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CHAPTER 1. Introduction

Strong electron correlation is believed to be an essential and unifying factor in diverse prop-

erties of condensed matter systems. Ground states that can arise due to electron correlation

effects include Mott insulators,[1] heavy fermion,[2] ferromagnetism and antiferromagnetism,[3]

spin glasses,[4] and high-temperature superconductivity.[5] The electronic systems in transition

metal oxide compounds are often highly correlated. In this thesis, I will present experimental

studies on three strongly correlated vanadium oxide compounds: LiV2O4, (LixV1−x)3BO5, and

CaV2O4, which have completely different ground states.

1.1 Motivations

1.1.1 NMR Study of LiV2O4 Containing Magnetic Defects

Landau’s Fermi liquid theory[6, 7] describes a metallic system where there exist strong

Coulomb interactions between the electrons. The theory suggests that the low energy (low

temperature) excitations (quasiparticles) of such a system have properties rather similar to

those of a free electron gas. However, as a result of electron interactions, the effective mass

of the quasiparticles is renormalized. Heavy fermion refers to a Landau Fermi liquid whose

low energy quasiparticle excitations have an effective mass two to three orders of magnitude

larger than the free electron mass. Typical manifestations of heavy mass are the large linear

electronic specific heat coefficients and spin susceptibilities at low temperatures. Most heavy

fermions are f -electron systems containing rare-earth or actinide elements. The heavy fermion

behavior of those systems can be explained by the periodic Anderson model.[8] In the model,

the f -electrons are highly localized and experience a strong on-site Coulomb repulsion between

f -electrons. Because of the hybridization of the conduction electrons with the localized f -
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electrons, the f -electron local moments are screened at low temperatures (Kondo effect) which

leads to a large enhancement of the density of states near the Fermi level and a large effective

mass of the quasiparticles in those systems.

Magnetically pure LiV2O4 is a rare d-electron heavy fermion system at low temperatures

T < 10 K.[9] The low temperature linear electronic specific heat coefficient γ (0.42 J/mol K2)

and magnetic susceptibility χ0 (≈ 0.01 cm3/mol) show large (� 180) enhancements compared

to the values expected for a free electron gas, indicating the presence of strong electron cor-

relations. Recent photoemission measurements[10] observed a sharp peak structure in the

electronic density of states at ∼ 4 meV above the Fermi level at low temperatures (T < 20 K),

which confirmed the heavy fermion state in LiV2O4.

Figure 1.1 shows the spinel crystal structure (space group Fd3̄m) of LiV2O4. All vanadium

atoms are crystallographically equivalent. The vanadium atoms are inside octahedra with

oxygen atoms on the vertices. The vanadium atoms have a fractional formal charge state of

V3.5+, so each vanadium atom retains 1.5 d-electrons. Another important feature in the crystal

structure of LiV2O4 is the presence of geometrical frustration of the magnetic interactions.

High temperature susceptibility data suggest that the nearest-neighbor interaction between

vanadium atoms is antiferromagnetic. Because the vanadium atoms form a network of corner-

shared tetrahedra, the frustration arises due to the triangular arrangement of the vanadium

moments on each face of the tetrahedra.

Despite continuous theoretical efforts, a detailed understanding of the heavy fermion be-

haviors in LiV2O4 remains a great challenge. An obvious possible explanation is the Kondo

effect similar to that in the f -electron heavy fermions. The five degenerate vanadium 3d or-

bitals are split by the crystal electric field (CEF) into an orbital triplet (t2g orbitals) and an

orbital doublet (eg orbitals) ≈ 2 eV higher in energy than the t2g orbitals. Due to a rhom-

bohedral component to the CEF at the vanadium sites, the t2g orbitals are slightly split into

a singlet A1g orbital and doublet Eg orbitals. It has been proposed[11, 12] that one of the

1.5 d-electrons occupies the narrow A1g band and is highly localized and the remaining 0.5

electrons occupy a much broader Eg band. The electrons in the A1g band play the role of local
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Figure 1.1 The spinel crystal structure of LiV2O4. The oxygen atoms are
located on the vertices of the octahedra. The large spheres
inside the octahedra are vanadium atoms and the small spheres
outside the octahedra are lithium atoms.

moments and the electrons in the Eg band correspond to the conduction electrons. However,

such a scenario lacks detailed theoretical support.[13] For example, it is hard to justify how an

(antiferromagnetic) Kondo coupling can overwhelm a large (ferromagnetic) Hund’s exchange

coupling.[13]

The heavy fermion behavior might be closely related to the geometrical frustration in the

system. It has been suggested that the frustration suppresses any long-range magnetic order

so that the local spin or orbital fluctuations dominate the thermodynamic properties at low

temperatures.[12, 14–17] A large enhancement of the electronic specific heat coefficient has

been suggested from such a model.[16] However, a more quantitative comparison with the

specific heat coefficient and other experimental results remains an unsolved task. There are

other possible mechanisms to explain the heavy fermion behavior in LiV2O4.[13, 18] Recent

quantum Monte Carlo simulations[13] suggested that the strongly correlated A1g band consti-

tutes a slightly doped Mott insulator, which, at low temperatures, exhibits a sharp (heavy)

quasiparticle peak just above the Fermi level, which is consistent with the recent photoemission

results.[10]

NMR was an important local probe in establishing the low temperature heavy fermion
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behavior in LiV2O4.[9, 19] The low temperature T 7Li nuclear spin lattice relaxation rate 1/T1

follows a Korringa relation 1/T1 ∝ T with a coefficient 1/T1T = 2.2 s−1K−1, 6000 times larger

than in the non-heavy fermion isostructural superconducting[20] compound LiTi2O4.[21] The

Korringa ratio κ = 4πkBγ2
nK2T1T/�γ2

e , where K is the Knight shift, γn and γe are gyromagnetic

ratio of 7Li nuclear spin and the electronic spin, respectively, is equal to 0.7, which is close to

the value of unity expected for a free electron gas.

Recently, we found that the low temperature 7Li NMR properties of LiV2O4 are very sen-

sitive to the presence of a small amount of magnetic defects (concentration n = 0.73 mol%)

within the LiV2O4 spinel structure.[22, 23] The NMR properties exhibit inhomogeneous fea-

tures such as inhomogeneous line broadening and a stretched exponential nuclear spin-lattice

relaxation versus time. The nuclear spin-lattice relaxation rate versus temperature deviates

from the Korringa relation and a peak was observed at temperature T ∼ 1 K. One important

issue is thus to understand the nature of the LiV2O4 system with magnetic defects, in par-

ticular, whether the heavy fermion properties are still preserved in the presence of magnetic

defects and whether the observed inhomogeneity in the 7Li NMR is related to an underlying

spatial inhomogeneity in the electronic properties. In addition to its intrinsic interest, a study

of the electronic state of LiV2O4 with magnetic defects may help us to better understand the

heavy fermion mechanism in the magnetically pure material.

Under the above motivations, we carried out a systematic study of the variations of the

7Li NMR properties versus magnetic defect concentration n for different n values in powders

(n = 0.21, 0.49, and 0.83 mol%) and single crystals (n = 0.38 mol%) in the temperature range

0.5–4.2 K. The magnetic defect concentrations are determined through static magnetization

measurements in the T range of 1.8–5.0 K.[12] We also studied the ac magnetic susceptibility

χac at 14 MHz from 0.5 to 6 K in the single crystals and in the powder sample with 0.83 mol%

magnetic defects. Both the 7Li NMR spectrum and nuclear spin-lattice relaxation rate are

inhomogeneous in the presence of magnetic defects. We study a model assuming that the

inhomogeneity in NMR arises from local field inhomogeneity due to different positions of the

7Li nuclei relative to the magnetic defects. Our study shows that local field inhomogeneity
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is an important effect of the magnetic defects. The results indicate that the heavy Fermi

liquid survives the introduction of magnetic defects. Furthermore, our results indicate that

the natures of the magnetic defects in the powder and single crystal samples are different.

Field-dependent χac measurements show the signature of spin freezing in the powder sample

(ndefect = 0.83 mol%) at T ≈ 1.0 K, which coincides with the peak position in the nuclear

spin-lattice relaxation rate in the same sample. In contrast, spin freezing was not observed

in the single crystals down to T = 0.5 K from either NMR or χac measurements, despite the

relatively large magnetic defect concentration.

1.1.2 17O and 51V NMR studies of zig-zag spin chain CaV2O4

Frustrated magnetic systems have attracted great research interest because such systems

can exhibit diverse low temperature properties.[24] For example, both the heavy fermion be-

havior in LiV2O4 and the spin glass behavior in (LixV1−x)3BO5 discussed below are likely

related to the presence of magnetic frustration in both systems. In many frustrated systems,

frustration leads to a noncollinear magnetically ordered ground state. One well-known exam-

ple is an XY-like antiferromagnet on a stacked, triangular lattice with only nearest-neighbor

exchange interactions such as in CsMnBr3[25] and CsVI3[26]. Frustration in those systems

results in a spin structure where the spins on three sublattices form 120◦ angles with nearest

neighbors on the other sublattices.[27] Furthermore, experiments[28–32] and simulations[33–

36] in frustrated Ising and Heisenberg systems show that frustration can result in a partially

ordered state. Such a state is characterized by a coexistence in an equilibrium state of one or

more magnetically ordered sublattices with at least one sublattice that stays disordered at all

or a range of temperatures.

In a one-dimensional spin chain with an antiferromagnetic nearest-neighbor exchange in-

teraction, frustration can be introduced by a nonzero antiferromagnetic next-nearest-neighbor

exchange interaction. The Hamiltonian for such a system is written as

H = J1

∑
Si · Si+1 + J2

∑
Si · Si+2, (1.1)

where J1(> 0) and J2(> 0) are the nearest and next-nearest-neighbor exchange interactions,
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Figure 1.2 The helical spin configuration for a frustrated zig-zag antifer-
romagnetic classical spin chain with antiferromagnetic nearest-
and next-nearest-neighbor exchange interactions J1 and J2, re-
spectively. In the displayed spin configuration, the direction of
each spin is changed by 150◦ counter clockwise relative to its
nearest neighbor on lower left or upper left. This spin configu-
ration corresponds to J2/J1 =

√
3/6.

respectively, and index i run through all the spins in the chain. In real materials, the next-

nearest-neighbor interaction can be introduced by forming a zig-zag spin structure, which

reduces the distance between next-nearest-neighbor spins. For a zig-zag spin chain with classi-

cal Heisenberg spins, the ground state has a helical configuration as shown in Fig. 1.2, when the

ratio between the exchange constants satisfies J2/J1 > 1/4.[24] For J2/J1 ≤ 1/4, the ground

state spin configuration is a collinear structure.[24]

CaV2O4 is a possible candidate of a zig-zag spin chain system.[37, 38] It has an orthorhom-

bic crystal structure (space group Pnam) at room temperature as displayed in Fig. 1.3. There

are two crystallographically inequivalent vanadium sites which respectively form two inequiva-

lent zig-zag spin chains along the c-axis. The formal charge state of the vanadium ions is V3+,

from which one expects a spin value of S = 1. T. Hikihara et al.[39] studied a quantum zig-zag

spin-1 chain with anisotropic interactions described by

H =
2∑

ρ=1

[
Jρ

∑
i

(
Sx

i Sx
i+ρ + Sy

i Sy
i+ρ + ∆Sz

i Sz
i+ρ

)]
, (1.2)

where the index i runs through all spin sites along the zig-zag chain and ∆ > 0. In a phase

region of 0 < ∆ � 0.7 and 0.5 � J2/J1 < 1.4 (J1 > 0), the ground state of the system is a

gapless chiral phase where there is a long range chiral order without accompanying long range

spin order. This state has not been clearly observed for any system. In the case of isotropic

interactions ∆ = 1, there is a Haldane energy gap[40] in the magnetic excitation spectrum for

0 < J2/J1 < 1.4.[39, 41]
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Figure 1.3 The crystal structure of CaV2O4. The large spheres are vana-
dium atoms where the two different shades correspond to the
two crystallographically inequivalent sites. The small black
spheres are calcium atoms and the small gray spheres on the
vertices of the octahedra are oxygen sites.

Kikuchi et al. [37, 38] performed magnetization and 51V NMR studies in CaV2O4 powders

and suggested that the ground state of the system might be a gapless chiral phase with no

long-range spin order.[37, 38] The lack of spin order was deduced from the observation of a

51V NMR signal near the corresponding Larmor frequency Hγv/(2π) for 2 < T < 160 K.

Both the Knight shift and magnetic susceptibility did not vanish in the low temperature limit

(T = 5 K), suggesting the absence of an energy gap for magnetic excitations. Furthermore,

the temperature dependence of the nuclear spin-lattice relaxation rate 1/T1 was found to

be proportional to temperature in the temperature range 1.8 K < T < 30 K, in contrast to

thermally activated behavior in a gapped system. However, this suggestion of long-range chiral

order without long-range spin order contradicts earlier powder neutron diffraction studies which

showed that the system is in an antiferromagnetic state at 4.2 K.[42] The neutron diffraction

pattern was found to be consistent with three collinear models with spins parallel to the b-

axis. By assuming the same spin moment at all vanadium sites, the magnetic moment of
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each vanadium spin was determined to be 1.06(6) µB, only about half the value expected for

a vanadium spin with g-factor g ≈ 2 and S = 1.[42] Recently, A. Niazi et al. grew CaV2O4

single crystals and an antiferromagnetic phase transition was observed for the annealed single

crystals at TN ≈ 70 K.[43] The easy axis for spin ordering was found to be approximately

along the b-axis. This result is consistent with the previous neutron scattering result.[42]

However, the zero temperature limit of the susceptibility with the field along the easy-axis

(b-axis) seems too large to be explained by the Van Vleck and core electron contributions,

indicating a noncollinear spin structure in the ordered state.

In order to obtain further evidence of the magnetic phase transition and to study the

magnetic properties in the ordered state, we carried out 51V NMR studies on CaV2O4 single

crystals and 17O NMR studies on 17O-enriched powder samples. The temperature dependences

of the 17O NMR line width and nuclear spin-lattice relaxation rate give strong evidence for a

long-range antiferromagnetic transition at TN = 78 K in the powder. We did not find a 51V

NMR signal at the normal Larmor frequency ω = γvH, in disagreement with Refs. [38] and

[37]. However, a zero-field 51V NMR signal was observed at low temperatures (f ≈ 237 MHz at

4.2 K) in the crystals. The field swept spectra with the field in different directions reveal indeed

a noncollinear spin structure, and a model for the ordered magnetic structure was proposed.

1.1.3 Structure, Magnetization and NMR Studies of Spin Glass (LixV1−x)3BO5

with x ≈ 0.33 and 0.40

Many disordered magnetic systems enter a spin glass state at low temperature.[4] In con-

trast to conventional magnets, the spins (magnetic moments) in spin glasses are in a disordered

frozen state and do not exhibit any spatial periodicity.[44] Two ingredients are often present in

spin glass systems: disorder and frustration. In some spin glass systems such as EuxSr1−xS[45]

and LixZn1−xV2O4,[46] the frustration is inherent in the structure. In EuxSr1−xS, the frus-

tration comes from the opposite signs of nearest-neighbor (ferromagnetic) and next-nearest-

neighbor (antiferromagnetic) exchange interactions between Eu2+ moments. In LixZn1−xV2O4

which has the spinel structure, the frustration is geometric in origin and arises because vana-
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dium moments occupy the vertices of tetrahedra and the interaction between nearest neigh-

boring vanadium moments is antiferromagnetic. In other spin glasses, the frustration is closely

related to the presence of disorder. An example in this class is the canonical spin glass systems

such as CuMn, where due to the oscillatory nature of the RKKY interaction, the interactions

between magnetic atoms can be either ferromagnetic or antiferromagnetic depending on their

relative distance and thus significant frustration is present.

The spin glass transition is often detected by a dramatic change in the dynamic prop-

erties of the system. Upon approaching the spin glass transition, the spin fluctuations slow

down rapidly.[47–50] The slowing down gives rise to a cusp in the temperature dependences of

the ac magnetic susceptibility close to the spin glass transition temperature.[51, 52] In NMR

and µSR experiments, the slowing down shows up as a peak in the temperature dependence

of nuclear spin-lattice relaxation rate or the rate of longitudinal muon spin depolarization,

respectively.[48, 50, 53] In the spin glass state, the magnetic response of the spin glass system

exhibits complex behavior. One can observe irreversible behaviors such as a splitting versus

temperature between the zero-field-cooled and field-cooled magnetization.[54] Upon changing

the applied field in the spin glass state, the magnetization approaches its new equilibrium

value with a very slow rate.[55] Beside irreversibility and slow relaxation, spin glasses also ex-

hibit interesting aging and memory effects.[56, 57] The aging effect refers to the nonstationary

dynamic properties of the spin glass system, i.e. the magnetic dynamic response depends on

the time the system has been kept in the spin glass state. The memory effect refers to the

system’s ability to remember a previous magnetic state. For example, the system can return

to a magnetization value of a previous state, which is at the same temperature as the current

temperature, but is separated from the current state by a period during which the system was

kept at a lower temperature.

The decay of the average spin autocorrelation function qα(t) = 〈Sα
i (0)Sα

i (t)〉 is highly

nonexponential in spin glasses, where α(= x, y, z) is the spin component index, i is the spin

site index, and 〈· · ·〉 denotes a spatial average.[47, 58–61] Above the spin glass transition

temperature, Ogielski[47] observed the following empirical function for q(t) (α = z for Ising
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spins)

q(t) ∼ t−x exp
[
−(t/τ)β

]
(1.3)

in the simulation of the three dimensional short-range Ising spin glass, where exponents x (0.1 <

x < 0.5) and β (0.3 < β < 1) are temperature dependent and both decrease monotonically

with decreasing temperature. The correlation time τ diverges at the transition temperature

and below the transition temperature only a power law decay can be observed for q(t). A

correlation of the form in Eq. (1.3) is supported by neutron spin echo, µSR, and ac susceptibility

experiments.[58, 59, 62]

The origin of the nonexponential decay of q(t) is an issue of continuous debate. One

common approach is to assume that q(t) arises from the average of a distribution of single

exponential functions of different magnetic clusters in the system.[58, 62–67] Another view-

point claims that the nonexponential spin autocorrelation function is an intrinsic, homogeneous

feature of spin glasses.[59, 68] One argument to support such a view is that the different re-

laxation times are associated with different excitation modes in the system that overlap in

space. Since a spin can take part in different modes simultaneously, the relaxation for each

spin is nonexponential.[68, 69] Another homogeneous nonexponential relaxation mechanism is

hierarchical relaxation where the relaxation pathway at a specific time depends on relaxation

occurring in previous pathways.[70] Some simulations show that a situation intermediate be-

tween the above two viewpoints might exist in real spin glasses. By following the fluctuation of

individual spins, it was found that even the relaxation of an individual spin is nonexponential

and the detailed relaxation curves differ between different spins. [61, 71, 72]

Spin glasses are very sensitive to the presence of applied magnetic fields. In an applied

magnetic field, the sharp cusp observed in zero field in the temperature dependence of the

ac susceptibility is often rounded and suppressed to lower temperatures.[73] The applied field

might also change the nature of spin glass freezing. In spin glasses at zero applied magnetic

field, the existence of a true phase transition at finite temperature is supported by the universal

static and dynamic scaling behaviors observed close to the spin glass transition temperature

in many spin glass systems.[59, 74, 75] The spin glass transition seems to be destroyed by even
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a very small field (H = 2 Oe) in the short range Ising spin glass Fe0.5Mn0.5TiO3.[73, 76, 77]

On the other hand, in Heisenberg spin glasses with RKKY interactions between the spins

such as dilute CuMn and AuFe alloys, the persistence of a frozen spin glass phase in a strong

magnetic field was inferred through magnetization and torque measurements.[78–81] The latter

measurements do not, however, prove the existence of a (spin glass) phase transition in finite

field.

NMR is a useful microscopic tool to study the local spin dynamics in spin glass systems.[49,

50, 82–84] In order to avoid the applied magnetic field affecting the electronic spin dynamics,

some of the measurements were performed in either zero[49, 85] or small applied magnetic

fields (H < 1.33 kOe).[84] The applied magnetic field was found to decrease the correlation

time of electronic spin fluctuations upon increasing the applied magnetic field from 0.28 to

1.33 kOe in dilute CuMn spin glasses (Mn concentration ≤ 43 ppm). On the other hand, in

CuMn spin glasses with higher Mn concentrations (∼ 1%), a frozen configuration was observed

at low temperatures (T < 4.2 K) below the zero field ordering temperature (Tc = 10 K) even

under an applied field of 23 kOe.[83, 84] Thus, the effect of the magnetic field may depend on

the average interaction strength between the magnetic moments, which are different in CuMn

spin glasses with different Mn concentrations.

In our recent NMR studies in heavy fermion LiV2O4 containing 0.73 mol% magnetic defects,

we found a stretched exponential behavior 1 − M(t)/M(∞) = exp[−(t/T ∗
1 )β ] for the recovery

of the 7Li nuclear magnetization M(t) versus time t following a saturation pulse sequence in

the temperature range 0.5–4.2 K.[22] Earlier µSR studies showed that LiV2O4 with 0.13 mol%

magnetic defects undergoes a spin glass freezing below ∼ 0.7 K.[86] The stretched exponential

recovery is in strong contrast to a single exponential behavior observed in magnetically pure

LiV2O4 samples, where no spin glass behavior was observed down to 20 mK.[9] In order to

better understand the relation between the stretched exponential recovery and the dynamics

of spin glasses, it is highly desirable to study the NMR nuclear spin-lattice relaxation behavior

in other spin glass systems.

We obtained (LixV1−x)3BO5 single crystals in our attempt to grow single crystals of LiV2O4



12

using LiBO2 flux. It has an orthorhombic crystal structure (space group Pbam), where Li or V

statistically occupy to varying extents four inequivalent sites VL1–VL4 that are octahedrally

coordinated by oxygen atoms. Early magnetization measurements showed a deviation of the

magnetization M from being proportional to the applied magnetic field H at temperatures

T < 25 K, indicating a possible spin glass state.[87] However, additional experimental studies

are necessary to further characterize the magnetic state of the system at low temperatures.

To further characterize the structural and magnetic properties of (LixV1−x)3BO5 and to

investigate the dynamic properties of a spin glass system in a strong magnetic field, we carried

out studies of (LixV1−x)3BO5 powders (x = 0.33) and single crystals (x = 0.40) by x-ray

diffraction, magnetization and NMR measurements. The structure contains both frustration

and disorder, the two ingredients often considered necessary for a spin glass. Magnetization

measurements show an overall antiferromagnetic interaction among vanadium spins and reveal

a transition into a spin glass state at a sample and magnetic field dependent temperature

below ∼ 10 K. Furthermore, we found that the 7Li nuclear spin lattice relaxation versus time

t in (Li0.33V0.67)3BO5 indeed follows a temperature dependent stretched exponential behavior

1 − M(t)/M(∞) = exp[−(t/T ∗
1 )β ], where M(t) is the longitudinal nuclear magnetization. It

was previously shown[22, 88] that a unique distribution of nuclear spin lattice relaxation rates

1/T1’s can be obtained from the observed stretched exponential recovery with given fitted values

of 1/T ∗
1 and β. By assuming that the stretched exponential nuclear relaxation is dominated

by electronic dynamical heterogeneity in the system, we derived the temperature-dependent

distribution of the vanadium electronic spin relaxation times from the 7Li relaxation data.

The derived distribution of electronic spin relaxation times is found to be consistent with

other NMR results, supporting the presence of electronic dynamical inhomogeneity in spin

glasses. The temperature at which a dramatic dynamical slowing down is observed in NMR

is insensitive to the presence of strong magnetic fields up to 4.7 T, consistent with previous

NMR results in CuMn spin glasses with high Mn concentrations.[83, 84]
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1.2 Organization of the Thesis

The thesis is organized as follows. In chapter 2, we give a review of the basic NMR principles

and experimental methods that are helpful to an understanding of the NMR results presented

in the thesis. 7Li NMR studies on LiV2O4 powder and single crystal samples with different

concentrations of magnetic defects are reported in chapters 3 and 4. 17O and 51V NMR studies

on CaV2O4 samples are presented in chapter 5. Structure, magnetization, and 7Li and 11B

NMR studies on (LixV1−x)3BO5 samples are presented in chapter 6. In chapter 7, we give a

summary of the thesis. This thesis also contains an appendix that presents a 11B NMR study

on two isostructural superconductors OsB2 and RuB2 in their normal state.
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CHAPTER 2. Introduction to Nuclear Magnetic Resonance

Nuclear magnetic resonance (NMR) is a powerful microscopic tool to study the electronic

and magnetic properties of condensed matter systems. In Sec. 2.1, we will introduce the

basic physical principles of nuclear induction experiments[1] and discuss the meaning of the

NMR parameters (T1, T2, Knight shift, and line width) and their connection with microscopic

properties in condensed matter systems. In Sec. 2.2, we will discuss the experimental methods

to measure those NMR parameters.

2.1 NMR Principles and Definition of the Parameters

2.1.1 Motion of Isolated Nuclear Spins

When a nuclear spin with angular momentum �I and magnetic moment µ = γn�I is

located inside a uniform static magnetic field H, the interaction between the field and magnetic

moment is described by the following simple Hamiltonian:

H = −µ · H = −γn�H0Iz, (2.1)

where the field is taken to be H0 along the k̂ direction, γn is the gyromagnetic ratio of the

nuclear spin, and � is Planck’s constant divided by 2π. We denote the unit vectors along the

x, y and z axes by î, ĵ, and k̂, respectively. The energy eigenvalues consist of a set of equally

spaced Zeeman levels: E = −γn�Hm, where m = −I,−I + 1, · · · , I.

The principle feature of nuclear magnetic resonance is the observation of transitions between

the above Zeeman levels, caused by an applied radio frequency (RF) field with a frequency at

resonance with the Larmor precession of nuclear moments around the constant field H. One

common method to detect such transitions is nuclear induction, which was originally used by F.
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Bloch and his co-workers.[1, 2] The principles of nuclear induction experiments will be described

below. A classical description is sufficient to understand the principles. The equations which

follow still hold in a quantum mechanical description provided that one replaces the vectors

by the quantum mechanical expectation values of the corresponding operators.

According to the theory of classical mechanics and electrodynamics, the equation of motion

for a system of nuclear spins under a uniform external magnetic field H is given by

dL

dt
= M × H, (2.2)

where L is the total angular momentum of the nuclear system, M the total magnetization,

and we have ignored for the moment the effects of nuclear relaxation processes and interactions

between nuclear spins. Since M = γnL, the above equation can be rewritten as

dM

dt
= γnM × H. (2.3)

For a constant field H, Eq. (2.3) describes the Larmor precession of M with angular frequency

γnH.

Next we transform Eq. (2.3) into a reference frame rotating with a constant angular velocity

Ω along the k̂ direction. We denote vector components in the rotating reference frame with

primes and define the time derivative of an arbitrary vector A in this frame by

δA

δ t
= î′

dA′
x

dt
+ ĵ′

dA′
y

dt
+ k̂′dA′

z

dt
.

With respect to the nonrotating (laboratory) frame, the directions of î′ and ĵ′ change with

time as:

î′ = î cosΩt + ĵ sin Ωt

and

ĵ′ = ĵ cos Ωt − î sin Ωt.

Therefore, one has
dA

d t
=

δ A

δ t
+ Ω × A (2.4)

Then by setting A = M and combining Eqs. (2.3) and (2.4), one has

δ M

δ t
= M × (γnH + Ω). (2.5)
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This equation shows that the equation of motion in Eq. (2.3) remains the same in the rotating

reference frame as long as we replace the field H by a new field Heff = H + Ω/γn.

In typical NMR experiments, the uniform applied field H consists of a constant field H0k̂

plus a small oscillating field H1(t) = 2H1î cos Ωt perpendicular to k̂. The latter can be

decomposed into two fields rotating in opposite directions: H± = H1(î cos Ωt± ĵ sin Ωt). Since

H0 
 H1, one naively expects the effect of the two components H± to be negligible. We

will show that the effect of H− becomes important close to the resonance (we use a right-

handed coordinate system). In the reference frame rotating with angular velocity −Ωk̂, both

the constant field H0k̂ and H− are static. The H+ component appears as a rotating field with

an angular frequency 2Ω, so its effect is averaged out to zero. The effective field in the rotating

frame after neglecting H+ becomes Heff = (H0 − Ω/γn)k̂′ + H1î
′ and the equation of motion

is
δM

δt
= γnM ×

[
(H0 − Ω/γn)k̂′ + H1î

′
]
. (2.6)

Equation (2.6) shows that the effect of the strong external field H0 can be completely

canceled by the rotation in the rotating frame if the resonance condition Ω = γnH0 is satisfied.

Then the motion of the nuclear spins is only affected by their interaction with the RF field H1.

It is then possible using an RF pulse at frequency γnH/(2π) applied for a time τ = π/(2γnH0)

to tilt the nuclear magnetization away from the strong field H0, and upon removal of the RF

field H1, the tilted nuclear magnetization precesses around H0 and thus induces a rotating RF

flux in the x-y plane. If the nuclear spin system under study is surrounded by a coil wound

with its axis parallel to the x-y plane, then an RF voltage signal across its terminals is induced.

It is such a signal that is detected in the nuclear induction method. The techniques that use

RF pulses to manipulate and observe the motions of nuclear spins are called pulsed NMR. A

detailed discussion of NMR measurements based on pulsed NMR techniques will be presented

in Sec. 2.2.
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2.1.2 Nuclear Spin Lattice Relaxation

In the above discussions, we ignored the interactions of nuclear spins with their environ-

ments. Such interactions have the effect of allowing the system to relax into a state that is in

thermal equilibrium with the environment. In thermal equilibrium, the nuclear spin system

has a net magnetization along the direction of the field with the equilibrium magnetization per

mole of nuclear spins given by the nuclear Curie law for Mz

M0z = H0
�

2γ2
nI(I + 1)NA

3kBT
, (2.7)

and where

M0x = M0y = 0,

T is the absolute temperature, kB is Boltzmann’s constant, and NA is Avogadro’s number.

Bloch[1] introduced the effect of relaxation phenomenologically into the equations of motion

(2.3) by introducing T1 and T2 as the time constants for relaxations of the longitudinal and

transverse magnetizations, respectively. The Bloch equations are

dMz

dt
= γ(M × H)z +

Mz − M0z

T1

dMx

dt
= γ(M × H)x +

Mx

T2

dMy

dt
= γ(M × H)y +

My

T2
. (2.8)

Two different time scales T1 and T2 have been introduced to characterize the longitudinal and

transverse relaxations, respectively, because these two relaxation processes in general involve

different physical mechanisms. During the T1 relaxation process, the total Zeeman energy

of the system changes with time, so an exchange of energy with the heat bath (lattice) is

necessary. The heat bath can be of many forms such as molecular rotation, lattice vibration,

or electronic spin fluctuations. The T2 process is called the nuclear spin-spin or transverse

spin relaxation. The nuclear Zeeman energy is conserved during this relaxation process and no

energy exchange between the nuclear spin system and the heat bath is required. Mechanisms

responsible for the T2 process will be discussed in subsection 2.1.3.
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Measurements of nuclear spin-lattice relaxation rates are particularly useful to study the

electronic spin fluctuations in condensed matter systems. Electronic spin fluctuations produce

fluctuating local magnetic fields that interact with nuclear spins and induce transitions between

adjacent nuclear Zeeman levels. 1/T1 can be obtained by solving the master equations that

describe the evolution of the nuclear spin populations of different Zeeman levels.[3] If the initial

nuclear populations of different Zeeman levels follow a Boltzmann distribution, then recovery

of the nuclear magnetization follows a single exponential with a time constant T1 given by

1/T1 = 2W ≡ 2
Wm→m−1

(I − m + 1)(I + m)
, (2.9)

where Wm→m−1 is the induced transition rate between adjacent nuclear Zeeman levels Iz = |m〉

and |m−1〉 and W is independent of m.[3] In the limit of small perturbation of nuclear Zeeman

levels h(t) � H0, where h(t) is the local fluctuating magnetic field at a nuclear site, then for

that nucleus the transition rate can be calculated by time dependent perturbation theory and

one has[4]
1
T1

= 2W =
γ2

n

2

∫ ∞

−∞
〈hx(0)hx(t) + hy(0)hy(t)〉 exp(−iωnt) dt, (2.10)

where ωn = γnH0 is the Larmor frequency of the nuclear spins, hx(t) and hy(t) are components

of the fluctuating local fields perpendicular to the external field H0k̂ at the nuclear site, and

〈· · ·〉 denotes an average over choices of the time origin.

In order to relate 1/T1 to the electronic spin dynamics, consider the following bilinear

coupling Hamiltonian between a nuclear spin I at the origin r = 0 and the surrounding

localized electronic spins Si,

H′ =
∑

i

∑
αβ

Sα
i Aα,β(ri)Iβ , (2.11)

where α, β = x, y, z, A is a 3 by 3 hyperfine coupling tensor, and
∑

i runs over all surrounding

electronic spin sites. When the electronic spins are in the paramagnetic state 〈Si〉 = 0 (for

zero applied magnetic field), Eq. (2.11) defines an effective fluctuating field h with spatial

components

hβ = − 1
�γn

∑
i

∑
α

Sα
i Aα,β(ri). (2.12)
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Inserting Eq. (2.12) into Eq. (2.10) and assuming no correlation between different electronic

spin components, one has

1
T1

=
1

2�2

∑
α′=x,y

∑
i,j

∑
α

Aα,α′(ri)Aα,α′(rj)Jα
ij(ω0), (2.13)

where Jα
i,j(ωn) is the Fourier transform of the two spin correlation function defined as

Jα
i,j(ωn) =

∫ ∞

−∞
dt e−i tωn〈Sα

i (t)Sα
j (0)〉.

For a system possessing translational invariance, the spectral density Jα
i,j(ωn) is only a

function of ri−rj , so it can be written as Jα(ωn, ri−rj). It is convenient to express Jα(ωn, ri−

rj) in terms of its Fourier components in q space

Jα(ωn, ri − rj) =
1
N

∑
q

Jα(ωn, q)eiq(ri−rj)

=
1
N

2kBT

NA(gµB)2
∑

q

χ′′
α(ωn, q)

ωn
eiq(ri−rj), (2.14)

where N is the number of lattice points in the system,
∑

q runs over all the q values in the first

Brillouin zone,∗ χ′′ is the imaginary part of the magnetic susceptibility per mole of electronic

spins, and the fluctuation dissipation theorem[5] is used.

Substituting Eq. (2.14) into Eq. (2.13), one has

1
T1

=
1

N�2

kBT

NA(gµB)2
∑

q

∑
α′=x,y

∑
α

|Aα,α′(q)|2 χ′′
α(ωn, q)

ωn
, (2.15)

where Aα,α′(q) =
∑

i Aα,α′(ri)e−iq·ri is the Fourier transform of Aα,α′(r). The presence of the

“filter” factors |Aα,α′(q)|2 complicates the relationship between 1/T1 and χ′′(ωn, q). On the

other hand, if an explicit expression for the “filter” factors can be obtained from theoretical

considerations, one can obtain direct information on the symmetry and on the correlation

properties of the fluctuations.[6]
∗We assume that the crystal structure consists of a single electronic spin per primitive cell. To generalize

to structures with more than one spin per primitive cell, we need to introduce additional indices on S, J(ω, q),
A(r), and χ′′(ω, q) to label different spins within the primitive cell.
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2.1.3 Nuclear Spin-Spin Relaxation

A brief discussion of nuclear spin-spin relaxation and the time constant T2 has been given

following the discussion of the Bloch Eqs. (2.8). One simple mechanism for the T2 process

in solids is the dipole-dipole interaction between nuclear spins. The dipole-dipole interaction

allows rapid energy transfer from one spin to another, leading to an internal thermal equilibrium

state and a decay of the transverse magnetization. The relaxation rate due to this mechanism

is of the order of[7]

1/T2 ∼ γ2
n�

r3
, (2.16)

where r is the distance between nearest neighbor nuclei. Taking γn = 10.4 kHz/G as for 7Li

nuclei and r = 3 Å, Eq. (2.16) yields T2 ∼ 200 µs.

Another mechanism for the nuclear spin-spin relaxation is the interaction with a fluctuat-

ing local magnetic field, which also leads to the nuclear spin-lattice relaxation. In the motional

narrowing limit (〈h2
z〉)1/2γnτ � 1, where τ is the correlation time of longitudinal local fluc-

tuating field hz, the nuclear spin-spin relaxation rate due to this mechanism can be written

as[7]
1
T2

=
1

2T1
+ γ2

n〈h2
z〉τ, (2.17)

where 1/T1 is given by Eq. (2.10).

A decrease of transverse magnetization with time can also be induced by the presence of

static local field inhomogeneities. If the static local field inhomogeneity has magnitude ∆H0,

different nuclear spins have slightly different Larmor frequencies, which results in a phase

mismatch of width ∆H0γnt if all spins have the same phase at t = 0. The net transverse mag-

netization decays with time with increasing phase mismatch. The relaxation time of transverse

magnetization including all the above effects is often denoted by T ∗
2 , to distinguish it from T2

that is defined as the intrinsic relaxation time without any field inhomogeneity effects.[8]

2.1.4 Nuclear Spin Susceptibility

When the nuclear spin system is subjected to a sufficiently weak RF excitation Hx =

2H1 cos ωt in addition to the strong field Hz = H0, the magnetic response Mx(t) to the RF
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field may be assumed proportional to H1, i.e.,

Mx(t) = 2H1

[
χ′(ω) cos ωt + χ′′ sinωt

]
, (2.18)

where χ′(ω) and χ′′(ω) are independent of H1 and are called the real and imaginary parts

of the nuclear magnetic susceptibility χ = χ′ − iχ′′, respectively. According to Eq. (2.18), χ

satisfies the relations

Mx = 2H1Re
{
χeiωt

}
, for Hx = 2H1Re

{
eiωt

}
(2.19)

and

Mx = 2H1Im
{
χeiωt

}
, for Hx = 2H1Im

{
eiωt

}
, (2.20)

where “Re” and “Im” stand for real and imaginary parts, respectively.

The macroscopic quantities χ′ and χ′′ can be related to the atomic properties of the system

under study such as the wavefunctions, matrix elements, and energy levels . According to the

electrodynamics, the average power absorbed by the nuclear spin system from the above RF

field excitation Hx = 2H1 cos ωt is

P =
ω

2π

∫ 2π/ω

0
H

dM

dt
dt = 2ωχ′′H2

1 . (2.21)

On the other hand, a quantum mechanical treatment of the absorption process gives the

following expression for the average absorption power (at T 
 �H0γn/kB ∼ 1 mK)[7]

P =
2π�H2

1ω2

ZkBT

∑
a,b

e−Ea/kBT |〈a|µx|b〉|2δ(Ea − Eb − �ω), (2.22)

where Ea, Eb are the energy eigenvalues of the nuclear many-spin Hamiltonian with corre-

sponding many-spin wave functions |a〉 and |b〉, µx = γn
∑

i Iix is the x-component of the total

nuclear magnetization, and the nuclear spin partition function is Z =
∑

a e−Ea/kBT . Compar-

ing Eqs. (2.21) and (2.22), one has

χ′′(ω) =
�ωπ

ZkBT

∑
a,b

e−Ea/kBT |〈a|µx|b〉|2δ(Ea − Eb − �ω). (2.23)

The real part of χ, χ′(ω), can be calculated from the Kramers-Kronig relation

χ′(ω) − χ′(∞) =
1
π

P

∫ ∞

−∞

χ′′(ω)
ω′ − ω

dω′, (2.24)
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where the symbol P stands for taking the principal part of the integral, i.e., P
∫ ∞
−∞ =∫ ω−R

−∞ +
∫ ∞
ω+R as R → 0 simultaneously in the two integrals. Therefore, the real part is

χ′(ω) =
�ω

ZkBT

∑
a,b

e−Ea/kBT |〈a|µx|b〉|2
1

Ea − Eb + �ω
. (2.25)

2.1.5 Absorption Line Broadening

Measurements of the absorption spectrum χ′′(ω) can provide useful information about

the interactions and local environments of the nuclear spin system. For a system consisting

of isolated nuclear spins under a homogeneous external field, according to Eq. (2.23), the

absorption line is very narrow since only transitions between neighboring nuclear Zeeman

levels are allowed that all have the same energy separation �Hγn. For a system of nuclear

spins inside a solid, a number of physical phenomena may contribute to the broadening of the

resonance line, which will be discussed in the following.

The most obvious origin of line broadening is the presence of magnetic field inhomogeneities.

Such an inhomogeneity can arise either from the lack of homogeneity of the applied static

magnetic field or a distribution of static local magnetic fields produced by polarized electronic

magnetic moments in the sample. The broadening due to the inhomogeneity in applied mag-

netic field is of the order or less than 1 kHz for a 1 cm size sample, which is often negligible

compared to the local field inhomogeneity and the nuclear dipolar broadening mechanisms

discussed below. One can define a function f(ω) to describe the shape of the resonance line

f(ω) =
π

Z

∑
a,b

e−Ea/kBT |〈a|µx|b〉|2δ(Ea − Eb − �ω) = kBT
χ′′

�ω
. (2.26)

The function f(ω) is proportional to the distribution of local fields P (δH) ∝ f(H0γn + δHγn),

since the number of neighboring Zeeman level pairs in the above sum contributing to a given

ω value is proportional to the number of nuclear spins experiencing a total magnetic field

H0 + δH = ω/γn.

Another common broadening mechanism in solids is the magnetic dipole-dipole coupling

between nuclear spin moments. The nuclear moments induce magnetic dipolar fields at their

neighboring nuclear sites. Since such small fields can either aid or oppose the static field H0,
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a spread in the resonance condition results. One can define the second moment (mean square

deviation) of f(ω) as

〈∆ω2〉 =

∫ ∞
0 (ω − 〈ω〉)2f(ω)dω∫ ∞

0 f(ω)dω
, (2.27)

where 〈ω〉 =
∫ ∞
0 ωf(ω)dω/

∫ ∞
0 f(ω)dω is the average frequency of resonance. For nuclear

dipolar broadening 〈ω〉 = H0γn, i.e., the nuclear dipolar interactions do not introduce an

overall shift of the resonance line.

For coupling between identical nuclear spins I,[9] the second moment 〈∆ω2〉II of the ab-

sorption spectrum is

〈∆ω2〉II =
3
4
γ4

I �
2I(I + 1)

∑
k

(1 − 3 cos2 θjk)2

r6
jk

, (2.28)

where γI is the gyromagnetic ratio of a spin I, rjk is the vector from nucleus j to nucleus k,

θjk is the angle between rjk and the applied magnetic field, and the summation runs over all

nuclear sites with k �= j. For coupling between two different types of nuclear spins (with spins

I and S), the second moment 〈∆ω2〉IS for spin I is given by[9]

〈∆ω2〉IS =
1

3N
γ2

I γ2
S�

2S(S + 1)
∑
j,k

(1 − 3 cos2 θjk)2

r6
jk

, (2.29)

where N is the total number of spins I in the system, γS is the gyromagnetic ratio of spins S,

and
∑

j and
∑

k run over all I and S spin sites, respectively.[9]

There are other mechanisms that can cause the broadening of the resonance line. The T1

processes produce a thermal equilibrium population of the nuclear spin system by balancing

the rates of transitions between different Zeeman levels. Such processes put a limit on the

lifetime of the Zeeman states, which effectively broadens the resonance lines by an energy of

the order of �/T1. Furthermore, nuclear spins with spin quantum number I > 1/2 possess a

nonvanishing electric quadrupole moment. The presence of a nonzero electric field gradient

(EFG) on the nuclear site can lift the degeneracy of the resonance frequencies between adjacent

Zeeman levels, giving rise to either resolved or unresolved splittings of the resonance lines. The

latter effectively broaden the line. A more detailed discussion of nuclear quadrupole splitting

is given in the next subsection.
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2.1.6 Electric Quadrupole Interaction

Classically, the interaction energy of a nucleus [with charge density ρ(r)] with an electric

potential V due to its surrounding electrons and nuclei is

E =
∫

ρ(r)V (r)d3r

= V (0)
∫

ρd3r +
∑
α

Vα

∫
xαρd3r +

1
2

∑
α,β

Vαβ

∫
xαxβρd3r · · · , (2.30)

where Vα ≡ ∂V/∂xα|r=0, the electric field gradient tensor (at the nuclear mass center) is

Vαβ ≡ ∂2V/∂xα∂xβ |r=0, the origin is chosen at the mass center of the nucleus, and xα (α =

1, 2, 3) stands for x, y, or z, respectively. The first term is the electrostatic energy of the

nucleus taken as a point charge. The second term is the interaction energy of an electric

dipole moment with an external electric field. It vanishes since the electric dipole moment of a

nucleus is zero.[7] The third term is the electric quadrupole term. By Laplace’s equation, one

has Vxx +Vyy +Vzz = 0. One can always find principal axes of Vαβ such that Vαβ = 0 if α �= β.

In a quantum mechanical treatment,[7] the electric quadrupole interaction is described by the

following Hamiltonian

HQ =
e2qQ

4I(2I − 1)

[
3I2

z +
η

2
(I2

+ + I2
−) − I(I + 1)

]
, (2.31)

where e is the electron charge, eq = Vzz, η = (Vxx − Vyy)/Vzz, I± = Ix ± iIy, Q is the electric

quadrupole moment of the nucleus, and x, y, z axes are parallel to the principal axes. It is

conventional to choose x, y, and z in such a way that |Vzz| ≥ |Vyy| ≥ |Vxx| and 0 ≤ η ≤ 1.

In the presence of a strong applied magnetic field, HQ in Eq. (2.31) can be treated by the

perturbation method. For simplicity, let us assume that the EFG possesses an axial symmetry

such that η = 0. In first order perturbation theory, the energies of different Zeeman levels is

given by [7]

Em = −γn�H0m +
e2qQ

4I(2I − 1)

(
3 cos2 θ − 1

2

)
[3m2 − I(I + 1)], (2.32)

where θ is the angle between the z axis and the quantization axis z′ (along the direction of the

external field). The shift of the resonance frequency between I ′z = |m〉 and |m− 1〉 due to the
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electric quadrupole effect is

δν(1)
m = −νQ

(
m − 1

2

)
3 cos2 θ − 1

2
, (2.33)

where

νQ =
3e2qQ

4π�I(2I − 1)
. (2.34)

From Eq. (2.33), the frequency of the central line |1/2〉 ↔ | − 1/2〉 is not affected by the

quadrupole interaction to first order. However, the central line is affected if the perturbation

is carried out to second order. To second order, the frequency shift of the central line is given

by[10]

δν
(2)
1
2

= −
ν2

Q

16νL

[
I(I + 1) − 3

4

]
(1 − cos2 θ)(9 cos2 θ − 1), (2.35)

where νL = H0γn/2π. The second order frequency shift is inversely proportional to the external

field, so its effect is larger at lower fields.

2.1.7 Relaxation and Knight Shift in Metals

In a metal, the dominant mechanism for nuclear spin-lattice relaxation is provided by the

coupling of nuclear spins to the spin magnetic moments of the conduction electrons. For metals

with a substantial s-character to the wave function at the Fermi surface, the dominant coupling

comes from the s-state contact interaction between the nuclear and electronic spins

H′ =
8π

3
γeγn�

2
∑

i

I · Siδ(ri), (2.36)

where γe is the gyromagnetic ratio of electronic spins.

In order to calculate the nuclear spin lattice relaxation rate due to the above interaction,

one needs to calculate the rates of induced transitions between adjacent Zeeman levels

Wm→m−1 =
∑

ks,k′s′

Wmks→m−1k′s′f(Eks)[1 − f(Ek′s′)], (2.37)

where k and s denote the electronic spatial and spin quantum numbers, Eks is the energy of a

electron in such a state, f(E) is the Fermi function, and Wmks→m−1k′s′ is the transition rate



31

from initial state |mks〉 to final state |m− 1k′s′〉. Wmks→m−1k′s′ is given from Fermi’s golden

rule by

Wmks→m−1k′s′ =
2π

�
|〈mks|H′|m − 1k′s′〉|2δ(Em + Eks − Em−1 − Ek′s′). (2.38)

Due to the presence of the factor f(Eks)[1 − f(Ek′s′)] in Eq. (2.37), only electrons close to

the Fermi surface make significant contributions to the summation. A detailed calculation of

Eq. (2.37) gives

1/T1 =
Wm→m−1

(I − m + 1)(I + m)
=

64
9

π3
�

3γ2
eγ2

n〈|uk(0)|2〉2EF
ρ2(EF)kBT, (2.39)

where the first equality is the same as Eq. (2.9), ρ(EF) is the density of states at the Fermi

energy for one spin direction, |uk(0)|2 is the probability density of finding an electron with

wave vector k at the nuclear site, and 〈· · ·〉EF
means an average over the Fermi surface.[7]

In addition to dominating the nuclear spin lattice relaxation, the contact interaction also

gives rise to a shift of the nuclear resonance frequency. Since the shift is proportional to the

external magnetic field, one defines a field independent quantity called the Knight shift[11]

K ≡ νm − νd

νd
, (2.40)

where νm and νd are NMR frequencies in a metal and a diamagnetic substance, respectively.

The Knight shift is proportional to the difference in the energy of the contact interaction

when the nuclear spin is in two adjacent Zeeman levels. Such an energy difference gives rise

to an effective field for the nuclear spin that shifts its resonance frequency. The interaction

energy can be calculated in first order perturbation approach by Een = 〈φ|H′|φ〉, where |φ〉

denotes the state of the combined electronic and nuclear system. After taking the thermal

average of all states of the electronic system (assuming it is not affected by the state of the

nuclear spins), one obtains

Een = −γn�m

[
8π

3
〈|uk(0)|2〉EF

χs
eH0

]
(2.41)

if the nuclear spin is in the Iz = |m〉 state. In the above equation, χs
e is the spin susceptibility

of the electronic spin system. The term inside the brackets in Eq. (2.41) corresponds to the
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effective field on the nuclear site, so the Knight shift is

K =
∆H

H0
=

8π

3
〈|u2

k(0)|〉EF
χs

e. (2.42)

For a Fermi gas of noninteracting spins, χs
e = 1

2γ2
e �

2ρ(EF) = 1
2g2µ2

Bρ(EF), where g ≈ 2.00 is

the spectroscopic splitting factor (g-factor) of the electron spin and µB is the Bohr magneton,

so from Eqs. (2.39) and (2.42), one obtains the Korringa relation[12]

K2T1T =
�

4πkB

γ2
e

γ2
n

≡ S, (2.43)

where the second equality defines the constant S. The quantity K2T1T/S is called the Korringa

ratio. In the heavy fermion compound LiV2O4, the Korringa ratio is equal to 0.7,[13] close to

the value of unity expected for a Fermi gas/liquid system.

2.2 NMR Experiments

2.2.1 Free Induction Decay and Spin Echo

In Sec. 2.1.1, we briefly discussed the pulsed NMR method, in which the nuclear magneti-

zation can be tilted with RF pulses in order to observe a nuclear induction signal. The most

simple technique to produce such an induction signal is by applying only one RF pulse at

resonance with the Larmor precession of the nuclear spins. The induced NMR signal by such

a pulse is called free induction decay (FID). At resonance, Eq. (2.6) reduces to

δM

δt
= γnM × H1î

′, (2.44)

where the nuclear magnetization is initially at thermal equilibrium with the lattice and points

along the direction of the external field H0 before the RF field is applied. In the presence

of an RF field, Eq. (2.44) describes the Larmor precession of the nuclear magnetization M

with angular frequency H1γn in the rotating frame. If the RF pulse has a duration of tω =

π/(2H1γn), then M lies along the y′ direction at the end of the pulse. Such a pulse is called

a π/2 pulse. In the lab frame, M precesses around the external field H0k̂ after the H1 field

is removed. Thus an RF voltage signal will be induced in a coil with its axis parallel to x-y
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plane surrounding the nuclear spin system under study. The signal decays as the transverse

magnetization M relaxes back to the thermal equilibrium value Mx = My = 0. As discussed

in Sec. 2.1.3, the time scale for the relaxation of transverse magnetization is called T ∗
2 , which

includes dephasing contributions from nuclear spin-spin interactions, local field fluctuations,

and static field inhomogeneities.

The dephasing due to static field inhomogeneity can be compensated using the spin echo

technique.[14] The idea of a spin echo formation is illustrated in Fig. 2.1. The equilibrium

magnetization is shown in Fig. 2.1(a). After application of a π/2 pulse along the x′ direction

[denoted by (π/2)x′ in Fig. 2.1(f)] at t = 0 in Fig. 2.1(b), the precession phases of some of

the spins start getting ahead of the average and some start getting behind due to a slight

difference in their Larmor frequencies, as shown in Fig. 2.1(c). As a result, the net transverse

magnetization decays as the nuclear spins fan out in the x′-y′ plane. Now a second RF pulse

is applied along the x′ direction at time t = τ . The duration of the second pulse is twice that

of a π/2 pulse (called a π pulse), so the spin directions are rotated by 180◦ around the x′ axis,

as shown in Fig. 2.1(d). After the second pulse, spins which had gotten ahead of the average

phase are now behind the average by the same amount. Similarly, those spins which were

behind the average are now ahead of the average by the same amount. Therefore, the spins

start to refocus and at time t = 2τ , all the spins are again in phase with each other, as shown

in Fig. 2.1(e). This results in an echo signal being observed, centered at t = 2τ , that consists

of the refocusing and dephasing signals back to back, as shown in Fig. 2.1(f).

2.2.2 Measurement of the Spectrum with Pulsed NMR

For a linear system, the response F (t) of the system due to an external excitation i(t) is

given by

F (t) =
∫ ∞

−∞
S(t − t′)i(t′)dt′, (2.45)

where S(t) is called the response function of the system and S(t < 0) = 0 in order to preserve

causality. The Fourier transform f̃(ω) =
∫ ∞
−∞ f(t)e−iωtdt on both sides of the equation yields

F̃ (ω) = S̃(ω)̃i(ω), which can be rewritten as S̃(ω) = F̃ (ω)/̃i(ω). If the excitation is a Dirac
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Figure 2.1 Formation of free induction decay and Hahn echo in the rotat-
ing coordinate system, as explained in the text. (After Ref. [7])
Panel (f) shows the pulse sequence and the induced free induc-
tion decay (FID) and echo signals following the first and second
pulses, respectively. The subscripts on the parentheses give the
directions of the H1 fields in the x′-y′ plane. The echo consists
of the refocusing and dephasing signals back to back.
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delta function i(t) = hδ(t), then ĩ(ω) = h and S̃(ω) = F̃ (ω)/h. Thus the Fourier transform of

the system response to a delta function directly gives the response spectrum of the system.

An RF pulse H1(t) = 2H1î cos ωt perpendicular to the external magnetic field H0k̂ ap-

proximates a delta function under the condition γnH1 
 ∆ω and γnH1 
 |ω − ω0|, where ω0

and ∆ω are the center and width of the NMR absorption spectrum, respectively.[7] Therefore,

the real and imaginary parts of the Fourier transform of the FID signal induced by such a

pulse gives directly the dispersion and absorption spectrum of the system, respectively. In

practice, we only use absorption spectrum. In NMR experiments utilizing a single coil for

both RF power transmission and NMR signal detection, the initial part of an FID signal often

cannot be measured as a result of a “dead time” of the NMR spectrometer immediately after

the application of the RF pulse. The “dead time” is the result of the saturation of the receiver

due to the strong rf pulse and the finite time necessary for the receiver to become operational

again. Such a problem can often be circumvented by creating an echo as described above, and

performing a Fourier transform on the second (latter) half of the echo signal. The echo appears

after delay τ following the second pulse, so the effect of the “dead time” can be avoided. This

is one reason that the 2-pulse sequence in Fig. 2.1 is used to produce echos.

For very wide and inhomogeneously broadened lines, the condition γnH1 
 ∆ω cannot

be satisfied. In addition, the spectral width can exceed the response window of the NMR

spectrometer due to the high-Q factor of the resonant circuit and as a result the FID and echo

signals will be distorted. In this case, one can resort to a pulsed NMR technique called spin

echo integration spectroscopy (SEIS), in which one measures and plots the area of the spin

echo as a function of the applied magnetic field. In order to avoid distortion of the measured

spectrum, the step of field sweep must be small compared to the width in magnetic field of

any features of the spectrum to be recorded.[15] A variant of SEIS in which one sweeps the

frequency is sometimes used to record NMR spectra when the field sweep is not possible.

However, frequency sweep has the disadvantage that the response of the NMR spectrometer

changes with measuring frequency. A more sensitive and efficient way to measure a wide NMR

spectrum is the frequency step and sum (FSS) method, in which the transient echo signal at a
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series of equally spaced magnetic fields are recorded, then their Fourier transforms are summed

after shifting the frequency of each Fourier transform by the corresponding field shift.[15] All

wide line spectra in this thesis were obtained by the SEIS method with either field or frequency

sweep.

2.2.3 Measurement of T2

The nuclear spin-spin relaxation time T2 can be measured using the RF pulse sequence(π

2

)
− τ − (π) − τ − echo

with a series of pulse separation τ values. Since the dephasing of the magnetization due to

the static field inhomogeneity completely refocuses at time t = 2τ , the decay of echo intensity

versus 2τ reflects the intrinsic decay of the transverse magnetization. If the echo intensity M(t)

with t = 2τ follows an exponential decay, then a single T2 value can be extracted from fitting

the M(t) data by the function M(t) = M0 exp(−t/T2). If M(t) versus t (= 2τ) follows instead

a half Gaussian as is often observed in solids, then T2 can be defined as the time at which the

echo decays to 1/e of its initial value. In such a case, T2 can be extracted from fitting the

M(t) data by M(t) = M0 exp[−(t/T2)2]. In chapter 6 on the study of (LixV1−x)3BO5, the 7Li

nuclear spin-spin relaxation crosses over from a half Gaussian decay at high temperatures to a

single exponential decay at low temperatures. In order to obtain a consistent description over

the whole temperature range, we used the function M(t) = M0 exp(−t/T2) exp[−(t/T2g)2] to

fit the experimental data.

2.2.4 Measurement of T1

The nuclear spin lattice relaxation time can be measured by the so-called saturation recov-

ery pulse sequence:[(π

2

)
− τ1 −

(π

2

)
− τ1 − · · ·

]
n−1

−
(π

2

)
︸ ︷︷ ︸

saturating comb pulses

−τ −
(π

2

)
− τ2 − (π) − τ2 − echo︸ ︷︷ ︸

reading pulses

,

where the saturating π/2 pulses are repeated n times with a separation of τ1 between neigh-

boring pulses. Immediately following the comb pulses, the longitudinal nuclear magnetization
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initially equal to zero starts to recover for a time τ toward the thermal equilibrium value. The

recovered magnetization at the end of period τ is monitored by the two reading pulses that

produce an echo. The echo intensity is proportional to the recovered longitudinal magnetiza-

tion right before the first reading pulse. The delay τ is varied in different runs of the above

pulse sequence in order to map out the recovery curve of the echo intensity M(t) (with t = τ).

The above pulse sequence is useful to measure nuclear spin lattice relaxation rates of wide

lines (� 100 kHz), for which a single π/2 pulse cannot completely saturate the whole line. In

order to effectively saturate the whole line, the value of τ1 should in principle satisfy T2 � τ1 �

T1 so that the longitudinal nuclear magnetization does not have time to relax in the interval

between neighboring pulses yet the nuclear spin system has time to establish an internal thermal

equilibrium. The τ2 value should be set as small as possible in order to maximize signal intensity

as long as the “dead time” effect of the spectrometer can be avoided.

Depending on the shape of the recovery curve M(t), one can fit M(t) data with different

functions to extract the relaxation rates. In order to see the recovery behavior more clearly

and see if the initial conditions correspond to full saturation of the line, one often plots 1 −

M(t)/M(∞) in a semilog scale, in which a single exponential recovery shows a straight line.

For a single exponential recovery, the following fitting function is used to extract T1 values

1 − M(t)
M(∞)

= exp(−t/T1). (2.46)

If a distribution of T1 values exist in the system, then 1−M(t)/M(∞) deviates upwards from

a straight line in a semilog scale plot. However, if the initial decay is sufficiently well defined so

that one can derive a value for the initial slope, then one can use Eq. (2.46) to derive a single

relaxation parameter. The 1/T1 eff value thus obtained gives the average relaxation rates of all

nuclear spins. In case the initial linear part is not well defined, one can often try to fit the

recovery curve by a stretched exponential function

1 − M(t)
M(∞)

= exp[−(t/T ∗
1 )β ] (2.47)

with 0 < β ≤ 1. For a true stretched exponential decay, values of 1/T ∗
1 and β obtained from

the fit allow us to obtain a unique distribution of 1/T1 values.[16, 17]
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A nonexponential recovery of M(t) also can arise in the presence of electric quadrupole

interactions for nuclear spins with I > 1/2. The quadrupole interaction makes the energy

differences between adjacent Zeeman levels unequal and thus splits the absorption line into

2I equally spaced lines, as discussed in Sec. 2.1.6. The inequality in energy spacing excludes

the rapid first order spin-spin interaction as a way to establish a common spin temperature in

the nuclear spin system,[18] where each nuclear spin relaxes towards its equilibrium value with

the same time dependence as for other nuclei. In the absence of a common spin temperature,

the spin-lattice relaxation is in general not characterized by a single relaxation time. The

behavior of the relaxation arising from any general nuclear spin-lattice interaction can be

obtained by solving the 2I rate (master) equations, which determines the evolution with time

of the differences in populations between adjacent Zeeman levels, and is described in general

by 2I relaxation times. The final solution of the rate equations depends on the nature of the

relaxation process and on the initial conditions.[19] Below we will only consider the case where

the relaxation transition probability W is of magnetic origin with ∆m = ±1. For quadrupole

relaxation which involves transitions also with ∆m = ±2 the situation is different but this case

will not be encountered in the present thesis.

Below we will only discuss the magnetic relaxation for nuclear spins with I = 3/2 since

this is the only situation that we will encounter in this thesis. If the quadrupole splitting is

small such that the whole spectrum can still be saturated by applying a number of saturation

pulses, then the recovery of M(t) measured from transitions between any adjacent Zeeman

level pairs still follows a single exponential with 1/T1 given by Eq. (2.9). Therefore, for this

initial condition, the relaxation is not affected by the presence of quadrupole splitting. This

is the case, for example, for 7Li NMR (I = 3/2) in LiV2O4 samples that are magnetically

pure, and in (LixV1−x)3BO5 to be discussed in subsequent chapters. On the other hand, if the

absorption spectrum is so wide that only the central m = |−1/2〉 ↔ |1/2〉 line can be irradiated

and a π/2 comb sequence is applied to saturate it, then two different initial conditions need to

be considered. (i) The duration of the comb sequence is much shorter than 1/W . The initial
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population differences per spin between adjacent Zeeman levels are

a1/2,−1/2 = 0 and a−1/2,−3/2 = a3/2,1/2 =
ε

2
, (2.48)

where ε = γn�H/kBT and am,m−1 is the population in level m minus the population in level

m− 1. (ii) The duration of the comb sequence is much longer than 1/W . Then the latter two

lines in Eq. (2.48) have time to go back to equilibrium with the lattice and the initial condition

is given by

a1/2,−1/2 = 0 and a−1/2,−3/2 = a3/2,1/2 =
ε

3
.

The recovery curves in the two cases are respectively given by[19, 20]

case (i): 1 − M(t)
M(∞)

= 0.1 exp(−2Wt) + 0.9 exp(−12Wt) (2.49)

case (ii): 1 − M(t)
M(∞)

= 0.4 exp(−2Wt) + 0.6 exp(−12Wt). (2.50)

Here, there are two relaxation rates, instead of the three expected above from 2I = 3, because

the prefactor of the exponential for the third term is zero.

If the central line is narrow, then the central line can be saturated by a single π/2 pulse

and case (i) is realized. On the other hand, for a strongly inhomogeneously broadened central

line, one has to apply a number of saturation pulses in order to saturate the central line. In

order to have a well defined initial condition, the saturation comb should last for a duration

much longer than 1/W such that case (ii) is realized.

2.2.5 “Hole” Burning Experiment

In the saturation recovery pulse sequence introduced above, the magnetization of all the

nuclear spins are saturated by the comb pulses, where by “saturation” we mean that the

nuclear magnetization is tipped to an angle of 90◦ with respect to the applied field such that

its component along the field direction is zero. For an inhomogeneously broadened line, it is

also possible to saturate nuclear spins with resonance frequencies within a narrow frequency

range of the spectrum. In the absence of nuclear spin spectral diffusion,[21] the NMR spectrum

measured before those saturated spins relax back to thermal equilibrium with the lattice will
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Figure 2.2 The pulse sequence for a “hole” burning experiment. A hole
was produced in the spectrum by a weak π/2 pulse. After a
delay, a π/2, π pulse sequence with much shorter pulse lengths
is applied to generate an echo, from which the spectrum with a
“hole” can be obtained by Fourier transform.

have a “hole” in the spectrum. A simple hole-burning RF pulse sequence is displayed in

Fig. 2.2. A “hole” in the spectrum is produced by applying a weak and long π/2 pulse. For a

rectangular RF pulse with pulse duration τ and frequency ν0, the Fourier transform of the RF

pulse is proportional to sin[(ν − ν0)τπ]/(ν − ν0). Therefore, most of the power of the pulse is

distributed within the frequency range from ν0 − 1/τ to ν0 + 1/τ , and only spins within that

frequency range are significantly saturated. To obtain the spectrum after burning the “hole”,

a π/2, π pulse sequence with much shorter pulse lengths than the weak hole burning pulse is

applied to generate a Hahn echo signal and the spectrum with a “hole” is obtained from the

Fourier transform of half the echo signal. Such short pulses are chosen because their power is

distributed over a much broader frequency range so that nuclei from a much broader part of

the spectrum can be excited and contribute to the echo signal. By varying the delay before

the weak hole-generating π/2 pulse and the π/2, π echo-generating pulses, the “hole” recovery

process can be monitored. In chapters 3 and 4, we will use such “hole” burning and recovery

experiments on the 7Li NMR spectra in LiV2O4 samples to study the effect of 7Li nuclear spin

spectral diffusion.

2.2.6 Experimental Errors

As discussed above, the nuclear spin-lattice relaxation rate 1/T1 and nuclear spin-spin

relaxation rate 1/T2 are obtained by fitting the decay curves of the nuclear magnetization

M(t). The errors in 1/T1 and 1/T2 are dominated by the statistical error of M(t), which is

caused by the electrical noise and random fluctuation of the NMR spectrometer. The error
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of M(t) was estimated by the variation in M(t) measured at different times under the same

experimental condition. The error of M(t) can be improved by summing the NMR signals

from a large number of repetitions. In most cases, a sufficient number of repetitions were

performed such that the relative error of the fully recovered nuclear magnetization is less than

1%. The errors of 1−M(t)/M(∞) used in T1 measurements are calculated using the standard

error propagation procedure. The errors are assumed to be independent for the data points at

different t values. The errors of 1−M(t)/M(∞) or M(t) are then used by the nonlinear least

square fit program in calculating the errors in the fitted values of 1/T1 and 1/T2, respectively.

The broadening of NMR spectrum is often quantified by the full width at half maximum

(FWHM) intensity of the absorption line. For narrow lines (FWHM � 100 kHz), the spectrum

is often conveniently measured by the Fourier transform of half the echo signal. However, the

measured spectrum might still be distorted due to a variation of the spectrometer response at

different frequencies and the uncertainty in defining the center of the echo. For broad lines

(FWHM � 100 kHz) measured with frequency sweep, the error in the measured spectrum

is mainly caused by the unknown response change of the spectrometer tuned at different

frequencies. For a broad line measured with field sweep at fixed resonance frequency, the error

in the measured spectrum is mainly caused by the error in the measurements of the magnetic

field. In this thesis, the combined statistical and systematic relative error of the FWHM

obtained from Fourier transform is estimated to be 5%. The relative error of the FWHM

obtained from the frequency or field sweep is estimated to be 10%.
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CHAPTER 3. Dynamics of Magnetic Defects in Heavy Fermion LiV2O4

from Stretched Exponential 7Li NMR Relaxation

(This chapter is based on a paper published on Phys. Rev. Lett. by D. C. Johnston, S.-

H. Baek, X. Zong, F. Borsa, J. Schmalian, and S. Kondo[1])

Abstract

7Li NMR measurements on LiV2O4 from 0.5 to 4.2 K are reported. A small concentration

of magnetic defects within the structure drastically changes the 7Li nuclear magnetization

relaxation versus time from a pure exponential as in pure LiV2O4 to a stretched exponential,

indicating glassy behavior of the magnetic defects. The stretched exponential function is

described as arising from a distribution of 7Li nuclear spin-lattice relaxation rates and we

present a model for the distribution in terms of the dynamics of the magnetic defects. Our

results explain the origin of recent puzzling 7Li NMR literature data on LiV2O4 and our model

is likely applicable to other glassy systems.

Heavy fermion (HF, heavy Fermi liquid) behaviors have been widely observed at low tem-

peratures T in many metals containing crystallographically ordered arrays of f -electron atoms,

which are quite well understood theoretically [2]. In these metals, the current carriers act as

if they have a (heavy) mass that is of order 102–103 times the free electron mass. Only a

few d-electron compounds are known to show HF behaviors at low T , e.g. Y1−xScxMn2 with

x ≈ 0.03 [3], LiV2O4 [4, 5], and most recently Ca2−xSrxRuO4 with x ∼ 0.3–0.5 [6]. There is
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currently no theoretical consensus on the mechanism for formation of the heavy fermion mass

in LiV2O4 [7].

An important measurement for establishing Fermi liquid behavior at low T is nuclear

magnetic resonance (NMR). For high magnetic purity samples of LiV2O4, the 7Li nuclear

spin-lattice relaxation rate 1/T1 is proportional to T (the Korringa law for a Fermi liquid)

from about 10 K down to about 1.5 K [4, 8, 9]. In contrast to these results, recent 7Li NMR

measurements of several samples down to 30 mK by Trinkl, Kaps et al. strongly conflict with

a Fermi liquid interpretation [10, 11]. In particular, non-exponential (stretched exponential)

recovery of the nuclear magnetization, non-Korringa behavior in 1/T1 versus T , a peak in 1/T1

at ∼ 0.6 K, and a strong field dependence of 1/T1 were found at low T . In view of the small

number of known d-electron HF compounds and the importance of LiV2O4 within this small

family, it is critical to determine if these results are intrinsic to the pure material, and if not,

what they are due to.

Here we present 7Li NMR measurements on two samples from 0.5 to 4.2 K that were

carried out to study the influence of magnetic defects on the low-T HF properties of LiV2O4.

We confirmed Fermi liquid behavior down to 0.5 K in a high magnetic purity sample. We find

that a small concentration (0.7 mol%) of magnetic defects within the spinel structure drastically

changes the detected spin dynamics and leads to the above behaviors described in Refs. [10] and

[11], which therefore explain their results as arising from a significant concentration of magnetic

defects in their samples. On the other hand, understanding the physics of magnetic defects

in LiV2O4 is interesting and important in its own right and may further guide and constrain

theoretical models for the pure material. A crucial aspect of LiV2O4 is the geometric frustration

of V spins for antiferromagnetic ordering in the spinel structure. The geometric frustration

is likely directly related to the suppression of antiferromagnetic order in pure LiV2O4 and

the emergence of a heavy electron state instead. A large number of low lying spin excitations

emerges and the system becomes“almost unstable”, i.e. very susceptible with respect to crystal

defects or other perturbations that locally lift the frustration and cause a condensation of the

low lying states [12].
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We develop a phenomenological description for the observed stretched exponential 7Li nu-

clear relaxation in terms of a distribution of 1/T1 values and explain the physical meaning of

the parameters. We further present a model for defect nucleated dynamical magnetic order

in an almost unstable electronic system that can explain this distribution and that provides

important insights about the behaviors of magnetic defects in LiV2O4. The stretched expo-

nential function also describes the kinetics of diverse relaxation phenomena [13], so our model

will likely have many applications to other fields.

The two LiV2O4 samples measured here were samples #12-1 and #3-3-a2 studied previ-

ously in Ref. [14], where their synthesis and characterization were described. The magnetic

defect concentration ndefect in the two samples was previously estimated from magnetization

measurements at low T [14]. Sample #12-1 shows a clear but weak intrinsic broad maximum

in χ(T ) at 16 K, characteristic of high magnetic purity [4, 14], with only a tiny upturn in χ(T )

below 4 K corresponding to ndefect = 0.01 mol%. The second sample, #3-3-a2, has ndefect =

0.7 mol% which is sufficiently large that the low-T intrinsic broad maximum in χ(T ) is com-

pletely masked by the magnetic defect Curie-like term[14]. The 7Li NMR measurements were

performed with a Fourier transform (FT) TecMag pulse spectrometer using 4He (1.5–4.2 K)

and 3He (0.5–1.5 K) cryostats. The 7Li NMR lineshape and the full width at half maximum

(FWHM) were obtained from the FT of half of the echo signal. The 7Li 1/T1 was determined

by monitoring the recovery of the spin echo intensity following a saturating pulse sequence of

π/2 pulses. The typical π/2 pulse width was 2 µs. The measurements were carried out at a

frequency of 17.6 MHz (magnetic field H = 10.6 kOe) so that a direct comparison of our results

with the corresponding 7Li NMR data at 17.3 MHz in Refs. [10] and [11] could be made.

The resonance line for the pure sample #12-1 has a FWHM that is independent of T below

4.2 K whereas sample #3-3-a2 has a much broader line [Fig. 1(a)] that becomes increasingly

broad with decreasing T [inset, Fig. 1(a)], indicating an increasing importance of magnetic

inhomogeneity in the latter sample with decreasing T . The Knight shift K for both samples

is the same and independent of T between 0.5 and 4.2 K, with K = 0.141(15)% in agreement

with previous data [8] above 1.5 K.
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Our main experimental results originate from measurements of the influence of magnetic

defects on the 7Li nuclear spin dynamics of LiV2O4. Figure 2(a) shows representative semilog

plots of the time t dependent recovery of the 7Li nuclear magnetization M(t) after initial

saturation for magnetically pure sample #12-1 at several T . The data at each T lie on a straight

line (shown) with a well-defined 1/T1 determined from a fit of the data by 1−M(t)/M(∞) = A

exp(−t/T1), where the prefactor A is typically 0.9 to 1.1. The resulting 1/T1 is plotted vs T

in Fig. 3. These data follow the Korringa law for a Fermi liquid (1/T1 ∝ T ) with a weighted

fit giving (T1T )−1 = 2.46(6)s−1K−1. Our results thus further confirm Fermi liquid behavior

for pure LiV2O4 at low T .

The M(t) for sample #3-3-a2 with ndefect = 0.7 mol% is shown for representative tem-

peratures in Fig. 2(b). The recovery is drastically different from that of the pure sample,

exhibiting strongly non-exponential behavior. Another important feature is that the shape of

the recovery curve changes with decreasing T , particularly strongly below 1 K. Following Ref.

[11], we fitted the data at each T by the stretched exponential function

1 − M(t)
M(∞)

= exp[−(t/T ∗
1 )β ], (3.1)

where β is the stretching exponent with 0 < β ≤ 1 and 1/T ∗
1 is a characteristic relaxation rate.
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This function is nonanalytic for t → 0. We therefore employed a low-t cutoff at 15 ms to the

fit. The resulting 1/T ∗
1 (T ) is plotted as filled squares in Fig. 3 and the fits are shown by the

solid curves in Fig. 2(b). The variation of β with T is shown in the inset of Fig. 3. The 7Li

NMR 1/T ∗
1 data obtained at 17.3 MHz by Kaps et al. [11] are plotted vs T as open squares in

Fig. 3. From the totality of the data in Figs. 1–3, we conclude that the data of Kaps et al. are

not intrinsic to pure LiV2O4 but rather are dominated by the influence of magnetic defects.

The non-exponential recovery of M(t) in sample #3-3-a2 suggests that there is a distri-

bution of 1/T1 values in this sample for different 7Li nuclei. To check this hypothesis, we

performed relaxation measurements in different regions of the NMR spectrum. These are

shown in Fig. 1(b) as “hole-burning” experiments. By using a long saturating π/2 pulse we

can irradiate only the central part of the spectrum. The fact that the “hole” disappears grad-

ually during relaxation without affecting the remaining part of the line shape indicates the

absence of spectral diffusion, which means that 7Li nuclei with different Larmor frequencies

have no thermal contact over our time scale. Another experiment was done by monitoring the

recovery of the part of the echo signal far from t = 0. The recovery was found to be nearly

exponential and with a 1/T1 corresponding to the long time tail of the stretched exponential

in Fig. 2(b). These two experiments together demonstrate that there does exist a distribution

of 1/T1 values for the 7Li nuclei in the sample at each T on our time scale and that these

nuclei or groups of nuclei relax independently. The strong decrease of β with decreasing T in

the inset of Fig. 3 must therefore reflect a significant change in the distribution of 1/T1 values

with T as discussed next.

Our experiments thus demand that we model the stretched exponential relaxation in Eq.

(1) as the sum over the sample of a probability distribution P of 1/T1 for the various 7Li nuclei.

Accordingly we write the stretched exponential function in Eq. (1) as

e−(t/T ∗
1 )β

=
∫ ∞

0
P (s, β)e−st/T ∗

1 ds , (3.2)

where s = T ∗
1 /T1 is the ratio of a particular relaxation rate 1/T1 within the sample to the fixed

relaxation rate 1/T ∗
1 characteristic of P (s, β), and of course

∫ ∞
0 P (s, β)ds = 1. For β = 1,

P (s, 1) is the Dirac delta function at s = 1. For general β, Eq. (2) shows that P (s, β) is
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Figure 3.4 Probability density P (s) for several stretched exponential ex-
ponents β. The inset shows the s values versus β at which P (s)
is maximum.

the inverse Laplace transform of the stretched exponential. The evolution of P (s) with β for

several values of β is shown in Fig. 4. With decreasing β, P (s) broadens and becomes highly

asymmetric, and the peak in P (s) becomes finite and moves towards slower rates which is

compensated by a long tail to faster rates. The value of s at which P (s) is maximum is plotted

versus β in the inset of Fig. 4; this value decreases with decreasing β and approaches zero

exponentially for β � 0.5. The physical significance of 1/T ∗
1 for 1/3 � β < 1 is that 1/T1

is about equally likely to be less than 1/T ∗
1 as it is to be greater; it is neither the average

of 1/T1 nor the inverse of the average of T1. For s 
 1, P (s, β) ∼ 1/s1+β , so the average

save = (T ∗
1 /T1)ave is infinite. Thus the moments of the distribution depend on the cut-off at

large relaxation rates, but this cutoff is irrelevant for the physical interpretation of the long

time relaxation. We see that the measured small values for β at low T in Fig. 3 for sample

#3-3-a2 and that of Kaps et al. constitute strong evidence for a broad distribution of 7Li 1/T1

values at these T .

We now discuss possible physical origins of the 1/T1 probability distributions in Fig. 4 and

then propose a model that may be applicable to LiV2O4 containing magnetic defects. We note

at the outset that our NMR measurements were carried out at H = 10.6 kOe for which the

magnetization of the magnetic defects at � 1 K is significant [14], a situation for which very

few calculations of either the average bulk or local electronic spin fluctuations are available.

With this caveat, the contribution to the 1/T1 of a nucleus located at site r, by fluctuations of
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electron spins S(r′,t) with correlation function qr′,r′′(t) = 〈Sα(r′,0)Sα(r′′,t)〉, is

1
T1

(r) ∝
∫

d3r′d3r′′Ar,r′Ar,r′′qr′,r′′(ωn). (3.3)

Here Ar,r′ is the hyperfine interaction between nuclear and electron spins at sites r and r′,

respectively, and qr′,r′′(ωn) is the Fourier transform of the correlation function qr′,r′′(t) at the

nuclear Larmor frequency ωn = γnH. For example, if one had a unique 1/T1, a unique Ar,r′

with r′ = r′′, and a correlation function qr′,r′(t) ∼ e−εt, one would have 1/T1 ∝ ε/(ε2 + ω2
n),

yielding a peak in 1/T1 as ε decreases through ωn with decreasing T as observed for 1/T ∗
1 at

≈ 0.7 K in Fig. 3. This simplified example suggests that a significant fraction of the magnetic

defects drastically slows down below ∼ 1 K.

A distribution of 1/T1 could result from a spatial variation in the electron spin dynamics,

i.e. qr′,r′′(t), or variations of the hyperfine interactions. In the latter case, a nonlocal hyperfine

interaction Ar,r′ ∝ |r − r′|−3, caused by dipolar and/or RKKY interactions, can lead to a

broad distribution in 1/T1. Depending on whether a given nuclear spin is close to or far away

from a local defect that dominates the spin response qr,r′(t), very different 1/T1 values occur.

Geometric considerations lead to P (s, β) ∝ s−3/2, i.e. a fixed value β = 1
2 for the stretched

exponential which is in direct conflict with our data that show a strongly T -dependent β.

A physically more interesting case is when stretched exponential nuclear relaxation is due

to dynamical heterogeneity of the magnetic defect spin system, i.e. due to spatially varying

qr′,r′′(t). For simplicity we consider the limit of a purely local hyperfine interaction Ar,r′ ∝

δr−r′ . In the limit of strongly disordered spin systems, dynamical heterogeneity with anomalous

long time dynamics was found in numerical simulations above the spin glass temperature

[15]. The averaged autocorrelation function was shown to have the Ogielski form q(t) =

t−xexp[−(ε∗t)β ], where the energy scale ε∗ characterizes the averaged electron spin response.

As ε∗ becomes smaller than ωn with decreasing T , 1/T ∗
1 goes through a maximum, located at

T ∼ 1 K in our case, and q (t) immediately yields a stretched exponential relaxation for the

nuclear spins. However, these results were obtained in the strong disorder limit in contrast to

dilute magnetic defects in LiV2O4.

The sensitivity of the HF state with respect to perturbations may be critical to under-
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stand the behavior of LiV2O4 where ndefect is rather small, suggesting the following alternative

model for the dynamics. If geometric frustration suppresses long range order in pure LiV2O4,

it becomes natural that crystal defects can locally lift the frustration and cause a condensation

of dynamic magnetic order in a finite region of volume � ξ3 around the defect. Due to the

proximity to an ordered state and long-range electronic spin coupling in metallic systems, we

expect ξ to be much larger than an interatomic spacing, in contrast to insulating frustrated

systems with only nearest-neighbor interactions [16]. This might help to explain our previ-

ous low-T magnetization measurements which indicated that the magnetic defects have large

average spins ∼ 3/2 to 4 [14]. Fluctuations in the local tendency towards order lead to a

probability p (ξ) ∝ e−cξ3
for such a droplet [17] and we analyze the system using the ideas of

Griffiths physics in disordered magnets [18].

The lowest excitation energies, ε, of a droplet depend on its size ξ. Depending on how ε (ξ)

varies with ξ, different long-time dynamics emerges [19]. If ε ∝ ξ−ψ the distribution function

of the droplet energies becomes p (ε) ∝ e
−

(
ε∗
ε

)3/ψ

. If 1/T1 ∝ ε, this yields P (s, β) ∝ e−s−3/ψ
,

leading for large times to a stretched exponential relaxation with β = 1
1+ψ/3 . Such a behavior

occurs in magnets with Heisenberg symmetry [19] where one finds β = 1
2 , if the spin dynamics

is classical. For lower T , where quantum dynamics of the spins sets in, one finds β = 2−z
4−z <

1
2 , if the dynamical exponent relating length and time scales obeys z < 2. For insulating

antiferromagnets, one usually has z = 1, giving β = 1/3.

Probably more appropriate to LiV2O4 is the case of itinerant antiferromagnets where one

expects z = 2, and an even more exotic situation occurs. In this case, ε ∝ e−bξ3
, i.e. large

droplets become extremely slow leading to quantum Griffiths behavior P (s) ∝ s−λ at long

times with nonuniversal exponent λ = 1 − c/b. Now, the nuclear spin relaxes according to

a power law 1 − M(t)/M(∞) ∝ t−(1−λ). It becomes very hard to distinguish at large times

power law from stretched exponential behavior with small β at low T . However, there are clear

predictions of this scenario which include (given λ > 0) singular non-Fermi-liquid type specific

heat C/T ∝ T−λ, susceptibility χ ∝ T−λ and similar results for the field dependence of the

magnetization [19], which can all be tested in future experiments.
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[3] R. Ballou, E. Lelièvre-Berna, and B. Fak, Phys. Rev. Lett. 76, 2125 (1996), and cited

references.

[4] S. Kondo et al., Phys. Rev. Lett. 78, 3729 (1997).

[5] D. C. Johnston, Physica B 281&282, 21 (2000).

[6] R. Jin et al., cond-mat/0112405; S. Nakatsuji et al., Phys. Rev. Lett. 90, 137202 (2003).

[7] P. Fulde, J. Phys.: Condens. Matter 16, S591 (2004).

[8] A. V. Mahajan et al., Phys. Rev. B 57, 8890 (1998).

[9] K. Fujiwara et al., J. Phys.: Condens. Matter 16, S615 (2004).

[10] W. Trinkl et al., Phys. Rev. B 62, 1793 (2000).

[11] H. Kaps et al., J. Phys.: Condens. Matter 13, 8497 (2001).

[12] A. J. Millis, Solid State Commun. 126, 3 (2003).

[13] J. C. Phillips, Rep. Prog. Phys. 59, 1133 (1996).

[14] S. Kondo, D. C. Johnston, and L. L. Miller, Phys. Rev. B 59, 2609 (1999).



53

[15] S. C. Glotzer et al., Phys. Rev. E 57, 7350 (1998).

[16] J. Villain, Z. Phys. B 33, 31 (1979).

[17] A. J. Millis, D. K. Morr, and J. Schmalian, Phys. Rev. B 66, 174433 (2002).

[18] R. B. Griffiths, Phys. Rev. Lett. 23, 17 (1969).

[19] T. Vojta and J. Schmalian, Phys. Rev. B, 72, 045438 (2005).



54

CHAPTER 4. 7Li NMR Study of Magnetic Defects in Heavy Fermion

LiV2O4

(This chapter is based on part of an article to be submitted to Phys. Rev. B by X. Zong,

S. Das, F. Borsa, M. D. Vannette, R. Prozorov, J. Schmalian, and D. C. Johnston)

Abstract

We present a systematic study of the variations of the 7Li NMR properties versus magnetic

defect concentrations ndefect in powders (ndefect = 0.21, 0.49, and 0.83 mol%) and single crystals

(ndefect = 0.38 mol%) samples in the temperature T range from 0.5 to 4.2 K. The magnetic

defect concentrations are determined through static magnetization measurements in the T

range of 1.8–5.0 K. We also studied the ac magnetic susceptibility χac at 14 MHz from 0.5

to 6 K in the single crystals and in the powder sample with 0.83 mol% magnetic defects.

Both the 7Li NMR spectrum and nuclear spin-lattice relaxation rate are inhomogeneous in

the presence of magnetic defects. We study a model which assumes local field inhomogeneity

due to different positions of the 7Li nuclei relative to the magnetic defects. Our study shows

that local field inhomogeneity is an important effect of the magnetic defects. Furthermore,

our results indicate that the natures of the magnetic defects in the powder and single crystal

samples are different. Field-dependent χac measurements show the signature of spin freezing in

the powder sample (ndefect = 0.83 mol%) at T ≈ 1.0 K, which coincides with the peak position

in the nuclear spin-lattice relaxation rate in the same sample. In contrast, spin freezing was

not observed in the single crystals down to T = 0.5 K from either NMR or χac measurements,

despite the relatively large magnetic defect concentration.
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4.1 Introduction

LiV2O4 is a rare d-electron heavy fermion system at low temperatures T < 10 K.[1] The

low temperature linear electronic specific heat coefficient γ (0.42 J/mol K2) and magnetic sus-

ceptibility χ0 (≈ 0.01 cm3/mol) are 180 and 310 times those of a free electron gas, respectively,

assuming each vanadium atom contributes 1.5 free electrons. The Wilson ratio RW, the ratio of

the enhancement factors of χ0 and γ, is equal to 1.7, reasonable for a heavy fermion system.[2]

Heavy fermion behavior was further confirmed by electrical resistivity measurements which

show a T 2 dependence below 2 K with a large coefficient A = 2.2 µΩ cm/K2.[3, 4] The A and

γ values approximately follow the Kadowaki-Woods relation, A/γ2 = 1.0 × 10−5 Ω cm(mol

K/J)2, which holds for a variety of heavy fermion systems.[5] Despite continuous theoretical

work, a detailed explanation of the heavy fermion behaviors in LiV2O4 remains a challenge.[6–

8]

NMR was an important local probe in establishing the low temperature heavy fermion

behavior in LiV2O4.[1, 9] The low temperature 7Li nuclear spin lattice relaxation rate follows

a Korringa relation 1/T1 ∝ T , with a coefficient 1/T1T = 2.2 s−1K−1, 6000 times larger than in

the non-heavy fermion isostructural superconducting[10] compound LiTi2O4.[11] The Korringa

ratio κ = 4πkBγ2
nK2T1T/�γ2

e , where K is the Knight shift, γn and γe are the gyromagnetic

ratios of the 7Li nuclear spin and the conduction electron spin, respectively, is equal to 0.7,

which is close to the value of unity expected for a free electron gas.

Recently, we found that the low temperature NMR properties of polycrystalline LiV2O4

are sensitive to the presence of a small concentration of magnetic defects (ndefect = 0.73 mol%)

within the spinel structure.[12, 13] While in a sample with negligible magnetic defects, the

7Li nuclear magnetization M(t) after delay t following a sequence of saturation pulses showed

a single exponential decay, in the sample with ndefect = 0.73 mol%, the nuclear spin-lattice

relaxation showed a stretched exponential recovery 1 − M(t)/M(∞) = exp[−(t/T ∗
1 )β ], with

the characteristic relaxation rate 1/T ∗
1 showing a peak at temperature T ≈ 0.7 K. There was

also a clear difference in the 7Li NMR spectrum in these two samples. At low temperatures

T < 4.2 K, the magnetically pure sample had a narrow spectrum with an almost temperature
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independent width (full width half maximum FWHM ∼ 20 kHz). A strong temperature

dependent inhomogeneous broadening (FWHM ∼ 100 kHz at T < 4.2 K) was observed in the

sample with ndefect = 0.73 mol%.

In order to further clarify the nature of the magnetic defects and their effect on the

heavy fermion properties of LiV2O4, we performed 7Li NMR studies on LiV2O4 samples ver-

sus magnetic defect concentration. Three polycrystalline samples and a collection of single

crystals are studied in this paper. The powder samples are labeled as 6b, 7a, and 6a, with

ndefect = 0.21 mol%, 0.49 mol%, and 0.83 mol%, respectively. The single crystal sample is

labeled as sample 1 with ndefect = 0.38 mol%. We determined the magnetic defect concen-

trations through static magnetization measurements in the temperature range of 1.8–5 K and

field range 0–5.5 T.[14] Furthermore, to study the presence of spin freezing, we measured the

ac magnetic susceptibility at 14 MHz using the tunnel-diode resonator technique[15] of the

single crystals and the powder sample 6a with ndefect = 0.83 mol%.

The temperature dependences of the nuclear spin-lattice relaxation rates in our polycrys-

talline samples are similar to that of sample 3-3-a2 (ndefect = 0.73 mol%) that we studied in

Ref. [12], which showed a peak in 1/T ∗
1 (T ) at about 1 K. However, we find a qualitative dif-

ference in the temperature dependence of 1/T ∗
1 in the single crystals, which instead decreases

monotonically with decreasing temperature down to 0.5 K. We study the following model to

analyze the NMR data. In the model, we consider the effect of a distribution of local fields

due to different positions of the 7Li nuclei relative to their nearby magnetic defects. For the

polycrystalline samples, the model is quantitatively consistent with the inhomogeneous broad-

ening of the line and the nonexponential relaxation behavior. In the single crystals, the model

fails to explain the relaxation behavior at T � 1.3 K.

The remainder of this chapter is organized as follows. Experimental details are given in Sec.

4.2. In Sec. 4.3, we report the experimental results of the magnetization, the ac susceptibility,

7Li NMR spectra, and nuclear spin-lattice relaxation rates. In Sec. 4.4, we analyze the NMR

results using the above model. In Sec. 4.5, we summarize the main conclusions of the paper.
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4.2 Experimental

Polycrystalline LiV2O4 samples were prepared using conventional solid state reaction. The

starting materials were V2O3 (4N, MV Labs), V2O5 (4N, MV Labs), and Li2CO3 (5N, Alfa

Aeser). Details of the sample synthesis procedure can be found in Ref. [14]. The typical size

of the polycrystalline grains is in the range of 1–10 µm,[16] as determined using a scanning

electron microscope (SEM). Single crystals were grown using a self-flux technique.[17] The flux

consisted of a mixture of Li3VO4 and LiV2O4. The typical size of the crystals is 0.2 mm.

Magnetization measurements were performed using a Quantum Design SQUID magnetometer

in the temperature range 1.8–350 K and applied magnetic field range 0–5.5 T.

The ac magnetic susceptibility was measured using a highly sensitive self-resonating LC

circuit where losses are compensated by a tunnel diode that has a region of negative differential

resistance in its I-V characteristic. The resonant frequency of an empty coil f0 = 1/(2π
√

LC)

changes when a sample is placed in a coil. The shift of the resonant frequency, ∆f = f (T, H)−

f0 is directly related to the ac susceptibility, χ (T, H), of the sample via[15]

∆f

f0
≈ −1

2
Vs

Vc
4πχac, (4.1)

where χac is the dimensionless volume ac susceptibility, Vs is the sample volume, and Vc is the

coil volume. The volume magnetization is the magnetic moment per unit volume of the sample,

with Gaussian units G cm3/cm3 = G. The volume susceptibility is the volume magnetization

divided by field, which is then dimensionless. The optimized and thermally stabilized circuit

resonates at 14 MHz with a stability of 0.05 Hz over hours.[15] The resonator was mounted in

a 3He cryostat with a temperature range 0.5–150 K. A static external field up to 90 kOe can

be applied to study field-dependent properties.

7Li NMR measurements were performed utilizing a phase-coherent pulse spectrometer at

applied magnetic fields H = 1.06, 1.68 and 3.0 T and in the temperature range 0.5–4.2 K.

Measurements above 1.5 K were performed with a 4He bath cryostat and measurements below

1.5 K with a Janis 3He cryostat. The typical π/2 pulse length was 3 µs. The 7Li NMR spectra

for narrow lines (FWHM � 100 kHz) were measured by Fourier transform of half the Hahn
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Figure 4.1 (a)–(d) Magnetization M versus applied magnetic field
H isotherms at different temperatures T for powder and
crystals samples. (e) The magnetic defect contributions
Mdefect = M − χ0H to the data in panels (a)–(d) versus
H/(T − θ). The χ0 and θ values are listed in Table 4.1. The
solid lines are plots of the second term in Eq. (4.2), Mdefect,
versus H/(T − θ) with values of ndefect, θ, and S given in Table
4.1.

echo signals, while for wider lines, the spectra were measured by integrating the echo area as

a function of the applied magnetic field at a fixed frequency of rf pulses. Nuclear spin-lattice

relaxation rates were measured by monitoring the recovery of the spin echo height using the

standard saturation-recovery pulse sequence.

4.3 Results

4.3.1 Magnetic Defect Concentrations

The magnetic defect concentrations of the samples were determined from the low temper-

ature (1.8 K < T < 5 K) magnetization M versus applied magnetic field H isotherms.[14]
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Table 4.1 Best fit values of the magnetic defect concentration ndefect, the
spin value S, the intrinsic susceptibility χ0, and the effective
Weiss temperature θ for powder samples 6b, 7a, and 6a and
crystal sample 1 obtained by fitting Eq. (4.2) to the low temper-
ature (1.8 K ≤ T ≤5 K) magnetization versus field isotherms.

Sample ndefect (mol%) S χ0 (cm3/mol) θ (K)
6b 0.21(1) 3.6(2) 0.0104(1) -0.75(14)
7a 0.49(1) 3.5(1) 0.0108(1) -0.57(6)
6a 0.83(3) 3.9(1) 0.0122(2) -0.64(10)
1 0.38(1) 3.3(1) 0.01186(4) -0.43(6)

Figures 4.1(a), (b), (c), and (d) show the M versus H isotherms at different temperatures for

samples 6b, 1, 7a, and 6a, respectively. The magnetic defect concentration ndefect and spin

value S of the magnetic defects in each sample are determined by fitting the equation

M = χ0H + NAgµBndefectSBS(x) (4.2)

to the M versus H isotherms at T < 5 K.[14] In Eq. (4.2), χ0 is the intrinsic molar susceptibility

of LiV2O4 at low temperatures T < 5 K, NA is Avogadro’s number, g is the (powder-averaged)

spectroscopic splitting factor (g-factor) for the defect spins, BS(x) is the Brillouin function for

spin S, and x = gHµBS/kB(T − θ). χ0, S, θ, and ndefect are free parameters in the fit. The g

value is fixed to 2 during the fit.[14] The best fit results are listed in Table 4.1. Figure 4.1(e)

shows the defect contributions Mdefect = M −χ0H versus H/(T − θ) for the four samples. All

the data points in Figs. 4.1(a), (b), (c), and (d) fall onto a universal curve for each sample,

respectively, as described by the second term in Eq. (4.2).

4.3.2 ac Magnetic Susceptibility at 14 MHz

The ac magnetic susceptibility, χac = dM/dH, is an important parameter directly related

to the electronic spin dynamics. It is very sensitive to collective behavior such as spin freezing

and a transition to the glassy state. Figure 4.2 shows ∆χac ≡ χac(T ) − χac(4.8 K) versus

temperature T at various values of the external field for powder sample 6a with ndefect =

0.83 mol%. Each curve corresponds to a magnetic field listed in the legend and the curves

from top to bottom correspond to increasing magnetic field. We note that the change of
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Figure 4.2 (color online.) ∆χac, the change of ac susceptibility χac at
14 MHz relative to its value at 4.8 K, versus temperature T
for powder sample 6a with ndefect = 0.83 mol% at several val-
ues of the magnetic field (indicated in the legend). χac decreases
with increasing magnetic field.

the magnetic moment amplitude of the measured sample on decreasing the temperature from

1.1 K to 0.5 K in zero field corresponds to a change in magnetic moment of only about

5 × 10−10 G cm3, which cannot be resolved by a conventional SQUID magnetometer for the

same size (∼ 0.3 mm3) sample.

At zero static applied field, there is an obvious peak in ∆χac at about 1.1 K in Fig. 4.2 that

is most likely indicative of a collective freezing of the magnetic moments. The field dependence

of the magnetic susceptibility is characteristic of a spin glass system where spin randomness is

suppressed by the uniaxial field and the peak in χac associated with spin freezing is suppressed

because the magnetic moments are closer to saturation. This result suggests collective freezing

behavior of the magnetic defects in the LiV2O4 powder sample in zero field.

For our sample 1 consisting of a collection of single crystals with overall ndefect = 0.38 mol%,

the situation is quite different. We cannot measure the spin susceptibility because the diamag-

netic susceptibility χac,skin arising from skin depth effects dominates it. The skin depth δ can

be calculated from [18]

δ =
504

(σKmν)1/2
meters, (4.3)
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Figure 4.3 ∆χac, the change of ac magnetic susceptibility χac relative to its
value at 0.5 K, versus temperature T in single crystal LiV2O4

(sample 1) in zero applied field and at a frequency of 14 MHz.

where Km is relative permeability, σ is the conductivity in Ω−1m−1, and ν is the applied

frequency in Hz. Setting Km = 1, σ = 5 × 106 Ω−1m−1(σ value at 1.8 K in Ref. [17]), and

ν = 14 MHz, we obtain σ ≈ 0.06 mm, significantly smaller than the size of each crystal in

sample 1. Thus we expect that the χac, skin contribution to χac is significant and its effect

increases with decreasing temperature as the resistivity decreases monotonically with decreas-

ing temperature.[3, 4] Figure 4.3 shows the ∆χac ≡ χac(T ) − χac(0.5 K) versus temperature

T from 0.5 to 6 K. Since the static susceptibility of various samples is nearly T -independent

or increases with decreasing T over this T range, the decrease in ∆χac with decreasing T in

Fig. 4.3 indicates that χac, skin(T ) dominates the χac response there. Furthermore, we see no

evidence for a collective spin freezing for this sample, and we did not find any field dependence

up to an applied field of 10 kOe (not shown).

4.3.3 7Li NMR Line Width

The 7Li NMR absorption line width is related to the local static magnetic field distribution.

It becomes broader with increasing concentrations of magnetic defects. Figure 4.4 shows the

absorption lines of the four samples at temperature T = 4.2 K and H = 1.06 T. Although the

7Li nuclei have spin I = 3/2, both first and second order nuclear quadrupole broadening due
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Figure 4.4 The 7Li NMR absorption versus rf frequency ν at temperature
T = 4.2 K and applied magnetic field H = 1.06 T in the four
LiV2O4 samples. The frequency ν0 = 17.6 MHz.

to a structural distortion can be ruled out since we observe no satellite peaks or shortening of

π/2 pulse length as compared to the magnetically pure LiV2O4 sample.[19, 20] The line width

is significantly larger than the intrinsic width for an individual 7Li nuclear spin, indicating an

inhomogeneous magnetic broadening of the line. The intrinsic line width is of the order of

1/T2 ≈ 5 kHz, where T2 is the nuclear spin-spin relaxation time and is almost independent of

the defect concentration and temperature below 4.2 K. Figure 4.5 displays the temperature

dependences of the full width at half maximum peak intensity (FWHM) of the spectra for the

four samples.

The broadening of the 7Li NMR line has three contributions. The first contribution comes

from the nuclear 7Li-51V and 7Li-7Li dipolar interactions. This contribution can be estimated

using the Van Vleck second moment 〈∆ω2〉.[21] A second broadening comes from the macro-

scopic field inhomogeneity due to a distribution of the demagnetization factors and a distri-

bution of magnetic fields due to neighboring powder grains. This contribution is proportional

to the magnetization of the sample and the resulting root mean square deviation of 7Li NMR

resonance frequencies can be written as BMρNγLi/2π, where M is the molar susceptibility, ρN

is the density of LiV2O4 formula units in the sample, γLi the gyromagnetic ratio of 7Li nuclei,

and B a dimensionless factor. B is estimated to be 1.43 for a close packed powder sample
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with ellipsoidal shapes.[22] A third broadening contribution comes from inhomogeneity due to

the presence of magnetic defects within the sample. An estimate for this contribution is not

possible without a model of the nature of the defects and the types of interactions between

the defects and nearby 7Li nuclear spins. However, the presence of this contribution can be

inferred by comparing the experimental FWHM values and the values expected when including

only the first two contributions, as follows.

The FWHM resulting from the first two contributions can be calculated within a Gaussian

approximation by

FWHMa = 2.35
√
〈∆ω2〉/(2π)2 + (BMρNγLi/2π)2 (4.4)

with B = 1.43, and 〈∆ω2〉1/2/2π = 2.7 kHz.[23] M is calculated from Eq. (4.2) using the

parameter values listed in Table 4.1. The FWHMa calculated from Eq. (4.4) is plotted as the

dashed lines in Fig. 4.5. It is clear that Eq. (4.4) cannot account for the observed broadening

of the lines, so a local magnetic field inhomogeneity due to the presence of the magnetic defects

must be present in the samples. We will return to this issue in Sec. 4.4.2.

4.3.4 Nuclear Spin-Lattice Relaxation Rates

The longitudinal 7Li nuclear spin relaxation versus time M(t) exhibits an increasingly non-

exponential behavior with increasing amounts of magnetic defects or decreasing temperature.

Figure 4.6 shows the recoveries of M(t) following a saturation sequence for the four samples at

different temperatures. The recovery data can be described by a stretched exponential function

1 − M(t)
M(∞)

= exp[−(t/T ∗
1 )β ]. (4.5)

The solid curves in Fig. 4.6 are best fits to the data by Eq. (4.5). The best fit values of 1/T ∗
1 (T )

and β(T ) are shown in Figs. 4.7 and 4.8 for powder and single crystal samples, respectively.

The temperature dependence of 1/T ∗
1 is quite different in the powder and single crystal

samples. A peak is observed in 1/T ∗
1 (T ) for the powder samples 6a (ndefect = 0.83 mol%,

Tpeak ≈ 1.0 K) and 7a (ndefect = 0.49 mol%, Tpeak ≈ 0.6–0.7 K). In the powder sample 6b

with the smallest magnetic defect concentration (ndefect = 0.21 mol%), 1/T ∗
1 starts to increase
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Figure 4.5 Temperature T dependence of full width at half maximum in-
tensity (FWHM) of the 7Li NMR spectrum under external mag-
netic field H = 1.06 T in the four LiV2O4 samples. The symbols
are experimental results. The dotted lines are plots of Eq. (4.4)
(with B = 1.43) that takes into account the contributions due to
powder broadening and nuclear dipole-dipole interactions, but
does not take into account local field inhomogeneity due to the
magnetic defects. The solid lines are fits by Eq. (4.7), which also
takes into account the local field inhomogeneity. The fitted solid
lines from bottom to top are for samples with ndefect = 0.21,
0.38 (crystals), 0.49, and 0.83 mol%, respectively.

∞
∞

Figure 4.6 Recovery of 7Li nuclear magnetization M(t) after time delay
t following a sequence of saturation pulses. Note that the nu-
clear magnetization M(t) is different from the electronic spin
magnetization in Fig. 4.1. The data points were obtained in
applied magnetic field H = 1.06 T at the indicated tempera-
tures and with rf frequency ν = 17.6 MHz for samples with (a)
0.21 mol%, (b) 0.38 mol% (crystals), (c) 0.49 mol%, and (d)
0.83 mol% magnetic defects. The solid curves are fits to the
data by Eq. (4.5).
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     (a)
0.21 mol%

     (b)
0.49 mol%

     (c)
0.83 mol%

Figure 4.7 1/T ∗
1 and β vs temperature T obtained by fitting data as in

Figs. 4.6(a), (c), and (d) by Eq. (4.5), of (a) powder sam-
ple 6b with ndefect = 0.21 mol% at external magnetic fields
H = 1.06, 1.68, and 3.0 T, (b) powder sample 7a with
ndefect = 0.49 mol% at H = 1.06, 1.68 T, and (c) powder sample
6a with ndefect = 0.83 mol% at H = 1.06 and 1.68 T.
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Figure 4.8 1/T ∗
1 and β versus temperature T of the crystal sample 1 with

ndefect = 0.38 mol% in external magnetic fields H = 1.06 and
1.68 T, obtained by fitting data as in Fig. 4.6(b) by Eq. (4.5).

at the lowest experimental temperatures and might exhibit a peak with further decreasing

temperature. The peak positions in sample 6a for H = 1.06 and 1.68 T are almost the same

as the peak position in χac(T ) for this sample at H = 0 in Fig. 4.2. We conclude that the

peaks in 1/T ∗
1 originate from the spin freezing of the magnetic defects. In the crystal sample,

1/T ∗
1 (T ) in Fig. 4.8 decreases monotonically with decreasing temperature with a 1/T ∗

1 value

at 0.5 K much smaller than in the powder samples, and there is no sign of spin freezing.

Before ending this subsection, we comment about the effect of inhomogeneous broadening

on the relaxation measurements. Because of the increasing inhomogeneous broadening with

decreasing temperature, some of the 7Li nuclei may be shifted out of the NMR spectrometer

response window (∆f ∼ 200 kHz) and excluded from the relaxation measurements. The

number of observed 7Li nuclei can be estimated from the product of fully recovered echo

height M(∞) and the temperature, which is proportional to the nuclear Curie constant C in

the Curie law for M(∞) = C/T . These data are shown for H = 1.06 T versus temperature

T in Fig. 4.9. For powder samples 6b (ndefect = 0.21 mol%) and 7a (ndefect = 0.49 mol%),

the decrease of M(∞)T is less than 10% when the temperature decreases from 4.2 K to the

lowest temperature (≈ 0.5 K). In contrast, for sample 6a (ndefect = 0.83 mol%), M(∞)T starts

to decrease below T ≈ 3.5 K and at the lowest temperature (T ≈ 0.5 K), M(∞)T is about

50% of that at 4.2 K. As we will show below, the nuclei at the wings of the spectrum have
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∞

Figure 4.9 The fully recovered echo intensity M(∞), which is the total
equilibrium nuclear magnetization, times temperature T versus
T in the nuclear spin-lattice relaxation rate measurements of
the four LiV2O4 samples in an applied field H = 1.06 T.

an average relaxation rate larger than those at the center of the spectrum. Exclusion of those

nuclei in sample 6a can thus result in a smaller measured relaxation rate in that sample.

In the crystals, the normalized signal intensity M(∞)T also decreases with decreasing

temperature. Since the line width in the crystals is less than in powder sample 7a (see Fig. 4.5),

where no significant signal loss is observed, we attribute the signal loss to the effect of rf field

skin depth. Here, only the 7Li nuclear spins within the skin depth contribute to the NMR

signal. Setting Km = 1, σ = 5 × 106 Ω−1 m−1 (the value of σ at 1.8 K in Ref. [17]), and

ν = 17.6 MHz, Eq. (4.3) gives δ = 0.054mm, which is less than the typical size (0.2 mm) of

the crystals. However, there is an unexplained kink in the data for the crystals at T ≈ 1.4 K

in both Figs. 4.8 and 4.9.

4.3.5 Relaxation at Different Positions in the Spectra

The observation of a stretched exponential relaxation behavior indicates the presence of a

distribution of nuclear spin-lattice relaxation rates 1/T1. In order to study the origin of the

1/T1 distribution, we performed the following “hole burning” experiment. This experiment

extends our previous hole burning experiment briefly described in Ref. [12]. We also studied

the relaxation behavior at different positions of the NMR absorption line.
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Figures 4.10(a) and (b) display the recovery of a “hole” in the echo spectrum in applied

magnetic field H = 1.06 T, obtained from Fourier transform of half the Hahn echo signal

generated by two strong rf pulses following a weak π/2 pulse in samples 6a (ndefect = 0.83 mol%)

and 6b (ndefect = 0.21 mol%), respectively. The weak π/2 pulse has a width of 56 µs and most

of its power is distributed within a narrow frequency window of width ≈ 40 kHz. Such a weak

π/2 pulse only saturates the central part of the spectrum. It is clear that the hole recovery

process does not affect the rest of the line and thus spectral diffusion does not occur in our

time scale. That is, nuclei with different Larmor frequencies are not coupled to each other over

the NMR measurement time scale of T1 ∼ 100 ms.

Lack of spectral diffusion as observed above allows us to investigate the nuclear spin-lattice

relaxation at different positions of the spectrum. Due to the strong 7Li NMR signal at low

temperatures, we were able to study the relaxation of 7Li far out on the wings of the spectrum

although the signal intensity is much weaker than at the peak. Figure 4.11 displays the nuclear

spin-lattice relaxation curves of powder sample 7a (ndefect = 0.49 mol%) in H = 1.68 T with

the rf pulse frequency equal to, 400 kHz higher than, or 400 kHz lower than, the peak frequency

of the line. All three recovery curves are nonexponential. It is clear from Fig. 4.11 that the

nuclei close to the peak of the line have an average relaxation rate lower than those away

from the peak. As will be discussed below, the behavior in Fig. 4.11 is consistent with an

inhomogeneous local magnetic field induced by the magnetic defects. It is noted that the

temperatures at which the three relaxation curves were taken are slightly different. However,

such small temperature differences should be negligible compared to the large difference of

relaxation rates between these three curves.

4.4 Analysis

4.4.1 Introduction

The microscopic nature of the magnetic defects has to be assumed in order to analyze the

NMR results. We will examine the following model concerning the nature of the defects. In

our model, the defects are treated as identical localized paramagnetic moments. In this model,
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Figure 4.10 Recovery at 4.2 K of a “hole” in the absorption spectrum pro-
duced by a weak π/2 pulse with pulse length of 56 µs at de-
lay = 0 in sample (a) 6a (ndefect = 0.83 mol%) and (b) 6b
(ndefect = 0.21 mol%). The applied magnetic field H is 1.06 T
and the center frequency is 17.6 MHz. The delay times after
which the spectra were measured by two strong rf pulses are
given in the figures. Note the different abscissa scales in (a)
and (b).
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∞

Figure 4.11 Recovery at 4.2 K of 7Li longitudinal nuclear magnetiza-
tion M(t) following a saturation sequence at t = 0 mea-
sured at different positions of the spectrum in powder sam-
ple 7a (ndefect = 0.49 mol%) under external magnetic field
H = 1.68 T. The recovery curves, which are nonexponential,
were measured with rf pulse frequency: (�) equal to the peak
of the spectrum (27.8 MHz) and at T = 1.56 K, (�) 400 kHz
lower than the peak and at T = 1.53 K, and (◦) 400 kHz higher
than the peak and at T = 1.77 K, respectively.

the distribution of nuclear spin-lattice relaxation rates and the inhomogeneous broadening of

the line are entirely due to the local field inhomogeneity, which arises from a distribution of

positions of the 7Li nuclei relative to the magnetic defects. Furthermore, we assume that

the measured 7Li relaxation rates consist of the sum of two contributions. The first comes

from the underlying Fermi liquid via the interaction of nuclei with the conduction electrons

and the second comes from the magnetic defects. The first (homogeneous) contribution is

described by the 1/T1 ∝ T Korringa behavior.[24] The separation of these two contributions is

supported by previous transport and magnetization measurements. Transport measurements

in LiV2O4 crystals without magnetic defects show that the system remains metallic down to

temperature T ≈ 0.3 K.[3, 4] With the addition of small concentrations of magnetic defects,

the metallic behavior is assumed to be preserved in most, if not all, parts of the sample

volume. An indication for the presence of a heavy Fermi liquid in samples with magnetic

defects also comes from magnetization measurements. The magnetization as expressed in

Eq. (4.2) contains a contribution χ0H almost independent of the defect concentrations (see
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Table 4.1). This contribution is most likely due to the same heavy Fermi liquid present in

magnetically pure LiV2O4.

4.4.2 Line Width

First we will analyze the line width within the first model. Dilute paramagnetic centers

give rise to a broadening of the NMR spectrum through inhomogeneous dipolar and RKKY

interactions and in the limit of great dilution the line shape approaches a Lorentzian with full

width at half maximum (FWHMb) intensity given by [25]

FWHMb = A
8πρNndefect

9
√

3
gµBγLi〈Sz〉

= 4.5AndefectSBS(x) MHz, (4.6)

where ρN = 1.44× 1022 cm−3 is the density of LiV2O4 formula units, A = 1 for purely dipolar

interactions and A > 1 if the RKKY interaction is also important, 〈Sz〉 is the thermal average

value of magnetic defect spin polarization along the direction of the applied magnetic field and

is equal to SBS(x) with x = gHµBS/kB(T − θ) [see Eq. (4.2)]. The line shape due to the

dilute magnetic defects is Lorentzian[25] while the line shape due to the first two contributions

in Eq. (4.4) is Gaussian.[21, 22] In order to obtain the final FWHM value, we convolute a

Gaussian distribution with FWHM = 1 with a Lorentzian distribution that has FWMH =

x and the same mean value as the Gaussian distribution. We find that the FWHM of the

convoluted distribution can be approximated by (1 + x8/5)5/8 to within 10% for all values of

x. We estimate the total FWHM by combining Eqs. (4.4) and (4.6) according to

FWHM = (FWHMa
8
5 + FWHMb

8
5 )

5
8

=
{

FWHMa
8
5 + [4.5AndefectSBS(x) MHz]

8
5

} 5
8
.

(4.7)

By using values of ndefect, S, θ, and χ0 from Table 4.1 and the results for FWHMa in Fig. 4.5,

Eq. (4.7) was used to simultaneously fit the measured FWHM data for all four samples with

a common A as the only fitting parameter. All data points in Fig. 4.5 are used in the fit
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except for the single crystal data below 1.5 K, where the nuclear spin-lattice relaxation rates

in Fig. 4.8 indicates a possible screening of the magnetic defects. The best fit value of A is

A = 1.4. The best fits are displayed as the solid curves in Fig. 4.5. The good fits show that

the inhomogeneous broadening of the spectrum can be explained within the first model.

4.4.3 Nuclear Spin-Lattice Relaxation

In our model, the distribution of 7Li 1/T1 arises from the local field inhomogeneity due to

the dependence of fluctuating local fields on the positions of the nuclei relative to the magnetic

defects. Since the relative positions of 7Li nuclei with respect to the defects are fixed, the

shape of the 1/T1 distribution due to the defects should be temperature independent. This

would give rise to a temperature independent β value in the stretched exponential function[26]

if there were no additional contributions to the 7Li nuclear spin-lattice relaxation.

The observed temperature dependent stretching exponent β in the insets of Figs. 4.7 and 4.8

is explained in this model by the additional Korringa contribution to 1/T1 that is proportional

to the temperature. Since the nuclear spin-lattice relaxation rate due to itinerant conduction

electrons is assumed to be homogeneous across the sample, the nuclear spin recovery due

to the conduction electrons alone should be a single exponential. As discussed above, the

recovery due to the defects alone is a stretched exponential function with a temperature-

independent β. The observed temperature dependent β arises in our model from different

temperature dependences of the Korringa and magnetic defect contributions to the nuclear

spin-lattice relaxation. Different temperature dependences result in different weights of these

two contributions at different temperatures and accordingly different β values are seen at

different temperatures when the total recovery is fitted by a stretched exponential function

Eq. (4.5).

Thus to identify the contribution of the magnetic defects to the nuclear spin-lattice relax-

ation, one has to first remove the Korringa contribution by multiplying the original relaxation

curves by an exponential function exp(t/T1K),[27] yielding the decay curve p(t) associated with
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relaxation by magnetic defects,

p(t) =
[
1 − M(t)

M(∞)

]
exp

(
t

T1K

)
, (4.8)

where we assume a concentration independent Korringa contribution 1/T1K = (2.2 s−1K−1)T

and the coefficient of T is taken to be the value in a magnetically pure sample.[12] Figures 4.12

and 4.13(a) show the logarithm of p(t) vs t1/2 in H = 1.06 T and at different temperatures

for powder and single crystals, respectively. In powder samples 7a (ndefect = 0.49 mol%) and

6a (ndefect = 0.83 mol%), p(t) can be fitted with a root exponential function [i.e., β = 0.5 in

Eq. (4.5) for the magnetic defect contribution]

p(t) = exp[−(t/T ∗
1d)

1/2] (4.9)

at all temperatures, as shown by the linear fits in Figs. 4.12(b) and (c), respectively. In powder

sample 6b with a small ndefect = 0.21 mol% in Fig. 4.12(a), p(t) follows root exponential

behavior only at short times. The deviation at longer times might be due to the effect of

spin diffusion, which will be discussed later. In the crystals, p(t) in Fig. 4.13(a) follows root

exponential decay only above 1.3 K and at lower temperature p(t) instead shows an unphysical

increase at later times. This indicates that Eq. (4.8) overestimates the conduction electron

contribution to the nuclear spin-lattice relaxation at temperatures below 1.3 K.

We extract 1/T ∗
1d values in Eq. (4.9) by fitting the single exponential p(t) versus t1/2 data

by Eq. (4.9). The best fit results of 1/T ∗
1d are displayed in Figs. 4.13(b) and 4.14 for the single

crystal and powder samples, respectively. The 1/T ∗
1d versus temperature T in powder samples

7a and 6a in Figs. 4.14(b) and (c) show an almost field independent peak, similar to the peaks

in 1/T ∗
1 versus T in Figs. 4.7(b) and (c). As discussed above, the peaks are related to the spin

freezing of the magnetic defects. For the single crystals, we only extract 1/T ∗
1d values above

1.3 K and a decrease of 1/T ∗
1d is observed in Fig. 4.13(b) below 2 K.

The above root exponential relaxation behavior has been reported previously in systems

where the nuclear spin-lattice relaxation rate is proportional to 1/r6, where r is the distance

between a nucleus and a nearby paramagnetic center, and no nuclear spin diffusion takes

place.[27, 28] Nuclear spin-lattice relaxation due to fluctuations of both dipolar and RKKY
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Figure 4.12 Semilog plot of p(t) in Eq. (4.8) versus the square root
of the delay time t1/2 for the powder samples (a) 6b with
ndefect = 0.21 mol%, (b) 7a with ndefect = 0.49 mol%, and
(c) 6a with ndefect = 0.83 mol% at applied magnetic field
H = 1.06 T and different temperatures. The straight lines
are best fits of the data by Eq. (4.9), with parameters 1/T ∗

1d

given in Fig. 4.14.
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Figure 4.13 (a) Semilog plot of the relaxation function p(t) in Eq. (4.8)
versus the square root of the delay time t1/2 for the crystal
sample 1 with ndefect = 0.38 mol% at applied magnetic field
H = 1.06 T and at two different temperatures. The upturn in
the 0.79 K data at large times shows that the assumption of a
homogeneous Korringa contribution is not valid at T � 1.3 K
in the crystals. The straight line is a best fit of the 3.92 K
data by Eq. (4.9). (b) 1/T ∗

1d in Eq. (4.9) versus temperature
T in H = 1.06 T and above 1.3 K, where the upturn seen for
T = 0.79 K in (a) is absent.
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Figure 4.14 1/T ∗
1d versus temperature T at applied magnetic fields

H = 1.06, 1.68, and 3.0 T for the powder samples (a) 6b
with ndefect = 0.21 mol% (b) 7a with ndefect = 0.49 mol% and
(c) 6a with ndefect = 0.83 mol%. The solid lines are fits to the
data by Eqs. (4.17) and (4.19).
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interactions have such 1/r6 dependences. The authors of Refs. [27] and [28] obtained an

expression for the nuclear spin recovery averaged over all the observed nuclear spins and showed

that it is indeed a root exponential at long times. In the Appendix, we show that instead

of solving for the relaxation curve, we can understand the occurrence of a root exponential

relaxation as arising from our calculated probability distribution of nuclear 1/T1 values.

In general, one can write the nuclear spin-lattice relaxation rate due to a nearby paramag-

netic center as
1
T1

(r) = C
f(θ)
f

r−6, (4.10)

where r is the vector connecting the paramagnetic center and nuclear spin, θ is the angle

between r and the external field, f is the average of the function f(θ) over all directions, and

C is a parameter proportional to the spectral density of spin fluctuations at the nuclear Larmor

frequency.[27] 1/T ∗
1d in Eq. (4.9) is then given by[27, 28]

1/T ∗
1d =

16π3

9
(ρNndefect)2C, (4.11)

where ρN is the number density of LiV2O4 formula units. We will discuss the temperature and

field dependences of 1/T ∗
1d when we study the dynamics of the magnetic defects in Sec. 4.4.6.

4.4.4 Hole Burning Experiment and the Dependence of Relaxation on the Posi-

tion in the Spectrum

Bloembergen and coworkers[29] have considered the problem of spin diffusion in the fre-

quency domain (spectral diffusion) in a spectrum with the same kind of inhomogeneous broad-

ening as in the first model. The time for a hole to diffuse through the whole spectrum by

two-spin mutual spin flip is estimated to be T 4
2 /T ∗3

2 , where T2 is the intrinsic nuclear spin-spin

relaxation time and T ∗
2 is the half width at half maximum of the transient echo signal. In

the powder sample 6a (ndefect = 0.83 mol%), T2 ≈ 200 µs and T ∗
2 ≈ 5 µs, so T 4

2 /T ∗3
2 = 32 s.

In the powder sample 6b (ndefect = 0.21 mol%), T2 ≈ 200 µs and T ∗
2 ≈ 20 µs which give

T 4
2 /T ∗3

2 = 200 ms. Both diffusion times are much longer than the values of T ∗
1 at 4.2 K in

each sample in Figs. 4.7 and 4.8, and are thus consistent with the lack of spectral diffusion in

Fig. 4.10.
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The higher relaxation rates at the wings of the spectrum compared to that at the peak

of the spectrum as shown in Fig. 4.11 can also be qualitatively explained by our model. For

concreteness of discussion, we assume that the local field is purely dipolar. Denote the angle

between the applied magnetic field and the direction from a magnetic defect to a nuclear spin

by θ and the distance between the defect and the nuclear spin by r. The NMR frequency

shift depends on θ and r through (1 − 3 cos2 θ)/r3, while the nuclear spin-lattice relaxation

rate depends on θ and r through sin2 θ cos2 θ/r6.[20] The higher relaxation rates observed at

the wings compared to that at the peak of the spectrum is due to the monotonic decrease of

both the frequency shift and the nuclear spin-lattice relaxation rates with increasing distance

r. The nuclear spins with larger frequency shift will also have a higher probability of having

larger 1/T1 values.

4.4.5 7Li Nuclear Spin Diffusion

The p(t) of powder sample 6b (ndefect = 0.21 mol%) in Fig. 4.12(a) deviates from a root

exponential decay at t � 100 ms at T = 0.61 K. This can be attributed to the effect of

spin diffusion.[30] Spin diffusion tries to establish a common spin temperature (i.e., the same

longitudinal magnetization) among nuclear spins at different distances from the defects and

results in a single exponential relaxation at long t. Figure 4.15 displays p(t) versus t of the

same data as in Fig. 4.12(a) at T = 0.61 K, but on a semilog scale, which suggests a single

exponential decay at t � 100 ms. A fit by p(t) = A exp(−t/T1) to the data at t ≥ 110 ms gives

1/T1 = 1.1 s−1 and A = 0.86. The best fit is shown as the straight line in Fig. 4.15.

A crossover from a root exponential to a single exponential decay occurs in the case of

diffusion limited relaxation as discussed first by Blumberg in Ref. [30]. The time tc, at which

the crossover from a root exponential to a single exponential decay takes place, is related to

the spin diffusion constant D through[30]

tc = C1/2D−3/2, (4.12)

where C is defined in Eq. (4.10). The diffusion constant D is related to the rate W of mutual
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Figure 4.15 Semilog plot of the nuclear spin relaxation function p(t) in
Eq. (4.8) versus time t after saturation for powder sample 6b
with ndefect = 0.21 mol% at H = 1.06 T and T = 0.61 K.
The straight line is a single exponential fit to the data at
t ≥ 110 ms.

flips of nearest neighbor nuclear spins through[20]

D = Wa2, (4.13)

where a is the distance between the two spins. The rate of the single exponential decay at long

times in Fig. 4.15 is given by[30]

1
T1

= 8.5ρNndefectC
1/4D3/4, (4.14)

where ρN is the density of LiV2O4 formula units.

In order to confirm the spin diffusion interpretation, below we will show that the estimated

crossover time tc and 1/T1 are of the same order of magnitude as the observed tc ∼ 100 ms and

1/T1 = 1.1 s−1, respectively. The mutual spin-flip is due to nuclear dipolar interactions and

the value of W can be estimated using Fermi’s golden rule. For nuclear spins having I = 1/2,

after averaging over the angular dependence, one obtains[20]

W =
2
5
π

γ4
n�

2

4a6
ρ(0), (4.15)

where ρ(0) is the spectral density of the two spin system at zero Zeeman energy and γn is the

gyromagnetic ratio of the nuclear spins. The 7Li nuclei have spin I = 3/2, but an expression
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for W when I = 3/2 is not available, and the above equation for W should provide at least

a rough estimate of W . Approximating ρ(0) by 1/
√

2π〈∆ω2〉,[20] where 〈∆ω2〉 = 288 kHz2

is the Van Vleck second moment of the 7Li nuclei,[23] and taking a = 3.57 Å, which is the

nearest-neighbor 7Li-7Li distance in LiV2O4, we find W = 46 s−1 from Eq. (4.15) and D =

5.9 × 10−14cm2/s from Eq. (4.13).

The value of C in Eq. (4.12) can be obtained from Eq. (4.11) where 1/T ∗
1d is measured using

Eq. (4.9) from the initial root exponential part of p(t) in Fig. 4.12(a) for powder sample 6b. At

T = 0.61 K and H = 1.06 T, one obtains 1/T ∗
1d = 0.7 s−1, so one has C = 1.4×10−41 cm6 s−1.

Using the above D = 5.9 × 10−14 cm2/s and ndefect = 0.21 mol%, Eq. (4.12) yields the

crossover time tc = 220 ms and Eq. (4.14) yields long time decay rate 1/T1 = 1.9 s−1. Due to

the uncertainty in our estimate of the parameter D and the approximate nature of Eq. (4.12),

the estimated tc and 1/T1 values should be considered to be consistent with the observed

tc ∼ 100 ms and 1/T1 = 1.1 s−1, respectively.

The absence of a deviation from root exponential behavior in samples 7a (ndefect = 0.49

mol%) and 6a (ndefect = 0.83 mol%) as shown in Figs. 4.12(b) and (c) may be due to the

effect of inhomogeneous broadening, which decreases the probability of overlap of Zeeman

level splittings of neighboring 7Li nuclei and results in a decrease in the spin diffusion constant

D. Furthermore, due to the higher concentrations of the defects, values of p(t) at t � 100 ms

in these two samples are much smaller than in the 0.21 mol% sample, making such a deviation

more difficult to observe.

4.4.6 Magnetic Defect Spin Dynamics

In this section, we discuss the relation of the nuclear spin-lattice relaxation rate to the

dynamics of the magnetic defects in the powder samples. In the weak collision limit h � H,

where h is the magnitude of the local fluctuating field at the nuclear site, the nuclear spin-

lattice relaxation rate 1/T1 due to an electronic magnetic defect spin at the origin is given

by[20]
1
T1

(r) =
1
�2

∑
α=x,y,z

A2
α(r)

∫ ∞

−∞
〈Sα(0)Sα(t)〉 exp(iωnt)dt, (4.16)



81

where r is the position of the nuclear spin with respect to the magnetic defect, Aα(r) is the

hyperfine coupling constant between the nuclear spin and a magnetic defect, ωn = HγLi, and

〈Sα(0)Sα(t)〉 (α = x, y, z) are the magnetic defect spin autocorrelation functions.

As indicated in the ac susceptibility measurements, the peaks in 1/T ∗
1d versus T are related

to spin freezing of the magnetic defects. As a first attempt, we assume a single exponential

decay for the magnetic defect spin autocorrelation functions and assume that the freezing

process is due to an energy barrier so that the correlation time τ follows

τ = τ0 exp
(

∆
T

)
, (4.17)

where τ0 is the fluctuation rate of the paramagnetic defects at high temperature and ∆ is the

energy barrier in temperature units. For simplicity, we will assume that all the magnetic defect

spins in a sample have the same correlation time τ . For dipolar or RKKY interactions, the

nuclear spin-lattice relaxation rate of a 7Li nucleus due to a nearby defect at distance r is[20]

1
T1

(r) =
2Rµ2

Bγ2
LiS(S + 1)
5r6

τ

1 + ω2
nτ

2
, (4.18)

where the angular dependence is ignored and the prefactor is written in such a way that R = 1

would correspond to relaxation due solely to the fluctuating dipolar field of the longitudinal

component of the magnetic defect spin. The presence of additional relaxation channels would

increase the value of R. Combining Eqs. (4.11) and (4.18), the measured relaxation rates 1/T ∗
1d

can be written as
1

T ∗
1d

= R
32π3

45
µ2

Bγ2
LiS(S + 1)ρ2

Nn2
defect

τ

1 + ω2
nτ

2
. (4.19)

At high temperatures, τ is generally much shorter than the inverse of the nuclear Larmor

frequency 1/ωn. As τ increases with decreasing temperature T , a peak appears in 1/T ∗
1d versus

T at the temperature where τ = 1/ωn.

We fit the 1/T ∗
1d data in Fig. 4.14 on all three powder samples simultaneously by the

combination of Eqs. (4.17) and (4.19). Possible field and temperature dependences of the

parameter R are ignored in the fit. There are seven free parameters in the fit, R and ∆

for each sample and τ0 which is assumed to be sample independent. The fitting results are

displayed in Fig. 4.14 by the solid curves. The best fit value of τ0 is 4.1×10−10 s and the best fit
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Table 4.2 Best fit values of prefactor R and energy barrier ∆ obtained
through fitting 1/T ∗

1 d data in Fig. 4.14 by a combination of
Eqs. (4.17) and (4.19). In order to see the correlation between
defect concentrations and R and ∆, the values of ndefect and
ndefect

√
S(S + 1) are also listed.

Sample ndefect (mol%) ndefect

√
S(S + 1) (mol%) R ∆ (K)

6b 0.21 0.85 0.04(4) 1.1(1)
7a 0.49 1.9 0.17(6) 1.8(2)
6a 0.83 3.6 0.24(4) 2.5(2)

values of R and ∆ for each sample are listed in Table 4.2. The energy barrier ∆ increases with

increasing concentration of magnetic defects, which indicates that the dynamic slowing down

with decreasing temperature originates from the interaction between the magnetic defects.

Interaction between magnetic defects should increase with increasing concentration of the

magnetic defects since the average nearest-neighbor distance decreases.

The values of R in all three samples are much less than unity, a fact which cannot be

explained by the presence of other nuclear spin-lattice relaxation mechanisms since additional

relaxation mechanisms would increase R. Such small values of R might be related to the spin-

glass like freezing as observed in the ac magnetic susceptibility measurements. In spin glass

systems, the spin autocorrelation functions are highly nonexponential,[31, 32] which reduces the

spectral density of the magnetic defect spin fluctuations at ωn as compared to the Lorentzian

in Eq. (4.19). The reduction in spectral density thus results in a reduction in the fitted value

of R in Eq. (4.19).

4.5 Discussion and Conclusions

Our study shows that there can be different kinds of magnetic defects in the LiV2O4

system. As shown by the nuclear spin lattice relaxation rates and ac magnetic susceptibility

measurements at 14 MHz, the magnetic defects in the powder samples undergo a spin glass-

like freezing below 1 K, while the magnetic defects in the single crystals exhibit a different

behavior at such low temperatures. The magnetic defects present in the powder LiV2O4

samples in Ref. [13] are similar to the magnetic defects in our powder samples since they
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show similar temperature dependences of 1/T ∗
1 . The different kinds of magnetic defects must

be associated with different types of structural defects in the system, which result in different

coupling between the defects and the conduction electrons and thus give rise to different ground

states of the defects. Different types of magnetic defects were also found in an annealing study

of the magnetic defects in single crystals,[17] where heat treatment at 700 ◦C was found to

remove the magnetic defects in one but not other single crystals.

Our model gives a sufficient description of most of our NMR results. This model assumes

(i) a random distribution of magnetic point defects and (ii) that the heavy Fermi liquid in

magnetically pure LiV2O4 survives in samples containing up to ∼ 0.8 mol% magnetic defects.

This model can explain the inhomogeneous broadening of the 7Li NMR spectrum, the nonex-

ponential nuclear spin-lattice relaxation versus time behavior, and the lack of spectral diffusion

in the hole burning experiments. It can also explain the smaller nuclear spin lattice relaxation

rate at the peak of the spectrum as compared to that at the wings. However, it is hard to

reconcile the picture of magnetic point defects with the high magnetic moments for the defects

(spins of 3–4) deduced here (see Table 4.1) and in Refs. [14] and [17] from magnetization mea-

surements. Thus one cannot rule out the possibility that the magnetic defects are associated

with magnetic droplets with a distribution of sizes.

Thus our analysis of our NMR data indicates that the Fermi liquid is still preserved even

in the presence of magnetic defects in the powder samples. However in the single crystals, the

Fermi liquid property might be modified by its coupling to the magnetic defects at T < 1.3 K.

Other measurements at low temperatures (T < 1.5 K) are needed in order to further understand

the nature of the electronic state in the single crystals with magnetic defects. In addition, static

and low frequency ac susceptibility studies are desired to further confirm the spin glass freezing

in the powder samples.
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Appendix

In this appendix, we show that the probability distribution of 1/T1 due to dipolar in-

teraction of nuclear spins with dilute magnetic defects corresponds to the 1/T1 distribution

underlying a root exponential relaxation in Eq. (4.5) with β = 1/2, which is given by (with

s ≡ T ∗
1d/T1)[26]

P (s, 1/2) =
e−

1
4s

√
4πs3/2

. (4.20)

This distribution is proportional to s−3/2 for large s, and has a low-s cutoff since e−1/4s rapidly

approaches zero at small s values. The s−3/2 dependence of the 1/T1 distribution follows from

a r−6 dependence of 1/T1 as in Eq. (4.10) as follows. Ignoring the angular dependence in

Eq. (4.10), in the single paramagnetic center limit, the distribution of s arising from such a

geometric distribution with a continuum description of nuclear spins around a magnetic defect

is

Pgeo(s) ∝ r2 dr

ds

∣∣∣
r=(CT∗

1d
s

)
1
6
∝ s−

3
2 . (4.21)

This distribution diverges as 1/T1 approaches zero. This divergence is caused by the single

impurity approximation. Nuclei with 1/T1 approaching zero correspond to those far away from

the paramagnetic center. Due to the finite distance between different paramagnetic centers,

the probability of finding a nuclear spin with 1/T1 → 0 should instead vanish, so a low 1/T1

cutoff has to be applied, resulting in a distribution function well approximated by Eq. (4.20)

and observation of a root exponential relaxation behavior.

The above qualitative arguments are supported by the following numerical simulation. In

the simulation, we calculated the 1/T1 distribution of 7Li nuclei due to a random distribution

of dilute paramagnetic defects in the LiV2O4 spinel structure. The defects randomly occupy

the vanadium sites with a probability of 0.25% (ndefect = 0.5 mol%) and the configuration of

the random defects repeats every 80 unit cells in all crystallographic axis directions. The 1/T1
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Figure 4.16 1/T1 probability distributions P (1/T1), normalized by T1, due
to dilute point-like paramagnetic defects. The circles are re-
sults obtained from computer simulation. The solid line is
the best fit by Eq. (4.20) with 1/T ∗

1 = 0.067(1) s−1 and the
dotted line is a plot of p(x) = 0.8x−3/2 with a small x cutoff
xc = 0.0256, where x ≡ a6

0/CT1. The lower cutoff is chosen so
that

∫ ∞
xc

P (x) dx = 1.

of each 7Li nucleus is calculated using[20]

1
T1

= C
∑

i

15 sin2 θi cos2 θi

2
1
r6
i

, (4.22)

where ri is the distance between paramagnetic center i and the 7Li nucleus and θi is the

angle between the applied magnetic field and the vector from paramagnetic center to the 7Li

nucleus. The applied magnetic field was arbitrarily chosen to be along the 〈001〉 direction.

Equation (4.22) has the same angular and distance dependences as the nuclear spin-lattice

relaxation due to the dipolar field fluctuation from the longitudinal spin component of the

paramagnetic defects.[20] In the presence of a strong applied magnetic field, the transverse spin

fluctuation is often modulated by the Larmor frequency of the electronic spins and thus has

negligible contribution to 1/T1.[20] The summation over i in Eq. (4.22) includes all defects with

ri < 20a0, where a0 = 8.24 Å is the lattice constant of LiV2O4. It was checked that changing

the summation range to ri < 10a0 gave negligible difference in the final 1/T1 distribution.

The distribution of 1/T1 resulting from the above simulation is displayed as the circles

in Fig. 4.16. The simulated 1/T1 distribution can be fitted very well by Eq. (4.20) with
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1/T ∗
1d = 0.067(1)C/a6

0, as shown by the solid curve in Fig. 4.16. 1/T ∗
1d calculated from Eq.

(4.11) is equal to 0.088C/a6
0, close to the simulated result. The difference may be due to the

neglected angular dependence in deriving Eq. (4.11). For comparison, a simple power law

distribution P (x ≡ a6
0/CT1) = 0.8x3/2 with a small x cutoff of xc = 0.0256 is also displayed

in Fig. 4.16. The prefactor 0.8 is chosen to make the distribution overlap with the simulated

result at large x and the cutoff xc = 0.0256 is determined by the normalization condition∫ ∞
xc

P (x) dx = 1.
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CHAPTER 5. 17O and 51V NMR Study of the Frustrated Zig-Zag Spin-1

Chain Compound CaV2O4

(This chapter is based on an article submitted to Phys. Rev. B by X. Zong, B. J. Suh, A.

Niazi, J. Q. Yan, D. L. Schlagel, T. A. Lograsso, and D. C. Johnston)

Abstract

51V NMR studies on CaV2O4 single crystals and 17O NMR studies on 17O-enriched powder

samples are reported. The temperature dependences of the 17O NMR line width and nuclear

spin-lattice relaxation rate give strong evidence for a long-range antiferromagnetic transition

at TN = 78 K in the powder. Magnetic susceptibility measurements show that TN = 69 K in

the crystals. A zero-field 51V NMR signal was observed at low temperatures (f ≈ 237 MHz at

4.2 K) in the crystals. The field swept spectra with the field in different directions suggest the

presence of two antiferromagnetic substructures. Each substructure is collinear, with the easy

axes of the two substructures separated by an angle of 19(1)◦, and with their average direction

pointing approximately along the b-axis of the crystal structure. The two spin substructures

contain equal number of spins. The temperature dependence of the ordered moment, measured

up to 45 K, shows the presence of an energy gap EG in the antiferromagnetic spin wave

excitation spectrum. Antiferromagnetic spin wave theory suggests that EG/kB lies between 64

and 98 K.

5.1 Introduction

Frustrated magnetic systems have attracted a lot of research interest because such systems

often exhibit interesting low temperature properties.[1] The zig-zag spin chain with antiferro-
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magnetic interactions between nearest- and next-nearest-neighbors is about the most simple

frustrated system. In a zig-zag spin chain system with spin S = 1, the ground state phase

diagram (at temperature T = 0) as a function of XXZ anisotropy and ratio between nearest-

neighbor (NN) and next-nearest-neighbor (NNN) interactions exhibits six different phases.[2, 3]

In addition to two Néel ordered phases and two phases with a Haldane gap, there exists a large

phase region called a gapless chiral phase where the chirality exhibits long range order without

accompanying spin order, and a small phase region where there is a gapped chiral phase.

CaV2O4 is a possible candidate for a zig-zag spin S = 1 chain system.[4, 5] It has an

orthorhombic crystal structure (space group Pnam) at room temperature. Vanadium moments

at two crystallographically inequivalent sites respectively form two inequivalent zig-zag spin

chains along the c-axis. In one of the two chains, the distances between NN and NNN vanadium

atoms are 3.01 and 3.08 Å, respectively, while in the other chain, these two distances are 3.01

and 3.06 Å, respectively. The smallest interchain vanadium distances are 3.58 and 3.62 Å.[6]

Thus one might expect a much smaller interchain coupling as compared to NN and NNN

interactions within the chain.

Previous magnetization and 51V NMR studies of CaV2O4 suggested that the ground state

of the system might be a gapless chiral phase.[4, 5] However, this finding contradicts earlier

powder neutron diffraction studies which showed that the system is in an antiferromagnetic

state at 4.2 K.[7] The neutron measurements indicated a magnetic unit cell in which the b

and c lattice constants are doubled and the spin directions in each chemical unit cell are

reversed relative to their orientations in neighboring chemical unit cells along the b- and c-

axes. Each chemical unit cell contains 8 vanadium spins and the magnetic spin structure

within each chemical unit cell could not be uniquely determined. The neutron diffraction

pattern was found to be consistent with three different collinear models with spins parallel to

the b-axis. By assuming the same spin moment at all vanadium sites, the magnetic moment

of each vanadium spin was determined to be 1.06(6) µB, only about half the value expected

for a vanadium spin with g-factor g ≈ 2 and S = 1.[7] The presence of a low temperature

antiferromagnetic phase is also supported by recent magnetization measurements on annealed
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CaV2O4 single crystals, which showed a clear signature of an antiferromagnetic phase transition

at temperature TN = 69 K.[6]

In order to obtain further evidence of the magnetic phase transition and to study the

magnetic properties in the ordered state, we performed 17O and 51V NMR studies on 17O-

enriched powder and single crystal samples, respectively. The 17O NMR spectrum and the

nuclear spin-lattice relaxation rate measurements give strong evidence for a magnetic transition

at TN = 78 K in the powder sample. In contrast to early 51V NMR measurements,[4, 5] we

could not detect a 51V NMR signal in the powder sample around the normal Larmor frequency

in an applied field of 1.67 T in the temperature range of 4.2 K < T < 296 K. Instead, we

observed a zero-field 51V NMR signal at T < 45 K (f ≈ 237 MHz at 4.2 K).

The zero-field 51V NMR signal is observed because of a strong local field at 51V nuclear

sites (Hloc = 21.2 T at 4.2 K) in the ordered state. The local field arises mainly from in-

teraction between nuclei and vanadium core electrons, which are polarized by the ordered 3d

electronic spins.[8, 9] This local field points antiparallel to the direction of the local electronic

spin moment. By studying how the resonance frequency changes as a function of the direction

and magnitude of the applied magnetic field, one can obtain information on the vanadium spin

structure, as will be demonstrated below. We measured the temperature dependence of the

ordered moment to study the anisotropy gap of the antiferromagnetic spin wave excitations.

We also attempted to measure the temperature dependence of the 51V nuclear spin-lattice re-

laxation rate 1/T1. However, due to the very broad line and the presence of nuclear quadrupole

splitting (the nuclear spin of 51V is I = 7/2), the relaxation curves are highly nonexponential

and depend strongly on the saturation condition. Thus, a reliable measurement of the 51V

1/T1(T ) was not achieved.

The remainder of the chapter is organized as follows. Experimental details are explained in

Sec. 5.2. 17O and 51V NMR results are presented in Secs. 5.3 and 5.4, respectively. In Sec. 5.5,

we give a summary of the main results of the chapter.
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5.2 Experimental Details

Polycrystalline single phase CaV2O4 (sample an-2-116) was synthesized via the solid-state

route by reacting V2O3 (99.995%, MV Labs) with CaO obtained by calcining CaCO3 (99.995%,

Aithaca Chemicals) at 1100 ◦C. The chemicals were ground inside a He glove-box, then pressed

and sintered at 1200 ◦C for 96 hours in flowing 4.5% H2-He with intermediate grindings. Phase

purity was confirmed by powder X-ray diffraction (XRD) on a Rigaku Geigeflex diffractometer

using Cu Kα radiation in the 2θ range of 10◦–90◦.[6] 72.1 atomic% 17O-enriched oxygen (MSD

Isotopes) was used for 17O-enrichment. About 1 g of the precursor CaV2O4 was placed in a

Pt foil-lined alumina boat in an evacuated furnace tube, which was then preheated to 750 ◦C

under dynamic vacuum. The pumping line was then closed and the tube backfilled with the

17O-enriched O2. The mass gain on oxidation indicated a nominal composition of CaV2O5.94.

This was placed in flowing 4.5% H2-He and reduced as before to CaV2O4 (sample an-2-180E).

The final 17O content of the enriched CaV2O4 was about 25%. Powder XRD was used to

confirm that the sample was single phase.

17O NMR measurements were performed utilizing a phase-coherent pulse spectrometer in

applied fields of 3.0 and 4.7 T. The typical π/2 pulse length is 6µs. The echo signal was

produced by a sequence of a π/2 and a π/3 pulse, which produce the maximum echo signal

intensity. The separation between these two echo generating pulses was 40 µs. The 17O NMR

spectra were measured by either Fourier transform of half the echo signal or by plotting the

area of the echo as a function of the rf frequency (frequency sweep). The nuclear spin-lattice

relaxation rates were measured by monitoring the recovery of the echo intensity following a

comb sequence of π/2 saturation pulses. Static magnetization versus temperature was mea-

sured in a Quantum Design SQUID magnetometer in a field of 1 T and in the temperature

range 5–100 K to confirm the low temperature magnetic behavior and the ordering tempera-

ture TN = 78 K. The magnetic susceptibility of the powdered 17O-enriched sample is shown

in Fig. 5.1. The transition temperature is revealed by a small kink in the χ(T ) data at TN.

Two CaV2O4 crystals were used in 51V NMR measurements. Crystal #1 was grown in

an optical floating zone furnace while crystal #2 was grown using a tri-arc crystal pulling
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Figure 5.1 Magnetic susceptibility χ versus temperature T of the
17O-enriched CaV2O4 powder sample measured in a field of
H = 1 T. The vertical arrow indicates the position of the anti-
ferromagnetic transition temperature TN = 78 K.

method.[6, 10] Both crystals were annealed at 1200 ◦C under 4.5% H2-He flow and the antifer-

romagnetic phase transition temperatures of the annealed crystals were found from magnetic

susceptibility and heat capacity measurements to be 69 K.[6] The sizes of the crystals #1 and

#2 are about 5 × 5 × 10 mm3 and 1 × 1 × 2 mm3, respectively. The magnetic susceptibility

of crystal #2 is shown in Fig. 5.2 with the field along a and b directions. The antiferromag-

netic transition temperature TN is clearly seen as a bifurcation in the susceptibilities along

the two directions. We note that, when the field is along the b direction, a splitting between

zero-field-cooled and field-cooled susceptibility is observed below T = 20 K.

A search for a zero-field 51V NMR echo signal was performed at 4.2 K and was found to

be located close to a frequency of 237 MHz at that temperature. The echo was produced by a

sequence of two pulses with the same pulse length, which was typically 4 µs and about half the

length a π/2 pulse. The separation between the pulses was fixed to 16 µs. 51V NMR spectra

were measured by plotting the echo intensity as a function of the magnetic field. A variable

magnetic field from 0 to 2.0 T was produced by an electromagnet. The value of the magnetic

field was measured by a Hall magnetometer attached to one of the two magnet pole caps. The

difference between the measured field and the field at the position of the sample (measured

by the resonance frequency of protons in water) was less than 0.005 T over the whole field
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Figure 5.2 Magnetic susceptibility χ versus temperature T of CaV2O4

crystal #2 measured with the applied field H = 1 T along
the a and b directions. The vertical arrow indicates the antifer-
romagnetic transition temperature TN = 69 K. The measure-
ments were carried out under either field-cooled (fc) or zero–
field-cooled (zfc) conditions, as indicated.

range. Individually, the crystals were placed inside copper solenoid coils with the crystal c-axis

parallel to the coil axis. Measurements of crystal #1 involved rotation of the field in the a-b

and b-c planes. Measurements of crystal #2 involved rotation of the field in the a-b plane. The

rotation of the field was achieved by rotating the cryostat together with the crystal about the

crystallographic axes perpendicular to the field plane. The misalignment between the rotation

axis and the intended crystallographic axis is estimated to be less than 5◦.

5.3 17O NMR in Powder Sample of CaV2O4

Figure 5.3 displays the 17O NMR spectra for the 17O-enriched powder sample of CaV2O4

in H = 3 T at three different temperatures. The spectrum at T = 296 K was obtained via

Fourier transform of half the echo signal while the spectra at T = 80 and 77 K were obtained

by frequency sweep. 17O nuclei have spin 5/2 and thus possess a nonzero electric quadrupole

moment. Since the local environments of all oxygen sites do not possess cubic symmetry (point

group m), one expects a quadrupole splitting of the 17O resonance frequencies. We attribute

the lack of a powder pattern of the first order quadrupole splitting in the observed spectra

to a smaller quadrupole splitting compared to the magnetic broadening of the spectra. The
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Figure 5.3 Absorption spectrum of the 17O NMR signal for an 17O-enriched
powder sample of CaV2O4 at three different temperatures in
an applied magnetic field H = 3.0 T. A strong inhomogeneous
broadening is observed close to the magnetic transition tem-
perature TN = 78 K. The solid line at 77 K is a guide to the
eye.

absorption line at T = 77 K exhibits large broadening compared to the lines at T = 80 and

296 K. As will be further shown below, this broadening is a signature of an antiferromagnetic

phase transition at TN = 78 K, where the nuclear spin-lattice relaxation rate 1/T1 exhibits a

peak. As the temperature approaches the phase transition temperature, the electronic vana-

dium spins slow down dramatically and thus induce an inhomogeneous static (on the NMR

time scale) dipolar field on neighboring 17O sites and broaden the 17O NMR line.

The recovery of the 17O longitudinal nuclear magnetization M(t) following the saturation

pulses is a single exponential function at T > 100 K. Below 100 K, deviation from single

exponential behavior is observed, indicating a distribution of 1/T1 values. In order to extract

a characteristic relaxation rate at all temperatures, we fitted the recovery curves to a stretched

exponential function

1 − M(t)
M(∞)

= exp
[
−(t/T ∗

1 )β
]
. (5.1)

The relation of the parameters 1/T ∗
1 and β to the 1/T1 distribution underlying a stretched

exponential function has been discussed in a recent paper.[11] Figure 5.4 shows the temperature

dependence of 1/T ∗
1 and β in H = 3.0 and 4.7 T. At T > 100 K, the relaxation rate is almost
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Figure 5.4 Temperature T dependence of the 17O nuclear spin-lattice relax-
ation rate 1/T ∗

1 [see Eq. (5.1)] of 17O-enriched powder CaV2O4

in applied magnetic fields H = 3.0 and 4.7 T. A strong peak
is observed close to the antiferromagnetic transition tempera-
ture TN = 78 K, as labeled by the arrow. Inset: the stretching
exponent β versus T .

temperature independent. Below 100 K, 1/T ∗
1 exhibits a strong enhancement and reaches a

peak at TN = 78 K. Combining the above NMR results with magnetization studies of powder

and single crystals,[6] and with the magnetic susceptibility data in Fig. 5.1, we identify the

1/T ∗
1 peak temperature as the temperature of an antiferromagnetic phase transition TN. The

peak in the nuclear spin-lattice relaxation rate at TN results from an enhancement and slowing

down of the electronic spin fluctuations at wave vectors close to the antiferromagnetic ordering

vector as the temperature approaches TN from either side.[12]

5.4 51V NMR Below TN in single crystals of CaV2O4

5.4.1 Spin Structure at 4.2 K

In an external magnetic field H, the resonance frequency f of the 51V nuclear spins is given

by

f = |A〈S〉 + H|γv/2π, (5.2)

where A is the hyperfine coupling constant between the nuclear spin and the vanadium elec-

tronic spins S, γv is the gyromagnetic ratio of 51V nuclear spins, and 〈S〉 denotes the average

electronic spin value in thermal equilibrium. In our experiments, the local field is much larger
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than the applied field: A|〈S〉| 
 H. Depending on whether the applied field component along

〈S〉 is parallel or antiparallel to 〈S〉, the resonance frequency shifts to higher or lower values,

respectively. If CaV2O4 is a collinear antiferromagnet at low temperatures, where opposite

spin directions exist, upon application of an external field along the ordering axis, the zero-

field spectrum should split into two peaks. These peaks should be symmetrically displaced

above and below the zero-field peak frequency.

Figure 5.5 shows the field-swept spectra with the field at different angles in the a-b plane,

measured with rf frequencies both higher and lower than the zero-field peak frequency f0 =

236.7 MHz. All measurements in this subsection were performed on CaV2O4 crystal #1. In

contrast to a single peak above and a single peak below the zero-field peak frequency f0 when

an applied field is present, as expected for a collinear antiferromagnet, instead we see two

peaks above f0 and two peaks below f0 in applied fields as shown by the vertical arrows in

Fig. 5.5. Whether each set of two peaks is resolved depends on the angle of the applied field

in the a-b plane as shown. We infer below that the spectra in Fig. 5.5 (and 5.6) are consistent

with a magnetic structure at 4.2 K that consists of two antiferromagnetic substructures, each

of which is a collinear antiferromagnetic arrangement where the angle between the ordering

axes of the two substructures is 19(1)◦. The angle labeled in each panel of Fig. 5.5 is the angle

between the applied field and the axis S′
m, which is the average of the projections onto the a-b

plane of the two spin ordering directions (see Fig. 5.8 below). S′
m is approximately parallel to

the b-axis and is determined by fitting the peak positions versus angle, as will be explained

below.

In our discussions of the 51V NMR results, we assume that the applied magnetic field only

shifts the NMR frequency without affecting the electronic spins. In fact, the ordered electronic

moments can be tilted by the applied field due to the presence of a torque. However, we can

show that the tilting angle is indeed negligibly small. From the magnetization measurements,[6]

at 4.2 K, the susceptibility χ of single crystal CaV2O4 with applied field in the a, b or c

directions is χ ∼ 0.003 cm3/mol, which corresponds to an induced moment of 0.005 µB for

each vanadium spin in a 2 T field. The tilting angle required to produce such a moment is only
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0.3◦, assuming an ordered moment of 1.06 µB.[7] Both this angle and the induced moment are

negligible to our studies.

The spectra in Fig. 5.5 exhibit a two-peak structure when the field points away from the

S′
m axis. When measured by field sweep at a fixed frequency f , each peak i (= 1, 2) should

appear at the field value

Hpeak i =
∣∣∣∣−f0 cos αi +

√
f2 − f2

0 sin2 αi

∣∣∣∣ /(γv/2π), (5.3)

where αi is the angle between the field and the respective electronic spin ordering direction of

a magnetic substructure noted above. The observed two-peak structures for f > f0 and f < f0

strongly indicate the presence of these two different antiferromagnetic spin ordering directions

in the system. The ability to resolve the two peaks at the larger angles in Fig. 5.5 (and 5.6) is

related to the larger partial derivative of |∂Hpeak i/∂αi| of Eq. (5.3) at the larger αi values for

αi < π/2 rad.

The two peaks in the same spectrum have different heights, as can be clearly seen in Fig. 5.5

(b), (d), (g), and (i). The reason behind this difference is currently not understood. It may

be due to the change of the nuclear spin-spin relaxation times at different field values, since

we fix the separation between the two rf pulses for echo generation to be 16 µs. We note

that the difference cannot be attributed to the different percentage of spins in the two spin

substructures. In such a scenario, the spins contributing to the left peaks in Figs. 5.5(b) and

(g) should contribute to the right peaks in Figs. 5.5(d) and (i) (see Fig. 5.9), and the left

peaks should be higher in one orientation while lower in the other in Figs. 5.5(b) and (d),

and in Figs. 5.5(g) and (i), respectively. However, the spectra in Figs. 5.5(b) and (d), and

in Figs. 5.5(g) and (i) are almost the same. The symmetry in the spectra with the field on

opposite sides of S′
m, such as in Figs. 5.5(b) and (d) and in Figs. 5.5(g) and (i), indicates that

the number of spins in the two substructures are the same.

Since the above two-peak structure is observed with the field in the a-b plane, these mea-

surements can only detect the difference of the spin projections of the two substructures onto

the a-b plane. In order to determine whether or not the projections onto the b-c plane are also

different, we also measured the spectra with the field in the b-c plane. Some representative
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Figure 5.5 Field swept spectra with the applied magnetic field parallel to
the a-b plane at rf frequencies of 231 MHz (left panels) and
243 MHz (right panels). The angles between the field and the
average of the two projections of the two spin directions onto the
a-b plane (S′

m in Fig. 5.8) are labeled in each panel. The arrows
indicate the positions of the peaks. S′

m is approximately parallel
to the crystallographic b-axis. The spectra were measured at
4.2 K on crystal #1.
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Figure 5.6 Field swept spectra with the applied magnetic field parallel to
the b-c plane at rf frequencies of 231 MHz (left panels) and
243 MHz (right panels). The angles between the field and the
average of the two projections of the two spin directions onto
the b-c plane (S′′

m in Fig. 5.8) are labeled in each panel. The
arrows indicate the positions of the peaks. The spectra were
measured at 4.2 K on crystal #1.

spectra with the field in different directions are displayed in Fig. 5.6, where the angles listed

are described in the caption. As one can see, a two peak structure is still observed when the

field is at a large angle from the S′′
m axis. However, the separations between the two peaks are

smaller than in Fig. 5.5, indicating a smaller angle between the two easy axis projections onto

the b-c plane than onto the a-b plane.

In order to study whether there exists canting and/or an imbalance in the number of spins

in opposite directions for each of the two ordered magnetic substructures, we compared the

spectra with those measured with the field rotated by 180◦. Figure 5.7 displays two spectra

measured at f = 222 MHz with the field parallel to the a-b plane and −31◦ and 149◦ away
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Figure 5.7 Comparison of two spectra measured at rf frequency
f = 222 MHz with and without the field direction reversed.
The fields are parallel to the a-b plane and form angles of −31◦

and 149◦ from the S′
m direction, respectively. The spectra were

measured at 4.2 K on crystal #1.

from the S′
m direction, respectively. These two spectra are identical within experimental error,

indicating the absence of spin canting and the same number of spins in opposite directions

within each magnetic substructure.

Thus we propose a model of the spin structure as shown in Fig. 5.8. Various notations used

in the model are explained in the caption of Fig. 5.8. There are equal numbers of spins in the

two antiferromagnetic substructures, each of which consists of collinear antiparallel spins also

with equal number. The plane defined by the two ordering directions is parallel neither to the

a-b nor the b-c plane. The average ordered moment direction Sm is approximately parallel to

the b-axis. This is consistent with single crystal anisotropic magnetization measurements versus

temperature which showed that below TN, the average easy axis of the magnetic structure is

approximately the b-axis.[6] Note that in our NMR study, we cannot determine the location

in the lattice of the two different magnetic substructures.

To extract the angle between the spin ordering directions of the two substructures, we

measured the dependence of the peak positions versus the field directions at rf frequencies of

231 and 243 MHz. The results are shown in Fig. 5.9. For small angles between H and S′
m or

S′′
m, only one peak is observed. At larger angles, the positions of two peaks can be resolved.
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Figure 5.8 The proposed ordered spin structure in CaV2O4. There are two
different antiferromagnetic ordering substructures with equal
numbers of spins, each of which has a collinear antiferromag-
netic spin arrangement. ∆θ, ∆θ′, and ∆θ′′ are the angles be-
tween these two directions, and their projections on a-b and b-c
planes, respectively. Sm, S′

m, and S′′
m are the average of the two

directions and their projections on a-b and b-c planes, respec-
tively. θ′H (θ′′H) and θ′m (θ′′m) are the angles formed between a
fixed arbitrary experimental reference direction in the a-b (b-c)
plane and the applied field H and S′

m (S′′
m), respectively.
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Two different symbols are used to represent the two different spin substructures, while for

spectra with single peaks, a third symbol is used. Since the angle between the spin direction

and the b-axis is much less than one radian, cosαi in Eq. (5.3) for the field in the a-b plane

can be approximated by

cos α1,2 ≈ cos(θ′m ± ∆θ′/2 − θ′H), (5.4)

where α1,2 are the angles between the field and the two spin directions S1 and S2, respectively.

Similarly, for the field in the b-c plane, one has

cos α1,2 ≈ cos(θ′′m ± ∆θ′′/2 − θ′′H). (5.5)

We fitted Eq. (5.3) with cosα1,2 given by Eqs. (5.4) and (5.5) to the data in Fig. 5.9. The free

parameters in the fit were f0, θ′s, θ′′s , ∆θ′, and ∆θ′′. The best fit results are f0 = 236.7(2) MHz,

∆θ′ = 18(1)◦, and ∆θ′′ = 6(1)◦. The fits are shown in Fig. 5.9. Since the angles between the

spins and the b-axis are much less than one radian, we have

sin ∆θ ≈
√

sin2 ∆θ′ + sin2 ∆θ′′, (5.6)

from which one obtains the angle between the easy axes of the two magnetic substructures to

be ∆θ = 19(1)◦.

In addition to the study of the angular dependence of the peak positions, we also measured

their frequency dependences to further confirm the proposed spin structure. Figures 5.10(a)

and (b) show the field swept spectra with the field H pointing along the S′′
m direction, at rf

frequencies lower and higher than f0 = 236.7 MHz, respectively. Note that when H ‖ S′′
m,

the two magnetic substructures have the same peak positions of the spectra (see the zero-

angle data in Fig. 5.9). The peaks in Figs. 5.10(a) and (b) both shift to higher fields when

the frequency shifts further away from f0, respectively. The peak positions Hpeak versus rf

frequency are plotted in Fig. 5.10(c). The two sets of data points can be well fitted by the two

linear equations

f = f0 ± Hpeakγ/2π, (5.7)

where f0 is the peak frequency of the spectrum at zero applied field. A fit of Eq. (5.7) to the

data gives γ/2π = 11.4(2) MHz/T, and f0 = 236.7(1) MHz. Assuming Sm to be parallel to the



104

Figure 5.9 Dependence of the peaks in the spectra at 4.2 K on the direction
of the applied magnetic field, with the field in the b-c (top two
panels) and a-b (bottom two panels) planes of crystal #1, where
the rf frequencies are equal to 231 and 243 MHz, respectively.
For definitions of the angles θ′H , θ′m, θ′′H , and θ′′m, see Fig. 5.8.
Circles and filled squares correspond to the two different spin
ordering directions of the two magnetic substructures, respec-
tively. The symbol � is used when the two peaks from the two
spin directions overlap and only a single peak can be observed.
The error in Hpeak is comparable to the size of the symbols un-
less shown explicitly. The solid and dotted lines represent the
fits by the theoretical prediction in Eq. (5.3).
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Figure 5.10 (a) and (b): Field-swept 51V NMR spectra at four different
frequencies at 4.2 K. The frequencies are given under each
spectrum in units of MHz. The field is applied parallel to
the S′′

m direction. (c): The frequency versus the peak field of
the spectra. The solid lines are linear fits by Eq. (5.7). The
measurements were done on crystal #1 at 4.2 K.

b-axis, the value of γ should be γ/2π = (γv/2π) cos(∆θ/2) = 11.07 MHz/T, where ∆θ = 19◦ is

the above angle between the ordering directions of the two magnetic substructures. This value

of γ/2π is very close to the above fitting result.

5.4.2 Ordered Moment and Its Temperature Dependence

In this subsection, we will study the temperature dependence of the vanadium ordered mo-

ment, which provides evidence for an energy gap in the antiferromagnetic spin wave excitation

spectrum, arising from anisotropy effects. Then we will discuss the value of the saturation

vanadium spin moment at low temperatures. Measurements in this subsection were performed

on crystal #2. The experiment was set up to allow field rotation in the a-b plane. By rotating

the field in the a-b plane, the S′
m direction (see Fig. 5.8) is identified as the direction along

which the peak position in the spectrum is at a minimum applied field at a fixed rf frequency

away from f0 (see Fig. 5.9). After identifying the S′
m direction, all subsequent measurements

of the spectra were performed versus H at fixed rf frequencies with the field along the S′
m
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Figure 5.11 rf frequency f versus peak Hpeak in field swept spectrum in
crystal #2 at 4.2 K. The field is applied along the S′

m direction.
The solid lines are fits with Eq. (5.7).

direction.

With the field along S′
m, only a single peak is observed in the spectrum at each frequency

(see Fig. 5.10). In Fig. 5.11, we display the frequency dependence of the peak position at 4.2 K.

Similar to the case of crystal #1 (Fig. 5.10), the data points can be well fitted by two straight

lines. A fit of Eq. (5.7) to the data gives f0 = 236.98(8) MHz and γ/2π = 11.3(1) MHz/T.

This value of γ is in agreement with the fitting value in crystal #1. However, the value of f0

is slightly larger than in crystal #1. This slight difference may be due to sample-dependent

differences.

Figure 5.12 displays representative spectra measured at four different temperatures. For

comparison between the different spectra, the x-axis has been converted to the quantity f +

Hγ/2π, with γ/2π = 11.3 MHz/T. As the temperature increases, the signal intensity decreases

rapidly and the spectra can only be measured below 45 K. In order to more accurately

determine the peak position of the spectra, we fitted the original field swept spectra (with the

x-axis being H) by a Gaussian function

I(H) = A + B exp[−2(H − Hpeak)2/σ2], (5.8)

with A, B, Hpeak, and σ as fitting parameters. The zero field peak frequency f0 is then
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Figure 5.12 Field swept spectra at different temperatures on crystal #2.
The temperature and the rf frequency for each measurement
are labeled in each panel. The solid lines are fits by Eq. (5.8)
to extract the peak positions.

determined from

f0 = f ± Hpeakγ/2π,

where γ/2π = 11.3 MHz/T and the + and − signs correspond to the cases of f < f0 and

f > f0, respectively. In order to determine whether f < f0 or f > f0, spectra were measured

with at least two different frequencies at each temperature. With the correct choices of the

+ or − signs, the obtained f0 values for different spectra as in Fig. 5.12 are the same within

experimental error at each temperature. The final f0 value is an average over all calculated f0

values for various spectra at the same given temperature.

Figure 5.13 shows the temperature dependence of f0. Since the temperature dependence

of the hyperfine coupling constant can be ignored,[13] f0(T ) is directly proportional to the

ordered local moment. The ordered moment is almost temperature independent at T < 15 K.
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Figure 5.13 Temperature dependence of the 51V NMR spectra peak posi-
tion in zero applied field in CaV2O4 crystal #2. The dotted
and solid curves are fits by Eqs. (5.19) with one-dimensional
spin wave dispersion and (5.20) with three-dimensional disper-
sion, respectively.

In the spin wave theory of a three-dimensional antiferromagnet without anisotropy, the initial

decrease of the ordered moment with temperature T should follow a T 2 dependence.[14] Fitting

the data by a power law gives an exponent ≥ 3.5, an unphysically large value (not shown).

The temperature independence below T < 15 K thus indicates the presence of an anisotropy-

induced energy gap for spin wave excitations.[15]

Before estimating the gap energy, we will first estimate the value of the saturation moment

at T = 0 K. The local moments reach their saturation value at T < 15 K. From the value

of f0 = 237 MHz at T < 15 K, one obtains a local field value of Hloc = f0/(γv/2π) =

21.2 T. In order to infer the value of local moment from the local field value, the hyperfine

coupling constant A and the g-factor have to be determined. With known values of A and

g, the ordered moment 〈µz〉 is |〈µz〉| = gµBHloc/A. The local field is dominated by the

contact interaction through the polarized core electrons, which is approximately proportional

to the number of unpaired electronic spins in the 3d orbitals with a proportionality constant

of 12.5 T per unpaired electron to within 20%.[8] However, beside the contact interaction,

orbital effects[9] and transfered hyperfine coupling with the neighboring V3+ ions[16] may also

contribute significantly to the local field at the 51V nuclear site.

In the absence of a knowledge of the orbital effects and transfered interactions, we will
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estimate a possible range of the A/(gµB) value in CaV2O4 using the known values of A/(gµB)

in other V3+ compounds. The values of A/(gµB) in LaVO3, YVO3, and V2O3 are 16.8,

20.8, and 15.5 T/µB, respectively.[17] For V3+ in Al2O3, EPR measurements gave A/(gµB) =

13.3 T/µB.[18] The range of A/(gµB) in the above four compounds is between 13.3 and

20.8 T/µB. Assuming A/(gµB) in CaV2O4 lies in the same range, the low temperature or-

dered vanadium moment in CaV2O4 is thus in the range of 1.02–1.59 µB. This |〈µz〉| range is

consistent with the value 1.06(6) µB extracted from the previous neutron powder diffraction

study.[7]

Next we estimate the energy gap for the spin wave excitations. From the neutron diffraction

studies,[7] we know that the spins reverse their ordering direction upon moving along the c-

axis. Therefore the spin structure in the ordered state within a zig-zag chain should look as

in Fig. 5.14, where we ignore the possible small misalignment of 19◦ between spins in the two

magnetic substructures discussed above. Because each spin in one leg of the chain couples

by the same exchange constant J1 to two spins in the other leg that are ordered in opposite

directions, we expect that the effective coupling between the two legs within a zig-zag chain

is greatly reduced in the ordered state. As a result, we will consider the nearest-neighbor

interactions within the leg J2 as the only dominant magnetic interaction and treat the effect of

interleg interaction within a zig-zag chain as a weak interchain interaction. For simplicity, we

will use a single exchange constant J ′ to characterize the effect of the interchain interactions.

To include the effect of anisotropy, we assume a single ion anisotropy in the system with a

single direction of easy axis. Then, the Hamiltonian can be written as

H =
∑

i

(
2J2Si · Si+1 −

1
2
KS2

iz

)
+ 2

∑
〈i,j〉

J ′Si · Sj+1, (5.9)

where K is the anisotropy constant, the index i runs through the spins in one leg of the chain,

and the summation 〈i, j〉 runs through all interleg and interchain nearest-neighbor pairs.

The Fourier transform of the exchange interactions is

J (q) =
∑

j

J(rij) exp(−iq · rij),
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Figure 5.14 Zig-zag spin structure in CaV2O4. Due to the alternation of
the spin directions along the c-aixs, the interaction between
the spins in the two legs of the zig-zag chain are essentially
decoupled. The possible misalignment of 19◦ between spins in
the two legs of the zig-zag chain is ignored. J1 and J2 are the
nearest-neighbor interleg and intraleg exchange interactions,
respectively.

where rij connects two spins in opposite sublattices, J(rij) > 0 is the nearest-neighbor ex-

change constant, and the index j runs through all the nearest-neighbor spins of spin i in the

opposite sublattice (each sublattice consists of spins in the same direction). The spin wave

dispersion relation is given by[19]

Eq =
{
[2SJ (0) + KS]2 − [2SJ (q)]2

}1/2
, (5.10)

where we ignored interactions between spins in the same sublattice. The spin wave gap value

is given by the value of Eq at q = 0. In the limit of small anisotropy K � 2J (0) ≈ 4J2, the

gap energy is given by

EG = 2S[J (0)K]1/2 ≈ 23/2S[J2K]1/2. (5.11)

In the spin wave theory, the decrease of sublattice magnetization is due to the thermal

activation of spin wave excitations. In the above bipartite antiferromagnetic system,[19]

〈Sz(0)〉 − 〈Sz(T )〉 =
V

(2π)3

∫
〈nq〉

2J (0)S + KS

Eq
d3q, (5.12)

where the integral is limited to the first Brillouin zone of one sublattice, V is the sample volume

per sublattice site, and

〈nq〉 =
1

eEq/kBT − 1

is the number of thermally excited antiferromagnetic magnons.
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The dispersion relation in Eq. (5.10) depends on the spin lattice structure and the exchange

interactions J(r). For a quasi one-dimensional chain with interchain coupling J ′, at tempera-

tures T 
 J ′/kB, one can ignore the dispersion perpendicular to the chain direction. Then for

small values of qc, which is the q vector component along the chain, one can perform a Taylor

series expansion of |J (q)|2 as

|J (q)|2 ≈ |J (0)|2
[
1 − l2q2

c

]
, (5.13)

where l is the nearest-neighbor distance within the leg.

At T � J2/kB, only spin waves at small qc values have significant contributions to the

integral in Eq. (5.12), so one can change the limits of integral for qc in Eq. (5.12) to ±∞. The

small q approximation is valid only at temperatures where 1 − |〈Sz(T )〉|/|〈Sz(0)〉| < 0.1,[15]

which is satisfied within our experimental temperature range. Substituting Eq. (5.13) into

Eq. (5.10), and changing the limits of integral for qc in Eq. (5.12) to ±∞, one obtains in the

limit of small anisotropy K � 2J (0) and T � EG

1 − 〈Sz(T )〉
〈Sz(0)〉 ≈ Be−EG/kBT (EG/kBT )−1/2, (5.14)

where

B ≈ 2√
2π

≈ 0.80. (5.15)

Equation (5.14) is valid at temperatures J ′/kB � T � J2/kB. In CaV2O4, J ′/kB might

fall within the experimental temperature range in Fig. 5.13 (1.5 ≤ T ≤ 45 K). Therefore, it is

useful to consider the other limit of T � J ′/kB � J2/kB, where a three dimensional dispersion

is more appropriate. Applying a small q approximation, one obtains

|J (q)|2 ≈ |J (0)|2
{

1 − η2(V/2)2/3
[
q2
c + j′(q2

a + q2
b )

]}
, (5.16)

where for simplicity, we assumed an isotropic dispersion in the a-b plane, η is a geometrical

factor of order one which depends on the spin structure,[20] and j′ is of the order of J ′/J2. By

combining Eqs. (5.10), (5.12), and (5.16), and changing the three limits of integrations to ±∞

in Eq. (5.12), then instead of Eq. (5.14), we have in the limit of small anisotropy K � 2J (0)
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and T � EG[15]

1 − 〈Sz(T )〉
〈Sz(0)〉 ≈ Be−EG/kBT (EG/kBT )−3/2, (5.17)

where

B ≈
√

2α

π
3
2 η3j′

(5.18)

with α ≡ K/[2J (0)].

Using Eqs. (5.14) and (5.17) and the relation

f0(T )/f0(0) = |〈Sz(T )〉|/|〈Sz(0)〉|,

one obtains the variation of the zero-field 51V NMR resonance frequency f0 as (for 1D)

f0(T ) = f0(0)
[
1 − Be−EG/kBT (EG/kBT )−1/2

]
(5.19)

or (for 3D)

f0(T ) = f0(0)
[
1 − Be−EG/kBT (EG/kBT )−3/2

]
, (5.20)

depending on whether a one-dimensional (1D) or three-dimensional (3D) dispersion is used for

Eq. We fitted Eqs. (5.19) and (5.20) to the f0(T ) versus T data in Fig. 5.13 at T ≤ 45 K

with f0(0), B, and EG as free parameters. The best fit results are f0(0) = 237.04(5) MHz,

EG = 98(5) K, B = 0.51(7) for the 1D dispersion with Eq. (5.19), and f0(0) = 237.08(6) MHz,

EG = 64(5) K, and B = 0.27(6) for the 3D dispersion with Eq. (5.20). The best fit curves are

shown as the dotted and solid curves in Fig. 5.13, respectively. Since Eqs. (5.19) and (5.20)

are derived under the two limiting conditions of T 
 J ′/kB and T � J ′/kB, respectively, one

can expect that the actual EG value might lie somewhere between 64 and 98 K. Given a value

of EG, we can make a rough estimate of the anisotropy constant K. From the magnetization

study, one estimates that the intrachain nearest-neighbor exchange constant to be of the order

of J2/kB ∼ 200 K.[6] Taking S = 1, EG = 81 K, and J (0) ≈ 2J2, we thus have from Eq. (5.11)

that K/kB ∼ 4 K.

The above fitting value of B = 0.51(7) from 1D dispersion is similar to the calculated value

of 0.80. The fitting value of B = 0.27(6) from the 3D dispersion constrains the value of J ′

in the 3D model. Taking α ≈ K/4J2 ∼ 0.01, η ∼ 1, and B = 0.27, then from Eq. (5.18)
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one has j′ ∼ 0.01 and J ′/kB ∼ j′J2/kB ∼ 2 K. However, this value of J ′ seems inconsistent

with the initial assumption of T � J ′/kB required for the three-dimensional model to be valid.

Therefore, Eq. (5.19) of the 1D model might provide a better approximation to the f0(T ) data.

5.5 Summary and Conclusions

We have presented 17O and 51V NMR results on the zig-zag spin chain compound CaV2O4.

The strong inhomogeneous broadening and a peak in the nuclear spin-lattice relaxation rate

versus temperature of 17O NMR confirm the presence of an antiferromagnetic phase transition

at 78 K in a powder sample. The crystals we studied have TN = 69 K. 51V NMR in the

ordered state of crystals reveals the presence of two antiferromagnetic substructures at 4.2 K,

each of which is collinear and which form an angle of 19(1)◦ between them with the average

direction approximately parallel to the b-axis. The location in the lattice of the different spin

substructures is unknown. However, we speculate that the two magnetic substructures are

associated with the two inequivalent V3+ S = 1 zig-zag spin chains in the orthorhombic crystal

structure, respectively. The temperature dependence of the zero-field resonance frequency at

low temperatures suggests the presence of an energy gap in the spin wave excitation spectrum.

The energy gap is estimated from spin wave theory to be between 64 and 98 K.
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CHAPTER 6. Structure, Magnetization, and NMR of the Spin Glass

Compound (LixV1−x)3BO5 (x ≈ 0.40 and 0.33)

(This chapter is based on a paper published in Phys. Rev. B by X. Zong, A. Niazi, F.

Borsa, X. Ma, and D. C. Johnston[1])

Abstract

Structural and magnetic properties of (LixV1−x)3BO5 powders (x = 0.33) and single crys-

tals (x = 0.40) were studied by x-ray diffraction, magnetization and NMR measurements. Both

powder and single crystal x-ray diffraction data are consistent with the previously reported

structure of the system. Magnetization measurements show an overall antiferromagnetic in-

teraction among vanadium spins and reveal a transition into a spin glass state at a sample

and magnetic field dependent temperature below ∼ 10 K. The high temperature (T > 20 K)

susceptibility is analyzed using a linear spin trimer model suggested in the literature but such

a model is found to be insufficient to explain the data. 7Li and 11B NMR studies indicate an

inhomogeneous dynamics close to the zero field spin glass transition temperature. The distri-

bution of electronic spin relaxation times is derived using a recently proposed method and the

broad temperature-dependent distribution obtained gives a consistent description of the NMR

results. The temperature dependence of the distribution indicates a strong slowing down of

the local moment spin dynamics as the system cools toward the zero field spin glass transition

temperature even in the presence of a strong applied magnetic field up to 4.7 T.
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6.1 Introduction

Spin glasses have attracted continuous research interest for more than 30 years. How-

ever, some fundamental questions remain controversial. For example, recent debate focuses

on whether an isotropic three-dimensional Edward-Anderson Heisenberg spin glass has a fi-

nite transition temperature.[2–7] Another important question concerns whether a spin glass

transition can occur in a finite magnetic field. An answer to this second question would allow

one to distinguish between two main scenarios concerning the nature of the spin glass phase:

the “droplet”[8] and “replica symmetry breaking”[9] scenarios. Magnetization measurements

on the Ising spin glass FexMn1−xTiO3 indicated that the spin glass state is destroyed by a

nonzero magnetic field and lend support to the droplet picture.[10–12] On the other hand, the

persistence of a frozen spin glassy phase in an applied magnetic field in different Heisenberg

systems that show spin glass transitions in zero field was inferred through magnetization and

torque measurements.[13–16]

The origin of the nonexponential spin autocorrelation functions[17–20] in spin glasses is

also an issue of continuous debate. It was often assumed that the nonexponential correlation

function arises from the sum of a distribution of single exponential correlation functions of

different magnetic entities in the system. Under such an assumption, a distribution of relax-

ation times could be derived from muon spin depolarization, magnetization and neutron spin

echo experiments.[17, 21–23] Such a viewpoint was supported by numerical simulations, which

showed that the spin autocorrelation functions are spatially inhomogeneous close to the spin

glass transition temperature.[24–27] Another viewpoint claims that the nonexponential spin

autocorrelation function is an intrinsic, homogeneous feature of spin glasses.[18, 28] One argu-

ment to support such a view is that the different relaxation times are associated with different

excitation modes in the system that overlap in space. Since a spin can take part in different

modes simultaneously, the relaxation for each spin is nonexponential.[28] An additional ho-

mogeneous relaxation mechanism is hierarchical relaxation where the relaxation pathway at a

specific time depends on relaxation occurring in previous pathways.[29]

(LixV1−x)3BO5 is a Heisenberg spin glass system first synthesized and studied by Onoda.[30]
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Figure 6.1 The crystal structure of (LixV1−x)3BO5. B represents boron
sites and VL1–VL4 are the 4 sites occupied by vanadium or
lithium atoms. Oxygen atoms occupy the vertices of the trian-
gles and octahedra. The rectangle indicates the size of a unit
cell in the plane of the page. The crystallographic a, b axes are
along the vertical and horizontal directions in the plane of the
page, respectively. The c-axis is perpendicular to the page.

It has an orthorhombic crystal structure (space group Pbam) as shown in Fig. 6.1, where Li or

V statistically occupy to varying extents four inequivalent sites VL1–VL4 that are octahedrally

coordinated by oxygen atoms. Transport studies in the temperature region between 80 and

300 K showed insulating behavior. The high temperature magnetic susceptibility χ followed

the Curie-Weiss law with a negative Weiss temperature, indicating an overall antiferromagnetic

interaction among vanadium magnetic moments. The magnetization M deviates from being

proportional to the applied magnetic field H at temperatures T < 25 K and a transition to a

spin glass state at lower T was suggested.[30] The inverse magnetic susceptibility χ−1(T ) data

showed negative curvature below ∼ 100 K [see also Fig. 6.3(a) below], which was attributed by

Onoda to the occurrence of antiferromagnetic clusters or spin trimers.[30] However, additional

experimental studies are necessary to further characterize the magnetic state of the system at

low temperatures.

In this chapter we report further structure, magnetization and NMR studies of this new

compound (LixV1−x)3BO5. The crystal structure in Ref. [30] is confirmed by x-ray diffraction

studies on powder and single crystal samples. In particular, the presence of disorder and
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frustration, the two ingredients usually considered necessary for a spin glass state, will be

discussed. A study of the linear spin trimer model suggested by Onoda will be carried out

and compared with the high temperature susceptibility results. The low temperature spin

glass state is confirmed by the presence of magnetic irreversibility, slow relaxation of thermal

remnant magnetization, and memory and rejuvenation effects. Furthermore, we also study the

effect of magnetic field on the spin glass behavior by measuring the change of magnetization

irreversibility as a function of magnetic field strength. It is found that the onset of irreversibility

is suppressed to lower temperature at higher magnetic field.

NMR has proved a useful microscopic tool to study the local spin dynamics in spin glass

systems.[31–35] In recent NMR studies in heavy fermion LiV2O4 containing a small amount of

magnetic defects (∼ 0.73 mol%), we found a stretched exponential behavior 1−M(t)/M(∞) =

exp[−(t/T ∗
1 )β ] for the recovery of the 7Li nuclear magnetization versus time M(t) following a

saturation pulse sequence in the temperature range 0.5–4.2 K.[36] Earlier µSR studies showed

that LiV2O4 with 0.13 mol% magnetic defects undergoes a spin glass freezing below ∼ 0.7 K.[37]

The stretched exponential recovery is in strong contrast to a single exponential behavior ob-

served in pure LiV2O4 samples, where no spin glass behavior was observed down to 20 mK.

In order to better understand the relation between the stretched exponential recovery and the

dynamics in spin glasses, it is highly desirable to study the nuclear spin-lattice relaxation be-

havior in other spin glass systems. We have found that the 7Li nuclear spin lattice relaxation

in (Li0.33V0.67)3BO5 indeed follows a temperature dependent stretched exponential behavior.

It was previously shown[36, 38] that a unique distribution of nuclear spin lattice relaxation

rates 1/T1’s can be obtained from the observed stretched exponential recovery with given fitted

values of 1/T ∗
1 and β. In this paper, by assuming the presence of dynamical heterogeneity in

the system, we derive the temperature-dependent distribution of the vanadium electronic spin

relaxation times from the 7Li relaxation data. Our NMR results reveal the persistence of a

continuous broadening and dramatic slowing down of the electronic spin dynamics even under

a strong (4.7 T) magnetic field as the zero field spin glass transition temperature is approached,

in strong contrast to the magnetization results which show a suppression of the long range spin
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glass transition in a field.

This chapter is organized as follows. Experimental details are presented in Sec. 6.2. The

results of our structural studies are given in Sec. 6.3. Magnetization and NMR studies are

presented in Sec. 6.4 and 6.5, respectively. In Sec. 6.6, we conclude this chapter with a summary

and discussion of the main results.

6.2 Experimental

Crystals of (LixV1−x)3BO5 were grown under high purity argon gas flow with a flux con-

sisting of LiBO2 (4N, Alpha Aesar) and LiV2O4 with molar ratio 14.5:1. The x value is 0.4, as

determined from the refinement below of the single crystal x-ray diffraction pattern. The mix-

ture was contained in a platinum crucible and soaked at 1100 ◦C for 48 hours, then cooled at

1 ◦C/hr to 825 ◦C at which point the furnace was turned off to cool. The flux was removed by

dissolving in hot water at 80 ◦C. The typical dimensions of the crystals were 0.3×0.3×6 mm3.

LiV2O4 was prepared using standard solid state reaction. The starting materials were Li2CO3

(5N, Alfa Aeser), V2O5 (4N, MV Labs), and V2O3 (4N, MV Labs). Details of the LiV2O4

synthesis procedure are described in Ref. [39]. We note that this crystal growth method is

different from that used in Ref. [30], where the flux instead consisted of LiBO2 and LiVO2.

The polycrystalline samples of (LixV1−x)3BO5 were made from a mixture of V2O3 (4N,

MV Labs) and LiBO2 (4N, Alpha Aesar) with molar ratio 1:1. The nominal composition

was (Li0.33V0.67)3BO5. The mixture of starting materials was ground and pelletized and then

sealed inside a quartz tube under vacuum. It was then heated at 800 ◦C for 4 days and then

air-quenched to room temperature.

Single crystal x-ray diffraction measurements were carried out on a Bruker SMART diffrac-

tometer with a graphite monochromator and Mo Kα radiation at T = 293(2) K. The x-

ray powder diffraction data were obtained at room temperature using a Rigaku Geigerflex

diffractometer with a curved graphite crystal monochromator and Cu Kα radiation. The 2θ

scan range was 10◦–90◦ with 0.02◦ step size. Full profile Rietveld analyses on the powder

x-ray diffraction pattern were carried out using EXPGUI,[40] an graphical user interface for
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GSAS.[41]

Magnetization measurements were carried out using a Quantum Design SQUID magne-

tometer in the temperature T range 1.8–350 K and applied magnetic field H range 0–5.5 T.

The crystals were aligned along the crystallographic c–axis using Duco cement (a and b axes

randomly oriented) on a plastic film. The Duco cement and the plastic film are diamagnetic

and contribute less than 2% to the total magnetization. Their contributions were subtracted

to obtain the sample magnetization.

7Li and 11B NMR measurements were performed on the powder sample (Li0.33V0.67)3BO5

in the T range 1.5–295 K. The typical saturation recovery sequence was used for nuclear spin

lattice relaxation measurements. Spin–spin relaxation rates were measured by varying the

separation between π/2 and π pulses which generated an echo. The typical π/2 pulse length

was 3 µs. 7Li NMR spectra were measured at H = 3 T. The spectra with narrow full width at

half maximum intensity FWHM ≤ 100 kHz were obtained via the Fourier transform of half the

echo signal, while broader spectra were measured by sweeping the RF frequency and recording

the echo area at each point.

6.3 Crystal Structure

X-ray diffraction studies confirm that both our single crystal and polycrystalline samples

have the same structure and approximately the same composition as reported in Ref. [30]

(x = 0.31, 0.33). The system has an orthorhombic crystal structure (space group Pbam) as

shown in Fig. 6.1, where Li or V occupy four inequivalent sites VL1–VL4 in each unit cell that

are octahedrally coordinated by oxygen atoms.

The single crystal x-ray diffraction data were collected in the Miller index ranges of −12 ≤

h ≤ 12, −16 ≤ k ≤ 16, −3 ≤ l ≤ 3. A total of 2887 reflections were observed, among which 464

are independent reflections with intensity I > 2σ. Full-matrix least square refinement on F 2

was performed on those 464 independent reflections and 62 parameters were refined. The final

R (I > 2σ) indices are R1 = 0.089 and wR2 = 0.0444. Both the lattice parameters and atomic

positions are in good agreement with those reported in Ref. [30]. The lattice parameters are
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a = 9.177(2) Å, b = 12.152(2) Å, and c = 2.9891(5) Å, where the numbers in the parentheses

give errors on the last digit. The occupation probability of vanadium atoms at VL1–VL4

sites are 0.82(1), 0.51(1), 0.40(1), and 0.56(1) respectively, which corresponds to a calculated

x = 0.40(1).

Figure 6.2 shows the observed and calculated (from Rietveld refinement) powder x-ray

diffraction patterns for a powder sample of (Li0.33V0.67)3BO5. Bragg peak positions and the

difference between the observed and calculated peak intensities are also displayed. Weak V2O3

impurity peaks are present in the pattern. The amount of V2O3 impurity is estimated from the

2–phase Rietveld refinement to be ≈ 5 mol%. Isotropic thermal displacement parameters U

were used during Rietveld refinement and their values were fixed to be equal to the equivalent

thermal displacement parameter values Ueff for a single crystal obtained from the above single

crystal refinement. The final agreement factors were Rp = 7.2%, Rwp = 9.3% and reduced

χ2 = 2.54. The occupation probability of vanadium atoms at VL1–VL4 sites are 0.96(1),

0.52(1), 0.47(1), and 0.48(1), respectively, which corresponds to x = 0.35(1), in reasonable

agreement with nominal value x = 0.33. The lattice constants a, b, and c are 9.1820(2),

12.1540(3), and 2.9872(1) Å, respectively.

By applying Goodenough’s rules, the sign and relative strength of magnetic interactions

among neighboring vanadium moments can be inferred from the structure.[42] The vanadium

atoms occupy octahedral interstices of the oxygen sublattice and the octahedra are connected

by either edge or corner sharing. Table 6.1 lists the VL–VL nearest neighbor distances and VL–

O–VL bond angles. Since the vanadium cation has less than four d–electrons in its outer shell,

according to Table I in Ref. [43], all nearest-neighbor vanadium-vanadium spin interactions are

expected to be antiferromagnetic. For the edge sharing configuration, the vanadium-oxygen-

vanadium interaction is expected to be much smaller than the direct vanadium-vanadium

interaction which increases with decreasing distance.[43] Since the distance between nearest-

neighbor VL1 and VL4 sites is much smaller than other VL–VL distances, Onoda[30] pointed

out that the largest exchange interaction could exist between these two sites. Since each VL4

site is connected to two VL1 sites on either side, a VL1–VL4–VL1 linear spin trimer can be
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Figure 6.2 Observed and calculated x-ray diffraction patterns for
(Li0.33V0.67)3BO5 powder. The upper trace shows the observed
data by dots and the calculated pattern by the solid line. The
lower trace is a plot of the difference between the observed
and calculated intensities. The vertical bars show the positions
for the Bragg reflections of (Li0.33V0.67)3BO5. The observed
diffraction pattern indicates the presence of ≈ 5 mol% of V2O3

phase as estimated from the two-phase Rietveld refinement of
the data. The arrows indicate the positions of the two strongest
V2O3 peaks.
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Table 6.1 Distances and bond angles of nearest neighbor VL–VL sites.

Distance (Å) VL–O–VL angle
Corner sharing

VL1–VL2 3.3725 119.6◦

VL2–VL3 3.4366 119.8◦

Edge sharing
VL1–VL2 3.0914 95.5◦ and 98.1◦

VL1–VL3 2.9919 92.3◦ and 96.9◦

VL1–VL4 2.7480 84.4◦ and 84.4◦

VL2–VL4 3.0332 93.9◦ and 95.9◦

formed. In the next section, a detailed study of the linear trimer model will be presented in

an attempt to explain the high temperature susceptibility results.

Given antiferromagnetic interactions among all nearest neighbor vanadium spins, significant

frustration for the magnetic interactions is expected. This is due to the presence of various

triangles formed by nearest-neighbor VL sites, as one can see from Fig. 6.1. As a result, no spin

configuration can minimize the exchange energy of all the vanadium–vanadium interactions.

This geometric frustration effect is inherent in the structure and not induced by the disorder of

the random Li and V occupation. The presence of both frustration and disorder is responsible

for the low temperature spin glass phase at T � 10 K.

6.4 Magnetization

6.4.1 Magnetic Susceptibility

Figures 6.3(a) and 6.4(a) display the inverse susceptibility (M/H)−1 versus temperature

T in the T range 1.8–350 K and at applied magnetic field H = 1 T of the aligned crystals

(H ‖ c) and the powder sample, respectively. Both sets of data were taken during field cooling.

Measurements done on crystals with the c-axis parallel and perpendicular to the field gave

almost the same results, indicating the absence of significant magnetic anisotropy in the system.

As shown in Figs. 6.3(b) and 6.4(b), the magnetization M deviates from being proportional to

H at low temperatures (T � 20 K for the powder sample). Such deviations are consistent with

the appearance of a nonzero nonlinear susceptibility as the system approaches its spin glass
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Figure 6.3 Magnetization of the aligned (Li0.40V0.60)3BO5 crystals with
magnetic field H ‖ c. (a) Inverse magnetization over field,
H/M , measured at H = 10000 G. The data were taken during
field cooling. The solid curve is a fit to the 200–350 K data by
Eq. (6.1). Inset: expanded plot of the low temperature data.
(b) M(H) isotherms at T = 1.8, 5, 25, 50, and 300 K. A nega-
tive curvature was observed at 1.8 and 5 K.

transition temperature.[44] The evidences for a spin glass state at low temperatures (T < 10

K) will be discussed in detail below.

For both the single crystal sample and the powder sample, the high T (T > 100 K) region

of the susceptibility can be described by a constant plus a Curie-Weiss term

χ(T ) = χ0 +
C

T − θ
. (6.1)

A fit to the susceptibility data of the single crystals in the T range 200–350 K gives χ0 =

0.0002(1) cm3/mol V, C = 0.74(9) cm3 K/mol V and θ = −190(27) K. The constant term

χ0 arises mainly from the diamagnetism of the ion cores and the paramagnetic Van Vleck

susceptibility of the vanadium atoms. We estimate χcore to be −4.3 × 10−5 cm3/mol V, using
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Figure 6.4 Magnetization M of the (Li0.33V0.67)3BO5 powder sample.
(a) Inverse M over field H, H/M , versus H, measured at
H = 10000 G. The data were taken during field cooling. The
dashed line is a fit to the 200–350 K data by Eq. (6.1) and
the solid line is a fit to the 20–350 K data by Eq. (6.8). Inset:
expanded plot of the low temperature data. (b) M versus H
isotherms at different temperatures.
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the values −0.6, −10, −7, −35, and −12 × 10−6 cm3/mol for Li+, V3+, V4+, (BO3)3−, and

O2− ions.[45] The Van Vleck susceptibility is thus χVV = χ0 − χcore = 0.0002(1) cm3/mol V.

This value is of the same order as the values of Van Vleck susceptibility of vanadium ions in

LiV2O4, VO2, and LaVO3.[39] The value of the Curie constant C can be compared with that

predicted by the molecular field theory.[46] Assuming the vanadium atoms in the crystals are

in either +3 (spin S = 1) or +4 (S = 1/2) oxidation states, the Curie constant is given by

C =
NAµ2

B

3kB

[
2fg2

1 +
3
4
(1 − f)g2

2

]
, (6.2)

where f is the fraction of trivalent vanadium moments and g1 and g2 are g-factors for triva-

lent and tetravalent vanadium moments, respectively. x = 0.4 corresponds to f = 0.8.

Equation (6.2) thus gives C = 0.82 cm3 K/mol V assuming g1 = 1.93 (Ref. [47]) and

g2 = 1.97,[48] respectively. This value is within the error bar of the observed Curie constant

C = 0.74(9) cm3 K/mol V.

A fit of Eq. (6.1) to the data of the powder sample in the T range 200–350 K gives

χ0 = 0.0003(1) cm3/mol V, C = 0.67(5) cm3 K/mol V and θ = −143(16) K. In the poly-

crystalline sample, all the vanadium atoms are in the +3 charge state, so Eq. (6.2) gives

C = 0.93 cm3 K/mol V assuming f = 1 and g = 1.93, which is much higher than the observed

value. A second polycrystalline sample with the same composition (Li0.33V0.67)3BO5 was made

using the same procedure and a fit of Eq. (6.1) to its susceptibility data in the same temper-

ature range gave C = 0.56(6) cm3K/mol V, χ0 = 0.0005(1) cm3/mol V, and θ = −99(6) K.

The Curie constants between the two powder samples match within experimental error while

there is a significant difference in the θ. The reason for the discrepancy in θ values is not

known. We note that a lower than calculated Curie constant is also present in Ref. [30], where

C = 0.77 cm3 K/mol V and θ = −125 K for a powder sample with the same x value as our

powder samples.

To understand the difference between the measured and expected Curie constants in the

powder samples, we will first discuss the effect of V2O3 and possible amorphous LiBO2 im-

purities on the magnetization results. The above Rietveld refinement of the powder x-ray

diffraction data indicates that our powder sample contains 5 mol% V2O3 impurity. V2O3 un-
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dergoes a first order phase transition from paramagnetic metal to antiferromagnetic insulator

at around 170 K. Above 170 K, it has an almost temperature independent susceptibility of

5 × 10−4 cm3/mol V,[49] so this phase will not contribute to the high temperature Curie-

Weiss term in Eq. (6.1). The contribution of 5 mol% of V2O3 to the constant term χ0 in

(Li0.33V0.67)3BO5 is therefore about 0.25× 10−4 cm3/mol V,[49] which is within the error bar

of the fitting result of χ0. LiBO2 is non-magnetic and its contribution to the susceptibility

should also be negligible. The presence of 5 mol% V2O3 impurities leads to an overestimate of

the (Li0.33V0.67)3BO5 sample mass by 5%, assuming the same molar percentage of amorphous

LiBO2 impurity is present in the sample.

The above analysis shows that the presence of impurities is insufficient to explain our low

observed Curie constants in the powder sample. The reason for this discrepancy is currently

not understood. It is noted that molecular field theory predictions are generally valid only in

the high temperature limit T 
 |θ|, which is not satisfied in our temperature range 200–350 K

due to the large values of |θ|. However, this limitation should also apply to the single crystal

case, where the discrepancy between observed and calculated Curie constants is much smaller,

although the condition T 
 |θ| is even less satisfied due to the higher |θ| value in the crystals.

6.4.2 Linear trimer model

Below ∼ 100 K, the slope of the H/M versus T curve in Fig. 6.3(a) increases with decreasing

temperature. As proposed in Ref. [30], this could be due to the existence of spin trimers with

antiferromagnetic nearest-neighbor interactions. A spin trimer has a low spin ground state,

which is separated from the first excited state by an energy gap of the order of the exchange

constant J . At temperatures T � J , the effective number of spins is reduced, which results in

a reduction of the effective Curie constant. Therefore, the slope at low temperature increases in

Figs. 6.3(a) and 6.4(a) since it is inversely proportional to the Curie constant. The possibility of

trimer formation was indicated by the short distances between VL1 and VL4 sites as discussed

in Sec. 6.3. The expected behavior of susceptibility versus temperature in this trimer model

can be analyzed most easily when all the vanadium spins have the same spin value. This is
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Table 6.2 Eigenstates, eigenvalues E, and degeneracies n of the linear
trimer Hamiltonian Eq. (6.3).

E (J) 2 1 0 -1 -1 -2 -3
ST 3 2 1 1 2 0 1
S13 2 1 0 1 2 1 2
n 7 5 3 3 5 1 3

the case in the polycrystalline sample where all vanadium spins have S = 1.

The Hamiltonian for a linear trimer can be written as

H = J(S1 · S2 + S2 · S3)

=
J

2
[(S1 + S2 + S3)2 − (S1 + S3)2 − S2

2]

=
J

2
[S2

T − S2
13 − 2], (6.3)

where J > 0 is the antiferromagnetic nearest-neighbor exchange coupling constant between

vanadium moments at adjacent VL1 and VL4 sites, S1 and S3 are the spins at the two VL1

sites at the two ends of a trimer, S2 is the spin at the VL4 site in the middle of the trimer,

and ST ≡ S1 + S2 + S3 and S13 ≡ S1 + S3. The different eigenstates of this Hamiltonian, as

well as their corresponding energy eigenvalues and degeneracies are listed in Table 6.2. The

partition function ZT and molar spin susceptibility χT of the trimers are

ZT =
∑

i

nie−Ei/kBT (6.4)

and

χT =
NAg2µ2

B

3kBTZT

∑
i

niSTi(STi + 1)e−Ei/kBT , (6.5)

where the index i runs over all the different states listed in Table 6.2.

One also needs to consider the presence of dimers. Dimers are formed when one of the

VL1 sites at the two ends of the trimer is instead occupied by a Li atom. The molar spin

susceptibility of dimers consisting of two spins 1 can be obtained in the same way and the

result is

χD =
NAg2µ2

B

kBTZD
(10e−3J/kBT + 2e−J/kBT ), (6.6)

where ZD = 5e−3J/kBT + 3e−J/kBT + 1 is the partition function of the dimer Hamiltonian. At

temperatures much higher than the typical interactions between the dimer, trimer and isolated
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spins, which is presumably of the order of the zero field spin glass transition temperature

Tg � 10 K,[46] the total susceptibility of the system is

χ =
f3

3
χT +

f2

2
χD +

2NAg2µ2
B

3kBT
(1 − f2 − f3) + χ0, (6.7)

where f2 and f3 are the fractions of vanadium atoms belonging to dimers and trimers, respec-

tively, and the third term gives the contribution from isolated S = 1 spins. Equation (6.7)

with g ≈ 2 does not fit the experimental data over any appreciable temperature range with f2,

f3, J and χ0 as free fitting parameters. However, a reasonable fit to the data can be achieved

after scaling the temperature dependent part by a prefactor b < 1:

χ = b
[f3

3
χT +

f2

2
χD +

2NAg2µ2
B

3kBT
(1 − f2 − f3)

]
+ χ0. (6.8)

The prefactor b < 1 is introduced as an attempt to isolate the unknown effects causing the

difference between calculated and measured Curie constants discussed in section 6.4.1. Shown

as the solid curve in Fig. 6.4(a) is the fitting result of Eq. (6.8). The best fit parameters are

f2 = 0.76(18), f3 = 0.04(29), J = 109(17) K, and b = 0.61(1) with χ0 fixed to 0.0003 cm3/mol

V and g fixed to 1.93. From the occupation probabilities of vanadium atoms at VL1–VL4 sites

as determined from Rietveld refinement, one expects

f2 =
4p1p4(1 − p1)

2p1 + 2p2 + p3 + p4
= 0.02 (6.9)

and

f3 =
3p2

1p4

2p1 + 2p2 + p3 + p4
= 0.34, (6.10)

where p1 to p4 are the occupation probabilities of vanadium atoms at the VL1 to VL4 sites,

respectively. The expected values are in large discrepancy with the above fitting results of

f2 = 0.76 and f3 = 0.04. We conclude that the above model of isolated monomers, dimers and

trimers cannot explain the susceptibility data at high temperatures. Most likely, interactions

between those spin objects need to be considered and antiferromagnetic spin clusters form as

the temperature approaches the zero field Tg from above, which results in a reduction of the

effective Curie constant and a negative curvature in inverse susceptibility versus temperature,

qualitatively similar to the behavior expected from above spin trimer model.
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6.4.3 Spin glass behavior

In order to confirm the spin glass state at low temperatures as proposed in Ref. [30],

we first compare the magnetization results measured under zero-field-cooled (ZFC) and field-

cooled (FC) conditions. Figure 6.5 shows the splitting of ZFC and FC magnetization at low

temperatures at H = 10, 100, 1000, and 10000 G in the aligned single crystals. The FC

magnetization was measured on cooling. For the polycrystalline sample, a similar splitting

is observed below 8.5 K at H = 100 G as shown in Fig. 6.6. The ZFC–FC bifurcation is a

signature for the presence of a spin glass state at low temperatures.[52] The onset temperature

of ZFC and FC magnetization splitting at the lowest field is referred to as the zero field

spin glass transition temperature Tg throughout this chapter. For the single crystals Tg =

5.5 K while for the powder sample Tg = 8.5 K. The ratio |θ|/Tg is an empirical measure

of geometric frustration in a system.[50] This ratio is 35(5) and 17(2) for our crystal and

polycrystalline samples, respectively, indicating the presence of strong frustration in the system.

It is noted in Fig. 6.5 that even above Tg, there are slight differences between zero-field cooled

and field-cooled magnetizations. However, these slight differences are within the experimental

error and not related to the spin glass behavior. The magnitude of ZFC–FC bifurcation

was gradually suppressed and the onset temperature of the strong bifurcation decreases with

increasing magnetic field. This suggests that the spin glass transition temperature is suppressed

to lower temperatures with increasing field. In the next section, we will apply NMR to further

study the effect of magnetic fields on the spin dynamics of the system.

In a ferromagnetic sample, similar ZFC-FC splitting could arise due to the presence of

domain walls between neighboring ferromagnetic domains.[51] In order to exclude such a pos-

sibility, we performed measurements of the magnetization versus applied magnetic field M(H)

hysteresis loops. Figure 6.7(a) displays M versus H in the aligned crystals as the field was

cycled between −5.5 and 5.5 T at T = 1.8 and 4.2 K. The curves were taken immediately after

the crystal was zero-field-cooled to 1.8 or 4.0 K from above 5.5 K. The hysteresis of the M

versus H curves observed with field cycling is very small as shown in the inset of Fig. 6.7(a).

The absence of significant hysteresis suggests that a ferromagnetic transition is not the origin
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Figure 6.5 Splitting of field-cooled (FC) and zero-field-cooled (ZFC) mag-
netization M versus temperature T of (Li0.40V0.60)3BO5 crys-
tals at low temperatures and H = 10, 100, 1000, and 10000 G.
The FC magnetizations were measured on cooling. The inset
on the bottom panel is an expanded plot of the low temperature
region.
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Figure 6.6 Splitting of field-cooled (FC) and zero-field-cooled (ZFC) mag-
netization M versus temperature T of the (Li0.33V0.67)3BO5

powder sample below Tg = 8.5 K and at H = 100 G. The FC
magnetization was measured on cooling.

of the ZFC–FC splitting.

Slow decaying of thermal remnant magnetization is considered as one of the defining prop-

erties of spin glass systems.[52] Figure 6.7(b) shows the decrease with time of the remnant

magnetization after turning off a field H = 1000 G at 2.0 K. The field was turned off immedi-

ately after the crystals were field-cooled to 2.0 K from above 5.5 K. The long time behavior

can be fitted by a stretched exponential function,

MR(t) = M0 · exp[−(t/τ)β ]. (6.11)

The best fit to the data at t > 18 min (solid line in Fig. 6.7) gave M0 = 3.24(6) G cm3/mol V,

τ = 7300(1400) min, and β = 0.086(2). Relaxation as described by Eq. (6.11) with similar

values of β was observed in other spin glass systems.[53, 54]

To further confirm the spin glass state of the system, we studied memory and rejuvenation

effects in (LixV1−x)3BO5, following the method used by Sun et al.[55] The main panel of Fig.

6.8 shows the development of magnetization following application of a 50 G magnetic field

immediately after the crystal was zero-field-cooled to 3.0 K from above 5.5 K. The crystal

was then quickly cooled to 1.8 K after staying at 3.0 K for t1 ≈ 260 minutes. A sharp increase

of magnetization was observed right after the cooling. However, after the temperature was

increased back to 3.0 K after another t2 ≈ 230 minutes, the magnetization returned back to

the value just before cooling to 1.8 K and the magnetization continued to evolve as if the t2
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Figure 6.7 (a) Magnetization M versus the external magnetic field H in the
aligned single crystals as H was cycled between 5.5 and −5.5 T
at T = 4.2 and 1.8 K. The field was parallel to the c-axis. Inset:
Expanded plot of the low field region. (b) Relaxation of remnant
magnetization MR of crystals versus time t after turning off a
field of 1000 G at 2.0 K immediately after field-cooling from
above 5.5 K. The solid curve is a fit by Eq. (6.11) to the data
at t > 18 min.
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Figure 6.8 Memory and rejuvenation effects in the aligned single crystals
of (Li0.4V0.6)3BO5. The field was parallel to the c-axis. Main
panel (inset): development of magnetization after turning on
a field of 50 G immediately after the crystals were zero-field-
-cooled to 3.0 K (1.8 K). After time t1, the temperature was
quickly changed to 1.8 K (3.0 K) and kept at that temperature
for time t2. Then the temperature was changed back to 3.0 K
(1.8 K). The field was kept at 50 G during the whole process.

stage did not take place. Such a memory effect was not observed if the temperature during

the t2 stage was higher than during t1 and t3. As displayed in the inset of Fig. 6.8, where the

respective temperatures during t2 and during t1 and t3 were switched, the magnetization at the

beginning of t3 did not return to the value right before the temperature change to 3.0 K took

place. Instead, the rejuvenation effect was observed right after the temperature changed to 3.0

K (at the beginning of stage t2): the magnetization reinitialized as if the t1 stage did not take

place. The asymmetry effects between heating and cooling during t2 could be attributed to a

hierarchical organization of the free energy landscape in the spin glass phase space.[55, 56] It is

noted that recent studies demonstrate that the above memory and rejuvenation effects can also

arise from a collection of isolated nanoparticles with a temperature dependent distribution of

relaxation times.[57] However, considering the random distribution of Li and V atoms within

the structure, the occurrence of isolated nanoclusters should have a very small probability.
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6.5 NMR

6.5.1 Introduction

We carried out nuclear magnetic resonance (NMR) studies in order to further study the

spin freezing properties in strong magnetic field of a material that has a spin glass transition

in zero field. Furthermore, we investigated the dynamical inhomogeneities in the system and

extracted the distribution of electronic spin relaxation times from nuclear spin lattice relaxation

measurements.

A search for a 51V NMR signal was performed in the frequency range 51.8–53.1 MHz at T

= 295 K and H = 4.7 T (Larmor frequency = 52.6 MHz). The separation between the two

RF pulses which could generate an echo was 20 µs. Considering the possibility of a strong

quadrupole effect which could decrease the π/2 pulse length of the central transition,[58] various

pulse length combinations were used at each frequency. However, no 51V NMR signal could

be detected under the above conditions. We thus performed NMR measurements on 7Li and

11B nuclei as follows. Both 7Li and 11B nuclei have spin I = 3/2. No observable quadrupole

effect was observed for 7Li while 11B displayed clear quadrupole splitting in the spectrum. The

difference is attributed to different local electric field gradients (EFG) of these two nuclei, since

the quadrupole moment of 7Li nucleus is 2.8 times that of 11B.[59] All NMR measurements

were performed on the powder sample of (Li0.33V0.67)3BO5 which has a zero field spin glass

temperature of 8.5 K as shown previously in Fig. 6.6.

6.5.2 7Li NMR Spectrum

The 7Li NMR spectrum in the powder (Li0.33V0.67)3BO5 sample shows a single line with-

out an observable quadrupolar effect. A strong broadening of the spectrum is observed with

decreasing temperature. Figure 6.9 displays the spectrum at H = 3 T at different tempera-

tures. In contrast to the strong inhomogeneous broadening, the peak positions of the spectra

remain almost temperature independent (shift < 0.1% of the resonant frequency), consistent

with broadening due to dipolar interactions with vanadium local moments with weak g-factor

anisotropy.[60, 61]
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The temperature dependence of the full width at half maximum (FWHM) peak intensity

of the spectra is plotted in Fig. 6.10. The FWHM vs T at T > 8.5 K can be well fitted by a

Curie-Weiss law plus a constant,

FWHM = C0 + C1/(T − θ1), (6.12)

where the best-fit parameters are C0 = 38(3) kHz, C1 = 3.5(4) MHz and θ1 = 5.5(7) K.

This fit is plotted as the solid line in Fig. 6.10. The following analysis shows that the strong

broadening of the spectrum at low temperatures must be due to inhomogeneity of static local

magnetic fields (inhomogeneous broadening). The intrinsic line width of each 7Li nuclear spin

is of the order of 1/T2, the inverse of spin-spin relaxation time. As will be shown below in

Table 6.3, the effective spin-spin relaxation time for the detected 7Li nuclear spins is � 100 µs

at T > 8.5 K, which corresponds to an intrinsic line width of the order of 10 kHz, much smaller

than the observed line width below ∼ 50 K (see Fig. 6.10). The full width at half maximum

at 4.2 K is approximately 2 MHz, corresponding to a local field distribution of width ∼ 0.1 T.

This width is of the same order as the root mean square (rms) values of the local dipolar fields

at the 7Li nuclear sites, as will be shown below [see Eqs. (6.17) and (6.20)].

The inset of Fig. 6.10 shows FWHM versus M/H at H = 3.00 T with temperature as the

implicit variable. At T � 30 K, FWHM deviates strongly from being proportional to magne-

tization and increases much faster than the magnetization with decreasing temperature. One

possible explanation of such deviation might be the occurrence of antiferromagnetically cou-

pled clusters. In systems with dense paramagnetic moments, the inhomogeneous broadening is

proportional to
√

n〈Sz〉, where n and 〈Sz〉 are the concentration and field-induced spin polar-

izations of the paramagnetic moments, respectively.[59] On the other hand, the magnetization

M is proportional to n〈Sz〉. The concentration n of effective paramagnetic moments decreases

in the system if small antiferromagnetic clusters (including the above mentioned spin dimers

and trimers in their ground states) occur with decreasing temperature. Because of the above

different dependences of FWHM and M on concentration n, the FWHM increases faster than

M with decreasing temperature. We note that the formation of antiferromagnetic spin clus-

ters is qualitatively consistent with the negative curvature in the inverse susceptibility versus
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Figure 6.9 7Li NMR spectrum at temperatures T = 220, 20, 15, 8.5, and
4.2 K and an external magnetic field H = 3 T. The spec-
trum at 220 K was obtained by Fourier transform of half echo
signal while spectra at low temperatures obtained by frequency
sweep. The squares are data points and the solid lines are guides
to the eye. The zero field spin glass transition temperature is
Tg = 8.5 K (see text). The vertical dotted line marks the posi-
tion of the 7Li resonance in aqueous lithium chloride solution.

Figure 6.10 Full width at half maximum (FWHM) peak intensity of the
7Li NMR spectrum versus temperature T at applied magnetic
field H = 3.00 T. The vertical arrow indicates the zero field
spin glass transition temperature Tg = 8.5 K. The solid curve
is a phenomenological fit by Eq. (6.12). Parameters for the fit
are given in the text. Inset: FWHM vs magnetization divided
by field M/H at H = 3.00 T with temperature as the implicit
variable.
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Figure 6.11 Temperature T dependence of normalized 7Li NMR echo in-
tensity at H = 1.1 and 4.7 T. Inset: T times area of the whole
spectrum at H = 3.0 T after correction for the T2 effect.

temperature below T ∼ 100 K in Figs. 6.3(a) and 6.4(a) as discussed in Sec. 6.4 B above.

6.5.3 7Li NMR Signal Intensity

A minimum in normalized NMR signal intensity was observed long ago in metallic spin

glass systems close to the zero-field spin glass transition temperature.[32, 35] The normalized

echo intensity for 7Li in (Li0.33V0.67)3BO5 at H = 1.1 and 4.7 T shows similar behavior as

displayed in the main panel of Fig. 6.11. The echo intensity was measured by the area under

the absorption line obtained through Fourier transformation of half the echo signal and was

normalized by multiplying by T to compensate for the nuclear Curie law for the equilibrium

longitudinal nuclear magnetization. The resulting value should then be proportional to the

number of 7Li nuclei detected in the experiments. Two factors can contribute to the loss of

this signal intensity. The first factor is the limited frequency window of the NMR spectrometer

(∆f ∼ 200 kHz). Due to the strong inhomogeneous broadening of the spectrum at low tem-

peratures, the nuclei with a resonant frequency outside the NMR spectrometer window cannot

be detected. The second factor is the shortening of the spin-spin relaxation times around the

spin glass transition temperature. Since the π/2 and π pulse separation for echo generation

was fixed to 20 µs, a reduction of T2 to less than 40 µs can also result in a decrease of signal

intensity.
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Table 6.3 7Li nuclear spin-spin relaxation times at H = 3.0 T and differ-
ent temperatures. The parameters T2 and T2g are defined in
Eq. (6.13).

T (K) 8.5 10.2 15 20 90 175 295
T2 (µs) 76(4) 88(5) 258(13) 442(22) ∞ ∞ ∞
T2g (µs) ∞ ∞ 712(35) 571(29) 359(18) 293(15) 307(15)

These two factors can be partly compensated by measuring the area of the whole absorption

spectrum and then multiplying by a T2 correction factor.[62] To carry out the compensation, we

first integrate the spectra in Fig. 6.9, with the parts of the spectra further away from the mea-

sured parts estimated by linearly extrapolating the wings until zero intensity was reached. In

order to determine the T2 correction factor at each temperature, spin-spin relaxation rates were

measured at a few temperatures as shown in Fig. 6.12. At high temperatures the 7Li nuclear

magnetization versus RF pulse separation follows square exponential decay (half Gaussian)

while it crosses over to a single exponential decay with decreasing temperatures. We describe

the decay of the spin-echo amplitude by the expression

A(t) = A0 · exp[−(t/T2g)2 − t/T2]. (6.13)

Table 6.3 lists the values of T2g and T2 at different temperatures. It was found that the

values of T2g and T2 at different parts of the spectrum are almost the same so that a single

T2 correction factor is used for the whole spectrum. The inset of Fig. 6.11 shows the T

dependence of T times the area of the whole spectrum after multiplying by the T2 correction

factor exp[(t/T2g)2 + t/T2] with t = 40 µs. The signal loss at high temperatures is now fully

recovered. However, at T � 15 K, close to the zero-field spin glass transition temperature,

signal intensity loss is still observed. This indicates that at T � 15 K, some of the nuclei have

T2 values much shorter than 40µs so that their signal cannot be compensated by the above

T2 correction factor, rendering them unobservable [see Fig. 6.15 and the discussion following

Eq. (6.19) below].



141

Figure 6.12 7Li NMR echo intensity versus twice the pulse spacing t be-
tween the π/2 and π pulses that generate an echo at different
temperatures at H = 3.0 T. The solid lines are fits by Eq.
(6.13) with parameter values listed in Table 6.3.

6.5.4 7Li Nuclear Spin Lattice Relaxation

The recovery of the longitudinal nuclear magnetization M(t) following saturation changes

from a single exponential to a stretched exponential function as the system approaches the

zero-field spin glass transition temperature Tg from above as displayed in Fig. 6.13. Due to the

strong inhomogeneous broadening of the spectrum, it became difficult to saturate the whole

line with the RF comb pulses and only the central part of the spectrum can be saturated. A

possible origin for the observed stretched exponential is thus spectral diffusion, i.e. transfer

of Zeeman energy from saturated to unsaturated spins at other parts of the spectrum. In

order to check such a possibility, the nuclear spin lattice relaxation measurements at 4.7 T

and below 15 K were performed using two different saturation pulse sequences. The first

saturation sequence consisted of 20 π/2 pulses with separation between neighboring pulses

equal to 50 µs, while the second saturation sequence consisted of 10 π/2 pulses with separation

between neighboring pulses of 300 µs. The duration of the π/2 pulses is equal to 4.7 µs in both

cases. The recovery curves obtained in both conditions were the same at each temperature,

which strongly suggests that the observed nonexponential recovery is intrinsic to the sample

and is not related to artificial effects such as spectral diffusion. The effect of spectral diffusion

depends on the degrees of saturation of the nuclear spins away from the center of the spectrum,
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Figure 6.13 7Li NMR nuclear spin lattice relaxation versus time t in
(Li0.33V0.67)3BO5 powder sample following a saturation pulse
sequence at H = 4.7 T and T = 100, 20, and 13 K. Solid curves
are fits by Eq. (6.14).

which are expected to be different between the above two pulse sequences.

M(t) can be fitted with a stretched exponential function with a variable 1/T ∗
1 and variable

exponent β

1 − M(t)
M(∞)

= exp[−(t/T ∗
1 )β ]. (6.14)

The physical meanings of the parameters 1/T ∗
1 and β have been discussed in recent papers.[36,

38] Figure 6.14 shows the temperature dependence of 1/T ∗
1 and β at H = 1.1 and 4.7 T.

Note that the results at low temperatures (T < 20 K) were obtained from measurements on

only a small fraction of 7Li nuclei in the system (see Fig. 6.11). The crossover from a single

exponential to stretched exponential relaxation is represented by β decreasing below unity with

decreasing T . 1/T ∗
1 (T ) shows a sharp enhancement close to the zero field spin glass transition

temperature Tg in both fields. While 1/T ∗
1 strongly depends on the field close to the transition

temperature, β(T ) is almost temperature and field independent near and below Tg.

In the limit of small perturbation of nuclear Zeeman levels as is usual in NMR, one can

apply the weak collision formula for the nuclear spin lattice relaxation rate (NSLR), where

NSLR arises from the Fourier component at ωn = γLiH of the fluctuating magnetic field
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Figure 6.14 7Li nuclear spin lattice relaxation rates 1/T ∗
1 in Eq. (6.14) ver-

sus temperature T at H = 1.1 and 4.7 T. Inset (a): exponent
β vs T . Inset (b): Log-log plot of 1/T ∗

1 versus T .

arising from the fluctuating electronic spins:[63]

1
T1

=
γ2

Li

2

∫ ∞

−∞
〈hx(0)hx(t) + hy(0)hy(t)〉 exp(−iωnt) dt

=
1
2
γ2

Li〈h2
x + h2

y〉
∫ ∞

−∞
f(t) exp(−iωt)dt|ω=ωn

≡ 1
2
γ2

Li〈h2
x + h2

y〉J(ω)|ω=ωn , (6.15)

where ωn = γLiH is the nuclear Larmor angular frequency, 〈· · ·〉 denotes a thermal average,

f(t) ≡ 〈hx(0)hx(t)〉
〈h2

x〉
=

〈hy(0)hy(t)〉
〈h2

y〉

is the reduced correlation function of the local fluctuation field, and J(ω) is the Fourier trans-

form of f(t). We assume the correlation function f(t) to be isotropic in the x-y plane which is

perpendicular to the external field.

As noted in the introduction, the occurrence of a stretched exponential relaxation may

indicate the presence of a distribution of 1/T1 values. The distribution can arise from an

inhomogeneity in the local fluctuating field 〈h2
x+h2

y〉 and/or an inhomogeneity in the dynamics

seen by different nuclear spins. As discussed in the introduction, whether or not dynamical

inhomogeneity exists in spin glasses is still an unsettled issue. However, based on the following

two considerations, we believe that the dynamical inhomogeneity is relevant to explain our

NMR results. First, the concentration of vanadium moments in the present system is very
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high and most 7Li nuclei are expected to have a few nearest neighbor vanadium moments

that dominate their relaxation. As a result, the distribution of the local field is relatively

narrow. Second, the value of β decreases continuously with decreasing temperature, which

indicates an evolving 1/T1 distribution.[36, 38] Similar conclusions were previously reached on

the same basis from muon spin depolarization measurements on metallic spin glasses.[21] This

is consistent with a temperature dependent distribution of electronic spin relaxation times close

to and above the spin glass transition temperature derived from earlier experiments.[17, 22, 23]

Under conditions discussed below, the distribution of electronic spin relaxation times can

be derived from the 1/T1 distribution of the 7Li spins. Numerical studies suggested that an

individual electronic spin autocorrelation function is not a pure exponential.[24, 25] However,

in order to make progress we assume an electronic spin autocorrelation function f(t) = e−|t|/τ

as seen by a particular 7Li nucleus, and then the nuclear spin-lattice relaxation rate of that

7Li nucleus is
1
T1

= γ2
Li〈h2

x + h2
y〉

τ

1 + ω2
nτ2

. (6.16)

In order to calculate the value of τ from 1/T1, the value for 〈h2
x +h2

y〉 has to be determined. To

compute this value, we will use the spatial average 〈h2
x + h2

y〉 over all the 7Li nuclear positions

and estimate the average with the following simplifying assumptions. First we assume an

isotropic superexchange interaction among neighboring vanadium spins. In such a case, the

fluctuation of the transverse components of a spin will be modulated by an oscillation with the

electronic Larmor frequency and its spectral density at the frequency of the nuclear Larmor

frequency is very small.[64] Thus one only needs to consider the local field fluctuation due to the

longitudinal components of vanadium spins. Secondly, we ignore possible correlations between

the fluctuations of local fields produced by different vanadium local moments. Then[59]

〈h2
x + h2

y〉 =
∑

i

3γ2
s �

2

r6
i

(
sin2 θi cos2 θi

)
S(S + 1), (6.17)

where � is Planck’s constant divided by 2π, γs and S are respectively the gyromagnetic ratio

and spin S = 1 of the vanadium moments, ri the distance between vanadium moment i and the

nuclear spin, and θi the angle between �ri and the external field. In the numerical calculation,

the applied magnetic field direction is arbitrarily chosen to be along the c-axis. The four VL
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sites are randomly assigned with either Li or V atoms with the probability for vanadium atoms

to be at VL1–4 sites of 0.913, 0.535, 0.460 and 0.501, respectively, as determined from Rietveld

refinement. Our numerical calculations then give (〈h2
x + h2

y〉)1/2 = 0.15 T.

Now the distribution of electronic spin relaxation times τ can be calculated by using an

algorithm similar to that recently discussed in Ref. [38] in order to extract the distribution of

relaxation rate values from a given stretched exponential recovery. In fact, from a given value

of β in the stretched exponential function one obtains a unique probability distribution q(s, β)

of s = T ∗
1 /T1.[36, 38] According to Eq. (6.16), for ωnτ < 1 (i.e., in the high temperature region

above the zero field Tg), a given value of 1/T1 corresponds to a unique value of τ where we use

the above 〈h2
x + h2

y〉 = 0.0225 T2. The distribution of τ values can be expressed in the limit of

ωnτ � 1 (justified post hoc in Fig. 6.15) by

p(τ) =
τ

a
q
(τ

a
, β

)
, (6.18)

where p(τ)dτ/τ = p(τ)d ln τ is the probability that the relaxation time is between τ and

τ + dτ and is normalized according to
∫ ∞
−∞ p(τ)d ln τ = 1, q(s, β) is normalized according to∫ ∞

0 q(s, β)ds = 1, and

a =
1

γ2
Li〈h2

x + h2
y〉T ∗

1

.

The determination of the distribution p(τ) is an important result of the NMR measure-

ments. p(τ) is plotted in Fig. 6.15 at a few temperatures and at fields H = 1.1 and 4.7 T,

where the β values at different temperatures are indicated in the figure caption. Because the

fraction of 7Li nuclei from which the p(τ) is determined becomes small as the temperature

decreases below 15 K (see Fig. 6.11), the results should only be taken as an order of magnitude

estimate. However, the trend of a slowing down and continuous broadening of the distribution

is clearly seen as the zero-field spin glass transition temperature is approached from above.

Such a temperature dependence is qualitatively similar to distributions derived earlier from ac

susceptibility and neutron spin echo measurements.[17, 22, 23] One can see that even at 10 K,

there still exists a significant amount of spins with very short correlation times: τ ∼ 10−11 s.

Such short τ values are in contradiction with the assumption γH 
 1/τmin made in Ref. [28],

from which the authors ruled out the dynamic inhomogeneity as an adequate description of
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Figure 6.15 Plots of the distribution of electronic correlation times τ ex-
tracted from 7Li nuclear spin-lattice relaxation measurements
at different temperatures and at fields H = 1.1 and 4.7 T. At
H = 1.1 T, the β values are equal to 1, 0.78, 0.7, and 0.41 at
temperatures T > 75 K and T = 20, 15, and 10 K, respec-
tively. While at H = 4.7 T, the β values are equal to 1, 0.8,
0.7, and 0.5 at temperatures T > 75 K and T = 20, 15, and
10 K, respectively. The range indicated by the double arrowed
line corresponds to values of τ which give rise to T2 < 40 µs,
for which the 7Li NMR signal is not observable.

the nonexponential spin correlation function. Furthermore, one finds that at higher magnetic

field the overall relaxation rate tends to increase.

It is noted that the signal intensity loss (inset of Fig. 6.11) is consistent with the behavior of

p(τ) in Fig. 6.15. In fact, the range indicated by the double arrowed line corresponds to values

of τ with T2 ≤ 40 µs. An NMR signal from nuclear spins with such short T2 values cannot be

detected because the pulse separation between the two pulses which generate an echo signal is

20 µs. The value of τ above which the NMR signal becomes unobservable is τ = 9.0× 10−11 s

as estimated from the equation[65] (by setting T2 = 40 µs)

1
T2

=
1

2T1
+ γ2

Li〈h2
z〉τ, (6.19)

which is valid in the fast motion limit (i.e. τγ(〈h2
z〉)1/2 � 1) and the contribution to 1/T2

from nuclear dipole-dipole interactions is neglected. The contribution from the nuclear dipolar

interaction is of the order of 300 µs so the above equation is valid only close to the zero-field
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Tg when it yields a T2 value much smaller than 300 µs. The expression for 〈h2
z〉 is [59]

〈h2
z〉 =

∑
i

γ2
s �

2

3r6
i

(1 − 3 cos2 θi)2S(S + 1). (6.20)

Its average in Eq. (6.19) is estimated with the same numerical procedure as above and is found

to be (〈h2
z〉)1/2 = 0.12 T. The value of τ above which the signal becomes again observable is

τ ∼ T2 ∼ 40 µs � 1/(〈h2
z〉)1/2γLi.[32] In this slow motion regime, T2 increases with increasing τ

up to the limiting value given by the nuclear dipole-dipole interaction and the signal intensity

is partially recovered as shown in Fig. 6.11 for the H = 1.1 T data.

6.5.5 11B NMR

Figure 6.16 shows the 11B NMR central |Iz = −1/2〉 ↔ |1/2〉 transition spectra at applied

magnetic fields H = 1.28 and 4.7 T and T = 295 K. The satellites from |−3/2〉 ↔ |−1/2〉 and

|1/2〉 ↔ |3/2〉 transitions spread out due to anisotropic frequency shift since the measurements

were performed on a powder sample and could not be detected due to limited signal to noise

ratio.[59] The spectrum at H = 1.28 T shows two peaks corresponding to the two singularities

in the powder pattern of a second order quadrupole effect. The two peaks merge into one at

H = 4.7 T because the separation of the two peaks is inversely proportional to the field. If

one assumes an axially symmetric electric field gradient (EFG), then the separation of the two

peaks (δν) is[59]

δν =
25π

24
ν2
Q

HγLi
, (6.21)

where the quadrupole frequency νQ is

νQ =
3e2qQ

h2I(2I − 1)
=

1
2

e2qQ

h
,

eq = Vzz is the electric field gradient along the axial symmetry axis, and Q and I are the

quadrupole moment and spin of a 11B nucleus, respectively. At H = 1.28 T, δν = 44(4) kHz,

so νQ = 1.2(1) MHz. This value is close to that in crystalline B2O3 where 2νQ = 2.69 ±

0.03 MHz.[66] In both systems, boron atoms are at the centers of triangles with oxygen atoms

at the vertices.
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Figure 6.16 Spectra of 11B NMR central transition at H = 1.28 and 4.7 T
and T = 295 K.

Since only the central line for 11B (I = 3/2) can be irradiated, the nuclear spin-lattice

relaxation is intrinsically nonexponential. For a relaxation due to magnetic interactions, the

recovery of the central line follows[67]

1 − M(t)
M(∞)

= Cexp(−2Wt)

+ (1 − C)exp(−12Wt), (6.22)

where C depends on the saturation sequence and the degree of overlap of the satellite back-

ground with the central line and W is related to the transition rate Wm→m−1 from the Iz = |m〉

to the |m − 1〉 state through

W =
Wm→m−1

(I − m + 1)(I + m)
= const,

where m = ±1/2 or 3/2 here. At low temperatures, due to the presence of a distribution of

electronic spin relaxation times, Eq. (6.22) no longer fits the relaxation curves. We thus used

the following phenomenological stretched exponential equation to fit the relaxation curves:

1 − M(t)
M(∞)

= C exp[−(2W ∗t)β ]

+ (1 − C)exp[−(12W ∗t)β ]. (6.23)
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Figure 6.17 W ∗ and β in Eq. (6.23) vs temperature T for 11B NSLR at
fields H = 1.28 and 4.7 T. Main panel and inset (b): W ∗

versus T with different temperature scales. Inset (a): β versus
T .

The saturation sequence we used consisted of nine π/2 pulses with a separation of 400 µs

between neighboring pulses. The value of C is found to be in the range 0.3–0.4 at H = 4.7 T

and in the range 0.5–0.6 at H = 1.28 T. The difference of the C values at the two fields is

currently not understood.

The fitting results of W ∗ and β versus T at H = 1.28 and 4.7 T are displayed in Fig. 6.17.

The data displayed are only for T ≥ 10 K at H = 4.7 T and T ≥ 18 K at H = 1.28 T. Due to

a loss of signal intensity (similar to 7Li in the main panel of Fig. 6.11) and a large increase of

relaxation rate, reliable W ∗ and β results cannot be obtained at lower temperatures. However,

it is clear that 11B NMR nuclear spin-lattice relaxation rates are also strongly enhanced at

low temperature, in qualitative agreement with the slowing down of the spin fluctuations on

approaching the zero-field spin glass transition temperature.

6.6 Summary and Conclusions

X-ray diffraction studies on both single crystal and polycrystalline samples confirmed the

previously reported structure of the (LixV1−x)3BO5 system. The structure contains both

frustration and disorder, which are usually considered as necessary ingredients of a spin glass

system.
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The high temperature magnetic susceptibility results cannot be explained by the simple

picture of formation of VL1–VL4–VL1 linear trimers proposed in Ref. [30]. The observed

negative curvature in the inverse susceptibility below T ≈ 100 K might instead be due to

the occurrence of magnetic clusters as the spin glass transition temperature is approached.

Magnetization measurements at low temperatures showed field-cooled and zero-field-cooled

splitting of magnetization, slow relaxation of magnetization on a macroscopic time scale, and

memory and rejuvenation effects which are all evidences of a spin glass state below Tg ∼ 10 K.

The strong enhancement of nuclear spin-lattice relaxation rates upon approaching the zero-

field Tg suggests that the dramatic slowing down of electronic spin dynamics persists even in a

high field of 4.7 T where a true long range spin glass transition may be suppressed as indicated

by the magnetization measurements (Fig. 6.5). Our NMR measurements cannot distinguish

whether the spin system is in thermodynamic equilibrium or not at a particular temperature.

In addition, we have no information on whether the spins freeze on a time scale longer than

that of NMR (∼ 10−6 s).

We extracted the distribution of electronic spin relaxation times τ from NMR. A derived

broad distribution of τ starts well above the zero-field spin glass transition temperature Tg and

becomes successively broader as the zero-field Tg is approached. The broad distribution of τ

explains the observed loss of signal intensities displayed in the inset of Fig. 6.11. As illustrated

in Fig. 6.15, as the temperature decreases toward Tg, more and more vanadium spins have τ in

the range of ∼ 10−10–10−6 s, which results in T2 � 40 µs for the nearby 7Li nuclear spins. Our

modeling in terms of dynamical electronic spin heterogeneity[17, 21–25] offers an alternative

framework to models of homogeneous electronic relaxation.[18, 28]
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CHAPTER 7. Summary

In conclusion, we have presented NMR studies on spin dynamics and spin structure on

three different strongly correlated vanadium oxide compounds LiV2O4, (LixV1−x)3BO5, and

CaV2O4. In the rare d-electron heavy fermion LiV2O4, we found that 7Li NMR properties

are sensitive to the presence of a small amount of magnetic defects within its spinel crystal

structure. In order to understand the nature of the LiV2O4 samples with magnetic defects, we

carried out a systematic 7Li NMR study on LiV2O4 powder and single crystal samples with

different concentrations of magnetic defects. Our measurements show that there are different

kinds of magnetic defects in the system. The magnetic defects in the powder samples undergo

a spin glass freezing below 1 K while those in the single crystals remain paramagnetic down

to the lowest measurement temperature 0.5 K. Our NMR results can be well explained by

treating the magnetic defects as dilute paramagnetic centers and assuming that the heavy

fermion carriers are preserved in the presence of the magnetic defects. The finding that heavy

fermion carriers survive in the presence of magnetic defects may constrain further theoretical

developments in understanding the origin of the intrinsic heavy fermion properties in LiV2O4.

In the zig-zag spin-1 chain system CaV2O4, we used 17O and 51V NMR to study the

magnetic phase transition and low temperature spin structure and spin wave properties in the

system. 17O NMR together with complementary magnetic susceptibility measurements gave

clear evidence for an antiferromagnetic phase transition at T = 78 K in the powder samples.

51V NMR spectrum study on the crystals in the ordered state revealed the presence of two

antiferromagnetic spin substructures. Each substructure is collinear, with the easy axes of the

two substructures separated by an angle of 19 degrees, and with their average direction pointing

approximately along the b-axis of the crystal structure, consistent with our group’s anisotropic
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magnetic susceptibility measurements on single crystals. The temperature dependence of the

ordered moments shows the presence of an energy gap in the antiferromagnetic spin wave

excitation spectrum with the gap value lying between 64 and 98 K. The low temperature

ordered moment is estimated from the value of local field at the 51V nuclear spin to be 1.63±

0.33 µB/V atom.

In the insulating spin glass (LixV1−x)3BO5, we established the presence of a spin glass

state below ∼ 10 K in this material through magnetization measurements. The apparent spin

freezing temperature is shifted to lower temperatures at higher fields from magnetization mea-

surements. However, the NMR measurements in a strong applied magnetic field up to 4.7 T

show the persistence of dramatic slowing down of the spin dynamics at an almost field indepen-

dent temperature, that is about the same as the zero field spin-glass transition temperature.

The difference between magnetization and NMR results suggests that a sharp dynamical slow-

ing down still occurs even if a true thermodynamic phase transition is suppressed by the applied

field. Our results also suggest that NMR can be used as a sensitive way to detect the spin

glass freezing despite the requirement for the presence of a large applied magnetic field. Fur-

thermore, we observed a stretched exponential nuclear spin-lattice relaxation on approaching

the zero-field spin glass transition temperature, similar to the nuclear spin-lattice relaxation

behavior in LiV2O4 samples with magnetic defects. We modeled the stretched exponential

relaxation as dominated by the electronic spin dynamical heterogeneity. The distribution of

correlation times derived under such an assumption is found to be consistent with the observed

loss of NMR signal intensity close to the zero-field spin glass transition temperature.
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APPENDIX. 11B NMR in the Layered Diborides OsB2 and RuB2

(This appendix is based on a paper published in Phys. Rev. B by B. J. Suh, X. Zong, Y.

Singh, A. Niazi, and D. C. Johnston[1])

Abstract

11B nuclear magnetic resonance (NMR) measurements have been performed on 11B en-

riched OsB2 and RuB2 polycrystalline powder samples in an external field of 4.7 T and in the

temperature range 4.2 K < T < 300 K. The spectra for both samples show similar quadrupole

powder patterns that are typical for a non-axial symmetry. The Knight shifts K in both

samples are very small and constant in temperature. The nuclear spin-lattice relaxation rate

T−1
1 follows a Korringa law in the whole temperature range investigated with T1T = 600 and

680 s K for OsB2 and RuB2, respectively. The experimental results indicate that a p charac-

ter dominates the conduction electron wave function at the B site with a negligibly small s

character in both compounds.

Introduction

Right after the discovery of superconductivity in MgB2 at a high temperature Tc = 39 K,[2]

a number of subsequent experiments,[3, 4] in particular, isotope effects measurements[5, 6]

confirmed that MgB2 belongs to the conventional BCS superconductor. Theoretical studies

using band structure calculations also found that in MgB2, the Fermi level (EF) is located at

the shoulder of the density of states (DOS) curve in which B 2p states are dominant.[7–9] It

seems to be generally accepted that the B 2p band plays a crucial role for the high Tc in MgB2.

On the other hand, many structurally-related metal diborides TB2 (T = Ti, Zr, Hf, V, Cr, Nb,
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Ta, Mo) have been studied,[10–14] some of which had already been studied in the past,[15] but

the role of the B 2p band for the superconductivity in other metal diborides TB2 is not clearly

understood yet.

There is also an interesting metal-diboride family, OsB2 and RuB2, which crystallize in an

orthorhombic structure (Pmmn) containing deformed boron sheets instead of a planar boron

array as in the hexagonal MgB2. They have been known to be superconductors with Tc = 2.1 K

for OsB2 and 1.6 K for RuB2 since 1975,[16] but other physical properties besides Tc have not

been reported until the recent studies related to their unusually high bulk modulus.[17–19]

Note that the difference between Tc’s for two compounds, δTc = 0.5 K, which is 24 % of

Tc = 2.1 K of OsB2, is sufficiently large but no noticeable difference between the properties

related to the superconductivity has been reported yet. OsB2 and RuB2 are isostructural,

where the difference between the lattice constants is less than 1 %.[20, 21] Band structure

calculations suggest that the relevant DOS’s at the Fermi level are even identical for both

compounds as summarized in Table A.1.[18] From a recent comprehensive study by some of

us, no considerable difference between their thermodynamic properties was observed except

for the Debye temperatures, ΘD = 550 K for OsB2 and ΘD = 701 K for RuB2, which are

consistent with their relative molar masses but are not helpful to explain the higher Tc in

OsB2.[21]

Nuclear magnetic resonance (NMR) is a microscopic tool to investigate the electronic struc-

Table A.1 Summary of various information on OsB2 and RuB2. The den-
sities of states N at the Fermi level (EF) are theoretically cal-
culated values in units of states/(eV f.u.) for the total N(EF)
(both spin directions) and of states/(eV B atom) for the par-
tial s- and p-type densities of states, respectively, where “f.u.”
means formula unit.

OsB2 RuB2 Reference
Tc (K) 2.1 1.6 [16], [21]
ΘD (K) 550 701 [21]
N(EF) 0.551 0.548 [18]

NBs(EF) 0.007 0.006 [18]
NBp(EF) 0.098 0.097 [18]
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ture in a nonmagnetic metal. The NMR parameters, the Knight shift (K) and the nuclear

spin-lattice relaxation rate (T−1
1 ) are related to the partial DOS’s at the site of probing nuclei.

As demonstrated from a number of 11B NMR studies in MgB2 and related materials, 11B NMR

is a suitable probe of the B s and/or B p states selectively in metal diborides.[22–25] We have

applied 11B NMR to investigate the structural and electronic properties of OsB2 and RuB2.

The experimental results for the spectra, Knight shifts, and relaxation rates in the two com-

pounds have been compared and discussed in relation to the local structure or to the partial

DOS’s at the B site.

Experimental

11B enriched polycrystalline samples of OsB2 and RuB2 were prepared by arc-melting using

ultrahigh purity Os (99.995 %, Sigma Aldrich), Ru (99.995 %, MV labs), and 11B (99.999 %,

Eagle Pitcher). Details for the preparation, and the structural and thermodynamic properties

of OsB2 and RuB2 are described elsewhere.[21] 11B (nuclear spin I = 3/2) NMR and relaxation

measurements were carried out on the powdered samples with a standard Fourier transform

(FT) pulse NMR spectrometer in the temperature range 4.2 K < T < 294 K and in an external

magnetic field H = 4.7 T corresponding to the Larmor frequency νL = 64.17837 MHz for 11B

in a NaBH4 aqueous solution. The π/2 radio frequency (rf) pulse length was typically 2.4 µs.

The 11B spectrum was obtained from the Fourier transform of half of the echo following a

(π/2)0 − (π/2)90 pulse sequence. In order to cover the whole spectrum, separate spectra were

recorded at every 100 kHz in the frequency range −400 ≤ ν−νL ≤ 400 kHz and added together.

The 11B T−1
1 was measured by monitoring the recovery of the nuclear magnetization following

a long sequence of saturating rf pulses. Following this sequence, the entire spectrum becomes

saturated, and the recovery of the nuclear magnetization was observed to be exponential in

the whole temperature investigated.
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Figure A.1 11B (I = 3/2) NMR spectra in 11B enriched OsB2 and
RuB2 powder samples at H = 4.7 T corresponding to
νL = 64.17837 MHz: (a) The whole spectra at room tem-
perature and (b) the central line transition at two represen-
tative temperatures. The spectrum for MgB2 is also plotted
for comparison.[26]

Results and Discussion

Figure A.1 shows representative spectra for OsB2 and RuB2, consisting of a central line and

a broad background with steps at ν − νL ≈ ±285 kHz. The spectra for both compounds are

quite similar to each other except for the small relative shift of the central line transition, which

will be discussed later. Since the background is of quadrupolar origin and, hence, sensitive to

the local symmetry including the local charge distribution at the site of probing nuclei, the

observation of nearly identical spectra for both compounds is consistent with their isostructural

nature.

On the other hand, the spectra [see the enlarged plots in Fig. A.2(a)] are quite different

from the one for hexagonal MgB2 that shows two singularities of the distribution of satellite

transitions typical for I = 3/2 with an uniaxial symmetry.[26, 27] The rounded quadrupolar

background indicates that the local symmetry at the B site in OsB2 and RuB2 is far from being

uniaxial,[27] reflecting the low point symmetry (the m symmetry with a mirror in the ac-plane)
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Figure A.2 Comparison of the 11B (I = 3/2) NMR spectra in OsB2 and
RuB2 with theoretical simulations: (a) The experimental re-
sults and (b) the theoretical simulations for I = 3/2 and sev-
eral representative values of the asymmetry parameter η with
a line broadening δν/νQ = 0.03. Data for MgB2 are shown in
(a) for comparison.

of the B sites which occupy the 4f Wyckoff sites in the orthorhombic lattice (Pmmn).[19]

Compared with theoretical simulations of the NMR spectrum for I = 3/2 with a non-axial

symmetry as shown in Fig. A.2(b), the observed spectra for both compounds correspond to

the ones with the asymmetry parameter η ≡ |Vxx−Vyy|/|Vzz| = 0.8−0.9. Moreover, for such a

large value of η, the rounded edge of the quadrupolar background roughly corresponds to the

quadupole frequency νQ as can be seen from the simulations in Fig 2(b). Thus, we estimate

νQ = 285± 10 kHz for both compounds, which is much smaller than νQ = 835 kHz for MgB2.

As shown separately in Fig. A.1(b), the central line transition is observed to be asymmetric

and quite broad with a linewidth δν � 14 kHz (FWHM; full width at half maximum) and to

be constant in temperature for both OsB2 and RuB2. In the presence of the second order

quadrupole effects, the separation between the two singularities in the central line is given

by[27]
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∆ν =
ν2

Q

48νL

[
I(I + 1) − 3

4

]
(η2 + 22η + 25) . (A.1)

.

Using I = 3/2, νL = 64.17837 MHz, νQ � 285 kHz, and η ≈ 0.9, we obtain ∆ν ≈ 1.2 kHz,

which is too small to explain the observed linewidth, δν � 14 kHz. Such a broad central line

cannot be explained by the quadrupole effects. As compared in Fig. A.1(b), the anomalously

broad line (with a split structure) has also been observed in MgB2[22, 25, 26] and explained

excellently by dipolar doublets from systematic measurements at various external fields.[25]

From the calculation of the second moment < ∆ω2 > for the 11B enriched OsB2 using the

lattice parameters in Ref. [20], we obtained < ∆ω2 >� 1800 [rad2 kHz2], which corresponds to

∆ν � 15 kHz for a Gaussian line shape. Thus we conclude that the broad and temperature-

independent linewidth in OsB2 and RuB2 is also dominated by the dipole-dipole interaction

between 11B nuclei similarly to the MgB2 case. The rather rounded and asymmetric shape

of the central line without the split structure seems to be related to the anisotropic dipole

interaction and/or to the non-axial symmetry in OsB2 and RuB2. We note that the dipolar

interaction is very sensitive to the B-B distance, d, between the nearest neighbors.[25] There-

fore, the observation of the nearly identical linewidth, which implies that d in both compounds

is qualitatively similar to each other, is also consistent with their isostructural nature.

Since the central line is asymmetric, the position of the center of gravity νcg instead of the

peak position was used to determine the Knight shift K. Thus, the K values obtained here

represent the isotropic Knight shift. From the central part with the intensity (normalized with

respect to the maximum value) higher than 0.05 which is chosen to exclude the background

contribution, we obtain νcg − νL ≈ 3 kHz and ≈ 5 kHz, yielding K ≡ (νcg − νL)/νL ≈ 50 ppm

for OsB2 and K ≈ 80 ppm for RuB2 with respect to a NaBH4 aqueous solution. If the Knight

shift is referred to the BF3 solution that is used as the “zero chemical shift”,[28] we obtain

K ≈ 10 ppm for OsB2 and K ≈ 40 ppm for RuB2. The small and temperature-independent K

indicates that the s-component of the wave function at the B site at the Fermi level is negligibly

small in both compounds,[27] which is in good agreement with the theoretical calculations
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Figure A.3 Temperature dependence of the 11B nuclear spin-lattice relax-
ation rate T−1

1 in OsB2 and RuB2 powder samples. The solid
lines are fits to the Korringa relation T1T = Constant. The
dashed line represents the results for MgB2 from Ref. [25].

summarized in Table A.1[18] and similar to the situation of MgB2.[24, 25]

We turn now to the behavior of the 11B nuclear spin-lattice relaxation rate, T−1
1 . As

mentioned earlier, with a sufficiently long sequence of saturating rf pulses, the recovery of

the nuclear magnetization was observed to be exponential. This is ascribed to the relatively

narrow quadrupolar background in OsB2 and RuB2. The experimental results of 11B T−1
1

obtained by fitting the recovery data to a single exponential function are shown in Fig. A.3.

The 11B T−1
1 follows a linear temperature dependence, the so-called Korringa law, with T1T =

600± 30 sK for OsB2 and 680± 35 sK for RuB2 in the whole temperature range investigated.

Using the values for the isotropic Knight shift K and the value S = 2.57 × 10−6 sK for 11B

[S ≡ (γe/γn)2(h/8π2kB), and γe and γn are the gyromagnetic ratios for electron and nucleus,

respectively], we obtain the Korringa ratio, R ≡ K2T1T/S ≈ 0.02 and ≈ 0.4 for OsB2 and for

RuB2, respectively. Note that the Korringa ratio for both compounds is much smaller than

the ideal value of unity for the case where the contact interaction with s electrons causes both

K and T−1
1 .[27] This indicates that the T−1

1 is partially driven by a mechanism different from
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Table A.2 Summary of the experimental 11B NMR parameters for OsB2

and RuB2. The results for MgB2 from Ref. [25] are presented
for comparison.

OsB2 RuB2 MgB2 [25]
νQ (kHz) 285(10) 285(10) 835
K (ppm)∗ ≈ 10 ≈ 40 40
T1T (sK) 600(30) 680(35) 170

R ≈ 0.02 ≈ 0.4 0.102

scattering with s-type conduction electrons at the Fermi level, such as the orbital contribution

from the p electrons. This orbital contribution is expected to be roughly proportional to the

density of p states at the Fermi level and to temperature. On the other hand, this orbital

contribution is quenched for the isotropic Knight shift and does not obey the Korringa ratio.

In fact, from band structure calculations, NBp(EF) ≈ 0.1 states/(eV B atom) is obtained to be

much larger than NBs(EF) ≈ 0.01 states/(eV B atom) for both compounds (see Table A.1),[18]

in qualitative agreement with our observations.

Finally, we note that the Korringa ratio R and the values of T1T are observed to be clearly

different in the two compounds. Although the partial DOS’s, NBp and NBs, were reported to

be almost the same for both compounds on the basis of band structure calculations,[18] our

observation indicates that there exists a noticeable difference between the partial DOS’s in the

two compounds, whereby NBp is considerably larger in OsB2 than in RuB2. The B p-band

contribution to the DOS at the Fermi level is believed to be the key for the superconductivity in

MgB2[7–9] and to be relevant to the superconductivity even in other metal diborides TB2.[13,

14] In this scenario, the larger B p-band contribution is expected for the higher Tc in OsB2 as

we observed here from 11B NMR relaxation measurements.

Conclusions

We have presented a complete set of 11B NMR data in the layered diborides OsB2 and

RuB2 and representative results are summarized in Table A.2. All the experimental results

have been understood qualitatively in relation to the local structure or to the partial DOS’s.
∗Corrected with respect to the reference solution BF3 as described in text.
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We find that, at the B site, the p character is dominant for the DOS at the Fermi level for

both compounds similarly to the MgB2 case. A noticeable difference between the Korringa

ratio R for the two compounds has been observed, which seems to be relevant to the different

Tc’s for two compounds. In discussion about the mechanism of the 11B T−1
1 , the contribution

of the fluctuating dipolar field from the B p character at the Fermi surface is overlooked due

to the lack of theoretical support.[24, 25] In order to understand better the microscopic origin

of the difference between the NMR parameters in the two compounds and its relevance to the

superconductivity, a comparison of our experimental results with ab initio calculated values

for Knight shifts and relaxations is highly desirable.[24, 25]
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