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Abstract

Zero-rating services allow mobile users to access contents from contracted CP free

of data charge. In this thesis, we introduce attacks against the zero rating service which

allows extra non-contracted tra�c to be transported free of charge. We call this types

of attack the ‘free-riding’ attack. Specifically, we create two types of free-riding attacks:

1) masquerade zero-rating CP attack; 2) response packets modification attack. We

conducted multiple experiments on several major commercial cellular and WiFi ISPs in

the United States and China. The experimental results show that all these ISPs are

vulnerable to free-riding attacks.

In this thesis, we also propose a secure and backward compatible zero-rating frame-

work, called ZFree. ZFree authorizes network tra�c from valid CP to be zero-rated.

Next, we perform a formal security verification using ProVerif on ZFree. The formal

verification results show that ZFree is secure in preserving packet integrity and CP

server authenticity.

We have implemented an open-source prototype of ZFree available at the Github

repository (https://github.com/zfree2018/ZFREE). Our evaluation shows that ZFree

is lightweight, scalable and secure.
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Chapter 1

Introduction

Internet service providers (ISPs) o↵er zero-rating services to its users, thus allowing

them to visit contents from contracted content providers (CPs) without being charged

for the data usage. Here are two examples: 1) cellular ISP A provides its users a zero-

rating program over LTE network. Users in this program can stream contents from over

one hundred CPs, such as YouTube, without being charged of cellular data usage; 2)

WiFi ISP D provides a WiFi zero-rating service. Users in the airplane can use ISP D’s

cabin WiFi to access certain websites, such as the airline company’s o�cial website, for

free.

1.1 Problem Statement

1.1.1 Understand Existing ISP Zero-rating Framework

We research an existing ISP zero-rating framework. Real-world ISP first inspects

network packets with inspection mechanism, such as Deep Packet Inspection (DPI).

DPI di↵erentiates zero-rating tra�cs based on packets’ header. We discover that ISPs

are using ‘hostname’ header in HTTP and ‘Server Name Indication (SNI)’ header in

HTTPs as inspection identifier. Next, ISPs define zero-rating policies for these zero-

rating tra�c. The zero-rating framework is implemented across two types of mobile

networks: cellular network and WiFi network. Both networks involve three parties: the

ISP, the CP, and the user.

2



1.1.2 Vulnerability of Zero-rating Service

Although zero-rating service provides convenience for both users and CPs, it also

contains vulnerabilities. Based on the existing ISP zero-rating framework, the user can

modify non-zero-rated packets to zero-rating packets or inject zero-rating identifier into

non-zero-rated packets, thus tricking ISP to zero-rate the tra�c. This attack is called

the free-riding attack.

The mobile users are malicious attackers in free-riding attack. The free-riding attack

can bypass ISP’s zero-rating policies, thus o↵ering the attacker free data on charged

tra�c. This free-riding attack is new and di↵erent from the traditional ISP-side charging

attacks. Traditional attacks, such as network domain service (DNS) attack [42] and

TCP retransmission attack [20, 21], exploit protocol bugs. Free-riding attack exploits

the vulnerabilities of ISP charging system, thus achieving the attack.

The vulnerabilities of zero-rating service bring severe losts to ISPs and CPs. One re-

cent report from Sandvine [1] concludes that a major US network carrier loses $7,000,000

in a month due to such free-riding attacks. We also manually analyze the billing data

from one cellular ISP in China. The result indicates that this ISP loses at least half a

million US dollars per month for 71TB free-riding tra�c due to such attacks.

1.2 Exsiting Solution

There are two existing solutions: 1) Yiakoumis et al. proposed Network Cookies [51]

in which an authentication token (called Network Cookie) serves as a zero-rating ticket

to the client. The client injects this cookie to the zero-rating tra�c. ISP inspects

the cookie and frees the date charge. 2)Facebook provides a framework based on IP

Whitelist, called Facebook Zero [11]. IP Whitelist framework allows ISPs to obtain an

IP list from CP for authentication. In other words, tra�c from the servers that belong

to this IP Whitelist can be zero-rated.

We discover that these two existing solutions are both vulnerable to free-riding at-

tacks. For Network Cookie solution, we show that an attacker can either bind a zero-

rating cookie to non-zero-rating tra�c or inject non-zero-rating data into zero-rating

tra�c to bypass ISP zero-rating policies. For IP Whitelist solution, we show that the

3



malicious users can easily camouflage TCP/IP packets, thus bypassing the IP Whitelist.

1.3 Zero-rating FRamework with thrEe partiEs (ZFree)

We propose a brand-new Zero-rating FRamework with thrEe partiEs (ZFree) to

defend against the powerful free-riding adversary. ZFree allows ISP and CP to ex-

change authentication information in zero-rating services. There are two points which

explain why existing solutions, such as IP Whitelist solution, cannot defend against

free-riding attacks. First, information should be kept from the user, the potential free-

riding attacker. Existing work, such as Network Cookie [51], fails to defend against

free-riding attacks, because it makes authentication information available to the user.

Second, information should be able to authenticate the communication between the user

and CP.

1.4 Challenges in ZFree

While the insight of ZFree is intuitively simple, there are still challenges in ZFree’s

design. We list the challenges as follows:

• Security. ZFree needs to validate CP’s authenticity and the communication integrity

between CP and the user.

• Backward Compatibility. ZFree needs to incur minimum deployment burden to both

CPs and ISPs. The ZFree backward compatibility includes no changes to existing

(i) codebase and (ii) network packets. Because any such changes may break existing

network functionalities, such as intrusion detection systems and loader balancer.

• Privacy. ZFree needs to preserve the communication privacy between user and

the CP. That is, CP cannot directly reveal any communication contents to ISP for

authentication.

• Performance. The performance overhead added to the end-to-end communication

needs to be minimum. If an unencrypted communication is su�cient between the

CP and the user, we do not need to encrypt the control plane communication for

authentication, which brings overhead.

4



1.5 Consideration of ZFree Control Plane Protocol

ZFree operates a secure protocol, called ZFree control plane protocol. This pro-

tocol allows ZFree to communicate between CP and ISP for authenticating zero-rating

tra�c.

ZFree control plane protocol has a trivial overhead. The protocol only needs to

preserve server authenticity and data integrity for both control and data planes but not

necessarily data secrecy. In particular, we make the following contributions in design

ZFree control plane protocol to meet all the aforementioned properties.

• Conducting a formal security analysis. We formally model ZFree control plane pro-

tocol using ProVerif, a formal protocol cryptographic analysis tool. ProVerif concludes

that ZFree is secure and robust to free-riding attacks.

• Deploying pluggable components at both ISP and CP. To ease the deployment burden

and maintain backward compatibility, we deploy a ZFree Server Agent at CP gateway

and a ZFree ISP Assistant at ISP’s core network. Server Agent can: 1) sni↵ packets

from the data plane; 2) covert packets into hash code; 3) send the hash code to ISP

Assistant for authorization. ISP Assistant can: 1) sni↵ packet from data plane in

core network; 2) covert packets into hashcode; 3) verify packet authorization with CP

Server Agent.

• Verifying packet integrity without violating the end-to-end privacy. ISP Assistant

verifies packet integrity by checking the secure hashes sent from Server Agent. When

ISP Assistant finds a match of the corresponding packet, it authorizes the packet to

be zero-rated. ZFree does not need to understand the application layer protocols,

thus preserving end-to-end privacy.

• Matching hash values in a distributed manner. ISP Assistant matches hashes received

from Server Agent. This matching process can be costly. We achieve this process by

sharding the matching task to distributed nodes based on the hash value’s prefix. Our

evaluation shows: 1) ZFree in non-blocking mode, a mode used in cellular network,

incurs only 1.26% overhead; 2)ZFree in blocking mode, a mode used in WiFi network,

incurs 8.79% overhead; 3) both ZFree non-blocking mode and ZFree blocking mode

introduce less network latency than TLS encryption.

5



Currently, ZFree is described in a draft in Internet Engineering Task Force (IETF).

We have obtained support from vendors, real-world ISPs, and content providers, such as

Cisco, China Mobile, China Telecom, and Alibaba. ZFree prototype implementation is

open-sourced and available at the following repository (https://github.com/zfree2018/

ZFREE).
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Chapter 2

The Free-riding Attacks

In this chapter, we introduce the free-riding attacks by first describing the threat

model in Section 2.1, followed by introducing the attack methodologies and the at-

tack testbeds setup in Section 2.2. Next, we introduce the free-riding attacks against

real-world ISPs in Section 2.3 and defense solutions which are research prototypes in

Section 2.4. Finally, we analyze the severeness of free-riding attacks in Section 2.5.

2.1 Threat Model

In this section, we introduce the threat model by first describing the normal zero-

rating charging flow in Section 2.1.1, followed by the tra�c flow during free-riding

attacks of zero-rating services in Section 2.1.2. Then, we discuss how the relationship

between CP and ISPs can a↵ect the threat model in Section 2.1.3.

2.1.1 The Normal Zero-rating Charging Flow

We introduce the normal zero-rating charging flow shown in Figure 2.1. There are

three parties involved in zero-rating charging flow: CP, ISP, and the user. We introduce

them as follows:

• Content Provider (CP). CPs, such as Netflix and Hulu, provide abundant contents,

e.g., multimedia, news, games, to the user. In the normal zero-rating charging flow,

there are two kinds of CPs. One kind of CPs participates in ISP’s zero-rating program

while the other kind does not. In Figure 2.1, zero-rating CPs are shown on the upper

7



Figure 2.1: Normal Zero-rating Charging Flow

right. ISP zero-rates the tra�c from zero-rating CPs to the users. CPs who are

not participating in the zero-rating program, are shown as other internet tra�c. ISP

charges the user streaming from these CPs.

• Internet Service Provider (ISP). ISP provides Internet connectivity between CP and

the user. It also controls the billing system. In the normal zero-rating charging

flow, there are two kinds of ISPs. One kind of ISPs provides users with the cellular

connection such as LTE; the other kind provides WiFi connection such as public WiFi,

and airplane cabin WiFi. ISP can di↵erentiate zero-rating and non-zero-rating tra�c

by the Deep Packet Inspection(DPI) network function. DPI can look for zero-rating

packet header, thus identifying the packet. We discover that in zero-rating service,

ISP uses ‘hostname’ field in HTTPs or ‘Server Name Indication (SNI)’ field in HTTPs

to verify the packet’s identity.

• User. The user visits the Internet via a client, e.g., a mobile phone or a laptop. The

user does not need to pay the ISP for the data usage streaming from zero-rating CPs.

In contrast, the user needs to pay for streaming from the non-zero-rating CPs.

2.1.2 The Free-riding Attack Flow

Comparing to the normal zero-rating charging flow, we introduce the free-riding

attack flow shown in Figure 2.2.

• Content Provider (CP). CP is benign in the free-riding attack. CP is the victim,

thus hoping to be protected from free-riding attack. Because in real-world zero-rating

8



Figure 2.2: Free-riding Attack Flow

service, CP has to pay for the user’s data fee to ISP.

• Internet Service Provider (ISP). ISP is also benign in the free-riding attack. ISP is

trying to protect themself from free-riding attacks launched by the user. Note that we

exclude the malicious ISP case, because such a scenario falls back to the traditional

end-to-end connection problem where ISP is the man-in-the-middle attacker.

• User. In the free-riding attack flow, the user is potentially malicious. The user tries

to bypass the ISP’s charging policy and get free data. According to characteristics

of HTTP/HTTPs, the user has full control of the tra�c. The user can modify the

contents of the connection, set up a man-in-the-middle proxy between ISP and CP, or

set up a masquerade CP server to mislead the ISP.

2.1.3 Intractability in Zero-rating Threat Model

The relationship between CP and ISP makes zero-rating service intractable thus

causing the free-riding attack. On the one hand, CP does not trust ISP. Because ISP

can be the potential man-in-the-middle attacker, CP needs to use encryption connection

to protect users’ privacy. On the other hand, CP needs to allow ISP to authenticate the

packets in zero-rating services. So in the current landscape, ISP di↵erentiates zero-rating

packets by only inspecting few HTTP/HTTPs headers without verifying the tra�c with

CP. This inspection mechanism leaves chances for the user(attacker) to trick the ISP,

thus acquiring free data. Besides, ISP cannot inspect IP address in the header of the

HTTP/HTTPs packets to identify CP, because many CPs are hosting their services on

9



Figure 2.3: Masquerade CP Server Attack

the third-party CDN network. The IP addresses are changing quickly and di�cult to

synchronize with the ISP’s billing system. We discover that ISP only inspects ‘hostname’

in HTTP or ‘SNI’ in HTTPs to authenticate zero-rating service.

2.2 Attack Methodologies and TestBeds Setup

In this section, we describe the free-riding attack methodologies along with their

testbeds setup. First, we introduce two zero-rating attack methodologies. Then, we

introduce the testbeds setup on cellular network and WiFi network to implement these

two methodologies.

Real-world ISPs (both cellular ISPs and WiFi ISPs) inspect packets, thus di↵eren-

tiating zero-rating tra�c. For the two types of connection, HTTP and HTTPs, ISP

inspects di↵erent segment. For HTTP connection, ISP inspects the ‘hostname’ field in

HTTP header which carries the CP’s identity. For HTTPs connection, as all segments

inside of the packet are end-to-end encrypted except the extension segments, ISP in-

spects the Server Name Indication (SNI) in the HTTPs extension segment. SNI also

carries the CP’s URL, which is also CP’s identity.

Due to the simple inspection tactic, an attacker can launch two types of free-riding

attacks. Figure 2.3 shows the first type of free-riding attack, called Masquerade CP

Server Attack. Figure 2.4 shows the second type of free-riding attack, called Response

Modification Attack.

In Masquerade CP Server Attack, the attacker first sets up a masquerade CP server

in the cloud. Then, the attacker uses a computer tethered to a mobile device thus

creating HTTP/HTTPs communication with the masquerade CP server. During the

HTTP communication, the attacker can modify the ‘hostname’ field with zero-rating

10



Figure 2.4: Response Modification Attack

identifier in HTTP ‘GET’ or ‘POST’ packets on both client side and masquerade CP

server side. During the HTTPs communication, the attacker can modify the SNI field

with zero-rating identifier. Since ISP inspects the fraud zero-rating identifier segment,

it zero-rates the tra�c. For example, ‘video.youtube.com’ is a zero-rating identifier

segment as user visits youtube.com. Attacker modifies the packets to the attacker’s

masquerade CP server (‘foo.com’) with this zero-rating identifier. Because the packet

routing is based on IP address, the packets can still reach the attacker’s masquerade CP

server. But ISP does not charge this tra�c since it inspects the zero-rating identifier.

In Response Modification Attack, the attacker first creates a proxy node between

the ISP and non-zero-rating CPs. This proxy is a transparent proxy set in between

the connection to modify the CP’s response. The modification is intuitive. For HTTP

tra�c, it modifies the ‘hostname’ in ‘POST’ or ‘PUT’ packet header with the zero-rating

identifier. For HTTPs tra�c, because the mobile users are malicious, they can decrypt

the HTTPs connection, thus sharing the session key with the proxy. The proxy then

uses the session key to open up packets, modify them with the zero-rating segment, and

then encrypt them again. For example, the user (attacker) visits a non-zero-rating CP

website, ‘www.nonzero.com’. The tra�c is handled by the attacker’s proxy in between.

The user shares the session key with the proxy. The proxy modifies the response packets

from CP to the user with the zero-rating segment ‘video.youtube.com.’ As the modified

packets go through the ISP, ISP zero-rates the tra�c, since it inspects the zero-rating

identifier.

To demonstrate our methodologies,, we implement the Masquerade CP Server Attack
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and Response Modification Attack in both cellular ISP and WiFi ISP.

First, we describe the testbed setup in cellular network. To demonstrate the Mas-

querade CP Server Attack, we first create the masquerade CP server in the cloud. Next,

we use a computer tethered to the cellular ISP’s mobile phone, thus connecting the

masquerade CP server. The computer can modify the HTTP and HTTPs packets with

the zero-rating identifier. To demonstrate the Response Modification Attack in cellular

network, we first create the proxy server in between ISP and normal non-zero-rating

CPs. Next, we use a computer tethered to the cellular ISP’s mobile phone, thus con-

necting the masquerade CP server. Note that, the computer can decrypt the HTTPs

connect and share the session key with the proxy. The proxy modifies the HTTP and

HTTPs response packets with the zero-rating identifier.

Next, we describe the testbed setup in WiFi network. The WiFi attack testbeds

are similar to the cellular network testbeds except for the wireless connection method.

In WiFi network, instead of tethered connection, we directly use computer to connect

WiFi access point thus launching the attacks.

2.3 Case Studies on Free-riding Attacks against real-world

ISPs

In this section, we introduce the free-riding attacks against real-world ISPs based on

our attack testbeds. First, we describe the free-riding attack against 3 cellular ISPs in

Section 2.3.1. Next, we describe the free-riding attack against 2 WiFi ISPs in Section

2.3.2. We conclude the test result in Table 2.1.

2.3.1 Real-world Cellular Networks Attacks

We launch the zero-rating attacks on 3 real-world cellular ISPs: Celluar ISP A in the

United States which allows its user to visit over 100 CPs content free of charge, Celluar

ISP B in China which provides a zero-rating music streaming service, and Celluar ISP

C in China which o↵ers a zero-rating video streaming service. In each test, we use

the volume of charged data to verify whether the attack succeeds. Table 2.1 shows the

overall results: except for those unavailable cases, all zero-rating programs of real-world
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Table 2.1: Summary of the Attacks on Real-world ISPs.

Cellular Network WiFi Network

ISP A ISP B ISP C ISP D ISP E

Unencrypted tra�c
CP masquerade 7 7 N/A 7 7
Response modification 7 7 N/A 7 7

Encrypted tra�c
CP masquerade 7 N/A 7 N/A 7
Response modification 7 N/A 7 N/A 7

7: The ISP is vulnerable to that free-riding attack; N/A: Corresponding zero-rating service is not available.

cellular ISPs are vulnerable to both types of free-riding attacks. We introduce the detail

as follows:

Celluar ISP A The Celluar ISP A provides a program allowing its user to visit more

than 100 content providers, such as HBOgo.com and history.com, over LTE free of data

charge. We purchase a Celluar ISP A’s SIM card with 6 GB data per month and opt-in

to the zero-rating program. The amount of usage is measured by dialing Celluar ISP A’s

self-service code (#932#), which provides two values: the amount of total usage and the

amount for charged usage. We use Wireshark in this computer to capture the zero-rating

identifiers. We get ‘www.hbo.com’ as the HTTP identifier and ‘video.youtube.com’ as

the HTTPs identifier.

To launch the Masquerade CP Server Attack on Cellular ISP A, we establish a

Node.js server in Digital Ocean Cloud hosting HTTP and HTTPs video services. We

then use our computer tethered to the Celluar ISP A’s cell phone. Next, we modify all

the ‘GET’ packets, which are sent to the masquerade CP server, with the zero-rating

segment. We observe the data volume on the mobile account. Although the total volume

amount increased, the charged the data volume remains unchanged.

To launch the Response Modification Attack on Cellular ISP A, we first establish the

transparent proxy server in AWS. Next, we use our computer tethered to the Celluar ISP

A’s cell phone, and send all request packets from our computer through this transparent

proxy to the non-zero-rating CPs, so that the response packets can also go through this

transparent proxy. At this time, the transparent proxy modifies the packets with the

zero-rating identifier which is same as the first attack. We observe that the data volume

on the cell phone. The charged the data volume still remains unchanged.
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Celluar ISP B The Celluar ISP B in China provides a program allowing its users

to stream ’MIGU music’ free of data charge over LTE. We purchased a Celluar ISP

B’s SIM card and opt-in to this zero-rating program. We check the data volume from

the ISP’s self-service portal. We use Wireshark in this computer to capture the zero-

rating identifiers. Based on Wireshark result, we notice that this zero-rating service

only provides HTTP connection. The HTTP identifier is ‘music.migu.com’.

To launch the Masquerade CP Server Attack on Cellular ISP B, we also establish an

HTTP Node.js server for video streaming in Alibaba Cloud. Note that although MIGU

music provides music stream, we can still use video file, since ISP cannot tell the packet

properties above TCP level. Next, we use our computer tethered to the Celluar ISP

B’s cell phone. Later, we modify the ‘GET’ packet with the zero-rating segment on our

computer and send to the masquerade CP server. We observe that the charged data

volume from ISP portal remains unchanged.

To launch the Response Modification Attack on Cellular ISP B, we first establish

the transparent proxy in Alibaba Cloud in China. We then use our computer tethered

to the Celluar ISP B’s cell phone. Next, we send all HTTP request packets from our

computer through this transparent proxy to the non-zero-rating CPs, and let the proxy

modifies the response packets with the zero-rating identifier. We observe the charged

data volume still unchanged.

Celluar ISP C The Celluar ISP C in China collaborates with the biggest video CP

providing a zero-rating video stream program to its users. We get the SIM card from

Celluar ISP C and opt-in to the zero-rating program. We check the data volume from

the ISP C’s online billing system. We use Wireshark in the tethered computer to capture

the zero-rating identifiers. Based on Wireshark result, we notice that this zero-rating

service only provides HTTPs connection. The HTTPs identifier is ‘video.tencent.com’.

To launch the Masquerade CP Server Attack on Cellular ISP C, we set up our video

server in Alibaba Cloud. Then, we use our computer tethered to the Celluar ISP C’s

cell phone. Next, we modify the HTTPs ‘SNI’ header with the zero-rating identifier on

our computer and send to the masquerade CP server. We check the billing system and

find that this tra�c is uncharged.
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To launch the Response Modification Attack on Cellular ISP C, we set up the proxy

in Alibaba Cloud. We then use our computer tethered to the Celluar ISP C’s cell phone.

Next, the computer as the HTTPs client shares the session key with the proxy. The

proxy uses this session key to decrypt and modify packets with zero-rating SNI identifier.

We also check the billing system and find that this tra�c is uncharged.

2.3.2 Real-world WiFi Networks Attacks

We lanuch the Masquerade CP Server Attack and Response Modification Attack on

2 real-world WiFi ISPs: WiFi ISP D providing public WiFi at airport and WiFi ISP E

providing Cabin WiFi in the airliner.

Public WiFi ISP D For the public WiFi attack, we select one of the major WiFi

ISPs in an international airport of Chicago, named WiFi ISP D. WiFi ISP D provides

a free WiFi network for 30 minutes and then charges the users. After 30 minutes, it

only provides passengers to visit major airlines’ websites, such as united.com, to check

flight status for free. If passengers want to have full access to the Internet, they have

to pay by hours. We also define this as a zero-rating service, since some of the access

is zero-rated while others have to be paid. To launch the attack, we first wait for the

WiFi to pass the free 30 minutes and confirm that we can only access the dedicated

website, e.g. ‘united.com’. Then, we use Wireshark to capture the packet to get the

header information in the packet in both HTTP and HTTPs. We get ‘www.united.com’

in the ‘hostname’ header of HTTP and ‘SNI’ in the HTTPs.

In the first scenario, we send out ‘GET’ request with the modified the zero-rating

header to the masquerade CP server, i.e., our video server in both HTTP and HTTPs.

We observe that even after 30 minutes free time, we can still access to our server using

the modified request.

In the second scenario, we use the proxy to modify the response packet from any non-

zero-rating CP server with the zero-rating segment in HTTP and HTTPs. we observe

that we can successfully access the CP server.
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Cabin WiFi ISP E In December 2016, we tested the Cabin WiFi on a flight from

Newark, NJ to Miami, FL. The WiFi service is provided by WiFi ISP E. WiFi ISP E

provides free WiFi networks when users visit certain partners’ websites, such as united.

com and hertz.com. The results were measured based on whether a connection to a

non-partners’ website succeeds.

We deployed the attack similar to how we peformed such attack in the public WiFi.

First, we connect to the cabin WiFi and verify that we can only access the cabin en-

tertainment and certain partners’ websites. we do not have access to the full Internet

at this time. Then, we use Wireshark to capture the header such as ‘hertz.com’. We

then modify the packet in the two scenarios with the zero-rating identifier and observe

the result. We note that in-cabin WiFi only allows us to connect the HTTP-based

website. If we connect to the HTTPs-based website, it will also redirect our request to

the HTTP-based website. We think that HTTPs consumes more bandwidth which is

ine�cient for satellite communications.

In the first scenario, we modify the ‘GET’ request which routes to our video mas-

querade CP server with the ‘hertz.com’ segment in ‘hostname’ of HTTP. We observe

that we can successfully access our video server.

In the second scenario, we use the proxy to modify the response packet from any non-

zero-rating CP server with the zero-rating segment in HTTP and HTTPs. we observe

that we can successfully access the CP server.

To summarize, Table 2.1 shows that we can launch a free riding attack on two

scenarios with both HTTP and HTTPs connection on cellular network ISPs and WiFi

network ISPs.

2.4 Attack on Defensive Research Solutions

In this section, we introduce the free-riding attacks against two defense solutions.

Specifically, we test two prototypes: Network Cookies [51] and IP Whitelist. First,

we describe the two defensive research prototypes respectively in Section 2.4.1. Next,

we introduce how to hack the research prototypes and launch the free-riding attack in

Section 2.4.2. We conclude the test result in Table 2.2.
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2.4.1 Introduction of Defensive Research Solutions

We describe the Network Cookies and IP Whitelist in this section respectively.

Network Cookies In paper ”Neutral Net Neutrality” [51], Yiakoumis et al. gave

out cookie-based middle-box authentication framework. Shown in Figure 2.5, Network

Cookies solution consists of four components: user(client), Middle-Box (ISP), CP server

and Cookie descriptor server. The workflow of this authentication framework has three

phases, described as follows:

Phase 1. The users and their clients inquiry CP service through discovery protocols

such as DHCP and DNS. The Cookie Descriptor Server can associate with the Discovery

Protocols Server and get information of the the inquiry URL. The Cookie Descriptor

List is a pre-setted whitelist of zero-rating services. If the service is on the list, phase 2

can be triggered.

Phase 2. Cookie Descriptor Server sends the certain Cookie to the user’s client.

The user’s client inserts the Cookie into the outgoing packets. There are several places

to insert the Cookie: 1) at the application layer (e.g., HTTP header or TLS handshake

extension); 2) at the transport layer(e.g., TCP long option, UDP based header); 3) at

the network layer(e.g., IPv6 extension header).

Phase 3. The user’s client sends the packets with the Cookie to the CP server via

the ISP network. ISP inspects the Cookie, thus zero-rating the tra�c.

IP Whitelist IP Whitelist is a simple technique that ISP uses for controlling the

tra�c. It is implemented as a subfunction in the DPI component of the ISP’s core

network. The IP Whitelist function only allows the tra�c tagged with specific IP-

address to pass or be zero-rated. Facebook Project Zero [11] is one implementation of

the IP Whitelist solution. In this project, Facebook creates a control channel with the

ISPs to dynamic synchronize its zero-rating IP-address with the ISP’s DPI whitelist.

2.4.2 Attack on Defensive Research Solutions

We introduce the attack on the Network Cookies and the IP Whitelist in this section

respectively.
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Figure 2.5: Network Cookie Architecture

Attack on Network Cookies We launch free-riding attacks against Network Cook-

ies. Because the cookie server does not bind issued cookies to zero-rating tra�c, a user

can abuse the cookie for any tra�c to the server. Furthermore, the communication

integrity between zero-rating CP and user can be compromised by a man-in-the-middle

attacker. Because the cookie does not validate the contents conveyed in the communica-

tion. We show that both their implementation and protocol are vulnerable to free-riding

attacks. Details about the vulnerability in their protocol can also be found in Chapter 5.

We now discuss the attack.

Specifically, we obtain the original implementation from the authors of Network

Cookies paper and deploy the implementation in our lab environment. Their client,

ISP middlebox, and cookie server are installed at three lab servers with Ubuntu 16.04

operating systems. The CP server’s hostname is registered in the Cookie Server. The

client asks for Network Cookies from the Cookie Server during DNS requests. The ISP

set in the middle inspecting packets and verify Network Cookies via function called

verifycookie.

We then perform the free-riding attacks and show that the Network Cookies proto-

type is vulnerable. First, we create a malicious non-zero-rating application in the client.

We let this application to bind a zero-rating Network Cookie by attaching a valid cookie

in the HTTP ‘network-cookie’ extension field. The results show that the ISP marks the
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tra�c as zero-rated. Second, we attack the cookie integration by the Response Modi-

fication Attack. We create the proxy between ISP and CP to inject a non-zero-rating

photo to a cookie enhanced zero-rating tra�c. The result shows that ISP still zero-rates

the total tra�c including the inserted non-zero-rating content.

Attack on IP Whitelist We introduce the Masquerade CP Server Attack and Re-

sponse Modification Attack against IP Whitelist. First, we set up the testing environ-

ment for IP Whitelist. We create a zero-rating CP server in a campus network and a

client in DigitalOcean Cloud. Next, we set up a computer in campus network represent-

ing the ISP in between the client and the CP server. This ISP contains the IP Whitelist

that locks on the CP server’s IP address.

In Masquerade CP Server Attack, we first set up a masquerade CP server in a

di↵erent campus computer whose IP address is not on the ISP’s whitelist. Then, the

client—which cooperates with the masquerade CP server—establishes a connection with

the zero-rating CP server. Once the connection is created, the client shares the con-

nection information with the masquerade CP server. Such information includes the

HTTP/HTTPs sequence number, the acknowledgment number, the destination port, the

source port, and the TCP flags. The masquerade CP server, based on this information,

crafts TCP packets to mimic the zero-rating CP server’s behavior, thus communicating

with the client. As a result, we observe that the ISP does not realize that the connection

session is shifted from the zero-rating CP to the masquerade CP, thus still zero-rating

the tra�c. Our experiment result further shows that we only need a small amount (386

bytes) of charged tra�c to initiate the free-riding attack. This small amount of charged

tra�c is used in the process of the communication information sharing from the client

to the masquerade CP server. Another thing worth noting is that the masquerade CP

server can also embed free-riding tra�c in TCP retransmission packets. In this case,

even if ISP checks the tra�c volume, it cannot notice of the free riding attack.

In Response Modification Attack, we first set up the proxy node between the zero-

rating CP server and the client. This proxy node is also a computer in the campus

network. This proxy can inject and modify content inside the connection between zero-

rating CP server and client. Because the ISP only inspects IP address based on the
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Table 2.2: Summary of Attacks on Research Prototypes.

Prototypes

Network Cookies IP Whitelist

Unencrypted tra�c
CP masquerade 7 7
Response modification 7 7

Encrypted tra�c
CP masquerade 7 7
Response modification 7 7

7: The ISP is vulnerable to that free-riding attack; N/A: Corresponding zero-rating service is not available.

IP Whitelist. It cannot notice any of the non-zero-rating content inside of the tra�c.

Interestingly, in previous Masquerade CP Server Attack, the packet integrity between

the client and the real CP is also violate, as the client can directly receive the crafted

packet from the masquerade CP server, .

2.5 Understanding the Severeness of Free-riding Attacks

In this section, we measure the severeness of the free-riding attacks. Specifically, we

receive one-month usage data from the Cellular ISP B and estimate the amount of free-

riding tra�c. We understand that this is a di�cult task because if we can accurately

measure free-riding attacks, such approach can be used for defensive detection as well.

The detailed steps for estimating the amount of free-riding tra�c are introduced as

follows. First, we calculate the average amount of zero-rated data for a normal user,

which is roughly 300MB/month. Second, we filter those users whose zero-rating tra�c

amount are significantly higher than the normal 300MB/month. We set the threshold

of the abnormal amount of zero-rated data as 3GB/month. Lastly, we manually count

the invalid zero-rating users and accumulate their total amount of free-riding tra�c.

Our manual analysis is performed on the billing data of Cellular ISP B’s network

in January 2016. The result reveal 71TB free-riding tra�c, equaling to half a million

US dollar based on Cellular ISP B’s charging rate. Note that one interesting finding is

that some users consumed more than 30GB zero-rating data in the zero-rating music

stream program per month, which is technically impossible because that means those

users need to listen to music for more than 24 hours per day.
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Chapter 3

ZFree Overview

To defend against free-riding attacks, we introduce the Zero-rating FRamework with

thrEe partiEs (ZFree). ZFree provides a secure packet authentication in the zero-

rating network. In this chapter, we give a high-level overview of how ZFree is organized

and operated. First, we introduce the ZFree system architecture. Second, we describe

the ZFree deployment model. We demonstrate how ZFree can be merged into the

cellular network and WiFi network with minimum modification. Lastly, we discuss

several ZFree use cases other than defending against free-riding attacks.

3.1 System Architecture

At high level, ZFree contains data plane and control plane. As previously discussed,

a traditional zero-rating framework involves three parties: user, ISP, and CP. User

connects to the Internet via the wireless access network, such as cellular base station

(eNodeB) and WiFi Access Point (AP). ISP provides a core network for packet routing

and inspects packet for di↵erentiate zero-rating tra�c. CP hosts multimedia zero-rating

contents in a Data Center (DC). The communication between client and CP via the ISP

forms into the data plane. On top of the data plane, it is the ZFree control plane.

ZFree control plane contains two pluggable components, called Server Agent and ISP

Assistant. The Server Agent is deployed in CP side and responses for: 1) sni�ng packets

at the CP gateway; 2) converting the packet into the hash code; 3) sending the hash

code to the ISP Assistant via the ZFree control plane protocol. The ISP Assistant is
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Figure 3.1: ZFree’s Architecture over Cellular Network

deployed in ISP side and responses for: 1) communicating all the Server Agent from

di↵erent CPs; 2) authenticating zero-rating packets; 3) communicating with the Policy

and Charging Rules Function (PCRF) in the ISP core network’s billing system.

ZFree supports two modes for zero-rating services, i.e., non-blocking mode and

blocking mode. The non-blocking mode only sni↵s and verifies packets without dropping

them. If the packets are invalid (from free-riding attack), ZFree informs PCRF to

charge this packet. In contrast, the ZFree blocking mode intercepts the packets if ISP

assistant inspects invalid packets. As mentioned, the non-blocking mode can be used

for cellular networks, because ISP controls the user’s mobile bill for visiting zero-rating

contents. The blocking mode can be used for WiFi networks as the ISP controls the

accessibility and may not be able to charge the users later.

3.2 Deployment Model

We now discuss how to deploy ZFree in real-world ISPs over LTE or WiFi. ZFree’s

cellular deployment is shown in Figure 3.1. ZFree’s WiFi deployment is shown in

Figure 3.2. In these two deployment models, the Server Agent is deployed at the CP
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Figure 3.2: ZFree’s Architecture over WiFi Network

gateway while the ISP Assistant is deployed based on di↵erent ISP network topologies

as discussed below.

3.2.1 Cellular Network

Figure 3.1 shows the ZFree deployment model in the cellular network. The ISP

Assistant is be deployed at the ISP core network, specifically the Packet Data Net-

work (PDN) Gateway (P-GW) in LTEnetwork and GPRS support node (GGSN) in 3G

network. The Server agent is deployed at the gateway router of CP data center. As

user connects to the Access Network, the enodeB in the Access Network aggregates the

packet to the Service-Gateway(S-GW). Then, S-GW aggregates the tra�c and forwards

to the P-GW or GGSN for packet switching. Here, the ISP Assistant sni↵s packet.

3.2.2 WiFi Network

Figure 3.2 shows the ZFree deployment model in WiFi network. The ISP Assistant

is deployed at the Access Controller (AC) which is the central control node of packet

authentication and access management. When the user connects to the network through

Access Point(AP), the AC inspects packets and interacts with ISP Assistant by blocking

mode or non-blocking mode for zero-rating packet authentication.
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3.3 Use Cases

Apart from providing zero-rating services and mitigating free-riding attacks, we en-

vision that ZFree can also be used for other purposes. We discuss two use cases as

follows.

3.3.1 Parental Control

Parental control is a feature to prevent underage users from accessing certain inap-

propriate contents. We can use ZFree blocking mode to serve as the parental control

filter in the ISP’s core network. ZFree allows parents to edit the control policies and

monitor the tra�c in underage users’ devices.

3.3.2 Policy and Charging Control (PCC)

Policy and Charging Control (PCC) allows ISP to set Quality of Service (QoS) and

Charging policy based on di↵erent contents. The ISP can use ZFree ISP Assistant to

manage all the PCC policies and control charging rules.
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Chapter 4

ZFree System Design

In this section, we introduce the ZFree system design by first describing the two

ZFree components in Section 4.1. Next, we walk through the ZFree control plane

protocol in Section 4.2. Finally, we introduce the critical algorithms in ZFree control

plane protocol in Section 4.3.

4.1 ZFree components

ZFree has two components in the control plane, the Server Agent and the ISP

Assistant. Server Agent is deployed in every CP gateways and ISP Assistant is deployed

inside of the ISP. We introduce them respectively as follows.

4.1.1 Server Agent

Server Agent is deployed at CP side. All the CPs in the zero-rating program are

equipped with the Server Agent. The Server Agent can be deployed as an attachment

component of the CP Gateway or as a virtual function embedded inside of the CP

Gateway.

Server Agent is in charge of 4 tasks: 1) establishing a connection with the ISP

Assistant; 2)verifying the ISP identity; 3) sni�ng packets from the CP data plane thus

converting the packets into keyed hash code; 4) sending the keyed hash to the ISP

Assistant.
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4.1.2 ISP Assistant

ISP Assistant is deployed at the ISP side. ISP Assistant can be deployed as an

attachment component of the ISP core network. Since the ISP’s core network has large

tra�c capacity, we also need to consider the system scalability. To scale ZFree, we can

deploy ZFree as several virtual network slicing components in the ISP core network

[32].

ISP Assistant is in charge of 5 tasks: 1) maintaining the connection with all the

Server Agents; 2) verifying the CP identity; 3) sni�ng packets from ISP core network

thus converting the packets into keyed hash code; 4) matching the two keyed hash code,

one is received from the Server Agent while the other one is sni↵ed from the core network;

5) communicating with PCRF to update the billing information.

4.2 ZFree Control Plane Protocol

All the ZFree control processes are done by the ZFree control plane protocol

between the Server Agent and the ISP Assistant. In this section we introduce the

ZFree Control Plane Protocol by describing the two phases of the protocol, Setup

Phase in Section 4.2.1 and Control Phase in Section 4.2.2 . Each phase consists of

several steps. Figure 4.1 shows the details of the protocol.

4.2.1 Setup Phase

The setup phase is the first phase of ZFree control plane protocol. During this

setup phase, ISP Assistant and Server Agent establish communication by agreeing on

a list of options, such as cipher suite and connection type, exchanging session keys and

then verifying each other’s identity by the certificate. In detail, the setup phase consists

of two steps, handshake and identity verification.

1 Handshake: In this step, the ISP Assistant and the Server Agent exchange

setup options via “ISP HELLO” and “SA HELLO” messages. Specifically, the exchange

messages include session id, a random number for computing keys, cypher suite options,

ZFree versions, connection types (e.g., blocking vs. non-blocking ,and real-time vs.

batch), policies (e.g., zero-rating and parental control), and a list of IP address ranges
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(e.g., 88.88.0.0/16) locking on the zero-rating clients. Next, based on the two “HELLO”

messages, both the ISP Assistant and the Server Agent compute a tra�c key used for

establishing the communicating session.

2 Identity Verification: In this step, the ISP Assistant and the Server Agent

verify the identity by verifying each other’s certificate. If the verification succeeds, the

ISP Assistant and the Server Agent computes the session key based on the certificate

and the tra�c key to establish the final communication.

4.2.2 Control Phase

After the setup phase, the communication between the ISP Assistant and the Server

Agent is established. ZFree moves to the control phase and ready to verify the zero-

rating service. In detail, the control phase consists of 3 steps, introduced as follows:

Note that Step 4 and Step 5 are parallel steps. The ZFree control plane pro-

tocol in setup phase chooses either 4 or 5 via “HELLO” messages. The Step 4 is

communication in Realtime-type where the Server Agent sends every keyed hash to ISP

assistant in real-time. Step 5 is communication in Batch-type where the Server Agent

gathers a pack of keyed hashes and waits for the ISP Assistant to poll periodically.

3 Communication (Realtime-type):

In this step, ZFree verifies the zero-rating packets in realtime-type. When the

user streaming zero-rating contents from the CP, CP server sends the packets from CP

datacenter through ISP to the user. In this flow, the Server Agent first sni↵s all the

response packets. Next, the Server Agent converts every packet into hash code using

the control plane session key. Then the Server Agent sends the hash code to the ISP

Assistant via “HASHPUSH” message constantly. Note that the hash code has a smaller

size than the original packet to reduce the control plane overhead. For example, a

1024KB packet can be converted into a 64-byte hash code. Later, when ISP receives

this “HASHPUSH” message, it matches the hash code with the one sni↵ed from ISP

core network. If there is a match, ISP Assistant marks this packet as a valid packet,

thus zero-rating it. Otherwise, ISP Assistant drops the packet in blocking mode ( 3a ;

informs PCRF to charge this packet in non-blocking mode ( 3b ).

27



4 Communication (Batch-type): In this step, when the control plane connec-

tion is in Batch-type, the Server Agent gathers all the hash code in group and waits for

ISP Assistant to pull via “HASHPULL” message. The hash verification process in the

ISP Assistant is the same as the realtime-type in 3 .

5 Status Report and Heartbeat Synchronization: This step is used for main-

taining the control plane communication. It’s a daemon process with heartbeat message

named “STATUS”. Via this message, the ISP Assistant and the Server Agent can report

the current status to each other, e.g., unmatched hashes, for diagnosis purpose.

4.3 ZFree Algorithm Design

In this section, we introduce two algorithms in the ZFree control plane protocol.

4.3.1 Server Agent Algorithm

The Server Agent Algorithm is used inside of the Server Agent. The algorithm is

shown in Figure 4.2. The Server Agent Algorithm consists of two main functions,

Handshake function and ProcessHash function. It also contains a daemon function

called ControlP laneListener for maintaining the control plane communication.

The Handshake function is used during the ZFree setup phase where the Server

Agent establishes the connection with the ISP Assistant. Particularly, the Server Agent

exchanges ZFree versions, connection types, policies as well as Di�e-Hellman cipher

suites, pre-shared key and a random number with the ISP assistant via an “HELLO”

message (Line 3–6). Based on the agreed Di�e-Hellman cipher, the Server Agent com-

putes the tra�c key (Line 4) and then sends its certificate to the ISP assistant (Line

8). After that, the Server Agent generates a finish message with its private signature

(Line 9–10). At the same time, the Server Agent also generates a session key based on

key share, master secret and tra�c key (Line 11). Next, the Server Agent waits for the

ISP certificate (Line 12–13) and the ISP finish message (Line 14–15). Lastly, the server

agent verifies ISP’s identity with the root CA: if verified, it calls ProcessHash to start

ZFree control phase; otherwise, it terminates the socket (Line 16–20).

The ProcessHash function is used during the ZFree control phase. To ensure
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system performance and scalability, ProcessHash function is operated using multiple

threads. In detail, the ZFreeParseModule first sni↵s each packet (Line 22) from the

data plane. Then, the ZFreeHashEngine calculates the keyed hash code of these

packets using HMAC function (Line 23). Next, based on the connection type, the server

agent chooses to send the keyed hash to ISP Assistant in realtime mode (Line 25–27) or

in batch mode (Line 28–30).

4.3.2 ISP Assistant Algorithm

The ISP Assistant Algorithm is used inside of the ISP Assistant. The algorithm

is shown in Figure 4.3. The ISP Assistant Algorithm consists of 4 main functions

which are Handshake function, ISPProcessHash function, StatueCheck function, and

DistributedHashMatch function. It also contains a daemon function for receiving the

hash sent from the Server Agent, called ReceiveSAHash.

The Handshake function is used during ZFree setup phase. Specifically, the ISP

assistant exchanges “HELLO” messages with the Server Agent (Line 3–5), computes

the tra�c key (Line 6), decrypts the Server Agent’s certificate and private signature

(Line 11), and verifies the Server Agent’s certificate (Line 12). Next, the ISP Assistant

computes the session key (Line 13) and sends its own certificate, private signature,

and a finish message to the Server Agent (Line 14–17). Lastly, after the connection is

established, the ISP Assistant sends a “STATUS” messages to the server agent (Lines

38–39) for confirmation.

The ISPProcessHash function (Line 23–29) is used during ZFree control phase.

The ISPProcessHash’s main task is to interact with the ISP core network to sni↵

packets and convert packets into the hash code. Specifically, the ZFreeParseModule

first sni↵s packets from the ISP core network (Line 24). Next, HMAC function con-

verts the packets into hash code (Line25). Here, the ISPProcessHash function calls

DistributedHashMatch function (Line 40-41) to match the hash code with the one re-

ceived from the Server Agent. If there is a match, the ISP Assistant informs PCRF for

updating zero-rating information(set whether free or charge) (Line 26-29). Otherwise,

ISP Assistant saves the hash code into the database and waits for the further matching
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(Line 29).

The DistributedHashMatch function is a hyperfunction that is used for matching

the hash code from the Server Agent with the one in the ISP Assistant. This function

is also operated in multithreading to improve the performance.
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Figure 4.1: ZFree Control Plane Protocol
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Figure 4.2: Server Agent Algorithm
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Figure 4.3: ISP Assistant Algorithm
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Chapter 5

Formal Security Analysis

In this chapter, we perform formal security analysis on the three zero-rating frameworks—

Network Cookies [51], IP Whitelist [3,16] and ZFree—using ProVerif [14,15]. ProVerif

is an automatic cryptographic protocol verifier. We organize this chapter in 3 parts.

First, we discuss the verification goals in Section 5.1. Next, we introduce how to formal-

ize the three zero-rating frameworks in Section 5.2. Note that we create the ProVerif

models for the three zero-rating frameworks and publish the source code on Github

(https://github.com/zfree2018/ZFREE). Finally, we introduce the formal verification

results in Section 5.3.

5.1 Verification Goals

We ask ProVerif to verify the following three goals for the aforementioned zero-rating

frameworks.

Goal 1: Packet Integrity. We ask ProVerif to verify the integrity of response packets

from the CP server to the client. Specifically, the response packet sent from the CP server

needs to match with the one received by the client. Note that endResponseV erif and

beginResponseV erif are two ProVerif functions in the client and CP server. These two

functions interact with each other to verify whether the packet integrity holds in the

end-to-end communication.

Goal 2: CP Server Authenticity. We ask ProfVerif to verify whether the CP server

identity matches with the ISP zero-rating CP list (pre-set contract list). Similarly,
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endServerV erif and beginServerV erif are two ProVerif functions in the ISP and the

CP server. These two functions interact with each other to verify whether the CP server

identity remains unchanged during the end-to-end communication.

Goal 3: Application Data Secrecy. We ask ProVerif to verify the secrecy of applica-

tion data between the client and the CP server. The secrecy is to verify whether there

exists a man-in-the-middle attacker to modify the packet.

Note that the threat models are di↵erent for Goals 1&2 and Goal 3. Goals 1&2

assume that the client is malicious—i.e., even in encrypted mode, all the client-side

data including the session key is available to a remote middlebox controlled by the

client. Goal 3 assumes that the client is benign and a man-in-the-middle attacker may

exist.

5.2 Formal Models

In this section, we introduce the formalization of the three zero-rating models in

ProfVerif.

5.2.1 Network Cookies

We model a Network Cookie solution as described in the paper [51]. First, we create

the Cookie Server in ProfVerif. This Cookie Server distributes zero-rating Cookies to

all the clients. Specifically, when the Cookie Server receives a request from the client,

it crafts the Cookie based on the Cookie Descriptor. The Cookie Descriptor allocates a

Cookie ID, a Cookie key and a Cookie attribute. Second, the client attaches the Cookie

in all the outgoing packets. Third, ISP inspects all tra�c and verifies the Cookie.

5.2.2 IP Whitelist

We then model the IP Whitelist based on several industry proposals [3, 16]. We

create the ISP node with IP Whitelist function. ISP locks on the IP Whitelist with

the CP’s IP address. We let ProVerif verify whether there exists other tra�c that can

jailbreak this whitelist.
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Table 5.1: Summary of Formal Verification Results on Network Cookies, IP Whitelist
and ZFree.

Goals ProVerif Queries
Network Cookies [51] IP Whitelist ZFree
Unencrypted Encrypted Unencrypted Encrypted Unencrypted Encrypted

Integrity event(endResponseV erif(response)) ==>
event(beginResponseV erif(response))

7 7 7 7 3 3

Authenticity inj-event(endServerV erif(server identity)) ==>
inj-event(beginServerV erif(server identity))

7 7 7 7 3 3

Secrecy attacker(AppData) 7 3 7 3 7 3

3: the property is satisfied; 7: the property is not. Unencrypted and encrypted refer to data plane

communication.

5.2.3 ZFree

We model ZFree in ProfVerif. We first create two control plane components, the

ISP Assistant and the CP Server Agent. Next, we create the setup phase and control

phase following the ZFree control plane protocol. The CP Server Agent can sni↵ all

the packets in the data plane channel and send the hash code to ISP Assistant over the

control plane channel.

5.3 Verification Results

In this section, we introduce the formal verification results. To summarize, both

Network Cookies and IP Whitelist are vulnerable to free-riding attacks, because they

cannot preserve either packet integrity or CP server authenticity. In contrast, ZFree

can defend against free-riding attacks. At the same time, our verification also shows

that none of the three frameworks change the application layer security, because the

data secrecy is preserved if tra�c is encrypted. An overview of our verification results

can be found in Table 5.1. Now let us discuss several example violation outputs found

by ProVerif.

Output 1 (Network Cookies): Authenticity Violation. When the ProVerif queries

endServerV erif(server identity), the outputs show a violation case for Network Cook-

ies. Specifically, the violation shows that an attacker can acquire a zero-rating cookie

and send the cookie together with non-zero-rating contents to another CP server.

Output 2 (Network Cookies & IP Whitelist): Integrity Violation. When ProVerif

queries endResponseIntegrity(response), it outputs violations for both Network Cook-

ies and IP Whitelists. The violations show that an attacker can obtain the response
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packet from a zero-rating CP server, modify the packet to inject contents from another

CP server, and then send the modified packet to the client.

Output 3 (IP Whitelist): Authenticity Violation. When ProVerif makes an authen-

ticity query to IP Whitelist, it outputs a violation showing that an attacker can obtain

the IP address of the zero-rating CP. The attacker can also insert the IP into other

response data from another non-zero-rating CP.

Next, we show that we need to carefully design ZFree so that a simple variation of

the protocol may result in an insecure design. We show several possible violations if we

modify ZFree model into weak variation.

Output 4 (Weak ZFree Variation): Integrity Violation. The first ZFree variation

is that we adopt a weaker hash algorithm. Instead of SHA-256 in ZFree control plane

protocol, we use SHA-1. When we make an integrity query to ProVerif for this weak

variation, ProVerif reports that an attacker can compromise both the tra�c key and

the session key, and then modify the “HASHPUSH” message to embed its data of non-

zero-rated packets.

Output 5 (Weak ZFree Variation): The second ZFree variation is that we skip the

encryption of the control plane HashPush packet. When we make an integrity query

to ProfVerif, it reports a violation, in which an attacker can obtain the HashPush

message, modifies the message, and then changes the corresponding data plane packet

as well.
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Chapter 6

Experiment and Evaluation

In this chapter, we describe the experiments we design to evaluate the overhead

caused by ZFree and present our evaluation results. First, we describe the experimental

setup in Section 6.1. Next, we introduce the evaluation results in Section 6.2.

6.1 Environment Setup

We set up the environment by first implementing ZFree. Our ZFree implemen-

tation includes 1,890 lines of code (LoC), i.e., 1,100 LoC for the ISP Assistant and 790

LoC for the Server Agent. Additionally, we also set up a demo website with 836 LoC.

Next, to establish the experiment, we set up an LTE network environment using ns-3

[6] and a WiFi network environment using Mininet-WiFi [4]. Both network simulators

are popular and adopted by many existing works [34,36,49]. The LTE network consists

of user equipment (UE), eNodeBs, PDN gateway, MME, and HSS while the WiFi net-

work consists of the user equipment, access point (AP) and routers. Note that we use

ZFree’s non-blocking mode in cellular ISP networks while use ZFree’s blocking mode

in WiFi ISP network. The two environments are shown in Figure 6.1 and Figure 6.2.

Cellular Environment We establish the cellular environment shown in Figure 6.1.

The environment is built on two physical machines with 3.2 GHz Intel due-core i7-6950x

CPU, 32GB memory and Ubuntu 16.04 LTS OS. The cellular network environment

consists of the ISP core network and two groups of 1,200 user equipment (UEs) (shows
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Figure 6.1: Cellular Network Testbed

as the user in the figure). Our ISP core network has a Serving/PDN gateway, an MME,

an HSS, and a PCRF. The ISP core network is connected with two CP servers via a

layer3 gateway router. We also simulate the user’s mobility with speed from 10 km/h

to 120 km/h between two eNodeB base stations.

WiFi Environment We establish airplane cabin WiFi environment based on Mininet-

WiFi [4] shown in Figure 6.2. The environment is built on two physical machines with

Intel i5-7400 CPU, 24GB memory and Ubuntu 16.04 LTS OS. The environment has 120

UEs and two 802.11n access point (AP) connected with one access controller (AC). The

AC is connected to a CP server via a layer-three router. We also mimic the airplane

cabin WiFi environment and limit the bandwidth between the APs and the AC to 30

Mbps. Our CP server is equipped with HTTP, HTTPs and iPerf stress testing service.

We also simulate the user’s mobility with speed from 5 km/h to 20 km/h between two

APs.

We deploy ZFree upon these two environments: both the ISP Assistant and the

Server Agent are hosted on Ubuntu 16.04 LTS virtual machines with 1.2GHZ CPU
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Figure 6.2: WiFi Network Testbed

and 12 GB memory. They are connected with the corresponding network with a layer

3 OpenvSwitch (OVS) through NS3 real-time link model and Mininet-WiFi network

bridge. The ISP Assistant and the Server Agent are connected via an OVS VxLAN

based overlay network on top of the data plane.

6.2 Evaluation Results

In this section, we present the evaluation results on three aspects. First, we show

the overhead, connection capacity, and download latency results of ZFree in end-to-end

communication in Section 6.2.1. Next, we focus on evaluating ZFree’s performance in

ISP core network by launching the scalability test, street test, and control plane overhead

test in Section 6.2.2. Final, we test the security of ZFree in Section 6.2.3.

6.2.1 End-to-end Performance

We measure the performance overhead of ZFree in end-to-end communication. We

choose 4 factors to establish benchmark test, introduced as follows.
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(a) Top 500 Websites (b) Limited Bandwidth

(c) Scalability of Non-Blocking Mode (d) Scalability of Blocking Mode

Figure 6.3: ZFree Evaluation Graphs: (a) The CDF of Loading Time of Top 500 Alexa
Websites; (b) The End-to-end Delay vs. the Network Bandwidth; (c) The End-to-end
Delay vs. the Number of Connections in Mobile Network Environment with ZFree’s
Non-blocking Mode; and (d) The End-to-end Delay vs. the Number of Connections in
WiFi Environment with ZFree’s Blocking Mode.

41



A. Page Loading Time

In this experiment, we measure the page loading time using the Top 500 Alexa

Websites Benchmark. This benchmark is to test the loading time of 500 websites. We

establish the experiments with and without ZFree to compare the overhead. Note that

we count all the tra�c as zero-rating for the measurement purpose.

Figure 6.3a shows the cumulative distribution function (CDF) graph of the loading

time of this benchmark. The median overhead of ZFree’s non-blocking mode is 1.26%,

which mainly comes from hardware network port mirroring. The blocking mode of

ZFree incurs 8.79% median overhead, which comes from the hash operations at both

the ISP Assistant and the Server Agent.

B. End-to-end Delay with Di↵erent Bandwidth

In this experiment, we test the end-to-end delay in di↵erent bandwidth in the range

from 0.1 Mbps to 120 Mbps. We test legacy TCP connection, legacy TLS connection,

TCP connection with ZFree’s non-blocking mode and TLS connection with ZFree’s

blocking mode.

Figure 6.3b shows the result. When the client downloads a 900MB video file, the

end-to-end delay is shown in the y-axis and the network bandwidth in the x-axis. As

expected, the end-to-end delay decreases as the network bandwidth increases. The result

also shows that the delay of ZFree’s non-blocking mode is almost the same as the native

connection, such as TCP and TLS, and the delay of the blocking mode is constantly

higher than the native connection.

C. LTE Handover Delay Testing

In this experiment, we test the handover delay in LTE. Specifically, we set up one UE

to move from one eNodeB to another with traveling speed from 10km/h to 120km/h. We

configure the transmission power of both eNodeBs as 46dBm and the handover algorithm

as A2A4RSRQ [2,27]. Then, we adopt the iPerf stress test tool to keep the UE receiving

data from our CP server. Figure 6.4 shows our LTE handover testing result. First, the

result shows the transmission speed decreases as traveling speed increases. Second, the
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Figure 6.4: LTE Handover Throughput in both Legacy Mobile Network and Mobile
Network with ZFree Enabled

result shows the transmission speed with ZFree enabled has 1.45% overhead than the

one without ZFree. This means ZFree has little influence on the LTE handover.

6.2.2 ZFree in ISP Core Network

In this experiment, we measure ZFree performance inside the ISP core network by

establishing scalability test and stress test.

A. Scalability Test

Scalability is essential to ISP core network. In this experiment, we measure whether

ZFree can scale when the number of connections increases by measuring the setup end-

to-end response time. In detail, we compare the timestamp in which the client sends

a request, with the one in which the client receives the response. The experiment is

performed using the non-blocking mode in the cellular network environment while using

the blocking mode in WiFi environment. Figure 6.3c and 6.3d shows the end-to-end

delay result where delay time of ZFree non-blocking and blocking modes is shown in

the x-axis and the number of connections is showned in the y-axis. In both figures, we

also display the end-to-end delays of the TCP and TLS connection without ZFree as

a baseline for comparison. Our results show that the end-to-end delay hardly changes

as the number of connections increases.
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B. Stress Test

In this section, we perform the stress test on ZFree following RFC 2544 bench-

mark [7]. We set up one ISP server and two CP servers. The ISP server embeds the

ISP Assistant while the CP servers embed the Server Agent in each. Specifically, we

replay real-world tra�c captured from netresec [5] and tcpReplay [12] in our testing

environment. The Netresec network trace [5] has high-speed (8–10Gbps) network flows

with 40 million packets from 1,982 applications, and the tcpReplay trace [12] low-speed

(500Mbps) network flows with 791,615 packets from 132 applications. We replay the

tra�c using TCPreplay [9], a popular tra�c replaying tool, for 5 hours. During the

5-hour period, the low-speed trace is repeated continuously from both CP servers to the

UEs while the high-speed trace only from one CP server to the UEs every half an hour.

The purpose is to simulate the bursty tra�c scenario in the test.

Figure 6.5 shows the stress test result. The three figures show the speed and CPU

usage in the ISP Assistant(Top figure) and two CP Agents (middle and bottom). During

our replay, the legacy ISP network without ZFree has 9–10Gbps peak tra�c with

an average rate of 5.991Gbps in Figure 6.5 (top); the ISP network with ZFree also

has 9–10Gbps peak tra�c with a slightly lower average rate of 5.933Gbps. The CPU

usage of the ISP Assistant is 70% during peak and 20% in normal case. Our first CP

server (middle figure) has 1.582Gbp average tra�c in the legacy network and 1.571Gbps

average tra�c in ZFree network. The average CPU usage in the first CP server is

15.4%. Our second CP server (bottom figure) has 4.332Gbps average tra�c in the

legacy network and 4.213Gbps with ZFree’s network. The average CPU usage for the

second CP server is 42.2%.

In sum, the evaluation results show that ZFree can support the needs for ISP core

network with reasonable CPU overhead.

C. Control Plane Overhead Test

In this part, we measure two overheads: the control plane communication overhead

and the control plane processing overhead. First, we replay a 900MB zero-rating video

file from one CP to one UE. Next, we calculate the data volumes between the ISP
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Figure 6.5: Network Tra�c (Gbps) and CPU Usage (%) for the ISP Assistant (Top)
and two CP Agents (Middle and Bottom) under Stress Test

Assistant and the Server Agent, thus comparing it with the total data plane tra�c. Our

evaluation shows that ZFree only introduces 4.2% control plane overhead.

Second, we compare ZFree control plane protocol with TLS hash function to trans-

fer plain packet into hash code. Our evaluation shows that the TLS hash function incurs

2.8 times more overhead than the ZFree control plane protocol when processing 100MB

data plane tra�c.
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6.2.3 Security

In this experiment, we evaluate the security of our ZFree implementation using

three types of zero-rating attacks. Thre first two types of attack are documented in

Chapter 2, which are masquerading CP server attack and Response Modification Attack.

The third type is TCP retransmission-based free-riding attacks [20]. In this attack, we

add two virtual switches, one between the ISP and the CP gateway, and the other

between the client and the ISP. The first switch is used to modify response packets,

e.g., encapsulating packets into TCP retransmission, and the second switch is used to

recover the modified contents, e.g., stripping the added TCP headers. Our evaluation

results show that ZFree is robust to all three types of free-riding attacks. Specifically,

ZFree in its blocking mode rejects corresponding packets and the attacker cannot get

the response.
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Chapter 7

Discussions

In this chapter, we discuss several aspects of ZFree, namely ethics concerns, deploy-

ment issues, network neutrality, third-party contents, and Content Distribution Network

(CDN).

First, we discuss the ethical concerns for the free-riding attacks that we launched

against real-world ISPs. During all the experiments, we try to limit the damage that

can occur to these ISPs. We only downloaded a small amount but enough data, so that

the free-riding attack e↵ect can be observed. The downloaded contents are hosted on

our own server and contain no real information. Moreover, we paid these ISPs after

all the experiments. For cellular networks, we paid the ISPs with extra data tra�c

fees for the amount that we used; for WiFi network, we purchased the WiFi, e.g., on

United flight, after our experiment. We also try our best to inform the tested ISPs

about the vulnerabilities we found. All the ISPs involved in our testing are informed of

this vulnerability issue.

Second, we discuss the general issue about network neutrality. As mentioned by

Yiakoumis et al. [51], some people raised concerns that zero-rating services could violate

network neutrality. The general issue is orthogonal to our paper. The current status is

that the Federal Communications Commission (FCC) determines whether a zero-rating

service creates unfair conditions for consumers on a case-by-case basis. So far FCC

approves most of existing ISP zero-rating services.

Third, we discuss how third-party contents, e.g., ads included in a webpage, are zero-
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rated. The current ZFree prototype can only zero-rate first-party contents but not

third-party. We note that this is a traditional hard problem in zero-rating framework

and many real-world ISPs do not zero-rate third-party contents as well. For example,

when we visit history.com, ISP only zero-rates contents from history.com but not the

third-party ads embedded inside the webpage. We leave it as future work to include

third-party contents.

Fourth, we discuss how to deal with CDN in ZFree. Each CDN server needs to

install a Server Agent and communicate with the ISP Assistant. We realize that this

is almost a non-issue in mobile network scenarios because many mobile ISPs host their

own CDN and provide contents directly from their base stations. That is, the Server

Agent and the ISP Assistant may be co-located in the same local network.

48



Chapter 8

Related Work

We discuss related work in this chapter.

8.1 Existing Attacks

We categorize existing attacks on ISP Policy and Charging Rules Function (PCRF) [8,

10] into two types, free-riding and overcharging.

First, an attacker as a malicious client can mislead ISP’s PCRF and obtain access to

illegitimate free data—defined as free-riding attacks. In the past, researchers show that

an attacker may utilize di↵erent uncharged protocols, including TCP retransmission [20,

21], DNS [42] and ICMP [31], to launch free-riding attacks. The only three-party free-

riding attack mentioned by Kakhki et al. [25] is to change the “Host” field of an HTTP

packet to bypass charging. As a comparison, the measurement described in Section ??

studies the HTTPs protocol and also propose a new free-riding attack in which an

attacker can modify the response from a zero-rating server and inject non-zero-rating

contents.

Second, a man-in-the-middle attacker can generate huge amount of data between

the client and the ISP to cause the users being charged for additional tra�c, which is

called overcharging attacks [21, 31, 43]. This type of attack is out of scope and one can

refer to existing works [21, 31,43] for solutions.
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8.2 Existing Zero-rating Framework

In general, there are two types of zero-rating frameworks: ISP-only and ISP-CP

approaches. First, many ISPs use tra�c inspection techniques, such as Deep Packet In-

spection (DPI) and its enhancement [33,48,52] to di↵erentiate network tra�c. Similarly,

many other approaches [26,28,45,46,50,53] can also be used to inspect network tra�c.

Although such approaches are e↵ective in di↵erentiating network tra�c, especially on

the protocol layer, they cannot be used to defend against our free-riding attacks. The

reason is that the zero-rating contents in our scenario are generated by the CP and pos-

sibly encrypted, i.e., it is impossible and insecure for the CP to understand or inspect

the tra�c.

Second, people also propose to let the ISP and CP negotiate on a zero-rating policy.

For example, Limited Use of Remote Keys (LURK) [35] and Session Protocol for User

Datagrams (SPUD) [23] are two new protocols that allow middlebox to inspect end-to-

end tra�c. Yiakoumis et al. [51] propose a tra�c authentication architecture so-called

Network Cookie to provide on demand zero-rating services. Facebook Zero [3,11] allows

CP to provide the ISP an IPWhitelist so that only tra�c to an IP in the list is zero-rated.

However, none of the aforementioned approaches can defend against free-riding attacks

as they fail to authenticate zero-rating servers and verify packet integrity. Additionally,

LURK and SPUD require the server codebase modifications, i.e., being incompatible

with existing codebase.

8.3 Other Techniques

Packet hashing is also used by Chen et al. [18] for diagnosis purpose. Specifically,

they use FPGA to compute all the packet hashes in the backbone network and de-

liver them to next hops for diagnosis. Note that packet hashing alone cannot defend

against free-riding attacks, because ZFree needs to ensure both server authenticity

and packet integrity. Middlebox enhancement include both blackbox and whitebox ap-

proaches. Blackbox enhancement [17,22,24,29,30,39,41,44,47] analyzes tra�c without

decryption or understanding the tra�c. Such approach, though being e↵ective in solv-
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ing their own problem, cannot correctly zero-rate tra�c without collaborating with the

CP server. Whitebox approaches, such as mcTLS [38] and APIP [37], enhance TLS

protocol to convey information for the middlebox. As a comparison, they require server

code modifications and face backward compatibility problem in deployment. Certificate

pinning [19, 40], or HTTP Public Key Pinning (HPKP), is a security mechanism em-

bedded in HTTP header that defends against impersonation attack. Certificate pinning

cannot prevent zero-rating attacks, because it requires the collaboration from the client.
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Chapter 9

Conclusion

In conclusion, we first perform a measurement study of free-riding attacks against

major real-world ISPs and research prototypes. The results show that all the existing

ISPs and research prototypes are vulnerable, i.e., a malicious user can freely access any

non-zero-rated websites without being charged.

To mitigate such free-riding attacks, we propose a secure and backward compatible

zero-rating framework, called ZFree. ZFree authenticates and verifies all the commu-

nications between CP and user. ZFree is formally verified as a secure soluation against

free-riding attacks. We implemented a prototype of ZFree and evaluated its perfor-

mance on cellular network and WiFi network testbed. Our results show that ZFree is

lightweight, secure, and scalable.
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Appendix:

Raw Trace Example Outputted

by ProVerif

In the appendix, we show five examples of raw traces outputted by ProVerif. Fig-

ure 9.1 shows a counter example against response integrity for Network Cookies Model;

Figure 9.2 shows another counter example trace against CP authenticity for IP Whitelist

based zero-rating framework. Figure 9.3 shows a successful verification example of ZFree.

Figure 9.4 shows a counter example trace if the ZFree packet hash is removed. Figure 9.5

shows a counter example trace if ZFree uses a weak hash function.

60



1. The attacker has some term cookie attribute 1498. attacker(cookie attribute 1498).

2. The attacker has some term cookie key 1497.

attacker(cookie key 1497).

3. The attacker has some term cookie id 1496.

attacker(cookie id 1496).

4. By 3, the attacker may know cookie id 1496.

By 2, the attacker may know cookie key 1497.

By 1, the attacker may know cookie attribute 1498.

Using the function 3-tuple the attacker may obtain

Network Cookie(cookie id 1496,cookie key 1497,cookie attribute 1498).

attacker((cookie id 1496,cookie key 1497,cookie attribute 1498)).

5. The attacker has some term transferred server certificate 1501.

attacker(transferred server certificate 1501).

6. We assume as hypothesis that attacker(response data 1494).

7. By 6, the attacker may know response data 1494.

By 5, the attacker may know transferred server certificate 1501.

Using the function 2-tuple the attacker may obtain (response data 1494,transferred server certificate 1501).

attacker((response data 1494,transferred server certificate 1501)).

8. The message (cookie id 1496,cookie key 1497,cookie attribute 1498) that the attacker may have by 4 may be

received at input {14}.
The message (response data 1494,transferred server certificate 1501) that the attacker may have by 7 may be

received at input {18}.
So event endResponseVerif(response data 1494) may be executed at {19}.
end(endResponseVerif(response data 1494)).

Figure 9.1: Counter example traces on verifying response integrity for Network Cookies
(TCP Connection)

1. The attacker has some term response Sequence Number 136.

attacker(response Sequence Number 136).

2. The attacker has some term response ACK Number 135.

attacker(response ACK Number 135).

3. The attacker has some term response Port Number 134.

attacker(response Port Number 134).

4. The attacker has some term response IP 133.

attacker(response IP 133).

5. By 4, the attacker may know response IP 133.

By 3, the attacker may know response Port Number 134.

By 2, the attacker may know response ACK Number 135.

By 1, the attacker may know response Sequence Number 136.

Using the function 4-tuple the attacker may obtain

Server response(response IP 133,response Port Number 134,

response ACK Number 135,response Sequence Number 136).

attacker((response IP 133,response Port Number 134,response

ACK Number 135,response Sequence Number 136)).

6. We assume as hypothesis that attacker(server identity 150).

7. The message response Sequence Number 136 that the attacker may have by 1 may be received at input 24.

The message (response IP 133,response Port Number 134,response ACK Number 135,

response Sequence Number 136) at 26 in copy server identity 150.

The message (response IP 133,response Port Number 134,response ACK Number 135,

response Sequence Number 136) that the attacker may have by 6 may be received at input 27.

So event endIPVerify(server identity 150) may be executed at 28 in session cid 181.

A trace has been found.

RESULT inj-event(endIPVerify(server identity)) == inj-event(endIPVerify(server identity)) is false.

RESULT (even event(endIPVerify(server identity 150)) == event(endIPVerify(server identity 150)) is false.)

Figure 9.2: Counter example traces on verifying CP authenticity for IP Whitelist based
zero-rating framework (TLS Connection)
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1. Starting query event(endResponseVerif h(keyedhash)) == event(beginResponseVerif h(keyedhash)) RESULT

event(endResponseVerif h(keyedhash)) == event(beginResponseVerif h(keyedhash)) is true.

2. Starting query event(endResponseVerif d(response data1,response data2,

response data3,response data4)) == event(beginResponseVerif d(response data1,

response data2,response data3,response data4)) RESULT

event(endResponseVerif d(response data1,response data2,response data3,

response data4)) == event(beginResponseVerif d(response data1,response data2,

response data3,response data4)) is true.

3. Starting query event(endintegrityVerif c(response data)) == event(begintegrityVerif c(response data))

RESULT event(endintegrityVerif c(response data)) == event(begintegrityVerif c(response data)) is true.

4. Starting query inj-event(endClient(s,t,u,v 2565544,w)) == inj-event(beginClient(s,t,u,v 2565544,w))

RESULT inj-event(endClient(s,t,u,v 2565544,w)) == inj-event(beginClient(s,t,u,v 2565544,w)) is true.

5. Starting query inj-event(endServerVerif(server identity)) == inj-event(beginServerVerif(server identity))

RESULT inj-event(endServerVerif(server identity)) == inj-event(beginServerVerif(server identity)) is true.

6. Starting query not attacker(data c) RESULT not attacker(data c) is true.

Figure 9.3: example traces on verifying ZFree

goal reachable: attacker(response data4 759694) && attacker(response data3 759695) &&

attacker(response data2 759696) && attacker(response data1 759697) -

end(endResponseVerif d(response data1 759697,response data2 759696,

response data3 759695,response data4 759694))

1. We assume as hypothesis that attacker(response data1 759707).

2. We assume as hypothesis that attacker(response data2 759708).

3. We assume as hypothesis that attacker(response data3 759709).

4. We assume as hypothesis that attacker(response data4 759710).

5. The message response data1 759707 that the attacker may have by 1 may be received at input 178. The

message response data2 759708 that the attacker may have by 2 may be received at input 179. The message

response data3 759709 that the attacker may have by 3 may be received at input 180. The message

response data4 759710 that the attacker may have by 4 may be received at input 181. So event

endResponseVerif d(response data1 759707,response data2 759708,response data3 759709,

response data4 759710) may be executed at 182.

end(endResponseVerif d(response data1 759707,response data2 759708,

response data3 759709, response data4 759710)).

A more detailed output of the traces is available with set traceDisplay = long.

new skCA creating skCA 759715 at 1

out(c, pk(skCA 759715)) at 3

new skS creating skS 759879 at 4

out(c, (HostInfoCA,HostInfoS,pk(skS 759879),

sign(H((HostInfoCA,HostInfoS,pk(skS 759879))),skCA 759715))) at 8

in(d, a) at 178 in copy a 759714

in(d, m1) at 179 in copy a 759714

in(d, a 759712) at 180 in copy a 759714

in(d, a 759713) at 181 in copy a 759714

event(endResponseVerif d(a,a 759711,a 759712,a 759713)) at 182 in copy a 759714

The event endResponseVerif d(a,a 759711,a 759712,a 759713) is executed. A trace has been found.

RESULT event(endResponseVerif d(response data1,response data2,response data3,

response data4)) == event(beginResponseVerif d(response data1,

response data2, response data3,response data4)) is false.

Figure 9.4: example traces on modifying ZFree packet key hash
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goal reachable: attacker(response data 1521060) - end(endintegrityVerif c(response data 1521060))

1. Using the function server id the attacker may obtain server id.

attacker(server id).

2. The attacker has some term server cipher suite 1521414.

attacker(server cipher suite 1521414).

3. The attacker has some term server version 1521412.

attacker(server version 1521412).

4. By 3, the attacker may know server version 1521412.

By 2, the attacker may know server cipher suite 1521414.

By 1, the attacker may know server id.

Using the function 3-tuple the attacker may obtain (server version 1521412,

server cipher suite 1521414,server id).

attacker((server version 1521412,server cipher suite 1521414,server id)).

5. By 3, the attacker may know server version 1521412.

By 2, the attacker may know server cipher suite 1521414.

Using the function 2-tuple the attacker may obtain (server version 1521412,

server cipher suite 1521414).

attacker((server version 1521412,server cipher suite 1521414)).

6. The message (server version 1521412,server cipher suite 1521414,

server id) that the attacker may have by 4 may be received at input 10.

So the message (server version 1521412,client,client legacy session,

server cipher suite 1521414,server id,exp(g,X 1521421)) may

be sent to the attacker at output 16.

attacker((server version 1521412,client,client legacy session,

server cipher suite 1521414,server id,exp(g,X 1521421))).

7. By 6, the attacker may know (server version 1521412,

client,client legacy session,server cipher suite 1521414,

server id,exp(g,X 1521421)).

Using the function 6-proj-6-tuple the attacker may obtain

exp(g,X 1521421).

attacker(exp(g,X 1521421)).

8. By 6, the attacker may know (server version 1521412,client,

client legacy session,server cipher suite 1521414,server id,

exp(g,X 1521421)).

Using the function 3-proj-6-tuple the attacker may obtain

client legacy session.

attacker(client legacy session).

9. By 6, the attacker may know (server version 1521412,

client,client legacy session,server cipher suite 1521414,

server id,exp(g,X 1521421)). Using the function 2-proj-6-tuple the attacker may obtain client.

attacker(client).

10. By 3, the attacker may know server version 1521412.

By 9, the attacker may know client.

By 8, the attacker may know client legacy session.

By 2, the attacker may know server cipher suite 1521414.

By 1, the attacker may know server id.

By 7, the attacker may know exp(g,X 1521421).

Using the function 6-tuple the attacker may obtain (server

version 1521412,client,client legacy session,server cipher

suite 1521414,server id,exp(g,X 1521421)).

attacker((server version 1521412,client,client legacy sess

ion,server cipher suite 1521414,server id,exp(g,X 1521421))).

11. The message (server version 1521412,server cipher suite

1521414) that the attacker may have by 5 may be received at input 91.

33. By 32, the attacker may know (server version 1521412,

server random 1521422,server cipher suite 1521414,exp(g,Y 1521423)).

Using the function 4-proj-4-tuple the attacker may obtain exp(g,Y 1521423).

attacker(exp(g,Y 1521423)).

34. By 32, the attacker may know (server version 1521412,

server random 1521422,server cipher suite 1521414,exp(g,Y 1521423)).

Using the function 2-proj-4-tuple the attacker may obtain server random 1521422.

attacker(server random 1521422).

35. By 3, the attacker may know server version 1521412.

By 34, the attacker may know server random 1521422.

By 2, the attacker may know server cipher suite 1521414.

By 33, the attacker may know exp(g,Y 1521423).

Using the function 4-tuple the attacker may obtain (server version 1521412,

server random 1521422,server cipher suite 1521414,exp(g,Y 1521423)).

attacker((server version 1521412,server random 1521422,

server cipher suite 1521414,exp(g,Y 1521423))).

event(endintegrityVerif c(a 1521424)) at 83 in copy a 1521437

The event endintegrityVerif c(a 1521424) is executed.

A trace has been found.

RESULT event(endintegrityVerif c(response data)) == event(begintegrityVerif c(response data)) is false.

Figure 9.5: example traces on modifying ZFree using weak hash function
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