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Abstract  

Organic semiconductors devices, such as, organic solar cells (OSCs), organic light-

emitting diodes (OLEDs) and organic field-effect transistors (OFETs) have drawn 

increasing interest in recent decades. As organic materials are flexible, light weight, and 

potentially low-cost, organic semiconductor devices are considered to be an alternative to 

their inorganic counterparts. This dissertation will focus mainly on OSCs and OLEDs.  

As a clean and renewable energy source, the development of OSCs is very promising. 

Cells with 9.2% power conversion efficiency (PCE) were reported this year, compared to 

< 8% two years ago. OSCs belong to the so-called third generation solar cells and are still 

under development. While OLEDs are a more mature and better studied field, with 

commercial products already launched in the market, there are still several key issues: (1) 

the cost of OSCs/OLEDs is still high, largely due to the costly manufacturing processes; 

(2) the efficiency of OSCs/OLEDs needs to be improved; (3) the lifetime of 

OSCs/OLEDs is not sufficient compared to their inorganic counterparts; (4) the physics 

models of the behavior of the devices are not satisfactory. All these limitations invoke the 

demand for new organic materials, improved device architectures, low-cost fabrication 

methods, and better understanding of device physics. 

For OSCs, we attempted to improve the PCE by modifying the interlayer between 

active layer/metal. We found that ethylene glycol (EG) treated poly(3,4-ethylenedioxy-

thiophene):polystyrenesulfonate (PEDOT: PSS) improves hole collection at the 

metal/polymer interface, furthermore it also affects the growth of the poly(3-

hexylthiophene) (P3HT):phenyl-C61-butyric acid methyl ester (PCBM) blends, making 

the phase segregation more favorable for charge collection. We then studied 
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organic/inorganic tandem cells. We also investigated the effect of a thin LiF layer on the 

hole-collection of copper phthalocyanine (CuPc)/C70-based small molecular OSCs. A thin 

LiF layer serves typically as the electron injection layer in OLEDs and electron collection 

interlayer in the OSCs. However, several reports showed that it can also assist in hole-

injection in OLEDs. Here we first demonstrate that it assists hole-collection in OSCs, 

which is more obvious after air-plasma treatment, and explore this intriguing dual role.  

For OLEDs, we focus on solution processing methods to fabricate highly efficient 

phosphorescent OLEDs. First, we investigated OLEDs with a polymer host matrix, and 

enhanced charge injection by adding hole- and electron-transport materials into the 

system. We also applied a hole-blocking and electron-transport material to prevent 

luminescence quenching by the cathode. Finally, we substituted the polymer host by a 

small molecule, to achieve more efficient solution processed small molecular OLEDs 

(SMOLEDs); this approach is cost-effective in comparison to the more common vacuum 

thermal evaporation.  

All these studies help us to better understand the underlying relationship between the 

organic semiconductor materials and the OSCs and OLEDs’ performance and will 

subsequently assist in further enhancing the efficiencies of OSCs and OLEDs. With 

better efficiency and longer lifetime, the OSCs and OLEDs will be competitive with their 

inorganic counterparts. 
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Chapter 1. Dissertation Organization 

This dissertation comprises 9 chapters and consists mainly of papers published, 

submitted or prepared for submission. Chapter 1 describes the organization of this 

dissertation. Chapters 2 and 3 provide a brief introduction on OSC and OLED technology, 

respectively. Chapters 4, 5, 7, and 8 are based on published papers. Chapter 6 is based on 

a submitted paper. Chapters 4 to 6 describe work on OSCs, and chapters 7 and 8 on 

OLEDs. Chapters 4 and 5 focus on improving metal/organic interfaces to achieve higher 

PCE in OSCs. Chapter 4 shows that EG treated PEDOT:PSS improves hole collection at 

the anode/polymer interface, furthermore, it also affects the growth of the P3HT:PCBM 

blended film, making the phase segregation more favorable for charge collection. Chapter 

5 describes the effect of a thin LiF layer on the hole-collection in CuPc/C70-based small 

molecular OSCs. A thin LiF layer serves typically as an electron injection layer in 

OLEDs and an electron collection interlayer in the OSCs, however a few reports in 

OLEDs discovered that it can also assistant in hole-collection. Here we demonstrate for 

the first time its function in assisting hole-collection in OSCs, which is further enhanced 

following air-plasma treatment. Chapter 6 describes the probing of hybrid tandem cells 

by stacking a P3HT:PCBM-based device on top of an inorganic cell to achieve a higher 

open circuit voltage and power conversion efficiency. In chapter 7, the efficiency as well 

as the lifetime of guest (small molecular phosphorescent dye)-host (polymer)-based 

OLEDs is improved by modifying the electron transport. In Chapter 8, the work 

described in chapter 7 is continued with the OLEDs greatly improved by substituting the 

polymer host with a small molecular host, and the resulting high-efficiency solution-
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processed small molecule phosphorescent OLEDs are discussed. Finally, the conclusions 

of this dissertation are summarized in Chapter 9. 
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Chapter 2. Introduction to Organic Solar Cells (OSCs) 

Brief history to OSCs 

In 1906 Pochettino discovered photoconductivity in solid anthracene, which was the 

first organic compound showing this effect [1]. This phenomenon was re-addressed by 

Volmer in 1913 [2]. The actual emergence of organic dyes as photoacceptors in imaging 

was in 1950s – 1960s [3]. These dyes were later among the first organic materials that 

showed photovoltaic (PV) effects. Cells made of magnesium phthalocyanines (MgPh) 

that produced a photovoltage of 200 mV were fabricated by Kearns and Calvin in 1958 

[4]. In 1980s, the first polymer-based solar cells were investigated [5-6]. At that time, the 

active layer was composed of a single layer of either a dye or a polymer, hence the power 

conversion efficiency (PCE) of the cell was very low (< 0.1%). In 1986 a major 

breakthrough in OSCs was achieved by Tang by generating a donor-acceptor 

heterojuction structure, which greatly assisted the charge separation and resulted in a 

device efficiency of 1% [7]. The concept of a heterojunction has since been widely 

studied in various donor–acceptor pairs, such as dye/dye, polymer/dye, polymer/polymer 

and polymer/fullerene. Later on, OSCs fabricated from a donor/acceptor mixture, termed 

bulk heterojunction, came into being.  In 1991, Hiramoto demonstrated the first small 

molecular bulk heterojunction [8].  And Yu et. al, fabricated the first polymer:C60 bulk 

heterojuction photodetector in 1994 [9]. The application of fullerene and its derivatives as 

acceptors reinforced the performance of the OSCs, due to their high electron affinity and 

electron mobility. Blends of polymer/small molecule and fullerene groups were 

intensively studied. The limitation of exciton diffusion and charge separation were 
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overcome. For example, blends of poly(phenylenevinylene) (PPV):PCBM with 1:4 

weight ratio showed a 2.4% PCE. In 2003, Hummelen’s Group first reported OSCs based 

on combining P3HT with PCBM at a 1:4 weight ratio with a PCE of only 0.2% [10]. This 

result was improved to 3.5% in the same year by Padingger’s Group as they blended 

P3HT and PCBM at a 1:1 weight ratio and annealed the active layer at 75°C for 4 

minutes [11]. Thereafter, systematic studies of varying the ratio of the blend constituents, 

the annealing temperature and duration, and the solvent annealing duration were carried 

out by various groups, including those of C. J. Brabec, D. A. Carroll, A. J. Heeger, and Y. 

Yang. [12-18]. As a result, the PCE of a single-unit bulk heterojunction and tandem 

OSCs based on P3HT:PCBM of > 5% [12-15, 18] and 6.4%[19], respectively, were 

achieved. Recently, OSCs with PCE greater than 7% were reported; these OSCs were 

fabricated with synthetized materials that are not commercially available [25]. 

Companies like Heliatek, Konarka Technologies, and Solarmer Energy Inc, all reported 

cells with PCE > 8% early 2011[26, 27]. Mitsubishi Chemical reported to have a 9.2% 

PCE in April, 2011[28]. Yang and coworkers announced a 10.6% PCE this year, which is 

by far the highest reported value [29]. Molecular Solar Ltd., has achieved tandem OSCs 

with open-circuit voltage (Voc) exceeding 4 V for the first time by using a cell with only 4 

junctions (sub-cells) [30]. This is considered to be a significant breakthrough in OPV 

performance, as this high Voc will be sufficient to support a wide range of consumer 

electronics. The bulk heterojunction is still among the most promising structures of the 

OSCs today. Other emerging approaches are also very promising, such as quantum 

dots/organic hybrid OSCs featuring multi-electron generation upon a single incident 

photon, although the present PCE of this type of device is still low [31, 32]. 
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Brief introduction to π conjugated materials 

    Organic materials are composed of discrete molecules held together by weak van der 

Waals forces. Thus, organic solids are typically soft with low melting point and poor 

electrical conductivity. Due to the weak bonding between the molecules, the properties of 

the individual molecule are largely retained in the organic materials. 

 

 

Fig. 1-1. Examples of sp (in ethyne), sp2 (in ethene) and sp3 (in methane) 

hybridization.[33] 

To study the electronic properties of an organic material, we should first look at the 

individual molecule itself. Since carbon is the main element of the organic materials, 
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understanding the electronic configuration of carbon is crucial to get a general idea of the 

organic materials. The ground state of a single carbon atom has an electronic 

configuration as 1s22s22p2. There are possibilities for the 2s and 2p orbitals to hybridize 

as sp (as in ethyne C2H2), sp2 (as in ethene C2H4) and sp3 (as in methane CH4), 

respectively, as shown in Fig. 1-1 [33]. The sp hybridization produces two hybrid orbitals 

at an angle of 180o, and the remaining py and pz orbitals are perpendicular to the s-p 

orbital plane. As to sp2 hybridization, σ bonds are formed between the carbon-carbon and 

carbon-hydrogen atoms, and the un-hybridized pz orbitals form a π bond between two 

carbon atoms with 120o bonding angles. For the sp3 hybridization, σ bonds are formed 

between carbon and hydrogen atoms, with 109o bonding angles. 

    For π conjugated materials, which consist of alternating single and double bonds of 

carbon atoms, the hybrid orbital scheme provides a convenient model for understanding 

the molecular structure. For example, as shown in Fig. 1-2, pz orbitals  
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FIG. 1-2. The electronic configuration of the carbon atom’s ground state, sp2 

hybridization, and the formation of π-bonds. 

of each carbon atoms in the benzene ring overlap each other to form delocalized π bonds, 

while the σ bonds in the molecular plane between carbon/carbon or carbon/hydrogen are 

highly localized. As the delocalized electron density is present only above and below the 

plane of the carbon atoms in the π bonds, it will be sufficient to focus on the properties of 

the π electrons to study the electronic properties of the π conjugated materials. 

    When it is extended to a macroscopic case for a many body system, the molecular 

orbital (MO) wavefunctions based on linear combinations of atomic orbitals (LCAO) are 

the most extensively used in MO theory. According to LCAO, for a molecule that has N 

carbon atoms, the wavefunction of a π-MO can be written as  

�� � ∑ ������	
  (1.1) 
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where the ϕl terms are atomic orbitals, and the al terms are coefficients determined by 

minimizing the total energy of the system [34]. By the Pauli principle, each atomic orbital 

can accommodate two electrons of opposite spin, so the ground state wavefunction of the 

system is 

����
����� � �
�
�
�
 … ��/���/���/���/�     (1.2) 

where the ϕl terms are functions of Eq. 1 and ordered according to increasing energy, El > 

El-1; αl and βl denote electron spin functions for up and down orientation, respectively. 

When the molecule is in its ground state, the unfilled and filled MOs are called 

antibonding and bonding MOs, respectively [34]. 

 

Fig. 1-3. The HOMO and LUMO levels of a molecule. 



9 

 

The excited states are formed by exciting one of the bonding electrons to an unfilled 

anti-bonding MO. The lowest energy required for that is to excite an electron in the 

highest occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital  

 

Fig. 1-4 American Society for Testing and Materials (ASTM) Terrestrial Reference 

Spectra for Photovoltaic Performance Evaluation (Air Mass 1.5) [35]. 

(LUMO).  HOMO and LUMO shown in Fig. 1-3 are analogous to the valence and 

conduction bands of inorganic semiconductors. The energy difference between the 

HOMO and LUMO level is regarded as the band gap energy, Eg, corresponding to the 

minimum photon energy EPhoton in the optical transitions of absorption or radiative 

emission. The absorption of the π conjugated materials used in OSCs should be within 

the solar spectrum regime, and low-band gap materials are preferred since ~52% 

radiation energy from the sun lies in the infrared region as shown Fig. 1-4 [35]. Some π 

conjugated materials, including polymers and small molecules, are shown in Fig. 1-5. 
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There are greater varieties of donor materials compared to acceptor materials. In the 

solution processed blends, the PCBM is still the dominant acceptor material since Heeger 

and coworkers introduced it in 1995 [36]. It is crucial to develop new conjugated 

materials with higher charge carrier mobility and preferable HOMO-LUMO levels to 

obtain higher PCE. 

 

Fig. 1-5 Examples of π conjugated materials used in OSCs (1)P3HT: Poly(3-

hexylthiophene-2,5-diyl); (2) PCDTBT: poly[N-900-hepta-decanyl-2,7-carbazole-alt-5,5-

(40,70-di-2-thienyl-20,10,30-benzothiadiazole; (3) CuPc: Copper Phthalocyanine; (4) 

C70: Fullerene C70; (5) PCBM:[6,6]-phenyl-C61-butyric acid methyl ester. 

Working principles and common parameters 

Working principle 
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Fig. 1-6 Jablonski energy diagram [37]. 

    As shown in Fig. 1-6 [37], absorption of light occurs in femtoseconds, the time 

necessary for the photon to travel a distance equivalent to its wavelength. The absorption 

of a photon of energy by an organic molecule occurs due to an interaction of the 

oscillating electric field vector of the light wave with electrons in the molecule, and can 

only occur with incident light of specific wavelengths. If the absorbed photon contains 

more energy than the optical band gap, the excess energy is usually converted into 

vibrational and rotational energy (thermalization). However, no absorption occurs when 

the photon has insufficient energy to promote a transition; this photon will be transmitted 

through that material. If a photon is absorbed, the excited molecule exists in the lowest 

excited singlet state for periods on the order of nanoseconds before finally relaxing to the 

ground state.  During this relaxation period of the excitons (excited bound electron-hole 
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pairs), several competing processes may take place: (1) fluorescence (2) intersystem 

crossing (3) non-radiatively decay. In OSCs, exciton dissociation is desired to generate 

charge carriers. So we generally use a donor-acceptor (D-A) pair to promote exciton 

dissociation and avoid the unwanted radiative decay or relaxation to generate heat. Even 

at the presence of D-A pairs, there are competing processes of charge transfer (desired) 

and energy transfer (not desired), as shown in Fig. 1-7 [38]. In contrast to electron 

transfer that produces free charge carriers, energy transfer typically produces a neutral, 

electronically excited state. 

    The actual photoelectrical processes within the OSCs under incident light are shown in 

Fig. 1-8, which is a simplified example for the planar heterojunction device. It is 

important to note that these energy diagrams are drawn for the isolated components and 

band bending due to Fermi level alignment is not included. When the incident photon is 

absorbed by the donor (or acceptor) material, the generated excitons will first diffuse to 

the D-A interface, and electron transfer as mentioned above will occur at the interface, 

namely charge transfer. The exciton diffusion length is typically at 10 nm level due to the 

short lifetime of the excitons [39, 40]. If excitons need to cross a longer path than the 

exciton diffusion length, the excitons will recombine through radiative or non-radiative 

processes. Once the excitons reach the D-A interface, charge transfer occurs and the 

excitons dissociate; the probability of charge transfer approaches 100% [39-41], as long 

as the energy offset between the LUMO of the donor and acceptor is no less than 0.3 eV 

to provide sufficient electric field to assist in exciton dissociation. The required ~0.3 eV 

is believed to be 
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Fig. 1-7 Possible electron transfer (a); and energy transfer (b), (c), and (d) between a 

donor-acceptor pair [38]. 

associated with the exciton binding energy [41-47]. After charge transfer, holes and 

electrons will be transported to the corresponding electrodes and be collected under short 

circuit condition. 
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Fig. 1-8 The photoelectric processes inside a planar heterojunction. 

    The equivalent circuit of a solar cell fundamentally comprises a current source, a 

rectifying component modeled as a diode, together with a parallel resistance (Rsh) and a 

series resistance (Rs), as shown in Fig. 1-9. In the ideal case, Rs vanishes and Rsh becomes 

enormous. Practically, the Rs value is not zero due to the resistance of the organic 

material, the contact resistance of the organic/electrode, and the resistance of the 

electrodes. Rsh is a finite number owing to leakage current and recombination within the 

device. 
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Fig. 1-9 The equivalent circuit diagram and the J-V characteristics under light and dark. 

    The common parameters of an OSC can be derived from J-V characteristics, such as 

Voc, Jsc (short circuit current density), FF, PCE, Rs and Rsh, as shown in Fig. 1-9. Voc is the 

voltage across the solar cell when the cell current is zero. Jsc is the cell current density 

when there is no applied bias to the cell. FF describes the actual utilization of the 

theoretical maximum output power; it is defined as: 

�� � ����
��� !"�

� ���� !���
��� !"�

                      (1.4) 

where Vmax and Jmax are the corresponding voltage and current at the actual maximum 

output power (Pmax) [48]. 

The PCE is the ratio of the output power and input optical power [43]. 
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#$% � ��� !"� &&
'()*+ -)+./0� �1234              (1.5)  

The standard input optical power is 100 mW/cm2 under simulated air Mass 1.5 (AM1.5) 

solar spectrum.  

From the equivalent circuit shown in Fig. 1-9,  

5 � 65)71+1/*443(+ 8 59.193 8 5:7*(+ 

� 65)7 8 5; <exp @�A'B"
(�CD

E 6 1G 8 �H 8 5I:�/I:7                    (1.6) 

where I0 is the reverse saturation current, n is the diode ideality factor, and Vth = kBT/q is 

the thermal voltage  [49, 50]. When under dark, Iph ~ 0, typically Rsh >> Rs and Eq. (1.6) 

becomes, 

5 � 5; <exp @�A'B"
(�CD

E 6 1G 8 H/I:7        (1.7) 

From Eq. (1.7), we can derive  

9'
9� � 'J

(�CD
exp @�A'B"

(�CD
E 8 


B"D
       (1.8) 

From the dark J-V characteristics, I approaches zero when V = 0. Substitute I ~ 0 and V = 

0 into Eq. (1.8), we get the expression for the shunt resistance: 



B"D

� 9'
9� K�	;       (1.9) 

That is, the inverse of the slope of the dark I-V characteristics at V = 0 is the shunt 

resistance [51]. 
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We can also derive the expression for Rs through Eq. (1.7).  When I = 0, and assuming 

V/Rsh ~ 0 (as Rsh is typically a large number and V < 1 V), Eq. (1.7) becomes  

5; <exp @�A'B"
(�CD

E 6 1G � 0 , that is H 8 5I: � 0 → I: � 6 9�
9' K'	;    (1.10) 

i.e., the inverse value of the slope at I = 0 is indicative of the series resistance. 

    By fitting the dark I-V curve, information about the ideality factor n, the reverse 

saturation current of the diode and the theoretical value of Voc can also be derived. 

However, this method is only valid for good OSCs with low Rs and high Rsh. To get more 

accurate parameters of OSCs, we need to fit Eq. (1.6) directly. Different approaches were 

made to better serve this purpose [49-56]. 

    The origin of the Voc of OSCs is still not fully understood. It is generally believed that 

the Voc will depend on whether the contacts between the organic and both electrodes are 

Ohmic contacts. If the contacts are Ohmic, the Voc depends on the difference between the 

HOMO level of the donor and the LUMO level of the acceptor (termed the effective band 

gap), and typically expressed as 

H1/ � MNOPQ 6 RPOPS 6 TUV� WXYXZ
�[ \ 

� MNOPQ 6 RPOPS 6 0.3 … 0.7 `H                                             (1.11)  

where NL and NH are the density of states at the LUMO of acceptor and the HOMO of the 

donor, respectively [39-41] ; n and p are the density of hole and electron, respectively. 
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The 0.3 - 0.7 eV is material dependent. If the contacts are not Ohmic, the Voc tends to 

approach the work function difference between the two electrodes. 

 

Fig. 1-10 The IPCE spectra of an inverted P3HT:PCBM solar cell.  

    Another important parameter is the external quantum efficiency (EQE) shown in Fig. 

1-10, also called the incident photon to carrier efficiency (IPCE): 

%a% � 5#$% � bcd � 7/'"��e�
fe��e�         (1.6) 

where h is Plank’s constant, c is the speed of light, Isc is the wavelength dependent  short 

circuit current, q is the charge of an electron, and P is the wavelength dependent light 

intensity. Knowing EQE and the absorption, the internal quantum efficiency can be 

calculated. The internal quantum efficiency is defined as the number of carriers collected 

per number of photons absorbed by the active layer, which excludes optical losses due to 

reflection, transmission and absorption by non-active layers [57]. 
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How to improve PCE 

    From Eq. (1.5), enhancement in Voc, Jsc, and FF will lead to improved PCE. Fig. 1-11 

shows a design rule for choosing proper donor LUMO level and band gap to achieve 

optimal PCE in Donor/PCBM-based OSCs. The donor material should preferably have a 

low band gap and the LUMO level should approach the LUMO of the PCBM [58, 59]. 

By tuning the electronic levels of the D-A system or introducing interfacial dipoles 

between organic and electrodes, the Voc can be enlarged. By increasing the absorption, 

charge generation, charge transport and charge collection, the Jsc can be increased. There 

are different approaches to enhance the absorption. The plasmonic effect of metal nano-

particles was found to enhance the absorption. Optical designs such as a light 

concentrator, gratings, and back scattering were used to trap more light. Optimal structure 

design such as tandem OSCs can also improve the absorption by allowing a thicker layer 

and better matching to the solar spectrum. Structure designs that provide more D-A 

contact area will increase charge generation. Annealing the organic layer typically 

improves the charge carrier mobility, together with ensuring charge carrier percolating 

path to the electrodes by proper structure design. Modifying the organic/electrode 

interfaces will help charge collection. With proper structure design and favorable 

organic/electrode interfaces, the FF can be optimized. 
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Fig. 1-11. The relation between PCE and donor LUMO level/donor band gap for cells 

with PCBM as the acceptor, and examples of some reported Donor/PCBM pairs.[58] 
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OSCs Structure 

Single layer 

    As the exciton binding energy in organics is often ≥ 0.3 eV, the photoinduced excitons 

must dissociate before free charge carriers are available. In a single layer device, the 

organic layer is sandwiched directly between two electrodes, thus the possible exciton 

dissociation sites are limited. The dissociation typically occurs at the organic /electrode 

interface, defects, and impurities. Moreover, the exciton diffusion length is only ~10 nm; 

to enable exciton diffusion to the interface, a very thin organic layer is needed. The 

restricted thickness of the organic layer limits the absorption of light, thus, the number of 

generated excitons. Due to the insufficient absorption and carrier generation, the PCE of 

a single layer OSC is typically well below 0.1% [3]. 

 

Fig. 1-12 Structure of a single layer device 

Planar heterojunction 

     Since C. W. Tang created a donor and acceptor heterojuction structure in 1986, the 

charge separation is greatly improved. In this type of planar heterojunction OSCs, the 

active layer is sandwiched between two electrodes, and comprises two different organic 
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materials with energy level offsets at the HOMO and LUMO levels. This energy offset 

helps exciton dissociation at the donor-acceptor interface. The probability of charge 

transfer at the D-A interface approaches 100% due to the fact that the recombination 

process is significantly slower than the charge separation. With this structure, PCE > 1% 

was realized. Nevertheless, the thickness of the organic layer is still limited by the 

exciton diffusion length, and the donor/acceptor layer is only a few tens of nanometers 

thick. By increasing the thickness to improve absorption, more excitons will be generated, 

however there will be excess excitons that cannot diffuse to the D-A interface. Since only 

the D-A interface provides effective dissociation sites, those excess excitons will not 

contribute to the short-circuit current (ISC). Furthermore, a thick organic layer will hinder 

the charge carrier ability to reach the corresponding electrode owing to the low carrier 

mobility in organic materials [3, 38]. 

 

 

Fig. 1-13 Structure of planar heterojunction and the photoelectric process inside the 

organic.  
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Bulk heterojunction  

    In the bulk heterojunction, the donor and acceptor materials are blended together in the 

active layer, so that the contact area between them is greatly enlarged [57]. Thus, the 

excitons may easily find their way to the D-A interface, and effectively dissociate into 

charge carriers. Thanks to the short diffusion path, thicker layers (~100 - 200 nm) can be 

prepared to harvest more light. Now the main 

 

Fig. 1-14 Possible charge transport inside the bulk heterojuction.(a)Interpenetrating 

network with no percolating path and many traps;(b)Interpenetrating network with 

percolating path;(c)Segregated interpenetrating network. 

challenge is the charge carrier transport inside the bulk heterojunction. Since the nano-

morphology of the bulk heterojunction is randomly formed, some isolated islands of 

donor or acceptor may form inside the bulk as shown in Fig. 1-14(a). That is, donor 

materials could be surrounded by acceptor materials or the other way around. This 

network is not favorable for charge transport, and the generated charge carriers will 

eventually be trapped and result in a very low ISC. Forrest et al. proposed a concept of 

“percolating” in their CuPc/C60-based small molecular OSCs [60-62], where the charge 

carriers can transport continuously from one molecule to another as long as the 
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intermediate layer does not exceed exciton diffusion lengths as shown in Fig. 1-14(b). Fig. 

1-14(c) exhibits an ideal phase segregated bulk heterojunction, which is difficult to 

realize in practice. The stability and efficiency of this type of solar cell depend greatly on 

the nano-morphology of the active layer. The initial formation of the phase segregation in 

the active layer is crucial to obtain high PCE. The performance of the cells also depends 

greatly on the solvent used for making the mixture solution. The segregation should 

provide enough interfaces for charge separation and allow paths for charge carriers to the 

corresponding electrodes, with sufficient donor (acceptor) material in direct contact with 

the anode (cathode). Under long-term operation the donor and acceptor tend to segregate 

and partially block available paths of the charge carriers to the contacts, which eventually 

greatly reduces the Jsc and FF. Hence, finding ways to control the nano-morphology of 

the active layer is crucial.  

 

Molecular heterojunction 

    Based on the concept of the bulk heterojunction, double-cable polymer and diblock 

copolymers were synthetized to get more precise control of the morphology of the active 

layer for achieving better cell performance [63-66]. One approach is the covalent linking 

of C60 to a hole-transport conjugated polymer backbone (see Fig. 1-15). Although the 

covalently linked polymer-C60 chains provide reasonable Jsc, they tend to phase separate 

and cluster, which limits charge separation and collection. To get bi-continuous phase 

separation and large interfacial area, double-cable polymer and diblock copolymer were 

synthetized, as shown in Fig. 1-9. In the double-cable polymer, for example, C60 is 

connected to the donor polymer backbone; it forms charge separation and ordered 
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domains, which offer great potential for high PCE in the future, though many critical 

design parameters need to be evaluated [67]. For instance, the fullerene concentration 

must reach the percolation threshold to ensure efficient electron transport. The self-

assembled diblock copolymers will also form ordered domains similar to the double-

cable, and their HOMO and LUMO level can be tuned [68]. 

 

Fig. 1-15 Different morphologies of heterojunction cells. Top, left: Two-layered structure 

of fullerenes and polymer chains. Top, right: dispersed heterojunction. Middle, left: 

fullerenes with polymer chains attached. Middle, right: self-assembled layered structure 

of double-cable polymers. Bottom: self-assembled layered structure of diblock 

copolymers. The layered structure of double-cable polymers and diblock copolymers are 

expected to facilitate efficient electron and hole transport [68]. 
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Tandem OSCs 

    For a single unit cell, the absorption is limited due to sub-band transmission and 

thermalization of hot charge carriers, which leads to the ~33.7% Shockley-Queisser 

thermodynamic limit of the PCE. Tandem structures (shown in Fig. 1-16) can outperform 

this limit, reducing both types of losses [69]. De Vos proposed that by using two sub-

cells with complementary absorption spectra the theoretical limitation increases to 42%, 

and to 49% for 3 sub-cells [70]. A more recent paper suggested that an optimistic PCE 

for a single unit organic solar cell is ~15.2% and for a tandem device ~23.2% [71]. Since 

the absorption spectra of organic materials are often not sufficiently broad [69], unlike 

the continuum absorption of some inorganic materials, the tandem structure becomes 

more crucial for OSCs, where complementary absorption bands are often utilized. This 

approach results in reduced thermalization losses. The subcells can be connected either in 

series or parallel. Almost all reported tandem OSCs are of series connection as to provide 

a higher VOC. The intermediate layer should be an effective recombination center for 

holes coming from one subcell  
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Fig. 1-16 Schematic representation of an organic tandem device comprised of two sub 

cells having different, complimentary absorption spectra [69]. 

and electrons from the other, which is achieved by aligning the quasi-Fermi levels of the 

donor and acceptor of the respective sub-cells.  

 

Fabrication methods 

    There are two types of OPVs based on the materials used for their fabrication: polymer 

OSCs and small molecular OSCs.  

    Due to their large molecular weight, polymer OSCs are limited to solution processing, 

such as spin-coating, ink-jet printing and roll to roll processing, among which spin-

coating is the common method in research laboratories.  An illustration of spin-coating is 

shown in Fig. 1-18(1). This method is easy to use, and the constituents’ ratio can be 

accurately controlled if more than one material is involved. But the formation of the films 



28 

 

derived from spin-coating is affected by factors like the vapor pressure of the solvent, air 

flow and temperature. To ensure reproducibility, those factors must be controlled [72]. 

    Small molecular OSCs are mainly processed by thermal evaporation, which typically 

includes a high vacuum chamber (~10-6 - 10-7 torr), thermal evaporation sources, 

thickness monitors and substrate holders, as shown in Fig. 1-18(2). The organic material 

is heated by a resistance connected to a DC power supply, and the vapors pass through a 

shadow mask to produce a uniform layer on the substrate. The evaporation rate is 

normally restricted to < 0.2 nm/s to ensure the quality of the film, while thickness can be 

controlled precisely at the ~0.1 nm level. Currently, to avoid the relatively high cost of 

thermal evaporation, small molecules are increasingly designed for solution processing 

and this approach resulted in PCE of up to ~6.7%. [73-76]  

 

FIG. 1-18 (1) Spin-coating process; (2) Thermal evaporation system.  

Applications of OSCs 
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    Compared to inorganic solar cells, OSCs have advantages such as (1) tunable 

absorption with abundant materials, including synthesis of new materials; (2) 

compatibility with solution processing, which enables low cost and large area 

manufacturing; (3) flexibility and transparency of various materials; (4) easy integration 

with other organic electronic devices, such as OLEDs and OFETs to further minimize the 

size of the devices. However, the relatively low efficiency, short lifetime and 

reproducibility issues still limit the applications of the OSCs. 

Currently, the most promising applications for OSCs, as suggested by Konarka, are (1) 

personal mobile phone charger; (2) small home electronics and mobile electronics 

attachment; (3) Building-integrated photovoltaics (BIPV), such as building’s exterior 

wall, window, or blinder, and (4) power generation. OSCs are expected to be soon 

utilized for mobile electronic device charger and for military use. Nowadays, 

commercialized OSCs are emerging in some outdoor applications, such as building 

materials for windows and walls and portable electronic chargers. The first commercially 

available OSC products were bags integrated with Power Plastic from Konarka 

technologies in 2010. Mitsubishi Chemical also plans to commercialize their ~10% PCE 

cells as early as next year. Companies such as BASF, Solarmer Energy Inc., and Helitak 

GmbH, as well as academic research groups have been developing materials and device 

technologies for OSCs application. We can expect a bright future for OSCs with better 

synthetized materials, device structures and better understanding of the device physics. 
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Chapter 3. Introduction to Organic Light-Emitting Diodes (OLEDs) 

Brief history of OLED technology 

 The first electroluminescence (EL) in organic materials was discovered in the early 

1950s and after that research on organic electroluminescent materials and devices 

expanded [1-13]. Initially, the electrical conductivity of organic materials used was very 

poor and the device structure of organic light-emitting diodes (OLEDs) was very simple, 

consisting of only a single organic layer between two electrodes, the anode and the 

cathode. Due to these limiting factors, the efficiency of the early OLEDs was quiet low, 

i.e., <0.1% [14]. The chemical structure of anthracene, which is the lighting-emitting 

material of Ref. 14, is shown in Fig. 2-1.  

 

Fig. 2-1. Chemical structure of anthracene [14]. 

    The first important breakthrough in OLED technology was in the 1980s. Tang and Van 

Slyke reported the first thin film organic heterostructure small molecule OLEDs 

(SMOLEDs) in 1987 [15]. Those OLEDs were fabricated from thin amorphous and 

polycrystalline layers deposited by vacuum thermal evaporation (VTE). They contained a 

novel two-layer structure with a separate thin hole transport layer (N,N’-diphenyl-N,N’-
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bis (3-methylphenyl) 1,1’-biphenyl-4, 4’ diamine (TPD)) and a thin electron transport 

layer/light emitting layer (tris(8-hydroxyquinoline) aluminum (Alq3)), so the charge 

carrier recombination and light emission occurred, away from the quenching metal 

cathode. The reduction in thickness of the organic layers to ~100 nm drastically reduced 

the required operation voltage V, and a brightness exceeding 1000 Cd/m2 at V ~ 10 V was 

achieved for the first time. The quantum efficiency of those OLEDs was improved to ~ 

1%, approximately ~100 fold compared to the early OLEDs [14-15]. The device structure 

and chemical structures of the materials used are shown in Fig. 2-2 [15]. 

 

 

Fig. 2-2. Device structure of the first heterojunction OLEDs and molecular structures of 

TPD and Alq3.  

The largely improved OLED efficiency attracted worldwide industry and academia 

attention, and stimulated explosive development of this field. In following designs, 

additional functional organic layers were introduced (see in Fig. 2-3) to improve the 

performance of the OLEDs. And more and more advanced SMOLEDs with higher 

efficiency were reported. The state-of-art fluorescent OLEDs reach a power efficiency of 

20-30 lm/W and phosphorescent OLEDs (PHOLEDs) >100 lm/W (PHOLEDs, see the 

discussion below). However, the complex multilayer SMOLEDs present some 
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disadvantages, mainly due to the VTE fabrication method. First, VTE requires high 

vacuum, which limits the size of the device. Second, making multi-dopant OLEDs, such 

as white OLEDs (WOLEDs), requires precise control of the doping concentration of each 

dopant in the emitting layer (EML) to obtain the desired emission [16,17], which 

dramatically increases the fabrication complexity. All these issues usually lead to a 

higher cost and limited device size; for example, the price of the first commercially 

available OLED TV, i.e., the 11-inch diagonal Sony XEL-1, was ~$2900 (the price of at 

least a 50-inch LCD HDTV).     

 

Fig. 2-3. Device structure of multilayered SMOLEDs.  

In the 1970s, in parallel with the development of small molecule OLEDs conjugated 

polymers were also used, mostly due to their unique properties, such as light weight, 

mechanical flexibility, processability, tunable bandgap and conductivity. Polymers are 

too large for thermal evaporation, so unlike small molecules, they are fabricated by 

solution-processing methods, such as spin-coating and ink-jet printing. The first low-V 

green polymer light-emitting diodes (PLEDs) was reported by J. H. Burroughes et al. in 

1990 using a 100-nm thick films of poly(p-phenylene vinylene) (PPV) [18]. Because 
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PPV preferentially conducts holes rather than electrons, the electron injection in these 

original PPV-based devices was strongly limited, therefore the quantum efficiency was 

very poor, only ~0.05%. Adopting the idea of heterostructure, which was successfully 

demonstrated in SMOLEDs, in 1992 a polymeric heterostructure was developed using an 

electron transport layer of 2-(4-biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-oxadiazole (PBD) 

dispersed in an insulating polymer, poly(methyl methacrylate) (PMMA) [19]. This design 

improved the quantum efficiency of the PPV device to 0.8%, roughly the same as the 

efficiency of undoped Alq3 devices. 

    Due to the requirement of orthogonal organic solvents (if the solvents are not 

orthogonal, the solvent used for one layer can redissolve or otherwise damage the 

previous layers), PLEDs usually have fewer organic layers than SMOLEDs [20]. The 

limited number of layers in PLEDs typically results in less efficient devices in 

comparison to the most advanced SMOLEDs. On the other hand, solution-processed 

PLEDs is potentially of low cost with the advantage of large area manufacturability [17, 

21].   

Basic OLED Photophysics and Operation 

During operation of OLEDs a positive V is applied to the anode, resulting in hole (h+) 

injection to the HOMO level of the adjacent organic layer, usually a hole transport layer 

(HTL), and the electron (e-) injection from the cathode to the LUMO level of the adjacent 

organic layer, usually an electron transport layer (ETL). Injected h+ and e- drift toward 

each other in the organic layers by the external electric field, and some of them 
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recombine to form the excited states, i.e., excitons. The radiative decay of the excitons 

generates the light.    

As is well known, both e- and h+ are fermions with spin S = ½. Statistically, 25% of the 

excitons are in singlet states, called singlet excitons (SEs), and the rest 75% are in triplet 

states, termed as triplet excitons (TEs) [22-23]. Because of the weak spin–orbit coupling 

(SOC) effects, the intersystem crossing (ISC) time(~10 ns) between these two states is 

significantly longer than relaxation times of internal conversion (IC, a process of internal 

relaxation that occurs within the same spin manifold), which is ~10−12 s [24]. The ground 

state of organic materials is in the singlet configuration S0, therefore only the efficient 

and fast decaying singlet emission (S1→S0, fluorescence), with lifetime τ of the order of 

one ns, is quantum mechanically allowed [25-27]. On the other hand, since the 

probability for the radiative T1→ S0 transition (phosphorescence) is very small, the 

deactivation of the T1 state occurs normally non-radiatively at ambient temperature. 

Therefore, 75% excitons are lost for the emission, whose energy is transferred into heat. 

So for the fluorescent OLEDs, only the SEs emit light, which results in a theoretical 

upper limit of 25% on the internal quantum efficiency ηint (defined as the ratio of the total 

number of photons generated within the structure to the number of electrons injected [28-

29]), leading to a relatively low efficiency for the fluorescent OLEDs.   

 

Phosphorescent OLEDs (PHOLEDs) 

The foregoing 25% limit was overcome by the groundbreaking work of Forrest and his 

group on phosphorescent OLEDs (PHOLEDs) in the late 1990s and early 2000s, where 
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both the SEs and TEs are used in generating light [30-32]. The phosphorescent organic 

molecules are mostly organo-transition metal complexes, which usually contain a heavy 

metal atom at the center of the molecule, for example platinum or iridium. Molecular 

structures of 3 widely-used phosphorescent materials: (a) Pt(II) octaethylporphine 

(PtOEP), (b) Tris(2-phenylpyridine) iridium(III) (Ir(ppy)3) and (c) Bis(3,5-difluoro-2-(2-

pyridyl)phenyl-(2-carboxypyridyl) iridium(III) (FIrpic) are shown in Fig. 2-4 [30-32]. 

These transition metal ions induce significant SOC effect, which enables the radiative 

path from T1 to S0. Moreover, a very efficient ISC from the populated SEs to the emitting 

T1 state is induced by SOC, so that efficient phosphorescence with a quantum yield ϕPL 

of almost 100% can occur even at ambient temperature [33–39]. This process is called 

triplet harvesting, as shown in Fig. 2-5. That is, all four possible spin orientations of the 

excitons (SEs and TEs) can be harvested and populate the lowest T1 state, therefore a ηint 

= 100% in principle can be achieved, which largely improves the efficiency of OLEDs 

(peak power efficiency is already over 100 lm/W), rendering OLEDs as the next-

generation technology for both flat-panel displays and solid state lighting more and more 

competitive.  

In the organo-transition metal complexes, the actual molecular orbitals (MOs) could be 

very complicated, but only a small numbers of frontier orbitals are often expected to be 

mainly responsible for the electronic and photophysical properties. Fig. 2-6 represents 

MOs for the well-studied green phosphorescent material: Ir(ppy)3, which is in a quasi-

octahedral geometry with three chelating ligands that each of them has one π and π* 

orbitals in the relevant energy range. Moreover, three d-orbitals from 
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Fig. 2-4. Molecular structures of 3 widely-used phosphorescent materials: (a) PtOEP (b) 

Ir(ppy)3 (c) FIrpic. 

the center metal ion, iridium, are also shown. Mostly the excited d* orbitals have a very 

large energy separation from the π* MOs and therefore it is further assumed that these 

orbitals do not interfere with each other [29]. 

    To reduce the rate constants knr of nonradiative deactivation processes of the T1 state it 

is also crucial to obtain high emission quantum yields. For intermolecular quenching of 

the emission, the quencher can be either the same or different species. If the quenching is 

from the same species, it usually occurs at higher dopant concentrations via annihilation 

of excited emitters in close proximity (e.g. triplet–triplet-annihilation (TTA) [40-43]) or 

via energy transfer according to the Forster and/or the Dexter mechanism [24] from 

excited to non-excited molecules. Annihilation and energy transfer effects can usually be 

avoided by using low dopant concentrations or by effectively shielding the emitter 

molecules. This can, for example, be reached by using bulky [44-45] or dendrimeric 

ligands [46-48]. 
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Fig. 2-5. The diagram displays electroluminescence excitation processes for organic and 

organo-transition metal emitters, and explains the effects of triplet and singlet harvesting. 

(a) In organic molecules, only singlets emit light (fluorescence), while the triplet 

excitation energy is transferred into heat. (b) Due to spin-statistics, electron–hole 

recombination leads to 25% singlet and 75% triplet state population.  (c) Organometallic 

compounds with transition metal centers show a fast intersystem crossing (ISC) from the 

singlet state S1 to the lowest triplet state T1. Thus, this triplet state harvests singlet and 

triplet excitation energy and can efficiently emit [29].  

 

The luminescence also can be quenched by different species, e.g. impurities, such as 

molecular oxygen. Because the emission decay time for any phosphorescent material is 
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usually significantly longer than fluorescent emitters, this quenching process is frequently 

very effective. For molecular oxygen, it is believed that the energy of the excited emitter 

is transferred to triplet oxygen (3O2, ground state) with subsequent conversion to the 

excited singlet oxygen (1O2, excited state) [49-51]. On the other hand, the compounds 

which exhibit extremely high oxygen quenching rates can be used in oxygen sensor 

applications with a high sensitivity [52-54]. 

In contrast to intermolecular quenching, intramolecular quenching is an intrinsic 

property and frequently ascribed to two mechanisms: 

1. Thermal population of metal-centered states 

The quantum yield of phosphorescence of many transition metal compounds is strongly 

or even totally quenched at ambient temperature, however, it is significantly higher at 

low temperature. In many cases, this phenomenon can be ascribed to the thermal 

population of metal-centered states of dd* character, so-called ligand-field (LF) states [33, 

55–59]. This quenching is particularly effective for the blue light emitting materials. The 

ET1 of blue materials is higher which is supported by the higher photon energy Ephoton of 

blue emission, which means the activation energy for the population of dd* states from 

the emitting T1 is significantly smaller. Consequently, the quenching via this mechanism 

is quite efficient. Very useful approaches to avoid the thermal population of the dd*states 

are realized by “pushing” them to higher energies and making them thermally 

inaccessible at ambient temperature [60-68].  

2. Quenching of the excited state by vibrational coupling to the ground state 

Nonradiative processes from excited T1 state to the S0 state can be effective via an 

involvement of vibrational modes of the ground S0 state, which is often termed 
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vibrational quenching [69-72]. And the famous energy gap law predicts an exponential 

increase of knr with decreasing energy gap between the excited state and the ground state 

[73–81]. The knr value is found to decrease with increasing E0, thus, red emitting 

compounds with emitting states that are geometrically distorted with respect to the 

ground state are especially sensitive to emission quenching via this mechanism [82]. 
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organic solar cells 

A paper published in Organic Electronics 
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Abstract 

    Improved power conversion efficiency (PCE), by up to ~27%, of organic solar cells 

based on poly(3,4-ethylenedioxy-thiophene):poly(styrenesulfonate) (PEDOT:PSS) 

/poly(3-hexylthiophene):[6,6]-phenyl-C60-butyric acid methyl ester (P3HT:PCBM) were 

obtained via simple modifications, widely applicable, in the fabrication of the spin-coated 

PEDOT:PSS layer. These included (i) further diluting the original PEDOT:PSS solution 

with deionized water, (ii) mixing the original PEDOT:PSS solution with ethylene glycol 

(EG), and (iii) spin coating EG over a PEDOT:PSS layer fabricated using the original 

solution. The optimal dilutions spin coating rates, and durations were determined. 

Approach (iii) resulted in the best cell with a PCE of 4.7% as compared to 3.7% for the 

untreated PEDOT:PSS. To evaluate the origin of the improvements we monitored the 

PEDOT:PSS conductivity, external quantum efficiency of the devices, and their I–V 

curves that indicated an increase of ~16% in the short-circuit current ISC. Other 

characteristics included the PEDOT:PSS layer thickness, its transmittance, P3HT:PCBM 

absorption spectra, its morphology, and surface chemical composition. The results 

indicate that in addition to the enhanced PEDOT:PSS conductivity (following some of 

the treatments) that improves charge extraction, enhanced PEDOT:PSS transmission and 



52 

 

especially, enhanced P3HT:PCBM absorption contribute to improved solar cell 

performance, the latter by increasing ISC. While the various treatments in the optimized 

devices had a minor effect on the PEDOT:PSS thickness, its morphology, and 

consequently that of the active layer, were affected. The surface roughness of the active 

layer increased significantly and, importantly, in devices with 

PEDOT:PSS/EG/P3HT:PCBM, PCBM aggregates were observed near the cathode. Such 

aggregates may also result in increased absorption and improved charge extraction. 

Introduction 

    The development of organic solar cells is a fast-growing field as such devices have the 

advantage of being flexible, simple to fabricate, and potentially low cost [1–4]. Solar 

cells with a poly(3-hexylthiophene):[6,6]-phenyl-C60-butyric acid methyl ester 

(P3HT:PCBM) active layer have been studied extensively with reports of typical power 

conversion efficiency (PCE) of ~3% to ~5% and fill factors (FF) of ~50% to ~70% [4–

11]. The PCE and FF depend on the starting materials, fabrication conditions and 

treatments at various stages of device fabrication. As an example, a PCE of 4.4% was 

obtained by varying the annealing conditions of the active layer [7,8]. The PCE was 

improved to 5.3% by replacing the PEDOT:PSS layer with NiO2 [9]. A PCE of 5% was 

obtained for a single cell with TiOx as an optical spacer, and a two-unit tandem structure 

with 6.5% PCE was obtained by applying the TiOx layer as an electron transport and 

collecting layer for the first unit and as a stable foundation to fabricate the second unit 

[10–12]. To obtain a good short-circuit current (ISC), the active layer needs to have strong 

absorption of the solar spectrum, efficient exciton diffusion, good charge transfer, and 

sufficient charge extraction at the electrodes [13]. To achieve a high open-circuit voltage 
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(VOC), the offset between the highest occupied molecular orbital (HOMO) of the donor 

material and the lowest unoccupied molecular orbital (LUMO) of the acceptor material 

should be high, and ohmic contacts between the electrodes and the organics are required 

[13–16]. To get a high FF, the series resistance of the device should be low and the shunt 

resistance should be high. The polymer/electrode interfaces and the active layer 

properties play an important role in determining these parameters [17–19]. 

It is well known that the conductivity of PEDOT:PSS films is enhanced by over 100-

fold by addition of organic materials, such as dimethyl sulfoxide (DMSO), N,N-

dimethylformamide, tetrahydrofuran, sorbitol (with baking), glycerol, or ethylene glycol 

(EG) to the aqueous PEDOT:PSS solution [20–30]. Depending on the additive, the 

enhancement was related to the dielectric constant of the additive and to retention of 

some of the solvents used in the film [26], to reorientation of PEDOT chains with heat 

treatment [29], and to washing away of PSS [27]. For diethylene glycol addition, it was 

suggested that the particle size of the PEDOT:PSS reduces as the insulating, inter-particle 

excess PSS layer becomes very thin [28]. It was also shown that not only dilution of the 

PEDOT:PSS solution with EG enhances the conductivity, but also immersing the 

untreated PEDOT:PSS in EG solution for a few minutes [21]. It was reported that EG 

affects the solubility of the PEDOT:PSS film in water, suggesting, together with other 

measurements, that EG affects the conformation of the polymer chains with the surface 

becoming more hydrophobic. The conformational change of the PEDOT chains was 

attributed to the interaction between the dipole of one of the polar groups (only additives 

with two or more polar groups were found to enhance conductivity) of the organic 

additive and the dipoles or positive charges on the PEDOT [21]. It was also reported that 
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the size of the PEDOT:PSS particles was increased by adding DMSO [23]. The increased 

conductivity was linked to the increased particles’ size, due to reduced particle 

boundaries. Hence, there are still different fundamental explanations for the enhanced 

PEDOT:PSS conductivity upon addition of polar solvents.  

Additives to PEDOT:PSS that enhance performance of solar cells were also evaluated. 

In addition to the effect of DMSO [23], for example, the substitution of ITO by 

PEDOT:PSS and PEDOT:PSS doped with glycerol or sorbitol was studied [22]. Glycerol 

and the surfactant ethylene glycol butyl ether at specific concentrations were also mixed 

with PEDOT:PSS for improved ink-printed solar cells [24]. The authors suggested that 

these additives may also affect the morphology of the ink-jet printed PEDOT:PSS, with a 

strong ionic interaction between the glycerol and the PEDOT, including with the addition 

of low-levels of the surfactant to enhance the conductivity. Improved device performance 

was attributed to surface morphology and enhanced conductivity that increase charge 

collection [24].  

As every step in the fabrication of the solar cells affects device performance, this paper 

describes a systematic study of the effect of treatments of the PEDOT:PSS layer on the 

performance of the common P3HT:PCBM-based solar cells. Morphology variations of 

P3HT:PCBM were observed, with increased roughness, when PEDOT:PSS was treated in 

different ways. The treatments included (i) dilution of the as-received PEDOT:PSS 

solution with deionized (DI) water or (ii) with EG, and (iii) spin coating EG over the 

PEDOT:PSS layer. Among the various treatments that included optimization of the 

dilution and spin coating rate and duration, treatment (iii), namely the EG-treated 

PEDOT:PSS layer (following the fabrication of the latter from the original aqueous 
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solution) exhibited the largest change in the P3HT:PCBM morphology, which is probably 

responsible for the observed largest improvement in the, ISC, FF, and PCE. Importantly, 

small aggregates of PCBM, whose size depended on the anneal period of the EG-treated 

PEDOT:PSS layer, were observed at the surface of the active layer. These aggregates at 

the active layer/cathode interface may improve charge extraction and light absorption, 

and hence ISC, FF, and PCE. Importantly, the conductivity of PEDOT:PSS exhibited a 

relatively minor contribution to the enhanced performance. 

Experimental procedures 

Materials 

    P3HT (P#200) was obtained from Rieke Metals and PCBM from nano-C; both 

materials were used without further purification. A solution of a 1:1 weight ratio of 

P3HT:PCBM in 1,2-dichlorobenzene, with a concentration of 30 mg/mL was used. The 

P3HT solution was filtered using a 0.22 lm Millex PTFE Filter before it was mixed with 

PCBM. The mixture was then stirred for 24 h before spin-coating. PEDOT:PSS was a 

CleviosTM P VP AI 4083 obtained from H.C. Starck. The PEDOT:PSS ratio was 1:6 by 

weight and the solid content 1.3–1.7%. EG was obtained from Fisher Scientific. 

Procedures 

    The PEDOT:PSS layers (~40 nm thick) were baked for ~1 h at 120 �C under ambient 

conditions; they were then transferred into an argon-filled dual-sided MBraun glovebox. 

The oxygen level in the glovebox was ~30 ppm and that of water <0.1 ppm. Three 

different treatments of the PEDOT:PSS were evaluated in an attempt to improve the 

device performance. These treatments were: (i), diluting PEDOT:PSS with DI water (ii) 

mixing PEDOT:PSS with EG, and (iii) spin-coating EG following fabrication of the 



56 

 

PEDOT:PSS layer. Each treatment was optimized by varying the spin-coating speed and 

duration as well as the dilution ratio as detailed above. The P3HT:PCBM solution was 

spin-coated on top of the PEDOT:PSS layer at the optimized 600 rpm rate for 60 s, and 

immediately placed under a petri dish for 2 h before baking at 110 �C for 12 min. The 

Ca(25 nm)/Al (100 nm) were deposited on the P3HT:PCBM layer by low vacuum (~10-6 

mbar) thermal evaporation. The active layers in all devices were fabricated under the 

same experimental conditions. 

Measurements 

    The thickness of PEDOT:PSS layers was estimated with an Atomic Force Microscopy 

(AFM) by using a sharp blade to generate ~9 µm wide cuts in the layer. In all cases a 

thickness of ~40 nm resulted in devices with the best performance, regardless of the 

treatment. I–V curves were obtained using a 100 mW/cm2 ELH bulb. The EQE was 

measured at 0 V. AFM measurements were performed using a Digital Instruments system. 

SEM and Auger were measured with JEOL JAMP 7830F. 

Results and discussion 

    Devices with an untreated PEDOT:PSS layer were optimized by varying the spin-

coating rate, in the range of 1000–4000 rpm, and the spin duration, in the range of 60–

120 s. The optimized condition for the untreated (prepared from the original solution) 

PEDOT:PSS was 3000 rpm for 60 s. Devices in which the PEDOT:PSS solution was 

further diluted with DI water (treatment (i)) were optimized by varying the volume ratio 

of PEDOT:PSS to water from 1:5 to 4:1, in combination with varying the spin-coating 

speed from 500 to 3000 rpm for each dilution. Optimized layers, as evaluated by the 

performance of the solar cells, were obtained for a volume ratio of 3:7 that was used to 
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fabricate the PEDOT:PSS layers at 600 rpm for 60 s. Similarly to the dilution of the 

PEDOT:PSS with DI water, the volume ratio of the PEDOT:PSS to EG (treatment(ii)) 

varied from 10:3 to 3:7, and the spin-coating speed from 500 to 3000 rpm. The optimized 

condition for the EG-mixed PEDOT:PSS was obtained by using a 1:1 volume ratio and 

spin coating at 1000 rpm for 60 s. The performance of solar cells with the latter was 

similar to those based on the DI water dilution. 

EG-treated devices were prepared also by spin-coating EG on top of the PEDOT:PSS 

layer (treatment (iii)). Different spin-coating speeds for both, the PEDOT:PSS layer and 

the EG, ranging from 500 to 3000 rpm, were tested. The best device was obtained by 

spin-coating the EG at 2000 rpm for 60 s on top of an untreated PEDOT:PSS layer 

prepared by spin-coating at 2000 rpm for 60 s.  

All PEDOT:PSS layers were annealed at 120 �C for ~1 h. Following the application 

of the P3HT:PCBM, the samples were annealed at 110 �C for 12 min. 

Fig. 3-1 shows the I–V curves of different, optimized P3HT:PCBM-based devices with 

PEDOT:PSS layers that underwent the different treatments, and Table 3-1 summarizes 

the values of VOC, ISC, FF and PCE for each device, including for devices prepared by 

spin coating EG at different rates for 60 s. As clearly seen, the  



 

Fig. 3-1. I-V Curves of optimized (see text)

PEDOT:PSS layer generated by spin coating the original solution (open stars), the 

original solution diluted with EG (solid stars) or with DI water (open squares), and by 

spin coating EG on the untreated PEDOT:PSS laye

treatments improved the cells’ performance, in particular 

from 9.94 to 11.5 mA/cm2 and PCE by up to 

with the EG-treated PEDOT:PSS

at 0.55–0.57 V. 

To elucidate the origin of the observed improvement in

various parameters described next

films, which may affect absorption, was measured by making

them with a sharp blade, and
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V Curves of optimized (see text) P3HT:PCBM-based solar cells, with the 

PEDOT:PSS layer generated by spin coating the original solution (open stars), the 

original solution diluted with EG (solid stars) or with DI water (open squares), and by 

spin coating EG on the untreated PEDOT:PSS layer (solid squares). 

the cells’ performance, in particular ISC increased by up to

from 9.94 to 11.5 mA/cm2 and PCE by up to ~27% from 3.7% to 4.7% for the device 

treated PEDOT:PSS in comparison to the untreated one. VOC

To elucidate the origin of the observed improvement in the device performance, 

various parameters described next were measured. The thickness of the PEDOT:PSS 

which may affect absorption, was measured by making fine cuts (

them with a sharp blade, and using scanning AFM with a scan size of 20 µm across the

 

based solar cells, with the 

PEDOT:PSS layer generated by spin coating the original solution (open stars), the 

original solution diluted with EG (solid stars) or with DI water (open squares), and by 

SC increased by up to 16% 

3.7% to 4.7% for the device 

OC was unchanged 

the device performance, 

were measured. The thickness of the PEDOT:PSS 

ts (~9 µm wide) on 

size of 20 µm across the 
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Table 3-1. Device characteristics of solar cells prepared with different treatments of the 

PEDOT:PSS layer. The data in the top three rows indicate EG solution spin coated over 

the PEDOT:PSS layer at various rates for 60 s. 

Treatment VOC (V)  ISC (mA/cm2) FF (%) PCE (%) 

EG 1000 rpm 0.571 10.7 71.8 4.39 

EG 2000 rpm 0.573 11.5 71.3 4.70 

EG 3000 rpm 0.566 11.2 70.3 4.46 

PEDOT-

PSS:DI (3:7 

volume ratio) 

0.571 11.2 69.5 4.44 

PEDOT-

PSS:EG:(1:1 

volume ratio) 

0.563 10.8 69.3 4.21 

Untreated 

PEDOT-PSS 

0.551 9.94 67.6 3.70 

 

cuts to measure the films’ thickness. The AFM results showed that the typical thickness 

of the optimized PEDOT:PSS layers of both treated and untreated samples is ~40 nm. 

This situation excludes a change in the PEDOT:PSS layer thickness as a major 

contributor to the observed enhancement. 

    The conductivity of the different PEDOT:PSS layers, which affects charge extraction 

and therefore, ISC and FF, was also measured. The conductivity of the layer in the best 

performing devices, i.e., where EG was spin-coated on top of the PEDOT:PSS, was ~0.1 
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S/cm. It was ~10-fold larger than that of the untreated PEDOT:PSS film, but ~10-fold 

smaller than that of the PEDOT:PSS layer prepared from the mixed solution of 

PEDOT:PSS and EG. The conductivity of the layer prepared from the solution diluted 

with DI water was comparable to that of the untreated film. Hence, the improved 

performance of the devices is not directly related to the enhanced conductivity. That is, 

the ISC of the cell with the PEDOT:PSS layer with the highest conductivity (prepared 

from a mixture of PEDOT:PSS with EG) was inferior to that of the other devices with the 

treated PEDOT:PSS layer. And, the ISC of the cell with the PEDOT:PSS layer prepared 

from further diluting the original solution with DI water was larger that of the device with 

the untreated layer, though their conductivities were comparable. Hence, and as shown 

below, other factors besides the conductivity play an important role in improving the 

performance of the solar cells. 

Fig. 3-2 shows the external quantum efficiency (EQE) spectra of the four devices of 

Fig. 3-1. As seen, the EQE increased with PEDOT:PSS treatments, with a trend 

comparable to that shown in Fig. 1, as expected. The highest EQE, peaking at ~540 nm, 

was ~62%; it was observed for the device in which EG was spin coated at 2000 rpm for 

60 s on top of the PEDOT:PSS prepared from the original solution at 2000 rpm for 60 s. 

The corresponding EQE for the optimized untreated device was ~50%. 



 

Fig. 3-2. External quantum efficiency vs wavelength for optimized devices with differently 

treated PEDOT:PSS layers, i.e., untreated 

solution - (open stars), prepared by EG dilution of the original PEDOT:PSS solution 

(solid stars), prepared by DI water dilution (open squares), and EG

PEDOT:PSS fabrication (solid squares). See text for detai

In view of the above results

and EQE following modification 

PEDOT:PSS layers and the absorption spectra

structures were measured 

and EG-treated PEDOT:PSS in the range 500

region of the P3HT:PCBM) is slightly larger than that of the untreated

the absorption spectra of PEDOT:PSS/
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External quantum efficiency vs wavelength for optimized devices with differently 

treated PEDOT:PSS layers, i.e., untreated - prepared using the original PEDOT:PSS 

(open stars), prepared by EG dilution of the original PEDOT:PSS solution 

(solid stars), prepared by DI water dilution (open squares), and EG-treated following 

PEDOT:PSS fabrication (solid squares). See text for details. 

In view of the above results, specifically the significant, reproducible increase in 

and EQE following modification of the PEDOT:PSS, the transmission of the different 

PEDOT:PSS layers and the absorption spectra of the different PEDOT:PSS/P3H

structures were measured (Fig. 3-3). As seen in Fig. 3-3, the transmission of the DI water 

treated PEDOT:PSS in the range 500–700 nm (which covers the main absorption 

P3HT:PCBM) is slightly larger than that of the untreated 

the absorption spectra of PEDOT:PSS/  

 

External quantum efficiency vs wavelength for optimized devices with differently 

using the original PEDOT:PSS 

(open stars), prepared by EG dilution of the original PEDOT:PSS solution 

treated following 

reproducible increase in ISC 

e transmission of the different 

PEDOT:PSS/P3HT:PCBM 

transmission of the DI water 

e main absorption 

 layer. Similarly, 



 

Fig. 3-3. (a) The transmission spectra of the PEDOT:PSS layer following different 

treatments. The PEDOT:PSS transmission at wavelengths < 500 nm is comparable for 

all films and for clarity is shown only

spectra of the PEDOT:PSS/P3HT:PCBM structures: an untreated PEDOT:PSS film 

(dotted line), PEDOT:PSS film prepared from a volume dilution ratio of 3:7 PEDOT

PSS:DI water (solid line), PEDOT:PSS film prepared f
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(a) The transmission spectra of the PEDOT:PSS layer following different 

treatments. The PEDOT:PSS transmission at wavelengths < 500 nm is comparable for 

all films and for clarity is shown only for one case. (b) The corresponding absorption 

spectra of the PEDOT:PSS/P3HT:PCBM structures: an untreated PEDOT:PSS film 

(dotted line), PEDOT:PSS film prepared from a volume dilution ratio of 3:7 PEDOT

PSS:DI water (solid line), PEDOT:PSS film prepared from a 1:1 PEDOT

 

(a) The transmission spectra of the PEDOT:PSS layer following different 

treatments. The PEDOT:PSS transmission at wavelengths < 500 nm is comparable for 

for one case. (b) The corresponding absorption 

spectra of the PEDOT:PSS/P3HT:PCBM structures: an untreated PEDOT:PSS film 

(dotted line), PEDOT:PSS film prepared from a volume dilution ratio of 3:7 PEDOT-

rom a 1:1 PEDOT-PSS:EG 
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volume ratio dilution (dashed-dotted line), and PEDOT:PSS film with post-fabrication 

EG spin coating (dashed line).  

P3HT:PCBM in the 400–700 nm range show that the absorption increases with the 

PEDOT:PSS treatments, with the largest absorption observed for the PEDOT:PSS over 

which EG was spin-coated. 

    To identify potential device characteristics those are responsible for the enhanced 

absorption and hence increased ISC and EQE, the surface morphology of the PEDOT: 

PSS and P3HT:PCBM layers as well as the surface chemical composition of the 

P3HT:PCBM were monitored using AFM, SEM, and Auger electron spectroscopy. 

The roughness of the PEDOT:PSS layer, as measured by AFM (Fig. 3-4) increased 

slightly from 2.8 nm RMS in the untreated layer and 2.7 nm RMS in the DI water-diluted 

solution to 3.4 nm in the PEDOT:PSS/EG film. Also, as seen, following the 

 

Fig. 3-4. AFM images of the morphology of PEDOT:PSS films differently treated: left-

untreated, original PEDOT:PSS; center-additional dilution of 3:7 PEDOT-PSS: DI 

water volume ratio; right-EG-treated PEDOT:PSS following the fabrication of the latter. 

The full scale in each image is 5 µm.  
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treatments, a more condensed packing of particles was observed. Specifically, the 

particles appeared smaller for the DI water- and EG-treated samples, in particular for the 

latter. The smaller particle size is in accordance to previous reports suggesting that the 

reduced size is due to removal of excess inter-particle PSS [21]. The slightly increased 

roughness of the PEDOT:PSS layer, and most importantly, the significantly increased 

‘‘graininess’’ from untreated to DI water-diluted to EG-coated PEDOT:PSS likely 

increase the contact area between the PEDOT:PSS and the active layer, improving hole 

extraction to the anode. 

    Significant morphology variations were observed in the P3HT:PCBM layers spin-

coated on the differently-treated PEDOT:PSS layers, as seen in the AFM and SEM 

images of Figs. 3-5 and 3-6. The RMS surface roughness of P3HT:PCBM with the 

untreated PEDOT:PSS layer was 13.3 nm, that of the active layer with the PEDOT:PSS 

layer spun from DI water-diluted PEDOT:PSS (treatment (i)) was 28.5 nm, and the RMS 

of the active layer with the PEDOT:PSS layer on top of which EG was spin-coated 

(treatment (iii)) was 34.5 nm. Since all the P3HT:PCBM layers were prepared under the 

same experimental conditions, these changes in the surface roughness are obviously due 

to the various treatments and resulting graininess of the PEDOT:PSS layers. Rough 

surfaces may increase scattering of the incident light back into the active layer and hence 

lead to increased absorption. In addition, the larger roughness also enlarges the contact 

area between the active layer and the cathode, which may lead to better electron 

extraction. 



65 

 

 

Fig. 3-5. Morphology AFM images of the P3HT:PCBM layers on top of the different 

PEDOT:PSS layers (full scale 50 µm). Left: untreated PEDOT:PSS; center: DI water 

diluted PEDOT:PSS; right: PEDOT:PSS layer with EG spun on top.  

As seen in Figs. 3-5 and 3-6, small aggregates, ~3 µm wide, were distributed across the 

surface of the P3HT:PCBM layer spin-coated on the EG-treated PEDOT:PSS layer. The 

dimensions of these aggregates, which are largely at the active layer/cathode interface, 

increased with anneal duration; this behavior is currently being investigated. We note that 

these features were not present if PEDOT:PSS annealing was performed for less than 30 

min. 

    Auger surface mapping (Fig. 3-6) revealed a higher carbon (but no sulfur) 

concentration in those aggregates, which indicates that the aggregates were 

predominantly of PCBM. Increased PCBM level near the cathode following annealing of 

PEDOT:PSS/P3HT:PCBM is a known phenomenon, which facilitates electron extraction, 

improving the efficiency of the solar cells [31–33]. Similarly, the PCBM aggregates may 

result in an improved FF, since more of the acceptor molecules contact the metal cathode, 
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Fig. 3-6. Left: Auger carbon mapping of the surface of P3HT:PCBM spin-coated on top 

of the EG-treated PEDOT:PSS post-fabrication of the latter; the darker color indicates a 

higher concentration, center: the corresponding SEM image with 10 ϕm scale bar, and 

right: SEM image- with 100 ϕm scale bar showing the distribution of the aggregates.  

resulting in more efficient charge collection. Moreover, the aggregates may also lead to 

light scattering into the active layer, and thus increased path of the light and consequently, 

its absorption. 

Conclusions 

    Various treatments of the PEDOT:PSS layer in ITO/PEDOT:PSS/P3HT:PCBM/ Ca/Al 

solar cells resulted in improved overall device performance. In particular, the use of a 

PEDOT:PSS film with spin coated EG on it post-fabrication resulted in an increase in the 

P3HT:PCBM absorption, and hence, an increase of ~16% in ISC and a ~27% increase in 

PCE, from 3.7% in the cell with the untreated PEDOT:PSS to 4.7% in the former. The FF 

increased to 71–72% (from ~68% in the untreated cell). Dilution of PEDOT:PSS with DI 

water, and not only with organic solvents, also improved device performance. Based on 

the above results, it appears that the improved devices result mostly from an increased 

surface roughness of the P3HT:PCBM associated with the treatment and consequently 
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graininess of the PEDOT:PSS layers. The increased roughness generates a better contact 

with the metal electrode, which, possibly, together with the observed PCBM aggregates 

near the cathode improves charge extraction. The improved PEDOT:PSS transmission 

and PEDOT:PSS/P3HT:PCBM absorption, together with the improved PEDOT:PSS 

conductivity in some of the cases, improved the ISC and the overall cell performance. This 

improvement is possibly also due to improved light scattering by the rougher surfaces 

that results in enhanced absorption in the active layer. The results do not indicate that a 

change in the thickness of the PEDOT:PSS films is a major contributor to the observed 

improvements, as optimized spin-coating conditions were employed in each case 

(untreated and treated PEDOT:PSS) and the optimized thicknesses of the different layers 

were comparable. Similarly, changes in the PEDOT:PSS conductivity did not correlate 

with the improved performance. The simple routes that led to the significantly increased 

PCE are expected to be applicable to other organic-based solar cells. 
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Abstract 

Alkali fluorides, mostly LiF and CsF, are well-known to improve electron 

injection/extraction in organic light-emitting diodes (OLEDs)/organic solar cells (OSCs). 

They are also utilized, though to a lesser extent, for hole injection in OLEDs. Here we 

demonstrate a new role for such fluorides in enhancing OSCs’ hole extraction. We show 

that an ultrathin air-plasma-treated alkali fluoride layer between the ITO anode and the 

active layer in copper phthalocyanine (CuPc)/C70–based OSCs increases the short circuit 

current by up to ~17% for cells with LiF and ~7% for cells with NaF or CsF. The effects 

of the fluoride layer thickness and treatment duration were evaluated, as were OSCs with 

oxidized and plasma-treated Li and UV-ozone treated LiF. Measurements included 

current-voltage, absorption, external quantum efficiency (EQE), atomic force microscopy, 

and X-ray photoelectron spectroscopy, which showed the presence of alkali atoms, F, and 

O at the treated ITO/fluoride surface. The EQE of optimized devices with LiF increased 

at wavelengths > 560 nm, exceeding the absorption increase. Overall the results indicate 

that the improved performance is due largely to enhanced hole extraction, possibly 
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related to improved energy-level alignment at the fluorinated ITO/CuPc interface, 

reduced OSC series resistance, and in the case of LiF, improved absorption.  

Introduction 

    Organic solar cells (OSCs) are promising to become a low-cost and environmentally 

friendly alternative for inorganic solar cells (SCs) [1-2]. They can be deposited on 

flexible substrates such as plastic and are potentially printable [3-4]. Small molecule 

OSCs have the advantage of simple layer-by-layer deposition, which is a problem with 

polymer SCs due to the difficulty of finding orthogonal solvents suitable for the different 

layers [5-6]. 

As is well known, one of the outstanding challenges of OSCs is to enhance extraction 

of photogenerated charge carriers. As cell performance depends greatly on the interfaces 

between the various layers [7-9], it is essential to minimize the energy barrier between 

the electrodes and the organic layers to achieve a nearly Ohmic contact. Different 

interfacial layers between the electrodes and the organic layers have been used to 

improve charge collection and reduce surface recombination. For example, poly(3,4-

ethylenedioxy thiophene): poly(styrenesulfonate) (PEDOT:PSS) [10], MoO3 [11], V2O5 

[12], and NiOx [13]were used for efficient hole collection in OSCs. LiF [14], CsF [15], 

Cs2CO3 [16] and TiOx [17] interlayers deposited between the organic layers and the 

cathode were found to assist in electron collection, increasing the power conversion 

efficiency (PCE) [9-10].  

In organic light emitting diodes (OLEDs), LiF and CsF have been widely used to 

enhance electron injection at the metal cathode [18-21]. It was reported that they either 
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dope the preceding organic layer [22-23], form dipole layers at the interface [24], or, in 

some cases, react with the preceding organic layer [25]. It was also reported that LiF/Al 

yields a lower workfunction electrode [19, 26-27]. A recent electron paramagnetic 

resonance study of OLEDs showed that the doping effect by Li was strongly dependent 

on the organic material adjacent to the LiF [28]. Similar behavior was found in OSCs 

[29]. 

While it is well established that in typical OLEDs LiF serves as an efficient electron 

injection layer, studies on ITO/LiF demonstrated improved hole injection in OLEDs as 

well [30]. This improvement was attributed to an increased ITO/LiF work function to wf 

~ 5.2 eV with 1 nm LiF, from wf ~ 4.8 eV of the ITO [31]. The wf further increased with 

LiF film thickness to 5.6 eV for 5 nm LiF on ITO. NaF (on ITO) was also reported to 

assist in hole injection in OLEDs following UV-ozone treatment, also as a result of an 

increased wf to 5.2 eV [32]. The formation of Na-O bonds was proposed to be responsible 

for this increased wf. Recently, an increase in the workfunction of chlorinated ITO was 

reported [33-34]. This increase was associated with a layer of surface In-Cl dipoles [33]. 

Hence, alkali fluorides, like oxides, are also likely to increase the composite ITO 

workfunction for better alignment with the highest occupied molecular orbital (HOMO) 

of the adjacent organic active layer, copper phthalocyanine (CuPc) in this study.  

This work shows for the first time enhanced hole extraction in OSCs induced by 

ultrathin air-plasma treated alkali fluoride layers deposited on the ITO anodes. The 

structure of the devices was ITO/LiF, NaF or CsF (x nm)/CuPc (15 nm)/C70 (30 or 27 

nm)/Bphen (3.5 nm)/Al (120 nm) (Bphen is 4,7-diphenyl-1,10-phenanthroline; the thin 

Bphen layer acts as an exciton-blocking layer) [35]. We demonstrate that LiF, and to a 
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lesser extent NaF and CsF, enhance hole collection following air-plasma treatment. We 

investigated the effect of the duration of the air-plasma treatment, including the effect of 

the layers on the subsequent growth of the CuPc and C70 layers. Reference measurements 

with UV-ozone-treated LiF and differently-treated Li layers on the ITO were also 

performed. As expected. these measurements exclude the effect of Li diffusion into the 

active layer in enhancing device performance, and prove that pristine Li-O bonds do not 

improve the short circuit current JSC to the same degree as the treated LiF layer. J-V 

characteristics, XPS, absorption, and external quantum efficiency (EQE) spectra, as well 

as atomic force microscopy (AFM) were employed to elucidate the observed OSC 

performance enhancement. The treated fluorides are believed to reduce the energy barrier 

for hole extraction, which leads to a higher JSC and PCE. Importantly, the plasma 

treatment of the alkali fluorides was essential for improving the Ohmic contact, lowering 

the high series resistance RS observed in devices with the as-deposited fluorides.  

Experimental procedures 

    Devices studied were of the structure ITO/LiF, NaF or CsF (x nm)/CuPc (15 nm)/C70 

(30 or 27 nm)/Bphen (3.5 nm)/Al (120 nm). These thicknesses of CuPc, C70, and Bphen 

layers were found to be the optimal. The active area of all cells was 0.11 cm2. The ITO-

coated glass substrates were purchased from Colorado Concept Coatings. Prior to cell 

fabrication, they were cleaned sequentially with surfactant, deionized water, acetone, and 

isopropanol, and blown dry with nitrogen after the cleaning process. In all cases the ITO 

was air-plasma treated for 20 min; changing the duration had only a minor effect on cell 

performance. The alkali fluoride layers were deposited on the ITO by thermal vacuum 
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(~10-6 mbar) evaporation inside a glovebox and then air-plasma-treated. Next, the organic 

layers were thermally evaporated. 

The effect of the interfacial layers was studied systematically. The thickness of the 

fluoride layers varied from 0 to 4 nm, by a 1 nm step. Air-plasma treatment (Harrick 

PDC-32G Plasma Cleaner/sterilizer; 18 W) was performed on these layers for durations 

of 0, 10, 20, and 30 minutes. The deposition rate of CuPc and C70 was ~0.1 nm/s, and of 

BPhen ~0.15 nm/s. CuPc (dye content 97%), Bphen (≥99%), LiF (99.995%), NaF 

(99.99%), and CsF (99.9%) were all purchased from Sigma-Aldrich. C70 (>99%) was 

purchased from Nano-C. All materials were used without further purification. 

The effects of treating LiF in a UV ozone oven or replacing LiF by a 1 nm Li layer 

were also studied. Three different treatments of the latter were tested: (i) an untreated thin 

Li layer on which CuPc was deposited without breaking the vacuum, (ii ) an air-oxidized 

Li layer, and (iii ) an air-oxidized layer that was subsequently air-plasma treated for 20 

min.  

J-V characteristics of the OSCs were obtained using a 100 mW/cm2 ELH bulb for 

illumination. The EQE was measured at 0 V. Absorption spectra were taken with an 

Ocean Optics spectrometer. XPS data were obtained using a Physical Electronics 5500 

multi-technique system, and AFM images were acquired with a Digital Instruments 

system. We note that all the experiments were performed multiple times to ensure the 

validity of the conclusions. 

Results and discussion 

Effect of LiF thickness  



 

    LiF, as the other alkali fluorides, is an insulator with a high bandgap

attribute, as expected, is in accordance with our results that show that for untreated 1 to 4 

nm LiF, the series resistance 

discussed later, the Rs values decrease to ~71

LiF.  

Fig. 4-1. Schematic energy band diagram of ITO/LiF/CuPc/C

LiF workfunction is believed to align with the HOMO level of CuPc upon air

treatment for 10-20 min (see text). 

The energy level diagram of the devices is shown in Fig. 4

eV, which was found to be suitable for hole extraction from CuPc [37]. It was reported 

that wf of ITO/LiF(1nm) increases to ~5.2 eV [31], which matches well the ~5.2 eV level 

of the HOMO of CuPc. For 3 nm LiF, however, 
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LiF, as the other alkali fluorides, is an insulator with a high bandgap

attribute, as expected, is in accordance with our results that show that for untreated 1 to 4 

nm LiF, the series resistance Rs of the OSCs increases from ~78 to 331 

values decrease to ~71-83 Ω following air-plasma treatment of the 

 

Schematic energy band diagram of ITO/LiF/CuPc/C70/BPhen/Al. The ITO/1 nm 

LiF workfunction is believed to align with the HOMO level of CuPc upon air

20 min (see text).  

gy level diagram of the devices is shown in Fig. 4-1. The wf

eV, which was found to be suitable for hole extraction from CuPc [37]. It was reported 

of ITO/LiF(1nm) increases to ~5.2 eV [31], which matches well the ~5.2 eV level 

of the HOMO of CuPc. For 3 nm LiF, however, wf further increases to ~5.5 eV [31]. 

LiF, as the other alkali fluorides, is an insulator with a high bandgap [36]. This 

attribute, as expected, is in accordance with our results that show that for untreated 1 to 4 

of the OSCs increases from ~78 to 331 Ω. However, as 

plasma treatment of the 

/BPhen/Al. The ITO/1 nm 

LiF workfunction is believed to align with the HOMO level of CuPc upon air-plasma 

wf  of ITO is ~ 4.8 

eV, which was found to be suitable for hole extraction from CuPc [37]. It was reported 

of ITO/LiF(1nm) increases to ~5.2 eV [31], which matches well the ~5.2 eV level 

further increases to ~5.5 eV [31]. 
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These reported values are also consistent with our results of cell characteristics, shown in 

Table 4-1. The Table shows the values of JSC, the open-circuit voltage (VOC), the fill 

factor (FF), and PCE of the different devices. As seen, LiF improves JSC even before air-

plasma treatment. This can be explained by a reduced barrier height associated with the 

presence of surface dipoles. However, without plasma treatment the performance of the 

OSC deteriorates when the LiF layer is > 2 nm thick. This is not surprising based on the 

increased Rs.  

Table 4-1 Device properties of ITO/LiF (x nm)/CuPc (15 nm)/C70 (30 nm)/Bphen (3.5 

nm)/ Al, where x = 0, 1, 2, 3, and 4 nm, with and without plasma treatment.  

LiF 

thickness 

(nm) 

Plasma etching period 

(min) 

Voc 

(V) 

Jsc 

(mA/cm2) 

FF 

(%) 

PCE 

(%) 

1 0 0.46 6.02 59.2 1.65 

2 0 0.48 6.19 55.7 1.64 

3 0 0.47 6.23 54.2 1.59 

4 0 0.48 6.15 46.4 1.36 

0* 0 0.45 6.15 59.1 1.64 

1 20 0.45 7.22 58.6 1.90 

2 20 0.45 7.18 58.0 1.86 

3 20 0.45 7.11 56.4 1.78 

4 20 0.44 7.21 52.1 1.64 

*Reference device; in all cases the ITO was plasma-treated.  
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    Following air-plasma treatment JSC and PCE for 1-2 nm thick LiF layers improved 

beyond the enhancement with the untreated LiF, which, as mentioned, is related to the 

reduced Rs, but possibly only when wf does not significantly exceed ~5.2 eV. For the 1 

nm LiF layer, JSC increased by >17% and PCE increased from ~1.6% to 1.9% following 

20 min of air-plasma treatment. As shown below, this increase is largely associated with 

improved hole extraction, which is likely related to closer energy level alignment 

between the ITO/treated LiF anode and CuPc, and hence a better Ohmic contact.  

Fig. 4-2 shows the J-V curves of the cells without LiF and with 1 nm LiF plasma-

treated for 10, 20, and 30 min. As seen, the plasma duration is important, with the 20 min  

 

Fig. 4-2. J-V characteristics of ITO/x nm LiF/15 nm CuPc/30 nm C70/3.5 nm BPhen/Al 

devices, with LiF air-plasma treatment periods of 10, 20, or 30 min. The J-V curve for a 

device with x = 0 nm is also shown as a reference.  
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treatment resulting in the highest JSC. This optimal 20 min period is probably related to 

optimal Li-F and Li-O levels at the ITO surface, which would affect the energy level 

alignment. XPS data, discussed in detail in Section 3.3, indeed indicated the presence of 

Li, F, and O in the ITO/ultrathin films following plasma etching.  

     To verify that the air-plasma-treated LiF is responsible for the improved device 

performance, we additionally studied the effect of UV-ozone treatment of ITO/LiF, 

which did improve JSC, but only by ~6%, i.e., much less than the air-plasma treatment. 

We also evaluated the possibility that the OSCs’ performance is affected by the diffusion 

of Li atoms into the organic layer or improved by the presence of only Li-O bonds. 

Devices with a 1 nm metallic Li layer resulted in non-performing OSCs, indicating that if 

Li diffusion occurs it is, as expected, detrimental. An air-oxidized Li layer, however, did 

yield an operable OSC, but a poor one, with VOC = 0.22 V, JSC = 2.24 mA/cm2, and FF = 

24.4%. But when this oxidized Li layer was air-plasma treated for 20 min, the cell 

performance improved strongly, and JSC reached a value higher by ~5% than that of the 

“standard” ITO/CuPc/C70/Bphen/Al cell. Hence, these experiments exclude a 

contribution of Li diffusion to the enhanced OSC performance, but support a contribution 

of Li-O bonds to the enhancement. Alkali oxides are known to reduce wf at metal 

cathodes [38], but their effect on ITO/LiF is not clear. The air plasma increases the level 

of Li-O bonds, indicating that an optimized level of such bonds is needed to yield the 

observed improvement in performance. Moreover, as the devices with treated LiF were 

superior to those with Li-O only, it is clear that F or LiF is the key to improving the 

performance. 
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Absorption and EQE  

 

Fig. 4-3. Absorption spectra of 15 nm CuPc, 30 nm C70 and 15 nm CuPc/30 nm 

C70/3.5nm BPhen films. 

    Fig. 4-3 shows the absorption spectra of CuPc films, C70 films, and the 

CuPc/C70/Bphen structure. Fig. 4-4(a) compares the absorption spectra of the complete 

devices with and without the 1 nm treated LiF layer. The absorption of the devices was 

obtained by subtracting the specular reflection due mostly to the Al cathode from the 

incident light. As seen, the absorption of the device pixel with the 1 nm treated LiF is 

stronger at ~650-750 nm in comparison to that of the device pixel fabricated directly on 

the ITO-coated glass.  

Fig. 4-4(b) shows the EQE spectra of the two devices. As seen, the EQE of the device 

with the treated LiF increased in the ~550 to 750 nm range relative to the device with no 

LiF. Comparison with Fig. 4-4(a) shows that the increase in the EQE is stronger than the 
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increase in the absorption, which was largely unchanged at ~550-650 nm. The latter 

wavelength range corresponds to an absorption band of the CuPc  

 

Fig. 4-4. Comparison of (a) absorption spectra and (b) EQE of the devices with and 

without the 1 nm plasma-treated LiF film.  

layer (see Fig. 4-3), which is deposited directly on the ITO/LiF surface. This result 

together with the EQE spectra indicates that in the presence of the treated LiF layer some 

of the charges otherwise lost to recombination at the ITO/CuPc interface are now 

collected by the anode. The increased absorption at ~700 nm is believed to contribute to 

the increased EQE as well, though to a lesser extent. 

XPS results 

The presence of Li, F, and O on the ITO/1 nm plasma-treated LiF surfaces was 

confirmed by XPS. However, as expected, the ITO constituents are also observed for 



82 

 

such thin films, even before treatment. Fig. 4-5(a) shows the XPS spectra of ITO/LiF (1 

nm) before and following 20 min of air-plasma treatment. As seen, the F 1s binding 

energy shifted from 685.5 eV to 685.25 eV. The former corresponds to the F 1s bond in 

LiF (685.5 eV) [39-40], while the latter is very close to the F 1s value in InF3 (685.2 eV) 

[41]. Similar to a conclusion regarding chlorinated ITO [33], the large difference in the 

electronegativity of In (1.78) and F (3.98) suggests the presence of an In-F surface dipole 

layer, which increases wf. 

 

Fig. 4-5. (a) F 1s XPS spectra of a 1 nm LiF film following 0 and 20 min plasma 

treatment. (b) XPS spectra of the O 1s for a 20 nm LiF film air-plasma treated for 0 and 

20 min, with simulated Lorentzian lineshape fits. The sum of the Lorentzian lines, which 

matches the experimental data, is also shown 

 To avoid the detection of In or Sn, we tested four 20 nm-thick LiF films that rendered 

the ITO invisible to XPS. These films were plasma treated for 0, 10, 20, or 30 min. As 

expected, air-plasma treatment of the 20 nm LiF film for 0 to 30 min resulted in a gradual 

increase in the measured O level from ~0.5% to ~9%. Li and F were still the major 

surface components (the Li level at ~40% was unaffected by the plasma duration and that 

of F decreased from ~53% for 0-20 min of plasma to ~46% after 30 min of treatment). 
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We note that the binding energy of Li 1s was unchanged for the different plasma 

durations, which is expected as the binding energy of Li 1s is almost the same in LiF, 

Li 2O and LiOH [41]. As shown in Fig. 4-5(b), significant changes occurred in the O 1s 

line shape, which indicate increased surface O level stemming from the plasma. Fitting of 

the O 1s experimental data to two or three bands is also shown in Fig. 4-5(b). In the non-

treated film the peak binding energies are at 531.8 and 530.7 eV, which corresponds to 

LiOH (531.5 eV) and Li2O (530.6 eV), respectively [42]. Following 10 and 20 min of 

plasma etching a peak at ~533 eV appears, which corresponds to Li2O2 (533.1 eV) [42]. 

This behavior suggests, as expected, the increased formation of (near) surface Li-O bonds 

as the plasma duration increases. These results are consistent with improved device 

performance for an optimized concentration of surface Li-F and Li-O bonds, which 

possibly improve the energy level alignment and a contact that is closer to Ohmic.  

AFM results 

Fig. 4-6 shows tapping mode AFM images of ITO/CuPc and ITO/treated 1 nm 

LiF/CuPc. The CuPc surface in the latter structure is rougher and grainier than that grown 

directly on ITO. The root mean square roughness Rrms of CuPc on ITO and on the treated 

LiF are 2.8 and 3.6 nm, respectively. A rougher CuPc/C70 interface can also improve 

charge transfer in OSCs due to increased contact area. 

NaF and CsF layers 

    1. NaF. Deposition of 2-3 nm of NaF on ITO and air-plasma treatment for 20 min 

resulted in a much smaller ~6% increase in JSC. As with the LiF layer, 4 nm of plasma-

treated NaF worsened the devices. The NaF probably increases the workfunction of 

ITO/NaF to ~5.2 eV [32]; this -5.2 eV level is well-aligned with the -5.2 eV CuPc 
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HOMO level. As seen in Fig. 4-7, the absorption of NaF/CuPc/C70/BPhen structures is 

practically unchanged by the addition of the NaF layer, but the EQE of the devices 

increases. Thus, the observed increase in JSC likely indicates improved hole extraction. 

 

Fig. 4-6. Tapping mode AFM images of ITO/CuPc (left) and ITO/1 nm LiF/CuPc (right). 

The 1 nm LiF was air-plasma treated for 20 min. 

Plasma-treatment of the NaF layer did not have an effect on the surface morphology 

and roughness as revealed by AFM images. This may also be a factor in the lower 

enhancement induced by NaF vs LiF. The F level as revealed by XPS decreased from 

~42% to ~29% following 30 min of plasma treatment of a 30 nm thick layer. The 

corresponding O levels increased from 1% to ~17%. This situation differs from that with 

LiF, where the increase in the O level was milder, up to only ~9%, and the final F level 

was ~46%.  
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Fig. 4-7. (a) Absorption spectra of structures and (b) EQE spectra of devices with and 

without 2 nm NaF or 1 nm CsF air-plasma-treated for 20 min.  

2. CsF. In repeated experiments, devices with untreated 1 nm CsF completely failed 

to operate as an OSC due to a high Rs. This behavior contrasts that of devices with 

untreated LiF and NaF layers. However, it is in agreement with previous use of untreated 

CsF layers next to the ITO anode in conventional CuPc/C60-based solar cells [43]. In 

these cells, inserting 1 nm CsF between ITO and CuPc decreased VOC from 0.46 V to 

0.25 V and JSC from 6.4 mA/cm2 to 2.5 mA/cm2 [43]. However, similar to the case of 

NaF, deposition of 1 nm of CsF on the ITO and air-plasma treatment for 20 min (optimal 

thickness and duration) improved JSC by 7% relative to devices with no CsF. As 

supported by the unchanged absorption of CsF/CuPc/C70/BPhen structures but increased 

EQE (Fig. 4-7), this enhancement is, again, probably due largely to improved hole 

extraction. Plasma treatment of devices with 3 – 4 nm of CsF also resulted in a strong 
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drop in cell performance. These different aspects in the behavior of devices with CsF are 

currently not entirely clear, but may be associated with worsening energy level alignment. 

We note that XPS of the CsF layers showed the presence of indium (due, of course, to the 

ITO) even on the surface of a 20 nm thick layer, unlike the case with LiF and NaF.  

Finally, as mentioned, in all plasma-treated thin alkali fluoride layers (including 1 nm 

thick), O, F, and the alkali atoms were detected at the surface. Hence, though the 

improvement upon addition of treated NaF and CsF layers is small, their use assisted in 

supporting the conclusion that enhanced hole extraction is the main reason for the 

enhanced OSC performance, given their unaffected light absorption.  

Conclusions 

We have shown that a thin 1 nm layer of LiF on the ITO anode in CuPc/C70-based 

OSCs enhances JSC and PCE by up to ~17% following air-plasma treatment due mainly 

to improved hole extraction. Similar behavior with a 6 – 7% enhancement was observed 

for plasma-treated NaF and CsF. These observations may be related to improved 

energetics and hence a nearly Ohmic contact. Formation of alkali-O bonds, based on XPS 

analyses, is also believed to contribute to the enhanced hole extraction. The best 

enhancement was observed for a 1 nm LiF layer air-plasma treated for 20 min. UV-ozone 

treatment of such layers had a smaller effect. The light absorption and the EQE of the 

devices with treated alkali fluoride layers further support hole extraction from CuPc to 

the anode as one mechanism responsible for the observed enhanced performance. Light 

absorption increased for structures with LiF and was largely unchanged for NaF or CsF. 

The results consequently demonstrate the viability of air-plasma treated thin fluoride 
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layers, and in particular LiF, as interfacial layers between the ITO anode and the donor 

layer in small molecule CuPc/C70-based OSCs. 
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Abstract 

    Due to their potentially ultralow-cost, organic solar cells (OSCs) are a promising 

technology. Bulk heterojunction OSCs have achieved power conversion efficiencies 

(PCE) of 8%. Yet even this is far below those of inorganic cells. Typical OSCs suffer 

from poor solar radiation absorption, in particular beyond ~650 nm. Previous efforts 

addressed this problem by fabricating tandem OSCs, with cells absorbing complementary 

bands. However, their efficiency remains far below that of inorganic tandem cells, and 

they do not address the problem of OSC degradation. This paper describes a radically 

new design of inorganic/organic hybrids based on an amorphous (Si,C):H/P3HT:PCBM 

tandem junction cell. The unoptimized PCE is ~5.6%, a ~22% increase compared to the 

OSC alone. It also addresses the critical problem of light-induced degradation, as that 

degradation is reduced significantly in the hybrid tandem. The cells can be connected 

electrically in series or in parallel, thus avoiding difficult current matching problems.  

Introduction 

Organic solar cells (OSCs) are an important photovoltaic technology for solar energy 

conversion due to their potential low cost and promise as easy to fabricate, flexible and 
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high-performance energy sources [1]. Recent bulk heterojunction OSCs, where a 

polymeric donor is coupled to an electron acceptor molecule, have achieved solar power 

conversion efficiencies (PCEs) of ~8% [1-5]. However, as is well known, unencapsulated 

OSCs typically suffer from severe degradation upon exposure to short-wavelength light, 

moisture, and oxygen, with the decrease in ISC in some cases amounting to almost 45% 

over ~200 hours of illumination [5-13]. One of the reasons for the limits on the efficiency 

of the current generation of OSCs is the relatively poor absorption of organic cells. For 

example, the commonly used P3HT:PCBM (where P3HT is poly(3-hexylthiophene) and 

PCBM is 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)C61) system has a strong 

absorption in the ~450-625 nm range, but poorer absorption below ~450 or beyond ~650 

nm. Previous work has attempted to address this problem by using two OSCs in a tandem 

junction arrangement [14-22], each cell typically absorbing in a different spectral region. 

However, such systems are not optimal from a design viewpoint, in that they do not 

approach the ~42% efficiency of inorganic crystalline tandem junction cells [4], or the 

~20% efficiency of inorganic thin film cells [4], nor do they address the critical problem 

of light-induced and environmental degradation. In this paper, we show that a radically 

new design of tandem cells, which includes a combination of an inorganic thin-film cell 

with an organic cell and with an intermediate transparent conductor, can approach the 

high efficiency expected from a tandem cell arrangement. This design also addresses the 

critical problem of degradation due to constant illumination of the OSC. The design is 

such that one can electrically connect the cells either in series or in parallel (i.e., with 

separate electrical connections), as the need may be, and thus potentially avoid the 

difficult problem of current matching between the two cells. The experiments prove the 
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concept and demonstrate the expected high open circuit voltage VOC ~ 1.5 V in a series-

connected tandem combination of amorphous a-(Si,C):H and P3HT:PCBM-based cells. 

The quantum efficiency data measured on the individual cells confirm that both cells 

contribute to the power.  

Experimental procedures 

    For tandem device fabrication, the inorganic cell was fabricated first on a transparent, 

conducting RF sputter-deposited ZnO layer (on a glass substrate) of 1 µm with a sheet 

resistance of 4.5 Ohm/□. The a-(Si,C):H layer was deposited using VHF (45 MHz) 

plasma-enhanced CVD from a mixture of silane, methane, and hydrogen at a substrate 

temperature of ~200oC. The cell is of the standard p-i-n or n-i-p types, with all three 

layers, p, i, and n containing Si, C, H and appropriate dopants. The i-layer thickness was 

~0.09 µm and the n+ layer (0.1µm) was deposited by doping phosphine into the gas 

mixture. The p+ layer was very thin (<20 nm); diborane was used as the dopant. ITO was 

deposited on top covering the whole area or a partial area for designs A and B, 

respectively. 

In design A (shown in Fig.5-1(a)), the organic cell was fabricated on ITO covering 

the inorganic cell. In design B (shown in Fig. 5-1(b)) it was fabricated directly on ITO on 

glass (with the inorganic cell on the opposite side of the glass). A PEDOT:PSS (from H.C. 

Starck) layer (~40 nm thick as obtained from AFM data) was fabricated by spin-coating 

on cleaned ITO at 5000 rpm for 60 s and baked for ~1 h at 120oC under ambient 

conditions; it was then transferred into an argon-filled dual-sided MBraun glovebox. The 

oxygen level in the glovebox was ~30 ppm and that of water < 0.1 ppm. The 
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P3HT:PCBM (purchased from Rieke Metals and nano-C, respectively) solution (1:1 

weight ratio in 1,2-dichlorobenzene, with a concentration of 30 mg/mL) was spin-coated 

on top of the PEDOT:PSS layer at the optimized 400 rpm rate for 60 s, and immediately 

placed under a petri dish for 2 h before baking at 160OC for 1 min and gradually 

decreasing the temperature to 110OC for another 11 min. The Ca (25 nm)/Al (100 nm) 

were deposited on the P3HT:PCBM layer by low vacuum (~10-6 mbar) thermal 

evaporation. I-V curves were obtained using a 100 mW/cm2 ELH bulb 

The external quantum efficiency (EQE) measurements were performed using a 

monochromatic light source (400-700 nm) in conjunction with a chopper and a Stanford 

System lockin amplifier, and referenced to a standard Si photodiode, To estimate the 

current density from EQE data, we integrate the QE over the measurement range, using 

the known AM 1.5 photon flux. To measure the EQE on tandem devices a secondary 

light source was used to saturate the top and bottom cells by external blue and red bias 

light illumination, respectively. That is, saturation with blue light yields the EQE for the 

organic cell, and with red light, for the inorganic cell.  

Degradation measurements were performed at room temperature in a high vacuum 

chamber that enables in-situ measurements of device performance (e.g., I-V curves, EQE 

data) in vacuum or in controlled environments, i.e., N2, Ar, or air with controlled 

humidity and/or oxygen. An Oriel Solar Simulator with a Xe arc lamp was used for 

illumination at 2-suns intensity for the OSC without the a-(Si,C):H filter. For a 

meaningful degradation comparison, the intensity of the lamp was increased when the 

filter was used, so that the OSC still generated the same initial ISC of ~20 mA/cm2.  



 

Results and discussion 

 The two fundamental designs tested are shown in Fig. 

cell is fabricated on indium tin oxide (I

on the same side of the substrate (design A). In the design shown in Fig. 

inorganic cell is fabricated on one side of the glass substrate, and the organic cell is 

fabricated on ITO on the opposi

Fig. 5-1. Tandem cell designs: (a) both cells are on one side of the glass substrate 

(Design A) (b) the organic cell and the a

common glass substrate (design 

The inorganic cell is of the standard p

i, and n containing Si, C, H and appropriate dopants. The Tauc bandgap of the a
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current produced in the organic cell if a series electrical connection is to be used. Such 

current matching is not necessary if the two cells are not electrically in series, but are 
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The two fundamental designs tested are shown in Fig. 5-1. In Fig. 5

cell is fabricated on indium tin oxide (ITO) that covers the inorganic cell with both units 

on the same side of the substrate (design A). In the design shown in Fig. 

inorganic cell is fabricated on one side of the glass substrate, and the organic cell is 

fabricated on ITO on the opposite side of the same glass substrate (design B).

Tandem cell designs: (a) both cells are on one side of the glass substrate 

(Design A) (b) the organic cell and the a-(Si,C):H-based cell are on opposite sides of a 

common glass substrate (design B).  

The inorganic cell is of the standard p-i-n or n-i-p type [23-25], with all three layers, p, 

i, and n containing Si, C, H and appropriate dopants. The Tauc bandgap of the a

intrinsic layer (~ 2 eV) and its thickness (~0.09 µm) are selected so as to match the 

current produced in the organic cell if a series electrical connection is to be used. Such 

current matching is not necessary if the two cells are not electrically in series, but are 

5-1(a) the organic 

TO) that covers the inorganic cell with both units 

on the same side of the substrate (design A). In the design shown in Fig. 5-1(b) the 

inorganic cell is fabricated on one side of the glass substrate, and the organic cell is 

te side of the same glass substrate (design B). 
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i, and n containing Si, C, H and appropriate dopants. The Tauc bandgap of the a-(Si,C):H 

ected so as to match the 

current produced in the organic cell if a series electrical connection is to be used. Such 

current matching is not necessary if the two cells are not electrically in series, but are 
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used separately, though they are optically connected, with the light passing first through 

the top inorganic cell. The additional advantage of this design is in filtering of high

energy photons that may otherwise

provided with a transparent conducting oxide (TCO) contact to let in light. The 

illuminated I-V curve for the thin inorganic cell is shown in Fig. 

efficiency of 3.9% with V

Fig. 5-2. I-V curves of (a) the thin a

As mentioned, the organic cell is fabricated on ITO deposited either on the opposite 

side of the glass, or on the a

techniques, and consists of the usual PEDOT:PSS/P3HT:PCBM/metal configuration

The cell is typically capable of ~4.6% efficiency with 

illuminated I-V curve of Fig. 
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connected to their respective loads in independent circuits. In that case, both cells can be 

used separately, though they are optically connected, with the light passing first through 

the top inorganic cell. The additional advantage of this design is in filtering of high

energy photons that may otherwise damage the organic cell. The a

provided with a transparent conducting oxide (TCO) contact to let in light. The 

curve for the thin inorganic cell is shown in Fig. 5-2(a); it shows an 

VOC ~ 0.95 V.  

curves of (a) the thin a-(Si,C):H-based cell and (b) the organic cell.

As mentioned, the organic cell is fabricated on ITO deposited either on the opposite 

side of the glass, or on the a-(Si,C):H cell. It is deposited using standard 

techniques, and consists of the usual PEDOT:PSS/P3HT:PCBM/metal configuration

The cell is typically capable of ~4.6% efficiency with VOC ~ 0.61 V, as seen in the 

curve of Fig. 5-2(b). 

t circuits. In that case, both cells can be 

used separately, though they are optically connected, with the light passing first through 

the top inorganic cell. The additional advantage of this design is in filtering of high-

damage the organic cell. The a-(Si,C):H cell is 

provided with a transparent conducting oxide (TCO) contact to let in light. The 

2(a); it shows an 

 

based cell and (b) the organic cell. 

As mentioned, the organic cell is fabricated on ITO deposited either on the opposite 

(Si,C):H cell. It is deposited using standard spin-coating 

techniques, and consists of the usual PEDOT:PSS/P3HT:PCBM/metal configuration [26]. 

~ 0.61 V, as seen in the 
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inorganic cell where the band gap of the a

VOC ~ 1.5 V, the approximate sum of the voltages of each cell, proving that both cells are 

contributing to the VOC.  
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tandem structure improved relative to the performance of the OSC alone. The PCE of the 
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V curve for the tandem structure with the two cells connected 

optically and electrically in series (see structure in Fig 5-1(b)). Light is incident on the 

inorganic cell where the band gap of the a-(Si,C):H is ~2 eV. The I-V curve clearly shows 

~ 1.5 V, the approximate sum of the voltages of each cell, proving that both cells are 

 

 

V curve of the series organic-inorganic tandem device.  

Further proof that both cells are contributing to the current comes fro

quantum efficiency (QE) curve for each cell, which is shown in Fig. 5

from the QE data, the a-(Si,C):H-based cell primarily absorbs blue photons, and the 

organic cell primarily absorbs the green-yellow-red photons, as illustrated in Fig. 5

note that the absorbance of the inorganic cell in the ~400 - 475 nm range is stronger than 

that of the OSC and while this strong absorbance by the inorganic cell reduces the 

absorption by the organic cell in that wavelength range, the overall performance of the 

tandem structure improved relative to the performance of the OSC alone. The PCE of the 

the tandem structure with the two cells connected 

1(b)). Light is incident on the 

curve clearly shows 

~ 1.5 V, the approximate sum of the voltages of each cell, proving that both cells are 

Further proof that both cells are contributing to the current comes from measuring the 

5-4. Very clearly, 

based cell primarily absorbs blue photons, and the 

trated in Fig. 5-5. We 

475 nm range is stronger than 

that of the OSC and while this strong absorbance by the inorganic cell reduces the 

e overall performance of the 

tandem structure improved relative to the performance of the OSC alone. The PCE of the  
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Fig. 5-4. QE of the a-(Si,C):H-based device (diamonds) and of the organic solar cell 

(squares) in the series tandem design. 

unoptimized tandem junction cell is ~5.6% (an increase of ~22% compared to the OSC), 

and though this structure was not yet optimized, it shows a promising new concept. 

A major advantage of this new structure is that the high-energy photons are absorbed in 

the top inorganic cell. Therefore, they are not available to contribute to the degradation of 

the OSC. Thus, the intrinsic stability should be better than that of an organic cell by itself. 

This expected behavior is shown in Fig. 5-6 that compares the degradation in N2 

atmosphere at ~23oC of an organic cell to that of a similar cell with an a-(Si,C):H filter. 

As seen, while a reduction of ~9% in the short circuit current (ISC) and ~4% in the VOC 

were observed for the organic cell in ~100 hours of 2-suns irradiation (initial ISC ~20 

mA/cm2) with a filtered Xe arc lamp, those values were reduced to ~4% and <2%, 

respectively, due to the presence of the a-(Si,C):H layer. We note that the initial ISC and 



 

PCEs (4.6%) of both organic cells tested were similar prior to the degr

measurements. In addition, a tandem arrangement automatically reduces the degradation 

Fig. 5-5. Demonstration of the light absorption by the tandem inorganic

the high-energy photons absorbed by the inorganic cell. 

in the fill factor, since the top cell, being relatively stable, anchors the fill factor of the 

tandem arrangement at a high value even in the presence of degradation of the bottom 

(organic) cell.  

Note that state-of-the

with the Staebler-Wronski instability problem reduced significantly [27

that while we have used an a

materials, such as (Zn,Cd)Te [30], with appropriate b

inorganic cell. Since this cell is deposited first, the deposition can be done at elevated 
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PCEs (4.6%) of both organic cells tested were similar prior to the degr

measurements. In addition, a tandem arrangement automatically reduces the degradation 

Demonstration of the light absorption by the tandem inorganic-

energy photons absorbed by the inorganic cell.  

in the fill factor, since the top cell, being relatively stable, anchors the fill factor of the 

tandem arrangement at a high value even in the presence of degradation of the bottom 

the-art amorphous Si cells suffer from little degradation (a few %), 

Wronski instability problem reduced significantly [27

that while we have used an a-(Si,C):H-based cell for demonstrating the concept, other 

materials, such as (Zn,Cd)Te [30], with appropriate bandgaps, can also be used for the 

inorganic cell. Since this cell is deposited first, the deposition can be done at elevated 

PCEs (4.6%) of both organic cells tested were similar prior to the degradation 

measurements. In addition, a tandem arrangement automatically reduces the degradation  
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tandem arrangement at a high value even in the presence of degradation of the bottom 

little degradation (a few %), 

Wronski instability problem reduced significantly [27-29]. Note also 

based cell for demonstrating the concept, other 

andgaps, can also be used for the 

inorganic cell. Since this cell is deposited first, the deposition can be done at elevated 
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side of the substrate or on a transparent c

Fig. 5-6. VOC and ISC over ~100 h of 2

thin a-(Si,C):H film in N2

It was previously shown that under constant 

atmosphere the P3HT as well as the P3HT:PCBM are stable for at least 1000 h

strong photodegradation observed in devices similarly illuminated in a glovebox

therefore attributed to degradation due to the il

layers and device interfaces, rather than on the active layer. As seen in Fig. 

degradation of the unencapsulated OSCs of this study in N

was further decreased by filtering t

(Si,C):H thin layer. Hence, it appears that the blue and shorter wavelength photons are 

100 

temperatures, followed by lower-temperature deposition of the organic cell on the other 

side of the substrate or on a transparent conducting electrode on the inorganic cell. 

over ~100 h of 2-suns illumination of the OSCs with and without a 

2 atmosphere at 23oC. (initial ISC ~20 mA/cm2). 

It was previously shown that under constant one-sun illumination in an inert 

atmosphere the P3HT as well as the P3HT:PCBM are stable for at least 1000 h

strong photodegradation observed in devices similarly illuminated in a glovebox

therefore attributed to degradation due to the illumination effect on the charge collection 

layers and device interfaces, rather than on the active layer. As seen in Fig. 

degradation of the unencapsulated OSCs of this study in N2 was relatively milder, and it 

was further decreased by filtering the blue and shorter-wavelength photons with the a

(Si,C):H thin layer. Hence, it appears that the blue and shorter wavelength photons are 

temperature deposition of the organic cell on the other 

ectrode on the inorganic cell.  

 

suns illumination of the OSCs with and without a 

sun illumination in an inert 

atmosphere the P3HT as well as the P3HT:PCBM are stable for at least 1000 h [31]. The 

strong photodegradation observed in devices similarly illuminated in a glovebox [7] was 

lumination effect on the charge collection 

layers and device interfaces, rather than on the active layer. As seen in Fig. 5-6, the 

was relatively milder, and it 

wavelength photons with the a-

(Si,C):H thin layer. Hence, it appears that the blue and shorter wavelength photons are 
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largely responsible for affecting the collection layers and interfaces. They may also be 

largely responsible for reducing photochemical degradation due to the presence of trace 

O2 and moisture. The role of the Ca layer (in the Ca/Al electrode of the OSC) in the 

observed degradation requires additional investigation. 

Conclusions 

In summary, we have shown how a novel tandem cell arrangement, comprising a thin 

amorphous (Si,C):H-based inorganic top cell, and an organic bottom cell results in an 

improved PCE of 5.6% in an unoptimized series design, which is a ~22% increase 

relative to that of the OSC alone. The VOC of the tandem junction cell, ~1.5 V, is the sum 

of the values of the separate cells, as expected. Optimization of such tandem cells, 

deposited on a transparent, insulating substrate, can lead to significantly higher 

efficiencies. One can optimize the structures by manipulating the thickness of the cell and 

changing the C content so that the bandgap varies and the absorption in a-(Si,C):H 

precisely complements that of the organic cell. The new device materials and architecture 

allow for either series connection or electrically independent tandem arrangements, 

thereby eliminating the current matching problem, and also reducing the degradation of 

the structure by filtering the high-energy photons.  

One can visualize using other polymers, which give higher currents in OSCs [2], and 

use an appropriate inorganic cell bandgap to match half of that current. Then the 

efficiency can reach ~11% for our design, 4% from the current best organic cell (half of 

the reported ~8%, since half the photons are absorbed in the top inorganic cell), and 7% 

from the optimized inorganic amorphous cell. For increasing the efficiency further, one 
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can use a photonic or plasmonic approach to enhance infrared light absorption in the 

organic cell [20, 32-36], thereby increasing its current significantly.  

Acknowledgements 

We thank Max Noack for designing and assisting in fabrication of the degradation-

measurements chamber. This work was supported partially by the Iowa Power Fund and 

by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and 

Engineering Division under Contract No. DE-AC 02-07CH11358 (TX).  

Author contributions 

    Teng Xiao fabricated the organic cells, characterized them, and commented on the 

paper draft. Sambit Pattnaik fabricated the inorganic solar cells, characterized the 

inorganic and tandem cells, and assisted in paper writing. Robert W. Mayer assisted in 

fabrication of the degradation-measurements chamber and performed the degradation 

measurements. 

References 

[1] F. Krebs, Polymeric Solar Cells Materials, Design, Manufacture (DEStech 

publication, Inc., Lancaster, PA, 2010). 

[2] Y. Y. Liang, Z. Xu, J. B. Xia, S.-T. Tsai, Y. Wu, G. Li, C. Ray, L. P. Yu, Adv. Mater. 

22 (2010) E135.  

[3] S. Sista, M.-H. Park, Z. R. Hong, Y. Wu, J. H. Hou, W. L. Kwan, G. Li, Y. Yang, 

Adv. Mater. 22 (2010) 380. 



103 

 

[4] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, Prog. Photovoltaics 19 (2011) 84. 

[5] C. J. Brabec, S. Gowrisanker, J. J. M. Halls, D. Laird, S. J. Jia, S. P. Williams, Adv. 

Mater. 22 (2010) 3839. 

[6] M. Jorgensen, K. Norman, F. C. Krebs, Sol. Energy Mater. Sol. Cells 92 (2008) 686. 

[7] M. O. Reese, A. J. Morfa, M. S. White, N. Kopidakis, S. E. Shaheen, G. Rumblesa, D. 

S. Ginley, Sol. Energy Mater. Sol. Cells 92 (2008) 746. 

[8] K. Kawano, R. Pacios, D. Poplavskyy, J. Nelson, D. D. C. Bradley, J. R. Durrant, Sol. 

Energy Mater. Sol. Cells 90 (2006) 3520. 

[9] B. Zimmermann, U. Wurfel, M. Niggemann, Sol. Energy Mater. Sol. Cells 93 (2009) 

496. 

[10] H. Neugebauer, C. Brabec, J. C. Hummelen, N. S. Sariciftci, Sol. Energy Mater. Sol. 

Cells 61 (2000) 35. 

[11] E. A. Katz, S. Gevorgyan, M. S. Orynbayev, F. C. Krebs, Eur. Phys. J-Appl. Phys. 

36 (2006) 307.  

[12] F. C. Krebs, K. Norrman, Prog. Photovoltaics 15 (2007) 697. 

[13] B. Paci, A. Generosi, V. R. Albertini, P. Perfetti, R. de Bettignies, C. Sentein, Sol. 

Energy Mater. Sol. Cells 92 (2008) 799. 

[14] J. Y. Kim, K. H. Lee, N. E. Coates, D. Moses,T.-Q. Nguyen, M. Dante, A. J. Heeger, 

Science 317 (2007) 222. 

[15] A. Hadipour, B. de Boer, J. Wildeman, F. B. Kooistra, J. C. Hummelen, M. G. R. 

Turbiez, M. M. Wienk, R. A. J. Janssen, P. W. M. Blom, Adv. Funct. Mater. 16 (2006) 

1897. 



104 

 

[16] T. Ameri, G. Dennler, C. Lungenschmied, C. J. Brabec, Energ. Environ. Sci. 2 (2009) 

347. 

[17] C. F. Zhang, S. W. Tong, C. Y. Jiang, E. T. Kang, D. S. H. Chan, C. X. Zhu, Appl. 

Phys. Lett. 92 (2008) 083310. 

[18] O. Hagemann, M. Bjerring, N. C. Nielsen, F. C. Krebs, Sol. Energy Mater. Sol. Cells 

92 (2008) 1327. 

[19] R. Schueppel, R. Timmreck, N. Allinger, T. Mueller, M. Furno, C. Uhrich, Karl Leo, 

M. Riede1, J. Appl. Phys. 107 (2010) 044503. 

[20] K. Tvingstedt, V. Andersson, F. Zhang, O. Inganas, Appl. Phys. Lett. 91 (2007) 

123514. 

[21] F.-C. Chen, C.-H. Lin, J. Phys. D: Appl. Phys. 43 (2010) 025104. 

[22] A. Colsmann, J. Junge, C. Kayser, U. Lemmer, Appl. Phys. Lett. 89 (2006) 203506. 

[23] I. A. Yunaz, H. Nagashima, D. Hamashita, S. Miyajima, M. Konagai, Sol. Energy 

Mater. Sol. Cells 95 (2011) 107. 

[24] J. Shinar, R. Shinar, D. L. Williamson, S. Mitra, H. Kavak, V. L. Dalal, Phys. Rev. 

B 60 (1999) 15875. 

[25] A. Catalano, J. Newton, A. Rothwarf, IEEE Transactions on Electron Devices 37 

(1990) 15875. 

[26] T. Xiao,  W. Cui, J. Anderegg, J. Shinar, R. Shinar, Org. Electron. (2011) 12 257. 

[27] D. L. Staebler, C. R. Wronski, Appl. Phys. Lett. 31 (1977) 292. 

[28] N. L. Wang, V. L. Dalal, J. Non-Cryst. Solids 352 (2006) 1937. 

[29] A. Kolodziej, P. Krewniak, S. Nowak, Opto-Electron. Rev. 11 (2003) 281. 

[30] T. L. Chu, S. S. Chu, C. Ferekides, J. Britt, J. Appl. Phys. 71 (1992) 5635. 



105 

 

[31] M. O. Reese, A. M. Nardes, B. L. Rupert, R. E. Larsen, D. C. Olson, M. T. Lloyd, S. 

E. Shaheen, D. S. Ginley, G. Rumbles, N. Kopidakis, Adv. Funct. Mater. 20 (2010) 3476. 

[32] S.-S. Kim, S.-I. Na, J. Jo, D.-Y. Kim, Y.-C. Nah, Appl. Phys. Lett. 93 (2008) 073307. 

[33] K. Tvingstedt, N.-K. Persson, O. Inganäs, A. Rahachou, I. V. Zozoulenk, Appl. Phys. 

Lett. 91 (2007) 113514. 

[34] B. P. Rand, P. Peumans, S. R. Forrest, J. Appl. Phys. 96 (2004) 7519. 

[35] S.-B. Rim, S. B. Zhao, S. R. Scully, M. D. McGehee, P. Peumans, Appl. Phys. Lett. 

91 (2007) 243501. 

[36] D. Duche, P. Torchio, L. Escoubas, F. Monestier, J.-J. Simon, F. Flory, G. Mathian, 

Sol. Energy Mater. Sol. Cells 93 (2009) 1377. 

 

 

 

 

 

 

 

 

 

 

 

 



106 

 

Chapter 7. Fabrication and properties of hybrid polymer/small-molecular 

phosphorescent OLEDs based on poly(N-vinyl carbazole) 
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Teng Xiao, Min Cai, Ying Chen, Ruth Shinar and Joseph Shinar 

 

Abstract 

    The properties of phosphorescent fac tris(2-phenylpyridine) iridium [Ir(ppy3)]-doped 

poly(N-vinyl carbazole) (PVK)/4,7-diphenyl-1,10-phenanthroline (Bphen) polymer/small 

molecular hybrid OLEDs are described. For optimal BPhen thickness, the power 

efficiency of the devices exceeds 30 lm/W. The low-temperature electroluminescence-

detected magnetic resonance (ELDMR) exhibits the well-known negative spin 1/2 

resonance attributed to enhanced formation of trions, but the positive spin 1/2 resonance, 

typically observed at low temperature or at high current density, is not observed. The 

OLEDs’ performance and the ELDMR results are discussed in relation to the nature of 

the defects and their density in these devices.   

Introduction 

    Following the pioneering work on phosphorescent small molecular OLEDs (Ph-

SMOLEDs), which are much more efficient than fluorescent SMOLEDs [1], 

phosphorescent polymer LEDs (Ph-PLEDs) were also developed, to exploit the low-cost, 

ease of solution processing, and more accurate control of dopants in such devices [2]. 

However, for improved performance, they require balancing of the charge injection and 
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prevention of quenching effects. Hence, with the incorporation of a single layer of 

organic small molecules, the performance of the devices can be improved. 

    In 2004 Young et al. [2] developed a single layer, highly efficient Ph-PLED with the 

structure indium tin oxide (ITO) / poly(3,4-ethylenedioxythiophene) 

(PEDOT):polystyrene sulfonate (PSS) / poly(N-vinyl carbazole (PVK):N,N'- diphenyl-

N,N'-bis(3-methylphenyl)-1,1'-biphenyl-4,4'-diamine (TPD):methyl fac tris(2-

phenylpyridine) iridium [Ir(mppy)3]:2-(4-Biphenylyl)-5-(4-tert-butylphenyl)-1,3,4-

oxadiazole (PBD) / CsF / Al. They used PVK as the base material of the emitting layer, 

which could prevent luminescence quenching by confining the triplet states in the 

Ir(mppy)3 guest molecules. With the incorporation of TPD and PBD as hole and electron 

transport moieties, respectively, they achieved a power conversion efficiency (PCE) of 24 

lm/W at 100 Cd/m2. In 2005, Choulis et al. [3] improved the power efficiency to a 

maximum of 38 lm/W by adding an interfacial poly(9,9-dioctyl-fluorene-co-N-(4-

butylphenyl)-diphenylamine)) (TFB) layer between the PEDOT:PSS and the emitting 

layer. But neither of these reports provided any information regarding device stability. 

    This work presents data on the lifetime of similar device structures, with the potential 

to enhance the efficiency at a higher luminescence. High efficiency hybrid OLEDs with 

the structure ITO / PEDOT:PSS / PVK:TPD:Ir(mppy)3:PBD / Bphen / Bphen:LiF / Al 

were fabricated. A combinatorial pixel array was made to determine the optimal 

Bphen:LiF thickness, which was found to be 20 nm. The optimal device showed a 

maximum power conversion efficiency of 31 lm/W and a maximum luminous efficiency 

of 44 Cd/A. The brightness was 19,000 Cd/m2 at 10 V. However, at an initial brightness 
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L0 = 5204 Cd/m2 and a constant current density J = 30 mA/cm2, the lifetime (to 50% of 

L0) t1/2 = 4.3 min; at L0 = 520 Cd/m2 and J = 1.8 mA/cm2, t1/2 = 116 min. When 

extrapolated to L0 = 100 Cd/m2, t1/2 ~ 13 h.  

Experimental procedures 

    PEDOT: PSS was purchased from H. C. Starck; PVK, TPD, and PBD were purchased 

from Sigma-Aldrich; Ir(mppy)3 was purchased from American Dye Source. All materials 

were used with no further purification. 

    PLEDs were fabricated on Colorado Concept Coatings ITO-coated glass substrates. 

The R� ~ 20 Ω/�, 140 nm-thick ITO-coated 2"×2" glass substrates were cleaned by 

detergent and organic solvents and then treated in a UV/ozone oven to increase the ITO 

work function and facilitate hole injection, as described elsewhere [4].  The PEDOT: PSS 

layer was spin-coated on the substrate at 1000 rpm for 60 s, and was then baked for 30 

min at 120 oC. The PVK-based light emitting layer was then spin-coated from a 17 

mg/mL PVK solution in chlorobenzene solution at 1000 rpm for 60 s, and then baked for 

30 min at 60°C. Finally, the CsF and Al layers were deposited by thermal evaporation. It 

should be emphasized, however, that the chlorobenzene solution containing PVK, TPD, 

Ir(mppy)3, and PBD was prepared in air before introduction into the glove box for spin 

coating. 

     To improve the efficiency of the devices, a Bphen layer was thermally evaporated on 

the PVK layer, to generate the hybrid PLED/SMOLED ITO / PEDOT: PSS / PVK: TPD: 

Ir(mppy)3:PBD / Bphen / LiF / Al. The Bphen layer increases the electron injection and 

thus improved the maximum efficiency to 23 lm/W [5]. The Bephen thickness was varied 

in a combinatorially-fabricated array to obtain an optimal thickness. The polymer layers 
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were spin-coated and baked in the same way mentioned above. Bphen, LiF, and Al layers 

are then fabricated by thermal evaporation. The lifetime of this hybrid OLED was 6.3 h at 

L0 = 100 Cd/m2. The short lifetime [6-8] may stem from instability of the source PVK, 

TPD, PBD and/or Bphen materials, or from contamination by oxygen and/or water. As 

doping LiF into Bphen was shown to increase the lifetime of other OLEDs [9], in some 

devices Bphen was doped with LiF, resulting in the device structure ITO / PEDOT:PSS / 

PVK:TPD:Ir(mppy)3:PBD / 10 nm Bphen / 20 nm Bphen:LiF / Al. Both the efficiency 

and lifetime were improved when using the LiF dopant. The maximal power conversion 

efficiency was ~31 lm/W, and the lifetime (to 50% of L0) t1/2 was ~13 h at L0 = 100 

Cd/m2. 

    Electroluminescence (EL)-detected magnetic resonance (ELDMR) measurements were 

conducted on the device with 35 nm Bphen as the ETL layer. The ELDMR system used 

in this study was described previously [10-14]. In brief, the PLED was inserted into the 

quartz “finger” dewar of an Oxford Instruments He gas flow cryostat; the quartz “finger” 

dewar was inserted into an optically accessible X-band microwave cavity. Bias was 

applied to the PLED and the EL was collected by a Si photodiode. The ELDMR was 

measured by lock-in detection of the changes in the EL induced by the 810 mW, 9.35 

GHz microwaves chopped at 500 Hz. 

Results and discussion 

Device Performance: 

(i) ITO/PEDOT:PSS / PVK:TPD:Ir(mppy)3:PBD / 1 nm CsF / Al. Four samples of 

different combinations of the spin-coating rates of the PEDOT:PSS layer and that of the 

emitting layer (EML) were prepared to determine the optimal spin-coating rate 



 

combination. The spinning rates were 1000 & 1000 rpm

rpm, and 2000 & 2000 rpm. The PEDOT:PSS and EML layers were baked for 30 min at 

200°C and 60°C, respectively. 

Fig. 6-1 shows the device performance for these four PLEDs. As expected, charge 

injection increased for a thicker 

injection, however, is more balanced when the thicknesses of the PEDOT:PSS layer and 

Fig. 6-1. Device performance for different spin

emitting layers. Solid squares for

solid stars for 2000 & 1000 rpm, and 

that of the EML are comparable. The device fabricated at 1000 & 1000 rpm structure was 

found to be somewhat better than the 2000 & 2000

the former device result in pixels with reduced current leakage (see Fig. 6
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combination. The spinning rates were 1000 & 1000 rpm, 1000 & 2000 rpm, 2000 & 1000 

rpm, and 2000 & 2000 rpm. The PEDOT:PSS and EML layers were baked for 30 min at 

200°C and 60°C, respectively.  

1 shows the device performance for these four PLEDs. As expected, charge 

injection increased for a thicker PEDOT:PSS layer and a thinner EML. The charge 

injection, however, is more balanced when the thicknesses of the PEDOT:PSS layer and 

Device performance for different spin-coating rates of the PEDOT: PSS and the 

emitting layers. Solid squares for 1000 & 1000 rpm, open squares for 1000 & 2000 rpm, 

solid stars for 2000 & 1000 rpm, and open stars for 2000 & 2000 rpm. 

that of the EML are comparable. The device fabricated at 1000 & 1000 rpm structure was 

found to be somewhat better than the 2000 & 2000 rpm structure. The thicker layers in 

the former device result in pixels with reduced current leakage (see Fig. 6

, 1000 & 2000 rpm, 2000 & 1000 

rpm, and 2000 & 2000 rpm. The PEDOT:PSS and EML layers were baked for 30 min at 

1 shows the device performance for these four PLEDs. As expected, charge 

PEDOT:PSS layer and a thinner EML. The charge 

injection, however, is more balanced when the thicknesses of the PEDOT:PSS layer and  

 

coating rates of the PEDOT: PSS and the 

squares for 1000 & 2000 rpm, 

that of the EML are comparable. The device fabricated at 1000 & 1000 rpm structure was 

rpm structure. The thicker layers in 

the former device result in pixels with reduced current leakage (see Fig. 6-1) and better 



 

uniformity. A maximum current efficiency of 23.4 Cd/A was obtained at a brightness of 

1671 Cd/m2, while a maximum PCE of 12.3 

(ii) A combinatorial array was fabricated to compare the performance of devices with 

CsF, LiF, and Bphen/LiF. Three different basic structures were tested: 

Structure 1: ITO / PEDOT:PSS / PVK:TPD:Ir(mppy)

Structure 2: ITO / PEDOT:PSS / PVK:TPD:Ir(mppy)

Structure 3: ITO / PEDOT:PSS / PVK:TPD:Ir(mppy)

In structure 3, the Bphen layer was 30, 40, or 50 nm thick; the thickness of the LiF layer 

was 0.5 or 1.0 nm. Thus, a total of 

the 50 nm Bphen layer, however, crystallized, so that a total of seven sets of pixels were 

used for data collection and analysis. The spin

the PEDOT:PSS/EML. 

Fig.6-2. The energy level diagram of ITO / PEDOT:PSS / PVK:TPD:Ir(mppy)

Bphen / LiF /Al device structure.
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uniformity. A maximum current efficiency of 23.4 Cd/A was obtained at a brightness of 

, while a maximum PCE of 12.3 lm/W was achieved at 373 Cd/m

(ii) A combinatorial array was fabricated to compare the performance of devices with 

CsF, LiF, and Bphen/LiF. Three different basic structures were tested:  

Structure 1: ITO / PEDOT:PSS / PVK:TPD:Ir(mppy)3:PBD / 1nm CsF / Al

Structure 2: ITO / PEDOT:PSS / PVK:TPD:Ir(mppy)3:PBD / LiF / Al ,  

Structure 3: ITO / PEDOT:PSS / PVK:TPD:Ir(mppy)3:PBD / Bphen / LiF / Al. 

the Bphen layer was 30, 40, or 50 nm thick; the thickness of the LiF layer 

us, a total of 9 different pixel sets were generated. The pixels with 

the 50 nm Bphen layer, however, crystallized, so that a total of seven sets of pixels were 

used for data collection and analysis. The spin-coating rates were 1000 & 1000 rpm for 

The energy level diagram of ITO / PEDOT:PSS / PVK:TPD:Ir(mppy)

Bphen / LiF /Al device structure. 

uniformity. A maximum current efficiency of 23.4 Cd/A was obtained at a brightness of 

lm/W was achieved at 373 Cd/m2. 

(ii) A combinatorial array was fabricated to compare the performance of devices with 

:PBD / 1nm CsF / Al,  

 

:PBD / Bphen / LiF / Al.  

the Bphen layer was 30, 40, or 50 nm thick; the thickness of the LiF layer 

different pixel sets were generated. The pixels with 

the 50 nm Bphen layer, however, crystallized, so that a total of seven sets of pixels were 

coating rates were 1000 & 1000 rpm for 

 

The energy level diagram of ITO / PEDOT:PSS / PVK:TPD:Ir(mppy)3:PBD / 



 

Fig. 6-2 shows the energy level diagram of the ITO / PEDOT:PSS / 

PVK:TPD:Ir(mppy)3:PBD / Bphen / LiF /Al devices. Devices with CsF

Fig. 6-3. The device performance of structures 1 

1000 rpm (see text). 

Structure 1: ITO / PEDOT:PSS / PVK:TPD:Ir(mppy)

squares); 

Structure 2: ITO / PEDOT:PSS / PVK:TPD:Ir

nm LiF; triangles – 0.5 nm LiF); 

Structure 3: ITO / PEDOT:PSS / PVK:TPD:Ir(mppy)

gray circles – 1 nm LiF, 30 and 40 nm Bphen, respectively; solid and 

LiF, 30 and 40 nm Bphen, respectively).
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2 shows the energy level diagram of the ITO / PEDOT:PSS / 

:PBD / Bphen / LiF /Al devices. Devices with CsF

The device performance of structures 1 – 3; the spin-coating rates were 1000 & 

Structure 1: ITO / PEDOT:PSS / PVK:TPD:Ir(mppy)3:PBD / CsF(1nm) / Al, (solid 

Structure 2: ITO / PEDOT:PSS / PVK:TPD:Ir(mppy)3:PBD / LiF / Al (open

0.5 nm LiF);  

Structure 3: ITO / PEDOT:PSS / PVK:TPD:Ir(mppy)3:PBD / Bphen / LiF / Al (solid and

1 nm LiF, 30 and 40 nm Bphen, respectively; solid and open

LiF, 30 and 40 nm Bphen, respectively). 

2 shows the energy level diagram of the ITO / PEDOT:PSS / 

:PBD / Bphen / LiF /Al devices. Devices with CsF, however, were 

 

coating rates were 1000 & 

:PBD / CsF(1nm) / Al, (solid 

:PBD / LiF / Al (open squares – 1 

:PBD / Bphen / LiF / Al (solid and 

open stars – 0.5 nm 



 

superior to those with LiF, as shown in Fig. 6

& 1000 rpm. Although LiF reduces the barrier for electron injection from the Al, it 

probably does not dissociat

of Li. In contrast, CsF dissociates, 

work function that is almost as low as the 1.9 eV of Cs. 

Fig. 6-4. Behavior of ITO / PEDOT:PSS / PVK:TPD:Ir(mppy)

Spin-coating rates 2000 &2000 rpm (see text). Solid squares, open squares, solid stars, 

and open stars correspond to Bphen thicknesses of 0, 30, 40, and 60 nm.

which can enhance electron injection and improve device performance [15

Bphen/LiF bilayer is employed as a substitute for CsF, the efficiency of the device is 

further improved. Although the 3.6 V turn

2.9 V with CsF, the maximum current efficiency improved from 23.4 to 36 Cd/A at a 

113 

superior to those with LiF, as shown in Fig. 6-3, where the spin-coating rates were 1000 

& 1000 rpm. Although LiF reduces the barrier for electron injection from the Al, it 

probably does not dissociate and its 4.3 eV work function is much higher than the 2.3 eV 

of Li. In contrast, CsF dissociates, independently of the underlying material,

work function that is almost as low as the 1.9 eV of Cs. Free Cs atoms n-

Behavior of ITO / PEDOT:PSS / PVK:TPD:Ir(mppy)3:PBD / Bphen / LiF / Al. 

coating rates 2000 &2000 rpm (see text). Solid squares, open squares, solid stars, 

and open stars correspond to Bphen thicknesses of 0, 30, 40, and 60 nm. 

which can enhance electron injection and improve device performance [15

Bphen/LiF bilayer is employed as a substitute for CsF, the efficiency of the device is 

further improved. Although the 3.6 V turn-on voltage with Bphen/LiF is higher than th

2.9 V with CsF, the maximum current efficiency improved from 23.4 to 36 Cd/A at a 

coating rates were 1000 

& 1000 rpm. Although LiF reduces the barrier for electron injection from the Al, it 

e and its 4.3 eV work function is much higher than the 2.3 eV 

independently of the underlying material, resulting in a 

-dope the ETL,  

 

:PBD / Bphen / LiF / Al. 

coating rates 2000 &2000 rpm (see text). Solid squares, open squares, solid stars, 

 

which can enhance electron injection and improve device performance [15-18]. When a 

Bphen/LiF bilayer is employed as a substitute for CsF, the efficiency of the device is 

on voltage with Bphen/LiF is higher than the 

2.9 V with CsF, the maximum current efficiency improved from 23.4 to 36 Cd/A at a 



 

Bphen/Li thickness of 40 / 0.5 nm, and the maximum PCE increased from 12.4 to 23.3 

lm/W. The enhancement in the efficiency may be attributed to the high ~10

electron mobility of Bphen. Additionally, Bphen has a LUMO level at 

-2.4 eV has also been reported), which minimizes the gap between the EML and LiF/Al 

and thus enhances the electron injection. 

obtained when the spin-coating rates were 2000 rpm/2000 rpm, as shown in Fig. 6

Fig. 6-5. The original and normalized spectra of device Structures 2 and 3 at 7 V. The 

solid, dashed, dotted, and dashed

Bphen, respectively. 

    The EL spectrum of each individual structure was stable under increasing bias. 

However, as shown in Fig. 6

are slightly different. The peak is somewhat broadened w

This broadening may result from the better electron injection. That is, the higher electron 
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Bphen/Li thickness of 40 / 0.5 nm, and the maximum PCE increased from 12.4 to 23.3 

lm/W. The enhancement in the efficiency may be attributed to the high ~10

on mobility of Bphen. Additionally, Bphen has a LUMO level at -

2.4 eV has also been reported), which minimizes the gap between the EML and LiF/Al 

and thus enhances the electron injection. Similar results to those shown in Fig. 6

coating rates were 2000 rpm/2000 rpm, as shown in Fig. 6

The original and normalized spectra of device Structures 2 and 3 at 7 V. The 

solid, dashed, dotted, and dashed-dotted lines are the spectra for 0, 30, 40, and 50 

The EL spectrum of each individual structure was stable under increasing bias. 

However, as shown in Fig. 6-5, at a given voltage, the spectra of these different structures 

are slightly different. The peak is somewhat broadened when the Bphen layer is added. 

This broadening may result from the better electron injection. That is, the higher electron 

Bphen/Li thickness of 40 / 0.5 nm, and the maximum PCE increased from 12.4 to 23.3 

lm/W. The enhancement in the efficiency may be attributed to the high ~10-4 cm2/Vs 

-3.0 eV (although 

2.4 eV has also been reported), which minimizes the gap between the EML and LiF/Al 

Similar results to those shown in Fig. 6-3 were 

coating rates were 2000 rpm/2000 rpm, as shown in Fig. 6-4.  

 

The original and normalized spectra of device Structures 2 and 3 at 7 V. The 

dotted lines are the spectra for 0, 30, 40, and 50 nm 

The EL spectrum of each individual structure was stable under increasing bias. 

5, at a given voltage, the spectra of these different structures 

hen the Bphen layer is added. 

This broadening may result from the better electron injection. That is, the higher electron 



 

mobility allows for electron penetration further into the emitting layer, thus enlarging the 

emission zone, and therefore the width of

Fig. 6-6. Performance of ITO / PEDOT:PSS/PVK:TPD:PBD: Ir(mppy)

x nm Bphen:Li / 1 nm LiF / Al.

20, and 30 nm, respectively.

ETL was tested; the device efficiency was 

This behavior may be due to the much lower electron mobility in Alq

that in Bphen. Next, a structure using Li

tested. As seen in Fig. 6-6

of the device with pure Bphen (16 lm/W), was obtained. The optimal device structure 
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mobility allows for electron penetration further into the emitting layer, thus enlarging the 

emission zone, and therefore the width of the EL band. 

Performance of ITO / PEDOT:PSS/PVK:TPD:PBD: Ir(mppy)3

x nm Bphen:Li / 1 nm LiF / Al. Open squares, solid stars, and open stars are for x = 10, 

20, and 30 nm, respectively. 

ETL was tested; the device efficiency was comparable to that of the undoped device. 

This behavior may be due to the much lower electron mobility in Alq3 

that in Bphen. Next, a structure using Li- doped Bphen as an electron-injection layer was 

6, a maximal PCE of ~30 lm/W, which is ~2 fold larger than that 

of the device with pure Bphen (16 lm/W), was obtained. The optimal device structure 

mobility allows for electron penetration further into the emitting layer, thus enlarging the 

 

3 / 10 nm Bphen / 

stars are for x = 10, 

comparable to that of the undoped device. 

 in comparison to 

injection layer was 

0 lm/W, which is ~2 fold larger than that 

of the device with pure Bphen (16 lm/W), was obtained. The optimal device structure 



 

was ITO / PEDOT:PSS / PVK:TPD:PBD:Ir(mppy)

nm LiF / Al. Although the EL spectrum was

was no more than one hour at 

application. The short lifetime may be due to the diffusion of Li into the light

Fig. 6-7. The performance of ITO / 

Bphen / x nm Bphen:LiF / Al. Solid squares, 

correspond to x = 10, 20, 30, and 40 nm, respectively.

polymer layer, or to degradation of the PVK due to oxygen or water contam

the former case, either doping Bphen with a larger alkali atom such as Cs, or applying a 

different dopant, may result in a more stable device. To check this hypothesis, LiF was 
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ITO / PEDOT:PSS / PVK:TPD:PBD:Ir(mppy)3 / 10 nm Bphen / 20 nm Bphen:Li / 1 

nm LiF / Al. Although the EL spectrum was independent of the bias, the device lifetime 

was no more than one hour at L0 = 100 Cd/m2, which is a great hindrance in its 

application. The short lifetime may be due to the diffusion of Li into the light

The performance of ITO / PEDOT:PSS / PVK:TPD:Ir(mppy)

Bphen / x nm Bphen:LiF / Al. Solid squares, open squares, solid stars, and 

correspond to x = 10, 20, 30, and 40 nm, respectively. 

polymer layer, or to degradation of the PVK due to oxygen or water contam

the former case, either doping Bphen with a larger alkali atom such as Cs, or applying a 

different dopant, may result in a more stable device. To check this hypothesis, LiF was 

/ 10 nm Bphen / 20 nm Bphen:Li / 1 

independent of the bias, the device lifetime 

, which is a great hindrance in its 

application. The short lifetime may be due to the diffusion of Li into the light-emitting  

 

PEDOT:PSS / PVK:TPD:Ir(mppy)3:PBD / 10 nm 

squares, solid stars, and open stars 

polymer layer, or to degradation of the PVK due to oxygen or water contamination. In 

the former case, either doping Bphen with a larger alkali atom such as Cs, or applying a 

different dopant, may result in a more stable device. To check this hypothesis, LiF was 
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chosen to substitute Li since it increases the device lifetime when doped into small 

molecular organic layers [19]. 

    The best performance for the devices evaluated in this study was of ITO / PEDOT:PSS 

/ PVK:PBD:Ir(mppy)3:PBD / 10 nm Bphen / x nm Bphen:LiF / Al. The polymer layers 

were fabricated by spin-coating as described above. The only modification was the 

replacement of Li by LiF, where a molar ratio of 1:1 was adopted for the Bphen:LiF 

layer. A better stability was obtained together with a comparable efficiency for this 

device. A combinatorial array with changing thickness of the doped layer was fabricated 

to find the optimal doping thickness. Pixels of 10 nm, 20 nm, 30 nm, and 40 nm doped 

layers were studied. The devices’ performance is shown in Fig. 6-7. As seen, the device 

with the 20 nm Bphen:LiF layer has the highest efficiency; the maximum luminous 

efficiency is ~44 Cd/A, and the maximum PCE is ~31 lm/W. 

Device Lifetime: 

    The stability of ITO / PEDOT:PSS / PVK:TPD:Ir(mppy)3:PBD / 10 nm Bphen / 20 nm 

Bphen:LiF / Al at constant current density was studied using 2×2 mm2 pixels. The 

devices were encapsulated with transparent glass covers. Figs. 6-8 and 6-9 show the 

brightness vs. time at various L0. A device with L0 = 256 Cd/m2 and its t1/2 was chosen as 

the reference level. In other words, the L0 and corresponding t1/2 values obtained  



 

Fig. 6-8. Brightness versus time with L

0.9 mA/cm2. 

Fig. 6-9. Brightness vs time for different L

and 30 mA/cm2. 
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Brightness versus time with L0 = 256 Cd/m2 and a constant current density J = 

Brightness vs time for different L0 at constant current densities J = 1.8, 4, 10, 

 

and a constant current density J = 

 

at constant current densities J = 1.8, 4, 10, 



 

for the other devices were normalized to this reference level, as shown in Fig. 6

straight line shown in that figure is based on the equation [20]

where the slope of this line is the acceleration factor 

good fit with the straight line demonstrates the validity of this relationship for the pixels 

used in this work. Thus, the half

the same fabrication condition and measurement steps, the half

/ PEDOT:PSS / PVK:TPD:Ir(mppy)

~6 h [9]. Thus, the lifetime was significantly improved with the incorporation of the LiF 

dopant.  

Fig. 6-10. (a) Log-log plot of t

L0 = 256 Cd/m2, t1/2 = 260 min. The straight line is the fit of Eq. (1) with an acceleration 

factor (slope) n = 1.32. (b) 

ELDMR: 

    Fig. 6-11(a) shows the negative (EL

green Ir(mppy)3 emission in the device: 
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devices were normalized to this reference level, as shown in Fig. 6

straight line shown in that figure is based on the equation [20] 

21 2/1022/101 tLtL nn
⋅=⋅ , (1) 

where the slope of this line is the acceleration factor n, which was found to be 1.32. 

good fit with the straight line demonstrates the validity of this relationship for the pixels 

used in this work. Thus, the half-lifetime at 100 Cd/m2 was calculated to be ~13 h. Under 

the same fabrication condition and measurement steps, the half-lifetime of the device ITO 

/ PEDOT:PSS / PVK:TPD:Ir(mppy)3:PBD / Bphen / LiF / Al, without LiF doping, was 

~6 h [9]. Thus, the lifetime was significantly improved with the incorporation of the LiF 

log plot of t1/2 normalized to that at L0 = 256 Cd/m2 vs the normalized 

= 260 min. The straight line is the fit of Eq. (1) with an acceleration 

factor (slope) n = 1.32. (b) L0 vs 1/t1/2. The slope is t1/2 = 801 min at L0 = 100 Cd/m

11(a) shows the negative (EL-quenching) spin 1/2 ELDMR at 

emission in the device: ITO / PEDOT:PSS / PVK:TPD:PBD:Ir(mppy)

devices were normalized to this reference level, as shown in Fig. 6-10. The 

, which was found to be 1.32. The 

good fit with the straight line demonstrates the validity of this relationship for the pixels 

was calculated to be ~13 h. Under 

ime of the device ITO 

:PBD / Bphen / LiF / Al, without LiF doping, was 

~6 h [9]. Thus, the lifetime was significantly improved with the incorporation of the LiF 

 

vs the normalized 

= 260 min. The straight line is the fit of Eq. (1) with an acceleration 

= 100 Cd/m2. 

quenching) spin 1/2 ELDMR at T = 20K of the 

ITO / PEDOT:PSS / PVK:TPD:PBD:Ir(mppy)3 / 



 

35 nm Bphen / 1 nm LiF / Al; Fig. 6

|∆IEL/IEL| vs the voltage at room temperature

efficiency PPV PLEDs also exhibited a negative spin 1/2 resonance at all temperatures 

and no positive (EL-enhancing) spin 1/2 resonance [21]. However, improved PLEDs 

exhibited both a positive and a negative resonance [22], and SMOLEDs typically exhibit 

a positive resonance at low temperature and a negative resonance at room temperature 

[10-11]. The positive resonance is 

triplet excitons (TEs) and polarons [10

formation of localized trions (i.e., bipolarons stabilized by adjacent deeply trapped 

counterpolarons) [10-11, 14, 21

decreased with increased current 

Fig. 6-11. (a) The full-field spin 1/2 ELDMR of the green 

doped PVK PLED at 20K, (b) Negative spin 1/2 

temperature. Note the strong increase in |

coincided with degradation of the device and is likely due to the high 

these PLEDs. 
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35 nm Bphen / 1 nm LiF / Al; Fig. 6-11(b) shows the amplitude of this resonance 

voltage at room temperature. We note that the first generation of very low 

efficiency PPV PLEDs also exhibited a negative spin 1/2 resonance at all temperatures 

enhancing) spin 1/2 resonance [21]. However, improved PLEDs 

a positive and a negative resonance [22], and SMOLEDs typically exhibit 

a positive resonance at low temperature and a negative resonance at room temperature 

11]. The positive resonance is due to reduced quenching of singlet excitons (SEs) by 

citons (TEs) and polarons [10-14]. The negative resonance is due to enhanced 

localized trions (i.e., bipolarons stabilized by adjacent deeply trapped 

11, 14, 21-22]. However, in all previously studied devices |

creased with increased current  

field spin 1/2 ELDMR of the green phosphorescence in 

at 20K, (b) Negative spin 1/2 |∆IEL/IEL| vs the

temperature. Note the strong increase in |∆IEL/IEL| with increasing bias, which also 

coincided with degradation of the device and is likely due to the high 

11(b) shows the amplitude of this resonance 

. We note that the first generation of very low 

efficiency PPV PLEDs also exhibited a negative spin 1/2 resonance at all temperatures 

enhancing) spin 1/2 resonance [21]. However, improved PLEDs 

a positive and a negative resonance [22], and SMOLEDs typically exhibit 

a positive resonance at low temperature and a negative resonance at room temperature 

due to reduced quenching of singlet excitons (SEs) by 

The negative resonance is due to enhanced 

localized trions (i.e., bipolarons stabilized by adjacent deeply trapped 

22]. However, in all previously studied devices |∆IEL/IEL| 

 

phosphorescence in Ir(mppy)3-

| vs the bias at room 

| with increasing bias, which also 

coincided with degradation of the device and is likely due to the high defect density in 
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density J, but in the PVK devices it increases strongly with increasing bias, from 

~1.5×10-4 at 5 V to ~7.0×10-4 at 10 V. This behavior may be associated with the observed 

PLED degradation. This increase of the negative ELDMR is also consistent with a 

relation between trion formation and the degradation mechanism [14]. 

Conclusions 

    The properties of ITO / PEDOT:PSS / PVK:TPD:Ir(mppy)3:PBD / x nm Bphen / y nm 

Bphen:LiF / LiF / Al hybrid polymer/small molecular OLEDs were described. The 

devices with the LiF dopant exhibited the highest power efficiency, up to 31 lm/W, and 

the longest t1/2 of 800 min at L0 = 100 Cd/m2. The ELDMR results, which showed that the 

negative spin 1/2 resonance amplitude increases with bias and degradation, suggest the 

presence of a high density of defect sites promoting trion formation, which may be 

related to the short lifetimes of the devices. 
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Abstract 

    We demonstrate very high efficiency (forward power and luminous efficiencies up to 

60 lm/W and 69 Cd/A, respectively) spin-coated small molecule electrophosphorescent 

OLEDs (SMOLEDs) based on a green-emitting iridium complex doped into a 4,4'-bis(9-

carbazolyl)-biphenyl (CBP) host. Electron- and hole- transporting molecules were 

blended with the host to improve the transport balance of the charge carriers. An 

additional electron- transporting/hole-blocking BPhen layer was thermally evaporated on 

the spin-coated active layer, followed by the LiF/Al cathode. The peak efficiency of these 

largely-solution-processed SMOLEDs is higher than that of any polymer or solution-

processed OLED reported to date, and almost as high as that of the most efficient 

thermally evaporated (SM)OLED, when excluding the contribution of outcoupling-

enhancing structures such as microlens arrays. When such outcoupling enhancement is 

included, the peak power efficiency would be 120 lm/W, essentially the highest of any 

OLED reported to date. The high efficiency is attributed to the relatively high carrier 

mobility in CBP, the enhanced mobility due to the additional electron- and hole-

transporting dopants, and the smoothness of the doped CBP-based films, whose RMS 
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surface roughness is only ~0.50 nm. The enhanced performance of the spin-coated 

SMOLEDs implies that such devices are an attractive alternative to the fabrication of 

multi-component SMOLEDs, e.g., white OLEDs, reducing the cost and complexities of 

co-evaporation of multiple dopants and host materials in the thermal vacuum deposition 

processes. 

Introduction 

Extensive research on organic light-emitting diodes (OLEDs) continues due to their 

promise in applications such as flat panel displays and solid state lighting [1-5]. 

Commonly, thermal high-vacuum evaporation technology is used for fabrication of small 

molecule-based OLEDs (SMOLEDs) and solution processing technology is used for 

those based on polymers (PLEDs). Thermal evaporation deposition enables complicated 

multilayer device architectures and renders excellent devices with high efficiencies [6,7]. 

In contrast, solution-based deposition limits fabrication of composite device structures 

because the solvent used for one layer can redissolve or otherwise damage the previous 

layers [8]. Therefore, thermally evaporated SMOLEDs are typically more efficient and 

longer-lived than solution-processed PLEDs. However, thermal evaporation deposition 

has its own disadvantages. First, it requires high vacuum and is consequently much more 

costly. Second, making multi-dopant OLEDs, such as white OLEDs (WOLEDs), requires 

precise control of the doping concentration of each dopant in the emitting layer (EML) to 

obtain the desired emission [9,10]. These reasons usually lead to a fabrication process of 

greater complexity and higher cost. On the other hand, solution processing, such as spin-

coating, inkjet printing, and screen printing, is advantageous over thermal evaporation 

processing, due to its low-cost and large area manufacturability [10,11]. Additionally, it 
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is possible to realize co-doping of several dopants by mixing the dopants and host 

material in solution. Hence, the fabrication of SMOLEDs via a solution process is of 

great importance. To that end, we demonstrate high efficiency (forward power and 

luminous efficiencies up to 60 lm/W and 69 Cd/A, respectively) spin-coated 

electrophosphorescent SMOLEDs based on green-emitting tris[2-(p-tolyl)pyridine] 

iridium(III) (Ir(mppy)3) doped into a 4,4'-bis(9-carbazolyl)-biphenyl (CBP) host, 

probably due to the materials and film morphology. This is the highest reported 

efficiency of any solution-processed OLED and among the highest of any OLED without 

outcoupling enhancement. The electron- transporting 2-(4-biphenylyl)-5-(4-tert-

butylphenyl)- 1,3,4-oxadiazole (PBD) and hole- transporting N,N'-diphenyl-N,N'-bis(3-

methyl-phenyl)- [l,l'biphenyl]-4,4'-diamine (TPD) are blended with the host to improve 

the transport balance of the charge carriers. A poly(3,4-ethylenedioxy thiophene):poly(4-

styrenesulfonate) (PEDOT:PSS) hole-injection layer is first spin-coated on the indium tin 

oxide (ITO)/glass substrate, and an additional electron- transporting/hole-blocking 4,7-

diphenyl-1,10-phenanthroline (BPhen) layer is thermally evaporated on the spin-coated 

active layer. Hence, the structure of the devices is ITO/spin-coated PEDOT:PSS/spin-

coated CBP:TPD:PBD: Ir(mppy)3/thermally evaporated BPhen/LiF/Al. In particular, the 

performance of these SMOLEDs is superior to that of PLEDs with a similar structure 

based on poly(N-vinyl carbazole) (PVK) as the host (device structure: ITO/spin-coated 

PEDOT:PSS/spin-coated PVK:TPD:PBD:Ir(mppy)3/thermally evaporated BPhen/LiF/Al). 

The enhanced performance of the spin-coated SMOLEDs implies that such devices are an 

attractive and alternative route to the fabrication of small-molecular multi-component 

OLEDs, such as white OLEDs, reducing the cost of devices and avoiding the 
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complexities of the co-evaporation of multiple dopants and host material in the vacuum 

deposition. 

Experimental procedures 

    PEDOT:PSS was purchased from H. C. Starck and used as the hole injection layer 

(HIL). CBP and PVK, the host materials, TPD and PBD, the hole- and electron-

transporting molecules, respectively, and BPhen, an electron-transporting and hole-

blocking material, were purchased from Sigma-Aldrich. Ir(mppy)3, the dopant material, 

was purchased from American Dye Source. These materials were used without further 

purification. 

 Films were fabricated on 1"×1" nominally 20 Ω/square, 140 nm-thick ITO-coated 

glass substrates (Colorado Concept Coatings). The ITO substrates were first cleaned by a 

surfactant in an ultrasonic bath, and then rinsed in flowing de-ionized water. This was 

followed by consecutive ultrasonications, first in isopropanol and then in acetone to 

remove dust and organic residue. Finally, the cleaned ITO substrates were dried by 

blowing nitrogen and then treated in a UV ozone oven to increase the work function of 

the ITO and hence facilitate hole injection, as described elsewhere. The PEDOT:PSS was 

first filtered through a 0.45 µm syringe filter. It was then spin coated at 1000 rpm for 60 s 

on the ITO to generate a 60 nm layer that was baked in air at 160oC for 1 hour. CBP, a 

blends of CBP: Ir(mppy)3, CBP: PBD: TPD: Ir(mppy)3, or a blend of PVK: PBD: TPD: 

Ir(mppy)3 in chlorobenzene were spin-coated on top of the PEDOT:PSS layer inside an 

Ar-filled glove box in which the oxygen level is generally below 10 ppm. These blends 

form the light emitting layers. After spin-coating at 4000 rpm for 60 s, the resulting light-
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emitting layers were annealed at 60°C for 30 min. The morphology of the spin-coated 

thin films was measured by atomic force microscopy (AFM) (model MM AFM-2 from 

Digital Instruments, working at contact mode).  

 Following the annealing step, the films were transferred to a thermal evaporator 

chamber within the glove box. BPhen, LiF and Al layers were deposited sequentially by 

thermal evaporation using tungsten-heating baskets. The background pressure in the 

chamber was ~2×10-6 mbar. The evaporation rate of the BPhen layer was ~1 Å/s while 

that of LiF was 0.2 Å/s. The thickness of the BPhen layer was 40 nm and that of LiF was 

1 nm. The Al cathode was deposited through a shadow mask containing 1.5 mm diameter 

circular holes; the evaporation rate of the Al was ~4-5 Å/s and its thickness was 100 nm. 

Bias voltages across the OLEDs were supplied by a Kepco DPS 40-2M programmable 

power supply and the current was measured using a Keithley 2000 multimeter. The 

OLEDs’ EL was measured by a Minolta LS110 luminance meter and the EL spectra were 

obtained using an Ocean Optics CHEM2000 spectrometer.  

Results and discussion 

     In spin-coated PLEDs, small molecule guests are typically blended with a polymer 

host in a suitable solvent as is the case for PVK:Ir(mppy)3 PLEDs [12,13]. However, 

when using this approach, phase separation may occur either after some time of operation 

or immediately following fabrication due to differences between small molecules and 

conjugated polymers in attributes such as viscosity and boiling point [14]. To address this 

issue, many other solution-processible organic molecules were designed and synthesized, 

including dendrimers, oligomers, spiro-molecules, and binuclear metal chelates [15-18]. 
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Recently, efficient OLEDs based on solution-processed small molecules have been 

reported [19–26]. For example, He et al. reported that fluorescent SMOLEDs fabricated 

by spin-coating blends of N, N"-bis-(3-naphthyl)-N, N"-biphenyl-(1,1"-biphenyl)-4,4"-

diamine (NPB) and tris-(8-hydroxyquinoline)-aluminum (Alq3) as the emitting layer 

exhibited maximum brightness and luminous efficiency exceeding 10,000 Cd/m2 and 3.8 

Cd/A, respectively [23]. These values are comparable to those of thermally evaporated 

Alq3-based devices. Thus, the development of solution-processed SMOLEDs based on 

materials used in high-efficient OLEDs fabricated via vacuum deposition is promising. 

 Ir(mppy)3 is a widely used phosphorescent dopant in OLEDs. The energy of the 

lowest lying triplet state of Ir(mppy)3 is ET1 ~ 2.38 eV, while that of the CBP host is ET1 ~ 

2.56 eV, which satisfies the obvious requirement that ET1 of the host be ≥ to that of the 

guest [27,28]. Previous studies showed that in the case of PVK:Ir(mppy)3PLEDs, carrier 

trapping and subsequent recombination on the guest molecule is, in general, the dominant 

triplet excitation path of the phosphorescent guest [12,29-31]. This is due to the energy of 

the highest occupied molecular orbital EHOMO = -5.4 eV and the lowest unoccupied 

molecular orbital ELUMO = -2.4 eV of Ir(mppy)3 being within those of PVK (EHOMO = -5.8 

eV, ELUMO = -2.2 eV); see Fig. 7-1(a)) [32,33]. Even though the direct formation of the 

guest triplet state is the most elegant way to achieve good color purity and high efficiency, 

this direct formation often requires a high operating voltage due to the buildup of a space-

charge field [32]. In order to improve the performance of the PVK:Ir(mppy)3 PLEDs, 

electron-transporting PBD (µe ~ 2×10-5 cm2/Vs) and hole transporting TPD (µh ~ 2×10-3 

cm2/Vs) were co-doped with the Ir(mppy)3 [34,35]. The introduction of PBD and TPD 
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diminishes to a certain extent the buildup of the space charge field in the device and 

improves the balance of charge injection and transport due to their high carrier mobilities 

[12,29-32]. It was found that the optimized concentrations of PVK,TPD, PBD and 

Ir(mppy)3 in the EML were 61, 9, 24 and 6 wt. %, respectively [12, 29-32]. 

 

Fig. 7-1. (a) HOMO and LUMO energy levels and (b) triplet energy (T1) levels of the 

various OLED materials.  
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On the other hand, the carbazole-containing CBP host is a very common host material in 

thermally-evaporated phosphorescent SMOLEDs that yield highly efficient devices with 

emission colors across the entire visible spectrum [36-39]. However, systematic studies 

on solution-processing of CBP and CBP-based SMOLEDs have not been reported. 

Therefore in this study, a series of CBP and CBP-based multilayer SMOLEDs with the 

following structures were fabricated: 

Device A: ITO/spin-coated PEDOT:PSS/spin-coated CBP/thermally evaporated BPhen 

(40 nm)/LiF (1 nm)/Al (100 nm),  

Device B: ITO/spin-coated PEDOT:PSS/spin-coated CBP 

(0.94):Ir(mppy)3(0.06)/thermally evaporated BPhen (40 nm)/LiF (1 nm)/Al (100 nm), and 

Device C: ITO/spin-coated PEDOT:PSS/spin-coated 

CBP(0.61):TPD(0.09):PBD(0.24):Ir(mppy)3(0.06)/thermally evaporated BPhen (40 

nm)/LiF (1 nm)/Al (100 nm).  

PLEDs based on PVK similar to Device C were also fabricated for comparison:  

Device D: ITO/spin-coated PEDOT:PSS/spin-coated 

PVK(0.61):TPD(0.09):PBD(0.24):Ir(mppy)3(0.06)/thermally evaporated BPhen (40 

nm)/LiF (1 nm)/Al (100 nm). This structure differed from previously reported structures 

by the addition of the BPhen layer [12,32-33]. 

 The optimized fractions of each component by weight in the EML were 0.61 CBP or 

PVK, 0.09 TPD, 0.24 PBD, and 0.06 Ir(mppy)3. EHOMO, ELUMO, and ET1 of the materials 

in these devices are also shown in Fig. 7-1 [32,33,36,40-43]. 
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 In order to determine the possible effect of morphology on device performance, we 

examined the films by atomic force microscopy (AFM). Some polymer blend systems 

phase separate and AFM has been shown to be a powerful tool in the analysis of this 

behavior [44]. AFM images of the spin-coated emitting films are shown in Fig. 3-2; all 

show pinhole-free surfaces.  

 The root-mean-square (RMS) surface roughness spin-coated CBP and PVK films are 

0.98 and 0.87 nm, respectively. They are shown in Figs. 7-2(a)-(b). These values are 

significantly smaller than the 1.5 and 1.3 nm roughness of the thermally evaporated films 

measured in our work and by Liu et al., respectively [45]. This demonstrates that a 

typical amorphous SM EML can be fabricated effectively not only by thermal vacuum 

deposition but also by a solution process.  

 Figs. 7-2(c)-(f) show the surface morphology of the spin-coated films of the CBP 

(0.94):Ir(mppy)3 (0.06), PVK (0.94):Ir(mppy)3 (0.06), CBP (0.61):TPD (0.09): PBD 

(0.24):Ir(mppy)3 (0.06) and PVK (0.61):TPD (0.09):PBD (0.24):Ir(mppy)3 (0.06) blends, 

respectively. The RMS surface roughness values of these films are 0.47, 1.16, 0.57 and 

1.10 nm, respectively. Thus, replacing PVK with CBP as the host matrix reduces the 

EML’s surface roughness by > 50%. A possible explanation for this behavior may be 

related to the difference between the small molecules and polymers. The latter often show 

improved mechanical strength due to a stronger intermolecular forces and steric 

hindrances. Hence, during spin-coating, the films formed by small molecules and 

polymers show different degrees of phase separation [46,47]. Thus, for these particular 

compositions of the CBP- and PVK-based blends, phase separation likely occurs more  
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Fig. 7-2. AFM images of thin films formed by spin-coating (a) CBP, (b) PVK, (c) 

CBP:Ir(mppy)3, (d) PVK:Ir(mppy)3 ,(e) CBP:TPD:PBD:Ir(mppy)3 and (f) 

PVK:TPD:PBD:Ir(mppy)3. 
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readily in the PVK-based films than in the CBP-based films prepared under similar 

conditions. The increased phase separation would then increase the surface roughness in 

the PVK-based films. The better uniformity of the EML in Device C (in comparison to 

Device D) may be partially responsible for the 

better device performance described next. Note, however, that the morphology and phase 

separation in the blends are expected to strongly depend on the composition, and the 

conclusions drawn in this work are valid only for these particular compositions.  

 It is noteworthy that the thin films of the spin-coated blends of 6 wt. % Ir(mppy)3 in 

CBP are surprisingly smoother, as their RMS surface roughness is ~50% lower than that 

of the CBP-only films. This intriguing result indicates that Ir(mppy)3 reduces the 

roughness of the CBP-based films and it warrants further investigation. Indeed, it is made 

all the more surprising in view of the observation that adding TPD and PBD into the 

blend increases the RMS surface roughness only slightly, from 0.47 nm to 0.56 nm.  

As mentioned, in our experiments, all devices have a spin-coated PEDOT:PSS hole-

injection layer, which precedes the spin-coated EML. The BPhen electron-transporting 

layer is thermally evaporated on the spin-coated EML. It is one of the most attractive 

electron-transporting materials, with µe ~ 2.8×10-4 cm2/Vs at room temperature and a 

high ET1 = 2.5 eV (Fig. 7-1(b)) [42,48]. Thus, the role of the BPhen layer is two-fold: 

First, it improves the electron injection and transport due to its high electron mobility, 

thus providing better charge balance in the devices. Second, its high ET1 and deep HOMO 

level (-6.4 eV) confine holes and excitons within the EML, resulting in high efficiencies 

[42].  
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 The spin-coated EML of Device A consists of CBP only. The EL spectrum, which 

peaked at ~409 nm, is apparently due to bulk emission from CBP. This spin-coated CBP 

device shows a peak brightness of ~200 Cd/m2 and a peak luminous efficiency of 0.23 

Cd/A, which corresponds to an external quantum efficiency of 0.73 %. These values are 

comparable to those of the thermally evaporated devices [49-50], demonstrating that 

spin-coated CBP-based OLEDs are viable and promising.   

 

Fig. 7-3. Comparison of device characteristics (a) EL spectra, (b) Brightness vs. voltage, 

(c) Current density vs. voltage, (d) Luminous efficiency vs. brightness, (e) Luminous 

power efficiency vs. brightness, (f) External Quantum Efficiency vs. brightness of Device 

B (square), Device C (circle) and Device D (triangle). 
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The normalized electroluminescence (EL) spectra of devices B, C and D, driven at 57 

mA/cm2, are shown in Fig. 7-3(a). As clearly seen, the spectra peak at ~510 nm, and their 

EL bands are nearly identical. Hence, the EL originates only from the Ir(mppy)3 molecule, 

indicating an essentially complete energy or charge transfer from the other components of 

the blend to the Ir(mppy)3. 

 Fig. 7-3 also shows the brightness and current density vs. voltage, and the luminous 

efficiency, luminous power efficiency and external quantum efficiency vs. brightness for 

Devices B, C and D. The spin-coated EML of Device B, made of CBP (0.94):Ir(mppy)3 

(0.06), shows a peak luminous efficiency of 26 Cd/A, a peak luminous power efficiency 

of 14 lm/W and a peak external quantum efficiency of 7.9 %. These results indicate that 

spin-coated Ir(mppy)3:CBP-based devices are comparable to the thermally evaporated 

ones [36,51].  

    As expected from Ref. 32 the performance of Device C, where the EML includes TPD 

and PBD, is much better than Device B. The turn-on voltage (i.e., the voltage at 1 Cd/m2) 

is 2.8 V for Device C, which is ~1.0 V lower than that of Device B, and the current 

density of Device C is larger throughout the whole bias range. This reduction of the turn-

on voltage and larger current density are clearly due to the increased hole conductivity of 

TPD and electron conductivity of PBD. In addition, TPD, with a HOMO level similar to 

Ir(mppy)3 (see Fig. 7-1) likely prevents saturation of the Ir(mppy)3 with trapped holes, 

and eliminates the buildup of the hole space charge. This behavior is consistent with 

previous studies on PVK:Ir(mppy)3 PLEDs [12,29-33]. As a result of the improved 

balance of the charge injection and transport due to TPD and PBD, the maximum 
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luminous efficiency, luminous power efficiency and external quantum efficiency reach 

69 Cd/A, 60 lm/W and 22 %, respectively. We note that with an outcoupling 

enhancement of 100% such as reported recently [52], the maximal luminous power 

efficiency of Device C would reach 120 lm/W, i.e., it would be one of the highest 

reported to date on any OLED.  

 The turn-on voltage of Device D is 3.5 V, or 0.7 V higher than that of Device C, and 

the current density is lower in comparison to Device C. This clearly demonstrates a 

reduced conductivity of Device D. The higher conductivity and higher efficiencies of 

Device C are probably due to the much higher hole mobility of CBP (µh ~ 10-3 cm2/Vs) 

than of PVK (µh ~ 10-9 cm2/Vs), but may also be related to the smoother surface of the 

CBP-based layer [53,54]. The corresponding efficiencies of Device D are shown in Fig. 

7-3. The peak luminous, luminous power, and external quantum efficiencies are 35 Cd/A, 

22 lm/W, and 12 %, respectively. The results therefore demonstrate that using CBP as the 

host material instead of PVK improves the quality of the spin-coated film, enhancing the 

overall device performance. 

 The high efficiency of Device C is likely due to the following factors:  

(i) The relatively high carrier mobility in CBP:Ir(mppy)3:TPD:PBD blends. 

Choulis et al. reported highly efficient spin-coated PVK:Ir(mppy)3:TPD:PBD-

based PLEDs [33]. However, the replacement of PVK by CBP probably improves 

the devices’ carrier mobility significantly, as the intrinsic mobility in the 

connecting PVK tissue is very low (~10-9 cm2/Vs).  
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(ii) The considerable amounts of the hole- transporting TPD and electron-

transporting PBD likely improve charge balance, as they probably do in the 

PVK:Ir(mppy)3:TPD:PBD-based PLEDs to yield the high efficiency of these 

latter devices. 

(iii) The addition of the BPhen layer blocks holes from reaching the cathode, and, 

importantly separates the recombination zone from the cathode region. This 

largely eliminates quenching of the excitons by the cathode.  

(iv) Given the AFM images shown in Fig. 7-2, the apparently smoother 

morphology of the CBP-based SMOLEDs likely results in higher carrier mobility 

and reduced quenching of excitons at defect sites.  

 Although efficient solution-processed SMOLEDs have drawn increasing attention 

recently, there are only a few reports on the operational lifetime of these devices [22, 26, 

55]. Lee et al. fabricated other spin-coated SMOLEDs with thermally evaporated Alq3 (or 

TPBI)/LiF/Al.[22] Their operational lifetimes L50, i.e., the time at which the brightness 

decreased to 50% of its initial value, were ~3 h at an initial brightness L0 = 600 Cd/m2. 

Ooe et al.[55] fabricated SMOLEDs with a solution- processed α-NPD:CBP:Ir(tpy)3 

active layer, on which they thermally evaporated a hole-blocking layer of bathocuproine 

(BCP), followed by LiF/Al. Their L50 was ~4.5 h at L0 = 1,000 Cd/m2. Preliminary 

stability measurements on the CBP-based Device C yielded L50 ~ 2.4 h at L0 = 810 Cd/m2. 

This is more than twice that of the PVK-based Device D, where L50 ~0.83 h at L0 = 1,000 

Cd/m2, and it is actually higher than the ~3 h at L0 = 600 Cd/m2 reported by Lee et al.[22], 

but somewhat lower than the ~4.5 h at L0 = 1,000 Cd/m2 reported by Ooe et al.[55]. We 

suspect that the higher 96°C glass-transition temperature Tg of α-NPD as compared to the 
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65°C of TPD, and the relatively low Tg of BPhen reduced L50. We also suspect that a 

lower film density caused by the presence of free volume between aggregates may also 

accelerate degradation. If that scenario is vindicated, optimizing several key parameters 

such as the use of materials with high Tg, spin coating speed and time, and the thermal 

treatment (temperature and time) should improve the stability. In addition, we note that 

the devices were encapsulated by lining the edges of the glass substrate with torr-seal 

epoxy and attaching a glass cover on the device. While such encapsulation is usually 

sufficient for brief measurements, it is believed that encapsulation by, e.g., the polymer 

multilayer technique would improve the protection of the device from water and enhance 

its stability [56,57]. A detailed study is in progress and will be reported later. 

Conclusions 

In conclusion, we described solution-processed CBP-based SMOLEDs and compared 

their performance to that of PVK-based PLEDs, demonstrating SMOLEDs with peak 

power efficiency higher than any solution-processed device and among the highest of any 

OLED reported to date. Uniform SMOLED EMLs of CBP:PBD:TPD:Ir(mppy)3 (in 

comparison to the PLED EMLs PVK:PBD:TPD:Ir(mppy)3) were obtained by spin-

coating. The improved performance of these spin-coated SMOLEDs is believed to be due 

to the higher conductivity of CBP and the smoother spin-coated SMOLED EML. 

Consequently, solution-processing of SMOLEDs is expected to be a new and growing 

route for fabricating multi-components OLEDs, such as WOLEDs, to reduce 

manufacturing costs, increase device size, and avoid the complexity of the vacuum co-

deposition process.   



140 

 

Acknowledgements 

Research supported by the U.S. Department of Energy, Basic Energy Sciences, 

Materials Sciences and Engineering Division under Contract No. DE-AC 02-07CH11358. 

Author contributions 

Teng Xiao fabricated the PVK-based spin-coated PLEDs, characterized them, and 

commented on the paper draft. Min Cai fabricated the CBP-based spin-coated SMOLEDs, 

characterized them, and prepared the paper. Emily Hellerich and Ying Chen provided 

useful discussions. 

References 

[1] C. W. Tang, S. A. Vanslyke, Appl. Phys. Lett. 51 (1987) 913.  

[2] C. W. Tang, S. A. Vanslyke, C. H. Chen, J. Appl. Phys. 65 (1989) 3610.  

[3] J. H. Burroughes, D. D. C. Bradely, A. R. Brown, R. N. Marks, K. Mackay, R. H. 

Friend, P. L. Burn, A. B. Holmes, Nature 347 (1990) 539.  

[4] M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. 

Forrest, Nature 395 (1998) 151.  

[5] V. Bulovic, P. E. Burrows, S. R. Forrest, Semicond. Semimet. 64 (2000) 255.  

[6] C. Adachi, M. A. Baldo, S. R. Forrest, M. E. Thompson, Appl. Phys. Lett. 77 (2000) 

904.  

[7] J. S. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, K. Leo, S. Y. Liu, Appl. Phys. Lett. 

80 (2002) 139.  

[8] S. R. Forrest, Nature 428 (2004) 911.  



141 

 

[9] B. W. D’Andrade, M. E. Thompson, S. R. Forrest, Adv. Mater. 14 (2002) 147.  

[10] M. C. Gather, A. Köhnen, K. Meerholz, Adv. Mater. 23 (2011) 2.  

[11] J. Huang, G. Li, E. Wu, Q. Xu, Y. Yang, Adv. Mater. 18 (2006) 114.  

[12] X. H. Yang, D. C. Muller, D. Neher, K. Meerholz, Adv. Mater. 18 (2006) 948.  

[13] X. H. Yang, D. Neher, D. Hertel, T. K. Daubler, Adv. Mater. 16 (2004) 161.  

[14] M. H. Jonathan, N. G. Pillow, D. W. Samuel, P. L. Burn, Adv. Mater. 11 (1999) 371.  

[15] J. Q. Ding, B. H. Zhang, J. H. Lu, Z. Y. Xie, L. X. Wang, X. B. Jing, F. S. Wang, 

Adv. Mater. 21 (2009) 1.  

[16] R. Pudzich, J. Salbeck, Synth. Met. 21 (2003) 138.  

[17] H. Fukagawa, K. Watanabe, S. Tokito, Org. Electron. 10 (2009) 798.  

[18] J. Qiao, L. D. Wang, J. F. Xie, G. T. Lei, G. S. Wu, Y. Qiu, Chem. Commun. 5 

(2005) 4560.  

[19] N. Rehmann, D. Hertel, K. Meerholz, H. Becker, S. Heun, Appl. Phys. Lett. 91 

(2007) 103507.  

[20] D. D. Wang, Z. X. Wu, X. W. Zhang, B. Jiao, S. X. Liang, D. W. Wang, R. L. He, X. 

Hou, Org. Electron. 11 (2010) 641.  

[21] L. D. Hou, L. Duan, J. Qiao, W. Li, D. Q Zhang, Y. Qiu, Appl. Phys. Lett. 92 (2008) 

263301.  



142 

 

[22] T-W. Lee, T.Y. Noh, H-W. Shin, O. Kwon, J-J. Park, B-K. Choi, M-S. Kim, D. W. 

Shin, Y-R. Kim, Adv. Funct. Mater. 19 (2009) 1625.  

[23] L. He, J. F. Liu, Z. X. Wu, D. D. Wang, S. X. Liang, X. W. Zhang, B. Jiao, D. W. 

Wang, X. Hou, Thin Solid Films 518 (2010) 3866.  

[24] C.-G. Zhen, Z.-K. Chen, Q.-D. Liu, Y.-F. Dai, R. Y. C. Shin, S.-Y. Chang, J. Kieffer, 

Adv. Mater. 21 (2009) 2425.  

[25] Y. Byun, Y.-Y. Lyu, R. R. Das, O. Kwon, T.-W. Lee, Y. J. Park, Appl. Phys. Lett. 

91 (2007) 211106.  

[26] L. Duan, L. Hou, T.-W. Lee, J. Qiao, D. Zhang, G. Dong, L. Wang, Y. Qiu, J. Mater. 

Chem. 20 (2010) 6392.  

[27] H. H. Liao, H. F. Meng, S. F. Homg, W. S. Lee, J. M. Yang, C. C. Liu, J. T. Shy, F. 

C. Chen, C. S. Hsu, Phys. Rev. B 74 (2005) 245211.  

[28] C. Adachi, R. C. Kwong, P. Djurovich, V. Adamovich, M. A. Baldo, M. E. 

Thompson, S. R. Forrest, Appl. Phys. Lett. 79 (2001) 2802.  

[29] S. Lamansky, P. I. Djurovich, F. Abel-Razzaq, S. Garon, D. L. Murphy, M. E. 

Thompson, J. Appl. Phys. 92 (2002) 1570.  

[30] K. M. Vaeth, C. W. Tang, J. Appl. Phys. 92 (2002) 3447.  

[31] X. Gong, M. R. Robinson, J. C. Ostrowski, D. Moses, G. C. Bazan, A. J. Heeger, 

Adv. Mater. 14 (2002) 581.  



143 

 

[32] X. H. Yang, D. Neher, Appl. Phys. Lett. 84 (2004) 2476.  

[33] S. A. Choulis, V. E. Choong, M. K. Mathai, F. So, Appl. Phys. Lett. 87 (2005) 

113503. 

[34] Y. Kawabe, J. Abe, Appl. Phys. Lett. 81 (2002) 493. 

[35] A. Kuwahara, S. Naka, H. Okada, H. Onnagawa, Appl. Phys. Lett. 89 (2006) 132106. 

[36] M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, S. R. Forrest, Appl. 

Phys. Lett. 75 (1999) 4. 

[37] G. F. He, M. Pfeiffer, K. Leo, M. Hofmann, J. Birnstock, R. Pudzich, J. Salbeck, 

Appl. Phys. Lett. 85 (2004) 3911.  

[38] R. J. Holmes, S. R. Forrest, Y. J. Tung, R. C. Kwong, J. J. Brown,S. Garon, M. E. 

Thompson, Appl. Phys. Lett. 82 (2003) 2422.  

[39] A. Tsuboyama, H. Iwawaki, M. Furugori, T. Mukaide, J. Kamatani, S. Igawa, T. 

Moriyama, S. Miura, T. Takiguchi, S. Okada, M. Hoshino, K. Ueno, J. Am. Chem. Soc. 

125 (2003) 12971.  

[40] M. Y. Chan, C. S. Lee, S. L. Lai, M. K. Fung, F. L. Wong, H. Y. Sun, K. M. Lau, S. 

T. Lee, J. Appl. Phys. 100 (2006) 094506.  

[41] F-C. Chen, S-C Chang, G. F. He, S. M. Pyo, Y. Yang, M. Kurotaki, J. Kido, J. 

Polym. Sci. Pol. Phys. 41 (2003) 2681.  

[42] J. Lee, N. Chopra, S. H. Eom, Y. Zheng, J. Xue, F. So, J. Shi, Appl. Phys. Lett. 93 

(2008) 123306.  



144 

 

[43] M. Suzuki, S. Tokito, F. Sato, T. Igarashi, K. Kondo, T. Koyama, T. Yamaguchi, 

Appl. Phys. Lett. 86 (2005) 103507.  

[44] Y.-Y. Noh, C.-L. Lee, J.-J. Kim, K. Yase, J. Chem. Phys. 118 (2003) 2853. 

[45] Z. T. Liu, C. Y. Kwong, C. H. Cheung, A. B. Djurisic, Y. Chan, P. C. Chui, Synth. 

Met. 150 (2005) 159.  

[46] H. Razafitrimo, Y. Gao, W.A. Feld, B.R. Hsieh, Synth. Met. 79 (1996) 103.  

[47] C. Liu, X. C. Zou, S. Yin, W. X. Zhang, Thin Solid Films 466 (2004) 279.  

[48] M. A. Khan, W. Xu, K. -u. Haq, Y. Bai, Y. Jiang, Z. L. Zhang, W. Q. Zhu, Z. L. 

Zhang, W. Q. Zhu, J. Appl. Phys. 103 (2008) 014509.  

[49] L. Zou, V. Savvate’ev, J. Booher, C.-H. Kim, J. Shinar, Appl. Phys. Lett. 79 (2001) 

2282.  

[50] J. Shinar, R. Shinar, Z. Zhou, Appl. Surf. Sci. 254 (2007) 749.  

[51] D. D. Song, S. L. Zhao, Y. C. Luo, H. Aziz, Appl. Phys. Lett. 97 (2010) 243304.  

[52] J.-M. Park, Z. Q. Gan, W. Y. Leung, R. Liu, Z. Ye, K. Constant, J. Shinar, R. Shinar, 

K. M. Ho, Opt. Exp. 19 (2011) A786.  

[53] S. M. Liu, B. Li, L. M. Zhang, H. Song, H. Jiang, Appl. Phys. Lett. 97 (2010) 

083304.  

[54] P. D’Angelo, M. Barra, A. Cassinese, M. G. Maglione, P. Vacca, C. Minarini, A. 

Rubino, Solid State Electron. 51 (2007) 123.  



145 

 

[55] M. Ooe, S. Naka, H. Okada, H. Onnagawa, Jpn. J. Appl. Phys. 45 (2006) 250.  

[56] P. E. Burrows, G. L. Graff, M. E. Gross, P. M. Martin, M. Hall, E. Mast, C. Bonham, 

W. Bennett, L. Michalski, M. Weaver, J. J. Brown, D. Fogarty, L. S. Sapochak, in 

Organic Light-Emitting Materials and Devices IV, (edited by Z. H. Kafafi), SPIE Conf. 

Proc. 4105 (2000) 75.  

[57] L. Moro, T. A. Krajewski, N. M. Rutherford, O. Philips,R. J. Visser, M. Gross, W. D. 

Bennett, G. Graff, in Organic Light Emitting Materials and Devices VII, (edited by Z. H. 

Kafafi, P. A. Lane), SPIE Conf. Proc. 5214 (2004) 83.  

[58] Z. Q. Zhou, R. Shinar, A. J. Allison, J. Shinar, Adv. Func. Mater. 17 (2007) 3530.  

 

 

 

 

 

 

 

 

 

 

 

 

 



146 

 

Chapter 9. Summary 

   A brief introduction to OSCs and OLEDs was provided in Chapters 1 and 2. Chapters 3 

to 5 presented approaches to enhance the performance of solar cells and chapters 6 and 7 

discuss performance attributes of OLEDs. In Chapter 3, various treatments of the 

PEDOT:PSS layer in ITO/PEDOT:PSS/ P3HT:PCBM/Ca/Al solar cells were described. 

These treatments resulted in improved overall device performance. In particular, the use 

of a PEDOT:PSS film with spin-coated EG on it post-fabrication resulted in an increase 

of ~27% in the PCE (from 3.7% for the untreated cells to 4.7% for the treated ones). 

Based on the results, it appears that the improved devices result mostly from an increased 

surface roughness of the P3HT:PCBM associated with the treatment and consequent 

graininess of the PEDOT:PSS layers. The increased roughness generates a better contact 

with the metal electrode, which, possibly, together with the observed PCBM aggregates 

near the cathode, improves charge extraction. The improved PEDOT:PSS transmission 

and PEDOT:PSS/P3HT:PCBM absorption, together with the improved PEDOT:PSS 

conductivity in some of the cases, improved the ISC and the overall cell performance. This 

improvement is possibly also due to improved light scattering by the rougher surfaces 

that results in enhanced absorption in the active layer. The results do not indicate that a 

change in the thickness of the PEDOT:PSS films is a major contributor to the observed 

improvements, as optimized spin-coating conditions were employed in each case 

(untreated and treated PEDOT:PSS) and the optimized thicknesses of the different layers 

were comparable. Similarly, changes in the PEDOT:PSS conductivity did not correlate 
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with the improved performance. The simple routes that led to the significantly increased 

PCE are expected to be applicable to other organic-based solar cells. 

In Chapter 4, the effects of thin interlayers in small-molecule-based OSCs were 

discussed. A 1 nm layer of LiF on the ITO anode in CuPc/C70-based OSCs enhances JSC 

and PCE by up to ~17% following air-plasma treatment of the LiF. This behavior is due 

mainly to improved hole extraction. A similar behavior, with a 6 – 7% enhancement, was 

observed for plasma-treated thin NaF and CsF. These observations may be related to 

improved energetics and hence a nearly Ohmic contact. Formation of alkali-O bonds, 

based on XPS analyses, is also believed to contribute to the enhanced hole extraction. 

The best enhancement was observed for a 1 nm LiF layer air-plasma treated for 20 min. 

UV-ozone treatment of such layers had a smaller effect. The light absorption and the 

EQE of the devices with treated alkali fluoride layers further support hole extraction from 

CuPc to the anode as one mechanism responsible for the observed enhanced performance. 

Light absorption increased for structures with LiF and was largely unchanged with NaF 

or CsF. The results consequently demonstrate the viability of air-plasma treated thin 

fluoride layers, and in particular LiF, as interfacial layers between the ITO anode and the 

donor layer in small molecule CuPc/C70-based OSCs. 

    In Chapter 5, a novel tandem cell arrangement, comprising a thin amorphous 

(Si,C):H-based inorganic top cell and an organic bottom cell, was presented. This tandem 

structure results in an improved PCE of 5.6% in an unoptimized series design, which is a 

~22% increase relative to that of the OSC alone. The VOC of the tandem junction cell, 

~1.5 V, is the sum of the values of the separate cells, as expected. Optimization of such 

tandem cells, deposited on a transparent, insulating substrate, can lead to significantly 
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higher efficiencies. One can optimize the structures by manipulating the thickness of the 

cell and changing the C content so that the bandgap varies and the absorption in a-

(Si,C):H precisely complements that of the organic cell. The new device materials and 

architecture allow for either series connection or electrically independent tandem 

arrangements, thereby eliminating the current matching problem, and importantly, also 

reducing the degradation of the organic unit by filtering the high-energy photons.  

    In Chapter 6, the properties of ITO / PEDOT:PSS / PVK:TPD:Ir(mppy)3:PBD / x nm 

Bphen / y nm Bphen:LiF / LiF / Al hybrid polymer/small molecular OLEDs were 

described. The devices with the LiF dopant exhibited the highest power efficiency, up to 

31 lm/W, and the longest t1/2 of 800 min at L0 = 100 Cd/m2. The ELDMR results, which 

showed that the negative spin 1/2 resonance amplitude increases with bias and 

degradation, suggest the presence of a high density of defect sites promoting trion 

formation, which may be related to the short lifetimes of the devices. 

In Chapter 7, solution-processed CBP-based SMOLEDs were described and their 

performance was compared to that of PVK-based PLEDs, demonstrating SMOLEDs with 

peak power efficiency higher than any solution-processed devices and among the highest 

of any OLED reported to date. PLED EMLs PVK:PBD:TPD:Ir(mppy)3) were obtained 

by spin-coating. The improved performance of these spin-coated SMOLEDs is believed 

to be due to the higher conductivity of CBP and the smoother spin-coated SMOLED 

EML. Consequently, solution-processing of SMOLEDs is expected to be a new and 

growing route for fabricating multi-components OLEDs, such as WOLEDs, to reduce 
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manufacturing costs, increase device size, and avoid the complexity of the vacuum co-

deposition process.   

Future developments will continue to focus on fabricating low-cost highly-efficient 

OSCs and on their durability, and on developing highly efficient solution processed blue-

to-red OLEDs, either polymer or small molecule, with long operational stability.  
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