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We empirically discovered that the space of human actions has a linguistic structure. 

This is a sensory-motor space consisting of the evolution of joint angles of the human 

body in movement. The space of human activity has its own phonemes, morphemes, 

and sentences. We present a Human Activity Language (HAL) for symbolic non-

arbitrary representation of sensory and motor information of human activity. This 

language was learned from large amounts of motion capture data. 

Kinetology, the phonology of human movement, finds basic primitives for human 

motion (segmentation) and associates them with symbols (symbolization). This way, 

kinetology provides a symbolic representation for human movement that allows 

synthesis, analysis, and symbolic manipulation. We introduce a kinetological system 

and propose five basic principles on which such a system should be based: 

compactness, view-invariance, reproducibility, selectivity, and reconstructivity. We 

demonstrate the kinetological properties of our sensory-motor primitives. Further 

  



evaluation is accomplished with experiments on compression and decompression of 

motion data. 

The morphology of a human action relates to the inference of essential parts of 

movement (morpho-kinetology) and its structure (morpho-syntax). To learn 

morphemes and their structure, we present a grammatical inference methodology and 

introduce a parallel learning algorithm to induce a grammar system representing a 

single action. The algorithm infers components of the grammar system as a subset of 

essential actuators, a CFG grammar for the language of each component representing 

the motion pattern performed in a single actuator, and synchronization rules modeling 

coordination among actuators. 

The syntax of human activities involves the construction of sentences using action 

morphemes. A sentence may range from a single action morpheme (nuclear syntax) 

to a sequence of sets of morphemes. A single morpheme is decomposed into analogs 

of lexical categories: nouns, adjectives, verbs, and adverbs. The sets of morphemes 

represent simultaneous actions (parallel syntax) and a sequence of movements is 

related to the concatenation of activities (sequential syntax). 

We demonstrate this linguistic framework on real motion capture data from a large 

scale database containing around 200 different actions corresponding to English verbs 

associated with voluntary meaningful observable movement. 
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Chapter 1: Introduction 

Activity understanding is an important component of human intelligence. Natural 

intelligent systems perceive events occurring in the environment, reason about what is 

happening, and act accordingly. This process involves mapping observed and 

generated motor sequences onto a vocabulary of actions. This vocabulary represents 

sensory-motor patterns learned previously and stored according to some knowledge 

representation. 

An artificial cognitive system with commensurate abilities may require a symbolic 

structure for reasoning about human activities. However, the semantic interpretation 

of a symbolic representation system, such as natural language, cannot be based only 

on meaningless arbitrary symbols. The symbol grounding problem [Harnard, 1990] 

addresses this semantic gap and suggests that the primitives of a formal symbolic 

system should be associated with grounded representations connected to physical 

experience in the world. 

A grounded representation is a sensory-motor projection of objects, actions, and 

events to which elementary symbols refer. With regards to events associated with 

human activities, a sensory-motor projection consists in the mapping from a non-

symbolic analog representation of human activities in the world to a non-arbitrary 

symbolic representation according to invariant features, which allow cognitive tasks. 

One important aspect of artificial cognitive systems is the need for computers to be 

able to share a conceptual system with humans. Concepts are the elementary units of 

reason and linguistic meaning. Many researchers hold the philosophical position that 

all concepts are symbolic and abstract and therefore should be implemented outside 
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the sensory-motor system. This way, meaning for a concept amounts to the content of 

a symbolic expression, a definition of the concept in a logical calculus. 

An alternative approach states that concepts are grounded in sensory-motor 

representations. This sensory-motor intelligence considers sensors and motors in the 

shaping of the hidden cognitive mechanisms and knowledge incorporation. There 

exists a variety of studies in many disciplines—such as neurophysiology, 

psychophysics, and cognitive linguistics—suggesting that the human sensory-motor 

system is indeed deeply involved in concept representation. 

Knowledge of actions is crucial to our survival. Hence, human infants begin to 

acquire actions by watching and imitating the actions performed by others. With time, 

they learn to combine and chain simple actions to form more complex actions. This 

process is analogous to speech, where we combine simple constituents called 

phonemes into words, and words into clauses and sentences. Humans can recognize 

as well as generate both actions and speech. In fact, the binding between the cognitive 

and generative aspects of actions is revealed at the neural level in the monkey brain 

by the presence of mirror neuron networks, i.e., neuron assemblies which are 

activated when the individual observes a goal-oriented action (like grasping) and also 

when the individual performs the same action. All these observations lead us to a 

simple hypothesis: Actions are effectively characterized by a language. This is a 

language with its own building blocks (phonemes), its own words (lexicon), and its 

own syntax. 

The realm of human actions may be represented in at least three spaces: sensory 

space, motor space, and natural language space. Therefore, we can imagine that 
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actions possess at least three languages: a sensory language, a motor language, and a 

natural language as Figure 1.1 shows. The sensory language lets us perceive actions, 

the motor language lets us produce actions, and the natural language lets us 

communicate about actions. The sensory domain covers the form of human actions 

when perceived. The motor domain covers the underlying control sequences that lead 

to the generation of movements. The linguistic domain covers symbolic descriptions 

of natural actions. We took the hierarchical structure of natural language (e.g., 

phonology, morphology, syntax) as a framework for structuring not only the 

linguistic system that describes actions, but also the sensory and motor systems. We 

defined and computationally modeled sensory-motor structures that are analogous to 

basic linguistic counterparts: phonemes (the alphabet), morphemes (the dictionary), 

and syntax (the rules of combination of entries in the dictionary) using data-driven 

techniques grounded in actual human movement data.  

We study a language that maps to the lower-level sensory and motor languages and to 

the higher-level natural language. By modeling actions as a language in each space, 

we can formulate many interesting problems as language translation problems that 

convert representations from one space to another: (a) video annotation for creating 

text descriptions of activity from a video, (b) natural-language-driven character 

animation, (c) training robots by imitation using video, and (d) controlling robots with 

natural language. 

 3 
 



 

 

Figure 1.1. Three language spaces for human action (courtesy of Abhijit Ogale). 

In the sensory pathway, the cognitive understanding involves the analysis (parsing) of 

observed action sequences towards an organized praxicon, a structured lexicon of 

human actions, movements, or praxis, previously learned and stored. In the motor 

pathway, the cognitive process concerns the synthesis (generation) of executed action 

sequences from this praxicon. 

A sensory-motor praxicon is organized according to some knowledge representation. 

In this dissertation, we advocate a linguistic representation to support artificial 

cognitive systems. The design of such an artificial cognitive system involves the 

construction of a repertoire or vocabulary of activities based on sensory-motor 

representations. A large variety of behaviors in this set increases the chances that an 

observed action is recognized and the possibilities of motor strategies in achieving 

some goal. 
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Scope and Contributions 

This dissertation establishes a very fundamental result, namely that the space of 

human actions is characterized by a language that can be learned from human motion 

measurements using modern and novel techniques. 

Artificial cognitive systems could become more powerful if they possessed models of 

human actions. Thus, we investigate the involvement of sensory-motor intelligence in 

concept description and, more specifically, the structure in the space of human 

actions. In the sensory-motor intelligence domain, our scope centers on the 

representation level of human activity. We contribute to the modeling of human 

actions with a sensory-motor linguistic framework. An artificial cognitive system 

with sensory-motor representations can learn skills through imitation, better interact 

with humans, and understand human activities. This understanding includes reasoning 

and the association of meaning to concrete concepts. 

Closing this semantic gap involves the grounding of concepts on the sensory-motor 

information. In this dissertation, we contribute to the grounding of concrete concepts 

by modeling human actions with a sensory-motor linguistic framework. The 

grounding process starts from sensory data (e.g., video, audio), where objects are 

detected, recognized, categorized, and identified. At this level, human body parts 

might become features extracted from visual input and, consequently, allow the 3D 

capture of human movement. 

We seek information on human actions that correspond to general concrete human 

action. Concrete human activity concerns observable, voluntary, and meaningful 

movement. We concentrate in the motor domain and we exclude thinking and feeling 
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activities. A non-exhaustive list of concrete activities includes breathing patterns, eye 

movement, facial expressions, head movement, postures, orientation in space, change 

of stance, trunk movement, limb action, manipulation, and locomotion. 

The problem addressed in this dissertation is to learn representations for human 

activity. Motion capture data is processed towards the discovery of structure in this 

space. This input contains the essential 3D specification of human movement 

necessary to the mapping towards visual and motor spaces. We hypothesize that there 

exists a language—in a formal sense—that describes all human action, and then show 

how we could obtain this language using empirical data. 

We concentrate on the modeling of sensory and motor information in a higher-level 

than perception and generation. Perception, the mapping from images to cognitive 

representations, involves detection, recognition, categorization, and identification. 

Generation, the mapping from cognitive representations to motor control, involves 

planning, control, retargeting, and dynamic stability. Recent results in these areas 

show the feasibility of mapping joint angle data into actuator control [Huang at al., 

2001; Matsui at al., 2005; Pollard at al., 2002; Ude at al., 2000]. 

We propose a linguistic framework for the modeling and learning of human activity 

representations. The linguistic framework is used to represent human movement with 

a grounded symbolic system. By grounded we mean that symbols have a non-

arbitrary mapping to the sensory-motor primitives. We seek to provide a flexible 

representation, proposed here as a Human Activity Language (HAL), to model the 

sequential and parallel aspects of human movement. Our sensory-motor language 

allows perception and generation of hundreds of human actions modeled in a compact 
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structure. This structure—organized in terms of kinetology, morphology, and 

syntax—has the flexibility required to handle numerous behaviors using the parsing 

and generation aspects of a language. 

Kinetology, the phonology of human movement, finds basic primitives for human 

motion (segmentation) and associates them with symbols (symbolization). A 

kinetological system transforms continuous motion signal into a non-arbitrary 

discrete representation of human movement. Kinetology provides a symbolic 

representation that allows synthesis, analysis, and symbolic manipulation of human 

movement. We introduce five principles on which kinetology should be based and 

evaluated: compactness, view-invariance, reproducibility, selectivity, and 

reconstructivity. These properties provide a reasonable way to evaluate a 

kinetological system. Besides providing the foundations to the inference of more 

structure in human movement, kinetology also has applications to compression, 

decompression, and indexing of motion data [Guerra-Filho and Aloimonos, 2006b; 

Kovar and Gleicher 2004]. We present experiments on compression and 

decompression of motion data. These experiments demonstrate the parsing and 

generation of movement in the lowest level. 

The morphology of a human action relates to the essential parts of the movement and 

its structure. A single action morpheme represents the least amount of movement with 

a purposeful goal, i.e., meaning. The morphology of a specific human activity 

consists of the set of actuators involved in the activity, the synchronization among 

these actuators, and the motion pattern associated with each participating actuator. 

We propose a novel formal grammar system as an action morpheme, where each 

 7 
 



 

component grammar corresponds to an actuator. To learn action morphemes, we 

present a grammatical inference methodology and introduce a heuristic parallel 

learning algorithm to induce a grammar system representing a single action. In 

morpho-kinetology, a praxicon is empirically built by inducing grammar systems for 

all actions in a large motion capture database. Morpho-syntax amounts to explore the 

morphological organization of a praxicon towards the discovery of more structure in a 

Human Activity Language. 

The results of our approach are both theoretical, concerning the heuristic inference of 

a parallel grammar system, and empirical, in terms of human movement learning and 

representation. An advantage of parallel learning over plain sequential learning is that 

problems with overgeneralization are resolved in parallel learning. Sequential 

learning is able to infer the structure of a single sequence of symbols. This structure 

corresponds to a forest of binary trees, where each node in a tree is associated with a 

grammar rule in a normal form. A sequential learning algorithm may keep merging 

adjacent root nodes into single rules (trees) and, consequently, overgeneralization 

happens when unrelated rules are combined and generalized. This happens mostly in 

higher-levels of the grammar tree. In parallel learning, we consider all joint angles 

simultaneously and we use the learned synchronized rules to resolve 

overgeneralization. Nodes are merged only if the new rule is synchronized with other 

rules in different components of the grammar system. This way, overgeneralization is 

avoided since synchronization guarantees a relationship between the merged rules. 

The syntax of human activities involves the construction of sentences using action 

morphemes. A sentence may range from a single action morpheme (nuclear syntax) 
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to a sequence of simultaneous sets of morphemes. The nuclear syntax consists of a 

noun phrase and a verbal phrase. A noun phrase in a sentence corresponds to the 

active joints (noun) modified by an initial posture (adjective). A verbal phrase 

includes the changes each active joint experiences during the activity execution (verb) 

and a point in a reduced dimensional space (adverb) which serves to modify the 

activity. The analogy to lexical categories (nouns, adjectives, verbs, and adverbs) 

gives more intuition about the human activity model. These intuitive categories 

suggest a simple representation that may be used to interface between users and 

artificial cognitive systems. This analogous set of lexical categories lacks prepositions 

and conjunctions that are probably related to preparatory movements performed 

between actions. 

Nuclear syntax, especially adverbs [Rose at al., 1998], relates to the motion 

interpolation problem. Motion interpolation or morphing adapts an exemplar motion 

to new circumstances. Interpolations involve parameterized spaces where high-level 

motion properties (target location, locomotion style) are represented as interpolation 

weights. Parametric synthesis allows accurate generation of any motion for an entire 

space of motions, parameterized by continuously valued parameters. 

We introduce a novel representation for motion adverbs that addresses the 

interpolation problem. This representation solves the semantic problem (intuitive 

mapping between external and internal motion representations) and the universality 

problem (a single adverb representation is used for all actions). The modeling of 

adverbs involved a simple quadratic interpolation that resulted in adverbial 

components for each action. 
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Besides the nuclear syntax, parallel and sequential syntax are required to handle the 

simultaneity and sequencing of actions, respectively. The sets of morphemes 

represent simultaneous actions (parallel syntax) and a sequence of sets of morphemes 

models the concatenation of activities (sequential syntax). 

Parallel syntax relates to the splicing problem that concerns the combination of 

motions of different body parts. The general splicing problem involves transferring 

any subset of the body from one motion to another. Most splicing approaches only 

address the details of how to merge the motions smoothly [Heck at al., 2006]. They 

assume the sets of body parts being merged are known. Our method actually learns 

the set of essential actuators for each action such that motion splicing considers only 

these sets when blending movements of different body parts and different actions. 

Parallel syntax introduced constraints to the splicing of human actions. This way, our 

framework generalizes whole-body techniques in many aspects. Even our motion 

interpolation method considers only the essential actuators of each action. 

Sequential syntax is proposed as an alternative method for the transitioning problem. 

A transition is a segment of motion that seamlessly attaches two motions to form a 

single longer motion. Therefore, the transitioning problem concerns the motion 

concatenation towards longer sequences of motion. Transitions between different 

actions are found according to the structure of morphological grammars. Basically, a 

transition is feasible if the actions share primitives in their respective motion patterns. 

In what concerns transitioning, our Human Activity Language is more compact, 

efficient, and structured than state-of-the-art approaches such as motion graphs and its 

variants [Arikan and Forsythe, 2002; Kovar at al., 2002; Lee at al., 2002]. 
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The experimental validation of our linguistic framework is performed on real human 

motion obtained by a motion capture system. Our motion-capture database contains 

around 200 different actions corresponding to concrete English verbs associated with 

observable voluntary meaningful movement (see Appendix A). The actions are not 

limited to any specific domain. Instead, the database includes actions of several types: 

manipulative (prehension and dexterity), nonlocomotor, locomotor, and interaction. 

Sensory-Motor Embodiment 

To consider the tasks related to activity understanding, we introduce a sensory-motor 

system model with four subsystems: perception, recognition, motor planning, and 

action. In this model, a sensory-motor language plays a central role in supporting 

activity understanding as a common representation for sensory and motor 

information, as shown in Figure 1.2. 

Figure 1.2. A sensory-motor system model. 

A perception subsystem takes the sensory input and extracts higher-level 

representations for human actions. These representations are parsed and possibly 

matched to sensory-motor programs by a recognition process. If the action vocabulary 

does not contain the observed action, no matching is found and learning may occur 
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through imitation. The imitation process searches for a physically feasible plan to 

execute the observed unknown action in the action subsystem. 

Sensory and motor representations for human activity are coupled by embodiment. 

These two aspects of human activity are abstracted to a common ground through 

embodiment which is, ultimately, the consideration of the human body into the 

modeling process. In this dissertation, we focus in the discovery of a common 

embodied symbolic language. 

Visual Representations 

Vision detects whatever alters the pattern of light reaching the eye. There are two 

kinds of receptor cells in the retina (the end organ of vision): one for seeing fine detail 

and another for movement [Clark, 1963: 274]. The visual system is an organization 

that maps into a simple grammar: something (seen by foveal vision) moves (seen by 

the rod cells in the retina). This organization is the lowest level of representation for 

visual perception. In higher levels, the visual representations may range from motion 

fields to 2D joint angles derived from a stick model of the human body, as shown in 

Figure 1.3. 

Global representations are the lowest level of visual representation which captures 

the whole body motion. Structured representations are higher-level representations 

that may record only the motion of specific structural components of the human body 

[Boyd and Little, 1997]. A structured representation requires tracking of specific 

body parts (e.g., joints) of the actor while simplifies the classification process 

involved in movement recognition. 
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Figure 1.3. Visual representations from motion field to stick model. 

The design of visual representations and the transformations between them are 

denoted as the visual perception process. The abstraction in the visual perception 

process starts with global representations towards finding more structured 

representations until there is enough embodiment to interact with the motor domain. 

The abstraction process transforms global representations into structured 

representations. We suggest that this abstraction process consists in a gradual 

transformation of representations with an increasing level of embodiment. At each 

step, the process extracts a set of features using an embodied constraint. An embodied 

constraint is applied to a representation to get more structure into a higher-level 

representation. One example of an embodied constraint considers the movement of 

points in the same body part as rigid to detect different articulated body parts. A more 
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abstract constraint may use the topological connections of body parts to identify each 

detected body part with a segment in a human body model. 

When the highest level representation (e.g., human stick model) is reached, features 

of joints are extracted. Some features of joints are angular position, angular velocity, 

and angular acceleration. Features from each frame are treated as time-varying scalar 

values and instants which are at the maxima or minima are view-invariant. This 

suggests a mapping from 2D to 3D features and, ultimately, a feasible way to map 

from a high-level visual representation to motor primitives. 

 

Figure 1.4. Joint angle functions for ankle, knee, and hip during jog activity. 

One instance of the visual perception process is achieved by a motion capture system. 

We captured videos featuring 90 different human activities and the corresponding 

three-dimensional reconstruction for trajectories of body parts was found using our 
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own optical motion capture system [Guerra-Filho, 2005]. Given this three-

dimensional reconstruction, joint angles were computed to describe human 

movement, as shown in Figure 1.4. 

Motor Representations 

Muscles are stimulated by electrical impulses (action potentials) that travel from a 

nerve to a muscle. The nerve is activated when a threshold current is achieved and it 

transmits a single packet of electric charge at a time. Each nerve action potential 

activates the muscle propagating another action potential into the muscle fibers to 

cause contraction. A single action potential only activates the muscle fibers for about 

0.002 second (single twitch). To perform longer smooth controlled muscular 

contractions, the muscle needs to be stimulated repeatedly. The brain will send a 

stream of impulses through a certain number of nerves to the muscle to activate a 

proportional number of fibers so the muscle can contract and the corresponding force 

required is achieved. 

All basic moves a human body can perform result from single muscle activations. The 

activation of muscles on the skeleton (mechanical behavior) is usually modeled by a 

number of force vectors. A motor state of the human body at a particular time is 

represented by a set of values, where each value corresponds to the force exerted by a 

certain muscle. Since the number of fibers activated in a muscle is discrete, each force 

has a discrete number of possible activation levels. These levels are the most 

fundamental units a human being can use to construct more complex actions and 

compose an alphabet of muscle activations. The motor state is an initial 

representation for human actions. 
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Although internal motor activity is constantly occurring, movement is any external 

observable motion. Different muscles collaborate to perform some specific anatomic 

action on a particular body part. An anatomic action corresponds to a resultant force 

for a system of force vectors associated with some muscles and, usually, acting on the 

same body part. Anatomic actions are the most basic movements that are visible and, 

hence, they are a starting point for the cyclic cognitive process between visual and 

motor representations. 

The individual muscle activations are simultaneous while producing anatomic 

actions. In general, anatomic actions can be divided into flexion-extension (bending- 

straightening movement), abduction-adduction, and rotations. Most movement 

patterns are a combination of these muscle movements. An anatomic action 

performed by a specific joint and occurring in a particular anatomic plane (e.g., 

traverse, frontal, sagital) corresponds to a degree of freedom (DOF) in a human body. 

An anatomic action corresponds to a subset of the motor state. For example, the 

“elbow extends” action corresponds only to the activation of the following muscles: 

anconeus, brachioradialis, and triceps brachii. 

Each anatomic action corresponds to a resultant force for a system of force vectors 

associated with some muscles and, usually, acting on the same body part. Using an 

alphabet to represent scalar values associated with force resultants, an anatomic state 

is a set of symbols representing the resultant forces associated with each particular 

anatomic action. In this dissertation, we use another approach to action definition. A 

joint angle time-varying function for all DOFs represents a human action. We use this 
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initial representation in the derivation of a grounded symbolic representation: a 

Human Activity Language. 

Areas of Application 

The availability of a language characterizing human action has implications with 

regards to the grounding problem, to the universal grammar theory, and to the origin 

of human language and its acquisition process. Besides these theoretical issues, a 

linguistic representation for human activity has several practical advantages. A 

compact specification for human activity leads to compression and better efficiency. 

Once a symbolic linguistic representation is provided, the natural language processing 

and speech recognition fields are sources of methods that could be applied to activity 

understanding. A non-arbitrary symbolic representation allows the use of techniques 

of symbolic reasoning for inference and other cognitive tasks (e.g., recognition) on 

human activities. This framework could also be used as a basic module of a symbolic 

query language for the processing of multimedia data. 

A language for human activity involves several challenging problems and has impacts 

and applications in many areas. A symbolic representation for human activity 

materializes the concept of motor programs and enables the identification of common 

motor subprograms used in different activities. This way, the discovery of such 

language allows exploring how a motor activity vocabulary is organized in terms of 

its subprograms. An evidence of common motor subprograms is the theory of motor 

tapes. Motor tapes [Hoyle, 1983] are explicit representations of a movement 

trajectory in memory. When an agent needs information on how to perform an action, 

it finds the appropriate template in memory and executes it. 
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In kinesiology, athletic performance analysis optimizes the training process and 

improves performance. In biomechanics, rehabilitation medicine detects, describes 

anomalies, and helps in the development of treatments. In performing arts, motion 

representations interface with dance notation systems. 

Humanoid robots are designed to interact with humans and to assist them in several 

tasks. To be more effective towards a seemingly interaction, a similar appearance to 

humans is an important requirement. Besides similar appearance, robot behavior 

should be as natural as possible. Consequently, perception and generation of human 

activities by a humanoid robot should be included in its artificial cognitive system. 

The integration of analysis and synthesis of movement in this system leads to an 

easier way of programming motor skills in humanoid robots: learning through 

imitation [Atkeson and Schaal, 1997; Schaal, 1999]. This integration is implemented 

as the representation and modeling of human movement in the cognitive system. 

In robotics, adequate movement models are detailed domain knowledge of the 

solution for complex nonlinear dynamics problems related to motor coordination. The 

representations make these problems highly structured and suited for path planning 

and trajectory tracking of motor control. A sensory-motor Human Activity Language 

assists humanoid robots to generalize the planning and control of motor activities 

while using a vocabulary of human actions. 

In computer graphics, data-driven or example-based computer animation uses motion 

capture data to automatically generate realistic motion for virtual characters. In this 

context, one of the main challenges of animation is to reduce user interaction through 
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the reuse of motion data. Automation should also include flexibility towards novel 

movements while preserving the realism found in original motion. 

A step towards automatic animation requires a system that is able to generate as many 

actions as possible. This task involves the use of human activity models and the 

structure of a large praxicon. This vocabulary assists a user in the specification of 

what the virtual character is supposed to do. This way, we suggest the use of a 

collection of real motion data that resembles more closely a vocabulary of activities. 

We propose a linguistic approach to model and construct such a praxicon. This 

approach is able to integrate several motion synthesis problems related to data-driven 

computer animation in a single unifying framework. In this dissertation, we discuss 

motion interpolation, splicing, and transitioning. However, we plan as future work to 

consider other problems such as retargeting, motion editing, and style generation. We 

intend to investigate the placement of these problems in our Human Activity 

Language. Further, each motion synthesis problem corresponds to an inverse motion 

analysis problem. Therefore, besides a generative aspect, this approach also supports 

motion analysis where human movement is parsed when facing an action cognition 

task. 

In computer vision, surveillance is achieved with automatic activity detection and 

recognition based on action representations. They also assist video annotation with 

efficient storage, transmission, editing, browsing, indexing, and retrieval of the 

motion data in visual media. Basically, low-level features in the visual data are 

mapped explicitly or implicitly into higher-level features representing human 

movement. These features are parsed according to our linguistic framework and, 
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consequently, concrete reasoning is performed on this grounded linguistic space. We 

believe multimedia applications will ultimately include all types of sensory data. 

Current applications involve mostly visual and audio information. However, the 

integration of further sensory data and motor information is extremely relevant. 

Human-centered computing involves conforming computer technology to humans 

while naturally achieving human-machine interaction. In a human-centered system, 

the interaction focuses on human requirements, capabilities, and limitations. These 

anthropocentric systems also focus on the consideration of human sensory-motor 

skills in a wide range of activities so that the interface between artificial agents and 

human users accounts for perception and action in a novel interaction paradigm. This 

leads to behavior understanding through cognitive models that allow content 

description and, ultimately, the integration of real and virtual worlds. 
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Chapter 2: Related Work 

In this chapter, we review related work to human activity understanding. The subjects 

discussed are the inspiration for a sensory-motor approach, the motivation for a 

linguistic framework, symbolic representations of human actions, motor primitives, 

motion data compression, learning through imitation and movement segmentation, 

the semantic gap bridging, automatic computer animation, markerless motion capture, 

action recognition, grammatical inference, and grammar systems. 

The modeling of human movement into sensory-motor representations has been 

studied in many fields such as computer graphics [Ilg at al., 2004; Mezger at al., 

2005], computer vision [Del Vecchio at al., 2003], robotics [Billard and Matarić, 

2001; Matarić, 2002; Schaal, 1999], and neuroscience [Ahmed at al., 2002; Caelli at 

al., 2001; Etou at al., 2004; Mori and Uehara, 2001; Nakazawa at al., 2002]. 

Sensory-Motor Inspiration 

Sensory and motor processes such as perception and action are fundamentally 

inseparable in cognition [Varela at al., 1991: 173]. The Broca’s region in the human 

brain is related to various functions ranging from perception to action [Nishitani at 

al., 2005]. This perception-action link in Broca’s area involves learning (e.g., 

language and skill acquisition) through imitation. 

Mirror neurons are brain cells which activate when a monkey performs a specific 

action with its hand [Gallese at al., 1996]. The same neurons also fire when the 

monkey observes the same action. The mirror neurons in Broca’s region were not 

activated when human subjects watched an action that is not in the observer’s motor 
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vocabulary [Buccino at al., 2004]. This evidence suggests that action recognition is 

another function related to Broca’s area. 

The functionality of Broca’s region in the brain and the mirror neurons theory suggest 

that perception and action share the same knowledge structure that provides common 

ground for sensory-motor tasks such as recognition and motor planning along with 

higher-level activities. 

We consider this common sensory-motor representation to be at an imagination or 

visualization level of an artificial cognitive system, where simulation tasks, such as 

computer animation, and preparation for lower-level cognitive tasks are performed. 

The lower-level tasks are concerned with proper visual perception (e.g., motion 

capture from images) and with actual motor generation (e.g., computation of torque at 

joints). 

Higher-level tasks involving logic reasoning and natural language may also be 

grounded on this common sensory-motor representation. Some research shows that 

language is semantically grounded on the motor system [Glenberg and Kaschak, 

2002], which implies the possibility of a linguistic framework for a grounded 

representation. A linguistic representation can give rise to a higher-level specification 

of motion by using compositional and recursive structures. 

Linguistic Motivation 

Inspiration for a linguistic approach comes from converging evidence in several fields 

of science. Similarly to spoken language, movement patterns are composed of 

elements in combination and sequences, but they may not be organized exactly like 

language because dimensions are qualitatively different. Speech can be characterized 
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as interleaved patterns of movements, coordinated across articulators [Armstrong at 

al., 1995; Studdert-Kennedy, 1987]. 

Humans make finely controlled movements that produce invisible (or barely visible) 

but audible gestures in the throat and mouth. The information about these movements 

is broadcast to the environment for the purpose of communication. Human movement 

(action, activity, or behavior) also has a communication aspect. Any time a subject 

acts, his/her image is optically broadcasted and communicates the intentions and 

other information associated with the action. Otherwise, there would be no need to 

deliberately keep ourselves in places where we cannot be seen by others (i.e., hide) 

when we want to avoid awareness of our presence. Since the same general model can 

describe both spoken and signed languages; we believe language is based in human 

body movement, which is a materialization of a more fundamental model or 

representation framework. 

The description of acoustic and optic gestures uses the vocabulary of neuromuscular 

activity as a generalization of the vocal tract grammars at phonological level. Visible 

gesture words or sentences could have provided the behavioral building blocks 

associated with neuronal group structures for constructing syntax incrementally, 

behaviorally, and neurologically [Edelman, 1992]. 

Observations of people with brain injuries and diseases, coupled with dissection of 

their brains has shown that areas of anterior and parietal cortex in the left hemisphere 

of the cerebrum provides control for both vocal and manual activity including the 

hierarchical organization of manual object combination, signing, and speech 

[Greenfield, 1991; Kimura, 1981; Poizner at al., 1987]. The functionality of Broca’s 
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region in the human brain also relates to language tasks [Nishitani at al., 2005]. The 

evidence of such a region in the brain with language and action functions is another 

inspiration for a linguistic approach to the representation of human activities in an 

artificial cognitive system. 

Spoken language and visible movement use a similar cognitive substrate based on the 

embodiment of grammatical processing. For example, during walking acquisition, the 

human infant follows a developmental sequence that is not dissimilar from the 

sequence followed in language acquisition. The regularity of this developmental 

sequence is due to more basic underlying bio-behavioral forces. 

Stages in motor development reflect neuromuscular maturation. The fundamental 

stages of sign language and spoken language acquisition are the same [Volterra and 

Erting, 1990: 302-303]. Infants go through a babbling stage, in which they manipulate 

the sublexical elements [Petitto and Marentette, 1991]. Language develops through 

social interaction since a word meaning is learned when heard or seen used by 

someone else in a context that made the relation between word and meaning 

reasonably unambiguous. Once language is acquired at a sufficient level, the meaning 

of unfamiliar words is determined by linguistic inference from its context. 

Body movements are linked to visual perception, to recognition, to perceptual 

categorization (words must be sorted into categories: nouns and verbs), to memory, to 

learning, to concept formation, to primary self-consciousness and to consciousness of 

others, to pre-syntax, to language, to thinking, and to higher-order consciousness 

[Edelman, 1989: chapter 6]. 
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Linguistics Foundations 

Usually, linguistic is what we can write down stripping its emotional content and 

communicative intent [McNeill, 1985: 351]. A language consists of a system for 

making words, a system for making sentences out of words, and a system for 

reconciling conflicts between the first two [Lecture, “What is language,” by Lyons at 

Christ’s College, Cambridge 1977]. 

Phonology 

Phonology is the system that selects certain speech sounds from all possible speech 

sounds and presents them as phonemes, the segments composing words. Different 

languages select for use different phoneme classes from among all the possible 

sounds that the human vocal tract is capable of emitting. 

Usually, a phonetic description consists of a linear sequence of static physical 

measures, either articulatory configurations or acoustic parameters. Another approach 

characterizes phonetic structure as patterns of articulatory movements. A phonetic 

representation is a characterization of how a physical system changes over time 

[Browman and Goldstein, 1985: 35]. Muscular activity produces movement and 

gestures by moving the articulators along a trajectory. In a model of speech, words 

may be complexes of muscular activity temporally ordered, but not in the serial 

segmental way as in classical linguistic theory [Mowrey and Pagliuca, 1995]. 

Speech can be segmented into a linear stream of phones, which are analyzed into sets 

of features and abstracted as phonemes. However, the organization of human 

movement is simultaneous rather than sequential. Even though, sequentiality matters 
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at all levels of description since articulators must also follow a certain sequence to 

produce a gesture and to combine gestures into larger structures (i.e., words). 

Signing and speaking involves many larger and smaller muscles and muscle groups 

put into play with extremely subtle differences in timing. Any skilled activity requires 

the appropriate sequencing of movements, and regulation of the degree of muscle 

contraction. These muscle actions occur with such rapidity that normal visual 

observation can hardly distinguish which of them are sequential, which simultaneous, 

which overlap in time. 

A coordinative structure is a functionally defined unit of motor action: an ensemble 

of articulators that work cooperatively as a single task-specific unit across both 

abstract planning and concrete articulatory levels. Gestures are coordinative structures 

that involve an equivalence class of coordinated motions of several articulators to 

achieve a task [Browman and Goldstein, 1990: 300]. 

At the message or mental level, abstract units (segments) of language are discrete, 

static, and context-free. Consequently, language consists of sequences of discrete 

states of neuromuscular activity. However, the realization of segments is dynamic, 

context sensitive, and influences each other in coarticulation. Coarticulation is the 

extent to which individual phonetic elements are influenced by other elements before 

or after them so that the elementary form is altered slightly. 

Different kinds of segment morphemes combine sequentially to form words: posture, 

preparatory, and activity. A posture describes how articulatory features (moveable 

parts) are configured. A preparatory movement achieves a basic posture from which 

activity movements will be performed to accomplish some task. Analogous to vowels 
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and consonants, activity morphemes are classified in motion and hold: motion is 

defined as a period of time during which some aspect of articulation is in transition, 

while a hold is a period of time during which all aspects of the articulation are in a 

steady state. In sign language, a preparatory segment is a morphological process 

known as m-epenthesis [Liddell and Johnson, 1989: 239]. 

The differences between visible movements are produced by muscle action. Such 

actions produce movement, but only certain combinations of the different movements 

constitute the words of human body movement. To describe accurately the phonology 

of human movement, phonological rules are required. The speech process involves 

more getting to segments than actually producing them. Hence, actions are more 

demanding than postures. 

Morphology 

An action is a functional unit, an equivalence class of coordinated movements that 

achieve some end. Actions can be achieved by a variety of means and entirely 

different body movements can achieve the same goal. The class of hand movements 

which carry an object contained in the hand towards the mouth could also be 

completed by leaving the hand static and moving the whole body and head so that the 

mouth moves closer to the object or with the entire body remaining stationary and the 

object moved towards the mouth by a second individual [Perrett at al., 1989: 109-

110]. 

Phonemes selected and combined are put into morphemes (words and word classes) 

in another subsystem of language organization, morphology. Morphology provides 

the elements that syntax puts together into phrases and sentences. Words symbolize 
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classes of persons, things/objects, and actions/events. A complex movement 

combined with others forms a larger structure (i.e., coordinated patterns of gestures in 

time and space) that defines a word [Kelso at al., 1986: 31]. Words are articulatory 

programs composed of a few variable gestures [Studdert-Kennedy, 1987: 78]. In this 

sense, a human action corresponds to a sensory-motor word. 

Syntax 

The word syntax comes from the Greek syntaxis that means to arrange in order. 

Arranging things in order is the most fundamental requirement for the development of 

syntax. Syntax is a finite set of logical categories governed by complex interlocking 

rules capable of producing infinite combinations. Grammar constitutes a separate 

irreducible level of linguistic structure that is properly described without reference to 

meaning [Langacker, 1991: 515]. It has its own constructs, representations, and 

primitives. Getting from consciously produced signs to syntax is a matter of analysis 

(taking things apart) and planning (the ability to plan and assemble complex 

sequences of rapid motor actions), not synthesis (putting things together). 

The Subject-Verb-Object (SVO) pattern of syntax is a reflection of the patterns of 

cause and effect: something doing something to something else. Syntax pairs 

relationships in the outside world with relationships within the brain. Syntax deals in 

networks not nodes, neural matrices not modules. Simultaneity (spatialization) is the 

primary generalization over spoken languages, since movement is constructed in 

three dimensions of space. Grammatical competence in movement involves spatial 

and sequential processes. Linguistic expressions are processed as if they were objects 

with internal structural configurations [Deane, 1991]. They are processed in terms of 
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certain basic image schemas (part-whole and linkage) critical to the recognition of the 

configurations that define complex physical objects. Image schemas are high-level 

embodied schemas that function as cognitive models of the body and its interaction 

with the environment. Image schemas are recurrent structures such as objects, shapes, 

figure-ground relations, source-path-goal, containment, compulsive force to move 

objects, and balance. Image schemata are representations of recurrent structured 

patterns that emerge from bodily experience. Cognition and language are built out of 

image schemata. Some basic image schemata include container, enablement, link, 

near-far, merging, center-periphery, compulsion, and part-whole [Johnson, 1987: 

126]. 

Usually, there is a physical difference between a word and a sentence in spoken 

language, while they often look identical in sign language. Sentences represent very 

basic relationships. Arranging things in order is the most fundamental requirement for 

the development of syntax. Syntax emerges when sentences, relations between things 

and events, are made. According to the spatialization of form hypothesis [Lakoff, 

1987: 283], grammar is ultimately spatial and the acquisition of grammatical 

competence occurs when linguistic information is routed to and processed by spatial 

centers in the brain. The spatialization of form hypothesis treats grammar as an 

image-schematic thought in which words, phrases, and sentences are endowed with 

an abstract structure grounded in immediate bodily experience of physical objects. 

Grammatical competence is critically represented in a brain region whose primary 

function is to represent the body schema and other high-level image schemata [Deane 

1993: 278]. 
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In most languages, the sequence of signals falls into a subject/predicate pattern. An 

action is represented by a word that has the structure of a sentence: the agent or 

subject is a set of active body parts; the action or verb is the motion of those parts. In 

many such words, the action is transitive and involves an object or another patient 

body part. The precise muscle timing (pre-syntax) makes it possible to produce 

countless actions that differ in great or small ways. A few prime symbols (S, NP, and 

VP) and a finite set of rules (S →NP + VP and VP → V + NP) generate an infinite set 

of error-free symbol strings. 

Movement Behavior 

Observable movement is divided into involuntary and voluntary categories. Reflex 

(not voluntary) movements are elicited in response to some stimulus without 

conscious volition. Basic movements are inherent motor patterns which are based 

upon the reflex movements and which emerge without training. These movements 

form the basis for perceptual, physical abilities, and skilled movements. 

The seven activities essential to the existence of primitive man are the basis upon 

which skilled movement is build. These actions, which are inherent in the human 

organism, include running, jumping, climbing, lifting, carrying, hanging, and 

throwing [Harrow, 1972]. 

Voluntary purposeful movement can be categorized as locomotor movement, non-

locomotor movement (body in a stationary position), and manipulative movements. 

Locomotor movements change stationary state into ambulatory state by changing 

location (body moving in space from one point to another). Included in this 

subcategory are crawling, creeping, sliding, walking, running, jumping, hopping, 
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rolling, and climbing. Non-locomotor movements involve the limbs of the body or 

portions of the trunk in motion around an axis. Behaviors included in this subcategory 

are pushing, pulling, swaying, stooping, stretching, bending, and twisting. 

Manipulative movements are coordinated movements of the extremities usually 

combined with visual and tactile modality. This subcategory is concerned with 

movements of prehension and dexterity. Prehension is the combination of 

manipulative (flexion, gripping, inhibitory reflexes) and visual abilities with 

prehensive activity (reach for, grasp, and release grip). Dexterity implies a quick 

precise movement with hand and fingers (handling of blocks, cups, balls, and 

implements for drawing). 

Study of movement behavior began in 1872 with the publication of Darwin’s “The 

Expression of the Emotions in Man and Animals” [Darwin, 1872], a treatise on the 

origins and functions of facial and bodily expressions. Movement research ranges 

from emotional and psychophysiological dimensions (intrapsychic personality 

correlation to body motion) to interpersonal and cultural aspects of movement [Davis, 

1973]. 

Naturalistic observation of infants and children indicates that movement patterns may 

be related to cognitive and personality development [Kestenberg at al., 1971]. There 

is evidence that one can diagnose schizophrenic symptoms from body movement 

patterns [Davis, 1970; Wolff, 1945]. Dyssynchrony of body parts in relation to one 

another is found in schizophrenic patients [Condon and Ogston, 1967]. Analyses of 

the psychological significance of various gestures or actions performed by a patient in 

psychotherapy suggests that movements can be immediate and visible reflections of 
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attitudes and feelings that are out of conscious awareness [Deutsch, 1952; Mahl, 

1968]. While a simple correlation is made between anxiety and increased muscle 

tension, sophisticated analyses report more subtle possibilities such as between 

muscle activity and empathy, attention, and personality characteristics. Specific 

tensions in various parts of the body function as defenses against the experience and 

discharge of affect. 

A given movement is interpersonally (reflects culture and role in a group) or 

intrapersonally significant (personality make-up or emotional state), where 

significance is that which the movement is associated with. The personality and 

cultural determinants of movement depend on which variables are predominant or 

characteristic for the individual or for the group. The parameters are aspects of 

movement that may be seen as the substrates of movement patterns in space. They 

include muscle tension patterns; expansion-contraction patterns (in breathing), weight 

placement; and body coordination variables (successive or simultaneous). For 

example, variables having to do with muscle tension and weight placement are related 

to emotion or personality dynamics. Intensity variables deal with movement qualities 

or variations in force, tempo, or rhythm. Space variables are direction, planes, or 

areas of space around the mover. Complex configurations of several movement 

parameters are gestalt aspects of body movement such as body attitudes, positions, 

and facial expression. The group variables refer to relationships between two or more 

people and include items such as group formation, orientation, or group synchrony. 

The meaning of a given movement can only be determined by an analysis of the 

context: who does it, when the movement occurs, where, within what sequence of 
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interactions, and with what other behaviors in the communication stream 

[Birdwhistell, 1970]. As structural linguists analyze language, assume ignorance of 

the significance of movements and decipher the culture’s meaning for any movement 

bit in relation to other same-size bits, then in relation to increasingly larger bits. There 

is rarely a relationship between the nature of the movement and its deciphered 

meaning, as with abstract mathematical symbols devised to represent operations. 

Usually, there is no resemblance between the character of the behavior and its 

meaning: kinesics is rarely onomatopoetic [Birdwhistell, 1970: 125]. 

A body can be bowed in grief, in humility, in laughter, or in readiness for aggression. 

However, each case shares an underlying common theme of containing oneself, 

whether it is associated with making oneself smaller in humility, holding oneself 

together in grief, preventing oneself from busting a gut laughing, or collecting oneself 

in preparation for attack. A humble bow may be done arms parallel to the side, head 

leading, the movement is smooth and controlled. Bowing in grief or in laughter may 

be done with arms tensely clutching one’s sides, the whole body contracting, but with 

rhythm of breathing and shaking different in each case. Bowing in readiness to fight 

may involve a tight holding, but not the trembling or shaking of grief or laughter, and 

must of necessity involve outward focus. Knowledge of the situation would 

undoubtedly help in determining what exactly the particular bowing is associated 

with. However, the basic underlying pattern and the qualitative details of the 

movement itself may be the source of information as to its significance, as is an 

understanding of the context the movement occurs. 
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The developmental and functional significance of patterns are more a parsimonious 

explanation than some external process of association or learning of a cultural 

convention. For example, contracting the stomach muscles and holding one’s breath 

can be seen as a way of coping with a painful experience, smiling is intrinsically 

related to pleasure in the sense that it is a free, widening, expanding movement, 

whereas frowning in distress or anger is a tight, contracting motion. Fundamental 

patterns within the organism are expanding in pleasure and contracting in displeasure. 

The intrinsic interpretation makes possible developmental and evolutionary 

explanations. However, the expression may take on other associations and evolve as a 

communicative signal for that with which it originally was associated. Vertical 

movements or stress on verticality within the individual mover has been associated 

with intrapsychic conflicts over control and self-assertion [Reich, 1949: 181]. 

Movement is intricately patterned at many levels and, with respect to movement, 

which occurs during speech, it may correlate with speech syntax, reflecting the 

beginning and ending of communication units and corresponding to various levels of 

speech structure. 

Movement patterns relative to intrapsychic processes, emotion, or personality are 

intrinsic, whereas movement at the cultural level of face to face interaction and 

communication programs are arbitrary. However, the intrinsic relationship does not 

rule out the possibility that significance of movement is partly determined by the 

situation or by some extrinsic factors. 

Movement is related to developmental processes, affect, intrapsychic and 

interpersonal dynamics, and cultural differences. It may be possible to observe 
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someone’s movement over a limited period of time and, by noting a wide range of 

movement characteristics in varying degrees of detail, learn something about where 

the person is from (even the region of the country) [Birdwhistell, 1970: 208-210], the 

person’s age, social status, sex, and class, as well as certain individual characteristics 

related to personality make-up. In addition, a subject’s mental status [Davis, 1970; 

Wolff, 1945], mood [Clynes, 1970; Darwin, 1872], and even intelligence [North, 

1971] may be analyzed. The practical application of movement analysis is in 

intelligence tests or psycho-diagnostic tests. 

Another source of meaning to movements is body language, i.e., nonverbal 

communication. Speakers also control several paralinguistic systems such as facial 

expression and tone of voice to express and modify meaning. 

Symbolic Representations 

Symbolic representations of human activity are found in movement notation systems 

developed for dance and in linguistic studies about gesture and sign language. Dance 

notation systems are not accurate and designed for human reading and interpretation. 

There are many dance notation systems and among the most prominent are 

Labanotation [Hutchinson, 1977], Effort-Shape Analysis [Dell, 1971], and Eshkol-

Wachmann [Eshkol, 1980].  

Effort-Shape Analysis is the closest to a geometrical analysis of joint action and 

spatial patterns. Three types of movement are defined: a rotational movement in 

which a limb moves about its axis, a planar movement in which the longitudinal axis 

of the moving limb describes a plane, and a curved movement in which the 
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longitudinal axis of the moving limb describes a curved surface, usually a conic 

shape. 

The symbols of notation systems may be seen as analogous to the notes and bars of 

music notation. Path and direction in space is comparable to pitch and tone in music, 

duration of the movement to duration of the note, and simultaneity of body parts 

moving in various directions to chords in music. However, there are special aspects of 

movement that have no clear counterparts in music, such as weight placement. 

Evidence towards language embodiment grounded in spatio-motor system was found 

in linguistics. However, a symbolic representation has not been suggested. Linguists 

have proposed signed segments as movements and holds [Liddell, 1984], movements 

and locations [Sandler, 1986], movements and positions [Perlmutter, 1988]. Others 

have proposed that the common ground between signed and spoken languages will be 

found at the level of syllable [Wilbur, 1987], or that signed languages have no 

segments [Edmondson, 1987]. 

Reduce signing to phonetic writing systems [Stokoe, 1960; Stokoe at al., 1965] or to 

different two-dimensional representation is not satisfactory [Hockett, 1978]. Science 

of language and communication will be enabled by increasing sophistication in 

techniques of recording, analyzing and manipulating visible and auditory events 

electronically [Armstrong at al., 1995]. In this sense, this dissertation takes advantage 

of state-of-art motion capture systems to learn a linguistic structure for human 

activity. 
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Motor Primitives 

Researchers in various disciplines have come close to the idea of primitives in human 

movement and primitives are the first step to a language. Indeed, recent work points 

to evidence that voluntary actions are made out of simpler elements, that are 

connected to each other either serially or in parallel (i.e., simultaneously) [Flash and 

Hochner, 2005; Hart and Giszter, 2004; Mussa-Ivaldi and Bizzi, 2000; Mussa-Ivaldi 

and Solla, 2004; Stein, 2005; Viviani, 1986]. This modularity provides the system 

with versatility and learning flexibility. To some scientists, motor primitives basically 

amount to motor schemas or control modules [Arbib, 1992; Jeannerod at al., 1995; 

Schaal at al., 2003], and they may be specific to a task. Their basic feature is that 

many different movements can be derived from a limited number of primitives 

through appropriate transformations, and that these movements can be combined 

through a well defined set of rules to form more complex actions (see for example the 

movemes of [Del Vecchio at al., 2003]). Primitives can be kinematic, dynamic, or 

kinemato-dynamic [Grinyagin at al., 2005; Hart and Giszter, 2004; Rohrer at al., 

2002; Viviani, 1986], and may be extracted using statistical techniques like PCA 

(principal component analysis), HMM (hidden Markov models), and others. 

At the behavioral level many have concentrated on reaching and grasping, gait and 

balance, posture and locomotion. Reaching movements appear to be coded in terms of 

direction and extent [Ghez at al., 1997], and appear to be composed of discrete sub-

movements, all with a similar stereotypical, serially concatenated shape and 

overlapping in time [Fishbach at al., 2005; Pasalar at al., 2005; Roitman at al., 2004]. 

Motor primitives have also been examined for human and monkey grasping and 
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object manipulation. Prehension (such as lifting a full cup) consists of reaching, 

orienting the hand, and grasping. The three actions are executed as a unified 

coordinated complex act even though they can be combined in a variety of ways 

[Jeannerod, 1994]. In tasks such as grasping, not only must the positions of the 

fingers and motions be appropriately selected and preplanned but the forces exerted 

on the object must also be controlled to achieve the goal of the task while securing a 

stable grasp. Finger movements and forces have been decomposed into basic 

synergies based either on the idea of uncontrolled manifold or on inverse dynamics 

computations [Grinyagin at al., 2005; Kang at al., 2004]. Hand gestures also consist 

of primitives or more complicated sequences that can be decomposed into a series of 

more elementary units of activity [Jerde and Flanders, 2003]. Of particular interest are 

the motor synergies. These are simultaneous activations of several muscles that 

produce a torque about a joint or a force in a particular direction. EMG recordings 

from frog hind limb muscles have been analyzed to test whether natural behavior 

shows synergies among groups of muscle activities for an entire set of natural 

behaviors [Cheung at al., 2005; d’Avella at al., 2003; Hart and Giszter, 2004; Tresch 

at al., 1999]. Similar attempts have been made to find muscle synergies during human 

posture and locomotion [Ivanenko at al., 2005]. 

More recently using the technique of non-negative matrix factorization, muscle 

synergies during a postural task in the cat have been successfully identified [Ting and 

Macpherson, 2005]. Since several synergies were assumed to act on a given muscle, 

the total activation of that muscle is the sum of activations due to all the synergies. 

D’Avella and Bizzi [2005] employed a similar approach to extract amplitudes and 
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timing relationships among muscle activations during more natural behaviors in intact 

animals. A combination of synergies that were shared across behaviors and those that 

were for specific behaviors captured the invariance across the entire observed dataset. 

These results support a modular organization of the motor controller and that the 

motor output of these modules is combined to control a large set of behaviors. 

Of special importance to our work is the finding that in the monkey cortex, electrical 

micro stimulation in primary motor and pre-motor cortex causes complex movements 

involving many joints and even several body parts [Graziano at al., 2002; Graziano at 

al., 2004]. These actions were very similar to gestures in the monkey’s natural 

repertoire. Micro stimulation at each site caused the arm to move to a specific final 

posture. Thus there appears to be evidence for a cortical map of joint angles (or a 

cortical representation of limb or body postures). There appears also to be growing 

evidence that there is cortical coding not only of kinematic and dynamic variables but 

also of more global features (segment geometrical shape or the order of the segments 

within the sequence [Averbeck at al., 2003a; Averbeck at al., 2003b]). 

We believe that the current debate on the exact nature of primitives is not very fruitful 

as far as artificial cognitive systems are concerned. The reason is that many different 

kinds of primitives are possible, and in our framework they will give rise to languages 

that are not identical. An important question in today’s zeitgheist is to use large 

amounts of data to infer the global structure of the action space, or in our 

nomenclature, to learn the language with hyper-empiricism. In this sense, our 

approach is a holistic and empirical one that uses a very large number of 
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measurements of human actions. We capture these actions for many individuals with 

a motion capture system. 

Motion Data Compression 

The simplest way to reduce the size of motion data is by sampling the original data 

with frames equally spaced. Naka at al. [1999] present a method for the compression 

and decompression of motion streams. The compression method performs uniform 

sampling in the time axis and further quantization in the floating-point byte 

representation of values. 

Togawa and Okuda [2005] perform key frame detection in the positions of the joints 

in 3D space (i.e., translational data). The less important frames are decimated 

iteratively according to a cost function. This function is computed as the sum of all 

joint position distances between consecutive frames. The frame with the lowest cost 

is the less important and, consequently, decimated. 

Non-uniform (adaptive) sampling involves the identification of points irregularly 

spaced in time. Chenevière and Boukir [2004] propose a non-uniform segmentation 

approach using a deformable model and active contour fitting. The active contour is a 

subset of the points in the motion trajectory. Initially, the contour has only the 

extremities of the motion trajectory. New vertices are inserted iteratively through an 

optimization step which minimizes energy cost in the contour segment with highest 

approximation error. 

Curve fitting approaches for motion data compression find representative points that 

characterize the motion trajectory. Polygonal approximation [Etou at al., 2004; 

Latecki and Lakämper, 1999] is a method of curve fitting where a curve is 
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represented by a piecewise-linear polygonal line. Lim and Thalmann [2001] use a 

batch curve simplification algorithm to identify key postures in human motion data 

modeled as high-dimensional curves of rotational data. A simplification algorithm 

generates an approximation of a curve as a smaller number of line segments. In our 

compression experiments, we use an online version of this curve simplification 

algorithm applied to two-dimensional curves representing each DOF in the motion 

data. Another curve fitting technique is polynomial interpolation [Saux, 1999; 

Sudarsky and House, 1998], which approximates the low frequencies of an input 

signal using spline or B-spline curves. 

Learning through Imitation 

Another approach towards motion data compression and segmentation is 

dimensionality reduction. Assa at al. [2005] embed the high-dimensional motion 

curve in a low-dimensional Euclidean space. The dimensionality reduction is 

performed in affinity matrices by a non-linear optimization process: replicated multi-

dimensional scaling [McGee, 1978]. A number of affinity matrices are defined to 

describe different aspects of inter-pose distance or similarity. The local extreme 

points which are not close to each other are identified as key poses of the motion. 

Barbič at al. [2004] present methods based on statistical properties of the motion. 

They consider the intrinsic dimensionality from PCA of a local model of the motion 

and the local change in the distribution of poses. Sidenbladh at al. [2002] construct a 

low dimensional linear model of the human motion. They use PCA to reduce the 

dimensionality of the time series of joint angles. The movement data is structured into 

a binary tree using the coefficients with larger variance in higher levels of the tree. 
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Jenkins and Matarić [2003] use dimensionality reduction to extract motion primitives 

(spatio-temporal structure) with an extension of the Isomap algorithm. The algorithm 

performs eigenvalue decomposition on a similarity matrix computed as a geodesic 

distance. 

Fod at al. [2002] present a method for automatically generating a set of movement 

primitives from human multi-joint movement. They segment motion according to 

angular velocity at points where more than one DOF has a zero velocity crossing. 

Primitives are found by k-means clustering the projection of high-dimensional 

segment vectors onto a reduced subspace. While they are more interested in the 

definition of basic movements which serve to compose movement through linear 

combination, we focus on atomic representations. They introduce two kinetological 

principles, consistency and completeness, referred in this dissertation as 

reproducibility and reconstructivity, respectively. However, the evaluation of action 

representations according to them and the other principles introduced here are 

original results of our work. 

Reduced-space approaches [Kovar and Gleicher, 2004] infer a parametric space that, 

in general, lacks a correspondence to intrinsic properties of the movement. In  

Figure 2.1, we show several performances of a kick action towards nine different 

target locations regularly spaced in a two-dimensional vertical plane. Each point 

corresponds to one instance of a kick action and its color represents the target 

location. The kick motions are reduced to a two-dimensional space (responsible for 

more than 95% of the variation). The 2D projections of kick action instances are 

presented in the graph as colored points. We also show a convex hull for instances of 
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each of the nine target locations. Note that the parametric subspace (i.e., convex hull) 

associated with some target locations overlap. This is counter-intuitive since kick 

motions for different target locations correspond possibly to the same point in the 

reduced space. 

 

Figure 2.1. Reduced dimensionality space representation. 

The previous techniques lack the intuitive interpretation for the extracted segments. 

Intuition appears in segmentation when characteristic features are used. In general, 

these features are spatio-temporal features, such as the curvature of 3D trajectories 

[Caelli at al., 2001; Rao and Shah, 2001] and kinematic features. 

Mori and Uehara [2001] use kinematic motion primitives to discover association rules 

representing dependency between body parts during movement. Their segmentation is 

based on the velocity of joint points in the Cartesian space, where each axis is treated 

independently and integrated afterwards. 
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Ilg at al. [2004] extracts movement primitives based on key events defined by zeros 

of the velocities in selected degrees of freedom. The movement primitives are 

characterized by the angular displacement between key events. Robust identification 

of primitives is accomplished by a dynamic programming algorithm. The algorithm 

aligns the features obtained from a search window to a prototypical movement 

primitive learned previously. 

Kahol at al. [2004] introduce a methodology for automatically parse discrete gestures 

from a continuous stream of modern dance motion (gesture segmentation). They use 

inertial factors derived from velocity, acceleration, and mass. These factors are 

integrated according to the hierarchy of the human body. The local minimum in total 

body force is used to detect segment boundaries. In their approach, all joints are 

treated as a single feature and the gesture movements segmented are not atomic. 

Nakazawa at al. [2002] use human dance motions and consider local minimum 

velocity only of the end effectors to represent whole body motion. They measure 

similarities of motion segments according to a dynamic programming distance of the 

trajectories in 3D space and cluster these with a nearest-neighbor algorithm. 

Kuniyoshi at al. [1994] generate complex activities from observation of human action 

based on abstraction and symbolization. Samejima at al. [2002] present another 

approach on learning from demonstration. Inamura at al. [2002] introduces the 

mimesis model where motion patterns are analyzed into motion elements and 

associated with proto-symbols. HMMs are used to recognize motion behaviors as 

symbols. For motion generation, genetic algorithm is used with the HMM likelihood 

as a fitness function. 
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Semantic Gap 

The sensory-motor projection of primitive words leads to language grounding. 

Language grounding for verbs has been addressed by Siskind [2001] and Bailey at al. 

[1998] from the sole perspective of perception and action, respectively. 

There are several approaches towards bridging the semantic gap between low-level 

features and high-level concepts. Relevance feedback [Rui at al., 1998] is an 

interactive approach for content-based image retrieval. The relevant images are 

selected according to user feedback and low-level features extracted from each image 

in a database. Hidden annotation [Cox at al., 2000] further extends these features by 

including manually Boolean semantic attributes (e.g., person, city, animal) in the 

relevance inference. Usually, image databases are only partially annotated due to the 

heavy manual labor involved. Active learning [Zhang and Chen, 2002] aims to 

determine which subset of the database should be annotated. In this sense, our 

approach is a step towards fully automatic annotation. Given the motion information, 

each action is automatically converted into our symbolic linguistic representation and 

linked to the corresponding concept for further processing. Usual text search engines 

and other symbolic manipulation techniques could be used for the retrieval of 

multimedia information. 

Automatic Computer Animation 

In this section, we review representative work related to automatic motion synthesis 

problems. The motion interpolation problem was addressed by Wiley and Hahn 

[1997] with a linear interpolation method to create parameterizations of human 
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activities. Radial basis functions were used by Rose et al. [1998] to interpolate 

between different styles of the same action. 

In motion splicing, a naïve DOF replacement consists in just swapping data between 

two motions [Ikemoto and Forsyth, 2004; Perlin, 1995]. Rose et al. [1996] generated 

motions splicing the DOFs of the right arm (e.g., wave and salute) and walking. 

However, spatio-temporal correlations are ignored and, consequently, unrealistic 

motions were produced. Ashraf and Wong [2000] addressed the correlations by using 

frame space interpolation. They show how upper-body action and lower-body 

locomotion can be treated independently during blending. Ko and Badler [1996] used 

inverse dynamics to adjust walking motions so a character would stay in balance and 

reasonable joint torques. Chai and Hodgins [2005] reconstruct a whole-body motion 

from a subset of joint positions. Heck et al. [2006] generate motions for combinations 

of n locomotion and m upper-body action. They propose a method for splicing upper-

body action and lower-body locomotion. Their method identifies and enforces 

temporal and spatial relationships between upper body and lower body. 

The transitioning problem is usually solved by graph-based approaches [Arikan and 

Forsythe, 2002; Lee et al., 2002]. A motion graph [Kovar et al. 2002] is a directed 

graph that represents a collection of motion sequences, where each node is a motion 

frame and each edge connects similar frames. Motion synthesis is achieved by 

computing paths in the motion graph. A move tree [Menache, 2000] is a graph where 

edges are segments of motions and nodes are transitions between motions. While 

motion graphs are created automatically, transitions of move trees are chosen 

manually. 
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Markerless Motion Capture 

The mapping from low-level visual features to human movement can be achieved 

implicitly or explicitly through motion capture. Motion capture is the process of 

recording real life movement of a subject in some digital geometric representation 

(e.g., Cartesian coordinates or Euler angles). Optical motion capture uses cameras to 

reconstruct the body posture of the human performer. One approach employs a set of 

multiple synchronized cameras to extract markers placed in strategic locations on the 

body, as shown in Figure 2.2. 

 

Figure 2.2. Optical motion capture. 

A more flexible method, markerless monocular (single camera) motion capture 

(MMMC), avoids the use of markers and extends the capabilities of such systems to 

any input video. A model-based approach [Chen at al., 2005] for MMMC uses a 3D 

articulated model of the human body to estimate the posture such that the projection 

of the model fits the image of the performer for each frame. Data driven techniques 

[Lee at al., 2002] use a motion database to help in the reconstruction of the motion in 

the video. The motion database is pre-processed to create connecting transitions 

between similar poses according to kinematic features. 

 47 
 



 

Given a video featuring human actions, a MMMC system extracts the human 

movement from visual features such as silhouettes. Joint angles are computed for all 

DOFs in a hierarchical body model. These joint angle functions are the initial input 

for segmentation in our linguistic framework. 

Action Recognition 

Stuart and Bradley [1998] find interpolation sequences between pairs of body 

postures using A* search in a set of transition graphs built from corpora of human 

movement. These graphs capture the progressions of a single joint in the corpus. 

HMMs are vastly used to characterize movement sequences [Yang at al., 1997]. Alon 

at al. [2003] estimate a finite mixture of HMMs using an expectation maximization 

formulation. In this approach, segments are partially assigned to all clusters 

corresponding to HMMs. Brand and Hertzmann [2000] extend HMM with a 

multidimensional style variable used to vary its parameters. They learn motion 

patterns from a set of motion sequences. HMMs are essentially probabilistic finite 

state automata. In this sense, a stochastic context-free grammar (SCFG) is a 

generalized model, which relaxes some structural limitations. Ivanov and Bobick 

[2000] use a single SCFG to parse activities and interactions between multiple agents. 

Wang at al. [2001] present a gesture segmentation approach for human gestures 

represented as 2D trajectories of projected hands. The segmentation involves finding 

the local minima of velocity and local maxima of change in direction. The segments 

are hierarchically clustered into classes associated with symbols using HMM to 

compute a metric. A small lexicon is inferred from the symbolic sequence through a 

language acquisition approach. The lexicon is induced for a single movement 
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stream/string and, consequently, involves only sequential learning which suffers from 

the overgeneralization problem. 

Mörchen at al. [2005] present a framework to discover movement patterns from EMG 

and kinematic measurements represented as multivariate time series. The kinematic 

time series are reduced to primitive patterns by manual clustering with Emergent 

Self-Organizing Maps and no time information. The same consecutive primitives are 

merged into intervals corresponding to symbolic states. They assume all actuators are 

participating equally in the action. While they consider all aspects of movement at the 

same time (total body movement) to find coincident intervals, our approach identifies 

the relevant actuators involved in the movement automatically and considers 

actuators independently. Further, in their approach, the pattern events discovered are 

sparse and cannot be used for the reconstruction of the movement. 

To the best of our knowledge, no approach modeling human motion learns the set of 

actuators involved in an action. Usually, they consider a fixed set of actuators and, 

since our method induces the appropriate actuator set for each action, a comparison 

between our technique and others is unfeasible. 

Grammatical Inference 

Here we pose the morphology of human activity as a grammatical inference problem. 

Grammatical inference concerns the induction of the grammar of a language from a 

set of labeled sentences. The grammar inference consists in learning a set of rules for 

generating the valid strings that belong to the language. The target grammar usually 

belongs to the Chomsky hierarchy of formal grammars. There exist several methods 

 49 
 



 

for learning regular grammars, context free grammars (CFGs), and stochastic 

variations [Parekh and Honavar, 2000]. 

Regular grammars and context free grammars cannot be induced only from positive 

examples [Gold, 1967]. However, several heuristic techniques learn approximations 

to the target grammar. The SNPR algorithm [Wolff, 1988] learns syntagmatic 

elements (sequences) and paradigmatic elements (sets) from minimal elements which 

are perceptual primitives (e.g., letters or phonemes). Each element corresponds to a 

rule in the learned grammar. The learning involves the concatenation of the most 

frequent pair of contiguous elements. 

Sequitur [Nevill-Manning and Witten, 1997] is an algorithm that infers a hierarchical 

structure from a sequence of discrete symbols. Sequitur infers a grammar, where each 

repeated subsequence gives rise to a rule and is replaced by a non-terminal symbol. 

The algorithm constrains the grammar with two properties: digram uniqueness and 

rule utility. The algorithm operates by enforcing these constraints on an online 

stream. 

Current approaches [Nevill-Manning and Witten, 1997; Solan at al., 2005; Wolff, 

1988] account only for sequential learning and not for the parallel learning, inspired 

by associative learning, we introduce. We define sequential learning as the technique 

able to infer the structure of a single sequence of symbols A. The learning algorithm 

induces a CFG corresponding to the structure of the string representing the 

movement. This structure corresponds to a forest of binary trees, as shown in  

Figure 2.3, where each node in a tree is associated with a context-free grammar rule 

in a normal form. Initially, the sequential learning algorithm computes the number of 
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occurrences for each different digram in the string A. A digram is a pair of adjacent 

symbols. A new grammar rule Nc → αβ is created for the digram αβ with the current 

maximum frequency. The algorithm replaces each occurrence of αβ in the string A 

with the created non-terminal Nc. The whole procedure is repeated until digrams 

occur more than once. As an example, the set of rules inferred for the CFG displayed 

in Figure 2.3 is {N1 → AB, N2 → CD, N3 → EF, N4 → BN1, N5 → N2N3, N6 → N5G, 

N7 → N6N4}. A sequential learning algorithm keeps merging adjacent root nodes into 

single rules and, consequently, overgeneralization happens when “unrelated” rules are 

generalized. 

Figure 2.3. A CFG shown as a binary tree forest. 

Grammar Systems 

Variants of the classical models in formal language theory are used to specify non-

determinism in computing devices with notions such as distribution, parallelism, 

concurrency, and communication. A grammar system consists of several grammars 

(components) that work together generating a common symbolic state represented by 

a finite set of strings. The components of the system change the state through 

rewriting and communication. 

We use grammar systems as a formal model to learn the morphological structure of 

human actions. Other formalizations in natural language processing such as 

synchronous grammars are avoided. The reason is that these grammars are used in 
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machine translation to correspond structures in different languages with the same 

meaning, while in human motion modeling, different actuators play different roles 

executing synchronously distinct unrelated motor programs. 

The most important models of grammar systems are cooperating and parallel 

grammars. Cooperating Distributed Grammar Systems (CDGS) have components 

working sequentially [Csuhaj-Varjú and Dassow, 1990; Meersman and Rozenberg, 

1978]. Only one component is active at any moment. Therefore, the components take 

turns in rewriting a common sentential form according to a certain cooperation 

protocol. Colonies are a simplification of CDGS where the components are regular 

grammars generating finite languages. Sosík and Štýbnar [1997] train a Neural 

Pushdown Deterministic Automaton (NPDA) with sequential access to a set of 

positive and negative sequences in some language. The NPDA model requires 

preliminary information about the expected size of the inferred grammar, since the 

topology of the NPDA does not change during the training. They extract a colony 

from the trained NPDA with a heuristic algorithm after a hierarchical clustering in the 

space of neuron states. 

A Parallel Communicating Grammar System (PCGS) consists of several grammar 

components working simultaneously in synchronization [Păun and Sântean, 1989]. 

The component grammars rewrite their own sentential forms in parallel. They 

communicate by exchanging their current sentential forms among each other. The 

requested string becomes part of the sentential form of the receiving grammar. In a 

returning mode, after sending their partial solutions to others, the components are 

reset to their axioms and start a new computation. The language generated by the 
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system is the language generated by a distinguished component of the system (master 

grammar) with the help of the others. 

The assumption that communication takes a single step and components continue 

computation without waiting for the end of communication is not reasonable. Fernau 

[2001] discusses a variant of PCGS with terminal transmission and right-linear 

components. In this model, the communication is constrained only to the transmission 

of terminal strings. Therefore, queried components have only terminal strings as 

sentential forms by definition. An inference algorithm for this model is proposed 

which uses additional structural information about communication (sentences with 

query symbols) and the component languages are learned separately with special care 

for the master component. 
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Chapter 3: Kinetology 

Human movement is a biological phenomenon which consists in the voluntary motion 

of the human body. The understanding of the biomechanical bases and description of 

human movement contributes to the improvement of this capacity in humans. On the 

other hand, these motor aspects of human movement have important applications to 

artificial systems in the synthesis and analysis of movement. 

Motion synthesis is the generation of movement for animation characters with a 

realistic appearance which aims to avoid unnatural and mechanical artifacts. Mostly, 

realistic motion synthesis is based on real examples coming from motion capture. 

Human motion capture usually corresponds to a very large amount of data. 

Segmentation, the extraction of key postures or motion primitives, summarizes the 

motion content and results in the compression of motion data. 

The precise exemplar movements are constrained only to the ones stored in a motion 

database library. Novel realistic movement either needs to be captured or adapted 

from previously recorded motion. Adaptation involves the reuse of motion segments, 

manipulation of motion attributes, and sequencing (concatenation) of movement 

according to physics laws. This way, any representation should assist in those tasks 

and be able to reconstruct the original and adapted movement. 

On the other hand, motion analysis relates to perception and involves the parsing of 

visual information into action representations ranging from optical flow to stick 

figure models. These representations are used to uniquely identify the action 

performed in a video. Therefore, an action representation should be able to select 

among different activities and to reproduce the same structure for different 
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performances of the same action. Furthermore, an action representation should be 

based on primitives robust to variations of the image formation process. In this sense, 

camera view-invariance is a desired property for representations dealing with motion 

analysis. 

Adequate primitives and segmentation must consider both generation and perception 

of movement. One reason is that motion synthesis involves the generation of 

animation satisfying a realistic criteria based ultimately on perception. On the other 

hand, motion analysis should map the parsed structure from video into a 

representation which should regenerate the original observed motion. Furthermore, an 

integrated approach would allow imitation, an important component of an artificial 

cognitive system [Matarić, 2002]. Therefore, the research problems of motion 

synthesis and motion analysis should be combined and based on common 

representations. 

Action units in behavior are all organized within a clearly definable narrow time 

window or temporal segment. This temporal segmentation appears to represent a 

basic property of the neuronal mechanisms underlying the integration and 

organization of successive events [Kien, 1992: 19]. If words are formed from 

simultaneous combinations of gestures, the perception somehow finds these elements 

in the movement signal. The signal cannot be divided into a neat sequence of units 

and the patterns associated with a particular segment vary with the phonetic context. 

The lack of invariant segments in the signal matching the invariant segments of 

perception constitutes the anisomorphism paradox [Studdert-Kennedy, 1985: 142]. 
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An initial step in our linguistic framework is to find basic primitives for human 

movement. These motion primitives are analogous to phonemes in spoken language. 

While phonemes are units of phonic origin (sounds), the motion primitives are units 

of kinetic origin (movement) that we refer as kinetemes. These atomic units are the 

building blocks of a foundational system for human movement denoted as 

kinetological system. The problem addressed in this chapter concerns the 

representation of human movement in terms of atomic sensory-motor primitives. 

In this sense, kinetology is dedicated to the study of systems of movement as the 

foundations for a kinetic language. In addition to a geometric representation for 3D 

human movement, a kinetological system consists of segmentation, symbolization, 

and principles. We introduce a kinetological system with five principles on which 

such a system should be based: compactness, view-invariance, reproducibility, 

selectivity, and reconstructivity. 

We propose sensory-motor primitives and demonstrate their kinetological properties. 

Further evaluation is accomplished with experiments on compression and 

decompression of motion data. To represent human movement satisfying the above 

requirements, we consider whole body movement associated with general human 

actions. Although we consider whole body movement, each DOF is treated 

independently. An initial 3D geometric representation for human movement is 

assumed as input towards the computation of our sensory-motor representation. 

Actual movement data is analyzed in the process of evaluating the proposed 

kinetological system according to its principles. 
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Geometric Representation 

A model for the human body which considers only rigid articulated movement 

consists of a skeleton. A skeleton is defined as a set of rigid body parts connected 

through joints. Formally, the topology of a skeleton is modeled as a graph where 

vertices correspond to body parts and edges are associated with joints. A posture is 

the geometric configuration of the skeleton at one instant. Human movement consists 

in the continuous time variation of postures. There are two basic 3D geometric 

representations for whole body movement: external and internal. 

The external representation consists of a set P of points in the human body, as shown 

in Figure 3.1a. At an instant t, a point pi ∈ P is associated with the corresponding 3D 

Cartesian coordinate [Xi(t), Yi(t), Zi(t)]. The whole human movement is fully 

determined if at least three points in each rigid body part are included in the 

representation. This way, a local coordinated system can be defined for each body 

part. 

The degrees of freedom for a joint can be recovered from the transformation relating 

the two local coordinated systems corresponding to the adjacent body parts. The 

internal representation of human movement may use Euler angles to specify the 

rotational degrees of freedom of each joint. The internal system describes human 

movement with a set Q of joints, where a joint qj ∈ Q is associated with Euler angles 

φj(t), θj(t), and ψj(t) at instant t, as shown in Figure 3.1b. 
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(a) External representation. 

(b) Internal representation. 

Figure 3.1. Three-dimensional representations of human movement. 
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The internal representation makes explicit use of embodiment through the topological 

specification of a skeleton. The topological graph of a skeleton is defined as a tree 

where the root resembles the human vestibular system. This system provides 

measurements about global movement and orientation in space for humans. The 

internal representation is analogous to the proprioceptive system which monitors 

movement and is responsible for kinesthesia: the sense of body position awareness. 

Segmentation 

The input for our kinetological system is real human motion obtained with a motion 

capture system. Each DOF i in a model for the articulated human body, refered as 

actuator, corresponds to a time-varying function Ji. The value Ji(t) represents the joint 

angle of a specific actuator i at a particular instant t. In kinetology, our goal is to 

identify the motor primitives (segmentation) and to associate them with symbols 

(symbolization). This way, kinetology provides a non-arbitrary grounded symbolic 

representation for human movement. While motion synthesis is performed by 

translating symbols into motion signal, motion analysis uses this symbolic 

representation to transform the original signal into a string of symbols used in the 

next steps of our linguistic framework. 

Automatic segmentation is the decomposition of action sequences into movement 

primitives. Theses primitives are atomic elements with characteristic properties that 

stay constant within a segment. This concept of motion primitives differ from the one 

associated with behavioral basis [Matarić, 2002], which are used for composition of 

movement through linear combination. To segment human movement, we consider 

each actuator independently. An actuator is a 3D point or a joint angle describing the 

 59 
 



 

motion in an external or internal representation, respectively. Each joint angle is 

represented as a one-dimensional function over time. We associate an actuator with a 

joint angle specifying the actuator’s original 3D motion according to an internal 

geometric representation as shown in Figure 3.2a. The segmentation process assigns 

one state to each instant of the movement for the actuator in consideration. 

Contiguous instants assigned to the same state belong to the same segment, as Figure 

3.2b shows.  

 
(a) Geometric representation. 

 
(b) Segmentation. 

 
(c) Symbolization. 

Figure 3.2. Kinetological system. 

We define a state according to the sign of derivatives of a joint angle function. In our 

segmentation method, we use angular velocity J’ (first derivative) and angular 

acceleration J’’ (second derivative), as shown in Figure 3.3. This leads to a four-state 

system: positive velocity/positive acceleration (J’i(t) ≥ 0 and J’’i(t) ≥ 0), positive 

velocity/negative acceleration (J’i(t) ≥ 0 and J’’i(t) < 0), negative velocity/positive 

acceleration (J’i(t) < 0 and J’’i(t) ≥ 0), and negative velocity/negative acceleration 

(J’i(t) < 0 and J’’i(t) < 0). It is worth noting that a kinetological system can be defined 
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in both complex (considering higher order derivatives such as jerk) and simple ways. 

A simpler system could have used only the first derivative. In that case, we would 

have only two states: positive velocity (J’i(t) ≥ 0) and negative velocity (J’i(t) < 0). 

Higher order derivatives increase the amount of segmentation, adding complexity to 

the description of the movement. The number 2h of possible states depends on the 

order h of the highest derivative used. 

 

Figure 3.3. Angular derivatives used in our segmentation method. 

The representation has a qualitative aspect, the state of each segment, and a 

quantitative aspect corresponding to the time length and angular displacement (i.e., 

the absolute difference between initial joint angle and final joint angle) of each 

segment. Once the segments are identified, we keep these three attribute values for 
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each segment: the state, the time length, and the angular displacement. Each segment 

is graphically displayed as a filled rectangle, where the color represents its state, the 

vertical width corresponds to angular displacement, and the horizontal length denotes 

the time length, as Figure 3.2b shows. The four colors used to depict a four-state 

kinetological system are blue for positive velocity/positive acceleration segments, 

green for positive velocity/negative acceleration segments, yellow for negative 

velocity/positive acceleration segments, and red for negative velocity/negative 

acceleration segments. In a two-state kinetological system, the two colors used are 

blue for positive velocity segments and red for negative velocity segments. Given a 

compact representation, the attributes are used in the reconstruction of an 

approximation for the original motion signal and in the symbolization process. 

Symbolization 

The kinetological segmentation process results into atoms observing some natural 

variability. Our goal is to identify the same kineteme amidst this variability. The 

symbolization process consists in associating each segment with a symbol such that 

segments with the same state corresponding to different performances of the same 

motion are associated with the same symbol. Symbolization amounts to classifying 

motion segments such that each class contains variations of the same motion. This 

way, each segment is associated with a symbol representing the cluster that contains 

motion primitives with a similar spatiotemporal structure, as Figure 3.2c shows. 

Hierarchical clustering, using an appropriate similarity distance for segments with the 

same atomic state, offers a simple way to perform symbolization. 
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Another way to perform symbolization is to compute a graph, where the set of 

vertices corresponds to all segments with the same atomic state. There exists an edge 

between two vertices in the graph if the similarity distance between the two 

corresponding segments is less than a threshold value. The similarity distance is the 

absolute difference between the time normalized versions of the joint angle functions 

associated with the segments. The symbolization clusters are the connected 

components of the similarity graph. 

A probabilistic method to achieve symbolization is model-based probabilistic 

clustering. Different from model-based clustering, we also used a generalized 

probabilistic clustering algorithm to classify segments for each joint angle 

independently. A segment is represented as tuple (α, d, t), where α denotes the atomic 

state, d corresponds to the angular displacement, and t is the time length. The 

movement corresponding to a specific joint angle is segmented into a sequence of m 

atoms (αj, dj, tj) for j = 1, …, m. Our algorithm partitions the 2D parametric space 

concerning the quantitative attributes (d, t) into regions of any shape. 

Initially, we compute probability distributions over the 2D parametric space, as 

shown in Figure 3.4. We find one distribution Pα for each of the possible states by 

considering only the atoms where αj = α. Each atom (αj, dj, tj) contributes with the 

probability modeled as a Gaussian filter h(k1, k2) centered at (dj, tj) with size  

(2WD + 1)×(2WT + 1) and standard deviation σ. This way, the probability distribution 

is defined as 
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Once the probability distribution Pα is computed, each local maximum is associated 

with a class. This way, the number of clusters is selected automatically. The 

partitioning of the parametric space is performed by selecting a connected region for 

each cluster c associated with a local maximum pc. For a cluster c, we find the 

minimum value vc such that the region rc in the parametric space satisfying  

Pα(d, t) > vc contains only the peak pc and no other. 

 

Figure 3.4. A generalized probabilistic clustering method for symbolization. 

Each sample atom (αj, dj, tj) is assigned to the cluster c which maximizes the expected 

probability 
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where Rc is a binary matrix specifying the connected region rc corresponding to the 

cluster c. This probabilistic clustering algorithm uses a more general model than 

standard probabilistic clustering techniques. 
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Figure 3.5. Segmentation of human motion. 

Given the segmentation for a motion data, as shown in Figure 3.5, the symbolization 

output is a string of symbols for each actuator in the body. This set of strings for the 

whole body defines a single structure, denoted as actiongram, shown in Figure 3.6. 

An actiongram A has n strings A1, …, An. Each string Ai corresponds to an actuator of 

the human body model and contains a possibly different number of mi symbols. Each 

symbol Ai(j) is associated with a segment and its attributes. 

Principles 

Besides sensory-motor primitives, we suggest five kinetological properties to evaluate 

our approach and any other: compactness, view-invariance, reproducibility, 

selectivity, and reconstructivity. We describe these principles in detail and 

demonstrate that our segmentation method and primitives possess these properties. 

Compactness 

The compactness principle relates to describing a human activity with the least 

possible number of atoms to decrease complexity, improve efficiency, and allow 
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compression. We achieve compactness through segmentation, which reduces the 

representation’s number of parameters. We implemented our segmentation approach 

as a compression method for motion data, tested our compression efficiency 

algorithm on several different actions, and recorded a median compression rate of 

3.698 percent of the original file size for all motion files. We achieved the best 

compression for actions with smooth movement. Further compression could be 

achieved through symbolization. 

 

Figure 3.6. Actiongram. 
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View-invariance 

An action representation should be based on primitives robust to variations of the 

image formation process. View-invariance regards the effect of projecting a 3D 

representation of human movement into a 2D representation according to a vision 

system. A view-invariant representation provides the same 2D projected description 

of an intrinsically 3D action captured from different viewpoints. View-invariance is 

desired to allow visual perception and motor generation under any geometric 

configuration in the environment space. 

(a) 2D Trajectory. (b) 2D Joint Angle. 

Figure 3.7. 2D projected version of the knee joint angle trajectory from a single 
viewpoint during a walk action. 

The view-invariance evaluation requires a 2D-projected version of the initial 

representative function according to varying viewpoints. For an internal geometric 

representation, the 3D joint angle is projected according to the two angle sides 

corresponding to the adjacent body parts, as shown in Figure 3.7. For example, the 

knee joint 2D angle is formed by the axes of the thigh and shank. These axes are 

determined by the segments from the hip to the knee joint and from the knee to the 
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ankle joint. These 3D joints are projected and the 2D joint angle is computed in the 

projection plane. 

To evaluate the view-invariance of our representations, a circular surrounding 

configuration of viewpoints is used, as shown in Figure 3.8. A viewpoint consists of 

the camera position (specified by the camera center) and the camera orientation 

(described by a look-at vector and an upward vector). In our viewpoint configuration, 

the camera center trajectory corresponds to a circle in 3D space centered at the target 

point. The look-at vector is oriented from the camera center towards the target point, 

which is the center of the axis-aligned parallelepiped containing the trajectories of the 

movement in 3D space. The upward vector has the same orientation as the z-axis 

vector. The camera center circle is defined as a parametric curve 

],)sin(,)cos([)( zyx ccrcrv +∗+∗= λλλ , 

where λ  is a parameter representing a direction in degrees from 0° to 360°, r  is the 

radius of the circle, and  is the target point. ],,[ zyx ccc

 

Figure 3.8. A circular configuration of viewpoints. 
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A view-invariance graph shows for each time instant (horizontal axis) and for each 

viewpoint in the configuration of viewpoints (vertical axis), the state associated with 

the movement, as Figure 3.9 shows. A view-invariance measurement concerns the 

fraction of the most frequent state among all states for all viewpoints at a single 

instant in time. Let s be a state in our kinetological system, vs(t) is the fraction of the 

state s among all viewpoints in our circular configuration at the time instant t. The 

view-invariance measurement is the maximum value for vs(t) considering all possible 

states. A four-state system has a view-invariance measure between 0.25 and 1.0. For 

each time instant t, the view-invariance measure is computed and plotted on the top of 

the view-invariance graph. For any joint and any action in our database, the graph 

demonstrates a high view-invariance measure for our segmentation process, with the 

only exception at the segment’s borders and two degenerated viewpoints.  

 

Figure 3.9. View-invariance of the left knee flexion-extension angle during walk. 
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Note that the view-invariance measure has some uncertainty at degenerate viewpoints 

and at the borders of segments. In these special cases, the movement states are not 

fully consistent which degrades the view-invariance measure. The degenerate 

viewpoints are special cases of frontal views where the sides of a joint angle tend to 

be aligned. In what concerns view-invariance, the border effect shows that movement 

segments are not completely stable only during the temporal transition between 

segments. This is analog to coarticulation in speech with similar implications to 

action recognition tasks. 

Reproducibility 

Reproducibility requires an action to have the same description even when a different 

performance of this action is considered. Intra-personal invariance deals with the 

same subject performing the same action repeated times. Inter-personal invariance 

concerns different subjects executing the same action several times. A kinetological 

system is reproducible when the same symbolic representation is associated with the 

same action performed at different occasions (intrapersonal) or by different subjects 

(interpersonal). 

To evaluate the reproducibility of our kinetological system, we used human gait data 

for 16 subjects covering males and females at several ages. For each person, we 

considered only 12 DOFs associated with the joint angles of the lower limbs: pelvic 

tilt, pelvic obliquity, pelvic rotation, hip flexion-extension, hip abduction-adduction, 

hip rotation, knee flexion-extension, knee valgus-varus, knee rotation, ankle dorsi-

plantar flexion, foot rotation, and foot progression. A reproducibility measure is 

computed for each joint angle. The reproducibility measure of a joint angle is the 
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fraction of the most representative symbolic description among all descriptions for 

the 16 individuals. A very high reproducibility measure means that symbolic 

descriptions match among different gait performances and the kinetological system is 

reproducible. The reproducibility measure is very high for the joint angles which play 

a primary role in an action, as Figure 3.10 shows for a walking action. The 

identification of the intrinsic and essential variables of an action is a byproduct of the 

reproducibility requirement of a kinetological system. 

 

(a) Knee flexion-extension. 
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(b) Pelvic obliquity. 

Figure 3.10. Reproducibility during gait. 

Using our kinetological system, six joint angles obtained very high reproducibility: 

pelvic obliquity, hip flexion-extension, hip abduction-adduction, knee flexion-

extension, foot rotation, and foot progression, as shown in Figure 3.11. These 

variables seem to be the most related to the movement of walking forward. Other 

joint angles obtained only a high reproducibility measure which is interpreted as a 

secondary role in the action: pelvic tilt and ankle dorsi-plantar flexion. The remaining 

joint angles had a poor reproducibility rate and seem not to be correlated to the action 

but probably to its stability instead: pelvic rotation, hip rotation, knee valgus-varus, 

and knee rotation. Our kinetological system performance on the reproducibility 
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measure for all the joint angles shows that the system is reproducible for the DOFs 

intrinsically related to the action. 

 

Figure 3.11. Reproducibility measure for 12 DOFs during gait. 

Selectivity 

The selectivity principle concerns the ability to discern between distinct actions. In 

terms of representation, this principle requires a different structure to represent 

different actions. To evaluate our kinetological system according to the selectivity 

principle, we compare the compact representation of several different actions and 

verify whether their structures are dissimilar. The selectivity property is demonstrated 

using a set of actions performed by the same individual. Four joint angles are 

considered: left and right hip flexion-extension, left and right knee flexion-extension, 

as shown in Figure 3.12. 
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(a) Walk. (b) Run. (c) Jump. 

Figure 3.12. Selectivity: Different representations for three distinct actions. 

The different actions are clearly represented by different structures. However, manner 

variations of an action are only different in the quantitative aspect. We investigate the 

quantitative aspect of four manner variations of the walk action performed by a single 

subject, as shown in Figure 3.13. 

    

(a) Slow walk. (b) Walk. (c) Walk with 
stride. 

(d) Walk with 
exaggerated stride. 

Figure 3.13. Compact representations of four manner variations of the walk action. 

Each manner variation has a total of 24 segments for the four joint angles considered. 

For each pair of manner variations, we compute a dissimilarity vector, where each 

element corresponds to the difference between the quantitative aspects of the 

associated segments in the two variations, as shown in Figure 3.14. 
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Figure 3.14. Dissimilarity vectors between manner variations of walk: time length 
(blue) and angular displacement (red). 

From these vectors, we can verify the dissimilarity of the manner variations. The 

closest variations according time length are “Walk with stride” and “Walk with 

exaggerated stride” (median dissimilarity 12.0%), and according to angular 

displacement are “Walk” and “Walk with stride” (median dissimilarity 12.2%). This 

way, even for the same action, the representation has enough dissimilarity to select 

between different manner variations. 

Reconstructivity 

Reconstructivity is associated with the ability to reconstruct the original movement 

signal up to an approximation factor from a compact representation. We propose a 
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reconstruction method that consists in a novel interpolation algorithm based on the 

kinetological structure. We consider one segment at a time and concentrate on the 

state transitions between consecutive segments. Based on a transition, we determine 

constraints about the derivatives at border points of a segment. Derivatives will have 

zero value (equation) or a known sign (inequality) at these points. 

 

Figure 3.15. Possible state transitions between segments. 

For this discussion about reconstructivity, we consider a four-state kinetological 

system. We investigate the possible state transitions that are feasible in our 

kinetological system. Each segment can have only two possible states for a next 

neighbor segment. However, the transition B → Y (R → G) is impossible, since 

velocity cannot become negative (positive) with positive (negative) acceleration. The 

kinetological rules of our system are represented by a finite automaton, as shown in 

Figure 3.15. From these kinetological rules, each of the four segment states has only 

two possible state configurations for previous and next segments and, consequently, 

there are eight possible state sequences for three consecutive segments, as shown in 

Table 3.1. Each possible sequence of three segments corresponds to two equations 

and two inequality constraints associated with first and second derivatives at border 
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points t1 and t2 of the center segment. Other two inequalities come from the 

derivatives at interior points (t1 < t < t2) of the segment. 

Kinetemes Border Point t1 Border Point t2 Interior Points
Previous Current Next J’(t1) J’’(t1) J’(t2) J’’(t2) J’(t) J’’(t) 

Y B G 0 + + 0 + + 
G B G + 0 + 0 + + 
B G R + 0 0 - + - 
B G B + 0 + 0 + - 
G R Y 0 - - 0 - - 
Y R Y - 0 - 0 - - 
R Y B - 0 0 + - + 
R Y R - 0 - 0 - + 

Table 3.1. Possible sequences of neighbor kinetemes and the associated constraints at 
border points. 

A simple model for the joint angle function during a segment is a polynomial. 

However, low degree polynomials do not satisfy the constraints originated from the 

possible sequences of kinetemes. For example, a cubic function has a linear second 

derivative which is impossible for sequences of segments where the second derivative 

assumes zero value at the borders and non-zero values at interior points (e.g., a 

sequence of segments with states GBG). The least-degree polynomial satisfying all 

the constraints imposed by all possible sequences of kinetemes’ states is a fourth-

degree polynomial. 

Using this approach, the reconstruction process needs to find only five parameters 

defining this polynomial. The polynomial is partially determined with the two 

associated equations for the particular sequence of kinetemes and two more equations 

using the joint angle values at the two border points. We obtain these values from the 

time length and angular displacement of each segment, as shown in Figure 3.16. With 

four equations, an under-constrained linear system is solved up to one variable. The 
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last free variable is constrained by four inequalities. This parameter can be 

determined using some criteria such as jerk (third derivative) minimization. 

 
(a) Sample data points obtained from segments’ attributes. 

 

(b) Fourth degree polynomial interpolation considering state transitions. 

Figure 3.16. Reconstruction of a joint angle function. 

We implemented this reconstruction scheme as a decompression method for motion 

data, which Figure 3.17 shows. The average error in our motion database was 0.823 

degree. Once a reconstruction scheme is provided, the generation of movement from 

a symbolic representation is feasible. Therefore, the symbolic grammar systems 

inferred for human actions may be used to effectively generate movement. 

Motion Compression and Decompression 

An immediate application for a compact representation is compression of motion 

data. The compression efficiency of our kinetological system was tested in eight 

different actions extracted from the CMU Motion Capture Library, as shown in  

Table 3.2. The file size ranges from 128Kb to 1024Kb with increments of 128Kb. 
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Frame rate is either 120 or 60 frames per second. The median compression rate for all 

motion files is 3.698%. The best compression is achieved for the actions “answer 

phone” and “walk” because they consist in smooth movement. Sudden movement, 

such as the actions “run” and the “Russian dance”, obtained the worst performances. 

 

 
Figure 3.17. Reconstructivity. For the same activity, the top line shows the original 

motion sequence and the bottom line shows the decompressed one. 

Action Size 
(Kb) 

Frame Rate 
(frm/sec) 

Compression 
Rate 

Average Error 
(deg) 

Run/Jog 128 120 4.075% 0.868 
Kick 256 60 3.953% 1.378 

Answer Phone 384 60 3.596% 0.363 
Walk 512 120 3.625% 0.613 

Jump Twist 640 120 3.684% 1.694 
Russian Dance 768 120 4.071% 1.804 

Weight Lift 896 60 3.657% 0.598 
Miscellaneous 1024 120 3.713% 0.778 

Table 3.2. Experimental motion capture data and results. 

The compression encoding is not useful without a decoding process. This way, we 

implemented the reconstruction proposed and computed the average error of all 

frames and all joint angles for each action in our test set. The median average error is 

0.823 degree. The lowest error is obtained in the “answer phone” action, while the 

highest error is in the “Russian dance” action. Again, the intuition about smooth and 

sudden movement takes place to explain the reconstruction errors. 
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To further evaluate our kinetological system according to compression and 

decompression, we implemented two other online segmentation methods for 

comparison purposes. The first method is an online version of the piecewise linear 

curve simplification [Lim and Thalmann, 2001]. In this algorithm, each segment 

grows incrementally until the average error is higher than some threshold value. The 

variation of this threshold parameter leads to a curve of points associated with 

compression rate and reconstruction error for the algorithm, as shown in Figure 3.18. 

The single point associated with our method is compared to this curve. In the worst 

case of the “Russian dance” action, the point stays just above the curve, while in the 

other actions it is below the curve. This demonstrates that our kinetological system 

has a better compression rate and reconstruction error performance. 

 
(a) Answer Phone. 
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(b) Russian Dance. 

Figure 3.18. Compression rate and reconstruction error curve for the piecewise linear 
method. 

The second method implemented for comparison is the uniform sampling [Naka at 

al., 1999]. In this algorithm, equally spaced frames are selected to represent the 

motion. The compression rate and reconstruction error curve is computed by varying 

a parameter that consists in the space between representative frames. Compared to 

this technique, the single point associated with our method is always above this curve, 

which shows that our kinetological system has a worse performance, as shown in 

Figure 3.19. However, the parametric space where the sampling algorithm 

outperforms our method is limited. Therefore, a search for the best parameter for the 

sampling algorithm is required to guarantee a better compression than our 

kinetological system. Furthermore, our method has other applications aimed towards 

perception and generation of actions. 
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(a) Answer Phone. 

(b) Russian Dance. 

Figure 3.19. Compression size and average error curve for the sampling and 
quantization method. 
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Conclusion 

A kinetological system is the basic structure for an alternative writing/notation system 

which enables the movement scripting (registration and specification) of human 

actions. This non-arbitrary symbolic representation provides the means to reason and 

analyze in terms of movement which enables the understanding of human activities. 

We believe the importance of a kinetological system to human movement is 

equivalent to the relevance of a phonological system to spoken language. 
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Chapter 4: Morphology 

Human movement is a natural phenomenon involving a number of independent 

actuators: articulated body parts or joint angles. The actuators coordinate their actions 

to achieve some specific common purpose. In human motion modeling literature, the 

actuators usually consist of a fixed set modeling either total body or a single joint. 

This assumption neglects the independent behavior of the actuators over different 

activities. Further, an approach modeling explicitly the variability of the set of 

actuators is more robust concerning occlusion and field of view limitations in the 

observation process. 

The different strategies of parallel and synchronous interaction among actuators play 

an important role in human movement. Therefore, a movement representation for a 

specific human activity should include the set of parallel actuators involved in the 

activity, the synchronization rules among these actuators, and the motion pattern 

associated with each participating actuator. 

In this chapter, we discuss the morphological part of our linguistic framework where 

we present the steps required for the construction of a praxicon through the learning 

of grammar systems for human actions. The discovery of a Human Activity Language 

involves learning the syntax of human motion which requires the construction of this 

praxicon. The morphology assumes a non-arbitrary symbolic representation of the 

human movement. To analyze the morphology of a particular action, we are given a 

symbolic representation for the motion of each actuator associated with several 

repeated performances of this action. 
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This representation originates from kinetology. Movement signals obtained from a 

motion capture system are divided into consecutive segments according to velocity 

and acceleration of joint angles. The segments are then transformed into a string of 

symbols. In fact, symbolization amounts to classifying (clustering) motion segments 

such that each class contains variations of the same motion. 

Given sequences Ai of symbols associated with motor primitives representing the 

movement for each actuator i when a specific activity is performed repeated times, 

the problem addressed in this chapter is to identify the set I of essential actuators 

responsible for the specific goal achieved with this activity, to learn the motion 

structure for all actuators in I, and the synchronization rules among these actuators. A 

praxicon is built by solving this problem for all actions in a large lexicon of verbs 

associated with observable human movement [Guerra Filho and Aloimonos, 2006a]. 

Although the input concerns a specific action performed several times, we aim to 

model any general activity, not only restricted to repetitive movement. 

We pose this problem as the grammatical inference of a novel grammar system 

modeling human activity. As a formal model, we propose a Parallel Synchronous 

Grammar System where each component grammar corresponds to an actuator. We 

present a novel heuristic parallel learning algorithm to induce this grammar system. 

Our algorithm does not assume knowledge of either the number of components or the 

language components of the grammar system being inferred. The input is a single 

symbolic stream (string) per actuator instead of a sequence of sentences. We 

evaluated our inference approach with synthetic data and real human motion data. We 
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created synthetic actiongrams and tested our method with increasing levels of noise. 

The algorithm achieved 100% success with a noise level up to 7%.  

Morphology is concerned with the structure of words, the constituting parts, and how 

these parts are aggregated. In the context of a Human Activity Language, morphology 

involves the structure of each action and the organization of a praxicon in terms of 

common subparts. Our methodology consists in determining the morphology of each 

action in a praxicon and then in finding the organization of the praxicon. 

We define a human action morpheme as the set of essential actuators intrinsically 

involved in the action, the synchronization among these actuators, and the 

corresponding motion patterns (in terms of kinetemes). The morphemes are the 

essential parts of human actions. Since the derived motion patterns are sequences of 

kinetemes, the inference of morphemes is called morpho-kinetology. This part of 

morphology aims to select a subset of the motion which projects the whole action 

only into the essential actuators and their motion patterns, as shown in Figure 4.1. 

Morpho-Kinetology 

The essential actuators are the ones actually responsible for the achievement of the 

intended result of an action. They are strongly constrained and, consequently, only 

these “meaningful” actuators will have consistent motion patterns in different 

performances of the same action. To learn the morphology of a human action, an 

actiongram associated with several repeated performances of this action is given as 

input. 
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(a) The whole motion for all actuators. 

 
(b) The whole motion only for the essential actuators. 

 
(c) Only the motion patterns for the essential actuators. 

Figure 4.1. A human action morpheme. 
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Given such an actiongram A as input, we aim to automatically learn the morpheme of 

the corresponding action. Formally, the morpheme consists of a set I representing the 

essential actuators for the action; for each i ∈ I, a substring pi corresponding to the 

motion pattern that the actuator i performs during the action; and a set of tuples 

corresponding to synchronized rules between kinetemes in different strings. Since our 

input is a set of concurrent strings, we pose this problem as the grammatical inference 

of a grammar system modeling the human activity such that each component 

grammar corresponds to an actuator. 

Parallel Synchronous Grammar System 

In human movement, we are interested only in the simultaneous synchronized work 

of the components. The communication feature is unnecessary because it is implicit 

in motion coordination. We propose a novel grammar system, a Parallel Synchronous 

Grammar System (PSGS), where strings generated by components are not shared 

through communication steps. The formal model suggested here is based on a PCGS 

with rule synchronization [Păun, 1993] and no query symbols. The synchronization 

among rules in different components is modeled as a set of tuples of rules (possibly 

one rule for each component), where rules in a tuple are derived simultaneously. We 

specify the definitions related to our adapted PCGS model below. We assume the 

reader is familiar with the fundamentals of formal language theory. For further 

information in formal language theory, the reader is directed to [Hopcroft and 

Ullman, 1979]. 

A PSGS with n ≥ 1 components is an (n+3)-tuple Γ = (N, T, G1, G2, …, Gn, M), where 

N is a set of non-terminals and T is a terminal alphabet (N and T are mutually 
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disjoint); Gi = (N, T, Pi, Si), 1 ≤ i ≤ n, are Chomsky grammars with a finite set of 

production rules Pi over (N ∪ T) and a start symbol (axiom) Si ∈ N; and M is a subset 

of (P1 ∪ {#}) × … × (Pn ∪ {#}), where # ∉ (N ∪ T) is an additional symbol. 

A configuration n-tuple (x1, …, xn) of Γ directly derives (y1, …, yn), where  

xi, yi ∈ (N ∪ T)*, if we have a direct derivation xi ⇒ yi in each grammar Gi with xi not 

terminal or xi = yi when xi ∈ T*. Each component uses one of its rewriting rules except 

those grammars which have already produced a terminal string. At a derivation step, a 

transition n-tuple (p1, …, pn) of M is applied, that is xi ⇒ yi by the rule pi, if pi ∈ Pi, 

and xi = yi, if pi = #. A derivation starts from the initial configuration consisting of the 

axioms (S1, …, Sn). The language generated by Γ is 

L(Γ) = {(α1, …, αn), αi ∈ T* | (S1, …, Sn) ⇒* (α1, …, αn)}. 

A simple example of a PSGS with four components is 

Γ = ({S1, S2, S3, S4, N1, …, N23}, {a, b, c, d}, G1, G2, G3, G4, M), where 

P1 = {S1 → N13S1, S1 → N13, N5 → bc, N9 → aN5, N10 → N9d, N11 → N10N5,  

N12 → N11a, N13 → N12d}, 

P2 = {S2 → N18S2, S2 → N18, N1 → bc, N14 → N1a, N15 → N14d, N16 →N15a,  

N17 → N16N1, N18 → N17d}, 

P3 = {S3 → N7S3, S3 → N7, N2 → cd, N3 → N2a, N4 → N3b, N7 → N4N4}, 

P4 = {S4 → N23S4, S4 → N23, N6 → bc, N17 → aN6, N20 → N19d, N21 → N20N6,  

N22 → N21a, N23 → N22d}, and 

M = {(S1 → N13S1, S2 → N18S2, S3 → N7S3, S4 → N23S4), (S1 → N13, S2 → N18,  

S3 → N7, S4 → N23), (N5 → bc, N1 → bc, N4 → N3b, N6 → bc), (N9 → aN5,  
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N14 → N1a, #, N19 → aN6), (N10 → N9d, N15 → N14d, #, N20 → N19d),  

(N11 → N10N5, N16 →N15a, #, N21 → N20N6), (N12 → N11a, N17 → N16N1, #,  

N22 → N21a), (N13 → N12d, N18 → N17d, N7 → N4N4, N23 → N22d)}. 

An example derivation in Γ is (S1, S2, S3, S4) ⇒ (N13, N18, N7, N23) ⇒ (N12d, N17d, 

N4N4, N22d) ⇒ (N11ad, N16N1d, N4N4, N21ad) ⇒ (N10N5ad, N15aN1d, N4N4, N20N6ad) ⇒ 

(N9dN5ad, N14daN1d, N4N4, N19dN6ad) ⇒ (aN5dN5ad, N1adaN1d, N4N4, aN6dN6ad) ⇒ 

(abcdbcad, bcadabcd, N3bN3b, abcdbcad) ⇒ (abcdbcad, bcadabcd, N2abN2ab, 

abcdbcad) ⇒ (abcdbcad, bcadabcd, cdabcdab, abcdbcad). The corresponding parse 

trees displaying the structure of this set of strings are shown in Figure 4.2. 

  

  
Figure 4.2. Parse trees for a Parallel Synchronous Grammar System. 

A PSGS consists in a set of CFGs related by synchronized rules. This grammar 

models a system with a set A of different concurrent strings Ai: an actiongram. Each 

string Ai in an actiongram corresponds to the language which will be inferred for a 

component grammar Gi modeling an actuator. Each symbol Ai(j) in a string 

corresponds to a pair (Ti(j), Di(j)) for i = 1, …, mi. Ti(j) is the start time and Di(j) is the 
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time length of the segment corresponding to Ai(j). Note that Ai(j) ≠ Ai(j+1) and Ti(j) + 

Di(j) = Ti(j+1). 

Parallel Learning 

The execution of a human action involves the achievement of some goal and, 

therefore, requires consistency in a single string (sequential grammar) and 

coordination among different strings (parallel grammar). This way, sequential 

grammar learning and parallel grammar learning are combined to infer the 

morphology of a human action. 

We propose parallel learning to concurrently infer a grammar system as the structure 

of all strings A1, …, An in the actiongram A. Our Parallel Learning (PAL) algorithm 

executes the sequential learning within each string Ai independently, as shown in 

Figure 4.3. The digram frequency is still computed within the string corresponding to 

each joint angle independently. The function DigramFrequency finds a matrix df, 

where each element df(i, j) is the number of occurrences of digram Ai(j)Ai(j+1) in 

string Ai. A new rule is created for the digram Ai(j)Ai(j+1) corresponding to element 

(i, j) with the current maximum frequency in matrix df. A non-terminal Nc 

corresponding to a rule [Nc → Ai(j) Ai(j+1)] is inserted in the set of rules Pi. The 

procedure ReverseRewrite replaces each occurrence of the digram Ai(j)Ai(j+1) in 

string Ai with the non-terminal Nc. A new non-terminal is associated with the interval 

corresponding to the union of time intervals of both symbols Ai(j) and Ai(j+1) in the 

digram. In parallel learning, nodes are merged only if the new rule is synchronized 

with other rules in different CFG components of a grammar system. This way, 
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overgeneralization is avoided since synchronization guarantees a relation between the 

merged rules. 

Algorithm PAL(A, T, D) 
df ← DigramFrequency(A); 
while (∃i | mi > 1 and max(df) > 1) 
(i, j) ← argmax(df); 
Pi ← Pi ∪ [Nc → Ai(j) Ai(j+1)]; 
ReverseRewrite(A, c, i, j); 
R ← SynchronizedRules(A,T,D,R,c,i); 
df ← DigramFrequency(A); 

end 

Function SynchronizedRules(A,T,D,R,c,i) 
Ec ← FindOccurrences(Ai, Nc); 
for k = 1, …, c-1 
if (i ≠ q, where Nc ∈ Ai and Nk ∈ Aq) 
Ek ← FindOccurrences(Aq, Nk); 
for u = 1, …, |Ec|; v = 1, …, |Ek| 
if (Ec(u) ∩ Ek(v)) 
I(u, v) ← 1; 

end 
end 
if (one-to-one(I)) 
R ← R ∪ (Nc, Nk); 

end 
end 

end 

Figure 4.3. Parallel Learning algorithm. 

Each new non-terminal Nc is checked for possible synchronized rules with existing 

non-terminals in the CFGs of other strings (i ≠ q), as shown in Figure 4.4. 

Synchronization between two non-terminals (Nc and Nk) in different CFGs requires 

each occurrence of these non-terminals (obtained with procedure FindOccurrences) 

to have intersecting time intervals (Ec(u) ∩ Ek(v)) in the different strings generated by 

their respective CFGs. Synchronization relating two non-terminals in different CFGs 

is issued if there is a one-to-one mapping (one-to-one(I)) of their occurrences in the 

associated strings. Further, any two mapped occurrences must correspond to 

intersecting time periods. The function SynchronizedRules performs this search for 

synchronization and incrementally creates a relation R, where each pair in this 

relation represents two synchronized rules in different component grammars. The 

synchronous tuples in M are recovered from R. 
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Figure 4.4. Two CFGs (corresponding to hip and knee flexion-extension) related by 
synchronized rules of a PSGS. 

Figure 4.5 illustrates the constraints for synchronized rules. We show two non-

terminals in different CFGs represented as rectangles with two different colors. These 

non-terminals are displayed in different rows such that each rectangle corresponds to 

one occurrence of the non-terminal. The horizontal position and length of each 

occurrence illustrates the respective time interval. 

We show an execution of our parallel algorithm below. For two iterations, we show 

the set of strings A, the sets of production rules Pi, and the relation R with the 

synchronized rules. The input set of strings is derived from the previous example of 

PSGS with an additional spurious string: A4. Dashes are used just for visual 

presentation of the time period associated with each symbol in A. Non-terminals are 

displayed only with their index numbers. 
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(a) One-to-one under-mapping violation. 

 
(b) One-to-one over-mapping violation. 

 
(c) No intersection between time intervals. 

 
(d) All constraints satisfied. 

Figure 4.5. Constraints for synchronized rules. 

A = {(a-5d-5ada-5d-5ada-5d-5ad), 
     (-1ada-1d-1ada-1d-1ada-1d), 
     (--4---4---4---4---4---4-), 
     (adadcabcadbbdbcacdcbbaad), 
     (a-6d-6ada-6d-6ada-6d-6ad)}, 
P1 = {5 -> bc}, 
P2 = {1 -> bc}, 
P3 = {2 -> cd, 3 -> 2a, 4 -> 3b}, 
P4 = {}, 
P5 = {6 -> bc}, 
R = {(2, 1), (3, 1), (4, 1), (5, 1), (5, 2), (5, 3),  

(5, 4), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5)}. 

A = {(a-5d-5ada-5d-5ada-5d-5ad), 
     (-1ada-1d-1ada-1d-1ada-1d), 
     (----7-------7-------7---), 
     (adadcabcadbbdbcacdcbbaad), 
     (a-6d-6ada-6d-6ada-6d-6ad)}, 
P1 = {5 -> bc}, 
P2 = {1 -> bc}, 
P3 = {2 -> cd, 3 -> 2a, 4 -> 3b, 7 -> 44}, 
P4 = {}, 
P5 = {6 -> bc}, 
R = {(2, 1), (3, 1), (4, 1), (5, 1), (5, 2), (5, 3),  

(5, 4), (6, 1), (6, 2), (6, 3), (6, 4), (6, 5)}. 

 94 
 



 

In practice, synchronization is difficult to be detected for low-level non-terminals 

(closer to the leaves of the grammar tree forest). These non-terminals have a high 

frequency and some atom occurrences are spurious. However, high-level non-

terminals are more robust and synchronization is reliably detected for them. To 

overcome this problem, the algorithm could be adapted with a re-check for 

synchronization. When synchronization is issued for a pair of non-terminals A and B, 

their descendents in the respective grammar trees are re-checked for synchronized 

rules. This time, we consider only instances of their descendent non-terminals which 

are concurrent with A and B, respectively. 

Besides formally specifying the relations between CFGs, the synchronized rules are 

effective in identifying the maximum level of generalization for an action as 

demonstrated with the non-terminal 7 above. Further, the set of strings related by 

synchronized rules corresponds to the actual grammar components. The basic idea is 

to eliminate non-terminals with no associated synchronization and the resulting 

grammars are the true components of the learned PSGS. Note that the grammar 

associated with string A4 above will end up with three non-synchronized rules  

(P4 = {8 -> ad, 28 -> ca, 29 -> bb}), which correctly identifies it as 

the spurious string not belonging to the grammar system inferred. 

To identify the essential actuators and the corresponding motion patterns, the non-

terminals associated with no synchronization rules are discarded from the component 

CFGs. The set I of essential actuators is identified according to the set of CFGs with a 

considerable amount of synchronized rules. For each actuator i ∈ I, the associated 
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motion pattern pi is generated by the non-terminal in Gi whose occurrences cover the 

most time of the duration of the motion. 

Using the synchronized rules, we prune spurious production rules in the component 

grammars. Consequently, the remaining rules serve to identify the subset of true 

components related to the action. The resulting component grammars correspond to 

the actuators coordinated for the achievement of a common purpose embedded in the 

action. Overgeneralized rules are also discarded due to the lack of synchronization. 

Therefore, the remaining highest-level in each grammar component delimits the 

motion pattern associated with the action. 

Evaluation 

We evaluated our parallel algorithm with synthetic data and real human motion data. 

A synthetic actiongram was created with 20 synchronous strings, each one containing 

100 segments with a uniform time length. Each segment is associated with a symbol 

extracted from an alphabet of 20 characters. Four synchronous strings in the 

actiongram are created according to a pattern chosen among one of eight different 

templates, as shown in Figure 4.6a. These templates are repeated 10 times along the 

patterned string (separated by two random characters) to represent a consistent 

movement performed several times. Different templates are applied to the four 

patterned strings synchronously. The remaining strings are generated with random 

symbols from the alphabet to simulate spurious movement, shown in Figure 4.6b. 
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(a) Pattern templates. 

(b) Synthetic actiongram. 

 97 
 



 

(c) Ground truth. 

Figure 4.6. Evaluation with synthetic data. 

The ground truth for our problem is available in a synthetic actiongram, as shown in 

Figure 4.6c. We compare the output of our algorithm with this ground truth to define 

an evaluation criterion. If the output matches the ground truth, i.e., all four pattern 

strings are identified and the corresponding templates are extracted, we claim that the 

algorithm was successful. 

For a more realistic evaluation, we inserted noise in the synthetic data. The four 

patterned strings have a number of symbols replaced by noisy random characters in 

the alphabet. We tested our algorithm 100 times for an increasing level of noise and 

computed the overall success rate for each noise level, as shown in Figure 4.7. The 

algorithm achieves 100% success rate up to 7% of noise inserted in the patterned 

strings. The algorithm is robust even at 10% of noise level when the success rate was 

96%. 
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Figure 4.7. Evaluation with increasing noise levels. 

Action Morphology Inference 

Given an actiongram of a real human activity, parallel learning selects a subset of the 

actiongram which projects the whole action only into the intrinsic joint angles and 

motion patterns of the action. The whole grammatical inference process is data 

driven. We validated our approach with a large scale motion capture database. This 

process of morpheme learning was performed in each action of our motion database 

(see Appendix B). Our database consists of about 200 actions associated with English 

verbs related to observable voluntary meaningful movement. Our database does not 

consist of actions in any specific domain; instead it contains general activities 

covering locomotion, non-locomotion, manipulative, and interactive actions. The 

subset of induced grammar components is associated with joint angles concerned 

intrinsically with the action. The resulting grammars represent the morphological 

structure of the action being induced. We automatically identified the morphemes in 

our database, i.e., the essential actuators participating in each action, the associated 
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motion patterns (described as sequences of kinetemes), and their synchronization with 

movement in other joints. In Figure 4.8, we display the motion patterns for the “right 

hip flexion-extension” actuator in the actions of our database which this actuator is an 

essential actuator. 

 

Figure 4.8. The “right hip flexion-extension” motion patterns. 

Motion patterns of different actions for a particular actuator may have a common 

structure. Some motion patterns share the same kineteme depicted as segments with 

the same symbol in Figure 4.8. This way, the morphological grammars become even 

more compact with just a few kinetemes required to represent all motions. 

Morpho-Syntax 

Once morphemes are inferred for each action in a praxicon, we may learn further 

structure for these morphemes. This structure arises from the ordering, intersection, 
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and repeated occurrences of kinetemes in motion patterns for the same actuator but in 

different actions. We refer to this additional structure as morpho-syntax. 

Our method to infer morpho-syntax considers a single actuator i at a time. We denote 

pi
a as the motion pattern for actuator i and action a, such that i ∈ Ia, where Ia is the set 

of essential actuators for action a. Basically, all motion patterns pi
a for actuator i in 

different actions are described as sequences of kinetemes. These sequences altogether 

can be generated by a single context-free grammar that represents a more compact 

and efficient structure: a morphological grammar. 

Initially, the symbolization process is performed considering the segments associated 

with kinetemes in motion patterns pi
a for all actions. This way, segments of different 

actions may become associated with the same symbol. In other words, the same 

kineteme or motor primitive may be found in different actions. With regards to 

actuator i, this symbolization results in a set of symbols that represents a unified 

alphabet of kinetemes for all actions in the praxicon. The motion patterns for actuator 

i in all actions are rewritten according to this unified alphabet. In our experiments, for 

a total of 30 actuators evaluated, the maximum size of such an alphabet was 31 

kinetemes and the median size was 17 kinetemes. 

Overlapping kinetemes in joint angle space are considered different units without 

taking their angular intersection in consideration. To overcome this lack of structure, 

we subdivide the original kinetemes according to their intersections with other 

kinetemes in joint angle space. In this space, a kineteme ranges from an initial angle 

to a final angle. In Figure 4.9, each kineteme is represented by a rectangle where the 

left side is at the initial angle and the right side is at the final angle. These angles are 
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displayed as vertical lines. The border angles correspond to points where the 

kinetemes are subdivided. Therefore, the intervals delimited by these angles 

correspond to new kinetemes (shown as red symbols in Figure 4.9).  

 
Figure 4.9. Kinetemes for a single actuator in joint angle space. 

The number of new kinetemes is at most twice the number of original kinetemes. The 

new kinetemes are used to represent subparts of the original kinetemes in the motion 

patterns. An example from Figure 4.9 is the original kineteme S that becomes the 

sequence of subparts bcd. This way, every instance of S in a motion pattern is 

replaced by the sequence bcd. The attributes of the new kinetemes are retrieved from 

the original kinetemes they belong to. This way, an original kineteme becomes its 

sequence of subparts and every instance of an original kineteme symbol in a motion 

pattern is replaced by its sequence of subpart symbols. 

The inference of the CFG that generates motion patterns for actuator i in all actions 

involves the application of sequential learning to a string that is the concatenation of 
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all these motion patterns: 〈pi
a1 pi

a2 … pi
ak〉, where 〈〉 denotes the concatenation 

operation and k is the number of actions a such that actuator i ∈ Ia. However, the 

counting of occurrences of digrams does not consider digrams with symbols at the 

borders of two different consecutive patterns. For example, a set of two motion 

patterns BAC and DACD is concatenated as BACDACD, but the first occurrence of 

digram CD is not considered. This way, the ordering of concatenation of motion 

patterns does not affect the inferred grammar. 

 
Figure 4.10. Morphological grammar for a single actuator. 

The morphological grammar induced for a single actuator is an additional structure 

that compactly represents all possible motion patterns for this actuator, as Figure 4.10 

shows. The grammar is able to generate any movement in the praxicon and to aid the 

analysis of an unknown (possibly novel) movement. Further, based on the new 

kinetemes, the grammar explicitly considers the intersections between original 

kinetemes. This leads to an important aspect of morpho-syntax that is the discovery of 
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common motions in different actions. The morpho-syntactic process is applied to 

obtain morphological grammars for each actuator in the articulated human body 

model (see Appendix C). 

Conclusion 

In this chapter, we discussed the morphological part of our linguistic framework for 

the modeling and learning of human activity representations. In this part, we associate 

each action with a novel formal grammar system. Our heuristic parallel algorithm 

infers a grammar system without any structural information about the components or 

component languages. 

We presented a human movement representation considering the variability in the set 

of active joints for different activities. Our representation explicitly contains the set of 

joints (degrees of freedom) actually responsible for achieving the goal aimed by the 

activity, the synchronization rules modeling coordination among these actuators, and 

the motion performed by each participating actuator. 

Towards the discovery of a sensory-motor Human Activity Language, we presented 

the steps required for the construction of a praxicon. A praxicon is the kinematic 

analogous of a lexicon in spoken language. We learned a large praxicon through the 

inference of the grammar systems corresponding to a large set of actions. The learned 

templates of human action allow the mining of strategies of movement. This leads to 

the syntax of human activity, another part of our linguistic framework, and will have 

implications in the parsing of human action. 

Another important issue concerning the non-arbitrary mapping of motion data to 

concrete concepts (associated with human action) is the grounding of symbolic 
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reasoning systems. A logic-based conceptual system is grounded in sensory-motor 

information through this mapping. Therefore, our linguistic framework is another way 

to attach meaning to a conceptual reasoning system. 

Our framework was able to infer movement patterns that closely model the original 

movement. The patterns provide high-level and explicit information about the 

meaning of each human activity. Therefore, our approach was successful in both 

representational and learning aspects, serving as tool to parse movement, learn 

patterns, and to generate actions. 
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Chapter 5: Syntax 

The syntax of human activities involves the construction of sentences using action 

morphemes. A sentence consists of a group of entities. In this sense, a sentence may 

range from a single action morpheme to a sequence of sets of morphemes. The sets of 

morphemes represent simultaneous actions and a sequence of movements relates to 

the causal concatenation of activities This way, our intention is to identify which 

entities constitute a single morpheme sentence (nuclear syntax) and to study the 

mechanisms of composing sets of morphemes (parallel syntax) and of connecting 

these sets into sequences (sequential syntax). 

Nuclear Syntax 

A single action morpheme sentence is composed of entities that are implicit in any 

motion. These entities are a central part of an action that we refer as nuclear-syntax. 

For didactical purposes, we identify these entities as analogs to lexical categories: 

nouns, adjectives, verbs, and adverbs. An action is represented by a word that has the 

structure of a sentence: the agent or subject is a set of active body parts (noun), and 

the action or predicate is the motion of those parts (verb). In many such words, the 

action is transitive and involves an object or another patient body part. 

Nouns and Adjectives 

In a sentence, a noun represents the subjects performing an activity or objects 

receiving an activity. A noun in a single action sentence corresponds to the essential 

body parts active during the execution of a human activity and to the possible objects 

involved passively in the action (including patient body parts). The body parts are 
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equivalent to actuators of the articulated body model. Therefore, a noun (active body 

parts) is retrieved from the set of essential actuators in the action morpheme. This set 

may be represented as a binary string with the same size of the set of all actuators. 

Each element of this string encodes the inclusion of a particular joint actuator in this 

set. Given the morphology of each action in our database, we may find a matrix 

where each column is a binary string encoding the noun for a different action, as 

shown in Figure 5.1. This way, the rows of this matrix correspond to actuators. The 

noun matrix is a low-level structure containing the vocabulary of nouns for a 

praxicon. 

 
Figure 5.1. Matrix with nouns for a praxicon. 

From the morphemes of our motion database, we have extracted a set of about 200 

binary strings representing the HAL nouns in the most basic level for each action. 

Using the noun matrix of a praxicon, we can infer a grammar that resembles the 

topology of the body model. High-level nouns correspond to high-level non-terminals 

in this grammar associated with body parts such as lower limb, hand, and head. 

 107 
 



 

The initial posture of an action is analogous to an adjective which further describes 

(modifies) the active body parts (nouns) in the sentence. The initial pose of an action 

is retrieved from a morpheme as the initial joint angle of the first kineteme in the 

motion pattern of each essential actuator. Higher-level adjectives represent usual 

initial postures such as sit, stand, and lie. 

Verbs and Adverbs 

A motion verb represents the changes each active actuator experiences during the 

action execution. The human activity verbs are obtained from the motion patterns in 

the action morphemes. 

An adverb models the variation in the execution of each motion segment in a verb. 

The adverb modifies the verb with the purpose of generalizing the motion. For 

example, one instance of a “reach with your hand” action corresponds to a morpheme 

that models the movement required to touch something at a specific location. To 

generalize this action to any location, the motion of a segment is represented in a 

space with a reduced dimensionality. Each dimension in this reduced space represents 

a parameter such as location, speed, and force that models the variability of an action. 

The usual dimensionality reduction methods (e.g., PCA, ICA) learn meaningless 

parameters (semantic problem). Further, the parameters inferred for one action have 

no relationship to the parameters learnt for another action (universality problem). The 

semantic problem is addressed in our approach to adverbs by explicitly selecting a 

meaningful parametric space “a priori”. We suggest an intuitive set of parameters that 

consist of origin (ox, oy, oz), destination (dx, dy, dz), speed (s), and a resistance force 

(f). For example, the “reach with your hand” action is specified by the start position 
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of the hand (possibly at a resting location), the end position of the hand (where the 

object is located at), how fast the movement is performed, and any resistance force 

involved in the action. A resistance force could be the weight of an object being 

carried or the slope in an inclined walk. 

Formally, an adverb is an eight-element vector [ox, oy, oz, dx, dy, dz, s, f] used to 

further describe any action. This way, the universality problem is solved by using the 

same parametric space to represent adverbs of different actions. The adverbial 

modeling process consists in the mapping from parametric space to motion. 

Consequently, this process provides an immediate mapping between extrinsic 

coordinates (Cartesian 3D locations) and intrinsic coordinates (joint angles). This 

way, the user of a data-driven computer animation system specifies a location, even 

in terms of virtual objects, and the motion adverb is computed appropriately. 

The modeling process involves the interpolation of sample motions in the parametric 

space. Although we have studied this process in several actions (e.g., reach, sit, kick, 

walk, inclined walk, run) and for many parameters with similar results, we only 

discuss here the experiments about the kick and walk actions. The kick action was 

analyzed according to location parameters (dx, dy), while the walk forward action was 

investigated for the speed parameter (s). The input required by this process consists of 

motion samples distributed in the parametric space. For the kick action, we captured 

kick motions with the right leg from a single resting stance position to several target 

destinations placed on different horizontal (dx) and vertical (dy) locations, as shown in 

Figure 5.2. The horizontal location varies as left (dx = -1), center (dx = 0), and right  

(dx = +1). The vertical location varies as bottom (dy = -1), center (dy = 0), and top  

 109 
 



 

(dy = +1). The remaining parameters are constant and the targets were located in a 

vertical plane. 

 

 
(a) Target 
locations. 

(b) The “right knee flexion-extension”. 

Figure 5.2. The kick action for distributed parameters. 

The interpolation of sample motions is performed for each actuator and each time 

instant independently. In other words, for a specific actuator i, we consider only a 

single time instant t to compute an interpolation model for other parametric points at 

the same instant t. This way, we denote the motion Ji(t) with parameters (dx, dy) as 

Mi
t(dx, dy). We discuss a quadratic model Mi

t(dx, dy) = Adx
2 + Bdy

2 + Cdxdy + Ddx + 

Edy + F for the interpolation. Our goal is to find the model components A, B, C, D, E, 

and F for every time t and for each single actuator i. This way, we need at least 6 

equations to fully determine these variables and, consequently, the minimum of 6 

motion samples is required. From the given motion samples in our experiment, we 

have 9 equations. This way, the model components are computed by a least squares 

method that solves an over-determined linear system. The model components for 

every time t are shown in Figure 5.3. Note that component F is motion Mi
t(0, 0). 
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Figure 5.3. Quadratic components for generalization of motion in the “right hip 
flexion-extension” actuator in the kick action. 

Once the model components are obtained, we may compute motions for any point in 

the adverbial parametric space. Figure 5.4 shows regularly spaced interpolated 

motions. The colored curves represent original sample motions superimposed over 

the interpolated motions. The average error (absolute difference) of the interpolated 

reconstruction for all samples was 1.3°. 

 

Figure 5.4. Interpolated motions using a quadratic model. 
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We discussed above an modeling process for location parameters {ox, oy, oz, dx, dy, 

dz} of the adverbial space. For the speed parameter {s}, we suggest a different 

approach. To investigate this parameter, we use the walk forward action. In this case, 

our sample motions are walk actions at 40 different speeds regularly spaced from 

0.1mph to 4.0mph. Figure 5.5 shows these sample motions for the “right knee 

flexion-extension” actuator. The motion is presented as angular position, angular 

velocity, angular acceleration, and angular jerk. Actually, we show a single cycle of 

the walk action normalized in time. The motion curves are colored according to the 

speed such that colder colors (e.g., blue) display slower walks and warmer colors 

(e.g., red) display faster walks. 

 

Figure 5.5. Walk action at different speeds. 

Note that, for the speed varying motions, the most variability in the curves is at the 

maxima and minima points. Coincidently and fortunately, these points are the borders 

of motion segments. With this in mind, we aim at modeling how these extreme points 
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behave in time and space (i.e., position, velocity, acceleration, and jerk) according to 

the speed parameter. Let’s consider a single extreme point e and denote its time and 

space for a walk motion at speed s as te(s) and qe(s), respectively. We discovered from 

the motion data that these functions are fairly well modeled by a line, as Figure 5.6 

shows. This way, only two values are required to represent each extreme point 

behavior according to the speed parameter. 

 

Figure 5.6. Time and space functions of an extreme point at varying speeds of the 
walk action. 

This modeling process was evaluated for several actuators and various extreme 

points. For each extreme point e, the evaluation consisted in using a subset S of 

sample speeds to compute the lines le
t and le

q modeling te(s) and qe(s) for all s ∈ S, 

respectively. Once these lines are computed, the average values |le
t(s) – te(s)| and 

|le
q(s) – qe(s)| for all sample speeds in S are the respective model error. Figure 5.7 

shows the model error of time (left) and space (right) for one extreme point. Each 
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graph shows the model error for a decreasing number of sample speeds. For a 

reasonable amount of sample speeds, the spatial model error is less than 1°. 

 

Figure 5.7. Model error increases with less sample speeds. 

Spatio-Temporal Syntax 

The lexical categories proposed for HAL compose a nuclear syntax. A HAL sentence 

S → NP VP consists of noun phrase (noun + adjective) and verbal phrase (verb + 

adverb), where NP → N Adj and VP → V Adv, as shown in Figure 5.8. However, the 

organization of human movement is also simultaneous and sequential. This way, the 

nuclear syntax expands to parallel and sequential syntax. 

The parallel syntax concerns activities performed simultaneously represented by 

parallel sentences St, j and St, j+1. This syntax constrains the respective nouns of the 

parallel sentences to be different: Nt, j ≠ Nt, j+1. This constraint states that simultaneous 

movement must be performed by different body parts. For example, a person may 

walk and wave at concurrently. However, one cannot whistle and chew gum at the 

same time! 
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Figure 5.8. Nuclear, parallel, and sequential syntax. 

The temporal sequential combination of action sentences (St, j St+1, j) must obey the 

cause and effect rule. The HAL noun phrase must experience the verb cause and the 

joint configuration effect must lead to a posture corresponding to the noun phrase of 

the next sentence. Considering noun phrases as points and verb phrases as vectors in 

the same space, the cause and effect rule becomes NPt, j + VPt, j = NPt+1, j. The cause 

and effect rule is physically consistent and embeds the ordering concept of syntax. 

Parallel Syntax 

Parallel syntax addresses the possible ways to combine different action morphemes 

into a set of morphemes that could be performed simultaneously. Basically, the main 

constraint imposed by parallel syntax involves the essential actuators. To merge two 

action morphemes for actions a1 and a2 into a parallel set of morphemes, their sets of 

essential actuators Ia1 and Ia2 need to have an empty intersection. In other words, the 

two action morphemes cannot share any essential actuator. This rule may be 

implemented as a constraint matrix C. For each pair of actions a1 and a2 in a praxicon, 

if , the matrix entry C(a∅=∩ 21 aa II 1, a2) is true; otherwise, the matrix entry is false. 
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The constraint matrix explicitly stores which pairs of morphemes could be merged as 

simultaneous activities, shown as red entries in Figure 5.9. More sophisticated 

inferences could also be performed using this structure. For example, transforming 

this matrix into a graph, cliques correspond to groups of action morphemes that may 

be executed at the same time. 

 

Figure 5.9. A constraint matrix for simultaneous actions. 

Sequential Syntax 

In speech, the temporal organization is a pre-syntax since this neural preplanning of 

motor action is what syntax uses to execute an utterance. Actions of the physical body 

provide a metaphor for the hierarchical structure of language. The precise muscle 

timing (pre-syntax) makes it possible to produce countless actions that differ in great 

or small ways. The lexical units are arranged into sequences to form sentences. A 

sentence is a sequence of actions that achieve some purpose. 
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The cause and effect rule is physically consistent and embeds the ordering concept of 

syntax. The body pose must experience the motion cause and the effect leads to a 

posture in the next sentence. Sequential syntax concerns the concatenation of actions 

or, more formally, the connection of sets of action morphemes (from parallel syntax) 

to form sequences of movement. 

Consider a single actuator i, if i belongs to the sets 1aI  and 2aI  of essential actuators 

of two action morphemes a1 and a2, respectively, the sequential concatenation of 

these two morphemes is only feasible if there is a transition from one motion pattern 

 to the other . Such a transition may be obtained from the morphological 

grammar G

1ap 2ap

i of actuator i (as discussed in morpho-syntax). Any non-terminals or 

terminals in Gi shared by both motion patterns  and  give rise to a possible 

transition. Consequently, the two morphemes a

1ap 2ap

1 and a2 have a feasible concatenation 

with respect to actuator i. This way, two sets of action morphemes may be 

sequentially connected only if they have a feasible concatenation with respect to all 

actuators contained in the intersection of their sets of essential actuators. Figure 5.10 

displays the motion patterns of two action morphemes and their respective 

morphological grammar entries. The two patterns share kinetemes and, consequently, 

a transition exists between the two morphemes. 
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Figure 5.10. Possible transitions between two morphemes. 

The lexical units are arranged into sequences to form sentences. A sentence is a 

sequence of actions that achieve some purpose. In written language, sentences are 

delimited by punctuation. Analogously, the action language delimits sentences using 

motionless actions. In general, a conjunctive action is performed between two actions, 

where a conjunctive action is any preparatory movement that leads to an initial 

position required by the next sentence. 

Conclusion 

In this chapter, we discussed the sentence formation process. In Figure 5.11, we 

illustrate this process using three action words A, B, and C (see Figure 5.11a-c). Since 

A and B have disjoint sets of essential actuators, we can form the simultaneous 

sentence A || B (see Figure 5.11d). Action words A and C share two essential actuators 

and, consequently, only sequential composition applies. Although there are transitions 
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for both actuators, they are not concurrent and the sequential sentence A•C is not 

feasible (see Figure 5.11e). The sequential sentence B•C is shown in Figure 5.11f. 

   
(a) Action word A. (b) Action word B. (c) Action word C. 

   
(d) Sentence A || B. (e) Sentence A•C is not 

feasible. 
(f) Sentence B•C. 

Figure 5.11. Sentence formation process. 
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Chapter 6: Conclusion 

Perhaps, a more general cognitive capacity allows us to decode highly coded signals. 

A reasonable hypothesis would be that there is little difference between the visual and 

the speech realms in this regard. The visual stimuli available to the brain do not offer 

a stable code of information. The brain extracts the constant invariant features of 

objects from the perpetually changing flood of information it receives from them. 

Further, what is being perceived and apprehended is the message itself, not static 

target end states of the articulators. 

In the scientific discussions about perception and reasoning in cognitive systems, a 

debate on “signals vs. symbols” has been going on for quite some time. Specifically, 

where do signals end and where do symbols begin? In other words, what are the 

boundaries among signal processing, computer vision (and audition), and artificial 

intelligence? Our work has demonstrated that this debate may not be very fruitful, 

because signals and symbols acquire their meaning depending on the operations that 

we apply to them. 

Starting from motion capture measurements (signals), we extract symbols as early as 

possible and then utilize a symbolic framework to learn a first language of human 

movement. Following the framework of modern linguistics [Jackendoff, 1997], we 

studied the kinetology, morphology and syntax of this new language (and did not 

mention at all semantics and pragmatics). We discussed the nouns, adjectives, verbs, 

and adverbs of this language. Our work on adverbial modeling brings forward 

additional parameters, such as location, speed, and force. Like modern day 

archaeologists working from a papyrus containing a series of actiongrams, we 
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decipher the underlying language, using computer science techniques, by discovering 

the structure in each joint and among joints. 

We must emphasize that we have merely scratched the top of an iceberg. We simply 

demonstrated that there exists a language of human activity by empirically 

constructing one such language out of large amounts of data. Our kinetology was 

among the simplest possible, yet rich enough to provide an interesting structure. It 

should be clear that there is a trade-off between the complexity of the kinetology and 

the complexity of the grammar. Very simple kinetemes give rise to complex 

grammars, while more structured kinetemes produce simpler grammars. A recent 

effort is to develop a spectral kinetology, where the kinetemes are basic functions 

(wavelets) linked with a number of parameters for each joint. The idea is that a single 

wavelet in conjunction with the provided parameters will produce the whole function 

(movement) of a synergy of joints. This approach will give rise to simpler grammars. 

Applications of HAL in various areas are bringing a novel viewpoint. Given HAL, 

the problem of visual surveillance and video analysis becomes one of translation from 

image representations to HAL, i.e., action understanding involves motor 

representations (at a higher or abstract level that the language provides). Most 

importantly, HAL addresses a fundamental research issue in cognitive science and 

artificial intelligence, that of the mechanisms for the combination of sensory-motor 

information and concepts for understanding others and for communicating one’s own 

intentions. HAL suggests an empirical approach for discovering the “languages” of 

action and vision and the correspondences with natural language, by collecting body 

movement measurements, visual object information, and associated linguistic 
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descriptions from interacting human subjects. Using such data, one can imagine that 

in the near future the community will move towards the creation of the praxicon, a 

computational resource that associates the lexicon (words/concepts) with 

corresponding motoric and sensory representations and that is enriched with 

information on co-occurrence patterns among the concepts for forming higher-level 

complex concepts. This praxicon will bring us closer to understanding human thought 

while significantly enhancing software that acquires “meaning”. It also suggests the 

new idea of achieving artificial intelligence by measuring (structuring, parsing, and 

analyzing) human behavior. 

From a methodological viewpoint, this dissertation introduced a new way of 

achieving an artificial cognitive system through the study of human action, or to be 

more precise, through the study of the sensory-motor system. We believe this study 

represented initial steps of one approach towards conceptual grounding. The closure 

of this semantic gap will lead to the foundation of concepts into a non-arbitrary 

meaningful symbolic representation based on sensory-motor intelligence. This 

representation will serve to the interests of reasoning in higher-level tasks and open 

the way to more effective techniques with powerful applications. 

Humans have been studying the spoken and written languages for thousands of years. 

It is not clear how long it will take to map out the murky depths of a Human Activity 

Language. We hope that HAL is a step in the right direction. 
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Appendix A: Concrete Verbs 

WordNet is a lexical database for the English language that organizes words into a 

semantic network [Fellbaum, 1998]. A semantic network links words according to 

relations such as synonym-antonym, hyponym-hypernym (kind of), and meronym-

holonym (part of). We used the relations between verbs in the WordNet semantic 

network to categorize English verbs associated with observable voluntary actions as 

concrete verbs. Our praxicon was based on the subset of concrete verbs enumerated 

below. Each synset (set of synonyms) is presented in the following form: “{ verb 

words } = gloss;”: 

{ beat } = hit repeatedly; 
{ beckon wave } = signal with the hands or nod; 
{ bounce } = hit something so that it bounces; 
{ bow } = bend the head or the upper part of the body in a gesture of respect or greeting; 
{ bow bow_down } = bend one's knee or body, or lower one's head; 
{ brain } = hit on the head; 
{ brandish flourish wave } = move or swing back and forth; 
{ brush } = touch lightly and briefly; 
{ carry } = bear or be able to bear the weight, pressure, or responsibility of; 
{ catch grab take_hold_of } = take hold of so as to seize or restrain or stop the motion of; 
{ chafe } = warm by rubbing, as with the hands; 
{ chop } = strike sharply, as in some sports; 
{ clap } = strike with the flat of the hand; usually in a friendly way, as in encouragement or 
greeting; 
{ clap } = strike together so as to produce a sharp percussive noise; 
{ clasp } = grasp firmly; 
{ cock } = tilt or slant to one side; 
{ collar } = seize by the neck or collar; 
{ conk } = hit, especially on the head; 
{ crab } = scurry sideways like a crab; 
{ crane stretch_out } = stretch (the neck) so as to see better; 
{ crawl creep } = move slowly; in the case of people or animals with the body near the ground; 
{ crick } = twist the head into a strained position; 
{ cross } = fold so as to resemble a cross; 
{ crouch stoop bend bow } = bend one's back forward from the waist on down; 
{ cuff whomp } = hit with the hand; 
{ curtsy bob } = make a curtsy; usually done only by girls and women; as a sign of respect; 
{ curtsy curtsey } = a gesture of respectful greeting, for women; 
{ cut } = move (one's fist); 
{ draw_in retract } = pull inward or towards a center; 
{ drop } = let fall to the ground; 
{ duck } = to move (the head or body) quickly downwards or away; 
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{ embrace hug bosom squeeze } = hug, usually with fondness; 
{ fan } = agitate the air; 
{ finger thumb } = feel or handle with the fingers; 
{ flick } = touch or hit with a light, quick blow; 
{ flip twitch } = toss with a sharp movement so as to cause to turn over in the air; 
{ fluff_up plump_up shake_up } = make fuller by shaking; 
{ grab } = make a grasping or snatching motion with the hand; 
{ graze crease rake } = scrape gently; 
{ grip } = hold fast or firmly; 
{ heft } = test the weight of something by lifting it; 
{ hew } = strike with an axe; cut down, strike; 
{ hoist } = move from one place to another by lifting; 
{ hold } = cover as for protection against noise or smell; 
{ hold take_hold } = have or hold in one's hands or grip; 
{ hook } = secure with the foot; 
{ hunch hump hunch_forward hunch_over } = arch one's back; 
{ jab } = strike or punch quick and short blows; 
{ jam } = push down forcibly; 
{ jog } = run for exercise; 
{ jump leap bound spring } = move forward by leaps and bounds; 
{ kick } = strike with the foot; 
{ kick } = drive or propel with the foot; 
{ kill } = hit with great force; 
{ kiss buss osculate } = touch with the lips or press the lips (against someone's mouth or 
other body part) as an expression of love, greeting, etc; 
{ kneel } = rest one's weight on one's knees; 
{ knock } = rap with the knuckles; 
{ knuckle } = press or rub with the knuckles; 
{ limp hobble hitch } = walk impeded by some physical limitation or injury; 
{ look_back look_backward } = look towards one's back; 
{ lower take_down let_down get_down bring_down } = move something or somebody to a 
lower position; 
{ march } = walk fast, with regular or measured steps; walk with a stride; 
{ nod } = lower and raise the head, as to indicate assent or agreement or confirmation; 
{ nuzzle nose } = rub noses; 
{ oscillate vibrate } = move or swing from side to side regularly; 
{ pace step } = measure (distances) by pacing; 
{ palpate feel } = examine (a body part) by palpation; 
{ pet } = stroke or caress gently; 
{ pick_at pluck_at pull_at } = pluck or pull at with the fingers; 
{ pick_up lift_up gather_up } = take and lift upward; 
{ pirouette } = do a pirouette, usually as part of a dance; 
{ pivot swivel } = turn on a pivot; 
{ pluck tweak pull_off pick_off } = pull or pull out sharply; 
{ press } = exert pressure or force to or upon; 
{ pull } = apply force so as to cause motion towards the source of the motion; 
{ pull } = cause to move in a certain direction by exerting a force upon, either physically or in 
an abstract sense; 
{ pull_back } = move to a rearward position; pull towards the back; 
{ punch plug } = deliver a quick blow to; 
{ push } = press against forcefully without being able to move; 
{ push force } = move with force; 
{ push_up } = push upward; 
{ raise lift elevate get_up bring_up } = raise from a lower to a higher position; 
{ ram ram_down pound } = strike or drive against with a heavy impact; 
{ roll revolve } = cause to move by turning over or in a circular manner of as if on an axis; 
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{ rub } = move over something with pressure; 
{ run } = move fast by using one's feet, with one foot off the ground at any given time; 
{ salute } = greet in a friendly way; 
{ salute present } = recognize with a gesture prescribed by a military regulation; assume a 
prescribed position; 
{ scrape kowtow genuflect } = bend the knees and bow in a servile manner; 
{ screw drive_in } = cause to penetrate, as with a circular motion; 
{ scuff } = poke at with the foot or toe; 
{ shake } = shake (a body part) to communicate a greeting, feeling, or cognitive state; 
{ shoulder } = lift onto one's shoulders; 
{ shuffle scuffle shamble } = walk by dragging one's feet; 
{ skim skip skitter } = cause to skip over a surface; 
{ slam bang } = strike violently; 
{ slap } = hit with something flat, like a paddle or the open hand; 
{ slide } = move smoothly along a surface; 
{ sling catapult } = hurl as if with a sling; 
{ slug slog swig } = strike heavily, especially with the fist or a bat; 
{ slump slouch } = assume a drooping posture or carriage; 
{ smash } = collide or strike violently and suddenly; 
{ sprawl } = sit or lie with one's limbs spread out; 
{ spread-eagle } = stand with arms and legs spread out; 
{ sprint } = run very fast, usually for a short distance; 
{ squash crush squelch mash squeeze } = to compress with violence, out of natural shape or 
condition; 
{ squat crouch scrunch scrunch_up hunker hunker_down } = sit on one's heels; 
{ stab jab } = stab or pierce; 
{ stand_still } = remain in place; hold still; remain fixed or immobile; 
{ step } = move with one's feet in a specific manner; 
{ stoop } = carry oneself, often habitually, with head, shoulders, and upper back bent forward; 
{ straighten } = get up from a sitting or slouching position; 
{ stride } = walk with long steps; 
{ stroke fondle } = touch lightly and with affection, with brushing motions; 
{ swagger ruffle prance strut sashay cock } = to walk with a lofty proud gait, often in an 
attempt to impress others; 
{ swing } = move in a curve or arc, usually with the intent of hitting; 
{ swing sweep swing_out } = make a big sweeping gesture or movement; 
{ throw } = project through the air; 
{ tip } = cause to tilt; 
{ tiptoe tip tippytoe } = walk on one's toes; 
{ toe } = walk so that the toes assume an indicated position or direction; 
{ tread trample } = tread or stomp heavily or roughly; 
{ trot jog clip } = run at a moderately swift pace; 
{ tug } = move by pulling hard; 
{ turn } = cause to move around or rotate; 
{ turn } = cause to move along an axis or into a new direction; 
{ turn } = change orientation or direction, also in the abstract sense; 
{ turn turn_over } = cause to move around a center so as to show another side of; 
{ twitch } = move or pull with a sudden motion; 
{ uncross } = change from a crossed to an uncrossed position; 
{ volley } = hit before it touches the ground; 
{ walk } = use one's feet to advance; advance by steps; 
{ whack wham whop wallop } = hit hard; 
{ whip lash } = strike as if by whipping; 
{ zigzag crank } = travel along a zigzag path; 
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Appendix B: Words in HAL 
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Appendix C: Morphological Grammars 

 

Left Hip Y 
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Right Hip Z 
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Right Knee X 

 148 
 



 

 

Left Ankle Z 
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Right Ankle Y 
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Left Shoulder Z 
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Right Shoulder X 
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Left Elbow Z 
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Right Elbow X 
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Left Wrist Z 
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