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Huge data sets containing millions of training examples with a large number

of attributes are relatively easy to gather. However one of the bottlenecks for suc-

cessful inference is the computational complexity of machine learning algorithms.

Most state-of-the-art nonparametric machine learning algorithms have a computa-

tional complexity of either O(N2) or O(N3), where N is the number of training

examples. This has seriously restricted the use of massive data sets. The bottleneck

computational primitive at the heart of various algorithms is the multiplication of a

structured matrix with a vector, which we refer to as matrix-vector product (MVP)

primitive. The goal of my thesis is to speedup up some of these MVP primitives

by fast approximate algorithms that scale as O(N) and also provide high accuracy

guarantees. I use ideas from computational physics, scientific computing, and com-

putational geometry to design these algorithms. The proposed algorithms have been

applied to speedup kernel density estimation, optimal bandwidth estimation, pro-

jection pursuit, Gaussian process regression, implicit surface fitting, and ranking.
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Chapter 1

Introduction

During the past few decades it has become relatively easy to gather huge

amounts of data, which are often apprehensively called massive data sets. Accord-

ing to a recent estimate in 2006 about 161 billion gigabytes of digital information

was created. A few examples include datasets in genome sequencing, astronomi-

cal databases, internet databases, experimental data from particle physics, medical

databases, financial records, weather reports, audio and video data. A goal in these

areas is to build systems which can automatically extract useful information from

the raw data. Learning is a principled method for distilling predictive and therefore

scientific theories from the data [55].

1.1 Computational curse of non-parametric methods

The parametric approach to learning assumes a functional form for the model

to be learnt, and then estimates the unknown parameters. Once the model has

been trained the training examples can be discarded. The essence of the training

examples have been captured in the model parameters, using which we can draw

further inferences. However, unless the form of the model is known a priori, assuming

it very often leads to erroneous inference.

Nonparametric methods do not make any assumptions on the form of the
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underlying model. This is sometimes referred to as ‘letting the data speak for them-

selves’ [87]. A price to be paid is that all the available data has to be retained while

making the inference. It should be noted that nonparametric does not mean a lack

of parameters, but rather that the underlying function/model of a learning problem

cannot be indexed with a finite number of parameters. The number of parameters

usually grows with the size of the training data. These are also known as memory

based methods–the model is the entire training set.

One of the major bottlenecks for successful inference using nonparametric

methods is their computational complexity. Most of the current state-of-the-art

nonparametric machine learning algorithms have the computational complexity of

either O(N2) (for prediction at N points) or O(N3) (for training), where N is the

number of training examples. This has seriously restricted the use of massive data

sets. For example, a simple kernel density estimation with 1 million points would

take around 2 days.

1.2 Bringing computational tractability to massive datasets

Following are the two commonly used strategies on which much research has

been done in order to cope with this quadratic scaling.

1. Subset of data These methods are based on using a small representative sub-

set of the training examples. Different schemes specify different strategies to

effectively choose the subset [91, 77, 19, 45, 44, 14, 82, 81, 79]. These methods

can be considered to provide exact inference in an approximate model. While
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these methods are often useful in practice they do not provide firm theoretical

guarantees.

2. Online learning This strategy uses sequential update methods which can find

good solutions in single passes through the data. This cuts down the need for

running very large scale batch optimizers.

This thesis takes a different novel approach to this problem. At the heart of var-

ious algorithms is the multiplication of a structured matrix with a vector, which

we refer to as matrix-vector product (MVP) primitive. This MVP is the bottle-

neck contributing to the O(N2) quadratic complexity. I use ideas and techniques

from computational physics (fast multipole methods), scientific computing (Krylov

subspace methods), and computational geometry (kd-trees,clustering) to speed up

approximate calculation of these primitives to O(N) and also provide high accuracy

guarantees. In analogy these methods provide approximate inference in an exact

model.

1.3 Weighted superposition of kernels

In most kernel based machine learning algorithms [71], Gaussian processes [58],

and nonparametric statistics [39] the key computationally intensive task is to com-

pute a linear combination of local kernel functions centered on the training data,

i.e.,

f(x) =
N∑

i=1

qik(x, xi), (1.1)

where,
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• {xi ∈ Rd, i = 1, . . . , N} are the N training data points,

• {qi ∈ R, i = 1, . . . , N} are the appropriately chosen weights,

• k : Rd × Rd → R is the local kernel function,

• and x ∈ Rd is the test point at which f is to be computed.

The computational complexity to evaluate Equation 1.1 at a given test point is

O(N).

For kernel machines (e.g. regularized least squares [55], support vector ma-

chines [13], kernel regression [87]) f is the regression/classification function. This is

a consequence of the well known classical representer theorem [84] which states that

the solutions of certain risk minimization problems involving an empirical risk term

and a quadratic regularizer can be written as expansions in terms of the kernels

centered on the training examples. In case of Gaussian process regression [90] f is

the mean prediction. For non-parametric density estimation it is the kernel density

estimate [87].

Training these models scales as O(N3) since most involve solving a linear

system of equations of the form

(K + λI)ξ = y, (1.2)

where, K is the N×N Gram matrix where [K]ij = k(xi, xj), λ is some regularization

parameter or noise variance, and I is the identity matrix. For specific kernel methods

then there are many published techniques for speeding things up. However a naive

implementation would scale as O(N3).
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Also many kernel methods in unsupervised learning like kernel principal com-

ponent analysis [78], spectral clustering [11], and Laplacian eigenmaps involve com-

puting the eigen values of the Gram matrix. Solutions to such problems can be

obtained using iterative methods, which scales as O(N2).

Most kernel methods also require choosing some parameters (e.g. bandwidth

h of the kernel). Optimal procedures to choose these parameters cost O(N2). The

dominant computation there is also evaluation of f(x) [61].

Recently, such nonparametric problems have been collectively referred to as

N-body problems in learning by [25], in analogy with the coulombic, magnetostatic,

and gravitational N -body potential problems arising in computational physics [27],

where all pairwise interactions in a large ensemble of particles must be calculated.

1.4 Fast approximate matrix-vector product

In general we need to evaluate Equation 1.1 at M points {yj ∈ Rd, j =

1, . . . , M}, i.e.,

f(yj) =
N∑

i=1

qik(yj, xi) j = 1, . . . , M, (1.3)

leading to the quadratic O(MN) cost. We will develop fast ε-exact algorithms that

compute the sum (1.3) approximately in linear O(M + N) time. The algorithm is

ε-exact in the sense made precise below.

For any given ε > 0, f̂ is an ε − exact approximation to f if the maximum

absolute error relative to the total weight Q =
∑N

i=1 |qi| is upper bounded by ε, i.e.,

max
yj

[
|f̂(yj)− f(yj)|

Q

]
≤ ε. (1.4)
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The constant in O(M + N), depends on the desired accuracy ε, which how-

ever can be arbitrary. In fact for machine precision accuracy there is no difference

between the results of the direct and the fast methods.

The sum in equation 1.3 can be thought of as a matrix-vector multiplication

f = Kq, where K is a M × N matrix the entries of which are of the form [K]ij =

k(yj, xi) and q = [q1, . . . , qN ]T is a N × 1 column vector.

A dense matrix of order M × N is called a structured matrix if its entries

depend only on O(M + N) parameters. Philosophically, the reason we will be able

to achieve O(M + N) algorithms to compute the matrix-vector multiplication is

that the matrix K is a structured matrix, since all the entries of the matrix are

determined by the set of M + N points {xi}N
i=1 and {yj}M

i=1. If the entries of the

of the matrix K were completely random than we could not do any better than

O(MN).

1.5 Fast multipole methods

The fast algorithm is based on series expansion of the kernel and retaining only

the first few terms contributing to the desired accuracy. The algorithms are in the

spirit of fast multipole methods used in computational physics. The fast multipole

method has been called one of the ten most significant algorithms [17] in scientific

computation discovered in the 20th century, and won its inventors, Vladimir Rokhlin

and Leslie Greengard, the 2001 Steele prize. Originally this method was developed

for the fast summation of the potential fields generated by a large number of sources
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(charges), such as those arising in gravitational or electrostatic potential problems,

that are described by the Laplace equation in two or three dimensions [28]. The

expression for the potential of a source located at a point can be factored in terms

of an expansion containing the product of multipole functions and regular functions.

This lead to the name for the algorithm. Since then FMM has also found application

in many other problems, for example, in electromagnetic scattering, radial basis

function fitting, molecular and stellar dynamics, and can be viewed as a fast matrix-

vector product algorithm for particular structured matrices.

1.6 Motivating example–polynomial kernel

We will motivate the main idea using a simple polynomial kernel that is often

used in kernel methods. The polynomial kernel of order p is given by

k(x, y) = (x · y + c)p. (1.5)

Direct evaluation of the sum f(yj) =
∑N

i=1 qik(xi, yj) at M points requires O(MN)

operations. The reason for this is that for each term in the sum the xi and yj

appear together and hence we have to do all pair-wise operations. We will compute

the same sum in O(M +N) time by factorizing the kernel and regrouping the terms.

The polynomial kernel can be written as follows using the binomial theorem.

k(x, y) = (x · y + c)p =

p∑

k=0




p

k


 (x · y)kcp−k. (1.6)

Also for simplicity let x and y be scalars, i.e., x, y ∈ R. As a result we have

(x · y)k = xkyk. The multivariate case can be handled using multi-index notation
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and will be discussed later. So now the sum – after suitable regrouping – can be

written as follows:

f(yj) =
N∑

i=1

qi




p∑

k=0

cp−k




p

k


 xk

i y
k
j


 =

p∑

k=0

cp−k




p

k


 yk

j

[
N∑

i=1

qix
k
i

]

=

p∑

k=0

cp−k




p

k


 yk

j Mk, (1.7)

where Mk =
∑N

i=1 qix
k
i , can be called the moments. The moments M0, . . . , Mp can be

precomputed in O(pN) time. Hence f can be computed in linear O(pN +pM) time.

This is sometimes known as encapsulating information in terms of the moments.

Also note that for this simple kernel the sum was computed exactly.

In general any kernel k(x, y) can be expanded in some region as

k(x, y) =

p∑

k=0

Φk(x)Ψk(y) + error, (1.8)

where the function Φk depends only on x and Ψk on y. We call p, the truncation

number–which has to be chosen such that the error is less than the desired accuracy

ε. The fast summation – after suitable regrouping – is of the form

f(yj) =

p∑

k=0

AkΨk(y) + error, (1.9)

where the moments Ak can be pre-computed as Ak =
∑N

i=1 qiΦk(xi). Using series

expansions about a single point can lead to large truncation numbers. We need to

organize the datapoints into different clusters using data-structures and use series

expansion about the cluster centers. Also we need to give accuracy guarantees. So

there are two aspects to this problem
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1. Approximation theory → series expansions and error bounds.

2. Computational geometry → effective data-structures.

1.7 Thesis contributions

The thesis consists of two core contributions (1) design of fast summation

algorithms and (2) applying these fast primitives to certain large scale machine

learning problems. Table 1.1 summarizes the fast algorithms developed in this thesis

and the tasks to which they were applied.

The rest of the thesis is organized as follows. In the next three chapters

I describe three core algorithms for three different kernels–(1) the Gaussian, (2)

Hermite times Gaussian, and (3) the error function. The applications are discussed

in detail after the core algorithms have been explained.

The source code for all the fast summation algorithms are released under the

GNU Lesser General Public License (LGPL). The source code can be downloaded

from http://www.umiacs.umd.edu/~vikas/Software/software.html.
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Kernel Core MVP primitive Applications

Gaussian G(yj) =
∑N

i=1 qie
−‖yj−xi‖2/h2

kernel density estimation

Chapter 2 Chapter 5

Gaussian process regression

Chapter 7

implicit surface fitting

Chapter 7

Hermite× G(yj) =
∑N

i=1 qiHr

(
yj−xi

h1

)
e−(yj−xi)

2/h2
2 optimal bandwidth estimation

Gaussian Chapter 3 Chapter 6

projection pursuit

Chapter 6

error G(yj) =
∑N

i=1 qi erfc(yj − xi) ranking

function Chapter 4 Chapter 8

collaborative filtering

Chapter 8

Table 1.1: Summary of the thesis. The fast summation algorithms designed and

tasks to which they were applied. Computation of each of these primitives at M

points requires O(MN) time. The fast algorithms we design computes the same to

a specified ε accuracy in O(M + N) time.
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Chapter 2

Algorithm 1: Fast weighted summation of multivariate Gaussians

Evaluating sums of multivariate Gaussian kernels is a key computational task

in many problems in computational statistics and machine learning. The computa-

tional cost of the direct evaluation of such sums scales as the product of the number

of kernel functions and the evaluation points. The fast Gauss transform proposed by

[29] is a ε-exact approximation algorithm that reduces the computational complex-

ity of the evaluation of the sum of N Gaussians at M points in d dimensions from

O(MN) to O(M + N). However, the constant factor in O(M + N) grows exponen-

tially with increasing dimensionality d, which makes the algorithm impractical for

dimensions greater than three. In this chapter we present a new algorithm where

the constant factor is reduced to asymptotically polynomial order. The reduction

is based on a new multivariate Taylor series expansion scheme combined with the

efficient space subdivision using the k-center algorithm. We also integrate the al-

gorithm with a kd-tree based nearest neighbor search. As a result the algorithm

shows good performance both at small and large bandwidths. Our experimental

results indicate that the proposed algorithm gives good speedups in dimensions as

high as tens for moderate bandwidths and as high as hundreds for large and small

bandwidths. [68, 64, 65, 59]
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2.1 Discrete Gauss transform

The most commonly used kernel function is the Gaussian kernel

K(x, y) = e−‖x−y‖2/h2

, (2.1)

where h is called the bandwidth. The bandwidth h controls the degree of smoothing,

of noise tolerance, or of generalization.

The sum of multivariate Gaussian kernels is known as the discrete Gauss trans-

form in the scientific computing literature. More formally, for each target point

{yj ∈ Rd}j=1,...,M the discrete Gauss transform is defined as,

G(yj) =
N∑

i=1

qie
−‖yj−xi‖2/h2

, (2.2)

where {qi ∈ R}i=1,...,N are the source weights, {xi ∈ Rd}i=1,...,N are the source points,

i.e., the center of the Gaussians, and h ∈ R+ is the source scale or bandwidth. In

other words G(yj) is the total contribution at yj of N Gaussians centered at xi each

with bandwidth h. Each Gaussian is weighted by the term qi.

The computational complexity to evaluate the discrete Gauss transform (Equa-

tion (2.2)) at M target points is O(MN). This makes the computation for large

scale problems prohibitively expensive. In many machine learning tasks data-sets

containing more than a million points are already common and larger problems are

of interest.

The sum (2.2) can be thought of as a matrix-vector multiplication Kq, where

K is a M ×N matrix whose entries are of the form [K]ij = k(yj, xi) = e−‖yj−xi‖2/h2

and q = [q1, . . . , qN ]T is a N × 1 column vector. In this chapter we present a fast
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algorithm that computes the matrix-vector multiplication approximately in linear

O(M + N) time. The algorithm is approximate in the sense made precise below.

For any given ε > 0, Ĝ is an ε − exact approximation to G if the maximum

absolute error relative to the total weight Q =
∑N

i=1 |qi| is upper bounded by ε, i.e.,

max
yj

[
|Ĝ(yj)−G(yj)|

Q

]
≤ ε. (2.3)

The constant in O(M + N), depends on the desired accuracy ε, which however can

be arbitrary. In fact for machine precision accuracy there is no difference between

the results of the direct and the fast methods.

2.2 Related work

Before we present our algorithm we will briefly review the various approaches

that have been proposed in the past to speedup the matrix-vector product. To

simplify the exposition, in this section we assume M = N .

2.2.1 Methods based on sparse data-set representation

There are many strategies for specific problems which try to reduce this com-

putational complexity by searching for a sparse representation of the data [91, 77,

19, 45, 44, 14, 82, 81, 79]. Most of these methods try to find a reduced subset

of the original data-set using either random selection or greedy approximation. In

most of these methods there is no guarantee on the approximation of the kernel

matrix-vector product in a deterministic sense. These methods can be considered

to provide exact inference in an approximate model.
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2.2.2 Binned Approximation based on the FFT

If the source points are on an evenly spaced grid then we can compute the

Gauss transform in O(N log N) operations using the fast Fourier transform (FFT).

One of the earliest methods, especially proposed for univariate fast kernel density

estimation was based on this idea [74]. For irregularly spaced data, the space is

divided into boxes, and the data is assigned to the closest neighboring grid points to

obtain grid counts. The Gauss transform is also evaluated at regular grid points. For

target points not lying on the the grid the value is obtained by interpolation based

on the values at the neighboring grid points. The error introduced by interpolation

reduces the accuracy of such methods. Also another problem with this method

in higher dimensions is that the number of grid points grows exponentially with

dimension.

2.2.3 Dual-tree methods

Dual-tree methods [25, 26] are based on space partitioning trees for both the

source and target points. This method first builds a spatial tree like kd-trees or ball

trees on both the source and target points. Using the tree data structure distance

bounds between nodes can be computed. The bounds can be tightened by recursing

on both trees. An advantage of the dual-tree methods is that they work for all

common radial-basis kernel choices, not necessarily Gaussian. Dual-tree methods

give good speed up only for small bandwidths. For moderate bandwidths they end

up doing the same amount of work as the direct summation. These methods do
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give accuracy guarantees. The single tree version takes O(N log N) time while the

dual-tree version is postulated to be O(N).

2.2.4 Fast Gauss transform

The Fast Gauss Transform (FGT) is an ε − exact approximation algorithm

that reduces the computational complexity to O(N), at the expense of reduced

precision, which however can be arbitrary. The constant depends on the desired

precision, dimensionality of the problem, and the bandwidth. Given any ε > 0, it

computes an approximation Ĝ(yj) to G(yj) such that the maximum absolute error

relative to the total weight Q =
∑N

i=1 |qi| is upper bounded by ε.

The FGT was first proposed by [29] and applied successfully to a few lower

dimensional applications in mathematics and physics. It uses a local representation

of the Gaussian based on conventional Taylor series, a far field representation based

on Hermite expansion, and translation formulae for conversion between the two

representations. However the algorithm has not been widely used much in statistics,

pattern recognition, and machine learning applications where higher dimensions

occur commonly. An important reason for the lack of use of the algorithm in these

areas is that the performance of the proposed FGT degrades exponentially with

increasing dimensionality, which makes it impractical for these applications. The

constant in the linear asymptotic cost O(N) grows roughly as pd, i.e., exponential

in the dimension d. There are three reasons contributing to the degradation of the

FGT in higher dimensions:
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1. The number of the terms in the Hermite expansion used by the FGT grows

exponentially with dimensionality, which causes the constant factor associated

with the asymptotic complexity O(N) to increase exponentially with dimen-

sionality.

2. The space subdivision scheme used by the fast Gauss transform is a uniform

box subdivision scheme which is tolerable in lower dimensions but is extremely

inefficient in higher dimensions.

3. The constant term due to the translation of the far-field Hermite series to

the local Taylor series grows exponentially quickly with dimension making it

impractical for dimensions greater than three.

2.3 Improved fast Gauss transform

In this chapter we present an improved fast Gauss transform (IFGT) suitable

for higher dimensions. For the IFGT the constant term is asymptotically polynomial

in d, i.e, is grows roughly as dp (see Figure 2.1) . The IFGT differs from the FGT

in the following three ways, addressing each of the issues above.

1. A single multivariate Taylor series like expansion is used to reduce the number

of the expansion terms to polynomial order.

2. The k-center algorithm is applied to subdivide the space which is more efficient

in higher dimensions.

3. Our expansion can act both as a far-field and local expansion. As a result we
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Figure 2.1: The constant term for the FGT and the IFGT complexity as a function

of the dimensionality d. The FGT is exponential in d, while the IFGT is polynomial

in d.

do not have separate far-field and local expansions which eliminates the cost

of translation.

Our previous experiments reported that the IFGT did not give good speedups for

small bandwidths. We integrate the IFGT algorithm with a kd-tree based nearest

neighbor search. As a result we are able to obtain good speedups for both large

and small bandwidths. We call the combined algorithm FIGTree – Fast Improved

Gauss Transform with kd-Tree.

The rest of the chapter is organized as follows. In Section 2.4 we introduce the

key technical concepts used in the IFGT algorithm. More specifically, we discuss the

multivariate Taylor series used to factorize the Gaussian, the multi-index notation,
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and the space subdivision scheme based on the k-center clustering algorithm. In

Section 2.5 we describe our improved fast Gauss transform and present runtime and

storage analysis. In Section 2.6 we propose a strategy to choose the free parameters.

In Section 2.7 we show how the IFGT can be integrated with a kd-tree based nearest

neighbor search algorithm. In Section 8.4.2 we elucidate in detail how our current

method differs from the fast Gauss transform. In Section 8.6 we present numerical

results of our algorithm and compare it with the dual-tree algorithms.

2.4 Preliminaries

Before we discuss the IFGT we first discuss the multivariate Taylor series

expansion, multi-index notation, and our space subdivision scheme.

2.4.1 Multidimensional Taylor Series

The factorization of the multivariate Gaussian and the evaluation of the error

bounds are based on the multidimensional Taylor series and Lagrange evaluation of

the remainder which we state here without the proof.

Theorem 1 [Taylor series] For any point x∗ ∈ Rd, let I ⊂ Rd be an open set

containing the point x∗. Let f : I → R be a real valued function which is n times

partially differentiable on I. Then for any x = (x1, x2, . . . , xd) ∈ I, there is a θ ∈ R

with 0 < θ < 1 such that

f(x) =
n−1∑

k=0

1

k!
[(x− x∗) · ∇]k f(x∗) +

1

n!
[(x− x∗) · ∇]n f(x∗ + θ(x− x∗)), (2.4)
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where ∇ =
(

∂
∂x1

, ∂
∂x2

, . . . , ∂
∂xd

)
and the operator [(x− x∗) · ∇]k operates as

[(x− x∗) · ∇]k =
∑

0 ≤ i1, . . . , id ≤ k

i1 + . . . + id = k

k!

i1! · · · id! (x1 − x∗1)i1 · · · (xd − x∗d)id
∂k

∂i1 · · · ∂id
.

(2.5)

Based on the above theorem we have the following theorem which gives the

multivariate Taylor series expansion of the exponential function e2(x−x∗).(y−x∗)/h2
.

Theorem 2 Let Brx(x∗) be a open ball of radius rx with center x∗ ∈ Rd, i.e.,

Brx(x∗) = {x ∈ Rd : ‖x− x∗‖ < rx}. Let h ∈ R+ be a positive constant and y ∈ Rd

be a fixed point such that ‖y− x∗‖ < ry. For any x ∈ Brx(x∗) and any non-negative

integer p the function f(x) = e2(x−x∗).(y−x∗)/h2
can be written as

f(x) = e2(x−x∗).(y−x∗)/h2

=

p−1∑

k=0

2k

k!

[(
x− x∗

h

)
·
(

y − x∗
h

)]k

+ Rp(x), (2.6)

and the residual Rp(x) is bounded as follows.

|Rp(x)| ≤ 2p

p!

(‖x− x∗‖
h

)p (‖y − x∗‖
h

)p

e2‖x−x∗‖‖y−x∗‖/h2

. (2.7)

<
2p

p!

(rxry

h2

)p

e2rxry/h2

. (2.8)

Proof : Let us define a new function g(x) = e2[x.(y−x∗)]/h2
. Using the result

[(x− x∗) · ∇]k g(x∗) = 2ke2[x∗.(y−x∗)]/h2

[(
x− x∗

h

)
·
(

y − x∗
h

)]k

(2.9)
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and Theorem 4, we have for any x ∈ Brx(x∗) there is a θ ∈ R with 0 < θ < 1 such

that

g(x) = e2[x∗.(y−x∗)]/h2

{
p−1∑

k=0

2k

k!

[(
x− x∗

h

)
·
(

y − x∗
h

)]k

+
2p

p!

[(
x− x∗

h

)
·
(

y − x∗
h

)]p

e2θ[(x−x∗).(y−x∗)]/h2

}
.

Hence

f(x) = e2(x−x∗).(y−x∗)/h2

=

p−1∑

k=0

2k

k!

[(
x− x∗

h

)
·
(

y − x∗
h

)]k

+ Rp(x), (2.10)

where,

Rp(x) =
2p

p!

[(
x− x∗

h

)
·
(

y − x∗
h

)]p

e2θ[(x−x∗).(y−x∗)]/h2

. (2.11)

Using the Cauchy-Schwartz inequality x · y ≤ ‖x‖‖y‖ the remainder is bounded as

follows.

|Rp(x)| =
2p

p!

[(
x− x∗

h

)
·
(

y − x∗
h

)]p

e2θ[(x−x∗).(y−x∗)]/h2

,

≤ 2p

p!

(‖x− x∗‖
h

)p (‖y − x∗‖
h

)p

e2θ‖x−x∗‖‖y−x∗‖/h2

,

≤ 2p

p!

(‖x− x∗‖
h

)p (‖y − x∗‖
h

)p

e2‖x−x∗‖‖y−x∗‖/h2

[Since 0 < θ < 1],

<
2p

p!

(rxry

h2

)p

e2rxry/h2

[Since ‖x− x∗‖ < rx and ‖y − x∗‖ < ry]. (2.12)

Remark: Figure 2.2(a) compares the actual residual and the bound given by

(2.7) as a function of x, for p = 10 and d = 1. The actual residual Rp(x) vanishes

at x = x∗ and increases as x moves away from x∗. The dashed line shows the bound

given by (2.7). It can be seen that the bound is quite tight in practice. The dotted

line is the bound which is independent of x (Equation (2.12)). It can be seen that

this bound is very pessimistic for ‖x− x∗‖ < rx. A consequence of the use of (2.7)
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Figure 2.2: (a) The actual residual (solid line) and the bound (dashed line) given by

Equation (2.7) as a function of x. [ x∗ = 0, y = 1.0, h = 0.5, rx = 0.5, ry = 1.0, and

p = 10]. The residual is minimum at x = x∗ and increases as x moves away from

x∗. The dotted line shows the very pessimistic bound which is independent of x

(Equation (2.12)) used in the original IFGT. (b) The truncation number p required

as a function of x so that the error is less than10−6.
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is that a lower truncation number p can achieve a given error, for smaller ‖x− x∗‖.

Figure 2.2(b) shows the truncation number p required as the function of x so that

the error is less than 10−6. It can be seen that for points close to x∗ we need a

very small truncation number compared to points far from the center. The original

IFGT and the FGT algorithms used the same truncation number for all the points

in the open ball. The truncation number was thus large as it was chosen based on

the points at the boundary. However our current approach adaptively chooses p

based on the actual values of ‖x− x∗‖.

2.4.2 Multi-index Notation

In order to manipulate the multivariate terms in the Taylor series we will need

the notion of multi-indices.

• A multi-index α = (α1, α2 . . . , αd) ∈ Nd is a d-tuple of nonnegative integers.

• The length of the multi-index α is defined as |α| = α1 + α2 + . . . + αd.

• The factorial of α is defined as α! = α1!α2! . . . αd!.

• For any multi-index α ∈ Nd and x = (x1, x2, . . . , xd) ∈ Rd the d-variate

monomial xα is defined as xα = xα1
1 xα2

2 . . . xαd
d .

• xα is of degree n if |α| = n.

• The total number of d-variate monomials of degree n is
(

n+d−1
d−1

)
.
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• The total number of d-variate monomials of degree less than or equal to n is

rnd =
n∑

k=0

(
k + d− 1

d− 1

)
=

(
n + d

d

)
. (2.13)

• Let x, y ∈ Rd and v = x · y = x1y1 + . . . + xdyd. Then using the multi-index

notation vn can be written as,

vn = (x · y)n =
∑

|α|=n

n!

α!
xαyα. (2.14)

2.4.3 Space sub-division

In the IFGT we will appropriately cluster source points and evaluate their

contributions using an expression that involves the Taylor series. Accordingly we

need a strategy to choose a set of centers about which to expand the Taylor series,

i.e., we need to subdivide the space. We model the space subdivision task as a

k-center problem, which is defined as follows:

k-center problem: Given a set of N points in d dimensions and a predefined

number of the clusters k, find a partition of the points into clusters S1, . . . , Sk, and

also the cluster centers c1, . . . , ck, so as to minimize the cost function-the maximum

radius of clusters, maxi maxx∈Si
‖x− ci‖.

The k-center problem is known to be NP -hard [5]. Gonzalez [24] proposed

a very simple greedy algorithm, called farthest-point clustering, and proved that it

gives an approximation factor of 2.

Initially pick an arbitrary point v0 as the center of the first cluster and add it

to the center set C. Then for i = 1 to k do the following: at step i, for every point

v, compute its distance to the set C: di(v, C) = minc∈C ‖v− c‖. Let vi be the point
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that is farthest from C, i.e., the point for which di(vi, C) = maxv di(v, C). Add vi

to set C. Report the points v0, v1, . . . , vk−1 as the cluster centers. Each point is

assigned to its nearest center.

Gonzalez proved the following 2-approximation theorem for the farthest-point

clustering algorithm [24] 1.

Theorem 3 [24] For k-center clustering, the farthest-point clustering computes a

partition with maximum radius at most twice the optimum.

Proof: For completeness, we provide a simple proof for the above theorem. First

note that the radius of the farthest-point clustering solution by definition is

dk(vk, C) = max
v

min
c∈C

‖v − c‖.

In the optimal k-center case, two of these k + 1 points, say vi and vj, must be

in a same cluster centered at c by the pigeon hole principle. Observe that the

distance from each point to the set C does not increase as the algorithm progresses.

Therefore dk(vk, C) ≤ di(vk, C) and dk(vk, C) ≤ dj(vk, C). Also by definition, we

have di(vk, C) ≤ di(vi, C) and dj(vk, C) ≤ dj(vj, C). So we have

‖vi − c‖+ ‖vj − c‖ ≥ ‖vi − vj‖ ≥ dk(vk, C),

by the triangle inequality. Since ‖vi− c‖ and ‖vj − c‖ are both at most the optimal

radius δ, we have the radius of the farthest-point clustering solution dk(vk, C) ≤ 2δ.

The direct implementation of farthest-point clustering has running timeO(Nk).

[18] gave a two-phase algorithm with optimal running time O(N log k). The first

1It was proved in [37] that the factor 2 cannot be improved unless P = NP .
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Figure 2.3: (a) Using the farthest-point clustering algorithm 10,000 points uniformly

distributed in a unit square are divided into 22 clusters with the maximum radius

of the clusters being 0.2. (b) 10,000 points normally distributed in a unit square are

divided into 11 clusters with the maximum radius of the clusters being 0.2.
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phase of their algorithm clusters points into rectangular boxes using Vaidya’s [83] box

decomposition– a sort of quadtree in which cubes are shrunk to bounding boxes be-

fore splitting. The second phase resembles the farthest-point clustering on a sparse

graph that has a vertex for each box. In practice, the initial point has little influence

on the final approximation radius, if number of the points is sufficiently large.

Figure 2.3 displays the results of farthest-point algorithm on sample two di-

mensional datasets. After the end of the clustering procedure the center of each

cluster is recomputed as the mean of all the points lying in each cluster.

Remark: The farthest-point clustering algorithm is progressive. This means that

if we have k centers and we wish to compute the (k + 1)th center, the first k centers

do not change. This is different from other clustering algorithms like the k-means.

Our goal is not to get a very good clustering, but to organize the source points into

spherical balls.

2.5 Improved Fast Gauss Transform

Having established the Taylor series expansion and the farthest-point cluster-

ing algorithm for k-center clustering, we are now ready to present the IFGT. The

method relies on the expansion of the Gaussian using the truncated Taylor series
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expansion. For any point x∗ ∈ Rd the Gauss Transform at yj can be written as,

G(yj) =
N∑

i=1

qie
−‖yj−xi‖2/h2

,

=
N∑

i=1

qie
−‖(yj−x∗)−(xi−x∗)‖2/h2

,

=
N∑

i=1

qie
−‖xi−x∗‖2/h2

e−‖yj−x∗‖2/h2

e2(yj−x∗)·(xi−x∗)/h2

. (2.15)

In Equation (3.3) the first exponential inside the summation e−‖xi−x∗‖2/h2
depends

only on the source coordinates xi. The second exponential e−‖yj−x∗‖2/h2
depends only

on the target coordinates yj. However in the third exponential e2(yj−x∗)·(xi−x∗)/h2
the

source and target are entangled. The crux of the algorithm is to separate this

entanglement via the Taylor series expansion of this term.

2.5.1 Factorization

Using Theorem 5 the series expansion for e2(yj−x∗)·(xi−x∗)/h2
can be written as,

e2(yj−x∗)·(xi−x∗)/h2

=

pi−1∑
n=0

2n

n!

[(
yj − x∗

h

)
·
(

xi − x∗
h

)]n

+ errorpi
. (2.16)

The truncation number pi for each source xi is chosen based on the prescribed error

and the distance from the expansion center. A strategy for choosing pi is discussed

later. Using the multi-index notation (Equation (2.14)), this expansion can be

written as,

e2(yj−x∗)·(xi−x∗)/h2

=
∑

|α|≤pi−1

2α

α!

(
yj − x∗

h

)α (
xi − x∗

h

)α

+ errorpi
. (2.17)
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Ignoring error terms for now G(yj) can be approximated as,

Ĝ(yj) =
N∑

i=1

qie
−‖xi−x∗‖2/h2

e−‖yj−x∗‖2/h2


 ∑

|α|≤pi−1

2α

α!

(
yj − x∗

h

)α (
xi − x∗

h

)α

 .

(2.18)

Let pmax = maxi pi and 1|α|≤pi−1 be an indicator function for |α| ≤ pi − 1, that is,

1|α|≤pi−1 =





1 if |α| ≤ pi − 1

0 if |α| > pi − 1

. (2.19)

2.5.2 Regrouping

Rearranging the terms (2.18) can be written as

Ĝ(yj) =
∑

|α|≤pmax−1

[
2α

α!

N∑
i=1

qie
−‖xi−x∗‖2/h2

(
xi − x∗

h

)α

1|α|≤pi−1

]

e−‖yj−x∗‖2/h2

(
yj − x∗

h

)α

,

=
∑

|α|≤pmax−1

Cαe−‖yj−x∗‖2/h2

(
yj − x∗

h

)α

, (2.20)

where,

Cα =
2α

α!

N∑
i=1

qie
−‖xi−x∗‖2/h2

(
xi − x∗

h

)α

1|α|≤pi−1. (2.21)

The coefficients Cα can be evaluated separately in O(N). Evaluation of Ĝ(yj) at

M points is O(M). Hence the computational complexity has reduced from the

quadratic O(NM) to the linear O(N +M). A detailed analysis of the computational

complexity is provided later.

2.5.3 Space subdivision

Thus far, we have used the Taylor series expansion about a certain point x∗.

However if we use the same x∗ for all the points we typically would require very
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high truncation numbers since the Taylor series is valid only in a small open ball

around x∗. We use an data adaptive space partitioning scheme like the farthest point

clustering algorithm to divide the N sources into K clusters, Sk for k = 1, . . . , K

with ck being the center of each cluster. The Gauss transform can be written as,

Ĝ(yj) =
K∑

k=1

∑

|α|≤pmax−1

Ck
αe−‖yj−ck‖2/h2

(
yj − ck

h

)α

, (2.22)

where,

Ck
α =

2α

α!

∑
xi∈Sk

qie
−‖xi−ck‖2/h2

(
xi − ck

h

)α

1|α|≤pi−1. (2.23)

2.5.4 Rapid decay of the Gaussian

Since the Gaussian decays very rapidly a further speedup is achieved if we

ignore all the sources belonging to a cluster if the cluster is greater than a certain

distance from the target point, ‖yj− ck‖ > rk
y . The cluster cutoff radius depends on

the desired precision ε. So now the Gauss transform is evaluated as

Ĝ(yj) =
∑

‖yj−ck‖≤rk
y

∑

|α|≤pmax−1

Ck
αe−‖yj−ck‖2/h2

(
yj − ck

h

)α

, (2.24)

where,

Ck
α =

2α

α!

∑
xi∈Sk

qie
−‖xi−ck‖2/h2

(
xi − ck

h

)α

1|α|≤pi−1. (2.25)

2.5.5 Runtime analysis

• The farthest point clustering algorithm has run time of O(dN log K) [18].

• Since each source point belongs to only one cluster, computing the cluster

coefficients Ck
α for all the clusters is of O(Nr(pmax−1)d), where r(pmax−1)d =
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(
pmax+d−1

d

)
is the maximum number of coefficients for each cluster. It is the

total number of d-variate monomials of degree less than or equal to pmax − 1.

• Computing Ĝ(yj) is of O(Mnr(pmax−1)d) where n if the maximum number of

neighbor clusters (depends on the bandwidth h and the error ε) which influence

the target.

• We also need to account the cost needed to determine n. This involves looping

through all K clusters and computing the distance between each of the M test

points and each of the K cluster centers, resulting in an additional O(dKM)

term. This term can be reduced if we use some efficient nearest neighbor

search techniques 2.

Hence the total run time is

O(dN log K + Nr(pmax−1)d + Mnr(pmax−1)d + dKM). (2.26)

Assuming M = N , the complexity is O(cN) – where the constant term

c = dK + d log K + (1 + n)r(pmax−1)d (2.27)

depends on the dimensionality, the bandwidth, and the accuracy required. The

number of terms r(pmax−1)d is asymptotically polynomial in d. For d → ∞ and

moderate p, the number of terms is approximately dp.

A different truncation number is chosen for each data point depending on

its distance from the cluster center. A good consequence of this strategy is that

2We present the FIGTree algorithm in Section 2.7 that reduces the cost of this search to

O(d log KM) using the ANN library [51].

30



only a few points at the boundary of the clusters have high truncation numbers.

Theoretically we expect to get a much better speed up since for many points pi <

pmax. However some computation resources are used in determining the truncation

numbers. As a result experimentally we saw a smaller improvement in speedup,

compared to using the same truncation number for all points. The speedup is more

noticeable in higher dimensions and for larger bandwidths.

2.5.6 Storage analysis

For each cluster we need to store r(pmax−1)d coefficients. Including the space

required to store the source points, target points, and cluster centers the space

required is

O(Kr(pmax−1)d + dN + dM + dK). (2.28)

2.5.7 Efficient computation of multivariate polynomials–Horner’s rule

Evaluating each d-variate monomial of degree n directly requires n multiplica-

tions. Hence direct evaluation of all d-variate monomials of degree less than or equal

to n requires
∑n

k=0 k
(

k+d−1
d−1

)
multiplications. The storage requirement is rnd. How-

ever, efficient evaluation using the Horner’s rule requires rnd−1 multiplications [95].

The required storage is rnd (See Table 2.1).

For a d-variate polynomial of order n, we can store all terms in a vector of

length rnd. Starting from the order zero term (constant 1), we take the following

approach. Assume we have already evaluated terms of order k− 1. We use an array
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Figure 2.4: Efficient expansion of multivariate polynomials.

of size d to record the positions of the d leading terms (the simple terms such as

ak−1, bk−1, ck−1, . . . in Figure 2.4) in the terms of order k−1. Then terms of order

k can be obtained by multiplying each of the d variables with all the terms between

the variables leading term and the end, as shown in the Figure 2.4. The positions

of the d leading terms are updated respectively. The required storage is rnd and the

computations of the terms require rnd − 1 multiplications.

2.5.8 Partial distance

For each cluster we need to find the clusters which are within a certain radius to

it. Computing partial distances helps to reduce the computational burden in nearest-

neighbor searches in high dimensional spaces. By partial distance, we calculate the

distance using some subset r of the coordinates from the full d dimensions. If this
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n 2 4 6 8 10 12 15 20

Direct d=2 8 40 112 240 440 728 1360 3080

Efficient d=2 5 14 27 44 65 90 135 230

Direct d=3 15 105 378 990 2145 4095 9180 26565

Efficient d=3 9 34 83 164 285 454 815 1770

Direct d=6 48 720 4752 20592 68640 190944 697680 3946800

Efficient d=6 27 209 923 3002 8007 18563 54263 230229

Direct d=10 120 3640 43680 318240 1679600 7054320 44574000 546273000

Efficient d=10 65 1000 8007 43757 184755 646645 3268759 30045014

Table 2.1: Number of multiplications required for the direct and the efficient method

for evaluating all d-variate monomials of degree less than or equal to n.

partial distance is too great we do not compute distances any further. The partial

distance is strictly nondecreasing as we add the contributions from more and more

dimensions.

2.6 Choosing the parameters

Given any ε > 0, we want to choose the following parameters,

• K (the number of clusters),

• {rk
y}K

k=1 (the cut off radius for each cluster),

• and {pi}N
i=1 (the truncation number for each source point xi)

such that for any target point yj we can guarantee that

|Ĝ(yj)−G(yj)|
Q

≤ ε, (2.29)
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where Q =
∑N

i=1 |qi|.

Let us define ∆ij to be the point wise error in Ĝ(yj) contributed by the ith

source xi. We now require that

|Ĝ(yj)−G(yj)| =
∣∣∣∣∣

N∑
i=1

∆ij

∣∣∣∣∣ ≤
N∑

i=1

|∆ij| ≤ Qε =
N∑

i=1

|qi|ε. (2.30)

One way to achieve this is to let

|∆ij| ≤ |qi|ε ∀i = 1, . . . , N. (2.31)

Let ck be the center of the cluster to which xi belongs. There are two different ways

in which a source can contribute to the error.

• The first is due to ignoring the cluster Sk if it is outside a given radius rk
y from

the target point yj. In this case,

∆ij = qie
−‖yj−xi‖2/h2

if ‖yj − ck‖ > rk
y . (2.32)

• The second source of error is due to truncation of the Taylor series. For all

clusters which are within a distance rk
y from the target point the error is due

to the truncation of the Taylor series after order pi. From Equations 3.3 and

2.16 we have,

∆ij = qie
−‖xi−ck‖2/h2

e−‖yj−ck‖2/h2

errorpi
if ‖yj − ck‖ ≤ rk

y . (2.33)

Our strategy for choosing the parameters is as follows. The cutoff radius rk
y for

each cluster is chosen based on Equation (2.32) and the radius of each cluster rk
x.

Given rk
y and ‖xi− ck‖ the truncation number pi for each source is chosen based on

Equation (2.33). Towards the end we suggest a strategy to choose the number of

clusters K and the maximum truncation pmax jointly.
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2.6.1 Automatically choosing the cut off radius for each cluster

We ignore all sources belonging to a cluster Sk if ‖yj − ck‖ > rk
y . rk

y should be

chosen such that for all sources in cluster Sk the error

|∆ij| = |qi|e−‖yj−xi‖2/h2 ≤ |qi|ε. (2.34)

This implies that

‖yj − xi‖ > h
√

ln(1/ε) (2.35)

Using the reverse triangle inequality, ‖a − b‖ ≥
∣∣‖a‖ − ‖b‖

∣∣, and the fact that

‖yj − ck‖ > rk
y and ‖xi − ck‖ ≤ rk

x, we have

‖yj − xi‖ = ‖yj − ck + ck − xi‖ = ‖(yj − ck)− (xi − ck)‖,

≥
∣∣‖(yj − ck)‖ − ‖(xi − ck)‖

∣∣,

>
∣∣rk

y − rk
x

∣∣.

So in order that the error due to ignoring the faraway clusters is less than qiε we

have to choose rk
y and rk

x such that,

∣∣rk
y − rk

x

∣∣ > h
√

ln(1/ε). (2.36)

If we choose rk
y > rk

x then,

rk
y > rk

x + h
√

ln(1/ε). (2.37)

Let R be the maximum distance between any source and target point. For example

if the data were distributed in a d-dimensional hypercube of length a, then R ≤
√

da,

i.e., the length of the maximum diagonal. Hence,

rk
y > rk

x + min
(
R, h

√
ln(1/ε)

)
. (2.38)
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2.6.2 Automatically choosing the truncation number for each source

From Theorem 5 we have,

errorpi
≤ 2pi

pi!

(‖xi − ck‖
h

)pi
(‖yj − ck‖

h

)pi

e2‖xi−ck‖‖yj−ck‖/h2

. (2.39)

Hence for all sources for which ‖yj − ck‖ ≤ rk
y , substituting in Equation (2.33) we

have

∆ij ≤ qi
2pi

pi!

(‖xi − ck‖
h

)pi
(‖yj − ck‖

h

)pi

e−(‖xi−ck‖−‖yj−ck‖)2/h2

. (2.40)

For a given source xi we have to choose pi such that |∆ij| ≤ |qi|ε. ∆ij depends

both on distance between the source and the cluster center, i.e., ‖xi − ck‖ and the

distance between the target and the cluster center, i.e., ‖yj − ck‖. The speedup is

achieved because at each cluster Sk we sum up the effect of all the sources. As a

result we do not have a knowledge of ‖yj − ck‖ when we are using Equation (2.25).

So we will have to bound the right hand side of Equation (2.40), such that it is

independent of ‖yj − ck‖. Figure 3.1 shows the error at yj due to source xi, i.e.,

∆ij [Equation (2.40)] as a function of ‖yj − ck‖ for different values of p and for (a)

h = 0.5 and (b) h = 1.0. The error increases as a function of ‖yj − ck‖, reaches a

maximum and then starts decreasing. The maximum is attained at

‖yj − ck‖ = ‖yj − ck‖∗ =
‖xi − ck‖+

√
‖xi − ck‖2 + 2pih2

2
. (2.41)

Hence we choose pi such that,

|∆ij|
∣∣‖yj−ck‖=‖yj−ck‖∗ ≤ |qi|ε. (2.42)
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Figure 2.5: The error at yj due to source xi, i.e., ∆ij [Equation (2.40)] as a function

of ‖yj − ck‖ for different values of p and for (a) h = 0.5 and (b) h = 1.0. The error

increases as a function of ‖yj − ck‖, reaches a maximum and then starts decreasing.

The maximum is marked as ’*’. qi = 1 and ‖xi − ck‖ = 0.5.

37



In case ‖yj − ck‖∗ > rk
y we need to choose pi based on rk

y , since ∆ij will be much

lower there. Hence our strategy for choosing pi is,

|∆ij|
∣∣∣[‖yj−ck‖=min (‖yj−ck‖∗,rk

y)] ≤ |qi|ε. (2.43)

Figure 2.6(a) shows ∆ij as a function of ‖xi − ck‖ for different values of p, h = 0.4

and ‖yj − ck‖ = min
(‖yj − ck‖∗, rk

y

)
. Figure 2.6(b) shows the truncation number pi

required to achieve an error of ε = 10−3.

2.6.3 Automatically choosing the number of clusters

Our strategy for choosing the number of clusters is optimized for a uniform

distribution of the source points in a unit hypercube. The total computational

complexity assuming M = N is O(cN). The constant term is given by

c = dK + d log K + (1 + n)r(pmax−1)d. (2.44)

The truncation number pmax and the number of influential clusters n are both func-

tions of K. We choose the number of clusters K for which c is minimum. The

truncation number pmax is a function of the maximum cluster radius rx, implicitly

via Equation (2.43). If the source and the target points are uniformly distributed in

a unit hypercube then a good approximation to the maximum cluster radius would

be rx ∼ K−1/d. 3 The number of influential neighbor clusters is roughly n ∼ (r/rx)
d,

where r = h
√

ln(1/ε) is the cutoff radius.

3If the data lies on a lower dimensional manifold, as usually is the case for structured data in

high dimensions, we use the relation rx ∼ K−1/deff . deff is the actual intrinsic dimensionality of

the data.
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Figure 2.6: The error at yj due to a source at xi, i.e., ∆ij [Equation (2.40)] as a func-

tion of ‖xi−ck‖ for different values of p, h = 0.4 and ‖yj−ck‖ = min
(‖yj − ck‖∗, rk

y

)
.

(b) The truncation number pi required to achieve an error of ε = 10−3.
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Figure 2.7: The constant c ( see Equation (2.44)) as a function of K. d = 2, h = 0.3,

and ε = 10−6.

Figure 2.7 shows the constant c as function K. Initially the constant c de-

creases because as K increases the maximum cluster radius rx decreases, leading to

a smaller truncation number pmax. However after a certain point the growth in K

dominates the decrease in pmax. The optimum K can be found by differentiating

Equation (2.44) w.r.t. K and setting it to zero. However since the dependence of

pmax on K is implicit it is difficult to derive an analytical expression for K. A simple

strategy as outlined in Algorithm 1 is to evaluate c for a range of values of K and

choose the one for which c is minimum.

2.6.4 Updating the truncation number

We optimized the number of clusters and the maximum truncation number

assuming a uniform distribution of source points. However if the data is clustered

the truncation number can be smaller. Once we have chosen K we run the farthest
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Figure 2.8: (a) Schematic of the evaluation of the improved fast Gauss transform at

the target point yj. For the source points the results of the farthest point clustering

algorithm are shown along with the center of each cluster. A set of coefficients are

stored at the center of each cluster. Only the influential clusters within radius r of

the target point are used in the final summation. (b) Illustration of the truncation

number pi required for each data point. Dark red color indicates a higher truncation

number. Note that for points close to the cluster center the truncation number

required is less than that at the boundary of the cluster.

point clustering algorithm which will give us the actual maximum cluster radius.

Based on this we can determine the actual maximum truncation number required.

The algorithm is summarized in Algorithm 2 and Figure 2.8(a). Figure 2.8(b)

shows the truncation number pi required for each data point. Dark shade indicates

a higher truncation number. Note that for points close to the cluster center the

truncation number required is less than that at the boundary of the cluster.
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2.7 Nearest Neighbor search based on kd-tree

For small bandwidth h the number of clusters K required can be quite large.

The space-subdivision employed by the IFGT algorithm is not hierarchical. As a

result nearest influential clusters cannot be searched effectively. When the number

of clusters K is large we end up doing a brute force search over all the clusters.

Algorithms for efficient computation of nearest neighbors can be incorporated in

the algorithm.

ANN (Approximate Nearest Neighbor) is a library written in C++, which

supports data structures and algorithms for both exact and approximate nearest

neighbor searching in dimensions as high as 20 [51]. The library is based on kd-trees

and box-decomposition trees and employs a couple of different search strategies. For

our algorithm we build a kd-tree from the K cluster centers. This can be done in

O(dK log K) time and O(dK) space. For any target point the influential clusters

can be found in O(nd log K) time, where n is the number of influential clusters 4.

Sometimes it can happen than the number of clusters chosen K is larger than

the number of source points N . In such cases we set K = N and directly evaluate

4The exact result is as follows [2]. Given any positive real ε, a datapoint p is a (1 + ε)-

approximate nearest neighbor of q if its distance from q is within a factor of (1+ ε) of the distance

to the true nearest neighbor. With this definition n approximate nearest neighbors can be found

in O((cd,ε + n)d log K) time where cd,ε ≤ d1 + 6d/εed. However in practice the constant is much

smaller than the bound. Setting ε = 0 will cause the algorithm to compute the exact nearest

neighbors but no bound on the running time can be provided. However the algorithm is known to

provide significant improvements over brute-force search in dimensions as high as 20.
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the contribution from sources within a certain radius r—whos contribution is alteast

ε–by building a kd-tree directly on the source points.

2.8 FIGTree–Fast Improved Gauss Transform with kd-Tree

So based on the number of clusters K (which depends on the bandwidth h)

we have the following three strategies–

1. When the number of clusters is small we use the Improved Fast Gauss

Transform.

• Time–O(dN log K + Nr(pmax−1)d + Mnr(pmax−1)d + dKM)

• Space–O(Kr(pmax−1)d + dN + dM + dK)

2. When the number of clusters is large we use the Improved Fast Gauss

Transform along with kd-tree on the cluster centers to search for the

influential clusters.

• Time–O(dN log K+Nr(pmax−1)d+Mnr(pmax−1)d+dn log KM +dK log K)

• Space–O(Kr(pmax−1)d + dN + dM + dK)

3. When the number of clusters is almost close the the number of source points

we build the kd-tree directly on the source points.

• Time–O(dN log N + dn log NM)

• Space–O(dN + dM)
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We call the combined algorithm FIGTree–Fast Improved Gauss Transform with

kd-Tree.

2.9 Comparison with the Fast Gauss Transform

We elucidate in detail how our current method differs from the fast Gauss

transform. The fast Gauss transform (FGT) [29] is a special case of the more

general single level fast multipole method [28], adapted to the Gaussian potential.

The first step of the FGT is the spatial sub-division of the unit hypercube into

Nd
side boxes of side

√
2rh where r < 1/2 5. The sources and targets are assigned to

different boxes. Given the sources in one box and the targets in a neighboring box,

the computation is performed using one of the following four methods depending on

the number of sources and targets in these boxes:

1. Direct evaluation is used if the number of sources and targets are small (in

practice a cutoff of the order O(pd−1) is introduced.).

2. If the sources are clustered in a box then they can are transformed into a

Hermite expansion about the center of the box.

3. This expansion is directly evaluated at each target in the target box if the

number of the targets is small.

4. If the targets are clustered then the sources or their expansion are converted

to a local Taylor series which is then evaluated at each target in the box.

5The paper suggests to choose the largest r ≤ 1/2 such that Nside = 1/
√

2rh is an integer.
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Since the Gaussian decays very rapidly only a few neighboring source boxes will

have influence on the target box.

2.9.1 Comparison of the IFGT and FGT factorizations

The general fast multipole methods (FMM) [31], of which the FGT is a special

case use two kind of expansions of the potential function: the far-field expansion

and the local expansion.

For any x∗ ∈ Rd we call the expansion Φ(y, xi) =
∑∞

m=0 bm(xi, x∗)Sm(y − x∗)

far field expansion outside a sphere B>
R∗(x∗) = {y ∈ Rd : ‖y − x∗‖ > R∗}, if the

series converges for all y ∈ B>
R∗(x∗).

For any x∗ ∈ Rd we call the expansion Φ(y, xi) =
∑∞

m=0 am(xi, x∗)Rm(y − x∗)

regular (local) inside a sphere B<
r∗(x∗) = {y ∈ Rd : ‖y − x∗‖ < r∗}, if the series

converges for all y ∈ B<
r∗(x∗).

If the potential has a singular point xi (unlike a Gaussian), then we use the

local expansion for all ‖y−x∗‖ < ‖xi−x∗‖, and far-field expansion for all ‖y−x∗‖ >

‖xi − x∗‖.

The FGT uses the Hermite expansion of the Gaussian for the far-field and the

Taylor expansion of the Gaussian (which is obtained by interchanging y and xi in

the Hermite expansion) as the local expansion. The following are the two expansions

used by the FGT.

e−‖y−xi‖2/h2

=
∑
α≥0

[
1

α!

(
xi − x∗

h

)α]
hα

(
y − x∗

h

)
[far-field Hermite expansion],

(2.45)
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e−‖y−xi‖2/h2

=
∑

β≥0

[
1

β!
hβ

(
xi − x∗

h

)](
y − x∗

h

)β

[local Taylor expansion], (2.46)

where hα(y) are the multivariate Hermite functions [29]. The real benefit of FMM is

for singular potential functions whose forces are long ranged and locally non-smooth,

hence it is necessary to make use of the tree data structures, local expansions,

far-field expansions and translation operators between representations. Translation

between local and far-field representations is expensive, but unavoidable in the case

of singular potential functions.

The Gaussian is a regular potential. For the IFGT we represent the Gaussian

as a product of two Gaussians and an exponential (Equation (3.3)), and then use

one factorization for the exponential using the Taylor series. The factorization used

by the IFGT can be written as follows.

e−‖y−xi‖2/h2

=
∑

|α|≥0

[
2α

α!
e−‖xi−x∗‖2/h2

(
xi − x∗

h

)α]
e−‖yj−x∗‖2/h2

(
yj − x∗

h

)α

. (2.47)

This factorization has the property that it is both a good far-field and and local

expansion, and in fact does a very good job in the whole domain. Thereby it avoids

the need for two different representations and the expensive translation operation.

Figure 2.9 shows the absolute value of the actual error between the one dimen-

sional Gaussian (e−(xi−y)/h2
) and the different series approximations. The Gaussian

was centered at xi = 0. All the series were expanded about x∗ = 1.0. p = 5 terms

were retained in the series approximation. From the plot it can be seen that the

Hermite expansion is essentially a far field expansion which gives better approxi-

mation as we move far away from x∗. The Taylor expansion of the Gaussian is a

local expansion giving good approximation only for a region very close to x∗. The
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Figure 2.9: The absolute value of the actual error between the one dimensional

Gaussian (e−(xi−y)/h2
) and different series approximations. The Gaussian was cen-

tered at xi = 0 and h = 1.0. All the series were expanded about x∗ = 1.0. p = 5

terms were retained in the series approximation.

Taylor expansion used by the IFGT can serve both as the far field as well as the local

expansion.

2.9.2 Translation

Since the original FGT uses two representations it must convert between

them using a process called translation. The original FGT in d dimensions rep-

resents the solution using pd coefficients. The cost of translation is O(dpd+1(2n +

1)dmin((
√

2rh)−d/2,M)). The new version of the FGT proposed in [30] reduces the

cost of translating the Hermite series. The new version is based on replacing the

Hermite and Taylor expansions with an expansion in terms of exponentials (plane
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waves). Because of this, the translation operator becomes diagonal. This reduces

the cost of translation from O(d(2n + 1)dpd+1) to O(3dpd). In any case the cost of

translation grows exponentially with dimension 6. In contrast our method uses just

one representation with the property that it is both a good far-field and and local

expansion (See Figure 2.9). Thereby it avoids the need for two different representa-

tions and the expensive translation operation.

2.9.3 Error bounds

In this section we compare the number of terms needed to achieve a desired

error for the truncated expansions used by the FGT and the IFGT algorithm. We

cannot compare both the expressions in terms of p since the truncation method is

different for the FGT and the IFGT. We need to see the total number of terms that

need to be retained to achieve a given target error. For the Hermite expansion all

terms with multi indices α > p are ignored (as a result we retain pd terms) while

in the case of IFGT all terms with multi indices of degree |α| > p are ignored (as a

result we retain all monomials with degree ≤ p− 1 (i.e. a total of r(p−1)d terms)).

Let |xi(j)− x∗(j)| = a and |y(j)− x∗(j)| = b. The error due to truncation in

IFGT after ignoring all terms with multi indices of degree |α| > p can be bounded

as follows.

|errorIFGT | <
2p

p!

(‖xi − ck‖
h

)p (‖yj − ck‖
h

)p

e−(‖xi−ck‖−‖yj−ck‖)2/h2

,

=
2p

p!

(
dab

h2

)p

e−d(a−b)2/h2

.

6Also the details of the scheme are presented only for d ≤ 3.

48



10
−10

10
−8

10
−6

10
−4

10
0

10
2

10
4

10
6

10
8

10
10

error

d=3
d=3

d=9

d=9

h=1.0 a=0.1 b=0.5

IFGT: Number of terms
FGT: Number of terms

Figure 2.10: The total number of terms required by the IFGT and the FGT series

expansions to achieve a desired error bound.

The error due to truncation of either the Hermite series or the Taylor series in FGT

after ignoring all terms with multi-indices α > p can be bounded as follows (This

bound can be derived using the approach detailed in [3]).

|errorFGT | <
e−db2/2h2

(1− r)d

d−1∑

k=0

(
d

k

)
(1− rp)k

(
rp

√
p!

)d−k

.

where r =
√

2a/h. Figure 2.10 compares the total number of terms required by

the IFGT and the FGT series expansions to achieve a desired error bound. Our

expansion and truncation scheme results in a substantial reduction in the number

of terms.

2.9.4 Spatial data structures

The original FGT uses boxes to subdivide the space. However such a simple

space subdivision scheme is not suitable for high dimensions. If each dimension

49



of a unit hyper cube is divided into Nside parts, then the number of boxes grows

exponentially with dimension as Nd
side, resulting in prohibitive memory requirements.

In most statistical and machine learning applications we do not have truly high

dimensional data. The data will typically lie on low dimensional manifolds. The

consequence of this is that most of the boxes will be empty and we will be spending

resources in searching nonempty neighboring boxes. To adaptively fit the density of

points, the IFGT uses the farthest-point algorithm to subdivide the space. Table 2.2

compares the number of boxes required by the FGT and the number of clusters

required by the IFGT as a function of the data dimensionality d. For example in

a seven dimensional space while the FGT subdivides the space into 2187 boxes the

IFGT just needs 67 clusters.

2.9.5 Exponential growth of complexity with dimension

The total computational complexity of the FGT is of the form [29]

O(pdN) + O(pdM) + O(dpd+1(2n + 1)dmin((
√

2rh)−d/2,M)). (2.48)

The third term dpd+1(2n+1)dmin((
√

2rh)−d/2,M) is essentially a constant depend-

ing on the number of box-box interactions and the cost of translating a Hermite

expansion into a Taylor series. The translation is one of the most expensive step

in any FMM algorithm. Even though it does not depend on N , the constant term

grows exponentially with increasing dimensionality. Table. 2.2 shows the constant

term as a function of d for h = 0.5 and ε = 10−6. This suggests that the FGT may

not be practical for dimensions > 3. Also the constant term pd grows exponentially
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with dimension. Compare this with the computational complexity of the IFGT.

O(N log K + Nr(pmax−1)d + Mnr(pmax−1)d + KM). (2.49)

Assuming M = N , the complexity is O(
[
K + log K + (1 + n)r(p−1)d

]
N). The con-

stant r(p−1)d is asymptotically polynomial in d. For d → ∞ and moderate p, the

number of terms is O(dp). Since we cluster only the source points. We do not

use any expensive translation operation. Table 2.2 compares the number of terms

required for FGT (pd) with the number of terms required by IFGT (r(p−1)d).

2.10 Numerical Experiments

In this section we present numerical studies of the speedup and error as a

function of

• the number of data points, N ,

• the data dimensionality, d,

• the bandwidth h of the Gaussian kernel,

• the desired error, ε,

• and the distribution of the source and target points.

We compare the following four methods–

• Direct–Naive O(N2) implementation of the Gauss transform.
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• FGT 7–The fast Gauss Transform as described in [29].

• FIGTree 8–The proposed improved fast Gauss transform along with the kd-

tree based nearest neighbor search.

• Dual-tree method 9–The kd-tree based dual-tree algorithm of [26].

All the algorithms were programmed in C++ or C with MATLAB bindings and

were run on a 1.83 GHz Pentium-M processor with 1 GB of RAM.

2.10.1 Speedup as a function of N

We first study the performance as the function of N for d = 3. N points

were uniformly distributed in a unit cube. The Gauss transform was evaluated at

M = N points uniformly distributed in the unit cube. The weights qi were uniformly

distributed between 0 and 1. The parameters for the algorithms were automatically

chosen without any user intervention. The target error was set to 10−3.

Figure 2.11 shows the results for all the various methods as a function of N

for bandwidth h = 0.25. The following observations can be made–

• As expected, for FIGTree the computational cost grows linearly with N .

7The code for FGT for d ≤ 3 was downloaded from the website http://www.cs.ubc.ca/~awll/

nbody_methods.html. For higher dimensions we wrote our own code.
8The code for the FIGTree implementation is available at http://www.umiacs.umd.edu/

~vikas/Software/IFGT/IFGT_code.htm. The ANN library (http://www.cs.umd.edu/~mount/

ANN/) was used to build the kd-tree and perform the nearest neighbor search.
9The code for the dual-tree algorithms was downloaded from the website http://www.cs.ubc.

ca/~awll/nbody_methods.html.
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• For the FGT the cost grows linearly only after a large N when the linear term

O(pdN) dominates the initial large fixed cost of Hermite-Taylor translation.

A similar jump in the performance can also be seen in the original FGT paper

(See Tables 2 and 4 in [29]). While the computational complexity of FIGTree

grows linearly with N , the linear growth of FGT is a bit intricate because

of the various cutoffs involved and the cost of the translation. In order to

understand the complexity of the FGT, we refer to Figure 2.12 where we plot

the theoretical complexity as a function of N for d = 3. Initially before the

translation has kicked in (i.e. before point A in Figure 2.12) the growth is

linear in N . The sudden jump observed is due to the constant associated

with the high cost of translation after which the growth is dominated by the

constant term. From this point all box-box interactions are performed only by

the translations. However after a large N the asymptotics dominate because

the growth in N has dominated the cost of translation (i.e. after point B in

Figure 2.12 ). In practice especially for high dimensions the constant term

due to translation is so large that the N has to be typically very large for the

asymptotic performance to kick in.

• FIGTree shows a better speedup than the FGT. However the FGT finally

catches up with FIGTree (i.e. the asymptotic performance starts dominating)

and shows a speedup similar to that of the FIGTree. However this happens

typically after a very large N . This value of N increases with the dimension-

ality of the problem.
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• With regard to the actual error the FIGTree error is closer to the target than is

the FGT. The dual-tree algorithm shows the best performance in this regard,

and was very close to the target error.

• The dual-tree algorithm appears to be doing O(N2) work. Also it takes much

more time than the direct evaluation probably because of the time taken to

build up the kd-trees. Dual-tree algorithms show good speedups only at very

small bandwidths. Figure 2.13 shows the same results for small bandwidth

of h = 0.05. However the FIGTree shows better speedup than the dual-tree

method for these cases. For small bandwidths FIGTree leverages its speedup

by using the ANN library for efficient neighbor search.

• Figure 2.14 shows the same results for large bandwidth of h = 1.0. For large

bandwidth both the FGT and FIGTree showed very similar performance.

2.10.2 Speedup as a function of d

The main advantage of FIGTree is in higher dimensions where we can no

longer run the FGT algorithm. Figure 2.15 shows the performance for a fixed

N = M = 50, 000 as a function of d for a fixed bandwidth of h = 1.0.

• FGT becomes impractical after three dimensions with the cost of translation

increasing with dimensionality. The FGT gave good speedup only for d ≤ 4.

• For FIGTree, as d increases the crossover point (i.e., the N after which

FIGTree shows a better performance than the direct) increases. Since the
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Figure 2.11: Scaling with N for d = 3 and h = 0.25. (a) The running times in

seconds and (b) the maximum absolute error relative to the total weight Q for direct

evaluation, FGT, dual tree, and FIGTree. The target error was set to 10−3. The

bandwidth was h = 0.25. The source and target points were uniformly distributed

in a unit cube. The weights qi were uniformly distributed between 0 and 1. For

N > 25600 the timing results for the direct evaluation were obtained by evaluating

the Gauss transform at M = 100 points and then extrapolating the results. The

dual-tree algorithm could not be run after a certain N due to limited memory.
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Figure 2.12: The theoretical complexity (O(2pdN + dpd+1(2n +

1)dmin((
√

2rh)−d/2, N))) of the FGT showing different regions as a function

of N = M for d = 3.

crossover point increases with d for N = M = 50, 000 we were able to achieve

good speedups till d = 10. The dual-tree method could not be run for the

bandwidth chosen.

• Figure 2.16 shows the performance for a fixed N = M = 20, 000 as a function

of d. In this case for each dimension we set the bandwidth h = 0.5
√

d (Note

that
√

d is the length of the diagonal of a unit hypercube). The bandwidth

of this order is sometimes used in high dimensional data in a lot of machine

learning tasks and good generalization performance has been achieved. With

h varying with dimension we were able to run the algorithm for arbitrary high

dimensions. The dual-tree algorithm took more than the direct method for

such bandwidths.
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Figure 2.13: Scaling with N for d = 3 and h = 0.05. Same as Figure 2.11 with

h = 0.05.
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Figure 2.14: Scaling with N for d = 3 and h = 1.0. Same as Figure 2.11 with

h = 1.0.
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• Figure 2.17 shows the performance for a fixed N = M = 10, 000 as a function

of d for a fixed small bandwidth of h = 0.001. FIGTree shows much better

speedups than the dual-tree algorithms. For FIGTree the number of clusters

was almost close the the number of source points and hence we build the kd-

tree directly on the source points. The error was almost zero for the FIGTree.

2.10.3 Speedup as a function of the bandwidth h

One of the important concerns for N -body algorithms is their scalability with

bandwidth h. Figure 2.18 shows the performance of the FIGTree and the dual-tree

algorithm as a function of the bandwidth h. The other parameters were fixed at

N = M = 7, 000, ε = 10−3, and d = 2, 3, 4, and, 5.

• The dual-tree algorithm shows good speedup only at small bandwidths. At

large bandwidths the dual-tree algorithms ends up doing the same amount of

work as the direct implementation. The dual-tree appears to take larger time

than the direct probably because of the time taken to build up the kd-trees.

• The dual-tree algorithm also shows good speedup at very large bandwidths

for small dimensions (See the curve for d = 2 in Figure 2.18(a)).

• For large bandwidths FIGTree shows better speedups than the dual-tree algo-

rithm.

• FIGTree also performs better than the dual-tree for small bandwidths. For

small bandwidths the number of clusters K is quite large. When the number
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Figure 2.15: Scaling with d for h = 1.0. (a) The running times in seconds and (b)

the maximum absolute error relative to the total weight Q for direct evaluation,

FGT, and FIGTree as a function of the dimension d. The target error was set at

ε = 10−3. The bandwidth was h = 1.0. N = 50, 000 source and target points

were uniformly distributed in a unit hyper cube. The weights qi were uniformly

distributed between 0 and 1.
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Figure 2.16: Effect of bandwidth h = 0.5
√

d.(a) The running times in seconds and

(b) the maximum absolute error relative to the total weight Q for direct evaluation,

FGT, and FIGTRee as a function of the dimension d. The target error was set at

ε = 10−3. The bandwidth was h = 0.5
√

d. N = 20, 000 source and target points

were uniformly distributed in a unit hyper cube. The weights qi were uniformly

distributed between 0 and 1.
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Figure 2.17: Scaling with d for h = 0.001. (a) The running times in seconds and

(b) the maximum absolute error relative to the total weight Q for direct evaluation,

FGT, and FIGTRee as a function of the dimension d. The target error was set at

ε = 10−3. The bandwidth was h = 0.001. N = 10, 000 source and target points

were uniformly distributed in a unit hyper cube. The weights qi were uniformly

distributed between 0 and 1.
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of clusters is large we use IFGT along with kd-tree on the cluster centers to

search for the influential clusters.

2.10.4 Speedup as a function of the desired error ε

Figure 2.19 shows the tradeoff between the time taken and the desired error ε.

• A decrease in running time is obtained at the expense of reduced precision for

both FIGTtree and the dual-tree method.

• Also the true error for FIGTree is below the desired, thus validating the error

bound and the choice of the parameters.

• The error bound for FIGTree is not tight compared to that of the dual-tree.

The plot demonstrates that for FIGTree there is a further scope for improve-

ment by changing the parameters chosen.

2.10.5 Structured data

Until now we showed results for the worst case scenario–data uniformly dis-

tributed in a unit hypercube. However if there is structure in the data, i.e., the

data is either clustered or lie on some smooth lower dimensional manifold, then the

algorithms show much better speed up. Figure 2.20 compares the time taken by the

FIGTree and dual tree methods as a function of h for four different scenarios:

1. Case 1: Both source and target points are uniformly distributed.
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Figure 2.18: Effect of bandwidth h. (a) The running times in seconds and (b) the

maximum absolute error relative to the total weight Q for direct evaluation, IFGT,

and the kd-tree dual-tree algorithm as a function of the bandwidth h. The target

error was set at ε = 10−3. N = 7, 000 source and target points were uniformly

distributed in a unit hyper cube of dimension d = 2, 3, 4, and, 5. The weights qi were

uniformly distributed between 0 and 1.
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Figure 2.19: Effect of the desired error ε. (a) The running times in seconds and

(b) the maximum absolute error relative to the total weight Q for the dual-tree and

the FIGTree as a function of the desired error ε. The bandwidth was h = 0.03.

N = 5, 000 source and target points were uniformly distributed in a unit hyper cube

of dimension d = 2. The weights qi were uniformly distributed between 0 and 1.
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2. Case 2: Source points are clumpy while the target points are uniformly dis-

tributed.

3. Case 3: Source points uniformly distributed while the target points are clumpy.

4. Case 4: Both source and target points are clumpy.

The clumpy data was generated from a mixture of 10 Gaussians. The following

observations can be made:

• For the dual tree method clumpiness either in source or target points gives

better speedups. However, the performance is still worse than FIGTree.

• For the FIGTree clumpiness in source points gives a much better speed up

than uniform distribution. Clumpiness in target points does not matter since

FIGTree clusters only the source points.

2.10.6 Summary

Table 2.3 summarizes the conditions under with various algorithms perform

better.

• Dual-tree algorithms give good speedups only for small bandwidths.

• FGT performs well only for d ≤ 3.

• For large bandwidths the IFGT is substantially faster than the other methods.

• The FIGTRee algorithm–IFGT combined with kd-tree based nearest neighbor

search–gives the best speedups for small bandwidths.
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Figure 2.20: Effect of clumpy data. The running times for the different methods as

a function of the bandwidth h. [ε = 10−3, N = M = 7, 000, and d = 4]
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• In addition, for moderate bandwidths and moderate dimensions IFGT per-

forms better than dual-tree algorithms.

• For moderate bandwidths and large dimensions we still have to resort to direct

summation.

2.11 Applications

The proposed algorithm can be used in any scenario where we encounter sums

of Gaussians. Applications include kernel density estimation [96], prediction in

SVMs [13], and mean prediction in Gaussian process regression [90]. For training,

the algorithm can be embedded in a conjugate-gradient or any other suitable opti-

mization procedure [95, 73]. In some unsupervised learning tasks the algorithm can

be embedded in iterative methods used to compute the eigen vectors [15]. While

providing experiments for all applications is beyond the scope of this theis, we

demonstrate the use of FIGTree to accelerate the following two learning tasks:

1. Multivariate kernel density estimation (Chapter 5) This involves a direct ap-

plication of FIGTree. All the weights qi are positive and the bandwidth of the

Gaussian kernel decreases as the number of points increases.

2. Gaussian process regression (Chapter 7) For this task FIGTree is embedded in

a conjugate-gradient procedure. In this case the weights can be either positive

or negative. The bandwidth of the Gaussian kernel needed is generally large

and is fairly constant with increasing the number of points.
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2.12 Conclusions

We proposed the fast improved Gauss transform with kd-tree (FIGTree) which

is capable of computing the Gauss transform in O(M + N) time in dimensions as

high as tens for moderate bandwidths and as high as hundreds for large and small

bandwidths. The reduction is based on a new multivariate Taylor series expansion

(which can act both as a local as well as a far field expansion) scheme combined with

the efficient space subdivision using the k-center algorithm. We derived tight point-

wise error bounds and gave a strategy to choose the parameters of the algorithm.

Numerical experiments demonstrated the speedup achieved over the original FGT

and the dual tree algorithm.

The following are two simple extensions.

• The bandwidth h is different for each dimension, i.e.,

G(yj) =
N∑

i=1

qie
−(yj−xi)

T Σ−1(yj−xi) =
N∑

i=1

qie
−∑d

k=1(yj(k)−xi(k))2/h2
k , (2.50)

where Σ is diagonal matrix with the kth element equal to h2
k. In this case we can

divide each co-ordinate of the source and target points with the corresponding

bandwidth hk and then use the algorithm with bandwidth h = 1.

• More generally we can have

G(yj) =
N∑

i=1

qie
−(yj−xi)

T H−1(yj−xi), (2.51)

where H is a symmetric positive definite d × d matrix called the bandwidth

matrix. In this case we can factorize the inverse bandwidth matrix as H−1 =
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UT Σ−1U = (Σ−1/2U)T (Σ−1/2U). Now we can apply the following linear trans-

formation x → Σ−1/2Ux to each of the source and target points and then use

the algorithm with h = 1. This is equivalent to rotating and scaling the points

before using the FIGTree.

We also point out that the algorithm is easily adaptable in an online setting.

If a new target point arrives them we just have to sum the contributions from all

its influential neighbor clusters. If a new single source point arrives we just add its

contribution directly to all the target points. In case a lot of source points arrive

in a batch then we update the coefficients of the clusters to which the source points

belong to and then reevaluate the contribution at the target points.

The C++ code with MATLAB bindings for the IFGT implementation is avail-

able under Lesser GPL at http://www.umiacs.umd.edu/~vikas/Software/IFGT/

IFGT_code.htm.

Our experimental results indicate that it easy to get good speedups at very

large or very small bandwidths. For moderate bandwidths and moderate dimensions

the improved fast Gauss transform is capable of giving good speedups. Getting good

speedups for moderate bandwidths and large dimensions remains an open research

problem.

One of the goals when designing these kind of algorithms is to give high accu-

racy guarantees. But sometimes because of the loose error bounds we end up doing

much more work than necessary. In such a cause the proposed algorithm can be

used by just choosing a truncation number p and seeing how the algorithm performs.
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Input : d (dimension)

h (bandwidth)

ε (error)

N (number of sources)

Output: K (number of clusters)

r (cutoff radius)

pmax (maximum truncation number)

Define

δ(p, a, b) = 1
p!

(
2ab
h2

)p
e−(a−b)2/h2

, b∗(a, p) =
a+
√

a2+2ph2

2
, and rpd =

(
p−1+d

d

)
;

Choose the cutoff radius r ← min(
√

d, h
√

ln(1/ε)) ;

Choose Klimit ← min
(
d20

√
d/he, N

)
(a rough bound on K);

for k ← 1 : Klimit do

compute an estimate of the maximum cluster radius as rx ← k−1/d;

compute an estimate of the number of neighbors as n ← min
(
(r/rx)

d, k
)
;

choose p[k] such that δ(p = p[k], a = rx, b = min [b∗(rx, p[k]), r + rx]) ≤ ε;

compute the constant term c[k] ← dk + d log k + (1 + n)r(p[k]−1)d

end

choose K ← k∗ for which c[k∗] is minimum. pmax ← p[k∗].

Algorithm 1: Choosing the parameters for the IFGT
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Input :

xi ∈ Rd i = 1, . . . , N /* N sources in d dimensions. */

qi ∈ R i = 1, . . . , N /* source weights. */

h ∈ R+ i = 1, . . . , N /* source bandwidth. */

yj ∈ Rd j = 1, . . . , M /* M targets in d dimensions. */

ε > 0 /* Desired error. */

Output: Computes an approximation Ĝ(yj) to G(yj) =
∑N

i=1 qie
−‖yj−xi‖2/h2

. such

that the |Ĝ(yj)−G(yj)|
Q ≤ ε, where Q =

∑N
i=1 |qi|.

Step 0 Define δ(p, a, b) = 1
p!

(
2ab
h2

)p
e−(a−b)2/h2

and b∗(a, p) = a+
√

a2+2ph2

2 ;

Step 1 Choose the cutoff radius r, the number of clusters K, and the maximum

truncation number pmax using Algorithm 1;

Step 2 Divide the N sources into K clusters, {Sk}K
k=1. Let ck and rk

x be the center

and radius respectively of the kth cluster. Let rx = maxk

(
rk
x

)
. ;

Step 3 Update the maximum truncation number based on the actual rx, i.e., choose

pmax such that δ(p = pmax, a = rx,min [b∗(rx, pmax), r + rx]) ≤ ε

Step 4 For each cluster Sk with center ck compute the coefficients Ck
α.

Ck
α = 2α

α!

∑
xi∈Sk

qie
−‖xi−ck‖2/h2 (

xi−ck
h

)α 1|α|≤pi−1 ∀|α| ≤ pmax − 1

The truncation number pi for each source is selected such that

δ(p = pi, a = ‖xi − ck‖, min
[
b∗(‖xi − ck‖, pi), r + rk

x

]
) ≤ ε;

Step 5 For each target yj the discrete Gauss transform is evaluated as

Ĝ(yj) =
∑
‖yj−ck‖≤r+rk

x

∑
|α|≤pmax−1 Ck

αe−‖yj−ck‖2/h2
(

yj−ck

h

)α
;

Algorithm 2: The improved fast Gauss transform.
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FGT IFGT

d # of boxes p # of terms n Constant term # of p # of terms

(Nd
side) (pd) clusters (K) (r(p−1)d)

1 3 9 9 2 7.014806e+002 3 9 9

2 9 10 100 2 1.500000e+005 7 15 120

3 27 10 1000 2 1.948557e+007 15 16 816

4 81 11 14641 2 3.623648e+009 29 17 4845

5 243 11 161051 2 4.314985e+011 31 20 42504

6 729 12 2985984 2 9.069926e+013 62 20 177100

7 2187 14 105413504 2 3.774303e+016 67 22 1184040

Table 2.2: Comparison of the different parameters chosen by the FGT and the IFGT

as a function of the data dimensionality d. N = 100, 000 points were uniformly

distributed in a unit hyper cube. The bandwidth was h = 0.5 and the target error

was ε = 10−6.
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Small dimensions Moderate dimensions Large dimensions

d ≤ 3 3 < d < 10 d ≥ 10

Small bandwidth FIGTree, Dual tree FIGTree, Dual tree FIGTree, Dual tree

h ≤≈ 0.1

Moderate bandwidth

0.1 ≤≈ h ≤≈ 0.5
√

d IFGT, FGT IFGT Direct

Large bandwidth

h ≥≈ 0.5
√

d IFGT, FGT IFGT IFGT

Table 2.3: Summary of the better performing algorithms for different settings of

dimensionality d and bandwidth h (assuming data is scaled to a unit hypercube).

The bandwidth ranges are approximate.
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Chapter 3

Algorithm 2: Fast weighted summation of univariate Hermite ×

Gaussians

Most kernel methods require choosing some hyperparameters (e.g. bandwidth

h of the kernel). Optimal procedures to choose these parameters scale as O(N2).

Most of these procedures involve solving some optimization which involves taking

the derivatives of kernel sums. The derivatives of Gaussian sums involve sums of

products of Hermite polynomials and Gaussians. In this chapter we describe a fast

algorithm to compute the sums of products of univariate Hermite polynomials and

Gaussians. [60, 61]

75



3.1 Introduction

Most state-of-the-art automatic bandwidth selection procedures for kernel den-

sity estimates and other hyperparameter selection procedures require the efficient

computation of sums of Hermite times Gaussian. This sum arises when we differen-

tiate the Gaussian.

Consider the following sum which we need to evaluate at M target points,

{yj ∈ R}M
j=1.

Gr(yj) =
N∑

i=1

qiHr

(
yj − xi

h1

)
e−(yj−xi)

2/h2
2 j = 1, . . . , M, (3.1)

where {qi ∈ R}N
i=1 will be referred to as the source weights, h2 ∈ R+ is the bandwidth

of the Gaussian and h1 ∈ R+ will be referred to as the bandwidth of the Hermite.

Hr(u) is the rth Hermite polynomial. The Hermite polynomials are a set of

orthogonal polynomials [1] . The first few Hermite polynomials are

H0(u) = 1, H1(u) = u, and H2(u) = u2 − 1.

The computational complexity of evaluating Eq. 3.1 is O(rNM). In this chap-

ter we will present an ε − exact approximation algorithm that reduces the compu-

tational complexity to O(prN + npr2M), where the constants p and n depends on

the precision ε and the bandwidth h. For any given ε > 0 the algorithm computes

an approximation Ĝr(yj) such that

∣∣∣∣∣
Ĝr(yj)−Gr(yj)

Q

∣∣∣∣∣ ≤ ε, (3.2)

where Q =
∑N

i=1 |qi|. We call Ĝr(yj) an ε−exact approximation to Gr(yj). The fast

algorithm is based on separating the xi and yj in the Gaussian via the factorization
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of the Gaussian by Taylor series and retaining only the first few terms so that the

error due to truncation is less than the desired error. The Hermite function is

factorized via the binomial theorem.

3.2 Factorization of the Gaussian

For any point x∗ ∈ R the Gaussian can be written as,

e−‖yj−xi‖2/h2
2 = e−‖(yj−x∗)−(xi−x∗)‖2/h2

2

= e−‖xi−x∗‖2/h2
2e−‖yj−x∗‖2/h2

2e2(xi−x∗)(yj−x∗)/h2
2 . (3.3)

In Eq. 3.3 the first exponential e−‖xi−x∗‖2/h2
depends only on the source coordinates

xi. The second exponential e−‖yj−x∗‖2/h2
depends only on the target coordinates

yj. However for the third exponential e2(yj−x∗)(xi−x∗)/h2
the source and target are

entangled. This entanglement is separated using the Taylor’s series expansion.

The factorization of the Gaussian and the evaluation of the error bounds are

based on the Taylor’s series and Lagrange’s evaluation of the remainder which we

state here without the proof.

Theorem 4 [Taylor’s Series] For any point x∗ ∈ R, let I ⊂ R be an open set

containing the point x∗. Let f : I → R be a function which is n times differentiable

on I. Then for any x ∈ I, there is a θ ∈ R with 0 < θ < 1 such that

f(x) =
n−1∑

k=0

1

k!
(x− x∗)kf (k)(x∗) +

1

n!
(x− x∗)nf (n)(x∗ + θ(x− x∗)), (3.4)

where f (k) is the kth derivative of the function f .

Based on the above theorem we have the following theorem.
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Theorem 5 Let Brx(x∗) be a open interval of radius rx with center x∗ ∈ R, i.e.,

Brx(x∗) = {x : ‖x − x∗‖ < rx}. Let h ∈ R+ be a positive constant and y ∈ R be

a fixed point such that ‖y − x∗‖ < ry. For any x ∈ Brx(x∗) and any non-negative

integer p the function f(x) = e2(x−x∗)(y−x∗)/h2
can be written as

f(x) = e2(x−x∗)(y−x∗)/h2

=

p−1∑

k=0

2k

k!

(
x− x∗

h

)k (
y − x∗

h

)k

+ Rp(x), (3.5)

and the residual

Rp(x) ≤ 2p

p!

(‖x− x∗‖
h

)p (‖y − x∗‖
h

)p

e2‖x−x∗‖‖y−x∗‖/h2

.

<
2p

p!

(rxry

h2

)p

e2rxry/h2

. (3.6)

Proof: Let us define a new function g(x) = e2[x(y−x∗)]/h2
. Using the result

g(k)(x∗) =
2k

hk
e2[x∗(y−x∗)]/h2

(
y − x∗

h

)k

(3.7)

and Theorem 4, we have for any x ∈ Brx(x∗) there is a θ ∈ R with 0 < θ < 1 such

that

g(x) = e2[x∗(y−x∗)]/h2

{
p−1∑

k=0

2k

k!

(
x− x∗

h

)k (
y − x∗

h

)k

+
2p

p!

(
x− x∗

h

)p (
y − x∗

h

)p

e2θ[(x−x∗).(y−x∗)]/h2

}
.

Hence

f(x) = e2(x−x∗)(y−x∗)/h2

=

p−1∑

k=0

2k

k!

(
x− x∗

h

)k (
y − x∗

h

)k

+ Rp(x),

where,

Rp(x) =
2p

p!

(
x− x∗

h

)p (
y − x∗

h

)p

e2θ[(x−x∗)(y−x∗)]/h2

.
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The remainder is bounded as follows.

Rp(x) ≤ 2p

p!

(‖x− x∗‖
h

)p (‖y − x∗‖
h

)p

e2θ‖x−x∗‖‖y−x∗‖/h2

,

≤ 2p

p!

(‖x− x∗‖
h

)p (‖y − x∗‖
h

)p

e2‖x−x∗‖‖y−x∗‖/h2

[Since 0 < θ < 1],

<
2p

p!

(rxry

h2

)p

e2rxry/h2

[Since ‖x− x∗‖ < rx and ‖y − x∗‖ < ry].

Using Theorem 5 the Gaussian can now be factorized as

e−‖yj−xi‖2/h2
2 =

p−1∑

k=0

2k

k!

[
e−‖xi−x∗‖2/h2

2

(
xi − x∗

h2

)k
][

e−‖yj−x∗‖2/h2
2

(
yj − x∗

h2

)k
]

+ errorp (3.8)

where,

errorp ≤ 2p

p!

(‖xi − x∗‖
h2

)p (‖yj − x∗‖
h2

)p

e−(‖xi−x∗‖−‖yj−x∗‖)2/h2
2 . (3.9)

3.3 Factorization of the Hermite polynomial

The rth Hermite polynomial can be written as [87]

Hr(x) =

br/2c∑

l=0

alx
r−2l, where al =

(−1)lr!

2ll!(r − 2l)!
.

Hence,

Hr

(
yj − xi

h1

)
=

br/2c∑

l=0

al

(
yj − x∗

h1

− xi − x∗
h1

)r−2l

.

Using the binomial theorem (a + b)n =
∑n

m=0

(
n
m

)
ambn−m, the xi and yj can be

separated as follows.

(
yj − x∗

h1

− xi − x∗
h1

)r−2l

=
r−2l∑
m=0

(−1)m

(
r − 2l

m

)(
xi − x∗

h1

)m (
yj − x∗

h1

)r−2l−m

.
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Substituting in the previous equation we have

Hr

(
yj − xi

h1

)
=

br/2c∑

l=0

r−2l∑
m=0

alm

(
xi − x∗

h1

)m (
yj − x∗

h1

)r−2l−m

(3.10)

where,

alm =
(−1)l+mr!

2ll!m!(r − 2l −m)!
. (3.11)

3.4 Regrouping of the terms

Using Eq. 3.8 and 3.10, Gr(yj) after ignoring the error terms can be approxi-

mated as

Ĝr(yj) =

p−1∑

k=0

br/2c∑

l=0

r−2l∑
m=0

alm

[
2k

k!

N∑
i=1

qie
−‖xi−x∗‖2/h2

2

(
xi − x∗

h2

)k (
xi − x∗

h1

)m
]

[
e−‖yj−x∗‖2/h2

2

(
yj − x∗

h2

)k (
yj − x∗

h1

)r−2l−m
]

=

p−1∑

k=0

br/2c∑

l=0

r−2l∑
m=0

almBkme−‖yj−x∗‖2/h2
2

(
yj − x∗

h2

)k (
yj − x∗

h1

)r−2l−m

where

Bkm =
2k

k!

N∑
i=1

qie
−‖xi−x∗‖2/h2

2

(
xi − x∗

h2

)k (
xi − x∗

h1

)m

.

The coefficients Bkm can be evaluated separately in O(prN). Evaluation of Ĝr(yj)

at M points is O(pr2M). Hence the computational complexity has reduced from

the quadratic O(rNM) to the linear O(prN + pr2M).

3.5 Space subdivision

Thus far, we have used the Taylor’s series expansion about a certain point

x∗. However if we use the same x∗ for all the points we typically would require
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very high truncation number p since the Taylor’s series gives good approximation

only in a small open interval around x∗. We uniformly sub-divide the space into K

intervals of length 2rx. The N source points are assigned into K clusters, Sn for

n = 1, . . . , K with cn being the center of each cluster. The aggregated coefficients

are now computed for each cluster and the total contribution from all the clusters

is summed up.

Ĝr(yj) =
K∑

n=1

p−1∑

k=0

br/2c∑

l=0

r−2l∑
m=0

almBn
kme−‖yj−cn‖2/h2

2

(
yj − cn

h2

)k (
yj − cn

h1

)r−2l−m

(3.12)

where,

Bn
km =

2k

k!

∑
xi∈Sn

qie
−‖xi−cn‖2/h2

2

(
xi − cn

h2

)k (
xi − cn

h1

)m

. (3.13)

3.6 Decay of the Gaussian

Since the Gaussian decays very rapidly a further speedup is achieved if we

ignore all the sources belonging to a cluster if the cluster is greater than a certain

distance from the target point, i.e., ‖yj − cn‖ > ry. The cluster cutoff radius ry

depends on the desired error ε. Substituting h1 = h and h2 =
√

2h we have

Ĝr(yj) =
∑

‖yj−cn‖≤ry

p−1∑

k=0

br/2c∑

l=0

r−2l∑
m=0

almBn
kme−‖yj−cn‖2/2h2

(
yj − cn

h

)k+r−2l−m

(3.14)

where,

Bn
km =

1

k!

∑
xi∈Sn

qie
−‖xi−cn‖2/2h2

(
xi − cn

h

)k+m

(3.15)

and

alm =
(−1)l+mr!

2ll!m!(r − 2l −m)!
. (3.16)
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3.7 Computational and space complexity

Computing the coefficients Bn
km for all the clusters is O(prN). Evaluation of

Ĝr(yj) at M points is O(npr2M), where n if the maximum number of neighbor

clusters which influence yj. Hence the total computational complexity is O(prN +

npr2M). Assuming N = M the total computational complexity is O(cN) where the

constant c = pr + npr2 depends on the desired error, the bandwidth, and r. For

each cluster we need to store all the pr coefficients. Hence the storage needed is of

O(prK + N + M).

3.8 Error bounds and choosing the parameters

Given any ε > 0, we want to choose the following parameters, rx (the interval

length), ry (the cut off radius for each cluster), and p (the truncation number) such

that for any target point yj

∣∣∣∣∣
Ĝr(yj)−Gr(yj)

Q

∣∣∣∣∣ ≤ ε, (3.17)

where Q =
∑N

i=1 |qi|. Let us define ∆ij to be the point wise error in Ĝr(yj) con-

tributed by the ith source xi. We now require that

|Ĝr(yj)−Gr(yj)| =
∣∣∣∣∣

N∑
i=1

∆ij

∣∣∣∣∣ ≤
N∑

i=1

|∆ij| ≤
N∑

i=1

|qi|ε. (3.18)

One way to achieve this is to let

|∆ij| ≤ |qi|ε ∀i = 1, . . . , N.

Let cn be the center of the cluster to which xi belongs. There are two different ways

in which a source can contribute to the error. The first is due to ignoring the cluster
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Sn if it is outside a given radius ry from the target point yj. In this case,

∆ij = qiHr

(
yj − xi

h

)
e−‖yj−xi‖2/2h2

. (3.19)

For all clusters which are within a distance ry from the target point the error is due

to the truncation of the Taylor’s series after order p − 1. From Eq. 3.9 and using

the fact that h1 = h and h2 =
√

2h we have,

∆ij ≤ qi

p!
Hr

(
yj − xi

h

)(‖xi − cn‖
h

)p (‖yj − cn‖
h

)p

e−(‖xi−cn‖−‖yj−cn‖)2/2h2

.

(3.20)

3.8.1 Choosing the cut-off radius

We want to choose the cut-off radius such that (Eq. 3.19)

∣∣∣∣Hr

(
yj − xi

h

)∣∣∣∣ e−‖yj−xi‖2/2h2 ≤ ε (3.21)

We use the following inequality to bound the Hermite polynomial [3].

∣∣∣∣Hr

(
yj − xi

h

)∣∣∣∣ ≤
√

r!e‖yj−xi‖2/4h2

. (3.22)

Substituting this bound in Eq. 7.7 we have

e−‖yj−xi‖2/4h2 ≤ ε/
√

r!. (3.23)

This implies that ‖yj − xi‖ > 2h
√

ln (
√

r!/ε). Using the reverse triangle inequality,

‖a− b‖ ≥
∣∣‖a‖− ‖b‖

∣∣, and the fact that ‖yj − cn‖ > ry and ‖xi− cn‖ ≤ rx, we have

‖yj − xi‖ = ‖(yj − cn)− (xi − cn)‖ ≥
∣∣‖(yj − cn)‖ − ‖(xi − cn)‖

∣∣ >
∣∣ry − rx

∣∣ (3.24)
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So in order that the error due to ignoring the faraway clusters is less than |qi|ε we

have to choose ry such that

∣∣ry − rx

∣∣ > 2h

√
ln (
√

r!/ε). (3.25)

If we choose ry > rx then,

ry > rx + 2h

√
ln (
√

r!/ε). (3.26)

3.8.2 Choosing the truncation number

For a given source xi we have to choose the truncation number p such that

|∆ij| ≤ |qi|ε. ∆ij depends both on distance between the source and the cluster

center, i.e., ‖xi − cn‖ and the distance between the target and the cluster center,

i.e., ‖yj − cn‖.

For all sources for which ‖yj − cn‖ ≤ ry we have

∆ij ≤ qi

p!
Hr

(
yj − xi

h

)(‖xi − cn‖
h

)p (‖yj − cn‖
h

)p

e−(‖xi−cn‖−‖yj−cn‖)2/2h2

.

(3.27)

Using the bound on the Hermite polynomial (Eq. 3.22) this can be written as

|∆ij| ≤ |qi|
√

r!

p!

(‖xi − cn‖
h

)p (‖yj − cn‖
h

)p

e−(‖xi−cn‖−‖yj−cn‖)2/4h2

.

(3.28)

The speedup is achieved because at each cluster Sn we sum up the effect of all the

sources. As a result we do not have a knowledge of ‖yj − cn‖. So we will have

to bound the right hand side of Eq. 3.28, such that it is independent of ‖yj − cn‖.
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Fig. 3.1 shows the error at yj due to source xi, i.e., |∆ij| [Eq. 3.28] as a function of

‖yj−cn‖ for different values of p and for h = 0.1 and r = 4. The error increases as a

function of ‖yj−cn‖, reaches a maximum and then starts decreasing. The maximum

is attained at (obtained by taking the first derivative of the R.H.S. of Eq. 3.28 and

setting it to zero),

‖yj − cn‖∗ =
‖xi − cn‖+

√
‖xi − cn‖2 + 8ph2

2
(3.29)

Hence we choose p such that,

|∆ij|
∣∣
[‖yj−cn‖=‖yj−cn‖∗] ≤ |qi|ε. (3.30)

In case ‖yj − cn‖∗ > ry we need to choose p based on ry, since ∆ij will be much

lower there. Hence out strategy for choosing p is ,

|∆ij|
∣∣
[‖yj−cn‖=min (‖yj−cn‖∗,ry), ‖xi−cn‖=rx] ≤ |qi|ε. (3.31)

3.8.3 Choosing the interval length

The only free parameter remaining the interval length rx. We set rx = h/2.

If the truncation number chosen is very high then rx can be reduced. The final

algorithm is summarized below.

1. Scale the N data points {xi}N
i=1 to lie in the unit interval [0, 1].

2. Choose rx = h/2. Sub-divide the unit interval into K intervals of length 2rx.

The N source points are assigned into K clusters, Sn for n = 1, . . . , K with cn

being the center of each cluster.
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Figure 3.1: The error at yj due to source xi, i.e., ∆ij [Eq. 3.28] as a function of

‖yj − cn‖ for different values of p and for h = 0.1 and r = 4. The error increases

as a function of ‖yj − cn‖, reaches a maximum and then starts decreasing. The

maximum is marked as ’*’. qi = 1 and ‖xi − cn‖ = 0.1.

86



3. Choose the cutoff radius ry = rx + 2h
√

ln (
√

r!/ε).

4. Choose the truncation number p such that

√
r!

p!

(
rxb

h2

)p

e−(rx−b)2/4h2 ≤ ε, whereb = min

(
ry,

rx +
√

r2
x + 8ph2

2

)
. (3.32)

5. For each cluster Sn compute the aggregated coefficients Bn
km for k = 0, . . . , p−1

and m = 0, . . . , r.

Bn
km =

1

k!

∑
xi∈Sn

qie
−‖xi−cn‖2/2h2

(
xi − cn

h

)k+m

(3.33)

6. Compute the coefficients alm for l = 0, . . . , br/2c and m = 0, . . . , r.

alm =
(−1)l+mr!

2ll!m!(r − 2l −m)!
. (3.34)

7. The approximate the kernel density derivative at point yj is computed as

Ĝr(yj) =
∑

‖yj−cn‖≤ry

p−1∑

k=0

br/2c∑

l=0

r−2l∑
m=0

almBn
kme−‖yj−cn‖2/2h2

(
yj − cn

h

)k+r−2l−m

(3.35)

3.9 Numerical experiments

In this section we present some numerical studies of the speedup and the actual

error as a function of the number of data points, the bandwidth h, the order r, and

the desired error ε. The algorithm was programmed in C++ with MATLAB bindings

and was run on 2.4 GHz processor with 2 GB of RAM. The code is available under

LGPL at http://www.umiacs.umd.edu/~vikas/Software/optimal_bw/optimal_

bw_code.htm.

Fig. 4.4 shows the running time and the maximum absolute error relative to Q

for both the direct and the fast methods as a function of N = M . The bandwidth
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was h = 0.1 and the order of the derivative was r = 4. The source and the target

points were uniformly distributed in the unit interval. We see that the running time

of the fast method grows linearly as the number of sources and targets increases,

while that of the direct evaluation grows quadratically. We also observe that the

error is way below the desired error thus validating our bound.

Fig. 4.5 shows the tradeoff between precision and speedup. An increase in

speedup is obtained at the cost of reduced accuracy. Fig. 3.4 shows the results as a

function of bandwidth h. Better speedup is obtained at larger bandwidths. Fig. 3.5

shows the results for different orders of the density derivatives.
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Figure 3.2: (a) The running time in seconds and (b) maximum absolute error relative

to Q for the direct and the fast methods as a function of N . N = M source and

the target points were uniformly distributed in the unit interval. For N > 25, 600

the timing results for the direct evaluation were obtained by evaluating the result

at M = 100 points and then extrapolating. [h = 0.1, r = 4, and ε = 10−6.]
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Figure 3.3: (a) The speedup achieved and (b) maximum absolute error relative to

Q for the direct and the fast methods as a function of ε. N = M = 50, 000 source

and the target points were uniformly distributed in the unit interval. [h = 0.1 and

r = 4]
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Figure 3.4: (a) The running time in seconds and (b) maximum absolute error relative

to Q for the direct and the fast methods as a function of h. N = M = 50, 000 source

and the target points were uniformly distributed in the unit interval. [ε = 10−6 and

r = 4]
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Figure 3.5: (a) The running time in seconds and (b) maximum absolute error relative

to Q for the direct and the fast methods as a function of r. N = M = 50, 000 source

and the target points were uniformly distributed in the unit interval. [ε = 10−6 and

h = 0.1]
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Chapter 4

Algorithm 3: Fast weighted summation of erfc functions

Direct computation of the weighted sum of N complementary error functions

at M points scales as O(MN). We present a O(M + N) ε-exact approximation

algorithm to compute the same [63]. We have encountered this sum in a ranking

problem.
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Figure 4.1: The erfc function.

4.1 Introduction

The complementary error function is defined as follows (see Figure 4.1) [1]

erfc(z) =
2√
π

∫ ∞

z

e−t2dt. (4.1)

Consider the following weighted summation of N erfc functions each centered at

{xi}N
i=1.

E(y) =
N∑

i=1

qi erfc(y − xi). (4.2)

The scalars qi will be referred to as the weights. Direct computation of (8.18) at M

points {yj}M
j=1 is O(MN). In this report we will derive an ε-exact approximation

algorithm to compute the same in O(M + N) time.

For any given ε > 0, Ê is an ε − exact approximation to E if the maximum

absolute error relative to the total weight Qabs =
∑N

i=1 |qi| is upper bounded by ε,
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i.e.,

max
yj

[
|Ê(yj)− E(yj)|

Qabs

]
≤ ε. (4.3)

The constant in O(M + N), depends on the desired accuracy ε, which however can

be arbitrary. In fact for machine precision accuracy there is no difference between

the direct and the fast methods. The algorithm is inspired by the fast multipole

methods proposed in computational physics [27]. The fast algorithm is based on

using a infinite series expansion for the erfc function and retaining only the first few

terms contributing to the desired accuracy ε.

4.2 Series expansion

Several series exist for the erfc function (See for e.g. Chapter 7 in [1]). Some

are applicable only to a restricted interval, while other need a large number of terms

to converge. We use the following series derived by Beauliu [4, 80].

erfc(x) = 1− 4

π

2p−1∑

n=1
n odd

e−n2h2

n
sin (2nhx) + error(x), (4.4)

where

|error(x)| <

∣∣∣∣∣∣∣
4

π

∞∑

n=2p+1
n odd

e−n2h2

n
sin (2nhx)

∣∣∣∣∣∣∣
+ erfc

( π

2h
− |x|

)
. (4.5)

Here, p is the truncation number and h is a real number related to the sampling

interval. These kind of series are of interest in the field digital communications

wherein the noise is modeled as a Gaussian random variable. The series is derived

by applying a Chernoff bound approach to an approximate Fourier series expansion

of a periodic square waveform [4].
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Figure 4.2: (a) The maximum absolute error between the actual value of erfc and the

truncated series representation (Eq. 7.6) as a function of the truncation number p for any

x ∈ [−4, 4]. The error bound (Eq. 4.6) is also shown. (b) A sample plot of the actual erfc

function and the p = 3 truncated series representation. The error as a function of x is

also shown in the lower panel.
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This series converges rapidly especially as x → 0. Figure 4.2(a) shows the

maximum absolute error between the actual value of erfc 1 and the truncated series

representation as a function of p. For example for any x ∈ [−4, 4] with p = 12 the

error is less than 10−6. We have to choose p and h such that the error has to be less

than ε. We further bound the first term in (4.5) as follows.

∣∣∣∣∣∣∣
4

π

∞∑

n=2p+1
n odd

e−n2h2

n
sin (2nhx)

∣∣∣∣∣∣∣
≤ 4

π

∞∑

n=2p+1
n odd

e−n2h2

n
|sin (2nhx)|

≤ 4

π

∞∑

n=2p+1
n odd

e−n2h2

n
[ Since |sin (2nhx)| ≤ 1]

<
4

π

∞∑

n=2p+1
n odd

e−n2h2

<
4

π

∫ ∞

2p+1

e−x2h2

dx <
2√
πh

[
2√
π

∫ ∞

(2p+1)h

e−t2dt

]

=
2√
πh

erfc((2p + 1)h).

Hence

|error(x)| < 2√
πh

erfc ((2p + 1)h) + erfc
( π

2h
− |x|

)
. (4.6)

For a fixed p and h as |x| increases the error increases. Therefore as |x| increases,

h should decrease and consequently the series converges slower leading to a large

truncation number p.

1There is no closed form expression to compute erfc directly. The implementation in MATLAB

uses a rational Chebyshev approximation and the accuracy is not adequate enough. In order to

compare the error between the actual and the series approximation we use the Maple implementa-

tion(feval(maple(’erfc’),x))) which provides very high precision using symbolic integration.
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4.3 Fast summation algorithm

We will now derive a fast algorithm to compute E(y) based on the series (7.6).

E(y) =
N∑

i=1

qierfc(y − xi)

=
N∑

i=1

qi


1− 4

π

2p−1∑

n=1
n odd

e−n2h2

n
sin {2nh(y − xi)}+ error


 . (4.7)

Ignoring the error term the sum E(y) can be approximated as

Ê(y) = Q− 4

π

N∑
i=1

qi

2p−1∑

n=1
n odd

e−n2h2

n
sin {2nh(y − xi)}, (4.8)

where Q =
∑N

i=1 qi. The terms y and xi appear together in the argument of the

sin function. We separate them using the trigonometric identity sin (α− β) =

sin (α) cos (β)− cos (α) sin (β).

sin {2nh(y − xi)} = sin {2nh(y − x∗)− 2nh(xi − x∗)}

= sin {2nh(y − x∗)} cos {2nh(xi − x∗)}

− cos {2nh(y − x∗)} sin {2nh(xi − x∗)}. (4.9)

Note that we have shifted all the points by x∗. Substituting the separated represen-

tation (4.9) in Eq. 4.8 we have

Ê(y) = Q− 4

π

N∑
i=1

qi

2p−1∑

n=1
n odd

e−n2h2

n
sin {2nh(y − x∗)} cos {2nh(xi − x∗)}

+
4

π

N∑
i=1

qi

2p−1∑

n=1
n odd

e−n2h2

n
cos {2nh(y − x∗)} sin {2nh(xi − x∗)}. (4.10)
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Exchanging the order of summation and regrouping the terms we have the following

expression.

Ê(y) = Q− 4

π

2p−1∑

n=1
n odd

[An sin {2nh(y − x∗)} − Bn cos {2nh(y − x∗)}] . (4.11)

where

An =
e−n2h2

n

N∑
i=1

qi cos {2nh(xi − x∗)} and Bn =
e−n2h2

n

N∑
i=1

qi sin {2nh(xi − x∗)}

(4.12)

4.4 Runtime and storage analysis

Note that the coefficients {An, Bn}2p−1
n=1(n odd) do not depend on y. Hence each

of An and Bn can be evaluated separately is O(N) time. Since there are p such

coefficients the total complexity to compute A and B is O(2pN). The term Q =

∑N
i=1 qi can also be precomputed in O(N) time. Once A, B, and Q have been

precomputed, evaluation of Ê(y) requires O(2p) operations. Evaluating at M points

is O(2pM). Hence the computational complexity has reduced from the quadratic

O(NM) to the linear O((2p + 1)N + 2pM). We need space to store the points and

the coefficients A and B. Hence the storage complexity is O(N + M + 2p).

4.5 Direct inclusion and exclusion of faraway points

Note that z = (y − xi) ∈ [−∞,∞]. The truncation number p required to

approximate erfc(z) can be quite large for large |z|. Luckily erfc(z) → 2 as z → −∞

and erfc(z) → 0 as z →∞ very quickly [See Figure 4.3(a)]. Since we are interested
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in the result only to a certain precision ε we can use the following approximation.

erfc(z) ≈





2 if z < −r

p-truncated series if −r ≤ z ≤ r

0 if z > r

(4.13)

The bound r and the truncation number p have to be chosen such that for any z

the error is always less than ε. From Figure 4.3(b) we can see that for error of the

order 10−15 we need to use the series expansion for −6 ≤ z ≤ 6.

However we cannot check the value of (y − xi) for all pairs of xi and y. This

would lead us back to the quadratic complexity. To avoid this, we subdivide the

points into clusters.

4.6 Space sub-division

We uniformly sub-divide the space into K intervals of length 2rx. The N source

points are assigned into K clusters, Sk for k = 1, . . . , K with ck being the center of

each cluster. The aggregated coefficients are now computed for each cluster and the

total contribution from all the influential clusters is summed up. For each cluster

if |y − ck| ≤ ry then we will incorporate the series coefficients. If (y − ck) < −ry

then we will include a contribution of 2Qk. If (y− ck) > ry then we will ignore that

cluster. Hence

Ê(y) =
∑

|y−ck|≤ry


Qk − 4

π

2p−1∑

n=1
n odd

[
Ak

n sin {2nh(y − ck)} − Bk
n cos {2nh(y − ck)}

]



+
∑

(y−ck)<−ry

2Qk. (4.14)
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Figure 4.3: (a) The erfc function (b) The value of r for which erfc(z) < ε, ∀z > r
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where

Ak
n =

e−n2h2

n

N∑
i=1

qi cos {2nh(xi − ck)},

Bk
n =

e−n2h2

n

N∑
i=1

qi sin {2nh(xi − ck)}, and

Qk =
∑

∀xi∈Sk

qi. (4.15)

The computational complexity to compute A,B, and Q is still O((2p + 1)N) since

each xi belongs to only one cluster. Let l be the number of influential clusters, i.e.,

the clusters for which |y − ck| ≤ ry. Evaluating Ê(y) at M points due to these l

clusters is O(2plM). Let m be the number of clusters for which (y − ck) < −ry.

Evaluating Ê(y) at M points due to these m clusters is O(mM). Hence the total

computational complexity is O((2p + 1)N + (2pl + m)M). The storage complexity

is O(N + M + (2p + 1)K).

4.7 Choosing the parameters

Given any ε > 0, we want to choose the following parameters,

• rx (the interval length),

• r (the cut off radius ),

• p (the truncation number), and

• h such that

for any target point y ∣∣∣∣∣
Ê(y)− E(y)

Qabs

∣∣∣∣∣ ≤ ε, (4.16)
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where Qabs =
∑N

i=1 |qi|.

Let us define ∆i to be the point wise error in Ê(y) contributed by the ith

source xi. We now require that

|Ê(y)− E(y)| =
∣∣∣∣∣

N∑
i=1

∆i

∣∣∣∣∣ ≤
N∑

i=1

|∆i| ≤
N∑

i=1

|qi|ε. (4.17)

One way to achieve this is to let |∆i| ≤ |qi|ε ∀i = 1, . . . , N.

For all xi such that |y − xi| ≤ r we have

|∆i| < |qi| 2√
πh

erfc ((2p + 1)h)

︸ ︷︷ ︸
Te

+ |qi|erfc
( π

2h
− r

)

︸ ︷︷ ︸
Se

. (4.18)

We have to choose the parameters such that |∆i| < |qi|ε. We will let Se < |qi|ε/2.

This implies that

π

2h
− r > erfc−1 (ε/2) . (4.19)

Hence we have to choose

h <
π

2
(
r + erfc−1 (ε/2)

) . (4.20)

We will choose

h =
π

3
(
r + erfc−1 (ε/2)

) . (4.21)

We will choose p such that Te < |qi|ε/2. This implies that

2p + 1 >
1

h
erfc−1

(√
πhε

4

)
. (4.22)

We choose

p =

⌈
1

2h
erfc−1

(√
πhε

4

)⌉
. (4.23)

Note that as r increases h decreases and consequently p increases. If x ∈ (r,∞] we

approximate erfc(x) by 0 and if x ∈ [−∞,−r) then approximate erfc(x) by 2. If we
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choose

r > erfc−1(ε), (4.24)

then the approximation will result in a error < ε. In practice we choose

r = erfc−1(ε) + 2rx, (4.25)

where rx is the cluster radius. For a target point y the number of influential clusters

(2l + 1) =

⌈
2r

2rx

⌉
. (4.26)

Let us choose rx = 0.1erfc−1(ε). This implies 2l + 1 = 12. So we have to consider

n = 6 clusters on either side of the target point. Summarizing the parameters are

given by

1. rx = 0.1erfc−1(ε).

2. r = erfc−1(ε) + 2rx.

3. h = π/3
(
r + erfc−1 (ε/2)

)
.

4. p =
⌈

1
2h

erfc−1
(√

πhε
4

)⌉
.

5. (2l + 1) = dr/rxe.

4.8 Numerical experiments

In this section we present some numerical studies of the speedup and error as

a function of the number of data points and the desired error ε. The algorithm was

programmed in C++ with MATLAB bindings and was run on a 1.6 GHz Pentium

M processor with 512MB of RAM.
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Figure 4.4: (a) The running time in seconds and (b) maximum absolute error relative to

Qabs for the direct and the fast methods as a function of N = M . For N > 3, 200 the

timing results for the direct evaluation were obtained by evaluating the sum at M = 100

points and then extrapolating (shown as dotted line).

105



10
−10

10
−5

500

1000

1500

2000

2500

3000

3500

4000

ε

S
pe

ed
up

(a)

10
−10

10
−5

10
−15

10
−10

10
−5

10
0

ε

M
ax

. A
bs

. e
rr

or
/ Q

Desired
Actual

(b)

Figure 4.5: (a) The speedup achieved and (b) maximum absolute error relative to Q for

the direct and the fast methods as a function of ε for N = M = 3, 000.
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Figure 4.4 shows the running time and the maximum absolute error relative

to Qabs for both the direct and the fast methods as a function of N = M . The

points were normally distributed with zero mean and unit variance. The weights qi

were set to 1. We see that the running time of the fast method grows linearly, while

that of the direct evaluation grows quadratically. We also observe that the error

is way below the desired error thus validating our bound. For example for N =

M = 51, 200 points while the direct evaluation takes around 17.26 hours the fast

evaluation requires only 4.29 seconds with an error of around 10−10. Figure 4.5 shows

the tradeoff between precision and speedup. An increase in speedup is obtained at

the cost of reduced accuracy.
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Chapter 5

Kernel density estimation

Kernel density estimation [87] techniques are widely used in exploratory data

analysis, various inference procedures in machine learning, data mining, pattern

recognition, and computer vision.

A random variable X on Rd has a density p if, for all Borel sets A of Rd,

∫
A

p(x)dx = Pr[x ∈ A]. The task of density estimation is to estimate p from an i.i.d.

sample x1, . . . , xN drawn from p. The estimate p̂ : Rd × (
Rd

)N → R is called the

density estimate.

The parametric approach to density estimation assumes a functional form for

the density, and then estimates the unknown parameters using techniques like the

maximum likelihood estimation. However unless the form of the density is known

a priori, assuming a functional form for a density very often leads to erroneous

inference. On the other hand nonparametric methods do not make any assumption

on the form of the underlying density. The price to be paid is a rate of convergence

slower than 1/N , which is typical of parametric methods. Some of the commonly

used non-parametric estimators include histograms, kernel density estimators, and

orthogonal series estimators [39].
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5.1 Kernel density estimation

The most popular non-parametric method for density estimation is the kernel

density estimator (KDE) (also known as the Parzen window estimator [54]). In its

most general form , the d-dimensional KDE is

p̂(x) =
1

N

N∑
i=1

KH (x− xi) , where KH(x) = |H|−1/2K(H−1/2x). (5.1)

The d-variate function K is called the kernel function and H is a symmetric positive

definite d× d matrix called the bandwidth matrix. In order that p̂(x) is a bona fide

density, the kernel function is required to satisfy the following two conditions:

K(u) ≥ 0, and

∫

Rd

K(u)du = 1. (5.2)

The most commonly used kernel is the standard d-variate normal density–

K(u) = (2π)−d/2e−‖u‖
2/2. (5.3)

In general a fully parameterized d × d positive definite bandwidth matrix H can

be used to define the density estimate. However in high dimensions the number of

independent parameters (d(d + 1)/2) are too large to make a good choice. Hence

the most commonly used choice is H = diag(h2
1, . . . , h

2
d) or H = h2I. For the case

when H = h2I the density estimate can be written as,

p̂(x) =
1

N

N∑
i=1

1

(2πh2)d/2
e−‖x−xi‖2/2h2

. (5.4)

The computational cost of evaluating (6.5) at M points due to N data points

is O(NM), making it prohibitively expensive for large datasets. The proposed
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FIGTree algorithm (chapter 2) can be used to compute the sum approximately to ε

precision in O(N + M) time. Given a specified precision ε it computes as approxi-

mation p̂FIGTree(x) to p̂(x) such that

|p̂(x)− p̂FIGTree(x)| ≤ (2πh2)
−d/2

ε. (5.5)

5.2 Bandwidth selection

For a practical implementation of KDE the choice of the bandwidth h is very

important. A small h leads to an estimator with small bias and large variance, while

a large h leads to a small variance at the expense of an increase in the bias. The

bandwidth h has to be chosen optimally. Various techniques have been proposed for

optimal bandwidth selection [41]. They fall into broadly two categories– (1) plug-in

bandwidths and (2) bandwidths chosen by cross-validation.

The plug-in bandwidths are known to show more stable performance [87] than

the cross-validation methods. They are based on deriving an expression for the

Asymptotic Mean Integrated Squared Error (AMISE) as a function of the band-

width and then choosing the bandwidth which minimizes it. The simplest among

these known as the rules of thumb (ROT) assumes that the data is generated by a

multivariate normal distribution. For a normal distribution with covariance matrix

Σ = diag(σ2
1, . . . , σ

2
d) and the bandwidth matrix of the form H = diag(h2

1, . . . , h
2
d)

the optimal bandwidths are given by [87]

hROT
j =

(
4

d + 2

)1/(d+4)

N−1/(d+4)σ̂j, (5.6)

where σ̂j is an estimate of σj. This method is known to provide a quick first guess
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and can be expected to give reasonable bandwidth when the data is close to a normal

distribution. It is reported that this tends to slightly oversmooth the data. So in our

experiments we only use this as a guess and show the speedup achieved over a range

of bandwidths around hROT . As a practical issue we did not prefer cross-validation

because we will have to do the KDE for a range of bandwidths, both small and

large.

5.3 Experiments

For our experimental comparison we used the SARCOS dataset 1. The dataset

contains 44,484 samples in a 21 dimensional space. The data relates to an inverse

dynamics problem for a seven degrees-of-freedom SARCOS anthropomorphic robot

arm. We use the 21-dimensional input variables in order to perform the kernel

density estimation. In order to ease comparisons all the dimensions were normalized

to have the same variance so that we could use only one bandwidth parameter h.

Figure 5.1 compares the time taken by the direct summation, FIGTree, and

the kd-tree based dual-tree method for different dimensions. In each of the plots

the KDE was computed for the first d dimensions. The results are shown for N =

7, 000 points so that the methods could be compared. The KDE was evaluated

at M = N points. The results are shown for a range of bandwidths around the

optimal bandwidth obtained using the rule of thumb plug-in method. Accuracy of

ε = 10−2 was used for all the methods. The FIGTree is faster than the dual-tree

1This dataset can be downloaded from the website http://www.gaussianprocess.org/gpml/

data/.
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Figure 5.1: KDE experiments for N = 7, 000 source points. The run time in seconds

for the direct, FIGTree, and the dual-tree method for varying dimensionality, d. The

results are shown for a range of bandwidths around the optimal bandwidth marked

by the straight line in each of the plots. The error was set to ε = 10−2. The KDE

was evaluated at M = N points.
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algorithm across all bandwidths. The dual-tree algorithm shows good performance

only at very small bandwidths. At such bandwidths the FIGTree algorithm builds

the kd-tree directly on the source points and is still faster than the dual tree method.

In the previous plot we used only 7, 000 points in order to compare our algo-

rithm with the dual-tree method. Table 5.1 shows the time taken by the FIGTree

algorithm on the entire dataset. The FIGTree algorithm gives good speedups for

arbitrarily high dimensions for small and large bandwidths. However for moderate

bandwidths and for d > 7 the FIGTRee was roughly twice as fast as the direct

computation.

Table 5.1: KDE experiments on the entire dataset. Time taken by the direct sum-

mation and the FIGTree on the entire dataset containing N = 44, 484 source points.

The KDE was evaluated at M = N points. The error was set to ε = 10−2.

d Optimal h Direct time (sec.) FIGTree time (sec.) Speedup

1 0.024730 168.500 0.110 1531.818

2 0.033357 180.156 0.844 213.455

3 0.041688 189.438 6.094 31.0860

4 0.049527 196.375 19.047 10.310

5 0.056808 208.453 97.156 2.146

6 0.063527 221.906 130.250 1.704

7 0.069711 226.375 121.829 1.858

8 0.075400 236.781 106.203 2.230

9 0.080637 247.235 88.250 2.801

10 0.085465 254.547 98.718 2.579
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Chapter 6

Optimal bandwidth estimation

Most state-of-the-art automatic bandwidth selection procedures for kernel den-

sity estimates require estimation of quantities involving the density derivatives.

The computational complexity of evaluating the density derivative at M evalua-

tion points given N sample points from the density scales as O(MN). In this paper

we propose a computationally efficient ε − exact approximation algorithm for the

univariate Gaussian kernel based density derivative estimation that reduces the com-

putational complexity from O(MN) to linear O(M + N). The constant depends

on the desired arbitrary accuracy, ε. For example for N = M = 409, 600 points

while the direct evaluation of the density derivative takes around 12.76 hours the

fast evaluation requires only 65 seconds with an error of around 10−12. We apply

the density derivative evaluation procedure to estimate the optimal bandwidth for

kernel density estimation, a process that is often intractable for large data sets.

We demonstrate the speedup achieved on the bandwidth selection using the solve-

the-equation plug-in method. For 50, 000 points sampled from the normal mixture

densities of [49] we obtained speedups from 65 to 105. We also demonstrate that the

proposed procedure can be extremely useful for speeding up exploratory projection

pursuit techniques. [60, 61]
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6.1 Introduction

Kernel density estimation [87] techniques are widely used in exploratory data

analysis, various inference procedures in machine learning, data mining, pattern

recognition, and computer vision. Efficient use of these methods require the op-

timal selection of the smoothing parameter called the bandwidth of the kernel. A

plethora of techniques have been proposed for automatic data-driven bandwidth

selection (see [41] for a review). The most successful state-of-the-art methods rely

on the estimation of general integrated squared density derivative functionals. This

is the most computationally intensive task, the computational cost being O(N2),

where N is the number of sample points. The core task is to efficiently compute

an estimate of the density derivative. The current most practically successful ap-

proach, solve-the-equation plug-in method of [72] involves the numerical solution

of a non-linear equation. Iterative methods to solve this equation repeatedly use

the density derivative functional estimator for different bandwidths which increases

the computational burden. The estimation of the density derivative also comes up

in various other applications like estimation of modes and inflexion points of den-

sities [22] and estimation of the derivatives of the projection index in projection

pursuit algorithms [38, 42]. A list of applications which require the estimation of

density derivatives can be found in [76].

The computational complexity of evaluating the density derivative at M eval-

uation points given N sample points from the density is O(MN). In this paper

we propose a computationally efficient ε − exact approximation algorithm for the
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univariate Gaussian kernel based density derivative estimation that reduces the com-

putational complexity from O(MN) to linear O(N +M). The algorithm is ε−exact

in the sense that the constant hidden in O(N + M), depends on the desired accu-

racy, ε, which can be arbitrary. In fact for machine precision accuracy there is no

difference in the answers provided by the direct and the fast methods.

The rest of the chapter is organized as follows. In § 6.2 we introduce the kernel

density estimate and briefly review the asymptotic performance of the estimator.

The concept of optimal bandwidth is introduced. The kernel density derivative

estimate is introduced in § 6.3. In § 6.4 we discus the density derivative function-

als which are used by most automatic bandwidth selection strategies. § 6.5 briefly

describes the different strategies for automatic optimal bandwidth selection. The

solve-the-equation plug-in method is described in detail. Our proposed fast method

is described in detail in § 6.6. Algorithm details, error bounds, procedure to choose

the parameters, and numerical experiments are presented. In § 6.7 we show the

speedup achieved for bandwidth estimation both on simulated and real data. In §

6.8 we also show how the proposed procedure can be used for speeding up projec-

tion pursuit techniques. § 6.10 finally concludes with a brief discussion on further

extensions.
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6.2 Kernel Density Estimation

A univariate random variable X on R has a density p if, for all Borel sets A

of R,
∫

A

p(x)dx = Pr[x ∈ A]. (6.1)

The task of density estimation is to estimate p from i.i.d. samples x1, . . . , xN drawn

from p. The estimate p̂ : R × (R)N → R is called the density estimate. The

parametric approach to density estimation assumes a functional form for the density,

and then estimates the unknown parameters using techniques like the maximum

likelihood estimation. However unless the form of the density is known a priori,

assuming a functional form for a density very often leads to erroneous inference.

On the other hand nonparametric methods do not make any assumptions on the

form of the underlying density. This is sometimes referred to as ’letting the data

speak for themselves’ [87]. The price to be paid is a rate of convergence slower than

1/N , which is typical of parametric methods. Some of the commonly used non-

parametric estimators include histograms, kernel density estimators, and orthogonal

series estimators [39].

The most popular non-parametric method for density estimation is the kernel

density estimator (KDE) (also known as the Parzen window estimator [54]) given

by

p̂(x) =
1

Nh

N∑
i=1

K

(
x− xi

h

)
, (6.2)

where K is called the kernel function and h ∈ R+ is called the bandwidth of the

kernel. The bandwidth h is a scaling factor which goes to zero as N → 0. In order
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that p̂(x) is a bona fide density, K is required to satisfy the following two conditions:

K(u) ≥ 0,

∫

R

K(u)du = 1. (6.3)

The kernel function is essentially spreading a probability mass of 1/N associated

with each point about its neighborhood. The most widely used kernel is the Gaussian

of zero mean and unit variance.

K(u) =
1√
2π

e−u2/2. (6.4)

For the Gaussian kernel the kernel density estimate can be written as

p̂(x) =
1

N
√

2πh2

N∑
i=1

e−(x−xi)
2/2h2

. (6.5)

The KDE is not very sensitive to the shape of the kernel. While the Epanechnikov

kernel is the optimal kernel, in the sense that it minimizes the MISE, other kernels

are not that suboptimal [87]. The Epanechnikov kernel is not used here because

it gives an estimate having a discontinuous first derivative, because of its finite

support.

The computational cost of evaluating Eq. 6.5 at M points is O(MN), making

it prohibitively expensive for large data sets. Different methods [74, 29, 96, 26] have

been proposed to accelerate this sum. The main contribution of this paper is to

accelerate the kernel density derivative estimate, and solve the optimal bandwidth

problem.
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6.2.1 AMISE optimal bandwidth for kernel density estimate

In order to understand the performance of the KDE we need a measure of

distance between two densities. The commonly used criteria, which can be easily

manipulated is the L2 norm, also called as the integrated square error (ISE). The

ISE between the estimate p̂(x) and the actual density p(x) is given by

ISE(p̂, p) = L2(p̂, p) =

∫

R

[p̂(x)− p(x)]2dx. (6.6)

The ISE depends on a particular realization of N points. The ISE can be averaged

over these realizations to get the mean integrated squared error (MISE) defined as

MISE(p̂, p) = E[ISE(p̂, p)] = E

[∫

R

[p̂(x)− p(x)]2dx

]

=

∫

R

E[{p̂(x)− p(x)}2]dx = IMSE(p̂, p), (6.7)

where IMSE is integrated mean squared error. The MISE or IMSE doesn’t depend

on the actual data-set as we take expectation. So this is a measure of the ‘average’

performance of the kernel density estimator, averaged over the support of the density

and different realization of the points. The MISE for the KDE can be shown to be

( see [87] for a derivation)

MISE(p̂, p) =
1

N

∫

R

[
(K2

h ∗ p)(x)− (Kh ∗ p)2(x)
]
dx +

∫

R

[(Kh ∗ p)(x)− p(x)]2 dx,

(6.8)

where ∗ is the convolution operator and Kh(x) = (1/h)K(x/h). The dependence

of the MISE on the bandwidth h is not very explicit in the above expression. This

makes it difficult to interpret the influence of the bandwidth on the performance
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of the estimator. An asymptotic large sample approximation for this expression is

usually derived via the Taylor’s series called as the AMISE, the A is for asymptotic.

Based on certain assumptions 1, the AMISE between the actual density and the

estimate can be shown to be (See [87] for a complete derivation.)

AMISE(p̂, p) =
1

Nh
R(K) +

1

4
h4µ2(K)2R(p

′′
), (6.9)

where

R(g) =

∫

R

g(x)2dx , µ2(g) =

∫

R

x2g(x)dx, (6.10)

and p
′′

is the second derivative of the density p . The first term in the expression 6.9

is the integrated variance and the second term is the integrated squared bias. The

squared bias is proportional to h4 whereas the variance is proportional to 1/h, which

leads to the well known bias-variance tradeoff.

For a practical implementation of KDE the choice of the bandwidth h is very

important. A small h leads to an estimator with small bias and large variance, while

a large h leads to a small variance at the expense of an increase in the bias. The

bandwidth h has to be chosen optimally. Various techniques have been proposed

for optimal bandwidth selection. Most of them are based on the AMISE.

Based on the AMISE expression the optimal bandwidth hAMISE can be ob-

tained by differentiating Eq. 6.9 with respect to the bandwidth h and setting it to

1The second derivative p
′′
(x) is continuous, square integrable, and ultimately monotone.

limN→∞ h = 0 and limN→∞Nh = ∞, i.e., as the number of samples N is increased h approaches

zero at a rate slower than 1/N .
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zero, to obtain

hAMISE =

[
R(K)

µ2(K)2R(p′′)N

]1/5

. (6.11)

However this expression cannot be used directly since R(p
′′
) depends on the second

derivative of the density p, which we are trying to estimate in the first place. We

need to use an estimate of R(p
′′
).

6.3 Kernel Density Derivative estimation

In order to estimate R(p
′′
) we will need an estimate of the density derivative.

A simple estimator for the density derivative can be obtained by taking the deriva-

tive of the kernel density estimate p̂(x) defined earlier [6, 70]. If the kernel K is

differentiable r times then the rth density derivative estimate p̂(r)(x) can be written

as

p̂(r)(x) =
1

Nhr+1

N∑
i=1

K(r)

(
x− xi

h

)
, (6.12)

where K(r) is the rth derivative of the kernel K. The rth derivative of the Gaussian

kernel k(u) is given by

K(r)(u) = (−1)rHr(u)K(u), (6.13)

where Hr(u) is the rth Hermite polynomial. The Hermite polynomials are a set of

orthogonal polynomials [1] . The first few Hermite polynomials are

H0(u) = 1, H1(u) = u, and H2(u) = u2 − 1.

Hence the density derivative estimate with the Gaussian kernel can be written as

p̂(r)(x) =
(−1)r

√
2πNhr+1

N∑
i=1

Hr

(
x− xi

h

)
e−(x−xi)

2/2h2

. (6.14)
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The computational complexity of evaluating the rth derivative of the density esti-

mate from N points at M target locations is thus O(rNM).

6.3.1 AMISE optimal bandwidth for kernel density derivative esti-

mate

The optimal bandwidth for estimating the kernel density derivative is not the

same as that used for KDE. Similar to the analysis done for KDE the AMISE for

the kernel density derivative estimate, under certain assumptions 2 can be shown to

be

AMISE(p̂(r), p(r)) =
R(K(r))

Nh2r+1
+

h4

4
µ2(K)2R(p(r+2)). (6.15)

Differentiating Eq. 6.15 w.r.t. bandwidth h and setting it to zero we obtain the

optimal bandwidth hr
AMISE to estimate the rth density derivative.

hr
AMISE =

[
R(K(r))(2r + 1)

µ2(K)2R(p(r+2))N

]1/2r+5

. (6.16)

It can be observed that the AMISE optimal bandwidth for estimating the rth deriva-

tive depends upon the the (r + 2)th derivative of the true density.

6.4 Estimation of Density Functionals

Rather than the actual density derivative methods for automatic bandwidth

selection require the estimation of what are known as density functionals. The

2The (r + 2)th derivative p(r+2)(x) is continuous, square integrable and ultimately monotone.

limN→∞ h = 0 and limN→∞Nh2r+1 = ∞, i.e., as the number of samples N is increased h ap-

proaches zero at a rate slower than 1/N2r+1.
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general integrated squared density derivative functional is defined as

R(p(s)) =

∫

R

[
p(s)(x)

]2
dx. (6.17)

Using integration by parts, this can be written in the following form [87],

R(p(s)) = (−1)s

∫

R

p(2s)(x)p(x)dx. (6.18)

More specifically for even s we are interested in estimating density functionals of

the form,

Φr =

∫

R

p(r)(x)p(x)dx = E
[
p(r)(X)

]
. (6.19)

An estimator for Φr is,

Φ̂r =
1

N

N∑
i=1

p̂(r)(xi). (6.20)

where p̂(r)(xi) is the estimate of the rth derivative of the density p(x) at x = xi.

Using a kernel density derivative estimate for p̂(r)(xi) (Eq. 6.12) we have

Φ̂r =
1

N2hr+1

N∑
i=1

N∑
j=1

K(r)

(
xi − xj

h

)
. (6.21)

It should be noted that computation of Φ̂r is O(rN2) and hence can be very expen-

sive if a direct algorithm is used.
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6.4.1 AMSE optimal bandwidth for density functional estimation

The asymptotic MSE for the density functional estimator under certain as-

sumptions 3 is as follows.

AMSE(Φ̂r, Φr) =

[
1

Nhr+1
K(r)(0) +

1

2
h2µ2(K)Φr+2

]2

+
2

N2h2r+1
Φ0R(K(r))

+
4

N

[∫
p(r)(y)2p(y)dy − Φ2

r

]
(6.22)

( see [87] for a complete derivation.). The optimal bandwidth for estimating the

density functional is chosen the make the bias term zero. The optimal bandwidth

is given by [87]

gMSE =

[ −2K(r)(0)

µ2(K)Φr+2N

]1/r+3

. (6.23)

6.5 AMISE optimal Bandwidth Selection

Based on the AMISE expression the optimal bandwidth hAMISE has the fol-

lowing form,

hAMISE =

[
R(K)

µ2(K)2R(p′′)N

]1/5

. (6.24)

However this expression cannot be used directly since R(p
′′
) depends on the second

derivative of the density p, which we are trying to estimate in the first place.

3The density p had k > 2 continuous derivatives which are ultimately monotone. The (r + 2)th

derivative p(r+2)(x) is continuous, square integrable and ultimately monotone. limN→∞ h = 0 and

limN→∞Nh2r+1 = ∞, i.e., as the number of samples N is increased h approaches zero at a rate

slower than 1/N2r+1.
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6.5.1 Review of different methods

Different strategies have been proposed to solve this problem. A brief survey

can be found in [41] and [87]. The best known of these include rules of thumb,

oversmoothing, least squares cross-validation, biased cross-validation, direct plug-in

methods, solve-the-equation plug-in method, and the smoothed bootstrap.

The rules of thumb use an estimate of R(p
′′
) assuming that the data is gener-

ated by some parametric form of the density (typically a normal distribution). The

oversmoothing methods rely on the fact that there is a simple upper bound for the

AMISE-optimal bandwidth for estimation of densities with a fixed value of a partic-

ular scale measure. The least squares cross-validation directly minimize the MISE

based on a leave-one-out kernel density estimator. The problem is that the func-

tion to be minimized has fairly large number of local minima and also the practical

performance of this method is somewhat disappointing. The biased cross-validation

uses the AMISE instead of using the exact MISE formula. This is more stable than

the least squares cross-validation but has a large bias.

The plug-in methods use an estimate of the density functional R(p
′′
) in Eq. 6.24.

However this is not completely automatic since estimation of R(p
′′
) requires the spec-

ification of another pilot bandwidth g. This bandwidth for estimation of the density

functional is quite different from the the bandwidth h used for the kernel density

estimate. As discussed in Section 6.4 we can find an expression for the optimal

bandwidth for the estimation of R(p
′′
). However this bandwidth will depend on an

unknown density functional R(p
′′′
). This problem will continue since the optimal
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bandwidth for estimating R(p(s)) will depend on R(p(s+1)). The usual strategy used

by the direct plug-in methods is to estimate R(p(l)) for some l, with bandwidth cho-

sen with reference to a parametric family, usually a normal density. This method

is usually referred to as the l-stage direct plug-in method. As the the number of

stages l increases the bias of the bandwidth decreases, since the dependence on the

assumption of some parametric family decreases. However this comes at the price

of the estimate being more variable. There is no good method for the choice of l,

the most common choice being l = 2.

The most successful among all the current methods, both empirically and

theoretically, is the solve-the-equation plug-in method [41]. This method differs

from the direct plug-in approach in that the pilot bandwidth used to estimate the

density functional R(p
′′
) is written as a function of the kernel bandwidth h used to

estimate the density. We use the following version as described in [72].

6.5.2 Solve-the-equation plug-in method

The AMISE optimal bandwidth is the solution to the equation

h =

[
R(K)

µ2(K)2Φ̂4[γ(h)]N

]1/5

, (6.25)

where Φ̂4[γ(h)] is an estimate of Φ4 = R(p
′′
) using the pilot bandwidth γ(h), which

depends on the kernel bandwidth h. The bandwidth is chosen such that it minimizes

the asymptotic MSE for the estimation of Φ4 and is given by ( substituting r = 4

in Eq. 6.23 )

gMSE =

[ −2K(4)(0)

µ2(K)Φ6N

]1/7

. (6.26)
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Substituting for N from Eq. 6.24 gMSE can be written as a function of h as follows

gMSE =

[−2K(4)(0)µ2(K)Φ4

R(K)Φ6

]1/7

h
5/7
AMISE. (6.27)

This suggest that we set

γ(h) =

[
−2K(4)(0)µ2(K)Φ̂4(g1)

R(K)Φ̂6(g2)

]1/7

h5/7, (6.28)

where Φ̂4(g1) and Φ̂6(g2) are estimates of Φ4 and Φ6 using bandwidths g1 and g2

respectively.

Φ̂4(g1) =
1

N(N − 1)g5
1

N∑
i=1

N∑
j=1

K(4)

(
xi − xj

g1

)
. (6.29)

Φ̂6(g2) =
1

N(N − 1)g7
2

N∑
i=1

N∑
j=1

K(6)

(
xi − xj

g2

)
. (6.30)

The bandwidths g1 and g2 are chosen to minimize the asymptotic MSE.

g1 =

[
−2K(4)(0)

µ2(K)Φ̂6N

]1/7

g2 =

[
−2K(6)(0)

µ2(K)Φ̂8N

]1/9

, (6.31)

where Φ̂6 and Φ̂8 are estimators for Φ6 and Φ8 respectively. We can use a similar

strategy for estimation of Φ6 and Φ8. However this problem will continue since the

optimal bandwidth for estimating Φr will depend on Φr+2. The usual strategy is

to estimate a Φr at some stage, using a quick and simple estimate of bandwidth

chosen with reference to a parametric family, usually a normal density. It has been

observed that as the the number of stages increases the variance of the bandwidth

increases. The most common choice is to use only two stages.

If p is a normal density with variance σ2 then for even r we can compute Φr

exactly [87].

Φr =
(−1)r/2r!

(2σ)r+1(r/2)!π1/2
. (6.32)
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An estimator of Φr will use an estimate σ̂2 of the variance. Based on this we can

write an estimator for Φ6 and Φ8 as follows.

Φ̂6 =
−15

16
√

π
σ̂−7and Φ̂8 =

105

32
√

π
σ̂−9. (6.33)

In this paper we use the Gaussian kernel for all estimates. The two stage solve-

the-equation method using the Gaussian kernel can be summarized as follows.

1. Compute an estimate σ̂ of the standard deviation σ.

2. Estimate the density functionals Φ6 and Φ8 using the normal scale rule.

Φ̂6 =
−15

16
√

π
σ̂−7 and Φ̂8 =

105

32
√

π
σ̂−9.

3. Estimate the density functionals Φ4 and Φ6 using the kernel density derivative

estimators with the optimal bandwidth based on the asymptotic MSE.

g1 =

[ −6√
2πΦ̂6N

]1/7

g2 =

[
30√

2πΦ̂8N

]1/9

Φ̂4(g1) =
1

N(N − 1)
√

2πg5
1

N∑
i=1

N∑
j=1

H4

(
xi − xj

g1

)
e−(xi−xj)

2/2g2
1 .

Φ̂6(g2) =
1

N(N − 1)
√

2πg7
2

N∑
i=1

N∑
j=1

H6

(
xi − xj

g2

)
e−(xi−xj)

2/2g2
2 .

4. The bandwidth is the solution to the equation

h−
[

1

2
√

πΦ̂4[γ(h)]N

]1/5

= 0,

where

Φ̂4[γ(h)] =
1

N(N − 1)
√

2πγ(h)5

N∑
i=1

N∑
j=1

H4

(
xi − xj

γ(h)

)
e−(xi−xj)

2/2γ(h)2 ,
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and

γ(h) =

[
−6
√

2Φ̂4(g1)

Φ̂6(g2)

]1/7

h5/7.

The last equation can be solved using any numerical routine like the Newton-

Raphson method. The main computational bottleneck is the estimation of Φ which

is of O(N2). Also note that solution to this equation will involve repeated use of the

density derivative functional estimator for different bandwidths which adds further

to the computational burden.

6.6 Fast ε− exact density derivative estimation

The computational cost of estimating the optimal bandwidth is O(N2). The

core computational task contributing to this quadratic complexity is due to the

computation of the kernel density derivative estimate at each of the N points.

The rth kernel density derivative estimate using the Gaussian kernel of band-

width h is given by

p̂(r)(x) =
(−1)r

√
2πNhr+1

N∑
i=1

Hr

(
x− xi

h

)
e−(x−xi)

2/2h2

. (6.34)

Let us say we have to estimate the density derivative at M target points, {yj ∈ R}M
j=1.

More generally we need to evaluate the following sum,

Gr(yj) =
N∑

i=1

qiHr

(
yj − xi

h1

)
e−(yj−xi)

2/h2
2 j = 1, . . . , M, (6.35)

where {qi ∈ R}N
i=1 will be referred to as the source weights, h2 ∈ R+ is the bandwidth

of the Gaussian and h1 ∈ R+ will be referred to as the bandwidth of the Hermite.
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The computational complexity of evaluating Eq. 6.35 is O(rNM). In Chap-

ter 3 we presented an ε − exact approximation algorithm that reduces the compu-

tational complexity to O(prN + npr2M), where the constants p and n depends on

the precision ε and the bandwidth h. For any given ε > 0 the algorithm computes

an approximation Ĝr(yj) such that

∣∣∣∣∣
Ĝr(yj)−Gr(yj)

Q

∣∣∣∣∣ ≤ ε, (6.36)

where Q =
∑N

i=1 |qi|. We call Ĝr(yj) an ε−exact approximation to Gr(yj). The fast

algorithm is based on separating the xi and yj in the Gaussian via the factorization

of the Gaussian by Taylor series and retaining only the first few terms so that the

error due to truncation is less than the desired error. The Hermite function is

factorized via the binomial theorem.

6.7 Speedup achieved for bandwidth estimation

The solve-the-equation plug-in method of [41] was implemented in MATLAB

with the core computational task of computing the density derivative written in

C++.

6.7.1 Synthetic data

We demonstrate the speedup achieved on the mixture of normal densities

used by [49]. The family of normal mixture densities is extremely rich and, in

fact any density can be approximated arbitrarily well by a member of this family.

Fig. 6.1 shows the fifteen densities which were used by the authors in [49] as a typical
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representative of the densities likely to be encountered in real data situations. We

sampled N = 50, 000 points from each density. The AMISE optimal bandwidth

was estimated both using the direct methods and the proposed fast method. For

the fast method we used ε = 10−3. Table 6.1 shows the speedup achieved and the

absolute relative error. The absolute relative error is defined as |hdirect−hfast/hdirect|.

We obtained speedups in the range 65 to 105 with the absolute relative error of the

order 10−5 to 10−7. Better speedups can be achieved by further increasing ε. Fig. 6.1

shows the actual density and the estimated density using the optimal bandwidth

estimated using the fast method.

6.7.2 Real data

We used the Adult database from the UCI machine learning repository [52].

The database extracted from the census bureau database contains 32, 561 training

instances with 14 attributes per instance. Of the 14 attributes 6 are continuous and

8 nominal. Table 6.2 shows the speedup achieved and the absolute relative error for

five of the continuous attributes. Fig. 6.2 shows the actual density and the estimated

density for two attributes.

6.8 Projection Pursuit

Projection Pursuit (PP) is an exploratory technique for visualizing and ana-

lyzing large multivariate data-sets [21, 38, 42]. The idea of projection pursuit is to

search for projections from high- to low-dimensional space that are most interesting.

131



Table 6.1: The bandwidth estimated using the solve-the-equation plug-in method

for the fifteen normal mixture densities of Marron and Wand. hdirect and hfast

are the bandwidths estimated using the direct and the fast methods respectively.

The running time in seconds for the direct and the fast methods are shown. The

absolute relative error is defined as |hdirect− hfast/hdirect|. In the study N = 50, 000

points were sampled from the corresponding densities. For the fast method we used

ε = 10−3.
Density hdirect hfast Tdirect (sec) Tfast (sec) Speedup Abs. Relative Error

1 0.122213 0.122215 4182.29 64.28 65.06 1.37e-005

2 0.082591 0.082592 5061.42 77.30 65.48 1.38e-005

3 0.020543 0.020543 8523.26 101.62 83.87 1.53e-006

4 0.020621 0.020621 7825.72 105.88 73.91 1.81e-006

5 0.012881 0.012881 6543.52 91.11 71.82 5.34e-006

6 0.098301 0.098303 5023.06 76.18 65.93 1.62e-005

7 0.092240 0.092240 5918.19 88.61 66.79 6.34e-006

8 0.074698 0.074699 5912.97 90.74 65.16 1.40e-005

9 0.081301 0.081302 6440.66 89.91 71.63 1.17e-005

10 0.024326 0.024326 7186.07 106.17 67.69 1.84e-006

11 0.086831 0.086832 5912.23 90.45 65.36 1.71e-005

12 0.032492 0.032493 8310.90 119.02 69.83 3.83e-006

13 0.045797 0.045797 6824.59 104.79 65.13 4.41e-006

14 0.027573 0.027573 10485.48 111.54 94.01 1.18e-006

15 0.023096 0.023096 11797.34 112.57 104.80 7.05e-007
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Figure 6.1: The fifteen normal mixture densities of Marron and Wand. The solid

line corresponds to the actual density while the dotted line is the estimated density

using the optimal bandwidth estimated using the fast method.
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Table 6.2: Optimal bandwidths for the five continuous attributes for the Adult

database from the UCI machine learning repository. The database contains 32, 561

training instances. The bandwidth was estimated using the solve-the-equation plug-

in method. hdirect and hfast are the bandwidths estimated using the direct and the

fast methods respectively. The running time in seconds for the direct and the fast

methods are shown. The absolute relative error is defined as |hdirect − hfast/hdirect|.

For the fast method we used ε = 10−3.
Attribute hdirect hfast Tdirect (sec) Tfast (sec) Speedup Error

Age 0.860846 0.860856 4679.03 66.42 70.45 1.17e-005

fnlwgt 4099.564359 4099.581141 4637.09 68.83 67.37 4.09e-006

capital-gain 2.376596 2.376596 7662.48 74.46 102.91 4.49e-010

capital-loss 0.122656 0.122656 7466.54 72.88 102.46 2.99e-011

hours-per-week 0.009647 0.009647 9803.80 130.37 75.20 2.27e-008
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Figure 6.2: The estimated density using the optimal bandwidth estimated using the

fast method, for two of the continuous attributes in the Adult database from the

UCI machine learning repository.
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These projections can then be used for other nonparametric fitting and other data-

analytic purposes The conventional dimension reduction techniques like principal

component analysis looks for a projection that maximizes the variance. The idea

of PP is to look for projections that maximize other measures of interestingness,

like non-normality, entropy etc. The PP algorithm for finding the most interesting

one-dimensional subspace is as follows.

1. Given N data points in a d dimensional space (centered and scaled), {xi ∈

Rd}N
i=1, project each data point onto the direction vector a ∈ Rd, i.e., zi =

aT xi.

2. Compute the univariate nonparametric kernel density estimate, p̂, of the pro-

jected points zi.

3. Compute the projection index I(a) based on the density estimate.

4. Locally optimize over the the choice of a, to get the most interesting projection

of the data.

5. Repeat from a new initial projection to get a different view.

The projection index is designed to reveal specific structure in the data, like clusters,

outliers, or smooth manifolds. Some of the commonly used projection indices are

the Friedman-Tukey index [21], the entropy index [42], and the moment index. The

entropy index based on Rényi’s order-1 entropy is given by

I(a) =

∫
p(z) log p(z)dz. (6.37)
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The density of zero mean and unit variance which uniquely minimizes this is the

standard normal density. Thus the projection index finds the direction which is

most non-normal. In practice we need to use an estimate p̂ of the the true density

p, for example the kernel density estimate using the Gaussian kernel. Thus we have

an estimate of the entropy index as follows.

Î(a) =

∫
log p̂(z)p(z)dz = E [log p̂(z)] =

1

N

N∑
i=1

log p̂(zi) =
1

N

N∑
i=1

log p̂(aT xi).(6.38)

The entropy index Î(a) has to be optimized over the d-dimensional vector a subject

to the constraint that ‖a‖ = 1. The optimization function will require the gradient

of the objective function. For the index defined above the gradient can be written

as

d

da
[Î(a)] =

1

N

N∑
i=1

p̂′(aT xi)

p̂(aT xi)
xi. (6.39)

For the PP the computational burden is greatly reduced if we use the proposed fast

method. The computational burden is reduced in the following three instances.

1. Computation of the kernel density estimate (i.e. use the fast method with

r = 0).

2. Estimation of the optimal bandwidth.

3. Computation of the first derivative of the kernel density estimate, which is

required in the optimization procedure.

Fig. 6.3 shows an example of the application of the PP algorithm on an image

segmentation problem. Fig. 6.3(a) shows the original 48 × 60 image of the hand

with a ring against a background. Perceptually the image has three distinct regions,
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the hand, the ring, and the background. Each pixel is represented as a point in a

three dimensional RGB space. Fig. 6.3(b) shows the the presence of three clusters

in the RGB space. We ran the PP algorithm on this space. Fig. 6.3(c) shows the

KDE of the points projected on the most interesting direction. This direction is

clearly able to distinguish the three clusters. Fig. 6.3(d) shows the segmentation

where each pixel is assigned to the mode nearest to it.

The PP procedure was coded in MATLAB with the core computational task

of computing the density derivative written in C++ with MATLAB wrappers. We

used the MATLAB non-linear least squares routine lsqnonlin to perform the opti-

mization. The tolerance parameter for the optimization procedure was set to 10−6.

The optimal bandwidth and the kernel density estimate were computed approxi-

mately. The accuracy parameter was set to ε = 10−3. The entire procedure took 15

minutes while that using the direct method takes around 7.5 hours.

6.9 Related work

Most of the past work has focussed on making KDE computationally tractable.

There is no previous work specifically dealing with the computational complexity of

bandwidth estimation.

The computational cost of evaluating the KDE (Eq. 6.5) at N points is O(N2).

If the source points are on an evenly spaced grid then we can evaluate the sum at an

evenly spaced grid exactly in O(N log N) using the fast Fourier transform (FFT).

One of the earliest methods, especially proposed for univariate fast kernel density
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Figure 6.3: (a) The original image. (b) The centered and scaled RGB space. Each

pixel in the image is a point in the RGB space. (c) KDE of the projection of

the pixels on the most interesting direction found by projection pursuit. (d) The

assignment of the pixels to the three modes in the KDE.
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estimation was based on this idea [74]. For irregularly spaced data, the space is

divided into boxes, and the data is assigned to the closest neighboring grid points

to obtain grid counts. The KDE is also evaluated at regular grid points. For

target points not lying on the the grid the value is obtained by doing some sort

of interpolation based on the values at the neighboring grid points. As a result

there is no guaranteed error bound for such kind of methods. The Fast Gauss

Transform(FGT) [29] is an approximation algorithm that reduces the computational

complexity to O(N), at the expense of reduced precision, which can be specified. The

constant depends on the desired precision, dimensionality of the problem, and the

bandwidth. The improved fast Gauss transform(IFGT) is a similar algorithm based

on a different factorization and data structures. It is suitable for higher dimensional

problems and provides comparable performance in lower dimensions [96]. Another

class of methods for such problems are dual-tree methods [26] which are based on

space partitioning trees for both the source and target points. Using the tree data

structure distance bounds between nodes can be computed. An advantage of the

dual-tree methods is that they work for all common kernel choices, not necessarily

Gaussian. However the series based methods give better speedups.

All the above methods are designed to specifically accelerate the KDE. The

main contribution of this paper is to accelerate the kernel density derivative estimate

with an emphasis to solve the optimal bandwidth problem. The case of KDE arises

as a special case of r = 0, i.e., the zero order density derivative. While it is suggested

in [29] that the FGT can also be used to accelerate the sum of polynomial times

Gaussian; the specific details and error bounds are not provided. The FGT uses
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the Hermite and Taylor series for factorizing the Gaussian. Our proposed method

in comparison to the FGT uses a completely different single factorization.

6.10 Conclusions

We proposed an fast ε − exact algorithm for kernel density derivative esti-

mation which reduced the computational complexity from O(N2) to O(N). We

demonstrated the speedup achieved for optimal bandwidth estimation both on sim-

ulated as well as real data. As an example we demonstrated how to potentially

speedup the projection pursuit algorithm. We focussed on the univariate case in

the current paper since the bandwidth selection procedures for the univariate case

are pretty mature. Bandwidth selection for the multivariate case is a field of very

active research [86]. Our future work would include the relatively straightforward

but more involved extension of the current procedure to handle higher dimensions.

As pointed out earlier many applications other than bandwidth estimation require

derivative estimates. We hope that our fast computation scheme should benefit all

the related applications.
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Chapter 7

Gaussian process regression

Gaussian processes allow the treatment of non-linear non-parametric regres-

sion problems in a Bayesian framework. However the computational cost of training

such a model with N examples scales as O(N3). Iterative methods for the solution

of linear systems can bring this cost down to O(N2), which is still prohibitive for

large data sets. We consider the use of ε-exact matrix-vector product algorithms to

reduce the computational complexity to O(N). Using the theory of inexact Krylov

subspace methods we show how to choose ε to guarantee the convergence of the

iterative methods. We test our ideas using the improved fast Gauss transform. We

demonstrate the speedup achieved on large data sets. For prediction of the mean

the computational complexity is reduced from O(N) to O(1). Our experiments in-

dicated that for low dimensional data (d ≤ 8) the proposed method gives substantial

speedups [62].
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7.1 Introduction

The Gaussian process (GP) is a popular method for Bayesian non-linear non-

parametric regression. Unfortunately its non-parametric nature causes computa-

tional problems for large data sets, due to an unfavorable O(N3) time and O(N2)

memory scaling for training. While the use of iterative methods, as first suggested

by [46], can reduce the cost to O(kN2) where k are the number of iterations, this

is still too large. An important subfield of work in GP has attempted to bring this

scaling down to O (m2N) by making sparse approximations of size m to the full GP

where m ¿ N [91, 77, 19, 44, 14, 82, 81, 79]. Most of these methods are based on

using a representative subset of the training examples of size m. Different schemes

specify different strategies to effectively choose the subset. A good review can be

found in Chapter 8 of [58] or [56] for a more recent survey. A recent work [79]

considers choosing m datapoints not constrained to be a subset of the data. While

these methods often work quite well, there is no guarantee on the quality of the GP

that results from the sparse approximation.

A GP is completely specified by its mean and covariance functions. Different

forms of the covariance function gives us the flexibility to model different kinds of

generative processes. One of the most popular covariance function used is the nega-

tive squared exponential (Gaussian). In this paper we explore an alternative class of

methods that seek to achieve a speed-up for GP regression by computing an ε-exact

approximation to the matrix-vector product used in the conjugate gradient method.

Unlike methods which rely on choosing a subset of the dataset we use all the avail-
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able points and still achieve O(N) complexity. There are at least three methods

proposed to accelerate the matrix-vector product using approximation ideas: the

dual-tree method [26], the fast Gauss transform (FGT) [29], and the improved fast

Gauss transform (IFGT) [95], which have their own areas of applicability and perfor-

mance characteristics. These methods claim to provide the matrix-vector product

with a guaranteed accuracy ε, and achieve O(N log N) or O(N) performance at

fixed ε in both time and memory.

An important question when using these methods is the influence of the ap-

proximate matrix-vector product on the convergence of the iterative method. Obvi-

ously these methods converge at machine precision. However, the accuracy necessary

to guarantee convergence must be studied. Generally previous papers [95, 73] choose

ε to a convenient small value such as 10−3 or 10−6 based on the application. We use

a more theoretical approach and base our results on the theory of inexact Krylov

subspace methods. We show that the matrix-vector product may be performed in an

increasingly inexact manner as the iteration progresses and still allow convergence.

7.2 Gaussian process model

While Gaussian processes are covered well elsewhere (e.g. see [58]), both to

establish notation and for completeness we provide a brief introduction here.

The simplest most often used model for regression [90] is y = f(x) + ε, where

f(x) is a zero-mean Gaussian process with covariance function K(x, x
′
) : Rd×Rd →

R and ε is independent zero-mean normally distributed noise with variance σ2, i.e.,
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Figure 7.1: (a) The mean prediction and the error bars obtained when a Gaussian

process was used to model the data shown by the black points. A squared exponen-

tial covariance function was used. Note that the error bars increase when there is

sparse data. The hyperparameters h and σ we chosen by minimizing the negative

log-likelihood of the training data the contours of which are shown in (b).
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N (0, σ2). Therefore the observation process y(x) is a zero-mean Gaussian process

with covariance function K(x, x
′
) + σ2δ(x, x

′
).

Given training data D = {xi, yi}N
i=1 the N ×N covariance matrix K is defined

as [K]ij = K(xi, xj). If we define the vector y = [y1, . . . , yN ]T then y is a zero-mean

multivariate Gaussian with covariance matrix K + σ2I. Given the training data D

and a new input x∗ our task is to compute the posterior p(f∗|x∗,D). Observing that

the joint density p(f∗,y) is a multivariate Gaussian, the posterior density p(f∗|x∗,D)

can be shown to be [58]

p(f∗|x∗,D) ∼ N (
k(x∗)T (K + σ2I)−1y, K(x∗, x∗)− k(x∗)T (K + σ2I)−1k(x∗)

)
,

(7.1)

where k(x∗) = [K(x∗, x1), . . . , K(x∗, xN)]T .

If we define ξ = (K + σ2I)−1y, then the mean prediction and the variance

associated with it are

E[f∗] = k(x∗)T ξ, and (7.2)

Var[f∗] = K(x∗, x∗)− k(x∗)T (K + σ2I)−1k(x∗). (7.3)

The covariance function has to be chosen to reflect the prior information about the

problem. For high-dimensional problems, in the absence of any prior knowledge,

the negative squared exponential (Gaussian) is the most widely used covariance

function, and is the one that we use in this paper.

K(x, x
′
) = σ2

f exp

(
−

d∑

k=1

(xk − x
′
k)

2

h2
k

)
. (7.4)

The d + 2 parameters ([h1, . . . , hd, σf , σ]) are referred to as the hyperparameters.
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7.3 Conjugate Gradient

Given the hyperparameters, the training phase consists of the evaluation of

the vector

ξ = (K + σ2I)−1y (7.5)

which needs the inversion of an N ×N matrix K + σ2I. Direct computation of the

inverse of the symmetric matrix (using Cholesky decomposition) requires O(N3)

operations and O(N2) storage, which is impractical even for problems of moderate

size (typically a few thousands).

For larger systems it is more efficient to solve the system

K̃ξ = y where, K̃ = K + σ2I (7.6)

using iterative methods, provided the method converges quickly. Modern iterative

Krylov subspace methods show good convergence properties, especially when pre-

conditioned [43]. Since K̃ is symmetric and positive definite we can use the well

known conjugate-gradient (CG) method [36] to iteratively solve Eq. (7.6) A good

exposition of this method can be found in Ch. 2 of [43]. The idea of using conjugate

gradient for GP was first suggested by [46].

The iterative method generates a sequence of approximate solutions ξk at each

step, which converge to the true solution ξ. One of the sharpest known convergence

results for the iterates is given by

‖ξ − ξk‖K̃
‖ξ − ξ0‖K̃

≤ 2

[√
κ− 1√
κ + 1

]2k

, ‖w‖K̃ = wT K̃w (7.7)

where the K̃-norm of any vector w is defined as above [43]. The constant κ =
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λmax/λmin, the ratio of the largest to the smallest eigenvalues is called the spectral

condition number of the matrix K̃. Since κ ∈ (1,∞), Equation 7.7 implies that if κ

is close to one, the iterates will converge very quickly.

Given a tolerance 0 < η < 1 a practical CG scheme iterates till it computes a

vector ξk such that the ratio of the current residual ‖y−K̃ξk‖2 to the initial residual

is below the tolerance.

‖y − K̃ξk‖2

‖y − K̃ξ0‖2

≤ η. (7.8)

Most implementations start the iteration at ξ0 = 0, though a better guess can be

used if available. The relative residual in the Euclidean norm is related to the

relative error in the K̃-norm as [43]

‖y − K̃ξk‖2

‖y − K̃ξ0‖2

≤ √
κ
‖ξ − ξk‖K̃
‖ξ − ξ0‖K̃

≤ 2
√

κ

[√
κ− 1√
κ + 1

]2k

. (7.9)

This implies that for a given η the number of iterations required is

k ≥ ln

[
2
√

κ

η

]
/2 ln

[√
κ + 1√
κ− 1

]
. (7.10)

Sometimes the estimate (7.10) can be very pessimistic. Even if the condition num-

ber is large, the convergence is fast if the eigenvalues are clustered in a few small

intervals [43]. In the examples we consider later convergence was achieved relatively

quickly. If convergence is slow we must consider preconditioning, which is a topic

outside the scope of the present paper.

The actual implementation of the CG method requires one O(dN2) matrix-

vector multiplication and 5N flops per iteration. Four vectors of length N are

required for storage. The storage is O(N) since the matrix-vector multiplication can
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use elements computed on the fly and not storing the entire matrix. Empirically

the number of iterations required is generally small compared to N leading to a

computational cost of O(kdN2). It should be noted that the O(N) space comes at a

time trade-off. If the matrix is cached (i.e. O(N2) memory) then the computational

cost is O(dN2 + kN2).

7.4 Fast matrix-vector products

The quadratic complexity is still too high for large datasets. The core com-

putational step in each CG iteration involves the multiplication of the matrix K

with some vector, say q. The jth element of the matrix-vector product Kq can be

written as (Kq)j =
∑N

i=1 qik(xi, xj).

In general for each target point {tj ∈ Rd}M
j=1 (which in our case are the same

as the source points xi) this can be written as

G(tj) =
N∑

i=1

qik(xi, tj). (7.11)

The computational complexity to evaluate (7.11) at M target points is O(MN).

For the Gaussian kernel various approximation algorithms have been proposed to

compute the above sum in O(M + N) time. These algorithms compute the sum to

any arbitrary ε precision. Broadly there are two kinds of methods–the series based

methods and data structure based methods.

Series based methods: These methods are inspired by the fast multipole

methods (FMM) which were originally developed for the fast summation of the

potential fields generated by a large number of sources, such as those arising in
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gravitational potential problems [28]. The fast Gauss transform (FGT) is a special

case where FMM ideas were used for the Gaussian potential [29]. The improved

fast Gauss transform (IFGT) is a similar algorithm based on a single different fac-

torization and data structures. It is suitable for higher dimensional problems and

provides comparable performance in lower dimensions [95].

Data structure based methods: Another class of methods proposed are

the dual-tree methods [26]. These methods rely on space partitioning trees like

kd-trees and ball trees and not on series expansions.

7.5 The accuracy ε, necessary

Obviously the accuracy, ε, that minimizes work while achieving the best per-

formance must be chosen. However, determining this quantity in a principled way

is often difficult. Most previous methods choose ε to a convenient small value such

as 10−3 or 10−6 based on the application and a posteriori analysis. Indeed, one can

in principle adaptively vary ε as the iteration proceeds. We were however able to

use some recent results from linear algebra [75] and analyze the effect of the choice

of ε on the CG method.

The conjugate gradient method is a Krylov subspace method adapted for a

symmetric positive definite matrix. Krylov subspace methods at the kth iteration

compute an approximation to the solution of any linear system Ax = b by minimizing

some measure of error over the affine space x0 + Kk, where x0 is the initial iterate

and the kth Krylov subspace is Kk = span(r0, Ar0, A
2r0, . . . , A

k−1r0). The residual
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at the kth iterate is rk = b− Axk.

A general framework for understanding the effect of approximate matrix-vector

products on Krylov subspace methods for the solution of symmetric and nonsym-

metric linear systems of equations is given in [75]. The paper considers the case

where at the kth iteration instead of the exact matrix-vector multiplication Avk, the

product

Avk = (A + Ek)vk (7.12)

is computed, where Ek is an error matrix which may change as the iteration proceeds.

A nice result in the paper shows how large ‖Ek‖ can be at each step while still

achieving convergence with the desired tolerance. Let rk = ‖Axk−b‖ be the residual

at the end of the kth iteration. Let r̃k be the corresponding residual when an

approximate matrix-vector product is used. If at every iteration

‖Ek‖ ≤ lm
1

‖r̃k−1‖δ, (7.13)

then at the end of k iterations ‖r̃k − rk‖ ≤ δ [75]. The term lm in general is

unavailable since it depends on knowing the spectrum of the matrix. However our

empirical results and also some experiments in [75] suggest that lm = 1 seems to be

a reasonable value. This shows that the matrix-vector product may be performed in

an increasingly inexact manner as the iteration progresses and still allow convergence

to the solution.

We will use the following notion of ε-exact approximation. Given any ε > 0,

Ĝ(tj) is an ε-exact approximation to G(tj) if the maximum absolute error relative
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to the total weight Q =
∑N

i=1 |qi| is upper bounded by ε, i.e.,

max
tj

[
|Ĝ(tj)−G(tj)|

Q

]
≤ ε. (7.14)

For our problem because of the ε-exact approximation criterion (Equation 7.14)

every element in the approximation to the vector Kq is within ±Qεk of the true

value, where Q =
∑N

i=1 |qi| and εk is the error in the matrix vector product at the

kth iteration. Hence the error matrix Ek is of the form

Ek = εk




±e11 . . . ±e1N

...
. . .

...

±eN1 . . . ±eNN




, (7.15)

where eij = sign(qj) ∈ (+1,−1). It should be noted that this matrix is an upper

bound rather than the actual error matrix. It can be seen that ‖Ek‖ = Nεk. Hence

Equation 7.13 suggests the following strategy to choose εk.

εk ≤ δ

N

‖y − K̃ξ0‖
‖r̃k−1‖ . (7.16)

This guarantees that

‖y − K̃ξk‖2

‖y − K̃ξ0‖2

≤ η + δ. (7.17)

Figure 7.2 shows the εk selected at each iteration for a sample regression problem.

As the iteration progresses the εk required increases.

7.6 Prediction

Once ξ is computed in the training phase, the mean prediction for any new

x∗ is given by E[f∗] = k(x∗)T ξ =
∑N

i=1 ξik(xi, x∗). Predicting at M points is again
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Figure 7.2: The error for the IFGT εk selected at each iteration for a sample

1D regression problem. The error tolerance for the CG was set to η = 10−3 and

δ = 10−3.

a matrix vector multiplication operation. Direct computation of E[f∗] at M test

points due to the N training examples is O(NM). Using the fast matrix-vector

product reduces the computational cost to O(N + M).

The variance for each prediction is given by Var[f∗] = K(x∗, x∗)−k(x∗)T (K+

σ2I)−1k(x∗). First we need to solve a linear system with K+σ2I during the training

phase via some suitable decomposition. Once the decomposition is computed for

each x the computation of uncertainty is O(N2). For M points it is O(MN2). Using

the conjugate gradient method and the IFGT we can compute K̃−1k(x∗) in O(kN)

time. For M points we need O(kMN) time.

Table 7.1 compares the computational and space complexities for different

stages of Gaussian process regression using different methods.
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7.7 Experiemnts

Datasets: We use the following two datasets – robotarm 1[dataset size N =

10, 000, dataset dimension d = 2] and abalone 2[N = 4, 177, d = 7]. The datasets

are chosen to be representative of low and medium dimensions respectively. These

are also known to be highly non-linear regression problems and widely used to

benchmark regression algorithms.

Evaluation Procedure: For each dataset 90% of the examples were used

for training and the remaining 10% were used for testing. The results are shown

for a ten-fold cross validation experiment. The inputs are linearly re-scaled to have

zero mean and unit variance on the training set. The outputs are centered to

have zero mean on the training set. The mean squared error (MSE) is defined

as the squared error between the mean prediction and the actual value averaged

over the test set. Since the MSE is sensitive to the overall scale of the target

values we normalize it by the variance of the targets of the test cases to obtain

the standardized mean squared error (SMSE) [58]. This causes the trivial method

of guessing the mean of the training targets to have a SMSE of approximately

1. For all the experiments we used the squared exponential covariance function

1 A synthetic 2-d nonlinear robot arm mapping problem [47]. The data is generated according

to f(x1, x2) = 2.0 cos(x1)+1.3 cos(x1+x2). The value of x1 is chosen randomly in [−1.932,−0.453]

and x2 is chosen randomly in [0.534, 3.142] as in [58]. The target values are obtained by adding

Gaussian noise of variance 0.1 to f(x1, x2).
2The task is to predict the age of abalone (number of rings) from physical measurements.

Downloaded from http://www.liacc.up.pt/~ltorgo/Regression/DataSets.html
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(Equation 7.4). The d + 2 hyperparameters ([h1, . . . , hd, σf , σ]) were selected by

optimizing the marginal likelihood on the subset using the direct method (automatic

relevance determination (ARD) [90]) 3. For all methods the same hyperparameters

were used. For larger subsets where we cannot find the hyperparameters directly

we use the one computed from the largest possible subset.

Results: Figure 7.3 shows the total training time, the SMSE, and the total

prediction time for the two datasets as a function of the number of datapoints. For

each fold a subset of the training data of size m was selected at random. The process

was repeated 10 times. m was progressively increased to get a learning curve. All

the experiments were run on a 1.83 GHz processor with 1GB of RAM. We show the

scaling behavior for the following four methods.

1. Subset of datapoints (SD) This is simply the direct implementation with

a subset of the training data. The subset is chosen randomly. The training

and prediction time scale as O(m3) and O(mM) respectively. M is the total

number of test points.

2. Subset of regressors/projected process (SR and PP) (See Chapter 8 in

[58] for a description of these methods.) The training and prediction time

scale as O(m2N) and O(mM) respectively. N is the total number of training

points. The SR and PP methods have the same predictive mean. The recent

paper [79] also has the same computational complexity 4.

3Code downloaded from http://www.gaussianprocess.org/gpml/code/matlab/doc/.
4Also it is expected to be much more expensive because of the optimization procedure to find

the location of the pseudo-inputs.
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Figure 7.3: (a) The total training time, (b) the SMSE, and (c) the testing time as a

function of m for the robotarm dataset. The errorbars show one standard deviation

over a 10-fold experiment. The results are slightly displaced w.r.t. the horizontal

axis for clarity. The lower panel show the same for the abalone dataset.
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3. Proposed method with IFGT (CG+IFGT) The training and prediction

time scale as O(km) and O(m+M) respectively. The tolerance for the conju-

gate gradient procedure η was set to 10−3 and the δ in Equation 7.17 for IFGT

was set to 10−3. The accuracy for testing using IFGT was set to ε = 10−6.

4. Proposed method with kd-tree(CG+kd-tree) Same as above but using kd-

tree instead of the IFGT.

The following observations can be made:

• From Figure 7.3(a) it can be seen that as m increases the training time for

the proposed method increases linearly in contrast to the quadratic increase

for the SD method. The SR and PP methods have small training times only

for small m.

• As m increases the general trend for all methods is that SMSE decreases (see

Figure 7.3(b)).

• It is not surprising that SR and PP show the least SMSE. This is because SR

and PP use all the datapoints while retaining m of them as the active set.

However the proposed method can still catch up with the SMSE of SR and

PP and still have a significantly lower running time.

• Regarding the testing time the proposed method shows significant speedups.

• As the dimension of the problem increases the cutoff point, i.e., N at which

the proposed fast method is better than the direct method increases.
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• At the hyperparameters chosen, the dual-tree algorithms ended up taking

larger time than the direct method probably because of the time taken to

build up the kd-trees.

For large dimensional data the fast algorithms like IFGT and dual-tree meth-

ods do not scale well. We were unable to get good speedups for high dimensional

datasets like SARCOS 5 (a 21 dimensional robot arm dataset) using the IFGT.

However either the subset of data or PP/SR methods can be used with a higher

dimensional data set such as SARCOS.

7.8 Implicit Surface fitting

Recently implicit models for surface representation are gaining popularity [9,

69, 85]. An implicit representation describes the surface S as the set of all points

where a certain smooth function, f : Rd → R vanishes, i.e., S = f−1(0) = {x ∈

Rd such that f(x) = 0}. Once we have a representation f it can be evaluated on a

grid in Rd and an explicit representation can be formed as a mesh of polygons for

visualization purposes–often referred to as isosurface extraction.

Given a set of N points {xi ∈ Rd}N
i=1 (d = 3 for surface fitting) lying on

a smooth manifold S we have to find a function f : Rd → R such that f(xi) =

0, for i = 1, . . . , N , and it smoothly interpolates for any other x ∈ Rd. In order

to avoid the trivial solution f(x) = 0 we need to add additional constraints, i.e.,

points where the function f is not zero. Such additional points are referred to as

5http://www.gaussianprocess.org/gpml/data/
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Figure 7.4: Appending the positive and the negative off-surface points along the

surface normals at each point.

the off-surface points. So the formulation now is to find a function f such that

f(xi) = 0, for i = 1, . . . , N and f(xi) = di 6= 0, for i = N + 1, . . .. For generating

the off-surface points we use the following scheme [9]. We append each data point

xi with two off-surface points x+
i and x−i , one on each side of the surface as shown

in Figure 7.4. The off-surface points are generated by projecting along the surface

normals at each point. It should be ensured that the surface normals are consistently

oriented. We use the signed-distance function for the off-surface points. The value

of the function is chosen to be the distance to the closest on-surface point. Points

outside the surface are assigned a positive value while those inside the surface are

given a negative value. We ensure that the off-surface points do not intersect the

underlying surface using the normal length validation scheme described in [9].

We have used Gaussian process regression to learn this function from the
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Figure 7.5: The isosurface extracted using the function learnt by Gaussian Process

regression. The point cloud data is also shown. It took 6 minutes to learn this

implicit surface form 10, 000 surface points.

point cloud data. One of the major bottlenecks for most implicit surface methods

is their prohibitive computational complexity, and this applies to Gaussian process

regression as well, the computational complexity of which scales as O(N3). Using

the propose method we were able to handle large data-sets. Since surface fitting in

done in d = 3 IFGT gave good speedups. Figure 7.5 shows the fitted surface for the

bunny data. It took 6 minutes to fit the model using 10,000 surface points. Note

that the actual number of points used for Gaussian process regression is 30,000 due

to the off-surface points. We were unable to run the direct method on such large

datasets. Unlike regression for surface fitting we would like to use all the available

data to get accurate surface reconstruction. The IFGT was also used for isosurface

extraction.
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7.9 Discussion/Further issues

We have demonstrated that the approximate fast matrix vector products

achieved by ε-exact methods such as the improved fast Gauss transform can achieve

a fast solution of the Gaussian process regression. The following are the contribu-

tions of this paper:

(1) We show that the training time for GP regression is reduced to linear O(N)

by using the conjugate-gradient method coupled with the IFGT. The prediction time

per test input is reduced to O(1).

(2) Using results from the theory of inexact Krylov subspace methods we show

that the matrix-vector product may be performed in an increasingly inexact manner

as the iteration progresses and still allow convergence to the correct solution.

(3) Our experiments indicated that for low dimensional data (d ≤ 8) the

proposed method gives substantia speedups.

The idea of speeding up matrix-vector multiplication for Gaussian process

regression was first explored in [73]–who use kd-trees to speed up the matrix-vector

multiplication. The main contribution of this paper is a strategy to choose ε while

using such methods.

While the scope of this paper is to speed up the original GPR it should be

noted that methods which use a subset of the data [91, 77, 19, 44, 14, 82, 81] can also

be further speeded up using these algorithms. This is because even these methods

require matrix-vector products to be taken with a smaller subset of the data.

One drawback of the IFGT is that it is specific to the Gaussian kernel. For
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other covariance functions, like the Matern class of kernels–fast algorithms can be

developed. The results presented in this paper, regarding the choice of ε should hold

independent of the covariance function used.

It would also be interesting to explore whether the techniques presented here

can be used to speedup classification [92] using a Gaussian process model.
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Chapter 8

Large scale preference learning

Largely motivated by applications in search engines, information retrieval, and

collaborative filtering, ranking has recently received significant attention in the sta-

tistical machine learning community. In a typical formulation, we compare two

instances and determine which one is better or preferred. Based on this, a set of

instances can be ranked according to the desired preference relation. Many rank-

ing algorithms have been proposed in the literature. Most of them learn a ranking

function from pairwise relations. However they are computationally expensive to

train due to the quadratic scaling in the number of pairwise constraints, thus seri-

ously restricting the use of ranking formulations to large datasets. In this Chapter

I will describe a new algorithm that runs in linear time. While our algorithm also

uses pairwise comparisons the runtime is still linear. This is made possible by fast

approximate summation of erfc functions described in Chapter 4. Experiments on

public benchmarks for ordinal regression and collaborative filtering show that the

proposed algorithm is as accurate as the best available methods in terms of rank-

ing accuracy, when trained on the same data, and is several orders of magnitude

faster. [63, 66, 67]
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8.1 Introduction

The problem of ranking has recently received significant attention in the statis-

tical machine learning and information retrieval communities. In a typical ranking

formulation, we compare two instances and determine which one is better or pre-

ferred. Based on this, a set of instances can be ranked according to a desired pref-

erence relation. The study of ranking has largely been motivated by applications in

search engines, information retrieval, collaborative filtering, and recommender sys-

tems. For example in search engines, rather than returning a document as relevant

or not (classification), the ranking formulation allows one to sort the documents in

the order of their relevance.

8.1.1 Preference relation and ranking function

Consider an instance space X . For any (x, y) ∈ X × X we interpret the

preference relation x º y as ‘x is at least as good as y’. We say that ‘x is indifferent

to y’ (x ∼ y) if x º y and y º x. For learning a ranking we are provided with a

set of pairwise preferences, based on which we have to learn a preference relation.

In general, an ordered list of instances can always be decomposed down to a set of

pairwise preferences.

One way of describing preference relations is by means of a ranking function.

A function f : X → R is a ranking/scoring function representing the preference

relation º if

∀x, y ∈ X , x º y ⇔ f(x) ≥ f(y). (8.1)
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The ranking function f provides a numerical score to the instances based on which

the instances can be ordered. Note that the function f is not unique. For any strictly

increasing function g : R → R, g(f(.)) is a new ranking function representing the

same preference relation. It may be noted that x ∼ y ⇔ f(x) = f(y).

The ranking function is similar to the utility function used in microeconomic

theory [50, 33], where utility is a measure of the satisfaction gained by consuming

commodities. A consequence of using a ranking function is that the learnt preference

relation is rational. In economics a preference relation º is called rational if it

satisfies the following two properties [50]:

• Completeness: For all x, y ∈ X , we have that x º y or y º x.

• Transitivity: For all x, y, z ∈ X , if x º y and y º z then x º z.

A preference relation can be represented by a ranking function only if it is rational:

For all x, y ∈ X either f(x) ≥ f(y) or f(y) ≥ f(x). This proves the completeness

property. For all x, y, z ∈ X , f(x) ≥ f(y) and f(y) ≥ f(z), implies that f(x) ≥ f(z).

Hence transitivity is satisfied.

A central tenet of microeconomic theory is that most of the human preferences

can be assumed to be rational [50]. In the training data we may have preferences

which do not obey transitivity; However, the learnt ranking function will correspond

to a rational preference relation. With a slight abuse of terminology, for the rest of

the chapter we shall simply treat the learning of a preference relation as a problem

of learning a rational ranking function, f .
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8.1.2 Problem statement

In the literature, the problem of learning a ranking function has been for-

malized in many ways. We adopt the most general formulation based on directed

preference graphs [23, 16].

We are given training data A, a directed preference graph G = (V , E) encoding

the preference relations, and a function class F from which we choose our ranking

function f .

• The training data A =
⋃S

j=1(Aj = {xj
i ∈ Rd}mj

i=1) contains S classes (sets).

Each class Aj contains mj samples and there are a total of m =
∑S

j=1 mj

samples in A.

• Each vertex of the directed order graph G = (V , E) corresponds to a class Aj.

The existence of a directed edge Eij from Ai → Aj means that all training

samples in Aj are preferred or ranked higher than any training sample in Ai,

i.e. , ∀(xi
k ∈ Ai, xj

l ∈ Aj), xj
l º xi

k (See Figure 8.1).

The goal is to learn a ranking function f : Rd → R such that f(xj
l ) º f(xi

k) for as

many pairs as possible in the training data A and also to perform well on unseen

examples. The output f(xk) can be sorted to obtain a rank ordering for a set of

test samples {xk ∈ Rd}.

This general formulation gives us the flexibility to learn different kinds of

preference relations by changing the preference graph. Figure 8.1 shows two different

ways to encode the preferences for a ranking problem with 4 classes. The first one

containing all possible relations is called the full preference graph.
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Figure 8.1: (a) A full preference graph and (b) chain preference graph for a ranking

problem with 4 classes.

While a ranking function can be obtained by learning classifiers or ordinal

regressors, it is more advantageous to learn the ranking function directly due to

two reasons. First, in many scenarios it is more natural to obtain training data for

pair-wise preference relations rather than the actual labels for individual samples.

Second, the loss function used for measuring the accuracy of classification or ordinal

regression—e.g. the 0-1 loss function—is computed for every sample individually,

and then averaged over the training or the test set. In contrast, to asses the quality

of the ranking for arbitrary preference graphs, we will use a generalized version of

the Wilcoxon-Mann-Whitney (WMW) statistic [89, 48, 23] that is averaged over

pairs of samples
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8.1.3 Generalized Wilcoxon-Mann-Whitney statistic

The Wilcoxon-Mann-Whitney (WMW) statistic [89, 48] is frequently used to

assess the performance of a classifier because of its equivalence to the area under

the ROC (Receiver Operating Characteristics) curve (AUC). It is equal to the prob-

ability that a classifier assigns a higher value to the positive example than to the

negative example, for a randomly drawn pair of samples. The generalized version

of the WMW for the ranking problem is defined as follows [23]

WMW(f,A,G) =

∑
Eij

∑mi

k=1

∑mj

l=1 1f(xj
l )≥f(xi

k)∑
Eij

∑mi

k=1

∑mj

l=1 1
, (8.2)

where 1a≥b =





1 if a ≥ b

0 otherwise

(8.3)

The numerator counts the number of correct pairwise orderings. The denominator

is the total number of pairwise preference relations available. The WMW is an

estimate of Pr[f(x1) ≥ f(x0)] for a randomly drawn pair of samples (x1, x0) such

that x1 º x0. This is a generalization of the area under the ROC curve (often used

to evaluate bipartite rankings), to arbitrary preference graphs between many classes

of samples. For a perfectly ranking function WMW=1, and for a completely random

assignment WMW=0.5.

A slightly more general formulation can be found in [8, 16, 20], where each edge

in the graph has an associated weight which indicates the strength of the preference

relation. In such a case each term in the WMW must be suitably weighted.

While the WMW has been used widely to evaluate a learnt model, it has only

recently been used as an objective function to learn the model. Since maximizing
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the WMW is a discrete optimization problem most previous algorithms optimize

a continuous relaxation instead. Even though the WMW itself can be computed

with O(md + m log m) computational effort, the previous algorithms often incurred

O(m2) effort in order to evaluate the relaxed version or its gradient. This seri-

ously restricted the use of ranking formulations to large scale datasets. Because of

this, most implementations could typically handle datasets containing only a few

thousand samples.

8.1.4 Our proposed approach

We choose f to be a linear function and directly maximize the relaxed version

of the WMW statistic using a conjugate gradient (CG) optimization procedure.

The gradient computation scales as O(dm2) which is computationally intractable for

large datasets. Inspired by the fast multipole methods in computational physics [27],

we develop a new algorithm that allows us to compute the gradient approximately

to ε precision in O(dm) time. This enables the learning algorithm to scale well to

large datasets.

8.1.5 Organization

The rest of the paper is structured as follows. In Section 8.2 we describe the

previous work in ranking and place our method in context. The cost function which

we optimize is described in Section 8.3. We also show that the cost function derived

from a probabilistic framework can be considered as a lower bound on the WMW
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(see Section 8.3.1). The computational complexity of the gradient computation is

analysed in Section 8.4.2. In Section 8.5 we describe the fast summation of erfc func-

tions which makes the learning algorithm scalable for large datasets. Experimental

results are presented in Section 8.6.

8.2 Previous literature on learning ranking functions

Many ranking algorithms have been proposed in the literature. Most learn a

ranking function from pairwise relations, and as a consequence are computationally

expensive to train as the number of pairwise constraints is quadratic in the number

of samples.

8.2.1 Methods based on pair-wise relations

The problem of learning rankings was first treated as a classification problem

on pairs of objects by Herbrich et al [33] and subsequently used on a web page

ranking task by Joachims [40]. The positive and negative examples are constructed

from pairs of training examples–e.g., Herbrich et al [33] use the difference between

the feature vectors of two training examples as a new feature vector for that pair.

Algorithms similar to SVMs were used to learn the ranking function.

Burges et al. [8], proposed the RankNet which uses a neural network to model

the underlying ranking function. Similar to our approach it uses gradient descent

techniques to optimize a probabilistic cost function–the cross entropy. The neural

net is trained on pairs of training examples using a modified version of backpropa-
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gation algorithm.

Herbrich et al. [34] cast the ranking problem as an ordinal regression problem.

The actual ranks are modeled as intervals on the real line. Hence rank boundaries

play a critical role during training. The loss function depends on pairs of examples

and their target ranks.

Several boosting based algorithms have been proposed for ranking. With col-

laborative filtering as an application Freund et al. [20] proposed the RankBoost

algorithm for combining preferences. Dekel et al. [16] present a general framework

for label ranking by means of preference graphs and graph decomposition procedure.

A log-linear model is learnt using a boosting algorithm.

8.2.2 Fast approximate algorithms

The naive optimization strategy proposed in all the above algorithms suffer

from the O(m2) growth in the number of constraints. Approximation methods have

recently been investigated. An approximate Expectation Propagation algorithm

for Bayesian inference for Gaussian Processes was proposed in [88]. An efficient

implementation of the RankBoost algorithm for two class problems was presented in

[20]. A convex-hull based relaxation scheme was proposed in [23]. In a recent paper

Yan and Hauptmann [94] proposed an approximate margin-based rank learning

framework by bounding the pairwise risk function. This reduced the computational

cost of computing the risk function from quadratic to linear.
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8.2.3 Other approaches

A parallel body of literature has considered online algorithms and sequential

update methods which find solutions in single passes through the data. PRank [12,

32] is an perceptron based online ranking algorithm which learns using one example

at a time. RankProp [10] is a neural net ranking model which is trained on indi-

vidual examples rather than pairs. However it is not known whether the algorithm

converges. All gradient based learning methods can also be trained using stochastic

gradient descent techniques.

8.2.4 WMW maximizing algorithms

Our proposed algorithm directly maximized the WMW. Previous algorithms

which explicitly try to maximize the WMW come in two different flavors. Since the

WMW is not a continuous function various approximations have been used.

A class of these methods have an Support Vector Machine (SVM)-type flavor

where the hinge loss is used as a convex upper bound for the 0-1 indicator func-

tion [93, 57, 7, 20]. Algorithms similar to the SVMs were used to learn the ranking

function.

Another class of methods use a sigmoid [35] or a polynomial approximation [93]

to the 0-1 loss function. Similar to our approach they use a gradient based learning

algorithm.
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8.2.5 Relationship to the current paper

Similar to the papers mentioned, our algorithm is also based on the common

approach of trying to correctly arrange pairs of samples, treating them as indepen-

dent. However our algorithm differs from the previous approaches in the following

ways–

• Most of the proposed approaches [33, 40, 8, 34, 16] are computationally expen-

sive to train due to the quadratic scaling in the number of pairwise constraints.

While the number of pairwise constraints is quadratic the proposed algorithm

is still linear. This is achieved by an efficient algorithm for the fast approxi-

mate summation of erfc functions, which allows us to factor the computations.

• There are no approximations in our ranking formulation as in [94], where in

order to reduce the quadratic growth a bound on the risk functional is used. It

should be noted that we use approximations only in the gradient computation

of the optimization procedure. As a result the optimization will converge to

the same solution, but will take a few more iterations.

• The other approximate algorithm [23] scales well to large datasets computa-

tionally, but it make very coarse approximations by summarizing the slack

variables for an entire class by a single, common scalar value.

• The cost function which we optimize is a lower bound on the WMW–the

measure which is frequently used to asses the quality of rankings. Previous

approaches which try to maximize the WMW [93, 35, 57, 7, 20] consider only
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a classification problem and also incur the quadratic growth in the number of

constraints.

• Also to optimize our cost function we use the nonlinear conjugate gradient

algorithm–which converges much rapidly than the steepest gradient method

used for instance by the backpropagation algorithm in RankNet [8].

• In this paper we bring computational tractability to large scale batch opti-

mization algorithms. However the proposed cost function can be optimized

using stochastic gradient descent techniques.

8.3 The MAP estimator for learning ranking functions

For ease of exposition we will consider the family of linear ranking functions:

F = {fw}, where for any x,w ∈ Rd, fw(x) = wT x. A nonlinear version of the

algorithm can be easily derived using the kernel trick (See [33] for an SVM analog).

Although we want to choose w to maximize the generalized WMW(fw,A,G),

for computational efficiency, we shall instead maximize a continuous surrogate, via

the log-likelihood:

L(fw,A,G) = log Pr [correct ranking|w]

= log
∏
Eij

mi∏

k=1

mj∏

l=1

Pr
[
fw(xj

l ) > fw(xi
k)|w

]
.

(8.4)

Note that in Equation 8.4, in common with most papers [8, 33], we have assumed

that every pair (xj
l , x

i
k) is drawn independently, whereas only the original samples

174



are drawn independently.

We use the sigmoid function to model the pairwise probability, i.e.

Pr
[
fw(xj

l ) > fw(xi
k)|w

]
= σ

[
wT (xj

l − xi
k)

]
, (8.5)

where σ(z) =
1

1 + e−z
(8.6)

is the sigmoid function. The sigmoid function has been previously used in [8] to

model pairwise posterior probabilities. However the cost function used was the

cross-entropy.

Assuming a prior Pr[w] = N (w|0, λ−1) on the weights w, the optimal maximum

a-posteriori (MAP) estimator is of the form

ŵMAP = arg max
w

L(w), (8.7)

where L(w) is the penalized log-likelihood:

L(w) = −λ

2
‖w‖2 +

∑
Eij

mi∑

k=1

mj∑

l=1

log σ
[
wT (xj

l − xi
k)

]
. (8.8)

8.3.1 Lower bounding the WMW

Comparing the log-likelihood L(w) to the WMW we can see that this is equiv-

alent to lower bounding the 0-1 indicator function in the WMW by a log-sigmoid

function (see Figure 8.2), i.e.,

1z>0 ≥ 1 + (log σ(z)/log 2). (8.9)

The log-sigmoid is appropriately scaled and shifted to make the bound tight at

the origin. The log-sigmoid bound was also used in [16] along with a boosting
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Figure 8.2: Log-sigmoid lower bound for the 0-1 indicator function.

algorithm. So maximizing the penalized log-likelihood is equivalent to maximizing

a lower bound on the WMW. The prior Pr[w] acts as a regularizer.

8.4 The optimization algorithm

In order to find the w that maximizes the penalized log-likelihood, we use the

Polak-Ribière variant of nonlinear conjugate gradients (CG) algorithm [53]. The CG

method only needs the gradient g(w) and does not require evaluation of L(w). It also

avoids the need for computing the second derivatives (Hessian matrix). The gradient

vector is given by (using the fact that σ
′
(z) = σ(z)σ(−z) and σ(−z) = 1− σ(z)):

g(w) = ∇L(w)

= −λw −
∑
Eij

mi∑

k=1

mj∑

l=1

(xi
k − xj

l )σ
[
wT (xi

k − xj
l )

]
.

(8.10)

Notice that the evaluation of the penalized log-likelihood or its gradient requires

M2 =
∑

Eij
mimj operations — this quadratic scaling can be prohibitively expensive
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2
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The erfc function.

for large datasets. The main contribution of this paper is an extremely fast method

to compute the gradient approximately (Section 8.5).

8.4.1 Gradient approximation using the error-function

We shall rely on the approximation [See Figure 8.3(a)]:

σ(z) ≈ 1− 1

2
erfc(

√
3z√
2π

), (8.11)

where the complementary error function [Figure 8.3(b)] is defined by

erfc(z) =
2√
π

∫ ∞

z

e−t2dt. (8.12)
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As a result, the approximate gradient can be computed—still withO(dM2) operations—

as:

g(w) ≈ −λw

−
∑
Eij

mi∑

k=1

mj∑

l=1

(xi
k − xj

l )

[
1− 1

2
erfc

(√
3wT (xi

k − xj
l )√

2π

)]
.

(8.13)

8.4.2 Quadratic complexity of gradient evaluation

We will isolate the key computational primitive contributing to the quadratic

complexity in the gradient computation. The following summarizes the different

variables in analyzing the computational complexity of evaluating the gradient.

• We have S classes with mi training instances in the ith class.

• Hence we have a total of m =
∑S

i=1 mi training examples in d dimensions.

• |E| is the number of edges in the preference graph, and

• M2 =
∑

Eij
mimj is the total number of pairwise preference relations.

For any x we will define z =
√

3wT x/(π
√

2). Note that z is a scalar and for a given

w can be computed in O(dm) operations for the entire training set. We will now

rewrite the gradient as

g(w) = −λw −∆1 +
1

2
∆2 − 1

2
∆3, (8.14)
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where the vectors ∆1, ∆1, and ∆3 are defined as follows–

∆1 =
∑
Eij

mi∑

k=1

mj∑

l=1

(xi
k − xj

l ).

∆2 =
∑
Eij

mi∑

k=1

mj∑

l=1

xi
kerfc(z

i
k − zj

l ).

∆3 =
∑
Eij

mi∑

k=1

mj∑

l=1

xj
l erfc(z

i
k − zj

l ). (8.15)

The vector ∆1 is independent of w and can be written as follows–

∆1 =
∑
Eij

mimj(x
i
mean − xj

mean), where xi
mean =

1

mi

mi∑

k=1

xi
k

is the mean of all the training instances in the ith class. Hence ∆1 can be pre-

computed in O(|E|d + dm) operations.

The the other two terms ∆2 and ∆3 can be written as follows–

∆2 =
∑
Eij

mi∑

k=1

xi
kE

j
−(zi

k) ∆3 =
∑
Eij

mj∑

l=1

xj
l E

i
+(−zj

l ) (8.16)

where

Ej
−(y) =

mj∑

l=1

erfc(y − zj
l ).

Ei
+(y) =

mi∑

k=1

erfc(y + zi
k). (8.17)

Note that Ej
−(y) in the sum of mj erfc functions centered at zj

l and evaluated at

y–which requires O(mj) operations. In order to computed ∆3 we need to evaluate

it at mi points, thus requiring O(mimj) operations. Hence each of ∆2 and ∆3 can

be computed in O(dSm +M2) operations.

Hence the core computational primitive contributing to the O(M2) cost is

the summation of erfc functions. In the next section we will show how this sum
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can be computed in linear O(mi + mj) time, at the expense of reduced precision

which however can be arbitrary. As a result of this ∆2 and ∆3 can be computed in

linear O(dSm + (S − 1)m) time. In terms of the optimization algorithm since the

gradient is computed approximately the number of iterations required to converge

will increase. However this is more than compensated by the cost per iteration

which is drastically reduced.

8.5 Fast weighted summation of erfc functions

In general Ej
−(y) and Ei

+(y) can be written as the weighted summation of N

erfc functions centered at zi ∈ R, with weights qi ∈ R:

E(y) =
N∑

i=1

qi erfc(y − zi). (8.18)

Direct computation of (8.18) at M points {yj ∈ R}M
j=1 is O(MN). In Chapter 4 we

derived an ε-exact approximation algorithm to compute this in O(M + N) time.

For any given ε > 0, Ê is an ε − exact approximation to E if the maximum

absolute error relative to the total weight Qabs =
∑N

i=1 |qi| is upper bounded by a

specified ε, i.e.,

max
yj

[
|Ê(yj)− E(yj)|

Qabs

]
≤ ε. (8.19)

The constant in O(M + N) for our algorithm depends on the desired accuracy ε,

which however can be arbitrary. In fact, for machine precision accuracy there is no

difference between the direct and the fast methods. The algorithm we present is

inspired by the fast multipole methods proposed in computational physics [27]. The
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fast algorithm is based on using an infinite series expansion for the erfc function and

retaining only the first few terms (whose contribution is at the desired accuracy).

8.6 Ranking experiments

8.6.1 Datasets

We used two artificial datasets and ten publicly available benchmark datasets 1

in Table 8.1, previously used for evaluating ranking [23] and ordinal regression [88].

Since these datasets are originally designed for regression, we discretize the contin-

uous target values into S equal sized bins as specified in Table 8.1. For each dataset

the number of classes S was chosen such that none of them were empty. The two

datasets RandNet and RandPoly are artificial datasets generated as described in [8].

The ranking function for RandNet is generated using a random two layer neural net

with 10 hidden units and RandPoly using a random polynomial.

8.6.2 Evaluation procedure

For each data set 80% of the examples were used for training and the remaining

20% were used for testing. The results are shown for a five-fold cross validation

experiment. In order to choose the regularization parameter λ, on each fold we used

the training split and performed a five-fold cross validation on the training set. The

performance is evaluated in terms of the generalized WMW statistic (A WMW of

one implies perfect ranking). We used a full order graph to evaluate the ranking

1The datasets were downloaded from http://www.liacc.up.pt/∼ltorgo/Regression/DataSets.html
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performance.

We compare the performance and the time taken for the following methods–

1. RankNCG The proposed nonlinear conjugate-gradient ranking procedure. The

tolerance for the conjugate gradient procedure was set to 10−3 . The nonlin-

ear conjugate gradient optimization procedure was randomly initialized. We

compare the following two version–

• RankNCG direct This uses the exact gradient computations.

• RankNCG fast This uses the fast approximate gradient computation. The

accuracy parameter ε for the fast gradient computation was set to 10−6.

2. RankNet [8] A neural network which is trained using pairwise samples based

on cross-entropy cost function. For training in addition to the preference

relation xi º xj, each pair also has a associated target posterior Pr[xi º xj].

In our experiments we used hard target probabilities of 1 for all pairs. The

best learning rate for the net was chosen using WMW as the cross validation

measure. Training was done in a batch mode for around 500-1000 epochs or

till there are no function decrease in the cost function. We used two version

of the RankNet–

• RankNet two layer A two layer neural network with 10 hidden units.

• RankNet linear A single layer neural network.

3. RankSVM [40, 33] A ranking function is learnt by training an SVM classifier 2

2Using the SVM-light packages available at http://svmlight.joachims.org/
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over pairs of examples. The tradeoff parameter was chosen by cross validation.

We used two version of the RankSVM–

• RankSVM linear The SVM is trained using a linear kernel.

• RankSVM quadratic The SVM is trained using a polynomial kernel k(x, y) =

(x.y + c)p of order p = 2.

4. RankBoost [20] A boosting algorithm which effectively combines a set of weak

ranking functions. We used {0, 1}-valued weak rankings that use the ordering

information provided by the features [20]. Training a weak ranking function

involves finding the best feature and the best threshold for that feature. We

boosted for 50-100 rounds.

8.6.3 Results

The results are summarized in Table 8.2 and 8.3. All experiments were run on

a 1.83GHz machine with 1.00GB of RAM. The following observations can be made.

8.6.3.1 Quality of approximation

The WMW is similar for (a) the proposed exact method (RankNCG direct)

(b) the approximate method (RankNCG fast). The run time of the approximate

method is one to two magnitudes lower than the exact method, especially for large

data sets. Thus we are able to get very good speedups without sacrificing ranking

accuracy.

183



8.6.3.2 Comparison with other methods

All the methods show very similar WMW scores. In terms of the training

time the proposed method clearly beats all the other methods. For small datasets

RankSVM linear is comparable in time to our methods. For large datasets Rank-

Boost shows the next best time.

8.6.3.3 Ability to handle large datasets

For dataset 14 only the fast method completed execution. The direct method

and all the other methods either crashed due to huge memory requirements or took

an incredibly large amount of time. Further, since the accuracy of learning (i.e.

estimation) clearly depends on the ability to leverage large datasets, in real life,

the proposed methods are also expected to be more accurate on large-scale ranking

problems.

8.6.4 Impact of the gradient approximation:

Figure 8.4 studies the accuracy and the run-time for dataset 10 as a function

of the gradient tolerance, ε. As ε increases, the time taken per-iteration (and hence

overall) decreases. However, if it is too large the total time taken starts increasing

(after ε = 10−2 in Figure 8.4(a)). Intuitively, this is because the use of approximate

derivatives slows the convergence of the conjugate gradient procedure by increasing

the number of iterations required for convergence. The speedup is achieved because

computing the approximate derivatives is extremely fast, thus compensating for
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the slower convergence. However, after a certain point the number of iterations

dominates the run-time. Also, notice that ε has no significant effect on the WMW

achieved, because the optimizer still converges to the optimal value albeit at a slower

rate.
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Figure 8.4: Effect of ε-exact derivatives (a) The time taken and (b) the WMW

statistic for the proposed method and the faster version of the proposed method as

a function of ε. The CG tolerance was set to 10−3. Results are for dataset 10.
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8.7 Application to Collaborative filtering

As an application we will show some results on a collaborative filtering task

for movie recommendations. We use the MovieLens dataset 3 which contains ap-

proximately 1 million ratings for 3592 movies by 6040 users. Ratings are made on

a scale of 1 to 5. The task is to predict the movie rankings for a user based on the

rankings provided by other users. For each user we used 70% of the movies rated

by him for training and the remaining 30% for testing. The features for each movie

consisted of the ranking provided by d other users. For each missing rating, we

imputed a sample drawn from a Gaussian distribution with its mean and variance

estimated from the available ratings provided by the other users. Table 8.4 and 8.5

shows the time taken and the WMW score for this task for the two fastest methods.

The results are averaged over 100 users. The other methods took a large amount

of time to train just for one user. The proposed method shows the best WMW and

takes the least amount of time for training.

8.8 Conclusion and future work

We presented an approximate ranking algorithm which directly maximizes the

generalized Wilcoxon-Mann-Whitney statistic. The algorithm was made computa-

tionally tractable using a novel, fast summation method for calculating a weighted

sum of erfc functions. Experimental results demonstrate that despite the order of

magnitude speedup, the accuracy was almost identical to exact method and other

3The dataset was downloaded from http://www.grouplens.org/.
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Table 8.4: Results for the EACHMOVIE dataset: The mean training time (averaged

over 100 users) as a function of the number of features d.

d RankNCG fast RankBoost

50 0.48 [± 0.19] 6.68 [± 1.65]

100 0.44 [± 0.17] 12.67 [± 2.83]

200 0.42 [± 0.17] 27.53 [± 5.99]

400 0.41 [± 0.17] 68.08 [± 13.95]

800 0.45 [± 0.13] 193.18 [± 39.75]

1600 0.51 [± 0.15] 613.54 [± 124.93]

Table 8.5: The corresponding generalized WMW statistic on the test set for the

results shown in Table 8.4.

d RankNCG fast RankBoost

50 0.693 [± 0.054] 0.672 [± 0.056]

100 0.707 [± 0.049] 0.679 [± 0.050]

200 0.722[± 0.053] 0.685 [± 0.057]

400 0.720 [±0.054] 0.685 [± 0.051]

800 0.721 [± 0.050] 0.673 [± 0.058]

1600 0.719 [± 0.053] 0.682 [± 0.058]
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algorithms proposed in literature.

8.8.1 Future Work

Other applications for fast summation of erfc functions: The fast summation

method proposed could be potentially useful in neural networks, probit regression,

and in Bayesian models involving sigmoids.

Nonlinear, kernelized variations: In order to retain focus, we did not discuss

the non-linear version of our algorithm in detail. However, we may easily kernelize it

by replacing the linear function wT x with
∑m

i=1 k(x, xi)αi = αTk(x), where k is the

kernel used and k(x) is a column vector defined by k(x) = [k(x, x1), . . . , k(x, xm)]T .

The penalized log-likelihood for this problem changes to:

L(α) = −λ

2
‖α‖2 +

∑
Eij

mi∑

k=1

mj∑

l=1

log σ
[
αT

(
k(xj

l )− k(xi
k)

)]
. (8.20)

The gradient vector is given by:

g(α) = ∇L(α) = −λα

−
∑
Eij

mi∑

k=1

mj∑

l=1

(
k(xi

k)− k(xj
l )

)
σ

[
αT

(
k(xi

k)− k(xj
l )

)]
. (8.21)

The computation of the gradient will involve calculating: (a) the weighted sum of

kernel functions, and (b) the weighted sum of sigmoid (or erfc) functions. Dual-tree

methods [26] and the improved fast Gauss transform [95] may be used to speedup

(a). For (b) we can use the fast approximation proposed in this paper.

Independence of pairs of samples: In common with most papers following [33],

we have assumed that every pair (xj
l , x

i
k) is drawn independently, even though they
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are really correlated (actually, the samples xi
k are drawn independently). In the

future we plan to correct for this lack of independence using a statistical random-

effects-model.

Effect of ε on convergence rate: We plan to study the convergence behavior of

the conjugate gradient procedure using approximate gradient computations. This

would give us a formal mechanism to choose ε.
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Chapter 9

Conclusions

This thesis introduced a new mathematical tool for fast summation–a funda-

mental type of computational problem occurring widely in machine learning. Specif-

ically we designed three fast summation algorithms and applied it to a few machine

learning tasks. The source code for all the fast summation algorithms are released

under the Lesser GPL.

9.1 Future work

The following problems are among those that I wish to formulate well and

solve in the future.

• Core algorithms Development of these kind of fast approximate algorithms

for more kernels–e.g., the Epanechnikov kernel for kernel density estimation

and the Matèrn class of kernels used in Gaussian process regression.

• Convergence issues In many applications these fast MVP primitives are

embedded in a optimization routine–e.g., in ranking problem we embedded it

in a conjugate-gradient procedure. A theoretical issue which we have barely

touched upon concerns the convergence of these optimization routines when

using approximate MVP primitives.
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• Applications A few applications which I would like to further explore include–

hyperparameter selection for Gaussian processes, Nadarya-Watson kernel re-

gression, and inexact eigenvalue methods for unsupervised learning.

9.2 Open problems

Following are a few open problems which may require much time and thought.

• The curse of dimensionality. For the Gaussian kernel our experimental

results indicate that it easy to get good speedups at very large or very small

bandwidths. For moderate bandwidths and moderate dimensions (d ≤ 10) our

proposed algorithm is capable of giving good speedups. However getting good

speedups for moderate bandwidths and large dimensions remains an important

open research problem.

• The paradox of the curse of dimensionality. For most machine learn-

ing tasks even though the data is very high dimensional, the true intrinsic

dimensionality is typically very small. I intend to explore if dimensionality re-

duction approaches like PCA and manifold learning methods can be directly

incorporated into our fast algorithms.

• Structure, Inference, and Computation A more ambitious task would

be to explore if there are any deeper connections between structure in the

data, computation, and inference.
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