
ABSTRACT

Title of dissertation: Guided Self-Organizing Particle Systems
for Basic Problem Solving

Alejandro Rodŕıguez, Doctor of Philosophy, 2007

Dissertation directed by: Professor James A. Reggia
Department of Computer Science

In recent years researchers have shown increasing interest in swarm intelligence

as a promising approach to adaptive distributed problem solving. Swarm intelligence

consists of techniques inspired by nature, especially social insects and aggregations

of animals, and even human interactions. They are based on self-organization (a

system’s overall behavior emerges from the local interactions among its relatively

simple components) and are often decentralized and massively distributed. Particle

systems are an approach to swarm intelligence that focus on collective movements,

and have been used successfully for applications such as computer animation in

graphics and control of movements of autonomous robotic vehicle teams. However,

particle system techniques have not been applied substantially to problem solving

beyond merely collective navigational tasks.

In this dissertation, I present an extension to particle systems that incorpo-

rates top-down, high-level control to self-organizing mobile agents, thereby guiding

the self-organizing process and making it possible for particle systems to undertake

problem solving directed by goal-oriented behavior while retaining their decentral-

ized, local nature. This extended particle system approach is critically evaluated

through three experimental studies that are adapted from well-known problems in

multi-agent systems: search and collect, cooperative transport and logistics. The

results provide evidence that extended particle systems are capable of exhibiting

behavior important for distributed problem solving, such as cooperative sensing,

division of labor, sharing of information, and developing global strategies through

local interactions. They also show that aggregated movements can be utilized to cre-

ate coordination at different levels and phases of the performance of a task, whether

those include navigation or not, making extended particle systems a useful tool in

the construction of adaptive distributed systems.

Guided Self-Organizing Particle Systems

for Basic Problem Solving

by

Alejandro Rodŕıguez

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2007

Advisory Committee:
Professor James A. Reggia, Chair/Advisor
Professor Donald Perlis
Assistant Professor François Guimbretière
Professor Amitabh Varshney
Professor Lindley Darden

c© Copyright by

Alejandro Rodŕıguez

2007

DEDICATION

A la persona que anelaba

leer esta tesis,

mucho antes de que yo siquiera

soñara en escribirla.

Esta vez no me olvidé de ti...

ii

ACKNOWLEDGMENTS

I would like to express my deep gratitude towards my advisor, Dr. Reggia,

for his amazing support and guidance. I also like to acknowledge the members

of my advisory committee for their valuable input and insightful comments in the

termination of this dissertation.

I am very grateful to my family, specially my mother and sisters, for their

continuous support and unwavering faith in me. I also want to thank Grecia for

putting up with me during all these years. I cannot but effusively thank Siggi, for

his multiple and useful comments, and his invaluable friendship.

Finally, my eternal gratitude goes to the Muses of the Mall, to whose summer

liveliness and youth I owe the inspiration for several pages of this book.

iii

TABLE OF CONTENTS

List of Tables vi

List of Figures vii

1 Introduction 1
1.1 Contributions . 9
1.2 Organization . 11

2 Swarm Intelligence and Particle Systems 12
2.1 Swarm Intelligence . 12
2.2 Collective Movements in Particle Systems 14
2.3 Problem Solving . 18

2.3.1 Particle Swarm Optimization 21
2.3.2 Networks and Combinatorial Optimization 22

2.4 Past Work on Extending Particle Systems 23
2.5 Discussion . 29

3 Task Division and Sub-Team Self-Organization 30
3.1 Agent Architecture . 32

3.1.1 Agent Capabilities . 35
3.1.2 Flexibility and Extensibility 38

3.2 The Competitive Foraging Experiment 41
3.3 A Solution Within the Guided Self-Organization Framework 45
3.4 Experimental Set-Up . 47

3.4.1 Behaviors . 49
3.5 Results . 50

3.5.1 Each Team in Isolation . 50
3.5.2 All Teams Simultaneously . 51
3.5.3 Collective versus Independent Movements 53
3.5.4 Guarding versus Non-Guarding 55

3.6 Discussion . 56

4 Information Sharing and Spreading 62
4.1 The Collective Transport Experiment 64
4.2 Application of Guided Self-Organization 65

4.2.1 High-Level Controller . 65
4.2.2 Perception . 66
4.2.3 Alignment and Allocation of Agents While Moving an Object 68
4.2.4 Adaptive Weights . 69

4.3 Experiments and Results . 72
4.4 The Complete Collective Transport Experiment 75

4.4.1 Experimental Set-up . 77
4.4.2 Results . 80

iv

4.5 Discussion . 84

5 Distributed Learning 87
5.1 The Logistics Experiment . 88

5.1.1 Possible Applications . 90
5.2 Modeling . 90
5.3 Solution Using Guided Self-Organizing Particle Systems 96

5.3.1 Agents’ Strategy . 97
5.3.2 Learning Algorithm . 100

5.4 Heuristic Search . 104
5.5 Experimental Set-up . 107

5.5.1 Factors . 109
5.5.2 Parameters . 112

5.6 Results . 114
5.6.1 Entropy . 119

5.7 Discussion . 123

6 Discussion 127
6.1 Extending Particle Systems . 129
6.2 Contributions . 133
6.3 Limitations and Future Work . 136

Bibliography 139

v

LIST OF TABLES

3.1 Movement Equations for the Different Movement Behaviors 60

3.2 Parameters for Movement Behaviors. 61

3.3 Minerals Collected After 40,000 Iterations, All Teams Competing∗ . . 61

3.4 Mineral Collected After 40,000 Iterations, Pairwise Simulations 61

3.5 Amount of saved mineral at home in pairwise simulations 61

4.1 Results of collective transport for teams using aggregated motions vs.
independent motions. 73

4.2 Results of collective transport for a team carrying a heavy object vs.
a single agent moving a light object. 74

5.2 Parameters for Movement Behaviors. 114

5.3 Total output after a given period time for all 6 strategies. Values are
the average over 20 runs for each case/strategy, standard deviations
are given in parenthesis. Abbreviations are f. for flocking and l. for
learning. 116

vi

LIST OF FIGURES

1.1 A flock of terns . 4

2.1 Basic forces governing the movement of a boid 16

2.2 Collective movements . 17

3.1 Agent architecture . 33

3.2 Neighborhood of an agent . 38

3.3 Examples Composed behaviors . 42

3.4 A small section of a 3000 x 3000 continuous world 43

3.5 FSM of an agent for the foraging experiment 46

3.6 Memory of an agent . 47

3.7 Mineral collected over time when each team is present alone 50

3.8 Mineral collected over time when all teams compete simultaneously . 52

3.9 Agents in a flock being pulled toward a deposit 54

3.10 Mean mineral collected at home over time by full-guarding teams . . 55

3.11 Mineral collected over time by flocking teams 57

4.1 Layout of a simple world . 65

4.2 FSM of agent for the collective transport problem 67

4.3 Two examples of an agent’s neighborhood 68

4.4 Agents moving an object around an obstacle 70

4.5 Typical distribution of agents along a piece of product 73

4.6 Layout of the obstacles, sources and destinations in a collective trans-
port world . 79

4.7 Time required by a team of agents to solve the full collective transport
problem . 81

vii

4.8 Maximum difference between the amount of product deposited in any
two sources . 83

4.9 Time and failure rate in the complete collective transport 84

5.1 Example of a closed-loop behavior: Homing 96

5.2 FSM of agents in the logistics problem 99

5.3 Learning algorithm for agents in the logistics problem. 103

5.4 Hand-designed graphs . 110

5.5 Graphs of randomly generated problems 111

5.6 Total output for hand-designed problems after a given period of time
for all 6 strategies. Results shown are the average over 20 runs. . . . 115

5.7 Total output for randomly generated cases 117

5.8 Final entropy in sinks for problems with multiple sinks, shown with
maximum theoretical entropy. Values shown are the average over 20
runs. 120

5.9 Probability of each agent serving an edge 123

viii

Chapter 1

Introduction

Recent years have seen an increase in interest in complex systems, i.e. systems

of numerous elements interacting in a non-linear manner that are difficult to model

or understand at a global level based only on an understanding of the individual

elements [107]. This interest is due in part to raising awareness that many systems

in nature are of this kind [44], resisting analysis by traditional methods, but also by

the fact that an increasing number of applications in engineering and social sciences

resemble such systems [10], given the high number of elements and the complex

interactions among them, especially in such fields as transportation and communi-

cation networks, social and economic networks, and robotics. Complex systems may

differ greatly in their nature, but they share one common aspect: the behavior of

the system is difficult to understand no matter how simple the behavior of its parts,

even though a global pattern or structure certainly occurs. Although mathematical

models exist for the analysis of such systems, designing intelligent complex systems

remains an elusive problem, due precisely to this difficulty of inferring how small

variations on the conditions would influence the structure of the system, and to the

lack of a single, centralized control. In complex system, control is distributed among

its many components, potentially dispersed along large spaces, physical or concep-

tual, and these components need not possess any explicit drive for cooperation or

1

coordination, as is the case in biological systems, where the components are agents

(insects, humans, etc.) that usually do not explicitly coordinate their actions.

A method that has proven useful in the design of complex adaptive systems

is to take inspiration from such systems in nature. Insect colonies, for instance, are

not only complex, but they provide a clear example of distributed problem solving.

These colonies can perform several activities, such as path finding and optimiza-

tion, foraging, nest building, division of labor, despise the limited cognitive abilities

of their relatively simple members. Studying and modeling the behavior of these

natural systems when collectively performing a task could result in tools for the

design of robust, efficient, distributed systems that solve a problem by the use of

self-organization, the emergence of global structure through local interactions. In

fact, this technique has been successfully employed in the design of algorithms and

systems that might perform tasks similar to those found in nature, such as coor-

dinated navigation [81, 82, 100, 105], collective transport [53, 62, 77], and division

of labor [21, 85], but also in problems with little biological resemblance, such as

numerical optimization [41, 59, 60] or combinatorial optimization [39, 40]. The ap-

proach of imitating nature, specifically self-organizing natural systems, is known as

swarm intelligence, and as the mentioned applications suggest, presents a promising

alternative to solve problems whose complexity makes them unattainable or espe-

cially difficult for traditional approaches. As nature has developed several strategies

to tackle many different problems, several models have been suggested to capture

and exploit these strategies, usually with little regard for biological plausibility, as

the purpose is to obtain insight in the fundamental properties of such systems and

2

their application in different problems (except in those cases when the artificial sys-

tems are developed precisely for the prediction or modeling of the original, natural

system).

One type of swarm intelligence approach is particle systems. Particle systems

consist of collections of very simple entities, or particles, that occupy a position in

space and move through it by following simple reactive rules that model “forces”

exerted by the environment on the particles. They were originally developed for the

modeling of fuzzy objects, or entities of loosely connected parts such as fire, gases

and fluids, etc., with the purpose of representing and animating them in computer-

generated graphics [79]. By extending these particles into relatively complex objects,

with orientation, state and complex geometries, and more importantly, by allowing

the particles to react to each other, more interesting structures and global behavior

can be achieved. The original extension to particle systems was inspired by the

coordinated movement of flocking birds [81, 82], and was developed as a method

for the behavioral animation of groups of aggregated animals, such as birds, schools

and herds (Figure 1.1). Even though the particles are autonomous, acting simply

by constantly reacting to the environment and to other particles, the resulting be-

havior of the flock or group of particles is easily identifiable by human observers

as coordinated, with simulated birds being able to fly in groups in coherent ways,

avoiding obstacles, splitting into subgroups when necessary or joining other groups

when encountering them. This behavior is clearly self-organizing, being adaptive,

completely decentralized, with no single particle controlling the group, and insen-

sitive to the number of particles in the group or the area they occupy [84]. It is

3

Figure 1.1: A flock of galah and sparrows. Image taken by user Fir0002 at wikime-
dia.org and distributed under GNU Free Documentation license 1.2.

produced by the repeated interaction of particles following three simple rules: avoid-

ance of collisions, velocity matching with neighboring particles, and approaching the

perceived center of neighboring particles. All the complex, apparently coordinated

behavior is the result of each particle individually applying these rules. It is worth

noticing that, as expected from a complex system, the movement of the flock may

show seemingly random elements that make it hard to predict, although all of the

three rules are entirely deterministic.

The most obvious applications of interacting particle systems lie in the simu-

lation of biological groups, such as aggregations of animals (flocks, schools, herds),

human groups (crowds) or autonomous vehicles (cars in a convoy, teams of flying

vehicles, etc.). These applications can be for artistic purposes, as in the case of

4

computer graphics, for the study of the behavior of a group, as in human crowds

[22, 55], or even as a control system for other applications, as in the case of teams of

cooperative mobile robots. In this latter application, and by a large margin, most

of the examples found in the literature fall in the category of purely navigational

control, that is, the aim of the system is to move a group of autonomous agents

between two points while avoiding obstacles and other similar hazards in the envi-

ronment and while keeping formation. The formation of the agents is a restriction

externally imposed on the system for reasons that are not directly related to the

task of traveling from one point to another; for instance, a military convoy must

move in a given formation to increase sensor coverage. However variate the con-

ditions of the system, in terms of dynamics of the agents, formation requirements

and properties of the environment, the main goal of the system remains the same:

the coherent navigation between two points. In principle, it seems striking that a

technique with such properties as interacting particle systems has not been more

abundantly exploited in more general systems. Specifically, it has not been used

for problem solving other than purely navigational tasks (although some important

exceptions do exist as is discussed on the next chapter). One of the main reasons for

this is that the simplicity of the control mechanism of the particles makes it difficult

for the particles to exhibit more complex behavior, both individually and globally.

That is, purely reactive forces acting in each particle at all times, although responsi-

ble for one of the main features of the system, namely its general simplicity, are also

limiting in the sense that particles cannot adapt their behavior to widely different

conditions in the environment or the system, nor present a varying behavior as may

5

be necessary in pursuing a long-term goal that implies the satisfaction of several

intermediary goals. A second, equally important reason comes from the fact that

it is difficult in general to design the rules governing each agent that will produce

a determined global behavior as agents interact, even when this global behavior is

relatively simple and with a single fixed goal over time, such as ‘navigate to point

B’, and even more so when the desired global behavior consists of pursuing different

global basic goals that may vary with time and depend of each other in complex

ways, such as ‘go to point A, search and retrieve an object, protect it, bring it back

and inform other teams to stop looking for it’. In the previous example, it seems

as if the set of goals could be serialized and pursued independently, although in

the general case more complex scenarios arise and different goals may need to be

pursued simultaneously by different agents.

In this dissertation, I present an extension to the conventional interacting par-

ticle systems that allows them to tackle such scenarios, and reduces the complexity

of designing simple rules for multi-goal problem solving systems. This is achieved

by introducing mechanisms to guide the self-organization process, which allows the

global behavior of the system to be partially directed in a more easily control-

lable/predictable manner without resorting to actual global control. This extension

is based on the concept of hybrid control, which combines the basic reactive behav-

ior normally found in particle systems, with a discrete controller that keeps track

of the different goals of an agent and an abstract representation of the environment

surrounding the agent, as it is usually found on conventional artificial intelligence

systems. Hybrid control approaches has been applied before to particle systems, as

6

it is discussed in the next chapter; however, they have not been used before to build

adaptive, distributed, self-organizing problem solving systems based on interacting

particle systems. My new particle systems are provided with a layered architecture.

The bottom layer consists of the conventional particle system controller, that is,

reactive controllers that are capable of handling the continuous, noisy, fast changing

environment, and additionally produces global self-organization through the inter-

action between groups of agents. The top layer comprises an abstract representation

of the problem to be solved and the necessary actions or sub-goals, and the rela-

tions between them, at a high level of representation, and is capable of changing

or adjusting the bottom-layer controller according to these goals. It also keeps an

abstract, discrete representation of the current situation of the agent. When in-

troducing this top-layer controller in each agent in the context of particle systems,

the agents, even if originally homogeneous, are capable of pursuing different goals

or sub-goals, splitting or joining in sub-teams as necessary, affecting with their in-

teractions the state and goals of other agents, which creates a new, higher level of

self-organization, essential for the problem-solving capabilities of the system.

Particle systems are mainly known for their capacity to produce coordinated

movements, where groups of agents move at unison seemingly as a single entity.

However, among the few problem-solving systems based or inspired by particle sys-

tems, there is a tendency to disregard or minimize this feature and exploit other

properties [35, 59, 74]. One of the aims of the extension to particle systems intro-

duced here is to give new capabilities applicable to problem solving while preserving

as much as possible the relative simplicity of the original systems, and specially

7

preserving the coordinated collective movements. In the case studies explored in

this dissertation, coordinated movements are not only a sub-product of the self-

organization, but fundamental to achieve a higher level of coordination and global

patterns, not only on the physical space but in other, abstract areas of the problem

solving effort, such as division of labor and division of information. The new system

is developed so as to exploit coordinated movements as a vehicle for the implicit

communication of information and the self-organization of agents at all levels of the

performance of a task.

The proposed methods are studied and demonstrated through three applica-

tions of increasing complexity. The first application consists of two problems well

known in the context of multi-agent systems, foraging [28, 33, 65] and capture the

flag [2, 6]. Both scenarios require, independently, the cooperation and repeated in-

teraction of mobile agents with limited sensing and acting capabilities, which makes

these problems useful in the study of different issues in systems involving cooperative

agents. Additionally, they require the performance of different sub-tasks and the

pursue of different, intermediate sub-goals, such as searching, recruiting, exploiting,

protecting, stealing, that present complex interactions as they need to be pursued si-

multaneously by a team of homogeneous agents. The second problem is an extension

to another well known problem in systems of mobile agents, cooperative transport

[62, 66, 96, 109]. As the previous problem, it exhibits biological inspiration, but

also it possesses clear practical applications as systems of cooperative mobile robots

are currently an area of intensive study. In addition to the issues usually found in

cooperative transport problems, dealing with the navigation of an object around

8

obstacles while being carried by agents with limited and imperfect knowledge of

the world, this extension requires agents to distribute several objects to different

locations according to certain demands not known to the agents beforehand. This

converts the scenario into a logistics problem that demands of the system to achieve

shared global knowledge and to develop a shared global strategy, both of which

must be achieved exclusively through the local interactions among the agents. The

final problem is a full logistics problem consisting of the routing of items of several

types through a network of stations with specific demands and capabilities. This

problem presents qualities of both routing, common in computer networking and

other applications, and scheduling and flow in graphs, which is family of problems

with several real life applications. The logistics problem presents additional issues,

as the solution, a scheduling and routing strategy, lies in the collective behavior

of groups of agents with no explicit means of communication and requires the dis-

tributed learning by part of the agents of the conditions of the world and the effect

of their actions on the environment.

1.1 Contributions

As a result of the work described in this dissertation, namely an extension

to interacting particle systems, and its application to different problems of varying

degree of difficulty and varying properties, the following general contributions are

presented:

• Introduced the use of top-down control mechanism using state-transition and

9

memory/goal style controls into reactive interacting particle systems, allowing

distributed problem solving through the cooperation of autonomous agents

without the requirement of explicit communication. By this architecture, self-

organization is achieved using coordinated movements, while the individual

behavior is affected via top-down control, which guides the system-wide be-

havior.

• Established through experimental simulations that the resulting guided self-

organizing process was capable of solving cooperative search-and-retrieve prob-

lems effectively; demonstrated that collectively-moving agent teams worked

more efficiently than independently moving teams, in part due to the ability

of agents to perform teammate recruitment to collectively accomplish a task.

• Extended the basic guided self-organizing approach to solve more complex

collective transport problems in environments with obstacles, a problem that

strictly requires the coordinated work of several agents with limited communi-

cation capabilities, demonstrating the ability of this approach to handle global

strategies. Additionally, such extension caused agent teams to exhibit dynamic

task division and information sharing over areas largely beyond the range of in-

dividual sensors. All of these properties could be used in in real-world robotic

applications and multi-agent systems.

• Added basic learning and inter-particle communication to support adaptive

distributed solving of logistic problems in transportation networks, showing

the ability of guided self-organizing particle systems to perform dynamic dis-

10

tributed non-linear optimization.

1.2 Organization

The rest of this dissertation is organized as follows. In Chapter 2, a brief

discussion is presented of the main concepts employed on this dissertation and of

the relevant previous work that served as inspiration for the ideas here or that are

related in a significant way. Chapter 3 presents the extension to particle systems

introduced in this dissertation accompanied by global ideas on its application. It

then describes the first of three problems, foraging and capture the flag, that serve

as experimental test beds of the application of extended particle systems. This

chapter describes the problem and presents a concrete example of the application of

the system, studying its properties through a series of experiments and comparisons,

followed by discussion of the results. Chapter 4 and 5 follow a similar structure to

Chapter 3, presenting the problems of cooperative transport and logistics, respec-

tively, with the corresponding solution using the proposed system and discussion

of experiments and results. Finally, Chapter 6 presents a general discussion of the

findings of this dissertation, including limitations and future work.

11

Chapter 2

Swarm Intelligence and Particle Systems

As mentioned in the previous chapter, swarm intelligence provides a promis-

ing technique for the design of complex systems, and from these techniques arises

interacting particle systems, which is the special focus of this dissertation. This

chapter presents a brief introduction to swarm intelligence, particle systems and

some related concepts, and includes a discussion of relevant previous work that has

been done in the area of swarm intelligence as a problem-solving strategy and in

previous efforts to extend particle systems.

2.1 Swarm Intelligence

The term swarm intelligence, initially introduced by Beni in the context of

cellular robotics [14, 16, 17, 18], refers to a collection of techniques inspired in part

by the behavior of social insects, such as ants, bees, termites, etc., and of aggrega-

tions of animals, such as flocks, herds, schools, and even human groups and economic

models. These swarms possess the ability to present remarkably complex and “intel-

ligent” behavior, despite the apparent lack of relative complexity in the individuals

that form them. These behaviors can include cooperative, synchronized hunting,

coordinated raiding, migration, foraging, path finding, bridge construction, alloca-

tion of labor, and nest construction. Recent discoveries [37] have led investigators to

12

the belief that such behaviors, although in part produced by the genetic and phys-

iological structure of the individuals, are mostly caused by the self-organization of

the systems they form [5, 19], that is, out of the direct or indirect local interactions

between the individuals, the collective behavior emerges in a way that may have the

appearance of being globally organized, although no centralized control or global

communication actually exists. It is precisely this self-organization that artificial

swarm intelligence systems try to achieve, by infusing the components, homoge-

neous or heterogeneous, of a system with simple rules. The interactions between

these components lead to the system-wide behavior.

In principle, this self-organization may cause the behaviors of swarm intelli-

gence systems to be hard to predict (and hence design), since the result of the in-

teractions between possibly thousands of potentially heterogeneous elements could

not be readily understandable. However, the ability to deal with this complex-

ity and create organized patterns out of it is also the fundamental advantage of

swarm intelligence. In contemporary real life problems, where systems may consist

of several thousands of interacting components, traditional techniques may become

prohibitively expensive, or a global, centralized control may be unavailable given

the absence of global information or the cost of global communication. In addition

to these benefits, the emergent-control characteristic of swarm intelligence systems

tends to homogenize the components, i.e., there is no a priori leader governing the

systems, which, when combined with the high number of available components, in-

troduces a form of redundancy that makes a system highly fault tolerant; when some

of the components fail, the self-organizing process adaptively adjusts to recreate the

13

correct pattern of behavior using the remaining components.

Finally, robotic systems are a field that can particularly benefit from swarm

intelligence, since the manufacturing of several simple units or robots is considered

to be far cheaper and more efficient than the elaboration of a single, highly sophisti-

cated robot, assuming the simple robots could cooperatively perform the same task

as a complex one[4, 15, 20].

2.2 Collective Movements in Particle Systems

Of particular interests for our study is the work of Reynolds [81, 82, 83, 84],

as one of the earliest and most clear examples of the simulation and control of

large crowds of mobile agents by designing simple interactions among them. This

work introduced interacting particle systems, that is, collection of simple entities or

oriented particles that move through a continuous space directed by forces exerted

upon them by the environment and other neighboring particles, with the interactions

among the particles restricted to be of reactive and local nature. Interacting particle

systems have since then become a common technique in swarm intelligence [41, 54,

59, 80, 100]. Reynolds’ intention was to create a realistic simulation of a flock of birds

for purposes of computer animation. Previous attempts consisted in their majority

of scripting the behavior of each individual bird, which required of considerable time

and effort by part of the animator, besides imposing a high cost in maintenance,

since performing small changes to the animations requires re-scripting many or all

of the birds. By taking inspiration from birds themselves, that presumably do not

14

collectively plan their paths in advance, Reynolds designed a model where each bird

autonomously decides its behavior based in part on the behavior of its neighbors.

This model is itself an extension of particle systems [79], usually employed in

computer graphics to simulate fire, gases, liquids, and others “fuzzy” objects. By

extending each particle to a more geometrically and behaviorally complex entity,

a simulated bird, or boid, a flock or other aggregation of animals such as schools

and herds can be represented and handled as a single object. The key innovation,

however, is to allow these particles to locally interact with each other allowing the

collective behavior to arise from such interactions (and not from a leader or external

controller). These interactions are meant to imitate the actions that actual birds

would take to coordinate their flight. In particular, Reynolds designed three simple

rules (depicted in Figure 2.1) to be followed at all times by each boid:

1. Collision avoidance: Stay away from obstacles and nearby boids.

2. Alignment: Match the velocity of nearby boids.

3. Cohesion: Approach the center of the (local, perceived) flock.

These rules, executed in a purely reactive fashion, and combined in order of

priority, create the illusion of a centrally coordinated group of entities that move in

a united way while quickly reacting to the environment (Figure 2.2). As opposed to

traditional approaches, this behavioral simulation where the movement of the flock

emerges from the individual movements of each boid, allows for the animation of

large flocks with little need for human intervention or a central controller. Given

15

(a) (b)

(c)

Figure 2.1: Basic forces governing the movement of a boid. A boid is represented as
an arrow (the main boid of interest being hollow while neighbors are represented as
black, solid arrows). A light arrow indicates the direction of the resulting force over
the boid. (a) Collision avoidance: the boid moves away from its perceived neighbors
(b) alignment: boid changes direction to match the velocity of neighbors and (c)
cohesion: boid moves towards the center of the perceived flock.

that each boid is autonomous and interacts exclusively with nearby objects, the

process is also highly parallelizable, and distributed implementations can simulate

and display thousands of boids at high frame-per-second rates [84].

On the other hand, by allowing the self-organization of the boids, some of the

control is lost, and the animators may find difficulties in achieving pre-determined

movements or patterns from the simulation [81]. Unlike the hand-crafted simulations

where each element is scripted to the desired behavior, in this case boids will react

in manners that result difficult to predict, both individually and system-wide.

Although initially designed for particles, this method of behavioral simulation

works independently of the complexity of the dynamics or geometry of the enti-

ties. Several examples are available on hearding or similar coordinated, aggregated

16

Figure 2.2: Agents moving collectively in a 3D world. Two groups of agents, rep-
resented as white arrows, totaling about a hundred, move freely over a 3D world,
resembling the movement of schools. The movement of each agent is completely
deterministic.

movements in systems with significant dynamics using essentially the same model

for behavior control [7, 11, 46, 51, 56, 108].

By varying the behaviors or rules which govern the boids, different types of

aggregated motion can be achieved. Later work has extended this basic model with

different degrees of realism and complexity. In the realm of simulating aggregations

of animals, the physics of the environment and biologically plausibly behaviors have

been incorporated. For instance, Tu [100] models the physics, perception mech-

anisms, means of locomotion and behavior of fish to achieve a realistic graphical

17

simulation. In her model, fish possess a set of predetermined behaviors, such as

eating, mating, wandering, schooling, etc., that each fish can switch to according to

the strongest intention of the fish as determined by its intention generator, which

process stimuli from the environment. This switching between behavior routines

provides the fish with a richer, more goal-oriented total behavior. However, notice

that fish remain basically stateless and reactive as their goals or actions at a given

time have no direct influence in determining subsequent goals.

Helbing et al. introduced a different but similar model [55], also based on

particle systems, that combines a set of independent forces varying with the velocity

of the particle to achieve trajectories realistically similar to that of human crowds.

This model and its variations have been employed for the simulation of human

crowds during panic evacuations, traffic jams, and other situations of 2D flow of

interacting particles [22, 97].

2.3 Problem Solving

The most obvious applications of models of collective movements based on

swarm intelligence and particle systems lie in the simulation of biological groups,

either for their study, as in the case of human crowds, or for artistic purposes, such

as in schools and flocks. However, it is also possible to apply such models for the

control of problem solving systems, where groups of agents, physically mobile or

informational, perform a task autonomously but cooperatively, and where the large

number of agents or restrictions on access to global information or communication

18

make self-organization the most viable option.

These systems usually consist of collections of unmanned vehicles or teams of

cooperating autonomous robots. The focus of this section is on systems that perform

some task beyond navigation in formation, as examples of the latter are numerous

but less interesting for the purposes of this dissertation [11, 49, 91, 92, 105].

The case of swarming unmanned aerial vehicles (UAVs) presents fertile ground

for the application of swarm intelligence given that current systems usually require

several human operators for each UAV, making it very ineffective and costly to co-

ordinate multiple UAVs. Swarm intelligence can be used to automatically achieve

this coordination, not only on navigation, but also on performing higher-level tasks.

One such example is the work of Parunak et al. [72, 73, 74, 86], where multiple

autonomous UAVs use virtual, digital pheromones to mark areas of interest in the

terrain, for instance already visited areas that need not to be revisited or areas where

a target has been sighted, and communicate these pheromones to nearby UAVs, cre-

ating a partially shared map of the global area. These same pheromones allow UAVs

to recruit other teammates for specific goals, for instance the creation of predeter-

mined formations around objects of interest to achieve the optimal configuration of

an array of sensors for purposes of collaborative sensing.

Another interesting example of the control of coordinated mobile agents is

presented by self-assembling robots [35, 52, 57]. Self-assembling robots can phys-

ically attach to each other, forming a compact cluster that act literally as a new,

single robot of a different shape and size but whose components are still controlled

individually by each of the member robots. This kind of structure presents chal-

19

lenges both before the assembly, when robots decide to create or join the cluster,

and after the assembly, when the cluster of robots needs to move as a single en-

tity. The advantages of such procedures lie in the new properties of the assembled

robots; for instance, a group of small robots could self-assemble into a long chain to

bridge over an obstacle that no individual robot could step over. Not withstanding

the complexity of the problem, simple reactive controllers can be evolved for the

individual control of each robot, even real robots with limited sensing and commu-

nicating capabilities, that produce through self-organization a coordinated behavior

of the cluster, effective for instance to avoid obstacles [98, 99]. More interestingly,

the same kind of reactive, autonomous controllers can be evolved to cooperatively

transport a heavy prey in a straight line between two points [53], assembling around

the prey into groups of pushers or pullers as necessary to exert the required force

and control over it while keeping visibility of the goal.

A different application, involving the dissemination of information, is presented

by Agassounon [1]. In his work, a team of mobile robots acts as a network of mobile

sensors whose task is to detect global conditions on the environment by individually

sensing local areas and communicating with nearby robots. In particular, the robots

attempt to count the number of seeds, objects of a particular color and size, in an

enclosed arena by random wandering around it and counting the encounters with the

seeds. Although the teams do not use coordinated movements, they use information

exchanges with neighbors as local interactions to increase the accuracy of the global

estimate, held by no single robot but as a property of the swarm.

20

2.3.1 Particle Swarm Optimization

Beyond the realm of mobile agents, the concept of interacting particle systems

and coordinated flow has found important applications. Among them, the particle

swarm optimization algorithm deserves special mention as the most widely known

and successful of such applications. Initially inspired by Reynold’s flocking model

described above, the particle swarm optimization algorithm [41, 59, 60] extends

particle systems to high-dimensional abstract/cognitive spaces based on a social

model of the interactions between agents. The inspiration for this model is that

people are influenced by the opinions and beliefs (position in a cognitive space)

and other properties of their acquaintances. In this sense, agents “moving” through

an abstract, high-dimensional cognitive space, are viewed as changing their beliefs

according to those of their neighbors.

In particle swarm optimization, a group of agents or particles is initially spread

out in the problem space of a function to be optimized. Agents keep track of the

best position they have individually found, pbest, and also of the best position found

by their neighbors, gbest. An agent’s neighborhood is not defined in terms of the

dynamically changing distance in the problem space but rather in terms of social

networks defined a priori between the agents. At each time-step, agents accelerate

toward their best remembered position and also toward the best position of their

neighbors. The factor pbest drives an agent in the direction of its best memory,

while gbest can be seen as social norm, guiding all agents to the past location that

has been known overall to work best. The velocities pointing toward pbest and gbest

21

are weighted by independent random numbers, the rationale for randomness being

in part that it is hard to decide which one to weight more.

Variations of the algorithm have been obtained by making different definitions

of the neighborhood of agents, from ’local’ neighbors defined a priori as sets of

agents conceptually adjacent to each other, to ’global’ neighborhoods (every agent

is adjacent to every other).

As in the flocking model discussed in the previous section, agents move through

the space based on a combination of simple rules which determine at each step the

new velocity of the agent according to interactions with other agents. Probably the

most important difference lies in the fact that agents move through a N-dimensional,

abstract space, and the peculiarities of the movement of the agents (whether they

flock or not) are ignored in favor of making agents satisfy a given goal (finding a

function minimum).

Particle swarm optimization has been found to be useful in a wide variety of

non-linear optimization problems [42, 43, 71], and it is a schema relatively easy to

apply given the few parameters which need to be set. However both flocks and

particle swarms have in common that the simplicity of the agents and the simple

rules which control them are hard to adjust to perform more complex tasks.

2.3.2 Networks and Combinatorial Optimization

Another successful example of the application of swarm intelligence to problem

solving comes from imitation of the mechanism used by ants for path-optimization

22

[13, 26]. When presented with multiple paths between the colony and a food source,

ants will eventually settle on the shortest path. They do this without knowledge

of the entire path or paths by any individual ant, but by collectively marking the

environment with chemical signals, pheromones, that other ants can recognize, cre-

ating a form of communication by the modification of the environment, known as

stigmergy. The idea of several entities collaborating through stigmergy inspired a

meta heuristic for solving problems of combinatorial optimization [39, 40]. The key

points of this heuristic could be briefly summarized as having a set of agents that

individually take decisions probabilistically, and create marks based on the appro-

priateness of these decisions that can later be used by the same and other agents to

take later decisions.

This heuristic has been successfully applied to problems like the Traveling

Salesperson Problem [40], which is a well-known study case for combinatorial opti-

mization, but has been more commonly applied, along with similar algorithms, to

routing, load balancing and related problems in networks [29, 38, 39, 87, 88, 93].

2.4 Past Work on Extending Particle Systems

For the study of coordinated movements in teams of agents, the method intro-

duced in this dissertation consists of simplifying and abstracting swarms of agents

by treating them as particle systems [79]. As mentioned before, the use of particle

systems for behavioral simulation of groups of mobile agents was first introduced

in 1987 by Reynolds [81], and has been successfully employed ever since in multi-

23

tude of applications involving flocking and/or formation control, both in simulated

agents and real-world robotics. This success is due to the simplicity of such systems

and their capability for representing and generalizing to a wide variety of actual

systems. Maybe more importantly, this success is also due to the complex and or-

ganized group behaviors that can be achieved, in a way that is both efficient and

robust.

However, the same intrinsic simplicity of particle systems can become a dis-

advantage when modeling more complex problems that required or seem to require

higher levels of control, this is, problems where the required global behavior cannot

easily be achieved by static combinations of low-level behaviors. For this reason

most “pure” particle-system-based control systems have remained in the field of

computer animation.

Nevertheless, the attractiveness of such systems has led researchers to at-

tempt to enrich particle systems and behavior-based flocking by expanding them or

incorporating them into more flexible, controllable architectures, while preserving

their most important features, among them decentralized, local control and self-

organization. A common approach is to incorporate behavioral flocking into other

successful architectures well-known and commonly used in robotics. Those architec-

tures may range from low-level, emerging-behavior styled systems, in tone with the

self-organizing nature of behavioral flocking itself, to more traditional approaches

where system designers retain a higher control of the global behavior of the agents.

On the first end of the complexity spectrum, an example of the approaches

used is present in the form of dynamics of higher complexity [56]. Of particular

24

interest is the case of the use of neural networks (see for instance Baldassarre [9]).

In such systems, neural networks, mapping the sensory input of a mobile agent to

the output of the actuators, are typically trained through evolutionary methods. In

this case the flocking behavior and the goal-oriented behavior are partially specified

in the fitness function, and encoded in the structure and parameters of the network

itself. This has the advantage of allowing the rapid, reactive response of neural

controllers, often required in real-time robotics, and also of giving the system the

freedom to evolve the solution, which in principle may utilize any behavior the

network is capable of representing as long as it satisfies the specified goal. However,

these systems also share some of the weaknesses of the original behavioral flocking

based on particle systems. In particular, although neural controllers are capable

of more than purely reactive behavior, the resulting systems remain simple in the

nature of the problems they can solve, at least in practice as found in the literature.

On the other end of the complexity spectrum lie systems featuring full-fleshed

planners and global control. Among them, the work by Yamashita [109] shows the

amount of coordination that can be achieved, for instance when moving objects of

arbitrary shape through narrow spaces. This approach works well, in simulation at

least, by using global control. Those systems, however, retain almost none of the

advantages of the original flocking systems, requiring both global and centralized

control, although not necessarily off-line processing.

In the middle between these two extremes can be found several hybrid systems.

Those systems often employ multi-layered architectures to combine the long term,

goal-oriented control of high-level controllers with the speed, adaptability and ro-

25

bustness in the presence of noise and real-world uncertainty of low-level controllers,

and in particular the self-organizing, distributed control of particle systems. Typi-

cal examples of this approach are two-level architectures that combine a finite state

machine taking higher level decisions about the desired behavior of the agents, and

low-level, reactive dynamics that implement the desired behavior. One such exam-

ple is presented by Reynolds [83], in an application that attempts to simulate the

behavior of pigeons in a park, for purposes of animations used in movies or video

games. In this case the low-level behaviors are decomposed into basic units (avoid

obstacles, move towards neighbor, etc.), that can be combined to achieve more com-

plex behaviors. Even the same group of basic behaviors, combined in different ways,

will produce different results, which provides the system with ample flexibility based

only in a small set of basic behaviors. The specific combination of behaviors desired

is specified in the state machine, in the form of a particular combination for each

state. This allows the simulated pigeons to display a range of “natural” behaviors

and reactions, such as to flee from pursuers, be drawn towards food, etc. A more

application-oriented use of the same ideas can be found, for example, in the work

of Parunak et al. [72], who use essentially the same concepts in the context of un-

manned autonomous vehicles. The simulated vehicles perform cooperative sensing,

arranging themselves into the optimal formation required around the object or area

to be sensed. Notice that in both cases, however, there is little room for interaction

between agents in different states, or for actions performed in one state to have

a direct influence in subsequent states, or even for the sequencing of states to be

meaningful in the pursue of other goals (in both cases, the state machines are such

26

that there is a transition between virtually every pair of states). This results in

states being isolated units, that greatly simplify what the global behavior of the

agents can be when observed over time. However, it is worth remarking that this is

not necessarily due to the two-level architecture, but to the nature of the intended

applications, that might not require nor benefit from higher complexity.

Those basic behaviors or behavioral units do not need to be combined in a

single set according to the state of the agent. As shown by Matarić [67], the resulting

higher level behavior can be again combined with others behaviors, in increasingly

complex level to form a full hierarchy of behaviors. A simple set of rules can then

be used to activate those behaviors needed, in a similar fashion to what is done with

deterministic finite state machines.

Higher-level hybrid architectures have also being successfully used in the con-

text of multi-agent systems. For instance see the work of Chaimowics et al. [31],

who use low-level behaviors to coordinate the movement of a group of agents, while

higher-level controllers, such as a planner, decide the general course of action. The

novelty in this case lies in the fact that the system retains its distributed properties

by making a single agent decide the plan and communicate it to the rest of the

team, but the leader agent can switch roles with following agents at any moment by

a collective process of decision making. Once again, similar as the systems featuring

global control, the self-organizing nature of flocking and swarming is relegated to

the minor role of navigation control while the high-level coordination of agents is

effected by more complex, traditional approaches.

In addition to combining the basic swarming or flocking dynamics into more

27

complex architectures, the basic system has also been extended by incorporating

other ideas and features that increase its capacity and applicability to particular

problems. One useful behavior often desired is for the mobile agents to achieve

a given formation as accurately as possible, while dealing with an unpredictable

environment and noisy information. An approach commonly used to solve this

problem is the dynamic assignment of roles to each member of the flock/convoy

[7, 46]. In this way, agents use the low-level dynamics only to keep a relative position

with respect to certain, specified neighbors while navigating the environment. A

large range of formations can be thus robustly achieved both in simulation and real

robots even while navigating open terrain.

Although role assignment in the works discussed above has been used mostly

for formation control, higher level uses are also common within the context of coor-

dinated movements. For instance, Vail et al. [102] describes a system where robotic

agents use an auction-based role assignment scheme for strategic roles in a soccer

game (attacker, defender, etc.). Once the roles have been determined, the robots

use potential fields to determine their desired positions and their movement towards

them.

Potential fields and gradient following has been used in swarms of mobile

agents that perform cooperative sensing [75], for instance for intruder detection, in

systems that employ a form of communication inspired in insects, communication

through pheromones. Theses agents broadcast signals whose direction and intensity

neighbors can perceive in order to share information about the environment. Other

extensions to the basic particle-system model include the combination of local and

28

global information (about target destination, path to follow, position of neighbors,

position of obstacles, etc.) in different degrees, which has shown that the optimal

combination depends on the particular application and usually lies somewhere in

the middle between pure local information and total global information [70].

2.5 Discussion

This chapter presented a brief introduction to the main concepts of swarm

intelligence and its potential for distributed problem solving. Among the techniques

usually employed in swarm intelligence, interacting particle systems stand out in

part by their ability to imitate biological systems of coordinately moving entities,

but also by their current lack of applications in other contexts and problems. Even

though the local interaction between particles is a powerful mechanism to create self-

organized behavior, few applications have been found beyond the realm of formation

keeping in mobile agents.

Although particle systems have been extended before, previous extensions have

not been general enough to exploit particle systems as a problem solving method

rather than a navigational control mechanism, and those few that have put emphasis

on problem solving have for the most part disregarded the ability of particle systems

to create coordinated motion. The extension to particle systems introduced in this

dissertation and explained in the next chapter tries to at least partially cover this

gap by creating particle systems with greater problem solving capabilities.

29

Chapter 3

Task Division and Sub-Team Self-Organization

Interacting particle systems provide a powerful mechanism for the modeling

of coordinated collections of mobile agents, or particles, due to their self-organizing

properties. However, this same self-organization and lack of global, centralized con-

trol causes the behavior of such systems to be especially difficult to predict or design.

This chapter presents an architecture that tries to guide the self-organization pro-

cess, allowing the resulting particle system to not only present a richer, more flexible

set of behaviors, but also to supply an external entity, the system designer, with

the means to influence this self-organization and therefore the global behavior of

the system, without sacrificing the intrinsic simplicity of the particles or adding

centralized, non-local controls. The core idea of this architecture is derived from

hybrid control and consists basically of enhancing the particles with a top-down

control mechanism, based on finite state machines, used in combination with the

traditional reactive behaviors commonly found in particle systems. Specifically, the

hypothesis is that by giving the normally purely reflexive agents found in particle

systems a few behavioral states, a simple finite state transition graph that governs

state changes, and a simple memory of the locations of significant objects that are

encountered, the resulting agent team would have the ability to collectively solve

resource locate-and-collect problems. In this scenario, individual behaviors would

30

be implemented by letting each state of an agent be associated with a different goal

and with a corresponding set of parameters that influence the individual agent’s

movements. This effectively couples the collectives’ goals to different movement dy-

namics. Under such conditions, where state changes are triggered by environmental

events and the states of other nearby agents in a way that retains the local nature

of information processing in particle systems, one would anticipate the emergence

of problem-solving abilities by an agent team as a whole. This hypothesis is tested

and studied in this and the following chapters.

In this chapter, a concrete practical example is presented as experimental

evaluation for the application of the architecture previously described. In order to

study the properties of such architecture, combining the self-organizing properties of

particle systems with the general problem solving capabilities of discrete, top-down

style control, this chapters presents a problem crafted out of the combination of two

well known problems in the study of multiple mobile agents: capture the flag and

foraging. The resulting problem may possess limited real world applicability per

se, but it involves issues and properties commonly present in multi-agent systems,

and thus it provides an excellent scenario for the study of problem solving particle

systems. In particular, this problem demands a level of coordination capable of

producing a team of agents to split or join in sub-teams and divide labor among

them according to varying conditions.

The series of experiments presented in this chapter not only show the ability of

the system to solve a problem previously beyond the scope of the particle systems,

but also suggest that coordinated, self-organized movements can greatly contribute

31

to the spread of information about the enviroment and the task being performed,

even without explicit communication, and serve as a tool in the creation of self-

organization beyond the navigational level.

3.1 Agent Architecture

As seen in the previous chapter, one of the most common architectures em-

ployed in the development of hybrid control systems is the layered architecture,

whether the systems involve particle/flocking components or not. The layered ar-

chitectures, initially presented by Brook in 1986 [24] for robotic systems, provide

a useful mechanism for the combination of low level, fast, robust behaviors that

react directly to the environment, with higher level behaviors that act according

to the agents goals. The most common among these is the three layer architecture

[25, 48], composed of a bottom layer of basic reactive behavior, a medium layer for

the sequencing and prioritizing of those behaviors, and a top layer for long term

goal pursuing.

In the case of particle systems and flocking/cooperatively-moving agents, the

basic prioritizing and combination of the lowest level behaviors is usually consid-

ered to be performed by the bottom layer, with the medium layer effecting the

sequencing and/or switching of these behaviors in the medium term. The top layer

is often missing, in part because the applications regularly considered do not re-

quire a higher level of abstraction and decision making, in part because this higher

level usually involves shared global information, which is against the paradigm and

32

Figure 3.1: High-level view of the agent architecture. The two lowest boxes represent
the reactive movement dynamics typically found in past particle systems. The
two upper boxes represent the goal-directed mechanisms added to control behavior,
including movements. FSM = finite state machine.

sometimes simply not feasible. Therefore, these types of systems often present a

two-layer architecture. This is the architecture we adopted as a base for the frame-

work developed and employed in this work, and it will be explained in detail in what

follows.

Figure 3.1 shows a scheme of the basic architecture used throughout this dis-

sertation. At the bottom layer of the agent control architecture lies a set of low

level dynamics that control the reactive behavior of the agent based on local in-

formation. These low level dynamics receive any necessary information from the

environment, as gathered by the sensors of the agent, and are assumed to be able

to process/synthesize the information into whatever format is required. For sim-

plicity, the information returned by the sensors is already processed into a higher

level of abstraction, for instance sensors return the position of a neighboring agent,

33

as opposed to raw sensor data (camera image, infrared sensor activation, etc.). The

bottom layer takes input solely from the local environment at a given instant, and

outputs a corresponding action, in terms of the basic capabilities of the agent (ac-

celerate in such direction, grab, etc.), based on the immediate goals of the agent

and current (local) state of the environment; those basic behaviors are similar to

those used in previous works in particle systems and behavioral flocking. The top

layer consists of a simple memory and a finite state machine that directs agent be-

havior in a top-down fashion, modifying the movement dynamics used over time.

For example, if the FSM decides that it is time for the agent to go to a particular

location, or home, to refuel, it will switch to the state homing and provide the bot-

tom layer with the target location of its home destination. The bottom layer will

then determine at each step the steering actions needed to properly navigate from

the current location to the home. Since the bottom layer is mostly reactive, it can

temporarily override the long term goal of going home for a more pressing need,

such as avoiding another agent or obstacle. Notice that the homing behavior may

be produced by a combination of basic reactive behaviors, and it is the state of the

finite state machine who determines these combinations at any given instant.

To be more specific, at any time each agent is in one of several mutually ex-

clusive states. These states and the transitions among them are represented with a

finite state machine. The agent’s current state determines which set of parameters

for the low-level reactive controller currently drives its movements and behavior. As

mentioned before, the low-level dynamics that guide the agent through the envi-

ronment are inspired by earlier work [81, 82]. Movements are governed by a set of

34

individual influences (avoiding an obstacle, staying with the flock, keeping a mini-

mum distance from other agents, etc.) that produce an instantaneous acceleration

determined by a desired velocity vector. The individual influences are combined a

a non-linear summation of the velocity vectors. By changing with individual influ-

ences are combined and their relative weights in the summation, a large variety of

movement behaviors can be implemented, each one associated with a different state

or goal.

The finite state machine performs these changes of state also based on local

information. As the basic behaviors, it receives summaries of the state of the envi-

ronment neighboring the agent from the sensors of the latter to determine when an

event has been triggered that requires the agent to change its behavior. As opposed

to the basic behaviors, the state machine uses more general information regarding

the general conditions around the agent, that is likely to change less rapidly than the

instantaneous information to which those behaviors react. Examples of these kinds

of information might be number of team-mates surrounding an agent, the presence

of an object in its vicinity, etc. Also, the state machine can switch to a different

state according to infrequent or one-time events that may represent the achievement

of a goal by the agent, for example reaching a certain destination.

3.1.1 Agent Capabilities

The sensing capabilities of an agent are limited by its neighborhood size. The

neighborhood of an agent is a circular segment in front of the agent, defined by

35

a given angle and radius. All objects inside this neighborhood are visible to the

agent. As mentioned before, the sensors of the agent perceive the relative position

and velocity of an object, and transmit this information in vectorial form to the

behaviors. These sensors are also capable of distinguishing between different kind of

objects. Thus, an agent can tell if the agent in front of it is a team-mate or a rival,

for instance. However, since all agents in a team are homogeneous, agents cannot

distinguish between two agents of the same team, or two objects of the same nature.

The radius and angle of the neighborhood are crucial in determining the char-

acteristics of a given behavior. Therefore, to achieve greater flexibility, different

radii ri and angles ai are given to each behavior, implying that an agent has a set

of neighborhoods that define the configuration of its sensors. This is depicted in

Figure 3.2. For example, consider a behavior cohesion that draws an agent toward

its team-mates and a behavior separation that moves an agent away from its team-

mates. By combining both behaviors while giving a smaller radius of influence to

the separation behavior, a composed behavior is achieved that keeps agents close to

each other while preventing them from getting close enough to collide.

Agents possess a simple memory that allow them to store and recall the relative

position of a given point or set of points in space that agents have previously visited.

This allows them to return to locations of interest and to keep basic information

about those locations.

Agents are also capable of reading the inner-state of team-mates and of in-

terchanging memories, given that the agent providing the information lies in the

corresponding neighborhood of the agent receiving it. This provides a simple form

36

of agent-to-agent communication or signaling that can be used to produce higher

levels or organization, since it can provide the spreading of information between a

group of close-by agents without the need for more costly forms of communication,

such as broadcasting. Notice that communication occurs only between members of

the same team.

Finally, agents have the capability of grabbing inert objects lying in the en-

vironment. The particularities of grabbing have been abstracted into a relatively

simple action that requires from the agent simply to move close enough to the object

to be grabbed and activate its grip. As long as its grip is activated, the movement

of the agent will be transmitted to the object and vice versa, in such a way that

both agent and object will move together. The force exerted on the object by the

agent is considered to be proportional to the “desired” velocity of the agent, this is,

the velocity that would be produced by its behaviors, were it not connected to the

object. Objects move according to the total force exerted on them, considering the

effect of their mass and the mass of the attached agents. Thus, agents and objects

become a single solid for as long as the agents keep their grips activated over the

objects. This simplification ignores the problems of aligning a physical grip over an

object and the differences between pushing/pulling and other positioning problems.

The agents augmented this way are otherwise regular particles moving in a 2D

continuous space, with the exception of possessing both mass and orientation. The

mass of the particles is small enough relative to the maximum acceleration produced

by the agent’s behavior that an agent is capable of changing direction over a small

area, although not instantaneously.

37

Figure 3.2: Neighborhood of an agent. The agent is represented by an arrow, while
the gray area is represents the perceptual area of the agent. Two different neigh-
borhoods are represented, as a single agent may possesses different neighborhoods
for different sensors. The first neighborhood is defined by angle a1 and radius r1,
while the second neighborhood is defined by a2 and r2.

3.1.2 Flexibility and Extensibility

Using this architecture, a wide set of different behaviors can be achieved. There

are seven basic behaviors, or velocities, that act as building blocks for more complex

compound behaviors. These behaviors, summarized in Table 3.1, represent a small

catalog of the reactive behavior that agents may require, composed as follows: A

cohesion velocity ~vc tends to move the agent toward the center of the flock. Its

direction is directly toward the center ~pn of the agents in its neighborhood, while

its magnitude is a fraction of the maximum velocity that increases quadratically

with the distance from that center. An alignment velocity ~val tends to move the

agent in the same direction that its neighbors are moving. This velocity has the

same direction as the average velocity ~vn of its neighbors, and its magnitude is

a fraction of the maximum possible velocity that increases quadratically with the

38

distance from the center ~pn of the neighbors. An avoidance velocity ~vav tends to

move the agent away from obstacles. This velocity is directly away from the nearest

obstacle location ~po, while its magnitude is a fraction of the maximum velocity which

decreases quadratically with the distance to the obstacle. The avoidance velocity

allows agents to block one another while guarding (no other obstacles besides agents

were introduced in the experiments reported). A separation velocity ~vd tends to move

the agent away from neighbors. This velocity is away from the center of the flock.

Its magnitude is a fraction of the maximum velocity which decreases quadratically

with the distance to the center of the flock. A seeking velocity ~vs influences an

agent to move toward an observed target, specifically a unit of mineral. A clearance

velocity ~vcl influences an agent to steer toward the side when there is an agent in

front of it, in this way clearing its line of sight. This behavior tends to align a group

of agents side by side, promoting a broad visual field for the group of agents as

a whole. Finally, a homing velocity ~vh is similar to ~vs in the sense that it drives

the agent to a point in the space such as the home of the agent or a remembered

deposit. The homing velocity is a vector of magnitude vmax pointing directly toward

the given fixed point.

The individual velocity influences above are combined as a weighted sum at

each time step to update each agent’s resulting velocity ~v. However, a simple linear

weighted addition of the individual velocities has certain negative effects [81], such

as directing an agent in intermediate directions that none of the individual influences

intended. Therefore the summation process is also prioritized, with the terms being

added in a fixed order, and when the sum exceeds a certain threshold vmax the term

39

is dropped. Specifically, the velocity of each agent is updated as:

~vi
new =































~0 if i = 0

~vi−1
new + wi~vi if ||~vi−1

new + wi~vi|| < vmax

~vi−1
new otherwise

~vnew = ~vn
new

The velocities ~vi with i = 1 . . . n are the velocity vectors resulting from the different

individual velocity components listed earlier, where the index i corresponds to the

priority of each velocity component. A different prioritization and set of weight

values is used to produce each specific behavior of the agent. Once the new velocity

of the agent has been computed, its new position is updated by adding it to the

current position:

~pnew ← ~p + ~vnew

By prioritizing and weighting each of the seven velocity components differently

in computing ~vnew, or adding new velocity components as needed, several higher-

level composed behaviors can be achieved for the specific purposes of the problem

being solved. Figure 3.3 illustrates five examples of composed behaviors that are

used repeatedly throughout the remaining chapters of this dissertation. Notice that

both different equations for the basic behaviors and different non-linear forms of

combining them are certainly possible; however, for the purposes of using parti-

cle systems as distributed problem-solving systems, only the resulting composed

40

behavior is important, which provides certain flexibility as to how achieve them.

Additionally, this architecture makes it easy to plug in other basic or composed

behaviors as they are required for specific applications, which makes this part of the

system readily applicable to a variety of problems.

3.2 The Competitive Foraging Experiment

As a first test of the benefits of collective rather than individual problem-

solving, a resource collection task was used where coordination problems arise natu-

rally. The competitive foraging experiment consists of groups of homogeneous agents

working in teams to collect and transport back to their teams’ bases certain items

spread in space. Agents are free to interact with other agents, either in the same

team or in competing teams, by forming relatively close packs, blocking the move-

ment of competitors, stealing items collected by other teams, etc. However agents

are not allowed explicit, direct communication, except by a simple form of signaling

that allows an agent to know the state, a high level abstraction of an agent’s short

term goals and intentions, of neighboring agents. It is hypothesized that collective

movements suffice as a coordination mechanism capable of producing the levels of

cooperation necessary in this experiment without resorting to more sophisticated

means of communication.

A more detailed description of the experiment follows: One or more teams of

homogeneous agents are initially deployed at a random location inside a 2D world

with periodic boundary conditions (see Figure 3.4). In this world, units of some

41

a) b)

c) d)

e)

Figure 3.3: Examples of composed behaviors achieved by the combination of basic
velocities. a) Spreading: agents roughly move in a line that maximizes the arc swept
as they move. b) Flocking: a compact aggregation of agents. c) Seeking: agents
move directly towards a given location. d) Caravaning: a column (roughly) of agents
that move orderly as a caravan. e) Guarding: the agents patrol an area or location
by circling around it.

42

Figure 3.4: A small section of a 3000 x 3000 continuous world is shown with a single
“mineral deposit” on the upper right and two different teams (dark and light arrows)
exploiting it. Teams’ homes are denoted by small solid squares, agents as arrows
and mineral units as spots. The dark team agents are returning home while carrying
minerals (spots adjacent to arrows). Most agents of the light team are returning to
the deposit after unloading minerals in their home, but some of them are simply
exploring.

resource that we call minerals (but which could also represent food, fuel, money,

or any other valuable material) are located randomly. A few areas are heavily

dense in mineral, thus serving as “deposits”, while the rest of the minerals are

scattered throughout the world. The task of the agents is to collect the minerals

and deposit them in their designated “home” location, which is common to all

members of a single team. This is similar to past tasks used in computer simulations

of object collection by social insects [20, 58, 80], but differs in that our task has a

designated target collection location, and in that our agents undergo flocking, unlike

the independently-moving agents often used in past studies.

The success of a team is measured in terms of the amount of minerals accu-

43

mulated at its home over time, which advances in small discrete steps. Other teams

may be present in the world, and members of one team can potentially hinder rival

teams by different means, such as blocking them (agents are not allowed to collide

with others), or even stealing from their home. Thus, the task is cooperative within

a team, and competitive between teams. Notice that for this reason the amount of

mineral accumulated can also decrease over time. Therefore we adopted as absolute

measure of performance the amount of mineral collected (and retained) after a long

period of time.

The competitive foraging experiment presents a suitable frame for the study

of cooperation between mobile agents since it provides opportunities for:

• The use of collective defensive strategies against antagonistic teams, such as

guarding a teams’ base.

• The use of collective offensive strategies against antagonistic teams, such as

coordinated attacks against guarded enemy bases.

• Collective search and retrieval strategies.

• Effective use of division of labor, by requiring a team to perform several non-

related task, sometimes all at once, such as searching, retrieving, defending

the team’s home and attacking others.

In this sense the task is similar to a generalized version of the robotic capture-

the-flag game [6], with minerals representing a multitude of flags for a longer, iterated

game, as opposed to the one-shot version of capturing a single flag once and for all.

44

3.3 A Solution Within the Guided Self-Organization Framework

Figure 3.5 shows the FSM employed in this first set of experiments and the

corresponding movement behaviors associated with each state. Agents are initially

in an idle state. Once they receive a “start signal”, they begin searching for re-

sources. When they find some, they choose between picking up the minerals or

guarding the deposit from other teams, depending on whether a group of guarders

is already formed. An agent may know this by looking at the state of neighbor agents

when it arrives to the deposit. When an agent detects five or more agents guarding

in its neighborhood, it decides the deposit is already guarded. Agents recognize a

deposit when they detect a certain amount of minerals in their local neighborhood.

This implies that homes of other teams are interpreted as deposits, given that they

have accumulated enough minerals. If the agent succeeds in picking up a unit of

mineral, then it starts carrying the minerals home. After arriving home with a unit

of mineral and depositing it, if the home is unprotected agents go to guarding to

protect it, otherwise they return to the last deposit they were exploiting (returning

to deposit). As before, agents decide that the home is protected when they detect at

least five guarders. If the flock arrives to its (unprotected) home, the first five agents

will become guarders and the rest will return to the deposit. Since agents can detect

guarders only in their neighborhood, if a home or deposit were big enough it could

have more than five guarders distributed across the deposit as long as they do not

detect all the others at once. When an agent is guarding, it will remain so unless

all of the mineral in its neighborhood is taken away (the deposit is exhausted), in

45

Figure 3.5: FSM of an agent showing its states and the movement behaviors associ-
ated with each state. States are represented by circles labeled by <State/associated
controller>, while arrows represent transitions labeled by the triggering event. The
initial state is marked by a double circle.

which case the agent returns to searching. When agents are returning to deposit, it

could happen that the deposit is already exhausted, in which case the agent goes

into searching for another deposit, otherwise it tries picking up more minerals.

Agents have a very simple memory that allows them to recall points of interest

in the world (Figure 3.6). Each agent has a stack that represents the location of the

deposits that the agent has found (with the most recent on top) and the location of

the home of the agent; the latter does not change. The precise current goal of the

agent is thus represented as a combination of the current state and the contents of

this memory. For example, the state could determine that the agent is going back

to a deposit to exploit it, while the memory determines which deposit the agent is

to exploit. Thus, a simple sequence of implicit goals can be formed, represented as

deposits queued for later exploitation.

46

Figure 3.6: Memory of an agent. The stack on the left represents the location of the
deposits visited by the agent. The single record at the right represents the location
of the agent’s home.

3.4 Experimental Set-Up

A basic computational experiment consists of letting different simulated teams

compete for the minerals in the same world for a limited time. To compare the ef-

fectiveness of collective movement behaviors (flocking) versus independently moving

agents, a set of independent agents have been implemented. These agents follow the

same model explained above, with the important exception that they do not take

into account other agents in their dynamics. In other words, they mainly ignore

other agents from the same team. The controllers for these agents replace depen-

dent steering behaviors (cohesion, alignment, separation, clearance) with random

wandering. Collision is not replaced for obvious reasons. Otherwise the FSM of

the non-flocking (independent) agents is the same as for the flocking agents (Figure

3.5).

The results reported below are the average over 20 runs for each experiment,

using 50 agents per team (unless indicated otherwise) in a continuous world of size

3,000 x 3,000 and one team for every type of agent (described below). Agents as

47

well as minerals are both one unit in size compared to the world.

During each run, 12 deposits were randomly located and independently cre-

ated, each deposit consisting of 80 units of minerals for a total of 960 units of mineral

in the world. These parameters were chosen so that it is valuable for a team to go

back to a deposit repeatedly. Also, the number of deposits and size of the world

make it easy for agents to find the deposits (and other agents’ home), but still force

agents to compete for the resource (minerals). The maximum velocity of an agent

was set to 12 and agents were able to detect minerals up to 200 units away (arbitrary

units). Teams’ homes were also independently located at random in each run and

agents were initially randomly positioned within a radius of 100 units of the team’s

home. In each run, the simulation lasted 40,000 time-steps (iterations), which was

adequate for the system to stabilize, that is, the time needed for the average amount

of mineral in teams’ home to converge to some value. Notice that the mineral in

deposits is not replaced, meaning that eventually all mineral present in the world

will be distributed among agents’ homes.

Multiple teams of agents were often used in an experimental run, with each

team being of a different type. Which teams were involved could vary form experi-

ment to experiment. The six different types are:

• Full-guarding flock. Flocking agents which implement the full FSM of Figure

3.5. These agents guard home and any deposits that they find. The search

pattern is a spreading flock.

• Home-guarding flock. Through elimination of transition from searching to

48

guarding, these agents will not guard a deposit, but will still guard their own

home. This allows more agents to be involved searching for and exploiting

deposits, but also allows other teams to exploit a deposit previously found by

another team.

• Non-guarding flock. These agents are the same as above except they do not

have a guarding state. All agents are actively involved in either searching for

deposits or exploiting deposits.

• Full-guarding, home-guarding and non-guarding independent teams. These

three types of agents correspond respectively to the three types of flocking

agents above, but do not undertake collective movements; they move indepen-

dently. They search through random wandering and see other agents (from

the same or competing team) only as obstacles to be avoided.

3.4.1 Behaviors

As mentioned before, each state of the agents implies a desired behavior in

terms of low-level dynamics. Specifically for these experiments, the behaviors of

spreading, seeking, caravaning and guarding are required. These medium-level be-

haviors were achieved through the combination of basic behaviors shown in Table

3.2.

49

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 5000 10000 15000 20000 25000 30000 35000 40000

M
in

er
al

 (
un

its
)

Time (steps)

ff
hf
nf
fi
hi
ni

Figure 3.7: Mineral collected over time when each team is present alone. ff: Full-
guarding flocking, hf: home-guarding flocking, nf: non-guarding flocking, fi:full-
guarding independent, hi:home-guarding independent, ni: non-guarding indepen-
dent.

3.5 Results

In the following we measure the effectiveness of each team in isolation, when

it is simultaneously present with all other teams, and in pairing competitions, to

establish the value of collective versus independent movements and of searching

versus guarding actions.

3.5.1 Each Team in Isolation

In this first experiment, a team is present in the world without any other

competing teams. The experiment was repeated for each team. Figure 3.7 shows

the amount of minerals collected over time, averaged over 20 runs.

After 20,000 iterations most teams have succeeded in collecting almost all of

50

the minerals available in the world, with the exception of the full-guarding teams

that are still slowly collecting resources. This is due to the fact that after the full-

guarding teams split off members to guard every deposit found, not enough agents

remain to collect the minerals rapidly. The non-guarding flocking team seems to

be the fastest in collecting minerals, which is consistent with the fact that all team

members are actively searching for and collecting minerals, and that in the absence

of other teams, guarding mineral deposits has no value. In this world where agent

teams do not need to compete with other teams, there is no clear difference between

the other four teams.

3.5.2 All Teams Simultaneously

In this experiment, all six types of agents (one team per type) are present

simultaneously in the same simulation. The number of agents per team was de-

creased to 30 to avoid overcrowding. Figure 3.8(a) shows the amount of minerals in

each teams’ home over time, averaged over 20 runs. Most striking is that the home-

guarding, flocking team’s collected resources increase monotonically, with this team

clearly outperforming all others. Early in simulations (during the first 5,000 iter-

ations), both this and the non-guarding flocking team collect minerals faster than

any other team. After the first few thousand iterations, the explored area of each

team is wide enough for teams to find each others’ homes. Accordingly, the amount

of minerals decreases in subsequent iterations for most teams, especially the non-

flocking teams. Notice that during this period the amount of minerals at home

51

 0

 100

 200

 300

 400

 500

 600

 0 5000 10000 15000 20000 25000 30000 35000 40000

M
in

er
al

 (
un

its
)

Time (steps)

ff
hf
nf
fi
hi
ni

(a)

ff hf nf fi hi ni

first place
second place

0
5

10
15

(b)

Figure 3.8: Results of simulations when all teams compete simultaneously in a single
world. (a) Mineral present in teams’ home per unit of time. (b) Rank according to
amount of minerals collected at time t=40,000. Same notation as in Figure 3.7.

does not decrease as much for the non-guarding flocking team. Presumably this is

because this team is fast enough collecting minerals to compensate for any stolen

minerals. The amount of minerals in the full-guarding flocking team slowly increases

over the time. This is probably due to the fact that this team can prevent its home

from being looted, but employs too many members protecting every deposit it finds,

which results in not enough members actually exploiting these deposits in an effi-

cient manner. The home-guarding flocking team does not have this problem, thus

it can collect about three times as many minerals as any non-flocking team by the

end of the simulation period.

Table 3.3 shows the mean amount of collected minerals by each team after

40,000 iterations over 20 runs. The differences are statistically significant at the level

of 95% according to a two-way ANOVA, both in sociality (flocking vs independent)

and guarding strategy (full-guarding, home-only and none). There is also interaction

52

between the sociality and the guarding strategy, which implies that varying guarding

strategies has a bigger impact for flocking agents than for independent agents.

Figure 3.8(b) depicts how often over these 20 runs each team type was in

first place (number of runs a team collected more minerals than any other), and

in last-place. These data suggest two main hypotheses. First, teams of collectively

moving (flocking) agents are more effective at this task than corresponding teams

of independently moving agents. This can be seen to be true in Figure 3.8(a) by

comparing each pair of teams that use the same guarding protocol (ff versus fi, etc).

With collectively moving (flocking) agents, whenever a deposit was discovered by

an agent, numerous other agents were immediately nearby and thus pulled in by

local inter-agent influences to help collect the discovered minerals (e.g., see Figure

3.9). Second, for both collectively and independently moving agent teams, agents

that guarded only their home did better than non-guarding agents, who in turn

did better than full-guarding agents. Presumably this is because allocating agents

to guard resources, especially multiple deposits, has a large cost: it removes these

agents from collecting minerals, and this loss is not adequately compensated for by

any protective influences they exert through their blocking actions.

3.5.3 Collective versus Independent Movements

The impact of collective versus independent movements on agent teams can

be clarified by varying just that factor between two competing teams. Figure 3.10

shows the mean amount of minerals saved at home over time for pairwise competi-

53

Figure 3.9: Agents in a flock being pulled toward a deposit. The number on top of
each agent represents its current state (0 for Searching for a deposit, 1 for Picking
up). Only agents in state 1 actually detect the deposit. At a, only two agents have
located the deposit, while the rest of the flock moves northward. At b and c, agents
that are near the deposit but that do not yet see it turn toward those agents that
have seen the deposit and are already going toward it. From d to f , the whole flock
gradually turns toward the deposit and collects minerals. Such behavior indicates an
advantage of collective movements in recruiting other agents to carrying a resource
when it is discovered by just a few.

tions of collectively moving versus independently moving teams of agents. Table 3.4

shows the mean and standard deviation for the amount of minerals collected by the

last iteration (40,000). These results are significant at the level of 95% according

to a Wilcoxon rank sum test. It is clear that the flocking teams are always faster

in accumulating minerals. In general, even by around iteration 7500, flocking teams

have collected many more minerals than their non-flocking counterparts. Even more

striking, the independently moving teams are not sufficiently effective in protect-

54

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 5000 10000 15000 20000 25000 30000 35000 40000

M
in

er
al

 (
un

its
)

Time (steps)

ff
fi

(a)

 0

 100

 200

 300

 400

 500

 600

 700

 0 5000 10000 15000 20000 25000 30000 35000 40000

M
in

er
al

 (
un

its
)

Time (steps)

hf
hi

(b)

 0

 100

 200

 300

 400

 500

 600

 700

 0 5000 10000 15000 20000 25000 30000 35000 40000

M
in

er
al

 (
un

its
)

Time (steps)

nf
ni

(c)

Figure 3.10: Mean mineral collected at home over time by full-guarding teams. (a)
ff: full-guarding flocking versus fi: full-guarding independent agents. (b) hf: home-
guarding flocking versus hi: home-guarding independent agents. (c)nf: non-guarding
flocking versus ni: non-guarding independent agents.

ing its home from being looted by the flocking team, and their collected minerals

considerably decrease during the following iterations.

3.5.4 Guarding versus Non-Guarding

Finally, experiments to compare the advantages of guarding versus non-guarding

were performed. These experiments involved pairs of guarding versus non-guarding

teams which follow similar collective strategies (either flocking or independent move-

55

ment).

Figures 3.11 shows the mean amount of mineral saved at the team’s home over

time, while Table 3.5 shows the mean amount and standard deviation of minerals

saved at the last iteration. Results are significant at the level of 95%. Early on the

simulation (about iteration 5,000) pairwise teams seem to have similar performance,

but after this point guarding teams show a clear advantage, as their amount of

minerals saved at home keeps increasing, while the amount of minerals in the home

of non-guarding teams decreases, probably as it is taken by the opposite team.

Again, home-guarding teams perform better than full-guarding teams.

3.6 Discussion

This chapter introduced an architecture to provide an additional level of con-

trol over particle systems. This control, built in each particle without requiring

global or centralized control, influences the behavior of the particles and hence of

the system through their local interactions, altering or guiding the self-organization

process to produce a specific system-wide behavior. As shown by the results, it is

feasible to extend self-organizing particle systems to exhibit more general problem-

solving behavior. The new extended particle system, which includes behavioral

states over the usually exclusively reactive agents of particle systems and a simple

memory, results in system or team of agents capable of collectively solving search

and collect problems. By using a high-level controller that keeps track of the inter-

mediate goals of an agent according the conditions of the environment and to the

56

 0

 100

 200

 300

 400

 500

 600

 0 5000 10000 15000 20000 25000 30000 35000 40000

M
in

er
al

 (
un

its
)

Time (steps)

ff
hf

(a)

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 5000 10000 15000 20000 25000 30000 35000 40000

M
in

er
al

 (
un

its
)

Time (steps)

hf
nf

(b)

 0

 100

 200

 300

 400

 500

 600

 0 5000 10000 15000 20000 25000 30000 35000 40000

M
in

er
al

 (
un

its
)

Time (steps)

fi
hi

(c)

 0

 100

 200

 300

 400

 500

 600

 0 10000 20000 30000 40000 50000 60000

M
in

er
al

 (
un

its
)

Time (steps)

ni
hi

(d)

Figure 3.11: Results of simulations for flocking teams in a single world. Min-
eral present in teams’ home per unit of time. (a) ff: full-guarding flocking versus
hf:home-guarding flocking. (b) hf: home-guarding flocking versus nf:non-guarding
flocking. (c) fi: full-guarding independent versus hi:home-guarding independent.
(d) hi: home-guarding independent versus ni:non-guarding independent.

general logic of the problem, problem solving abilities emerge in the team as a whole

while retaining the local nature of the information processing.

The simulation results presented in this chapter provide substantial support

for the efficacy of this approach. As state changes occurred and spread throughout

a collection of agents via local interactions, the group’s motion as a whole was in-

fluenced and shifted to provide collective problem-solving. Most basically, this was

57

seen in that an agent team could routinely search for, collect, and return discov-

ered resources to a predetermined home location, all the while retaining their joint

movement as a “flock” of individuals. Further, it was found in simulations that a

team of agents that moved collectively were more effective in solving search and

collect problems than very similar agents that moved independently. This was be-

cause when one or a few agents on a collectively-moving team discovered a site with

plentiful resources, they would automatically pull other team members toward that

site, greatly expediting the acquisition of the discovered resource and its transport

back to the team’s home base. Thus, a benefit of underlying collective movements of

particle systems which, to our knowledge, has not been appreciated in past work, is

that they have the potential to automatically recruit additional agents to complete

a task when one agent detects the necessity of that task.

Additional computational experiments were undertaken in which multiple teams

with somewhat different behaviors simultaneously competed to find and collect

the resources that were present. Six different teams were used: three that exhib-

ited flocking (collective) movements, and three others where the individual agents

moved independently. In both cases the three teams involved differed in whether

agents/particles were allowed to guard (orbit and protect) both discovered resources

and their home base of accumulated resources, just their home base, or neither. Re-

gardless of whether the teams competed two at a time or all at once, we found

consistently that collectively moving agents were superior to independently moving

teams of matched agents in collecting resources. Further, and regardless of whether

agents moved as a team or independently, we found that those that were allowed to

58

guard only their home base did best, those that tried to guard both home and dis-

covered resources did worst, and those that guarded nothing were in between. This

finding reflects a kind of exploration/exploitation trade off: guarding has a pro-

tective value for preserving located and collected resources, but also a cost in that

fewer agents are available to continue searching for and collecting new resources.

Most importantly, these simulations exhibited group-level decisions not just about

which type of movements to make, but also about when it was appropriate to split

into groups, with one smaller group remaining to guard resources. They exhibited

decentralized cooperation without explicit coordination, such as when a wandering

agent would follow another agent that knew the location of uncollected resources,

simply because wandering agents tended to follow other agents.

59

Table 3.1: Movement Equations for the Different Movement Behaviors

Movement Behavior Equation

Cohesion ~vc =
(

||∆~p||
r

)2

vmax
∆~p

||∆~p||

Alignment ~val =
(

||∆~p||
r

)2

vmax
∆~v

||∆~v||

Avoidance ~vav = −
(

1− ||∆~po||
r

)2

vmax
∆~po

||∆~po||

Separation ~vd = −
(

1− ||∆~p||
r

)2

vmax
∆~p

||∆~p||

Seeking ~vs = vmax
~pt−~p

||~pt−~p||

Clearance ~vcl = vmax~o

Homing ~vh = vmax
~ph−~p

||~ph−~p||

~p : current position of agent

~pn : averaged position of neighbor agents

~po : position of nearest competing agent

~pt : position of observed target

~ph : position of arbitrary target

~o : unit vector orthogonal to ~v (~o× ~v in +z direction)

~v : current velocity of agent

~vn : average velocity of its neighbor agents

vmax : maximum speed of agent

∆~p = ~pn − ~p, ∆~v = ~vn − ~v, ∆~po = ~po − ~p

60

Table 3.2: Parameters for Movement Behaviors.
Movement Behavior Velocity Component Priority wi r α

Avoidance 1 0.66 100 180o

Separation 2 0.83 150 180o

Spreading Clearance 3 0.83 150 115o

Alignment 4 0.83 250 115o

Cohesion 5 0.83 300 360o

Avoidance 1 0.83 100 180o

Seeking Seek 2 0.66 250 360o

Separation 3 0.25 50 90o

Avoidance 1 0.83 100 180o

Caravaning Homing 2 0.83 - -
Separation 3 0.83 100 180o

Clearance 4 0.83 150 60o

Avoidance 1 1 100 180o

Guarding Separation 2 0.62 50 180o

MineralCohesion 3 0.62 150 360o

Table 3.3: Minerals Collected After 40,000 Iterations, All Teams Competing∗

Guarding

Sociality Full Home None
Flocking 81 (99) 526 (292) 109 (175)
Independent 12 (23) 59 (108) 33 (58)

∗Entries are: mean (standard deviation).

Table 3.4: Mineral Collected After 40,000 Iterations, Pairwise Simulations

Simulation Means Standard deviations

ff vs. fi 836 vs. 28 188 vs. 68

hf vs. hi 699 vs. 44 220 vs. 85

nf vs. ni 621 vs. 100 300 vs. 176

Table 3.5: Amount of saved mineral at home in pairwise simulations
Simulation Means Standard deviations

ff vs. hf 275 vs. 559 212 vs. 252
hf vs. nf 888 vs. 44 108 vs. 49
fi vs. hi 254 vs. 563 226 vs. 256
hi vs. ni 524 vs. 346 280 vs. 271

61

Chapter 4

Information Sharing and Spreading

The extended particle system based on guided self-organization has shown in

the previous chapter to be able to create self-organization useful in problem solv-

ing through its application to a relatively simple problem of search and collection.

In this chapter, the properties of the system are further studied by employing in

two versions of a problem also well known multi-agent systems, collective transport.

Interest in collective transport comes from the fact that it requires cooperation, as

opposed to the problem presented in Chapter 3 which in principle could be solved by

independent agents, albeit less effectively, which makes it a prime example for the

study of cooperative systems. A second reason for interest in this problem is that

it usually arises in actual robotic problems, given the convenience of using multiple

simple robots assuming these could cooperate as opposed to using a single, sophis-

ticated and more expensive robot. Self-organizing biological systems, in particular

ants, are probably the best examples available for the solution of this problem,

both in the natural world and artificial systems. However, ants achieve this level

of efficiency despite their relatively limited cognitive capabilities. This once again

suggests that collective transport present an exceptional opportunity for the study

of distributed problem solving through a mainly, but not exclusively, reactive system

of self-organizing particles. In this case, the problem also includes the navigation

62

around obstacles. As opposed to the problem presented in the previous chapter,

which in principle could be solved, albeit inefficiently, without any cooperation nor

coordination, collective transport strictly requires the work of two or more agents,

and this work has to be coordinated to be effective, as no single agent has complete

control of the object being carried and therefore ignoring other agents’ actions re-

sults in agents that are unlikely to successfully steer an object without it bumping

into obstacles.

The first version of the collective problem that follows presents a simple case

of carrying a single (heavy) object by a multitude of agents and require local coor-

dination in order to navigate the object through partially perceived obstacles. The

second version consists of a more sophisticated extension that requires the agents

to distribute a group of objects among distant locations obeying certain demands

not originally known to the agents. This requires the agents to collectively de-

velop global knowledge of the world based on their local interactions and their local

perceptions.

The results of the experiments presented in this chapter suggest that collective

movements and their self-organizing properties are capable of allowing multi-agent

systems to share information, effectively creating a cooperative sensing system that

can perform the collective transport task even when using only reactive behaviors.

They also show, however, that local communication, once incorporated to the ex-

tended particle system, can greatly improve the spread of information over large

areas, allowing the system to develop a global strategy to solve a problem through

the local interactions of the agents.

63

4.1 The Collective Transport Experiment

The previous chapter showed some of the advantages of coordinated motions

in tasks where cooperation could be useful. Another more clear area of application

for collective movements lies in tasks that absolutely require two or more agents to

cooperate as a team. In particular, as opposed to the coordination among a large

team in terms of division of labor and formation of sub-teams, this chapter studies

local coordination when all members of the team need to perform the same task.

Again, it is hypothesized that aggregate motions are an effective tool to achieve the

required coordination in this kind of problem.

To test this hypothesis, a well studied task in systems of multiple mobile agents

has been selected: collective transport [31, 53, 58, 62, 96, 109]. In this task, a set

of agents is required to move a single object between two locations while avoiding

obstacles. Since our focus is strictly in the cooperation aspect of the task while

transporting the object, agents have been provided with knowledge of the desired

destination to avoid unnecessary wandering and the complexities of “sensing” the

destination. The object to be transported will only move if the total force exerted

on it surpass a certain threshold, which could be thought of as a friction force

produced by the surface of the world. This threshold was set in a way such that

only the combined force of two agents pushing at top strength in the same direction

could move the object; therefore the collaboration of at least two agents is required.

Notice, however, that while approaching obstacles or steering the agents will not

try to move at top speed, which makes a team of only two agents likely to be

64

Figure 4.1: Layout of a simple world. Agents are presented as arrows, destinations
and sources as filled and hollow circles, respectively. A unit of product (hollow
bar), is present near the source. Four walls surround the world to keep the agents
constrained inside.

ineffective. Figure 4.1 shows a simple example of this scenario. The objects to be

moved are represented as elongated, rod-shaped pieces that follow all the principles

of dynamics.

4.2 Application of Guided Self-Organization

4.2.1 High-Level Controller

Figure 4.2 shows the FSM that guides the agents during this task. Basically,

agents search for objects, using a flocking pattern that keeps the team in a relatively

compact state. When one of the agents locates the object, it moves toward it and

tries to grab it. Agents that have not detected the object may be dragged toward the

object by the influence of the others, as seen in Chapter 3. A state ‘moving away’

65

helps the coordination of the team by making agents avoid objects that are already

being carried by a large number of agents (as perceived in the local neighborhood

of each agent). This behavior stimulates a team to automatically split into smaller

sub-teams as needed to transport a varying number of objects. Additionally, when

an agent drops the object, it emits a signal perceivable by its neighbors during a

short period of time. This signal indicates to other agents to also drop the object.

This produces a coordinated dropping when the agent in front of the team reaches

the destination, as opposed to progressive droppings that would result in the agent

farther away from the destination continuing to carry and push even when most of

the object is already in place. When the team is stagnating, either because they

have hit an obstacle or for any other reason, one of the agents will drop the object,

but is still attracted by the object itself and by the presence of its teammates, it

will likely re-grab it at a different point. The signal that it emits at the moment

of dropping will cause its teammates to perform a similar action. The end result is

that the whole group of agents will reallocate around the object, which usually is

enough to recover from the stagnation and put the object in movement again. This

strategy is inspired by the realignment and relocation strategies observed in ants

[45, 94, 95].

4.2.2 Perception

Objects and agents in previous chapters consisted exclusively of particles.

However for the collective transport problem objects could in principle be in the

66

Searching Object Zeroing In Object

Moving To Destination

Object in sight

No more objects
 in sight

Moving Away

Retrying To Move

Close enough/pick up

Object does not move

Object does not move/drop

Object moves

Away from object

Reach destination/drop

Could not pick up

Start

Too many agents
 carrying

Neighbors are dropping/drop

Figure 4.2: FSM of agents. States are shown as labeled circles while transitions are
depicted as arrows. Each transition is labeled as Event/action where event triggers
the transition while action is an optional action to be performed by the agent only
once during the transition. The initial state is marked as a filled circle.

shape of any arbitrary 2D closed polygon. For simplicity only rectangles are used;

nevertheless agents are required to be provided with a more sophisticated, although

still very simple, “vision” system. In this system, agents perceive the position of the

closest point of the object that lies inside the agent’s neighborhood. In case more

than one object or obstacle is present, agents will only perceive the closest one.

This incidentally provides a simple although inaccurate form of occlusion. Figure

4.3 shows an example of the perception system.

Thus, the world as perceived by agents still consists entirely of particles. It is

worth noting that agents do not memorize previously seen obstacles, which makes

the avoidance problem more complicated since agents do not perceive the shape or

67

(a) (b)

Figure 4.3: Two examples of an agent’s neighborhood. Agents detect objects in
front of them as a particle whose location is the closest point of the object. (a)
shows the perception of the agent when a single object is in its neighborhood. (b)
depicts a case of occlusion as two objects are in the neighborhood, but only the
closest one is detected.

size of an obstacle except for a point they see of it at any instant.

4.2.3 Alignment and Allocation of Agents While Moving an Object

The collective transport problem as described above presents several opportu-

nities to model collective behaviors, including movements. While transporting the

product, agents not only need to agree on the destination, they also have to agree

on the path to it. Since they are located at different positions around the object,

they might perceive obstacles differently, and therefore pull in different directions.

Although it may seem trivial to solve this problem by forcing alignment (same direc-

tion) in all agents in the neighborhood, there exist actual advantages in not doing

so. For example, Figure 4.4 shows a situation that simultaneously exemplifies the

importance of the allocation of the agents along the object and the contribution

of pulling in different directions. The first row shows five agents distributed about

equally along the object while pulling it around an obstacle. After (b), the agents

on the front of the object have cleared the obstacle and start pulling towards the tar-

68

get destination (hollow circle); however the agents in the rear keep pushing forward

(parallel to the obstacle and away from the destination) as they have not completely

cleared the obstacle, causing the object to rotate. This results in the object moving

in a diagonal line to the right and downwards (c), while slowly turning the corner.

The second row shows a case when all agents have positioned themselves close to

the front of the object. Since they are so close they will perceive the obstacle in the

same way and move simultaneously in the same direction. After all of them have

cleared the obstacle (f), they will start moving directly towards the target, even

though part of the object is still behind the wall. When all agents change direction

simultaneously towards the target, the object turns in excess (g) and hits the wall

(h). Thus, by properly distributing themselves along the object, covering both the

front and back end of it, agents achieve a simple form of cooperation. This even

distribution of the agents along the object was achieved by the combination of the

cohesion and separation behaviors.

4.2.4 Adaptive Weights

Another issue brought up by the dynamically changing environment of an

agent that occurs due to the actions of other agents is how these changes affect

the way the different behaviors influencing the agent are combined. As mentioned

before, the resultant velocity of an agent is computed as a non-linear prioritized

weighted summation of the individual velocities wi~vi, where ~vi is the velocity of an

independent behavior and wi is a weight between 0 and 1. Although this strategy

69

a b c d

e f g h

Figure 4.4: Agents moving an object around an obstacle. The object is represented
as a hollow bar, while the target destination is a small circle. The agents pushing
the bar are represented as small arrows superimposed on the bar. The first row
(a-d) and the second row (e-h) show two different time sequences (see text).

works well for the search-and-retrieve task, it presents several problems in the more

complex setting described in this section. Take, for example, the seeking behavior,

which moves an agent toward a unit of product and is computed as:

~vseek = vmax ·
~pt − ~p

dist
·

√

dist + c · r

r

dist = ||~pt − ~p||

where vmax: max speed of the agent, ~pt: position of the target, ~p: position of the

agent, r: radius of the neighborhood of the agent, and 0 < c << 1. In plain

70

words, this velocity is a vector in the direction of the target which magnitude is

the maximum speed multiplied by a factor in (0,1] that increases rapidly with the

distance to the target. The seeking velocity, when computed in this fashion, causes

the agent to slow down rapidly as it approaches the target, thus enabling the agent

to reach a target with the necessary precision without overshooting it. However,

when the target object itself can be moving away from the agent (when it is being

pulled by other agents), this can potentially lead to a state where the agent stays at

a constant distance from the target, neither increasing nor decreasing its velocity. A

simple solution to this problem is to use adaptive weights. By changing the behaviors

from purely reactive to behaviors that consider a small time window (one time step),

it is possible to dynamically adapt the weights using the following formula:

wi(t) =















wi(t− 1) · (1 + δ) if dist(t−1)−dist(t)
dist(t−1)

< ǫ

wi(t− 1) otherwise

where wi(t) and dist(t) are the weight of the seeking velocity and the distance to the

target at time t, respectively, and 0 < δ < 1, 0 < ǫ << 1. The above equation simply

states that the weight is increased when the distance to the target is increasing or

when it is decreasing at a very slow rate. The weight is reset when a new target

is acquired. Although this strategy works in the case of seeking and similar cases,

notice however that is not applicable in every situation. For instance, sometimes

the agent needs to move away from its destination in order to clear an obstacle.

71

4.3 Experiments and Results

A simple scenario was designed to test the the influence of aggregated motions

on the task of collective transport. Figure 4.1 shows the layout of a small world. In

this world, a team of 5 agents is deployed in random positions inside a small area

in one corner of the world, close to a small bar. This bar is to be transported to a

destination at the other side of a long wall-like obstacle.

Agents were given 2000 simulated time steps to complete the task. Usually

under 1000 steps were sufficient for the agents to find the object and move it to its

intended destination. The maximum speed of the agents was 10 units per time-step

(arbitrary units), with the world being a square of size 1600x1600 and the agent

range of perception of radius 200 and 180 degrees of amplitude. As before, the ad-

vantage of the flocking approach was assessed by comparing the performance with

that of a team of agents of identical architecture and capabilities with the important

exception of not using collective movements. The agents in the independent team

used the same FSM as the flocking team, but did not consider the position or veloc-

ities of their neighbors. Table 4.1 shows the success rate of a team of agents using

aggregated motions over 20 trials, versus the equivalent team of independently mov-

ing agents. These results clearly indicate that agents using aggregate motions have

a definitive advantage over independently moving agents. Notice that aggregate

motions are used in three different phases or states of the task: searching, zeroing in

on target, and moving to destination (once the object has been grasped). The flock-

ing team uses collective movements in all three phases. However, after suppressing

72

Table 4.1: Results of collective transport for teams using aggregated motions vs.
independent motions.

Sociality Success rate

Collective Movements 85%
Indep. Movements 40%

(a) (b)

Figure 4.5: Typical distribution of agents along a piece of product. (a) Collectively
moving agents (b) Independently moving agents (there are four independent agents
present, two on front and two on the back).

collective movements during the moving-to-destination state, while retaining them

in all others, similar results are obtained. This suggests that the importance of the

collective movements comes from the distribution of the agents along the object

during the initial phase of grabbing the object.

Figure 4.5 shows two examples of the typical position of the agents while

carrying an object. In the case of agents using aggregate motions (Figure 4.5(a)), the

agents have allocated themselves uniformly along the object, while the independently

moving agents (Figure 4.5(b)) have a tendency to pile up at the same points. The

most regular, organized distribution of collectively moving agents makes them more

likely to successfully steer around an obstacle since, given that all agents have a

different perception of the obstacle, they will turn at different moments with different

radii, making the object turn more slowly and in a more controlled fashion. On the

other hand, when agents tend to share the same position in the object, as in the

73

Table 4.2: Results of collective transport for a team carrying a heavy object vs. a
single agent moving a light object.

Weight Success rate

Heavy 80%
Light 20%

case of independently moving agents, agents will try to steer as soon as the obstacle

is behind them or out of their neighborhoods, even when most of the object has not

passed the obstacle yet. Additionally, the object will tend to rotate more rapidly

when it is grabbed at only two points as opposed to four. The combination of these

two factors make the independent team more likely to over-steer and crash into the

obstacle, while the flocking team tends to move in a smoothly, controlled fashion,

taking advantage of the distributed sensors of each agent.

To further study this hypothesis and the influence of the geometry and distri-

bution of the agents along the object, a second set of experiments has been designed,

similar to the previous one. In the first case, five agents are deployed as before to

move a slightly heavier object. In the second case, one agent is deployed to move

a five times lighter object. This light object may be moved by a single agent, and

it will move as fast as the heavy object when the latter is pushed by the force of

five agents; however, both objects have the same length (shown in proportion to the

world and obstacles in Figure 4.1). Table 4.2 shows the results for this set of exper-

iments over 20 trials. Although only one agent was strictly required for completing

the task in the case of the light object, the single agent failed to do so 4 times more

often than the 5 agent team moving the heavy object. In most cases, the single

agent crashed the object against the wall, due to the over-steering phenomenon de-

74

scribed before. This shows that a properly coordinated team will perform the task

more successfully not only because the higher number of agents will provide more

brute force, but also because the team can use a sort of cooperative sensing that will

provide the team as a whole with more information than a single agent can acquire

by itself. Notice that in Table 4.2 the success rate of the team has decreased from

85% to 80%. This difference can be accounted for by the fact that the object in

these experiments is heavier. Results not relevant to the current discussion show

that the difficulty of the task increases with the weight of the objects to be carried.

4.4 The Complete Collective Transport Experiment

The previous section described the capacity of aggregated motions to produce

local tactics in self-organized teams. However, I propose that these movements are

also able to produce coordination of the team at a global level based only on the

local interactions among neighboring agents. To study this hypothesis, the collective

transport task above has been extended into a problem that requires the coordina-

tion of the agents at a global level. In the complete collective transport problem,

multiple sources and destinations are present in the world, and a larger set of agents

may potentially split into sub-teams. The goal of the task is to distribute a certain

number of objects, or products, to every destination in the least time possible. As

mentioned before, this implies that agents may use a cross-team strategy to bet-

ter allocate the resources of the team and assign sub-tasks to different sub-teams.

However, since a whole team would usually spread over an area larger than the

75

neighborhood of an agent and there is no central control nor complex communica-

tion, this strategy needs to emerge from the local interactions among the agents and

to be communicated to the team in a similar fashion.

Agents follow the same general hierarchical architecture described before. A

simple extension to facilitate the development of this strategy was made to the

agents: a simple memory was added so that agents could remember the amount

of product already deposited in each destination (to the best knowledge of the

agent). This memory works basically as a table, with the positions of the destina-

tions preloaded in the rows of the table at the beginning of the simulation. Along

with the position of a destination, agents store (individually) the amount of product

present in a given destination and a time-stamp of the moment when the information

was collected. This time-stamp is used as a measure of the accuracy of the infor-

mation, with the most recent information being considered more accurate. Agents

acquire this information by directly counting the amount of product in the neighbor-

hood when they visit the destination, or by exchanging memories with neighboring

agents. This is the most complex form of communication in the system, and consists

of transmitting the content of the memory (amount of product in each destination

plus age of this memory) to nearby agents. When exchanging memories, the more

accurate memories are preserved on a row by row basis, including their timestamps,

and adopted by other nearby agents. Based on this memory, and using the same

FSM and the same reflexive behaviors that were used for the collective transport

task, agents complete this task by using a simple strategy: after picking up the

product, the first agent to reach the object chooses as destination the one with the

76

lowest amount of product already deposited, and agents that arrive at subsequent

times will adopt the same destination. This way, agents try to maintain a roughly

equal amount of product at all destinations by delivering to the destination most in

need first.

4.4.1 Experimental Set-up

In order to study the interactions between agents in the described scenario,

and to determine the efficacy of the adopted strategy, a series of simulations were

performed. Aspects useful in determining the properties and advantages of collec-

tive movements include three factors: (1) Total number of agents in the team. (2)

Communication, in this case there is at one level the agents just described before

that share memories as they encounter each other. At the other level, there are

non-communicating agents. The resulting strategy in the latter case restricts the

cooperation between agents and is useful as a control, although the agents on these

simulations still undergo collective movements. (3) Finally, we are interested in the

effect of collective movements in the resultant global behavior of the agents. There-

fore, comparisons are made between teams of agents that undergo flocking during

the different states, and teams of agents that simply ignore each other positions and

velocities thus moving independently.

As a quantitative measure of behavior and performance, the average time

required for a team of agents to deposit 10 objects at every destination is used.

Notice that in principle there is a simple strategy that requires no coordination at

77

all, consisting of depositing the objects at a destination chosen at random among

all destinations with uniform probability. By making some destinations have more

difficult access than others, and therefore increasing the rate of failed attempts at

depositing, or simply increasing the time required for a successful deposit, this simple

strategy is discarded. A successful team will necessarily have to carry the objects

to the destinations where they are more needed, in order to satisfy the requirements

of 10 objects at every destination in minimum time. Extra objects deposited at a

destination are simply discarded, and they only contribute to slow down the team

working as wasted effort.

A simulation consists of deploying a group of homogeneous agents within a

given area chosen at random in the world shown in Figure 4.6. It is worth noting

that the destination at the center of the world is particularly difficult to access

because of being at the cross point of two narrow hallways. This added difficultly

was corroborated empirically in trial runs. An agent’s maximum speed was set to 10

units per time steps, while the world is a square of side 3000 (arbitrary units). The

maximum neighborhood of agents is 300 units, although they also know the position

of the destinations (but not of the sources). Product pieces are all 60 units in length

and only 5 agents can attach to a product at any given time. The force applied by

an agent is proportional to its current desired velocity, and the force applied by a

single agent pushing at speed 1 is referred to as one unit of force. The force required

to move a piece of product is 12, which implies that at least two agents are required

to move it since agents’ maximum speed is 10. Notice that the velocity of the object

is proportional to the net force applied on it, implying that although only agents are

78

required to move it, it will move faster if several agents push in the same direction.

Simulations end when all four destinations have at least 10 pieces of product or after

100,000 time-steps.

D D

D

D

S S

S S

Figure 4.6: Layout of the obstacles, sources and destinations in a collective transport
world. Sources are spots marked with an ’S’ while destinations are marked with a
’D’.Impassable barriers are indicated by straight lines.

A second set of simulations studied the influence of the size of the product

pieces on the performance of the agents and difficulty of the task. For these simu-

lations the conditions the number of agents was kept constant for all runs while the

size of the product was varied. The condition of only 5 agents being able to attach

79

at any time to a given unit of product was relaxed to allow more agents to carry

longer (and heavier) pieces. The results of each experiment reported in the next

section are the average over 20 runs.

4.4.2 Results

Figure 4.7 shows the time required to complete the task versus the number of

agents. In most instances, 10 agents are not able to finish the task in the alloted time.

Although only two agents are strictly needed to move a product, a unit of product

moved by a team formed by a small number of agents is prone to excessive turning

while transporting an object, and to collide with obstacles, as shown in Figure 4.4.

This in turn decreases the rate of success of transporting a single product which

contributes to smaller teams taking more time to complete the task. When teams

are formed by 25 or more agents, enough agents are already traveling together to

overcome this problem, so adding more agents to the team does not have an impact

as significant as it has for small teams.

Clearly, for sufficiently large teams (over 40 agents), the agents that both

communicate and use aggregated motions outperform the other teams (the dif-

ferences between collectively-moving, communicating team and each of the other

teams for teams of 65 agents are significant at the 95% level according to Wilcoxon

rank sum tests). However, teams that use communication but not aggregate move-

ments achieve a performance comparable to non-communicating, aggregatively mov-

ing agents for sufficiently large teams. This suggests that even teams that do not

80

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 10 20 30 40 50 60 70

T
im

e
(s

te
ps

)

Number of agents

Collective, communicating team
Collective, non-communicating team

Ind., communicating team
Ind., non-communicating team

Figure 4.7: Time required by a team of agents to deposit at least 10 units of product
in every destination. Time is shown with standard deviations.

use aggregated motions benefit from a high concentration of agents.

Interestingly, in the case of agents using aggregate motions, the performance

of the team as compared to its size reaches a plateau after about 50 agents, after

which it could be considered that the world is saturated and the performance will not

improve by adding more agents to the team. However, in the case of aggregating

agents that do not communicate, the performance not only does not improve, it

actually worsens. The lack of communication in this team causes the agents to

hinder the work of each other: agents that possess inaccurate information about

the world, and where the product is needed, tend to carry it to the inappropriate

destination, taking it away from other agents.

This can be better observed in Figure 4.8, which shows the maximum difference

in the amount of product deposited at two different destinations at any point in time

(averaged over 20 trials) for a team of 60 agents using aggregate motions. Ideally, a

perfect strategy would keep this difference at a maximum of 1, implying that product

81

is always delivered to the destination that needs it the most. In practice, it is difficult

for teams to take into account units of products that are in transit. In the case of

the communicating team, this difference increases rapidly in the first steps and stays

at around five for the rest of the simulation. This shows that the team as a whole

stays informed of the state of the various destinations and individual agents can

properly decide where to deliver the product. In simulations, however, it is observed

that different sub-teams will rush product to the same destination at the same

time, causing the difference of about five units of product to one destination over

another, implying that although the information about the general (global) state

of the world is transmitted efficiently, agents do not possess information about the

current actions of other sub-teams. In the case of agents that do not communicate,

the imbalance in the amount of product delivered steadily increases at the beginning

of the simulation and stays as high 20. This implies that a destination is overflowed

with at least 30 units of product although only 10 are needed. This clearly shows

the inefficient allocation of resources by the non-communicating team due to the

outdated information held by each agent.

Figure 4.9 shows the results for the last set of simulations. In these simula-

tions, 60 agents that share memories and flock as described before are required to

perform the same task. The experiment was repeated for different sizes of prod-

ucts. Figure 4.9(a) shows the time agents took to finish the task. As expected, the

time increases with the size of the pieces of product, not only because this pieces

are moved more slowly (due to the increase weight), but also because the problem

becomes harder with the increased difficulty of steering the product around obsta-

82

 0

 5

 10

 15

 20

 25

 0 10000 20000 30000 40000 50000 60000

D
iff

er
en

ce
 in

 p
ro

du
ct

 (
un

its
)

Time (steps

Communicating team
Non-communicating team

Figure 4.8: Results of a simulation for teams of 60 agents. The maximum difference
between the amount of product deposited in any two sources at each time-step is
shown.

cles. Similar results can be observed when varying the density of the pieces while

keeping the size constant. Figure 4.9(b) shows the number of pieces that were not

allocated in a destination by the end of the simulation. This number represents

the pieces that agents tried to move but eventually dropped in some place other

that the intended location, either because they collided with an obstacle or could

not move them for some other reason. The fact that the number of undelivered

pieces increases with their size confirms that the problem becomes harder for larger

pieces. Most interestingly, it can be observed that the number of undelivered pieces

decreases sharply for size 5 and increases slowly again for larger sizes. The number

of agents that can attach themselves to a piece of product is limited by its size

given the tendency of the agents to avoid collisions with other agents. Therefore

larger pieces can be carried by a larger number of agents whose distribution along

the product also gives them essentially different visual fields. These facts allow the

kind of coordination explained in section 4.2.3, making medium-sized pieces easier

83

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 2 4 6 8 10 12

T
im

e
(s

te
ps

)

Product Size

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 2 4 6 8 10 12

U
ni

ts
 o

f P
ro

du
ct

Product Size

(b)

Figure 4.9: Results of simulation for teams of 60 agents with different sizes of
product. (a) Time required to complete the task (shown with standard deviation)
vs product size. (b) Number of undelivered pieces by the end of the simulation
(shown with standard deviation) vs product size.

to transport than short pieces.

4.5 Discussion

The previous chapter showed the feasibility of using the extended particle sys-

tems controlled by a multi-level architecture as a problem-solving mechanism. To

further study the properties and capabilities of the proposed model, this chapter

84

presents a second set of experiments where agents solve different problem. The

collective transport problem extends the difficulty of the first problem not only by

adding obstacles, but also by requiring every object to be transported by more

than one agent. The collectively moving agents proved able to complete this new

task, confirming that such agents can solve more challenging problems. Further,

these simulations showed that simple collective movements can produce coopera-

tion between self-organized sub-teams, as seen for example when a group of agents

coordinated to make a bar-shaped object turn as it went around a corner.

Several approaches have previously been employed in the solution of the ba-

sic collective transport problem [31, 30, 62, 66, 69, 76]. The key difference in the

experiments shown in the first part of this chapter is that agents of the extended

particle systems are capable of solving a basic collective transport problem using

only partial information of the world and no explicit communication, merely by the

use of reactive behavior. That is, no form of coordination or planning except the

essential reactive movements that allow the agents to move in aggregations is used,

yet the interactions among them are capable of implicitly transmitting information,

effectively transforming a team of agents into an array of mobile sensors that co-

operate based on this shared information to navigate the world while collectively

avoiding obstacles and carrying an object.

The second part of this chapter presented a more challenging problem con-

structed as an extension to the first one. The complete collective transport exper-

iment requires agents to transmit information over large areas so as to achieve a

coordinated global strategy by self-organization. As in the previous problem and

85

also the previous chapter, the experiments show that the extended particle system

is capable of producing the necessary team and sub-team global division of labor ex-

clusively through local interactions. However, the experiments also show that agents

who possessed capabilities of local communication performed significantly better at

the task, and were in general better able to achieve an appropriate knowledge of the

conditions of the world, which leads them to developed a more successfully shared

strategy. Since this communication occurs at the local level, these results that sim-

ple, explicit local communication among neighboring agents, in cases when it is

feasible to be added to the agents’ capabilities, can greatly impact the distribution

of information and self-organization process.

86

Chapter 5

Distributed Learning

In this chapter, I extend the model of collectively-moving agents previously

presented, and incorporate distributed learning into the system. In previous chap-

ters we have seen that particle systems with a top-down controller at the particle

level are capable of relatively sophisticated examples or coordination, such as self-

organization in task division and the development of global strategies. To further

study the intrinsic capacities and benefits of such systems, we turn to the question

combining learning with collective movements. In particular, we are interested in

distributed learning, where the independent contributions and adaptations of each

agent or particle are combined through the self-organizing collective behavior to

achieve a global solution to a problem that is beyond the scope of any of the in-

dividual agents. For this objective, a special optimization problem is developed,

inspired by both flow and scheduling in networks and collective transport. This

problem combines the issues of dynamics in the physical (simulated) world, and the

logic, abstract aspects of graph theory. A formal model of the problem is presented,

and a simple learning algorithm, inspired by techniques commonly used in swarm

intelligence, is developed specifically for the model of particle systems described

earlier.

The results of this chapter show that agents can successfully learn to solve

87

the task with a comparatively superior performance, implying that this particular

type of learning is suitable for particle systems. More importantly, agents using dis-

tributed learning outperformed agents using a similar, global learning strategy, in-

dicating that distributed learning, when combined with the self-organizing nature of

particle systems, presents a powerful tool to solve complex problems. Additionally,

the results show that collective movements, or flocking, improve the performance

of the agents, both those using distributed learning and those that do not, provid-

ing more evidence that collective movements offer important benefits for problem

solving, even in contexts where there is no explicit navigational component to the

problem, or where these components are of secondary importance.

5.1 The Logistics Experiment

As a case study for this chapter, I have designed what hereafter will be re-

ferred to as the logistics experiment. Imagine a factory with several stations, each

one manufacturing a possibly different commodity. Each job station requires one or

several commodities as input to produce its own output. A physical distance sepa-

rates the stations, implying that commodities must be transported between them.

This is the job of the agents, specifically teams of mobile agents that move around

the factory floor collecting commodities from some stations and depositing them

in others. Among the stations we distinguish a set of special stations that do not

require any input as sources, representing the external input to the system, and a

set of special stations whose output is not required by any other station as sinks.

88

The sinks output the final products manufactured at the factory and represent the

external output of the system.

The problem consists of maximizing the amount of commodities produced by

the sink stations over time by using the agents to distribute the commodities among

the stations according to the capacities and requirements of every station, and the

demand and availability of commodities.

This problem presents several features that make it particularly suitable for

the study of distributed learning:

• Dynamic conditions in the environment, such as changes in the rate of produc-

tion in some stations, imply agents need to continuously learn and evaluate

their strategy.

• Restricting agents to use only local information about the state of the envi-

ronment, the learned solution needs to be distributed among the agents, since

no agent has knowledge of the whole extent of the problem, and the global

solution is obtained by combined behavior of all agents.

• Agents cannot immediately see the impact of their actions in the solution of

the problem, providing a delayed-reward learning scenario.

As in previous chapters, agents move in a continuous 2D world that, in our

experiments, is simulated to resemble the physical world. The connections between

stations do not represent actual constraints in the physical world, and therefore

the problem of the movement of the agents and the collective transport of objects

remains as it has been treated in Chapter 4.

89

5.1.1 Possible Applications

The logistics experiment in its abstract form, that is, excluding the dynamics

and other issues of movement and coordination in a continuous world and focusing

only in its properties as an optimization problem in graphs, falls into the general

category of sequencing and scheduling problems [64]. In particular, it can be seen as

a problem similar to the generalized job shop scheduling problem, where the com-

modities are jobs that need to be transported between shops (nodes). Traditionally,

jobs require going through all of the shops, each job in a specific order or partial or-

der. In this case, there is a redundancy of shops, in the sense that some of the shops

are equivalent and some of the shops are completely superfluous for some jobs. The

job shop problem is known to be NP-complete in several of its forms [47, 50, 101],

and multiple heuristic and local search techniques have been used in an effort to

find good solutions, such as genetic algorithms [32], tabu search [12, 36], simulated

annealing [104], ant systems [34], etc.

5.2 Modeling

The relationship between the network of stations in the logistics problem can

be naturally modeled as a labeled directed graph, where nodes, representing the

stations, are labeled with the byproducts manufactured by the station, and the

production rate of the station, i.e., the probability that the station will output its

product given that it has received the required sub-products. Edges are labeled

with the distance between nodes. An edge from i to j is present in the graph if

90

the byproduct of i is transportable to j and j may require product from i. In this

context, sources are nodes with no incoming edges and sinks are nodes with no

outgoing edges. Although this graph is not explicitly present in the world in which

the agents move, the agents implicitly know about the location and dependency

relation between nodes, which have been given to the agents and stored in their

memories.

Given this definition of the environment, several diverse strategies are possible

for the agents to distribute the commodities. However, for the purpose of this work,

we will define a strategy as a dynamic probabilistic assignment from agents to edges,

in such a way that each agent a that is not currently transporting commodities, will

choose an edge < i, j > with probability pa
i,j and transport an item from i to j if

one is available (produced by i and not already moved far from it). It is possible

for an item to need to be transported by more than one agent, which affects the

time required for the item to be transported. Notice that by assigning an agent to

an edge, the agent will try to transport commodities between the stations at the

extremes of the edge in the proper direction; however, the agent is not restricted to

move along the edge as the latter is not physically present in the environment.

Therefore, a solution to the problem consists of a set of probabilities pa
i,j(t),

with
∑

i,j pa
i,j = 1, such that the agent a will serve the edge < i, j > with probability

pa
i,j(t) at time t, for all adjacent nodes i and j, where t is an instant in time from

0 to tmax. An optimal solution consists of a set of such values that maximizes the

sum of the outputs of the sink nodes over time.

Considering this model at the macroscopic level, i.e., summarizing the effects

91

of the agents as that of a single agent for a short period of time, we can study the

probabilistic result of a given solution, defined by the strategy described above and

the specification of all the parameters in the model, among which we are specially

interested in the probabilities pa
i,j for all agents a.

Formally, a logistics problem consists of a tuple < G, s, S, M, l, p, r, z, e, c >

where:

G =< V, E > A directed acyclic graph. Where V is a set of nodes and

E ⊂ V × V is a set of edges.

s ⊂ V The set of source nodes.

S ⊂ V The set of sinks, with s ∩ S = ∅.

I The set of intermediate nodes implicitly defined as V − (s ∪ S)

M A set of classes of commodities to be produced, with |M | <∞.

l : E → R
+ A function representing the distances between adjacent nodes.

o : V →M A function representing the classes of commodities produced by

each node.

r : V → P(M) Classes of commodities required by each node, with

r(n) = ∅ ∀n ∈ s.

z : V → (0, 1] Productivity rate of each node, defined as the probability that

a node will produce a commodity at a given time assuming

its requirements are satisfied.

e : R
+ ×R→ [0, 1] Efficiency of a team of agents over a given distance, that is, the

92

fraction of units of a commodity that a number x of agent

can transport over a distance l per unit of time is e(l, x).

c ∈ N
+ Total number of agents.

In the graph G, each node represents a station, while the edges represent the

dependencies among them. The productivity rate models the amount of commodi-

ties a station can produce per unit of time, assuming all of its requirements are met.

The efficiency of a team of agents consists of the fraction of commodities that a set

of agents of a given size can transport per unit of time. This is assumed to be a

continuous function but not necessarily linear nor monotonic, since a large team of

agents present at the same place at the same time could actually result in agents

hindering each other, negatively affecting its performance.

Assuming that at a given instant t in time each agent a will visit the edge

< i, j > with probability pa
i,j(t), and that the time required for agents to travel

between agents while not carrying items is dismissible, the expected number of

agents at edge < i, j > at time t is

E(Ni,j) =
∑

a

pa
i,j

with the fraction of all agents xt
i,j at that edge being

xt
i,j

.
=

1

c

∑

a

pa
i,j

Intuitively, the amount of the output of a source node is simply its productivity

rate, thus vj = z(j), where vj is the output of node j. In the case of intermediate or

sink nodes, the output depends on the amount of required commodities received by

93

the node. If we call σi,j the amount of commodities transported from node i to j,

and m is one of the classes of commodities required by j, we have that
∑

o(i)=m σi,j is

the amount of commodities of class m received by j at a given time. The minimum

over of this quantity over all classes of commodities required by j is the amount of

requisites of j that are completely satisfied. Taking into account j owns productivity

z(j) and putting it all together, the output of node j at time t is defined as

vt
j =



















z(j) if j ∈ s

min
m∈r(j)

{
∑

i:<i,j>∈E∧o(i)=m

σt
i,j}z(j) otherwise

The amount of commodities transported from i to j is a function of the output

of i, vi, the efficiency of the teams of agents assigned to that edge over the distance

between i and j, e(li,j, x
t
i,jc), and the fraction of this commodities that are carried

away from i towards other nodes, 1 −
e(li,j ,xt

i,jc)
P

<i,k>∈E e(li,k ,xt
i,k

c)
. Assuming for simplicity

that this relationship is linear we have

σt
i,j = vt

ie(li,j , x
t
i,jc)

e(li,j, x
t
i,jc)

∑

<i,k>∈E

e(li,k, x
t
i,kc)

Therefore the logistics problem consists of finding the set of values 0 ≤ xt
i,j ≤ 1

that maximize the sum of all vt
j j ∈ S, that is, find

arg max
xt

i,j

∑

0≤t≤tmax,j∈S

vt
j

This sum will be referred as the total output of the network.

For simplicity, the objective function is defined as the total output produced

by all sink stations over time. However, this function considers all sink stations to

94

be equally important and interchangeable, since this maximum can be achieved by

making zero the total production of some stations in order to increase the produc-

tion in others. Although it is not explicitly stated in the objective function and

therefore not required, other things being equal, solutions that do not dismiss or

over-favor some sink nodes are preferred. This criterion will be taken into account

as a secondary, subjective measure of quality of the solutions. Other objective func-

tions are clearly possible, for instance weighted sum of the production, either by

time or node, balance of the flow, number of edges/nodes actively served/exploited,

etc.

Some remarks about the objective function:

• The function is non linear, independently of whether e is linear.

• A feasible solution does not require the flow to be balanced, this is, the sum

of inputs to a node to be equal to its output. However, the optimal solution

is balanced, after considering the production rate of each node.

• It is not necessarily true that a set of values xi,j that maximizes the output at

time t will also maximize the total output. However for practical purposes we

will sometimes consider a static version of the problem as a snapshot of the

network, where the values xi,j remain “frozen” in time.

Additionally, notice that the solution is local and distributed among all agents

in the sense that no agent needs to make a full path from a source node to a sink

node, nor does it need to know what other agents do, although it is affected by

95

Figure 5.1: Example of a closed-loop behavior: Homing. A relative target location
is input to the system. Using the orientation and distance of this location, a de-
sired velocity is then computed (leftmost inner box). The desired velocity is then
combined with the current velocity of the agent and the acceleration at the previous
time-step to output the desired acceleration of the agent in the next time-step.

that. Second, an optimal solution does not necessarily represent a shortest path in

the graph, nor any path in the graph for that matter, but an optimal dynamical

flow, meaning the flow at any given time and possibly the schedule of changes in

the flow, which both balances the flow of byproducts in the graph and exploits the

most productive paths.

5.3 Solution Using Guided Self-Organizing Particle Systems

As further refinement to the ideas presented in Section 4.2.4, an extension is

done on the basic reactive behaviors or forces that control an agent at the bottom

layer, with the intent of letting the basic behaviors deal with more of the additional

complexity of the problem at the dynamic level, in such a way that the top layer

can be used to deal with the higher logic of the problem.

This extension consists of substituting some of the purely reactive behaviors

by simple closed-loop controllers. Figure 5.1 shows such a controller for the case

of the homing behavior. As an undetermined number of agents move an object of

96

undetermined mass to a given target location, the purely reflexive behavior, which

moves the agent in the general direction of the target, might not provide a sufficient

level of control over the movement of the agent in the varying circumstances, caus-

ing the agents to stall even when they could collectively exert the necessary force

to move the object, or to move exceedingly fast, spin out of control, etc. These

aberrant conditions are caused by the fact that agents do not communicate during

the transport of an object, making it impossible for them to compute the net force

being applied on the object, or even whether they are all moving it to the same

target. A closed-loop controller provides the necessary feedback to an agent to self-

regulate its movement in a more controlled fashion without adding more inter-agent

communication. This simple controller will continuously increase the force on the

direction of the desired velocity as long as the current velocity of the agent does not

reach that desired velocity, and continuously decrease the force (or increase it in the

opposite direction) when the current velocity exceeds the desired velocity.

5.3.1 Agents’ Strategy

At the agents’ level, the strategy previously described of probabilistically as-

signing agents to edges is implemented by the scheme depicted in Figure 5.2. The

starting position of the agents has little impact over time and therefore is set at ran-

dom. Agents start in the choose state, in which each agent immediately chooses an

edge to serve according to its own probability table. This table, of the format (pa)i,j

contains an entry for every edge < i, j > in the graph, and its value at position

97

pa
i,j represents the probability that the agent will serve the edge. Each table owns a

table independent from other agents, and the probabilities are normalized for each

agent. The way in which these pa
i,j values are found is specified in the next section.

Once an agent has chosen an edge, that is, a pick up and a drop point, the agent

travels to the pick up point, or tail of the edge. After arriving to this point, it is

possible that no items are available for pick up, in which case the agent will choose

a new edge. Otherwise, the agent will proceed to pick up the item. Notice that

any item present at the station may have already been picked up by other agents,

since an item is considered available for as long as it is in the neighborhood of its

producing station. After this step the agent will try to advance toward the drop

point, or head of the edge, while carrying the item with it. If stagnation is detected,

that is, the agent does not advance for a period of time, the item will be dropped

and the agent will choose a new edge to work on. Stagnation can be caused by

several reasons, among them are the fact that different agents may attempt to carry

the same item toward different destinations, or the item could be too heavy to be

carried by a small number of agents, etc.

Notice that at two states in this process agents have some liberty of movement,

those are the “move to pick up” and the “move to drop point” states. Although

the goal is clearly specified, and the environment is presumed free of obstacles,

agents still have a choice on how to get there. Specifically, there potentially exists

a difference when agents engage in flocking behavior during the state “move to pick

up point”, meaning that agents that have independently decided to go to same pick

up point at about the same time, and execute some form of flocking when in the

98

choose

move to pick up point

edge chosen

pick up

arrived

no material

move to drop point

got material

stagnation arrived

Figure 5.2: FSM of an agent for the logistics problem. States are represented as
globes while transitions are represented as arrows labeled by the event that triggers
them. The initial state is marked by a dot.

neighborhood of each other, obtain a different performance on the task. This will

be discussed in more detail in Sections 5.5 and 5.6.

The solution deals with several details and “nuances” that are not present

in the mathematical model of the logistics problem, such as the time required for

idle agents (agents not carrying items) to move between nodes, the path between

nodes, coordination between agents present at the same station, the presence of

faulty agents, etc. Therefore, this solution is more suitable for a concrete, closer to

the real world implementation than for the model of the problem that only takes

into account the average effect of the agents.

99

5.3.2 Learning Algorithm

In the previous section, the scheme for an agent-based solution was presented

while omitting the details for the process of finding the probabilities pa
i,j of each

agent serving a specific edge, which defines the solution as stated in Section 5.2. In

this section we will present this process.

This process consists of each agent dynamically adjusting its own pi,j values

based on local information available to it, effectively learning the solution on-line.

The learning algorithm is partly inspired by previous algorithms based on insect

societies, specially ants [39, 40, 93]. These algorithms are based on the idea of agents

working on different sections of a graph and communicating by laying pheromones, or

digital markers, to convey information about the solution. In these aforementioned

algorithms the pheromones are assumed to be produced by the agents. In our

case, however, we require these digital markers to be produced by the stations,

transported by the agents and deposited at different stations. Therefore, it resembles

the behavior of bees more than ants and the way such behavior is reinforced by the

presence of pollen rather than ants’ pheromones [26, 27]. Otherwise there is little

resemblance with other processes carried out by bees, for instance agents do not

use explicit forms of message passing or communication as bees are known to do

[23, 106, 89].

Thus, each agent a possesses a table or list pa
i,j of probabilities associated with

each edge < i, j > of the graph (such that these probabilities add to 1), with these

probabilities representing the likelihood of the agent serving a particular edge at a

100

given time. Agents also have a certain amount of pollen, pollena, that can possibly

be zero and change over time.

Pollen in this context represents the demand for a certain commodity at a given

node. It is produced by the sink nodes periodically, that is, each time a fix number

of time-steps pass. It can also be stored in intermediate nodes, carried up to them

by agents. However, a node may have different demands for different commodities

at a given time, therefore a node possesses several pollen storages, one for each

commodity that it may require. This is represented as polleni,k, meaning amount of

pollen stored at node i for commodity type k. Notice that in this notation, polleni,k

is pollen stored at node i, while pollena is pollen transported by agent a.

Given these provisions, the main idea of the learning algorithm, which is shown

in Figure 5.3, works as follows: Initially, all probabilities pa
i,j are initialized to 1

|E|
,

that is, all edges are equally probable. An agent a chooses an edge < i, j > to serve,

transporting items (one at a time) from i to j. Upon dropping the item of type k

(the type of output of i, o(i)) at j, the demand for that item at j decreases, which is

accounted for by the agent picking up pollen from j, or in practical terms, polleni,k

decreases by one unit and pollena increases by the same amount. As node j is being

provided by node i, the demand on i must increase, in other words the demand must

be propagated backwards from j to i. This is accomplished by the same agent a,

depositing the pollen back in node i. However, each item produced by i may require

a whole set of commodities r(i); therefore, a unit of pollen is subtracted from pollena

but a unit of pollen is added to polleni,l for each l required by i. It could be seen as

the agent not only transporting pollen but also inducing the production of pollen

101

by i. However the purpose of this algorithm is not be biologically plausible so these

explanations are not necessary.

Given this situation, pollenj,k represents, at the moment that agent a is serving

< i, j >, the dependency of j from i, so the agent adjust the probability of serving

this edge again by an amount proportional to pollenj,k, or:

pa
i,j ← pa

i,j + α · pollenj,k

where alpha is a proportionality constant, typically between 0 and 1. All probabil-

ities are then re-normalized to keep the requirement that they add to 1.

Notice however that the success of this strategy depends on the agent revisiting

node i, which in principle it is not required to do, since the agent chooses an edge

to serve stochastically after each drop.

For this reason, the algorithm is modified by adding a tendency for an agent

to re-serve the last edge just served. This is, after a drop, the agent will serve the

same edge again with probability ρ, and choose a new edge with probability 1− ρ.

This also introduces other effects, such as the fact that agents will be less likely to

jump in each iteration between opposite ends of the graph, and also that agents

will tend to specialize, revisiting the same edges often. The artifact of forcefully

revisiting an edge is nonetheless not required, as will be seen in Section 5.6.

Two additional actions are still required for the algorithm to work: (1) Prob-

abilities pa
i,j should decrease continuously. This allows agents to gradually ‘forget’

past actions which in turn allows them to learn or explore new actions. This is

102

Learn pa
i,j on-line

INITIALIZATION

for each agent a

∀(i, j) ∈ E pa
i,j ←

1
|E|

choose an edge to serve, aserve to be ei,j with probability pa
i,j

pollena ← 0
next

for each node i

∀k ∈ r(i) polleni,k ← 0
next

LEARNING

repeat

for each agent a currently not carrying commodities
// Keep serving currently selected edge with probability ρ

// or randomly choose a new edge
with probability 1− ρ

choose edge ei,j with probability pa
i,j

aserve ← ei,j

pa
i,j ← δ · pa

i,j

//If carrying pollen, drop it at node
if pollena > 0

pollena ← pollena − 1
for each k ∈ r(i)

polleni,k ← polleni,k + 1
next

end if

if there are commodities at node i

//Carry one item to j, transfer pollen from j to agent
//and update pa

i,j based on pollen remaining at j

carry one item of type k to j

pollenj,k ← max(0, pollenj,k − 1)
pollena ← pollena − 1
pa

i,j ← pa
i,j + α · pollenj,k

normalize pa
i,j for all i, j

end if

next

//Increase pollen in all sinks
for each node i

if i ∈ S

∀k ∈ r(i) polleni,k ← polleni,k + 1
end if

next

until termination condition

Figure 5.3: Learning algorithm for agents in the logistics problem.

103

accomplished by decreasing pa
i,j each time the edge < i, j >,

pa
i,j ← δ · pa

i,j

where δ is a forgetting factor, between 0 and 1. (2) For similar reasons, pollen in

nodes should periodically decrease, allowing the agents to quickly adapt to changes

in the conditions of the demand of commodities by the node. In order to accomplish

this, pollen possesses a predetermined life time after which it will disappear, meaning

that nodes discard pollen that has remained in them for too long. In practice, each

‘unit’ of pollen is associated with a counter, initially of value zero, that increases

at every time-step, and the unit of pollen is discarded when the counter reaches

a predetermined threshold. This also prevents ever increasing amounts of pollen

to accumulate in a single node which would cause aberrant effects on the learning

process.

5.4 Heuristic Search

As a control measure, a well known standard heuristic search optimization

technique is used, namely simulated annealing [61], to solve the macroscopic problem

described in Section 5.2, and then apply the resulting xi,j values to the simulated

microscopic system to find the total output of the network under the given solution.

To reduce the solution space and simplify the search process, that is the space of

all xt
i,j , the problem is simplified to a static version of it, where the probabilities

pi,j are fixed along the whole time interval [t0, tmax]. Under these circumstances,

104

maximizing the total output becomes equivalent to maximizing the instantaneous

output at an arbitrary instant in time. Additionally, all agents are required to use

the same value pi,j . In summary:

xi,j = xt1
i,j = xt2

i,j ∀t1, t2 : t0 ≤ t1, t2 ≤ tmax

pa
i,j = xi,j ∀a ∈ Agents

Given these conditions, the problem becomes easier to solve for a heuristic

local search method. However, this is due in part to the reduction in the size of

the search space, which is not guaranteed to preserve the optimal solution. This

is, an optimal solution for the static problem may be a suboptimal solution of

the dynamic problem. Additionally, at the macroscopic level there is no difference

between specialization and no specialization, or whether all agents use the same

probabilities pi,j. However, when this solution is translated to the microscopic level,

specialization may be a factor that affect the quality of the solution. Nevertheless,

the fact that heuristic search optimization methods use full knowledge of the global

value of the objective function may compensate for these disadvantages. Thus,

although solving the static problem is not an entirely fair comparison, it provides

a base control as reference for evaluating the quality of the solutions found by the

agent-based method.

From the array of heuristic optimization methods available [68, 78], simulated

annealing was chosen [61, 103] for its simplicity and ease of obtaining acceptable

results without the need for extensive parameter adjustments in comparison with

105

other techniques [3].

In order to use this method, it is necessary to define two important aspects of

the heuristic: (1) representation of a candidate solution and (2) local variation of

a solution. A solution is represented as the matrix of values xi,j, with xi,j ≥ 0 and

∑

0≤i,j≤|V |

xi,j = 1. For all edges < i, j > not present in E, the value xi,j is equal to

0. A local step or variation of a candidate solution consists of disturbing each value

xi,j with probability p, where a disturbance is defined as adding a random number

with zero-mean Gaussian distribution, and then normalizing values to comply with

the restrains previously mentioned.

With these definitions, the search proceeds according to the simulated anneal-

ing algorithm, that is: an initial solution is generated at random and assigned as the

current solution and its value v computed. Then, at each iteration, the current solu-

tion is disturbed and its value v′ computed. The new candidate solution is accepted

as the current solution with probability whenever it is improvement, otherwise is

accepted with probability

p(v, v′) = e
v−v′

T

where T is a parameter initially set to a high value and then decreased gradually.

The value v of a solution is defined as K/total output, where K is a proportionality

constant.

This form of finding a solution through simulated annealing will be referred to

as static learning since it uses a static version of the problem, and once the values

106

xi,j are found they remain fixed, as opposed to the learning algorithm described in

the previous section, that will be referred to as dynamic learning.

5.5 Experimental Set-up

The system previously described was tested in simulations. Each run of a sim-

ulation consists of randomly placing a team of agents in a squared two-dimensional

world that contains all of the stations in the problem. The simulation is then run

for a predetermined period of time and the total output of the network is recorded.

As in previous chapters, the simulations advances in discrete time steps.

The world is padded with open space surrounding the stations in the bound-

aries. The agents have prior knowledge of the position of the nodes and the con-

nections among them, but are free to move through any continuous position inside

the world. The minimum distance between two nodes, whether adjacent or not, is

two times the size of the perceptual neighborhood of an agent and at least ten times

the distance at agent can cover in one time step at maximum speed. All distances

are measured in arbitrary units. The nodes or stations are considered to occupy a

single point in space. They instantaneously absorb an item when this item is both

in the vicinity of the node and moving slower than a threshold speed. In a similar

way, commodities produced by a node are instantaneously placed at the position of

the node. Building upon the ideas presented in Chapter 4, items are represented as

2D boxes that can be transported by one or multiple agents. These boxes have a

uniform density and, accordingly, a weight proportional to their size. The speed at

107

which boxes are moved, and the ease of controlling them, is dependent on several

factors, including shape, weight, number of agents transporting them, and point of

contact between the agents and the boxes. However, for simplicity, the condition

of collision avoidance is relaxed, allowing boxes to interpenetrate and go through

each other. This is done in order to reduce the complexity of dealing with traffic

at the nodes, both incoming and outgoing. This does not completely eliminate the

problems, since there still remain situations, particularly in the case of outgoing

traffic, when a box may be simultaneously picked up by several agents, possibly

with different goal destinations.

For the experiments presented in the next section, several instances of the

problem, represented by different graphs, were tested. The first ten instances, shown

roughly in order of difficulty as judged by the number of nodes and other qualitative

factors, are depicted in Figure 5.4. These simple cases were designed by hand and

have the advantage of being small enough to allow a reasonable understanding of

their properties and the properties of the solutions found just by mere inspection.

Additionally, these cases are designed to present specific properties in terms of the

type of optimal solution that may be found. These issues will be addressed in Section

5.6 when discussing the results.

An additional set of randomly generated graphs was also used, presented in

Figure 5.5, again in order of difficulty according to number of nodes. Theses graphs

are layered networks with a directed path from every non-sink node to a sink node.

The number of intermediate nodes (neither source nor sink) is 16 or 36 for each

graph. In each case a node may require up to 5 different commodities in order

108

to generate its product, and a single type of commodity may be provided to it by

several nodes. All instances are guaranteed to have a valid solution, in the sense

that the requirements in every non-source node may be satisfied from its incoming

connections.

5.5.1 Factors

Following the methodology of previous chapters, the relative performance of

the collective-behavior approach was studied by comparing it to the behavior ob-

tained by using the same architecture while excluding some of its properties, notably

properties such as flocking or collective-moving behaviors. Thus, for the experiments

in this chapter we identified the following relevant factors:

• Sociality. As was mentioned before, during the states “moving to pick up”

and “moving to drop”, although agents possess a defined goal or destination,

they still have the liberty to adopt different tactics to arrive there. Of particu-

lar interest is the case of adopting collective-movement, or flocking, behaviors.

In the situation of using flocking, agents will engage in a collective movement

with nearby agents if those are present. Agents are still free to break apart

from other agents. This can be caused by the agents moving to different des-

tinations, but can also be the result of the emergent nature of flocking as

described here; for instance, agents may leave a flock to join other flocks or

when the flock suddenly distances itself from the agent. Agents do not need to

be in the same state to perform this flocking. For instance, an agent moving to

109

0 1 2

3 4 5

6 7 8

9

Figure 5.4: The graphs of 10 simple problems designed by hand. Graphs are num-
bered subjectively according to their estimated difficulty based upon the number of
nodes and other factors they involve. Nodes on the left side of a graph are sources,
nodes on the right side are sinks, with all others being intermediate nodes.

110

16-1 16-2 16-3

16-4 36-1 36-2

36-3 36-4

Figure 5.5: Graphs of randomly generated problems. Graphs are numbered N-M
according to the number of intermediate nodes N and an arbitrary label M. All
nodes on the left side of a graph are sources, nodes on the right side are sinks, while
all others are intermediate nodes.

a pick up point may tend to follow, or align itself, to agents that are carrying

an item. This flocking behavior is subordinated to the homing behavior that

drives the agent toward its destination, meaning it has a lower priority and

eventually the agent will arrive at its target point regardless of the movement

of its neighbors. Therefore, two possibilities are available for the sociality of

an agent: flocking, as just described, and independent, where agents move

without ever letting the movements of their neighbors affect their own.

111

• Adaptability. To study the efficacy and efficiency of the learning strategy

described above, the method to acquire and adapt the probabilities pi,j of vis-

iting a node that ultimately determines the behavior of a team of agents as a

whole in this task, we compared the learning algorithm against the simplest

strategy of visiting each edge with equal probability, keeping the probabili-

ties constant during the entire length of the simulation. Since this strategy

does not present any kind of adaptation in time nor adjust to the charac-

teristics of the particular instance of the problem, it will be referred to as

non-learning, as opposed to the aforementioned adaptive strategy, referred as

learning. Additionally, according to the discussion in Section 5.4, one other

strategy is tested, consisting of finding a solution to the static problem em-

ploying standard heuristic search, and then using the values found this way

as the probabilities for each edge to be visited during the simulation of the

dynamic problem. This strategy is referred to as SA.

In summary, the main factors to be considered are: sociality, with levels of

flocking versus independent; and adaptability, with levels of leaning, non-learning,

and SA. Additionally, some of the experiments described in Section 5.6 study the

effect of the number of agents in each team.

5.5.2 Parameters

For all of the experiments below, boxes or commodities are considered the

same shape, size and density. The time of a simulation was set to 40,000 time-steps

112

for the small (hand-generated) cases. The time for the large cases was 80,000 and

160,000 for graphs of 16 and 36 intermediate nodes, respectively. When interpreting

this time, consider that a non-carrying agent requires at least 10 time-steps to travel

the distance between two nodes at maximum speed. The size of the world was 1200

units for the small cases and 1400 and 1800 for the large cases. Agents’ max speed

was set to 10 units, and maximum perceptual neighborhood to 100, all these units

being arbitrary. The production rate of source nodes is constant at 0.005 items per

unit of time, or one item every 200 steps. The production rate on intermediate nodes

is 0.1 for small cases and a random but constant number in the range [0.001, 0.1]

for the large cases. Regarding the number of agents in each team, it is clear that

this greatly affects the result of simulations. Preliminary experiments showed, as

expected, that for too small or too large teams, there is no difference between the

possible strategies or solutions, because the number of agents is either too small

to have significant performance, or sufficiently large to saturate the environment

to the point where any strategy that visits every edge with probability larger than

zero will perform equally well. A team size where a consistent difference occurs for

the strategies explored was empirically found and set constant; this value is 3 for

the smaller cases (0-5), 20 for the remaining hand-crafted cases (6-9), and 160 and

500 for the 16-X and 36-X cases respectively. Finally, additional parameters for the

algorithm presented in Figure 5.3 are ρ = 0.9, δ = 0.99, α = 0.5 and max. life of

pollen = 3000 steps. The agents move under the forces of four basic behaviors, as

presented in Table 5.2.

113

Table 5.2: Parameters for Movement Behaviors.
Movement Behavior Velocity Component Priority r α

Alignment 1 150 180o

Distance 2 75 180o

Flocking Cohesion 3 200 180o

Homing 4 - -
Distance 1 75 180o

Carrying Homing 2 - -

5.6 Results

Figure 5.6 shows the total output for each of the different strategies for the

hand-crafted graphs (also summarize in Table 5.3). As a first observation, notice

that for the cases 0-5 there are no significant differences (at the confidence level of

95%) between learning and non-learning. Non-flocking teams perform slightly better

than their flocking counterparts. However, the number of agents in a team (three),

might be too small to draw any real benefit from flocking, while spreading agents

across the world might result in a more effective strategy. Preliminary empirical

trials show that for a larger number of agents, even as small as five, the teams manage

to achieve a total output close to the maximum possible (150, given the parameters

of the experiment), regardless of the sociality or adaptability, indicating that the

graphs are simple enough that any strategy that causes the agents to serve each edge

with frequency larger than zero will be equally effective. For smaller teams, however,

small differences appear between sociality, and in some cases between adaptability.

In the case of the problem 3, for instance, the non-flocking/non-learning teams show

a slight adventage over the SA teams. In general, for problems 0-5, all strategies

and combinations of sociality/adaptability are roughly equally effective, reflecting

114

Figure 5.6: Total output for hand-designed problems after a given period of time
for all 6 strategies. Results shown are the average over 20 runs.

the simplicity of the problem.

The same is not true for more difficult instances, graphs with multiple sources,

as shown by cases 6-9. For cases 6, 7 and 9, there is an advantage, statistically

115

Table 5.3: Total output after a given period time for all 6 strategies. Values are
the average over 20 runs for each case/strategy, standard deviations are given in
parenthesis. Abbreviations are f. for flocking and l. for learning.

Case Strategy
f./l. f./no-l. no-f./l. no-f./no-l. f./SA no-f./SA

0 114.2 (12.6) 114.0 (7.2) 126.6 (7.7) 124.1 (6.1) 101.8 (11.5) 115.3 (9.7)
1 113.6 (15.7) 114.6 (12.1) 122.3 (15.4) 121.1 (8.6) 104.5 (10.3) 112.9 (8.6)
2 83.3 (33.3) 92.9 (6.3) 85.5 (27) 79.4 (12.6) 83.4 (7.2) 83.8 (6.7)
3 65.6 (27.5) 73.3 (11.0) 79.3 (20.6) 86.3 (5.7) 66.0 (11.6) 64.7 (6.7)
4 10.1 (10.4) 37.9 (7.3) 11.7 (10.2) 40.3 (8.4) 17.8 (9.7) 22.5(14.0)
5 82.9 (26.9) 79.5 (14.6) 86.8 (21.9) 78.1 (8.9) 76.3 (10.5) 77.4 (12.6)
6 330.4 (13.5) 294.6 (17.3) 299.0 (9.3) 255.0 (11.0) 188.5 (4.9) 172.4 (3.3)
7 269.7 (10.7) 251.1 (12.9) 240.1 (12.9) 212.7 (24.5) 145.8 (0.9) 144.1 (2.6)
8 30.6 (11.4) 35.8 (6.1) 41.8 (18.9) 35.6 (4.9) 56.7 (4.6) 46.3 (4.4)
9 35.1 (16.9) 17.5 (3.7) 20.0 (8.1) 15.8 (2.9) 36.9 (4.9) 38.8 (2.9)

16-1 83.4 (17.2) 51.1 (7.0) 79.7 (14.0) 49.7 (9.0) 25.1 (4.3) 20.4 (3.9)
16-2 18.3 (5.7) 12.9 (2.7) 16.3 (5.7) 12.1 (3.4) 18.9 (2.2) 15.8 (2.8)
16-3 77.9 (13.7) 33.1 (3.3) 54.1 (17.5) 33.1 (5.1) 20.7 (5.5) 18.3 (4.5)
16-4 33.0 (13.4) 28.5 (4.5) 29.0 (11.0) 27.0 (3.3) 21.0 (4.6) 21.4 (4.0)
36-1 8.3 (2.5) 5.5 (2.0) 8.8 (4.0) 5.5 (1.9) 9.7 (2.0) 4.9 (1.7)
36-2 14.7 (5.0) 2.4 (1.2) 12.0 (3.1) 2.0 (1.2) 7.9 (2.8) 5.0 (1.8)
36-3 12.7 (3.4) 10.2 (2.2) 12.3 (3.6) 9.8 (1.1) 1.6 (1.0) 0.8 (0.8)
36-4 1.4 (1.0) 0.7 (0.7) 0.3 (0.5) 0.7 (0.8) 0.7 (0.8) 0.5 (0.5)

significant at the 95% level according to a Wilcoxon rank-sum test, for the flock-

ing/learning team versus all others, with the difference being more prominent for

cases 6 and 9. In case 8, once again no differences are observed between the learning

versus non-learning strategies, but the SA strategy outperforms them.

From these 10 cases, it seems that the learning strategy provides a considerable

advantage for instances of the problem hard enough to benefit from it. At the same

time, for these same instances, flocking proves also to be effective in facilitating

performance of the task. The static learning strategies, SA, perform equal or worse

than the other strategies in all but two cases, cases 8 and 9, suggesting that the

changing conditions of the environment and other dynamic aspects of the problem

116

Figure 5.7: Total output for randomly generated cases using each of the 6 strategies
for a given period of time. Results shown are the average over 20 runs.

render this type of approach impractical, even though it has the advantage of global

knowledge during the initial phase of learning.

There is no evidence of interaction between sociality and adaptability, accord-

ing to a two-way analysis of variance, in any of the 10 cases. This suggests that,

at least for the hand-crafted problems, learning and flocking have no effect on each

other and can be used independently to improve the performance of any strategy.

This tendency is more clearly shown in the randomly generated cases, as de-

picted in Figure 5.7 (also summarized in Table 5.3). For 6 out of 8 graphs tested,

117

the learning agents proved more effective than their non-learning or static learning

counterparts, with the difference always being statistically significant, and in some

cases dramatic, as in graphs 16-1, 16-3 and 36-2. In the same way, flocking agents

also showed a clear advantage, outperforming the non-flocking teams in each case.

However, learning seems to be the most important factor in the performance of the

team, as non-flocking/learning teams were superior to flocking/non-learning. This

results in the flocking/learning team being the overall winner across all the cases

tested except one, with the non-flocking/learning team as the second best in terms

of total output. However, as the proportion of the advantage varies largely according

to the case, it is not clear how the amount of the advantage can be generalized or

estimated before hand. In fact, this variation does not seem to be related with the

size of the problem, making it impossible to conclude whether the learning agents

will have a greater or smaller advantage on larger problems. Nevertheless, it is clear

from the randomly generated cases and the hand-crafted cases that the learning

algorithm proves most effective for medium and large size problems.

As was for the case on the hand-crated instances, the static learning algorithm,

in the form of SA performed the worst of all the strategies in most cases, with flock-

ing/SA agents having no statistically significant differences from flocking/learning

agents in only two cases (16-1 and 36-1). As with other adaptation strategies, flock-

ing agents perform equal or better then non-flocking agents, although the difference

is smaller than it is in the case of learning agents.

Once again, the disadvantage of the SA teams suggests that static, global

learning presents some limitations as all agents are forced to share the same policy,

118

as opposed to dynamic, local learning which allows agents to specialize in small

areas of the problem and to dynamically change policies, working different areas of

the problem at different times, which can be useful as commodities might propagate

through the graph at different rates in different moments of the simulation.

Except for case 16-3, there is no significant interaction between sociality and

adaptability, according to a two-way ANOVA. In case 16-3, there is a positive in-

teraction as flocking and learning increase each others effect.

5.6.1 Entropy

As mentioned before, one of the quality measures of the solution, that is not

an explicit goal of the algorithms presented here, is the distribution of commodity

products among all the sink nodes, that is, not only maximizing the total output,

but also minimizing the difference between the output of each sink. To formally

measure this value, Shannon’s definition of entropy is used [90]. Consider that at

a given point in time during the experiment, an item will be produced by any of

the sinks, and we tried to predict which sink will produce it. Entropy in this case

represents the randomness or unpredictability of which node will produce an item,

being at its highest when all sinks will produce an item with equal probability, that

is, when the total production is perfectly distributed among all sinks.

Shannon’s entropy is defined as:

H = −
n

∑

i=1

p(i) log2 p(i)

where n is the number of sinks and p(i) the probability that a produced item will

119

9 16.1 16.2 36.1 36.2

flocking/learning
flocking/non−learning
non−flocking/learning
non−flocking/non−learning
flocking/SA
non−flocking/SA
max

Problem Number

E
nt

ro
py

 (
bi

ts
)

0.
0

0.
5

1.
0

1.
5

2.
0

Figure 5.8: Final entropy in sinks for problems with multiple sinks, shown with
maximum theoretical entropy. Values shown are the average over 20 runs.

be produced by the ith sink. The probabilities p(i) are estimating using output of

each sink by the end of the experiment, assuming for simplicity that this probability

remains constant at all times. Although this assumption is unlikely to hold, it is

of little importance as we are concerned only with the entropy over long periods

of time, and more specifically with the final entropy, or entropy at the end of the

experiment.

Figure 5.8 shows the final entropy for all the cases studied with multiple sinks.

It shows the entropy for each combination of the strategies according to socia-

bility/adaptability, and also the maximum possible entropy, when the output is

perfectly evenly distributed among all sinks.

120

From these results it is clear that the static learning methods tested tend to

produce poor results in terms of the entropy in the sinks. This is due to the fact

that the algorithm prefers to maximize the output by allocating all agents to a single

“distribution path”, or the path required to supply a single sink node. As shown

in the previous set of results, this strategy does not result in optimal or superior

performance relative to those produced by dynamic learning, and has the effect of

essentially ignoring all but one of the sink nodes, which causes an entropy of zero

in some of the cases. Regarding the non-learning and dynamic learning strategies,

the results are mixed, with both learning and non-learning producing similar values

of entropy. It is important to notice that, in principle, it would be expected for the

non-learning strategies to produce the higher entropy, since a uniform distribution

of the agents could produce a similar distribution of the output. However this is

not the case, as shown by problem 36-1 and especially problem 36-2, where learning

agents obtain a distribution of the output of considerably higher entropy. This is

an indication that the learning strategy tends to distribute the agents in a way that

gives roughly equal importance to all sinks. The usefulness of the flocking behavior

in this respect seems to switch from case to case, making it difficult to determine

its actual role, although it has an influence in the result.

As seen in the results presented before, the dynamic methods posses a defini-

tive advantage over the static learning. One limitation of the static learning method

that may lead to this difference is, as explained above, that the dynamic methods

allow changing the strategy or pa
ij values of each agent over time, causing the team

to reallocate resources differently at different stages of the problem. A second differ-

121

ence between dynamic and static learning is the fact that the static methods force

all agents to follow the same assignment of edges by setting the pa
ij values identi-

cally among all agents. In contrast, dynamic learning allows each agent to have a

potentially different assignment of edges, which would result in the specialization

of agents that service certain parts of the graph with higher probability than other

agents, possibly forming sub-teams. This in fact is the case in the simulations run.

Figure 5.9 shows the results for a random run of the flocking/learning team on the

problem 9 using 40 agents. The figure depicts the values pa
ij for each agent on a given

time of the simulation. It can be observed that 12 clusters have formed (evidence for

this number of clusters was calculated using the average silhouette value of the pam

clustering method). These clusters basically separate the 40 agents in 12 sub-teams,

each sub-team taking care of an average of 3 edges with a probability higher than

0.8, and the other edges with very low probability. Notice that this specialization

occurs spontaneously as a consequence of the self-organizing nature of the system.

This may provide several advantages, for instance: by allowing sub-teams to allocate

themselves to small parts of a graph, a large graph can be subdivided into smaller

pieces that make the problem more manageable for the agents as a whole. Also,

by restricting themselves to a subset of edges, agents limit the distance traveled in

comparison with agents that need to cover the whole graph.

122

a) b)

Figure 5.9: Probability of each agent serving an edge on a single run on graph 9 after
40,000 time-steps of flocking and learning (a) or flocking and SA (b). Probabilities
pa

ij are shown as gray tones in a matrix, with white being zero and black representing
one, where each row represents an agent and each column represents an edge, giving
a 40x22 matrix. Edges and agents has been arbitrarily enumerated to facilitate
comprehension of the figure. Before any learning is performed, all probabilities have
the same value, which would initially make these plots uniformly gray.

5.7 Discussion

This chapter presented a clear example of the application of collective move-

ments and particle systems involving learning. In particular, we have shown how

the extended particles discussed throughout this dissertation can be directly applied

to problems of distributed learning. Working under the hypotheses that collective

movements or flocking can effectively contribute to solve problems that require both

local, navigation coordination and global strategies in an abstract space, and tak-

ing as a case study a problem that combines the dynamic difficulties of cooperative

transport and the higher-level problem-solving features of logistics, we developed a

simple model that can be built directly into the architecture presented in previous

chapters, and presented a series of experiments that show several benefits of this

123

approach.

For this, a simple distributed on-line learning algorithm, partly inspired by

swarm intelligence techniques, was developed and incorporated in a straight forward

manner into the existing agents, showing in this way the flexibility and extensibility

of the approach. The resulting system was then compared through a series of exper-

iments with a similar system using instead static, global, off-line learning through

well known, general combinatorial optimization algorithms. Although in principle it

could be expected that the off-line system would produce a better performance, given

its use of global knowledge, the results show the opposite, the on-line distributed

learning performs significantly better in most non-trivial cases.

It is not claimed that the particular learning algorithm used in this chapter is

optimal or near-optimal for this particular problem, either in the on-line or off-line

case. Instead, our focus is to show how learning can be readily incorporated into sim-

ple collectively moving agents, producing a form of distributed learning that enables

the agents to solve problems that require a higher level of coordination to achieve

a global solution using exclusively local interactions. Additionally, although no sig-

nificant interaction was found between learning and flocking, collective movements

proved, as in previous chapters, to improve the general performance of the system,

in some cases by a wide margin, showing once again that collective movements are

not exclusively useful to coordinate movements in basic navigational tasks, but that

they can also be exploited to produce coordination in more general problem-solving

contexts.

An important property of the learning model when applied to the particle

124

system paradigm, as shown by the experiments for all non trivial cases, is special-

ization. If serving a particular edge in the logistics problem is considered as an

individual task, agents will automatically and autonomously self-assign to different

tasks, and during the course of learning will acquire a high propensity to perform

the same task of a set of tasks while leaving the rest to other agents, thus becoming

in a sense specialized. Although it is expected from the agents to show propensity to

repeat some tasks, since this is encoded in the learning algorithm, it is noteworthy

that a team of agents do this while distributing the tasks among its member so to

guarantee that all esential tasks are acomplished, and that certain tasks get assigned

higher numbers of agents according the requirements of the task. This specializa-

tion of the agents implies that the solution found by the system is truly distributed

among the agents, with each agent holding only a small piece of information about

the whole solution, which can only be reconstructed through the interactions of all

the agents. This distribution of the information contributes to the scalability of

the system, and also to its tolerance to failure: since the solution is formed by the

combination of the information held by several agents, a small number of ‘wrong”

agents, containing outdated or otherwise incorrect information, will not significantly

affect the solution.

Finally, additional improvements could be made to better exploit the special-

ization of the agents. Although there is no evidence that the edges served for a

cluster or sub-team of agents are topologically related, the learning process could

be modified to increase the probability of these clusters forming on sets of nearby

edges, minimizing the distance agents need to travel between edges and increasing

125

the efficiency of the system. Also, the fact each agent would serve certain edges with

low probability (although the same edge could be served with high probability by

other agents), implies that agents do not need to keep a table with the probability

for each and every edge. Edges with low probabilities could be dropped entirely

from the memory of the agent, reducing the amount of memory required for each

agent and possibly simplifying or accelerating the learning.

These results, in addition to the experiments presented previously, show fea-

sibility and some of the benefits of combining distributed learning and collective

movements to solve learning problems that require coordination far beyond nav-

igational tasks, and to achieve a global solution by using local information and

interactions.

126

Chapter 6

Discussion

Previous efforts to exploit the many advantages of particle systems have faced

the problem of these systems being hard to control or predict. It has been expressed

that often they “seem to have a life of their own” [81]. This is not surprising

since many of their features have been inspired by biological systems and incorpo-

rated specifically for the purpose of simulating life. Perhaps paradoxically, most of

the systems found in the literature in particle systems are also of great simplicity,

maybe due to the fact that particle systems were originally created for the modeling

and simulation of entities with relatively “simple” behaviors, such as fire or smoke.

These two characteristics have greatly contributed to limiting the extent to which

particle systems are utilized as a problem solving technique. With the exception

of numerical optimization, most successful applications have been restricted to the

fields of computer graphics and video games, with the goal of animating a group

of characters that move, imitating a flock, soldiers in formation, etc. However the

multiple benefits of the approach still make it an attractive tool in the construction

of multi-agent systems.

In this dissertation, I have proposed that particle systems can be extended,

without loosing their key features, into systems with general problem solving ca-

pabilities. The resulting systems can perform tasks of interest beyond the fields of

127

computer animation of collective movements and formation keeping in robotics, and

effectively use aggregated movements and other features of swarm intelligence as

essential components of the system and its ability to perform the task. As this kind

of “guided self-organization” approach has previously remained largely unexplored,

one of the goals of this work was to find a suitable set of tasks to exemplify and

evaluate such system, as it is clear that not all multi-agent problems actually benefit

from extra coordination or aggregated movements. The main goal of this thesis was

to develop a mechanism to guide the self organization of particle systems, and utilize

collective movements as a mean to achieve non-strictly-navigational coordination in

problems that require or benefit from cooperation, exploiting this self-organization

to allow teams of simple agents to solve tasks in a coordinate fashion using only local

information and a minimum of communication, and to study the conditions under

which such collections of agents moving in aggregations present any advantage over

regular, independent agents.

These aggregated movements and collective behaviors are caused by local in-

teractions, produced among the agents in the system by the combination of a few

simple behaviors, namely cohesion, separation, avoidance and alignment, enhanced

with behaviors specific to certain tasks such as homing, seeking, grabbing, dropping

and the exchange of simple memories with local neighbors.

Through simple extensions to traditional particle systems, I have presented a

method for guiding or controlling self-organizing systems, allowing them not only to

perform more complex, goal-oriented tasks that may include pursuing a long-term

goal that requires the successful completion of shorter goals or tasks, but also utilizes

128

the aggregated movements of agents as a mechanism of local communication that

can substitute for explicit communication in some cases, and as a mechanism for

achieving coordination, both at the local level, when a small team of neighboring

agents need to cooperate to jointly perform a task, and at the global level, when

several sub-teams of agents need to self-assign different tasks and develop a shared

global strategy, based only on the local information possessed by each agent. This

is achieved by allowing and employing the self-organization of the system via local

interactions, and guiding this process through the use of top-down influences, while

retaining its original self-organizing nature by not allowing at any moment global

or centralized control.

Although the modularity and extensibility of these systems allows this ap-

proach to be adapted with minor modifications to several problems, it remains

difficult to adapt the system, given the unpredictability of self-organizing particle

systems. This is, although the introduced methods present a way to guide the self-

organizing process, this method still involves design decisions and parameter tuning

that can prove difficult or tedious to perform in the general case for the (human)

designer of the system.

6.1 Extending Particle Systems

Since their introduction in 1987 [81], the model of behavioral flocking, or

collective movements in particle systems, proved to capture the complexity of several

biological systems in a manner that was both simple and efficient. Ever since,

129

researchers have been inspired by this model as a clear example of self-organization.

By following simple rules that require only local interactions between neighboring

agents, large groups of agents can coordinate in a robust manner that results in the

whole crowd of agents moving or behaving in a coherent, synchronized way, acting

loosely as a single organism that is capable of quickly reacting to the environment,

splitting around obstacles, smoothly joining other groups of agents, in a manner

that is insensitive to the number of agents present. The model has been afterwards

employed in several other applications, ranging from artistic creations in computer

animation to unmanned military vehicles that travel in formation. The model has

also been extended following the inspiration of social human interactions, resulting

in a simple, well-known numerical optimization meta-heuristic [41, 59]. However,

beyond this abstract application to numerical optimization, other applications have

so far remained in the field of formation keeping, whether in military scenarios,

animal and insect societies or even human crowds. In this thesis, I have proposed

that this model of aggregated movements cannot only create flocking-like behavior,

but that this flocking behavior or coordinated movement itself can create higher

levels of organization that are useful in general problem solving.

In this dissertation, I have explored the question of whether self-organizing

particle systems can be extended to exhibit more general behaviors. Specifically,

the hypothesis was that by giving the normally purely reflexive agents found in

particle systems a few behavioral states, a simple finite state transition graph that

governs state changes, and a simple memory of locations of significant objects that

are encountered, the resulting agent team would have the ability to collectively solve

130

problems requiring cooperation, competition, sharing of information and develop-

ment of global strategies by agents that only interact locally, and the pursuit of

several goals in a logical, coherent manner. In this scenario, individual behaviors

are implemented by letting each state of an agent be associated with both a different

goal and with a corresponding set of parameters that influence the individual agent’s

movements. This effectively couples the collectives’ goals to different movement dy-

namics. Under such conditions, where state changes are triggered by environmental

events and the states of other nearby agents in a way that retains the local nature

of information processing in particle systems, one would anticipate the emergence

of problem-solving abilities by an agent team as a whole.

As shown in this thesis through several systematic evaluations, collective move-

ments can quickly and robustly transmit information over large areas without the

need for explicit communication, allow agents to dynamically split or join sub-teams

for different tasks according to the environmental situation, produce division of la-

bor and spread knowledge of the environment through large areas and periods of

time. They allow agents to develop global strategies even though any single agent

possesses only local, limited information, and they also allow teams of agents to

implicitly share information that allows for a sort of cooperative sensing that makes

the agents act in coordination as by a concerted strategy even though each agent is

acting in a purely reactive fashion.

All these features, considerably useful in multi-agent systems, were obtained

by a relatively simple extension to the architecture of interacting particle systems

that has not been used before in distributed problem solving in this fashion, and that

131

allows incorporation of collective movements for the first time as a tool and essential

component that permits a more general problem solving system. This represents a

step in the path towards guiding self-organizing processes into goal-oriented, multi-

step procedures that performs a given task. This is a critical point in making use of

swarm intelligence and self-organizing systems as a general purpose methodology,

or a new model of computation for distributed adaptive problem solving, capa-

ble of solving problems whose complexity makes them intractable to traditional

approaches, or where the cost of traditional methods makes them prohibitive as

compared to the relatively cheap, simple components of swarm intelligence systems.

It is important to notice that collective movements and distributed problem

solving in general are not applicable or useful in every situation, and part of the

difficulty of employing such techniques consists of identifying which characteristics

of a problem are suitable for and exploitable by collective behaviors. From the

problems studied here it seems clear that some of these characteristics include the

property of benefiting from parallel work, division of labor, behavioral specialization

and team recruitment. A case that does not satisfy these properties, for instance, is

the search and collection of a single item positioned at a random location or of several

items independently located. Empirical evidence not reported here tends to confirm

the intuition that agents spreading apart from each other will cover more ground and

therefore find the item faster than agents moving in aggregations. This pattern of

movement can be easily achieve simply by random wandering that does not require of

any cooperation by the agents. Other property present in all the problems described

here, and seemingly necessary or at least useful, is the opportunity for reiterated

132

interactions among the agents, which allows for the self-emergence to occur and

produce, for instance, useful division of labor. Finally, dynamic environments or

problems are specially prune to benefit from systems of emergence behavior such as

interacting particle systems.

The techniques here presented still require considerable tinkering and human

“intuition” to develop a self-organizing solution to a given problem, and the set of

problems used so far is admittedly limited. Although neither the applicability of

self-organization into a more general class of problems has been shown, nor univer-

sal guidelines have been developed on how to use collective movements for a given

problem, the tasks presented include common, well-known problems often studied

in the field of cooperative mobile agents, as are capture the flag, foraging, collec-

tive transport, routing and logistics, and are extensively noted in the literature as

containing some of the most common issues and challenges for this type of systems.

The approach in this dissertation has shown to successfully apply to these problems,

with minimal variations on the architecture of the system, suggesting the generality

and ease of adaptation of it to a larger family of problems.

6.2 Contributions

• I developed a flexible and extensible architecture for the application of parti-

cle systems using collective movements to a wider variety of problems. This

architecture, based on a few basic behaviors and a finite state machine, allows

an external entity or designer to reconfigure the system’s behavior to achieve

133

very different global behaviors, and basically different systems, simply by re-

configuring the basic behaviors. The finite state machine allows an intuitive

mechanism to encode the logic of the problem or task for the system to tackle,

and thus to guide the self-organizing process. This provides for a simple ap-

proach to solving a diverse range of problems through minimal changes to the

architecture. Further, the system presented is easily extensible by incorporat-

ing a few basic behaviors for specific tasks or requirements. We showed how

this can be attained by using essentially the same system on three different

problems simply by specifying a different FSM and adding or removing basic

behaviors of different levels of sophistication as needed.

• Through the use of hierarchical architectures, a decentralized control mech-

anism is introduced for self-organizing systems that facilitate its design for

solving specific problems while retaining its self-organizing feature. This mech-

anism, based on state-transition control and the introduction of memory/goal

into reactive particle systems, allows guiding the behavior in top-down fashion,

which alleviates the difficulties in designing self-organizing systems brought by

the complexity of predicting the behavior of such systems, and allows a human

designer to incorporate prior knowledge of the problem by designing it into a

high-level controller that follows the logic of the problem, and breaking the

complex behavior of the agents into independent, simpler behaviors adequate

for a single sub-goal.

• Through simulations in a series of different problems, it was shown that col-

134

lective movements can be successfully exploited as a problem-solving tool that

allows a team of agents to improve its performance even in non-exclusively

navigational tasks, such as search-and-retrieve and collective transport. In

the past, collective movements were used only as a means to simulate bio-

logical aggregations or to achieve formations for navigational purposes. In

this thesis, I have shown that collective movements can be advantageous in

other contexts, helping agents achieve implicit communication and coordina-

tion while solving a problem where the navigational component is of secondary

importance. Although aggregation per se proved to be useful in, for instance,

facilitating explicit communication among agents or causing agents to increase

their presence in an area of interest, collective movements can produce coor-

dinated behaviors besides aggregation. This dissertation illustrated how this

behaviors can be exploited in a series of tasks/applications, such as cooperative

transport, cooperative sensing, cooperative guarding, etc.

• I also integrated adaptation and learning into interacting particle systems,

creating an adaptive system capable of distributed learning that uses the self-

organizing properties of particle systems to distribute the task of acquiring

information about the problem and its solution and then combining the seg-

ments of information stored explicitly or behaviorally in each agent into a

single, coherent solution. The specialization that emerges from this process

allows the problem to be subdivided into smaller sub-components, not obvi-

ous at first inspection nor predetermined by an external entity, but found by

135

the self-organizing process, and this not only make the system parallelizable,

as with most particle systems, but also allows the system to handle large,

complex problems that would otherwise require high computational cost.

6.3 Limitations and Future Work

Throughout this dissertation, an extension to particle systems has been pre-

sented and demonstrated on varied examples. This extension has the main purpose

of facilitating the application of self-organizing behavior through particle systems

to general problem solving. This goal is achieved by introducing a higher-level con-

trol mechanism that gives to the particle system more flexibility and to an external

entity, e.g. the human designer, more control or guidance over the self-organizing

process itself. However, after the work on the three applications presented, it is clear

that there is more work to be done. The high-level controller succeeds in adding the

desired flexibility to the system, and partially succeeds in allowing easing the process

of introducing higher-level logic to the behavior of the agents, but the process of

designing these complex adaptive systems remains a task hard to understand, that

requires considerable amount of iterative improvement based upon trial and error,

and the only way to accurately predict the global behavior of the system seems

to be to simulate it, which adds to the difficulty of designing a particular desired

behavior. In addition to this, the self-organizing nature of the low-level behaviors

increases the complexity of the situation. The introduction of high-level controllers

allows breaking the low-level behavior into simpler, independent behaviors for dif-

136

ferent situations, which greatly simplifies the process of designing them. However,

as in the case of the high-level controller, the process remains highly experimental

and laborious for a human designer.

Because of the self-organizing nature of these systems, it is intrinsically diffi-

culy to completely eliminate the complexity of predicting or designing their behavior.

However, a different route is possible. Emerging computing, or the use of machine

learning for automatically designing or improving a system’s design, offers a promis-

ing alternative to coping with the complexity of self-organizing systems. Already

this is done in the case of low-level behaviors through the use of evolving neural

networks, that allows a system designer to specify the desired features of the basic

behavior and the system is capable of developing the desired controller [8, 35, 99].

This should be also possible in the case of the high-level controller, and in fact, in the

case of the whole extended particle system. The interaction between the low-level

controller and the high-level controller, and the capacity of the system to assimi-

late errors and variations through its self-organization, contributes to the feasibility

and efficacy of a method of gradual variation and improvement for the design and

tuning of the system, such as evolutionary computation. This coupling of systems

of emerging behavior designed by emerging methods could importantly reduce the

difficulty of creating such systems, and possibly be the only feasible solution for

highly extensive, sophisticated systems.

As a final comment, all three evaluated tasks presented in this dissertation

involve mobile agents. However, this does not imply that all possible applications of

extended particle systems are limited to this field. These examples show that the ex-

137

tended particle systems display features necessary in distributed problem solving in

general, although their use of collective movements makes their most obvious appli-

cations in problem solving related to robotics or robotic-like systems. Nevertheless,

the requirement of agents or particles moving through space does not limit particle

systems to robotic applications, as has been shown elsewhere [39, 41, 59, 63]. The

extended particle systems presented here are capable of complex, coherent behav-

ior, which, if applied to problems in abstract spaces, such as problems of discrete

optimization, for example, could have an important influence on the application of

self-organization as a true general problem-solving mechanism, and by extension in

the understanding and engineering of complex systems.

138

BIBLIOGRAPHY

[1] W. Agassounon. Distributed information retrieval and dissemination in
swarm-based networks of mobile, autonomous agents. In Swarm Intelligence
Symposium, 2003. SIS ’03. Proceedings of the 2003 IEEE, pages 152–159,
2003.

[2] R. D. Andrea and M. Babish. The RoboFlag testbed. In Proceedings of the
American Control Conference, pages 656– 660, 2003.

[3] P. J. Angeline. Evolutionary optimization versus particle swarm optimization:
Philosophy and performance differences. In EP ’98: Proceedings of the 7th
International Conference on Evolutionary Programming VII, pages 601–610,
London, UK, 1998. Springer-Verlag.

[4] R. Arkin and T. Balch. Cooperative multiagent robotic systems. In D. Ko-
rtenkamp, R. Bonasso, and R. Murphy, editors, Artificial Intelligence and
Mobile Robots, pages 277–296. MIT/AAAI Press, Cambridge, MA, 1998.

[5] S. Aron, J.-L. Deneubourg, S. Goss, and J. Pasteels. Functional self-
organization illustrated by inter-nest traffic in the Argentine ant iridomyrmex
humilis. In W. Alt and G. Hoffman, editors, Biologial Motion, pages 533–547.
Springer-Verlag, 1990.

[6] M. Atkin, D. Westbrook, and P. Cohen. Capture the flag: Military simulation
meets computer games. Proceedings of the AAAI Spring Symposium on AI
and Computer Games, pages 1–5, 1999.

[7] T. Balch and R. Arkin. Behavior-based formation control for multi-robot
teams. IEEE Transactions on Robotics and Automation, 14(6):926–939, 1998.

[8] G. Baldassarre, S. Nolfi, and D. Parisi. Evolving mobile robots able to display
collective behaviours. In C. Hemelrijk and E. Bonabeau, editors, Proceedings
of the International Workshop on Self-Organisation and Evolution of Social
Behaviour, pages 11–22, Monte Verità, Ascona, Switzerland, Sept. 8-13, 2002.
University of Zurich.

[9] G. Baldassarre, D. Parisi, and S. Nolfi. Coordination and behaviour integra-
tion in cooperating simulated robots. In S. Schaal, A. Ijspeert, A. Billard,
S. Vijayakumar, J. Hallam, and J.-A. Meyer, editors, From Animals to Ani-
mats V III. Proceedings of the 8th International Conference on Simulation of
Adaptive Behavior, pages 385–394. MIT Press, Cambridge, MA, 2004.

[10] A. Barabási. Linked: The New Science of Networks. Perseus Publishing,
Cambridge, MA, 2002.

[11] J. Baras, X. Tan, and P. Hovareshti. Decentralized control of autonomous
vehicles. In Decision and Control, 2003. Proceedings. 42nd IEEE Conference
on, volume 2, pages 1532–1537, 2003.

139

[12] J. W. Barnes and J. B. Chambers. Solving the job shop scheduling problem
with tabu search. IIE transactions, 27(2):257–263, 1995.

[13] R. Beckers, J.-L. Deneubourg, and S. Goss. Trails and u-turns in the selection
of a path by the and lasius niger. Journal of Theoretical Biology, 159:397–415,
1992.

[14] G. Beni. The concept of cellular robotic system. In Proceedings of the IEEE
International Symposium on Intelligent Control, pages 57–62, 1988.

[15] G. Beni. Swarm Robotics, chapter From Swarm Intelligence to Swarm
Robotics, pages 1–9. Springer Berlin, Heidelberg, 2005.

[16] G. Beni and S. Hackwood. Stationary waves in cyclic swarms. In Proceedings
of the IEEE International Symposium on Intelligent Control, pages 234–242,
1992.

[17] G. Beni and J. Wang. Swarm intelligence. In Proceedings of the Seventh
Annual Meeting of the Robotic Society of Japan, pages 425–428, 1989.

[18] G. Beni and J. Wang. Theoretical problems for the realization of distributed
robotic systems. In Proceeding of the IEEE International Conference on
Robotics and Automation, pages 1914–1920 vol.3, 1991.

[19] E. Bonabeau and F. Cogne. Self-organization in social insects. Trends in
Ecology and Evolution, 12:188–193, 1997.

[20] E. Bonabeau, M. Dorigo, and G. Theraulz. Swarm Intelligence: From natural
to artificial systems. Oxford Univ. Press, 1999.

[21] E. Bonabeau, G. Theraulaz, , and J.-L. Deneubourg. Quantitative study of the
fixed threshold model for the regulation of division of labor in insect societies.
In Proceedings of the Royal Society of London, Series B-Biological Sciences,
volume 263, pages 1565–1569, 1996.

[22] A. Braun, S. Musse, L. Oliveira, and B. Borman. Modeling individual be-
haviors in crowd simulation. In IEEE International Conference on Computer
Animation and Social Agents, pages 143–148, 2003.

[23] M. D. Breed, G. E. Robinson, and R. E. Page. Division of labor during honey
bee colony defense. Behavioral Ecology and Sociobiology, 27:395–401, 1990.

[24] R. A. Brooks. A robust layered control system for a mobile robot. IEEE
Journal of Robotics and Automation, 2(1):14–23, March 1986.

[25] R. A. Brooks. Intelligence without representation. Artificial intelligence,
47(1):139–159, 1991.

[26] J. L. Burton and N. R. Franks. The foraging ecology of the army ant eciton
rapax : An ergonomic enigma? Ecological Entomology, 10:131–141, 1985.

140

[27] S. Camazine and J. Sneyd. A model of collective nectar source selection by
honey bees: Self-organization through simple rules. Journal of Theoretical
Biology, 149(4):547–571, 1991.

[28] Y. U. Cao, A. S. Fukunaga, A. B. Kahng, and F. Meng. Cooperative mobile
robotics: Antecedents and directions. Autonomous Robots, 4(1):7–23, March
1997.

[29] G. D. Caro and M. Dorigo. Antnet: Distributed stigmergetic control for
communications networks. Journal of Artificial Intelligence Research, 9:317–
365, 1998.

[30] L. Chaimowicz, M. F. M. Campos, and V. Kumar. Dynamic role assignment
for cooperative robots. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA), 2002.

[31] L. Chaimowicz, V. Kumar, and M. F. Campos. Framework for coordinating
multiple robots in cooperative manipulation tasks. In G. T. McKee and P. S.
Schenker, editors, Proceedings SPIE Sensor Fusion and Decentralized Control
in Robotic Systems IV, volume 4571, pages 120–127, oct 2001.

[32] R. Cheng, M. Gen, and Y. Tsujimura. A tutorial survey of job-shop scheduling
problems using genetic algorithms. Computers and Industrial Engineering,
30(4):983–997, 1996.

[33] R. J. Collins and D. R. Jefferson. AntFarm: Towards simulated evolution. In
C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, editors, Artificial
Life II, pages 579–601. Addison-Wesley, Redwood City, CA, 1992.

[34] A. Colorni, M. Dorigo, V. Maniezzo, and M. Trubian. Ant system for job-shop
scheduling. JORBEL - Belgian Journal of Operations Research, Statistics and
Computer Science, 34(1):39–53, 1994.

[35] E. Şahin, T. Labella, V. Trianni, J.-L. Deneubourg, P. Rasse, D. Floreano,
L. Gambardella, F. Mondada, S. Nolfi, and M. Dorigo. SWARM-BOTS: Pat-
tern formation in a swarm of self-assembling mobile robots. In A. El Kamel,
K. Mellouli, and P. Borne, editors, Proceedings of the IEEE International
Conference on Systems, Man and Cybernetics, Hammamet, Tunisia, Oct. 6-9,
2002. Piscataway, NJ: IEEE Press.

[36] M. Dell’Amico and M. Trubian. Applying tabu search to the job-shop schedul-
ing problem. Annals of Operations Research, 41(3):231–252, 1993.

[37] J.-L. Deneubourg, S. Goss, N. R. Franks, and J. M. Pasteels. The blind
leading the blind: Modelling chemically mediated army ant raid patterns.
Insect Behavior, 2:719–725, 1989.

[38] G. Di Caro and M. Dorigo. Mobile agents for adaptive routing. In 31st Hawaii
International Conference on System Science, Big Island of Hawaii, 1998. IEEE.

141

[39] M. Dorigo, G. D. Caro, and L. Gambardella. Ant algorithms for discrete
optimization. Artificial Life, 5(2):137–172, 1999.

[40] M. Dorigo, V. Maniezzo, and A. Colorni. The Ant System: Optimization by
a colony of cooperating agents. IEEE Transactions on Systems, Man, and
Cybernetics Part B: Cybernetics, 26(1):29–41, 1996.

[41] R. Eberhart and J. Kennedy. A new optimizer using particle swarm theory.
In Proceedings of the Sixth International Symposium on Micro Machine and
Human Science, pages 39–43, 1995.

[42] R. Eberhart and Y. Shi. Empirical study of particle swarm optimization. In
Proceedings of the 1999 Congress on Evolutionary Computation, volume 3,
page 1950, 1999.

[43] R. Eberhart and Y. Shi. Particle swarm optimization: Developments, appli-
cations and resources. In Proceedings of the 2001 Congress on Evolutionary
Computation, pages 81–86, Seoul, South Korea, 2001.

[44] G. W. Flake. The Computational Beauty of Nature: Computer Explorations of
Fractals, Chaos, Complex Systems, and Adaptation. MIT Press, Cambridge,
MA,, 1998.

[45] N. R. Franks. Teams in social insects: group retrieval of prey by army ants
(eciton burchelli, hymenoptera: Formicidae). Behavioral Ecology and Sociobi-
ology, 18(6):425–429, 1986.

[46] J. Fredslund and M. J. Matarić. A general algorithm for robot formations using
local sensing and minimal communication. IEEE Transactions on Robotics and
Automation, 18(5):837–846, 2002.

[47] M. Garey, D. Johnson, and R. Sethi. The complexity of flowshop and jobshop
scheduling. Mathematics of Operations Research, 1(2):117–129, 1976.

[48] E. Gat. On three-layer architectues. In D. Kortenkamp, R. P. Bonasso, and
R. Murphy, editors, Artificial Intelligence and Mobile Robots: Case Studies of
Successful Robot Systems, pages 195–210. AAAI Press/The MIT Press, Menlo
Park, CA, 1998.

[49] P. Gaudiano, B. Shargel, and E. Bonabeau. Control of uav swarms: What the
bugs can teach us. In 2nd American Institute of Aeronautics and Astronautics
“Unmanned Unlimited” Conf. and Workshop and Exhibit, 2003.

[50] T. Gonzalez and S. Sahni. Flowshop and jobshop schedules: complexity and
approximation. Operations Research, 26(36):52, 1978.

[51] G. Gowtham and K. Kumar. Simulation of multi UAV flight formation. In
Digital Avionics Systems Conference, volume 2, page 6, 2005.

142

[52] R. Groß, M. Bonani, F. Mondada, and M. Dorigo. Autonomous self-assembly
in a swarm-bot. In K. Murase, K. Sekiyama, N. Kubota, T. Naniwa, and
J. Sitte, editors, Proc. of the 3rd Int. Symp. on Autonomous Minirobots for
Research and Edutainment (AMiRE 2005), pages 314–322. Springer, Berlin,
Germany, 2006.

[53] R. Groß and M. Dorigo. Cooperative transport of objects of different shapes
and sizes. In M. Dorigo, M. Birattari, C. Blum, L. M. Gambardella, F. Mon-
dada, and T. Stützle, editors, Ant Colony Optimization and Swarm Intelli-
gence, 4th International Workshop, ANTS 2004, volume 3172 of Lecture Notes
in Computer Science, pages 107–118. Springer Verlag, Berlin, Germany, 2004.

[54] D. Helbing. Traffic and related self-driven many-particle systems. Reviews of
Modern Physics, 73(4):1067–1141, Dec 2001.

[55] D. Helbing, I. Farkas, and T. Vicsek. Simulating dynamical features of escape
panic. Nature, 407:487–490, 2000.

[56] J. Hodgins and D. Brogan. Robot herds: Group behaviors for systems with
significant dynamics. In Proceedings of Artificial Life IV, pages 319–324, 1994.

[57] K. Hosokawa, T. Tsujimori, T. Fujii, H. Kaetsu, H. Asama, Y. Kuroda,
and I. Endo. Self-organizing collective robots with morphogenesis in a ver-
ticalplane. In IEEE International Conference on Robotics and Automation,
volume 4, pages 2858–2863, Leuven, Belgium, 1998.

[58] S. Kazadi, A. Abdul-Khaliq, and R. Goodman. On the convergence of puck
clustering systems. Robotics and Autonomous Systems, 38(2):93–117, 2002.

[59] J. Kennedy and R. Eberhart. Particle swarm optimization. In IEEE Int’l.
Conf. on Neural Networks, volume 4, pages 1942–1948, Piscataway, NJ, 1995.

[60] J. Kennedy and R. Eberhart. Swarm Intelligence. Morgan Kaufmann, 2001.

[61] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization by simulated
annealing. Science, 220(4598):671–680, 1983.

[62] R. C. Kube and E. Bonabeau. Cooperative transport by ants and robots.
Robotics and Autonomous Systems, Volume 30(1,2):85–101, 2000. ISSN: 0921-
8890.

[63] G. Lapizco-Encinas and J. Reggia. Diagnostic problem solving using swarm
intelligence. In IEEE Swarm Intelligence Symposium, pages 365–372, 2005.

[64] E. Lawler, J. Lenstra, A. R. Nan, and D. Shmoys. Logistics of Production and
Inventory, Handbooks in OR & MS 4, chapter Sequencing and scheduling:
algorithms and complexity, pages 445–522. Elsevier Science, Amsterdam, The
Netherlands, 1993.

143

[65] M. Mataric. Issues and approaches in the design of collective autonomous
agents. Robotics and Autonomous Systems, 16:321–331, December 1995.

[66] M. Matarić, M. Nilsson, and K. Simsarian. Cooperative multirobot box push-
ing. In IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, pages 556–
561, 1995.

[67] M. J. Matarić. Designing and understanding adaptive group behavior. Adap-
tive Behavior, 4(1):51–80, 1995.

[68] Z. Michalewicz and D. B. Fogel. How to Solve It: Modern Heuristics. Springer,
2004.

[69] N. Miyata, J. Ota, T. Arai, and H. Asama. Cooperative transport by multiple
mobile robots in unknown static environments associated with real-time task
assignment. IEEE Transactions on Robotics and Automation, 18(5):769–780,
2002.

[70] L. Parker. Designing control laws for cooperative agent teams. In Proc. IEEE
International Conference on Robotics and Automation, volume 3, pages 582–
587, 1993.

[71] K. Parsopoulos and M. Vrahatis. Recent approaches to global optimiza-
tion problems through particle swarm optimization. Natural Computing, 1(2-
3):235–306, 2002.

[72] H. Parunak and S. Brueckner. Swarming coordination of multiple UAV’s for
collaborative sensing. In Proceedings Second American Institute of Aeronautics
and Astronautics “Unmanned Unlimited” Systems, 2003.

[73] H. Parunak, S. Brueckner, and J. Odell. Swarming pattern detection in sensor
and robot networks. In American Nuclear Society (ANS) Topical Meeting on
Robotics and Remote Systems, 2004.

[74] H. Parunak, M. Purcell, and R. O’Connell. Digital pheromones for au-
tonomous coordination of swarming UAV’s. In Proceedings 1st UAV Con-
ference, 2002.

[75] D. Payton, R. Estkowski, and M. Howard. Compound behaviors in pheromone
robotics. Robotics and Autonomous Systems, 44(3-4):229–240, September
2003.

[76] B. S. Pimentel, G. A. S. Pereira, and M. F. M. Campos. On the development
of cooperative behavior-based mobile manipulators. In Proceedings of the First
International Joint Conference on Autonomous Agents and Multi-Agent Sys-
tems (AAMAS’02), pages 234–239, Bologna, Italy, July 2002.

144

[77] M. Quinn, L. Smith, G. Mayley, and P. Husban. Evolving teamwork and role
allocation with real robots. In Proceedings of the 8th International Conference
on Artificial Life, pages 302–311, 2002.

[78] V. J. Rayward-Smith, I. H. Osman, C. R. Reeves, and G. D. Smith. Modern
heuristic search methods. John Wiley & Sons, 1996.

[79] W. T. Reeves. Particle systems: A technique for modeling a class of fuzzy
objects. In SIGGRAPH ’83: Proceedings of the 10th annual conference on
Computer graphics and interactive techniques, pages 359–375, New York, NY,
USA, 1983. ACM Press.

[80] M. Resnick. Turtles, Termites and Traffic Jams. MIT Press, 1994.

[81] C. Reynolds. Flocks, herds, and schools: A distributed behavioral model.
Computer Graphics, 21(4):25–34, 1987.

[82] C. Reynolds. Steering behaviors for autonomous characters. In Proc. Game
Developers Conference, pages 763–782. CMP Game Media Group, 1999.

[83] C. Reynolds. Interaction with groups of autonomous characters. In Proc.
Game Developers Conference, pages 449–460. CMP Game Media Group, 2000.

[84] C. Reynolds. Big fast crowds on PS3. In Proceedings of Sandbox (an ACM
Video Games Symposium), Boston, Massachusetts, July 2006.

[85] G. E. Robinson. Regulation of division of labor in insect societies. Annual
Review of Entomology, 37(1):637–665, 1992.

[86] J. A. Sauter, R. Matthews, H. V. D. Parunak, and S. A. Brueckner. Per-
formance of digital pheromones for swarming vehicle control. In AAMAS
’05: Proceedings of the fourth international joint conference on Autonomous
agents and multiagent systems, pages 903–910, New York, NY, USA, 2005.
ACM Press.

[87] R. Schoonderwoerd, O. Holland, and J. Bruten. Ant-like agents for load
balancing in telecommunications networks. In AGENTS ’97: Proceedings of
the first international conference on Autonomous agents, pages 209–216, New
York, NY, USA, 1997. ACM Press.

[88] R. Schoonderwoerd, O. E. Holland, J. L. Bruten, and L. J. M. Rothkrantz.
Ant-based load balancing in telecommunications networks. Adaptive Behavior,
5(2):169–207, 1996.

[89] T. D. Seeley. The tremble dance of the honey bee: message and meanings.
Behavioral Ecology and Sociobiology, 31(6):375–383, 1992.

[90] C. E. Shannon. A mathematical theory of communication. The Bell System
Technical Journal, 27:379–423,623–656, 1948.

145

[91] W.-M. Shen, P. Will, A. Galstyan, and C.-M. Chuong. Hormone-inspired self-
organization and distributed control of robotic swarms. Autonomous Robots,
17(1):93–105, November 2004.

[92] K. Sigurd and J. How. UAV trajectory design using total field collision avoid-
ance. In American Institute of Aeronautics and Astronautics Guidance, Nav-
igation, and Control Conference and Exhibit, 2003.

[93] D. Subramanian, P. Druschel, and J. Chen. Ants and reinforcement learning:
A case study in routing in dynamic networks. In Proceedings of IJCAI-97, In-
ternational Joint Conference on Artificial Intelligence, pages 832–838. Morgan
Kaufmann, 1997.

[94] J. H. Sudd. The transport of prey by an ant pheidole crassinoda. Behavior,
15:295–308, 1960.

[95] J. H. Sudd. The transport of prey by ant. Behavior, 25:234–271, 1965.

[96] T. Sugar and V. Kumar. Control and coordination of multiple mobile robots
in manipulation and material handling tasks. In The Sixth International Sym-
posium on Experimental Robotics VI, pages 15–24. Springer-Verlag, 2000.

[97] D. Thalmann, S. R. Musse, and F. Garat. Guiding and interacting with virtual
crowds in real-time. In Proceedings of Eurographics Workshop on Animation
and Simulation, pages 23–34, Milan, Italy, 1999.

[98] V. Trianni. Evolution of coordinated motion behaviors in a group of self-
assembled robots. Technical Report TR/IRIDIA/2003-25, IRIDIA - Université
Libre de Bruxelles, Belgium, May 2003. DEA Thesis.

[99] V. Trianni, S. Nolfi, and M. Dorigo. Cooperative hole avoidance in a swarm-
bot. Robotics and Autonomous Systems, 54(2):97–103, 2006.

[100] X. Tu and D. Terzopoulos. Artificial fishes: Physics, locomotion, perception,
behavior. In Computer Graphics 28 Annual Conference Series, pages 43–50,
1994.

[101] R. Vaessens. Generalized Job Shop Scheduling: Complexity and Local Search.
PhD thesis, Eindhoven University of Technology, 1995.

[102] D. Vail and M. M. Veloso. Multi-robot dynamic role assignment and coor-
dination through shared potential fields. In A. Schultz, L. Parkera, , and
F. Schneider, editors, Multi-Robot Systems, pages 87–98. Kluwer, 2003.

[103] P. J. M. van Laarhoven and E. H. L. Aarts. Simulated Annealing: Theory and
Applications. Kluwer Academic Publishers, 1987.

[104] P. J. M. van Laarhoven, E. H. L. Aarts, and J. K. Lenstra. Job shop scheduling
by simulated annealing. Operations Research, 40(1):113–125, 1992.

146

[105] V. Verth, V. Brueggemann, J. Owen, and P. McMurry. Formation-based
pathfinding with real-world vehicles. In Proceedings Game Developers Con-
ference, 2000.

[106] K. von Frisch. Decoding the language of the bee. Science, 185:663–668, 1974.

[107] M. M. Waldrop. Complexity: The Emerging Science at the Edge of Order and
Chaos. Penguin Books Ltd., 1994.

[108] B. B. Werger and M. J. Mataric. From insect to Internet: Situated control
for networked robot teams. Annals of Mathematics and Artificial Intelligence,
31(1-4):173–197, 2001.

[109] A. Yamashita, T. Arai, J. Ota, and H. Asama. Motion planning of multiple
mobile robots for cooperative manipulation and transportation. IEEE Trans-
actions on Robotics and Automation, 19(2):223–237, 2003.

147

