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ABSTRACT

Many specific networks (e.g., internet, power grid, interstates), have been characterized

well, but in isolation from one another. Yet, in the real world, different networks support each

other’s functions, and so far, little is known about how their interactions affect their structure

and functionality. To address this issue, we introduce a stochastically evolving network, namely

a preferred degree network, and study the interactions between such two networks. First, a

homogeneous preferred degree network is studied. The resultant degree distribution is con-

sistent with a Laplacian distribution, and an approximate theory provides good explanations.

Second, another preferred degree network is introduced and coupled to the first following some

specific rules. When the interaction is present, this system exhibits both interesting and puz-

zling features. Generalizing the theory for the homogeneous network, we are able to explain

the total degree distributions well, but not the intra- or inter-group degree distributions. To

develop a better understanding, we perform a systematic study of the number of inter-group

links. We find that the interactions between networks have a profound effect. In certain regime

of parameter space, mean-field approximations provide good insight into observed behaviors.

Third, reminiscent of introverts and extroverts in a population, we consider an extreme limit

of our two-network model. Using a self-consistent mean-field approximation, we are able to

predict its degree distributions. Monitoring the total number of inter-group links between the

two communities, we find an unusual transition, and succeed in predicting its key features.

Finally, we present results for models involving several other forms of interaction.
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CHAPTER 1. INTRODUCTION

1.1 Introduction to complex networks

In the past few years, studies on network systems have received extensive attention. Many

real-world systems, e.g., the World Wide Web and the internet, have been examined in the

context of a mapping to complex networks, which consist of a set of interconnected components

that interact in various ways. For example, the World Wide Web [1, 2, 3] is essentially a set of

web pages that interact through hyperlinks. The physical internet is built up by routers and

computers, connected by wires. Not limited to the above two real-world examples, network

structures can be recognized everywhere, in natural structures as well as man-made artifacts

[4, 5, 6, 7, 8]. The former range from the microscopic, e.g., neuron architectures, to the cosmic,

e.g., galactic filaments. For the latter, they include critical infrastructures, e.g., power grids

and interstate systems, as well as virtual webs, such as Facebook and LinkedIn. Understanding

their characteristics and behaviors is clearly important. Exploring these complex systems

requires access to large scale data and powerful analysis methods. Thanks to the rapid pace of

development in information technology, we are able to collect and analyze considerable amounts

of data, to describe various features of these systems. At the same time, an interdisciplinary

academic field, network science, is rapidly developing to study the network representation

of physical, biological, and infrastructure systems, providing important concepts and tools

to characterize and understand complex networks. This field has involved researchers from

various areas, i.e., physics, mathematics, engineering, computer science, statistics, biology and

sociology. Particularly, the underlying dynamic nature of these large size complex networks

has attracted the attention of the statistical physics community. Among different methods

and techniques used in network science, the statistical physics approach has been considered
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as a useful and convenient strategy, due to its ability of dealing with large numbers of coupled

degrees of freedom, and connecting the microscopic properties of individual components of a

system to the macroscopic characteristics.

Dramatic advances have been made by the statistical physics community, in understanding

the dynamics associated with complex networks. A network consists of a set of nodes connected

by links, where the nodes represent elementary components and links represent some kind of

interactions between pairs of components. For example, in a food web, the nodes are species

and the links represent predator-prey relationships [9, 10, 11]. The topology of a network is

specified by its pattern of connections. Studies on networks start from probing properties of

the static networks, and then curiosity shifts to the dynamics coupled to network. Depending

on the focus of network model, the dynamics is often classified into two patterns, dynamics

of networks (e.g., the growth of the World Wide Web) and dynamics on networks (e.g., the

disease spreading). According to different patterns of dynamics, in physics community, studies

on complex networks are often arranged into three directions: (1) Network topology (static

networks and dynamics of networks): The earliest research on networks concentrates on the

topological properties of static networks, e.g., study of Leonhard Euler on the Seven Bridges of

Königsberg problem. More recently, the focus shifts to the topology of dynamic networks, i.e.,

the change of topological structure of network induced by the underlying, local laws. Studies

in this field have unfolded that certain network topologies are invoked by specific evolution

rules. Particularly, notable examples are small-world network [27, 17] and scale-free network

[2] (see Chapter 2 for details for these two classes of networks). (2) Dynamical processes on

networks : This aspect of network research has focused on the degrees of freedom on nodes (or

links), and only the networks with static topology are under consideration. In such a network,

each node can exist in different states, and its state can change dynamically (or variant flows

are associated with links). For example, in a voter model, any given node (voter) can take

one of two values on some issue, and its value can change under the influence of opinions of

neighboring nodes. (3) Adaptive coevolving networks : The previous two lines of research treat

dynamics of networks distinctly from the dynamics on networks. However, in real-world, the

dynamics of networks depends on the topological properties of networks. As a result, attention
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has been attracted to the merge of (1) and (2), leading to a new branch of study, dynamics of

adaptive network. Take the epidemic spreading on a population for example. The topology of

network (human contacts) influences the dynamic states of nodes (individuals), i.e., susceptible,

infected, and recovered. On the other hand, the state of a node affects its connections, e.g.,

it is likely that a susceptible will avoid making contact with an infected, and this results in

a decrease of links in the network. In that sense, a mutual interaction is established between

topological evolution of the network and the dynamics of the nodes.

The above work within the physics community has successfully characterized the properties

of many real-world networks [4, 5, 6, 7, 8], e.g., physical, social, biological, but in the context

of a single, isolated network. Yet, in nature, different networks support the functions of one

another, and are closely coupled together. For instance, electrical power grids serve internet

communications, which in turn, rely on information exchange between power stations; highway

use affects both air and rail traffic, and as a result, directly affects communication networks.

More examples include the bank network and the network of commercial firms, food webs with

common species, and protein networks with common proteins. In a word, complex networks

are highly coupled to one another, and therefore, should be modeled as interdependent net-

works, or even in the context of a network of networks. In more recent years, the significance of

interdependent networks has begun to be noticed by the physics community, and some aspects

have been explored. Notable examples include the investigation of critical infrastructure inter-

dependencies [96, 97, 98, 99], and approaches such as the multilayer method to couple traffic

flows to physical infrastructures [87].

So far, relatively little work has been done on interdependent networks and many funda-

mental issues remain to be probed. A key issue is to model interactions between networks, i.e.,

to define a reliable model of interdependent networks, based on which one can pursue the same

research program that was established for a single network, examining (1) Network topology,

(2) Dynamical processes on networks, and (3) Adaptive coevolving networks, but on a model of

interdependent networks. Of course, the final goal of this study is to answer the question of

how to model a network of networks, and how it functions, but as a first step towards the goal,

we focus on a simpler case, a system of two interdependent networks. Our work presented in
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this dissertation aims at exploring several possible approaches to model the interaction between

two networks, and further, understanding how the interactions affect the topological properties

of each individual network. Specifically, this thesis is devoted to establishing a model of two

interdependent networks, and analyzing (1) Network topology.

1.2 Outline of the dissertation

As mentioned before, so far, in the physics community, the understanding of interdependent

networks remains limited, and little is known about how their interactions affect their structure

and functionality. To address this issue, we introduce a sufficiently simple network model and

study the interactions between such networks, using the language of social networks. The

thesis consists of eight chapters. The first chapter is the current introductory chapter. This

chapter starts with a brief introduction to complex networks and network science, followed

by a thesis outline. Chapter 2 presents a description of several basic concepts and classical

models of network science, and then provides a review of main results of earlier studies on

complex networks, as well as a more detailed introduction of interdependent networks. In the

following chapters, we introduce the idea of a stochastically evolving network, characterized

by a set preferred degree κ. Based on this model, we introduce the interactions between two

networks. In Chapter 3, we first focus on a single homogeneous isolated network. This chapter

concentrates on the model description of a single preferred degree network. Each node with

degree k can add (cut) its links with probability w(k) (1 − w(k)), to reach and maintain κ.

We examine the degree distribution in steady state with different forms of w(k). Chapter

4 describes the quantities of interest for the two-network models and their notations (e.g.,

degree distributions ρ and the total number of cross links X). More importantly, Chapter 4

introduces a reference model of interdependent networks, by partitioning the single network into

two identical sectors. This model establishes a baseline for our study of two-network models.

Chapter 5 to 7 focus on different models of interdependent networks. Chapter 5 introduces a

second preferred degree network and defines an interaction between the two networks, which

allows for the formation of cross links. When the interaction is present, this model exhibits both

interesting and puzzling features. Monitoring the total number of cross links between the two
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communities, we find a very slow dynamics, as well as large fluctuations. This chapter presents

a systematic study of the statistical properties of ρ and X as a function of the parameters

of the two preferred degree networks. Chapter 6 studies an extreme case, dynamic network

involving two networks: One set of nodes, labeled introverts (I), prefers no contacts, while

the other, labeled extroverts (E), seek to maximize their degrees. With “maximal frustration”

present, an unusual transition is observed in the system, as the ratio of network sizes N1/N2 is

varied through unity. Remarkably, the system can be described in terms of a Hamiltonian, and

some of its behaviors can be understood analytically. Chapter 7 presents simulation results and

analytical explanations for two models involving other forms of interaction. Finally, Chapter 8

summarizes our work and ends with an outlook.
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CHAPTER 2. LITERATURE REVIEW

While our studies focus on the topological properties (mainly the degree distribution) of

interdependent networks, this chapter is devoted to a much broader tour of work having been

done in the field of complex networks, including typical characteristics of network structures,

classical models of networks, empirical studies on complex networks, and previous investigations

of interdependent networks. Information in this chapter is based on several review papers and

books [5, 6, 7, 8, 77].

2.1 Typical characteristics of complex networks

Complex networks are normally described in the language of graph theory. A graph is

composed of a collection of mathematically abstract nodes (or vertices) which are connected

by links (or edges). The two components of a graph, G(V,E), are a set of nodes, V , and a

set of links, E. Nodes in set V are assigned an index labeled i = 1, 2, 3,..., N , and links

in E are represented by the two indexes associated with their end nodes, i.e., for i,j ∈ V ,

E = (i, j) ∈ V × V . An adjacency matrix representation of a graph with N nodes is an N ×N

matrix, A, specifying which nodes are connected to which other nodes. The non-diagonal entry

Aij is the number of edges from node i to node j, and the diagonal entry Aii, is either once

or twice the number of edges (loops) from node i to itself. Though multiple edges (more than

one link having the same starting and ending nodes) exist in some real-world systems, e.g.,

collaboration networks [14, 15], most networks we will discuss later are simple graphs, where

multiple edges or self-loops are not allowed. Therefore, we can narrow down the possible values
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of Aij :

Aij =

⎧⎪⎪⎨
⎪⎪⎩
1 if there is a link from node i to node j,

0 otherwise.

(2.1)

Clearly, Aii = 0 for all i ∈ [1, N ] when self-loops are prohibited. An asymmetric adjacency

matrix can represent a directed graph, consisting edges carry a direction. In contrast, the

adjacency matrix representation of an undirected graph is always symmetric.

With a mathematical representation of complex networks, let us turn our attention to the

network properties. In the following, we introduce several structural characteristics usually

considered, such as, degrees, their distribution, clustering coefficient, and average path length.

Degree and degree distribution

The degree is the simplest and most intensively studied single-node feature. In an undirected

simple graph (without multiple edges or self-loops), the degree, k, of a node i, is defined as the

total number of its links. Recall that the elements Aij = 0 (1) indicate the absence (presence) of

the link between nodes i and j. Then, the mathematical representation of k is simply ΣN
j=1Aij .

For the case of a directed graph, where Aij �= Aji in general, the definition can be easily

generalized. We coin the links merging into (going out from) node i as its incoming (outgoing)

links. The associated degrees are in-degree, kin = ΣN
j=1Aji, and out-degree, kout = ΣN

j=1Aij .

Clearly, the total degree is k = kin + kout.

The degree distribution, denoted by ρ(k), is the normalized number of nodes with degree

k. In other words, ρ(k) is the probability that a randomly selected node has degree k. Clearly,

an undirected graph can be described by a single degree distribution, for the total degree k. A

directed graph, however, is characterized by four different degree distributions: The total degree

distribution ρ(k), the in-degree distribution ρin(kin), the out-degree distribution ρout(kout), and

the joint degree distribution P (kin, kout). However, these distributions are not independent;

they satisfy the following equations:

ρ(k) =
∑
kin

P (kin, k − kin) =
∑
kout

P (k − kout, kout), (2.2)
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ρin(kin) =
∑
kout

P (kin, kout), (2.3)

ρout(kout) =
∑
kin

P (kin, kout). (2.4)

Thus, the average degree is obtained easily: 〈k〉 =
∑

k kρ(k). Accordingly, 〈kin〉 =∑
kin k

inρin(kin), and 〈kout〉 = ∑
kout k

outρout(kout).

Clustering coefficient

To reflect the connections in the neighborhood of a node, the clustering coefficient is introduced.

This quantity is noted in sociology first [16], as it is common to see that if individuals A

and B are friends, and B and C are friends, then normally A and C are also friends. For

undirected graphs, the degree to which nodes tend to group together is quantified by the

clustering coefficient, which is high if the neighbors of a node have a high probability to be

connected. Different definitions for this quantity exist, and here we present the one introduced

by Watts and Strogatz [17]. For a node i with ki neighbors, the maximum possible number of

links within its neighborhood is ki(ki − 1)/2. Denoting by di the number of links among i’s

neighbors, the clustering coefficient of node i is given by,

Ci =
2di

ki(ki − 1)
. (2.5)

for an undirected graph. With the definition of Ci for a node, the clustering coefficient of the

network is defined as the average of Ci over all nodes i:

C =
1

N

∑
i

Ci. (2.6)

Average path length

The average path length is a measure of average distance between any two nodes in a network.

It answers questions like: What is the average number of clicks which leads us from one webpage

to another? How many new connections we have to make, on average, to reach a stranger on

Facebook? To define the average path length, l, which is a global measure, we need to introduce

a local quantity first, the shortest path length between nodes i,j, lij . Given that the process
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of going from a node to one of its neighbors is treated as one step, lij describes the minimum

number of steps needed to reach node j from node i (or from j to i in case of undirected

graphs). Based on lij , the average path length of a network is defined as

l =
1

N(N − 1)

∑
i �=j

lij , (2.7)

where the average here is over all pairs of nodes, and lij = 0 if j can not be reached from i.

Another similar measure of distance in a network is diameter of a network, D, which is the

maximum shortest path in the network.

Degree distribution, clustering coefficient, and average path length are the three most fre-

quently studied characteristics of networks. Fig. 2.1 shows some characteristics of several real

networks, including but not limited to the three introduced above. In the following section,

we will present a few representative network models that are frequently used, as well as their

properties.

2.2 Network models

Models of networks provide a useful framework to understand empirical complex networks.

Various models have been considered to generate network structures similar to real-world com-

plex networks. The earliest model is the Erdős-Rényi random graph model. Two other well-

known and much studied examples of network models are those of the Watts-Strogatz small-

world and Barabási-Albert scale-free models. This section serves to introduce these three

commonly cited models, as well as their key characteristics. In later chapters, we will see that

the model we are introducing is distinct from the three.

Erdős-Rényi random graph model

In the 1960s, Erdős and Rényi published a series of papers [18, 19, 20], introducing the random

graph model and its properties. The random graph is denoted by G(N, p), where N is the

number of nodes in the network, and p serves as the probability with which a pair of nodes

is connected. The same p applies to all N(N − 1)/2 pairs of nodes. Clearly, on average, this
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Figure 2.1 This figure shows information of structural properties of several real networks. For

each network, the number of nodes, the average degree, the average path length,

and the clustering coefficient are denoted by size, 〈k〉, l, and C, respectively. lrand
and Crand indicate the average path length and clustering coefficient of a random

graph of the same size and average degree. Image is taken from [5] with permission

of the American Physical Society.
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model has
(
N
2

)
p links, and the degree distribution is a binomial distribution,

ρER(k) =

(
N − 1

k

)
pk(1− p)N−1−k. (2.8)

In the limit of N → ∞, the above distribution reduces to a Poisson distribution,

ρER(k) → (Np)ke−Np

k!
, as N → ∞ and Np = const. (2.9)

Therefore, most nodes of the graph have average degree 〈k〉 = (N − 1)p 
 Np. It is easy to

see that the random graph model has a low clustering coefficient: The probability of two nodes

being connected is p, regardless of whether they share a common neighbor, and therefore,

C = p, which decreases to 0 as N → ∞ and Np = const. The average path length of the

Erdős-Rényi random graph is estimated as l 
 lnN/ln(Np) [21]. It can be roughly understood

by the following arguments: Within d steps, the number of nodes can be reached from a node

is 〈k〉d. Suppose within l̃ steps, a node can reach all the nodes of the graph, then 〈k〉l̃ 
 N .

Thus, the distance through the network is l̃ = lnN/ln〈k〉 
 lnN/ln(Np).

Due to its simplicity and understandable properties, the random graph model of Erdős-

Rényi remains one of the most important models. However, with low clustering coefficient and

Poisson degree distribution, it fails to capture some characteristics of real-world networks. For

instance, many social networks [22, 23, 24, 16] are highly clustered, and possess a small average

shortest path between nodes. Moreover, most real-world networks, including the World Wide

Web and the internet, exhibit power-law degree distributions instead of Poisson distributions

[2, 25, 26]. For that reason, two other popular models have been developed and much studied.

Watts-Strogatz small-world model

The key feature of small-world network models is that, most nodes in the network are not

neighbors of one another, but there is a relatively short path between any pair of nodes, despite

the large graph size. The most widely studied small-world model was proposed by Watts and

Strogatz in 1998 [27, 17]. The model is built as follows. It starts with a ring of N nodes,

each connected to 2e nearest nodes (e nodes clockwise and counterclockwise, respectively).

This results in a ring lattice with Ne links. Then, for each node, every link (connected to a

clockwise neighbor) is rewired with probability p, or preserved with probability 1− p. For the
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Figure 2.2 This figure shows path length l(p)/l(0) and clustering coefficient C(p)/C(0) as

a function of p, for the Watts-Strogatz model. Image is taken from [17] with

permission of the Nature Publishing Group.

case of rewiring, the link is reconnected to a randomly chosen node, such that no multiple edges

or self-loops are allowed. This process introduces pNe far connections, and makes it possible to

interpolate between a regular lattice (p = 0), and a classical random graph (p = 1). As p → 0,

l(p) ∼ N/4e � 1 and the clustering coefficient is C(p) ∼ 3/4. As p → 1, l(p) ∼ lnN/ln(2e) and

C(p) ∼ 2e/N 
 1, attaining the value for classical random graphs. In the intermediate region

(see Fig. 2.2), l(p) falls very rapidly due to the appearance of shortcuts between nodes, while

C(p) remains quite close to the high value for the regular lattice, only falling at relatively high

p, and this is the so called small-world property.

Barabási-Albert scale-free model

The scale-free models describe the class of networks that exhibit a power-law degree distribu-

tion, and so far, many observed networks fall into this class [28]. In the late 1990s, Barabási

and Albert proposed a model to explain the appearance of power-law distributions [2], where

the key underlying mechanism is growth and preferential attachment of nodes [2, 29, 30]. The

model is established as follows:

• Growth: The network starts with a small number, m0, of nodes, connected to one another.
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Figure 2.3 This figure shows degree distribution of the Barabási-Albert model:

N = m0 + t = 300000 and m0 = m = 1 (circles), m0 = m = 3 (squares),

m0 = m = 5 (diamonds), and m0 = m = 7 (triangles). The slope of the dashed

line is γ = 2.9. The inset shows the rescaled distribution P (k)/2m2 for the same

values of m, the slope of the dashed line being γ = 3. Image is taken from [29]

with permission of the Elsevier.

At each time step, a new node with m (≤ m0) links is added in, and it is connected to m

nodes already existing in the network.

• Preferential attachment : The probability, Π, that an old node i will be selected to make

a connection with the new node is determined by its degree ki, and Π is given by

Π =
ki∑
j
kj

. (2.10)

After t time steps, the resultant network contains N = m0 + t nodes and mt+m0(m0 − 1)/2

links. The numerical simulations indicate that the graph generated with this algorithm evolves

into a power-law with the form ∼ k−3 (see Fig. 2.3).
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2.3 Overview of studies on complex networks

Though complex networks have been widely studied by researchers from different disci-

plines, their interest lies in three aspects: topological properties of networks, network evolution

(growth), and dynamical processes on networks. In this section, we present the main contribu-

tions and results in the three fields.

Network topology of select real networks

Social networks. A social network describes a group of individuals/organizations with inter-

actions among them [16]. The forms of interaction vary from friendship between individuals

[33] to business cooperation between companies [31, 32]. Examples of the earlier studies on

social networks include, Moreno’s graphical depictions of networks of friendships within small

groups [33], the social network study of factory workers in the late 1930s in Chicago [34], and

the important “small-world” experiment of Milgram [22, 23], often associated with the phrase

“six degrees of separation.” Besides that, more recently, the web of human sexual contacts

[35] and business communities also have received particular attention. Due to lack of storage

technology and inability to collect large scale data, earlier studies of social networks often had

drawbacks, e.g., inaccuracy and small data samples. Thanks to the rapid pace of development

in information technology, nowadays, researchers are enabled to access considerable amounts of

reliable data, and therefore, they turn attention to the type of networks with good records, e.g.,

coauthorship of scientists [36, 37, 38, 39, 14, 15, 40, 41] and movie actor collaboration network

[17, 42, 43, 21], where nodes and links stand for individual authors/actors and collaboration,

respectively. Both networks are found to have power-law degree distributions ρ(k) ∼ k−γ ,

where γ varies between 2.1 to 2.5. Besides, the movie actor collaboration exhibits a high clus-

tering coefficient, more than 100 times higher than a random graph [17]. Information networks.

The citation network of scientific publications belongs to this category. The reason for that

is when an old article is cited by later articles, the information of the old one is shared and

spread on the network. A citation network should be a directed graph, where academic articles

are nodes and the references to previously published papers are represented by directed links

[44, 45, 46, 47, 48, 49, 50, 51, 52, 53]. Redner’s study on papers published in 1981 in journals,
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catalogued by the Institute for Scientific Information, and 20 years of publications in Physical

Review D, suggests that the in-degree distribution follows a power-law with exponent γ 
 3

[47]. Another much studied information network is the World Wide Web (WWW), which is

the largest network with available topological information [1, 2, 3, 30, 54, 55, 56]. Though the

WWW has a large number of nodes, it is reported to display small-world property, with low av-

erage shortest length. Moreover, a lot of attention has been paid to its evolution, which is well

explained by the Barabási-Albert scale-free model [2]. Biological networks. Examples of biolog-

ical networks include metabolic networks [57, 58, 59, 60, 61], food webs [9, 62, 10, 63, 64, 11, 65],

neural networks [66, 67], and so on. In a network of metabolic pathways, nodes are metabolic

substrates and products, joined by links of directed chemical reaction, that involve given sub-

strates and products. Its degree distributions, both in- and out-degree, follow power laws for

all organisms, and the degree exponent varies between 2.0 and 2.4. A food web represents

predator-prey relationships between various species. It also indicates energy flow from prey to

predator when the prey is eaten. Studies of food webs have focused on their topology [9, 11, 10].

Particularly, their degree distribution is found to be consistent with a power-law with a small

exponent of γ 
 1.1. Neural networks are also a class of biological networks of considerable

importance. Studies have concentrated on their topology, functional areas and pathways.

Dynamical processes on networks

While the above studies have focused on the topological evolution of networks, often referred as

“dynamics of networks,” another major trend of research on complex networks has concentrated

on “dynamics on networks” [68]. In this study, the network under consideration is static, i.e.,

topology of the network remains unchanged, while the state of nodes changes dynamically.

Typical examples of this study are opinion formation and epidemic spreading. Many models,

e.g., voter models, or epidemic models (such as susceptible-infected-susceptible (SIS) model and

the susceptible-infected-recovered (SIR) model), have been widely studied on regular lattices

[69], and random [70], scale-free [71, 72], or small-world [73, 74, 75] networks.

Adaptive coevolving networks

An assumption of the above studies is that the contact process takes place on a static network.

In more recent works, more realistic situations are considered, where the dynamics of networks
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and dynamics on networks are coupled together. A non-trivial feedback loop connects the two

features, which in turn, gives rise to a mutual interaction between the state and topology of the

network [76, 77]. Naturally, the coupling of dynamical processes on networks and the evolution

of the underlying topological structure, namely, coevolution of adaptive networks, starts to

attract increasing attention. Some examples of such studies are the opinion dynamics on an

adaptively changing network [78, 79, 80, 81, 82, 83], and adaptive epidemic network models

[76, 84]. (A review on the adaptive coevolving networks can be found at [77].)

2.4 Interdependent networks

In the previous sections, we have briefly overviewed the work on biological, social, infras-

tructure, or technological networks. Almost all these studies have focused on a particular

case, where the network under consideration is isolated from the rest of the world. However,

such a situation rarely exists in nature, and instead, individual networks are often elements

of a large system, where several coexisting networks interact and support the function of one

another [85, 86, 87, 88, 89, 90]. So far, there is one class of interdependent networks, the

protein interaction networks, that have been widely investigated in the biology community

[91, 92, 93, 94, 95]. These networks represent biological processes regulated by a number of

proteins. Since one given protein participates in different processes, the networks are inter-

dependent. Other than this class of networks, other modern systems are becoming more and

more mutually coupled, and little is known about their interaction. For instance, smartphones

can help drivers avoid heavy traffic. This situation cannot be fully described in terms of a

single network, whether we focus on cellular communication or the transportation (road) net-

work. An even more complicated example of interdependent networks is the whole system of

infrastructure networks, containing airlines, ground transportation, power grids, and telecom-

munications, all highly coupled to each other. Meanwhile, the internet plays a critical role by

interacting with all of them. It is clear that the significant, mutual dependence of real-world

networks can not be ignored, and therefore, models of interdependent networks are desired,

culminating perhaps, in a “theory of networks of networks.”

In recent years, the significance of interacting networks is coming onto center-stage, and
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many scientists and engineers turn their attention to various aspects of such interactions. No-

table contributions include the following. To study the load distribution in three transportation

systems, Kurant and Thiran introduce a layered model, coupling traffic flows to physical in-

frastructures [87]. Buldyrev et al. first propose a model of two-interdependent networks, where

the nodes in either network require support from another, and in turn, the failure of nodes in

one network can cause the failure of neighboring nodes in the other network. This process can

happen recursively, and then, lead to a cascade of failures. Based on that model, they study the

robustness of critical infrastructure networks with interactions [96, 97, 98, 99]. Besides, they

take further steps towards the cascading failures of other type of networks, e.g., a financial

system modeled by a bi-partite banking network [100]. At the same time, similar work on the

failures in interconnected networks has been published by other authors, Leicht and D’Souza

[101], and Vespignani [102]. In [103], Parshani et al. claim that real interdependent networks

are usually not randomly interdependent, and instead the coupled nodes crossing networks are

connected according to some regularity, which is coined inter-similarity by the authors. Based

on simulation and analysis of the port-airport system, they report that, as the networks become

more inter-similar, the system becomes significantly more robust to random failure. Another

recent work on robustness and restoration of interaction networks, focusing on ecological net-

works, reported by Pocock et al. [104], is to understand the effects of species’ declines and

extinctions.
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CHAPTER 3. HOMOGENEOUS PREFERRED DEGREE NETWORKS

AND THEIR STATISTICAL PROPERTIES

To model the interaction between two networks, we start with a single homogeneous net-

work, so that a baseline can be established. In this chapter, a new type of network model is

introduced, followed by a discussion of its statistical properties. Accordingly, this chapter con-

sists of two sections: The model description of a single-network model, and simulation results

and theoretical explanations for its degree distribution.

3.1 Model specifications

Our single-network model consists of N nodes (with no degrees of freedom), and a set of

dynamically evolving links. A single network is a homogeneous population, each node pre-

assigned the same preferred degree, κ [12, 13, 105, 106, 107, 108]. By adding/cutting links, all

nodes tend to reach and maintain their number of links (degree), k, at κ. Given that a node

has k links, the probability for it to add (cut) a link is w(k) (1−w(k)). w(k) ∈ [0, 1] is referred

to as a rate function. Clearly, we can choose different rate functions, w+ and w−, to describe

the preference of adding and cutting a link, respectively, but for the sake of simplicity, here

we only consider the case where w− = 1 − w+. To reach the preferred degree, the nodes are

supposed to add links when they have fewer links, while they should cut links when they have

more links than κ. That is, we need a w(k) which has larger values at lower k and smaller

values at larger k. Clearly, the rate functions w(k) plays a role of describing the tolerance level

(or flexibility) of an individual. For example, if w(k) = Θ(κ−k) (Heavyside step function), this

model represents an extremely rigorous population, which restrictively keep κ contacts and are

unhappy with one more/less friend. On the other hand, if w(k) changes its value from 1 to 0
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more slowly, this model describes a more flexible population, which prefers to have κ contacts

though, having a few more/less friends will also be fine. Of course, there are many possible

ways to define w(k), and we choose the form of the well-known Fermi-Dirac function:

w(k) =
1 + e−βκ

1 + eβ(k−κ)
. (3.1)

In this form, the flexibility of individuals is reflected by a parameter β. For the most rigid

population, we choose β → ∞, so that w becomes a step function: w = 1 if k ≤ κ, and 0

otherwise. For more flexible population, finite β is selected. (In simulations, κ is chosen to be

a half integer, so that no ambiguity should arise.)

Given the form of the rate function, the network is updated according to the following steps.

All simulations start with an empty network, where every node is isolated from one another.

In each time step (attempt), a node is randomly selected from the N nodes, and its degree,

k, is noted. Next, a random number, r, valued between 0 and 1, is generated. If r < w(k),

the chosen node will create a new link to a randomly chosen node not already connected to

it. Otherwise, it breaks an existing link at random. The partner node has no control of the

updating actions. Additionally, multiple edges or self-loops are not allowed.

3.2 Simulation results and theoretical considerations

With the stochastic rules above, we perform Monte Carlo simulations on the network with

the following selected parameters: reasonably large N = 1000, κ = 250 (which is not too small

or too large compared to the network size), and three different rate functions with β = 0.1, 0.2

and ∞, respectively (see Fig. 3.1(a)). In the simulation, we update one link and generate a new

configuration at each attempt. One Monte Carlo step (MCS) is defined as N such attempts,

so that, on average, each node is ensured to have the chance to be picked once and update its

links. For a single-network model, we discard the first 1K MCS, which appears to be sufficient

here for the system to reach steady state. Thereafter, we measure the quantities of interest

every 100 MCS and compile averages from 104 measurements (i.e., runs of 1M MCS).

To characterize the structure of the network and find out how individuals are connected

in a preferred degree network, an immediate quantity to examine is the degree distribution in
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Figure 3.1 (a) shows different w(k)’s for κ = 250: Fermi-Dirac functions

w(k) = (1 + e−βκ)/(1 + eβ(k−κ)), with β = 0.1 (green), 0.2 (red) and ∞
(blue). (b) shows corresponding degree distributions of the system with

N = 1000, κ = 250, and different w(k)’s: β = 0.1 (green squares), 0.2 (red

triangles) and ∞ (blue circles). The solid lines in (b) are theoretical predictions.

steady state, which is the average fraction of nodes with k links. Denoting by nk the number

of nodes with k links in each measurement, we define the degree distribution ρ(k) by:

ρ(k) =
〈nk〉
N

. (3.2)

Typical simulation results of ρss(k) (with superscript ss denoting “steady state”) of the single-

network model are shown in Fig. 3.1(b). As expected, ρss(k) is centered at κ. However, unlike

the Erdős-Rényi random network, our simulations show that ρss(k) does not, in general, follow

the Poisson distribution. Instead, the form of ρss(k) varies depending on the details of w(k):

As w(k) is reduced to a Heavyside step function by letting β → ∞, ρss(k) is consistent with a

symmetric exponential distribution, ∝ e−μ|k−κ| (blue circles in Fig. 3.1(b)). Our data indicate

μ = 1.08 ± 0.01. If w(k) differs from the extreme case (0 < β < ∞), ρss(k) is Poisson like in

k ∼ κ, crossing over to the same exponential tails (green squares and red triangles).

To understand the behavior of the degree distribution, let us turn to a theoretical description

of the model. Though the dynamics of this model is very simple, the process of link updates does

not obey detailed balance. As a result, solving the exact master equation (6.7) is challenging
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(see Appendix A for details). However, instead of working with the exact master equation, we

find the behaviors of degree distribution can be explained well in the context of an approximate

master equation:

Δρ(k, t) ≡ ρ(k, t+ 1)− ρ(k, t)

= W [k, k + 1]ρ(k + 1, t) +W [k, k − 1]ρ(k − 1, t)

− (W [k + 1, k] +W [k − 1, k])ρ(k, t)

(3.3)

where W [k, k + 1] specifies the probability for a node with degree k + 1 to change to the

state with degree k, k ∈ [0, N − 1]. The right hand side of this equation can be written as

difference of two currents, i.e., Δρ(k, t) = (W [k, k+1]ρ(k+1, t)−W [k+1, k]ρ(k, t))− ([W [k−
1, k])ρ(k, t)−W [k, k − 1]ρ(k − 1, t)). For k ≥ 0, of course, we impose the boundary condition:

ρ(−1, t) = 0,W [0,−1] = W [−1, 0] = 0. In the steady state, the distribution ρss(k) satisfies

Δρss(k) = 0, as well as all currents being vanishing. Therefore, we obtain

W [k − 1, k]ρss(k) = W [k, k − 1]ρss(k − 1). (3.4)

To solve this equation, our next step is to determine the rates, W [k, k − 1] and W [k − 1, k].

Focusing on a randomly chosen node i with degree ki, we notice that, in each attempt, the

probability to select node i is 1/N , and the rate for the node itself to create (destroy) a link is

just w(ki) (1 − w(ki)). Besides, the remaining N − 1 nodes also contribute to updating links

of i, i.e., the degree of i can be changed by the other N − 1 nodes taking action on a link to

i. Of these nodes, there are ki nodes already connected to node i (group A) and N − 1 − ki

ones disconnected (group B). In all cases, approximately half of them have degree less than κ,

so that the probability that any one among those N − 1 nodes will create or break a link is

1/2. Now, consider a node j, with degree k̃j , in group A, which is selected with probability

1/N . With probability 1/2, j will cut one of its links, and the probability that this is the

link to node i is 1/k̃j . We approximate ki 
 κ, and k̃j 
 κ, so the rate for any of the links

attached to i to be cut by other nodes is ki × 1/2× 1/k̃j × 1/N 
 1/(2N). Similarly, the rate

for the group B nodes to create a link to our node is also 1/(2N). Thus, we get the rates

W [k, k−1] 
 (w(k−1)+1/2)/N and W [k−1, k] 
 (1−w(k)+1/2)/N , which leads Eqn. (3.4)
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to:

ρss(k)

ρss(k − 1)
=

w(k − 1) + 1/2

1− w(k) + 1/2
(3.5)

(shown as solid lines in Fig. 3.1(b)), which is in excellent agreement with our simulation results.
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CHAPTER 4. QUANTITIES OF INTEREST AND A BASELINE

MODEL OF INTERDEPENDENT NETWORKS

The knowledge of a single homogeneous preferred degree network provides a baseline for

our study of interdependent networks. In the real world, we rarely observe single isolated

networks with distinct topology. What is more common is the coexistence of multiple networks,

interacting and supporting the function of one another. We take a first step towards the study

of topological properties of interdependent networks, by looking at a model of two interacting

networks. In this chapter, we will introduce several quantities of interest and their notations

for the interacting networks model. We will also introduce a very simple model for two coupled

networks, which will serve as a baseline for our studies of more sophisticated models. These

models will be discussed in the following three chapters.

4.1 Quantities of interest

With one more network in the system, more quantities need to characterize the networks.

Here, let us leave the details of the model description to the next section, and start with an

introduction of quantities of interest and their notations. Suppose we have two preferred degree

networks of size N1 and N2, respectively. Each network represents a homogeneous population,

having its own preferred degree κ1 (κ2). For each node in the system, there are two types

of links, the links to nodes in the same network (internal links or intra-group links) and the

links across two networks (cross links or inter-group links). Accordingly, besides a total degree,

kα (α = 1, 2), which has been well described in our study of a single-network model, in the

two-network model, there are two more types of degrees, namely the internal degree, k∗α, and

the cross degree, k×α . By definition, for each node, its degrees obey the relation kα = k∗α + k×α .
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A specific example of (k∗1, k
×
1 , k

∗
2, k

×
2 ) is provided in Fig. 4.1. Different types of degrees lead to

more degree distributions. We refer to the degree distribution discussed for the single-network

model as total (or global) degree distribution, ρα, which is associated with the total degree kα.

In addition, there are four more detailed degree distributions, ραγ (γ = 1, 2), representing the

links from network α to γ. To minimize confusion, instead of ραγ , we use the following notation:

ρ∗1, ρ
×
1 , ρ

∗
2 and ρ×2 , to represent the internal and cross degree distributions of network 1 and 2,

respectively. Again, we refer the readers to Fig. 4.1 for a specific example of degree distributions.

Clearly, ρ∗1 and ρ∗2 are two distinct distributions. Here, we should emphasize that even though

ρ×1 and ρ×2 provide distributions of the same set of links, they contain distinct information

about these links. Specifically, the total number of cross links satisfies X = Σk×1 = Σk×2 ; but

the two networks differ in how the X cross links are distributed over the respective nodes. This

can also be observed in Fig. 4.1. Therefore, generally, ρ×1 differs from ρ×2 .

Figure 4.1 The nodes of the two groups are denoted by open blue (1) and closed

red (2) circles. The intra-group links are shown as blue dashed and red

solid lines, while the inter-group links are dot-dashed lines (black). For

this network, the sets of k’s are: k∗1 = {2, 1, 2, 1, 2}, k×1 = {1, 0, 2, 1, 0},
k×2 = {0, 0, 1, 3, 0, 0}, and k∗2 = {2, 2, 2, 1, 3, 2}. Thus, the non-vanishing contri-

butions to the distributions are ρ∗1 (1) = 2, ρ∗1 (2) = 3, ρ×1 (1) = 2, ρ×1 (2) = 1 and

ρ×2 (0) = 4, ρ×2 (1) = 1, ρ×2 (3) = 1, ρ∗2 (1) = 1, ρ∗2 (2) = 4, ρ∗2 (3) = 1.

While the degree distributions provide us with detailed knowledge about the topology of
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the two-network model, a simpler global measure, which captures the coupling strength, is the

total number of cross links, X. Moreover, the time trace of X, X(t), serves to describe how

tightly the two networks are coupled at any time. Given X(t), we can compile the distribution

of X, which is denoted by P (X). When the system reaches stationary state, the mean of the

distribution, 〈X〉, is given by ΣXP ss(X), where P ss represents the distribution in “steady

state.” Clearly, 〈X〉 and 〈k〉 must obey the following condition: 〈X〉 = Nα〈k×α 〉. In addition

to the distribution of X, it is also possible to explore its frequency content by measuring

the power spectrum, I(ω). Given the time trace X(t), a Fourier transformation is defined as

X̃(ω) ≡ ∑T
t=1X(t)eiωt where ω = 2πm/T , T is the number of data points of X(t). The power

spectrum is obtained by averaging over several Fourier transformation series: I(ω) = 〈|X̃(ω)2|〉.

4.2 A simple two-network model

With a second network present, there are numerous possibilities to construct interaction

between them. If no cross link exists, we end up with two isolated single networks. Therefore, a

key issue we face is how to establish the cross links, and of course, different rules of introducing

cross links result in different models. Before we examine more involved two-network models, let

us first present a very naive approach to construct interactions between two networks. Here we

reuse the single-network model discussed in the last chapter, and partition the set of nodes into

two distinct subsets, by randomly relabeling them with red and blue, respectively. The links

are updated according to the following rules. We start with a single preferred degree network

consisting of 2N nodes, each assigned the same κ. Amongst the 2N nodes, we arbitrarily label

N of them as red and the rest as blue, but we do not distinguish red and blue nodes when

updating links. Hence we use the same link update rules as in the single-network model, and

specifically, for simplicity, we choose w(k) as Θ(κ−k), where Θ is the Heavyside step function.

In each attempt, a node is selected from 2N nodes at random, and its degree k is noted. If

k > κ, the node cuts one of its existing link. If k < κ, the node adds a link to an unconnected

node. Its partner is selected at random from all the remaining 2N − 1 nodes. So far, this is

just the single-network model of the previous chapter. However, when we take measurements,

we distinguish between red and blue nodes. Therefore, in fact, we have a two-network model,
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each network consisting of nodes of one color (red or blue), as well as different types of links,

namely red− blue, red− red, blue− red and blue− blue connections.

Given the updating rules above, effectively, the red− red and blue− blue links are internal

links, while the red − blue and blue − red links are cross links. Clearly, in this simple model,

the total degree distribution is exactly the same as the degree distribution in a single preferred

degree network model. Therefore, let us focus on the internal and cross degree distributions.

2N is chosen to be 2000 and κ to be 250, so that each group in the system has 1000 nodes

and the same κ, which is comparable to the single-network model. The simulation results are

shown in Fig. 4.2. All the four degree distributions (associated with red − blue, red − red,

blue− red and blue− blue links, respectively) are on top of each other. They are Gaussian like

and centered at κ/2.
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Figure 4.2 Degree distributions of the relabeling two-network model, with 2N = 2000 and

κ = 250. The markers and solid line represent the simulation results and theoretical

prediction, respectively.

The behavior of the degree distributions can be explained by a binomial distribution. From

the discussion of the single-network model, we know that in a preferred degree network, the

total degree distribution is sharply peaked at κ, that is, the average degree of each node is

approximately κ. In this simple two-network model, κ is 250, and therefore, in the steady state,
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on average, each node has 250 links. In other words, each node is approximately connected to

250 other nodes (neighbors). As we arbitrarily partition the nodes into two equal groups, the

chance that a node is labeled as red or blue is the same. Therefore, amongst 250 neighbors of

a node, any of them is marked as red (blue) with probability 1/2. Thus, the probability, that

k neighbors of a randomly selected node are labeled as red (blue), is
(
κ
k

)
(1/2)k(1 − 1/2)κ−k,

indicating a binomial distribution (shown as a solid line in Fig. 4.2).
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Figure 4.3 This figure shows (a) P ss(X) and (b) I(ω) for the simple relabeling model with

2N = 200, κ = 25.

Another simple quantity used to characterize two-network models is the total number of

cross links X, describing how strongly two networks are coupled each other. In this model,

specifically, X is the number of red − blue (or blue − red) links. To make our data more

comparable to our studies reported in the next chapters, when measuring X, we choose a

smaller system, where 2N = 200 and κ = 25. To obtain the distribution of X, we run the

simulation for 107 MCS, and measure X once every 100 MCS to record its time trace X(t). Its

distribution P ss(X) is compiled fromX(t) (see Fig. 4.3(a)). The resultant P ss(X) is a Gaussian

distribution with mean 〈X〉 close to 1275 and standard deviation σ 
 25. This distribution

can be explained by the central limit theorem. Suppose the random variable associated is

x, which in our case is the number of cross links any node has. Given x, X can be written

as Σredx (or Σbluex). As discussed in the previous paragraph, in the stationary state, the
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distribution of x can be explained by a binomial distribution
(
κ
x

)
(1/2)x(1− 1/2)κ−x with mean

〈x〉 = κ/2 = 25.5/2 = 12.75 and standard deviation σx =
√

25.5(1− 1/2)/2 =
√
25.5/2. Since

there are 100 red nodes (or 100 blue nodes), the mean of X is simply 〈X〉 = 100〈x〉 = 1275,

and the standard deviation is σX =
√
100σx 
 25.

Finally, we study the power spectrum of X. To calculate the power spectrum, we measure

a series of time traces {X(t)}, each 2 × 106 MCS long. In each run, X is measured every 100

MCS, so that the number of data points T is 2 × 104. I(ω) is obtained by averaging over

20 Fourier transformation series, shown in Fig. 4.3(b), with the first 104 points of the power

spectrum plotted. As expected the dynamics of X(t) is governed by white noise.

As expected, with such simple dynamical rules, the features of this relabeled two-network

model are trivial. This work provides us with a baseline for our study of interdependent network

models. In the following chapters, we will introduce different methods to model the interaction

of networks, and present both simulation results and analytical considerations.
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CHAPTER 5. INTERACTING DYNAMIC NETWORKS I:

A GENERAL MODEL

In this chapter, we introduce interactions between two preferred degree networks by a

new parameter controlling the preference of updating cross links. We start with a detailed

model description, followed by discussions of the degree distributions and the number of cross

links. In this system, we deal with a much larger parameter space, each network involving

three parameters. To characterize the network model well, we explore the parameter space

systematically, providing simulation results with selections of different parameter sets. We find

both understandable and puzzling features. Generalizing the prediction for the homogeneous

population, we are able to explain the total degree distributions well, but not the intra- or

inter-group degree distributions. When monitoring the total number of inter-group links, X,

we find very surprising behavior. Remarkably, a simple self-consistent mean-field approach

works well to predict the distribution of X in a special regime.

5.1 Model description

This section provides an introduction of a method to couple two preferred degree networks

[12, 13, 108]. We start with two isolated preferred degree networks, each of sizeNα and preferred

degree κα (α = 1, 2 distinguishing between network 1 and 2). The total number of nodes in the

system is defined as N ≡ N1 +N2. In general, N1 �= N2 and κ1 �= κ2. To reduce complexity,

in all two-network models, we only consider the most rigid population, where the rate function

w(k) is a Heavyside step function, Θ(κ − k). As we stated in the discussion of the baseline

model for the interdependent networks, the key step to construct a two-network model is to

establish the cross links, so now we focus on the formation of cross links in this model. In this
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chapter, we restrict ourselves to only one mechanism of establishing interaction, and leave other

possibilities to later chapters. When a node is selected to update its links, e.g., add a contact,

we have to specify whether to add an intra- or inter-group connection. To make this decision,

a very simple method is to introduce an interaction strength χ ∈ [0, 1], which is the probability

that a cross link is selected to update. Accordingly, the dynamics is modified as follows. In an

attempt, a node is selected from the entire population at random, and its degree, k, is noted.

If k > κ, the node will cut one of its existing links, and otherwise, it will add a new link to a

neighbor not yet connected to it. Regardless of adding or cutting, the action will be executed

on a cross link with probability χ. Similarly, 1−χ is the probability that the action is taken on

an internal link. In that sense, the fraction of cross links depends on χ, i.e., χ = 0 results in two

isolated networks, while with χ = 1, the system describes two networks updating inter-group

connections only. However, we will see later that χ does not control the exact number of cross

links, but plays a role as the preference of updating cross links. In general, the two networks

may have different preference of interacting with the other group, i.e. χ1 �= χ2.

5.2 Statistical properties and theoretical understanding

5.2.1 Degree distributions

Similar to the single-network model, we first concentrate on the degree distributions. In the

two-network model, each network is associated with three parameters, N , κ and χ, and this

results in a 6-dimensional parameter space. To effectively explore the effect of each parameter

on the system, we restrict ourselves to keeping two pairs of parameters fixed and letting the

third vary, i.e., equal N ’s and κ’s, but χ1 �= χ2, equal N ’s and χ’s, but κ1 �= κ2, and equal κ’s

and χ’s, but N1 �= N2. In our simulations, one MCS is defined as N (= N1 +N2) attempts of

updating a link, such that we can insure that each node has the chance to be picked once.

5.2.1.1 Equal N ’s and κ’s, but χ1 �= χ2

With equal N ’s and κ’s, clearly, we have two identical preferred degree networks when there

is no interaction. When they are coupled, the only difference between them is the preference of
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updating cross links. To make the simulation results comparable to the single-network model,

we also choose N1 = N2 = 1000 and κ1 = κ2 = 250. Similarly, in our simulations, we discard

the first 2K MCS and obtain the simulation results by averaging over 104 measurements,

separated by 100 MCS. As mentioned in the previous chapter, we can consider different classes

of degree distributions, the total degree distribution ρ, and the detailed degree distributions

ρ∗ and ρ×. Let us first consider the total degree distributions in the steady state, ρssα . With a

new parameter introduced, the two-network model does not generate a brand new type of total

degree distribution. Like the degree distribution of the homogeneous population, ρssα is also

a symmetric, two tailed exponential distribution (∝ e−μ|k−κ|). Meanwhile, we find the tail is

ε-dependent, where ε ≡ χ1−χ2. Simulation results are presented in Fig. 5.1(a). It shows three

systems with ε = 0.2, but different set of χα’s. Clearly, for the three systems studied, ρss1 and

ρss2 collapse onto two curves. Additionally, when the two networks have equal χ’s (ε = 0), ρssα

is identical to the degree distribution of a single network model. These observations indicate

that though it does not dramatically change the topological properties of networks, χ affects

the structure of the two-network model by changing the slope of the exponential tails. Next, let

us provide a theoretical analysis of how the interaction strength χ influences the distribution

by developing a mean-field theory for ρssα .

Here, we reuse the approach from the single-network model, following the line of thought

which led to Eqn. (3.4). First, we have to determine W [k − 1, k] and W [k, k − 1]. Note that

W [k − 1, k] specifies the probability for a node to change its degree from k to k − 1. Let

us first focus on W [k − 1, k], and suppose we are looking at a node i in network 1. The

contributions to this rate come from, (1) node i itself cutting a link, and (2) other k nodes

already connected to i cutting the link to i. Recall that the rate for a node itself to cut a link

is just (1− w(k))/N , as discussed in the single-network model. In the two-network model, no

change is needed for (1). For contribution (2), instead of treating all other nodes the same,

now we have to distinguish neighbors of node i by their groups (in network 1 or in network 2).

Let us point out that in Eq. (3.5), 1/2 accounts for the remaining nodes taking actions on the

selected node. A neighbor of i in network 1 will choose to update a link to a node in network 1

with probability 1− χ1, and this rate is χ2 for a node in network 2. Therefore, the probability
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Figure 5.1 (a) The markers without and with cross show simulation data for ρss1 and ρss2 ,

respectively. The system parameters are: N1 = N2 = N/2 = 1000, κ1 = κ2 = 250

and fixed ε = χ1 − χ2 = 0.2. The solid lines represent the theory. (b) Simulation

results of internal and cross degree distributions for the system with χ1 = 0.5 and

χ2 = 0.3.

for (2) is (1−χ1 +χ2)/(2N), where 1/N accounts for choosing a node from N nodes. Now we

have found that W [k − 1, k] = (1− w(k) + (1− ε)/2)/N . Following a similar analysis, we can

find W [k, k − 1], which is (w(k − 1) + (1− ε)/2)/N . A recursive equation for ρss1 follows as

ρss1 (k)

ρss1 (k − 1)
=

w(k − 1) + (1− ε) /2

1− w(k) + (1− ε) /2
(5.1)

and a similar equation can be established for ρss2 . The above equation of ρssα leads to

μ1 = ln
3− ε

1− ε
; μ2 = ln

3 + ε

1 + ε
(5.2)

which provides information about how the exponential tail deviates from ln3. Remarkably,

this simple generalized argument gives a good explanation for the degree distributions. The

prediction from Eqn. (5.1) is shown as solid lines in Fig. 5.1(a).

With a global picture of the network structure, let us now turn to to more specific description

of its topology, by measuring distributions ρ∗ and ρ×. The resultant ρ∗α and ρ×α are shown in

Fig. 5.1(b). Surprisingly, though the total degree distributions are symmetric exponential

distributions, these distributions appear to be Gaussian like. We expect that 〈k×1 〉 = 〈k×2 〉,
since at any time Σk×1 = Σk×2 and here N1 = N2. Our simulation results agree with this
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expectation, where both ρ×1 and ρ×2 have means around 100. On the other hand, ρ∗1 and ρ∗2

are almost on top of each other, with means around 150. All of these distributions are much

broader, O (10), than the symmetric exponential distribution. Additionally, both ρ∗α and ρ×α

can also be roughly described by the binomial distributions. To see that, let us reuse the same

argument for the simple relabeling network model (in Chapter 3): In the stationary state, each

node has approximately κ (= 250 in this case) connections. A naive picture is that 0.4 (average

of χ1 and χ2, as a rough guess) of the neighbors are cross links, and 0.6 of them are internal

links. Therefore, we arrive at the following binomial distributions
(
250
k

)
(0.4)k (0.6)250−k 
 ρ×

and
(
250
k

)
(0.6)k (0.4)250−k 
 ρ∗. This rough argument captures the right mean: 〈k×〉 = 0.4κ =

0.4 × 250 = 100 and 〈k∗〉 = 0.6κ = 0.6 × 250 = 150. We should clarify that even though we

repeatedly use the terms binomials and Gaussians, these distributions are not precisely so, but

how they deviate from such binomials or Gaussians is beyond the scope of this work.

We should point out to our readers that the Gaussian like ρ∗ and ρ× only characterize the

properties of internal and cross links over a short time scale (O
(
104

)
MCS), which is denoted

by τshort. As we measure the detailed degree distributions at much later times, e.g., O(105) or

O(106) MCS, different features appear. We discover two different time scales associated with

our system. In this subsection, let us focus on the description of this model over τshort, and

leave the discussions of the features over the longer time scales to the next subsection.

5.2.1.2 Equal N ’s and χ’s, but κ1 �= κ2

In this section, we examine two networks with same size and interaction strength, but

different preferred number of contacts. When two groups of nodes are assigned different κ, i.e.,

κ1 < κ2, it is natural to refer to the two networks as introverts and extroverts, respectively.

In other words, this simple two-network model simulates the interaction between an introvert

population (I’s) and an extrovert population (E’s). With different κ’s, a new feature appears in

the system. E’s have larger κ so that they prefer to have more inter- and intra-group contacts,

while I’s with smaller κ tend to maintain fewer internal and cross links. Thus, I’s may receive

more connections than wanted, and they keep cutting unwanted links. We term the competition

between I’s and E’s as frustration. In this chapter, we will only look at systems with moderate
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difference between κ1 and κ2, leaving the discussions of maximal frustration to Chapter 6.

In Fig. 5.2(a), we show ρssα of the system with κ1 = 100 and κ2 = 250 (N1 = N2 = 1000,

χ1 = χ2 = 0.5). Both ρssα ’s are consistent with a Laplacian distribution with μ ∼= ln3, centered

at their own κα’s. ρ
ss
α here can also be explained by Eqn. (5.1) by setting ε to 0, which is reduced

to Eqn. (3.5), the theory for degree distribution in a single-network model. Therefore, with

moderate difference in κα, the interaction between two networks introduces no new behaviors

in ρssα . However, if we keep increasing |κ1 − κ2|, ρssα will eventually deviate from Laplacian

distributions (see next chapter). Next, we turn our focus to the four detailed distributions

ρ∗α and ρ×α , which are shown in Fig. 5.2(b). They are also measured at τshort. Again, they

are Gaussian like distributions, but appear to have different means and widths. As mentioned

before, the means of k×α should obey N1〈k×1 〉 = N2〈k×2 〉, and since here N1 = N2, we should

also get 〈k×1 〉 = 〈k×2 〉, which agrees with the simulation result. A simple estimate for 〈k×α 〉,
namely 〈k×α 〉 
 (κ1χ1 + κ2χ2)/2 = 87.5, provides some insight into its numerical value. The

simple scheme produces a good fit to simulation results. In addition, we have another identity,

〈kα〉 = 〈k×α 〉+〈k∗α〉. Thus, the mean of internal links is 100−87.5 = 12.5 and 250−87.5 = 162.5,

respectively, which also roughly agrees with the simulation data.
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Figure 5.2 (a) ρss, (b) ρ∗ and ρ× for network 1 and network 2, with parameters

N1 = N2 = N/2 = 1000, κ1 = 100, κ2 = 250, and χ1 = χ2 = 0.5. Solid

lines are theoretical predictions.
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5.2.1.3 Equal κ’s and χ’s, but N1 �= N2
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Figure 5.3 (a) ρss, (b) ρ∗ and ρ× for network one and network two, with parameters N1 = 500,

N2 = 1000, κ1 = κ2 = 250, and χ1 = χ2 = 0.5. Solid squares and triangles

represent ρ∗1 and ρ×1 . Empty squares and triangles stand for ρ∗2 and ρ×2 .

In the last part of this section, let us change the third system control parameter N and

check how it affects the properties of our model. Now we consider two networks with same

preference but different sizes, specifically, κα = 250, χα = 0.5, N1 = 500 and N2 = 1000. The

simulation results are presented in Fig. 5.3. Again, we may also expect frustration between

networks. Though they are both assigned the same κ (= 250), the total amount of links

each group demands is 250N1 and 250N2, respectively, and therefore, the larger group wants

more links than the smaller group. However, similar to the system with moderate difference

in κα, with modest difference between the sizes, ρssα presents no distinct characteristics from

the distributions we have seen before. We should also point out that in the extreme cases (i.e.

N1 
 N2), the smaller group may have no internal link, i.e., all of its links are cross links

coming from the larger group. Thus, ρss1 is essentially ρ×1 , which is certainly not a Laplacian

distribution. Even though ρssα displays no new features when different system sizes are chosen,

it is clear that the Laplacian distribution is Nα-dependent (see Fig. 5.3(a)). To explain the

changes induced by system size, we turn to theoretical analysis. We reuse Eqn. (3.4), and as

before, we have to determine w[k − 1, k] and w[k, k − 1]. Again, we focus on w[k − 1, k] and



36

consider a chosen node i in network 1. w[k − 1, k] consists of two contributions: (1) node

i itself cutting a link (with rate (1 − w(k))/N), and (2) other k nodes already connected to

i destroying the edge to i. From our previous discussion, we know that in a single-network

model, the probability for (2) is 1/2. In a two-network model, we have to consider both Nα

and χα. Suppose that i has k×1 cross links, and any neighbor of i in network 2 has k×2 cross

links. We approximate k×1 and k×2 by their averages, and recall that 〈k×1 〉N1 = 〈k×2 〉N2. A

relation between k×1 and k×2 is found, i.e., k×1 = k×2 N2/N1. Therefore, the probability that

neighbors of i in network 2 will cut a link to i, is enhanced by a factor of N2/N1. Including

this factor, we find that i’s neighbors in network 2 will cut a link to i with rate χ2N2/(2N1).

On the other hand, this rate for neighbors of i in network 1 is unchanged, still (1−χ1)/2. Now

the 1/2 in Eqn. (3.5) has been modified to

1

2

{
N2

N1
χ2 + (1− χ1)

}
, (5.3)

and we can get the same form for the rate of adding links. In fact, this is a general expression

for the rate, with which other nodes take actions on a chosen node in the two-network model.

Here, we can further simplify the above expression, by plugging χ1 = χ2 into Eqn. (3.5), and

finally reach the equation

ρssα (k)

ρssα (k − 1)
=

w(k − 1) +N/4Nα

1− w(k) +N/4Nα
(5.4)

to predict degree distributions (solid lines in Fig. 5.3(a)). Again, the theory provides good

agreement with simulation data.

Not surprisingly, the four detailed degree distributions, ρ∗α and ρ×α , are Gaussian like. Their

means are located at different values. Of course, the means should also obey 〈k×1 〉N1 = 〈k×2 〉N2

and 〈k∗α〉+ 〈k×α 〉 = 〈kα〉. In our simulation, network 2 is twice as large as network 1. Therefore,

it is understandable that ρ×1 is centered at ∼ 185, which is twice of 〈k×2 〉, valued ∼ 90. Addi-

tionally, the corresponding internal degree is ∼ 65 and 160, respectively. Again, these ρ’s are

measured at τshort.

Although exploration of these three types of systems (unequal χ’s, κ’s, N ’s) is not suffi-

cient to provide us with a complete picture of interacting networks model, they do point to

some common themes. In the limited parameter range that we have explored here, the total
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degree distributions in the steady state, ρssα (k), can be reasonably well described by a simple

approximation scheme for their master equations, which leads to recursive solutions. To ex-

amine further details, such as how the degree k is partitioned between intra-group connections

(k∗) and cross links (k×), we study four other specific degree distributions, ρ∗,×α by simulations

and find them to be Gaussian like distributions. A very crude estimate, based on binomials,

appears to be adequate, especially for describing their properties over relatively short time

scales, τshort.

5.2.2 The total number of cross links, X

As mentioned before, there are two different time scales associated with this system, and

the features over τshort are examined in the previous subsection. Recall that when we measure

the total degree distribution, 2K MCS is enough to let the system relax into the stationary

state, that is, O
(
103

)
MCS is sufficient for the system to reach the state where each node has

approximately κ links, from an empty network. Besides, it only takes O
(
104

)
MCS (τshort)

for us to collect enough data and get a good measurement for the total degree distribution.

During τshort, the specific degree distributions ρ
× and ρ∗ settle into Gaussian like distributions.

However, we observe that the centers of these detailed distributions appear to wander slowly

over longer time scales. That is, if we let the system continue to evolve till much later times, e.g.,

O(105) or O(106) MCS, and then measure ρ× and ρ∗ over τshort again, they are still Gaussian

like distributions with unchanged width, but their means have shifted. In other words, there

is a much larger time scale, τlong, after which the system finally relaxes into the true steady

state. In this subsection, we will discuss the features of the system measured over τlong.

As discussed above, the means of ρ∗,×α are slowly wandering. Note that, for either network,

their means obey 〈k∗α〉+〈k×α 〉 = 〈kα〉. Therefore, with pre-assigned κα, instead of studying all the

means, we can focus on either cross links or internal links, and the other is automatically found.

For convenience, let us concentrate on cross links only. We believe that the slow wandering of

the means can be traced to similar behaviors of X: While at shorter time scale, X is relatively

constant, and the value may slowly vary on the longer time scales. This subsection provides a

systematic investigation of how X depends on the various aspects of the two groups.
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Figure 5.4 Four independent time traces X(t) for a system with N1 = N2 = N/2 = 1000,

κ1 = κ2 = 250 and χ1 = χ2 = 0.5. In the inset, we show a small section (104

MCS) of the red trace, to illustrate how little X varies at this time scale. Note the

scale for X here spans just 4K, compared to the 250K in the main figure.

To make connection with the results for the degree distributions, we first present the sim-

ulation results of a symmetric system with parameters comparable to studies in the previous

subsection (Nα = 1000, κα == 250, χα = 0.5). In Fig. 5.4, we show four independent runs

of X(t) over 3M MCS, and they are similar to random walks. All four runs start from empty

networks, so that the initial value X(0) is 0. Even though the four runs wander widely after

∼ 105 MCS, it is notable that for all of them, at the beginning of simulations, X increases

rapidly to a certain value (∼ 125K) and stays there for a short while. The value 125K can be

estimated by Nακαχα. In the figure, clearly, one can tell that none of the runs have reached

their boundaries yet, and they just start to “walk.” A reasonable estimate of the allowed range

for X is 0 ≤ X � Nακα. The lower bound is obvious, which represents the situation where

there are no cross links, while the upper bound is achieved when each node has the maximally

allowed number of links and all the links are cross links. The figure illustrates that τlong � 3M
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MCS for this system to finally reach its stationary state. Here, we should also point out that

within the short time scale τshort ∼ 104 MCS, X is relatively constant (shown as an inset in

Fig. 5.4). Note that, within the interval of τshort, the degree distribution of cross links, ρ×α , is

Gaussian like. These distributions can also be explained by the following simple arguments:

Within τshort, X can be treated as a constant. Since all the updates of links are done at ran-

dom, we may assume that the X cross links are distributed randomly among Nα nodes in each

group. Therefore, this question is simplified to a problem of throwing X links arbitrarily on

Nα nodes, which is well characterized by a binomial distribution,
(
X
k

) (
N−1

α

)k (
1−N−1

α

)X−k
.

100000 200000 300000
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2500
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Figure 5.5 Three time traces of X (red, green, and black), for a system with

N1 = N2 = N/2 = 100, κ1 = κ2 = 25 and χ1 = χ2 = 0.5.

We have seen that for a large system (Nα = 1000) to settle down to the stationary state,

it will take τlong � 3M MCS, which is computationally expensive. To make our further

exploration of X easier, we have to consider smaller systems, accordingly, with smaller κ’s.

Thus, in the following discussions on X, only smaller systems with N1 + N2 = 200 will be

examined. To connect with the large system, let us first study the symmetric system, where
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N1 = N2 = 100, κ1 = κ2 = 25 and χ1 = χ2 = 0.5. With a similar analysis, we can argue

that the allowed range for X is from 0 to roughly ∼ Nακα = 2.5K for the smaller system. In

Fig. 5.5, we display three short sections (each 105 MCS long), obtained from partitioning a

single long run (107 MCS). Note that for this small system, X(t) indeed traverses the full range

in each case. Besides, none of them wander closely to their minimum or maximum allowed

value, and instead, they all fluctuate between ∼ 500 and ∼ 2000. The time trace is much like

an unbiased random walk confined between two “walls.” To probe deeper into the hypothesis

and illustrate the distinct features of X, let us turn to more measurable quantities of X, and

meanwhile make comparisons to the simple relabeling model.

5.2.2.1 Comparison between homogeneous and heterogeneous populations

Let us first briefly remind our readers of the relabeling model. This model updates its links

following the same steps as in a single network model, and therefore, essentially this simple

model has no difference from a homogeneous population. To define cross links in a single

network, we arbitrarily partition the nodes into halves, relabeled as red and blue, and treat the

red − blue links as cross links. Significantly, in this model, only when taking measurements,

we distinguish between red and blue nodes, so that the relabeling does not affect the link

updates. Therefore, the comparison between this model and the two-network model is in fact

a comparison between homogeneous and heterogeneous populations. In this subsubsection, we

will show that the interaction between networks brings substantial changes to the topology of

a network.

To get the distribution of X, with confidence that the system has reached steady state, we

compile a histogram, P ss (X), from the time trace and show the results in Fig. 5.6. The green

curve is P ss (X) for the simple relabeling model. It can be well described by a Gaussian, with

mean close to 1275 and standard deviation σ ∼ 25. As discussed before, this distribution can

be well explained by the central limit theorem (see Chapter 3). By contrast, the simulation

results of the two-network model paint a completely different picture. Unlike the P ss(X) of a

single network, P ss(X) is not a Gaussian; instead, it is a broad and flat distribution, around the

mean of approximately 1250 (i.e., Nακαχα) with soft cutoffs at both ends. Such a distribution
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Figure 5.6 This figure shows P ss (X) for two-network model (red) with N1 = N2 = 100,

κ1 = κ2 = 25 and χ1 = χ2 = 0.5, as well as P ss (X) for a base relabeling model

(green) with N = 200 and κ = 25.

is consistent with the idea that X (t) executes a simple random walk between two soft walls,

located approximately at Xmin ∼ 500 and Xmax ∼ 2000. However, in the following discussion,

we will see that in principle, X is not constrained between these two values. Clearly, for any

two networks system, the lowest possible value of X is 0, when all the links are only distributed

inside each network. As for the upper bound, a rough estimate is καNα, where every node

in the system has κα cross links. Other than these two boundaries, there is no constraints

on X. In principle, X can explore the whole range. However, as we have seen in the figure,

X only explores from ∼ 20% to ∼ 80% of its allowed range. Later in this chapter, we will

systematically study how the range of X depends on the parameters. But now let us continue

the comparison between one- and two-network models.

To confirm our expectation, we construct the power spectrum of X and explore the fre-

quency content of X. With the time trace {X(t)}, each 2× 106 MCS long, we define a Fourier

transformation as X̃(ω) ≡ ∑T
t=1X(t)eiωt where ω = 2πm/T , and T is the number of data

points of X(t), 2 × 104 (m∈[0, T ]). The power spectrum is obtained by averaging over 20
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Figure 5.7 This figure shows I(ω) for two systems: the red line represents I(ω) of two-network

model with Nα = 100, κα = 25 and χα = 0.5, and the green line represents I(ω)

of single-network model with N = 200, κ = 25. The dashed line is ∝ 1/ω2.

Fourier transformation series: I(ω) = 〈|X̃(ω)2|〉. In Fig. 5.7, we plot the first 104 points of the

power spectrum, and find that I(ω) of the two-network model (red line) is consistent with 1/ω2

(dashed line) beyond some ω0. 1/ω0 corresponds to the time that it takes for X to explore the

whole range before it notices the wall. By contrast, I(ω) for the single-network model (green

line) is a flat spectrum, containing equal power of any frequencies.

Let us have a short summary about what we have found from the comparison between the

single- and two-network models. When the two models have comparable sets of system param-

eters, their degree distributions have no significant difference. (The total degree distributions

of the two-network model are also symmetric exponential distribution, but the width depends

on the system parameters.) With more careful examinations, however, we discover that X

exhibits remarkably different behavior when two networks are coupled. We have shown that

X(t) reflects an unbiased random walk confined between two walls. But it is puzzling where

the walls are and how their locations depend on the parameters. To answer these questions,



43

we have to investigate X more systematically.

5.2.2.2 Systematic study of the statistical properties of X
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Figure 5.8 The (a) means and (b) standard deviations of P ss(X) for two-network model with

Nα = 100, κα = 25, and different χα’s, as a function of χα.

In this subsubsection, we will study the statistical properties of X as a function of the

parameters of the two-network model: Nα, κα, and χα (α = 1, 2). As a start, we only consider

two symmetric networks, where N1 = N2, κ1 = κ2 and χ1 = χ2. Thereafter, we move forward

to a more general two-network model, where N1 �= N2 and κ1 �= κ2. For all selected parameter

sets, we measure the mean, 〈X〉, and the standard deviation, σ, of P ss(X), the distribution of

X. We believe these two quantities characterize P ss(X) well, since the former describes the

center of P ss(X) and the latter specifies the width. Therefore, to compare P ss(X) of different

systems, instead of displaying the whole distribution, we focus on 〈X〉 and σ, and explore the

statistical properties of X in the following cases: Each time, two of the three pairs of system

parameters are fixed, and the third one varies. In the simulations, we always start with empty

systems, and run two independent simulations, each 107 MCS long. X is measured once every

100 MCS, so that there are 2 × 105 data points in total for each system parameter set. We

then calculate the means and standard deviations.
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5.2.2.3 Symmetric networks: Fixed N ’s and κ’s, but varied χ’s.

To have comparable parameters to our previous study, we choose the value of Nα and κα to

be 100 and 25, respectively, and vary χα (with χ1 = χ2). Recall that χα controls how closely

two networks are coupled: The larger χ is, the more often the two networks update their cross

links. As mentioned before, in the extreme case, χα = 0 results in two isolated networks,

while if we set χα = 1, the internal links are frozen and only cross links are updated. Other

than these two cases, the networks can choose to update either internal or cross links, and the

preference is determined by χα. Here, we will avoid the extreme cases, and only study more

general values, χα ∈ (0, 1). We should emphasize that χα specifies the preference of updating

cross links though it does not directly reflect the fraction of cross links. As the same χα is

applied to both adding and cutting actions, the preference of a node to add or cut a cross link

is the same: If a node is highly likely to add cross links, it is just as likely to cut them. In that

sense, clearly χα is not directly related to the value of X, but to the frequency with which X

changes. Therefore, our expectation is that changing χα will not affect 〈X〉 or σ. In Fig. 5.8,

we present our simulation results. The simulation paints a picture similar to our expectation,

especially for σ. A slow rising trend of 〈X〉 is observed (in (a)) though there is no huge change

in 〈X〉: Its value changes from ∼ 1190 to ∼ 1370 ( a change of ∼ 15%) along with the increase

of χα from 0.1 to 0.9. It is difficult to explain these variations in detail, though the typical

values deviate little from 〈X〉 ∼ 1272 in the symmetric case (χα = 0.5), as predicted above.

Furthermore, the plot of Fig. 5.8(b) confirms our expectation of σ’s, which are more or less the

same, all valued at ∼ 300, for different χα’s. We will next see that more interesting behavior

appears when we vary the other two control parameters. Changing χα (between 0 and 1) does

not affect the distribution of X too much, so in the rest of this chapter, we will always keep

χα unchanged.

5.2.2.4 Symmetric networks: Fixed N ’s and χ’s, but varied κ’s.

In this part, we will consider two networks with same size and χα, but different κα. In our

preferred degree network, κα is the key system parameter, which determines the average degree
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Figure 5.9 The (a) means and (b) standard deviations of P ss(X) for the two-network model

with Nα = 100, χα = 0.5, and different κα’s, as a function of κα.

of each node. Therefore, the change of κα is supposed to have significant influence on X. To

confirm this conjecture, we now vary κα , and keep Nα = 100 and χα = 0.5. The resultant 〈X〉
and σ are shown in Fig. 5.9.

Not surprisingly, 〈X〉 increases along with κα. This can be understood by the following

arguments. In the Section 5.2.1, we have seen that in the steady state, ρα(k) is sharply peaked

at κα, and the distribution is symmetric around κα. Therefore, we can roughly assume that in

the steady state, each node has approximately κα links. Besides, since the two networks are

symmetric and particularly, their preference of updating cross links, χα, is 0.5, we may expect

that the internal and cross degrees of any node are equal. Thus, we can approximate 〈X〉 by

καNα/2, which is plotted as a solid line in Fig. 5.9(a). Clearly, this simple argument provides

a reasonably good prediction of 〈X〉.
Next, let us move on to the other quantity, σ, which is associated with the lower and upper

bounds of X. As discussed before, in this two-network model, the two bounds of X are 0

and καNα. Other than these two boundaries, in principle, there are no constraints on X.

Therefore, X is supposed to be able to explore the whole range. If this is true, we expect that

σ should be positively correlated with κα. However, our simulation again displays a different

picture. It turns out that the distribution of σ is symmetric around κα, and σmax appears when

κα = Nα. If we continue increasing κα beyond that point, σ instead decreases. Besides, we also
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run similar simulations on other system sizes, and all the results reflect the same observation:

Instead of increasing along with κα, σ achives its maximum when κα = Nα. That is, X has

the largest fluctuation in the most symmetric system. In this case (κα = Nα = 100), P ss(X)

has the largest width, and X wanders from ∼ 5% to ∼ 95%. When κα differs from Nα, the

actual allowed range of X is narrowed down, e.g., when κα = 25, X can only explore from

approximately 20% to 80% of its allowed range.

5.2.2.5 Symmetric networks: Fixed κ’s and χ’s, but varied N ’s.
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Figure 5.10 The (a) means and (b) standard deviations of P ss(X) for the two-network model

with κα = 25, χα = 0.5, and different Nα’s, as a function of Nα.

In this subsubsection, we vary the system size Nα, while fixing κα = 25 and χα = 0.5.

When the number of nodes is larger, an immediate guess is that 〈X〉 will also increase. Recall

that in the previous subsubsection, 〈X〉 can be roughly predicted by καNα/2. Here we only

change Nα and keep κα fixed, and so we should arrive at the same prediction. In Fig. 5.10(a),

we plot the comparison between 〈X〉 (red squares) and καNα/2 (solid lines). The simulation

results are indeed consistent with our prediction. We also present the results for the standard

deviation, σ, in Fig. 5.10(b). To compare σ’s of systems with different sizes, we actually plot

the “normalized” standard deviation, which is σ/Nα. While the system size increases by a

factor of 10, from Nα = 50 to 500, σ/Nα decreases from ∼ 3.85 to ∼ 1.65, by a factor of ∼ 2.3.

That is, the normalized width of X slowly declines when the system gets larger.
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5.2.2.6 More general networks: Fixed χ’s, but varied N ’s and κ’s.

In the previous discussions, we have investigated the simplest cases, where the parameters

of two networks are always kept to be symmetric. Here we will turn our attention to a more

general case, in which each network has its unique parameters. However, as mentioned before,

for a system with 6 independent controlling parameters, the parameter space can be very large.

Therefore, it would be very difficult for us to explore the whole parameter space. To make our

study doable, as well as have comparable simulation results to the previous sections, we apply

three constraints on the parameters. That is, we fix the sum of the parameters: N1+N2 = 200,

κ1 + κ2 = 50, and χ1 + χ2 = 1. Moreover, after the discussion of the symmetric networks with

fixed N ’s and κ’s, but varied χ’s, we notice that the distribution of X is not dramatically

influenced by χα. Therefore, we can further reduce the space by letting χα equal 0.5. Finally,

we arrive at a confined parameter space, where Nα and κα are varied, but with constraints

N1+N2 = 200, κ1+κ2 = 50, and χα is fixed at 0.5. In Fig. 5.11, we show the results for three

different pairs of κ’s: (κ1 = 5, κ2 = 45), (κ1 = 15, κ2 = 35), and (κ1 = 25, κ2 = 25), partly

for convenience and partly for having κ1’s ratios at 1 : 3 : 5. Naturally, we refer to the network

with larger κ as extroverts, and the other group as introverts. For each κ set, we measure how

〈X〉 and σ change when the number of extroverts (N2) varies, and plot the 〈X〉’s and σ’s as a

function of N2.
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Figure 5.11 The (a) means and (b) standard deviations of P ss(X) for the two-network model

with κ1 + κ2 = 50, N1 +N2 = 200, and χα = 0.5, as a function of N2.
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With more general parameter sets, we cannot consider Nα or κα alone, since both are

changing now. For convenience, we coin the product of the two parameters the network preferred

degree, κnetwork
α ≡ Nακα. This quantity provides information about how many links each

network would like to achieve, and it can affect the number of cross links. For example, if

κnetwork
1 is much larger than κnetwork

2 , then we can observe “frustration” in such system: One

network always tries to cut the unwanted cross links, while the other one seeks to add links

to reach its network preferred degree. Therefore, we may expect that when the two networks

have equal κnetwork, both networks are “happy.”

Let us look at the plot of 〈X〉 first in Fig. 5.11(a). Not surprisingly, when the two networks

have same κ (= 25), the distribution of 〈X〉 is also symmetric. Remarkably, though the change

of κnetwork
α is the same between any neighboring data points, the change of 〈X〉 is not linear.

Recalling that when we have a system with κα = 25, Nα = 100, and χα = 0.5, 〈X〉 is observed
to be ∼ 1272, here we also find the same 〈X〉 value, not only in the symmetric system, but also

in the range between N2 = 90 to 110. When N2 further differs from 100, 〈X〉 firstly decreases

very slowly: At N2 = 60 and N2 = 140, 〈X〉 only reduces by ∼ 100. When N2 varies beyond

that range, 〈X〉 decreases much faster, changing by ∼ 200 when N2 differs by 10.

For the other cases where κ’s are not symmetric, we are not surprised by the lack of

symmetry in the curves. The plots exhibit decreasing trends in general, peaking at lower N2’s.

It may look unreasonable at first glance that 〈X〉 decreases when the population of extroverts

grows. If we think more carefully, however, we can understand why this can happen. It is true

that when N2 gets larger, the κnetwork of the extroverts is greater. But at the same time, N1

is smaller, so that the introverts prefer a smaller number of links. When the two groups are

coupled, there is large frustration between them, and the trend of 〈X〉 should depend on who

“wins.” Therefore, it is possible for 〈X〉 to decrease. (Of course, it would be highly desirable to

formulate an analytic and more convincing approximation scheme. However, to describe how

strong the frustration is, or how to predict which group plays the leading role is beyond our

goal in this study. Therefore, we only provide some qualitative analysis instead of quantitive

solutions.) Moreover, we observe that the maximal value is achieved when the two groups

prefer to have approximately the same network preferred degree, κnetwork
1 
 κnetwork

2 . This
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balance occurs at N2 = 4κ1 for our parameters, 100 for the symmetric case, and 20 and 60

for the systems with (κ1 = 5, κ2 = 45) and (κ1 = 15, κ2 = 35), respectively. While such

arguments produce a rough understanding of the data, more quantitative improvements are

clearly needed.

σ has a similar trend as the distribution of 〈X〉 (Fig. 5.11(b)). We obseve that when the

system parameters of the two networks are mostly symmetric, the system exhibits the largest

fluctuations. That is, in the figure, the systems with κ1 = κ2 = 25 and N1 ∼ N2, have much

larger σ than the other systems: The largest σ is ∼ 300, which is more than 10 times larger

than its smallest value. In addtion, this is true not only for the systems with N1 +N2 = 200,

but also for two-network models in other sizes. For the system with κα = 25, the distribution

of 〈X〉 reaches its maximum value at N2 = 100, and the peak of the distribution of σ also

appears at the same N2. However, for the other two systems with asymmetric κ’s, compared to

the distribution of 〈X〉, the largest σ appears at larger N2’s, which is around 70 for the system

with κ1 = 15 and κ2 = 35 and 40 for the system with κ1 = 5 and κ2 = 45.

Based on our discussion of two-network models with general parameters, we find it is very

involved to analytically explain the means and standard deviations of P ss(X), let alone the

whole distribution. The difficulties arise from the fact that the process of updating links violates

detailed balance, and moreover, for each node, it has two possible action options (adding and

cutting). Even though it is difficult to understand the whole plot of Fig. 5.11, one can ask if

there is a special regime that is governed by simpler rules, so that we can explain part of the

plot. Fortunately, such a regime exists. By examining Fig. 5.11(a) carefully, we notice that in

the high N2 corner, the three plots tend to merge. In that regime, the population of extroverts

is much larger than that of the introverts, and also κnetwork
2 � κnetwork

1 . That can result in

the introverts always getting more links than they want, and therefore introverts always cut

links. In that sense, in the stationary state, the extroverts either add or cut links, while the

introverts are only allowed to cut links. Clearly, this regime is distinguished from the general

case, where all the nodes can choose to add or cut links. Note that, a similar argument does

not necessarily exists in the low N2 corner, where N1 > N2 and κ1 < κ2, and it is not clear if

κnetwork
1 � κnetwork

2 or 
 κnetwork
2 . In the following subsubsection, we will present an analytical
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understanding of X in this distinct regime.

5.2.2.7 Theoretical understanding of X in a special regime.
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Figure 5.12 The means of P ss(X) for two-network model with κ1 + κ2 = 50, N1 +N2 = 200,

and χα = 0.5.

As discussed above, there is a distinct regime in Fig. 5.11, where κnetwork
1 
 κnetwork

2

(N1 
 N2). In this special range of N2, three curves merge into one point at N2 = 190. To get

a better observation, we “zoom in” on that regime, and examine more data points with large

N2’s (from 173 to 199). The simulation results are shown in Fig. 5.12. Even though the three

plots differ significantly outside the special regime, surprisingly, a universal pattern is observed

for all the three systems, i.e., the three plots of 〈X〉 are exactly the same in the extreme large

N2 regime, from ∼ 190 to 199. Here, the average degree of introverts, 〈k1〉, is typically far

larger than κ1, and perhaps a more general characterization is κnetwork
1 
 κnetwork

2 . Therefore,

introverts (I’s) always cut their links when picked to update links, so that there are no I-I

links. Moreover, with different κ sets, the value of N2, at which the system enters that regime,

is different, i.e., the plots of systems with κ1 = 5, κ2 = 45 and with κ1 = 15, κ2 = 35 merge at
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N2 ∼ 180, while the plot of system with κ1 = κ2 = 25 merges at N2 ∼ 190.

To confirm our expectation that the I’s only cut links, let us look at the degree distributions

in the special regime. A plot of typical total degree distributions in that regime is shown in

Fig. 5.13(a). The total degree distribution of extroverts (E’s) exhibits no unexpected feature.

The nodes of E’s are “content,” and the degree distribution is still consistent with a symmetric

exponential distribution around κ2, which has been well explained earlier. On the other hand,

the total degree distribution of I’s is not a symmetric exponential distribution any more, but

a Gaussian like one, peaked at ∼ 78, which is � κ1 (κ1 = 5 in figure). Moreover, the internal

degrees (green squares) of all I’s are 0. This indicates that all I’s have no internal links at

all, and all of their degrees come from cross links, and therefore the total degree distribution

is exactly their cross degree distribution. These findings support our assumption: The I’s get

too many cross links from E’s, and their degrees are much higher than the preferred degree, so

they keep cutting links (internal and cross), which eventually results in zero internal degrees.
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Figure 5.13 (a) The total degree distributions ρss1 , ρss2 for the two-network model (N1 = 10,

N2 = 190, κ1 = 5, κ2 = 45 and χα = 0.5) are represented by blue diamonds and

red triangles, respectively. The green squares represent the internal degree distri-

bution of network one, ρ∗1. (b) The total degree distributions ρss1 for two-network

models with three sets of κ1, κ2. The other associated parameters are N1 = 5,

N2 = 195, and χα = 0.5. In both figures, solid lines represent theoretical predic-

tions.



52

Thanks to the feature that there are no I-I links, the two-network model is reduced to

a simpler one: one group of nodes can add and cut links, and the other one is allowed to

cut links only. For I’s, since they have no internal links, once we can understand their total

degree distribution, we indeed interpret their cross degree distribution. Furthermore, with the

relation 〈X〉 = 〈k1〉N1, 〈X〉 can be explained once we understand 〈k1〉. Therefore, to find a

prediction for 〈X〉, let us start with formulating an approximation for the degree distribution

of I’s. Recalling our approach from Section 3.2, here we follow the same idea. Let us use

Eq. (3.4), and rewrite it as:

ρss(k + 1)

ρss(k)
=

W [k + 1, k]

W [k, k + 1]
. (5.5)

Just to remind our readers, W [k, k′] specifies the rate for a node with degree k′ to change to k.

Once W ’s are given, with the recursive relation, the stationary ρss(k) can be found explicitly.

W can be approximated by using the following arguments. Focusing on a particular I node

i, with degree k, the only possibility for it to gain one link is by an E node, e, not already

connected to it choosing to add a cross link to i. In this process, several rates are involved and

should be specified: (N2 − k) /N (the probability to choose an E node not linked to i), w+2

(the probability that e wants to add a link), χ2 (the probability for e to add a cross link), and

p (the probability that this cross link is added to i). We can estimate p as follows: On average,

each I has 〈k〉 = X/N1 cross links. If these 〈k〉 links are evenly distributed on N2 E’s, the

fraction of cross links on any E is 〈k〉/N2 = X/(N1N2), denoted by f . Thus, the number of I’s

unconnected to our node e is

1

p

 1 + (N1 − 1) (1− f) , (5.6)

where 1 is the contribution from i, and the other N1 − 1 introverts each contribute 1 − f .

Therefore, the rate p is simply 1/(1 + (N1 − 1) (1− f)). As a result, we can write

W [k + 1, k] =
1

N

(N2 − k)w+2χ2

1 + (N1 − 1) (1− f)

 1

N

(N2 − k) /4

1 + (N1 − 1) (1− f)
, (5.7)

where w+2 is approximated by 1/2, since the degree distribution of the E’s is a symmetric

exponential distribution around κ2. On the other hand, the contributions to W [k, k + 1] come

from two processes. In one process, node i itself chooses to cut a cross link: i is chosen with

rate 1/N and it cuts a cross link with probability (1 − w+1)χ1. As I’s always have degrees
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larger that κ1 in our case, w+1 is 0, and in turn, this probability is simplified to χ1 (= 1/2).

In the other process, one of the E nodes, l, already connected to i chooses to cut the cross

link to i: l is selected with rate (k + 1)/N and cuts one of its cross links with probability

(1−w+2)χ2
∼= 1/4. Following a similar argument, we find the number of cross links that l can

see is

1 + (N1 − 1) f. (5.8)

Given these rates, W [k, k + 1] can be written as

W [k, k + 1] =
1

N

[
1

2
+

(k + 1)/4

1 + (N1 − 1) f

]
. (5.9)

Finally, a recursion relation of ρss is found to be

ρ (k)

{
(N2 − k) /4

1 + (N1 − 1) (1− f)

}
= ρ (k + 1)

{
1

2
+

(k + 1) /4

1 + (N1 − 1) f

}
. (5.10)

We can write the above recursion relation as

ρ (k + 1) = ρ (k)R (k) , (5.11)

where

R (k) =
N2 − k

1 + (N1 − 1) (1− f)

{
2 +

k + 1

1 + (N1 − 1) f

}−1

(5.12)

With normalization, ρ (k) is completely determined, withN1,2 as control parameters and f

determined self consistently, through the equation:

f =
〈X〉
N1N2

=
〈k〉
N2

=
1

N2

N2∑
0

kρss1 (k) . (5.13)

Note that this is independent of the κ’s, and in that limited sense, “universal.” In Fig. 5.13(a),

we present the theory and simulation data for the degree distribution of I’s. Fig. 5.13(b)

displays ρss1 of more extreme systems with N1 = 5 and N2 = 195. Clearly, in the N1 
 N2

regime, Fig. 5.13(b) shows that ρss1 of different systems are on top of each other, and are fitted

well by the theory from Eqn. (5.11) and (5.12). We can conclude that this approximation

scheme captures the essentials of the system within this regime. As a result, we can now use

the relationship 〈X〉 = 〈k〉 /N2 to get 〈X〉 in the regime, shown as a solid line in Fig. 5.12, and

again it provides a good approximation.
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CHAPTER 6. INTERACTING DYNAMIC NETWORKS II:

THE XIE MODEL

In the previous chapter, we introduced a general two-network model, explored its statistical

properties, and discussed some difficulties we are facing. The complexity of the model arises

from the fact that in either network, each node can take two possible actions, adding or cutting

links, and each has two choices of links, inter- or intra-group links, to update. In the last part

of the previous chapter, we have seen that the features of cross links can be understood in a

special regime, where one group of population can only cut links so that its internal links are

frozen. This gives us a hint that we may have a chance to further understand the two-network

model by allowing each group to only add or cut links, but not both. In this chapter, we focus

on a simplified interacting networks model, where one group of nodes only adds links and the

other group only cuts links. To make the model description simple and easy to understand,

we still use the language of social networks, where nodes and links represent individuals and

contacts (between pairs of individuals), respectively.

6.1 Model description

The simplified model is defined as follows. As before, we consider two preferred degree

networks, labelled “introverts” (I’s) and “extroverts” (E’s), with κI < κE . They are of size

NI and NE , respectively. The total number of nodes is denoted by N (= NI + NE). In our

previous model, the nodes in both networks can take two actions, adding and cutting. In this

simpler version, we minimize κI and maximize κE (κI = 0 and κE = ∞), so that the I’s (E’s)

only cut (add) links. In each attempt, we choose a node at random amongst the N nodes. If

it is an I node, it always cuts an existing link selected at random. If an E node is picked, it
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always adds a new connection to a randomly chosen neighbor. We refer to this model as the

XIE (eXtreme Introverts and Extroverts) model [106, 107]. In such a model, I − I (or E −E)

and I − E connections are treated as internal and cross links, respectively.

Implementing the rules in simulations, one significant simplification of the XIE model is

observed, which enables a bipartite graph description of this model. Since the I’s (E’s) always

cut (add) links, soon after the simulation starts, our system quickly evolves into a special state,

where all the I − I (E − E) connections are absent (present) and only I − E connections are

actively updated. In other words, all the links inside the I network and E network are “frozen,”

while only the cross links are “active,” so that the internal links can be ignored, resulting in a

bipartite graph. Therefore, instead of considering all the 2N(N−1)/2 possible configurations of

this model, we are allowed to focus only on the N (≡ NINE) cross links with 2N configurations.

Clearly, the XIE model is a particular case of our previous model by setting κ1 = 0, κ2 = ∞
and χ1 = χ2 = 1 in the original two-network model, and starting the simulation with network

one empty and network two fully connected.

Given the evolution rules, clearly, there are only two control parameters, NI and NE . Only

the cross links are allowed to be added or cut, depending on which one of its associated nodes

are picked. With only two control parameters, exploration of the parameter space is straight

forward, by changing the ratio of NI and NE . Although when NI = NE , the model seems

simple at first glance, many surprising results arise in this case.

As before, a natural first step is to investigate the degree distribution, denoted by ρ. Again,

there are several types of ρ(k)’s for the XIE model, depending on what type of links (internal

or cross) ρ(k) is associated with. However, as we have discussed above, the internal links of

I’s (E’s) are all absent (present), so it is sufficient to describe each population by one single

degree distribution, denoted by ρI(kI) and ρE(kE), respectively (see an example of ρI and ρE

in Fig. 6.1). Here we need to emphasize that, even though the set of cross links is the same

for the two groups, the distributions can be different. Therefore, ρI(kI) is not simply equal

to ρE(kI + NE − 1) in general. Beyond the degree distributions, we are also interested in a

macroscopic quantity, the total number of cross links, X, defined as ΣkI (or ΣkE). Unlike the

degree distributions, which focus on the details of the distribution of links, this simple quantity
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directly reflects how strongly the two networks are coupled.

Figure 6.1 The nodes of the two groups, I’s and E’s, are denoted by open blue and

closed red circles, respectively. The cross links and internal links are shown as

black and red solid lines, respectively. For this network, the sets of k’s are:

kI = {1, 0, 1, 1, 1, 2, 1}, and kE = {6, 5, 4, 4}. Thus, the non-vanishing contri-

butions to the distributions are ρI (0) = 1/7, ρI (1) = 5/7, ρI (2) = 1/7 and

ρE (4) = 2/4, ρE (5) = 1/4, ρE (6) = 1/4.

6.2 Statistical properties of the degree distributions

In the following, we present the details on the Monte Carlo simulation results for the XIE

model, as well as the analytical approximations which capture the main features of this model.

To save us some computational expenses, in the XIE model, we always look at a relatively

small system with N = 200. To explore the parameter space, in the simulations, we vary

NI and NE while fixing N = 200, and the associated preferred degree κI (κE) is set at its

minimum (maximum) value 0 (199). The simulations are always started from empty networks

(no links) and follow the stochastic rules given above to generate links. One MCS is defined as

N attempts (of adding or cutting links), so that, on the average, each node is picked once to

update its links.
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6.2.1 Nonequal NI and NE
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Figure 6.2 Simulation results of degree distributions for XIE model. (a) shows the degree

distribution of the network with (NI , NE)=(150,50) (blue), (125,75) (green), and

(101, 99) (red). (b) shows the comparison of the degree distribution for the sys-

tems with (NI , NE)=(101,99) (red), and (99, 101) (purple). The open and closed

markers represent ρI and ρE , respectively. Solid lines represent theoretical predic-

tions.

Let us first discuss the cases when the two groups are of different sizes. After we start the

simulation, all the E − E links are quickly formed within N MCS. It is sufficient to discard

the first 1K MCS to let a system of size N = 200 reach the stationary state. Thereafter, we

obtain the degree distributions by taking the average over 2 × 104 measurements, separated

by 100 MCS. The resultant ρI and ρE for systems with NI > NE are shown in Fig. 6.2(a).

Some features can be understood easily. Since all E’s are connected to each other, the degree

of any E, kE , is at least NE − 1. For all the systems in the figure, the average of the I’s

degrees, 〈kI〉, is smaller than the E’s average degree, 〈kE〉, since κE is larger than κI . When

there are more E nodes in the system, more links are desired. Therefore, both 〈kI〉 and 〈kE〉
increase when NE increases, which is consistent with the resultant distributions. Moreover,

the two groups should have equal number of cross links, resulting in the following relation,

〈kI〉NI = (〈kE〉−NE+1)NE , from which we can get the ratio between 〈kI〉 and 〈kE〉−NE+1 if

given NE/NI . For convenience, we define a new quantity k̄E ≡ kE−NE+1, which stands for the

cross degree of E nodes, and accordingly, the average of k̄E is 〈k̄E〉 (≡ 〈kE〉−NE+1). Now, the
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relation between the average degrees can be written as 〈kI〉/〈k̄E〉 = NE/NI , and our simulation

results well agree with it. For example, in the system with NI = 150 and NE = 50, from the

simulation, we get 〈kI〉/〈k̄E〉 = 1/3, which is exactly the value of NE/NI = 50/150 = 1/3.

Clearly, however, this is not sufficient to explain the whole distributions, and some other features

remain puzzling: In contrast to the degree distribution of the homogeneous population which

is centered at κ, ρE here is not centered at its own preferred degree. For all the systems in

the figure, κE is 199, but the maximum kE of each system is much less than 199. Before going

any deeper in this puzzling feature, it is natural to first find out how the system behaves in the

opposite case, where NI < NE : Will kE remain much less than κE?

To proceed, let us consider a comparison between two systems, one with more I’s and the

other with more E’s. The simulation results are shown in Fig. 6.2(b). The two systems are

similar and symmetric, (NI , NE) = (101, 99) and (99, 101), respectively. Interesting features

are observed: (1) Though the control parameters of the two systems are quite close, their

average degrees significantly differ from each other. Take 〈kI〉 for instance. In the system with

101 I’s and 99 E’s, 〈kI〉 is around 14, while 〈kI〉 is approximately 86 in the other system. (2)

By just two nodes changing sides from introverts to extroverts, the whole degree distribution

is flipped, i.e., the degree distributions of the two systems exhibits symmetry, to be discussed

below. Besides, the same features can also be observed in other pairs of systems with symmetric

NI and NE (excluding NI = NE), e.g., between the systems with (NI , NE) = (150, 50) and

(50, 150), (125, 75) and (75, 125). Moreover, the symmetric systems which differ only in one I

and E from each other have also been examined, e.g., (NI , NE) = (100, 99) and (99, 100), and

they exhibit the same features. Based on these observations, two immediate issues are to be

considered: How do we understand the flip of the degree distribution between the symmetric

pair of systems? Suppose this observation is true for any symmetric pair of XIE systems, then

is the degree distribution of system with parameters (NI , NE) = (100, 100) symmetric, since it

is paired to itself? We will leave the second question to the next subsection, and try to answer

the first one here.

To explain the degree distributions, we introduce an alternative representation to describe

the degrees of nodes, and the symmetry will be easily seen under the new description. The
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connections of the XIE model can be represented by a N ×N adjacency matrix A, where the

elements aij = 0 (1) indicate the absence (presence) of the link between nodes i and j. Since

self loops are not allowed, aii = 0 for all i’s∈ [1, N ]. Moreover, only the cross links (I-E) are

active. Thus, we can consider N only, the appropriate rectangular sector of A. Let us denote

the elements of this NI×NE matrix by nij . Note that the first (second) index is associated with

an I (E) node, so that i ∈ [1, NI ], j ∈ [1, NE ]. The degree of an I (E) node, can be obtained by

summing up all entries along row i (column j). To specify the state of a node, so far, we have

always used its degree. In the new description, the states of I’s are still characterized by their

degrees, but we use a new quantity p, which is the complement of the degree, to describe the

state of an E. For simplicity, we suppress the subscript I on kI from now on. Letting n̄ ≡ 1−n,

we define the degree of an introvert i, and the complement of the degree of an extrovert j, as

ki ≡ Σjnij ; pj ≡ Σin̄ij . (6.1)

By definition, clearly ki ∈ [0, NE ] and pj ∈ [0, NI ]. Additionally, a key symmetry here is

nij ⇔ n̄ji ⊕ NI ⇔ NE , which we will refer to as “particle-hole symmetry.” This explains the

symmetry of the degree distributions qualitatively.

6.2.1.1 Self-consistent mean-field approximation

The major step to understand a stochastic dynamic process involves writing down the

master equation and solving it for each configuration. For the XIE model, we find a simple

self-consistent mean-field approach sufficient to provide a good explanation to the degree dis-

tributions. Thus, we directly work on an approximate expression for ρ. We first write down

a general expression for the change of ρI(k, t) and ρE(p, t) for one attempt, and here we use q

to represent the degree (complement of degree) for an I (E). Invoking the approach from the

single-network model, and following the line of thought which led to Eqn. (3.4), we obtain a

similar expression

W [q − 1, q]ρss(q) = W [q, q − 1]ρss(q − 1). (6.2)

where W [q, q − 1] specifies the rate for an I (E) with q − 1 “particles” (“holes”) to change to

the state with q “particles” (“holes”). To solve this equation, our next step is to determine
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the rates, W [q − 1, q] and W [q, q − 1]. (For simplicity, we drop the superscript ss for the

degree distribution.) Focusing on the degree distribution of the introverts, ρI , we note that

for a chosen I node i, only i itself contributes to WI [k − 1, k]. That is, only when i is picked

to update a link, i can cut one of its links and decrease its degree by one, and the rate for

choosing node i is 1/N . Thus, rate WI [k−1, k] is 1/N . On the other hand, the contribution to

WI [k, k−1] is from the process that one of the extroverts j, with “holes” pj , not connected to i,

is selected and creates a link to node i. In this process, a j is picked with rate (NE − k+1)/N .

The probability that j creates the connection to i is 1/pj . Since there are NE − k + 1 such E

nodes, with different p’s, finding out exact WI [k, k−1] is quite involved. Thus, we approximate

the number of “holes” of each E by the average, 〈p〉′. Note that this average is not simply the

average value of p over all E’s, but over those E’s having non-vanishing p’s. 〈p〉′ is given by

〈p〉′ ≡
∑

p>0 pρE (p)∑
p>0 ρE (p)

=

∑
p≥0 pρE (p)

1− ρE (0)
=

〈p〉
1− ρE (0)

. (6.3)

With the above 〈p〉′, the expression for WI [k, k − 1] can be written as (NE − k + 1)/(N〈p〉′).
Thus, Eqn. (6.2) for ρI evolves to the form of

1

N
ρI (k) =

NE − k + 1

N

(
1

〈p〉′
)
ρI (k − 1) . (6.4)

Following the above analysis, a similar argument leads to WE [p−1, p] = 1/N and WE [p, p−1] =

(NI − p+ 1)/(N 〈k〉′), with 〈k〉′ = 〈k〉 /(1− ρI (0)), so that we obtain

1

N
ρE (p) =

NI − p+ 1

N

(
1

〈k〉′
)
ρE (p− 1) . (6.5)

Clearly, if 〈p〉′ and 〈k〉′ are given, we can solve for ρI(k) and ρE(p) by repeatedly using Eqn. (6.4)

and (6.5). However, to obtain the value of 〈p〉′ and 〈k〉′, we have to know ρI(k) and ρE(p) first,

which seems to lead us to an endless loop. To avoid that circumstance, let us pretend that we

already know either of 〈p〉′ and 〈k〉′, say now we assume that we know 〈p〉′ and assign it with a

reasonable value between 0 and NI . With a given 〈p〉′, we can calculate ρI(k) explicitly using

Eqn. (6.4), and get a specific average 〈k〉′ from ρI(k). Thereafter, we plug in the resultant

〈k〉′ to Eqn. (6.5) and find out ρE(p). With known ρE(p), thereafter, we can follow Eqn. (6.3)

to get an output of 〈p〉′. In this process, we input a 〈p〉′ and get an output 〈p〉′. To get the
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right degree distributions, we adjust the input 〈p〉′, until the difference between the input and

output is O(10−5). Consequently, the corresponding degree distributions are considered to be

the mean-field approximation for ρI(k) and ρE(p). This method is referred to as self-consistent

mean-field approximation. Here, we have to remind our readers that even though we have

obtained ρE(p), it is not the originally defined degree distribution of extroverts, but the “hole”

distribution. To recover this, we can simply replace p by N − 1 − kE , and then get the right

ρE(kE). On the other hand, ρI(k) itself is the degree distribution of introverts, ρI(kI). This

approach works quite well to predict the degree distributions and is shown as solid lines in

Fig. 6.2(a). Moreover, clearly, in Eqn. (6.4) and (6.5), if we switch NI and NE , the new ρI(kI)

and ρE(kE) are essentially the old ρE(kE) and ρI(kI), respectively. That is, the symmetry also

appears in the mean-field approximation. So far, we have shown both the simulation results

and theoretical considerations for the stationary distribution of the network with non-equal NI

and NE . In the following subsection, we move on to the very special case of our model, where

NI = NE .

6.2.2 NI = NE

In this subsection, we aim to answer the question: What is the degree distribution for the

case (NI , NE) = (100, 100)? In this case, the whole network is symmetric. In the “particle-hole”

description of XIE model, now there are 100 I nodes demanding no “particles” and 100 E nodes

preferring 0 “holes,” for which Eqn. (6.4) and (6.5) are exactly the same. As a result, ρI(k)

and ρE(p) have the same form. Note that the relation between the “holes” and degrees of E’s

is p = N − 1− kE , so the degree distributions ρI(kI) and ρE(kE) should be symmetric around

(N −1)/2, i.e., 99.5 in our case. The simulation results are shown in Fig. 6.3. As expected, the

distributions are symmetric around 99.5. However, surprisingly, the distributions are flat and

broad, quite different from the sharp ones seen before. Even if compared to the distributions

of systems with (NI , NE) = (101, 99) or (NI , NE) = (99, 101), where the only difference is one

node, the distribution of (100, 100) is still peculiar. Besides, the distribution takes much longer

time (O(107 MCS)) to reach its steady state, while all other cases (NI �= NE) only take O(105

MCS). As a consequence of the broad distribution, the self-consistent mean-field approach
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Figure 6.3 Simulation results of degree distributions for the network with 100 introverts and

100 extroverts. The empty and solid diamonds represent ρI and ρE , respectively.

does not work any more, since the degree of each individual node cannot be well approximated

by the average degree. However, we can understand the distributions qualitatively. In the

XIE model, the introverts (extroverts) always cut (add) links, and so the number of cross links

is determined by which group has more chance to update links. In the networks with non-

equal NI and NE , on the average, the majority nodes are picked and update their links more

often, so that the majority “wins” the “frustration,” and the whole network will have fewer

(more) links if it has fewer (more) extroverts than introverts. In the special NI = NE case,

however, the introverts and extroverts are equally likely to be selected. Thus, in each attempt,

the probability for a link to be formed or destroyed is equal, and therefore neither of the two

populations will “beat” the other, which results in “maximal frustration.” To look into the

behavior of the network in the special case more carefully, we turn our attention to a simpler

quantity, namely X, the total number of cross links.
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Figure 6.4 Time traces of X for three cases: NI = 101 (green), 100 (red), and 99 (blue).

6.3 Statistical properties of the total number of cross links

Though the networks are typically characterized by the degree distributions, we have seen

that, for the special case NI = NE , the degree distributions are peculiar, and our mean-field

approach for the degree distributions fails. Recalling that the only dynamics is on the cross

links, we believe that the puzzle can be traced to the behaviors of a simple quantity, X.

Particularly, the broad degree distributions of (100, 100) should be associated with a broad

distribution of X, and the “flip” of the degree distributions of (101, 99) and (99, 101) should

be related to a “jump” of X.

To see how X behaves, we first show the time traces X(t) for (NI , NE) = (101, 99),

(100, 100), and (99, 101) in Fig. 6.4 (green, red and blue). Clearly, X(t) for (100, 100) dis-

plays quite different behaviors from the other two systems. The data for NI −NE = ±2 (green

and blue lines) show that X settles down very quickly, and hovers around its own average 〈X〉
with fluctuations of O(100). When only two nodes “change sides” from introverts to extroverts

(101, 99) → (99, 101), 〈X〉 displays a large jump, and this observation is consistent with the



64

0 2000 4000 6000 8000 10000
1E-6

1E-5

1E-4

1E-3

0.01

lo
g 

P

X

 (101,99)
 (100,100)
 (99,101)

Figure 6.5 Histograms of X for three cases: NI = 101 (green), 100 (red), and 99 (blue).

degree distribution: The whole distribution is flipped as (101, 99) → (99, 101). In particular,

the fraction 〈X〉/N changes from ∼ 15% to ∼ 85%, a jump of 70%. On the other hand, X(t)

of (100, 100) wanders widely, evolving very slowly.

From the time traces in the stationary state, we compile the histograms for X, P ss(X),

and show the results in Fig. 6.5. The resultant P ss(X) for (101, 99) and (99, 101) are Gaussian

like, sharp distributions, while P ss(X) for (100, 100) is essentially a flat distribution exploring

most of its full range, with soft cutoffs at both ends. This reminds us of an unbiased random

walk, confined between two “walls.” To confirm our expectation, we have constructed the power

spectrum from X(t) and found that it is indeed consistent with 1/f2 for 1/f � 106 MCS. The

106 MCS is the time for X to traverse the observed range, and it can be roughly explained as

follows. Recall that in the NI = NE situation, the rate for X to increase and decrease by one

is equal at each update attempt. Considering the traverse as an unbiased random walk, we

can treat each attempt as a random variable x, with two values ±1, corresponding to adding

and cutting a cross link, respectively. Accordingly, we obtain 〈x〉 = 0 and 〈x2〉 = 1. Thus, the



65

expected value of the distance after n steps walking is√√√√〈(
n∑

i=1

xi)2〉 =
√

n〈x2〉+ 2
∑
i �=j

〈xixj〉 =
√
n. (6.6)

Thus, it follows that the expected value of the distance of moving n steps is
√
n. Back to our

problem, where a complete traverse for X is of distance O(N ), then the number of steps needed

is O(N 2), which is O(N 2/N) = O(N3) MCS, consistent with the 106 MCS observed. While

all of these arguments need to be tightened quantitatively, they do paint a plausible picture,

namely, that X performs an unbiased random walk in case of equal NI and NE . However, near

the two ends of the flat distribution, an additional consideration becomes important. Focusing

on the small X, we observe that a considerable fraction of introverts which have no connections

at all emerges. Similarly, for large X, we find a fraction of extroverts which have all links.

When these nodes are selected in the simulation, no update can occur. As a consequence, near

the two boundaries, the numbers of active introverts and extroverts are no longer equal and

the dynamics of X becomes a biased random walk. Hence, X is pushed towards the center,

until the equality of effective NI and effective NE is restored. To confirm this argument, we

measure the degree distribution in several intervals near the “walls,” and examine ρI(0) and

ρE(N − 1) for small and large X, respectively. The data show that when X fluctuates around

very small (large) values, non-zero values for ρI(0) (ρE(N − 1)) are observed. For instance,

when X ∈ [1600, 1700], ρI(0) 
 1%, which indicates that in each MCS, one introvert does not

cut links when selected. While this argument provides some insight into the existence of the

“walls,” it still cannot predict their locations.

The above arguments lead to a qualitative explanation for some behaviors of X, but only

limited to three systems, (NI , NE) = (101, 99), (100, 100), and (99, 101). In the rest of this

chapter, we will consider more systems with different NE/NI ’s. To simplify our discussion, we

focus on the mean, 〈X〉, instead of the whole distribution. Note that the features of X are

dominated by the difference between NI and NE , i.e., |NE −NI |. For convenience, let us define
a quantity h ≡ (NE − NI)/(NE + NI), and a normalized mean X̄ = 〈X〉/N . Next, we will

study X̄ as a function of h.

Before we present the simulation data for X̄, let us first discuss what can be expected.
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Figure 6.6 The behavior of the average number of cross links for various NI and NE ,

displayed in terms of X̄(h). Data points (red diamonds) are associated with

(NI , NE) = (125, 75) , (110, 90) , (101, 99) , (100, 100), etc. The dashed line is the

prediction from an “intuitively reasonable” argument. A mean-field approach leads

to the solid (blue) line.

Clearly, X̄ should be a monotonically increasing function of NE/N . Since in each update,

every node is equally likely to be chosen, a rough guess for the ratio of the numbers of creation

and deletion events could be NE/NI . Note that in the stationary state, there are 〈X〉 links

and N − 〈X〉 “holes.” We reach a naive guess NE/NI = 〈X〉/(N − 〈X〉), which is shown as

a dashed line in Fig. 6.6. However, our simulation results (red diamonds) paint a completely

different picture, i.e, instead of a linear function, X̄(h) exhibits a sizable jump. Although the

jump of 〈X〉 suggests a first order phase transition, some other associated features, such as

phase coexistence and metastability, are absent in the XIE model. Specifically, we have tested

for metastability: We start the simulation with NI = 101 and NE = 99, run it long enough for

the network to relax to its stationary state, and then suddenly change NI and NE to 99 and

101, respectively. In Fig. 6.7, our data show that X promptly responds to the switch, following

a biased random walk with velocity of 2/MCS till it reaches the appropriate X of system with

99 I’s and 101 E’s. Other systems sizes have also been examined, and they all follow the same

behaviors.
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Figure 6.7 Time trace X(t) (red) for a system with 200 nodes. Initially, the system has

NI = 101 and NE = 99, after it relaxes to its stationary state, NI and NE are

switched. The solid line is ∝ 2t.

6.3.1 Master equation and stationary P∗

To describe the model completely, we have to specify and solve the master equation for

P(N, t |N0, 0), which is the probability of finding configuration N at time t, with the initial

configuration N0. We can write down the discrete master equation for P as follows: the change

over one attempt, P(N, t+ 1)− P(N, t) is given by

∑
{N′}

[W (N,N′)P(N′, t)−W (N′,N)P(N, t)] (6.7)

where W (N,N′) is the rate for configuration N
′ to change to N. Using (6.1), W (N′,N) can be

written as: ∑
i,j

Δ

N

[
Θ(ki)

ki
n̄′
ijnij +

Θ(pj)

pj
n′
ijn̄ij

]
(6.8)

where Θ (x) is the Heavyside function, whose value is 1 if x > 0 and 0 if x ≤ 0, and Δ ≡
Πk��=ijδ (n

′
k�, nk�) insures that only nij may change.

Since the dynamics of the network is memoryless, it is a Markov process. In particu-

lar, we find that the dynamics obeys detailed balance (details can be found in Appendix

B). Consequently, when the limit t → ∞ is taken, P approaches its stationary distribution,

P∗. In the appendix we show that the dynamics satisfies detailed balance, and therefore all
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stationary probability currents vanish. By using the detailed balance condition recursively,

P∗ (N) = P∗ (N′)W (N,N′) / W (N′,N), and imposing normalization, we find explicitly

P∗ (N) =
1

Ω

NI∏
i=1

(ki!)

NE∏
j=1

(pj !) (6.9)

where Ω = Σ{N}Π(ki!) Π (pj !) plays the role of the “partition function.” From the form of

stationary distribution, the particle-hole symmetry is obvious.

6.3.2 Mean-field approximation

With the explicit stationary distribution P∗, in principle, P (X) can be obtained by sum-

ming up the probabilities over all configurations having X cross links,

P (X) ≡
∑
{N}

δ (X,Σijnij)P∗ (N) . (6.10)

Calculating Eqn. (6.10), however, is quite involved. Therefore, to make progress, we invoke a

mean-field approach and find an approximate expression for Eqn. (6.10). Instead of working

with the exact configuration, we replace each element nij (= 0 or 1) in N by the average, X/N ,

so that, ki = Σjnij → NE (X/N ) and pj = Σin̄ij → NI (1−X/N ), while

∑
{N}

δ (X,Σijnij) =

(N
X

)
. (6.11)

Applying Stirling’s formula, we reach a mean field approximation of P , which is referred to

as PMF (X). In this spirit, it is natural to label

F (ρ) ≡ − lnPMF (X) (6.12)

as a “free energy” for ρ ≡ X/N (ρ ∈ [0, 1]). In the thermodynamic limit (X, N → ∞ at

fixed ρ), the leading order of F is linear in ρ, with slope ln(NI/NE). Specifically, as long as

NI �= NE , the minimum of F occurs at the boundary values ρ = 0 or 1, and therefore, ρ can

only assume the values 0 or 1. By contrast, when NI = NE , F is flat over the entire interval.

This prediction qualitatively agrees with the simulation results. To avoid the extremes, we

keep the next order. The result is

F (ρ) ∝ ρ lnNI + [1− ρ] lnNE − 1

2

(
ln ρ

NE
+

ln [1− ρ]

NI

)
+O

(
1

N
)
. (6.13)
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From here, we can find the minimum of F and plot it as X̄ (h) for the specific case of N = 200.

The resultant (solid blue curve in Fig. 6.6) is remarkably respectable. We should caution the

reader, however, that such good agreement does not extend to the entire distribution, i.e.,

PMF (X) deviates considerably from the histograms of X.
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CHAPTER 7. INTERACTING DYNAMIC NETWORKS III:

OTHER MODELS

In Chapters 5 and 6, we have discussed the results for a model of interacting preferred degree

networks, where the interaction is controlled by a parameter, χ ∈ [0, 1]. When χ is 0 (1), the

model describes isolated networks (coupled networks with maximal interaction). Other choices

of χ lead to more general interacting network models. In Chapter 5, we explored the general

parameter space of this model, while Chapter 6 focused on an extreme case (a model with

maximum interaction). Other than this model, there are many possible ways to introduce an

interaction between networks. Thus, in this chapter, we attempt to explore different methods

to couple two networks. Of course, it is difficult to include all possibilities, and therefore, we

only present two models here.

7.1 Two-κ model

In all our previous discussions, each network is assigned only a single preferred degree,

which governs the total degree of each node. Subject to that constraint, the number of internal

or cross links is still free to vary. However, in more realistic situations, e.g., in a social network,

an individual may be part of a group, which interacts with another group, and in this context,

we may wish to control the intra- and inter-group connections separately. Motivated by such

considerations, we introduce a new model, in which each node is characterized by two κ’s,

governing its internal and cross degrees, respectively.
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7.1.1 Model description

Again, we focus on the interaction between two preferred degree networks, with N1 and N2

nodes, respectively. The total number of nodes N1 + N2 is denoted by N . Instead of having

a single preferred degree, κα (α = 1, 2), each individual network is assigned two preferred

degrees, the preferred internal degree κ∗α and the preferred cross degree κ×α . Without a specific

parameter, i.e. χ, to control the interaction strength, now κ×α plays the role of governing the

interaction: Ideally, the larger κ× is, the more cross links exist. Of course, this ideal situation

only occurs when κ×1 
 κ×2 , otherwise, if κ
×
1 � κ×2 (or κ×1 
 κ×2 ) so that one group prefers to

have far more cross links than the other, this will lead to “frustration” between two groups,

and then, it is difficult to have an immediate estimate of the number of cross links.

In our simulations, we update the links in the system as follows. At each attempt, a node is

selected from the two groups at random. For the sake of simplicity, in this section, we always

consider two groups of the same size, so that the rate of selecting a node from either network

is always 1/2. Once a node is chosen, we first decide, with equal probability, whether to take

action on its cross links or internal links. In the latter case, the internal degree, k∗, of the node

is noted. If k∗ < κ∗, a new internal link will be established between the chosen node and a

partner node randomly selected from the same group. Otherwise, we will cut one of the chosen

node’s existing internal links. In the former case, we update the cross links of the chosen node,

in the same fashion. Note that the partner nodes have no control over the link updates. Again,

self-loops or multiple connections are not allowed. In the simulations, one Monte Carlo step

(MCS) consists of N such attempts, so that we can insure that, on the average, each node can

be picked once.

Let us present a short discussion of the quantities of interest and our expectations for the

simulation results. As seen before, there are three classes of degree distributions, ρα, ρ
∗
α, and

ρ×α . Since each node has specific preferred degrees to govern its internal and cross degrees

separately, both preferred degrees play a part in managing the total degree. Thus, we expect

that ρα might be different from the cases we studied in Chapter 5 and 6, where only the

total degree of each node was specified. To understand ρα, we start from the detailed degree
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distributions, ρ∗α and ρ×α first. Note that in either network, κ∗α is the only parameter that

controls the internal degrees, and therefore the internal links in one network are not affected

by cross links or internal links in the other network. Hence, we expect that ρ∗α is the same as

the degree distribution of a single preferred degree network. By contrast, the cross degrees of

either network should be affected by the other. If we look at the cross links only, the partial

system is similar to the XIE model, except that the I’s (E’s) prefer moderate degrees instead

of the minimum (maximum) degrees. Another difference resides that here, the internal links

are still dynamic and therefore, the cross links evolve on a different time scale. When the two

networks have very different κ×’s, it may again result in frustration, where one group keeps

cutting cross links, while the other always adds. As we have learnt from Chapters 5 and 6, once

there is “frustration” in the system, we expect to observe large fluctuations in the number of

cross links, X. However, as we will see below, the fluctuations here are not nearly as extreme

as in the XIE model.

7.1.2 Simulation results and theoretical explanations

As discussed above, systems with κ×1 
 κ×2 and ones with κ×1 � κ×2 (κ×1 
 κ×2 ) might

exhibit very different behaviors, due to possible “frustration” between the networks. In the

following, we first investigate the “symmetric” case, characterized by κ×1 = κ×2 , and later in this

chapter, we turn to “asymmetric” cases (with κ×1 �= κ×2 ). For each case, we first analyze the

degree distributions and thereafter, briefly consider the number of cross links. As before, for

the degree distribution, with the first 2K MCS discarded, our simulation results are averaged

over 104 measurements, each separated by 100 MCS. Turning to the cross links, we observe

that X already settles down within a short run time of approximately 105 MCS. This allows

us to shorten our runs for X(t) to 106 MCS, within which X is measured every 100 MCS.

7.1.2.1 Symmetric networks

To have comparable data sets, we look at a system with networks of size 1000 (N1 = N2 =

1000). In Sections 3.2 and 4.2, the total preferred degree is 250, and therefore, in this section,

we confine the sum of preferred internal and cross degrees, κ×α + κ∗α = 250. If the size of the
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Figure 7.1 Simulation results of degree distributions for a symmetric system with Nα = 1000

and κ∗,×α = 125. (a) shows the total degree distributions, ρss1 and ρss2 . (b) shows

four detailed degree distributions, ρ∗,×α . Our theory is plotted as solid lines in (b).

networks is unchanged, the control parameters are just the four κ’s, so we vary their values

and explore how the degree distributions of the networks changes. We first look at the most

symmetric system, in which κ×α = κ∗α = 250/2 = 125. The simulation results are shown in

Fig. 7.1. In (a), the two total degree distributions, ρssα , are the same and peaked at k = 251.

In (b), all four distributions ρ∗,×α fall on top of each other and peaked at k = 125.5. Let us

consider the detailed degree distributions first. Unsurprisingly, ρ∗α agrees with our expectation,

consistent with a Laplacian distribution, ∝ e−μ|k−κ| (solid line in figure). Our data indicate

μ = 1.08±0.01. As mentioned before, ρ∗α is exlusively determined by the inter-group dynamics,

and therefore is identical to the total degree distribution for a single preferred degree network

(see in Section 3.2). Moreover, here ρ×α is also consistent with a Laplacian distribution for this

parameter set. Of course, in general, this does not hold (see below); instead, it is a special

feature of the symmetric case κ×1 = κ×2 . Let us consider a randomly selected node in group

one, and let us assume that we take action on a cross link. For such an action, the chosen node

needs to select a partner from all nodes in network 2. Furthermore, the chosen node and all

the nodes in network 2 have the same κ×. Therefore, this set of N2 + 1 nodes effectively form

a single preferred degree network. Consequently, ρ×α obeys a Laplacian distribution wich the

same μ.
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Figure 7.2 Simulation results of X(t) for a symmetric system (red) with Nα = 1000 and

κ∗,×α = 125, as well as a asymmetric system (blue) with Nα = 1000, κ∗1 = 50,

κ×1 = 200, κ∗2 = 200, and κ×2 = 50.

Next, we turn to the the total degree distribution ρssα . We first note that it cannot be

obtained from ρ∗α and ρ×α , which can be seen as follows. For convenience, let us change the

notation of ρ∗α and ρ×α to ραβ (kαβ), associated with kαβ , denoting the number of links with

which a node in community α is connected to nodes in community β. Though somewhat

cumbersome, we will use the notation above, to leave no doubt about which quantity is being

considered. To see how the degree distributions are related, we can proceed further and consider

joint distributions, P1 (k11, k12), the probability that a node in community 1 will be found with

degrees k11 and k12. Clearly,

ρα (k) ≡
∑

kαα,kαβ

δ (kαα + kαβ − k)Pα (kαα, kαβ) (7.1)

while ραα and ραβ are simple projections of Pα, e.g., ραα (kαα) =
∑

kαβ
Pα (kαα, kαβ). These

remarks show that ρα cannot be obtained from ραα and ραβ in general. Looking at Fig. 7.1(a),

we notice some slight curvature in the tails. This is borne out by investigating the data in more

detail. Hence we conclude that ρssα is not a Laplacian, but its analytic form remains unknown

at this point.

Next, we shift our focus to X. Again, to have data comparable to our previous studies,

we focus on a smaller system, with N1 = N2 = 100 and κ∗α = κ×α = 12.5. Motivated by
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our findings reported in the previous two chapters, it is natural to investigate X(t) and its

fluctuations. A time trace for X is shown in Fig. 7.2 (red). It is clear from the data that

X(t) exhibits small fluctuations around a well defined average. Another way to argue is to

consider the degree distribution ρ×α , which is directly associated with X. Here, the cross degree

distributions of both networks are Laplacian distributions, sharply peaked at κ×α . Since X

is simply
∑Nα

0 k×α ρ×αNα, we expect X to be stabilized. The mean, 〈X〉, and the standard

deviation, σ, are ∼ 1251(
 κ×αNα) and ∼ 8.4, respectively.

7.1.2.2 Asymmetric networks
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Figure 7.3 Simulation results of degree distributions for an asymmetric system with

Nα = 1000, κ∗1 = 50, κ×1 = 200, κ∗2 = 200, and κ×2 = 50. (a) shows the total

degree distributions, ρss1 and ρss2 . (b) shows four detailed degree distributions,

ρ∗,×α . Our theory is plotted as solid lines in (b).

Let us move on to the asymmetric systems, where κ×1 �= κ×2 . In the simulations, we choose

N1 = N2 = 1000 and keep κ∗α + κ×α = 250. The results are shown in Fig. 7.3. As discussed

above, the internal degree distribution ρ∗α is independent from the other distributions, and

therefore, it is still consistent with a Laplacian distribution. By contrast, when we turn to the

other degree distributions, different behaviors are observed. Neither ρssα and ρ×α are narrowly

peaked any more; instead, they are broad distributions. Furthermore, since ρ∗α is a sharply

peaked distribution, ρssα is essentially identical to ρ×α apart from a shift by 〈k∗α〉. Therefore,
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the key is to understand ρ×α . We believe that the broad distributions can be traced to the

existence of frustration. Specifically, in the system shown in the figure, each node of network 1

desires 200 cross links, while the nodes in network 2 prefer to have only 50 each. The resultant

averages are 〈k×1 〉 = 〈k×2 〉 
 140, which differ significantly from their preferred degrees (200 and

50). In addition to the averages, most nodes are not content with their cross degrees, k×1 < κ×1

(k×2 > κ×2 ) for nodes in network 1 (2). This feature allows us to simplify the asymmetric system:

If we focus on the cross links only, the system lets network 1 add links, and network 2 cut links.

(Of course, for those few in network 1 (2) with k×1 = 201 (k×2 = 50), cutting (adding) links is

also possible.) This reminds us of our XIE model. Therefore, to make our life easier, we name

network 1 nodes as extroverts, nodes in network 2 as introverts, and reuse some results of the

XIE model to help us make progress in understanding ρ×α . For the XIE model, we arrive at a

recursion relation Eqn. 6.2,

W [k + 1, k]ρss(k) = W [k, k + 1]ρss(k + 1), (7.2)

to calculate the total degree distribution for I and E, where W [k′, k] stands for the rate for

a node to change its degree from k to k′. Here, we can use this equation again, for ρ×α . For

convenience, we drop the superscript × on k×α , since we only discuss the cross links here. In

our specific system shown in Fig. 7.3(b), clearly, introverts and extroverts are nodes in network

2 and 1, respectively. As before, our task is to determine the rates W [k′, k]. Let us focus on

ρ×2 first. The only way for an introvert to get its degree decreased is by itself cutting one of

its existing links. The probability W2[k2, k2 +1] is simply 1/(2N), where 1/N accounts for the

probability of this introvert being selected, and 1/2 is the rate of updating the cross links. Since

only extroverts not already connected to an introvert can add links to it, W2[k2 + 1, k2] is the

rate of an extrovert making a new link to the chosen introvert. The probability of selecting an

extrovert not already connected to it is (N1− k2)/N , and with rate 1/2 it will add a cross link.

Additionally, this action will be taken on the target introvert with probability 1/(N2 − 〈k1〉),
where 〈k1〉 is an approximation for the degree of an extrovert. Following the argument above

for W2[k2 + 1, k2], we have

W2[k2 + 1, k2] =
N1 − k2

2N(N2 − 〈k1〉) . (7.3)
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With explicit expression for W2’s, using Eqn. (7.2), we can get a recursion relation for ρ×2

N1 − k2
2N(N2 − 〈k1〉)ρ

×
2 (k2) =

1

2N
ρ×2 (k2 + 1) . (7.4)

Following the above analysis, a similar argument leads to W1[k1 + 1, k1] = 1/(2N), and

W1[k1, k1 + 1] = (k1 + 1)/(2N〈k2〉), so that we obtain

1

2N
ρ×1 (k1) =

k1 + 1

2N〈k2〉ρ
×
1 (k1 + 1) . (7.5)

Obviously, if 〈k1〉 and 〈k2〉 are given, we can solve for ρ×1 and ρ×2 by using Eqn. (7.5) and (7.4),

respectively. Note that in general, 〈k1〉 is different from 〈k2〉. Instead, a more general form,

N1〈k1〉 = N2〈k2〉, is always true. In our study, however, we limit ourselves to the special regime

where N1 = N2, so that, we can safely say 〈k1〉 = 〈k2〉. So far, 〈k1〉 and 〈k2〉 are unknown

quantities. To obtain their values, we have to know ρ×1 and ρ×2 first, which seems to lead us to

an endless loop. But again we can use a self-consistent approach as in the XIE model. Recall

that the definitions of 〈k1〉 and 〈k2〉 are

〈k1〉 ≡
N2∑
0

k1ρ
×
1 (k1), 〈k2〉 ≡

N1∑
0

k2ρ
×
2 (k2). (7.6)

We can pretend to know 〈k1〉, and plug it into Eqn. (7.4) and then determine all ρ×2 ’s. Given

ρ×2 , it is trivial to obtain 〈k2〉 by definition. Then, ρ×1 ’s can be found through Eqn. (7.5),

and in turn, we can get an output for 〈k1〉. By adjusting the input 〈k1〉, we can decrease the

difference between the input and output 〈k1〉’s, and get satisfiable ρ×1 and ρ×2 . The result is a

prediction (i.e., no fitting parameters) for ρ×1 and ρ×2 , plotted as solid lines in Fig. 7.3(b). The

predictions and simulation results agree quite well for the introverts, ρ×2 in our case, as well

as for the mean of ρ×1 though; however, the prediction is notably satisfactory for the whole

distribution of ρ×1 . The failure can be roughly understood by the following arguments. When

we invoke Eqn. (7.4) and (7.5), we approximate k1 and k2, the cross degree of each extrovert and

introvert, by the averages, 〈k1〉 and 〈k2〉, respectively. ρ×1 is a relatively narrower distribution,

so the approximation works well. By contrast, ρ×2 is very broad, distributed from 50 to ∼ 280.

Therefore, k2 is poorly estimated by 〈k2〉.
Although a improved theory will be needed to provide better quantitative agreement, most

features of the degree distributions are understood. Finally, we present a brief description of



78

X, see Fig. 7.2 (blue). Compared to X(t) of a symmetric system (red), the fluctuation here is

σ 
 51.3, approximately 5 times larger than σ of the symmetric case. This is consistent with

ρ×1 and ρ×2 being broader distributions.

7.2 Preferred ratio model

Starting with preferred degree networks, there are many possible ways to couple two net-

works together. So far, we have presented two ways to model the interaction: via χ controlling

the interaction strength, or via separate preferred degrees (κ∗ and κ×) managing the intra- and

inter-group links independently. Here, we consider the case, where the nodes prefer a certain

ratio of cross degree to total degree.

7.2.1 Model description

We first consider two separate preferred degree networks, of size N1 and N2. Of course, the

sizes and preferred degrees of the two networks can vary in general. To make our simulation

results comparable to our previous studies, we choose Nα = 1000, and κα = 250. Now we

introduce the new feature of this model, namely, we specify the ratio of cross degree and total

degree (k×α /kα) of each node. To realize this feature, clearly, a new parameter is needed, i.e.,

the preferred ratio, γ ∈ [0, 1]. All nodes in the same group are assigned the same γ, and they

try to reach and maintain their preferred ratio, by adding or cutting links: If a node finds its

current ratio k×/k, denoted by r, smaller than γ, it will either cut an internal link or add a cross

link when it is selected to update its links. Otherwise, the node will either add an internal link

or cut a cross link when chosen. In that sense, no matter the value of κ, the greater γ is, the

more the nodes prefer to have cross links. Generally, the two networks may be assigned distinct

γ’s, and later we will see that, with γ1 = γ2, the system exhibits very interesting properties.

Let us introduce the definition of this model. In each attempt of updating a link, a node is

selected amongst all N nodes at random, and its total degree k and cross degree k× are noted.

If k < κ, the node will add a link. Otherwise, it will cut a link. Whether the action is applied

on an intra- or inter-group link is determined by the preferred ratio γ. Let us first look at the

case of adding a link. We first compute the current ratio r (= k×/k) of the chosen node. If
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r < γ, it means this node has fewer cross links than it prefers. To reach the preferred ratio, it

will need to add a cross link. Otherwise, if r ≥ γ, it seeks to decrease the ratio by adding an

internal link. In the situation of the selected node needing to cut a link, a similar process takes

place. If r < γ, to increase r, the node has to cut an internal link, and otherwise, the node

will cut a cross link. Self-loops or multiple connections are not allowed. In our simulation, one

Monte Carlo step (MCS) consists of N such attempts of adding or cutting links, so that on

average, each node has one chance to be selected to update its links.

With the parameter γ specifying the k×/k ratio, we can easily control how the links of a

node are distributed between internal and cross links. By choosing γ at extreme values, 0 and

1, we explore special cases. Clearly, when γ = 0, the nodes prefer no cross links, which in turn,

leads us to two separate preferred degree networks. At the other end, where γ = 1, a system

only having cross links is achieved.

Let us point out the difference of this preferred-ratio model to the other models studied in

this thesis. Let us first consider the model discussed in Chapter 5. There, we introduced the

parameter χ, which determines the probability with which an action is taken on cross links vs.

internal links. However, χ does not imply a preference for adding as opposed to cutting cross

links. By contrast, with preferred ratio γ, the model can precisely control the r of each node.

Next, we turn to the two-κ model, discussed in Section 7.1. At first glance, the two model might

look superficially similar, by setting κ×/(κ∗ + κ×) = γ. Their underlying difference resides in

the fact that the two-κ model has separate κ× and κ∗, so that updates of internal degrees are

independent from the cross degrees and vice versa. In contrast, in the preferred ratio model,

each time when a node decides to add or cut a cross link, it needs to look at its current ratio

r first, where both k× and k∗ play a role. As a result, k× and k∗ are no longer independent

from each other in this model. This leads to notable differences in the observed behaviors.

7.2.2 Statistical properties of the degree distributions

To study the topological properties of this model, we focus on its degree distributions. In our

simulations, the first 2K MCS are discarded. Our result is an average over 104 measurements,

each separated by 100 MCS. We always fix N1 = N2 and κ1 = κ2 here, and change γ. We
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Figure 7.4 Simulation results of the degree distributions for an asymmetric system with

Nα = 1000, κα = 250, γ1 = 0.3, and γ2 = 0.7.

discover that similar to the previous model, the degree distributions of the preferred ratio model

also show a sensitivity to the symmetry of the system parameters (γ1 = γ2 or γ1 �= γ2).

In Fig. 7.4, we present a typical plot of the degree distributions for systems with asymmetric

parameters. γ is 0.3 and 0.7 for the two networks, respectively. The nodes in both networks

prefer to have κ = 250 links in total. While each node in network 1 prefers 75 (= 250×0.3) cross

links, every node in network 2 seeks 175 (= 250 × 0.7) cross links. Therefore, there is a huge

difference between the preferred cross degrees of the two groups, resulting in frustration between

the networks. It is very challenging to understand the total degree distributions (which are not

Laplacian distributions centered at κ any more), let alone the detailed degree distributions.

The system with symmetric parameter sets, i.e., γ1 = γ2, seems much easier to understand

at first glance. The simulation results are presented in Fig 7.5. When the two networks have the

same preferred ratios, clearly, there is no frustration. Therefore, we can observe sharply peaked

total degree distributions, i.e., Laplacians, for both networks. However, if we shift our attention

to the other four degree distributions, ρ∗1, ρ
×
1 , ρ

∗
2 and ρ×2 , interesting features are noted, some of

them understandable, and others puzzling. The four subfigures correspond to different values

of γ’s. In each subfigure, we observe that two of the detailed degree distributions fall onto a

single point, and the other two are simple Laplacians. The value of γ determines which of the
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four distributions are single valued versus Laplacians.

One class of their detailed degree distributions, either internal or cross, only has one value,

and the other class, is exactly like the total degree distributions, i.e., Laplacian distributions

(with shifted means of course). Recall that our discussion on the relation between the total

and detailed degree distributions indicates, in general, ρα cannot be obtained from ρ∗α and

ρ×α . In this particular case, however, ρα is simply ρ∗α + ρ×α . The means of the distributions

agree with the preferred ratios well, e.g., for Fig. 7.5(a), 〈k×〉 
 171.5 and 〈k〉 
 250.5, and

therefore, 〈k×〉/〈k〉 
 0.6846 
 γ. Note that the systems shown in (a) and (b) ((c) and (d))

have very close γ’s, i.e., γ = 0.6845 and 0.683 in (a) and (b), respectively, and γ = 0.301 and

0.299 in (c) and (d), respectively. Though the γ’s in (a) and (b) are very close to each other,

a significant difference between their degree distributions is noted. In (a), the ρ∗1 and ρ∗2 are

both single valued distributions, and ρ×1 and ρ×2 are both Laplacian distributions. However,

it is the other way around in (b). We find that the difference is due to the choices of γ: If

γ ∈ [k×/κ, (k×+1)/(κ+1)], ρ×α will be a Laplacian distribution, and ρ∗α will be a single valued

distribution (see (a) and (c)). If γ ∈ [k×/κ, k×/(κ + 1)], ρ×α and ρ∗α will be a single valued

distribution and a Laplacian distribution, respectively (see (b) and (d)). However, a careful

theoretical explanation still remains to be established.
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Figure 7.5 Simulation results of the degree distributions for symmetric systems with

Nα = 1000, κα = 250, and γ1 = γ2. γα = 0.6845 (a), 0.683 (b), 0.301 (c),

and 0.299 (d).



83

CHAPTER 8. SUMMARY

In this thesis, we first introduce the idea of a stochastically evolving network with preferred

degrees, namely the preferred degree network model, in which the nodes can dynamically form

and break connections to reach and maintain a pre-assigned number of contacts (preferred

degree κ). First, a homogeneous population is studied, where each node is assigned the same

κ. Specifically, when selected, a node, with degree k, creates (destroys) a new (an existing)

link with probability w(k) (1 − w(k)), where w(k) is referred to as the rate function, valued

in [0, 1]. The partner node is chosen at random from all the remaining nodes. In the form of

a Fermi-Dirac function, the rate function reflects how flexible an individual is, by varying β

(Eqn. (3.1)). Even in such a simple model, the dynamics violates detailed balance, and as a

consequence, it is quite difficult to obtain an analytically exact approach. Instead, we explore

the statistical properties by Monte Carlo simulations and a variety of mean-field approaches.

For a single-network model with N = 1000 nodes and κ = 250, we discover that the network

settles into a steady state quite quickly (within 1K MCS). For the most rigid population (with

β → ∞), the degree distribution is found to be a symmetric exponential distribution, centered

at κ. Moreover, it is found to be consistent with a Laplacian distribution: ρss(k) ∝ e−μ|k−κ|,

where μ = 1.08 ± 0.01 indicated by our data. The degree distribution of a more flexible

population (β = 0.1 or 0.2) is Gaussian like around κ and crosses over to two exponential

tails, characterized by the same decay rate as the most rigid population. A simple mean-field

argument, in the context of an approximate master equation, leads to good agreement with

the simulation results. Of course, the system will not display this type of behavior for extreme

values of system parameters (e.g., κ → 0), and we believe the theory will break down in those

limits. Nevertheless, for generic points in parameter space, we are confident that the main

features of this dynamic network have been captured by the mean-field theory.
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With knowledge of a single preferred degree network, we introduce an interaction between

such networks. To characterize such coupled networks, we need to introduce additional quan-

tities to capture the statistical properties of our models. Specifically, links are now classified in

terms of their end nodes, so that we can distinguish internal links, which connect nodes in the

same group, from cross links, which join nodes from different networks. Accordingly, each node

is associated with an internal degree k∗, a cross degree k×, and a total degree k (= k∗ + k×),

and we can study the different classes of degree distributions (ρ∗, ρ×, and ρ). Besides these

distributions, another very simple measure is the total number of cross links X, which directly

reflects how strongly the two networks interact. For all interdependent network models, we

examine a variety of degree distributions and X.

We first introduce a simple naive model, which is treated as a baseline model of interde-

pendent networks. This model is essentially a single homogeneous network being partitioned

into two subsets, labeled red and blue. Its red− red (blue− blue) and red− blue (blue− red)

connections are treated as internal and cross links, respectively. Due to its simplicity, all of its

features are trivial and well explained. Its total degree distribution is exactly the same as in

a single preferred degree network, and the other two detailed degree distributions (ρ∗ and ρ×)

are well explained by binomial distributions. We find that P ss(X), the stationary distribution

of X, is well described by a Gaussian distribution, with an easily predicted mean, 〈X〉, and
standard deviation, σ.

Next, we introduce an interacting dynamic model with a new parameter, the interaction

strength χ, which is the probability that a node adds or cuts a cross link. Thus, χ = 0

corresponds to two completely isolated networks, while a system with χ = 1 can be regarded

as maximally coupled. With two networks present, we face a much larger parameter space of

6 dimensions: system size N1 and N2, preferred degree κ1 and κ2, and interaction strength χ1

and χ2. Therefore, we cannot explore the whole parameter space, and instead, focus on select

cases which we expect to reflect the influence of each parameter (N, κ, χ) on the system. We

start with a study of the degree distributions for three cases, where the two networks differ

in only one of the three parameters. With moderate difference between the parameters of the

two networks (e.g., N1 is not much larger or smaller than N2), the simulation results indicate
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that the total degree distribution of each network is not significantly affected by the interaction

between networks. By generalizing the mean-field theory for the single-network model, total ρ’s

can be reasonably well explained. The puzzles appear when we consider more detailed degree

distributions, namely ρ∗ and ρ×. Similar to the distributions of the simple relabeling network,

we find ρ∗ and ρ× to be approximately binomial distributions on short time scales; however, on

longer time scales, the distributions are found to drift. We believe that this slow wandering is

associated with similar behavior of X, and thus, we turn our attention to the exploration of X.

A careful comparison of X between two similar systems, namely a relabeling network model,

and a symmetric two-network model, consisting of two identical networks coupled by χ = 1/2,

shows drastically different behavior of X. P ss(X) of the former is well described by a Gaussian

distribution, and by contrast, P ss(X) of the latter displays a very broad and flat plateau,

with much larger standard deviation. This observation suggests that this way of coupling two

networks has a profound effect on the system. Thereafter, a more systematic study of X is

carried out, as a function of the system parameters (N , κ, χ). Focusing on two measures, the

mean, 〈X〉, and the standard deviation, σ, we can qualitatively understand most features of the

simulation results, although a better theory will be needed to provide acceptable quantitative

predictions. Remarkably, a kind of “universal behavior” of different systems is observed in a

special regime, where the number of introverts is much smaller than the number of extroverts.

In that regime, the distribution of X is independent of κ. We discover that this behavior of X

can be traced to the extreme frustration of introverts: introverts never add links; instead, they

only cut links to compensate for the links that are continuosly being created by the extroverts.

As a result, the introverts have no internal links, and their state can be specified by their cross

degrees alone. By formulating an approximation scheme for the cross degree distribution, we

can successfully explain this phenomenon.

Thereafter, we continue our study on interacting preferred degree networks, and specifically,

focus on an extreme case, the XIE model. By fixing the preferred degree of one network at the

minimum and the other one at the maximum (κI = 0 and κE = ∞), the introverts only cut

connections while the extroverts keep adding links. Consequently, there are no links among

introverts, while the extroverts are connected to everyone else in their own population, so that
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the dynamics is restricted on the cross links. We first examine the degree distributions and find

that they exhibit a symmetry when their parameters, NI and NE , are symmetric. Further, we

discover that when NI = NE , the degree distributions are broad and flat, in contrast to the

sharply peaked ones in systems with non-equal NI and NE . With a self-consistent mean-field

approximation, we understand the behaviors of the degree distributions quite well, except for

the NI = NE system. To explore that special case in more detail, we study the number of

cross links, X. The simulation results for X show that the network experiences an unusually

sharp transition, as the ratio NI/NE crosses 1. Specifically, the transition is driven by the

change of the system geometry only. Thanks to the restoration of detailed balance, we find an

explicit expression for the stationary distribution P∗, which plays the role of the Boltzmann

distribution for systems in thermal equilibrium. A mean-field theory provides some insight into

much of the surprising behavior.

In addition to the models we have studied, there are many other possible ways to introduce

an interaction between two networks. In the final chapter, we explore some of the other

possibilities, and present results for two models involving different forms of interaction. In

the two-κ model, an individual is allowed to have two κ’s, to govern the actions on inter- and

intra-group contacts separately. In the preferred ratio model, we assign a preferred ratio of

cross degree and total degree to each node. For both models, we can understand some of their

topological properties.

Beyond these initial findings, there are many avenues to explore other interacting dynamic

networks. Here we present a few comments on how to extend our model to more realistic

cases. First, in a society, instead of a single preferred degree, there is typically a distribution

of preferences, and so one should really consider a set, {κ}. Second, in our models, every

node can make connections to anyone else, which clearly fails to capture the more complex

structures of the real society, separated by spatial distances and subtle ethnic divides. Third,

we should explore more realistic models of real phenomena, where dynamic degrees of freedom,

e.g., opinions, wealth, or health, are associated with the nodes. The topological structures of a

network determine the states of the nodes, and these degrees of freedom of nodes in turn affect

the topology of the network, leading to a coevolving network model. Beyond the preferred
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degree networks, a worthy extension would be the understanding of the interactions between

different types of networks, such as those listed in the Introduction. In most of the models

with interactions, a phenomenon coined as “frustration” is observed. Aside from the standard

concepts from statistical mechanics, in the study of interacting networks, we may need to

quantify the notion of “frustration,” φ. The simplest possibility is to start with the degree

distribution of a node i, Qi(k), and define φ of node i as φi ≡ [Σk>κ −Σk<κ]Qi(k). Therefore,

φ vanishes if the node has as many links above its preferred degree as below, while it assumes

the extreme values ±1 when the node always has degrees above/below κ.

Clearly, the studies reported in this thesis have only scratched the surface of the vast range

of possible interacting networks, leaving much more work to be done. In particular, it will be

interesting and important to investigate the coupled networks in the real world.
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APPENDIX A. STOCHASTIC DYNAMICS OF A SINGLE NETWORK:

EXACT MASTER EQUATION AND VIOLATION OF DETAILED

BALANCE

A single network can be described by an N×N adjacency matrix A (symmetric in our case,

as the links are undirected), where the elements aij = 0 (1) indicate the absence (presence) of the

link between nodes i and j. Since self-loops are not allowed, aii = 0 for all i ∈ [1, N ]. A complete

analytical description of the stochastic evolution of our model is provided by P(A, t |A0, 0),

which is the probability of finding configuration A at time t, given an initial configuration A0.

Since we focus on a Markov process, we can write down the discrete master equation for P as

follows. The change over one attempt, P(A, t+ 1)− P(A, t) is

∑
{A′}

[W (A,A′)P(A′, t)−W (A′,A)P(A, t)] (A.1)

where W (A,A′) is the rate for configuration A
′ to change to A. Note that, since each A has

L ≡ N (N − 1) /2 elements, the configuration space in which P(A, t) evolves consists of the 2L

vertices of a unit cube in L-dimensional space. In this setting, each attempt is seen to be just

a step from one vertex to another along an edge of this cube.

Explicitly, W consists of a sum over terms, each corresponding to an attempt at changing

the state of a link. We begin with the probability to choose a particular node, i: 1/N . Next, we

need its degree, ki, which is obtained by summing up all elements along the row i : ki =
∑

j aij .

From here, we attempt to add a link with probability w (ki), or cut with probability 1−w (ki).

Consider first the later case. A cutting action can occur for one of the ki existing links, so that

the total probability for aij to change from 1 to 0 (by node i) is (1−w (ki))/(Nki). Meanwhile,

none of the other links changes in this attempt. Thus, the term describing this action is

Δ
1− w (ki)

Nki

(
1− a′ij

)
aij (A.2)
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where

Δ ≡ Πk��=ijδ
(
a′k�, ak�

)
(A.3)

A similar term can be written to describe the adding action. All together, we have

W (A,A′) =
∑
i

Δ

N

∑
j �=i

[
1− w (ki)

ki

(
1− a′ij

)
aij +

w (ki)

N − 1− ki
a′ij (1− aij)

]
. (A.4)

Once the rates are known explicitly, we can check if they satisfy detailed balance or not.

The Kolmogorov criterion [109] states that a set of W ’s satisfies detailed balance if and only if

the product of W ’s around any closed loop in configuation space is equal to that around the

reversed loop. In our case, all loops can be regarded as sums over “elementary closed loops,”

i.e., ones which goes around a plaquette (or face) on our L-cube. Thus, we only need to focus

on such elementary loops. Clearly, such a loop involves two links, e.g., by adding two links

from a given A, followed by cutting them to return to the original A. As a specific example,

we start with an A which has neither an ij link nor an im one, then the sequence(
aij
aim

)
=

(
0

0

)
→

(
1

0

)
→

(
1

1

)
→

(
0

1

)
→

(
0

0

)
(A.5)

denotes adding these two and cutting them, while the rest of A is left unchanged. Apart from

an overall factor of N−4, the product of the W ’s associated with this loop is(
w(ki)

N − 1− ki
+

w(kj)

N − 1− kj

)(
w(ki + 1)

N − 1− (ki + 1)
+

w(km)

N − 1− km

)
×(

1− w(ki + 2)

ki + 2
+

1− w(kj + 1)

kj + 1

)(
1− w(ki + 1)

ki + 1
+

1− w(km + 1)

km + 1

) (A.6)

Now, the reversed loop can be denoted as(
aij
aim

)
=

(
0

0

)
→

(
0

1

)
→

(
1

1

)
→

(
1

0

)
→

(
0

0

)
(A.7)

associated with the product(
w(ki)

N − 1− ki
+

w(km)

N − 1− km

)(
w(ki + 1)

N − 1− (ki + 1)
+

w(kj)

N − 1− kj

)
×(

1− w(ki + 2)

ki + 2
+

1− w(km + 1)

km + 1

)(
1− w(ki + 1)

ki + 1
+

1− w(kj + 1)

kj + 1

) (A.8)

We can find the difference explicitly and verify that it does not vanish in general. To

appreciate this fact more easily, note that, e.g., the factor w(ki)w(km) appears in (A.6) but not

in (A.8). From these considerations, we conclude that detailed balance is violated here.
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We should re-emphasize the following. In our case, the products of W ’s around many

elementary loops are the same as those of the reversed loops (e.g., two links involving 4 different

vertices). However, detailed balance is satisfied only if all loops are “reversible.” Thus, showing

just one “failed loop” is sufficient for us to conclude that detailed balance is violated.
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APPENDIX B. STOCHASTIC DYNAMICS OF XIE MODEL:

THE RESTORATION OF DETAILED BALANCE

With the explicit expression of the transition rates, we can check if the dynamic process of

XIE model satisfies detailed balance or not. As stated in Kolmogorov criterion [109], detailed

balance holds, if the product of transition rates around every closed loop in the configuration

space is independent of the direction of the loop being traversed. Thus, it seems that we have

to check the product of transition rates around any closed loops in the configuration space.

However, our work can be simplified by taking into account of the following two facts. First,

recalling that the dynamics only occurs on N cross links, we can reduce the configuration space

to 2N dimensions. That allows us to consider the configuration space as a N -cube, so that

adding or cutting a link is associated to traverse along the edges of the N -cube. Second, one

“elementary closed loop” involves the creation and break of two links, and all loops can be

regarded as sums over such loops. For example, a closed loop of updating three links, “adding

ij (where ij stands for the link between node i and j), adding jl, adding lm, cutting ij, cutting

jl, and cutting lm,” can be viewed as the combination of three elementary loops, one involving

“adding ij, adding jl, cutting ij, and cutting jl,” the second involving “adding jl, adding lm,

cutting jl, and cutting lm,” and the third involving “adding lm, adding ij, cut cutting lm,

and cutting ij.” Thus, we only need to focus on the elementary loops. That is, we select two

links to update, and check whether the Kolmogorov criterion is satisfied. Suppose we start

with a configuration N, where the ij and im links are absent (nij = nim = 0). Let the states of

node be such that i has ki links, and j and m have pj and pm “holes,” respectively. One way

around the loop is adding these two links followed by cutting them, which can be denoted as
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the sequence (
nij

nim

)
=

(
0

0

)
→

(
1

0

)
→

(
1

1

)
→

(
0

1

)
→

(
0

0

)
(B.1)

and leave the rest of N unchanged. The associated product of the transition rates is, apart

from an overall factor of N4

1

pj

1

pm

1

ki + 2

1

ki + 1
(B.2)

Now, the reversed loop can be denoted as

(
nij

nim

)
=

(
0

0

)
→

(
0

1

)
→

(
1

1

)
→

(
1

0

)
→

(
0

0

)
(B.3)

associated with the product

1

pm

1

pj

1

ki + 2

1

ki + 1
(B.4)

which is exactly equal to B.2, so that Kolmogorov criterion is satisfied here. Thus, the detailed

balance holds and our system will eventually approach to a stationary distribution.
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[69] Dornic I, Chaté H, Chave J and Hinrichsen H, Critical Coarsening without Surface Tension:

The Universality Class of the Voter Model, 2001 Phys. Rev. Lett. 87 045701

[70] Galam S, Minority opinion spreading in random geometry, 2002 Eur. Phys. J. B 25 403

[71] Pastor-Satorras R and Vespignani A, Epidemic dynamics and endemic states in complex

networks,2001 Phys. Rev. E 63 066117

[72] Conservation laws for the voter model in complex networks Suchecki K, Eguiluz V M and

San Miguel M, 2005 EPL 69 228

[73] Moore C and Newman M E J, Epidemics and percolation in small-world networks, 2000

Phys. Rev. E 61 5678

[74] Castellano C, Vilone D and Vespignani A, Incomplete ordering of the voter model on

small-world networks, 2003 EPL 63 153

[75] Vilone D and Castellano C, Solution of voter model dynamics on annealed small-world

networks, 2004 Phys. Rev. E 69 016109



99

[76] Gross R, D’Lima C J D and Blasius B, Epidemic Dynamics on an Adaptive Network, 2006

Phys. Rev. Lett. 96 208701

[77] Gross T and Blasius B, Adaptive coevolutionary networks: a review, 2008 J. R. Soc.

Interface 5 259
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