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CHAPTER 1. Introduction

1.1 Introduction

The complicated physical phenomena in complex transition-metal oxides (TMO), such as high Tc

superconductivity, colossal magnetoresistivity, metal-insulator transitions, etc., have long been the focus

of intense inquiry and debate in condensed matter science, since they are related to strong electronic

correlations and cannot be explained within the ‘standard model’ of solid state physics. These novel

functionalities of the correlated electron systems have a wide range of potential for applications in indus-

try, such as information storage, energy transportation, and so on. The charge-ordering (CO) transition

is very common in TMO and there is a specific CO transition temperature, TCO. Above TCO, the charge

is not ordered, which means that the electrons in a compound are itinerant and the positions of the elec-

trons are not fixed. Below TCO, the charge is ordered, which means that the electrons are localized and

the positions of the electrons are settled. Hence, the electrical conductivity of a material is changed at

TCO and this transition is classified as metal-insulator transition. Usually the CO with commensurate

hole doping in TMO is thought to play an important role in various cases, including the superconducting

cuprates, where the spin/charge stripe formation competes with superconducting states [1], colossal-

magnetoresistive manganites, where CO competes with ferromagnetic metallic state stabilized by an

external magnetic field [2], layered nickelates, where CO takes the form of the small polaron lattices [3],

and layered manganites, where CO could be bothered by the correlated dynamics of spins and charges

[4]. Therefore understanding the causes and implications of CO phenomena is significantly important.

The first research on the metal-insulator transition with the CO ground state was made by Verwey in

1939 [5]. Following his attempts, many efforts have been extended to elucidate the CO mechanism and its

consequences. However, in spite of this effort, a theory that sufficiently explains all of the experimental

observations has eluded us due to the complex interaction among structural, magnetic, and electronic

states. Up to now, it has been widely recognized that CO arises from the coupling or the competition
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among Coulomb interaction, magnetic energy, and electron-lattice interaction. However, the interrelation

of these interactions or the dominance of one over the others is not understood.

As one of the most advanced techniques in condensed matter physics, neutron scattering can not only

reveal the crystalline and magnetic structures, but also probe the microscopic dynamics: how nuclei and

magnetic moments move and interact. Therefore, it is a perfect tool for studying the CO system, for

which the coupling of magnetism and structural distortions are the key [6, 7].

Figure 1.1 (a) The crystal structure and ferrimagnetic ordering of Fe3O4 above
the transition temperature, the A-site (red) is tetrahedral sublattice and
completely occupied by Fe3+ ions, and B-site (green) is the octahedral
sublattice and has an average valence of Fe2.5+. The directions of the
spins are labeled with the arrows; (b) The crystal structure and charge
ordering of Fe3O4 below the transition temperature in Verwey’s model,
the octahedrons (blue and red) are Fe2+/Fe3+ ions, which stack along
the c-axis.

The compound that Verwey studied was Fe3O4. It is a mixed valence compound with a cubic spinel

structure: the tetrahedral (A) sublattice is completely occupied by ferric ions (Fe3+), while the octahe-

dral (B) sublattice has an average valence of Fe2.5+, Fig. 1.1(a). The resistivity increases weakly as

temperature decreases, and the material becomes much more insulating below ∼ 122 K, which means

that the metal-insulator transition occurs [5]. Verwey suggested that conduction at high temperatures was

due to mixed valence of the B-site irons, while below the transition temperature the B-site irons formed

distinct Fe2+ and Fe3+ ions that order in real space along the cubic axis with a corresponding sharp drop

in conductivity, Fig. 1.1(b). This kind of transition is called Verwey transition and is one of the earliest

instances of invoking many-body effects to explain a solid-state phase transition. The specific temper-
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ature at which CO occurs is called the Verwey temperature, TV . Verwey built the following model to

explain the mechanism: In a unit cell, there are eight Fe3+ and Fe2+ ions respectively distributed over

the 16 B-sites, and electron exchange between equivalent B-sites occurs on the tetrahedral corner-shared

network according to the relation, Fe2+ - e− ! Fe3+, giving rise to the electrical conductivity [8].

In Fe3O4, the Verwey transition would not appear to be driven by the magnetic energy due to the large

difference between the temperatures of the ferrimagnetic (∼ 860 K) and first-order Verwey transitions

(∼ 120 K): The magnetic structure is insensitive to the long-range CO [9]. Furthermore, it is also argued

that the electron-lattice interaction is not an important factor because of the small crystalline distortions

[10]. Thus, the large Coulomb repulsion should be the main driving force and Verwey transition can

be thought of as a long-range CO of Fe3+ and Fe2+ produced in a process reminiscent of the Wigner

crystallization that occurs at low electron densities in the free electron gas [11, 12]. Although Verwey’s

original hypothesis explains many of the features in the CO system, intense research challenged this

speculation over years: In 1956, Anderson presented that the short-range ordering of Fe2+ and Fe3+

existed above TV due to significant intersite Coulomb repulsion and frustration on the B-site sublattice

[13]; Due to the local charge “neutrality” (2.5+ average valence on each tetrahedron) from the short-

ranged electron correlations, the charge hopping and conductivity were restricted [14]. The importances

of electron-lattice interactions were also reconsidered since the monoclinic lattice distortions can be

induced by the elastic and orbital interactions [15], and its complexity has made the characterization

of the Verwey state difficult [16]. The neutron techniques have helped us to refine our understanding

of Fe3O4: In 1975, G. Shirane et. al. disproved Verwey’s CO model by the high resolution neutron

diffraction: a superlattice peak was observed at (2, 0, l+1/2) refer to the cubic lattice (O7
h-Fd3̄m), but

not at (0, 0, 2) as expected for Verwey ordering scheme, which suggested more complex 3D pattern

of CO in contrast to the Fe2+/Fe3+ alternating along the c-axis as Verwey proposed [17]. Recently,

even the validity of the CO model has been questioned [18]. Although the neutron and resonant X-

ray diffraction measurements dispute this result, the concept of an integral CO state with full charge

disproportionation in Fe3O4 is challenged [19, 20]. Theoretical calculations in the local spin density

approximation (LSDA) and generalized gradient approximation (GAA) with local coulomb interaction

(U) support the existence of fractional charge disproportionation [21, 22]. Thus, it is suggested that

the simple ionic mechanism proposed by Anderson cannot explain the Verwey transition and the verdict

that the Coulomb interaction is the sole driving force of Fe3O4 is not convincing [23]. Our group has
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pioneered studies that uses investigations of spin-wave spectra to learn more about CO. We analyzed

the spectra of inelastic neutron scattering for Fe3O4 and observed that spin-wave stiffening above TV

provides strong evidence for Anderson’s short-ranged electron correlations in the mixed valent (MV)

phase and indirectly supports the idea that the intersite Coulomb interactions are important to the Verwey

transition. The optical spin waves of ∆5 symmetry (∼ 80 meV) are shifted upwards above TV due to

the occurrence of B-B ferromagnetic (F) double exchange while the other modes are not affected [24],

which indicates that super exchange interaction is insensitive to the details of long-range CO below TV .

Therefore, the intersite Coulomb interactions play an important role in the system, even if full charge

disproportionation does not occur [23, 25].

Figure 1.2 Schematic representations of charge and magnetic order [28] in
YBaFe2O5. The upper and lower panels are projections onto the bc
and ab planes, respectively. Fe ions are shown as balls and oxygen
square pyramids as triangles or squares. Arrows indicate magnetic
moments. (a) For 308 K < T <430 K (AFMV ), the Fe ions are valence
mixed (blue). (b) For T < 308 K (AFCO), Fe2+ (green) and Fe3+ (red)
chains run along the b axis and alternate along the a and c directions.

YBaFe2O5 (YBFO) is another Verwey transition compound with a fractional valence of 2.5+. The
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perovskite-based crystal structure consists of FeO2-BaO-FeO2 double layers, in which five coordinated

Fe sites form apex-shared square pyramids with the double layers separated by an oxygen-vacant Y layer

[26]. At high temperatures, a single iron site, Fe2.5+, is detected in YBFO by Mössbauer spectroscopy

[27, 28], while no superlattice peak is observed by the synchrotron X-ray powder diffraction (SXPD)

and neutron powder diffraction (NPD), Fig. 1.2(a) [26, 29]; On cooling, the compound reveals a three-

step CO processes: i) the Fe ions order antiferromagnetically at TN ∼ 432 K, and remain the valence

mixed; ii) based on the Mössbauer data, two different iron signals, Fe2.5+δ and Fe2.5−δ, are observed as a

premonitory CO transition; iii) the complete transition into nearly full charge disproportionation of Fe2+

and Fe3+ is found with the further cooling below the Verwey temperature (TV ∼ 308 K), Fig. 1.2(b).

The Fe charge disproportionation of the last transition can be expressed as, 2Fe2.5+ → Fe2+ + Fe3+, and

detected by SXPD and NPD. The main difference between the two antiferromagnetic (AF) structures(step

ii) and iii)) is the sign of the direct exchange between double layers (across the Y layer): F in AFMV and

AF in AFCO. Furthermore, the lattice symmetry changes from Pmmm to Pmma. Consequently, a three-

dimensional charge-ordered arrangement of the two ions is revealed, Fig. 1.2 [30,31], and an unusual

opportunity to study MV transition is provided by a cooperative Jahn-Teller distortion and a magnetic

phase transition [32].

Both YBaFe2O5 and Fe3O4 have a magnetic transition temperature (TN ) that is larger than the CO

temperature (TCO). However, the difference between the temperatures (∆T) of the magnetic and CO

transition varies: In YBFO, ∆T is ∼ 124 K, which is much smaller than Fe3O4 (∼ 740 K). Thus, there

is a great possibility that the magnetic energy contributes to the stability of CO state in YBFO. In order

to prove this, our group has applied the inelastic neutron scattering to study the CO of YBFO. Based

on the magnetic excitation energies, we found that the charge-ordered insulating ground state below TV

can be well explained with eg superexchange (SE) interactions, while the conduction state above TV can

be well explained with the addition t2g double exchange (DE) interactions within AE FeO2-BaO-FeO2

double layers by an electron hopping process [30]. Thus, the magnetic energy is important to the CO

state of YBFO. In addition, the GGA + U method has been applied to simulate both the low-temperature

CO and the high-temperature MV phase in good agreement with INS data and other experimental results

[33]. Therefore, both the magnetic energy and electron-lattice interaction play some role in the ordered

ground state.

The subject of this dissertation addresses the origin of the CO transition of R1/3Sr2/3FeO3(R: rare
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Figure 1.3 Crystal structure and magnetic ordering in RSFO below the Verwey
transition temperature. The black dots are the R3+ ions, the brown
(purple) octahedra are the Fe3+-O6 (Fe5+-O6), whose center-site is
occupied by Fe3+(Fe5+) ion and corner-sites are occupied by O2− an-
ion. Arrows indicate magnetic moments.

earth metal) (RSFO). RSFO is a perovskite-based crystal with a fractional valence 3.67+ at high temper-

ature. The parent lattice structure is relatively simple and is based on the standard single layer perovskite

ABO3. Below the transition temperature, it is proposed that charge disproportionation occurs in RSFO

according to 3Fe3.67+ ! 2Fe3+ + Fe5+, and the different iron valences order along the body diago-

nal [111]c. In order to describe the magnetic structure easily, it is noted that the antiferromagnet (AFM)

spins are · · · ↑↓↓↓↑↑ · · · with the CO · · · Fe3+, Fe3+, Fe5+, Fe3+, Fe3+, Fe5+, · · · along the cubic [100]

direction. The magnetic transition temperature (TN ) is the same as the CO temperature (TCO). This is

distinct from Fe3O4 and YBFO, where the magnetic order occurs first followed by CO, Fig. 1.3 [34, 35,

36]. Furthermore, it is also reported that the Coulomb interaction is very small due to the small charge-

transfer gap, and can be tuned by a smaller rare earth ion substitution on the R-site [37]. Thus, these

compounds provide a great opportunity to study the different factors for the CO stability [36]. Under

the assumption that Coulomb interaction is weak, T. Mizokawa and A. Fujimori calculated the magnetic

energies for different CO states and claimed that the observed CO pattern depended on the ratio of mag-

netic exchange energies [38]. This still needs to be proven by further experimental evidence and is the
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main topic of this thesis. In addition, the exact contribution of coulomb interaction, magnetic energy, and

electron-phonon interaction to this CO system is still not clarified. The purpose of this dissertation is to

explore the original driving force of the CO ground state of RSFO by the methods of neutron scattering

(elastic and inelastic).

1.2 Dissertation Layout

The dissertation will begin with a brief review of the three driving forces for CO in TMO: magnetic

energy, Coulomb interaction, and election-lattice interaction.

In the following two chapters, chapter 3 and 4, the sample synthesis, experimental techniques and

instruments are presented. Since the central technique used is neutron scattering, chapter 3 introduces

the theoretical background, instruments, and data reduction of the techniques. The lab characterization

and magnetic order measurement by neutron diffraction on these compounds RSFO(R = Pr, Nd, Sm, and

Y) are shown in chapter 4. The magnetic ordering phase of SSFO is observed by NPD for the first time.

Chapter 5 discusses magnetic properties of the parent compounds RFeO3(R = La, Pr, Nd, Sm, and Y)

(RFO). After introducing the magnetic structure and lab characterization of RFO compounds, the mag-

netic exchange energies of RFO are deduced by the Heisenberg Model analysis of the neutron scattering

data. Because Pr3+, Nd3+, and Sm3+ are magnetic ions, the crystal electric field (CEF) contributions

are also analyzed. Besides fitting the magnetic excitation data in energy verse intensity, Q-cut fitting is

introduced as another data reduction method. (CEF) excitations from these two different methods agree

well with each other. CEF data obtained in this chapter are used to separate the magnetic signals of R3+

and Fe3+ in Sr-doped compounds as described in the following chapter.

Chapter 6 discusses the effect of the magnetic energy and Coulomb interaction on the CO in RSFO

(R = La, Pr, and Nd). The theoretical basis for this research is introduced. The contributions of the

magnetic energy to the Fe ions ordering in RSFO are discussed by subtracting the CFE, which is based

on the study of RFO presented in chapter 5. Some plausible results are concluded: the magnetic energy

could stabilize the CO itself in LSFO and PSFO, while the role of Coulomb interaction can be deduced

upon the R-site substitution from La to Nd.

Chapter 7 extends the investigation of the CO driving force in RSFO to the electron-lattice interac-

tion. With the comparison of the phonon density-of-state (DOS) of parent and Sr-doped compounds at
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different temperatures, the R-site substitution, Sr introduction, and temperature varying influences on

electron-lattice interaction are discussed.

Finally, chapter 8 summarizes the main results of this dissertation and proposes some new perspec-

tives which are worthy being the subjects of future work.
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CHAPTER 2. Overview of the charge-ordering driving forces of Coulomb interaction,

magnetic energy, and electron-phonon interaction

In this chapter, I will present the important concepts which palya role in the phenomenon of CO.

Electrons in solids possess three attributes: charge (e−), spin (S=±1
2 ) and orbital symmetry. Interaction

among these can account for CO transitions and a variety of other novel phenomena. Many of the

details of charge and magnetic state are mainly determined by the crystal structure of the compound,

and R1/3Sr2/3FeO3 (R: rare earth) materials are based on RFeO3 perovskite materials [1], the structure

of ABO3 need to be introduced at first. Then, the role of Coulomb interaction, magnetic energy, and

electron-lattice interaction will be reviewed.

2.1 Structural Considerations

2.1.1 Structure of ABO3

Figure 2.1 Ideal ABO3 cubic-provskite structure.

The ideal ABO3 perovskite TMOs has the cubic structure of Fig. 2.1. The ABO3 cubic-perovskite
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structure A cations and B cations are in twelvefold and sixfold oxygen coordination respectively.

Normally, A-site is occupied by rare earth/IIA-metal ions and B-site is occupied by transition-metal

ions (we simplify it as ‘M’ ion). In our case, the A-site is occupied by R/Sr (R: rare earth metal) ions and

the M-site is occupied by Fe.

The perovskite structure is often distorted, typically by cooperative tilting of MO6 octahedra, due

to steric effects caused by the different radii of A and B ions. The bond length of Fe-O and the degree

of ∠ Fe-O-Fe are modified by the distortion. If the ionic sizes of A, M, and O have certain ideal ratio

in the perovskite structure, Fig. 2.1, and there is no tilting in the system, it results in a bond angle of

180◦ (M-O-M). However, this is just the ideal case, the ionic radii are different and there is no way to

avoid octahedral tilting in the general case. The propensity for lattice distortions are described by the

Geometric Tolerance Factor which is related to the effect of different distances between the ions/anions,

t =
< A−O >√
2 < M −O >

, (2.1)

where <A-O> and <M-O> are the average bond lengths of A-O and M-O which are typically estimated

from the standard ionic radii obtained from diffraction data and are available in tables [2].

If t < 1, the A-O bonds are under tension and the M-O bonds are under compression. Normally, the

lattice stresses are relieved by the cooperative rotations of the corner shared MO6 octahedra about a cubic

crystallographic axis, which leads to the M-O-M bond angles bending from 180◦ to (180◦ - φ) along with

a shortening A-O bond. The crystal symmetry is reduced by these cooperative rotations: for example,

rotations about a [1 1 1] axis give rhombohedral (R3̄c) symmetry, where t is from ∼ 0.956 to ∼ 1.012 as

reported; those about a [110] axis give orthorhombic (Pbnm or Pnma) symmetry, where t is from ∼ 0.87

to ∼ 0.99 as reported.

The perovskite structure is very robust and amenable to a wide variety of chemical modifications

on A- and B-site. Substituting the A-site ion with an ion of different radius is an effective method to

control the distortion and thereby control fundamental electronic parameters, such as electron hopping

interaction. Heterovalent doping on the B-site modifies the average valence of oxidation state and can

lead to CO as discussed below. The range of t values is also related to the oxidation state of the B

cation: t vary from 0.886 to 1.139 for A+B5+O3-type perovskite compounds, from 0.822 to 1.061 for

A2+B4+O3-type compounds, and from 0.832 to 1.012 for A3+B3+O3-type compounds. Obviously, the
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tolerance factor value of ABO3-type perovskite compounds sharply increases as the oxidation state of

the B cation increases [3, 4, 5, 6, 7, 8].

In this thesis, the perovskite structure of RFO is orthorhombic and the structure of RSFO is rhom-

bohedral. For the parent compound, the neighbors of oxygen ion are same, Fe3+, thus the distortion of

oxygen is small and just happens in the plane. The environment of oxygen ion in RSFO is more com-

plicated: there are two kinds of the oxygen-atom displacements, Fe3+-O2−-Fe3+ and Fe3+-O2−-Fe5+.

In mixed valent systems where a CO transition occurs, the oxygen ions are displaced by the neighbor

charges, which are superimposed on these cooperative rotations [9]. Therefore, it is similar RFO for the

first one; the charges are alternating (Fe3+/Fe5+) and the Fe ions themselves have different ionic sizes

for the second case, the central oxygen-atom moves away from one Fe atom near neighbor toward the

other.

In addition, the effect of CO on structure contributes to the lattice distortion. Usually, A-O bond is

more sensitive than M-O bond on this factor due to the environment of the A3+ ion is more flexible than

the perovskite center-site M. In LSFO, the bond lengths (in Å) of A-O and M-O are listed at 50 K and

room temperature, Table 2.1 [10].

Table 2.1 The bond lengths (in Å) of A-O and M-O for LSFO at 50 K and 300 K.

50 K 300 K
Fe-O 1.936(1) × 6 1.938(1) × 6

La/Sr-O 2.591(1) × 3 2.635(1) × 3
2.883(1) × 3 2.843(1) × 3
2.733(1) × 6 2.738(1) × 6

The tolerance factors of RFO and RSFO at room temperature are listed in Table 2.2. The values of

both lines are the data of X-ray measurement, the first line is the results of our samples and the ‘∗’s

show the reference one. So it can be clearly seen: i) the distortion is increasing with the substituting

of the smaller rare earth metal, from La to Y; ii) compared to the related RFO, t of RSFO is larger

due to the higher oxidation state of Fe ions, from Fe3+ to Fe3.67+. The above discussion is based on

the assumption that there are no oxygen defects. Fig. 2.2 shows the phase of La1−xSrxFeO3−δ with

the oxygen stoichiometry [1]: If the oxygen content is 3.0, the space group is changing from the low

symmetry (othorhombic) to high symmetry (cubic) with Sr doping due to the average covalent radius of

Sr2+, 〈 Sr2+ 〉, is 1.12 Å, which is smaller than 〈 La3+ 〉 and close to 〈 Fe4+ 〉; If the oxygen content is
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Table 2.2 The tolerance factor of RFO and RSFO as measured by X-ray diffrac-
tion.

LFO PFO NFO SFO YFO
R3+ radius (Å) 1.216 1.178 1.162 1.13 1.07

Space group Pnma Pnma Pnma Pnma Pnma
Tolerance factor 0.951 ± 0.002 0.925 ± 0.002 0.918 ± 0.002 0.910 ± 0.002 0.890 ± 0.002

(t) 0.954∗ 0.925∗ 0.918∗ 0.907∗ 0.889∗

LSFO PSFO NSFO SSFO
Space group R3̄c R3̄c R3̄c R3̄c

Tolerance factor 0.999 ± 0.002 0.997 ± 0.002 0.996 ± 0.002 0.993 ± 0.002
(t) 1.003∗ 0.996∗ 0.992∗ 0.989∗

∗ reference 11, 12, 13, 14, 15, 16.

less than 3.0, the phase transition even can reverse the sequence from the high symmetry (cubic) to low

symmetry (tetragonal) with Sr doping. In the case of the thesis, the oxygen stoichiometry was maintained

at 2.95 at a minimum.

Figure 2.2 The phase diagram of La1−xSrxFeO3−δ, which describes the full range
of x and δ. The labeled regions are identified in the key, while the
unlabeled regions are multiphase.

2.2 Coulomb Interaction

In the ionic systems, the Coulomb interaction is responsible for much of the total energy. Especially

in ionic insulators, such as the parent compound RFO, it can represent even up to 90 % of the total
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cohesive energy. The expression of Coulomb interaction is quite simple, just being given by Coulomb’s

law,

UCoulomb
ij =

qiqj
4πε0rij

, (2.2)

where qi and qj are the charges of i and j ions, rij is the distance between them.

From above equation, we could clearly find that the Coulomb interaction is determined by the values

and positions of charges. However, the mixed valent materials in the Verwey system, such as RSFO, are

on the boundary of metallic and insulating (semiconducting) behavior, and the ionic valence and degree

of charge localization can change dramatically at temperatures above and below TV , which lead to the

complications to calculate the Coulomb interactions and the metallic screening. In this section, I will

introduce the Hubbard model due to metal-insulator transition at first; then a simple case of the Coulomb

interaction stabilizing the CO in a free electron gas, Wigner Crystal, will be presented; at last, I am going

to discuss the energy of CO on a lattice and Madelung energy.

2.2.1 Metal-Insulator Transition (MIT) and Hubbard Model

As the first successful theoretical and experimental descriptions of metals, semiconductors, and in-

sulators, electronic band theory is based on noninteracting or weakly interacting electron systems. In the

theory, it makes a general distinction on the filling of the electronic bands at zero temperature: For metals,

the highest filled band (conduction band) is partially filled; For semiconductors, it is completely filled,

but the gap between the highest filled band (valence band) and the nearest empty band is small (order kT);

For insulators, the filled state of the bands are same as semiconductor, but the band gap is large (typically

1 eV or more). In other words, the Fermi level lies in a band gap in insulators and semiconductors while

the level is inside a band for metals [17, 18, 19]. However, de Boer and Verwey reported: Although many

transition-metal oxides have a partially filled d-electron band, they are nonetheless poor conductors and

indeed often insulators [20]. Concerning the report, Peierls proposed the electron-electron correlation:

the origin of the insulating behavior could be the strong Coulomb repulsion between electrons [21].

In 1949, Mott first tried to explain this kind of insulator in the band structure [22]: A lattice model

was built by a single electronic orbital on each site without electron-electron interactions. Then, a single

band would be formed from the overlap of the atomic orbitals, where the band became full when two
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Figure 2.3 Hubbard model from localized state to extended state in half filled en-
ergy bands.

electrons, one with spin-up and the other with spin-down, occupied each site. Due to the large Coulomb

repulsion between the electrons, the band would split into two: The lower one was formed from electrons

that occupied an empty site and the upper one from electrons that occupied a site already taken by another

electron. Thus, the lower band would be full, and the system an insulator. In addition to the insulating

phase, describing and understanding the metallic phases in this system is a still challenging subject. The

earlier pioneering work on MIT was done by Hubbard and based on the tight-binding approximation

[23, 24]. J. Hubbard introduced two items: i) the electron band width, t, which is the kinetic energy

gained from hybridization; ii) the coulomb energy, U, which is the energy cost for double occupancy of

an atomic site. In the Hamiltonian, these two are competitive: a band term decreasing the kinetic energy

and an electron localized term decreasing the Coulomb correlation energy,

H =
∑

i,j,σ

tijc
+
iσcjσ + U

∑

i

niσniσ̄ , (2.3)

where niσ = c+iσ ciσ is particle operator, c+iσ and ciσ are the creation and annihilation operators of paticles

with spin σ located on site i. Assuming t0 = tii and t = tij . Since t0 is the lowest energy of the conduction

band, t0 + U is the potential energy of the other electrons with the antiparallel spin.

The total electron band width is related to the coordination number and hopping integral and ex-

pressed as B. Assuming z is the coordination number, B = 2zt. If B - U, the ground state of the Hamilto-
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Figure 2.4 Schematic illustration of energy levels for (a) a Mott-Hubbard insula-
tor and (b) a charge-transfer insulator generated by the d-site interac-
tion effect. εF is the fermi level.



19

nian is metallic and unless band is filled. If B . U, the ground state of the Hamiltonian is localized due

to the half-filled band; If B ≈ U, the material is a poor metal or semiconductor. Therefore, the electronic

conduction of a compound is decided by the ratio of B/U as shown in Fig. 2.3 and the critical value is

B0/U.

In TMO, the energy band of 3d orbital of transition metal ion is typically narrow (B is small) and

will be split into the upper and lower Hubbard bands. The energy level of 2p orbital of oxygen anion

(Ep) relative to the metal d-bands (Ed) outlines two extreme cases: Mott-Hubbard (MH) insulator, Ep

< Ed, and Charge Transfer (CT) insulator, Ed < Ep< Ed + U. If the energy gap between the 2p orbital

of oxygen anion and the upper Hubbard bands of the transition metal is ∆, those two insulators can be

defined as MH insulator (U < ∆) and CT insulator (U > ∆) [25, 26], Fig. 2.4.

Usually the 2p orbital of oxygen anion and the Hubbard bands of transition metal ions do not separate

as significantly as in Fig. 2.4, there are overlaps between them, which produce the covalence between

the d electron of metal ion and p electron of oxygen anion. In such a case, we label the metal-oxygen

hybridization as tpd, the modfied d electron phase diagram can be plotted in Fig. 2.5 by D. D. Sarma

[27].

Figure 2.5 The d electron phase diagram. tpd is hybridization between the d elec-
tron of transition metal ion the p electron of oxygen anion.
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Based on the Hubbard model, the metallic or insulating phases are a function of U/t and doping, and

a generic phase diagram is shown in Fig. 2.6. Although it is an insulator at large U/t and 1/2 filling,

a metallic phase can be obtained by either doping or changing the hybridization (smaller U/t). In the

shaded region near the Mott insulator, the charge carriers are nearly localized and charge transport is

complicated due to the mixing of charge fluctuations with spin and lattice distortions. In those regions,

the properties like high temperature superconductor (HTSC) appear and the mechnism still is not fully

understood [25].

Figure 2.6 Metal-insulator phase diagram based on the Hubbard model in the
plane of U/t and filling n (n = 1/3 and 1/2). Although the shaded area
means the principle metallic state, it is strongly influenced by the met-
al-insulator transition, in which carriers are easily localized by extrin-
sic forces such as randomness and electron-lattice coupling.

In the thesis, RFO is a CT insulator [28] and the electronic state can be modified by doping dif-

ferent atom into the parent compounds. In the parent compound, the electron state of Fe ion is half

filled 3d5, and the orbital filling state will move to the less doping direction gradually with the Sr2+

doping on R3+-site, Fig. 2.6. Then, the U/t value will determine the first order transition: i) If U/t

is small and there is no shared shaded region as the doping crosses different doping states, the metal-

insulator, semiconductor-insulator, and semiconductor-semiconductor transition can be observed: For

example, with the x increasing, the electronic conductivity is changing from the insulator to metal for
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La1−xSrxFeO3−δ [29, 30, 31], Fig. 2.7(a); ii) If U/t is not small and there is a probability that the dop-

ing will pass through the shared shaded region of different states, the metal-insulator transition will be

bothered a lot and even be destroyed: For example, if R3+-site substitution from La3+ to Sm3+ as the

doping level x is fixed on 2/3, the hybridization will decrease (larger U/t), the semiconductor-insulator

transition temperature is decreasing until no electrical resistivity transition observed in Gd sample [15],

Fig. 2.7(b).

Figure 2.7 (a) Relationship of electronic conductivity (σ) and temperature (1/T)
for various composition of La1−xSrxFeO3; (b) Temperature depen-
dence of resistivity for R1/3Sr2/3FeO3 system in a cooling process,
the resistivity abnormality is marked by the triangle sign ∆.

2.2.2 Coulomb Interaction on the CO

2.2.2.1 Wigner Crystal

Wigner Crystal is a model that describes how Coulomb interaction between electrons in a metal can

lead to CO. It was first studied by Wigner in the 1930s [32, 33]. He considered an effect which was

neglected in free electron model: if the electron density is less than a critical value, the electron will not

move randomly through space as what it behaves in most metal. The Coulomb repulsion between elec-

trons results in charge localization and the electrons will crystallize and form a lattice. This crystalline

phase is named Wigner Crystal. In this crystal, the overlap of the localized electronic wave functions
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will be so small that the formation of energy band with delocalized electrons will be overcome by the

long-range Coulomb interaction leading to crystallization of the electrons. Although Wigner Crystal is

an ideal model, these crystallized electrons still can be observed in some critical compound, such as

lanthanum-doped calcium hexaboride [34].

2.2.2.2 Madelung Energy of CO State

Wigner Crystal is just a relative simple CO model and studies the case of free electrons. Normally,

CO system is electrons are localized to ionic sites determined by crystal lattice. The Madelung energy

is a factor that describes the stability of such kind long-range interaction between ions [35]. It is the

main contribution to the binding energy of ionic crystals. As the total energy of all ions of the compound

attracting or repulsing the ion i, the expression of Madelung energy is based on the Coulomb’s law,

Ui =
∑

j

Uij =
qi

4πε0

∑

j

qj
rij

, (2.4)

where qi and qj are the charges of i and j ions, rij is the distance between them.

If the distances rij are normalized to the nearest neighbor distance r0 the potential may be written

Ui =
qi

4πε0r0

∑

j

qj
rij/r0

=
qi

4πε0r0
Mi , (2.5)

with Mi being the (dimensionless) Madelung constant of the ith ion

Mi =
∑

j

qj
rij/r0

, (2.6)

In the thesis, the Madelung constant of the Sr doped compound, RSFO, has been roughly calculated:

In the whole compound, the charges of O2− anions and La3+/Sr2+ ions are -2.0 and +2.333333, their

positions do not change on different CO directions; The ionic positions on different CO directions of

Fe5+ and Fe3+ ions are different, just Fe5+ and Fe3+ ions are calculated with the charges of +5.0 and

+3.0. Since the system is electroneutral, the values of Mi are converge. Therefore, Mi on [111] and

[100] are 1.647 and 1.696, respectively. Consequently, the Coulomb interaction will stabilize the CO on

[100] in the ideal condition without considering the screen and lattice distortion effects. (the Mi will be

oscillating on [110] direction due to the symmetry).
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2.3 Magnetic Energy

In the previous section, the Coulomb interaction (charge effect) contribution to CO has been dis-

cussed. Spin is another intrinsic property of an electron besides charge, and its contribution to CO will

be introduced. The interaction between spins is described by magnetic energy. Due to the close energy

levels, the orbitals of the bonding atom will reorganize and form new hybrid ones, and magnetic energy

between the spins of unpaired electrons in those orbitals originates from quantum mechanical exchange.

If the energy band of the compound is narrow and the unpaired electrons exist, the whole system can be

magnetic: For example, it is AFM for MH insulator. In RSFO, the energy level of 2p orbitals of O anion

is very close to the energy of 3d orbitals of Fe ion in the CO system and the energy band is narrow, thus

the magnetic energy might play an important role in the CO state.

In this section, the local spin state of Fe ions will be introduced at first; then, the magnetic interaction

and the Goodenough-Kanamori rule will be discussed; at last, magnetic energy contribution to the CO

of La1/3Sr2/3FeO3 will be presented.

2.3.1 Local Spin State of Fe ions

Since the spin exchange is related closely to the hybridization, the energy levels of each bonding

electron should be clarified. In the octahedral structure, the six ligands, O2−, occupy the corner and sur-

round the M-site Fe ion. Due to the cubic symmetry, the energy degeneracy of the free ion is destroyed:

the 3dz2 and 3dx2−y2 orbitals of Fe ions will form σ-bonds with the 2p orbitals of the O2−, which will

have higher energy, and the 3dxy, 3dxz and 3dyz orbitals of Fe ions will form π-bonds with the 2p or-

bitals of the O2−, which will have lower energy. The two higher-energy orbitals are collectively referred

to as eg and three lower-energy orbitals as t2g. The energy difference is expressed as ∆oct, which is the

crystal-field splitting parameter. It is around several eV. The excitation of the 3d-orbitals from the free

ions to the octahedral environment is shown in Fig. 2.8.

The Hamiltonian can be expressed as

H3d(r) = H0(r) +
6∑

j=1

V (O)(r−Rj) , (2.7)

where H0(r) is the Coulomb potential of the central metal ions and V(O)(r-Rj) is the interactions be-
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tween the central metal ions at site r and the environment O2− ligands at site Rj .

Figure 2.8 Octahedral crystal field stabilization energy.

The local spin states of ions are not just determined by the Pauli exclusion principle and Hund’s

rules, the crystal-field splitting parameter will be another factor. For RFO and RSFO, the local spin state

of Fe3+ is so called high-spin states due to ∆oct < JHund and is expressed in Fig. 2.9(b).

Figure 2.9 The local spin states of Fe3+ (a) and Fe5+ (b) in the cubic environment.

Furthermore, the above discussion is the normalest case of the crystal electric field (CEF) excita-

tions for the Fe ions in the cubic symmetry, the peroviskite distortion will lead to the further lifting of

degeneracy and energy level splitting on the eg and t2g energy levels is expected to be small [36, 37, 38,

39].

2.3.2 Magnetic Interaction

2.3.2.1 Superexchange

In an insulator, such as RFO, the magnetic interaction between Fe spins mediated by the common

nonmagnetic oxygen neighbors by a process called superexchange (SE). For the SE interaction, the

electrons are shared between metal ions via virtual excitations or intermediate states involving oxygen.

In homovalent insulators with the perovskite structure, SE typically leads to AF order. However, as
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discussed below, SE can be either AF and ferromagnetic (F) in the mixed valent or CO compounds. This

competition between F and AF exchanges can affect the stabilities and total energy of the CO state. In

the thesis, the parent compounds, RFO, and the doped compounds, RSFO, are two perfect examples.

Figure 2.10 Antiferromagnetic illustrations of the superexchange mechanism for
Fe3+(3d5) ions with the straight bonds by O2−(2p6) anion. (left) The
σ bond is formed in Fe-O-Fe system; (right) The π bond is formed in
Fe-O-Fe system.

Fig. 2.10 explains the mechanism of AF exchange in RFO. As the half filled 3d orbitals of Fe3+

can have strongly overlapping with the filled 2p orbital of O2−, hybridization will allow the sharing of

electrons between them and two kinds of bonds are formed from the Pauli exclusion principal and Hund’s

rules: i) As illustrated in the left figure, a σ-bond is formed by the overlap of the eg orbitals of Fe, such as

3dx2−y2 , with 2px orbital of O. An AFM is strongly favored since O can simultaneously share both of its

2px electrons only when neighboring Fe ions have oppositely aligned spins. ii) In the right figure, the t2g

orbitals of Fe ions can interact with the 2px orbital of O to produce a π-bond, and it is also AF. However,

this kind of interaction between t2g orbitals is very weak compared to the σ-bond and can usually be

ignored if both bonds exist. Furthermore, the ground state F for the two Fe3+ ions is forbidden by the

Pauli principle, Fig. 2.11. Therefore, the SE interaction results in G-type AF coupling in the straight

bonds of Fe3+ ions [40].

In heterovalent systems displaying CO, the SE interaction can also lead to the F interaction in the

straight bonds. In our case, Fe3+ and Fe5+ of RSFO is stated in Fig. 2.12. A spin up Fe3+ ion will share

a spin down oxygen electron since there is no more room for spin up electrons; In the Fe5+ ion, the x2-y2
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Figure 2.11 Ferromagnetism is rejected assuming non-orthogonal Fe3+ orbitals.

orbital is empty and the Hund coupling is large, thus Pauli exclusion principle favors that the oxygen ion

share an electron that has the same spin as the other spins. Since the Fe3+ ion is already sharing the spin

down electron, the Fe5+ ion must be spin up. Therefore, the resulting exchange between Fe3+ and Fe5+

is F.

In addition, the spin directions of the hopping electrons between Fe3+ and Fe5+ do not have to

change in order to conform with Hund’s rules when they are on the accepting ions. Hence, the electron

movement on the bond Fe3+-O-Fe5+ will be facilitated more easily and the kinetic energy expended on

the whole processing will be reduced. The total saving energy could lead to ferromagnetic alignment of

neighboring ions. This gives the explanation to the higher electron conductivity in RSFO compared to

RFO at the same temperature.

2.3.2.2 Goodenough-Kanamori Rule

As the particularly important indirect interactions of electrons via an intermediary in TMO, superex-

hange effect is strongly dependent on the magnetic moments of transition metal ions, the overlap integral

between orbitals of transition metal and oxygen ions, and the bond angle of M-O-M. A rough estimate of

the size and sign (AF or F) of exhange interaction in insulators is summarized by Goodenough-Kanamori

Rule. In 1955, J. Goodenough first proposed the idea of ‘partial bond formation’ of the ligand with the
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Figure 2.12 Illustration of the ferromagnetic mechanism by SE interaction for Fe
ions with different valence (Fe3+ and Fe5+). The relative orbitals (a)
and energy levels (b) in the Fe-O-Fe system.

metals on both sides of the exchanges and the rough formula; in 1959, Kanamori provided more rigorous

mathematical underpinning [41, 42].

This rule assumes that a virtual electron transfer occurs between the overlapping orbitals of electronic

states that are separated by an energy, ∆E, in an interatomic spin-spin interactions system. And the

theoretical basis of it rests on four preconditions:

• The spin angular momentum is conserved in the electron transfer;

• The Pauli exclusion principal restricts the electron transfer from the same anion p-orbital;

• The intraatomic spin-spin potential exchange interaction is ferromagnetic and is determinative

where the Pauli exclusion principle is not restrictive;

• The inter-site hopping parameter between the neighboring site can be roughly calculated by

t↑↑ = t0cos(
θ

2
) , or t↑↓ = t0sin(

θ

2
) , (2.8)

where θ is the relative angle between the neighboring spins, and t0 is the maximum value of the
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hopping parameter.

t0 = (ψi, H
′ψj) = εij(ψi,ψj) , (2.9)

where εij is a one-electron energy, H′ is the potential perturbation of the electron with orbital ψj by

the presence of the other cation orbital ψi, and (ψi, ψj) is the overlap integral for the two orbitals.

In orthogonal orbitals, (ψi, ψj) = 0.

Figure 2.13 (a) and (b) the illustration of the hopping in ferromgnetism and anti-
ferromgnetism with the parameter, t↑↑ and t↑↓.

As a virtual electron transfer between states of different energy, ∆E is treated in higher-order pertur-

bation theory and the ratio, t0
∆E , is much less than unity.

i) Due to the Pauli exclusion principle, the virtual electron transfer between half-filled orbitals is AF,

so the t↑↓ must be the second-order perturbation for the near-neighbor interaction

∆ε ≈ − |t↑↓|2

∆E
= − t20

∆E
sin2(

θ

2
) = −const.+ (

t20
2∆E

)cosθ , (2.10)

In antiferromagnetism (Jex < 0), the spin-dependent part of this energy is

∆εex = −JexSi · Sj , (2.11)

Hence,

Jex ≈ − t20cosθ

2SiSj∆E
, (2.12)

If Si = Si= S = 1/2 and they have the same direction (θ = 180◦), the interaction between two

electrons is Jex ≈ 2t20
∆E , which is the same result as the one derived by P. W. Anderson by the
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‘Virtual processes’ assumption in 1950. Therefore, the Goodenough-Kanamori rule is also named

as Goodenough-Kanamori-Anderson rule [40, 41, 42].

ii) Although a virtual electron transfer from a half-filled to an empty orbital is not restricted by the

Pauli exclusion principle, the transfered spin is favored by the ferromagnetic Hund’s intraatomic

potential exchange. Hence, t↑↑ is used and the ferromagnetic interaction (Jex>0) is treated in

third-order perturbation theory, which adds a factor ∆ex
∆E

Jex =
t20∆excosθ

2SiSj(∆E)2
, (2.13)

where ∆ex is the intraatomic exchange energy.

For example,

To a 180◦ M-O-M CT insulator, ∆E is the CT gap ∆ and U is the Coulomb interaction, the ground

state energy will be

E0(AF ) ≈ 2t20/∆ , (2.14)

and

E0(F ) ≈ 2t20
∆

(1 +
t20
∆

+
t20
∆U

) , (2.15)

Then, the total antiferromagnetic energy will be

J ≈ 2t40
∆2

(1/U + 1/∆) , (2.16)

Based on above calculation, the magnetic ground state of the major transition metals with the octa-

hedral structures could be listed by the Goodenough-Kanamori rule. For example, Table 2.4 shows the

interaction between cations in octahedral sites with 180◦.
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Table 2.3 180◦ Interaction between Cations in Octahedral Sites.

number of d electrons Examples Bonds and Mechanism Superexchange
d5 - d5 Mn2+ - Mn2+ σ and π AFM

Fe3+ - Fe3+

d5 - d3 Fe3+ - Cr3+ σ and π FM
Fe3+ - Fe5+

Figure 2.14 (a) and (b) are the processing of the double exchange mechanism for
Mn ions with different valence (Mn3+ and Mn4+).

2.3.2.3 Double Exchange

Another common magnetic coupling interaction that can occur in the mixed valent materials is double

exchange (DE), which was first studied by C. Zener in 1951 [43] and usually occurs in Verwey system

above TV in metallic state. Compared to superexchange coupling, this interaction mechanism proposes

a relative easy way by which an electron may be exchanged between two metal ions: in SE, the electrons

do not actually move between the two metal positive ions as it is a virtual process; in DE, the conduction

electrons in mixed valent state jump between the two positive ions via the intermediate ligand and it is a

real process. Therefore, a material with the DE coupling requires that the system display some metallic
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conductivity behavior. DE was first introduced to describe manganites, Fig. 2.14 is one possibility of the

figures of the DE in La1−xAxMnO3 (A: Ca, Sr, or Ba) [43]: the single eg electron of Mn3+ can hop to

the unoccupied eg orbitals of Mn4+ through an intervening of O2− anion.

From Fig. 2.14, we could observe that double exchange is always ferromagnetic and requires Hund’s

coupling to local spin states. The spin directions of the binding electrons do not change between the

hopping and accepting ions, so the kinetic energy expended on the whole processing will be reduced

and the electron will move from one species to another more easily. The ground state will favor the

ferromagnetic alignment between the neighboring ions.

Since both superexchange and double-exchange interaction can drive ferromagnetism and the resis-

tivity sometimes is not very sensitive especially in powder sample, it is very hard to difference them

intuitively. Experimentally, a popular method to difference those exchange is based on the valences of

metal ions: in DE, ions are same on average; in SE, they are not same [43, 44].

2.3.2.4 Superexchange in metal center domain wall of La1/3Sr2/3FeO3

From the previous review on the concepts and rules related to the magnetic energy, the contribution

of the magnetic energy of La1/3Sr2/3FeO3 to the CO ground state will be analyzed in this section.

Since the parent compound, RFO, is a CT insulator and the G-type AFM is driven by SE, the doped

holes will be shared between Fe and O ions as Sr2+ substituting La3+. Based on the position of the

doped-hole in the CO states, there are two kinds of domain walls (DWs) separating the AF domains:

the metal-centered domain wall (MCDW) and oxygen-centered domain wall (OCDW) [45]. And the

different CO structures are possible depending on the relative strength of F and AF magnetic interactions

and Coulomb interactions.

In 1998, T. Mizokawa and A. Fujimori examined the CO transition in LSFO in detail. They first

excluded the long range Coulomb interaction contribution to the CO ground state in LSFO. Compared to

the calculation of local-spin-density approximation (LSDA) + U in Fe3O4, where the intersite Coulomb

interaction is well screened to ∼ 0.2 eV [46], the intersite Coulomb interaction in LSFO is expected to be

more thoroughly screened due to the longer metal-metal distance than in the spinel-type structure and the

small CT gap of LSFO. Then, the electron-lattice coupling term was excluded due to lack of a detectable

lattice distortion in the CO state [47].

Therefore, only the effect of magnetism on CO via the superexchange interaction is discussed in the
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Figure 2.15 MCDW along the (1, 0) and (1, 1, 1) directions for the F coupling
between the domain edge and the DW. The circle is the location of
hole, and the arrows are the spins of Fe ions: the spin of Fe5+ is the
short arrow and the spin of Fe3+ is the long one. The two neighboring
domains are in phase [47].

doped perovskite-type Fe oxides. The two possible charge and magnetic structures for the MCDW and

OCDW case in 2D and 3D are shown in Fig. 2.15 and Fig. 2.16, respectively. The magnitudes and the

directions of the spins are expressed by the size and direction of the arrows and circle shows the hole

position.

For the case of the nearest neighbor-exchange interactions in Fig. 2.15, if the MCDW is along the [1

0 0] direction, there are JF between Fe3+ (long arrows) and Fe5+ (short arrows), JAF between Fe3+ and

Fe3+, and J55 between Fe5+ and Fe5+. In 3D system: For Fe5+, there are 4 J55 and 2 JF between the

nearest neighbors; For Fe3+, there are 5 JAF and 2 JF between the nearest neighbors. Since there are

one Fe5+ ion and two Fe3+ ions in each magnetic unit cell, the total magnetic energy will be -[10JAF

+ 4JF + 4J55]/18 (Etot =
∑

i,jJi,j). If the MCDW is along the [1 1 1] direction, the situation is simple

due to the vanishing of J55: there is no nearest neighbors between Fe5+ and Fe5+. With the assumption

of nearest neighbor, each Fe3+ has 3 JF and 3 JAF , and each Fe5+ has 6 JF , thus the magnetic energy

will be -[6JAF + 12JF ]/18. Hence, the other magnetic energies in different CO directions and DWs are

listed in Table 2.5 and Table 2.6 with the same method.

In OCDW, the SE coupling in the DW (J55) does not exist, which simplifies the expression of the

magnetic energy. Compared to the magnetic energy of MCDW in the same direction, it is found that

the magnetic exchange energies depend on the center of DW. From the Mössbauer measurement, the

magnetic moments and actual charges are around 4.1µB and +3.2 for ‘Fe3+’ ions and 2.1µB and +4.2
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Figure 2.16 OCDW along the (1, 0) and (1, 1, 1) directions. The neighboring
domains are in antiphase [47].

for ‘Fe5+’ ions, so it is expected that the maximum of the hole density modulation coincides with a

minimum of spin density wave, which is consistent with the MCDW.

Table 2.4 Magnetic energies per metal-oxygen-metal bond of the CO states with
the MCDW for the hole concentration x = 1/3.

2D 3D
(1, 0) -[6JAF + 4JF + 2J55]/12 (1, 0, 0) -[10JAF + 4JF + 4J55]/18
(1, 1) -[4JAF + 8JF ]/12 (1, 1, 0) -[8JAF + 8JF + 2J55]/18

(1, 1, 1) -[6JAF + 12JF ]/18

Based on Table 2.6, the direction of the ordering domain in 3D is decided by the total contribution

of the magnetic exchange energies, JAF , JF , and J55, Fig. 2.17. J55 need to be explained before

the magnetic energies on different directions are compared. As the former introduction of magnetic

interaction, J55 should be much less than JAF since it originates from the t2g π-bond SE. It is conservative

to assume that J55 = JAF , then CO will be stable along [1 1 1] direction when | JF / JAF | > 1; If J55 =

0, CO remains along the [1 1 1] direction unless | JF / JAF | < 1/2.

Table 2.5 Magnetic energies per metal-oxygen-metal bond of the CO states with
the OCDW for the hole concentration x = 1/3.

2D 3D
(1, 0) -[10JAF + 2JF ]/12 (1, 0, 0) -[16JAF + 2JF ]/18
(1, 1) -[8JAF + 4JF ]/12 (1, 1, 0) -[14JAF + 4JF ]/18

(1, 1, 1) -[12JAF + 6JF ]/18

Actually, this hypothesis of the magnetic energy to CO can be tested by INS. From the powder
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average magnetic spectrum, the relative magnetic exchange energies is measured. Consequently, the

ratio of the magnetic energy can be determined and the direction of CO is decided: if it agrees with

the experimental data, which means that CO is on [1 1 1] direction for LSFO, the magnetic energy can

stabilize the CO alone; if it does not fit the experimental result, which means that CO is not on [1 1 1]

direction for LSFO, there is another contribution to CO besides the magnetic energy.

Figure 2.17 Phase diagram of LSFO as a function of the magnetic exchange en-
ergies. The phase boundary moves upward as J55 increases.

2.4 Electron-lattice Interaction

The Coulomb interaction and the magnetic energy on the CO ground state have been discussed,

we now turn to the electron-lattice interaction. Usually, CO accompanies the changing of the dynamic

and static displacements of the charges to lower the system energy, thus an interaction between charge

and phonon/lattice can be involved in the stabilization of the CO state. In fact, the influence of the

electron-phonon/electron-lattice interaction on CO has been observed in many cases: In La2−xSrxCuO4,

the INS measurement presented an abrupt development of new oxygen lattice vibrations with CO, and

a direct correlation between these lattice modes and the electronic susceptibility inferred the mixing of

such modes and charge fluctuations [48]; In La2−xSrxNiO4, the band of phonons corresponding to the

in-plane oxygen vibrations (80-90 meV) were observed to split into two subbands centered at 75 and 85

meV by the INS measurement as the charges were ordered, and these changes were associated with the

coupling of oxygen vibrations to doped holes, which resided in the NiO2 planes and were a signature of
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strong electron-lattice coupling [49].

For a crystal, the general hamiltonian is

Ĥ = T̂e + V̂e−e + T̂n + V̂n−n + V̂e−n , (2.17)

where T̂e is the kinetic energy of the electrons, V̂e−e is the electron-electron interaction, T̂n is the kinetic

energy of the nuclei, V̂n is the Coulombic repulsion energy of the nuclei, and V̂e−n is the Coulombic

attraction between electrons and nuclei.

With the Born-Oppenheimer approximation, the total wavefunction, Ψ, is broken into the electronic

and nuclear components, so a series expansion of Ĥ in Eq. (2.17) is performed and the perturbation

theory will be applied. As we solve this quantum problem, the eigenstate is normally separated into

radial and angular parts,

Ψ(r,R) =
∑

k

χk(R)ψk(r,R) , (2.18)

where r and R are the electronic and nuclear coordinates of atom k.

And the electron-phonon/lattice interaction occurs through the action of T̂n on ψk(r, R). Therefore,

the material structure and composition are the two dominant factors contributing to electron-phonon

interaction [50, 51].

However, the electron-phonon/electron-lattice is complicated and many details about these lattice

anomalies are still unclear. It is difficult to ascertain whether the lattice is intimately involved in the CO,

or merely passively responding in a general case. Therefore, I will introduce the concept of electron-

phonon/electron-lattice interaction with some simpler cases, such as Kohn anomaly, magnetite, and

manganites, by analyzing the phonon/lattice spectrum in this section.

2.4.1 Electron-phonon interactions on the CO

2.4.1.1 Kohn Anomaly

In 1959, W. Kohn studied the phonon spectrum of a metal and proposed that there is a discontinuity

in the derivative of the dispersion at q = 2kF due to the abrupt change in the screening of lattice vibrations

by conduction electrons. This singularity is called Kohn anomaly and is a consequence of the electron-
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phonon interaction [52].

Figure 2.18 The kohn anomaly in the phonon dispersion curve when the phonon
wavenumber q equals the diameter of the Fermi surface [55].

Kohn anomalies arise from a homogeneous electron gas and are obtained in the real part of the

dielectric function by the Lindhard model: a logarithmic term yelds a singularity for q = 2 kF , where

kF is the Fermi wavevector. Although this singularity is ‘small’ in reciprocal space, a strong oscillation

can be observed in real space by Fourier transform. The structure of the singularity is consistent with the

Fermi surface geometry and ω(q) can be measured by inelastic neutron scattering [53, 54, 55].

2.4.1.2 Magnetite

Magnetite is the prototypical example of Verwey system and has been discovered nearly 80 years,

however, the driving forces behind the Verwey transition are still not completely understood as discussed

in chapter 1 [56, 57]. Recent studies demonstrated that pure electrostatics cannot be the sole factor

responsible for the observed charge-ordered state below the Verwey transition [58, 59]. As the CO is a

cooperative phenomenon including an interplay between lattice, charge, and orbital degrees of freedom,

the electron-lattice interaction to the CO state of magnetite has received considerable attention [60].

In 2007, P. Piekarz et. al. applied the GGA + U calculations with realistic parameters for Fe ions

to simulate the phonon energy spectrum, and the agreement is qualitative with the experimental data

obtained by Raman and infrared spectroscopy. In order to test the contribution of the electron interaction

effects, it was neglected and the phonon spectra are even qualitatively different from the observed ones
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[60]. Thus, this ab initio calculation demonstrate the involvement of lattice distortions and electron-

phonon interaction in the CO state.

Figure 2.19 Orbital order in the t2g states of Fe(B) ions in magnetite for (a) the
Fd3m cubic structure distorted by the X3 phonon, and (b) the struc-
ture of P2/c symmetry. Fe and O ions are presented by orange and
blue balls. Fe(B) ions have six O neighbors, while each O anion has
three Fe(B) and one Fe(A) neighbor. The arrows represent the atomic
displacements in the X3 mode. [59].

Fig. 2.19 shows one possible CO model based on the LSDA+U-like method. The four Fe(B) sites

split into two subclasses due to the lattice distortion in the X3 mode at the high and low temperatures.

Fig. 2.19(a) shows the high temperature cubic structure, electrons occupy the B1 and B2 Fe ions and are

empty at the B3 and B4 Fe ions for t2g band. While Fig. 2.19(b) shows the low temperature monoclinic

structure, the electrons density increases for B1 and B2 Fe ions and reduced for B3 and B4 Fe ions which

is responsible for the charge disproportionation and leads to the occupied states at the B1 and B4 Fe ions

and empty states at the B2 and B3 Fe ions. Since the average Fe-O distances for the bonds to the B2-

and B3-sites are significantly smaller than those for the B1- and B4-sites, the CO can change from the

promoted by the X3 mode itself.

Furthermore, this X3 mode also stabilizes the orbital ordering(OO) in the t2g states. At the high

temperature, if the mode is considered to be limited to single Fe-O planes: Fe(B) ions move along with

O anions in one plane, while atoms in neighboring planes do not move at all. As indicated in the Fig.

2.19(a), the electrons occupy orthogonal dyz and dxz orbitals. For the low temperature one, Fig. 2.19(b),
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the alternating OO is formed by the occupied states on B1 and B4 ions with the orthogonal orbitals on

the NN. Thus, the orbitals of 1
2 (dxz±dyz) and dx2−y2 are preferred. [59]

2.4.1.3 La1.2Sr1.8Mn2O7

Figure 2.20 Correspondence between CE-order and phonon vibration patterns.
(a) Schematic of homogeneus electron in ab plane with Mn (blue) and
O (red). (b) Schematic of the displacements of oxygens from the ideal
unordered structure in long-range CE ordered La1.2Sr1.8Mn2O7.
Drawn eg orbitals indicate the Mn3+ ions. (c), (d) Eigenvectors of
the transverse (c) and longitudinal (d) bond-stretching phonons with
q = (0.25, 0.25, 0). Small Mn displacements are not shown. The col-
orful lines indicate the partial matching of oxygen displacements of
the CE order and of the phonon eigenvectors [61].

Based on the homogeneus electron gas approximation, the electron-phonon interaction is observed

by Kohn anomaly. However, the electron-phonon interaction still can be witnessed in compounds with

the inhomogeneus electron distribution, such as the Jahn-Teller (JT) effect in the distorted TMOs. It was

reported in La1.2Sr1.8Mn2O7 that the polarons (charge carriers which can distort the atomic lattice and

trap themselves) were observed in the metallic phase by inelastic neutron scattering and may originate

from a competing insulating charge-ordered phase [61].

The ideal environment of Mn ions in MnO2 layers is shown in Fig. 2.20(a): there are 4 O2− anions
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homogeneously distributed around Mn. However, when the insulator is the charge and orbitally ordered

(CE-type), the eg charge is localized on alternate Mn sites where the first order phase transition differen-

tiate Mn3+ and Mn4+ sites, Fig. 2.20(b) [62, 63]. Furthermore, the short range CE fluctuations should

couple strongly to both the longitudinal and transverse phonons and can be figured out in the marked

zones: the lattice deformation around the Mn3+ site corresponds to a part of the eigenvector of the trans-

verse phonon, whereas the deformation around the Mn4+ site corresponds to a part of the eigenvector of

the longitudinal one, Fig. 2.20(c) and (d).

Figure 2.21 Dispersions and linewidths of transverse and longitudinal
bond-stretching phonons in [1, 1, 0] direction of La1.2Sr1.8Mn2O7.
(a), (c) Data points represent measured phonon energies; red dashed
line is the dispersion calculated by the shell model; blue dashed line
is a cosine function. (b), (d) Data points are phonon FWHM after
correction for the experimental resolution [61].

Measuring the directions, q = (-h, -h, 0) and (-h, +h, 0) at 10 K, the longitudinal and transverse

branches were obtained. Fig. 2.21 presents the dispersions and linewidths of transverse and longitudinal

bond-stretching phonons in [1, 1, 0] direction. It indicates the strong electron-phonon coupling deep

in the metallic state due to the sharp dipping and maximum linewidth near qCE (1/2, 1/2, 0) of both

branches.
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2.4.1.4 La1/3Sr2/3FeO3

Since there is no detectable lattice distortion below TCO [16, 45], the electron-lattice coupling is not

expected to be as important as the superexchange coupling in the CO state. However, there is still an

argument on the CO stabilization by the electron-lattice interaction based on the study of the longitudinal

ultrasonic velocity (V) [64], and the scenario is supported by two theoretical and experimental results:

i) V is softening above TCO and hardening below TCO, which is comparable to the calculation of small

JT polarons in manganites [65]; ii) above TCO, the experimental data of the longitudinal modulus C(T)

agrees with the theoretical calculation, which is modeled by the dynamic JT effect of Fe ion. The details

are presented in the followings.

i) JT polarons

Figure 2.22 (a) The temperature dependence of longitudinal ultrasonic veloc-
ity for La1/3Sr2/3FeO3 [64]; (b) The behaviors of the renormalized
sound velocity in the metallic (x = 0.3, dashed line) and in the CO of
La1−xCaxMnO3(x = 0.5, solid line) phase [65].

In 1998, B. I. Min et al. theoretically calculated the renormalized sound velocity in metal-

lic state and CO state, which include the electron-phonon coupling constant, Fig. 2.22(b). The

Hamiltonians in both cases incorporating the electron-acoustic phonon coupling will be expressed

as [66, 67, 68],

In metallic phase

Hel−ph =
∑

iq

c†icie
iq·RiDq(bq + b†−q) , (2.19)
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where ni = c†i (ci) is the local electron density, eiq·Ri Dq is the dynamic matrix at site Ri, and

b†−q(bq) are annihilation (creation) operators for phonons.

In CO phase

The Hamiltonian of electron-phonon interaction is simplified,

Hel−ph =
1√
N

∑

i

∑

k

ω0(k)g(k)σiQke
iq·Ri , (2.20)

where ω0(c) = v0 k (v0 is the bare longitudinal sound velocity), g(k)/
√
N is the electron-phonon

coupling constant for k, σi is related to the local electron density, and Qk eiq·Ri is related to the

dynamic matrix at site Ri.

Since the temperature dependence of the longitudinal ultrasonic velocity for LSFO is qualitatively

similar to the case of La1−xCaxMnO3, which is interpreted by the JT effect of Mn3+, it is possible that

the small JT polarons with strong electron-phonon coupling play a role in CO inLSFO.

ii) JT theory

According to the JT theory, the coupling between the JT ions and the lattice distortion can be

described by the mean field approximation, and the relationship between the longitudinal modulus

C(T) (T >TCO) can be expressed as [69],

C(T ) = C0(T − T 0
C)/(T − θ) , (2.21)

where C(T) = ρ V2 [70]. ρ is the mass density, C0 is the elastic modulus in the absence of JT

coupling, and the characteristic temperature of T0
C and θ can be determined by the ultrasonic

measurements of the elastic modulus softening.

Fig. 2.23 shows the temperature dependence of the experimental (dash line) and theoretical

(solid line) C(T) for La1/3Sr2/3FeO3 above TCO, the good agreement suggests the existence of

the electron-phonon coupling via the JT effect.
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Figure 2.23 The temperature dependence of the C(T) for La1/3Sr2/3FeO3 above
TCO (dash line is experimental data, solid line is the results calculated
using Eq. (21)) [65].

This hypothesis of the electron-phonon/electron-lattice to CO can be tested by inelastic neutron scat-

tering. Based on the analyzing of the powder average phonon spectrum by the phonon models, such as

rigid ionic model, shell model, and so on, the spring constants, effective valence and radii are simulated.

Then, the coupling between the electron and phonon/lattice can be inferred. The details of measurement

of phonons and their analysis will be discussed in Chapter 7.
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CHAPTER 3. Neutron Scattering

3.1 Introduction

The neutron scattering technique is a valuable tool for investigating many features of materials,

molecules, and condensed matter. Due to the specific properties of neutron, the static and dynamic

properties of a sample can be measured. i) based on the mass of neutron, the de Broglie wavelength of

a thermal neutron can be calculated, and it is on the same order of interatomic distances in solid and

liquids; ii) the neutron is charge neutral, which has the advantage of deep penetration and interaction

with nuclei rather than electronic cloud; iii) the neutron has a magnetic moment, which means that it can

interact with magnetic atoms, thus providing information about magnetic structure; iv) the energy and

momenta of thermal neutrons match well those of a range of thermal excitations, such as phonons and

magnons, thus the dynamics of materials can be studied [1].

In this chapter, I will review some basic concepts related to neutron scattering at first; then, I will talk

about the elastic and inelastic neutron scattering and introduce the instrumentation used in this research;

at last, the data analysis of the inelastic neutron scattering in this thesis will be introduced [1, 2, 3].

3.2 Scattering of neutrons from system

3.2.1 Elastic and inelastic scattering

A general geometry for scattering experiment is shown in Fig. 3.1, where an incident neutron beam

with the wave vector ,k is scattered by the sample and the final neutron beam with the wave vector ,k′ is

counted by the detectors. The direction of the scattered neutrons is recorded by θ and φ. dΩ is the relative

solid angle. r is the distance from the target to the detector and dS is the differential area of the scattered

neutrons. The incident and final neutron energies are E = !2| ,k |2/2m and E′ = !2| ,k′ |2/2m, where m is

the mass of the neutron, and the energy transferred to the sample is ∆E = E - E′ = !2(| ,k |2 - | ,k′ |2)/2m;
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Figure 3.1 Neutron Scattering geometry.

The incident and final neutron momenta are ,p = !,k and ,p′ = !,k′, and the momentum transferred to the

sample is ! ,Q = ∆,p = ,p - ,p′ = !(,k - ,k′). If the incident energy equals the final energy, which means that

∆E = 0 meV, the scattering is elastic scattering; If the incident energy does not equal the final energy,

∆E 0= 0 meV, the scattering is inelastic scattering.

For a typical powder scattering experiment, neutrons are measured which have scattered through an

angle 2θ. The magnitude of the momentum transfer is then given by

Q2 = k2 + k′2 − 2kk′cos2θ , (3.1)

3.2.2 Scattering Cross Section

The central quantity in a scattering experiment is the cross-section. If the measured neutron is in a

given direction as a function of their energy E′ and the direction of the scattered neutron are θ, φ, which

are included in dΩ, the partial differential cross-section is defined by

d2σ

dΩdE′ = (number of neutrons scattered per second into

a small solid angle dΩ in the direction θ ,φwith

final energy betweenE′ andE′ + dE′)/(ΦdΩdE′)

, (3.2)

where Φ is the flux of the incident neutrons.

If we do not consider the energy of the scattered neutrons, but count all neutrons scattered into dΩ.

The cross-section will be the differential cross-section
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dσ

dΩ
= (number of neutrons scattered per second

into dΩ in the direction θ ,φ)/(ΦdΩ)

, (3.3)

and the total scattering cross-section is

σ = (total number of neutrons scattered per second)/Φ , (3.4)

In the following sections, a general case will be analyzed to deduce the cross-section from the initial

and final neutron states.

Suppose the initial and final states of the sytem are (,k, λ) and (,k′, λ′) respectively, as the neutron

traverses the scattering potential V in the sample. λ denotes an aggregate quantum number for the state of

the sample. In an experiment, we are usually interested in the scattering cross-section corresponding to

neutrons being scattered into final states ,k′ within a small solid angle dΩ around the direction Ω̂. Hence,

the differential cross-section is

(
dσ

dΩ
)λ→λ′ =

1

Φ

1

dΩ

∑

k′ in dΩ

Wk,λ→k′,λ′ , (3.5)

where Wk,λ→k′,λ′ is the number of transitions per second from the initial state to final state. Based on

Fermi′s golden rule, we can express it into the terms of the matrix element of the potential, which is the

coupling of the initial and final states

∑

k′ in dΩ

Wk,λ→k′,λ′ =
2π

! ρk′ | 〈k′λ′ | V | kλ〉 |2 , (3.6)

where ρk′ is the density of final states within dΩ per unit energy. Working out ρk′ from the energy

relation for free final particles E′ = !2 | ,k′ | 2/2m and using the fact that Φ is proportional to the velocity

of incident neutrons (,k),

(
dσ

dΩ
)λ→λ′ =

k′

k
(

m

2π!2 )
2 | 〈k′λ′ | V | kλ〉 |2 , (3.7)

If the final states is within dΩ and of energy between E′ and E′ + dE′, we also obtain the differential
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cross-section for scattering of neutrons, by requiring that the energy of the system (neutron + sample) be

conserved:

(
d2σ

dΩ dE
)λ→λ′ =

k′

k
(

m

2π!2 )
2 | 〈k′λ′ | V | kλ〉 |2 δ((Eλ + E)− (Eλ′ + E′)) , (3.8)

3.3 Nuclear Scattering

Due to the special physical properties of neutron, such as static mass and electroneutrality, the related

information on nuclear scattering can be obtained. Since nuclei can occur in different isotopes or nuclear

spins, which have different scattering lengths, the scattering is classified into coherent and incoherent

processes.

3.3.1 Coherent and Incoherent Scattering

The first step in evaluating the matrix element, 〈 k′ λ′ | V | k λ 〉, is to integrate with respect to the

neutron coordinate, r. For the lth nucleus with the position vector, Rl, the potential of the neutron has

the form Vj(r - Rl), then the total potential for the scattering system is,

V (r) =
∑

l

Vl(r−Rl) , (3.9)

Fermi pseudopotential is usually applied to describe the scattering of a free neutron by a nucleus and

the potential is given as a function of radius,

V (r) =
2π!2
m

bδ(r) , (3.10)

where b is the scattering length.

Therefore, the time-dependent partial differential cross-section will be

d2σ

dΩdE
=

k ′

k

1

2π!
∑

l, l ′

blbl ′
∫ ∞

−∞
〈exp(−iQ ·Rl ′(0))exp(iQ ·Rl(t))〉

× exp(−iωt)dt

, (3.11)
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where the quantity in brackets represents a space-time correlation function for the displacements pro-

jected along the momentum transfer. And the ‘< >’ denote the thermal average where !ω is the energy

transferred to the sample.

Actually, there are two scattering processes distinguished at this view: coherent scattering, which

preserve the phase in the scattering by each center coherently, and incoherent scattering, which loses the

coherency. The coherent scattering includes the interference effects, and these effects build up over the

whole sample. On the other hand, the incoherent scattering is random in the phase of each scattered wave

and prevents any macroscopic interference. In the case of coherent scattering, the Fourier transform of

the correlation functions is between different atoms at different times, whereas in the incoherent case,

each atom is considered separately and the correlation function is for the same atom at different times.

In addition, both of the scatterings occur regardless Bravais/non-Bravais lattice and depend on isotopic

and nuclear spin populations of nuclei in lattice, thus, they occur in both elastic and inelastic scattering

experiments.

(
d2σ

dΩdE
)coh =

σcoh
4π

k ′

k

1

2π!
∑

l, l ′

∫ ∞

−∞
〈exp(−iQ ·Rl ′(0))exp(iQ ·Rl(t))〉

× exp(−iωt)dt

, (3.12)

and

(
d2σ

dΩdE
)inc = N

σinc
4π

k ′

k

1

2π!
∑

l

∫ ∞

−∞
〈exp(−iQ ·Rl(0))exp(iQ ·Rl(t))〉

× exp(−iωt)dt

, (3.13)

where σcoh = 4π(b̄)2 and σinc = 4π(b̄2 - (b̄)2) with the bar denoting averages over all nuclei in the sample.

3.3.2 Scattering Function

Based on the above discussion, the cross-section (σ) is determined by the energy (E) and the ge-

ometry (Ω). However, a scattering state is recorded in reciprocal space as the energy and momentum

experimentally, a variable named scattering function is applied for convenience and it is expressed as
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S(Q, ω). The relations between S(Q, ω) and the cross-sections for coherent and incoherent scattering of

Bravais lattice are,

(
d2σ

dΩdE
)coh =

σcoh
4π

k′

k
Scoh(Q,ω)

(
d2σ

dΩdE
)inc =

σinc
4π

k′

k
Sinc(Q,ω)

, (3.14)

From Fourier transfers, a more general formulation of neutron scattering was derived by van Hove in

terms of correlation functions [4]. He defined a variable named time-dependent pair-correlation function,

G(r, t), and all the information on the system available from a neutron scattering experiment is encoded

in it for the scattering centers. The relationship between G(r, t) and Scoh(Q, ω) will be

Scoh(Q,ω) =
1

2π!

∫
G(r, t)exp(i(Q · r− ωt))d3rdt , (3.15)

The self intermediate function

IS(Q, t) =
1

N

∑

j

〈exp(−iQ ·Rj(0))exp(iQ ·Rj(t))〉 , (3.16)

leads tothe incoherent scattering function, Sinc (Q, ω), corresponds to the self-correlations, G(r, t),

GS(r, t) =
1

(2π)3

∫
IS(Q, t)exp(−iQ · r)dQ , (3.17)

and

Sinc(Q,ω) =
1

2π!

∫
IS(Q, t)exp(−iωt)dt , (3.18)

3.3.3 Bravais and Non-Bravais lattice

Due to the number of atoms per unit cell, the crystal can be classified in Bravais lattice and non-

Bravais lattice, and the time-dependent position operators are different in the non-Bravais case:

i) Bravais lattice, there is one atom per unit cell and the instantaneous position is,
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Rl(t) = l+ ul(t) , (3.19)

where l is the equilibrium position and ul(t) is the displacement from the equilibrium position.

In a harmonic system, the forces are linear functions of the displacements. Thus, the displace-

ments ul are the sum of displacements due to a series of normal modes,

ul = (
1

2MN
)1/2

∑

s

es√
ωs

(âsexp(iq · l) + â+s exp(−iq · l)) , (3.20)

where q is the wavevector of the mode, s stands for the index q and j. ωs is the angular frequency

and es is the polarization vector of mode s. M is the mass of a nucleus and N is the number of

nuclei.

ii) Non-Bravais lattice, there are more than one atom per unit cell and the position of atom d in unit cell

is,

Rld = l+ d+ uld , (3.21)

where l + d is the equilibrium position of the atom d in unit cell l, and uld is the displacement

from equilibrium.

Corresponding to the Bravias crystal, the uld can be expressed as

uld = (
1

2MdN
)1/2

∑

s

1
√
ωs

(edsâsexp(iq · l) + e∗dsâ
+
s exp(−iq · l)) , (3.22)

where N is the number of unit cells in the crystal, and Md is the mass of the atom at position d. s

stands for the index q and j. eds is the polarization vector for the atom at position d for the mode

s.

In general, the nucleus is different at each d position in the unit cell. Therefore, the factor need to be

taken inside the double sum over the atoms and the partial differential cross-section is,
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(
d2σ

dΩdE′ )coh =
k′

k

1

2π!
∑

ld

∑

l′d′

b̄db̄d′exp[iQ · (l+ d− l′ − d′)]

×
∫ ∞

−∞
〈exp(−iQ · (ul′d′(0))exp(iQ · (uld(t))〉exp(−iωt)dt

, (3.23)

Hence, the corresponding incoherent cross-section is obtained for ld = l’d’ and replacing b̄2d with b̄2u.

Fig. 3.2 shows a pictorial representation of a scattering process: i) If the energy !ω = E - E′ is

zero, the scattering is elastic, which can be used to determine the lattice structure of the crystal; ii) If the

energy !ω > 0 (< 0), the excitation(s) of wave vector Q and the energy !ω is created (absorbed) with

the neutron-nucleus interaction. Only in small Q · u limit, the occupation number of phonons in the

compound is raising (decreasing) from nqω to nqω + 1 or nqω - 1. Otherwise, multiphonon is obtained.

Figure 3.2 Schematic of a scattering process.

In the following sections, the diffraction and inelastic scattering from phonons of Bravais (Non-

Bravais) lattice will be discussed in separately. In addition, the signal will include coherent and incoher-

ent parts from Eq. (3.12) and (3.13).

3.3.3.1) Bravais lattice

From Eq. (3.11) and (3.19), the space-time correlation function for the displacements along

the momentum transfer, 〈exp(-iQ·Rl ′(0)) exp(iQ·Rl(t))〉, can be simplified to 〈exp(-iQ·ul ′(0))

exp(iQ·ul(t))〉 due to the time-independent equilibrium position, l (l ′).

Defining the operators U and V as -iQ·u0(0) and iQ·ul(t) respectively. Then, both cross-

sections will have the correlation function 〈 expU expV 〉 and a static structure factor can be pulled

out of the time integral in harmonic model,
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〈expUexpV 〉 = exp〈U2〉exp〈UV 〉 , (3.24)

where the first factor on the right corresponds to the well-known Debye-Waller factor.

Then, the scattering function will be,

S =
N

2π!exp〈U
2〉
∑

l

exp(iQ · l)
∫ ∞

−∞
exp〈UV 〉exp(−iωt)dt , (3.25)

exp〈 UV 〉 can be expanded by a Taylor series,

exp〈UV 〉 = 1 + 〈UV 〉+ 1

2!
〈UV 〉2 + · · · , (3.26)

I) Diffraction

If exp〈 UV 〉 = 1, the energy-independent scattering function can be expressed by the

static structure factor (| k′ | = | k |) multiplied by the Debye-Waller factor.

a.) Coherent scattering, which l 0= 0,

Scoh el = Nexp〈U2〉
∑

l

exp(iQ · l)δ(!ω)

= N
(2π)3

v0
exp〈U2〉

∑

τ

δ(Q− τ)δ(!ω)
, (3.27)

where v0 is the volume of the unit cell of the crystal, τ is a vector in the reciprocal lattice,

and N is the number of nuclei.

b.) Incoherent scattering, which l = 0,

Sinc el = Nexp〈U2〉 , (3.28)

II) Inelastic scattering from one phonon

If exp〈 UV 〉 = 〈 UV 〉, the scattering function is related to one phonon scattering,

a.) Coherent scattering, which l 0= 0,
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Scoh 1ph =
N

2π!exp〈U
2〉
∑

l

exp(iQ · l)
∫ ∞

−∞
〈UV〉exp(−iωt)dt

=
N

4πM
exp〈U2〉

∑

l

exp(iQ · l)
∑

s

(Q · es)2

ωs

×
∫ ∞

−∞
[exp{−i(q · l− ωst)}〈ns + 1〉

+ exp{−i(q · l− ωst)}〈ns〉]exp(−iωt)dt

=
(2π)3

v0

1

2M
exp〈U2〉

∑

s

∑

τ

(Q · es)2

ωs

[〈ns + 1〉 × δ(ω − ωs)δ(Q− q− τ)

+ 〈ns〉 × δ(ω + ωs)δ(Q+ q− τ)]

, (3.29)

b.) Incoherent scattering, which l = 0,

Sinc,1−phonon =
1

2M
exp〈U2〉

∑

s

(Q · es)2

ωs

× [〈ns + 1〉δ(ω − ωs) + 〈ns〉δ(ω + ωs)]

, (3.30)

where 〈 n(ω) 〉 is the Bose-Einstein distribution, and the two delta functions correspond

to the creation and annihilation of one phonon of energy !ω, respectively.

III) Inelastic scattering from multi-phonon

From the expansion of exp〈 UV 〉, the higher-order terms result in the multiphonon

scattering. For the two-phonon term, 1
2!〈 UV 〉2, obtained from Eq. (3.26), the energy and

momentum will be

a.) Coherent scattering, which l 0= 0,

!2
2m

(k2 − k′2) = !(±ωs1 ± ωs2)

k− k′ = τ ± q1 ± q2

, (3.31)

Two phonons are created or annihilated in the two different normal modes as the
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neutrons are scattered. In the one-phonon process, the scattering occurs only for discrete

value of k′ with the fixed k, scattering angle, and crystal orientation. However, in the

two-phonon process, the final k-vector k′ will be arbitrary with a certain range, which

can satisfy Eq. (3.31). Therefore, it gives a continuous spectrum, which adds to the

back ground. For the higher phonon processes, the energy and momentum equations

keep similar as Eq. (3.31) with additional terms ωs3 , q3 and so on.

b.) Incoherent scattering, which l = 0.

Although the incoherent multiphonon scattering is not same as the analysis in co-

herent scattering case and it is not easy to estimate the contribution, it also gives over a

continuous range of k′ and adds to the background scattering.

3.3.3.2) Non-Bravais lattice

With the similar derivation method of the scattering function of Bravais crystal, the diffraction

and one-phonon partial differential cross-section will be presented.

I) Diffraction

a.) Coherent scattering

(
dσ

dΩ
)coh el = N

∑

l

exp(iQ · l) |
∑

d

b̄dexp(iQ · d)exp(−Wd) |2 , (3.32)

where

Wd =
1

2
〈[Q · uld(t)]

2〉 , (3.33)

Summing over l,

(
dσ

dΩ
)coh el = N

(2π)3

v0

∑

τ

δ(Q− τ) | FN (Q) |2 , (3.34)

where FN (Q) is the nuclear unit-cell structure factor,

FN (Q) =
∑

d

b̄dexp(iQ · d)exp(−Wd) , (3.35)

b.) Incoherent scattering
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For the incoherent scattering of non-Bravais crystal, the elastic cross-section can be

expressed as

(
dσ

dΩ
)inc el = N

∑

d

[ ¯(b2d)− (b̄d)
2]exp(−Wd) , (3.36)

II) Inelastic scattering from one phonon

a.) Coherent scattering

The one-phonon coherent partial differential cross-section of non-Bravais crystal

can be straightforward to calculate,

(
d2σ

dΩdE′ )coh 1ph =
k′

k

(2π)3

2v0

∑

s

∑

τ

1

ωs

|
∑

d

b̄d√
Md

exp(−Wd)exp(iQ · d)(Q · eds) |2

× [〈ns + 1〉δ(ω − ωs)δ(Q− q− τ)

+ 〈ns〉δ(ω + ωs)δ(Q+ q− τ)]

, (3.37)

b.) Incoherent scattering

The incoherent one-phonon cross-section is,

(
d2σ

dΩdE′ )inch 1ph =
k′

k

∑

d

1

2Md
[ ¯(b2d)− (b̄d)

2]exp(−Wd)

×
∑

s,q

| Q · eds |2

ωs
[〈ns + 1〉δ(ω − ωs)

+ 〈ns〉δ(ω + ωs)]

, (3.38)

III) Powder Average Scattering

i) Incoherent Scattering

Our samples are powders and there is an interference condition like k - k′ = Q + q,

where q is the wavevector of the normal mode s. However, the phonon density-of-states

(DOS), Z(ω), is usually used to describe measurements using a powder sample. DOS is

the summation over the whole Brillouin zone and contains only one δ function, δ(ω-ωs)
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for the emission cross-section.

Z(ω) =
∑

s,k

δ(ω − ωs(k)) , (3.39)

Only the energy condition

ω = ωs or
!2
2m

(k2 − k′2) = !ω , (3.40)

needs to be satisfied.

For a given k, θ, and crystal orientation, incoherent one-phonon scattering occurs

for a continuous range of k′ values; For a given k′, we get scattering from all normal

modes whose ωs values satisfy the energy condition, Eq. (3.40). Actually, there is no

difference scattering function between single crystal ans powders. Therefore, the cross-

section depends on the number of modes that have the correct frequency and can be

expressed as [4, 5]

Sinc,+1−phonon =
3

2M
exp(−Wd)

〈(Q · es)2〉av
ω

Z(!ω)〈n(ω) + 1〉 , (3.41)

where

〈n+ 1〉 = 1

2
[coth(

1

2
!ωβ) + 1] , (3.42)

The 〈 (Q·es)2 〉av is the value of (Q·es)2 averaged over all the modes with frequency

ω. For a cubic crystal,

〈(Q · es)2〉av =
1

3
Q2 (3.43)

then,

Sinc,±1−phonon =
1

4M
exp(−Wd)

Q2

3ω
Z(!ω)[coth(1

2
!ωβ)± 1] , (3.44)

The phonon DOS may be determined by measuring the incoherent one-phonon

scattering as a function of E′ for a cubic crystal, which is the lattice structure of the

samples in this thesis.
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ii) Coherent Scattering

Unlike the incoherent scattering, there is no general expression for the powder-

averaged coherent scattering. We do not sum over the whole Brillouin zone, rather

average the coherent scattering over all directions of ,Q,

S(| Q |,ω) =
∫

dΩQS(Q,ω) , (3.45)

where

dΩQ = sinθdθdφ , (3.46)

From Eq. (3.37), (3.45), and (3.46), the coherent scattering of powder sample

depends on not only the angle average of the transfered momentum Q and the po-

larization vector es, but also the angle average of the transfered momentum Q and

the position vector d.

3.4 Magnetic Scattering

In this section, the scatterings from magnetic structure and the ordered spin-wave, magnon, are in-

troduced. Because there are many kinds of interactions between different domains, such as ferromagnet,

antiferromagnet, helical arrangement of spins, and so on, it is hard to find a common expression to de-

scribe all possible ordered magnetic systems. Furthermore, the spin operator σ makes the case more

complicated than nuclear scattering.

(
d2σ

dΩdE ′ )σλ→σ ′λ ′ = (
m

2π!2 )
2k

′

k
| 〈k ′σ ′λ ′ | V | kσλ〉 |2 δ(Eλ − Eλ ′ + !ω) , (3.47)

We now consider a regular case: in a crystal, there is an ion i (l, d) at the position Rld. l denotes the

unit cell in which the ion locates, and d is the specific ion inside the unit cell. The magnetic potential

energy will be expressed as,

V = WSi +WLi , (3.48)

where WSi and WLi are spin and orbital parts, respectively.
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WSi = curl(
si × R̂

R2
)

WLi =
1

!
pi × R̂

R2

, (3.49)

Assuming
∑

i

〈k ′ | WSi +WLi | k〉 = 4πQ⊥ , (3.50)

where

Q⊥ =
∑

i

exp(iQ · ri)[Q̂× (si × Q̂) +
i

!Q(pi × Q̂)] , (3.51)

Thus, the differential cross-section will be

(
d2σ

dΩdE ′ )σλ→σ ′λ ′ = (γr0)
2k

′

k
| 〈σ ′λ ′ | σ ·Q⊥ | σλ〉 |2 δ(Eλ − Eλ ′ + !ω) , (3.52)

Q⊥ is the vector projection of Q on to the plane perpendicular to Q̂, which is related to the magne-

tization of the scattering system,

Q∗
⊥ ·Q⊥ = [Q∗ − (Q∗ · Q̂)Q̂][Q− (Q · Q̂)Q̂]

= Q∗ ·Q− (Q∗ · Q̂)(Q · Q̂)

=
∑

αβ

(δαβ − Q̂αQ̂β)Q
∗
αQβ

, (3.53)

If pσ is the probability of the initial neutron state in σ, the total cross-section over the final (σ ′, λ ′)

and initial states (σ, λ) will be,

∑

σσ ′

pσ | 〈σ ′λ ′ | σ ·Q⊥ | σλ〉 |2 , (3.54)

Since
∑

σ

pσ | 〈σ | σ2
x | σ〉 = 1 , (3.55)

and
∑

σ

pσ | 〈σ | σxσy | σ〉 = 0 , (3.56)
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the differential cross-section can be expressed by the dipole scattering and related to the magnetic

momentum factors, Qα and Qβ ,

d2σ

dΩdE ′ = (γr0)
2k

′

k

∑

αβ

(δαβ − Q̂αQ̂β)

×
∑

λλ ′

pλ〈λ | Q+
α | λ ′〉〈λ ′ | Qβ | λ〉δ(Eλ − Eλ ′ + !ω)

, (3.57)

Similar as the time-dependent nuclei position operator, the time-dependent spin position operator is

defined with the time related and spin position factors,

Ŝα
ld(t) = exp(iHt/!)Ŝα

ldexp(−iHt/!) , (3.58)

Furthermore, the time-dependent spin density is expressed as

Ŝα
Q(t) =

∑

ld

fd(Q)exp(−iQ · (l+Rld))Ŝ
α
ld(t) , (3.59)

where Ŝα
ld(t) is the α component of the time-dependent spins for the ion (l, d). For the magnetic ion,

the amplitude prefactor, f d(Q), depends on the Lande g-factor, the magnetic form factor, Fd(Q), and the

Debye-Waller factor, Wd(Q),

fd(Q) =
1

2
gFd(Q)exp(−Wd(Q)) , (3.60)

Then, the magnetic scattering cross section is (in order to not misunderstand the scattering function

and spin momentum symbol, we will replace the scattering function by the partial differential cross

section, d2σ
dΩdE ′ , in this magnetic scattering section)

d2σ

dΩdE ′ =
(γr0)2

2π!
k ′

k

∑

ld,l ′d ′

∑

αβ

(δαβ − Q̂αQ̂β)
1

4
gd ′gdF

∗
d ′(Q)Fd(Q)

×
∫ ∞

−∞
dt〈exp(−iQ ·Rl ′d ′(0))exp(iQ ·Rld(t))〉〈Sα

l ′d ′(0)S
β
ld(t)〉exp(−iωt)

, (3.61)

where γ equals 1.913 and r0 is the classical radius of electron,



63

r0 =
µ0

4π

e2

me
= 2.818× 10−15m , (3.62)

And k ′

k (γ r0)2 F∗
d ′(Q) Fd(Q) is scattering cross-section; 〈 Sαl ′d ′(0)Sβld(t) 〉 is the spin-spin correlation

function.

3.4.1 Magnetic Diffraction

From Eq. (3.61), it is found that the magnetic cross-section is not only related to the spin momenta,

but also the positions of the spins. For magnetic diffraction, !ω = 0 and |k| = |k′ |. As the discussions

on the nuclear diffraction, the studies on the magnetic diffraction will be based on the Bravais and non-

Bravais crystals in the following.

i) Bravais crystal

For a Bravais crystal, the magnetic cross-section will become

d2σ

dΩdE ′ =
(γr0)2

2π! N [
1

2
gF (Q)]2

∑

αβ

(δαβ − Q̂αQ̂β)
∑

l

exp(iQ · l)

×
∫ ∞

−∞
〈exp(−iQ · u0(0))exp(iQ · ul(t))〉

〈Sα
0 (0)S

β
l (t)〉exp−iωtdt

, (3.63)

where N is the number of magnetic unit cells, and ul(t) is the displacement of nucleus l from its

equilibrium position.

As t → ∞, 〈 Sα0 (0) Sβl (t) 〉 becomes independent of time,

lim
t→∞

〈Sα
0 (0)S

β
l (t)〉 = 〈Sα

0 (0)〉〈S
β
l (t)〉 , (3.64)

Integrating with respect to E′, the elastic cross-section is
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(
d2σ

dΩ
)el = (γr0)

2N [
1

2
gF (Q)]2exp(−2W )

∑

αβ

(δαβ − Q̂αQ̂β)

×
∑

l

exp(iQ · l)〈Sα
0 (0)〉〈S

β
l (t)〉

, (3.65)

Ferromagnet

Assuming the magnetic direction is z-axis, 〈Szl 〉 is independent of the site position l,

〈Sz
l 〉 = 〈Sz〉 , (3.66)

then,

(
d2σ

dΩ
)el = (γr0)

2N [
1

2
gF (Q)]2exp(−2W )(1− Q̂2

z)〈Sz〉2
∑

l

exp(iQ · l) , (3.67)

Usually,

∑

l

exp(iQ · l) = (2π)3

v0

∑

τ

δ(Q− τ) , (3.68)

As

Q = τ , Q̂z = τ̂ · η̂ , (3.69)

where τ̂ is a unit vector in the direction of τ , and η̂ is a unit vector in the mean direction of

the spins. The cross-section with many domains is

(
d2σ

dΩ
)el = (γr0)

2N
(2π)3

v0
〈Sη〉2

∑

τ

[
1

2
gF (τ)]2exp(−2W )

× [1− (τ̂ · η̂)2av]δ(Q− τ)

, (3.70)

where 〈Sη〉 is the mean value of the component of the spin in the direction of η̂ for each

domain.

If all directions in space are equally likely for η̂,
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[1− (τ̂ · η̂)2]av = 2/3 , Q̂z = τ̂ · η̂ , (3.71)

The nuclear Bragg peaks and the magnetic Bragg peaks of a ferromagnetic crystal occur

at the same reciprocal point. However, there are several differences between them: i) the

magnetic scattering is proportional to 〈Sη〉2 and temperature dependent. It falls to zero at

Tc, while the only temperature factor in nuclear peak is Debye-Waller factor; ii) Since the

magnetic potential is long range and the nuclear potential is short range, the magnetic form

factor F(τ ) falls rapidly with increasing | τ |, while the only factor including | τ | in nuclear

peak is again Debye-Waller factor.

More generally, the magnetization 〈M(r)〉 is periodic in the unit cell of the crystal. With

the Fourier transform of magnetization density, the cross-section is

(
d2σ

dΩ
)el = (

γr0
2µB

)2
(2π)3

v0

∑

τ

exp(−2W )δ(Q− τ) | τ̂ × [M(τ)× τ̂ ] |2 , (3.72)

ii) Non-Bravais crystal

Magnetic unit cell usually contains more than one sublattice, such as antiferromagnets. In

such kind of complicate magnetic systems, assuming one specific sublattice is A. If the mean spin

direction in this sublattice A is η̂ and 〈Sη〉 is the staggered mean spin, the relative position and spin

momentum function for the single domain will be

∑

l,l ′

exp[iQ · (l− l ′)]〈Sη
l ′〉〈S

η
l 〉

= 〈Sη〉2Nm

∑

A

exp(iQ · l)
∑

d

σdexp(iQ · d)
, (3.73)

and

∑

A

exp(iQ · l) = (2π)3

v0m

∑

τm

δ(Q− τm) , (3.74)

where Nm is the number of magnetic unit cells in the crystal, v0m is the volume of the magnetic
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unit cell, and τm is a vector in the magnetic reciprocal lattice.
∑

A and
∑

d mean the sums over the

ions in sublattice A and in the magnetic unit cell, respectively. σd is direction of the spins: in AF,

the value +1 is for spin up and -1 is for spin down. Therefore, the cross-section can be expressed

as,

(
d2σ

dΩ
)el = (γr0)

2Nm
(2π)3

v0m

∑

τm

| FM (τm) |2 exp(−2W )

× [1− (τ̂ · η̂)2av]δ(Q− τ)

, (3.75)

where FM (τm) = 1
2g〈Sη〉F(τm)

∑
d σdexp(iτm · d).

Antiferromagnet-LaFeO3

LaFeO3 is G-type antiferromagnetic, Fig. 3.3. The nuclear lattice is perovskite and a

vector in the lattice will be expressed by the unit-cell vectors of the nuclear reciprocal lattice

τ1, τ2, τ3,

τ = t1τ1 + t2τ2 + t3τ3 , (3.76)

where t1, t2, t3 are integers. As Q = τ , the nuclear Bragg scattering can be observed.

Figure 3.3 (a) Structure of LaFeO3, arrows show the spin directions of Fe3+ ions;
(b) nuclear reciprocal lattice (all Fe3+ ions are treated as identical);
(c) magnetic reciprocal lattice (obtained by taking account of the spin
directions of the Fe3+ ions).

The magnetic lattice is face-center cubic, the vector τm will be
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t1, t2, t3 or t1 +
1

2
, t2 +

1

2
, t3 +

1

2
, (3.77)

where t1, t2, t3 are integers. As Q = τm, the magnetic Bragg scattering can be observed.

Summing over d inFM (τm) of Eq.(70) for a pair of neighboring antiferromagnet A and

B ions,

∑

d

σdexp(iτm · d) = 0 for τm = t1, t2, t3,

= 2 for τm = t1 +
1

2
, t2 +

1

2
, t3 +

1

2
.

(3.78)

So nuclear and magnetic Bragg scattering peaks are observed at different points in recip-

rocal space. However, it is not always the case that both scattering peaks occur at different

phase for an antiferromagnet, such as MnF2. Usually, the staggered mean spin 〈 Sη〉 is mea-

sured to difference the nuclear and magnetic Bragg scatterings: for magnetic scattering, the

intensity is proportional to 〈 Sη〉2, which is temperature dependent and falls down to zero at

TN .

3.4.2 Inelastic Magnetic Scattering

Figure 3.4 Spin-spin correlation of different ions j and j′.

In ordered magnets at low temperature, excitations are described by collective modes of spin-waves,

Fig. 3.4. The cross-section expression is same as Eq. (3.61), while the energy and momenta requirements

are different: !ω 0= 0 and |k| 0= |k′|.
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d2σ

dΩdE ′ =
(γr0)2

2π!
k ′

k

∑

ld,l ′d ′

∑

αβ

(δαβ − Q̂αQ̂β)
1

4
gd ′gdF

∗
d ′(Q)Fd(Q)

×
∫ ∞

−∞
dt〈exp(−iQ ·Rl ′d ′(0))exp(iQ ·Rld(t))〉〈Sα

l ′d ′(0)S
β
ld(t)〉exp(−iωt)

, (3.79)

Powder average

For a powder sample, the cross-section is the result of not only average spin orientations, but

also average of ,Q direction,

d2σ

dE ′ =

∫
d2σ

dΩdE ′dΩ , (3.80)

and

∫
d2σ

dΩdE ′dΩ =
(γr0)2

2π!
k ′

k

∑

ld,l ′d ′

∫ ∑

αβ

(δαβ − Q̂αQ̂β)
1

4
gd ′gdF

∗
d ′(Q)Fd(Q)

×
∫ ∞

−∞
dt〈exp(−iQ ·Rl ′d ′(0))exp(iQ ·Rld(t))〉〈Sα

l ′d ′(0)S
β
ld(t)〉exp(−iωt)dΩ

,

(3.81)

Therefore, we can find that the inelastic cross-section is not only determined by the Fourier

transform in time and space of 〈 Sαl ′d ′(0)Sβld(t) 〉, but also the angle average.

3.4.3 Linear spin-wave theory

If spin waves are in an ordered system (ferromagnet or antiferromagnet), the coupling between spins

is often described by a Heisenberg model,

Hex = −
∑

ld,l ′d ′

J(ld, l ′d ′)Sld · Sl ′d ′ , (3.82)

where J (ld,l ′ d ′) is the pair-wise exchange values between the spin of ion (ld), Sld, and the spin of ion

(l ′ d ′), Sl ′d ′ .
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If the spin-waves originate from the same type of ion with spin S. Then, the spin-wave dispersion

relations are

a) ferromagnet:

!ωferro
q = S[J(0)− J(q)] , (3.83)

b) antiferromagnet:

!ωanti
q = S

√
J2(0)− J2(q) , (3.84)

where J (q) is the function of the pairwise exchange;

J(q) =
∑

ld,l ′d ′

J(ld, l ′d ′)exp(−iq · (Rld −Rl ′d ′)) , (3.85)

From Eq. (3.83), (3.84), and (3.85), we can get that the excitation energies are Q-dependent. There-

fore, the partial differential inelastic magnetic cross-section mainly depends on Q-dependent magnetic

form factors which can be found in the International Crystallography Tables. Furthermore, the magnetic

form factor is the Fourier transform of the magnetization density, it falls steadily with increasing Q.

To determine the spin wave cross-section in more completed structures, the spin operator in Heisen-

berg Hamiltonian, Eq. (3.82), is separated into two parts: magnitude, Sd (Sd ′) and sign, σd(σd ′). Hence,

Sd (Sd ′) is positive and σd(σd ′) = ± 1 with +1 (-1) parallel (antiparallel) to the z-quantization axis. For

the antiferromagnetic perovskite structure, σA = -1 and σB = +1. (Here, A and B have different meaning

than ABO3. They are the same ion but have opposite spin directions.) With the Holstein-Primakoff trans-

formation, the angular momentum operators are mapped to boson creation and annihilation operators.

Then, the equation for the magnetic system can be expressed in matrix form: (M - γ I) T = 0 where M

is the transfer martix,

Mdd ′(q) = δd,d ′
∑

lk

J(0d; lk)σkSk − σd ′
√
SdSd ′

∑

l

J(0d; ld ′)exp(iq ·Rl) , (3.86)

From the diagonaliztion of the matrix M(q) at wavevector M, we can obtain the eigenvalues, γn(q),
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and eigenvectors, Tn(q), where n labels the spin wave branch. Here, it should be noticed that the matrix

is not Hermitian due to σd ′ . However, the eigenvalues for this matrix are real and there is no branch

across zero (i.e. an entire branch must be completely positive or negative) with the number of the negative

branches equal to the number of antiparallel spin sites. The spin-wave dispersion for branch n is !ωn(q)

= |γn(q)|. The normalized eigenvector is

Tnd =

√
Sdξnd√∑
d Sdξ2nd

, (3.87)

where ξ2nd is the fraction of the dth spin contained in the eigenvector and Σd T2
nd =1 for each branch.

When we expand the local spin deviation into the terms of plane waves, Ŝα
ld(t) (in Eq.(3.81)) is

rewritten as

Ŝα
ld(t) =

1

N

∑

q

exp(iq · l)Ŝα
q,d(t) , (3.88)

then, the spin-spin correlation function in Eq. (3.81), 〈 Sαl ′,d ′(0) Sβld(t) 〉 which can be expressed as 〈

SαQ(0) Sβ−Q(t) 〉, becomes

〈Ŝα
QŜβ

−Q(t)〉 =
∑

dd ′

fd(Q)fd ′(Q)exp(iQ · (d− d ′))
∑

q

δ(Q− q− r)

× 〈Ŝα
q,dŜ

β
−q,d ′(t)〉

, (3.89)

Therefore, the thermal average of the spin-spin correlation functions (spin-spin fluctuation) are per-

formed in the type S+S−for each branch (labeled n)

〈Ŝ+
q,dŜ

−
−q,d ′(t)〉n =

σdσd ′

2N

√
SdS ′

dTndT
∗
nd ′ [nq,nexp(−iωn(q)t)] , (3.90)

〈Ŝ−
−q,dŜ

+
−q,d ′(t)〉n =

σdσd ′

2N

√
SdS ′

dTndT
∗
nd ′ [(n−q,n + 1)e−iωn(−q)t] , (3.91)

where nqn is the Bose occupation factor and Tnd is the contribution of the dth atom to the spin wave

eigenvector of branch n.

For the collinear magnet, Fig. 3.5, the spins aligned to the µ̂ direction, the partial differential inelastic
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Figure 3.5 Schematic of the linear spin wave.

cross section can be written (q = - q) as

d2σ

dΩdE ′ = (γr0)
2k

′

k
(1 +

(µ̂ ·Q)2

Q2
)
∑

n

|
∑

d

Fd(Q)σd
√
SdTnd(q)e

−iQ·dd |2

× δ(Q− q− τ)[n(ω)δ(ω + ωn(q)) + (n(ω) + 1)δ(ω − ωn(q))]

, (3.92)

In the antiferromaget, the dispersion and associated eigenvectors can be used to calculate the spin

wave structure factor for unpolarized neutron energy loss scattering from a single crystal sample,

d2σ

dΩdE ′ =
1

2
(γr0)

2k
′

k
(1 +

(µ̂ ·Q)2

Q2
)

×
∑

n

|
∑

i

Fi(Q)σi
√
SiTni(q)e

−iQ·di |2 ×(n(ω) + 1)δ(ω − ωn(q))
, (3.93)

For the simple perovskite magnets, all ions in the magnetic cell are considered to be equivalent. The

structure factor can then be written,

d2σ

dΩdE ′ =
1

2
(γr0)

2k
′

k
SF 2(Q)(1 +

(µ̂ ·Q)2

Q2
)

×
∑

n

|
∑

d

σdTnd(q)e
−iQ·dd |2 ×(n(ω) + 1)δ(ω − ωn(q))

, (3.94)

To compare Heisenberg model spin wave results to the powder INS data, powder-averaging of

Smag(Q, ω) is performed by Monte-Carlo integration over a large number of Q-vectors lying on a

constant-Q sphere, giving the orientationally averaged Smag(Q, ω) which depends only on the mag-

nitude of Q.

Inelastic Neutron Scattering of LaFeO3
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Due to the anisotropy from orthorhombic distortion, the exchange within the perovskite ab-

plane (Jab) and that along the c-axis (Jc) have different values, and can even have different signs.

The Heisenberg Hamiltonian becomes,

H = −Jab
∑

〈i,j〉‖a,b

Si · Sj − Jc
∑

〈i,j〉‖c

Si · Sj − gµBHa

∑

i

σiSi , (3.95)

where Si is the spin vector on the ith site and sums are restricted to nearest neighbor spins in the

ab-plane and along the c-axis. Exchange energies are defined such that a positive J represents

ferromagnetic exchange. Uniaxial single-ion anisotropy is represented by an anisotropy field Ha

that acts on spin Si and points along the local spin direction (given by σi = ±1).

LFO is G-type antiferromagnet, Jab < 0; Jc < 0. When the single ion anisotropy is zero, the

dispersion is [6],

ω(q) = 2S{(2 | Jab | + | Jc |)2 − [2 | Jab | γ+(q)+ | Jc | γz(q)]2}1/2 , (3.96)

where γ+(q) = 1
2 (cos qxa + cos qya), γz(q) = cos qza, q is the spin wave momentum, and a is the

cubic perovskite lattice constant.

The dispersions for each magnetic structure are shown in Fig. 3.6 for the case where |Jab| =

|Jc|.

The spin-wave density-of-state (SWDOS) is summed over all wavevectors in the Brillouin

zone (q),

g(ω) =
1

N

∑

q,n

δ(ω − ωn(q)) , (3.97)

where q is the spin wave wavevector in the first Brillouin zone.

Therefore, the SWDOS of LFO is shown in Fig. 3.6.
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Figure 3.6 The spin wave dispersion along various symmetry directions (left pan-
els) and the spin wave density of states (right panel) for LFO. Red
arrows and labels indicate the energies of the extrema in the dispersion
that give rise to Van Hove singularities in the density-of-states.

3.5 Density of States and Time-of-Flight Neutron Spectrometer

3.5.1 Dispersion and Density of States

INS is a perfect tool to collect the dispersion and DOS data. Dispersion shows the relationship be-

tween the angular frequency, ω, and wavenumber, k, which are related to the energy and the momentum.

While DOS shows the total number of states at each energy of the system and is the average of the

dispersion over all wavevectors. Because of the preciseness of the dispersion, there are some extra re-

quirements in a dispersion measurement compared to DOS measurement: i) the measurement time of

full dispersion can take much longer than the case of DOS; ii) the sample for the dispersion measurement

need to be a single crystal and must be aligned before it is loaded in the sample chamber. However, DOS

can quickly determine the magnetic exchange interactions and allow for rapid systematic studies of the

evolution of magnetism in perovskite systems.

3.5.2 Principal of Time-of-Flight

The time-of-flight (TOF) technique was first employed to perform energy-dependent neutron mea-

surements (Dunning et al., 1935). The technique has been greatly refined over the last 75 years with
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the advent of reactors and pulsed sources [7]. Due to the high peak flux and inherent time structure, all

pulsed-source spectrometers are TOF spectrometers. The TOF technique has the following advantages:

i) it can measure the high excitation energies; ii) the measurements of the momentum and energy trans-

fers, Q and ω, are performed simultaneously; iii) Due to those broad surveys of Q and ω measurements,

the instrument is effective for powders; iv) the fixed geometry of the instruments has the advantages for

time dependent measurements or when measuring under difficult sample environment conditions [7].

Figure. 3.7 is the schematic of a typical TOF instrument for inelastic neutron scattering, which is a

direct-geometry chopper spectrometer.

Figure 3.7 Direct-geometry TOF neutron spectrometer.

The neutrons are produced by a spallation source which produces of neutrons by accelerating pulses

of protons into a tungsten target (Lujan Center, Los Alamos National Laboratory) or liquid mercury

target (Spallation Neutron Source, Oak Ridge National Laboratory). The interaction of the protons with

the target produces showers of pulsed neutrons. The high energy neutrons emitted from the spallation

source pass through a moderator, which is a tank filled with water and slows down some of the neutrons

to thermal energies. However, this equilibration process is thermal equilibrium, not reacted, and the final

neutron spectrum will contain a tail of the epithermal neutrons of higher energy. In order to prevent those

fast neutrons from entering the instrument, which will undergo a series of inelastic collisions inside the

instrument and produce an undesired, spectrally broad background, a T0 chopper is used, which is a

thick and heavy metal to absorb or scatter fast neutrons. The rotating velocity of T0 chopper is phased

to be closed when proton strike target. The monochromatic neutrons of a specific energy are selected by

Fermi chopper, which is phased to pass the desired energy. This energy selection depends on the energy-

velocity relationship for the free neutrons, E = (1/2)mv2. As the neutrons are incident on a sample and
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scattered, the momentum and energy of them are transferred, and collected by a set of detectors, which

cover a large angular range. The 3He neutron detectors absorb an incoming neutron thereby emitting a

photon which is measured by standard photon detectors (proportional counters). The time of the initial

neutron pulse and the arrival time on the detector, τ , is recorded, Fig. 3.8.

Figure 3.8 Time vs position of pulsed TOF neutron. Lc, Ls, and Ld are the posi-
tions of Fermi chopper, sample, and detectors respectively. And ki is
the wavevector of incident neutron beam.

Based on the knowledge of the incident energy and the constant distance between the sample and

detectors, the flight time determines velocity of the scattered neutrons. Then, the energy can be obtained

from the incident energy (Ei) by Fermi chopper and the positions of detectors by TOF method.

!ω = Ei[1− (
L2

τ
√

2Ei
m − Ls

)2] , (3.98)

where m is the neutron mass, and L2 = Ld - Ls, which is the distance between the sample and detectors.

From the conservation laws of the momentum and energy of the excitation, the momentum transfer

can be expressed as,

Q2 =
2mEi

!2 (2− !ω
Ei

− 2

√
1− !ω

Ei
cos2θ) , (3.99)
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and can be determined by substituting Eq. (3.98) into Eq. (3.99).

In this thesis, polycrystalline samples are discussed and only the magnitude of the momentum trans-

fer is relevant,

Q =
1√
2.072

[2Ei(1− cos2θ

√
1− !ω

Ei
)− !ω]1/2 , (3.100)

In this TOF approach, the longer the neutron flight path, the better resolution. However, the total

surface of detectors is finite due to the spatial and monetary constraints and there is a trade-off between

the length of the flight path and the solid-angle coverage.

Because the flux of neutrons in a monochromatic beam is low, the quantities of samples need to be

several grams or tens of grams. The typical beam sizes are on the order of a few centimeters. However,

another problem comes out from this sample size, the multiple scattering events must be minimized.

Typically, the elastic cross-section is much larger than its inelastic part, hence the multiple scattering

mostly involves several elastic scattering or a combination of one elastic scattering and one inelastic

scattering. Due to the neutrons involved in an apparent elastic scattering event travel extra distances

inside the sample, they will reach the detector with a delay and there exists an apparent energy loss.

Multiple scattering is very hard to correct, and as a result the thin samples will reduce the number of

such processes. A typical value is to make samples that scatter 10% of the incident neutrons, limiting

double elastic scattering events to less than 1%. This important and unfortunate consequence waste most

of the already scarce incident neutrons.

3.5.3 Pharos and ARCS

4.4.2.1) Pharos

Pharos is a direct-geometry TOF spectrometer at the Lujan Center of Los Alamos Neutron

Science Center (LANSCE), Los Alamos National Laboratory (LANL). In LANSCE, Los Alamos

Meson Physics Facility (LAMPF) is one of the world’s most powerful linear accelerator, 20Hz,

and the facility is capable of accelerating protons up to 800 million electron volts.

Fig. 3.9 is the schematic diagram of Pharos. The instrument is designed for studies of fun-

damental excitations in condensed-matter systems. The sample is positioned 20 m from a chilled-

water moderator and the distance from the sample to detectors is 4 m. There are 375 meter-long
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Figure 3.9 Direct-geometry TOF neutron spectrometer, Pharos.

and position-sensitive detectors, which cover a total area of 10 m2. The detectors are housed in

an evacuated, shielded flight path and covering scattering angles between -10◦ and 145◦. The

monochromatic incident energies are selected by a high-speed Fermi chopper, which is effectively

a drum with a 10 cm diameter. Fermi chopper has a hole through the middle, which is filled with

alternating sheets of neutron absorbing material (slats) and transparent material (slits). Both the

slits and slats are curved, and the specific energy ranges are optimized by the radius of curvature

and the slit(slat) ratio. For Pharos, the incident energies range from 10 meV to 2 eV. Further-

more, the incident energy resolution is also decided by the rotating velocity of the Fermi chopper.

For Pharos, the typical Fermi chopper frequencies should be at multiples of 20 Hz, which is the

frequency of the neutron pulse, and the resolution is normally in the range from 2% to 4% of Ei.

4.4.2.2) ARCS

ARCS is the acronym for Angular-Range Chopper Spectrometer. It is a direct-geometry TOF

spectrometer at the Spallation Neutron Source (SNS) of Oak Ridge National Laboratory (ORNL).

For SNS, the neutrons are produced by the following manners: First, the negative hydrogen ions

(a proton with two electrons) are generated in pulses; second, the hydrogen ions are accelerated

to 1 GeV by a linear accelerator; third, the electrons are stripped off the ion and the protons are
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concentrated into a 2 MW proton beam of less than 1 µs pulses at 60 Hz in an accumulator ring;

fourth, the protons are directed at a liquid mercury target in the target building, which ejects 20 to

30 neutrons per mercury nucleus hit by a proton. Due to the most intense pulsed neutron beams

in the world, it can provide a high neutron flux at the sample, which makes it as the best neutron

sourse in the world now, and a large solid angle of detector coverage.

Figure 3.10 Direct-geometry TOF neutron spectrometer, ARCS.

The instrument is used to study the science of dynamical processes in materials. The measured

excitation energies in materials and condensed matter are from a few meV to several hundred meV.

Fig. 3.10 shows the schematic diagram of ARCS. The instrument is very similar to Pharos

except the detector shape: The detectors are 3D and set up at 3 levels, e.g. upper, middle, and

down, which makes the horizontal detector coverage from -28◦ to 135◦ and the vertical detectors

coverage from -27◦ to 26◦. Furthermore, the distances between the neutron source and Fermi

chopper, between the Fermi Chopper and the sample, and between the sample and the detector

are shorter than the relative ones of Pharos, they are 11.6 m, 2.0 m, and 3.0∼ 3.4 m cylindrical

geometry respectively. The shorter distances lead to the lower energy resolution of ACRS, 2∼5%
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Ei.

LFO have been measured on both Pharos and ARCS and shows in Fig. 3.11. The experiment

temperature is T = 10 K and the incident energies are Ei = 160 meV (Pharos) and 177.95 meV (ARCS),

respectively. The data spectrum agrees with each other very well.

Figure 3.11 Inelastic neutron scattering intensity of LaFeO3 at T = 10 K on (a)
Pharos with Ei = 160 meV, and (b) ARCS with Ei = 177.95 meV.

3.6 Data Reduction

Based on the previous discussion in section 3.3 and 3.4, we know the relationship between scattering

function, S(Q, ω), and Q (or 2θ): in the low Q (or 2θ) region, spin-wave and phonon scatterings coexist;

in the high Q (or 2θ) region, the spin-wave scattering is very weak and phonon scattering is very strong,

Fig. 3.12.

However, the measured data (I) is not the exact partial differential inelastic cross section ( d2σ
dΩdE ′ )

data due to the background and instrument resolution. the final intensities is the convolution of the cross

section with the experimental resolution function,

I(Q0,ω0) =

∫
d2σ

dΩdE ′R(Q−Q0,ω − ω0)d
3Qdω , (3.101)

where R(Q, ω) is the resolution function which can be calculated from the experimental configuration

parameters.
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Since the integrated data include not only the signal of the sample, but also the signals from the

background, such as empty can, sample holder, and so on. In order to get the exact (more accurate)

signal of the sample, the empty can was measured alone; then, subtracting the current normalized data

of the empty-can run from raw measurement normalized data obtains the sample data,

I2θ(ω) = Iraw2θ (ω)/Araw − Ican2θ (ω)/Acan , (3.102)

where Iraw2θ (ω) and Ican2θ (ω) are the current normalized raw total and empty can data, respectively, I2θ (ω)

is current normalized data of the sample, and Araw(Acan) is the normalized proton current of the neutron

source for the related sample(empty can) measurement.

In order to compare data from different samples, the total intensity Itot2θ (ω) is normalized from sample

raw data (I2θ (ω)) by the sample mole numbers (M),

Itot2θ (ω) =
I2θ(ω)

M
, (3.103)

The angle integrated intensity can be expressed as,

I∆2θ1,2(ω) =

∫ 2θ2

2θ1

Itot2θ (ω)d2θ , (3.104)

Actually, I∆2θ1,2(ω) is proportional to the scattering function,

I∆2θ1,2(ω) ∝
∫ 2θ2

2θ1

S(2θ,ω)d2θ , (3.105)

At last, the magnetic scattering in sample was obtained by subtracting the high angle phonon related

data from low angle data after scaling by a constant factor,

Iphonon2θ (ω) = IH.A.
2θ (ω)

Imag
2θ (ω) = IL.A.

2θ (ω)− αIH.A.
2θ (ω)

, (3.106)

where IL.A.
2θ (ω) is the normalized intensity integrating over low angle range, IH.A.

2θ (ω) is the normalized

intensity integrating over high angle range, Imag
2θ (ω) is the normalized magnetic intensity, and α is the
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scale factor.

Example:

Figure 3.12 (a) Inelastic neutron scattering intensity of LaFeO3 (color scale) ver-
sus scattering angle and energy transfer on ARCS at T = 10 K and Ei

= 160 meV. Horizontal white lines delineate regions where phonon
and magnetic scattering are isolated. (b) Neutron intensity summed
over the angle range from 75 - 95◦ originating from phonons (red
dots). (c) Neutron intensity summed over the low angle range from 7
- 30◦ (blue dots) and phonon background from scaled from high angle
sum (red hatched region) (d) Isolated magnetic scattering (Imag

2theta(ω))
from LFO (green dots).

The INS data of LFO on Pharos at T = 10 K with Ei = 160 meV is taken as an example,

Fig. 3.12(a). The data summed over the high angle range of 2θ = 75◦ ∼ 95◦ contain only phonon

scattering, Fig. 3.12(b), while the data within the low angle range of 10◦ ∼30◦ contain scattering

from both phonons and spin waves, Fig. 3.12(c). The magnetic scattering in LFO sample was

obtained by subtracting the high angle phonon related data from low angle data after scaling by a

constant factor, Fig. 3.12(d). Since Fe ion is the only magnetic ion in LFO, Imag
2θ (ω) = IFe

2θ (ω).



82

For the resulting magnetic intensity for LFO at 10 K: there is only one peak, ∼ 71 meV. The

strong peak at 0 meV is elastic scattering.
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CHAPTER 4. Sample Synthesis and Characterization

4.1 Sample Growth Methods and Description

Polycrystalline RFeO3 (RFO) and R1/3Sr2/3FeO3 (RSFO) (R = La, Pr, Nd, Sm, and Y) used in this

thesis were prepared by conventional solid-state reaction method. For the parent compounds RFO, the

stoichiometric amounts of La2O3, Nd2O3, Pr6O11, Sm2O3, Y2O3, and Fe2O3 were mixed by grinding in

a mortar with a pestle. Prior to the synthesis, La2O3, Nd2O3, and Sm2O3 were treated at 960◦C 20 hours

in air to remove absorbed water. The mixtures were transfered to an Al2O3 crucible and calcined several

times in air at temperatures of 1100 ◦C and 1200 ◦C respectively for 24 hours. Then, the press-formed

pellets were sintered in air at 1250◦C and 1350◦C for 30 hours, respectively.

For the doped compounds R1/3Sr2/3FeO3 (RSFO), the pre-heated La2O3, Nd2O3, Pr6O11, Sm2O3,

or Y2O3 were mixed with SrCO3 and Fe2O3 stoichiometrically. Then, the homogeneous mixtures were

calcined several times in air at temperatures of 1100 ◦C and 1200 ◦C respectively for 24 hours. After

regrinding, the resulting powder was pressed into pellets and sintered in air at 1250◦C and 1350◦C for 30

hours each. To form the oxygen content, the pellets were annealed in oxygen atmosphere. As the ionic

size decreasing from La3+ to Y3+, the oxygen is easy lost from the compound. Hence, the annealing

conditions are different for different samples: LSFO was annealed in oxygen environment for 72 hours at

600◦C, which is decided by the measurement of thermal gravity analysis(TGA); PSFO and NSFO were

annealed under oxygen pressure (10 bar) at 600◦C for 72 hours; SSFO and YSFO were annealed under

oxygen pressure (100 bar) at 600◦C for 24 hours. The 1- and 10-bar annealings were processed in Ames

Laboratory, and the 100-bar one used the furnace of Prof. José A. Alonso in Spain.
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4.2 Sample Characterization

4.2.1 Powder X-ray Diffraction

Room temperature powder X-ray diffraction (XRD) patterns were performed on a Rigaku Miniflex

X-ray diffractometer with Cu Kα radiation to confirm phase purity and to determine the lattice parameters

of the samples. The geometry setup consisted of a fixed x-ray tube, a sample holder, and detector which

moved in a horizontal plane. The powders were attached to glass holder and the surface was vertical

to the incident beam. The typical measurement of 2θ scan was carried out from 20◦ to 90◦ with a step

0.02◦. The collected data were analyzed by the Rietica, Rietveld refinement program. In order to reduce

the fitting errors, usually silicon powder (a = 5.43088 Å) was added as an internal standard.

The procedures for the specimen preparation were as follows: (i) mark the sample area on a glass

rectangle plate by an aluminum mask; (ii) uniformly coat the sample zone with a thin layer of oil or

vaseline; (iii) spread the finely ground powders into the sample area by gently tapping or shaking the

plate to make the powders spread evenly; (iv) invert the plate to dislodge the excess powder; (v) repeat

steps (iii) and (iv) until enough powder adheres to the plate; (vi) clean the powders outside of the marking

area.

Figure 4.1 X-ray diffraction patterns for RFO at room temperature (Cu Kα radia-
tion).
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With the above procedure, random orientation of the fine powder could be obtained. However, the

amount of powder on the surface of the plate is small and the background contributions from vaseline

and glass substrate can not be ignored. In order to get good signals from X-ray spectrum, the oil needs

to be less and the amount of the sample powders should have more.

i) X-ray diffraction of RFeO3 (R = La, Pr, Nd, Sm, and Y)

Room temperature XRD of RFO were found to be single phase and could be fitted very well

with an orthorhombic structure, Fig. 4.1. The data were analyzed by the GSAS and FullProf Suite

refinement programs to determine the nuclear and magnetic structures [1, 2]. The space group is

Pnma with the lattice constants listed in Table 4.1. The values of unmarked line of each constants

are measured ourselves, the labeled lines are reported data. The lattice parameters decreased as

the decreasing of R3+ ionic size in RFO.

Table 4.1 Lattice parameters of rare-earth orthoferrites.

LaFeO3 PrFeO3 NdFeO3 SmFeO3 YFeO3

Space Group Pnma Pnma Pnma Pnma Pnma
Lattice Constant(Å)

a 5.562 ± 0.011 5.572 ± 0.011 5.588 ± 0.011 5.592 ± 0.011 5.592 ± 0.011
5.565† 5.578† 5.587‡ 5.592† 5.592†

b 7.854 ± 0.016 7.787 ± 0.016 7.762 ± 0.016 7.711 ± 0.015 7.603 ± 0.015
7.862† 7.810† 7.761‡ 7.711† 7.603†

c 5.557 ± 0.011 5.483± 0.011 5.451 ± 0.011 5.394 ± 0.011 5.283 ± 0.010
5.556† 5.495† 5.450‡ 5.394† 5.283†

bond length(Å)
Fe - O(1) 2.002 ± 0.004 2.004 ± 0.004 2.005 ± 0.004 2.001 ± 0.004 2.001± 0.004
Fe - O(2) 2.004 ± 0.004 2.006 ± 0.004 2.007 ± 0.004 2.007 ± 0.004 2.005 ± 0.004
Fe - O(2) 2.005 ± 0.004 2.015 ± 0.004 2.017 ± 0.004 2.030 ± 0.004 2.032 ± 0.004

bond angle
∠ Fe - O(1) - Fe 157.6◦ ± 0.3◦ 153.3◦ ± 0.3◦ 151.2◦ ± 0.3◦ 148.9 ◦ ± 0.3◦ 143.2◦ ± 0.3◦

∠ Fe - O(2) - Fe 157.5◦ ± 0.3◦ 152.4◦ ± 0.3◦ 151.4◦ ± 0.3◦ 148.8 ◦ ± 0.3◦ 145.2◦ ± 0.3◦

† reference [3], ‡ reference [4, 5].

In addition, the bond lengths (Fe - O) and angles (∠ Fe - O - Fe) are also included: the average

bond length is increasing, while the angles are decreasing. Therefore, the perovskite of Fe-O6/2 in

RFO is distorted more and more with the R-site substitution from La to Y.

ii) X-ray diffraction of R1/3Sr2/3FeO3 (R = La, Pr, Nd, Sm, and Y)
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Figure 4.2 X-ray diffraction patterns for RSFO at room temperature (Cu Kα radi-
ation).

Room temperature XRD of RSFO is shown in Fig. 4.2 and the single phase is observed.

Usually, the symmetry of a rhombohedral sample is very close to cubic structure and the phase is

Figure 4.3 Powder neutron diffraction of NSFO at 300 K.

labeled by the cubic constant. Fig. 4.3 shows the simulating plot by GSAS with an rhombohedral

structure, space group R3̄c, Table 4.2. The values of first line are collected by our sample and

the data of † line are reference. the Similar to the parent compound RFO, the lattice constants

decrease with the decreasing ionic size of R3+ in RSFO from La3+ to Sm3+. However, both the
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bond lengths (Fe-O) and angles (∠ Fe - O - Fe) are decreasing, which is different to the spectra

of RFO. This is due to the majority R-site occupation of Sr2+ (2/3), whose ionic radius (∼ 1.12Å)

is more close to the radius of Sm3+ (∼ 1.13Å) than La3+ (∼ 1.22Å). Furthermore, the oxygen

stoichiometry can also be fitted with the program, GSAS.

Table 4.2 Lattice parameters of rare-earth orthoferrites RSFO.

LSFO PSFO NSFO SSFO
Space Group R3̄c R3̄c R3̄c R3̄c

Lattice Constant(Å)
a = b 5.482 ± 0.011 5.477 ± 0.011 5.466 ± 0.011 5.459 ± 0.011

5.748† 5.453† 5.468† 5.459†

c 13.413 ± 0.027 13.365 ± 0.027 13.344 ± 0.027 13.318 ± 0.027
13.393† 13.321† 13.356† 13.360†

bond length (Fe - O) 1.941 ± 0.004 1.941 ± 0.004 1.939 ± 0.004 1.939 ± 0.004
bond angle (∠Fe - O - Fe) 173.2◦ ± 0.4◦ 170.5◦ ± 0.3◦ 169.3◦ ± 0.3◦ 167.6◦ ± 0.3◦

Oxygen Deficiency 2.94 ± 0.03 2.97 ± 0.03 2.97 ± 0.03 – –
†reference 6, 7, 8.

4.2.2 Titration

The oxidation state of iron was determined by iodimetric titration after dissoltion of the samples

in hydrochloric acid in closed, carbon dioxide flushed glass containers: the Fe ions with high average

valence, +3.67, were reduced into Fe2+ ions by I− ions and I− ions were oxidized into I2 molecules or

I−3 ions (I2 + I−); the I2 molecules were reduced into I− ions by the standard Na2S2O3 solution; from

the mass of dissolved iron oxide samples and the used volume of Na2S2O3 solution, the final valence

of Fe ion could be calculated and the oxygen content was obtained. Because I2 molecules or I−3 ions

were the intermediate products in the whole chemical processing, starch was used as an indicator. (The

preparation of the solutions, the experimental procedures, and calculations are attached in appendix.)

Some results are listed:

As the standard [S2O2−
3 ] has been decided, the oxygen stoichiometry is decided,

Thus, the average oxygen stoichiometry [9],

ȳ =
y1 + y2 + y3

3
= 2.9504± 0.001 , (4.1)
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Table 4.3 The pre-titration of [S2O2−
3 ] of standard solution.

Vinit Vend ∆ V [S2O2−
3 ]

(ml) (ml) (ml) (mol/l)
1 24.40 ± 0.005 37.25 ± 0.005 12.85 ± 0.010 0.0778 ± 0.0001
2 6.10 ± 0.005 18.95 ± 0.005 12.85 ± 0.010 0.0778 ± 0.0001
3 18.95 ± 0.005 31.77 ± 0.005 12.82 ± 0.010 0.0780 ± 0.0001

Table 4.4 The oxygen stoichiometry of La1/3Sr2/3FeOy.

m Vinit Vend x y
(g) (ml) (ml)

1 0.1080 ± 0.0001 26.88 ± 0.005 37.26 ± 0.005 1.564 ± 0.002 2.948 ± 0.001
2 0.1202 ± 0.0001 28.90 ± 0.005 40.57 ± 0.005 1.579 ± 0.002 2.956 ± 0.001
3 0.1229 ± 0.0001 15.31 ± 0.005 27.09 ± 0.005 1.559 ± 0.001 2.946 ± 0.002

Compared to the fitting result of GSAS, 2.94 ± 0.03, the titration result is more accurate.

4.2.3 Magnetization

The dependence of magnetization on the temperature and magnetic field was measured to determine

the antiferromagnetic transition (Verwey transition) temperatures and also to determine the sample qual-

ity. The instrument is a superconducting quantum interface device (SQUID) magnetometers MPMS-XL

manufactured by Quantum Design, Inc. The measurements were performed in the temperature interval

5K ≤ T ≤ 300K with applied field up to 50 kOe. The errors in the temperature, magnetic field, and

magnetic moment were 0.5%, 1Oe, and 1%, respectively. The temperature dependence of magnetiza-

tion, M(T), under a fixed magnetic field was measured in two different modes: The first one was called

zero-field-cooled (ZFC) mode. The sample was first cooled down from a temperature well above its Neel

temperature (TN ) under zero magnetic field. Then, a constant magnetic field was applied at the lowest

temperature and then the temperature dependence of magnetization was measured while warming up.

The second one was called the field-cooled (FC). Contrary to the ZFC mode, the magnetic field was not

zero as the sample was cooled down from a temperature well above TN . And the same magnetic field

was applied while the sample was warmed up from the lowest temperature, then the temperature depen-

dence of magnetization was recorded. The isothermal M(H) measurement was carried out at 5 K after

thermal demagnetization at 300 K and then zero field cooling down to the measurement temperature.

The SQUID specimen were prepared as follows: (i) select one small piece of the bulk (∼ 50 mg) and
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weight it; (ii) use gelatine capsule as a sample holder and fill the free space of the capsule with cotton to

fix the sample; (iii) put the capsule inside a straw and fix the capsule by nonmagnetic material (plastic);

(iv) attach the straw to the instrument sample holder and load the sample into an antechamber, where the

sample and the deliver chamber are pumped several times to make sure that there is no air inside it; (v)

deliver the sample to the measurement chamber and adjust the length of the holder to keep the capsule at

the center of magnetic coil of SQUID; (vi) set up the program.

i) Magnetic Susceptibilities of RSFO:

Figure 4.4 Magnetic properties of RSFO as determined by ZFC SQUID measure-
ment.

The magnetic susceptibility and magnetization of RSFO were measured by ZFC on heating in

a magnetic field of 1 kOe with the temperature range from 5 K to 300 K, Fig. 4.4. The signature

of a magnetic transition were obtained in LSFO, PSFO, NSFO, SSFO, and YSFO were observed.

ii) Isothermal M(H) measurement of YSFO:

Because the antiferromagnetic signal of YSFO was very broad, the M(H) was checked at 5

K. From Fig. 4.5, it was observed: i) the values of M by increasing field agree with the values of

the decreasing field, which means that the major domain of YSFO is antiferromagnetic; ii) there is

a jump around zero field, Fig. 4.5(b), hence it is ferromagnetic inside the sample which could be

considered as the result of oxygen vacancies.



91

Figure 4.5 M-H of YSFO at 5 K.

Figure 4.6 The relationship between the radii of the R3+ ions with CN = 6 and the
magnetic transition temperatures of RSFO.

Fig. 4.6 showed the relationship between the ionic radii of the rare earth ions and TN as

determined from SQUID measurement. As the the ionic radii decreased, TN decreased, which

agreed previous reports [10].

4.2.4 Electrical Resistivity

Since the Verwey transition is a metal-insulator transition (MIT), the electrical resistivity is measured

to determine the first order transition temperature (TCO) of RSFO. Based on the following equation,

low-temperature resistance can be measured by the Quantum Design Physical Properties Measurement
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System PPMS-14 and PPMS-9 instrument.

R = ρ
l

A
, (4.2)

where ρ is the resistivity constant, l is the distance between the voltage probes, and A is the vertical area

of the sample.

Figure 4.7 Four-probe technique on the electrical resistance measurement.

The four-probe technique was applied, Fig. 4.7, in the interval temperature from 4 K < T < 300 K.

The geometry of the specimen was a rectangular with the typical size of 0.5 × 0.5 × 3 mm3. Four pieces

of the copper wire were attached to the surface of the specimen via an Indium pad or silver epoxy; the

inner two copper wires picked up the voltage while the other two applied a small current. The specimen

was mounted on a small piece of mica glass with a very small amount of thermal compound. The whole

assembly was put on a round thin sheet of copper with a copper cap to shield it. The cooling system

was a closed-circle refrigerator with He gas as refrigerant. A Lakeshore silicon diode temperature sensor

was put on the cooling head. Temperature was monitored and controlled by a Lakeshore temperature

controller Model 340. Current was provided with a Keithley Model 224 Current Source and voltage was

recorded with a Keithley 181 nanovoltage meter. Data were recorded under GPIB control of these in-

struments with a personal computer. To eliminate the contribution of the bias voltage, opposite direction

currents were applied at each measuring point.

This four-probe method with rectangle specimen had been found to be accurate for samples with

resistivity higher than 10−3 Ω·cm; some uncertainty would be encountered for ρ ≤ 5 × 10−4 Ω·cm. The

error mainly came from the measurement of the sample size and/or contact size.
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Resistivity properties of SSFO

Figure 4.8 Temperature - dependence of the resistivity of SSFO.

The resistivity measurement of SSFO was shown in Fig. 4.8. Because the sample is powder,

the resistivity signal was not very clear. We differentiated the logarithm of the resistivity by tem-

perature, Fig. 4.8(b), then the insulator-semiconductor transition temperature is found at ∼ 150 K,

which was as same as TN obtained from magnetization data.

4.2.5 Specific Heat

The heat capacity is another method to check the phase transition in the RSFO compounds. The

measurement option of the Quantum Design PPMS instrument was used to measure the temperature

dependent specific heat. Usually the data was collected for temperature down to 2 K. A relaxation

technique was applied in the measurements, in which the sample was briefly heated and then allowed

to cool. Then a model that accounted for the thermal relaxation of both the sample and the sample

platform was used to fit the thermal response of the samples over the entire temperature response. The

samples were attached to the heat capacity platform by Apiezon N grease. In order to subtract the

thermal response component of the platform and grease from the final measurement, they were measured

separately for the appropriate field and temperature ranges.

Heat capacity of SSFO
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Figure 4.9 Temperature dependence of the heat capacity of SSFO.

Similar as the other rare-earth ferrite except LSFO, SSFO was a complicated sample: there

was magnetic properties on both A-site and B-site. Hence, we also measured a nonmagnetic sample

with similar lattice structure, LaGaO3(LGO), as a standard. Fig. 4.9(a) shows cp(T) of SSFO and

of LGO measured in the ranges 3 ∼ 270 K respectively. Compared to LGO, there were three weak

singularities: T < 10 K, T ∼ 150 K, and T ∼ 220 K. In order to check them, cp(T)/T and dcp (T)/dT

were calculated, Fig. 4.9(b) and (c). In cp (T)/T, we observed a pronounced short-range-order tail

below 10 K, it should be the antiferromagnetic ordering of Sm3+ ions as the case of Nd3+ ions [11,

12, 13]; the singularities at 150 K and 220 K were still not prominent. However, they were much

clearer in dcp (T)/dT as a bump around 220 K and a jump around 150 K. As discussed before, the

bump, ∼ 220 K, was one CEF level of Sm3+ similar to the case of Nd3+ ions [11, 12]; the jump, ∼

150 K, was the signal of charge-ordering of Fe3+, which agreed with the resistivity measurement

very well.

4.2.6 Powder Neutron Diffraction

Elastic neutron powder diffraction measurements were performed to determine the possible structural

and magnetic order. The magnetic ordering transition temperature, magnetic structure, and the lattice
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structure can be accurately determined. The instrument was the High-Intensity Powder Diffractometer

(HIPD) spectrometer at the Lujan Center, Los Alamos National Laboratory (LANL). HIPD is close to

the neutron source (primary flight path = 9 m) which resulted in high counting rates. The beam size

was 1 cm wide and 5 cm high. The detectors were located at ±153◦, ±90◦, ±40◦ and ±14◦, each

covering ±5◦, therefore, the total momentum transfer range was 0.2 ∼ 60 Å−1. We used standard

closed-cycle refrigeration to acquire the neutron diffraction data at different temperatures. Well ground

powder (typically 100 ∼ 500 µm) was transfered into the cylindrical vanadium sample can in the glove

box filled with dry He gas.

A flat vanadium can was used for Sm-bearing compositions due to the high absorption of Sm. The

data were analyzed by the GSAS and FullProf Suite refinement programs to determine the nuclear and

magnetic structures [1, 2]. The fitting results of the lattice constants will be discussed in the following

XRD section.

i) Powder Neutron Diffraction of RFeO3 (R = La, Pr, Nd, Sm, and Y)

Figure 4.10 Temperature-dependence of PFO and NFO by powder neutron
diffraction from 300 K to 15 K.

The reported TN of PFO and NFO were around ∼ 680 K, hence there should be no big dif-

ference between base temperature and room temperature. We measured them at 15 K and 300

K, in Fig. 4.10(a) and (b). There was no big difference between the temperatures except that the

intensities are lower in room temperature due to the Debye-Waller effects. The parent compounds

are G-type antiferromagnetic and the magnetic peak (1 0 0) is labeled in Fig. 4.10.

ii) Powder Neutron Diffraction of R1/3Sr2/3FeO3 (R = La, Pr, Nd, Sm, and Y)
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Figure 4.11 Temperature-dependence of PSFO, (a), (b), (c), and NSFO, (d), (e),
(f), by powder neutron diffraction from 300 K to 15 K. The arrows
show the magnetic Bragg peaks and will be discussed later.

In order to determine the Verwey temperature. PSFO and NSFO were measured at a series

of temperatures: 15 K, 40 K, 65 K, 90 K, 115 K, 140 K, 145 K, 150 K, 155 K, 160 K, 165 K, 170

K, 175 K, 180 K, 185 K, 190 K, 200 K, 225 K, 250 K, 275 K, 300 K, Fig. 4.11. Several magnetic

Bragg peaks showed up below ∼ 190 K for PSFO and below 200 K for NSFO. The temperature

dependence of the magnetic order parameter for different Bragg peaks are plotted with the labeled

phases in Fig. 4.12 and Fig. 4.13. We can see that the Verwey transition of NSFO was also around

∼ 190 K. Therefore, the TV of NSFO and PSFO were very close to each other.
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Figure 4.12 Temperature-dependence of PSFO by powder neutron diffraction
from 300 K to 15 K.
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Figure 4.13 Temperature-dependence of NSFO by powder neutron diffraction
from 300 K to 15 K.

Refer to the structure figure in chapter 1, Fig. 1.3, the Fe ions were antiferromagnetically

ordered below the magnetic phase transition temperature into · · · ↑↓↓↓↑↑ · · · along (100) direc-

tion. Therefore, the magnetic ordering vector should be (n6
n
6
n
6 ) and the nuclear superlattice peaks
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Figure 4.14 Temperature - dependence of SSFO, (a), (b), and (c), by powder neu-
tron diffraction from 300 K to 15 K. There were different intensity
steps of the temperatures between (a) and (c).

should appear (n3
n
3
n
3 ).

Figure 4.15 Temperature-dependence of NSFO by powder neutron diffraction
from 300 K to 15 K.

Due to the high neutron absorption cross-section of Sm3+ ion, we measured the sample 3

times longer than PSFO. The magnetic ordering signals were still blurred , Fig. 4.14(a), (b), and

(c): except the wavevector (76
7
6
7
6 ), Fig. 4.15(e), the intensities of the other magnetic peaks(bumps)

were very hard to be recognized. If we integrated the area of those bumps, we could clearly

observed the magnetic Bragg peaks was ordered, Fig. 4.15.
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From above measurement, we could easily conclude that it is magnetic ordered. Because the

wave vector of the CO superlattice peaks are the double of magnetic peak, it is difficult to observe

evidence of CO state from our neutron data. The extra measurement would be needed: resonant

x-ray scattering is a very good option [14].

Figure 4.16 The powder neutron diffraction of YSFO at 300 K and 15 K, (a),
(b), and (c); the powder neutron diffraction comparison of PSFO and
YSFO at 15 K, (d), (e), and (f).

In Fig. 4.16(a), (b), and (c), we could not observe the intensities difference between 15 K

and 300 K expect the Debye-Waller effects, therefore there was not observed magnetic ordering in

our YSFO sample. In order to confirm this result, we compared YSFO with PSFO at 15 K, Fig.

4.16(d), (e), and (f): Some magnetic phase signals, (n6
n
6
n
6 ), were lost. Therefore, it was very hard

to confirm the magnetic ordering in YSFO.

4.2.7 Transmission Electron Microscopy

The first direct observation of CO in LSFO was obtained by the transmission electron microscopy

(TEM) [15]. The measurement will help us observe the CO superlattice and check the sample quality.
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The model of the machine is Philips CM-30 and the operation voltage is 200 keV. There were 4 major

parts: the electron gun which could provide a beam of electrons exiting from the assembly at some

given angle, the electron lens which could focus the parallel rays at some constant focal length, the

vacuum system which increased the mean free path of the electron gas interaction, and the CCD camera

which helped record the data. The experimental temperature could reach as low as 4 K by liquid He

cooling system. However, the system was usually cooled by liquid nitrogen, which meant that the lowest

experimental temperature was around ∼ 80 K. In the RSFO system, the transition temperature was higher

than 100 K, which means that liquid nitrogen system was good enough. Based on the Bragg′s law, the

signal of the lattice structural refelections due to the space group would be observed as diffraction spots.

For the CO compounds, a series of new spots which are the signal of the superstructural refelections will

be observed below the Verwey transition temperature.

The TEM samples were made by: (i) grinding the sample into fine powders; (ii) mixing the

ground powders with methanol and sieving the mixtures onto the sample support mesh “grid” ; (iii) gently

tapping or shaking the holder to make the powders spread evenly and inverting the plate to dislodge the

excess powder; (iv) repeating steps (iii) until enough powder adheres to the mesh; (v) cleanning the

powders outside of the mesh.

Figure 4.17 Transmission electron microscopy measurement of LSFO at ∼ 100
K.
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TEM of LSFO

TEM measurement of LSFO was carried out at around ∼ 80 K, which was much lower than

the Verwey transition temperature, TV ∼ 210 K. In Fig. 4.17(a), the big shining spots were the

reciprocal lattice vectors in the simple cubic setting and indicated that the electron diffraction

patterns is on [0 1 1̄] zone axis of a single grain from the powder; beside the lattice vector points,

there were a series of Bragg diffraction spots shown up along the [1 1 1]c direction and they were

the signal of the superstructural reflections. The reflection signals in Fig. 4.17(a) were a little bit

inconspicuous due to the powder condition sample, so a slice is cut and the relative intensities of

the spots were plotted in Fig. 4.17(b) to help a lot to confirm the reflections. The strongest peak is

signal of the simple cubic lattice and the small peak beside it is the magnetic superlattice. Those

(±1
3 , ±1

3 , ±1
3 ) atomic displacements reflections were induced by CO: Fe3+ and Fe5+ species

showed the ordering along the perovsikte [1 1 1]c direction with a sequence of . . . 335335 . . . in

the real-space [6].
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CHAPTER 5. Inelastic Neutron Scattering Study of RFeO3 (R = La, Pr, Nd, Sm, and Y)

5.1 Introduction

The Sr doped compound R1/3Sr2/3FeO3 (R: rare earth metal) (RSFO) is a complicate system, we will

begin the work with relative simple case, parent compound RFeO3 (RFO) and take it as a reference on

the crystal electric field (CEF) excitations of magnetic rare earth ions and the magnetic exchange energy

between Fe ions. The first systematic study of magnetism in RFO was done in 1965 [1]: D. Treves

measured the lattice and magnetic properties of RFO to understand the magnetic behavior and its origin

in these orthoferrites. RFO is an antiferromagnetic insulator with TN around 700 K. Fig. 5.1 shows the

lattice and magnetic structure of LFO: the black dots are the R3+ ions, the brown octahedra is composed

of Fe3+ ions and O2− aions, which occupy the center-site and corner-sites, respectively. The arrows are

the spin directions of Fe3+ ions in LaFeO3. In other RFO, the magnetic moments of Fe3+ ions are in

different directions. However, each spin direction is opposite to the nearest neighbors, which is named

as G-type antiferromagnet (AF) [2].

Figure 5.1 Crystal structure and magnetic ordering of LFO.

In this chapter, I will discuss the magnetic scattering calculation of Fe3+ ions in LFO by the Heisen-
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berg model at first. Meanwhile, an analyzing method in Q-space is provided to analyze the different

contributions of Fe3+ magnetic excitation, and the phonon to the total low-angle spectra of LFO. Based

on the data analysis of LFO, crystal electric field (CEF) excitations of the magnetic R3+ ions is deter-

mined and compared to the fitting results from the Gaussian functions in E-space. Finally, the theoretical

calculation and experimental measurement of the magnetic spectra of Fe3+ ions in RFO are presented

[3, 4].

5.2 Sample Measurement and Data Reduction

Inelastic neutron scattering (INS) measurements were performed on the TOF instruments, Pharos

and ARCS spectrometers. LFO, NFO and YFO were measured on Pharos while LFO, PFO, NFO, and

SFO were measured on ARCS. LFO and NFO had been measured twice because we wanted to compare

scattering from the same sample on different instruments.

Figure 5.2 Inelastic neutron scattering intensity of LaFeO3 (a) versus momentum
(Q) and energy transfer, (b) versus scattering angle and energy transfer
on ARCS at T = 10 K and Ei = 160 meV.

On ARCS, powders (∼14 g) of RFO (R= La, Pr, and Nd) were packed in 5 aluminum foil slots, and

loaded in an aluminum can whose size were approximately 4.5 cm × 6.5 cm. The sample thickness was

around 0.5 cm. To estimate the sample density, the packing fraction was assumed as 0.7. (For SFO,

3.55 g sample was loaded by 4 slots in a 4 cm × 5 cm aluminum can and the thickness was 0.4 mm to

minimize the strong neutron absorption.) INS spectra were measured with incident energy (Ei) of 180

meV. On Pharos, around ∼ 50 g of powders (LFO and NFO) were packed in a flat aluminum can (6 cm
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× 6 cm) and the incident energy (Ei) was 120 meV and 160 meV. Sample cans oriented at 135◦ to the

incident neutron beam for both instruments. Vacuum environment is important for the sample: it not

only helps the cooling system to decrease the temperature quickly, but also reduces the background from

the scattering by the atoms in the air. The measurement temperature was ∼ 10 K. To achieve adequate

statistics, the sample was run for approximately ∼ 24 hours on Pharos, and ∼ 5 hours on ARCS due to

the different flux and sample quantities. The TOF data were reduced into !ω and the scattering angle (2θ)

histograms by DAVE and IDL software. Because of the position geometric effect of the detectors, the

efficiencies of the detectors are different and the efficiency corrections are applied by the beam scientist.

Then, the scattering data was obtained at each point on a grid in Q-ω (2θ-ω) space, which were

plotted in Fig. 5.2(a) and (b) respectively as discussed in chapter 3, Eq.(3.102).

Table 5.1 Sample masses and moles of RFO (R = La, Pr, Nd, Sm, and Y) on
Pharos and ARCS.)

Pharos ARCS
mass mole mass mole
(g) (mol) (g) (mol)

LaFeO3 40.81 0.1681 11.66 0.0480
PrFeO3 - - - - 17.93 0.0733
NdFeO3 49.50 0.1995 17.45 0.0703
SmFeO3 - - - - 3.55 0.0140
YFeO3 45.29 0.2350 - - - -

5.3 Results and Discussion

5.3.1 Data Analysis

Based on the data reduction discussed in the section 4.5, the phonons are subtracted and the magnetic

intensity for RFO ( R = La, Nd, Pr, Sm, and Y) at 10 K is shown in Fig. 5.3. It is observed that i) there

is an excitation peak around 70 meV in each sample and this peak shifts to lower energy direction from

LFO to YFO; ii) there are more than one magnetic excitation peak in PFO, NFO, and SFO, which are

due to the magnetic ions of R3+ (R: Pr3+, Nd3+, and Sm3+); iii) in Fig. 5.3(a), SFO has a weak intensity

because Sm has a strong neutron absorption, which we will further discuss later; iv) in Fig. 5.3(c), the

magnetic peak intensity of YFO is a little bit higher than the relative peaks’ intensity, the reasons are that

the intensity units are arbitrary and the sample measurements for those two figures are taken on different
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instruments as mentioned above.

Figure 5.3 Comparison of the magnetic scattering measurement of RFO (R = La,
Pr, Nd, and Sm) (a) and the enlarge plot of the peaks’ positions (b)
at T = 10 K on ARCS. The magnetic scattering measurement of YFO
(c) and (d) the enlarge plot of YFO peak’s position (d) at T = 10 K on
Pharos.

From Fig. 5.3, it is hard to determine the contribution of Fe spin waves to the magnetic intensity of

the Fe3+ magnetic peak in PFO, NFO, and SFO due to CEF excitations. In order to extract spin-wave

scatterings for those magnetic ferrites, the CEF excitations need to be accounted for. The relative simple

compound LFO will serve as an example at first to introduce the analysis of spin waves and exchange

energies in LFO using the Heisenberg model simulations.

5.3.2 LaFeO3

5.3.2.1) Heisenberg Model of Fe-ion Spin Waves

In LFO, nearest-neighbor (NN) Fe3+(3d5), S = 5/2, spins are coupled by strong AF superex-

change interactions (JAF < 0). According to the INS studies of single-crystal TmFeO3 [5], the

spin waves can be approximated using a Heisenberg model Hamiltonian only with isotropic NN

exchange interaction,

H = −JAF

∑

〈i,j〉

Si · Sj , (5.1)

where Si and Sj represent the spin vector on the ith and jth iron atom.
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Figure 5.4 (a) The raw calculated neutron intensities, (b) the calculated intensi-
ties with the energy resolution, and (c) extracted angle-averaged mag-
netic intensity (dots) versus the intensity calculated from a Heisenberg
model for the spin waves for LFO at T = 10 K on ARCS. In (a) and
(b), the curved white lines indicate the low-angle summation regions
leading to the corrected magnetic spectra.

From the theoretical calculation of spin-wave density-of-states (SWDOS), there is one mag-

netic peak observed in this G-type LFO magnetic structure and it is 6|JAF |S3+, which has been in

Fig. 3.6. Furthermore, the angle averaged coherent spin-wave scattering cross-section of a single

crystal can be calculated, Fig. 5.4. With the inelastic neutron measurement, the energy is ∼ 71

meV, Fig. 5.4(c) (dots). Because S3+ = 5/2, the value of JAF can be obtained from the position of

the magnetic peak and it is ∼ -4.75 meV. However, the Heinsenberg model calculation result, Fig.

5.4(a), does not include effects of the instrument resolution. Usually, the an gaussian function is

assumed as the resolution factor, and the final theoretical data is obtained from the convolution of

a gaussian resolution function with the Heinsenberg model data, Fig. 5.4(b). In Fig. 5.4(c), the

experimental data and calculations are comparable.
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Since the intensity expression in energy frequency is complicated, defining the error-bar is not

easy. Series of χ2 with different JAF are calculated,

χ2 =
∑

i

(Iexp. − Icalc.)2 , (5.2)

where Iexp. and Icalc. are the observed and calculated intensities, respectively.

JAF is determined by the value with the lowest χ2 and the upper/lower bound of this JAF is

decided by the ratio of the boundary and central χ2, which is 2 in this case. For example, the

relationship between JAF and χ2 is plotted in Fig. 5.5. χ2
4.75 is the lowest, and the lower(upper)

boundary is - 4.74 (∼ - 4.767). Since the boundary values are not symmetry to JAF = - 4.75, the

closest boundary is taken to keep the variance in the acceptable region. Therefore, JAF = - 4.75 ±

0.01 meV.

Figure 5.5 LFO error-bar estimation: χ2 vs JAF on ARCS at 10 K.

If we integrate the angle-averaged intensity in ω space, the total value will be,

NFe
∆2θ1,2(∆ω1,2) =

∫ ω2

ω1

IFe
∆2θ1,2(ω)dω , (5.3)

Although the unit of the total value is arbitrary, it is the energy integration on a uniform mo-

mentum region and I will call them as total state number for convenience. In order to determine the

correct integrated intensity, I will check the result with the Q-dependence of the neutron scattering

data in different energy transfer ranges (Q-cuts) in the following section.
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5.3.2.2) Constant Energy Q-cuts

Since La3+ ion is non-magnetic, there is no CEF existed in magnetic spectrum and it will be

easy to separate phonon from magnetic scattering. Furthermore, the lattice structure of LFO is

similar to the other RFO, the phonon spectrum of LFO will be a reference to the others.

The integrated scattering function over a range of energies is defined as,

Sω(Q) =

∫ ω+∆ω

ω−∆ω
Stot(Q,ω)dω , (5.4)

Then, the different contributions to INS can be separated in some ω-range. For LFO, the full

structure factor, Sω(Q), has three components: the pollycrystalline averaged spin wave scattering

of Fe3+, Smag
ω (Q), the phonon contribution, Sphω (Q), and the multiple scattering, Smulti

ω (Q).

Sω(Q) = Smulti
ω (Q) + Sph

ω (Q) + Smag
ω (Q) , (5.5)

The Q-cut of different energy transfer ranges 30.5-40.5 meV, Fig 5.5(c), is analyzed as an

example: i) the multiphonon and other background contributions are treated as a constant back-

ground; ii) the one-phonon scattering is approximated as incoherent with the intensities varying

as Q2, section 3.3; iii) the spin wave scattering intensity follows the magnetic form factor, F(Q),

section 3.4.

The normalized intensity from measurement, Iω(Q), is defined by,

I∆ω1,2(Q) =

∫ ω2

ω1

Itot(Q,ω)dω , (5.6)

where I∆ω1,2(Q) is proportional to the scattering function, and ω1 (ω2) is the integration limit

ω-∆ω (ω+∆ω).

If we integrate the spectrum in Q-space, the total value from Q1 to Q2 will be,

N Fe
∆ω1,2

(∆Q1,2) =

∫ Q2

Q1

IFe
∆ω1,2

(Q)dQ , (5.7)
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Figure 5.6 The Q-dependence of the neutron scattering data for different energy
transfer ranges in LFO on ARCS at T = 10 K: (a) 10.5 - 20.5 meV,
(b) 20.5 - 30.5 meV, (c) 30.5 - 40.5 meV, (d) 40.5 - 50.5 meV, (e) 50.5
- 60.5 meV, (f) 60.5 - 70.5 meV, (g) 70.5 - 80.5 meV, and (h) 80.5 -
90.5 meV. The black dots are the experimental data. The blue line it an
estimate of the incoherent phonon background plus multiple scattering.
The red column is the calculation of the polycrystalline averaged spin
wave scattering plus background using the parameters in the text. The
brown dash line in different energy transfer ranges ((d)-(h)) indicates
the minimum Q obtainable for the experimental setup.
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Similar as the total state numbers in E-cuts, NFe
∆2θ1,2

(∆ω1,2), this total value in Q-cuts,

N Fe
∆2ω1,2

(∆Q1,2), is also named as the total state numbers for convenience. Actually, these two

state numbers with the same Q and ω ranges need to agree with each other exactly.

Here, I am going to test this method on LFO. First, the data and calculations of IFe
∆ω1,2

(Q) were

compared in Fig. 5.6. There were three things I want to mention: i) For the beginning region of the

experimental data, the intensity suddenly drops to zero or low value especially at the high energy

scale, the reason is the boundary data obtained by the detectors; ii) oscillations in experimental

data and calculations are due to the coherent magnetic and phonon scattering, respectively; iii)

there was no magnetic signal in the energy scale 80.5 - 90.5 meV, Fig. 5.6(h). The Q-cut fitting

was very well. Second, I integrated the intensities in Energy-cuts and Q-cuts, and compared the

state numbers from both cuts in Table 5.2.

Table 5.2 The integrate intensities of Fe3+ magnetic states of Energy - cuts and Q
- cuts in LFO.

Energy Range State number
(meV) Stth Sω

10.5 : 20.5 0.089 ± 0.004 0.086 ± 0.006
20.5 : 30.5 0.163 ± 0.009 0.164 ± 0.011
30.5 : 40.5 0.209 ± 0.012 0.210 ± 0.015
40.5 : 50.5 0.274 ± 0.016 0.274 ± 0.019
50.5 : 60.5 0.473 ± 0.029 0.473 ± 0.034
60.5 : 70.5 1.442 ± 0.099 1.438 ± 0.104
70.5 : 80.5 1.596 ± 0.103 1.524 ± 0.116
80.5 : 90.5 – – – –

From the comparison of these intensities, we found that the agreement among them were

excellent except the starting and ending data which were due to the boundary effect. When the

energies were larger than 80 meV, the phonon contribution would be dominant as we expected.

Therefore, comparing the total state numbers in E-cuts and Q-cuts provides a method to check

the numerical integrations, and determines the integrating constant for the different components to

the E-cuts and Q-cuts. In the following sections, we were going to apply this method to the more

complicated magnetic system, where crystal field (CF) signals from rare earth ions are included.
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5.3.3 Crystal Field Excitations

CF is a phenomenon in rare earth and transition metal containing compounds that results in a splitting

of the energy levels of the outermost electron shells, such as eg-t2g splitting the cubic of 3d-orbital sys-

tem. It is based on the fact that the electronic structure of center ion can be distorted by the surrounding

ligands. The total contribution of the crystalline environment can be replaced by a field and the whole

crystal system is replaced by a transition metal ion inside the imaginary field.

In a free ion, the outermost (3d and 4f ) electrons are orbitally degenerate. CF can also be explained

as the interaction between metal ions and surrounding ligands: the electrons in the orbitals of center ions

and ligands repel each other by Coulomb force and the electronic clouds of ligands will come closer

to some of the center ions while moving away from the others. As a result, the orbital degeneracy

will partially or totally get lost resulting in split energy levels corresponding to different CF states. If

rare earth is small, the splitting in transition metals is large. In addition, the Hund’s third rule need to

be modified in some special cases. These excitations between CEF states can be observed by neutron

scattering and they are ∼ 10 meV for rare-earth containing compounds.

In magnetic rare-earth ferrites, rare-earth CEF excitations are also present in the same energy range

as Fe spin waves. In order to extract Fe spin-waves, we must corned for the CEF contribution from the

magnetic scattering. The CEF cross section can be written as,

d2σ

dΩdω
∝ [gJF (Q)]2e−2W k′

k
SCF (Q,ω) , (5.8)

where Q is the scattering vector, ,k′ - ,k, and !ω is the energy transfer. gJ is Lande factor, F(Q) is the

magnetic form factor, k′ and k are values of the initial and final neutron wavevectors, and e2W is the

Debye-Waller factor. SCF (Q, ω) is the response function of the system which is determined entirely by

the temperature and CEF eigenstates,

SCF (Q,ω) =
∑

i,j

ρi | 〈i | J⊥ | j〉 |2 δ(Ei − Ej − !ω) , (5.9)

where | i 〉 and | j 〉 are the initial and final CEF eigenstates of the system with level energies Ei and Ej

. J⊥ is the component of the total angular moment operator perpendicular to the scattering vector; ρi

is the thermal population factor of the initial state. The observed excitation is between the levels which
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have non-zero matrix elements.

For rare earth ions, the spin - orbit coupling is usually stronger than CF potential, and the ground

state is degenerate. Neither Sz , nor Lz is conserved quantities. However, the total angular momentum J

= L + S, remains a good quantum number. Therefore, the magnetic form factor is given by,

F (q) = 〈j0(q)〉+ 〈j2(q)〉
J(J + 1) + L(L+ 1)− S(S − 1)

3J(J + 1) + S(S − 1)− L(L+ 1)
, (5.10)

where 〈 j0〉 and 〈 j2〉 are,

〈j0(s)〉 = Aexp(−as2) +Bexp(−bs2) + Cexp(−cs2) +D , (5.11)

and,

〈jL(s)〉 = (Aexp(−as2) +Bexp(−bs2) + Cexp(−cs2) +D)s2 , (5.12)

If L 0= 0, s = 0, 〈 jL(s) 〉 = 0; s = sin θ
λ [6, 7].

5.3.3.1) Crystal Field Study of Nd3+ ions

The spherically symmetric ground state of Nd3+ is 3H4 with 3 unpaired f -electrons, and the

atomic structure is 4I9/2. Thus, the J is half integer, 9/2, and the 10-fold degenerate ground state

multiplet splits into (2 J + 1)/2 = 5 doublets due to he orthorhombic environment of Nd site. The

non-zero matrix elements of the excited levels from the ground state are shown in Fig. 5.7. There

are 5 energy levels and the transition energy is defined as Eij where i and j are the numbers of

energy levels.

Table 5.3 The magnetic form factors, 〈 j0 〉 and 〈 j2 〉 , for Nd3+.

Nd3+ A a B b C c D
〈 j0 〉 0.0540 25.029 0.3101 12.102 0.6575 4.722 -0.0216
〈 j2 〉 0.6751 18.342 1.6272 7.260 0.9644 2.602 0.0150

The magnetic form factor of Nd3+ in NFO is calculated with the constants of Table 5.3 [6, 7]

and plotted in Fig. 5.8.

In order to study excitations from the ground state CF level, the first experiment was carried

out at 10 K at which the thermal population of excited CEF levels could be neglected. The ground
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Figure 5.7 Crystal field splitting diagram in Nd3+ with distorted orthorhombic
symmetry. Eij is the transition energy from ith level and jth level.

Figure 5.8 The magnetic form factor of Nd3+.

state of Nd3+ in NFO splits into 5 Kramers doublets because of the CF, and there are 4 transitions

as reported before: shown in ∼ 11 meV, 23 meV, 46 meV and 61 meV [8, 9], Fig. 5.9. Compared to

LFO, the full structure factor of NFO, S(Q, ω), has four components: the pollycrystalline averaged

spin wave scattering of Fe3+ in NFO, Smag(Q, ω), incoherent phonon background, Sphonon(Q, ω),

multiple scattering, Smulti(Q, ω), and CF scattering of Nd3+, SCF (Q, ω).

The CF scattering in NFO was obtained by subtracting the contribution of Fe spin wave scat-

tering, Smag, from the total magnetic data, as shown in Fig. 5.9. The CF peaks were fitted by

Gaussian function. In order to determine the fitting constants of the gaussian function for CFE and

the intensity of Fe3+ magnetic scatterings, the NFO Q-cut plots of the theoretical calculation and

the experimental data were compared in Fig. 5.10.

Fig. 5.10(a) shows an example of different contributions to the Q-cut in the energy range
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Figure 5.9 The theoretical calculation and magnetic scattering measurement of
NFO at 10 K on ARCS. The experimental data are blue dots, the total
simulating contribution is black line, the Heisenberg model and crystal
field calculations are red line and magenta line, respectively.

10.5meV-20.5 meV. Because of the similar phonon spectra of LFO and NFO, the phonon-fitting

from LFO, Fig. 5.6, was used as a reference for NFO. Furthermore, the initial Q-value boundary

is increasing as the energy increases due to the limitation of the instrument, the brown dash lines

in Fig. 5.10.

In Fig. 5.9, the calculated integrated-intensity of Heisenberg model of Fe3+ and the fitted CF

excitations of Nd3+ are red and pink lines; In Fig. 5.10, the Q-cut magnetic scattering intensities

of Fe and Nd ions are the zone between green and blue lines and the zone between red and green

lines, respectively. In Table 5.4, the calculated integrated-intensity ratio of Heisenberg model of

Fe3+ and the fitting excitations of Nd3+ were compared to the Q-cut magnetic scattering ratio

between Fe3+ and Nd3+ ions.

Therefore, the positions and integrate intensities of the Nd3+ CFEs in NFO at 10 K were

determined. The measured and calculated energies and transition intensities of CF are listed in

Table 5.5. The intensities were normalized to the intensity of ∼ 9.54 meV transition, which was

set as 100. They agreed very well at ∼ 21.17 meVand ∼ 45.75 meV. The peak at ∼ 60.6 meV

was close to the magnetic signal of Fe3+ ion, therefore the intensity was very likely to have been

interfered.
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Figure 5.10 The Q - dependence of the neutron scattering data for different energy
transfer ranges in NFO at T = 10 K. The brown dash line in some
different energy transfer ranges ((d)-(f)) is the starting point of the
experimental recording.

When the temperature increased to 300 K, no structure transition was found, and the Zeeman

splitting of the ground state was 0.5 meV which was small compared to the CF splitting [10].

Table 5.4 The comparison of measured and calculated energies and transition in-
tensities of Nd3+ in NFO CF at 10 K.

Energy Range State number (Stth) State number (Sω)
(meV) spin-wave C.F. spin-wave C.F.

10.5 : 20.5 0.073 ± 0.006 1.334 ± 0.019 0.074 ± 0.010 1.107 ± 0.008
20.5 : 30.5 0.127 ± 0.008 0.445 ± 0.006 0.127 ± 0.004 0.451 ± 0.005
30.5 : 40.5 0.163 ± 0.010 0.140 ± 0.001 0.165 ± 0.015 0.148 ± 0.002
40.5 : 50.5 0.236 ± 0.014 1.356 ± 0.020 0.250 ± 0.026 1.389 ± 0.010
50.5 : 60.5 0.488 ± 0.018 0.648 ± 0.009 0.495 ± 0.044 0.660 ± 0.007
60.5 : 70.5 1.621 ± 0.026 0.387 ± 0.004 1.667 ± 0.104 0.402 ± 0.005
70.5 : 80.5 0.121 ± 0.013 3.92e-4 ± 3e-5 0.251 ± 0.010 0.021 ± 0.001

Therefore, the CF structure was similar to that at 10 K except some thermal broadening: there are

still 5 doublets splitting. However, the integrated intensities of transitions between excited states

are changed by the thermal energy, ∼ kBT, according to the increased population of the excited

states. For this reason, some new energy excitations may appear. For example, the integrated
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intensities of transitions from the ground state have decreased when the temperature changed from

10 K to 300 K, Fig. 5.11(b), due to depopulation of the ground state.

Table 5.5 The comparison of measured and calculated energies and transition in-
tensities of Nd3+ in NFO CF at 10 K.

Energy levels Energy (meV) Integrated Intensities
calculated∗ measured calculated∗ measured

0 0.0 0.0
1 10.14 9.38 ± 0.08 100.00 100.0 ± 3.06
2 22.37 21.22 ± 0.13 29.31 30.85 ± 1.11
3 44.70 45.68 ± 0.07 46.05 41.77 ± 1.64
4 60.82 59.93 ± 0.13 7.00† 17.76 ± 1.26

† reported in reference [9].

The population of CF levels can be explained by Boltzmann statistics, the partition function

and probability for each transition can be expressed as

Zi = e
∆Eij
kBT , and Pi =

Zi∑
i Zi

, (5.13)

where ∆Eij is the transition energy between ith and jth levels.

Figure 5.11 (a) Comparison of calculations and magnetic scattering measurement
of NFO at 300 K on Pharos. The experimental data are blue dots, the
total simulating contribution is black line, the Heisenberg model and
crystal field calculations are red line and magenta line, respectively.
(b) Total crystal field calculation (black line) from the contribution of
Eij series at 300 K.

The population from the ground level to ith level transition is,
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M(i) ∝ P0(1− Pi) , (5.14)

At 300 K, several peaks were hard to recognize because they were much weaker and broader,

except the one of ∼ 67 meV, which could be explained as the Fe3+ spin waves. The smeared

broad peaks were not only due to the thermal broadening, but also due to the appearance of new

CF excitation energies from the excited states. The possible positions of CF excitation peaks were

listed in Table 5.6, Eij means transition energy to the ith excited level from jth level. Because we

do not know the transition matrix elements, we could not get the selection rules to determine the

intensities of the transitions from every state. However, the 10 K observed transition, Ei0, should

have a non-zero transition matrix element, which means that Ei0 were allowed at least. Table 5.6

listed the statistical calculation of intensity of Ei0 at 300 K from the measurements at 10 K.

As the scattering integrated intensities of Fe ions at 10 K and 300 K, Fig. 5.9 and Fig. 5.11(a),

are similar, the total magnetic scattering difference between both temperatures comes from the

changes to the CF, which means that there are CEF excitations present from other excited states at

300 K, Fig. 5.11(b).

Table 5.6 The comparison of the ground excitation transition intensities of NFO
CF between 10 K and 300 K (PHAROS).

Ei0 Energy Integrated Intensity Probability Integrated Intensities
(meV) (10 K) (10 K → 300 K) 300 K

Calculated Measured
E00 0.0
E10 9.38 ± 0.08 42.67 ± 1.28 0.30 12.80 ± 0.38 11.71 ± 0.34
E20 21.22 ± 0.13 13.16 ± 0.47 0.34 4.47 ± 0.16 4.35 ± 0.13
E30 45.68 ± 0.07 17.82 ± 0.70 0.39 6.95 ± 0.28 9.89 ± 0.38
E40 59.93 ± 0.13 7.58 ± 0.54 0.40 3.03 ± 0.22 7.65 ± 0.30

5.3.3.2) Crystal Field Study of Pr3+ ions

CF levels of Pr3+ in the environment of orthorhombically distorted perovskite material are

shown in Fig. 5.12. Although many experimental and theoretical studies on Pr3+ in perovskite

oxide have been done [11, 12], we still could not have a clear scheme on the CF of Pr3+ ions.

For PFO, CF of Pr3+ is a little bit different from CF of Nd3+ in NFO. There are 2 unpaired
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Figure 5.12 Crystal field splitting diagram in Pr3+ with distorted orthorhombic
symmetry. Eij is the transition energy from ith level and jth level.

f -electrons and the atomic structure is 3H4. Since the structure of PFO is distorted orthorhombicly

and J = 4, the ground state multiplet splits into (2J + 1 = 9) singlets. The dipole allowed transitions

from the ground state are shown in Fig. 5.12. There are 9 energy levels and the transition energy

is defined as Eij , where ith and jth are the numbers of the energy levels.

Table 5.7 The magnetic form factors, 〈 j0 〉 and 〈 j2 〉 , for Pr3+.

Pr3+ A a B b C c D
〈 j0 〉 0.0504 24.9989 0.2572 12.0377 0.7142 5.0039 -0.0219
〈 j2 〉 0.8734 18.9876 1.5594 6.0872 0.8142 2.4150 0.0111

Based on Eq. (5.10), (5.11), and (5.12), the magnetic form factor of Pr3+ in PFO is calculated

and plotted in Fig. 5.13 with the constants of Table 5.7 [6, 7].

The INS spectra of PFO sample at 5 K exhibited two well resolved inelastic lines (∼ 16.8 meV

and 25.1 meV) and three broad inelastic features (∼ 39meV, 88.5meV, and 99.5 meV). In addition,

there were two reported CF excitations which were very hard to be observed, 5 and 65 meV [12],

due to the energy resolution and strong magnetic scattering of Fe spin waves, Fig. 5.14(a). The

former is very close to the elastic line and very hard to be separated from the peak of elastic energy;

the latter one is very close to the spin-wave peak of Fe in PFO.

It is possible that other peaks exist around ∼ 55 or ∼ 77 meV which would give a better fitting

result, Fig. 5.14(b) or (c). In order to check the second blur peak, ∼ 65 meV, and the extra peaks
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Figure 5.13 The magnetic form factor of Pr3+ in PrFeO3.

around ∼ 55 and ∼ 77 meV, the series of Q-cuts for PFO are plotted.

Similar as the CFEs analysis of NFO, the Q-cuts were fitted to determine the integrated inten-

sities at different energy excitations, Fig. 5.15, and Fig. 5.15(a) shows each contributions to the

low-energy region 20.5 meV-30.5 meV.

In Fig. 5.14, the calculated integrated intensity of Heisenberg model of Fe3+ and the fitting CF

excitations of Pr3+ were red and pink lines; In Fig. 5.15, the Q-cut magnetic scattering intensities

of Fe and Pr ions are the zone between green and blue lines and the zone between red and green

lines, respectively. Both integrated intensities were compared in Table 5.8.

From the Q-cuts data fitting, Fig. 5.15, we found: i) When the energies were higher than 40

meV, it was very convenient to represent the phonon contributions of PFO from the phonons of

LFO. Because lattice contribution from O2−, which was very close in both LFO and PFO, was

the main origin of phonon scattering in those energy ranges; ii) When the energies were less than

40 meV, the phonon fitting of PFO would include the contribution from rare-earth metal ions and

could not simply get from the phonon of LFO due to the different scattering cross sections between

La3+ and Pr3+. However, the phonon of LFO is still not a bad reference.

Based on the comparison of these intensities listed in Table 5.8: i) due to the limitation of the

instrument, the initial Q-value boundary is increasing with increasing energy, the brown dash lines

in Fig. 5.15; ii) in the energy ranges between 10.5 meV and 50.5 meV, the integrated intensities of

CF of Pr3+ and the spin wave of Fe3+ from the energy-cuts and Q-cuts agreed with each other very

well except the bothering from the boundary effect; iii) in the Q-cuts from 50.5 - 60.5 meV, 60.5 -
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Figure 5.14 (a) The theoretical calculation and magnetic scattering measurement
of PFO at T = 10 K (blue dots) on ARCS, and total contribution(black
line) of Heisenberg model calculation (green line) with JAF = -4.55
meV and crystal field calculation (red line); (b) the theoretical calcu-
lation and magnetic scattering measurement of PFO at T = 10 K with
an extra peak ∼ 55 meV; (c)the theoretical calculation and magnetic
scattering measurement of PFO at T = 10 K with an extra peak ∼ 77
meV.

70.5 meV, and 65.5 - 75.5 meV, the integrated intensities of CF did not include an excitation at ∼

55 meV, and the agreement was good which meant that no CEF excitation is likely near 55 meV;

iv) in the Q-cuts from 70.5 - 80.5 meV, the CF agreement was not very good. If we added another

new peak around ∼ 75 meV, it would better the case, Fig. 5.14(c); v) in the Q-cuts from 80.5 - 90.5

meV and 90.5 - 100.5 meV, there was not any magnetic scattering from Fe3+, and CF scattering

of Pr3+ was the only contribution to the magnetic scattering, which agreed with energy-cuts very

well.

Therefore, the final CFEs of Pr3+ ion were determined and listed in Table 5.9. The CEF of

Pr3+ in PrGaO3 (PGO) was also compared because it had a similar Pr3+ CEF scattering as PFO
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Figure 5.15 The Q - dependence of the neutron scattering data for different energy
transfer ranges (Q-cuts) in PFO at T = 10 K. The brown dash line in
some different energy transfer ranges ((d)-(i)) is the starting point of
the experimental recording.

and was the only theoretical calculation on CFE of Pr3+ in perovskite oxides, Pnma [11, 12].

There are three things I want to point out in table 5.9. First, the peak around ∼ 65 meV was

too weak to be observed in our measurement, although it had been mentioned in K. Feldmann’s

measurement on PFO and A. Podlesnyak’s measurement on PGO [11, 12]. However, we also

found that K. Feldmann et. al. did not report the spin-wave excitation of Fe3+ ions [11]. The

magnetic peak they argued as CFE around ∼ 60 meV was much like the signal of Fe3+, which

should have been around ∼ 67 meV in our data. Second, the observed ∼ 67 meV of PGO is not

found in the measurement of PFO. It is probable that the calculated peaks ∼ 67 meV moved to low

energy part and combined with the CFE peak ∼ 37 meV, which was very broad in our data; and

there was also the possibility of the different structural distortion between PFO and PGO which

should not give such big difference. Another option for the ∼ 67 meV peak was that it moved to
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Table 5.8 The integrated intensities of Fe3+ magnetic states and CF of E-cuts and
Q-cuts in PFO.

Energy Range State number (Stth) State number (Sω)
(meV) spin-wave C.F. spin-wave C.F.

10.5 : 20.5 0.098 ± 0.010 2.187 ± 0.033 0.102 ± 0.022 2.106 ± 0.049
20.5 : 30.5 0.163 ± 0.015 1.278 ± 0.021 0.155 ± 0.025 1.217 ± 0.012
30.5 : 40.5 0.208 ± 0.018 0.718 ± 0.020 0.208 ± 0.030 0.783 ± 0.008
40.5 : 50.5 0.297 ± 0.024 0.491 ± 0.014 0.296 ± 0.034 0.479 ± 0.007
50.5 : 60.5 0.615 ± 0.041 0.049 ± 0.013 0.628 ± 0.041 0.050 ± 0.001
60.5 : 70.5 2.039 ± 0.082 6.07e-4 ± 3e-5 2.086 ± 0.119 0.025 ± 0.001
65.5 : 75.5 1.420 ± 0.069 5.66e-5 ± 3e-6 1.664 ± 0.084 0.028 ± 0.001
70.5 : 80.5 0.242 ± 0.019 0.002 ± 1e-4 0.614 ± 0.022 0.024 ± 0.001
80.5 : 90.5 – – 0.094 ± 0.005 – – 0.091 ± 0.004

90.5 : 100.5 – – 0.138 ± 0.010 – – 0.135 ± 0.002

the high energy part which resulted the new peak of ∼ 75 meV. However, that peak was too close

to the boundary of Fe3+ spin wave excitation and the signal was so blurred, it was too dangerous

to make such kind of assumption. Thus, the CF excitations ∼ 67 meV were still not clear and need

to be studied further. Third, it was the first time to observe the peak around ∼ 100 meV, which was

forbidden in PrGaO3. It could be explained by that the distortion in PFO was stronger than that in

PGO, therefore the matrix element needed to be revised.

Table 5.9 The comparison of measured and calculated energies of Pr3+ in PGO
and PFO CF at 10 K.

Energy levels PrGaO3 PrFeO3

0 0.0 0.0 0.0 0.0 0.0
1 5.6a 5.1 ± 0.1a 4.7 ± 0.1b 2.0 ± 0.1b – –c

2 16.0a 16.0 ± 0.2a 10.7 ± 0.3b 14.7 ± 0.4b 15.2 ± 0.1c

3 23.4a 21.5 ± 0.2a 20.0 ± 0.4b 23.2 ± 0.5b 24.7 ± 0.1c

4 32.9a 38.0 ± 0.2a 37.0 ± 1.0b 36.0 ± 1.0b 36.6 ± 0.5c

5 67.4a – –a 65.0 ± 2.0b 58.0 ± 2.0b – –c

6 69.3a 67.0 ± 2.0a – –b – –b – –c

7 89.5a 86.0 ± 2.0a – –b – –b 88.1 ± 0.5c

8 113.1a – –a – –b – –b 97.9 ± 0.3c

† a reported in reference [11]; b reported in reference [12]; c is from our work.

5.3.3.3) Crystal Field Study of Sm3+ ions

There are 5 electrons in the 4f shell of Sm3+. According to Hund’s rule, the resulting free-ion



125

electronic ground state is 6H5/2. Similar to Nd3+ in NFO, the ground state multiplet of Sm3+

splits into 3 doublets, as shown in Fig. 5.16.

Figure 5.16 Crystal field splitting diagram in Sm3+ with distorted orthorhombic
symmetry. Eij is the transition energy from ith and jth level.

Table 5.10 The magnetic form factors, 〈 j0 〉 and 〈 j2 〉 , for Sm3+.

Sm3+ A a B b C c D
〈 j0 〉 0.0288 25.207 0.2973 11.831 0.6954 4.212 -0.0213
〈 j2 〉 0.4707 18.430 1.4261 7.034 0.9574 2.439 0.0182

The magnetic form factor of Sm3+ is calculated from the listed constants in the Table 5.10 [6,

7].

Figure 5.17 The magnetic form factors, 〈 j0 〉 and 〈 j2 〉 , for Sm3+.

Because of the strong neutron absorption of Sm3+, the signal was very low in the reduced data.

It was very hard to get accurate background information from the empty can and phonons. From

Fig. 5.18(dots), we can clearly see that there is a wide shoulder around ∼ 20 meV, a broad peak

around ∼ 30 meV, a bump from 40 ∼ 60 meV, and a sharp peak around ∼ 65 meV. Two of the

first three could come from the CF of Sm3+, the other one might originate from the remaining of



126

Figure 5.18 The theoretical calculation and magnetic scattering measurement of
SFO at 10 K on ARCS. The experimental data are blue dots, the to-
tal simulating contribution is black line, the Heisenberg model and
crystal field calculations are red line and magenta line, respectively.

empty can and phonons; the last one, ∼ 65 meV, was the magnetic signal of the Fe3+ spin wave

which could be discussed in the following section and calculated by NNs Heisenberg model.

Table 5.11 The comparison of measured and calculated energies and transition
intensities of Sm3+ in SFO CF at 10 K.

Energy Range State number (Stth) State number (Sω)
(meV) spin-wave C.F. spin-wave C.F.

10.5 : 20.5 0.025 ± 0.003 0.507 ± 0.034 0.027 ± 0.003 0.509 ± 0.053
15.5 : 25.5 0.035 ± 0.004 0.254 ± 0.016 0.035 ± 0.004 0.255 ± 0.021
20.5 : 30.5 0.042 ± 0.005 0.171 ± 0.010 0.044 ± 0.005 0.178 ± 0.014
25.5 : 35.5 0.049 ± 0.005 0.232 ± 0.014 0.048 ± 0.005 0.249 ± 0.021
30.5 : 40.5 0.056 ± 0.006 0.203 ± 0.012 0.057 ± 0.006 0.207 ± 0.018
40.5 : 50.5 0.087 ± 0.008 0.018 ± 0.001 0.087 ± 0.008 0.018 ± 0.002
50.5 : 60.5 0.224 ± 0.019 6.06e-5 ± 4e-6 0.244 ± 0.024 6.86e-4 ± 1e-4
60.5 : 70.5 0.439 ± 0.033 5.58e-9 ± 3e-10 0.438 ± 0.036 7.07e-4 ± 1e-4

Up to now, there has been no previous work on CEF of Sm3+ in SFO. Based on the research

of SmMnO3 (SMO) by infrared spectra [13], there were two CEF excitations around ∼ 16 meV

and ∼ 37 meV, which we could find in Fig. 5.18. Since the magnetic and lattice structure of SFO

is pretty similar to SMO, the CEF excitation spectra of Sm3+ in these two compounds should be

similar. Then, the bump from 40-60 meV should be the result of the remaining of empty can and

phonons. In order to prove this assumption, Q-cuts were plotted in Fig. 5.19.
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Figure 5.19 The Q-dependence of the neutron scattering data for different energy
transfer ranges in SFO at T = 10 K. The brown dash line in some
different energy transfer ranges ((f)-(h)) is the starting point of the
experimental recording.

Then, the Q-cuts in Fig. 5.19 could be fitted and Fig. 5.19(a) is an example of the fitting with

different components to the total scattering function of 10.5 meV ∼ 20.5 meV.

Based on Table 5.11, the relative state numbers in E-cuts and Q-cuts were compared: from

10.5 meV to 40.5 meV, CF was included in the total fittings; from 40.5 meV to 60.5 meV, CF was

not included in the total fittings. The fitting results were very good. So we could assign the wide

shoulder around ∼ 20 meV and the broad peak around ∼ 30 meV to the CFE of Sm3+ in SFO, and

the bump from 40 ∼ 60 meV should arise from poorly subtracted empty can and phonons.

5.4 Heisenberg Model of Fe-ion Spin Waves

From above discussion, the contribution of CEF excitations of the rare-earth ions, R3+, to the mag-

netic signal have been studied and it provides a chance to more accurately analyze the spin-wave spectra
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Figure 5.20 (a) The Heisenberg model calculation for RFO (R = La, Pr, Nd, and
Sm) with JAF = -4.75 meV(LFO), JAF = -4.55 meV(PFO), JAF =
-4.45 meV(NFO), and JAF = -4.32 meV(SFO). (b) The Heisenberg
model calculation for YFO with JAF = -4.19 meV.

of Fe3+ ion in RFO. If it is assumed that there is no coupling between R and Fe spins, RFO is expected

to have the similar magnetic dynamics of Fe3+ ion as LFO, as shown in Fig. 5.5 and 5.20, then the peak

in the SWDOS of Fe ions in PFO, NFO, SFO, and YFO appears at ∼ 69 meV, ∼ 67 meV, ∼ 64 meV,

and ∼ 63 meV. The former two are consistent with the findings from the report of K. Feldmann et al.

[8] and R. Przenioslo et al. [9], while the latter two have never been reported before. Therefore, the

Heisenberg model is applied: the peak in the SWDOS should appear at an energy of 6|JAF |S3+, where

S3+ is a constant, 5/2. JAF should be -4.55 ± 0.01 meV (PFO), -4.45 ± 0.01 meV (NFO), -4.34 ± 0.01

meV (SFO), and -4.18 ± 0.01 meV (YFO), respectively. The error-bars are determined by the χ2 method

in LFO part, section 5.3.2. The series exchange energies of RFO are listed in Table 5.12. The model

calculation and experimental data were compared in Fig. 5.20, and the integrated-intensity agreement of

RFO is reasonable as CF intensity included.

In fact, we can get a rough exchange energy in mean field theory (MFT): there are 6 NNs which have

the same spin moments as the center ion’s. The exchange energy can be expressed as,
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JAF =
3kBTN

zS(S + 1)
, (5.15)

where S represents the spin and z is the total number of NN (z=6).

Table 5.12 Antiferromagnetic exchange energies and integrated intensities of
Fe3+ magnetic states of rare-earth orthoferrites.

LaFeO3 PrFeO3 NdFeO3 SmFeO3 YFeO3

Néel Temperature(K)∗ 738 707 693 675 643
AFM exchange energy (meV)

Heisenberg model 4.75 ± 0.01 4.55 ± 0.01 4.45 ± 0.01 4.32 ± 0.02 4.18 ± 0.01
MFT 3.74 3.58 3.51 3.42 3.26

Integrated Intensity 1.71 1.70 1.70 0.62 1.70
∗ reference 1.

As listed in Table 5.12, the MFT calculation implies a linear relationship between the exchange

energy (JAF ) and Néel temperature (TN ). Therefore, the ratio of spin-wave excitation should be the

same as the ratio of TN , and we can easily get RFO (R = Pr, Nd, Sm and Y) from ∼ -4.75 meV (LFO).

Furthermore, the integrated areas of the five samples were compared. The similar numbers of RFO (R

= La, Pr, Nd, and Y) prove that the Fe3+ ion states of this series compounds were very similar. The SFO

was different because the proper absorption constant is needed to correct the strong neutron absorption

of Sm3+.

5.5 Summary

We applied INS to study the compounds, RFeO3 (R = La, Pr, Nd, Sm, and Y), and the magnetic

excitation from Fe3+ ion can be fitted by the linear Heisenberg model. Due to the lattice distortion, the

AF exchange energies and TN were decreasing with the R-site substitution from La to Y, which agreed

with the results of mean field theory. With the help of Q-cuts fitting, the CEFs of the magnetic ions,

Pr3+, Nd3+, and Sm3+, were fitted and they agreed with the theoretical calculation very well.
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CHAPTER 6. Inelastic Neutron Scattering Study of R1/3Sr2/3FeO3 (R = La, Nd, Pr, and

Sm)

6.1 Introduction

The INS study of the parent compound RFO served as a model system to extract the magnetic ex-

change energy from INS data after accounting for phonons, CF excitations and other background con-

tributions. For the Sr-doped compounds, we are interested in the effect of CO on the spin excitations.

Obtaining the exchange parameters JF and JAF allow us to test the validity of the suggestion that CO of

LSFO is driven by magnetism [1, 2]. Due to the smaller rare-earth ionic size, the R-site substitution from

La to Sm leads to narrower bandwidths, which should increase the importance of Coulomb interactions

[3].

In this chapter, I will discuss LSFO at first and show that the magnetic energy plays an important

role in the CO in LSFO: the magnetic energy alone can stabilize the CO state. Then, I will discuss the

substituted compounds with other rare-earths, the role of Coulomb interactions in CO transition should

be more and more important due to the narrower bands and larger charge-transfer (CT) gap.

Similar to RFO parent compounds, the analysis of the magnetic scattering in RSFO (R = Nd, Pr, Sm,

and Y) is much more complicated than LSFO due to the presence of the unpaired electrons in R3+. To

isolate the contribution of Fe ions in RSFO, we must simultaneously fit both the CEF excitations from

R3+ and the spin wave excitations from Fe. In chapter 5, we have studied the crystal electric field (CEF)

excitations of the parent compounds, RFO. Since the environment of R3+ in RFO is similar in RSFO,

we can assume that the CEF of R3+ in RSFO should not change much with Sr2+ doping other than an

obvious decrease in intensity by 1/3 of CEF excitation [4, 5]. Therefore, the contribution of Coulomb

interactions can be tested.



133

6.2 Data Measurement

INS measurements were performed on Pharos spectrometer at Lujan Center of LANL and ARCS

at SNS of ORNL. LSFO, NSFO and YSFO were measured on Pharos while LSFO, PSFO, NSFO, and

SSFO were measured on ARCS. LSFO and NSFO had been measured on each instrument to compare

scattering from the same sample. As two similar TOF spectrometers, Pharos and ARCS both measure

the scattered intensity S(Q, ω) over a wide range of momentum (!Q) and energy transfers (! ω).

Table 6.1 Sample masses and moles of RSFO (R = La, Pr, Nd, Sm, and Y) on
Pharos and ARCS.

Pharos ARCS
mass mole mass mole
(g) (mol) (g) (mol)

La1/3Sr2/3FeO3 40.13 0.192 13.53 0.0649
Pr1/3Sr2/3FeO3 - - - - 22.37 0.1069
Nd1/3Sr2/3FeO3 38.84 0.185 14.22 0.0676
Sm1/3Sr2/3FeO3 - - - - 4.15 0.0185
Y1/3Sr2/3FeO3 58.01 0.275 - - - -

On ARCS, powders of RSFO (R = La, Pr, Nd, and Y) were packed in 4 aluminum foil slots, and

loaded in an aluminum can. INS spectra was measured with incident energy (Ei) of 180 meV. On Pharos,

powders were packed in a flat aluminum can and Ei was 160 meV, Table 6.1. The samples were oriented

at 135◦ to the incident neutron beam on both instruments, and run for approximately ∼ 24 hours on

Pharos and ∼ 3 hours (except SSFO) on ARCS due to the different flux. The large absorption cross

section of Sm3+ ion limited the loaded mass of the SSFO powders, hence ARCS with superior flux was

the only suitable instrument to measure SSFO and it was measured ∼ 6 hours.

Similar to RFO, the TOF data were reduced into !ω and scattering angle (2θ) histograms after ap-

plying the corrections for detector efficiencies, empty can scattering, and instrumental background. The

full spectrum for LSFO at T = 10 K as a function of 2θ and ω is shown in Fig. 6.1(a). The data summed

over the high angle range of 2θ = 70 - 90◦ contain only phonon scattering, Fig. 6.1(b), while the data

within the low angle range of 7 - 30◦ contain scattering from both phonons and spin-waves, Fig. 6.1(c).

Magnetic scattering in LSFO sample was obtained by subtracting the high angle data from low angle data

after scaling by a constant factor at each temperature described in section 3.6, as shown in Fig. 6.1(c).

The final magnetic scattering of LSFO is compared with LFO in Fig. 6.1(d): the single peak in LFO
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Figure 6.1 (a) Inelastic neutron scattering intensity of LSFO (color scale) versus
scattering angle and energy transfer at T = 10 K and Ei = 180 meV
on ARCS. Horizontal white lines delineate regions where phonon and
magnetic scattering are isolated. (b) Neutron intensity summed over
the angle range from 70 - 90◦ originating from phonons (red dots). (c)
Neutron intensity summed over the low angle range from 7 - 30◦ (blue
dots) and phonon background from scaled from high angle sum (red
hatched region) (d) Isolated magnetic scattering from LSFO (red dots)
and LFO (black dots).

splits into a low and high energy band with Sr doping (we will discuss the origin of this splitting in detail

below); and the residual phonon intensities at ∼ 20 and 30 meV are presented in both samples as well.

6.3 Results and Discussion

Fig. 6.2 shows the DOS of spin-wave excitations of RSFO (R = La, Nd, and Pr): there were no

magnetic signals higher than ∼ 140 meV and the high energy excitation spectrum, > 90 meV, were very

similar for each composition. There are clearly two magnetic energy bands in LSFO and PSFO; although

there appears to be only one single broad band in NSFO. Suggesting that the low energy band in LSFO

and PSFO moved toward to high energy band and into the gap between them. We now describe the
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Figure 6.2 Inelastic neutron scattering intensity of RSFO (R = La, Pr, and Nd)
versus scattering angle and energy transfer at T = 10 K and Ei = 180
meV.

analysis in details as in RFO, the magnetic excitations of RSFO (R = Pr and Nd) are complicated by the

presence of CEFs on the rare earth metals.

6.3.1 La1/3Sr2/3FeO3

Figure. 6.3(a) shows the temperature dependence of the magnetic scattering in LSFO. As the temper-

ature was raised, the ∼ 85 meV spin wave band gradually shifts to lower energies and becomes strongly

damped just below the transition. Spin wave damping might be caused by magnon - magnon interactions

near TV , ∼ 210 K. However, as the Verwey transition is first order transition, it is also possible that the

charge fluctuations cause damping since the optical gap measured by infrared reflectivity closes rapidly

near TV [3]. Spin wave scattering is replaced by broad paramagnetic scattering above TV . The intensi-

ties at ∼ 20 and 30 meV appear at all temperatures, which also confirms the argument that part of the low

energy intensity has its origin in the residual phonon scattering. From the measurement below TV , the

energy band, which begin around ∼ 85 meV, could not be fully measured with the incident energy Ei ∼

120 meV, so the neutron spectra are also measured with incident energy of 300 meV. In Fig. 6.3(b), there

were no magnetic excitations higher than 140 meV, and the two magnetic spin-wave peaks are clearly
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Figure 6.3 (a)Temperature dependence of the magnetic scattering from LSFO
with Ei = 120 meV on Pharos. (b) Magnetic scattering from LSFO
up to high energies with Ei = 300 meV at T = 10 K and T = 250 K on
Pharos.

shown when compared to the data above TV at 250 K.

Previous studies on RFO showed that the experimental data agreed very well with the Heisenberg-

model calculation of spin-waves on Fe site. However, the magnetic structure and exchange interactions

are more complicated in RSFO. As discussed in section 4.2.6; There are two different kinds of Fe ions,

Fe3+ and Fe5+, and two related exchange interactions; antiferromagnetic interaction between Fe3+-

Fe3+ and ferromagnetic interaction between Fe3+-Fe5+, Fig. 6.4. We constructed a NN Heisenberg

model Hamiltonian to fit the data and using LFO as a reference. The Hamiltonian for those spin waves is

H = −JAF

∑

〈i,j〉

S3+
i · S3+

j − JF
∑

〈i,j〉

S3+
i · S5+

j , (6.1)

where sums are over each pair-type, the ith and jth iron atom; Si and Sj represent the spin vector on

them.

Because of the small charge-transfer gap in LSFO, some fraction of doped holes in LSFO reside on

oxygen. The F superexchange exists between Fe3+ and nominal Fe5+ whether the holes are on iron

or oxygen. When the holes are on iron, F exchange occurs between half-filled and empty eg orbitals.

When a single hole is on oxygen, sharing of the spin-polarized oxygen electron leads to F exchange. For
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Figure 6.4 Schematic diagram of oxygen hole density and iron spins in the (001)
plane of LSFO. Open circles denote oxygen and circle radius repre-
sents hole density. Black (gray) circles are nominal Fe5+ (Fe3+) ions.
The dashed line indicates a metal-centered domain wall.

the same reason, the presence of oxygen holes between Fe3+ pairs will reduce JAF as compared to the

parent insulator LFO.

Table 6.2 The different fitting exchanges with different spin values of Fe ions in
Heisenberg Model.

Model JAF (meV) JF (meV) S3+ S5+ JF /JAF

1 -2.5 5 5/2 5/2 2
2 -3.5 5.1 5/2 2 1.5
3 -4.7 5.2 5/2 3/2 1.1

The spin values of Fe ions are also decided by the holes’ position: if the hole is on the oxygen ion,

the Fe oxidation state is lower and the spin of Fe ions would be larger.

We tried several model with different values of S5+. Table 6.2 lists three different parameters in the

Heisenberg Model and Fig. 6.5(b) shows the experimental data and calculation result with the different

fitted exchange energies. Based on the comparisons in Table 6.2 and Fig. 6.5, i) The antiferromagnetic

exchange energies JAF changes with the different S5+, but the ferromagnetic exchange energies JF are

insensitive to the value of S5+; ii) The models look the same. It is hard to determine the spin state of S5+

from INS. However, a combination of neutron diffraction and Mössbauer measurements had estimated
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Figure 6.5 (a) The calculated (left) neutron intensities of model 2 and (b) ex-
tracted angle-averaged magnetic intensity (dots) versus the intensity
calculated from Heisenberg models for the spin waves with different
spin values on Fe5+ ions for LSFO on ARCS. The curved white lines
indicate the low-angle summation regions (3◦ - 30◦) leading to the cor-
rected magnetic spectra.

the iron valences to be ∼Fe3.4+ and ∼Fe4.2+ due to hybridization with oxygen [6]. Since Model 2 (S3+

≈ 5/2 and S5+ ≈ 2) is the closest to the measured moment sizes with the data, JAF = - 3.5 meV and JF

= 5.1 meV (|JF /JAF | = 1.5), as shown in Fig. 6.5(a), which is the calculated angle averaged the coherent

spin-wave scattering cross-section.

Unlike LFO, the LSFO NN Heisenberg model calculations do not show quantitative agreement with

the data, Fig. 6.5(b). In particular, the model does not capture the observed spectral weight near 35 meV.

However, the critical ratio |JF / JAF | is determined by the splitting between the upper (>70 meV) and

lower energy (<60 meV) bands. The NN model calculations show that there are two peak energies with a

maximum energy on MCDW: i) For F-like spin waves, the interactions exist between Fe3+ and Fe5+, so

the local excitation energy originates mainly from the NNs of Fe3+ and Fe5+ ions; ii) For AF-like spin

waves, the interaction exist mainly between Fe3+ and Fe3+, and the local excitation energy originates

from the NNs of Fe3+ ions. The rough calculation of the magnetic spectrum is expressed as,

High− energy transfer : F − like band , EF = 3JF (2S
3+ + S5+) ,

Low − energy transfer : AF − like band , EAF = 3 | JAF | S3+ + 3JFS
5+ ,

(6.2)

Since the high energy band consists of F-like spin waves with ∼ 110 meV and the low energy band
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is AF-like spin waves with ∼ 55 meV, JF = 5.1 meV and JAF = -3.5 meV.

In previous chapter, chapter 5, we have discussed the error-bar of JAF in RFO. With the similar

method, we will estimate the error-bar of LSFO. Compared to the fitting of RFO, the fitting result of

LSFO is very rough. There are two peaks, but the angle averaged DOS cannot give much details on the

accurate positions and intensities. Furthermore, there are 3 variables in the Heisenberg model Hamilto-

nian, Eq(6.1), S5+, JAF and JF . Hence, just the gap region of LSFO is analyzed with two fixed variables,

and the error-bar of the third is obtained. Therefore, the fitting parameters of LSFO are, S5+ = 2.0 ± 0.1,

S3+ = 2.5, JF = 5.1 ± 0.1 meV and JAF = -3.5 ± 0.2 meV, which results in the ratio |JF / JAF | > 1.5.

Figure 6.6 The Q-dependences of different energy transfer ranges for LSFO with
10 meV step: (a) 10.5 - 20.5 meV, (b) 20.5 - 30.5 meV, (c) 30.5 - 40.5
meV, (d) 40.5 - 50.5 meV, (e) 50.5 - 60.5 meV, (f) 60.5 - 70.5 meV, (g)
70.5 - 80.5 meV, (h) 80.5 - 90.5 meV, (i) 90.5 - 100.5 meV, (j) 100.5
- 110.5 meV, (k) 110.5 - 120.5 meV, and (l) 120.5 - 130.5 meV. The
black dots are the experimental data. The blue line it an estimate of the
incoherent phonon background plus multiple scattering. The red line
is the calculation of the polycrystalline averaged spin wave scattering
plus background using the parameters in the text.

With the same fitting parameters in Heisenberg model, we calculated the Q-cut of LSFO, Fig. 6.6,

and the energy transfer range 50.5-60.5 meV, Fig. 6.6(e), is discussed as an example. Table 6.3 compares

the different calculated state numbers from E-cut and Q-cut in LFO, and the related parameters of energy
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Table 6.3 The integrated intensities of Fe3+ magnetic states of Energy - cuts and
Q - cuts in LSFO.

Energy Range State number
(meV) Stth Sω

10.5 : 20.5 0.168 ± 0.007 0.191 ± 0.007
20.5 : 30.5 0.212 ± 0.009 0.217 ± 0.008
30.5 : 40.5 0.271 ± 0.013 0.267 ± 0.011
40.5 : 50.5 0.552 ± 0.024 0.516 ± 0.021
50.5 : 60.5 0.817 ± 0.034 0.796 ± 0.031
60.5 : 70.5 0.211 ± 0.014 0.211 ± 0.010
70.5 : 80.5 0.069 ± 0.003 0.068 ± 0.002
80.5 : 90.5 0.177 ± 0.009 0.177 ± 0.010

90.5 : 100.5 0.143 ± 0.006 0.140 ± 0.008
100.5 : 110.5 0.084 ± 0.003 0.087 ± 0.004
110.5 : 120.5 0.033 ± 0.001 0.033 ± 0.001
120.5 : 130.5 0.003 ± 3.0E-4 0.003 ± 2.0E-4
130.5 : 140.5 2.62E-5 ± 1.0E-6 – –

resolution and the Heisenberg Model are determined.

Next-nearest-neighbor (NNN) exchange may affect the results as they will modify the zone boundary

and optical spin wave energies, leading to shifting and broadening of peaks in the SWDOS. If NNN

interactions widen the splitting of the high and low energy bands (as would occur, for example, by

the presence of ferromagnetic Fe3+-Fe3+ NNN exchange), then the NN model may overestimate the

ratio |JF /JAF |. NNN exchange can only be determined reliably by dispersion measurements and are

presently hampered by the lack of large single crystals. However, studies of NNN Heisenberg models for

LSFO indicate that |JF /JAF | > 1 unless NNN exchanges are very large (greater than ∼ 20% of the NN

exchange). Such large NNN interactions are not expected for either LFO or LSFO based on INS studies

of single crystals of similar cubic perovskites such as TmFeO3 [7], YVO3, LaMnO3, and Pr0.5Sr0.5MnO3

[8], and even the hole doped A-type AF metal Nd0.45Sr0.55MnO3 [9].

The similar 35 meV signal was also observed in LFO, Fig. 6.1(d). In order to check the assumption

that this additional intensity comes from the phonon or empty can background, the Q-cut of LSFO was

useful. In Fig. 6.6(c), we could clearly find the total fitting of phonon and spin-wave was good in the

Q-cut, 30.5 meV ∼ 40.5 meV, and the total state number agreed very well in the E- and Q-cuts for that

energy scale. Therefore, there was a possible explanation that the 35 meV signal was not the magnetic

energy excitation.
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The ∼ 30% reduction of JAF in LSFO as compared to LFO was consistent with oxygen hole density

between Fe3+-Fe3+ pairs as expected from the small charge-transfer gap. Based on this, we proposed

that the MCDW was a charge density wave, with appreciable hole density in the AF region between the

domain walls. Fig. 6.4 illustrated this scenario with schematic drawing of iron and oxygen positions

in the [001] plane of LSFO. Oxygens surrounding Fe5+ are depicted as having significant hole density,

while oxygens between Fe3+-Fe3+ pairs have smaller hole density. Despite having hole density on

oxygen, the magnetic domain wall is still centered on the nominal Fe5+ metal sites (i.e., it is not an

oxygen centered domain wall).

The measured exchange ratio | JF / JAF | > 1 implies that magnetic interactions alone are sufficient

for stabilizing the observed [111] CO structure. It should be noted that for holes that are primarily on

iron, the [111] structure also has the minimum Coulomb energy. However, the oxygen character of the

doped holes and their delocalization, as indicated by the presence of doped holes between domain walls,

would strongly reduce the Coulomb energy. Thus, it appeared plausible that the Verwey transition in

LSFO occurs without a dominant influence from Coulomb interactions.

6.3.2 Pr1/3Sr2/3FeO3

In order to test the role that the intersite Coulomb interactions play in the CO, we studied a series of

RSFO (R: rare earth) samples. Because the ionic radius of Pr3+ was closer to La3+ than the other rare

earth ions, the magnetic properties of Fe ions in PSFO should be the most similar to the LSFO and are

discussed first. Based on the diffraction characterizations, we learned that the lattice structure of PSFO

is distorted more from ideal perovskite than LSFO. The net effect is to produce the narrower bands and

larger CT gap [3], thus Coulomb interactions are more weekly screened and should be more important

with Pr3+ substituting on La3+. Given that (1 1 1) has lowest electrostatic energy, this should increase

TV . The observed describe of TV with rare earth substitution suggests that Coulomb interactions are

unimportant. In that case, the magnetism should be modified by rare earth substitution.

Fig. 6.7(a) shows the temperature dependence of the magnetic scattering from PSFO. Similar as

LSFO, the ∼ 85 meV spin wave band gradually shifts to lower energies and becomes strongly damped

just below the transition as the temperature was raised, TV ∼ 200 K. Fig. 6.7(b) compares the low and

high energy spectra of the magnetic excitations as the temperature just above and below TV (210 K and

170 K). Due to the small temperature difference of 40 K between these two data, we could approximately



142

Figure 6.7 (a)Temperature dependence of the magnetic scattering from PSFO
with Ei = 160 meV on ARCS; (b) Magnetic scattering from PSFO
at T = 170 K and T = 210 K.

assume that they had the same CFE, therefore, the observed magnetic energy gap should originate from

Fe ions in PSFO.

Unlike nonmagnetic La3+ ions, the magnetic properties of Pr3+ ion complicates the study of Fe

magnetism in PSFO, so we first discuss how we correct for the CEF excitations of Pr3+.

6.3.2.1) Crystal Electric Field Excitation

Based on our previous studies on PFO in section 5.3.3.2, the CEFs of Pr3+ were detectable by

INS. We assume that the environment of Pr3+-site does not change a lot in PSFO with Sr2+ ion

doped and the CEF of Pr3+ in PSFO would be similar to the PFO. However, 2/3 of Pr3+ has been

substituted by nonmagnetic ions, Sr2+, the integrated intensity amounts of Pr3+ in PSFO should

be 1/3 of Pr3+ in PFO.

The magnetic scattering intensities of PFO and PSFO were compared in Fig. 6.8(a), the

magnetic peak around ∼ 67 meV in PFO, which was the magnetic excitation signal of Fe3+ ions,

split into high and low energy bands similar as LFO and LSFO. The CFEs of PSFO were fitted by
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Figure 6.8 (a) The magnetic scattering intensity of PFO (black dots)and PSFO
(red dots) at T = 10 K; (b) the fitted CEF intensities in PFO (black
line)and PSFO (red line) at T = 10 K.

a series of gaussian functions using a similar method as the fitting of PFO, Fig. 6.8(b). In order to

confirm the separation of CFEs of Pr3+ ions and magnetic excitations of Fe3+ ions, both E- and

Q-cuts were used. The total integrated intensities from the same E-range/Q-range in both cuts were

compared, Table 6.4 [10]. The agreement was good and the fittings were reasonable, excluding the

10.5 meV - 20.5 meV Q-cut which was affected by the elastic tail. The model calculation of Fe3+

ions will be discussed in the following section.

Table 6.4 The integrated intensities of Fe3+ magnetic states and the CEFs states
of Energy-cuts and Q-cuts in PSFO.

Energy Range State number (Stth) State number (Sω)
(meV) spin - wave C.F. spin - wave C.F.

10.5 : 20.5 0.154 ± 0.001 1.285 ± 0.083 0.250 ± 0.014 0.750 ± 0.048
20.5 : 30.5 0.203 ± 0.003 0.626 ± 0.009 0.203 ± 0.006 0.622 ± 0.005
30.5 : 40.5 0.279 ± 0.009 0.502 ± 0.014 0.278 ± 0.008 0.502 ± 0.012
40.5 : 50.5 0.535 ± 0.021 0.108 ± 0.005 0.533 ± 0.019 0.105 ± 0.03
50.5 : 60.5 0.676 ± 0.006 0.002 ± 1E-5 0.672 ± 0.008 0.002 ± 1E-5
60.5 : 70.5 0.259 ± 0.021 – – 0.253 ± 0.019 – –
70.5 : 80.5 0.088 ± 0.005 0.004 ± 1E-6 0.088 ± 0.002 0.004 ± 1E-6
80.5 : 90.5 0.153 ± 0.002 0.034 ± 0.001 0.152 ± 0.003 0.036 ± 0.001
90.5 : 100.5 0.135 ± 0.001 0.041 ± 0.001 0.136 ± 0.001 0.043± 0.001
100.5 : 110.5 0.081 ± 0.001 0.010 ± 0.001 0.081 ± 0.001 0.011 ± 0.001
110.5 : 120.5 0.034 ± 0.02 3.51E-5 ± 1E-6 0.033 ± 0.013 – –
120.5 : 130.5 0.005 ± 2E-4 – – – – – –
130.5 : 140.5 2.06E-4 ± 1E-5 – – – – – –

The fitted CEFs of Pr3+ in PSFO and PFO are compared in Table 6.5 [11]. The positions of
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Figure 6.9 The Q - dependences of different energy transfer ranges for PSFO with
10 meV step: (a) 10.5 - 20.5 meV, (b) 20.5 - 30.5 meV, (c) 30.5 -
40.5 meV, (d) 40.5 - 50.5 meV, (e) 50.5 - 60.5 meV, (f) 60.5 - 70.5
meV, (g) 70.5 - 80.5 meV, (h) 80.5 - 90.5 meV, (i) 90.5 - 100.5 meV,
(j) 100.5 - 110.5 meV, (k) 110.5 - 120.5 meV, and (l) 120.5 - 130.5
meV. The black dots are the experimental data. The blue line it an
estimate of the incoherent phonon background plus multiple scattering.
The red column is the calculation of the polycrystalline averaged spin
wave scattering plus background using the parameters in the text. The
brown dash line in some different energy transfer ranges ((d)-(l)) is the
starting point of the experimental recording.

CFEs had shifted a little, ∼ 1 meV, but this shift is within the error bar. The integrated intensity

ratio of Pr3+ in PSFO was not exactly 3 times of the CFE in PFO, especially E20 and E60, but it

was still acceptable. Because the excitations of E10 (5.9 meV) and E20(13.9 meV) were very close

to the elastic peak, the reported CFE of E10 was not observed and the integrated intensity ratio

of E20 in PFO and in PSFO was far from 3; because the integrated intensity of E60(77.6 meV)

was small even in PFO, it was hard to be observed in PSFO. Here I also wanted to mention one

thing: although the integrated intensity ratio of E70 (85.9 meV) and E80(96.9 meV) agreed very

well with PFO, the integrated intensities were small and the fitting could be affected not only by

the multiple-phonon, but also magnetic scattering from Fe in those energy regions.
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Table 6.5 The integrated intensities of Pr3+ CFE states in PFO and PSFO.

Ei0
PFO PSFO

PFO/PSFO
E. (meV) area E. (meV) area ratio

E10 – – – – – – – – – – – –
E20 15.2 ± 0.1 1.29 ± 0.04 13.9 ± 0.3 0.68 ± 0.01 1.00 ± 0.01 1.88 ± 0.06
E30 24.7 ± 0.1 0.53 ± 0.02 23.3 ± 0.2 0.19 ± 0.01 0.28 ± 0.01 2.89 ± 0.19
E40 36.6 ± 0.5 1.06 ± 0.03 34.1 ± 0.1 0.36 ± 0.01 0.53 ± 0.01 2.94 ± 0.12
E50 – – – – – – – – – –
E60 – – – – – – – – – –
E70 88.1 ± 0.5 0.054 ± 0.01 85.9 ± 0.4 0.018 ± 0.003 0.02 ± 0.01 3.00 ± 0.40
E80 97.9 ± 0.3 0.063 ± 0.007 96.9 ± 0.4 0.021 ± 0.002 0.03 ± 0.01 3.00 ± 0.40

6.3.2.2) Heisenberg Model Calculation

The exchange interactions between Fe sites in PSFO were determined in a similar method as

LSFO. However, the environment of Fe ions is changed with the La3+ ion in LSFO replaced by

the Pr3+ ion in PSFO. Because the quantities of the R-site substitution were small, one - third,

and the ionic size of Pr3+ was close to the size of La3+, the structure of Fe-O perovskite does

not change significantly from LSFO to PSFO [3]. We would still apply the NN Heisenberg model

Hamiltonian for those spin waves in PSFO and use LSFO as a reference.

In LSFO, there are two magnetic energy bands with an energy gap in the range from 60 meV

- 70 meV. In PSFO, the similar energy bands and gap are observed within the error bar, Fig. 6.2.

Since the high magnetic energy band cutoff of LSFO and PSFO are in close agreement and this

energy is determined primarily by the F exchange energy, we assume that JF is same in both

compounds. Furthermore, since the low magnetic energy band is determined by both JF and JAF ,

the values of JAF in both compounds are similar.

However, the total magnetic energy in Heisenberg Model was not just determined by exchange

energies, the ionic spins were another factor. In LSFO, we assigned S3+ ≈ 5/2 and S5+ ≈ 2 based

on the iron valences Mössbauer measurements, ∼Fe3.4+ and ∼Fe4.2+. With La3+ replaced by

Pr3+, the charge-transfer gap and the electronic bandwidth do not change a lot [3]. In addition,

the oxygen deficiency in PSFO was comparable in LSFO based on the results of GSAS fitting [12]

and titration discussed in section 4.2.2. Hence, the S5+ is not expected to change and is kept as

2. We can understand the result of PSFO using the case of LSFO, the same parameters as LSFO:
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JAF = - 3.5 ± 0.2 meV and JF = 5.1 ± 0.1 meV. So |JF /JAF | is larger than 1.

Figure 6.10 Comparison of PSFO magnetic scattering data at T ∼ 10 K (dots)
and the total simulating (red line) with the Heisenberg model calcu-
lation (blue line) and the CEF excitations (green line) summed from
2θ 3-30◦..

The total fitting result including CEF of Pr3+ and magnetic excitations of Fe ions were com-

pared to the experimental data, Fig. 6.10. The fitting was not very good in the region 15 meV to

35 meV which was due to the residual phonon signals that are also observed in LSFO.

Compared to the JAF is - 4.55 meV in PFO, there was ∼ 20% reduction of JAF in PSFO.

Therefore, we still could propose that the MCDW was a charge density wave, with appreciable

hole density in the AF region between the domain walls.

6.3.3 Nd1/3Sr2/3FeO3

The Nd3+ is even smaller and the studies on the Fe magnetism in NSFO could perhaps provide some

useful information and check the regularities based on the former discussion on LSFO and PSFO. From

the diffraction characterization section 3.2.6, the lattice structure of NSFO is distorted more from ideal

perovskite than the PSFO, so NSFO should have even narrower bands and larger CT gap than PSFO [3],

and the Coulomb interactions should be even more important.

Fig. 6.11(a) shows the temperature dependence of the magnetic scattering from NSFO. In contrast

to PSFO and LSFO, we observed only one energy band instead of the split low and high energy bands.
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Figure 6.11 (a)Temperature dependence of the magnetic scattering of NSFO with
Ei = 160 meV on Pharos, LANSCE; (b) The comparisons of magnetic
scatterings of NSFO at T = 170 K and T = 210 K; (c) The compar-
isons of magnetic scatterings from NSFO at T = 10 K and T = 210
K.

There were two possible reasons: i) there is a strong CEF excitation of Nd3+ around 60 meV (E40),

which is making the gap region; ii) the low energy band observed in LSFO and PSFO moved to higher

energies, then the high band appears as a tail in the total magnetic scattering as temperature is raising.

The magnetic scattering tail, 80 meV - 140 meV, gradually shifts to lower energies and the magnetic

spectrum is strongly damped just below the transition as the temperature raised, which was similar to

PSFO and LSFO.

In order to test the first scenario, the magnetic scattering data at 210 K and 170 K are compared in

Fig. 6.11(b), just above and below TV = 200 K. It is hard to observe intensity difference in the range

from 60 meV - 80 meV at the two temperatures, which means that there should be a gap. Perhaps the 40

K temperature difference will excite more electrons to higher energy CEF levels, the intensity of 60 meV

at 210 K should be stronger than 170 K. In addition, the signal of Fe magnetic scattering is weaker at

the temperatures just below TV . Hence, the magnetic scattering between 10 K and 210 K are compared,

there is a big intensity difference at 60 meV-80 meV and no gap exists, Fig. 6.11(c). Furthermore,

significant CEF exists between 20 meV - 80 meV from 300 K data. Therefore, CEF correction seems

much more important in NSFO than PSFO. We need to carefully account for the CEFs from Nd3+ before
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studying the magnetic excitations of Fe ions.

6.3.3.1) Crystal Field Excitation

Figure 6.12 (a) The magnetic scattering intensity of NFO (black dots)and NSFO
(red dots) on ARCS at T = 10 K; (b) the CFEs of NFO (black line)and
NSFO (red line) at T = 10 K.

Similar as PSFO, we still keep the assumption that the environment of Nd3+-site does not

change much in NSFO, and the CEF excitation of Nd3+ in NSFO would be similar to the NFO.

Again, only 1/3 of Nd3+ ions were left after substitution by nonmagnetic Sr2+ ions, the integrated

Table 6.6 The integrated intensities of Fe3+ magnetic states and the CEFs states
of Energy - cuts and Q - cuts in NSFO.

Energy Range State number (Stth) State number (Sω)
(meV) spin - wave C.F. spin - wave C.F.

10.5 : 20.5 0.116 ± 0.005 0.487 ± 0.029 0.115 ± 0.005 0.455 ± 0.025
20.5 : 30.5 0.161 ± 0.008 0.114 ± 0.006 0.158 ± 0.011 0.112± 0.009
30.5 : 40.5 0.178 ± 0.009 0.058 ± 0.004 0.181 ± 0.015 0.058 ± 0.003
40.5 : 50.5 0.240 ± 0.011 0.306 ± 0.015 0.233 ± 0.014 0.309 ± 0.018
50.5 : 60.5 0.376 ± 0.015 0.291 ± 0.0012 0.382 ± 0.016 0.284 ± 0.014
60.5 : 70.5 0.525 ± 0.021 0.116 ± 0.006 0.529 ± 0.022 0.118 ± 0.007
70.5 : 80.5 0.339 ± 0.014 0.005 ± 2E-4 0.346 ± 0.015 0.005 ± 3E-4
80.5 : 90.5 0.160 ± 0.008 6.87E-5 ± 3E-6 0.164 ± 0.006 – –
90.5 : 100.5 0.149 ± 0.006 – – 0.144 ± 0.005 – –
100.5 : 110.5 0.094 ± 0.003 – – 0.098 ± 0.005 – –
110.5 : 120.5 0.056 ± 0.001 – – 0.053 ± 0.004 – –
120.5 : 130.5 0.020 ± 0.001 – – 0.020 ± 0.005 – –
130.5 : 140.5 0.001 ± 4E-5 – – – – – –

intensity amounts of Nd3+ in NSFO should be around 1/3 of Nd3+ in NFO.
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The magnetic scattering intensities of NFO and NSFO are compared in Fig. 6.12(a). (Except

experimental data of Fig. 6.11, all data in this section were measured by ARCS, SNS.) The CEF

excitations of NSFO in energy-space were fitted by a series of gaussian functions based on the same

method used to fit NFO. In order to confirm the magnetic excitation contribution from CEFs of

Nd3+ ions and magnetic excitations of Fe3+ ions, E- and Q-cuts were plotted. The total integrated

intensities from the same E- and Q-range in both cuts were compared, Table 6.6 [10]. Hence, the

parameters of CEF excitation gaussian functions can be fitted.

Figure 6.13 The Q-dependencies of different energy transfer ranges for NSFO at
10 K with 10 meV step: (a) 10.5 ∼ 20.5 meV, (b) 20.5 ∼ 30.5 meV,
(c) 30.5 ∼ 40.5 meV, (d) 40.5 ∼ 50.5 meV, (e) 50.5 ∼ 60.5 meV, (f)
60.5 ∼ 70.5 meV, (g) 70.5 ∼ 80.5 meV, (h) 80.5 ∼ 90.5 meV, (i) 90.5
∼ 100.5 meV, (j) 100.5 ∼ 110.5 meV, (k) 110.5 ∼ 120.5 meV, and (l)
120.5 ∼ 130.5 meV. The black dots are the experimental data. The
blue line it an estimate of the incoherent phonon background plus
multiple scattering. The red column is the calculation of the poly-
crystalline averaged spin wave scattering plus background using the
parameters in the text. The brown dash line in some different en-
ergy transfer ranges ((d)-(l)) is the starting point of the experimental
recording.

The fitted CEF excitations of Nd3+ in NSFO were compared to NFO, Table 6.7 [13, 14]. The
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positions of the excitations had shifted a little, ∼ 2 meV, which could be counted in error bar.

The integrated intensity ratio of Nd3+ in NSFO was very close to 3 times in NFO, so the CEF

assumption of NFO and NSFO are similar as assumed.

Table 6.7 The integrated intensities of Nd3+ CFE states in NFO and NSFO.

Ei0
NFO NSFO

NFO/NSFO
E (meV) area E (meV) area ratio

E10 9.05 ± 0.07 1.82 ± 0.05 9.58 ± 0.43 0.61 ± 0.06 1.00 ± 0.12 3.01 ± 0.31
E20 20.8 ± 0.11 0.60 ± 0.04 19.2 ± 0.2 0.20 ± 0.03 0.33 ± 0.04 3.02 ± 0.42
E30 45.2 ± 0.10 0.85 ± 0.09 46.9 ± 0.39 0.28 ± 0.03 0.46 ± 0.05 3.02 ± 0.45
E40 59.5 ± 0.21 0.50 ± 0.09 60.9 ± 0.38 0.16 ± 0.03 0.27 ± 0.06 3.06 ± 0.78

6.3.3.2) Heisenberg Model Calculation

After according for CEF excitations, we now treat the Fe spin waves. From above discussion,

LSFO and PSFO show two magnetic energy bands with an energy gap of 60 meV ∼ 75 meV. For

the magnetic excitation of all three samples agreed with each other almost exactly above 85 meV.

However, no energy gap was observed in NSFO and it is possible that the low energy band moves

to higher energy and connects the unchanged high energy band. Since the high magnetic energy

cutoff is determined by the ferromagnetic exchange energy, we begin by assuming that the JF was

same in those compounds. With JF as a constant, JAF is main factor for determining the position

of low energy band.

The total fitting results of NSFO including CEF of Nd3+ and magnetic excitations of Fe ions

were compared to the experimental data with JAF ∼ -5.5 meV, Fig. 6.14. The fitting was not very

good in the region 15 meV to 35 meV which is the energy range where residual phonon signals are

observed similar to LSFO and PSFO.

The ratio of JF and | JAF | in RSFO (R = La, Pr, and Nd) are concluded in Table 6.8 and

plotted in Fig. 6.15: Compared to LSFO and PSFO, the |JF /JAF | < 1 in NSFO. This contradicts

the theoretical calculation of T. Mizokawa, et al.. However, T. Mizokawa, et al. got the result, |

JF /JAF | > 1, based on the assumption that J55 equals JAF . However, |J55| should be quite small,

since it originates from t2g π-bonds. Assuming |J55| = 0, the phase line is given by |JF /JAF | >

1/2.
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Figure 6.14 Comparison of NSFO magnetic scattering data at T ∼ 10 K (dots)
and the total simulating (red line) with the Heisenberg model calcu-
lation (blue line) and the CEF excitations (green line) summed from
2θ 3-30◦.

Table 6.8 The spin momenta and exchange energies in RSFO.

La1/3Sr2/3FeO3 Pr1/3Sr2/3FeO3 Nd1/3Sr2/3FeO3

spin momenta
S3+ (meV) 2.5 2.5 2.5
S5+ (meV) 2.0 ± 0.1 2.0 ± 0.1 2.0 ± 0.1

exchange energy
JAF (meV) - 3.5 ± 0.2 - 3.5 ± 0.2 - 5.5 ± 0.3
JF (meV) 5.1 ± 0.1 5.1 ± 0.1 5.1 ± 0.1

Unlike LSFO and PSFO, |JAF | increased by 20% compared to the parent compound. Based

on Table 6.9, we surmise that the increasing |JAF | in NSFO is due to increase in the CT gap and

not the lattice distortion. The CT gap of NSFO is larger than LSFO and PSFO, hence electron will

be more localized and the magnitude of AF exchange energy of NSFO is the largest in these three

compounds. The lattice becomes more distorted going from LFO to NFO, which makes the larger

|JAF | for LFO than NFO.
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Figure 6.15 The |JF /JAF | ratio in RSFO (R = La, Pr, and Nd) at 10 K.

6.4 Summary

We have investigated the magnetic property relevant to the CO transition for polycrystals of RSFO,

where R = La, Pr, and Nd. There were several observed remarkable R-dependent features: (i) the CEFs

of magnetic rare-earth ion in RSFO could be fitted using the parent RFO as a reference; (ii) With change

of R from La to Nd, TV shifts to lower temperature from LSFO to PSFO; (iii) the magnetic energy

spectra of LSFO and PSFO were similar, which had two energy bands with a large gap, while the two

bands merge in NSFO; (iv) the maximum magnetic energy spectra of RSFO are all the same; (v) the

AF exchange energies between Fe3+ and Fe3+ ions, | JAF |, and the ferromagnetic exchange energies

between Fe3+ and Fe5+ ions, JF , were estimated by linear Heisenberg Model: |JAF | has no effect

on the lattice distortion and is most consistent with charge transfer gap and JF was nearly constant;

(vi)compared to RFO, the values of |JAF | were changing from 30% reduction (La) to 20% enhancement

(Nd).

All these results indicate that the CO stability of RSFO decreases with the decrease of the R-site ionic

radius or the decrease of the p-d hybridization effect. Therefore, the CO of LSFO and PSFO is mainly

driven by the magnetic energy, even |J55| reach the maximum limit |JAF |; the CO of NSFO can also be

stabilized by the magnetic energy with a relative small limit for |J55|, maybe the Coulomb energy effect

on CO is unnegligible.
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Table 6.9 The structural properties and exchange energies in RFO and RSFO.

LaFeO3 PrFeO3 NdFeO3

space group Pnma Pnma Pnma
bond length(Å)

Fe - O(1) 2.002 2.004 2.005
Fe - O(2) 2.004 2.006 2.007
Fe - O(2) 2.005 2.015 2.017

bond angle
∠ Fe - O(1) - Fe 157.6◦ 153.3◦ 151.2◦

∠ Fe - O(2) - Fe 157.5◦ 152.4◦ 151.4◦

exchange energy
JAF (meV) - 4.90 - 4.55 - 4.45

La1/3Sr2/3FeO3 Pr1/3Sr2/3FeO3 Nd1/3Sr2/3FeO3

space group R3̄c R3̄c R3̄c
bond length(Å)

Fe - O 1.940 1.941 1.939
R - O 2.7413 2.7377 2.7329

bond angle
∠ Fe - O - Fe 173.2◦ 170.5◦ 169.3◦

charge transfer gap
∆(meV) 62 58 85

exchange energy
JAF (meV) - 3.5 - 3.5 - 5.5
JF (meV) 5.1 5.1 5.1
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CHAPTER 7. Electron-Lattice Interaction on R1/3Sr2/3FeO3

7.1 Introduction

In our previous work on R1/3Sr2/3FeO3 (RSFO), we have studied the contributions of the mag-

netic energy and Coulomb interaction to the CO in RSFO: the magnetic energy alone can stabilize the

CO state of LSFO and PSFO; the effect of the Coulomb interaction is expected to show up gradually

from LSFO to NSFO. Another possible factor to drive the CO which has discussed in the theoretical

review chapter is the electron-lattice interaction which will be considered in this chapter. Based on the

temperature-dependent phonon spectrum of RSFO, especially above and below TV , we can make some

general statements regarding the importance of electron-lattice interaction.

In order to understand the phonon spectrum, the simple Harmonic oscillator and anharmonicity will

be reviewed at first in this section [1]; then, the experimental data will be shown and the damping will

be fitted by the convolution method; at last, the shell model is applied to interpret the density-of-states

(DOS) of RSFO [2, 3].

7.2 Harmonic Oscillators and Anharmonicity

7.2.1 Classical Harmonic Oscillator

As a model for the vibrational motion in crystals, the harmonic oscillator is applied to describe

phonon dispersions, Fig. 7.1. The natural frequency of a classical one-dimensional harmonic oscillator

of mass M and force-constant k is

ω =

√
k
M

, (7.1)

Its potential energy is
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Ep(x) =
1

2
kx2 =

1

2
Mω2x2 , (7.2)

Since the kinetic energy equals the average potential in equilibrium,

Ēp(x) = Ēk(x) =
1

2
kBT , (7.3)

such that the mean-squared displacement x̄2 only depends on the temperature T and the force constant

k,

x̄2 =
kBT

Mω2
=

kBT

k
, (7.4)

7.2.2 Harmonic Phonons

Since each phonon mode with some (qj) behaves as a simple harmonic oscillator, we can apply

these ideas to the behavour of harmonic lattice vibrations. Assuming the natural frequency of a quantum

harmonic oscillator is ω, the thermal occupation factor of phonons, which are bosons, at temperature T

is,

n(!ω, T ) = 1

exp(!ω/kBT )− 1
, (7.5)

where kB is the Boltzmann constant.

In thermal equilibrium, if a harmonic phonon with frequency ω = ωqj , the energy is

E(qj) = (n(qj) + 1/2)!ωqj , (7.6)

with n(qj) = n(!ω(qj)). The total energy of a harmonic crystal is,

Eharm(T ) =
∑

qj

E(qj) = 3N

∫ ωmax

0
!ω(n(!ω, T ) + 1/2)g(ω)dω , (7.7)

where g(ω) is the DOS.

Based on the above discussions, the frequency does not depend on the vibration amplitude of the

oscillator and the DOS has the same property, but the total energy of the oscillator is temperature depen-
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Figure 7.1 The phonon dispersion of LFO from (0 0 0) to (1 0 0) (a), from (1 1 0)
to (0 0 0) (b), and from (0 0 0) to (1 1 1) (c); (d) The density-of state
of LFO at T = 10 meV.

dent.

7.2.3 Anharmonicity

In the theory of harmonic oscillator presented above, the phonon frequency does not depend on the

temperature and the amplitudes of the vibrations. However, it is just an ideal condition and the harmonic

approximation is based on the proposition that the nuclei displacements from the equilibrium positions

are small and the higher orders of the potential expansion are negligible. Although these conditions have

been verified in many solids at low temperature, they tend to become invalid as the amplitude of the

displacements increases at high temperatures. Then, the harmonic approximation leads to the thermal

expansion and the finite thermal conductivity in the absence of phonon-phonon scattering [2, 3].

In anharmonic model, the phonon frequencies depend on the vibration amplitudes, and by Eq. (7.4),

the temperature. Technically, the anharmonicity arises when the potential V(r) 0= r2 for large r. The total

energy of the system will be much more complicated than the harmonic case. Because the anharmonicity

is often a small effect, usually the system is approximated to a harmonic oscillator and the anharmonicity

is added as a perturbation term. Then, the ‘renormalized’ phonon frequencies will have some shifts

ω̃(qj) = ω(qj) +∆(qj)− iΓ(qj) , (7.8)
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where ω(qj) is the harmonic frequency of mode (qj), the term - iΓ(qj) expresses the phonon damping,

and ∆(qj) is the correction of the phonon frequencies, including the anharmonic potentials.

Usually, the phonon width Γ is small and the energy shift ∆ is the main perturbation term. In fact,

the measured frequencies in a neutron scattering experiment are those shifted frequencies. In the case of

weak anharmonicity (Γ/ω . 1), we will still label the state as a phonon state (qj) due to the long lifetime.

The anharmonic model is based on the detailed information related to the interatomic potentials

which are obtained from a Taylor expansion of the potential. However, this lattice information of the

sample is not easy to obtain from experimental data, and the phenomenological models, such as shell

model, are harmonic approximations based on the data fitting. Thus, fitting the phonon data to fully

anharmonic theoretical models is very difficult.

As the simplest case to the peakwidth, the thermal broadening due to anharmonicity has been studied

a lot: when the temperature increases, the atomic motions become more vigorous and will have a large

mean-squared displacement that leads to increased sampling of the anharmonic portion of the potential.

7.3 Phonon Spectra of RFeO3

When the measured data are reduced to the magnetic contribution in previous chapters, we used high

angle data as a measure of phonons. The high angle data is related to phonon density-of-states (DOS).

Similar to the analysis of the magnetic energy of RSFO, we are going to take the phonon spectrum of

RFO as a good reference and study them first. Since parent compounds RFO are insulators, only the

anharmonic phonon-phonon interactions cause temperature dependent effects. The doped compounds

RSFO are semiconductors and the phonon shift or broadening can arise from both phonon-phonon and

electron-lattice interactions. Therefore, understanding the lattice dynamics of the parent compound helps

to isolate the effect of electron-lattice interaction of RSFO.

7.3.1 Temperature dependence of LFO

Since the crystal structures in this series of samples are stable and there is no structure transitions, the

phonon spectra of LFO will be discussed as an example of a system where weak anharmonic interactions

are present. The raw high angle and the related phonon DOS data (dots) are shown in Fig. 7.2 for LFO.

The elastic peak signal is shadowed by brown region and will not be included in the discussion. The
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high angle data are nearly temperature independent except for broadened signals at high temperature.

Because there is no phase transition in LFO, the broadening is the result of the lattice anharmonicity [4].

We analyze the anharmonic broadening by simulating the high temperature phonon data by using the

base temperature signal where anharmonic is expected to be small.

Figure 7.2 (a) High - angle(70◦ - 90◦) scattering data of LFO on Pharos at 10
K (black), 100 K (red), 200 K (blue), and 250 K (pink); (b) Phonon
scattering data (circle) and convolution fitting (line) for LFO at relative
temperatures. The shadowed by brown region is the part of the elastic
peak signal.

In the case of LFO phonon DOS, anharmonic broadening is introduced by a convolution of the base

temperature data set (f ) with a continuous probability distribution (g). Usually, the bell-shaped Gaussian

and Lorentzian distribution are used. Compared to Lorentzian function, the Gaussian distribution has

much narrower tail and shaper intensity, so we used Gaussian distribution in this section,

g(x) = Aexp(−(x− µ)2

2σ2
) , (7.9)

where A is the amplitude, µ is the center of the function, and σ is the half width of the peak.

Therefore, the convolution is typically viewed as a modified version of the original functions and the

sign is expressed as ‘∗’,
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(f ∗ g)[ω] =
∞∑

ω′=−∞
f [ω′]g[ω − ω′] =

∞∑

ω′=−∞
f [ω − ω′]g[ω′] , (7.10)

where both f and g are the functions of ω (ω′); the coefficients of the product are given by the convolution

of the original coefficient sequences and extended with zeros where are necessary to avoid undefined

terms.

The fitting results(lines) are shown in Fig. 7.2(b). The convolution fitting data agree with the mea-

surement very well and the full width at half maximum(FWHM) of the broadening function is increasing

with temperature as we expected, Fig. 7.3. Hence, the convolution gives us a quantitative estimate of the

anharmonic contribution.

Figure 7.3 The full width at half maximum (FWHM) at 100 K, 200 K, and 250 K.

7.3.2 The Phonon DOS of RFO (R = La, Pr, Nd, and Sm) at 10 K

In this section, the effect of R-ion substitution on the phonons of these iron oxides will be discussed.

In Fig. 7.4(a), the brown shadow region shows the signals of the elastic peaks and will not be presented in

the DOS figure, Fig. 7.4(b). From Fig. 7.4, we can learn that the DOS of LFO, PFO, and NFO are pretty

close at the high energy region (higher than 50 meV), which is the energy region consisting primarily of

oxygen vibrations. Although the data share similar features at the low energies (less than 50 meV), the

intensities are different. This is partially due to the different cross-section of R, La ∼ 9.7 barn, Pr ∼ 2.7

barn, Nd ∼ 16.6 barn, and Sm ∼ 39 barn. As the transfer energy is less than 20 meV, the experimental

data agree with the cross-section prediction: the intensity of PFO is the smallest and the intensity of SFO

is the largest.

The phonon DOS signal of SFO is detrimentally affected by the strong neutron absorption of Sm:
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Figure 7.4 High-angle scattering (a) and phonon DOS (b) data of RFO (R = La,
Pr, Nd, and Sm) on ARCS at 10 K.

although the 40 meV peak is still detectable, the 60 meV and 80 meV peaks are just very weak bumps.

7.4 Lattice Dynamical Model

To better understand the phonon DOS and contribution of different atomic vibrations to different

energy ranges, we develop a lattice dynamical model. The frequency of harmonic oscillator model, ω, is

determined by the mass of the atoms and the force-constants between them in the crystal, but it is just an

ideal example and much simpler compared to a real dynamical lattice. In order to understand the more

accurate lattice interaction between the atoms, the dispersion/DOS is fitted. There are a lot of models

describing these vibrating modes, the choice of the model depends on the type of binding between the

atoms. Because RFO is an ionic crystal, we shall consider only two phenomenological models: the rigid

ion and shell models.

7.4.1 Rigid Ion Model

For the rigid ion model, the ionic system consists of charged atoms. The Coulomb potential energy

between two atoms (lk) and (l′ k′) with charge Zke and Zk′e at the site r(lk) and r(l′ k′) respectively can

be expressed as

ΦC(lk, l
′k′) =

ZkZk′e2

| r(lk)− r(l′k′) | , (7.11)
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In order to stabilize the lattice, a short-range repulsive force is included by the exponential Born-

Mayer potential,

ΦR(lk, l
′k′) = b(lk, l′k′)exp(

− | r(lk)− r(l′k′) |
ρ(l′k′)

) , (7.12)

where b(lk,l′ k′) and ρ(l′ k′) describe components of the repulsive interaction.

Thus, the total potential will be

Φ(lk, l′k′) = ΦC(lk, l
′k′) + ΦR(lk, l

′k′) , (7.13)

The force between atoms is expressed by the force constant matrix

Φαβ(lk, l
′k′) =

∂2Φ(lk, l′k′)

∂rα∂rβ
|r=|r(lk)−r(l′k′)| , (7.14)

where rα and rβ mean the directions of α and β.

Then, the classical motion equation are

mküα(lk) = −
∑

l′k′β

Φαβ(lk, l
′k′)uβ(l

′k′) , (7.15)

where mk is the mass of atom (lk), uα(lk) and uβ(l′ k′) are the displacements of (lk) on α direction and

(l′k′) on β direction respectively.

Due to the motion correlation between (lk) and (l′ k′) and Fourier transform of the force matrix, the

dynamical matrix of the atoms (lk) and (l′ k′) in reciprocal space q, Dαβ(kk′, q), will be defined as [4]

Dαβ(kk
′,q) =

1
√
mkmk′

∑

l′

Φαβ(0k, l
′k′)eiq·(r(l

′k′)−r(0k)) , (7.16)

where mk′ is the mass of atom (l′ k′).

Therefore, the dynamical matrix is the result of a summation over the above two potentials. How-

ever, the evaluation for this periodic system is very complicated. The Coulomb energy is conditionally

convergent, i.e. it just converges under certain specific additional conditions for an infinite 3-D material.

Because the interaction between ions decays as the inverse power of r and the number of interacting ions

increases with 4πr2 as the surface area of a sphere, it is hard to decide which term will be dominant.
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In order to solve the problem, Ewald method is usually applied. In 1921, Ewald assumed that the point

charge at the atomic sites were replaced by extended charge distributions, such as spheres or gaussians

[6]. Then, the direct lattice sum is split into a direct lattice sum and a reciprocal lattice sum. If the charge

density parameter (i.e. radius or gaussian width) is selected properly, both terms will converge rapidly to

a value which is independent of it. Hence, the Coulomb contribution to the dynamical matrix of atoms

(lk) and (l′ k′) can be broken up into the direct and reciprocal terms,

Cαβ(kk
′,q) = C(d)

αβ (kk
′,q) + C(r)

αβ (kk
′,q) , (7.17)

For the short-ranged potential(Born-Mayer potential), the contribution to the dynamical matrix is

Rαβ(kk
′,q) =

∑

l′

Φ(R)
αβ (0k, l′k′)eiq·(r(l

′k′)−r(k)) , (7.18)

where the force constant matrix, Φ(R)
αβ (lk, l′k′), is given for non-diagonal elements (k 0= k′) as

Φ(R)
αβ (lk, l′k′) =

(r(lk)− r(l′k′))α(r(lk)− r(l′k′))β
| r(lk)− r(l′k′) |2

× [G(lk, l′k′)− F (lk, l′k′)]− δαβG(lk, l′k′)

, (7.19)

and for diagonal (l k =l′ k′) elements as

Φ(R)
αβ (lk, lk) = −

∑

l′k′

Φ(R)
αβ (lk, l′k′) , (7.20)

For central forces, F and G are the radial and tangential parts, respectively.

F (lk, l′k′) =
∂2Φ(lk, l′k′)

∂r2
|r=|r(l′k′)−r(lk)|

G(lk, l′k′) =
1

r

∂Φ(lk, l′k′)

∂r
|r=|r(l′k′)−r(lk)|

, (7.21)

Based on the above formulas, the matrix notation of the dynamical matrix in the rigid ion model is

D = m−1/2(R+ ZCZ)m−1/2 , (7.22)



165

where Z is a diagonal matrix containing the ionic charges and m−1/2 is a diagonal matrix containing the

square root of the atomic masses. Therefore, the rigid ion model requires only the charges of the ions

and two short-range force constants for close atomic pairs as parameters.

7.4.2 Shell Model

The shell model is an extension of the rigid ion model: the electronic polarizability of the constituent

ions are allowed. In the shell model, a massless shell with charge Yk around the ionic core is introduced

and can move independently due to the polarizability. Between the shell and core, there is a spring with

force constant Kk which bounds them together. The parameters of the rigid ion model replaced by the

shell-core springs, the deficiencies of the rigid ion model is solved: the frequencies of various longitudi-

nal optical (LO) phonon mode and the optical-frequency dielectric constant are in better agreement with

data.

Although the shell model is very similar to the rigid ion model, the final dynamics matrix still need

to be revised due to the introducing of the shell charge. Since the shells can be considered as massless

and the motion follows the cores adiabatically, the dynamical matrix of the shell model governs only the

core motion

D = m−1/2(R+ ZCZ− (R+ ZCY)(S+YCY)−1(R+YCZ))m−1/2 , (7.23)

where Y is a diagonal matrix of shell charges and the matrix S augments the short-ranged matrix R

according to the formula

Sαβ(kk
′, q) = Rαβ(kk

′, q) + δαβδkk′Kk , (7.24)

7.4.3 Ground State Phonon DOS of ABO3

From the discussion in the above section, the shell model is introduced to analyze the ground state

phonon DOS. The force constants can be determined by the interatomic potential which includes the

long-range Coulomb and short-range ionic interactions. If there are two atoms k and k′ with the effective

charges, Z(k) and Z(k′), and the relative radii, R(k) and R(k′), the potential energy between the two atoms

with r distance can be expressed as [6],
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V (r) = (
e2

4πε0
)[
Z(k)Z(k′)

r
] + aexp[

−br

R(k) +R(k′)
] , (7.25)

where a and b are constants, and equal 1822 eV and 12.364 respectively [7].

Then, the radial and tangential force constants for this central force are

F (k, k′) =
∂2V (r)

∂r2
|r=|r(k′)−r(k)|

G(k, k′) =
1

r

∂V (k, k′)

∂r
|r=|r(k′)−r(k)|

, (7.26)

The distance between two ions, r, can be calculated by the lattice structure. For the program code of

Ames Laboratory, the effective charge and force constants, Z, F and G, are the parameters.

Example 1. The Phonon DOS of LaMnO3 at 10 K

Before calculating the phonon DOS of LFO by shell model, the program code is tested on the

LaMnO3 (LMO), whose phonon DOS has been calculated previously [8].

The crystal structure of LMO has been studied using x-ray and neutron diffraction techniques,

both at ambient temperature and pressure [7-14]. Below ∼ 800 K, LMO was found to have an

orthorhombic structure with Pnma symmetry [14].

In 2007, E. G. Rini et al. applied the shell model, Eq. 7.12, to calculate the lattice dynamics

by the computer program DISPR [15] with the following 7 optimized parameters: Z(Mn) = 1.62,

Z(La) = 1.68, Z(O) = -1.1, R(Mn) = 1.0801 , R(La) = 1.7474 , R(O) = 1.7976 , oxygen shell charge

is -2.24e, and the shell-core force constant is 142 eV/2 [6]. The calculation of phonon DOS is

shown in Fig. 7.5 (black line).

Based on the parameters of the shell model in E. G. Rini et al., the radial and tangential force

constants can be calculated, Appendix E. If we apply them in the shell model program code of

Ames Laboratory, the result is shown in Fig. 7.5 (red line) and agree with calculating of E. G.

Rini.

Example 2. The Phonon DOS of LaFeO3 at 10 K
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Figure 7.5 Comparison of LMO fittings in the shell model with the parameters of
S. L. Chaplot (black line) and Ames Laboratory (red line) at 10 K.

LFO has an orthorhombic unit cell (space group Pnma) and four f.u./ unit cell. It has five

atoms in the asymmetric unit, so there are 20 atoms. The structure has two oxygen ions O1 and O2

with different site symmetry. La and O1 occupy crystallographic sites 4c; the other oxygen atom,

O2, is at the general position 8d; Fe is at 4a position. The model parameters are listed in Appendix

F. 17 pairwise force constants are selected. The calculated partial DOS for the various atoms for

LFO are plotted in Fig. 7.6(a),

Figure 7.6 (a) The calculated partial DOS for the various atoms, La, Fe, and O,
for LFO; (b) the comparison of the experimental data and the total
calculation DOS of LFO at 10 K.

It is clearly shown that the partial phonon DOS of La is just on the energy range 0 - 45 meV,

while the energy range of Fe is 0 - 55 meV and on O is 0 - 95 meV. Compared on the basis of

neutron intensity, La has the weakest contribution. Hence, the high energy phonon DOSs (larger

than ∼ 55 meV) are almost entirely the vibration modes of O atom, and the low energy phonon

DOSs (less than ∼ 55 meV) has contributions from all atoms.
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The total phonon DOS will be summed by the atom ratio in the chemical formula, Fig. 7.6(b),

and the elastic peak is included. Compared to the experimental data, it was clearly found that the

shapes of the calculation and measured data are roughly same. However, the energy excitations of

calculated phonon DOS are a little bit higher than the data in the low energy region; although the

energy excitations of calculated phonon DOS are same as the data in the high energy region, the

intensities are much higher. Therefore, the precise analysis needed to be implemented by adjusting

the fitting parameters, and the number and magnitude of force constants.

7.5 Phonon Spectra of R1/3Sr2/3FeO3

Similar to the phonon spectra of RFO, the high angle data of RSFO can be reduced to phonon DOS

related function. The temperature dependence phonon spectra of RSFO will be presented and effects of

electron-lattice interaction will be deduced. Then the phonon spectra of RSFO at 10 K will be compared

and compared to data of the parent compounds RFO.

7.5.1 Temperature dependence of LSFO

Fig. 7.7(a) shows the temperature dependence of the high-angle scattering data of LSFO. As we

expected, the thermally broadened signal is also found. However, there are some features of the DOS

that appear to depend on the Verwey transition temperature, TV = 210 K. Fig. 7.7(b) shows two effects

that appear above TV : 1) the signal at ∼ 50 meV broadened; 2) the peak at ∼ 70 meV moved toward the

low energies. In order to confirm whether these phenomena are due to anharmonicity or electron-lattice

coupling, we need to analyze the DOS of the phonon spectra at several temperatures.

In above section, the temperature dependence of phonon spectra of LFO was understood as anhar-

monic broadening obtained by the convolution method. Although many details of lattice dynamics of

LFO and LSFO have been changed due to Sr2+ doping, the parent compound is still a good reference.

Since both LSFO and LFO have the same energy resolution due to the same incident energy, 120 meV,

the same gaussian function can be applied to account for thermal broadening.

The convolution data of LSFO are shown in Fig. 7.7(b). Below the transition temperature, TV , the

fitting data agree with the measurement data very well; Above the transition temperature, the bump at

∼ 50 meV is much broadening and the peak at ∼ 70 meV is shifted. In order to observe the Verwey
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Figure 7.7 (a) High - angle(70◦ - 90◦) scattering data of LSFO on Pharos with
Ei = 120.0 meV at 10 K (black), 100 K (red), 200 K (blue), 250 K
(magneta), and 300 K (dark yellow); (b) Phonon scattering data (circle)
and convolution fitting (line) for LSFO at relative temperatures; (c) the
comparison of convolution fitting and measurement data at 250 K from
40 meV to 80 meV.

transition effect on the phonon, the calculation and measurement data are compared at 250 K, which is

just above the transition temperature, Fig. 7.7(c). Therefore, the shifts in vicinity of TV is likely due

to electron - lattice interaction caused by CO. Actually, this phenomenon is similar to the temperature-

dependence Raman spectra of La1−xCaxMnO3 as discussed before, the related atomic motions are i) O2

antistretching to MnO6 bending (Ag(1) to Ag(3)) and in-phase O2 ‘scissorslike’ (B2g(2)) for the phonon

DOS differences of 50 meV and 65 meV excitations; ii) in-plane O2 stretching (B2g(1)) for the phonon

DOS at ∼ 75 meV excitations [16, 17].

Another thing I want to mention is that the low energy phonon spectra even do not agree with the

fitting data, and the difference is bigger and bigger with the increasing of the temperature. However, the

difference is just limited to the intensity, not the energy positions, and these energy regions are mainly

related to the La and Fe ions (partial phonon DOS in section 7.4.2). The possible explanation are the

anisotropy of Fe ions and the changing ionic environment of La3+/Sr2+.
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7.5.2 Temperature dependence of RSFO (R = Pr and Nd)

A similar analysis of the phonon DOS were performed on other RSFO compounds. Fig. 7.8(a) and

Fig. 7.9(a) show the high-angle scattering data of RSFO (R = Pr and Nd). Similar to LSFO, a general

thermal broadening is found. Near the verwey transition temperature, we observe similar features: 1) the

signal at ∼ 50 meV broadened; 2) the peak at ∼ 70 meV moved toward the low energies.

Figure 7.8 (a) High-angle(70◦ - 90◦) scattering data of PSFO on ARCS with Ei =
177.94 meV at 10 K(black), 100 K(red), and 210 K(blue); (b) Phonon
scattering data (circle) and convolution fitting(line) for PSFO at rela-
tive temperatures.

As the discussion in the former section, the DOS of phonons of RSFO (R = Pr and Nd) at different

temperatures are fitted by the data at base temperature, the thermal broadening is introduced by con-

voluting with the gaussian functions, Fig. 7.8(b) and Fig. 7.9(b). The broadening at ∼ 50 meV and

the shifting at ∼ 70 meV, and the differences between the phonon DOSs at 170 K(just below TV ) and

210 K (just above TV ) are more and more significant with the decreasing ionic size. Furthermore, the

simulating intensities at the low energy phonon DOSs are worse and worse.

Fig. 7.10 shows the FWHM of the relative gaussian functions for RSFO (R = La, Pr, and Nd).

Compared the FWHM of this series of compounds, we could clearly learned that the LSFO has the

smallest value and PSFO has the largest. Thus, the energy resolution of LSFO is the best and PSFO

is the worst due to the different initial energies of LSFO (120 meV), NSFO (160 meV), and PSFO

(177.94meV). The broadening parameter of LSFO is also compared to LFO, they agree with each other
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Figure 7.9 (a) High - angle(70◦ ∼ 90◦) scattering data of NSFO on Pharos with
Ei = 160.0 meV at 10 K(black), 100 K(red), 210 K(blue), and 300
K(magneta); (b) Phonon scattering data (circle) and convolution fit-
ting(line) for NSFO at relative temperatures.

as we expected due to the same initial energies for LSFO and LFO.

7.5.3 The Phonon DOS of RSFO (R = La, Pr, Nd, and Sm) at 10 K

The high-angle scattering and phonon DOS data of RSFO (R = La, Pr, Nd, and Sm) at 10 K are

plotted in Fig. 7.11. In LSFO, PSFO, and NSFO, the shapes and the intensities of the scattering data

are pretty close to the energy region of oxygen vibrations at high energies (higher than 50 meV); the

data are pretty similar at the low energy part (less than 50 meV), while the intensities are different as

the ionic size of R-site decreases from La3+ to Nd3+. One possible reason is the different ionic size

of R3+ and the relative structures, another is the cross-section of the R, La ∼ 9.7 barn, Pr ∼ 2.7 barn,

Nd ∼ 16.6 barn, Sm ∼ 39 barn. Hence, the contribution of R3+ to the intensity can not be ignored at

low temperature, which is similar to what we have observed in RFO. For the Sr doped Sm sample, it

has a little bit different: although the high-energy signals are still weak as SFO, the low-energy data are

observable due to the smaller absorption, one-third of SFO. Although the high energy signals are still

faint by using higher Ei = 290.95 meV, it looks like that they are better than the low incident energy

data. The side effect for this bigger incident energy procedure is the worse energy-resolution, it is hard

to discuss the low energy data. Therefore, we must combine the low and high incident energy data and

analyze them quantitatively.
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Figure 7.10 The comparison of the full width at half maximum(FWHM) of the
convoluting gaussian functions for the anharmonic broadening of
RSFO (R = La, Pr, and Nd) as a function of temperature.

Figure 7.11 High-angle scattering (a) and phonon DOS (b) data of RSFO (R = La,
Pr, Nd, and Sm) at 10 K.

The high energy phonon DOSs of LSFO, PSFO and NSFO agree with each other very well; the

low energy phonon DOSs have the similar shapes. In SSFO, Ei = 177.94 meV, the interference of Sm

absorption is more significant: the agreement of the ∼ 20 meV and 30 meV peaks are pretty good; the

signal of the ∼ 40 meV peak is detectable; the ∼ 50 meV and 70 meV peaks are too faint to be nominated.

As Ei = 290.95 meV, the signal intensities are good, but the bad resolution masks the identification

of parts in phonon DOS. Compared to the NSFO measurement with the same incident enrgy, 290.95

meV, similar phonon DOS is observed. Hence, the SSFO just can be analyzed quantitatively, not as the

qualitative discussion in LSFO, PSFO, and NSFO.
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Figure 7.12 Phonon DOS data of LSFO(black) and NSFO(blue) on Pharos with
Ei = 160.0 meV at 250 K and 210 K respectively, and PSFO(red) on
ARCS with Ei = 177.94 meV at 210 K.

7.5.4 The Phonon DOS of SFO (R = La, Pr, and Nd) at 250/210 K

At 250/210 K, which are just above the transition temperatures, the Phonon DOS of RSFO (R = La,

Pr, and Nd) are compared in Fig. 7.12. Because they have the similar lattice structure, R3̄c, the DOS

spectra of these three compounds are expected to agree with each other. At the transfer energy from 10

meV to 40 meV, the intensities are different because of the different cross-section of R and the lower

intensity of NSFO compared to LSFO is perhaps due to the stronger partial DOS contributions from Fe

and O, which are similar as the phonon DOS at 10 K. At the energy region from 40 meV to 70 meV, the

different intensities are due to the lattice effect on O-site with R-site ion substitution.

7.6 The Comparison of the Ground State of Phonon of RFO and RSFO

The high-angle scattering and phonon DOS data of the parent and Sr doped compounds are compared

in Fig. 7.13. (Since the high-angle scattering data has similar results of the phonon DOS data, we will just

compare the DOS data following.) As R = La, Pr, and Nd, we could get the similar comparison results

with the Sr doped: i) the ∼ 15 meV excitation is much broader and a little bit harden; ii) at ∼ 25 meV and

40 meV, the intensities drop a little bit and the excitation is slightly soften; iii) the ∼ 50 meV excitation

is more significant; iv) the ∼ 65 meV and ∼ 80 meV excitations broaden and shift to the low energies;

v) a new excitation shows up at ∼ 75 meV. Based on the phonon-phonon/lattice-lattice discussion of the

partial phonon DOS in sections 7.2 and 7.4, the low energy excitation (less than ∼ 45 meV) signals are
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Figure 7.13 High - angle scattering(a), (c), (e), (g) and phonon DOS(b), (d), (f),
(h) data comparison of RFO and RSFO (R = La, Pr, Nd, and Sm) at
10 K.
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the result of the total contribution of metal and oxygen ions, and the high energy excitation (larger than

∼ 45 meV) signals is just the result of oxygen ions. With the Sr ions doped, the doped hole changes Fe3+

ions in RFO into Fe3+ and Fe5+ ions in the ordered RFO, thus the environment of O ions changes a lot

which leads to the difference of the partial DOS of oxygen ions. As discussed in the previous section,

section 7.5.1, the Raman spectra of LMO and Ca-doped compounds, La1−xCaxMnO3, have the similar

temperature dependence and it is related to the atomic motions of oxygen [16, 17]. Since the excitation

frequency is determined by both the force constant and atomic mass, section 7.2, the partial phonon

DOSs of heavy metal ions do not change a lot. Therefore, the electron-lattice interaction should play a

role for the CO and O modes will be affected a lot.

7.7 Summary

After analyzing the temperature dependence of phonon spectra of LFO and RSFO, the thermal broad-

ening in the phonon spectra due to lattice anharmonic can be accounted for. The remaining shifts in DOS

of RSFO above and below TV are very similar to the CO case of La1−xCaxMnO3, therefore the effect

of electron-lattice interactions needs to be considered. In order to understand the electron-lattice interac-

tions, the phonon DOSs of RSFO and the related parent compound were compared and the shell model

is applied to calculate them. And O modes are most affected.
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CHAPTER 8. SUMMARY AND DISCUSSION

8.1 Summary

Due to its special magnetic and transport properties, the transition-metal oxide (TMO) with strong

electron correlation has received considerable attention. It has been widely recognized by researchers

that CO arises from the coupling or the competition among Coulomb interaction, magnetic energy, and

electron-phonon/electron-lattice interaction. In this thesis, we applies inelastic neutron scattering (INS)

to study the exact driving force of the charge ordering (CO) in a series of R1/3Sr2/3FeO3 (R: rare earth

metal).

The magnetic exchange energy can be obtained from the magnetic spectra by INS measurement.

We have shown that the magnetic energy is the dominant interaction to CO in La1/3Sr2/3FeO3, which

agrees with the theoretical prediction conducted by T. Mizokawa, et al. [1]. We arrived at this conclusion

by determining that the large ferromagnetic exchange energy (JF ) occurring between Fe3+-Fe5+ pairs

stabilizes the CO state. However, since the observed CO structure also minimizes the Coulomb energy,

we cannot unambiguously confirm the dominance of the magnetic interaction. Therefore, we address this

issue by examining other RSFO with different rare earths. Because of the smaller R ions, we expected the

crystalline distortions to increase the charge-transfer (CT) gap and narrow the electronic bandwidth. The

net result is to reduce electronic screening, thereby enhancing the Coulomb interaction and stabilizing

the CO. Nevertheless there was a contrary observation that CO was destabilized with decreasing ion (R)

size due to the reduction of TN [2, 3]. This observation might support the magnetic mechanism, and

should imply that the CO is suppressed due to weaker magnetic interactions in the smaller rare earth

compounds. Hence, the INS spectra measurement of this series of compound were very important to test

this scenario.

However, the crystal electronic field (CEF) excitation of the magnetic rare-earth ion contributes

strongly to the magnetic spectra of RSFO. In order to account for the CEF signal from the total magnetic
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spectra and grasp the pure signal of Fe magnetic scattering, we first analyzed the parent compounds

RFeO3 (R: rare earth metal) by the assumption that the ionic environment of R3+ in RSFO is similar to

RFO. The CEF excitation parameters are determined by fitting in both energy- and momentum-space.

Simultaneously, calculations of the Fe spin-wave spectra of of RFO were performed using linear nearest-

neighbor (NN) Heisenberg Model. In Table 8.1, the lattice distortion increases with the R-site substitution

from La to Nd, so the superexchange will be weaker, which leads to smaller magnitude of the antiferro-

magnetic exchange energy JAF . We also had unexpected observations during the analysis of the CEF of

PFO and SFO: i) two unreported CEF excitations are observed (E70 ∼ 80 meV and E80 ∼ 100 meV); ii)

we measured the CEF of SFO by INS for the first time and the result agrees with the infrared spectrum.

The characterization and the magnetic spectrum fitting results of RSFO are listed in Table 8,1: i) the

lattice distortion increases with the R-site substitution from La to Nd, which is the same as RFO; ii) |JAF |

is the same in LSFO and PSFO, and bigger in NSFO; iii) JF is independent of R substitution; iv) the CT

gap of NSFO is the largest among those three compounds [3]. Furthermore, the lattice distortion of the

NSFO should be close to the lattice effect PSFO due to the geometric tolerance factor. Therefore, we

can conclude that i) the magnetic energy is the main driving force to the CO state of LSFO and PSFO;

ii) increased |JAF | destabilized the CO of NSFO and the contribution of magnetic energy to the CO is

weaker. Maybe the Coulomb energy effect on CO is unnegligible.

The |JAF |s of RFO and RSFO were compared. There was a ∼ 20% increase of |JAF | in NSFO

compared to NFO, and a 30% reduction in LSFO and a 20% reduction in PSFO compared to LFO and

PFO, respectively. Since RFO is a typical insulator and RFSO is a semiconductor, we propose that the

MCDW is a charge density wave with appreciable hole density in the AF region between the domain

walls. Moreover, the distortion per cents of the lattice are listed in Table 8.2. In perovskite oxides with

a (180◦ - ω) M-O-M bond, the bond-length modulation and bond angle enter the overlap integral b is

expressed as [4],

b2 ∼ cos2(ω/2)/d7 , (8.1)

where d is the average bond length.

Therefore, there are two origins for the increased |JAF |: i) the CT gap, which will increase the

electron hopping energy between the interacting ions of the superexchange; ii) the lattice distortion,
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Table 8.1 The structural properties and exchange energies in RFO and RSFO.

LaFeO3 PrFeO3 NdFeO3

space group Pnma Pnma Pnma
bond length(Å)

Fe - O(1) 2.002 2.004 2.005
Fe - O(2) 2.004 2.006 2.007
Fe - O(2) 2.005 2.015 2.017

bond angle
∠ Fe - O(1) - Fe 157.6◦ 153.3◦ 151.2◦

∠ Fe - O(2) - Fe 157.5◦ 152.4◦ 151.4◦

geometric tolerance factor
t 0.951 0.925 0.918

Fe-O-Fe overlap integral
b2 0.0074 0.0072 0.0071

exchange energy
JAF (meV) - 4.90 - 4.55 - 4.45

La1/3Sr2/3FeO3 Pr1/3Sr2/3FeO3 Nd1/3Sr2/3FeO3

space group R3̄c R3̄c R3̄c
bond length(Å)

Fe - O 1.940 1.941 1.939
R - O 2.7413 2.7377 2.7329

bond angle
∠ Fe - O - Fe 173.2◦ 170.5◦ 169.3◦

geometric tolerance factor
t 0.999 0.997 0.996

Fe-O-Fe overlap integral
b2 0.0096 0.0096 0.0096

charge transfer gap
∆(meV) 62 58 85

exchange energy
JAF (meV) - 3.5 - 3.5 - 5.5
JF (meV) 5.1 5.1 5.1
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which is the largest from NFO to NSFO compared the difference of LFO to LSFO and PFO to PSFO .

Table 8.2 The structure distortion from RFO and RSFO.

Pnma → R3̄c
LFO→LSFO PFO→PSFO NFO→NSFO

bond length(Å)
∆Fe-O(1)(%) 0.062(3.1%) 0.063(3.1%) 0.066(3.3%)
∆Fe-O(2)(%) 0.064(3.2%) 0.065(3.2%) 0.068(3.4%)
∆Fe-O(2)(%) 0.065(3.2%) 0.074(3.7%) 0.078(3.9%)

bond angle
∆∠Fe-O(1)-Fe(%) -15.6◦(-10.2%) -17.2◦(-11.2%) -18.1◦(-12.0%)
∆∠Fe-O(2)-Fe(%) -15.7◦(-10.0%) -18.1◦(-11.8%) -17.9◦(-11.8%)

Fe-O-Fe overlap integral
∆ b 0.0022(29.7%) 0.0024(33.3%) 0.00158(35.2%)

To address the presence of the electron-phonon/electron-lattice, the temperature-dependence phonon

spectra of RSFO were analyzed. There are two features that suggest some role for electron-phonon/electron-

lattice couping based on phonon data as the temperature is above/below TV : i) the phonon at ∼ 50 meV

reduced; ii) the softening of ∼ 70 meV phonons. And it has been proved that those singularities do not

come from thermal factor. Furthermore, the similar phonon phenomenon is observed in the temperature-

dependence Raman spectra of La1−xCaxMnO3, which has been proved as the result of electron-lattice

interaction, thus the electron-lattice interaction should have played some role in the CO state. Based on

the partial phonon DOS, those two features belong to the oxygen phonon region which indicates that

the CO state is relative to the oxygen phonons. Therefore, the electron-phonon/electron-lattice might

be recognized from the environment of the oxygen phonons which is changed from a average valence

environment, Fe3.67+, into the ordered diacritical valence environments, Fe3+ and Fe5+.

8.2 Future Work

Although the magnetic spectrum of RSFO have been studied very well, there is still an uncertainty

about nature of excitations in region of 20 meV-30 meV. This signal might come from the residual

phonons and empty-can, which are poorly subtracted. Unfortunately, density-of-state cannot provide

enough information and the details of the magnetic dispersion need to be obtained. The single crystal

data will help a lot, but there is no good one grown by the image-furnace technique for inelastic neutron

scattering measurement due to the rigorous requirement of the high oxygen pressure currently.
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Due to the strong neutron absorption of Sm in SSFO and SFO, the magnetic and phonon spectra are

not analyzed very well. A more precise instrument with high revolution and flux needs to be applied.

There are still a lot of unfinished work in the phonon spectrum of RFO and RSFO, such as, develop-

ing the model for phonon dispersion and density-of-state, identifying modes that have strong electron-

phonon/electron-lattice coupling, measuring the phonon spectra by a single crystal, and so on. With

the help of RFO, the role of electron-phonon/electron-lattice interaction in the RSFO system will be

determined.
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APPENDIX A. Iodometric Titration

Standard Operating Procedures

• Ingredients:

0.075 mol/l Na2S2O3

0.010 mol/l KMnO4

0.075 mol/l KI

2.0 mol/l KI

1.0 mol/l HCl

1.0 mol/l H2SO4

Starch indicator solution

1. Preparation of the Solutions:

Solutions containing HCl or KI may be light sensitive and should only be prepared as needed. If

mixed before actual use, the solutions may contain free iodine and can no longer be trusted. The

other solutions should be stable for extended periods.

a) Prepare 0.075 mol/l Na2S2O3

i) Weigh out 4.6521mg Na2S2O3 · 5 H2O(Mm = 248.112 mg/mol); Place into a 250ml volumetric

flask; Add some distilled H2O and stir to dissolve.

ii) Top off gradually with distilled H2O to 250ml line, swirling throughout.

b) Prepare 0.010 mol/l KMnO4

i) Weigh out 0.3952mg KMnO4(Mm = 158.09 mg/mol); Pour into a 250ml volumetric flask; Add

some stilled H2O and stir to dissolve.

ii) Top off gradually with distilled H2O to 250ml line, swirling throughout.
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c) Prepare 0.075 mol/l KI

i) Weigh out 3.1125mg KI(Mm = 165.998 mg/mol); Pour into a 100ml beaker; Add some dis-

tilled H2O and stir to dissolve; Transfer the solution into a 250ml volumetric flask and swirling

throughout.

ii) Top off gradually with distilled H2O to 250ml line.

d) Prepare 2.0 mol/l KI

i) Weigh out 33.1996mg KI. Pour into a 100mlbeaker; Add some distilled H2O and stir to dissolve;

Transfer the solution into a 100ml volumetric flask and swirling throughout.

ii) Top off gradually with distilled H2O to 100ml line.

e) Prepare 1.0 mol/l HCl

i) Prepare 2.0 mol/l HCl

(1) Put about 250ml distilled H2O into a 1000ml volumetric flask.

(2) Pour 165ml full strength HCl(12.1N) into the same flask and swirl.

(3) Top off gradually with distilled H2O to 1000ml with distilled H2O and swirl throughout.

ii) Prepare 1.0 mol/l HCl

(1) Add about 25ml distilled H2O into a 100ml volumetric flask.

(2) Pipette 8.3ml full strength HCl into the same flask using a pipette and swirl.

(3) Top off gradually with distilled H2O to 100ml with distilled H2O and swirl throughout.

(4) Alternatively, can dilute 50ml 2.0M HCl above with 50ml distilled water.

f) Prepare 1.0 mol/l H2SO4

i) Put about 250ml distilled H2O into a 1000ml volumetric flask. DON′T ADD H2SO4 FIRST!

ii) Pour the volume of full strength H2SO4 into the same flask and swirl.

iii) Top off gradually with distilled H2O to 1000ml with distilled H2O and swirl throughout.

g) Prepare Starch indicator solution

i) Weigh 1mg of soluble starch. Add a few drops of distilled H2O and rub mixture into a paste.

ii) Prepare 100ml boiling distilled H2O and add starch paste and stir well.
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iii) Boil this suspension for about 1min., then let it cool.

iv) Allow to settle, then decant fine suspension into covered flask or vial; the solution can be filtered

somewhat if desired. Many want to keep refrigerated.

v) The starch indicator solution can spoil and should be prepared fresh when needed.

2. Experimental Procedures:

a) Demarcating the standard Na2S2O3 · 5 H2O: although the ratio of Na2S2O3 to H2O is nomi-

nally 1:5 in the bottle off of the shelf (for the 250 ml solution prepared as described above,

the nominal molar concentration of Na2S2O3 is 0.075 mol/l), we must experimentally verify

the molar concentration of Na2S2O3

i) Transfer 20 ml KI and 20 ml KMnO4 solutions into a 250 ml Erlenmeyer flask.

ii) Add more than 4 ml 1M H2SO4 as acid environment.

iii) Add some starch solution as indicator, the color of the solution should be blue. It is advisable to

calculate the approximate volume of Na2S2O3 needed and to only add the starch solution when

the titration is nearing the end point.

iv) Titrate with Na2S2O3 solution, drop by drop, until the blue disappears; be sure to record initial

and final titrant volumes. Stirring vigorously. When approaching endpoint, greenish tint will dis-

appear, leaving only dark blue. When blue color disappears, a slight pinkish color may remain;

if titration is continued, solution will be white, almost clear. Choose the endpoint consistently;

since a ratio will be taken, differences in endpoint choice will roughly cancel. Record volume to

titrant used (V1). Patience pays when you approach the end point.

v) The volume of Na2S2O3 solution used should be around 13 ml. Calculate the molar density of the

Na2S2O3 solution from the actual volume used.

b) Titrating the Sample (The following steps are very important, don’t mix it up! )

i) Carefully weigh out enough sample to use up at least 10 ml of titrant and place into an Erlenmeyer

flask. (250ml flask is recommended!!).

ii) Add some water inside the flask.

iii) Add the 2.0 mol/l KI solution.
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iv) Add the 2mol/l HCl, they will help to dissolve the sample. If the sample doesn’t dissolve very

well, you can heat the solution, but remember to add some Na2S2O3 to produce CO2 as the

environment (In fact in the CO2 atmosphere, HCl can also be added at first, then KI ).

v) Add the 1mol/l H2SO4 and starch; the color will be blue.

vi) Add some Na2S2O3 in the cool solution as the environment (the ions Cu+ and I− can be oxidized

by the oxygen easily in the acid environment).

vii) Use the standardized Na2S2O3 solution to titrate. Remember to record the volume of titrant

used.

viii) At last, remember to clean, dry and seal all glassware.

3. Calculations:

a) Molar concentration of Na2S2O3. Mixing the KI and KMnO4 solutions in an acidic environ-

ment (as in steps above) liberates free iodine via the reaction

2MnO−
4 + 15I− + 16H+ −→ 2Mn2+ + 5I−3 + 8H2O , (A.1)

If NKMnO4 is the total number of mols of KMnO4 molecules in solution, then it follows from

equation (1) that the number of free iodine molecules produced in the reaction is

NI2 =
5

2
NKMnO4 , (A.2)

Adding Na2S2O3 results in the following reaction,

I2 + 2S2O
2−
3 −→ 2I− + S4O

2−
6 , (A.3)

From equations (2) and (3) it follows that

NNa2S2O3 = 2NI2 = 5NKMnO4 , (A.4)

is the number of mols of Na2S2O3 required to turn all iodine molecules into iodide. There-

fore, the molar concentration of the Na2S2O3 solution must be
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nNa2S2O3 =
5NKMnO4

VNa2S2O3

, (A.5)

where VNa2S2O3 is the volume of Na2S2O3 used.

b) Titrating sample. First some definitions of symbols:

N: Total number of mols of sample to be titrated;

m: Mass of sample to be titrated;

M: Nominal molar mass of sample to be titrated;

ν + x: Valence of the metal ion in sample and x is a number between 0 and 1;

y + δ: Oxygen stochiometry of sample and d is a number between 0 and 1;

VNa2S2O3 : Volume of Na2S2O3 used to titrate sample;

nNa2S2O3 : Molar concentration of the Na2S2O3 solution;

NNa2S2O3 : Total number of mols of Na2S2O3 used to titrate sample;

T: metal ion in sample;

k: stoichiometry of metal in sample;

Two relations are readily obvious:

N =
m

M
, (A.6)

and

NNa2S2O3 = nNa2S2O3VNa2S2O3 , (A.7)

As in the case of KMnO4 in equation (1), the metal ion in the sample liberates free iodine in

the following reaction

2T ν+x + (2x)I− −→ 2T ν+ + xI2 , (A.8)
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Again, equation (3) is the reaction equation when Na2S2O3 is added to the solution. From

equations (3) and (8) we can find that

NNa2S2O3 = xN , (A.9)

Substituting equations (6) and (7) into equation (9) and rearranging gives

x = nNa2S2O3VNa2S2O3

M

m
, (A.10)

The relationship between the valence of the metal ion (i.e. x) and the oxygen stoichiometry

(i.e. δ) will vary from sample to sample based on the following. Oxygen has a valence of

-2 and may be viewed as accepting electrons. In the oxide samples of interest to us, the

number of electrons that O2− accepts must be balanced by the combination of stoichiometry

and valence of all the other ions. Therefore,

∑
(kiνi) + k(ν + x) = 2(y + δ) , (A.11)

where ki and νi are stoichiometry and valence of all other ions, respectively. Note that

equation (11) assumes that the oxygen off stoichiometry only affects the valence of the metal

ion of interest and no other ion.

Example 1: CuO

From the chemical formula of CuO, we know that y = 0 and k = 1. There are no other ions to

consider. Then from equation (11), once the titration has been performed, the oxygen content

is given by

δ =
(1 + x)

2
, (A.12)

Example 2: LaFeO3

Again, from the chemical formula, k = 1 and ν = 2. In addition, in this case we must consider
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La which has stoichiometry kLa = 1 and valence νLa = 3.

kLaνLa + k(ν + x) = 3 + 2 + x = 2(y + δ) , (A.13)

Example 3: La1/3Sr2/3FeO3

Based on the chemical formula, k = 1 and ν = 2. In addition, in this case we must consider

La which has stoichiometry kLa = 1/3 and valence νLa = 3, and Sr, which has stoichiometry

kSr = 2/3 and valence νSr = 2.

∑
(kiνi) + k(ν + x) = 1/3× 3 + 2/3× 2 + 2 + x = 2(y + δ) , (A.14)
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APPENDIX B. Sm3+ Absorption Calculation

The neutron absorption cross section of Samarium is large, 5922.56 barn, which is almost 150 times

larger than the scattering cross section. In order to account for large absorption effects, we are going to

calculate the transmission efficiency and use it to correct the neutron scattering signals.

The incident angle between the incident beam and the sample, φ, the scattering angle between the

incident and scattering beams, 2θ, and the thickness of the sample, t, are the first three factors that we

need to consider because it will decide the length of the neutron beam passed. Fig. B.1 shows the

transmission sketch and A is a random point in the sample.

Figure B.1 The transmission sketch of Samarium sample. li(lf ) is pathway of the
the neutron beam passed(left) in the sample; x(y) is the distance of the
point to the edge of the sample on the sample parallel(perpendicular)
direction; a(b) is the angle of the point to the front(back) ending point
on the sample parallel direction.



192

Assume

a = arctan(
y

x
), b = arctan(

t− y

x
) , (B.1)

and

θ1 = φ− b, θ2 = φ+ a , (B.2)

From Fig. B.2, we can easily find that the length that the the neutron beam passed in the sample, li,

is

li =
y

sin(π − φ)
, (B.3)

The calculation of lf is more complicated: there are 3 cases which are decided by the scattering

angles.

i) 2θ ≤ θ1

the scattered neutrons go through the can and detected by the detectors, which is shown in Fig. B.2

lf =| t− y

cos(π2 + 2θ − φ)
| , (B.4)

ii) θ1 ≤ 2θ ≤ θ2

The scattered neutrons go through part of the can and hit the frame of the empty can. So they are

absorbed by Gd cover and can not be recorded by the detectors, Fig. B.3(a)

lf =
x

cos(2θ − φ)
, (B.5)

iii) 2θ ≥ θ2

The scattered neutrons do not go through the can and go back to the front panel of the empty can.

The detectors can not record the them, Fig. B.3(b)
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Figure B.2 The transmission sketch of Samarium sample.(a) θ1 ≤ 2θ ≤ θ2, (b) θ2
≤ 2θ.

lf =| y

cos(π2 − 2θ + φ)
| , (B.6)

So we can calculate the transmission efficiency by the relationship

T = I exp[−li (µai + µs)− lf (µae + µs)] , (B.7)

where µai and µaf are the absorption efficiency at different energies, which are defined as following

equations; µs is the scattering efficiency which is almost constant at different energies.

µai = µa ×
√

25.3

ei
,

µaf = µa ×
√

25.3

ei − e
,

µs = µs ×
√

25.3

ei
,

(B.8)

where the unit of energy is meV and the unit of efficiency is cm−1.

The calculated transmission coefficients are angle and energy dependent, Fig. B.3. With the sample

can oriented at 135◦ to incident beam, the weakest signal at 135◦ and the strongest signal at 45◦ because
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Figure B.3 The calculated neutron transmission coefficients.

of the dark angle position as we expected. For example, Fig. B.4(a) reveals the normalized integra-

tion along the scattering-angle direction in the energy region, 20.5 ∼ 30.5 meV, and the inset figures,

Fig. B.4(b) and (c), exhibit the lowest and highest integrate angle position. We can clearly observe: i)

the neutron absorbing coefficient is decreasing as the scattering angle going up to 45◦(decided by the

dark angle); ii) the absorption is stronger and stronger as the angle increasing toward 135◦(dark angle

position).

Figure B.4 (a)The total integrate transmission coefficient along the scattering -
angle direction in the energy region, 20.5 - 30.5 meV; and the specific
scattering - angle positions around 45◦ (b) and 135◦(c).

The normalized integration over energy is shown in Fig. D.5. 7◦ - 30◦ and 70◦ - 90◦ are the angle
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ranges that I usually select for the low and high angle regions. As the tranferred energy increasing,

the neutron transmission is decreasing. those two lines of the energy ranges have similar tendency, but

different shape.

Figure B.5 The integrate transmission coefficient in the energy-space with the 2θ
ranges: 7◦ ∼ 30◦ and 70◦ ∼ 90◦.
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APPENDIX C. Data Reduction of SFO

In above discussion, we have calculated the absorption correction for the Sm containing samples.

Actually, it is somewhat complicated to reduce the experimental data. The experimental data is the

total signal including the sample and aluminum can scatterings, we have to subtract the can information

from the raw data before we revised the Sm data with the absorption correction. Fig. C.1 shows the

comparison of the experimental and empty can measurements in low-angle and high-angle region. We

can clearly learn that the low-angle raw data contain a large contribution from the empty can signals

above ∼ 65 meV and the high-angle raw data are mainly empty can scattering above ∼ 35 meV. The

useful energy regions of the sample are different at low-angles and high-angles because the absorption

of Sm3+ ion is scattering angle dependent. In Fig. C.1, the shapes of empty can scattering and total

scattering are compared. Usually the absorption correction of the can must be applied as well in a data

reduction process.

Figure C.1 Magnetic scattering intensities of SFO and SSFO with the Sm3+ ab-
sorption correction at Ei = 177.94 meV and T = 10 K.

From the studies on the other RFO (R = La, Pr, Nd, and Y) and CEFs, we know that magnetic

excitation of Fe3+ results a peak near ∼ 70 meV. The two CEFs of Sm3+ have energies less than ∼ 50

meV, hence the low - angle data is useful, despite the absorption. However, the isolation of the magnetic



197

scattering data also depends on the high - angle data, which has strong absorption effects higher than ∼

35 meV. The other method to obtain the pure magnetic scattering peak need to be considered. From the

X - ray diffraction characterization, we know that SFO has the similar lattice structure as the other RFO,

the high - angle plot shall be similar to the others: Higher than 35 meV, there are phonon DOS peaks

at 40 meV ∼ 50 meV and 50 meV ∼ 60 meV respectively. In the approximate magnetic scattering of

SFO, Fig. E.1, there are uncleaned phonon signals included in the corresponding energy region. With

the calculation of the Q - cuts in SFO, we also proved this assumption.
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APPENDIX D. Data Reduction of SSFO

The basic data reduction method for SSFO is similar to the SFO in the previous chapter: we calculate

transmission coefficient and multiply it to the sample data. Compared to SFO, the sample signal of SSFO

should be better than the case of SFO since there is 2/3 less Sm3+. However, the amount of SSFO sample

that we have is less than the SFO because of the sensitive synthesis requirement (section 3.1), this case

is still not simple.

Figure D.1 The comparison of the low - angle (7◦ - 30◦)(a) and high - angle (70◦

∼ 90◦ )integration(b) of SSFO and empty can at 10 K and ∼ Ei = 180
meV.

In order to check how strong the Sm3+ absorption is in SSFO, we compared the raw data of SSFO

with the empty can measurement, Fig. D.1. We can clearly see that the the empty can signal is less than

the total raw data of SSFO and can not be ignored. For energy transfer larger than 90 meV in both low-

angle and high-angle integrated scattering regions, observed scattering comes entirely from the empty

can. Therefore, high energy magnetic scattering signal is washed out by poor signal/noise and we can not

make a conclusion whether the high energy magnetic excitations exist. In SFO: the interesting energy

region for Fe3+ magnetic excitation is less than 65 meV. However, we do have a big trouble in SSFO:
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the most interesting energy region between 50 meV ∼ 120 meV is very difficult to analyze.

Figure D.2 Magnetic scattering intensities of SFO and SSFO with the Sm3+ ab-
sorption correction at Ei = 177.94 meV and T = 10 K.

Before we try to dig out the magnetic scattering data at energy higher than 65 meV, I am going to

analyze the low energy magnetic spectrum first. Fig. D.2 shows the comparison of the magnetic spectrum

of SFO and SSFO after the Sm3+ absorption correction. For SSFO, the peaks at ∼ 20 meV and 35 meV

are the CFEs and the peak at ∼ 45 meV is the signal of residual aluminum can and phonon backgrounds.

Although the Sm3+ quantity in SSFO is one third of SFO′s, the peak intensities at CFEs are not one third

of SFO′s. This can be explained as the remaining sample can and phonon signals which exist in the other

RSFO compounds.

Now, I turn to the high-energy part of the magnetic scattering spectrum. From the discussion in the

previous chapters, we know that the neutron absorption is angle- and energy-dependent: if the scattering

angle is constant, the absorption is larger at high energy transfer than low energy; if we rather fix the

energy, the absorption increases with the scattering angle is up to 45◦, and decreases as the angle is

raised from 45◦ to 135◦. Hence, there are two methods to solve the absorption problem: changing the

integrating angle regions or the incident energy. Because the magnetic excitation signal decreases with

the Q and the phonon signal is proportional to Q2, we have to select the best low angle region to probe

magnetic excitation and the best high angle region for phonons. Based on the other RSFO(R = La, Pr,

and Nd) compounds, the low - angle and high - angle regions keep at 7◦ ∼ 30◦ and 70◦ ∼ 90◦. Increasing
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Figure D.3 Inelastic neutron scattering intensity of SSFO (color scale) versus
scattering angle and energy transfer with ∼ Ei = 180 meV (a) and
∼ Ei = 290 meV (b) at T = 10 K. The white lines delineate region
where low scattering angle region is isolated.

the incident energy will lower the absorption and is a better option. The larger incident energy lowers

the absorption cross-section and provides much more measurement signal, Fig. D.3. Comparing these

two different measurement with the same integrating angle, more signal can be observed in the higher

incident energy one.

Figure D.4 The comparison of the low-angle (7◦ - 30◦)(a) and high-angle (70◦ -
90◦ )integration(b) of SSFO with Ei ∼ 290 meV and empty can with
Ei ∼ 180 meV at 10 K.

The only shortcoming for changing the incident energy is that the energy resolution is worse, so we

must set up a reasonable incident energy. Fig. F.4 shows the comparison of raw data of SSFO with Ei

∼ 290 meV and the data of empty can with Ei ∼ 180 meV, and there are signal left at high energy part
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Figure D.5 The Q-cuts comparison of Ei ∼ 180 meV((a), (c), (e), (g)) and ∼ 290
meV((b), (d), (f), (h)) at 10 K. The brown dash line is the starting point
of the experimental recording.

in both scattering angle regions. (The empty can was not measured with Ei ∼ 290 meV, so we have to

substitute it with the data at ∼ 180 meV.) In addition, the Q-cut of SSFO at high energy regions with

different Ei are compared in Fig. D.5. As Ei ∼ 290 meV, there is magnetic signal at low Q; at Ei ∼ 180

meV, it is hard to say the magnetic signal due to the boundary effect.

The magnetic scattering spectrum of SSFO with Ei ∼ 290.95 meV is plotted in Fig. F.6 and compared

to the spectrum with Ei ∼ 177.94 meV. The low energy excitation signals with both incident energies

agree with each other very well and the high energy excitation signals also show up, but it is still very

hard to conclude whether or not the excitation gap exists.

Since it is hard to answer the gap question quantatively, we have to discuss it qualitatively. The low-

angle and high-angle scattering spectrum of RSFO are compared in Fig. D.7(a) and (b). In the low-angle

scattering spectrum, there is a drop in LSFO and PSFO, and a bump in NSFO at the magnetic gap region,

60 meV ∼ 80 meV; In the high-angle scattering spectrum, there is a bump in LSFO, PSFO and NSFO

at the same energy range. Therefore, the energy gap exists in LSFO and PSFO and is not observed in

NSFO. The magnetic scattering in SSFO is more complicated due to the different incident energies, we

will discuss them separately: i) Ei ∼ 177.94 meV, the scattering intensities are very low in the low- and

high-angle data when the transfered energy is larger than ∼ 65 meV. We will not discuss it further. ii)

Ei ∼ 290.95 meV, there is neither a drop, nor a bump in the low-angle data at the gap region. Then, we
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Figure D.6 Magnetic scattering intensities of SFO and SSFO with the Sm3+ ab-
sorption correction at T = 10 K with Ei = 177.94 meV(black) and
290.95 meV(red) respectively.

check the high-angle data. It is very disappointed to observe the disappeared bump at the gap region due

to the energy resolution.(We compared it with the high angle data of NSFO at Ei ∼ 177.94 meV and

290.95 meV, Fig. D.7(c), it clearly shows the energy resolution effect) Because the lattice structures of

RSFO(R = La, Pr, Nd and Sm) are similar, we assume the phonons are similar in them. Therefore the

gap should not exist. SSFO is similar to NSFO, not to LSFO and PSFO.

Another way to prove the excitation gap is the Q-cut figures. Due to the absorption factor in SSFO,

we can not compare the same energy scale data of LSFO and SSFO on the same scale. Therefore, we

will calculate the magnetic contribution of Fe3+ from Q-cuts and compare the tendency of the integrated

intensities with the other RSFO. We do not know the JAF and JF in SSFO, so the only factor we could

fit is phonon. Fortunately, there is no contribution from Sm3+ CEF for transfered energy larger than 40

meV. The remaining part of the Q-cuts will be just the magnetic signal of Fe3+, Fig. D.8.

Table D.1 The integrated intensities of Fe3+ magnetic states of Q - cuts in
RSFO(R = La, Pr, Nd and Sm).

Energy Range State number (Sω) SSFO
(meV) LSFO PSFO NSFO E (meV) Sω

50.5 : 60.5 0.796 0.672 0.408 50.25 : 59.25 0.064
60.5 : 70.5 0.211 0.253 0.561 59.25 : 69.75 0.076
70.5 : 80.5 0.068 0.088 0.374 69.75 : 80.25 0.051
80.5 : 90.5 0.177 0.152 0.176 80.25 : 89.25 0.048
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Figure D.7 Neutron intensity summed over the low angle range from 7 - 30◦(a)
and the high angle range from 70 - 90◦ in RSFO(R = La, Pr, Nd and
Sm); (c) the high angle intensity comparison of NSFO (Ei = 177.94
meV and 290.95meV)and SSFO(Ei = 290.95 meV).

The integrated intensities were listed in Table D.1. The energy step size of SSFO is 1.5 meV, so the

energy ranges of the Q-cut are not exact same as the others. And the values of integrated intensities are

plotted in Fig. D.9: For LSFO and PSFO, the state numbers of Fe3+ are decreasing from 50.5 meV - 60.5

meV to 70.5 meV - 80.5 meV and then increasing in 80.5 meV - 90.5 meV, so the bottom of the energy

gap is the cut 70.5 meV - 80.5 meV; For NSFO, the state numbers of Fe3+ are increasing from 50.5 meV

- 60.5 meV to 60.5 meV - 70.5 meV and then decreasing after 60.5 meV - 70.5 meV, so the top of the

energy band is the cut 60.5 meV - 70.5 meV and the energy gap does not exist. Because the tendency

of the integrated intensities of SSFO is same as NSFO, we could conclude that there is no energy gap

between the low and high energy bands in SSFO.
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Figure D.8 The Q-dependencies of different energy transfer ranges for SSFO with
∼ 10 meV step: (a) 50.25 - 59.25 meV, (b) 59.25 - 69.75 meV, (c)
69.75 - 80.25 meV, (d) 80.25 - 89.75 meV. The black dots are the ex-
perimental data. The red line it an estimate of the incoherent phonon
background plus multiple scattering. The brown dash line is the start-
ing point of the experimental recording.
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Figure D.9 The integrated intensities of different energy transfer ranges for RSFO
with ∼ 10 meV step: 50.5 - 60.5 meV, 60.5 - 70.5 meV, 70.5 - 80.5
meV, and 80.5 - 90.5 meV. The black dots are the experimental data.
The red line it an estimate of the incoherent phonon background plus
multiple scattering.
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APPENDIX E. LaMnO3 orthorhombic perovskite model

Space group

Pnma

Lattice constants (Å)

5.616 7.789 5.503

Number of atoms in unit cell

20

The atom positions and labels of LMO.

Atom number atom label type basis vector
1 La 1 0.541 0.25 0.007
2 La 1 -0.041 0.75 0.507
3 La 1 -0.541 0.75 -0.007
4 La 1 1.041 0.25 0.493
5 Mn 2 0. 0. 0.
6 Mn 2 0.5 0. 0.5
7 Mn 2 0. 0.5 0.
8 Mn 2 0.5 0.5 0.5
9 O1 3 0.476 0.25 0.577
10 O1 3 0.024 0.75 0.077
11 O1 3 0.524 0.75 0.423
12 O1 3 -0.024 0.25 -0.077
13 O2 4 0.292 0.041 0.206
14 O2 4 0.208 -0.041 0.706
15 O2 4 -0.292 0.541 -0.206
16 O2 4 0.792 0.459 0.294
17 O2 4 -0.292 -0.041 -0.206
18 O2 4 0.792 0.041 0.294
19 O2 4 0.292 0.459 0.206
20 O2 4 0.208 0.541 0.706
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Shell model parameters for each atom of LMO

atom number core charge shell charge spring constant between core atomic weight
(e−) (e−) and shell (dyn/cm) (g/mol)

1 1.68 0.0 1e30 138.9
2 1.68 0.0 1e30 138.9
3 1.68 0.0 1e30 138.9
4 1.68 0.0 1e30 138.9
5 1.62 0.0 1e30 54.94
6 1.62 0.0 1e30 54.94
7 1.62 0.0 1e30 54.94
8 1.62 0.0 1e30 54.94
9 -1.1 -2.24 2.27e6 16.0
10 -1.1 -2.24 2.27e6 16.0
11 -1.1 -2.24 2.27e6 16.0
12 -1.1 -2.24 2.27e6 16.0
13 -1.1 -2.24 2.27e6 16.0
14 -1.1 -2.24 2.27e6 16.0
15 -1.1 -2.24 2.27e6 16.0
16 -1.1 -2.24 2.27e6 16.0
17 -1.1 -2.24 2.27e6 16.0
18 -1.1 -2.24 2.27e6 16.0
19 -1.1 -2.24 2.27e6 16.0
20 -1.1 -2.24 2.27e6 16.0
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Force pairs labels and vector joining pair followed by force tensor/constants for each shell (dyn/cm)

force between the force vector radial force tangential force
pairs’ labels direction constant (F) constant (G)

1 9 0. 0. -1. 83773. -10032.
1 12 1. 0. 0. 60779. -7009.
1 9 0. 0. 0. 5841. -530.
1 12 0. 0. 0. 4930. -441.
1 13 0. 0. 0. 79503. -9461.
1 16 0. 0. 0. 31970. -3432.
1 17 1. 0. 0. 27032. -2851.
1 14 0. 0. -1. 2757. -234.
5 12 0. 0. 0. 100894. -11757.
5 13 0. 0. 0. 91952. -10600.
6 13 0. 0. 0. 91204. -10504.
9 19 0. 0. 0. 22047. -2283.
9 20 0. 0. 0. 21768. -2251.
9 18 0. 0. 0. 17955. -1820.

12 14 0. 0. -1. 17570. -1778.
13 18 0. 0. 0. 19127. -1952.
13 14 0. 0. 0. 18210. -1849.
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APPENDIX F. LaFeO3 orthorhombic perovskite model

Space group

Pm3̄m

Lattice constants (Å)

3.9 3.9 3.9

Number of atoms in unit cell

5

The atom positions and labels of LFO.

Atom number atom label type basis vector
1 La 1 0. 0. 0.
2 Fe 2 0.5 0.5 0.5
3 O 3 0.5 0.5 0.
4 O 3 0.5 0. 0.5
5 O 3 0. 0.5 0.5

Shell model parameters for each atom of LFO

atom number core charge shell charge spring constant between core atomic weight
(e−) (e−) and shell (dyn/cm) (g/mol)

1 2.2 0.0 1e30 138.9
2 2.0 0.0 1e30 55.85
3 -1.4 -2.0 1.6e6 16.0
4 -1.4 -2.0 1.6e6 16.0
5 -1.4 -2.0 1.6e6 16.0

Force pairs labels and vector joining pair followed by force tensor/constants for each shell (dyn/cm)

force between the force vector radial force tangential force
pairs′ labels direction constant (F) constant (G)

1 3 0. 0. 0. 200000. -30000.
2 3 0. 0. 0. 200000. -25000.
3 4 0. 0. 0. 50000. -10000.
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LaFeO3 orthorhombic perovskite model

Space group

Pnma

Lattice constants (Å)

5.564 7.880 5.564

Number of atoms in unit cell

20

The atom positions and labels of LFO.

Atom number atom label type basis vector
1 La 1 0.0287 0.25 -0.002
2 La 1 0.4713 0.75 0.498
3 La 1 -0.0287 0.75 0.002
4 La 1 0.5287 0.25 0.502
5 Fe 2 0. 0. 0.
6 Fe 2 0.5 0. 0.5
7 Fe 2 0. 0.5 0.
8 Fe 2 0.5 0.5 0.5
9 O1 3 0.49 0.25 0.0105
10 O1 3 0.01 0.75 0.5105
11 O1 3 -0.49 0.75 -0.0105
12 O1 3 0.99 0.25 0.4895
13 O2 4 0.298 0.0206 0.729
14 O2 4 0.202 -0.0206 1.229
15 O2 4 -0.298 0.5206 -0.729
16 O2 4 0.798 0.474 -0.229
17 O2 4 -0.298 -0.0206 -0.729
18 O2 4 0.798 0.0206 -0.229
19 O2 4 0.298 0.4794 0.729
20 O2 4 0.202 0.5206 1.229
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Shell model parameters for each atom of LFO

atom number core charge shell charge spring constant between core atomic weight
(e−) (e−) and shell (dyn/cm) (g/mol)

1 1.68 0.0 1e30 138.9
2 1.68 0.0 1e30 138.9
3 1.68 0.0 1e30 138.9
4 1.68 0.0 1e30 138.9
5 1.62 0.0 1e30 54.94
6 1.62 0.0 1e30 54.94
7 1.62 0.0 1e30 54.94
8 1.62 0.0 1e30 54.94
9 -1.1 -2.24 2.27e6 16.0
10 -1.1 -2.24 2.27e6 16.0
11 -1.1 -2.24 2.27e6 16.0
12 -1.1 -2.24 2.27e6 16.0
13 -1.1 -2.24 2.27e6 16.0
14 -1.1 -2.24 2.27e6 16.0
15 -1.1 -2.24 2.27e6 16.0
16 -1.1 -2.24 2.27e6 16.0
17 -1.1 -2.24 2.27e6 16.0
18 -1.1 -2.24 2.27e6 16.0
19 -1.1 -2.24 2.27e6 16.0
20 -1.1 -2.24 2.27e6 16.0
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Force pairs labels and vector joining pair followed by force tensor/constants for each shell (dyn/cm)

force between the force vector radial force tangential force
pairs’ labels direction constant (F) constant (G)

1 9 0. 0. -1. 83773. -10032.
1 12 1. 0. 0. 60779. -7009.
1 9 0. 0. 0. 5841. -530.
1 12 0. 0. 0. 4930. -441.
1 13 0. 0. 0. 79503. -9461.
1 16 0. 0. 0. 31970. -3432.
1 17 1. 0. 0. 27032. -2851.
1 14 0. 0. -1. 2757. -234.
5 12 0. 0. 0. 100894. -11757.
5 13 0. 0. 0. 91952. -10600.
6 13 0. 0. 0. 91204. -10504.
9 19 0. 0. 0. 22047. -2283.
9 20 0. 0. 0. 21768. -2251.
9 18 0. 0. 0. 17955. -1820.

12 14 0. 0. -1. 17570. -1778.
13 18 0. 0. 0. 19127. -1952.
13 14 0. 0. 0. 18210. -1849.
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