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ABSTRACT

Unconventional superconductivity and antiferromagnetism are often found in close prox-

imity to one another. For the series of compounds Ba(Fe1–𝑥Co𝑥)2As2, which possesses both

antiferromagnetism and superconductivity for the under-doped range of composition, this

observation is certainly true. The close proximity, and in fact coexistence for under-doped

Ba(Fe1–𝑥Co𝑥)2As2, of antiferromagnetism and superconductivity has encouraged speculation

that antiferromagnetic spin fluctuations may mediate the electron pairing interaction in

unconventional superconductors. Previous studies indicated that the spin fluctuations at

optimally-doped Ba(Fe1–𝑥Co𝑥)2As2 are diffusive, while those at BaFe2As2 are well defined

spin wave excitations. Therefore, the nature of magnetic excitations in Ba(Fe1–𝑥Co𝑥)2As2

must change with the introduction of cobalt; but it is unclear if that change is merely a

consequence of the loss of antiferromagnetic order, or a necessary ingredient for the appear-

ance of superconductivity. To resolve this uncertainty, this work has been undertaken to

study the spin fluctuations of five Ba(Fe1–𝑥Co𝑥)2As2 compositions varying in cobalt concen-

tration from lightly-doped to nearly optimally-doped as well as representative samples of

other, non-superconducting, transition metal substituted BaFe2As2 compounds. The spin

fluctuations of these samples, in their antiferromagnetically ordered and (where possible)

superconducting states have been studied via triple-axis and time-of-flight inelastic neutron

scattering, and definitively determine the importance of spin fluctuations for superconductivity

in Ba(Fe1–𝑥Co𝑥)2As2.
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CHAPTER 1 OVERVIEW

Superconductors can conduct electricity without resistive loss and, consequently, have

potential technological applications. Superconductivity was first discovered in 1911 in mercury,

which is a type-I superconductor. All type-I superconductors have limited technological

utility because their superconducting state is not robust against magnetic fields or large

electrical current flows. In contrast, there are materials which remain superconducting in

the presence of moderate-to-strong magnetic fields and moderate-to-large electrical currents,

called type-II superconductors.

The first widely-accepted theory describing superconductivity was published in 1957,

forty-six years after the discovery of superconductivity. This so-called BCS theory showed

how an arbitrarily weak attractive potential can provide a pairing mechanism between

otherwise-repulsive electrons, at sufficiently low temperature. The paired electrons can

participate in Bose-Einstein condensation after which they become insensitive to small

perturbations and, as a result, flow without resistance. The BCS theory was conceived with

the electron-phonon interaction in mind and materials which have properties predicted by

the electron-phonon BCS theory are called conventional superconductors.

There exist materials which have superconducting properties that are not described by the

electron-phonon BCS theory, these are the unconventional superconductors. Unconventional

superconductivity is often found in close proximity to a different ground state, e.g., magnetic

order. The close proximity to such an ordered ground state has led to speculation about the

role of fluctuations in that order for unconventional superconductivity.

The discovery of the cuprate unconventional superconductors was first reported in 1986,

and in less than one year it was reported that some cuprates remain superconducting at
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temperatures at (and above) the boiling point of nitrogen. The cuprates superconductors

are ceramics and in close proximity to a Mott insulating ground state. Due to the ready

availability of nitrogen in our atmosphere and it’s relatively-easy liquefaction, the cuprate

superconductors are technologically relevant despite difficulties related to manufacturing

wires from ceramics. This utility, however, has not precipitated a widely-accepted theory of

the superconductivity in the cuprates or other unconventional superconductors.

In 2008, high-temperature superconductivity was reported in an iron pnictide compound,

sparking world wide interest in this new class of unconventional superconductors. The iron

pnictide superconductors are in close proximity to an antiferromagnetically ordered ground

state, and it is widely hoped that careful studies of fluctuations of the antiferromagnetic state

will yield useful information about superconductivity in the iron pnictides. And, perhaps,

give rise to a predictive theory for unconventional superconductivity.

This work aims to determine the importance of spin fluctuations for superconductiv-

ity in the iron pnictide superconductors. Because of its magnetic moment and typical

energy, the thermal neutron is uniquely suitable for the study of antiferromagnetic spin

fluctuations. Inelastic neutron scattering experiments have been performed on a series of

unconventional superconductor samples and closely-related non-superconductor samples,

collectively Ba(Fe1–𝑥𝑇𝑀𝑥)2As2 [𝑇𝑀= transition metal; 𝑥 = (0,1), the substitution fraction of

the transition metal for iron], in order to study the relationship between spin fluctuations

and superconductivity.

In this dissertation, chapter 2 provides a more-extensive introduction to superconductivity,

the iron-pnictide superconductors, and the main focus of this work, Ba(Fe1–𝑥Co𝑥)2As2.

A general introduction to scattering techniques and an in-depth discussion of inelastic

neutron scattering is given in chapter 3. The tools developed-for and used-in this study are

detailed in chapter 4. Chapter 5 presents inelastic neutron scattering data and results from

applying my analysis techniques and models to the Ba(Fe1–𝑥Co𝑥)2As2 series and individual
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Ba(Fe1–𝑥𝑇𝑀𝑥)2As2 compounds, namely that strong damping of spin fluctuations and large

low-energy spectral weight are requisite for iron pnictide superconductivity. Finally, chapter 6

summarizes what spin fluctuations tell us about superconductivity in the iron pnictide

unconventional superconductors.
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CHAPTER 2 INTRODUCTION

2.1 Superconductivity

Superconductivity is a state of zero electrical resistivity and, consequently, infinite conduc-

tivity. This allows for the presence of persistent currents in superconducting materials. If a

magnetic field is applied to a superconductor, an opposing persistent current will be induced

which may perfectly cancel the applied field such that no field penetrates the superconducting

material; this is the Meissner effect and as a result some superconductors are perfectly

diamagnetic. Since superconducting materials conduct electricity without loss they have

potential applications anywhere resistive losses are detrimental, such as energy transmission

or the production of static magnetic fields.

An immeasurably small resistance at near-zero temperature was first reported for mercury

by Kamerlingh Onnes in 1911 [1] who first postulated that this small resistance was consistent

with his theory of resistance in pure metals; namely that the immeasurable small value was

part of a linear temperature dependence of the resistance and was therefore finite at finite

temperature but too small to be measured with the initial setup [2]. Shortly thereafter, higher

sensitivity measurements continued to indicate zero resistance and Kamerlingh Onnes made

the observation of a sharp increase in resistance at (slightly higher) finite temperature, as

shown in figure 2.1, thus providing the first clear measure of the superconducting transition

[3].

Following the discovery of superconductivity in mercury, a large number of other elements

and alloys were discovered to be superconductors at low temperature [4]. The vast majority

of the elemental superconductors exhibit perfect diamagnetism; this perfect Meissner effect
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Figure 2.1. The low temperature resistance of mercury measured on warming and
reproduced from Reference [3]. At low temperatures the immeasurably small resistance is
due to mercury being a superconductor with zero resistivity. The sharp increase in resistance
at finite temperature, in this case near 4.2 K, is a hallmark of superconductivity and is the
critical superconducting temperature 𝑇c. The unlabeled axes are temperature in Kelvin
(abscissa) and resistance in Ohms (ordinate).
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can only be maintained if the applied magnetic field energy is smaller than the energy

obtained during the transition to the superconducting phase (which is typically small) and

therefore weak magnetic fields are sufficient to destroy superconductivity in most elemental

superconductors [5]. In contrast, some superconductors are not perfectly diamagnetic and

instead allow a coexistence of normal and superconducting states. As has been shown by

Abrikosov, this coexistence occurs when a magnetic field penetrates in the form of flux lines

(which are normal at their core) without destroying the continuous superconducting currents

[6]. Superconductors which are perfectly diamagnetic throughout their bulk, below a critical

magnetic field, are called Type-I superconductors. Those that are perfectly diamagnetic

below a lower critical field and allow the penetration of magnetic fields between a lower

and upper critical field are denoted as Type-II. It is possible for a Type-I superconducting

material to have macroscopically phase-separated superconductivity and normal behavior at

the same time, dependent upon the geometric demagnetization factor; this phase-separated

state is called the intermediate state [7]. Type-II superconductors can typically tolerate much

larger magnetic fields than Type-I superconductors and accordingly are more suitable for the

production of higher magnetic fields [5].

Despite this breadth of experimentally accessible superconductors, no viable theory of

superconductivity existed until forty-six years after the discovery of the phenomenon.

2.1.1 Conventional superconductors

In 1950 Fröhlich put forward a theory in which the interaction between the electron and

crystal lattice, the electron-phonon interaction, was responsible for superconductivity [8]

and subsequently showed that his theory was consistent with experimental evidence that

the superconducting transition temperature of an element was inversely proportional to

the square root of the isotopic mass [9]. Prompted by the same experimental observations

Bardeen independently – and nearly simultaneously – proposed another theory which could
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explain the so-called isotope effect [10]. Ultimately these theories were proven inadequate,

but they led the way to further, more successful, theories of superconductivity [11, 12]. This

line of inquiry culminated in the BCS theory of superconductivity, described by J. Bardeen,

L. N. Cooper, and J. R. Schrieffer [13, 14].

The BCS theory describes how electrons, through a weak attractive interaction, can form

into pairs – so called Cooper-pairs. Specifically, the weak attractive interaction in the BCS

theory is provided by lattice vibrations (phonons). Scattering processes between electrons and

the crystal lattice, comprised of positively charged nuclei, deform the lattice and its positive

charge distribution. Because of the large mass difference between nuclei and electrons this

induced positive charge takes significantly longer to dissipate than the time the electron stays

in the vicinity. This allows for the attraction of a second electron by the induced positive

charge which is ultimately a lattice-mediated attraction between electrons.

These Cooper-pairs are comprised of two spin one-half electrons, which each fermions,

with their spins anti-parallel (or, perhaps, parallel) and, ergo, have integer spin. Consequently

Cooper-pairs do not follow fermionic statistics but instead behave as bosons. This bosonic

nature allows the Cooper-pairs to form a Bose-Einstein-condensate whereby all Cooper-pairs

can occupy the same highly-degenerate ground state [15]; it is important to note that, since

some fraction of the Cooper-pairs will be broken at any finite temperature below 𝑇c and

since there are no Cooper-pairs above 𝑇c, the total number of bosons is not conserved and

the Cooper-pair quasiparticles are not a pure Bose-Einstein-condensate. Furthermore, there

is no excited state above the Bose-Einstein-condensate ground state within an energy gap of

magnitude 𝛥 ∈ 𝒪(𝑘B𝑇c). As a result of this energy gap, the Cooper-pairs are insensitive to

small perturbations and can not be scattered by small lattice defects or impurities. Without a

means by which to dissipate energy the Cooper-pairs flow without resistance and the material

containing them is, by definition, a superconductor.
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The BCS theory, although conceived with the electron-phonon interaction in mind, is not

limited to a specific attractive potential. For the electron-phonon interaction, the BCS theory

is able to correctly predict, among many other properties, the superconducting transition

temperature (𝑇c) from the strength of the electron-phonon interaction, the electronic density

of states at the Fermi surface, and the characteristic phonon energy. In simple cases of

mono-atomic materials BCS theory also correctly reproduces the dependence of 𝑇c on the

isotopic mass, namely that

𝑇c ∝ 1√
𝑀

. (2.1)

There are large number of superconductors for which the BCS theory with an electron-

phonon interaction is a correct description of their physical properties, which are collectively

called conventional superconductors.

2.1.2 Unconventional superconductors

In recent decades, the search for better superconductors has led to a number of empirical

rules, most famously those proposed by Bernd T. Matthias:

1. a high symmetry is good, with cubic being the best, 2. a high density of

electronic states is good, 3. stay away from oxygen, 4. stay away from magnetism,

5. stay away from insulators, 6. stay away from theorists;

all of which have been disproved to some degree [16]. A more recent set of empirical rules for

what is beneficial for superconductivity:

1. reduced dimensionality, 2. transition metal and other ions with effectively-large

Coulomb repulsion, 3. light atoms, 4. charged and multivalent ions, 5. low dielectric

constant;

are not entirely self-consistent by design in order to create materials with competing phases,

from which superconductivity might emerge [17]. These rules point to normal state behavior
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with which previous theories are inconsistent, and significant improvements are required

for the previous theories to become consistent with this novel behavior [5]. Many new

superconductors tend to have complex phase diagrams as a function of chemical composition,

the application of external pressure, or the application of an external magnetic field [5, 18].

The physical properties of these superconductors can not be adequately described by the

electron-phonon BCS theory and they have been deemed unconventional superconductors. A

number of families of unconventional superconductors are known to exist including: the heavy

fermion superconductors [19], the cuprate superconductors [20], and organic superconductors

[21, 22].

Competing ground states appear to precipitate the presence of superconductivity. In many

cases fluctuating degrees of freedom are involved in the vicinity of magnetic or structural phase

transitions and are responsible for the destruction of the order across the phase boundary [5].

Therefore, many theories ascribe the emergence of superconductivity to such fluctuations

– as has been theorized for the systems mentioned above [23–26]. Given the fact that the

classic characteristics of superconductors (e.g., the Meissner effect) occur independently of

the microscopic mechanism, the analysis of phase diagrams with competing ordered states

(see, e.g., figures 2.2 and 2.3) and a detailed study of the normal (non-superconducting) state

provide important clues concerning the quantum mechanical origin of the Cooper pairing [5].

2.2 Iron-Based Superconductors

Iron was, at one point, deemed deleterious to all superconductivity due to its strong

magnetic moment [29]. In the case of conventional superconductivity, this remains true as the

presence of magnetic impurities in superconductors decreases their superconducting transition

temperatures through spin-flip scattering which breaks Cooper pairs [30]. In some cases,

such as the Chevrel compounds 𝑅Mo6Se8 or boron carbides 𝑅Ni2B2C (𝑅=rare earth metal)

magnetism and superconductivity coexist, though they do so without impacting each other
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Figure 2.2. A phase diagram reproduced from Reference [27] showing the temperature-
pressure dependence of the superconducting and antiferromagnetic phases in the heavy fermion
compound CeRhIn5. Here the application of pressure suppresses the antiferromagnetic order
and eventually produces a superconducting state at low temperature.
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Figure 2.3. A phase diagram reproduced from Reference [28] showing the temperature-
composition dependence of the superconducting and antiferromagnetic phases in two cuprate
compounds. For 𝑅2–𝑥Ce𝑥CuO4 (𝑅 = rare earth), the horizontal axis represents the cerium
concentration as 𝑥 where replacing rare earth atoms by cerium atoms adds extra electrons
to the compound, which is referred to as electron doping. For La2–𝑥Sr𝑥CuO4 the horizontal
axis is reversed and represents the strontium concentration as 𝑥 where replacing lanthanum
atoms by strontium atoms removes electrons from the compound, which is referred to as hole
doping. In either case, electron or hole doping suppresses the antiferromagnetic order and
eventually produces a superconducting state at low temperature.
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significantly. For example, the localized 4𝑓 shell electrons of the rare earth are responsible

for magnetic order while conduction electrons are responsible for the formation of Cooper

pairs [5]. It is also possible that, so long as the coherence length of a superconducting state is

large in comparison to the size of a magnetic unit cell, that the presence of antiferromagnetic

order may not be as deleterious to the superconductivity as a ferromagnetic state built from

the same magnetic moments; since the average magnetization of an antiferromagnet is zero

over length scales greater than the magnetic unit cell.

A number of compounds containing nonmagnetic iron have been discovered; first U6Fe by

Chandrasekhar and Hulm in 1958 with 𝑇c = 3.86 K [31], followed by Th7Fe3 by Matthias et al.

in 1961 with 𝑇c = 1.86 K [32], Lu2Fe3Si5 by Braun in 1980 with 𝑇c = 6.1 K [33], LaFe4P12

by Meisner in 1981 with 𝑇c = 4.08 K [34], and 𝛽″ (bedt ttf)4[(H2O)Fe(C2O4)3]·PhCN by

Graham et al. in 1995 with 𝑇c = 8.5 K [35].

Meisner’s discovery of LaFe4P12 marked the first superconducting compound containing

both iron and a pnictogen (an element from the column of the periodic table containing

nitrogen and phosphorous). Continuing on along the same vein, Shirotani et al. reported in

2003 that replacing the lanthanum with yttrium forms YFe4P12 with 𝑇c = 7 K [36]. In 2006

Kamihara et al. [37] reported the discovery of superconductivity in LaFePO at 𝑇c = 3 K and

that, by substituting fluorine for oxygen in LaFePO1–𝑥F𝑥, the superconducting transition

temperature could be increased to 5 K. After a subsequent report in 2008 by Kamihara

et al. [38] that replacing phosphorous with arsenic further increases the superconducting

transition temperature to 𝑇c = 26 K in LaFeAsO1–𝑥F𝑥, interest in these and related iron-based

superconductors skyrocketed worldwide.

2.2.1 Iron pnictides

While the skutterudite iron-based superconductors 𝑅Fe4P12 (𝑅= yttrium, lanthanum)

have a three dimensional iron structure of Fe-P octahedra, the iron in LaFe𝑃𝑛O1–𝑥F𝑥 (𝑃𝑛=
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phosphorus, arsenic) forms a layered structure comprised of Fe-𝑃𝑛 tetrahedra [37]. This same

layered Fe-𝑃𝑛 tetrahedral structure is common to other subsequently discovered iron-based

superconductors and is the source of the class name iron pnictide – used to identify all

compounds containing these common Fe-𝑃𝑛 tetrahedra layers. This layered transition-metal

structure is somewhat reminiscent of the extensively studied cuprate superconductors, which

contain Cu-O layers, and the similarity between the cuprate and iron pnictide superconductors

is at least partially responsible for the rapid increase in research of iron-based superconductors

after 2008 [39].

In very quick order it was reported by Takahashi et al. [40] that by applying pressure to

LaFeAsO1–𝑥F𝑥 the superconducting transition temperature could be increased to 𝑇c = 43 K.

Furthermore, by replacing the nonmagnetic rare earth lanthanum by one or more magnetic

rare earths the superconducting transition temperature can be pushed as high as 𝑇c = 56.3

K [41–44]. In contrast to the nonmagnetic rare earth varieties the application of pressure to

these higher-𝑇c variants suppresses the superconducting transition to lower temperatures [45].

Early on, an intense search of the periodic table for other compounds containing layers

of Fe-𝑃𝑛 tetrahedra was started; which led to the discovery of additional classes of iron

pnictides. Among those are the 122 compounds, ÆFe2𝑃𝑛2 and 𝑅Fe2𝑃𝑛2 (Æ=alkaline earth

metal, 𝑃𝑛=pnictogen, 𝑅=rare earth metal) [46–48]; and the 111 compounds, 𝐴Fe𝑃𝑛 (𝐴=alkali

metal, 𝑃𝑛=pnictogen) [49–51]. The discovery of these other iron pnictide classes prompted

the naming of 𝑅FeAsO compounds as the 1111 class. Further exploratory efforts through

the periodic table led to the discovery of the iron chalcogenide superconductors, such as

FeSe which exhibits superconductivity below 𝑇c = 8 K [52]. The iron chalcogenides are

similar to the iron pnictides in that they contain a layered Fe-𝐶ℎ(𝐶ℎ=chalcogenide) structure

reminiscent of the Fe-𝑃𝑛 layered structure of the iron pnictides. FeSe is a member of the 11

family of iron chalcogenide superconductors.
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2.2.2 BaFe2As2

Despite the fact that the 1111 compounds were discovered first, the majority of research

effort has been invested in the 11 and 122 compounds due to the availability of large single

crystal samples. Within the 122 compounds one particular parent compound, BaFe2As2,

has held a great deal of interest. One explanation for this interest is that BaFe2As2 can

exhibit superconductivity via a variety of methods: the application of pressure produces a

superconducting state with characteristic temperature as high as 𝑇c = 30 K [53]; substitution

of potassium for barium produces maximal 𝑇c = 38 K for Ba0.6K0.4Fe2As2 [54]; substitution

of phosphorus for arsenic produces maximal 𝑇c = 30 K for BaFe2(As0.68P0.32)2 [55]; and,

perhaps somewhat surprisingly given e.g., the sensitivity of unconventional superconductivity

to disorder in the copper-oxygen planes of the cuprates, a long list of different transition

metal elements can be substituted for iron to produce a superconductor, specifically any one

of (cobalt, nickel, ruthenium, rhodium, palladium, iridium, platinum).

At ambient temperature BaFe2As2 is paramagnetic and has the body-centered-tetragonal

𝐼4/𝑚𝑚𝑚 crystallographic structure characteristic of ThCr2Si2, shown in figure 2.4, with

lattice constants 𝑎 = 3.9621(8) Å and 𝑐 = 13.018(2) Å [56]. Upon cooling BaFe2As2

undergoes an orthorhombic structural transition to 𝐹𝑚𝑚𝑚 at 𝑇S = 134.5 K followed by the

appearance of long range antiferromagnetic order at 𝑇N = 133.75 K [57]. Figure 2.5 shows

the low temperature 𝐹𝑚𝑚𝑚 unit cell and antiferromagnetic order of BaFe2As2. The

antiferromagnetic (AFM) order is characterized by antiferromagnetic correlations between

neighboring iron atoms along the orthorhombic 𝒂 direction, ferromagnetic correlations along

the orthorhombic 𝒃 direction, and antiferromagnetic correlations along the 𝒄 direction. This

antiferromagnetic order is often referred to as stripe antiferromagnetism and has the magnetic

propagation vector 𝝉 = (1
2

1
2 1)

T
= (1 0 1)O where the subscript T indicates that the tetragonal

unit cell indices are used or the subscript O indicates that the orthorhombic cell is used.
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Figure 2.4. The room temperature crystallographic structure of BaFe2As2, with space
group 𝐼4/𝑚𝑚𝑚.
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Figure 2.5. The low temperature crystallographic structure of BaFe2As2, with space
group 𝐹𝑚𝑚𝑚. The directions of the stripe antiferromagnetically ordered iron moments are
also shown as black arrows overlaid on the iron atoms.
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Due to the availability of a wide range of routes to achieve superconductivity in the iron

pnictides it would be impossible to produce a fully-comprehensive in-depth study of the

properties of iron pnictide superconductors and, consequently, some focus is required. In this

work, focus has been placed on cobalt substitution for iron in BaFe2As2 since: (i) cobalt

is an easy analog for other transition metal dopants in BaFe2As2; (ii) transition metal

substitution-induced superconductivity is, perhaps, similar to pressure-induced, alkaline

earth metal substitution-induced, and pnictogen substitution-induced superconductivity in

BaFe2As2; (iii) superconductivity in BaFe2As2-based compounds is characteristic of all 122

compounds; and (iv) the 122 compounds are likely a good representative of the iron pnictides

as a whole. As such, all further discussion will be limited to Ba(Fe1–𝑥Co𝑥)2As2.

2.3 Ba(Fe1–𝑥Co𝑥)2As2

Following initial interest in 1111 compounds, superconductivity was discovered in the

122 compounds in potassium-substituted BaFe2As2 [54]. Due to high reactivity and rapid

oxidation at ambient conditions, the substitution of an alkali metal for an alkaline earth

metal can be troublesome and, as a result, other means of inducing superconductivity in

BaFe2As2 were explored, including substituting cobalt for iron to produce Ba(Fe1–𝑥Co𝑥)2As2

[58].

2.3.1 Superconductivity

As shown in figure 2.6, the resistivity of BaFe2As2 remains finite down to 𝑇min = 2 K and

due to the relatively large value of its residual resistivity ratio (the ratio of zero-temperature

resistivity to room-temperature resistivity) BaFe2As2 is often referred to as a poor metal.

By introducing small amounts of cobalt for iron the residual resistivity ratio, which can be

approximated by extrapolating the data in the inset of figure 2.6 to 𝑇 = 0, increases as one

would expect for a random distribution of dopant atoms due to impurity scattering [59, p. 321].
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Figure 2.6. Room-temperature-normalized resistivity for various 𝑥 in Ba(Fe1–𝑥Co𝑥)2As2,
reproduced from Reference [60]. For low cobalt concentrations the resistivity decreases
with decreasing temperature and shows one or two changes in slope, indicative of a phase
transition, yet remains finite at the lowest measured temperature of 𝑇 ∼ 2 K. Above a
critical concentration 𝑥c ∼ 0.038 the low-temperature resistivity drops to zero upon entering
a superconducting state. Further increasing the cobalt concentration beyond 𝑥 ∼ 0.058
removes any evidence of the higher-temperature phase transition(s).

Further increasing the concentration of cobalt introduces a sudden drop to zero resistivity

at a characteristic temperature, 𝑇c, which is a hallmark of superconductivity. Evidence

for superconductivity is also shown in figure 2.7 where the low-temperature magnetization

approaches complete diamagnetism for the zero-field-cooled case below 𝑇c, indicating bulk

superconductivity.

If one defines the critical concentration for the appearance of superconductivity, 𝑥c, as

that concentration which would have a superconducting transition 𝑇c = 0 K, then the data

in figure 2.6 clearly indicate that 𝑥c < 0.038 and that likely 𝑥c > 0.020.

Examining the inset of figure 2.6, it is clear that the superconducting transition tempera-

ture, 𝑇c, increases with cobalt concentration up to 𝑥 = 0.058. For higher cobalt concentrations
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Figure 2.7. Magnetization divided by applied field, 𝑀/𝐻, as a function of temperature
for Ba(Fe1–𝑥Co𝑥)2As2, reproduced from Reference [60]. Here a field of 2.5 mT was applied
perpendicular to the crystallographic 𝒄 axis. Zero-field-cooled-warming data as well as field
cooled data are shown.

𝑇c then decreases and, beyond the doping range shown in figure 2.6, superconductivity disap-

pears entirely. This “bubble” of superconductivity seems to be a general characteristic of

unconventional superconductors and is often referred to as the superconducting dome. For

Ba(Fe1–𝑥Co𝑥)2As2, the optimal doping level (𝑥o), where 𝑇c is a maximum, appears to occur

somewhere between 0.058 < 𝑥o < 0.074; however, the change in 𝑇c with 𝑥 is small in this

concentration range and cobalt concentrations over the range 0.06 < 𝑥o < 0.08 are typically

referred to as optimally-doped. Superconducting Ba(Fe1–𝑥Co𝑥)2As2 compounds with 𝑥 < 𝑥o

are called under-doped, and those with 𝑥 > 𝑥o are termed over-doped. Ba(Fe1–𝑥Co𝑥)2As2

with 0 < 𝑥 < 𝑥c remain poor metals in their ground state and are collectively referred to as

the lightly-doped compounds.
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2.3.2 Structure

Like BaFe2As2, Ba(Fe1–𝑥Co𝑥)2As2 has a tetragonal 𝐼4/𝑚𝑚𝑚 structure at room temper-

ature, independent of cobalt concentration. For low levels of cobalt substitution, cooling

Ba(Fe1–𝑥Co𝑥)2As2 below ambient temperature leads to the same orthorhombic structural

transition as found for BaFe2As2, except that 𝑇S is suppressed with increasing cobalt concen-

tration. Evidence for this structural transition is seen in the resistivity data presented in

figure 2.6 as a discontinuity in the derivative of the resistivity versus temperature curve.

Figure 2.8, reproduced from Reference [61], shows a measure of the orthorhombic distortion,

𝛿, for various 𝑥 in Ba(Fe1–𝑥Co𝑥)2As2, characterized by

𝛿 = 𝑎 − 𝑏
𝑎 + 𝑏

(2.2)

where 𝑎 and 𝑏 are lattice parameters of the orthorhombic unit cell. If 𝑎 = 𝑏, the structure

is tetragonal and 𝛿 = 0. Below the structural transition temperature, 𝑇S, 𝑎 ≠ 𝑏 and,

consequently, the orthorhombic distortion becomes finite, with 𝛿 > 0 (and 𝑎 > 𝑏).

The magnitude of the orthorhombic distortion increases below the onset of orthorhombic

order at 𝑇S and, for cobalt concentrations which exhibit superconductivity like those shown

in figure 2.8, 𝛿 decreases below 𝑇c. This decrease in orthorhombicity is an indication that

superconductivity and the orthorhombic distortion compete. In fact, the maximum magnitude

of the orthorhombic distortion decreases as the cobalt concentration is increased and, as

optimal doping is approached, the orthorhombic distortion is absent – first deep within the

superconducting state and then entirely.

2.3.3 Magnetic order

Like BaFe2As2, lightly- and under-doped Ba(Fe1–𝑥Co𝑥)2As2 exhibit long range antifer-

romagnetic order at low temperatures. Evidence for this magnetic transition is seen in
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Figure 2.8. Orthorhombic distortion parameter, 𝛿, as a function of temperature at
𝑥 = {0.047, 0.054, 0.057, 0.059, 0.062, 0.063, 0.066} in Ba(Fe1–𝑥Co𝑥)2As2, reproduced from
Reference [61]. The orthorhombic distortion parameter is the normalized difference between
the orthorhombic 𝑎 and 𝑏 lattice parameters, and is defined as 𝛿 = 𝑎−𝑏

𝑎+𝑏 . For high temperatures
Ba(Fe1–𝑥Co𝑥)2As2 is tetragonal and there is no orthorhombic distortion, i.e., 𝛿 = 0. The
temperature where 𝛿 deviates from 0 is 𝑇S, which is clearly suppressed with increasing cobalt
concentration. Until, for 𝑥 = 0.066, the orthorhombic distortion is zero at all temperatures and
Ba(Fe0.934Co0.066)2As2 is tetragonal even at base temperature. The onset of superconductivity
is clearly evident in this orthorhombic distortion data as a decrease in the orthorhombic
distortion below 𝑇c. As 𝑇c increases the maximum value of 𝛿 decreases until, near optimal
doping, the orthorhombic distortion is zero at all temperatures.
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the magnetization data presented in figure 2.9 as a discontinuity in the derivative of the

magnetization over applied field versus temperature curve. Similarly, a discontinuity in the

resistivity data presented in figure 2.6 is also evident at the same temperatures and indicates

the same magnetic transition.

Because the orthorhombic distortion at low temperatures in lightly- and under-doped

Ba(Fe1–𝑥Co𝑥)2As2 is small and not easily resolved by neutron diffraction, descriptions of

neutron scattering data often utilize the tetragonal reciprocal lattice notation when reporting

details of the antiferromagnetic magnetic structure. Figure 2.10 shows four tetragonal unit

cells of BaFe2As2 in the low-temperature stripe antiferromagnetic state – ignoring the small

orthorhombic distortion. Included in figure 2.10 are the iron moments and their orientations,

plus highlighted planes of iron moments that describe the antiferromagnetic wavevector,

𝑸AFM. Note that, due to a 45° rotation about 𝒄 between the tetragonal and orthorhombic unit

cells, the iron ordered moment direction appears to be different in the two representations

with �̂� =
√

2
2 [1 1 0]T = [1 0 0]O, where the subscripts T and O indicate that tetragonal

and orthorhombic notation are used, respectively . That is, the iron moments point along

the basal-plane diagonal in the tetragonal representation and along the 𝒂 direction in the

orthorhombic representation.

The order parameter for long-range magnetic order, represented by the magnitude of

the sublattice magnetization, proportional to the square root of the integrated intensity

of the associated magnetic Bragg reflection, and described by a propagation vector which

can be added to any crystallographic reciprocal lattice vector to yield a magnetic reciprocal

lattice vector. For antiferromagnetic order the magnetic propagation vector is typically

non-zero and (if the magnetic propagation vector is not also a crystallographic reciprocal

lattice vector) the magnetic reciprocal lattice points do not coincide with crystallographic

reciprocal lattice points. In this case, the intensity measured for a magnetic Bragg reflection

can be uniquely attributed to the magnetic order and is proportional to the square of the
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Figure 2.9. Magnetization divided by applied field, 𝑀/𝐻, as a function of temperature
for Ba(Fe1–𝑥Co𝑥)2As2, reproduced from Reference [60]. Here a field of 1 T was applied perpen-
dicular to the crystallographic 𝒄 axis. The top panel shows data for cobalt concentrations no
greater than Ba(Fe0.953Co0.047)2As2, while the bottom panel contains data for higher cobalt
concentrations. In both panels an inset shows a linear dependence of the magnetization on
applied field for select compositions.
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𝑐
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𝑎

Ba

Fe

As

Figure 2.10. Four tetragonal unit cells of BaFe2As2 in the low-temperature stripe
antiferromagnetic state, ignoring the small orthorhombic distortion. Iron moments and their
directions are indicated as black arrows. The green shaded regions highlight planes of iron
moments that contribute to the 𝑸AFM = (1

2
1
2 1) Bragg reflection.
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magnitude of the ordered magnetic moment. Figure 2.11 shows the integrated intensity

of the 𝑸AFM = (1
2

1
2 3)

T
= (1 0 3)O Bragg reflection as a function of reduced temperature

for a series of cobalt levels in Ba(Fe1–𝑥Co𝑥)2As2. Like the structural phase transition, the

antiferromagnetic phase transition is suppressed to lower temperature with increasing cobalt

concentration – this is not evident in figure 2.11 since the temperature has been rescaled

by the antiferromagnetic ordering temperature, 𝑇N, for each sample but is clearly seen

also by resistivity and magnetization measurements as shown in figures 2.6 and 2.9. For

non-superconducting samples, the antiferromagnetic order parameter increases below 𝑇N

and reaches a maximum at zero temperature; the data presented in figure 2.11 has been

normalized by the zero-temperature extrapolated value of the squared ordered moment per

iron of BaFe2As2. For samples which manifest superconductivity at low temperatures the

magnitude of the ordered moment per iron reaches a maximum at the superconducting

transition temperature, 𝑇c, and decreases as the temperature is further lowered. As the cobalt

concentration approaches optimal doping the antiferromagnetic order in the superconducting

state is completely suppressed. This is evidence that stripe antiferromagnetic order and

superconductivity compete in under-doped Ba(Fe1–𝑥Co𝑥)2As2. Given also the observation of

reentrant behavior of the orthorhombic distortion and the lack of any observed coexistence of

orthorhombic and tetragonal order by x-ray diffraction, it seems likely that superconductivity

and antiferromagnetism coexist within the same volume in under-doped Ba(Fe1–𝑥Co𝑥)2As2

and the competition is not a result of phase separation.

Further studies into the nature of the antiferromagnetic order in cobalt substituted

BaFe2As2 found that when approaching optimal doping, and the complete suppression of long

range antiferromagnetic order, the order becomes incommensurate with the crystallographic

structure due to a doping-induced mismatch in the sizes of the hole- and electron-pockets

leading to an imperfect Fermi surface nesting [63]. The incommensurate order propagation

vector was found to be offset from the commensurate propagation vector 𝝉c = [1
2

1
2 1]

T
=
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Figure 2.11. Stripe antiferromagnetic order parameter, integrated intensity at 𝑸AFM =
(1

2
1
2 3)

T
= (1 0 3)O, for 𝑥 = {0, 0.018, 0.038, 0.047, 0.054, 0.059} in Ba(Fe1–𝑥Co𝑥)2As2, repro-

duced from reference [62]. The integrated intensity at 𝑸AFM as a function of temperature
and composition is proportional to the square of the ordered magnetic moment, 𝑀2(𝑇 , 𝑥).
The data presented here has been normalized by the 𝑇 = 0, 𝑥 = 0 squared moment
[𝑀0 ≡ 𝑀(0, 0) = 0.87 𝜇B], and is displayed as a function of reduced temperature 𝑇 /𝑇N.

[1 0 1]O by 𝝐 = [1
2𝜖 1

2 ̄𝜖 0]
T

= [0 𝜖 0]O,

𝝉ic = 𝝉c ± 𝝐 (2.3)

where the subscripts c and ic stand for commensurate and incommensurate, respectively.

Figure 2.12 shows neutron diffraction measured intensity for a series of cobalt concentrations

in Ba(Fe1–𝑥Co𝑥)2As2 nearing the complete suppression of long range antiferromagnetic order.

At the lowest composition shown, 𝑥 = 0.054, the scan in the [0 1 0]O direction across

𝑸AFM = (1 0 3)O shows a single sharp peak indicative of long range commensurate stripe

antiferromagnetic order. With increasing cobalt, the scans show two split peaks centered

at 𝑸AFM but offset by ±𝝐 first in addition to the single center peak and then in its stead.

These side peaks are characteristic of an incommensurate antiferromagnetic order, and their

appearance first as additional peaks is an indication that the transition in cobalt composition
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Figure 2.12. Neutron diffraction scans across 𝑸AFM = (1 0 3)O in the [0 1 0]O direction
for 𝑥 = {0.054, 0.056, 0.057, 0.059, 0.062} in Ba(Fe1–𝑥Co𝑥)2As2, reproduced from Reference
[63]. These data have been normalized by counting time and sample mass, rescaled where
indicated and offset vertically for clarity. The appearance of peaks to either side of 𝑸AFM with
cobalt composition is due to a first-order change in the long range antiferromagnetic order
from commensurate to incommensurate near the total suppression of antiferromagnetism as
optimal doping is approached.

is first-order in nature [63]. As noted by Pratt et al., “the sharpness of the superconducting

transition, predictable evolution of 𝑇S and 𝑇N with relatively small changes in composition,

and uniformity of the [wavelength dispersive x-ray spectroscopy] signal at multiple locations

on the crystals confirm good chemical homogeneity with compositional spread 𝛿𝑥/𝑥 < 5%,”

and, therefore, the coexistence of commensurate and incommensurate peaks is not likely due

to sample inhomogeneity [63].

Figure 2.13 shows the temperature dependence of the integrated intensity of the incom-

mensurate peaks for Ba(Fe0.944Co0.056)2As2 (one of the compounds studied by Pratt et al.)

as well as the temperature dependence of the magnitude of the incommensurability, 𝜖. Like

the commensurate order integrated intensity shown in figure 2.11, the integrated intensity
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Figure 2.13. Integrated intensity and incommensurability of the antiferromagnetic
order near (1 0 3)O for Ba(Fe0.944Co0.056)2As2 as a function of temperature, reproduced from
Reference [63]. The integrated intensity of all magnetic intensity near (1 0 3)O (open squares)
and of the incommensurate side-peaks (solid squares) is presented in arbitrary units on the left
ordinate; and like the commensurate order integrated intensity shown in figure 2.11, increases
below 𝑇N, reaches a maximum at 𝑇c, and then decreases with decreasing temperature due to
competition between antiferromagnetism and superconductivity. The incommensurability,
𝜖, (closed circles) is shown in relative lattice units on the right ordinate. Above 𝑇N the
incommensurate peaks can not be separated from background or the central commensurate
peak. Just below 𝑇N, the incommensurability has a large uncertainty due to a continued
difficulty in separating the commensurate and incommensurate signals. As the temperature
is lowered further, the incommensurability reaches a steady value and remains approximately
constant below 𝑇c.
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of the incommensurate peaks shown in figure 2.13 increases with increasing temperature

while in the coexisting superconducting and antiferromagnetic phase, the integrated intensity

reaches a maximum at the superconducting transition temperature, 𝑇c, and then decreases

as the antiferromagnetic transition temperature, 𝑇N, is approached. At the same time,

the incommensurability remains nearly constant with increasing temperature while in the

coexisting phase, and then decreases slightly after the loss of superconductivity where the

incommensurability has a large uncertainty due to a difficulty in separating the commensurate

and incommensurate signals. Above 𝑇N the incommensurate peaks can not be separated from

background or the central commensurate peak, and figure 2.13 instead shows the integration

of all intensity near 𝑸 = (1 0 3)O.

2.3.4 Band structure and Fermi surface

Since the parent compounds of the iron pnictide superconductors are antiferromagnetic

metals at low temperatures, it seems appropriate to expect that their magnetic order comes

from itinerant electrons. The small magnetic moment size measured by neutron scattering,

as shown in figure 2.11, also points toward an itinerant description of the magnetism over a

local-moment magnetism description. The resultant band dispersions from band structure

calculations for BaFe2As2 are shown in figure 2.14. These calculated bands show hole-like

bands at the Fermi level (zero Energy) around the Brillouin zone center [𝛤 , 𝑸 = (0 0 0)]

and electron-like bands around the Brillouin zone corner [𝑋, 𝑸 = (1
2

1
2 0)

T
]. Angle-resolved

photoemission spectroscopy measurements, like those shown in figure 2.15, also show the

presence of states around the Brillouin zone center and corner for Ba(Fe1–𝑥Co𝑥)2As2 and

confirm that there are circular hole-like bands centered at 𝛤 and elliptical electron-like bands

at 𝑋. Independent of their observed origin, when the 𝛤 hole bands are displaced by

the vector 𝑸 = (1
2

1
2 0)

T
they overlap to an appreciable degree with the 𝑋 electron bands.

This so-called nesting, shown in figure 2.16, indicates that there is a significant density of
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Figure 2.14. Resultant band structure calculations for BaFe2As2 showing the energy
versus momentum dependence along the [1 1 0]T direction. This figure is reproduced from
[64].

states connected by the nesting wavevector which will produces a peak in the magnetic

susceptibility at the same wavevector that can lead to an instability toward spin density

wave antiferromagnetic order. In the case of Ba(Fe1–𝑥Co𝑥)2As2, additional consideration

of the three-dimension nature of the Fermi surface indicates that the largest nesting (and

largest peak in the susceptibility) occurs for the nesting wavevector 𝑸AFM = (1
2

1
2 1)

T
. As

shown in figure 2.17 upon entering the antiferromagnetic state, angle-resolved photoemission

spectroscopy measurements indicate a hybridization between the hole and electron pockets;

this hybridization is not unexpected for any order that introduces a larger unit cell (i.e., a

superstructure) and could be an indication that the antiferromagnetic order is a result of

itinerant processes [66].

Although full band structure calculations and angle-resolved photoemission spectroscopy

measurements indicate that there are multiple hole pockets at 𝛤 and multiple electron pockets

at 𝑋, a simplified bandstructure model proposed by Fernandes et al. has been successful in

describing the properties of Ba(Fe1–𝑥Co𝑥)2As2, including the coexistence of antiferromagnetism
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Figure 2.15. Angle-resolved photoemission spectroscopy data from lightly- to nearly
optimally-doped Ba(Fe1–𝑥Co𝑥)2As2 at 𝑇 = 150 K (within the tetragonal and paramagnetic
state). This figure is reproduced from [65].
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Figure 2.16. Offset angle-resolved photoemission spectroscopy determined Fermi surfaces
for tetragonal and paramagnetic Ba(Fe1–𝑥Co𝑥)2As2, determined from data presented in
figure 2.15. This figure is reproduced from [65].

(a) tetragonal (b) orthorhombic and antiferromagnetic

Figure 2.17. Fermi surfaces for the (a) tetragonal and (b) orthorhombic-antiferromagnetic
states of under-doped Ba(Fe0.975Co0.025)2As2 as determined from angle-resolved photoemission
spectroscopy. This figure is reproduced from Reference [66]. As described by Yi et al., red
bands are hole-like, blue bands are electron-like, and magenta bands are hybridizations of
both hole- and electron-like bands.
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Figure 2.18. An illustration of the simplified model proposed by Fernandes et al. to
describe the physical properties of the iron pnictides. Panel (a) shows the simplified band
structure at the Fermi level as a function of the in-plane tetragonal wavevectors; the simplified
model has one circular hole pocket at the zone-center and one or two elliptical electron
pockets at the zone boundaries. Panel (b) shows the dispersion of the model bands along the
[1 1 0]T direction, and the chemical potential, 𝜇, which is included in the model to capture the
effects of chemical doping (e.g., substituting cobalt for iron introduces additional electrons
and raises the Fermi level). The solid hole and electron band are separated by the nesting
vector and, often, the dashed electron pocket is not considered as the degeneracy between
[1 1 0]T and [ ̄1 1 0]

T
is lifted by the appearance of orthorhombic order.

and superconductivity [62]. This simplified band structure model is illustrated in figure 2.18,

which shows that the model considers one hole pocket at the zone center and one (or two)

electron pocket(s) at the zone boundary. When describing the antiferromagnetic order in

Ba(Fe1–𝑥Co𝑥)2As2 only two bands were considered by Fernandes et al. [62]. That two-band

description was successful in reproducing the suppression of antiferromagnetic order with

increasing cobalt in Ba(Fe1–𝑥Co𝑥)2As2 (compare figures 2.11 and 2.19), as shown in figure 2.20.

In this simplified model, the suppression of antiferromagnetic order comes as a result of

the detuning of the Fermi surfaces of the electron and hole bands as the introduction of
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Figure 2.19. Calculated stripe antiferromagnetic order parameter utilizing a simplified
band structure model, for 𝑥 = {0, 0.018, 0.038, 0.047, 0.054, 0.059} in Ba(Fe1–𝑥Co𝑥)2As2,
reproduced from reference [62]. The data presented here has been normalized by the 𝑇 = 0,
𝑥 = 0 calculated squared moment, and is displayed as a function of reduced temperature
𝑇 /𝑇N.

Figure 2.20. A comparison of the measured (from figure 2.11) and calculated (from the
simplified band structure model) ordered moment size as a function of cobalt substituted into
Ba(Fe1–𝑥Co𝑥)2As2, reproduced from reference [62]. The inset panels show how the electron
and hole bands change with cobalt substitution.
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Figure 2.21. A phase diagram for Ba(Fe1–𝑥Co𝑥)2As2 spanning the range from BaFe2As2 to
over-doped Ba(Fe1–𝑥Co𝑥)2As2. This data was originally presented by Nandi et al. in Reference
[61] which was partially reproduced from Reference [60]. This figure is reproduced from
Reference [67] in which Kim et al. explain that: gray open triangles represent resistance-derived
data; gray open circles, magnetization-derived data; gray open squares, bulk measurements
of 𝑇c; filled red triangles, 𝑇S measured by x-ray diffraction; filled blue circles, 𝑇N measured
by neutron diffraction; and filled orange squares, values for 𝑇c from x-ray and neutron data.

cobalt increases the model chemical potential, 𝜇, thereby growing the electron band and

shrinking the hole band at the Fermi surface. As the chemical potential is raised higher and

the hole band becomes much smaller than the electron band, it is possible that the nesting

wavevector can shift – in fact, this change in the nesting wavevector can explain the observed

incommensurate antiferromagnetic order shown in figure 2.12.

2.3.5 Phase diagram

By pulling together resistivity data, like that presented in figure 2.6; bulk magnetization

data, like that presented in figures 2.7 and 2.9; x-ray diffraction data, like that used to create

figure 2.8; and neutron diffraction data, like that presented in figure 2.11; one can create a

comprehensive temperature-composition phase diagram as in figure 2.21. Furthermore,
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Figure 2.22. A section of the phase diagram presented in figure 2.21 updated to include
information about the incommensurate antiferromagnetic order in Ba(Fe1–𝑥Co𝑥)2As2 near
the complete suppression of long-range order; reproduced from Reference [63]. Open squares
are data points extracted by Pratt et al. from their neutron diffraction data. Solid phase
lines are representative of these new data points as well as those presented by Nandi et al. in
Reference [61] and shown in figure 2.21.

including the incommensurate order information presented in figures 2.12 and 2.13 allows

one to refine the phase diagram as has been done in figure 2.22.

These phase diagrams, no doubt, are reminiscent of those found for other unconventional

superconductors – see, for example, figures 2.2 and 2.3 for representative phase diagrams for

heavy fermion superconductors and cuprate superconductors, respectively. With them, they

have in common: (i) a proximity to an antiferromagnetically ordered ground state; (ii) a

suppression of that antiferromagnetically ordered state by some modification, be it applied

pressure or the substitution of a constituent element by a dopant; and (iii) after sufficient

suppression of the antiferromagnetic order by that modification, the onset of superconductivity.
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Where Ba(Fe1–𝑥Co𝑥)2As2 differs from some unconventional superconductors is in that both

long range antiferromagnetic order and superconductivity coexist and compete within the

same volume in a small region of phase space, as indicated in figures 2.21 and 2.22 as green and

orange shaded areas (which represent the coexistence of commensurate antiferromagnetism

and superconductivity, and incommensurate antiferromagnetism and superconductivity,

respectively).

2.3.6 Spin excitations

The phase diagrams in figures 2.21 and 2.22 give details of the static properties of

Ba(Fe1–𝑥Co𝑥)2As2 but do not provide any information about dynamic properties.

As discussed previously, the conventional BCS theory can correctly predict the super-

conducting transition temperature of a compound from the value of the electron-phonon

coupling constant (in addition to the characteristic phonon energy, and electronic density of

states at the Fermi surface). The electron-phonon coupling constant can be determined from

first-principles calculations and from inelastic neutron scattering measurements of the phonon

spectra – a study by Christianson et al. combining both techniques to study LaFeAsO1–𝑥F𝑥

found their varied results to be in good agreement and determined the electron-phonon cou-

pling constant [68]. The corresponding value of the superconducting transition temperature

was determined to be less than 1 K, from which Christianson et al. concluded that the iron

pnictide superconductors are not conventional electron-phonon mediated superconductors

[68].

In as much as phonons can not be the sole superconducting pairing mechanism in uncon-

ventional superconductors, some other interaction must provide the attraction that supports

the coupling of two otherwise-repulsive electrons into a Cooper-pair. Since unconventional

superconductors are quite often derived from antiferromagnetic materials, it is plausible that

fluctuations in the electron-spin system may provide a superconducting pairing mechanism.
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One possibility is that magnons, which are the spin-system analog to phonons, are responsible

for the pairing interaction. This has led to investigations of the magnetic excitations in

BaFe2As2 and Ba(Fe1–𝑥Co𝑥)2As2.

The spin fluctuation spectra of BaFe2As2 deep within its antiferromagnetically ordered

state, as well as at elevated temperatures below and above its antiferromagnetic ordering

temperature, 𝑇N, are shown in figure 2.23. The lowest-temperature BaFe2As2 magnetic

excitations are well described by a spin wave model (with spin wave dispersion shown by

the solid black lines) and, for elevated temperatures and energy transfers, the same model

remains a correct qualitative description of the observed inelastic neutron scattering intensity

[69].

For the case of optimally-doped Ba(Fe1–𝑥Co𝑥)2As2, there is no long range antiferromagnetic

order at any temperature and the magnetic excitations no longer resemble spin waves. The

inelastic neutron scattering energy spectra are shown for Ba(Fe0.925Co0.075)2As2 in figure 2.24

above and below the superconducting transition temperature, 𝑇c. Those data above 𝑇c are

diffusive in nature with very little momentum dependence and are characteristic of a nearly

antiferromagnetic liquid [70]. A system which has no long-range magnetic order but that

has antiferromagnetic interactions between neighboring spins will finite (in space and time)

regions of correlated spins that can diffuse through the system – the excitations of such a

magnetic system are characterized by the size and lifetime of the correlated regions. Below the

superconducting transition temperature, as is common for unconventional superconductors,

the superconducting resonance appears – which is visible in figure 2.24 as a peaked increase

in intensity near an energy transfer of 10 meV.

The appearance of superconductivity introduces a gap in the density of states around the

Fermi level. This superconducting gap, 𝛥SC, prohibits excitations with |𝐸| < 𝒪(𝛥SC). In the

case of the simplified band structure model discussed previously, it was reported by Fernandes

and Schmalian [71] that the magnitudes of the superconducting gaps at the hole and electron
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Figure 2.23. Inelastic neutron scattering intensity shows that the magnetic excitations
in BaFe2As2 are well described by a model of spin wave excitations from a well-ordered
antiferromagnetic system. This figure has been reproduced from Reference [69]. Data
presented here is indexed in relative units of the low-temperature orthorhombic lattice and
have had an estimated background, the average intensity in the region 1.8 < 𝐻 < 2.2,
−0.2 < 𝐾 < 0.2 r.l.u., subtracted. Furthermore, collected data with 𝐻 < 0 were combined
with symmetry equivalent data with 𝐻 > 0 in order to improve the statistical quality of the
displayed data. The solid line in each panel is the resulting dispersion of a spinwave model
fit to the 𝑇 = 7 K data; also shown is data obtained with 𝑇 = 125, 225, and 290 K.
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Figure 2.24. Corrected inelastic neutron scattering intensity measured from
Ba(Fe0.925Co0.075)2As2 for 𝑇 = 4, 60, and 280 K, reproduced from Reference [70]. Solid
lines in this figure are guides to the eye, and dashed lines represent fits to a diffusive model
functionally equivalent to that described by equation (4.34). The different symbol shapes
indicate which of three different instruments was used to collect the data, and are discussed
in detail by Inosov et al. in Reference [70].
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Figure 2.25. Calculated reduced moment size and superconducting gaps magnitude for
the case of 𝑠+− superconducting gap symmetry, reproduced from [71]. The superconducting
gap on the electron band, 𝛥1, is of slightly higher magnitude than the gap on the hole band,
𝛥2, at temperatures below 𝑇c.

bands should be similar, with the gap at the electron band being slightly larger, as shown in

figure 2.25, and that the magnitude of each gap should be approximately constant for all

parts of each band. Fernandes and Schmalian also reported that antiferromagnetism and

superconductivity could not coexist if the gaps on both bands have the same sign (the so called

𝑠++ state), and that under special circumstances a change in the sign of the gap between

the bands (the so called 𝑠+− state) can give rise to a coexistence of antiferromagnetism and

superconductivity, as has been observed for Ba(Fe1–𝑥Co𝑥)2As2. Since the antiferromagnetic

order in Ba(Fe1–𝑥Co𝑥)2As2 appears to be dependent upon details of the band structure

and Fermi surface, the opening of the superconducting gap could be responsible for the

appearance of the superconducting resonance in these, and perhaps other, unconventional

superconductors. While there seems to be consensus that a 𝑠+− state can give rise to a

superconducting resonance, no consensus is apparent for the case of an 𝑠++ state with some

authors claiming a resonance is impossible [72] and others claiming the opposite [73].
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2.4 Motivation

Unconventional superconductivity is found in close proximity to an antiferromagnetically

ordered ground state. For Ba(Fe1–𝑥Co𝑥)2As2, which is itself antiferromagnetic and supercon-

ducting in the under-doped regime, this is no different. This proximity has spawned a great

deal of speculation that spin fluctuations related to the antiferromagnetism in unconventional

superconductors may take the place of phonons in conventional superconductors and provide

the necessary interaction to form Cooper-pairs thereby enabling the superconducting state.

Unfortunately no widely-accepted theory yet exists to explain precisely how antiferromagnetic

spin fluctuations mediate superconductivity.

The spin fluctuations at optimally-doped Ba(Fe1–𝑥Co𝑥)2As2 are diffusive in nature, while

in the parent compound BaFe2As2 they are well defined spin wave excitations. This change in

the nature of spin fluctuations could be a consequence of the loss of antiferromagnetic order,

in which case the character would change only when passing through the antiferromagnetic–

paramagnetic phase boundary indicated in figure 2.21. Alternatively, the change in character

could signal a shift towards more-itinerant electrons in Ba(Fe1–𝑥Co𝑥)2As2 independent of

the antiferromagnetic order. If the first possibility holds true, then spin fluctuations likely

can not provide the pairing mechanism for superconductivity in Ba(Fe1–𝑥Co𝑥)2As2 since

antiferromagnetic order coexists with superconductivity in the under-doped compounds. The

second possibility would be an indication that, at the very least, the itinerant electrons

which participate in spin fluctuations are an important component for superconductivity in

Ba(Fe1–𝑥Co𝑥)2As2.

Inelastic neutron scattering is the ideal probe to study spin fluctuations in condensed

matter due to the magnetic moment and typical energy of a thermal neutron. I have used time-

of-flight inelastic neutron scattering, with large energy transfers and large position-sensitive

area detectors, and triple-axis inelastic neutron scattering, with low energy transfers and

focused beams, to gain both a broad overview of the spin fluctuations in Ba(Fe1–𝑥𝑇𝑀𝑥)2As2
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[(𝑇𝑀 ,𝑥)=(Cr,0.06),(Co,0.047),(Cu,0.028)] and a parametric study of the spin fluctuations in

a Ba(Fe1–𝑥Co𝑥)2As2 series (𝑥=0.015, 0.033, 0.04, 0.047, 0.055). By studying spin fluctuations

at multiple points throughout the Ba(Fe1–𝑥Co𝑥)2As2 𝑇 –𝑥 phase diagram, figure 2.21, and

for related non-superconducting compositions, I am able to unambiguously differentiate

between the two possibilities and find evidence that increased damping of the spin fluctu-

ations with increasing cobalt is a requirement for the appearance of superconductivity in

Ba(Fe1–𝑥Co𝑥)2As2.
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CHAPTER 3 TECHNIQUES

3.1 Scattering

Interatomic distances in solids are typically on the order of an ångström (1Å ≡ 10−10m).

Therefore, any probe used to study the microscopic structure of a solid must have a wavelength

of a similar size. The de Broglie wavelength of any particle is given by

𝜆 = ℎ
𝑝

(3.1)

where ℎ is Planck’s constant and 𝑝 is the momentum of the particle. Non-relativistic massive

particles, with 𝑝 = 𝑚𝑣, have their momenta and energies related by

𝐸 = 𝑝2

2𝑚
. (3.2)

By combining equations (3.1) and (3.2) it is clear that their de Broglie wavelength is inversely

proportional to the square root of their energy,

𝜆 = ℎ√
2𝑚𝐸

. (3.3)

Massless particles, which have energy 𝐸 = 𝑝𝑐, have wavelengths inversely proportional to

their energy

𝜆 = ℎ𝑐
𝐸

. (3.4)

Three typical probes for the study of condensed matter are the photon, the electron, and the

neutron — their wavelengths as a function of energy are displayed in figure 3.1.
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Figure 3.1. Wavelength versus energy for neutrons, electrons, and photons. The energy
axis is in units of 10 meV for neutrons ( ), 100 eV for electrons ( ), and 1 keV for
photons ( ). Adapted from a figure by Kittel [74, p. 24].
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Table 3.1. Properties of the neutron

property value
mass, 𝑚n/kg 1.675 × 10−27

charge 0
spin 1

2
magnetic moment, 𝜇n/𝜇N −1.913

From figure 3.1 it is clear that photons, electrons, and neutrons all have wavelengths

comparable to the interatomic length scales in condensed matter, but only the neutron has

such a wavelength as well as an energy comparable to excitations in condensed matter, on the

order of meV. Although it is possible to achieve meV resolution in the energy of keV energy

photons (x-rays), part-per-million uncertainties are not easy to obtain and doing so requires

a large sacrifice in intensity, practical only at a synchrotron x-ray source. In contrast, an

energy resolution of ∼ 1 meV for ∼ 10 meV neutrons is only one-part-in-ten, and is much

simpler to attain.

Neutrons feature other advantages as a scattering probe, as summarized in table 3.1. The

neutron is chargeless and therefore has a large penetration depth through most materials. This

allows for bulk scattering measurements and relatively easy implementation of various sample

conditions — e.g., pressure, temperature, magnetic field, etc. — due to the neutron’s ability

to penetrate through centimeter-sized samples and sample environment walls. Neutrons are

spin-1
2 particles and therefore interact with magnetic moments through the dipole interaction,

most importantly they can interact with unpaired electrons and are, therefore, sensitive to,

e.g., antiferromagnetic order, to which other probes are ‘blind.’

Neutrons do have one significant drawback when compared to other scattering probes:

their production in beams is difficult. Electron beams can be created by heating a filament

until its temperature is high enough that electrons in the metal have enough energy to escape

their potential well, at which point they ‘boil’ out of the filament and can be accelerated

and focused by the application of electric and magnetic fields, due to their charge. Beams
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of x-rays can be created in a lab by taking an electron beam and directing it onto a metal

target, causing transitions between electron orbitals which emit characteristic x-ray radiation

and bremsstrahlung. X-ray beams can also be produced by accelerating the same electron

beam to near the speed of light in a storage ring, since the relativistic electrons must radiate

light when accelerated at each turn and will emit x-rays if tuned properly, such a storage

ring is called a synchrotron for historical reasons.

Free neutrons have a mean lifetime of 𝜏 = 885.7(8) s and decay via the pathway

𝑛 → 𝑝 + 𝑒− + ̄𝜈𝑒 (3.5)

thereby conserving charge and lepton number [75]. As a result, it is not possible to store

free neutrons for any appreciable time and they must instead be freed from heavy nuclei

shortly before their use in scattering experiments. While early experiments with neutrons

used naturally radioactive Po 𝛼-particle bombardment of Be as a neutron source [76], modern

facilities often utilize one of two methods to produce free neutrons on-demand: fission and

spallation.

Fission is the act of a nucleus of an atom breaking apart into two or more smaller nuclei.

Fission can take place spontaneously via radioactive decay or as the result of a nuclear

reaction, e.g., the absorption of a thermal neutron by 235U causes its nucleus to undergo

fission. Isotopes of elements which can be forced to undergo fission through the absorption of

a neutron are referred to as fissionable, and those that undergo fission after the absorption of

a thermal neutron are further classified as fissile. Since heavy element nuclei tend to have

a larger neutron to proton ratio than light elements (such that the inter-nucleon attractive

strong force potential overcomes the inter-proton repulsive Coulomb potential) when a heavy

element undergoes fission there are typically excess neutrons. Nuclear reactors use the

excess neutrons from fission events to induce fission in fissile fuel and, by controlling the

moderation and absorption of fission-emitted neutrons, thereby create a sustainable fission
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Table 3.2. Neutron energy ranges for the named moderators, adapted from reference [77,
p. 5]. The neutrons moderated by a named-moderator are often referred to by the moderator
name; i.e., neutrons which pass through a thermal moderator are typically called thermal
neutrons. Neutrons with energies below cold neutrons are called ultra-cold. Neutrons with
energies above hot neutrons are called epithermal.

moderator energy/meV temperature/K wavelength/Å
cold 0.1 – 10 1 – 120 30 – 3
thermal 5 – 100 60 – 1000 4 – 1
hot 100 – 500 1000 – 6000 1 – 0.4

chain reaction. Beam pipes in the side of an operating nuclear reactor make it possible to

use excess neutrons, not needed to sustain the chain reaction, to perform scattering studies.

In contrast to fission, which can take place spontaneously, spallation can only occur when

a high-energy particle collides with, and breaks apart, a nucleus. The spallation event like

fission produces free neutrons if a heavy target nucleus is chosen, such as lead, tungsten, or

mercury. If a pulsed particle accelerator is utilized, it is possible to in turn produce pulses of

neutrons via spallation.

Both fission and spallation produce a distribution of high-energy neutrons which are of

limited utility for neutron scattering. In order to be used effectively in neutron scattering

experiments, the neutrons must first be moderated to a more useful energy range. Moderation

of takes place by allowing the neutrons to interact with a reservoir held at a fixed temperature,

ideally comprised of atoms of similar mass to the neutron for efficient energy transfer in as

few interactions as possible. After moderation, the neutron flux distribution takes on the

form of a Maxwell-Boltzman distribution [77, p. 2] with

𝜙(𝑣) ∝ 𝑣3 exp (1
2

𝑚𝑣2

𝑘B𝑇
) (3.6)

which peaks at

𝑣 = √3𝑘B𝑇
𝑚

. (3.7)
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Since the energy of a non-relativistic neutron is given by its kinetic energy

𝐸 = 1
2

𝑚𝑣2, (3.8)

and recalling equation (3.3), its clear that by changing the temperature of the neutron

moderator one can change the peak energy and wavelength in the neutron flux distribution.

Different ranges of neutron energies have been given names based on the relative temperature

of the moderator which they have interacted with, as detailed in table 3.2. Because they

are needed to sustain a fission chain reaction, all nuclear reactor neutron sources provide

thermal neutrons after moderating high-energy neutrons with light- or heavy-water; spallation

neutron sources also have thermal moderators for some of their beam lines due to the high

utility of thermal neutrons. It is also common for both reactor and spallation sources to have

one or more cold-temperature moderators for the production of cold neutrons, common cold

moderator choices are liquid hydrogen, H, or liquid deuterium, 2H.

Interactions between a scattering probe and a sample can be described by a scattering

cross-section, which is a measure of the probability of that interaction taking place. For a

known flux, 𝛷, of monochromatic unpolarized neutrons in a beam traveling along the polar

axis of a coordinate system, the partial differential cross-section can be determined by placing

an energy-discriminating detector, subtending a small solid angle d𝛺 at a position (𝜃, 𝜙), and

measuring the rate of neutrons arriving with an energy between 𝐸 and 𝐸 + d𝐸, 𝑅(𝜃, 𝜙, 𝐸),

for all (𝜃, 𝜙, 𝐸).
d2𝜎

d𝛺 d𝐸
(𝜃, 𝜙, 𝐸) = 𝑅(𝜃, 𝜙, 𝐸)

𝛷 d𝛺 d𝐸
(3.9)

as 𝑅−1 has units of time and 𝛷−1 has units of area and time, the cross-section, 𝜎, must have

units of area. By replacing the energy-discriminating detector with a detector which counts

all neutrons, one would measure the differential cross-section, which is the energy-integrated
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partial differential cross-section:

d𝜎
d𝛺

(𝜃, 𝜙) = ∫d𝐸 d2𝜎
d𝛺 d𝐸

(𝜃, 𝜙, 𝐸) (3.10)

and, by integrating the differential cross-section over all directions (𝜃, 𝜙) one can obtain the

total cross-section

𝜎 = ∯
𝛺

d𝛺 d𝜎
d𝛺

(𝜃, 𝜙). (3.11)

3.1.1 Diffraction

As shown in figure 3.1 and highlighted in table 3.2, the wavelengths of thermal neutrons

are on the order of a few ångström. When a thermal neutron interacts with a nucleus, it does

so through the strong force which has a range on the order of fm (10−15m=10−5Å), which is

significantly smaller than the neutron wavelength. When waves of any kind are scattered

from an object which is small in comparison to their wavelength, the scattered waves are

spherically symmetric [77, p. 7]. Utilizing the Born approximation, a neutron traveling along

the ̂𝑧 direction with wavelength 𝜆 can be described as a plane wave

𝜓i = 𝑒𝑖𝑘𝑧 (3.12)

where 𝑘 = 2𝜋
𝜆 is the wavenumber of the neutron and is the magnitude of the neutron

wavevector

𝒌 = 𝒑
ℏ

(3.13)

where ℏ = ℎ
2𝜋 is Planck’s reduced constant. If the neutron is scattered elastically from a

(repulsive) nucleus at the origin of the coordinate system, then the scattered wavefunction is

given by

𝜓s = −𝑏
𝑟

𝑒𝑖𝑘𝑟 (3.14)
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since 𝑟2 = 𝑥2 + 𝑦2 + 𝑧2, 𝜓s is spherically symmetric, and the parameterization of the strength

of the interaction, 𝑏, is called the scattering length. From these wavefunctions one can

calculate the cross section of this scattering process. The rate of scattered neutrons traveling

with velocity 𝑣 and passing through an area d𝐴 is given by

𝑅 = 𝑣 d𝐴 |𝜓s|
2 = 𝑣 d𝐴𝑏2

𝑟2 = 𝑣𝑏2 d𝛺 (3.15)

and the flux of incident neutrons is

𝛷 = 𝑣 |𝜓i|
2 = 𝑣. (3.16)

Recalling equation (3.9), the definition of the partial differential cross-section and its relation

to the differential cross-section and total cross-section equations (3.10) and (3.11) gives

𝜎 = ∯
𝛺

d𝛺 𝑏2 = 4𝜋𝑏2. (3.17)

A more mathematically-rigorous derivation, like that presented by Squires, derives the same

cross-section for a potential

𝑉 (𝒓) = 2𝜋ℏ2

𝑚
𝑏 𝛿(𝒓) (3.18)

called the Fermi pseudopotential [77], where 𝛿(𝒓) is the Dirac delta-function which is one at

𝒓 = 0 and zero otherwise.

3.1.1.1 Nuclear diffraction

A general crystal lattice is comprised of unit cells described by the vectors 𝒂, 𝒃, and 𝒄

which span the unit-cell. For such a crystal, a general lattice vector is given by

𝒍 = 𝑙𝑎𝒂 + 𝑙𝑏𝒃 + 𝑙𝑐𝒄 (3.19)
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where the 𝑙𝑖 are integers. This general unit cell has volume

𝑣0 = 𝒂 ⋅ (𝒃 × 𝒄). (3.20)

The unit-cell vectors can be used to define a reciprocal lattice, described by the vectors

𝒂∗ = 2𝜋
𝑣0

𝒃 × 𝒄, 𝒃∗ = 2𝜋
𝑣0

𝒄 × 𝒂, and 𝒄∗ = 2𝜋
𝑣0

𝒂 × 𝒃 (3.21)

with reciprocal lattice vectors

𝝉 = ℎ𝒂∗ + 𝑘𝒃∗ + 𝑙𝒄∗ (3.22)

and which has volume

𝑣∗
0 = 𝒂∗ ⋅ (𝒃∗ × 𝒄∗) = (2𝜋)3

𝑣0
. (3.23)

It can be shown that the cross-section for coherent elastic scattering from a crystal lattice

of nuclei is [77, p. 37]
d𝜎
d𝛺

= 𝑁 ∑
𝑙

𝑒𝑖𝑸⋅𝒍 ∣∑
𝑑

�̄�𝑑𝑒𝑖𝑸⋅𝒅𝑒−𝑊𝑑 ∣
2

(3.24)

where where the first sum is over the 𝑁 unit cells in the crystal, each located at 𝒍, and the

second sum is over the nuclei in each unit-cell, each located at 𝒍 + 𝒅, and the term 𝑊𝑑 is the

Debye-Waller factor which accounts for the thermal motion of each nucleus. By evaluating

the sum over 𝑙 in equation (3.24), the coherent elastic cross-section is

d𝜎
d𝛺

= 𝑁 (2𝜋)3

𝑣0
∑

𝝉
𝛿(𝑸 − 𝝉) |𝑆N(𝑸)|2 (3.25)

where 𝑸 ≡ 𝒌f − 𝒌i and

𝑆N(𝑸) = ∑
𝑑

�̄�𝑑𝑒𝑖𝑸⋅𝒅𝑒−𝑊𝑑 (3.26)
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𝒌f

𝑸 = 𝝉

2𝜃

𝒂∗
𝒃∗

Figure 3.2. Coherent elastic scattering from a periodic crystal is possible only when
𝑸 ≡ 𝒌f − 𝒌i = 𝝉 .

is the nuclear unit-cell structure factor. From equation (3.25), it is clear that scattering is

only possible when

𝑸 = 𝒌f − 𝒌i = 𝝉. (3.27)

Figure 3.2 shows the condition for coherent elastic scattering; the scattering triangle defined

by 𝒌i, 𝒌f and 𝑸 = 𝝉 , with scattering angle 2𝜃, forms an isosceles triangle, and therefore

𝜏
2

= 𝑘 sin 𝜃 (3.28)

where 𝜏 = |𝝉| = 𝑛2𝜋/𝑑, 𝑘 = |𝒌i| = |𝒌f| and 𝜃 is half the scattering angle. Recalling that

𝑘 = 2𝜋/𝜆, one can rearrange equation (3.28) into

𝑛𝜆 = 2𝑑 sin 𝜃 (3.29)

which is the familiar Bragg’s law, first formulated for the diffraction of x-rays.
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Figure 3.3. By definition, integer multiples of any reciprocal lattice vector 𝝉 are also
lattice vectors of the same reciprocal lattice. Therefore, if the diffraction condition is satisfied
for wavevector 𝒌i, then it is satisfied for 𝑛𝒌i where 𝑛 = 1, 2, 3, … as well.
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3.1.1.2 Magnetic diffraction

Since the neutron is a spin-1
2 particle, it is able to scatter from unpaired electrons via the

dipole interaction. Unlike then nuclear interaction, the dipole interaction is spin-direction

dependent and, consequently, the cross-sections for magnetic diffraction are somewhat more

complex. The elastic cross-section for scattering unpolarized neutrons from a paramagnetic

system of spins, where the relative orientation of any two spins is random, is given by Squires

as
d𝜎
d𝛺

= 2
3

(𝛾𝑟0)2𝑁 [1
2

𝑔𝐹(𝑸)]
2

𝑒−2𝑊 𝑆(𝑆 + 1) (3.30)

where 𝐹(𝑸) is the single-ion magnetic form factor and 𝑆 is the magnitude of the paramagnetic

spins [77, p. 144]. The spins in a ferromagnet align with their neighbors by definition, defining a

spin-direction, however most ferromagnets form domains and the coherent elastic cross-section

for unpolarized neutron scattering from a ferromagnet must incorporate this fact

d𝜎
d𝛺

= (𝛾𝑟0)2𝑁 (2𝜋)3

𝑣0
⟨𝑆𝜂⟩2 ∑

𝝉
[1

2
𝑔𝐹(𝝉)]

2
𝑒−2𝑊 [1 − ( ̂𝝉 ⋅ �̂�)2

av] 𝛿(𝑸 − 𝝉) (3.31)

where �̂� is the mean direction of the spins, ⟨𝑆𝜂⟩ is the mean value of the component of the spin

in the �̂� direction for each domain, and ( ̂𝝉 ⋅ �̂�)2 is averaged over all domains [77, p. 147]. If

all directions are equally likely for �̂�, or if the easy axis of a ferromagnet has cubic symmetry,

the value of [1 − ( ̂𝝉 ⋅ �̂�)2
av] is 2

3 [77, p. 147]. Antiferromagnets are further complex still, since,

for a simple collinear bipartite lattice antiferromagnet, within each antiferromagnetic domain

there are two interpenetrating ferromagnetic sublattices aligned antiparallel to one another.

The coherent elastic cross-section for such an antiferromagnet looks similar to that for a

ferromagnet

d𝜎
d𝛺

= (𝛾𝑟0)2𝑁 (2𝜋)3

𝑣0
∑

𝝉
[𝑆M(𝝉)]2 𝑒−2𝑊 [1 − ( ̂𝝉 ⋅ �̂�)2

av] 𝛿(𝑸 − 𝝉) (3.32)
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except the sum is now over the reciprocal lattice vectors of the magnetic unit cell and

𝑆M(𝝉) = 1
2

𝑔 ⟨𝑆𝜂⟩ 𝐹(𝝉) ∑
𝑑

𝜎𝑑𝑒𝑖𝝉 ⋅𝑑 (3.33)

is the magnetic structure factor, where ⟨𝑆𝜂⟩ is now the mean value of the sublattice magneti-

zation and 𝜎𝑑 = ±1 has opposite sign for magnetic unit cell sites on different sublattices [77,

p. 150].

More complex magnetic structures, such as helimagnets, exist; however, a more authorita-

tive resource should be consulted for their neutron scattering cross-sections – e.g., Squires

[77] and Lovesey [78].

3.1.2 Inelastic scattering

Excitations in condensed matter typically have energy scales similar to the energy of

thermal neutrons. By exchanging energy with a system, a neutron is able to excite or

extinguish an excitation by losing or gaining energy, respectively. As such, thermal neutron

scattering is a useful tool to probe the momentum and energy dependence of various excitation

in condensed matter systems.

3.1.2.1 Nuclear inelastic scattering

One type of crystalline excitation is the collective motion of nuclei in the lattice, dubbed

a phonon. The displacement of the 𝑑th nucleus in the 𝑙th unit cell is given by the vector 𝒖( 𝒍
𝒅),

which can be expressed as a sum over the displacements due to a set of normal modes

𝒖( 𝒍
𝒅

) = ∑
𝒒

∑
𝑗

√
ℏ

2𝑀𝒅𝑁𝜔𝒒𝑗
[𝝐𝒅𝒒𝑗𝑎𝒒𝑗𝑒𝑖𝒒⋅𝒍 + 𝝐∗

𝒅𝒒𝑗𝑎
†
𝒒𝑗𝑒−𝑖𝒒⋅𝒍] (3.34)

where 𝑀𝒅 is the mass of the 𝑑th nucleus, the energy of the 𝑗th normal phonon mode at 𝒒

is ℏ𝜔𝒒𝑗, and the displacement eigenvector for the 𝑑th nucleus in the unit-cell as a result of
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the 𝑗th normal mode is 𝝐𝒅𝒒𝑗. If there are 𝑟 = ∑𝒅 atoms per unit cell, then there are 3𝑟

normal modes (𝑗 = 1, … , 3𝑟) since each atom has three degrees of freedom [79, p. 105]. The

displacement eigenvectors are orthonormal and behave the relations

∑
𝒅

𝝐∗
𝒅𝒒𝑗 ⋅ 𝝐𝒅𝒒𝑗′ = 𝛿𝑗𝑗′ and ∑

𝑗
𝜖𝛼∗

𝒅𝒒𝑗𝜖
𝛽
𝒅′𝒒𝑗 = 𝛿𝛼𝛽𝛿𝒅𝒅′. (3.35)

As given by Squires, the cross-section for the coherent creation of one phonon is given by [77,

p. 46]

d2𝜎
d𝛺 d𝐸

=𝑘f
𝑘i

(2𝜋)3

2𝑣0
∑

𝒒
∑

𝑗
∑

𝝉

1
𝜔𝒒𝑗

∣∑
𝒅

�̄�𝑑

√𝑀𝒅
𝑒−𝑊𝒅 𝑒𝑖𝑸⋅𝒅𝑸 ⋅ 𝝐𝒅𝒒𝑗∣

2

× ⟨𝑛𝒒𝑗 + 1⟩ 𝛿(𝜔 − 𝜔𝒒𝑗)𝛿(𝑸 − 𝒒 − 𝝉) (3.36)

and for the coherent annihilation of one phonon

d2𝜎
d𝛺 d𝐸

=𝑘f
𝑘i

(2𝜋)3

2𝑣0
∑

𝒒
∑

𝑗
∑

𝝉

1
𝜔𝒒𝑗

∣∑
𝒅

�̄�𝑑

√𝑀𝒅
𝑒−𝑊𝒅 𝑒𝑖𝑸⋅𝒅𝑸 ⋅ 𝝐𝒅𝒒𝑗∣

2

× ⟨𝑛𝒒𝑗⟩ 𝛿(𝜔 + 𝜔𝒒𝑗)𝛿(𝑸 + 𝒒 − 𝝉) (3.37)

where the sums over 𝝉 and 𝒅 are as in equation (3.25), ⟨𝑛𝒒𝑗 + 1⟩ and ⟨𝑛𝒒𝑗⟩ are the average

thermal population factors for the creation and annihilation of a phonon of the 𝑗th mode at

𝒒, and the Dirac delta functions enforce conservation of energy and momentum.

3.1.2.2 Magnetic inelastic scattering

For a ferromagnetic system, if each atom has spin 𝑆 the magnitude of its spin angular

momentum is √𝑆(𝑆 + 1)ℏ and any component of the spin angular momentum is given by

𝑀ℏ (𝑀 = 𝑆, 𝑆 − 1, … , −𝑆). At zero temperature all of the spins within a domain are

aligned, and therefor 𝑀 = 𝑆 for all atoms. Finite temperatures allow for the other values of
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𝑀 due to thermal excitations, and the difference from 𝑀 = 𝑆 is called a spin deviation. The

spin deviations in a ferromagnetic domain can be represented by spin waves, which give the

probability of a spin deviation when squared and are therefore continuous despite the spin

deviations themselves being discrete [77, p. 156]. The spinwave is quantized, with an energy

above the ground state of 𝑛ℏ𝜔, where 𝑛 = 1, 2, ... and 𝜔 is the spinwave angular frequency.

The quanta of energy ℏ𝜔 are known as magnons. By exchanging energy with a spinwave,

a neutron is able to create or annihilate a magnon; therefore inelastic neutron scattering is

able to directly probe the excitations of magnetic systems.

The general magnetic partial differential cross-section for neutron scattering is

d2𝜎
d𝛺 d𝐸

= 𝑁
ℏ

𝑘f
𝑘i

(𝛾𝑟0)2 [1
2

𝑔𝐹(𝑸)]
2

𝑒−2𝑊 ∑
𝛼,𝛽

(𝛿𝛼𝛽 − �̂�𝛼�̂�𝛽) 𝑆𝛼𝛽(𝑸, 𝜔) (3.38)

where 𝛾 is the gyromagnetic ratio, 𝑟0 = 𝑒2/𝑚𝑒𝑐2 is the classical electron radius, 𝑔 is the Landé

splitting factor (𝑔 = 2 for a spin-only moment), the sum over 𝛼 and 𝛽 is over directions of the

spin-system, (𝛿𝛼𝛽 − �̂�𝛼�̂�𝛽) is a result of the neutron only interacting with the component of

𝑺 perpendicular to 𝑸 given by

𝑺⟂ = �̂� × 𝑺 × �̂� (3.39)

with squared magnitude

|𝑺⟂|2 = ∑
𝛼,𝛽

(𝛿𝛼𝛽 − �̂�𝛼�̂�𝛽)𝑆∗
𝛼𝑆𝛽 (3.40)

and 𝑆𝛼𝛽(𝑸, 𝜔) is the spin-spin correlation function for the system.

For a small applied magnetic field, with Fourier transformed component 𝐻𝛽(𝑸, 𝜔), the

magnetization of a system will respond in some way, 𝛥𝑀𝛼(𝑸, 𝜔), which can be expanded in

powers the applied field.

𝛥𝑀𝛼(𝑸, 𝜔) = 𝜒𝛼𝛽(𝑸, 𝜔)𝐻𝛽(𝑸, 𝜔) + higher order terms (3.41)
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The first term in such an expansion is linear in the applied field with a coefficient called the

linear magnetic susceptibility, 𝜒𝛼𝛽(𝑸, 𝜔) which is a tensor that describes the magnetization

response of a system along the 𝛼-direction to an applied magnetic field along the 𝛽-direction.

The linear magnetic susceptibility of a material is, in general, a complex valued function with

an imaginary component related to dissipation in response to the applied magnetic field,

𝜒𝛼𝛽(𝑸, 𝜔) = 𝜒′𝛼𝛽(𝑸, 𝜔) + 𝑖𝜒″𝛼𝛽(𝑸, 𝜔). (3.42)

The fluctuation-dissipation theorem relates the imaginary component of the magnetic suscep-

tibility to the spin-spin correlation function

𝑆𝛼𝛽(𝑸, 𝜔) = 1
1 − 𝑒−ℏ𝜔/𝑘B𝑇

1
𝜋(𝑔𝜇B)2 𝜒″𝛼𝛽(𝑸, 𝜔). (3.43)

For magnon scattering, the general magnetic partial differential cross-section, equa-

tion (3.38), is modified by

∑
𝛼,𝛽

(𝛿𝛼𝛽 − �̂�𝛼�̂�𝛽) 𝑆𝛼𝛽(𝑸, 𝜔) = 1
2

(1 + ⟨�̂�2
𝑧⟩

avg
) 𝑆sw(𝑸, 𝜔). (3.44)

For ferromagnetic spin waves, the spin wave function for small 𝒒 is

𝑆sw(𝑸, 𝜔) = 𝑆 ∑
𝝉,𝒒

[(𝑛𝑞 + 1)𝛿(𝑸 − 𝒒 − 𝝉)𝛿(𝜔 − 𝜔𝑞) + 𝑛𝑞𝛿(𝑸 + 𝒒 − 𝝉)𝛿(𝜔 + 𝜔𝑞)] (3.45)

with quadratic dispersion relation ℏ𝜔𝑞 = 𝐷𝑞2, and 𝐷 = 2𝐽𝑆𝑎2 where 𝐽 is the exchange

energy. While for antiferromagnetic spin waves, the spin wave function for small 𝒒 is

𝑆sw(𝑸, 𝜔) = 𝑆 ∑
𝝉,𝒒

ℏ𝜔0
ℏ𝜔𝑞

[(𝑛𝑞 + 1)𝛿(𝑸 − 𝒒 − 𝝉)𝛿(𝜔 − 𝜔𝑞)

+𝑛𝑞𝛿(𝑸 + 𝒒 − 𝝉)𝛿(𝜔 + 𝜔𝑞)] (3.46)
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where, as before, the 𝝉 sum is over reciprocal lattice vectors of the magnetic unit cell and

ℏ𝜔0 = 2𝑧𝐽𝑆, with 𝑧 nearest neighbors; and linear dispersion relation ℏ𝜔𝑞 = ℏ𝑐𝑞 with

𝑐 = 𝑧𝐽𝑆𝑎/ℏ.

3.2 Neutron Spectroscopy Techniques

In order to determine the partial differential cross-section for any scattering process one

must know the energy of the scattering probe (e.g., the neutron) before and after allowing it

to interact with the sample in order to be able to detect changes due to inelastic scattering

processes. The name for the energy analysis of a scattering probe is spectroscopy, and the

means by which it is accomplished is probe dependent.

All scattering probes have an energy-dependent wavelength, see e.g., figure 3.1. Bragg

scattering from a crystal is dependent on the wavelength of a probe, and can therefore

be used as a means of energy discrimination since different wavelengths are diffracted at

different angles from the same set of crystal lattice planes. A device constructed of one or

more crystals and aligned to diffract a wavelength (and energy) of interest upon a sample to

be studied is called a monochromator. Monochromators are used extensively in x-ray and

neutron diffraction. When a monochromator is placed after a sample and is used to select a

single wavelength scattered by the sample for detection, it is conventionally referred to as an

analyzer.

Scattering probes with finite mass have a kinetic energy dependent upon their velocity,

and therefore measuring changes in their velocity is a way to analyze their kinetic energy.

Since it is not too difficult to accurately measure fixed distances and times between events,

most velocity based energy analysis measurements measure the time it takes for, e.g., a

neutron to travel a known distance and from that calculate its velocity and energy.

Focusing on neutron spectroscopy, it is possible to measure the energy of a neutron via

either its wavelength or its velocity. By measuring the energy of a neutron before and after



61

allowing it to interact with a sample, it is possible to determine the energy transferred to

or from the sample and, ultimately, extract the partial differential cross-section for that

interaction. In principle a neutron spectrometer, i.e., an instrument which allows for such a

spectroscopy analysis, can consist of a combination of wavelength- and velocity-based energy

analysis. However, the majority of neutron spectrometers utilize one or the other exclusively

to analyze the energy of neutrons incident-on and scattered-from a sample. The most common

neutron spectrometer which leverages the neutron wavelength to perform energy analysis is

the triple-axis spectrometer, while the most common velocity-based neutron spectrometer is

the direct-geometry time-of-flight spectrometer.

3.2.1 Triple-axis

The triple-axis neutron spectrometer uses Bragg scattering from monochromator and

analyzer crystals in order to perform energy-analysis of neutron scattering. Illustrated in

figure 3.4 is the triple-axis neutron spectrometer located on horizontal beamtube 3 (HB3) at

the High Flux Isotope Reactor (HFIR) on the campus of Oak Ridge National Laboratory

(ORNL), which is a typical triple-axis neutron spectrometer. The components of the HB3 spec-

trometer consist of a steady-state fission reactor neutron source, a variable-vertically-focusing

monochromator comprised of pyrolytic graphite (PG) crystals arrayed to diffract neutrons

from (0 0 2) planes, a sample table, a fixed-vertically-focusing analyzer also utilizing the

(0 0 2) reflection of pyrolytic graphite, and a 3He single detector — plus computer-controlled

motors to enable scans through reciprocal space, and shielding to reduce measured back-

ground and personnel radiation risks. The three axes of the triple-axis spectrometer are the

monochromator rotation (𝜓M), the sample rotation (𝜓S), and the analyzer rotation (𝜓A).

It should be noted that, while the rotation angle of any of the three crystals, 𝜓𝑖, is half

its scattering angle, 2𝜃𝑖, in the case of Bragg scattering, this relationship is not enforced
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mechanically, nor strictly via software, and so the rotation angles (𝜓𝑖) and scattering angles

(2𝜃𝑖) are typically treated as separate variables.

Since the energy of an incident neutron is selected via Bragg scattering from the mono-

chromator, and the energy of a scattered neutron is determined via Bragg scattering from the

analyzer, angular uncertainties are critically important for the correct determination of the

energy transferred to (or from) a sample via inelastic scattering. Compared to synchrotron

x-ray sources, neutron sources have orders-of-magnitude lower flux and, consequently, neutron

beams are typically large in cross-section in order to increase the total-beam flux that can be

directed upon a sample. Such broad beams contain neutrons with finite divergence due to the

source and apertures defining them not being point-like. One way employed to reduce the

divergence of a neutron beam is to place long and thin slats of neutron-absorbing material

aligned-along and in the beam. Such devices are called Soller collimators, and they limit the

divergence of the beam geometrically without significantly reducing the beam cross-sectional

area. The HB3 triple-axis spectrometer has such Soller collimators (not shown in figure 3.4)

between the monochromator and sample position, between the sample position and analyzer,

and between the analyzer and detector. These collimators not only reduce the divergence of

the beam, but also tend to reduce the background measured by the 3He detector. Further

details regarding the effect of Soller collimators and instrument components on the uncertainty

of measurements are discussed in appendix C.

As illustrated in figure 3.3, any crystal which is aligned to diffract neutrons of wavelength 𝜆

(and wavenumber 𝑘 = 2𝜋/𝜆, and energy 𝐸 = ℎ2/2𝑚𝜆2) will also diffract shorter-wavelength

neutrons with 𝜆𝑛 = 𝜆/𝑛, 𝑛 = 2, 3, … . These shorter-wavelength neutrons have higher energy

than the primary neutrons, that goes like their order squared

𝐸𝑛 = ℎ2

2𝑚𝜆2
𝑛

= 𝑛2 ℎ
2𝑚𝜆2 = 𝑛2𝐸, (3.47)
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and are called higher-order harmonics of the incident beam. If the monochromator, sample,

and analyzer are all in the Bragg condition for some reflection, the detected neutrons will

be some combination of the primary wavelength and high-order neutrons; dependent upon

the exact energy-distribution of the neutron flux coming from the moderator. Because

the sample is not in a Bragg condition during inelastic measurements such higher-order

scattering might seem to be less problematic; however, higher-order scattering from either

the monochromator or the analyzer that coincides with strong elastic scattering from the

sample can produce sharp spurious peaks (spurions) in an inelastic scattering dataset, and

can easily be misinterpreted as new and unexpected excitations. Therefore, it is important

to reduce the percentage of higher-order neutrons in the neutron beam in order to avoid such

deleterious effects. One often employed method by which to do so is to place a material with

a highly energy-dependent neutron transmission probability in the beam and select a fixed

incident or fixed final primary neutron energy to coincide with a high-transmission window

that also gives low-transmission for higher-order neutrons. For convenience, due to the 𝑘f

term in the cross-section for inelastic neutron scattering, the HB3 triple-axis spectrometer

is often operated with a fixed final neutron energy of 14.7 meV which coincides with a

transmission window in a highly ordered pyrolytic graphite (HOPG) filter placed in the

neutron beam between the sample and analyzer. HOPG filters also have useful primary

transmission windows at 30.5 and 41.0 meV [80, p. 81]. As discussed in detail by Shirane et al.

[80], there are other materials which can be used as high-pass and low-pass neutron filters.

HB3 has such a filter, made of sapphire, before the monochromator to remove high-energy

neutrons from the incident beam.

Working with a fixed final energy solves one problem while introducing another. With the

final energy fixed, excitations can only be measured if the incident energy is varied – which

also varies the incident neutron flux, making it difficult to measure absolute cross-sections. By

placing a low-efficiency neutron detector (often a Geiger counter filled with mostly nitrogen
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gas, called a beam monitor, that counts with an efficiency proportional to the neutron

wavevector 𝑘) between the monochromator and sample, and then normalizing measured

counts in the 3He detector to measured counts in the monitor, it is possible to compare data

measured with different incident energy neutrons; unfortunately this does not fully solve the

issue of absolute cross-sections, which is discussed in detail in appendix D.

If one so chooses, the same HOPG filter can be placed between the monochromator and

sample and the triple-axis instrument can be used with fixed incident neutron energy. The

cross-section for inelastic neutron scattering is proportional to 𝑘f/𝑘i, 𝑘f (𝑘i) changes with

energy transfer for fixed-𝐸i (fixed-𝐸f) and must be accounted for when comparing measured

intensity to a theoretical model. Since interpreting data without correcting for varying 𝑘f/𝑘i

would be misleading, it is common to conduct triple-axis experiments with fixed-𝐸f (so that

the 𝑘f term remains constant and the remaining 1/𝑘i term is accounted for by the beam

monitor efficiency) to minimize the possibility of misinterpreting data during the experiment.

With a single detector, the flexibility to easily define all components of (𝑸, 𝐸), and a

steady-state source of neutrons, the triple-axis neutron spectrometer is a workhorse instrument

for focused parametric studies of the effects of temperature, magnetic field, etc., on a condensed

matter system and its excitations.

3.2.2 Time-of-flight

The time-of-flight neutron spectrometer takes advantage of the finite mass of the neutron

to measure its energy via its velocity. In order to determine the velocity of a neutron one

must define a path that the neutron can take and then measure the time for the neutron to

travel through that path. This requires some time-structure to the neutron beam used the

various time-of-flight techniques. While it is possible to take a steady-state neutron beam

from a fission reactor and introduce a time-structure with, e.g., a series of disc choppers, it is

far more advantageous to leverage the intrinsic time-structure of a pulsed neutron source for a
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time-of-flight measurement. Time-of-flight neutron scattering instruments are typically large

– with flight paths from a few to tens of meters – so measuring neutron path distances with

high relative accuracy is possible (e.g., a relative uncertainty of 10−3 only requires millimeter

precision for a meter long flight path, and commercial laser-based surveying equipment is

available with sub-millimeter accuracy).

To measure the neutron velocity then, it is necessary to define a starting time and a

stopping time. For pulsed sources, the starting time is typically taken to coincide with the

pulse – the time of the proton beam hitting the target is used for pulsed spallation sources.

Independent of the type of source, the stopping time is typically the time when a neutron is

detected.

The energy of a neutron incident on a sample can be determined by opening a path

through an otherwise-neutron-absorbing ‘chopper’ at some defined time after the pulse time.

Knowing the distance between where the neutrons are produced at time-zero and the location

of the chopper, allows for the energy of the incident neutron to be selected based on its

velocity. Due to considerations of energy-resolution and transmitted flux there are different

designs these beam choppers. Common beam choppers are: the disc chopper, which is made

of neutron-absorbing material and aligns a neutron-transparent window with the beam at the

appropriate time; and the Fermi chopper, which spins a pack of curved neutron absorbing

blades around an axis perpendicular to the neutron beam thereby passing only those neutrons

with the correct velocity (and phase) to pass through without touching, as illustrated in

figure 3.5.

The ARCS direct-geometry time-of-flight of flight spectrometer, illustrated in figure 3.6,

is located at beamline 18 of the Spallation Neutron Source on the campus of Oak Ridge

National Laboratory, Oak Ridge, Tennessee. Beamline 18 makes use of thermally moderated

neutrons and, due to the nature of accelerator-driven spallation sources, ARCS has access

to incident neutrons with energies ranging from tens of meV to a few eV [82]. The first
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Figure 3.5. An illustration of a Fermi chopper, reproduced from [81].

𝒌i
𝒌f

D

Source T0 F S

Figure 3.6. A simplified illustration of a time-of-flight spectrometer, here modeled on the
dimensions of the ARCS time-of-flight spectrometer at the Spallation Neutron Source on the
campus of Oak Ridge National Laboratory, Oak Ridge, Tennessee. Indicated are the T-zero
chopper (T0), Fermi chopper (F), sample (S), the intersection of the detector bank (D) with
the instrumental horizontal plane, and the spallation source and thermal moderator (Source).
All distances are to scale.

element along the beam path from the moderator at ARCS is a so-called 𝑇0 chopper which is

closed shortly-after each spallation event in order to prevent very-high-energy (unmoderated)

neutrons and gamma rays produced in the spallation event from proceeding down the beam

path and being detected. The 𝑇0 chopper has a wide band-pass and lets through a large

range of neutron energies, dependent upon its exact opening time after the spallation event.

The next element along the ARCS beam path is one of two interchangeable Fermi choppers,

which have different slit packages to allow coarse or fine energy resolution. Only neutrons

with a selected energy are able to pass the Fermi chopper, at which point they travel towards

the sample position thereby defining 𝒌i.
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Since total flight-time is used to analyze the energy of detected neutrons, there are

no additional components between the sample and detector, which allows for a large-scale

multiplexing through the use of an array of position-sensitive 3He detector tubes. Such an

array of detectors allows for a very efficient measurement of large swaths of reciprocal space

at one sample setting; however, since each detector only measures three variables for each

neutron (two angles describing its own position, and the detection time for each neutron) only

a surface is measured in four-dimensional (𝑸, 𝐸) space. This limitation can be overcome, if

a sufficiently large sample (or cross-section) is to be measured, by rotating the sample angle

while collecting data [83].

Having access to so much of reciprocal space in a single instrument and sample-environment

setting makes it possible to accurately determine the background contribution to signals of

interest; more details about how to determine and remove the background from a single-setting

time-of-flight dataset are given in appendix E.

By accessing large regions of reciprocal space in a single measurement, direct-geometry

time-of-flight spectrometers like ARCS can give a broad overview of the excitations in a system

and are a fantastic complementary tool to the focused studies performed with triple-axis

neutron spectrometers.
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CHAPTER 4 METHODS AND PROCEDURES

Performing measurements with inelastic neutron scattering instruments employing the

time of flight method creates data sets in the form of number of counted neutrons as a

function of a number of instrument angles and time. This data is then converted to intensity,

𝐼 , as a function of reciprocal space and energy transfer, (𝑸, 𝐸), typically before leaving the

instrument computers and often before any real analysis. The measured intensity, 𝐼(𝑸, 𝐸),

will contain information about static structures and excitations within a condensed matter

system, and some details can typically be extracted without additional in-depth analysis, e.g.,

the peak position in a series of inelastic scan across a phonon branch can reveal the phonon

dispersion, 𝜔𝑠(𝒒). However, in cases where the measured intensity is not obviously peaked

or when there is a desire to extract additional information from a dataset, then a physical

model must be fit to the dataset. If features of the physical model are as sharp or sharper

than the instrumental resolution, it is further necessary to convolute the model intensity and

resolution when fitting; details of this process are given in appendix C.

Expressions were given in chapter 3 for the small 𝒒 representation of the spin wave

function, 𝑆sw(𝑸, 𝜔), for a ferromagnet and an antiferromagnet. In both cases, the form given

is a small 𝒒 expansion of the low-energy spin wave excitations of the Heisenberg Hamiltonian,

which is itself an approximation to the Hamiltonian for a local moment system taking into

account spin-spin interactions. As stated by Ashcroft and Mermin,

Extracting information even from the Heisenberg Hamiltonian is, in general, so

difficult a task, that it by itself is taken as the starting point for many quite

profound investigations of magnetism in solids. One must remember, however,
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that much subtle physics and quite complex approximations must be delved into

before one can even arrive at a Heisenberg Hamiltonian. [59, p. 681]

Despite the difficulties associated with deriving the Heisenberg Hamiltonian, it has been

used with some success to fit spin fluctuations in the iron pnictides, as discussed below in

section 4.1.1.

The challenges of deriving a local moment Heisenberg Hamiltonian for a system in which

itinerant electrons are important for the magnetism, like the iron pnictides, are ample

motivation to look elsewhere for simplified spin fluctuation models. One model, discussed in

detail below in section 4.1.3, starts from a harmonic oscillator response function and adds

features to better describe the iron pnictide spin fluctuations. Another relevant model for

the spin fluctuations seen near optimal doping in the iron pnictides considers a system of

antiferromagnetically coupled itinerant spins which lack long-range antiferromagnetic order,

this diffusive model is detailed below in section 4.1.4.

Damping of the spin fluctuations in Ba(Fe1–𝑥Co𝑥)2As2 is in some cases dramatic and in

all cases important, and gives an indication that itinerant electrons are at least partially

responsible for the observed spin response. Similarly, the spin fluctuations in Ba(Fe1–𝑥Co𝑥)2As2

are always anisotropic and, in some cases, drastically so. The importance of damping and

anisotropy has led to the development here of models including anisotropic parameters,

wherever physically meaningful, and detailed in sections 4.1.3 to 4.1.5.

In contrast to the normal state spin fluctuations, where simple models with straightforward

physical interpretations are available, the spin fluctuations in the superconducting state are

more difficult to model. Described below are two developed models for the superconducting

state spin fluctuations, including modeling the superconducting resonance. The two models

differ in their physical interpretation, with one being a rescaling of the normal state spin

fluctuations and the other being purely empirical; however they both allow for the extraction
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of physically-relevant parameters, such as the resonance dispersion and spectral weight. These

two models are discussed in sections 4.2.1 and 4.2.2, respectively.

4.1 Modeling Normal State Spin Excitations

4.1.1 Heisenberg model

4.1.1.1 A simple ferromagnet

Following the formalism laid out by Lovesey, a ferromagnetic system with localized spins

can be described by the Heisenberg Hamiltonian [78, p. 57]

ℋ̂ = − ∑
𝒍,𝒍′

𝒥(𝒍 − 𝒍′) ̂𝑺𝒍 ⋅ ̂𝑺𝒍′ − 𝑔𝜇B𝐻 ∑
𝒍

̂𝑆𝑧
𝒍 (4.1)

with an applied external magnetic field 𝐻 in the 𝑧 direction, and an exchange parameter

𝒥(𝒍 − 𝒍′) between spins located at sites 𝒍 and 𝒍′ defined such that 𝒥(0) = 0. By introducing

the spin angular momentum raising and lowering operators, ̂𝑆± = ̂𝑆𝑥 ± 𝑖 ̂𝑆𝑦, the Hamiltonian

can be recast as

ℋ̂ = − ∑
𝒍,𝒍′

𝒥(𝒍 − 𝒍′) [ ̂𝑆𝑧
𝒍

̂𝑆𝑧
𝒍′ + ̂𝑆+

𝒍
̂𝑆−
𝒍′ ] − 𝑔𝜇B𝐻 ∑

𝒍

̂𝑆𝑧
𝒍 (4.2)

and, by taking advantage of the commutation relations for the components of ̂𝑺, Lovesey

derives the equation of motion for a Bravis lattice, where 𝒥(𝒍 − 𝒍′) = 𝒥(𝒍′ − 𝒍), as

𝑖ℏ𝜕𝑡
̂𝑆+
𝒍 = 𝑔𝜇B𝐻 ̂𝑆+

𝒍 + 2 ∑
𝒍′

𝒥(𝒍 − 𝒍′) [ ̂𝑆𝑧
𝒍′

̂𝑆+
𝒍 − ̂𝑆+

𝒍′
̂𝑆𝑧
𝒍 ] . (4.3)

Which, under the assumption that the spin is fully saturated and ̂𝑆𝑧 → 𝑆 becomes

𝑖ℏ𝜕𝑡
̂𝑆+
𝒍 = 𝑔𝜇B𝐻 ̂𝑆+

𝒍 + 2𝑆 ∑
𝒍′

𝒥(𝒍 − 𝒍′) [ ̂𝑆+
𝒍 − ̂𝑆+

𝒍′ ] . (4.4)
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By introducing the reciprocal space counterparts of ̂𝑆±
𝒍 and 𝒥(𝒍) via

̂𝑆±
𝒍 = 1

𝑁
∑

𝒒
𝑒±𝑖𝒒⋅𝒍 ̂𝑆±

𝒒 𝐽(𝒒) = ∑
𝒍

𝒥(𝒍)𝑒−𝑖𝒒⋅𝒍 (4.5)

the equation of motion can be replaced by

𝑖ℏ𝜕𝑡
̂𝑆+
𝒒 = 𝑔𝜇B𝐻 ̂𝑆+

𝒒 + 2𝑆 [𝐽(0) − 𝐽(𝒒)] ̂𝑆+
𝒒 (4.6)

which can have time dependent solutions of the form ̂𝑆+
𝒒 (𝑡) = exp(−𝑖𝜔𝒒𝑡) ̂𝑆+

𝒒 giving the

dispersion relation

ℏ𝜔𝒒 = 𝑔𝜇B𝐻 + 2𝑆 [𝐽(0) − 𝐽(𝒒)] . (4.7)

If the exchange parameter is only finite between nearest-neighbors, with magnitude 𝐽 , then

𝐽(𝒒) = 𝐽 ∑
𝝆

𝑒𝑖𝒒⋅𝝆 (4.8)

where 𝝆 is a vector pointing to each nearest-neighbor. In the limit of small 𝒒, equation (4.8)

can be expanded

𝐽(𝒒) = 𝐽 ∑
𝝆

{1 + 𝑖𝒒 ⋅ 𝝆 + 1
2

(𝑖𝒒 ⋅ 𝝆)2 + … } ≈ 1 − 𝐽𝑞2𝑎2 (4.9)

where the approximation is only valid for cubic lattices with lattice parameter 𝑎. In such a

case, it’s clear to see that the dispersion relationship given for equation (3.45) is recovered in

the case of no applied field

ℏ𝜔𝒒 ≈ 𝑔𝜇B𝐻 + 2𝐽𝑆𝑎2𝑞2. (4.10)
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4.1.1.2 A simple antiferromagnet

Lovesey also derives the dispersion relationship for a simple collinear antiferromagnet

as the limiting case of a ferrimagnet which is composed of two interpenetrating sublattices

aligned antiferromagnetically with different spin magnitudes. Taking the limit of equal

sublattice spin magnitudes early, and again following the formalism of Lovesey, one can write

the Heisenberg Hamiltonian for a simple collinear antiferromagnet as

ℋ̂ = ∑
𝒍,𝒓

𝒥(𝒓) ̂𝑺𝒍 ⋅ ̂𝑺𝒍+𝒓 + ∑
𝒎,𝒓

𝒥(𝒓) ̂𝑺𝒎 ⋅ ̂𝑺𝒎+𝒓

+ ∑
𝒍,𝒓′

𝒥′(𝒓′) ̂𝑺𝒍 ⋅ ̂𝑺𝒍+𝒓′ + ∑
𝒎,𝒓′

𝒥′(𝒓′) ̂𝑺𝒎 ⋅ ̂𝑺𝒎+𝒓′

− 𝑔𝜇B(𝐻 + 𝐻A) ∑
𝒍

̂𝑆𝑧
𝒍 − 𝑔𝜇B(𝐻 − 𝐻A) ∑

𝒎

̂𝑆𝑧
𝒎 (4.11)

where 𝒓 connects sites on opposite sublattices and 𝒓′ connects sites on the same sublattice;

similarly the exchange parameters 𝒥 and 𝒥′ represent magnetic exchange energy between

inter- and intra-sublattice spins, respectively; and 𝐻A is an effective magnetic field due to

uniaxial anisotropy. To simplify the calculation of spin wave modes of this Hamiltonian, it is

useful to rotate the spin operators associated with the 𝒎 sublattice via

̂𝑇 𝑥
𝒎 = ̂𝑆𝑥

𝒎, ̂𝑇 𝑦
𝒎 = − ̂𝑆𝑦

𝒎, and ̂𝑇 𝑧
𝒎 = − ̂𝑆𝑧

𝒎 (4.12)

which has the effect of reversing the spin raising and lowering operators for the 𝒎 sublattice

ions, ̂𝑇 ∓
𝒎 = ̂𝑆±

𝒎. The Fourier transforms of ̂𝑇 ±
𝒎 and ̂𝑆±

𝒍 are defined by

̂𝑆±
𝒍 = 1

𝑁
∑

𝒒
𝑒±𝑖𝒒⋅𝒍 ̂𝑆±

𝒒 , and ̂𝑇 ±
𝒎 = 1

𝑁
∑

𝒒
𝑒∓𝑖𝒒⋅𝒎 ̂𝑇 ±

𝒒 , (4.13)

where 𝒒 is restricted to the first Brillouin zone of one sublattice, and each sublattice has N

sites [78, p. 111]. The linear equations of motion for each of the Fourier transformed operators
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can be obtained by applying the operator commutation relations and ignoring terms with

three or more raising or lowering operators; for ̂𝑆+
𝒒 and ̂𝑇 −

𝒒 these are

𝑖ℏ𝜕𝑡
̂𝑆+
𝒒 = [2𝑆𝐽(0) − 2𝑆 {𝐽′(0) − 𝐽′(𝒒)} + 𝑔𝜇B(𝐻 + 𝐻A)] ̂𝑆+

𝒒 −2𝑆𝐽(𝒒) ̂𝑇 −
𝒒 (4.14)

𝑖ℏ𝜕𝑡 ̂𝑇 −
𝒒 = − [2𝑆𝐽(0) − 2𝑆 {𝐽′(0) − 𝐽′(𝒒)} − 𝑔𝜇B(𝐻 − 𝐻A)] ̂𝑇 −

𝒒 +2𝑆𝐽(𝒒) ̂𝑆+
𝒒 . (4.15)

The solution to these coupled linear equations of motion benefits from a second quantization,

introduced by Lovesey, and ultimately yields two solutions with 𝑎 = 0, 1[78, p. 113]

ℏ𝜔𝒒,𝑎 = (−1)𝑎𝑔𝜇B𝐻 + √[2𝑆𝐽(0) − 2𝑆 {𝐽′(0) − 𝐽′(𝒒)} + 𝑔𝜇B𝐻A]2 − [2𝑆𝐽(𝒒)]2. (4.16)

As in the ferromagnetic case, the determination of 𝐽(𝒒) and 𝐽′(𝒒) is critically important for

determining the dispersion relationship. If the antiferromagnetic system is simple and has

exchange parameters similar to equation (4.8), i.e.,

𝐽(𝒒) = ∑
𝝆

𝒥(𝝆)𝑒𝑖𝒒⋅𝝆 𝐽′(𝒒) = ∑
𝝆′

𝒥′(𝝆′)𝑒𝑖𝒒⋅𝝆′

≈𝐽(0) − 1
6

𝑞2 ∑
𝝆

𝒥(𝝆)𝜌2 ≈𝐽′(0) − 1
6

𝑞2 ∑
𝝆′

𝒥′(𝝆′)𝜌′2

≡𝐽(0) − 1
6

𝑞2𝐽 (2) ≡𝐽′(0) − 1
6

𝑞2𝐽′(2) (4.17)

then equation (4.16) is approximately [78, p. 114]

ℏ𝜔𝒒,𝑎 ≈(−1)𝑎𝑔𝜇B𝐻

+ {𝑔𝜇B𝐻A [4𝑆𝐽(0) + 𝑔𝜇B𝐻A]

+ 1
3

𝑞2𝑆 [4𝑆𝐽(0) (𝐽 (2) − 𝐽′(2)) − 2𝑔𝜇B𝐻A𝐽′(2)]

+ 1
9

𝑞4𝑆2 [(𝐽′(2))2 − (𝐽 (2))2]}
1/2

. (4.18)
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It’s clear that with no applied field, the dispersion relationship given by equation (4.18)

remains finite at 𝒒 = 0 with a value determined by the effective anisotropy field 𝐻A. If the

anisotropy field is zero, the small 𝒒 behavior of equation (4.18), where the 𝑞4 terms can be

discarded, is linear in 𝑞.

4.1.2 BaFe2As2

Ewings et al. derived an approximate spin-only Heisenberg Hamiltonian for BaFe2As2

in an attempt to describe inelastic neutron scattering data from a powder sample [84].

Their form for the Hamiltonian has two nearest-neighbor exchange parameters, 𝐽1𝑎 and 𝐽1𝑏,

for interactions along the 𝒂 and 𝒃 orthorhombic lattice directions, a next-nearest-neighbor

exchange, 𝐽2, for interactions along the diagonal directions of the 𝒂–𝒃 plane, and a fourth

exchange parameter, 𝐽𝑐, for interactions between the iron-arsenic layers. Also included in

their form for the Hamiltonian are two single-ion anisotropy constants for in-plane and

out-of-plane spin rotations. The form given for the Hamiltonian is

ℋ̂ = ∑
<𝑗𝑘>

𝐽𝑗𝑘
̂𝑺𝑗 ⋅ ̂𝑺𝑘 + ∑

𝑗
{𝐾𝑐( ̂𝑆𝑧

𝑗 )2 + 𝐾𝑎𝑏 [( ̂𝑆𝑦
𝑗 )2 − ( ̂𝑆𝑥

𝑗 )2]} (4.19)

where the first sum is over all nearest-neighbor and next-nearest-neighbor pairs, and 𝐽𝑗𝑘 takes

on the appropriate exchange parameter value for the pair relationship.

Ewings et al. give the two resultant dispersion relationships

ℏ𝜔𝑸,± = √𝐴2
𝑸 − (𝐶 ± 𝐷𝑸)2 (4.20)
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with

𝐴𝑸 =2𝑆 {𝐽1𝑏 [cos(1
2𝑸 ⋅ 𝒃) − 1] + 𝐽1𝑎 + 2𝐽2 + 𝐽𝑐} + 𝑆 (3𝐾𝑎𝑏 + 𝐾𝑐) (4.21)

𝐶 =𝑆 (𝐾𝑎𝑏 − 𝐾𝑐) (4.22)

𝐷𝑸 =2𝑆 {𝐽1𝑎 cos(1
2𝑸 ⋅ 𝒂) + 2𝐽2 cos(1

2𝑸 ⋅ 𝒂) cos(1
2𝑸 ⋅ 𝒃) + 𝐽𝑐 cos(𝑸 ⋅ 𝒄)} (4.23)

as well as the non-zero elements of the spin-spin correlation tensor

𝑆𝑦𝑦(𝑸, 𝐸) = 𝑆
𝐴𝑸 − 𝐶 − 𝐷𝑸

ℏ𝜔𝑸,+
⟨𝑛(𝜔) + 1⟩ 𝛿(𝜔 − 𝜔𝑸,+) (4.24)

𝑆𝑧𝑧(𝑸, 𝐸) = 𝑆
𝐴𝑸 + 𝐶 − 𝐷𝑸

ℏ𝜔𝑸,−
⟨𝑛(𝜔) + 1⟩ 𝛿(𝜔 − 𝜔𝑸,−) (4.25)

from which, the cross section is defined by equation (3.38).

It’s important to remember that this model of spin wave excitations for BaFe2As2 is an

approximation and, more so, that it contains no energy damping or correlation length. As

such, it can only reproduce the spin excitation spectra of a system with infinite spatial order

and infinitely-lived spin wave excitations. Since itinerant electrons are at least partially

responsible for the antiferromagnetism in Ba(Fe1–𝑥Co𝑥)2As2 and the substitution of cobalt

for iron conceivably adds disorder to the system, it is desirable to add-in energy damping

and finite correlation lengths. Therefore, it is worthwhile to develop other spin fluctuation

models which incorporate these desirable features.

4.1.3 Spinwave model

The simplest case of modeling spin excitations emanating from an ordered antiferromag-

netic state is that of the simple harmonic oscillator spin wave. In a completely isotropic

system, the response function that defines the magnetic susceptibility is

𝜒s(𝑸, 𝐸) = 𝜒0𝛥2 [𝛥2 + 𝑣2𝑞2 − 𝐸2 − 𝑖𝛼𝐸]−1 , (4.26)
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where 𝜒0 ≡ 𝜒s(𝑸AFM, 0) is the staggered static susceptibility, 𝛥 is the magnitude of the spin

gap (if present) at 𝑸AFM, the spin wave velocity 𝑣 measures the dispersion away from 𝑸AFM,

𝒒 = 𝑸 − 𝑸AFM, and 𝛼 is responsible for the dissipation of energy due to damping. Inelastic

neutron scattering measures the imaginary component of the magnetic susceptibility which,

for equation (4.26) can be shown to be

𝜒″s(𝑸, 𝐸) = 𝜒0𝛥2𝛼𝐸
(𝛥2 + 𝑣2𝑞2 − 𝐸2)2 + 𝛼2𝐸2

, (4.27)

for the isotropic spin wave model (illustrated in figure 4.1).

Solid state systems only very rarely have truly isotropic properties and, one way to account

for this is to include anisotropy in the spin wave velocity. Such a response function could be

𝜒as(𝑸, 𝐸) = 𝜒0𝛥2 [𝛥2 + 𝑣2
𝑞𝑞2 − 𝐸2 − 𝑖𝛼𝐸]−1 , (4.28)

with imaginary component

𝜒″as(𝑸, 𝐸) = 𝜒0𝛥2𝛼𝐸
(𝛥2 + 𝑣2

𝑞𝑞2 − 𝐸2)2 + 𝛼2𝐸2
(4.29)

where 𝑣𝑞 is the, now anisotropic, spin wave velocity. Strictly speaking, 𝑣2
𝑞𝑞2 is the product of

four rank 2 tensors which depends strongly on the underlying symmetry of the system. For any

orthonormal system the spin wave velocity tensor has, at most, three independent parameters

– as is the case for an orthorhombic system; a tetragonal system has two independent

parameters, and a cubic system one [85]. Since the low-temperature orthorhombic system is

often indexed in terms of the tetragonal unit cell (and, therefore, 𝒒 is represented in tetragonal

units), the three independent parameters chosen to represent the spin wave velocity tensor are

not strictly the orthorhombic eigenvalues 𝑣L, 𝑣T, and 𝑣z (with eigenvectors [1 0 0]O, [0 1 0]O,

and [0 0 1]O which are along the ordered moment direction, within the Fe-𝑃𝑛 layer and
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Figure 4.1. The spinwave model, equation (4.27), as a function of energy transfer, 𝐸, and
reduced momentum transfer, 𝑞. Panel (a) shows 𝜒″s(𝑸, 𝐸) at 𝑸AFM as a function of 𝐸 which
is peaked at the spin gap magnitude, 𝛥, for small damping, 𝛼; increasing damping has the
effect of broadening the spinwave model response in energy, as shown by the nested dashed
lines. Panel (b) shows an image plot of 𝜒″s(𝑸, 𝐸) calculated for gridded points on the 𝐸–𝑞
plane, here white corresponds to zero and the darkest color is the maximum of 𝜒″s(𝑸, 𝐸); the
dispersion of the spinwave model is evident. Panel (c) reproduces the solid line from panel
(a) and then shows the effect of increasing 𝑞 on the position and magnitude of 𝜒″s(𝑸, 𝐸) as
dashed lines. Panel (d) shows 𝜒″s(𝑸, 𝛥) as a function of 𝑞 as a solid line, and shows the effect
of further increasing 𝐸 as dashed lines.
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perpendicular to the ordered moment direction, and along the inter-Fe-𝑃𝑛 layer direction,

respectively). Instead, the non-linear combinations:

𝑣xy = √𝑣2
L + 𝑣2

T
2

and 𝜂𝑣 = 2𝑣2
L − 𝑣2

T
𝑣2

L + 𝑣2
T

(4.30)

can be chosen. With these definitions, the product 𝑣2
𝑞𝑞2 becomes

𝑣2
𝑞𝑞2 = 𝑣2

xy(𝑞2
𝑥 + 𝑞2

𝑦 + 2𝜂𝑣𝑞𝑥𝑞𝑦) + 𝑣2
z𝑞2

𝑧 , (4.31)

where

𝑞𝑥 = 𝒒 ⋅ [1 0 0]T , 𝑞𝑦 = 𝒒 ⋅ [0 1 0]T , and 𝑞𝑧 = 𝒒 ⋅ [0 0 1]T (4.32)

4.1.4 Diffusive model

Between a well-ordered antiferromagnet and a fully-disordered paramagnet, is a system

which has antiferromagnetic correlations between electrons and no long range antiferromag-

netic order. In such a system it may be possible to have localized regions of antiferromagnetic

order with a characteristic correlation length, 𝜉, which are able to diffuse through the crystal

lattice. This type of system is akin to a liquid with antiferromagnetic correlations and is

characterized by diffusive spin excitations in a long-wavelength limit approximation, with

magnetic susceptibility

𝜒d(𝑸, 𝐸) = 𝜒0𝑎2𝜉−2 [𝑎2𝜉−2 (1 + 𝜉2𝑞2) − 𝑖𝛾𝐸]−1 , (4.33)

where 𝜒0 ≡ 𝜒d(𝑸AFM, 0), 𝜉 is the bare magnetic correlation length, and the imaginary term

is a consequence of the decay of spin excitations (paramagnons) into particle-hole pairs with

the corresponding Landau damping 𝛾. As discussed previously, inelastic neutron scattering
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is only sensitive to the imaginary component of the magnetic susceptibility, which can be

shown to be

𝜒″d(𝑸, 𝐸) = 𝜒0𝑎2𝜉−2𝛾𝐸
𝑎4𝜉−4 (1 + 𝜉2𝑞2)2 + 𝛾2𝐸2

, (4.34)

which has no dispersion and is characterized only by a correlation length and characteristic

energy, 𝛤 ≡ 𝑎2/𝛾𝜉2. Figure 4.2 illustrates the isotropic diffusive model.

Following the same path employed in section 4.1.3 for the spin wave model, one can

introduce an anisotropic correlation length into this model of diffusive spin excitations, giving

𝜒ad(𝑸, 𝐸) = 𝜒0𝑎2𝜉−2 [𝑎2𝜉−2 (1 + 𝜉2
𝑞 𝑞2) − 𝑖𝛾𝐸]−1 , (4.35)

where, similar to the definition of 𝑣𝑞 in equation (4.31), the following nonlinear combinations

of the orthorhombic correlation length eigenvalues (𝜉L,𝜉T, and 𝜉z) have been defined

𝜉 = √𝜉2
L + 𝜉2

T
2

, 𝜂𝜉 = 𝜉2
L − 𝜉2

T
𝜉2

L − 𝜉2
T

, and 𝜂𝜉𝑧 = 2𝜉2
z

𝜉2
L + 𝜉2

T
(4.36)

such that the anisotropic correlation length is defined as

𝜉2
𝑞 𝑞2 = 𝜉2 (𝑞2

𝑥 + 𝑞2
𝑦 + 2𝜂𝜉𝑞𝑥𝑞𝑦 + 𝜂𝜉𝑧𝑞2

𝑧) . (4.37)

Thus giving the imaginary component

𝜒″ad(𝑸, 𝐸) = 𝜒0𝑎2𝜉−2𝛾𝐸
𝑎4𝜉−4 (1 + 𝜉2

𝑞 𝑞2)2 + 𝛾2𝐸2
. (4.38)

Rearranging the parameters in equation (4.38) and utilizing the definition of the characteristic

energy 𝛤 ≡ 𝑎2/𝛾𝜉2 gives

𝜒″ad(𝑸, 𝐸) = 𝜒0𝛤𝐸
𝛤 2 (1 + 𝜉2

𝑞 𝑞2)2 + 𝐸2
, (4.39)
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Figure 4.2. The diffusive model, equation (4.34), as a function of energy transfer, 𝐸,
and reduced momentum transfer, 𝑞; as shown by the dashed lines, increasing the Landau
damping, 𝛾, shifts the diffusive model response to lower energy transfers. Panel (a) shows
𝜒″d(𝑸, 𝐸) at 𝑸AFM as a function of 𝐸 which is a maximum at the characteristic energy, 𝛤 .
Panel (b) shows an image plot of 𝜒″d(𝑸, 𝐸) calculated for gridded points on the 𝐸–𝑞 plane,
here white corresponds to zero and the darkest color is the maximum of 𝜒″d(𝑸, 𝐸); the lack of
any dispersion of the diffusive model is evident. Panel (c) reproduces the solid line from panel
(a) and then shows the effect of increasing 𝑞 on the position and magnitude of 𝜒″d(𝑸, 𝐸) as
dashed lines. Panel (d) shows 𝜒″d(𝑸, 𝛤) as a function of 𝑞 as a solid line, and shows the effect
of changing 𝐸 as dashed lines.
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which takes the familiar form of a Lorentzian distribution multiplied by the energy transfer

at 𝑸AFM (where 𝒒 = 0).

As will be shown in chapter 5, the high-energy spin fluctuations in Ba(Fe0.953Co0.047)2As2

are so anisotropic that they split in the direction perpendicular to the ordered moment.

This extreme anisotropy can not be accounted for with only an anisotropic correlation

length. An additional source of anisotropy is most-easily introduced by expanding the

momentum-dependent Landau damping for small deviations from 𝑸AFM and expressing the

characteristic energy as

𝛤𝑞 = 𝑎2

𝛾𝑞𝜉2 = 𝑎2

𝛾𝜉2 [1 + 𝛼2 (𝑞2
𝑥 + 𝑞2

𝑦 + 2𝜂𝛤 𝑞𝑥𝑞𝑦 + 𝜂𝛤𝑧𝑞2
𝑧)] , (4.40)

where the anisotropy parameters 𝜂𝛤 and 𝜂𝛤𝑧have been introduced. This gives the most-

generally anisotropic form of the diffusive model

𝜒″gd(𝑸, 𝐸) =
𝜒0𝛤𝑞𝐸

𝛤 2
𝑞 (1 + 𝜉2

𝑞 𝑞2)2 + 𝐸2
. (4.41)

The effect of this additional anisotropy is to cause the function to split along the three

orthorhombic directions at higher energies. These energies can be determined by finding the

energy at which the second derivative of the response function along a particular direction

switches signs; i.e.,

𝜕2𝜒″gd(𝑸AFM, 𝐸L)
𝜕 [1 1 0]2T

= 0,
𝜕2𝜒″gd(𝑸AFM, 𝐸T)

𝜕 [ ̄1 1 0]2
T

= 0,
𝜕2𝜒″gd(𝑸AFM, 𝐸𝑧)

𝜕 [0 0 1]2T
= 0 (4.42)

this yields the values

𝐸L = 𝛤√1 + 2 𝜉2

𝛼2
1 + 𝜂𝜉

1 + 𝜂𝛤
, 𝐸T = 𝛤√1 + 2 𝜉2

𝛼2
1 − 𝜂𝜉

1 − 𝜂𝛤
, 𝐸𝑧 = 𝛤√1 + 2 𝜉2

𝛼2
𝜂𝜉𝑧

𝜂𝛤𝑧
(4.43)
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which are typically on the order of hundreds of meV. An example of this anisotropy-induced

dispersion is illustrated in figure 4.3.

4.1.5 Ballistic model

An alternative approach for modeling the observed high-energy transverse splitting in

Ba(Fe0.953Co0.047)2As2 is to replace the constant spin gap in equation (4.29) with an anisotropic

spin gap

𝛥2
𝑞 =

𝑣2
𝑞

𝜉2
𝑞

(4.44)

the resultant response function takes the form of propagating overdamped spinwaves in a

disordered paramagnetic state, with

𝜒″b(𝑸, 𝐸) =
𝜒0

𝑣2
𝑞

𝜉2
𝑞
𝛼𝐸

(𝑣2
𝑞

𝜉2
𝑞

+ 𝑣2
𝑞𝑞2 − 𝐸2)

2
+ 𝛼2𝐸2

. (4.45)

which can be also be written as

𝜒″b(𝑸, 𝐸) =
𝜒0𝛤𝑞𝐸

𝛤 2
𝑞 (1 + 𝜉2

𝑞 𝑞2 − 𝜉2
𝑞

𝑣2
𝑞
𝐸2)

2
+ 𝐸2

. (4.46)

where 𝛤 ≡ 𝑣2
𝑞/𝛼𝜉2

𝑞 . By inspection, it is clear that for 𝐸 ≪ 𝑣𝑞/𝜉𝑞 equation (4.46) is functionally

identical to equation (4.39). Similarly, there are limits under which equations (4.29), (4.39)

and (4.46) are functionally the same.
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Figure 4.3. The diffusive model with anisotropic correlation length and Landau damping,
equation (4.41), illustrated as a function of energy transfer, 𝐸, and reduced momentum
transfer, 𝒒. For a set of anisotropy parameters, panel (a) shows the longitudinal 𝒒 dependence
versus 𝐸; panel (b) shows the transverse 𝒒 versus 𝐸 dependence; and panels (c), (d), and (e)
show the in-plane 𝒒 dependence at 1

6 , 1
2 , and 5

6 the maximum energy transfer shown in panels
(a) and (b), respectively. At high energies, this anisotropic diffusive model can, as shown
here, split in 𝒒 giving the appearance of a dispersion relationship.
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4.2 Modeling Superconducting State Spin Excitations

4.2.1 Rescaled resonance model

It has been argued by Chubukov et al. that the superconducting state magnetic suscepti-

bility should be of the form

𝜒sc(𝑸, 𝐸) = 𝜒0𝑎2𝜉−2 [𝑎2𝜉−2 (1 + 𝜉2
𝑞 𝑞2) − 𝛱sc(𝑸, 𝐸)]−1 (4.47)

where 𝛱sc(𝑸, 𝐸) is the bosonic self energy [86]. As seen for the normal state, equation (4.35),

the leading term for the bosonic self energy is typically due to the decay of spin fluctuations

into electron-hole pairs and is purely imaginary. In the superconducting state, such Landau

damping is gapped out for low energies and, instead, the leading term in the bosonic self

energy is quadratic in energy, and real

𝛱sc(𝑸, 𝐸) ≈
𝛾𝑞𝐸2

𝛥𝑞
(4.48)

where 𝛥𝑞 is determined by the fermion gap at two points on the Fermi surface connected

by 𝑸AFM + 𝒒, 2𝛥𝑞 = |𝛥𝒌| + |𝛥𝒌+𝑸AFM+𝒒| [86]. As a result, the magnetic susceptibility as

described by Chubukov et al. is purely real and can not describe inelastic neutron scattering

data. However, as noted by Kim et al., equation (4.47) diverges when the term inside of the

square brackets is zero; which defines the resonance energy dispersion observed via inelastic

neutron scattering [87]. This leads to an expression for the dispersion relationship which has

been successfully used to fit the Ba(Fe1–𝑥Ni𝑥)2As2 resonance dispersion,

𝛺𝑞 = √𝛥𝑞𝛤𝑞 (1 + 𝜉2
𝑞 𝑞2), (4.49)

utilizing the definition of 𝛤𝑞 given in equation (4.40).
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Knowledge of the dispersion relationship alone is not sufficient to determine all properties

of the superconducting resonance, e.g., its spectral weight. What is required is a model of

the response function which is defined for all 𝑸 and 𝐸, and that has the dispersion relation

given by equation (4.49). One way to introduce such a dispersion relationship into a model

related to the diffusive model of the normal-state response is

𝜒r(𝑸, 𝐸) = 𝐴
𝐸 − 𝛺𝑞

{1 + 𝜉2
𝑞 𝑞2 − 𝑖

𝐸 − 𝛺𝑞

𝜌𝑞
}

−1

+ 𝐴
𝐸 + 𝛺𝑞

{1 + 𝜉2
𝑞 𝑞2 + 𝑖

𝐸 + 𝛺𝑞

𝜌𝑞
}

−1

(4.50)

where the sum of the two complex terms is due to the implicit ± in equation (4.49), and in

each case the energy term in equation (4.35) has been recentered to ±𝛺𝑞 and rescaled by 𝜌𝑞,

which is itself potentially anisotropic. This complex susceptibility can be shown to be

𝜒r(𝑸, 𝐸) =
⎧{
⎨{⎩

𝜌𝑞 (1 + 𝜉2
𝑞 𝑞2) [𝜌2

𝑞 (1 + 𝜉2
𝑞 𝑞2)2 + 𝐸2 + 3𝛺2

𝑞 ]

𝐸2 − 𝛺2
𝑞

+ 𝑖2𝛺𝑞

⎫}
⎬}⎭

×
2𝐴𝜌𝑞𝐸

𝜌4
𝑞 (1 + 𝜉2

𝑞 𝑞2)4 + 2𝜌2
𝑞 (1 + 𝜉2

𝑞 𝑞2)2 (𝐸2 + 𝛺2
𝑞 ) + (𝐸2 − 𝛺2

𝑞 )2 . (4.51)

Clearly, the real part of equation (4.51) diverges at 𝐸 = ±𝛺𝑞, just like equation (4.47),

and is an odd function of 𝐸, unlike equation (4.47). The first property is desirable for our

model spin resonance; the second property is not, but does not adversely affect the imaginary

component of the model magnetic susceptibility, which is well behaved for all 𝐸 and 𝑸, and

an odd function of 𝐸 — and therefore it preserves causality and energy conservation. The

imaginary part of equation (4.51) is

𝜒″r(𝑸, 𝐸) =
4𝐴𝜌𝑞𝛺𝑞𝐸

𝜌4
𝑞 (1 + 𝜉2

𝑞 𝑞2)4 + 2𝜌2
𝑞 (1 + 𝜉2

𝑞 𝑞2)2 (𝐸2 + 𝛺2
𝑞 ) + (𝐸2 − 𝛺2

𝑞 )2 . (4.52)
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If the scaling parameter is a constant (𝜌𝑞 ≡ 𝜌) and the correlation length in the supercon-

ducting state is the same as in the normal state, then this model could be fit with as little as

three free parameters.

The superconducting state response can then be modeled as a gapped normal state

excitation plus this resonant mode given by equation (4.52)

𝜒″SC(𝑸, 𝐸) = 𝜒″r(𝑸, 𝐸) +
⎧{
⎨{⎩

0 |𝐸| < 𝛥𝑞

𝜒″NS(𝑸, 𝐸) |𝐸| ≥ 𝛥𝑞

(4.53)

4.2.2 Empirical resonance model

As will be demonstrated, the diffusive model best reproduces the normal state spin

fluctuations for compositions which also exhibit superconductivity. It may be possible then

to employ a modified diffusive model to fit the superconducting data. The modifications

employed to produce this empirical superconducting state model are built up from a number

of step-approximating hyperbolic tangent functions to create (𝑸, 𝐸)-dependent parameters

and to add a low-energy superconducting gap. The imaginary part of this complex model is

given by

𝜒″SC(𝑸, 𝐸) =
𝜒0𝜉2

NS𝛤NS𝐸
𝛤 2(𝑸, 𝐸) [1 + 𝜉2(𝑸, 𝐸)𝑞2]2 + 𝐸2

𝛥gap(𝑸, 𝐸) (4.54)

where the superconducting gap is given by

𝛥gap(𝑸, 𝐸) = 1
2

(tanh 𝐸 − 𝜁(𝑸)
𝜅(𝑸)

+ 2 − tanh 𝐸 + 𝜁(𝑸)
𝜅(𝑸)

) (4.55)

with a mid-step energy given by 𝜁(𝑸) and step-width given by 𝜅(𝑸), the momentum and

energy dependent characteristic energy is given by

𝛤(𝑸, 𝐸) = 𝛤SC [𝜎(𝑸, 𝐸) + 𝜎(𝑸, −𝐸) − 1] + 𝛤NS [2 − 𝜎(𝑸, 𝐸) − 𝜎(𝑸, −𝐸)] (4.56)
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Figure 4.4. The resonance model, equation (4.52), as a function of energy transfer, 𝐸,
and reduced momentum transfer, 𝑞. Panel (a) shows 𝜒″r(𝑸, 𝐸) at 𝑸AFM as a function of 𝐸
which is a maximum at 𝛺0 = √𝛥0𝛤 . Panel (b) shows an image plot of 𝜒″r(𝑸, 𝐸) calculated
for gridded points on the 𝐸–𝑞 plane, here white corresponds to zero and the darkest color
is the maximum of 𝜒″r(𝑸, 𝐸). Panel (c) reproduces the solid line from panel (a) and then
shows the effect of increasing 𝑞 on the position and magnitude of 𝜒″r(𝑸, 𝐸) as dashed lines.
Panel (d) shows 𝜒″r(𝑸, 𝛺0) as a function of 𝑞 as a solid line, and shows the effect of changing
𝐸 as dashed lines. Panel (e) shows the relationship between 𝛥0 and 𝛺0 for fixed 𝛤 ; as long
as 𝛤 < 𝛥0 (which is typically the case) 𝛺0 < 𝛥0 as well.
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the momentum and energy dependent correlation length by

𝜉2(𝑸, 𝐸)𝑞2 = 𝜉2
SC(𝑸)𝑞2 [𝜎(𝑸, 𝐸) + 𝜎(𝑸, −𝐸) − 1]

− 𝜉2
NS(𝑸)𝑞2 [𝜎(𝑸, 𝐸) + 𝜎(𝑸, −𝐸) − 2] (4.57)

where the rescaled hyperbolic tangent function which accomplishes the various steps is given

by

𝜎(𝑸, 𝐸) = 1
2

(1 + tanh
1
2 [𝜐(𝑸) + 𝜁(𝑸)] − 𝐸

1
6 [𝜐(𝑸) − 𝜁(𝑸)]

) (4.58)

and the three step-function momentum dependent characteristic energies, 𝜁(𝑸), 𝜅(𝑸), and

𝜐(𝑸) are all defined in a similar fashion as

𝑧(𝑸) = 𝑧1 + 1
2

(𝑧2 − 𝑧1) (1 + cos 𝜋𝐿) (4.59)

where 𝑧 = 𝜁, 𝜅, 𝜐 and the 𝑧𝑙 = 𝑧(𝑸 = (1
2

1
2 𝑙)

T
). The subscripts NS and SC indicate normal

state and superconducting state parameters, respectively. The normal state parameters are

those determined from the diffusive model, equation (4.39), fit to the normal state data.

Both 𝛤(𝑸, 𝐸), and 𝜉2(𝑸, 𝐸)𝑞2 utilize the same set of step functions to switch between free

superconducting parameters at small energy transfers and fixed normal state parameters at

large energy transfers, in order to remain consistent with the observation that the spectra are

indistinguishable in the two states for large energy transfers. Figure 4.5 illustrates the energy

dependence of this double step function. The form of the step function, equation (4.58),

has been chosen such that 𝛤(𝑸, 𝐸), and 𝜉2(𝑸, 𝐸)𝑞2, collectively 𝑝(𝑸, 𝐸), are greater than

99.75% of their superconducting state value, 𝑝SC(𝑸), at 𝐸 = 𝜁(𝑸) and greater than 99.75%

of their normal state value, 𝑝NS(𝑸), at 𝐸 = 𝜐(𝑸) – therefore 𝜁(𝑸) and 𝜐(𝑸) effectively

defined the start and end of the step with increasing |𝐸|. It is important to note that

𝛥gap(𝑸, 𝐸), 𝛤(𝑸, 𝐸), and 𝜉2(𝑸, 𝐸)𝑞2 are all even functions of energy which ensures that
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Figure 4.5. An illustration of the superconducting model double step function
for an arbitrary parameter 𝑝(𝐸). The displayed lines are the superconducting parame-
ter contribution, 𝑝SC [𝜎(𝐸) + 𝜎(−𝐸) − 1] ( ), the normal state parameter contribution,
𝑝NS [2 − 𝜎(𝐸) + 𝜎(−𝐸)] ( ), and their sum, 𝑝(𝐸) ( ). This arbitrary parameter has no
momentum dependence, 𝑝SC = 1, 𝑝NS = 1/3, and the step functions are characterized by
𝜁 = 5 meV and 𝜐 = 15 meV.

𝜒″SC(𝑸, 𝐸) remains an odd function in 𝐸 and that energy conservation and causality are

preserved.

4.3 Neutron Scattering Data Analysis

4.3.1 Analysis of time-of-flight neutron scattering data

Each scattered neutron collected at some modern time-of-flight spectrometers is recorded

as an individual event, where the flight time, detector position, and any number of relevant

environment variables are stored for each detected neutron. It is impossible to visualize the
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data without first converting its format from a list of flight times and pixel positions to a

spectrum for each detector pixel, this necessitates transforming the data into energy bins

such that each spectrum is a histogram of the number of detected neutrons per unit energy

transfer. This process is often referred to as data reduction and can be accomplished with

the mantid software package.[88]

The observed inelastic neutron scattering intensity 𝐼(𝑸, 𝐸) includes contributions from

various non-sample sources – primarily the sample holder and environment. If only magnetic

scattering is to be studied, one might also consider non-magnetic scattering from the sample

itself as a source of background. The collective intensity from these sources comprise the

background function 𝐵(𝑸, 𝐸). The background function is generally estimated by averaging

intensity from equal 𝑄 and 𝐸 sections of the detector which are far from the magnetic

intensity of interest.

𝐵(𝑄𝑖, 𝐸𝑖) =
∑𝑗 𝐵(𝑄𝑗, 𝐸𝑗)𝛿(𝑄𝑖 − 𝑄𝑗)𝛿(𝐸𝑖 − 𝐸𝑗)

∑𝑗 𝛿(𝑄𝑖 − 𝑄𝑗)𝛿(𝐸𝑖 − 𝐸𝑗)
(4.60)

where the sum goes over all detectors far from magnetic intensity and the 𝑄𝑖,𝑗, 𝐸𝑖,𝑗 correspond

to bin centers. This simplest approximation to 𝐵(𝑸, 𝐸) can only properly account for

contributions to the background which are isotropic about the incident beam direction and

is, more accurately, 𝐵(𝑄, 𝐸) — it may be possible to account for non-isotropic contributions

to the background via a more involved estimation procedure, however such added complexity

has thus far been unnecessary. An estimate of the sample-scattered intensity can be obtained

by subtracting the averaged background estimate from the observed intensity.

𝑆(𝑸, 𝐸) = 𝐼(𝑸, 𝐸) − 𝐵(𝑄, 𝐸) (4.61)

Further details of this method of background estimation and subtraction are given in ap-

pendix E.
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4.3.2 Analysis of triple-axis neutron scattering data

Due to the inherently low flux and weak interactions involved in neutron scattering

experiments the angular acceptances of triple-axis instrument components are often quite large,

and are typically defined by the presence of Soller collimators. These angular uncertainties

ultimately contribute to uncertainties in measured neutron momenta and energies, which

increase the width of features in scans through momentum-energy-space.

If the dynamic structure factor of a sample is well described by a model, 𝑆(𝑸, 𝐸), and the

instrumental uncertainties, (𝛿𝑸, 𝛿𝐸), are known precisely for all (𝑸, 𝐸), then it is possible

to determine what scattering signal would be measured by that instrument by convoluting

the instrumental uncertainties with 𝑆(𝑸, 𝐸). In practice the instrumental uncertainties

in (𝑸, 𝐸) are not known precisely for all (𝑸, 𝐸) and are instead estimated from angular

uncertainties. One popular approach, pioneered by Cooper and Nathans [89], assumes

that the only sources for all uncertainties in (𝑸, 𝐸) are Gaussian distributions of angular

divergence defined by the maximum angular divergences allowed by Soller collimators and

the mosaic of the monochromator and analyzer crystals. On modern instruments, with large

monochromators and analyzers, this approximation can break down because, if the angle

subtended by a sample as viewed from the monochromator or analyzer is smaller than the

associated Soller collimator, the effective angular uncertainty will be significantly smaller

than that defined by the collimator and the Cooper-Nathans approach will over-estimate

resolution widths.

An extension to the Cooper-Nathans approach, proposed by Popovici [90], alleviates these

issues by introducing size and shape (including curvature) effects into the angular uncertainty

calculations.

Further details about the triple-axis resolution function and utilizing its approximation to

convolute and fit model intensity to measured data are given in appendix C.
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Equations for theoretical cross-sections are, as shown in section 3.1, given as a probability

– however, neutron scattering experiments are often measured relative to a beam monitor

and the absolute incident neutron flux on a sample is typically not known precisely. This

experimental necessity makes the comparison of measured intensity to theoretical cross-sections

require an arbitrary scaling factor, which is often not ideal. Methods exist for removing the

arbitrary scale from measured intensity, such as normalizing to incoherent scattering from a

vanadium standard sample or normalizing to a sample phonon of known intensity. Both of

these methods and details of their implementation are given in appendix D.

It has been fruitful in the course of this work to define a common set of computer

programs for the analysis of triple-axis neutron scattering data. The created collection of

useful programs, a MATLAB class called scandata.m is fully described, including its typical

use, in appendix B.
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CHAPTER 5 RESULTS

5.1 Experiment Details and Data

Inelastic neutron scattering experiments were performed in order to better understand the

evolution of spin fluctuations in Ba(Fe1–𝑥Co𝑥)2As2 from well-defined spin waves in the parent

compound to diffusive spin excitations in the over-doped compounds and to determine if the

change in character is due to disorder arising from the increased cobalt concentration or the

loss of antiferromagnetic order. Inelastic neutron scattering measurements were performed on

the HB3 triple-axis spectrometer at the High Flux Isotope Reactor at Oak Ridge National

Laboratory on five Ba(Fe1–𝑥Co𝑥)2As2 samples spanning the Co concentration range from

lightly- to nearly-optimally-doped. Furthermore, inelastic neutron scattering measurements

were performed on one of these samples, an intermediate under-doped compound, on the

ARCS [82] time-of-flight spectrometer at the Spallation Neutron Source at Oak Ridge National

Laboratory. The results of these experiments have previously been reported separately in

reference [91] and reference [92]. As detailed in table A.1, the samples each consist of

co-aligned single-crystals grown from excess FeAs and CoAs, as outlined in reference [60],

each with a total mass of ∼ 2 grams and each mounted with a horizontal [𝐻 𝐻 𝐿]T scattering

plane.

5.1.1 ARCS time-of-flight spectrometer

5.1.1.1 𝐸i = 250 meV

The ARCS experiment was performed on Ba(Fe0.953Co0.047)2As2; which similarly to other

lightly- and under-doped Ba(Fe1–𝑥Co𝑥)2As2 compounds, and as discussed in section 2.3,
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undergoes a tetragonal to orthorhombic structural transition at 𝑇S = 60 K, orders antiferro-

magnetically at 𝑇N = 47 K and magnetic long-range order coexists with superconductivity

below 𝑇c = 17 K. For the experiment at ARCS, the sample was aligned with the 𝑐-axis along

the incident beam direction and measurements were performed with an incident neutron

energy of 𝐸i = 250 meV. The inelastic scattering spectra were measured at 𝑇 = 5 K (i.e.,

in the orthorhombic, antiferromagnetic, and superconducting state) and 𝑇 = 70 K (i.e., in

the paramagnetic, tetragonal state). As described briefly in section 2.3, the orthorhombic

distortion is too small to be resolved via most neutron scattering methods, including these

measurements – as such, the ARCS neutron scattering data are described in the tetragonal

𝐼4/𝑚𝑚𝑚 coordinate system with a rotated definition of 𝐻 and 𝐾 to better allow for indexing

of the measured intensity 𝑸 = 2𝜋
𝑎 (𝐻 + 𝐾) ̂𝚤+ 2𝜋

𝑎 (𝐻 − 𝐾) ̂𝚥+ 2𝜋
𝑐 𝐿�̂� = (𝐻+𝐾 𝐻−𝐾 𝐿)T where

𝑎 = 3.95 Å and 𝑐 = 12.95 Å are the tetragonal lattice constants. In tetragonal 𝐼4/𝑚𝑚𝑚

notation, 𝑸AFM = (1
2

1
2 1) [𝐻=1

2 , 𝐾=0]. With this definition of 𝐻 and 𝐾 it is convenient to

describe diagonal cuts in the 𝐼4/𝑚𝑚𝑚 basal plane; since varying 𝐻 corresponds to a scan in

the [1 1 0]T direction and varying 𝐾 corresponds to a scan in the [1 ̄1 0]
T

direction which are

the longitudinal and transverse directions, respectively, at 𝑸AFM = (1
2

1
2 1).

ARCS, like other modern time-of-flight spectrometers, collects neutron data as individual

events. The ARCS event data for each detector pixel were reduced to histograms with the

DANSE software package [93] and subsequently analyzed in part by MSLICE [94].

The background subtracted ARCS spectra for detectors within the range 0.25 < 𝐻 < 0.75

r.l.u., −0.5 < 𝐾 < 0.45 r.l.u. and 20 < 𝐸 < 150 meV were collectively fit with the

Levenberg-Marquardt algorithm to model functions, described further in sections 5.2.1

and 5.3.1. In addition to a model function, a background was fit to account for an observed

residual component of 𝐵(𝑸, 𝐸) caused by a detector bank top-to-bottom asymmetry of the

measured intensity. The fit residual background function was

𝐵𝑟(𝑸, 𝐸) = −𝑎0𝑒−𝐸/𝑎1𝐾 (5.1)
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Figure 5.1. Inelastic neutron scattering data measured on Ba(Fe0.953Co0.047)2As2 at 𝑇 = 5
K using ARCS with 𝐸i = 250 meV and the crystal aligned with the incident neutron beam
along the [0 0 1]T direction. (a) Transverse slice of the data along the [1 ̄1 0]

T
direction through

𝑸AFM = (1
2 , 1

2 , 𝐿) after averaging over 𝐻 = 0.5 ± 0.05 r.l.u. (b) Longitudinal slice of the data
along the [1 1 0]T direction through 𝑸AFM = (1

2 , 1
2 , 𝐿) after averaging over 𝐾 = 0 ± 0.1 r.l.u.

In each panel, the color scale represents the intensity of scattered neutrons. This figure has
been reproduce from reference [91].

where the 𝑎𝑖 are positive model parameters and 𝐾 (in r.l.u.) is a measure of the vertical

displacement from the horizontal detector plane. Volumetric 𝐻,𝐾,𝐸 data was fit in order to

avoid artifacts introduced by binning which are inherent in 1-D cuts and 2-D slices.

Time-of-flight measurements from ARCS of the spin excitations at 𝑇 = 5 K are shown in

figure 5.1. The magnetic excitations are observed to emanate from 𝑸AFM and are steeply

dispersive, extending to energies approaching 150 meV. In contrast to CaFe2As2 [95] and

BaFe2As2 [96] where long-lived collective modes are seen above ∼ 50 meV and provide
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Figure 5.2. Comparison of inelastic neutron scattering data measured on
Ba(Fe0.953Co0.047)2As2 at 𝑇 = 5 K (empty circles) and 𝑇 = 70 K (filled circles). Trans-
verse cuts of the data at (a′) 100 ± 10 meV, (b′) 80 ± 10 meV, (c′) 60 ± 10 meV, (d′) 40 ±
10 meV. Longitudinal cuts of the data at (a″) 100 ± 10 meV, (b″) 80 ± 10 meV, (c″) 60 ± 10
meV, (d″) 40 ± 10 meV. This figure has been reproduce from reference [91].

clear evidence of a conical spin wave dispersion (see, e.g., figure 2.23), the excitations here

appear less well-defined and more diffusive. In addition a well-defined spin gap is also

observed in CaFe2As2 and BaFe2As2, which these ARCS measurements are insensitive to due

to a large unaccounted for background near zero energy-transfer as a result of incoherent

scattering from the aluminum sample holder. In this respect, the spin fluctuation spectrum for

Ba(Fe0.953Co0.047)2As2 is more like that measured in the optimally-doped and paramagnetic

compositions of Ba(Fe1–𝑥Co𝑥)2As2, where the spin fluctuations are short-ranged and diffusive

in character [70, 97].

Measurements in the paramagnetic state at 𝑇 = 70 K above 𝑇N and 𝑇S, shown in figure 5.2,

display a magnetic spectrum nearly identical to the one at 𝑇 = 5 K. In addition, a comparison
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of the transverse and longitudinal cuts shown in figure 5.2 panels (a′)-(d′) and (a″)-(d″)

confirm a substantial anisotropy of the in-plane correlation lengths and a transverse splitting

of the high energy spin fluctuations both above and below 𝑇N. Similar features were reported

previously for the 𝑥 = 0.074 composition [97]. The similarity of the spin fluctuations at the

two temperatures allows us to average the data taken at 𝑇 = 5 K and 70 K in order to

improve the counting statistics for subsequent analysis described below. Figure 5.3(a) and (b)

show the temperature-averaged spectrum sliced in the transverse and longitudinal directions,

respectively, while panels (c)-(h) show constant energy slices of the data in the (𝐻, 𝐾) plane.

In particular, the slices at 80 meV [Figure 5.3(e)] and 100 meV [Figure 5.3(f)] clearly display

the transverse splitting of the spin excitations.

5.1.1.2 𝐸i = 50 meV

In addition to the high incident energy time of flight data shown previously, data was

also collected at ARCS with an incident energy of 𝐸i = 50 meV. Data was collected in

the antiferromagnetic state at 𝑇 = 25 K as well as in the combined antiferromagnetic and

superconducting state at 𝑇 = 5 K. Representative slices through the background subtracted

datasets are shown in figure 5.4.

By taking the difference between identical slices through the two datasets, it’s possible to

see the effect of superconductivity on this medium incident energy data. Figure 5.5 shows the

superconducting state data minus the normal state data for the same slices as displayed in

figure 5.4, except that the sliced difference data has been convoluted with a Gaussian kernel in

an attempt to smooth-out noise. The superconducting resonance is visible in these difference

image plots, however it is not immediately evident. Integrating over a somewhat larger

(𝑸, 𝐸) volume for each pixel and reducing the displayed data to one dimension produces a

cut through the four dimensional datasets. Comparing cuts made at 𝑸AFM for the 𝑇 = 5 and

25 K data, as in figure 5.6, is a clearer method of seeing the superconducting resonance which



99

Figure 5.3. Inelastic neutron scattering data measured on Ba(Fe0.953Co0.047)2As2 using
ARCS with 𝐸i = 250 meV and the crystal aligned with the incident neutron beam along
the [0 0 1]T direction. Data at 𝑇 = 5 K and 70 K are summed together to improve statistics.
(a) Transverse slice of the data along the [1 ̄1 0]

T
direction through 𝑸AFM = (1

2 , 1
2 , 𝐿) after

averaging over 𝐻 = 0.5 ± 0.05 r.l.u. (b) Longitudinal slice of the data along the [1 1 0]T
direction through 𝑸AFM = (1

2 , 1
2 , 𝐿) after averaging over 𝐾 = 0 ± 0.1 r.l.u. Constant energy

slices in the (𝐻, 𝐾)-plane averaged over an energy range of (c) 35 ± 5 meV, (d) 50 ± 10 meV,
(e) 80 ± 10 meV, (f) 100 ± 10 meV, (g) 120 ± 10 meV, and (h) 150 ± 10 meV. In each panel,
the color scale represents the intensity of scattered neutrons, where the maximum intensity
in each panel, in arbitrary units, is (a) 10, (b) 10, (c) 10, (d) 8, (e) 5, (f) 3, (g) 2, (h) 1; and
the minimum intensity in all panels is -1 arbitrary units. This figure has been reproduce from
reference [91].
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Figure 5.4. Background subtracted Ba(Fe0.953Co0.047)2As2 time-of-flight data measured on
ARCS with 𝐸i = 50 meV. Panels (a) and (b) show constant-energy slices with an integration
range 4 < 𝐸 < 10 meV such that 𝐿 ≈ 1 for 𝑇 = 25 and 5 K, respectively. Panels (c) and
(d) show [𝐻 𝐻 0] versus energy slices with an integration range −0.1 < (�̄� 𝐾 0) < 0.1 for
𝑇 = 25 and 5 K, respectively. Panels (e) and (f) show [�̄� 𝐾 0] versus energy slices with an
integration range 0.45 < (𝐻 𝐻 0) < 0.55 for 𝑇 = 25 and 5 K, respectively. White regions in
each panel indicate a lack of data due to gaps between detector tubes or kinematic limitations.
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Figure 5.5. Data shown here is the smoothed difference between superconducting and
normal state background subtracted Ba(Fe0.953Co0.047)2As2 time-of-flight data measured on
ARCS with 𝐸i = 50 meV. Panel (a) shows a constant-energy slice with an integration range
4 < 𝐸 < 10 meV such that 𝐿 ≈ 1. Panel (b) shows a [𝐻 𝐻 0] versus energy slice with an
integration range −0.1 < (�̄� 𝐾 0) < 0.1. Panel (c) shows a [�̄� 𝐾 0] versus energy slice with
an integration range 0.45 < (𝐻 𝐻 0) < 0.55. White regions in each panel indicate a lack of
data due to gaps between detector tubes or kinematic limitations.
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manifests as a peak in the superconducting data at 𝐸 ≈ 5 meV. Also shown in figure 5.6 is

a lack of any significant difference between the 𝑇 = 5 and 25 K data above 𝐸 ≈ 15 meV,

providing further justification for the decision to combine the 𝐸i = 250 meV 𝑇 = 5 and 70 K

data.

5.1.2 HB3 triple-axis spectrometer

Most of the compositions studied with the HB3 triple-axis spectrometer are under-doped,

possessing both weak AFM ordering and superconductivity at low temperatures (i.e., small

spin density wave and superconducting gaps). For the triple-axis data it is convenient to

define 𝑸 = 2𝜋
𝑎 𝐻 ̂i + 2𝜋

𝑎 𝐾 ̂j + 2𝜋
𝑐 𝐿k̂ = (𝐻, 𝐾, 𝐿) in reciprocal lattice units as referenced to

the tetragonal 𝐼4/𝑚𝑚𝑚 unit cell. Data were collected with a fixed final energy of 14.7

meV and graphite filters between the sample an analyzer. HB3 utilizes a vertically focusing

monochromator and analyzer, furthermore, all measured samples were sufficiently small

compared to the monochromator and analyzer for finite-size effects to become important.

As such, the Cooper-Nathans approximation to the resolution function was not appropriate

for the analysis of this data and instead Popovici’s method, as implemented in ResLib [98],

was used for resolution convolutions of model functions. Full details of the instrumental

parameters for the Popovici approximation used are given in appendix C. Each scan has been

reduced to the imaginary part of the dynamical susceptibility, 𝜒″(𝑸, 𝐸), after correcting for

non-magnetic background, removing the temperature dependent Bose factor, and rescaling

the intensity into absolute units of 𝜇2
B meV−1 f.u.−1 by comparison to transverse acoustic

phonons, as described in appendix D.

Figure 5.7 shows the spectrum at several different temperatures for Ba(Fe0.985Co0.015)2As2

and Ba(Fe0.967Co0.033)2As2, as measured by the HB3 triple-axis spectrometer. Each scan has

been reduced to the imaginary part of the dynamical susceptibility, 𝜒″(𝑸, 𝐸), after correcting

for non-magnetic background, removing the temperature-dependent Bose factor, and rescaling
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Figure 5.6. Background subtracted Ba(Fe0.953Co0.047)2As2 time-of-flight data measured on
ARCS with 𝐸i = 50 meV. These cuts has been produced by averaging over 0.45 < (𝐻 𝐻 0) <
0.55, −0.1 < (�̄� 𝐾 0) < 0.1, and binning in energy with a bin-width of 1 meV for 𝑇 = 5 K
( ) and 𝑇 = 25 K ( ). The 𝐿 component of 𝑸 is fully determined by the other components
of (𝑸, 𝐸) and is indicated for bin centers by a second top horizontal scale. Data within
the shaded gray region is likely too close to the elastic line for the subtracted background
estimate to be accurate, due to the presence of strong incoherent scattering.
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Figure 5.7. Temperature dependence of background subtracted Ba(Fe0.985Co0.015)2As2
and Ba(Fe0.967Co0.033)2As2 data measured at HB3. Panels (a,b) offset energy spectra at
𝑸=(0.5 0.5 1)T at the indicated temperatures for: (a) 𝑥=0.015; (b) 𝑥=0.033. Light gray
symbols represent measured intensity which was excluded from fitting due to concerns with
the validity of background estimates at those points.
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the intensity into absolute units of 𝜇2
B meV−1 f.u.−1 by comparison to transverse acoustic

phonons [99].

In addition to the temperature dependent measurements, data for each of the five samples

was collected in the antiferromagnetically ordered state at a number of (𝑸, 𝐸) points via

constant-𝑸 energy scans and constant-𝐸 momentum scans. All collected data are displayed

in appendix A. Unfortunately, the range of data collected for each sample is not consistent

across the range of samples and, in order to avoid over- or under-sampling effects, only a

selection of the available scans were fit to model functions.

The subset of scans fit are shown in figure 5.8, which is a series of representative low-energy

INS scans taken in the antiferromagnetic ordered and normal state (𝑇c < 𝑇 < 𝑇N) for each

composition. Upon increased Co substitution, the spin gap appears to gradually close

[figure 5.8(a)-(e)] and is completely absent at 𝑥 = 0.055. One can also observe a gradual

reciprocal space broadening of the longitudinal cut [figure 5.8(f)-(j)] with increasing Co

composition. Finally, the modulations along [1
2

1
2 1]

T
[figure 5.8(k)-(o)] are reduced, signaling

a gradual evolution to two-dimensional spin dynamics.

5.2 Ba(Fe1–𝑥Co𝑥)2As2 and the Spinwave Model

5.2.1 High-energy time-of-flight analysis

In the so-called ballistic model, equation (4.46), the dynamics are governed by propagating

over-damped spin-waves in the disordered paramagnetic state with anisotropic spin-wave

velocity:

𝑣2
𝑞𝑞2 = 𝑣2

xy(𝑞2
𝑥 + 𝑞2

𝑦 + 𝜂𝑣𝑞𝑥𝑞𝑦), (5.2)

where, in contrast to equation (4.31), 𝑣𝑧 has been omitted due to the ARCS measurement

being insensitive to intensity modulations along the 𝒄∗ direction.
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Figure 5.8. Background subtracted intensity corrected for the Bose thermal population
factor and the single-ion magnetic form factor for Fe2+ for Ba(Fe0.945Co0.055)2As2 (a,f,k),
Ba(Fe0.953Co0.047)2As2 (b,g,l), Ba(Fe0.960Co0.040)2As2 (c,h,m), Ba(Fe0.967Co0.033)2As2 (d,i,n),
and Ba(Fe0.985Co0.015)2As2 (e,j,o). (a-e) Constant-𝑸 energy scans at 𝑸AFM = (0.5 0.5 1)T
for the five compositions. (f-h) Constant-E 𝑸 scans in the [1 1 0]T-direction across 𝑸AFM =
(0.5 0.5 1)T at 𝐸 = 7 meV. (i-j) Constant-E 𝑸 scans in the [1 1 0]T-direction across 𝑸AFM =
(0.5 0.5 3)T at 𝐸 = 10 meV. (k-m) Constant-E 𝑸 scans in the [0 0 1]T-direction across
𝑸AFM = (0.5 0.5 1)T at 𝐸 = 7 meV. (n-o) Constant-E 𝑸 scans in the [0 0 1]T-direction across
𝑸AFM = (0.5 0.5 3)T at 𝐸 = 10 meV. Light gray symbols represent measured intensity which
was excluded from fitting due to concerns with the validity of background estimates at those
points.
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Table 5.1. Best-fit parameter values and calculated 𝜂𝜉 for the ballistic model, equa-
tion (4.46), fit to high-energy time-of-flight data for Ba(Fe0.953Co0.047)2As2..

𝜒0𝜉2/a.u. 𝛤/meV 𝜉L/Å 𝜉T/Å 𝑣𝑥𝑦/meV Å 𝜂𝑣 𝜂𝜉

6.3(7) 8.5(11) 11.8(9) 8.2(6) 450(40) 0.37(3) 0.35(9)

Presumably, the spin wave velocities in the paramagnetic phase are comparable to those

found deep in the AFM ordered state. The form of the susceptibility in equation (4.46)

is diffusive in nature (consisting of relaxational dynamics and a single peak response) at

low energies, where the spin-wave wavelength is longer than the correlation length (i.e.,

𝐸 < 𝑣𝑞𝜉−1). The renormalized spin-wave modes will appear in the form of a broad elliptical

ring of scattering at constant 𝐸 when 𝐸 > 𝑣𝑞𝜉−1 is satisfied. The high-energy form of

the scattering then represents a section of the damped, conical spin-wave dispersion. This

approach was used to describe the anisotropic quasi-propagating mode postulated in by Li

et al. in reference [97]. A similar approach was also used by Harriger et al. in reference [96],

although in that case a local moment Heisenberg model was employed to describe the spin

wave dispersion whereas here a linear dispersion is assumed.

Figure 5.9 shows calculations of the neutron scattering cross-section for the ballistic model

using parameters determined from fits of the neutron data for the 𝑥 = 0.047 compound to

equation (4.46). The utilized fitting routine ensured that, for all cases, |𝜂| ≤ 1. Fit parameter

values and their associated errors, plus values of 𝜂𝜉 derived from the fit parameters are

presented in table 5.1. The fits to the data are described in detail in section 5.4.1. The

same slices through the neutron intensity are shown in figure 5.9 as the data in figure 5.3.

The anisotropy of the spin wave velocity with 𝜂𝑣 > 0 describes the elliptical shape of the

scattering cross-section. At high energies, the scattering assumes the expected form of an

elliptical ring.
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Figure 5.9. Calculations of the inelastic neutron scattering spectrum as obtained from a
ballistic model of over-damped spin waves, as described by equation (4.46). The parameters
of the model, reported in table 5.1, were obtained by fits to the neutron scattering data for
Ba(Fe0.953Co0.047)2As2 as shown in figures 5.15 and 5.16. (a) Transverse slice of the data
along the [𝐾, −𝐾] direction through 𝑸AFM = (1

2 , 1
2 , 𝐿) after averaging over 𝐻 = 0.5 ± 0.05

r.l.u. (b) Longitudinal slice of the data along the [𝐻, 𝐻] direction through 𝑸AFM = (1
2 , 1

2 , 𝐿)
after averaging over 𝐾 = 0 ± 0.1 r.l.u. Constant energy slices in the (𝐻, 𝐾)-plane averaged
over an energy range of (c) 35 ± 5 meV, (d) 50 ± 10 meV, (e) 80 ± 10 meV, (f) 100 ± 10 meV,
(g) 120 ± 10 meV, and (h) 150 ± 10 meV. In each panel, the color scale represents the intensity
of scattered neutrons, where the maximum intensity in each panel, in arb. units, is (a) 10,
(b) 10, (c) 10, (d) 8, (e) 5, (f) 3, (g) 2, (h) 1; and the minimum intensity in all panels is 0.
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5.2.2 High-energy time-of-flight composition dependence

The high-energy spin fluctuations have been studied in several compositions of the

Ba(Fe1–𝑥Co𝑥)2As2 series (𝑥 = 0 [96], 0.065 [100], 0.074 [97], 0.08 [70], and the 𝑥 = 0.047

composition discussed here [91]) as well as in the parent compound CaFe2As2 [95, 101, 102].

In each composition, the spin excitations are seen to extend up to energies > 100 − 150 meV.

In the paramagnetic phase, the spin fluctuations in momentum space display a pronounced

elliptical anisotropy within the Fe layer, with softer magnetic excitations extending along

the [1 ̄1 0]
T
-direction (transverse to the ordered moment direction) and stiffer excitations

along the [1 1 0]T-direction (longitudinal to the ordered moment direction). In this regime,

the anisotropy is defined in terms of the magnetic correlation lengths along antiferromagnetic

(longitudinal correlation length, 𝜉L) and ferromagnetic bonds (transverse correlation length,

𝜉T) of the stripe magnetic structure:

𝜂𝜉 = 𝜉2
L − 𝜉2

T
𝜉2

L + 𝜉2
T

. (5.3)

Anisotropy parameter 𝜂𝜉 = 0 corresponds to isotropic spin fluctuations while 𝜂𝜉 = 1 cor-

responds to the extreme limit where 𝜉L ≫ 𝜉T and (𝜂𝜉 = −1 to the other extreme where

𝜉L ≪ 𝜉T). This two-fold anisotropy at 𝑸AFM = (1
2 , 1

2 , 1) is allowed by the simple tetragonal

symmetry of the Fe sublattice [103]. The origin of the anisotropy can be deduced from both

localized [104] and itinerant descriptions of the magnetism in these materials. In the limit

of local-moment magnetism, one can use the 𝐽1 − 𝐽2 model to show that 𝜂𝜉 = 𝐽1/2𝐽2 [102].

Within this approach, 𝜂𝜉 = 0 corresponds to no coupling between the two interpenetrating

Néel sublattices making up the stripe AFM structure (𝐽1 = 0), whereas 𝜂𝜉 = 1 corresponds

to the classical stability limit of the stripe ordered antiferromagnetic state, which gives way

to G-type magnetic order for 𝐽1 > 2𝐽2. In the itinerant approach, 𝜂𝜉 is a consequence of the

ellipticity of the electron pockets.
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For those compositions having long-range AFM order, the spinwave dispersion is

anisotropic within the Fe layer. To compare the anisotropy in the AFM and PM states, one

can define the anisotropy of the spin wave velocity as

𝜂𝑣 = 𝑣2
L − 𝑣2

T
𝑣2

L + 𝑣2
T

(5.4)

where 𝑣L is the spin wave velocity along the longitudinal direction and 𝑣T is the spin wave

velocity along the transverse direction. If one uses a local-moment description for the spin

wave dispersion, i.e., the 𝐽1𝑎 − 𝐽1𝑏 − 𝐽2 model, and if the orthorhombic distortion is small

(𝑎O ≈ 𝑏O, 𝛿 ≈ 0), then 𝜂𝑣 is given by

𝜂𝑣 = 𝐽1𝑎 + 𝐽1𝑏
4𝐽2 + 𝐽1𝑎 − 𝐽1𝑏

(5.5)

When 𝐽1𝑎 ≈ 𝐽1𝑏 = 𝐽1, the spin-wave velocity anisotropy reduces to the same result as that

obtained for the correlation lengths in the tetragonal paramagnetic phase, 𝜂𝑣 = 𝜂𝜉 = 𝐽1/2𝐽2.

Using these expressions, one can compute experimental values for the correlation length

and spin wave velocity anisotropies for several different iron arsenide compositions in both

the ordered and paramagnetic phases, as shown in table 5.2. In those systems with long-range

AFM order, the anisotropy of the low-energy spin fluctuations does not change strongly above

𝑇N, i.e., between the AFM-orthorhombic and PM-tetragonal phases. This observation casts

much doubt on the “nematic spin fluid” model proposed in reference [96]. In that model,

local orthorhombic distortions are proposed to exist based on the analysis of short-wavelength

zone boundary spin-waves at 𝑸 = (1 0 𝐿) using the 𝐽1𝑎 − 𝐽1𝑏 − 𝐽2 model. The temperature

independence of these zone boundary spin-waves suggests that 𝐽1𝑎 and 𝐽1𝑏, which are very

different in the orthorhombic phase, remain so even in the tetragonal paramagnetic phase.

However, this local symmetry breaking cannot hold in the long-wavelength limit, where the

crystallographic symmetry must be respected and an average nearest-neighbor exchange
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2𝐽1 = 𝐽1𝑎 + 𝐽1𝑏 must be assumed. Such a scenario would predict a sizable change in the

momentum space anisotropy of low energy spin excitations above and below 𝑇N, since the

ratio of the velocity anisotropy in the tetragonal and orthorhombic states is given by

𝜂T
𝑣

𝜂O
𝑣

= 1 + 𝐽1𝑎 − 𝐽1𝑏
4𝐽2

. (5.6)

Using the values of the exchange constants 𝐽1𝑎 and 𝐽1𝑏 extracted from the spin-wave

fitting of BaFe2As2, gives 𝜂T
𝑣 /𝜂O

𝑣 ≈ 1.7. Thus, one would expect a change of the in-plane

anisotropy by 70%, however, no change of the anisotropy is observed experimentally [96]. This

temperature independence suggests that the 𝐽1 −𝐽2 model is an appropriate parameterization

of the spin dynamics in the long-wavelength limit (in either the tetragonal or orthorhombic

phases). At shorter wavelengths/higher energies, the local-moment models clearly run into

trouble [105] and a description that explicitly takes into account the itinerancy of the

magnetic moments is needed [106]. It is interesting to note that spin fluctuations become

more anisotropic with cobalt doping in the Ba(Fe1–𝑥Co𝑥)2As2 system, reaching values 𝜂𝜉 > 1
2

for 𝑥 > 0.065.

At energies greater than 80 to 100 meV, the anisotropic spin fluctuations split along

the transverse direction and seem to form separate counter-propagating branches. This

splitting is unusual and not typical of propagating spin waves, where constant energy contours

will form a ring of scattering from collective modes that propagate in all directions. This

transverse splitting phenomenon was first noted in Ba(Fe0.925Co0.075)2As2 composition [97]

and has since been observed in the parent compound BaFe2As2 [96]. In Ba(Fe0.953Co0.047)2As2,

the transverse splitting is also observed, as shown in figure 5.2 and figure 5.3. The energy

where this transverse splitting takes place and its intensity are temperature-independent

(figure 5.2), i.e., the splitting is unmodified even deep in the AFM ordered state, a feature also

observed in BaFe2As2 (figure 2.23) [96]. Viewed as a propagating mode where 𝑣T = 𝐸/𝛥𝑞,

table 5.2 shows that the velocity of this mode is weakly dependent on composition within the
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Table 5.2. Composition dependence of the transverse propagation velocity and anisotropy
of spin fluctuations in 𝐴(Fe1−𝑥Co𝑥)2As2 (𝐴 = Ca, Sr, Ba). For undoped compounds in the
antiferromagnetic ordered (AFM) phase, the transverse velocity and anisotropy parameters
are obtained from a fit to a model of propagating spin waves. For paramagnetic (PM)
compounds, the parameters are obtained from either damped spin wave or diffusive models.
See references [91, 95–97, 100–103, 105] for further details. This table has been reproduced
from reference [91].

𝐴 𝑥 𝑇 (K) state 𝑣T (meV Å) 𝜂𝑣 reference
Ca 0 5 AFM 370(10) 0.32(2) [95]
Ca 0 10 AFM 350(40) 0.34(10) [101]
Ca 0 180 PM 0.28(18) [102]
Sr 0 6 AFM 335(20) 0.21(4) [105]
Ba 0 7 AFM 316(11) 0.41(2) [96]
Ba 0 150 PM 300 0.4 [96]
Ba 0.047 5 AFM 230(30) 0.35(9) [91]
Ba 0.047 70 PM 230(30) 0.35(9) [91]
Ba 0.065 7 PM 230(30) 0.70(2) [100]
Ba 0.074 5 PM 245(10) 0.50(1) [97]
Ba 0.075 200 PM 0.7 [103]

Ba(Fe1–𝑥Co𝑥)2As2 series, with a value of 316 meV Å for BaFe2As2 that softens to ∼ 240 meV Å

for optimally-doped superconducting compositions. The weak dependence of this splitting

on composition casts some doubt on its interpretation as an incipient incommensurability

(i.e., a band nesting effect) which should be very sensitive to composition [103]. By plotting

the magnitude of this velocity as a function of cobalt doping, see Figure 5.10 it becomes

apparent that the velocity is nearly independent of cobalt concentration in Ba(Fe1–𝑥Co𝑥)2As2,

at least over the range covering the parent, lightly-doped, under-doped, and optimally-doped

compounds – this fact is exceptionally important for the successful interpretation of the

low-energy spin fluctuations in under-doped Ba(Fe1–𝑥Co𝑥)2As2.

5.2.3 Low-energy triple-axis composition dependence

The data presented in figure 5.11 is reproduced from figure 5.7 and shows that for

Ba(Fe0.985Co0.015)2As2 and Ba(Fe0.967Co0.033)2As2 the energy spectra are dominated by a
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Figure 5.10. The transverse spin wave velocity in Ba(Fe1–𝑥Co𝑥)2As2 as a function of cobalt
concentration compiled from references [91, 96, 97, 100]. The dashed horizontal line is an
average of the presented data and, arguably, indicates that the velocity is nearly independent
of composition. Filled symbols represent values obtained in the paramagnetic state, open
symbols represent values obtained in the antiferromagnetic state, and the half-filled symbol
represents that the value was obtained from data combined from both the antiferromagnetic
and paramagnetic states.
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Figure 5.11. Temperature dependence of INS data for Ba(Fe1–𝑥Co𝑥)2As2 with 𝑥 = 0.015
[(a, c, e)] and 𝑥 = 0.033 [(b, d, f)] plus fits to the spinwave model, equation (4.29). (a, b)
Energy scans at 𝑸AFM = (0.5, 0.5, 1) performed at the indicated temperatures are offset
vertically. (c, d) Reduced temperature dependence of spinwave model parameters 𝛼 (open
symbols) and 𝛥 (filled symbols). (e, f) Reduced temperature dependence of the ordered
moment normalized to its low-temperature value. Light gray symbols in panels (a) and
(b) represent measured intensity which was excluded from fitting due to concerns with the
validity of background estimates at those points.
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large spin gap at ∼ 10 meV. These data can be fit to a damped spin wave form for 𝜒″(𝑸, 𝐸)

which is related to the ballistic model used to fit the high-energy time-of-flight data in

section 5.2.1. The full anisotropic form for the damped spin wave susceptibility is given

earlier in equation (4.29). For 𝑥 = 0.015 at 11 K, the damping parameter 𝛼 = 3.6(4) meV is

small in comparison to other energy scales and, in principle, can arise from a combination

of different damping processes (such as Landau damping for energy scales larger than the

spin density wave gap, or magnon-magnon interactions). The fit to the 𝑥 = 0.015 11 K data

shows a large spin gap 𝛥 = 9.73(14) meV characteristic of the parent AFM ordered state.

The solid lines in figure 5.11 (a) and (b) represent independent fits to the damped spin

wave model where the gap and damping rate are allowed to vary freely. The magnitude of

the spin gap is determined to be nearly constant with temperature up to a closest approach

of 𝑇 /𝑇N = 0.95 where 𝜇(𝑇 )/𝜇(11 K) ≈ 0.5. Similar to the results described for NaFeAs

[107], BaFe2As2 [107], and LaFeAsO [108], the spin gap energy scale is roughly 10 meV

in the ordered state, regardless of size of the ordered moment and the dynamics become

over-damped as 𝑇N is approached.

Within the damped spin wave model of equation (4.29), the data at all compositions

have been successfully fit by assuming that: in accordance with the temperature-dependent

results, the spin gap remains constant; the damping increases dramatically with 𝑥; and

both the in-plane and inter-plane spin wave velocities are reduced with 𝑥. However, it is

clear from high-energy INS investigations that the in-plane spin velocities are independent

of composition (see figure 5.10) and constraining the in-plane velocity to this value leads

to poorer and poorer agreement of the low-energy data with the damped spin wave model

(as shown by the black lines in figure 5.12). Best-fit parameters for the spin wave model,

equation (4.29), under these restrictions are given in table 5.3.

One major assumption of the data analysis using the spin wave model is that the spin

gap is independent of composition. If the spin gap is due to single-ion anisotropy, then its
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Figure 5.12. Background subtracted INS intensity of Ba(Fe1–𝑥Co𝑥)2As2 corrected for
the Bose thermal population factor and the Fe2+ single-ion magnetic form factor plus
best fit lines to the damped spin-wave (black lines) models. (a-e) Constant-𝑸 energy
scans at 𝑸AFM = (0.5, 0.5, 1) for five compositions. (f-h) Constant-𝐸 𝑸 scans in the
[ℎ, ℎ, 0]-direction across 𝑸AFM = (0.5, 0.5, 1) at 𝐸 = 7 meV. (i-j) Constant-𝐸 𝑸 scans in
the [ℎ, ℎ, 0]-direction across 𝑸AFM = (0.5, 0.5, 3) at 𝐸 = 10 meV. (k-m) Constant-𝐸 𝑸
scans in the [0, 0, 𝑙]-direction, perpendicular to the Fe layer, across 𝑸AFM = (0.5, 0.5, 1) at
𝐸 = 7 meV. (n-o) Constant-𝐸 𝑸 scans in the [0, 0, 𝑙]-direction across 𝑸AFM = (0.5, 0.5, 1)
at 𝐸 = 10 meV. Light gray symbols represent measured intensity which was excluded from
fitting due to concerns with the validity of background estimates at those points.
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Table 5.3. Fit parameter values for the spin wave model fit to low-energy triple-axis
data, 𝑣𝑥𝑦 and 𝜂𝑣 were fixed for all compositions by the high-energy time-of-flight best-fit
parameters reported in table 5.1.

𝑥/% 𝜒0/ 𝜇2
B

meV f.u. 𝛼/meV 𝛥/meV 𝑣𝑥𝑦/meVÅ 𝜂𝑣 𝑣𝑧/meVÅ
1.5 1.27(8) 3.6(4) 9.73(14) 450 0.365 46(2)
3.3 1.61(6) 12.4(8) 9.73 450 0.365 47.3(16)
4.0 1.94(5) 15.3(7) 9.73 450 0.365 33.9(12)
4.7 3.32(8) 22.2(6) 9.73 450 0.365 44.7
5.5 1.96(5) 27.3(10) 9.73 450 0.365 35.8

magnitude should be proportional to some power of 𝜇 [109]. Data fitting in which the spin

gap was allowed to freely vary resulted in an increase of the gap with composition, and fits

in which the spin gap was constrained to be proportional to 𝜇 gave worse results.

5.3 Ba(Fe1–𝑥Co𝑥)2As2 and the Diffusive Model

5.3.1 High-energy time-of-flight analysis

To describe the magnetic spectrum in the paramagnetic state, one can consider an

itinerant model that captures the diffusive character of the spin dynamics. One can perform

a first-principles calculation for the spin dynamics by using the complete density functional

theory (DFT) band structure and incorporating the electronic interaction via RPA[103, 105]

or DMFT.[106] Indeed, such calculations provide a good description of the magnetic spectrum

of different compounds, but their complexity makes it difficult to sort out the essential physics

responsible for the behavior of the magnetic spectrum.

Here, instead of considering the full band structure input, a phenomenological approach

described by the diffusive model, equation (4.41), is considered. The low-energy magnetic

spectrum of this model has been discussed in references [62] and [110]. With the anisotropic

correlation length

𝜉2
𝑞 𝑞2 = 𝜉2(𝑞2

𝑥 + 𝑞2
𝑦 + 2𝜂𝜉𝑞𝑥𝑞𝑦) (5.7)
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and characteristic energy

𝛤𝑞 = 1
𝛾𝑞𝜉2 = 𝛤 [1 + 𝛽2 (𝑞2

𝑥 + 𝑞2
𝑦 + 2𝜂𝛤 𝑞𝑥𝑞𝑦)] (5.8)

which both lack terms proportional to 𝑞2
𝑧 due to the insensitivity of the ARCS time-of-flight

data to modulations along 𝒄∗. In equation (5.8), the momentum-dependent damping 𝛤𝑞 has

been expanded for small deviations from 𝑸AFM, introducing the anisotropy parameter 𝜂𝛤 . And

the analysis has been restricted to |𝜂𝛤 | < 1 in order to ensure that 𝛤 −1
𝑞 is maximum at 𝑞 = 0.

Similarly, to ensure that the magnetic correlation length in equation (5.7) is well-defined,

∣𝜂𝜉∣ < 1 is assumed. Notice that equation (5.7) naturally gives rise to equation (5.3) considered

before.

At low energies, this form of the susceptibility correctly captures the elliptical shape

of 𝜒″ (𝒒, 𝐸) peaked at 𝒒 = 𝑸AFM(𝒒 = 0), in agreement with the INS measurements on a

variety of 122 compounds.[97, 102] The sign of the ellipticity depends on 𝜂𝜉; for the parent

and Co-doped BaFe2As2 compounds, such as the one shown in Fig. 5.3, the longitudinal

correlation length [parallel to 𝑸AFM = (1
2 , 1

2)] 𝜉L = 𝜉√1 + 𝜂𝜉 is longer than the transverse

correlation length [perpendicular to 𝑸AFM = (1
2 , 1

2)] 𝜉T = 𝜉√1 − 𝜂𝜉, implying that 𝜂𝜉 > 0.

On the other hand, the sign of 𝜂𝜉 depends on the band structure (see, for instance Ref. [103]),

and there is a priori no reason for it to be positive or negative. This is to be contrasted to

the classical AFM 𝐽1 − 𝐽2 model, which always predicts 𝜂 ∝ 𝐽1/𝐽2 > 0.

At high energies, as 𝐸 increases, the momentum-dependence of the Landau damping

eventually leads to the splitting of the single peak of 𝜒″(𝑸, 𝐸). Along the transverse direction,

the low-energy peak splits into two symmetric peaks for energies 𝐸 > 𝐸T, as defined in

equation (4.43). Similarly, along the longitudinal direction, the peak-splitting takes place for

energies above 𝐸L, as defined in equation (4.43).

Recalling that 𝐸L and 𝐸T are dependent on √1 ± 𝜂𝜉/1 ± 𝜂𝛤 , respectively, if 𝜂𝜉 = 𝜂𝛤

the elliptical shape of 𝜒″(𝑸, 𝐸) at low energies evolves in an elliptical-ring structure for
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Figure 5.13. Calculations of the inelastic neutron scattering spectrum as obtained from a
model of itinerant diffusive spin fluctuations, as described by equation (4.41). The parameters
of the model, reported in table 5.4, were obtained by fits to the neutron scattering data for
Ba(Fe0.953Co0.047)2As2 as shown in figures 5.15 and 5.16. (a) Transverse slice of the data
along the [𝐾, −𝐾] direction through 𝑸AFM = (1

2 , 1
2 , 𝐿) after averaging over 𝐻 = 0.5 ± 0.05

r.l.u. (b) Longitudinal slice of the data along the [𝐻, 𝐻] direction through 𝑸AFM = (1
2 , 1

2 , 𝐿)
after averaging over 𝐾 = 0 ± 0.1 r.l.u. Constant energy slices in the (𝐻, 𝐾)-plane averaged
over an energy range of (c) 35 ± 5 meV, (d) 50 ± 10 meV, (e) 80 ± 10 meV, (f) 100 ± 10 meV,
(g) 120 ± 10 meV, and (h) 150 ± 10 meV. In each panel, the color scale represents the intensity
of scattered neutrons, where the maximum intensity in each panel, in arbitrary units, is (a)
10, (b) 10, (c) 10, (d) 8, (e) 5, (f) 3, (g) 2, (h) 1; and the minimum intensity in all panels is 0.
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Table 5.4. Fit parameter values and calculated 𝜂𝜉 for the diffusive model, equation (4.41),
fit to high-energy time-of-flight data for Ba(Fe0.953Co0.047)2As2.

𝜒0𝜉2 /arb. units 𝛤 / meV 𝜉L/ Å 𝜉T / Å 𝛽 / Å 𝜂𝛤 𝜂𝜉

5.0(4) 10.7(11) 9.4(5) 5.0(3) 2.0(2) −1 0.57(6)

𝐸 > 𝐸T = 𝐸L. On the other hand, for 𝜂𝜉 > 𝜂𝛤 (𝜂𝜉 < 𝜂𝛤 ) the splitting happens at a lower

energy along the transverse (longitudinal) direction. Thus, depending on the magnitude of

the difference 𝛥𝐸 ≡ 𝐸T − 𝐸L, there can be a wide regime of energies where the low-energy

single-peak response of 𝜒″(𝑸, 𝐸) at 𝑸AFM splits into two peaks equidistant from 𝑸AFM. For

𝛥𝐸 > 0 (i.e., 𝜂𝜉 > 𝜂𝛤 ), these two peaks split along the direction transverse to 𝑸AFM, whereas

for 𝛥𝐸 < 0 (i.e., 𝜂𝜉 < 𝜂𝛤 ), the two peaks split along the longitudinal direction to 𝑸AFM.

Therefore, the experimental data in the parent and Co-doped BaFe2As2 samples (figure 5.3)

are compatible with 𝜂𝜉 > 𝜂𝛤 .

Figure 5.13 shows calculations of the neutron scattering cross-section for the diffusive

model using parameters determined from fits of the neutron data for the 𝑥 = 0.047 compound

to equation (4.41). The fits to the data are described in detail below. This figure shows the

same slices of the neutron intensity as in figure 5.3 and can be compared directly to the data.

In general, the neutron data is best described with anisotropy parameters 𝜂𝜉 > 0 and 𝜂𝛤 < 0,

resulting in anisotropic ellipsoids of scattering at low energies and a transverse splitting at

higher energies.

Fit parameter values and their associated errors, plus values of 𝜂𝜉 derived from the

fit parameters are presented in table 5.4. Fits of the data were observed to be rather

insensitive to changes in 𝜂𝛤 , and subsequently 𝜂𝛤 was fixed to −1 for the fitting. This limit

gives 𝑞-independent (constant) damping in the longitudinal direction (𝛤 ) and 𝑞-dependent

damping in the transverse direction [𝛤𝑞 = 𝛤(1 + 2𝛽2𝑞2)].
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5.3.2 Low-energy triple-axis composition dependence

Returning to the triple-axis results shown in figure 5.8. The increased reciprocal space

broadening with 𝑥 in the [1 1 0]T-direction suggests that another length scale must be

introduced for low-energy magnetic fluctuations, such as a spin-spin correlation length.

Considering also the gapless form of the magnetic excitations, the data at higher compositions

resemble the low energy limit of the diffusive response used to describe the high-energy

time-of-flight data in section 5.3.1 and also optimal and over-doped samples [97, 111].

Ignoring the Landau damping anisotropies of equation (4.41) which only significantly

affect the form of the diffusive model above 𝐸T, 𝐸L and 𝐸𝑧 [equations (4.43)] which are

typically much higher than the energy scales probed by triple-axis measurements yields

𝜒″ad(𝑸, 𝐸), equation (4.39). Here a special form of the correlation length anisotropy has been

used

𝜉2
𝑞 𝑞2 = 𝜉2 (𝑞2

𝑥 + 𝑞2
𝑦 + 2𝜂𝜉𝑞𝑥𝑞𝑦 + 𝜂𝐿 (1 + cos 𝜋𝐿)) (5.9)

to account for the exceptionally broad width of the excitation along the [0 0 1]T-direction.

Fits to the diffusive form for 𝜒″ad(𝑸, 𝐸) are shown as light green lines in figure 5.14. While

the diffusive form does a poor job at the lowest compositions where the spin gap is sharp, it

works exceptionally well at the higher compositions where the spectrum appears gapless and

the increased reciprocal space broadening for longitudinal scans shown in figure 5.14 (f)-(j) is

captured by a smaller correlation length. Best-fit parameters for resolution-convoluted fits to

the data presented in figure 5.14 are reported in table 5.5.

5.4 A Comparison of the Spinwave and Diffusive Models

5.4.1 High-energy time-of-flight

In sections 5.2.1 and 5.3.1 the neutron intensity was used to test both the diffusive and

the ballistic models, equations (4.41) and (4.46) respectively, and fitting results have thus
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Figure 5.14. Background subtracted INS intensity of Ba(Fe1–𝑥Co𝑥)2As2 corrected for the
Bose thermal population factor and the Fe2+ single-ion magnetic form factor plus best fit
lines to the diffusive (light green lines) model. (a-e) Constant-𝑸 energy scans at 𝑸AFM =
(0.5, 0.5, 1) for five compositions. (f-h) Constant-𝐸 𝑸 scans in the [ℎ, ℎ, 0]-direction across
𝑸AFM = (0.5, 0.5, 1) at 𝐸 = 7 meV. (i-j) Constant-𝐸 𝑸 scans in the [ℎ, ℎ, 0]-direction across
𝑸AFM = (0.5, 0.5, 3) at 𝐸 = 10 meV. (k-m) Constant-𝐸 𝑸 scans in the [0, 0, 𝑙]-direction,
perpendicular to the Fe layer, across 𝑸AFM = (0.5, 0.5, 1) at 𝐸 = 7 meV. (n-o) Constant-𝐸
𝑸 scans in the [0, 0, 𝑙]-direction across 𝑸AFM = (0.5, 0.5, 1) at 𝐸 = 10 meV. Light gray
symbols represent measured intensity which was excluded from fitting due to concerns with
the validity of background estimates at those points.
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Figure 5.15. Fitting results for the diffusive (red lines) and ballistic (blue lines) models to
the summed 𝑇 = 5 K and 70 K data (open symbols). Transverse cuts (′) and longitudinal cuts
(″) through 𝒒 = (1

2 , 1
2 , 𝐿) at (a) 𝐸 = 120±10 meV, (b) 𝐸 = 100±10 meV, (c) 𝐸 = 80±10 meV,

(d) 𝐸 = 55 ± 5 meV, (e) 𝐸 = 45 ± 5 meV, and (f) 𝐸 = 35 ± 5 meV. Shaded regions represent
95% confidence intervals for the fitting results.
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Figure 5.16. Fitting results for the diffusive (red lines) and ballistic (blue lines) models to
the summed 𝑇 = 5 K and 70 K data (open symbols). Spectra cuts centered at (a) (0.5, 0.5, 𝐿),
(b) (0.55, 0.45, 𝐿), (c) (0.6, 0.4, 𝐿), (d) (0.65, 0.35, 𝐿), and (e) (0.7, 0.3, 𝐿). Shaded regions
represent 95% confidence intervals for the fitting results.
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Table 5.5. Fit parameter values for the diffusive model, equation (4.39), fit to low-energy
Ba(Fe1–𝑥Co𝑥)2As2 triple-axis data, 𝜂𝜉 was fixed for all compositions by the high-energy
time-of-flight best-fit parameters reported in table 5.4.

𝑥 𝜒0 / 𝜇2
B meV−1 f.u.−1 𝛤 / meV 𝜉 / Å 𝜂𝜉 𝜂𝐿

0.015 7(5) 20 42(9) 0.57 0.0012(5)
0.033 1.9(4) 17(3) 17.1(14) 0.57 0.0035(5)
0.04 1.4(3) 10.4(6) 10.3(8) 0.57 0.0061(9)
0.047 1.61(13) 8.9(4) 11.5(3) 0.57 0.0039
0.055 0.82(12) 7.9(4) 9.2(5) 0.57 0.0033(4)

far been shown as slices through simulated data, figures 5.9 and 5.13. In order to make a

quantitative comparison between the diffusive and ballistic models, cuts through the summed

data and the best-fit simulated datasets are presented in figures 5.15 and 5.16 (red curves for

the diffusive and blue curves for the ballistic model) for fixed energy and fixed momentum,

respectively. For energies below 60 meV, the two models give nearly identical line shapes,

which is not surprising, since both models reduce to an identical description of diffusive spin

excitations at low energies. On the other hand, at higher energies, the purely diffusive model

is in better agreement with the data, since the longitudinal cut has a maximum at 𝑞 = 0

whereas the transverse cut has a minimum at 𝑞 = 0. The ballistic model, on the other hand,

gives the opposite: a minimum at 𝑞 = 0 for the longitudinal cut and a maximum at 𝑞 = 0 for

the transverse cut.

These observations are also present in the sliced datasets. One should note that while the

spectra in panels (a) and (b) of figures 5.3, 5.9 and 5.13 appear similar, there is a qualitative

difference in the higher energy slices in panels (c)-(h). The diffusive model correctly reproduces

the transverse splitting observed by experiment, whereas the ballistic model can only produce

elliptical rings or, in the extreme case of 𝜂𝑣 ≈ 1, an elliptical ring that is pinched in the

middle [see figure 5.9 (g) and (h)].

According to the fits of the INS data, neither the purely diffusive nor the ballistic model

is strongly favored over the other. Mostly, this is due to the broad and overdamped nature
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of the spin excitations and the convergence of the two models at low energies. Surprisingly,

even though both models are low-energy descriptions of the magnetic excitation spectrum,

the fitting to the data reveals that they are able to capture some of the intricate physics

responsible for the high-energy behavior. Physically, the two models represent two different

conceptual pictures for AFM fluctuations in the paramagnetic phase. The ballistic model

would represent spin wave propagation in disordered AFM, whereas the diffusive model

including Landau damping is based more closely on a quasiparticle description obtainable

from either the simplified 3-band structure discussed here, or by first principles calculations

in references [103] and [105]. However, the qualitative form of the scattering throughout

the (𝐻, 𝐾)-plane, and in particular the observation of the split transverse modes at high

energies – visible in the presented data and previously published for other values of 𝑥 [96,

97, 100]– seems to favor a description of the excitations in terms of the diffusive model,

without the need to introduce propagating modes (compare figures 5.2, 5.3 and 5.13). In the

diffusive model, the peak splitting is caused by the interplay between the momentum-space

anisotropies associated with the Landau damping and the magnetic correlation length, both

of which follow naturally from the band structure of the iron pnictides.

It is interesting to note that a similar discussion regarding the existence or not of propa-

gating modes took place also in the context of a much simpler material, namely, bcc iron (see,

for instance, references [112] and [113]). In that case, claims for the existence of propagating

modes at low energies followed from observations of splitting in the constant-energy cuts

of the INS data similar to the present case. It was subsequently shown that the nature

of the damping in an itinerant ferromagnet, where 𝛤𝑞 → 0 as 𝑞 → 0, can result in a split-

ting that resembles a spin-wave dispersion [113]. In the ferromagnetic case, energy cuts

at constant-momentum should show an inelastic peak in the ballistic model, whereas no

such peak will be observed in the diffusive model. In the present case of paramagnetism in

the stripe AFM ordered phase, one can see (figure 5.16) that both the ballistic and purely
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diffusive models produce an inelastic peak in the constant-momentum energy scan. Thus,

unlike the ferromagnetic case, the presence or absence of an inelastic peak in the spectrum

cannot discern between the two models.

The excitations in the paramagnetic phase of the parent BaFe2As2 compound have been

described using a 𝐽1 − 𝐽2 Heisenberg model combined with a phenomenological momentum-

dependent damping function. This approach was able to describe the spin fluctuations close

to the zone boundary only after allowing for tetragonal symmetry-breaking, as discussed in

reference [96]. As described above, this “nematic spin fluid” model is called into question

since the proposed model should lead to large changes in the low energy anisotropy of

the spin fluctuations below 𝑇N, which are not observed. In order to describe the peculiar

transverse splitting, the authors chose a strongly anisotropic form for the Landau damping

that resulted in large damping along the longitudinal direction and small damping in the

transverse direction. This choice effectively washes out the longitudinal spin waves, leading

to the split transverse modes. In my notation, the authors chose 𝜂𝛤 < −1 meaning that the

damping function has a saddle point around 𝑸AFM, rather than a minimum, as one would

expect. While similar in spirit to the approach considered here, the model used here does not

require local symmetry breaking in the paramagnetic state. Note, however, that the analysis

here does not preclude the existence of a nematic phase in the iron pnictides. To probe the

nematic phase, it would be more appropriate to perform INS measurements in detwinned

samples (see, for instance reference [114] and also [115, 116]).

Finally, I comment on the role of incommensuration of the SDW ordering vector. In

reference [103], first principles calculations suggest that an incommensurability is present for

the parent compound BaFe2As2. It was then proposed that the high-energy peak splitting

would be nothing but a manifestation of this incommensurability. If indeed the magnetism in

the iron pnictides is of itinerant nature, then it is reasonable to expect, on general grounds, the

development of incommensurability at some critical doping (see the seminal work of Rice [117]).
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Subsequent to those predictions, static incommensurability was indeed observed in a narrow

range of doping concentrations in the Ba(Fe1–𝑥Co𝑥)2As2 system.[63] The incommensurability

is observed to develop in a first-order fashion with doping concentration.[63] However, in

the INS data presented here for the under-doped Ba(Fe0.953Co0.047)2As2, as well as in the

previously presented data for the parent [96] and optimally doped Ba(Fe0.926Co0.074)2As2

[97], the high-energy splitting of the inelastic peaks occurs at roughly the same energy

𝐸split ≈ 80 meV and momentum in both the commensurate AFM ordered state and the PM

state. Thus, it is unlikely that the transverse splitting is associated with any instability

towards incommensurate order.

5.4.2 Low-energy triple-axis

Figure 5.18 shows the locations in phase space of the triple-axis measurements, the fitting

parameters for both the damped spin wave and diffusive models in equations (4.29) and (4.39),

plus a 𝜒2 measure of the goodness-of-fit for these two models, and the composition-dependence

of the low-energy spectral weight. For 𝑥 = 0.015, the damped spin wave model is the best

and 𝛼/𝛥 = 0.37(8) is consistent with underdamped dynamics. For intermediate composition,

𝑥 = 0.033, both models are of comparable quality. As shown in figure 5.18 (c), within the

damped spin wave model 𝛼/𝛥 > 1 and the dynamics have become overdamped causing the

spin gap to disappear. In the limit where 𝛼/𝛥 ≫ 1, the overdamped spin wave model also

takes on a relaxational form with 𝛤s = 𝛥2/𝛼; as shown in figure 5.18 (c) and (d) 𝛤s, 𝛤 , and

the effective magnetic energy, 𝐸SF = 1/𝛾, decrease as the critical concentration for which

the AFM order is fully suppressed is approached, as indicated by vanishing 𝛥SDW. As seen

in figure 5.17 (k-o) the excitation becomes increasingly two-dimensional with 𝑥 as captured

by the damped spin-wave model parameter 𝑣z, figure 5.18 (e). For 𝑥 = 0.040, 0.047, and

0.055, the diffusive model becomes the better fit, as the smaller correlation length [figure 5.18

(f)] is able to capture the reciprocal space broadening of the in-plane spin fluctuations. A
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Figure 5.17. Background subtracted INS intensity of Ba(Fe1–𝑥Co𝑥)2As2 corrected for the
Bose thermal population factor and the Fe2+ single-ion magnetic form factor plus best fit
lines to the diffusive (light green lines) and the damped spin-wave (black lines) models. (a-e)
Constant-𝑸 energy scans at 𝑸AFM = (0.5, 0.5, 1) for five compositions. (f-h) Constant-𝐸 𝑸
scans in the [ℎ, ℎ, 0]-direction across 𝑸AFM = (0.5, 0.5, 1) at 𝐸 = 7 meV. (i-j) Constant-𝐸 𝑸
scans in the [ℎ, ℎ, 0]-direction across 𝑸AFM = (0.5, 0.5, 3) at 𝐸 = 10 meV. (k-m) Constant-𝐸
𝑸 scans in the [0, 0, 𝑙]-direction, perpendicular to the Fe layer, across 𝑸AFM = (0.5, 0.5, 1) at
𝐸 = 7 meV. (n-o) Constant-𝐸 𝑸 scans in the [0, 0, 𝑙]-direction across 𝑸AFM = (0.5, 0.5, 1)
at 𝐸 = 10 meV. Light gray symbols represent measured intensity which was excluded from
fitting due to concerns with the validity of background estimates at those points.



130

AFM
PM

SC

(a)

0

50

100

150
𝑇

(K
)

𝛾calc.

(b)

0

1

2

3

𝛾
(1

0−
2 /

m
eV

)

(d) 𝐸SF 1
𝛾calc.

𝛤

𝛥SDW

0

20

40

60

En
er

gy
(m

eV
)(c)

𝛼𝛥
𝛤s

𝛥SDW

0

20

40

60

En
er

gy
(m

eV
)

(e)

0

20

40

𝑣 𝑧
(m

eV
Å

) (f)

0

20

40

𝜉(
Å)

(h)

0 0.02 0.04 0.06
0

1

𝑥

∫
d𝑸

∫
d𝐸

∑
𝑖
𝜒″ 𝑖𝑖(

𝑸
,𝐸

)
∫

d𝑸
(𝜇2 B
f.u

.)(g)

spinwave diffusive

0 0.02 0.04 0.06
0

5

10

𝑥

𝜒2

Figure 5.18. (a) Phase diagram of Ba(Fe1–𝑥Co𝑥)2As2 showing regions of AFM order,
superconductivity, and their coexistence; colored symbols show the locations in phase-space
of the measurements performed in this study. (b-f) Select model parameters as a function of
composition for the diffusive (light green diamonds) and spin wave (black circles) models. All
data points shown in (b-f) were determined at the lowest temperature indicated in (a), and
the lightly shaded background indicates compositions which exhibit SC at low temperature.
(b) Diffusive-model Landau damping 𝛾 and the corresponding theoretical prediction. (c)
Spin-wave model parameters: spin gap 𝛥 (filled circle), damping 𝛼 (open circles), and
𝛤s = 𝛥2/𝛼 (filled diamonds). (d) Spin relaxation characteristic energy 𝛤 (filled), effective
magnetic energy 𝐸SF = 1/𝛾 (open) of the diffusive model, and an estimate for the SDW gap
𝛥SDW (solid tan line). (e) Inter-plane spin wave velocity. (f) Diffusive model correlation
length 𝜉. (g) Residual 𝜒2 for each fit model. (h) Spectral weight of the (0.5, 0.5, 1) excitation.
The spectral weight is the 𝑸-averaged energy integration of the trace of the imaginary
component of the magnetic susceptibility tensor. The averaging-range in 𝑸 here is 0<𝐻 <1,
0<𝐾 <1, 0<𝐿<2; the energy integration is over the range 0<𝐸 <35 meV. All error bars
represent the combined errors for all function parameters. The solid green and black lines in
(c-h) are guides to the eye.



131

comparison of the residual for each fit model in figure 5.18 (g) clearly shows the crossover from

spin-wave- to diffusive-like excitations. In figure 5.18 (h), a sharp increase in the low-energy

spectral weight (< 35 meV) coincides with the appearance of superconductivity.

From figure 5.18, regardless of the model used to fit the triple-axis data, it is clear that

upon approaching the optimally-doped composition, damping becomes stronger, the spin

fluctuations acquire a more two-dimensional character, and the energy scale associated with

these fluctuations (𝛤 or 𝛤s) become smaller. These features, as well as the crossover from

spin-wave to diffusive excitations, are consistent with a suppression of the spin density wave

gap 𝛥SDW upon doping. In figure 5.18 (c-d), the experimentally determined suppression of

𝛥SDW obtained by combining the doping evolution of the zero-temperature ordered magnetic

moment, 𝜇, from reference [62] with the optical conductivity data of reference [118] is shown,

using the fact that 𝛥SDW ∝ 𝜇 [62, 71, 110, 119].

Based on this information, one can conclude that the presence of sub-gap spectral weight

which appears with either an increase in temperature or cobalt composition is driven entirely

by damping. For the temperature-driven transition, an increase of damping close to 𝑇N is

found. Given the similarities between the spin fluctuations above and below 𝑇N near optimal

doping and the smallness of the spin-wave gap 𝛥SDW in this regime [see figure 5.18 (c)],

the fitted damping rate 𝛾 and the calculated Landau damping 𝛾calc due to the decay of

spin excitations into particle-hole pairs near the Fermi level are compared in figure 5.18 (b).

Using a simplified two-band model, which was previously shown to successfully capture the

coexistence of superconductivity and antiferromagnetism [71, 110, 119], the Landau damping

is given by 𝛾−1
calc ∝ |𝒗𝑒 × 𝒗ℎ| [120], where 𝒗𝑒 and 𝒗ℎ are respectively the Fermi velocities of

the electron and hole pockets at the hot spots (i.e., points connected by the AFM ordering

vector 𝑸AFM). Upon Co substitution, electrons are introduced into the system, making the

hole pocket shrink and the electron pocket expand. As revealed by ARPES [65], this moves

the hot spots, making their Fermi velocities become nearly parallel around optimal doping.
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As a result, 𝛾−1
calc → 0, as seen experimentally. Note that 𝛾calc describes well the data only

in compositions near optimal doping, indicating that in slightly-doped compositions the

damping comes from another mechanism, such as magnon-magnon interactions.

5.5 Ba(Fe1–𝑥Co𝑥)2As2 in the Superconducting State

In addition to the normal state data discussed in sections 5.1.2, 5.2.3 and 5.3.2,

triple axis data were also collected for Ba(Fe0.960Co0.040)2As2, Ba(Fe0.953Co0.047)2As2, and

Ba(Fe0.945Co0.055)2As2 in their combined superconducting and antiferromagnetic states.

In previous discussions of the normal state data it was noted that convoluted fitting was

performed on only a subset of the available data for each Ba(Fe1–𝑥Co𝑥)2As2 composition,

namely that presented in figures 5.8, 5.12, 5.14 and 5.17. Despite this limitation, as shown by

the green lines in figures 5.19 to 5.24, the best-fit normal state parameters for the diffusive

model, equation (4.39), well describe the measured normal state intensity throughout the

sampled volume of reciprocal space. The reason for this is a distinct lack of a dispersive mode

in the normal state data and, therefore, a structurally simple model (i.e., the intensity varies

smoothly and has few inflection points). The data for each composition in the superconducting

state is decidedly more complex as is the empirical model, equation (4.54), and, as a result,

the entirety of the collected data must be fit for each composition in order to capture

the full complexity present. Simulated intensity based on the best-fit parameters for the

empirical resonance model, equation (4.54), obtained by performing resolution convoluted

Levenberg-Marquardt fitting to the entire measured dataset for each composition is shown

as red lines in each of figures 5.19 to 5.24 for Ba(Fe0.960Co0.040)2As2, Ba(Fe0.953Co0.047)2As2,

and Ba(Fe0.945Co0.055)2As2, respectively. By comparing the best-fit simulated intensity in

the normal and superconducting states the superconducting resonance is clear for each

composition, as is its dispersion.
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Figure 5.19. HB3 measured Ba(Fe0.960Co0.040)2As2 triple-axis data after background sub-
traction and correction for the Bose thermal population factor. The data are energy spectra
performed at (1

2
1
2 𝐿) with intensity offset by the 𝐿 value, indicated by the right hand scale.

Dark symbols are data collected at 2.62(16) K in the superconducting and antiferromagnetic
state, light symbols are data collected at 19.8(2) K in the non-superconducting antiferromag-
netic state. Green lines are global convoluted fits to the diffusive model to the normal state
data, red lines are global convoluted fits to the modified superconducting diffusive model to
the superconducting state data. Gray data correspond to measured intensity which has been
excluded from fitting routines due to inadequate background estimation.
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Figure 5.20. HB3 measured Ba(Fe0.960Co0.040)2As2 triple-axis data after background
subtraction and correction for the Bose thermal population factor. The data correspond to
constant energy scans performed in the [ℎ ℎ 1] and [0 0 𝑙] directions for the left and right
panels, respectively, with intensity offset by the energy transfer, 𝐸, as indicated by the right
hand scale. Dark symbols are data collected at 2.62(16) K in the superconducting and anti-
ferromagnetic state, light symbols are data collected at 19.8(2) K in the non-superconducting
antiferromagnetic state. Green lines are global convoluted fits to the diffusive model to
the normal state data, red lines are global convoluted fits to the modified superconducting
diffusive model to the superconducting state data.
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Figure 5.21. HB3 measured Ba(Fe0.953Co0.047)2As2 triple-axis data after background sub-
traction and correction for the Bose thermal population factor. The data are energy spectra
performed at (1

2
1
2 𝐿) with intensity offset by the 𝐿 value, indicated by the right hand scale.

Dark symbols are data collected at 4.30(2) K in the superconducting and antiferromagnetic
state, light symbols are data collected at 25.3(4) K in the non-superconducting antiferromag-
netic state. Green lines are global convoluted fits to the diffusive model to the normal state
data, red lines are global convoluted fits to the modified superconducting diffusive model to
the superconducting state data. Gray data correspond to measured intensity which has been
excluded from fitting routines due to inadequate background estimation.
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Figure 5.22. HB3 measured Ba(Fe0.953Co0.047)2As2 triple-axis data after background
subtraction and correction for the Bose thermal population factor. The data correspond to
constant energy scans performed in the [ℎ ℎ 1] and [0 0 𝑙] directions for the left and right
panels, respectively, with intensity offset by the energy transfer, 𝐸, as indicated by the right
hand scale. Dark symbols are data collected at 4.30(2) K in the superconducting and antifer-
romagnetic state, light symbols are data collected at 25.3(4) K in the non-superconducting
antiferromagnetic state. Green lines are global convoluted fits to the diffusive model to the
normal state data, red lines are global convoluted fits to the modified superconducting diffu-
sive model to the superconducting state data. Gray data correspond to measured intensity
which has been excluded from fitting routines due to inadequate background estimation.
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Figure 5.23. HB3 measured Ba(Fe0.945Co0.055)2As2 triple-axis data after background sub-
traction and correction for the Bose thermal population factor. The data are energy spectra
performed at (1

2
1
2 𝐿) with intensity offset by the 𝐿 value, indicated by the right hand scale.

Dark symbols are data collected at 7.97(3) K in the superconducting and antiferromagnetic
state, light symbols are data collected at 30.0(3) K in the non-superconducting antiferromag-
netic state. Green lines are global convoluted fits to the diffusive model to the normal state
data, red lines are global convoluted fits to the modified superconducting diffusive model to
the superconducting state data. Gray data correspond to measured intensity which has been
excluded from fitting routines due to inadequate background estimation.
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Figure 5.24. HB3 measured Ba(Fe0.945Co0.055)2As2 triple-axis data after background
subtraction and correction for the Bose thermal population factor. The data correspond to
constant energy scans performed in the [ℎ ℎ 1] and [0 0 𝑙] directions for the left and right
panels, respectively, with intensity offset by the energy transfer, 𝐸, as indicated by the right
hand scale. Dark symbols are data collected at 7.97(3) K in the superconducting and antifer-
romagnetic state, light symbols are data collected at 30.0(3) K in the non-superconducting
antiferromagnetic state. Green lines are global convoluted fits to the diffusive model to
the normal state data, red lines are global convoluted fits to the modified superconducting
diffusive model to the superconducting state data.
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Figure 5.25. Integrated spectral weight as a function of 𝑥 in Ba(Fe1–𝑥Co𝑥)2As2 for normal
state data ( ), superconducting state data ( ), and their positive difference ( ). While
there is no statistically significant difference between the normal state and superconducting
state spectral weight the spectral weight of their positive difference, which is a measure
of the moving spectral weight due to the superconducting resonance, increases with 𝑥 in
Ba(Fe1–𝑥Co𝑥)2As2.

One open question about the Ba(Fe1–𝑥Co𝑥)2As2 superconducting resonance, and that

found in and the other iron pnictides, is whether it is a redistribution of normal state spectral

weight or is additional spectral weight due to a new excitation that only appears with super-

conductivity. One can address this open question by calculating the total spectral weight

of the superconducting spin fluctuations. As shown in figure 5.25 there is no statistically

significant difference in the fluctuating moment spectral weight between the normal state

and superconducting state for the three compositions which exhibit a coexistence of super-

conductivity and antiferromagnetism. This is a clear indication that the superconducting

resonance is a redistribution of the normal state spectral weight and not a new excitation

that appears along with superconductivity.
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The integrated spectral weight gives the energy-integrated total of the average intensity

throughout the first Brillouin zone. The fact that the difference of the superconducting

and normal state spectral weight is zero within statistical uncertainty does not necessarily

indicate a featureless difference throughout the Brillouin zone. To look for, e.g., a dispersion

in the resonance, its helpful to look at the difference between superconducting and normal

state data as well as best-fit models. Figure 5.26 has been constructed by binning collected

data in the (1
2

1
2 𝑙)

T
–𝐸 plane and taking the difference between the binned superconducting

state data and the binned normal state data, it also contains simulated data on the same

planes which is the difference between the superconducting model and normal state model.

The black lines in figure 5.26 represent for each composition the maximum intensity in the

simulated difference as a function of energy for each 𝑙 value, and indicate the resonance

dispersion. From the intensity and dispersion of the resonance, the resonance transitions from

three dimensional (i.e., well localized in momentum-energy space) at Ba(Fe0.960Co0.040)2As2

to nearly two dimensional at Ba(Fe0.945Co0.055)2As2 which is reminiscent of the normal state

excitation progression from three dimensional at Ba(Fe1–𝑥Co𝑥)2As2 to two dimensional at

optimal-doped Ba(Fe1–𝑥Co𝑥)2As2.

Another way of examining the superconducting resonance is to find the magnitude of the

spectral weight which moves as a result of the appearance of superconductivity. To do so,

one can take the difference of the superconducting state model minus the normal state model

and integrate only that part which is positive. This resonance spectral weight is shown in

figure 5.25 and clearly increases as a function of cobalt concentration. Because the resonance

spectral weight is a measure of the fluctuating moment which is affected by the appearance

of superconductivity, it is interesting to compare it to the static moment lost to competition

between antiferromagnetism and superconductivity. By examining neutron diffraction order

parameter plots in references [62, 121, 122] it is possible to determine an estimate for the

ordered moment lost due to the presence of superconductivity, 𝛥𝜇. Plotting the resonance
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Figure 5.26. For each composition available superconducting state and normal state data
was binned in the (1

2
1
2 𝑙)

T
–𝐸 plane independently with bin centers and widths chosen to

allow for subtraction of the two binned data sets. Panel (a) shows the subtracted binned
data for Ba(Fe0.960Co0.040)2As2 while (b) shows the difference between superconducting and
normal state models for the Ba(Fe0.960Co0.040)2As2 best-fit parameters. Panel (c) shows the
subtracted binned data for Ba(Fe0.953Co0.047)2As2 while (d) shows the difference between
superconducting and normal state models for the Ba(Fe0.953Co0.047)2As2 best-fit parameters.
Panel (e) shows the subtracted binned data for Ba(Fe0.945Co0.055)2As2 while (f) shows the
difference between superconducting and normal state models for the Ba(Fe0.945Co0.055)2As2
best-fit parameters. In each panel the color gray represents a lack of data to perform the
subtraction and the black solid line represents the dispersion of the resonance derived from
the difference between the best-fit models for each composition.
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Figure 5.27. Integrated spectral weight as a function of (𝛥𝜇)2 for the moving intensity
as a result of the superconducting resonance ( ). Clearly the fluctuating moment which
moves to participate in the superconducting resonance is proportional to the missing ordered
moment for Ba(Fe0.960Co0.040)2As2, Ba(Fe0.953Co0.047)2As2, and Ba(Fe0.945Co0.055)2As2.

spectral weight versus the square of the lost ordered moment, as in figure 5.27, shows that

the two quantities are linearly related to one another.

5.6 Ba(Fe1–𝑥𝑇𝑀𝑥)2As2

In addition to the Ba(Fe0.953Co0.047)2As2 measurements discussed in section 5.1.1.2, time

of flight inelastic neutron scattering measurements have been performed on a number of

Ba(Fe1–𝑥𝑇𝑀𝑥)2As2 samples which are non-superconducting, with the ARCS spectrometer

and an incident neutron energy of 𝐸i = 50 meV. These measurements of representative

samples for transition metal substitutions which do not produce bulk superconductivity

provide information which may be vital to understanding superconductivity in the iron pnic-
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tide superconductors. Specifically, measurements were performed on Ba(Fe0.939Cr0.061)2As2,

Ba(Fe0.925Mn0.075)2As2, and Ba(Fe0.962Cu0.028)2As2 at 𝑇 = 5 K which, for all three compounds,

is deep within the stripe orthorhombic and antiferromagnetic phase. Like Ba(Fe1–𝑥Co𝑥)2As2,

the orthorhombic distortion in these compounds is too small to be resolved in the ARCS

data and the same tetragonal indexing scheme has been utilized.

Background subtracted data for the three non-superconducting compositions at 𝑇 = 5

K as well as Ba(Fe0.953Co0.047)2As2 at 𝑇 = 25 K is shown in figure 5.28 arranged by the

number of protons in the respective dopant atom. The data used to create the slices in each

panel of figure 5.28 have been normalized such that the peak intensity in a representative

cut across 𝑸AFM is one, which is why the intensities in each panel in the vicinity of 𝐾 ≈ 0

and 5 < 𝐸 < 10 meV (where 𝑸 ≈ (1
2

1
2 1)) are equivalent. In each panel 𝑸 ≈ (1

2
1
2 3) is

where 𝐾 = 0 and 20 ⪅ 𝐸 ⪅ 25 meV. Because of the coupled nature of 𝐸 and 𝐿 in this

data, due to only collecting data with 𝒄||𝒌i, the ratio of intensity at 𝑸 = (1
2

1
2 1) to that at

𝑸 = (1
2

1
2 3) is related to both the ordered moment direction, through the dipole polarization

terms relating 𝜒″(𝑸, 𝐸) and 𝑆(𝑸, 𝐸), and purely energy-related properties, like damping. As

such, separating the two effects is difficult at best; however, if one assumes that the ordered

moment direction is the same for the four samples in figure 5.28 then the only explanation

for the different ratio for Ba(Fe0.925Mn0.075)2As2 is that the damping must be smaller than

for Ba(Fe0.939Cr0.061)2As2, Ba(Fe0.953Co0.047)2As2, or Ba(Fe0.962Cu0.028)2As2. Differences in

the correlation length along 𝒄∗ would modify the ratio of intensity between 𝐿 = odd and

𝐿 = even, and would not contribute to the ratio of 𝐿 = 1 to 𝐿 = 3.

Cuts through the three compositions with similar 𝐿 = 1 to 𝐿 = 3 intensity ratios are

shown in figure 5.29. Comparing the intensity ratio of 𝐿 = 1 to 𝐿 = 3 for the three

compounds shows that Ba(Fe0.962Cu0.028)2As2 is very similar to Ba(Fe0.953Co0.047)2As2, while

Ba(Fe0.939Cr0.061)2As2 is less so; which indicates that the damping in Ba(Fe0.962Cu0.028)2As2

and Ba(Fe0.953Co0.047)2As2 are likely similar. Looking at the overall shape of the measured in-
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Figure 5.28. [�̄� 𝐾 0] versus energy slices through background subtracted time-of-flight
data measured on ARCS with 𝐸i = 50 meV with integration range 0.45 < (𝐻 𝐻 0) < 0.55..
The data in each panel is from a sample of the composition (a) Ba(Fe0.939Cr0.061)2As2, (b)
Ba(Fe0.925Mn0.075)2As2, (c) Ba(Fe0.953Co0.047)2As2, and (d) Ba(Fe0.962Cu0.028)2As2. White
regions in each panel indicate a lack of data due to gaps between detector tubes or kinematic
limitations.
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(c) Ba(Fe0.953Co0.047)2As2
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(d) Ba(Fe0.962Cu0.028)2As2
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Figure 5.28. (Continued)
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Figure 5.29. Background subtracted time-of-flight data measured on ARCS with 𝐸i = 50
meV for Ba(Fe0.939Cr0.061)2As2 at 𝑇 = 5 K ( ), Ba(Fe0.953Co0.047)2As2 at 𝑇 = 25 K ( ), and
Ba(Fe0.962Cu0.028)2As2 at 𝑇 = 5 K ( ). These cuts have been produced by averaging over
0.45 < (𝐻 𝐻 0) < 0.55, −0.1 < (�̄� 𝐾 0) < 0.1, and binning in energy with a bin-width of 1
meV. The 𝐿 component of 𝑸 is fully determined by the other components of (𝑸, 𝐸) and is
indicated for bin centers by a second top horizontal scale. Data within the shaded gray region
is likely too close to the elastic line for the subtracted background estimate to be accurate,
due to the presence of strong incoherent scattering.
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tensity, the Ba(Fe0.953Co0.047)2As2 spectrum has less features than either Ba(Fe0.939Cr0.061)2As2

or Ba(Fe0.962Cu0.028)2As2 — though it also has much more statistical uncertainty — this indi-

cates that the magnetic correlations along 𝒄∗ are likely much larger in Ba(Fe0.939Cr0.061)2As2

and Ba(Fe0.962Cu0.028)2As2 than in Ba(Fe0.953Co0.047)2As2. Since the peak widths along

[�̄� 𝐾 0], shown in figure 5.28, are similar for the three compositions this indicates that the

magnetic excitations in Ba(Fe0.939Cr0.061)2As2 and Ba(Fe0.962Cu0.028)2As2 are likely closer to

three dimension than those in Ba(Fe0.953Co0.047)2As2 — which are close to two dimensional,

like those for optimally-doped Ba(Fe1–𝑥Co𝑥)2As2.



148

CHAPTER 6 SUMMARY

6.1 Discussion

As discussed in section 2.4, unconventional superconductivity and antiferromagnetism are

often found in close proximity to one another. For the series of compounds Ba(Fe1–𝑥Co𝑥)2As2,

which possesses both antiferromagnetism and superconductivity for the under-doped range of

composition, this observation is certainly true. The close proximity, and in fact coexistence

for under-doped Ba(Fe1–𝑥Co𝑥)2As2, of antiferromagnetism and superconductivity has encour-

aged speculation that antiferromagnetic spin fluctuations may mediate the electron pairing

interaction in unconventional superconductors.

Previous studies indicated that the spin fluctuations at optimally-doped Ba(Fe1–𝑥Co𝑥)2As2

are diffusive, while those at BaFe2As2 are well defined spin wave excitations. It was therefore

clear that the nature of spin fluctuation in Ba(Fe1–𝑥Co𝑥)2As2 change with the introduction of

cobalt, but it remained unresolved if that change was merely a consequence of the loss of

antiferromagnetic order, or a necessary ingredient for the appearance of superconductivity.

To resolve this question, this work was undertaken to study the spin fluctuations of five

Ba(Fe1–𝑥Co𝑥)2As2 compositions varying in cobalt concentration from lightly-doped to nearly

optimally-doped. The spin fluctuations of these samples, in their antiferromagnetically

ordered and (where possible) superconducting states have been studied via triple-axis and

time-of-flight inelastic neutron scattering.

Via a time-of-flight spectroscopic study, I have shown that it is possible to capture the main

features of the magnetic excitation spectra in Ba(Fe0.953Co0.047)2As2 and related compounds

with a simple model. The properties of the spin fluctuations, including the observed transverse
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splitting of 𝜒″(𝑸, 𝐸) at high energy transfers, and the observed dispersion were shown to be

attributable to the interplay between the anisotropies of the magnetic correlation length and

of the Landau damping. Furthermore, due to the temperature- and state-independence of the

high-energy spin fluctuations in Ba(Fe0.953Co0.047)2As2, and the concentration-independence

of the high-energy splitting, it is clear that such high-energy-transfer properties can not be

responsible for superconductivity in Ba(Fe1–𝑥Co𝑥)2As2 and related compounds.

The low-energy study of the normal state Ba(Fe1–𝑥Co𝑥)2As2 spin dynamics via triple-axis

neutron spectroscopy probed the spin fluctuations most strongly tied to the excitations in close

proximity to the Fermi surface in these materials. This study clearly showed the crossover

from gappe spin waves to a regime of strong damping and short correlation length, despite

the continued presence of weak antiferromagnetic order. Furthermore, it was shown that the

appearance of strong Landau damping near 𝑥 = 0.03–0.04 coincides with the appearance

of superconductivity in Ba(Fe1–𝑥Co𝑥)2As2; suggesting that the corresponding increase of

low-energy spectral weight below the spin gap is a key ingredient for the development of

superconductivity. Comparing these results with iron pnictide compositions on either side

of the superconducting region — such as Ba(Fe1–𝑥Co𝑥)2As2 with 𝑥 = 0.015 or 𝑥 = 0.14,

or Ba(Fe0.85Ni0.15)2As2[123, 124] — which all lack overdamped spin fluctuations, provides

further evidence that overdamped spin fluctuations are a necessary component in the paring

mechanism for superconductivity in the iron pnictides.

The low-energy study of the superconducting state spin dynamics in Ba(Fe1–𝑥Co𝑥)2As2 via

triple-axis neutron spectroscopy, has confirmed that the appearance of superconductivity in

the under-doped Ba(Fe1–𝑥Co𝑥)2As2 compounds induces the appearance of a superconducting

resonance, like other unconventional superconductors. The superconducting resonance was

shown to be a redistribution of spectral weight present in the normal state and not a new

excitation, as some have speculated. Furthermore, the spectral weight of the resonance, that is

the spectral weight which moves as a result of the appearance of superconductivity, is directly
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proportional to the ordered moment lost due to the competition between superconductivity

and antiferromagnetism.

The time-of-flight inelastic neutron scattering measurements on stripe antiferromagnet-

ically ordered Ba(Fe1–𝑥𝑇𝑀𝑥)2As2 samples further highlight the importance of low-energy

spectral weight for superconductivity. The study clearly showed that three samples, all from

doping-series which do not exhibit bulk superconductivity, all lack significant low energy

spin fluctuations and are more three dimensional when compared to similar measurements

performed on Ba(Fe0.953Co0.047)2As2.

Taking in concert the results of these studies, it is clear that the change in character

from spin wave excitations to diffusive excitations is indeed a necessary requirement for

superconductivity in Ba(Fe1–𝑥Co𝑥)2As2; if only because it is an indication that large amounts

of low-energy spin fluctuations exist in the system. The requisite presence of spin fluctuations

in an energy scale similar to the superconducting transition temperature is highly indicative

that they are participating in the superconducting pairing mechanism in the iron pnictide

superconductors and, perhaps, other unconventional superconductors as well.

6.2 Outlook

As discussed in section 2.2.1 there are numerous members of the iron pnictide super-

conductor families. In the case of transition metal substituted BaFe2As2, there are six

additional known superconducting compounds beyond Ba(Fe1–𝑥Co𝑥)2As2. In order to verify

that large amounts of low-energy spin fluctuations are important for the superconductivity in

BaFe2As2-based superconductors, inelastic neutron scattering experiments could be performed

on one or more of the transition metal substituted, alkali substituted, or pnictogen substituted

BaFe2As2 superconducting compounds. Such experiments, performed in absolute intensity

units, could detect the presence or absence of significant low-energy spectral weight compared

to non-superconducting compounds. The verification could be taken further by performing
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similar experiments on representative members of other iron pnictide superconducting families

and, ultimately, representative samples of other unconventional superconductors.

A side benefit to such a study would be the collection of data determining the supercon-

ducting resonance spectral weight for each of the studied compounds. Perhaps allowing for

the determination of a universal relationship between the spectral weight of the supercon-

ducting resonance and other superconducting properties, e.g., the superconducting transition

temperature.
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APPENDIX A EXPERIMENTAL DATA AND DETAILS

Inelastic Neutron Scattering Data

Normal state HB3 data

In addition to the temperature dependent measurements for Ba(Fe0.985Co0.015)2As2 and

Ba(Fe0.967Co0.033)2As2, data for each of the five samples was collected in the antiferromagneti-

cally ordered state at a number of (𝑸, 𝐸) points via constant-𝑸 energy scans and constant-𝐸

momentum scans. All collected data are displayed in figures A.1 to A.8 after correcting for

non-magnetic background, removal of the temperature-dependent Bose factor, and rescaling

the intensity into absolute units. By comparison, it is clear that the range of data collected

for each sample is not consistent across the range of samples. In order to avoid over- or

under-sampling effects, only a selection of the available scans were fit to model functions.

Superconducting state HB3 data

In addition to the normal state data discussed in sections 5.1.2, 5.2.3 and 5.3.2, triple

axis data were also collected in the combined superconducting and antiferromagnetic states

for Ba(Fe0.960Co0.040)2As2, Ba(Fe0.953Co0.047)2As2, and Ba(Fe0.945Co0.055)2As2. This supercon-

ducting state triple axis data is displayed in figures A.9 to A.14 and, at first glance, may not

look terribly different from the normal state data shown in figures A.3 to A.8.

By over plotting the normal state and superconducting state data, as shown in figures 5.19

to 5.24, it is clear that superconductivity modifies the spin excitation spectra. Furthermore,

the superconducting resonance is indeed present in the under-doped coexisting regime of

Ba(Fe1–𝑥Co𝑥)2As2, as in other unconventional superconductors (e.g., figure 2.24).
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Figure A.1. All HB3 measured normal state [𝑇 = 11.22(3) K] Ba(Fe0.985Co0.015)2As2
triple-axis data after background subtraction and correction for the Bose thermal population
factor. The top panel corresponds to energy spectra performed at (1

2
1
2 𝐿) with intensity

offset by the 𝐿 value, indicated by the right hand scale. The bottom panels correspond
to constant energy scans performed in the [ℎ ℎ 3] and [0 0 𝑙] directions with intensity offset
by the energy transfer, 𝐸, as indicated by the right hand scale. In all panels gray data
correspond to measured intensity which has been excluded from fitting routines due to
inadequate background estimation.
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Figure A.2. All HB3 measured normal state [𝑇 = 11.2(1) K] Ba(Fe0.967Co0.033)2As2
triple-axis data after background subtraction and correction for the Bose thermal population
factor. The top panel corresponds to energy spectra performed at (1

2
1
2 𝐿) with intensity

offset by the 𝐿 value, indicated by the right hand scale. The bottom panels correspond
to constant energy scans performed in the [ℎ ℎ 3] and [0 0 𝑙] directions with intensity offset
by the energy transfer, 𝐸, as indicated by the right hand scale. In all panels gray data
correspond to measured intensity which has been excluded from fitting routines due to
inadequate background estimation.
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Figure A.3. HB3 measured normal state [𝑇 = 19.8(2) K] Ba(Fe0.960Co0.040)2As2 triple-axis
energy spectra performed at (1

2
1
2 𝐿) with intensity offset by the 𝐿 value, indicated by the

right hand scale, after background subtraction and correction for the Bose thermal population
factor. Gray data correspond to measured intensity which has been excluded from fitting
routines due to inadequate background estimation.
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Figure A.4. HB3 measured normal state [𝑇 = 19.8(2) K] Ba(Fe0.960Co0.040)2As2 triple-axis
data after background subtraction and correction for the Bose thermal population factor.
The left panel corresponds to constant energy scans performed in the [ℎ ℎ 1] direction, where
the right panel corresponds to the [0 0 𝑙] direction, both with intensity offset by the energy
transfer, 𝐸, as indicated by the right hand scale. Gray data correspond to measured intensity
which has been excluded from fitting routines due to inadequate background estimation.
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Figure A.5. HB3 measured normal state [𝑇 = 25.3(4) K] Ba(Fe0.953Co0.047)2As2 triple-axis
energy spectra performed at (1

2
1
2 𝐿) with intensity offset by the 𝐿 value, indicated by the

right hand scale, after background subtraction and correction for the Bose thermal population
factor. Gray data correspond to measured intensity which has been excluded from fitting
routines due to inadequate background estimation.
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Figure A.6. HB3 measured normal state [𝑇 = 25.3(4) K] Ba(Fe0.953Co0.047)2As2 triple-axis
data after background subtraction and correction for the Bose thermal population factor.
The left panel corresponds to constant energy scans performed in the [ℎ ℎ 1] direction, where
the right panel corresponds to the [0 0 𝑙] direction, both with intensity offset by the energy
transfer, 𝐸, as indicated by the right hand scale. Gray data correspond to measured intensity
which has been excluded from fitting routines due to inadequate background estimation.
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Figure A.7. HB3 measured normal state [𝑇 = 30.0(3) K] Ba(Fe0.945Co0.055)2As2 triple-axis
energy spectra performed at (1

2
1
2 𝐿) with intensity offset by the 𝐿 value, indicated by the

right hand scale, after background subtraction and correction for the Bose thermal population
factor. Gray data correspond to measured intensity which has been excluded from fitting
routines due to inadequate background estimation.
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Figure A.8. HB3 measured normal state [𝑇 = 30.0(3) K] Ba(Fe0.945Co0.055)2As2 triple-axis
data after background subtraction and correction for the Bose thermal population factor.
The left panel corresponds to constant energy scans performed in the [ℎ ℎ 1] direction, where
the right panel corresponds to the [0 0 𝑙] direction, both with intensity offset by the energy
transfer, 𝐸, as indicated by the right hand scale. Gray data correspond to measured intensity
which has been excluded from fitting routines due to inadequate background estimation.
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Figure A.9. HB3 measured superconducting state [𝑇 = 2.62(16) K] Ba(Fe0.960Co0.040)2As2
energy spectra after background subtraction and correction for the Bose thermal population
factor. Data represent scans performed at (1

2
1
2 𝐿) with intensity offset by the 𝐿 value,

indicated by the right hand scale. Gray data correspond to measured intensity which has
been excluded from fitting routines due to inadequate background estimation.



162

21.510.50
0

1

2

3

4

5

6

7

𝑙 in (1
2

1
2 𝑙)

T

∑
𝑖𝑗

(𝛿
𝑖𝑗

−
𝑄

𝑖𝑄
𝑗)

𝜒″ 𝑖𝑗
(𝑸

,𝐸
)

(𝜇
2 B

m
eV

−1
f.u

.−1
)

4

5

6

7

8

10

𝐸
(m

eV
)

Figure A.10. HB3 measured superconducting state [𝑇 = 2.62(16) K]
Ba(Fe0.960Co0.040)2As2 constant-energy [0 0 𝑙] scans after background subtraction and correc-
tion for the Bose thermal population factor, with intensity offset by the energy transfer, 𝐸,
as indicated by the right hand scale.
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Figure A.11. HB3 measured superconducting state [𝑇 = 4.30(2) K] Ba(Fe0.953Co0.047)2As2
energy spectra after background subtraction and correction for the Bose thermal population
factor. Data represent scans performed at (1

2
1
2 𝐿) with intensity offset by the 𝐿 value,

indicated by the right hand scale. Gray data correspond to measured intensity which has
been excluded from fitting routines due to inadequate background estimation.
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Figure A.12. All HB3 measured superconducting state [𝑇 = 4.30(2) K]
Ba(Fe0.953Co0.047)2As2 constant-energy scans after background subtraction and correction
for the Bose thermal population factor. The left (right) hand panel corresponds to constant
energy scans performed in the [ℎ ℎ 1] ([0 0 𝑙]) direction with intensity offset by the energy
transfer, 𝐸, as indicated by the right hand scale. Gray data correspond to measured intensity
which has been excluded from fitting routines due to inadequate background estimation.
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Figure A.13. HB3 measured superconducting state [𝑇 = 7.97.2(3) K]
Ba(Fe0.945Co0.055)2As2 energy spectra after background subtraction and correction for the
Bose thermal population factor. Data represent scans performed at (1

2
1
2 𝐿) with intensity

offset by the 𝐿 value, indicated by the right hand scale. Gray data correspond to mea-
sured intensity which has been excluded from fitting routines due to inadequate background
estimation.
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Figure A.14. All HB3 measured superconducting state [𝑇 = 7.97.2(3) K]
Ba(Fe0.945Co0.055)2As2 constant-energy scans after background subtraction and correction
for the Bose thermal population factor. The left (right) hand panel corresponds to constant
energy scans performed in the [ℎ ℎ 1] ([0 0 𝑙]) direction with intensity offset by the energy
transfer, 𝐸, as indicated by the right hand scale.
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Table A.1. Details of the coaligned single-crystal samples used in this study. Given
here are the transition metal dopant, average compositions, total masses, number of crystals
coaligned in each set, antiferromagnetic transition temperatures, superconducting transition
temperatures, who performed the crystal growth, who created the coalignment from individual
single crystals, and a list of publications in which each coalignment has been used. The crystal
growth column, g, is encoded with ‡N. Ni, ♮S. Ran, †A. S. Sefat, and ∗A. Thaler. The sample
coalignment column, c, is encoded with ⋄A. D. Christianson, ♭M. G. Kim, •D. K. Pratt,
⋆G. S. Tucker. Values displayed here have been rounded to their last displayed digit and
therefore have an uncertainty of no more than half in the last digit.

𝑇𝑀 𝑥/% Mass/g No. xtals. 𝑇N/K 𝑇c/K g c used in ref.
Cr 6.1 1.027 6 100 ♮ ⋆
Mn 7.5 1.913 13 80 ∗♮ ⋆ [125]
Co 1.5 1.803 14 114 ∗ ⋆ [92]
Co 3.3 1.894 10 74 ∗ ⋆ [92]
Co 4 2 4 58 11 † ⋄ [92, 122]
Co 4.7 1.88 10 47 17 ‡ • [91, 92, 126]
Co 5.5 2.071 8 34 22 ∗ •⋆ [92]
Cu 2.8 1.52 2 64 ∗♮ ♭ [127]

Sample Details

Five coaligned sets of Ba(Fe1–𝑥Co𝑥)2As2 single crystals each with a different cobalt

concentration, as well as one sample each of chromium, manganese, and copper substituted

Ba(Fe1–𝑥𝑇𝑀𝑥)2As2 coalignments were used in this study. Details of their properties are listed

in table A.1, including transition metal dopant and concentration, coaligned mass, number of

crystals in each coalignment, characteristic temperatures, who was responsible for the growth

of the single crystals used, who was responsible for performing the coalignment process to

create each sample, and a listing of publications in which data collected from each sample

have been presented.
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APPENDIX B SCANDATA.M

By standardizing the loading and manipulation of data from spectrometers, independent

of the spectrometer control software (e.g., SPICE [128]), it becomes possible to efficiently

analyze data in a repeatable and – hopefully – accurate way. In order to facilitate the analysis

of data obtained from triple axis neutron spectrometers, I wrote a MATLAB class called

scandata. Through operator overloading, scandata simplifies the processes of, e.g., adding

and subtracting scans, binning scans, normalizing to a named monitor, and applying scale

factors; all while keeping track of statistical-based uncertainties.

Basic Usage

The scandata class has been written to be used in a unix-like environment. On

Windows systems, or other systems which do not use / as a directory separator, most of

the functionality of scandata should still work with the exception of the automatic creation

of ResLib configuration (EXP) structures.

A new scandata object named sdo can be created in memory in one of three ways:

1. sdo = scandata('path/to/filename');

2. sdo = scandata(pesdo);

3. sdo = scandata.empty();

where the first calls the creation constructor and loads a scan data file from disk, the second

calls the copy constructor to make a copy of a preexisting scandata object named pesdo,

and the third creates an empty scandata object of size 0×0. If passed a 1×𝑁 or 𝑁 ×1 cell
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array of file names, the creation constructor will return a 𝑁 ×1 array of scandata objects.

Similarly, the copy constructor can be used to copy a preexisting scandata object array.

The utility in creating an empty scandata object comes by adding size information to the

empty function call, i.e., scandata.empty([N,0]) will create an empty 𝑁 ×0 scandata

array which can then be filled one object at a time – which is how both the creation and

copy constructors produce arrays of scandata objects.

It is not uncommon for the same scan to be repeated multiple times in one or more

experiments with the intention of adding together the repeated scans in order to increase

counting statistics (and reduce relative statistical uncertainties). To add together two

scandata objects, or to add a constant intensity to a scandata object, the + operator has

been overloaded. Adding two scans, s1 and s2, is as easy as twoscans = s1 + s2;; similarly

adding a constant, c, to s1 is accomplished with offsets1 = s1 + c;. A series of repeated

scans can be added by using the overloaded sum function on an array of scandata objects.

If a scandata array is defined as scans = vertcat(s1,s2,s3,…); from the repeated scans

s1, s2, and s3, then the sum of those repeated scans is simply sumofscans = sum(scans);.

Another common operation is the subtraction of estimated background intensity. This

can be accomplished by i=s-b; where s is the measured intensity and b is either a constant

background estimate or a scan which is a direct measurement of the background. In the

case the b is a scandata object the overloaded minus function will interpolate, if necessary,

between the points in b to ensure that intensity is subtracted from all points in s.

After adding repeated scans and subtracting a background estimate, it is typically useful

to normalize the intensity in each point to another measured quantity (typically a counts

in a beam monitor or elapsed time). The scandata class is flexible in this manner, and

can normalize intensity data to any named column contained in the original data file. The

normalization routine in scandata can be called in one of three ways: the first, e.g.,

s.normalize('monitor'), divides the number of counts for each point by the value of the



170

‘monitor’ column; the second, e.g., s.normalize('monitor',c), would then multiply each

intensity by the constant c; and the last, e.g., s.normalize('monitor',c,dc), correctly

folds-in the uncertainty of the normalization constant – this last form is useful when converting

measured intensity to absolute units, as the conversion factor will undoubtedly have an

associated statistical uncertainty. If the chosen normalization column has an associated

uncertainty (currently scandata knows how to calculate uncertainties for columns named

detector, monitor, time, and mcu), then its uncertainty is also correctly propagated to the

normalized intensity uncertainty.

After normalization, one often wants to fit a resolution convoluted model to measured

data. To help in this endeavor, scandata contains the methods to integrate with the ResLib

resolution estimation, convolution, and model fitting routines. If the data was measured

with SPICE-driven spectrometer (and the analysis computer system is unix-like) then the

method createRLEXP can be used to automatically populated the fields of a ResLib EXP

structure. Furthermore, if the data was measured on the instrument HB3, createRLEXP can

automatically create the EXP fields necessary to perform a Popovici resolution approximation

with ResLib– a global structure, RES_CONSTANTS, needs to exist with a field named method set

to 1 (i.e., execute global RES_CONSTANTS; and RES_CONSTANTS.method=1; before calling,

e.g.s.createRLEXP()). createRLEXP looks through the scan header to find the name of the

‘UBConf’ file and then uses unix-like path information and the default SPICE directory

layout to open the ‘UBConf’ and read in scattering plane and sample lattice information

– this could be modified to be operating system independent. The read4ResLib method

returns the ResLib-appropriate vectors H, K, L, W, Iobs, dIobs, and EXP plus a vector of

measured temperatures for each data point. The methods ConvRes, ConvResSMA, FitConv,

and FitConvSMA are wrappers for the ResLib functions of the same name; they take

scandata objects (or vectors) as inputs, create the appropriate EXP structures if necessary
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through createRLEXP, assemble the appropriate data vectors through read4ResLib, and

finally call the ResLib function.

Finally, it is typical that one should want to plot measured and/or simulated data. The

plot function is overloaded by scandata to plot scandata objects with relative ease, in-

cluding plotting vectors of scandata objects. The overloaded plotting routine automatically

cycles through a list of color, symbol, and line specifications to help differentiate between over-

plotted scans. scandata objects which contain no uncertainty in their intensity are assumed

to be simulations and are plotted as lines, otherwise the data is displayed as an errorbar plot.

Points that have a zero weight value (stored in s.w, and initialized as ones(size(s.y)))

are automatically ignored when using scandata.FitConv and scandata.FitConvSMA; the

overloaded plotting routine plots these points as gray to indicate this fact. The plot method

can display a scan as a function of a non-default variable – this can be useful when searching

for the source of a spurious peak by, e.g., plot(s,'s2') to plot the intensity as a function of

the sample scattering angle (at HB3).

There are many more functions defined as part of the scandata class, some of which are

internal and some of which are useful when analyzing unique data sets. The following pages

contain a listing of the scandata header, containing all of the method and property names

of the scandata class, as well as a complete listing of the scandata class code, in order to

help in your understanding of the contents of the class.
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MATLAB Code

% The scandata class is a data container class for triple-axis scattering
% data stored in SpICE data files.
% To cut down on memory usage, all scandata objects inherit from the MATLAB
% handle class; as such the copy-constructor must be used in cases where
% passing a handle is not the intended action.
%
% Scandata uses spicedata.m to initialize itself and populate some of its
% properties. Inspiration for this class was also drawn from spiceload.m.
% Both spicedata and spiceload were written by Mark Lumsden.
%
% Public methods defined here-in:
% ConvRes fillMillerVecs normalize
% ConvResSMA fillVectors plot
% Convert_mbpSr_uB2 findColumn plus
% CorrectBose findEnergies rdivide
% CorrectFormFactor findInHeader read4ResLib
% FitConv findLatticeConstants redefinex
% FitConvSMA findScanTitle redefiney
% Tcolor findSum removeColumn
% ThermalAdjust findTemperature removePts
% Weight fixedFinalEnergyCorrection replacex
% WeightBounds getColumn replacey
% avgColumn getFromHeader scandata
% bin hist setColumn
% checkStopped horzcat times
% createHistogram minus uminus
% createRLEXP monitorHarmonic vertcat
% crpoints mrdivide
% emptyPointCheck mtimes
%
% Static methods: (accessed by scandata.[method name])
% avgscans decodeColor
%
% version 0.0, written by Gregory Tucker, 2010/03/01
% version 1.0, written by Gregory Tucker, 2013/09/04
% + switched from spicedata.m to gentasload.m , which can load data from
% multiple facilities , and is expandable.
% version 1.1, written by Gregory Tucker, 2014/08/06
classdef scandata < handle

properties %(SetAccess=protected) % Protected Properties
alat % \
blat % } Lattice Vector lengths in Angstroms
clat % /
alpha % \
beta % } Lattice angles in degrees
gamma % /
avgflg % flag to tell if a data set is the result of averaging
colnames % array of data column names
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data % data matrix from datafile
defxname % default independent quantity name

% s1 for scanrel s1 1 -1 0.1, etc.
defyname % default dependent quantity name (usually 'detector ')
defxvalue % column number for default independent quantity
defyvalue % column number for default dependent quantity
e % array of (ef - ei), energy transfer
ei % array of incident neutron energy
ef % array of final neutron energy
err % array of error in independent quantity
monerr % error in monitor counts
mcuerr % error in mcu counts
timerr % error in counting time
filename % name of file from which data is imported
h % vector for h Miller indicies data
k % vector for k Miller indicies data
l % vector for l Miller indicies data
header % full header string from datafile
hstFlg % flag % \
hstX % bin center vect % \\
hstEdg % bin edge vector % \\\
hstY % averaged y vect % }+> Histogram variables
hstEr % propagated err % ///
hstT % averaged t vect % //
hstE % averaged e vect % /
hstW % weight vector
q % magitude of q
stoppedFlag % 1 if the scan was stopped, 0 if the scan finished
sumCounts % total sum of all counts in scan; -1 if not defined
t % vector of temperatures
x % array of dependent quantity values
y % array of independent quantity values

end % protected properties
properties % Public Properties

color % color for plotting
EXP % EXP parsed from datafile and UBConf, for ResLib
rl % ResLib parameters ,
samplename % ideally a string containing the sample name, user set
scan_title % user defined scantitle
UserData % Unused by scandata , designated space for User Data
w % weight vector, useful for knowing which datapoints

% should be ignored, filled by Weight methods
end % public properties
properties (Constant) %contstants that come up often, in useful units

hbar = 6.58211899e -13; % meV s
kBoltzman = 8.617343e -2; % meV/K
neutronmass = 1.045407672e -25;% meV s^2 A^-2

end % constant properties
methods % Initialization Methods

function obj = scandata(a)
if ~ischar(a)&&length(a)>1

obj = scandata.empty(length(a),0);
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for i=1:length(a); obj(i)=scandata(a(i)); end
else

if iscellstr(a) % in case the filename is in a cell
a = char(a); %convert filename to string

end
if ischar(a)

obj.filename = a;
[obj.data ,obj.header ,obj.colnames ,obj.defxname ,...
obj.defyname ,obj.defxvalue ,obj.defyvalue]=gentasload(a);
obj.fillVectors % doesn't fill errors
%check to see if the scan was stopped
obj.stoppedFlag = obj.checkStopped;
%find the total number of counts for the string
obj.sumCounts = obj.findSum;
obj.avgflg = false;
obj.hstFlg = false;
obj.scan_title = obj.findScanTitle;
%calculate error for each dependent variable value
obj.err =sqrt(obj.y);
obj.monerr=sqrt(obj.getColumn('monitor'));
obj.mcuerr=sqrt(obj.getColumn('mcu'));
obj.timerr=sqrt(obj.getColumn('time'));
%check for all-zero intensity points, and remove them
obj.emptyPointCheck();
%any remaining zero-intensity points shouldn't have
%zero error associated with them:
obj.err(~obj.y)=1;
obj.monerr(~obj.getColumn('monitor'))=1;
obj.mcuerr(~obj.getColumn('mcu'))=1;
obj.timerr(~obj.getColumn('time'))=1;

elseif isa(a,'scandata')
pl=fieldnames(a);
% we need to remove constant properties , which can't be
% overwritten
consts={'hbar','kBoltzman','neutronmass'};
for i=1:length(consts);pl(strcmp(pl,consts(i)))=[];end
for i=1:length(pl); obj.(pl{i})=a.(pl{i}); end

end
end

end %initialization function
end % initialization methods
methods % Public Methods

function fillVectors(obj)
% Any time that the data block is modified , through addition of
% scans or binning of data, the various vector quantities need
% to be pulled from the block. Since this happens in multiple
% places, it should be standardized.
if length(obj)>1;

for i=1:length(obj);obj(i).fillVectors;end;
else

obj.x=obj.data(obj.defxvalue ,:);
obj.y=obj.data(obj.defyvalue ,:);
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obj.findEnergies % obj.{ei,e,ef}
obj.findTemperature % obj.t
obj.q = obj.getColumn('q');
obj.h = obj.getColumn('h');
obj.k = obj.getColumn('k');
obj.l = obj.getColumn('l');
% Errors are always a special case and can't/shouldn't
% be handled in this function.

end
end % fillVectors
function normalize(obj, monname, norm, normerr)

%renormalize y to norm/monitor*y
if nargin <4 || isempty(normerr); normerr = 0; end
if nargin <3 || isempty(norm); norm=1; end
if length(obj)>1
for i=1:length(obj);obj(i).normalize(monname,norm,normerr);end

else
monitor=obj.data(obj.findColumn(monname),:);
switch lower(monname)

case 'monitor'; merr = obj.monerr;
case 'mcu' ; merr = obj.mcuerr;
case 'time' ; merr = obj.timerr;
otherwise ; merr = 0;

end
[monzeros]=find(monitor==0);
if ~isempty(monzeros);

warning('scandata:normalize',...
['Selected monitor contains zeros! ',...
'No Division performed!'])

monitor=ones(size(obj.x));
end
if ~isnumeric(norm)

warning('scandata:normalize',...
'non-numeric normalization constant!')

end
% Calculate intensity error and possible -monitor errors,
% including (possible) errors in norm, intensity and mon.
u={obj.defyname ,'monitor','mcu','time'}; % value col. names
d={'err','monerr','mcuerr','timerr'}; % assos. error names
for i=1:length(d)

obj.(d{i})=sqrt( ...
(obj.getColumn(u{i}).*normerr./monitor).^2 ...

+(norm.*obj.(d{i})./monitor).^2 ...
+(norm.*obj.getColumn(u{i}).*merr./monitor.^2).^2);

end % this long equation should not be shortened in order
% to avoid dividing by zero (intensity).

switch lower(monname)
case 'monitor';obj.monerr=normerr.*ones(size(monitor));
case 'mcu' ;obj.mcuerr=normerr.*ones(size(monitor));
case 'time' ;obj.timerr=normerr.*ones(size(monitor));

end
% Calculate normalized intensity/monitors
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for i = 1:length(u)
obj.setColumn(u{i},norm.*obj.getColumn(u{i})./monitor);

end
obj.y=obj.getColumn(obj.defyname);

end
end %normalize
function [location ,expndhead]=findInHeader(obj,searchstring)

expndhead = textscan(obj.header ,'%s');
expndhead = expndhead{:};
location = strcmp(searchstring ,expndhead);
if sum(location)

[~,location]=max(location);
else %string not found

location = -1;
end

end %findInHeader
function val=getFromHeader(obj,name)

if length(obj)>1
val=cell(size(obj));
for no=1:length(obj);val(no)=obj(no).getFromHeader(name);end

else
[lo,eh]=obj.findInHeader(name);
if lo~=-1

val=eh(lo+2);
else

val=[];
end

end
end % getFromHeader
function scanTitle=findScanTitle(obj)

if length(obj)>1
scanTitle = cell(length(obj));
for

no=1:length(obj); scanTitle{no}=obj(no).findScanTitle();
end

else
[loc, expndhd] = obj.findInHeader('scan_title');
expndhd(1:loc+1)=[];
loc = strcmp('#',expndhd); [~,loc]=max(loc);
scanTitle = expndhd(1:loc-1);
scanTitle = [scanTitle{:}];
obj.scan_title=scanTitle;

end
end % findScanTitle
function col=findColumn(obj,colname)

col = strcmp(colname,obj.colnames);
if any(col);[~,col]=max(col);else col=0;end

end % findColumn
function col=getColumn(obj,colname)

col = obj.data(obj.findColumn(colname),:);
end %getColumn
function setColumn(obj,colname,colvals)
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obj.data(obj.findColumn(colname),:)=colvals;
end % setColumn
function stoppedFlag=checkStopped(obj)

stoppedFlag = 0;
loc = obj.findInHeader('stopped!!');
if loc ~= -1

stoppedFlag = 1;
end

end % stoppedFlag
function sumCounts = findSum(obj)

sumCounts = -1;
[loc, expndhead]=obj.findInHeader('Counts');
if loc ~= -1

if size(loc,1)>1
loc = loc (end);

end
sumCounts = str2double(char(expndhead(loc+2)));

end
end % findSum
function avg = avgColumn(obj,colname)

avg = mean(obj.getColumn(colname));
end % avgColumn
function tvec = findTemperature(obj,tcname)

if nargin > 1 && ~isempty(tcname)
if obj.findColumn(tcname)

tvec = obj.getColumn(tcname);
else

tvec = -1;
end

else
tcnames={'sample_[b]','t_sample','tsample','tsample1',...

'sample','au-fe-tc','RTemp','tem','tt'};
tvec=-1;
for no=1:length(tcnames)

if obj.findColumn(tcnames{no})
tvec = obj.getColumn(tcnames{no});

end
end

end
if all(tvec~=-1)

obj.t = tvec;
end
if ~nargout; obj.t = tvec; clear('tvec'); end

end % findTemperature
function Weight(obj,cutoff,rel)

if nargin < 3; rel = true;end
if nargin < 2; cutoff = 1000;end
obj.w = ones(1,length(obj.y));
if obj.hstFlg

obj.hstW=ones(1,length(obj.hstY));
end
if rel
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avgy = mean(obj.y);
obj.w(abs(obj.y-avgy)>cutoff)=0;
if obj.hstFlg

avgy = mean(obj.hstY);
obj.hstW(abs(obj.hstY -avgy)>cutoff)=0;

end
else

if cutoff > 0
obj.w(obj.y>=cutoff)=0;
if obj.hstFlg; obj.hstW(obj.hstY >=cutoff)=0;end

else
obj.w(obj.y<=cutoff)=0;
if obj.hstFlg; obj.hstW(obj.hstY <=cutoff)=0;end

end
end

end % Weight
function WeightBounds(obj,xbnds,ybnds,reset)

%WeightBounds([Xmin,Xmax],[Ymin,Ymax],reset{true/false})
%This function sets the weightvector entries to zero for all
%points outside of the bounding box defined by [Xmin,Xmax] and
%[Ymin,Ymax]. If reset is true the object's initial weight
%vector is reinitialized to ones.
if nargin <4; reset=false; end
if nargin <3||isempty(ybnds);

ybnds = [min(obj.y)-1,max(obj.y)+1];
end
if nargin <2||isempty(xbnds)

xbnds=[min(obj.x)-1,max(obj.x)+1];
end
if isempty(obj.w)||reset; obj.w = ones(size(obj.x)); end
obj.w(obj.x<min(xbnds))=0;
obj.w(obj.x>max(xbnds))=0;
obj.w(obj.y<min(ybnds))=0;
obj.w(obj.y>max(ybnds))=0;

end % WeightBounds
function ThermalAdjust(obj)

%kept only for backwards compatibility
obj.CorrectBose()

end % ThermalAdjust
function CorrectBose(obj)

if length(obj)>1
for no=1:length(obj); obj(no).CorrectBose; end

else
if isempty(obj.e)

obj.e = obj.data(obj.findColumn('e'),:);
end
% See Shirane, Shapiro, and Tranquada
% page 26, eq. (2.31) and acompanying text.
pmz = (1-exp(-obj.e ./ (obj.kBoltzman*obj.t)));
obj.y = obj.y .* pmz;
obj.data(obj.defyvalue ,:)=obj.data(obj.defyvalue ,:) .* pmz;
obj.err = obj.err .* pmz;



179

end
end % CorrectBose
function CorrectFormFactor(obj,ion)

% Magnetic Form Factor for various ions of 3d transition elements
%
% in the dipole approximation ,
% 𝐹 =< 𝑗0(𝑠) > +(1 − 2

𝑔 ) < 𝑗2(𝑠) >
% and in the case of spin-only scattering 𝑔 = 2
% ∴𝐹 =< 𝑗0(𝑠) >
%
% Values from the International Tables of Crystallography (2006),
% Vol. C, Chapter 4.4, Section 4.4.5, by P.J. Brown, pg 454-461.
%
% 𝑞 = 4 ∗ 𝜋 sin(𝜃)/𝜆
% 𝑠 = sin(𝜃)/𝜆
% ∴𝑞 = 4 ∗ 𝜋 ∗ 𝑠 or 𝑠 = 𝑞

4∗𝜋 q.e.d.
if length(obj)>1

for no=1:length(obj); obj(no).CorrectFormFactor(ion); end
else

switch ion
case {'Fe','Fe0+'};
C0=[0.0706 ,35.008,0.3589 ,15.358,0.5819,5.561,-0.0114];
case {'Fe+','Fe1+'};
C0=[0.1251 ,34.963,0.3629 ,15.514,0.5223,5.591,-0.0105];
case 'Fe2+';
C0=[0.0263 ,34.9597,0.3668 ,15.9435,0.6188,5.5935,-0.0119];
case 'Fe3+';
C0=[0.3972 ,13.244,0.6295,4.903,-0.0314,0.350,0.0044];
case 'Fe4+';
C0=[0.3782 ,11.380,0.6556,4.592,-0.0346,0.483,0.0005];
case {'Co','Co0+'};
C0=[0.4139 ,16.162,0.6013,4.780,-0.1518,0.021,0.1345];
case {'Co+','Co1+'};
C0=[0.0990 ,33.125,0.3645 ,15.177,0.5470,5.008,-0.0109];
case 'Co2+';
C0=[.4332 ,14.355,.5857,4.608,-.0382,.134,.0179,.0711];
case 'Co3+';
C0=[.3902 ,12.508,.6324,4.457,-.15,.034,.1272,.0515];
case 'Co4+';
C0=[0.3515 ,10.778,0.6778,4.234,-0.0389,0.241,0.0098];
case {'Mn','Mn0+'};
C0=[0.2438 ,24.963,0.1472 ,15.673,0.6189,6.540,-0.0105];
case {'Mn+','Mn1+'};
C0=[-0.0138,0.421,0.4231 ,24.668,0.5905,6.655,-0.0010];
case 'Mn2+';
C0=[0.4220 ,17.684,0.5948,6.0050,0.0043,-0.609,-0.0219];
case 'Mn3+';
C0=[0.4198 ,14.283,0.6054,5.469,0.9241,-0.009,-0.9498];
case 'Mn4+';
C0=[0.3760 ,12.566,0.6602,5.133,-0.0372,0.563,0.0011];
case {'Cu','Cu0+'};
C0=[0.0909 ,34.984,0.4088 ,11.443,0.5128,3.825,-0.0124];
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case {'Cu+','Cu1+'};
C0=[0.0749 ,34.966,0.4147 ,11.754,0.5238,3.850,-0.0127];
case 'Cu2+';
C0=[0.0232 ,34.969,0.4023 ,11.567,0.5882,3.843,-0.0137,0.0532];
case 'Cu3+';
C0=[0.0031 ,34.907,0.3582 ,10.914,0.6531,3.828,-0.0147];
case 'Cu4+';
C0=[-0.0132 ,30.682,0.2801 ,11.163,0.7490,3.817,-0.0165];
otherwise; C0=[1,0,0,0,0,0,0];
warning('formfactor:ionSwitch',...

['I don''t know the parameters that',...
' describe the form factor for ',ion,'.',...
'Feel free to teach me something new.'])

end
%< 𝑗0(𝑠) > is really < 𝑗0(𝑠2) > :
ss = (obj.q/4/pi).^2;
j0=C0(1)*exp(-C0(2).*ss)+C0(3)*exp(-C0(4).*ss)...

+C0(5)*exp(-C0(6).*ss)+C0(7);
ff2=j0.^2;
obj.y=obj.y./ff2;
obj.err=obj.err./ff2;
obj.data(obj.defyvalue ,:)=obj.data(obj.defyvalue ,:)./ff2;

end
end % CorrectFormFactor
function Convert_mbpSr_uB2(obj)

if length(obj)>1
for i=1:length(obj);obj(i).Convert_mbpSr_uB2; end

else
% Magnetic intensity should normally be cast in 𝜇2

𝐵 (per eV?)
% The sole purpose of this routine is to unify this conversion
% in order to (hopefully) prevent errors due to typos.
r02= 290.6;% mb/Sr
cv = 4*pi/(r02); % 𝜇2

𝐵/(mb/Sr) %%% There may be factors
obj.y=obj.y*cv; %% of ∑𝑖,𝑗 𝜒𝑖,𝑗

obj.err=obj.err*cv; % multiplicity missing
obj.data(obj.defyvalue ,:)=obj.data(obj.defyvalue ,:)*cv;
end

end % Convert_mbpSr_uB2
function removePts(obj,w)

% Data points with a weight of zero are removed.
% If w is empty, nothing happens to the data.
if nargin < 2; w = obj.w; end; lw=length(w);
if size(obj.data ,2)==lw; obj.data(:,~w)=[];end
if length(obj.err) ==lw; obj.err(~w) =[];end
if length(obj.EXP) ==lw; obj.EXP(~w) =[];end
if length(obj.monerr)==lw; obj.monerr(~w)=[];end
if length(obj.mcuerr)==lw; obj.mcuerr(~w)=[];end
if length(obj.timerr)==lw; obj.timerr(~w)=[];end
if length(obj.w) ==lw; obj.w(~w) =[];end
if obj.hstFlg;obj.hstY(~obj.hstW)=NaN;end
obj.fillVectors()

end % removePts
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function Tcolor(obj,temperatures ,colors)
% This function is rarely used; remove?
if nargin < 2; colors = 'b';end
if nargin < 1; temperatures = 1 ;end
if isempty(obj.t)

obj.t = obj.findTemperature;
end
[~,b] = min(abs(mean(obj.t) - temperatures));
obj.color = colors(b,:);

end % Tcolor
function [h,k,l,e,i,di,EXP,t]=read4ResLib(obj)

if length(obj)>1
np=0;
for j=1:length(obj); np=np+length(obj(j).x); end
h=zeros(np,1);k=h;l=h;e=h;i=h;di=h;t=h;EXP=[];
p=0;
for j=1:length(obj)

np=length(obj(j).x);
[h(1+p:np+p),k(1+p:np+p),l(1+p:np+p),e(1+p:np+p),...

i(1+p:np+p),di(1+p:np+p),EXPt,t(1+p:np+p)]=...
obj(j).read4ResLib();

p=np+p;
EXP=[EXP;EXPt];

end
else

if isempty(obj.h)||isempty(obj.k)||isempty(obj.l)
obj.fillMillerVecs()

end
h=obj.h(:);k=obj.k(:);l=obj.l(:);
e=obj.e(:);i=obj.y(:);di=obj.err(:);t=obj.t(:);
if isempty(obj.EXP)

obj.createRLEXP
end
EXP=obj.EXP;
if any(obj.w==0);

h(obj.w==0)=[];k(obj.w==0)=[];l(obj.w==0)=[];
e(obj.w==0)=[];i(obj.w==0)=[];di(obj.w==0)=[];
t(obj.w==0)=[];EXP(obj.w==0)=[];

end
end

end % read4ResLib
function conv = ConvRes(obj,sfnc,bfnc,METHOD,ACCURACY,p)

if nargin < 4 || isempty(METHOD);
METHOD = 'mc';
warning('scandata:ConvRes:METHOD','MonteCarlo method used');

end
if nargin <3; bfnc=[]; end

if ~isfield(obj,'EXP')||isempty(obj.EXP)
obj.createRLEXP();

end
aEXP = obj.EXP;
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if any([isempty(obj.h),isempty(obj.k),isempty(obj.l)])
obj.fillMillerVecs()

end
hh=obj.h(:);kk=obj.k(:);ll=obj.l(:);ee=obj.e(:);
obj.rl.conv = ConvRes(sfnc,bfnc,hh,kk,ll,ee,...

aEXP,METHOD,ACCURACY,p);
if nargin >0; conv=obj.rl.conv; end

end % ConvRes
function conv = ConvResSMA(obj,sfnc,bfnc,METHOD,ACCURACY,p)

if nargin < 4 || isempty(METHOD);
METHOD = 'mc';
warning('scandata:ConvRes:METHOD','MonteCarlo method used');

end
if nargin < 3; bfnc =[]; end

if ~isfield(obj,'EXP')||isempty(obj.EXP)
obj.createRLEXP();

end
aEXP = obj.EXP;

if any([isempty(obj.h),isempty(obj.k),isempty(obj.l)])
obj.fillMillerVecs()

end
hh=obj.h(:);kk=obj.k(:);ll=obj.l(:);ee=obj.e(:);
obj.rl.cE=ee;obj.rl.cH=hh;obj.rl.cK=kk;obj.rl.cL=ll;
obj.rl.conv = ConvResSMA(sfnc,bfnc,hh,kk,ll,ee,...

aEXP,METHOD,ACCURACY,p);
if nargin >0; conv=obj.rl.conv; end

end % ConvResSMA
function [pa,dpa,chisqN,sim,CN,pQ,nit,kvg,details]=...

FitConv(obj,sf,bf,MET,ACC,p,i,nmx,tol,dtol)
if nargin < 10; dtol=1e-5; end
if nargin < 9; tol = 0.001;end
if nargin < 8; nmx = 100; end
if nargin < 7; i = ones(size(p)); end
lv=zeros(size(obj));
for no=1:length(obj)

lv(no)=length(obj(no).x);
end
hh=zeros(sum(lv),1);kk=hh;ll=hh;ee=hh;ii=hh;ie=hh;
xx=[];
j=1;
for no=1:length(obj)

[ht,kt,lt,et,it,dt,xt]=obj(no).read4ResLib;
hh(j:j+lv(no)-1)=ht;kk(j:j+lv(no)-1)=kt;ll(j:j+lv(no)-1)=lt;
ee(j:j+lv(no)-1)=et;ii(j:j+lv(no)-1)=it;ie(j:j+lv(no)-1)=dt;
xx=[xx;xt(:)]; j=j+lv(no);

end
[pa,dpa,chisqN,sim,CN,pQ,nit,kvg,details]=FitConv(...

hh,kk,ll,ee,xx,ii,ie,sf,bf,p,i,MET,ACC,nmx,tol,dtol);
rp.pa=pa; rp.dpa=dpa; rp.chisqN=chisqN;
j=1;
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for no=1:length(obj)
rp.sim=sim(j:j+lv(no)-1);
obj(no).rl=rp;
j=j+lv(no);

end
if nargout < 9; clear('details');end
if nargout < 8; clear('kvg');end
if nargout < 7; clear('nit');end
if nargout < 6; clear('pQ');end
if nargout < 5; clear('CN');end
if nargout < 4; clear('sim');end
if nargout < 3; clear('chisqN');end
if nargout < 2; clear('dpa');end
if nargout < 1; clear('pa');end

end % FitConv
function [pa,dpa,chisqN,sim,CN,pQ,nit,kvg,details]=...

FitConvSMA(obj,sf,bf,MET,ACC,p,i,nmx,tol,dtol)
if nargin < 10; dtol=1e-5; end
if nargin < 9; tol = 0.001;end
if nargin < 8; nmx = 100; end
if nargin < 7; i = ones(size(p)); end
lv=zeros(size(obj));
for no=1:length(obj)

lv(no)=length(obj(no).x);
end
hh=zeros(sum(lv),1);kk=hh;ll=hh;ee=hh;ii=hh;ie=hh;
xx=[];
j=1;
for no=1:length(obj)

[ht,kt,lt,et,it,dt,xt]=obj(no).read4ResLib;
hh(j:j+lv(no)-1)=ht;kk(j:j+lv(no)-1)=kt;ll(j:j+lv(no)-1)=lt;
ee(j:j+lv(no)-1)=et;ii(j:j+lv(no)-1)=it;ie(j:j+lv(no)-1)=dt;
xx=[xx;xt(:)]; j=j+lv(no);

end
[pa,dpa,chisqN,sim,CN,pQ,nit,kvg,details]=FitConvSMA(...

hh,kk,ll,ee,xx,ii,ie,sf,bf,p,i,MET,ACC,nmx,tol,dtol);
rp.pa=pa; rp.dpa=dpa; rp.chisqN=chisqN;
j=1;
for no=1:length(obj)

rp.sim=sim(j:j+lv(no)-1);
obj(no).rl=rp;
j=j+lv(no);

end
if nargout < 9; clear('details');end
if nargout < 8; clear('kvg');end
if nargout < 7; clear('nit');end
if nargout < 6; clear('pQ');end
if nargout < 5; clear('CN');end
if nargout < 4; clear('sim');end
if nargout < 3; clear('chisqN');end
if nargout < 2; clear('dpa');end
if nargout < 1; clear('pa');end
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end % FitConvSMA
function createRLEXP(obj)

% % % Each datafile contains lattice parameters , and ubmatrix
% (from which it should be possible to pull the orienting
% vectors) in the header, plus all energies from which it
% should be possible to determine which (if any) is fixed.
[loc,eh]=obj.findInHeader('ubconf');
expFile=[obj.filename(1:end-34) 'UBConf/' cell2mat(eh(loc+2))];
%this will ultimately fail if we're not on a UNIX-like system
%OR if the filename -length ever changes!!!!!
fid = fopen(expFile);
lne = fgetl(fid);
while ~strcmp(lne,'[UBMode]')

lne = fgetl(fid);
end
mode = fgetl(fid);
mode = str2double(mode (end));
frewind(fid);
switch mode

case 1
lne = fgetl(fid);
while ~strncmp(lne,'ScatteringPlaneVectors',22)

lne = fgetl(fid);
end
lne=lne(23:end);
lne(lne==' ')=[];lne(lne=='"')=[];lne(lne=='=')=[];
lne=str2num(lne);
orient1=lne(1:3);
orient2=lne(4:6);
frewind(fid);
lne = fgetl(fid);
while ~strncmp(lne,'LatticeParams',13)

lne = fgetl(fid);
end
lne=lne(14:end);
lne(lne==' ')=[];lne(lne=='"')=[];lne(lne=='=')=[];
lattice = str2num(lne);
frewind(fid);
lne = fgetl(fid);
while ~strncmp(lne,'Energy',6)

lne = fgetl(fid);
end
lne=lne(7:end);
lne(lne==' ')=[];lne(lne=='"')=[];lne(lne=='=')=[];
energy = str2double(lne);
frewind(fid);

case 2
lne = fgetl(fid);
while ~strncmp(lne,'Peak1',5)

lne = fgetl(fid);
end
lne=lne(6:end);
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lne(lne==' ')=[];lne(lne=='"')=[];lne(lne=='=')=[];
lne = str2num(lne);
orient1 = lne(1:3);
frewind(fid);
lne = fgetl(fid);
while ~strncmp(lne,'Peak2',5)

lne = fgetl(fid);
end
lne=lne(6:end);
lne(lne==' ')=[];lne(lne=='"')=[];lne(lne=='=')=[];
lne = str2num(lne);
orient2 = lne(1:3);
frewind(fid);
lne = fgetl(fid);
while ~strncmp(lne,'LatticeParams',13)

lne = fgetl(fid);
end
lne=lne(14:end);
lne(lne==' ')=[];lne(lne=='"')=[];lne(lne=='=')=[];
lattice = str2num(lne);
frewind(fid);
lne = fgetl(fid);
while ~strncmp(lne,'Energy',6)

lne = fgetl(fid);
end
lne=lne(7:end);
lne(lne==' ')=[];lne(lne=='"')=[];lne(lne=='=')=[];
energy = str2double(lne);
frewind(fid);

otherwise
warning('scandata:createRLEXP',...

'ResLib EXP structure not created, unknown UBMode')
% Add extra cases for other UBModes when they come up.

end
fclose(fid);
[loc,eh]=obj.findInHeader('monochromator');
mon = cell2mat(eh(loc+2)); mon = [mon(1:2) '(' mon(3:end) ')'];
[loc,eh]=obj.findInHeader('analyzer');
ana = cell2mat(eh(loc+2)); ana = [ana(1:2) '(' ana(3:end) ')'];
[loc,eh]=obj.findInHeader('collimation');
hcol = cell2mat(eh(loc+2)); hcol(hcol=='-')=',';
hcol = str2num(hcol);

[loc,eh]=obj.findInHeader('sense');
sense = eh(loc+2); sense = sense{:};
switch sense

case '-+-';mondir=-1;dir1= 1;dir2= 1;
case '+-+';mondir= 1;dir1= 1;dir2= 1;
case '---';mondir=-1;dir1=-1;dir2=-1;
case '--+';mondir=-1;dir1=-1;dir2= 1;
case '-++';mondir=-1;dir1= 1;dir2=-1;
case '+++';mondir= 1;dir1=-1;dir2=-1;
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case '++-';mondir= 1;dir1=-1;dir2= 1;
case '+--';mondir= 1;dir1= 1;dir2=-1;
otherwise

warning('scandata:createRLEXP',...
'Unknown sense, using default values.');

mondir=1;dir1=1;dir2=1;
end

aEXP.mono.tau=mon;
aEXP.mono.mosaic=30;
aEXP.mono.vmosaic=45;
aEXP.ana.tau=ana;
aEXP.ana.mosaic=40;
aEXP.ana.vmosaic=25;
aEXP.sample.a=lattice(1);
aEXP.sample.b=lattice(2);
aEXP.sample.c=lattice(3);
aEXP.sample.alpha=lattice(4);
aEXP.sample.beta=lattice(5);
aEXP.sample.gamma=lattice(6);
aEXP.hcol = hcol;
aEXP.vcol=[180 300 300 600];
aEXP.efixed=energy;
aEXP.infin=-1; %default value, I think. fixed final energy
aEXP.orient1=orient1;
aEXP.orient2=orient2;
aEXP.dir1=dir1;
aEXP.dir2=dir2;
aEXP.mondir=mondir;

global RES_CONSTANTS
if isfield(RES_CONSTANTS ,'method')&&RES_CONSTANTS.method==1

% Set various parameters for Popovici method
% defaulting to HB3 values and a typical coalignment
if isfield(RES_CONSTANTS ,'sample')

if isfield(RES_CONSTANTS.sample ,'mosaic')
aEXP.sample.mosaic=RES_CONSTANTS.sample.mosaic;

end
if isfield(RES_CONSTANTS.sample ,'shape')

aEXP.sample.shape=RES_CONSTANTS.sample.shape;
end

end
if isfield(RES_CONSTANTS ,'beam')

if isfield(RES_CONSTANTS.beam ,'width')
aEXP.beam.width=RES_CONSTANTS.beam.width;

end
if isfield(RES_CONSTANTS.beam ,'height')

aEXP.beam.height=RES_CONSTANTS.beam.height;
end

end
if isfield(RES_CONSTANTS ,'detector')

if isfield(RES_CONSTANTS.detector ,'width')
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aEXP.detector.width=RES_CONSTANTS.detector.width;
end
if isfield(RES_CONSTANTS.detector ,'height')

aEXP.detector.height=RES_CONSTANTS.detector.height;
end

end
if isfield(RES_CONSTANTS ,'mono')

if isfield(RES_CONSTANTS.mono ,'width')
aEXP.mono.width=RES_CONSTANTS.mono.width;

end
if isfield(RES_CONSTANTS.mono ,'height')

aEXP.mono.height=RES_CONSTANTS.mono.height;
end
if isfield(RES_CONSTANTS.mono ,'depth')

aEXP.mono.depth=RES_CONSTANTS.mono.depth;
end
if isfield(RES_CONSTANTS.mono ,'rv')

aEXP.mono.rv=RES_CONSTANTS.mono.rv;
end
if isfield(RES_CONSTANTS.mono ,'rh')

aEXP.mono.rh=RES_CONSTANTS.mono.rh;
end

end
if isfield(RES_CONSTANTS ,'ana')

if isfield(RES_CONSTANTS.ana ,'width')
aEXP.ana.width=RES_CONSTANTS.ana.width;

end
if isfield(RES_CONSTANTS.ana ,'height')

aEXP.ana.height=RES_CONSTANTS.ana.height;
end
if isfield(RES_CONSTANTS.ana ,'depth')

aEXP.ana.depth=RES_CONSTANTS.ana.depth;
end
if isfield(RES_CONSTANTS.ana ,'rv')

aEXP.ana.rv=RES_CONSTANTS.ana.rv;
end
if isfield(RES_CONSTANTS.ana ,'rh')

aEXP.ana.rh=RES_CONSTANTS.ana.rh;
end

end
if isfield(RES_CONSTANTS ,'monitor')

if isfield(RES_CONSTANTS.monitor ,'width')
aEXP.monitor.width=RES_CONSTANTS.monitor.width;

end
if isfield(RES_CONSTANTS.monitor ,'height')

aEXP.monitor.height=RES_CONSTANTS.monitor.height;
end

end
if isfield(RES_CONSTANTS ,'arms')

aEXP.arms=RES_CONSTANTS.arms;
end
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if ~isfield(aEXP,'sample')||~isfield(aEXP.sample ,'mosaic')
aEXP.sample.mosaic=32;

end
if ~isfield(aEXP,'sample')||~isfield(aEXP.sample ,'shape')

%aEXP.sample.shape=sqrt(diag([4,2,3].^2/12));
aEXP.sample.shape=diag([3,3,3].^2/12);

end
if ~isfield(aEXP,'beam')||~isfield(aEXP.beam ,'width')

aEXP.beam.width=15/sqrt(12);
end
if ~isfield(aEXP,'beam')||~isfield(aEXP.beam ,'height')

aEXP.beam.height=15/sqrt(12);
end
if ~isfield(aEXP,'detector')||~isfield(aEXP.detector ,'width')

aEXP.detector.width=4/sqrt(12);
end
if ~isfield(aEXP,'detector')||~isfield(aEXP.detector ,'height')

aEXP.detector.height=12/sqrt(12);
end
if ~isfield(aEXP,'mono')||~isfield(aEXP.mono ,'width')

aEXP.mono.width=7.62/sqrt(12);
end
if ~isfield(aEXP,'mono')||~isfield(aEXP.mono ,'height')

aEXP.mono.height=10.16/sqrt(12);
end
if ~isfield(aEXP,'mono')||~isfield(aEXP.mono ,'depth')

aEXP.mono.depth=0.25/sqrt(12);
end
if ~isfield(aEXP,'ana')||~isfield(aEXP.ana,'width')

aEXP.ana.width=7.62/sqrt(12);
end
if ~isfield(aEXP,'ana')||~isfield(aEXP.ana,'height')

aEXP.ana.height=7/sqrt(12);
end
if ~isfield(aEXP,'ana')||~isfield(aEXP.ana,'depth')

aEXP.ana.depth=0.2/sqrt(12);
end
if ~isfield(aEXP,'ana')||~isfield(aEXP.ana,'rv')

aEXP.ana.rv=9.844*2.54;%cm,
end
if ~isfield(aEXP,'monitor')||~isfield(aEXP.monitor ,'width')

aEXP.monitor.width=5/sqrt(12);
end
if ~isfield(aEXP,'monitor')||~isfield(aEXP.monitor ,'height')

aEXP.monitor.height=12/sqrt(12);
end
if ~isfield(aEXP,'arms')

aEXP.arms=[650 190 160 86 60];
end
aEXP.method=1;
if ~isfield(aEXP,'mono')||~isfield(aEXP.mono ,'rv')

%include HB3 varying monochromator focusing
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monorv=obj.getColumn('focal_length');
aEXP=repmat(aEXP,size(obj.ei));
for i=1:length(aEXP)

%aEXP(i).mono.rv = ...
% obj.hbar/sqrt(2*obj.neutronmass) ...
% *GetTau(aEXP(i).mono.tau)/sqrt(obj.ei(i)) ...
% /(1/aEXP(i).arms(1) + 1/aEXP(i).arms(2));
aEXP(i).mono.rv = 2*monorv(i);

end
end

end
% in case aEXP is not the length of obj.ei
aEXP=repmat(aEXP,size(obj.ei)./size(aEXP));
obj.EXP=aEXP(:);

end % createRLEXP
function fillMillerVecs(obj)

if length(obj)>1
for no=1:length(obj)

obj(no).fillMillerVecs()
end

else
obj.h = obj.getColumn('h');
obj.k = obj.getColumn('k');
obj.l = obj.getColumn('l');

end
end % fillMillerVecs
function findLatticeConstants(obj)

lcsstr=obj.getFromHeader('latticeconstants');lcsstr=lcsstr{:};
lcsvec=str2num(lcsstr);
obj.alat = lcsvec(1);
obj.blat = lcsvec(2);
obj.clat = lcsvec(3);
obj.alpha = lcsvec(4);
obj.beta = lcsvec(5);
obj.gamma = lcsvec(6);

end % findLatticConstants
function monitorHarmonic(obj,Tmoderator)

%The Monitor overcounts at low energies due to higher-order
%harmonics in the beam. This function accounts for the
%overcounting by multiplying the observed intensity by a factor
%that is always greater than 1 (approches 1 as 𝐸𝑖 ≫ 𝑘𝑏𝑇𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑜𝑟)
%See the Triple Axis book by Shirane, Shapiro & Tranquada
%for a better explanation.
if nargin < 2; Tmoderator = 350; end %Moderator temp. ~350K
if length(obj) > 1

for no=1:length(obj);
obj(no).monitorHarmonic(Tmoderator);

end
return

end
if isempty(obj.ei); obj.ei = obj.getColumn('ei'); end
S = obj.ei/(obj.kBoltzman*Tmoderator); % 𝐸1

𝑘𝐵∗𝑇
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S = 1+4*exp(-3*S)+ 9*exp(-8*S) +16*exp(-15*S)+...
25*exp(-24*S)+36*exp(-25*S)+49*exp(-48*S)+...
64*exp(-63*S)+81*exp(-80*S)+100*exp(-99*S);

obj.y = obj.y.*S;
obj.data(obj.defyvalue ,:) = obj.data(obj.defyvalue ,:).*S;
obj.err = obj.err.*S;
% An alternative approach would be to correct the monitor
% counts by dividing by S. It's unclear which approach is best.

end % monitorHarmonic
function [X,Y,Er,T,Edg,E]=createHistogram(obj,varargin)

eks = obj.x; why = obj.y; air = obj.err;
if ~isempty(obj.t); tee = obj.t; tF = true; else tF = false; end
if ~isempty(obj.e); eee = obj.e; eF = true; else eF = false; end
mult = false;
if ~isempty(varargin)

Z = scandata.empty(size(varargin ,2),0);
for i = 1:length(varargin); Z(i) = varargin{i}; end
z = cell(size(Z));
[z{:}] = Z.x; xvs = [{eks} z]; eks = [eks z{:}];
[z{:}] = Z.y; yvs = [{why} z]; why = [why z{:}];
[z{:}] = Z.err; evs = [{air} z]; air = [air z{:}];
if tF; [z{:}]=Z.t; tvs = [{tee} z]; tee = [tee z{:}];end
if eF; [z{:}]=Z.e; Evs = [{eee} z]; eee = [eee z{:}];end
nvs = cell(size(xvs)); cvs = nvs; bvs = nvs; mult = true;

end
xl = min(eks); xu = max(eks);
if mult

eks = sort(eks);
eks(diff(eks)<=1e-3)=[]; %remove repeated x's
edges = [(3*eks(1)-eks(2))/2,... %lower edge

eks(1:end-1)+diff(eks)/2,... %midpoint edges
(3*eks (end)-eks(end-1))/2]; %upper edge

for i=1:length(xvs)
[nvs{i},bvs{i}] = histc(xvs{i},edges);
cvs{i} = nvs{i}(1:end-1);

end
cond = ~all([cvs{:}]);

xxx = cell2mat(xvs);
while cond && length(edges)>2

n = cell2mat(cvs(:));
[~,least]=min(sum(n));
bbb = cell2mat(bvs);
if least == 1

edges(least+1)=[];
elseif least >= length(edges)-1

edges(least)=[];
else

avgP = sum(xxx(bbb==least+1))/sum(bbb==least+1);
avgM = sum(xxx(bbb==least -1))/sum(bbb==least -1);
avgX = sum(xxx(bbb==least))/sum(bbb==least);
avgv = [abs(avgM-avgX),abs(avgP-avgX)];
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[~,ccc]= min(avgv);
switch ccc

case 1
edges(least)=[];

case 2
edges(least+1)=[];

end
end
for i=1:length(xvs)

[nvs{i},bvs{i}] = histc(xvs{i},edges);
cvs{i} = nvs{i}(1:end-1);

end
cond = ~all([cvs{:}]);

end
yb = zeros(size(nvs{1}(1 :end -1)));
eb = yb; tb=yb; Eb=yb;
for i = 1:length(yb)

totpts = 0;
for j = 1:length(nvs)

v = bvs{j} == i;
totpts = totpts + sum(v);
yb(i) = yb(i) + sum(yvs{j}(v))/sum(v);
eb(i) = eb(i) + sum(evs{j}(v).^2);
if tF;tb(i) = tb(i) + sum(tvs{j}(v));end
if eF;Eb(i) = Eb(i) + sum(Evs{j}(v));end

end
eb(i) = sqrt(eb(i));
tb(i) = tb(i)/totpts;
Eb(i) = Eb(i)/totpts;

end
tb=tb/length(nvs);
Eb=Eb/length(nvs);

else
%to avoid dividing by zero (or something close to it)
d = diff(sort(eks)); d(abs(d)<=1e-3)=[];
xs = min(abs(d));
no = ceil((xu-xl)/xs)+1;
edges = linspace(xl-xs/2,xu+xs/2,no);
[n,b] = histc(eks,edges);
cond = ~all(n(1:end-1));
while cond && no>1 %if any bins have n=0 increase bin size

no = no - 1;
xs = (xu-xl)/(no-1);
edges = linspace(xl-xs/2,xu+xs/2,no);
[n,b] = histc(eks,edges);
cond = ~all(n(1:end-1));

end
yb = zeros(size(n(1:end -1)));
eb = yb;
if tF; tb = eb; else tb=[];end
if eF; Eb = eb; else Eb=[];end
for i=1:length(yb)
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v = b==i;
yb(i) = sum(why(v))/sum(v);
eb(i) = sqrt(sum(air(v).^2)/sum(v));
if tF; tb(i) = sum(tee(v))/sum(v);end
if eF; Eb(i) = sum(eee(v))/sum(v);end

end
end
xb = edges(1:end-1) + diff(edges)/2;
if ~nargout

obj.hstX = xb;
obj.hstY = yb;
obj.hstEr = eb;
obj.hstT = tb;
obj.hstEdg = edges;
obj.hstE = Eb;
obj.hstFlg = true;

else
X = xb;
Y = yb;
Er = eb;
T = tb;
Edg = edges;
E = Eb;

end
end % createHistogram
function findEnergies(obj)

if obj.findColumn('ei'); obj.ei = obj.getColumn('ei'); end
if obj.findColumn('e'); obj.e = obj.getColumn('e'); end
if obj.findColumn('ef'); obj.ef = obj.getColumn('ef'); end

end % findEnergies
function crpoints(obj,dontAvg,tol)

% obj.crpoints(dontAvg,tol)
% dontAvg is a cellstr of columns not to average, default value
% is {time,detector ,monitor,mcu} [pass empty set for default]
% tol is the tolerance in x, default 0.0002
% crpoints averages repeated points that are within some
% tolerance in default-x value
defdontAvg={'time','detector','monitor','mcu'};
if nargin < 2||isempty(dontAvg);dontAvg = defdontAvg; end
if nargin < 3 || isempty(tol); tol = 0.0005; end

if length(obj)>1
for i=1:length(obj); obj(i).crpoints(dontAvg,tol); end

else
%sort the data matrix and the point matrix. the advantage of
%doing so is that repeated points end up next to each other in
%the matrix
tosort = [obj.data;obj.err;obj.monerr;obj.mcuerr;obj.timerr];
sorted = sortrows(tosort',-obj.defxvalue); %WARNING: data^T
dataT = sorted(:,1:end-4);
errT = sorted(:,end-3);
monerrT=sorted(:,end-2);
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mcuerrT=sorted(:,end-1);
timeerrT=sorted(:,end);

rpt = abs(diff(dataT(:,obj.defxvalue))) < tol;
drpt = diff(rpt); %diff(diff(x))
rid = 1; ron=false; % rid == repeat-ID
lrpt=zeros(size(rpt));
for i=1:length(drpt);

if drpt(i)==1; ron=true; drpt(i)=rid; lrpt(i+1)=rid;
elseif drpt(i)==-1;

drpt(i)=rid;lrpt(i+1)=-rid; ron=false; rid = rid+1;
elseif ron;

drpt(i)=rid; lrpt(i+1)=-rid;
end

end
rpt1 = rpt(1);
if rpt1==1;

drpt(1)=1;
lrpt(1)=1;lrpt(2)=-1;

end
rpt = [rpt1;drpt]; %tested working for rpt(1)=0, and rpt(1)=1.

xcol = dataT(:,obj.defxvalue);
if abs(xcol (end)-xcol(end-1))<tol

rpt=[rpt;max(rpt)];
lrpt=[lrpt;-abs(lrpt (end))]; %% fixed 20120414
% abs() added 2013-03-12 to account for the situation of
% multiple points at the end being combined into one, i.e.
% [... 5 -5] should become [... 5 -5 -5] not [... 5 -5 5]!

else
rpt=[rpt;0];
lrpt=[lrpt;0];

end

%dontAvg = {'time','detector ','monitor','mcu'};
xxx=length(obj.colnames);yyy=length(dontAvg);
damat = repmat(dontAvg,xxx,1);
hdmat = repmat(obj.colnames ,1,yyy);
mtchmat = strcmp(damat,hdmat);
avgFlag = ~logical(sum(mtchmat ,2));

avgcts = ~any(strcmp('detector',dontAvg));
avgmon = ~any(strcmp('monitor',dontAvg));
avgmcu = ~any(strcmp('mcu',dontAvg));
avgtme = ~any(strcmp('time',dontAvg));
for i=1:max(rpt)

if any(size(sum(dataT(rpt==i,:),1))~=size(dataT(lrpt==i,:)))
warning('scandata:crpoints','dimension mismatch')

end
dataT(lrpt==i,:)=sum(dataT(rpt==i,:));
errT(lrpt==i)=sqrt(sum(errT(rpt==i).^2));
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monerrT(lrpt==i)=sqrt(sum(monerrT(rpt==i).^2));
mcuerrT(lrpt==i)=sqrt(sum(mcuerrT(rpt==i).^2));
timeerrT(lrpt==i)=sqrt(sum(timeerrT(rpt==i).^2));
if avgcts

errT(lrpt==i)=errT(lrpt==i)/sum(rpt==i);
end
if avgmon

monerrT(lrpt==i)=monerrT(lrpt==i)/sum(rpt==i);
end
if avgmcu

mcuerrT(lrpt==i)=mcuerrT(lrpt==i)/sum(rpt==i);
end
if avgtme

timeerrT(lrpt==i)=timeerrT(lrpt==i)/sum(rpt==i);
end
try

dataT(lrpt==i,avgFlag)=dataT(lrpt==i,avgFlag)/sum(rpt==i);
catch problem

disp('More colnames than columns.)
disp(' Does one have a space?')
rethrow(problem)

end
end
dataT(lrpt <0,:)=[];errT(lrpt <0)=[];
monerrT(lrpt <0)=[];mcuerrT(lrpt <0)=[];timeerrT(lrpt <0)=[];

obj.data=dataT'; %transpose back
obj.err=errT';
obj.monerr=monerrT ';
obj.mcuerr=mcuerrT ';
obj.timerr=timeerrT ';
obj.x = obj.data(obj.defxvalue ,:);
obj.y = obj.data(obj.defyvalue ,:);
obj.q = obj.data(obj.findColumn('q'),:);

if ~isempty(obj.w); obj.Weight(); end
if ~isempty(obj.h); obj.fillMillerVecs;end
if ~isempty(obj.alat); obj.findLatticeConstants;end
obj.findEnergies
obj.findTemperature
if obj.hstFlg

[obj.hstX ,obj.hstY ,obj.hstEr ,obj.hstT ,...
obj.hstEdg ,obj.hstE] = obj.createHistogram();

end
end

end % crpoints
function bin(obj,binspec)

if nargin <2; binspec=[];end
if length(obj)>1

for i=1:length(obj)
obj(i).bin(binspec)

end
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else
if isempty(binspec);

binspec=[min(obj.x),...
mode(abs(diff(unique(sort(obj.x))))),max(obj.x)];

elseif length(binspec)==1
binspec=[min(obj.x),binspec,max(obj.x)];

end
sx=min(binspec([1,3]));
dx=abs(binspec(2));
lx=max(binspec([1,3]));
if (lx-sx)<dx %guarantee at least one bin

bc=(lx+sx)/2;
%be=bc+dx*0.5*[-1,1]; % uncomment for bin edges

else
bc=sx:dx:lx;
%be=[bc-0.5*dx,lx+0.5*dx]; % uncomment for bin edges

end
dbe=[obj.data;obj.err.^2;obj.monerr.^2;...

obj.mcuerr.^2;obj.timerr.^2];
[hno,pno]=size(dbe);

bindbe=zeros(hno,length(bc));
binno=bindbe;
for i=1:pno

[~,b]=min(abs(obj.x(i)-bc));
bindbe(:,b)=bindbe(:,b)+dbe(:,i);
binno(:,b)=binno(:,b)+1;

end
bindbe=bindbe./binno;
bindbe(:,~sum(binno))=[];
obj.data=bindbe(1:end-4,:);
obj.fillVectors
% We're missing a factor of 1/binno for the errors, since
% the error in x=sum(y) is dx=sqrt(sum(dy.^2))/numel(y)
binno(:,~sum(binno))=[];
bindbe=bindbe./binno;
obj.err =sqrt(bindbe(end-3,:));
obj.monerr=sqrt(bindbe(end-2,:));
obj.mcuerr=sqrt(bindbe(end-1,:));
obj.timerr=sqrt(bindbe(end ,:));

end
end % bin
function fixedFinalEnergyCorrection(obj)

% 𝐸 = ℏ𝑘2

2𝑚 so 𝑘𝑓
𝑘𝑖

= √ 𝐸𝑓
𝐸𝑖

% the energy vectors were filled at object creation
kfki = sqrt(obj.ef ./ obj.ei);
obj.y = obj.y ./ kfki;
obj.data(obj.defyvalue ,:)=obj.data(obj.defyvalue ,:)./kfki;
obj.err=obj.err ./ kfki;

end % fixedFinalEnergyCorrection
function replacedata(obj,data)
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obj.data=data;
obj.fillVectors

end
function replaceerror(obj,err,monerr,mcuerr,timerr)

if (nargin >4&&~isempty(timerr)); obj.timerr=timerr; end
if (nargin >3&&~isempty(mcuerr)); obj.monerr=monerr; end
if (nargin >2&&~isempty(monerr)); obj.mcuerr=mcuerr; end
if (nargin >1&&~isempty(err)); obj.err = err; end

end
function replaceprop(obj,prop,val)

obj.(prop)=val;
end
function redefinex(obj,newname)

for i=1:length(obj)
if obj(i).findColumn(newname)

obj(i).defxname=newname;
obj(i).defxvalue=obj(i).findColumn(newname);
obj(i).x=obj(i).getColumn(newname);

end
end

end % redefinex
function replacex(obj,newx)

obj.x=newx;
obj.data(obj.defxvalue ,:)=newx;

end % replacex
function redefiney(obj,newname)

for i=1:length(obj)
if obj(i).findColumn(newname)

obj(i).defyname=newname;
obj(i).defyvalue=obj(i).findColumn(newname);
obj(i).y=obj(i).getColumn(newname);
obj(i).err=sqrt(obj(i).y);

end
end

end % redefiney
function replacey(obj,newy)

obj.y=newy;
obj.data(obj.defyvalue ,:)=newy;
obj.err=sqrt(obj.y);

end % replacey
function removeColumn(obj,list)

if ~iscell(list); list={list}; end
if length(obj)>1;

for i=1:length(obj); obj.removeColumn(list); end
return

end
for i=1:length(list)

lno=obj.findColumn(list{i});
if lno

obj.data(lno,:)=[];
obj.colnames(lno)=[];

end
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end
end % removeColumn
function addColumn(obj,named,values)

if ~iscell(named); named={named}; end
if ~iscell(values); values={values}; end
if length(obj)>1;

for i=1:length(obj); obj.addColumn(named,values); end
return

end
for i=1:length(named)

if ~obj.findColumn(named{i}) % column doesn't exist yet
lx=length(obj.x); lv=length(values{i});
if lv==lx || lv==1

obj.colnames(end+1)=named(i);
if lv==1

obj.data(end+1,:)=values{i}*ones(size(obj.x));
else

obj.data(end+1,:)=values{i};
end

end
end

end
end % addColumn
function emptyPointCheck(obj)

az = ~( obj.getColumn('detector')|obj.getColumn('monitor')...
|obj.getColumn('mcu') |obj.getColumn('time') );

obj.data(:,az)=[]; obj.fillVectors% re-fill all but errors
errlist={'err','monerr','mcuerr','timerr'};
for i=1:length(errlist); obj.(errlist{i})(az)=[]; end

end % emptyPointCheck
end % public methods
methods % Overloaded Methods

function comb = horzcat(sd1,sd2) %[a,b]
%if both objects are scandata object
if isa(sd1,'scandata')&&isa(sd2,'scandata')

comb = scandata(sd1);
comb.filename = [sd1.filename;sd2.filename];
comb.data = [sd1.data ,sd2.data];
comb.header = [sd1.header ,sd2.header];
if strcmp([sd1.colnames{:}],[sd2.colnames{:}])

comb.colnames = sd1.colnames;
else

comb.colnames = {'Added scans with different colnames'};
end
if strcmp([sd1.defxname{:}],[sd2.defxname{:}])

comb.defxname = sd1.defxname;
else

comb.defxname = [sd1.defxname;sd2.defxname];
end
if strcmp([sd1.defyname{:}],[sd2.defyname{:}])

comb.defyname = sd1.defyname;
else
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comb.defyname = [sd1.defyname;sd2.defyname];
end
if sd1.defxvalue==sd2.defxvalue;comb.defxvalue=sd1.defxvalue;
else comb.defxvalue=[sd1.defxvalue;sd2.defxvalue];end
if sd1.defyvalue==sd2.defyvalue;comb.defyvalue=sd1.defyvalue;
else comb.defyvalue=[sd1.defyvalue;sd2.defyvalue];end
comb.x = [sd1.x,sd2.x];
comb.y = [sd1.y,sd2.y];
comb.err = [sd1.err,sd2.err];
comb.stoppedFlag = sd1.stoppedFlag + sd2.stoppedFlag;
comb.ei = [sd1.ei,sd2.ei];
comb.e = [sd1.e,sd2.e];
comb.ef = [sd1.ef,sd2.ef];
comb.w = [sd1.w,sd2.w];
comb.q = [sd1.q,sd2.q];
comb.monerr=[sd1.monerr ,sd2.monerr];
comb.mcuerr=[sd1.mcuerr ,sd2.mcuerr];
comb.timerr=[sd1.timerr ,sd2.timerr];

if ~(isempty(sd1.sumCounts)||isempty(sd2.sumCounts))
comb.sumCounts = sd1.sumCounts+sd2.sumCounts;

end
if ~isempty(sd1.color) && strcmp(sd1.color ,sd2.color)

comb.color = sd1.color;
end

if ~isempty(sd1.h) || ~isempty(sd2.h)
comb.fillMillerVecs;

end
if ~isempty(sd1.alat) || ~isempty(sd2.alat)

if ~isempty(sd1.alat)
comb.alat = sd1.alat; comb.blat = sd1.blat;
comb.clat = sd1.clat;
comb.alpha = sd1.alpha; comb.beta = sd1.beta;
comb.gamma = sd1.gamma;

else
comb.alat = sd2.alat; comb.blat = sd2.blat;
comb.clat = sd2.clat;
comb.alpha = sd2.alpha; comb.beta = sd2.beta;
comb.gamma = sd2.gamma;

end
end

%if there is one scandata object and one double object
elseif (isa(sd1,'scandata')&&isa(sd2,'double'))...

||(isa(sd2,'scandata')&&isa(sd1,'double'))
if isa(sd2,'scandata')

tmp = sd1; %if the scandata object is sd2, rename
sd1 = sd2; %it to sd1 and rename the double object
sd2 = tmp; %to sd2.

end
%now sd1 is guaranteed to be a scandata object
comb = scandata(sd1);



199

comb.y = sd1.y + sd2.y;
end

end %horzcat
function comb = vertcat(varargin) %[a;b]

%original functionality of mapping vertcat to horzcat wasn't
%particularly useful, instead vertcat will now create an empty
%scandata vector object the size of a plus the size of b and
%then place the elements of a and b into the empty vector
ww = 0;
for i=1:length(varargin)

z = varargin{i};
z = z(:);
ww = ww + size(z,1);
varargin{i}=z;

end
comb = scandata.empty(ww,0);
p=1;
for i=1:length(varargin)

z = varargin{i};
ww = size(z,1);
for j=1:ww; comb(p)=z(j); p=p+1; end

end
end % vertcat
function sm = sum(a)

if isa(a,'scandata')
sm=scandata(a(1));
for no=2:length(a)

sm=sm+a(no);
end

end
end

function pls = plus(a,b) % a+b
if isa(a,'scandata')&&isa(b,'scandata')

la=length(a); lb=length(b);
if la>1&&lb>1&&la~=lb

error('scandata:plus','No addition performed')
end
if la==1; for i=1:lb; pls(i)=plus_sdsd(a,b(i)); end
elseif lb==1; for i=1:la; pls(i)=plus_sdsd(a(i),b); end
else for i=1:la; pls(i)=plus_sdsd(a(i),b(i)); end
end

else
if isa(b,'scandata')&&isa(a,'double')

tmp=a;a=scandata(b);b=tmp;
end %now a is a scandata and b a double
la=length(a);lay=length(a(1).y);lb=length(b);
if la>1&&lb>1&&la~=lb&&lay~=lb

error('scandata:plus','No addition performed')
elseif la==1&&lay==lb

pls=plus_sddb(a,b);
elseif la==lb
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for i=1:la; pls(i)=plus_sddb(a(i),b(i)); end
elseif lb==1

for i=1:la; pls(i)=plus_sddb(a(i),b); end
elseif la==1

for i=1:lb; pls(i)=plus_sddb(a,b(i)); end
else

error('scandata:plus','No additon performed')
end

end
end % plus
function mult = times(a,b) % a .* b

% vectorization overloading:
la=length(a);lb=length(b);
if la>1&&lb>1&&la~=lb

warning('scandata:times','No multiplication performed')
return

end
if la==1

for i=1:lb; mult(i)=timeshelper(a,b(i));end
elseif lb==1

for i=1:la; mult(i)=timeshelper(a(i),b);end
else

for i=1:la; mult(i)=timeshelper(a(i),b(i));end
end

end % times
function mult = mtimes(a,b) % a*b

mult = a .* b;
end % mtimes
function div = rdivide(a,b) % a ./ b

%rdivide, this whole function needs quite a lot of work.
if isa(a,'scandata')&&isa(b,'scandata')

div = scandata(a);
elseif isa(a,'scandata')&&isa(b,'double')

div = scandata(a) .* (1./b);
elseif isa(a,'double')&&isa(b,'scandata')

div = scandata(b);
end

end % rdivide
function div = mrdivide(a,b) % a/b

div = a ./ b;
end % mrdivide
function c = uminus(b) % -a

if isa(b,'scandata')
c = scandata.empty(0,length(b));
for i=1:length(b)

c(i) = scandata(b(i));
c(i).y = -c(i).y;
c(i).data(c(i).defyvalue ,:)=-c(i).data(c(i).defyvalue ,:);

end
else

c = -b;
end



201

end % uminus
function sub = minus(a,b)

if isa(a,'scandata') && isa(b,'scandata')
la=length(a);lb=length(b);
if la>1&&lb>1&&la~=lb

warning('scandata:minus','No subtraction performed')
return

end
if la==1

sub = scandata.empty(0,lb);
for i=1:lb; sub(i)=minushelper(a,b(i));end

elseif lb==1
sub = scandata.empty(0,la);
for i=1:la; sub(i)=minushelper(a(i),b);end

else
sub = scandata.empty(0,la);
for i=1:la; sub(i)=minushelper(a(i),b(i));end

end
else

sub = a + (-b);
end

end % minus
function h = plot(a,xc,co,ln,sm)

% Hint for specifying precise color, line, and symbol
% combinations: pass all specifications in via co (i.e., pass
% in {'ro','os','yd','g>','b^'}) and pass {''} for each of ln
% and sm -- thus overriding their default values.
if nargin < 5||isempty(sm); sm={'o';'d';'^';'<';'>';'s'}; end
if nargin < 4||isempty(ln);

ln={'';'--';'-.';':'}; % must be -. not .- !!!!
end
if nargin < 3||isempty(co);

co={'r';'o';'y';'g';'b';'i';'v';'k'};
end
if nargin < 2||isempty(xc); xc=a(1).defxname; end
lc=length(co);ll=length(ln);ls=length(sm);
cls = cell(lc*ll*ls,1);
for i=1:ll

for j=1:ls
for m=1:lc

cls(sub2ind([lc,ls,ll],m,j,i))...
={[co{m},ln{i},sm{j}]};

end
end

end
mult=ceil(length(a)/size(cls,1));
cls = repmat(cls,mult ,1);
h=zeros(size(a));
%if cls is only one element this prevents an error
if ~iscell(cls); cls = {cls}; end
if ishold; prehold=true; else prehold=false;hold on;end
for i=1:length(a)
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clr=cls{i};
if ~isempty(a(i).color); clr(1)=a(i).color; end
if sum(a(i).err) %only plot errorbars if one+ is non-0

zw = ~a(i).w; % logical zero weight vector will be
% empty if a(i).w is empty!

if isempty(zw); zw = false(size(a(i).y)); end
if any(zw)

fc='m';if mod(i,2); fc='w'; end
%any points with a weight of zero should be gray
[markercolor ,fc]=scandata.decodeColor('gray',fc);
hi = errorbar(...

a(i).data(a(i).findColumn(xc),zw),...
a(i).y(zw),a(i).err(zw),clr(2:end),...
'color',markercolor);

set(hi,'MarkerSize',6,'MarkerFaceColor',fc)
ud.zeroWeight=1;
set(hi,'userdata',ud)
hi=get(hi,'Children');ebxd=get(hi(2),'XData');
ebxd(4:9 :end)=ebxd(1:9 :end);
ebxd(5:9 :end)=ebxd(1:9 :end);
ebxd(7:9 :end)=ebxd(1:9 :end);
ebxd(8:9 :end)=ebxd(1:9 :end);
set(hi(2),'XData',ebxd)

end
if any(~zw)

fc='m';if mod(i,2); fc='w'; end
[markercolor ,fc]=scandata.decodeColor(clr(1),fc);
h(i) = errorbar(...

a(i).data(a(i).findColumn(xc),~zw),...
a(i).y(~zw),a(i).err(~zw),clr(2:end),...
'color',markercolor); hold on

%increase the marker size and fill in their faces
%with a lighter version of the line color
set(h(i),'MarkerSize',6,'MarkerFaceColor',fc)
%remove the ends of the error bars since they
%aren't representative of any actual error
%and only clutter the plot
hc=get(h(i),'Children');ebxd=get(hc(2),'XData');
ebxd(4:9 :end)=ebxd(1:9 :end);
ebxd(5:9 :end)=ebxd(1:9 :end);
ebxd(7:9 :end)=ebxd(1:9 :end);
ebxd(8:9 :end)=ebxd(1:9 :end);
set(hc(2),'XData',ebxd)

end
else

% If sum(a(i).err) ==0, the data likely represents a
% simulation. The following only plots the line
% segments connecting points not the points themselves.
switch length(clr)

case 2, lns = '-';
case 3, lns = clr(2);
case 4, lns = clr(2:3);
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otherwise , lns = 'o'; %this shouldn't be chosen
end
markercolor=scandata.decodeColor(clr(1));
if any(isnan(a(i).y))

ynn = a(i).y;
xnn = a(i).data(a(i).findColumn(xc),:);
ynn(isnan(ynn)) = interp1(...

xnn(~isnan(ynn)),ynn(~isnan(ynn)),...
xnn(isnan(ynn)),'linear','extrap');

plot(xnn,ynn,lns,'color',markercolor/2),hold on
end
% It's possible to get to this point with empty y and
% err vectors, so do some error checking before plot
if ~(isempty(a(i).data(a(i).findColumn(xc),:))...

||isempty(a(i).y))
h(i) = plot(a(i).data(a(i).findColumn(xc),:),...

a(i).y,lns,'color',markercolor); hold on
end

end
end
if ~prehold; hold off; end
if ~nargout; clear('h'); else h(h==0)=[]; end

end % plot
function h = hist(a,co,ln,sm)

if nargin < 4; sm={'o';'d';'^';'<';'>';'s'}; end
if nargin < 3; ln={'';'-';'.-';':'}; end
if nargin < 2; co={'r';'o';'g';'b';'i';'v';'k'}; end
lc=length(co);ll=length(ln);ls=length(sm);
cls = cell(lc*ll*ls,1);
for i=1:ll

for j=1:ls
for m=1:lc

cls(sub2ind([lc,ls,ll],m,j,i))...
={[co{m},ln{i},sm{j}]};

end
end

end
mult=ceil(length(a)/size(cls,1));
cls = repmat(cls,mult ,1);
h=zeros(size(a));
%if cls is only one element this prevents an error
if ~iscell(cls); cls = {cls}; end

if ishold; prehold=true; else prehold=false;hold on;end
for i=1:length(a)

clr=cls{i};
if ~isempty(a(i).color); clr(1)=a(i).color; end
fc='w';if mod(i,2); fc='m'; end
[markercolor ,facecolor]=scandata.decodeColor(clr(1),fc);
if ~a(i).hstFlg; a(i).createHistogram; end
h(i) = errorbar(a(i).hstX,...

a(i).hstY,a(i).hstEr,clr(2:end),...
'color',markercolor); hold on
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%increase the marker size and fill in their faces with a
%lighter version of the line color
set(h(i),'MarkerSize',6,'MarkerFaceColor',facecolor)
%remove the ends of the error bars since they aren't
%representative of any actual error and clutter the plot
hc=get(h(i),'Children');ebxd=get(hc(2),'XData');
ebxd(4:9 :end)=ebxd(1:9 :end);ebxd(5:9 :end)=ebxd(1:9 :end);
ebxd(7:9 :end)=ebxd(1:9 :end);ebxd(8:9 :end)=ebxd(1:9 :end);
set(hc(2),'XData',ebxd)

end
if ~prehold; hold off; end
if ~nargout; clear('h');end

end % hist
end % overloaded methods
methods (Access=private) % Private Methods

function sub = minushelper(a,b,cList) % a-b
if nargin <3; cList=[]; end
b = -b;
abswitch=false;
if length(a.x)<length(b.x)

abswitch=true;
tmp = scandata(a);
a = scandata(b);
b = scandata(tmp);
clear('tmp')

end %now b is guaranteed to have <= points than a
sub = scandata(b);

[ax,p]=sort(a.x);
%ay = a.y(p);
%aerr = a.err(p);

ih=diff(ax);
[~,ik]=histc(b.x,ax);
ik(b.x<ax(1))=1;
ik(b.x>=ax(end))=length(ax)-1;
is = (b.x - ax(ik))./ih(ik);

%u={b.defyname ,'monitor','mcu','time'};
%d={'err','monerr','mcuerr','timerr '};
% Combining normalization -intensity columns is wrong for
% point-subtractions!
u={b.defyname};
d={'err'};
iy=cell(size(d));ie=iy;
for i=1:length(d)

ay=a.getColumn(u{i});ay=ay(p);
ae=a.(d{i});ae=ae(p);
iy{i}=ay(ik) + is .* (ay(ik+1)-ay(ik));
ie{i}=sqrt((ax(ik+1)-b.x).^2 .* ae(ik).^2 ...

+(ax(ik)-b.x).^2 .* ae(ik+1).^2)/(ax(ik+1)-ax(ik));
end
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for i = 1:size(a.data ,1)
sub.data(i,:) = ...

interp1(a.x,a.data(i,:),b.x,'linear','extrap');
end

%if a and b were switched, b contains the (probably) more
%important motor positions. So switch the data blocks back.
if abswitch

datatemp=sub.data;
sub.data=b.data;
b.data=datatemp;
if iscell(b.defyname)

defy=b.defyname{:};
elseif ischar(b.defyname)

defy=b.defyname;
end

else
if iscell(a.defyname)

defy=a.defyname{:};
elseif ischar(a.defyname)

defy=a.defyname;
end

end
%combine only intensity related columns
for i=1:length(d)

sub.(d{i})=sqrt(ie{i}.^2+b.(d{i}).^2);
sub.setColumn(u{i},iy{i}+b.getColumn(u{i}));

end
sub.fillVectors
sub.x = b.x;

%since the data columns have been manipulated , let's fill in
%any vectors with their proper (new) values
if ~isempty(a.w) || ~isempty(b.w)

sub.Weight();
end
if ~isempty(a.alat) || ~isempty(b.alat)

sub.findLatticeConstants;
end

if a.hstFlg||b.hstFlg
[sub.hstX ,sub.hstY ,sub.hstEr ,sub.hstT ,...

sub.hstEdg ,sub.hstE]=a.createHistogram(b);
sub.hstFlg = true;

end
end % minus-helper
function mult = timeshelper(a,b)

if isa(a,'scandata')&&isa(b,'scandata')
ua={a.defyname ,'monitor','mcu','time'};
ub={b.defyname ,'monitor','mcu','time'};
d={'err','monerr','mcuerr','timerr'};
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if length(a.y)==length(b.y)
mult = scandata(a);
for i=1:length(d)

mult.(d{i})=sqrt(...
(a.getColumn(ua{i}).*b.(d{i})).^2 ...

+(b.getColumn(ub{i}).*a.(d{i})).^2 );
mult.setColumn(ua{i},...

a.getColumn(ua{i}).*b.getColumn(ub{i}));
end

else
%ensure that a is shorter than b
if length(a.y)>length(b.y)

tmp=scandata(b);b=scandata(a);a=tmp;
end
mult = scandata(a); lv=1:length(a.y);
for i=1:length(d)

bv=b.getColumn(ub{i});be=b.(d{i});
mult.(d{i})=sqrt(...

(a.getColumn(ua{i}).*be(lv)).^2 ...
+(bv(lv).*a.(d{i})).^2 );

mult.setColumn(ua{i},a.getColumn(ua{i}).*bv(lv));
end

end
elseif (isa(a,'scandata')&&isa(b,'double'))...

||(isa(b,'scandata')&&isa(a,'double'))
if isa(b,'scandata')

tmp=a; a=b; b=tmp;
end
ua={a.defyname};%,'monitor','mcu','time'};
d={'err'};%,'monerr','mcuerr','timerr '};
mult = scandata(a);
for i=1:length(d)

mult.setColumn(ua{i},b.*mult.getColumn(ua{i}))
mult.(d{i})=b.*mult.(d{i});

end
end
mult.fillVectors % most importantly mult.y

end % timeshelper
function pls = plus_sdsd(a,b)

pls = scandata(a);
pls.data = [a.data b.data];
pls.err = [a.err b.err];
pls.monerr=[a.monerr b.monerr];
pls.mcuerr=[a.mcuerr b.mcuerr];
pls.timerr=[a.timerr b.timerr];

dontavg = {'time' 'detector' 'monitor' 'mcu'};
pls.crpoints(dontavg);

end % plus_sdsd
function pls = plus_sddb(a,b)

pls = scandata(a);
pls.y = a.y + b;
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pls.data(pls.defyvalue ,:)=pls.data(pls.defyvalue ,:)+b;
if a.hstFlg

pls.hstY=pls.hstY+b;
end

end % plus_sddb
end % private methods
methods (Static=true) % Static Methods

function avg = avgscans(varargin)
% varargin is assumed to be a cellarray of scandata objects to
% be averaged

%copy the first scandata object to a new handle
avg = scandata(varargin{1});
if length(varargin) > 1

avg.avgflg = true;
divby = length(varargin);
lengths = zeros(1,divby);
for i = 1:divby

lengths(i)=length(varargin{i}.y);
end
maxlen = max(lengths);
xmat = NaN*ones(divby,maxlen);
ymat = xmat; emat = xmat; mnet=xmat; mcet=xmat; tmet=xmat;
dmat = NaN*ones(size(avg.data ,1),maxlen,divby);
for i = 1:divby

xmat(i,1:lengths(i))=varargin{i}.x;
ymat(i,1:lengths(i))=varargin{i}.y;
emat(i,1:lengths(i))=varargin{i}.err;
mnet(i,1:lengths(i))=varargin{i}.monerr;
mcet(i,1:lengths(i))=varargin{i}.mcuerr;
tmet(i,1:lengths(i))=varargin{i}.timerr;
[b,c]=size(varargin{i}.data);
dmat(1:b,1:c,i)=varargin{i}.data;

end
sortmat = [lengths ',(1:divby)',xmat,ymat,emat,mnet,mcet,tmet];
sortmat = sortrows(sortmat ,-1);
%lengths = sortmat(:,1);
posi = sortmat(:,2);
xmat = sortmat(:,3:maxlen+2);
ymat = sortmat(:,maxlen+3:2*maxlen+2);
emat = sortmat(:,2*maxlen+3:3*maxlen+2);
mnet = sortmat(:,3*maxlen+3:4*maxlen+2);
mcet = sortmat(:,4*maxlen+3:5*maxlen+2);
tmet = sortmat(:,5*maxlen+3:6*maxlen+2);

if xmat(1,1)<xmat(2,1); %check to see if x increases or
tol = 0.02; %decreases. set tol accordingly

else
tol = -0.02;

end
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done = false;
while ~done

extra = 0;
rulemat = [xmat(1,:);ymat(1,:);...

emat(1,:);mnet(1,:);mcet(1,:);tmet(1,:);...
dmat(:,:,posi(1))];

for i=2:divby
matchmt = [xmat(i,:);ymat(i,:);...

emat(i,:);mnet(i,:);mcet(i,:);tmet(i,:);...
dmat(:,:,posi(i))];

[rulemat,matchmt] = ...
rec2match(rulemat',matchmt',tol,0);

rulemat=rulemat ';matchmt=matchmt ';
if size(rulemat ,2) > maxlen

extra = size(rulemat ,2)-maxlen;
xmat = [xmat,NaN*ones(divby,extra)];
ymat = [ymat,NaN*ones(divby,extra)];
emat = [emat,NaN*ones(divby,extra)];
mnet = [mnet,NaN*ones(divby,extra)];
mcet = [mcet,NaN*ones(divby,extra)];
tmet = [tmet,NaN*ones(divby,extra)];
dmat(:,end+1:end+extra ,:)=NaN;
xmat(1,:)=rulemat(1,:);
ymat(1,:)=rulemat(2,:);
emat(1,:)=rulemat(3,:);
mnet(1,:)=rulemat(4,:);
mcet(1,:)=rulemat(5,:);
tmet(1,:)=rulemat(6,:);
dmat(:,:,posi(1))=rulemat(7:end,:);
maxlen = maxlen + extra;

end
xmat(i,:) = matchmt(1,:);
ymat(i,:) = matchmt(2,:);
emat(i,:) = matchmt(3,:);
mnet(i,:) = matchmt(4,:);
mcet(i,:) = matchmt(5,:);
tmet(i,:) = matchmt(6,:);
dmat(:,:,posi(i))=matchmt(7:end,:);

end
if ~extra; done = true; end

end
%need to write changes to rule-dmat
dmat(:,:,posi(1))=rulemat(7:end,:);

X = zeros(1,maxlen);
Y = X; ERR = X; MNR=X;MCR=X;TMR=X;
for i = 1:maxlen

xcol = xmat(:,i);
ycol = ymat(:,i);
ecol = emat(:,i);
mnel = mnet(:,i);
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mcel = mcet(:,i);
tmel = tmet(:,i);

xcol(isnan(xcol))=[];
ycol(isnan(ycol))=[];
ecol(isnan(ecol))=[];
mnel(isnan(mnel))=[];
mcel(isnan(mcel))=[];
tmel(isnan(tmel))=[];

X(i) = sum(xcol)/length(xcol);
Y(i) = sum(ycol)/length(ycol);
ERR(i) = sqrt(sum(ecol.^2))/length(ecol);
MNR(i) = sqrt(sum(mnel.^2))/length(mnel);
MCR(i) = sqrt(sum(mcel.^2))/length(mcel);
TMR(i) = sqrt(sum(tmel.^2))/length(tmel);

end

[a,b,~]=size(dmat);
adata = zeros(a,b);
for i=1:a;

for j=1:b;
pages = dmat(i,j,:);
pages(isnan(pages))=[];
adata(i,j) = sum(pages)/length(pages);

end
end

avg.y = Y;
avg.x = X;
avg.err = ERR;
avg.monerr=MNR;
avg.mcuerr=MCR;
avg.timerr=TMR;
avg.data = adata;

avg.findTemperature;
avg.findEnergies;

Q = scandata.empty(size(varargin ,2),0);
for i=1:length(varargin); Q(i) = varargin{i}; end
qq = cell(size(Q)); [qq{:}]=Q.hstFlg;
qq = cell2mat(qq);
if any(qq) %then at least one input file has hstFlg == true

avg.createHistogram(varargin{2:end});
%since avg = varargin(1), this creates the averaged
%histogram of varargin

%since createHistogram ensures that at least one point
%from each varargin is included in each histogram point
%it's easy to find the average Y and Err
avg.hstY = avg.hstY/length(varargin);
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avg.hstEr = avg.hstEr/length(varargin);
end

end
end % avgscans
function [markercolor ,facecolor]=decodeColor(clr,face)

if nargin <2||isempty(face); face='c';end
if nargin <1||isempty(clr); clr='k';end
if ischar(clr) % allow for a special color to be passed in.

switch lower(clr)
case {'r','red'}, markercolor=[1,0,0];
case {'o','orange'}, markercolor=[1,0.5,0];
case {'y','yellow'}, markercolor=[1,0.75,0];
case {'g','green'}, markercolor=[0,1,0];
case {'b','blue'}, markercolor=[0,0,1];
case {'darkindigo'}, markercolor=[0,0.5,1];
case {'i','indigo'}, markercolor=[0.2,0.7,1];
case {'v','violet'}, markercolor=[0.58,0,0.83];
case {'k','black'}, markercolor=[0,0,0];
case {'w','white'}, markercolor=[1,1,1];
case {'c','cyan'}, markercolor=[0,1,1];
case {'m','magenta'}, markercolor=[1,0,1];
case {'a','gray'}, markercolor=0.85*[1,1,1];
otherwise ,markercolor=[0,0,0];

end
elseif isnumeric(clr)&&length(clr)==3&&max(clr)<=1&&min(clr)>=0

markercolor=clr;
end
if ischar(face) % allow for a special facecolor to be passed in.
switch lower(face)

case {'c','clear','empty','none'}, facecolor='none';
case {'l','light'}, facecolor=0.2*markercolor+0.8*[1,1,1];
case {'m','medium'},facecolor=0.5*markercolor+0.5*[1,1,1];
case {'d','dark'}, facecolor=0.7*markercolor+0.3*[1,1,1];
case {'f','full','filled'}, facecolor=markercolor;
case {'w','white'}, facecolor=[1,1,1];

end
elseif isnumeric(face) && max(face)<=1 && min(face)>=0

if length(face)==3 %face is a color specification
facecolor=face;

elseif length(face)==1 % face is a shading specification
facecolor=(1-face)*markercolor+face*[1,1,1];

end
end

end
end % static methods

end %classdef
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APPENDIX C INSTRUMENT RESOLUTION

As neutron scattering experiments are flux-limited, experimental setups typically relax

momentum-defining elements in exchange for increased neutron flux. This relaxed momentum-

resolution can have drastic effects on the lineshape of peaks in neutron scattering experiments,

especially in peaks corresponding to inelastic processes. This is especially true for triple-axis

neutron spectrometers. Figure C.1 shows how finite instrumental resolution modifies line

shapes of measured scans due to the partial inclusion of intensity at other momentum-energy

points.

Over time, two leading methods have been developed in an attempt to account for

resolution effects when fitting triple-axis neutron scattering data. The older of the two

methods, the Cooper-Nathans approximation, is arguably more-popular due in part to its

primacy but more importantly to its simplicity. The approximation which has been named

for Cooper and Nathans is to assume that the only source of uncertainty in the momentum

of a neutron is due to maximally accepted angular divergences of Soller collimators placed

between elements of a triple-axis spectrometer and the mosaic spreads of crystal elements,

and that all angular divergences of a neutron beam follow a Gaussian distribution [89]. A

more complex alternative, the Popovici approximation, improves upon the Cooper-Nathans

method by including effects due to the finite-size of instrument components and the size and

shape of the sample [90].
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Figure C.1. Background subtracted INS intensity of Ba(Fe0.985Co0.015)2As2 corrected for
the Bose thermal population factor and the Fe2+ single-ion magnetic form factor plus best fit
line to the damped spin-wave model. The remaining progressively lighter solid lines are the
rescaled unconvoluted spin wave model and are representative of the spin wave dispersion
along [1 1 0]T which is partially included in the measured scan due to the finite instrumental
resolution.
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Convoluted Fitting With ResLib

Convoluting either resolution approximation with a theoretical model is not a trivial task;

thankfully, there is a MATLAB-based program, ResLib, readily available to do most of

the heavy-lifting for us. When used in concert with the wrapper methods of the scandata

class, the difficulties involved in performing convoluted fitting are minimized. Some issues

that remain are:

• the to-be-convoluted function must be defined for all momentum-energy space,

• the ResLib fixed integration method should be used when fitting in order to avoid

fluctuations in the residual inherent to Monte Carlo integration,

• and the fixed integration grid size should be finer than features in the model function.

The last point is likely the largest issue, as the grid spacing (in angle space) is given by 𝜋/𝑛

for (2𝑛 + 1)4 grid points (with a ResLib grid specification of [𝑛, 𝑛]), so halving the grid

spacing leads to an approximately sixteen-fold increase in the total number of integration

grid points. The memory requirements for this 4D grid can quickly get out of hand and care

should be taken to avoid exhausting physical memory, as the use of virtual memory (in the

form of temporary files or swap space) is typically orders of magnitude slower. Please refer to

the ResLib manual written by Zheludev [98] for further details regarding its implementation.

Figure C.2 shows transverse acoustic phonons measured near (2 2 0)T and the results of

convolution of a model transverse phonon branch with the Popovici and Cooper-Nathans

approximations to the instrumental resolution. This shows that, by ignoring finite size effects,

the Cooper-Nathans approximation over-estimates the energy-width of the resolution. The

increased accuracy of Popovici’s method comes at the price of a large number of instrument-

and sample-dependent parameters, without a significant increase in computational time. The

appropriate parameters for the experimental setup at HB3 and for a typical sample are given

in table C.1.
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Figure C.2. Offset constant-𝑸 measurements of the transverse acoustic phonon branch
near (220). Circles are neutrons counted by the detector normalized to beam monitor counts
after correcting for monitor over-counting due to the presence of higher-order neutrons in the
incident neutron beam. The dotted gray lines represent an estimate to the incoherent elastic
background. Solid thick lines are the result of a Popovici approximation resolution-convoluted
fitting of the intensity to a model of a dispersing transverse acoustic phonon plus the
incoherent elastic background. Green solid and blue dashed lines are a convolution of the
same phonon model with the intrinsic line-width set to zero (and the intensity arbitrarily
rescaled); green lines are derived from the Popovici approximation and blue lines from
the Cooper-Nathans approximation — this highlights that the Cooper-Nathans approach
estimates a larger resolution energy width.
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Table C.1. Instrument and sample parameters for the experimental setup at HB3 and a
typical sample. All components are assumed to be rectangular prisms prior to being bent for
focussing – this leads to an additional factor of 1/

√
12 in the square root of the variance for

each dimension, which ResLib takes as input.

Component Property Value
beam width 15 cm

height 15 cm
monochromator width 7.62 cm

height 10.16 cm
depth 0.25 cm
vertical radius of curvature variable
horizontal mosaic 30′

vertical mosaic 45′

𝜏mono 1.873 Å−1

beam monitor width 5 cm
height 12 cm

sample width 4 cm
height 2 cm
depth 3 cm
horizontal mosaic 30′

vertical mosaic 30′

analyzer width 7.62 cm
height 7 cm
depth 0.2 cm
vertical radius of curvature 25 cm
horizontal mosaic 40′

vertical mosaic 25′

𝜏ana 1.873 Å−1

detector width 4 cm
height 12 cm
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Table C.1. (Continued)

Component Property Value
horizontal divergence source to monochromator 48′

monochromator to sample 60′

sample to analyzer 80′

analzer to detector 120′

vertical divergence source to monochromator 180′

monochromator to sample 300′

sample to analyzer 300′

analzer to detector 600′

Distances source to monochromator 650 cm
monochromator to sample 190 cm
sample to analyzer 160 cm
analyzer to detector 86 cm
monochromator to monitor 60 cm
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APPENDIX D NORMALIZATION

Normalizing measured neutron scattering data into absolute cross-section units is often

desirable, as it allows for the direct comparison of experimental data to theoretical models.

There are two methods which are routinely applied to normalize measured triple-axis neu-

tron scattering data into absolute units. One relies upon the known incoherent scattering

cross-section of Vanadium, and the other utilizes an easily-calculated approximation for the

cross-section of one (or more) sample phonon. In either case, the data to be normalized must

be treated properly before normalization.

What is measured with any neutron scattering instrument is a combination of a scattering

function, 𝑆(𝑸, 𝐸), and a background function, 𝐵(𝑸, 𝐸), which is the collective intensity

of all sources of background such as incoherent scattering from the sample itself, counted

neutrons due to inadequate shielding of the source or the detector, or purely stochastic, e.g.,

due to noise in the detector electronics. As such, for comparison to any theoretical model for

the cross-section the measured data, 𝐼(𝑸, 𝐸) must first have an estimate for the background

removed,

𝑆(𝑸, 𝐸) = 𝐼(𝑸, 𝐸) − 𝐵(𝑸, 𝐸) (D.1)

where the background estimate is typically determined from measurements near the intensity

of interest or by repeating measurements after changing sample environment conditions to

suppress the scattering of interest.

If intensity is measured as the ratio of counts in a detector to counts in a beam monitor,

as is typically the case for triple-axis neutron spectrometers, the measured intensity must

also be corrected for monitor over counting due to the presence of higher-order neutrons in
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the beam – especially if more than one energy transfer is to be compared with a fixed final

neutron energy. This topic is discussed in detail by Shirane et al. [80, pp. 117-121] with the

conclusion that the total monitor signal is

𝑀 ∼ 𝐶𝐸1𝑒−𝐸1/𝑘B𝑇 (D.2)

where 𝐸1 is the fundamental neutron energy, 𝑇 is the neutron moderator temperature, and

𝐶 =
∞

∑
𝑛=1

𝑛2𝑒−(𝑛2−1)𝐸1/𝑘B𝑇 . (D.3)

As noted by Shirane et al., “The measured intensities for the scattered beam can be corrected

by multiplying by 𝐶” [80, p. 121]. As part of the scandata class, I’ve written a method

called monitorHarmonic which takes the moderator temperature as input and performs this

correction, with 𝐶 calculated up to 𝑛 = 10.

After removing an estimated background and correcting for monitor over counting,

it is possible to compare (corrected) measured intensity of a well-defined feature to an

easily-calculable and well-verified theoretical cross section to determine a scaling factor which

will convert all measured arbitrary intensity, with typical units of detector counts per monitor

counts per meV, to absolute cross-section, with units of mb sr−1 per meV per mole (or atom,

or formula unit).

Calculating Vanadium Intensity

The partial-differential cross-section for elemental vanadium is nearly-entirely incoherent

and, for 𝑁 atoms, is given by

d2𝜎
d𝛺 d𝐸

= 𝑁𝑏2𝑒−2𝑊 𝛿(𝐸) (D.4)
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where the square of the incoherent scattering length is 𝑏2 = 405.8 mb sr−1, and the Debye–

Waller exponent is a temperature-dependent measure of the mean-squared displacement

of each vanadium atom 2𝑊 = 𝑄2 ⟨𝑢2⟩. At room temperature ⟨𝑢2⟩ ≈ 0.038 Å2, and the

Debye–Waller factor is a Gaussian with FWHM = 2.35√2 ⟨𝑢2⟩ ≈ 27 Å−1. The energy-

integration of the partial-differential cross-section yields the differential cross section and is

straight-forward in this case due to the delta function. In practice, the finite energy resolution

of a triple-axis spectrometer will act to broaden the measured intensity (while, of course,

preserving the total intensity) and so either a simple Gaussian-fit or a numerical integration

of the measured intensity must be performed for comparison to the known incoherent cross

section for vanadium.

Since the intensity of incoherent scattering depends on the number of vanadium atoms

present in a sample, the accuracy of any conversion factor determined from incoherent

vanadium scattering will depend strongly on the accuracy with which the number of vanadium

atoms is known. Furthermore, as most theoretical cross-sections are expressed in terms of

mb sr−1 per atom (or per formula unit), the accuracy with which the number of atoms (or

formula units) in the studied sample is known can also drastically effect the accuracy with

which the absolute intensity is known.

Calculating Phonon Intensities

For the superposition of any number of phonons in a crystalline system, the displacement

of the 𝑑th nucleus in the 𝑙th unit cell is given by the vector 𝒖( 𝒍
𝒅), which can be expressed as a

sum over the displacements due to a set of normal modes

𝒖( 𝒍
𝒅

) = ∑
𝒒

∑
𝑗

√
ℏ

2𝑀𝒅𝑁𝜔𝒒𝑗
[𝝐𝒅𝒒𝑗𝑎𝒒𝑗𝑒𝑖𝒒⋅𝒍 + 𝝐∗

𝒅𝒒𝑗𝑎
†
𝒒𝑗𝑒−𝑖𝒒⋅𝒍] (D.5)
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where 𝑀𝒅 is the mass of the 𝑑th nucleus, the energy of the 𝑗th normal phonon mode at 𝒒

is ℏ𝜔𝒒𝑗, and the displacement eigenvector for the 𝑑th nucleus in the unit-cell as a result of

the 𝑗th normal mode is 𝝐𝒅𝒒𝑗. If there are 𝑟 = ∑𝒅 atoms per unit cell, then there are 3𝑟

normal modes (𝑗 = 1, … , 3𝑟) since each atom has three degrees of freedom [79, p. 105]. The

displacement eigenvectors are orthonormal and behave the relations

∑
𝒅

𝝐∗
𝒅𝒒𝑗 ⋅ 𝝐𝒅𝒒𝑗′ = 𝛿𝑗𝑗′ and ∑

𝑗
𝜖𝛼∗

𝒅𝒒𝑗𝜖
𝛽
𝒅′𝒒𝑗 = 𝛿𝛼𝛽𝛿𝒅𝒅′. (D.6)

As given by Squires, the cross-section for the coherent creation of one phonon is given by [77,

p. 46]

d2𝜎
d𝛺 d𝐸

=𝑘f
𝑘i

(2𝜋)3

2𝑣0
∑

𝒒
∑

𝑗
∑

𝝉

1
𝜔𝒒𝑗

∣∑
𝒅

�̄�𝒅

√𝑀𝒅
𝑒−𝑊𝒅 𝑒𝑖𝑸⋅𝒅𝑸 ⋅ 𝝐𝒅𝒒𝑗∣

2

× ⟨𝑛𝒒𝑗 + 1⟩ 𝛿(𝜔 − 𝜔𝒒𝑗)𝛿(𝑸 − 𝒒 − 𝝉) (D.7)

where (2𝜋)3/𝑣0 comes from pre-evaluating a sum over all unit cells and is the volume of the

reciprocal lattice unit cell, the sum over 𝒅 is over all of the nuclei in the unit cell, ⟨𝑛𝒒𝑗 + 1⟩

is the average thermal population factors for the creation of a phonon of the 𝑗th mode at 𝒒,

and the Dirac delta functions enforce conservation of energy and momentum.

In order to calculate the phonon cross section for a transverse acoustic mode in absolute

units one must make the approximation that the eigenvector of the branch is perpendicular

to 𝒒 and is parallel to the reciprocal lattice vector 𝝉 , such that

𝑸 ⋅ 𝝐𝒅𝒒𝑗 = 𝑸 ⋅ ̂𝝉√
𝑀𝒅

∑𝒅′ 𝑀𝒅′
(D.8)

where the eigenvector is normalized such that each atom in the acoustic mode has an equal

displacement vector 𝒖𝒅. In the limit of small 𝒒, where 𝑸 ≈ 𝝉 , the coherent one phonon cross
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section for such a transverse acoustic (TA) mode is

( d2𝜎
d𝛺 d𝐸

)
TA

= 𝑘f
𝑘i

(2𝜋)3

𝑣0

ℏ2 (𝑸 ⋅ ̂𝝉)2

2ℏ𝜔𝒒 ∑𝒅′ 𝑀𝒅′
∣∑

𝒅
�̄�𝒅𝑒−𝑊𝒅 𝑒𝑖𝝉 ⋅𝒅∣

2 𝛿(ℏ𝜔 − ℏ𝜔𝒒)
1 − 𝑒−ℏ𝜔𝒒/𝑘B𝑇 (D.9)

and the energy-integrated intensity of the phonon partial-differential cross-section is

( d𝜎
d𝛺

)
TA

= 𝑘f
𝑘i

(2𝜋)3

𝑣0

ℏ2 (𝑸 ⋅ ̂𝝉)2

2ℏ𝜔𝒒 ∑𝒅′ 𝑀𝒅′
∣∑

𝒅
�̄�𝒅𝑒−𝑊𝒅 𝑒𝑖𝝉 ⋅𝒅∣

2 1
1 − 𝑒−ℏ𝜔𝒒/𝑘B𝑇 (D.10)

where the quantity in vertical brackets is just the static structure factor for the associated

Bragg reflection. The 𝑘f/𝑘i factor is implicitly corrected for in 𝐸f-fixed mode due to analyzer

reflectivity and beam monitor efficiency effects.

While equation (D.10) is true for any transverse acoustic phonon with sufficiently small 𝒒,

in the case of the 122 iron pnictides the presence of the static structure factor is problematic

for any TA phonons near a reciprocal lattice point that fulfills the condition 𝝉 ⋅ [0 0 1]T ≠ 0

due to the poorly-defined arsenic z-position in Ba(Fe1–𝑥𝑇𝑀𝑥)2As2. Therefore in normalizing

the triple-axis data presented above, focus was placed on fitting measured TA phonons near

(2 2 0)T.

By determining the integrated intensity of a TA phonon, either by fitting a Gaussian

function or performing a numerical integration, it is then possible to determine an appropriate

scale factor to convert measured intensity from normalized counts to mb sr−1 meV−1 f.u.−1.

This conversion factor has an advantage over the vanadium-determined conversion, since

both the phonon and other scattering-of-interest come from the same sample, there is no

need to determine the number of formula units in the sample if the theoretical cross section

to be compared is expressed in mb sr−1 meV−1 f.u.−1.
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Resolution considerations

The methods that ResLib employs were designed to normalize intensity to the incident

neutron flux. Since most triple-axis neutron spectrometers do not have a well-defined incident

flux and instead normalize intensity to a beam monitor this leads to a discrepancy between

absolute cross-section and ResLib intensity (i.e., the intensity reported when fitting a

theoretical model to measured intensity in absolute units via a ResLib convolution).

If we consider the convolution, 𝑓 , of a well-normalized function ∫𝑔(𝒬) d4𝒬 = 1 (where,

for brevity, 𝒬 ≡ (𝑸, 𝐸) and ∫ d4𝒬 ≡ ∫d3𝑸 ∫d𝐸). The discrepancy constant is given by 𝜙 in

𝜙 ∫𝑓 [𝑔(𝒬)] d4𝒬 = ∫𝑔(𝒬) d4𝒬. (D.11)

When a dataset, 𝒮(𝒬), is fit to a convoluted theoretical function, 𝑆(𝑝, 𝒬), the model parame-

ters, 𝑝, are modified such that the residual,

𝑅 =
𝑁

∑
𝑖=1

{𝑓 [𝑆(𝑝, 𝒬𝑖)] − 𝒮(𝒬𝑖)}
2 , (D.12)

(for 𝑁 discrete measurements) is minimized. In an ideal situation 𝑅 = 0 which would imply

that, for all 𝑖,

𝑓 [𝑆(𝑝, 𝒬𝑖)] − 𝒮(𝒬𝑖) = 0, (D.13)

and, in general,

𝒮(𝒬) = 𝑓 [𝑆(𝑝, 𝒬)] , (D.14)

i.e., the convoluted function and the measured intensity are identical. What we are interested

in determining is which parameters of 𝑆 best represent our data, where instead 𝑝 are the best-fit

parameters for 𝑓 [𝑆]. From equation (D.11) it is clear that 𝑓 [𝑔(𝒬)] = 1
𝜙𝑔(𝒬), by extension

it is evident that the best-fit function to 𝒮(𝒬) is 𝑆(𝑝, 𝒬)/𝜙. Typically, model functions

have only one parameter which determines intensity; if that one parameter is modified such
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that 𝑆(𝑝′, 𝒬) = 𝑆(𝑝, 𝒬)/𝜙 then the parameters 𝑝′ are the true best-fit parameters for the

theoretical model function 𝑆 and data 𝒮.

Fortunately, the discrepancy is constant for a particular instrument in one configuration

and can be determined by comparing arbitrary-to-absolute scaling factors determined with

and without ResLib convolution of a theoretical model.

Convoluted fitting of measured vanadium

Since equation (D.4) contains a Dirac 𝛿-function, a standard 4D numerical convolution

of the resolution function and vanadium cross section is not possible, due to a numerical

limitation that the integration grid-size remain finite. Instead, the vanadium cross section

must be artificially broadened in order to be fit, yielding the fitting function

𝑆(𝑸, 𝐸) = 𝐴v𝑏2𝑒𝑄2⟨𝑢2⟩ 1
𝜋

𝛤
𝛤 2 + 𝐸2 (D.15)

which yields the ResLib arbitrary-to-absolute scaling factor, 𝐴v, when convoluted and fit to

vanadium incoherent scattering data.

Convoluted fitting of measured phonons

As with the vanadium case, since equation (D.9) contains a Dirac 𝛿-function a standard

4D numerical convolution of the resolution function and phonon cross section is not possible.

Instead, to remove the 𝛿-function analytically, equation (D.9) can be replaced by the function

𝑆(𝑸, 𝜔) = 1
𝜋

𝑠(𝑸) 𝛤
𝛤 2 + (𝜔 − 𝜔𝒒)2 (D.16)
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where an intrinsic Lorentzian energy-width 𝛤 has been introduced, and the transverse acoustic

mode intensity and dispersion relation are given by

𝑠(𝑄) = 𝐴p
ℏ2 (𝑸 ⋅ ̂𝝉)2

2ℏ𝜔𝒒 ∑𝒅′ 𝑀𝒅′
∣∑

𝒅
�̄�𝒅𝑒−𝑊𝒅 𝑒𝑖𝝉 ⋅𝒅∣

2 1
1 − 𝑒−ℏ𝜔𝒒/𝑘B𝑇 (D.17)

and

𝜔𝒒 = 𝐴d sin(𝑐
4

𝑞) (D.18)

respectively. This substitution allows for a very quick approximation to the energy convolution

and a standard 3D numerical convolution of the momentum space resolution function and

equation (D.17) by using ResLib’s ConvResSMA function. And allowed for the determination

of the variables 𝐴p, 𝐴d, and 𝛤 by fitting the resolution convoluted equation (D.16) to measured

TA (2 2 0)T phonon intensity utilizing the ResLib function FitConvSMA. A representative

simultaneous best-convoluted-fit is shown for two TA phonons in figure C.2 as the solid red

and orange lines.
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APPENDIX E NEUTRON SCATTERING BACKGROUND

Neutron scattering experiments always measure a combination of a scattering function,

𝑆(𝑸, 𝐸), and a background function, 𝐵(𝑸, 𝐸), which is the collective intensity of all sources

of background such as incoherent scattering from the sample itself, counted neutrons due to

inadequate shielding of the source or the detector, or purely stochastic in origin, e.g., due to

noise in the detector electronics. As such, for comparison to any theoretical model for the

cross-section the measured data, 𝐼(𝑸, 𝐸) must first have an estimate for the background

removed,

𝑆(𝑸, 𝐸) = 𝐼(𝑸, 𝐸) − 𝐵(𝑸, 𝐸). (E.1)

Triple-axis background estimation

For triple-axis instruments it is common to estimate the background intensity by remeasur-

ing a scan with the sample in a condition to not scatter to the detector. One way to achieve

such a condition could be to change the sample temperature above or below an ordering

temperature. Another often used method is to rotate the sample angle until a minimum

in the measured intensity is found and then repeat the scan, since the background for any

neutron spectrometer is independent upon the direction of 𝑸. The shape of a sample can

invalidate the last statement due to sample incoherent scattering and/or sample neutron

absorption if it is not isotropic. However, for most cases it is a good approximation to assume

that 𝐵(𝑸, 𝐸) = 𝐵(𝑄, 𝐸).
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Time-of-flight background estimation

Time-of-flight instruments typically have large arrays of position sensitive detectors in

order to make efficient use of the low average neutron flux available from pulsed sources.

For a direct-geometry time-of-flight neutron spectrometer and a fixed sample orientation, a

large position-sensitive detector array measures intensity on a kinematically-defined three-

dimensional surface in four-dimensional momentum-energy space. For measurements which

intensity-of-interest relatively well localized in momentum, like the magnetic excitations in

Ba(Fe1–𝑥𝑇𝑀𝑥)2As2, there are ample detectors in the position sensitive array that measure only

background. If one creates a masked dataset, 𝐼m(𝑸,𝐸), from the measured intensity, 𝐼(𝑸, 𝐸),

in such a way that 𝐼m does not contain any of 𝑆(𝑸, 𝐸) it is possible to estimate 𝐵(𝑄, 𝐸)

with a high degree of accuracy. In practice, it is easiest to create the background estimate by

creating a binned dataset in scattering angle, 2𝜃, and energy, 𝐸, from 𝐼m and then use the

result to repopulate intensity into a ‘blank’ detector array. Specifically, by creating bins in

the scattering angle that each contain an approximately equal number of detectors (e.g., by

selecting bin-boundaries, 2𝜃𝑛 ∝ 𝑛2 with 𝑛 = 0, 1, 2, … and using the intrinsic energy-bins) it

is possible to create approximately equal-statistics background-estimate bins.

Figure E.1 (a) shows a constant-energy slice through a Ba(Fe0.953Co0.047)2As2 dataset,

𝐼(𝑸, 𝐸), collected at the time-of-flight spectrometer ARCS. Panel (b) in the same figure

shows the same slice through the dataset modified to have all magnetic intensity removed,

𝐼m(𝑸, 𝐸). Panel (c) shows the same slice through a repopulated ‘blank’ detector where

the intensity for every (𝑸, 𝐸) point has been determined from 𝐵(𝑄, 𝐸). Finally, panel

(d) shows the same slice through 𝑆(𝑸, 𝐸) = 𝐼(𝑸, 𝐸) − 𝐵(𝑄, 𝐸). A different slice, with

intensity displayed perpendicular to the [𝐾 �̄� 0] direction, is shown in figure E.2 for the same

datasets. In both figures E.1 and E.2 there are prominent features in the as-measured

datasets [panels (a)] that are entirely separate from the magnetic scattering of interest, as

evident by their appearance in the background estimates [panels (c)] and absence in the
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Figure E.1. Each panel in this figure shows an identical slice with 4 < 𝐸 < 10 meV for
data collected on the ARCS spectrometer from the Ba(Fe0.953Co0.047)2As2 sample, 𝐸i = 50
meV and 𝑇 = 5 K. (a) 𝐼(𝑸, 𝐸), the measured intensity. (b) 𝐼m(𝑸, 𝐸), the measured
intensity with all of-interest magnetic intensity removed; leaving only background. (c) A
visualization of, 𝐵(𝑄, 𝐸), the equal-scattering-angle averaged background estimate made from
the masked dataset. (d) 𝑆(𝑸, 𝐸), the difference between panels (a) and (c), is mostly-devoid
of background scattering.
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Figure E.2. Each panel in this figure shows an identical slice with −0.1 < [𝐾 �̄� 0] < 0.1
r.l.u. for data collected on the ARCS spectrometer from the Ba(Fe0.953Co0.047)2As2 sample,
𝐸i = 50 meV and 𝑇 = 5 K. (a) 𝐼(𝑸, 𝐸), the measured intensity. (b) 𝐼m(𝑸, 𝐸), the measured
intensity with all of-interest magnetic intensity removed; leaving only background. (c) A
visualization of, 𝐵(𝑄, 𝐸), the equal-scattering-angle averaged background estimate made from
the masked dataset. (d) 𝑆(𝑸, 𝐸), the difference between panels (a) and (c), is mostly-devoid
of background scattering.
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subtracted datasets [panels (d)]. These background features are common to inelastic neutron

scattering datasets collected with aluminum in the beam (typically in the form of a sample

holder and/or components of the sample environment) and show aluminum phonons and

incoherent scattering. While trained experts likely ignore such features, their presence can

be a distraction for novices and such background features inhibit scientific communication.

Therefore, it is certainly worth the effort to remove such artifacts when discussion of your

data is targeted at the larger physics community.
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