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Abstract

This dissertation serves to present the research conducted on sensor placement optimisation
(SPO) using sensitivity analyses of virtual experiments in order to design virtual inverse
problems. Two classes of SPO methods are considered namely mode-based and mode-free
approaches. The mode-based approaches make use of SIMPLS and SVD to extract useful
data by examining the correlation between the target variables (characterising variables)
and the sensor measurement variables, while the mode-free approaches eliminate the need of
spending the extra time required to extract modes, which ultimately leads to successful sensor
placement for solving inverse problems. The aim of the mode-free approach is to maximise the
variance explained subject to uniqueness of the information of each sensor. Both approaches
aim to maximise the potential of an experimental setup to solve an inverse problem by using
the right number of sensors and placing them at the optimal spatial positions. SPO is not only
capable of designing an experiment but it is also capable of classifying the well-posed or ill-
posed nature of an existing experiment that can be modelled, which saves both time and cost.
The approach followed in this study was to design a simple virtual inverse problem for which
the well or ill-posedness of the problem can be controlled. Numerous virtual experiments
were conducted that varied from well-posed to severely ill-posed to allow for rigorous testing
of the various approaches. The effect of model error and stochastic noise on ability to reliably
place sensors is also investigated.
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Chapter 1

Introduction

The accuracy of the sensors, the variations of sensor types, sizes and application have im-
proved over recent years [1]. Sensing various properties have become possible, for example,
displacement, level, velocity, acceleration, force, strain, pressure, light, humidity, temperature
and radiation. Hence, sensing has become accessible in many applications in various fields due
to advancements in technology. Examples include GPS in a vehicle, gas bio-sensor and envi-
ronmental monitoring [2, 3, 4]. In structural engineering, sensors are often used for vibration
monitoring, nondestructive testing (NDT), material characterisation and crack identification
[5, 6, 7, 8]. Traditionally, sensors were placed sparsely solely on engineering judgement and
intuition. In cases where engineering judgement and intuition are limited, an exhaustive
sensor placement strategy is often employed [9]. This often leads to time-consuming and
expensive sensing solution strategies.

This thesis serves to present the results and effectiveness of sensor placement optimisation
(SPO) for inverse experimental design [10]. Inverse experimental design is the construction of
an experiment to estimate model parameters, i.e., the aim is to construct an experiment that
will generate experimental data to identify model parameters, a.k.a. inverse problem. An
inverse problem is concerned with computing causal variables that result in a known response
for a given model or process. Therefore, the output of a model or process is known while
the input needs to be determined. This is in contrast to the usual specification of the causal
variables and computing the response, which is often referred to as the forward problem.
Inverse problems are usually cast as a minimisation problem, with the aim to minimise the
difference between the known response and estimated response for a specified set of causal
variables. This error will be referred to as the inverse error to ease the discussion that follows.
In the context of SPO, the casual variables of an inverse problem refers to the information we
aim to infer from the sensors, referred to as target variables in this study, while the response
is sensed using sensors, referred to as sensor measurement variables.

As a first approach, we could merely minimise the inverse error for different choices of
sensor combinations and find the combination that solves the inverse problem most accurately
with computational efficiency using some minimisation strategy. However, this approach is
not tractable as the computational cost to compute the inverse error requires an inverse
problem to be solved often multiple times, as the inverse error function is often multi-modal.
Hence, immense efforts were put in to develop formulations for optimal sensor placement over
the last four decades. Initial efforts were contributed by control engineers [11]. The aim of
sensor placement optimisation (SPO) within the context of inverse experimental design is to
identify the relevant information to solve an inverse problem. This is usually done virtually by
virtual experimental design using simulation to replace the physical experiment. This means
that SPO should be capable of indicating which sensors at which spatial locations should give
the best sensitivities w.r.t. estimating model parameters. Hence, SPO does not only place
sensors but it also assesses the quality of the experiment before it is physically constructed
and assembled albeit only virtually. More importantly, when sensors are optimally placed,
this allows for experiments to be quantitatively compared. In addition, engineers are enabled
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to critically assess the implications of optimal sensor placement, sensor types within the
context of model identification.

The formulations that support SPO are mostly based on sensitivity analysis [12] conducted
in the form of a sensitivity matrix such as the Fisher information matrix (FIM) JTJ [13].
Here, J denotes Jacobian, which is the first partial derivative of the residual vector, that
defines the system, w.r.t. target variables. In SPO the system is usually given by the
difference between the known response and estimated response i.e. the residual vector [14].
For inverse problems, FIM has been used to optimise the sensor placement by maximising
the sensitivity of sensor measurements [15]. Instead of using the Jacobian of the residual
vector, the mode shapes have also been used to construct the FIM [16]. Although the FIM
can be constructed using numerous sources of information depending on the application, a
salient feature of FIM is the fact that it captures the information measured by the sensors
[17], which can then be directly used in the construction of some optimisation criteria. There
exist various ways proposed to quantify the information in the FIM. Some optimality criteria
and scalar values based on FIM for SPO are listed:

� Determinant (D-optimality): determinant of a matrix is defined as the product of
eigenvalues of the matrix. Hence, maximisation of determinant of a FIM maximises
information contained in the matrix [18, 19].

� Condition number: condition number can be defined as the singular value decomposi-
tion (SVD) [21, 20] ratio between the largest and the smallest singular values. Thus,
minimising the condition number of FIM can maximise the sensor configuration [19].

� Norm or trace: maximising the norm [23, 24] or trace [25] of Fisher matrix results in
the minimum possible values of estimation error [27].

Although FIM is a powerful strategy to examine the sensitivity of target variables w.r.t.
measurement variables, its major deficiency is that the information obtained in the FIM is
localised and therefore only applicable for small range target variables [26]. This can be
problematic for sensor optimisation since the experiment for parameter identification can be
carried out in different domains of the target variables. Although impractical, an approach
that recomputes the FIM as the target variable is resolved, has been proposed [28]. FIM is
not only restricted to sensor optimisation but also is widely used to model Gaussian processes
(GP) [29, 30] as well as non-Gaussian processes [31, 32]. In this study, we will define these
formulations as mode-free formulations which do not require any modes to be extracted
from information or covariance matrices. On the other hand, we also investigate mode-based
formulations that decompose information or covariance matrices into modes that allow us to
place sensors optimally.

Due to the discrete nature of sensor placement, approaches to solve both mode-based and
mode-free formulations often include some binary optimisation strategy. Binary optimisation
strategies include meta-heuristic approaches [26]; exhaustive combinatorial search [36], sim-
ulated annealing (SA) [37] and genetic algorithms (GAs) [38, 39], with GAs the most widely
used to optimally place sensors [40, 41]. Note that although sensor placement approaches cen-
tred around convex optimisation strategies have been researched [42], this study is restricted
to binary GA optimisation strategies when large systems are considered as exhaustive search
is intractable. In addition, a newly proposed sensor addition approach is also considered that
scales well over problem dimensionality and found to be competitive when compared against
both exhaustive search and GA strategies.

The existence of noise is unavoidable in real experiments and carelessly placed sensors
can often capture excessive amounts of noise. Therefore, although sensors can deliver helpful
information to solve inverse problems, if signal to noise ratio is too low the chosen sensors
will perform poorly. The signal to noise ratio also varies with sensor type as the sensor
accuracy varies. Hence, sensor types with variations in measurement accuracy may dominate
the type and spatial location of a sensor. Fortunately, SPO can accommodate some of the
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differences between real and virtual experiments to place practically relevant sensors and not
only idealistic sensors in a noise free world.

The focus of this study is to propose and investigate various strategies to optimally place
sensors. An example of an experimental setup that involves the characterisation of a material
model is considered. Here, sensors need to be placed to capture information regarding the
mechanisms in the material model that needs to be characterised at spatial locations not
hampered by noise. This implies the signal to noise ratio should be as great as possible
and at the same time, the sensors should be able to convey independent information to
increase the chances for success in solving the inverse problem. A number of computationally
tractable, yet, accurate and robust multi-purpose formulations (that act as proxies for solving
the actual inverse problem), which avoid the localisation issues of the FIM by considering
ranges of target variables are introduced. In order to avoid localised sensitivity issues, sample
variance reduction strategies are considered [33], specifically, Latin hypercube sampling (LHS)
[34] is considered in this study. These techniques increase the efficiency of sampling over a
target variable domain which ultimately place sensors that are relevant over the sampled
target variable domain.

Specifically, in Chapter 2 procedures to develop SPO formulations are presented. Var-
ious numerical techniques and statistical approaches are introduced to demonstrate their
relationship to inverse problems. Depending on whether the proxies require eigenvalues and
eigenvectors or not, SPO is divided into two parts:

1. mode-based formulations

2. mode-free formulations

Chapters 3-5 present and discuss the results of the mode-based formulations. In Chapter
3, various objective functions formulated using partial least square (PLS) [35] or singular
value decomposition (SVD) [21] and numerous data scaling methods are proposed and their
principles are discussed in depth. In Chapter 4, a combination of data scaling methods and
objective functions are tested on a more complex problem to examine their generality and
robustness. In Chapter 5, the promising proxies were tested using the simulation models
with different mesh sizes to quantify the effect of model errors, which are errors between a
simulation and reality that are always present to some degree, as each mesh is considered to
represent a model error to some degree.

The mode-free formulations are discussed in Chapter 6. The mode-free formulations are
developed by assembling the critical characteristics of the inverse problem assimilated in the
previous chapters related to the mode-based formulations. Most of the investigations con-
ducted for the mode-based formulations are repeated for the mode-free formulations and the
results compared. Mode-free formulations aim to maximise the ranks of covariance matrix
between the target and measurement variables as well as the variances of the sensor signals.
In Chapter 7, the effects of stochastic noise to both the mode-based and mode-free formula-
tions are presented and related to the well-posed nature of an experiment. Lastly, Chapter
8 introduces a modified version of the mode-free formulations called simplified mode-free
formulation (SMF) and its performance is investigated.

Finally, the study is concluded in Chapter 9 as well as recommendations for future research
given.
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Chapter 2

Methodology, Procedures and
Fundamental Investigations

In this chapter, the methodologies that were followed to develop the proxies for the inverse
problems are presented using a simple cantilever beam example and the procedures of the
complete investigations in the dissertation are also discussed in order to give the reader the
full views and the logical steps behind the various investigations. This chapter also deals
with the fundamental investigations which offer a clear understanding of the relationships
between the inverse problem and multi-variate statistical techniques.

2.1 Methodology

Before discussing the methodology for developing proxies, the simple cantilever beam problem
shown in Figure 2.1 is introduced. The aim of this experiment is to infer Young’s modulus E
from displacement u, stress σ and strain ε data [43]. This setup was deliberately chosen as it
is impossible to infer Young’s modulus from stress but strain and displacement are sensitive
to Young’s modulus. The model was built using finite element method (FEM) with eight-
noded elements with reduced Gauss points (i.e. 2×2 Gauss integration points are used). The
beam is 0.5 m high, 2 m long and 0.5 m thick. The 2D plane strain assumption was used
with the Poisson’s ratio, ν of 0.3. Young’s modulus of the beam, E would usually be 70 -
200× 109 Pa but is randomly manipulated between 105 - 107 Pa. The load applied at the tip
is 1000 N at the 37th node downwards while the left side of the beam is completely fixed.

From each manipulation of the displacements, u are measured at each node and the
stresses, σ and strains, ε are measured at each Gauss point indicated with crosses. This
implies that every time E varies u, σ and ε get remeasured and the measuring was done
over 100 times. Latin hypercube sampling (LHS) which is a random sampling strategy which
focuses on the coverage of the sampling domain was implemented to generate random E
values. Hence, it was possible to ‘uniformly’ evaluate the variable over its range [34]. In this

Figure 2.1: Simple cantilever beam bending problem.
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Figure 2.2: FEM measurement and target variables.

chapter, the finite element method (FEM) input variable E needs to be recovered from the
inverse problem which we will refer to as the ‘target variables’ and the sensor measurement
variables such as u, σ and ε are called ‘measurement variables’.

Since the displacements, stresses and strains are measured at all the nodes and Gauss
points, the measurement data contain 266 variables in total: (1) displacements, u: from the
1st to 74th variables, (2) stresses, σ: from the 75th to the 170th variables and (3) strains, ε:
from the 171st to 266th variables.

� Displacement, u has 74 variables since there are 37 nodes and each node involves 2
variables: displacements in x-direction, ux and y-direction, uy. ux always come before
uy for every node.

� Stress, σ has 94 variables since there are 32 Gauss points and each Gauss point involves
3 variables: normal stress in the x-direction, σx and y-direction, σy. Shear stress σxy.

� Strain, ε has 94 variables since there are 32 Gauss points and each Gauss point involves
3 variables: normal strains in the x-direction, εx, and y-direction, εy. Shear strain εxy.

The measurements were generated 100 times using random E values in the range (105 − 107

Pa). Therefore, the size of the measurement and target matrices is 100 by 1 and 100 by 266,
respectively (see Figure 2.2).

The methodologies of the development of the proxies for the inverse problems are illus-
trated in Figure 2.3. The processes started by creating a model of the experiment such as the
cantilever beam in FEM (Figure 2.1). By manipulating the target variables, data are gener-
ated that contain the measurements. The number of data points is controlled by the number
of elements in the finite element meshes to discretise the structure as well as the accuracy of
the simulation models. Next, a number of theoretically motivated proxies are tested. Since
the proxies should be capable of finding few sensitive sensors from large numbers of sensors,
it is considered as a classical variable reduction process combined with sensitivity analysis.
In this process, the proxies dictate the criteria on which sensors are considered appropriate
for the inverse problem results. It is critical to note the advantages of SPO using a model.
Whereas searching for sensors using data would only explain the correlations between the
measurement variables and the target variables, searching for sensors using models can ex-
plain the causalities between them since each of the target variables can be independently
manipulated.

The identified sensors are placed on the models and virtual measurements are obtained.
By performing inverse problems with the sensors, the target variables are recovered and they
are compared to the actual target variables that were randomly generated. It needs to be
made clear that the training data which are used to find sensors are different from the test
data which are for testing the performances of the proxies. For this reason, the E values
that are close to the limits are less likely to be trained as good as those in the middle of the
range. This can lead to two distinct types of test datasets: (1) creating datasets populated
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Figure 2.3: Methodologies for testing proposed proxies for the inverse problems.

mainly around the centres of the ranges using normal Gaussian distribution and (2) datasets
populated evenly over the range using LHS. Both training and train datasets use LHS in this
study since it tests the robustness of the technique. The main disadvantage of implementing
the normally distributed target variables for training is that the values close to the boundaries
rarely have chances for training. This also means the structures of the target variables are
strongly dependent on the confidence one has about the ranges of the target variables in the
training dataset.

2.2 Characteristics of inverse problems

In order to develop proxies to recover the essence of the measurement/target variable relation-
ship of inverse problems, it is required to know the characteristics of the measurement/target
variables for inverse problems. There are two main approaches that are considered in this
paper: mode-based formulations and mode-free formulations. Mode-based formulation is as
its name implies using numerical techniques which uses modes or eigenvalues while mode-free
formulation does not require mode but it only uses basic statistical approaches and linear
algebra techniques.

Since the aim of SPO is finding the optimal sensors which solve inverse problems, it is
required to know what sensors are preferred for the inverse problems and how to distinguish
the useful sensors from the unnecessary sensors. We consider the inverse problem errors as
the optimisation objective function values and search for the sensors which would give the
best recovery percentages (success rates) and minimum number of iterations to evaluate our
proxies. This is done on a small problem as it is too computationally demanding for large
problems that contain a large number of variables.

The cantilever beam problem with only one unknown target variable, E is therefore well
suited. The number of sensors required to obtain the exact recovery is one. This avoids having
to go through a large number of combinations to find the optimal sensor configuration. The
number of possible combination which can be made choosing one sensor at a time is equal to
the number of possible sensors (C266

1 = 266). Therefore, the inverse problem error based on
optimising the inverse problem is tractable, requiring 266 inverse problems to be optimised.
This process was done by minimising the error term, E which is given by

E =

Nvariables∑
i=1

(
(Xi,actual − X̄i)− (Xi − X̄i)

SDi

)2

=

Nvariables∑
i=1

(
Xi,actual −Xi

SDi

)2

, (2.1)

where SDi and X̄i are the SD (standard deviation) and mean value of the measurement
variables in training data. Note that both the training data and test data are generated in the
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Figure 2.4: Illustration of well-posed and ill-posed problems.

same target variable ranges and in the results, the mean and SD values of them are almost
identical). When finding the optimal sensors (training) the values of target variables are
known. However, when testing the found sensors, it is assumed that the values of the target
variables in the test data are unknown. Therefore, throughout the dissertation, the recovered
target variables from the inverse problems are considered to be successful if the percentage
errors between the actual values of target variables in the test data and the recovered values
are less than 1%.

It must be emphasized that although having the heuristic cut-off value of 1% makes it
convenient to indicate whether a sensor is appropriate or not for the inverse problems, the
inverse problem results are not actually binary but relate to the ill-posedness of a problem. An
ill-posed problem simply means it has a larger spread of answers than a well-posed problem
(see Figure 2.4). Similarly, the variance of a good sensor would be less than a poor sensor.
This is illustrated in the next section.

Note that the inverse problem uses the Z-score scaling as is often done in statistics. Z-score
scaling is defined as

xi =
xi − x̄i
SD(xi)

, (2.2)

where x̄i and SD(xi) are the mean and standard deviation of the ith design variable. Each
variable is scaled with a different mean and SD to be in the equally distributed range as
shown in Figure 2.5. The Z-score therefore normalises all variables to have the same mean
and SD of zero and one, respectively. However, extremely small standard deviation may
lead to normalisation of the variables which results in large Z-score value which makes a
variable become “deterministic”. Nonetheless, scaling is critical for minimisation of errors
since there is a huge difference in the orders of magnitude among u, σ and ε. Xi,actual is the
actual measurement from the test data which Xi needs to be close to during the minimisation
process. The error term, E is always a scalar function that can depend on a single variable
(univariate) or multiple variables (multivariate) depending on the number of sensors to be
placed. Since the cantilever beam problem only has one target variable and uses only one
sensor, E in this case is an univariate function. The minimisation of the E term was done
using Quasi-Newton [38, 44] and Nelder-Mead algorithms [45, 46] with maximum function
evaluations and number of iterations of 5000. The initial guess was set to be the logarithmic
mean of the range (i.e. 106 for E = 105 - 107 Pa) and this equally applies to all the inverse
problems presented in this study.

2.2.1 Inverse problems with Quasi-Newton algorithm

Quasi-Newton algorithm [38, 44] generally requires less number of iterations compared to
Nelder-Mead since it uses approximated Jacobian matrix whereas Nelder-Mead only searches
for minima or maxima of functions using function values. The recovery success rates and
numbers of iterations required for various sensors are shown in Figure 2.6(a). Each sensor has
various numbers of iterations and recovery rates. Note that the recovery rates are measured
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Figure 2.5: Effect of Z-score on data.

out of 100, 100% being the best possible success rate. The dotted lines on the figure indicates
the three distinct measurement classes: u, σ and ε, respectively. It is noted that the numbers
of iterations remain the same independent of the sensor selected. In turn, the recovery rates
vary significantly between selected sensors. Consider that the recovery rates of the three
classes of sensors (u, σ and ε) are studied separately in detail.

The displacement variables, u show that they have generally high recovery rates. This
means that u is definitely a function of E in this problem (see Figure 2.6(b)). Note that the
first ten measurement variables represent the fixed nodes of the cantilever beam. Therefore,
it is apparent that they are insensitive to any changes in E and are incapable of recovering
the target variables. Since the load is applied downwards at the tip of the beam, u in the
Y-direction (vertical direction) is more sensitive to E than u in the X-direction (horizontal
direction). This is demonstrated in Figure 2.6(b) by observing that the displacement vari-
ables in the Y-direction is consistently sensitive all over the beam. On the other hand, the
displacement variables in the X-direction on the neutral axis (sensor ID number: 13, 21, 29,
etc.) offer poor results. This is due to the horizontal displacement on the neutral axis being
effectively zero as there is no horizontal strain along the neutral axis. As the displacement is
measured further away from the root, the recovery rate improves slightly, although there is
no strain. Some axial displacement occurs further from the tip although the strain remains
zero. This clearly shows the role sensor placement plays but requires the problem to be well
understood. As mentioned in the previous section, success rate is defined for properly con-
verged solutions. Figure 2.7 shows the histogram of absolute percentage errors obtained from
the sensors u13 and u39 (see Figure 2.6(b)) which are horizontal displacements at the root
on the neutral axis and at the middle of the beam below the neutral axis, respectively. It is
evident that the performance of u13 is much worse than u39 allowing for a more well-posed
problem when u39 is considered.

The stress variables, σxx are shown in Figure 2.8(a). It is evident that all the σxx sensors
did not manage to recover any E values through the inverse problems. This was expected
since σxx is independent of the material as no prescribed displacements are applied to this
statically determinate problem. Equilibrium is resolved purely from a macroscopic force
balance without the need for a constitutive relation. In essence, the primary stress in bending
σxx is given by

σxx =
My

I
, (2.3)

where y, M and I are the perpendicular distance to the neutral axis, the moment around the
neutral axis and the moment of inertia. Therefore, the stress remains constant as the only
manipulating variable is E. This means that σ sensors are not ideal for the normal cantilever
beam inverse problem. Similarly, shear stress, σxy given by

σxy =
V Q

It
, (2.4)

can also be neglected since shear force V is identical along the entire length of the beam. Q,
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(a) Recovery rates and numbers of iterations for various sensors

(b) Recovery rates of displacement variables

Figure 2.6: Inverse problem results using Quasi-Newton algorithm; (a) recovery rates and
numbers of iterations for various sensors and (b) recovery rates of displacement variables.
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Figure 2.7: Variance of results of a good sensor and a poor sensor.

I and t denote the first moment of area, the moment of inertia and the width of the cross
section where σxy is computed.

The primary strain, εxx is shown in Figure 2.8(b). It is the first derivative of displacement

εxx =
δux
δx

. (2.5)

It depends on E since

ε =
E

σ
. (2.6)

Strains are inversely proportional to Young’s modulus. Shear strain, εxy is expressed as

εxy =
τ

2G
, (2.7)

where shear modulus, G is related to Young’s modulus, E through the Poisson’s ratio, ν as
given by

E = 2G(1 + ν). (2.8)

As depicted in Figure 2.8(b), it performs similarly to the displacement variables in charac-
terising E. Both εxx and εyy performed equally well, while εxy is shown to be less robust.
Note that the ε247, ε255 and ε262 perform the worst as depicted in Figure 2.8(b). Their spatial
location is depicted in Figure 2.9(a) and they have exceptionally low variance as depicted
in Figure 2.9(b). These three strain sensors are all located close to the tip of the beam as
depicted in Figure 2.9(a). εxx is a minimum due to the linearly varying nature of the bending
moment. Note from Figure 2.9(b) that there is a strain sensor with its variances between ε255
and ε262. However, its recovery rate is much higher than ε255 and ε262. This demonstrates
that even though a large variance in measurements is an indication of promising sensors, it is
not the only driving factor. Although the variance of the sensor in between ε255 and ε262 was
lower than the variance of ε262, the sensor might have specific information that ε262 could not
explain in terms of εyy.

2.2.2 Inverse problems with Nelder-Mead algorithm

Nelder-Mead [45, 46] is an unconstrained optimisation algorithm that does not use any gradi-
ent information and only optimises on function evaluations. Therefore, although Nelder-Mead
often requires larger numbers of iterations, it has a higher chance to find the global optimum
solutions in highly nonlinear problems compared to any gradient methods. Thus, the num-
bers of iterations and recovery rates of the sensors using Nelder-Mead algorithm are shown
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(a) Recovery rates of stress variables

(b) Recovery rates of strain variables

Figure 2.8: Inverse problem results using Quasi-Newton algorithm; (a) the recovery rates of
stress variables and (b) strains variables.
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Figure 2.10: Recovery rates and numbers of iterations for various sensors.

in Figure 2.10 and the recovery rates of all the u and ε sensors are consistently 100% except
for the σ sensors which are not related to E. Since it is difficult to see the difference in
recovery rates and number of iterations due to the robustness of the optimisation algorithm,
the complexity of the problem needs to be increased.

In order to ramp up the complexity of the beam problem, the number of target variables
are increased. Note that the number of sensors should be equal to or more than the number of
the target variables (FEM input variables) to accurately recover results. It becomes compu-
tationally intractable to search through all possible combinations of sensors when increasing
the number of the target variables. Figure 2.11 illustrates how quickly the number of com-
binations of sensors grows with increase in the numbers of required sensors, k in Cnk where
n is the number of all the sensors. Note that the number of combinations is on a log10 scale.
It is apparent that the growth relationship is exponential which makes the computation of
large numbers of inverse problem error functions intractable for a large number of sensors.
Decreasing the total number of sensors n or the number of sensors in each combination k can
effectively decrease the number of possible combinations.

The more complex problem with 74 sensors is shown in Figure 2.12. This beam has
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Figure 2.11: Growth in the number of possible combinations with increase in the number of
sensors.

Figure 2.12: Beam bending problem with an extra spring to be identified and the less total
number of sensors.

13 nodes and 8 Gauss points which offers 26 displacement, 24 stress and 24 strain sensors.
A spring with varying stiffness of k1 = 1 − 100N/m is attached to the 13th node in the
horizontal direction. The range of Young’s modulus, E is increased to 107 − 1011Pa. As
E increases the effect of the weak spring k1 becomes trivial since the displacements of the
beam are highly dependent on the stiffness of the beam and not much on the spring stiffness.
The load is applied to the midpoint of the beam. By including the spring stiffness to be
recovered, the inverse problem is now required to recover two variables, namely E and k1.
To keep the problem tractable when solving the combinatorial inverse problems for all the
possible combinations with two sensors, the total number of sensors, n were reduced from 266
to 74 by doubling the size of meshes and got further reduced to 24 by only selecting specific
nodes. The selected nodes and Gauss points are indicated in dotted circles. Therefore, sensor
numbers 1 to 12 measure displacement u, from 13 to 18 measure stress σ and lastly, from 19
to 24 measure strain ε. The recovery success rates for this problem using Nelder-Mead are
graphically shown in Figure 2.13. Since the success rate is independent of the sensor order,
the graph is symmetric. Only the top half of the results are presented. Note that when both
sensors are stress sensors to give a sensor pair < σ, σ >, the success rate is zero since the
spring stiffness is too low to have any significant influence on the σ sensors.

As expected, when two of the same sensors are chosen, the amount of information is not
enough to recover any target variables. Note that when < σ, u/ε > sensor pairs are chosen,
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Figure 2.13: Recovery success rates for a more complex problem.
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they always perform exceptionally well. However, when < σ, σ > sensor pairs are chosen,
zero recovery percentages are obtained. This is indicative that σ sensors contain more or less
identical information. Yet, the single piece of information that σ sensors measure is valuable
which complements the information measured by u and ε. Thus, two displacement or strain
sensors without a stress sensor give poor results. The existence of the spring makes the
problem statically indeterminate. The implication is that the stress response is dependent
on the stiffness of the beam (i.e. E). Hence, the stress sensor is contributing towards the
problem. Note that u measured close to the root of the beam and ε measured close to
the tip of the beam perform much worse as they are less sensitive to E. For this problem,
the Quasi-Newton optimisation approach was unable to recover any target variables. It is
recommended to use a zeroth-order optimisation algorithm such as Nelder-Mead for a low
dimensional inverse problem such as this.

2.3 Development of mode-based formulation

In the previous sections, the two cantilever beam examples were presented and the character-
istics of the inverse problems were investigated. The aim is now to propose a number of proxy
objective functions that are effective in replacing the actual objective function to minimise
the inverse problem errors. In this section, the development of mode-based formulations is
discussed. The two numerical techniques used on which the proposed mode-based techniques
rely are partial least squares (PLS) [35, 47] and singular value decomposition (SVD) [21, 20].

SPO requires two types of datasets, namely the measurement variables X (u, σ and ε)
and the target variables Y (E and k1) which correspond to the sensors and information to
be inferred, respectively. PLS regression (PLSR) is a powerful technique which has inte-
grated features from both principal component regression (PCR) and multi-linear regression
[35]. Although PCR and PLSR reduce the number of variables by extracting sets of highly
correlated variables (mode) to a set of measurement variables, the difference between PLSR
and PCR is that PCR extracts the principal components independently from both sets of
target and measurement variables to construct directions, while PLSR extracts the princi-
pal components from the covariance matrix of X and Y to construct directions [49]. Both
PCR and PLSR deal with the multicollinearity within the X dataset due to mode extraction
following principal component analysis. Hence, linearly dependent information is handled
appropriately and need be of no concern as we develop sensor placement proxies.

SVD is a well-known numerical method often used in statistics and signal processing.
It decomposes a m × n matrix into a m × n left eigenvector matrix U , m × n rectangular
diagonal matrix S and a n×n right eigenvectors matrix V . The vectors generated from SVD
are orthogonal to each other. The information along a direction is independent of the other
directions. Although multicollinearity is addressed implying independent sensor, the numbers
of modes need to be chosen carefully. Too few modes would not extract enough information
from the datasets and too many extract noise from the data. Mode-based formulations would
require a step for selecting the number of modes that may be computationally demanding.
In this section, only mode-based formulations developed from PLS are considered, although
both PLS and SVD are considered at a later stage.

2.3.1 Simple cantilever beam

We now revisit the inverse problems of the simple cantilever beam example depicted in
Figure 2.1, which we solved using Nelder-Mead to obtain the best possible sensor placement
based on the ability of the optimisation algorithm to solve the inverse problem. The aim is
to consider proxy objectives that are computationally efficient but still capture essentially
the same information as the computational demanding actual objective that requires the
inverse problem to be solved. Figure 2.14(a) shows the recovery success rates of the sensors
in descending order when solving the inverse problem. Figures 2.14(b)-(f) depict potential
proxies, standard deviation, correlation coefficient [48] between X and Y , norm of Y residual
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and variance explained in the same order. This allows for convenient comparison between
the proxies and the desired performance. Recall that the only FEM input variable for this
problem was E and it did not affect σ. Therefore, the first 158 sensors with non-zero success
rates are the u and ε sensors. The rest are either the u at the fixed nodes or the σ sensors.

It was noticed earlier that standard deviation and variance may be appropriate indicators
to decide which sensors are suitable to solve an inverse problem since a sensor whose reading
does not vary as the system changes is never a good predictor. Note from Figure 2.14(b)
that the promising sensors have relatively large standard deviation. However, the prominent
mismatches between the results and the recovery rates depicted in Figure 2.14(a) are noticed
which means standard deviation alone is insufficient to be a promising proxy.

Figure 2.14(c) shows the correlation coefficients between the sensors and the FEM input
variable, E. The correlation coefficient, r [48] is given by

r =

∑N
i=1((xi − x̄)(yi − ȳ))√∑N

i=1(xi − x̄)2
∑N

i=1(yi − ȳ)2
, (2.9)

where N is the number of observations and the x and y are the sensor measurement variables
and target variables (FEM input variables), respectively. The mean of a variable is denoted
by placing a bar above the variable. It is evident from Figures 2.14(a) and (c) that sensors
that succeeded to recover the target variables once or multiple times have an equally high
correlation. The ten fixed nodes have no correlation to E and lastly, σ has an only slightly
higher correlation but it is much lower than the correlation of u and ε. Note that since the
correlation coefficient can vary from -1 to 1, their absolute values were plotted. The rationale
for only considering absolute values of the correlation coefficient is that the variation of the
measurement variables with respect to the manipulations of the target variable matters and
not whether they are directly or inversely related.

Figure 2.14(d) shows the norm of the regression error Yresiduals computed using PLSR [35],
specifically the SIMPLS algorithm [47]. Lower error norms indicate better predictions. Only
one mode is available for selection, since only one target variable is predicted from a single
sensor. SIMPLS maximises the covariance between the measurement and target variables.
The σ values which are constant as E varies result in higher errors than the varying u and
ε sensors. Note that SIMPLS uses Z-score values for both measurement variables and target
variables. The scaling of data becomes essential to avoid biased measuring of errors. In fact,
there are numerous ways to scale data which emphasize different aspects of the data. A
detailed discussion on various scaling method is presented in the next chapter.

The variance explained in the target variables Y is shown in Figure 2.14(e). It is interest-
ing to note that the results look almost identical to the result of the correlation coefficients.
The only difference is that the variance explained in Y distinguishes the σ sensors better from
the u and ε sensors than what the correlation coefficient achieves. The variance explained
in X, the sensor measurements, are shown in Figure 2.14(f). The variance explained in X
is expected to give poor performance since this checks how much of the information in X is
used when mapping to the Y domain and SIMPLS constructs X scores to decompose both
X and Y . Hence, this allows us to access the information captured in the measurement data
that all the sensors explain with indistinctly highest possible function value, 1. Note that
the variance explained is measured by dividing the amount of information that has already
been explained by the total amount of information. As expected, this shows that comparing
the variance explained in X is never a good idea for ranking the sensors according to the
recovery success rates.

2.3.2 Cantilever beam with a spring

Recall that, in Section 2.2.1, it was demonstrated that the Quasi-Newton method in Matlab
version was unable to solve the inverse problems of the cantilever beam with a spring. The
cantilever beam with a spring (Figure 2.12) is a more ill-posed problem than the normal

17

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



(a) Recovery rates (b) Standard deviation

(c) Correlation coefficient (d) Norm of Yresiduals

(e) Variance explained in Y (f) Variance explained in X

Figure 2.14: Proxies of the inverse problems using the simple cantilever beam; (a) recovery
rates, (b) standard deviation, (c) correlation coefficient, (d) norm of Yresiduals, (e) variance
explained in Y and (f) in X.
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cantilever beam without the spring, which could only be solved with Nelder-Mead. Since we
have now two target variables for which we allow at least two sensors to be placed, we have
up to two modes that can be selected.

To establish the relevant proxies of the recovery rates (Figure 2.13), a number of numer-
ical analyses were done as shown in Figure 2.15. Figures 2.15(a) and (b) show the norms
of regression error, Yresiduals from SIMPLS regressions for all possible combinations of the
sensors using one or two modes, respectively. It is important to note that lower values of
Yresiduals imply the better sensor as it is the only proxy that forms part of a minimisation
problem. For one mode, there is no significant difference between the sensors, although the σ
sensors numbered 13-18 are slightly lower. This is enhanced when two modes are considered.
Of concern is that < σ, σ > which we know are not reliable to solve the inverse problems
have the same associated function value as the other sensors that we know were reliable.

Figures 2.15(c) and (d) present the variance explained in the target variables Y using
SIMPLS for one and two modes. Note the variance explained is a maximisation problem
which means it can be directly compared with the recovery rate graphs considered earlier.
As intuitively expected, the magnitude of the variance explained for one mode is generally
small compared to two modes. Surprisingly a σ sensor is always preferred over other sensors
and surprisingly enough, < σ, σ > sensor pair explains most of the variables. For two modes,
both < σ, u > and < σ, ε > rate significantly higher than < σ, σ > sensor pairs, which
we know perform poorly on the inverse problem. These results demonstrate that variance
explained in Y might be a useful proxy but also highlight the importance of selecting the
number of modes appropriately.

The norms of correlation coefficients between measurement variables and target variables
are displayed in Figure 2.15(e). These proxies are far from the actual recovery rates since
< σ, σ > gives the best correlation to the target variables. This clearly shows that correlation
between the measurement and target variables is not the right proxy for the inverse problems.
This is in particular against intuition that correlation should be a good indicator. Lastly, the
pure sum of standard deviation of variables in Xc, the chosen sensors, are shown in Figure
2.15(f). Note that all the previous methods used transformed Z-score measurement but in
this case, the untransformed, original variables were used for the analyses. The standard
deviations of the σ sensors are higher than the other sensors in particular when < σ, σ >
sensor pairs are considered due to the fact that σ has larger magnitudes. The results show that
both correlation coefficient and standard deviation are not suitable proxies when considered
in isolation.

It must be emphasized that the difference between the ranges of each target variables
is a few order of magnitudes and they are manipulated simultaneously. Note that the best
combinations of sensors may vary depending on the chosen sensor ranges (Figure 2.16(a)).
The challenge is to find a set of sensors that perform well over the defined ranges. If there
is a strong confidence in which ranges the solution lies, the size of the training ranges can
be reduced to help the proxies to find the specialised sets of sensors for those narrowed
ranges. Figure 2.16(b) illustrates that each selected sensor has its own explanatory domain
of variables, E and k, that the inverse problem aims to solve. It is important to note that
the aim is to maximise the total coverage by minimising the overlapping information between
the sensors. For instance, sensors 1 and 2 will struggle to identify k but should recover E
with ease. However, replacing sensor 2 with sensor 3 would allow for both E and k to be
recovered.

Figure 2.17 illustrates the norms of Yresiduals and variance explained in Y and when k is
fixed, while Figure 2.18 depicts their response when E is fixed and k varied. Values are fixed
around their mid-values in a range to ensure sufficient data to reconstruct the responses. By
varying one variable at a time, it is possible to find appropriate sensors for each target variable.
Figure 2.17 shows that both the norm of Yresiduals and variance explained are equivalent for
one mode since all sensor combinations have the same function values. However, for two
modes, the ‖Yresiduals‖ predicts worse performance for < σ, u > and < σ, ε >, which is
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(a) Norm of Yresiduals with A = 1
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(b) Norm of Yresiduals with A = 2
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(c) Variance explained in Y with A = 1
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(d) Variance explained in Y with A = 2
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(e) Norm of correlation coefficient

0
0

1

2

×10-3

S
ta

nd
ar

d 
de

vi
at

io
n

5

3

4

10 20

Sensor 2

15

Sensor 1

15
10

20
5

25

(f) Standard deviation of X

Figure 2.15: Various proxy responses for combinations of sensors; (a) norm of Yresiduals with
A = 1 and (b) A = 2, (c) variance explained in Y with A = 1 and (d) A = 2 (e) norm of
correlation coefficient and (f) standard deviation of X.
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(a) The best combinations of sensors for different in-
put domains

(b) Domains of measurement variables that sensors
explain

Figure 2.16: The relationships between the FEM input variables and the sensors; (a) the
best combinations of sensors for different input domains and (b) domains of measurement
variables that sensors explain.

contradictory to the actual performance on the inverse problem recovery. On the other hand,
many of the combinations in < σ, u > and < σ, ε > show higher variance explained in Y
(Figure 2.17(d)) which is better correlated with the actual recovery of the inverse problem.

Similarly, the function values of mode-based formulations when only k is manipulated are
shown in Figure 2.18. Remember that whereas the parameter E varies over three orders of
magnitude, k only varies over two at much lower magnitudes. The variation of k is less than
E with ‖Yresiduals‖ significantly lower when the number of modes, A = 1 and 2. For A = 1,
the σ sensors are definitely not preferred. For A = 2, the ε sensors are less helpful for the
recovery of k than the other sensors due to the ε measurement values and ranges being much
smaller than the other sensors. The variance explained in k is shown to be always 100% for
both A = 1 and 2. This implies that the small variance of k can be fully explained using
any sensor pair. When the two target variables are manipulated at the same time, the sensor
optimisation algorithm might initially focus more on a target variable with higher variance
and later on lower variance variables should they improve the variance explained. Note that
although the two target variables are independent, they might often be internally related to
each other in FEM. Hence, the simultaneous manipulation of the two variable is critical to
capture the behaviour of the system globally.

Additional optimisation objective functions and scaling methods will be presented in the
next chapter. The investigations up to now were sufficient to declare that the mode-based
formulations merit further investigations for potential proxies. However, there are a few
disadvantages to using the mode-based formulations that might not have been clear up to
now. Since mode-based formulations rely on eigenvectors and eigenvalues, the computational
time required to compute these vectors can grow quickly as the number of target variables
grows. Another issue is that different combinations of sensors might have different number
of optimal modes A. Therefore, the optimal number of sensors need to be established adding
to the computational burden. For example, should three sensors be required, up to three
modes are possible candidates to be selected. The optimisation approaches need to consider
three cases A = 1, 2 and 3 to establish the optimal number of modes. This process can
be computationally expensive for a large number of target variables. Ultimately, we would
like to revisit the fundamental premise on whether it is required to consider mode-based
approaches and whether computationally efficient alternatives could be considered. The next
section explores alternatives.
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(b) Norm of Yresiduals with A = 2
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(c) Variance explained in Y with A = 1
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(d) Variance explained in Y with A = 2

Figure 2.17: Various function values on the combinations of sensors when k is fixed; (a) norm
of Yresiduals with A = 1 and (b) A = 2, (c) variance explained in Y with A = 1 and (d) A =
2.
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(b) Norm of Yresiduals with A = 2
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(c) Variance explained in Y with A = 1
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(d) Variance explained in Y with A = 2

Figure 2.18: Various function values on the combinations of sensors when E is fixed; (a) norm
of Yresiduals with A = 1 and (b) A = 2, (c) variance explained in Y with A = 1 and (d) A =
2.
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2.4 Development of mode-free formulations

The mode-based formulations can be robust with the right scaling methods and objective
functions. However, it is challenging to reduce the time required for these methods. Here, we
aim to reduce the computational cost by considering approaches that do not require modes to
be computed. We will refer to these methods as mode-free formulations. The investigations
conducted up to this point highlighted a number of central characteristics of inverse problems
and the findings are as follow:

1. Informative relationship between the sensors and target variables.

2. Uniqueness of contents in each sensor.

3. High sensitivity of sensors.

In the following sections, these three criteria and the thought processes followed to incorporate
and address them in a mode-free approach are discussed in detail.

2.4.1 Relationship between measurement and target variables

It is essential to have strong relationships between the sensors and the target variables. The
two sets of variables, X and Y , projected onto each other explain their relationships. By
constructing a Z-score scaled covariance matrix between the two datasets, the relationships
between each measurement and target variables can be measured relatively. Hence, each row
in the covariance matrix XTY represents how well each measurement variable is correlated
with the target variables and the uniqueness of their relationships is represented by uniqueness
of the row entries. Hence

rank

((
Xc − X̄c

SD(Xc)

)T( Y − Ȳ
SD(Y )

)(
Y − Ȳ
SD(Y )

)T(Xc − X̄c

SD(Xc)

))
(2.10)

measures the rank of the covariance matrix between the two sets of sensor and target
variables and this is an efficient way to ensure uniqueness of information. Note that both the
measurement variables X and the target variables Y are scaled using the Z-score method so as
to avoid having biased covariance matrices due to the differences in the orders of magnitudes.
Xc denotes chosen X variables or sensors. Squaring the covariance matrix effectively polarises
the correlation coefficients so that the difference can be emphasized when computing the rank.
It is clear from Figure 2.19 that there is significant similarity between the rank of covariance
matrices and the success rate of the inverse problems. However, the biggest issue of this
measure alone is that the < σ, σ > sensor pairs also have a maximum rank of 2 (the size of
covariance matrix, XTY Y TX in this case is 2 by 2). Note that there is no difference between
the ranks of XTY Y TX and Y TXXTY . Another concern is that the < σ, u > and < σ, ε >
groups are equal to the other sensor pairs that we know performed worse when solving the
actual inverse problem in Figure 2.19(a). These two issues will be considered and resolved in
the remaining two sections of this chapter.

2.4.2 Uniqueness of contents in each sensor

No matter how promising each one of the selected sensor is, if the sensors contain almost
identical information, they do not effectively maximise the explanatory domain for the target
variables. Hence, it is imperative that each sensor explains the target variables by reducing
repeated information. Towards the aim consider

rank

((
Xc − X̄c

SD(Xc)

)T(Xc − X̄c

SD(Xc)

)(
Xc − X̄c

SD(Xc)

)T(Xc − X̄c

SD(Xc)

))
, (2.11)

instead of considering the covariance matrix of the sensor variable; we consider the covari-
ance projected onto itself. This amplifies higher rank estimates and diminishes lower rank
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(a) Rank of covariance matrix (b) Success rates from inverse problem

Figure 2.19: Comparison between the (a) ranks of covariance matrix and the (b) inverse
problem success rates.

(a) Rank of chosen sensors (b) Number of iterations from inverse problem

Figure 2.20: Comparison between the (a) ranks of sensors and the (b) inverse problem number
of iterations.

estimates. In this way, it allows us to distinguish more clearly between the sensor pairs. It
compares purely the collinearity of data since Z-score transformation normalises magnitude
differences away. The < σ, u > and < σ, ε > combinations are the only sensors to now have
100% recovery rates and Figure 2.20(b) shows that they require the least numbers of itera-
tions. They are now consistent with the actual inverse problem and highlighted as the best
sensor pairs. Equation 2.11 allows us to assess uniqueness of sensor information.

2.4.3 Sensitivity of sensors

Equation 2.10 distinguishes between sensors that correlates uniquely to the target variables
and Equation 2.11 ensures that the correlations within selected sensors describe unique infor-
mation when compared to the other selected sensors. At this point both objective functions
are sufficient to create a proxy as shown in Figure 2.21 by the pointwise product of the two
functions shown in Figures 2.19(a) and 2.20(a), respectively. The maximisation of this ob-
jective is sufficient to rank the < σ, ε > or < σ, u > sensors the highest. However, note that
the < σ, σ > sensor pair which is supposed to be the most ineffective combination is ranked
equally to some of the other regions that are known to be more effective albeit not the best.
We now consider an objective function which can distinguish < σ, σ > from the rest which
was found to be the sensitivity of sensors.
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Figure 2.21: Multiplied ranks of both sensor matrix and covariance matrix.

The sensor sensitivity is the variance (or standard deviation) of a sensor

Nsensors∏
i=1

var(xc,i), (2.12)

or the relative sensitivity measured using the following mean scaling

xscaled,i =
xi − x̄i
x̄i

. (2.13)

In fact, the variances of the σ sensors are higher than those of the ε or u. Therefore, this
can not be a good measure of sensitivity alone. Although the mean scaling gives a good
indication of variation of data relative to its mean magnitudes, not all the σ sensors have
relatively large mean values and particularly some are very close to zero which may cause
numerical ill-conditioning.

Due to the biased variance measure caused by various magnitude ranges of the sensors,
it is not ideal to combine the three objectives (Eqs. 2.10, 2.11 and 2.12). Hence, instead
of treating them as unconstrained optimisation, we can solve the problem in an alternative
way by only considering the sets of variables that have the maximum possible ranks for
functions in Eqs. 2.10 and 2.11. In that case, the first two functions represent two constraint
functions and Equation 2.12 becomes the only objective function. This allows for constrained
optimisation of the three objectives. In fact, since only the sets of sensors which have the
full rank for the two rank equations are considered, it is already guaranteed that all the
sensors are unique and that the correlations between the sensors and target variables are also
unique. Hence, additional optimisation using Equation 2.12 can only focus on maximising the
variances of the sensors which increases the sensor sensitivity and the ratio of the information
from the sensors to the measurement noise.

This ends the overview to both mode-based formulations and mode-free formulations. The
following three chapters detail the numerical experiments on the mode-based formulations,
followed by the numerical studies on mode-free formulations in Chapter 6.
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Chapter 3

Mode-Based Formulations: Data
Scaling and Objective Functions

This chapter presents six different data scaling methods and their roles. In addition, six
objective functions based on SIMPLS and SVD mode extraction methods are introduced. To
clearly demonstrate the effects of scaling, a new statically indeterminate beam problem is
introduced first.

3.1 Numerical FEM: Experimental setup

It is time to introduce the main experimental setup which is used throughout the rest of the
study. A statically indeterminate linear elastic FEM beam bending problem (see Figure 3.1)
is considered. The beam consists of two eight-noded finite elements that is 0.5 m high, 2 m
long and 0.5 m thick. The elements are integrated using reduced integration (i.e. 2×2 Gauss
integration points). The 2D plane strain assumption was used with the Poisson’s ratio, ν of
0.3. The Young’s modulus, E of the beam and the spring stiffness values for the two springs
(spring 1 and 2), k1 and k2 are the three target variables in this problem. This problem can
be more ill-posed than the previous single spring problem shown in Figure 2.12. The target
variables were varied randomly using LHS (Latin hypercube sampling) in various ranges as
shown in Table 3.1. The reason for dividing the ranges of each variable into low and high is
to allow us to dictate the posedness of the problem as will be discussed later. The left side
of the beam is completely fixed and a point load of 1000 N is applied at the 8th node in the
negative y-direction. The spring 1 and 2 are attached at the 13th node in the x-direction and
11th node in the y-direction, respectively.

The measurement data contains 74 variables in total: (1) displacements, u: from the 1st
to 26th variables, (2) stresses, σ: from the 27th to the 50th variables and (3) strains, ε: from
the 51st to 74th variables.

1. Displacement, u has 26 variables since there are 13 nodes and each node involves 2
variables: displacements in x-direction, ux and y-direction, uy. ux always come before
uy for every node.

2. Stress, σ has 24 variables since there are 8 Gauss points for the two elements integrated
using 2× 2 reduced integration rule and each Gauss point involves 3 variables: normal

Range Young’s modulus, E [Pa] Spring stiffness, k1 and k2 [N/m]

Low 105 - 107 1 - 102 and 1 - 102

High 107 - 109 10 - 103 and 103 - 105

Table 3.1: Chosen variables for different correlation coefficient tolerances from the FEM data
(high E and high k)
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Figure 3.1: Diagram of the FEM bending example.

stress in x-direction, σx, y-direction, σy and shear stress along the xy-direction (shear
stress), σxy.

3. Strain, ε has 24 variables since there are 8 Gauss points for the two elements integrated
using 2× 2 reduced integration rule and each Gauss point involves 3 variables: normal
strains in x-direction, εx, y-direction, εy and shear strains along the xy-direction, εxy.

The sensor ID numbers for u, σ and ε are all shown in Figure 3.2. The measurements were
taken for 100 independent LHS generated samples for varying E, k1 and k2. In other words,
the sample size was 100. Therefore, the measurement data has a size of 100 by 74 and the
target variable data has a size of 100 by 3.

The sample size n is a critical factor for training data since n needs to be large enough to
capture significant variation of the data. Although LHS was used to generate E and k, if the
observations are too sparse, the modes extracted using SPO technique may not be consistent
results in different sensors to be placed at every run. As n increases the resolution of the
data gets finer and it allows more modes to be created before it starts to capture noise.

Even though it is necessary to capture most variations in the data, the main objective
of SPO is to find the most dominant measurement variables which can recover the target
variables most accurately and conduct an accurate mapping. The modes only captured when
n is large are considered less important in mode-based formulations. In this study, n=100
was found to be sufficient. However, in mode-based formulations, it is certainly necessary to
increase the number of n as the number of sensor variables increase due to increase in the
number of elements since more sensors require better resolution to distinguish between them.

3.2 Data Scaling

Data scaling is an essential key to successful SPO since SPO is indeed a type of sensitivity
analyses. This means that it requires normalisation and centering of data, especially when σ
is orders higher than u and ε. It needs to be emphasized that there is no fixed way to scale
data but it depends on the purposes and objective functions used. It is necessary to find
scalings to emphasize responsiveness between the measurement and target variables. The
scaling methods tested are as follows:

1. Component mean centering.

2. Component mean centering and norm normalisation.

3. Component mean centering and mean normalisation.

4. Component mean centering and SD (standard deviation) normalisation.

5. Vector mean centering and mean normalisation.
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(a) Sensor ID numbers for u, displacements

(b) Sensor ID numbers for σ, stresses

(c) Sensor ID numbers for ε, strains

Figure 3.2: Sensor ID numbers for the two spring problem for (a) displacements, (b) stresses
and (c) strains.
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Figure 3.3: Unscaled original (a) measurement and (b) target data.

6. Vector mean centering and SD (standard deviation) normalisation.

The scaling methods are largely divided into two groups: component and vector scaling
methods. Component scaling scales and transforms each variable independently. Vector
scaling scales each of the sensor types with the same value. Different scalings emphasize
different aspects of a data set. The aim is to find the scaling that works best for a certain
algorithm. The data used to demonstrate scaling is presented in Figure 3.3. The data were
created by choosing both E and k to be in their high ranges (see Table 3.1). We will refer
to KHEH for stiffness (K) high (H) and Young’s modulus (E) high (H). In Figure 3.3(a),
the untransformed data for the KHEH case (k: high and E: high ranges) shows that the
magnitudes of u (sensor ID numbers: 1-26) and ε (sensor ID numbers: 51-74) are order
smaller when compared to σ (27-50). Similarly, the target variables are also biased towards
the large E (target variable ID number: 3) in Figure 3.3(b). From here, the various scaling
methods applied to the original FEM data and their effects are investigated.

3.2.1 Scaling method S1: Component mean centering

The first scaling method is called component mean centering and is denoted as S1 (scaling 1).
Component mean centering is the minimalistic work for scaling data since statistics naturally
assumes any data to be centred at zero. This method can be expressed as follows:

Xscaled = Xcomponent − X̄component; Yscaled = Ycomponent − Ȳcomponent (3.1)

The scaled measurement and output data are shown in Figures 3.4(a) and (c). As expected
the transformed data look just like the original data but centred. The ranges of σ are still
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relatively larger than those of u and ε. It is noticed that the magnitude axis is dominated
by σ in measurement data and E in target data. Therefore, normalisation between them are
still required.

3.2.2 Scaling method S2: Component mean centering and norm normali-
sation

The second scaling method is called component mean centering and norm normalisation and
is denoted as S2 (scaling 2). Each variable (column) gets mean-centred and divided by its
norm. The scaling method can be expressed mathematically as follows:

Xscaled =
Xcomponent − X̄component

‖Xcomponent‖
; Yscaled =

Ycomponent − Ȳcomponent
‖Ycomponent‖

(3.2)

Note that the norm is computed before the centering of the data not after it. The normalised
data using S2 is shown in Figures 3.4(b) and (d). It is noticed that S2 suppresses σ and
enhances both u and ε. Note that the scaled output data have almost identical ranges of
variables.

3.2.3 Scaling method S3: Component mean centering and mean normali-
sation

The third scaling method is called component mean centering and mean normalisation and is
denoted as S3 (scaling 3). Each variable gets mean-centred and divided by the mean values
computed before centering (the mean values after centering are always zero). S3 is capable
of investigating how large variations of variables compare to the magnitudes of the variables.
S3 emphasizes relative sensitivity. The scaling method can be expressed as follows:

Xscaled =
Xcomponent − X̄component

|X̄component|
; Yscaled =

Ycomponent − Ȳcomponent
|Ȳcomponent|

(3.3)

It is important to note that the mean values for the normalisation are computed between the
centering of the data and taking absolute values of the data. Therefore, it is the mean of the
absolute values, not absolute values of mean. The main advantage for this is that it prevents
the explosive growth of a variable which has a mean of almost zero. If the mean value is still
close to zero after taking absolute values of the variable, it is clearly known that the variable
is not worth considering due to its minute sensitivity. The scaled measurement and target
data are shown in Figures 3.5(a) and (c). Notice that the scaled variables are showing the
relative sensitivities of each variable. Notice that the target variables are scaled so that they
have almost identical ranges.

3.2.4 Scaling method S4: Component mean centering and SD (standard
deviation) normalisation

The fourth scaling method is called component mean centering and SD (standard deviation)
normalisation and is denoted as S4 (scaling 4). The other well-known name of this is Z-score
which is widely used in statistics for normalisation purposes as presented earlier. This scales
all variables to have a mean of 0 and SD of 1. S4 is mathematically expressed as follows:

Xscaled =
Xcomponent − X̄component

SDX,component
; Yscaled =

Ycomponent − Ȳcomponent
SDY,component

(3.4)

The scaled measurement and target variables are shown in Figures 3.5(b) and (d). It is
observed that it rescales all variables so that they are in similar ranges. Each σ variable
numbered between 26 and 50 presented in the original measurement data (see Figure 3.3(a))
seemed to contain unique information due to various means and ranges of their values. Notice
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(b) Component mean centering and norm normalisation for the measurement data

1 2 3

Variables

-5

-4

-3

-2

-1

0

1

2

3

4

5

M
ag

ni
tu

de
s

×108 Single mean centering
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1 2 3

Variables

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

M
ag

ni
tu

de
s

Single mean centering and norm division

(d) Component mean centering and norm normalisa-
tion for the target data

Figure 3.4: (a) Component mean centering S1 and (b) component mean centering and norm
normalisation S2 scaling for the measurement data and (c) S1 and (d) S2 for the target data.
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that the collinear coefficient presented in Eq. 2.9 includes Z-score transformation and the
coefficients between those σ variables turned out to be either 1 or -1. This explains why the
scaled σ variables look almost identical to each other in Figure 3.5(b). This explains why
having two σ sensors is not a good choice for inverse problems. Of course, the collinearity
between the sensors was possible since the coarse mesh model with only two elements is
expected to have large model errors. The studies about the model errors will be presented in
Chapter 5.

In SPO, uniqueness of sensors are considered to be important and checking collinearity
using Z-score helps avoid gathering repeated information. Consider this example: Figure
3.6 shows two variables looking different due to the different means and variances, being
transformed using Z-score. It also keeps the covariance matrices between the two datasets
unbiased by adjusting the orders of magnitudes of the variables in the datasets and this is
why Z-score has been used popularly in PLS regression. Remember that the objective of
SIMPLS is to maximise covariance between measurement and target data. Therefore, it is
essential to consider unbiased covariance matrices.

3.2.5 Scaling method S5: Vector mean centering and mean normalisation

The fifth scaling method is called vector mean centering and mean normalisation and is
denoted as S5 (scaling 5). The data first gets divided into their types (i.e. σ, u, ε, E, k1, k2).
The mean for both centering and normalisation is computed from each group. The mean is
the average of all the variables in a certain group irrespective of spatial location. The scaling
can be expressed as follows:

Xscaled =
Xgroup − X̄group

|X̄group|
; Yscaled =

Ygroup − Ȳgroup
|Ȳgroup|

(3.5)

Similar to the component mean normalisation, the absolute values are firstly computed before
being averaged to compute the means. The scaled measurement data X (Figure 3.7(a)) and
target data Y (Figure 3.7(c)) show that the differences of magnitudes between the groups have
been reduced. The scaled measurement data clearly show that the small u and ε groups have
been stretched and the large σ group has been compressed. It is important to note that the
variables in a group get divided by the same value. Therefore, the relative difference between
variables in a group remains unchanged. For instance, larger σ values remain greater than
smaller σ values. However, this can become problematic when the variation within a group
becomes too large. The scaled target variables Y show different shapes from the previous
scaling methods since the 1st and 2nd variables are both k and they share the same mean for
both centering and normalisation. For this reason, the means of the variables are not zeros
after scaling.

3.2.6 Scaling method S6: Vector mean centering and SD (standard devi-
ation) normalisation

The last scaling method is called vector mean centering and SD normalisation and is denoted
as S6 (scaling 6). S6 works similar to S5, instead of dividing each group by the group mean,
we normalise by the group SD’s. The scaling method can be expressed as follows:

Xscaled =
Xgroup − X̄group

SDX,group
; Yscaled =

Ygroup − Ȳgroup
SDY,group

. (3.6)

The scaled measurement and target data are shown in Figures 3.7(b) and (d). It is noticed
that they look almost identical to the results of S6 but the ranges of the values are smaller.
The two stiffness variables k1 and k2 (target variable ID numbers: 1 and 2) do not have zero
means since they get subtracted by the mean of the two variables. This applies to the three
groups of variables in the measurement data X. It is expected that S5 and S6 give similar
performance.
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(a) Component mean centering and mean normalisation
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(b) Component mean centering and SD normalisation
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Figure 3.5: (a) Component mean centering and mean normalisation S3 and (b) component
mean centering and SD normalisation S4 scaling for the measurement data and (c) S3 and
(d) S4 for the target data.
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(a) Before Z-score (b) After Z-score

Figure 3.6: Effects of Z-score scaling.

3.3 Proxy Objective Functions

As discussed, scaling emphasizes important aspects of the datasets. The role of an objective
function is to combine this information into a single scalar to rank the various solutions. The
scaling and objectives are related in that a scaling that works well on one objective may
be problematic on another. The actual objective function for sensor pair placement in an
inverse problem is, of course, to optimise the inverse problem for a given sensor pair which
is computationally intractable. The aim here is to establish proxy objective functions that
capture the essence of the actual objective function but in a computationally tractable way.
We consider six proxy objective functions based on PLSR (SIMPLS Algorithm) or PCA for
the mode-based formulations.

The main aim of SIMPLS is to maximise the covariance between the measurement and
target data by decomposing the covariance of two datasets. Note that the original SIMPLS
[47] is considered in this study. The sets of measurement and target variables get decom-
posed into scores and loadings which are related to participation coefficients, eigenvalues and
eigenvectors. The eigendecomposition of SVD applied to a matrix such as covariance ma-
trix allows for quantifying and comparing the amount of information included in the matrix.
Therefore, various means of rearranging the outputs of SVD (U , S and V defined in Section
2.3) could be used as the potential proxy objectives of the mode-based formulations. The
first two objective functions are based on PLSR, while the remaining four are based on SVD.
The number of modes, A is very much dependent on variable types, scaling methods and also
on the decomposition techniques.

3.3.1 Function F1: Minimisation of Y-residuals

The first objective function is to minimise the norm of Y-residuals (‖Yresiduals‖) which is
minimising the regression error and is denoted as F1 (function 1). The regression coefficient,
βpls is expressed as RQ′ where R is the measurement X block factor weights and Q is the
target Y block factor loadings [47]. The vector of Y-residuals is simply given by

Yresiduals = Y −Xβpls = Y −X(RQ′). (3.7)

SIMPLS regresses the measurement data on the target data by constructing linear combi-
nations of the measurement variables. This effectively linearises the inverse problem over an
entire domain, which is a significant simplification to the actual non-linear inverse response
over the domain. It is critical to remember that the core purpose of it is not simply to min-
imise the norm of regression errors but to construct modes (components or latent variables
[47]) that contain the most sensitive measurements X to the targets Y for inverse problems.
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(a) Vector mean centering and mean normalisation
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(c) Vector mean centering and mean normalisation
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Figure 3.7: (a) Vector mean centering and mean normalisation S5 and (b) vector mean
centering and SD normalisation S6 scaling for the measurement data and (c) S5 and (d) S6
for the target data.
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Therefore, by strictly performing only linear regressions, PLS can concentrate on assembling
modes that capture the essence of the observed response.

3.3.2 Function F2: Maximisation of Total Variance Explained in Y

The second objective function is to maximise the percentage of variance explained for the Y
variables, varY and is denoted as F2 (function 2). The expression for varY for each mode is
given by

varYa =

∑n
i=1 |Qi,a|2∑n

i=1

∑m
j=1 |Yi,j |2

; a = 1, ..., A, (3.8)

where n is the 100 LHS FEM observations. Here, the m and a denote the number of
target variables and the mode index, respectively. It is important to acknowledge that the
output loading matrix Q contains not only directions (eigenvectors) but also magnitudes
(eigenvalues). This objective function is related to the minimisation of the Yresiduals since the
regressions are based on the directions that maximise the covariance between the sensor mea-
surement and inference domains. Yresiduals is the result of a linear mapping from the sensor
measurement to inference domain. Hence, F2 assesses the quality of the variables, whereas
F1 assesses the consequence of mapping the variables to the target domain. Consequently,
there is a considerable difference between F1 and F2 in that F2 is susceptible in selecting the
same information in different descriptions that have high variance. For instance, when find-
ing the volume of a cylinder, both the diameter and radius may be identified should it have
high variance although it is essentially the same information. F1, on the other hand, is less
susceptible to this potential issue. The susceptibility of F2 to select identical information in
different descriptions is largely dictated by the number of modes that are chosen. An increase
in number of modes tends to increase the susceptibility to select identical information.

The correlation coefficients allow us to investigate the linear correlation amongst the
target variables, which is given by

r =

∑n
i=1(xi − x̄)(yi − ȳ)√∑n

i=1(xi − x̄)2
∑n

i=1(yi − ȳ)2
=

∑n
i=1(xi − x̄)(yi − ȳ)

(n− 1)sxsy
, (3.9)

where the bar and s denote the mean and variance, respectively. The r values can only be
between 1 and -1 which indicate strong positive and negative linear correlations, respectively.
An r of 0 implies no correlation. Figure 3.8. depicts eliminated variables when |r| < 10α,
where α is the tolerance on the X-axis. The measurement space removes all but one variable
when α is close to 0, while large negative α’s result in 7 eliminated variables that include the
six fixed displacements. Note linear correlation coefficients do not identify correlated non-
linear relationships such as x and x2, that is the same information in a linear and non-linear
description.

3.3.3 Function F3: Maximisation of Total Singular Values

SVD naturally requires much less computational time than PLS. Therefore, SVD is desired for
SPO applications, in particular when industrial scale problems are to be considered. Function
3 aims to maximise the covariance information from the covariance matrix, XTY

arg max
x

(
∑

Sxy), (3.10)

with Sxy the positive singular value diagonal matrix of covariance matrix, XTY . The higher
the correlation between X and Y the larger the singular value.

3.3.4 Function F4: Maximisation of Normalised Total Singular Values

F4 is merely F3 normalised by the norm of the singular value diagonal matrix

arg max
x

(∑
Sxy

‖Sxy‖

)
. (3.11)
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Figure 3.8: Filtering measurement variables using correlation coefficients.

As the nominator tries to maximise the information contained in the covariance matrix, the
denominator tries to minimise the norm of the covariance matrix which effectively minimises
size difference among singular values. This forces the information of each mode to explain
the same amount of the Y data.

3.3.5 Function F5: Maximisation of Singular Values of the Regression
Coefficients

Function 5 (F5) has the similar form as F4 except the fact that the diagonal matrix does not
come from a covariance matrix but from β = X−1Y . Since the size of X is not square in most
cases, the inverse denotes the pseudo-inverse. Since, Xβ = Y , the β regression coefficients β
can simply be seen as the variation of Y as a function of X (i.e. the gradient of the regression
model). The singular values of the regression coefficients are merely,

arg max
x

(∑
Sβ

‖Sβ‖

)
. (3.12)

This approach is susceptible to multicollinearity but the main goal of this algorithm is to
attempt to maximise the gradient sensitivity between X and Y .

3.3.6 Function F6: Maximisation of Singular Values of the Regression
Coefficients with Direction Scale

Lastly, consider F5 scaled exponentially using the matrix norm of the left Ux and right Uxy
eigenvector matrices of XTX and XTY as follows:

arg max
x

(∑
Sβ

‖Sβ‖

)(‖UT
x Uxy‖)

. (3.13)

The correlation between the two eigenvectors is computed and normalised. The higher the
exponent the better the correlation between variables that explain X and more useful towards
explaining Y .

3.4 Optimisation method

A number of data scaling methods and objective functions have been discussed. In order
to evaluate their ability to optimally place sensors, an appropriate optimisation strategy is
required. Firstly, sensor placement optimisation is a binary optimisation problem as a sensor
is placed or not. The three optimisation strategies considered in this study are:
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1. Exhaustive combinatorial method: Exhaustive combinatorial method is the best method
to find the global minimum/maximum as all possible sensor combinations are evaluated.
It requires an enormous number of function evaluations for large dimensional problems
that quickly become computationally intractable due to the exponential growth of po-
tential combinations. This method is only considered for a small number of sensors.
The advantage is that the global minimum of the problem is guaranteed to be found
[36].

2. BGA (Binary genetic algorithm): Binary genetic algorithm is a binary function value
based heuristic optimisation algorithm which imitates the process of natural selection.
Since the method is inspired by evolution, it uses biological techniques such as inher-
itance, mutation, selection and crossover. This technique can play an important role
when a large number of sensors are involved. Its disadvantage would be that it cannot
guarantee that the global maximum/minimum will be found [38, 50, 51].

3. Addition method: Addition method is one of the fastest optimisation methods since
it selects sensors one at a time until the prescribed number of sensors are collected.
The largest disadvantage of this method is that it might start off by choosing a less
important sensor since it does not know a sensor performs with other sensors.
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Chapter 4

Mode-Based Formulations:
Reduced Sensor Optimisation

For the evaluation of proxy objective functions and dataset scalings, it is necessary to know
the optimal solutions. In this chapter, the available number of sensors are reduced from
the original 74 sensors to 24 sensors as shown in Figure 4.1(a). All possible combinations
of sensors were examined and each combination has three measurement variables (sensors).
Only three variables were used since that is the minimum requirement for recovering the exact
solution of the three target variables (k1, k2 and E). The optimal solutions were obtained for
three cases and each case consists of different ranges for k (both k1 and k2) and E: (1) high
k and low E (KHEL), (2) high k and high E (KHEH) and (3) low k and high E (KLEH) as
are specified in Table 3.1.

1. KHEL: k1 = 10 - 103 N/m, k2 = 103 - 105 N/m and E = 105 - 107 Pa

2. KHEH: k1 = 10 - 103 N/m, k2 = 103 - 105 N/m and E = 107 - 109 Pa

3. KLEH: k1 = 1 - 102 N/m, k2 = 10 - 103 N/m and E = 107 - 109 Pa

Although the three cases consider the same experiment, the optimal set of sensors differ
and the well or ill-posedness of the problems differ. The global minima for the optimal sensors
are tabulated in Table 4.1. The optimal sensors have the highest accuracy and the lowest
number of iterations for each case and are graphically presented in Figures 4.1(b) - (d). The
inverse problems were solved on the ten randomly generated test datasets identically each
for every sensor combination of three sensors (Nvariables = 3) by minimising the sum of error
squared

E =

Nvariables∑
i=1

(
(Xi,actual − X̄i)− (Xi − X̄i)

SDi
)2 =

Nvariables∑
i=1

(
Xi,actual −Xi

SDi
)2, (4.1)

as in the previous chapter. The minimisation of E was done using the Nelder-Mead method
with a maximum number of function evaluations and iterations of 10000. The initial guesses
were always fixed to the logarithmic means of the chosen target variable ranges (i.e. 106 when
its range is 105 − 107) for every ten datasets tested on each combination. The logarithmic
means were chosen since the ranges are often built around the most confident assumptions

Cases KHEL KHEH KLEH

Variables 13, 38, 48 38, 48, 62 48, 50, 74

Accuracy 10/10 10/10 10/10

Iterations 229.8 238.2 206.6

Table 4.1: Optimal solutions
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(a) Reduced sensor options

(b) High k and low E: KHEL

(c) High k and high E: KHEH

(d) Low k and high E: KLEH

Figure 4.1: Graphical presentation of the beam with single spring for (a) the reduced sensor
options and optimally positioned sensors for (b) KHEL, (c) KHEH and (d) KLEH.
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(a) High k and low E: KHEL

(b) High k and high E: KHEH

(c) Low k and high E: KLEH

Figure 4.2: Absolute correlation coefficients between sensors for (a) KHEL, (b) KHEH and
(c) KLEH.
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of the target variables. Solving only ten test datasets in each combination together with
the reduced number of available sensors allows the inverse problems computationally more
tractable. The Nelder-Mead was chosen as the optimisation algorithm for the inverse problem
as the objective is likely multi-modal, while the low problem dimensionality is well suited for
the gradient-free Nelder-Mead approach.

The optimal sensors are placed where they are able to predict both E and k well. For
an insensitive target variable, the sensors are placed to focus more on the insensitive target
variables than better solving sensitive target variables. This is evident from Figures 4.1(b) -
(d). The KHEL case (Figure 4.1(b)) has its sensors on the two Gauss points for measuring
σxy close to the root and σx close to the tip of the beam. Due to the relatively high flexibility
of the beam, measuring ux at the middle of the beam is meaningful. As E is increased as
in the KHEH case (Figure 4.1(c)), the beam becomes stiffer and measuring εxy at the root
becomes more meaningful than measuring ux at the middle of the beam. As the ranges of the
two springs become less while E increases, the beam became stiffer such as in the KLEH case
(Figure 4.1(d)). Since the two springs became highly insensitive to the sensor measurements,
the sensors are brought closer to the two springs. Recall that k1 has the smallest ranges.
Therefore, σx close to k1 seems to be important as it is present in all solutions.

As intuitively expected, the KLEH case is the most ill-posed due to the low beam stiffness
relative to the high spring stiffness while the KHEL case is the most well-posed as the opposite
case. This also means the similarities between the measurements are the largest for the
KLEH case and the least for the KLEH case. The absolute correlation coefficients between
two sensors for each case are shown in Figure 4.2. This clearly illustrates that KLEH is the
most correlated, while the KHEL is the least correlated. Therefore, numerous combinations
of the sensors can be used to solve the inverse problems for the KHEL case, while only a few
combinations may be useful to solve the KLEH case.

Figures 4.3 - 4.5 show the magnitudes of the optimal sensors for each case along the
hundred observations. Consider the KHEL case shown in Figure 4.3 which is the mixture of
u and σ. It is noticed that there are large magnitude differences between each measurement.
When they get normalised using Z-score, they become similarly weighted and not biased
towards a type with larger magnitudes. After taking the absolute of the second figure as
shown in the third figure, it is shown that the σxy at GP (Gauss point) 4 are almost identical
to the σx at GP 8. The differences between the information contained in the σ sensors are
extremely small and they are highly correlated with each other. The correlation coefficient
between the two sensors is close to 0.99 just under 1. The result shows that the inverse
problems are ill-posed as we will explore later when considering stochastic noise as it aims to
infer sensible information from very small difference. The optimal sensors for the KHEH case
are shown in Figure 4.4. After they were transformed using Z-score, it is again noticed that
the two optimal sensors, σxy sensor at GP 4 and σx at GP 8 look almost identical and their
signs are different. Due to the increase in the stiffness of the beam, it pushed the springs less
and created less distinctive σ measurements compared to the two σ sensors in the KHEL case.
The optimal sensors for the KLEH case are shown in Figure 4.5. Recall that all the sensors
were placed on GP 8. Therefore, the extracted patterns (Z-score transformation) of all the
three sensors σx, σxy, εxy are closely related to each other, yet, none of them are perfectly
identical to each other. From these behaviours of the optimal sensors, a few observations
about the inverse problems can be noticed:

� A sensor is not chosen more than once. Although there is a sensor which might be the
best, re-selection of the same sensor is pointless.

� The optimal sensors can have either strong positive or negative correlations but not
perfect correlations.

� The more ill-posed the problem, the higher the correlation between the optimal sensors
in the Z-score domain.
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(a) Magnitudes vs. observations

(b) Z-score(magnitudes) vs. observations

(c) |Z-score(magnitudes)| vs. observations

Figure 4.3: Optimal sensors for KHEL; (a) magnitudes vs. observations, (b) Z-
score(magnitudes) vs. observations and (c) |Z-score(magnitudes)| vs. observations.
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(a) Magnitudes vs. observations

(b) Z-score(magnitudes) vs. observations

(c) |Z-score(magnitudes)| vs. observations

Figure 4.4: Optimal sensors for KHEH; (a) magnitudes vs. observations, (b) Z-
score(magnitudes) vs. observations and (c) |Z-score(magnitudes)| vs. observations.
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(a) Magnitudes vs. observations

(b) Z-score(magnitudes) vs. observations

(c) |Z-score(magnitudes)| vs. observations

Figure 4.5: Optimal sensors for KLEH; (a) magnitudes vs. observations, (b) Z-
score(magnitudes) vs. observations and (c) |Z-score(magnitudes)| vs. observations.
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Objective functions

F1 arg min
x

(‖Yresiduals‖)

F2 arg max
x

(varY )

F3 arg max
x

(
∑
Sxy)

F4 arg max
x

(∑
Sxy

‖Sxy‖

)

F5 arg max
x

(∑
Sβ

‖Sβ‖

)

F6 arg max
x

(∑
Sxy

‖Sxy‖

)(‖UT
x Uxy‖)

Scaling methods

S1 Component mean centering

S2 Component mean centering and norm normalisation

S3 Component mean centering and mean normalisation

S4 Component mean centering and SD normalisation

S5 Vector mean centering and mean normalisation

S6 Vector mean centering and SD normalisation

Table 4.2: Objective functions and scaling methods

We now consider the various scaling of variables when evaluating a number of the proxy
objective function to optimize the sensor placement. All 36 possible combinations of the
six dataset scaling methods and the six objective functions were performed for all three
inverse problem results which are tabulated in Tables 4.3-4.5. Due to the small total number
of available sensors, the exhaustive combinatorial method was computationally tractable.
Hence, it was implemented as the optimisation method for the sensor placement for each
proxy combination. Each table presents the ID numbers of the chosen sensors (Sen.1,2 and
3), accuracies out of ten and number of iterations when 1-3 modes are considered. The ten
identical inverse problems tested previously to find the optimal solutions were again tested on
the chosen sensors of each proxy in order to directly compare the performance of the proxies
to the optimal solutions for each case by solving the ten inverse problems using Nelder-Mead
method with a maximum number of function evaluations and iterations of 10000. The initial
guesses were again the logarithmic means of the chosen ranges. In the table, the accuracies
are denoted by ‘acc.’ and the number of iterations are denoted by ‘iter.’. Note that the
functions and scaling methods are numbered as presented in Table 4.2.

It is important to emphasize that the objective of this observation is to find out which
combinations of objective functions and scaling methods perform successfully compared to
the global optimum presented in Table 4.1. The sensors obtained for modes A from 1 to 3
were tested using the inverse problems for every proxy combination and the best result among
the three solutions measured by comparing the accuracies out of ten was chosen to represent
the performance of the proxy combination. In case the sensors obtained from different modes
have the same accuracy, the sensors with lower number of iterations were chosen as the best.
Note that F4, F5 and F6 were only tested for two modes A = 2 and 3 since A = 1 would
give identical function values for all combinations of variables in the optimisation. Choosing
the number of modes, A in advance is challenging since it is difficult to know in advance
which A would perform the best. Note that the prior selection of modes using over-fitting
of SIMPLS regression has been attempted and the largest mode before over-fitting occurs
was selected initially. Yet, it turned out not to be a promising indicator for the selection of
A for the mode-based formulations in the study as it often did not match the performance
of the various modes. The NaN values in the table simply mean that its accuracy is zero.
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Table 4.3: Reduced sensor option: KHEL

The higher the accuracy and the lower the number of iterations to solve the inverse problem,
the better the proxy is ranked. The results from Tables 4.3-4.5 are supplemented by the bar
plots from Figures 4.6-4.8. For each case, three bar plots are presented; namely, success rate,
number of iterations and similarity to the known optimum solution from Table 4.1. Success
rate is defined as the number of the inverse problems which its recovered target variable has
percentage error of less than 1% to the generated actual target variable. The similarity of
the global optimum solution is defined in percentage as the percentage error of the number
of iterations required for the proxies to that for the optimal solution.

Table 4.3 and Figure 4.6 show the results of the KHEL case. Recall the optimal sensors for
the KHEL case are 13, 38 and 48 as shown in Figure 4.1(b). These sensors are also presented
in Table 4.3. However, we are not aiming to find proxies that exactly pick optimal solutions
but rather proxies that perform well when solving the inverse problem. The difficulties of the
three cases from the least to most challenging are KHEL, KHEH and KLEH. The difficulty
measured by computing the averages of the accuracies obtained by testing random sensors
on the test datasets over 100 times are 92%, 73% and 32%. Figure 4.6 shows that since the
KHEL case is relatively well-posed, all the proxy combinations show high recovery success
rates and high similarity to the global optimum solution except the F1S3 case which has zero
success rates for all the modes tested. Note that the sensor variable ID number 24 and 60
appear frequently and they turn out to be Uy at the tip and εx at the root of the beam which
may be helpful in recovering k2 and E. Since the compliance of the beam for this case is
relatively high, Uy is also more significant and sensitive information. In fact, for the same
reason, most of the sensors became more responsive to the manipulations which made the
accuracy of randomly chosen variables over 90%. The combinations of the objective functions
and the scaling methods which offered 100% accuracies as well as over 90% similarities to the
optimal solution are as follows: F1S4, F1S5, F3S3 and F5S6. Note that although this was an
easy problem, the numbers of iterations of only four combinations were actually close to the
optimal number of iterations.

Consider Tables 4.4 which are the results of the KHEH case. Recall the optimal sensors
for the KHEH case are 38, 48 and 62 as shown in Figure 4.1(c). These sensors are also
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(a) Success rate

(b) Number of iterations

(c) Similarity to the optimal solution

Figure 4.6: Performance of the objective functions and scaling methods on the KHEL case;
(a) success rate, (b) number of iterations and (c) similarity to the optimal solution.
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Table 4.4: Reduced sensor option: KHEH

presented in Table 4.4. By observing the success rates, it is noticed that the KHEH case is
definitely more challenging than the previous case. The results of the various combinations
are depicted on bar graphs shown in Figure 4.7. Note that F1 and F2 performed with the
highest accuracies of all the scaling methods (see Figure 4.7(a)). These two proxy objective
functions are the least sensitive to variable scaling of the data sets. The SVD based proxy
objective functions (F3-F6) show noticeable changes in their performances for the various
dataset scalings. Maximisation of singular values (F3) using S1 on the datasets gives poor
results for all possible modes. The maximisation of the contents of the covariance matrix is
not ideal without scaling since the sensor selection can be biased towards the measurements
with larger orders of magnitudes such as σ sensor. The component norm normalisation (S2)
led to success of all the objective functions. The objective functions and scaling methods
that offer 100% accuracy as well as over 90% similarities to the optimal solution are F1S1,
F1S6, all F2’s, F3S2, F3S4, F4S2 and F4S3.

Lastly, consider Table 4.5 and Figure 4.8 which are the results of the KLEH case. It
is observed that this is the most challenging case of all; the combinations hardly have a
10/10 accuracy result. The optimal sensors for this case were 48, 50 and 74 and they are
easily found in the favourable combinations. The combinations which offer 100% accuracies
and over 90% similarities to the optimal solution are F3S4, F4S1, F4S4, F4S5, F4S6, F6S1,
F6S4, F6S5 and F6S6. It is interesting to note that none of the good combinations appeared
commonly for all three cases. It should be made clear that the success rates are by far more
important than the similarities of the numbers of iterations. Therefore, the success rates have
been prioritised and any combinations with average success rates of at least 29/3 ≈ 9.667
are considered. These include F1S1, all F2’s, F3S4, F4S2, F6S2 and F6S6. Note that all F5
combinations which aimed to maximise the magnitude of the regression coefficients failed as
F2 is insensitive to the scaling methods. This implies there is a strong correlation between
maximising the variance explained in Y in the SIMPLS output and the ability to solve an
inverse problem. When the number of iterations is also considered F3S4 performed the best
with over 80% similarity to the global optimum solution. A number of promising proxy
candidates emerged from the 36 combinations considered for the beam problem. However,
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(a) Success rate

(b) Number of iterations

(c) Similarity to the optimal solution

Figure 4.7: Performance of the objective functions and scaling methods on the KHEH case;
(a) success rate, (b) number of iterations and (c) similarity to the optimal solution.
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Table 4.5: Reduced sensor option: KLEH

it is necessary to conduct additional studies using a larger number of problems to ensure
that general and not problem specific conclusions are drawn. This is however, not within the
scope of this study.

There are three important observations to be made from the observed sensor ID numbers
listed in Tables 4.3-4.5. First of all and most importantly, the only difference between the
cases is the ranges of E and k. However, the variable selections become noticeably distinctive.
When E becomes significantly larger than the k values (KLEH), the deformation of the beam
due to the point load becomes mainly dependent on the E values and not so much on k values.
This means the objective functions would attempt to find sensors which will be able to recover
the insensitive k as accurately as possible by choosing the most responsive variables to the
small variations of the k. Since the importance of recovering E and k is not biased, it will be
noticed later that sensors tend to be placed to recover less sensitive measurement variables.

Secondly, regardless of scaling methods, objective functions and A, some sensors occur
more often than others. For instance, consider the following values in Tables 4.4: 23 (u in
X-direction at the tip), 48 (σ in X-direction at the tip) and 60 (ε in X-direction at the root)
and the presence of the first two and the last sensors seem appropriate for predicting k1 and
E, respectively. Numerous times the placed sensors are not obvious, but if they are shown
to perform well then the benefits of SPO are evident. Note that since this is an optimisation
problem, it is known that each variable explains what the objective functions ask for and it
tries to keep the information from each variable separate and unique.

Lastly, the same sensor pairs are found using different scaling and proxy objective func-
tions. The results for F1 and F2 are often identical. In particular, the solutions of mean
centering (S1) for A from 1 to 3 are identical. Note that the chosen variables of F2 for A =
3 for the KLEH case (see Table 4.5) are almost all identical regardless of the chosen dataset
scaling. This demonstrates the importance of the dataset scaling and that effective scaling
depends on the problem characteristics at hand.
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(a) Success rate

(b) Number of iterations

(c) Similarity to the optimal solution

Figure 4.8: Performance of the objective functions and scaling methods on the KLEH case;
(a) success rate, (b) number of iterations and (c) similarity to the optimal solution.
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Chapter 5

Mode-Based Formulations: Model
Error Investigation

The aim of this chapter is to investigate how the formulations react to models with distinct
model errors. The model errors were introduced by changing the sizes of meshes: (1) coarse
mesh (1 by 2 has been considered in the previous chapters), (2) medium mesh (2 by 4)
and (3) fine mesh (4 by 8) (see Figure 5.1). Changing the mesh sizes allows for the model
error to be varied as well as the number of sensors to be increased spatially, should we want
to keep placing them at the integration points of the finite elements. Although the stress,
strain and displacement can be evaluated at any spatial location, the developed software can
efficiently compute it at the integration points and nodes. Hence, for this study we restrict
ourselves at placing sensors at the integration points and nodes. The numbers of possible
sensor options for coarse, medium and fine meshes are 74, 266 and 1010, respectively. The
sensor options in this chapter for the coarse model have all 74 sensors available. The aim is
to investigate on whether the sensors converge spatially as the mesh is refined. However, this
is only possible if the spatial resolution of the stress, strain and displacement fields starts to
converge (i.e. model error has decreased enough to allow for the spatial resolution of sensitive
domains to be resolved accurately enough for sensors to converge spatially). In addition, a
denser distribution of sensors requires a better resolution of the areas of interest to warrant
convergence amongst sensors to be placed as more integration points are available to place
sensors.

The various mode-based formulations were tested on the same three cases (KHEH, KHEL
and KLEH) as in the previous chapter on 100 problems for coarse mesh with 74 sensors
to select from. The results of the KHEH, KHEL and KLEH cases are shown in Tables
5.1-5.3. The accuracies (success rates) in the tables are obtained by counting the inverse
problems which its percentage errors of the recovered variables being less than 1%. Therefore,
the maximum accuracy is 100 since there are 100 test problems. The average accuracy
for randomly chosen variables for the KHEL, KHEH and KLEH is 89%, 71% and 32%,
respectively. As mentioned in the previous chapter, although there are two criteria for scoring
the proxies, the accuracy results which drive the robustness of the methods are considered
to be more critical than the numbers of iterations. Since the reduced sensor models in
the previous chapter are identical to the coarse mesh models in this chapter and the only
difference is the number of sensor options, if the methods worked in the previous chapter with
the reduced sensor options, it should definitely work as well with the coarse model in this
chapter. The same six objective functions and the scaling methods were tested as presented
in Table 4.2. Notice that the same phenomenon as discussed in Section 4 is also observed
in Tables 5.1-5.3 with a larger number of available sensors and test problems. The proxy
functions and dataset scaling pairs which resulted in accuracies of at least 90% in both the
reduced sensors options and the full sensor options (coarse mesh) are as follows:

� F1S1: arg min
x

(‖Yresiduals‖) with component mean centering.
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Figure 5.1: Coarse, medium and fine meshes.

Table 5.1: Chosen variables for high k’s & low E
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Table 5.2: Chosen variables for high k’s & high E

Table 5.3: Chosen variables for low k’s & high E
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� F2S1: arg max
x

(varY ) with component mean centering.

� F2S3: arg max
x

(varY ) with component mean centering and mean normalisation.

� F2S4: arg max
x

(varY ) with component mean centering and SD normalisation.

� F2S5: arg max
x

(varY ) with vector mean centering and mean normalisation.

� F2S6: arg max
x

(varY ) with vector mean centering and SD normalisation.

� F3S2: arg max
x

(
∑
Sxy) with component mean centering and norm normalisation.

� F4S2: arg max
x

(∑
Sxy

‖Sxy‖

)
with component mean centering and norm normalisation.

� F6S2: arg max
x

(∑
Sxy

‖Sxy‖

)(‖UT
x Uxy‖)

with component mean centering and norm normali-

sation.

� F6S6: arg max
x

(∑
Sxy

‖Sxy‖

)(‖UT
x Uxy‖)

with vector mean centering and SD normalisation.

Note that F3S4 which performed best for the reduced sensor case is not listed since the
smaller number of test inverse problems in the previous chapter was not sufficient to prove
the robustness of the proxies. It is interesting to note that the most robust objective function
so far is the F2 which is maximisation of variance explained in the target data using PLS and
this conclusion can be made since it is less sensitive to the scaling methods. The only scaling
method which does not work well with F2 is S2 which works well with F3, F4 and F6. Note
that the sensors obtained for both F1S1 and F2S1 always are equivalent.

Exhaustive combinatorial approach was implemented to search for the optimal sensors for
medium meshes using the ten identified methods and it turned out that F3S2, F4S2, F6S2 and
F6S2 failed to recover E and k’s with all three cases with higher success rates than randomly
chosen sensors. This means that only the two objective functions using SIMPLS (F1 and F2)
manage to find useful sensors. While the F1 only performs well with S1: component mean
centering, F2 seems to work well with almost any scaling methods. Tables 5.4 - 5.6 show
the selected sensors and results of the two objective functions. Notice that the quality of the
selected sensors is highly dependent on the number of modes. It must be strongly emphasized
that although mesh size reduction definitely increases the opportunities for choosing better
sensors, it also allows for a better resolution of the spatial stress, strain and displacement
fields. Therefore, the results of the medium meshes are not necessarily better than the coarse
meshes but definitely more relevant. The proxies should perform better on average than
randomly chosen sensors. Consequently, only the two objective functions are considered for
further analyses.

The F2S3 results in Table 5.4 show that when only a single mode is used the accuracy
is zero but as the number of modes, A increases, the accuracy gets higher and the number
of iterations tend to decrease. However, for the more challenging problems in Tables 5.5 and
5.6, we note that up to two modes perform the best overall, with three modes performing
well as the exception. As the modes increase and the performance breaks down it can happen
that an additional mode improves the performance as for example with F1S1 in Table 5.6.
This indicates that the second mode poorly approximated the inverse problem as F1 is based
on Yresiduals, while the third mode introduced more relevant information. The accuracies
(robustness) of the methods in order of magnitude beginning with the highest are as follows:
F2S3 and F2S6 are tied at 99.67%, F2S5 with 98.67%, F1S1 and F2S1 with 98% and lastly,
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Table 5.4: Medium mesh - High k’s & Low E

F2S3 with 93.67%. When considering the number of iterations, F2S3 is slightly better than
F2S6.

Note it has been shown that all the six methods provide successfully recovered target
variables over 90% of the time. An additional test to quantify the proxy performance is to
see how each proxy evaluates the other proxy solutions that we know perform well. The
proxy objective function comparisons are presented in Figure 5.2 when the optimal sensor
locations obtained by five of the six sensors are evaluated using the proxy function of the
sixth sensor. The percentage errors that indicate the percentage difference between the two
proxies were computed as follows:

PE = 100(
FV − FVmin

FVmax − FVmin
), (5.1)

where FV , FVmin and FVmax denote the current function value of one proxy and the min-
imum and maximum possible function values of another proxy, respectively. Figure 5.2(b)
depicts the percentage error when F2S1, F2S3, F2S4, F2S5 and F2S6 are evaluated with their
optimal sensor locations and how they differ when the same sensor locations are evaluated
using F1S1. A percentage error of 100% implies that sets of sensors deemed optimal by one
proxy function scaling combination are deemed the worst sensor pair by another proxy func-
tion scaling combination. A percentage error of 0% implies that both proxy function scaling
combination deem the same sensor pair optimal.

Remember that for mean centering dataset scaling S1, the sensors obtained from F1 and
F2 are identical (i.e. 0% percentage error). It is noticed that some proxy function dataset
scaling combinations evaluate valuable sensor combinations as poor. For the KHEH case
shown in Figure 5.2(b), F2S3 and F2S6 evaluate optimal sensors from F2S4 and F2S5 as
almost their worst. The KHEL case (Figure 5.2(a)) shows that most proxy function dataset
scaling combinations evaluate the others’ optimal solution mostly within 10% percentile. Only
F2S4 and F2S5 evaluate the optimal solutions from F1S1 and F2S1 as inferior. Similarly for
the KLEH case (Figure 5.2(c)), the proxy function dataset scaling combinations F2S5 and
F2S6 evaluate the optimal solution from F2S4 as inferior. Since it is already known that
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Table 5.5: Medium mesh - High k’s & High E

Table 5.6: Medium mesh - Low k’s & High E
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Table 5.7: Success rates and numbers of iterations for F1S1 and F2S1

the optimal sensor sets chosen from all the proxies performed well, should a proxy function
dataset scaling combination consider the optimal sensors of other proxy function dataset
scaling combinations to be within its low percentage error range, one could assume that
it is better correlated with the inverse problem. To quantify the general alignment with
the inverse problem, the percentage errors from all three cases were summed up and the
average percentage errors produced as shown in Figure 5.3. The only proxy function dataset
scaling combination that generalises poorly is F2S6. F2S6 is the best performing sensor with
99.67% accuracy. F2S6 generalises poorly for the inverse problem under consideration, which
indicates some potential strong biases to preferred solution. For the remainder of the study
we only consider the proxy function dataset scaling combinations that generalise well for
the inverse problem which are the remaining five combinations F1S1, F2S1, F2S3, F2S4 and
F2S5.

5.1 Model error test

As the meshes are refined the discretisation error decreases, where the discretisation error
is indicative of model error in this study. Each model with an associated mesh (i.e. coarse,
medium or fine, is considered a different problem). We investigate to what extent the optimal
sensors from one model perform well on another model. For small model errors between
models, it is expected that the sensors converge spatially. In addition for small model error
differences, it is expected that the finer mesh model that has more sensors to choose from,
to perform better than the limited selection from a coarser model. The five robust methods
selected from the previous section (F1S1, F2S1, F2S3, F2S4 and F2S5) were examined on the
various models by applying the optimal sensors found in one model to another model. Since
the FEM displacement, stress and strain fields are spatially fully described using interpolation,
obtaining a displacement, stress or strain measurement at any spatial location on the structure
is possible.

The number of the possible sensors in the fine mesh beam is 1010 which results in 171×106

possible combinations as compared to 64824 and 3.1 × 106 combinations in the coarse and
medium mesh models, respectively. To keep the problem computationally tractable, the BGA
(binary genetic algorithm) was used instead of the combinatorial approach for the fine mesh
model. This also means it is not fully guaranteed that the optimal solution for each proxy
function dataset scaling combination is obtained for the fine mesh. Hence, the BGA was run
ten times for each case and the best results among them were used. Note that each run of
the BGA was set to have 100 iterations, 30000 populations, the selection rate of 30% and the
extremely high mutation rate of 80%, which may be suitable for multi-modal problems. This
can be considered as an exhaustive BGA approach due to the large numbers of iterations and
populations. The results from the coarse, medium and fine meshes for all the combinations
of the robust methods are presented as well as the results from interchanging the sensors
between the models. For this study, only the KHEH case was considered.

5.1.1 F1S1 and F2S1

Recall that F1S1 and F2S1 give the same results, although they have two distinct objective
functions as shown in Table 5.7. We, therefore, only elaborate on F1S1 which is directly

60

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



(a) The percentage error for KHEL

(b) The percentage error for KHEH

(c) The percentage error for KLEH

Figure 5.2: The percentage error between the optimal proxy values of five proxy function
dataset scaling combinations and the optimal proxy value when the optimal designs are
evaluated by the sixth proxy function dataset scaling combination for (a) KHEL, (b) KHEH,
and (c) KLEH.
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Figure 5.3: Average percentage errors.
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Figure 5.4: Function values of F1S1 (Minimisation problem).
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applicable to F2S1. The success rates and the numbers of iterations for the sensors chosen
in the distinct mesh sizes are shown in Table 5.7. When the sensors found from one mesh
size were applied to another mesh size, it is indicated using the word “to”. It is critical to
note again that as the mesh gets finer, more sensors are available. At the same time, the
model error is reduced. Thus, if the model errors have not converged yet, the optimal sensor
placement may vary depending on whether the sensitivity of the information has converged
or not. It is anticipated that the optimal sensors from a coarse mesh perform worse than a
finer mesh due to the limited options for sensors. From Table 5.7, the numbers of iterations
increase and the success rates decrease when optimal sensors from the coarse mesh are applied
to the medium mesh and from the medium relocated to the fine mesh. On the other hand,
when the optimal sensors from the finer meshes are applied to a coarser mesh, an improvement
is only expected if the model errors have converged. Both sets of optimal sensors from the
medium to coarse mesh and from the fine to medium mesh show that again the success rates
decreased and the numbers of iterations increased. It is indicative that there is a significant
development in the complexity of the fine mesh model.

Figure 5.4 shows the function values of the sensor combinations for the different mesh
models (For F2S1, consider Figure 5.5. The only difference between the two figures is that
F2S1 is a maximisation problem. Hence, it shows exactly the opposite behaviour from that
of F1S1). Note that they are all scaled by one single value so that the largest value becomes
1. It is critical to note that each model has its optimal numbers of modes, A based on the
performances. Therefore, A used for one model might not be the same as the A used for the
other models as F1S1 clearly shows. Each model has its own different optimal A which are
3, 2 and 1 for coarse, medium and fine, respectively. This means that when a set of sensors
from one model is transferred to the other model, it is not possible to compare the function
value of the transferred sensors with that of the target model. For instance, one can not
compare the function value of “from medium to fine” [M→F] with that of the fine model due
to the difference in A. The reason is that the explanatory information of the measurement is
different when the number of modes A varies. However, it is still meaningful to compare the
function values of the transferred set with the models from which they were transferred as the
number of modes A stay the same. The model error, however, changes. The function values
increase which indicates an anticipated worse performance. To clarify, the function value at
the coarse mesh model is lower than the “from coarse to medium”[C→M]. In addition, the
“from medium to fine” and “from fine to medium” function values are significantly higher
than the function values from which they were transferred, indicative in the decrease of the
success rate. A complexity to consider when information is transferred between meshes is
that the sensor unfortunately do not overlap and it could be that the course mesh has a great
location whereas the other meshes are slightly off.

5.1.2 F2S3

F2S3 uses the mean scaling method and is a maximisation objective function. The results
of F2S3 are shown in Table 5.8 and Figure 5.6. The success rates for both the coarse mesh
and the “coarse to medium” mesh are identical but the number of iterations for the latter is
higher than expected. However, note that the function value of the latter is also higher as
depicted in Figure 5.6. This implies that the transferred sensors could explain the variance
in Y better according to the function value and also implies that the resolution of the proxy
is limited since the function values ranking can not always match the ranks of the number of
iterations required by the optimal sensor sets. This can also be caused by the difference in
the model errors of the two meshes. Fortunately, A used for both medium and fine meshes
are the same. Thus, the direction of comparison in the function values of the medium and
fine meshes is possible. Note that the fine mesh performs better than the “medium to fine”
mesh and also has a higher function value. Consider the results of the medium mesh and the
“fine to medium” mesh. Although the function value of “fine to medium” is slightly higher
than that of the medium mesh, it has a lower success rate than the medium mesh. This
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[C] A=3 [C → M] A=3 [M] A = 2 [M → F] A=2 [F] A=1 [M → C] A=2 [F → M] A=1

Mesh size

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
el

at
iv

e 
fu

nc
tio

n 
va

lu
e

F2S1 (Maximise)1 0.99295
0.94476

0.64125

0.57834 0.57005

0.5076

Figure 5.5: Function values of F2S1 (Maximisation problem).

Table 5.8: Success rates and numbers of iterations for F2S3

clearly shows the limitation of the resolution of the proxy in that optimal sensor combination
rated higher by the proxy actually performs worse on the inverse problem. The proxies of the
inverse problems can not be expected to behave perfectly the same as the inverse problem
errors. However, it has been shown that the proxy function dataset scaling combinations
under investigation are robust in finding suitable sensors that are highly correlated with the
ability to solve the inverse problem.

5.1.3 F2S4

F2S4 uses the Z-score scaling. The “coarse to medium” sensors do not perform better than
those from the medium mesh. However, it is noticed that the “medium to fine” mesh performs
significantly better than the fine mesh, Amedium = Afine = Amedium→fine = 1. Comparing
function values of the “medium to fine” and fine meshes is sensible. Figure 5.7 shows that the
“medium to fine” mesh actually has a lower function value than the fine mesh, although the
“medium to fine” mesh perform worse than the fine mesh when solving the inverse problem.
This highlights again the lack of detailed correlation between the proxy and the inverse
problem. Fortunately, the errors are less than 10% in the success rates.

Table 5.9: Success rates and numbers of iterations for F2S4
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Figure 5.6: Function values of F2S3 (Maximisation problem).
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Figure 5.7: Function values of F2S4 (Maximisation problem).
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Table 5.10: Success rates and numbers of iterations for F2S5
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Figure 5.8: Function values of F2S5 (Maximisation problem).

5.1.4 F2S5

F2S5 uses the vector mean scaling method for the maximisation of variance explained. Figure
5.8 shows that this method generally uses a larger number of modes than the other methods
and Table 5.10 shows that the success rates are also relatively higher. It is interesting to
note that the function value of “coarse to medium” mesh is higher than that of the medium
mesh. This is due to the medium mesh that is unable to search through the Gauss points
which appeared only in the coarse mesh. It is noticed that the “coarse to medium” mesh has
better accuracy than the medium mesh as well. On the other hand, the “medium to coarse”
mesh has a greater function value and lower accuracy.

The five mode-based proxy function dataset scaling combinations have been investigated
in the presence of model errors. Although they were confirmed to be robust in terms of finding
the responsive sensors for the inverse problems, as expected, they are not highly correlated
with the inverse problems in details such as the number of iterations and small variations in
the success rates. The phenomena commonly observed from all the proxies are that as the
mesh sizes of the models decrease, the less modes A are required. As the complexity of a
model increases by mesh refinement, the model may contain irrelevant detailed data for the
recovery of the optimal sensors. This is why A’s decrease as the meshes are refined. Note that
S1 is simply just the mean centering and S5 consists of the mean centering and vector mean
normalisation which do not change the information of the sensors within the measurement
groups. Therefore, the optimal A for F1S1, F2S2 and F2S5 are slightly higher than A chosen
for F2S3 and F2S4.

5.2 Different numbers of sensors

The numbers of sensors for the beam problems have been fixed to three sensors. We now
consider the consequence of using more or less sensors on the ability to recover the inverse
problem. To answer this question, two and four sensors were tested on the coarse mesh beam
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in order to be able to implement the combinatorial approach. Again, the KHEH case was
considered for this study. Each method was used to find two, three and four sensors and their
performances compared.

5.2.1 F1S1 and F2S1

The results of F1S1 for different numbers of sensors are shown in Table 5.11a. It is not
surprising to observe that the two sensors do not perform well at all since there are three
target variables to be recovered. The number of modes A is limited by the number of sensors.
It is noticed that two sensors fail to recover the target variables and successful recovery only
starts from three sensors onwards. Only from the three variables which match the number
of independent target variables, F1S1 started to show over 90% success rates. Increasing the
number of sensors to four has a negligible effect on the results. It is noticed that the same
sensors are reselected when the modes A are increased. For instance, the sensor ID number
54 and 64 appear in all the sensor groups with A = 1. Note that sensors are also repeated
between the three and four sensors result using the same modes, (i.e. A = 1), while at other
times a sensor is replaced by two other sensors (i.e. for A = 2 sensor 65 is replaced by 68 and
70). The only difference between the results of F1S1 and F2S1 (Table 5.11b) is the results of
using the full modes when choosing four sensors. Although the two functions produced two
distinct sets of sensors due to the numerical errors for implementing SIMPLS using Matlab’s
plsregress built-in function for the full modes, the results of F2S1 and F1S1 are poor due
to the over-fitting.

5.2.2 F2S3

The results for F2S3 which use the mean scaling are shown in Table 5.11c. Only from
three sensors onwards are target variables successfully recovered. The only improvement of
significance that is observed from three to four sensors is when A = 3 improves from 16% to
88%. Again, the four sensors with the full modes perform poorly due to over-fitting.

5.2.3 F2S4 and F2S5

The results for F2S4 and F2S5 are shown in Tables 5.11d and 5.11e. As expected, the
two sensor sets did not manage to recover any of the unknown variables. The performance
between the three and four sensors is effectively unchanged.

The studies showed that having an extra sensor does not deteriorate the performance and
may either significantly or slightly improve performance. However, once the optimal number
of sensors are obtained adding new sensors has effectively no effect. Significant improvement
is achieved when the number of the sensors gets lower than the number of the target variables.
Although the five methods experience certain limitations in the resolution as the proxies of the
inverse problems, they were proven to be robust in selecting effective sensors for experiments.

5.3 Sensor convergence tests

A big part of this study is to see whether the sensors converge spatially or not. Hence, the
following three types of sensor convergence for the mode-based formulations are investigated
and discussed.

1. Sensor convergence for changing modes.

2. Sensor convergence for BGA for the fine mesh problem.

3. Sensor convergence for the model errors (coarse, medium and fine meshes).

In addition, the sensors selected for the different number of sensors are also graphically
presented and discussed.
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a F1S1 b F2S1 c F2S3

d F2S4 e F2S5

Table 5.11: Objective function value comparisons
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5.3.1 Sensor convergence test for changing modes

Identifying appropriate numbers of mode is essential in the mode-based formulations. This
test aims to investigate whether there is any sign of convergence as the number of mode varies.
As a representative, the sensors selected using F1S1 which is one of the best performing proxies
for the KHEH case of the coarse mesh model presented in Table 5.2 are considered and the
spatial distributions of the sensors for A = 1, 2 and 3 are presented in Figures 5.9(a)-(c),
respectively. It is noticed from Table 5.2 that these sensor sets have success rates of 97, 92
and 100% which are very accurate and yet, the figures show that the sensors do not converge
as the number of modes changes.

5.3.2 Sensor convergence test for BGA for the fine mesh problem

As discussed in Section 5.1, the BGA was implemented for the fine mesh problems to make
the sensor optimisation more computationally tractable. Since the BGA does not guarantee
that the optimal solution will be found, it was implemented ten times for every fine mesh
problem and the best solutions among them were used. The setting for the BGA is the
same as presented in Section 5.1. The sensor convergence test presents the ten sets of the
selected sensors for the KHEH case of the fine mesh using F1S1 in Figure 5.10. This was
how the sensors for the fine mesh problem with the F1S1 presented in Table 5.7 were chosen.
The sensor placements depicted in the figure are optimised for A = 1 since that is the same
number of mode chosen for the fine mesh result in Table 5.7. Figure 5.10 only shows a single
set of three sensors and this means that all the ten sets of the sensors are identical. Hence,
the sensor convergence for the BGA approach showed a confident result for the fine mesh
problem since this was an exhaustive BGA. However, note that this still does not guarantee
that this result is the global minimum.

5.3.3 Sensor convergence test for the model errors

The convergence test for the sensors selected from F1S1, one of the best performing proxies,
was conducted as the mesh was refined and coarsened. The sensors used to generate the
performances for the coarse, medium and fine meshes presented in Table 5.7 for the KHEH
case are depicted in Figures 5.11(a)-(c). Although Table 5.7 shows that the three sets of
sensors have 100% accuracies, it does not seem obvious to understand the reason behind
their placements. The figures show that the sensors do not converge as the mesh size is
refined and coarsened for the case considered. Notice that both the positions and types of
the sensors do not converge.

5.3.4 Graphical presentation of the selected sensors for various numbers
of sensors

What happens to the sensors as the number of the sensors increases for the mode-based
formulations was already discussed in Section 5.2. Hence, this section aims to visually in-
vestigate how the extra sensors get located in the problem. Tables 5.11a-5.11e present the
performances of the sensors selected using the various proxies for the KHEH case for the
coarse mesh problem. The sensors from F1S1 which is one of the best performing proxy as
tabulated in Table 5.11a were chosen to present the placement of the extra sensors as the
number of sensors increases for A = 1 and 2 in Figure 5.12. The spatial distribution of the
sensors for the 2, 3 and 4 sensors for A = 1 and 2 is indicated in Figures 5.12(a)-(c) and
5.12(d)-(f), respectively. Similar to the other proxies from Table 5.11a, F1S1 chooses extra
sensors as the number of sensor increases while keeping the other sensors chosen earlier un-
changed when A = 1 since it only has a single mode. Hence, it only focuses on an adding
new sensor which will help improve the function values of the proxies. On the other hand,
when A = 2, it starts balancing between the modes and starts to swap the previously chosen
sensors with new sets of sensors to satisfy the optimisation.
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(a) A = 1

(b) A = 2

(c) A = 3

Figure 5.9: Sensor convergence test for changing the number of modes for the mode-based
formulation F1S1 for the KHEH case when (a) A = 1, (b) A = 2 and (c) A = 3.
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Figure 5.10: Sensor convergence test for BGA for the fine mesh problem using F1S1 for A =
1 over ten times of optimisation.

5.4 Causality

Before moving on to the next chapter to introduce the mode-free formulations, causality
in SPO needs to be addressed. Many researchers who work with big data only try to find
the correlations between measurement and target data as they work with data and not
models. This is important as for many big data analyses the correlation does not imply
causality. Typically correlation includes causal relationships and additional correlated but
not causal variables. An easy and highly efficient way to consider causality between variables
is to manipulate the model target variables independently at the same time while generating
the data for analyses which is exactly what has been done up until now. Since the target
variable FEM input values are unrelated with each other, it is possible to observe which
target variables influence which sensors the most.

Although it has been shown so far that this way of generating data works for the numerical
techniques, it is difficult for a person to see how the readings on the u, σ and ε change as
the target variables (FEM input variables), E, k1 and k2 vary. Therefore, the measurement
readings of the sensors were taken as E, k1 and k2 varied one at a time. The variations of the
σ measurements when varying E, k1 and k2 are shown in Figures 5.13 - 5.15, respectively.
Note that these σ measurements are measured at all eight Gauss points in the coarse mesh
problems. Hence, each of the σx, σy and σxy has eight measurements presented in the figures.
Since the discussion about the σ applies equally to both the u and ε as well, the results for
u and ε are presented in Appendices.

5.4.1 Manipulation of E

The changes in the σ due to the manipulation of E for all the three cases (KHEL, KHEH
and KLEH) for the coarse mesh beam are shown in Figure 5.13. While Young’s modulus, E
was being manipulated within its ranges, the two k values were fixed at the middle value of
their ranges. The middle values were chosen since the ranges are often set around the most
confident estimates. Figure 5.13(a) shows the changes of σ for the KHEL case. As expected,
the variation and sensitivity of σ decrease as E increases and the beam becomes stiffer. Figure
5.13(b) shows the changes of σ for KHEH. Since the ranges of E are considerably higher when
compared to KHEL, σ shows ever lower sensitivity along the variation of E. Lastly, Figure
5.13(c) is for KLEH. As opposed to KHEL, the springs are softer but E is higher at the same
time. Thus, σ becomes extremely insensitive to the change in E.
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(a) Coarse mesh

(b) Medium mesh

(c) Fine mesh

Figure 5.11: Sensor convergence test for the mode-based formulation F1S1 for the KHEH
case for (a) coarse, (b) medium and (c) fine meshes.
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(a) 2 Sensors, A = 1 (b) 3 Sensors, A = 1

(c) 4 Sensors, A = 1 (d) 2 Sensors, A = 2

(e) 3 Sensors, A = 2 (f) 4 Sensors, A = 2

Figure 5.12: Spatial distribution of the sensors for increasing the number of sensors for (a)
2,(b) 3 and (c) 4 sensors when A = 1 and (d) 2, (e) 3 and (f) 4 sensors when A = 2.
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(a) KHEL

(b) KHEH

(c) KLEH

Figure 5.13: Stress, σ sensitivities when adjusting Young’s modulus, E for the (a) KHEL,
(b) KHEH and (c) KLEH cases.
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5.4.2 Manipulation of k1

The changes in σ due to the manipulation of k1 (the horizontal spring) for all the three cases
are shown in Figure 5.14. Recall that k1 spring is much softer than k2 spring. Therefore, it is
noticed that σ values look almost constant throughout the changes in the spring stiffness. This
also means the difficulty of recovering k1 is greater compared to the other target variables.
There is no visible difference in σ even when E is low (KHEL) as shown in Figure 5.14(a).

5.4.3 Manipulation of k2

The changes in σ due to the manipulation of k2 (the vertical spring) for all three cases are
shown in Figure 5.15. The second spring k2 is about 100 times stiffer than k1. Thus, it
was expected to affect σ along the manipulations. When the range of k is high but the
range of E is low (KHEL), the highest sensitivity in σ is shown (see Figure 5.15(a)). This is
due to the high compliance of the beam which makes the spring exert higher forces on the
beam. When both the ranges of k and E are high (KHEH), it certainly shows visible but less
variations in σ with variation in k2 as shown in Figure 5.15(b). The most challenging case,
KLEH still showed no visible difference in σ and the σ measurements seemed constant along
the changes of k2 as shown in Figure 5.15(c). This study was conducted to illustrate what
actually happens in the measurement data and how the causalities between the measurement
data and target variable data change while manipulating the target variables. In fact, the
activities inside the training data are more complex since all the target variables are varied
at the same time which saves a lot of time as compared to fixing the rest of the target values
at every interval in their ranges while manipulating one variable. This shows the power of
using the model instead of having only data. With data, only correlations can be studied but
with models, causalities between variables can be examined.

It is essential to note here that this causality test is actually an efficient strategy to identify
sensors since it varies each target variable one at a time and can find the sensor with the most
variation over the domain. Hence, this approach can be useful in generating initial starting
points for the optimisation. The causality study is the first step towards mode-free sensor
placement optimisation as a legit strategy to change each target variable independently and
compute all the sensor responses. The optimal sensors are merely selected as the sensors with
the highest gradient over the domain. However, there is a disadvantage of doing this, which
is that although it can be efficient for small target ranges for E, k1 and k2, for large target
ranges, the variables combinatorially blow up. In addition, one has to be able to directly
manipulate the quantity of interest. Some inverse problems where one aims to predict the
response at a spatial location based on the response at another location are examples of
where such an approach will fail. Hence, our aim is to pursue this multivariate setting in
which all sensors are changed at the same time to also include coupling of the variables in
the responses.
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(a) KHEL

(b) KHEH

(c) KLEH

Figure 5.14: Stress, σ sensitivities when adjusting spring stiffness 1, k1 for the (a) KHEL,
(b) KHEH and (c) KLEH cases.
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(a) KHEL

(b) KHEH

(c) KLEH

Figure 5.15: Stress, σ sensitivities when adjusting spring stiffness 2, k2 for the (a) KHEL,
(b) KHEH and (c) KLEH cases.
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Chapter 6

Mode-Free Formulation

The mode-based formulations proved to be robust and capable of placing useful sensors for
inverse experiments. However, they require the right number of modes to be identified, which
usually increase as the number of sensors increase. The concept of mode-free formulations
was briefly demonstrated at the end of the previous chapter, by varying the target variables
over a range and observing how the stress, strain and displacement sensors vary to identify
the most sensitive sensors. As discussed, this decoupled approach of the target variables has
some disadvantages in that combinatorially this can become expensive and that you have
to be able to manipulate the target variables independently. The aim of this chapter is to
propose a mode-free formulation that addresses these issues.

From the previous chapters, the following characteristics of the inverse problems were
found:

1. The information that the sensors measure should be relevant to the inverse problem at
hand, it should be related to the target variables that need to be recovered which is
mathematically expressed by

rank

((
Xc − X̄c

SD(Xc)

)T( Y − Ȳ
SD(Y )

)2)
. (6.1)

2. The sensors chosen for the inverse problem should measure unique information. This is
important to ensure that each variable contributes new information about the problem.
This can be expressed mathematically by

rank

((
Xc − X̄c

SD(Xc)

)T(Xc − X̄c

SD(Xc)

)2)
. (6.2)

3. Inverse problem requires sensors that result in large variance in the target variables to
be recovered. The more sensitive the sensor the better the chances for recovery. This
is compactly expressed by

Nsensors∏
i=1

var(xc,i). (6.3)

The modes-free formulations consist of the three objectives Eqs. 6.1, 6.2 and 6.3. Notice
that Eqs. 6.1 and 6.2 include Z-score which allows for normalisation of the covariance ma-
trices. To combine these objectives with various orders of magnitudes together to form an
unconstrained problem, the weights for each objective need to be considered. As an alterna-
tive, we rather consider a constrained maximisation problem by strictly considering the sensor
sets with the full ranks for Eqs. 6.1 and 6.2. This allows for the constrained optimisation
with the single objective function Eq. 6.3 which maximises on the product of the variances
of the full ranked sensor sets. The maximum possible number of rank matches the number of
the target variables given that the number of sensors is not less than the number of the target
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variables. Recall from Section 5.2 that in order for the recovery of the target variables to
be successful, the number of sensors should not be less than the number of target variables.
Only considering the full rank sensors enhances the computational speed required. Moreover,
the mode-based formulations do not require any mode extraction from the measurement and
target datasets. Therefore, the computational speed of the mode-free formulation is much
faster than the mode-based formulations. This is later proven in Section 6.3. For this reason,
the exhaustive combinatorial approach was considered to be computationally tractable even
for the fine mesh model. Hence, the exhaustive combinatorial approach was mainly imple-
mented throughout the chapter. The addition approach discussed in Section 3.4 was also
implemented to compare its performance with the global maximum found by the exhaustive
combinatorial approach.

6.1 Performance comparison between the combinatorial and
addition approaches

We now compare the performance between the exhaustive combinatorial approach and the
addition approach. The main motivation is to inquire whether the addition approach is sen-
sible as it is computationally tractable for large number of variables. The computational
performance of the two approaches to solve the three beam model problems (coarse, medium
and fine meshes) with the various target range cases (KHEL, KHEH and KLEH) is inves-
tigated as well as their ability to recover optimal solutions. The chosen sensors from these
problems were tested on 100 test problems in the identical way as in Chapter 5. Note that
both exhaustive combinatorial and addition approaches solve the constrained optimisation to
find optimal sensors. Hence, for the exhaustive combinatorial approach, only the sensor sets
with full ranks of 3 for Eqs. 6.1 and 6.2 were taken to compute their variances and for the
addition approach, the selection of the first sensor only aims for maximising the variance of
the sensors since comparing the ranks of single sensor is pointless. From the second sensor
selection onwards, the two rank constraints were active to match the number of sensors to
the ranks of the sensor sets while maximising the product of the variances of each sensor.

Figure 6.1 shows the performances of the sensors selected using the exhaustive combina-
torial approach and the addition (fast) approach discussed in Chapter 3. The combinatorial
approach guarantees a global maximum but is computationally intractable for a large sys-
tem. The addition approach does not guarantee a global maximum but it is computationally
efficient. The sub-figures show the accuracies and the numbers of iterations for the differ-
ent mesh sizes (coarse, medium and fine) for the three cases (KHEH, KHEL and KLEH).
The graphs show that the combinatorial approach often managed to obtain 100% accuracies
and at its worst, 95%. In addition, the number of iterations required to solve the inverse
problem ranged between 224 and 270 iterations, which constitutes the global maximum solu-
tions to the problem. The addition approach is able to recover competitive solutions to the
global minimum in all cases. The required number of iterations to solve the inverse problem
ranged between 224 and 277. Figure 6.2 shows the comparisons between the combinatorial
approaches and the randomly chosen sensors for the coarse, medium and fines meshes, re-
spectively. The success rate for the randomly selected sensors varied between 31% and 92%.
The lowest success rate for the addition approach was 93%. In addition, the number of itera-
tions required to solve the inverse problem by randomly selecting sensors ranged between 230
and 360 iterations. The results of randomly chosen sensors coloured in yellow show visibly
poorer results than those for the mode-free formulations. Therefore, this clearly proves the
robustness of the mode-free formulations.

6.2 Convergence of sensors using mode-based formulations

When using the mode-based formulation, even though the mesh sizes of the beam problems
got finer to the fine meshes, it was not enough for the formulations to show any convergence
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Figure 6.1: Accuracy test of sensors found using combinatorial approach and addition ap-
proach.
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Figure 6.2: Accuracy test of sensors found using combinatorial approach and random sensors.
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and the sensor location seems to move around inconstantly as illustrated in Section 5.3.3.
Therefore, convergence of the sensors can only be noticed when the model error of a problem
decreases to the point where the sensitivities of the sensors are starting to converge to the
point where the rankings are consistent. The associated errors might still move around. The
three beam cases (KHEH, KHEL and KLEH) with the various mesh sizes as in the previous
chapter were considered to observe the convergence of mode-free formulations. Whereas
mode-based formulations can vary its optimal sensor positions depending on the numbers of
modes as illustrated in Section 5.3.1, the results of the constrained mode-free formulations
with the exhaustive combinatorial optimisation approach clearly show its convergence as the
sizes of mesh get less as shown in Figures 6.3, 6.4 and 6.5.

6.2.1 KHEL

The convergence of the three sensors for KHEL is shown in Figures 6.3(a)-(c) for the coarse
to fine meshes. Note that squares in the figures indicate the nodes of the elements in the
beam. Since KHEL has the most flexible beam among the three cases, a large deflection is
expected from the same amount of load applied at the middle of the beam. Therefore, the
two σx sensors are placed close to the root and the uy sensor are placed where the load is
applied. The two σ sensors are mainly for recovering E and k1 and the uy is placed there
due to the high compliance of the beam. The medium mesh and the fine mesh beams (see
Figures 6.3(b) and (c)) clearly show convergence in the sensor positions. It is noticed that
the two σx sensors have moved more towards the top and the bottom of the beam where the
variance of stress is greater.

6.2.2 KHEH

The convergence of the three sensors for KHEH is shown in Figure 6.4. The coarse mesh
beam has its two σx sensors located at the bottom close to the root of the beam and in the
top middle. The uy sensor is placed at the tip of the beam. Recall that KHEH has the high
ranges of both E and k. Since the vertical springs k1 has almost an unnoticeable significance
in the measured data as shown in Figure 5.14, the σx at the top is measured closer to the
tip than the other σ sensor. The uy sensor is placed where it can measure the change in u
due to k2 effectively. Figure 6.4(b) shows that the σx sensors moved slightly outwards from
their positions where σ magnitude is larger. However, there is neither change in the types of
sensors nor large movement in the spatial location of the sensors. Figure 6.4(c) shows that
the fine beam has two σx sensors even closer to the top and the bottom. The position of uy
has changed to the bottom of the beam but still close to the tip of the beam. Since each
sensor is ranked by its variance, there can be slight changes in the position of uy such as
this. This shows that mode-based formulation certainly shows convergence for the cantilever
beam problems.

6.2.3 KLEH

Lastly, the convergence of the three sensors for KLEH is shown in Figures 6.5(a)-(c) for
the coarse to fine meshes. The KLEH beam has high stiffness yet the springs are relatively
weaker. Therefore, as compared to KHEL, uy has moved to the tip of the beam where the
displacement and variance is the greatest and the two σx sensors are placed at the root where
σ is the greatest. It is noticed that all the sensors focus on finding the spatial location that
results in the most variance as dictated by the optimisation problem. The medium and fine
mesh beams (see Figure 6.5(b) and (c)) clearly show the convergence of the sensors’ positions.
Again, the two σx sensors are moved towards the corners at the root.

Each case has the different ranges of E and k. Thus, although they require the same types
of the sensors (two σx and a uy sensors), the sensors are located differently depending on
the behaviours of the structure and the measurements. It turns out that the cantilever beam
problems do have the converged solutions with the mode-free sensor searching formulation
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while the mode-based formulation did not manage to have convergence for the various sizes
of elements.

6.3 Computational speed test

The computational speed of SPO becomes critical when there is a large number of sensor
options available for an experiment and a lot of sensors are used since the total number of
combinations grows exponentially depending on both the numbers of sensor to select from
and the number of sensors to use for the experiment. Note that using extremely fine meshes
does not have to mean that SPO takes long to compute as the number of sensor locations
can be decided by the user. To allow for a comprehensive comparison on the computational
performance, we consider the two best performing mode-based formulations, the exhaustive
combinatorial approach as well as the addition approach.

The computational time required for the two best performing functions of mode-based
formulations, F1 and F2, is compared to the time required for the exhaustive combinatorial
and mode-free addition method. In Figure 6.6, note a log10 is used. The addition approach
is three orders faster than the combinatorial approach for our fairly small problem. The
mode-based formulations appear to be one order slower than the combinatorial approach. As
expected, mode-based formulations take longer since they need to be implemented for all the
possible numbers of A, which both the number of modes that performed best as well as the
number of sensors are three for this example. The computational time difference between
mode-free and mode-based would grow larger if the numbers of the sensors increase since the
mode-based formulations require to test all possible modes and identify the right number of
modes. F1 is slightly slower than F2 as the regression errors can only be computed after
computing the modes which express the amount of the variance. The speed of the mode-
free addition method is over six orders (a million times) faster than that of the mode-based
combinatorial method for the fine mesh problems. If one is slightly concerned about the
performances of the mode-free addition method and wants to make sure it would succeed
in solving the inverse problems given that the problems are not ill-posed, adding an extra
sensor would easily resolve the issue and this option would still be computationally tractable.
Importantly, the role of signal to noise ratio is investigated on the ability to recover sensors.

83

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Coarse mesh

← Uy

← σx

← σx

(a) KHEL: Coarse mesh
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Figure 6.3: Optimal sensor positions of KHEL obtained from the mode-free formulation
optimised using the exhaustive combinatorial approach for (a) coarse, (b) medium and (3)
fine mesh models.
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(a) KHEH: Coarse mesh
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Figure 6.4: Optimal sensor positions of KHEH obtained from the mode-free formulation using
the exhaustive combinatorial approach for (a) coarse, (b) medium and (3) fine mesh models.
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Figure 6.5: Optimal sensor positions of KLEH obtained from the mode-free formulation using
the exhaustive combinatorial approach for (a) coarse, (b) medium and (3) fine mesh models.
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Figure 6.6: Computational speed test for the computation time taken for the various SPO
methods.
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Chapter 7

Effects of Stochastic Noise

Real life experimental setups involve stochastic noise. Two types of noise are considered in
this paper: (1) class noise and (2) point noise.

� Class noise: some sensors may measure the same variables just in different positions.
For instance, σ can be measured close to the root or the tip of a cantilever beam and
they would have different sensitivity to the FEM input variables or target variables
of the inverse problems. Class noise mimics experimental noise that contributes an
equal amount of noise to all sensors in the same sensor class. Therefore, whereas the
information from the σ sensors close to the tip of the beam may be obscured by noise,
the sensors at the root still offer valuable information in the presence of noise. In this
study, the maximum noise magnitude is taken as a fraction of the sensor with the largest
variance.

� Point noise: point noise adds a certain percentage of variance of the sensor as noise.
Therefore, sensors with larger variance would have larger noise than the sensors with
lesser variance.

Note only the effect of stochastic measurement noise is considered in this chapter. As model
errors have already been dealt when we considered the various mesh sizes, the first two
investigations in Sections 7.1-7.2 are conducted using the optimal sensors optimised using
the mode-based and mode-free formulations in the absence of stochastic noise. Finally, SPO
is conducted in the presence of stochastic noise and conclusions drawn.

7.1 Varying E and k

What kind of benefits can one get from this experiment by adding stochastic noise for the
inverse problems? Firstly, it is possible to simulate the real experiment. Secondly, by doing
so, one can find out which systems or problems are more ill-posed or well-posed. If the
problem is suddenly unsolvable as soon as some amount of noise is added, then it clearly
shows that that problem is ill-posed. It also gives an indication of the signal to noise ratio
that can be tolerated which in turn may have bearing on the quality of the sensors to be
employed.

Reconsider the coarse mesh cantilever beam with two springs k1 and k2 shown in Figure
3.1. We aim to recover E, k1 and k2. However, this time, 1% of normally distributed class
noise and point noise are present in the test measurement data in order to investigate how the
sensors selected from the noiseless datasets using the mode-based and mode-free formulations
perform. For this study, the best performing sensors were chosen from Tables 5.1-5.3 for the
mode-based formulations for the KHEL, KHEH and KLEH cases, respectively and they are
depicted in Figure 7.1. Note that some of selected sensors by the mode-based formulation
such as σy close to the root and ux may not necessarily have large variances compared to other
measurements. The sensors chosen from the mode-free formulations are depicted in Figures
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(a) KHEL

(b) KHEH

(c) KLEH

Figure 7.1: Spatial distribution of the best performing sensors from the mode-based formu-
lations for (a) KHEL, (b) KHEH and (c) KLEH.
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(a) Mode-based formulation and class noise (b) Mode-based formulation and point noise

(c) Mode-free formulation and class noise (d) Mode-free formulation and point noise

Figure 7.2: Behaviour of sensors in the presence of noise for an ill-posed problem; (a) mode-
based formulation and class noise, (b) mode-based formulation and point noise, (c) mode-free
formulation and class noise and (d) mode-free noise and point noise.
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(a) KHEL

(b) KHEH

(c) KLEH

Figure 7.3: Percentage errors of recovered target variables with class noise of 1% in the test
measurement data for (a) KHEL, (b) KHEH and (c) KLEH.
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6.3(a), 6.4(a) and 6.5(a). Note that these sensor sets were selected in the previous chapters
using the exhaustive combinatorial approach from the noiseless datasets. Figures 7.2(a)-(d)
depict the distance from the solution (% error) as a function of the obtained objective value
(residual error) after solving for the inverse problem with the noisy data and noiseless data
for the selected sensors. Note that both axes are on a log10 scale.

In the noisy solutions shown in Figure 7.2, it is evident that the objective function values
are small but that the distance to the desired solution is large when compared to the noiseless
solutions. This clearly indicates that a 1% variation in the measured response has an effect on
orders of magnitude variation on the recovered solution, which formerly makes this problem
ill-posed. The difference between the mode-based and the mode-free formulations is that
whereas the mode-based formulations often contained the large residual errors (see Figures
7.2(a)-(b)), the mode-free formulations always have small residual errors. Also note that the
performance of the mode-based formulations is highly dependent on the types of noise whereas
the mode-free formulations show constant performance since it chooses its sensors based on
the variance of the sensors. Figure 7.2(a) demonstrates that the mode-based formulation
experiences many cases where it had both large % error and residual error when tested with
the class noise. However, the significant improvement in the results was observed with the
point noise in Figure 7.2(b).

To investigate which target variables are recoverable and which ones are ill-posed, we
depict the percentage error for all 100 observations in Figures 7.3 for KHEL, KHEH and
KLEH, respectively. In all of the cases, it is clearly noticed the k1 variable always has the
largest percentage errors. Recall that the k1 is the weaker spring and it has the smallest range
among the target variables. The ability to recover k1 is poor and the primary reason why the
problem is ill-posed. The % variation in the other variables is within the expected 1%-2%
range for a 1% variation in the virtual experimentally measured response. Although this
experiment is unable to recover all three target variables, two of the three can be successfully
recovered.

7.2 Effect of noise magnitude

For this investigation, we consider the coarse mesh single spring cantilever from Chapter 2,
which is not so ill-posed. The inverse problem is solved in the presence of normally distributed
class and point noise with magnitudes that vary between 0.01 and 5% for the KHEH coarse
mesh case using the sensors obtained from the exhaustive combinatorial mode-based and
mode-free formulations. F2S1 proxy was chosen for the mode-based formulation since it is
one of the best performing proxies. Note that these sensors were selected from the noiseless
datasets for both formulations and they are depicted in Figure 7.4. The performances of
these sensors with varying noise for the less ill-posed problem are shown in Figures 7.5(a)-(b).
Notice that the class noise heavily interrupts the performance of the mode-based formulation
since the sensors chosen by the mode-based formulation do not always have high variances.
Hence, notice from Figure 7.5(a) that the sensors from the mode-free formulation have much
less % errors. This is because the mode-free formulation maximises the variance of the
sensors. As expected, the inverse problem is more successfully solved as the noise magnitude
decreases. Figure 7.5(b) shows the point noise results for which the inverse problem performs
better for both the mode-based and mode-free formulations. Again, since the sensors from
the mode-free formulation have larger variance compared to the mode-based sensors, they
are better suited as the results demonstrate.

7.3 SPO with stochastic noise

The previous sections considered sensors optimised using the mode-based and mode-free
formulations in the absence of stochastic noise. In this section, SPO is conducted in the
presence of stochastic noise of 0.01% for the single spring cantilever beam. The aim of

92

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



(a) Mode-based formulation (b) Mode-free formulation

Figure 7.4: Spatial distribution of the sensors selected using (a) mode-based and (b) mode-
free formulations for the single spring cantilever beam.

(a) Class noise

(b) Point noise

Figure 7.5: Behaviours of mode-based sensors and mode-free sensors with (a) class noise and
(b) point noise for a less ill-posed problem.
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(a) Class noise, A = 1 (b) Class noise, A = 2

(c) Point noise, A = 1 (d) Point noise, A = 2

Figure 7.6: Mode-based formulation results for class noise and point noise of 0.01%; (a) class
noise and A = 1, (b) class noise and A = 2, (c) point noise and A = 1 and (d) point noise,
A = 2.

Table 7.1: Performances of sensors found with noise on class noise of 0.01%

Table 7.2: Performances of sensors found with noise on point noise of 0.01%

94

 
 
 

 

©©  UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  

 



(a) Class noise, mode-free formulation (b) Point noise, mode-free formulation

(c) Class noise, RTMF (d) Point noise, RTMF

Figure 7.7: Mode-free formulation results for class noise and point noise of 0.01%; (a) class
noise and mode-free formulation, (b) point noise and mode-free formulation, (c) class noise
and RTMF and (d) point noise and RTMF.

this study is to investigate if the placement of sensors optimised with stochastic noise is
any different and if it is, how it performs with the noisy test measurement data. Note
that the noise considered here is normally distributed and the amount of noise involved for
optimising the sensors matches the noise added to the measurement data for the inverse
problem. Since the stochastic noise is random, it makes the optimised sensors inconsistent.
Hence, the optimised sensors were chosen from the most frequent results after 100 independent
optimisation runs. Figures 7.6 and 7.7 show the 100 runs for the mode-based and mode-free
formulations for both class noise and point noise as histograms and the ID numbers of the
most frequent sensor sets are shown in the figures.

To avoid having various results and increase the convergence of the results, the new rank
tolerance mode-free formulation (RTMF) is introduced and this adjusts the rank tolerance
of the two rank constraint functions (Eqs. 6.1 and 6.2) to tol = 10ln(S1) where S1 is the
first singular value of the covariance matrices of the measurement and target datasets. The
tolerance function simply changes the base of S1 from exp to 10. This allows for a larger rank
tolerance which makes rank counting less sensitive to the stochastic noise. Figure 7.6 shows
the sensor results for F2S1 which is one of the best performing mode-based formulations. It
is clear that the sensors are often not consistent for the class noise when A = 1 and 2. The
point noise results are more organised and consistent. Figure 7.7 shows the sensor optimised
results for the original mode-free formulation (Figures 7.7(a)-(b)) and RTMF (Figures 7.7(c)-
(d)). The figures again show extremely inconsistent sensor selections in the class noise but
more consistent results for the point noise for the original mode formulation. This again
demonstrates that the point noise problems are more well-posed than the class noise problems.
On the other hand, it is noticed that the consistency of the sensor selections for RTMF is
much higher.

The most frequent sensors selected from each formulation were spatially plotted in Fig-
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(a) Class noise, A = 1 (b) Class noise, A = 2

(c) Point noise, A = 1 (d) Point noise, A = 2

Figure 7.8: Spatial distribution of the sensors selected from the mode-based formulations;
(a) class noise and A = 1, (b) class noise and A = 2, (c) point noise and A = 1 and (d) point
noise and A = 2.
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(a) Class noise, mode-free formulation (b) Point noise, mode-free formulation

(c) Class noise, RTMF (d) Point noise, RTMF

Figure 7.9: Spatial distribution of the selected sensors from the mode-free formulations; (a)
class noise and mode-free formulation, (b) point noise and mode-free formulation, (c) class
noise and RTMF and (d) point noise and RTMF.
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ures 7.8 and 7.9. Note that when there are more than one equally frequent sensor sets for
a formulation such as shown in Figure 7.6(b), single set was randomly chosen from the out-
comes and tested. Stochastic noise of 0.01% is small and yet, it is noticed that none of the
mode-based formulation results depicted in Figure 7.8 look similar to the sensors selected
with noiseless optimisation depicted in Figure 7.4(a). On the other hand, the mode-based
formulation results shown in Figure 7.9 show a high similarity to the sensors selected with
noiseless optimisation. Especially, the sensors from the original mode-based formulation with
point noise depicted in Figure 7.9(b) look almost identical to the noiseless optimisation result
except the σx sensors which moves slightly towards the tip of the beam. Note and remember
that the sensors from RTMF for class noise and point noise are identical to each other and
have its σ sensor located close to the root as depicted in Figure 7.9(d).

Tables 7.1 and 7.2 show the performance of the sensors optimised for the class and point
noise, respectively. It is noticed that RTMF shows promising results against the class noise
when the other formulations fail. RTMF also shows the best results against the point noise,
even better than the original mode-based formulation with point noise which almost looked
identical to the sensors selected from the noiseless datasets.

7.4 Performance comparisons

In the previous section, the performance of RTMF was demonstrated to be the most promising
against both class noise and point noise. RTMF has also shown its improved consistency with
optimising sensors from the noisy datasets. Hence, RTMF specifically was tested with varying
magnitude of noise in this section. The same procedure as before was followed for 0.1, 1 and
5% noise for both class noise and point noise. The occurrences of the results over 100 runs
are depicted in Figure 7.10. Firstly, the class noise results presented in Figures 7.10(a), (c)
and (e) have less consistency in the selection whereas the point noise results shown in Figures
7.10(b), (d) and (f) are more consistent.

The sensors selected for the various noise are depicted in Figure 7.10. Note that the
spatial distribution of the sensors for the class noise depicted in Figures 7.11(a), (c) and (e)
shows that their sensors only measure stress whereas for the point noise depicted in Figures
7.11(b) and (d) also measure displacement except when the point noise is 5%, the noise starts
to dominate the problem which results in selection of insensible sensors at the fixed nodes as
shown in Figure 7.11(f).

The performance of the original mode-free formulation for both noiseless and noisy dataset
optimisation was compared to the performance of RTMF when varying the magnitude of
noise as shown in Tables 7.3 and 7.4 for class noise and point noise, respectively. It clearly
demonstrates that the sensors optimised with class noise perform much worse than those
optimised without any noise. However, RTMF could still perform when the noise is relatively
small. The performance of the sensors with point noise (Table 7.4) shows that whereas
the original mode-free formulation with noisy optimisation fails from the small amount of
test measurement noise, RTMF performs almost as well as the mode-free formulation with
noiseless optimisation. Hence, the result shows that it is the better choice not to optimise
sensors with noise but when the noise is involved, RTMF is highly recommended for the
inverse problem.
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(a) Class noise, 0.1% (b) Point noise, 0.1%

(c) Class noise, 1% (d) Point noise, 1%

(e) Class noise, 5% (f) Point noise, 5%

Figure 7.10: RMTF results for 0.1% (a) class noise, (b) point noise, 1% (c) class noise, (d)
point noise, 5% (e) class noise and (f) point noise.
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(a) Class noise, 0.1% (b) Point noise, 0.1%

(c) Class noise, 1% (d) Point noise, 1%

(e) Class noise, 5% (f) Point noise, 5%

Figure 7.11: Partial distribution of the RMTF results for 0.1% (a) class noise, (b) point noise,
1% (c) class noise, (d) point noise, 5% (e) class noise and (f) point noise.
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Table 7.3: Class noise results for varying noise magnitude

Table 7.4: Point noise results for varying noise magnitude
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Chapter 8

Simplified Mode-Free Formulation

This chapter briefly introduces simplified mode-free formulation (SMF). The critical learnings
from the studies about the mode-based formulations led to the development of the mode-free
formulations and the issues when stochastic noise is added to the training data could be
resolved by adjusting the tolerances of the rank computations. During the detailed research
about the mode-based formulation, it was found that slight modification of the covariance
rank function (Eq. 6.1) can surpass the features presented by combining the two functions
(Eq. 6.1 and 6.2) used for the constrained optimisation problem with a single objective for
maximising the product of variance of the sensors. The key to SMF is to adjust the tolerances
of the rank of only the Z-score transformed covariance matrix between the measurement and
target datasets (XTY ) until there is only one or few sensor sets left to satisfy the full rank.
In this way, SMF can find the sensor sets where each sensor has its own maximum uniqueness
in the correlation with the target variables. It may look equivalent to RTMF which simply
increases the tolerance of the rank function but it is done slightly differently. Therefore, this
section will show why they are different and how SMF performs.

8.1 Principles behind SMF

Since SMF uses the Z-score transformed covariance matrix, the covariance matrices show
correlations between the measurement variables and the target variables. The number of
rows of the correlation coefficient matrix (or Z-transformed covariance matrix) corresponds
to the number of variables in Xc (the sensors used), while the number of columns is the
number of the variables in Y (the target variables). Therefore, each column shows how well
these sensors are related to each target variable. The maximum possible rank which can be
obtained from the covariance matrix is simply the number of variables in Y , since the number
of the sensors should not be less than the number of the target variables. Hence, as SMF tries
to maximise the rank tolerance of the normalised covariance and still look for the sensor sets
with the maximum rank, it eventually finds the sensor sets that are uniquely correlated to
the target variables to avoid collinearity within the covariance matrix. Abstractly, we define
the distance d as a measure of how uncorrelated each column of the covariance matrix is to
others as presented in Figure 8.1. SMF aims to maximise the distances by simply maximising
the rank of the tolerance.

SMF is a modified version of one of the rank constraints in the original mode-free for-
mulation, Eq. 6.1. SMF also naturally maximises the uniqueness of the sensors, since the
uniqueness of the correlation of each sensor to the target variables is maximised, while the
target variables are fixed with the sensors as variables. Hence, SMF performs the same task
as the two rank constraints, 6.1 and 6.2. However, the disadvantage of this formulation is
that since SMF does not choose sensors based on their variance, the selected sensors may be
sensitive to noise.

In comparison, while the original mode-free formulation and RTMF are constrained op-
timisations, SMF is an unconstrained optimisation. SMF does not require an exhaustive
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Figure 8.1: Uniqueness of the sensors and correlations.

Table 8.1: Performance of SMF with measurement noise

combinatorial approach to solve the optimisation problem, but it does require the tolerance
to be increased until rank of the covariance matrix is full with a minimal sensor set. This
problem can be solved efficiently.

8.2 Performance of SMF

SMF formulation was tested on the single spring cantilever beam with the reduced number of
sensors depicted in Figure 2.12. The test results shown in Figure 8.2 take various tolerances
for SMF: 10−9, 10−8, 10−6, 10−5, 5.71328 and 5.72. It is noticed that even slight changes
in the tolerance can eliminate the sets of sensors which have collinear information. Figure
8.2(c) with tol. = 10−6 looks almost similar to the success rates shown in Figure 2.13. Figure
8.2(d) with tol. = 10−5 shows that only the < σ, ε > and < σ, u > combinations have full
rank of two. As the tolerance is iterated to have only one full rank set as shown in Figure
8.2(e), it is noticed that the sensor set shown there is indeed the best sensor found using the
inverse problem with 100% success rates and the number of iterations of 119.14 which is the
global minimum. As the tolerance is increased just a bit to tol. = 5.72, there were no full
rank sets of sensors remaining (Figure 8.2(f)).

The performance of SMF for both class noise and point noise in the measurement data
with and without noise during the sensor optimisation is shown in Table 8.1. Although it
was demonstrated that SMF is capable of finding the best solution for the inverse problem
when there is no measurement noise, since SMF omits the variance maximisation term which
is essential for the class noise, it is noticed that SMF struggles to recover the target variables
with less than 1% error, even with the smallest amount of class noise tested. However, SMF
is still capable of finding the useful sensors for the point noise. The performances for the
point noise for both the noisy and the noiseless training data are as good as or slightly better
than those for the original mode-free formulation and RTMF (Tables 7.3 and 7.4).
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(a) Tol. = 10−9 (b) Tol. = 10−8

(c) Tol. = 10−6 (d) Tol. = 10−5

(e) Tol. = 5.71328 (f) Tol. = 5.72

Figure 8.2: SMF results of the single spring cantilever beam problem with rank tolerance of
(a) 10−9, (b) 10−8, (c) 10−6, (d) 10−5, (e) 5.71328 and (f) 5.72.
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Chapter 9

Conclusions

Sensor placement optimisation (SPO) strategies for designing experiments using simulations
have been investigated and developed in this study. SPO scrutinises the relationships between
the sensor measurement variables and the target variables, which are the variables to be
characterised, in order to optimally place sensors. This therefore eliminates the need for
trial and error approaches to design complicated inverse experiments, saving both time and
effort, by ensuring the most sensitive output from the measurements as well as uniqueness of
information. This increases the chances to successfully solve inverse problems. In practice, the
benefit is two-fold, it saves time for an experienced engineer to design an inverse experiment
but more importantly a less experienced engineer can now design an inverse experiment that
performs well.

SPO formulations in this study are categorised into two groups; namely, mode-based
formulations and the mode-free formulations. Mode-based formulations use either SIMPLS
or SVD to extract the modes which explain the causalities between the measurement variables
and the target variables. The study has shown that maximising the variance explained in
the target variable data using SIMPLS is the most robust mode-based formulation among
the objective functions considered. Similarly, minimising the regression error of SIMPLS also
proved to be robust. Scaling of the data was also considered but here the regression error
proved to be highly sensitive to scaling of the data. In cases where the performance of the
mode-based formulations was poor, additional sensors usually improved the success rate of
solving the actual inverse problem as well as decreasing the required number of iterations to
solve the inverse problem. As modes need to be extracted, the mode-based methods usually
scale linearly with the number of sensors to be placed. Hence, the main concerns of the
mode-based methods are:

1. formulations are sensitive to data scaling,

2. the number of modes needs to be determined,

3. computational cost can be high when a large number of sensors need to be optimally
placed.

The mode-free formulations were developed to resolve the main issues of the mode-based
formulation by examining the critical learnings obtained from the studies of the mode-based
formulations. Since the mode-free formulation does not require extracting modes, its com-
putational speed is almost ten times faster when combinatorial approaches are used. The
proposed addition approach requires six orders less computational time than the mode-based
combinatorial methods to select three sensors from over a thousand available sensor locations.
The first proposed mode-free formulation selects sensors by checking the ranks of covariance
matrix between the two datasets in order to measure the uniqueness of the correlations. Sec-
ondly, the ranks of covariance matrix XTX are maximised so that information measured
between the sensors is unique. Instead of formulating a multi-objective problem, the two
objectives related to rank are used as constraints in the optimisation formulation resulting in
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a constrained optimisation problem with a single objective. The objective here is to maximise
the product of the variance of each selected sensor. The mode-free formulation was not able
to find effective sensors when the training data were noisy but this issue was resolved by
introducing the rank tolerance mode-free (RTMF) formulation. This approach adjusts the
tolerances when computing the rank of the covariance matrices. By increasing the tolerance,
the ranks are better distinguished and leads to an improved SPO, referred to as RTMF. This
concept was refined and SMF developed.

Two types of noise were considered; namely, point noise and class noise. Point noise
refers to stochastic noise that is a certain percentage of the variance of each individual sensor,
while class noise refers to experimental noise that contributes an equal amount of noise to all
sensors in the same sensor class. The simplified mode-free formulation (SMF) is capable of
finding the optimal sensors and is highly correlated with the performance of solving the actual
inverse problem. It shows outstanding performance with and without the presence of point
noise. However, since SMF does not maximise the variance of the sensors, it struggled in the
presence of class noise. Although the various formulations can be implemented for different
cases, RTMF is the most robust against both point and class noise. The addition optimisation
approach proved to be computationally efficient, although not always optimal. Therefore, an
additional sensor often gives near optimal performance still within a computational tractable
time.

For future work, the convexification of mode-free formulations will be considered using the
least absolute shrinkage and selection operator (Lasso) [52], which regularises linear regression
such that variable selection is performed. Another approach to convexify the problem would
be to maximise the trace (or nuclear) norm of the covariance matrix, since the trace norm,
which is defined as the sum of singular values, is an excellent proxy of the matrix rank while
the associated optimisation problem is convex [53, 54].
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Chapter 10

Appendices

10.1 Graphs explaining causality

10.1.1 Displacements, u

Displacements measured for varying E, k1 and k2 individually are shown in Figures 10.1, 10.2
and 10.3, respectively. The same phenomena as in section 5.4 are observed from the figures.
Therefore, the same interpretation applies to this section.

10.1.2 Strains, ε

Strains measured for varying E, k1 and k2 individually are shown in Figures 10.4, 10.5 and
10.6. The same phenomena as in section 5.4 are observed from the figures. Therefore, the
same interpretation applies to this section.
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(a) KHEH

(b) KHEL

(c) KLEH

Figure 10.1: Displacement, u sensitivities when adjusting Young’s modulus, E.
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(a) KHEH

(b) KHEL

(c) KLEH

Figure 10.2: Displacement, u sensitivities when adjusting spring stiffness 1, k1.
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(a) KHEH

(b) KHEL

(c) KLEH

Figure 10.3: Displacement, u sensitivities when adjusting spring stiffness 2, k2.
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(a) KHEH

(b) KHEL

(c) KLEH

Figure 10.4: Strain, ε sensitivities when adjusting Young’s modulus, E.
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(a) KHEH

(b) KHEL

(c) KLEH

Figure 10.5: Strain, ε sensitivities when adjusting spring stiffness 1, k1.
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(a) KHEH

(b) KHEL

(c) KLEH

Figure 10.6: Strain, ε sensitivities when adjusting spring stiffness 2, k2.
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