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Training an agent to operate in an environment whose mappings are largely unknown

is generally recognized to be exceptionally difficult. Further, granting such a learning agent

the ability to produce an appropriate sequence of actions entirely from a single input stimu-

lus remains a key problem. Various reinforcement learning techniques have been utilized to

handle such learning tasks, but convergence to optimal policies is not guaranteed for many

of these methods. Traditional supervised learning methodshold more assurances of con-

vergence, but these methods are not well suited for tasks where desired actions in the output

space of the learner, termedproximalactions, are not available for training. Rather, target

outputs from the environment aredistal from where the learning takes place. For example,

a child acquiring language skill who makes speech errors must learn to correct them based

on heard information that reaches his/her auditory cortex,which is distant from the motor

cortical regions that control speech output. While distal supervised learning techniques for

neural networks have been devised, it remains to be established how they can be trained to

produce sequences of proximal actions from only a single static input.



The architecture demonstrated here incorporates recurrent multi-layered neural net-

works, each maintaining some manner of memory in the form of acontext vector, into the

distal supervised learning framework. This enables it to train learners capable of generating

correct proximal sequences from single static input stimuli. This is in contrast to existing

distal learning methods designed for non-recurrent neuralnetwork learners that utilize no

concept of memory of their prior behavior. Also, a techniqueknown as teacher forcing

was adapted for use in distal sequential learning settings which is shown to result in more

efficient usage of the recurrent neural network’s context layer. The effectiveness of this

approach is demonstrated by applying it in training recurrent learners to acquire phoneme

sequence generating behavior using only previously heard and stored auditory phoneme

sequences. The results indicate that recurrent networks can be integrated with distal learn-

ing methods to create effective sequence generators even when constantly updating current

state information is unavailable.
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Chapter 1

Introduction

What series of robot hand and arm movements is required to drawa square using a paint-

brush on a canvas? What sequence of motor commands should be issued to the brain’s

primary motor cortex which could eventually yield the verbal utterance “mother” from a

subject’s mouth? These are types of problems that are addressed in an active area of re-

search within machine learning which is concerned with how one trains an agent to learn

to exhibit some desired time varying behavior while acting in an external environment.

Existing supervised learning strategies for training neural nets are well studied and

effective in many domains, but a teacher must provide the correct series of desired prox-

imal actions to the agent in order to be successful. Here, thetermproximaldescribes the

immediate actions taken by the learning agent while operating in the environment. In con-

trast, the termdistaldescribes the consequences which result in the environmentas a direct

result of the proximal actions taken by the learning agent.

In the canvas painting example, for instance, the distal target behavior sought by the

trainer would be the painted square, i.e. a visual result that is far removed from the motor

control commands used to generate it, hence the term “distal”. The series of arm joint
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angles required by the robot to attempt such a goal would constitute proximal actions. In

the current scenario, correct proximal targets are not available for training the learner (i.e.,

there is no teacher contribution that explicitly moves the arm through the desired movement

sequence which can be used for training.) The desired outputs sought by the teacher (e.g.,

the intended square in this case, perceived visually) actually exist in the output parameter

space of the environment function rather than in the learner’s action space (e.g., robot arm

movements.)

Reinforcement learning strategies are often used to handle adaptive learning prob-

lems as the environment function is generally undefined or very difficult to characterize.

Very effective methods have been developed which demonstrate learning optimal to near-

optimal policies exclusively through interaction with an external environment ([2], [31],

[53], [54], [58], [59], [64]). Even so, reinforcement learning has its drawbacks and is far

from being a perfected science. It can be very difficult for anagent to learn even a good

policy, much less the optimal policy, in complex and unfamiliar environments. This is even

more so the case when the reward function, which drives learning, is designed with little

or no a priori teacher bias. Many of the most popular reinforcement learning techniques

studied today are not guaranteed to converge to optimal policies.

Traditional supervised learning methods have stronger convergence assurances than

reinforcement learning but are ill-suited for use in a distal environment. Jordan, et al. [23]

demonstrates that supervised learning can be used to train alearner situated in a complex

environment where only desired distal targets are available for training. In this frame-

work, another neural network (the “forward model”) can be set in serial with the learner

and be trained to emulate the environment. The additional neural net can then, in turn,
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be used to assist in training the learning agent using the target distal outputs provided by

the teacher. Variations of this methodology of learning have been shown to be particu-

larly effective in a variety of domains. One such domain includes studies in constructing

computational simulation of brain function as it has been shown that human brains uti-

lize similar “forward models” in many aspects of motor task learning and development

([4],[15],[29],[70],[71],[72]) (e.g., motor control, etc.) Some training of distal learning

agents to produce sequences or strings of actions is also demonstrated for non-sequential

neural network learners [24]. However, these methods have not been effectively studied in

training distal learners with recurrent links. Moreover, such recurrent networks should po-

tentially be capable of generating varying length series ofdiscrete time actions even when

provided with a single input stimulus.

Unlike existing distal learning methods designed for non-recurrent neural network

learners, the methods presented here are developed in orderto train recurrent neural net-

works which utilize some type of history in the form of a contextvector.Using the latter, a

neural network will be better equipped to learn the appropriate sequential proximal behav-

ior given only a static input vector and without being provided with information about the

current state of the world. Such a distal learner requires only a similarly designed recur-

rent network for its forward model and the desired distal sequences for training. Such an

architecture can be useful in that, for one, should the current state generator (e.g., camera

in a vision system, audio sensor) fail or be removed, good sequences can presumably still

be learned and completed as the learning agent can be guided by its own memory. Also,

the use of an exponential decay memory layer (described in detail in Section 2.2) in many

recurrent neural network implementations may effectivelysupplement or even replace the
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current state information used to drive existing distal supervised learning implementations.

1.1 Goals

The goal of this research is to develop a system that can trainrecurrent neural networks

situated in a complex environment when provided with desired distal target sequences to

drive learning under the assurances afforded to a supervised learning framework. Not only

could this work expand the use of recurrent neural nets in more complex domains, but

it may even improve on existing domains of distal sequentiallearning tasks previously

handled by reinforcement learning and non-recurrent distal learning implementations.

Recurrent neural networks have been found to possess tremendous value in many

fields ([35]). They have been used successfully to solve or address many problems such

as robot control in producing time-series behavior. These recurrent neural networks have

been shown to exhibit useful qualities and properties including the robustness commonly

found in many instances of neural network applications. Also, they exhibit forms of fault

tolerance and can be shown to generalize very well using onlytraining data.

However, many problems that exist in the real world are not framed in the same

manner as that presently set up for recurrent neural networks. As in any supervised learning

method, the teacher or ”supervisor” must have available a priori all sequences the recurrent

neural network should know by the time training has concluded.

In many real world complex problem domains, the time-varying sequential behavior

worth learning takes place in some external environment. For example, Jordan ([24]) de-

scribes a case where a person is required to learn how to propel a basketball into a basket
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(Figure 1.1). All that is known to the person (learning agentfrom here on) beforehand are

the necessary inputs and desired distal outcomes of the environment. In this example, the

input to this learning agent would comprise the intent to shoot the ball into the basket, and

the position of the ball in his/her visual field could comprise the current state of the learning

task. Ultimately, the desired distal outcome in the environment sought by the agent should

comprise the sights and sounds of the basketball going through the hoop. What the learner

in this task must somehow acquire is the necessary series of arm motions required in order

to successfully accomplish this task.

In order to handle the training of neural networks to operatein environments like the

one described above, Jordan suggests the creation of a separate neural network (termed a

forward model) which can be trained through its own interactions in the environment to

mimic the latter’s mapping of the learner’s proximal actions to distal consequences. When

completed, this forward model neural network can then be employed to assist in training

the actual learning neural network of interest. This use of asecond neural network to assist

in training the original untrained feed-forward neural network acting in the environment is

referred to in general asdistal supervised learning.

Jordan uses some good applications to demonstrate the actual learning of time-vary-

ing proximal behavior in the output space of the learning neural network in order to accom-

plish the learning of the task. At this point, many researchers have followed this paradigm

to develop similar systems capable of addressing some very interesting distal problems

([27], [38], [43], [61]). This method is a very effective wayof solving the inverse modeling

problem, where, once trained, the learning neural network in question can be characterized

as theinversefunction of the unknown environment.
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Figure 1.1: A basketball shooting example used to demonstrate the distal supervised learn-

ing paradigm.

Recurrent neural networks contain recurrent links between neural elements in order

to encourage time-varying behavior based on action history. This information can be taken

from the previous step or even a history of previous actions in the form of an exponential

trace memory. As already mentioned, such recurrent neural networks have been shown to

be very useful in real world applications. To my knowledge, the distal learning paradigm

has not been extended to training recurrent neural networks.

Also, of particular interest to this study is not merely the production of time-varying

sequential behavior through interaction in the environment, but sequential behavior that can

result from just a single static input stimulus (e.g., a picture or a single goal position.) In

typical studies in which the acquisition of correct sequence generating behavior is the goal,

the input stimulus will change with every new time step or subsequent action of the learner.

It has been shown that some trajectory learning behavior canbe demonstrated without

the use of recurrency, but that is while using current state updates from the environment at

every step of the action-generating process. The typical distal learner relies heavily on such
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updates to drive its neural network to generate its next action or output. Here, a paradigm

is sought that can use just a single input vector (which can bethought of as a single plan,

a thought, or intention of the system) in order to generate some time-varying sequence of

proximal actions which can yield a very specific trajectory output in environment space.

Past literature has not fully addressed the problem domain of training a neural net-

work to produce the appropriate sequential behavior necessary to yield a very specific tra-

jectory in the environment space from a single static input stimulus. This dissertation

addresses this particular problem and maintains that adding recurrency to neural networks

trained in the external environment of interest can be the best course of action in learning to

produce the correct proximal sequential behavior from learning agents given only a single

input or intention from which to work.

Jordan [24] briefly suggests how one might reconfigure his distal supervised learning

framework to potentially learn specific trajectories in an external environment. His modifi-

cation, however, still relied heavily on using a steady stream of current state updates from

the environment to determine subsequent actions local to the agent. In addition, this modi-

fication still did not address the handling of distal sequence generation tasks which require

only single input stimuli to generate multiple actions and,hence, multiple consequences in

the environment. Here, recurrency is added to the original distal supervised learning frame-

work at the level of the distal learner of interest as well as its forward model in order to

further facilitate learning and to add capabilities and functionality that could not be easily

addressed under Jordan’s initial suggestion.
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1.2 Specific Aims

The specific aims of this study are as follows:

1. Expand the capabilities of the existing distal supervised learning paradigm to manage

training of often used recurrent neural architectures.

2. Create a model of the information processing done by cerebral cortex in learning to

produce the correct motor phoneme sequence response for a desired stored repre-

sentation of the intended word in associative memory. The capacity of this system

to readily and efficiently learn sequences in an external environment as well as the

presence of short term memory inherent in the recurrency of this system will be an

important factor in creating such a model. The key generalization here is to generate

a sequence of correct outputs for a single given fixed input stimulus.

3. Create a SOM that can process and store phoneme or vector sequences such that

unique activation patterns for each sequence will be obtained. In designing a more

efficient sequential SOM model for this study, I incorporatemodifications in the

SARDNET SOM architecture that consider which particular input vectors are most

expected (candidate vectors) in calculating the correct SOM output. These modifica-

tions in unique mapping capability will lend themselves greatly towards enhancing

the capability of my model to demonstrate a simple form of thephoneme sequence

acquisition task previously described. Here, the map organization and uniqueness of

the modified SARDNET output will be analyzed and compared to that of the original

architecture.

8



4. Incorporate varying recurrent network architecture types and training methods into a

recurrent distal supervised learning system. The recurrent network used primarily in

this study, often termed the Jordan network [23], is only oneof many different types

of recurrent network architectures ([13],[8]). Numerous recurrent network training

methods exist as well ([6],[35],[37],[40],[43],[44],[67],[68]) and are used success-

fully in varying learning tasks and problem domains. By implementing other recur-

rent network types and contrasting their performances, pros, cons, etc., I hope to

ascertain which blend of recurrent architectures, used in learner and forward model

alike, could be utilized in maximizing performance on various types of training tasks

and problems driven by desired sequences obtainable through the environment.

1.3 Contributions

The primary contribution of my work is the modification of theexisting distal supervised

learning architecture to allow training of recurrent neural networks which operate in ex-

ternal environments (Sections 3.1-3.3). The current distal supervised learning architecture,

developed by Jordan [24], was originally designed to train single input/single output stan-

dard feed-forward neural networks from desired outcomes that should result from interac-

tions with an environment. Without consistently being informed of its current state in the

world after each action it took, a traditional distal learner would be incapable of performing

sequence generating tasks from a single unchanging input stimulus, whereas my approach

can handle such situations. I demonstrate the utility of themodified distal learning frame-

work by training a recurrent network in a sequential environment called the concatenation
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environment whose behavior is well understood.

Second, just as in typical non-distal sequential learning tasks, recurrent networks

can be useful in their utilization of previous output memoryin generating time-varying

behavior while operating in a distal setting. They become especially useful when only a

single static input vector is supplied to the learner as it isin distal sequence generation

tasks. Section 3.4 describes a method which I adapt from a strategy referred to as teacher

forcing, often used to improve training in standard recurrent networks, for use in recurrent

distal learning systems. Through this method, recurrent distal learner actions are made

approximately more ”correct” before being stored in memoryin order to hasten the training

process. Though the actual correct action sequences are notavailable for training, these

approximated entries for memory updates tend to demonstrate noticeably improved training

results.

Third, once trained, I developed a self-organizing map to represent associative mem-

ory and uniquely characterize a sequence of auditory feature vectors based primarily on

the SARDNET SOM architecture [21]. Though shown in previous studies to be useful

in providing unambiguous activation patterns from differing input vector sequences, some

measure of ambiguity still existed with the original SARDNETwhich could potentially

be detrimental in the phoneme sequence generation process previously described. In this

work, I develop a modified method of producing activation patterns in the SARDNET

SOM, called the candidate-driven method (Section 4.3), which considers the closeness of

the most likely candidate vector to the responsible input vector, as well as the proximity of

the current node to the winning node in the SOM’s output lattice, in determining a mean-

ingful real-valued output between 0 and 1 rather than just a strict binary 0 or 1 value as in

10



SARDNET.

Fourth, I implemented a prototype non-recurrent distal learning system capable of

training neural networks to generate single motor phonemesresponsible for yielding de-

sired auditory phoneme vectors from single input vectors (Section 5.2.) A key problem

encountered in this implementation was how to map outputs tothe environment into their

corresponding distal feedback. In order to construct the motor-to-auditory mapping re-

quired for this single phoneme acquisition system, I devised a method for creating a smooth

and continuous mapping from a finite number of paired vectors(Appendix B.) As a result,

my implementation is able to take any vector in the space of motor phonemes, including

any of the motor phoneme vectors listed, and generate a reasonable facsimile of an auditory

vector feature for use in this study.

Fifth, to test this modified system on a substantial distal sequence learning problem,

I designed a simplified simulation that takes as inspirationthe manner in which humans

produce phoneme sequences in speech function acquisition,and looks to see if a recurrent

neural network can be trained in similar fashion (Section 5.3.) In order to create such an

ambitious simulation, a sequential environment is constructed that accepts a sequence of

motor feature vectors and responds with a sequence of corresponding neural activity pat-

terns emanating from associative memory. This complex sequential environment is a com-

posite of two non-linear component mappings: 1) a mapping which transforms a sequence

of motor phoneme feature vectors into corresponding heard auditory vector sequences, and

2) a self-organizing map (SOM) representing associative memory of auditory sequences.
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1.4 Dissertation Organization

The rest of this dissertation is organized as follows: In Chapter 2, previous works which

were pertinent in the creation of the architecture addressed here are reviewed. In Chapter

3, self-organizing maps (SOMs) which are designed to acceptand uniquely characterize

sequential, and not single, inputs are discussed. In creating a computational model of

sequential cognitive function, a viable model of cortical map activation is absolutely nec-

essary. In the case of simulating phoneme sequence, or spoken word, acquisition, some

approximation of associative memory responsible for storing of previously heard words

should be addressed. Self-organizing maps (SOM), introduced by Kohonen in ([26]), were

created in part to attempt to model the map formation found inthe human brain and have

been studied extensively for years. Few projects have addressed the need for SOMs to ad-

equately store sequential inputs in a manner in which each unique sequence will result in a

unique set of activations in the SOM. The one-shot, multi-winner SOM (Schultz [55]) and

the SARDNET self-organizing map (James [21]) are two very promising methods, but fall

short of guaranteeing 100% uniqueness in mapping sequencesto unique SOM activations

that are required for this particular study. Also in this chapter, I address the modification I

devised in making one such construct more appropriate for this study.

In Chapter 4, I detail my own work in developing a type of distalrecurrent supervised

learning architecture which makes use of time-delay links between layers of computational

processing units in both the distal learner and the forward neural model. Specifically, this

architecture is capable of enabling distal learners to handle distal sequence generation tasks

using only single input stimuli and no current state updatesin order to drive themselves in
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determining subsequent actions. In Chapter 5, I discuss the results of the newly created ar-

chitecture presented in Chapter 4 primarily as an application to the study of the acquisition

of the cognitive ability of phoneme sequence generation. One of the more common uses of

traditional distal supervised learning at present lies in the creation of computational mod-

els of human cognitive task acquisition ([15],[29]). Modeling acquisition of speech and

motor control functionalities, in particular, are domainswhich are active topics of study

([15],[17],[29],[70],[71]). One intention of this study is to increase the capabilities of such

distal supervised learning models of cognition to encompass more cognitive phenomena

said to occur based on the most current neuroscientific studies.

Lastly, Chapter 6 discusses the ramifications of the new distal sequential architecture

introduced in this dissertation and addresses potential future directions to improve it, its

use in modeling cognitive sequential tasks such as phoneme sequence generation, as well

as in various other problem domains.
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Chapter 2

Background

2.1 Feedforward Neural Networks

2.1.1 Description

The creation of neural networks is motivated by theories of how the interactions among

neuronal cells in the brain are thought to generate cognitive functions. From what we gather

from past neurobiological studies, neurons act to either fire or not fire if they receive enough

overall excitation from other neurons that synapse to them.Put another way, intelligent

function emanating from the brain is considered to be a result of the total cooperative

interactions of neurons in the brain based on inputs it receives from input stimuli. Map

formation in the cortex is another consequence of group neural interactions in the brain.

Some of the earliest neural networks came in the form ofperceptronswhich essen-

tially consist of one layer of computational “neurons”, each of which receives real-valued

input from all input elements to the system via weighted connections, wij, where i and j

reference neural elements and input elements, respectively (Figure 2.1).

In essence, the set of weights, represented by weight vector, w̃, determined the output
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Figure 2.1: An example of a typical perceptron set up.

of the perceptron. In order to ascertain the best weight vector, w̃, a very simple, iterative

procedure was developed ([52].) The single-layered architecture of the perceptron, how-

ever, hindered its computational power as it was shown to be able to handle only linearly

separable relations between inputs and target outputs ([34]). This insight seriously limited

the effectiveness of neural network research for some time.By equipping neural networks

with another hidden layer of neural elements between the layers of input and output nodes

(see Figure 2.2), it was later determined that perceptrons can be made to classify linearly

and non-linearly separable tasks alike. Furthermore, by changing the output functions of

the neural elements from a step function to smooth and differentiable step-like functions,

finding the best set of weights becomes an exercise in determining the weight vector which

minimizes the following error function, J(w̃):

J =
1

2
(
∑

(ti − oi)
2)

It was shown that such amulti-layeredperceptron could approximate any differentiable

function when given enough input/ output examples whether linearly separable or not.
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Figure 2.2: Example of a standard multi-layered neural network architecture at work (taken

from http://aemc.jpl.nasa.gov/activities/bioregen.cfm)

2.1.2 Supervised Learning (Back-propagation)

In a supervised learning framework, there exists a learningagent that can be characterized

as some functiony = h(p, w̃), wherew̃ represents the internal state of the learner (in this

case, the weight vector in a neural network), p is some input vector and y would be the

resulting output vector. Given some set of target input/output pairs{(p̃i, ỹ∗

i )|1≤i≤n}, the

task of the learner is to adjust the parameter vector,w̃, in such a way as to minimize the per-

formance error between target output vectorỹ∗

i and the neural network learner’s own actual

output vector,̃yi, given input vector̃pi (see Figure 2.3). The expected performance error, J,

used to judge the effectiveness of the learner’s training can be formulated as follows:

J =
1

2
E{(~y∗

i − ~yi)
T (~y∗

i − ~yi)}, 1 ≤ i ≤ n, (2.1)

However, rather than take into account all desired input/output pairs in determining

the cost, a more instantaneous online evaluation for the n-th input/output pair can be done

16



as follows:

Jn =
1

2
(~y∗[n]− ~y[n])T (~y∗[n]− ~y[n]), (2.2)

In order to change the weight vector,w̃, of the learner to minimize this cost function, the

gradient of J with respect tõw can be approximated as follows:

∇~wJn = − ∂~y
∂~w

T

(~y∗[n]− ~y[n]), (2.3)

Knowing this, the weight vector at time n, denoted asw̃n, can then be adjusted using this

equation:

~w[n] = ~w[n− 1]− η∇~wJn, (2.4)

whereη is a parameter which controls the rate of incremental weightvector updates. This

is the basis of most gradient descent methods of supervised neural network learning.

Theback-propagationmethod (Rumelhart [52]) is merely a form of gradient descent

designed to find the local minimum of the error function, J(w̃), over weight vector space.

Figure 2.3 demonstrates a key component of the back-propagation procedure, where the

difference between target and actual outputs is propagatedback through a neural network

module to change the weight vector incrementally into one which more closely approxi-

mates the desired output. As such, solving for the best set ofweights for the neural network

or multi-layer perceptron becomes a matter of finding the weight vector,w̃, which mini-

mizes J.

The error function at this point may be minimized by approximating the gradient of

this function and running some form of hill descent procedure which can provide a weight
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p[n]

y[n] − y[n]*

y[n]

Figure 2.3: Shown above is a visual demonstration of the standard back-propagation proce-

dure. The error-back propagation procedure can move a multi-layered feedforward neural

network (denoted by the box above) incrementally towards producing some desired behav-

ior given an inputp[n] and its corresponding target outputy∗[n]. Here0 < n < k, where

k signifies the number of input/output pairs used to train theneural network. Over many

training steps (epochs), the weight parameter vectorw (not shown) of the neural network

is adjusted using the difference vector between the target outputy∗[n] and the actual neural

network outputy[n], where y[n] = h(p[n],w).

vector which provides a gradient as close to zero as possible. The exercise for determining

such weights now becomes the task of finding the set of weightswhich minimize this func-

tion. Since the landscape of the error function is unknown, the gradient is approximated

roughly given the current weight vector and an iterative procedure of gradient descent is

employed in an effort to find the weight vector which yields the minimum of the error func-

tion (see Table 2.1). This method, however, poses problems where it often may converge

to some local minima of the function instead of the global minimum which would give the

best answer. Gradient descent neural network training methods require approximating the

gradient of the error function at the point in the weight space where the neural network is
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currently, and in changing that weight vector in the negative direction of the gradient. This,

thereby, has the effect of moving it, in theory, closer to thelocal minima of the error func-

tion. In many complex domains, the local minima require a great deal of computational

effort to be found and are often not sufficient in learning thetask presented to the neural

network when found.

Apart from standard hill descent techniques, other types ofweight space selectors

have been sought to find the global minima. Some such methods include genetic algo-

rithms, evolutionary programming, support vector machines, etc. However, a sizeable

amount of the energy spent in trying to solve this problem hasbeen used to develop more

efficient types of gradient descent methods. Many early devices sought to improve gradient

descent back propagation by manipulating or adjusting the learning rate in order to more

quickly find the local minimum. Other methods being developed sought ways to avoid get-

ting trapped in local minima en route to better solutions or even, ideally, a global minimum

([50], [6], [42]).

Some very powerful methods utilize the gradient information to use a more informed,

pertinent search for the global minimum given a weight-by-weight adjusting scheme or

even a learning rate per each individual weight term rather than adhering to one single

learning rate for the entire gradient computed term. These methods require use of the

gradient just as an indicator for direction. The actual descent is regulated by assigning an

individual learning rate to each weight vector and raising or lowering them according to the

information received about the error function landscape. Two of the most popular methods

which operate in this fashion include Quickprop (Fahlman [14]) and RPROP (Riedmiller

et al.[50], Igel et. al [19].) Presently, many such gradientdescent methods continue to be
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Error Back-propagation Procedure
repeat for each training pair,n:
1) obtain inputp[n] and target outputy∗[n].
2) compute neural net output,y = h(p[n],w).
3) compute error vector at output layer :∆i = y∗[n]− y.
4) update all weights leading to each unit in the output layer:

wji = wji + αajf
′(ini)∆i

5) for eachsubsequent layer,
- compute new Delta values for new layer:

∆j = f ′(inj)
∑

wji∆i

- then use it to update weights to the next layer:
wkj = wkj + αak∆j

end
6) repeat from step 1) until:

- performance criteria is met or
- number of training loops (epochs) is reached.

Table 2.1: Error back-propagation procedure for training neural networks

developed in seeking to enhance the way in which optimal weight vectors can be found in

the effective training of neural networks.

Effective adaptive learning schemes have been also developed which, once given the

performance of the neural network immediately following a weight change, will automati-

cally increment or decrement the learning rate of the neuralnetwork training algorithm and

repeat the evaluation until only improvements result. Also, there are methods which seek

to substantially change the back propagation method as it was originally designed. In one

previous study Joost [22] argued that the standard error function typically used in back-

propagation is flawed in that it is polynomial (namely binomial) in structure and, hence,

encounters the pitfalls inherent in executing the gradientdescent of such functions. For one

primary pitfall, he notes that in following the opposite direction of the gradient for a bi-

nomial function, successive gradients themselves approach 0 as the minimum draws close,

thereby substantially slowing and inhibiting the search for the global minimum. Joost ad-
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vocates the use of a different type of error function which isnon-polynomial in structure

and will not slow or diminish to zero the closer it gets to the local minimum. The new error

function suggested is based on the conjugate gradient function in order to circumvent those

pitfalls (Joost [22]). He argues that it works better and bypasses the shortcomings of the

polynomial error function discussed previously.

2.1.3 Feedforward Neural Network Strengths and Limitations

There are, however, limitations to the training of these neural nets. For one, there is always

the possibility of overfitting the weights of the neural network. In this situation, the neural

network may be trained to learn the relation between input/output pairs provided by the

supervisor but not be capable of generalizing from unseen inputs to new outputs. If it is

the case that too many neural elements are placed in an intermediary or hidden layer, the

neural network may becomeover-trained. By this, it means such over-partitioning of the

input space may result in training the neural network to learn only the specific relationships

between the training inputs and their corresponding targetoutputs and little else. When

this occurs, the neural network can be so specific that it would be incapable of correctly

categorizing other inputs not explicitly provided in the training data. This would not be

beneficial to one who is looking to train the neural network tobe able to classify some

general relationship between inputs and outputs.

When the neural network back-propagation method is run, the method is iterated

many times with each pass through the training data being called anepoch. When the

training is complete (say over tens of thousands of epochs) the multi-layered neural network
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should know the inputs and outputs that the teacher provides. Furthermore, to ensure that

neural network has not only memorized the training data, buthas also learned to generalize

effectively, one can provide validation data on which to test the neural network throughout

training. Here, validation data are input/output pairs which also share the same relationship

as those pairs in the training data but are withheld for laterverification purposes. If the

performance of the neural network should be measured (whereroot mean squared error

is one measure of performance success) then the validation data should score relatively

well with the neural network while training if the relation to be learned is to be ensured or

guaranteed to be found. At this point, if it is not the case that the RMSE is low compared

to that of the training data, overfitting has occurred. To avoid such a circumstance, there

are many things a trainer may need to be wary of when training aneural network:

1. not to make the number of hidden elements too high. If this is made too high, the

input space will be partitioned far too much and the task or relation can become

very specific toward the input/output training data. By keeping the number of hidden

elements low, one can ensure that very general partitions can be found to approximate

well the relation sought.

2. to provide very good representative training data for thefunction to be approximated.

If there are major holes in the input space which cannot be accounted for in the

training data, learning the appropriate function would be very difficult.

Another limitation seen in standard multi-layered feedforward neural networks lies

in the inexplicable manner in which it encodes its approximation of the unknown function.

It is quite possible for the neural network to be trained to correctly approximate the relation
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suggested by the training data provided to it by the trainer.However, there the ability for

researchers to actually go in and extract what knowledge theneural network has actually

acquired is severely limited indeed. As such, though neuralnetworks can be very powerful

tools as function approximators or classifiers, they are notvery effective tools for data

mining or knowledge discovery.

As for strengths, multi-layered feedforward neural network architectures have been

shown to be extremely effective in approximating unknown functions. As will be seen later,

a neural network can approximate the workings of some unknown system and ideally, if

trained efficiently, can be used to forecast reasonably goodguesses to outputs of some pre-

viously unseen arbitrary input. This ability to generalizegiven only desired input/output

pairs makes applying neural networks very attractive in countless complex problem do-

mains which grapple with unknown relations and functions. Also, in terms of strengths,

the neural networks can be used in developing very simple models of human brain dy-

namics and function which can help shed light on the inner workings of the human brain.

In fact, many such brain computational models have indeed been developed in attempt-

ing to capture brain phenomena documented in existing neuro-biological literature. These

same computational models can serve as effective tools in developing understanding and

treatment for afflictions of the brain ([47], [48])

2.2 Neural Network Sequential Processing

Neural networks have traditionally been used in learning tasks in which one input vector

should yield a single output vector. However, in some domains, the desired output would
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Figure 2.4: Two popular implementations of recurrent neural networks : the Elman network

(left) and the Jordan network (right). Ellipsoids in both cases denote layers consisting of

neuronal processing units (shown as circles). In either graph, wide arrows denote full

connectivity via weighted links amongst all units from an originating layer up to those of

its destination layer. Thin arrows denote a direct copy froma single unit in the originating

layer to its corresponding unit in the destination layer multiplied by some constant (default

set to 1.0 .) The two implementations differ primarily in that the activations from the neural

network’s hidden layer are accumulated by the memory layer for the Elman network while

the memory layer in a Jordan network copies the activations of the neural network’s output

layer. Both neural network implementations can utilize an exponential trace memory vector

with decay constant, a, for use in learning to produce desired time-varying output behavior.
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be in the form of a series, or sequence, of vector outputs which vary over the course of

discrete time steps. In order to achieve this result, recurrent links can be introduced within

a neural model between neural elements in such a way that, even if the input vector should

be kept static, a neural element can yield a different outputvalue with each subsequent time

step. Figure 2.4 shows examples of such neural network architectures.

There are various methods researchers have used in attempting to create neural mod-

els which take into consideration a history of states in order to determine the subsequent

output. Some architectures attempt to “parallelize” time by placing simultaneously in the

input layer a finite number of previous network inputs, outputs, and/or states which can

then be processed by a subsequent hidden or output layer. An example of such a recur-

rent neural network architecture is the NARX (non-linear autoregressive with exogenous

inputs) network in which a history of the previous q inputs,{un, ..., un−q+1}, and q network

outputs,{yn, ..., yn−q+1}, comprises the input layer which is presented to a multi-layered

perceptron to eventually yield outputyn+1 ([8],[37]). In this manner, the NARX model can

be trained to consider unmistakably the history of input/output pairs which transpired pre-

viously in order to determine the subsequent output. This architecture, however, can lead

to increased complexity of the learning task as the input space increases linearly with input

and output vector lengths through user-specified history length, q.

One well known recurrent network architecture is the Jordannetwork [23] which has

recurrent links from the output layer to a memory layer that is situated at the same level as

the input vector and has its own set of weighted links to the next hidden layer (see Figure

2.4). Neural elements in the memory layer generally have self-recurrent links which utilize

a decay0 ≤ α < 1 term which has the effect of accumulating a history of its actions over
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time. Such a grouping of memory processing units can be referred to as anexponential

trace memory.

Giving initial memoryx(0) some known initial assignment such asx(0) = 0n, for

instance, the output dynamics of a simple two-layered Jordan network may be characterized

by the following equations :

h(t) = f(Wuu(t) + Wxx(t)), (2.5)

y(t + 1) = g(Whh(t)), (2.6)

x(t + 1) = y(t + 1) + αx(t). (2.7)

wherex is the exponential trace memory vector,y is output of the recurrent network at dis-

crete time step,t, andh is the hidden layer. Functionsf andg are the activation functions

for the hidden and output layers, respectively. TermsWu, Wx, andWh describe vectors cor-

responding to weighted connections emanating from the input, memory, and hidden layer

vectors, respectively, to the appropriate subsequent layer. This type of recurrent network

architecture is appealing in that varying length output histories can be retained and consid-

ered in estimating the desired output at subsequent time steps without having to increase

the dimensionality of the memory in the input layer.

The Elman network is yet another instance of a recurrent neural network which effec-

tively uses an exponential trace memory vector in the input layer. Where this architecture

differs from that of a Jordan network is that the exponentialtrace memory is used to store

a history of activations from some intermediate, or hidden,layer of processing units as

opposed to the output layer (see figure 2.4).

Similarly, the output dynamics for a simple Elman network can be described as fol-
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lows:

h(t) = f(Wuu(t) + Wxx(t)), (2.8)

y(t + 1) = g(Whh(t)), (2.9)

x(t + 1) = h(t) + αx(t). (2.10)

In the case of exponential trace memories as they are used in Jordan and Elman

networks, input space size is not as significant an issue as itis for the NARX architecture

and models like it. However, to what history length the exponential trace memory vector

can be effective in producing the remainder of a target sequence can be an issue. This is

because the effects of states stored from previous time steps can vanish very quickly as

the exponential term is continually applied to the memory vector. In addition, this type of

memory vector is quite limited as to its ability to recall thesequence of states it was given

to store.

2.2.1 Training Methods for Sequential Neural Networks

Methods for training recurrent neural networks such as those described previously have

been developed and refined for years. One method training recurrent neural networks is

known as back-propagation in time [65]. By “unfolding” a network’s recurrent links and

transforming it to resemble a standard, single pass multi-layered feedforward neural net-

work, very effective weight change rules can be inferred in much the same way as those de-

veloped for less dynamic, yet more heavily studied non-recurrent neural network architec-

tures (figure 2.5). More specifically, back-propagation methods initially used exclusively
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Figure 2.5: Recurrent network unfolding example provided inHaykin [18]. (Top) Simple

recurrent network composed of two nodes having weighted connections to themselves and

each other. (Bottom) Equivalent non-recurrent multi-layered feedforward network capable

of producing sequences of length n. Consequently, modern back-propagation techniques

can then be derived for the latter network to yield back-propagation in time learning rules.
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for feedforward networks can be extended for training recurrent networks. Variations of

back-propagation in time methods are described in greater detail by Williams et al. [68].

Methods have also been developed to improve existing sequential network learning

techniques. Teacher forcing ([67],[69]) is one such method. Here, the “teacher” can clamp

onto a layer of processing nodes (i.e. the memory vector), when available, the desired

activation at that discrete time step, t, rather than the erroneous activations that occur amidst

the early stages of training. This process can be implemented by supplanting Equation 2.7,

the original memory update equation for Jordan networks, with following equation:

x(t + 1) = y∗(t + 1) + αx(t). (2.11)

wherey∗(t+1) is the target output vector at time t+1 provided by the supervisor as opposed

to the actual output, y(t+1), from the recurrent network itself supplied via its recurrent links.

Using this method during training in the described manner tends to assist the recurrent

network to converge faster and more readily. A new form of teacher forcing I develop is

introduced in the methodology in section 3.4.

2.2.2 Time Delay Memory Structures

In addition to the exponential decay memory structures introduced previously, another pop-

ular form of memory structure exists in delay line structures used early in recurrent network

design. Using this architecture, at the current time step, t, the set of activations from some

pre-determined set of nodes (generally some hidden or output layer in a multi-layered feed-

forward recurrent network) are copied directly to some memory module of nodes. The re-

sulting module can then be used at the subsequent time step, t+1, as input to the network
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Figure 2.6: A recurrent Jordan network using d time delay layers. The node activations

at memory delay module, k, is determined at each discrete time step as the product of

the contents of the previous delay layer (k-1) and the propagation term,0 < p ≤ 1. In

addition, the final delay layer here uses a decay rate, a, suchthat the memory structure

retains exponential trace history of actions once the k-sized window is exceeded. Setting

α = 0 restricts this memory mechanism to being a sliding windowof size d, which is very

common amongst memory delay recurrent neural networks in prior studies.

through trainable weighted connections along with the already present input vector.

Multiple memory modules can be incorporated into the recurrent module as well,

separated by delay lines from a prior memory module of the immediately previous time-

step. Here, memory contents from the (t-i)th set of activations are copied to the next mem-

ory module representing the prior (t-i-1)st time step of activations before itself receiving

the set of activations contained in the module representingsubsequent time step (t-i+1).

This series of delayed activations can be made arbitrarily long based on the goals of the

recurrent neural net designer. What results, unlike in the case of the exponential decay

memory vector for a delay window length,d > 1, is an absolute record of previous actions

is taken which can be utilized by the recurrent neural network with a greatly reduced risk

of ambiguity or misinformation to within d prior times steps.
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Figure 2.7: Reinforcement learning framework.

One problem that results, however is the window length, d, ofmemory observation

is always restricted to some finite number, and any memory activations recorded d+1 time

steps prior will be lost to the recurrent neural network, essentially falling off edge of the

proverbial “sliding window” of action history. One way thiscould be addressed is to make

the final (t-d)th memory module an exponential decay memory vector just as previously

discussed. In this manner, the recurrent network readily remembers and can act on out-

puts it made prior to the t-d-th time step in fostering bettersubsequent decision-making as

opposed to forgetting that information entirely (Figure 2.6.)

2.3 Reinforcement Learning

Reinforcement learning is generally the method of choice when training agents to acquire

good-to-optimal behavior in an external environment. In this framework (see Figure 2.7),

an agent, once presented with the current state, generates an action in the environment. The

environment then returns some numeric score to gauge the effectiveness of the action per-

formed. The controller must then modify its own internal state based on this reward/penalty
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signal such that, during this learning stage, it would be more apt to select this action given

the same input if a high score (i.e. reward) was achieved. Similarly, it should be less apt to

select this action if a low score (i.e. penalty) resulted. The goal of the learner is to construct

an optimal policy which it could use to generate behavior which would eventually yield the

optimal or desired outcome at some point in the future.

Many successes have resulted in the use of the reinforcementlearning techniques.

Two very early successes include Samuel’s checker playing program [54] and the pole

balancing solution [31]. One of the more famous successes isthe TD Gammon program

which, in playing itself over one million times, has learnedto play backgammon at an

extremely high level and has gone so far as to significantly change the way the game is

played by backgammon professionals and masters due to novelways it has found to win

[62].

Shortcomings do exist, however, with the reinforcement learning paradigm. For one,

there is currently a variety of issues such as the credit assignment problem [33] and the ex-

ploration / exploitation dilemma which make this a difficultmethod to master for just about

any complex learning task. The credit assignment problem issignificant in that it deals with

the issue of assigning credit or blame accurately to each action taken by an agent in the en-

vironment. There are potentially countless combinations of actions an agent can take in

the environment and it is often very difficult to reward or penalize an act based on the end

result of a sequence of actions. As such, many beneficial actions can be unfairly penalized

while counterproductive actions may be rewarded just because of how well the sequence

of actions to which they belong scores using the environment’s evaluation function. Many

methods have been proposed to help solve this issue but it is still a concern and an active
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topic of research within the field of reinforcement learning.

The exploration vs. exploitation dilemma is also an issue encountered often in re-

inforcement learning implementations. A reinforcement learning agent,exploiting only

the best sequences of actions it has encountered, could ensure convergence to some solu-

tion but, without further exploration of the space of actions, cannot guarantee optimal or

even good solutions. Toexplorethe action space of the learner would increase the likeli-

hood of finding good action sequences through searching and evaluating the entire action

space. However, without exploiting the good solutions found, the agent runs the risk of

never converging and even possibly “forgetting” the good action sequences previously dis-

covered.The most significant hurdle, however, unlike traditional supervised learning tech-

niques, is that a controller is not guaranteed to find an optimal, or even a good, policy using

many of the popular forms of reinforcement learning.

2.4 Self Organizing Maps

2.4.1 Description

Self organizing maps (SOMs), inspired by map formation phenomena found to occur in

the primate cortex, are very effective tools for clusteringunknown data as well as being an

effective method for visualizing groupings of high-dimensional input data in two dimen-

sions. The design of the underlying dynamics of these self-organizing maps was motivated

by the way neurons are believed to form associations with other neurons in the brain. The

Hebbian rulesuggests that when two neurons fire simultaneously after being presented with
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Figure 2.8: SOM which examines worldwide poverty by region.(taken from http://-

www.cis.hut.fi/research/som-research/worldmap.html)

some input stimulus, their connection is strengthened ([]). Similarly, in SOMs, connections

between computational neuronal elements in the input and output layers are strengthened

when they fire simultaneously in much the same manner observed in cortical neurons of

the brain. This rule, called the Hebbian rule, forms the basis for very powerful neurally-

inspired unsupervised learning methods.

2.4.2 Hebbian Learning

A self organizing map is designed to have a number of output neural elements, or nodes,

which take input from all values in input vector X. The outputneural computational ele-

ments are subject to a neighborhood function which dictateshow neighboring nodes are

adjusted based on proximity during training to the winning node. Each neural element j

has associated with it some weight vectorwij where1 ≤ i ≤ n (n being the number of

inputs) and1 ≤ j ≤ m (m being the number of nodes in the SOM). Each weight vector

that corresponds to a neural element lies in the same vector space that the input vectors are
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in. The weight vector can be considered a representative vector of the node with which it

is associated. “Training” in a SOM essentially consists of conforming all weight vectors to

represent in the two-dimensional lattice regions in the space of input data.

There are various ways to select winning nodes in a SOM. One way is to employ

a winner-takes-all approach ([26]). Using this rule, the input vector or stimulus is tested

against the weight vector of every neural network in the SOM lattice. The node whose

weight vector is closest to the input vector causes the corresponding vector to be the winner.

Consequently, the output at the winning node is set to be 1.0. All other nodes in the lattice

are set to be zero.

Now in training, Hebbian learning dictates that the vector corresponding to the win-

ning node be made marginally closer to the input vector presented to it. In addition, the

proximity of nodes in the lattice of output elements from thewinning node determines how

other nodes should be brought closer to the input vector as well. The proximity informa-

tion of nodes is generally defined when initially designing the SOM by specifying which

nodes neighbor each other. A very common scheme would be to set up a two-dimensional

lattice of nodes where each element is attached to up to four neighbors that can influence

each other through the unsupervised training process (In Figure 2.8, a SOM lattice of nodes

is demonstrated which actually gives every node up to six neighbors as opposed to four).

Over an extended period of training, where neighborhoods are made to decrease gradually

over time, entire areas of the high-dimensional input data space can be denoted by a group

of similarly classified neurons in close proximity to each other.

And, much like in the feedforward multi-layered neural network described previ-

ously, a learning rate is utilized. The Hebbian learning update rule for updating the weight
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SOM Training Algorithm

1. Initialize SOM weights randomly.

2. Retrieve a sample input vector, x, from the input training data.

3. Calculate winning node :i(x) = argminj||x(n)− wj||, j = 1, 2, ..., l

4. Update weight vectors of all appropriate nodes (including winning

node and other nodes in neighborhoodη(n)) :

wj(n + 1) = wj(n) + η(n)hj,i(x)(n)(x(n)− wj(n))

5. Repeat from step 2 until feature map stabilizes.

Table 2.2: Procedure for training a self-organizing map

vectorwj, of a winning node, j, can be described as follows :

∆wji = η ∗ (xi − wji) (2.12)

wji = wji + ∆wji (2.13)

There are many ways in which a SOM can be trained. The standardprocedure for training

a Kohonen self-organizing map is shown in Table 2.2. Note that a SOM can take tens of

thousands of epochs or more to complete training.

The neighborhood functions can be designed to take the form of all sorts of proximity

information and characteristics. They can be defined by suchcharacteristics as shape over

an area (e.g. box), by distance function (e.g. euclidean distance, manhattan distance.) One

of the more popular neighborhood functions, the gaussian neighborhood, is not a boolean

indicator like those described previously, but an indicator, 0 < h ≤ 1, of the current node’s

proximity to the winning node. What will then result over timeis that regions of SOM

nodes will ultimately cluster and represent high dimensional input data in the form of a
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Figure 2.9: These graphs demonstrate before-and-after snapshots that signify the training

of a standard SOM designed with a 10x10 lattice of output nodes. Note that output nodes

that neighbor each other in the lattice are shown connected by a line. Plot a) is a snapshot of

the weight vectors plotted inℜ2, each representing an output node, that comprise the SOM

prior to training. Plot b) demonstrates the self-organization that occurs following 20,000

epochs of training using the standard SOM training algorithm of Table 2.2. The training

data consisted primarily of vectors from the set{(0, 0)T, (0, 1)T, (1, 0)T, (1, 1)T} which

would explain why so many output nodes cluster around those points near the corners.

two-dimensional lattice.

Upon completing the training procedure, a mapping should result where regions of

neighboring SOM nodes are shown together which can be taken to represent clusters or

categories of the input data. What will occur after training is that the ordering of the set of

neurons can visually suggest clustering information to thetrainer even in the presence of

vast vector input spaces. In addition, all weight vectors representing the SOM map nodes

converge to some highly-ordered spatial organization in the input space as a result of the

neighborhood restrictions imposed on them (Figure 2.9.)
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2.4.3 Applications

Self-organizing maps have been used to assist in many areas of technology. These uses

range from the creation of cognitive models of cortical map activation ([46], [49]) to the

visualization of high dimensional spaces from unordered, un-clustered data ([32]). Using

a SOM, the clustering of data inputs thought previously to beunrelated can occur, causing

groupings of all types of input data to be confined visually into a rectangular space (or

map.) This map would primarily comprise the activations of the two-dimensional lattice of

interconnected neurons in the output layer of the SOM. When training has been success-

fully completed, some nearest neighbor groupings can be formed from which similarities

or categorical information can be inferred or concluded.

Some would call this visual data mining. The advantage of searching or seeking

groupings in this manner is that it is very efficient, but alsothat it is confined to whatever

sized 2D lattice the trainer wants to define for it. So, in other words, the groupings can be

visualized on a 5-by-5 lattice SOM or a 500-by-500 lattice SOM. The larger one may be

able to provide visually more information or insight into the input data and may be able

to classify and map much more data than the smaller map. Yet, the smaller map would

take some order of magnitude less training than the larger proposed map. Groupings can

be viewed once the SOM is fully trained just much like those shown in Figure 2.8.

The application of SOMs in the main work described in subsequent chapters is to

use one as a very simple model of associative memory storage.From this model, the

processing and subsequent comparison of resulting map sequences generated by incoming

auditory phoneme streams to those already stored in the SOM model can be made possible.
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The SOM can also be used to take input data and pre-process it as input to other sys-

tems. In other words, it can be used to cluster input data which was previously unclassified

and take the resulting mappings and redirect them as inputs to other systems. In one such

application, which will be described at great length in a future section, one researcher has

a robot use a SOM in order to ground into itself a sense of the layout of the room in which

it is expected to operate ([61]). The robot can then use its “understanding” of the area it is

attempting to travel and make good judgments as to where it isand how to proceed next in

order to get to its optimal goal position in the room.

2.5 Distal Supervised Learning

In the classical supervised learning paradigm, target outcomes are presented explicitly by

the teacher to the learner for the purpose of training. In thecase of distal supervised learn-

ing (Figure 2.10), however, the teacher is only capable of providing desired target vectors

which are distal in nature to the learner and may only be realized by the learner through its

proximal interactions in an external environment. Proximal target values which are gener-

ally provided by the teacher in the classical supervised learning framework must now be

discovered by the learner in order to minimize the performance error, J, over the entire sys-

tem of learner plus environment. Here, the learner, which produces proximal action u, can

be characterized by the functionu = h(p, x, w), while the environment accepts the learner’s

proximal action, u, and produces the actual distal output, y. Here, x is defined as the current

state information used to guide the learner and w representsthe learner’s weight vector.

One such example of a distal learning problem in which only distal target outputs
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y[n]
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u[n−1]

x[n−1]

p[n−1]

Figure 2.10: Basic setup for the distal learning problem. At time n, the learner accepts as

input some intention p[n-1] and current state x[n-1] and must generate an action u[n-1].

The environment then transforms that action in output spaceto vector y[n] and returns the

resulting next state, x[n].

are available is provided in Jordan [23]. He describes a scenario of a basketball player

who intends to shoot a ball through a hoop. The correct seriesof proximal actions (in this

case, arm muscle commands) must be learned in order to propelthe ball through the air and

environment into the hoop. Only the distal end result of the player’s actions (“the sights and

sounds of the ball entering the hoop”) is accessible from theenvironment for calculating

performance error. An appropriate proximal sequence of motor commands to achieve the

desired goal is not available for training from the teacher.Ideally, providing the desired

distal target result of the sensation of the ball going through the hoop along with the input

of the current position of the ball in space used together with the intention to shoot the ball

into the hoop must suffice for the player to acquire the desired proximal behavior.

In order to train the neural network in this setting using thesupervised

learning paradigm, Jordan et. al [24] introduces the idea oftraining an additional neu-

ral network to model the environment. Once trained, this additional neural network, also

given the termforward model, can then be used in conjunction with the system’s perfor-

mance error to train the learner. This forward model can be described by the function
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ŷ= f̂(x,u,v), where v is the weight vector of the forward model and x represents the cur-

rent state. Once the forward model is sufficiently trained sothat its predicted output,̂y, is

within some acceptable error of the actual output, y (i.e., whenf̂ is capable of approximat-

ing the environment closely) effective training of the distal learner can be achieved (Figure

2.11). To train the forward model, any number, m, of random actions can be generated,

{ui|1 ≤ i ≤ m}, from the proximal output space of the learner and run on the environment.

The resulting outputs in environment space,{ŷi|1 ≤ i ≤ m}, can be used as target outputs

to form input/output pairs{(ui, ŷi)|1 ≤ i ≤ m} to train the forward model using standard

back propagation methods.

Training cannot occur in distal supervised learning using equation 2.3 as there is no

way to calculate∂y

∂w
directly, where the environment function is unknown. However, in

substituting the forward model for the environment function, we can now substitutêy for y

which, after applying the chain rule, yields the following learning rule:

∇wJn = − ∂u

∂w

∂ŷ

∂u
(y∗[n]− y[n]), (2.14)

Here, ∂u
∂w

refers to the gradient of the learner’s output, u, with respect to its weight vector,

w. The term∂ŷ

∂u
refers to the gradient of the forward model’s output with respect to its input.

Equation 2.4 can then be used in the same manner to update the learner’s weight vector, w.

A key component in creating a system such as this is how effectively the forward

model is trained. A forward model must be sufficiently trained to predict the correct output

of the actual environment to effect meaningful weight vector updates to the distal learner.

However, an interesting consequence of this framework is that, even if a forward model

is not completely trained, the learner can be shown to retainor even continue to learn
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the desired behavior throughout the distal supervised learning training procedure. This is

possible since the term(y∗[n]−y[n]) used in training the distal learner approaches zero when

the actual environmental result of the learner’s proximal action(s) closely approximates the

desired distal targets (i.e. correct proximal actions are being generated to produce near-

optimal distal outputs). As a result, due to the error gradient calculations of equation 2.14,

the learner’s weight vector remains mostly unchanged by equation 2.4 so that the learner

will continue to exhibit the same correct proximal behavior. As such, the distal learner and

the forward model can actually be trained simultaneously and in series with each other.

Distal supervised learning methods have been used in developing neural networks

which can serve as continuous inverse mappings of environments they are placed in [24].

In addition, this method of training neural models can be quite pertinent in computational

brain modeling as forward models are being shown more and more to exist in the human

brain. These real life forward models, believed to exist in the cerebellum, are thought to

serve very similar purposes to those used in computational distal supervised learning stud-

ies. That is, they are shown to be useful in learning to anticipate the distal consequence

of proximal neural actions for use in various cognitive motor function development tasks

such as motor control and speech acquisition ([3], [4], [70], [71], [72]). Developing learn-

ing agents to handle these types of problems is hardly an exact science. Up until now,

absolute success has been demonstrated in mostly simple environments and limited suc-

cess shown in the more difficult environments. A substantialamount of work must still

be done in making distal supervised learning a viable model of distal supervised learning

problems such as cognitive function acquisition.
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Figure 2.11: (Top) Distal supervised learning framework shown here where, once again,

the intended distal learner accepts as input intention p[n-1] and, optionally, state x[n-1]

from the environment and responds with action u[n] which is simultaneously sent to the

environment and the forward model to generate, respectively, not only the actual output

y[n] (shown in 2.10) but predicted outputŷ[n] as well. (Bottom) Training the distal learner

requires propagating performance errory∗[n] − y[n] back through the forward model in

order to approximate the gradient direction for the sum squared error function essential for

effectively updating the weight vector of the distal learner.
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b)

Environment
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Figure 2.12: Standard setup of a distal supervised learningsystem utilizing feedforward

neural networks for distal learner and forward model structures.
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Chapter 3

Recurrent Distal Supervised Learning

In this chapter, a modified method of distal supervised learning is presented to address

learning in sequential environments. These sequential environments are designed to accept

not a single action, as in typical distal learning problems,but a sequence of actions from an

agent to then, in turn, yield an equivalent-length sequenceof distal consequences. Namely,

the modifications entail replacing the typically non-recurrent distal learner and forward

model feed-forward neural networks of the existing distal supervised learning framework

presented by Jordan [24] with recurrent neural networks. These recurrent networks are

capable of utilizing knowledge of past internal states and/or previous actions taken in order

to better acquire and produce correct proximal sequential behavior while operating in a

sequential environment, even when current state information is not present. Also presented

is a version of teacher forcing I modified for use in assistingthe learning process of a

recurrent distal learner. Lastly, the effectiveness of theproposed system is demonstrated on

a sample case of recurrent distal supervised learning usinga sequential environment which

is designed to be predictable and easy to comprehend for analyzing purposes.
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3.1 Motivation

In most studies involving distal supervised learning, the current state is provided by the

environment at every time step to the distal learner. This current state vector typically

summarizes where the distal learner is as the latter acts progressively in an environment en

route to potentially accomplishing the end distal goal through its progression . For instance,

consider the ball-tossing distal supervised learning scenario provided by Jordan [24] where

a person sets out to learn how to propel a ball into a basketball hoop. The single distal target

goal sought by this learner in this scenario entails the sensations which accompany the ball

entering the hoop. The proximal actions here provided by thelearner comprise the series

of arm commands required to propel the ball through the air. The current state information

required by the learner from the environment throughout this task would be the position of

the ball in the learner’s visual field that results after eacharm motion is performed.

Note that the current state provided at every time step should be distinguished from

the distal sensation or result occurring in the environment. The current state is merely infor-

mation used to assist the learner in acquiring and generating the correct proximal behavior

and, technically, can be potentially considered optional and done without (e.g. shooting

the ball into the hoop with closed eyes) if the input vector isdynamic and ever-changing

throughout the task. Conversely, there will always be a distal consequence in the environ-

ment which follows as a result of one or more proximal actionsfrom the learner.

However, if such current state information is not availableto be presented to a typi-

cal distal feedforward neural network which utilizes astatic and unchanging input vector,

learning to produce meaningful proximal actions would be hindered tremendously. In other
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words, given a single static input stimulus, training a standard neural network to produce

a series of differing actions in order to produce a desired output sequence in environment

space would be nearly impossible. With no current state information with which to tell

where it is in deciding on the correct sequence of moves to enact, the neural network will

not be properly equipped to provide differing proximal actions over time to eventually re-

alize the desired distal path. The lone exception could result if a single proximal action

produced repeatedly could correctly yield the desired series of distal consequences in the

environment.

Some method could be developed which would enable a “sight-less” neural network

to consider its own “memory” of actions taken up to this point,

Λt−1 = {u1, u2, ..., ut−1},

in order to better identify an appropriate subsequent action, ut, en route to devising some

correct series of commands,

Λ = {u1, u2, ..., un},

needed toward achieving the distal goal. For some time, recurrent neural networks have

been developed and refined extensively to do just this. However, supervised learning meth-

ods for recurrent neural network architectures in distal problem domains required to operate

in complex external environments had never been previouslyaddressed.

In addition, there exist problem domains where some accountof the previous actions

taken must be utilized in the learning of the task. In Ziemke [73], for example, the author

demonstrates that recurrent neural networks, in their use of contextual internal information,

are better suited than standard feedforward neural networks in many domains requiring
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sequential outputs. It is therefore natural to wish to extend these capabilities to the distal

environment interaction domain, where many very difficult yet pertinent problems exist.

The purpose of the work presented in this chapter is to demonstrate procedures I de-

veloped which are capable of training recurrent neural networks to produce a discretized

series of correct learned actions from a single intention which will ultimately cause a very

specific series of desired consequences to result in the environment. In adding recurrency

to the neural networks used in distal learning for this purpose, the idea is that these well-

studied sequential generators will be considerably more effective in achieving such behav-

ior (Figure 3.1).

3.2 Forward Model as a Recurrent Neural Network

In a distal setting, the recurrent neural network will require the ability to, given a single in-

put stimulus, produce appropriate sequential behavior which could only be evaluated in the

space of the external environment in which it operates. Its corresponding forward model,

precisely as the environment it looks to emulate, must be able to accept a sequence of prox-

imal actions and map it into a distal sequence as accurately as possible for it to be effective.

Standard feedforward network architectures are currentlynot sufficiently equipped to do

this effectively. Just as the sequential environment used must both accept temporal se-

quences (i.e., proximal action sequences from the learner)and produce temporal sequences

(i.e., distal output sequences in the environment), the forward model whose purpose is to

emulate the latter must also be designed as a recurrent neural network which both accepts

and generates temporal sequences. However, since the particular distal recurrent learner
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Figure 3.1: A more telling visual depiction of recurrent distal supervised learning. Given a

static single intention,p, as input, the recurrent distal learner (a.) will look to generate an

action sequence,u, of n vectors. This action sequence is accepted simultaneously by the

environment (c.) and the forward model (b.) attempting to model the environment. What

results are output vector sequencesˆy andy from the forward model and the environment,

respectively. These sets of vector sequences are compared to the set of desired distal vector

sequences,y∗ (not shown here), and effect parameter changes of both distal learner and

forward model to eventually yield an effectively trained recurrent distal learning neural

network.
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studied here accepts only a single input as opposed to the sequence of vectors accepted by

the forward model, two different recurrent neural network designs are addressed.

Using recurrent forward models in distal supervised learning is not a new concept.

Tani [61] used recurrent forward models to learn traversal trajectories in training a robot to

learn to get to some goal location from an arbitrary point in aroom. Jordan [24] suggests

the use of recurrent forward models in training a standard feedforward distal neural network

guided by current state information to learn to reproduce specific distal trajectories effec-

tively. Neither model, however, addresses generating correct discrete proximal sequential

behavior minus current state updates as both continue to rely heavily on receiving streams

of correct state information in their design.

In this work, recurrent forward models can take the form of a Jordan network, an El-

man recurrent neural network, or even possibly a hybrid of the two (Section 2.2.) The task

of the recurrent forward model will be to learn to approximate as closely as possible the se-

quential mapping of the actual environment. Toward this end, the recurrent forward model

should take in sequential actions and, ideally, should return as distal sequences precisely

what the environment would. When it is trained sufficiently todo this reasonably well,

the recurrent forward model should be able to assist the distal recurrent neural network in

learning to produce the correct set of proximal actions needed to yield the series of distal

outcomes the trainer is seeking. Current standard neural network gradient descent methods

are all that is required to train the recurrent forward modelhere (Section 2.2.)

Ideally, should the forward model be capable of modeling theenvironment relation

entirely and correctly, the correct proximal behavior of the distal recurrent learner from a

single static input can be learned more readily. However, the combination of environment
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relation and current state function can become exceedinglycomplex and, hence, extremely

difficult to learn. In this case, as long as the forward model can learn to produce the correct

distal desired consequences when given the correct, thoughpreviously unknown, proximal

output sequence, it should be better equipped to train the distal recurrent network.

Training the forward model sufficiently to, in turn, get the learner to generate the

correct proximal behavior is still a subject of study. Experimentation can be used to deter-

mine things such as recurrent network type (Jordan/ Elman),length of training time, hidden

layer size, neuron output functions, best gradient descenttraining method, etc. Care must

be exercised in ensuring the forward model is not overtrained and can generalize as best

as possible to the environment relation. To be ultimately successful, as mentioned before,

the forward model should be able to map closely the sought-after proximal sequences to

the desired distal sequences provided by the trainer in order for it to provide accurate error

signals in training the learner. This accuracy desired of the forward model can actually

be achieved either in training before or simultaneously while training the distal recurrent

learner.

Let U∗

i be some action sequence in the learner’s proximal output space which would

yield sequence,Yi, the i-th target distal sequence provided in environment space:

Env(U∗

i ) = Y ∗

i .

The goal of the recurrent distal learner is to adjust its weight parameter sufficiently such

that it can produce sequenceU∗

i to within some acceptable root mean squared error (RMSE)

once presented with single vectorpi as input. Note that, if the environment function is not

one-to-one, many action sequences can potentially be mapped to the same desired distal
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trajectory. However, any given forward model can guide the distal learner to only one

winning solution. Conceivably, with unlimited time and resources, the forward model could

eventually make its way to obtaining the correct target mapping from U∗

i to Yi in a variety

of ways. Ideally, the forward model can go about doing this bylearning to generalize the

target mapping through its training from arbitrary proximal / distal trajectory pairs obtained

via random sampling or produced from the learner.

For truly complex environments for which generalization may be difficult, actually

being capable of mapping the unknown yet sought proximal action sequence,U∗

i , and mim-

icking the target mapping that way could suffice. To one extreme, one could just ensure

that the forward model knows to transform the “correct” proximal behavior to the distal

sequential desired outcomes by representing them as input /output pairs somewhere in its

training data. This is under the assumption that the correctproximal sequential behavior is

available for training a priori, which is often not the case and sometimes defeats the purpose

of developing such a system.

In addition, to aid the recurrent forward model in learning the environment mapping,

teacher forcing ([67], [69]) can potentially be employed ifthe Jordan architecture is uti-

lized. In this case, since the desired sequential outputs for the forward model are known

already (they are merely the actual sequence of distal outcomes resulting in the environ-

ment from the same proximal actions used as inputs), the forward model can be trained in

that manner.

52



u[n−1]
Learner

Forward 

Model

y[n]^

x[n−1]

p[n−1]

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

u*[n−1]

y[n] − y[n]*

Learner
Forward 

Model

y[n]^

x[n−1]

p[n−1] u[n−1]

Figure 3.2: (Top) Distal supervised learning framework fortraining a recurrent neural net

to learn proximal sequences which ultimately yield desiredsequential outcomes in the en-

vironment. Here, the forward model is also a recurrent neural network. (Bottom) Proposed

training procedure for the recurrent distal learning paradigm

3.3 Training the Recurrent Distal Learner

The distal recurrent learner is trained in much the same way as the standard feedforward

distal learner. The recurrent learner is trained through interaction with environment and

forward model just as it is for the non-recurrent case. The primary differences lie in the

structures of the learner and forward model, which both require exponential memory vec-

tors (i.e., context or state layers) for tracing the historyor action path taken thus far. The

memory vector can reflect an exponential trace, meaning a decay term may be applied to

the memory vector at a subsequent time step before adding thelatest action to it. In the

case of exponential trace vector, a limited amount of previous action taken can be reliably
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considered in making subsequent action, much like in the non-distal case described in Sec-

tion 2.5. The only difference would be the existence of the forward model necessary for

training in the distal setting. The forward model can be usedto transform errors from the

distal variable space of the environment to the proximal action space of the distal recurrent

learner. This can be done efficiently much like the standard,non-recurrent case by propa-

gating these differences between desired and predicted sequential outcomes back through

the forward model. However, since the forward model is knownto be recurrent as well,

the backpropagated error signals need to consider what was output previously in order to

propagate back the correct information. Here, the memory module can take in the previous

internal state or memory activations and utilize that in order to propagate correctly the right

error.

One issue that arises in training forward models stems from the difficulty that stan-

dard neural network architectures have in retaining previously learned mappings or trained

behavior while adopting new ones. In this case, storing previously seen training instances

for continued training in ensuring an appropriate amount ofretention of the environment

function landscape can be a good remedy. In training the forward model repeatedly not

only on new actions produced by the learner but in retaining recent and promising prox-

imal actions, effective training can be ensured. Here, onceagain, caching these training

instances in developing an efficient forward model may be keyto training the distal learner

in complex environments and in no way compromises the task ofhaving the latter deter-

mine on its own the correct set of proximal actions to take. Asthe correct answers are not

given directly to the distal recurrent learner but to the forward model, the training task is

still a very difficult one.
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Considering the memory trace vector,x, the distal supervised learning procedure can

now be modified by redefining the parameterized function of the distal learner to accom-

modate recurrent links and trace memory from Equations 2.5-2.7 for Jordan networks and

Equations 2.8-2.10 for Elman networks. In training the recurrent neural network in this

fashion, much of the same methods and formalisms identified in Jordan[24] remain intact.

What is needed in order to expand the existing procedure from the non-recurrent case (sin-

gle input/single distal output) to the recurrent neural network case (single input / multiple

distal output) case is to use the recurrent forward model to interpret the distal error into

proximal error at each discrete time step of the distal desired sequence. This is a very chal-

lenging goal. For the purpose of these initial studies, the distal recurrent learner knows the

length of the desired distal trajectory and is, hence, confined to only producing that same

number of proximal actions. There are other ways in which thedistal recurrent neural net

may be trained to execute the correct number of actions (Radio[45]) which will be ad-

dressed in subsequent chapters. For now, it should be sufficient to use the length of the

desired output sequence as the number of proximal outputs required from the distal recur-

rent learner to yield the correct behavior. This can be done by assuming that a new action

is necessary for a new distal outcome to result in the environment. This assumption can be

made valid if no major changes in distal consequence can occur without the learner’s direct

intervention with action.

Every distal training pair in this particular study is assumed to associate one fixed

input stimulus,p, with some varying length distal desired sequence, Y∗. In contrast, in

standard distal learning studies, such as those proposed inJordan[24], training pairs only

have a single input,p, associated with a single distal output textbfy∗. In order for this to
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resemble the standard distal learning architecture, it will be sufficient to first “unfold” the

single input vector to the recurrent neural network into a comparable multi-vector sequence

of inputs, each corresponding with one known output of the distal target trajectory. Each

of these new input vectors would now include the corresponding contents of the memory

vector at that particular time step, whether implementing aJordan or Elman architecture, as

well as the original fixed input vector. The combination of input and memory vector con-

tents from the i-th time step makes for a new input vector which can be uniquely associated

to the environmental outcome at the same time step in the desired distal output sequence.

In addition, as implied previously, they should number to asmany vectors as there are in

the target trajectory. As a result, the distal recurrent learner should be able to differentiate

between stimuli while keeping in mind the memory trace of previous actions taken up until

this point.

When concatenating the context history vector,xt, to the single input vector,p, at ev-

ery time step, t, a new sequence of input vectors,P = p[1], p[2], ..., p[l], can be constructed

for training the recurrent distal learner. The input sequence, P, will number in length the

same as the desired distal output sequence,Y∗ = y∗[1], y∗[2], ..., y∗[l]. Each newly concate-

nated input vector,p[t] in the newly constructed input sequence can be defined as follows:

p[t] = [p, xt], 1 ≤ t ≤ l. (3.1)

where l is the number of vectors in desired distal output sequence,Y∗. As a result, all

corresponding input / output pairs〈p[t], y∗[t]〉 , 1 ≤ t ≤ l, can then be used for training

using the standard distal supervised learning procedure (Section 2.5).
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3.4 Approximated Teacher Forcing

In implementing a recurrent network, it is known that all previous outputs of the net-

work have a hand in determining the network output at the nextstep. Hence it follows

naturally that if any previous network output is erroneous,learning of any subsequent

outputs will be seriously hindered. Until the network output y(t), 1 < t < l, of se-

quence length l is produced correctly, acquiring the correct mapping to subsequent outputs

y(t + 1), y(t + 2), ..., y(l) becomes increasingly difficult. Implementing a learning scheme

in which the teacher can fix the actual outputy(t) to, instead, be the desired outputy∗(t)

before learning desired outputy∗(t + 1) could potentially be significant in alleviating this

problem. Doing this allows for learning in parallel of all vectors of a target output sequence

simultaneously rather than having to wait for vector outputs y(0), y(1), y(2), ...., y(t − 1)

to be sufficiently correct before training on outputy(t). Such a scheme is often referred

to asteacher forcing([39]). Note that here the Jordan recurrent architecture isused, as

opposed to the Elman network, as only the external outputs are required and recorded in

the exponential trace vector of the Jordan network. Teacherforcing would hardly be pos-

sible in an Elman network as there would be no way in advance toknow what the actual

intermediate layer activations at any arbitrary time step tshould be en route to acquiring

correct sequence generation capability.

Teacher forcing is a powerful tool which greatly assists in the training of recurrent

neural networks. The trouble is that teacher forcing as discussed previously cannot readily

be used to benefit the training of a recurrent neural network in a distal setting. Namely,

knowledge of the correct proximal output sequences for the recurrent neural network is
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required in order to provide accurate trace memory vector contents to significantly hasten

training. By definition, this information cannot be made available to any distal learning

framework for training of a recurrent distal learner.

What can be done, however, is some approximation of the correct proximal sequence

can be developed to substitute for the actual, though unknown, correct proximal sequence,

U∗. En route to deriving this approximation toU∗, the following set of equations restate

the derivation of weight changes for a standard feedforwardneural network from the error

calculation,Jn, at time step n (Equations 2.1-2.4.)

Jn =
1

2
(~y∗[n]− ~y[n])T (~y∗[n]− ~y[n]),

∇~wJn = − ∂~y
∂~w

T

(~y∗[n]− ~y[n]),

Ultimately, the learner’s weight vector,̃w, is updated as follows:

~w[n] = ~w[n− 1]− η∇~wJn,

When training a distal learner, calculation of the weight update above is restated as Equa-

tion 2.14,

∇~wJn = − ∂u

∂w

T ∂y

∂u

T

(~y∗[n]− ~y[n]),

but since the environment function,ỹ = Env(ũ) is unknown, the gradient term(∂y/∂u)

cannot be calculated directly. However, according to Jordan [24], the gradient term(∂ŷ/∂u)

can be computed for a forward model neural network trained tomimic that environment

and taken as an approximation of(∂y/∂u) thereby yielding the distal learner update rule,

∇~wJn ≈ −
∂u

∂w

T ∂ŷ

∂u

T

(~y∗[n]− ~y[n]) (3.2)
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Here, I define a new term,∆û, used to describe the error correction obtained once the per-

formance error vector,∆y = ỹ∗[n]− ỹ[n], is propagated through the weighted connections

of the forward model,

∆û =
∂ŷ

∂u

T

∆y (3.3)

Now the distal learner weight update can be expressed as,

∇̂~wJn = − ∂u

∂w

T

∆û (3.4)

If we do indeed consider∆û as a sufficient estimate of the difference between the re-

current distal learner’s output and the correct, yet unknown, proximal action at that time

step, a fair approximation of some correct proximal sequence, U∗, can be defined aŝU =

û(0), û(1), û(2), ..., û(t− 1), where :

û(i + 1) = (u(i + 1) + ∆û(i + 1)). (3.5)

Here,∆û(i+1) is the vector of predicted proximal error obtained by propagating distal per-

formance error(y∗(i + 1)− y(i + 1)) back through the trained forward model. This vector,

known as the error vector used in effecting weight updates inthe recurrent distal learner,

can be thought of as an approximation of the difference between the erroneous proximal

output,u(i + 1), given by the learner and the correct but unknown output,u∗(i + 1). As-

suming the forward model is trained effectively, their sum should come close to the correct

proximal action required at time i+1.

Therefore, though desired proximal output sequenceU∗ is not directly known in order

to conduct true teacher forcing in the context layer of the recurrent distal learner, its effect
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on the trace memory vector can be approximated as follows:

x(t + 1) = (û(t + 1)) + αx(t) (3.6)

= (u(t + 1) + ∆û(t + 1)) + αx(t) (3.7)

wherex(0) = 0̃. In other words, the idea is that approximated teacher forcing (Equation

3.4) can be used in the place of standard teacher forcing (Equation 2.2.1) even when given

the situation where desired proximal output sequences are not available for training. This

hypothesis will be tested and shown to be effective in the various recurrent distal supervised

learning applications covered in this work. The entire algorithm for training a recurrent

neural network is listed in Table 3.4.

3.5 Use of Time Delay Memory Structures in Recurrent

Distal Supervised Learning

In looking to utilize past output history in computing subsequent actions, one can poten-

tially utilize delay-line memory structures instead of, orin conjunction with, the expo-

nential trace memory input vectors described previously. Like exponential trace memory

vectors, the use of such delay-line memory structures wouldbe a straightforward extension

of what was described already in Section 2.2.2. In merely copying the contents from the

appropriate hidden or output layer to the first delay-line memory vector and propagating

those activations one-by-one with subsequent discrete time-steps, one can potentially arrive

at the same benefits as those one would expect in a simpler non-distal sequential problem

domain.
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Training Procedure for a Recurrent Distal Learner
RDL(g, h, Env,p, Y∗)
1. Pre-train forward model
2. Single-input / single-output re-assignment -

Given :• training pair -< p, Y∗ >
• Input -p
• Distal Output Sequence, Y∗ = y∗[1] y∗[2] ... y∗[k]
• Initial memory vector -m(0) = 0̃

3. For each distal targety∗[i], 1 ≤ i ≤ k

4. Update inputpi with memorym(i-1): pi = concat(p, m(i− 1))
5. Compute:

• recurrent learner output sequence,u(i) = h(pi,w),
given inputpi and recurrent learner’s weight vectorw

• distal output,y(i) = Environment(u(i))
• estimated distal output,̂y(i)

6. Compute distal error:∆y = y∗[i]− y[i]

7. Estimate learner (proximal) error:∆û = − ∂ŷ

∂u
∆y

8. Calculate and apply update to weight vectorw:
• ∇wJn = − ∂u

∂w

∂ŷ

∂u
∆y = − ∂u

∂w
∆û

• w = w + α∇wJn

9. Update memory layerm, 0 ≤ β < 1 :
m(i) = u(i) + βm(i− 1)

or m(i) = (u(i) + ∆û(i)) + βm(i− 1) (approximated teacher forcing)
13. Re-calibrate recurrent forward model : (train on< u(i), y(i) >)
14. Endfor (step 3.)

Table 3.1: Training procedure for a recurrent distal learner.
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However, one issue that arises in this context is the use of teacher forcing ([67], [69]).

Teacher forcing can be readily used in tapped delay-line memory applications in non-distal

recurrent networks since the immediate desired behavior isknown to the trainer and can be

subsequently furnished to the first delay line module to effect training speedup in learning

the desired sequential task. However, in the distal recurrent supervised learning domain,

once again, the desired proximal behavior is probably unknown to the trainer. In this case,

approximated teacher forcing can be utilized in the training of the recurrent distal learner

to what should amount to improved performance over much of the run. Here, given the

estimated proximal error provided by the forward model, thedesired proximal action can

be approximated and placed on the delay-line memory queue inthe same manner as in the

non-distal case. Figure 3.3 demonstrates an example recurrent distal supervised learning

architecture in which the recurrent distal learner is outfitted with some number of “tapped”

delay-line memory vectors in the same manner as was described in Section 2.2.2. In this

particular example, the recurrent forward model is not given delay-line memory vectors to

work with. It is, however, not the case that recurrent forward models could not be given

this capability as well.

3.6 A Distal Sequence Generation Task Using a Simple

Environment

For the initial work addressing supervised recurrent network learning from distal target

sequences, a simple system is demonstrated. Here, a sequential neural network is trained in
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b)

Environment

...

c)

a)

Figure 3.3: An example setup of delay memory layers in use by the recurrent distal learner.

Note: delay memory modules can be added to either or both recurrent distal recurrent

learner and forward model structures as required. In the case shown here, only the recurrent

distal learner is given delay-line memory layers.

a simple environment whose characteristics and propertiesare well understood. This distal

recurrent neural network learns to generate varying lengthdiscrete action sequences when

given single static input vectors. These action sequences ultimately yield the desired distal

target sequences provided by the distal teacher when executed in the environment.
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3.6.1 Simple Sequential Environment for Preliminary Study: Con-

catenation

I sought to identify initially a less complex environment which could serve as a first test to

verify that the proposed approach to recurrent distal supervised learning would perform as

hypothesized. Such an environment would preferably possess these properties:

1. There is an intuitive series of outputs given a sequence ofinput vectors.

2. There is a one-to-one relationship between the input sequence and the output se-

quence space. In other words, given a valid sequence of outputs from the environ-

ment, only one possible input sequence could generate it.

The environment mapping,f∗, used here (illustrated in Figure 3.5) is merely one

which accepts a sequence of input vectors{x̃1, x̃2, ... , x̃k} and produces a corresponding

list of output vectors{ỹ1, ỹ2, ... , ỹk} where each̃yi is a vector consisting of a concatenation

of the inputs seen thus far plus a series of trailing 0’s to fillthe remainder of its contents, if

any. This can be described as follows:
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f ∗({~x1, ~x2, .., ~xk}) = {~y1, ~y2, ..., ~yk}, where ~yi =



































~x1

~x2

.

.

~xi

0

.

.

0



































, 1 < i < k < c. (3.8)

Here, k denotes the number of vectors in the input sequence, mdenotes the length

of any input vector, and c denotes the maximum length allowable for an input sequence to

the concatenation environment. Each input vectorx̃i is a column vector such thatx̃i ∈ ℜm

while the resulting output vector̃yi will be a column vector such thatỹi ∈ ℜ(m×c).

The resulting output vector will always have length equivalent to the product of the

length of the input vectors and the maximum sequence length possible. Any entries in the

vector which are not filled in through the concatenation operation are merely set to zero.

The length of the resulting output sequence from this environment will equal the number

of vectors in the input sequence presented to it. This constructed mapping is demonstrated

in the example of Figure 3.5 for a maximum possible sequence length of 4.

One key property of this environment is that there is only oneinput sequence which

can yield any legal output sequence. This property greatly simplifies the learning task of
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Figure 3.4: A simple illustration of the sequential concatenation environment. Above,

the environment function is shown taking each vector in the input sequence in order at

each time step and concatenating it to all previously seen input vectors to form a new

vector in the output sequence. Varying line-styles (dotted, dashed, and dot-dashed) are

employed to clearly denote placement of the original input vectors in the resulting sequence

of concatenated vectors.

the recurrent neural network situated in the environment aided by the forward model. This

is because the forward model will be able to propagate back tothe learner only information

which it can use to learn the precise sequence it needs to produce. If it were possible to

have many potential input sequences yield the same desired distal sequential outcome in the

environment, the forward model could assist the learner in learning to reproduce just one

such proximal sequence. However, it would be very possible for the produced sequence

to be something other than the desired proximal set of actions should a very specific prox-

imal output be expected. This is only an issue in this settingbecause, in this particular

exercise, proximal accuracy is key in measuring success forthis method. The main proper-

ties of the environment ensure us that the specific proximal outputs needed to produce the

desired distal sequences are readily derivable for use in measuring performance. In many

other domains which utilize a distal supervised learning framework, one-to-oneness from
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an environment’s input to its output space is much less of an issue.

Shown in Figure 3.5 are sample input/output sequence interactions of the concatena-

tion environment mapping,f∗, (shown as black arrows) used to demonstrate the effective-

ness of the recurrent distal learning architecture. On the bottom are three example discrete

input vector sequences each having vector lengths of eight but varying in sequence lengths

of four, two, and three, respectively. The arrows denote themapping (described in Equation

3.6.1) of these input sequences by the concatenation environment to distal output vector se-

quences having the same sequence length but all containing vectors of length thirty-two.

The three proximal / distal sequence pairs shown above are examples picked from the actual

ten used in the preliminary experiment outlined in Section 3.6. To successfully accomplish

this distal sequential learning task, ideally the recurrent distal learner will learn to produce

the correct proximal output sequences (left) when presented with the single static vector

(not shown) associated to the target distal output sequence(right). Performance results of

the model are shown in Figure 3.6.

3.6.2 Experiment

The distal recurrent supervised framework shown in Figures3.1 and 3.2 is used in this

initial experiment where the distal learner and forward models, both recurrent Jordan net-

works, are set in series with each other and assigned random initial weights. The external

environment is the concatenation mapping as described in Section 3.6.1. Ten varying length

vector sequences are generated randomly in the output spaceof the learner and recorded

as the desired proximal output sequences for testing the accuracy of the learner throughout
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Figure 3.5: Three of the ten input / output sequence pairs used in training the recurrent for-

ward model for the distal concatenation experiments of Section 3.6. Just like the example

mapping of Figure 3.4, the concatenation environment (shown as the black upward arrows)

accepts each of the three sequences of vector inputs, each ofwhich being a binary vector

of length eight, and transforms them into corresponding concatenated vectors of the same

sequence length but containing vectors of length 32. Dottedlines are used to delineate the

concatenated inputs within the resulting output vectors.

the training process. These ten action sequences are then mapped by the environment to

ten distal output sequences, each having the same sequence lengths as their proximal coun-

terparts, which are stored and used as the desired distal outputs for the study. Ten static

input vectors of the form [0, ..., 0
︸ ︷︷ ︸

(j−1)

, 1, 0, ..., 0
︸ ︷︷ ︸

(n−j)

], where j is the jth input vector and n is vector

length 10, are associated to the ten distal output sequencesas input / output pairs. The task

is to see if the distal recurrent neural network can learn to produce the original ten gener-

ated action sequences which would yield through the environment the desired distal output
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sequences given the ten static input vectors using the proposed framework.

To begin the simulation, the forward model is first trained for 1000 epochs on 1000

varying length input / output sequence pairs, 990 generatedrandomly plus the ten gener-

ated sequence pairs discussed previously. The idea is that the better the recurrent forward

model is trained to model the concatenation environment, the more efficiently the recurrent

distal learner can be trained. Then the distal learner, presented with a static input vector,

produces a vector sequence which is submitted to the environment to yield theactual out-

put sequence, y. The same vector sequence is also submitted to the forwardmodel to yield

thepredicted output sequence, ŷ. Both outputs can then be used with the desired output se-

quence, y∗, to yield predicted error (y∗-ŷ) and performance error (y∗-y). The predicted and

performance errors can then be used to effect weight vector updates of the forward model

and distal learner recurrent neural nets, respectively. The predicted error, which merely

measures the accuracy of the forward model over the input / output sequence pairs, can be

used to modify the forward model weight vector using standard gradient descent methods.

This can then be repeated for all ten static inputs to complete the epoch.

The results shown in Figure 3.6 describe key characteristics of the best training run

for recurrent distal learners in this learning task. This top-performing recurrent distal neural

network itself used a hidden layer of 30 units while the forward model it utilizes works with

25 units in its own hidden layer (indicated as< 30, 25 > above both graphs.) Three error

curves are shown together to demonstrate the various interactions occurring throughout the

training of this recurrent distal learner (namely the forward model error, the distal learner

error, and the distal performance error..)

First, similar to the practice used in standard distal supervised learning, the recurrent
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forward model is trained for 1000 epochs before training of the recurrent distal learner

is initiated. This stage is often referred to as thebabbling stage and enables the forward

model to acquire behavioral characteristics of the environment so that it can more aptly

propagate effective error signals back to the recurrent distal learner. Also note that, again

in a similar manner to standard distal learning, training ofthe forward model continues

throughout training of the recurrent distal learner. The interaction between the recurrent

distal learner and the environment provides a steady supplyof training examples which

the forward model can use to train on en route to better mimicking of the environment

mapping.

The varying length sequential outputs from the recurrent distal learner, produced

when given the set of static input vectors, are compared to the set of desired proximal out-

put sequences throughout training to yield a proximal errortraining curve which closes

with a RMSE of just over 0.05 (Figure 3.6 a.) The desired proximal outputs can be found

in this domain since, by design, the dynamics of the sequential environment are so well

understood that its inverse is easily determined. In most complex domains, however, the

proximal desired targets for the learner cannot be known a priori and, hence, this measure-

ment usually cannot be determined for analysis.

The distal performance error curve, computed throughout training as the RMSE be-

tween actual distal outcomes resulting from the learner’s interaction in the environment

and the desired distal sequential outcomes provided by the teacher for training purposes, is

shown to converge to an RMSE of just under 0.05.

As stated previously in Section 3.4, the error propagated through a sufficiently trained

forward model from a desired target sequence can be taken as an estimate of the difference
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between the learner’s desired proximal output and its current output. Hence the sum of the

learner’s current “incorrect” output and the propagated error should yield some approxi-

mation for the correct desired proximal outputs. The estimated action sequence error is the

RMSE between this sum and the actual desired proximal outputs. Figure 3.6 b. is merely

a demonstration of the utility of the propagated error whichis itself used to modify the

existing distal supervised learning rule for this work. Plotting together the training curves

e graph shows that the current output plus the propagated error is even closer to the known

desired proximal outputs than just the current output alone.

Figure 3.7 offers further proof in support of the thesis thatusing the propagated er-

ror for improved memory layer updates can improve training of the recurrent distal learner

in sequential environments. This figure superimposes the training curves of two recurrent

distal learners attempting to handle the same learning taskdescribed previously while op-

erating in the concatenation environment. The initial weights and training data were kept

the same between the two runs shown to ensure that approximated teacher forcing alone,

or the lack thereof, could be the contributing factor to improved training of either recurrent

distal learner. Here, Figure 3.7 shows the learner using approximated teacher forcing in-

deed produced the better distal performance errors, converging at an RMSE of .0571 while

the learner that did not use approximated teacher forcing was shown to converge to .0689.

3.6.3 Conclusions

In summary, the figures of Section 3.6.2 verify the usefulness of the work described here by

demonstrating the successful training of a sample recurrent distal neural network capable
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Figure 3.6: Training performance charts of the recurrent network using distal target se-

quences.
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of replicating the desired distal outcome sequences in a sequential environment, namely

the concatenation environment, from single static input vectors. In Figure 3.6a., the dimin-

ishing RMSEs of the recurrent forward model, recurrent distal learner, and of the results

of the latter’s proximal sequential actions in the environment in an example recurrent dis-

tal learning system are charted throughout training. Figure 3.6b. charts the RMSE of the

proximal sequential outputs of the same recurrent distal learner against the RMSE of the

same proximal sequential outputs plus the approximated error attained through use of the

forward model. Essentially, this chart demonstrates that even as the proximal actions given

by the recurrent distal learner improve in accuracy as training progresses, the same proxi-

mal actions added with the error correction provided by the recurrent model are shown to

be even more correct throughout training. This demonstrates that the sum tracked by this

curve would be a more viable output to incorporate into the context, or memory, vector to

enable more efficient training. Lastly, Figure 3.7 verifies that using the sum of the learner’s

less-than-accurate proximal output at any point in its action sequence with that estimated

error correction attained from the recurrent forward modelat that time step to update the

learner’s memory layer does indeed tend to lead to better distal learner training than when

the proximal output alone is used.

Despite this initial success, this experiment helped to bring some concerns to light:

1. Forward Model Training - Preliminary experiments seemed to suggest sufficient

training of the forward model is absolutely essential to thetraining of the recurrent

distal learner. This may become difficult in more complex domains and needs to be

studied further.
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2. Scalability - The relatively high computational effort required to accomplish learn-

ing in this not-so-complex sequential environment could imply tremendous difficulty

if this modified architecture is used to train recurrent networks in truly large and com-

plex environments. This new system of recurrent distal supervised learning must be

validated in much tougher sequential environments to judgehow effective it can truly

be. A tougher environment is indeed introduced and used for evaluation purposes in

Chapter 5.

3. Ambiguity - In many complex distal domains, the method found by the learner to

yield the end distal target output sequences is more or less irrelevant as long as it

is reached. In an environment where multiple sequential paths (sequences) can be

used to arrive at the same distal target output, the forward model will essentially

”select” one viable sequence to guide the learner to acquire. In certain learning tasks,

however, a very specific action sequence is preferred for thelearner to acquire. In

a domain such as this, methods need to be developed through which the forward

model can be used to guide training of the recurrent distal learner towards that desired

proximal learned behavior.

4. Varying length sequences- This preliminary distal supervised sequential learning

system assumed a priori knowledge of the length of the desired proximal sequences

which the distal learner must be trained to produce. This is neither desirable nor

practical in many truly complex sequential environments. One idea to achieve the

desired behavior is to train the forward model to produce an ’End of Sequence’ (EOS)

vector once a correct sequence has ended. It would then be possible to train the distal
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learner to output the EOS vector after outputting the correct number of outputs in a

sequence. Something similar to this was demonstrated in Radio et. al. [45] but not

in a distal learning framework such as this.

Ultimately, these results demonstrate for the first time that, given a single, unchang-

ing input stimulus and a corresponding sequence of desired distal outcomes, acquisition

of correct proximal sequential behavior can indeed be attained in a sequential environment

that provides no consistent stream of current state updates. Existing systems which utilize

Jordan’s distal supervised learning procedure to train feed-forward neural networks require

constant updates from the environment, especially when provided only with static input

vector, to acquire the correct learned proximal behavior and should essentially falter when

such current state updates are absent. Replacing standard feed-forward neural networks in

Jordan’s architecture with recurrent multi-layered neural networks turned out to be a very

effective method of addressing supervised learning in sequential environments. In addition,

proximal error correction provided by the recurrent forward model can, in turn, further im-

prove training by making less-inaccurate the proximal actions taken by the recurrent distal

learner before adding them to its memory layer. This, in effect, helps to encourage notice-

ably better convergence in the training process for the recurrent distal learner. It is highly

improbable that any such mechanism can be developed for standard non-recurrent distal su-

pervised learning systems in much the same way that teacher forcing strategies are useless

with regard to non-recurrent feedforward neural networks in non-distal learning tasks.

76



3.7 Contributions of the Chapter

The work described in this chapter extends the existing distal supervised learning frame-

work to handle sequential learning tasks. Here, both the distal learner and the forward

model which are ordinarily created as single input/ output neural networks are replaced

with recurrent neural networks. Such recurrent neural networks are capable of utilizing

their histories of past actions to make subsequent decisions with or without being informed

of their current state in the world. In doing so, the recurrent learner can thereby acquire

the ability to reproduce a set of time-varying distal targetoutputs in the environment from

a static input vector without the need for constantly updating current state information.

To evaluate this proposed extension to the distal learning framework, I implemented

a learning system that employed a sequential environment designed in a manner where its

behavior was predictable and easily verifiable. The sequential environment used in this

particular implementation was the concatenation environment which, at every time step,

took all vectors in a sequence accepted before the current time step and concatenated them

into one long vector. The goal of the system was to train the recurrent distal learner to learn

to output the sequence of vectors responsible for generating the desired sequence of long

concatenated vectors in the environment while presented only with a single static input

vector. The system was shown to successfully train recurrent networks to accomplish the

task.

The other significant contribution demonstrated here is theintroduction of an approx-

imated teacher forcing strategy to assist in the training ofthe recurrent distal learner. In a

manner which is inspired from standard teacher forcing practices utilized in the training
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of standard recurrent neural networks, more accurate memory vector updates are shown

to result using feedback from the recurrent forward model. This newly devised strategy is

shown to enact quicker, and at times more accurate, convergence to the desired sequence

of outcomes.
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Chapter 4

Sequential Processing using Self-Organizing Map Models

The purpose of this chapter is to introduce a new modificationon an effective method for

processing input sequences in self-organizing maps (SOMs.) Currently, one of the more

effective methods of utilizing a SOM to uniquely encode an input sequence is called the

SARDNET method (James [21]). This method presents a very computationally effective

and meaningful way of encoding an input sequence of input stimuli into a SOM. Unfortu-

nately, at times the SARDNET procedure does not go far enough to ensure the uniqueness

of any arbitrary input sequence in its SOM output lattice. Inthis chapter, I outline the

method known as the SARDNET algorithm and then describe a modification I introduce

that is capable of creating even more unique output representations for input sequences

based on the proximity of each input vector to known candidate vectors. This chapter is

essential in establishing a method to properly, efficiently, concisely, and uniquely represent

input vector sequences so that it can be utilized as an essential piece of the very complex

distal sequential learning task described in the next chapter (Chapter 6). There, the modi-

fied SOM can be treated as a viable model of associative memoryin humans for use as part

of a very ambitious distal learning task in a complex sequential environment, termed the

79



phoneme sequence generation environment, in an attempt to mimic the process by which

humans acquire the ability to produce words.

4.1 Background

In certain problem domains, it is conceivable that sequences of input stimuli may be re-

quired for mapping in a self organizing map (SOM) as opposed to having static stimulus

patterns. In addition, much like in the static input case, itwould be imperative that each

sequence of inputs be mapped such that the resulting output pattern will be as distinct and

different as possible from any other potential sequence of inputs. Typical implementations

of Kohonen SOMs, however, lack the functionality for handling and classifying sequential

input data.

In the existing literature, there are two classes of SOM models which are designed

to handle sequential inputs. One approach, termed the One-Shot, Multi-winner SOM [55],

takes a more biologically inspired approach to accomplishing the desired computational

behavior. The other, called SARDNET [21], accomplishes the goal using a more com-

putationally efficient method. In this chapter, I develop a modification of the SARDNET

architecture, namely in its output dynamics, such that, rather than output a 1.0 at winning

nodes as most SOM models do, map nodes output a value which serves as an indicator of

1) how close the input vector in the sequence truly is with respect to any of the anticipated,

or “candidate”, input vectors to the SARDNET SOM as well as 2) how close the current

map node is to the actual winning node.
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The SARDNET Training Procedure

Initialization: Clear all map nodes to zero.

MAIN LOOP: While not end of sequence

1) Identify unit whose weight vector that best matches the input.

2) Adjust weight vectors of other nodes based on user-defined

neighborhood function (e.g. gaussian)

using standard Hebbian learning.

3) Exclude the winning unit from subsequent competition.

4) Decrement activation values for all other active nodes.

RESULT: Sequence representation = activated nodes ordered by activation values

Table 4.1: The SARDNET Training Procedure

4.2 SARDNET

The SARDNET architecture [21] allows for a very efficient classification of input se-

quences, each identified almost uniquely by its series of mapnode activations. In this

architecture, many rules developed for the Kohonen Map remain intact in the SARDNET

SOM. However, in creating an output map, once a winning map node is selected for an

input vector in a given vector sequence, that map node is marked never to be used in that

sequence again. The map node would then be given an output of 1.0. Once done, all

previous activations would then be decremented by multiplying each one by some decay

constant,0 < d < 1. This is then repeated for the length of the input sequence. The ten-

dency of each output map produced en route to forming the finalSARDNET output pattern

using this procedure is that only one unique input sequence that could be responsible for
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producing each map. Training of the SARDNET SOM similarly involves marking winning

nodes as it traverses through the input sequence. The actualtraining algorithm is listed in

Table 4.1. Subsequently, the procedure used for producing an output pattern in a trained

SARDNET SOM from an input sequence is listed in Table 4.2.

Figure 4.2 demonstrates two plots of the weight vectors of a 10x10 SARDNET SOM

in which the input vectors, as well as the weight vectors, onefor each node in the output

lattice, are two-dimensional vectors. Each input sequenceranges from two to four vectors

in length and are comprised solely of some combination of thefollowing four candidate

vectors,{[00]T, [01]T, [10]T, [11]T}. Connecting lines are shown to designate adjacency

between output nodes in the output lattice, each of which corresponds to some 2D weight

vector. In the weight plot of Figure 4.2a., the weight vectors of the SARDNET SOM are

randomly initialized and demonstrate no organization prior to training. The weight plot

of Figure 4.2b., however, is a snapshot of the weight vectorsafter training for thousands

of epochs. Here, organization of the weight vectors given the neighborhood function is

immediately apparent. Also note that most node vectors lookto accumulate around the

four candidate vectors from which the list of input sequences was solely created. Also note

the relatively even distribution of weight vectors surrounding the four candidate vectors

implying an even distribution of the candidate vectors throughout the input data. An output

node corresponding to any weight vector in close proximity to one of the four candidate

vectors will be among the first to be selected and turned on once that candidate node is seen

by the SARDNET SOM as input.

In addition to this procedure being very fast, it turns out that it is extremely mem-

ory and computationally efficient as well. James et al. [21] point out that the SARDNET
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Output Dynamics of a Trained SARDNET SOM

1) initialize all node outputs to 0

2) selectxi in sequence X,

3) multiply output of all marked nodes by0 < µ < 1

4) determine closestunmarked(winning) node and set its output to 1.0

5) mark winning node

6) repeat from 2) until sequence X is completed.

Table 4.2: Outline of the procedure for producing output maps in the SARDNET SOM

once presented with input vector sequence, X ={xi|1 < i < n}.

SOM can classifypnl sequences utilizing onlylpn nodes in it’s output lattice, wherep is the

number of possible values of an input,n is the length of an input vector, and the maximum

length of a vector sequence is represented by the variablel. Many other previously sug-

gested sequential SOM architectures would tend to map each sequence to a separate map

node, potentially requiringpnl map nodes.

The SARDNET architecture provides a great tool for producingpotentially unam-

biguous activity patterns for finite lists of input vector sequences. However, ambiguity

among activity patterns in the output maps can still occur. Truly unambiguous activation

patterns result primarily when any input vector seen anywhere in one of the set of training

input vector sequences can be mapped uniquely to one specificwinning output node in the

SOM. In other words, this outcome can be ensured only if no twoinput vectors can be

mapped to the same winning node. If potential vector inputs are selected solely from some

finite alphabet, or set ofcandidate vectors, this property can generally be expected in a
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Figure 4.1: A plot of the weight vectors used to characterizea SARDNET SOM utiliz-

ing a 10x10 lattice of output nodes. Here, the SOM is used in anunsupervised learning

task of two-dimensional input sequences, each ranging fromtwo to four vectors in length.

Plot a) shows the initial configuration of random weight vectors of the SOM as plotted in

two dimensions. Plot b) shows the same SARDNET SOM after beingtrained using the

SARDNET procedure outlined in Table 4.1.

reasonably-sized, well-trained SARDNET SOM. However, where vector contents can take

on not just some finite number of values, p, but any of an infinite number of values (e.g.

real valued), unique output map creation cannot be guaranteed.

To demonstrate this, let X and Y each be vector sequences of length k used as input

to SARDNET SOMSDEX such that X =x[1], x[2], ..., x[k] and Y = y[1], y[1], ..., y[1].

We construct sequences X and Y such that they comprise the same vectors from position

0 up until next-to-last position, k-1, in each respective sequence (i.e.,x[i] = y[i], 0 ≤ i ≤

(k − 1).) As such, the series of output maps produced by the SARDNET SOM SDEX

will certainly be equivalent whether given X or Y up to vectork-1 of either. An issue

can easily arise if vectors x[k] and y[k] both are closest to the weight vector of the same
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output node butx[k] 6= y[k]. In this scenario, this will likely result in the same output

value, 1.0, being output at the same winning node, leading ultimately to equivalent output

map representations between the two input sequences even though the sequences are not

equivalent (i.e.,SDEX(X) = SDEX(Y) butX 6= Y.)

The problem occurs because the same output map node is selected and the same

output value is pre-determined even though the input vectorat that time step is different.

Ideally, rather than just having the winning map node produce the same pre-determined

output value when it wins, a more descriptive output score than 1.0 could be calculated

and produced which could most probably be different for two differing input vectors, even

when they select the same winning node.

By knowing a priori the set of anticipated, or candidate, inputs expected to be seen

by the SOM, more informative map node activation values for the SARDNET SOM can be

developed. Such a modification in its own right could potentially offset the effect of output

map ambiguity substantially in the standard SARDNET SOM.

4.3 Candidate-Driven SARDNET

As a response to this issue of prevailing ambiguity in SARDNETSOMs, I devised a more

informative output node dynamic which allows for more telling real numbered output node

activations than just the standard 1.0 output suggested by James et al. ([21].) Suppose

it is known a priori the entire set of possible input vectors,termed candidate vectors, seen

somewhere in any input vector sequence anywhere in the training data. Let C denote the set

of candidate vectors andx[t] denote the input vector at discrete time step, t, of the current

85



n-length input vector sequence, X =x[1], x[2], ..., x[n].

First, note that the training procedure remains unchanged from that used for single-

winner SARDNET SOMs described in Table 4.1. Some winning nodeoj, associated to

weight vector wj, can be found in the same manner as is detailed in the originalSARDNET

output scheme. However, in calculating the output of a winning node in this modified

version of the SARDNET SOM, rather than use the algorithm outlined in Table 4.2, the

following variables must first be calculated,

cx = argminj||cj − xt||, 1 < j < m (4.1)

wc = argmink||wk − cx||, 1 < k < n (4.2)

where m is the number of candidate vectors in C and n is the total number of nodes in the

SOM lattice. Vectorx[t], again, denotes the single input vector at time step t of the current

input vector sequence, X, to the SOM while vectorwk can then be defined as the weight

vector which corresponds to output nodeok. Hence, the variablecx signifies the closest

candidate vector in C to the input ,x[t], at time t of the current input vector sequence. Vector

wc is therefore the weight vector of the trained SARDNET SOM which most corresponds

to that best candidate,cx.

The following equations calculate gaussian, or radial basis, measures ranging from 0

to 1 indicating the proximities of the winning node to the predicted candidate vector (eq.

4.3) as well as the current node to the winning node in the output lattice (eq. 4.3):

gci = e−
||wc−xt||

2

2δ2 (4.3)

gcn = e
−

||oc−on||2

2γ2 (4.4)
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Output Dynamics of a Trained Candidate-Driven SARDNET SOM

1) initialize all node outputs to 0

2) select input vectorx[i] in sequence X,

3) multiply output of all marked nodes by0 < µ < 1

4) determine closestunmarked winning node and set its output togci ∗ gcn (Eq. 4.3)

5) mark winning node

6) repeat from 2) until sequence X is completed.

Table 4.3: Outline of the procedure for producing candidate-driven outputs in the SARD-

NET SOM once presented with input vector sequence, X =x[1], x[2], ..., x[n].

whereδ > 0 andγ > 0 are radius terms which each determine width for their respective

gaussian curves listed above and||...|| indicates Euclidean distance. Vectoroc denotes the

(i,j) lattice position. By combining these two terms, a new, more meaningful real-valued

output can be produced at a SOM map node which can be treated asa gauge for its closeness

to the intended candidate vector :

Output(oc) = gcn ∗ gci (4.5)

See Table 4.3 for the entire candidate-driven SARDNET SOM output procedure.

One way of looking at this new candidate-based output schemeis that thegci term

indicates the proximity of the weight vector of the output node closest to the winning

candidate is the actual input vector. A perfect match, wherethe candidate output node

has a weight vector equivalent to the t-th input vector of X (i.e., wn = xt), will yield a

gci of e0 = 1.0. Alternately, the further a candidate output node’s weightvector is from
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xt, the closer the term approaches 0. The second term,gcn, indicates how far the node

currently being looked at is from the weight vector closest to the winning candidate. If the

current node has a weight vector equivalent to the candidate, this term will work out to be

e0 = 1.0 as well. In the event that both cases are true, the terms together yield an output of

gwc ∗ gwi = 1.0 ∗ 1.0 = 1.0 just like in the standard SARDNET procedure. Hence if certain

weight vectors of a SARDNET SOM end up being made equivalent tothe set of candidate

input vectors, the resulting candidate-driven output scheme can be reduced to the standard

SARDNET output scheme.

The scale of this output given at any node is now a much more descriptive indicator

of the closeness of a node to the input vector with respect to the set of expected vector

inputs than in the original SARDNET model. Hence, the SOM doesnot fall into the same

pitfalls demonstrated in the previous SARDNET example, which is content to merely place

a ’1’ as output to any winner. Though outputting ambiguous maps using this format is still

somewhat of a possibility, it tends to occur at a much reducedrate.

Following training, there will tend to be one node in the candidate-driven SARD-

NET SOM’s output lattice whose corresponding weight vectoris closer than any other to

any given candidate input. In this case, if this candidate input vector’s “best node” has a

weight vector that is not equivalent to itself, the calculated output at that node when se-

lected may approach, and yet never equal, 1.0 due to the manner in which Equation 4.3

was constructed. As an additional, yet optional, step one can elect to take at the close of

the initial training phase of the candidate-driven SARDNET SOM, one can choose to find

the closest node to each candidate and set its correspondingweight vector equivalent to

that same candidate input vector. This would serve to force outputs to be set precisely to
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Output Dynamics of the Candidate-Driven SARDNET SOM

1) initialize all node outputs to 0

2) selectx[j] in sequence X,

3) multiply output of all marked nodes by0 < µ < 1

4) for all nodes, y[i], in SARDNET SOM, SD,

- set node output at y[j] to gci ∗ gcn

5) repeat from 2) until sequence X is completed.

Table 4.4: Procedure for producing multi-node output maps in a candidate-driven SARD-

NET SOM once presented with input vector sequence, x[1], x[2], ..., x[n].

1.0 once inputs presented to the system belong precisely to the set of expected candidate

vectors. Such behavior would once again closely resemble that of the standard SARDNET

procedure outlined in the previous section.

This variation on the standard SARDNET SOM output procedure is most ideal for

domains in which the number of expected, or most sought after, input vectors are count-

ably finite and available for training. However, if such a candidate input vector set is not

available or is infinite, this method would be seriously compromised.

This map node output scheme fulfills the desired characteristics described previously

and looks to differentiate all different input vectors thatseek to select the same winner.

This, however, still does not completely guarantee uniqueness, but it comes significantly

closer than that of the original SARDNET architecture.
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a) b)

Figure 4.2: This figure illustrates the contrast between twodiffering forms of candidate-

driven SARDNET SOM output schemes. Specifically, two snapshots above demonstrate

outputs produced by the same trained candidate-driven SARDNET SOM using a) the stan-

dard output scheme of Table 4.3 and b) the multi-node output procedure outlined in Table

4.4. Top to bottom, both pictures show the respective outputgenerated by the trained SOM

at each time step when presented with each vector of the same four vector sequence as

input (section 4.3.1.)

4.3.1 Multi-node Candidate-Driven Output Mapping

One other benefit to using the candidate-driven version of the SARDNET architecture is

that this is a method by which the SOM can be used to produce output not only from nodes

which have won, but by which all nodes across the entire SOM lattice may be used to

produce outputs (see procedure in Table 4.4.) The standard SARDNET output procedure

only allows for outputs at past and current winners. What tends to result as output maps is

reminiscent of gaussian mounds centered around winning nodes (Figure 4.3.1).
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The termsgwc andgwi combined allow for the formation of Mexican hat or gaussian

bell curve structures in output maps. Each Mexican hat structure can be seen to emanate

from the winning nodes outward across the SOM lattice. Thegwc term can be regarded

as the initial height of each gaussian mound. So if thegwc term ends up equaling .5, a

gaussian bell curve with a height of 0.5 should result centered at the winning node outward

to the rest of the SOM lattice. This phenomenon of Mexican hatactivations over a map

of competing neurons is often observed in actual neuro-biological studies of the human

brain ([16], [12]). The capability of the candidate-drivenSARDNET SOM to output such

Mexican hat phenomena across multiple SOM nodes can potentially be useful in providing

more realistic models of sequential map formation in the human cortex among competing

neurons than the standard SARDNET algorithm.

Take Figures 4.3.1a. and b., for instance. Both figures are meant to signify an exam-

ple of the progression of activity patterns on a candidate-driven SARDNET SOM en route

to generating a final output map to uniquely represent the input sequence. The SARDNET

SOM consisted of a 10 x 10 output lattice of map nodes, each of which is represented as

a square in a 10x10 grid of outputs. The outputs of the map nodes are represented on a

grayscale, where the color black signifies a map node output of 1.0, a white square signi-

fies no output, and the intensity of a gray square indicates a map node’s output value to

either extreme. In other words, light gray would signify a value closer to 0 while a very

dark gray may signify an output value very close to 1.0.

In Figure 4.3.1 a., the normal progression of activation patterns on a trained candidate-

driven SARDNET SOM is shown when given a four-length vector input sequence. Notice

here that only one new map node, the winning node, is allowed to give an output at ev-
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a) b)

Figure 4.3: These figures illustrate the same contrast of candidate-driven outputs as shown

in Figures 4.3.1a-b. Rather than represent the real candidate-driven SARDNET SOM out-

puts in grayscale, however, they are plotted in a third dimension to better illustrate the

formation of Mexican hat output structures as is often observed in neuro-scientific studies

of cortical activation.

ery new time step when a new input vector in the sequence is introduced. Figure 4.3.1b.

shows the resulting activation patterns from the same SARDNET SOM presented with the

same exact four-length input sequence but in using the multi-output scheme of Table 4.4

in which all map nodes have the opportunity to produce outputs. What differentiates these

two sets of candidate-driven SARDNET SOM activity patterns lies in determiningwhich

map nodes are allowed to produce output values: winning map nodes only or all nodes in

the SARDNET SOM’s lattice of output nodes. Figure 4.3 merely shows the same series of

SARDNET map activations from Figure 4.3.1b. but in three dimensions (i.e. representing
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Figure 4.4: a) The initial plot of a 2x3 SARDNET SOM discussed in Section 4.3.2 before

training. b) Plot of the same SARDNET SOM after training on two-dimensional sequential

vector data made up entirely from vectors of candidate vector set

{[00]T, [01]T, [10]T, [11]T}.

map node output values in the Z-axis as opposed to grayscale.) Here, the spreading Mex-

ican hat activations described previously as what the multi-output SARDNET activation

scheme is capable of producing becomes more visually evident.

4.3.2 Demonstrating the Utility of the Candidate-Driven SARDNET

Enhancements

The major improvement of this modification to the SARDNET SOM is that the new modi-

fication lends itself to fewer occurrences of ambiguity.

Here I define three similar input vector sequences, I1, I2, and I3:

I1 = 〈[1.0, 0.0] , [0.0, 1.0]〉 , I2 = 〈[0.9, 0.31] , [0.18, 0.65]〉 , I3 = 〈[0.79, 0.02] , [0.23, 0.85]〉 .

Let SD4.4 denote the original output scheme for an example Candidate Sardnet SOM using
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a 2x3 lattice of output nodes which was previously trained ona number of input sequences

ranging from two to four vectors in length, one of which beingsequenceI1 listed above.

The corresponding before-and-after training weight plotsare shown in Figure 4.4. When

presented with input sequencesI1, I2, and I3, all three final resulting 2x3 output patterns

come out looking exactly identical:

SD4.4(I1) = SD4.4(I2) = SD4.4(I3) =
0.5 0.0 0.0

0.0 0.0 1.0

.

This is because, though they may be noticeably distinct, theinput sequences trigger the

same winning nodes and, hence, yield a 1.0 output at the same nodes regardless. The

candidate-driven output scheme, however, takes into consideration proximity of the win-

ning node to the closest candidate vector in determining itsfinal output activation pattern.

As such, given similar input sequencesI1, I2, andI3, identical final output patterns are far

less likely when using the same 2x3 SARDNET SOM but with the modified output dynam-

ics (denoted byCDSD4.4):

CDSD4.4(I1) =
0.0 0.0 0.5

1.0 0.0 0.0

, CDSD4.4(I2) =
0.0 0.0 0.404

0.734 0.0 0.0

,

CDSD4.4(I3) =
0.0 0.0 0.457

0.86 0.0 0.0

The potential for significant reduction in the size of SARDNETSOMs using the

candidatedriven modification presented here is important as well. To offset ambiguity in
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the standard SARDNET SOM architecture, increasing the number of map nodes tends

to reduce the occurrence of ambiguous output maps. This is because with an increased

number of map nodes comes much improved opportunity for differing input vectors to

activate differing nodes based on proximity to their respective weight vectors.

Using this modification, however, one would be harder pressed to find two input

vectors which activate the same winning node in the SARDNET SOM with the same output

activation. As such, in looking to create SOMs which give more unambiguous outputs,

more compact map architectures with fewer nodes, and hence,fewer calculations, can be

designed. Since now two similar vector inputs can be represented differently by the output

of the same winning node, as opposed to merely outputting a 1.0 both times, even fewer

output nodes than the already reduced number cited by James [21] can be used to uniquely

encode an input sequence.

4.4 Contributions of the Chapter

The primary contribution presented in this chapter is the modification I made to the SARD-

NET self-organizing map, a neural model designed to accept and uniquely classify se-

quential input data, enabling it to produce more unique representations of input sequences.

The SARDNET self-organizing map, although designed to output unambiguous map ac-

tivations for distinct input sequences, is shown by exampleto generate non-unique output

maps in similar situations. Using my modification, more meaningful node outputs are pro-

duced which consider, among other things, the proximity of an input vector to the intended

vector it was supposed to resemble in calculating its outputrather than indiscriminately
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producing a 1.0 value as suggested in [21]. As a result, the modified candidate-driven

SARDNET SOM tends to yield more unique output maps than the standard version. If the

single winner-take-all selection is set aside for the multi-output scheme in which all output

nodes are capable of firing, interesting Gaussian mounds become apparent in output maps

reminiscent of Mexican hat formations described in the neuro-scientific literature regard-

ing spreading cortical activation in the brain. This modified candidate-driven SARDNET

SOM holds promise in being a potentially useful tool for capturing sequential cortical brain

behavior for use in time-varying computational cognitive behavior studies.
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Chapter 5

Recurrent Distal Learning in Modeling the Acquisition of Phoneme

Sequence Generation Behavior

In this chapter, the effectiveness of the recurrent neural network modifications made to the

existing distal supervised learning framework introducedin Chapter 3 is demonstrated on

a very complex application. Namely, an experiment is designed in which a recurrent neural

network is created to undergo the same complex process that humans are believed to go

through en route to acquiring the ability to produce or generate sequences of phonemes to

articulate words. Distal supervised training of a recurrent neural network is demonstrated

despite it operating in a very complex composite mapping of two non-linear functions,

one constructed using the smooth mapping procedure discussed in Appendix B and the

other being a Candidate Driven SARDNET SOM (Chapter 4) which is designed to take

on the role of associative memory as it is thought to be utilized in the phoneme sequence

acquisition process in humans. The charts shown at the end ofthe chapter demonstrate that

not only does learning occur in such a difficult sequential environment, but that there is

indeed a strong case for utilizing approximated teacher forcing (also introduced in Chapter

3) to improve memory layer updates and, subsequently, acquisition of sequence generation
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behavior in distal settings.

5.1 Phoneme Sequence Generation

Phoneme sequence generation refers to the process by which humans manufacture very de-

liberate and specific strings of individual minimal units ofspoken language, or phonemes,

through motor activity in vocal organs in order to communicate with other humans. The

acquisition and ongoing use of this cognitive behavior is certainly not well understood

and many researchers continue to struggle to explain and model the inner workings of the

process (Roelofs ([51]), Dell [10], etc.)

Previous attempts at computational simulation of phoneme sequence generation vary

significantly in approach and in motivation. Dell [10] developed Spreading Activation The-

ory (SAT) for speech production which is favored by many and has been very influential.

In it, Dell details a connectionist model employing nodes working, initially, in parallel and,

subsequently, in serial through four levels of speech word form classifications.

The WEAVER (Word-formEncodingActivation andVERification) model (Roelofs

[51], Levelt, Roelofs, Meeyer [30])expands on Dell’s model of spreading activation and

addresses some of its shortcomings to create a more encompassing 6 level model of speech

production. Neither model, however, addresses the processby which this cognitive function

is acquired over time. In particular, neither model attempts to define the role of internal

models or even the role of memory retrieval from associativememory in the human cortex

in acquiring this function.

Guenther ([17]) designed a very telling model of single phoneme production which
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dealt with the mapping from motor phoneme to orosensory sensation (i.e. the tactile sen-

sation of the phoneme being uttered.) His study proved to be very enlightening as he was

able to replicate various commonly known traits or phenomena generally observed in the

production of learned phonemes. Among the phenomena he was able to demonstrate was

co-articulation, in which the sound of a phoneme depends directly on the previously artic-

ulated phoneme. His model, much like the model presented here, conducted a ”babbling”

stage to properly set the initial parameters of the system.

The fundamental difference between Guenther’s model and the work discussed here

is that, primarily, his model was designed to produce singlephonemes in the study utilizing

orosensory inputs. The phonemes his model produced had a local, not distributed, repre-

sentation scheme (i.e. a single unit being on uniquely identified a particular phoneme.).

Also, he did not at all represent stored distributed cognitive representations of phonemes in

associative memory as was done in this study.

In addition, there was no attempt to represent an internal model for speech production

in Guenther’s simulation of phoneme acquisition. Internalmodels, such as motor programs

believed to exist in the cerebellum of the brain [72], seek tocorrectly imitate the mapping

from motor commands to their respective cognitive representations. There is a growing

body of evidence touting the existence of internal models inthe brain which, through con-

tinued interaction with the external world, acquire the ability to forecast the consequence of

a series of motor actions. This internal model is now considered key in acquiring all types

of higher level cognitive motor function capabilities suchas moving limbs and speech ac-

quisition tasks ([70], [71]). The model discussed here incorporates all of these aspects in

its present form.
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In discussing the development of previously constructed phoneme sequence acquisi-

tion models, it must be made clear that the task has generallybeen attacked in pieces, not

as a whole. For instance, the storing of heard words in associative memory, the producing

of phonemes and sound due to commands to the motor cortex emanating from Brocas area,

the way sounds enter the ear and stimulate the auditory cortex, etc. - each is so complex as

to be studied and modeled separately by researchers extensively over the years. As such,

the attempt made here to create a model of phoneme acquisition sequence as a whole is

quite an ambitious task. In order to create such a model, it was required that the task be

simplified to some extent.

5.2 Single Phoneme Production Model

5.2.1 Model

First, a model of acquiring the ability to generate a correctsingle phoneme (e.g. /b/, /ae/,

or /t/) from its intent using the expected auditory phoneme was designed. This model is

implemented by using a standard, non-sequential distal supervised neural network where

there is a standard non-recurrent feedforward neural networks for both the distal learner

and forward model. This was done in order to gage how difficultthe harder, more complex,

sequence acquisition task would be. Also, in creating this simpler setup, the environment

function, to be discussed later, could be tested for validity and effectiveness in training the

distal learner. Details of the challenges encountered in attempting to model these ambitious

tasks are outlined in the upcoming sections.
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This neural model was intended as a preliminary step in a veryambitious attempt to

create a system inspired by the complex process through which people: 1) accept, process,

and store language phoneme sequences of a heard word as a series of neural firings in the

auditory cortex and associative memory, and 2) subsequently produce the correct motor

phoneme sequential response via interactions between Broca’s area and the brain’s primary

motor cortex. The sounds produced as a result of the latter interaction, after passing through

the environment (air, environmental noise, auditory system etc.), will again evoke the in-

tended neural representation in associative memory after being processed by the auditory

cortex.

The model, inspired by the organization of the centers of a human’s brain responsi-

ble for speech production, is presented with some intended phoneme input stimulus and its

known auditory phoneme representation. Ultimately the goal of this exercise is to create a

neural model capable of learning the mapping from phoneme intent to the corresponding

motor cortex response which will eventually yield the desired activations in the auditory

cortex. In turn, this exercise is meant to imitate the human brain’s ability to learn to pro-

duce single intended speech sounds from memory en route to the eventual acquisition of

phoneme sequence, or full word, skill.

The portion of this model discussed here will make use of a more standard form

of non-recurrent distal learning in order to complete its learning task. The distal learner

must learn to produce the correct motor phoneme activationsin the primary motor cortex

given a unique static phoneme intent vector as input such that, when transformed by the

environment, this will correspond distally to the desired auditory phoneme representation

in associative memory. This is done by having some neural connections attempt to model
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the external motor to auditory phoneme transformation and using those same connections

to assist in updating the weights of the learner. This internal forward model can be trained

by generating random motor responses and associating the ensuing neural firings in the

primary auditory cortex to that motor response. As discussed in Section 2.5, there is some

evidence which suggests such forward models do indeed existin the brain (likely located

in the cerebellum ([4],[72]).)

A source of inspiration for this approach is that, when looking at speech development

in infants, the ’babbling’ a baby does in the early stages appears to be a necessary process

for the development of the forward model responsible for predicting the outcomes of vari-

ous motor actions involving his/her speech organs. Here, the infant, who one might suggest

”just likes to hear herself”, makes arbitrary noises through motor commands and can even-

tually associate a particular heard sound to the motor commands that it resulted from. Once

this “mapping” is ascertained, the baby can thereby reproduce that sound whenever he/she

intends to. Formation of an effective forward model for producing phonemes, however, is

generally not completed by the time an infant’s intent surfaces to duplicate known auditory

phoneme sequences. Over time, a cycle of producing increasingly improved, though in-

correct, motor action of an intended sound based on what is stored in associative memory

must be repeated continuously to achieve the desired result. Intent to repeat new words and

phonemes heard spoken from adults will increase the infant’s set of intended phonemes.
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5.2.2 Environment

The environment used in this study makes use of the table in Appendix B which lists

the component features that make up motor and auditory phonemes needed to construct

a smooth mapping from the former to the latter. It is important that this mapping be smooth

and differentiable to help facilitate the learning in this model’s forward connections. The

manner in which this mapping is constructed, as well as the many considerations which

must be addressed, is discussed in Appendix B.

The training method used in this computational model is the standard form of the

distal supervised learning method discussed in Section 2.5to train the internal model and

motor output area together in series as if they were one four-layered neural net but to prop-

agate different deltas to the appropriate components to achieve the desired results (Figure

2.11).

All input vectors to the distal learner used in this particular study take on the form

[0.1, ..., 0.1
︸ ︷︷ ︸

(j−1)

, 1, 0.1, ..., 0.1
︸ ︷︷ ︸

(n−j)

], where1 ≤ j ≤ n and vector length n varied based on the dimen-

sionality of the static input, learner’s output, and environment output:

1. Static input to phoneme generation area (phoneme intent) : vector length (n=39)

corresponds to the number of possible phonemes, with one unique bit set to one and

all others set to minimum value 0.1.

2. Proximal output from phoneme generation area (motor phoneme) : vector length

(n=20) corresponds to the number of features through which distinct motor phonemes

can vary (see Appendix C). Each bit is set to .1 or 1, where .1 corresponds to a ’.’

and a 1 corresponds to a ’+’.
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Figure 5.1: This figure demonstrates the setup for the singlephoneme acquisition model

described in Section 5.2. Here a distal learning neural network (labeled as a)), with the

assistance of the forward model (b)), is designed to learn toreproduce the correct motor

phoneme vector when provided only a unique phoneme intent vector and its corresponding

distal auditory phoneme vector. This distal learner produces motor phoneme vector out-

puts and obtains auditory vector outputs while operating inthe motor-to-auditory phoneme

transformation environment mapping (c)) (section 5.2.2).

3. External environment/internal model response (auditory phoneme) : vector length

(n=34) corresponds to the number of features through which distinct auditory

phonemes can vary. Each bit is set to .1 or 1 (see Appendix C).

The sets of motor and auditory phoneme feature vectors used in this preliminary

study are listed as tables in Appendix B. Twenty-four consonantal and fifteen vocalic motor

phoneme feature vectors were merged together to form the 39 total motor phonemes used to

formed the basis of the input space for the motor-to-auditory smooth environment mapping
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constructed in the manner described in Appendix B for this distal supervised learning task.

Likewise, the 39 auditory phoneme feature vectors are gathered in a similar manner to

form the basis of the environment’s distal output. At the same time, the 39 auditory feature

vectors are used as distal target outputs for use in trainingthe distal learner. Minimum

values of .1 are substituted for zero values in each phoneme vector used here as zero target

output values have been shown to be problematic in the training of neural models using

sigmoid activation functions in their output layers. Also,these minimum values are used to

assist in creating the smooth environment function using the phoneme tables of Appendix

C to offset difficulties encountered when introducing zero values to the smooth mapping

algorithm discussed in Appendix B.

5.2.3 Distal Learner / Forward Model Designs

This preliminary neural network model has the following capabilities :

• various gradient descent methods such as adaptive learningand momentum.

• one hidden layer (size determined experimentally)

• sigmoidal output at hidden and output layers

The forward neural model is a standard two layered neural netwhich is trained primarily

using the adaptive learning rate gradient descent method. The algorithm in Appendix A

outlines the procedure for training the motor output area and the forward model. Figure

5.1 is a diagram of the architecture in which the distal learner and forward model work in

tandem to handle this particular distal supervised learning task.

105



5.2.4 Results

The model described here has exhibited good success in handling this particular learning

task. Despite having to learn in an environment function which maps actions from one

sizable domain to another (i.e., Motor Output:{0, 1}39 → {0, 1}20) in the absence of the

teacher to implicitly provide proximal target output values, the model is capable of learn-

ing the phoneme intent to motor phoneme mapping task at a RMSE of just under 0.1. In

actuality, because of the amount of stochasticity inherentin the model (e.g. random as-

signment of distal learner and forward model weight vectorsand in the random selection

of environment interaction generated to facilitate forward model training to simulate bab-

bling), RMSE tends to vary from .09 to .22 where a mean run terminates with an RMSE of

approximately 0.15.

The current model uses the following parameters:

1. Distal neural model of motor output: Hidden Layer size - 125

2. Forward model: Hidden Layer size - 54

As you will see in section 5.3, the next step in this study involves expanding this model to

accept a single static word intent vector, encoded to uniquely represent some phoneme se-

quence stored in associative memory, and output the appropriate motor phoneme sequence

required to generate that word. By expanding on the distal learning paradigm of section

2.5, I have developed a method of training recurrent neural networks to accomplish just

such a complex task (section 5.3).
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5.3 Framing the Distal Recurrent Learning Architecture

for the Phoneme Sequence Recurrent Task

5.3.1 Setup

The phoneme sequence generation model is loosely inspired by the way it is generally

believed that a human learns to produce spoken words [5]. A vastly simplified process that

humans go through in acquiring phoneme sequence generationcapability is illustrated in

Figure 5.2. From here on the “learner” does not necessarily refer to the human learning to

speak but, rather, the cognitive region or machinery used toaccomplish the acquisition of

phoneme sequence generation behavior. First, a single unchanging intent or idea of a word

results in the recall of the correct series of activation patterns in associative memory that

the learner will try to duplicate. As such, the learner commences to generate some time-

varying sequence of motor responses largely using his/her own speech organs. These motor

commands cause some series of noises to result in the external world which are conducted

via vibrating air molecules, along with external noise, back to the person’s hearing organ.

Each acquired sound is processed by the auditory cognitive region before being streamed

to the associative memory region, where a very distinct series of activation patterns results.

The goal of any learning process used here would be to, wherever necessary, change

the makeup of the learner’s own neural connectivity such that the learner will make steady

progression towards eventually producing the desired series of neural activity patterns in

associative memory. Ultimately, the learner should acquire the capability to produce some

series of motor commands which would be responsible for reproducing the recalled set
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Intended Phoneme Sequence
(single input stimulus) m/ah/m/ee

Generates series of

recalled memory sensations
motor commands thought to re−create

series of map activations in memory corresponding to
memory recall of sound of intended phoneme sequence

What she "wants" 
to say ...

What she actually
says ...

auditory sequence

motor sequence

in associative memory evoked
 Corresponding series of activations

desired and actual sets of
neural activations are compared

actions to auditory perceptions
Transformation from motor

=?

Figure 5.2: Illustrating the Phoneme Sequence Generation Domain.

of desired distal memory activity patterns retrieved at thebeginning of the learning pro-

cess. Notice that, in this particular setup, the only input provided to the learner required to

produce the series of correct proximal motor behavior is thesingle, unchanging phoneme

sequence intent stimulus.

In an attempt to develop a simulation of this approximated cognitive learning process,

the recurrent distal supervised learning architecture illustrated in Figure 5.3 was devised.

In it, some learning agent is presented with a single static input stimulus which corresponds

to a unique and deliberate, yet initially unknown, sequenceof motor phoneme commands.

What is available regarding this phoneme sequence intent input stimulus is the series of
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self organizing map (SOM) activations known to uniquely correspond to it. In other words,

these map formations are meant to signify the stored representation of the intended word

in ”memory” that the distal learner would like to duplicate.For this exercise, the task for

the intended distal learning module is to then generate somesequence of vectors, in which

each vector represents a motor command whose contents signify motor phoneme features

that yield some unique utterance or sound. The duration of this motor vector sequence will

always be assumed to be equivalent to the length of the targetdistal output sequence pro-

vided for training. This sequence is then presented to the environment, which transforms

this motor phoneme sequence into a corresponding sequence of “auditory” phoneme vec-

tors which are based in auditory distinctive features (see Appendix C.) Finally, this series

of auditory vectors then produces some series of neural activations to occur in associative

memory that are unique to those vectors (Figure 5.2).

In this task, the motor-auditory mapping and the Candidate-Driven SARDNET SOM

memory model together make up the Phoneme Sequence Generation sequential environ-

ment (signified by the enclosed dotted area in Figure 5.3.) The purpose of such an exercise

is to enable the intended recurrent neural network to learn to transform the single static

intent stimulus into the appropriate sequence of motor phonemes which would ultimately

and uniquely yield the target sequence of output memory activations made available at

the beginning of the training run. The recurrent distal learning architecture designed to

approximate the process illustrated in Figure 5.3 is shown in Figure 5.4.
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associative map
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Figure 5.3: An illustration of the setup for the Phoneme Sequence Generation distal learn-

ing task. The previously-trained memory recall network (a.) provides the sequence of

target memory activity patterns required to train the recurrent learner. Ultimately, the task

given to the recurrent motor phoneme generating model (b.),given only a single static in-

put word intent vector, is to learn to generate the correct sequence of motor feature vectors

that, once transformed into a phoneme sequence of auditory feature vectors (c.), yields a

series of activation patterns in associative memory (Candidate-Driven SARDNET SOM d.)

matching those produced in memory recall.

5.3.2 Phonemes and Phoneme Sequences for Experiments

In developing the phoneme sequence generation model, I looked to identify: 1) a subset

of key phonetic features used to describe many commonly usedEnglish phonemes, 2) a

subset of the listed phonemes in the English language using this reduced feature set, and

3) a list of phoneme sequences that a distal learner could conceivably acquire and learn

to generate. This reduced feature set decided on consisted of the following characteristics
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(note: feature categories known to be complements of each other are paired together to

reduce the parameter space to be searched): 1. vocalic/consonantal, 2. strident/nasal, 3.

voicing on/voicing off, 4. continuant/stop, and 5. height (high/low).

Likewise, nine binary variables were determined which could adequately address

ten of the features listed in Appendix (C) believed to completely characterize the auditory

reception of any English phoneme. This reduced auditory phoneme feature set includes: 1.

continuant, 2. interrupted, 3. duration (on/off), 4. terse, 5. lax, 6. F2,VH, 7. F2,L, 8. F1,L, and

9. F1,HM. The terms of the form F1,x1
and F2,x2

refer to varying intensities of formantsf1 and

f2, respectively. Formants are peak acoustic frequencies which result from the resonance of

the human vocal tract [41]. Formantsf1 andf2 can be particularly helpful in characterizing

differing vowel sounds. Variablesx1, x2 consist of values from the set{L, HM, VH}, where

’L’ means “low”, ’HM’ means “high medium”, and ’VH’ means “very high”.

In ascertaining which phoneme features to use, there are certain features that are

discussed heavily in the phoneme generation literature that are deemed to be very pertinent

(e.g. vocalic/consonantal.) Also, high preference was given to those features that were

binary in nature or were the exact complement of another feature across all phonemes,

vowels and consonants alike. In other words, the presence ofone feature signified the

absence of another (e.g. voicing on/off, continuant vs. stop, etc.)

Lastly, there were phonemes I deemed important (in particular, ’s’ and ’t’) that could

not be described without the use of certain very specific phonetic features. I wanted to use

these phonemes since they are included in so many viable English phoneme sequences. I

also wanted to use them because of their high capacity for clustering with other consonants

like s/t and t/r. This describes a phenomenon in which two phonetic consonant sounds

111



intent vector

Phoneme Sequence
Generation
Environment

a) b)

c)
motor
command
sequence

recurrent
distal
learner

recurrent
forward
model

resulting memory
activity patterns

static word

Figure 5.4: Recurrent distal learning architecture used to model the phoneme sequence

generation framework of Figure 5.3.

can be compounded together without the use of vowel sounds inbetween (e.g. “/s/+/k/”,

“/n/+/t/”, etc.)

I then grouped all phonemes which could be described in the same manner through

the chosen subset of features and picked the phoneme in each group which I believed could

help construct the most phoneme sequences with which to do this study. The group of

phonemes I assembled is listed by its corresponding binary feature sets in Tables 5.1 and

5.2.

Table 5.1 lists the five phonemes that the recurrent distal phoneme sequence gener-

ator is expected to learn and utilize in order to successfully replicate the list of phoneme

sequences stored in this study in a simple neural model of associative memory. Note that

nine features are mostly listed as pairs of complements. In order to shrink the search space
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Motor Features /s/ /t/ /r/ /aw/ /ih/

Consonantal/Vocalic 1 1 1 0 0

Voicing (on/off) 0 0 1 1 1

Continuant/Stop 1 0 1 1 1

Strident 1 0 0 0 0

Height (high) 0 0 0 0 1

Table 5.1: Reduced List of Phonemes and Their Corresponding Distinctive Motor Features.

of the distal recurrent learner, five binary parameters are instead used in which both ’0’

and ’1’ values hold significance. Hence, for example, phoneme /s/ can be described as

consonantal, strident, and continuant, where the ’1’ denotes the presence of the first in their

corresponding paired binary features. In addition, however, it also contains non-voicing

characteristic, as the ’0’ entry denoting the absence of thefirst of a paired parameter (in

this case, voicing) implies the presence of its respective complement (the second of the

paired features.)

Likewise, Table 5.2 lists the same five phonemes shown in Table 5.1 but described

using auditory characteristics. Understandably, the auditory characteristics which make up

each phoneme uniquely are mostly different than those used in the motor feature listing.

Here, however, there is no need for paired complementary binary features. Not even du-

ration (on/off) could be classified as a strictly complementary feature as vowel phonemes

do not use either. These auditory feature vectors were used to construct the phoneme se-

quences listed in Table 5.3 which were used

At the culmination of this process, a small subset of the known English phoneme
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Auditory Features /s/ /t/ /r/ /aw/ /ih/

Continuant 1 0 1 0 0

Interrupted 0 1 0 0 0

Duration (on) 1 0 0 0 0

Duration (off) 0 1 1 0 0

Tense 1 1 0 0 0

Lax 0 0 0 1 1

F2,VH 0 0 0 0 1

F2,L 0 0 0 1 0

F1,L 0 0 0 0 1

F1,HM 0 0 0 1 0

Table 5.2: Reduced List of Phonemes and Their Corresponding Distinctive Auditory Fea-

tures.

alphabet was determined for use in this study. Five phonemes, three consonants (s/ t/

r) and two vowels (ih / aw), were deliberately selected whichcould be uniquely repre-

sented by the reduced set of pertinent phoneme features chosen. Using these very common

phonemes, a list of 15 phoneme sequences (Table 5.3) was compiled from the English lan-

guage, each possessing anywhere from 2-5 phonemes. Some of these fifteen sequences

contained phonemes which repeat at some point in the sequence to increase the challenge

and authenticity of the study. These phoneme sequences wereultimately used as train-

ing data for a the Candidate-Driven SARDNET SOM that was created to represent asso-

ciative memory for the distal sequential learning task. Following training, their resulting
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S / IH / T

R / IH / S / T

IH / T

R / AW / T

S / T /AW / R

T / AW / S / T

S / AW / S

AW / T

S / T / R /AW

R / IH / T

S / IH / S / T

S / AW / T

S / T /IH / R

R / AW

R / IH / S / T / S

Table 5.3: List of Target Phoneme Sequences.

SARDNET output associative activations then became the onlyrepresentation of this list of

phoneme sequences used anywhere in the remainder of the simulation (i.e. these phoneme

sequences were never again seen or used during training.)

The disconnect between motor and auditory feature space could be accomplished by

a smooth mapping technique I developed for the purpose of this study, which is capable

of transforming a finite mapping into one which is smooth and continuous for all inputs

(Appendix B.)
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5.3.3 Memory Recall of Associative Map Distal Target Sequences

I employ a neural network to supply the target sequence vectors necessary for training the

distal recurrent learner. Knowing that the human brain doesnot explicitly store physical

target distal sequences, this neural network is supposed torepresent the memory recall of

the series of associative memory map activations which occurs when a phoneme sequence

is decided upon. This mechanism is what provides the associative memory activations

which serve as distal target sequences used to drive training of the distal recurrent learner.

This neural network employs a self-halting mechanism whichallows it to output varying

length vector sequences depending on the input stimulus, which, in this case, is the single

intended phoneme sequence vector. It is trained to produce apredetermined halting vector

when it decides to end production of the sequence. Although the self-halting mechanism

was used here successfully for this standard recurrent neural network, the same feature

proved to be more problematic to employ for the distal recurrent neural network of interest

in this study. More research is needed on determining how to more effectively implement

this feature for state-less distal sequence generation tasks.

Once the sequence was generated and the recall done, it couldbe used as the desired

distal targets employed to drive training of the distal recurrent learner. Successful training

of the distal learner can now be defined as the extent to which the learner is capable of

producing the correct series of motor phonemes which will ultimately yield these memory

associative maps through interaction with the environment.

In this setup, there is an environment much like that described in the previous single

phoneme generation preliminary study. What is different is that the environment accepts
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not one, but a sequence of motor phoneme commands supplied toit via the distal learner.

The environment in this study is a composite mapping comprising two main com-

ponents: 1) the smooth mapping procedure which exists to transform motor phoneme fea-

ture vectors into some corresponding equivalent auditory feature vector in auditory feature

space, and 2) the self-organizing associative memory modeltrained, a priori, to uniquely

map the fifteen chosen phoneme sequences (Figure 5.5). The composite sequential map-

ping referred to here as the phone sequence generation environment ultimately takes in

as input a sequence of real-valued motor phoneme vectors, maps them into some corre-

sponding sequence of auditory phoneme vectors, and outputsa corresponding sequence of

activity patterns in the associative memory model. The ideais that, throughout training of

the recurrent distal learner, associative memory activation maps resulting from the learning

agent’s proximal motor command sequences could be comparedto the target associative

memory map sequences generated by the neural network representing memory recall.

5.3.4 Environment

Please note that the “environment” as described here does not solely comprise theexternal

environment which maps individual sounds uttered by the learner into heard auditory

phonemes. That portion of the environment which physicallylies external to the learning

agent is just the first component of the entire distal sequential environment used in this

application. As the environment in a distal setting is required to map proximal actions (in

this case, sound-generating motor commands) to distal outcomes (in this case, associative

memory activity patterns), the second component mapping must be incorporated in order
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Figure 5.5: The phoneme sequence generation environment.

to process the results of this initial external function before the desired sequential mapping

can me fully manifested.

This was a very challenging environment in which to test, particularly because of

the variety and complexity of the components in the environment set to work in serial.

To add to the complexity of this sequential composite environment mapping, there is no

mechanism provided for explicitly informing the learning agent as to its current state or

plight. In other words, there is no other way for the learner to take into account where

or how far its prior history of actions has taken it en route toaccomplishing the distal
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sequential learning task than for it to remember what it had done. In acquiring the ability to

generate time-varying proximal behavior given a single, unchanging input stimulus using

the standard distal supervised learning framework, such a current state mechanism would

be essential to ensure any measure of success.

As such, to train the distal recurrent learner to blindly produce any correct sequence

of motor commands in so complex an environment without the benefit of receiving constant

updates of its own current state would truly be an accomplishment. Updates to the recurrent

distal learner on its new current state, separate from the environment’s distal outcomes,

assist the agent by giving it a reference point as to where theseries of actions taken prior to

that point in time has guided it. For instance, the visual location of the ball could be used

as an indicator of the agent’s current state in the basketball shooting example illustrated in

section 1.1. The key issue of a problem domain such as this is that, unlike other attempts

at distal supervised learning, information on the learner’s current state is unavailable for

reliable guidance and usage. As there is no such stream of current state information to be

provided in this domain, most previous standard distal supervised learning models would

be ill-equipped to work well operating in this environment.This is a result of the fact that

standard distal systems rely so heavily on using their incoming current state information to

guide them to their next step.

The phoneme sequence generation environment is broken intotwo separate compo-

nents. On the one hand, there is a segment which maps the set ofmotor phonemes, which

emanate from the primary motor cortex, into the set of auditory phonemes, which are re-

ceived by the primary auditory cortex. This component will take the form of a smooth

mapping procedure developed just for this application and described in greater depth in
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Appendix B. This smooth mapping procedure accepts as parameters two countable vector

sets, the first being thedomainset and the second being therangeset. The domain set,

A = a1, a2, ..., av, contains vectors of length m and is considered a subset of a much larger

domainℜA ≡ ℜm. Likewise, the range set,B = b1, b2, ..., bv, with vectors of length n, is

considered a subset of rangeℜB ≡ ℜn. Both sets A and B should contain the same num-

ber of vectors, v, for the purpose of assuming the existence of a finite mapping, f, where

f(ai) = bi, 1 ≤ i ≤ v. Smooth mapping, as outlined in Appendix B makes it possibleto

construct a new mapping,f∗, such that a different inputa ∈ ℜA but a /∈ A will have a

corresponding valuef∗(a) ∈ ℜB based on the proximity of a to members of set A.

Obviously, the actual real world mapping from motor phonemes of the primary motor

cortex to heard auditory phonemes in the primary auditory cortex has little to do with this

demonstration. Indeed, many factors go into this actual mapping, including interaction with

air molecules, external noise, etc. which are either not completely understood or are too

complex to model for the context of this work. I maintain that, solely for the purpose of this

particular study, all that is needed is some continuous smooth mapping,f∗, which can map

any vector inℜA reasonably to some corresponding output inℜB (i.e. f∗ : ℜA → ℜB) and

which reasonably interpolates a finite mapping, f, for all vectors in A (i.e.f∗(ai) = f(ai) =

bi, 1 ≤ i ≤ v. If the environment function can display these properties,the recurrent

forward model can effectively approximate it and help drivelearning of the distal recurrent

learner.

The other component of the environment in use here is the storage of auditory pho-

nemes in associative memory. The storage mechanism here will be a SARDNET SOM

capable of accepting sequences of phoneme inputs and, once trained, outputting a cor-
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responding unique output map in the output lattice of the SOM. This is to represent the

unique pattern of neural activations thought to occur in theassociative memory once a

human senses or recognizes a previously sensed input stimulus.

The purpose of the environment is to output the corresponding sequence of SOM

output maps once presented with some sequence of motor phoneme inputs. In other words,

the environment first accepts a sequence of motor phonemes representing the distal re-

current learner’s stimulation of the primary motor cortex and then sends this sequence

through the smooth mapping process to be mapped to a corresponding sequence of audi-

tory phonemes signifying the appropriate stimulation of the primary auditory cortex. The

resulting auditory primary sequence will then be accepted by the SARDNET SOM repre-

senting associative memory and will ultimately yield some ideally unique series of neural

activations used to represent stimulation by the primary auditory cortex in recognition of

stored representation. Figure (5.5) demonstrates visually how this environment operates.

One primary issue encountered, which is accepted as standard in distal learning ar-

chitectures as presented in Jordan [24], is that a properly trained forward model can guide

a distal learner to converge to one, and only one, correct proximal action out of poten-

tially many. If there is truly only one correct proximal set of actions to take in arriving

at the desired distal outcome, or if merely arriving at the desired distal outcome by any

means is sufficient, then there is no issue. However, in designing an architecture to sim-

ulate phoneme sequence generation similar to that demonstrated by the human brain, an

analog of a very specific response of the primary motor cortexin the brain is sought of the

distal learner which should correspond closely to what is documented in existing neuro-

biological studies (i.e., motor responses demonstrating features listed in Singh [57]). In
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other words, unlike most other previous distal supervised learning studies, a very specific

proximal response is required of the distal learner given a single input stimulus in order

to yield a particular desired distal trajectory. As such, the environment to be used in this

study must be carefully constructed to be as one-to-one in nature as possible, as opposed

to the various many-to-one environment mappings used in previous distal learning studies.

Consequently, the recurrent forward model designed to learnthis particular one-to-one en-

vironment mapping can be trained with the purpose of guidingthe distal recurrent learner

to that specific proximal course of actions. The intent is to develop a neural model which

learns a very specific one-input-to-many action mapping whose outputs can be verified as

correct based on expected data possessed by the teacher.

5.3.5 Forward Model

Various properties of the proposed system seem to hold true across simulations and problem

domains. One very important observation is that the proper training of the forward model

is paramount to success of this or any system like it. The motivation for even providing a

forward model is to come up with a parameterized approximation of the unknown environ-

ment which could be manipulated in order to guide and assist in the training of the distal

sequential agent. This can be done initially by taking random sequential walks through

the environment’s input space, mapping it using the environment to its corresponding dis-

tal sequential outputs, then using the resulting training pairs to train the forward model

even before the training of the distal learner gets underway. This portion of training a dis-

tal learner is often referred to as babbling. It is named as such since it is analogous to
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that stage of seemingly random, but essential, stumbling through vocal sounds in a young

infant’s early language development.

An issue arises in looking to address where the sample input data should come from

and in how much such data should be used for training of the forward model such that it

could best assist in the training of the distal learner. Since the input space of many complex

real-valued multi-variate domains is, for all intents and purposes, infinite in range, the

desired environment mapping may never be fully characterized by the forward model.

One way to do this is to actually take, if available, the actually proximal sequential

outputs which would ultimately generate the desired distaloutput sequences, pairing them

with their respective target outputs, and including them inthe training data for the forward

model. The idea is that if the forward model trained in this manner knows directly how

to map the correct, yet ”unknown proximal answers”, then it should be more capable of

training the distal learner to arrive at these proximal answers. In other words, the forward

model would be in a better position to provide correct error training signals to the distal

learner if it understood the requisite mapping between answers and desired distal outputs.

In using the phoneme sequence generation environment, the most successful runs

were conducted such that the desired proximal behavior was expressly used as babbling

data in the initial training of the forward model along with their desired targets before be-

ginning actual training of the distal learner. In other words, during this babbling phase, the

recurrent forward model explicitly was trained using the desired distal sequential map rep-

resentations as target output sequences and the phoneme sequences that were responsible

for generating them as their respective input training sequences. During the actual training

of the distal recurrent learner, however, in addition to theinitial babbling forward model
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training data, sequential outputs of the learner were provided to the forward model to be

trained on along with their resulting sequential environment outputs. In this manner, the

forward model could be trained simultaneously with the distal recurrent learner so that it

could continue to learn to mimic the environment using the training data being generated

naturally through the interaction of recurrent distal learner and the environment.

Surprisingly, even when they are available for training, expressly providing the ex-

pected proximal answers to the forward model, though helpful, often does not yield a distal

learner which fully acquires the desired proximal behaviorin its entirety in many complex

distal sequence generation tasks.

5.3.6 Simulation of the Phoneme Sequence Generator

As a preliminary to any training, some architectural features must be selected for both

the recurrent distal learner and the recurrent forward model. These can lead to important

ramifications during the simulation. Some of the more important architecture choices are:

1) size of both hidden layers, 2) recurrent network type (Jordan or Elman), and 3) number of

delay lines memory modules. Once this is done, the system’s parameters can be initialized,

including that of the random setting of the weight vectors for both neural models.

As previously discussed, the forward model goes through a babbling stage before

training the distal recurrent learner to mimic the environment mapping. There are two

types of training data used in this study for training the forward model during this phase.

Randomly created data may be used here as well as the actual desired proximal sequential

answers known to yield the distal target sequences, assuming they are available to the
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trainer which is often not the case.

In the case of randomized babbling, generated training datais constructed as 40 ran-

domly generated sets of vector sequences. One half are vectors made up of real valued

entriesxij s.t. 0 < xij < 1, while in the other half of the babbling random data, the vector

sequences comprise solely randomly generated vectors of 0sand 1s.

At this point, after babbling, training of the distal recurrent learner commences in the

manner outlined in Section 3.3 in conjunction with the recurrent forward model. The recur-

rent forward model will continue to be trained to learn the sequential environment mapping

using the output action sequences generated by the distal learner as inputs and their result-

ing distal outcomes as target output sequences. Note also that, in addition to these output

action sequences, whatever data were used during the completed babbling stage to train

the forward model are generally cached and re-used continually by the latter throughout

training of the distal recurrent learner in addition to these output action sequences. This is

because the forward model will tend to forget the mappings learned during babbling, mak-

ing that practice futile. The training of the distal recurrent learner in the phoneme sequence

generation environment is set to run, post babble stage, for10,000 epochs or until the distal

performance error (i.e., the RMSE between actual and target distal sequences occurring in

the environment) becomes lower than .05. The training procedure referred to here is just as

outlined in Section 2.5.
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5.3.7 Simulation Results

Four sets of numerous simulations each were run using the phoneme sequence generation

input / output data and environment. In each set of experiments, 11 × 11 = 121 training

sessions were run, where every combination of even numbers between 40 and 60 were used

as hidden layer sizes for both the recurrent distal learner and recurrent forward models

(both designed as Jordan networks). What varied primarily across experiments was which

of the two recurrent networks (1-2. either, 3. both, or 4. neither) were set to do teacher

forcing. Recall that in teacher forcing the precisely or approximately correct target outputs,

as opposed to the initially erroneous outputs of the untrained neural network itself, were

inserted into the memory layers in attempting to encourage quicker learning of the training

data.

Out of the total number of runs done for this study, only the top 5 runs of each set

of simulations were examined and their learning curves matched up and examined. The

training of each type was recorded (in steps of 20 epochs fromepoch 0 through epoch

10000) and averaged over all the 5 best runs of each type to yield an average learning

performance curve to represent the efficiency of that type ofarchitecture.

In each of the charts shown in Figure 5.6, the performance chart of the runs where

absolutely no teacher forcing (approximated nor standard)was utilized was plotted against

each of the other three types that utilized a teacher forcingstrategy throughout training

for either or both recurrent distal learner or recurrent forward model. Across each of the

three graphs, the darker line represents the same averaged training curve tracking distal

error of recurrent distal learners trained without use of any teacher forcing strategy over
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a) b)

c)

Figure 5.6: In plotting diminishing error (RMSE) against training time (epochs) over aver-

aged runs, the effects of three separate uses of teacher forcing techniques are shown. In plot

a), the averaged training run for teacher forcing used in therecurrent distal learner only (the

training curve labeled jt0j0) is superimposed against a curve that signifies training of the

recurrent distal learner without any form of teacher forcing (j0j0.) The remaining two plots

demonstrate teacher forcing in b) both recurrent distal learner and forward model (jt0jt0),

and c) recurrent forward model only (j0jt0) against the samenon-teacher forced averaged

training run. In all three graphs it can be seen that the teacher forcing methods demonstrate

comparable, if not faster, learning in the onset of learning. Interestingly enough, though

the lowest averaged learning rates can be seen in training curves in which teacher forcing

strategies are utilized, divergence in learning can be seenin these same teacher forcing runs

during the early to middle stages of their training.

a number of runs. Here, one can readily compare the averaged run of the no-teacher-

forcing architecture against the averaged runs which utilized teacher forcing in a) recurrent

distal learner only, b) both recurrent distal learner and forward model, and c) recurrent

forward model only. Note that the models which utilized approximated teacher forcing in

the recurrent distal learner clearly demonstrate a better capacity to learn up until a point,

then diverge inexplicably late in the run.

The charts of Figure 5.7 are similar to the charts shown in Figure 5.6 except to track
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a) b)

c)

Figure 5.7: Similar charts to those shown in the charts featured in Figure 5.6 tracking

the effects of teacher forcing except the proximal error of the recurrent distal learner’s

outputs are plotted as opposed to the distal error in the environment. Once again, the use

of teacher forcing against the standard non-teacher-forced case (j0j0) is demonstrated here

in a) recurrent distal learner only (jt0j0), b) both recurrent distal learner and forward model

(jt0jt0), and c) recurrent forward model (j0jt0) only. A more profound positive influence is

evident here early in runs as a direct result of the use of teacher forcing than when distal

error was tracked.

proximal error, averaged runs for non-teacher forced architectures are plotted against those

for architectures which employed some teacher forcing strategy in a) the recurrent distal

learner only, b) both recurrent distal learner and forward model, and c) recurrent forward

model only. The proximal error is generally not trackable asit is here as the desired proxi-

mal sequential behavior is typically unavailable to the trainer. Only due to the nature of this

problem, where the trainer merely wants to produce sequential behavior already known to

the former, can we actually calculate RMSE performance over the course of a run.

What seems to occur consistently in these graphs is that any simulations which utilize
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the approximated teacher forcing in the distal recurrent learner seem initially to actually

learn more quickly than those which do not employ that scheme. Unexpectedly, however,

the graphs in both Figures 5.6 and 5.7 seem to suggest that standard teacher forcing done

to the forward models, though it may lead to quicker trainingtime in the initial babbling

stage, may actually seem somewhat detrimental to the distallearning process. This is a

truly unexpected result, and any explanation of this phenomenon would require further

study.

It becomes apparent that, at least in this particular task, although using neither teacher

forcing strategy tends to cause the distal recurrent learner to acquire the correct proximal

sequential behavior in the slowest time, it does avoid the pitfall of diverging from the correct

behavior once it is learned. Even though both sets of simulations that utilize approximated

teacher forcing of the distal recurrent learner do indeed learn quicker for time (up to, on

average, a point between 3000 and 4000), something occurs inwhich the distal performance

error no longer converges. This very peculiar behavior suggests that the recurrent forward

model fails to supply the correct proximal error late in runs, somehow only after the desired

proximal behavior is acquired. This peculiarity can very well lie in the complex phoneme

sequence generation environment, as no such behavior attributable to teacher forcing was

detected in the preliminary distal concatenation sequencegeneration studies.

The six best performances with performance errors less than0.06 were recorded in

Table 5.4. Despite the issue with the divergence of the errorcurves of most simulations

which include teacher forcing strategies, the best two performances, and also four of the

best six performances, included architectures which used some form of teacher forcing.

This observation, plus the fact that they tended to convergeto those error rates quicker than
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those that used no such teacher forcing feature, suggests that, with work, these strategies

can be indeed useful in training distal sequence generatingarchitectures which employ

Jordan recurrent neural networks.

Also listed with their best performance error are differentaccuracy rates of the distal

learner in reproducing correct motor phoneme sequences. The first metric looks at the

percentage of phoneme sequences provided by the trained distal recurrent learner that are

entirely correct. In other words, suppose the recurrent distal learner outputs some motor

phoneme sequence for each of the fifteen phoneme sequence intent stimuli presented to it.

The percentage of these fifteen phoneme sequences which turnout to be sufficientlysimilar

to the phoneme producing behavior we hope to see can be readily calculated. A vector x is

consideredsimilar to a vector y, wherex, y ∈ ℜn, if|xi − yi| < C, 0 ≤ i ≤ n, such that C is

generally a real-valued constant set close to 0. For this study, C is set equal to 0.3.

Another metric measures how many phonemes generated were sufficiently similar

to the respective sought after motor phonemes (i.e. how manyphonemes were generated

correctly.) For the last metric, each phoneme generated by the distal recurrent learner

is compared to the set of five possible phonemes and replaced by the closest one. Once

all phonemes generated are transformed in this manner, similar to the second metric, the

percentage of all newly transformed phonemes which equate correctly with their respective

desired motor phoneme counterparts is calculated and reported.

As an example, Figure 5.8 demonstrates the typical progression of a recurrent distal

learner as it acquires the phoneme sequence generation behavior. In the beginning, the for-
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Teacher Number of Hidden Distal % correct % correct % correct

Forcing Layer Elements Perf Phoneme Individual Best Matched

Distal Forward Distal Forward Error Sequences Phonemes Phonemes

Leaner Model Learner Model
√

56 42 .053 66.7% (10) 84% 96%
√

44 52 .055 46.7% (7) 82% 94%

58 56 .056 66.7% (10) 88% 94%
√

46 50 .058 46.7% (7) 82% 94%

46 54 .06 33.3% (5) 74% 96%
√

60 52 .06 53.3% (8) 82% 94%

Table 5.4: A listing of the best performing distal phoneme sequence generators indicating

important architectural characteristics. These are the best of hundreds of randomly initial-

ized runs which varied over such key characteristics as hidden layer sizes (between 40 and

60) and teacher forcing focus in both distal recurrent learner and recurrent forward mod-

els. Note that teacher forcing techniques were employed in four of the six best performing

distal recurrent learners.

ward model goes through its babbling stage of learning to mimic the environment mapping

before being utilized in the training of the recurrent distal learner. The recurrent forward

model is trained on the phoneme sequence behavior known to ultimately evoke the desired

series of sequential associative maps (Figure 5.8 a).) Oncebabbling is concluded, training

of the recurrent distal learner, as outlined in Section 3.3 commences, while still proceeding

to train, or calibrate, the forward model using the interaction between distal learner and

environment as training data (Figure 5.8 b).) Figure 5.9 then shows the entire training run

as it culminates after 10,000 epochs. Of interest is how it isapparent that, even when ex-

periencing problems in the middle of the training run, the recurrent distal learner is still

capable of correcting its own acquisition of correct proximal sequential behavior through
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a)

b)

Figure 5.8: Two stages of the same training run are demonstrated for a well-trained

phoneme sequence generator where diminishing error (RMSE) is tracked. In chart a) the

initial babbling phase is evident in which the recurrent forward model (FM) alone is trained

for 105 epochs, after which training commences for the recurrent distal learner (signified

by diminishing error through epoch 505). In chart b), continued improvement in training

the recurrent forward model is demonstrated by the sustained decrease of error through

4500+ epochs (including the sharp descent seen at just over epoch 3500.)

interaction with environment and recurrent forward model exclusively.

5.3.8 Evaluating the Efficiency of Recurrent Distal Elman Networks

In much the same fashion that Jordan recurrent neural networks can be trained in using the

recurrent neural network modification to the distal supervised learning framework, Elman

networks, as discussed in Section 2.2, can be trained as well. In designing the recurrent

distal learner, the recurrent forward model, or both to be Elman networks, the primary
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Figure 5.9: The final RMSE chart of the recurrent distal learner demonstrated in Figure 5.8

is shown here as it is trained for 10,000+ epochs.

difference in the handling of the two recurrent architecture types is the source from which

information is provided and stored to the respective memorylayer. One issue which arises

is the fact that teacher forcing strategies cannot be used for Elman networks, as activations

from intermediate nodes cannot be predicted or known a priori.

As there remains some debate as to which recurrent network structure, Jordan or El-

man, works best in standard, non-distal sequential learning tasks, I attempt to determine, if

possible, which mixture of the two in this recurrent distal learning framework would lend

itself to the creation of better distal recurrent learners.Would a Jordan distal recurrent net-

work paired with an Elman forward model fare better than one which utilizes both Jordan

distal and forward neural networks? How would the system fare if both distal and forward

models were created as Elman Networks? Is there any benefit tousing teacher forcing

techniques to the Jordan portion(s) of any of these Jordan / Elman hybrid recurrent distal

learning architectures?

A group of six new experiments of the phoneme sequence generation distal learn-
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Experiment Distal Forward Model

Label Network Type / Network Type /

(Short form)

ee Elman Elman

ee (no decay) Elman Elman

ej Elman Jordan

ejt Elman Jordan (*)

je Jordan Elman

jte Jordan (*) Elman

jj Jordan Jordan

jjt Jordan Jordan (*)

jtj Jordan (*) Jordan

jtjt Jordan (*) Jordan (*)

(*) - Teacher Forcing

Table 5.5: List of Elman and Jordan Distal Architecture Simulations.

ing task, each of which included an Elman network as either the recurrent distal learner,

recurrent forward model, or both, was run in order to test questions such as these. Each

run comprised 121 varying length hidden layer sizes. Table 5.5 lists each of the differ-

ent combinations of new Jordan/ Elman runs network uses in the recurrent distal super-

vised learning framework while listing their acronym or experimentation shorthand name

as well. In Figure 5.10, the graph plots performances over the best five aforementioned

Jordan experiments, with and without teacher forcing, as they compare to similarly trained
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Figure 5.10: This graphic plots the performances of recurrent distal supervised architec-

tures which utilized Elman recurrent distal learners and/or Elman forward models against

performances of architectures only using Jordan architectures. The labels can be explained

most efficiently by example. The point “ej” represents the mean performance of recurrent

distal supervised architectures using an Elman distal learner and Jordan forward model.

The point “jjt”, however, represents the mean performance of architectures using both a

Jordan distal learner and a Jordan forward model (with the forward models alone employ-

ing a teacher forcing strategy to enhance its learning task.) Clearly, any architecture that

utilized an Elman recurrent learner was significantly outperformed by any similar architec-

ture that used solely two Jordan recurrent neural networks.

simulations in which Elman networks were incorporated intoone or both distal recurrent

learner and recurrent forward model roles. The graph clearly demonstrates, oddly enough,

that architectures which utilize Elman networks as either distal recurrent learner or recur-

rent forward model are consistently outperformed when compared with simulations which

utilize two Jordan networks, whether teacher forcing is used or not. The reason for this

huge disparity is not known currently. Future experimentation of this subject matter may

indeed shed some light as to why there is such a clear advantage to using Jordan networks

in a system such as this.
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5.3.9 Implementing Delay Line Memory Constructs

In order to increase the effectiveness of the proposed memory modules added to the exist-

ing distal supervised learning architecture, the capability to directly copy and store individ-

ual proximal actions from previous time steps was incorporated into both distal recurrent

learner and recurrent forward model. I determined that, rather than replacing exponential

memories used effectively until now, I could add exponential decay functionality to the

very last delay line memory. In this manner, the neural network being used, whether dis-

tal learner or forward model, could still consider long histories of action even when the

extent of the delay line modules has been surpassed. Figure 3.3 shows a Jordan recurrent

distal learner with an arbitrary number of these delay line modules, the last of which was,

optionally, set up to use an exponential decay term in order to accumulate arbitrarily long

output histories. With the increased faculty to clearly discern the d-1 prior actions taken

in addition to the accumulation of exponentially decaying outputs at the final module, it

was thought that adding this feature could noticeably improve the performance of the distal

recurrent learner. Do note that the recurrent forward modelutilized in Figure 3.3 does not

utilize delay line memory modules. Memory delay line structures can be utilized for either,

both, or neither recurrent distal learner and recurrent forward model.

5.4 Contributions of the Chapter

The primary contribution of this chapter is to demonstrate the capabilities of the recurrent

distal supervised learning system in a challenging domain which employs a relatively com-

plex environment. The Phoneme Sequence Generation environment was constructed by
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pairing the smooth mapping procedure (Appendix B) used to facilitate the transformation

of spoken motor feature phonemes to heard auditory feature phonemes with the candidate-

driven SARDNET SOM (Section 4.3) used to represent associative memory. The recurrent

distal learning framework was shown capable of training a recurrent neural network, due to

its cooperation with its accompanying recurrent forward model, to generate very accurate

motor phoneme sequences that produced very specific desireddistal output behavior in the

environment. This learning occurred even when the recurrent distal learner was being pre-

sented only with a single static “intent” as input while operating in this complex sequential

environment. Also, approximated teacher forcing (Section3.4) was shown to have a very

positive effect in the training of the recurrent distal learner as expected, particularly in the

beginning stages of its learning.
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Chapter 6

Discussion

In this work, I demonstrate a modification of the existing distal supervised learning frame-

work for training a recurrent neural network to produce sequences of varying length out-

puts which, when accepted by some sequential environment, yields the desired sequence

of outcomes associated with the single static input stimulus presented to it. Moreover, it

is shown that the same approximated proximal error vector supplied by the forward model

to introduce effective weight vector updates in the distal learner can, in turn, be used to

induce more effective updates of the recurrent distal learner’s memory vector and, thereby,

further improve training. This work is indeed significant inthat now recurrent distal learn-

ers capable of considering its history of previous actions can be trained in environments

in which the learner’s current state is inaccessible. In fact, the results of these modifica-

tions are particularly distinct from those of other distal supervised learning techniques in

that they allow for the effective creation of recurrent distal neural networks that are far

less dependent on current state information than those distal learners trained using standard

distal learning methods which tend to be heavily reliant on that information in satisfacto-

rily making future decisions. The efficiency of the modified distal learning framework is
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demonstrated first on a simpler sequential concatenation environment, then later on a very

ambitious phoneme sequence generation environment in which the recurrent distal learner

seeks to acquire the ability to pronounce words in a similar manner as humans do. The

following chapter discusses further the significance of thefindings of this work as well as

possible future directions for improving and extending this research.

6.1 Benefits of the Distal Sequence Generation Study

The role of neural networks with recurrent structures is becoming increasingly apparent.

There are those, including Ziemke [73], who argue that thereexist problems in robotic tasks

in which a given state may be attained using several different action paths (e.g., the state

arrived at may appear the same even though the path taken to achieve it was very differ-

ent.) Learning tasks such as these can potentially lead to very difficult problems in which

the current state is not sufficient to uniquely determine what the next agent action should

be. Termed ”perceptual aliasing” by Whitehead and Ballard ([66]), such issues may be ad-

dressed by including mechanisms commonly used in sequential processing neural network

simulations which expressly utilize past experience to more efficiently promote correct fu-

ture decision making. This is but one of many potential applications which demonstrate the

necessity for continued research into recurrency in neuralmodels in all areas addressed by

feed-forward networks.

Currently, there is no known work which addresses the use of recurrent neural net-

works in distal problem domains. However, the simulations run in Section 5.3.7 demon-

strate that recurrent neural networks can indeed play a key role in creating neural models
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capable of learning to produce appropriate proximal sequential behavior to ultimately yield

a series of desired distal outcomes while operating in a complex environment. Moreover,

the fact that the distal recurrent learner does all of this while receiving no external updates

of its own current state from the environment makes the task that much more intriguing.

While recurrent neural networks have been shown to be effective in managing dis-

tal sequence generation tasks, employing them to handle challenging non-sequential distal

learning problems may prove to be extremely fruitful as well. Incorporating prior action

history into the decision-making process by the employmentof recurrent links and various

memory module constructs may indeed enhance the training ofstandard distal feedforward

neural network architectures in non-sequence generation tasks. It might even be possible

to demonstrate improved training performance over standard non-recurrent distal learning

systems that rely heavily on a consistent source of current state information but utilize no

concept of memory. This could potentially be the case if the current state information sup-

plied to non-recurrent distal learners can be shown to be inaccurate, noisy, or ambiguous.

More experiments would be required to determine under whichcircumstances the more

memory-reliant recurrent distal learning systems might definitively be able to outperform

standard, non-recurrent distal learning systems that relyexclusively on current state infor-

mation.

6.2 Success in Recurrent Distal Supervised Learning

The architecture introduced here was demonstrated to work well in two sequential environ-

ments: 1) concatenation and 2) phoneme sequence acquisition and generation, the second
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of which is an exceptionally complex composite of two non-linear functions. The system

was shown to work very well in the concatenation problem, which featured a less com-

plex environment which boasted no ambiguity issues among environment outputs. The

phoneme sequence generation architecture however, provedto be a much more challeng-

ing system to master. Ultimately, spanning a range of numerous simulations, when given

15 actual English phoneme sequences to acquire, the distal recurrent learner was able to

produce at least 10 phoneme sequences correctly (Section 5.4).

Once again, it may be possible to incorporate the recurrent structures used in this

study into existing distal supervised learning systems. Judging from the successful results

seen in the distal recurrent learner training tasks of Sections 3.6 and 5.3, it is my belief

that recurrent distal learners should be able to perform at least as well when substituted for

feed-forward neural networks in standard, non-sequentialdistal learning systems developed

over the years. In cases where current state updates can be ambiguous, for example, being

equipped with knowledge of previous action history may be sufficient for a distal learning

agent to break ties and determine what the best subsequent action should be.

As of this study, I illustrate a distal learning architecture I devised that can begin to

handle distal sequence generation tasks acquired through interaction in an environment de-

void of current state information streams. Previously, allproblems distal in nature required

an agent which accepted some form of current state information it could use to drive its

selection of a subsequent action. This reliance on ”seeing”at all times can be quite limiting

and a hindrance. If the all-important state information should become noisy, inaccurate, or

cease, the effectiveness of any system relying on it is significantly compromised.

There are agent situations and problem domains in which, once supplied with a single
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input stimulus or command, a correct sequence of actions is merely required to be executed

in its external working environment. Previously, this typeof problem was scarcely ad-

dressed. Distal recurrent supervised learning systems cannow be constructed to ”blindly”

adapt and learn to operate in external environments withoutreceiving any information about

their current state. Rather, as is typical of recurrent neural network applications, the use of

self-loops and various memory structures can allow the acting agent to ”remember” arbi-

trarily long histories of its own proximal commands and act accordingly to accomplish the

given task (section 2.2).

Of key significance is the existence of adaptive learning problems in which a given

state would require different actions depending on what theagent had done leading up

to that point in time. For instance, for the phoneme sequencegeneration task, suppose

an agent intends to say ”baby” (pronounced b/ae/b/ee) and the current state information

provided to it is merely the fact that ’b’ was the last phonemeuttered. The dilemma posed

to the learning agent now becomes which phoneme should it utter next: the ’ae’ or the ’ee’?

It was necessary in that instance for the agent to know the series of phonemes uttered up

to that point before it could make an informed subsequent decision even when provided

current state updates. This is termed ”perceptual aliasing” (Whitehead [66]) and there are

numerous complex robot domains in which this type of phenomenon must be handled.

Distal supervised learning systems up to this point have largely done little or nothing to

address this type of problem. Instead, most instantiationsof distal supervised learning

systems tend to be content with solely using its view of the world at a given time, to decide

on its subsequent action. This is not to say relying on current state inputs is a bad idea.

Rather, it is the case that relying solely on current state updates can ultimately limit the
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capabilities of a learning agent.

By using recurrent neural networks in distal supervised problems, not only sequence

generation problems can be addressed, but also systems which can benefit from having

some notion of ”history” in completing their purpose. Though the system described here

was shown not to need next state information in determining subsequent actions, it is not

the case that it cannot utilize current state updates when they are effective. In fact, further

work may reveal that the use of current state updates as employed in existing non-recurrent

distal supervised learning systems, coupled with the memory structures addressed in the

current work, may potentially bring about even more robust,fault-tolerant distal learners

that consider where they have been in addition to where they currently are in deciding on

their next move. The use of memories and histories in the determination of subsequent

action is a valid step forward in the design of adaptive agents that are capable of avoiding

the pitfalls of perpetual aliasing issues while learning tooperate in complex environments.

Incorporating delay line structures in distal recurrent networks, just as discussed in

Section 5.3.9, can be a powerful tool for generating sequences in environments. This idea

of incorporating delay line structures could hold credencesince it enables the recurrent

learner and/or forward model to clearly discern the first fewactions taken and utilize that

information in order to yield the subsequent outputs or actions. In contrast, a standard re-

current neural network will tend to lose information over time when using an exponential

trace memory as it continually applies the decay term to prior memory layer node activa-

tions. Further work in this area would be required to determine just how much delay line

memory structures can improve upon the current recurrent distal learning architecture.

Another observation of interest is that the Jordan networks, particularly those em-
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ploying

teacher forcing techniques, tended to outperform the Elmannetworks as learners and for-

ward models in the phoneme sequence generation study. This was somewhat unexpected

since it was often the case that Elman networks would converge more readily to the de-

sired levels of performance in standard non-distal sequential training problems than Jordan

networks. Somehow, that did not translate to distal sequence generation problem domains.

Again, it is unclear why this might be the case. If anything, it was believed that the El-

man forward model could more capably mimic the environment than the Jordan model and

be able to utilize its reuse of its own internal state representations via its hidden layer to

most effectively assist in training the recurrent distal learner. This, in fact, was not the case

and, ultimately, Jordan network architectures using teacher forcing strategies in the distal

sequence generation domain prevailed (section 5.10.)

6.3 Issues with Training

6.3.1 Difficult Environment

Issues concerning the phoneme sequence model varied greatly. There the biggest, most

significant issue was probably the challenges presented by the very ambitious and very

ambiguous phoneme sequence generation environment. More study may be required in

order to make such an already complex composite function of non-linear components less

ambiguous for the study. As a result of the ambiguity that remained in the sequential

environment, it seemed particularly challenging for the recurrent forward model to be able
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to guide the recurrent distal learner to produce the desiredsequential proximal behavior

(namely the actual motor phoneme sequences responsible forproducing the target output

associative maps used for training.) As such, it became verydifficult to get entire motor

phoneme sequences to come out as hoped. Often in distal supervised learning studies, very

little is done to track the error of the proximal answers or actions of the distal learner.

Indeed,distal error is tracked, and often used to drive training. If proximal error were to

be tracked, however, it would imply that the proximal answers were indeed determinable

by the trainer, and that would obviate the need for designinga distal supervised system

in which desired proximal behavior is inaccessible. Success in distal supervised learning

tasks is generally not measurable by error to some expected proximal behavior but by error

to some desired set of distal outcomes in the environment. Even though many times in the

phoneme sequence generation task the learner would be shownto have been trained down

to a RMSE performance less than 0.1, some of the motor phoneme sequences we would

hope would yield this targeted distal behavior would not be the proximal sequences sought

after. Rather, the resulting proximal sequential behavior exhibited by the recurrent distal

learner would, due to inherent ambiguity issues, potentially be a completely different action

sequence still capable of yielding distal sequential behavior very close to that targeted distal

behavior.

It was largely due to the phoneme sequence generation environment in its complex-

ity and ambiguity that the precise desired proximal sequential behavior was not always

achieved. More specifically, the nature of the final map representations given by the

SARDNET SOM representing associative memory served to causethe most significant

challenges. Because the SARDNET SOM maps are primarily sparse, any SARDNET out-
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put maps resulting from actions of the recurrent distal learner will only show a difference

in distal output from the result of its first action or phonemeby several bits at most.

The sparsity of the environment output certainly played a major role in the manner in

which the recurrent distal learner could be trained, since training in this manner is driven by

distal performance error. To further improve on the performance shown here, the sparsity

of the SOM outputs could be kept as minimal as possible. One way to do this would be

to keep the SOM output lattice dimensions to a minimum, hencereducing the number of 0

outputs as much as possible. Through trial and simulation, aSARDNET map with a 4x4

output lattice did pretty well to store the representationsof 15 phoneme sequences (Table

5.3) consisting of an alphabet of the five auditory phonemes listed in Table 5.2. A 3x3

SARDNET SOM lattice could potentially suffice, particularlyif repetitions of phonemes

in the desired phoneme sequences stored in the maps were keptto a minimum or eliminated

entirely.

Another way sparseness issues could be diminished in creating these distal output

maps may involve using the Mexican hat multi-output featurecovered in Section 4.3.1.

This feature would allow ALL node outputs to fire, substantially limiting the number of

non-firing SOM lattice nodes. Given that this Mexican hat output feature may very well be

more neuro-biologically plausible in attempting to simulate cognitive function, it may be

worthwhile to see how well the distal recurrent supervised learning system would fare in

using these types of outputs.

It is still quite difficult to train such a system correctly. It is a fact that there are

very many methods one can use to attempt to train the system properly. Apparently, if the

environment does not lend itself to easy or straightforwardsolutions, it can be very tough
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to obtain proximal correct sequential behavior on the part of recurrent distal learner. If the

environment is privy to arriving at similar environmental outcomes from multiple differing

proximal action trajectories, (that is, if more than one proximal set of actions can yield the

same environment distal output), and if a very specific proximal answer is being sought ,

as in the phoneme sequence generation task, then there may bedifficulty in finding the true

answer.

Also, it can be quite a challenge to generate sequential environment data randomly

to appropriately train the recurrent forward model in effectively sampling the environment

space so that it can accurately learn to mimic it during its babbling stage and throughout the

extent of the simulation run. A method for finding a good way togenerate good ”random”

yet directed training data which could effectively train the forward model to best enable it

to assist in training the recurrent distal learner will be effectively investigated further.

6.3.2 Issues with Initial Random Setting of Neural Network Weight

Vectors

Another factor which potentially restricted the effectiveness of the phoneme sequence gen-

eration model had to do with the randomness of the model. There seems to be a dependence

in the manner in which the parameters are initially and randomly set once the experiments

begin. If one were to run the system 10 times with the same makeup, architecture, etc.

using 10 differing random seeds, the resulting behavior among them can vary greatly. The

initial setting of random weights of the recurrent forward model and distal learner neural

networks have much to do with how successful such a model can become. Methods can be
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investigated in order to determine more ways to make this issue more of a non-issue. The

randomness issue is likely one that is present in many standard distal supervised learning

systems and is not specific to just the augmented systems examined in this work

6.3.3 Drawbacks Faced in Dealing with Exponential Trace Memories

One drawback to using exponential trace memories as outlined here, is the concern for

the length of output sequences capable of being learned by the system. Using exponential

decay memories holds the benefit of maintaining arbitrarilylong histories in a very compact

vector representation. In theory, they can hold potentially infinite histories without end.

However, once decay terms are applied to prior outputs, it becomes more and more difficult

to discern how long ago an output was first activated. For instance, if an output was set

to 1.0 at timet ≥ 1, that output is copied to the same position in the trace memory at

time ot+1 but with diminished intensity. Assuming an exponential memory decay of .5,

in producing an arbitrarily long output sequence greater than five, the output at the same

position is reduced from a 1.0 at time t toot+5 = (1
2
)4 = 0.0625. This can be quite

difficult for an untrained neural network to differentiate from the subsequent outputot+6 =

(1
2
)5 = 0.03125. As such, it is foreseeable that any Jordan recurrent network utilizing

an exponential trace memory module could potentially have aproblem blindly generating

subsequent actions past a certain point without help from current state updates. Utilizing

a mixture of exponential trace and delay line memory structures can potentially offset this

issue to an extent. Also, using larger output values that will not deteriorate quite as quickly

as the standard output 1.0 does may assist some in this regard. This issue would need to be
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addressed seriously if this feature is to be fully utilized.

6.3.4 Forward Model

The appropriate training of the forward model is ultimatelyparamount to the effective

training of the distal recurrent learner. One significant challenge seems to be how one

can best train the forward model to be of maximum service to the recurrent distal learner.

One way of doing this, if available, is to train the forward model, not the distal recurrent

learner, using the expected proximal answers and their corresponding desired target distal

sequences as input / output pairs. Of course, this is rarely useful because the point of

developing distal supervised learning systems is that the proximal answers are generally not

known. In the phoneme sequence generation model described here, for example, the best

performance was most often obtained when the forward model was trained to efficiently

map the correct proximal motor phoneme sequences to their corresponding target distal

output maps. Of course, these particular distal output mapswould be one and the same

as those provided at the start of training and used as target sequences to train the distal

recurrent learner in the first place.

One can argue that using this strategy in this fashion is justified for this particular

task since the purpose of the system described in Section 5.3is not to find correct proxi-

mal behavior previously unknown to the trainer. Rather, the goal of the proposed system

is to replicate as closely as possible the process of phonemesequence generation studied

extensively in neuro-biological study. In fact, one could argue that incorporating the proxi-

mal answers in the training of the recurrent forward model can be tantamount to the visual
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and aural guidance coaching by some coach (e.g., teacher, parent, etc.) in teaching the

pronunciation of a word, or in swinging a bat, to a child, for instance.

Alternately, one can merely generate a sufficient number of randomly created ac-

tions in the output space of the learner to be supplied as training instances for a forward

model. Once the proximal action sequences are randomly generated, they can be applied

to the environment to yield their corresponding distal sequential outcomes. At this point,

these pairs of sequential proximal actions and distal consequences can be used to train

the forward model on the resulting set of training instances. Though the latter is the easiest

manner of forward model preparation, there are no guarantees that the data generated could

be good or promising enough to prepare the forward model to fully and effectively train the

recurrent distal learner.

A phenomenon I observed while conducting these recurrent distal learning simula-

tions is that the forward model should at least be able to generalize the mapping of the

desired proximal solutions, whatever they may be, to their corresponding distal target out-

puts in order to be entirely successful. In the case of complex environments such as the one

employed here, generalization in this fashion can be highlyunlikely. In such an environ-

ment, the forward model would probably have to see and learn to map every set of correct

proximal actions in order to even hope to train the distal recurrent learner to learn to pro-

duce them. This could potentially be done through random generation of training instances

and through subsequent interactions between distal recurrent learner and the environment.

But to anticipate generating enough proximal sequences to enable the forward model to

properly sample the sequential input space in such a complex, non-linear environment can

likely be unrealistic and can require a tremendous amount ofcomputing power, space, and
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simulation time.

In the absence of extensive computing resources, supplyingthe forward model with

some amount of correct proximal behavior up front can give the forward model a better

chance to further generalize to the environment mappings necessary for effective training of

the distal recurrent learner. In trying to do the phoneme sequence generation task with both

types of data (i.e., both randomly constructed and also the known proximal answers to the

problem) it became apparent that the simulations which employed forward models trained

with known proximal answers tended to lead their corresponding distal recurrent learners

to converge at a greater rate than those which utilized randomly generated data to train the

forward model. Recall that in distal recurrent supervised learning experiments proximal

actions need to be generated and supplied to the forward model for training purposes during

babbling and training stages. Another factor that is directly manipulatable by the trainer

is the size of the recurrent forward model’s hidden layer. A forward model whose hidden

layer is too small can be ill-equipped to sufficiently partition and, subsequently, be able

to propagate effective error signals in training the recurrent distal neural network. More

research can be done to determine what types of data can be best used to train the forward

models of complex environment functions effectively without the use of known proximal

answers.

However, although recurrent forward models tend to work better once trained on the

proximal answers, such a strategy is not at all sufficient to create forward models which can

effectively guide any given recurrent distal learner to learn the correct proximal behavior

every time. Often in simulations of the phoneme sequence generation task, even when

trained on the correct proximal behavior down to a very low performance error, many
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forward models were incapable of propagating back effective error signals in the training

of its corresponding recurrent distal learner. Part of the success of training a successful

distal learning system apparently relies heavily on the initial random parameter settings of

both the recurrent forward model and the recurrent distal learner.

Oddly enough, unlike in recurrent distal learners, incorporating delay line memory

structures in forward models has not demonstrated improvedperformance in the distal re-

current training task. Moreover, one would think that architectures with delay line memory

constructs either in the forward model or in the distal recurrent learner would outperform

those that employ neither. Rather, simulations that employed distal recurrent learners that

contained at most one delay line memory structure and forward models with no delay line

memory structure tended to do noticeably better than any other distal recurrent supervised

learning system setup.

Furthermore, it is not necessarily the case that more memorydelay lines in either

recurrent forward model or distal learner implies better performance over fewer delay lines.

Similar experiments demonstrated that use of two or more delay line memory structures in

either or both forward model or distal learner did not necessarily improve learning. In fact,

in many cases learning was shown to be hindered in comparisonto systems utilizing only

one delay line. This result can very likely be isolated to distal sequential problem domains

using environments of this type or level of complexity. Still, further study can be done to

determine the cause of this phenomenon.

In noting the importance of the forward model training data in the success of train-

ing the recurrent distal learner, certain methods were developed in an attempt to improve

the forward model training as it looked to mimic/model the environment of the phoneme
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sequence production system. One such attempt included the caching of past babbled out-

put sequences made by the recurrent distal learner and theircorresponding distal outcomes

to be used multiple times in training the recurrent forward model. The idea here was to

see, in the absence of more training data, if the forward model could be made to learn the

sequential environmental mapping better. Experimentally, it was determined that such a

strategy was not convincingly effective, whether such datawas held or cached for two or

more time periods or just one (the latter being standard practice in most distal supervised

learning systems.) This was just one instance of the strategy which did not work.

Also, rather than update a forward model just once on a given set of babbled data, I

thought that updating or training it on the new data more thanonce during the same epoch

could potentially help it to train better. Such an action would allow the forward model to

learn more precisely what the true mapping of every randomlycreated or recurrent distal

learner generated proximal action sequence could be, further allowing it to approximate

the environment mapping appropriately. In this case, it didnot work out experimentally as

well as expected. Why this did not work is as yet unknown.

Currently, what works is to keep the actions generated by the recurrent distal learner

in forward model training for only one epoch and to delete it before the next forward model

epoch or update can begin. It seems sufficient enough for the recurrent forward model to

use a recurrent distal learner’s attempt at generating a good sequential proximal response,

given the static input stimulus presented to it, and its corresponding distal sequential out-

come as training data in one step.
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6.4 Future Work

6.4.1 Improving Performance of Recurrent Distal Supervised Learn-

ing Architecture

A good deal of success was demonstrated in observing the performance of this newly pro-

posed distal supervised learning system which employs recurrent links in both the distal

learner as well as the forward model while also utilizing cumulative memory layer strate-

gies in either. However, some aspects of the newly proposed architecture can be investi-

gated for further improvement of this new system. One such aspect of learning which can

be investigated further is the effect of varying the number of hidden layers included in ei-

ther or both recurrent distal learner and forward model. If more than two hidden layers are

incorporated in either neural network component, activations from up to all hidden layers

can potentially be recorded and used in exponential trace memories. The new possibilities

may grant either recurrent network increased computational capability to further partition

the environment mapping into segments from which more informed decisions can be made

in generating good subsequent actions. Further experiments in this direction may produce

even better sequence generation performance than that found in the present study.

Another potential aspect of this work which could be investigated further is the effects

of different output functions to the hidden layers (and possibly the output layers) to see if

further improvement can be made in training distal sequencegeneration neural systems.

Utilizing recurrent neural networks in which layers of nodes employ the tangent hyperbolic

(Tanh) output function, in particular, may enable these networks to successfully converge
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at significantly higher rates than those networks which employ standard logistic output

functions. There may be increased benefit in using Tanh output functions just because of

the increased range of output possibilities that the affected nodes can perform. In essence,

the Tanh(x) has a range of−1 ≤ Tanh(x) ≤ 1 while the standard logistic function (sig(x))

has a more limited range of0 ≤ sig(x) ≤ 1. A direct result of this change in output function

is that weight vectors have a larger range of possible answers, which may be good or bad.

Another significant consequence of switching to an output function with a greater

range is that with Elman and Jordan/ Elman hybrid recurrent architectures, their memory

trace modules will now be made to handle negative activations. This may be even less the

case with Jordan networks since eventually, at least in the phoneme sequence acquisition

task as described in this text, each of their output units, and hence their memory contents,

would all eventually be in the range of, or very near (0,1). This modification could, in fact,

have a very significant effect on the training of the learner.Future simulations augmenting

recurrent distal learners and recurrent forward models alike in this manner should show just

how beneficial, or detrimental, such a change can result.

One issue to be addressed in the use of Tanh output nodes is itsaccuracy in depicting

actual neuronal behavior in neural model simulations of brain behavior. It is known that

neurons tend to either be inactive (0 output) or firing (1.0 output). This makes it easy to

classify neurons as semi-binary in nature. The problem is that nodes of a neural network

utilizing the Tanh hyperbolic function output can potentially output negative numbers. To

my knowledge, there is no concept of negative activations emanating from neurons in the

brain, just negative connections. For problem domains suchas these it would seem that

sticking to output node functions which produce outputs in the range (0, 1) would be most
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beneficial.

It is certainly the case that neurons are known to inhibit as well as excite other neigh-

boring nodes once activated. But inhibition in neural networks is typically already ad-

dressed in the way the weights can be negative or positive. Sopositive activation of a node

in a neural network can actually inhibit a neighboring neuron by virtue of the weight con-

necting the two being negative in value. By having neurons which can produce both posi-

tive and negative outputs, you can no longer express a relation that one neuron will always

inhibit a particular neighbor. That is, unless connecting weights are somehow restricted to

positive values, which could indeed defeat the purpose of switching to Tanh output nodes.

If it is indeed the case that inhibition/excitation relations exist between neurons in the brain,

such relations would potentially be nullified in corresponding neural simulations if tangent

hyperbolic nodes were being used.

Yet another area of interest I could investigate would be that of the role of radial ba-

sis networks in improving the use of neural networks in distal problem domains, whether

sequential or not. The update procedure would certainly change significantly as the for-

mulation of outputs and weight updates between radial basisnetworks and standard feed-

forward networks differ substantially. But if something were to come of this research, much

could be gained in taking advantage of the radial basis nodes’ ability to classify clusters.

Currently, it is not clear how one would utilize the gradient of the radial basis forward

model as one would the gradient of a feedforward forward model. It may be the case that

only the distal learner or the forward model, and not both simultaneously, could be capable

of being constructed from radial basis nodes.
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6.4.2 Modeling Sequence Generating Cognitive Tasks

Another direction for future research is to progress into more advanced bi-hemispheric

neural models of brain activity. In previous studies, we implemented a bi-hemispheric neu-

ral model, two feed-forward neural networks with hidden layers that contributed to each

other’s activation via a positively or negatively weightedpathway ( Reggia, Gittens, et al.

[47], [48].) The inclusion of this pathway was inspired by the corpus callosum known to

connect the right and left hemispheres in the brain. The joined neural networks were capa-

ble of being trained in tandem to produce sequences of phoneme vectors in an effort to test

potential factors which could attribute to the emergence oflateralization in the brain. In

the study, experiments suggested that a number of factors can have a role in contributing to

lateralization, including size of the hemisphere as well asplasticity and speed. From these

same experiments, other observations from neurobiological studies could also be poten-

tially inferred. For example, negative, or inhibitory, contribution on the part of the corpus

callosum through which the hemispheres communicate showedevidence of mirrored acti-

vations between hemispheric hidden layers connected homotopically.

Additional lesioning studies were conducted in which activations of hidden layer

neural units of either hemisphere of the bi-hemispheric model were deliberately turned

off to simulate damage to the brain as a result of stroke or brain trauma, for instance.

This series of experiments was designed in order to study notonly factors contributing

to functional lateralization in the brain but also factors which assist most in recovery of

damage to the brain. It was found that the simulated corpus callosum assisted in having

the non-damaged region of the hemisphere to adequately pickup function lost by the acute
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lesion in the damaged hemisphere. There was evidence of muchof the phenomena seen

in the actual studies of stroke damage in patients. For instance, for positive contributing

corpus callosum, the corresponding area connected homotopically to the lesioned portion of

the damaged hemisphere in the non-damaged hemisphere experienced reduced inhibition.

Also, the neural contributions of neighboring neurons in the damaged model themselves

lacked activation and their contribution lessened as well.

The drawback to such an initial study was the lack of feasibility of the architecture

as one to truly model the phoneme sequence, or any intelligent cognitive motor function,

acquisition process. Despite the fact that behavior resembling actual neuro-biological phe-

nomena was shown to be replicated in the test experiments, many aspects of the actual brain

process evaded the original design. For one, the model used primarily a local representation

of inputs and outputs. That is, inputs and outputs each specified a phoneme or phoneme

sequence by a single neuron being on or off, which is unlikely. Secondly, there was little

use of many processes known to have a role in the phoneme sequence generation process.

There was, for instance, no existing interaction with the external environment, no distinc-

tion between motor and auditory features, and certainly no mention of stored representation

of sequences in associative memory.

Once this model is completed, a more realistic, feasible, and complex bi-hemispheric

model can be constructed, in which the following can be asserted:

1. Babbling can be construed as the training of the forward speech model from observa-

tions of random motor actions in the environment. This step is deemed necessary for

training the forward speech model and can be introduced as a precursor and stepping

158



stone to language acquisition.

2. Two hemispheric regions can accept as an input stimulus a distributed representation

of phoneme sequence intent.

3. Each hemispheric region can have access to the forward speech model in acquir-

ing the phoneme sequence acquisition skill following the initial babbling stage and

through continued babbling during the actual distal sequential learning task. Forward

models are widely believed to hold a significant role in acquiring language produc-

tion skill in humans.

4. Interaction does indeed occur in an external environmentthat transforms motor

phonemes to auditory phonemes and accesses unique activation maps of stored

phoneme sequence representations in associative memory.

5. Both models of left and right hemispheres can again work in parallel and conjunc-

tively through use of the intermediary corpus callosum.

Another potential plan for future research would be to expand on the phoneme se-

quence acquisition model discussed in Chapter 5. With work, more phonemes, and hence

more phoneme sequences, could be learned by the model. Also,a more biologically plau-

sible self-organizing map such as the one-shot, multi-winner SOM (Shultz [55]) could be

investigated to replace the efficient, yet implausible, SARDNET SOM which is used to

represent associative memory in the model.
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6.4.3 Incorporating the Self-Halting Mechanism into the Recurrent

Distal Supervised Learning Architecture

Finally, it would be useful to re-visit the idea of incorporating the self-halting functionality

in this recurrent distal supervised architecture. The self-halting feature proved to be very

difficult to implement in an already tough phoneme sequence acquisition task. One feature

which could be implemented at a later date, is the self-halting mechanism. Given time

constraints, limited success was achieved in enabling the distal learner to acquire the ability

to output a halting signal to stop itself from producing a sequence of arbitrary length rather

than being told ahead of time how many actions to produce in a sequence. Initial success

was seemingly hampered by the difficulty of having to learn tooutput a halting signal

which was significantly different from other legal recurrent distal learner action vectors

in addition to learning to operate in such a complex environment which proved to be too

challenging a task at this early stage of the study.
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Appendix A

Algorithm used for the Preliminary Single Phoneme Acquisition

Model

procedureBABBLE(maxepochs, errorthreshold)

% — Initialize variables — %

Broca← Broca’s area neural model% distal controller

FM← forward model neural net

X ← list of phoneme intent vectors

Y∗ ← list of target audio phonemes% distal target values

U∗ ← list of motor phonemes needed to produceY∗ distally % Broca’s task is to

come up with the motor phoneme list on its own

distal error←∞

epochs← 0

% — Initial Babbling Phase to train forward connections (forward model) — %

[rand motor list, randaudio list] ← generate random motor/audio phoneme pairs% for

use in babbling stages

train FM on training pairs [randmotor list, randaudio list]
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% — Training the Distal Learner, Broca’s area — %

do

U← Broca(X)% list of outputs of Broca’s area when presented with X as list ofinputs

Y ← Env(U)% list of actual outputs resulting from applying Broca’s motor response to

the environment

dWkj ← 0

dWji ← 0

for eachphoneme intent xin X do

actualdelta← Y∗

x − Yx

train FM on training pair [Ux, Yx]

[dWx
kj, dWx

ji] ← calculate update weight matrices to Broca based on delta values

propagated back through the forward model

dWkj ← dWkj + dWx
kj

dWji ← dWji + dWx
ji

end

Broca.Wkj ← Broca.Wkj + dWkj % update Broca weight matrices

Broca.Wji ← Broca.Wji + dWji

train FM on training pairs [randmotor list, randaudio list] % continue random

babbling to further train forward connections

epochs← epochs + 1

distal error← calculate error of Broca’s output (RMSE(Broca(X),U∗))

until (epochs< max epochs) or (distalerror> error threshold)
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end
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Appendix B

Creating a Smooth Mapping from a Finite Mapping

Constructing a smooth environment mapping from the space containing the set of motor

feature vectors to that containing the set of auditory feature vectors presented a particular

challenge. A candidate environment function,f∗, sought to complete a task such as this

would preferably have a particular set of specific properties. Let A and B be finite sets

such that|A| = |B|, A ⊂ ℜm, andB ⊂ ℜn. Define some finite mapping f:A→B such

that f(A)=B. The idea is to construct the new smooth mapping,f∗, that preserves the finite

mapping f but is as smooth and differentiable as is feasibly possible. This way, where f(a),

for a ∈ ℜm buta /∈ A, would be undefined,f∗(a) would be some reasonable approximation

for a counterpart inℜn. Once it behaves in this fashion, the environment function can be

approximated effectively by a multi-layered feedforward neural network. The latter can

in turn be used to propagate back the error of the actual distal output, which is a distal

consequence of the controller’s local action, from the desired target distal output.

To illustrate this problem, the following table demonstrates a very simple environ-

ment function, f:ℜ → ℜ+. Do note the domain and range of this function overℜm andℜn,

respectively, is as defined previously with m=n=1.
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m

a

Figure B.1: Simple mapping

A f(A) = B

0.4 0.6

1.6 1.8

2.9 0.4

As one potential candidate for a smooth mapping alternative, f∗, for f, we can set

f of each member of A to the member of B to which it is associated(i.e. f∗(¬A) = 0).

For all other values m∈R, set f(m) = 0 (see Figure B.1). As such, this function satisfies

the requirement that f(A) = B. However, no other information is encoded here, which is

essential in training the controller effectively. Ideally, a function such as the one in Figure

B.2 is sought. Using this function, any arbitrary m, even if itis not in A, has a defined f(m)

whose value is dependent on the known values of B. A controllerwhich offers some action

m can then use the environment to judge how far off it was from achieving it’s distal target

and also modify itself to offer an action which is closer to the one required.

Unfortunately, arriving at a function such as the one in figure B.2 is not trivial. One

way to approximate such a function is by using radial basis functions like that shown in

Figure B.4. A radial basis function takes on the formr(x) = exp(||x − c||2/r2), where the
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m

Figure B.2: Ideal mapping

radius r determines the width of the resulting bell curve andc denotes the center. Here,

0 < r(x) ≤ 1, where r(x) = 1 if x = c and r(x) approaches 0 the further x is from c. Radial

basis functions are used successfully in training radial basis neural nets [42] which have

been shown to organize and learn from clustered input data better than standard neural

networks.

Let y be the member of A such that||x− c|| is minimized (i.e. the closest A candidate in A to

x). Initially, we will calculatef∗(x) as follows :

A.1 y = argminm||x−m||, m ∈ A

f∗(x) = f(y)× ry(x)

, wherery(x) is defined as the radial basis function centered at y. For x in A, y = x, ry(x) = 1,

andf∗(m) = f(m)×1 = f(m). Otherwise,f∗(x) is assigned a multiple of the corresponding

auditory phoneme to that closest motor feature vector, y, inA to x. The magnitude of this

multiple will correspond inversely to the distance of x to the closest member of A.

The most significant problem with the functionf∗ is that it is highly discontinu-

ous. The function landscape changes abruptly midway between neighboring members of

A (Figure B.3). One way to offset such extreme discontinuities could incorporate adding
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m

a

Figure B.3: Example figure of discontinuous mapping resulting from Equation A.1.

a smoothing factor to Equation A.1 which takes into consideration the proximity of all

candidate elements of the domain A in calculatingf∗(x).

The new environment function,f∗(x), is now calculated as follows:

A.2 g(m, x) = 1/(||x−m||)b; m ∈ A, b ≥ 1, M = |A|

h(m, x) = g(m, x)/
∑M

y g(y, x); y ∈ A

f∗(x) =
∑M

z [h(z, x)× f(z)× rz(x)]; z ∈ A

Here, g(m,x) is a measure for the proximity of the member m of set A to the input

vector x. The smaller||x − m||, the larger g(m,x) becomes. The function h(m,x) is essen-

tially a normalized version of g(m,x) such that0 < h(m, x) < 1. As a result, h(m,x) will

approach 1 if x is very close to some member m∈A. A consequence of this is h(y,x) for

all other y∈A will approach 0 since
∑

z h(z, x) = 1. Functionf∗(x) will then take on most

of the characteristics of f(m). Otherwise, should x be foundto be midway between two

or more members of A,f∗(x) should take on characteristics of all of their corresponding

mappings of the target set B.

One drawback to constructing the environment mapping,f∗, in this manner is that it
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1

r

Figure B.4: Radial basis function

requires significantly more computation than that of Equation A.1. Even so, however, the

resulting mapping is sufficiently smooth enough for the forward model to learn to approxi-

mate. Figure B.6 demonstrates two candidate function landscapes for transforming a finite

mapping f to a smooth mappingf∗:[-1,1]2 →[0,1] based on Equations A.1 and A.2.

One issue encountered in creating a function in this fashionis that those members

m∈A which have large values for f(m)∈B can have radial basis mounds which dispropor-

tionately dominate values off∗(x) within some proximity of m despite the presence of other

nearby radial basis mounds. This can have undesirable results where some large radial ba-

sis mounds envelope smaller ones or even create “false” mounds not centered around a

member in A (figure B.5). As such, further improvement tof∗(x) can be obtained by ”slim-

ming” the radial basis component assigned to a member m in A with maximum height f(m)

in B. This can be achieved by reducing the radius term, r, in theradial basis portion off∗(x)

for larger values of f(y) and gradually increasing radii formounds with smaller maximum

heights.

Another obstacle in constructing the environment functionin this manner stems from

having to deal with zero output. When approximating a smooth function in this fashion,
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Figure B.5: (Left)The smooth mapping procedure shown without radius slimming. Notice

that members of the domain with the smallest corresponding f∗(x), (x=-.5 and x=1), have

no radial basis mounds as they are being dominated by mounds of members with very large

f∗(x). Also notice the false mound created to the far left whichcorresponds to no member

of the domain set, A. (Right) The same procedure using the radius slimming modification.

By reducing the radii of the tallest mounds, the false mound disappears and the radial basis

mounds for the members with small f∗ are much more apparent.
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Figure B.6: Here two mapping methods are compared using Equation A.1 (left) and using

Equation A.2 (right). The finite relation used to create these smooth mappings is as follows

: (-1,-1)→0, (1,-1)→0, (1,-1)→1, (1,1)→1.
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not only is it difficult to approximate zero valued outputs but since a radial basis mound of

height zero is essentially non-existent it can contribute very little to the weighted averages

introduced in the construction of this mapping. To alleviate the problem to a degree, some

minimum value greater than zero can be assigned to replace all zeros in the feature vectors

of A and B, thereby giving even null values radial basis information which can be utilized.

171



Appendix C

Motor / Auditory Feature Tables for English Language

Phonemes for Use in Phoneme Sequence Production Task.

This section lists the essential English language phonemesused in the preliminary work

of the single phoneme acquisition model (section 5.2) and intended for use in creating the

proposed phoneme sequence acquisition computational brain model (section 5.3). Each

column represents the vectors of known features which characterize a given phoneme. The

tables are divided into motor phoneme and auditory phoneme tables and further divided into

vowel and consonant tables. Here, motor phonemes denote commands which are produced

through the primary motor cortex to produce a phonetic sound, while an auditory phoneme

denotes the phonetic sound impressed on the primary auditory cortex upon hearing.

These tables were provided by Schultz [55] by combining feature systems from work

done by Jakobsen, et al.[20] and Singh et al. ([56],[57]). Features known to be present

in a phoneme are denoted by a ’+’ in the column while their absence is signaled by a ’-’.

Altogether, there are forty-one such phonemes but three areomitted as they are functionally

equivalent to other phonemes already listed. In simulations for this study, each phoneme

column can be regarded as vectors in the space{0,1}21 for motor phonemes and{0,1}34
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for auditory phonemes by replacing ’+’s and ’-’s by 1’s and 0’s, respectively.
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IPA p b m t d n Ù Ã k g f v T D s z S Z w r l j h N

Keyboard compatible p b m t d n tch dj k g f v th– th+ s z sh zh w r l y h ng

Consonantal + + + + + + + + + + + + + + + + + + + + + + + +

Vocalic . . . . . . . . . . . . . . . . . . . . . . . .

Anterior + + + + + + . . . . + + + + + + . . . . + . . .

Coronal . . . + + + + + . . . . + + + + + + . + + . . .

+Voicing . + + . + + . + . + . + . + . + . + + + + + . +

–Voicing + . . + . . + . + . + . + . + . + . . . . . + .

Continuant . . . . . . . . . . + + + + + + + + + + + + + .

Stop + + + + + + + + + + . . . . . . . . . . . . . +

Nasal . . + . . + . . . . . . . . . . . . . . . . . +

Strident . . . . . . + + . . + + . . + + + + . . . . . .

Height: VH . . . . . . . . . . . . . . . . . . . . . . . .

H . . . . . . + + + + . . . . . . + + + . . + . +

M . . . . . . . . . . . . . . . . . . . . . . . .

L . . . . . . . . . . . . . . . . . . . . . . + .

VL . . . . . . . . . . . . . . . . . . . . . . . .

Advancement: F . . . . . . . . . . . . . . . . . . . . . . . .

FC . . . . . . . . . . . . . . . . . . . . . . . .

C . . . . . . . . . . . . . . . . . . . . . . . .

BC . . . . . . . . . . . . . . . . . . . . . . . .

C . . . . . . . . + + . . . . . . . . + . . . . +
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IPA o a e u @ i I E æ 2 U O Ä ai @U

Keyboard compatible o ah ay oo uh- ee ih eh ae uh+ u aw er ai au

Consonantal . . . . . . . . . . . . . . .

Vocalic + + + + + + + + + + + + + + +

Anterior . . . . . . . . . . . . . . .

Coronal . . . . . . . . . . . . . . .

+Voicing + + + + + + + + + + + + + + +

–Voicing . . . . . . . . . . . . . . .

Continuant + + + + + + + + + + + + + + +

Stop . . . . . . . . . . . . . . .

Nasal . . . . . . . . . . . . . . .

Strident . . . . . . . . . . . . . . .

Height: VH . . . + . + . . . . . . . + +

H . . . . . . + . . . + . . . .

M + . + . + . . . . . . . + . +

L . . . . . . . + . + . + . . .

VL . + . . . . . . + . . . . + .

Advancement: F . . + . . + + + + . . . . + .

FC . . . . + . . . . . . . + . +

C . . . . . . . . . . . . + . .

BC . . . . . . . . . + . . . . .
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IPA p b m t d n Ù Ã k g f v T D s z S Z w r l j h N

Keyboard compatible p b m t d n tch dj k g f v th– th+ s z sh zh w r l y h ng

Consonantal + + + + + + + + + + + + + + + + + + + + + + + +

Vocalic . . . . . . . . . . . . . . . . . . . . . . . .

Compact . . . . . . + + + + . . . . . . + + . . . . . +

Diffuse + + + + + + . . . . + + + + + + . . . . . . . .

Grave + + + . . . . . . . + + . . . . . . . . . . . .

Acute . . . + + + . . . . . . + + + + . . . . . . . .

Nasal . . + . . + . . . . . . . . . . . . . . . . . +

Oral + + . + + . + + + + + + + + + + + + + + + + + .

Tense + . . + . . + . + . + . + . + . + . . . . . + .

Lax . + . . + . . + . + . + . + . + . + . . . . . .

Continuant . . . . . . . . . . + + + + + + + + + . . . . .

Interrupted + + . + + . + + + + . . . . . . . . . . . . . .

Strident . . . . . . + + . . . . . . + + . . . . . . . .

Mellow . . . . . . . . + + . . + + . . . . . . . . . .

+Voicing . + + . + + . + . + . + . + . + . + + + + + . +

–Voicing + . . + . . + . + . + . + . + . + . . . . . + .

+Duration . . . . . . . . . . . . . . + + + + . . . . . .

–Duration + + + + + + + + + + + + + + . . . . + + + + + +

+(Af)Frication . . . . . . + + . . + + + + + + + + . . . . + .

–(Af)Frication + + + + + + . . + + . . . . . . . . + + + + . +

Liquid . . . . . . . . . . . . . . . . . . . + + . . .

Glide . . . . . . . . . . . . . . . . . . + . . + . .

Retroflex . . . . . . . . . . . . . . . . . . . + . . . .

F2,VH . . . . . . . . . . . . . . . . . . . . . . . .

F2,H . . . . . . . . . . . . . . . . . . . . . . . .

F2,HM . . . . . . . . . . . . . . . . . . . . . . . .

F2,LM . . . . . . . . . . . . . . . . . . . . . . . .

F2,L . . . . . . . . . . . . . . . . . . . . . . . .

F2,VL/F1,VH . . . . . . . . . . . . . . . . . . . . . . . .

F1,H . . . . . . . . . . . . . . . . . . . . . . . .

F1,HM . . . . . . . . . . . . . . . . . . . . . . . .

F1,LM . . . . . . . . . . . . . . . . . . . . . . . .

F . . . . . . . . . . . . . . . . . . . . . . . .
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IPA o a e u @ i I E æ 2 U O Ä ai @U

Keyboard compatible o ah ay oo uh- ee ih eh ae uh+ u aw er ai au

Consonantal . . . . . . . . . . . . . . .

Vocalic + + + + + + + + + + + + + + +

Compact . . . . . . . . . . . . . . .

Diffuse . . . . . . . . . . . . . . .

Grave . . . . . . . . . . . . . . .

Acute . . . . . . . . . . . . . . .

Nasal . . . . . . . . . . . . . . .

Oral . . . . . . . . . . . . . . .

Tense + + + + . + . . . . . . + + .

Lax . . . . + . + + + + + + . . +

Continuant . . . . . . . . . . . . . . .

Interrupted . . . . . . . . . . . . . . .

Strident . . . . . . . . . . . . . . .

Mellow . . . . . . . . . . . . . . .

+Voicing + + + + + + + + + + + + + + +

–Voicing . . . . . . . . . . . . . . .

+Duration . . . . . . . . . . . . . . .

–Duration . . . . . . . . . . . . . . .

+(Af)Frication . . . . . . . . . . . . . . .

–(Af)Frication . . . . . . . . . . . . . . .

Liquid . . . . . . . . . . . . . . .

Glide . . . . . . . . . . . . . . .

Retroflex . . . . . . . . . . . . + . .

F2,VH . . + . . + + . . . . . . . .

F2,H . . . . . . . + + . . . . + .

F2,HM . . . . + . . . . + . . + . .

F2,LM . + . . . . . . . . . . . . +

F2,L . . . . . . . . . . + + . . .

F2,VL/F1,VH + . . + . . . . . + . . . . .

F1,H . + . . + . . . + . . . . . .

F1,HM . . . . . . . + . . . + . . .

F1,LM + . + . . . . . . . . . + + +

F . . . + . . + . . . . . . . .
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