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ABSTRACT

The superconducting gap symmetry of the Fe-based superconductors was studied by

measurements and analysis of London penetration depth and superfluid density. Tunnel

diode resonator technique for these measurements was implemented in a dilution refrig-

erator allowing for the temperatures down to 50 mK. For the analysis of the superfluid

density, we used both experimental studies of Al-coated samples and original thermo-

dynamic approach based on Rutgers relation. In three systems studied, we found that

the superconducting gap at the optimal doping is best described in multi-gap full gap

scenario. By performing experiments on samples with artificially introduced disorder

with heavy ion irradiation, we show that evolution of the superconducting transition

temperature and of the superfluid density are consistent with full-gap sign changing s±

superconducting state. The superconducting gap develops strong modulation both in

the under-doped and the over-doped regimes. In the terminal hole-doped KFe2As2, both

temperature dependence of the superfluid density and its evolution with increase of the

scattering rate are consistent with symmetry imposed vertical line nodes in the super-

conducting gap. By comparative studies of hole-doped (Ba,K)Fe2As2 and electron-doped

Ca10-3-8, we show that the superconducting gap modulation in the under-doped regime

is intrinsic and is not induced by the coexisting static magnetic order.
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CHAPTER 1. INTRODUCTION

1.1 Preface

Superconductivity is one of rare macroscopic quantum phenomena [1]. The phe-

nomenon refers to abrupt disappearance of electrical resistivity and complete expulsion

of magnetic field from the bulk of the sample, so-called Meissner effect. Attempts to

understand this mysterious phenomenon led to the developments of both experimental

methods and theoretical understandings which currently serve as main tools in condensed

matter physics.

For a quarter-century after the discovery in 1911, the origin of superconductivity

was not understood. Discovery of the Meissner effect stimulated London brothers to

develop a theory of magnetic field penetration into a superconductor [2]. The broth-

ers developed the concept of London penetration depth, a characteristic length scale of

superconductors. Thermodynamics of superconductors was first successfully described

by Ginzburg-Landau theory of late 1940s [3]. But microscopic understanding of the

phenomenon was lacking until key experiments found isotope substitution effect on su-

perconducting phase transition temperature Tc [4] and evidence for a superconducting

energy gap [5]. These two experimental findings and a theoretical idea about pairing of

electrons by even a weak attraction [6] led to the first successful microscopic theory for

superconductivity suggested by J. Bardeen, L. N. Cooper, and J. R. Schrieffer (BCS)

in 1957 [7]. The BCS theory considers the Bose-Einstein condensation of pairs formed

by conduction electrons, so-called Cooper pairs. The electrons in the pair have opposite
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spins and momenta. The pairing is caused by electron-phonon interactions, the strength

of which determines Tc. Pairing is isotropic and leads to a superconducting gap which

is constant over the Fermi surface, so-called s-wave pairing. In the BCS scenario, Tc

would be dependent on the strength of electron-phonon coupling and on the detailed

electronic structure of materials [8, 9]. This isotropic interaction is robust against scat-

tering by non-magnetic impurities [10], but magnetic scattering is strongly antagonistic

to the spin-singlet pairing weakening superconductivity [11].

Studying superconductivity is important not only for scientific research but also for

applications. Practical implementation of superconductors requires materials with high

operational parameters such as superconducting critical temperature (Tc), upper critical

magnetic field (Hc2), and critical current density (jc), the highest values of temperature,

magnetic field and critical current density that superconductor can withstand. This

permanent desire for improving these parameters led to search and discovery of numerous

superconducting materials.

Elemental metals were the first superconductors, and their Tc at ambient pressure is

limited by ∼10 K. In 1930s, higher Tc values were observed in some intermetallic alloys.

This new direction eventually led to the discovery of Nb3Sn and Nb3Ge with Tc = 18 K

and 23 K, respectively, in early 1970s. In materials with presumably phonon-mediated

superconductivity, this Tc remained the highest until discovery of superconductivity with

Tc ≈ 23 K in various compositions of Y-Pd-B-C [12, 13], and eventually the record value

for this class of materials was set at Tc = 40 K in MgB2 [14, 15]. The superconductivity

in MgB2 is fully understood within the phonon-mediated mechanism as suggested by the

magnitude of the isotope effect [16]. Superconductivity in MgB2 also has pronounced

multigap character with magnitude of the gap differing two times on different Fermi

surface sheets [17, 18].

In the mid 1980s, surprisingly, materials with Tc well above 100 K were discovered

among charge-doped copper oxides. This unexpected observation ignited a new hope for
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discovery of materials which could be superconducting at ambient temperatures, but the

highest Tc from this class of materials remains 155 K at 30 GPa to date.

It is interesting that the undoped parent compounds of the high Tc superconductors,

so-called cuprates, revealed antiferromagnetism in the insulating state with enormously

high Néel temperatures TN . Superconductivity in cuprates is different from conventional

s-wave in that superconducting gap has zeros, and phase sensitive experiments unambigu-

ously showed that the symmetry of the order parameter is d-wave [19]. This proximity of

superconductivity to magnetism and highly anisotropic order parameter are antagonistic

with BCS theory. According to Abrikosov-Gor’kov theory [11], electron scattering on

magnetic moments tends to break Cooper pairs, thus weakening superconductivity and

suppressing Tc. Observation of high TN led to the suggestion that magnetism rather

than phonons may be responsible for such high Tc of cuprates. Cuprates are not the

only class of materials in which superconductivity seems to like magnetism. Before their

discovery, superconductivity was found in CeCu2Si2 with Tc = 0.5 K which attracted a

good deal of attention [20]. The superconductivity in CeCu2Si2 required almost 100% of

Ce-magnetic moments, a few atomic percent of nonmagnetic substitution was sufficient

to kill superconductivity completely, and superconductivity was not observed in the elec-

tronically equivalent LaCu2Si2 [21]. This discovery shone new light on interplay between

superconductivity and magnetism, which is now believed to be crucial for understanding

the unconventional superconductors.

In 1998, superconductivity was discovered in another heavy fermion material, CeIn3,

under pressure [22]. This discovery brought an interesting insight into magnetic mecha-

nism of superconductivity. CeIn3 is an antiferromagnetic metal at ambient pressure with

TN ∼ 10 K. With application of pressure TN is driven to zero, and superconductivity

appears at the edge of magnetic dome. The superconductivity was linked to magnetic

quantum critical point (QCP) where the material undergoes a zero temperature non-

thermal phase transition. Magnetic fluctuations near this transition are quantum in
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nature. They affect normal state properties in a rather broad temperature domain and

lead to their significant deviations from standard theory of metals, Fermi liquid theory of

Landau. These magnetic fluctuations were suggested to mediate superconducting pairing

and bring exotic superconducting order parameter different from s-wave of BCS theory.

It was predicted that superconducting Tc in this family of materials can be notably in-

creased in two dimensional materials [22], and indeed superconducting Tc jumped from

0.1 K to 2.3 K in layered CeCoIn5 [23]. In addition, superconductivity with similar

Tc was found in CeIrIn5 and CeRhIn5 under pressure. These three compounds are fre-

quently referred to as ”115” compounds. It was suggested that superconductivity in 115

compounds is d-wave, similar to the cuprates [24].

In 2008 the second class of high-Tc superconductors was discovered in a series of

LaFeAsO1−xFx [25]. These Fe-based superconductors (FeSC) have attracted enormous

attention with a hope for higher Tc than that of the copper-oxide superconductors and

a hope to understand the pairing mechanism behind. The highest Tc observed in these

materials up to date is 55 K [26]. Interestingly similar to cuprates and 115 compounds,

highest Tc is found in the proximity of antiferromagnetic QCP [27]. However, initial

studies of superconducting gap of FeSC found no zeros being inconsistent with d-wave [28,

29]. Is this compatible with magnetically mediated pairing? An exotic superconducting

order parameter was suggested for FeSC in which superconducting gap changes sign on

different Fermi surfaces, so-called s± pairing. Verification of this suggestion in connection

with different interactions between magnetism and superconductivity is main subject of

this thesis.

Knowing the structure of the superconducting gap is the most crucial prerequisite for

understanding the mechanism of superconductivity. The gap structure can be explored

directly or indirectly by various experimental methods. Unlike copper oxide supercon-

ductors in which d-wave symmetry was found in all related compounds, a variety of

experiments done in FeSC have revealed non-universal gap-symmetry. It is not clear



5

whether this non-universality is intrinsic or not. In order to elucidate this issue, mea-

surements on samples of higher quality with controlled degree of disorder are needed.

The London penetration depth, λ, is among the most useful probes to study the

superconducting gap structure. However, analysis of λ in FeSC is not trivial for many

reasons. Fe-based superconductors have complicated band structures with up to five

Fermi surface sheets. As a result, superconductivity has pronounced multiband character,

which makes analysis of experimental λ difficult. In most of the Fe-based compounds

superconductivity is induced by chemical substitution which adds significant disorder into

the system. The effect of uncontrolled disorder masks intrinsic response of unconventional

superconducting state. That is why it is important to study London penetration depth

in materials with independent of doping control of disorder. In this thesis, we use heavy

ion irradiation to probe superconducting pairing mechanism.

For understanding the relation between magnetism and superconductivity, it is im-

portant to study materials in which the two phases interact in a different way in the

phase diagram. For example, in BaFe2As2-based compounds with hole, electron, iso-

electron doping superconductivity and magnetism coexist in the bulk [30, 31, 32]. The

magnetic ground state of parent BaFe2As2 has stripe type antiferromagetic order. In

the phase diagram of 1111 compounds, magnetism has similar stripe structure, but is

separated from superconductivity in the doping phase diagram. In the phase diagram

of Ca10(Pt3As8)((Fe1−xPtx)2As2)5, magnetism and superconductivity are separated as

well [33, 34]. In Fe(Se,Te) magnetic ground state has double stripe structure. How do

these differences affect superconducting state? Do they affect the superconducting gap

structure? These are questions addressed experimentally in this thesis.

Superconductivity in most of the FeSC is induced by chemical substitution which

inevitably introduces disorder into the lattice. The degree of the disorder and its effect

on superconducting gap structure in unconventional superconductors is very difficult to

separate from the effect of doping. To get an insight into effect of disorder, we took
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two approaches. First, we studied stoichiometric compounds representative of optimal

doping regime, LiFeAs, and heavily overdoped KFe2As2. Second, we used heavy ion

radiation to have an independent of doping control of disorder.

In this thesis, I present a comprehensive study of the temperature variation of Lon-

don penetration depth ∆λ(T ) in various FeSC which are chemically tuned as well as

disorder-controlled. This thesis begins with introduction to superconducting properties

of the Fe-based superconductors. In the first half of this chapter, the structure of the

superconducting order parameter in FeSC will be extensively discussed with some key

experimental results. Most of the examples will be based on thermodynamic properties

compared with the London penetration depth measurements, which will be presented in

the second half of this chapter.

The experimental technique used to measure ∆λ(T ) for this thesis is a tunnel diode

resonator technique, and its principles associated with measurements of ∆λ(T ) will be

explained in-depth in the following chapter.

Temperature variation of the London penetration depth provides somewhat limited

information about the gap-structure. The structure of the superconducting gap can

be further investigated over full superconducting temperatures by studying superfluid

density which can be calculated from known ∆λ(T ) and λ(0). However, measurement

of λ(0) remains most challenging to date. In chapter 3, I will introduce a new way of

determining the absolute value of λ(0) by using a modified Rutgers formula. The original

form of the formula, which is purely thermodynamic, can be re-written so that superfluid

density is related to directly measurable thermodynamic quantities.

Chapter 4 covers results on the London penetration depth measurements in several

chemically tuned systems in which superconductivity and magnetism interplay in a dif-

ferent way. The first two sections deal with the simplest and almost isotropic binary

phase of Fe(Te,Se) through one of the most complicated and highly two-dimensional

phase Ca10(Pt3As8)((Fe1−xPtx)2As2)5, the so-called 10-3-8 phase. Second half of the
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chapter describes study of the materials in which superconductivity and magnetism co-

exist; under-doped (Ba,K)Fe2As2. These FeSC are contrasted with low Tc isostructural

compounds, CaPd2As2, SrPd2As2, and SrPd2Ge2 as end members of the so-called 122

systems in which Fe is completely replaced by Pd for the first two materials and As is

replaced by Ge in the last compound.

The experimental results on the London penetration depth measurements in two

stoichiometric superconductors LiFeAs and KFe2As2 are discussed in chapter 5. The

absence of substitutional disorder makes interpretation of experimental ∆λ(T ) in these

materials rather straightforward. Next, we use irradiation technique to deliberately

introduce disorder into optimally electron-and hole-doped BaFe2As2 superconductors

and study its effect on ∆λ(T ).

In chapter 6, I will summarize and conclude this thesis.

Analysis of superfluid density with the Rutgers relation in chapter 3 has been pub-

lished in Physical Review B 87, 214518 (2013). The experimental results of the chapter

4 were published in Physical Review B 81, 180503 (2010), Physical Review B 84, 174502

(2011), Physical Review B 85, 020504 (2012), Physical Review B 87, 224510 (2013)

Physical Review B 87, 094515 (2013). The results of the chapter 5 were published in

Physical Review B 83, 100502 (2011), Physical Review B 82, 060518 (2010), Physical

Review B 87, 180502 (2013).

1.2 Properties of Fe-based superconductors

1.2.1 Crystal structures

Superconductivity was observed in several families of Fe-based materials with different

crystal structures. Four families have been studied most widely; FeSe (11), AFeAs (111),

AEFe2As2 (122), and RFeAsO (1111) where A is alkali metal, AE stands for alkali earth

metals, and R represents rare earth elements. The crystal structures of these compounds
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Figure 1.1 Crystal structure of the iron-based superconductors. The four tetragonal
structures known to support superconductivity. The active planar iron layers
common to all superconducting compounds with iron ions shown in red and
pnictogen/chalcogen anions shown in gold. Ref. [35]

are shown in Fig. 1.1. 1

The key structural element contributing the most to the levels close to the Fermi

energy is a layer consisting of a square lattice of Fe atoms. Each Fe atom is surrounded

by tetrahedrally coordinated pnicogens (Pn) or chalcogens (Ch). The Fe layers are

sequenced with buffer layers between, with the 11-type being an exception.

1.2.2 Generic doping phase diagram: comparison to cuprates

The layered structure of FeSC resembles layered structure of the other family of

high Tc superconductors, the cuprates, in which dominant contribution to the electronic

structure is made by CuO plane. The similarity between these two families can be found

1Reprinted figure with permission from J. Paglione and R. L. Green, Nature Physics 6, 645 (2010).
Copyright (2010) by Nature Publishing Group.
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Figure 1.2 Schematic phase diagram of copper-oxide-based (left) and the 122 family of
iron-based superconductors (right). Ref. [36]

also in the doping phase diagrams in Fig. 1.2. 2 The parent undoped compounds in both

cases are magnetically ordered. However, in case of the cuprates this magnetic state is

the Mott insulator while in FeSC it is semimetal. In both cases, superconductivity is

induced by doping, and maximum Tc is observed close to the point where magnetism

vanishes. As we discussed in Preface, it was suggested that it coincides with a magnetic

QCP. With further doping increase, Tc goes down, and superconductivity vanished in

most of FeSC before full substitution.

1.2.3 Magnetic structures

In-plane commensurate antiferromagnetic structure of FeSC are depicted in Fig. 1.3

for (a) the 111-, 1111-, and 122-type FeAs-based parent compounds and for (b) FeTe.

The Fe atoms are represented as filled circles in both panels.

Following the description in Ref. [31], for the 111-, 1111-, and 122-type FeAs-based

compounds, the Fe-square lattice at temperatures T > Ts (a = b) becomes slightly

distorted (a > b) for T < Ts. Here Ts stands for structural phase transition from high-

2Reprinted figure with permission from I. I. Mazin, Nature 464, 183 (2010). Copyright (2010) by
Nature Publishing Group.
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(b) FeTe(a) 122, 111, and 1111-type

Figure 1.3 Magnetic structure of Fe-based superconductors. Ref. [31]

temperature orthorhombic to low-temperature tetragonal structure. The basal plane

orthorhombic unit cell is shown as the dashed box in Fig. 1.3. The room temperature

tetragonal basal plane has edges that are smaller by a factor of
√

2 and are rotated

by 45◦ with respect to the orthorhombic axes. The direction of collinearly ordered

moments is in the a-b plane of the orthorhombic structure and is along the longer a-

axis. The red and blue arrows represent spins on the red and blue sublattices of Fe

atoms, that respectively consist of next-nearest-neighbors. Each sublattice is individually

antiferromagnetically ordered in a commensurate collinear Ising-like configuration. When

both spin lattices are considered together, this intralattice ordering causes spin stripes to

form along the b-axis, which also causes magnetic frustration between the two sublattices

irrespective of whether the intersublattice coupling is ferromagnetic or antiferromagnetic.

The nearest-neighbor exchange coupling constants J1a and J1b (between sublattices) and

the next-nearest-neighbor coupling constant J2 (within each sublattice) in a local moment

description of the orthorhombic phase are shown. An anisotropy between J1a and J1b is

needed for the system to choose whether the stripe orientation is vertical (as observed)

or horizontal.

The magnetic structure in FeTe is different from the other Fe-based compounds as

shown in Fig. 1.3(b). It is of commensurate collinear in-plane antiferromagnetic diagonal
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double stripe structure. The tetragonal/monoclinic basal plane a- and b-axes and basal

plane crystallographic unit cell outline (dashed lines) are indicated. J1, J2, and J3 are

the nearest, next nearest, and next next nearest neighbor exchange interactions.

1.2.4 Fermi surfaces

(a) Tl2Ba2CuO6+δ (b) Ba(Fe0.9Co0.1)2As2

M

Γ

Figure 1.4 (a) The ab-plane projected Fermi surface of Tl2Ba2CuO6+δ. The shaded re-
gion represent small warping along c-axis [37]. (b) Calculated Fermi surfaces
of BaFe2As2 with 10% substitution of Co using the folded BZ representation
with two Fe per unit cell. The hole-like Fermi surfaces (purple and blue) are
centered around the Γ point (kx = 0, ky = 0) and the electron-like surfaces
are around the M point (π, π) [38].

The Fermi surface of the over-doped copper oxides is a single cylinder open along the

c-axis, as shown in Fig. 1.4(a) for Tl2Ba2CuO6+δ. The Fermi surface seems to change

in the underdoped compounds [37, 39]. The bandstructure calculations for FeSC predict

complicated Fermi surfaces with up to five sheets. These sheets have cylindrical shape

open along the c-axis, however, much more warped compared to the cuprates. This

difference in warping leads to much smaller electrical anisotropy of the FeSC compared

to the cuprates. Anisotropy sensitively depends on the pnictogen height with respect to

the Fe-layer. The Fermi surfaces of FeSC shown, in Fig. 1.4(b), consist of the hole-like

Fermi surfaces centered at the Γ point (kx = 0, ky = 0) and the electron-like surfaces

centered at the M point (π, π).
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1.2.5 Temperature-concentration Phase diagrams

(a)

(b)

(c)

Ba1-xKxFe2As2

Figure 1.5 Temperature-concentration phase diagrams of (a) Ba(Fe1−xCox)2As2 [40] (b)
Ba1−xKxFe2As2 [41] (c) BaFe2(As1−xPx)2 [42].

The generic phase diagram of FeSC shown in Section 1.2.2 catches the main features

of most materials. However, the details are different in different families. These differ-

ences are illustrated in Fig. 1.5 and Fig. 1.6. Top panel of Fig. 1.5 shows the T -x phase

diagram for electron doped Ba(Fe1−xCox)2As2.3 Substitution of Co for Fe suppresses

both the high-temperature tetragonal-to-orthorhombic as well as paramagnetic to anti-

3Reprinted figure with permission from S. Nandi et al., Physical Review Letter 104, 057006 (2010).
Copyright (2010) by the American Physical Society.
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ferromagnetic phase transitions. But the two transitions have different temperatures [30].

Both transitions are completely suppressed for x > 0.06. Superconductivity is observed

starting from x ≥ 0.038 and for some range coexists with bulk magnetic phase. Super-

conductivity disappears for x ∼ 0.15, maximum Tc ≈ 23 K is observed for x ≈ 0.07. The

orthorhombicity (or orthorhombic distortion) defined as (a−b)/(a+b), where a and b are

in-plane lattice parameters, decreases with increasing doping. The relative decrease in

the orthorhombicity below Tc is pronounced and increases with increased doping [40]. In

sample with x = 0.063 the orthorhombicity decreases below Tc, and the low-temperature

structure returns to tetragonal symmetry below Tc [40]. For x = 0.066, no transition

to the orthorhombic structure was observed, defining an upper Co concentration limit

for the tetragonal-to-orthorhombic phase transition. The extension of the tetragonal-to-

orthorhombic phase line into the superconducting dome is represented by the dashed line

in the figure. Similarly, high-resolution thermal expansion measurements on detwinned

single crystals of YBa2Cu3O7−δ also found a change in the orthorhombic distortion at

Tc, but smaller than the present case by approximately 2 orders of magnitude [43].

Similar phase diagrams with coexisting magnetism and superconductivity in the un-

derdoped range is observed in hole-doped Ba1−xKxFe2As2 [44, 41] as well as in isoelectron

doped 122 systems. The phase diagram of Ba1−xKxFe2As2 established based on resistiv-

ity, magnetization, and neutron powder diffraction experiments is shown in Fig. 1.5(b)

taken from Ref. [41].4 With K-doping, the tetragonal to orthorhombic structural tran-

sition temperature Ts decreases until it is fully suppressed for x > 0.25. The SDW order

and orthorhombic order are coincident and first order unlike electron-doped compounds.

Superconductivity was observed for all samples with x ≥ 0.15. Superconducting transi-

tion temperatures peak at ∼ 38 K for x = 0.4. Interestingly, the end member (x = 1),

heavily hole-doped KFe2As2, exhibits superconductivity with low Tc = 3.4 K.

Figure 1.5(c) displays the T -x phase diagram of isoelectric doped BaFe2(As1−xPx)2

4Reprinted figure with permission from S. Avci et al., Physical Review B 85, 184507 (2012). Copyright
(2012) by the American Physical Society.
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system taken from Ref. [42].5 Both structural and magnetic transition temperatures

decrease rapidly with increasing x, and there is clear separation between them (0.14 ≤

x ≤ 0.30). Near x ≈ 0.30, the magnetic transition disappears. The superconducting

transition shows a maximum Tc = 31 K at x = 0.26, and superconductivity is not

observable for x > 0.7. The phase diagram in this system resembles that of the pressure

dependence of BaFe2As2, indicating that the isoelectron substitution of P for As causes

similar effects on the system as mechanical pressure. Normal state transport properties

exhibit the non-Fermi liquid behavior over wide temperature domain near optimally

doped regime.

Isoelectron doping effect on Fe-site was also studied in Ba(Fe1−xRux)2As2 [45]. The

structural and magnetic phase transition is also suppressed upon Ru-doping, but un-

like P-doping and electron-doping on Fe-site there is no detectable separation between.

Superconductivity is stabilized at low temperatures for x > 0.2 and appears more grad-

ual as compared to electron-doping on Fe-site, which resembles the effect of mechanical

pressure. The superconducting region is dome-like with maximum Tc = 16.5 K.

Similar phase diagrams were also observed in Co-doped NaFeAs. The isostructural

LiFeAs which does not show apparent magnetism corresponds to slightly overdoped case

according to the pressure study [46].

The structural and magnetic phase diagram in CeFeAsO1−xFx shown in Fig. 1.6(a)

is taken from [47]. 6The red circles indicate the onset temperature of the tetragonal-

to-orthorhombic phase transition. The black squares and green triangles designate the

Néel temperatures of Fe and Ce, respectively, as determined from neutron measurements.

The superconducting transition temperatures are from onset Tc of the resistivity mea-

surements taken from [49]. The open triangles are Tc determined from susceptibility

measurements. The inset in (d) shows the F-doping dependence of the Fe moment as

5Reprinted figure with permission from S. Kasahara et al., Physical Review B 81, 184519 (2010).
Copyright (2010) by the American Physical Society.

6Reprinted figure with permission from J. Zhao, Nature Materials 7, 953 (2008). Copyright (2010)
by Nature Publishing Group.
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(a)

(b)

(c)

Figure 1.6 Temperature-concentration phase diagrams of (a) CeFeAsO1−xFx [47] (b)
Fe1+ySexTe1−x [48] (c) Ca10(Pt3As8)((Fe1−xPtx)2As2)5 [33].

determined from the intensity of the (1,0,2) magnetic peak at 40 K, where the influence

of the Ce moment on the Fe magnetic Bragg peak intensity can be safely ignored.

The T -x phase diagram for Fe1+ySexTe1−x based on the bulk susceptibility data ob-

tained from the single crystal samples is shown in Fig. 1.6(b) taken from [48].7 The

values of x and y are nominal values. The phase digram clearly shows the trends and

the existence of three distinct phases; the antiferromagnetic phase for x ≤ 0.1, the bulk

superconducting phase for x ≤ 0.4, and the intermediate spin-glass phase. The phase

diagram in this work clearly shows that the long-range ordered SDW phase is non-

7Reprinted figure with permission from N. Katayama et al., Journal of the Physical Society of Japan
79, 113702 (2010). Copyright (2010) by the Physical Society of Japan.



16

superconducting while an earlier paper by Fang et al. [50] reported superconductivity in

the same phase based on powder samples, problems with contamination by oxide phases

in that work have already been pointed out by McQueen et al. [51]. In the intermediate

phase, some samples showed partial superconductivity below Tc ∼ 11 K as presented in

the figure, while others were non-superconducting down to 1.4 K.

The T -x phase diagram of Ca10(Pt3As8)((Fe1−xPtx)2As2)5 is shown in Fig. 1.6(c). In

this system, the magnetic (M) and superconducting (SC) phases are clearly separated as

a function of Pt doping (x). Ts is determined by electronic transport measurements [34],

below which an NMR study found evidence for a stripe type magnetism similar to the

122 systems. However, detailed magnetic structure has not been determined to date.

1.2.6 Superconducting mechanism and order parameter

Figure 1.7 A schematic representation of the superconducting order parameter in (a)
a conventional s-wave superconductor, (b) d wave in copper oxides, (c) a
two-band s wave with the same sign, so-called s++ in MgB2, and (d) s±
wave, which is thought to be the case in Fe-based superconductors. Figures
are reprinted with permission from I. I. Mazin, Nature 464, 183 (2010).
Copyright (2010) by Nature Publishing Group.

As we mentioned in Preface, the original BCS theory predicts superconducting gap

which is constant on the Fermi surface. This s-wave state is schematically illustrated
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in Fig. 1.7(a). This simplest BCS gap function does not describe all phonon mediated

superconductors. It was recognized that superconducting gap can strongly vary between

different Fermi surface sheets as observed, for example, in MgB2 as shown in (c). In

addition to this, in some materials, gap strongly varies over the Fermi surface as seen,

for example, in LuNi2B2C [52, 53]. It was suggested that this gap anisotropy is arising

from nesting on the Fermi surface [53]. But, importantly, in all phonon mediated super-

conductors, the gap function does not change sign. In the cuprates, the superconducting

gap function changes sign over the Fermi surface [36]. This sign change is experimen-

tally proven by corner junction phase sensitive experiments [19]. Figure 1.7(b) shows

schematically the superconducting gap function of the cuprates. Figure 1.7(c) shows

the superconducting gap structure of MgB2. This material has strong variation of gap

magnitude between different sheets of the Fermi surfaces [54, 55]. This represents so-

called multiband superconductivity. Note, however, the superconducting gap function is

of same sign on different Fermi surfaces [36, 56]. In Figure 1.7(d), we show the supercon-

ducting gap function suggested for FeSC in the s±-wave state [57]. The superconducting

gap has different magnitude on different Fermi surfaces, but most importantly the gap

function changes sign between Fermi surfaces. Experimental verification of this sugges-

tion and its contrast with conventional s-wave were at the forefront of the studies of the

superconducting gap in FeSC.

One of key experiments establishing electron-phonon mechanism of coupling was iso-

tope effect on Tc. The conventional isotope effect has been reported in SmFeAsO1−xFx

and Ba1−xKxFe2As2 [58]. This observation may indicate some contribution of electron-

phonon interaction into pairing. However, the magnitude of the effect has been highly

controversial [58, 59], which is not unusual for complex materials contrary to a sim-

ple case of MgB2 [16]. The observed isotope effect may be spurious, it may result

from subtle changes in the structural properties adding more weight on possibility of

electronic-originated superconductivity.
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In the proposed s± state for FeSC, the pairing is induced by the repulsive Coulomb

interactions which lead to effective attraction between two electrons provided gap func-

tion changes sign. This sign change leads to neutron resonance peak at the wavevector

connecting Fermi surfaces with opposite signs of order parameter, i.e., ∆k = −∆k+Q.

Here Q is a wavevector of spin resonance peak which can be explicitly detected in in-

elastic neutron scattering experiment. Such resonance peak has been indeed observed in

the cuprates and 115 compounds [60]. For FeSC, this resonance peak was first detected

in Ba0.6K0.4Fe2As2 with 14 meV energy transfer with Q = 1.15 Å−1 [61].

Although a firm conclusion about the pairing symmetry in FeSC would require a di-

rect measurement of the sign-changing order parameters by phase sensitive experiments

[62], measurements of basic thermodynamic and transport properties have provided con-

vincing results for the nodal structure of the superconducting gap. The magnitude of

the jump in heat capacity experiments ∆Cp/γnTc is expected to be ∆Cp/γnTc = 1.43 in

a weak-coupling BCS superconductor. ∆Cp/γnTc ≈ 2.5 was observed in (Ba,K)Fe2As2

indicating strong-coupling full-gap superconductivity, and ∆Cp/γnTc ≈ 0.5 in KFe2As2

which is much smaller than the weak-coupling limit. Such a low value could be attributed

to multigap nature of superconductivity [63, 64].

Bud’ko, Ni, and Canfield (BNC) proposed a correlation ∆Cp/Tc = a T 2
c (a ∼ 0.56

mJ/mole-K4) for various doped BaFe2As2 [65]. This clear deviation from conventional

BCS-like behavior was interpreted as consequence of strong pair-breaking [66, 67], co-

existence of superconductivity and magnetism [68], and superconductivity arising from

non-Fermi-liquid quantum critical metal [69].

The most relevant experiments to study the superconducting gap structure include

heat capacity, thermal conductivity, and London penetration depth. Knowledge of

their low temperature behavior, provided precisely measured, gives insight into the

nodal structure of the superconducting gap. Conventional superconductors exhibit T -

exponential behavior in these quantities at the lowest temperature limit due to thermally
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activated quasiparticles over isotropic superconducting gap. Magnetic field-dependence

is also consistent with the existence of isotropic energy gap. For example, H-linear field-

dependence of Cp/T is caused by quasiparticle state in the vortex core but not in the

bulk. On the other hand, unconventional superconductors often show a power-law be-

havior, T n, in both temperature-and field-dependence over a wide range of temperatures.

Temperature and field dependence of these quantities can be associated with a certain

structure of the superconducting gap.

Measurements of heat capacity as a function of temperature and magnetic field pro-

vide valuable clues about pairing symmetry. While conventional superconductors show

T -exponential, unconventional paring exhibit a power-law behavior of Cp(T ) at low tem-

peratures. For instance, ∆Cp(T ) ∼ T 2 would imply line-nodal superconducting gap in

clean materials [70], but it is often difficult to verify experimentally due to other con-

tributions, such as phonons and the Schottky anomaly. Nevertheless, T 2-behavior was

observed in Ba(Fe,Co)2As2 [71, 72]. On the other hand, field-dependence of Cp/T = γ

could be more useful. H-linear variation of γ(H) is consistent with a fully gapped su-

perconductor. For d-wave, on the other hand, γ(H) varies as H1/2 in clean limit [73] or

H logH in dirty limit [74] due to the so-called Volovik effect arising from the Doppler shift

of the low-energy nodal quasiparticles in the superflow field of the vortex line. Similar

field dependence is expected in the s± state with scattering, and γ ∼ H1/2 was observed

in the 1111 system. In a hole doped BaFe2As2, an observation of γ ∼ H was attributed

to fully gapped superconductivity. However, field dependence of γ in electron-doped

BaFe2As2 compounds remains controversial to date [75, 76].

Temperature-and field-dependence of electronic thermal conductivity κ is also a char-

acteristic of the nodal structure of the superconducting gap. Residual linear term in the

electronic thermal conductivity, κ/T |T=0 is negligible in a fully gapped superconductor,

and a finite residual value would imply nodes in the gap. Field dependence of κ is

H-exponential for a full gap, and κ/T ∼ H1/2 for a nodal gap. Most comprehensive
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and convincing results on temperature-and field-dependent κ can be found in BaFe2As2

systems mostly because of the availability of high quality single crystals although ther-

mal conductivity is less sensitive to impurities compared to other measurable quantities

in the superconducting state. At the optimal doping, in both electron-and hole-doped

BaFe2As2, there is no measurable residual electronic thermal conductivity in both in- and

out-of-plane directions [77, 78, 79]. However, a significant residual linear term was mea-

sured in electron doped BaFe2As2 with concentrations at both edges of superconducting-

dome of T -x phase space [78]. Measurements in KFe2As2 which is effectively the end

member of hole-doped BaFe2As2 revealed d-wave gap structure, but it is still an open

question whether it is a symmetry imposed d-wave or a state with accidental nodes in

multi s-wave gap structure. On the other hand, isovalent substitution of As by P in

BaFe2As2 shows a nodal gap structure over all superconducting concentrations.

1.3 London penetration depth

1.3.1 Theory of the London penetration depth

Concept of the penetration depth of weak magnetic field into a superconductor was

first introduced by F. and H. London brothers to account for the Meissner-Ochcenfeld

effect. A superconductor in weak magnetic field generates the so-called supercurrent to

expel the magnetic field out of the bulk. The supercurrent is distributed near surfaces of

the superconductor within a characteristic length scale which is now called the London

penetration depth. For superconductor with a spherical Fermi surface (electron gas), the

penetration depth at T � Tc is given by

λ2 =
mc2

4πnse2
(1.1)

where ns is a density of superconducting electrons which are responsible for the occur-

rence of supercurrent, and the value of ns is of the order of normal state electronic density.

Although there is no explicit temperature dependence in this equation, this quantity has
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a minimum value at T = 0 and diverges at the superconducting phase transition as

temperature is raised.

In a semiclassical picture [80], the temperature-dependent London penetration depth

provides basic information about the microscopic pairing state of a superconductor. In

a superconductor with an arbitrary electronic structure, the anisotropic London pene-

tration depth is given by

λ2
ii =

c

4πTii

(1.2)

where Tii = TP + TD is proportional to superfluid density. Here TP and TD are para-

magnetic and diamagnetic responses, respectively, of thermally activated quasi particles

and are given by

TP ≈
e2

2π3~c

∮
dSF

vFvF
vF

∫ ∞
∆k

dEk

(
− ∂f

∂Ek

)
Ek√

E2
k −∆2

k

(1.3)

TD =
e2

4π3~c

∮
dSF

vFvF
vF

(1.4)

where ∆, Ek, and vF are superconducting gap function, energy measured from EF , and

Fermi velocity, respectively. As T goes to zero, TP decreases to zero as well, and as

T is raised to Tc, TP approached TD. If ∆k is isotropic, then the anisotropy of TP is

temperature-independent and its anisotropy is the same as the anisotropy of TD. On the

other hand, if ∆k is anisotropic, then the anisotropy of TP is affected by the anisotropies

of both Ek and ∆k, and is temperature-dependent. Therefore, according to this pic-

ture, the spatial components of the London penetration depth can be computed for a

general Fermi surface geometry and an arbitrary momentum dependent superconducting

gap function. In other words, temperature dependence of the London penetration depth

probes the angular variation of the superconducting order parameter when its temper-

ature dependence is measured precisely down to low enough temperatures. Practically,

at low temperatures, below 0.3Tc, where the superconducting gap can be considered as

constant, the measured penetration depth can be well described by a power-law func-

tion, ∆λ(T ) = AT n. The pre-factor A is closely related to λ(0), and the exponent n
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has characteristic values depending on the symmetry of the superconducting gap. The

temperature dependence of the penetration depth has been well accounted for two well-

known gap symmetries.

First, in s-wave superconductors with isotropic order parameter the dependence is

exponential and is given as

∆λ(T )

λ(0)
=

√
π∆(0)

2kBT
exp

(
−∆(0)

kBT

)
(1.5)

where ∆(0) is one half of the superconducting energy gap at T = 0. Second, for a

nodal superconductor, in particular with line nodes in a cylindrical Fermi surface, the

penetration depth in clean limit varies as T -linear and is given by

∆λ(T )

λ(0)
=

2 ln 2

α∆(0)
T (1.6)

where α depends on the functional form of ∆ near nodes [81]. Unlike isotropic super-

conductors, temperature variation of λ in anisotropic superconductors is rather easily

affected by impurity scattering. In a dirty line-nodal superconductor, penetration depth

may vary as T -quadratic at T � Tc due to residual in-gap states introduced by impuri-

ties. The penetration depth in this situation can be characterized by [82]

∆λ(T ) = a
T 2

T + T ∗
(1.7)

where T ∗ is a characteristic temperature which is proportional to impurity scattering in

the system, and a is a constant of order λ(0).

Fig. 1.8 shows examples of ∆λ(T ) in typical superconductors (see chapter 2 for de-

tails). The penetration depth was measured by using a tunnel diode resonator technique

in Ames Laboratory. Penetration depth was normalized as ∆λ(T )/∆λ(0.5Tc) so that

∆λ(T ) in different superconductors can be easily compared. Nb, a conventional super-

conductor, shows almost temperature independent lambda up to Tc/3. MgB2 multi-gap

s-wave superconductor shows clear saturation in T → 0 limit, but clearly distinguishable
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Figure 1.8 Experimental London penetration depth in Nb, MgB2, and BSCCO.

from single gap s-wave in Nb. A d-wave superconductor, Bi2Sr2CuO6+x, shows linear

temperature dependence.

Knowledge of the superconducting gap structure obtained from measured ∆λ(T ) at

the lowest temperatures can be extended to full superconducting T -domain by studying

superfluid density. Superfluid density can be calculated from the London penetration

depth by using a relation;

ρs(T ) =
λ2
ii(0)

λ2
ii(T )

(1.8)

For a conventional superconductor, the superfluid density at low temperatures can be

found by

ρs = 1−

√
2π∆(0)

kBT
exp

(
−∆(0)

kBT

)
(1.9)

For dx2−y2 pairing superconductors, the superfluid density at low temperatures is given

by

ρs = 1− 2 ln 2

∆(0)
T. (1.10)

As shown above, temperature dependence of the superfluid density at low temperatures

are the same as that of the London penetration depth. The theoretical superfluid density

for these two special cases are plotted for full superconducting temperature range in Fig.

1.9.



24

1.0

0.8

0.6

0.4

0.2

0.0

ρ s

1.00.80.60.40.20.0

t = T / Tc

s-wave

d-wave

Figure 1.9 Theoretical superfluid density of s-wave and d-wave.

1.3.2 London penetration depth in Fe-based superconductors

When this project was starting, very little was known about London penetration

depth in FeSC, and the reports were very controversial. Whereas exponential tempera-

ture dependence was reported in SmFeAsO1−xFx [83] and (Ba,K)Fe2As2 [84], studies of

∆λ(T ) in Ba(Fe,Co)2As2 [85, 86], SmFeAsO1−xFx [83], and LaFeAsO1−xFx [87] found a

power-law ∆λ ∼ T n where 2 ≤ n < 2.5, which is not consistent with presence of line

nodes in the superconducting gap. In R1111, measured ∆λ(T ) could be modified due to

localized magnetic moment of R, which makes analysis rather difficult [88, 83, 87]. For s±

state, it was pointed out that the effect of disorder may change exponential T -variation

of ∆λ(T ) to a power-law behavior with exponent even below 2, down to 1.6 [89, 90].

But stoichiometric LaFePO exhibits ∆λ ∼ T 1.5 which can not be reconciled with fully

gapped superconductivity [91, 92].

On the other hand, systematic studies of doping evolution of thermal conductivity

found strong doping induced gap anisotropy change in BaCo122. This doping evolu-

tion was not expected in any model. It was natural to ask if this is a general trend

for FeSC. Considering significant effect of disorder scattering, it was very important to

study stoichiometric materials. Our measurements on stoichiometric LiFeAs revealed
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true exponential ∆λ(T ) [93, 94]. In a similar stoichiometric compound LiFeP, ∆λ(T )

was consistent with the presence of nodes in the superconducting gap [95]. This difference

may be suggestive that evolution of gap anisotropy with doping does not depend on dis-

order scattering and may be intrinsic effect. Studies of ∆λ(T ) in another stoichiometric

superconductor, KFe2As2, finding gap nodes, support this view.
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CHAPTER 2. EXPERIMENTAL

2.1 Tunnel diode resonator technique for London penetration

depth measurements

2.1.1 Principles of tunnel diode resonator
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Figure 2.1 (left axis) IV characteristic curve of a tunnel diode. (right axis) Differential
resistance dV/dI.

A tunnel diode resonator (TDR) is an electronic circuit that generates a highly stable

oscillation with a radio frequency of order typically 1-100 MHz. The key element is a

self-oscillating LC tank circuit powered by a tunnel diode or Esaki diode. The resonance

frequency is determined by f0 = 1/
√
LC.

The tunnel diode is composed of two different types of heavily doped semiconductors:

p-and n-type. When these two semiconductors are spatially very closely positioned with

the depletion layer being approximately 100 Å, valence band of p-type and conduction
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band of n-type overlap, and such thin layer allows electric current flow even at zero bias

voltage by quantum tunneling effect. When an applied forward bias voltage reduces the

overlap enough, it exhibits a characteristic of negative differential resistance as shown in

Fig. 2.1, which is the most crucial property of the diode for the resonator technique.

Either the inductor and capacitor circuit elements of the LC tank circuit can be used

as the experimental probe incorporating the sample as part of the element. Relevant

magnetic and electric properties can be studied by utilizing the inductor and the capac-

itor, respectively. Various usages of TDR with a capacitor as a probe can be found in

Ref. [96, 97]. In this section, we will focus on measurements based on the inductive

coupling between a probe coil and a specimen. In such a case, the frequency shift δf due

to change of the inductance δL can be related by;

f0 + δf =
1

2π
√

(L+ δL)C
=

1

2π
√
LC

(
1 +

δL

L

)−1/2

. (2.1)

Inductance of a typical coil, for example ∼10 mm long and ∼2 mm wide with ∼ 50 turns,

is of order 1 µH. By using a capacitor with 100 pF, f0 ≈ 16 MHz. Practical upper limit

of change in inductance δL with an 1×1×0.1 mm3 big sample is δL ∼ 10 nH. In such

cases, i.e., δL� L, the equation can be simplified;

δf

f0

≈ 1

2

δL

L
. (2.2)

δL can be associated to change in dynamic magnetic susceptibility of the specimen. By

definition,

L =
dΦ

dt
(2.3)

where Φ is magnetic flux penetrating through the inductor. For a long solenoid-coil

without a sample, Φ = HacA l n = HacVcn. Here Hac is the ac magnetic field produced

by the coil, A is a cross sectional area of the coil, l is the longitudinal length of the coil, n

is the number of turns per unit length, and Vc is the volume of the coil. For infinitesimal

change in L caused by presence of a sample in the coil, we can write;

δL =
dδΦ

dt
;
δL

L
=
δΦ

Φ
. (2.4)
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Since the change in L is purely due to change in magnetization of the specimen M ,

δΦ = M Vs n (2.5)

where Vs is volume of the specimen. It can be shown;

δΦ

Φ
=
Vs
Vc
χac (2.6)

where χac = M/Hac is real part of magnetic susceptibility of the specimen. Finally the

frequency shift can be written;

δf

f0

≈ −1

2

Vs
Vc

4πχac. (2.7)

The sensitivity of 0.001 ppm can be achieved when the circuit is constructed with care

as well as all relevant electronics are properly used [97]. Application to measurements of

superconducting penetration depth will be throughly discussed in the following section,

and the sensitivity for this quantity can be as good as Å.

Figure 2.2 Circuit diagram for a prototypical TDR circuit.

A prototype circuit consists of eight components; a tunnel diode, an inductor coil,

three capacitors, and three resistors. A schematic of this prototype is shown in Fig. 2.2.

The combination of R1 and R2 should provide optimal bias voltage to the tunnel diode.

Total impedance of R3, C, and L should be low enough so that it can be well compensated

by the negative resistance of the diode. C1 (∼10 pF) allows small portion of signal to

travel to the room temperature electronics. C2 should be acting as a short circuit for

the primary resonance oscillation. In-depth description of the circuit construction can

be found in Ref. [97, 98, 99].
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Figure 2.3 Schematic of TDR measurements.

Figure 2.3 is a schematic of typical measurements using a TDR technique at low

temperatures. At proper forward bias voltage, the TDR produces a radio frequency

fTDR. The signal is usually amplified and mixed with a stable frequency fLO which is

set to be ∼ 1 kHz higher than fTDR, and finally the variation of the frequency shift

∆f = (fLO − fTDR) is measured against time, temperature, or magnetic field.

For applications of a TDR circuit at low temperatures, it is important to achieve

thermal stability of the circuit since the resonance frequency is highly dependent on

the temperature of the circuit. It is recommended to stabilize the temperature of the

circuit in order to minimize noise and background caused by thermal instability. The

first published description of a TDR technique used in low temperatures was given in

Ref. [96] where the technique was utilized to measure density of 3He under pressure.

For London penetration depth measurements below 500 mK down to ∼50 mK, we

developed a TDR setup in a dilution refrigerator (KelvinoxMX400, Oxford Instruments).

Real images of the key parts of the setup are shown in Fig. 2.4. To minimize thermal

conductance between the TDR stage and the sample stage, thin stainless steel separators

were used between these two stages. The TDR stage is thermally connected to the
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Figure 2.4 TDR setup on a dilution refrigerator.

Still stage with thick copper wires, and the temperature of the TDR stage was actively

controlled. With the TDR operating at T = 1.5 K, the temperature of the mixing

chamber does not rise above 20 mK, and the base temperature of the sample stage can

be as low as 40 mK. The circuit components used in the dil-fridge TDR setup are listed

in Table 2.1. Two types of circuit configurations are used. For the first type, all eight

components of the TDR circuit are located on the circuit temperature stage. For the

second type, the circuit is split between two different stages. In this type, R1, R2, and

C1 are located at the Still stage, dissipating Joule-heat directly to the Still. This lowers

the heat-load on the circuit stage, and the sample stage base temperature is lowered by

∼10 mK, which can be significant for very low Tc superconductors. The noise level of
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Table 2.1 TDR circuit components for setup in a dilution refrigerator. The circuit
diagram is shown in Fig. 2.2. Ip is the current at the peak of IV curve of
a tunnel diode. L is estimated with the number of turns (25± 2 turns) and
the geometry of a cylindrical coil (2 mm long and 2.8 mm wide).

Ip (µA) R1 (Ω) R2 (Ω) R3 (Ω) C1 (pF) C2 (pF) C (pF) L (µH)
100-150 300 200 50 39 10000 100 1-2

the two circuits is practically the same.
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Figure 2.5 ∆f(T ) vs. T/Tc in Cd (Tc = 0.52 K) and KFe2As2 (Tc = 3.4 K) measured
by a TDR technique. Tc is determined at the maximum of d∆f/dT .

Figure 2.5 shows examples of ∆f in superconducting materials: KFe2As2 and Cd.

The frequency shift ∆f(T ) = f(T )− f(Tmin) shows a clear difference between different

types of superconductors, which will be discussed in-depth in the next section.

2.1.2 Calibration: conversion of measured ∆f to ∆λ

A superconducting sample is inserted into the center of an inductor coil of TDR. As-

suming the sample is small enough so that the magnetic field produced by the inductor

is homogeneous, changes in magnetic properties of the sample change the effective induc-

tance due to a change in distribution of magnetic flux inside the coil. Precise analysis of
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this change is crucial for application of the TDR technique to study London penetration

depth.

Exact analytical solutions are known only for special geometries: an infinite bar

or cylinder in longitudinal field, a cylinder in perpendicular field, a sphere, or a thin

film. These solutions are not practical since most of samples are thin platelets. A

general numerical method was developed to calculate magnetic susceptibility for plates

and disks, but this method is somewhat difficult to apply in practice. In this section, we

describe a numerical solution of the London equation in two dimensions for long slabs in

a perpendicular field, and the results are then extended analytically to three dimensions.

Using numerical results and analytical approximations, we derive a formula that can be

used to interpret frequency-shift data obtained from TDR experiments [100].

The numerical results for a particular geometry is shown in Fig. 2.6.

Figure 2.6 Right half: calculated distribution of the magnetic field in and around the
sample of d/w = 1/5 and λ/d = 0.5. Black color represents B = 0. Left
half: contour lines of the vector potential. Origin (x = 0, y = 0) is at the
sample center. Ref. [100]

Consider a semi-infinite superconducting slab of width 2w in the x direction, thickness

2d in the y direction, and infinite in the z direction. A uniform magnetic field H0

is applied along the y direction. In this two-dimensional geometry, A = (0, 0, A) and

H = (∂A/∂y,−∂A/∂x, 0), and the London equation takes the form∇2A = λ−2A. Figure

2.6 presents the distribution of the magnetic field in and around the sample with w/d = 5
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and λ/d = 0.5.

Using the London equation for an isotropic superconductor

4πλ2j = −cA (2.8)

and the definition of the magnetic moment

M =
1

2c

∫
r × j d3r (2.9)

we calculate numerically the magnetic susceptibility per unit volume (unit of surface

cross section in a 2D case):

4πχ =
1

dwλ2H0

∫ d

0

dy

∫ w

0

A(x, y)x dx (2.10)

In finite geometry, there will be a contribution to the total susceptibility from the

currents flowing on top and bottom surfaces. These currents are due to shielding of the in-

plane component of the magnetic field, Hx = ∂A/∂y, appearing due to demagnetization.

It can be mapped onto the flat surface, so that the distribution of Hx is given by

Hx =
H0r√
a2 − r2

(2.11)

where r = x/w and a2 = a+ (2d/w)2.

Next, we find a simple analytical approximation to the exact numerical results by

calculating the ratio of the volume penetrated by the magnetic field to the total sample

volume. This procedure automatically takes into account demagnetization and nonuni-

form distribution of the magnetic field along sample top and bottom surfaces. The exact

calculation requires knowledge of A(x, y) inside the sample or H(x, y) in a screened

volume outside, proportional to w2. The penetrated volume is

Vp =

∮
S

λ|Hs|
H0

ds, (2.12)

where integration is conducted over the sample surface in a 3D case or sample cross-

section perimeter in a 2D case. Using Eq. (2.11) for magnetic field on the top and
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bottom surfaces and assuming Hs = H0/(1−N) on the sides we obtain

4πχ =
1

1−N

[
λ

R
tanh

(
R

λ

)
− 1

]
(2.13)

Here N is an effective demagnetization factor, and R is the effective dimension. Both

depend on the dimensionality of the problem.

It was found numerically that in a 2D case, for not too large an aspect ratio w/d,

1/(1 − N) ≈ 1 + w/d [100]. Calculating the expelled volume as described above, the

effective dimension R is given by

R2D =
w

1 + arcsin(1/a)
. (2.14)

The natural extension of this approach for the 3D disk of radius w and thickness 2d

leads to 1/(1−N) ≈ 1 + w/2d and R is given by

w

2R
= 1 +

[
1 +

(
2d

w

)2
]

arctan
( w

2d

)
− 2d

w
(2.15)

with w = ab/(a+ b).

With typical size of samples for this technique, 0.8×0.8×0.1 mm3, the calculated ef-

fective dimension is R ≈ 53 µm which is much greater than a typical value of penetration

depth (∼ 0.1-1 µm). Using Eq. (2.13) and (2.15), we obtain for λ� R:

∆f

f0

=
Vs

2V0(1−N)

(
1− λ

R

)
(2.16)

where Vs is the sample volume, V0 is the effective coil volume. The apparatus and sample-

dependent constant ∆f0 = Vsf0/[2V0(1−N)] is measured directly by removing the sample

from the coil. Thus, the change in λ with respect to its value at low temperature is

∆λ(T ) = −δf(T )
R

∆f0

(2.17)

where ∆λ(T ) = λ(T )− λ(Tmin) and δf(T ) = ∆f −∆f(Tmin).

For the excitation field Hac‖c, screening currents flow only in the ab-plane, so ∆f

is only related to the in-plane penetration depth ∆λab. However, when the magnetic
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field is applied along the ab-plane, screening currents flow both in the plane and between

the planes, along the c-axis. In this case, ∆fmix contains contributions from both λab

and λc. For a rectangular sample of thickness 2t, width 2w and length l, mixed ∆f is

approximately given by

∆fmix

∆fmix
0

=
∆λab
t

+
∆λc
w

=
∆λmix

R
(2.18)

where R is the effective dimension that takes into account finite size effects. Knowing

∆λab from the measurement with Hac along c-axis and sample dimensions, one can obtain

∆λc from this equation.

This calibration procedure was applied to convert measured frequency shift by TDR

technique to obtain temperature variation of London penetration depth throughout this

thesis.
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CHAPTER 3. USE OF RUTGERS RELATION FOR THE

ANALYSIS OF THE SUPERFLUID DENSITY

The London penetration depth λ is one of the most important length scales of super-

conductors. The temperature dependent λ(T ) is a subject of many studies for various

materials since, among other things, it provides information about the symmetry of the

order parameter [101, 102]. Commonly, the superfluid density, ρ(T ) ≡ λ2(0)/λ2(T ),

is used for comparison with theory. Experimentally, some of the most sensitive tech-

niques can reliably determine the temperature variation of the London penetration depth,

∆λ(T ) = λ(T ) − λ(0), while the determination of the absolute value, λ(0), requires a

separate effort. The techniques which are most widely used to estimate λ(0) include

muon spin rotation (µSR) [103], infrared spectroscopy [104], and tunnel diode resonator

(TDR) technique on Al-coated samples [105]. µSR measures averaged λ(T,H) in the

mixed state and from field-dependence of λ, the zero field-limiting value is extracted

and should be extrapolated to T = 0. In infrared spectroscopy, λ(0) is deduced from

the measured plasma frequency [104]. In the Al-coating technique for TDR, λ(0) is esti-

mated from penetration of rf field through known thickness of uniformly coated Al over

the sample surface [105]. While aforementioned techniques deal with bulk properties of

a specimen, some local probes with spatial resolution of ∼ µm have been accomplished,

which include scanning SQUID [106] and MFM [107] magnetometry. In these local tech-

niques, λ(T ) is inferred from the analysis of magnetic interactions between a relevant

probe and a magnetic moment induced in a superconductor [108].

Of all the techniques mentioned, TDR offers perhaps the most precise data on the
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change of λ with temperature, ∆λ = λ(T )−λ(0). TDR per se, however, does not provide

the absolute value of λ and of λ(0), in particular, so that the sample has to be modified by

coating with a low-Tc superconductor [105]. Determination of λ(0) is critical because the

shape of ρ(T ) extracted from the data on ∆λ(T ) depends sensitively on the value of λ(0)

adopted, and a wrong λ(0) could lead to incorrect conclusions on the superconducting

order parameter.

In this chapter we show that the thermodynamic Rutgers relation [109] between

the specific heat jump ∆C and the slope of upper critical field dHc2/dT at the critical

temperature Tc can be used to check consistency of the chosen value of λ(0) provided that

reliable data on ∆λ(T ) are available over a broad temperature domain. Moreover, we

offer a method of estimating λ(0) provided that ∆C and dHc2/dT at Tc are known. This

idea is checked on Nb and MgB2 and applied to several unconventional superconductors.

In all cases we use ∆λ(T ) measured by using the TDR technique and literature data for

other two quantities except for YBa2Cu3O1−δ where its superfluid density is taken from

elsewhere [110]. In all studied cases, the method works well and determined values of

λ(0) are in agreement with established literature values.

3.1 Thermodynamic Rutgers relation

The specific heat jump at Tc in materials where the critical fluctuations are weak is

expressed through the free energy difference Fn − Fs = H2
c /8π: [109, 111]

∆C = Tc
∂2

∂T 2

H2
c

8π

∣∣∣
Tc

=
Tc
4π

(
∂Hc

∂T

)2

Tc

(3.1)

Here, C is measured in erg/cm3K and T in K. Within the mean-field Ginzburg-Landau

(GL) theory, near Tc, the thermodynamic critical field Hc = φ0/2
√

2πξλ with

ξ =
ξGL√
1− t

, λ =
λGL√
1− t

, t =
T

Tc
. (3.2)

Here ξ and λ are the coherence length and the penetration depth, and the constants

ξGL, λGL are of the same order but not the same as the zero−T values ξ(0) and λ(0).
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Hence we have:

∆C =
φ2

0

32π3ξ2
GLλ

2
GLTc

, (3.3)

where ξGL is related to the slope of Hc2(T ) at Tc:

Tc
∂Hc2

∂T

∣∣∣
Tc

=
∂Hc2

∂t

∣∣∣
t=1

= H ′c2(1) = − φ0

2πξ2
GL

. (3.4)

It is preferable to determine the slope of Hc2 line from specific heat measurements since

resistive determination of this line is significantly affected by vortex lattice instability

(irreversibility line). It is common to introduce the dimensionless superfluid density

ρ = λ2(0)/λ2 with the slope at Tc given by

Tc
∂ρ

∂T

∣∣∣
Tc

=
∂ρ

∂t

∣∣∣
t=1

= ρ′(1) = −λ
2(0)

λ2
GL

. (3.5)

We then obtain:

∆C =
φ0

16π2λ2(0)Tc
(H ′c2 ρ

′)t=1 (3.6)

where the primes denote derivatives with respect to t.

It should be stressed that being a thermodynamic relation that holds at a 2nd order

phase transition, applicability of Rutgers formula is restricted only by possible presence

of critical fluctuations. In particular, it can be applied for zero-field phase transition in

materials with anisotropic order parameters and Fermi surfaces, multi-band etc, which

makes it a valuable tool in studying great majority of new materials.

For anisotropic materials, Eq. (3.1) is, of course, valid since the condensation energy

and Hc do not depend on direction. However, already in Eq. (3.3) the field direction

should be specified. In the following we discuss situations with H parallel to the c

axis of uniaxial crystals. Hence, Hc2, ρ, and λ(0) in Eq. (3.6) should have subscripts ab;

we omit them for brevity. A general case of anisotropic material with arbitrary field

orientation requires separate analysis.
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3.2 Theoretical results relevant for the analysis of the

superfluid density

3.2.1 Penetration depth in anisotropic materials

It is known [112] that in isotropic materials,

ρ′(1) = −λ2(0)/λ2
GL = −2 . (3.7)

It is easy to reproduce this result for the free electron model of the normal state; it is

shown below, however, that this value holds for any Fermi surface provided the order

parameter is isotropic.

Here, we are interested in relating λ(0) and λGL, the T independent part of λ near

Tc, for anisotropic Fermi surfaces and order parameters. We start with a known relation,

(λ2)−1
ik =

16π2e2N(0)T

c2

∑
ω

〈
∆2vivk
β3

〉
, (3.8)

which holds at any temperature for clean materials with arbitrary Fermi surface and

order parameter anisotropies [113, 102]. Here, N(0) is the density of states at the Fermi

level per spin, β2 = ∆2 + ~2ω2 with ~ω = πT (2n + 1), ∆(kF , T ) = Ψ(T )Ω(kF ) is the

zero-field order parameter which in general depends on the position kF on the Fermi

surface, and 〈...〉 stand for averaging over the whole Fermi surface. The function Ω(kF )

which describes the variation of ∆ along the Fermi surface, is normalized: 〈Ω2〉 = 1.

Eq. (3.8) is obtained within the model of factorizable effective coupling V (k,k′) =

V0 Ω(k) Ω(k′) [114]. The self-consistency equation of the weak coupling theory takes the

form:

Ψ(r, T ) = 2πTN(0)V0

ωD∑
ω>0

〈
Ω(k)f(k, r, ω)

〉
, (3.9)

where f is the Eilenberger Green’s function which, for the uniform current-free state,

reads: f = ∆/β = ΨΩ/β. The order parameter near Tc is now readily obtained:

Ψ2 =
8π2T 2

c (1− t)
7ζ(3)〈Ω4〉

, (3.10)
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which reduces to the isotropic BCS form for Ω = 1. Substitute this in Eq. (3.8) to obtain

near Tc:

(λ2)−1
ik =

16πe2N(0)〈Ω2vivk〉
c2〈Ω4〉

(1− t) . (3.11)

The constants λGL for any direction readily follow.

As T → 0, the sum over ω in Eq. (3.8), the so-called Matsubara frequencies, can be

replaced with an integral according to 2πT
∑

ω →
∫∞

0
d(~ω):

(λ2)−1
ik (0) =

8πe2N(0)

c2

〈
vivk

〉
. (3.12)

For free electrons, this reduces to the London value λ2 = mc2/4πe2n where n = 2mN(0)v2/3

is the electron density.

Hence, we get for the slope of the in-plane superfluid density:

ρ′ab(1) = −λ
2
ab(0)

λ2
GL,ab

= −2
〈Ω2v2

a〉
〈v2
a〉〈Ω4〉

. (3.13)

Similarly, one can define ρ′c(1) for which va should be replaced with vc in Eq. (3.13). In

particular, we have:

ρ′c(1)

ρ′ab(1)
=
〈v2
a〉
〈v2
c 〉
〈Ω2v2

c 〉
〈Ω2v2

a〉
=

γ2
λ(0)

γ2
λ(Tc)

. (3.14)

E.g., for MgB2 with γλ(0) ≈ 1, γλ(Tc) ≈ 2.6, we estimate ρ′c(1) ≈ 0.15 ρ′ab(1).

It is instructive to note that ρ′(1) reduces to the isotropic value of −2 for any Fermi

surface provided the order parameter is constant, Ω = 1.

3.2.2 MgB2

Consider a simple two-band model with the gap anisotropy given by

Ω(k) = Ω1,2 , k ∈ F1,2 , (3.15)

where F1, F2 are two sheets of the Fermi surface. Ω1,2 are assumed constants, in other

words, we model MgB2 as having two different s-wave gaps. The normalization 〈Ω2〉 = 1

then gives:

Ω2
1ν1 + Ω2

2ν2 = 1 , ν1 + ν2 = 1 , (3.16)
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where ν1,2 = N1,2/N(0) are the relative densities of states.

Based on the band structure calculations [115, 116], ν1 and ν2 of our model are

≈ 0.56 and 0.44. The ratio ∆2/∆1 = Ω2/Ω1 ≈ 3. Then, the normalization (3.16) yields

Ω1 = 0.47 and Ω2 = 1.41.

Further, we use the averages over separate Fermi sheets calculated in Ref. [115]:

〈v2
a〉1 = 33.2, 〈v2

a〉2 = 23 cm2/s2. With this input, we estimate

ρ′ab(1) = −0.92 . (3.17)

It should be noted that this number is sensitive to a number of input parameters. The

procedure described above, see Fig. 5.10 gives ρ′ab(1) ≈ −0.91.

Since only even powers of Ω enter Eq. (3.13), the same analysis of the slope ρ′(1) can,

in fact, be exercised for materials modeled by two bands with the ±s symmetry of the

order parameter, for which Ω’s have opposite signs. If the bands relative densities of

state ν1,2 and the averages 〈v2
a〉1,2 are comparable to each other and similar to those of

MgB2, we expect a similar |ρ′(1)| ≈ 1 for clean crystals.

3.2.3 d-wave

It can be shown that Ω =
√

2 cos 2φ for closed Fermi surfaces as rotational ellipsoids

(in particular, spheres) or open ones as rotational hyperboloids (in particular, cylinders)

[117]. Using the relation for anisotropic materials with a spherical Fermi surface:

ρ′ab(1) = −λ
2
ab(0)

λ2
GL,ab

= −2
〈Ω2v2

a〉
〈v2
a〉〈Ω4〉

= −4/3. (3.18)

3.2.4 Scattering

In the limit of a strong non-magnetic scattering for an arbitrary Fermi surface but a

constant s-wave order parameter we have, see, e.g, Ref. [102]:

(λ2)−1
ik =

8π2e2N(0)〈vivk〉τ
c2~

∆ tanh
∆

2T
. (3.19)



42

Here τ is the average scattering time. It is worth noting that the dirty limit does not

make much sense for anisotropic gaps because Tc is suppressed even by non-magnetic

scattering in the limit τ → 0. At T = 0, we have

(λ2)−1
ik (0) =

8π2e2N(0)〈vivk〉τ
c2~

∆(0) , (3.20)

whereas near Tc

(λ2)−1
ik =

8π2e2N(0)〈vivk〉τ
c2~

∆2

2Tc
, (3.21)

Since for non-magnetic scattering, Tc and ∆(T ) are the same as in the clean case, in

particular ∆ = 8π2T 2
c (1− t)/7ζ(3), we obtain

ρ′(1) = −4π2Tc
∆(0)

= − 4πeγ

7ζ(3)
= −2.66 . (3.22)

We thus conclude that scattering causes the slope ρ′(1) to increase.

Evaluation of scattering effects on the slope ρ′ near Tc for anisotropic gaps and Fermi

surfaces are more involved because both Tc and ∆ are affected even by non-magnetic

scattering. The case of a strong pair-breaking is an exception: λ−2 = λ−2
0 (1 − t2) that

immediately gives ρ′(1) = −2.

3.3 Determination of λ(0)

The full superfluid density needed for the analysis of the experimental data and

comparison with theoretical calculations depends on the choice of λ(0):

ρ(t) =
λ2(0)

[λ(0) + ∆λ(t)]2
. (3.23)

Figure 3.1 shows an example of this dependence of ρ(t) on λ(0) for Nb. In the

upper panel, experimental ∆λ(T ) is shown. In the lower panel, symbols represent ρ(t)

calculated from measured ∆λ(t) with λ(0) chosen as 15, 25 and 35 nm. Clearly, the

calculated ρ(t) is sensitive to the choice of λ(0). The straight solid lines have the slope

ρ′(1) calculated by using Eq. (3.6) for each λ(0). We used ∆C = 137.2 mJ/mol-K
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Figure 3.1 (a) London penetration depth in Nb measured by using a TDR technique.
(b) Superfluid density ρ(t) calculated from Eq. (3.23) using ∆λ(T ) shown in
(a) and assuming λ(0) = 15, 25, and 35 nm. Straight lines have the slope ρ′

estimated from Eq. (3.6) for each λ(0).

= 126450 erg/cm3K (Ref. [118]) since in the formulas used here the specific heat is per

unit volume. To convert ∆C which is commonly reported in mJ/mol-K into erg/cm3K,

one needs to calculate the mass density which requires crystallographic information. For

niobium we use parameters found in Ref. [119]. Crystal structure of elemental niobium

belongs to the space group Im-3m (no. 229) with lattice parameters a = b = c = 0.3303

nm, and corresponding volume is V = 0.036 nm3.1 There are two molecular units

per the volume (Z = 2). Using these values the converted ∆C = 137.2 mJ/mol-K

1The lattice parameters used for this analysis are values determined at room temperature. Using
representative values for thermal contraction at Tc by 2.5% and 5%, the unit-conversion for ∆C results
in smaller values by 2.5% and 5%, respectively. This discrepancy will be taken into account for estimate
of λ(0) by using experimental uncertainties of ±5% in determining ∆C.
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(Ref. [118]) = 126450 erg/cm3K. Using H ′c2|Tc = 440 Oe/K (Ref. [120]), we obtain

−ρ′(1) = 0.49, 1.4, and 2.7 for 15, 25, and 35 nm, respectively. While the choice of

λ(0) = 25 nm shows reasonable agreement, for the choices of 15 nm and 35 nm the

slopes calculated using the data and Eq. (3.23) determined by Eq. (3.6) under- and over-

estimates, respectively. Note that with λ(0) = 15 nm, the temperature dependence of ρ

is pronouncedly concave near t = 1, and also −ρ′(1) is smaller than one. The idea of our

method is to utilize the Rutgers relation (3.6) and choose such a λ(0) that would not

contradict the thermodynamics near Tc.

To this end we rewrite Eq. (3.6) in the form:

ρ′(1)

λ2(0)
=

16π2Tc∆C

φ0H ′c2(1)
. (3.24)

The right-hand side here is determined from independent measurements of ∆C and Hc2.

Thus, by taking a few test values of λ(0), calculating ρ(t) and its slope at t = 1, we can

decide which λ(0) and ρ(t, λ(0)) obey the Rutgers relation.

We first apply this method to two well-studied superconductors - conventional Nb

and two-band MgB2. For Nb, we obtain |ρ′|/λ2(0) ≈ 2240 µm−2 using the same thermo-

dynamic quantities as for Fig. 3.1 [118, 120]. We now take a set of values for λ(0) shown

in top left panel of Fig. 3.2 and plot |ρ′|/λ2(0) vs λ(0). The value of λ(0) = 28 ± 2 nm

satisfying the Rutgers relation is obtained from the intersection of the calculated curve

with the value expected from Eq. (3.24) (shown by a gray band that takes into account

experimental uncertainties in determining ∆C and H ′c2). It is consistent with the liter-

ature values varying between 26 and 39 nm [118, 121]. The final calculated superfluid

density with the choice of λ(0) = 30 nm is shown in Fig. 3.2(b). The solid line is deter-

mined with calculated slope |ρ′(1)| = 2 which is what is predicted for isotropic s-wave

superconductors.

In addition to aforementioned uncertainties, determination of the experimental |ρ′(1)|

is not trivial even if the quality of measurement is excellent since ρ(t) near t = 1 is often

significantly curved due to several experimental artifacts, most importantly due to the
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perfluid density for the best value of λ(0) that satisfies the Rutgers relation,
Eq. (3.24).

influence of the normal skin effect near Tc, which is more pronounced for higher frequency

measurements on highly conducting materials. TDR technique uses typically ∼ 10 MHz,

so this effect is weak in most of the materials concerned. By surveying many different

superconductors, we have found that the data in the regime between t = 0.8 and 0.95

works well for determination of ρ′(1). The experimental |ρ′(1)| in this work is determined

from the best linear fit of ρ(t) data in this range.

The same procedure can be employed for a well known multi gap superconductor

MgB2 (shown in the bottom row of Fig. 3.2), where |ρ′|/λ2(0) is estimated to be 130±12

µm−2 by using ∆C = 133 mJ/mol-K (Ref. [17]), |H ′c2(1)| = 0.45 T/K (Ref. [16])

within ±5% error. The determined λ(0) = 84 ± 10 nm is in good agreement with 100

nm estimated by µSR technique [122, 123]. For λ(0) = 84 nm, the calculated slope
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|ρ′(1)| = 0.91 agrees with the expected theoretical value of 0.92.

The method described also has been used for SrPd2Ge2 for which λ(0) was not clear.

By using the determined λ(0) we have shown that SrPd2Ge2 is a single-gap s-wave

superconductor [124].

3.4 Application of Rutgers formula to unconventional

superconductors

Here we examine a few superconductors for which the necessary experimental quanti-

ties have been reported in the literature. Where possible, we use Hc2(T ) determined from

the specific heat jump, because resistive and magnetic measurements may determine the

irreversibility field, which may differ substantially from the thermodynamic Hc2 [138].

We have selected LiFeAs, FeTe0.58Se0.42, YBa2Cu3O1−δ and MgCNi3 representing

stoichiometric pnictide, charchogenide, d-wave high-Tc cuprate and close to magnetic in-

stability s-wave superconductors, respectively. The selected compounds have been exten-

sively studied, and ∆C, dHc2/dT , and λ(0) have been measured by various techniques by

different groups. Superfluid density was calculated from the penetration depth measured

by using a TDR technique at Ames Laboratory, except for YBCO for which anisotropic

superfluid density was determined by microwave cavity perturbation technique [110].

Thermodynamic parameters are discussed in the number of papers [31, 30, 32]. In-depth

discussion of the specific heat is given in Refs. [32, 63]. Table 3.1 summarizes parameters

used in the calculations.

Figure 3.3 shows experimental superfluid density in LiFeAs, FeTe0.58Se0.42, YBa2Cu3O1−δ

and MgCNi3 with λ(0) = 500, 200, 120, and 232 nm, respectively. The agreement be-

tween ρ′Rut calculated with the Rutgers relation and ρ′exp extracted from the data on

∆λ(t), given possible uncertainties in the input experimental parameters, is rather re-

markable.
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Figure 3.3 Experimental superfluid density ρ = λ2(0)/λ2(T ) in LiFeAs, FeTe0.58Se0.42,
YBa2Cu3O1−δ, and MgCNi3 with λ(0) = 500, 200, 120, and 232 nm, re-
spectively. The straight lines in each panel were estimated with the Rutgers
formula. Parameters used for the calculation are summarized in Table 3.1.

In conclusion, we have shown that the thermodynamic relation Rutgers formula can

be used for the analysis of superfluid density. Using this relation we have developed a

method to estimate λ(0). This method successfully estimates λ(0) of Nb and MgB2.

This relation was applied to several superconductors of different band structure, gap

anisotropy, and pairing symmetry, showing a good agreement with the theory.
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CHAPTER 4. DOPING DEPENDENCE OF LONDON

PENETRATION DEPTH AND SUPERFLUID DENSITY IN

IRON-BASED SUPERCONDUCTORS

Since the discovery of superconductivity in LaFeAsO1−xFx [25], the symmetry of the

superconducting gap in the Fe-based superconductors has been heavily studied. Up to

date, however, it is not in consensus. Early results seemed consistent with the s±-wave

symmetry [57, 61, 139], but following penetration depth measurements are consistent

with nodal superconducting gap in LaFeAsP [91] and over-doped BaNi122 [140]. Ther-

mal conductivity measurements on a full series of superconducting Ba(Fe,Co)2As2 re-

vealed doping dependent gap structure consistent with full-gap at optimal doping and

strong anisotropic or nodal gap at the both edges of the superconducting dome [78]. A

key question would be whether this doping dependence is universal for Fe-based super-

conductors.

In this chapter, we discuss temperature variation of the London penetration depth

in various families of FeSC of different chemical substitution levels. First, we will

look into doping-dependent London penetration depth in Fe1+yTe1−xSex in which su-

perconductivity arises when the double stripe AFM and spin-glass magnetism is sup-

pressed (see Fig.1.6(b)). Second, we discuss the London penetration depth measured

in Ca10(Pt3As8)((Fe1−xPtx)2As2)5 (10-3-8). In this compound, the relatively large elec-

tronic anisotropy is caused due to the relatively large separation between conducting

FeAs-layers. The separation in the 10-3-8 compound is ∼11 Å which is larger than, for
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example, ∼9 Å and ∼7 Å in La1111 and Ba122 compounds, respectively. Superconduct-

ing state is also separated from magnetism in T -x phase diagram. Magnetic structure

in this compound is not fully known up to date. A NMR study suggests a stripe type,

but it is different than the magnetic structure in other FeSC [141]. Next, we move on to

underdoped Ba1−xKxFe2As2 systems in which superconductivity coexists with a stripe-

type AFM. Finally, we present experimental results on two extreme cases, first of which

is the case of full substitution of Fe with Pd in AFe2As2 (A=Ca, Sr), and the second

case is SrPd2Ge2.

4.1 Fe1+yTe1−xSex

The majority of iron-based superconductors are pnictides. The only exceptions, to

date, are KxFe2−ySe2 and Fe1+yTe1−xSex. The former exhibits up to Tc = 33 K, making

it interesting to study. However, presence of localized magnetic moments exhibiting the

Curie-like behavior (χ ∼ T−1) [142] makes analysis of London penetration depth difficult

unless the magnetic contribution is fully known [88]. The latter Fe1+yTe1−xSex becomes

superconducting with the excess Fe occupying interstitial sites of the (Te,Se) (or chalco-

genide layer) layers [143]. In these materials, generally referred to as ”11” compounds,

Fe forms square planar sheets whereas Se ions form distorted tetrahedra surrounding the

Fe ions, which is similar to the structure of the Fe-pnictides. The electronic structure

is also similar to pnictides. For ”11” system it has been suggested both theoretically

[144] and experimentally [145] that superconductivity could be magnetically mediated.

Furthermore, the series of iron-chalcogenides from FeS through FeTe was theoretically

explored within the spin-fluctuation picture, concluding that doped FeTe could exhibit

the strongest superconductivity [144]. The systems over which the doping is most con-

trolled are FeTe1−xSex [146] and FeTe1−xSx [147]. So far the highest Tc ≈ 15 K is

reported for the Fe(Te,Se) system [146, 50]. The connection between superconductivity
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and magnetism in the ”11” system has been demonstrated by the observation of the

antiferromagnetic order in Fe1+yTe [143] and a spin resonance in Fe1+y(Te0.6Se0.4) [148].

The ”11” system exhibits many interesting phenomena. The transition temperature

can be enhanced up to 37 K by applying modest pressures [149], which is comparable

to the Tc of iron-arsenide superconductors [44]. The connection between Tc and the

pressure has been suggested to come from the enhancement of spin fluctuations [150]

and from the modulation of electronic properties due to evolution of the inter-layer Se-

Fe-Se separations [149]. Several experimental works explore pairing mechanism of ”11”

compounds. The absence of a coherence peak in NMR measurements on polycrystalline

FeSe suggests unconventional superconductivity [151], while the power-law temperature

dependence of the spin-relaxation rate, 1/T1 ∼ T 3, could be reconciled with both a

nodal gap or a fully-gapped s± state. Muon spin rotation study of the penetration

depth in FeSex was consistent with either anisotropic s-wave or a two-gap extended s-

wave pairing [152]. Thermal conductivity measurements concluded multigap nodeless

superconductivity in polycrystalline FeSex [153].

In this section, we present an experimental study of the London penetration depth,

λ(T ), in single crystals of Fe1.03(Te0.63Se0.37) and Fe(Te0.58Se0.42) with Tc = 12.8 and 14.8

K, respectively. The former is slightly underdoped compounds, and spin glass behavior

was observed. The latter compound is nominally optimally doped. In both samples,

no evidence for paramagnetic impurity down to ∼ 0.04Tc as seen in KxFe2−ySe2. We

found that at low temperatures ∆λ(T ) ∝ T n with n ≈ 2.1 and 2.3 for Fe1.03(Te0.63Se0.37)

and Fe(Te0.58Se0.42), respectively. The absolute value of λ(0) ≈ 560 nm was determined

in Fe1.03(Te0.63Se0.37) by measuring the total λ(T ) of the sample coated with a thin Al

film [105]. The in-plane superfluid density ρs(T ) = λ2(0)/λ2(T ) was analyzed in the

framework of a self-consistent two-gap γ−model [154].

Single crystals of Fe1+yTe1−xSex were prepared using a solid-state reaction method

[50]. Mixed powders of the Fe(Te0.6Se0.4) compositions were sealed in evacuated quartz



52

tubes. The sealed ampoule was slowly heated up to 930 ◦C and slowly cooled down

to 400 ◦C at a rate of 3 ◦C/hr before the furnace was shut down. Single crystals with

centimeter dimensions can easily be obtained with this method and are shown to be

the pure α-phase with the P4/nmm space group by x-ray diffraction [50]. The actual

concentrations were analyzed using an energy dispersive x-ray spectrometer (EDXS).

The measured composition for the samples discussed in this section is Fe1.03(Te0.63Se0.37).

More detail about sample growth and characterization can be found in Ref. [50].

4.1.1 Fe1.03(Te0.63Se0.37)
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Figure 4.1 Main panel: Variation of the London penetration depth, ∆λ(T ) for three
Fe1.03(Te0.63Se0.37) samples in the low temperature range shown along with
the fitting curves assuming power-low or s-wave BCS behavior. The curves
for #2 and #3 are shifted vertically for clarity. Inset: ∆λ(T ) in full tem-
perature range.

The inset in Fig. 4.1 shows the full-temperature range penetration depth for three

Fe1.03(Te0.63Se0.37) superconductors. All three samples show a relatively sharp super-

conducting transition reflecting the good quality of single crystals. The ”maximum

slope”, T slope
c , determined by taking the maximum of the derivative d∆λ(T )/dT gives

T slope
c ≈ 12.0 K. As for the onset values, T onset

c ≈ 13 K. The low-temperature vari-

ation of λ(T ) with temperatures down to 0.04Tc is examined in the main panel of
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ature range up to Tc/3. The curves for #2 and #3 are shifted vertically for
clarity.

Fig. 4.1. Such a low base-temperature provide wide temperature range to test vari-

ous gap structures. The dashed line represents the best fit to a standard s-wave BCS

function, ∆λ(T ) = λ(0)
√
π∆0/2T exp(−∆0/T ), with λ(0) and ∆0 being free fitting pa-

rameters. The experimental data do not show any indication of saturation down to the

lowest temperature (500 mK) and the fit is not adequate. Also obtained from the fit

is ∆0 = 0.5Tc, which is impossible in a single-gap scenario, hence ruling out conven-

tional s-wave BCS superconductivity. We will come back to a multi-gap s-wave fitting

later in this section. On the other hand, fitting with the power-law, ∆λ(T ) ∝ AT n,

n = 2.10± 0.01, produces excellent agreement with the data.

In order to examine how close the overall power-law variation is to quadratic, we

plot ∆λ versus (T/Tc)
2 in Fig. 4.2. All samples follow the ∆λ(T ) ∝ T 2 behavior rather

well. To probe how robust the power n is, we performed a data fit over a floating

temperature range, from T = Tmin to Tup, using a functional form of ∆λ(T ) = a0 +AT n.

The difference between the a0 term determined from an extrapolation from the T 2 plot

in Fig. 4.2 and the power-law fit turned out to be negligible, 1.5±0.5 nm, and had no

significant effect on the fit. The dependence of the other fitting parameters, n and A, on
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upper temperature limits shown on the x-axis. The exponents in the upper
panel were obtained with n and A both being free parameters. In the lower
panel, A was acquired with a fixed n = 2.1.

Tup (selected in the range from Tc/6 to Tc/3) is summarized in Fig. 4.3. The upper panel

of Fig. 4.3 shows the exponent n, which does not depend much on the selection of the

upper limit of the fitting range. The pre-factor A obtained from the fit does not depend

much on the fitting range either.

TDR technique offers precision measurement of ∆λ(T ) in a superconductor, but the

absolute value of λ(0) cannot be determined directly. One of ways to determine with

measuring a superconductor coated with Al.

To calculate the superfluid density, we need to know the absolute value of the pen-

etration depth, λ(0). We used the technique described in Ref. [105]. A thin aluminum

layer was deposited using magnetron sputtering conducted in an argon atmosphere. The

Al layer thickness, t = 100± 10 nm, was determined by using an Inficon XTC 2 with a

6 MHz gold quartz crystal and later directly measured by using scanning electron mi-

croscopy on the edge of a broken sample. By measuring the frequency shift from T � TAl
c
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to T > TAl
c and converting it into the effective penetration depth of the coated sample,

λeff, one can extract the full penetration depth of the material under study from

λeff = λAl
λ+ λAl tanh (t/λAl)

λAl + λ tanh (t/λAl)
(4.1)

where λ is the unknown penetration depth to be determined. Figure 4.4 shows the

measured λeff(T ) that is compared to the data without Al coating. In the inset, ∆λ(T )

in Al at lowest temperatures is shown. Ideally, measurements with lower temperature

are needed to determine penetration depth of Al. However, temperature variation of

penetration depth in Al which is a typical weak-coupling superconductor is already well-

known, so the measured penetration depth is extended to T = 0 by using a weak-coupling

BCS function with ∆(0) = 1.764Tc. The negative offset of 0.05 µm accounts for the

thickness of the Al layer and λAl(T � TAl
c ). According to Eq. (4.1), data plotted this way

give the actual λ(T ) and its extrapolation to T = 0 gives an estimate of λ(0) ≈ 560± 20

nm for the penetration depth of Fe(Te,Se), which is consistent with a value determined

by the Rutgers relation (see Chap. 3) and a µSR measurement [131]. More details on

the Al-coating method can be found in Ref. [105, 155].
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Figure 4.4 (Color online) Effective penetration depth in single crystal Fe(Te,Se) before
(blue circles) and after (red triangles) coating with an Al layer. The curve
is shifted up according to Eq. (4.1) and the data are extrapolated to T = 0
using a T 2 fit resulting in λ(0) ≈ 560± 20 nm.
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The superfluid density, ρs(T ) = λ2(0)/λ2(T ), shown in Fig. 4.5, exhibits a noticeable

positive curvature at elevated temperatures, similar to MgB2 [18]. This suggests a multi-

gap superconductivity, which we analyze in the framework of the self-consistent γ−model

[154]. According to our ∆λ(T ) measurement, multi-gap s-wave model should not work

at the lowest temperatures, but it still provides a reasonable description at intermediated

temperature regime. We note that our Tc criteria is effectively 10 % of transition and no

data above Tc was used for our analysis in order to exclude any extrinsic effects. Fitting in

the temperature range from 0.45Tc to Tc, shown by a solid (red) line in Fig. 4.5, produces

a good agreement with the data. To limit the number of the fitting parameters, the

partial densities of states were chosen to be equal in the two bands, n1 = 0.5, and the

first intra-band coupling parameter, λ1 = 0.5, was chosen to produce a correct Tc ≈ 12

K assuming a Debye temperature of 230 K found in a similar compound Fe(Te,S) [156].

The variation of λ1 does not affect the fitting quality or relative ratios of the fitting

parameters. The parameters obtained in the fit are: λ2 = 0.347, λ12 = 0.096 and γ = 0.

This result means that ρs(T ) at temperatures of the order of Tc is fully described by only

one component, determined by the band with a smaller gap. The existence of the larger

gap and small interband coupling, λ12, are needed, however, to maintain a high Tc. The

fit over the entire temperature range reveals a clear deviation from this clean exponential

model at low temperatures. The new fitting parameters of λ2 = 0.281, λ12 = 0.117 and

γ = 0.157 are close to the previous set, albeit with small, but finite γ indicating 16 %

contribution of the larger gap to the total superfluid density. The temperature dependent

gaps obtained self-consistently in the fitting are shown in the inset to Fig. 4.5. While

the fitted positive curvature and reasonable coupling parameters indicate a multi-gap

nature of superconductivity in ”11” iron-chalcogenide superconductors, the failure at

low temperatures and apparently non-exponential behavior requires extension to the

anisotropic gap and inclusion effects of (possibly strong) pairbreaking [157].
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Figure 4.5 Superfluid density ρs(T/Tc) for Fe(Te,Se)#2 calculated with experimental
∆λ(T ) and λ(0) = 560 nm. The solid (red) line is a fit the two-gap γ−model
from 0.45Tc to Tc. The dashed (blue) line is the fit over the full tempera-
ture range. Inset: temperature dependent superconducting gaps calculated
self-consistently during the fitting.

4.1.2 Fe(Te0.58Se0.42)

The T -quadratic behavior of London penetration depth in Fe1.03(Te0.63Se0.37) is some-

what ambiguous for any conclusions about the superconducting gap symmetry in the 11

system. Here we compare with optimally doped Fe(Te0.58Se0.42) to get further insight

about the gap symmetry in the 11 system.

The inset of Figure 4.6 presents χac(T ) in full superconducting temperature range

which shows a sharp phase transition at 14.8 K. One of Fe1.03(Te0.63Se0.37) samples with

lower Tc discussed in the previous section is shown for comparison. In the main panel,

the low temperature behavior of ∆λ up to 0.3Tc is shown with a solid curve determined

by a power-law fitting. Data can be best fitted to a power-law function, ∆λ(T ) = AT n,

with (n = 2.43 ± 0.01, A = 529 ± 5 nm/K2.43) and (n = 2.10 ± 0.01, A = 807 ± 13

nm/K2.1) for Fe(Te0.58Se0.42) and Fe1.03(Te0.63Se0.37), respectively.

For quantitative analysis of the low temperature behavior, a power-law fit, ∆λ(T )

= AT n was performed with four different upper temperature limits for the fit: 0.15Tc,

0.20Tc, 0.25Tc and 0.3Tc. The results of the fitting are summarized in Fig. 4.7(b). Clearly,
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Figure 4.6 Inset: normalized χac vs T in Fe1+yTe1−xSex. Main panel: ∆λ(t) in
Fe(Te0.58Se0.42) and Fe1.03(Te0.63Se0.37) in open squares and circles, respec-
tively, where t = T/Tc. Red solid line represent best power-law fitting
functions obtained by fitting data up to 0.3Tc. Best fitting can be achieve
with n = 2.4 and 2.1 for Fe(Te0.58Se0.42) and Fe1.03(Te0.63Se0.37), respectively.

the fit coefficients remain fairly constant with small deviations at the lowest and the

highest limits. From the best fits with T/Tc upper limit, the average exponent n =

2.36 ± 0.07 is quite comparable to the previous reports of n =2.1 [132], 2.2 [158] and

2.0 [130]. The exponent n = 2.36 can be explained by the nodeless two-gap pairing

symmetry with strong pair breaking effect. The behavior of the pre-factor A, which is

determined to be Aavg = 0.8± 0.2 nm/K2.36, also show very weak compare to what was

found in Fe1.03(Te0.63Se0.37).

The superfluid density ρs = λ2(0)/λ2(T ) in Fe(Te0.58Se0.42) is shown in Fig. 4.8. Here

we use λ(0) = 560 nm determined in Fe1.03(Te0.63Se0.37) [132]. The fitting was done with

a self-consistent clean two-gap γ-model, where two gaps are calculated self-consistently at

each temperature and at each iteration [154]. Since temperature diminishes the relative

contribution of impurity scattering, we expect to have better agreement at the higher

temperatures and deviations from exponential behavior at the low temperatures. Yet,

we believe that the extracted coupling parameters are meaningful. The total superfluid

density is given by ρs = γρ1 + (1 − γ)ρ2. The partial densities of states are chosen to
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be equal on the two bands, n1 = n2 = 0.5 and Debye temperature of 230 K [156] was

used to calculate the experimentally observed Tc = 14.8 K, which fixes the coupling

constants (we used λ11). Figure 4.8 demonstrates good agreement between experimental

ρs (symbols) and fitting (black solid line). The parameters acquired from the fit are:

λ11 = 0.66, λ22 = 0.44, λ12 = 0.07, λeff = 0.34, γ = 0.75 and Tc = 14.95 K. This result

indicates that 75 % contribution of superfluid density comes from the band with ρ1 which

has the larger gap ∆1. We have also attempted to fit the data only in the intermediate

temperature range where the effect of impurities is relatively smaller and we found fitting

parameters similar to the reported above. Since our model does not include details of the

Fermi surface shape, Fermi velocities and the densities of states, this is the best accuracy

that we can achieve using this approach.
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The inset in Fig. 4.8 shows the behaviors of two superconducting gaps ∆1 and ∆2

versus temperature. Clearly, the smaller gap has significantly non-BCS temperature

dependence. The zero temperature values of the energy gaps ∆1(0) and ∆2(0) are 2.5

meV (∆1(0)/kBTc = 1.93) and 1.1 meV (∆2(0)/kBTc = 0.9), respectively. From the

previous measurements, such as µSR [131, 159] and penetration depth [94], two isotropic

gaps were reported with gap values similar to our results. µSR studies in FeSe0.5Te0.5

[131, 159] revealed two gaps of ∆large ∼ 2.6 meV and ∆small ∼ 0.5-0.87 meV, and the

penetration depth study [132] also showed that ∆large ∼ 2.1 meV and ∆small ∼ 1.2 meV.

According to scanning tunneling spectroscopy study, only one s-wave gap ∆ ∼ 2.3 meV

was observed in FeSe0.4Te0.6 [160], which is similar to the large gap ∆1(0) of our result.

However, rather large single or multi-gaps were reported from specific heat [161], optical

conductivity [162], point-contact Andreev reflectivity [163], and angle-resolved photoe-

mission spectroscopy [164] suggesting strong-coupling superconductivity. The electronic

specific heat in Fe(Te0.57Se0.43) [161] revealed two energy gaps with ∆large ∼ 7.4 meV

and ∆small ∼ 5.0 meV. From the optical conductivity in FeTe0.55Se0.45, two large energy

gaps were also found with ∆large ∼ 5.1 meV and ∆small ∼ 2.5 meV. The point-contact



61

Andreev reflectivity in FeTe0.55Se0.45 is consistent with single gap s-wave symmetry with

∆(1.70K) ∼ 3.8 meV. Angle-resolved photoemission spectroscopy in FeTe0.7Se0.3 [164],

an s-wave single gap of ∆ ∼ 4 meV was also observed. Overall, the pairing symmetry

in FeTe1−xSex is still under debate, but our results strongly suggest a two-gap scenario

with significant pair-breaking scattering.

4.2 Ca10(Pt3As8)((Fe1−xPtx)2As2)5 (0.028 ≤ x ≤ 0.097)

Recently, a new family of Fe-based superconductors (FeSCs) with PtAs intermediary

layers has been reported [165]. In particular, Ca10(PtnAs8)[(Fe1−xPtx)2As2]5 with n = 3

(the 10-3-8 phase) and n = 4 (the 10-4-8 phase) have been described [34, 166, 167, 168].

Whereas the 10-3-8 phase with rare triclinic symmetry shows superconducting Tc up to

13 K upon Pt-doping, the superconductivity of a tetragonal 10-4-8, stabilizes at a higher

Tc of 38 K [167]. The availability of high purity single crystals with well - controlled level

of Pt doping makes the 10-3-8 system particularly attractive [34, 166, 167, 168]. Two

unique features distinguish the 10-3-8 system from other FeSCs. First, the anisotropy

of the 10-3-8 system, γH(Tc) ≡ H(Tc)c2,ab/H(Tc)c2,c ∼ 10 [34], is much larger than

2-4 in the 122 systems and even larger than 7-8 in the 1111 systems [169, 170, 171].

Second, a clear separation of structural (magnetic) instability and superconductivity in

the T (x) phase diagram, suggested by transport measurements [34] and supported by

NMR measurements [141] and by direct imaging of structural domains [33]. This is

distinctly different from the 122 pnictides, where these two order parameters coexist up

to the optimal doping [172].

In the cuprates, the low dimensionality of the electronic structure is believed to be

responsible for their high Tc and highly anisotropic gap (d-wave) [173]. Despite obviously

layered structure, the electronic anisotropy of most - studied 122 pnictides is rather low,

with γH(T ) ∼ 2−4 at T = Tc and decreasing upon cooling [169, 170, 171]. Moreover, the
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superconducting gap in the 122 pnictides is rather isotropic at the optimal doping, but

evolves towards nodal structure at the dome edges [102]. To check whether the electronic

anisotropy plays a role in the structure of the superconducting gap, highly anisotropic

pnictides without complications due to coexisting phases and well - controlled doping

level are needed and the 10-3-8 system fits these requirements.

In this section, we discuss λ(T ) in the 10-3-8 crystals in the underdoped regime up

to optimal doping. The low-temperature penetration depth exhibits power-law varia-

tion, ∆λ = AT n, with the exponent n decreasing towards the edge of the dome. This

behavior is similar to the lower-anisotropy BaK122 (hole doped) and BaCo122 (electron

doped). We conclude that neither the anisotropy (at least, up to γH ∼ 10) nor the

coexistence of superconductivity and magnetism play a significant role in determining

the superconducting gap structure in FeSCs.

Single crystals of Ca10(Pt3As8)((Fe1−xPtx)2As2)5 were synthesized as described else-

where [34]. The compositions of six samples were determined with wavelength dispersive

spectroscopy (WDS) electron probe microanalysis as x = 0.004±0.002, 0.018±0.002,

0.028±0.003, 0.041±0.002, 0.042±0.002, and 0.097±0.002.
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Figure 4.9 Variation of the London penetration depth, ∆λ(T ), in the full temperature
range for four underdoped compositions of the 10-3-8 system. Tc increases
with Pt-doping, x, as indicated in the legend.
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Figure 4.9 shows the variation of the London penetration depth, ∆λ(T ), during a

temperature sweep through the superconducting transition in 10-3-8 single crystals with

x = 0.028, 0.041, 0.042, and 0.097. Tc monotonically increases with x, consistent with

the transport measurements of the crystals from the same batches [34].
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Figure 4.10 ∆λ(T ) with temperatures between 500 mK and ∼ Tc/3, plotted against
(a) T/Tc and (b) (T/Tc)

2 for the 10-3-8 samples with x = 0.028, 0.041,
0.042, and 0.097. The vertical dashed lines indicate the upper limits of the
fitting ranges, Tc/5, Tc/4 and Tc/3. The solid lines are representative fits
to ∆λ = AT n for each doping, conducted with the upper limit of Tc/3.
The resulting exponents n for all three fitting ranges are shown in Fig. 4.11
(a).

Figure 4.10 shows ∆λ(T ) plotted against (a) linear, T/Tc, and (b) quadratic, (T/Tc)
2,

normalized temperature scales. For the quantitative analysis, ∆λ(T ) was fitted to a

power-law, ∆λ(T ) = AT n. To examine the robustness of the fits, the fitting range was

varied from base temperature to Tc/3, Tc/4, and Tc/5 (indicated by vertical dashed lines
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in Fig. 4.10). In Fig. 4.10, the symbols are experimental data and the solid lines show

representative fits with the upper limit of Tc/3. The resulting exponents n for all three

fitting ranges are shown in Fig. 4.11 (a). Figure 4.11 (b) shows the prefactor A obtained

at a fixed n = 2 for different fitting ranges. To compare samples with different doping

levels we used the average values (over three different fitting ranges), navg and Aavg.

As shown in Fig. 4.11 (a), navg decreases from 2.36 to 1.7 and the prefactor, A,

dramatically increases (fivefold)as x decreases from nearly optimal doping of x =0.097

towards heavily underdoped x =0.028. This behavior signifies a much larger density of

quasiparticles thermally excited over the gap minima in the underdoped compositions.
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Figure 4.11 Results of the power-law fits with three different upper limits, indicated by
dashed lines in Fig. 4.10 are shown along with the average values. Panel
(a): the exponent n, obtained by keeping A and n as free parameters.
Panel (b): the pre-factor A, obtained at a fixed n = 2. Panel (c) shows the
doping phase diagram with the magnetic (M) and superconducting (SC)
phases clearly separated as a function of Pt-doping (x). Ts measured from
resistivity [34] and Tc from TDR (this work).
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A similar doping-dependent evolution of λ(T ) was found in BaCo122 [155]. For that

compound, it was suggested that the underdoped side is significantly affected by the co-

existing magnetic order and was explained by an increasing gap anisotropy when moving

towards the edge of the “superconducting dome”, consistent with thermal conductivity

[77, 78] and specific heat [65] studies. In the present case of the 10-3-8 system where

magnetism and superconductivity are separated, Fig. 4.11 (c), this doping-dependent

evolution of n and A suggests that the development of the anisotropy of the supercon-

ducting gap upon departure from the optimal doping is a universal intrinsic feature of

iron-pnictides, and is not directly related to the coexistence of magnetism and supercon-

ductivity.
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Figure 4.12 Superfluid densities, ρs(T ), of the optimally doped 10-3-8 sample with
x = 0.097 for λ(0) = 200 nm (squares) and 500 nm (circles), which cover
extremes of λ(0) in FeSCs. Solid lines are the fits from the two-gap (s-wave)
γ model [154]. For comparison, ρs(T ) for single-gap s-, and d-wave cases
are shown as dashed lines.

The low-temperature exponent n, is sensitive to the gap anisotropy, but does not

reflect possible multi-gap structure typical for the pnictides [102]. Therefore we need

to analyze the superfluid density in the full temperature range. To avoid complications

due to anisotropy we perform this analysis at the optimal doping. Figure 4.12 shows

the superfluid density, ρs(T ) = (λ(0)/λ(T ))2, calculated with λ(0) of 200 nm and 500
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nm, representing two extreme values reported for the pnictides [31]. Clearly, single -

gap d-wave and s-wave are very far from the data. A much better agreement was found

by using a self - consistent two-gap (s-wave) γ model [154], which only deviates at the

low temperatures, presumably due to pairbreaking scattering [157]. The ratio of the

superconducting gaps is about 2, similar to other FeSCs.

To summarize our findings, we observe substantial increase of the gap anisotropy

in more underdoped compositions of the 10-3-8 system despite a clear separation of

superconducting and magnetic domains on the T (x) phase diagram. Interestingly, simi-

lar separation is also reported in the 1111 compounds that have similarly high electronic

anisotropy [174, 175]. The evolution of the gap anisotropy with doping may signify a tran-

sition between different pairing mechanisms in the different parts of the superconducting

dome, for example, evolving from magnetic- to orbital-fluctuation mediated superconduc-

tivity [176, 177, 178]. Alternatively, the gap can become progressively more anisotropic

within the same universal pairing scenario based on competing inter-band coupling and

intra-band Coulomb repulsion and pair-breaking impurity scattering [179, 180, 181].

4.3 Ba1−xKxFe2As2 (0.13 ≤ x ≤ 0.4)

The experimental determination of the symmetry of the superconducting gap is im-

portant for understanding the mechanism of superconductivity in iron-based supercon-

ductors [36, 182]. Measurements of London penetration depth [86, 85, 140], thermal

conductivity [77, 78] and specific heat [72, 65, 183] in electron doped Ba(Fe1−xCox)2As2

(BaCo122) suggest that superconducting gap shows strong evolution with doping, de-

veloping nodes at the dome edges [78, 184, 181]. This doping-evolution is consistent

with observations of a fully gapped superconductivity in effectively close to optimally-

doped LiFeAs [185, 186, 94, 187] and nodal superconductivity in effectively overdoped

KFe2As2 [188, 189, 84]. It is also consistent with predicted doping-evolution for the s±
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model [190, 181]. On the other hand, nodal behavior is observed at all doping levels in

isovalently substituted BaFe2(As1−xPx)2 (BaP122) [191]. This noteworthy difference in

two systems based on the same parent compound prompts a detailed study of the hole

doped Ba1−xKxFe2As2 (BaK122). The superconducting gap in BaK122 was studied in-

tensively using ARPES [139, 192], NMR [193], penetration depth [194, 195] and thermal

conductivity [79, 189], however, no systematic doping - dependent study reaching the

dome edges was undertaken so far.

In this section we study the evolution of the temperature dependence of in-plane

London penetration depth, ∆λ(T ), in high quality single crystals of Ba1−xKxFe2As2. We

find that the optimally doped samples show exponentially weak temperature dependence

in T → 0 limit, suggesting a fully gapped superconductivity. This conclusion is consistent

with the temperature-dependent superfluid density in these samples, which can be well

fitted using self-consistent γ-model with two full gaps in the clean limit [154]. The lowest-

Tc samples show an exceptionally strong sub-quadratic temperature dependence. Fitting

the experimental ∆λ(T ) below Tc/3 to a power-law, ∆λ(T ) = AT n, we find a monotonic

decrease of the exponent n with concomitant sharp increase of the pre-factor A towards

the low x edge of the superconducting dome. Comparison with close to T -linear behavior

found in heavily overdoped KFe2As2 [84], suggests a universal development of nodes at

the edges of the superconducting dome in both electron- and hole-doped BaFe2As2 -

based superconductors.

Single crystals of Ba1−xKxFe2As2 were grown using high temperature FeAs flux

method [196]. ∆λ(T ) was measured using tunnel-diode resonator technique [97, 101].

Placing a sample into the inductor causes the shift of the resonant frequency, ∆f(T ) =

−G4πχ(T ). Here 4πχ(T ) is magnetic susceptibility and G is a calibration constant de-

termined by physically pulling the sample out of the coil. With the characteristic sample

size, R, 4πχ = (λ/R) tanh(R/λ) − 1, from which ∆λ can be obtained [100, 101]. The

excitation field in the inductor, Hac ∼ 20 mOe, is much smaller than Hc1.
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Figure 4.13 Temperature variation of London penetration depth ∆λ(T ) in under doped
Ba1−xKxFe2As2. (a) Normalized ∆λ(T ). (b) and (c) Low-temperature
parts of ∆λ(T ). Experimental data are displayed with solid circles. Solid
red line represent power-law fitting curves. Two dashed lines are data for
pure KFe2As2 from Ref. [191].

To compare sharpness of the superconducting transition, Fig. 4.13(a) shows normal-

ized RF susceptibility of Ba1−xKxFe2As2 samples used in this study. The superconduct-

ing transition remains quite sharp even for the most underdoped samples where Tc(x) is

very sensitive to small variations of x. The values of x were determined by the empirical

fit of the experimental Tc(x) data [196, 197]. The values of Tc were determined from

the position of the maximum in the first derivative, d∆λ(T )/dT . In our samples we ob-

tained Tc of 11.2, 14.5, 18.6, 30.0, and 38.7 K, corresponding to potassium concentrations

of x = 0.17, 0.18, 0.20, 0.27, and 0.40, respectively. The low-temperature variation of
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∆λ(T ) up to Tc/3 is shown in Figs. 4.13(b) and (c). Figure 4.13(b) compares the data

for limiting compositions x=0.17 and 0.40, revealing a big difference in the magnitude

of ∆λ(T ). Two curves for pure KFe2As2 are shown for reference [191]. Figure 4.13(c)

shows ∆λ(T ) on the same scale for all concentrations. The data are offset for clarity and

red lines represent the power-law fit. However, a closer look shows significant deviations

of the data in heavily underdoped (x = 0.17) and in optimally doped (x = 0.4) samples.

At lowest temperatures, it becomes significantly sub-quadratic for the former and closer

to exponential for the latter.

First we attempted to fit the data for two highest Tc samples to the single gap s-

wave BCS function, ∆λ(T )/λ(0) =
√
π∆0/2kBT exp(−∆0/kBT ), where ∆0 is the size

of gap at T = 0. The ∆0 values from the best fittings are 0.73 kBTc and 0.87 kBTc for

x = 0.27, and 0.40, respectively. While the fit quality was good, both ∆0 values are much

smaller than in single full-gap superconductors where ∆0 = 1.76 kBTc. Such small gaps

are expected in superconductors with ∆min < ∆max, either due to gap angular variation

(anisotropy) or variation between different Fermi surface sheets.

A standard way to analyze ∆λ(T ) is to fit it from the lowest temperature up to Tup ≈

Tc/3. In a single -gap s-wave superconductor this limit is determined by reaching nearly

constant value of the superconducting gap ∆0, below which the temperature dependence

is exponential. For various nodal gaps, the dependence is expected to be power-law,

T -linear for line nodes and T 2 for point nodes in clean limits. For the anisotropic gap

or multi-gap superconductors with the variation of the gap magnitude over the Fermi

surface between ∆max and ∆min, the Tup is determined by ∆min, while Tc by ∆max, so

that Tup range of characteristic temperature dependence can be smaller than Tc/3.

We therefore check the alteration of the fitting parameters by choosing different

temperatures for the upper limit, Tup < Tc/3. The dependence of n and A on Tup

is shown in Fig. 4.14(b). The highest-and lowest-Tc samples exhibit monotonic increase

and decrease of n on Tup → 0, approaching very different values of 4 and 1.5, respectively.
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Figure 4.14 (a) ∆λ vs. (T/Tc)
2.8 up to Tc/3. (b) Variation of exponent n obtained

from a power-law fitting, ∆λ = A(T/Tc)
n, as a function of the upper

end temperature of the fitting range. Inset: A vs. Tc. The three curves
represented by triangle, circle, and square were obtained with fixed n =2.0,
2.3, and 2.5, respectively.

The exponents n for samples with x = 0.18, 0.20, and 0.27 do not show a significant

variation with Tup < Tc/3, indicating robust power-law behavior, but show systematic

increase of n with x. The decrease of n with decrease of x can be clearly seen by in the

top panel of Fig. 4.14, in which all data are plotted vs (T/Tc)
2.78, where n = 2.78 is the

exponent for the optimally doped samples. The dependence of the power-law pre-factor

A on Tc was analyzed by fixing n=2.0, 2.3, and 2.5 and is shown in the inset revealing a

significant increase with decreasing Tc. The A value for sample x=0.17 is 30 nm/K1.78,

out of scale for the plot and is not shown.

A smaller than weak-coupling value of ∆min obtained from low-temperature BCS

formula implies two-gap superconductivity and the analysis must be extended to the

full-temperature range. The most convenient quantity is the superfluid density, which
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Figure 4.15 Symbols: superfluid density ρs(T ) = λ2(0)/λ2(T ) calculated with
λ(0) = 200 nm in Ba0.6K0.4Fe2As2 [198]. Solid lines represent the fit to
a two-gap γ model, ρs = γρ1 + (1 − γ)ρ2. Inset: superconducting gaps
∆1(T ) and ∆1(T ) calculated self-consistently during the fitting.

can be calculated from the first principles. In the optimally doped samples, we fit the data

using clean-limit γ-model [154]. Symbols in Fig. 4.15 show superfluid density, ρs(T ) =

λ2(0)/λ2(T ), for the sample with x = 0.40 calculated with λ(0) = 200 nm determined by

infrared spectroscopy experiments [198]. We note that the slope of superfluid density at

Tc determined by using the Rutgers relation is -3.6 with ∆C = 125 mJ/mol-K2 [199] and

∂Hc2/∂T |Tc = −6.7 [199], which is significantly different from experimental value -1.5

obtained by fitting the experimental ρs in Fig. 4.15. One natural explanation for such a

large discrepancy between calculations and the experiment may be due to magnetic order

parameter coexisting with superconductivity, but this has to be verified. In addition,

the calculated value is somewhat big to account for multigap superconductivity. For

further superfluid analysis, we use the experimental value λ(0) = 200 nm [198]. Solid

lines show self-consistent γ-model fit for two-full-gap superconducting state [154] with

ρs = γρ1 + (1− γ)ρ2, where ρ1 and ρ2 are partial superfluid densities. Insert shows two

superconducting gaps ∆1 and ∆2 calculated during the fitting procedure. The estimated

gap values are 6.5 and 3.3 meV. Specific heat jump produced the value of ∼ 6 meV for

the larger gap [200].
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Upon departure from optimal doping, the exponent n shows notable evolution with

x decreasing from 4 to about 1.5. London penetration depth is very sensitive to pair-

breaking disorder, modifying ∆λ(T ) at low temperatures [89, 66]. In Ba122 - derived

compounds it was also suggested experimentally [195, 194, 201, 157]. Within the s±

theory [57], λ(T ) should be exponential in the clean limit [94, 93]. However, pair-breaking

scattering (which in this case can be caused by non-magnetic impurities and dopant ions)

turn the behavior into a power-law with the exponent n approaching 2 in the dirty limit

[90, 89, 202]. Since the superconductivity in BaK122 is induced by doping, we cannot

ignore the effect of disorder on the variation of exponents. However, it would be natural

to expect increase of scattering with x, and thus decrease of the exponent, opposite to

the trend in our data. Similarly, disorder effect cannot explain nodal state in the end

member of BaK122, very pure KFe2As2 with n=1.2 [191, 189]. In addition, our most

underdoped sample shows the exponent n = 1.5 clearly well below the limiting value of

2 for pair-breaking scattering. Thus we conclude that the variation of the exponent n,

found in our study, is caused by the changes in the superconducting gap structure with

doping.

The evolution of the power-law behavior in Ba1−xKxFe2As2 superconductors is sum-

marized in Fig. 4.16(a). Solid circles show exponent n with the error bar estimated from

the fitting to the different temperature ranges (such as shown in Fig. 4.14(b)) and open

circles show the pre-factor A calculated for a fixed exponent n = 2.3. Also shown are

the exponents for two stoichiometric (clean) compounds, KFe2As2 [191] and LiFeAs [94].

The dashed line represents our picture of the exponent variation with doping that, in

our opinion, reflects developing anisotropy of the superconducting gap. To relate to the

phase diagram, Fig. 4.16(b) shows magnetic and superconducting transitions vs doping

from neutron scattering [197]. The pre-factors of the power-law fit show a sharp increase

in the AFM region, similar to FeCo122 [155], which indicates microscopic coexistence of

superconductivity and long-range magnetic order [203].
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Figure 4.16 (a) n vs. x diagram. The red solid circles represent n from various tempera-
ture range between Tc/6 and Tc/3. The exponent n ≈ 1 and 3.1 in KFe2As2

[191] and LiFeAs [94], respectively, are from elsewhere. (b) T -x phase dia-
gram. The superconducting dome and AFM region were constructed with
data from elsewhere [197].

In conclusion, the measurements of λ(T ) in Ba1−xKxFe2As2 suggest the evolution of

the superconducting gap upon departure from the optimal doping from full isotropic to

highly anisotropic and, perhaps, nodal at the dome edges.

4.4 Full substitution of Fe with Pd: APd2As2 (A = Ca, Sr)

and SrPd2Ge2

These compounds are interesting particularly because of compositional similarity to

the newly discovered isostructral Fe-and Ni-pnictide superconductors with comparable

Tc such as KFe2As2, BaNi2As2, and SrNi2P2. Although there is strong experimental ev-

idence for nodal superconductivity in KFe2As2 (Ref. [191, 204]), the Ni-based ones have

been shown to be fully gapped by thermodynamic and thermal transport measurements

[205, 206]. This naturally prompts the question: what the structure of a superconducting

gap is in these compounds? So far, not much work has been done on these materials

in this direction. Tunneling spectroscopy between 0.17Tc and Tc is consistent with a
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single, isotropic gap superconductor [207]. To verify this, however, the thermodynamic,

thermal transport, and penetration depth measurements down to much lower tempera-

tures are necessary to provide objective conclusions regarding the gap-symmetry in these

superconductors.

In this section, we discuss London penetration depth, λ(T ), in single crystals of

APd2As2 (A = Ca, Sr) and SrPd2Ge2 taken in a dilution refrigerator with temperatures

down to 50 mK. The low - temperature variation of the London penetration depth,

∆λ(T ), clearly indicates exponential saturation in all compounds. In APd2As2, the low

temperature ∆λ is consistent with a BCS prediction for weak-coupling superconductor.

In SrPd2Ge2, the thermodynamic Rutgers formula was used to estimate λ(0) = 426 nm

which was used to calculate the superfluid density, ρs(T ) = λ2(0)/λ2(T ). Analysis of

ρs(T ) in the full temperature range shows that it is best described by a single - gap

behavior, perhaps with somewhat stronger coupling.

4.4.1 APd2As2 (A = Ca, Sr)

Figure 4.17 shows the temperature variation of the ab-plane magnetic penetration

depth, ∆λ(T ), measured in CaPd2As2 and SrPd2As2 crystals, represented by open circles

and triangles, respectively. The absolute value of the penetration depth was obtained

using the TDR technique by matching the frequency shift, ∆f(T ), to the skin depth, δ,

calculated from the resistivity [208]. The superconducting transition temperature was

determined as the temperature of the maximum of ∆λ(T )/dT . The determined Tc’s are

1.34 K and 1.26 K for CaPd2As2 and SrPd2As2, respectively. These values are higher

than the bulk Tc’s of 1.27(3) K and 0.92(5) K determined from respective ∆Cp(T ) data

[208]. Even so, the actual onset of the diamagnetic reponse is observed at even higher

temperature Tc onset = 1.50 K and 1.72 K for Ca and Sr respectively. The temperature

dependences of ∆λ for the two compounds up to Tc are shown in the inset of Fig. 4.17

At low temperatures, the ∆λ(T ) in Fig. 4.17 of each sample shows a clear saturation
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Figure 4.17 ∆λ(T ) measured in CaPd2As2 (filled circles) and SrPd2As2 (filled trian-
gles). The data for SrPd2As2 are shifted vertically upwards by 30 nm for
clarity. The solid curve for each compound is the best fit of the data by
s-wave BCS function for T < 0.3Tc. The vertical dashed line is the upper
temperature limit for the fits. Inset: ∆λ(T ) for both compounds up to
T = Tc. The data for SrPd2As2 are all shifted upwards by 2 µm for clarity.

on cooling, which is an indication of a fully-gapped superconducting order parameter in

both compounds. The experimental data are fitted well up to T = Tc/3 by a single-gap

BCS equation. The fitting parameters are λ(0) = 210±60 nm and ∆(0)/kB = 2.02±0.14

K for Ca and λ(0) = 170± 70 nm and ∆(0)/kB = 2.05± 0.20 K for Sr. The listed errors

are systematic errors obtained from the spread of the fitting parameters depending on

different choices of the upper temperature limit near Tc/3.

Using the bulk Tc values determined by heat capacity measurements [208] and the

above values of ∆(0)/kB, we obtain α = 1.59(14) for Ca and 2.22(0.32) for SrPd2As2.

The value of α for CaPd2As2 is identical within the error vars to the value of 1.58(2) in

Eq that was determined from the heat capacity jump, both of which are smaller than

the BCS value 1.764 expected for an isotropic weak-coupling BCS superconductor. This

reduction is most likely due to a moderate anisotropy of the order parameter rather

than multiple order parameters because well-known multi-gap superconductors such as

MgB2, NbSe2, and LiFeAs have shown much lower values of alpha for the smaller gap.
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The accuracy of alpha for Sr that we could write down is uncertain, and will therefore

not be further discussed.

4.4.2 SrPd2Ge2

Superconductivity in the tetragonal ThCr2Si2-type SrPd2Ge2 was discovered first in

polycrystalline [209] and later in single crystals [210] with the superconducting phase

transition temperature (Tc) at 3.0 K and 2.7 K, respectively. The upper critical field

(Hc2) was estimated to be 4920 Oe at T = 0 by using Helfand-Werthamer (HW) theory

[211] based on the experimental data obtained only down to T = 0.7Tc [210]. It has

been found that Tc and Hc2 can be slightly increased by chemical doping [212]. The

London penetration depth and coherence length are reported to be λ(0) = 566 nm and

ξ(0) = 21 nm [207] and λ(0) = 345 ± 30 nm ξ(0) = 25.6± 0.5 nm [213]. These values

give the Ginzburg - Landau parameter of κ = 27 [207] and κ = 13.5 [213], which makes

SrPd2Ge2 a strong type-II superconductor. Furthermore, thermodynamic [210] and tun-

neling spectroscopy measurements are consistent with a slightly strong - coupling s-wave

Bardeen-Cooper-Schrieffer (BCS) superconductor with the zero-temperature value of the

superconducting gap of ∆0 ≈ 2kBTc [207, 213], - not far from the weak coupling value of

1.76.

Figure 4.18 shows temperature variation of the in-plane London penetration depth,

∆λ(T ), measured in a single crystal of SrPd2Ge2 superconductor which exhibits a very

sharp superconducting phase transition at Tc = 2.7 K as shown in the inset, indicating

a high quality, homogeneous sample. In the main panel, ∆λ(T ) is shown with temper-

atures up to about 0.67Tc. The saturation in T → 0 limit and almost flat temperature

dependence, ∆λ(Tc/3) < 10 nm, indicate fully gapped superconductivity. Experimen-

tal ∆λ(T ) can best fit to a power-law function, ∆λ(T ) = AT n, with the exponent of

n = 2.7 ± 0.1 and pre-factor of A = 12.2 ± 0.4 nm/K2.7. The fitting curve is shown

in red solid line. A power-law function with such a high exponent has very weak vari-
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Figure 4.18 In-plane London penetration depth in a single crystal of SrPd2Ge2. Main
panel: Open circles represent experimental data. Solid and dashed lines
represent power-law and BCS (single gap s-wave) low - temperature fitting.
Dotted shows the data for KFe2As2 taken from Ref. [191] for comparison.
Inset: London penetration depth in the full temperature range demonstrat-
ing a sharp transition at Tc = 2.7 K

.

ation at low temperatures, indistinguishable from the exponential behavior which is

predicted for a fully open superconducting gap. In fact, the BCS low - temperature

form, ∆λ(T ) = λ(0)
√
π∆0/2kBT exp (−∆0/kBT ), where ∆0 is the maximum gap value

at T = 0, fits the data equally well for T < Tc/3 where it is expected to be valid. How-

ever, the best fitting is achieved with λ(0) = 50 nm and ∆0 = 0.74kBTc. The latter is

impossible in the single - gap clean limit where ∆0 ≈ 1.76kBTc is expected. The value

of λ(0) is also much smaller than the reported value of 566 nm [207]. Similar low -

temperatures features can be seen in two - band superconductors such as MgB2 (Ref.

[18]), 2H-NbSe2 (Ref. [214]), Lu2Fe3Si5 (Ref. [215]), and more recently LiFeAs (Ref.

[94]). However, as we show below, analysis of the superfluid density in the full temper-

ature range is inconsistent with a two - gap clean behavior. Instead, it is more likely

that we are dealing with moderate pair - breaking scattering (maybe due to well-known

magnetic impurities in Pd) which results in a finite density of states inside the gap. We

also point out that these temperature variation is very small compared to a known nodal
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superconductor KFe2As2 (Ref. [191, 204]) with similar Tc, but exhibiting much stronger

temperature dependence of ∆λ, indicating significant amount of quasiparticles generated

at the low temperatures, most likely due to nodes in the gap.

For a metallic sample, the measured penetration depth above Tc is determined either

by the skin depth δ or sample size. In case of skin depth limiting, the value of λ(T > Tc)

shown in the inset in Fig. 4.18 is one half of the actual skin depth [111]. Therefore, we

can estimate normal state resistivity from the measurements using ρ = (2πω/c2)δ2 [94].

For SrPd2Ge2 with ω/2π = f0 = 17 MHz and δ/2 ≈ 20 µm, the calculated resistivity is

approximately 12 µΩ cm which is much less than the experimental value of 68 µΩ cm

(Ref. [210]). Therefore, we conclude that it is in a sample - size limited regime. Using

the same equation, the estimated skin depth is 180 nm which is close to half width of

the sample.

Finally, we note that the data exhibit a smooth transition from superconducting

penetration depth to the normal state between T = Tc and T ∗ ≈ 3.0 K, which has

also been seen in transport measurement. [210] Interestingly, T ∗ = 3 K is the onset of

superconductivity observed in a polycrystalline sample [209]. Similar feature has also

been observed in a related superconductor BaNi2As2 [216]. Perhaps this feature requires

further study.

While the low - temperature behavior is important, the superconducting gap can be

probed at all energy scales by the analysis the superfluid density, ρs(T ) = λ2(0)/λ2(T ),

in the entire temperature range [102]. However, superfluid density requires knowledge

of the absolute value of λ(0). For SrPd2Ge2 λ(0) = 566 nm was estimated using a

dirty limit [207] and λ(0) ≈ 390 nm was extracted from field - dependent magnetization

[210] within the London approximation and λ(0) ≈ 345± 5 nm was estimated from the

measurements of the field of first penetration [213]. So, the variation of the literature

values is quite significant and we have to resort to another, thermodynamic, approach

based on the Rutgers formula. In the Ginzburg-Landau regime, i.e. near Tc, it can be
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Figure 4.19 Main panel: Calculated superfluid density, ρs, with various λ(0)’s. The
slope of dashed lines was determined with ∆Cp and |dHc2/dT |Tc us-
ing the Rutgers formula as described in the text. Inset: Variation of
|∂ρs/∂t|Tc/λ2(0) with varying λ(0). Here ρ′s was determined from the exper-
imental data. The gray band is a theoretical estimate with 5% hypothetical
error in ∆Cp and |dHc2/dT |Tc .

shown that ∣∣∣∣∂ρs∂t
∣∣∣∣
Tc

=
16π2λ2(0)

φ0|∂Hc2/∂T |Tc
∆Cp (4.2)

where φ0 = 2.07 × 10−7 G cm2 is a flux quantum and |∂Hc2/∂T |Tc = 0.26 T/K is

determined experimentally [124]. Specific heat jump ∆Cp = 7381 erg/cm3K is taken

from Ref. [212]. Applying these thermodynamic values suggests |∂ρ/∂t|Tc/λ2(0) = 21.7

µm−2 where t = T/Tc is the reduced temperature. This quantity can be compared with

the actual slope of calculated ρs(t) with various λ(0) at Tc as shown in Fig. 4.19. In the

main panel, the open symbols represent the calculated superfluid density with 300, 400,

and 700 nm in triangle, circle, and square, respectively. The dashed lines are determined

with the slope calculated by Eq. 4.2 for three values of λ(0) quoted above. The line

with 400 nm shows very good agreement with calculated ρs while the line with 300 nm

significantly underestimates, and the one with 700 nm overestimates. This procedure

can be repeated with various values of λ(0). The result is summarized in the inset

where the solid triangle represents experimental slopes obtained by fitting experimental
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data near Tc to a linear line. The gray horizontal band represents the theoretical value

of |∂ρ/∂t|Tc/λ2(0) = 21.7 ± 2.2 µm−2 determined with a 10 % hypothetical error in

|∂Hc2/∂T |Tc and ∆Cp. In this way, λ(0) can be determined at the intersection of the

theoretical line and experimental results, which provides that λ(0) = 426 ± 60 nm that

lies between the literature values. With this value, the slope of ρs at Tc is determined to

be −3.9.
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Figure 4.20 Calculated superfluid density, ρs(T ) = λ2(0)/λ2(T ) using λ(0) = 426 nm.
Open circles represent the experimental data. The dashed dots and dashed
lines represent single - gap weak - coupling s-wave BCS superconductor in
clean and dirty limit, respectively.

The calculated superfluid density with λ(0) = 426 nm is shown in Fig. 4.20. The

dot - dashed and dashed lines show expectation for clean and dirty limit of a single-gap

BCS superconductor in the weak - coupling limit, respectively. An attempt to use a

two-gap (clean) γ-model [154] in the full-temperature range converges to a single - gap

limit with ∆(0)/kBTc =2.2. Therefore, the gap symmetry of SrPd2Ge2 is most likely

represented by a single gap s-wave, perhaps with somewhat enhanced coupling strength.

It was noted previously that the shape of ρs(T ) is rather close to a nonlocal - limiting

case, expected in type I superconductors such as aluminum and cadmium [217]. Similar

argument was made in the work by T. K. Kim et al. in which SrPd2Ge2 appeared to be
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type I according to the intrinsic electronic structure despite the fact that experimental

ξ(0) and λ(0) put it in a strong type-II regime [207]. In any case, our study confirms

that simple analysis with an isotropic Fermi surface is not sufficient and, perhaps, the

results could be explained by taking into account a realistic band structure. We can,

however, conclude that no nodes are present in the superconducting gap.

4.5 Summary

In Fe1+yTe1−xSex, a robust power-law behavior of the low-temperature London pen-

etration depth was found for ∆λ(T ) ∝ T n with n ≈ 2.1 and 2.3 for Fe1.03(Te0.63Se0.37)

and Fe(Te0.58Se0.42), respectively. The absolute value, λ(0) ≈ 560 ± 20 nm, was deter-

mined in Fe1.03(Te0.63Se0.37) by the Al-coating technique. The analysis of the superfluid

density showed a clear signature of nodeless two-gap superconducting state with strong

pair breaking effect.

In Ca10(Pt3As8)[(Fe1−xPtx)2As2]5, the power-law fit of the low temperature part of

∆λ(T) showed that the exponent, n, monotonically changes from 2.36 at the optimal

doping to 1.7 in heavily underdoped regime, which can be explained by an increasing

anisotropy of the superconducting gap at the edges of the superconducting dome.

In Ba1−xKxFe2As2 (0.13 ≤ x ≤ 0.40) where superconductivity coexists with mag-

netism, the measurements of ∆λ(T ) suggest the evolution of the superconducting gap

upon departure from the optimal doping from full isotropic to highly anisotropic and at

the dome edges.

This doping evolution of gap anisotropy is universally found in all charge-doped Fe-

pictides, Ba1−xKxFe2As2 and Ca10(Pt3As8)[(Fe1−xPtx)2As2]5 similar to previous reports

for Ba(Fe,Co)2As2, Na(Fe,Co)As, and Na1−δFeAs. Observation of this evolution in all

these materials irrespective of degree of anisotropy and coexistence vs. separation of

magnetism and superconductivity in a phase diagram suggests that this evolution is
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intrinsic property of Fe-based superconductors. Theoretically it was suggested that this

evolution comes from the competing inter-band pairing and intra-band repulsion in the

superconducting pairing [179].

Related low Tc materials SrPd2Ge2 and APd2As2 (A=Ca,Sr) in which Fe is com-

pletely substituted by Pd show very different behavior. In these compounds, tempera-

ture variation of the London penetration depth is consistent with conventional full-gap

superconductivity.
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CHAPTER 5. EFFECT OF DISORDER ON LONDON

PENETRATION DEPTH IN IRON-BASED

SUPERCONDUCTORS

5.1 Superconducting gap structure in stoichiometric LiFeAs

and KFe2As2

Studies of the superconducting gap structure play an important role in the deter-

mination of the mechanism responsible for superconducting pairing. In FeAs-based su-

perconductors, the situation regarding the gap structure remains controversial. Since

doping inevitably introduces scattering [218], which is pairbreaking in iron pnictides

[219, 89, 90, 66, 157, 132], measurements of stoichiometric intrinsic superconductors be-

come of utmost importance. LiFeAs and KFe2As2 with Tc ≈ 18 K and 3.4 K are among

very few such compounds. They are the cleanest systems with a high residual resistivity

ratio (RRR) of about 50 [220] and 1000 [221], much higher than BaP122 (5 to 8 for

different doping) [42], BaCo122 (3 to 4) [222] and BaK122 (7 to 10) [196], pure Ba122 (7

to 10 under pressure) [223]. Since Tc of LiFeAs decreases with pressure [224, 46], which

is observed only in optimally and overdoped compounds [225], we can assign its “equiv-

alent” doping level as slightly overdoped, as opposed to underdoped NaFeAs, whose Tc

goes through a maximum with pressure [226] and heavily overdoped KFe2As2. This dop-

ing assignment is consistent with the temperature-dependent resistivity, discussed later.

With the much reduced effect of pairbreaking scattering, comparison of these stoichio-
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metric compounds can bring an insight into the intrinsic evolution of the superconducting

gap.

In this chapter, we discuss experimental results on the in-plane London penetration

depth, λ(T ), in single crystals of LiFeAs and KFe2As2 both of which do not show any

apparent long-range magnetic ordering. While both penetration depth and the superfluid

density in LiFeAs are both consistent with fully gapped superconductivity, both of them

in KFe2As2 are consistent with a nodal superconductor. We use the self-consistent clean

two-gap γ−model [154] to analyze the superfluid density in LiFeAs. Our results imply

that the ground state of FeAs-based superconductors in the clean limit is not universal.

Superconducting gap structure at almost optimal doping is given by s± symmetry with

two distinct gaps, ∆1/Tc ∼ 2 and ∆2/Tc ∼ 1, but effectively heavy-hole doped one shows

nodal superconductivity.

5.1.1 Nodeless multi-gap superconductivity in LiFeAs

Single crystals of LiFeAs were grown in a sealed tungsten crucible using Bridgeman

method [220, 227]. After growth, samples were only exposed to Ar in glovebox and

transported under Ar in sealed ampoules. Immediately after opening, (0.5− 1)× (0.5−

1)× (0.1−0.3) mm3 pieces of the same crystal (all surfaces cleaved in Apiezon N grease)

were used for TDR, transport and magnetization measurements. Samples from two

different batches were measured, and we found compatible results in all measurements,

with bulk superconducting transition consistent with previous reports [220, 227]. In what

follows we present all results for samples from batch #1. Low resistance contacts (∼ 0.1

mΩ) were tin-soldered [228] and in-plane resistivity was measured using a four probe

technique in Quantum Design PPMS. The transition temperature, Tc, was determined

at the maximum of the derivative d∆λ(T )/dT , Table 5.1. The London penetration depth

was measured with the TDR technique [101]. The sample was inserted into a 2 mm inner

diameter copper coil that produced an rf excitation field (at f ≈ 14 MHz) with amplitude
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Hac ∼ 20 mOe, much smaller than Hc1. Measurements of the in-plane penetration depth,

∆λab(T ), were done with Hac ‖ c-axis, while with Hac⊥c we measured ∆λc,mix(T ) that

contains a linear combination of λab and λc [229].
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Figure 5.1 Left axis: resistivity (symbols) along with the 2nd order polynomial fit from
Tc to 50 K used to determine the residual resistivity, ρ(0) = 3.7 µΩ·cm.
Right axis: skin depth, δ, measured by TDR, δTDR compared to that calcu-
lated from resistivity, δρ. Upper inset: ρ(T ) in the full temperature range.
Lower inset: TDR data for pristine and air-aged samples (see text).

The main panel in Fig. 5.1 shows the temperature-dependent resistivity, ρ(T ) (left

axis), and skin depth, δ(T ) (right axis). The resistive superconducting transition starts

at 18 K and ends at 16 K as cooling. ρ(T ) up to room temperature is shown in the top

inset. The residual resistivity ratio, RRR = ρ(300K)/ρ(20 K) = 35 and it reaches the

value of 65 when extrapolated to T = 0 using a 2nd order polynomial. This behavior is

consistent with the T -dependent resistivity of BaCo122 in the overdoped regime [230].

The calculated skin depth, δρ(T ) = (c/2π)
√
ρ/f , (in CGS units) compares well with

the TDR data for T > Tc, where ∆f/f0 = G[1 − <{tanh (αR)/(αR)}], α = (1 − i)/δ

[231] when we use ρ(300K)=250 µΩ·cm, the lowest directly measured value among our

crystals. A very good quantitative match of two independent measurements gives us a

confidence in both resistivity data and the TDR calibration.
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To check for degradation effects, a sample was washed and intentionally exposed to

air for an hour and the measurements were repeated, as shown in the lower inset in

Fig. 5.1. After the exposure, the sample surface lost its shiny metallic gloss and the

total frequency shift through the transition (proportional to the sample surface area A)

decreased. This reduction without affecting the transition temperature and width sug-

gests that the degradation happens on the surface and superconductivity of our samples

is bulk in nature.
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Figure 5.2 Main panel: ∆λab(T ) in three LiFeAs crystals (solid dots) and ∆λc,mix(T )
for sample #2 (crosses). Analysis (shown for #1) was done assuming both
power-law (solid lines) and exponential (dashed line) T -dependences. The
data for samples #2 and #3 (shifted vertically for clarity by 10 and 20 nm,
respectively) were analyzed in a similar way, see Table 5.1. Inset: compar-
ison of the fit residuals for sample #1 for the power-law and exponential
functions.

∆λab(T ) in three LiFeAs crystals is shown up to Tc/3 in Fig. 5.2 by solid dots.

∆λab(T ) was analyzed using (1) power-law, ∆λ(T ) = AT n (with A and n being free

parameters), as expected for nodal superconductors, and (2) exponential BCS form,

∆λ(T ) = λ̃0

√
π∆0/2T exp (−∆0/T ) (with λ̃0 and ∆0 as free parameters). The best fit

results for sample #1 are shown with solid (power-law) and dashed (exponential) lines.

The fit residuals are shown in the inset. The exponential fit quality is as good as the

power-law, although ∆0/Tc = 1.09 ± 0.02 is smaller than the value of 1.76 expected for
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a conventional single fully-gapped s-wave pairing and λ̃0 = 280 ± 15 nm is somewhat

larger than the experimental 200 nm [128, 186]. This is naturally explained by two-gap

superconductivity in LiFeAs. The superconducting Tc and best fit parameters (obtained

from fitting up to Tc/3) for all samples are summarized in Table 5.1. T onset
c was defined at

90% of the rf susceptibility variation over the transition: the mean Tc was defined at the

maximum of d∆λ(T )/dT and ∆Tc = T onset
c − Tc. ∆0/Tc from the single-gap exponential

BCS behavior. The power-law coefficient A′ was obtained with the exponent n as a free

parameter, while A was obtained with a fixed n = 3.1 (average of 3 samples). Crosses

in Fig. 5.10 show ∆λc,mix(T ) for sample #2. A clear saturation of ∆λc,mix(T ) at low

temperatures suggests exponential behavior of λc. Thermal contraction is ruled out as

it would only give a total change of about 1 nm from 0 to Tc [232] and it could only lead

to a non-exponential behavior.
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Figure 5.3(a) shows ∆λ(T ) vs. T n with n = 3.1 which is the average exponent for

three samples. The dependence of the parameters, n and A, on the fitting temperature

range is summarized in Fig. 5.3 (b) and (c), respectively. As expected, the exponent n

is more scattered for the shortest fit interval, otherwise n and A do not depend much

on the fitting range from base temperature to 6 K and give n > 3 for all samples, with

the average value 3.13 ± 0.23. With n fixed at this average value, we determined the

prefactor A = 107.8± 2.1 µm/K3.1.

Figure 5.4 Symbols: superfluid density, ρs(T ) calculated with λ(0) = 200 nm. Solid
lines represent the fit to a two-gap γ−model, ρs = γρ1 + (1− γ)ρ2. Dashed
line is a single-gap BCS solution. Upper inset: superconducting gaps,
∆1(T ) and ∆2(T ) calculated self-consistently during the fitting. Lower inset:
∆1/∆2 as a function of temperature.

The superfluid density, ρs(T ) = [1 + ∆λ(T )/λ(0)]−2 is the quantity to compare with

the calculations for different gap structures. Figure 5.4 shows ρs(T ) for crystal #1 cal-

culated with λ(0) = 200 nm [128, 186]. The calculated superfluid density using this λ(0)

value provides slope ρ′s(Tc) which is consistent with the Rutgers formula (see Fig. 3.3).

A noticeable positive curvature above Tc/2 is similar to other Fe-based superconductors

[233] and MgB2 [18], suggesting multigap superconductivity. We analyze ρs(T ) in the

framework of the self-consistent γ−model [154]. LiFeAs is a compensated metal with 2D

cylindrical hole and somewhat warped electron Fermi surface sheets [234, 185]. To re-
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duce the number of fitting parameters, yet capturing compensated multiband structure,

we consider a simplest model of two cylindrical bands with the mass ratio, µ = m1/m2,

whence the partial density of states of the first band, n1 = µ/(1 + µ). The total su-

perfluid density is ρs = γρ1 + (1 − γ)ρ2 with γ = 1/(1 + µ). We also use the Debye

temperature of 240 K [126] to calculate Tc, which allows fixing one of the in-band pairing

potentials, λ11. This leaves three free fit parameters: the second in-band potential, λ22,

inter-band coupling, λ12, and the mass ratio, µ. Figure 5.4 shows that ρs(T ) can be

well described in the entire temperature range by this clean-limit weak-coupling BCS

model. In the fitting, the two gaps were calculated self-consistently (which is the major

difference between this one and the popular, but not self-consistent, α - model [17]) and

the self-consistent ∆1(T ) and ∆2(T ) are shown in the upper inset in Fig. 5.4, while the

gap ratio is shown in the lower inset indicating strong non-single-gap-BCS behavior of

the small gap. The best fit, gives ∆1(0)/Tc ∼ 1.885 and ∆2(0)/Tc ∼ 1.111. As expected,

one of the gaps is larger and the other is smaller than the single-gap value of 1.76, which

is always the case for a self-consistent two-gap solution. The best fit parameters are:

λ11 = 0.630, λ22 = 0.642, λ12 = 0.061 and µ = 1.384. The determined mass ratio gives

n1 = 0.581 and γ = 0.419. This is consistent with bandstructure calculations that yield

n1 = 0.57 and µ = 1.34 (private communication with Mazin), and ARPES experiments

that find µ ≈ 1.7 [185]. The effective coupling strength, λeff = 0.374, is not far from

0.35 estimated for 122 [235] and 0.21 for 1111 [236] pnictides. (The value of 0.21 is an

upper limit for the total electron-phonon interaction and the higher values would repre-

sent total strength of electron-boson coupling). The electron band with a smaller gap

gives about 1.5 times larger contribution to the total ρs resulting in a crossing of the

partial densities at low temperatures. Similar result was obtained from magnetization

measurements [237]. We stress that while ∆1(T ), ∆2(T ) and µ (hence, n1, n2 and γ)

and λeff are unique self-consistent solutions describing the data, the coupling matrix λij

is not unique. There are other combinations that could produce similar results and λij
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has to be calculated from first principles.

5.1.2 Nodal superconducting gap in KFe2As2

The discussion of the superconducting pairing mechanism in iron-based supercon-

ductors was guided by early observations of full superconducting gap [28] and neutron

resonance peak [61]. Based on these observations, Mazin et al. suggested pairing mech-

anism, in which superconducting order parameter changes sign between but the remains

full on all sheets of the Fermi surface [57, 36]. Verification of this so called s± pairing

quickly became a focal point of studies of the superconducting gap structure.

Probably the first clear deviations from full-gap s± scenario were found in NMR and

heat capacity studies of KFe2As2 [188], which represents the terminal overdoped compo-

sition of (Ba,K)Fe2As2 series [44, 238] (we abbreviate the materials as K122 and BaK122

in the following). Systematic doping studies over the superconducting dome in electron-

doped Ba(Fe1−xCox)2As2 (BaCo122) [77, 78, 86, 155, 239, 63, 71], NaFe1−xCoxAs [240]

and hole doped BaK122 [241] suggest that the superconducting gap in all these cases

universally develops pronounced anisotropy at the dome edges. Thus K122 is not unique

as a nodal superconductor, and understanding of its superconducting gap is of great

importance for the whole iron-based family.

Evolution of the superconducting gap with doping distinguishes iron-based supercon-

ductors from cuprates, in which d-wave pairing is observed in all doping regimes. Several

theoretical explanations of this fact were suggested [242, 243, 179]. Doping evolution was

explained in s± scenario as a result of the competition between inter-band pairing and

intra-band Coulomb repulsion [179, 180]. Alternatively, it was explained as a result of a

phase transition between s± and d-wave superconducting states [243]. Important differ-

ence is that nodes in the gap structure are accidental in the first scenario, but symmetry

protected in the second.

The conclusion about existence of line nodes in superconducting gap in KFe2As2 [188]
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is supported by now by numerous experiments. London penetration depth studies found

close to T -linear dependence [84]. Small angle neutron scattering [244] found hexagonal

vortex lattice, which the authors argued as an evidence for horizontal line nodes in the

gap. Thermal conductivity studies reveal finite residual linear term in zero field, which

rapidly increases with magnetic field [189]. Moreover, residual linear term was found to

be independent of heat flow direction [204] and impurity scattering [204, 245], suggesting

symmetry imposed vertical line nodes in the superconducting gap structure, similar to

the d-wave superconducting state of the cuprates [19]. The specific heat of the samples

revealed rapid rise of the residual term on Na doping, as expected in d-wave scenario [246].

Moreover, non-monotonic dependence of Tc on pressure was explained as an evidence of

a phase transition in the superconducting state of KFe2As2 [247].

These observations, however, are disputed by recent ARPES [248] studies in pure

samples, which both suggest extreme multi-band scenario with the existence of vertical

line nodes on one sheet of the Fermi surface, and large full gap on the others. It is im-

portant to notice though that neither ARPES nor heat capacity measurements directly

probe a response of the superconducting condensate, which allows alternative interpre-

tation of the data as being surface in origin in the former case [247] and of magnetic

origin in the latter [64].

In this section, we report systematic studies of the London penetration depth, its

anisotropy and response to isoelectron substitution in KFe2As2. We show that response

of the superfluid to pair-breaking non-magnetic disorder is consistent with symmetry

imposed nodes in the superconducting gap and inconsistent with extreme multi-band

scenario. Our observations may be suggestive that gaps in heat capacity and ARPES

measurements are of non-superconducting origin.

Single crystals of KFe2As2 were grown using the KAs flux method as explained in

detail in Ref. [221]. Small resistance contacts (∼ 10µΩ) were tin-soldered and in-plane

resistivity was measured using a four probe technique in Quantum Design PPMS. The
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London penetration depth was measured with a TDR technique in 3He cryostat and

dilution refrigerator with operation frequency of 14 MHz and 17 MHz, respectively. The

sample was inserted into a 2 mm inner diameter copper coil that produced an rf excitation

field with amplitude Hac ∼ 20 mOe, much smaller than typical Hc1. Measurements of the

in-plane penetration depth, ∆λab(T ), were done with Hac ‖ c-axis, while with Hac⊥c we

measured ∆λc,mix(T ) that contains a linear combination of λab and λc [102]. The shift of

the resonant frequency (in cgs units), ∆f(T ) = −G4πχ(T ), where χ(T ) is the differential

magnetic susceptibility, G = f0Vs/2Vc(1 − N) is a constant, N is the demagnetization

factor, Vs is the sample volume and Vc is the coil volume. The constant G was determined

from the full frequency change by physically pulling the sample out of the coil. With

the characteristic sample size, R, 4πχ = (λ/R) tanh(R/λ) − 1, from which ∆λ can be

obtained [100, 102].

In the top panels of Fig. 5.5 we show temperature-dependent resistivity of pure K122,

x=0, and of Na-doped sample with x=0.07. Zoom on the superconducting transition

range in panel (b) shows a T 2 fit of the ρ(T ) curves used to evaluate residual resistivity

of the samples. Based on measurements on array of 12 crystals from the same batch, we

adopted that ρ(300K) for pure KFe2As2 is 300±30 µΩcm. The resistivity value for Na-

doped samples is indistinguishable from that of the pure material at high temperatures,

so we adopted the same ρ(300K). The ρ(T ) of two sets of samples are identical as

well, except for increased residual resistivity and suppression of the superconducting

transition temperature in x=0.07 samples. Extrapolated to T=0 the residual resistivities

are 0.100±0.050 (x=0 ) and 1.7 µΩcm (x=0.07).

Scattering on non-magnetic alloy disorder in K1−xNaxFe2As2 introduces strong pair

breaking effect, and strongly suppresses Tc. In Fig. 5.5 (c) we show Tc as a function

of ρ0 as determined in this study using ρ=0 criterion. For reference we show similar

data obtained on Co doping in K(Fe1−xCox)2As2, Ref. [245]. Despite the fact that Co-

substitution acts as electron-doping, while Na substitution is clearly isoelectronic, both



94

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 00 . 0

0 . 1

0 . 2

0 . 3

0 1 2 3 4 5 6 7 8 9 1 00

1

2

3

4

0 1 2 3 40 . 0
0 . 2
0 . 4
0 . 6
0 . 8
1 . 0

0 1 2 3 4 5 6
0

5

1 0

1 5

 

 

ρ (
mΩ

cm
)

T  ( K )

K 1 - x N a x F e 2 A s 2
 x  =  0
 x  =  0 . 0 7

( b )

( c ) ( d )

K 1 - x N a x F e 2 A s 2
x  =  0 . 0 7

 

 

ρ (
µΩ

cm
)

T  ( K )

x  =  0

 K ( F e 1 - x C o x ) 2 A s 2
 K 1 - x N a x F e 2 A s 2

 
 

T c / 
T c(x

=0
)

ρ 0  ( µΩc m )

( a )

 

 

∆λ
 (µ

m)

T  ( K )

x  =  0
δc a l / 2 = 4 . 5  µ m

x  =  0 . 0 7
δc a l / 2 = 1 1 . 7  µ m

K 1 - x N a x F e 2 A s 2

Figure 5.5 Electrical resistivity of K1−xNaxFe2As2 with x=0 and x=0.07 shown over
full temperature range (panel a) and zoomed on the superconducting transi-
tion region (panel b). Lines in panel (b) show T 2 fit of the resistivity used for
T =0 extrapolation. Bottom left panel shows superconducting Tc as a func-
tion of residual resistivity in isoelectron-substituted K1−xNaxFe2As2 (cir-
cles) in comparison with electron-doped K(Fe1−xCox)2As2 (squares). Bot-
tom right panel (d) shows penetration depth measurements in samples with
x=0 and x=0.07 over the whole superconducting temperature range up to
Tc. The difference in the ∆λ value above Tc in samples x=0 and x=0.07
reflects the difference in the normal state skin depth, proportional to the
square root of electrical resistivity.
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types of substitution introduce similar pair-breaking, suggestive that scattering, rather

than electron count, plays primary role in Tc suppression.

In the bottom panel (d) of Fig. 5.5 we show temperature variation of London pene-

tration depth in samples x=0 and x=0.07 over the temperature range from base temper-

ature to above Tc. The data were taken using a TDR setup in a 3He cryostat down to

T = 0.5 K, and in a dilution refrigerator in ∼50 mK to ∼3 K range. The superconduct-

ing transition is rather smooth in both x=0 and x=0.07 samples, which is similar to the

results of previous radio frequency measurements on this compound [84]. The big width

of the transition is caused not by the sample inhomogeneity, but small and strongly

temperature-dependent normal state skin-depth. In samples of this low resistivity, the

normal state skin effect makes significant contribution to the measured signal close to

Tc. For resistivity value of 0.5 µΩcm we can estimate skin depth at our experimental fre-

quency of 14 MHz as δ ≈ 8.6 µm. Thus when the superconducting London penetration

depth (which should diverge on approaching Tc on warming), becomes comparable to the

normal state skin depth, the transition is no longer sharp and becomes of a broad cross-

over type. This contribution of the skin depth makes determination of Tc from purely

TDR measurements on the same crystals very criterion dependent. In the following we

rely on resistivity measurements on samples from the same batch for reference.

The variation of London penetration depth as a function of reduced temperature,

t = T/Tc, provides information about the nodal structure of the superconducting gap.

This statement is valid in a characteristic temperature range t < 0.3, for which the

superconducting gap ∆ can be considered as temperature-independent. For full gap

superconductors, ∆λ(T ) is exponential, as shown in Fig. 5.6(a) for optimally doped

BaK122, x=0.40 [249]. For gap with line nodes, temperature variation shows power-law

dependence ∆λ(T ) = Atn, where n depends on sample purity and takes values between

n=1 (clean limit) to 2 (dirty limit). Same power-law dependence is expected for s±,

however with exponent n decreasing with pair-breaking scattering from n=4 (clean case,
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Figure 5.6 Top panel (a) shows ∆λ(T ) for samples of K1−xNaxFe2As2 x=0 and x=0.07
in comparison with optimally doped Ba1−yKyFe2As2 y=0.4 [249]. The data
are shown over characteristic temperature range up to 0.3Tc, in which the
gap of single-gap superconductors can be considered as constant. Solid lines
show best fits of the data with power-law function ∆λ = a0 + AT 2 for x=0
and x=0.07, and exponential function

√
2∆0/T exp(−∆0/T ) for BaK122.

Data for sample x=0.07 were offset for clarity. Inset in top panel shows data
for samples x=0 and x=0.07 plotted vs. square of the reduced temperature,
t = T/Tc, straight line is guide for eyes. Bottom panel (b) shows dependence
of the exponent n of the power-law fit, ∆λ = AT n, on the temperature Tup
of the high-temperature end of the fitting range. The low-temperature end
was always fixed at base temperature.
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indistinguishable experimentally from exponential function) to about n=1.6 [90]. In top

panel of Fig. 5.6 we show ∆λ vs t of KNa122 samples with x=0 and x=0.07. Inset shows

the same data plotted as ∆λ(t2). It is clear that the exponent n increases with doping

and x=0.07 samples approaches the value n=2, both of the observations consistent with

the superconducting gap with line nodes.

The data between the base temperature and t = 0.3 can be best fitted to the power-

law function with (n = 1.39 and A = 200 nm) and (n = 1.93 and A = 911 nm) for

K122 and KNa122, respectively. The observed n in KNa122 are in the range expected

in a line-node scenario with moderate scattering. According to Hirschfeld-Goldenfeld’s

theory [82], ∆λ(T ) can be characterized by a function, T 2/(T + T ∗) where T ∗ is the

crossover temperature from T to T 2 at low temperatures. Our fit using this formula

gives T ∗ = 0.5Tc, indicating a relatively clean case.

Alternatively, this crossover behavior can be due to multi-band effects in supercon-

ductivity. For multi-band superconductors the upper end of the characteristic ∆λ(T )

dependence is determined by the smaller gap ∆min, and shrinks proportional to ∆min/∆.

Because the bounds of the interval of the characteristic behavior are unknown a priori,

for quantitative analysis of the data we made power-law fitting with ∆λ(t) = a0 + Atn

over floating temperature interval. The low-temperature end of this interval was always

kept fixed at base temperature, and the exponent of the power-law fit n was determined

as a function the high-temperature end Tup. This dependence for KNa122 samples with

x=0 and x=0.07 is shown in bottom panel of Fig. 5.6.

Additional information on the direction of nodes in the superconducting gap can

be obtained from penetration depth anisotropy. In Fig. 5.7 we show T -variation of

the frequency shift ∆f(T ) in TDR measurements for orientation of ac magnetic field

H along tetragonal c-axis and along ab-plane. Oscillating field H along c-axis induces

supercurrent in the ab plane, so measured ∆λ(T ) is proportional to the in-plane λ. For H

applied along the ab plane we measure the linear combination of both in-plane λ and inter-
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Figure 5.7 ∆f(T ) in a sample of KFe2As2 positioned in a different way with respect to
the ac- magnetic field H generated by the TDR inductor coil, in configura-
tion H ‖ c (in-plane penetration depth λab, squares) and H along ab-plane
(mixed penetration depth, circles). Triangles show the data for H ‖ ab,
taken on a sample with the width (w) reduced two times compared to the
initial measurements (circles), representing different mixture of λab and λc.
Inset shows the same data over a broader temperature range up to 0.76Tc.
Identical temperature dependence in all cases provides a clear evidence for
the same functional form ∆λ(T ) of both in-plane and inter-plane penetration
depth.
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plane λc, with relative contributions proportional to sample geometry. The combined

response of the supercurrent is associated with the so-called ∆λmixed, see Ref. [102] for

details. For H along the ab-plane, the contribution from in-plane λ can be changed by

reducing dimensions of the specimen, and, in principle, λ along c-axis can be extracted

[102]. In our experiment, the width w of the sample perpendicular to Hac was reduced

to w/2 while maintaining thickness of the sample, so the contribution of in-plane λ into

measured λmix has been reduced by half. We did not go into quantitative analysis of the

data because cutting of small samples of soft KFe2As2 crystals always introduced cracks,

affecting geometry in poorly controlled way. However, as can be seen in Fig. 5.7, three

curves taken in sample with different geometry exhibit exactly the same temperature

dependences over practically full superconducting temperature range as shown in the

inset. The only way to explain this observation is to assume anisotropic superconducting

gap structure with vertical line nodes.

A further insight into the structure of the superconducting gap in KFe2As2 can be

obtained through the analysis of the temperature-dependent superfluid density, ρs(T ) =

λ2(0)/λ2(T ). This quantity can be studied over the full superconducting temperature

range, and compared with various models. To calculate superfluid density we have to

know λ(0), which does not come from standard TDR experiment.1 For sample with x=0

we calculated ρs(T ) using λ(0) = 0.26 µm following Ref. [84]. For sample with x=0.07

we estimated λ(0) = 1 µm using Homes scaling law based on resistivity and Tc data

[252, 253] The resulting ρs(T ) are shown in Fig. 5.8 using normalized scale ρs/ρs(0) vs

T/Tc. The low-temperature part of ρs(T ) for both pure and doped samples are shown

1The slope of the experimental superfluid density at Tc, ρ
′
s(T/Tc)|Tc

≡ ρ′s(1), calculated in KFe2As2
with λ(0) = 260 nm [84], was compared to the Rutgers formula estimate. Using literature values of
∆C = 164 mJ/mol-K [250] and H ′c2(1) = −0.55 T/K [250], we obtained ρ′s(1) = −2.5, using another
value of ∆C = 228 mJ/mol-K [251] with the same H ′c2(1), we obtained ρ′s(1) = −3.7. Both estimates
are significantly higher than the experimental value |ρ′s(1)| ∼ 1.5. The origin of this discrepancy can
be partially caused by strong curvature of ρs near Tc caused by comparable London penetration depth
and normal skindepth. Another possibility is non-superconducting contribution to the magnitude of
the specific heat jump [64], a problem similar to that found in application of the Rutgers formula
for optimally doped Ba1−xKxFe2As2 (see section 4.3). Additional complication may come from the
proximity to a state with different gap symmetry [247], which can lead to over-estimate of ρ′s(1).
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Figure 5.8 Temperature-dependent superfluid density, ρs = λ2(0)/λ2(T ), in samples
of K1−xNaxFe2As2 calculated from ∆λ(T ) data of Fig. 5.6 using λ(0) = 260
nm for x=0, Ref. [84], and λ(0) =1 µm for x=0.07. Data are shown on
normalized scale as ρs/ρs(0)) vs T/Tc. Superconducting Tc was determined
from resistivity measurements using zero resistivity criterion. Red and green
lines show theoretically expected superfluid density ρ(T ) in a clean and dirty
d-wave superconductor. The anomalously slow variation of the superfluid
density at Tc is caused by the interplay of London penetration depth and of
the skin depth close to Tc, the data for temperatures below Tc/2, when the
effect of skin depth becomes negligible, are in good agreement with clean
(x=0) and dirty (x=0.07) d-wave cases (see zoom in the inset).
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in the inset of Fig. 5.12.

For reference we show expected temperature dependent superfluid density in clean

and dirty d-wave cases, which are representative of all superconductors with linear line

nodes. Because of uncertainty of Tc determination in the same experiment and strong

interplay of London penetration depth with normal state skin-depth in these very con-

ductive materials, the data are not very well defined close to Tc. The flat ρs(T ) at

Tc is clearly an artifact of this interplay, and we neglect it in comparison with theory.

In pure material with skin depth 4.5 µm and λ(0)=0.26 µm, the London penetration

depth becomes much smaller than skin-depth at temperatures of order of 0.8Tc. Be-

low this temperature ρs(T ) indeed follows expectations for a d-wave superconductor,

though with somewhat suppressed Tc. In Na-doped sample the dependence also follows

expectations for dirty d-wave superconductors.

When analyzing ρs(T ), we should notice that deviation from d-wave calculations do

not leave room for any full gap contribution to superfluid density. If it was present, at a

level more that 0.1 of the total ρs, it would result in significant exceeding of ρs(T ) over

the curve for a d-wave case. Based on this comparison we can disregard any contributions

from full gap-superfluid in both clean x=0 and x=0.07 samples with the accuracy of less

than 0.1 of total superfluid density.

Along with the power-law behavior of ∆λ(T ) ∼ T 1.4 at low temperatures, our ob-

servations leave very little room for non-nodal contribution to the superfluid density of

KFe2As2. The response of the superfluid in both clean and dirty samples is not only

consistent with the existence of line nodes in the superconducting gap, but does not

leave much room for any contribution from Fermi surfaces with full gap, as suggested by

ARPES [248]. Considering significant anomalies in the normal state of KFe2As2, resem-

bling thous of heavy fermion materials, we speculate that specific heat jump in KFe2As2

may contain magnetic contribution, which is a plausible scenario for CeCoIn5. Whether

this is the case remains an interesting question for future studies.
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In conclusion, our resistivity and TDR penetration depth studies on high quality

pure and isoelectron Na substituted KFe2As2 find the behavior which is consistent with

expectation with line nodes in the superconducting gap of the material. Analysis of

the superfluid density shows that the contribution of superfluid density from full-gap

Fermi surfaces is less than 0.1 of total superfluid density. These data can be viewed

as strong support of nodal superconducting gap on all Fermi surfaces contributing to

superconductivity.

5.2 Irradiation effect on London penetration depth in

Ba(Fe1−xTx)2As2 (T=Co, Ni) and Ba1−xKxFe2As2

superconductors

The mechanism of superconductivity in Fe-based pnictides [25] has not yet been

established despite extensive experimental [254] and theoretical [190, 38] efforts. While

the pairing “glue” is widely discussed, it seems that the pairing between bands with

different signs of the order parameter explains the majority of the observations [57]. In

particular, the Anderson theorem does not work for this state and even non-magnetic

impurity scattering is pair-breaking [190, 89, 157]. This is especially important, since

most Fe-based compounds become superconducting only upon substantial doping, which

also leads to an intrinsic disorder making the analysis of the experimental data difficult.

One way to test the pairing state is to deliberately introduce defects that do not

contribute extra charge but rather only induce additional scattering. In earlier studies,

especially in the cuprates, various ways of controlling the scattering rate have been

suggested and the effects have been examined by using transport [255] and magnetic

[256] measurements. Irradiation with heavy ions, which has been used to produce efficient

pinning centers, also results in the enhanced rates evident from the significant increase

of normal state resistivity [257, 258] as well as suppression of Tc.
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The temperature dependence of the penetration depth is a powerful tool for examining

the order parameter in iron-based superconductors. At low temperatures, an exponen-

tially activated dependence implies a finite, minimum gap magnitude in the density of

states vs. energy near the Fermi level. The behavior at higher temperatures can signal

gaps of different magnitude. Currently, one of the most plausible pairing scenarios in iron

- based superconductors is so-called s± state proposed some time ago [57, 259] but proof

of a sign change remains a challenge. Several authors [89, 90] have shown that impurities

alter the temperature dependence of many thermodynamic quantities in a manner that

is sensitive to the relative sign. In particular, for the s± state one expects to move from

exponentially activated to a power law temperature dependence with increasing impu-

rity concentration. As far as suppression of Tc is concerned, there are several predictions

and several experiments that seem to be controversial. Originally a very fast rate of

suppression was predicted [260], which however was later revised [261, 245].

Isolating the role of impurities is difficult since they may also change the carrier

concentration which may in turn change the pairing state. Columnar defects produced

by heavy ion irradiation offer an alternative. Columns do not ostensibly change the

carrier concentration or add magnetic scattering centers and their density may be varied

by controlled amounts. Since columns are also effective pinning centers [262, 263], their

effect on the superconducting properties is important to understand.

5.2.1 London penetration depth in Ba(Fe1−xTx)2As2 (T=Co, Ni) supercon-

ductors irradiated with heavy ions

In this section, we discuss the in-plane London penetration depth measured by us-

ing the tunnel diode resonator (TDR) technique in single crystals of optimally Co-and

Ni-doped BaFe2As2 superconductors irradiated with 1.4 GeV 208Pb56+ ions at different

fluences. While the phase diagrams in terms of Tc vs. electron count are practically

identical for the two systems [264], the atomic percentage of Ni required to achieve the
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same Tc is one half compared to the Co-doped samples. We find that both compositions

have shown similar evolution of ∆λ(T ) upon irradiation. The penetration depth follows

the power-law behavior at low temperatures, ∆λ(T ) ∝ AT n with 2.2 < n < 2.8. The

pre-factor, A, increases and the exponent, n, decreases upon irradiation dose. The Tc is

suppressed by irradiation while the transition width remains nearly same. These find-

ings are supported by theoretical analysis that provides the most convincing case for the

nodeless s± state.

Single crystals of Ba(Fe1−xTx)2As2 (T=Co, Ni denoted FeCo122 and FeNi122, respec-

tively) were grown out of FeAs flux using a high temperature solution growth technique

[264, 222]. X-ray diffraction, resistivity, magnetization, and wavelength dispersive spec-

troscopy (WDS) elemental analysis have all shown good quality single crystals at the

optimal dopings with a small variation of the dopant concentration over the sample

and sharp superconducting transitions, Tc= 22.5 K for FeCo122 and 18.9 K for FeNi122

[264, 222].

To examine the effect of irradiation, ∼ 2 × 0.5 × 0.02 − 0.05 mm3 single crystals

were selected and then cut into several pieces preserving the width and the thickness.

Hence, the results reported here compare sets of samples, where the samples in each

set are parts of the same original larger crystal. Several such sets were prepared and

a reference piece was kept unirradiated from each set. The thickness was chosen in

the range of ∼ 20 − 50µm to be smaller than the penetration depth of the radiation

particle, 60 − 70 µm. Irradiation with 1.4 GeV 208Pb56+ ions was performed at the

Argonne Tandem Linear Accelerator System (ATLAS) with an ion flux of ∼ 5 × 1011

ions·s−1·m−2. The actual total dose was recorded in each run. The density of defects (d)

created by the irradiation is usually expressed in terms of the maTching field, Bφ = Φ0d,

which is obtained assuming one flux quanta, Φ0 ≈ 2.07×10−7 G·cm2 per ion track. Here

we studied samples with Bφ = 0.5, 1.0, and 2.0 T corresponding to d = 2.4× 1010 cm−2,

4.8×1010 cm−2 and 9.7×1010 cm−2. The same samples were studied by magneto-optical
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imaging, and strong Meissner screening and large uniform enhancement of pinning have

shown that the irradiation produced uniformly distributed defects [265].
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Figure 5.9 Variation of the in-plane London penetration depth, ∆λ(T ), for irradiated
FeCo122 (top panel) and FeNi122 (bottom panel). The low-temperature
variations are shown in the main frame ofeach panel along with the best
power-law fits. The curves are offset vertically for clarity. The variations in
the vicinity of Tc are shown in the insets of each panel.

Figure 5.9 shows ∆λ(T ) for FeCo122 (top panel) and FeNi122 (bottom panel). The

low-temperature region up to ≈ Tc/3 is shown in the main frame of each panel. Ver-

tical offsets were applied for clarity. The normalized penetration depths in the vicinity

of Tc are shown in the inset of each panel to highlight the suppression of Tc as the ra-

diation dose increases. Whereas Tc is clearly suppressed, the transition width remains

nearly the same (see Fig. 5.11 below). All samples exhibit a power-law variation of

∆λ(T ) ∝ T n with 2.5 < n < 2.8 up to Tc/3, while the exponential fitting failed in all

cases. The best fitting curves are shown by solid lines in Fig. 5.9. We note that the
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set of FeCo122 samples used in this study exhibits higher exponents, n, compared to

our previous works [85, 140]. This variation of n previously observed in other studies

[86, 195, 140] is likely due to disorder variations, as we clearly demonstrate in this work.

Consequently, it is important to conduct the comparison on the same sample. Magneto-

optical characterization showed homogeneous superconducting response, and the widths

of the superconducting transitions were much smaller than the absolute shift due to ir-

radiation [265]. Therefore, it is very likely that the reported here effects are caused by

the enhanced scattering induced by the heavy-ion bombardment.

60

50

40

30

20

10

0

Δλ
 	  (
nm

)

0.060.050.040.030.020.010.00

(t	  =	  T	  /	  Tc)
2.5

	  

50

40

30

20

10

0

Δλ
 	  (
nm

)

0.040.030.020.010.00

(t	  =	  T	  /	  Tc)
2.8

	  

0.5

0.4

0.3

0.2d	  
Δλ

(t
)	  /
	  d
	  t2.

8

0.040.030.020.010.00

t
2.8

0.0	  T

0.5	  T
1.0	  T 	  FeCo122	  

0.0	  T

0.5	  T

1.0	  T

0.8

0.6

0.4

0.2d	  
Δλ

(t
)	  /
	  d
	  t2.

5

0.060.040.020.00

t
2.5

0.0	  T

1.0	  T2.0	  T
	  FeNi122	  

0.0	  T

1.0	  T

2.0	  T

Figure 5.10 Detailed comparison of the functional form of ∆λ(T ) for irradiated FeCo122
and FeNi122. In the main panels, ∆λ(T ) is plotted vs. (t = T/Tc)

n0 with
the exponents n taken from the best fits of unirradiated samples: n0 = 2.8
and 2.5 for FeCo122 and FeNi122, respectively (see Fig.5.9). Apparently,
irradiation causes low-temperature deviations, which are better seen in the
derivatives, d∆λ(t)/dtn0 plotted in the insets.

To further analyze the power-law behavior and its variation with irradiation, we
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plot ∆λ as a function of (t = T/Tc)
n0 in Fig. 5.10, where the n0 values for FeCo122

and FeNi122 were chosen from the best power-law fits of the unirradiated samples (see

Fig. 5.11). While the data for unirradiated samples appear as almost perfect straight lines

showing robust power-law behavior, the curves for irradiated samples show downturns at

low temperatures indicating smaller exponents. In order to emphasize this observation

and disentangle the change from the pre-factors, the derivatives, d∆λ(t)/dtn0 , are shown

in the inset of each frame of Fig. 5.10.
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Figure 5.11 Top panel: The evolution of Tc and the width of the transition with irra-
diation. The vertical bars correspond to temperatures where diamagnetic
response changed from 90% (onset) to 20% (end of the transition), see
insets in Fig. 5.9. Lower panel: exponent n vs. Bφ.

The variations of Tc and n upon irradiation are illustrated in Fig. 5.11. Dashed lines

and circles show FeCo122, solid lines and triangles show FeNi122. The upper panel shows

variation of Tc and width of the transition estimated by taking 90% and 20% cuts of the

transition curves (see insets in Fig. 5.9). Since Bφ is directly proportional to the area

density of the ions, d, we can say that Tc decreases roughly linearly with d. The same

trend is evident for the exponent n shown in the lower panel of Fig. 5.11. The fitting

pre-factor A increases slightly upon increase of irradiation dose, but remains smaller than

measured previously in unirradiated samples [85, 86, 107]. Whereas pre-factor may vary

depending on the model for the gap, the exponent behaves more systematically.
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Figure 5.12 (a) Superfluid density, and (b) the density of states n(ε) = N(ε)/Nf

computed for s± state with sign-changing isotropic gaps, and impu-
rity parameters between the Born and unitary limits, with strong inter-
band scattering. The dashed line in (a) is an example of power-law fit
ρ(T )/ρ0 = ρ(0)/ρ0− a(T/Tc0)n for 0 < T < 0.4Tc0; best fitting parameters
for a set of Γ = nimp/πNf are listed in the table. (b) As impurity concen-
tration (∼ Γ) increases, the band of mid-gap states approaches Fermi level
and the power n is reduced. (c) Tc vs. power n, from the theoretical model
(triangles) and experiment (squares and circles).

Our experimental results fit comfortably within the hypothesis of an s± supercon-

ductivity with two isotropic gaps. The superfluid density in linear response is,

ρ(T ) =
∑
i=1,2

πT
∑
εm

Nf,i

∫
FSi

dp̂[vf,i ⊗ vf,i]xx
∆̃2
i

(ε̃2
m + ∆̃2

i )
3/2

(5.1)

where we sum over the contributions from the electron and hole bands; vf,i and Nf,i are

the Fermi velocity and density of states in these bands, taken equal for the calculations.

Two order parameters ∆1,2 are computed self-consistently together with the t-matrix

treatment of impurity effects, that renormalize the Matsubara energies ε̃m = εm−Σimp,i

and the gaps ∆̃i = ∆i + ∆imp,i [266]. Impurities are characterized by the strength

of the potential for scattering within each band, v11(= v22), giving via the phase shift

δ = tan−1(πNfv11), the ratio of potentials for inter-band and intra-band scattering rates,

δv = v12/v11, and impurity scattering rate Γ = nimp/πNf .
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The essential results are presented in Fig. 5.12 while the full calculations will be pub-

lished elsewhere (Appendix Vorontsov2010). The best agreement with the experiment

is obtained for two isotropic gaps, ∆2 ≈ −0.6∆1, strong inter-band scattering δv = 0.9

and phase shift δ = 60◦ between the Born (δ → 0) and unitary limits (δ → 90◦).

Calculated ρ(T ) was fitted to the power law, ρ(T )/ρ0 ≈ ρ(0)/ρ0 − a (T/T un
c )n, which

is directly related to the penetration depth, ∆λ(T )/λ0 ≈ a′(T/Tc)
n, with ρ0 and λ0

being the T = 0 superfluid density and penetration depth in the clean system, and

a′ = (a/2)[Tc/Tc0]n[ρ0/ρ(0)]3/2. We find that with increase in Γ the power n decreases

from n & 3 to n ≈ 2 (see Fig. 5.12(a)), in a perfect agreement with experiment. The

values of n depend sensitively on the structure of the low-energy density of states, which

is shown in Fig. 5.12(b). The intermediate strength of scatterers is important for creation

of a small band of mid-gap states separated from the continuum. Such band does not

appear in either Born or unitary limit, which was probably the reason for power laws of

n . 2 [90]. As the disorder increased, these states close the gap in the spectrum, while

slowly increasing in magnitude, driving the low-temperature power-law dependence from

exponential like, n > 3, to n ≈ 2. The prefactor a′, on the other hand, slightly decreases

with disorder, opposite to experimental increase of about 10% in A′ = AT nc .

However, this trend can be reversed by considering different ratios of the gaps on two

FSs and different impurity parameters.

Finally, in Fig. 5.12(c) we show the central result of our study: the suppression of Tc

as a function of n. Note that these two quantities are obtained independently of each

other. Assuming that the unirradiated samples have some disorder due to doping, and

scaling their transition temperatures to lie on the theoretical curve, one finds that the

Tc(Bφ) of the irradiated samples also fall on this curve. This comparison tacitly implies

that the doping- and the radiation-induced disorders are of the same type, - assumption

that is left for future investigations.
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5.2.2 London penetration depth in Ba1−xKxFe2As2 irradiated with heavy ion

In this section we discuss penetration depth measurements on single crystals of

Ba0.6K0.4Fe2As2, a 122 superconductor that is roughly the hole-doped counterpart to

Ba(Fe1−xCox)2As2 but with a crucial difference. Substitution of Co for Fe leads to

considerably higher scattering rates in Ba(Fe1−xCox)2As2 [157] than in Ba1−xKxFe2As2

[195, 194], making the latter material a better candidate for tests of pairing symmetry.

In fact, recent thermal conductivity measurements in Ba1−xKxFe2As2 show a transi-

tion from nodeless to nodal pairing state upon doping towards pure KFe2As2 [204]. By

studying both pristine and irradiated samples taken from the same crystal we isolate

the effect of columnar defects on both the penetration depth and Tc as first carried out

on Ba(Fe1−xCox)2As2 and Ba(Fe1−xNix)2As2 where a good agreement with s± pairing

was found [201]. Remarkably, in the case of Ba1−xKxFe2As2 heavy ion irradiation does

not change Tc at all, even with a column to column spacing of a few coherence lengths.

However, very dense columnar defects do cause the penetration depth to acquire a T 2

power law. Our results could imply that pairing in Ba1−xKxFe2As2 is mostly determined

by the in-band channels and therefore it is unclear whether it is s++ or s±, because the

latter is stable in the opposite regime [261, 245]. We note that London penetration depth

remains exponential at low temperatures even in the dirty limit of conventional isotropic

s-wave superconductor [102].

Measurements were performed on two sets of (nominally) optimally doped single

crystal Ba0.6K0.4Fe2As2 [267]. Single crystals of Ba1−xKxFe2As2 were grown using high

temperature FeAs flux method [196]. Irradiation with 1.4 GeV 208Pb ions was performed

at the Argonne Tandem Linear Accelerator. Heavy ions formed tracks along the c-axis

with an average stopping distance of 60-70 µm, larger than the thickness of the crystals.

For the first set, a single crystal with Tc = 39 K was cut into several smaller segments.

One segment was left unirradiated (Bφ = 0) while the other segments had irradiation

doses corresponding to Bφ = 2 T and 4 T. The penetration depth was measured at the
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Ames Laboratory. Two other samples were taken from a single crystal with Tc = 36.8

K. One kept unirradiated while the second had a column density of Bφ = 21 T. Changes

in the penetration depth with temperature were measured at the University of Illinois

with the tunnel diode resonator method described in several previous publications [101].

Figure 5.13 Change in penetration depth for the first set of three samples (Tc = 39 K).
For columnar defect densities of Bφ = 0, 2, 4 T. Fits to BCS temperature
dependence are shown as solid curves. Ref. [249]

Figure 5.13 shows the penetration depth in the low temperature region (T/Tc <

0.32) for the first set of samples (Tc = 39 K). Over the temperature range shown the

data for each irradiation level was fit to a single gap BCS form.2 The gap values were

∆0/kBTc = 0.99 (Bφ = 0), 0.99 (Bφ = 2 T) and 0.81 (Bφ = 4 T). In each case the BCS

expression provided a superior fit to a power law. For comparison, STM measurements

give ∆0/kBTc = 1.1 for the minimum gap energy [267] and ellipsometry experiments

have also reported ∆0/kBTc = 1.1 [268]. Figure 5.14 shows similar data for the second

sample group (Tc = 36.8 K). Data for the unirradiated sample was best fit to a BCS

form with ∆0/kBTc = 0.97. The lower panel of Fig. 5.14 shows data for the heavily

irradiated (Bφ = 21 T) sample. In this case a T 2 power law provided a clearly superior

2∆λ(T ) = λ(0)
√
π∆0/2kBT exp(−∆0/kBT ) where λ(0) and ∆0 are set as free fitting parameters.
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fit to the BCS form. There was no evidence of a low temperature upturn in frequency

that can arise from magnetic impurities. Therefore any scattering from the columnar

defects should be regarded as nonmagnetic. Figure 5.15 shows data in the vicinity of

Tc. For the first set (lower panel) the midpoint transition temperature of Tc = 39 K was

unaffected by irradiation for all three matching fields. This data should be contrasted

with a systematic suppression of Tc for similar irradiation levels in Ba(Fe1−xTx)2As2 (T

= Co, Ni) [201]. For the second set of samples (upper panel) the midpoint transition

of Tc = 36.8 K was the same for both unirradiated and irradiated samples. It should

be noted that the highest irradiation level of Bφ = 21 T corresponds to an average

column separation of 10 nm. TEM images show that the columns themselves have a

mean diameter of 5 nm so the superfluid is confined to regions of order 5 nm or less, i.e.,

roughly 2 coherence lengths. In such a confined geometry one might expect a suppression

of the order parameter, though we have no evidence for it.

The data presented here appear difficult to reconcile. The evolution from BCS-like

or at least T n with n > 2 temperature dependence toward T 2 with increased scattering

has been reported in several different iron-based superconductors [102]. It is predicted

to occur with an s± order parameter but not for an s++ pairing state [89, 90, 261, 245].

Indeed, no such evolution has been reported in MgB2, currently our best candidate for

s++ pairing. However, the insensitivity of Tc to defect density is an extreme example

of a trend throughout the 122 family of superconductors; namely that Tc sensitivity to

impurity scattering is not universal and depends on details of the pairing interactions

as well as bandstructure [261, 245, 259]. If defects produce purely intraband scattering

then one expects Andersons theorem to hold and no Tc suppression is expected in either

an s++ or an s± state. Nonmagnetic interband scattering does suppress Tc in a multigap

superconductor, the degree to which depends upon the band to band variation of the

energy gap [269, 270]. Owing to the factor of two ratio of energy gaps, MgB2 might be

expected to show strong Tc suppression but it does not [271]. Peculiarities of the MgB2
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Figure 5.14 Change in penetration depth for the second set of samples (Tc = 36.8 K).
Upper panel: data fro unirradiated sample with BCS-like fit. Lower panel:
Sample with Bφ = 21 T matching field showing quadratic power law fit.
Ref. [249]

electronic structure apparently strongly reduce interband scattering [269, 270] and Tc

suppression is instead very weak.

In the experiment described in the previous section, penetration depth in irradiated

samples of Ba(Fe1−xTx)2As2 (T = Co, Ni) [201] showed an evolution from T 3 to T 2 power

law with increasing irradiation level, consistent with s± pairing. The change in power

law with increased defect density was accompanied by a continuous decrease in Tc, also

explained within an s± picture and demonstrating that columnar defects can produce

interband scattering. Due to the substitution of Co or Ni for Fe, the electron-doped 122

superconductors have higher scattering rates than Ba0.6K0.4Fe2As2 and an exponential
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Figure 5.15 Change in penetration depth near Tc for both sets of samples and different
irradiation levels. Ref. [249]

temperature dependence of the penetration depth was not observed. Indeed, Charnunkha

et. al. found that differences in infrared reflectance data between Ba(Fe1−xCox)2As2 and

Ba0.6K0.4Fe2As2 could be accounted for entirely by the disparity in scattering rates,

assuming that both materials pair in an s± state [268].

Our data are consistent with recent models [261, 245] that argue that the sign of the

interband pairing interaction is crucial. In the pure superconductor both repulsive and

attractive interband coupling can lead to an s± state. However, the difference is revealed

upon addition of nonmagnetic impurities. For repulsive interactions Tc suppression fol-

lows an Abrikosov-Gor’kov [11] scenario in which a generalized scattering rate of order

~Γ ∼ Tc0 drives Tc to zero, all the while maintaining an s± symmetry. For attractive
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interband coupling, Tc suppression by impurities is much weaker but as the scattering

rate increases the gap structure eventually crosses over from s± to s++. The penetration

depth in the pure state is exponentially activated, as we observe, and with increased

scattering it approaches the T -quadratic dependence that we also observe. For strong

enough scattering they predict the formation of an s++ state, for which activated behav-

ior should once again be observed. This scenario is consistent with our data, suggesting

attractive interband interactions and a scattering rate even at the highest irradiation

level that is not sufficient to induce s++ superconductivity. An alternative picture in-

vokes a competition between superconducting and spin density wave (SDW) order [272].

For doping somewhat below optimal, superconductivity in Ba1−xKxFe2As2 coexists with

a spin density wave [267]. Disorder generally suppresses the SDW transition, a process

that may enhance s± superconductivity despite interband scattering. Moreover, SDW

cannot coexist with s++ superconductivity [203], so the s± pairing is likely. The behavior

of Tc therefore depends on the level of doping as well as the strength and character of

the scattering. This model could also reconcile the appearance of a T 2 power law with

negligible change in Tc. However, there is no evidence within our measurements for the

coexistence of an SDW with the superconducting phase so an alternative probe would

be needed to test this model.

Our results could imply that pairing in Ba1−xKxFe2As2 is mostly determined by the

in-band channels and therefore it is unclear whether it is s±. It is also possible that for

some reason columnar defect in BaK122 mostly affect the intraband scattering.

5.3 Summary

Temperature variation of the London penetration depth was measured in two stoichio-

metric superconductors: LiFeAs and KFe2As2. Using known from the literature values of

λ(0), we calculated a superfluid density and found fully gapped and line nodal supercon-
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ducting states in LiFeAs and KFe2As2, respectively. Variation of superfluid density in

the whole temperature range in LiFeAs could be well described in two s-wave gap model

in clean limit. On the other hand, superfluid density in KFe2As2 is consistent with the

presence of line nodes in the gap. Na-doping into KFe2As2 change the low-temperature

∆λ to T -quadratic which is consistent with symmetry imposed d-wave state with vertical

line nodes. These observations are in line with studies of thermal conductivity (which

is not as sensitive to scattering) in LiFeAs [187] and KFe2As2 [204]. Considering similar

full-gap superconducting state in optimally doped BaK122 [273], overall, this establishes

a common trend for all Fe-based superconductors to have a superconducting gap that

evolves from full to nodal when moving towards the edge of the superconducting dome.

The effect of heavy ion irradiation on λ(T ) was studied in optimally electron-doped

Ba(Fe,T)2As2 (T=Co, Ni). We found that the disorder leads to suppression of Tc and

the reduction of the power-law exponent 2 < n < 3. This is naturally explained in terms

of the isotropic extended s±-wave state [190, 38] with pair-breaking interband scattering

[190, 157, 202]. Taken together with reports of fully gapped states from thermal con-

ductivity [77] and angle resolved photoemission spectroscopy [274], our results present

a convincing case in favor of the extended s± pairing symmetry with nodeless order

parameter in the optimally doped 122 system.

On the other hand, in optimally hole-doped (Ba,K)Fe2As2, Tc remains the same in

heavy ion irradiated samples with Bφ at least up to 21 T in which the inter colum-

nar distance is comparable to the coherence length. Our results imply that pairing in

Ba1−xKxFe2As2 is mostly determined by the in-band channel and therefore it can be

different from s± pairing. Alternative scenario is that columnar defect in (Ba,K)Fe2As2

predominantly affect inter-band scattering.
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CHAPTER 6. CONCLUSIONS

In this thesis, the low temperature London penetration depth and superfluid density

were studied in several families of the Fe-based, and related, superconductors. The

penetration depth data presented in this thesis were measured by using a tunnel diode

resonator technique in a 3He cryostat and extended to lower temperatures (∼ 50 mK)

using a dilution refrigerator with technique developed in the course of thesis.

For the analysis of superconducting gap structure we measured and characterized the

low temperature dependence of London penetration depth and temperature dependent

superfluid density, calculated from measured penetration depth and separately measured

λ(0). Measurements of λ(0) were performed using the Al-coating technique, and original

contribution of this thesis is use of thermodynamic Rutgers formula for λ(0) determi-

nation. We were able to modify original Rutgers relation so that it allows quantitative

analysis of the superfluid density from knowledge of other thermodynamic quantities

such as heat capacity jump and slope of the upper critical field.

Extension of measurements down to 50 mK using a dilution refrigerator enabled us

to study materials with low Tc. We found that all related low Tc superconductors includ-

ing SrPd2Ge2 and APd2As2 (A=Ca,Sr) are full gap s-wave superconductors. In sharp

contrast, low Tc Fe-based superconductor KFe2As2 is shown to be nodal with symme-

try imposed nodes and the superfluid density closely following expectation for d-wave

superconducting state. Doping evolution of the superconducting gap in Ba1−xKxFe2As2

shows that, similar to previously studied case of Ba(Fe,Co)2As2, the superconducting

gap develops extreme anisotropy at the edges of the superconducting dome and is full
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at the optimal doping. This full gap picture of the superconducting gap is found in

stoichiometric LiFeAs as well. The doping evolution trend of the superconducting gap

was verified in another family of materials Ca10(Pt3As8)[(Fe1−xPtx)2As2]5 in which ex-

ponent of the power-law monotonically changes from 2.36 at optimal doping to 1.7 in

heavily underdoped compositions. Because magnetism and superconductivity coexist

in the phase diagram of underdoped BaK122 and are separated in 10-3-8, similar gap

structure in both materials suggests that the long range magnetic order does not affect

nodal structure, contrary to expectation for conventional superconductors. Study of the

penetration depth and superfluid density in Fe1+yTe1−xSex found a robust power-law be-

havior of the low-temperature ∆λ(T ) ∝ T n with n ≈ 2.1 and 2.3 for Fe1.03(Te0.63Se0.37)

and Fe(Te0.58Se0.42), respectively. The absolute value, λ(0) ≈ 560 ± 20 nm, was deter-

mined in Fe1.03(Te0.63Se0.37) by the Al-coating technique. The analysis of the superfluid

density shows a clear signature of nodeless two-gap superconducting state with strong

pair breaking effect. Except for nodal superconducting gap structure in KFe2As2 all

these observations do not contradict superconducting s± pairing.

To get further insight into the superconducting pairing mechanism we studied effect of

deliberately introduced disorder. Na-doping into KFe2As2 was shown to increase residual

electrical resistivity, and suppress Tc showing pairbreaking character of scattering. Dis-

order changes exponent from T -linear to T 2, as expected for superconducting gap with

vertical line nodes. Temperature dependent superfluid density in a Na-doped sample in

the whole temperature range closely follows expectation for dirty d-wave state. Irradi-

ation with heavy ions in optimally electron-doped Ba(Fe,T)2As2 (T=Co, Ni) results in

slight suppression of Tc and decrease of the exponent of the power-law function. Taken

together with reports of the fully gapped states from other measurements, our results

present a convincing case in favor of the extended s± pairing symmetry with nodeless

order parameter in the optimally doped 122 system.

Experimental results presented in this thesis support evolution of the superconducting
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gap from isotropic and full at optimal doping to highly anisotropic at the edges of the

superconducting dome. Unfortunately, for hole-doped BaK122 materials high quality

single crystals are not available for over-doped compounds at the moment, similar to

Ca10-3-8. Different symmetry of the superconducting gap at optimal doping and at

terminal KFe2As2 suggest a phase transition as a function of doping. Similar phase

transition was suggested to happen in KFe2As2 under pressure [247]. Study of this

phase transition maybe important future continuation of this thesis. This would require

development of London penetration depth measurement under pressure. In principle,

TDR measurements can be performed with a small pickup coil inside a pressure cell, but

this would require to overcome issues related to thermal instability of the TDR circuit

as well as non-trivial background signal.

As can be seen from this study, stoichiometric KFe2As2 and LiFeAs offer unique

opportunity to study materials free of substitutional disorder. Another way to study

evolution of the superconducting gap in clean materials is to use pressure as a tuning

parameter. It is known that stoichiometric BaFe2As2 can be tuned across the whole

superconducting dome by application of pressure of order of 100 kbar. Provided we have

capability to measure London penetration depth under pressure, this experiment would

allow us to study the evolution of superconducting gap in clean materials for all doping

regime.
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[74] C. Kübert and P. Hirschfeld, Solid State Communications 105, 459 (1998).

[75] D.-J. Jang, A. B. Vorontsov, I. Vekhter, K. Gofryk, Z. Yang, S. Ju, J. B. Hong,

J. H. Han, Y. S. Kwon, F. Ronning, J. D. Thompson, and T. Park, New Journal

of Physics 13, 023036 (2011).

[76] G. Mu, B. Zeng, P. Cheng, Z.-S. Wang, L. Fang, B. Shen, L. Shan, C. Ren, and

H.-H. Wen, Chinese Physics Letters 27, 037402 (2010).

[77] M. A. Tanatar, J.-P. Reid, H. Shakeripour, X. G. Luo, N. Doiron-Leyraud, N. Ni,

S. L. Bud’ko, P. C. Canfield, R. Prozorov, and L. Taillefer, Phys. Rev. Lett. 104,

067002 (2010).

[78] J.-P. Reid, M. A. Tanatar, X. G. Luo, H. Shakeripour, N. Doiron-Leyraud, N. Ni,

S. L. Bud’ko, P. C. Canfield, R. Prozorov, and L. Taillefer, Phys. Rev. B 82,

064501 (2010).

[79] X. G. Luo, M. A. Tanatar, J.-P. Reid, H. Shakeripour, N. Doiron-Leyraud, N. Ni,

S. L. Bud’ko, P. C. Canfield, H. Luo, Z. Wang, H.-H. Wen, R. Prozorov, and

L. Taillefer, Phys. Rev. B 80, 140503 (2009).

[80] B. S. Chandrasekhar and D. Eizel, Ann. Physik 2, 535 (1993).

[81] D. Xu, S. K. Yip, and J. A. Sauls, Phys. Rev. B 51, 16233 (1995).

[82] P. J. Hirschfeld and N. Goldenfeld, Phys. Rev. B 48, 4219 (1993).

[83] L. Malone, J. D. Fletcher, A. Serafin, A. Carrington, N. D. Zhigadlo, Z. Bukowski,

S. Katrych, and J. Karpinski, Phys. Rev. B 79, 140501 (2009).

http://dx.doi.org/10.1016/S0038-1098(97)10154-5
http://stacks.iop.org/1367-2630/13/i=2/a=023036
http://stacks.iop.org/1367-2630/13/i=2/a=023036
http://stacks.iop.org/0256-307X/27/i=3/a=037402
http://dx.doi.org/10.1103/PhysRevLett.104.067002
http://dx.doi.org/10.1103/PhysRevLett.104.067002
http://dx.doi.org/10.1103/PhysRevB.51.16233
http://dx.doi.org/10.1103/PhysRevB.48.4219
http://dx.doi.org/ 10.1103/PhysRevB.79.140501


127

[84] K. Hashimoto, A. Serafin, S. Tonegawa, R. Katsumata, R. Okazaki, T. Saito,

H. Fukazawa, Y. Kohori, K. Kihou, C. H. Lee, A. Iyo, H. Eisaki, H. Ikeda, Y. Mat-

suda, A. Carrington, and T. Shibauchi, Phys. Rev. B 82, 014526 (2010).

[85] R. T. Gordon, N. Ni, C. Martin, M. A. Tanatar, M. D. Vannette, H. Kim, G. D.

Samolyuk, J. Schmalian, S. Nandi, A. Kreyssig, A. I. Goldman, J. Q. Yan, S. L.

Bud’ko, P. C. Canfield, and R. Prozorov, Phys. Rev. Lett. 102, 127004 (2009).

[86] R. T. Gordon, C. Martin, H. Kim, N. Ni, M. A. Tanatar, J. Schmalian, I. I. Mazin,

S. L. Bud’ko, P. C. Canfield, and R. Prozorov, Phys. Rev. B 79, 100506(R) (2009).

[87] C. Martin, M. E. Tillman, H. Kim, M. A. Tanatar, S. K. Kim, A. Kreyssig, R. T.

Gordon, M. D. Vannette, S. Nandi, V. G. Kogan, S. L. Bud’ko, P. C. Canfield,

A. I. Goldman, and R. Prozorov, Phys. Rev. Lett. 102, 247002 (2009).

[88] J. R. Cooper, Phys. Rev. B 54, R3753 (1996).

[89] Y. Bang, EPL (Europhysics Letters) 86, 47001 (2009).

[90] A. B. Vorontsov, M. G. Vavilov, and A. V. Chubukov, Phys. Rev. B 79, 140507

(2009).

[91] J. D. Fletcher, A. Serafin, L. Malone, J. G. Analytis, J.-H. Chu, A. S. Erickson,

I. R. Fisher, and A. Carrington, Phys. Rev. Lett. 102, 147001 (2009).

[92] C. W. Hicks, T. M. Lippman, M. E. Huber, H. G. Analytis, J.-H. Chu, and A. S.

Erickson, Phys. Rev. Lett. 103, 127003 (2009).

[93] Y. Imai, H. Takahashi, K. Kitagawa, K. Matsubayashi, N. Nakai, Y. Nagai, Y. Uwa-

toko, M. Machida, and A. Maeda, Journal of the Physical Society of Japan 80,

013704 (2011).

http://dx.doi.org/ 10.1103/PhysRevLett.102.247002
http://dx.doi.org/10.1103/PhysRevB.54.R3753
http://stacks.iop.org/0295-5075/86/i=4/a=47001
http://dx.doi.org/10.1103/PhysRevB.79.140507
http://dx.doi.org/10.1103/PhysRevB.79.140507
http://dx.doi.org/ 10.1103/PhysRevLett.102.147001
http://dx.doi.org/10.1143/JPSJ.80.013704
http://dx.doi.org/10.1143/JPSJ.80.013704


128

[94] H. Kim, M. A. Tanatar, Y. J. Song, Y. S. Kwon, and R. Prozorov, Phys. Rev. B

83, 100502 (2011).

[95] K. Hashimoto, S. Kasahara, R. Katsumata, Y. Mizukami, M. Yamashita, H. Ikeda,

T. Terashima, A. Carrington, Y. Matsuda, and T. Shibauchi, Phys. Rev. Lett. 108,

047003 (2012).

[96] C. Boghosian, H. Meyer, and J. E. Rives, Phys. Rev. 146, 110 (1966).

[97] C. T. V. Degrift, Review of Scientific Instruments 46, 599 (1975).

[98] M. D. Vannette, Ph.D. thesis, Iowa State University (2009).

[99] R. T. Gordon, Ph.D. thesis, Iowa State University (2011).

[100] R. Prozorov, R. W. Giannetta, A. Carrington, and F. M. Araujo-Moreira, Phys.

Rev. B 62, 115 (2000).

[101] R. Prozorov and R. W. Giannetta, Superconductor Science and Technology 19,

R41 (2006).

[102] R. Prozorov and V. G. Kogan, Reports on Progress in Physics 74, 124505 (2011).

[103] J. E. Sonier, Reports on Progress in Physics 70, 1717 (2007).

[104] D. N. Basov and T. Timusk, Rev. Mod. Phys. 77, 721 (2005).

[105] R. Prozorov, R. W. Giannetta, A. Carrington, P. Fournier, R. L. Greene, P. Gup-

tasarma, D. G. Hinks, and A. R. Banks, Appl. Phys. Lett. 77, 4202 (2000).

[106] T. M. Lippman, B. Kalisky, H. Kim, M. A. Tanatar, S. L. Budko, P. C. Canfield,

R. Prozorov, and K. A. Moler, Physica C: Superconductivity 483, 91 (2012).

[107] L. Luan, O. M. Auslaender, T. M. Lippman, C. W. Hicks, B. Kalisky, J.-H. Chu,

J. G. Analytis, I. R. Fisher, J. R. Kirtley, and K. A. Moler, arXiv:0909.0744v2

(2010).

http://dx.doi.org/ 10.1103/PhysRevB.83.100502
http://dx.doi.org/ 10.1103/PhysRevB.83.100502
http://dx.doi.org/ 10.1103/PhysRevLett.108.047003
http://dx.doi.org/ 10.1103/PhysRevLett.108.047003
http://dx.doi.org/10.1103/PhysRev.146.110
http://dx.doi.org/10.1063/1.1134272
http://stacks.iop.org/0953-2048/19/i=8/a=R01
http://stacks.iop.org/0953-2048/19/i=8/a=R01
http://stacks.iop.org/0034-4885/74/i=12/a=124505
http://stacks.iop.org/0034-4885/70/i=11/a=R01
http://dx.doi.org/10.1103/RevModPhys.77.721
http://dx.doi.org/ 10.1016/j.physc.2012.08.001


129

[108] J. R. Kirtley, Reports on Progress in Physics 73, 126501 (2010).

[109] A. Rutgers, Physica 1, 1055 (1934).

[110] S. Kamal, R. Liang, A. Hosseini, D. A. Bonn, and W. N. Hardy, Phys. Rev. B 58,

R8933 (1998).

[111] E. M. Lifshitz, L. D. Landau, and L. P. Pitaevskii, Electrodynamics of Continuous

Media, 2nd ed. (Butterworth-Heinemann, 1984).

[112] R. Parks, Superconductivity , Superconductivity No. v. 2 (Marcel Dekker, Incorpo-

rated, 1969).

[113] V. G. Kogan, Phys. Rev. B 66, 020509 (2002).

[114] D. Markowitz and L. P. Kadanoff, Phys. Rev. 131, 563 (1963).

[115] K. D. Belashchenko, M. v. Schilfgaarde, and V. P. Antropov, Phys. Rev. B 64,

092503 (2001).

[116] H. J. Choi, D. Roundy, H. Sun, M. L. Cohen, and S. G. Louie, Phys. Rev. B 66,

020513 (2002).

[117] V. G. Kogan and R. Prozorov, Reports on Progress in Physics 75, 114502 (2012).

[118] H. W. Weber, E. Seidl, C. Laa, E. Schachinger, M. Prohammer, A. Junod, and

D. Eckert, Phys. Rev. B 44, 7585 (1991).

[119] M. Ito, H. Muta, M. Uno, and S. Yamanaka, Journal of Alloys and Compounds

425, 164 (2006).

[120] S. J. Williamson, Phys. Rev. B 2, 3545 (1970).

[121] B. W. Maxfield and W. L. McLean, Phys. Rev. 139, A1515 (1965).

http://stacks.iop.org/0034-4885/73/i=12/a=126501
http://dx.doi.org/10.1016/S0031-8914(34)80300-X
http://dx.doi.org/ 10.1103/PhysRevB.58.R8933
http://dx.doi.org/ 10.1103/PhysRevB.58.R8933
http://www.worldcat.org/isbn/0750626348
http://www.worldcat.org/isbn/0750626348
http://books.google.com/books?id=D4hK-yGBEmoC
http://dx.doi.org/10.1103/PhysRevB.66.020509
http://dx.doi.org/10.1103/PhysRev.131.563
http://dx.doi.org/10.1103/PhysRevB.64.092503
http://dx.doi.org/10.1103/PhysRevB.64.092503
http://dx.doi.org/ 10.1103/PhysRevB.66.020513
http://dx.doi.org/ 10.1103/PhysRevB.66.020513
http://stacks.iop.org/0034-4885/75/i=11/a=114502
http://dx.doi.org/ 10.1103/PhysRevB.44.7585
http://dx.doi.org/ 10.1016/j.jallcom.2006.01.043
http://dx.doi.org/ 10.1016/j.jallcom.2006.01.043
http://dx.doi.org/10.1103/PhysRevB.2.3545
http://dx.doi.org/10.1103/PhysRev.139.A1515


130

[122] C. Niedermayer, C. Bernhard, T. Holden, R. K. Kremer, and K. Ahn, Phys. Rev.

B 65, 094512 (2002).

[123] K. Ohishi, T. Muranaka, J. Akimitsu, A. Koda, W. Higemoto, and R. Kadono,

Journal of the Physical Society of Japan 72, 29 (2003).

[124] H. Kim, N. H. Sung, B. K. Cho, M. A. Tanatar, and R. Prozorov, Phys. Rev. B

87, 094515 (2013).

[125] J. H. Tapp, Z. Tang, B. Lv, K. Sasmal, B. Lorenz, P. C. W. Chu, and A. M.

Guloy, Phys. Rev. B 78, 060505 (2008).

[126] F. Wei, F. Chen, K. Sasmal, B. Lv, Z. J. Tang, Y. Y. Xue, A. M. Guloy, and

C. W. Chu, Phys. Rev. B 81, 134527 (2010).

[127] K. Cho, H. Kim, M. A. Tanatar, Y. J. Song, Y. S. Kwon, W. A. Coniglio, C. C.

Agosta, A. Gurevich, and R. Prozorov, Phys. Rev. B 83, 060502 (2011).

[128] F. L. Pratt, P. J. Baker, S. J. Blundell, T. Lancaster, H. J. Lewtas, P. Adamson,

M. J. Pitcher, D. R. Parker, and S. J. Clarke, Phys. Rev. B 79, 052508 (2009).

[129] D. Braithwaite, G. Lapertot, W. Knafo, and I. Sheikin, Journal of the Physical

Society of Japan 79, 053703 (2010).

[130] T. Klein, D. Braithwaite, A. Demuer, W. Knafo, G. Lapertot, C. Marcenat,

P. Rodière, I. Sheikin, P. Strobel, A. Sulpice, and P. Toulemonde, Phys. Rev.

B 82, 184506 (2010).

[131] P. K. Biswas, G. Balakrishnan, D. M. Paul, C. V. Tomy, M. R. Lees, and A. D.

Hillier, Phys. Rev. B 81, 092510 (2010).

[132] H. Kim, C. Martin, R. T. Gordon, M. A. Tanatar, J. Hu, B. Qian, Z. Q. Mao,

R. Hu, C. Petrovic, N. Salovich, R. Giannetta, and R. Prozorov, Phys. Rev. B 81,

180503 (2010).

http://dx.doi.org/ 10.1103/PhysRevB.65.094512
http://dx.doi.org/ 10.1103/PhysRevB.65.094512
http://dx.doi.org/ 10.1143/JPSJ.72.29
http://dx.doi.org/ 10.1103/PhysRevB.87.094515
http://dx.doi.org/ 10.1103/PhysRevB.87.094515
http://dx.doi.org/10.1103/PhysRevB.78.060505
http://dx.doi.org/10.1103/PhysRevB.81.134527
http://dx.doi.org/ 10.1103/PhysRevB.83.060502
http://dx.doi.org/10.1103/PhysRevB.79.052508
http://dx.doi.org/10.1143/JPSJ.79.053703
http://dx.doi.org/10.1143/JPSJ.79.053703
http://dx.doi.org/ 10.1103/PhysRevB.82.184506
http://dx.doi.org/ 10.1103/PhysRevB.82.184506
http://dx.doi.org/10.1103/PhysRevB.81.092510
http://dx.doi.org/ 10.1103/PhysRevB.81.180503
http://dx.doi.org/ 10.1103/PhysRevB.81.180503


131

[133] C. Poole, H. Farach, R. Creswick, and R. Prozorov, Superconductivity , 2nd ed.,

Superconductivity Series (Academic Press, 2010) p. 670.

[134] Y. Wang, B. Revaz, A. Erb, and A. Junod, Phys. Rev. B 63, 094508 (2001).

[135] U. Welp, W. K. Kwok, G. W. Crabtree, K. G. Vandervoort, and J. Z. Liu, Phys.

Rev. Lett. 62, 1908 (1989).

[136] L. Shan, K. Xia, Z. Y. Liu, H. H. Wen, Z. A. Ren, G. C. Che, and Z. X. Zhao,

Phys. Rev. B 68, 024523 (2003).

[137] G. MacDougall, R. Cava, S.-J. Kim, P. Russo, A. Savici, C. Wiebe, A. Winkels,

Y. Uemura, and G. Luke, Physica B: Condensed Matter 374 - 375, 263 (2006).

[138] A. Carrington, A. P. Mackenzie, and A. Tyler, Phys. Rev. B 54, R3788 (1996).

[139] H. Ding, P. Richard, K. Nakayama, K. Sugawara, T. Arakane, Y. Sekiba,

A. Takayama, S. Souma, T. Sato, T. Takahashi, Z. Wang, X. Dai, Z. Fang, G. F.

Chen, J. L. Luo, and N. L. Wang, EPL 83, 47001 (2008).

[140] C. Martin, H. Kim, R. T. Gordon, N. Ni, V. G. Kogan, S. L. Bud’ko, P. C. Canfield,

M. A. Tanatar, and R. Prozorov, Phys. Rev. B 81, 060505 (2010).

[141] T. Zhou, G. Koutroulakis, J. Lodico, N. Ni, J. D. Thompson, R. J. Cava, and

S. E. Brown, Journal of Physics: Condensed Matter 25, 122201 (2013).

[142] R. Hu, K. Cho, H. Kim, H. Hodovanets, W. E. Straszheim, M. A. Tanatar, R. Pro-

zorov, S. L. Budko, and P. C. Canfield, Superconductor Science and Technology

24, 065006 (2011).

[143] W. Bao, Y. Qiu, Q. Huang, M. A. Green, P. Zajdel, M. R. Fitzsimmons, M. Zh-

ernenkov, S. Chang, M. Fang, B. Qian, E. K. Vehstedt, J. Yang, H. M. Pham,

L. Spinu, and Z. Q. Mao, Phys. Rev. Lett. 102, 247001 (2009).

http://books.google.com/books?id=HWnDpQPpM3kC
http://dx.doi.org/ 10.1103/PhysRevB.63.094508
http://dx.doi.org/ 10.1103/PhysRevLett.62.1908
http://dx.doi.org/ 10.1103/PhysRevLett.62.1908
http://dx.doi.org/10.1103/PhysRevB.68.024523
http://dx.doi.org/10.1016/j.physb.2005.11.070
http://dx.doi.org/10.1103/PhysRevB.54.R3788
http://dx.doi.org/ 10.1103/PhysRevB.81.060505
http://stacks.iop.org/0953-8984/25/i=12/a=122201
http://stacks.iop.org/0953-2048/24/i=6/a=065006
http://stacks.iop.org/0953-2048/24/i=6/a=065006
http://dx.doi.org/ 10.1103/PhysRevLett.102.247001


132

[144] A. Subedi, L. Zhang, D. J. Singh, and M. H. Du, Phys. Rev. B 78, 134514 (2008).

[145] T.-L. Xia, D. Hou, S. C. Zhao, A. M. Zhang, G. F. Chen, J. L. Luo, N. L. Wang,

J. H. Wei, Z.-Y. Lu, and Q. M. Zhang, Phys. Rev. B 79, 140510 (2009).

[146] K.-W. Yeh, T.-W. Huang, Y. lin Huang, T.-K. Chen, F.-C. Hsu, P. M. Wu, Y.-C.

Lee, Y.-Y. Chu, C.-L. Chen, J.-Y. Luo, D.-C. Yan, and M.-K. Wu, EPL (Euro-

physics Letters) 84, 37002 (2008).

[147] Y. Mizuguchi, F. Tomioka, S. Tsuda, T. Yamaguchi, and Y. Takano, Applied

Physics Letters 94, 012503 (2009).

[148] Y. Qiu, W. Bao, Y. Zhao, C. Broholm, V. Stanev, Z. Tesanovic, Y. C. Gasparovic,

S. Chang, J. Hu, B. Qian, M. Fang, and Z. Mao, Phys. Rev. Lett. 103, 067008

(2009).

[149] S. Margadonna, Y. Takabayashi, Y. Ohishi, Y. Mizuguchi, Y. Takano, T. Ka-

gayama, T. Nakagawa, M. Takata, and K. Prassides, Phys. Rev. B 80, 064506

(2009).

[150] T. Imai, K. Ahilan, F. L. Ning, T. M. McQueen, and R. J. Cava, Phys. Rev. Lett.

102, 177005 (2009).

[151] H. Kotegawa, S. Masaki, Y. Awai, H. Tou, Y. Mizuguchi, and Y. Takano, Journal

of the Physical Society of Japan 77, 113703 (2008).

[152] R. Khasanov, K. Conder, E. Pomjakushina, A. Amato, C. Baines, Z. Bukowski,

J. Karpinski, S. Katrych, H.-H. Klauss, H. Luetkens, A. Shengelaya, and N. D.

Zhigadlo, Phys. Rev. B 78, 220510 (2008).

[153] J. K. Dong, T. Y. Guan, S. Y. Zhou, X. Qiu, L. Ding, C. Zhang, U. Patel, Z. L.

Xiao, and S. Y. Li, Phys. Rev. B 80, 024518 (2009).

http://dx.doi.org/10.1103/PhysRevB.78.134514
http://dx.doi.org/10.1103/PhysRevB.79.140510
http://stacks.iop.org/0295-5075/84/i=3/a=37002
http://stacks.iop.org/0295-5075/84/i=3/a=37002
http://dx.doi.org/ 10.1063/1.3058720
http://dx.doi.org/ 10.1063/1.3058720
http://dx.doi.org/ 10.1103/PhysRevLett.103.067008
http://dx.doi.org/ 10.1103/PhysRevLett.103.067008
http://dx.doi.org/ 10.1103/PhysRevB.80.064506
http://dx.doi.org/ 10.1103/PhysRevB.80.064506
http://dx.doi.org/ 10.1103/PhysRevLett.102.177005
http://dx.doi.org/ 10.1103/PhysRevLett.102.177005
http://dx.doi.org/10.1143/JPSJ.77.113703
http://dx.doi.org/10.1143/JPSJ.77.113703
http://dx.doi.org/10.1103/PhysRevB.78.220510
http://dx.doi.org/10.1103/PhysRevB.80.024518


133

[154] V. G. Kogan, C. Martin, and R. Prozorov, Phys. Rev. B 80, 014507 (2009).

[155] R. T. Gordon, H. Kim, N. Salovich, R. W. Giannetta, R. M. Fernandes, V. G.

Kogan, T. Prozorov, S. L. Bud’ko, P. C. Canfield, M. A. Tanatar, and R. Prozorov,

Phys. Rev. B 82, 054507 (2010).

[156] R. Hu, E. S. Bozin, J. B. Warren, and C. Petrovic, Phys. Rev. B 80, 214514

(2009).

[157] R. T. Gordon, H. Kim, M. A. Tanatar, R. Prozorov, and V. G. Kogan, Phys. Rev.

B 81, 180501 (2010).

[158] A. Serafin, A. I. Coldea, A. Y. Ganin, M. J. Rosseinsky, K. Prassides, D. Vignolles,

and A. Carrington, Phys. Rev. B 82, 104514 (2010).

[159] M. Bendele, S. Weyeneth, R. Puzniak, A. Maisuradze, E. Pomjakushina, K. Con-

der, V. Pomjakushin, H. Luetkens, S. Katrych, A. Wisniewski, R. Khasanov, and

H. Keller, Phys. Rev. B 81, 224520 (2010).

[160] T. Kato, Y. Mizuguchi, H. Nakamura, T. Machida, H. Sakata, and Y. Takano,

Phys. Rev. B 80, 180507 (2009).

[161] J. Hu, T. J. Liu, B. Qian, A. Rotaru, L. Spinu, and Z. Q. Mao, Phys. Rev. B 83,

134521 (2011).

[162] C. C. Homes, A. Akrap, J. S. Wen, Z. J. Xu, Z. W. Lin, Q. Li, and G. D. Gu,

Phys. Rev. B 81, 180508 (2010).

[163] W. K. Park, C. R. Hunt, H. Z. Arham, Z. J. Xu, J. S. Wen, Z. W. Lin, Q. Li, G. D.

Gu, and L. H. Greene, arXiv:1005.0190 (2010).

[164] K. Nakayama, T. Sato, P. Richard, T. Kawahara, Y. Sekiba, T. Qian, G. F. Chen,

J. L. Luo, N. L. Wang, H. Ding, and T. Takahashi, Phys. Rev. Lett. 105, 197001

(2010).

http://dx.doi.org/ 10.1103/PhysRevB.82.054507
http://dx.doi.org/10.1103/PhysRevB.80.214514
http://dx.doi.org/10.1103/PhysRevB.80.214514
http://dx.doi.org/ 10.1103/PhysRevB.81.180501
http://dx.doi.org/ 10.1103/PhysRevB.81.180501
http://dx.doi.org/ 10.1103/PhysRevB.82.104514
http://dx.doi.org/10.1103/PhysRevB.81.224520
http://dx.doi.org/ 10.1103/PhysRevB.80.180507
http://dx.doi.org/10.1103/PhysRevB.83.134521
http://dx.doi.org/10.1103/PhysRevB.83.134521
http://dx.doi.org/10.1103/PhysRevB.81.180508
http://dx.doi.org/ 10.1103/PhysRevLett.105.197001
http://dx.doi.org/ 10.1103/PhysRevLett.105.197001


134

[165] M. Nohara, S. Kakiya, and K. Kudo, Proceedings of the International Workshop

on Novel Superconductors and Super Materials , a (2011).

[166] M. Neupane, C. Liu, S.-Y. Xu, Y.-J. Wang, N. Ni, J. M. Allred, L. A. Wray,

N. Alidoust, H. Lin, R. S. Markiewicz, A. Bansil, R. J. Cava, and M. Z. Hasan,

Phys. Rev. B 85, 094510 (2012).

[167] S. Kakiya, K. Kudo, Y. Nishikubo, K. Oku, E. Nishibori, H. Sawa, T. Yamamoto,

T. Nozaka, and M. Nohara, Journal of the Physical Society of Japan 80, 093704

(2011).
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