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Dissertation directed by: Professor Ricardo H. Nochetto
Department of Mathematics

We consider variational inequalities (VIs) in a bounded open domain Ω ⊂ Rd

with a piecewise smooth obstacle constraint. To solve VIs, we formulate a fully-

discrete adaptive algorithm by using the backward Euler method for time discretiza-

tion and the continuous piecewise linear finite element method for space discretiza-

tion. The outline of this thesis is the following.

Firstly, we introduce the elliptic and parabolic variational inequalities in Hilbert

spaces and briefly review general existence and uniqueness results (Chapter 1). Then

we focus on a simple but important example of VI, namely the obstacle problem

(Chapter 2). One interesting application of the obstacle problem is the American-

type option pricing problem in finance. We review the classical model as well as

some recent advances in option pricing (Chapter 3). These models result in VIs

with integro-differential operators.

Secondly, we introduce two classical numerical methods in scientific computing:

the finite element method for elliptic partial differential equations (PDEs) and the



Euler method for ordinary different equations (ODEs). Then we combine these two

methods to formulate a fully-discrete numerical scheme for VIs (Chapter 4). With

mild regularity assumptions, we prove optimal a priori convergence rate with respect

to regularity of the solution for the proposed numerical method (Chapter 5).

Thirdly, we derive an a posteriori error estimator and show its reliability and

efficiency. The error estimator is localized in the sense that the size of the elliptic

residual is only relevant in the approximate noncontact region, and the approxima-

bility of the obstacle is only relevant in the approximate contact region (Chapter 6).

Based on this new a posteriori error estimator, we design a time-space adaptive

algorithm and multigrid solvers for the resulting discrete problems (Chapter 7).

In the end, numerical results for d = 1, 2 show that the error estimator decays

with the same rate as the actual error when the space meshsize and the time step

tend to zero. Also, the error indicators capture the correct local behavior of the

errors in both the contact and noncontact regions (Chapter 8).
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Introduction

The subject of variational inequalities has its origin in the calculus of vari-

ations associated with the minimization of infinite-dimensional energy functionals.

Variational inequalities (VIs) arise from a wide range of application areas, like me-

chanics, control theory, and finance (see, for example, [120, 73, 142]). After decades

of development, this subject has become very rich on both theory and numerics,

especially for the special class of obstacle problems. For a general discussion on the

existence and regularity, we refer the interested readers to [31, 84]. For numerical

methods, we refer to [74] for a quick review.

One of the applications of variational inequalities in finance is valuation of

American options. Options are derivative contracts where the future payoffs to the

buyer and seller of the contract are determined by the price of another security,

such as a common stock. Since the option gives the buyer a right and the writer

an obligation, the buyer pays the option premium to the writer. Models of option

pricing were very simple and incomplete until 1973 when F. Black and M. Scholes

published the Black-Scholes pricing model [23]. For an American-style option in

the Black-Scholes model, the arbitrage-free price of the option follows a parabolic

variational inequality with a diffusion operator. Some more advanced models, like

the CGMY model [40] gives integro-differential variational inequalities.

To solve parabolic variational inequalities numerically, we use the implicit

Euler method for time-discretization and the finite element method (FEM) for space-

discretization with adaptive mesh refinement techniques. Adaptive mesh refinement

is an important tool to deal with multiscale phenomena and to reduce the size of

the linear systems that arise from the finite element method. Generally speaking,
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an adaptive FEM for static problems consists of iterations in the form

SOLVE → ESTIMATE → MARK → REFINE/COARSEN.

The procedure ESTIMATE determines the error distribution within the domain.

Since we cannot compute the exact error of the solution, finding a reliable and

efficient a posteriori error estimator, which are locally computable, is critical as-

pect of adaptivity. This is the main subject of this thesis for a class of variational

inequalities governed by integro-differential operators.

The outline and main contributions of the thesis are as follows.

• In Chapter 1, we introduce the general formulation of variational inequalities

in Hilbert spaces and review the existence and uniqueness of the solutions of

variational inequalities. In Chapter 2, we recall the regularity results of the

obstacle problem, which is a special case of variational inequalities.

• In Chapter 3, we introduce option pricing models very briefly. The classical

Black-Scholes model and more advanced models based on Lévy processes lead

to parabolic variational inequalities with an integro-differential operator A.

For solving the class of parabolic variational inequalities proposed in Chapter

3, we use the implicit Euler method for time discretization and the finite

element method for space discretization to formulate a fully-discrete numerical

scheme in Chapter 4.

• In Chapter 5, we review the approximation properties of finite element meth-

ods for elliptic variational inequalities and generalize them to time-dependent

problems. On the basis of recent advances in error estimation for the implicit

Euler scheme, we prove optimal convergence rates of our numerical scheme in

both space and time with respect to the regularity of solutions. This does not

only generalize but also improve the a priori error estimation for the Laplacian

by Johnson [82], in that convergence rate is now optimal.

• In Chapter 6, we consider the a posteriori error analysis for parabolic varia-

tional inequalities upon extending an idea of Fierro and Veeser for differential

2



operators [72]. First, we analyze elliptic variational inequalities to give a

localized a posteriori error estimator for the error in energy norm for integro-

differential operators. And then we generalize the analysis to time-dependent

problems using the fact that the underlying operator A is strongly sectorial.

Finally, we also address the error due to lack of obstacle conformity as well

as the effect of mesh changes in some detail. The discussion in this chapter is

mainly based on two research papers: the one on a posteriori error estimation

for parabolic variational inequalities with a general second order differential

operator by Moon et al [104]; the other one on a posteriori error estimation

for variational inequalities with an integro-differential operator by Nochetto

et al [115].

• In Chapter 7, we design a fully-adaptive algorithm for solving parabolic vari-

ational inequalities. In particular, for solving discrete variational inequality

problems, we generalize the multilevel constraint decomposition method by

Tai [130] to graded meshes obtained by the bisection method. We prove that

the convergence rate is globally linear and the reduction rate depends on the

minimal meshsize mildly in 1d and 2d; the dependence is logarithmic.

• In Chapter 8, we perform several numerical experiments in 1d and 2d. The ex-

periments confirm our theoretical expectations and show advantages of adap-

tive algorithms for American option pricing for both differential and integral

operators alike.
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Chapter 1

Variational Inequalities: Existence and Regularity

As a starting point, we introduce the concept of general variational inequalities

and review the existence and uniqueness theorem. The rest of the chapter is orga-

nized as follows. In Section 1.1, we introduce the definition the elliptic variational

inequality problem. In Section 1.2, we review the Lions-Stampacchia existence the-

orem in Hilbert space. In Section 1.3, we first introduce the notion of parabolic

variational inequality problem as well as its weak formulation; then we review exis-

tence and uniqueness results.

1.1 Abstract Setting

We begin with notation and basic concepts. The symbol a . b means a ≤ Cb

with a generic constant C (not necessarily the same in any two places) and a ≈ b

abbreviates a . b . a.

Let H be a real Hilbert space associated with inner product (·, ·), which in

turn induces a norm on H via

‖w‖H := (w,w)
1
2 ∀ w ∈ H. (1.1)

When there is no confusion, we use ‖ · ‖ to denote the H-norm.

Denote the dual space of H by H∗, i.e.

H∗ :=
{
φ : H → R

∣∣∣ sup
w∈H

|φ(w)|
‖w‖H

<∞
}
. (1.2)

It is well-known that H∗ is isomorphic to H due to the fact that H is Hilbert and

the Riesz representation theorem. Therefore, one can identify H∗ with H later.

4



Now let V ⊂ H be a dense real Hilbert subspace of H with an inner product

(·, ·)V and its associated norm ‖ · ‖V such that the identity or canonical embedding

is continuous, i.e.

‖v‖H . ‖v‖V ∀ v ∈ V. (1.3)

For any functional w ∈ H, the map V ∋ v → (w, v) belongs to the dual space H∗

because, by using the Cauchy-Schwarz inequality and the continuity of the canonical

embedding, we have

|(w, v)| ≤ ‖w‖H‖v‖H . ‖w‖H‖v‖V .

The dual space of V can be defined in the same way as (1.2) and denoted by V∗.

Hence we can embed H into V∗ and identify H with its dual H∗ to obtain

V →֒ H ≃ H∗ →֒ V∗. (1.4)

We use 〈·, ·〉 to denote the duality pair between V∗ and V.

Assume that a bilinear form a(·, ·) : V × V → R is continuous and coercive

in the sense that there exists positive constants C∗ ≥ C∗ > 0 such that, for any

v, w ∈ V,

|a(v, w)| ≤ C∗‖v‖V‖w‖V continuous (1.5)

a(v, v) ≥ C∗‖v‖2
V coercive. (1.6)

For future reference, we denote A : V → V∗ to be the linear operator associated

with the bilinear form a, i.e.

〈Av, w〉 := a(v, w) ∀ v, w ∈ V.

Using (1.5) and (1.6), we obtain that, for any v ∈ V,

‖Av‖V∗ ≤ C∗‖v‖V continuous (1.7)

〈Av, v〉 ≥ C∗‖v‖2
V coercive. (1.8)

The natural norm associated with the bilinear form a(·, ·) (or operator A) is usually

called the energy norm which is denoted by |||v||| := a(v, v)
1
2 . From (1.5) and (1.6),

we immediately notice that |||·||| is equivalent to ‖ · ‖V :

C∗‖v‖2
V ≤ |||v|||2 ≤ C∗‖v‖2

V v ∈ V. (1.9)
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1.2 Elliptic Variational Inequalities (EVIs)

Now we are ready to introduce the elliptic variational inequality problem in

its weak form and discuss general existence results.

1.2.1 Variational Formulation

A general elliptic variational inequality (in weak form) can be written as fol-

lows:

Problem 1.1 (Abstract Elliptic Variational Inequality) Let K ⊆ V be a non-

empty closed convex set and f ∈ V∗. Find a u ∈ K such that

〈Au, u− v〉 ≤ 〈f, u− v〉 ∀ v ∈ K. (1.10)

Remark 1.2 (Relation with Variational Equations) It is easy to see that, if

K = V, then the variational inequality (1.10) reduces to a variational equation

〈Au, v〉 = 〈f, v〉 ∀ v ∈ V. (1.11)

If we assume further that the bilinear form a(·, ·) is symmetric or A is self-

adjoint, then the Problem 1.1 can be rewritten as the following energy minimization

problem:

Problem 1.3 (Convex Energy Minimization) Let K ⊆ V be a non-empty closed

convex set and f ∈ V∗, find u ∈ K such that

min
v∈K

J (v) :=
1

2
a(v, v) − 〈f, v〉. (1.12)

Remark 1.4 (Equivalence) It is easy to see that (1.10) is the first order necessary

condition for the constrained convex minimization problem, Problem 1.3. Further-

more, it is also sufficient because the objective function is strictly convex from (1.6).

Hence the equivalence follows by elementary optimization theory. For details, see

[33].
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1.2.2 Existence and Uniqueness

The general existence theory has been developed by Lions and Stampacchia

[93]. The proof of the existence can be reduced to an application of Banach fixed

point theorem following the constructive approach in Rodrigues [120, Theorem 3.1].

Theorem 1.5 (Existence and Uniqueness) Let a(·, ·) : V ×V → R be a contin-

uous and coercive bilinear form on V and K be a non-empty closed convex subset of

V. Then, for any f ∈ V∗, there exists a unique solution u ∈ K of the variational

inequality (1.10).

Proof of Existence. For any fixed u ∈ V, the mapping v 7−→ a(u, v) is in the

dual space V∗. We can find Bu ∈ V such that a(u, v) = (Bu, v)V . In the same spirit,

we can find a representation of f ∈ V∗, denoted by b ∈ V. Rewrite the EVI (1.10)

as: find

u ∈ K : (Bu, v − u)V ≤ (b, v − u)V ∀ v ∈ K.

For any constant β > 0, the above inequality is equivalent to

u ∈ K : (βb− βBu+ u− u, v − u)V ≤ 0 ∀ v ∈ K. (1.13)

Let PK (·) : V → K be the projection operator onto K with respect to (·, ·)V , i.e. for

any w ∈ V
(
w − PK (w) , v − PK (w)

)
V
≤ 0 ∀ v ∈ K. (1.14)

It then follows that (1.13) is equivalent to the nonlinear equation

u = PK (βb− βBu+ u) . (1.15)

Define, for any v ∈ K, Gβ(v) := PK (βb− βBv + v). Since a projection onto a closed

convex set is Lipschitz with constant 1, we have

‖Gβ(v1) −Gβ(v2)‖V ≤ ‖(v1 − v2) − βB(v1 − v2)‖V ∀ v1, v2 ∈ K.

Hence, by using (1.5) and (1.6),

‖Gβ(v1) −Gβ(v2)‖2
V ≤ ‖v1 − v2‖2

V − 2β
(
B(v1 − v2), v1 − v2

)
V

+ β2‖B(v1 − v2)‖2
V

≤ (1 − 2βC∗ + β2C∗2)‖v1 − v2‖2
V .
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By choosing β ∈ (0, 2C∗/C
∗2), we can make Gβ a contraction and the existence of

solution follows by the well-known Banach fixed point theorem. �

Remark 1.6 (Lax-Milgram Theorem) This general existence and uniqueness

theory is the so-called Lions-Stampacchia theorem [93]. In the case K = V (no

active constraint), this theorem reduces to the well-known Lax-Milgram theorem.

Remark 1.7 (Representation of B) Let I : V → V∗ be the canonical embedding

operator characterized by

〈Iu, v〉 = (u, v)V ∀ u, v ∈ V.

It follows directly that

(Bu, v)V = 〈IBu, v〉 ∀ u, v ∈ V.

Since a(u, v) = 〈Au, v〉, we then have B = I−1A formally.

Remark 1.8 (A Numerical Method) The constructive proof of Theorem 1.5

above suggests the following iterative method for the approximation of u: taking an

initial guess u(0) ∈ K, obtain a sequence of approximate solutions {u(i)} ⊂ K by

u(i) = PK

(
u(i−1) + β(b− Bu(i−1))

)
i = 1, 2, . . .

If β ∈ (0, 2C∗/C
∗2), then this iterative method converges uniformly. To maximize

the convergence speed, we can choose β∗ = C∗/C
∗2.

Remark 1.9 (A Different Approach) There is a different proof due to Stampac-

chia [84] which proves the existence result for symmetric problems via the well-known

minimization principle and uses a continuation argument to handle the nonsymmet-

ric part.

Remark 1.10 (Lipschitz Continuity and Uniqueness) Suppose f1, f2 ∈ V∗ and

u1, u2 ∈ K be the corresponding solutions of Problem 1.1, respectively. Taking
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v = u2(u1) in the variational inequality for u1(u2) and adding the corresponding

inequalities together, we obtain

a(u1 − u2, u1 − u2) ≤ 〈f1 − f2, u1 − u2〉.

By coercivity of a(·, ·) and Cauchy-Schwarz inequality,

C∗‖u1 − u2‖2
V ≤ 〈f1 − f2, u1 − u2〉 ≤ ‖f1 − f2‖V∗‖u1 − u2‖V .

Hence we can see that the mapping f → u is Lipschitz with Lipschitz constant 1/C∗,

i.e.

‖u1 − u2‖V ≤ 1

C∗
‖f1 − f2‖V∗. (1.16)

Uniqueness of the solution follows directly from (1.16).

1.3 Parabolic Variational Inequalities (PVIs)

In this section, we deal with time dependent problems. We consider a time

interval [0, T ] ⊂ R. More general time spans can always be shifted to this one.

Let H and V be the Hilbert spaces we defined in section 1.2. For 1 ≤ p ≤ ∞,

we introduce the concept of Bochner spaces. We denote by Lp(0, T ;H) the space of

Lebesgue measurable functions u : [0, T ] → H, with bounded norm

‖u‖Lp(0,T ;H) :=





(∫ T

0

‖u(t)‖pH dt
)1/p

if 1 ≤ p <∞

ess supt∈(0,T ) ‖u(t)‖H if p = ∞.

(1.17)

Other spaces, like Lp(0, T ;V), can be defined analogously.

1.3.1 Weak Formulation

In this part, we assume the operator A satisfies the assumptions in §1.1. Simi-

lar to the elliptic case we discussed in the previous section, we first give the standard

variational form of abstract PVIs:
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Problem 1.11 (Abstract Parabolic Variational Inequalities) Let K ⊆ V be

a non-empty closed convex set, u0 ∈ H be a given initial solution, T ≤ ∞ be the end

time and f : (0, T ) → V∗. Find u : (0, T ) → V such that u(t) ∈ K(t) a.e. t ∈ (0, T )

satisfying u(0) = u0 and

〈∂tu(t) + Au(t) − f(t), u(t) − v〉 ≤ 0 ∀ v ∈ K(t) a.e. t ∈ (0, T ), (1.18)

where ∂tu is the partial derivative of u in time variable.

This formulation is a natural extension from the elliptic problem in §1.2. It is

convenient to introduce a weaker form for the purpose of the existence and unique-

ness discussion.

Remark 1.12 (Sum Space and Its Dual) We introduce the spaces of “sum”

and of “intersection” type by

S(0, T ) := L1(0, T ;H) + L2(0, T ;V∗), (1.19)

I(0, T ) := L∞(0, T ;H) ∩ L2(0, T ;V), (1.20)

The “sum” space S(0, T ) and its dual space I(0, T ) will be useful when we discuss

the concept of weak solutions of time-dependent problems.

Now, we assume that u is the solution of Problem 1.11 and v satisfy

u, ∂tu ∈ I(0, T ), u(t) ∈ K a.e. t ∈ (0, T ), (1.21)

v, ∂tv ∈ I(0, T ), v(t) ∈ K a.e. t ∈ (0, T ). (1.22)

The inequality (1.18) gives that

d

dt

(
1

2
‖u− v‖2

H

)
+ 〈∂tv + Au− f, u− v〉 ≤ 0. (1.23)

Although K is closed in V, it is not necessarily closed in H. We denote K be

the closure of K respect to the norm ‖ · ‖H. Then we define the weak solution of

Problem 1.11 as following:
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Definition 1.13 (Weak Solution of PVIs) Give u0 ∈ K, 0 < T ≤ ∞, f ∈
S(0, T ) and K is a nonempty, closed, and convex subset in V. Find

u ∈ I(0, T ), u(t) ∈ K a.e. t ∈ (0, T ),

such that

Θ′(t) ≤ 0 and Θ(t) ≤ 1

2
‖u0 − v(0)‖2

H a.e. t ∈ (0, T ),

for all v satisfying (1.22), where

Θ(t) :=
1

2
‖u(t) − v(t)‖2

H +

∫ t

0

〈∂sv(s) + Au(s) − f(s), u(s) − v(s)〉 ds. (1.24)

We call u the weak solution of PVI (1.18).

1.3.2 Existence and Uniqueness

Existence and uniqueness of the weak solution of parabolic variational inequal-

ity holds under very general assumptions on A, u0 and f ; for example A could be a

nonlinear monotone operator. We refer readers to the monograph [31]. Regularity

as well as approximation results of the weak solution of general PVIs can be found

in Baiocchi [11]. For obstacle problems (which is the main topic of the thesis and

will be discussed in the following chapters), Ito and Kunisch [79] introduced a new

approach using Lagrange multiplier technique and proved the existence of strong

and weak solutions.

Here we simply review the classical existence result of weak solution.

Theorem 1.14 (Existence and Uniqueness of Weak Solution) For any ini-

tial solution u0 ∈ H and data f ∈ L2(0, T ;V∗), there exists a unique weak solution

of Problem 1.11 and u ∈ C0([0, T ];H).

Remark 1.15 (Uniqueness) If u0 ∈ H but not in K, we need to modify the

definition of the weak solution by replacing u0 with PK (u0). Otherwise there might

be multiple weak solutions; see [11].
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Chapter 2

Obstacle Problems

In the previous chapter, we introduced variational inequalities in a general

setting. In this chapter, we focus on a particular class of variational inequalities,

namely obstacle problems. Obstacle problems were one of the main motivations

of the theory of variational inequalities and have many important applications in

various areas. One particular application in finance will be discussed in Chapter 3.

It is well known that the solution of an elliptic boundary value problem has

certain degree of smoothness depending on the smoothness of the data and the

boundary of its physical domain (see, for example, [62]). However, in general, the

solution of an obstacle problem associate with a second order differential operator

A cannot be in C2 even for smooth enough data. Lack of smoothness is one of the

difficulties to handle this nonlinear problem.

In this chapter, we review some basic concepts and smoothness of solutions

of obstacle problems. This chapter is organized as follows. First, we review the

definition of Sobolev spaces of general order and angle-bounded operators in §2.1 and

§2.2, respectively. Then we define the static as well as evolution obstacle problems

in §2.3.

2.1 Function Spaces

Before we can discuss any concrete obstacle examples, we need to first recall

the theory of Hölder spaces and Sobolev spaces [1]. Here we assume that Ω ⊂
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Rd(d = 1, 2, 3) be open and bounded with boundary Γ = ∂Ω := Ω\Ω. We denote

the set of natural numbers by N.

2.1.1 Hölder Spaces

Consider functions v : Ω → R. β = (β1, · · · , βd)T ∈ Nd be a multi-index of

modulus |β| =
∑d

i=1 βi. We denote by

Dβv :=
∂|β|v

∂xβ1

1 · · ·∂xβd

d

(2.1)

the partial derivatives of v.

For any nonnegative integer m ∈ N, we define by Cm(Ω) the linear space

of continuous functions v on Ω whose partial derivatives Dβv(|β| ≤ m) is also

continuous. Furthermore, it is a Banach space with the norm

‖v‖Cm(Ω) := max
0≤|β|≤m

sup
x∈Ω

|Dβv(x)|.

We define Cm,α(Ω) for 0 < α < 1 to be the linear subspace of Cm(Ω) whose m-th

order partial derivatives are Hölder continuous, i.e.

|Dβv(x) −Dβv(y)| ≤ Cβ|x− y|α ∀x, y ∈ Ω and β ∈ Nd with |β| = m.

We then note that the Hölder-α space Cm,α(Ω) is Banach with respect to the norm

‖v‖Cm,α(Ω) := ‖v‖Cm(Ω) + max
|β|=m

sup
x,y∈Ω

|Dβv(x) −Dβv(y)|
|x− y|α .

A very special case is that C∞(Ω) is the functions with continuous partial

derivatives of any order. We denote by C∞
c (Ω) the subset of C∞(Ω) functions with

compact support in Ω.

2.1.2 Sobolev Spaces of Integer Order

Let Lp(Ω) be the class of all measurable functions v defined on Ω with bounded

norm

‖v‖Lp(Ω) :=





(∫

Ω

|v|p
)1/p

if 1 ≤ p <∞

ess supx∈Ω|v(x)| if p = ∞.

(2.2)
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The space of functions of bounded variation (BV functions) will be useful for error

analysis and can be defined as

BV(Ω) =
{
v ∈ L1(Ω)

∣∣∣ sup
φ∈C1

c (Ω)d

‖φ‖L∞(Ω)<∞

∫

Ω

v divφ <∞
}
. (2.3)

Sobolev spaces with integer order are normed spaces of functions with finite

weak derivatives in Lp-norm. More precisely, for any nonnegative integer number

s ∈ N and 1 ≤ p ≤ ∞, the space W s,p(Ω) is defined to be the subset of Lp(Ω) such

that v and its weak derivatives up to order k have a finite Lp(Ω)-norm. With this

definition, the Sobolev spaces admit a natural norm,

‖v‖W s,p(Ω) :=


∑

|β|≤s

‖Dβv‖pLp(Ω)




1
p

.

We can identify W 0,p(Ω) with Lp(Ω). As a convention, we use Hs(Ω) to denote

W s,2(Ω).

It is well-known that functions in H1(Ω) are not necessarily bounded or con-

tinuous. So we need to define the boundary value in trace sense. We denote H̃1(Ω)

to be the subspace of H1(Ω) with zero boundary trace. It is equivalent to define

H̃1(Ω) as a completion of C∞
c (Ω) in the H1(Ω)-norm (see for example [62, Theorem

2, Page 259]).

For negative integers s < 0 and 1 ≤ p ≤ ∞, W s,p(Ω) is the dual space of

W̃−s,q(Ω). Here q is the dual exponent of p, i.e. 1
p

+ 1
q

= 1 and q = ∞ if p = 1;

q = 1 if p = ∞.

2.1.3 Sobolev Spaces of Fractional Order

Up to now, the Sobolev spaces of integer order have been defined for any integer

number. For noninteger s, there are several ways to define the fractional order norm,

for example, by the growth of the Fourier coefficients, or by interpolation theory, or

by double integrals.

We first give a definition of Sobolev spaces of noninteger order which also

specify their norms. This is important for our later a posteriori error analysis since
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different definitions of Sobolev norms behave differently as the domain becomes

smaller, or as s approaches certain values (i.e., the equivalence constants are not

uniform with respect to the size of the domain and s).

The space H̃s(Ω) is defined for s ∈ [0, 1] using interpolation [18] of

H̃0(Ω) := L2(Ω) and H̃1(Ω) :=
{
v ∈ H1(Ω) : v|Γ = 0

}
.

The space H−s(Ω) is the dual space of H̃s(Ω). Notice that this definition using

interpolation is not restricted to the case when p = 2. W s,p for 0 < s < 1 and

1 ≤ p ≤ ∞ could be defined analogously.

From the definition, it is not difficult to show the following interpolation in-

equality:

Proposition 2.1 (Interpolation Inequality) Let s ∈ [0, 1]. The Sobolev space

interpolation inequality holds, i.e.

‖v‖H̃s(Ω) ≤ ‖v‖s
H̃1(Ω)

‖v‖1−s
L2(Ω) ∀ v ∈ H̃1(Ω).

We now introduce the local version of the Hs-norm. Let ω be a sub-domain

of Ω. We then define the spaces Hs
Γ(ω) for s ∈ [0, 1] using interpolation of

L2(ω) and H1
Γ(ω) :=

{
v ∈ H1(ω) : v|Γ = 0

}
.

We will use Hs
Γ(ω)∗ to denote the dual space of Hs

Γ(ω).

Remark 2.2 (Boundary Conditions) It is worth noticing that functions inH1
Γ(ω)

do not necessarily have zero boundary trace in the local domain ω. And it is clear

that Hs
Γ(Ω) = H̃s(Ω) by their definitions.

Remark 2.3 (General Order) Although we only consider the case where 0 <

s < 1 here, it is clear that general s can be treated in a similar fashion via the

interpolation of H̃⌊s⌋(Ω) and H̃⌊s⌋+1(Ω), where ⌊s⌋ is the maximum integer less than

or equal to s.
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Remark 2.4 (Zero Trace) The H̃s(Ω) space is related to the standard fractional

Sobolev space. In fact,

H̃s(Ω) =





Hs(Ω) 0 ≤ s <
1

2

Hs
0(Ω)

1

2
< s < 1.

When s = 1
2
, H̃

1
2 (Ω) is a dense subspace of H

1
2 (Ω) and is sometimes denoted by

H
1
2
00(Ω). See, for example, [92].

2.1.4 Norm Equivalence

Now we will review the norm equivalence results for Sobolev spaces of nonin-

teger order by Faermann [65]. Let {vj}Jj=1 be a set of functions with pairwise weakly

disjoint support, i.e. the intersection of supports of any two functions vi and vj has

zero measure. Due to the lack of orthogonality, the ordinary relation

∥∥∥
J∑

j=1

vj

∥∥∥
2

H1(Ω)
=

J∑

j=1

∥∥vj
∥∥2

H1(Ω)

does not hold anymore for fractional-order norm ‖ · ‖Hs(Ω) even if supports of vj’s

are pairwise disjoint.

In [68, Theorem 2.2], a weaker equivalence result has been proven.

Proposition 2.5 (Norm Equivalence) There exists a constant Cs > 0 such that

C−1
s

J∑

j=1

∥∥vj
∥∥2

H̃s(Ω)
≤
∥∥∥

J∑

j=1

vj

∥∥∥
2

H̃s(Ω)
≤ Cs

J∑

j=1

∥∥vj
∥∥2

H̃s(Ω)
, (2.4)

for {vj}Jj=1 ⊆ H̃s(Ω) with weakly disjoint support.

Proof. We first prove the second inequality which is needed in our a posteriori

error estimation in Chapter 6. We know that {vj}Jj=1 has pairwise weakly disjoint

support (pairwise intersection has measure 0). Let Ωj be the support of vj for each

1 ≤ j ≤ J . We can define an operator T :
∏J

j=1 H̃
s(Ωj) → H̃s(Ω) such that

T (v1, . . . , vJ) =

J∑

j=1

vj .
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Obviously, for s = 0, 1, we have

‖T (v1, . . . , vJ)‖2
H̃s(Ω) =

J∑

j=1

‖vj‖2
H̃s(Ω) .

Hence the interpolation argument gives the second inequality with Cs = 1. The

reverse direction is much more involved and we refer readers to [65]. �

Remark 2.6 (Different Definitions of Sobolev Spaces of Fractional Order)

Faermann defined in [65] the noninteger Sobolev norm by extending function v to

Rd and then using Fourier transform:

‖v(x)‖Hs(Rd) :=
∥∥(1 + |ξ|2)s/2 v̂(ξ)

∥∥
L2(Rd)

,

where v̂ is the Fourier transformation of v. It is well known that this norm is

equivalent to the H̃s-norm by zero extension.

Remark 2.7 (Applications in A Posteriori Error Estimation) Based on this

equivalence result, Faermann [68] gave a reliable and efficient (but unfortunately not

computable) error estimator for boundary element methods for integral equations

with s not an integer.

2.2 Angle-Bounded Operators

With the definitions of Sobolev spaces in the previous two subsections, from

now on, we fix the general Hilbert triple consider in Chapter 1 to be the following

particular setting (still quite general though):

(V,H,V∗) :=
(
H̃s(Ω), L2(Ω), H−s(Ω)

)
,

for 0 ≤ s ≤ 1. Furthermore, we will consider a class of operators A, namely

angle-bounded operators, in the following chapters (especially for applications in

finance). This notion was introduced by Brézis and Browder [32] as a nonlinear

generalization of sectorial operators, and more recently revisited by Caffarelli in the

context of regularity theory [38].
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2.2.1 Angle Condition

Let A : H̃s(Ω) → H−s(Ω) be a linear monotone operator and we employ the

energy norm (if it is a norm) as defined in Chapter 1

|||v||| := 〈Av, v〉 1
2 ∀ v ∈ H̃s(Ω),

induced by the operator A, as well as its dual norm |||·|||∗.

Definition 2.8 (Sectorial Operator) A linear monotone operator A is called sec-

torial if it satisfies the strong sector condition

∣∣〈Av, w〉
∣∣2 ≤ 4γ2 |||v|||2 |||w|||2 ∀ v, w ∈ H̃s(Ω). (2.5)

This is equivalent to the following inequality for the skew-symmetric part of

A [32, Prop. 11]:

∣∣〈Av, w〉 − 〈Aw, v〉
∣∣ ≤ 2λ |||v||| |||w||| ∀ v, w ∈ H̃s(Ω), (2.6)

with a positive constant λ satisfying γ2 = (λ2 + 1)/4. We observe that (2.5) implies

that A is Lipschitz continuous and

|||Av|||∗ := sup
w∈H̃s(Ω)

〈Av, w〉/ |||w|||

satisfies
1

4γ2
|||Av|||2∗ ≤ |||v|||2 ≤ |||Av|||2∗ ∀ v ∈ H̃s(Ω).

Definition 2.9 (Angle-bounded) Let H be a Hilbert space, and let D(F) ⊂ H be

the domain of an operator F : H → 2H. Then F is said to be γ2-angle-bounded if

there exists a positive constant γ such that

〈F(v) − F(w), w − z〉 ≤ γ2〈F(v) − F(z), v − z〉 ∀ v, w, z ∈ D(F). (2.7)

Lemma 2.10 (Equivalence) The conditions (2.5) and (2.7) are equivalent for A
linear.
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Proof. We simply set ṽ = v − z and w̃ = w − z in (2.7) to get the equivalent

formulation (we omit the tildes)

〈Av, w〉 ≤ γ2〈Av, v〉 + 〈Aw,w〉 ∀ v, w ∈ D(A). (2.8)

Then replace v by αv with α ∈ R and argue with the resulting quadratic inequality

in α, i.e.

α2γ2 〈Av, v〉 − α 〈Av, w〉+ 〈Aw,w〉 ≥ 0

to realize that (2.5) and (2.8) are equivalent. �

2.2.2 Coercivity Property

We conclude this section with the coercivity property [110, Lemma 4.3], which

will be crucial in a posteriori error estimation later in Chapter 6.

Lemma 2.11 (Coercivity) Let the linear sectorial operator A satisfy the condi-

tion (2.7) (γ2-angle-bounded). Then we have

〈Av −Aw,w − z〉 ≤ 2γ2 |||v − z|||2 − 1

4

(
|||v − w|||2 + |||z − w|||2

)
∀ v, w, z ∈ K.

(2.9)

Proof. In view of the Cauchy-Schwarz inequality, we get

〈Av −Aw,w − z〉 = 〈Av −Aw,w − v〉 + 〈Av −Aw, v − z〉

≤ − |||v − w|||2 + 2γ |||v − w||| |||v − z|||

≤ −1

2
|||v − w|||2 + 2γ2 |||v − z|||2 .

Similarly, we get

〈Av −Aw,w − z〉 = 〈Az −Aw,w − z〉 + 〈Av −Az, w − z〉

≤ − |||z − w|||2 + 2γ |||v − z||| |||w − z|||

≤ −1

2
|||z − w|||2 + 2γ2 |||v − z|||2 .

Adding the last two inequalities gives (2.9). �
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2.3 Obstacle Problems

This presentation mainly follows Rodrigues [120] and Friedman [73]. Unfortu-

nately, it is impossible to review all regularity results available in the literature. For

regularity results for other types of variational inequalities, like the case of gradient

constraint, the biharmonic obstacle problems, etc, we refer to the monograph [31].

Remark 2.12 (EVI and PVI) Since we shall focus on the variational inequalities

with obstacle type constraints throughout this note, we will later refer to elliptic

and parabolic obstacle problems as EVI and PVI, respectively, with a little abuse

of notation.

2.3.1 Elliptic Obstacle Problems

Problem 2.13 (Elliptic Obstacle Problems) Suppose in Problem 1.1, the con-

vex set has the following structure

K :=
{
v ∈ V

∣∣ v ≥ χ
}
, (2.10)

where the function χ ∈ V is the so-called obstacle. The corresponding VI problem

(VI) Find u ∈ K : 〈Au− f, u− v〉 ≤ 0 ∀ v ∈ K, (2.11)

is called the elliptic obstacle problem.

Suppose u ∈ K is the solution of the obstacle problem, Problem 2.13, the set

of points C(u) := {x ∈ Ω : u(x) = χ(x)} is called the contact set or coincidence set,

and its complement N (u) = Ω\C(u) the noncontact set or non-coincidence set. The

boundary F(u) between the two sets is called the free boundary or free interface.

From now on, we use v+ (v−) to be the non-negative part of a function v (−v),
i.e., v+ = max{v, 0} and v− = −min{v, 0}.

We start by stating without proof a useful but relatively restricted regularity

result [120]:
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Proposition 2.14 (General Regularity Result) Assume that

(χ− v)+ ∈ V, ∀ v ∈ V and ‖v±‖H ≤ ‖v‖H, ∀ v ∈ H. (2.12)

If f ∈ H and (Aχ− f)+ ∈ H, then the solution u of the obstacle problem

u ∈ K : 〈Au− f, u− v〉 ≤ 0 ∀ v ∈ K. (2.13)

satisfies the estimate

‖Au‖H ≤ ‖f‖H + ‖(Aχ− f)+‖H.

Remark 2.15 (Dirichlet Obstacle Problem) The simplest example of A is the

Laplace operator, −∆. In this case, we take the Hilbert triple to be

V = H̃1(Ω), V∗ = H−1(Ω), and H = L2(Ω) = H∗.

The bilinear form a(·, ·) = (∇·,∇·) is an inner product which induces the energy

norm for the Laplace equations. A direct application of Proposition 2.14 to the

Dirichlet obstacle problem gives H2(Ω)-regularity of the solution assuming f ∈
L2(Ω), χ ∈ H2(Ω), χ ≤ 0 on ∂Ω and Ω being convex or ∂Ω ∈ C1,1 (see Brézis and

Stampacchia [34]). It has been shown that the solution u of a Dirichlet Obstacle

problem can never be better than C1,1(Ω) regardless how smooth the obstacle χ and

data f are (see Caffarelli [39]).

2.3.2 Equivalent Formulations

There are several different ways to formulate the variational inequality prob-

lem. We now discuss some of its equivalent formulations briefly.

Complementarity Problems

The most frequently used form is linear complementarity problem (LCP): find

a solution u ∈ V such that

(LCP)





Au− f ≥ 0

u− χ ≥ 0

〈Au− f, u− χ〉 = 0.

(2.14)
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The last equation is the so-called complementarity condition. This is actually equiv-

alent to (2.11) if χ ∈ V.

Proof of Equivalence. If u is a solution of LCP (2.14), then for any v ∈ V and

v ≥ χ we have

〈Au− f, u− v〉 = 〈Au− f, χ− v〉 ≤ 0,

in view of the complementarity condition and the sign condition of Au− f .

On the other hand, if u is solution of VI (2.11), it is trivial to see that u

satisfies the first two conditions of LCP. The complementarity condition is obtained

by taking v = u+ (u− χ) and v = χ. �

Nonlinear Equation

Motivated by the proof of existence theorem 1.5, we can formulate the VI

(2.11) as a nonlinear projection equation

(NE) u = PK (u+ (b− Bu)) , (2.15)

where PK (·) : V → K is the projection operator defined as (1.14).

Proof of Equivalence. First the VI problem can be written equivalently as

(Bu− b, u− v)V ≤ 0 ∀ v ∈ K. (2.16)

Define e := u − PK (u+ (b− Bu)). If u is solution of VI (2.11), by taking v =

u− (b− Bu) and v = u in the definition of projection (1.14), we get that

(
e− (b− Bu), e

)
V
≤ 0.

This, in turn, gives the sign condition

(b− Bu, e)V ≥ ‖e‖2
V ≥ 0.

By taking v = PK (u− (b− Bu)) in (2.16), we get (b−Bu, e)V ≤ 0. Hence ‖e‖V = 0.

The converse direction can be derived directly from (1.14) by taking w =

u− (b− Bu). �
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Variational Inclusion Problem

The VI (2.11) can also be viewed as an inclusion problem. If we write the VI

problem as a variational inequality of second-type1:

(VI2) 〈Au− f, u− v〉 + IK(u) − IK(v) ≤ 0 ∀ v ∈ V. (2.17)

Here IK is the indicator function of the convex set K and it is convex lower semi-

continuous:

IK(v) :=





0 if v ∈ K

∞ if v /∈ K
When A is symmetric, it is clear that this problem is equivalent to a convex mini-

mization problem

min
v∈V

1

2
a(v, v) − 〈f, v〉 + IK(v).

A more general formulation is given by Brezis and Stampacchia [34]. VI (2.17) can

be written as a variational inclusion problem (IP):

(IP) Au+ ∂IK(u) ∋ f. (2.18)

Notice that the convex function IK : R → R might not be differential in usual sense.

We use the more general subdifferential mapping ∂IK, which is a multivalue map

such that, for any value c ∈ ∂IK(x)

IK(y) − IK(x) ≥ c(y − x) ∀ y ∈ R.

Remark 2.16 (Lagrange Multiplier) If K is the convex set defined in (2.21),

we let F : K → H−s(Ω) be the multivalue operator associated with the variational

inequality in K, i.e.

v∗ ∈ F(v) ⇔ a(v, v − w) ≤ 〈v∗, v − w〉 ∀ w ∈ K. (2.19)

For details, see § 2.3.2. If we further define the multivalue operator λ(v) := F(v)−Av
with D(λ) = K, we see that λ(v) ≤ 0 in Ω and λ(v) = 0 in N = {v > χ} (simply

1The variational inequality in the form (2.11) is usually called variational inequality of first-type.
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argue with w = v +ϕ). It turns out that λ is the subdifferential ∂IK. Such a λ can

be viewed as a Lagrange multiplier (see Definition 2.22 in §2.3.4) of the constraint

v ≥ χ.

The following lemma provides an important insight for a posteriori error esti-

mation which will be discussed in Chapter 6.

Lemma 2.17 (F is Angle-Bounded) If A is γ2-angle-bounded (see Definition

2.9), then the nonlinear operator F = A + λ is γ2
0-angle-bounded with constant

γ0 = max(1, γ). Moreover, F satisfies for all v, w, z ∈ K

〈F(v) − F(w), w − z〉 ≤ γ2〈Av −Az, v − z〉 + 〈λ(v), v − z〉

≤ γ2〈Av −Az, v − z〉 + 〈λ(v) − λ(z), v − z〉.
(2.20)

Proof. Since F(v) = Av + λ(v), in view of Lemmas 2.10 and (2.5) we only need

to deal with λ(v). We resort to the fact that λ(v) = ∂IK(v), which translates into

the property

〈λ(v), w − v〉 ≤ 0 ∀ v, w ∈ K.

In fact, if v > χ then λ(v) = 0 whereas if v = χ ≤ w then λ(v) ≤ 0. Consequently

〈λ(v) − λ(w), w − z〉 = 〈λ(v), v − z〉 + 〈λ(v), w − v〉 + 〈λ(w), z − w〉

≤ 〈λ(v), v − z〉 ≤ 〈λ(v) − λ(z), v − z〉,

whence we deduce (2.20)

〈F(v) − F(w), w − z〉 ≤ γ2〈Av −Aw,w − z〉 + 〈λ(v) − λ(z), v − z〉

≤ γ2
0〈F(v) − F(z), v − z〉.

The last inequality implies that F is γ2
0-angle-bounded, as asserted. �

2.3.3 Parabolic Obstacle Problems

The parabolic obstacle problems can be defined in an analogous way,
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Problem 2.18 (Parabolic Obstacle Problems) Suppose that, in (1.18), the con-

vex set has the following structure

K :=
{
v ∈ V

∣∣ v ≥ χ(t) a.e. t ∈ (0, T )
}
. (2.21)

Then the corresponding variational inequality problem, Problem 1.11, is called the

parabolic obstacle problem.

Remark 2.19 (Equivalent Formulations) Similar to the elliptic problem (Prob-

lem 2.13) discussed in §2.3.2, we can write the parabolic problem (Problem 2.18) as

equivalent LCP, NE, IP formulations also.

For V = H̃1(Ω) and a second order elliptic operator A : H̃1(Ω) → H−1(Ω)

satisfying (1.5) and (1.6), the following classical regularity result is well-known (see

[30, Section 2.4]).

Lemma 2.20 (Regularity) Suppose the obstacle χ(t) ∈ H2(Ω) a.e. t ∈ (0, T ) and

χ(t) < 0 on the boundary (0, T ) × Γ. If

f ∈ C([0, T ];L2(Ω)),
∂f

∂t
∈ L1(0, T ;L2(Ω)), and u0 ∈ H2(Ω) ∩ K,

then the problem 2.18 has a unique solution u satisfying

u ∈ L∞(0, T ;H2(Ω)),
∂u

∂t
∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)).

Remark 2.21 (Singularity in Time Horizon) For parabolic problems without

constraint (K = V), the smoothness of u in time is directly related to the smoothness

of f in time under compatibility assumptions of f and u0 on Γ. In fact,

f ∈ Hs(0, T ;V∗) =⇒ u ∈ Hs(0, T ;V) ∩Hs+1(0, T ;V∗).

On the contrary, for obstacle problems, no matter how smooth u0 and f are, the

time derivative ∂tu could be discontinuous.

25



2.3.4 Lagrange Multiplier

We now look at a very important quantity for constrained energy minimization,

namely the Lagrange multiplier. In Chapter 6, we shall employ it for a posteriori

error estimation.

Definition 2.22 (Lagrange Multiplier) We denote the residual of u by

V∗ ∋ λ(u) :=





f −Au for elliptic problems

f − ∂tu−Au for parabolic problems;
(2.22)

λ(u) is often referred to as the Lagrange multiplier.

It is clear that λ = 0 for problems without obstacle constraint (linear equa-

tions). For problems with constraint, this quantity encodes information about the

contact region. It may be regarded as a reaction in elasticity applications.

To be able to understand the properties of λ better, we first look at the elliptic

obstacle problem. It is easy to see, from the definition of λ as well as the variational

inequalities (1.10), that 



λ ≤ 0

λ = f −Aχ in C(u)

λ = 0 in N (u)

(2.23)

These important characteristics of λ tells us:

• When the constraint is not active (N (u) or u > χ), λ vanishes as in the linear

equations.

• When the constraint is active (C(u) or u = χ), λ < 0 is nonzero; furthermore,

the magnitude of λ measures the interaction between the solution and the

obstacle.

Remark 2.23 (First-order Optimal Condition) The condition (2.23) can be

viewed as an extension of first-order optimal condition for constrained minimization

problems. For stationary problems, when A is symmetric, continuous, and coercive,

(2.23) is equivalent to the well-known Karush-Kuhn-Tucker (KKT) condition [89]

for constrained minimization.
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Chapter 3

Option Pricing – An Application in Finance

The evaluation of the price of an option contract is of considerable importance

in finance [78]. It is well-known that there is no general closed-form analytical

solution for the price of American-style options. To solve this problem, people

usually resort to numerical methods, whose improvement is still an active field of

research. The American-style option pricing problem based on the classical Black-

Scholes model can be written as a variational inequality for a differential operator.

This reformulation is crucial to construct a successful numerical treatment of the

problem, as suggested by Wilmott, Dewynne, and Howison [142]. However, in some

more advanced models (like the CGMY model [40]), the problem is more complicated

and involves a pseudo-differential operator.

3.1 Option Contract

An option is a contract between the writer and the holder that gives the right,

but not the obligation, to the holder to buy or sell a risky asset at a prespecified

fixed price within a specified period [142, Chapter 1]. The underlying risky asset

could be stocks, stock indices, futures, currencies, commodities, or even weather.

An option contract is a form of derivative instrument, which can be traded on

exchanges or over the counter. A call (put) option allows its holder to buy (sell)

the underlying asset at the strike price K. Option holders can only exercise their

European-style options at the expiration or maturity date, T ; in contrast, American-
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style options can be exercised at any time before they expire.

Purchasing options offers you the ability to position yourself accordingly with

your market expectations so as to both profit and protect yourselves with limited

risk. The decision as to what type of options to buy depends on whether your outlook

for the respective security is positive (bullish) or negative (bearish). If your outlook

is positive, buying a call option with lower strike price creates the opportunity to

share in the upside potential of a stock without having to risk more than a fraction

of its market value. Conversely, if you anticipate downward movement, buying a

put option with high strike price will enable you to protect your investment against

downside risk without limiting profit potential.

The option premium is the price at which the option contract trades. In

return, the writer of the call option is obligated to deliver the underlying security

to an option buyer if the call is exercised or buy the underlying security if the put

is exercised. The writer keeps the premium whether or not the option is exercised.

Then it is natural to ask what is a fair price of an option.

Because options are derivatives, they can be combined with the underlying

security to create a risk neutral portfolio (zero risk, zero cost, zero return). Imple-

menting this in practice may be difficult because of “stale” stock prices, large bid/ask

spreads, market closures. If stock market prices do not follow a random walk (due,

for example, to insider trading) this delta neutral strategy or other model-based

strategies may encounter further difficulties. Even for veteran traders using very

sophisticated models, option trading is not an easy game to play. Hence, the op-

tion pricing problem is an important and fundamental financial problem. A good

estimation of an option’s theoretical price contributed to the explosion of trading in

options.

3.2 Black-Scholes Model

Models of option pricing were very simple and incomplete until 1973 when

Black and Scholes [23] published the Black-Scholes pricing model. Their model
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gives theoretical values for European put and call options on non-dividend paying

stocks.

3.2.1 A Simple Example: American Put Option

To introduce this classical model, we take the pricing problem of an American

put option on a non-dividend paying stock as a model problem. In the classical

Black-Scholes model, we assume that the price S(t) of the underlying risky asset

(e.g., a stock) is described by geometric Brownian motion

dS

S
= rdt+ σdW (3.1)

with volatility σ > 0 and interest rate r > 0. When no confusion arises, we will

assume the random variables all have dependence in time t and drop the argument

t.

Remark 3.1 (Wiener Process) A Brownian motion (name from physics) is often

called the Wiener process. A Wiener process Wt is characterized by the following

three facts:

• W0 = 0;

• Wt is almost surely continuous;

• The increments Wt+∆t − Wt satisfies independent normal distribution with

mean value 0 and variance ∆t for any t,∆t ≥ 0.

The Wiener process is the simplest continuous Lévy process which will be discussed

in the next Section.

An American put option with strike price K and expiration date T gives the

holder the right to sell one asset at any time t before the expiration date at price

K. At any time t when the option is exercised, its value is given by P (S(t)) with

the payoff function

P (S) = (K − S)+ = max{K − S, 0}.

We want to solve the following problem: If at time t we have an asset priced at S(t),

29



• What is the fair price V (S, t) of the option?

• When is the optimal time to exercise the option?

Let S(t) denote the underlying stock price and V (S, t) be the American put

option price at time t. It is well-known that the price of an American option satisfies

the Black-Scholes equation:

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0 ∀ S > Sf (t) and t ∈ [0, T ], (3.2)

where σ is the volatility of the underlying stock, r is the interest rate, and Sf(t)

denotes the exercise boundary at time t. We know that the price of an American

option is never less than the pay-off function P (S) because of the non-arbitrage

assumption1; therefore

V (S, t) = P (S) ∀ 0 ≤ S ≤ Sf(t) and t ∈ [0, T ]. (3.3)

The final and boundary conditions are given by





V (S, T ) = P (S), S ≥ 0,

V (Sf (t), t) = P (Sf(t)),
∂V
∂S

(Sf(t), t) = −1, 0 < t ≤ T,

lim
S→∞

V (S, t) = 0, 0 ≤ t ≤ T.

(3.4)

In this way, we write the price of an American put option as the solution of a

free boundary problem (3.2)–(3.4). In Figure 3.1, we see that, for an American

put option, when the underlying stock price is greater than the exercise boundary,

we should hold the put option; otherwise, early exercise could avoid possible loss.

Although this formulation is mathematically beautiful, a major difficulty under this

setting is that one needs to solve for V along with the unknown exercise boundary2

Sf .

1It simply means no one can make immediate risk-free profit

2For American option holders, they need to decide whether and when to exercise an option.

This leads to an optimal exercise policy problem.
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Figure 3.1: Price of American Put Option. Left: pay-off function P ; Right: excise

boundary Sf .

3.2.2 Black-Scholes Inequality

The idea is to reformulate the problem such that the free boundary does not

show up explicitly and the degeneracy at the origin is avoid [80, 81]. If we use the

time to maturity t̃ = T − t and log price x = logS as independent variables, then

the function

u(x, t̃) := V (ex, T − t̃)

satisfies the following linear complementarity problem LCP (we will write t instead

of t̃ for time to maturity from now on):

Problem 3.2 (Black-Scholes Inequality) Find u(x, t) such that

∂u

∂t
− σ2

2

∂2u

∂x2
+

(
σ2

2
− r

)
∂u

∂x
+ ru ≥ 0 for x ∈ R and 0 ≤ t ≤ T , (3.5)

with the obstacle condition

u(x, t) ≥ χ(x) for x ∈ R and 0 ≤ t ≤ T (3.6)

and the initial condition

u(x, 0) = u0(x) for x ∈ R, (3.7)

where u0(x) = χ(x) = P (ex) is the payoff function in the log of the asset price.

Moreover, for each point (x, t) ∈ R × [0, T ], the complementarity condition has to

be satisfied, i.e., there holds equality in at least one of (3.5) and (3.6).
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We have shown in §2.3.2 that LCP’s can be also written as variational inequal-

ities. So it is clear that Problem 3.2 is a special example of parabolic variational

inequalities.

Remark 3.3 (Localization of Domain) To solve problems like Problem 3.2, which

is formulated on an infinite domain, we usually truncate the infinite domain to get

a finite domain [−L,L] (this procedure is usually called localization). It introduces

truncation error which decreases exponentially fast as L increases. On the other

hand, the localization also removes the degeneracy (when S = 0) artificially. To get

around this, there is a different approach which avoids using the log-price has been

proposed by [5].

Remark 3.4 (Solving the B-S Problems) Generally speaking, there are two ba-

sic ways to solve option pricing problems: analytical methods and numerical meth-

ods. Black and Scholes [23] derived explicit pricing formulas for European call

and put options on stocks which do not pay dividends. For American options, the

Black-Scholes model results in a variational inequality. One can not find explicit

closed-form solutions to the American option pricing problem in general. When the

formulas for the exact solutions are too difficult to be practically used, we resort to

numerical methods, such as lattice methods, simulation-based methods, PDE-based

methods, etc. We refer to the book by Wilmott, Dewynne, and Howison [142], the

recent review by Broadie and Detemple [37], and the references therein for a review

and comparison of many numerical strategies for pricing American options.

Remark 3.5 (Perpetual Options) A perpetual option is an option with no ma-

turity date. Of course, only American-style perpetual options make sense then. For

pricing perpetual options in the B-S model, we only need to modify Problem 3.2 by

removing the time-derivative term to obtain a steady state variational inequality.
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3.3 Beyond Black-Scholes Model

In the classical Black-Scholes (B-S) model, the underlying risky assets are

assumed to be geometric Brownian motions. In practice, all the parameters (strike

price, expiration date, interest rate, etc) can be observed except the volatility. This

implies an one-to-one relation between the value of an option contract and the

volatility. However it is observed in “real” world that it is necessary to use different

volatility for different strike price or maturity to fit the Black-Scholes formula with

quoted prices of European options. This phenomenon is called volatility skew or

volatility smile depending on the shape of the volatility curve. Because of the

existence of the volatility smile, traders usually need to use a matrix of implied

volatilities [141] to adjust prices.

3.3.1 Lévy Processes

Many advanced models beyond the classical B-S models have been proposed

to overcome this difficulty. We only mention one of the approaches, which enriches

the stochastic dynamics of the underlying risk asset by allowing jumps (see [4] and

the reference therein for a quick review). These models can be treated in a general

framework using Lévy processes. In real life, it is observed that the price of a risky

asset could have sudden jumps. For example, in Figure 3.2 and 3.3, it shows the

exchange rate of US dollars to Euro from the beginning of century till now. We can

see jumps if we examine the picture carefully.

Starting from the seminal work by Merton [102], many models were developed

along this direction in the last two decades. The variance Gamma model by Madan

and Seneta [95] was the first model which used a particular Lévy process to model

the asset dynamics. It was extended to option pricing later by Madan et al. [94]. All

these models as well as the classical B-S model can be considered in the framework

of Lévy processes [91]. In this section, we shall first review some basic concepts of

Lévy processes.
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Figure 3.2: Foreign exchange rate: US dollars per Euro.
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Figure 3.3: Foreign exchange rate: Yen per US dollars.
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Definition 3.6 (Lévy Process) A stochastic process, Xt (0 < t < ∞ and X0 =

0), is a Lévy process if and only if it has independent and stationary increments.

Remark 3.7 (Independent and Stationary Increments) By the definition, for

any Lévy process Xt, the random variable Xt+∆t − Xt has same but independent

distribution as the Xt′+∆t − Xt′ with 0 < t, t′,∆t < ∞. It is then clear that the

Wiener process introduced in Remark 3.1 is a particular example of Lévy processes.

Example 3.8 (Poisson Process) In addition to a Wiener process, another simple

example of Lévy processes is a Poisson process. The Poisson process Nt(t ≥ 0)

represents the number of events since time t = 0 and increment Nt+∆t−Nt satisfies

a Poisson distribution for any t and ∆t ≥ 0. Merton [102] used Poisson processes

to model the occurrence of jumps in real market

dS

S
= rdt+ σdW + ηdN.

It is often called the jump-diffusion model.

3.3.2 Lévy-Khintchine Formula

The characteristic function of a Lévy process can be represented using the fol-

lowing Lévy-Khintchine formula (detailed discussion can be found in the monograph

by Sato [121]).

Proposition 3.9 (Lévy-Khintchine Formula) Let Xt be a Lévy process. Then

we have the following representation of the characteristic function of Xt

lnE[eiθXt ] = iαtθ − 1

2
σ2tθ2 + t

∫

R

(
eiθx − 1 − iθx1|x|<1

)
ν(dx).

where α ≥ 0, σ ∈ R, and 1|x|<1 is the characteristic function and a measure ν on

R\{0} satisfying ∫

R

min{1, x2}ν(dx) <∞.

Remark 3.10 (Lévy-Khintchine Triplet) From the proposition above, a Lévy

process is a combination of a drift component, a Brownian motion component and
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a jump component. These three components can be determined by the Lévy-

Khintchine triplet (α, σ2, ν).

• The first parameter α is called the drift term which determines the develop-

ment of the process Xt on the average.

• The second parameter σ2 defines the variance of the Gaussian part of Xt.

• The last parameter ν (the so-called Lévy measure) is responsible for the be-

havior of jumps. It is usually assumed that ν(dx) = k(x)dx with k(·) being

the Lévy density of Xt. Intuitively speaking, the Lévy measure describes the

expected number of jumps of a certain height in a unit time interval.

Remark 3.11 (Regularization) We notice that the Lévy density might not be

integrable near the origin. Regularization is necessary to make the integral in the

Lévy-Khintchine formula integrable. The function 1 + iθx1|x|<1 is used for regular-

ization (to guarantee integrability around zero) here.

Remark 3.12 (CGMY Model) The CGMY model [40] is a generalization of the

variance Gamma model [95]. Here we just give the Lévy density of the CGMY

model without getting into details. The density function can be written as

kCGMY (x) :=





C
exp(−G|x|)

|x|1+Y if x < 0

C
exp(−M |x|)

|x|1+Y if x > 0,
(3.8)

where constants C > 0, G,M ≥ 0, and Y < 2. Here C is a measure of the overall

level of activity; G and M control the rate of exponential decay of the Lévy density

(they are usually different due to different reasons causing up and down movement

of the price of risk assets); Y is used to model the fine structure of the stochastic

process.

Remark 3.13 (Relation with Fractional Laplacian) It is well known that the

Fourier transform of the Laplace operator can be written as

(−∆u)∧(ξ) = |ξ|2û(ξ).
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In this manner, we can define square root of the Laplace operator to be

((−∆)
1
2u)∧(ξ) := |ξ|û(ξ).

More generally, we can define [55], for all s ∈ R+, that

((−∆)su)∧(ξ) := |ξ|2sû(ξ). (3.9)

This is related to the so-called fractional integral operator. In fact, we can compute

the fractional Laplacian (−∆)s using a singular integral

(−∆)su(x) = Cd,s · PV

∫

Rd

u(x) − u(y)

|x− y|d+2s
dy, (3.10)

This integral operator is then related to the CGMY model (G = M = 0, Y = s for

d = 1).

Using similar techniques as in the case of Black-Scholes, it has been shown

(see [118]) that value of options written on an underlying geometric Lévy process

can be formulated as integro-differential equations (European-style) or variational

inequalities (American-style) [4]. In the following section, we will give a general

formulation of a class of integro-differential variational inequalities which can cover

the important cases of European and American option pricing problems with Lévy

asset.

3.4 Option Pricing as a Variational Inequality

In this section, we shall specify a class of problems which will be treated

numerically in the following chapters. We shall introduce fully-discrete numerical

methods to solve the problem in Chapter 4; we analyze the a priori as well as

a posteriori errors of the numerical methods in Chapter 5 and 6; finally we shall

propose adaptive algorithms to improve efficiency in Chapter 7.

Assume the linear operator A : V → V∗ to be continuous and coercive and

a(·, ·) to be its associated bilinear form. To cover the interesting applications men-
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tioned in the previous two sections, we consider the following evolution integro-

differential variational inequalities: find u(t) ∈ K(t) such that

〈∂tu(t) + Au(t) − f(t), u(t) − v〉 ≤ 0 ∀ v ∈ K(t) a.e. t ∈ (0, T ), (3.11)

where the convex set

K(t) := {v ∈ V | v ≥ χ(t)}.

Here f, u, v are obviously also functions of x, which we omit for convenience.

Now we shall introduce a general variational inequality problem which can

be used for American option pricing problems on assets whose prices are modelled

by a Lévy process. Let Ω be an open and bounded polygonal domain in Rd and

Q := Ω×(0, T ). For a real constant Y < 2, we define a continuous pseudo-differential

operator AI : H̃
Y/2(Ω) → H−Y/2(Ω)

AIu(x) :=

∫

Ω

k(x− y)u(y) dy ∀u ∈ H̃Y/2(Ω), (3.12)

where k(x) is a given kernel function. We assume that, in the definition (3.12), the

kernel function k(x) ∈ C∞(R \ {0}), and that the condition

|∂mx k(x)| . |x|−d−Y−m (3.13)

near x = 0.

Remark 3.14 (More General Pseudo-differential Operators) For financial ap-

plications considered in this thesis, the pseudo-differential operator AI (3.12) is gen-

eral enough to cover most important models, like Lévy jump-diffusion models and

the CGMY model. However, the theory, which will developed in the following chap-

ters, can be extended to more general classes of operators. For example, we can

allow operators which are not transition invariant, i.e. AIu(x) =
∫
Ω
k(x, y)u(y)dy,

also. In differential operator case, operator A with coefficients depends on x are

considered in [104].

Remark 3.15 (Singular Kernel) Since we could and would like to (to allow

jumps) have singular kernel as discussed in previous section, we need to give the in-

tegral operator in (3.12) a proper meaning. Taking the kernel function as in CGMY

model as an example, i.e. k(x) = e−C|x|

|x|1+Y , we usually consider the following cases:
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1.
∫

R
k(x)dx < ∞ or Y < 0: In this case, the integral is not singular and the

corresponding underlying asset has finite activity and finite variation.

2.
∫

R
xk(x)dx < ∞ or 0 ≤ Y < 1: In this case, the integral need to be regular-

ized by
∫

R
k(x − y)

(
u(y) − u(x)

)
dy. This corresponds to the case when the

underlying asset has infinite activity but finite variation.

3.
∫

R
x2k(x)dx < ∞ or 1 ≤ Y < 2: In this case, the kernel function is more

singular; the underlying asset could have infinite activity and infinite variation.

We could regularize the integral by
∫

R
k(x−y)

(
u(y)−u(x)−(ey−x−1)u′(x)

)
dy

for example.

Let ρ ∈ (0, 2] be a positive constant. We define V := H̃ρ/2(Ω). We consider

the following class of linear operators.

Definition 3.16 (Operator A) Define A : H̃ρ/2(Ω) → H−ρ/2(Ω) in the following

three class where coefficients c2 ∈ Rd×d, 0 ≤ cI ∈ R, c1 ∈ Rd, c0 ∈ R are constants:

• Case I (ρ = 2): In this case Y < 2

Au := −∇ · (c2∇u) + cIAIu+ c1 · ∇u+ c0u,

where c2 ∈ Rd×d is a positive definite matrix.

• Case II (1 ≤ ρ < 2): In this case Y = ρ and

Au := cIAIu+ c1 · ∇u+ c0u,

where AI satisfies the G̊arding inequality:

〈AIv, v〉 ≥ κρ‖v‖2
H̃ρ/2 − κσ‖v‖2

H̃σ(Ω)
(3.14)

with κρ > 0 and σ < ρ/2.

• Case III (0 < ρ < 1): In this case Y = ρ and

Au := cIAIu+ c0u,

where AI satisfies the G̊arding inequality (3.14).
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From now on, we define s = ρ/2 and the operator A : H̃s(Ω) → H−s(Ω). We

note that 0 < s ≤ 1 depends on the specific application.

Remark 3.17 (Financial Meaning) For a Levy process, c2 corresponds to the

covariance matrix of a Brownian motion; the integral operator AI corresponds to a

jump process; the term with c1 is necessary to achieve the Martingale condition.

Remark 3.18 (Continuity and Coercivity) In all these three cases, we can see

that (1.7) always holds and (1.8) is satisfied if c0 is sufficiently large. Hence the

existence and uniqueness of the solution can be proved by the general theory intro-

duced in Chapter 1 and 2. Furthermore, the energy norm associated with A, |||·|||, is

equivalent to the H̃s(Ω)-norm.

Remark 3.19 (Strong Sector Condition) From continuity and coercivity of A,

it is then clear that the operator A satisfies the strong sector condition (2.5), i.e.

| 〈Av, w〉 | ≤ ‖Av‖V∗ · ‖w‖V ≤ 2γ |||v||| · |||w||| v, w ∈ V,

where γ = C∗

2C∗

and V = H̃s(Ω). Hence, by Lemma 2.10, A is an angle-bounded

operator which satisfies the coercivity condition (2.9).

Remark 3.20 (Smooth Pasting) Regularity results for obstacle problems with

fractional power of Laplacian are discussed by Silvestre [128]. He proved that the

solution u is in C1,s(Ω) for time-independent obstacle problem with A = (−∆)s(0 <

s ≤ 1). For more general problems, it has been shown by Boyarchenko and Lev-

endorskii [24] that (for perpetual American options) the smooth pasting property

(C1 solution) may fail in the pure jump cases (for example, c2 = 0, cI = 1, c1 6= 0,

and Y < 1). So in general, we can not assume that smooth pasting holds for our

numerical treatments.
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Chapter 4

Numerical Methods for Obstacle Problems

Many numerical schemes have been developed and analyzed for variational

inequalities in the past three decades. The standard techniques for both static and

evolution variational inequalities can be found in the book by Glowinski [75, 74].

For option pricing problem, several numerical algorithms [3, 76, 77, 98, 99, 100] have

been proposed recently.

In this chapter we discuss numerical methods for the obstacle problems of

general form discussed in §2. We review the finite element method for space-

discretization and the general θ-scheme for time-discretization. And then we discuss

a fully-discrete numerical scheme for PVIs to prepare ourselves for later chapters

on error analysis and adaptive methods. The rest of this chapter is organized as

follows. In section 4.1, we review basic concepts of continuous Galerkin method and

finite element approximation. Then we introduce the general θ-scheme which is com-

monly used for evolution equations in section 4.2. Finally, we give a fully-discrete

numerical scheme for parabolic variational inequalities in 4.3.

4.1 Finite Element Methods

The finite element method (FEM) has a long history in practical use and is

widely applied to lots of problems in physics and engineering. It has been proved

to be very successful in many areas, like structural mechanics. After forty years

extensive development, the subject of standard finite element method has become
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a well-understood and successful area in scientific computation.

Remark 4.1 (Why FEM?) The reason we choose to use the finite element method

instead of the finite difference method is due to the following features of the finite

element method:

• The most attractive feature of the FEM is its ability to handle complex ge-

ometries, boundaries, and operators with relative ease. Since we are going to

handle differential and integral operators in a uniform framework, it is much

easier to use the finite element method.

• The finite difference method approximates the differential equation whereas

the finite element method approximates the underlying function space. It is

more natural to enforce the obstacle constraint in the finite element approxi-

mation.

• The finite element method provides a mathematically sound framework for de-

riving a prioir and a posteriori error estimates along with adaptive algorithms.

For elliptic partial differential equations, the Galerkin method exploit the weak

formulation and replaces the underlying function space by an appropriate finite di-

mensional subspace. And FEM is a Galerkin method that uses piecewise polynomial

spaces for approximate test and trial function spaces. The readers are referred to

[50, 83, 25, 29] for more detailed discussion on construction and error analysis of

the standard finite element method. This idea can be naturally extended to elliptic

variational inequalities.

To explain the main idea, we first introduce the finite element method for the

following elliptic variational inequality as an example:

Problem 4.2 (Elliptic Variational Inequality) Let 0 < s ≤ 1 and the elliptic

operator A : H̃s(Ω) → H−s(Ω). Given data f ∈ L2(Ω) and a closed convex set K,

find u ∈ K such that

〈Au, u− v〉 ≤ 〈f, u− v〉 ∀ v ∈ K := {v ∈ H̃s(Ω) | v ≥ χ}. (4.1)

For the definition of Sobolev spaces, see §2.1.
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Step 1. Domain Partion

We first partition the domain into small subdomains. Let Ω be an open polyg-

onal domain. We then discretize the polygonal domain Ω into simplexes τ ∈ T .

Let hτ = |τ | 1
d be the diameter of τ ∈ T and h(x) be the local meshsize, that is

the piecewise constant function with h|τ := hτ for all τ ∈ T . The collection T of

elements (triangles or tetrahedrons) is called a mesh or triangulation. Throughout

this work, we will only consider conforming meshes, i.e. the intersection of any two

elements in T is either an edge(2d)/face(3d), vertex, or empty (see Figure 4.1 for an

example). We denote by Ph(T ) the set of all nodes in the mesh T . Here we use the

subscript h to describe the discrete nature and this does not imply the underlying

meshes are quasi-uniform with meshsize h. Given a node z ∈ Ph(T ), we define the

local meshsize to be hz := max{hτ : τ ∈ T and z ∈ τ}. Let hmin := minz∈Ph(T ) hz

to be the minimum meshsize of T .

Ω

Figure 4.1: A Conforming Partition of Ω

Step 2. Finite-dimensional Approximation

Let V(T ) ⊂ H̃s(Ω) be the space of continuous piecewise polynomial finite

element functions over the mesh T which vanishes on the boundary Γ := Ω \Ω, i.e.

V(T ) :=
{
v ∈ C(Ω) : v|τ is a polynomial for all τ ∈ T , v = 0 on Γ

}
. (4.2)

We then use a finite-dimensional set

K := {uh ∈ V(T ) | uh ≥ χh} closed and convex
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to approximate the feasible set K, where χh is an approximation of the obstacle χ.

We notice that there are many ways to approximate the continuous test function

space. Different choices will result in different numerical methods. In this note,

we shall focus on the simplest case – linear finite element method on triangles or

tetrahedrons, i.e. v|τ is a linear polynomial on each τ ∈ T . The weak form of the

finite element approximation reads

Find uh ∈ K : a(uh, uh − vh) ≤ 〈f, uh − vh〉 ∀ vh ∈ K. (4.3)

Step 3. Solving the Finite-dimensional Problem

Let polynomials {ψi}Ii=1 be a basis of the I-dimensional space V(T ). Let

A := (a(ψi, ψj))
I
i,j=1 be the resulting stiffness matrix of (4.1). If ~U = (Ui)

I
i=1,

~X =

(Xi)
I
i=1 ∈ RI are the vectors of coefficients of uh and χh, namely uh =

∑I
i=1 Uiψi

and χh =
∑I

i=1 Xiψi, and ~F = (Fi)
I
i=1 :=

(
〈f, ψi〉

)I
i=1

, then ~U satisfies the finite-

dimensional variational inequality:

Find ~U ≥ ~X : (A~U − ~F)T (~U − ~V) ≤ 0 ∀ ~V ≥ ~X.

Upon solving this finite-dimensional problem, we obtain a discrete approximation

uh of Problem (4.2). It is clear that this discrete problem admits a unique solution

(see, for example, [74]). There are various ways to solve this finite-dimensional

variational inequality. For the moment, we assume that there is a magic black box

which can give us the solution of this problem. Once this discrete VI problem is

solved, we get an approximation of the exact solution.

Remark 4.3 (Approximation of χ) There are several ways to approximate the

convex set K. For example, we can take χh = χ (conforming, i.e. K ⊂ K, but not

practical) or take χh to be the Lagrange interpolant of χ for continuous χ (might

not be conforming).

Error Estimations

For standard finite element approximation of elliptic equations, the most im-

portant property is an orthogonality property (i.e. the so-called Galerkin orthogo-

44



nality)

a(u− uh, vh) = 0 ∀ vh ∈ V. (4.4)

This is a simple observation of the weak formulations of the exact and discrete

solutions: 


a(u, v) = 〈f, v〉 ∀ v ∈ V

a(uh, vh) = 〈f, vh〉 ∀ v ∈ V.

Taking v = vh in the first equation and simply subtracting the two equations gives

the Galerkin orthogonality (4.4).

A Priori Error Analysis. Using the definition of the energy norm, the Galerkin

orthogonality (4.4) and the strong sector condition (2.5), we have, for any vh ∈ V,

that

|||u− uh|||2 = a(u− uh, u− uh) = a(u− uh, u− vh) . |||u− uh||| |||u− vh||| .

Hence, we obtain the quasi-optimality of the finite element approximation

|||u− uh||| . inf
vh∈V

|||u− vh||| . (4.5)

This means uh is almost the best approximation of u in the subspace V. We shall

discuss this in Chapter 5 in detail.

A Posteriori Error Analysis. A posteriori error estimation relies on the following

error equation (or residual equation). It is straightforward that

a(u− uh, v) = a(u, v) − a(uh, v) = 〈f, v〉 − a(uh, v) = 〈f −Auh, v〉 .

Hence, by continuity and coercivity of A and the Cauchy-Schwarz inequality, we

obtain

|||f −Auh|||∗ . |||u− uh||| . |||f −Auh|||∗ . (4.6)

Notice that, on the right-hand side, we only have the data f and the discrete solution

uh. This upper bound does not depend on the unknown solution u. Of course, to

make the upper bound useful in adaptive algorithms, we need it to be local and

computable. This will be addressed later in Chapter 6 and 7.
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Some Comments

We now summarize this short introduction of finite element methods with a

few comments.

Remark 4.4 (Quasi-uniform Meshes) Let T be a mesh over the domain Ω. We

say that T is quasi-uniform if there exists a constant h0 independent of τ such that

h0 . hτ . h0 ∀ τ ∈ T .

Remark 4.5 (Shape-regularity) Let {Tj} be a family of conforming meshes over

the domain Ω. We refer {Tj} as a shape-regular family if there exists a generic

constant C independent of j such that

diam(τ)

hτ
≤ C ∀ τ ∈

⋃

j

Tj ,

where diam(τ) is the diameter of the smallest ball containing τ . Notice that the

shape-regular family allows meshes that may be very highly locally refined (contain-

ing elements of very different sizes). This condition is equivalent to the maximum

angle condition which is crucial for standard finite element analysis [7].

Remark 4.6 (Higher-order Finite Element Spaces) The test function space

V(T ) does not necessarily have to be a piecewise linear polynomial space. It could

contain high-order polynomials to achieve better approximability. By choosing dif-

ferent trial function spaces and different convex sets K, one can construct different

finite element methods.

4.2 Euler Method for ODEs

Before we can introduce a fully-discrete numerical method, we review a simple

time discretization scheme, the Euler method, for the Cauchy problem (initial value

problem): find u : [0, T ] → R satisfying



u′(t) + F(t, u(t)) = 0 ∀ t ∈ (0, T )

u(0) = u0

(4.7)
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where F(t, ·), t ∈ [0, T ] be a family of continuous and coercive operators from V to

V ′.

We partition the time domain [0, T ] into N subintervals, i.e. 0 = t0 < t1 <

· · · < tN = T and let kn := tn − tn−1 be the time step-size. We denote the approxi-

mate solution at each time step tn by Un, for n = 0, . . . , N .

For any sequence {W n}Nn=1, we define the piecewise constant interpolant W

and the piecewise linear interpolant W as

W (t) := W n, W (t) := l(t)W n−1 + (1 − l(t))W n ∀ t ∈ (tn−1, tn], (4.8)

for 1 ≤ n ≤ N , where the linear function l(t) is defined by

l(t) :=
tn − t

kn
∀ t ∈ (tn−1, tn]. (4.9)

We also denote by {δW n}Nn=1 the discrete derivative of the sequence {W n}Nn=1

δW n :=
W n −W n−1

kn
∀ 1 ≤ n ≤ N. (4.10)

Since W is piecewise linear in time, we denote δtW to be the left derivative of W in

time. From this definition, it is easy to see that

δtW (t) = δW n ∀ t ∈ (tn−1, tn]. (4.11)

For a function w continuous in time, we let W n(·) := w(tn, ·) be its semi-

discrete approximation. Hence, by the convention above, W is the piecewise constant

approximation of w and W is the piecewise linear interpolation (in time) of w.

Now we are ready to formulate the θ-scheme: given an initial guess U0 of u0,

solve the following discrete problem

δUn + θF(tn, U
n) + (1 − θ)F(tn−1, U

n−1) = 0, (4.12)

for n = 1, . . . , N and 0 ≤ θ ≤ 1. For different θ, we get different finite difference

schemes:

• Forward Euler Method : θ = 0 (explicit scheme)
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• Backward Euler’s Method : θ = 1 (implicit scheme)

• Trapezoidal Method: θ =
1

2
(Crank-Nicolson Method).

The convergence, stability and consistency results for these methods are standard

(see, for example, [6, Chapter 5]).

4.3 Numerical Methods for Parabolic VI

With the two basic building blocks introduced in §4.1 and §4.2, we can now

introduce a class of fully-discrete numerical methods for the parabolic obstacle prob-

lem (2.18). We first recall the continuous problem and then give a fully-discrete

numerical scheme to solve it.

4.3.1 Continuous Problem

To simplify the representation, we assume that Ω be an open bounded polyg-

onal domain in Rd with boundary Γ and Q := Ω× (0, T ) be the parabolic cylinder.

Consider an obstacle χ ∈ H1(Q) such that χ ≤ 0 on Γ×(0, T ) and nonempty convex

sets

K(t) := {v ∈ H̃s(Ω) : v ≥ χ(t)} a.e. t ∈ [0, T ]. (4.13)

We consider the linear operator A : H̃s(Ω) → H−s(Ω) for 0 < s ≤ 1 given in

Definition 3.16. The operator A gives rise to the continuous and coercive bilinear

form a(·, ·) : [H̃s(Ω)]2 → R defined by

a(v, w) := 〈Av, w〉 ∀ v, w ∈ H̃s(Ω).

For the moment, we further assume that χ ∈ C(0, T ;H1(Ω) ∩ C(Ω)). We can

use linear Lagrange interpolation χnh to approximate χ(tn). Instead of using the

interpolation to define the approximate obstacle, we can also employ an operator

based on averaging. This will be discussed in Chapter 5. Hence this restriction will

be removed later.
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Problem 4.7 Given data f ∈ L1(0, T ;L2(Ω)) and initial condition u0 ∈ K, find

u ∈ L2(0, T ;K) ∩H1(0, T ;H−s(Ω)) such that

〈∂tu(t) + Au(t), u(t) − v〉 ≤ 〈f(t), u(t) − v〉 ∀ v ∈ K(t) a.e. t ∈ (0, T ). (4.14)

4.3.2 Semi-discrete Problem

We can apply the backward Euler method to parabolic variational inequality

(4.14) to get a semi-discrete numerical scheme:

Method 4.8 (Backward Euler Method) Given the initial guess U0 = u0 and

F n :=
1

kn

∫ tn

tn−1

f(t) dt, (4.15)

find an approximate solution Un ∈ K for 1 ≤ n ≤ N such that

〈δUn, Un − v〉 + a(Un, Un − v) ≤ 〈F n, Un − v〉 ∀ v ∈ K. (4.16)

Remark 4.9 (Implicit Scheme) The backward Euler method, Method 4.8, is

fully implicit. At each time step n, we need to solve an elliptic variational inequality

〈Un, Un − v〉 + kna(U
n, Un − v) ≤

〈
Un−1 + knF

n, Un − v
〉

∀ v ∈ K.

This problem has a unique solution from Theorem 1.5. We can apply the finite

element method discussed in §4.1 to solve it at each time step once the initial guess

U0 is given.

We now recall some convergence results of the semi-discrete solution of Method

4.8. These results will be useful when we discuss the a priori error estimate for fully-

discrete problems in Chapter 5. The following lemma is first proved by Biaocchi [11,

Theorem 2.1] and then generalized and improved by Savaré [122, Theorem 4] and

gives the regularity of the semi-discrete solution as well as its first time derivative.

Lemma 4.10 (Regularity of Semi-discrete Solution) For any initial guess U0 ∈
V ′, the temporal semi-discrete problem (4.16) admits a unique solution {Un} and
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Un ∈ K, for 1 ≤ n ≤ N . If U0 = u0 ∈ K and f ∈ S(0, T ), then we have the

piecewise linear (in time) function

U ∈ I(0, T ).

Furthermore, if f ∈ BV (0, T ;H), we have that

∂tU ∈ I(0, T )

and there exists a constant C depends on f and u0 such that

‖u− U‖I(0,T ) ≤ Ck.

Remark 4.11 (Comments on Regularity) As discussed in Remark 2.21, we can

not expect ∂tu to be continuous even if data is sufficiently smooth. Under this

consideration, ∂tU ∈ I(0, T ) is almost the maximal regularity one can ask; maximal

regularity of u is explored in [122]. Using Proposition 2.14, we observe that AU is

in L∞(0, T ;H) because f ∈ BV (0, T ;H) and ∂tU ∈ L∞(0, T ;H).

Next we recall the following convergence rate for backward Euler method in

[110], which is optimal respect to the time stepping method and the regularity of the

solution. In this work, Nochetto et al. exploit the angle-bounded condition without

assuming further regularity of the solution to prove the optimal convergence rate

via a novel a posteriori error estimator. This result is consistent with Lemma 4.10.

Lemma 4.12 (Error Estimation for Semi-discrete Solution) Let the opera-

tor A be γ-angle-bounded. If

U0 = u0 ∈ {v ∈ K |Av ∈ H} and f ∈ BV (0, T ;H),

then we have the error

max

{
max
0≤t≤T

‖u− U‖,
(∫ T

0

|||u− U |||2 dt
) 1

2
,
(∫ T

0

∣∣∣∣∣∣u− U
∣∣∣∣∣∣2 dt

) 1
2

}
≤ Ck,

where the constant C depends on γ, u0, and f only.

Proof. The result is a direct consequence of [110, Corollary 4.10]. �
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4.3.3 Fully-discrete Problem

We can solve Problem 4.7 numerically by a θ-scheme for time-discretization

and a conforming finite element method for space-discretization. Apparently, there

are many possible combinations in this class. We will focus on one of the simplest

combinations: backward Euler and linear finite element method. In the next two

chapters, we shall consider the error committed by this particular fully-discrete

numerical scheme.

Discretization

For the numerical treatment of Problem 4.7, we discretize the spatial domain

Ω into simplexes τ ∈ T , and partition the time domain [0, T ] into N subintervals,

i.e. 0 = t0 < t1 < · · · < tN = T and let kn := tn − tn−1.

Let V(T ) be the usual conforming piecewise linear finite element subspace of

H̃s(Ω) over the mesh T . For the moment, we assume that the finite element space

does not change in time. We shall consider the case of mesh changes in time in

Chapter 7.

Consider the corresponding discrete convex set at time t = tn

Kn := {v ∈ V(T ) : v ≥ χnh} (4.17)

where the sequence χnh ∈ V(T ) is a piecewise linear approximation of the obstacle

χ(tn) for 0 ≤ n ≤ N . For example, when the obstacle χ is continuous, we could take

χnh to be the piecewise linear Lagrange interpolant of χ(tn). For convenience, we

denote the set of space-time piecewise linear functions which satisfies the discrete

constraints all the time as

K := {V | V (tn) ∈ Kn and V (t) linear in [tn−1, tn], n = 1, . . . , N}. (4.18)

Given an initial guess U0
h ∈ K0, we define feasible set

K̃ := {V ∈ K | V (t0) = U0
h}.
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Numerical Scheme

Now we formulate the following fully discrete numerical approximation of

Problem 4.7 by using linear finite elements in space and backward Euler method in

time:

Method 4.13 (Fully-discrete Method) Given the approximation F n ∈ L2(Ω)

of f at time tn for 1 ≤ n ≤ N , and initial guess U0
h ∈ K0, find an approximate

solution Un
h ∈ Kn for 1 ≤ n ≤ N such that

1

kn
〈Un

h − Un−1
h , Un

h − vh〉 + a(Un
h , U

n
h − vh) ≤ 〈F n, Un

h − vh〉 ∀ vh ∈ Kn. (4.19)

Remark 4.14 (Existence and Uniqueness of Solution) Based on the general

existence theory for elliptic problems developed in Chapter 1, we know that the

inequality (4.19) has a unique solution for any 1 ≤ n ≤ N .

Discrete Problem

The discrete problem (4.19) admits a unique solution [74]. Moreover, let

{ψzi
}Ii=1 be the set of nodal basis functions, and let

A :=
(
〈ψi, ψj〉 + kna(ψi, ψj)

)I
i,j=1

be the resulting matrix of (4.19). If ~U = (Ui), ~X = (Xi) ∈ RI are the vector of

nodal values of Un
h and χnh, namely

Un
h =

I∑

i=1

Uiψzi
and χnh =

I∑

i=1

Xiψzi
,

and the right-hand side

~F = (Fi) :=
(
〈Un

h + knF
n, ψi〉

)I
i=1
,

then ~U satisfies the variational inequality:

Find ~U ≥ ~X : (A~U − ~F)T (~U − ~V) ≤ 0 ∀ ~V ≥ ~X. (4.20)

In (4.20), it is trivial to see ~U ≥ ~X. Taking ~V = ~U + ~W for any ~V ≥ 0, we

obtain that A~U − ~F ≥ 0. Furthermore, by taking ~V = ~X and ~U + (~U − ~X),
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respectively, we can see (A~U − ~F)T (~U − ~X) = 0. In this way, we obtain a discrete

linear complementarity problem (LCP) as in §2.3.2:

A~U ≥ ~F, ~U ≥ ~X,
(
A~U − ~F

)T (~U − ~X
)

= 0; (4.21)

We shall discuss how to solve this finite dimensional variational inequality in great

detail in § 7.5.
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Chapter 5

A Priori Error Estimation

In this chapter, we consider a priori error estimation for the numerical methods

proposed in Chapter 4 for both stationary and evolutionary variational inequalities.

Here we shall assume both the time horizon [0, T ] and the polygonal space domain

Ω are partitioned uniformly. The main purpose is to derive discretization error in

terms of time step-size k and space meshsize h.

5.1 A Priori Error Estimation for EVIs

Before we look at the parabolic variational inequality (4.14), we first review

the convergence results of linear finite element method for the elliptic variational

inequality (4.1). This discussion motives the optimal convergence rate proof for

parabolic problems in §5.2. The general discussion on a priori error estimations of

finite element methods for linear elliptic PDEs can be found, for example, in [29].

The first a priori error estimation for elliptic variational inequality was given by

Falk [69] for symmetric bilinear form a(·, ·) (but the proof works for non-symmetric

problems also) in the abstract setting discussed in chapter 1. In [69], Falk proved

optimal convergence rate for linear elements for problems with homogenous bound-

ary data. Later, the result was extended to the nonhomogenous case, quadratic

elements and mixed finite elements by Brezzi, Hager, and Raviart [35, 36].
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5.1.1 Abstract Error Estimation

We now present an optimal approximation result which is a modification of

[69, Theorem 1].

Theorem 5.1 (Optimal Approximation Property) Suppose A is continuous

and elliptic as in (1.7) and (1.8). Let u and uh be the solutions of (4.1) and (4.3),

respectively. If f −Au ∈ V∗, then

‖u− uh‖2
V . inf

vh∈K

{
‖u− vh‖2

V + ‖f −Au‖V∗ ‖u− vh‖V
}

+ ‖f −Au‖V∗ inf
v∈K

‖uh − v‖V . (5.1)

Furthermore, if f −Au ∈ H, then

‖u− uh‖2
V . inf

vh∈K

{
‖u− vh‖2

V + ‖f −Au‖H ‖u− vh‖H
}

+ ‖f −Au‖H inf
v∈K

‖uh − v‖H . (5.2)

Before we prove the results above, it is worth mentioning the following comments

for better understanding of the theorem.

Remark 5.2 (Approximation Error) The first term of the two inequalities above,

(5.1) and (5.2), is the approximation error due to replacing the infinite-dimensional

test function spaces by the finite element subspace. If the solution satisfies f−Au =

0 in distribution sense, the above theorem reduces to the standard quasi-optimality

(4.5) of finite element methods for linear elliptic boundary value problems.

Remark 5.3 (Non-conformity Error) The second term of (5.1) and (5.2) mea-

sures non-conformity of the approximate constraint set K. If K ⊂ K (conforming),

this term vanishes and we only have the first approximability term; otherwise it tells

how “different” the sets K and K are.

Proof of Theorem 5.1. Recall the continuous and discrete variational inequali-

ties, (4.1) and (4.3):

a(u, u− v) ≤ 〈f, u− v〉 ∀v ∈ K

a(uh, uh − vh) ≤ 〈f, uh − vh〉 ∀vh ∈ K.
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By adding the last two inequalities, it is easy to see that

a(u, u) + a(uh, uh) ≤ 〈f, u− v〉 + 〈f, uh − vh〉 + a(u, v) + a(uh, vh).

Subtracting a(u, uh) + a(uh, u) from both sides of the inequality above, we obtain

a(u− uh, u− uh) ≤ 〈f, u− v〉 + 〈f, uh − vh〉 + a(u, v − uh) + a(uh, vh − u).

Since

a(uh, vh − u) = a(u− uh, u− vh) − a(u, u− vh),

we regroup terms on the right-hand side to get

a(u− uh, u− uh) ≤
(
〈f, u− vh〉 − a(u, u− vh)

)
+
(
〈f, uh − v〉 − a(u, uh − v)

)

+ a(u− uh, u− vh)

= 〈f −Au, u− vh〉 + 〈f −Au, uh − v〉 + a(u− uh, u− vh)

(5.3)

By coercivity of the bilinear form, the left-hand side of the above inequality yields

a(u− uh, u− uh) ≥ C∗ ‖u− uh‖2
V ;

On the other hand, by continuity,

a(u− uh, u− vh) ≤ C∗ ‖u− uh‖V ‖u− vh‖V .

Then the theorem follows immediately from the Cauchy-Schwarz inequality and the

last two inequalities and (5.3). �

5.1.2 Application to Stationary Obstacle Problems

Based on the previous general approximation theorem, we obtain the following

optimal error approximation of the linear finite element method for the Dirichlet

obstacle problem, i.e. V = H̃1(Ω) = H1
0 (Ω), V∗ = H−1(Ω), H = L2(Ω), which

has been discussed in Remark 2.15. The proof hinges on the regularity result (see

Remark 2.15) and classical interpolation theory. We leave the proof out (for details,

we refer to [69]).
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Corollary 5.4 (Dirichlet Obstacle Problem) Let Ω be a bounded convex polyg-

onal domain. Let f ∈ L2(Ω) and χ ∈ H2(Ω) be admissible. If u and uh are the

solutions of (4.1) and (4.3), respectively, then there exists a constant C which de-

pends only on Ω, f and χ such that

‖u− uh‖H1(Ω) ≤ Ch.

Remark 5.5 (Higher Order Finite Element Approximation) From the pre-

vious corollary, the energy error converges optimally for linear finite element method

respect to the approximation space and regularity of u. On the other hand, for

quadratic finite element method, it has been shown [35, Lemma 4.3] that the con-

vergence rate is O(h3/2−ε) for smooth enough f , χ and Ω. This is due to the lack of

regularity of solutions of obstacle problems discussed in Remark 2.15.

5.2 A Priori Error Estimation for PVIs

In this section, we shall consider parabolic variational inequalities, and derive

optimal a priori error bound in I(0, T )-norm. We can further assume that the

conforming condition K ⊆ K(0, T ) is satisfied. In fact, we can use the transformation

w := u − χ to transform the original PVI to a problem with a simple constraint

K(t) := {v ∈ V | v ≥ 0}. Hence, for simplicity, we assume χ = 0 in this chapter. Let

Ω ⊂ Rd be an open and bounded polygonal domain and T be a quasi-uniform mesh

(with meshsize h) of Ω. Let V(T ) be the P1 finite element space associated with T .

Furthermore, we use uniform time partition with time step-size k.

5.2.1 Introduction

A priori error of the semi-discrete problem (4.16) has been studied in [11, 109,

110]. Baiocchi [11] proved that for initial solution u0 ∈ H2(Ω) the error u − U

in the energy norm converges a priori with order of O(k) for A being the Laplace

operator. In [109, 110], Nochetto et al. proved optimal convergence rate of the
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backward Euler solution for more general evolution problems with a very different

approach, a special case of which has been given in Lemma 4.12.

There are a number of a priori error estimates available for the fully-discrete

method (4.19) for parabolic variational inequality (4.14). Johnson assumes that

u0 ∈ W 2
∞(Ω) and obtains (with some additional assumptions on the speed of prop-

agation of the free boundary) an error estimate O((log k−1)1/4k3/4 + h) for the

L2(0, T ;H1(Ω)) error for implicit Euler (time) and linear finite element (space) dis-

cretization. Vuik [138] generalized the error estimation for general θ-scheme; he

used the same techniques as Johnson and obtained same suboptimal convergence

rate in time. Berger and Falk [17] analyzed the convergence of truncation method

(using linear finite element, explicit time scheme) for a class of parabolic variational

inequalities and obtained the L2(0, T ;H1(Ω)) error can be bounded by Cǫ(h+ k1−ǫ)

when k . h2. More recently, Fetter [71] obtained an almost optimal L∞ error bound

using an auxiliary parabolic variational inequalities assuming utt ∈ L2(0, T ;L2(Ω)).

To prove optimal convergence of the fully-discrete scheme (4.19), we will take

full advantage of recent developments in the error analysis for time-discretization

for evolution problems [109, 110]. We carry out the error estimation in two steps:

first we look at the error between the temporal semi-discretization solution U and

fully-discrete solution Uh and introduce a general estimation for the energy error;

then we apply the known results for the error of semi-discrete solution U (Lemma

4.12) as well as the regularity result for semi-discrete solution U (Lemma 4.10) to

prove Theorem 5.11.

5.2.2 Estimation of Space Error

Applying the standard energy method, we give a general estimation of the

“space” error ‖U − Uh‖L2(0,T ;V). Recall that, by convention, ‖ · ‖ denotes the H-

norm and |||·||| is the energy norm.

Lemma 5.6 (Abstract Error Estimation of Space Error) Let U and Uh be

the solutions of the temporal semi-discrete problem (4.16) and the fully-discrete prob-
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lem (4.19), respectively. If

E2(0, T ; Ω) := ‖(U − Uh)(T )‖2 +

∫ T

0

∣∣∣∣∣∣U − Uh

∣∣∣∣∣∣2 dt,

and F − δtU −AU ∈ L∞(0, T ;H), then we have that

E2(0, T ; Ω) . inf
Vh∈eK

(
‖U(T ) − Vh(T )‖2 +

∫ T

0

E2 dt
)
,

where

E2(t) := ‖F − δtU −AU‖ · ‖U − V h‖ +
∣∣∣∣∣∣U − V h

∣∣∣∣∣∣2 + ‖δt(U − Vh)‖2

is a piecewise constant function.

Proof. For convenient of the presentation, we first define

L(t) :=
〈
δt(U − Uh), U − Uh

〉
+ a(U − Uh, U − Uh).

Here, as we defined in §4.2, we use the following notation

δtV (t) :=
V n − V n−1

kn
if t ∈ (tn−1, tn],

for any piecewise linear (in time) function V .

Integrating L(t) in time and applying the triangle inequality, we get that

∫ T

0

L(t) dt =

N∑

n=1

∫ tn

tn−1

〈δt(U − Uh), U − Uh〉dt+

∫ T

0

∣∣∣∣∣∣U − Uh

∣∣∣∣∣∣2 dt

=
N∑

n=1

〈(Un − Un
h ) − (Un−1 − Un−1

h ), Un − Un
h 〉 +

∫ T

0

∣∣∣∣∣∣U − Uh

∣∣∣∣∣∣2 dt

≥
N∑

n=1

{
1

2
‖Un − Un

h ‖2 − 1

2
‖Un−1 − Un−1

h ‖2

}
+

∫ T

0

∣∣∣∣∣∣U − Uh

∣∣∣∣∣∣2 dt.

(5.4)

On the other hand, for any finite element function vh ∈ K, we always have

L(t) = I + II + III where

I := 〈δt(U − Uh), U − vh〉,

II := a(U − Uh, U − vh),

III :=
〈
δt(U − Uh), vh − Uh

〉
+ a(U − Uh, vh − Uh).
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We keep the first part as it is and start to estimate the other two parts.

By the Cauchy-Schwarz and Hölder’s inequalities, we get that

II ≤ 1

2

∣∣∣∣∣∣U − Uh

∣∣∣∣∣∣2 +
1

2

∣∣∣∣∣∣U − vh
∣∣∣∣∣∣2 .

For the third part, we first divide it into three parts and apply the semi-discrete as

well as fully-discrete variational inequalities (4.16) and (4.19). Then we obtain that

III = 〈δtU, vh − U〉 + a(U, vh − U) + 〈δtU,U − Uh〉 + a(U,U − Uh)︸ ︷︷ ︸
apply (4.16)

+ 〈δtUh, Uh − vh〉 + a(Uh, Uh − vh)︸ ︷︷ ︸
apply (4.19)

≤ 〈δtU + AU − F, vh − U〉.

Hence, in the above two inequalities, we take a piecewise constant function vh ∈ K

such that

vh(t) = V n
h ∈ Kn for t ∈ (tn−1, tn], n = 1, . . . , N

and obtain that

L(t) ≤ 〈δt(U − Uh), U − V h〉 +
1

2

∣∣∣∣∣∣U − Uh

∣∣∣∣∣∣2 +
1

2

∣∣∣∣∣∣U − V h

∣∣∣∣∣∣2

+
∥∥F − δtU −AU

∥∥ · ‖U − V h‖

≤ 〈δt(U − Uh), U − V h〉 +
1

2

∣∣∣∣∣∣U − Uh

∣∣∣∣∣∣2 + E2. (5.5)

Combining (5.4) with (5.5), we directly get

1

2
‖(U − Uh)(T )‖2 +

1

2

∫ T

0

∣∣∣∣∣∣U − Uh

∣∣∣∣∣∣2 dt

≤ 1

2
‖U0 − U0

h‖2 +

∫ T

0

〈δt(U − Uh), U − V h〉 dt+

∫ T

0

E2 dt. (5.6)

Now we are left with the term
∫ T
0
〈δt(U − Uh), U − V h〉 dt. Using summation by

parts, we get

∫ T

0

〈δt(U − Uh), U − V h〉 dt =〈UN − UN
h , U

N − V N
h 〉 − 〈U0 − U0

h , U
0 − V 0

h 〉

−
N∑

n=1

∫ tn

tn−1

〈Un − Un
h , δt(U − Vh)〉 dt.
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On the right-hand side, we take any Vh ∈ K̃ (V 0
h := Vh(t0) = U0

h) to obtain by the

Cauchy-Schwarz inequality

∫ T

0

〈δt(U − Uh), U − V h〉 dt ≤ 1

4
‖(U − Uh)(T )‖2 + ‖(U − Vh)(T )‖2 − ‖U0 − U0

h‖2

+
N∑

n=1

∫ tn

tn−1

ε

4
‖Un − Un

h ‖2 +
1

ε
‖δt(U − Vh)‖2dt

Hence, by choosing an appropriate ε, it follows from the last inequality that

∫ T

0

〈δt(U − Uh), U − V h〉 dt ≤
1

4
‖(U − Uh)(T )‖2 +

1

4

∫ T

0

∣∣∣∣∣∣U − Uh

∣∣∣∣∣∣2 dt

− ‖U0 − U0
h‖2 + ‖(U − Vh)(T )‖2 +

∫ T

0

E2 dt. (5.7)

Combining inequalities (5.6) and (5.7), we get the desired result. �

Remark 5.7 (Comparison with Existing Analysis) Notice that, in the previ-

ous lemma, we only deal with piecewise constant and piecewise linear functions (in

time). This gives us the advantage to get around a mixed term (in our notation)

like 〈
∂tu(tn+1) −

un+1 − un

kn
, Un+1

h − u(tn+1)

〉

as analyzed in [82, 138], which is responsible for a suboptimal convergence rate as

well as an additional requirement on the free boundary.

5.2.3 Positivity Preserving Operators

Positivity preserving operators are of particular interests for obstacle problems

because we usual need the outcome of the approximation operator still satisfies the

obstacle constraints. The piecewise linear interpolation operator preserves positivity

and gives optimal approximation property; but unfortunately, it is well known that

the interpolation operators are not stable in H1(Ω) and can be only well-defined

for continuous functions. The usual averaging approximation operators, like the

Clément operator [51] or the Scott-Zhang operator [125], are stable but not positive.

A positive operator which is stable and has optimal approximation properties on
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polygonal domains has been constructed by Chen and Nochetto [49] and further

analyzed in [116].

First we define the positive preserving operator given by Chen and Nochetto

[49]. We denote the interior nodes of T by {xi}Ii=1. Recall that {ψi}Ii=1 are the

canonical nodal basis functions of V(T ), i.e. ψi(xj) = δij for j = 1, . . . , I. For each

1 ≤ i ≤ I, let ωi be the support of ψi, i.e.

ωi := ∪{τ ∈ T | supp(ψi) ∩ τ 6= ∅}.

For any τ ∈ T , we denote the union of elements surrounding τ by ωτ :

ωτ := ∪{τ ′ ∈ T | τ ′ ∩ τ 6= ∅}.

Let Bi be the maximal ball centered at xi and Bi ⊂ ωi. For any v ∈ L1(Ω),

we define the operator Πh : L1(Ω) → V(T ) by

(
Πhv

)
(x) :=

I∑

i=1

( 1

|Bi|

∫

Bi

v
)
ψi(x). (5.8)

From the definition above, it is clear that the operator Πh preserves positivity, i.e.

Πhv ≥ 0 ∀ v ≥ 0. (5.9)

Furthermore, due to the symmetry of Bi with respect to xi, we have

(
Πhv

)
(xi) = v(xi) ∀ v ∈ P1(Bi).

Next we review briefly the stability and optimal approximation results of Πh;

for the proof, see [49, Section 3].

Lemma 5.8 (Stability) For any τ ∈ T and 1 ≤ p ≤ ∞, the following estimates

hold

1. ‖Πhv‖Lp(τ) . ‖v‖Lp(τ) ∀ v ∈ Lp(Ω);

2. ‖∇Πhv‖Lp(τ) . ‖∇v‖Lp(τ) ∀ v ∈W 1,p(Ω).

62



Lemma 5.9 (Optimal Approximation) For any τ ∈ T and 1 ≤ p ≤ ∞, we

have the following estimation

‖v − Πhv‖W j,p(τ) . hm−j
τ ‖Dmv‖Lp(ωτ ) ∀ v ∈Wm,p(Ω) ∩ W̃ 1,p(Ω),

where j = 0, 1 and m = 1, 2.

Remark 5.10 (General Order) Using the interpolation estimate (Proposition 2.1),

this result can also be applied for any real number 0 ≤ s ≤ 1 to obtain optimal ap-

proximation property

‖v − Πhv‖W s,p(τ) . hm−s
τ ‖Dmv‖Lp(ωτ ) ∀ v ∈W 2,p(Ω) ∩ W̃ 1,p(Ω).

5.2.4 Optimal Convergence Rate

In this section, we shall present an optimal convergence result for the fully-

discrete method (4.13) in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω))-norm.

Theorem 5.11 (A Priori Error Estimation for PVIs) Let Ω be a convex polyg-

onal domain. Let A = −∆. Let

f ∈ BV (0, T ;L2(Ω)) and u0 ∈ H2(Ω) ∩ K.

Given an initial guess U0
h satisfying

U0
h ≥ 0 and ‖u0 − U0

h‖ = O(h),

we have the error estimate

max
1≤n≤N

‖u(tn) − Un
h ‖2 +

∫ T

0

‖u− Uh‖2
H1(Ω) ≤ C(k2 + h2). (5.10)

Proof of Theorem 5.11: Recall that, in our convention, un = u(tn) and u is the

piecewise linear (in time) function. Applying the triangle inequality, we obtain that

∫ tn0

0

∣∣∣∣∣∣u− Uh

∣∣∣∣∣∣2 dt ≤ 2

∫ tn0

0

∣∣∣∣∣∣u− U
∣∣∣∣∣∣2 dt+ 2

∫ tn0

0

∣∣∣∣∣∣U − Uh

∣∣∣∣∣∣2 dt, (5.11)

for any integer 1 ≤ n0 ≤ N .
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For the first term (time error) on the right-hand side of (5.11), a consequence

of Lemma 4.12 ∫ tn0

0

∣∣∣∣∣∣u− U
∣∣∣∣∣∣2 dt . O(k2). (5.12)

For the second term (space error) on the right-hand side of (5.11), we a choose

piecewise linear function Vh in the approximation property, Lemma 5.6, such that

Vh(0) = U0
h , and Vh(tn) = ΠhU(tn), n = 1, . . . , n0,

where Πh be the positive operator defined in §5.2.3. For any 0 ≤ n ≤ N , since

U(tn) ≥ 0, we have ΠhU(tn) ≥ 0. Hence Vh ∈ K̃ is admissible. Consequently,

the regularity results U ∈ L∞(0, T ;H2(Ω)) (see Remark 2.15 and Lemma 2.20) and

δtU ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) (see Lemma 4.10) give the estimate

‖(U − Uh)(tn0)‖2 +

∫ tn0

0

∣∣∣∣∣∣U − Uh

∣∣∣∣∣∣2 dt . O(h2). (5.13)

Plugging (5.12) and (5.13) into (5.11), we arrive at

‖(u− Uh)(tn0)‖2 +

∫ tn0

0

∣∣∣∣∣∣u− Uh

∣∣∣∣∣∣2 dt . O(k2 + h2).

Note that the last inequality is true for arbitrary positive integer 0 < n0 ≤ N . We

can pick n0 such that ‖(u− Uh)(tn)‖2 is maximized. Hence the estimation (5.10) is

established. �

Remark 5.12 (More General Operator) The operator A does not need to be

−∆ in the previous theorem. The proof can be extended to general second order

elliptic operator case.
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Chapter 6

A Posteriori Error Estimation

Since the seminal work by Babuška and Rheinboldt [8], a considerable amount

of effort has been made in developing reliable and efficient adaptive algorithms for

boundary value problems over the last three decades. The main idea of adaptive

algorithms is to generate a discretization of the time-space domain such that local

error is equally distributed.

Since local error is not available in general, computable local error estimators

play a major role in designing adaptive schemes. Compared with a priori error

estimates discussed in the previous chapter, a posteriori error estimators possess

the following important features:

• They are computable and depend only on discrete solutions and data, instead

of the exact solutions.

• They are quantitative and so instrumental for adaptive mesh generation and

error control.

Before we discuss the a posteriori error estimation for our particular problem, it is

worth mentioning some of its general principles:

1. Reliability. We require the computable error estimator (denoted by E) to

be a global upper bound of the error in certain norm (denoted by E) up to

a multiplicative constant, i.e. E ≤ C1E . This means the error estimator E is

reliable in the following sense: if the error estimator is small enough, then the

real error will not be too big neither.
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2. Efficiency. A reliable error estimator E could over-estimate the error E. To

guarantee over-estimation does not happen, we require E to be efficient, i.e. E
is also a global lower bound of the error, i.e. E ≤ C2E.

3. Estimation Quality. The ratio C1/C2 provides important information of

the quality of the error estimator. If this ratio is close to 1, then the error

estimator is very close to the error.

4. Local Error Estimation. To derive an adaptive algorithm from a reliable

and efficient a posteriori estimator E , the global upper and lower bounds are

not enough. We need information of local error to decide where more compu-

tational effort is needed. To achieve this, the estimator E should be localizable,

i.e. E =
∑

τ∈T E(τ), with each local indicator E(τ) providing some information

of the local error E(τ) on element τ . Mathematically, this can be expressed as

local efficieny or a local lower bound of the form E(τ) . E(τ). This suggests

that we have to reduce the local estimator E(τ) to reduce the local error.

For classical theories and techniques of a posteriori error estimation of elliptic partial

differential equations, we refer interested readers to the reviews by Verfürth [135]

and Ainsworth and Oden [2].

Since reliable and efficient a posteriori error estimation is the key to develop

efficient adaptive schemes, we shall explain this part carefully in this chapter. The

main material of this chapter is based on [104, 115, 117]. The rest of the chapter is

organized as follows. We first introduce the main idea of a posteriori error estimation

for obstacle problems in §6.1. Then we consider the conforming case when the

discrete obstacle χh = χ: we give a posteriori error estimators for elliptic variational

inequalities in §§6.2, 6.3, and 6.4 and discuss how to deal with time-dependent

problems and time discretization error in §6.5. We then extend our analysis for

general obstacle χ for which numerical approximation of χ introduces additional

obstacle consistency error in §6.6. Finally, we consider mesh changes as well as

coarsening error in §6.7.
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6.1 Introduction

For variational inequalities (VI), the a posteriori error analysis is very recent

and rather intricate. One of the difficulties is that VI’s lead to non-Lipschitz non-

linearities and the linearization techniques [135] used for nonlinear problems do not

work any longer.

To gain some insight on the difficulties involved, we let F(u) := Au+ λ(u) be

the nonlinear operator discussed in §2.3.2, which consists of the linear operator A
and the nonlinear part λ that accounts for the unilateral constraint u ≥ χ. The

Lagrange multiplier, λ, satisfies

λ(u) =




f − ut −Au ≤ 0 in C = {u = χ}

0 in N = {u > χ};
(6.1)

hence λ(u) restores the equality in (3.11), namely,

ut + Au+ λ(u) = f. (6.2)

A posteriori error estimates of residual type are obtained by plugging the

discrete solution U into the PDE. Roughly speaking, we get the defect measure

G = f − Ut −AU − λ(U), (6.3)

which is called Galerkin functional in this nonlinear context; the precise definition

is given in §6.2 for elliptic VI and §6.5 for parabolic VI, respectively. This is a

replacement for the usual residual in linear theory. To obtain sharp a posteriori error

estimators, we must be able to provide a discrete multiplier λ(U) with properties

similar to (6.1).

In fact, the linear part r of G, that is r := f − Ut −AU , does not give correct

information in the contact set C, where the solution adheres to the obstacle regardless

of the size of r. Notice that r is the usual residual for linear PDE. We point out

that failure to recognize the importance of λ(u) leads to a global upper bound of

the error but not to a global lower bound [49]; overestimation is thus possible.

This issue was first addressed for elliptic variational inequalities by Veeser

[134] and further improved by Fierro and Veeser [72] in H1(Ω). Nochetto, Siebert,
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and Veeser extended these estimates to L∞(Ω) and derived barrier set estimates

[113, 114]. The duality approach, reported in [12], is not suitable in this setting

because of the singular character of λ(u).

A residual-type L2(0, T ;H1(Ω)) error estimator was proposed for parabolic

variational inequalities by Moon et al [104]. If the variational inequality becomes

an equality, the energy estimates in [104] reduce to those in [16, 119, 136]. More re-

cently the estimator proposed in [104] was extended to variational integro-differential

inequalities [115].

For problems with integro-differential operators, another difficulty arises, namely

the non-local character of integral operators. On the other hand, in many practical

problems, the integral operators are of pseudo-differential type and possess some

pseudo-local properties. In particular, for the integral operator AI (3.12), we have

sing suppAIv ⊂ sing supp v,

for any v ∈ C∞(Ω)∗ [133, Theorem II.2.1]. Here the singular support of a distri-

bution v, denoted by sing supp u, is the complement of the open set on which v is

smooth. Due to the pseudo-local properties, the adaptive algorithms work well in

practice [147]. Adaptive finite and boundary element methods have been discussed

for integral equations in several papers [139, 140, 43, 41, 42, 68, 66, 67].

6.2 Stationary Problems

To explain the main idea of our a posteriori error estimation, we first look at

the elliptic variational inequality problem, Problem 2.13: find u ∈ K such that

〈Au− f, u− v〉 ≤ 0 ∀ v ∈ K := {v | v ≥ χ, v ∈ V}. (6.4)

We use linear finite element method (see §4.1) to solve this problem numerically.

Consider the discrete convex set corresponding to K

K := {v ∈ V : v ≥ χh}, (6.5)

where V ⊂ H̃s(Ω) is the continuous piecewise linear finite element space.
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For the moment, we assume that the approximate obstacle is exactly equal to

the real obstacle, i.e. χh = χ. This means our discrete feasible set is conforming,

K ⊂ K. The more general case where K is not a subset of K will be discussed later.

Now we formulate the following numerical approximation of the inequality (6.4) by

using piecewise linear finite elements: find uh ∈ K such that

〈Auh − f, uh − v〉 ≤ 0 ∀ v ∈ K. (6.6)

6.2.1 Lagrange Multiplier

As in the linear case, we define the residual to be

rh = f −Auh. (6.7)

Note that, for variational inequalities, the error equation A(u − uh) = rh, which is

the starting point for residual-type error estimations for linear elliptic PDEs (see

§4.1), does not hold any more. Residual-type error estimators for elliptic variational

inequalities have been given in [134, 113, 72, 111, 26].

The basic idea is to introduce an appropriate computable approximation λh of

the Lagrange multiplier (see Definition 2.22)

λ := f −Au ∈ H−s(Ω). (6.8)

In Section 2.3.4, it has been shown that the Lagrange multiplier λ is non-positive

and vanish in the noncontact region in the sense of distributions. Furthermore, it is

clear that we have the following error equation

A(u− uh) = rh − λ, (6.9)

which corresponds to the error equation for linear equations.

6.2.2 Abstract Error Bounds

For the moment, we assume that we have obtained a computable approximate

Lagrange multiplier λh ≤ 0 and focus on how to get upper and lower bounds of
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the error. Notice that the error bounds developed here are independent of the

particular choices of the discrete Lagrange multiplier λh. We will discuss how to

define a practical λh in Section 6.3.

From (6.9), it is easy to see that

|||u− uh|||2 = 〈A(u− uh), u− uh〉 = 〈rh − λ, u− uh〉 . (6.10)

Adding and subtracting λh ≤ 0, by the Cauchy-Schwarz inequality, we obtain

|||u− uh|||2 = 〈rh − λh + λh − λ, u− uh〉

≤ 1

2
|||rh − λh|||2∗ +

1

2
|||u− uh|||2 − 〈λ− λh, u− uh〉 .

On the other hand, by definition (6.8) of λ, we have

〈λ− λh, ϕ〉 = 〈f −Au− λh, ϕ〉

= 〈A(uh − u), ϕ〉 + 〈rh − λh, ϕ〉 ∀ ϕ ∈ H̃s(Ω). (6.11)

Hence |||λ− λh|||2∗ . |||u− uh|||2 + |||rh − λh|||2∗. So we can find an upper bound

|||u− uh|||2 + |||λ− λh|||2∗ . |||rh − λh|||2∗ − 〈λ− λh, u− uh〉 .

For the second term on the right-hand side of the last inequality, since uh ∈
K ⊂ K, we have 〈λ, u− uh〉 ≥ 0 by the continuous variational inequality (6.4).

Furthermore, with λh ≤ 0, it is easy to see that

〈λh, u− uh〉 = 〈 λh︸︷︷︸
≤0

, u− χ︸ ︷︷ ︸
≥0

〉 − 〈λh, uh − χ〉 ≤ − 〈λh, uh − χ〉 .

Hence

|||u− uh|||2 + |||λ− λh|||2∗ . |||rh − λh|||2∗ − 〈λh, uh − χ〉 . (6.12)

Remark 6.1 (General Obstacle) Notice that the conformity assumption K ⊂
K greatly simplifies the analysis of the term 〈λ− λh, u− uh〉. For problems with

general obstacles, this term also yields terms controlling the obstacle consistency

error (we refer to [104] for details). We will revisit this when we discuss problems

with a general obstacle later in §6.6.
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By rearranging the terms in (6.11) and using the strong sector condition (2.5),

we have, for any ϕ ∈ H̃s(Ω), that

〈rh − λh, ϕ〉 = 〈A(u− uh), ϕ〉 + 〈λ− λh, ϕ〉 . |||u− uh||| · |||ϕ||| + |||λ− λh|||∗ · |||ϕ||| .

Consequently, using the triangle inequality, we have

|||rh − λh|||2∗ . |||u− uh|||2 + |||λ− λh|||2∗ .

Hence |||rh − λh|||2∗ is also a lower bound of the error |||u− uh|||2 + |||λ− λh|||2∗ up to a

multiplicative constant.

Because of the important role of rh − λh in the error estimation (see [134, 72,

111, 104] also), we call it Galerkin functional and denote it by

Gh := rh − λh. (6.13)

Then the previous analysis can be summarized in the following abstract lemma.

Lemma 6.2 (Abstract Error Bounds: Stationary Problems) Let u and uh

be the solutions of (6.4) and (6.6), respectively. If λh ≤ 0, we have the upper

and lower bounds

|||Gh|||2∗ . |||u− uh|||2 + |||λ− λh|||2∗ . |||Gh|||2∗ − 〈λh, uh − χ〉 . (6.14)

6.3 Approximation of Lagrange Multipliers

In practice, it is important to find a “good” approximation λh, whichs mimic

the properties of λ at the discrete level. The ideal choice would be λh = λ of course,

but this is impossible because λ is not computable. A simple-minded choice is to

take λh = 0 and then Lemma 6.2 yields the standard upper bound for linear elliptic

equations

|||u− uh|||2 . |||rh|||2∗ .

However, this bound has the drawback that the residual rh in the contact region

contributes to the bound. In other words, even if uh were the exact solution, we
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would obtain a nonzero upper bound due to nonzero values of λ in the contact

region. A good practical upper bound should be “localized” in the sense that only

the value of the residual in the noncontact region contributes to the error bound.

6.3.1 Discrete Contact and Noncontact Sets

Before we can define the discrete Lagrange multiplier λh which gives a “local-

ized” upper bound, we first need to define discrete sets that mimic the contact set

C := {u = χ} and noncontact set N := {u > χ}.
Let T be a triangulation of the polygonal domain Ω and S be the set of all

sides or faces of triangles or tetrahedrons in T . Denote by ωz the support of the

piecewise linear nodal basis functions {ψz}z∈Ph
; see Figure 6.1. Let γz ⊂ S be the

skeleton of ωz, namely the set of all interior sides of ωz which contain z; for d = 1, γz

reduces to the node z itself. Similarly, we denote ωS be the set of triangles sharing

b

z

(a) Local patch ωz

b

z

(b) Skeleton γz (c) Basis function ψz

Figure 6.1: Local Patch

the side S ∈ S and ωτ be the the union of elements surrounding τ ∈ T :

ωτ := ∪{τ ′ ∈ T | τ ′ ∩ τ 6= ∅}.

We split Ph into three disjoint sets

Ph = Nh ∪ Ch ∪ Fh

with the noncontact nodes Nh, full-contact nodes Ch, and free boundary nodes Fh
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defined as follows:

Nh := {z ∈ Ph | uh > χ in intωz}, (6.15a)

Ch := {z ∈ Ph | uh = χ and rh ≤ 0 in ωz}, (6.15b)

Fh := Ph \ (Nh ∪ Ch). (6.15c)

The residual rh contains two parts: a smooth part (interior residual) and a

singular part (jump residual). Let the interior residual associated with A to be

R(uh) := f −AIuh − c1 · ∇uh − c0uh, (6.16)

and the jump residual on the side τ1 ∩ τ2 to be

J(uh) := −c2(∇uh|τ1 · ν1 + ∇uh|τ2 · ν2), (6.17)

where νi is the unit outer normal vector to the element τi ∈ T for i = 1, 2.

Remark 6.3 (Separation of Sets) If z ∈ Nh, then uh(z) > χ(z). It is easy to

see that there is no node in the neighborhood of z being a full-contact node. This

is because the definition of Ch requires uh = χ in the whole star ωz. Conversely, if

z ∈ Ch, then any node x ∈ Ph ∩ ωz cannot be in Nh. The noncontact nodes and the

full-contact nodes are complete “separated” by the free boundary nodes.

Remark 6.4 (Sign Condition) Notice that rh is not a discrete object, it is im-

possible to check the sign condition rh ≤ 0 in the definition (6.15b). In practice, we

check R(uh) ≤ 0 at all quadrature nodes xq ∈ ωz and J(uh)|S ≤ 0 for sides S ⊂ γz

instead.

6.3.2 Discrete Lagrange Multiplier

A first attempt for λh would be a piecewise linear function λh =
∑

z∈Ph
szψz

in such a way that the nodal values sz are weighted means on stars ωz:

sz :=





〈rh, ψz〉 / 〈1, ψz〉 z ∈ Ph ∩ Ω

0 z ∈ Ph ∩ Γ;
(6.18)
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and sz can be naturally divided into two parts sz = Rz + Jz, where

Rz :=





〈R(uh), ψz〉 / 〈1, ψz〉 z ∈ Ph ∩ Ω

0 z ∈ Ph ∩ Γ

and

Jz :=





−〈c2∇uh,∇ψz〉 / 〈1, ψz〉 z ∈ Ph ∩ Ω

0 z ∈ Ph ∩ Γ.

Note that λ is zero on Γ ∩ N , which motivates us to define sz = 0 on Γ. This

definition yields sz ≤ 0 and sz = 0 for z ∈ Nh, and it is thus quite appropriate

for Nh but not necessarily for z ∈ Ch. In fact, to achieve localization of the error

estimator λh must equal the linear residual rh in ωz for z ∈ Ch, thereby leading to

λh = rh ≤ 0 in ωz.

We can blend the two competing alternatives via the partition of unity {ψz}z∈Ph

and define formally the discrete Lagrange multiplier

λh :=
∑

z∈Ch

rhψz +
∑

z∈Ph\Ch

szψz. (6.19)

As a consequence of sz ≤ 0 and the sign conditions in (6.15b), this definition guar-

antees that λh ≤ 0 in Ω. With the choice of λh (6.19), the Galerkin functional

vanishes in the numerical contact region in the sense of distributions (this is often

called the localization property), i.e.

Gh =
∑

z∈Ph

rhψz − λh =
∑

z∈Ph\Ch

(rh − sz)ψz. (6.20)

Remark 6.5 (Formal Definition of λh and Gh) The definitions of λh and Gh
are formal. Since the residual rh ∈ H−s(Ω) and is understood in the sense of distri-

butions, we should view rhψz also as a distribution. For any function ϕ ∈ H̃s(Ω),

we define

〈rhψz , ϕ〉 := 〈rh, ϕψz〉 .

Because ϕψz ∈ H̃s(Ω), everything is well-defined.
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Remark 6.6 (Approximation of Lagrange Multiplier) With this definition of

λh, we can see that

λ− λh = λ− (rh − Gh) = (f −Au) − (f −Auh) + Gh = −A(u− uh) + Gh.

Hence, using the strong sector condition (2.5) and the triangle inequality, we have

|||λ− λh|||∗ . |||u− uh||| + |||Gh|||∗ .

Therefore, if |||u− uh||| converges at the same rate as |||Gh|||∗, the approximation error

of Lagrange multipliers |||λ− λh|||∗ is of at least the same order.

6.4 Residual-type Error Estimation

We now derive a residual-type error estimator based on the abstract estimation

derived in the previous section.

6.4.1 Upper Bound

In Lemma 6.2, we obtain an abstract upper bound formally. In practice, we

still need to find a computable and localized upper bound of the dual norm |||Gh|||2∗
and a lower bound of 〈λh, uh − χ〉.

From Global to Local

We start with finding an upper bound of |||Gh|||2∗. It is equivalent to finding an

upper bound of ‖Gh‖H−s(Ω). We first show that we can bound the global H−s(Ω)-

norm by a sum of localized norms on ωz for s ∈ [0, 1]. Recall the definitions of local

Sobolev norm ‖ · ‖Hs
Γ(ωz) and its dual norm ‖ · ‖Hs

Γ(ωz)∗ ; see §2.1.

Lemma 6.7 (Localized Upper Bound of the Dual Norm) Assume that G =
∑

z∈Ph
gz and gz ∈ Hs

Γ(ωz)
∗. For s ∈ [0, 1] there holds

‖G‖2
H−s(Ω) ≤ (d+ 1)

∑

z∈Ph

‖gz‖2
Hs

Γ(ωz)∗ . (6.21)
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Proof. We have for v ∈ H̃s(Ω),

|〈G, v〉| =
∣∣∣
∑

z∈Ph

〈gz, v〉
∣∣∣ ≤

∑

z∈Ph

‖gz‖Hs
Γ(ωz)∗ ‖v‖Hs

Γ(ωz) (6.22)

≤
(
∑

z∈Ph

‖gz‖2
Hs

Γ(ωz)∗

)1/2(∑

z∈Ph

‖v‖2
Hs

Γ(ωz)

)1/2

(6.23)

Note that we have for s = 0 and s = 1 that

∑

z∈Ph

‖v‖2
Hs

Γ(ωz) ≤ (d+ 1) ‖v‖2
H̃s(Ω) (6.24)

since at most d+ 1 of the stars ωz overlap on each simplex.

For any v ∈ H̃s(Ω), we define an operator

T : H̃s(Ω) →
∏

z∈Ph

Hs
Γ(ωz)

which restrict v to local patches, i.e.

T (v) :=
(
vz
)
z∈Ph

with vz(x) :=




v(x) x ∈ ωz

0 otherwise.

For s = 0 or s = 1, (6.24) gives ‖T (v)‖2 . ‖v‖2
H̃s(Ω)

. By interpolation, we obtain

(6.24) for all s ∈ [0, 1], which in turn implies (6.21). �

Although the right-hand side of (6.21) is localized, it is still not computable.

The following lemma shows how to bound the negative norms by Lp norms:

Lemma 6.8 (Computable Upper Bound of Local Dual Norm) For z ∈ Ph,
assume that gz ∈ Lp(ωz) satisfies

∫
ωz
gz = 0 when ∂ωz ∩ Γ has measure 0. For

1 ≤ p ≤ 2, let d(1
p
− 1

2
) < s ≤ 1. Then

‖gz‖Hs
Γ(ωz)∗ . hs+d(1/2−1/p)

z ‖gz‖Lp(ωz) . (6.25)

Proof. Case i: ∂ωz ∩ Γ has measure 0. Then
∫
ωz
gz = 0 by assumption. We have

for v ∈ Hs
Γ(ωz) and any constant Cz ∈ R

|〈gz, v〉| = |〈gz, v − Cz〉| ≤ ‖gz‖Lp(ωz) ‖v − Cz‖Lq(ωz)
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where p−1+q−1 = 1 (for p = 1 we define q = ∞). Let ω̂ := h−1
z ωz and v̂(x̂) := v(hzx̂),

hence ‖v − Cz‖Lq(ωz) = h
d/q
z ‖v̂ − Cz‖Lq(ω̂). We have

‖v̂ − Cz‖Lq(ω̂) . ‖v̂ − Cz‖Hs
Γ̂
(ω̂)

since Hs
Γ̂
(ω̂) →֒ Lq(ω̂) for s > d

2
− d

q
= d

p
− d

2
(equality is true for s = 0 and q = 2,

not true for s = 1
2

and d = 1, q = ∞). We now choose the constant Cz as the mean

value of v̂ on ω̂z. For s = 0 we have

‖v̂ − Cz‖L2(ω̂z) ≤ ‖v̂‖L2(ω̂z) = h−d/2z ‖v‖L2(ωz) . (6.26)

For s = 1 we use the second Poincaré’s inequality

‖v̂ − Cz‖H1(ω̂z) . |v̂|H1(ω̂z) = h1−d/2
z |v|H1(ωz) ≤ h1−d/2

z ‖v‖H1(ωz) . (6.27)

Now we define an operator Tz : L2(ωz) → L2(ω̂z) such that Tz(v) := v̂ − Cz. Then

(6.26) and (6.27) give

‖Tz(v)‖L2(ω̂z) . h−d/2z ‖v‖L2(ωz) and ‖Tz(v)‖H1(ω̂z) . h1−d/2
z ‖v‖H1(ωz).

Interpolation argument gives

‖v̂ − Cz‖Hs
Γ̂
(ω̂) . hs−d/2z ‖v‖Hs

Γ(ωz) ∀ s ∈ [0, 1].

Case ii: ∂ωz ∩ Γ has positive measure. We take Cz = 0. Notice that (6.26)

still holds for Cz = 0. For s = 1 we can now apply the first Poincaré’s inequality to

get (6.27). By the same argument as in Case i, we get (6.25). �

Error Close to the Free Boundary

We now look at the second term at the right-hand side of (6.14) in Lemma

6.2. Clearly, 〈λh, uh − χ〉 is zero when λh is zero (noncontact) or uh = χ (contact).

Hence it encodes an error committed close to the free boundary.

It is trivial to see the following estimation of 〈λh, uh − χ〉 [104, Lemma 3.2]:

Lemma 6.9 (Lack of Monotonicity: Stationary Case)

〈λh, uh − χ〉 =
∑

z∈Fh

szdz where dz :=

∫

ωz

(uh − χ)ψz. (6.28)
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Proof. Because uh = χ in ωz for any z ∈ Ch and sz = 0 for z ∈ Nh, we then get the

result. �

This new term is due to the nature of the contact problem since it vanishes

for problems without constraint. We want to obtain an upper bound for it in terms

of more standard error estimators. For contact problems, heuristically speaking,

the jump residual of uh should be a good local error indicator in the noncontact

region, as suggested by the well-established a posteriori error theory for linear elliptic

equations. On the other hand, in the contact region, the jump residual of wh :=

uh − χ appears to be appropriate because it matches the localization behavior (0

when full contact). In the transition region associated with the free boundary the

estimate is more subtle. It seems to be reasonable to have both jump residuals of

uh and wh.

We first consider dz, for z ∈ Fh. Similar analysis has been performed in dif-

ferent contexts [113, 134]. By the discrete quadratic growth1 property [113, Lemma

6.4], we obtain that

‖wh‖L∞(ωz) . hz‖J(wh)‖L∞(γz), (6.29)

because wh(z) = 0 by the definition of the set of free boundary nodes Fh. Hence,

by the definition of dz (6.28), we have

dz =

∫

ωz

whψz ≤ ‖wh‖L∞(ωz)

∫

ωz

ψz . h1+d
z ‖J(wh)‖L∞(γz).

Using a scaling argument, we can get the following estimation

dz . h
3
2
+ d

2
z ‖J(wh)‖L2(γz). (6.30)

From the definition of the nodal based Lagrange multiplier (6.18), we know

that

0 ≤ −sz = −
〈
rh, ψ̄z

〉
, (6.31)

where

ψ̄z :=
ψz∫
ωz
ψz

1This is a statement about the quadratic growth of any non-negative function with bounded

second derivatives. The continuous quadratic growth property was proved by Baiocchi [10].
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is the normalized (in L1-norm) basis function for any z ∈ Ph, i.e.
∫

Ω
ψ̄z = 1. It is

easy to see that

‖ψ̄z‖L2(ωz) ≈ h
− d

2
z and ‖ψ̄z‖L2(γz) ≈ h

− d+1
2

z .

Consequently, by the Cauchy-Schwarz inequality,

−sz ≤
〈
r, ψ̄z

〉
. h

− d+1
2

z ‖J(uh)‖L2(γz) + h
− d

2
z ‖R(uh)‖L2(ωz). (6.32)

Now we are in a position to derive an upper bound of the free boundary error

estimator term −szdz. From the two inequalities (6.30) and (6.32) obtained above,

we get

−szdz . hz‖J(uh)‖L2(γz)‖J(wh)‖L2(γz) + h3/2
z ‖R(uh)‖L2(ωz)‖J(wh)‖L2(γz)

. hz‖J(uh)‖2
L2(γz) + hz‖J(wh)‖2

L2(γz) + h2
z‖R(uh)‖2

L2(ωz).

Remark 6.10 (Convergence Rate) From the inequality above, we find the new

free boundary term is at least of the same order as the jump residual and the

interior residual terms. Our numerical experiments show this estimate is actually

pessimistic. Usually, this term is of higher order than the jump residual.

A similar calculation has been carried out by Bartels and Carstensen [15] in a

different context for an averaging error estimator for obstacle problems.

Computable Upper Bound

Based on the last three lemmas, Lemma 6.7, 6.8, and 6.9, we can obtain

a computable localized upper bound of the energy error. We first give a couple

comments about the assumptions for the upper bound result (Theorem 6.13). Recall

that ρ = 2s with s ∈ [0, 1].

Remark 6.11 (AIuh is in Lp(Ω)) To make sure our estimator is actually finite,

we will need AIuh ∈ Lp(ωz). In fact, if
∣∣k̂(ξ)

∣∣ ≤ C(1 + |ξ|)Y , then the pseudo-

differential operator

AI : W̃ s,p(Ω) → W s−Y,p(Ω)
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is continuous ([133, Theorem XI.2.5]). For piecewise linear finite element function

uh, which is in W̃ 1+ 1
p
−ε,p(Ω), we have AIuh ∈ Lp(Ω) if

1

p
> Y − 1.

Next, we give an example in one-dimension to motivate this property.

Example 6.12 (An 1d Example) Let the kernel function of AI be k(x) = 1/|x|1+Y

and uh be a continuous piecewise linear finite element function. It is clear that AIuh

have singularities near the end points of each subinterval of the domain. Suppose

that x = 0 is such an end point (for general case, we can show the same result by

shifting the domain). A particular example of uh and its derivatives close to x = 0

is shown in Figure 6.2. Near x = 0, the function (AIuh)(x) behaves like |x|−Y+1.

b

0

(a) uh

b
0

(b) Duh

b
0

−δ0

(c) D2uh

Figure 6.2: Finite element function and its derivatives

For AIuh to be in Lp, we need
∫

|x|<ε

|x|(1−Y )pdx <∞.

And this inequality holds when (1 − Y )p > −1 or 1
p
> Y − 1 which is exactly the

condition in the previous remark.

Theorem 6.13 (Upper Bound) Let f ∈ Lp(Ω) and p ≥ 1 satisfy

Y − 1 <
1

p
<

ρ

2d
+

1

2
. (6.33)

Then we have the following finite upper bound for the error of uh

|||u− uh|||2 + |||λ− λh|||2∗ .
∑

z∈Ph\Ch

(
η2
z + ξ2

z

)
−
∑

z∈Fh

szdz, (6.34)

where

η2
z := hz ‖J(uh)‖2

L2(γz) and ξ2
z := h

2s+d− 2d
p

z

∥∥(R(uh) − Rz

)
ψz
∥∥2

Lp(ωz)
. (6.35)
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Remark 6.14 (Choice of p) For any dimension d, the admissible set of p is nonempty

if we have

Y <
ρ

2d
+

3

2
.

For example, if d = 1 and Y = ρ, the admissible region of p is shown in Figure 6.3.

The region marked by gray indicate the possible p for different Y ’s. In the gray

0 1
0

1

2

1
p

Y

1/2

Figure 6.3: Admissible Region of p (d = 1)

region left to the dashed line (0 ≤ Y < 3/2), we could choose p = 2; on the other

hand, for 3/2 ≤ Y < 2, we need to pick some 1 < p < 2 in the gray area.

Remark 6.15 (Localization) The space error estimator is fully localized, i.e.,

there is no contribution from z ∈ Ch, the discrete contact set. Note that this is

consistent with the absence of obstacle approximation error because χh = χ. Like-

wise, the term −szdz ≥ 0 contributes only when z ∈ Fh. One may also wonder

whether the sets of full-contact nodes Ch and free boundary nodes Fh are good ap-

proximations of the actual contact region and free boundary, respectively. We will

explore this point further via numerical experiments in Chapter 8.

Proof of Theorem 6.13.

Case i (ρ = 2) Recall the localization property (6.20) of Gh :

〈Gh, ϕ〉 =
∑

z∈Ph\Ch

〈(rh − sz)ψz, ϕ〉 ∀ ϕ ∈ H̃1(Ω).
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By the definitions of the residual rh = f − Auh and the interior residual R(uh) in

(6.16), we have

〈rh, ϕψz〉 = 〈R(uh), ϕψz〉 − 〈c2∇uh,∇(ϕψz)〉 .

This, and the definition (6.18) of sz, give

〈rh − sz, ϕψz〉 = 〈R(uh) −Rz, ϕψz〉 − 〈c2∇uh,∇(ϕψz)〉 − 〈Jz, ϕψz〉 .

For each node z ∈ Ph\Ch, by the definition of Jz, we get for the third term on the

right-hand side:

−〈Jz, ϕψz〉 = Cϕ,z 〈c2∇uh,∇ψz〉 ,

where Cϕ,z = 〈ϕ, ψz〉 / 〈1, ψz〉 is a weighted average for interior nodes z ∈ Ph ∩ Ω

and Cϕ,z = 0 for boundary nodes z ∈ Ph ∩ Γ.

Hence integration by parts gives

〈Gh, ϕ〉 =
∑

z∈Ph\Ch

〈(R(uh) −Rz)ψz, ϕ〉 +
∑

z∈Ph\Ch

∫

γz

J(uh)(ϕ− Cϕ,z)ψz. (6.36)

Applying the Cauchy-Schwarz inequality and taking

G =
∑

z∈Ph\Ch

gz with gz = (R(uh) −Rz)ψz

in Lemma 6.7 and 6.8 (since
∫
ωz
gz = 0 for z ∈ Ph ∩ Ω), we then obtain

∑

z∈Ph\Ch

〈(
R(uh) −Rz

)
ψz, ϕ

〉

.


 ∑

z∈Ph\Ch

h2+d(1−2/p)
z

∥∥(R(uh) −Rz

)
ψz
∥∥2

Lp(ωz)




1
2

‖ϕ‖H̃1(Ω).

For the second part of (6.36), we use standard scaling argument based on a trace

theorem and the Poincaré’s inequality to get (see also [108, Theorem 3.6])

∣∣∣∣∣∣

∑

z∈Ph\Ch

∫

γz

J(uh)(ϕ− Cϕ,z)ψz

∣∣∣∣∣∣
.


 ∑

z∈Ph\Ch

hz ‖J(uh)‖2
L2(γz)




1
2

‖ϕ‖H̃1(Ω).
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Then, by applying Lemma 6.2 and 6.9, we get the result.

Case ii (ρ < 2) In this case, the constant c2 = 0 and in turn the jump term

J(uh) vanishes. The upper bound follows directly from the proof above by taking

c2 = 0. �

6.4.2 Lower Bound

Inspired by the global lower bound in Lemma 6.2, we first prove that the

dual norm |||Gh|||∗ can be bounded from below by the sum of local dual norms

‖Gh‖H−s(ωz); then we show that the local error estimators ηz and ξz are lower bounds

of ‖Gh‖H−s(ωz) up to an oscillation term for each node z ∈ Ph.

From Local to Global

We first prove a crucial lemma with the help of the norm equivalence result

(Proposition 2.5).

Lemma 6.16 (Localized Lower Bound of the Dual Norm) Let G ∈ H−s(Ω).

For s ∈ [0, 1] there holds

∑

z∈Ph

‖G‖2
H−s(ωz) . ‖G‖2

H−s(Ω) .

Proof. We first partition the set of nodes Ph =
⋃M
i=1 P i

h such that the intersections

intωx ∩ intωy = ∅, for any x and y in each P i
h for i = 1, . . . ,M .

For each z ∈ Ph, let ϕz ∈ H̃s(ωz) satisfies

〈G,ϕz〉 = ‖G‖2
H−s(ωz) and ‖ϕz‖H̃s(ωz) = ‖G‖H−s(ωz).

Similar to the argument as in the heat equation case [16], we have

∑

z∈Pi
h

‖G‖2
H−s(ωz) =

∑

z∈Pi
h

〈G,ϕz〉 =
〈
G,
∑

z∈Pi
h

ϕz
〉
≤ ‖G‖H−s(Ω)

∥∥∥
∑

z∈Pi
h

ϕz

∥∥∥
H̃s(Ω)

.

On the other hand, using Proposition 2.5, we obtain

∥∥∥
∑

z∈Pi
h

ϕz

∥∥∥
2

H̃s(Ω)
≤
∑

z∈Pi
h

‖ϕz‖2
H̃s(Ω) =

∑

z∈Pi
h

‖ϕz‖2
H̃s(ωz)

=
∑

z∈Pi
h

‖G‖2
H−s(ωz).
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The last two inequalities yield that

∑

z∈Pi
h

‖G‖2
H−s(ωz) . ‖G‖2

H−s(Ω) i = 1, . . . ,M.

Hence the result. �

Lower Bound in Terms of Jump Residual

Now we prove the lower bound of local dual norms in terms of the jump

residual. Recall that ηz = 0 for Case II and III. The only non-trivial case then is the

Case I (ρ = 2) when c2 6= 0.

Lemma 6.17 (Lower Bound of Local Dual Norms: Jump Residual) We have

the following lower bound of the local dual norm provided ρ = 2

η2
z . ‖Gh‖2

H−1(ωz) +
∑

x∈(Ph\Ch)∩ωz

ξ2
x ∀z ∈ Ph\Ch.

Proof. We construct test functions explicitly as in [72]. Let S ⊂ γz be a generic

side (face) and ωS be the union of the elements τ ∈ T sharing side S. Consider the

classical bubble functions [135]

bS :=
∏

y∈Ph∩S

ψy and bτ :=
∏

y∈Ph∩τ

ψy; (6.37)

and define ϕ̂S as

ϕ̂S := bS −
∑

y∈Ph∩τ,τ⊂ωS

βτ,ybτψy,

with constant coefficients βτ,y ∈ R. We have enough freedom to choose the constants

βτ,y such that 〈ϕ̂S, ψy〉 = 0 for y ∈ Ph ∩ ωS. Furthermore, it is clear that supp ϕ̂S =

ωS and ϕ̂S|S = bS. We can see by scaling argument and the trace theorem that

‖ϕ̂S‖H̃1(ωS) . h
− 1

2
z ‖ϕ̂S‖L2(S) and ‖ϕ̂S‖Lq(ωS) . h

1
2
+ d

2
− d

p
z ‖ϕ̂S‖L2(S). (6.38)

We finally set the test function ϕS := J(uh)|S ϕ̂S and observe that

‖J(uh)‖2
L2(S) .

∑

y∈Ph∩S

∫

S

J(uh)
2bSψy

=
∑

y∈Ph∩S

∫

S

J(uh)
2ϕ̂Sψy =

∑

y∈Ph∩S

∫

S

J(uh)ϕSψy.
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From (6.36) and (6.38), since Cϕ,z = 0 for ϕ = ϕ̂S, we see that

‖J(uh)‖2
L2(S) . 〈Gh, ϕS〉 −

∑

x∈(Ph\Ch)∩ωS

〈(
R(uh) −Rx

)
ψx, ϕS

〉

≤ ‖Gh‖H−1(ωS)‖ϕS‖H̃1(ωS) +
∑

x∈(Ph\Ch)∩ωS

∥∥(R(uh) − Rx

)
ψx
∥∥
Lp(ωS)

‖ϕS‖Lq(ωS)

.
(
‖Gh‖H−1(ωS) +

∑

x∈(Ph\Ch)∩ωS

h
1+ d

2
− d

p
x

∥∥(R(uh) − Rx

)
ψx
∥∥
Lp(ωS)

)
h

1
2
z ‖J(uh)‖L2(S).

By adding contributions from each side in γz, we obtain the result. �

Remark 6.18 (Local Lower Bound) In case A is a second order continuous and

coercive differential operator (cI = 0), it has been shown that ‖Gh‖H−1(ωz) is a lower

bound of the local error up to an oscillation term; see [104, Lemma 3.7]. This, in

turn, yields local efficiency. Unfortunately, it is not true for global operators A in

our context.

Simply applying the previous two lemmas (Lemma 6.16 and 6.17) and the

abstract lower bound (Lemma 6.2), we get the following global lower bound:

Theorem 6.19 (Global Lower Bound: Jump Residual) The following global

lower bound holds provided ρ = 2

∑

z∈Ph\Ch

η2
z . |||u− uh|||2 + |||λ− λh|||2∗ +

∑

z∈Ph\Ch

ξ2
z .

Lower Bound in Terms of Interior Residual (p = 2)

Now we prove the lower bound in terms of ξz up to an oscillation term for the

rest two cases (ρ < 2). For simplicity, we first present results for p = 2 and general

result can be studied analogously.

An interesting observation is that, in Case II and III, the estimator ξz behaves

very differently than in Case I. We observe that ξz in numerical experiments is of

higher order than the real energy error for Case I; see Table 8.14. However, in the

remaining two cases, it has the same order as the energy error as we can expect

from the following lemma; see Table 8.11.
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Since c2 = 0, we have R(uh) is actually the full residual rh and, because of

Galerkin orthogonality, we have

Rz = 〈R(uh), ψz〉 / 〈1, ψz〉 = 0 ∀ z ∈ Nh

Hence, in this case, we have

ξz = hsz‖R(uh)ψz‖L2(ωz) ≤ hsz‖R(uh)‖ψz =: ξ̃z.

Here, for short, we denote the weighted L2-norm

‖v‖ψz :=
(∫

ωz

v2ψz

) 1
2

.

We first introduce some new notation. Let

R̃z :=
∑

x∈(Ph\Ch)∩ωz

(R(uh) − Rx)ψx. (6.39)

If all of x ∈ Ph ∩ ωz are in the noncontact set (corresponding to a linear elliptic

equation), then R̃z = R(uh).

For each node z ∈ Ph, define ω̂z to be the corresponding reference patch of ωz.

On the reference patch, we can define a finite dimensional function space P̂z. Let

the finite dimensional space Pz on ωz be a scaling transformation of the space P̂z.

For any node z ∈ Ph\Ch, we define the oscillation to be

osc2
z := inf

Pz∈Pz

h2s
z

( ∥∥(R(uh) − Rz

)
− Pz

∥∥2

ψz
+ ‖R̃z − Pz‖2

ψz

)
. (6.40)

Remark 6.20 (Standard Oscillation Term) If all nodes in ωz are noncontact,

then it is clear that Rz = 0 and R̃z = R(uh). In this case, this oscillation term

reduces to the standard oscillation term oscz = hsz infPz∈Pz ‖R(uh)−Pz‖ψz for linear

elliptic equations [108].

Lemma 6.21 (Lower Bound of Local Dual Norms: Interior Residual) Let the

residual R(uh) ∈ L2(Ω). Then, in Case II and III, there exists a constant C > 0 such

that

ξ2
z ≤ C‖Gh‖2

H−s(ωz) + 2osc2
z z ∈ Ph\Ch. (6.41)
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Proof. For any ϕ ∈ H̃s(ωz), it is easy to see that

〈Gh, ϕz〉 =
∑

x∈(Ph\Ch)∩ωz

〈(
R(uh) − Rx

)
ψx, ϕz

〉
=
〈
R̃z, ϕz

〉
.

Then we add and subtract a function Pz ∈ Pz to get

〈Gh, ϕz〉 = 〈Pz, ϕz〉 +
〈
R̃z − Pz, ϕz

〉
.

Now take the test function ϕz := Pzψz ∈ H̃s(ωz). Then we have

∥∥Pz
∥∥2

ψz
= 〈Pz, ϕz〉 = 〈Gh, ϕz〉 −

〈
R̃z − Pz, ϕz

〉
.

Hence, by the Cauchy-Schwarz inequality, we arrive at

∥∥Pz
∥∥2

ψz
≤
∥∥Gh

∥∥
H−s(ωz)

·
∥∥ϕz

∥∥
H̃s(ωz)

+
∥∥R̃z − Pz

∥∥
ψz

·
∥∥Pz

∥∥
ψz
. (6.42)

Since ϕz is finite dimensional and has the scaling property, we have the inverse

estimation
∥∥ϕz

∥∥
H̃s(ωz)

≤ Ch−sz
∥∥ϕz

∥∥
L2(ωz)

≤ Ch−sz
∥∥Pz

∥∥
ψz

by using the interpola-

tion argument and noticing that ψz ≤ 1. Applying the inverse estimation to the

inequality (6.42), we immediately obtain

∥∥Pz
∥∥
ψz

≤ Ch−sz
∥∥Gh

∥∥
H−s(ωz)

+
∥∥R̃z − Pz

∥∥
ψz
. (6.43)

On the other hand, the definition of the interior error estimator gives

h2s
z

∥∥(R(uh) − Rz)ψz
∥∥2

L2(ωz)
≤ h2s

z

∥∥R(uh) −Rz

∥∥2

ψz

≤ 2h2s
z

(∥∥Pz
∥∥2

ψz
+
∥∥(R(uh) − Rz) − Pz

∥∥2

ψz

)
. (6.44)

Then combining (6.43) and (6.44), we get the result. �

Remark 6.22 (Convergence Rate of the Oscillation Term) For elliptic dif-

ferential equations, the oscillation term is usually of higher order than the error

estimator. So asymptoticaly, it will be small and can be ignored. However, for

problems with an integro-differential operator, this is not the case. For example, if

we take A = AI and the kernel k(x) = 1/|x|2 for d = 1, we notice that the residual

rh = f −AIuh has logarithmic singularities towards the end points of each interval;
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Figure 6.4: Residual is singular close to the end points of each interval. Upper:

discrete solution uh; lower: residual r = f −Auh.

see Figure 6.4. Even worse, as we refine the mesh, this oscillation does not go away.

Hence it is not clear whether there is any chance to have the oscillation to be of

higher order. In fact, numerical experiments show that it is not the case. If you

choose Pz to be piecewise linear (or even quadratic) polynomials, the oscillation is

of the same order as the estimator ξz.

Remark 6.23 (Choice of Pz) In the standard oscillation term for linear finite el-

ement method, usually it is enough to take Pz to be a constant function. However,

constants will not help us in general in the current context. This is because the

optimal value of

inf
Pz∈Const

‖R(uh) − Pz‖ψz

occurs when Pz = Rz, which is zero due to the Galerkin orthogonality. So we need

piecewise linear polynomial space for Pz at least. We shall discuss this in Chapter

8 with specific test examples.
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With the help of this lemma and Lemma 6.16, we obtain, by summing local

terms together, that:

Theorem 6.24 (Global Lower Bound: Interior Residual (p = 2)) If R(uh) =

f −Auh ∈ L2(Ω), we have the global lower bound

∑

z∈Ph\Ch

(
ξ2
z − 2osc2

z

)
. |||u− uh|||2 + |||λ− λh|||2∗ .

Lower Bound in Terms of Interior Residual (1 < p < 2)

Above we only discuss the case when p = 2. For 3/2 < Y < 2, in the error

estimator ξz, we need in general 1 < p < 2. Similar to the discussion for p = 2, we

can also define weighted Lp-norm

‖v‖p,ψz :=
(∫

ωz

|v|pψz
)1/p

and the oscillation term

osc2
p,z := inf

Pz∈Pz

h
2s+d− 2d

p
z

(∥∥(R(uh) −Rz

)
− Pz

∥∥2

p,ψz
+ ‖R̃z − Pz‖2

p,ψz

)
.

This is consistent with the definition before for p = 2.

Let ϕz := P
p
q
z ψz. Using the same argument as in the derivation of (6.42), it is

easy to see that

‖Pz‖pp,ψz
=

∫

ωz

Pzϕz = 〈Gh, ϕz〉 −
〈
R̃z − Pz, ϕz

〉
.

For the second term on the right-hand side, we have

∫

ωz

(R̃z − Pz)P
p
q
z ψz =

∫

ωz

[
(R̃z − Pz)ψ

1
p
z

]
·
[
P

p
q
z ψ

1
q
z

]
.

By the Cauchy-Schwarz inequality, it follows that

‖Pz‖pp,ψz
≤ ‖Gh‖H−s · ‖ϕz‖H̃s(ωz) + ‖R̃z − Pz‖p,ψz · ‖ϕz‖q,ψz . (6.45)

On the other hand, using the interpolation argument and inverse estimate as in

Lemma 6.8, we have

‖ϕz‖H̃s(ωz) . h
−s− d

q
+ d

2
z ‖ϕz‖Lq(ωz) = h

−s− d
q
+ d

2
z ‖P

p
q
z ψz‖Lq(ωz)
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Because 1 < p < 2, so 2 < q <∞, we have 1
q
< 1

2
< 1 and in turn

‖P
p
q
z ψz‖Lq(ωz) ≤ ‖P

p
q
z ψ

1
q
z ‖Lq(ωz) = ‖P

p
q
z ‖q,ψz .

Plugging this inequality into (6.45), we then get

‖Pz‖pp,ψz
≤ Ch

−s− d
q
+ d

2
z ‖Gh‖H−s(ωz)‖P

p
q
z ‖q,ψz + ‖R̃z − Pz‖p,ψz‖P

p
q
z ‖q,ψz .

Notice that ‖P
p
q
z ‖q,ψz = ‖Pz‖

p
q

p,ψz
by simple calculation. Then we obtain that

‖Pz‖p,ψz ≤ Ch
−s− d

q
+ d

2
z ‖Gh‖H−s(ωz) + ‖R− Pz‖p,ψz

and in turn the lower bound

ξ̃2
z := h

2s+d− 2d
p

z ‖R(uh) − Rz‖2
p,ψz

≤ C‖Gh‖2
H−s(ωz) + 2osc2

z,p. (6.46)

We summarize the discussion above in the following theorem:

Theorem 6.25 (Global Lower Bound: Interior Residual (1 < p < 2)) If the

residual R(uh) = f −Auh ∈ Lp(Ω), we have the global lower bound

∑

z∈Ph\Ch

(
ξ2
z − 2osc2

p,z

)
. |||u− uh|||2 + |||λ− λh|||2∗ .

Non-negative Lower Bound

For elliptic PDEs, the oscillation term oscz is usually of higher order than

the error estimator. However it is not the case for problems with singular integral

operators. The question is whether we get a non-negative lower bound or we just

get some trivial inequality with a negative quantity in (6.24). For elliptic equations,

a more careful analysis gives a non-negative lower bound of the error.

Lemma 6.26 (Non-trivial Lower Bound) There exists a constant C > 0 such

that

0 ≤
∑

z∈Ph\Ch

(
ξ̃2
z − osc2

z

)
. |||u− uh|||2 , (6.47)

where the error estimator and the oscillation term read

ξ̃z := hsz‖R(uh)‖ψz

oscz := hsz inf
Pz∈Pz

‖R(uh) − Pz‖ψz .
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Proof. It is clear that, to show (6.47), we only need to prove

‖R(uh)‖2
H−s(ωz) ≥ Ch2s

z

(
‖R(uh)‖2

ψz
− inf

Pz∈Pz

‖R(uh) − Pz‖2
ψz

)
. (6.48)

Let Pz ∈ Pz be the best approximation of R(uh) in Pz with respect to ‖ · ‖ψz -norm.

Then, by orthogonality, we have

‖R(uh)‖2
ψz

− ‖R(uh) − Pz‖2
ψz

= ‖Pz‖2
ψz
.

Hence we only need to prove that ‖R(uh)‖H−s(ωz) & hsz‖Pz‖ψz ≥ 0. In order to

show this, we first prove the corresponding inequality by exploring the equivalence

of norms on finite dimensional spaces and then we prove a scaling inequality to close

the gap.

Step 1. Let ω̂z be the reference star with size 1 and v̂ be the function v

on reference star after transformation. Because P̂z is finite dimensional, then it is

well-known that

‖P̂z‖ψ̂z
. ‖P̂z‖H−s(ω̂z).

Let {b̂i}Mi=1 be the orthogonal basis of P̂z on ω̂z. Then

P̂z =

M∑

i=1

〈R̂(ûh), b̂iψ̂z〉b̂i.

Consequently,

‖P̂z‖ψ̂z
. ‖P̂z‖H−s(ω̂z) .

M∑

i=1

〈R̂(ûh), b̂iψ̂z〉‖b̂i‖H−s(ω̂z) . ‖R̂(ûh)‖H−s(ω̂z) (6.49)

by the Cauchy-Schwarz inequality.

Step 2. To obtain the inequality (6.48), we need a scaling inequality for H−s-

norm. By definition, we have

‖R(uh)‖H−s(ωz) := sup
‖v‖H̃s(ωz)=1

∫

ωz

R(uh)v = sup
‖v‖H̃s(ωz)=1

hdz

∫

ω̂z

R̂(ûh)v̂. (6.50)

On the other hand, the first Poincaré inequality gives

‖v‖H̃1(ωz) =
(
‖v‖2

L2(ωz) + ‖∇v‖2
L2(ωz)

)1/2 ≤ (Ch2
z + 1)1/2‖∇v‖L2(ωz)

. |v|H̃1(ωz) ≈ h
−1+ d

2
z |v̂|H̃1(ω̂z) ≤ h

−1+ d
2

z ‖v̂‖H̃1(ω̂z).
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Furthermore, it is easy to see that ‖v‖L2(ωz) ≤ h
d
2
z ‖v‖L2(ω̂z). Hence, interpolation

argument on the scaling operator T̂ : v̂ → v gives the scaling inequality

h
s− d

2
z ‖v‖H̃s(ωz) . ‖v̂‖H̃s(ω̂z). (6.51)

Whence, using (6.50) and (6.51), we arrive at

‖R̂(ûh)‖H−s(ω̂z) = sup
‖v̂‖H̃s(ω̂z)=1

∫

ω̂z

R̂(ûh)v̂ . h
−s− d

2
z ‖R(uh)‖H−s(ωz). (6.52)

Step 3. Applying the results obtained from the previous two steps, we obtain

that

h−dz ‖Pz‖2
ψz

. ‖P̂z‖2
ψ̂z

. ‖R̂(ûh)‖H−s(ω̂z) . h−2s−d
z ‖R(uh)‖2

H−s(ωz).

Hence we get the lower bound (6.47). �

We now summarize this section with a few remarks.

Remark 6.27 (Remarks on the Interior Residual) From the definition of Rz,

we can see that
(
R(uh) − Rz

)
ψz has mean value 0. The term ξz behaves very

differently in the case when c2 = 0 than the case c2 6= 0.

• In Case I, the numerical results (Table 8.14) suggests that ξz is of higher order

compared with the jump residual term ηz. In fact, this is not surprising at

all. For example, in a special case when A = −∆ (Dirichlet obstacle problem

without integral operator),

ξ2
z = h2

z‖(f − fz)ψz‖2
L2(ωz)

which is exactly the usual data oscillation term [106, 107, 108].

• On the other hand, in Case II and III, we have 0 < ρ < 2 and the jump residual

term ηz vanishes because c2 = 0 and R(uh) = rh is actually the full residual.

Indeed, ξz does not behave like the oscillation anymore. If the constraint

is nonactive, the constant Rz is zero for every node z ∈ Ph. In these two

cases, the term ξz is of the same order as the energy error in our numerical

experiments (see Table 8.11).
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Remark 6.28 (Other Types of Error Estimators) Several different types of er-

ror estimators have been developed for elliptic PDEs. They are residual-type esti-

mators, hierarchical-type estimators, estimators based on local problems, and esti-

mators based on average. See [135, 2] for details. From the discussion before, it has

been shown, using an energy method, we can derive a localized residual-type upper

bound of the global dual norm |||Gh|||∗. In [127], Siebert and Veeser gave an error

estimator of hierarchical-type and proved convergence of the adaptive algorithm us-

ing this estimator; they treat the contact and noncontact cases in a global sense in

the upper bound proof which leads to a gap between the upper and lower bounds.

Estimators based on averaging technique are considered in [15].

6.5 Time-dependent Problems

A posteriori error estimates as well as adaptive methods for linear parabolic

equations have been discussed by many researchers since early 80’s; for example,

Bieterman and Babuška [20, 21] for 1d problems. In 90’s, Erickson, Johnson,

and Larsson made systematic efforts to develop adaptive methods for linear and

nonlinear parabolic equations [57, 58, 59, 60, 61]. More recent advances include

[119, 136, 48, 16]. A new approach based on elliptic reconstruction technique was

proposed by Makridakis and Nochetto [96] for semidiscrete problems and by Lakkis

and Makridakis [90] for fully-discrete numerical methods.

In spite of all above, adaptive methods for parabolic problems are less un-

derstood, especially for nonlinear problems like PVI. In this section, we consider a

special case of evolution problem (Problem 4.7). To explain the idea, for the mo-

ment, we assume that χ does not change in time and it is piecewise linear in space.

Furthermore, we assume that the underlying finite element space does not change

in time (the mesh T fixed).

Given the initial solution u0 ∈ K := {v ∈ H̃s(Ω) | v ≥ χ, a.e. Ω}, finding a

solution u ∈ L2(0, T ;L2(Ω)) ∩H1(0, T ;H−s(Ω)) such that u ∈ K and

〈∂tu+ Au, u− v〉 ≤ 〈f, u− v〉 ∀ v ∈ K. (6.53)
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We apply the fully-discrete numerical scheme (backward Euler linear finite element),

Method 4.13.

6.5.1 Lagrange Multiplier and Galerkin Functional

We now define the continuous and discrete Lagrange multipliers and Galerkin

functional for the time-dependent problem analogous to the stationary case in §6.4.

We define the Lagrange multiplier λ as follows

λ(t) := f(t) − ∂tu(t) −Au(t) ∈ H−s(Ω), t ∈ [0, T ]. (6.54)

At each time tn, n = 1, . . . , N , we define the residual

rnh := F n − δUn
h −AUn

h ,

and split the set of all nodes Ph into three disjoint sets

Ph = N n
h ∪ Cnh ∪ Fn

h ,

where noncontact, full-contact, and free boundary sets are given by

N n
h := {z ∈ Ph |Un

h > χ(tn) in intωz}, (6.55a)

Cnh := {z ∈ Ph |Un
h = χ(tn) and rnh ≤ 0 in ωz}, (6.55b)

Fn
h := Ph \ (N n

h ∪ Cnh ). (6.55c)

Notice that we define these sets for general χ ∈ H1(Q) instead of restricting ourselves

to the time-independent χ because we will discuss the general case in the next

section. In this section, χ(tn) = χ for n = 1, . . . , N .

Then we can define the discrete Lagrange multiplier Λn
h as

Λn
h :=

∑

z∈Cn
h

rnhψz +
∑

z∈Ph\C
n
h

snzψz , (6.56)

with

snz :=





〈rnh , ψz〉
〈1, ψz〉 , z ∈ Ph ∩ Ω

0, z ∈ Ph ∩ Γ.
(6.57)
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At time tn, the Galerkin functional is defined by

Gnh := rnh − Λn
h =

∑

z∈Ph\Ch

(rnh − snz )ψz (6.58)

which satisfies the localization property as well as the mean value property, i.e.

〈(rnh − snz )ψz, 1〉 = 0. Notice that these properties were crucial to obtain a localized

upper bound for elliptic problems in §6.4.

6.5.2 Abstract Error Bounds

Now we are ready to introduce the main steps to treat time-dependent prob-

lems. Let Gh be the piecewise constant (in time) Galerkin functional (6.58), i.e.

Gh = F − δtUh −AUh − Λh.

This and the definition of λ (6.54) give, for any ϕ ∈ H̃s(Ω), that

〈Gh, ϕ〉 = 〈A(u− Uh), ϕ〉 + 〈(∂tu− δtUh) + (λ− Λh), ϕ〉 −
〈
f − F, ϕ

〉
. (6.59)

Taking ϕ = u− Uh in (6.59) and applying Lemma 2.11, we get

1

2

d

dt
‖u− Uh‖2

L2(Ω) +
1

4

(∣∣∣∣∣∣u− Uh

∣∣∣∣∣∣2 + |||u− Uh|||2
)

≤ 2γ2
∣∣∣∣∣∣Uh − Uh

∣∣∣∣∣∣2 − 〈λ− Λh, u− Uh〉 + 〈Gh, u− Uh〉 +
〈
f − F , u− Uh

〉
. (6.60)

Since 〈λ, u− Uh〉 ≥ 0 and Λh ≤ 0, as before, we obtain that

−〈λ− Λh, u− Uh〉 ≤ −
〈
Λh, Uh − χ

〉
.

Then applying the Young’s inequality with appropriate constants for the last two

terms on the right-hand side of (6.60), we get

1

2

d

dt
‖u− Uh‖2

L2(Ω) +
1

4

∣∣∣∣∣∣u− Uh

∣∣∣∣∣∣2 +
1

8
|||u− Uh|||2

≤ 2γ2
∣∣∣∣∣∣Uh − Uh

∣∣∣∣∣∣2 −
〈
Λh, Uh − χ

〉
+ 4

∣∣∣∣∣∣Gh
∣∣∣∣∣∣2

∗
+ 4

∣∣∣∣∣∣f − F
∣∣∣∣∣∣2

∗
. (6.61)

On the other hand, rearranging terms of (6.59) and applying the strong sector

condition (2.5), we have that

∣∣∣∣∣∣∂t(u− Uh) + (λ− Λh)
∣∣∣∣∣∣2
∗
≤ 12γ2

∣∣∣∣∣∣u− Uh

∣∣∣∣∣∣2 + 3
∣∣∣∣∣∣Gh

∣∣∣∣∣∣2
∗
+ 3

∣∣∣∣∣∣f − F
∣∣∣∣∣∣2

∗
. (6.62)
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Adding the two inequalities (6.61) and (6.62), we get the upper bound after

dropping all the constants:

d

dt
‖u− Uh‖2

L2(Ω)+
(∣∣∣∣∣∣u− Uh

∣∣∣∣∣∣2 + |||u− Uh|||2
)

+
∣∣∣∣∣∣∂t(u− Uh) + (λ− Λh)

∣∣∣∣∣∣2
∗

.
∣∣∣∣∣∣Uh − Uh

∣∣∣∣∣∣2 −
〈
Λh, Uh − χ

〉
+
∣∣∣∣∣∣Gh

∣∣∣∣∣∣2
∗
+
∣∣∣∣∣∣f − F

∣∣∣∣∣∣2
∗
.

Integrating in time, we then obtain the following upper bound of the error in

L2(0, T ; H̃s(Ω))-norm. We define the error to be

E2(0, T ; Ω) := ‖(u− Uh)(T )‖2
L2(Ω) +

∫ T

0

∣∣∣∣∣∣u− Uh

∣∣∣∣∣∣2 + |||u− Uh|||2 dt

+

∫ T

0

∣∣∣∣∣∣∂t(u− Uh) + (λ− Λh)
∣∣∣∣∣∣2

∗
dt (6.63)

Lemma 6.29 (Abstract Upper Bound: Time-dependent Problems) Let u and

{Un
h }Nn=1 are solutions of the continuous and discrete variational inequalities, (1.18)

and (4.19), respectively. Then we have the following upper bound:

E2(0, T ; Ω) . ‖u0 − U0
h‖2

L2(Ω) +

∫ T

0

∣∣∣∣∣∣Uh − Uh
∣∣∣∣∣∣2 dt

+

∫ T

0

∣∣∣∣∣∣Gh
∣∣∣∣∣∣2
∗
−
〈
Λh, Uh − χ

〉
dt+

∫ T

0

∣∣∣∣∣∣f − F
∣∣∣∣∣∣2
∗
dt (6.64)

Remark 6.30 (Role of Each Term in the Upper Bound) Notice that on the

right-hand side of the last inequality, the first term measures the initial error; the

second term is computable and measures the error due to time discretization; and

the last term gives the data consistency error due to time discretization of f . The

third term corresponds to space error and has been analyzed before for stationary

problems.

At each time step tn, |||Gnh |||∗ can be treated exactly as in the elliptic case (see

§6.4). Treating term 〈Λn
h, Uh − χ〉 is slightly different than in Lemma 6.9 though

due to the time dependence. We now estimate this term following the idea in [104,

Lemma 3.2].
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Lemma 6.31 (Lack of Monotonicity: Evolutionary Case) The following in-

equality holds

∫ tn

tn−1

〈Λn
h, Uh − χ〉dt ≥ −

∑

z∈Cn
h∪Fn

h

kn
2
〈Λn

h, (U
n
h − Un−1

h )ψz〉 +
∑

z∈Fn
h

kns
n
zd

n
z , (6.65)

for any n = 1, . . . , N , with the constants

dnz :=

∫

ωz

(Un
h − χnh)ψz =

∫

ωz

(Un
h − χh)ψz ≥ 0. (6.66)

Proof. Using definition Uh = l(t)Un−1
h + (1 − l(t))Un

h , with l(t) given in (4.9), and

integrating in time yields

∫ tn

tn−1

〈Λn
h, Uh − χh〉dt =

kn
2
〈Λn

h, U
n−1
h + Un

h − 2χh〉

=
kn
2
〈Λn

h, U
n−1
h − Un

h 〉 + kn〈Λn
h, U

n
h − χh〉.

We finally observe that snz = 0 for any z ∈ N n
h and Un

h = χh in ωz for z ∈ Cnh .

Therefore 〈Λn
h, (U

n
h − χh)ψz〉 = snzd

n
z for z ∈ Fn

h and zero otherwise, whence the

desired estimate (6.65) follows immediately. �

Remark 6.32 (Further Simplification) Since we assume the obstacle does not

change in time, the previous lemma can be further simplified. For any node z ∈ Cnh ,

we have Un
h = χ in ωz and Un−1

h ≥ χ. The non-positivity of snz then gives

∫ tn

tn−1

〈Λn
h, Uh − χ〉dt ≥ −

∑

z∈Fn
h

kn
2
〈snz , (Un

h − Un−1
h )ψz〉 +

∑

z∈Fn
h

kns
n
zd

n
z .

Remark 6.33 (Lower Bounds) Similar abstract lower bound in terms of |||Gnh |||∗
can be obtained as in §6.4.2; a lower bound in terms of the time error estimator is

trivial due to the triangle inequality:

∫ tn

tn−1

∣∣∣∣∣∣Uh − Uh
∣∣∣∣∣∣2 dt ≤ 2

∫ tn

tn−1

∣∣∣∣∣∣Uh − u
∣∣∣∣∣∣2 + |||Uh − u|||2 dt.

6.5.3 Localized Error Estimators

Finally, we summarize this section by giving a computable residual-type local

error estimate. Let R(Un
h ) and J(Un

h ) be interior and jump residual at time tn,
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respectively, i.e.

R(Un
h ) := F n − δUn

h −AIU
n
h − c1 · ∇Un

h − c0U
n
h

J(Un
h ) := −c2(∇Un

h |τ1 · ν1 + ∇Un
h |τ2 · ν2)

We shall use residual-type space error estimator as an example here for time-

dependent problems. Other types of error estimators can also be derived without

much difficulty. We define the following jump and interior indicators as in §6.4:

(ηnz )
2 := hz ‖J(Un

h )‖2
L2(γz) and (ξnz )

2 := h
2s+d− 2d

p
z ‖(R(Un

h ) − Rn
z )ψz‖2

Lp(ωz) ,

where Rn
z := 〈Rn, ψz〉 / 〈1, ψz〉 is the weighted average. Define the error estimator

E :=
(
E2

0 + E2
k + E2

h + E2
kh + E2

D

) 1
2 (6.67)

with

E2
0 := ‖u0 − U0

h‖2
L2(Ω) initial error

E2
k :=

N∑

n=1

kn
3

∣∣∣∣∣∣Un
h − Un−1

h

∣∣∣∣∣∣2 dt time error

E2
h :=

N∑

n=1

kn

{ ∑

z∈Ph\C
n
h

[
(ηnz )

2 + (ξnz )
2
]
−
∑

z∈Fn
h

snzd
n
z

}
space error

E2
kh :=

N∑

n=1

kn

{ ∑

z∈Fn
h

∣∣〈snz , (Un
h − Un−1

h )ψz
〉∣∣
}

mixed error

E2
D :=

∫ T

0

∣∣∣∣∣∣f − F
∣∣∣∣∣∣2
∗
dt data consistency

Applying Lemma 6.7 and 6.8 on |||Gnh |||2∗, Lemma 6.31 and Remark 6.32 on
∫ T
0
〈Λn

h, Uh − χ〉 dt, we then have the following computable and localized upper

bound from the abstract upper bound (6.64):

Theorem 6.34 (Upper Bound: Evolutionary Case) Let f ∈ L1(0, T ;Lp(Ω))

and p ≥ 1 satisfies

Y − 1 <
1

p
<

ρ

2d
+

1

2
.

Then we have the following upper bound for the error

E2(0, T ; Ω) . E2.
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Remark 6.35 (Inactive Constraint) For the noncontact nodes N n
h , the varia-

tional inequality becomes an equality. This is reflected on the vanishing of all terms

that account for the unilateral constraint. The resulting estimator reduces to an

energy-type estimator for a linear diffusion equation. This result, however, is differ-

ent from earlier versions [119, 136, 16] in that

• our new error indicators are star-based instead of element-based;

• the interior residual estimator is of higher order than the jump estimator for

differential operators;

• the linear sectorial integro-differential operator A is much more general than

the Laplace operator.

6.6 General Obstacle

In previous sections, we derived an a posteriori error estimator for variational

inequalities with the conformity assumption, i.e. K ⊂ K. In practice, we could

have problems with an obstacle which cannot be approximated exactly by piecewise

linear functions. For example, in American put option pricing problem (see §3.2),

obstacles usually take a form like χ(x) = max(K − ex, 0) where K is a constant.

We shall now consider the general case: Problem 4.7 with general obstacle χ which

might depend on time also.

6.6.1 A Magic Bullet?

Since χ is known, one can make a transformation w = u − χ and rewrite the

original VI as a new problem for w with a zero obstacle. It seems that difficulties

associated problems with a general obstacle could be dealt with exactly as before.

But actually this may not be a good idea since, as in §6.4.1, it is appropriate to look

at the difference u− χ only in the contact region but not in the noncontact region.

This can be explained by a simple example. In Figure 6.5, the solution u is

smooth outside of the contact region. The oscillatory obstacle χ should not affect
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the mesh grading. But after transformation, w = u − χ, we introduce artificial

singularities because w is not smooth and local refinement is needed outside of the

contact set. A related issue we want to point out here is that in the contact set, there

is a kink at x = 0 which makes the solution u not smooth, but it is not necessary

to refine more around x = 0 provided x = 0 is a mesh point. Inside of the contact

region, the only thing that matters is the obstacle resolution.

−1 −0.5 0 0.5 1
−0.5

0

0.5

1
obstacle χ
solution u

−1 −0.5 0 0.5 1
−0.5

0

0.5

1
obstacle 0
solution v = u−χ

Figure 6.5: Localization Effect. Left: The obstacle χ is oscillatory outside of the

contact region where the solution u is smooth. Right: After transformation w =

u − χ, the solution w is not smooth outside of the contact region and very small

meshsize is needed there.

Based on this observation, we consider the case of general obstacles χ ∈ H1(Q)

directly instead of relying on the “magic” transformation. This generalization will

not affect the estimation of |||Gh|||∗ which is built solely upon the approximate obstacle

χh but not related to the exact obstacle χ. We only need to revisit the estimation

of ∫ T

0

〈
λ− Λh, u− Uh

〉
dt.

6.6.2 Obstacle Consistency Error

Therefore, in what follows, we derive a lower bound for
∫ tn
tn−1

〈λ−Λn
h, u−Uh〉 dt.

To this end, we further define χh = l(t)χn−1
h + (1 − l(t))χnh ∈ C([0, T ]; V(Ω)) to
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be a space-time piecewise linear approximation of χ. Notice that, for numerical

approximation, we only need {χnh}Nn=1; the piecewise linear function χh is used solely

for theoretical purposes.

We observe that in general χh(t) � χ(t) for 0 ≤ t ≤ T . To handle this lack

of consistency, we follow Veeser [134] and introduce the auxiliary function U∗
h :=

max(Uh, χ) ∈ K. Since 〈λ, u− U∗
h〉 ≥ 0, we have that

〈λ− Λn
h, u− Uh〉 ≥ 〈Λn

h, U
∗
h − u〉 + 〈λ− Λn

h, U
∗
h − Uh〉. (6.68)

We next consider each term on the right-hand side of (6.68) separately.

First Part

For the first term on the right-hand side of (6.68), we invoke

Λn
h ≤ 0 and 〈Λn

h, χ− u〉 ≥ 0

to obtain

〈Λn
h, U

∗
h − u〉 ≥ 〈Λn

h, U
∗
h − χ〉

= 〈Λn
h, Uh − χh〉 + 〈Λn

h, U
∗
h − Uh〉 + 〈Λn

h, χh − χ〉. (6.69)

Arguing as in the proof of Lemma 6.31 with the first term on the right-hand side,

we deduce

∫ tn

tn−1

〈Λn
h, Uh − χh〉dt

= −
∑

z∈Ph\N
n
h

kn
2
〈snz ,

(
(Un

h − Un−1
h ) − (χnh − χn−1

h )
)
ψz〉 +

∑

z∈Fn
h

kns
n
zd

n
z .

The first term on the right-hand side is the most general form of the mixed error in

Theorem 6.34.

However, we now have two additional terms in (6.69) that account for the

obstacle inconsistent approximation, as illustrated in Figure 6.6. To bound them we

utilize the definition of U∗
h , which results in U∗

h −Uh = (χ−Uh)
+, as well as Λn

h ≤ 0,
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tn−1 tn

χ

χh

UhUn
h

χn−1
h

χnh

Un−1
h

Figure 6.6: Obstacle Consistency : If the obstacle χ and its space-time piecewise

linear approximation χh do not coincide in ωz × (tn−1, tn) for nodes z ∈ Ph \ N n
h ,

then the quantities 〈Λn
h, (χ−Uh)+ψz〉 and 〈Λn

h, (χh−χ)+ψz〉 measure the local lack of

conformity. Note that these quantities vanish for z ∈ N n
h , that is for the noncontact

nodes.

and end up with

〈Λn
h, (U

∗
h − Uh)ψz〉 ≥ 〈Λn

h, (χ− Uh)
+ψz〉,

〈Λn
h, (χh − χ)ψz〉 ≥ 〈Λn

h, (χh − χ)+ψz〉.

Second Part

We can also rewrite the second term on the right-hand side of (6.68) as follows:

〈λ−Λn
h, U

∗
h −Uh〉 = 〈(∂tu− δtUh)+ (λ−Λn

h), (χ−Uh)
+〉−〈(∂tu− δtUh), (χ−Uh)

+〉.

The second term on the right-hand side is most problematic. We handle it via

integration by parts in time:

−
∫ T

0

〈∂t(u−Uh), (χ−Uh)+〉 = −〈u−Uh, (χ−Uh)+〉
∣∣∣
T

0
+

∫ T

0

〈u−Uh, ∂t(χ−Uh)+〉dt.

Note that we can eliminate the first term on the right-hand side at t = 0 because if

χ0(x) > U0
h(x) then u0(x) ≥ χ0(x) > U0

h(x) whence 〈u0 − U0
h , (χ0 − U0

h)
+〉 ≥ 0.
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Upper Bound of Obstacle Consistency Error

With the estimates of (6.68) given above, we now derive an upper bound of

the obstacle consistency error. After applying the Cauchy-Schwarz inequality three

times, we arrive at

∫ T

0

〈λ− Λh, u− Uh〉dt

≥−
N∑

n=1

( ∑

z∈Ph\N
n
h

kn
2
〈Λn

h,
(
(Un

h − Un−1
h ) − (χnh − χn−1

h )
)
ψz〉 −

∑

z∈Fn
h

kns
n
zd

n
z

)

+
∑

z∈Ph

∫ T

0

〈Λh,
(
(χ− Uh)

+ + (χh − χ)+
)
ψz〉dt

− ε1

2

∫ T

0

∣∣∣∣∣∣∂t(u− Uh) + (λ− Λh)
∣∣∣∣∣∣2

∗
dt− 1

2ε1

∫ T

0

∣∣∣∣∣∣(χ− Uh)
+
∣∣∣∣∣∣2 dt

− ε2

2
‖(u− Uh)(T )‖2 − 1

2ε2
‖(χ− Uh)

+(T )‖2

−
∫ T

0

ε3

2
|||u− Uh|||2 +

1

2ε3

∣∣∣∣∣∣∂t(χ− Uh)
+
∣∣∣∣∣∣2
∗
dt,

with ε1, ε2, ε3 > 0 arbitrary. We finally choose appropriate ε1, ε2 and ε3, and insert

the above estimate into (6.75) to obtain an upper bound.

We first define the error estimator which has one more term compared with

Theorem 6.34 to account for the obstacle consistency error

E :=
(
E2

0 + E2
k + E2

h + E2
kh + E2

χ + E2
D

) 1
2 (6.70)
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with

E2
0 := ‖u0 − U0

h‖2
L2(Ω) initial error

E2
k :=

N∑

n=1

kn

3

∣∣∣∣∣∣Unh − Un−1
h

∣∣∣∣∣∣2 dt time error

E2
h :=

N∑

n=1

kn

{ ∑

z∈Ph\C
n
h

[
(ηnz )2 + (ξnz )2

]
−
∑

z∈Fn
h

snz d
n
z

}
space error

E2
kh :=

N∑

n=1

kn

{ ∑

z∈Cn
h∪Fn

h

∣∣〈Λnh,
(
(Unh − Un−1

h ) − (χnh − χn−1
h )

)
ψz〉
∣∣
}

mixed error

E2
χ := ‖(χ− Uh)

+(T )‖2 +

∫ T

0

∣∣∣∣∣∣(χ− Uh)
+
∣∣∣∣∣∣2 +

∣∣∣∣∣∣∂t(χ− Uh)
+
∣∣∣∣∣∣2
∗
dt obstacle consistency

−
N∑

n=1

∑

z∈Cn
h∪Fn

h

∫ tn

tn−1

〈Λnh, {(χ− Uh)
+ + (χh − χ)+}ψz〉 dt

E2
D :=

∫ T

0

∣∣∣∣∣∣f − F
∣∣∣∣∣∣2
∗
dt data consistency

Theorem 6.36 (Upper Bound: General Obstacles) For Problem 4.7 with a

general obstacle χ ∈ H1(Q), we have the following upper a posteriori bound

E2(0, T ; Ω) . E2.

Remark 6.37 (Obstacle Consistency) Terms involving (χ − Uh)
+ are only ac-

tive away from the noncontact set, a crucial localization property, and accounts for

the lack of constraint consistency Uh < χ in both space and time; see Figure 6.6.

The space-time situation χh > χ, depicted in Figure 6.6, is only detected by the

term 〈Λn
h, (χh − χ)+ψz〉. In particular, if z ∈ Cnh is a full-contact node, then this

is the only nonzero local indicator. Besides justifying its presence, this argument

shows that such a term can be regarded as a complement to the notion of full contact

nodes which hinges on the condition χnh = χ(tn) in ωz; see §6.5.1. For a kink or cusp

pointing downwards the relation χh > χ is not only to be expected but it might

suggest that one needs strong local refinement. This is not true because asymptoti-

cally the discrete solution detaches from the obstacle and so 〈Λn
h, (χh−χ)+ψz〉 = 0;

see [113] for a full discussion.
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6.7 Mesh Changes and Coarsening Error

Till this point, we assumed the spatial test function space V does not change

in time. To derive a practical adaptive algorithm for evolution problems, we need

to allow mesh to change in time to give optimal approximation at each time step.

This is because singularities of solutions of time-dependent problems could change

their location or strength.

Mesh change is a delicate issue for evolution problems. An example has been

constructed by Dupont [56] who showed changing the mesh in an uncontrolled way

could lead to convergence to wrong solutions. For linear parabolic equations, coars-

ening error is examined by Chen and Feng [48], and Lakkis and Makridakis [90], and

earlier by Nochetto et al [112] for degenerate parabolic problems. In this section,

we shall consider mesh changing and coarsening error estimates.

6.7.1 Transfer Operator

Let Ω ⊂ Rd be an open and bounded polygonal domain. We now introduce

spatial quantities for 1 ≤ n ≤ N fixed. Let T n be the mesh at time tn and Pn
h be

the set of all nodes of T n, including the boundary nodes. Let Vn be the space of

continuous piecewise linear finite element functions on T n.

For problems with general obstacles, it is not obvious how to define the transfer

operator from one time step to the other because the usual linear interpolation

operator or L2-projection operator does not always work in practice. As an example,

we consider linear interpolation operator Inn−1 : Vn−1 → Vn as the transfer operator

and show why it fails in a thought experiment in Figure 6.7.

In Figure 6.7, we suppose the exact solution u does not change in time. At

time step n, the adaptive algorithm detects that the time error is quite big because

of the sudden change of numerical solution Uh in the contact region and decides to

reduce the time step-size to make the time error smaller. Since this effect is actually

due to the resolution of the obstacle instead of the time step, reducing the time

step-size does not help. Hence the adaptive algorithm would either get stuck here
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χ

χh
u

Un−1
h

χn−1
h

Un
h

InUn−1
h

χnh

Un
h

Un−1
h

u

Figure 6.7: Top: exact solution at time tn. Middle: numerical solution Un−1
h for

uniform mesh. Bottom: numerical solution Un
h . Since in the contact region the

numerical solution Un−1
h is below χ, the adaptive algorithm detects this and refines

accordingly. However Inn−1U
n−1
h = Un−1

h , whence the time error (difference between

Un
h and Inn−1U

n−1
h , which is related to the gray area) does not decrease as the time

step-size decreases.
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if there is no control on the maximum number of iterations for time adaptation, or

end up with unnecessary refinement of time step-size.

Inspired by this example, we now introduce a new transfer operator Inn−1 :

Vn−1 → Vn which circumvent this difficulty:

Inn−1v :=
∑

z∈Pn
h

max
{
Inn−1v(z), χ

n
h(z)

}
ψz, (6.71)

where Inn−1 : Vn−1 → Vn is the linear interpolation operator. If the obstacle does not

change in time, i.e. χnh = χn−1
h , then Un−1

h ≥ χnh and Inn−1 reduces to the previous

transfer operator Inn−1. Numerical experiments in Chapter 8 demonstrate Inn−1 works

well in practice.

6.7.2 Residual and Galerkin Functional for Mesh Changes

We now need to introduce and modify notation to deal with mesh changes.

For any sequence {W n}Nn=1, we still denote the piecewise constant interpolant W

and the piecewise linear interpolant W ; see (6.72). Furthermore we define the new

piecewise linear function W̃ to be

W̃ (t) := l(t)Inn−1W
n−1 + (1 − l(t))W n, (6.72)

for any t ∈ (tn−1, tn], 1 ≤ n ≤ N , where the linear function l(t) is defined in (4.9).

We also denote by

δW n :=
W n −W n−1

kn
, δ̃W n :=

W n − Inn−1W
n−1

kn
∀ 1 ≤ n ≤ N. (6.73)

After comparing these new notation with our notation introduced in Chapter 4, we

can easily find that

δtW̃ (t) = δ̃W n ∀ t ∈ (tn−1, tn].

The definition of residual is also modified due to mesh changes

rnh := F n − δ̃Un
h −AUn

h ,

as in the definition of nonlinear defect measure Gnh , the Galerkin functional

Gnh := rnh − Λn
h =

∑

z∈Ph\Ch

(rnh − snz )ψz
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that now incorporates the new definition of rnh .

We split the set Pn
h into three disjoint sets as before (but with the new defini-

tion of rn):

Pn
h = N n

h ∪ Cnh ∪ Fn
h

with the noncontact nodes N n
h , full-contact nodes Cnh , and free boundary nodes Fn

h

defined as in (6.55).

6.7.3 Coarsening Error Estimate

We apply the energy method used in §6.5; see (6.59). From the definition

(6.54) of the Lagrange multiplier λ, it follows that for any ϕ ∈ H̃s(Ω)

〈Gh, ϕ〉 = 〈(A(u− Uh) + (∂tu− δtŨh) + (λ− Λh), ϕ〉 − 〈f − F , ϕ〉.

By taking ϕ = u(t) − Uh(t) in the last equation, we obtain

1

2

d

dt
‖u− Uh‖2 + 〈A(u− Uh), u− Uh〉

= 〈Gh, u− Uh〉 + 〈δtUh − δtŨh, u− Uh〉 (6.74)

− 〈λ− Λh, u− Uh〉 + 〈f − F , u− Uh〉.

We now proceed as in Lemma 6.29, namely we Integrate both sides of the equality

on [0, T ] and use the coercivity inequality (2.9) and the Cauchy-Schwarz inequality

to get the following inequality:

E2(0, T ; Ω)

.
∥∥u0 − U0

h

∥∥2
initial error

+
N∑

n=1

∫ tn

tn−1

∣∣∣∣∣∣Uh − Uh
∣∣∣∣∣∣2 + 〈δtUh − δtŨh, u− Uh〉 dt evolution error

+

N∑

n=1

∫ tn

tn−1

∣∣∣∣∣∣Gh
∣∣∣∣∣∣2
∗
dt spatial error

−
∫ T

0

〈λ− Λh, u− Uh〉 dt mixed error

+

∫ T

0

∣∣∣∣∣∣f − F
∣∣∣∣∣∣2
∗
dt. data oscillation

(6.75)

108



Remark 6.38 (Coarsening Error) Note that, comparing with Lemma 6.29, we

now have the new term
∫ T
0
〈δtUh − δtŨh, u − Uh〉 dt on the right-hand side that

accounts for mesh evolution. The remaining terms can be handled as in previous

sections.

We now discuss the difference between the case when mesh changes and the

fixed mesh case, especially the new term. It is easy to show, by triangular inequality,

that
∫ tn

tn−1

∣∣∣∣∣∣Uh − Uh
∣∣∣∣∣∣2 dt =

1

3
kn
∣∣∣∣∣∣Un

h − Un−1
h

∣∣∣∣∣∣2

≤ 2

3
kn

(∣∣∣∣∣∣Un
h − Inn−1U

n−1
h

∣∣∣∣∣∣2 +
∣∣∣∣∣∣Inn−1U

n−1
h − Un−1

h

∣∣∣∣∣∣2
)
.

Furthermore, we have

∣∣∣∣∣∣Inn−1U
n−1
h − Un−1

h

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣Inn−1U

n−1
h − Inn−1U

n−1
h

∣∣∣∣∣∣+
∣∣∣∣∣∣Inn−1U

n−1
h − Un−1

h

∣∣∣∣∣∣ .

Hence it follows that

∫ tn

tn−1

∣∣∣∣∣∣Uh − Uh
∣∣∣∣∣∣2 dt . kn

( ∣∣∣∣∣∣Un
h − Inn−1U

n−1
h

∣∣∣∣∣∣2

+
∣∣∣∣∣∣Inn−1U

n−1
h − Un−1

h

∣∣∣∣∣∣2 (6.76)

+
∣∣∣∣∣∣Inn−1U

n−1
h − Inn−1U

n−1
h

∣∣∣∣∣∣2
)
.

Notice that the three terms in (6.76) represent three different parts of the error: the

first term is the time error; the second term is the coarsening error; and the last

term contributes to the obstacle consistency error. These three terms will contribute

in Ek, Ec, and Eχ, respectively.

To handle the new term, we recall that

δtUh − δtŨh =
Inn−1U

n−1
h − Un−1

h

kn

and use the Cauchy-Schwarz inequality to get
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∫ tn

tn−1

〈δtUh − δ̃tUh, Uh − u〉 dt

≤
∫ tn

tn−1

1

kn

∣∣∣∣∣∣Inn−1U
n−1
h − Un−1

h

∣∣∣∣∣∣
∗
|||Uh − u||| dt

≤
∫ tn

tn−1

1

2εk2
n

∣∣∣∣∣∣Inn−1U
n−1
h − Un−1

h

∣∣∣∣∣∣2
∗
dt+

∫ tn

tn−1

ε

2
|||Uh − u|||2 dt

≤
∫ tn

tn−1

1

εk2
n

∣∣∣∣∣∣Inn−1U
n−1
h − Inn−1U

n−1
h

∣∣∣∣∣∣2
∗
+

1

εk2
n

∣∣∣∣∣∣Inn−1U
n−1
h − Un−1

h

∣∣∣∣∣∣2
∗
dt

+

∫ tn

tn−1

ε

2
|||Uh − u|||2 dt, (6.77)

for any positive constant ε. We can choose appropriate ε to absorb the last term on

the right-hand side of (6.7.4). Then we are left with two new terms, namely

1

kn

∣∣∣∣∣∣Inn−1U
n−1
h − Inn−1U

n−1
h

∣∣∣∣∣∣2
∗

and
1

kn

∣∣∣∣∣∣Inn−1U
n−1
h − Un−1

h

∣∣∣∣∣∣2
∗
.

These terms accounts for the obstacle consistency error and coarsening error, re-

spectively. So we add these two terms to Eχ and Ec, respectively.

6.7.4 Final A Posteriori Upper Bound

We combine the inequalities (6.76) and with the estimate in the previous sec-

tion and choose appropriate constant ε to arrive at the following upper bound of

the error E(0, T ; Ω).

Theorem 6.39 (Final Upper Bound) For Problem 4.7 with a general obstacle

χ ∈ H1(Q), we have the following upper a posteriori bound for adaptive mesh

E2(0, T ; Ω) . E2,

where the error estimator is given by

E :=
(
E2

0 + E2
k + E2

h + E2
kh + E2

c + E2
χ + E2

D

) 1
2 .

The various estimators account for different discretization effects and are listed and

described below:
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Initial Error Estimate

E2
0 := ‖u0 − U0

h‖2
L2(Ω)

This part of the error estimator is due to the initial mesh and approximation of the

initial condition u0. It can never be reduced once the initial mesh has been fixed.

Time Error Estimate

E2
k :=

N∑

n=1

kn
∣∣∣∣∣∣Un

h − Inn−1U
n−1
h

∣∣∣∣∣∣2

This part measures the error because of the evolution of the solution u. Philosoph-

ically it is only a good approximation of the evolution error when the space error is

small, i.e. Un
h is close enough to the real solution u(tn).

Space Error Estimate

E2
h :=

N∑

n=1

kn

{ ∑

z∈Pn
h \Cn

h

[
(ηnz )

2 + (ξnz )
2
]
−
∑

z∈Fn
h

snzd
n
z

}

where we modify the residual-type error estimators in (6.70) as follows

ηnz :=
∥∥∥h 1

2J(Un
h )
∥∥∥
L2(γz)

and ξnz :=
∥∥∥hs+

d
2
− d

p
(
R(Un

h ) −Rn
z

)
ψz

∥∥∥
Lp(ωz)

.

This is because we may have different local meshsize in different stage of evolution.

The constants snz and dnz are defined in (6.57) and (6.66), respectively. We can

separate the contribution into three parts E2
h = E2

h,1 + E2
h,2 + E2

h,3 where

E2
h,1 :=

N∑

n=1

∑

z∈Pn
h \Cn

h

kn(η
n
z )

2

E2
h,2 :=

N∑

n=1

∑

z∈Pn
h \Cn

h

kn(ξ
n
z )

2

E2
h,3 := −

N∑

n=1

∑

z∈Pn
h \Fn

h

kns
n
zd

n
z .
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Mixed Error Estimate

E2
kh :=

N∑

n=1

kn

{ ∑

z∈Cn
h∪Fn

h

∣∣〈Λn
h,
(
(Un

h − Inn−1U
n−1
h ) − (χnh − Inn−1χ

n−1
h )

)
ψz
〉∣∣
}

This part contributes not only to error due to the space discretization but also to

evolutionary error.

Coarsening Error Estimate

E2
c :=

N∑

n=1

kn
∣∣∣∣∣∣Un−1

h − Inn−1U
n−1
h

∣∣∣∣∣∣2 +

N∑

n=1

1

kn

∣∣∣∣∣∣Un−1
h − Inn−1U

n−1
h

∣∣∣∣∣∣2
∗

+
N∑

n=1

kn
∑

z∈Cn
h∪Fn

h

〈
Λn
h,
{
(Inn−1U

n−1
h − Un−1

h ) − (Inn−1χ
n−1
h − χn−1

h )
}
ψz
〉

This quantifies the coarsening error. Mesh coarsening leads to information loss and

thus the need to control it not to spoil the overall approximation.

Obstacle Consistency Error Estimate

E2
χ :=‖(χ− Uh)

+(T )‖2 +

∫ T

0

∣∣∣∣∣∣(χ− Uh)
+
∣∣∣∣∣∣2 +

∣∣∣∣∣∣∂t(χ− Uh)
+
∣∣∣∣∣∣2

∗
dt

+

N∑

n=1

kn
∣∣∣∣∣∣Inn−1U

n−1
h − Inn−1U

n−1
h

∣∣∣∣∣∣2 +

N∑

n=1

1

kn

∣∣∣∣∣∣Inn−1U
n−1
h − Inn−1U

n−1
h

∣∣∣∣∣∣2
∗

−
N∑

n=1

∑

z∈Cn
h∪Fn

h

∫ tn

tn−1

〈Λn
h, {(χ− Uh)

+ + (χh − χ)+}ψz〉 dt

This part measures the discrepancy between the numerical obstacle χh and the real

obstacle χ.

Data Oscillation Estimate

E2
D :=

∫ T

0

∣∣∣∣∣∣f − F
∣∣∣∣∣∣2
∗
dt
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This part of the estimator gives information of the approximation of the data f .
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Chapter 7

Adaptive and Multilevel Algorithms

It is well known that the standard finite element approximation on a quasi-

uniform grid converges optimally with respect to the number of degrees of freedom

provided the solution is sufficiently smooth. However, sometimes solutions might

not be smooth enough for the standard finite element method to achieve optimal

convergence rate. Furthermore, the strength and locations of singularities are some-

times not known a priori. This rules out the possibility to design a priori optimal

meshes. In particular, for American option pricing problems, the solution is singu-

lar close to the maturity in time and the strike price in space; in some cases, the

space derivative of the log-price has jumps across the free boundary (whose location

is unknown). With this motivation in mind, in this chapter we design a practical

adaptive time-space mesh refinement strategy based on the a posteriori error esti-

mators proposed in Chapter 6. The rest of the chapter is organized as follows. We

first give a brief introduction to adaptive finite element methods for stationary as

well as evolutionary variational inequalities in Section 7.1. We then discuss major

steps of the adaptive algorithm in §7.2, 7.3, 7.4, and 7.5.

7.1 Introduction

After more than thirty years of extensive development, adaptive methods are

now standard tools in science and engineering. Adaptive mesh refinement is impor-

tant to deal with multiscale phenomena and to reduce the size of linear systems that
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arise from finite element discretizations. In many practical applications, solutions

of PDEs are singular. Furthermore, location and strength of singularities are not

known in general. The goal of adaptive methods is to generate graded meshes in

space and time that automatically adapt to the problem at hand such that certain

error is smaller than a tolerance with minimal computational cost.

7.1.1 Adaptive Algorithm for Static Problem

Generally, the adaptive FEM for static problems generates graded meshes and

iterations in the form

SOLVE → ESTIMATE → MARK → REFINE/COARSEN. (7.1)

In finite element methods, a finite dimensional test function space is associated with

a given mesh. The SOLVE step finds the discrete solution of the finite dimensional

approximate problem. Usually this finite dimensional problem is solved by some

iterative method. The ESTIMATE procedure quantifies the error size. Since we cannot

compute the exact error of the solution, we need to find computable local error

indicators to estimate the local error of the discrete solution. As soon as the local

error indicator has been computed by ESTIMATE, the procedure MARK uses their

magnitude to determine regions of the domain that may undergo mesh refinement

or coarsening. A simple flowchart is given in Figure 7.1. To design a good adaptive

finite element method, reliable and efficient a posteriori error estimation is essential.

To learn more about adaptive algorithm design as well as implementation issues, we

refer to the book by Schmidt and Siebert [123].

7.1.2 Adaptive Algorithm for Evolution Problems

For time-dependent problems, we need to add an outer loop to the procedure

above to take care of the time variable and its adaptive control of step-size. In

ALBERTA [123], for general time-dependent problems, the following algorithm is

used:
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INITIALIZATION

SOLVE: compute discrete solution uh

ESTIMATE: compute Υτ , set Υ2 :=
∑

τ∈T Υ2
τ

Υ < tol

MARK

REFINE/COARSEN

End

No

Yes

Figure 7.1: Flowchart of adaptive algorithm for static problems
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Algorithm 7.1 (Adaptive Algorithm for Evolution Problems) Start with k0,

T0, U
0
h .

(i) Compute initial error indicators for Υinit. If Υinit(τ) is too large, refine τ .

Repeat (i) if necessary.

For n ≥ 0 and tn ≤ T

(a) solve for Un
h and compute error indicators for τ ∈ Tn

if Υn
time is large, reduce time step kn and goto (a)

(b) for every τ ∈ Tn
if Υn

space(τ) is too large, refine τ

if Υn
space(τ) + Υn

coarse(τ) is too small, coarsen τ (if possible)

(c) if the mesh was changed

solve for Un
h and compute error indicators again

if Υn
time is too large, reduce kn and goto (a)

if
(∑

τ∈Tn
(Υn

space(τ))
2
) 1

2 is too large, goto (b)

otherwise, accept Tn and Un
h

(d) if Υn
time is small, enlarge kn+1

(e) let tn+1 = tn + kn+1 and n = n+ 1

Algorithm 7.1 is a modification of the algorithm originally proposed by Nochetto et

al. [112] for the Stefan problem.

7.1.3 Convergence and Optimality

Even though adaptivity has been a successful tool of engineering and scientific

computing for more than three decades, the convergence analysis is rather recent.

Dörfler [54] introduced a crucial marking strategy, which will be discussed in §7.3,

and proved strict energy error reduction for the Laplacian provided the initial mesh

is sufficiently fine. Morin, Nochetto, and Siebert [106, 107] showed that energy error

reduction cannot be expected in general by a counter-example, studied the role of

data oscillation, and prove convergence without assumptions on the initial mesh.

Later Mekchay and Nochetto [101] generalized this convergence result to general

117



second order elliptic operators.

Quasi-optimal convergence rates for adaptive finite element method for the

Laplace equation were first shown by Binev, Dahmen and DeVore [22] with the

help of an artificial coarsening step. In [22], the energy error decay in terms of

number of degrees of freedom (DOF) is proved to be quasi-optimal, namely as

dictated by nonlinear approximation theory [53]. The coarsening step was later

removed by Stevenson [129], still for the Laplacian, at the expense of an inner

loop to reduce oscillation. More recently, Cascon et al. [44] proposed a simple and

practical adaptive algorithm, which avoids marking by oscillation, and proved a

contraction property and quasi-optimal convergence rate for general second-order

elliptic equations.

For obstacle problems, convergence and optimality are still in their early

stages. To the best of our knowledge, the only existing convergence result (without

rate) was given by Siebert and Veeser [127] for piecewise linear constraints. This

topic deserves further study. For elliptic problems with integral operators as well as

time-dependent problems, convergence and optimality are still to be developed. For

linear parabolic problems, Chen and Feng [48] gave an adaptive algorithm allowing

time-space adaptation and proved error reduction at one time step; the compound

effect in time is however missing.

7.2 Estimate

The ESTIMATE step provides local information of the error which guide the

adaptive algorithm to generate optimal meshes. An accepted principle for adaptive

algorithms is the error equidistribution, i.e. local error on each element has about the

same magnitude. Since error is not known, the next best thing is to equidistribute

the local error indicator instead of real local error. A posteriori error estimations

discussed in the previous chapter can guide us to design local error indicators.

We first define the following nodal-based local error indicators:
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• Initial error indicator:

Υ0(τ) = ‖u0 − U0
h‖L2(τ).

• Space error indicator:

Υn
h(z) :=

1√
T

{(
Υn
h,j(z)

)2
+
(
Υn
h,i(z)

)2
+
(
Υn
h,f(z)

)2} 1
2

where we define the nodal-based error indicators in (6.70) as follows

jump residual Υn
h,j(z) :=





∥∥∥h
1
2J(Unh )

∥∥∥
L2(γz)

z ∈ Fn
h ∪N n

h

0 z ∈ Cnh

interior residual Υn
h,i(z) :=





∥∥∥hs+
d
2
− d

p
(
R(Unh ) −Rnz

)
ψz

∥∥∥
Lp(ωz)

z ∈ Fn
h ∪ N n

h

0 z ∈ Cnh

free boundary term Υn
h,f (z) :=





− snz d
n
z z ∈ Fn

h

0 otherwise.

• Time error indicator: Since the time error estimator is not local, we use the

following heuristic local time error indicator

Υn
k :=

1√
T

∣∣∣∣∣∣Un
h − Inn−1U

n−1
h

∣∣∣∣∣∣ .

• Coarsening error indicator

Υn
c (τ) :=

1√
T

∣∣∣∣∣∣Un−1
h − Inn−1U

n−1
h

∣∣∣∣∣∣
τ
.

• Obstacle consistency error indicators

Υn
χ,h(τ) :=

1√
T

∣∣∣∣∣∣(χnh − Inn−1U
n−1
h )+

∣∣∣∣∣∣
τ

Υn
χ,k :=

1√
T

(∫ tn

tn−1

∣∣∣∣∣∣(χ− Uh)
+
∣∣∣∣∣∣2 dt

) 1
2
.

Remark 7.2 (From Nodal-based to Element-based Indicators) Note that in

Algorithm 7.1, we use element-based error indicators. However, we define nodal-

based space error indicators above. In fact, we can define element-based space error

indicator easily by

Υn
h(τ) := max

z∈Pn
h∩τ

Υn
h(z)
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or we define it by averaging

Υn
h(τ) :=

∑
z∈Pn

h∩τ Υn
h(z)

d+ 1
.

Remark 7.3 (Negative Norm Estimators) We do not implement the error es-

timator terms |||∂t(χ− Uh)
+|||∗ and

∣∣∣∣∣∣F − f
∣∣∣∣∣∣

∗
in dual norms. We would expect the

first one to be at least of the same order as |||(χ− Uh)
+||| (see example 8.1.4 for

numerical evidence) and the second term to be of higher order than O(h).

Now we can define error indicators needed in Algorithm 7.1:

Υinit(τ) := Υ0(τ)

Υtime := Υn
k + Υn

χ,k

Υspace(τ) := Υn
h(τ) + Υn

χ,h(τ)

Υcoarse(τ) := Υn
c (τ).

7.3 Mark

The MARK step is based on the local error indicator given by ESTIMATE. The

marking strategy could be based on the elements, edges, or nodes. Here we only

consider the element based error indicators defined in previous section. To achieve

error equidistribution, it is clear that elements with a large local error indicator

should be refined, while elements with a small indicator need to be coarsened. There

are several marking strategies have been proposed in the literature. We now review

them very briefly.

7.3.1 Maximum Strategy

A very simple strategy is to mark those elements with an error indicator close

to the largest indicator. More precisely, given a threshold θ ∈ (0, 1), we mark all

elements τ ∈ T with

Υτ ≥ θmax
τ∈T

Υτ

for refinement. See [123, Algorithm 1.18].
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7.3.2 Equidistribution Strategy

This marking strategy is based on an average idea. Assume the number of

mesh elements in T is #T . Then we refine all elements with error indicator

Υτ ≥ θ

∑
τ∈T Υτ

#T ,

with a parameter θ ∈ (0, 1). See [123, Algorithm 1.19].

7.3.3 Dörfler’s Marking Strategy

It is not clear whether an adaptive algorithm converges or even terminates

within a prescribed tolerance. Dörfler [54] proposed a marking strategy with guar-

anteed energy error reduction provided the initial mesh is fine enough; it is the

so-called guaranteed error reduction strategy (GERS). The idea of GERS is to mark

a portion of elements such that their contribution exceeds a percentage of the total,

namely θ
∑

τ∈T Υτ where θ ∈ (0, 1) is a fixed parameter. To introduce as few degrees

of freedom as possible, we should mark those elements with largest local indicators.

For details, see [123, Algorithm 1.20].

7.4 Refine/Coarsen

Several refinement strategies in 2d and 3d are widely used. One such an exam-

ple is regular refinement or red-green refinement [19], which divides every triangle

into four in 2d (see Figure 7.2) and every tetrahedron into eight tetrahedra in 3d.

One problem with this strategy in adaptive mesh refinement is the hanging nodes

(leading to non-conforming meshes) introduced by local refinement. Additional re-

finement (the so-called green closure) is necessary to remove the hanging nodes (this

becomes difficult in 3d though). One complication is that, before further refinement,

the green refinement has to be removed to keep shape-regularity.

An alternative way is the bisection scheme introduced by Mitchell [103] for

2d and Bänsch [14] (iterative algorithm) and Kossaczký [88] (recursive algorithm)

for 3d. The recursive bisection scheme for 2d and 3d are proved to terminate in
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b

b b

Figure 7.2: Regular refinement. Left: red refinement and hanging nodes; Right:

green closure.

finite steps and keep shape-regularity (see [103, 88]). In 2d, one can either choose

to bisect the longest edge (Longest Edge Bisection) or to bisect the edge opposite

to the newest vertex of each element (Newest Vertex Bisection).

We only consider the newest vertex bisection in 2d and the corresponding

bisection method by Kossaczký in 3d. Next we describe the newest vertex bisection

for 2d as well as the corresponding coarsening algorithm in detail.

7.4.1 Newest Vertex Bisection in 2d

We first give a brief review of the newest vertex bisection method. Given

a shape-regular grid or triangulation T of Ω ⊂ R2, we label one vertex of each

element τ ∈ T as the newest vertex. The opposite edge of newest vertex is called

the refinement edge. This process is called a labeling of T .

Starting with a labeled initial grid T0, newest vertex bisection follows the rules:

1. An element (father) is bisected to generate two new elements (children) by

connecting the newest vertex with the midpoint of the refinement edge;

2. The new vertex created at the midpoint of the refinement edge is labeled as

the newest vertex of each child.

Once the labeling is done for an initial grid, the subsequent grids inherit labels

according to the second rule so that the bisection process can proceed. Sewell [126]

showed that all the descendants of an original element fall into at most four similarity
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classes and hence grids obtained by newest vertex bisection is uniformly shape-

regular.

T0

T1

T2

T3

b

τ0,1

b

τ1,1
b

τ1,2

b τ2,1 b
τ2,2

b

τ3,1
b
τ3,2

b
τ2,3 b τ2,4

b
τ3,3

b

τ3,4

Figure 7.3: Bisection tree (left) and its corresponding grids (right).

We now given an example to illustrate the bisection procedure. In Figure

7.3, we start from a initial grid T0 with only one element τ0,1. The ‘dot’ close to a

vertex indicates that vertex is the newest vertex of that element. The generation

of each element in the initial grid is defined to be 0; once an element is bisected,

the generations of both children (the new elements) are defined as one plus the

generation of their father (the old element). From now on, the generation of an

element τ ∈ T will be denoted by g(τ). We denote by τi,j the j-th element of

generation i, namely i = g(τi,j).

Suppose the adaptive method marks the element τ0,1 for bisection (we indi-

cate a marked element by drawing it in light gray). After one step of newest vertex

bisection, the new grid T1 contains two elements τ1,1 and τ1,2 which are the sib-

lings. Suppose τ1,1 is bisected to produce the grid T2 and later τ2,1 to give rise to

T3. However, when τ2,1 is bisected, to keep conformity, we need to bisect τ1,2 twice

according to the rules of newest vertex bisection. The dashed lines in the tree as

well as in the grid in Figure 7.3 means they are generated due to the conformity
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requirements. From the discussion above, it is easy to see that the bisection algo-

rithm generates nested meshes with the hierarchical structure of binary trees; each

binary tree corresponds to an element of the initial triangulation T0 (often called

macro-elements).

7.4.2 Coarsening Algorithm

The bisection procedure is fully revertible using a recursive coarsening algo-

rithm developed in [88]. Let us still use Figure 7.3 to illustrate the algorithm. In

the final grid T3, suppose we want to coarsen the element τ2,3, the algorithm will

first find its neighbor τ3,4 and it should be intelligent enough to tell that these two

elements are not siblings with the same father and cannot be glued together. So

the algorithm will then try to coarsen τ3,4 first. This can be done in a recursive

manner. The element τ3,3 is found to be the sibling of τ3,4. Once the algorithm glue

τ3,3 and τ3,4 together to get τ2,4 back again, the grid becomes not conforming. To

keep conformity, the other neighbor (not sibling) of τ3,4, i.e. τ3,1, and its own sibling

should be glued together (if there is a problem with this step as before, do the same

recursive step for τ3,1 first). Once this conformity step has been completed, the

algorithm returns to τ2,3 and glue it with its sibling τ2,4 to obtain T2. To allow the

algorithm to traverse easily to its neighbors and so on, the bisection tree is needed

(for details, see, for example, [88, 123]).

7.4.3 Compatible Bisection

We denote the set of nodes (including boundary nodes) of a grid T by Ph and

the set of edges or sides by Sh. We denote the cardinality, i.e. number of nodes in

Ph, by #Ph. Let T be a labeled grid. For any τ ∈ T , let Sτ be the refinement edge

of τ and let

F (τ) =




τ ′ Sτ ⊂ τ ′ ∈ T

∅ Sτ ⊂ ∂Ω

be the element of T (if exists) which shares the same refinement edge of Sτ with τ .
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An element τ is called compatible if F (τ) = ∅ or F (F (τ)) = τ . A labeled grid

T is called compatible if every element in T is compatible and the labeling of T is,

in turn, called a compatible labeling. Given a compatible initial grid T0, we define

T (T0) := {T | T is obtained from T0 by newest vertex bisections}.

and a subset of T (T0)

A (T0) := {T ∈ T (T0) | T is conforming}.

Notice that the difference between T (T0) and A (T0) is that a grid in T (T0) could

be non-conforming. We shall consider the coarsening of grids in the class A (T0).

S
ωS

b b

b
b

x
ωx

Figure 7.4: Compatible bisection b.

For a compatible element τ , its refinement edge is called a compatible edge.

Let ωS be the patch of elements sharing the side S ∈ S. If S is compatible, we

call the bisection of ωS a compatible bisection and denote by b. More precisely, let

x be the midpoint of S, then b is understood as a map b : ωS → ωx, where the

patch ωS consists of coarser elements and ωx of fine elements; see Figure 7.4. In two

dimensions, a compatible bisection b only has two possible configurations. One is

bisecting an interior compatible edge. In this case, the patch ωS is a quadrilateral.

Another case is bisecting a boundary compatible edge and ωS is a triangle. See

Figure 7.5.

7.4.4 Bisection Grids Revisited

Let T l ∈ A (T0) be the grid generated from a compatible initial grid T0 after

l times of uniform refinement (meaning refine each element once every time). Ap-

parently, from the previous subsection, T l can be viewed as full binary trees (one
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b

S
ωS

b

ωS
S

Figure 7.5: Compatible bisection of S. Left: interior edge; right: boundary edge.

tree for each element in the initial grid). Bisection guarantees that the sequence

{T l} is shape-regular and quasi-uniform [103]. Assuming that the initial mesh T0 is

shape-regular with meshsize h̄0, we can see the meshsize of T l is quasi-uniform. We

denote the meshsize of Tl by h̄l.

A triangulation T ∈ A (T0) can be viewed as the result of a sequence of

compatible bisections applied on the initial grid T0 with compatible initial labeling

[45, 47]. Formally, we can denote it by

T = T0 + b1 + · · ·+ bm.

Now we use the grid T3 in Figure 7.3 as an example to illustrate this. We can view T3

as the result of applying four compatible bisections, b1, . . . , b4, on T0; see Figure 7.6.

The sequence {b1, b2, b3, b4} is called a compatible bisection sequence. Notice that

= T0
+

b1
+ b2 + b3 +

b4

Figure 7.6: Decomposition of a bisection grid.

the order of b2 and b3 could be interchanged without changing the final grid. This

means that there might be several different adaptive paths resulting in a particular

final bisection grid in adaptive algorithms. The order of the bisection sequence does

not imply generation information of bisections.

Let L := maxτ∈T g(τ) be the maximum generation among all elements in

T ∈ A (T0). Then T L is a set of full binary trees (one for each macro-element) of

depth L + 1. On the other hand, a locally refined mesh T of depth ≤ L + 1 is a

126



subtree of T L and can be embedded into T L. With our notation, it is easy to see

that hmin(T ) ≈ h̄L.

Remark 7.4 (Simple Bisection and Coarsening Algorithms) Exploiting this

new view of bisection grids, Chen and Zhang [47] proposed a simple coarsening

strategy for 2d problems. This coarsening strategy is implemented in the package

AFEM@matlab [46].

7.5 Solve

It has been shown in Chapter 4 that we need to solve a discrete variational

inequality (4.20) at each time step. As we discussed in §4.3.3 the discrete vari-

ational inequality (4.20) can be written as the following finite-dimensional linear

complementarity problem (LCP)

A~U ≥ ~F, ~U ≥ ~X,
(
A~U − ~F

)T (~U − ~X
)

= 0; (7.2)

see also (4.21). The subject of finite-dimensional variational inequalities and com-

plementarity problems and their applications in engineering and economics have

received intensive attention for over more than three decades. We refer to the re-

view paper by Ferris and Pang [70] and the references therein for a comprehensive

overview of the importance of linear and nonlinear complementarity problems in

various application areas. For more general variational inequalities, we refer to the

monograph by Facchinei and Pang [63, 64].

Here we will only mention some new methods designed especially for discretiza-

tion of obstacle problems. A classical way to solve LCP is the projected successive

over-relaxation (PSOR) method by Cryer [52]. For elliptic symmetric obstacle prob-

lems, different multigrid and domain decomposition techniques have been developed

(see Tai [130] and the references therein for a quick review). Among them, typi-

cal examples include the full approximation scheme (FAS) [28], monotone multigrid

(MMG) methods [97, 85, 87], multigraph interior point methods [13], and subspace

correction methods [131, 9, 130].
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7.5.1 Subspace Correction Methods for Obstacle Problems

Multigrid and domain decomposition methods have been studied extensively

for linear partial differential equations. Multigrid methods and conjugate gradient

methods with multilevel preconditioners are among the most efficient numerical

methods for solving linear systems arising from elliptic PDEs. They can be analyzed

under the general framework of space decomposition and subspace correction; see

Xu [144] and the references therein for details.

Usually, subspace correction methods can be divided into two categories: par-

allel subspace correction (PSC) methods and successive subspace correction (SSC)

methods. PSC methods are also called additive methods because they make cor-

rections in each subspace simultaneously. They are suitable for parallel computing

and preconditioning because of this nature. On the contrary, SSC methods make

corrections in one subspace at a time and are often called multiplicative methods.

Detailed information on the convergence theory as well as implementation for both

PSC and SSC can be found in Xu [145].

Recently, the subspace correction framework has been extended to nonlinear

convex minimization problems by Tai and Xu [132]. They considered a nonlinear

convex optimization problem and proved global linear convergence rate for PSC and

SSC under some assumptions on the subspace decomposition. Later this technique

has been applied to develop domain decomposition and multigrid methods for vari-

ational inequalities [131, 9]. Furthermore, a constraint decomposition technique was

introduced by Tai [130] to improve the efficiency of the methods. In this section, we

discuss the constraint decomposition methods for obstacle problems.

We consider the energy minimization problem

min
v∈K

J (v), (7.3)

where J : K ⊂ V → R is the convex functional defined in Problem 1.3 over the

finite dimensional convex set

K := {v ∈ V(T ) | v ≥ 0}.
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Note that the algorithms discussed in this section could be generalized to problems

with more general obstacles.

We decompose the space V into a sum of subspaces Vi, i.e.

V = V1 + · · · + Vm =

m∑

i=1

Vi. (7.4)

Once we have the space decomposition (7.4), we can further decompose the feasible

set K as follows

K = K1 + · · · + Km =

m∑

i=1

Ki Ki ⊂ Vi (i = 1, . . . , m), (7.5)

where Ki are convex and closed in Vi.

There are two possibilities to construct numerical methods: one based on (7.4)

and the other based on (7.5). To simplify the presentation, we only consider SSC

versions of the algorithms; PSC versions can be constructed similarly (see [9, 130]

for details).

We first look at the first possibility: an algorithm based on (7.4).

Algorithm 7.5 (Successive Space Correction Method) Given an initial guess

u ∈ K:

Let w(0) = u

For i = 1 : m

di = argmin
{
J (w(i−1) + di) |w(i−1) + di ∈ K and di ∈ Vi

}

Let w(i) = w(i−1) + di

End For

Let w = w(m) and use w as the initial guess to start the iteration again.

This is a natural extension of the SSC algorithm for unconstrained convex mini-

mization problems [132]. On each subspace, we need to keep the new iteration w(i)

in the feasible set K. To do this, the computational cost at each iteration might be

big even if Vi is only low dimensional (as would correspond to a coarse mesh).

One can then modify this algorithm using the feasible set decomposition, or

equivalently constraint decomposition (7.5).
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Algorithm 7.6 (SSC Constraint Decomposition Method) Given an initial guess

u ∈ K:

Decompose u =
∑m

i=1 ui, ui ∈ Ki and let w(0) = u

For i = 1 : m

di = argmin
{
J (w(i−1) + di) | ui + di ∈ Ki and di ∈ Vi

}

Let w(i) = w(i−1) + di

End For

Let w = w(m) and use w as the initial guess to start the iteration again.

Remark 7.7 (Local Obstacle) The idea of using local obstacle to reduce the

computational cost of local problems is not new. It has been explored by Mandel

[97] and then extended by Kornhuber [85, 86]. However, the constraint decompo-

sition method is essentially different from the monotone multigrid methods in its

philosophy. We will discuss this later in Remarks 7.14, 7.15 and 7.21.

Remark 7.8 (Feasibility) For both Algorithm 7.5 and 7.6, we need a feasible

initial guess to start with. It is clear that each iteration w(i) (i = 1, . . . , m) stays in

the feasible set K because of (7.5).

The main difference between Algorithm 7.5 and 7.6 relies on the fact that,

for the latter, we only solve a minimization problem in Ki ⊂ Vi at each iteration.

This is usually just an one-dimensional minimization problem and is cheap to solve.

On the other hand, the conditions ui ∈ Ki(i = 1, . . . , m) is more restrictive for

decomposition of u than
∑m

i=1 ui ∈ K of course. We only consider Algorithm 7.6

here in this thesis.

7.5.2 Convergence Rate of SSC-CDM Methods

We shall prove the linear convergence rate of the SSC constraint decomposition

method (SSC-CDM), Algorithm 7.6. This presentation follows the idea of Tai [130]

except tuned to the way Algorithm 7.6 is written (which is different than [130]).
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First of all, we make two assumptions on the decomposition: the first is stabil-

ity of the decomposition and the second is the strengthened Cauchy-Schwarz (SCS)

inequality.

Assumption 7.9 (Assumptions on Decomposition) We assume that

1. For any u, v ∈ K, there exist a constant C1 > 0 and decompositions u =
∑m

i=1 ui with ui ∈ Ki, v =
∑m

i=1 vi with vi ∈ Ki such that

(
m∑

i=1

|||ui − vi|||2
) 1

2

≤ C1 |||u− v||| ; (7.6)

2. There exists C2 > 0 such that

m∑

i,j=1

| 〈J ′(wij + vi) −J ′(wij), ṽj〉 | ≤ C2

(
m∑

i=1

|||vi|||2
) 1

2
(

m∑

j=1

|||ṽj|||2
)1

2

, (7.7)

for any wij ∈ V, vi ∈ Vi, and ṽj ∈ Vj.

Remark 7.10 (Stable Decomposition) The counterpart of the first assumption

for unconstrained case is usually called stability of the subspace decomposition. This

is a statement about lack of redundancy in the decomposition, i.e. the decomposition

is almost orthogonal.

Remark 7.11 (Strengthened Cauchy-Schwarz Inequality) The second assump-

tion is the so-call strengthened Cauchy-Schwarz inequality for nonlinear problems.

If these two assumptions in Assumption 7.9 are satisfied, then the SSC-CDM

is globally convergent and has linear convergence rate.

Theorem 7.12 (Convergence Rate of SSC-CDM) If Assumption 7.9 is satis-

fied, then Algorithm 7.6 converges and

J (w) − J (u∗)

J (u) − J (u∗)
≤ 1 − 1

(
√

1 + C0 +
√
C0)2

, (7.8)

where u∗ is the solution of (7.3) and C0 = 2C2 + C2
1C

2
2 .
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Remark 7.13 (Measure of Error) Here, the error is measured by J (u)−J (u∗).

This is natural for energy minimization problem. In fact, by definition,

J (u) − J (u∗) =
1

2
|||u|||2 − 1

2
|||u∗|||2 − 〈f, u− u∗〉

=
1

2
|||u− u∗|||2 + a(u∗, u− u∗) − 〈f, u− u∗〉

=
1

2
|||u− u∗|||2 − 〈λ(u∗), u− u∗〉 .

For any feasible u, the second term on the right-hand side 〈λ(u∗), u− u∗〉 is non-

positive. Hence, if J (u) −J (u∗) = 0, then |||u− u∗||| = 0.

Remark 7.14 (Global and Monotone Convergence) Notice that the previous

theorem implies that energy J is strictly decreasing in Algorithm 7.6. Furthermore,

the convergence rate is globally linear starting from any feasible initial guess. This is

different than the asymptotic linear convergence rate of monotone multigrid methods

[85, 86].

Remark 7.15 (Non-degeneracy Assumption) There is no need to assume that

the strict complementarity condition is satisfied by the discrete problem (non-

degenerate assumption) as for monotone multigrid methods [85, Lemma 2.2]. Nu-

merical experiments show the method is stable for degenerate problems also; see

Table 8.18.

Remark 7.16 (General Convex Minimization) For our purpose, we only con-

sider Problem 1.3 here. The methods discussed here can be generalized to convex

minimization problems with strongly convex and Gâteaux differentiable objective

functionals.

We now give several lemmas in preparation to prove Theorem 7.12.

Lemma 7.17 (First Order Optimal Condition) For each i = 1, . . . , m, we have

〈
J ′(w(i)), d̃i − di

〉
≥ 0 ∀ui + d̃i ∈ Ki.
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Proof. Note that both ui+di and ui+d̃i are in Ki. Therefore ui+(1−α)di+αd̃i ∈ Ki

for any 0 ≤ α ≤ 1 since Ki is a convex set. We then consider the minimization

problem

min
0≤α≤1

J (w(i−1) + (1 − α)di + αd̃i).

From the first order optimality condition, it is then clear, for i = 1, . . . , m, that

〈
J ′(w(i)), d̃i − di

〉
≥ 0 ∀ui + d̃i ∈ Ki.

Hence we have the desired inequality. �

Lemma 7.18 (Monotonicity) In Algorithm 7.6, the energy is decreasing and

J (u) −J (w) ≥ 1

2

m∑

i=1

|||di|||2 .

Proof. For any v, ṽ ∈ K, it is easy to see that

J (ṽ) −J (v) = 〈J ′(v), ṽ − v〉 +
1

2
|||ṽ − v|||2 . (7.9)

For i = 1, . . . , m, we have that w(i−1) and w(i) are both in K. Hence, by applying

(7.9) and Lemma 7.17 with d̃i = 0, we get

J (w(i−1)) − J (w(i)) = −
〈
J ′(w(i)), di

〉
+

1

2
|||di|||2 ≥

1

2
|||di|||2 .

Then J (u)−J (w) =
∑m

i=1 J (w(i−1))−J (w(i)) gives the lower bound of the energy

reduction. �

This lemma ensures the algorithm will result in strict energy reduction when

di 6= 0. To prove the convergence theorem, we are going to bound |||di||| from below

by the error in energy. The following lemma basically says if one cannot make any

progress in a step, i.e.
∑m

i=1 |||di|||2 = 0, then one has obtained the exact solution;

otherwise, one can always reduce the energy using Algorithm 7.6.

Lemma 7.19 (Error in Energy) Suppose u∗ ∈ K is the optimal solution. The

error in energy after one loop of CDM-SSC method satisfies

J (w) −J (u∗) ≤ C2

m∑

i=1

|||di|||2 + C1C2

( m∑

i=1

|||di|||2
)1/2

|||u− u∗||| .
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Proof. We first recall that Assumption 7.9 (1) implies the existence of decomposi-

tions u∗ =
∑m

i=1 u
∗
i and u =

∑m
i=1 ui with u∗i , ui ∈ Ki satisfying (7.6). Taking ṽ = u∗

and v = w in (7.9), we arrive at

J (w) −J (u∗) ≤ 〈J ′(w), w − u∗〉 .

On the other hand, by Lemma 7.17, we obtain

〈
J ′(w(i)), (u∗i − ui) − di

〉
≥ 0,

whence

〈J ′(w), w − u∗〉 =

m∑

i=1

〈J ′(w), ui + di − u∗i 〉

≤
m∑

i=1

〈
J ′(w) − J ′(w(i)), ui + di − u∗i

〉

=

m∑

i=1

m∑

j=i

〈
J ′(w(j)) −J ′(w(j−1)), ui + di − u∗i

〉
.

Using the strengthened Cauchy-Schwarz inequality (7.7), we then have

〈J ′(w), w − u∗〉 ≤ C2

(
m∑

i=1

|||di|||2
) 1

2
(

m∑

i=1

|||(ui − u∗i ) + di|||2
) 1

2

.

Hence a consequence of the above inequality, the triangle inequality and the stability

of the decomposition (7.6) is

〈J ′(w), w − u∗〉 ≤ C2

(
m∑

i=1

|||di|||2
) 1

2



(

m∑

i=1

|||di|||2
) 1

2

+ C1 |||u− u∗|||


 .

This in turn gives the upper bound of the error in energy. �

Now we are ready to prove the main convergence theorem.

Proof of Theorem 7.12. From Lemma 7.19, we can see that

J (w) −J (u∗) ≤ C2

m∑

i=1

|||di|||2 + C1C2

( m∑

i=1

|||di|||2
)1/2

|||u− u∗||| .

Using the generalized triangle inequality, ab ≤ 1
2ε
a2 + ε

2
b2 with a constant 0 < ε < 1,
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the monotonicity Lemma 7.18, and (7.9) with ṽ = u and v = u∗, we obtain

J (w) −J (u∗) ≤ C2

m∑

i=1

|||di|||2 +
(C2

1C
2
2

2ε

m∑

i=1

|||di|||2 +
ε

2
|||u− u∗|||2

)

≤
(
2C2 +

C2
1C

2
2

ε

)(
J (u) − J (w)

)
+ ε
(
J (u) − J (u∗)

)

≤ C0

ε

(
J (u) − J (w)

)
+ ε
(
J (u) −J (u∗)

)
.

Hence, it is easy to see that

J (w) − J (u∗)

J (u) −J (u∗)
≤ C0ε

−1 + ε

1 + C0ε−1
=
C0 + ε2

C0 + ε
.

To minimize the right-hand side f(ε) := (C0 + ε2)/(C0 + ε), we find

f ′(ε) =
ε2 + 2C0ε− C0

(ε+ C0)
2

and there exists a unique minimizer of f(ε), ε∗ =
√
C2

0 + C0 − C0 ∈ (0, 1). By

picking the optimal ε∗, we obtain the convergence result (7.8). �

7.5.3 SSC-CDM on Adaptive Grids

We have proved in the previous subsection that the SSC-CDM method con-

verges linearly if the space and constraint decompositions satisfy the assumptions

in Assumption 7.9. In this section, we construct subspace decompositions for con-

tinuous piecewise linear finite element space V = V(T ) vanishing on the boundary

of the polygonal domain Ω on an adaptive grid obtained by newest vertex bisection,

T . This is new because the original paper by Tai [130] assumes quasi-uniformity of

the underlying meshes.

In Algorithm 7.6, once a space decomposition V =
∑m

i=1 Vi is introduced,

we need to decompose the feasible set K =
∑m

i=1 Ki first and then decompose the

current iterative solution u such that

u =
m∑

i=1

ui and ui ∈ Ki ⊂ Vi.

If there is no constraint, i.e. K = V, then it is clear that we can take Ki = Vi

for i = 1, . . . , m. The SSC-CDM algorithm is then reduced to the SSC method for

unconstrained convex optimization problem in [132].
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There are two ways to decompose the space V which are proved to be efficient

in practice: one is domain decomposition (DD) type, the other is multigrid (MG)

type. Both were discussed in [130]. Here we shall focus on multigrid decomposition

and remove the quasi-uniform assumption on the underlying grid as posed in [130].

Then we can apply this algorithm for symmetric elliptic variational inequalities on

adaptive meshes.

Space and Constraint Decomposition

From now on, we assume that T ∈ A (T0) can decomposed in the following

way as discussed in §7.4.3

T = T0 + b1 + · · ·+ bm,

where bi’s are compatible bisections. We first introduce the multigrid space decom-

position for V. We denote the intermediate grids by

Ti := T0 + b1 + · · · + bi i = 1, . . . , m,

and observe that Ti ∈ A (T0). Define the nodal basis ψi,x ∈ V(Ti) at node x ∈ Ti.
For the same geometric node x, we could have different nodal basis functions on

different grids.

It is easy to see that there is a one-to-one correspondence between the com-

patible bisection bi and a compatible refinement edge Si ∈ Sh(Ti). In turn, we also

have a one-to-one correspondence between bi and xi, the middle point of Si, when

xi first occur. Denote the support of ψi,xi
by ωi,xi

and the subspaces associated with

bi by

Vi := {ψi,x | x ∈ Ph(Ti) ∩ ωi,xi
}. (7.10)

If V0 = V(T0) is the space corresponding to the initial mesh T0, then we have a

subspace decomposition

V =
m∑

i=0

Vi.

Based on this subspace decomposition, there are infinitely many possibilities

to decompose the feasible set K when the subspace decomposition is fixed. We
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do not consider the optimal way to choose such a constraint decomposition. We

decompose K := {v ∈ V | v ≥ 0} into

K =
m∑

i=0

Ki and Ki := {v ∈ Vi | v ≥ 0}. (7.11)

We shall use the following notation for various kinds of local patches:

• ωi,x :=
⋃{

τ | x ∈ τ, τ ∈ Ti
}
;

• ω̃i,x :=
⋃{

ωi,y | y ∈ P(Ti) ∩ ωi,x
}
;

• ωi,τ :=
⋃{

ωi,y | y ∈ P(Ti) ∩ τ
}
;

• ωi := ωi,xi
;

• ω̃i := ω̃i,xi
.

SSC-CDM Algorithm on Adaptive Grid

With the subspace and constraint decompositions discussed above, we can con-

struct a practical SSC-CDM algorithm. The main difference between the SSC-CDM

for the constrained minimization problems and the SSC method for unconstrained

problems is that, in the former, we need to actually decompose each iterative solu-

tion u ∈ K; on the contrary, in the latter, the decomposition is only for theoretical

purposes. In fact, in SSC methods, one can think there is a decomposition of each

iteration u. However the particular choice of decomposition will not change the next

iteration w. On the contrary, for constrained minimization, the decomposition of u

will affect the local obstacle in each subspace. This is because we need to compute

di = argmin
{
J (w(i−1) + di) | ui + di ≥ 0 and di ∈ Vi

}
i = 1, . . . , m

to obtain w(i). We can see from the formula above that ui is only needed to verify

the constraint ui + di ≥ 0.

We first introduce a decomposition of u and then apply it to the SSC-CDM

algorithm on adaptive grids. For i = 1, . . . , m and any function u ∈ V, we define an
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operator Qi : V → V(Ti−1) such that, for any node x ∈ Ph(Ti−1),

Qiu(x) := min
y∈ωi,x

u(y) (7.12)

Having defined Qiu at all nodes Ph(Ti−1) by (7.12), the rest of values of Qiu can then

be obtained by interpolation since Qiu ∈ V(Ti−1). Notice that Qi’s are nonlinear

operators, i.e. Qiu−Qiv 6= Qi(u− v).

Lemma 7.20 (Stability of Qi) Let u, v ∈ V. For any node x ∈ Ph(Ti) and any

element τ ∈ Ti, we have

h−1
τ ‖Qi+1u−Qi+1v‖L2(τ) ≤ Cd,τ‖u− v‖H1(ωi,τ ),

where the constant Cd,τ depends on the meshsize

Cd,τ :=





C d = 1

C
(
1 + | ln(hτ/hmin)|

) 1
2 d = 2

C(hτ/hmin)
1
2 d = 3.

(7.13)

Here C is a generic constant which is independent of the meshsize.

Proof. From the definition of Qi’s, we have, for any u, v ∈ V, that

‖Qi+1u−Qi+1v‖L2(τ) .
∑

y∈Ph(Ti)∩τ

‖u− v‖L∞(ωi,y)|τ |

. h
d
2
τ ‖u− v‖L∞(ωi,τ ).

The result then follows directly from scaling argument and the classical discrete

Sobolev inequality between L∞ and H1; see [27]. �

Next we define a decomposition of u (see Figure 7.7):

u =

m∑

i=0

ui, (7.14)

where

um := u−Qmu, ui := Qi+1u−Qiu (i = 1, . . . , m− 1), u0 = Q1u. (7.15)
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Figure 7.7: Decomposition of u.

Comparing these with the definitions (7.10) of Vi and (7.11) of Ki, we can easily

see that

ui ∈ Ki i = 0, 1, . . . , m.

We have specified all ingredients of Algorithm 7.6 and it can be now applied

to symmetric elliptic obstacle problems. In practice, we can further decompose each

Vi by natural nodal basis decomposition

Vi =
∑

x∈Ph(Ti)∩ωi

span{ψi,x}.

Then at each step, we only need to solve a univariable simple constrained minimiza-

tion problem which is easy.

Remark 7.21 (Different Philosophy Between SSC-CDM and MMG) Now

we discuss a little bit about the different philosophy between the SSC-CDM method

and the monotone multigrid methods (MMG).

• In MMG, we give the maximum freedom to high frequency corrections. This

will in turn restrict the freedom of the low frequency corrections. Close to

the free boundary, the standard MMG methods behaves more like a Gauss-

Siedel method and has multigrid performance when the contact region has been

resolved. To speed up the convergence, Kornhuber [85] suggested a modified

MMG method. This modification, on the other hand, causes computational

overhead.
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• For the SSC-CDM method, the convergence theorem actually suggests we

leave more freedom to the lower frequency corrections. Hence we give as little

freedom as possible to the high frequency search directions. Heuristically,

this is more natural because the fine grid corrections take care of oscillations

(high frequency error) and leave the smooth part of error to the coarse grid

corrections.

Mesh Dependent Reduction Factor

We proved linear convergence of SSC-CDM algorithms in Theorem 7.12. How-

ever, the reduction factor depends on the constants C1 and C2. It is possible that

the reduction factor goes quickly to 1 as we keep refining the mesh. For linear el-

liptic PDEs, multigrid and multilevel preconditioning techniques are usually used

to construct algorithms with a reduction factor independent on the mesh-size. It

is critical to prove the mesh independence of the reduction factor under subspace

correction framework for uniformly refined meshes [146]. On the other hand, for

adaptive meshes, uniform convergence is proved on newest vertex bisection grids in

2d by Chen and Wu [143] recently. Chen et al. [45] proved that a space decom-

position is stable and optimal on graded bisection grids provided it is stable and

optimal on quasi-uniform bisection grids.

Now we consider mesh dependence of the SSC-CDM method on bisection

grids. We have presented a general convergence theory in Theorem 7.12. The

convergence rate is globally linear but the reduction rate depends on the constants

C1 and C2 in Assumption 7.9. The second assumption, the strengthened Cauchy-

Schwarz inequality, depends solely upon the property of the space decomposition.

We can show it is mesh independent using [132, §4.2.2] and [45, Theorem 5.2]. On

the other hand, the estimation of C1 is non-standard and problematic because we

do not have the freedom to choose a ‘good’ decomposition. The decomposition is

restricted due to the constraint ui ∈ Ki. We shall see that C1 degenerates quickly

in 3d and depends mildly on the smallest meshsize in 1d and 2d.
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Lemma 7.22 (Estimation of C1) For the multilevel decomposition defined in (7.14),

we have the constant C1 satisfies

C1 ≈





| ln(hmin)| d = 1

| ln(hmin)|
(
1 + | ln(hmin)|

) 1
2 d = 2

| ln(hmin)|(hmin)
− 1

2 d = 3.

Proof. Suppose u =
∑m

i=0 ui and v =
∑m

i=0 vi. Recall that ui − vi is supported on

ω̃i. Using inverse estimation, we obtain that

|||ui − vi|||2 . h−2
i ‖ui − vi‖2

L2(ω̃i)
.

On the other hand, from Lemma 7.20, it is easy to see that

‖ui − vi‖2
L2(τ) . Cd,τh

2
τ‖u− v‖2

H1(ωi,τ ) ∀τ ∈ ω̃i.

We then regroup patches with respect to the generation of bisections and use shape-

regularity of the bisection grids as well as the finite overlapping property of ω̃j for

same generation to get

m∑

i=0

|||ui − vi|||2 =
L∑

l=0

∑

gj=l

|||uj − vj|||2 .

L∑

l=0

h̄−2
l

∑

gj=l

‖uj − vj‖2
L2(ω̃j)

. Cd

L∑

l=0

‖u− v‖2
H1(Ω) . CdL |||u− v|||2 ,

where the constant Cd is

Cd :=





C d = 1

C
(
1 + | ln(hmin)|

) 1
2 d = 2

C(hmin)
− 1

2 d = 3.

(7.16)

Since we are using bisection grids, L ≈ | ln(hmin)|, we obtain the final estimate.

�
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Chapter 8

Numerical Experiments

In this chapter, we design numerical experiments to test various of aspects of

the a priori and a posteriori error estimations and the adaptive algorithm proposed

in previous chapters. These include:

• A priori convergence rate (compare with Chapter 5);

• Asymptotic behavior of the error estimators (compare with Chapter 6);

• Reliability and efficiency of the error estimators (compare with Chapter 6);

• Localization property of the space error estimator (compare with Chapter 6);

• Approximation of the free boundary;

• Performance of the adaptive algorithm (compare with Chapter 7);

• Linear convergence rate of the discrete solver: SSC-CDM (compare with §7.5);

• Mesh dependence of the reduction rate for SSC-CDM (compare with §7.5);

• Application on American option pricing.

The goal of these numerical tests is to confirm the theories developed in previous

chapters as well as provide more insight for future research.

The rest of this chapter is organized as follows. First we design benchmark

test examples to test asymptotic convergence rates of the error and the error esti-

mators in §8.1 (differential operators) and §8.2 (integral operators). Then we apply
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the adaptive algorithm to solve the test problems and compare the performance of

adaptive refinement strategy with the standard uniform refinement in §8.3. Finally,

we examine the convergence behavior of the discrete solver (SSC-CDM) in §8.4.

The numerical experiments are done with adaptive finite element toolboxes

ALBERTA of Schmidt and Siebert [123] or AFEM@matlab of Chen and Zhang [46].

Experiments are performed on a desktop PC with Pentium IV 2.4GHz and 1GB

RAM.

We shall keep the notation as consistent as possible with the notation used in

previous chapters. Here is a list of important quantities for quick reference:

• E: total error. For elliptic problems, it is the energy error; for parabolic

problems, it is the L2-energy error.

• E : total error estimator; see §6.7.4.

• E/E: the effectivity index of error estimator E

• N: number of time steps.

• DOF: number of degrees of freedom in space.

• EOC: experimental order of convergence (based on last two experiments).

8.1 Asymptotic convergence rates (Part I: Differ-

ential Problems)

The main purpose of the section is to design and perform test examples to

confirm the theoretical results in Chapters 5 and 6.

8.1.1 1d Tent Obstacle: Case χh = χ

We take A := − ∂2

∂x2 , the domain Ω := (−1.0, 1.0), the time interval [0.5, 1.0],

and the noncontact and contact sets to be N := {|x| > t/6} and C := {|x| ≤ t/6}.
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If the obstacle is χ(x) = 1 − 3|x|, then the exact solution u and forcing function f

are given by

u(x, t) =





36t−2x2 − (3 + 12t−1)|x| + 2 in N
1 − 3|x| in C,

f(x, t) =





−12t−2(6t−1x2 − |x| + 6) in N
−72t−2 in C.

Function u is depicted in Figure 8.1 at times t = 0.5, 0.75, and 1.0.

−0.2 −0.1 0 0.1 0.2
0

1

2

3

4

5

6

7

x

u

obstacle
solution at t = 0.50
solution at t = 0.75
solution at t = 1.00

Figure 8.1: 1d Tent Obstacle: Exact solution u(·, t) at times t = 0.5, 0.75, 1.0. The

obstacle χ is piecewise linear with a kink at x = 0, belonging to all partitions. This

implies χh = χ.

To test the asymptotic convergence rates of both the proposed error estimator

E and exact error E, we halve time step k and space meshsize h in each experiment

and report the results in Table 8.1 and Figure 8.2. To investigate the decay of each

component Eh,i of the space estimator Eh we fix the time-step to be k = 2.5× 10−4,

so small that the error is dominated by the space discretization. Table 8.2 displays

their behavior under uniform space refinement: the estimator Eh,1 exhibits optimal

order 1 and dominates the other two terms.

We display in Figure 8.3 the nodal-based space error estimator Υn
h(z) at dif-
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N DOF Eh Ek Ekh E E Effectivity

64 127 2.256e+0 2.121e+0 2.731e-2 3.097e+0 7.347e-1 4.219

128 255 1.138e+0 1.059e+0 9.686e-3 1.555e+0 3.700e-1 4.202

256 511 5.716e-1 5.294e-1 3.338e-3 7.791e-1 1.857e-1 4.202

512 1023 2.864e-1 2.646e-1 1.181e-3 3.900e-1 9.301e-2 4.184

1024 2047 1.434e-1 1.323e-1 4.148e-4 1.951e-1 4.655e-2 4.184

EOC 0.998 1.000 1.510 0.999 0.999 –

Table 8.1: 1d Tent Obstacle Problem (χh = χ): The space and time estimators

Eh, Ek, decrease with optimal order 1, but the mixed estimator Ekh is of higher

order. The ratio between total estimator E and energy error E is quite stable and

of moderate size.

1d tent obstacle example (χh = χ) 2d oscillating moving circle example

DOF Eh,1 Eh,2 Eh,3 DOF Eh,1 Eh,2 Eh,3

129 2.282 3.034e-1 4.929e-2 145 1.094 1.323 1.194e-2

257 1.144 1.073e-1 1.823e-2 545 5.660e-1 4.974e-1 3.936e-3

513 5.729e-1 3.792e-2 6.295e-3 2113 2.880e-1 1.817e-1 1.368e-3

1025 2.866e-1 1.341e-2 2.250e-3 8321 1.453e-1 6.532e-2 4.652e-4

2049 1.434e-1 4.740e-3 7.903e-4 33025 7.295e-2 2.329e-2 1.617e-4

EOC 0.999 1.500 1.509 EOC 0.994 1.488 1.525

Table 8.2: Decay of each component Eh,i of the space estimator Eh for a fixed time-

step k = 2.5 × 10−4 so small that the time estimator Ek is insignificant. Left: 1d

tent obstacle problem 8.1.1; Right: 2d oscillating moving obstacle problem 8.3.3. In

both cases the nodal-based estimator Eh,1 exhibits the expected order 1 whereas the

other two superconverge.
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Figure 8.2: Error estimator E and energy error E vs. total number of degrees of

freedom (N · DOF) for 1d Tent Obstacle Example 8.1.1 with χh = χ (left) and

2d Oscillating Moving Circle Problem 8.3.3 (right). Since N · DOF ≃ 1
khd ≃ 1

hd+1 ,

provided k ≃ h, the optimal error decay is O(h) = O((N · DOF)−
1

d+1 ) and is

indicated by the dotted lines with slopes -1/2 (left) for d = 1 and -1/3 (right) for

d = 2. This shows optimal decay of both E and E.
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ferent stages tn = 0.6, 0.8, 1.0 of the evolution. We see that Υn
h(z) vanishes at

full-contact nodes z ∈ Cnh , as predicted by theory, and that the exact free-boundary

is captured within one element. This is further documented in Table 8.3 which

shows exact and approximate free boundary locations at times tn = 0.6, 0.8, 1.0.
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Figure 8.3: 1d Tent Obstacle Problem: Nodal-based space error estimator Υn
h(z) at

times tn = 0.6, 0.8, 1.0 for DOF = 255 and k = 2.5×10−4. The localization property

that Υn
h(z) vanishes at the full-contact nodes z ∈ Cnh is clearly visible, along with

the fact that free-boundary approximation takes place within one element (see Table

8.3).

Time Exact Free Boundary Approx Free Boundary

0.6 ±1.0000× 10−1 ±1.0156× 10−1

0.8 ±1.3333× 10−1 ±1.3328× 10−1

1.0 ±1.6667× 10−1 ±1.6406× 10−1

Table 8.3: 1d Tent Obstacle Problem (χh = χ): Since the meshsize is h ≈ 7.8×10−3

the FEM captures the exact free boundary within one element.
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8.1.2 1d Tent Obstacle: Case χh 6= χ

In general, we cannot expect the underlying mesh to match the singular be-

havior of the obstacle, as in Example 8.1.1, even for piecewise linear obstacles. This

happens, for instance, when the obstacles change in time. The question thus arises

whether or not the proposed error estimator E is able to capture the correct behavior

of the solution when a singularity is not resolved by the mesh.

To answer this question, we modify Example 8.3.2 by the shift v(x− 1
3
, t) for

v = u, χ, f but keep the same meshes and time steps as before. In this case, the

kink at x = 1/3 is never a mesh point and χh 6= χ. Since χ is almost in H̃3/2 we

expect a rate of convergence 0.5 in H̃1. This is confirmed by the results of Table

8.4, which also shows that the only estimator that detects this reduced order is Eχ,
the obstacle consistency error estimator. We observe that Eh and Ek dominate at

the beginning and it takes quite awhile to reach the asymptotic regime.

N DOF Eh Ek Ekh Eχ E E Effectivity

1024 2047 1.434e-1 1.548e-1 4.154e-4 9.882e-2 2.330e-1 8.175e-2 2.850

2048 4095 7.172e-2 7.741e-2 1.466e-4 6.988e-2 1.266e-1 5.050e-2 2.507

4096 8191 3.587e-2 3.871e-2 5.181e-5 4.941e-2 7.229e-2 3.282e-2 2.203

8192 16383 1.794e-2 1.935e-2 1.831e-5 3.494e-2 4.378e-2 2.213e-2 1.978

16384 32767 8.970e-3 9.676e-3 6.471e-6 2.471e-2 2.801e-2 1.527e-2 1.834

EOC 1.000 1.000 1.501 0.500 0.644 0.535 –

Table 8.4: 1d Tent Obstacle Problem (χh 6= χ): the kink is not resolved by the

underlying meshes with uniform mesh refinement. The only estimator that detects

the reduced order 0.5 is Eχ. The total estimator is dominated by Eh and Ek at the

beginning but eventually Eχ takes over. This combined effect is reflected in the

behavior of the total estimator E .

We wonder whether making a suitable local mesh refinement near the kink

may restore the optimal linear rate. We conduct an experiment consisting of locally

refined meshes only at the kink location, where the meshsize is h2, whereas it remains

uniform and equal to h elsewhere. The interpolation error in H̃1 becomes now
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proportional to h, both at the kink location and elsewhere, because the error in

W 1
∞ is O(1) and O(h), respectively. This heuristic argument is corroborated by the

results of Table 8.5, which illustrates the potentials of mesh refinement to achieve

optimal complexity along with the importance of Eχ.

N DOF Eh Ek Ekh Eχ E E Effectivity

32 45 8.710 4.915 1.787e-1 1.398e-1 1.000e+1 2.802 3.570

64 93 4.477 2.467 5.648e-2 9.882e-2 5.113 1.431 3.573

128 191 2.267 1.236 1.947e-2 3.494e-2 2.583 7.230e-1 3.572

256 382 1.141 6.186e-1 6.631e-3 1.747e-2 1.298 3.634e-1 3.572

512 767 5.723e-1 3.095e-1 2.326e-3 8.735e-3 6.507e-1 1.822e-1 3.572

EOC 0.995 0.999 1.511 1.000 0.996 0.996 –

Table 8.5: 1d Tent Obstacle Problem (χh 6= χ): The underlying partition is locally

refined at the kink location, where the meshsize is h2, but is otherwise uniform with

meshsize h. This restores the optimal linear rate for both Eχ and E, as well as the

total estimator E (compared with the reduced rate reported in Table 8.4 for uniform

meshes).

8.1.3 1d American Option

In American option pricing problems, we start from an initial condition u0, as

in (8.4), which is in the Sobolev space H̃
3
2
−ǫ for any ǫ > 0 but not in any smoother

regularity class. The a priori error estimates in Chapter 5 imply a rate of convergence

O(k1/2) for u0 ∈ H̃1 and O(k) for u0 ∈ H̃2. Given the fractional regularity right

in the middle between H̃1 and H̃2, we expect, from interpolation theory, that the

convergence rate with uniform time-step would be about O(k3/4). Our experiments

confirm this expectation.

We take an American put option problem on a single stock with strike price

K = 100, maturity time T = 0.5 year, volatility σ = 0.4, interest rate r = 6%, and

forcing f = 0. We choose the space domain to be Ω = (−1, 7). Table 8.6 displays

all four estimators and Ek has indeed the expected rate of about 0.75.
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N DOF Eh Ek Ekh Eχ E

128 511 4.353e-2 1.149e-1 3.240e-3 3.843e-1 4.035e-1

256 1023 2.172e-2 7.023e-2 1.147e-3 2.434e-1 2.543e-1

512 2047 1.091e-2 5.026e-2 4.035e-4 1.195e-1 1.301e-1

1024 4095 5.461e-3 2.940e-2 1.416e-4 7.581e-2 8.150e-2

2048 8191 2.736e-3 1.751e-2 4.980e-5 4.931e-2 5.240e-2

EOC 0.997 0.748 1.505 0.620 0.637

Table 8.6: 1d American Put Option Problem: Uniform time and space partitions

yield suboptimal rates for Ek and Eχ due to the fractional regularity of the initial

condition, which is about H̃3/2. This explains the order of about 0.75 of Ek, that

accounts for the initial transient regime, but not quite the suboptimal order of Eχ.

We now explore the effect of refining the time partition to restore the optimal

convergence rate. We design an algebraically graded time grid

tn =
( n
N

)β
∀ 1 ≤ n ≤ N,

with β > 0 to be determined so that the time error estimator Ek ≈ O(N−1). The

time-step kn reads

kn =
( n
N

)β
−
(n− 1

N

)β
≈ β

N

( n
N

)β−1

⇒ kn ≈ β

N
t1−1/β
n .

We recall the regularizing effect for linear parabolic problems, namely,

‖∂tu(·, t)‖H1 ≈ ‖u(·, t)‖H3 . t−3/4

provided the initial condition u0 ∈ H̃3/2. We proceed heuristically and assume the

same asymptotic behavior to be valid for parabolic variational inequalities. We next

formally replace
∣∣∣∣∣∣Un

h − Un−1
h

∣∣∣∣∣∣ .
∫ tn
tn−1

|||∂tu(·, t)||| dt in the definition of Ek to get

E2
k ≈

N∑

n=1

∫ tn

tn−1

|||∂tu(·, t)|||2 k2
ndt ≈

β

N

∫ T

0

t−3/2+2(1−1/β)dt ≈ O(N−1),

provided β > 4/3. This argument can be made rigorous for linear parabolic equa-

tions upon using Theorem 4.5 of [137] and carefully approximating the solution on
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the first time interval. To test this heuristic argument for parabolic variational in-

equalities, we take β = 1.5 and report the results in Table 8.7. We see that this

properly chosen time partition restores the optimal convergence rate not only for Ek
but also for Eχ. Moreover, this argument explains why uniform time stepping, i.e.

β = 1, yields a suboptimal convergence rate for the time estimator Ek (see Table

8.6).

N DOF Eh Ek Ekh Eχ E

80 1023 2.386e-2 8.152e-2 1.945e-3 1.833e-1 2.021e-1

160 2047 1.159e-2 4.397e-2 6.693e-4 8.679e-2 9.798e-2

320 4095 5.657e-3 2.235e-2 2.313e-4 4.385e-2 4.954e-2

640 8191 2.793e-3 1.137e-2 8.030e-5 2.238e-2 2.526e-2

1280 16383 1.388e-3 5.899e-3 2.787e-5 1.162e-2 1.310e-2

EOC 1.018 0.975 1.526 0.970 0.972

Table 8.7: 1d American Put Option Problem: Algebraically graded time partition

tn =
(
n
N

)3/2
and uniform space mesh. This grading restores the optimal linear

convergence rate of both Ek and Eχ (compared with Table 8.6).

8.1.4 1d American Option with Moving Obstacle

To test the asymptotic behavior of the obstacle consistency term |||∂t(χ− Uh)
+|||∗,

which we omitted in E , we modify the previous American option problem in the fol-

lowing way: from time t = 0 to 0.5, we still have the same American option pricing

problem as in §8.3.1. From time t = 0.5 to 1.0, we raise the obstacle at a constant

rate ξ ∈ R+. In other words, the obstacle in the previous example has been replaced

by:

χ(x, t) := (K − ex)+ [1 + ξ(t− 0.5)+
]

x ∈ (−1, 7), t ∈ [0, T ].

In this way, we exclude the initial transient region from our consideration

and the singular point log(K) is always a mesh point. Also we choose the speed

ξ moderate to prevent the free boundary point to recede to log(K). As in the
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analysis for the last example, the uniform space mesh and algebraically graded time

partition should give optimal convergence rate. We report in Table 8.8 the mixed

error estimator terms Ekh, Eχ and

Eoχ :=

(∫ T

0

‖∂t(χ− Uh)
+‖2

L2(Ω) dt

) 1
2

.

Since it is difficult to compute the dual norm in the term

E∗
χ :=

(∫ T

0

∣∣∣∣∣∣∂t(χ− Uh)
+
∣∣∣∣∣∣2
∗
dt

) 1
2

,

we compute the term Eoχ with the L2-norm instead.

From Table 8.8 we see that the experimental convergence rate of Eoχ is 1.0.

Since E∗
χ . Eoχ, the numerical results show evidence that E∗

χ is of at least the same

order as the obstacle consistency term Eχ and this justifies the comments in Remark

7.3. On the other hand, we see that the convergence rate of the mixed error term

Ekh is greater than 1.0 and becomes closer to 1.0 as the obstacle moves faster and

faster. Notice that we omit in Table 8.8 the space error estimator Eh and time error

estimator Ek, which also converge at the optimal rate 1.0.

ξ 0.01 0.1 1.0

N DOF Ekh Eχ Eo
χ Ekh Eχ Eo

χ Ekh Eχ Eo
χ

40 511 1.024e-2 3.116e-1 1.250e-1 1.128e-2 3.321e-1 1.250e-1 8.120e-2 5.144e-1 1.280e-1

80 1023 3.623e-3 1.559e-1 6.311e-2 4.015e-3 1.660e-1 6.310e-2 3.613e-3 2.565e-1 6.421e-2

160 2047 1.255e-3 7.801e-2 3.157e-2 1.523e-3 8.304e-2 3.157e-2 1.895e-2 1.280e-1 3.231e-2

320 4095 4.472e-4 3.902e-2 1.584e-2 5.554e-4 4.153e-2 1.584e-2 8.698e-3 6.398e-2 1.611e-2

EOC 1.489 0.999 0.995 1.455 1.000 0.995 1.123 1.000 1.005

Table 8.8: Modified American Put Option Problem: Algebraically graded time

partition tn =
(
n
N

)3/2
and uniform space mesh.

8.1.5 2d Oscillating Moving Circle

Let the operator be A := −∆, the domain be Ω = (−1, 1)2, the time interval

be [0, 0.25], and the noncontact and contact sets be N := {|x− c(t)|2 > r0(t)} and
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C := {|x− c(t)|2 ≤ r0(t)} with

r0(t) = 1/3 + 0.3 sin(4ωπt), c(t) = r1
(
cos(ωπt), sin(ωπt)

)T
,

and r1 = 1/3, ω = 4.0. The obstacle is χ ≡ 0, and the exact solution u and forcing

function f are

u(x, t) =





1
2

(
|x− c(t)|2

2
− r0(t)

2

)2

in N
0 in C,

f(x, t) =





4
(
r2
0
(t) − 2|x− c(t)|2

2
− 1

2

(
|x− c(t)|2

2
− r2

0
(t)
)(

(x− c(t)) · c′(t) + r0(t)r
′

0
(t)
))

in N
−4r20(t)

(
1 − |x− c(t)|22 + r20(t)

)
in C.

The free boundary is an oscillating circle with radius r0(t) and center c(t) moving

counterclockwise along the circle of radius r1 centered at the origin. The initial and

boundary conditions are given by u.

We halve both time-step k and space meshsize h in each experiment and report

the results in Table 8.9 and Figure 8.2; we observe optimal linear convergence rate.

We also investigate in Table 8.2 the decay of the space estimators alone. We fix

the time-step k = 2.5 × 10−4 and halve the meshsize size in each experiment. We

observe optimal linear decay of Eh,1 but higher order of convergence for Eh,2, Eh,3.

N DOF Eh Ek Ekh E E Effectivity

64 1985 3.432e-1 8.110e-2 2.219e-3 3.527e-1 8.328e-2 4.237

128 8065 1.597e-1 4.008e-2 8.087e-4 1.646e-1 4.204e-2 3.922

256 32513 7.664e-2 1.996e-2 2.899e-4 7.920e-1 2.111e-2 3.745

512 130561 3.749e-2 9.965e-3 1.037e-4 3.879e-2 1.058e-2 3.663

1024 523265 1.853e-2 4.980e-3 3.691e-5 1.919e-2 5.297e-3 3.623

EOC 1.017 1.001 1.490 1.015 0.998 –

Table 8.9: 2d Oscillating Moving Circle Problem: The space and time estimators

Eh, Ek, decrease with optimal order 1, but the mixed estimator Ekh is of higher order.

The effectivity index, the ratio between total estimator E and energy error E, is quite

stable and of moderate size.

In Figure 8.4, we show the nodal-based space error indicator Υn
h(z) on the

cross section x2 = 0 at different stages of the evolution tn = 0.02, 0.05, 0.18. For
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the same times and cross section, we also compare the exact and approximate free

boundaries in Table 8.10. Their difference is well within one meshsize.
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Figure 8.4: 2d Oscillating Moving Circle Problem: nodal-based error estimator

Υn
h(z) in the cross section x2 = 0 for DOF = 8065, k = 2.5 × 10−4 and tn =

0.02, 0.05, 018. Note the vanishing of Υn
h(z) for full-contact nodes and the monotone

behavior for the rest.

Time Exact Free Boundaries Approx Free Boundaries

0.02 {−2.5788× 10−1, 9.0361× 10−1} {−2.5000× 10−1, 9.0625× 10−1}
0.05 {−2.0083× 10−1, 7.4017× 10−1} {−1.8750× 10−1, 7.1875× 10−1}
0.18 {−5.7430× 10−1, 1.4942× 10−1} {−5.6250× 10−1, 1.5625× 10−1}

Table 8.10: 2d Oscillating Moving Circle: Exact and approximate free boundaries

on the cross section x2 = 0. Their differences are less than one meshsize, which is

about 2.2 × 10−2.
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8.2 Asymptotic convergence rates (Part II: Inte-

gral Problems)

Till now, we have not done any test on problems with an integral operator. In

this part, we test the behavior of the local error estimators on elliptic and parabolic

equations and inequalities with an integral operator. As an example, we employ an

hyper-singular elliptic operator which mimics the behavior of the integral operator

in the CGMY model in 1d: Ω = (a, b), AI : H̃Y/2(Ω) → H−Y/2(Ω)

AIu(x) :=

∫

Ω

k(x− y)u(y) dy and k(x) :=
1

|x|1+Y . (8.1)

Refer to §3.15 for the meaning of this singular integral. We take p = 2 in (6.35) and

let

E2
h,1 :=

∑

z∈Ph\Ch

η2
z and E2

h,2 :=
∑

z∈Ph\Ch

ξ2
z .

Remark 8.1 (Quadrature for Singular Integration) Let a = x0 < x1 < · · · <
xN = b be the mesh points of Ω = (a, b). Since the residual rh is singular at the

ends of each interval, we subdivide [xi−1, xi] of length hi into the following way:

Let P > 0 be an integer and ρ = 0.1. We introduce additional points at distance

ρjhi from the left and right endpoints, for j = 1, . . . , P . This divides the interval

in 1 + 2P subintervals. On each of these intervals, Q-point Gauss-Legendre rule is

applied for numerical integration. Also the condition r ≤ 0 in the definition of Ch
is checked pointwise at each of the (1 + 2P )Q quadrature points. It is known that

the quadrature error decrease exponentially fast with respect to PQ (see [124]). In

all our numerical tests, P = 1 and Q = 2.

8.2.1 Elliptic Equations

In this example, we consider problem (1.10). Let Ω = (−1, 1) and Y = 1. It

is easy to see that if the solution u > χ, then the variational inequality becomes a

variational equation. To test the asymptotic behavior of the error estimators, we

choose χ = −∞ and construct a problem with exact solution available.
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Pure Integral Operator Case

Take A = AI and f(x) = 15
8
− 15

2
x2 +5x4. The exact solution for this problem

is u = 1
π
(1 − x2)5/2. The exact solution u is smooth and therefore the convergence

rate in the energy norm |||u− uh||| (in this case, the energy norm is equivalent to

H̃1/2(Ω)-norm) is expected to be DOF−1.5 for uniform mesh. The numerical test

(see Table 8.11) shows that both energy error and error estimator Eh,2 converge at

the optimal rate; note that Eh,1 = 0 and Eh,3 = 0. Furthermore, the effectivity index

of E is almost a constant (around 2.5).

DOF |||u− uh||| E = Eh,2 Effectivity

7 4.0418e-002 1.7125e-001 4.2370

15 1.3021e-002 6.2052e-002 4.7655

31 4.4597e-003 2.2014e-002 4.9362

63 1.5618e-003 7.7849e-003 4.9846

127 5.5069e-004 2.7527e-003 4.9986

255 1.9455e-004 9.7327e-004 5.0027

EOC 1.501 1.500 –

Table 8.11: Elliptic equation with pure integral operator A = AI (uniform mesh,

expected convergence rate 1.5). EOC is the experimental convergence rate based on

last two iterations, which agrees with the expected value 1.5.

In Remark 6.23, we have discussed that the oscillation term behaves differently

in the integro-differential equations than in the usual elliptic equations. The choice

of Pz is important. In particular, the usual choice of Pz being the space of constant,

does not help. The next simplest choice of Pz is piecewise linear functions on ωz. On

the other hand, we would like to have a meaningful lower bound. To this end, we

want to have a relatively small oscillation term with respect to the error estimator.

We have seen, in the differential case, that the oscillation terms are of higher order

in §8.1. Hence, in that case, the oscillation term is negligible asymptotically. In

contrast, for problems with integral operators, the singularities of the residual on

each element do not go away as the elements are refined. We thus have the oscillation
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term of the same order as the error estimator asymptotically. Fortunately, if we

enrich the finite dimensional space Pz, we could make the oscillation term smaller

and smaller. For example, we could choose Pz to be piecewise linear functions and

denote the corresponding oscillation term by osc1; we can also add singular functions

such as log(|x−z|) to the basis of Pz to obtain a smaller oscillation osc2; note that for

Y = 1 the singularities of the residual rh are logarithmic. We report both oscillation

terms in Table 8.12.

DOF E osc1 osc2

7 1.7125e-01 1.6803e-01 1.4660e-02

15 6.2052e-02 6.1627e-02 3.4651e-03

31 2.2014e-02 2.1953e-02 1.0112e-03

63 7.7849e-03 7.7786e-03 3.3479e-04

127 2.7527e-03 2.7521e-03 1.1610e-04

255 9.7327e-04 9.7322e-04 4.0828e-05

EOC 1.500 1.500 1.508

Table 8.12: Elliptic integral equation: asymptotic convergence rates of the oscillation

term with A = AI and uniform meshes. Even though the asymptotic decay of E
and osc is the same, adding singular functions mimicking the residual behavior may

reduce osc by an order of magnitude (compare osc1 and osc2).

Although, we can only prove the global efficiency of the proposed error esti-

mator E , we notice that ξz also captures the local behavior of the pointwise error

based on comparison of the nodal-based error indicator and the pointwise error in

Figure 8.5. This observation justifies in some sense why the proposed error estimator

should work well for driving adaptive algorithms.

In the above problem, we constructed the exact solution for Y = 1. For

Y 6= 1, we can still check the asymptotic convergence rate of the error estimator

and we report the convergence rate of E for different Y in Table 8.13. From the

approximation theory standpoint, we would expect the convergence rates to be 2− Y
2

and the numerical experiments corroborate this theoretical expectation.
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Figure 8.5: Elliptic equation with integral operator A = AI (uniform mesh): upper

left, solution; middle left: pointwise error; lower left, nodal-based error estimator;

right, asymptotic convergence rates for energy error and estimator Eh,2.

Y = 0.5 Y = 1.5 Y = 1.9

DOF E DOF E DOF E

7 1.7789e-01 7 2.7871e-01 7 2.8523e-01

15 6.7131e-02 15 1.4110e-01 15 1.1953e-01

31 1.9521e-02 31 6.4127e-02 31 5.2421e-02

63 5.8037e-03 63 2.8051e-02 63 2.4796e-02

127 1.7413e-03 127 1.1923e-02 127 1.1907e-02

255 5.3718e-04 255 5.0268e-03 255 5.7361e-03

EOC 1.737 EOC 1.246 EOC 1.046

Table 8.13: Elliptic equation with pure integral operator A = AI (uniform mesh).

The expected convergence rate, for smooth solutions, is 2 − Y
2

and is corroborated

by the experiments.
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Integro-differential Operator Case

In this case, we take A = −∆+AI and choose an appropriate right-hand side

function f so that the exact solution is exactly the same as in the previous example.

The energy error (equivalent to H̃1(Ω)-norm) as well as the error estimators are

reported in Table 8.14. In this case, ρ = 2 and Y = 1. We see that the jump

residual term η converges at the optimal convergence rate (DOF−1.0) just as the

energy error itself. On the other hand, Eh,2 is of higher order as we expected (see

Remark 6.27). As in the last example, Figure 8.6 shows the nodal-based error

indicator captures the local behavior of the pointwise error.

DOF |||u− uh||| Eh,1 Eh,2 E Effectivity

7 1.2483e-001 3.7080e-001 3.7090e-002 3.7265e-001 2.9853

15 5.9891e-002 1.9670e-001 9.6446e-003 1.9694e-001 3.2883

31 2.9484e-002 1.0010e-001 2.4849e-003 1.0013e-001 3.3962

63 1.4647e-002 5.0323e-002 6.2787e-004 5.0327e-002 3.4361

127 7.3015e-003 2.5203e-002 1.5751e-004 2.5204e-002 3.4519

255 3.6455e-003 1.2608e-002 3.9419e-005 1.2608e-002 3.4585

EOC 1.002 0.999 1.998 0.999 –

Table 8.14: Elliptic equation with integro-differential operator A = −∆ + AI (uni-

form mesh, expeceted convergence rate 1.0). The experimental convergence rate

EOC, based on last two iterations, agrees with the expected value 1.0.

8.2.2 Elliptic Variational Inequalities

Take A = AI with Y = 0.2 and consider the problem (1.10) with f = 0 and

the obstacle

χ(x) = max(0.5 − |x|, 0).

There are singularities at both the end points and the free boundary points. To re-

solve the singularities at the boundary points, we can employ algebraically graded.

This still gives a suboptimal convergence rate (see Figure 8.7) due to the singular-
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Figure 8.6: Elliptic equation with integro-differential operator A = −∆ + AI (uni-

form mesh): upper left, solution; middle left: pointwise error; lower left, nodal-based

error estimator; right, asymptotic convergence rates for energy error and estimator

Eh,2.
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ities at the free boundary points (see regularity result [128]). Using the classical

adaptive algorithm of §7.1.1 (see also [123]) driven by the local error indicator ξz,

we restore the optimal convergence rate (see Figure 8.8). From Figure 8.8, we can

see that the adaptive algorithm automatically generated locally refined mesh near

the singularities (both the end points and the free boundary).
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Figure 8.7: Elliptic Variational Inequality (algebraically graded mesh towards end

points): upper left, solution (black solid) and obstacle (red dashed); lower left,

nodal-based error estimator in logarithmic scale log(ξz); right, convergence rate.

8.2.3 Parabolic Variational Inequalities

In this example, we examine the time-dependent problem (1.18). To mimic the

butterfly American-style option, we take A = AI , f = 0, χ(x) = max(1
2
−|x|, 0), and

u0 = χ. The solution as well as space error estimator at t = 0.0625 and t = 0.5 are

shown in Figure 8.9. In [104], a heuristic argument has been given for the suboptimal

convergence rate for the energy error if uniform time-steps are employed. This does

not apply now because we have a weaker energy norm and the initial singularity

is not strong enough to be seen. To resolve the singularities at both ends, we use

algebraically graded meshes toward the end points and uniform time partition. The

convergence rates for both time and space error estimators are optimal and have
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Figure 8.8: Elliptic Variational Inequality (Adaptive Method): upper left, solution

(black solid), obstacle (red dashed), and associated mesh points; lower left, nodal-

based error estimator in logarithmic scale log(ξz); right, convergence rate.
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Figure 8.9: Numerical solution and space error estimator associated with it for

parabolic variational inequality Example 8.2.3 (N = 128 and DOF = 127).
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been reported in Figure 8.10. An interesting observation is the failure of fast pasting
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Figure 8.10: Asymptotic convergence rates for time (left) and space (right) error

estimators for the parabolic variational inequality of Example 8.2.3.

for this case. From Figure 8.11, we can see that the free boundary point jumps from

0.5 (initially) to 0.34 (after one time step). This is the case even if one chooses

extremely small time steps.

8.3 Adaptivity

In previous section, enough numerical evidence has been collected that the

proposed error estimators are reliable and efficient. Now the question is what we

can gain by using adaptive mesh refinement instead of uniform refinement. In this

section, we compare adaptivity and uniform mesh refinement.

8.3.1 1d American Option

Under the standard assumption of a frictionless market without arbitrage, one

can formulate the 1d American option as an optimal stopping problem and find that

the option contract price V (S, t) satisfies a parabolic variational inequality problem.

Using the time to maturity t̃ = T − t and x = log S as independent variables, the
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Figure 8.11: Jump of the free boundary point: time-step k = 1/1024 and space

meshsize h = 1/1024. The approximate free boundary point (red curve) jumps from

0.5 (initially) to 0.34 (after one time step).

function u(x, t̃) := V (ex, T − t̃) satisfies the following differential inequality (we will

write t instead of t̃ from now on):

∂u

∂t
+Au =

∂u

∂t
−σ

2

2

∂2u

∂x2
+

(
σ2

2
− r

)
∂u

∂x
+ru ≥ 0 for x ∈ R and 0 < t < T (8.2)

with the obstacle constraint

u(x, t) ≥ χ(x) for x ∈ R and 0 < t < T (8.3)

and the initial condition

u(x, 0) = u0(x) = H(ex) = max(K − ex, 0) for x ∈ R (8.4)

where χ(x) = u0(x) is the payoff function in the log of the asset price. The solution

u(x, t) has a singular behavior in both time and space close to t = 0 and x = logK

(i.e., time close to maturity and price close to strike price).

In American option pricing problem, we start from an initial solution which

is in a Sobolev space, H̃
3
2
−ǫ, for ǫ > 0. From the results in [110], we can conclude

that u0 ∈ H̃1 implies the error in L2(H̃1)-norm converges with order O(k1/2) and

u0 ∈ H̃2 implies order O(k). And now, given the fractional regularity right in
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between H̃1 and H̃2, we expect, from interpolation theory, that the convergence

order with uniform time-step would be about O(k3/4). Numerical experiments in

§8.3.1 (see also [104, Example 5.4]) confirm this expectation and by using a priori

designed graded time steps the optimal convergence rate can be restored as pointed

in [104].

For numerical experiments, we take an American put option problem on a

single stock with strike price K = 100, maturity time T = 0.5 year, volatility

σ = 0.4 and interest rate r = 6%. We choose space domain to be (−1, 7). The

results (see Figure 8.12) show that if we choose the transfer operator to be the

ordinary interpolation operator Inn−1, time step size kn goes to about 10−50 even

if we set the maximum number of iterations for time step size adaptation to be

20. This is exactly the effect we expected as in the thought experiment conducted

in §6.7.1. In contrast, if we choose Inn−1 as in (6.71), the adaptive program gives

reasonable time-steps which increase as time does.
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Figure 8.12: 1d American Option: time step size kn. Left: using interpolation

operator Inn−1, time-steps kn decrease dramatically at the beginning because of the

effect explained in §2. Right: using operator Inn−1 yields adaptively generated graded

time-steps kn.

Figure 8.13 shows that uniform refinement gives a suboptimal convergence

rate, due to the singularity close to t = 0, but the adaptive algorithm restores
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the optimal convergence rate. Furthermore, we see from Figure 8.12 (Right) that

time-steps are automatically graded as t approaches 0.
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Figure 8.13: 1d American Option: error estimator in L2(H̃1)-norm. Adaptive re-

finement achieve faster convergence rate, which is optimal O((N · DOF)−1/2).

8.3.2 1d Tent Obstacle

We use the same test example as in §8.1.2. In this case, the singular point

x = 1/3 is never a mesh point if starting from a single macro element [0.0, 1.0]

and bisection method for refinement. Table 8.4 in §8.1.2 demonstrates uniform

refinement gives suboptimal convergence rate (see also [104, Table 4]). By using

the adaptive algorithm, we can recover the optimal convergence rate and both error

estimator and real error converge at almost the same rate (see Figure 8.14).
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8.3.3 2d Tent Obstacle

This is an example with operator A := −∆ and obstacle

χ(x) =





2|x| if |x| ≤ 1
2

2 − 2|x| otherwise,
(8.5)

which is obtained by revolving a 1d tent similar to the 1d tent around the z-axis.

The exact solution is known:

u(x, t) =





(|x| − 1)2

1 − F (t)
+ 1 − F (t) if |x| > F (t)

|x|2
1 − F (t)

+ 1 − F (t) if |x| < 1 − F (t)

χ(x, t) if F (t) ≤ |x| ≤ 1 − F (t),

(8.6)

where F (t) = 3
5

+ 3
10
t.

The numerical simulation is done in a square domain Ω = [−1, 1]2 for t ∈
[0, 0.25] with exact initial and boundary conditions. Because in this problem, the

exact solution is no longer in H̃2(Ω), the uniform refinements give a suboptimal

convergence rate. On the other hand, the adaptive program converges at an optimal

rate (see Figure 8.16).

8.4 Convergence of Discrete Solver

In this section, we design several examples to test the discrete solver discussed

in §7.5. We choose the simplest setting A = −∆ throughout this section. Consider

the following elliptic variational inequality problem (4.1). For comparison, we use

projected SOR to find the “exact” solution by an overkill computation.

8.4.1 Smooth Constraint

We first take the example in [130]. Let Ω = [−2, 2]2, f = 0 and

χ =





√
1 − |x|2 |x| ≤ 1

− 1 otherwise.
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Figure 8.15: 2d Tent Obstacle: graph and grids of the numerical solution of adaptive

method at time t = 0.75. There is a circular kink at |x| = 0.5, which requires fine

mesh for obstacle resolution.
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In this case, the exact solution is known

u∗ =





√
1 − |x|2 |x| ≤ r∗

− r2
∗ ln(|x|/2)

√
1 − r2

∗ otherwise,

where r∗ ≈ 0.6979651482. The convergence for a sequence of adaptive meshes are

reported in Figure 8.17, 8.18, 8.19, and 8.20.
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Figure 8.17: Convergence rate of multilevel solver SSC-CDM on a graded mesh

with hmin = 8.839 × 10−2. The convergence rate is globally linear as suggested by

Theorem 7.12.

8.4.2 Inactive Constraint

Let Ω = [−1, 1]2, χ = 0 and f = 1. In this case, the constraint is inactive

and problem is equivalent to a linear equation. We report the reduction rate and

hmin in Table 8.15. The reduction rate is still mesh dependent. However, this is

not a contradiction because in the theory by Tai and Xu [132] the convergence rate

depends on | ln(h)| also.
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Figure 8.18: Convergence rate of multilevel solver SSC-CDM on a graded mesh with

hmin = 6.250× 10−2. The discrete solver SSC-CDM still converges linearly but with

bigger reduction rate.

8.4.3 Kink Constraint

Now we consider the following obstacle with a kink on Ω = [−1, 1]2

χ =





1 − 2|x| |x| ≤ 0.5

0 otherwise.

We take f = 0 and report the reduction rates in Table 8.16.

8.4.4 Singular Constraint

We modify the previous kink constraint to the following singular (discontinu-

ous) obstacle constraint

χ =





1 |x| ≤ ε

0 otherwise,

where ε ≈ 2.220× 10−16 is the machine epsilon. The reduction rates are reported in

Table 8.17. Because of the point singularity, the adaptive meshes in this example

are strongly graded and we observe the log dependence on hmin; see Figure 8.21.
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It DOF hmin Reduction Rate

6 81 8.839e-1 0.19

7 139 6.250e-2 0.20

8 247 4.419e-2 0.38

9 434 4.419e-2 0.38

10 748 3.125e-2 0.49

Table 8.15: SSC-CDM convergence rate: inactive constraint. In this case, the

reduction rate is comparable to \-cycle multigrid method for linear elliptic equations.

It DOF hmin Reduction Rate

6 72 4.419e-2 0.24

7 119 2.210e-2 0.30

8 214 1.563e-2 0.43

9 384 7.813e-3 0.46

10 698 3.906e-3 0.50

11 1276 2.762e-3 0.59

Table 8.16: SSC-CDM convergence rate: kink constraint. For this example with

a singular constraint, the reduction rate is closer to 1 than the previous examples

with smooth obstacles; but it is still linear.

It DOF hmin Reduction Rate

6 65 6.250e-2 0.48

7 86 3.125e-2 0.62

8 104 2.210e-2 0.72

9 126 1.105e-2 0.80

10 148 5.524e-3 0.82

11 172 2.762e-3 0.85

Table 8.17: SSC-CDM convergence rate: singular constraint. The obstacle is singu-

lar and discontinuous in this example, which results in highly graded meshes. The

method is still linear with a reduction rate close to 1 when meshsize is small.
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Figure 8.19: Convergence rate of multilevel solver SSC-CDM on a graded mesh with

hmin = 4.419 × 10−2.

8.4.5 Unstable Constraint

The last test example is taken from [127]. We take Ω = [−1, 1]2 and χ = 0.

The exact solution is constructed to be

u∗ =





1

2
x4

1 x1 > 0

0 otherwise.

Furthermore, the right-hand side is chosen to be

f =





− 6x2
1 x1 > 0

0 otherwise,

such the the contact is unstable. This means the strict complementarity condition

is not satisfied in this example. The reduction rate is reported in Table 8.18.

8.5 Conclusions

We have developed a novel a priori and a posteriori error analysis for parabolic

integro-differential variational inequalities, including localization features to the non-

contact region, and illustrated it with several numerical experiments, some relevant

174



0 10 20 30
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

energy error

0 10 20 30
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
convergence rate in energy norm

Figure 8.20: Convergence rate of multilevel solver SSC-CDM on a graded mesh with

hmin = 3.125 × 10−2.

It DOF hmin Reduction Rate

6 49 8.839e-2 0.38

7 83 6.250e-2 0.36

8 137 4.419e-2 0.42

9 227 3.125e-2 0.35

10 417 2.210e-3 0.40

Table 8.18: SSC-CDM convergence rate: unstable constraint.

in finance. Upon comparing theory and practice we have the following concluding

remarks:

• Error Decay: For problems with smooth data, the energy error in L2(0, T ;H1(Ω))

decays linearly, namely O(h + k). This coincides with the a priori theory devel-

oped in Chapter 5. If the obstacle χ exhibits a singularity not resolved by the

mesh, as in Section 8.1.2, or the initial condition is rough, as in Section 8.3.1, the

actual error decays with a suboptimal rate. Suitable mesh refinement in either

space or time appears to cure this problem; see again Sections 8.1.2 and 8.3.1.
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Figure 8.21: Singular constraint example: the reduction rate depends on | ln(hmin)|.

• Estimator Decay: The numerical experiments corroborate that the proposed

fully localized error estimator E decays with the same rate as the actual error e.

We have demonstrated experimentally that the components Eh, Eτ , Eχ of E pro-

vided valuable a posteriori information of the solution. Experiments with adaptive

time-space mesh refinement show effectivity of the error indicators suggested by

our a posteriori error estimation.

• Localization of Space Estimator: Figures 8.3 and 8.4 show that the nodal-

based space estimator Υn
h(z) vanishes at full-contact nodes z ∈ Cnh . Its contri-

bution comes only from the non-contact region where the solution behaves like

the solution of a linear parabolic equation. This estimator yields an upper bound

also for globally linear parabolic problems and seems to be new in the literature

of parabolic PDE.

• Exercise Boundary Approximation: Accurate approximation of the free (ex-

ercise) boundary is an important problem in option pricing. Numerical results

in Sections 8.3.2 and 8.3.3, particularly Figures 8.3 and 8.4 as well as Tables 8.3

and 8.10, suggest an excellent agreement between approximate and exact free

boundaries. This observation could be made rigorous, upon extending the idea
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in [114], provided pointwise a posteriori error estimates were available. This is

under further investigation.

• Multilevel Solver on Bisection Meshes: The SSC-CDM yields globally linear

convergence rate even on highly graded meshes. Unfortunately, the reduction rate

of error in energy between two consecutive iterations depends on minimal meshsize

due to the unstable decomposition used.
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dam, 1987. Notas de Matemática [Mathematical Notes], 114.
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