only a finite number of sequences. It is

widely conjectured that the Barker sequences listed above are the only ones. Many

mathematicians and engineers over the last 60 years have labored to prove just that.

Now, let’s start by examining these basic existence theorems. The following results

are primarily due to [12] and [2]. Recall that ck =
∑n−k

i=1 (aiai+k). Now we state and

prove our first theorem.

Theorem 1: If {ai}ni=1 is a Barker sequence and n ≥ 4 is even, then n = 4N2.

Proof:
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Fix a Barker sequence a = {ai} of length n.

Also, define x =
∑
χ(aiai+k=1) and y =

∑
χ(aiai+k=−1). This gives us the

following linear equations:

x+ y = n− k (2.1)

x− y = ck (2.2)

Subtracting (2.2) from (2.1) yields 2y = n−k−ck, which further implies

y = (n− k − ck)/2.

Define dk =
∏n−k

i=1 aiai+k. By the above calculation

dk =
n−k∏
i=1

aiai+k

= 1x(−1)y

= (−1)y

= (−1)(n−k−ck)/2

Consider ck + cn−k =
∑n−k

i=1 aiai+k +
∑k

i=1 aiai+n−k =
∑n

i=1 aiai+k, where

i + k in the last term is taken (mod n), over the set {1, 2, ..., n}, not

{0, 1, ..., n− 1}. Combining this calculation with that of dk results in

9



dkdn−k =
n−k∏
i=1

aiai+k

k∏
i=1

aiai+n−k

=
n∏
i=1

aiai+k mod n

=
n∏
i=1

a2
i

= 1

Also,

dkdn−k = (−1)(n−k−ck)/2(−1)(n−(n−k)−cn−k)/2

= (−1)(n−k−ck+n−n+k−cn−k)/2

= (−1)(n−ck−cn−k)/2

The above two calculations implies that 1 = (−1)(n−ck−cn−k)/2, thus

(n − ck − cn−k)/2 is even. This implies that ck + cn−k ≡ n(mod 4),

an important identity that will be used throughout this section, not just

this theorem.

Assuming |ck| ≤ 1 and that n = 2m for some m ∈ N, consider ck =

a1a1+k + ... + an−kan. This sum will have an even number of terms. If
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k = 2s, then ck = 2t. Since |c2s| ≤ 1⇒ c2s = 0. Similarly, |c2s+1| = 1.

Since n is even, if k is even, then ck = 0 and cn−k = 0. Also, since

n ≡ ck + cn−k(mod 4), then n ≡ 0(mod 4). If k is odd, then ck + cn−k ∈

{−2, 0, 2}. Since−2 6≡ 0(mod 4) and 2 6≡ 0(mod 4), we have ck+cn−k = 0

when k is odd, also. This leads us to the final concluding statement:

(
∑n

i=1 ai)
2 = c0 +

∑n−1
i=1 (ck + cn−k) = c0 = n. Thus, when n is even it is

a perfect square, so n = 4N2.

QED.

2.2 Odd Length

To prove that n ≤ 13 if n is odd, let’s first take a look at the immediate conse-

quences that n being odd has on ck. If n is odd, then this implies that for any k,

|ck + cn−k| = 1 with c2j+1 = 0 and c2j = ±1. By the above theorem, we know that

n ≡ ck + cn−k(mod 4). This implies that n ≡ ±1(mod 4).

This gives us two cases in which to investigate c2j. If n ≡ 1(mod 4), then c2j = 1.

If n ≡ −1(mod 4), then c2j = −1. These two cases taken together implies that

c2j = (−1)(n−1)/2, which depends only on n and has nothing at all to do with j.
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Now make use of dk defined in the above theorem.

dkdk+1 = (−1)(n−k−ck)/2(−1)(n−(k+1)−ck+1)/2

= (−1)(2n−2k−1−ck−ck+1)/2

= (−1)n−k−(1+ck−ck+1)/2

And

dkdk+1 = (
n−k∏
i=1

aiai+k)(
n−k−1∏
i=1

aiai+k+1)

= [(a1a1+k)...(an−kan)][(a1ak+2)...(an−k−1an)]

= (
n−k−1∏
i=1

a2
i )(

n−1∏
i=2+k

a2
i )(ak+1an−k)

= ak+1an−k

These two calculations yield:

an−kak+1 = (−1)n−k−(1+ck+ck+1)/2 (2.3)

Since ck + cn−k ≡ n(mod 4), then n = x+ 4m⇒ ck + cn−k = x+ 4t, where x = ±1,

and we get the following:

an−kak+1 = (−1)n−k−(1+ck+ck+1)/2
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= (−1)x+4m−k−(1+x+4t)/2

= (−1)x−k−(1+x)/2

= (−1)−k−(1+x−2x)/2

= (−1)−k+(x−1)/2

= (−1)−k+(x+4m−1)/2

= (−1)k+(n−1)/2

The last equality in the above is true since (−1)k = (−1)−k.

If an−kak+1 = (−1)k+(n−1)/2, then

an−(i+2j−1)ai+2j = (−1)i+2j−1+(n−1)/2, so

ai+2j = an−(i+2j−1)(−1)i+2j−1+(n−1)/2.

A sequence satisfying (2.3) has the property c2j+1 = 0, 0 < 2j + 1 < n, yields the

following:

(−1)(n−1)/2 = c2j

=

n−2j∑
i=1

aiai+2j

=

n−2j∑
i=1

aian−(i+2j−1)(−1)i+2j−1+(n−1)/2

13



= (−1)(n−1)/2

n−2j∑
i=1

aian−(i+2j−1)(−1)i+1

Dividing each side by (−1)(n−1)/2 and letting n− 2j = 2k + 1, k ≥ 1, we get

1 =
2k+1∑
i=1

(aia2k+2−i)(−1)i+1

=
k∑
i=1

+
2k+1∑
i=k+1

= [a1a2k+1 − ...+ akak+2(−1)k+1] + a2
k+1(−1)k+2

[ak+2ak(−1)k+1 + ...+ a2k+1a1]

= 2
k∑
i=1

[aia2k+2−i)(−1)i+1] + a2
k+1(−1)k+2

whenever n > 2k + 1 ≥ 3. Since a2
k+2 = 1, the above gets us

1 = 2
∑k

i=1[aia2k+2−i)(−1)i+1]− (−1)k+1. Then a little algebra gets us

1 + (−1)k+1

2
=

k∑
i=1

[aia2k+2−i)(−1)i+1] (2.4)

Define P (k) = 1+(−1)k+1

2
.

Whenever 1 ≤ k < n−1
2

. Now we are ready to state our next lemma, which says

that a Barker sequence of odd length will exhibit some periodic behavior.
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Lemma: Let {ai}ni=1, n odd, be a sequence that satisfies (2.4) for 1 ≤ k ≤ t,

ai = ±1. Let ai = 1 for 1 ≤ i ≤ p, ap+1 = −1. If p > 1 then

i) aiai+1 = a2ia2i+1, 1 ≤ i ≤ t,

ii) p ≤ 2t+ 1 implies p is odd,

iii) pj + r ≤ 2t+ 1, 1 ≤ r ≤ p implies ap(j−1)+r = ap(j−1)+1, and

iv) zj = ap(j−1)+1 satisfies (2.4) for k ≤ t/p.

Proof:

Proof of i):

∑k
i=1[aia2k+2−i)(−1)i+1] = a1a2k+1 − a2a2k + ... + akak+2(−1)k+1 is a

constant dependent only on k by (2.4) above. Note that if each term

aia2k+2−i = 1, then (2.4) is satisfied. Thus, if any one of the terms,

aia2k+2−i, is -1, there must be another term, aja2k+2−j, that is -1. There-

fore, there are always an even number of terms, aia2k+2−i, that equal -1.

This leads us to conclude that
∏k

i=1 aia2k+2−i = 1a(−1)b = 1, where a

is the number of terms, aia2k+2−i, that equals 1 and b is the number of

terms, aia2k+2−i, equal to -1.

1 =
k∏
i=1

(aia2k+2−i)

= (a1a2k+1)(a2a2k+2)...(akak+2)

15



= a1a2...akak+2...a2k+1

which implies
∏2k+1

i=1 ai = ak+1. So we get:

a2k+2a2k+3 = (
2k+1∑
i=1

ai)
2a2k+2a2k+3

=
2k+1∏
i=1

ai

2k+3∏
j=1

aj

= ak+1ak+2

= ak+1a(k+1)+1

Since a2k+2a2k+3 = a2(k+1)a2(k+1)+1 = ak+1a(k+1)+1, i) is proven.

To prove ii), note that if p = 2s, then asas+1 = a2sa2s+1, which means

1 = −1, a contradiction. Thus p is odd when p ≤ 2t+ 1.

To prove iii) and iv) I use an induction approach. For t < p there is noth-

ing to prove because the statements are true by assumption. Choosing

p = t, from (2.4) we get

1 = P (p)

= a1a2p+1 + a2a2p + ...+ apap+2 (2.5)
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By assumption a1 = a2 = ... = ap = 1, so by i) a2k = a2k+1 for p < 2k <

2p ,(2.5) reduces to

1 = P (p)

= a2p+1 − a2p + a2p−1 − ...− ap+3 + ap+2

= a2p+1 − a2p + ap+2

And since, by assumption, ap = 1 and ap+1 = −1, then by i) −1 =

apap+1 = a2pa2p+1, which implies that a2p+1 = −ap ⇒ a2p+1 − ap =

2a2p+1. Therefore, we get

1 = 2a2p+1 + ap+2.

Thus

ap+2 = −1

a2p+1 = 1

For 2t + 1 ≤ 3p, let t = p + s. Using the fact that a2i = a2i+1 for i 6≡ 0

(mod p),by the induction assumption we have

P (p+ s) =
2s+1∑

1

+

p∑
2s+2

+

2p+s∑
p+1

= a2p+1 − ap+1ap+2s+1 + P (s− 1)

17



Since p is odd, P (p + s) = P (s − 1) and a2p+1 + ap+2s+1, which implies

ap+2s+1 +−1.

For 2t + 1 > 3p, let 2t + 1 = hp + m with 1 ≤ m ≤ p. We need to

consider the case where h even and h odd separately.

Case 1:

h = 2H+1 implies
∑t

1 =
∑H−1

0 (
∑jp+m

jp+1 +
∑(j+1)p

jp+m+1)+
∑Hp+m

Hp+1 +
∑t

Hp+m+1

As above, this equation can be reduced by using the fact that a2i = axi+1

for i 6≡ 0(mod p) in the first three sums. The last sums are of the form

(−1)i by the induction assumption. So we get

P (t) = apa(h−1)p+m+1 − ap+1a(h−1)p+m + ap+ma(h−1)p+1+

∑H
2 zizh+1−i(−1)i+1 + (−1)HP (p+m−1

2
).

Since t = Hp+ (p+m− 1)/2, we get

P (H)−
∑H

1 zizh+1−i(−1)i+1 = a(h−1p+m+1 + a(h−1)p+m − 2a(h−1)p+1

18



By the induction assumption P (H)−
∑H

1 zizh+1−i(−1)i+1 = 0, so

a(h−1)p+m = x(h− 1)p+ 1.

Case 2:

h = 2H, proceeding as before

P (H)−
∑H

1 zizh+1−i(−1)i+1 = −zh − ahp + 2a(h−1)p+m

for m < p. Subtracting successive equations of this type (m = 1, 3, 5, ...)

gets a(h−1)p+1. For m even, the equation follows from ii). For m = p,

implies 2t+ 1 = (2H + 1)p, which yields

P (H)−
∑H

1 zizh+1−i(−1)i+1 = zh + ahp.

Compare the above equation with the equation for m = 1, we get

P (H)−
∑H

1 zizh+1−i(−1)i+1 = 0

which gets us ahp = a(h−1)p+1.
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QED

The above theorem shows that odd Barker sequences exhibit some periodic behav-

ior. The next theorem says that because of this behavior, an odd length Barker

sequence must be short.

Theorem 2: A Barker sequence of odd length n implies n ≤ 13.

Proof:

By the transformations mentioned in the introduction, we may assume

a1 = a2 = 1. P (k) satsifies (2.4) for 1 ≤ k < (n−1)/2 and p < (n−1)/2

for n > 3, by the above lemma.

If n > 4p then by periodic behavior discussed in the above lemma

ai = +1, 1 ≤ i ≤ p, 2p+ 1 ≤ i ≤ 3p

ai = −1, p+ 1 ≤ i ≤ 2p.

By (2.3), an−kak+1 = (−1)k+(n−1)/2, which implies, if ai = ai+1, then

an+1−i = −an−i. So if n > 4p,

ai = +1, 1 ≤ i ≤ p
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ai = −1, p+ 1 ≤ i ≤ 2p

ai = +1, 2p+ 1 ≤ i ≤ 3p

and the last three blocks of length p are blocks of alternating +1’s

and −1’s, which implies n ≥ 6p − 1. Similarly, if n > kp, then n ≥

2(k − 1)p− 3, which can continues ad infinitem, so n < 4p.

Also, n 6= 3p because if n = 3p, then

apap+1 = a2pa2p+1 = −ap+1ap.

Letting n = 2m− 3 and b = (−1)(n−1)/2, then equation (2.4) is

1+b
2

=
∑m

1 aian−1−i(−1)i+1 =

a1an−2 − a2an−3 + ...− ap−3an−p+2 + ap−2an−p+1 + ...

Since the first block of length p is +1 and the last block of length p

has alternating +1’s and −1’s, the first p − 2 elements in this sum are

the same; in particular, they equal a. Let N the be number of terms

aian−1−i(−1)i+1 = −b with p− 2 ≤ i ≤ m, then
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1+b
2

= (p− 2)b+ (m−N − (p− 2))b−Nb

1+b
2

+N − (p− 2) = m−N − (p− 2) ≥ 0

p− 2− b+1
2
≤ n−3

2
− (p− 2),

which implies 4p ≤ n+6+b. Since n < 3p we get p < 6+b, which implies

p ≤ 5. By the above lemma, we can construct sequences of length 5, 7,

13. Finally, for 3p < n < 4p, let n = 2m + 1 and we get am = −am+2

getting us ai = −1 for p + 1 ≤ i ≤ 2p. By the lemma, we must have

n− 2− p ≤ m + 1 = (n + 1)/2, which implies n ≤ 2p + 5. Now n > 3p

implies p < 5, hence p = 3 and we get can construct the sequence of

length 11.

QED

Mossinghoff [8], and Jedwab [7] have done additional investigation into the length

of n. Mossinghoff, using numerical techniques has determined the largest known

lower bound on the length of n for a Barker sequences. No Barker sequences exists

for lengths n such that 13 < n < 189 269 268 001 034 441 552 766 781 604. In the

next section related topics explore the existence of longer Barker sequences.
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Chapter 3

Flat Polynomials

3.1 Definitions and Rudin-Shapiro Polynomials

A given sequence {ai}ni=1 can be associated with a polynomial, f , such that f(z) =∑n−1
i=0 ai+1z

i. For a given p > 0, the p norm for a polynomial is defined as

‖f‖p =

(∫ 1

0

|f(e(t))|pdt
)p

where e(t) = e2πit. Below are three properties [6] relating to this norm that will be

useful in further analysis.

1) If µ(E) = 1 and 0 < p < q <∞, then ‖f‖p ≤ ‖f‖q.

Let r = q/p > 1 with conjugate r′, then

∫
E

|f |p ≤
(∫

E

|f |pr
)1/r (∫

E

1r
′
)1/r′

=

(∫
E

|f |q
)p/q

Since the last equation is finite, the first is as well. Taking the pth root

of both sides gets us the desired result.
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2) limp→∞ ‖f‖p = sup0≤t≤1 |f(e(t))|.

Note that

(∫ 1

0

|f |p
)1/p

≤
(∫ 1

0

sup
0≤t≤1

|f |p
)1/p

= sup
0≤t≤1

|f |
(∫ 1

0

|1|p
)1/p

= sup
0≤t≤1

|f |µ(E)1/p

= sup
0≤t≤1

|f |

Let α = sup0≤t≤1 |f |, then α is an upper bound for the set of {‖f‖p :

0 < p <∞}. Now we need to show that α is the least upper bound. Fix

ε > 0, and let A = {x ∈ E : |f(x)| ≥ α− ε}, then

µ(A)1/p(α− ε) =

(∫
A

(α− ε)p
)1/p

≤
(∫

A

|f |p
)1/p

≤
(∫ 1

0

|f |p
)1/p

= ‖f‖p

Letting p→∞, then µ(A)1/p → 1, which implies that
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(α− ε) ≤ lim
p→∞
‖f‖p

which gets us the desired result.

3) limp→0 ‖f‖p = exp
(∫ 1

0
log |f(e2πit)|dt

)
. This is the Mahler measure.

Set g = |f |, then note that log t ≤ t− 1 for all t > 0. Let E = [0, 1], so

µ(E) = 1. Replacing t with g
‖g‖1

and integrating implies

∫
E

log
g

‖g‖1
≤ 0

implying

∫
E

log g ≤ log

∫
E

g

The next thing to do is to see that, by L’Hospital,

lim
r→0+

gr − 1

r
= log g

Since µ(E) = 1 and ‖g‖p ≤ ‖g‖q whenever p < q, then
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lim
r→0+

r−1

∫
E

(gr − 1) = lim
n→∞

n

∫
E

(g1/n − 1)

=

∫
E

lim
n→∞

n(g1/n − 1)

=

∫
E

log g

by the Bound Convergence Theorem (limn→∞ n(g(t)1/n−1) is a converg-

ing sequence for all t ∈ [0, 1], thus bounded). Now by tying everything

together we see that

(1/r)

[∫
E

gr − 1

]
≥ (1/r) log

∫
E

gr

≥ (1/r)

∫
E

log gr

=

∫
E

log g

The first equation converges to the last equation as r → 0+, so by the

Sandwich Theorem, the second equation (1/r) log
∫
E
gr = log ‖g‖r →∫

E
log g. Apply the exponential to both sides and the proposition follows.

Polynomials such that |ai| = 1 are called unimodular polynomials and denoted as U .

Polynomials such that ai = ±1 are called Littlewood polynomials and are denoted

as L. Whenever f(z) =
∑n−1

i=0 ai+1z
i, by Parseval, ‖f‖22 = n. A question that has

arisen in relation to unimodular and Littlewood polynomials is the existence of so
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called flat polynomials. A sequence of polynomials of degree n − 1 is called flat if

there exist two postive numbers α1 and α2 such that for all n

α1

√
n ≤ |f(z)| ≤ α2

√
n

whenever |z| = 1. For unimodular polynomials it is known that for any ε > 0 there

is a sequence of flat polynomials such that α1 = 1 − ε and α2 = 1 + ε. A sequence

of polynomials that satisfies this strict condition is called ultraflat. Less is known

for the Littlewood polynomials. For the Rudin-Shapiro polynomials (known also as

simply Shapiro polynomials), which are a subset of the Littlewood polynomials, it

is known that they satisfy the upper bound of α2 =
√

2 [11], but no known sequence

satisfies the lower bound. Rudin-Shapiro polynomials are defined as

P0(z) = 1

Q0(z) = 1

Then the rest are defined inductively

Pn+1 = Pn(z) + z2n

Qn(z)

Qn+1 = Pn(z)− z2n

Qn(z)
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From the parallelogram law |α + β|2 + |α− β|2 = 2(|α|2 + |β|2) we see that

|Pn+1(z)|2 + |Qn+1(z)|2 = |Pn(z) + z2n

Qn(z)|2 + |Pn(z)− z2n

Qn(z)|2

= 2(|Pn(z)|2 + |Qn(z)|2)

Since |P0(z)|2 + |Q0(z)|2 = 2, the above recursion means that |Pn(e2πix)| ≤
√

2N1/2,

where N = 2n. This means that the upper bound flatness condition of the Rudin-

Shapiro polynomials is satisfied by α2 =
√

2. However, P2k+1(−1) = 0, so there is

no α1 > 0 that satisfies the lower bound flatness condition.

3.2 Littlewood’s Problem

So we start by investigating some of the behavior of Littlewood polynomials following

the logic used in [2], [3]. If |z| = 1, then z = 1/z and since c−k = c∗k we get

‖f‖44 =
∥∥∥f(z)f(z)

∥∥∥2

2

=

∥∥∥∥∥
n−1∑

k=1−n

ckz
k

∥∥∥∥∥
2

2

= |c0|2 + 2
n−1∑
k=1

|ck|2

= n2 + 2
n−1∑
k=1

|ck|2

This implies
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‖f‖4√
n

=
1√
n

(
n2 + 2

n−1∑
k=1

|ck|2
)1/4

=

(
1 +

1

n2
2
n−1∑
k=1

|ck|2
)1/4

≤
(

1 +
1

n2
2(
n

2
)

)1/4

=

(
1 +

1

n

)1/4

< 1 +
1

4n

Therefore, to show that long Barker sequences don’t exist, it suffices to show that

for all large n, ‖f‖4 ≥
√
n + 1

4
√
n
, whenever f ∈ Ln. The following theorem tells

us that if there exist longer Barker sequences, then the existence of flat Littlewood

polynomials follows. Conversely, if sequences of flat Littlewood polyomials do not

exist, then no long Barker sequences exist.

Theorem : If f is a Littewood polynomial of degree n− 1 such that the coefficients

form a Barker sequence, then

α1 +O

(
1

n

)
≤ |f(z)|√

n
≤ α2 +O

(
1

n

)

where |z| = 1, α1 =
√

1− θ = 0.524774875..., α2 =
√

1 + θ = 1.31324459..., and

θ = sup
t>0

sin2 t

t
= 0.7246113537...
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Proof:

Assume f is Littlewood polynomial of degree n−1 and n > 13 and write

n = 4N2 = 4m. Since the coefficients of f form a Barker sequence of

even length, we know that ck = −cn−k, which leads to the following

|f(eit)|2 =

(
n−1∑
k=0

ak+1e
ikt

)(
n−1∑
k=0

ak+1e
−ikt

)

= n+
n−1∑
k=1

ck(e
ikt + e−ikt)

= n+ 2
n−1∑
k=1

ck cos(kt)

= n+ 2
4m−1∑
k=1

ck cos(kt)

= n+ 2
2m−1∑
k=1

ck[cos(kt)− cos((n− k)t)]

Using the fact that cos(v)− cos(u) = −2 sin((u+ v)/2) sin((u− v)/2) we

get

|f(eit)|2 − n = 2
2m−1∑
k=1

ck[−2 sin

(
kt+ (4m− k)t

2

)
sin

(
kt− (tm− k)t

2

)

= 2
2m−1∑
k=1

ck[−2 sin(2mt) sin((k − 2m)t)]

= 4 sin(2mt)
2m−1∑
k=1

ck sin((2m− k)t)
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Since c2j = 0

|f(eit)|2 − n = 4 sin(2mt)
m∑
k=1

c2m−2k+1 sin((2k − 1)t)

Dividing both sides by n = 4m we get

∣∣∣∣ |f(eit)|2

n
− 1

∣∣∣∣ =

∣∣∣∣4 sin(2mt)
∑m

k=1 c2m−2k+1 sin((2k − 1)t)

4m

∣∣∣∣
≤ | sin(2mt)|

m

m∑
k=1

| sin((2k − 1)t)|

≤ θm

where

θm = max
0≤t≤2π

| sin(2mt)|
m

m∑
k=1

| sin((2k − 1)t)|

To compute θm define φm and ψm as follows

ψm = max
0≤t≤π/4

| sin(2mt)|
m

m∑
k=1

| sin((2k − 1)t)|
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and

ψm = max
0≤t≤π/4

| sin(2mt)|
m

m∑
k=1

| cos((2k − 1)t)|

so θm = max{φm, ψm}. Note that the sum in both equations is the

midpoint approximation of the integral, i.e.,

1

m

m∑
k=1

|f((2k − 1)t)| ≈
∫ 1

0

|f(2mtx)|dx

The error of each approximation per interval, assuming no cusps occur in

the inverval, is O
(

1
m3

)
, making the total error O

(
1
m2

)
. If a cusp occurs

in the interval, the worst case is when the cusp occurs at the midpoint.

If a cusp occurs in the interval, the error is O(m). Thus the error for

the approximation is O
(

1
m2 ·m

)
= O

(
1
m

)
. Therefore,

φm = max
0≤t≤π/4

| sin(2mt)|
∫ 1

0

| sin(2mtx)|dx+O

(
1

m

)
≤ sup

a≥0
| sin(a)|

∫ 1

0

| sin(ax)|dx+O

(
1

m

)

Letting a = kπ + y, then
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φm = sup
k≥0

max
0≤y<π

| sin(kπ + y)|
∫ 1

0

| sin((kπ + y)x)|dx+O

(
1

m

)
= sup

k≥0
max
0≤y<π

| sin(kπ + y)|
kπ + y

∫ kπ+y

0

| sin(x)|dx+O

(
1

m

)
= sup

k≥0
max
0≤y<π

sin(y)

kπ + y

(
k

∫ π

0

sin(x)dx+

∫ y

0

sin(x)dx

)
+O

(
1

m

)
= sup

k≥0
max
0≤x≤π

(2k + 1− cosx) sinx

kπ + x
+O

(
1

m

)
= max

0≤x≤π

(1− cosx) sinx

x
+O

(
1

m

)
= 0.6639534894...+O

(
1

m

)

Similarly,

ψm = max
0≤t≤π/4

| sin(2mt)|
∫ 1

0

| cos(2mtx)|dx+O

(
1

m

)
≤ sup a ≥ 0| sin(a)|

∫ 1

0

| cos(ax)|dx+O

(
1

m

)
= sup

n≥0
max

−π/2≤x≤π/2

(2n− sinx)| sinx|
nπ + x

+O

(
1

m

)
= max

0≤x≤π/2

sin2 x

x
+O

(
1

m

)
= 0.7246113537...+O

(
1

m

)

Since

∣∣∣∣ |f(eit)|2

n
− 1

∣∣∣∣ ≤ θm
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The theorem follows.

QED.

3.3 Mahler’s Problem

Another problem associated with Barker sequences is the problem of maximizing

‖f‖0
‖f‖2

. By the three properties of norms developed in the previous section, this ratio

will always be less than or equal to 1. This is the so called Mahler problem. Again,

for unimodular polynomials, this problem has been solved; meaning that for any

ε > 0, there exists a unimodular polynomial such that
‖f‖0
‖f‖2

> 1− ε. For Littlewood

polynomials, the largest ratio known is given by the polynomial with coefficients

from the 13 long Barker sequence above, with the ratio of 0.98636598.... As with

the previous theorem, Barker sequences solve this problem. If long Barker sequences

exist, this ration gets closer to unity. And, again, if it can be proved that for some

N , all Littlewood polynomials of degree k > N , then
‖f‖0
‖f‖2

< 1− ε for some ε, then

there are only a finite number of Barker sequences.

Theorem: For a Littlewood polynomial of degree n − 1, with coefficients forming

an n long Barker sequence, then
‖f‖0
‖f‖2

> 1− 1√
n

Let f(z) =
∑n−1

k=0 ak+1z
k, such that{ak} is a Barker sequence. By Parse-

val, ‖f‖22 = n, thus ‖f‖2 =
√
n. Also, since we are interested in large n,
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assume n > 13, thus n = 4N2. Since we define c−k = c∗k, we get

‖f‖44 =
∥∥∥f(z)f(z)

∥∥∥2

2

=

∥∥∥∥∥
n−1∑

k=1−n

ckzk

∥∥∥∥∥
2

2

= n2 + 2
n−1∑
k=1

|ck|2

In the above sum, there are n − 2 summands with n/2 odd k. Since

c2j = 0, because n even, and |c2j+1| = 1, so the sum equals n/2. This

implies

‖f‖44 = n2 + n

This gets us

∫ 1

0

(
|f(e(t))|2

n
− 1

)
dt =

∫ 1

0

(
|f(e(t))|4

n2
− 2
|f(e(t))|2

n
+ 1

)
dt

=
‖f‖44
n2
− 2
‖f‖22
n

+ 1

=
n2 + n

n2
− 2

n

n
+ 1

=
1

n
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Next, since log t ≤ t − 1, letting t = a/b, with a > b > 0, we get a−b
b
≥

log a − log b. Letting a(t) = max
{
|f((t))
n

, 1
}

and b(t) = min
{
|f((t))
n

, 1
}

,

hence

∫ 1

0

(
|f(e(t))|2

n
− 1

)2

dt ≥
∫ 1

0

b(t)2(2 log |f(e(t))| − log n)2dt

This integral, combined with the above calculations and the theorem in

the previous section yields

1

nα2
1

+
1

n2
≥
∫ 1

0

(2 log |f(e(t))| − log n)2dt

where α1 = 0.52477..., from the previous section’s theorem. Using

Schwarz’s inequality yields the following

∫ 1

0

|2 log |f(e(t))| − log n|dt ≤ 1

α1

√
n

+O

(
1

n3/2

)
∫ 1

0

2 log |f(e(t))| − log ndt ≥ − 1

α1

√
n

+O

(
1

n3/2

)
∫ 1

0

log |f(e(t))|dt ≥ log
√
n− 1

2α1

√
n

+O

(
1

n3/2

)

Since 1/2α1 = 0.9527895... and applying the exponential to each side of

the above eqn implies
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‖f‖0 ≥
√
n− 1

2α1

+O

(
1

n3/2

)

Further implying

‖f‖0√
n
≥ 1− 1

2α1

√
n

+O

(
1

n3/2

)
> 1− 1√

n

QED
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Chapter 4

Physical Application to Radars

4.1 Introduction to Radar Systems

A radar system uses the electromagnetic spectrum to determine the speed and dis-

tance of a target. A broader development and discussions of the following topics

can be found in [9]. The distance from the radar system and the target called the

range is given by the equation, R = 1
2
Cpτ . Here Cp denotes the radar signal velocity

of propogation and τ is the time it takes for the echo of a pulse to reach the radar

system; τ is, also, called the delay. Since the radar signal must travel to the target

and back to the radar, the equation needs to divide by 2.

To determine the speed at which the target is traveling at the time the signal reaches

the target takes a little more thought. Imagine the signal as a sine wave, with lead-

ing peak A. Let t0 be the time A leaves the radar; let R0 be the range of the target

at time t0; and let ∆t be the time it takes for the signal to reach the target. This

yields Cp∆t = R0 + v∆t, where v is the velocity at which the target is traveling.

Thus ∆t = R0

Cp−v . Now let t1 be the time that A comes back to the radar. This

yields t1 = t0 + 2∆t = t0 + 2R0

Cp−v .

If B it the peak just behind A, then the time that B returns to the radar is given
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by t2 = t0 + T + 2R1

Cp−v , where R1 is the target location at the time B leaves the

radar. If T is the period of the sine wave, then R1 = R0 + vT . Thus the period of

the received sine wave is given by

TR = t2 − t1 = t0 + T + 2(R0+vT )
Cp−v − (t0 + 2R0

Cp−v ) = T Cp+v

Cp−v

Since the frequency of a signal is given by 1/T , then the frequency of the received

signal is

fR = f0
1−v/Cp

1+v/Cp

Since electromagnetic propogation is always much faster than target velocities, we

get the following approximation.

fR = f0
1−v/Cp

1+v/Cp
= f0(1− v/Cp)(1− v/Cp + (v/Cp)

2 − ...) ≈ f0(1− 2v/Cp)

The last approximation is because v/Cp >> (v/Cp)
2. This approximation is rewrit-

ten as

fR ≈ f0(1− 2v/Cp) = f0 − 2v
Cp/f0

= f0 − 2v/λ

Here λ is the trasmitted wavelength. Hence the Doppler shift is defined as
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fD = fR − f0 = −2v/λ.

4.2 Matched Filter

A filter that maximizes the signal to noise ratio (SNR) of the received radar signal is

called a matched filter. To study this filter, I will examine a basic narrow bandpass

signal and it’s envelope. A basic narrow bandpass signal, with a bandlimit of 2W

and carrier frequence ±ωc, is given by

s(t) = g(t) cos(ωct+ φ(t)) (4.1)

Here g(t) is called the envelope of the signal and φ(t) is the instantaneous phase of

the signal. It is convenient to write s(t) in various ways depending on the analysis

being done. Writing gc(t) = g(t) cos(φ(t)) and gs(t) = g(t) cos(φ(t)), we can write

s(t) = gc(t) cos(ωct)− gs(t) sin(ωct) (4.2)

The equation (4.2) is called the canonical form of the signal. Writing the complex

envelope of the signal as u(t) = gc(t) + igs(t), where i =
√
−1, we get a third form

of the signal

s(t) = <(u(t)eiωct) (4.3)

In (4.3), ωc is chosen such that u(t)eiωct = s(t) + iŝ(t), where
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ŝ(t) = s(t) ∗ 1

πt
=

1

π

∫
R

s(τ)

t− τ
dτ

the Hilbert transform of s(t).

Now, onto the development of a matched filter. The model used is the signal s(t)

with additive white Gaussian noise, with the two sided power spectral density N0/2

added to it. We need to develop the filter, h(t) (or H(ω), such that

(
S

N

)
out

=
|s0(t0)|2

n2
0(t)

(4.4)

is maximized at some delay t0 and where s0(t) is the filtered signal. Thus,

s0(t0) =
1

2π

∫
R
H(ω)S(ω)eiωt0dω (4.5)

Also, the mean squared error, n2
0(t), which is independent of t and

n2
0(t) =

∫
R
|H(ω)|2dω (4.6)

Putting (4.5) and (4.6) together we get

(
S

N

)
out

=
1

πN0

|
∫

RH(ω)S(ω)eiωt0dω|2∫
R |H(ω)|2dω

(4.7)

≤ 1

πN0

∫
R |H(ω)|2dω

∫
R |S(ω)|2dω∫

R |H(ω)|2dω
(4.8)
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=
1

πN0

∫
R
|S(ω)|2dω (4.9)

=
2E

N0

(4.10)

By Parseval

E =

∫
R
|s(t)|2dt =

1

2π

∫
R
|S(ω)|2dω (4.11)

The equation (4.8) is due to Cauchy-Schwarz, which states

∣∣∣∣∫
R
H(ω)S(ω)eiωt0dω

∣∣∣∣2 ≤ ∫
R
|H(ω)|2dω

∫
R
|S(ω)|2dω (4.12)

with equality if and only if H(ω) = KS∗(ω)e−iωt0 for some constant K. Thus, ( S
N

)out

is maximized when h(t) = Ks∗(t0 − t). For h(t) to be causal, t ≥ d, where d is the

duration of the signal s(t). With matched filtering, ( S
N

)out = 2E
N0

, which depends

only on the energy, E, of the signal.

Lastly, it should be noted that if h(t) is the filter matched to the signal s(t), then

s0(t) = s(t) ∗ h(t) =

∫
R
s(τ)s∗(t0 − (t− τ))dτ (4.13)

This is the autocorrelation function for the signal s(t) whenever K = 1 and t0 = 0.

4.3 Development of the Ambiguity Function

From (4.3) we see that s(t) = <(u(t)eiωct) = 1/2(u(t)eiωct + u∗(t)e−iωct). Using this

fourth representation of the signal s(t), then
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s0(t) =

∫
R
s(τ)Ks∗[t0 − (t− τ)]dτ

=
K

4

∫
R
[u(τ)eiωcτ + u∗(τ)e−iωcτ ]

[u∗(t0 − (t− τ))e−iωc(t0−(t−τ)) + u(t0 − (t− τ))eiωc(t0−(t−τ))]dτ

=
K

4

∫
R
[u(τ)u∗(τ − t+ t0)e

iωc(t−t0) +

u∗(τ)u∗(τ − t+ t0))e
−i2ωcτeiωc(t−t0) +

u(τ)u(τ − t+ t0))e
i2ωcτe−iωc(t−t0) +

u(τ)∗u(τ − t+ t0)e
−iωc(t−t0)]dτ

=
K

2
<[eiωc(t−t0)

∫
R
u(τ)u∗(τ − t+ t0)dτ ] +

K

2
<[eiωc(t−t0)

∫
R
u∗(τ)u∗(τ − t+ t0)e

−i2ωcτdτ ]

The last equality is due to the fact that in the third equality, the first and last

summands are complex cojugates of each other, as are the two middle summands.

Also, the second summand in the last equality is the Fourier transform of u∗(τ)u∗(τ−

t + t0) evaluated at 2ωc. Since the spectral components of u(t) are cutoff below ωc

this second term can be ignored. This implies

s0(t) ≈
K

2
<[eiωc(t−t0)

∫
R
u(τ)u∗(τ − t+ t0)dτ ]

= <{[1
2
Ke−iωct0

∫
R
u(τ)u∗(τ − t+ t0)dτ ]eiωct0}

To get a handle on the notation, define u0(t) = Ku

∫
R u(τ)u∗(τ − t + t0)dτ , where

Ku = 1/2Ke−iωct0 . This gets us
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s0(t) ≈ <{u0(t)e
iωct}

Now we’ll see what happens when Doppler effects are accounted for. Consider u(t)

to have the doppler effect ν and define uD(t) = u(t)ei2πνt. Letting Ku = 1 and

t0 = 0, we get

u0(t, ν) =

∫
R
u(τ)ei2πντu∗(τ − t)dτ

In abuse of the notation reverse the rolls of t and τ in the above equation and

changing the sign of τ and define

χ(τ, ν) =

∫
R
u(t)u∗(t+ τ)ei2πνtdt

The ambiguitiy function (AF) is defined as |χ(τ, ν)|. A positive value of τ denotes

a target at a distance from the radar. A positive value of ν implies that the target

is moving towards the radar. The AF is used to analyze radar signals. Signals

are searched for to have certain AF properties. Unfortunately, there is no inverse

function for the AF. In other words, it is not as straight forward as finding an AF

with the desired properties, then inverting to find u(t). Thus, various signals u(t)

are studied in the hopes of finding on with an AF with the desired properties.
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4.4 Properties of the Ambiguity Function

Four main properties exist that play an important roll in describing the ambi-

guity function. They describe certain limitation and trade offs when looking for

an appropriate radar signal. In investigating these properties, I will assume that

E =
∫

R |u(t)|2dt = 1.

Property 1 |χ(τ, ν)| ≤ |χ(0, 0)| = 1

|χ(τ, ν)| =

∣∣∣∣∫
R
u(t)u∗(t+ τ)ei2πνtdt

∣∣∣∣2
≤

∫
R
|u(t)|2dt

∫
R
|u∗(t+ τ)ei2πνt|2dt

=

∫
R
|u(t)|2dt

∫
R
|u∗(x)|2dx

= EE

= 1

where x = t + τ . And since |χ(0, 0)| = |
∫

R u(t)u∗(t)dt| =
∫

R |u(t)|2dt = 1, property

1 follows.

Property 2
∫

R

∫
R |χ(τ, ν)|dτdν = 1

Let ν = −f , this implies χ(τ,−f) =
∫

R u(t)u∗(t + τ)e−i2πftdt. Letting β(τ, t) =

u(t)u∗(t + τ), then χ(τ,−f) is the Fourier transform of β(τ, t). So by Parseval,
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∫
R |β(τ, t)|2dt =

∫
R |χ(τ,−f)|2df =

∫
R |χ(τ, ν)|2dν. This implies

∫
R

∫
R
|β(τ, t)|2dtdτ =

∫
R

∫
R
|χ(τ, ν)|2dνdτ = V

Let t = t1 and t+ τ = t2 in the left hand side of the above equation, then

V =

∫
R

∫
R
|β(τ, t)|2dtdτ =

∫
R

∫
R
|u(t1)u

∗(t2)|2J(t1, t2)dt1dt2

where

J(t1, t2) =

∣∣∣∣∣∣∣∣
∂t1
∂t

∂t1
∂τ

∂t2
∂t

∂t2
∂τ

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 0

1 1

∣∣∣∣∣∣∣∣ = 1

Thus

V =

∫
R

∫
R
|u(t1)u

∗(t2)|2dt1dt2

=

∫
R

∫
R
|u(t1)|2|u∗(t2)|2dt1dt2

=

∫
R
|u(t1)|2dt1

∫
R
|u(t2)|2dt2

= EE

= 1

Proving property 2. This means that modulating a signal to lower the AF in one
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region of the (τ, ν) plane, the AF must rise in another.

Property 3 |χ(−τ,−ν)| = |χ(τ, ν)|

Let t1 = t− τ , then

χ(−τ,−ν) =

∫
R
u(t)u∗(t− τ)e−i2πνtdt

=

∫
R
u(t1 + τ)u∗(t1)e

−i2πν(t1+τ)dt1

= e−i2πντ
∫

R
u(t1 + τ)u∗(t1)e

−i2πνt1dt1

= e−i2πντ [

∫
R
u∗(t1 + τ)u(t1)e

i2πνt1dt1]
∗

= e−i2πντχ∗(τ, ν)

Taking the absolute value of both sides proves property 3. Thus, |χ(τ, ν)| is sym-

metric about the origin.

Property 4 If u(t)↔ |χ(τ, ν)|, then u(t)eiπkt
2 ↔ |χ(τ, ν − kτ)|.

Let u1(t) = u(t)eiπkt
2
, then u1(t)

AF↔ |χ1(τ, ν)|

A1(τ, ν) =

∫
R
u1(t)u

∗
1(t+ τ)ei2πνtdt

=

∫
R
u(t)eiπkt

2

u∗(t+ τ)e−iπk(t+τ)
2

ei2πνtdt
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=

∫
R
u(t)eiπkt

2

u∗(t+ τ)e−iπk(t
2+2tτ+τ)2ei2πνtdt

=

∫
R
u(t)u∗(t+ τ)e−iπk(2tτ+τ)

2

ei2πνtdt

=

∫
R
u(t)u∗(t+ τ)e−iπk(2tτ+τ)

2

ei2πνtdt

= e−iπkτ
2

∫
R
u(t)u∗(t+ τ)ei2π(ν−kτ)tdt

= e−iπkτ
2

χ(τ, ν − kτ)

Taking the absolute value of both sides proves property 4. Modulating u(t) by multi-

plying by eiπkt
2

is called linear phase modulation (LFM). In this signal the frequency

increases linearly with time. This results in better delay resolution, meaning that

uses LFM can tell how far away a target is with better accuracy.

4.5 Basic Radar Signals and Ambiguity of the Signals

A basic radar signal has an envelope, u(t) that is a square pulse of duration T , i.e.

u(t) =
1√
T

1[−T/2,T/2)(t)

The function 1E(t) = 1 whenever t ∈ E and is 0 whenever t 6∈ E. I analyze the AF

for this signal in two separate cases, when τ is positve and when it is negative. In

the case that 0 ≤ τ ≤ T ,

|χ(τ, ν)| =

∣∣∣∣ 1

T

∫
R
u(t)u∗(t+ τ)ei2πνtdt

∣∣∣∣
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=

∣∣∣∣∣ 1

T

∫ T/2

−T/2+τ

ei2πνtdt

∣∣∣∣∣
=

∣∣∣∣ 1

T2πiν
[e2πiνT/2 − e−2πiν(T/2−τ)

∣∣∣∣
=

∣∣∣∣ 1

T2πiν
e−πiντ [eπiνT (1−τ/T ) − e−πiνT (1−τ/T )

∣∣∣∣
=

∣∣∣∣sin [πiνT (1− |τ |/T )]

πTν

∣∣∣∣

Similarly, when −T ≤ τ < 0, then

|χ(τ, ν)| =

∣∣∣∣sin [πiνT (1 + τ/T )]

πTν

∣∣∣∣
=

∣∣∣∣sin [πiνT (1− |τ |/T )]

πTν

∣∣∣∣

Hence, for all −T ≤ τ ≤ T and muliplying by 1 = 1−|τ |/T
1−|τ |/T

|χ(τ, ν)| =

∣∣∣∣(1− |τ |/T )
sin [πTν(1− |τ |/T )]

πTν(1− |τ |/T )

∣∣∣∣

The purpose of multiplying by 1−|τ |/T
1−|τ |/T is to study what happens to the AF as ν

approaches 0. Since limx→0
sinx
x

= 1, we see that

|χ(τ, 0)| = 1− |τ |/T
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which is the autocorrelation of u(t) and is the triangular function which is zero at

τ ≤ −T , increasing to 1 at τ = 0, decreasing to 0 at τ ≥ T .

Along the Doppler axis, when τ = 0 the AF is

|χ(0, ν)| =
∣∣∣∣sin (πνT )

πνT

∣∣∣∣

a decaying sine wave with nulls at ν = n/T for all n ≥ 1.

The delay of this signal can be improved by LFM. Let

s(t) = u(t)eiπkt
2

with k = ±B
T

then by property 4 of the AF

|χ(τ, ν)| =
∣∣∣∣(1− |τ |/T )

sin [πT (ν ±B(τ/T ))(1− |τ |/T )]

πT (ν ±B(τ/T ))(1− |τ |/T )

∣∣∣∣

where |τ | ≤ T and zero elsewere. Thus the autocorrelation function of s(t) is given

by

|χ(τ, 0)| =
∣∣∣∣(1− |τ |/T )

sin [πBτ(1− |τ |/T )]

πBτ(1− |τ |/T )

∣∣∣∣
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This gives a better range resolution. For example, for the simple pulse u(t) with a

pulse width of T = 5µs, then ∆R = CpT/2 = (1/2)(3×108m/s)(5×10−6s) = 750m.

This resolution is not very good. Using this signal, to tell the difference between two

different targets, they would have to be more than half a mile apart. Any closer and

the range resolution blurs the two together. Modulating u(t) into s(t) with LFM

yields better range resolution based on the product TB, the pulse compression. If

TB = 100, range resolution reduces to 7.5m, an acceptable level for many purposes.

4.6 Barker Sequences in Radar Signals

In addition to LFM, another moduation scheme is phase coding. This is done by

dividing T into n equally spaced time units and changing the phase, instead of the

frequency, of the signal in each time unit. This signal is defined by

u(t) =
1√
T

n∑
j=1

uj1Ej
(t)

where Ej is the jth interval in the [−T/2, T/2), which is divided into n equally

spaced intervals, and uj = eiθj . You can see where this is going. Letting θj ∈ {0, π},

then uj = ±1. Also, analyzing the AF can be very difficult, which leads to the

study of the autocorrelation function. The goal is to find a signal with a spike in

the autocorrelation function at τ = 0 and zero everywhere else. This, however, is
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impossible by property 2 of the AF (the autocorrelation function is simply χ(τ, 0)).

Because of this, the search is made for a signal that has a narrow main lobe with

side lobes as small as possible. Making the obvious choice of {uj} a Barker sequence.

The autocorrelation of a signal u(t) is defined by

Ru(τ) =

∫
R
u(t)u∗(t+ τ)dt

Note that for any real signal Ru(τ) = Ru(−τ). I’m going to make some simplifying

adjustments to the above signal to make the notation a little easier to cope with.

I’m going to ignore the normalizing factor, let T = n, and divide the interval [0, n)

into n itervals with unit length, making Ej = [j − 1, j). These simplifications yield

Ru(τ) =

∫
R
u(t)u∗(t+ τ)dt

=

∫
R

(
n∑
k=1

uk1Ek
(t)

n∑
j=1

uj1Ej
(t+ τ)

)
dt

=
n∑
k=1

n∑
j=1

ukuj

∫
R

1Ek
(t)1Ej

(t+ τ)dt

The integral
∫

R 1Ek
(t)1Ej

(t+τ)dt = 1−|j−τ−k| whenever |j−τ−k| ≤ 1 and is zero

otherwise. Note that this integral takes a maximum when j − τ = k ⇒ τ = j − k.

Thus, the integral creates a function of τ that is a triangle with a center at j − k

and base width of 2, so the autocorrelation function only needs to be computed for
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τ an integer. For non-integer values, R(τ) is the linear interpolation of the integer

values between the a = bτc, the integer floor of τ , and a + 1. Setting τ = s + η,

where s an integer and 0 ≤ η < 0. Therefore,

Ru(τ) = Ru(s+ η)

=
n∑
k=1

n∑
j=1

ukuj

∫
R

1Ek
(t)1Ej

(t+ s+ η)dt

= (1− η)cs + ηcs+1

where for any integer s, cs =
∑n−s

i=1 uiui+s. Therefore, to compute the continuous

autocorrelation, Ru(τ), it is enough to only compute the discrete aperiodic auto-

correlation function on the sequence {ui}n=1. Since we are looking for a sequence

that minimizes non-zero delays in the autocorrelation function, Barker sequences

are sought after. The more general formula for the autocorrelation function is

Ru(τ) =
1

bT
[(b− η)cs + ηcs+1]

where b = T/n and τ = bs + η, where s is an integer and 0 ≤ η < b. The shape of

this autocorrelation function, in contrast to the autocorrelation of a simple pulse,

obviously has better range resolution. The autocorrelation of a basic pulse is one

wide triangle, with the base being the width of the pulse. Whereas for a phase

coded pulse using a Barker sequence, the autocorrelation has a main lobe, where

the function attains its maximum value, with a width of T/n and minimal height

side lobes. In fact the ratio of side lobes and the main lobe will be less than 1/n.
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