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Chapter 1

Introduction

Economists have found evidence of occasional sudden breaks in many eco-

nomic time series. For example, currency exchange rates often move abruptly as

governments devalue due to speculative pressure and deteriorating economic condi-

tions. Commodity prices, such as oil, change in response to shocks from exogenous

geopolitical events or supply disruptions due to weather related catastrophes like

hurricane Katrina, and financial markets can shift abruptly in response to finan-

cial crises. Perhaps the best example of this is economic growth, where the rate

of growth of the economy alternates between periods of high growth (economic ex-

pansion) and periods of declining or negative growth (recession). Not surprisingly,

a vast amount of research has come from business cycle researchers but significant

methodological contributions have also come from engineering applications.

In contrast to linear models that assume stationary distributions (such as

ARIMA models), regime-switching models are based on a mixture of parametric

distributions whose mixture probabilities depend on unobserved state variable(s).

A key difference between the various regime-switching models lies in the stochastic

structure of the state variables. For instance, the state of the unobserved process

can be modeled by a discrete time/discrete space Markov chain, which can have

either fixed or time-varying transition probabilities, or by an independent stochastic
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state variable.

There is an extensive literature both in methodological issues and applications

in such diverse areas like business cycle economics, financial economics, meteorol-

ogy, epidemics, tracking and speech recognition applications. This presentation

surveys some of the literature related to regime-switching models and tests some

of these models using simulated and real-world data. In particular we compare the

performance of Markov-switching time series models against independent logistic

mixtures, and we apply these modeling techniques in investigating the dynamics of

crude oil prices.

1.1 Survey of Literature

Some of the earliest applications of hidden Markov models to time series ap-

pear to have been by Lindgren [1], Cosslett and Lee [2], and Quandt and Goldfeld [3].

More recently, Hamilton’s Markov-switching model [4] has become popular among

econometricians after Hamilton applied it to model the probability of a recession in

the U.S. economy. In this model, the economy alternates between two unobserved

states of high growth and slow growth according to a Markov chain process. The

model assumes constant transition probabilities for the unobserved states, which in

turn imply constant expected durations in the various regimes. As in most applica-

tions, the model assumes a mixture of normal distributions but it can be generalized

to other distributions as well. Engle and Hamilton [5] apply the Markov-switching

model to U.S. dollar data and find some success in matching the swings in the value
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of the dollar. Garcia and Perron [6] use this model in investigating the behavior of

interest rates.

The (relative) success of this model in matching the timing of recessions as

determined ex-post by the National Bureau of Economic Research spawned further

research. Diebold et al. [7] and extended Hamilton’s model to time-varying tran-

sition probabilities using the EM algorithm of Dempster et al. [8] to maximize the

likelihood. This model retains a Markov structure for the unobserved states but al-

lows additional covariates to determine the transition probabilities. The implication

of this model is that the expected duration of each regime is not constant. Filardo

[9] applies the time-varying Markov switching model using various leading indicators

to model monthly industrial production data. Durland and McCurdy [10] allow the

inferred number of periods of the unobserved state to influence the dynamics of the

latent variable. They find that the probability of remaining in a recession drops the

longer that regime has lasted but that the same does not hold true for economic

expansions. Raymond and Rich [11] use the fixed- and time-varying Markov models

to examining the effect of oil prices on the U.S. economy. They find that oil prices

suppress growth in the economy but do not have a strong effect on the transition

probabilities of the state variable.

Regime-switching models have also been employed in modeling heteroskedas-

ticity in stock market returns. The ability of these nonlinear models to capture

regime-shifts make them a natural alternative to the ARCH and GARCH models

proposed by Engle [12] and Bollerslev [13]. Also, a mixture of normal densities

can give rise to fat tails, which is a persistent feature of financial data. Cai [14],
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Hamilton and Susmel [15], Gray [16], and Klaassen [17] combine the two approaches

into a Switching-ARCH model (SWARCH) that embeds ARCH models within dif-

ferent regimes. The advantage of these models is that they capture conditional

heteroskedasticity that is long term and that is not captured by GARCH models.

However, the key limitation is that without assumptions the number of unobserved

states grows very rapidly, so these models can be computationally intensive.

A more parsimonious way of modeling regime-switching in time series was of-

fered by Jeffries and Kedem [18]. They propose a model of mixtures of generalized

linear models (GLM) where the regime probabilities are jointly modeled with a logis-

tic regression. The advantage of this approach is that it does away with the Markov

structure that was assumed in the aforementioned models. Jeffries and Kedem de-

velop an EM algorithm [8] to estimate the model and show that such estimates are

consistent and asymptotically normal. They also develop a likelihood ratio test for

the test for determining whether the data come from a single distribution versus a

mixture that sidesteps some of the difficulties associated with likelihood ratio tests

of mixtures. They apply their model to fitting weather patterns. Wong and Li

[19] also use a logistic mixtures model which they call logistic mixture autoregres-

sive with exogenous variables (LMARX) and contrast this class of variables against

threshold models.

Threshold or self-exiting threshold autoregressive (SETAR) models were de-

veloped by Tong ([20], [21]). These models don’t assume any hidden Markov process.

There are many variants of these models but the lack of intuition for this kind of

regime switching has probably hindered the use of these models in many applica-
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tions.

Yet another strand of models is developed by Terasvirta in [22] and [23] and

an interesting application to GARCH modeling is provided by Gonzalez-Rivera in

[24].

Most of the aforementioned regime-switching models can easily be generalized

to multiple variables. In particular, Krolzig et al. in [25] and [26] develop vector

autoregressive models. Also Engel and Hamilton [5] provide an early application of

multivariate switching. Despite their intuitive appeal, these models have limitations

in practice.

More recent research into regime-switching includes Kim et al. [27] who use

the Markov-switching approach to model equity returns and stock market volatility.

Ang and Bekaert in [28] and [29] investigate the asymmetric effects of inflation on

various interest rates. Bansal and Zhou [30] model the term structure of interest

rates and find that the regime-shifts model captures certain yield curve dynamics

better than other commonly used models. Ang and Bekaert [28] apply a regime-

switching model to asset allocation.

Regime-switching models have been used in other areas and in connection

with state-space models. One of the earliest applications of state-space models

with regime switching was by Bar-Shalom [31] who applied this model to a tracking

problem. Kim [32] and Kim and Nelson [33] present algorithms for Markov-switching

state-space models. Shumway and Stoffer [34] show an application to epidemic

outbreak where they decompose a time series of influenza incidence rates into a

cyclic and outbreak component. Such structural component models are popular with
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economists who want to disaggregate time series into trend versus cyclic components.

Examples of these include Kim and Murray [35] and Mills and Wang [36]. A related

application of Markov-switching state-space models is provided by Chib and Dueker

[37].

In addition to the literature described above, useful resources on regime-

switching models include Hamilton [38] and [39]; Kedem [40]; Shumway and Stoffer

[34] and Kim et al. [33].

Although regime-switching model techniques are relatively new, there is al-

ready a vast body of applications using these models – especially in economics. The

applications described above highlight the versatility and richness of these models in

capturing non-linear relationships. These modeling techniques share many similar-

ities but they must be tailored to particular situations – there is not a one size fits

all. Finally, there are still many open methodological questions related to hypothesis

testing.

1.2 Overview of Thesis

In Chapter 2 we provide an overview of the various competing models and

describe the techniques used to estimate the models. Specifically, we review the

logistic mixture model of Jeffries and Kedem [18], the fixed-transition Markov model

of Hamilton [4], and the time-varying Markov transition model of Diebold et al. [7].

In Chapter 3 we apply these models to simulated data, in Chapter 4 we apply the

models on real-world data from the energy markets, and Chapter 5 concludes.
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Chapter 2

Models of Regime-Switching

2.1 Regime-Switching

In generalized linear models (GLM), the conditional distribution of a time

series yt belongs to the exponential family of distributions and takes the canonical

form

f(yt;µt, φ) = exp

(
ytµt − b(µt)

αt(φ)
+ c(yt;φ)

)
(2.1)

for various link functions (see Kedem and Fokianos [40]) and covariates θt = x′tβ. A

particular form of this model is the classical linear regression model given by

yt = x′tβ + εt, εt ∼ i.i.d. N(0, σ2), t = 1, . . . , T, (2.2)

where the data are independently and identically normally distributed. The model

has been adapted to non-i.i.d. data, such as when the errors are heteroskedastic as

in the GARCH models of Engle and Bollerslev ([12],[13]) and many others.

The key assumption in model (2.2), however, is that the parameters are con-

stant through time, which would not be true if some sort of structural break occurred

in the series and the model suddenly changed. One alternative is to estimate the

model over different sub-samples if the timing of the break is known and test the

hypothesis of a structural break using an F-test.1 For example, one might want to

1An F-test was developed by Chow to test for structural breaks in regression parameters by
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test for the effects of a policy change such as Fed policy under Paul Volcker in the

early 1980s.

Another alternative is to make the structural break endogenous to the model

since in many cases the timing of the shift may not be known. By making the shift(s)

endogenous to the model, we can also make inferences about the process that drives

these shifts. Models that shift between various densities allow us to incorporate

structural breaks in the estimation procedure. Instead of assuming a single density

for the data, regime (or state) switching models assume that the observations come

from a mixture of r parametric distributions given by

Yt ∼



f(yt|θ1,Ft−1) if St = 1

f(yt|θ2,Ft−1) if St = 2

...
...

f(yt|θr,Ft−1) if St = r

, (2.3)

where θi contains the parameters of the model i and θi 6= θj if i 6= j. Here

St is an unobserved discrete state variable that determines the conditional dis-

tribution of Yt, which as the notation suggests, is time dependent. Also, Ft−1 =

σ(Xt, Xt−1, . . . , Xt−p, Yt−1, . . . , Yt−p) is the sigma algebra generated by the known

vector of exogenous random variables or known functions of random variables, or

more simply the information known up to time t− 1.

The number of states r is unknown but most applications assume that r = 2

or r = 3. For the remainder of this project we assume that there are only two states

(r = 2) which we label 0 and 1. With two states, St ∈ {0, 1}, the GLM in (2.1)

comparing regression sum of squares across two different sub samples [41].
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becomes

f(yt|St = 1;µi,t, φi) = exp

(
ytµi,t − b(µi,t)

αt(φi)
+ c(yt;φi)

)
. (2.4)

where µi,t = x′tβi is a function of known covariates xt. Although this is general

enough to encompass the normal, binomial, Poisson, and gamma distributions as

special cases, for the remainder of this project we will focus on the Gaussian dis-

tribution since it is the most widely used in economic applications. The work that

follows applies to other densities as well (see Jeffries [18]).

With two states, the linear model in (2.2) becomes

yt = x′tβSt + εt, εt ∼ i.i.d. N(0, σ2
St

) (2.5)

βSt = β1St + β0(1− St) (2.6)

σ2
St

= σ2
1St + σ2

0(1− St), (2.7)

so under regime St = i the parameters are given by θi = (βi, σ
2
i ).

However, the state vector St is not known a priori, so we must make distribu-

tional assumptions about probability of being in a given state. The various models

that follow make different assumptions about the evolution of the random process

that determines the regime. Let pi = P (St = i|Ft−1; γ) with the restrictions pi ≥ 0

and
∑r
i=1 pi = 1, where γ contains the parameters associated with the probability

law of St.

Hence, the mixture density g(·) is really a mixture of the conditional densities,

each weighted by the probability of being in that particular state

g(yt; θ) =
r∑
i=1

f(yt|θi) pi, (2.8)
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so that in the case of a mixture of normals the density is

g(yt|Ft−1; θ, γ) =
∑
i=0,1

(2πσ2
i )
−1/2 exp

(
(y − x′tβi)

2

2σ2
i

)
Pr(St = i|Ft−1; γ), (2.9)

where θ = (β1, β0, σ
2
1, σ

2
0)
′ is the parameter vector and γ contains additional param-

eters of the St process. Notice that unlike the classical model in (2.2) where the

errors are i.i.d., the data in (2.5) are neither independent nor identically distributed.

Consequently, the likelihood function (averaged over the unobserved state vec-

tor) is as follows:

logL =
T∑
t=1

[
log

r∑
i=1

f(yt|θi) P (St = i|Ft−1; γ)

]
. (2.10)

So far we assumed that there are two states (r = 2). Theoretically, one could

test for the presence of one versus two or a higher number of states. However,

standard tests (such as a likelihood ratio test) for testing for the number of regimes

do not hold as the Fisher information matrix becomes singular in the presence of

unidentifiable parameters (θi and γ where i is the second regime). This issue is

addressed in Hansen [42], Andrews [43], Andrews and Ploberger [44], and Jeffries

[18]. We avoid this issue entirely and assume that there are two states as most

applications do.

Another point to note is that depending on how the model is parameterized,

autoregressive terms may complicate the likelihood in (2.10). In that case, the

current observation will not only depend on the current state but also on past

states. We will highlight this issue in more detail in the sections that follow.

In the next few sections we will describe different models for the unobserved

state vector St and provide algorithms for maximizing (2.10) to derive maximum
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likelihood estimates for the model parameters θ and γ and make inferences about

the likelihood of each regime. We avoid the issue of hypothesis testing which is a

very thorny issue in these types of models.
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2.2 Markov with Fixed Transitions

In this model the state variable St evolves over time as a discrete time, discrete

space Markov process. The transition probability of St depends on past values of

St−1, St−2, . . . , St−m and not on past values of y or x. Of course any m-th order

Markov process can be converted to a first-order (m = 1) process.2 Thus, from

here on we assume that m = 1. For a two-state process, we write the transition

probabilities as

P (St = 1|St−1 = 1,Ft−1) = P (St = 1|St−1 = 1) = p(t) = p

P (St = 0|St−1 = 0,Ft−1) = P (St = 0|St−1 = 0) = q(t) = q. (2.11)

The parameters of the model are the (2N1 + N2) × 1 vector ψ = (θ, γ) where θ is

a 2N1 × 1 vector of the parameters of the two-state linear models (autoregressive

parameters and exogenous variables x) and γN2×1 = (p, q)′ are the parameters of the

Markov chain (N2 = 2). In the case of the Gaussian density the parameter vector is

ψ = (β′1, β
′
0, σ

2
1, σ

2
0, p, q). Our goal is to estimate ψ, derive standard error estimates,

and derive estimates of each probability P (St = i|Ft−1;ψ) and P (St = i|Y ;ψ) where

Y = (y1, . . . , yT ).

2.2.1 Estimation

Depending on the particular problem, estimation can proceed either by a re-

cursive filter and numerical maximization by a method such as Newton Raphson

or by an EM algorithm [8], which is appropriate for maximizing a likelihood with

2However the cost of this transformation is that the chain now has 2m elements.
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unobserved variables or missing observations. We describe these procedures in the

next two sections.

2.2.1.1 Nonlinear Filter

A nonlinear filter is sometimes a more convenient means of estimation espe-

cially when data are serially correlated. The exact form of the filter depends on the

number of autoregressive terms. In the simplest case where there are no autore-

gressive lags, the filter proceeds as follows. Starting with Pr(St−1 = i|Ft−1) at the

beginning of time t we compute

Pr(St = j|Ft−1) =
∑
i=0,1

Pr(St = j, St−1 = i|Ft−1)

=
∑
i=0,1

Pr(St = j|St−1 = i) Pr(St−1 = i|Ft−1) (2.12)

and once yt is observed3 the probability terms are updated via Bayes’ formula:

P (St = j|Ft) = Pr(St = j|Ft−1, yt)

=
f(St = j, yt|Ft−1)

f(yt|Ft−1)

=
f(yt|St = j,Ft−1)Pr(St = j|Ft−1)∑

i=0,1 f(yt|St = i,Ft−1) · Pr(St = i,Ft−1)
, (2.13)

from which we can compute the likelihood via equation (2.10). A convenient byprod-

uct of this method is that the filtered probabilities are readily available.

Assuming the Markov chain is stationary and ergodic, we can initialize the

filter using the unconditional distribution of the first observation

π0 = Pr(S0) =
1− p

2− p− q
(2.14)

3Note that xt does not enter in the calculation of the probability terms.
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π1 = Pr(S1) =
1− q

2− p− q
. (2.15)

These are the steady state probabilities derived from solving the system

π = (A′A)−1A′e, (2.16)

where

A =

 Ir − Π

1 . . . 1


(r+1)×r

, (2.17)

r denotes the number of states (here r = 2), and e is an (r + 1) × 1 of ones. The

transition matrix Π also contains information about the expected duration of each

of the two regimes. Solving the equation E(Di) =
∑∞
i=1 iPr(D = i) we find that

Di =
1

1− Πi,i

. (2.18)

Thus, the expected duration of each state remains constant throughout time and

the higher the transition probability Πi,i the longer the expected duration for that

regime.

In the case where there are autoregressive lags, the filter equations become

more complicated as the density of the dependent variable yt depends not just on

the current state St but also on previous states St, . . . , St−p. To see this, consider the

simplest case of the AR(1) model, yt−µSt = φ1(yt−1−µSt−1)+εSt , whose conditional

density is

f(yt|Ft−1, St, St−1) = (2πσ2
St

)−1/2 exp

(
[(yt − µSt)− φ1(yt−1 − µSt−1)]

2

−2σ2
St

)
(2.19)

Thus, in the AR(1) the density of yt depends on both St and St−1, and similarly for

a AR(p) model the density depends on p + 1 states. This means that the number
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of weighting terms grows exponentially to 2(p+1) as more AR terms are added. For

instance, the AR(4) model on GNP growth considered in Hamilton [4], there are

25 = 32 possibilities to consider. For the AR(1) model, the filter proceeds as follows.

Given Pr(St−1|Ft−1), we compute

Pr(St = j, St−1 = i|Ft−1) = Pr(St = j|St−1 = i) Pr(St−1|Ft−1) (2.20)

and augmenting with yt we compute

Pr(St = j, St−1 = i|Ft) =
Pr(St = j, St−1 = i, yt|Ft−1)

f(yt|Ft−1)
(2.21)

=
f(yt|St = j, St−1 = i,Ft−1) · Pr(St = j, St−1 = i|Ft−1)∑

i=0,1

∑
j=0,1 f(yt|St = j, St−1 = i,Ft−1) · Pr(St = j, St−1 = i|Ft−1)

, (2.22)

from which we compute the log likelihood as

logL =
T∑
t=1

log

∑
i=0,1

∑
j=0,1

f(yt|St = j, St−1 = i,Ft−1) · Pr(St = j, St−1 = i|Ft−1)


(2.23)

and probabilities

Pr(St = j|Ft) =
1∑
i=0

Pr(St = j, St = i|Ft) (2.24)

and

Pr(St = j|Ft−1) =
1∑
i=0

Pr(St = j, St = i|Ft−1). (2.25)

Finally, it is interesting to note the similarity between the filter algorithm

for the Markov process and the Kalman filter. Whereas in the Kalman filter the

unobserved state variable is a linear function with a normally distributed random

error, in the Markov-switching process the state variable is a discrete Markov chain.
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2.2.1.2 EM Algorithm

Hamilton [45] develops an EM algorithm for the case of no autoregressive

variables and shows that this method is robust to different starting points.4 In the

case of a linear model with no autoregressive parameters, the EM algorithm yields

some intuitive results.

The first step is to maximize the expected log likelihood function

M(ψ;Y , ψk) =
r∑

St=1

T∑
t=1

log fY,S(yt, St|Ft−1;ψ) Pr(St|Ft;ψk), (2.26)

where ψk are the parameter estimates from the (k − 1)-th iteration, fY,S(·) is the

joint density of yt and St, and Y = (y1, . . . , yT ). It is important to note that yt and

St are independent. The density fY,S(·) can be decomposed as

fY,S(yt, St|Ft−1;ψ) = f(yt|St,Ft−1) · Pr(St|Ft−1), (2.27)

so (dropping Ft−1 and Ft) the likelihood with two regimes becomes

M(ψ;Y , ψk) =
1∑
i=0

T∑
t=1

log [f(yt|St = i; θi) · Pr(St = i; γ)] Pr(St = i|yt;ψk). (2.28)

The separation of the parameters makes maximization straightforward:

∂

∂θi
M(ψ;Y , ψk) =

T∑
t=1

∂

∂θi
log f(yt|St = i; θi) Pr(St = i|yt;ψk) = 0, (2.29)

which in the case of normally distributed data leads to:

βk+1
i =

(
T∑
t=1

x
′

txt Pr(St=1 = i|Y ; θk)

)−1 ( T∑
t=1

xtyt Pr(St=1 = i|Y ; θk)

)
(2.30)

4Another practical issue with EM estimation is the slow rate of convergence.
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σ2k+1

i =

∑T
t=1(yt − x′tβ

k
i )

2 Pr(St = i|Y ; θk)∑T
t=1 Pr(St = i|Y ; θk)

(2.31)

pk+1
i,i =

∑T
t=1 Pr(St = j, St−1 = j|Y ; θk)∑T

t=1 Pr(St=1 = i|Y ; θk)
(2.32)

The last equation is obtained by Lagrange optimization with the added constraint

that
∑
j pi,j = 1.

The probabilities Pr(St=1 = i|Y ; θk) are the smoothed probabilities. It is

interesting that at each M-step of the algorithm, the solutions for βk+1
i and σ2k+1

i

are OLS estimates weighted by the probabilities of each regime. Also the formula

for the transition probabilities pk+1
i,i is simply the empirical transition matrix of the

Markov chain using the probabilities as counts.
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2.3 Markov Time-Varying Transitions

Diebold et al. [7] extended the fixed transition model to time-varying proba-

bilities:

P (St = 1|St−1 = 1,Ft−1) = p(t) =
exp(Z

′
tγ0)

1 + exp(Z
′
tγ0)

P (St = 0|St−1 = 0,Ft−1) = q(t) =
exp(Z

′
tγ1)

1 + exp(Z
′
tγ1)

, (2.33)

where the vector Zt
5 and γi, i = 0, 1 are vectors of parameters to be estimated.

In the case of no additional covariates, this model trivially reduces to the fixed

probability Markov switching model. Another parametrization that has been used in

this problem is the cumulative normal density function but it will not be considered

here.

2.3.1 Estimation

Diebold et al. use the EM algorithm for estimating the model but this algo-

rithm is considerably more complicated that the one for the fixed-transition Markov

process. The parameters in this model are the parameters of the linear model (θ),

the parameters of the switching process (γ), and the first observation probabilities

ρj = P (S1 = j). Whereas in the fixed-transition model, ρj was determined by the

steady state probabilities π, in this model ρj contains additional parameters that

need to be estimated. Rather than outline the steps of this algorithm, we refer the

5Some authors denote this vector by Zt−1 so the time subscript is a matter of style. This vector

can contain contemporaneous exogenous variables like xt but can only contain dependent data

through yt−1 (does not include yt).
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reader to Diebold et al. [7] for more details.

The non-linear filter approach is much more straightforward. An example of

this application is Filardo [9], which uses a non-linear filter to model U.S. industrial

production as a function of various leading indicators.
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2.4 Logistic Mixtures Model

The logistic mixtures model was developed and analyzed by Jeffries and Kedem

in [18] for a mixture of Generalized Linear Models (GLM). Wong and Li [19] also use

logistic regression to get a mixture of normally distributed autoregressive models.

The general form of the exponential density considered by Jeffries is

f(yt|St = i,Ft−1; βi, φi) = exp([ytX
′

t,iβi − b(X
′

t,iβi)]/φi + ci(yt, φi)), (2.34)

which for the normal probability density function reduces to

f(yt|St = i,Ft−1;µi, σi) = (2πσ2
i )
−1/2 exp(

(yt − µi)
2

2σ2
i

). (2.35)

The probability of the given regime is given by

Pr(St = 1|Zt,Ft−1; γ) =
exp(Z

′
tγ)

1 + exp(Z
′
tγ)

(2.36)

where Zt is a k×1 vector of known covariates 6 and γ is an unknown vector of regres-

sion parameters. As in the Diebold et al model, it allows the probabilities to be time

varying and to depend on additional covariates which may have useful information

about the unobserved state but does not restrict the stochastic state variable to be

a Markov random variable. 7 This simplifies the estimation considerably even in

the presence of autoregressive parameters.

6This is sometimes denoted as Zt−1. It may contain contemporaneous data xt but dependent

data only through yt−1.
7Notice that unlike the Markov model, which had two sets of vectors γ0 and γ1, the logistic

mixtures model has only one vector γ.
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2.4.1 Estimation

The EM algorithm is used to solve for the unobserved parameters by forming

the expected likelihood

M(ψ,Y , ψk) =
T∑
t=1

log fY,S(yt, St = 1|Ft−1;ψ) · Pr(St = 1|Ft;ψk) +

T∑
t=1

log fY,S(yt, St = 0|Ft−1;ψ) · Pr(St = 0|Ft;ψk) (2.37)

where ψ = (β′1, β
′
0, φ1, φ0, γ)

′ is a vector of the model’s parameters, ψk is an estimate

of these parameters from the previous iteration k, fY,S(·) is the joint density of yt

and St, and Y = (y1, . . . , yT ).

2.4.1.1 E-Step

The E-step consists of computingM(ψ,Y , ψk) given the value of the parameter

vector ψk from the k-th iteration. Using the fact that yt and St are independent,

we expand the joint density into

log fY,S(yt, St = i|Ft−1;ψ) = log (f(yt|St = i,Ft−1; βi, φi) · Pr(St = 1|Ft−1; γ))

= log f(yt|St = i,Ft−1; βi, φi) + log Pr(St = 1|Ft−1; γ),

and substituting into the expected likelihood we get

M(ψ,Y , ψk) =
T∑
t=1

pkt · (log f(yt|St = 1,Ft−1; β1, φ1) + log Pr(St = 1|Ft−1; γ)) +

T∑
t=1

(1− pkt ) · (log f(yt|St = 0,Ft−1; β0, φ0) + log Pr(St = 1|Ft−1; γ)),

where pkt = Pr(St = 1|yt,Ft−1;ψ
k), which is updated via Bayes’ formula

pkt = Pr(St = 1|yt,Ft−1;ψ
k) =

g(yt, St = 1|Ft−1;ψ
k)

g(yt|Ft−1;ψk)
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=
f(yt|St = 1,Ft−1; β

k
1 , φ

k
1) · Pr(St = 1|Ft−1; γ

k)∑
i=0,1 f(yt|St = i,Ft−1; βk1 , φ

k
1) · Pr(St = i|Ft−1; γk)

. (2.38)

Notice the distinction between the two probability values

Pr(St = 1|yt,Ft−1;ψ
k) = pkt (2.39)

Pr(St = 1|,Ft−1;ψ
k) =

exp(Z
′
tγ
k)

1 + exp(Z
′
tγk)

. (2.40)

The probability weight pkt is conditional on the contemporaneous value of yt while

the latter only contains information up to time t− 1.

2.4.1.2 M-Step

The M-step consists of calculating

ψk+1 = arg max
ψ

M(ψ,Y , ψk), (2.41)

which can be separated into three different maximization problems

H1(β1, φ1, p
k) =

T∑
t=1

pkt · log f(yt|St = 1,Ft−1; β1, φ1), (2.42)

H0(β0, φ0, p
k) =

T∑
t=1

(1− pkt ) · log f(yt|St = 0,Ft−1; β0, φ0), (2.43)

H2(γ, p
k) =

T∑
t=1

pkt · log Pr(St = 1|Ft−1;ψ) + (1− pkt ) · log Pr(St = 0|Ft−1;ψ), (2.44)

where pk = (pk1, ..., p
k
t , ..., p

k
T ). The first two equations (2.43) and (2.42) can be

solved for (βi, φi)
′ using a weighted GLM with prior weights pkt and (2.44) can be

solved for γk+1 using a logistic regression with dependent variables pkt and 1− pkt or

a Newton-Raphson optimization. For a mixture of two normal densities, the M-step

estimates of the linear part are completely analogous to the fixed-transition Markov

model as in (2.30).
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2.5 Filtered and Smoothed Estimates

In addition to estimating the parameters of the models, one is interested in

estimating the probabilities of the unobserved state vector St at each time t.

For the Markov models making inferences on St requires a recursive proce-

dure. Given the maximum likelihood estimates, computing filtered state probabili-

ties P (St = j|Ft) is a straightforward recursive procedure:

P (St = j|Ft−1) =
1∑
i=0

P (St = j|St−1 = i) · P (St−1 = i|Ft−1) (2.45)

P (St = j|Ft) =
f(yt|St = j,Ft−1) · P (St = j|Ft−1)∑1
j=1 f(yt|St = j,Ft−1) · P (St = j|Ft−1)

(2.46)

Additionally, we can use the entire sample to estimate the state vector as in Kim

[32] and [33]:

P (St = j, St+1 = k|FT ) =
P (St+1 = k|FT )P (St = j|Ft)P (St+1 = k|St = j)

P (St+1 = k|Ft)
(2.47)

P (St = j|FT ) =
1∑

k=0

Pr(St = j, St+1 = k|FT ). (2.48)

In the logistic mixtures model this is more directly derived from equations

(2.39). There are no smoothed probabilities for this model.
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Chapter 3

Simulation Results

In this chapter we apply the models to simulated data.

3.1 Simulated Data

We simulate time series data from three different models:

1. Markov model with fixed probability transitions (MFP)

2. Markov model with time-varying transitions (MTV)

3. Independent logistic mixtures model (LMX)

For each model we simulated 200 time series of length T = 5001 from two

states (r = 2) and got y
(1)
t and y

(0)
t , the state vector St, and the mixed series

yt = Sty
(1)
t + (1 − St)y

(0)
t for t = 1, . . . , T . Additionally, we simulate an exogenous

time series ξt ∼ i.i.d. N(0, 1) that is common to all models.

The linear part of the models is given by:

yt = β′ixt + εt, εt ∼ N(0, σ2
i ), i = 0, 1 (3.1)

1We actually a longer time series with T = 600 and discarded the first 100 observations.
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where xt = (1 ξt yt−1)
′. The linear parameters (βi and σ2

i ) are constant across

all three models and are given by:

β0 =



1.0

1.0

−0.1


, β1 =



−1.0

0.8

0.2


,

 σ2
0

σ2
1

 =

 1

4

 . (3.2)

Thus, in one regime the model has a positive intercept, low error variance, and

a slightly negative autoregressive term. In the second regime, the model has a

negative intercept, high residual variance, a lower coefficient of ξt, and a positive

autoregressive term.

The linear part is again the same for all three models. The only difference

between these models is in the γ parameters that characterize the unobserved state

vector St. These sets of parameters were chosen with two objectives in mind. First,

both regimes should occur in the sample so that the sample is not all due to one

regime. Second, the regimes should have some persistence across time. A state

variable that switches very frequently between two regimes would be very hard to

identify, especially for the Markov-switching models.

3.1.1 Markov with Fixed Transitions

The state vector St is a discrete time, discrete space Markov chain with fixed

transition probabilities

p = P (St = 1|St−1 = 1) = 0.90

q = P (St = 0|St−1 = 0) = 0.75. (3.3)
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so γ = (2.20, 1.10)′.2

3.1.2 Markov with Time-Varying Transitions

The linear part is again given by (3.1) with the parameters given in (3.2).

The difference is in the transition probability matrix, which is time-varying and is

parametrized as follows:

p(t) = P (St = 1|St−1 = 1) =
exp (Z ′tγ1)

1 + exp (Z ′tγ1)

q(t) = P (St = 0|St−1 = 0) =
exp (Z ′tγ0)

1 + exp (Z ′tγ0)
, (3.4)

where Zt = (1 yt−1)
′ are the explanatory variables and γi are the parameters of

the transition matrix

γ1 =

 2.0

0.7

 , γ0 =

 1.0

−0.8

 . (3.5)

Notice again that this model nests the fixed parameter case by choosing the ex-

planatory vector to be Zt = (1)′.

3.1.3 Logistic Mixtures

The probabilities in this model are independent and are given by equation

(2.36) with Zt = (1 yt−1)
′ and

γ =

 −2

−3

 . (3.6)

2The two sets of parameters are equivalent under the constraint P (St = i|St−1 = i) = exp(γi)
1+exp(γi)

.
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Notice that this is the same explanatory vector as in the time-varying Markov

model.

These coefficients were chosen in order to make the simulations comparable to

the simulated sample based on Markov switching. More specifically, we chose the

coefficients after some trial and error in order to make the conditional probabilities

of state 1 (Pr(St = 1) high when yt was low.

3.1.4 Summary of Simulated Data

3.1.4.1 Example of One Simulation Run

To get a feel for the data simulated under assumptions 3.2, 3.3, 3.5, and 3.6,

we show one sample path from the logistic mixture model. The other two Markov

simulations produce results that are qualitatively very similar.

In Figure 3.1 the binary state variable St is depicted in the shaded regions

(left scale) and the dependent variable yt is shown on the right scale. State St = 1

shown in the shaded bars occurs around one-third of the time (34%). Notice that yt

tends to be more negative when St = 1. This is in line with the assumed parameters

where we associated state 1 with a negative mean and a higher variance than state

0. This can more easily be seen in the bottom panel of Figure 3.1, where we plot

the cumulative sum
∑t
s=1 ys. The cumulative sum trends up in the white regions,

which correspond to St = 0, and trends down in the shaded regions that correspond

to St = 1. Finally, the observations of the state vector cluster together across time –

when St = 1 it is more likely to be followed by another observation from that state.
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Figure 3.2 summarizes the sample data from the logistic mixture model. The

boxplot confirms that yt behaves differently in the two states. State St = 0 has

a higher median and lower interquartile range than state 1. The scatter plot of

the independent series ξt against the dependent variable yt shows almost two linear

clusters of data: one cluster (blue x’s) corresponds to observations from state 0;

the other (red dots) corresponds to state 1. A scatter plot of yt versus yt−1 (not

shown here) did not reveal any strong patterns due to the amount of noise in the

models. The autocorrelation plot reveals that the data is highly correlated across

periods. The one-lag autocorrelation is 0.44 and the correlations are significantly

different from zero out to five lags at the 5% confidence level. Finally, the normal

plot shows that the sample data deviates from the normal distribution. In addition,

a histogram of the data (not shown here) is slightly skewed to the left.

Finally, it is interesting to note that the first-order autocorrelation is much

higher that either of the two autoregressive coefficients (-0.10 and 0.20) or their

state-weighted sum. Most of the autocorrelation is due to the serial dependence of

the state vector.3 I was not able to derive an analytical solution to determine how

much of the autocorrelation in the observed series was due to serial dependence of

the state vector and how much was due to the linear part of the model.

3Even though the actual process is not Markov, we computed the empirical transition rates

between the two states to be P̂r[St = 1|St = 1] = 0.65 and P̂r[St = 0|St = 0] = 0.82, which imply

expected durations of 2.9 and 5.7 periods, respectively. Thus the process is not very persistent.
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3.1.4.2 Summary of All Simulation Runs

Table (3.1) summarizes all 200 simulated series. It shows average values for

each model, and p-values are shown in brackets. All three datasets exhibit similar

characteristics. They have positive mean, variance of close to 4, negative skewness,

and kurtosis that is higher than the normal distribution. The Jarque-Bera statistic

[46], which tests for departure from normality, is significant at the 1% confidence

level. All three series exhibit positive serial correlation, and the Ljung-Box port-

manteau test (Q(10)) is significant at the 5% level out to 10 lags. The ARCH test

[12], which tests for heteroskedasticity, is not statistically significant for any of the

models. On average, the state variable St is in state 1 approximately 28%-31% of

the time. The state variables are persistent in all three models as evidenced by the

empirical transition probabilities, which range from 63% to 90%.
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MFP MTV LMX

Mean 0.35 0.18 0.16

Variance 3.76 4.12 4.19

Skewness -0.55 -0.57 -0.58

Kurtosis 3.66 3.56 3.56

Jarque-Berra [0.00] [0.00] [0.00]

ρ1(yt) 0.17 0.33 0.41

ρ2(yt) 0.09 0.23 0.20

ρ3(yt) 0.08 0.12 0.13

Q(10) [0.05] [0.00] [0.00]

ARCH(10) [0.33] [0.17] [0.18]

P (St = 1) 0.28 0.33 0.31

P (St = 1|St−1 = 1) 0.74 0.80 0.63

P (St = 0|St−1 = 0) 0.90 0.90 0.84

Table 3.1: Descriptive Statistics on Simulated Data.

Average values for 200 simulations under each model using the parameters provided earlier in

the section. P-values are shown in brackets. The j-th order residual autocorrelation is denoted

by ρj(yt), Q(10) is the Ljung-Box portmanteau test on residuals, and ARCH(10) is the Engle

(1982) test for heteroskedasticity using 10 lags of data. MFP and MTV are the Markov models

with fixed-transition and time-varying transitions, respectively, and LMX is the logistic-mixtures

model.
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Figure 3.1: Sample Data from Logistic Mixture Model.

Observations where the state variable St = 1 are denoted by gray bars (left axis) and white gaps

correspond to St = 0. Variables yt and cumulative sum
∑t

s=1 ys are shown on the right axes in

blue color.
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Figure 3.2: Sample Statistics from Logistic Mixture Model.
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3.2 Simulation Results

Each of the three models was estimated using the three simulated datasets

(for a total of nine data/model combinations). The Markov models were estimated

using numerical methods to maximize the likelihood, and the logistic mixture model

was estimated using the EM algorithm described previously. Although there is an

autoregressive term in the linear part of the model, each obsevation depends on only

the contemporaneous state St.

Convergence was determined based on both the gradient of the log likelihood

‖∇ logL‖2
2 ≤ ε and the change in the likelihood |∆ logL| ≤ ε with ε = 0.01. 4

Asymptotic standard errors σASYMPT were computed using the Hessian of

the likelihood to estimate the Cramér-Rao lower bound. This worked in all but a

few cases where the Hessian was ill-conditioned or singular. In the fixed-transition

Markov model I also transformed the parameters back to probabilities in the (0, 1)

interval using the transformation θj = g(ψj) = exp(ψj)

1+exp(ψj)
for each component j, and

I computed the covariance for these parameters using

Cov(θ̂) =

(
∂g(ψ̂)

∂ψ

)
Cov(ψ̂)

(
∂g(ψ̂)

∂ψ

)′

. (3.7)

A second way of computing standard errors is by using all the simulations to compute

to compute a dispersion around the average estimate:

σSIMUL =

 1

M − 1

M∑
j=1

(ψj − ψ̄)2

1/2

. (3.8)

4Initially I also used max |∇ logL| ≤ ε (infinity norm) as an additional criterion for convergence

but because it was found to be too restrictive for some models that had otherwise converged to a

solution, I dropped it.
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This provides a check on the calculations of the standard errors of the estimates

based on simulations, but when using real data only asymptotic standard errors

would be available.

Before going into the results of all 200 simulations, it is instructive to look at

a specific example. In Section 3.1.4 we saw one realization from the logistic mixture

sample. Using this series along with the explanatory variables xt (but ignoring the

state variable St which would not be observable), we fit the logistic mixture model,

by maximizing the likelihood as shown in Section 2.4.1. All the estimated values

were close to the true parameters and significantly different from zero. Figure 3.3

displays the fit to this model along with the probabilities of the unobserved state.

Here again, we show the cumulative sum of y in order to better visualize the results.

The in-sample fit ŷt traces the movements of the dependent variable but deviates

at times. The in-sample root mean squared error of the in-sample prediction (not

cumulative) 1.22 – just over half the standard deviation of y.

The two bottom panels compare the estimated probabilities Pr[St = 1|Ft−1]

and Pr[St = 1|Ft] (blue lines) against the true state vector, which is shown as a

shaded region when St = 1. Both estimates do a very good job of matching the

unobserved state. That is, when St = 1 the probabilities rise to near 1 (average es-

timated probability is 0.89) and are low when St = 0 (average estimated probability

is 0.03). As expected, the updated probability Pr[St = 1|Ft] has a better fit.

Figure 3.4 graphs the residuals in various forms. The residuals are centered

close to zero5 but they have a wider range in state 1 than state 0 – the variance

5Actually in St = 1 the mean of the residuals is slightly positive, while in St = 0 they are
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Figure 3.3: Logistic Mixture Model Fit.

Only first 300 of 500 observations are shown for more clarity.
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is almost twice as large. This suggests heteroskedasticity across the two states. A

scatter plot of the independent variable ξt against yt shows that the residuals are

not related to the independent variable or to the state variable. The model residuals

have very low autocorrelation so it would seem that the model accounts for most

of the autocorrelation of the dependent variable. However, they are not normally

distributed as evidenced by the normal quantile plot.

slightly negative, but in the pooled data the mean of the residuals is exactly zero.
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Figure 3.4: Logistic Mixture Model Residual Diagnostics
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3.2.1 Parameter Estimates on MFP Data

Table (3.2) shows the estimated parameters of all three models based on the

dataset generated by the fixed-transition Markov process (MFP). Estimates are

averaged over 200 simulations of each model, of which #Conv iterations converged

to a solution. The table shows the average maximum likelihood estimates (ψ̂),

asymptotic standard errors σA, and simulated standard errors σS for each of the

three models. The true parameter models are shown in the left column. Estimates

shown in bold font indicate bias from the true parameter values as measured by the

95% confidence interval ψ̂ ± 1.96 σ̂S√
#CONV

. For AIC and BIC the number of times

each model achieved the minimum among the three models is shown in brackets.

The transition parameters for the LMX model are shown separately and since they

have different units they cannot be compared directly to the true parameters.

Not surprisingly, of the three models, the fixed-transition model performs the

best since it exactly matches the data generating process. It has a lower average

AIC and BIC than either of the other two models, and out of the 200 simulations it

had the lowest AIC (BIC) 153 (186) times. Overall, all three models give reasonably

accurate predictions on the linear part of the model, except for mis-estimating the

intercept of state 1 (β0,1) and the variance for state 1 (σ2
1). The MFP model estimates

the transition coefficients well (which correspond to transition probabilities of 0.75

and 0.90 for state 0 and 1, respectively).

The MTV model, of which the MFP model is a special case, also comes close

to the true parameter values but incorrectly estimates the yt−1 term in the transition
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matrix to be -0.17 (not statistically significant).

With the exception of the transition parameters of the Markov-switching mod-

els, all coefficients were statistically significant. Simulated standard errors tended

to be close but slightly larger than asymptotic estimates (except for γ0,1). Also,

there seems to be a lot of bias in the estimates, which is indicated in bold font, and

this is true even in the correctly specified model. Bias means that the estimates

are statistically different from the true parameters (95% confidence interval using

simulated standard errors).

Lastly, there were a few simulations that did not converge under the Markov

models. The LM model was considerably faster in converging to a solution (on

average it took 6 seconds to converge to a solution) than the Markov models (the

MTV model was the most time consuming at 51 seconds). We suspect that the MFP

model can be made more efficient by replacing the numerical estimation procedure

with the EM algorithm outlined above. However, given that in the MFP model one

still has to compute filtered and smoothed probabilities recursively, we think that

it would still be slower than the LM algrorithm.

Table (3.3) shows that when the three models were applied to data generated

by the fixed-transition Markov process, all three models had similar performance

characteristics both in root mean square of the observed series yt and in mean

absolute deviation of the state vector St (root mean square error was 1.12). The three

state vector inferences differ in the set of information on which they are conditional

upon: Ft−1, Ft, and FT . As more information in incorporated into the estimates,

the absolute deviation of St decreases from 0.32 to 0.20, and 0.17 for the smoothed
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MFP Model MTV Model LMX Model

True ψ̂ σ̂A σ̂S ψ̂ σ̂A σ̂S ψ̂ σ̂A σ̂S

β0,1 -1.00 -1.14 0.36 0.49 -1.17 0.36 0.53 -1.35 0.54 0.70

β0,2 0.80 0.77 0.19 0.20 0.77 0.19 0.21 0.76 0.21 0.22

β0,3 0.20 0.18 0.10 0.11 0.15 0.11 0.14 0.11 0.14 0.16

β1,1 1.00 0.99 0.08 0.14 0.99 0.08 0.17 0.98 0.09 0.09

β1,2 1.00 1.00 0.06 0.06 1.02 0.06 0.20 1.00 0.06 0.06

β1,3 -0.10 -0.09 0.04 0.06 -0.10 0.04 0.04 -0.10 0.04 0.05

σ2
1 4.00 3.59 0.66 0.73 3.58 0.64 0.78 3.49 0.86 0.96

σ2
0 1.00 0.99 0.11 0.15 0.98 0.11 0.16 1.01 0.14 0.17

γ0,1 1.10 1.03 2.41 1.22 0.95 0.60 0.90

γ0,2 0.00 0.00 0.00 0.00 -0.17 0.31 1.15

γ1,1 2.20 2.20 0.32 0.34 2.27 0.45 0.53

γ1,2 0.00 0.00 0.00 0.00 0.00 0.29 0.38

γ1 -1.16 0.42 0.55

γ2 -0.47 0.15 0.20

logL 882.34 881.45 891.55

AIC 1784.68 [153] 1786.91 [45] 1803.09 [2]

BIC 1826.83 [186] 1837.48 [9] 1845.24 [5]

#Conv 195 199 200

Time (sec) 24 51 6

Table 3.2: Model estimates on data generated by an MFP process.
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estimates. There is only a marginal gain in fit by moving from filtered to smoothed

estimates; current data yt and xt provide reasonable estimates of the probability of

being in a given regime.

We also compared the estimated probabilities within each regime to see if the

are more accurate in one state versus the other. When the state was at 1, filtered

probabilities ranged from 0.59 to 0.64; on the flip side, when the state was zero the

probabilities were 0.14.

I also compared the regime-switching estimates 6 for the linear part of the

model against Kalman filter (with the linear part correctly specified). The Kalman

filter estimates do not capture the abrupt changes in the parameters well. In par-

ticular, the autoregressive parameter is consistently higher than either one of two

regimes, however it is believed that a structural type model would fit better.

6Computed as average of two regimes β̂t =
∑1

i=1 β̂iP (St = i|Ft).
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MFP MTV LMX

RMSE(ŷ) 1.12 1.12 1.13

MAD(St = 1|Ft−1) 0.32 0.32 0.34

P̄ (St = 1|Ft−1) when St = 0 0.22 0.22 0.23

P̄ (St = 1|Ft−1) when St = 1 0.42 0.42 0.34

MAD(St = 1|Ft) 0.20 0.20 0.21

P̄ (St = 1|Ft) when St = 0 0.14 0.14 0.13

P̄ (St = 1|Ft) when St = 1 0.64 0.64 0.59

MAD(St = 1|FT ) 0.17 0.17

P̄ (St = 1|FT ) when St = 0 0.12 0.12

P̄ (St = 1|FT ) when St = 1 0.68 0.68

Table 3.3: Goodness of fit estimates for MFP Data.

MFP and MTV are the Markov models with fixed-transition and time-varying transitions, respec-

tively, and LMX is the logistic mixtures model. Estimates are averaged over 200 simulations of

each model. Smoothed probabilities were only computed for the two Markov-transition models.
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3.2.2 Parameter Estimates on MTV Data

Table 3.4 shows the three model estimates using the data generated by the

time-varying Markov transition model (MTV). Estimates are averaged over 200

simulations of each model, of which #Conv iterations converged to a solution. The

table shows the average maximum likelihood estimates (ψ̂), asymptotic standard

errors σA, and simulated standard errors σS for each of the three models. The

true parameter models are shown in the left column. Estimates shown in bold font

indicate bias from the true parameter values as measured by the 95% confidence

interval ψ̂ ± 1.96 σ̂S√
#CONV

. For AIC and BIC the number of times each model

achieved the minimum among the three models is shown in brackets. The transition

parameters for the LMX model are shown separately and since they have different

units they cannot be compared directly to the true parameters.

As expected, the MTV model, which matches the data generating process,

has the lowest AIC and BIC. The AIC does a better job of identifying the correctly

specified model. Simulated standard errors were close but generally higher than

asymptotic standard errors. A number of the estimates are biased (shown in bold

font), which means that they are statistically different from the true parameter

values. In particular, the fixed transition Markov model seems to be more biased.

Table 3.5 shows the filtered and smoothed estimates from these models. As

expected, the time-varying transition Markov model fit the data slightly better with

the estimated filtered probabilities at 0.10 and 0.76 in states 0 and 1, respectively.

The fixed-transition Markov model had only slightly worse performance and the
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MFP Model MTV Model LMX Model

True ψ̂ σ̂A σ̂S ψ̂ σ̂A σ̂S ψ̂ σ̂A σ̂S

β0,1 -1.00 -1.13 0.31 0.42 -1.14 0.38 0.48 -1.23 0.47 0.61

β0,2 0.80 0.76 0.16 0.17 0.80 0.17 0.18 0.79 0.18 0.19

β0,3 0.20 0.27 0.09 0.12 0.18 0.11 0.14 0.16 0.13 0.16

β1,1 1.00 0.96 0.08 0.40 0.99 0.09 0.08 0.99 0.10 0.10

β1,2 1.00 0.96 0.06 0.19 1.00 0.06 0.06 1.00 0.06 0.06

β1,3 -0.10 -0.08 0.04 0.12 -0.10 0.04 0.05 -0.10 0.05 0.05

σ2
1 4.00 3.19 0.48 0.53 3.71 0.59 0.63 3.60 0.65 0.68

σ2
0 1.00 0.98 0.11 0.16 0.99 0.11 0.11 1.00 0.12 0.13

γ0,1 1.00 1.03 2.41 1.22 1.23 1.04 1.59

γ0,2 -0.80 -1.64 2.24 7.49

γ1,1 2.00 2.20 0.32 0.34 2.17 0.42 0.43

γ1,2 0.70 0.76 0.36 0.41

γ1 -1.07 0.40 0.51

γ2 -0.97 0.21 0.21

logL 881.21 872.56 885.86

AIC 1782.41 [14] 1769.12 [182] 1791.71 [4]

BIC 1824.56 [86] 1819.70 [101] 1833.86 [13]

#Conv 192 191 200

Time (sec) 27 60 5

Table 3.4: Model estimates on data generated by a MTV process.
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MFP MTV LMX

RMSE(ŷ) 1.12 1.12 1.26

MAD(St = 1|Ft−1) 0.27 0.22 0.27

P̄ (St = 1|Ft−1) when St = 0 0.21 0.16 0.19

P̄ (St = 1|Ft−1) when St = 1 0.59 0.64 0.56

MAD(St = 1|Ft) 0.18 0.14 0.17

P̄ (St = 1|Ft) when St = 0 0.14 0.10 0.11

P̄ (St = 1|Ft) when St = 1 0.73 0.76 0.71

MAD(St = 1|FT ) 0.16 0.13

P̄ (St = 1|FT ) when St = 0 0.13 0.09

P̄ (St = 1|FT ) when St = 1 0.75 0.78

Table 3.5: Goodness of fit estimates for MTV data.

MFP and MTV are the Markov models with fixed-transition and time-varying transitions, respec-

tively, and LMX is the logistic mixtures model. Estimates are averaged over 200 simulations of

each model. Smoothed probabilities were only computed for the two Markov-transition models.

logistic mixtures model had comparable fit in terms of St but higher mean square

error on yt.
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3.2.3 Parameter Estimates on LMX Data

Table 3.6 shows estimates using data from a logistic mixture model (LMX). Es-

timates are averaged over 200 simulations of each model, of which #Conv iterations

converged to a solution. The table shows the average maximum likelihood estimates

(ψ̂), asymptotic standard errors σA, and simulated standard errors σS for each of the

three models. The true parameter models are shown in the left column. Estimates

shown in bold font indicate bias from the true parameter values as measured by the

95% confidence interval ψ̂ ± 1.96 σ̂S√
#CONV

. For AIC and BIC the number of times

each model achieved the minimum among the three models is shown in brackets.

The transition parameters for the LMX model are shown separately and since they

have different units they cannot be compared directly to the true parameters.

The LMX model, which matches the data generating process, has the low-

est AIC and BIC. The BIC identifies the correctly specified model almost 99% of

the time. The simulated standard errors tend to be higher than the asymptotic

estimates. Most estimates are statistically significant (from zero), except for the

transition parameters of the Markov models. Finally, a number of the estimates are

biased (statistically different from the true values), especially in the fixed transi-

tion Markov model. The estimates of the transition parameters of the LMX model

are statistically significant (from zero) but there is significant bias versus the true

parameter values.

Finally, Table 3.7 summarizes the fit of these models. All three models have

similar mean squared error with respect to y. The fixed-transition Markov model
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MFP Model MTV Model LMX Model

True ψ̂ σ̂A σ̂S ψ̂ σ̂A σ̂S ψ̂ σ̂A σ̂S

β0,1 -1.00 -0.73 0.26 0.39 -1.12 0.43 0.51 -1.06 0.42 0.43

β0,2 0.80 0.86 0.15 0.25 0.80 0.16 0.18 0.81 0.16 0.17

β0,3 0.20 0.48 0.08 0.11 0.18 0.13 0.14 0.17 0.14 0.13

β1,1 1.00 0.81 0.11 0.83 1.05 0.52 0.63 1.00 0.09 0.09

β1,2 1.00 0.93 0.07 0.30 1.10 0.95 1.19 1.01 0.05 0.06

β1,3 -0.10 0.03 0.06 0.26 -0.18 1.01 1.05 -0.10 0.05 0.05

σ2
1 4.00 2.78 0.43 0.59 3.74 0.54 0.63 3.93 0.53 0.55

σ2
0 1.00 0.92 0.13 0.25 0.99 2.35 0.09 0.99 0.09 0.09

γ0,1 0.88 8.03 2.38 -2.73 40.01 5.28

γ0,2 -4.85 4.57 10.10

γ1,1 1.32 8.84 2.81 2.14 2.79 3.28

γ1,2 3.80 56.79 5.92

γ1 -2.00 -2.15 0.67 0.68

γ2 -3.00 -3.35 1.16 1.28

logL 877.65 842.73 842.83

AIC 1775.30 [1] 1709.46 [19] 1705.65 [180]

BIC 1817.45 [1] 1760.04 [1] 1747.80 [198]

#Conv 189 165 198

Time (sec) 31 63 3

Table 3.6: Model estimates on data generated by an LMX process.
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MFP MTV LMX

RMSE(ŷ) 1.11 1.10 1.10

MAD(St = 1|Ft−1) 0.34 0.12 0.11

P̄ (St = 1|Ft−1) when St = 0 0.31 0.09 0.08

P̄ (St = 1|Ft−1) when St = 1 0.58 0.81 0.83

MAD(St = 1|Ft) 0.26 0.08 0.07

P̄ (St = 1|Ft) when St = 0 0.25 0.06 0.05

P̄ (St = 1|Ft) when St = 1 0.72 0.87 0.89

MAD(St = 1|FT ) 0.26 0.09

P̄ (St = 1|FT ) when St = 0 0.25 0.07

P̄ (St = 1|FT ) when St = 1 0.71 0.85

Table 3.7: Goodness of fit estimates for LMX data.

MFP and MTV are the Markov models with fixed-transition and time-varying transitions, respec-

tively, and LMX is the logistic mixtures model. Estimates are averaged over 200 simulations of

each model. Smoothed probabilities were only computed for the two Markov-transition models.

has the poorest fit to the state vector as it is not able to capture the time-varying

properties of the underlying data. The time-varying Markov model does a good job

of estimating the state vector probabilities and the logistic mixtures model performs

the best. The AIC(BIC) identify the correctly specified model 180(198) times out

of 200 simulations.
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3.2.4 Model Diagnostics

We ran several tests on the residuals of each model to test the adequacy of

each model. Since the results are very similar across all three models, we will focus

on analyzing the model residuals on the logistic mixtures dataset.

Table 3.8 summarizes the results, which are averaged over 200 simulations for

each model. All three models had very low autocorrelation in the residuals and

the Ljung-Box statistic on 10 lags of data was not statistically significant. Looking

at individual model results, the model that comes closer to the underlying data

generating process will have low (or zero) residual autocorrelations. For instance,

if one applies the LMX model to Markov-switching data, residual autocorrelations

are noticeable although rarely higher than 0.10.

The Jarque-Bera test overwhelmingly rejected the null hypothesis of normally

distributed errors. Even when one model performed better in terms of AIC or fit,

residuals were almost always skewed and fat tailed. This suggests that this is not a

good diagnostic for regime-switching models.

Finally, an ARCH test was carried out on the residuals. There was no evidence

of ARCH effects after the models where estimated.

3.2.5 Summary of Simulation Results

In summary, the models resulted in similar estimates when applied to simu-

lated data. Most estimates are statistically different from zero but there is evidence

of bias in the estimates. Bias is particularly a problem for the fixed-transition
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MFP MTV LMX

Jarque-Bera [0.00] [0.00] [0.00]

Q(10) [0.52] [0.59] [0.57]

ARCH Test [0.38] [0.41] [0.41]

ρ1 0.02 0.00 0.00

ρ2 -0.02 0.00 0.00

ρ3 -0.02 0.00 0.00

Table 3.8: Model Diagnostics on LMX Data.

P-values are shown in brackets. MFP and MTV are the Markov models with fixed-transition and

time-varying transitions, respectively, and LMX is the logistic-mixtures model.

Markov model, which suggests that this is not a good model when there is time

variation in the transitions of the states.

Not surprisingly, the model that matched the data generation process worked

the best. The Akaike and Bayesian information criteria work well in identifying the

correctly specified model.

Under all three models, residuals showed no serial correlation, no evidence of

heteroskedasticity (but evidence of heteroskedasticity across the two states), and

significant deviations from normality. This suggests that the models correctly pick

up the autocorrelation in the data but the usual diagnostic of checking for normally

distributed errors might not be relevant to regime-switching models, or the theory is

incorrect. A more appropriate set of specification tests are considered in Hamilton

[47] and White [48], [49].
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Chapter 4

Applications

In this chapter, we apply regime-switching models to crude and heating oil

futures prices.

4.1 Background

Commodity prices are prime examples of assets that are characterized by

regime-switching behavior. There are abrupt price changes due to geopolitical

events, seasonal demands, and supply disruptions, and there are long secular cy-

cles of energy price changes, such as the upswing in energy prices in the last several

years.

There is an extensive literature on modeling commodity prices and some of

this research involves regime-switching. We will briefly describe two papers relevant

to our line of research after giving a brief overview of commodities markets.

4.1.1 Overview of Commodities Markets

A futures contract is an agreement to buy or deliver the underlying asset at

a future point in time. Commodity futures trade on various markets and there are

contracts that range from a one-month horizon to as long as several years. Typically

the spot (i.e., price for immediate delivery) is not observed so it is approximated by
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the nearest futures contract (one-month).

The various maturities form what is called the ‘term-structure’ of commodity

prices. This set of prices conveys important information about where the market

thinks that prices will be heading in the future. For example, near-term prices, which

are affected more by immediate supply and demand imbalances than by longer-term

prices, may be higher or lower than long-term prices. There are various terms that

are used in the marketplace to describe the term structure of commodity prices.

When the near-term futures price is higher than longer-term prices (i.e., downward

sloping curve) the market is said to be in ‘normal backwardation’. Conversely,

when further-out prices are higher than short-term prices the market is said to be

in ‘contango.’ The spread (slope) between the spot price and a future is called

the ‘basis’ and will be used interchangeably with ‘convenience yield.’ Economists

have offered various theories on why commodity prices may be upward sloping or

downward sloping but they all agree that the basis conveys information about the

relative supply and demand for commodities. With a shortage of shortage in a

commodity the near term price will exceed the price of longer-dated futures. Thus,

an extremely negative basis is a sign of shortages. On the other hand, an extremely

positive basis is associated with oversupply. On average, the basis is negative for

crude oil.

To summarize, the basis is an important determinant in the dynamics of com-

modity futures markets. The goal of this research will be to understand the effect of

various term structures on both futures returns and volatility using regime-switching

models.
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4.1.2 Prior Work

There is an extensive literature on pricing commodities under various assump-

tions. We will briefly touch on two papers before proceeding to our own model.

An important paper in commodity futures pricing is that by Schwartz [50].

This paper is based on the assumption that log price is characterized by an Ornstein-

Uhlenbeck stochastic process

dX = κ (α−X) dt+ σdz, (4.1)

where X is the log spot price (X = logP ), α is an average (log) price level to which

the model reverts to this price with speed κ. The key feature is that the price

follows a mean-reverting Brownian motion process. From this equation, Schwartz

derives futures prices. It is important to note that this paper treats both the spot

price and convenience yield (basis) as unobservable quantities, which are determined

endogenously by the model. The model does not assume any regime-switching, and

the parameters are estimated by applying the Kalman filter to the entire set of

futures prices. The model produces reasonably accurate estimates of futures prices.

The key thing for us is that near prices are modeled by an Ornstein-Uhlenbeck

process as in Equation (4.1).

Another paper that is relevant to our analysis is by Fong and See [51] (hereafter

FS). This paper applies the Markov-switching GARCH model of Gray [16] to log

differences crude oil prices to test for the effect of the basis on volatility. Unlike [50]

they don’t assume any structure for the stochastic process of prices. Consistent with

theoretical explanations, they find that a decrease in basis increases the probability

53



of being in a high-volatility state (more negative basis ⇔ near prices higher ⇔

supply shortages).

4.1.3 Outline of Research

We apply a regime-switching model to one-month crude oil prices and one-

month heating oil prices. We estimate two versions for the linear part of the model:

d logPt = κSt (αSt − logPt−1) dt+ εt, (4.2)

and

d logPt = αSt + βSt · d logPt−1 + εt, (4.3)

where d logPt denote log differences of the futures price, and St denotes dependence

on the regime St ∈ {0, 1} and εt ∼ i.i.d. N
(
0, σ2

St

)
.

For the stochastic part of the model, we assume either the time-varying Markov

transition model or the independent-switching logistic model with several additional

covariates. We assume that two states are appropriate, although one may argue

that three states would do better in characterizing the process (for example, very

negative, very positive, and normal basis).

We assume that the linear part of the model is only a function of past returns

and that the other explanatory variables come through the non-linear part.

There are several major differences between our model versus both Schwartz

and Fong. First, Schwartz treats the spot price and convenience yield as unobserv-

able quantities that are determined endogenously by the model. By contrast, both
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our model and that of FS take these variables as observable quantities, which are

proxied by the nearest contract (one-month) and the slope between month 3 and 1

for the spot price and basis, respectively. Visual inspection of the convenience yield

in [50] shows that it is indeed similar to our own calculations.

Second, Schwartz uses the entire term structure to fit his model since the

emphasis is on pricing futures at various maturities. Like Fong, we focus on the

nearest futures, which for us is the one-month futures contract. 1

Third, we estimate of model of both the Ornstein-Uhlenbeck form and as a

general autoregressive process. Fourth, like FS, we assume regime-switching as do

FS but we use a simpler model rather than the more complicated MS-GARCH model

that they use. Lastly, we incorporate additional covariates to explain returns and

volatility.

4.2 Data and Preliminary Analysis

4.2.1 Data

The data consist of weekly log returns of crude oil and heating oil futures

traded on the New York Mercantile Exchange (NYMEX) with expiration terms of

one to four months. The data was obtained from the U.S. Department of Energy

and NYMEX and is from January 3, 1986 to December 29, 2006 (twenty one years).

Crude oil futures contracts expire on the third business day prior to the 25th

calendar day of each month, and heating oil futures expire at the end of every month.

1Actually Fong and See model the second nearest contract.
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So once every month there is a discontinuity in prices when the second nearest month

contract rolls into the nearest month. In computing daily log differences we adjusted

for the “roll,” without which the return is biased downward.

We also computed a convenience yield or basis by comparing the slope between

the first two contracts

BASISt = log

(
Ft2
Ft1

)
− (t2 − t1)rt, (4.4)

where Ft1 is the price of the nearest futures contract and proxies for the spot price,

and Ft2 is the price of the second nearest contract. So when commodity prices are

downward sloping (said to be in normal backwardation), the basis will be negative.

The slope is adjusted by financing costs rt, which is the yield on three-month Trea-

sury bills (pro-rated for the time between the two futures contracts). We ignore

storage and insurance costs associated with the spot price of the commodity.

As time passes the maturity of the futures contracts decreases. To adjust for

this we created “constant-maturity” prices for the two contracts by weighting by the

time to maturity F̃t1 = w1Ft1 +(1−w1)Ft2 and using these constant-maturity prices

in equation (4.4). Doing this adjustment had a minor effect on the convenience yield

by reducing some outliers in the days prior to expiration.

The explanatory variables consist of average temperatures for the entire United

States and Industrial Production, which are proxies for seasonal demand and de-

mand due to economic growth, respectively.

Monthly temperature data was obtained from the National Oceanic and Atmo-

spheric Administration. This series represents the average temperature for each cal-
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endar month, and from it we created a series of abnormal temperatures by subtract-

ing the average temperature from 1900 to 1985 (different mean for each month).2

The idea here is that if temperatures affect energy prices, it is only abnormally high

or low temperatures that have an impact on prices (like abnormally cold winter

temperatures pushing up the price of heating oil). By using a fixed average tem-

perature for each month we ignore the issue of global warming which has raised

temperatures over the past century. More importantly, because the temperature se-

ries is monthly, when we combine with weekly price data, there is some look-ahead

bias in the weather data, which can range from one to four weeks. This is partly

offset by the fact that market participants have access to weather forecasts. It’s the

best data that was available.

Data on Industrial Production from the Federal Reserve Board is also monthly,

and it measures the state of the economy – particularly, industrial demand for energy.

We calculate three-month log differences from the seasonally adjusted series. When

merged with weekly energy data this variable also suffers from look-ahead bias as

the data becomes available with a two-week lag.

Figure 4.1 graphs the data. Crude and heating oil prices are shown in log form

to better discern the data. One can see a spike in crude and heating oil prices during

1990 due to the Iraqi invasion of Kuwait, a decrease in prices in the late 1990s, and an

upward trend in energy since that time, interrupted only by the 2001-2002 recession,

which is reflected in declining industrial production. The basis for crude oil tends to

be negative and appears to mean revert over a period of a few months. Extremely

2An alternative measure of the impact of weather would be “degree-days.”
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positive values in crude oil basis are associated with oversupply and declining prices

but prices seem to reverse in the future. Extreme negative values for basis of crude

oil are contemporaneously associated with increasing prices. During the invasion of

Kuwait, one-month prices shot up but three-month prices did not rise as quickly as

traders anticipated a U.S. victory.

The basis for heating oil follows an entirely different pattern and appears to be

more seasonal in the early part of the sample. It has more extreme negative spikes

which appear to line up with increasing prices. The graph of abnormal temperatures

(adjusted by long-term mean) clearly shows temperatures going up and some of the

abnormally low temperatures seem to line up with the negative spikes in heating

oil basis. Finally, the graph on industrial production shows three-month percent

changes and one can see the last two recessions during 1990-91 and 2001-2002.

4.2.2 Preliminary Analysis

Table 4.1 shows that the average weekly returns for crude and heating oil are

0.20% and 0.12%, respectively, with a large standard deviation of about 5%. Both

returns are negatively skewed with high kurtosis and the Ljung-Box statistic for

autocorrelations is significant at the 5% confidence level. First-order autocorrela-

tions are -0.04 for both series. The basis for each series tends to be negative and is

negatively skewed.

Table 4.2 provides t-tests for returns across different sub samples. For crude

oil, when the basis is negative returns average 0.42% versus a loss of -0.10% per week
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Figure 4.1: Sample Statistics from Logistic Mixture Model
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Mean Std Skew Kurt Q(10)

Crude Oil 0.20 5.04 -0.44 6.64 0.03

Crude Oil Basis -0.50 1.81 -0.51 4.30 0.02

Heating Oil 0.12 5.05 -0.31 7.01 0.03

Heating Oil Basis -0.06 4.12 -2.73 19.69 0.02

Table 4.1: Descriptive Statistics for Energy Data.

Crude oil and heating oil returns are weekly log differences in percentage terms. Basis is in percent

and is computed using three-month and one-month constant-maturity futures prices. Q(10) is

Ljung-Box p-value for autocorrelations.

when the basis is positive. The null hypothesis of equal means is rejected at the 10%

level. Interestingly, volatility is slightly lower when crude oil prices are falling. For

heating oil, the pattern is reversed: returns are -0.17% when the basis is negative

and +0.27% when the basis is positive but the null hypothesis of equal means can-

not be rejected. Using lagged returns or contemporaneous temperature (difference

from mean for each month) to divide sample returns, does not result in meaningful

differences. Economic growth (IP) appears to differentiate returns. When industrial

production is falling/increasing, crude oil returns are -0.52%/+0.38%, and the dif-

ferences are statistically significant at the 5% confidence level. This makes sense as

economic growth creates demand for oil. High/low growth also leads to higher/lower

heating oil prices. My original hypothesis was that heating oil would not be affected

by economic growth as much but the differences make sense given that heating oil

derives from crude.
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Crude Oil Heating Oil

Mean Std Dev Mean Std Dev

RETURNt−1 < 0 0.01 5.08 0.01 4.71

RETURNt−1 > 0 0.37 5.00 0.20 5.34

H0 : µ<0 = µ>0 [0.24] [0.58]

BASISt−1 < 0 0.42 5.18 -0.17 6.22

BASISt−1 > 0 -0.10 4.82 0.27 4.31

H0 : µ<0 = µ>0 [0.09] [0.22]

TEMPERt−1 < 0 0.08 4.70 0.38 4.57

TEMPERt−1 > 0 0.25 5.17 0.01 5.23

H0 : µ<0 = µ>0 [0.60] [0.23]

IPt−1 < 0 -0.52 6.33 -0.88 6.14

IPt−1 > 0 0.39 4.62 0.38 4.69

H0 : µ<0 = µ>0 [0.04] [0.01]

Table 4.2: T-Tests for Energy Returns.

Crude oil and heating oil returns are weekly log differences in percentage terms. Tests for equality

of means assume unequal variances.
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4.3 Empirical Results

We experimented with different assumptions for the stochastic part of the

model by estimating both Markov (time-varying and fixed) and independent logis-

tic mixtures models. The fixed-transition Markov model proved inadequate because

it did not converge in some of the models. The logistic mixtures model proved the

most robust in terms of convergence. Both the logistic mixtures and the time-varying

Markov model produced similar results with respect to the stochastic component St

but in the independent switching the results where visibly more noisy. Thus, for the

remainder of this section, we will focus on results from the Markov model with time-

varying transitions, with transition covariates Zt = (BASISt−1, TEMPERt−1, IPt−1)
′.

4.3.1 Ornstein-Uhlenbeck Model

Table 4.3 shows the parameter estimates for the Ornstein-Uhlenbeck model for

both crude and heating oil along with p-values for each of the estimated parameters.3

State 1 has the higher variance. The positive coefficient on κ1 shows that crude oil

reverts to the mean very quickly in the high volatility state (significant at the 5%

confidence level). In the low volatility regime there is slight momentum but the

estimate is not significant. Heating oil is slightly mean reverting in both periods

but he estimates are not significant.

The basis has the expected effect on crude oil prices. In both states it is

3Standard errors were computed from the standard errors of the switching-regression coefficients

using the Delta method.
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Crude Oil Heating Oil

Estimate P-Value Estimate P-Value

κ1 1.869 0.05 0.257 0.39

κ0 -0.110 0.38 0.216 0.31

α1 2.752 0.00 4.770 0.30

α0 -0.545 0.50 5.056 0.02

σ1 8.236 0.00 7.298 0.00

σ0 3.814 0.00 3.503 0.00

γ1 Basis -0.925 0.00 -0.029 0.31

γ1 Temp 0.504 0.01 0.152 0.14

γ1 IP 1.814 0.00 1.258 0.01

γ0 Basis -4.540 0.00 0.139 0.11

γ0 Temp 1.132 0.01 0.048 0.43

γ0 IP 10.880 0.01 3.210 0.00

logL 3225 3154

AIC 6479 6332

Table 4.3: Parameter Estimates for Ornstein-Uhlenbeck Model
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negative, indicating that a negative basis (prices for nearest contract higher than

longer-dated contracts), which is associated with shortages, makes it more likely to

transition to a high volatility state. This is true for both 0-to-1 and 1-to-1 transitions

but the effect is stronger going from state 0 to 1, which is consistent with the results

of [51]. Thus, a negative basis makes it more likely to either enter or remain in

the volatile state. For heating oil, the basis has a small effect and actually has the

wrong sign in one of the state.

Abnormal temperatures have an effect on oil prices but, surprisingly, they have

no effect on heating oil. Higher than normal temperatures lead to higher volatility

(could this be due to driving season in summer months?). Industrial Production,

which proxies for demand from economic growth, is significant for both crude and

heating oil and has a bigger impact on crude oil prices.

Figure 4.2 shows the filtered probability of the high variance state along with

the basis, which we believe is a driver for the switches in regime. The figure shows

spikes which correspond to the high volatility state interspersed with quiet periods.

The model matches some of the decreases in basis, like 1990-91, which corresponds

to the first Iraq war, 2000 and 2003. However, the model misses the largest spike in

early 1995.

Hypothesis testing of one versus two regimes is complicated by the fact the

second state is a nuissance parameter. As an informal test of how the probability

Pr(St|Ft) fits the data, we divided up the sample into two parts depending on

whether the probability Pr(St|Ft) was greater than 1
2

(high volatility state) or less

than one half (low volatility state). Table 4.4 shows a t-test for the hypothesis that
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Mean Std Dev

Pr(St|Ft) > 0.5 -1.250 9.104

Pr(St|Ft) < 0.5 0.476 3.762

T-test 0.01

Table 4.4: T-test of Equality of Means Across Two Regimes

the means are the same across these two samples. The null hypothesis that the

means are equal is rejected at that 1% level, thus showing that the inferred states

really do correspond to different sub samples.

4.3.2 Autoregressive Model

Table 4.5 provides estimates for the autoregressive model of Equation (4.3).

The estimated transition parameters are very similar the Ornstein-Uhlenbeck model.

In the high volatility state, unconditional returns for crude oil are -0.69% versus a

0.07% increase in the low volatility state. For heating oil the returns are both posi-

tive and similar in magnitude. Thus, we see that the high variance state corresponds

to negative returns for crude oil.

The AR model results for crude are consistent with Table 4.3. In the high

variance state the process is mean reverting but the opposite is true in the low

variance state. Heating oil has some momentum in both regimes but this result is

not statistically significant.
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Crude Oil Heating Oil

Estimate P-Value Estimate P-Value

β1,1 -0.695 0.13 0.121 0.40

β1,2 -0.207 0.01 -0.077 0.14

β0,1 0.394 0.00 0.208 0.15

β0,2 0.072 0.01 0.031 0.23

σ1 8.232 0.00 7.249 0.00

σ0 3.804 0.00 3.455 0.00

γ1 Basis -0.851 0.00 -0.020 0.36

γ1 Temp -0.469 0.01 0.145 0.14

γ1 IP 1.588 0.00 1.056 0.01

γ0 Basis -4.397 0.00 0.144 0.07

γ0 Temp 1.068 0.00 -0.011 0.48

γ0 IP 10.570 0.00 2.965 0.00

logL 3221 3153

AIC 6470 6334

Table 4.5: Parameter Estimates for AR(1) Model
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4.3.3 Summary

In summary, using the basis, temperature deviations, and industrial produc-

tion within a regime-switching model produces several interesting results for crude

oil prices. There is mean reversion in the high volatility state, which is associated

with negative returns. The lagged basis, abnormal temperatures, and economic

growth all are significant in determining the state of the model. In particular, a

negative basis, which is associated with high near term demand relative to supply,

makes it more likely to enter and remain in the high volatility state.

The results for heating oil were weak. An informal analysis that does not

involve any hypothesis testing of one versus two regimes, shows that the regime-

switching models considered here do not characterize heating oil prices.

There are some limitations to this analysis. First, we did not account for sea-

sonal effects in the crude oil market and more importantly in the heating oil market.

Heating oil did not turn out to be a significant determinant of the regime that the

market is in. However, there might still be seasonal effects in the data. We tried

adding a dummy variable for every month but this resulted in too many parame-

ters (number of dummy variables × 2 regimes). Second, we let all the parameters

switch between the two states. It might be the case that only some parameters

switch. Third, we modeled future returns as a function of past returns and several

explanatory that affect the state of the process. We did not test to see whether

these explanatory variables enter through the linear part or the non-linear part

of the model. The complications with hypothesis testing for these type of models
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would hamper this kind of analysis. Fourth, we were not able to test the direction of

causality in these markets as one would, for example, with a vector autoregressive

process. Clearly, rising/falling prices for one-month futures lead to lower/higher

basis, and we don’t know whether it’s the basis that affects future prices more than

prices themselves. Fifth, we treated each market as separate, but a more realistic

analysis might consider several related commodity markets together (for example,

since heating oil is related to crude or if two commodities are substitutes of one

another) or consider the entire term structure of commodity prices as [50] does.

68



Figure 4.2: Crude Oil Regime Inferred from Ornstein-Uhlenbeck Process
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Figure 4.3: Heating Oil Regime Inferred from Ornstein-Uhlenbeck Process
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Chapter 5

Conclusion

In this thesis, we reviewed some of the vast literature on regime-switching time

series models and compared three types of models: models where the the unobserved

state vector is a Markov chain (both with fixed and time-varying transition probabil-

ities), and a model with independent probabilities determined via a logistic function.

We also discussed the techniques involved in estimating these models, which include

the EM algorithm and filtering/smoothing and numerical maximization.

In Chapter 3 we applied each one of these models to simulated data. Typ-

ically, the correctly specified model had a slight edge in each case but overall the

estimates were similar. Generally, simulated standard errors were slightly larger

than asymptotic estimates derived from the Fisher information matrix. Bias seems

to be a problem (particularly for the fixed-transition Markov model). However, we

found that we were able to identify the state that the process was in with reasonably

high probability. The Akaike and Bayesian information criteria did a good job of

correctly identifying the best model. Convergence was an issue even in simulated

data and we found the EM algorithm in the logistic mixture model to be much more

efficient in terms of computational time versus filtering and numerical maximization.

We used several basic diagnostics on the model residuals, and we think that this is

an area that needs more investigation.
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In Chapter 4 we applied a regime-switching model to crude oil and heating oil

futures. We found some evidence of switching between two regimes in the crude oil

markets but not for heating oil. We find that crude oil is characterized by regime

switching, where prices alternate between a high volatility state with low returns

and significant mean reversion and a low volatility state with positive returns and no

mean reversion. The spread between one-month and three-month futures prices is an

important determinant in the dynamics of crude oil prices, as are temperatures and

economic growth. The filtered probabilities of the high volatility regime appeared

to match well against some major events that affected the world energy markets. A

more complete analysis that involves the entire term structure of commodities is an

obvious next step.

In this analysis we avoided hypothesis testing, which is still an unresolved issue

for these kind of models. As we found in our own application with energy prices, we

believe that this is one drawback for these models. An interesting line of research

that we didn’t get to apply here pertains to the specification tests of White in [48]

and [49], which are applied to Markov models in [47]. It is necessary to be able

to identify a mis-specified model, particularly as these models must be tailored to

individual problems. Unlike single-regime linear models where the models usually

converge, and where we can easily do hypothesis testing, in regime-switching model

convergence is often a problem and hypothesis and specification testing are more

complex. Thus these models must be handled with care and must be tailored for

specific problems to ensure good results.
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