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           To respond to bioterrorism events or to curb outbreaks of contagious diseases, 

county health departments must set up and operate clinics to dispense medications or 

vaccines.  Planning these clinics before such an event occurs requires determining clinic 

capacity and estimating queueing performance.   

      Due to the nature of these facilities, we model a clinic as an open queueing network 

and estimate the time that county residents will spend at each workstation in such 

facilities. County residents are the customers, and the servers are the clinic staffs, who are 

the critical resource.  Residents arrive according to an external (not necessarily Poisson) 

arrival process.  When a resident arrives, he goes to the first workstation.  Based on his 

information the resident moves from one workstation to another in the clinic.   

      We decompose the queueing network by estimating the performance of each 



  

workstation using a combination of exact and approximate models. There is a network of 

nodes and directed arcs. The nodes represent service facilities (workstations) and the arcs 

represent residents’ flows through the clinic. We characterize each workstation by the 

first two moments of the interarrival time and service time distributions and consider it as 

a G/G/m queueing system. Congestion measures for the entire network are obtained by 

assuming as an approximation that the nodes are stochastically independent given the 

approximate flow parameters. 

     A key contribution of this thesis is to introduce approximations for workstations with 

batch arrivals and multiple parallel servers, for workstations with batch service processes 

and multiple parallel servers, and for self service workstations. 

      We validated the models for likely scenarios using data collected from emergency 

preparedness exercises and from simulation experiments. Although this research was 

motivated by this specific application, it should be applicable also to the design and 

analysis of manufacturing systems with batch service processes. 
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Chapter 1: Introduction 

The threat of an outbreak of contagious disease in the United States, caused by a 

terrorist act or a natural occurrence, has prompted public health departments to update 

and enhance their plans for responding to such events. Especially in regions that are 

densely populated or strategically important, such as the nation’s capital, public health 

officials must plan for potential disasters. In the worst-case scenario, terrorists could 

release a lethal virus, such as smallpox, into the general population. Although different 

responses are available, mass vaccination should be an effective policy.  

In the case of smallpox, every person in the affected area would have to be 

vaccinated within a few days. For example, Montgomery County, Maryland, would 

need to vaccinate nearly one million people. To vaccinate so many people in a short 

period it would have to set up mass dispensing and vaccination clinics. Counties 

across the United States are creating plans for this type of response.  

Models of clinics are useful during the planning process. Two key clinic 

performance measures are the clinic capacity and the average time that a customer 

spends in the clinic (from arrival to departure), which we call cycle time (also known 

as flow time or throughput time). Clinic capacity is important for verifying that the 

clinic can treat the affected population in the required time. Estimating cycle time is 

necessary to determine how much space to allow in the clinic for queues. From the 

clinic planning perspective, reducing queueing is important to reduce the number of 

residents in the clinic, since large numbers of people increase crowding, confusion, 

and the chance of chaos. 
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While the study of queueing networks has resulted in numerous results, the need to 

model queueing networks with batch service processes performed by multiple parallel 

servers and self service stations led us to develop the model presented here. Motivated 

by the setup of typical clinics, we assume that there is no re-entrant flow.  

The fundamental problem is to evaluate the capacity and queueing of a given clinic 

design, given information about the arrival of residents to the clinic, the flow of 

residents through the clinic, and the processing at each workstation in the clinic.   

The queueing network operates in the following manner. When a resident arrives, 

s/he goes to the first workstation.  Based on that resident’s personal information 

(including current state of health and medical allergies), the resident moves from one 

workstation to another in the clinic.  Most residents will receive treatment (medication 

or vaccination) and then leave.  However, some residents will leave without receiving 

treatment, and others will be transported to a hospital.   

Most of the workstations in a clinic have multiple and parallel servers that treat one 

resident at a time.  For example, a vaccination workstation may have a dozen nurses, 

and each nurse vaccinates one resident at a time.  However, some workstations in a 

clinic have batch service processes that serve multiple residents simultaneously as a 

group.  Moreover, there may be multiple servers so that multiple batches can be 

processed in parallel.  For instance, at the education station, residents sit in classrooms 

in which they watch an informational video about the smallpox vaccine (under the 

direction of a staff member).  Because there are multiple classrooms, different groups 

begin and end the process at different times. Such processes also cause batch (bulk) 

arrivals at subsequent stations. 
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There are also self service stations where residents complete paperwork (typically, 

medical history questionnaires) on their own. Staff may be present to answer 

questions, but they are not the critical resource, and modeling the process by which 

residents ask for and receive assistance is not essential to estimate clinic performance. 

One could also model the time that residents spend walking from one station to 

another as a self service station. 

In this thesis we develop an analytical model for queueing networks that have batch 

arrivals, batch size variability, batch service processes and self service stations. This 

model yields approximations for queueing network performance. Using data collected 

from emergency preparedness exercises we preformed the results of a set of 

simulation experiments in order to assess the accuracy of our proposed analytical 

model and evaluate these approximations for typical scenarios by comparing their 

performance to the results of the discrete event simulation models.  

 1.1 Motivation 

In engineering, performing experiments on a real system is often infeasible –for 

instance, it may be expensive to take a manufacturing system offline to investigate 

different setup options. On the other hand, traditional discrete-event simulation, which 

permits accurate analysis of the performance of a wide array of systems is also often 

time consuming.  

An interesting alternative to represent most real world queueing systems is to use 

analytical models based on queuing theory, although some of them may be difficult to 
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solve mathematically. If the model has been verified and validated then it can be 

accepted as a dependable substitute for the real system.  

Among all different types of queueing networks, the presence of batch (bulk) 

arrivals, batch size variability, batch service systems performed by multiple parallel 

servers and the existence of self service workstations within open networks make 

approximating the queueing network an interesting problem. 

There has been extensive research on queueing systems with batch arrivals, 

queueing systems with infinite number of server (to represent a self service station), 

and queueing systems with batch service mechanisms in different areas such as 

manufacturing, communication and computer systems. These studies have mainly 

introduced general intricate approaches and series of sophisticated mathematics for the 

queueing systems being studied. Most of the papers in this regard indicate their 

corresponding queueing model under assumptions of Poisson arrival and exponential 

service. Unfortunately, these results are not useful in real-world problem settings 

where relevant performance estimates are needed. 

In other words, in most scholars considering the batch arrivals, batch service 

process and self service problems, there are no useful studies leading to some sets of 

closed formulas to specifically calculate the batch arrivals, batch service and self 

service measuring performance applicable practically in real engineering problems 

such as clinic planning which is our main concern in this thesis. 

Since we were unable to find previously proposed models that apply to the situation 

addressed in our clinic model, we intuitively and experimentally introduced some new 
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concepts and methods to find out queueing network approximations presented in this 

thesis build on existing and studied models and include novel contributions as well. 

 A significant contribution of this thesis is the synthesis of a variety of existing and 

new proposed models into a systematic approach for the type of queueing network 

explained in this thesis. For example, one of the studied models, never studied before, 

is a queueing system having both batch arrivals with batch size variability and a batch 

service process whose batch size is bigger than the arrival batches. Moreover, 

including self service workstations in models of a real mass dispensing and 

vaccination clinics as well as studying their behavior is another unique contribution of 

this thesis.  

1.2 Thesis outline 

The remaining part of this thesis is organized into four chapters. Chapter 2 provides 

background about mass dispensing and vaccination clinics and queueing theory in 

general and reviews briefly the existing approaches for queueing network modeling as 

well as queueing networks under steady state condition. Then, we introduce different 

types of batches and waiting time which might exist in the mass dispensing and 

vaccination clinics. Moreover, at the end of the Chapter 2, we describe two different 

types of simulations we are carrying out in this thesis. 

 Chapter 3 includes the existing model of the mass dispensing and vaccination 

clinics and states its limitations compared to the models that this thesis proposes. The 

results and findings in this chapter are from Mark Treadwell’s thesis (2006).  
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 In Chapter 4, we presents the results of computational experiments completed to 

evaluate and find different estimates for wait-in-batch-time, self service interdeparture 

time variability, and batch formation process including batch formation variability and 

estimation for average waiting to form the batches or wait-to-batch-time. Moreover, 

we describe our batch branching approach and its results at the end of this chapter.  

In Chapter 5, we bring our findings and formulas from Chapter 4 and integrate 

them with other existing models for queueing system. Then, in order to construct our 

final model of the mass dispensing and vaccination clinic, we divide the clinic 

queueing systems into 6 different types of stations. Additionally, at the end of Chapter 

5, we validate our clinic model by running some long-run simulation for specific clinic 

examples and comparing the simulation results with the estimates obtained from our 

mathematical equations.  

Finally, Chapter 6 concludes the thesis and recommends areas for future 

investigation. 
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Chapter 2: Literature Survey 

Recent intentional and natural disease outbreaks in the United States, caused by a 

terrorist act or a natural occurrence, such as the 2001 anthrax attacks and the 2003 

influenza season, have focused increased attention on the ability of state and local 

public health authorities to provide affected individuals and communities with rapid, 

reliable access to medications or vaccination. 

Fortunately, guidelines and standards provided by different Federal or non-federal 

health organizations do exist to aid planners of the clinics in their work. Moreover In 

order to design the best policy of managing the clinics and give the personnel training 

under real working conditions, local governments sometimes run full-scale disaster 

simulations. During these exercises, the performance measures recorded there were 

used to build a computer simulation model and construct the several pieces of software 

and spreadsheets. These software packages along with their related tools are basically 

constructed based on the employment of an operations research discipline called 

queueing theory which is mainly used to approximate the performance of the queueing 

networks like what we have in mass dispensing and vaccination clinics.  

Since there is plenty of room for improvement in the currently available software 

tools, particularly with regard to their ability to adapt their models to a particular 

situation, the role of queueing network theory in updating the existing models as well 

as introducing the new queue approximations by utilizing more exact approaches is 

undeniable. 
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2.1 Mass Dispensing and Vaccination clinics  

 In light of the substantial health risks posed by anthrax, influenza, smallpox and 

other bacteria, the U.S. Federal government has called on all states especially the 

regions that are densely populated or strategically important, such as the nation’s 

capital to devise comprehensive mass preventive plans and policies to ensure that 

civilian populations have timely access to necessary antibiotics and/or vaccines in the 

event of future outbreaks.  

Although different prophylaxis plans are available, mass vaccination should be an 

effective policy. Kaplan et al. (2002) compare vaccination policies for responding to a 

smallpox attack and show that mass vaccination results in many fewer deaths than 

other tactics in the most likely attack scenarios. The spread of a pandemic flu could 

also trigger mass vaccinations.  

In case of an emergency, county residents will visit clinics to receive treatment. 

The building housing the clinic may be a school, a recreation center, a concert hall, or 

some other facility that can handle a large number of people. Clinics are not located in 

medical facilities because those facilities will be extremely busy during an event. 

There are various alternatives for transporting residents to clinics. In some plans, 

residents will gather at staging areas and then travel on buses to the clinics. In other 

plans, residents will walk to the closest clinic.  

For example, in the case of anthrax, a county may setup clinics at every elementary 

school in the effected area. Mass vaccination would require every resident to visit a 
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clinic. In other cases, such as the rapid delivery of antibiotics for anthrax, each family 

needs to send only one representative to obtain medication for the entire family.  

The last couple of years have seen a major expansion of Federal assets to assist 

local public health providers in the planning and execution of mass prophylaxis 

campaigns for bioterrorism and epidemic outbreak response. Although each county 

has its own plan for setting up and operating a clinic, many are planning to setup 

clinics similar to that shown in Figure 1 in case of smallpox. (This design is based 

upon federal guidelines.) Each box in Figure 1 represents stations where residents 

receive service. The arrows show the movement of residents from one station to 

another. Note that not all residents follow the same path through the clinic. Moreover, 

holding room, symptoms room and consultation can have residents exiting without 

receiving vaccinations. 

 

 
Figure 1. Flowchart of resident flow (Pilehvar et al. 2006) 
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State, county, and local health authorities have been charged with the development 

of their suitable mass prophylaxis plans, with financial and technical support of the 

Department of Health and Human Services Office of Public Health Emergency 

Preparedness (OPHEP) as well as the Centers for Disease Control and Prevention 

(CDC).  

According to the “Community-Based Mass Prophylaxis” guide, there are five main 

components to outbreak response: surveillance, supply and stockpiling, distribution, 

dispensing, and follow-up (AHRQ, 2004). When surveillance teams have identified a 

disease outbreak, medication from the Strategic National Stockpile (SNS) will be 

distributed at the federal and state levels. Receiving and dispensing this medication is 

the responsibility of local public health authorities. 

Dispensing of antibiotics and/or vaccines is a key activity of any mass prophylaxis 

campaign against outbreaks of preventable disease. Without the ability to safely 

dispense large volumes of medications or vaccines to community-based individuals, 

efforts to improve surveillance, stockpiling, or distribution capacity will not translate 

into improved public health response. Conversely, dispensing operations are critically 

dependent on these surveillance, stockpiling, and distribution functions for defining 

the prophylaxis mission to be accomplished and for supplying the medical materiel 

necessary for its successful completion. 

There are two possible approaches to mass prophylaxis: “push” and “pull”. The 

“push” approach, exemplified by the recent Memorandum of Agreement between the 

Department of Health and Human Services (DHHS) and the U.S. Postal Service, 

consists of bringing medicine directly to individuals or homes in an affected 
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community. The “pull” approach, in contrast, requires that individuals leave their 

homes or places of work in order to travel to specially designated centers where they 

can receive medications or vaccinations. Each approach has strengths and weaknesses. 

The “push” approach may enable faster and more widespread coverage of an affected 

community, but it has little flexibility to handle medical evaluation for 

contraindications or dosage adjustment and may be infeasible for vaccination 

campaigns. On the other hand, the “pull” approach may increase efficient use of scarce 

health care providers and resources, enable medical evaluation of potential victims, 

and provide opportunities for centralized data; however, these advantages must be 

weighed against the delays and logistical challenges of setting up sufficient dispensing 

clinics to handle high patient volumes. 

In this thesis, we study the “pull” approach, which means the individuals will visit 

clinics to receive treatment. In the “pull” model of mass prophylaxis, the 

Dispensing/Vaccination Clinics is the principal operational unit of the dispensing 

function of community-wide disease outbreak response.  

2.2 Queueing Theory in general 

Queueing theory is generally considered a branch of operations research, and it is 

simply the science of waiting. Since jobs “stand in line” while waiting to be processed, 

waiting to move, waiting for parts, and so on, queueing theory is a powerful tool for 

studying and modeling any system having a queue inside such as a manufacturing, 

transportation, and telecommunication system. 
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The theory enables mathematical analysis of several related processes, including 

arriving at the queue (arrival or input process), waiting in the queue (waiting process) 

and being served at the workstations (service process). Each workstation consists of 

units which provide service to the arriving entities such as jobs or customers. These 

units are usually called servers and can be either people or machines. 

A queueing system combines the components that have been considered so far: an 

arrival (input) process, a queue, and a service process. For the arrival process, in most 

cases, the arrival process is the product of external factors. Therefore, the best way, 

one can do is to describe the arrival process in terms of random variables which can 

represent either the number of arrivals during a time interval or the time interval 

between successive arrivals. In this way, the arrival process can stem from several 

streams whose arrival probability distributions are different and independent.  In the 

meanwhile, if entities (jobs or customers) arrive in groups, their size can be a random 

variable as well.  

For a queue, the possible queueing discipline can be first-come first-served (FCFS), 

last-come first-served (LCFS), shortest process time (SPT), earliest due date (EDD), 

or any of a host of priority schemes.  In many situations customers in some classes get 

priority in service over others. In this thesis, for all workstation, we have the FCFS 

service discipline without having any kind of priority scheme for a specific class of 

customers.   

Additionally, for the service process, the workstations can have different number of 

servers; the various batch processing sizes (number of customers getting served at 

once), the service time and mode of service. The serving time is a random variable 
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which can be generated from any probability distribution. Although, in most 

workstations, the batch processing size is a fixed number, it can be a random variable 

and follows a probability distribution in some cases. 

The basic notation widely used in queueing theory for a queueing system is made 

up symbols representing three elements: input/service/number of servers. For instance, 

using M for Poisson or exponential, D for deterministic (constant), and G for general 

distribution. 

The whole objective of studying the queueing behavior of a queueing system is to 

estimate some useful performance measures such as average waiting time in the queue 

or the system, the expected number of customers waiting or receiving service and the 

probability of encountering the system in certain states, such as empty, full, having an 

available server. 

Another important issue in queueing systems is capacity. How many customers can 

wait at a time in a queueing system is a significant factor for consideration. If the 

waiting room is large, one can assume that for all practical purposes, it is infinite. But 

a real world queueing system such as a telephone system tells us that the size of the 

buffer that is able to accommodate our calls while waiting to get a free line is finite 

and important to know. 

A queueing network is simply composed of several queuing systems. Queues can 

be chained to form queueing networks where the departures from one queue enter the 

next queue. Queueing networks can be classified into two categories: open queueing 

networks and closed queueing networks. Open queueing networks have an external 
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input and an external final destination. Closed queueing networks include some 

customers circulating continually in the network with no leaving. In this thesis, we are 

dealing only with the open queueing networks. 

In the following sections, we will discuss briefly some of important approaches, 

areas and concepts in queueing theory we are intending to employ in this thesis.  

2.2.1 Approximate approaches to model open queue network  

Since it is difficult to obtain exact analytical solutions for complex problems with 

general service and arrival time distributions, bulk arrival and batch service process, 

an alternative is to have an approximate analytical solution to a more realistic model.  

The approximation models for analyzing job shops using open queueing networks 

can broadly be classified into four categories: decomposition methods, diffusion 

approximations, mean value analysis, and operational analysis. The procedure that has 

been employed with considerable success to analyze the open network such as a 

manufacturing system is the decomposition approach. Only recently diffusion models 

have been utilized to study scheduling and operational control problems arising in 

manufacturing. Operational analysis (example: Denning and Buzen, 1978) has been 

applied primarily to computer system models, and mean value analysis (example: 

Reiser and Lavenberg, 1980) is concerned with closed queueing networks. Because of 

the importance of decomposition and diffusion, we will delve into them in separate 

sections.   
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2.2.1.1 Decomposition approach 

The decomposition approach is an approximation method that leads to acceptable 

results in a wide variety of open networks.  

The overall approach is to decompose a system into small components, model these 

components, and then integrate the general system by the appropriate combination of 

these components. In other words, in the decomposition approach, the network is 

broken down into several workstations (nodes). The decomposition approach makes 

two basic assumptions: (a) the nodes can be treated as being stochastically 

independent; and (b) the input to each queue is a renewal process characterized by the 

mean and variance (two parameter approximation) of the interarrival time distributions 

of customers. Often, we use the square coefficient of variation (SCV), which equals 

the variance divided by the square of the mean. The output and input to each node is 

linked to customer routings. The linking of outputs and inputs can be solved to obtain 

performance at each node. The three main steps in the approximation are as follows:  

• Decomposition of the network into individual nodes.  

• Analysis of each node and the interaction between the nodes. 

• Re-composition of the individual results to compute the network performance.  

One type of decomposition approach is the parametric decomposition approach 

(PDA) which has been very effective in estimating the first moment of the queue 

length in general networks. Reiser and Kobayashi (1974) and Kuehn (1976, 1979) 

were among the first proponents of the parametric decomposition approach, which 

was later used by Shanthikumar and Buzacott (1981) for single product networks and 
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by Whitt (1983a, b). This approach, which is also utilized in this thesis, generalizes the 

notion of independence and product form solutions of Jackson type networks to more 

general models. In this method, the arrival process at each station is approximated by a 

renewal process. Additionally, the interarrival time SCVs at each station are computed 

approximately. The performance measures such as mean number of jobs or customers 

and queue lengths at each station are estimated based on these SCVs. 

2.2.1.2 Diffusion approach 

Diffusion approximations are based on the heavy traffic limit theories 

(Reiman(1984), Chen and Mandelbaum(1991)). These approximations are valid when 

the traffic intensities at the workstations are close to one (traffic intensity is defined as 

the ratio of the arrival rate to the total processing rate). They use reflected Brownian 

motion to approximate the queueing network, requiring a large number of partial 

differential equations to be solved. The concept of Brownian motion is taken from the 

field of physics, where it is used to model the random movement of small particles.  

Since the characteristics of job shop and our clinic problem we are studying in this 

thesis are comparable; we will utilize one of the existing approaches, decomposition 

(parametric decomposition approach), for analyzing the job shop to model the mass 

dispensing and vaccination clinics. 

In Chapter 5, we will concentrate more on decomposition, since decomposition is a 

suitable approach for our model. 
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2.2.2 Analysis of queueing systems under the steady state condition 

Most analytical results in qeueing theory are for queueing systems with steady state 

condition. The steady state condition is reached as the time from system initialization 

becomes very large and the initial conditions no longer have any effect on the 

performance measures. The literature emphasizes this type of analysis because the 

equations involved are considerably simplified in the limit, and relatively 

straightforward techniques such as balance equations and Little’s laws can then be 

used. 

In steady state condition, some time has elapsed after the system is started or 

initiated. This initial situation is often identified as a transient state, start-up or warm-

up period. One of the good reasons that make the steady state condition a strong 

method of analyses in queueing network theory is the independence between the initial 

condition of the queueing systems and long-run performance measures.  

Nevertheless, such steady state analyses are inappropriate in many real world 

situations since the time horizon of operation naturally terminates, or steady-state 

measures of system performance simply cannot be reached. 

For example, a bank has a definite closing time each day, and the repairmen at a 

service facility will leave at some point. For such problems, an appropriate analysis 

would be transient, i.e., it would describe the system's operation for a fixed, finite 

amount of time (or for a fixed number of "customers") and take into account the initial 

conditions of the system. 
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However, transient results can be quite difficult to obtain, tend to be rather 

complicated, are available only for a fairly restricted class of models, and usually 

assume "empty and idle" initial conditions for the system. That is why; it is not usually 

employed in most previous researches studying queueing systems because of its 

complexity. 

One simple condition for steady state in a queueing system is that the customer 

arrival rate to the system is less than the service rate. This means that if our system 

runs for an infinite amount of time, it will not blow up, that is, the number of 

customers in the system will remain finite. For example, The M/M/m queue 

experiences poisson arrivals at rate λ , has a single first-in, first-out (FIFO) queue 

feeding s parallel servers, each providing exponential service at rateμ ; all interarrival 

and service times are assumed to be independent of each other. The steady-state 

behavior of this system is well known (see Gross and Harris, 1974). Assume that 

u
m
λ
μ

= , for having steady state u  should be less than 1. 

Because of all the afore-mentioned reasons, queueing models are generally 

constructed to represent the steady state of a queueing system and analyze the 

performance measures under steady state condition. That is, they evaluate the typical, 

long-run or average state of the system. As a consequence, these are stochastic models 

that represent the probability that a queueing system will be found in a particular 

configuration or state. 

A general procedure for constructing and analyzing such queueing models is: 
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1. Identify the parameters of the system, such as the arrival rate, service time, 

queue capacity, and perhaps draw a diagram of the system. 

2. Identify what are the system states. (A state will generally represent the integer 

number of entities such as customers or jobs in the system and may or may not be 

limited.) 

3. Draw a state transition diagram that represents the possible system states and 

identify the rates to enter and leave each state. This diagram is a representation of a 

Markov chain. 

4. Because the state transition diagram represents the steady state situation between 

states there is a balanced flow between states so the probabilities of being in adjacent 

states can be related mathematically in terms of the arrival and service rates and state 

probabilities. 

5. Express all the state probabilities in terms of the empty state probability, using 

the inter-state transition relationships. 

6. Determine the empty state probability by using the fact that all state probabilities 

always sum to 1. 

Since our clinics have to run for couple of days to vaccinate all of the population of 

a region, in other words, they run for long enough period, in this thesis, we will study 

our clinic models under the steady state condition (stable queueing systems). 

Additionally, when we design some simulation experiments to validate our 

constructed models and new approximations, we take into account acceptable warm-

up (transient) periods before reaching the steady sate condition to guarantee having 

exact simulation results within the given confidence intervals. 
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2.2.3 Waiting times 

One the of most important performance measurers that queueing theory is used to 

describe is the time a customer or job spends waiting to find an idle server. 

To cover all of the cases, we have to find an approximations that satisfy the cases 

with general arrival and process distribution in which we have multiple servers 

working in parallel to serve several customers at once. Sakasegawa (1977) proposed 

an approximation for this queueing time for G/G/m, with m representing the number of 

servers, given in Formula 1. Moreover 2
ac  and 2

ec  respectively represents the 

interarrival time and the service time variability (SCV). When m = 1, this equation 

reduces to the G/G/1 approximation. 

The G/G/m approximation for queueing time is: 

2 2 2 2 1

2 (1 )

m
a e

q
c c uCT t

m u

+ −⎛ ⎞+
= ⎜ ⎟ −⎝ ⎠

   (Formula 1) 

2.2.4 Batch (bulk) arrival process 

 In batch arrival queueing systems, customers or jobs arrive in batches in which an 

arrival can be a group (of random size) of items.  Items (customers or jobs) might be 

batched for the purpose of having more economical and easier transportation among 

workstations. 

One of the important causes of flow variability in a queueing network is a batch 

arrivals process. This is one of the strongest motivations for studying how the batch 

arrival affects the performance measures in most of the published papers in this area. 
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We can consider a queuing system in which arrivals occur according to a general 

distribution in batches of varying size and stations have service times distributed 

according to another general statistical distribution. All service channels can have 

similar or different identical statistical properties. In this thesis, we assume that all of 

the service channels (servers) are completely identical. The arrival batches can be 

served individually or in batch size bigger or smaller than batch arrival size. After 

completion of service at one service center, a job or customer and a group of jobs or 

customs may leave the queuing network or may move to another service center for 

further service.  

We study stations that have both batch (bulk) and individual arrivals in mixed-

arrival sections of the model formulation. 

We also can have a finite or infinite number of servers in a station for a batch 

arrival queueing system. In this thesis, we assume that the number of servers (service 

channels) is limited. Thus, based on the notation introduced by Kendall, we use 

[ ] [ ]/ /X XG G m  to show bulk arrival process with multiple parallel servers possessing 

batch service process discipline1. 

An example for this queueing system with batch service process size of one 

(individual service process) is the following behavior: when residents arrives in a 

group by buses to the mass dispensing and vaccination clinics, they go to the first 

workstation (triage or greeting) in a batch size of the bus capacity. Based on that 

resident’s personal information, the resident is served individually and is guided to 

                                                 
1 Batch process size can be bigger or equal to 1. For individual processing the batch process size is 1. 
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another workstation in the clinic.  In this example, although the residents’ arrival is in 

a batch, however, all residents receive service one by one at the first station. 

Generally, it is difficult, if not impossible, to find tractable expressions for the 

waiting time probabilities of individual customers. It is, therefore, useful to have easily 

computable approximations for these probabilities. Although there are many papers 

studying methods for the computation of the waiting time distribution, however, these 

methods apply only for special conditions such as having specific service time 

distributions or batch interarrival time distribution, they and are, in general, not suited 

for routine calculations in practice. 

To analyze batch arrivals, we study queueing systems in which customers arrive at 

a station in batches but are processed as individuals. There are two ways of handling 

them. The first method of unbatching is to treat them as individuals arriving in a 

process with an extremely high SCV; the arrival variability of individuals out of a 

batch is given below (Curry, 2002), where the processing time SCV of a batch is 

denoted by 2
,b ac  and k is the arriving batch size: 

2 2
, 1a b ac kc k= + −    (Formula 2) 

 

The second way of dealing with “unbatching” which is mainly used in this thesis, is 

to find the time that the batch spends in queue ( qCT ) with other batches, then add the 

time that individuals spend waiting once the batch they arrived in is “opened,” referred 

to as wait-in-batch time (WIBT) (Hopp and Spearman, 2001). 

To explain WIBT more, since there are k items in the batch, the items have 

different delays while awaiting their turn at service. The first item served from a batch 



         

 23 
 

has no additional delay due to waiting for others from the same batch, while the 

second item serviced waits for the first item; the third item waits for the first two 

selected items, and so on. 

2
2

,

2 1

e
b a

q

cc ukCT kt
u

⎛ ⎞
+⎜ ⎟

= ⎜ ⎟
−⎜ ⎟⎜ ⎟

⎝ ⎠

   (Formula 3) 

 

( 1)
2

k tWIBT −
=   (Formula 4) 

 

These formulas are for a queueing system with a fixed size arrival batch size and a 

single server with individual service process ( [ ] / /1XG G ). 2
ec and t  are respectively 

service time SCV and average service time for each arriving customer or item to the 

workstation. Moreover, 2
,b ac  is the batch interarrival time SCV. 

Curry and Deuermeyer (2002) compared these two unbatching strategies and found 

that the approach suggested by Hopp and Spearman (second way) gave results that 

were significantly better when compared to a simulation. However, neither Hopp and 

Spearman nor Curry and Deuermeyer (2002) considered the case of unbatching at a 

station with multiple servers. 

In this thesis, we study the second unbatching strategy for stations with multiple 

servers. The only application of the first unbatching strategy is in Section 5.2.9, for a 

self service station with mixed arrivals. Additionally, we also bring two methods to 

calculate the WIBT for multiple server stations with several batch arrival streams and 

individual service. 
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2.2.5 Batch service process 

Another type of batching is a frequently encountered batch service process. In the 

batch service process, the servers in workstation can serve a group of jobs or 

customers at once. There are many reasons to have batch service process for one 

workstation. For instance, sometimes, due to the slow processing rates of a 

workstation, large capacity machines have been developed that can process several 

units of an items simultaneously. At the completion of service, the batch is removed 

from the server and the units either as a group or individually is sent to their next 

workstation.  

One of the necessary processes before each batch service process workstation is 

batch forming at the same size of the batch service process size of downstream 

stations. Coming items (jobs or customers) should wait in the incomplete batch until 

the proper quantity has accrued and then the full batch is formed and transported to the 

workstation waiting to serve these batches. 

To model the batch forming procedure, several aspects of the problem will have to 

be considered. First, the batch forming time as it contributes to each individual item, 

or the average item delay, needs to be computed. Then the arrival stream 

characteristics for the batch receiving workstation need be developed. That is, the 

mean arrival rate for batches and the interarrival time SCV.  

When customers arrive at a batch service process, they must first wait while the 

other customers in the batch arrive, then wait as a batch for the server to become 
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available. Hopp and Spearman (2001) refer to this first delay as wait-to-batch time 

(WTBT), and define it for a single server station as: 

1
2

kWTBT
λ
−

=      (Formula 5) 

 

In this formula, k is the number of customers or jobs should wait to form a complete 

batch to be processed in the downstream station. Furthermore, λ is the arrival rate of 

individuals to the batch service process workstation. 

After the batch is formed, queueing can be approximated using the formulas 

previously discussed, substituting parameters in regard to the batch for the individual 

parameters. The SCV as the batches are formed and arrive at the process is obtained 

by dividing the individual interarrival time SCV by k  (Hopp and Spearman, 2001). 

To analyze batch service process stations in our clinic models, we need to have 

wait-to-batch time (WTBT) and interarrival time SCV for both arriving individuals 

and batches from different arrival branches. 

From Hopp and Spearman (2001), we have only results for individual arrivals, 

therefore, we will study the wait-to-batch time (WTBT) and formed batch variability 

for batch arrivals with batch size variability from multiple arrival streams in the 

Chapter 4. Additionally, we discuss the effect of the branching process and the 

formation of arrival batches of random size after the batch service process stations at 

downstream stations in Chapter 4.   
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2.2.6 Batch move (transfer) 

The third type of batch that has been studied is the batch moves. A batch move is 

merely for purpose of having more convenient transportation. To have a better 

understanding of batch move modeling for this type of application, we bring an 

example. 

Consider a queueing system where batches are formed after individual service 

process and are transported to the next work-station. At the second workstation, 

batches wait in the queue until service on individual items within the batch begins. 

Items leave as individuals as soon their service in the station has been completed. In 

this batch move model, items should arrive at the downstream workstation in batches 

of fixed size k, but are served individually.  

A representation of this queueing system is given in Figure 2. 

 

 

Figure 2. A simple batch move model (Curry and Deuermeyer, 2002) 
 

The general approach for modeling departures from G/G/1 workstations is to 

approximate the interdeparture process by a renewal process (Albin and Kai. 1986). 
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2 2 2 2 2(1 )d a ec c u u c= − +    (Formula 6) 

In this formula, 2
dc , 2

ac  and 2
ec  are respectively the interdeparture time SCV, the 

interarrival time SCV and the process time SCV for the G/G/1. Moreover, u is the 

notation for utilization. 

Since the interdeparture time SCV for a station will be the interarrival time SCV 

for downstream stations, it is necessary to have approximations of that for different 

queueing systems. In Chapters 5, we present our approach to calculate the 

interdeparture time SCV for other types of queueing systems needed for our clinic 

model. 

2.2.7 Self service stations  

One of the most important contributions of this thesis is analyzing the behavior of 

stations in which customers or jobs complete some activities without having any kind 

of assistance from real servers. The only important concern for self service station is 

studying the interdeparture time SCV that can affect the behavior of next stations 

considerably. 

In this type of stations, jobs or customers can arrive individually or in batch to the 

workstation.  The customers perform the process themselves without any external 

resources. In this domain, an example from our clinic would where residents complete 

paperwork (typically, medical history questionnaires) on their own. Staff may be 

present to answer questions, but they are not the critical resource, and modeling the 

process by which residents ask for and receive assistance is not essential to estimate 
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clinic performance. Thus, the workstation can be modeled as a G/G/∞ queueing 

system.  

The idea of utilizing G/G/∞ systems in modeling the self service station is very 

simple. As we know in G/G/∞, because of the unlimited number of servers, there is 

always an idle server for each arriving entity and of course there is no waiting time in 

queue. On the other hand, in a self service station, there is no waiting time in queue for 

arriving entities because they can immediately initiate serving or completing a process 

upon arrival. Therefore, the behavior of G/G/∞  queueing system can be similar to the 

self service’s performance from the perspective of interdeparture process which is the 

main goal of studying the self service stations. 

To estimate the interdeparture time variability, we first take into account the 

following facts.  For a G/D/∞ system, the interdeparture time variability equals the 

interarrival time variability because the departure process is simply the arrival process 

shifted by a constant equal to the processing time.  For a M/G/∞  system, the departure 

process is a Poisson process; thus the departure variability equals 1(Burke, 1958; 

Mirasol, 1963). For a G/G/∞  system, Whitt (1983) suggests that the interdeparture 

time variability approaches 1 as the load (the arrival rate divided by the service rate) 

goes to infinity.  On the other hand, if the load is near 0, the service rate is relatively 

fast, implying that customers spend very little time in the system. Thus, we would 

expect the interdeparture time variability to equal the interarrival time variability.  

These imply that, in the general case (a G/G/∞  system with moderate load), the 

interdeparture time SCV will be somewhere between the interarrival time SCV and 

one.  
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In Chapter 4, we study the behavior of the self service station in detail by carrying 

out some simulation sets for different scenarios and consequently we formulate 

approximately the extracted and observed trend of self service stations to be utilized in 

modeling of our clinic in this thesis. 

2.3 Model evaluation 

As part of developing and testing the queueing models, we will use simulation 

discrete-event models of queueing systems in various ways such as validation and 

experimentation. 

Discrete-event simulation models carried out in this thesis were all created by 

Rockwell Software’s Arena 5.0 ®. The Process Analyzer software included with 

Arena was used to manage the running of multiple scenarios and the tabulation of their 

results. These results included the calculation of a 95% confidence interval on all 

measured responses.  

  To construct the simulation models in order to either validate the queueing 

systems or extract some experimental equations among parameters, transient operation 

is readily observable, but true steady-state behavior is very difficult to observe, in 

general. This difficulty stems from the inability to initialize the simulation according 

to a steady-state distribution, which is presumably unknown if we are conducting a 

steady-state simulation. 

A standard tactic is to initialize the simulation in some "reasonable" way, allow it 

to run "long enough" for the effect of these initial conditions to have dissipated, and 
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then collect observations during the ensuing "steady-state" portion of the run. The 

length of the "warm-up" period will certainly depend on the method of initialization, 

and we would like to initialize in a way which would promote rapid convergence to 

steady-state operation.  

Although for steady state condition, the initial conditions for the simulation models 

have no effect on the performance measures in long-run, we assume that we have zero 

customers at the time of zero in our all simulation models in this thesis.  

2.3.1 Validation 

In order to validate our constructed queueing models and new findings, simulation 

can be an appropriate tool to assist us to check the exactness of our modeling approach 

and results. The simulation run lengths and numbers of replications were chosen in 

order to ensure that confidence intervals were less than 5% of the associated response. 

2.3.2 Experimentation 

We run simulation models with a range of parameter values, study the results, and 

then extract trends to get insight into relationships and motivate the models and 

estimate their parameters. 

In Chapter 4, we use simulation models to determine experimentally the behavior 

of different parameters for WIBT, the batch interarrival time after being formed in 

batch formation process, and the self service interdeparture time variability.  
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Chapter 3: Previous work on mass dispensing and vaccination clinics 

In this chapter, we briefly review what has been done on mass dispensing and 

vaccination clinics before I started to do research in this area. The results and findings 

in this chapter are from Mark Treadwell’s thesis (2006).  

I will use some of his findings for the model in Chapter 5. On the other hand, most 

of them are not applicable and suitable for the general cases we are studying in thesis, 

which is why, intuitively I will follow different approaches and methods in Chapter 4 

to integrate them in Chapter 5 to build up the new models for some specific situations 

we might face in a real clinic.   

Although the goal of his research was to compare analytical models of queueing 

processes to discrete-event simulations in order to determine which models are the 

most accurate for use with a general set of inputs, Treadwell (2006) mainly focused 

problems of planning and modeling mass dispensing and vaccination clinics.  

In other words, most of his work included modeling the clinics, designing a 

spreadsheet, and implementing the software targeting public health officials in order to 

assist them to plan and manage setting up the mass dispensing and vaccination clinics 

upon the emergent events with more preparedness and effectiveness.  

Since in this thesis, we focus on the mass dispensing and vaccination clinics from 

the perspective of queueuing network analysis and mathematical modeling, I merely 

mention briefly the queueing network approximations that have been previously 

studied.  



         

 32 
 

3.1 Batch arrivals, individual service process with multiple servers 

As mentioned in Chapter 2, Hopp and Spearman (2001) suggested, and Curry and 

Deuermeyer (2002) demonstrated, that a batch arrival process can be accurately 

modeled by representing the batches of size k  as customers of a process with service 

time kt , and scaling the process and interarrival time SCV by1/ k . In order to extend 

this result to a station with m servers, the service time must be scaled to the new mean 

of /kt m . 

The 1/ k terms in the SCV actually cancel with the additional k  in the service time, 

and it turns out that the average time a batch spends waiting in queue is the same 

amount of time that an individual customer would spend in the queue. We also replace 

the basic utilization term with the multiple-server form given by Sakasegawa (1977). 

The approximation for WIBT must be adjusted to accommodate a station with 

multiple servers, again by scaling the mean service time. 

2 2 2 2 1( )
2(1 )

m
a e

q
c c u tCT

u m

+ −+
=

−    (Formula 7) 

( 1)
2

k tWIBT
m
−

=   (Formula 8) 

To demonstrate the accuracy of this approximation, it is compared to an equivalent 

simulation model. The results of the simulation for confidence interval 95% are given 

in Table 1, along with the values obtained using the proposed approximations for both 

portions of the waiting time. The magnitude of error between the two is given as a 
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percentage of the simulation value which Arena calculated for each of the 

performance measures. 

 
Table 1. Results for exponential batch arrivals to exponential service process (Treadwell, 2006). 

 

The WIBT from Formula 8 provides an exact match to values obtained from the 

simulation for m=1; however, for m>1, the degree of error increases as utilization 

decreases. This is an interesting result; the discrepancy is caused by the increased 

likelihood that a batch will find more than one server idle when it arrives at the service 

process. Despite this discrepancy, the model still provides a useful upper bound on 

WIBT, and is reasonably accurate for u >90%.  

The approximation for batch queueing time given by Formula 7 provides excellent 

results for Markovian arrival and service processes with a single server, even outside 

the stated limits on utilization mentioned by Hopp and Spearman (2001); at 99% 

utilization, the predicted value is within 3% of the simulation result. When multiple 

servers are present, the issue discussed above leads to a corresponding reduction in the 

mean service time for batches, and hence in the time batches spend in queue. 

Therefore, this reduces the model’s accuracy somewhat.  



         

 34 
 

The results of this test generally follow the form of the experiment with exponential 

service times; for a single server, WIBT is exact and the predicted queue time gives a 

good estimate of the simulated queue time. For multiple servers, the accuracy of the 

models (Formula 8) is reduced.  

In Chapter 4, we will take simulation results for WIBT and CTq for various 

scenarios and compare them with the new formulas for WIBT and CTq for multiple 

server stations and more general cases. 

For the WIBT with multiple servers, we can say that when multiple servers are 

processing residents who arrive in batches, there is some probability that more than 

one server will be idle when a batch arrives. When this happens, the WIBT for the 

members of that batch is reduced accordingly, and the queue time for subsequent 

batches is affected. Although, there is some non-exact open formulas for WIBT with 

multiple servers which are only applicable in the spread sheet models, there exists no 

efficient closed formula for WIBT with multiple servers that can be easily 

implemented. Therefore, we will spend much time in Chapter 4 studying the behavior 

of WIBT with multiple servers under the general distribution and different scenarios.   

At this point, we can see that we need to construct some new formulas and 

approaches to calculate WIBT and CTq for stations with multiple servers under the 

general cases ( [ ] [ ]/ /X XG G m ). Although Formulas 7 and 8 can be two possible 

estimations for stations with batch arrival, individual service process and multiple 

servers, but since Treadwell (2006) originally has taken them out from queueing 

systems with a single server, the results of these formulas cannot be acceptable in so 
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many cases. In other words, we need more dependable equations to calculate the 

performance measures than Treadwell (2006).  

3.2 Multiple batch arrival streams 

The approximations discussed above are applicable to a station with a single input 

stream of batches; however, in a queueing network, it is possible that batches will 

arrive from multiple stations, each with a different batch size. Models for a mixed 

input of this sort do not appear to exist, so one of the possible ways to aggregate the 

different batch size from various streams is utilizing the routing probabilities. The 

proposed equation for aggregate batch size is: 

1

1

i
j ji

ai j
j

p
k k

λ
λ

−

=

=∑  

In this formula, aik  and jk are respectively the aggregate batch size and the arrival 

batch size from station j to i. Moreover
1

1

i

j ji
j

pλ λ
−

=

=∑ and jip is the routing probability 

from station j to i. We should say that in Table 2, all rates are in terms of minute 

and jip =1for j=1, 2, 3, 4. 

This equation calculates the aggregate batch size from the perspective of customers 

in the batch, based on the proportion of the total flow rate associated with each batch 

size (this is slightly different from weighting batch sizes by their proportion of the 

total number of batches that arrive, which gives a mean batch size from an external 

perspective). This aggregate batch size gives an excellent performance in estimating 
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WIBT; Table 2 below gives the performance of several simulations with multiple 

batch arrival streams, along with the results predicted using aggregate batch size as an 

input to Formula 8 for a single server station. These experiments were performed on 

an M/M/1 system. 

Table 2. Experimental results for multiple batches arriving to a single server (Treadwell, 2006) 

 

These results make clear that the aggregate batch size approach provides excellent 

estimates of the performance of a station where batches of different sizes arrive from 

multiple sources to an individual service process station with a single server.  

3.3 Complete queueing modeling framework for the clinics 

With the unusual situations accounted for, a complete framework for constructing 

queueing models can now be described. Demand for service is calculated with user 

inputs for the total number of customers to be served (population) and how long they 

have to be serviced (treatment time). We use i throughout the proposed queueing 

model to denote individual stations, with 0 referring to the bus arrival process, 1 

through “I” referring to the stations in the clinic, and “I +1” referring to the exit. 

Before presenting the model introduced by Treadwell (2006), we should say that, 

this model is quite limited. It can only model and calculate partially some of the 
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performance measures of queueing systems such as [ ] / /xG G m  (batch arrival, 

individual service process from different arrival streams with fixed batch size) and 

[ ]/ /xG G m (individual arrival, batch service process). In the meanwhile, the results are 

not very good for mi >1 and multiple arrival streams. 

Before introducing our notation for this section, we should mention at this point 

that some of our notation through the inputs, outputs and equation sections of this 

chapter might be changed into other formats to be consistent with other new findings, 

formulas and approaches brought from Chapter 4 to study our complete model 

formulation in Chapter 5 of this thesis.   

3.3.1 Inputs 

P = Size of population to be treated (residents) 

L = Time allotted for treatment (days) 

h = Daily hours of operation (hours per day) 

N = Number of clinics 

mi = Number of staff at station i 

it = Mean process time at station i (minutes) 

2
iσ = Variance of mean service time at station i (minutes2) 

ik = Processing batch size at station i 

ijd  = Distance from station i to station j (feet) 
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v = Average walking speed (feet per second) 

ijp = Routing probability from station i to station j 

0k  = Bus arrival size 

aik =Aggregate batch arrival size to the station i 

2
1ac = interarrival time SCV at station 1 

3.3.2 Outputs 

TH’ = Required throughput (residents per minute) 

'
im = Minimum staff at station i 

WTBT i = Wait to batch time at station i (minutes) 

WIBT i = Wait in batch time at station i (minutes) 

CT i = Cycle time at station i (minutes) 

TCT = Total average time in clinic (minutes) 

WIP = Average number of residents in clinic 

λi = Batch arrival rate at station i (batches per minute) 

cai
2 = Interarrival time SCV at station i  

cei
2 = Process time SCV at station i 

cdi
2 = Interdeparture time SCV at station i for process batches 
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R= Clinic capacity (residents per minute) 

CTqi = Average queue time at station i (minutes) 

Wi = Average time spent traveling to the next station after station i (minutes) 

Qi = Average queue length at station i  

ui = Utilization at station i 

3.3.3 Equations 

The throughput required to treat the population in the given time is 60
P

TH
LhH

′ = . If 

residents arrive individually, the user specifies the arrival variability 2
1ac .  Else, the 

individual resident arrival variability is given as 2
1 0 1ac k= − . 

All arriving residents go to the first station. We calculate the arrival rates for the 

other stations based on the routing probabilities: 

1

1
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At each station after the first, we calculate arrival batch size based on the process 

batch size of the previous stations: 
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We use station arrival rates to determine the minimum staff at each station: 
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i i
i

ai
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We then use user-selected staff levels mi to calculate station utilization: 

i i
i

i i
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λ

=  

We calculate the variability of arrivals, processes, and departures from each station: 
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The average time spent waiting at station i depends upon the arrival and process 

batch sizes; denotes time waiting for service, while WIBTi  represents time waiting in 

arrival batches and WTBTi represents time waiting to form a process batch. 
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1
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The average time spent traveling to the next station after station i depend upon the 

routing probabilities and the average walking speed: 
1

1

1
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= ∑ . 

The cycle time at station i is CT WTBT WIBT CT t Wi i i qi i i= + + + +  

We weight the station cycle times by their arrival rates to calculate the total average 

time in clinic: 
11

1 I

i i
i

CT CTλ
λ =

= ∑  

Other statistics we calculate include clinic capacity, the average queue length at 

each station, and the average clinic WIP: 
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1WIP CTλ= ⋅  
  i qi iQ CT λ=  
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3.4 Limitations of the existing model 

 To explain the limitations of the models in this chapter, we note that the proposed 

formulas for this model are simple and the model itself is not sufficiently complete to 

satisfy all of our requirements in the mass dispensing and vaccination clinics.     

About the formulas we can say that most of them are for the cases with a single 

server station. Since there has been no further research for the multiple server station 

cases so far, Treadwell (2006) added some factors to the formulas to create some 

estimates for multiple server stations. His results for multiple server stations with 

general cases are not very good.  

On other hand, the models in this chapter cannot satisfy some of the cases that are 

needed to analyze a real clinic completely. For example, in Treadwell (2006), the 

clinic model doesn’t include different types of queueing networks having batch (bulk) 

arrivals with random size from different arrival streams to a batch or individual 

processing station performed by multiple parallel servers. Moreover, the model does 

not include self service stations.  

Since we were unable to find previously proposed models that apply to the situation 

addressed in our clinic model, in Chapters 4 and 5, we intuitively and experimentally 

introduce some new concepts and methods to create queueing network approximations 

that build on existing models and include novel contributions as well. 

The clinic model in Chapter 5 is more complete than the model in this chapter in 

following ways: 
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• We consider arrival batch size variability and its effect on the aggregation 

process, batch interarrival time variability, and other performance measures for a 

station.   

• We consider departure batch size variability and splitting (branching process) 

and its effect on the aggregation process, batch interarrival time variability and other 

performance measures for downstream stations. 

• We study in detail the behavior of WIBT and waiting time in queue for 

multiple server stations with multiple batch arrival streams under the general cases 

arriving to an individual process station. 

• We study in detail the behavior of the batch interarrival time SCV after the 

batch formation process for a batch process station. 

• We study in detail the behavior of self service stations and their interdeparture 

time variability.  

• By studying and analyzing many papers and sources from various branches of 

queueing theory, we extract some findings for the aggregation process, interdeparture 

time variability and splitting process which will be suitable for the different kinds of 

stations introduced in Chapter 5. 
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Chapter 4: Our new applied approach and results 

This chapter presents the results of computational experiments completed to 

evaluate different estimates for wait-in-batch-time, self service interdeparture time 

variability, and batch formation process including batch formation variability and 

estimation for WTBT. In regard to WIBT, we study it under two different cases: first, 

we study cases when batch size is larger than number of servers; second, we analyze 

WIBT for more general cases. 

Moreover, we will go through analyzing our batch branching approach and its 

results at the end of the chapter. While these results suggest that some approximations 

are better than others, we cannot guarantee their accuracy. Additional work would be 

useful to characterize their accuracy in other scenarios and to seek better 

approximations for those scenarios where they perform poorly. 

The approaches and extracted equations studied in this chapter are needed to 

thoroughly model mass dispensing and vaccination clinics. All of these findings are 

employed in the model formulation of Chapter 5 for analyzing different type of 

queueing systems in the clinics. 

In this section, we will define some of our notation needed for a specific purpose. 

In Chapter 5, which is our final model formulation section, we will bring again some 

of this notation along with other new notation to be able to have a complete model of a 

clinic. 
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4.1 Wait-in-batch-time (batch size larger than number of servers) 

This section considers the case with a general arrival process.  Residents arrive to 

the workstation in batches and individually. The arrival batches may come from 

different batch service process workstations, and the batch sizes from each 

workstation may vary due to the routing probabilities. There are also individual 

arrivals from individual service process workstations.  The workstation has multiple, 

parallel servers that serve residents individually. To analyze this case we model all of 

the arrivals as batches.  Each batch must wait to get to the head of the queue, at which 

point it “opens” and at least one of the residents in the batch begins service. The other 

residents must wait in the batch for a server. 

A key quantity is the estimate of the wait-in-batch-time, the average time that a 

resident spends in the batch from the time that the batch “opens” until the resident 

begins service. 

4.1.1 First type of formulas for WIBT 

As an important point, we should say that the formula extracted in this section is 

applicable for the scenarios in which the arrival batch sizes is larger than the number 

of  servers.  

We will use the following notation: 

mi = Number of staff at station i 

ti = Mean process time at station i (minutes)  

λAi = Batch arrival rate at station i (batches per minute) 
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AiK  = Average batch size of all batches that come to station i 

ui = Utilization at station i 

( )np i  = Steady-state probability of having n residents in station i. 

Ui = Steady-state probability of all of the servers at station i being busy 

Xi = Average number of residents that wait in the batch at station i. 

WIBTi =Average wait in batch time at station i (minutes) 

We can estimate the wait-in-batch-time for multiple servers (see Section 3.1) as 

follows1: 

( 1)
2
Ai i

i
i

K tWIBT
m
−

=    (Formula 9) 

 

As we will see, this is not a good approximation, so we will derive a new formula 

for the wait-in-batch-time.  To do so, we start by calculating the following terms: 
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1 Formula 9 is exactly Formula 8 but in terms of the new notation introduced in Chapter 4. 
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If, when the batch arrives, the number of residents, who are already in the system, 

is greater than or equal to the number of servers, all of the servers are busy, so the 

batch waits in the queue.  Eventually, the batch is at the head of the queue and one of 

the servers completes a resident.  Then the batch opens, one resident begins service 

without waiting in batch, and all of the others wait in the batch. 

If, when the batch arrives, the number of residents, who are already in the system, 

is less than the number of servers, one or more servers are idle, so the batch opens and 

one or more residents begin service immediately.   

From this we estimate iX  as follows: 

( )( ) ( )( )

( ) ( )

1

0

1

1

i

i

m

i n Ai i n Ai
n n m

Ai i i i i i i

Ai i i i i

X p i K m n p i K

K m U m u U U

K m m u U

− ∞

= =

= − + + −

= − − + − −

= − + −

∑ ∑
 

Thus, Ai iK X−  residents go to servers immediately.  For them the wait-in-batch-

time is zero.  Assuming that the servers, when busy, complete a resident every i

i

t
m

 

minute, the first resident of those remaining must wait-in-batches for i

i

t
m

 minutes.  

The second waits 2 i

i

t
m

 minutes, and so forth.  The last resident in the batch waits for 

i i

i

X t
m

 minutes.  Then we can estimate the average wait-in-batch-time as follows: 
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( )

( )( )
1

11
2

1
2

iX
i ii i

i
nAi i Ai i

Ai i i i i Ai i i i i i

Ai i

X Xnt tWIBT
K m K m

K m m u U K m m u U t
K m

=

+
= = ⋅

− + − − + − +
= ⋅

∑
   (Formula 10) 

The only remaining task is to estimate Ui. Following Shore (1988) and dropping the 

station subscript for the moment, we let ( )cE N  be the mean number of customers in 

the system and 1( )E N  be the mean number in of customers in the corresponding 

GI/G/1 queue having the same traffic intensity.   

2 22 2

( )
1 2

im
ai eii

c i i
i

c cuE N m u
u

+⎡ ⎤ ⎡ ⎤+
= + ⎢ ⎥ ⎢ ⎥

− ⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦
 

2 2 2

1( )
1 2

i ai ei
i i

i

u c cE N m u
u

⎡ ⎤ ⎡ ⎤+
= + ⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦

 

Shore (1988) shows that  

1( ( ) ) /( ( ) )i i c i i iU u E N m u E N u= − −  

From this, we intuitively extracted that 2 2 1im
i iU u + −= . Since this is not affected by 

the arrival variability, we will use this result for our batch arrival case.  Going back to 

the original notation, we have  

2 2 1im
i iU u + −=  

4.1.2 Wait-in-batch-time experiments   

To evaluate Formulas 9 and 10, we conducted a set of computational experiments 

using a discrete-event simulation model of the station. In the simulation model, 
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batches hold in a queue until a server becomes available, at which point they are 

“opened” and individual entities enter the server’s queue (Figure 3). This extra step in 

the simulation logic allows the components of waiting time to be examined separately. 

To explain in more detail, after releasing the batches from holding area by finding 

at least an idle server, they split to individual entities and the average time that each of 

these entities should wait in queue (broken batches) until it gets served, is defined as 

wait-in-batch-time (WIBT). We can understand easily that for the at least the first 

entity in each broken batches there is the WIBT of zero, since it goes directly to an 

idle server after breaking the batches.  

 

Figure 3. Simulation logic for dividing “waiting time” into queue time as a batch and WIBT. 
 

 Throughout the simulation experiments, each scenario had the arrival batches with 

fixed size (either 5 or 20), and the interarrival times were exponentially distributed.  

The mean interarrival time varied from 0.1684 minutes to 0.3333 minutes. The 

distribution of the processing times was an exponential distribution or a gamma 

distribution. For the exponential distributions, the mean was either 0.0333 minutes or 

0.10 minutes. For the gamma distributions, α  was always 0.5, while β  was set to 

0.0167, 0.050, 0.0667, and 0.20.  The number of servers was either 1 or 3. Table 3, 4 

and 5 describe the scenarios. 
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Table 3. Scenarios with exponentially distributed process times. 

Scenario Batch 
size 

Mean 
Interarrival 
Time (mins) 

Mean 
Processing 

Time (mins) 

Number of 
servers 

E-5-1-99 5 0.1684 0.0333 1 
E-5-1-95 5 0.1754 0.0333 1 
E-5-1-90 5 0.1852 0.0333 1 
E-5-1-80 5 0.2083 0.0333 1 
E-5-1-50 5 0.3333 0.0333 1 
E-5-3-99 5 0.1684 0.1000 3 
E-5-3-95 5 0.1754 0.1000 3 
E-5-3-90 5 0.1852 0.1000 3 
E-5-3-80 5 0.2083 0.1000 3 
E-5-3-50 5 0.3333 0.1000 3 

 
 

 
Table 4. Scenarios with gamma distribution process times and 1 server. 

Scenario Batch 
size 

Mean Interarrival 
Time (mins) 

Mean 
Processing 

Time (mins) 

Number of 
servers 

G-5-1-99 5 0.1684 0.0333 1 
G-5-1-95 5 0.1754 0.0333 1 
G-5-1-90 5 0.1852 0.0333 1 
G-5-1-80 5 0.2083 0.0333 1 
G-5-1-50 5 0.3333 0.0333 1 

G-20-1-99 20 0.1684 0.0083 1 
G-20-1-95 20 0.1754 0.0083 1 
G-20-1-90 20 0.1852 0.0083 1 
G-20-1-80 20 0.2083 0.0083 1 
G-20-1-50 20 0.3333 0.0083 1 

 
 
 

Table 5. Scenarios with gamma distribution process times and 3 servers. 

Scenario Batch 
size 

Mean Interarrival 
Time (mins) 

Mean Processing 
Time (mins) 

Number 
of servers 

G-5-3-99 5 0.1684 0.1000 3 
G-5-3-95 5 0.1754 0.1000 3 
G-5-3-90 5 0.1852 0.1000 3 
G-5-3-80 5 0.2083 0.1000 3 
G-5-3-50 5 0.3333 0.1000 3 

G-20-3-99 20 0.1684 0.0250 3 
G-20-3-95 20 0.1754 0.0250 3 
G-20-3-90 20 0.1852 0.0250 3 
G-20-3-80 20 0.2083 0.0250 3 
G-20-3-50 20 0.3333 0.0250 3 
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For each scenario, we ran a simulation model with 100 replications, each 30,000 

minutes long with a warm-up period of 25,000 minutes.  From the simulation model 

we could calculate the average wait-in-batch-time of residents.  We also used Formula 

9 and Formula 10 to estimate the average wait-in-batch-time. Tables 6, 7, and 8 show 

the results.   

For each scenario, the table lists the average wait-in-batch-time from the simulation 

model, the estimate from Formula 9, and the estimate from Formula 10.  Also listed 

are the relative errors for the estimates.  We see that Formula 10 provides a much 

better estimate than Formula 9. 

 
Table 6. Results for scenarios with exponentially distributed process times. 

Scenario 
WIBT from 
simulation 

(mins) 

WIBT from 
Formula 9 

(mins) 

Relative 
error, 

Formula 9 

WIBT from 
Formula 10 

(mins) 

Relative 
error, 

Formula 10 
E-5-1-99 0.0667 0.0667 0.050% 0.0667 0.050% 
E-5-1-95 0.0667 0.0667 0.050% 0.0667 0.050% 
E-5-1-90 0.0667 0.0667 0.050% 0.0667 0.050% 
E-5-1-80 0.0667 0.0667 0.050% 0.0667 0.050% 
E-5-1-50 0.0667 0.0667 0.050% 0.0667 0.050% 
E-5-3-99 0.0660 0.0667 1.010% 0.0663 0.475% 
E-5-3-95 0.0660 0.0667 1.010% 0.0649 1.720% 
E-5-3-90 0.0600 0.0667 11.111% 0.0630 4.959% 
E-5-3-80 0.0600 0.0667 11.111% 0.0590 1.748% 
E-5-3-50 0.0480 0.0667 38.889% 0.0453 5.717% 

 
 
 

Table 7. Results for scenarios with Gamma distributed process times with 1 server 

Scenario 

WIBT 
from 

simulation 
(mins) 

WIBT from 
Formula 9 

(mins) 

Relative 
error, 

Formula 9 

WIBT from 
Formula 10 

(mins) 

Relative 
error, 

Formula 10 

G-5-1-99 0.0665 0.0667 0.251% 0.0667 0.251% 
G-5-1-95 0.0665 0.0667 0.251% 0.0667 0.251% 
G-5-1-90 0.0665 0.0667 0.251% 0.0667 0.251% 
G-5-1-80 0.0665 0.0667 0.251% 0.0667 0.251% 
G-5-1-50 0.0665 0.0667 0.251% 0.0667 0.251% 

G-20-1-99 0.0790 0.0792 0.211% 0.0792 0.211% 
G-20-1-95 0.0790 0.0792 0.211% 0.0792 0.211% 
G-20-1-90 0.0790 0.0792 0.211% 0.0792 0.211% 
G-20-1-80 0.0790 0.0792 0.211% 0.0792 0.211% 
G-20-1-50 0.0790 0.0792 0.211% 0.0792 0.211% 
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Table 8. Results for scenarios with Gamma distributed process times with 3 servers 

Scenario 

WIBT 
from 

simulation
(mins) 

WIBT 
from  

Formula 9 
(mins) 

Relative error, 
Formula 9 

WIBT from 
Formula 10 

(mins) 

Relative 
error, 

Formula 
10 

G-5-3-99 0.0660 0.0667 1.010% 0.0663 0.475% 
G-5-3-95 0.0643 0.0667 3.681% 0.0649 0.878% 
G-5-3-90 0.0621 0.0667 7.354% 0.0630 1.409% 
G-5-3-80 0.0576 0.0667 15.741% 0.0590 2.346% 
G-5-3-50 0.0429 0.0667 55.400% 0.0453 5.491% 

G-20-3-99 0.0787 0.0792 0.593% 0.0729 7.373% 
G-20-3-95 0.0779 0.0792 1.626% 0.0729 6.422% 
G-20-3-90 0.0770 0.0792 2.814% 0.0729 5.328% 
G-20-3-80 0.0750 0.0792 5.556% 0.0729 2.803% 
G-20-3-50 0.0688 0.0792 15.068% 0.0729 5.956% 

 
 

4.2 Wait-in-batch-time (general case) 

We now consider cases in which the batch arrival size is less than number of 

servers. Formula 10 cannot be acceptable for this case. That is why we are trying to 

seek a new method and formula. Moreover, we seek a new formula that will be useful 

for any number of servers.  

4.2.1 Second type of formulas for WIBT 

In order to come up with an universal formula than can satisfy all of scenarios, our 

methodology is to run simulations with various specifications for all the cases to 

compare the results, and to extract a general formula for WIBT among the possible 

variables such as batch size, number of servers, process time and utilization. 

It should be said that we will again use exactly the notation and relationships from 

Section 4.1.  
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4.2.2 Wait-in-batch-time experiments 

In this section, we conducted 3 different types of computational experiments using 

a discrete-event simulation model of the station. Each type of experiment consists of a 

number of sets and each set includes several scenarios. Experiment type one consisted 

of 8 sets that we named set 1 to set 8. Experiment type two included 2 sets that we 

named sets 9 and 10. Finally, experiment type three used sets 11 and 12. 

The purpose of carrying out these experiment types is finding the approximate 

behavior of WIBT versus factors such as the number of servers, utilization, arrival 

batch size and process time to come up with a general WIBT formula that corresponds 

to all of the cases. 

For each scenario, we ran a simulation model with 10 replications and a confidence 

interval of 95%, each 1,000,000 minutes long with the warm-up periods of 500,000 

minutes. 

As we said in previous section, a key issue is the estimate of the wait-in-batch-time, 

the average time that a resident spends in the batch from the time that the batch 

“opens” until the resident begins service. In the simulation, batches hold in a queue 

until a server becomes available (waiting time in queue), at which point they are 

“opened” and individual entities enter the server’s queue.  
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4.2.2.1 First type of experiment 

In the first type of simulation, we have different sets with a constant number of 

servers, processing time, and utilization. The arrival batch size and batch arrival rate 

are the variables within each set of scenarios. The purpose of this experiment is to find 

a relationship between WIBT and the arrival batch size. 

Among the 8 sets of simulation of scenarios, the utilization ranges from 25% up to 

93%. In each set, the arrival batch size varied from 1 to 13 or 16, the number of 

servers had a one of the fixed size of 3, 4, 6, 8, 10, 12, and the interarrival times and 

processing time were exponentially distributed.  

Tables 9 to 16 show the average wait-in-batch-time from the simulation model with 

its upper and lower bound of 95% of confidence interval for each scenario in Set 1 to 

8. The tables also describe other specifications for the scenarios and the name of the 

scenarios. 

 Additionally, Figures 4 to 11 demonstrate the average wait-in-batch-time from the 

simulations for each set. Since the difference between upper and lower bound is small 

especially for the low utilization sets, we didn’t show them in these figures.  
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Table 9. Specifications and simulations results for Scenarios 1-1-1 to 1-1-13 (Set 1) 
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Figure 4. Simulation results for Scenarios 1-1-1 to 1-1-13 (Set 1) 
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1-1-1 0.50 4 1 25.00% 2 0 0 0.007 
1-1-2 0.25 4 2 25.00% 2 0.03 0.002 0.058 
1-1-3 0.16 4 3 25.00% 2 0.104 0.081 0.127 
1-1-4 0.12 4 4 25.00% 2 0.191 0.091 0.291 
1-1-5 0.1 4 5 25.00% 2 0.337 0.247 0.427 
1-1-6 0.084 4 6 25.00% 2 0.511 0.451 0.571 
1-1-7 0.072 4 7 25.00% 2 0.713 0.624 0.802 
1-1-8 0.0625 4 8 25.00% 2 0.919 0.917 0.921 
1-1-9 0.056 4 9 25.00% 2 1.142 1.032 1.252 

1-1-10 0.05 4 10 25.00% 2 1.367 1.237 1.497 
1-1-11 0.046 4 11 25.00% 2 1.594 1.454 1.734 
1-1-12 0.042 4 12 25.00% 2 1.826 1.726 1.926 
1-1-13 0.039 4 13 25.00% 2 2.054 1.914 2.194 
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Table 10. Specifications and simulations results for Scenarios 1-2-1 to 1-2-13 (Set 2) 
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Figure 5. Simulation results for Scenarios 1-2-1 to 1-2-13 (Set 2) 
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1-2-1 0.50 6 1 50.00% 6 0 0 0.009 
1-2-2 0.25 6 2 50.00% 6 0.126 0.056 0.196 
1-2-3 0.16 6 3 50.00% 6 0.327 0.304 0.35 
1-2-4 0.12 6 4 50.00% 6 0.586 0.486 0.686 
1-2-5 0.1 6 5 50.00% 6 0.907 0.817 0.997 
1-2-6 0.084 6 6 50.00% 6 1.185 1.125 1.245 
1-2-7 0.072 6 7 50.00% 6 1.554 1.465 1.643 
1-2-8 0.0625 6 8 50.00% 6 1.944 1.942 1.946 
1-2-9 0.056 6 9 50.00% 6 2.343 2.233 2.453 

1-2-10 0.05 6 10 50.00% 6 2.76 2.63 2.89 
1-2-11 0.046 6 11 50.00% 6 3.203 3.063 3.343 
1-2-12 0.042 6 12 50.00% 6 3.657 3.557 3.757 
1-2-13 0.039 6 13 50.00% 6 4.103 3.963 4.243 
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Table 11. Specifications and simulations results for Scenarios 1-3-1 to 1-3-13 (Set 3) 
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Figure 6. Simulation results for Scenarios 1-3-1 to 1-3-13 (Set 3) 
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1-3-1 0.50 3 1 58.33% 3.5 0 0 0.002 
1-3-2 0.25 3 2 58.33% 3.5 0.337 0.267 0.337 
1-3-3 0.17 3 3 58.33% 3.5 0.733 0.68 0.733 
1-3-4 0.13 3 4 58.33% 3.5 1.192 1.092 1.192 
1-3-5 0.10 3 5 58.33% 3.5 1.708 1.618 1.708 
1-3-6 0.08 3 6 58.33% 3.5 2.234 2.174 2.234 
1-3-7 0.07 3 7 58.33% 3.5 2.77 2.671 2.77 
1-3-8 0.06 3 8 58.33% 3.5 3.337 3.247 3.337 
1-3-9 0.06 3 9 58.33% 3.5 3.883 3.773 3.883 

1-3-10 0.05 3 10 58.33% 3.5 4.464 4.414 4.464 
1-3-11 0.05 3 11 58.33% 3.5 4.994 4.874 4.994 
1-3-12 0.04 3 12 58.33% 3.5 5.583 5.433 5.583 
1-3-13 0.04 3 13 58.33% 3.5 6.138 5.998 6.138 
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Table 12. Specifications and simulations results for Scenarios 1-4-1 to 1-4-16 (Set 4) 
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Figure 7. Simulation results for Scenarios 1-4-1 to 1-4-16 (Set 4) 
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1-4-1 0.75 12 1 62.50% 10 0 0 0.023 
1-4-2 0.38 12 2 62.50% 10 0.09 0.01 0.17 
1-4-3 0.25 12 3 62.50% 10 0.235 0.145 0.325 
1-4-4 0.19 12 4 62.50% 10 0.423 0.363 0.483 
1-4-5 0.15 12 5 62.50% 10 0.639 0.55 0.728 
1-4-6 0.13 12 6 62.50% 10 0.878 0.876 0.88 
1-4-7 0.11 12 7 62.50% 10 1.142 1.032 1.252 
1-4-8 0.09 12 8 62.50% 10 1.426 1.296 1.556 
1-4-9 0.08 12 9 62.50% 10 1.699 1.559 1.839 

1-4-10 0.08 12 10 62.50% 10 2.013 1.913 2.113 
1-4-11 0.07 12 11 62.50% 10 2.31 2.08 2.54 
1-4-12 0.06 12 12 62.50% 10 2.632 2.432 2.832 
1-4-13 0.06 12 13 62.50% 10 2.942 2.762 3.122 
1-4-14 0.05 12 14 62.50% 10 3.281 3.121 3.441 
1-4-15 0.05 12 15 62.50% 10 3.643 3.503 3.783 
1-4-16 0.05 12 16 62.50% 10 4.013 3.903 4.123 
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Table 13. Specifications and simulation results for Scenarios 1-5-1 to 1-5-13 (Set 5) 
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Figure 8. Simulation results for Scenarios 1-5-1 to 1-5-13 (Set 5) 
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1-5-1 0.50 4 1 68.75% 5.5 0 0 0.007 
1-5-2 0.25 4 2 68.75% 5.5 0.416 0.346 0.486 
1-5-3 0.17 4 3 68.75% 5.5 0.912 0.822 1.002 
1-5-4 0.13 4 4 68.75% 5.5 1.453 1.353 1.553 
1-5-5 0.10 4 5 68.75% 5.5 2.001 1.881 2.121 
1-5-6 0.08 4 6 68.75% 5.5 2.6 2.46 2.74 
1-5-7 0.07 4 7 68.75% 5.5 3.221 3.121 3.321 
1-5-8 0.06 4 8 68.75% 5.5 3.899 3.81 3.988 
1-5-9 0.06 4 9 68.75% 5.5 4.552 4.362 4.742 

1-5-10 0.05 4 10 68.75% 5.5 5.166 4.956 5.376 
1-5-11 0.05 4 11 68.75% 5.5 5.86 5.58 6.14 
1-5-12 0.04 4 12 68.75% 5.5 6.523 6.353 6.693 
1-5-13 0.04 4 13 68.75% 5.5 7.157 6.857 7.457 
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Table 14. Specifications and simulations results for Scenarios 1-6-1 to 1-6-13 (Set 6) 
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Figure 9. Simulation results for Scenarios 1-6-1 to 1-6-13 (Set 6) 
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1-6-1 0.75 10 1 75.00% 10 0 0 0.087 
1-6-2 0.38 10 2 75.00% 10 0.23 0.14 0.32 
1-6-3 0.25 10 3 75.00% 10 0.524 0.424 0.624 
1-6-4 0.19 10 4 75.00% 10 0.86 0.74 0.98 
1-6-5 0.15 10 5 75.00% 10 1.223 1.033 1.413 
1-6-6 0.13 10 6 75.00% 10 1.577 1.478 1.676 
1-6-7 0.11 10 7 75.00% 10 1.986 1.886 2.086 
1-6-8 0.09 10 8 75.00% 10 2.382 2.202 2.562 
1-6-9 0.08 10 9 75.00% 10 2.813 2.583 3.043 
1-6-10 0.08 10 10 75.00% 10 3.222 2.922 3.522 
1-6-11 0.07 10 11 75.00% 10 3.67 3.38 3.96 
1-6-12 0.06 10 12 75.00% 10 4.089 3.989 4.189 
1-6-13 0.06 10 13 75.00% 10 4.538 4.368 4.708 
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Table 15. Specifications and simulations results for Scenarios 1-7-1 to 1-7-13 (Set 7) 
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Figure 10. Simulation results for Scenarios 1-7-1 to 1-7-13 (Set 7) 
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1-7-1 0.50 4 1 81.25% 6.5 0 0 0.009 
1-7-2 0.25 4 2 81.25% 6.5 0.618 0.598 0.638 
1-7-3 0.17 4 3 81.25% 6.5 1.312 1.295 1.329 
1-7-4 0.13 4 4 81.25% 6.5 2.006 1.916 2.096 
1-7-5 0.10 4 5 81.25% 6.5 2.732 2.632 2.832 
1-7-6 0.08 4 6 81.25% 6.5 3.501 3.381 3.621 
1-7-7 0.07 4 7 81.25% 6.5 4.252 4.102 4.402 
1-7-8 0.06 4 8 81.25% 6.5 5.008 4.888 5.128 
1-7-9 0.06 4 9 81.25% 6.5 5.759 5.66 5.858 

1-7-10 0.05 4 10 81.25% 6.5 6.598 6.464 6.732 
1-7-11 0.05 4 11 81.25% 6.5 7.378 7.148 7.608 
1-7-12 0.04 4 12 81.25% 6.5 8.233 7.893 8.573 
1-7-13 0.04 4 13 81.25% 6.5 8.993 8.763 9.223 
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Table 16. Specifications and simulations results for Scenarios 1-8-1 to 1-8-13 (Set 8) 
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Figure 11. Simulation results for Scenarios 1-8-1 to 1-8-13 (Set 8) 
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1-8-1 0.75 8 1 93.75% 10 0 0 0.009 
1-8-2 0.38 8 2 93.75% 10 0.55 0.48 0.62 
1-8-3 0.25 8 3 93.75% 10 1.103 1.08 1.126 
1-8-4 0.19 8 4 93.75% 10 1.707 1.607 1.807 
1-8-5 0.15 8 5 93.75% 10 2.269 2.179 2.359 
1-8-6 0.13 8 6 93.75% 10 2.863 2.803 2.923 
1-8-7 0.11 8 7 93.75% 10 3.455 3.366 3.544 
1-8-8 0.09 8 8 93.75% 10 4.064 4.062 4.066 
1-8-9 0.08 8 9 93.75% 10 4.667 4.557 4.777 

1-8-10 0.08 8 10 93.75% 10 5.269 5.139 5.399 
1-8-11 0.07 8 11 93.75% 10 5.883 5.743 6.023 
1-8-12 0.06 8 12 93.75% 10 6.536 6.436 6.636 
1-8-13 0.06 8 13 93.75% 10 7.137 6.997 7.277 
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4.2.2.2 Second type of experiment 

In the second type of simulation, we have 2 different sets with constant arrival 

batch sizes, processing time and utilization. On the other hand, our variable here is the 

number of servers, which changes in each scenario. The purpose of this experiment is 

to find a relationship between the WIBT and the number of servers.  

In this experiment, the utilization is either 60% or 80%. In each set, the number of 

servers varied from 1 to 13, the arrival batch was 4 or 6, and the interarrival times and 

processing time were exponentially distributed.  

Table 17 and 18 show the average wait-in-batch-time from the simulation model 

with its upper and lower bound of 95% of confidence interval for each scenario. The 

tables also describe other simulations’ specifications of the scenarios and the name of 

the scenarios. 

Additionally, Figures 12 and 13 demonstrate the average wait-in-batch-time from 

simulations for each set (sets 9 and 10). Since the difference between upper and lower 

bound is small especially for the low utilization sets, we don’t show them in these 

figures.  
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Table 17. Specifications and simulations results for Scenarios 2-1-1 to 2-1-13 (Set 9) 
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Figure 12. Simulation results for Scenarios 2-1-1 to 2-1-13 (Set 9) 
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2-1-1 0.10 1 6 60.00% 1 2.495 1.885 3.105 
2-1-2 0.20 2 6 60.00% 1 1.099 0.889 1.309 
2-1-3 0.30 3 6 60.00% 1 0.646 0.583 0.709 
2-1-4 0.40 4 6 60.00% 1 0.434 0.405 0.463 
2-1-5 0.50 5 6 60.00% 1 0.315 0.225 0.405 
2-1-6 0.60 6 6 60.00% 1 0.241 0.191 0.291 
2-1-7 0.70 7 6 60.00% 1 0.192 0.142 0.242 
2-1-8 0.80 8 6 60.00% 1 0.158 0.088 0.228 
2-1-9 0.90 9 6 60.00% 1 0.132 0.112 0.152 

2-1-10 1.00 10 6 60.00% 1 0.11 0.1 0.12 
2-1-11 1.10 11 6 60.00% 1 0.094 0.085 0.103 
2-1-12 1.20 12 6 60.00% 1 0.082 0.0729 0.0911 
2-1-13 1.30 13 6 60.00% 1 0.071 0.069 0.073 
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Table 18. Specifications and simulations results for Scenarios 2-2-1 to 2-2-13 (Set 10) 
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Figure 13. Simulation results for Scenarios 2-2-1 to 2-2-13 (Set 10) 
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2-2-1 0.20 1 4 80.00% 1 1.504 1.394 1.614 
2-2-2 0.40 2 4 80.00% 1 0.689 0.599 0.779 
2-2-3 0.60 3 4 80.00% 1 0.427 0.404 0.45 
2-2-4 0.80 4 4 80.00% 1 0.303 0.213 0.393 
2-2-5 1.00 5 4 80.00% 1 0.232 0.152 0.312 
2-2-6 1.20 6 4 80.00% 1 0.188 0.178 0.198 
2-2-7 1.40 7 4 80.00% 1 0.156 0.146 0.166 
2-2-8 1.60 8 4 80.00% 1 0.129 0.079 0.179 
2-2-9 1.80 9 4 80.00% 1 0.11 0.09 0.13 
2-2-10 2.00 10 4 80.00% 1 0.098 0.088 0.108 
2-2-11 2.20 11 4 80.00% 1 0.088 0.079 0.097 
2-2-12 2.40 12 4 80.00% 1 0.075 0.0659 0.0841 
2-2-13 2.60 13 4 80.00% 1 0.071 0.069 0.073 
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4.2.2.3 Third type of experiment 

In the third type of simulation, we have 2 different sets with constant arrival batch 

sizes, processing time .On the other hand, our variable here is the number of servers 

and utilization, which changes in each scenario. Since the batch interarrival time 

doesn’t vary as we had in experiment type 2, the utilization is a variable in addition to 

the number of the servers. 

The purpose of this experiment is to find a relationship between the WIBT, the 

number of servers and the changes in utilization which are variables here. 

In this experiment, the batch arrival rate of either 0.2 or 0.15 (batch/min). In each 

set, the arrival batches size varied from 1 to 13, the arrival batch size was 4 or 6 and 

the interarrival times and processing time were exponentially distributed.  

Table 19 and 20 show the average wait-in-batch-time from the simulation model 

with its upper and lower bound of 95% of confidence interval for each scenario. The 

tables also describe other simulations specifications of the scenarios and the name of 

the scenarios. Moreover, Figure 14 and 15 demonstrate the average wait-in-batch-time 

from simulations for Set 11 and 12.  

Since the difference between upper and lower bound is small especially for the low 

utilization sets, we don’t show them in these figures.  
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Table 19. Specifications and simulations results for Scenarios 3-1-1 to 3-1-13 (Set 11) 
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Figure 14. Simulation results for Scenarios 3-1-1 to 3-1-13 (Set 11) 
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3-1-1 0.20 1 4 96.00% 1.2 1.799 1.699 1.899 
3-1-2 0.20 2 4 48.00% 1.2 0.692 0.593 0.791 
3-1-3 0.20 3 4 32.00% 1.2 0.28 0.190 0.370 
3-1-4 0.20 4 4 24.00% 1.2 0.11 0.080 0.140 
3-1-5 0.20 5 4 19.20% 1.2 0.053 0.043 0.063 
3-1-6 0.20 6 4 16.00% 1.2 0.023 0.013 0.033 
3-1-7 0.20 7 4 13.71% 1.2 0.01 0.009 0.011 
3-1-8 0.20 8 4 12.00% 1.2 0.004 0.002 0.006 
3-1-9 0.20 9 4 10.67% 1.2 0.002 0 0.004 
3-1-10 0.20 10 4 9.60% 1.2 0.001 0 0.002 
3-1-11 0.20 11 4 8.73% 1.2 0 0 0 
3-1-12 0.20 12 4 8.00% 1.2 0 0 0 
3-1-13 0.20 13 4 7.38% 1.2 0 0 0 
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Table 20. Specifications and simulations results for Scenarios 3-2-1 to 3-2-13 (Set 12) 
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Figure 15. Simulation results for Scenarios 3-2-1 to 3-2-13 (Set 12) 
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3-2-1 0.15 1 6 90.00% 1 2.498 2.198 2.798 
3-2-2 0.15 2 6 45.00% 1 1.036 0.837 1.235 
3-2-3 0.15 3 6 30.00% 1 0.496 0.396 0.596 
3-2-4 0.15 4 6 22.50% 1 0.244 0.144 0.344 
3-2-5 0.15 5 6 18.00% 1 0.117 0.037 0.197 
3-2-6 0.15 6 6 15.00% 1 0.055 0.035 0.075 
3-2-7 0.15 7 6 12.86% 1 0.031 0.022 0.040 
3-2-8 0.15 8 6 11.25% 1 0.017 0.008 0.026 
3-2-9 0.15 9 6 10.00% 1 0.009 0.007 0.011 

3-2-10 0.15 10 6 9.00% 1 0.004 0.003 0.005 
3-2-11 0.15 11 6 8.18% 1 0.002 0.001 0.003 
3-2-12 0.15 12 6 7.50% 1 0.001 0 0.002 
3-2-13 0.15 13 6 6.92% 1 0.001 0 0.002 



         

 69 
 

4.2.3 Analysis of results from experiments 

In this section, we try to extract some logical formulas and relationships among the 

observed WIBT and variables such as number of servers, batch arrival size, utilization 

and processing time. Our main goal is to find formulas satisfying all the scenarios for 

both AiK ≥  mi and AiK < mi. 

One of the criteria for finding out the best formula is to have the least relative 

percentage or absolute error between the observed WIBT from the simulation results 

and the estimated WIBT from our formulas. 

4.2.3.1 Analysis of results for the experiment type one 

 Here are the points have been taken out from the analysis of the results of 8 sets of 

simulation in experiment type one (Set 1 to 8) and our previous knowledge. 

Point 1. We know that, when AiK = 1, the WIBT should be zero, since there is no 

wait-in-batch-time anymore. Upon the availability of the first idle server, the arriving 

entity begins service directly without any waiting in batch time. So, we should have 

some factor of 1AiK −  in our formula for all cases. 

Point 2. We know from Hopp and spearman (Formula 4 in section 2.2.4) for the 

cases with a single server WIBT=
( ) i1 t  

2
AiK −

 for mi =1.          

  Point 3.  We see that the behavior of the WIBT in the experiment type one (which 

is merely a function of variable batch size) approaches to a linear behavior when the 
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utilization is going up and getting close to 1. For the scenarios where utilization is 

close to 1 (Set 8), we see that the slope is roughly constant. 

Figure 16 shows the linear behavior of WIBT in high utilization (Set 8). In this 

figure, one can notice the constant slope as the batch size arrival increases. 

 

 

 

 

 
 
 

Figure 16. Simulation results for slopes for Scenarios 1-8-1 to 1-8-13 (Set 8) 

In other words the WIBT should be a linear function of AiK in high utilization for 

all of the scenarios having both AiK ≥  mi and AiK < mi. 

From points 1, 2, and 3, we can say that since for high utilization WIBT is the 

linear function of AiK  and we should have the factor of 1AiK −  in the formula, WIBT 

for high utilization (set 8) should approach 1( 1)AiC K − . Here, 1C should be a constant 

for all of the scenarios (1-8-1 to 1-8-13) whose number of servers, process time and 

utilization are the same. 

Point 4. If we want to see the trend of the WIBT in regard to AiK , again we have to 

construct the slope between the adjacent points to find out their relationships. 
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If we calculate the slopes for the Set 1 to 8, we can estimate the slope of the WIBT 

versus AiK  by the following term. 

iu
Ai i i

i

K u tSlope
m

β

α

−

=  (Formula 11) 

The α  and β  in Formula 11 is different for each set. In order to determine the best 

values of α and β , we constructed a summation of the squared absolute error between 

the slopes from the simulation results and Formula 11 for all scenarios within each set  

as an objective function. Then, we used the Microsoft Excel Solver to find the best 

values of α and β  for each set by minimizing the constructed objective function and 

by changing α  and β . By this way, we can obtain the best values for α andβ  for Set 

1 to 8. 

 In Figures 17 to 24, one can see the slopes for Sets 1 to 8 and their estimated 

slopes from Formula 11, along with best calculated α andβ .  

 

 

 

 

 
 
 

Figure 17. Simulation results for slopes for Scenarios 1-1-1 to 1-1-13 (Set 1) 
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Figure 18. Simulation results for slopes for Scenarios 1-2-1 to 1-2-13 (Set 2) 
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Figure 19. Simulation results for slopes for Scenarios 1-3-1 to 1-3-13 (Set 3) 
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Figure 20. Simulation results for slopes for Scenarios 1-4-1 to 1-4-16 (Set 4) 

 

 

 

Figure 21. Simulation results for slopes for Scenarios 1-5-1 to 1-5-13 (Set 5) 
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Figure 22. Simulation results for slopes for Scenarios 1-6-1 to 1-6-13 (Set 6) 

 

 

       
 
 
 
 
 
 
  

Figure 23. Simulation results for slopes for Scenarios 1-7-1 to 1-7-13 (Set 7) 
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Figure 24. Simulation results for slopes for Scenarios 1-8-1 to 1-8-13 (Set 8) 

According to the results of Figures 17 to 24, a good candidate to calculate the slope 

of each sets WIBT can be Formula 11 in whichα  and β  is different for each set. 

Presumably, if Formula 11 is a good approximation for the slope of the WIBT in 

which the only variable is arrival batch size, we can yield a formula for the WIBT by 

integrating Formula 11. 

1

2(1 )

iu
Ai i i

i i

K u tWIBT C
m u

β

α β

+ −

= +
+ −

  (Formula 12) 

To calculate 2C , we know that, for AiK =1, the WIBT should be zero (Point 1 at the 

beginning of this section). 
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 On the other hand, we know from before that for a single server 

( ) i -1 t  
2

AiK
WIBT = (Formula 4). Thus, one possible candidate for 2C  in Formula 12 

is: 

2

2

( 1) 0
(1 )

(1 )

i i
Ai

i i

i i

i i

u tWIBT K C
m u

u tC
m u

α β

α β

= = + =
+ −

= −
+ −

                     

From obtained 2C , the Formula 12 will be changed to: 

1( 1)
(1 )

iu
Ai i i

i i

K u tWIBT
m u

β

α β

+ − −
=

+ −
  (Formula 13) 

 For Sets 1 to 8, we note that α  is different for each set and 0.8 1β≤ ≤ . 

Formula 13 withβ  =0.9 corresponds to the results from the high utilization set (Set 

8) and behaves linearly as we expect. Since for β =0.9 in Set 8, 0.9( 1)AiK − is so close 

to ( 1)AiK − , we can justify the linear behavior of Formula 13 that approaches 

( 1)Ai i

i

K tWIBT
mα
−

=  in which the best calculated α  from Excel Solver is around 2.15 

which can be rounded to 2 for simplicity. 

 In this way, Formula 13 for the sets with high utilization (such as Set 8) becomes: 

( 1)
2
Ai i

i

K tWIBT
m
−

=    (Formula 14) 
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This corresponds to the WIBT results from Set 8 very well. 

The other justification for Formula 14 is that, when the utilization is close to 1, the 

im  servers (whose process time is it ) can be replaced by a single server whose process 

time is i

i

t
m

.  

Since we can estimate wait-in-batch-time for a single server from point 2 (Formula 

4) in analysis of results for the experiment type one section, if we replace the process 

time it  in Formula 4 by the new process time which is i

i

t
m

, we can obtain a good 

approximation for the high utilization cases with the multiple servers which is:  

( 1)
2
Ai i

i

K tWIBT
m
−

=  

This formula is exactly Formula 14.  

Figure 25 shows the trend of WIBT from Formula 14 and the simulation Set 8, 

whose utilization is the highest among the other sets and is close to 1.  

This figure illustrates that the Formula 14 can be a good formula for scenarios with 

high utilization. 
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Figure 25. Simulation results and Formula 14 for Scenarios 1-8-1 to 1-8-13 (Set 8) 

To determine whether Formula 13 is an acceptable formula for the other sets, 

Figure 26 to 32 demonstrates the simulation results and WIBT estimates from Formula 

13 for Sets 1 to 7 respectively. It should be said again that, to use Formula 13, we 

made use of the best α  and β  have already obtained from Excel Solver (Figure 17 to 

24). 
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Figure 26. Simulation results and Formula 13 for Scenarios 1-1-1 to 1-1-13 (Set 1) 
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Figure 27. Simulation results and Formula 13 for Scenarios 1-2-1 to 1-2-13 (Set 2) 
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Figure 28. Simulation results and Formula 13 for Scenarios 1-3-1 to 1-3-13 (Set 3) 
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Figure 29. Simulation results and Formula 13 for Scenarios 1-4-1 to 1-4-16 (Set 4) 
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Figure 30. Simulation results and Formula 13 for Scenarios 1-5-1 to 1-5-13 (Set 5) 
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Figure 31. Simulation results and Formula 13 for Scenarios 1-6-1 to 1-6-13 (Set 6) 
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Figure 32. Simulation results and Formula 13 for Scenarios 1-7-1 to 1-7-13 (Set 7) 
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We can see from the Figures 25 to 32, Formula 13 can be acceptable equation for 

Sets 1 to 8 for the best obtained α andβ  from Excel Solver for each set.  

4.2.3.2 Analysis of results for the experiment type two 

 If we see the simulation results of Set 9 and 10 in which the only variable is 

number of the servers and make use of some of the terms from Formula 13, we can 

notice with that the behavior of Set 9 and 10 in Figure 12 and 13 is roughly similar to 

the trend of i

i

Kt
m

 by increasing the number of servers. 

 Figures 33 and 34 show the behavior of i

i

Kt
m

 as a trend for the sets 9 and 10 versus 

the result of simulation. 

 

 

 

 

 

 
 

 
 

Figure 33. Simulation results and /i iKt m for Scenarios 2-1-1 to 2-1-13 (Set 9) 
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Figure 34. Simulation results and /i iKt m for Scenarios 2-2-1 to 2-2-13 (Set 10) 

Therefore our new formula which can be workable for both set 9 and 10 should 

have the factor i

i

Kt
m

. We need to add some coefficients or other factors to reduce the 

difference between the simulation results and our new formula. 

 Because the batch arrival size and utilization are constant in each set, according to 

Formula 13 and the fact that the only variable is the number of servers, we response a 

new formula for WIBT that is applicable for sets 9 and 10.This new formula is: 

1( 1)
(1 )

iu
Ai i

i i

K tWIBT
m u

β

λα β

+ − −
=

+ −           (Formula 15) 

For the single server case, we know that WIBT = ( 1)
2

Ai iK t−  (Point 2 in section 4-2-

3-1). Thus, we claim that for all of the Scenarios 2-1-1 to 2-1-13 and 2-2-1 to 2-2-13, 
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α should be 2, and β should be equal to the utilization to make (1 )iuβ+ − equal to 1. 

So Formula 15 is changed to formula 16: 

( 1)
2
Ai i

i

K tWIBT
m λ

−
=

   (Formula 16) 

Because we now know α and β , we need to calculate the bestλ  in Formula 16, 

which may be different for each simulation scenario in sets 9 and 10. In order to 

determine the best value forλ , we construct the square absolute error between the 

WIBT obtained from simulation results for each scenario and Formula 16 for that 

scenario.  

Subsequently, the Microsoft Excel Solver can calculate the bestλ for each scenario 

by minimizing the square absolute error and by changingλ by knowing this fact that 

α =2 and β = iu  for each scenario. By this way, we can obtain the best value ofλ for 

each scenario within each set. 

We can see in Tables 21 and 22 the simulation results for WIBT and Formula 16 

for that obtained λ from Excel Solver for each scenario within sets 9 and 10. 
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Table 21. Simulations results and Formula 16 for Scenarios 2-1-1 to 2-1-13 (Set 9) 

 

 

 

 

 

 

 

 

Table 22. Simulations results and Formula 16 for Scenarios 2-2-1 to 2-2-13 (Set 10) 
 

 

 

 

 

 

 

Sc
en

ar
io

 
 N

am
e The best 

calculated 
λ from excel 

Solver N
um

be
r 

of
 

se
rv

er
s 

A
rr

iv
al

 b
at

ch
 

si
ze

 

U
til

iz
at

io
n 

Pr
oc

es
s 

tim
e(

m
in

) 

WIBT 
From 

simulation 

WIBT 
from 

formula 16 
with 

calculated 
λ   

Error% 

2-1-1 1.00 1 6 60.00% 1 2.495 2.500 0.20% 
2-1-2 1.19 2 6 60.00% 1 1.099 1.099 0.00% 
2-1-3 1.23 3 6 60.00% 1 0.646 0.646 0.00% 
2-1-4 1.26 4 6 60.00% 1 0.434 0.434 0.00% 
2-1-5 1.29 5 6 60.00% 1 0.315 0.315 0.00% 
2-1-6 1.31 6 6 60.00% 1 0.241 0.241 0.00% 
2-1-7 1.32 7 6 60.00% 1 0.192 0.192 0.00% 
2-1-8 1.33 8 6 60.00% 1 0.158 0.158 0.00% 
2-1-9 1.34 9 6 60.00% 1 0.132 0.132 0.00% 

2-1-10 1.36 10 6 60.00% 1 0.11 0.110 0.00% 
2-1-11 1.37 11 6 60.00% 1 0.094 0.094 0.00% 
2-1-12 1.38 12 6 60.00% 1 0.082 0.082 0.00% 
2-1-13 1.39 13 6 60.00% 1 0.071 0.071 0.00% 

Sc
en

ar
io

 
 N

am
e The best 

calculated 
λ from excel 

Solver N
um

be
r 

of
 

se
rv

er
s 

A
rr

iv
al

 b
at

ch
 

si
ze

 

U
til

iz
at

io
n 

Pr
oc

es
s 

tim
e(

m
in

) 

WIBT 
From 

simulation 

WIBT 
from 

formula 
16 with 

calculated 
λ   

Error% 

2-2-1 1.00 1 4 80.00% 1 1.504 1.500 0.27% 
2-2-2 1.12 2 4 80.00% 1 0.689 0.689 0.00% 
2-2-3 1.14 3 4 80.00% 1 0.427 0.427 0.00% 
2-2-4 1.15 4 4 80.00% 1 0.303 0.303 0.00% 
2-2-5 1.16 5 4 80.00% 1 0.232 0.232 0.00% 
2-2-6 1.16 6 4 80.00% 1 0.188 0.188 0.00% 
2-2-7 1.16 7 4 80.00% 1 0.156 0.156 0.00% 
2-2-8 1.18 8 4 80.00% 1 0.129 0.129 0.00% 
2-2-9 1.19 9 4 80.00% 1 0.11 0.110 0.00% 

2-2-10 1.18 10 4 80.00% 1 0.098 0.098 0.00% 
2-2-11 1.18 11 4 80.00% 1 0.088 0.088 0.00% 
2-2-12 1.21 12 4 80.00% 1 0.075 0.075 0.00% 
2-2-13 1.19 13 4 80.00% 1 0.071 0.071 0.00% 
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We note that, for each set, the bestλ  is close to 2 iu− . In other words, since the 

utilization for set 9 and 10 are 60% and 80%, we can setλ to be equal to 1.4 and 1.2 

respectively. 

So our new formula for WIBT in which the only variable is number of servers is: 

WIBT= 2

( 1)
2 i

Ai i
u

i

K t
m −

−
   (Formula 17)  

We see that the absolute error between the simulation results and Formula 17 is still 

small. 

Table 23 and 24 demonstrate the simulation results for WIBT and Formula 17 for 

each scenario within sets 9 and 10. 

Figures 35 and 36 demonstrate the results of WIBT from simulations and 

formula17 for sets 9 and 10 respectively. 

 

      Table 23. Simulations results and Formula 17 for Scenarios 2-1-1 to 2-1-13 (Set 9) 
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e The 

approximate  
λ which is 

2 iu−   N
um

be
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of
 

se
rv

er
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A
rr

iv
al

 b
at

ch
 

si
ze

 

U
til

iz
at

io
n 

Pr
oc

es
s 

tim
e(

m
in

) 

WIBT 
From 

simulation 

WIBT 
from 

Formula 
17  

Error% 

2-1-1 1.4 1 4 60.00% 1 2.495 2.500 0.20% 
2-1-2 1.4 2 4 60.00% 1 1.099 0.984 10.46% 
2-1-3 1.4 3 4 60.00% 1 0.646 0.570 11.71% 
2-1-4 1.4 4 4 60.00% 1 0.434 0.387 10.76% 
2-1-5 1.4 5 4 60.00% 1 0.315 0.287 8.93% 
2-1-6 1.4 6 4 60.00% 1 0.241 0.224 6.85% 
2-1-7 1.4 7 4 60.00% 1 0.192 0.182 4.98% 
2-1-8 1.4 8 4 60.00% 1 0.158 0.152 3.51% 
2-1-9 1.4 9 4 60.00% 1 0.132 0.130 1.43% 

2-1-10 1.4 10 4 60.00% 1 0.11 0.113 2.65% 
2-1-11 1.4 11 4 60.00% 1 0.094 0.099 5.67% 
2-1-12 1.4 12 4 60.00% 1 0.082 0.088 7.75% 
2-1-13 1.4 13 4 60.00% 1 0.071 0.079 11.74% 
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Figure 35. Simulations results and Formula 17 for Scenarios 2-1-1 to 2-1-13 (Set 9)  
 

 
 
 
 

Table 24. Simulations results and Formula 17 for Scenarios 2-2-1 to 2-2-13 (Set 10) 
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e The 

approximate  
λ which is 

2 iu−   N
um

be
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of
 

se
rv
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s 

A
rr
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al
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U
til

iz
at

io
n 

Pr
oc

es
s t

im
e 

WIBT 
From 

simulation 

WIBT 
from 

Formula 
17  

Error% 

2-2-1 1.2 1 4 80.00% 1 1.504 1.500 0.27% 
2-2-2 1.2 2 4 80.00% 1 0.689 0.662 3.96% 
2-2-3 1.2 3 4 80.00% 1 0.427 0.410 3.99% 
2-2-4 1.2 4 4 80.00% 1 0.303 0.292 3.67% 
2-2-5 1.2 5 4 80.00% 1 0.232 0.224 3.33% 
2-2-6 1.2 6 4 80.00% 1 0.188 0.181 3.81% 
2-2-7 1.2 7 4 80.00% 1 0.156 0.151 3.36% 
2-2-8 1.2 8 4 80.00% 1 0.129 0.129 0.18% 
2-2-9 1.2 9 4 80.00% 1 0.11 0.112 1.86% 

2-2-10 1.2 10 4 80.00% 1 0.098 0.099 0.96% 
2-2-11 1.2 11 4 80.00% 1 0.088 0.088 0.46% 
2-2-12 1.2 12 4 80.00% 1 0.075 0.080 6.37% 
2-2-13 1.2 13 4 80.00% 1 0.071 0.073 2.23% 
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Figure 36. Simulations results and Formula 17 for Scenarios 2-2-1 to 2-2-13 (Set 10) 

  

From these results, we see that the absolute error of Formula 17 is small for the 

scenarios only whose variable is the number of servers. Therefore, Formula17 is a 

good choice to estimate WIBT in sets 9 and 10. 

4.2.3.3 Analysis of results for the experiment type three 

Now consider the simulation results of sets 11 and 12 in which the only variable is 

number of the servers and utilization. We propose that Formula 17 might be a good 

estimate for sets 11 and 12.   

WIBT= 2

( 1)
2 i

Ai i
u

i

K t
m −

−  (Formula 17)  

The results of  Formula 17 for simulation sets 11 and 12 are not that much exact 

like the results of  simulation sets 9 and 10, but since the absolute error is so small; it 

can be a good approximation, although we have relatively the big percentage errors. 



         

 89 
 

Tables 25 and 26 demonstrate the simulation results for WIBT and Formula 17 for 

each scenario within sets 11 and 12. Figures 37 and 38 demonstrate the results of 

WIBT from simulations and Formula 17 for sets 11 and 12 respectively. 

 
Table 25. Simulations results and Formula 17 for Scenarios 3-1-1 to 3-1-13 (Set 11) 
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Figure 37. Simulations results and Formula 17 for Scenarios 3-1-1 to 3-1-13 (Set 11) 
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WIBT 
From 

simulation 

WIBT from 
Formula 17 

Percentage 
Error% 

Absolute 
Error 
(min) 

3-1-1 1 4 96.00% 1.2 1.799 1.80 0.06% 0.001 
3-1-2 2 4 48.00% 1.2 0.692 0.63 9.30% 0.064 
3-1-3 3 4 32.00% 1.2 0.28 0.28 1.52% 0.004 
3-1-4 4 4 24.00% 1.2 0.11 0.16 42.64% 0.047 
3-1-5 5 4 19.20% 1.2 0.053 0.10 85.04% 0.045 
3-1-6 6 4 16.00% 1.2 0.023 0.07 189.57% 0.044 
3-1-7 7 4 13.71% 1.2 0.01 0.05 379.71% 0.038 
3-1-8 8 4 12.00% 1.2 0.004 0.04 802.41% 0.032 
3-1-9 9 4 10.67% 1.2 0.002 0.03 1304.57% 0.026 

3-1-10 10 4 9.60% 1.2 0.001 0.02 2145.29% 0.021 
3-1-11 11 4 8.73% 1.2 0 0.02 #DIV/0! 0.018 
3-1-12 12 4 8.00% 1.2 0 0.02 #DIV/0! 0.015 
3-1-13 13 4 7.38% 1.2 0 0.01 #DIV/0! 0.013 
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Table 26. Simulations results and Formula 17 for Scenarios 3-2-1 to 3-2-13 (Set 12) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

 
Figure 38. Simulations results and Formula 17 for Scenarios 3-2-1 to 3-2-13 (Set 12) 
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WIBT 
From 

simulation 

WIBT from 
Formula 17 

Percentage 
Error% 

Absolute
Error 
(min) 

3-2-1 1 6 90.00% 1 2.498 2.50 0.08% 0.002 
3-2-2 2 6 45.00% 1 1.036 0.85 17.59% 0.182 
3-2-3 3 6 30.00% 1 0.496 0.39 22.13% 0.110 
3-2-4 4 6 22.50% 1 0.244 0.21 12.52% 0.031 
3-2-5 5 6 18.00% 1 0.117 0.13 14.19% 0.017 
3-2-6 6 6 15.00% 1 0.055 0.09 65.20% 0.036 
3-2-7 7 6 12.86% 1 0.031 0.07 111.37% 0.035 
3-2-8 8 6 11.25% 1 0.017 0.05 190.34% 0.032 
3-2-9 9 6 10.00% 1 0.009 0.04 327.21% 0.029 

3-2-10 10 6 9.00% 1 0.004 0.03 668.92% 0.027 
3-2-11 11 6 8.18% 1 0.002 0.03 1156.98% 0.023 
3-2-12 12 6 7.50% 1 0.001 0.02 1991.78% 0.020 
3-2-13 13 6 6.92% 1 0.001 0.02 1666.74% 0.017 
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4.2.3.4 The final analysis of results from all experiments 

We saw that, based on Formulas 13 and 17, WIBT is a function of the number of 

servers, arrival batch size, utilization and the process time. 

According to Formula 13 and the simulation results from Sets 1 to 8, we conclude 

the Formula 13 can be a good approximation when the only variable is AiK and the 

other factors are constant within each set. 

The main problem with Formula 13 is that we have different values for α and β  in 

each Set 1 to 8, while our goal is to come up with a general formula satisfying all 

cases and conditions. 

We can see from Sets 1 to 8 (first type of experiment) that the bestβ  is between 

0.8 and 1. So for simplicity, we can put β =1 in Formula13. Consequently, the factor  

1( 1)iu
AiK β+ − −  is changed to 2( 1)iu

AiK − − . Additionally, the (1 )iuβ+ −  in the 

denominator is changed to (2 )iu− . 

So our new formula is: 

2( 1)
(2 )

iu
Ai i i

i i

K u tWIBT
m uα

− −
=

−
 (Formula 18) 

On the other hand, according to the results from Sets 9 to 12, Formula 17 is a good 

approximation for WIBT when the variables are im  and iu  while the other factors are 

constant within each set. 
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The question here is what can be a general formula for WIBT that is acceptable 

when AiK , im  and iu  are all variables.  

We construct a new formula to have some of factors from Formula 18 such as 

2( 1)iu
AiK − −  in the numerator and also to have the factor of the 2 iu

im −  extracted from 

Formula 17 in the denominator. The process time ( it ), which is common between both 

Formulas 17 and 18, can also be one of the factors in our new formula. At the 

moment, we don’t bring the (2 )iu− and iu  from Formula 18 in our new formula since 

they don’t exist in Formula 17 at all. In this way, our new formula is: 

 
2

2

( 1)i

i

u
Ai i

u
i

K tWIBT
mα

−

−

−
=     (Formula 19)     

What isα ? We have the sameα in Formula 18 and Formula 17, and we put α =2 in 

Formula 17.   

If we construct Formula 19 for Sets 1 to 8 to calculate the best possible α for Sets 1 

to 8 by utilizing the Microsoft Excel Solver to have the least error, as we did in 

previous sections, we set that α  is a function of utilization. 

For high utilization, α goes to 2, and, at the same time, 2 iu−  approaches 1, which 

we expect for high utilization, where WIBT should be close to ( 1)
2
Ai i

i

K t
m
−  (Formula 

14). 

Table 27 lists the best α  for Sets 1 to 8 for Formula 19. 
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Table 27. The best α  obtained from simulation Sets 1 to 8 for Formula 19 

 

  Since, as shown in Table 27, α  is a function of utilization, a good nominee for 

estimatingα  is 2.3

iu
 which is relatively close to Table 27 results. 

Table 28 shows the calculated α fromα = 2.3

iu
 for all of the simulation Sets 1 to 8. 

Table 28. The calculated α  from 2.3 / iu  for simulation Sets 1 to 8  

Simulation set # 1 2 3 4 5 6 7 8 

Bestα  obtained for Formula 19 8.78 4.8 4 3.83 3.3 3 2.7 2.2 

α Obtained from  2.3 / iu  9.2 4.6 3.9 3.7 3.3 3.1 2.8 2.5 

By putting the α = 2.3

iu
 in Formula 19, our new formula is: 

2

2

( 1)
2.3

i

i

u
Ai i i

u
i

K u tWIBT
m

−

−

−
=    (Formula 20) 

As noted before, one of the important points is that for the high utilization 

WIBT= ( 1)
2
Ai i

i

K t
m
−  (Formula 14), soα should go toward 2. According to this point, 

Simulation Set # 1 2 3 4 5 6 7 8 

Utilization (%) 25 50 58.33 62.5 68.75 75 81.25 93.75

Bestα  obtained from Excel 
Solver for Formula 19 8.78 4.8 4 3.83 3.3 3 2.7 2.2 
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another possible nominee for theα  can be 3 i

i

u
u
− . Since, when utilization approaches 1 

α should go around 2 and 3 i

i

u
u
− satisfies this requirement. Table 29 shows the 

calculated α  fromα = 3 i

i

u
u
−  for all of the simulation sets1-8. 

Table 29. The calculated α  from (3 ) /i iu u−  for simulation Sets 1 to 8 

Simulation set # 1 2 3 4 5 6 7 8 

Bestα  obtained for Formula 19 8.78 4.8 4 3.83 3.3 3 2.7 2.2 

α Obtained from (3 ) /i iu u−  11.00 5.00 4.14 3.80 3.36 3.00 2.69 2.20 

Formula 21 modifies Formula 19 by substituting α = 3 i

i

u
u
− : 

2

2

( 1)
(3 )

i

i

u
Ai i i

u
i i

K u tWIBT
u m

−

−

−
=

−
   (Formula 21) 

Tables 30 to 41 show the WIBT from the simulation results and the estimates from 

Formulas 20 and 21 for Sets 1 to 12. Since the absolute error between the simulation 

results and the formulas is small, we concluded that Formulas 20 and 21 are 

acceptable despite having a large percentage error in some scenarios. 
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Table 30. Simulations results and Formula 20 and 21 for Scenarios 1-1-1 to 1-1-13 (Set 1) 

 

 

 
Table 31. Simulations results and Formula 20 and 21 for Scenarios 1-2-1 to 1-2-13 (Set 2) 

 

Sc
en

ar
io

 #
 

WIBT 
From 

simulation 

WIBT 
from 

Formula 20

Percentage 
error% from 
Formula 20 

Absolute 
error from 
Formula 20

WIBT from 
Formula 21

Percentage 
error% 

from 
Formula 21 

Absolute 
error from 
Formula21

1-1-1 0 0.00 #DIV/0! 0.00 0.00 #DIV/0! 0.00 
1-2-1 0.03 0.05 51.39% 0.02 0.04 26.61% 0.01 
1-3-1 0.104 0.11 7.87% 0.01 0.09 9.78% 0.01 
1-4-1 0.191 0.20 3.76% 0.01 0.17 13.22% 0.03 
1-5-1 0.337 0.30 10.38% 0.03 0.25 25.04% 0.08 
1-6-1 0.511 0.42 17.27% 0.09 0.35 30.81% 0.16 
1-7-1 0.713 0.56 21.51% 0.15 0.47 34.35% 0.24 
1-8-1 0.919 0.71 22.52% 0.21 0.60 35.20% 0.32 
1-9-1 1.142 0.88 23.00% 0.26 0.74 35.60% 0.41 

1-10-1 1.367 1.06 22.36% 0.31 0.89 35.07% 0.48 
1-11-1 1.594 1.26 21.11% 0.34 1.05 34.02% 0.54 
1-12-1 1.826 1.47 19.64% 0.36 1.23 32.79% 0.60 
1-13-1 2.054 1.69 17.68% 0.36 1.41 31.15% 0.64 

Sc
en

ar
io

 #
 

WIBT 
From 

simulation 

WIBT 
from 

Formula 20

Percentage 
error% from 
Formula 20 

Absolute 
error from 
Formula 20

WIBT from 
Formula 21

Percentage 
error% 

from 
Formula 21 

Absolute 
error from 
Formula21

1-2-1 0 0.00 #DIV/0! 0.00 0.00 #DIV/0! 0.00 
1-2-2 0.126 0.16 28.79% 0.04 0.15 18.48% 0.02 
1-2-3 0.327 0.37 13.89% 0.05 0.34 4.78% 0.02 
1-2-4 0.586 0.62 6.01% 0.04 0.57 2.47% 0.01 
1-2-5 0.907 0.90 0.39% 0.00 0.83 8.35% 0.08 
1-2-6 1.185 1.22 2.58% 0.03 1.12 5.62% 0.07 
1-2-7 1.554 1.55 0.06% 0.00 1.43 7.95% 0.12 
1-2-8 1.944 1.92 1.26% 0.02 1.77 9.16% 0.18 
1-2-9 2.343 2.31 1.52% 0.04 2.12 9.39% 0.22 

1-2-10 2.76 2.72 1.53% 0.04 2.50 9.41% 0.26 
1-2-11 3.203 3.15 1.68% 0.05 2.90 9.55% 0.31 
1-2-12 3.657 3.60 1.54% 0.06 3.31 9.42% 0.34 
1-2-13 4.103 4.07 0.78% 0.03 3.75 8.71% 0.36 
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Table 32. Simulations results and Formula 20 and 21 for Scenarios 1-3-1 to 1-3-13 (Set 3) 

 

 

Table 33. Simulations results and Formula 20 and 21 for Scenarios 1-4-1 to 1-4-16 (Set 4) 

 

Sc
en

ar
io

 #
 

WIBT 
From 

simulation 

WIBT 
from 

Formula 20

Percentage 
error% from 
Formula 20 

Absolute 
error from 
Formula 20

WIBT from 
Formula 21

Percentage 
error% 

from 
Formula 21 

Absolute 
error from 
Formula21 

1-3-1 0 0.00 #DIV/0! 0.00 0.00 #DIV/0! 0.00 
1-3-2 0.337 0.31 7.24% 0.02 0.30 11.72% 0.04 
1-3-3 0.733 0.70 4.44% 0.03 0.67 9.05% 0.07 
1-3-4 1.192 1.15 3.77% 0.04 1.09 8.41% 0.10 
1-3-5 1.708 1.64 3.80% 0.06 1.56 8.44% 0.14 
1-3-6 2.234 2.18 2.30% 0.05 2.08 7.02% 0.16 
1-3-7 2.77 2.76 0.33% 0.01 2.63 5.14% 0.14 
1-3-8 3.337 3.37 1.14% 0.04 3.21 3.75% 0.12 
1-3-9 3.883 4.02 3.57% 0.14 3.83 1.43% 0.06 

1-3-10 4.464 4.70 5.27% 0.24 4.47 0.19% 0.01 
1-3-11 4.994 5.41 8.24% 0.41 5.14 3.02% 0.15 
1-3-12 5.583 6.14 9.97% 0.56 5.84 4.66% 0.26 
1-3-13 6.138 6.90 12.40% 0.76 6.57 6.97% 0.43 

Sc
en

ar
io

 #
 

WIBT 
From 

simulation 

WIBT 
from 

Formula 20

Percentage 
error% from 
Formula 20 

Absolute 
error from 
Formula 20

WIBT from 
Formula 21

Percentage 
error% 

from 
Formula 21 

Absolute 
error from 
Formula21 

1-4-1 0 0.00 #DIV/0! 0.00 0.00 #DIV/0! 0.00 
1-4-2 0.09 0.14 57.92% 0.05 0.14 52.93% 0.05 
1-4-3 0.235 0.31 33.94% 0.08 0.30 29.71% 0.07 
1-4-4 0.423 0.51 20.75% 0.09 0.49 16.93% 0.07 
1-4-5 0.639 0.73 13.65% 0.09 0.70 10.06% 0.06 
1-4-6 0.878 0.96 9.17% 0.08 0.93 5.72% 0.05 
1-4-7 1.142 1.21 5.59% 0.06 1.17 2.26% 0.03 
1-4-8 1.426 1.47 2.87% 0.04 1.42 0.38% 0.01 
1-4-9 1.699 1.74 2.44% 0.04 1.69 0.80% 0.01 

1-4-10 2.013 2.03 0.63% 0.01 1.96 2.55% 0.05 
1-4-11 2.31 2.32 0.51% 0.01 2.25 2.66% 0.06 
1-4-12 2.632 2.63 0.14% 0.00 2.55 3.30% 0.09 
1-4-13 2.942 2.94 0.08% 0.00 2.85 3.08% 0.09 
1-4-14 3.281 3.27 0.34% 0.01 3.17 3.49% 0.11 
1-4-15 3.643 3.60 1.07% 0.04 3.49 4.19% 0.15 
1-4-16 4.013 3.95 1.65% 0.07 3.82 4.76% 0.19 
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Table 34. Simulations results and Formula 20 and 21 for Scenarios 1-5-1 to 1-5-13 (Set 5) 

 
 
 
 
 
 

Table 35. Simulations results and Formula 20 and 21 for Scenarios 1-6-1 to 1-6-13 (Set 6) 

 

 

Sc
en

ar
io

 #
 

WIBT 
From 

simulation 

WIBT 
from 

Formula 20

Percentage 
error% from 
Formula 20 

Absolute 
error from 
Formula 20

WIBT from 
Formula 21

Percentage 
error% 

from 
Formula 21 

Absolute 
error from 
Formula21 

1-5-1 0 0.00 #DIV/0! 0.00 0.00 #DIV/0! 0.00 
1-5-2 0.416 0.40 4.95% 0.02 0.39 5.46% 0.02 
1-5-3 0.912 0.86 5.65% 0.05 0.86 6.16% 0.06 
1-5-4 1.453 1.38 5.19% 0.08 1.37 5.71% 0.08 
1-5-5 2.001 1.94 3.20% 0.06 1.93 3.72% 0.07 
1-5-6 2.6 2.53 2.59% 0.07 2.52 3.12% 0.08 
1-5-7 3.221 3.16 1.88% 0.06 3.14 2.41% 0.08 
1-5-8 3.899 3.82 2.11% 0.08 3.80 2.64% 0.10 
1-5-9 4.552 4.50 1.16% 0.05 4.48 1.69% 0.08 

1-5-10 5.166 5.21 0.78% 0.04 5.18 0.23% 0.01 
1-5-11 5.86 5.94 1.29% 0.08 5.90 0.74% 0.04 
1-5-12 6.523 6.69 2.50% 0.16 6.65 1.94% 0.13 
1-5-13 7.157 7.46 4.18% 0.30 7.42 3.61% 0.26 

Sc
en

ar
io

 #
 

WIBT 
From 

simulation 

WIBT 
from 

Formula 20

Percentage 
error% from 
Formula 20 

Absolute 
error from 
Formula 20

WIBT from 
Formula 21

Percentage 
error% 

from 
Formula 21 

Absolute 
error from 
Formula21 

1-6-1 0 0.00 #DIV/0! 0.00 0.00 #DIV/0! 0.00 
1-6-2 0.23 0.25 9.90% 0.02 0.26 12.34% 0.03 
1-6-3 0.524 0.54 3.17% 0.02 0.55 5.46% 0.03 
1-6-4 0.86 0.85 0.70% 0.01 0.87 1.50% 0.01 
1-6-5 1.223 1.19 2.89% 0.04 1.21 0.73% 0.01 
1-6-6 1.577 1.54 2.44% 0.04 1.57 0.27% 0.00 
1-6-7 1.986 1.90 4.10% 0.08 1.95 1.97% 0.04 
1-6-8 2.382 2.28 4.12% 0.10 2.33 1.99% 0.05 
1-6-9 2.813 2.68 4.90% 0.14 2.73 2.79% 0.08 

1-6-10 3.222 3.08 4.48% 0.14 3.15 2.36% 0.08 
1-6-11 3.67 3.49 4.90% 0.18 3.57 2.79% 0.10 
1-6-12 4.089 3.91 4.32% 0.18 4.00 2.20% 0.09 
1-6-13 4.538 4.34 4.29% 0.19 4.44 2.17% 0.10 
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Table 36. Simulations results and Formula 20 and 21 for Scenarios 1-7-1 to 1-7-13 (Set 7) 

 

 

 

Table 37. Simulations results and Formula 20 and 21 for Scenarios 1-8-1 to 1-8-13 (Set 8) 

 

 

Sc
en

ar
io

 #
 

WIBT 
From 

simulation 

WIBT 
from 

Formula 20

Percentage 
error% from 
Formula 20 

Absolute 
error from 
Formula 20

WIBT from 
Formula 21

Percentage 
error% 

from 
Formula 21 

Absolute 
error from 
Formula21

1-7-1 0 0.00 #DIV/0! 0.00 0.00 #DIV/0! 0.00 
1-7-2 0.618 0.57 8.49% 0.05 0.59 3.79% 0.02 
1-7-3 1.312 1.19 9.37% 0.12 1.25 4.71% 0.06 
1-7-4 2.006 1.85 7.60% 0.15 1.95 2.85% 0.06 
1-7-5 2.732 2.55 6.65% 0.18 2.68 1.85% 0.05 
1-7-6 3.501 3.27 6.49% 0.23 3.44 1.68% 0.06 
1-7-7 4.252 4.02 5.45% 0.23 4.23 0.59% 0.03 
1-7-8 5.008 4.79 4.41% 0.22 5.03 0.51% 0.03 
1-7-9 5.759 5.57 3.24% 0.19 5.86 1.73% 0.10 

1-7-10 6.598 6.37 3.40% 0.22 6.70 1.57% 0.10 
1-7-11 7.378 7.19 2.54% 0.19 7.56 2.47% 0.18 
1-7-12 8.233 8.02 2.57% 0.21 8.43 2.44% 0.20 
1-7-13 8.993 8.87 1.42% 0.13 9.32 3.65% 0.33 

Sc
en

ar
io

 #
 

WIBT 
From 

simulation 

WIBT 
from 

Formula 20

Percentage 
error% from 
Formula 20 

Absolute 
error from 
Formula 20

WIBT from 
Formula 21

Percentage 
error% 

from 
Formula 21 

Absolute 
error from 
Formula21

1-8-1 0 0.00 #DIV/0! 0.00 0.00 #DIV/0! 0.00 
1-8-2 0.55 0.49 11.45% 0.06 0.54 1.25% 0.01 
1-8-3 1.103 0.99 10.22% 0.11 1.10 0.11% 0.00 
1-8-4 1.707 1.50 11.88% 0.20 1.68 1.73% 0.03 
1-8-5 2.269 2.03 10.69% 0.24 2.26 0.41% 0.01 
1-8-6 2.863 2.56 10.75% 0.31 2.85 0.47% 0.01 
1-8-7 3.455 3.09 10.58% 0.37 3.45 0.28% 0.01 
1-8-8 4.064 3.63 10.71% 0.44 4.05 0.43% 0.02 
1-8-9 4.667 4.17 10.61% 0.49 4.65 0.31% 0.01 

1-8-10 5.269 4.72 10.43% 0.55 5.26 0.12% 0.01 
1-8-11 5.883 5.27 10.42% 0.61 5.88 0.11% 0.01 
1-8-12 6.536 5.82 10.90% 0.71 6.49 0.64% 0.04 
1-8-13 7.137 6.38 10.60% 0.76 7.11 0.31% 0.02 
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Table 38. Simulations results and Formula 20 and 21 for Scenarios 2-1-1 to 2-1-13 (Set 9) 

 
 

 
 
 

 
Table 39. Simulations results and Formula 20 and 21 for Scenarios 2-2-1 to 2-2-13 (Set 10) 

Sc
en

ar
io

 #
 

WIBT 
From 

simulation 

WIBT 
from 

Formula 20

Percentage 
error% from 
Formula 20 

Absolute 
error from 
Formula 20

WIBT from 
Formula 21

Percentage 
error% 

from 
Formula 21 

Absolute 
error from 
Formula21

2-1-1 2.495 2.944 18.00% 0.45 2.822 13.09% 0.33 
2-1-2 1.099 1.116 1.51% 0.02 1.069 2.72% 0.03 
2-1-3 0.646 0.632 2.10% 0.01 0.606 6.18% 0.04 
2-1-4 0.434 0.423 2.59% 0.01 0.405 6.65% 0.03 
2-1-5 0.315 0.309 1.80% 0.01 0.296 5.89% 0.02 
2-1-6 0.241 0.240 0.57% 0.00 0.230 4.71% 0.01 
2-1-7 0.192 0.193 0.58% 0.00 0.185 3.61% 0.01 
2-1-8 0.158 0.160 1.39% 0.00 0.154 2.84% 0.00 
2-1-9 0.132 0.136 2.91% 0.00 0.130 1.38% 0.00 

2-1-10 0.11 0.117 6.55% 0.01 0.112 2.11% 0.00 
2-1-11 0.094 0.103 9.12% 0.01 0.098 4.57% 0.00 
2-1-12 0.082 0.091 10.74% 0.01 0.087 6.12% 0.01 
2-1-13 0.071 0.081 14.34% 0.01 0.078 9.57% 0.01 

Sc
en

ar
io

 #
 

WIBT 
From 

simulation 

WIBT 
from 

Formula 20

Percentage 
error% from 
Formula 20 

Absolute 
error from 
Formula 20

WIBT from 
Formula 21

Percentage 
error% 

from 
Formula 21 

Absolute 
error from 
Formula21

2-2-1 1.504 1.488 1.06% 0.02 1.556 3.43% 0.05 
2-2-2 0.689 0.648 6.00% 0.04 0.677 1.72% 0.01 
2-2-3 0.427 0.398 6.75% 0.03 0.416 2.51% 0.01 
2-2-4 0.303 0.282 6.96% 0.02 0.295 2.73% 0.01 
2-2-5 0.232 0.216 7.03% 0.02 0.226 2.80% 0.01 
2-2-6 0.188 0.173 7.81% 0.01 0.181 3.62% 0.01 
2-2-7 0.156 0.144 7.67% 0.01 0.151 3.47% 0.01 
2-2-8 0.129 0.123 4.87% 0.01 0.128 0.55% 0.00 
2-2-9 0.11 0.107 3.14% 0.00 0.111 1.26% 0.00 

2-2-10 0.098 0.094 4.20% 0.00 0.098 0.16% 0.00 
2-2-11 0.088 0.084 4.84% 0.00 0.088 0.52% 0.00 
2-2-12 0.075 0.075 0.58% 0.00 0.079 5.16% 0.00 
2-2-13 0.071 0.069 3.48% 0.00 0.072 0.91% 0.00 
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Table 40. Simulations results and Formula 20 and 21 for Scenarios 3-1-1 to 3-1-13 (Set 11) 

 
 
 
 
 
 

Table 41. Simulations results and Formula 20 and 21 for Scenarios 3-2-1 to 3-2-13 (Set 12) 

 

 

Sc
en

ar
io

 #
 

WIBT 
From 

simulation 

WIBT 
from 

Formula 20

Percentage 
error% from 
Formula 20 

Absolute 
error from 
Formula 20

WIBT from 
Formula 21

Percentage 
error% 

from 
Formula 21 

Absolute 
error from 
Formula21

3-1-1 1.799 1.617 10.13% 0.18 1.823 1.33% 0.02 
3-1-2 0.692 0.631 8.83% 0.06 0.576 16.79% 0.12 
3-1-3 0.28 0.244 12.74% 0.04 0.210 25.11% 0.07 
3-1-4 0.11 0.114 3.91% 0.00 0.095 13.41% 0.01 
3-1-5 0.053 0.061 15.96% 0.01 0.050 5.02% 0.00 
3-1-6 0.023 0.036 58.69% 0.01 0.030 28.52% 0.01 
3-1-7 0.01 0.023 133.21% 0.01 0.019 87.36% 0.01 
3-1-8 0.004 0.016 293.86% 0.01 0.013 214.54% 0.01 
3-1-9 0.002 0.011 455.89% 0.01 0.009 341.89% 0.01 

3-1-10 0.001 0.008 712.60% 0.01 0.006 543.59% 0.01 
3-1-11 0 0.006 #DIV/0! 0.01 0.005 #DIV/0! 0.00 
3-1-12 0 0.005 #DIV/0! 0.00 0.004 #DIV/0! 0.00 
3-1-13 0 0.004 #DIV/0! 0.00 0.003 #DIV/0! 0.00 

Sc
en

ar
io

 #
 

WIBT 
From 

simulation 

WIBT 
from 

Formula 20

Percentage 
error% from 
Formula 20 

Absolute 
error from 
Formula 20

WIBT from 
Formula 21

Percentage 
error% 

from 
Formula 21 

Absolute 
error from 
Formula21

3-2-1 2.498 2.417 3.23% 0.08 2.647 5.98% 0.15 
3-2-2 1.036 1.007 2.78% 0.03 0.908 12.31% 0.13 
3-2-3 0.496 0.404 18.62% 0.09 0.344 30.68% 0.15 
3-2-4 0.244 0.193 21.08% 0.05 0.160 34.59% 0.08 
3-2-5 0.117 0.105 10.36% 0.01 0.086 26.89% 0.03 
3-2-6 0.055 0.063 14.27% 0.01 0.051 7.78% 0.00 
3-2-7 0.031 0.040 30.41% 0.01 0.032 4.46% 0.00 
3-2-8 0.017 0.027 61.49% 0.01 0.022 28.63% 0.00 
3-2-9 0.009 0.019 116.16% 0.01 0.015 71.44% 0.01 

3-2-10 0.004 0.014 256.71% 0.01 0.011 181.93% 0.01 
3-2-11 0.002 0.011 438.21% 0.01 0.008 324.19% 0.01 
3-2-12 0.001 0.008 731.43% 0.01 0.007 553.78% 0.01 
3-2-13 0.001 0.007 555.18% 0.01 0.005 414.17% 0.00 
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As one see, for Sets 1 to 12, in general the absolute error for Formula 21 is smaller 

than Formula 20, so Formula 21 is more acceptable. 

 The worse absolute error occurs in scenarios that have a single server. We know 

that the WIBT for a single server is: ( 1)
2

Ai iK tWIBT −
=  (Formula 4) 

Finally, we will use these formulas to estimate WIBT in this thesis: 

 
2

2

( 1)
(3 )

i

i

u
Ai i i

u
i i

K t uWIBT
u m

−

−

−
=

−
      (Formula 21) when im >1. 

( 1)
2

Ai iK tWIBT −
=        (Formula 4) when im =1. 
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4.3 Self service station (stations with infinite number of servers) 

In this case, residents arrive individually to the workstation.  The residents perform 

the process themselves without any external resources.  In this domain, an example 

would be a workstation where each resident must complete a form. As we mentioned 

in Chapter 2, the self service workstation can be modeled as a G/G/∞ queueing 

system. We will use the following notation: 

ri = Arrival rate at station i (residents per minute) 

iρ = Load 

2
aic  = interarrival time SCV at station i 

ti = Mean process time at station i (minutes)  

2
eic  = Process time SCV at station i  

2
dic  = Interdeparture time SCV at station i  

We have mentioned some facts about the departure variability in regard to G/G/∞  

queueing systems in Chapter 2. Here, we summarize them as useful points as our 

initial knowledge about the station with infinite servers before any further experiments 

in this section. 

• For a G/D/∞ system, the time interdeparture variability equals the interarrival 

time variability. 
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• For a M/G/∞ system, the departure process is a Poisson process; thus the 

interdeparture time variability equals 1.  

• For a G/G/∞ system, the interdeparture time variability approaches 1 as the 

load (the arrival rate divided by the service rate) goes to infinity.  

•  For G/G/∞ system where the load is close to 0, the interdeparture time 

variability is equal to the interarrival time variability.  

According to afore-mentioned points, in the general case (a G/G/∞ system with 

moderate load), the interdeparture time variability will be somewhere between the 

interarrival time variability and one. Therefore, we conducted experiments to 

characterize this relationship and to examine various weights for interpolating between 

the interarrival time variability and one as a function of the load i i ir tρ = . The general 

form of the interpolation is  

( )2 21 0 1di aic cω ω ω= − + ≤ ≤    

Note that, if the arrival variability equals 1, then (for any weight), the interdeparture 

time variability equals 1.  The purpose of the experiments was to evaluate various 

functions that could be used to determine the weight for this interpolation. Three 

candidates were tried: 

( )
2 2

2
2

2 2

2 2

2

2

1

1

1

i ei
a

i ei

i ei
b

i ei

i ei
c

i ei

c

c

c
c

c
c

ρω
ρ

ρω
ρ

ρω
ρ

=
+

=
+

=
+
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All of these have the following desirable properties:   

1. As the process time variability goes to 0, the weight goes to 0, and the 

interdeparture time variability approaches the arrival variability. 

2. As the load goes to 0, the weight goes to 0, and the interdeparture time 

variability approaches the interarrival time variability. 

3. As the load goes to infinity, the weight goes to 1, and the interdeparture time 

variability approaches 1. 

Based on the results (discussed in the next section), we decided to use aω , which 

yields the following approximation: 

( ) ( )
2 2 2 2

2 2
2 2

2 2
1

1 1

i ei i ei
di ai

i ei i ei

c cc c
c c

ρ ρ

ρ ρ

⎛ ⎞
⎜ ⎟

= − +⎜ ⎟
⎜ ⎟+ +
⎝ ⎠

 

In this section, we will only study cases with individual arrivals to the self service 

station. However, in our modeling section in Chapter 5, we include the case of mixed 

arrival to the self service station.  

In this type of the queueing system, we will assume that the arrival batch size 

doesn’t have any variability. In other words, if we have mixed arrival with the average 

batch size of AiK , its variability (SCV) is close to zero, that we can ignore it in our 

calculations. Therefore, according to the afore-mentioned 2
dic  for individual arrival to 

self service using aω  and also Formula 2 (first method unbatching) from Section 2.2.4, 

we can approximate the interdepartue time SCV from self service stations with batch 
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arrivals having batch interarrival time SCV of 2
bic  and the average arrival batch size 

of AiK  with nearly zero variability (SCV).   

The formula is this estimate: 

( ) ( )
2 2 2 2

2 2
2 2

2 2
( 1) 1

1 1

i ei i ei
Ai Aidi bi

i ei i ei

c cc K c K
c c

ρ ρ

ρ ρ

⎛ ⎞
⎜ ⎟

= + − − +⎜ ⎟
⎜ ⎟+ +
⎝ ⎠

 

 

4.3.1 Self service experiments 

To evaluate these weights, we conducted sets of computational experiments using a 

discrete-event simulation model of the station. The simulation model has only stations 

with a simple delay. In other words, whenever a customer comes to the self service 

station, s/he will be held in the station by the time that the delay time ends. 

 In all experiments, we ran five replications and measured the interdeparture times 

of the residents.  We then calculated the interdeparture time SCV for each replication 

and calculated 95% confidence intervals.  The run lengths and warm-up periods were 

proportional to the mean interarrival time as indicated below. 

In the first set (which we denote as Set DE), the interarrival times were constant, 

and the processing times were exponentially distributed.  The mean interarrival time 

went from 0.0006 minutes to 100 minutes.  The mean processing time was 3 minutes 

in all scenarios.  Thus, the load varied from 0.03 to 5000.  The run length was set 

equal to 260,000 times the mean interarrival time, and the warm-up period was set 

equal to 200,000 times the mean interarrival time. 
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In the second set (Set GE), the interarrival times had a gamma distribution, and the 

processing times were exponentially distributed.  The mean interarrival time went 

from 0.04 minutes to 40 minutes. α  parameter was always equal to 0.2, so the 

interarrival time variability was always 5.  The mean processing time was 3 minutes in 

all scenarios.  Thus, the load varied from 0.075 to 750.  The run length was set equal 

to 110,000 times the mean interarrival time, and the warm-up period was set equal to 

50,000 times the mean interarrival time. 

In the third set (Set EG), the interarrival times were exponentially distributed, and 

the processing times had a gamma distribution.  The mean interarrival time was 

always 4 minutes.  The mean processing time varied from 0.05 to 2000 minutes. α  

parameter was always equal to 0.5, so the processing time variability was always 2.  

Thus, the load varied from 0.0125 to 500.  The run length was set equal to 865,000 

times the mean interarrival time, and the warm-up period was set equal to 800,000 

times the mean interarrival time. 

In the fourth set (Set GG), the interarrival times had a gamma distribution, and the 

processing times had a gamma distribution.  The mean interarrival time was always 4 

minutes. α  parameter was always 0.1, so the interarrival time variability was always 

10.  The mean processing time varied from 0.25 to 2000 minutes. α parameter was 

always equal to 0.5, so the processing time variability was always 2.  Thus, the load 

varied from 0.0625 to 500.  The run length was set equal to 1,315,000 times the mean 

interarrival time, and the warm-up period was set equal to 1,250,000 times the mean 

interarrival time. 
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In the fifth set (Set UG), the interarrival times had a uniform distribution, and the 

processing times had a gamma distribution.  The interarrival time distribution was 

always between 3 and 5 minutes.  Thus, the arrival variability was always 0.02.  The 

mean processing time varied from 0.25 to 2000 minutes. α  parameter was always 

equal to 0.5, so the processing time variability was always 2.  Thus, the load varied 

from 0.0625 to 500.  The run length was set equal to 140,000 times the mean 

interarrival time, and the warm-up period was set equal to 75,000 times the mean 

interarrival time. 

Tables 42 to 46 present the results for sets DE, GE, EG, GG and UG.  For each 

scenario, the table lists the load, the interdeparture time SCV from the simulation, the 

lower and upper bound on the confidence interval.  In addition, it provides the three 

interdeparture time SCV estimates (one using each weight) and the relative error for 

each.  

Figures 39 to 43 compare the estimates of 2
dic using aω (Formula A) to the 

simulation results. 
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Table 42. Interdeparture time variability results for Set DE 
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5000 1.0055 0.027 1.0325 0.9996 0.590% 1.0000 0.550% 0.9998 0.570%
3000 1.0081 0.0258 1.0339 0.9993 0.873% 1.0000 0.807% 0.9997 0.840%
1000 1.0014 0.03 1.0314 0.9980 0.343% 1.0000 0.143% 0.9990 0.243%
500 0.9956 0.023 1.0185 0.9960 0.043% 1.0000 0.443% 0.9980 0.243%
400 1.0027 0.0268 1.0295 0.9950 0.771% 1.0000 0.275% 0.9975 0.523%
300 1.0077 0.0271 1.0348 0.9934 1.420% 1.0000 0.763% 0.9967 1.092%
200 0.9882 0.0245 1.0127 0.9901 0.195% 1.0000 1.197% 0.9950 0.696%
100 1.0012 0.0303 1.0316 0.9803 2.092% 0.9999 0.134% 0.9901 1.113%
60 0.9776 0.019 0.9966 0.9675 1.032% 0.9997 2.266% 0.9836 0.617%
30 0.9545 0.0158 0.9703 0.9365 1.879% 0.9989 4.656% 0.9677 1.392%
6 0.8499 0.0199 0.8697 0.7347 13.553% 0.9730 14.484% 0.8571 0.855%
3 0.7564 0.0215 0.7778 0.5625 25.630% 0.9000 18.991% 0.7500 0.841%
2 0.6796 0.0176 0.6972 0.4444 34.599% 0.8000 17.722% 0.6667 1.898%

1.5 0.5933 0.0143 0.6076 0.3600 39.325% 0.6923 16.683% 0.6000 1.126%
0.75 0.3957 0.0099 0.4056 0.1837 53.578% 0.3600 9.012% 0.4286 8.319%
0.5 0.2753 0.0045 0.2798 0.1111 59.642% 0.2000 27.355% 0.3333 21.07%
0.3 0.1446 0.0013 0.1458 0.0533 63.160% 0.0826 42.881% 0.2308 59.64%
0.2 0.0741 0.0008 0.0749 0.0278 62.513% 0.0385 48.095% 0.1667 124.9%

0.15 0.0434 0.0007 0.0441 0.0170 60.754% 0.0220 49.239% 0.1304 200.8%
0.12 0.0280 0.0006 0.0286 0.0115 59.058% 0.0142 49.372% 0.1071 282.1%
0.1 0.0195 0.0004 0.0199 0.0083 57.639% 0.0099 49.251% 0.0909 365.9%

0.03 0.0018 0.0003 0.0018 0.0008 51.524% 0.0009 48.618% 0.0291 1564.%
 
 
 

Table 43. Interdeparture time variability results for Set GE 
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750 0.9995 0.9755 1.0234 1.0106 1.115% 1.0000 0.051% 1.0053 0.583% 
250 1.0074 0.9657 1.0491 1.0318 2.423% 1.0001 0.728% 1.0159 0.847% 
125 1.0299 1.0144 1.0453 1.0632 3.237% 1.0003 2.878% 1.0317 0.179% 
100 1.0075 0.9505 1.0645 1.0788 7.078% 1.0004 0.705% 1.0396 3.186% 
75 1.0689 1.0372 1.1007 1.1046 3.337% 1.0007 6.379% 1.0526 1.522% 
50 1.0607 1.042 1.0795 1.1553 8.921% 1.0016 5.572% 1.0784 1.672% 
25 1.1834 1.1294 1.2374 1.3018 10.003% 1.0064 14.958% 1.1538 2.497% 
15 1.3269 1.2303 1.4235 1.4844 11.868% 1.0177 23.303% 1.2500 5.795% 
7.5 1.8037 1.5534 2.0539 1.8858 4.552% 1.0699 40.685% 1.4706 18.468%
1.5 3.7072 3.2701 4.1444 3.5600 3.971% 2.2308 39.826% 2.6000 29.866%

0.75 4.328 3.8798 4.7763 4.2653 1.449% 3.5600 17.745% 3.2857 24.082%
0.5 4.5708 4.1191 5.0226 4.5556 0.334% 4.2000 8.112% 3.6667 19.781%

0.375 4.6949 4.2422 5.1475 4.7025 0.161% 4.5068 4.005% 3.9091 16.738%
0.187 4.8676 4.3642 5.371 4.9003 0.671% 4.8642 0.071% 4.3684 10.255%
0.125 4.9324 4.4765 5.3882 4.9506 0.369% 4.9385 0.123% 4.5556 7.640% 
0.075 4.9721 4.5159 5.4284 4.9805 0.170% 4.9776 0.111% 4.7209 5.052% 
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Table 44. Interdeparture time variability results for Set EG 
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500 0.9892 0.9729 1.0056 1.00 1.089% 1.00 1.089% 1.00 1.089% 
250 0.9924 0.9737 1.0112 1.00 0.761% 1.00 0.761% 1.00 0.761% 
125 0.9993 0.9714 1.0273 1.00 0.063% 1.00 0.063% 1.00 0.063% 
87.5 1.0132 0.9892 1.0373 1.00 1.308% 1.00 1.308% 1.00 1.308% 
62.5 0.9946 0.9686 1.0206 1.00 0.543% 1.00 0.543% 1.00 0.543% 
50 0.9898 0.9769 1.0027 1.00 1.029% 1.00 1.029% 1.00 1.029% 

37.5 0.9933 0.9717 1.015 1.00 0.670% 1.00 0.670% 1.00 0.670% 
25 0.9972 0.962 1.0324 1.00 0.278% 1.00 0.278% 1.00 0.278% 

12.5 0.9897 0.9704 1.0091 1.00 1.037% 1.00 1.037% 1.00 1.037% 
6.25 0.9947 0.9679 1.0215 1.00 0.531% 1.00 0.531% 1.00 0.531% 
2.5 0.9947 0.9831 1.0064 1.00 0.527% 1.00 0.527% 1.00 0.527% 

1.25 0.9893 0.9764 1.0022 1.00 1.080% 1.00 1.080% 1.00 1.080% 
0.625 0.9904 0.9694 1.0115 1.00 0.960% 1.00 0.960% 1.00 0.960% 
0.125 0.9995 0.9802 1.0188 1.00 0.046% 1.00 0.046% 1.00 0.046% 
0.062 1.0010 0.9822 1.02 1.00 0.107% 1.00 0.107% 1.00 0.107% 
0.01 1.0021 0.984 1.0203 1.00 0.214% 1.00 0.214% 1.00 0.214% 

 
 
 
 
 

Table 45. Interdeparture time variability results for Set GG 
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500 1.0172 0.9984 1.0359 1.0254 0.806% 1.0000 1.689% 1.0090 0.807% 
250 1.0557 1.0254 1.086 1.0507 0.474% 1.0001 5.269% 1.0180 3.574% 
125 1.0935 1.0588 1.1281 1.1010 0.683% 1.0003 8.524% 1.0359 5.271% 
87.5 1.158 1.1211 1.1949 1.1437 1.233% 1.0006 13.593% 1.0511 9.228% 
62.5 1.2288 1.1585 1.2991 1.2002 2.324% 1.0012 18.526% 1.0714 12.807%
50 1.2752 1.1668 1.3837 1.2493 2.034% 1.0018 21.440% 1.0891 14.593%

37.5 1.4536 1.2319 1.6752 1.3300 8.500% 1.0032 30.985% 1.1184 23.059%
25 1.7081 1.3121 2.1041 1.4883 12.868% 1.0072 41.034% 1.1765 31.124%

12.5 2.723 1.667 3.779 1.9379 28.831% 1.0287 62.222% 1.3462 50.564%
6.25 4.2706 2.6963 5.845 2.7365 35.922% 1.1137 73.921% 1.6667 60.973%
2.5 6.9288 4.9615 8.8961 4.5312 34.604% 1.6667 75.946% 2.5000 63.919%

1.25 8.5373 6.5603 10.514 6.3286 25.871% 3.1818 62.730% 3.5714 58.167%
0.625 9.7565 7.7646 11.748 8.0188 17.811% 6.0526 37.963% 5.0000 48.752%
0.125 10.730 8.7557 12.704 9.7969 8.697% 9.7273 9.346% 8.2000 23.579%
0.062 10.839 8.868 12.810 9.9415 8.283% 9.9313 8.377% 9.0071 16.903%
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Table 46. Interdeparture time variability results for Set UG 
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500 0.9884 0.9591 1.0178 0.9972 0.894% 1.0000 1.173% 0.9990 1.075% 
250 0.9938 0.9752 1.0125 0.9945 0.069% 1.0000 0.623% 0.9980 0.427% 
125 0.9809 0.9551 1.0067 0.9890 0.827% 1.0000 1.944% 0.9961 1.549% 
87.5 0.979 0.9636 0.9943 0.9844 0.548% 0.9999 2.139% 0.9944 1.577% 
62.5 0.9727 0.9474 0.998 0.9782 0.567% 0.9999 2.794% 0.9922 2.008% 
50 0.9703 0.9604 0.9802 0.9729 0.266% 0.9998 3.041% 0.9903 2.062% 

37.5 0.9564 0.9403 0.9724 0.9641 0.804% 0.9997 4.522% 0.9871 3.212% 
25 0.9402 0.9211 0.9594 0.9469 0.710% 0.9992 6.277% 0.9808 4.318% 

12.5 0.8928 0.8797 0.9059 0.8980 0.578% 0.9969 11.657% 0.9623 7.789% 
6.25 0.8288 0.8157 0.842 0.8111 2.139% 0.9876 19.163% 0.9275 11.905%
2.5 0.6933 0.6852 0.7013 0.6158 11.175% 0.9275 33.776% 0.8368 20.699%

1.25 0.5455 0.5358 0.5552 0.4203 22.957% 0.7626 39.803% 0.7202 32.032%
0.625 0.3736 0.3661 0.3811 0.2364 36.730% 0.4503 20.527% 0.5648 51.181%
0.125 0.0758 0.0738 0.0777 0.0429 43.369% 0.0505 33.375% 0.2167 185.83%
0.062 0.0366 0.0358 0.0374 0.0273 25.443% 0.0284 22.348% 0.1296 254.17%
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Figure 39. Interdeparture time variability results for Set DE 
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Figure 40. Interdeparture time variability results for Set GE 
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Figure 41. Interdeparture time variability results for Set EG 
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Figure 42. Interdeparture time variability results for Set GG 
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Figure 43. Interdeparture time variability results for Set UG 
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4.4 Batch formation process 

As noted in Chapter 2, it is necessary at a batch service workstation to form process 

batches. Arriving items (jobs or customers) wait in an incomplete batch until the 

proper quantity has accumulated, and then the full batch is formed and joins the queue 

for service. This waiting time to form a batch was defined in Chapter 2 as wait-to-

batch time (WTBT). 

To analyze batch service workstations in our clinic models, we need to have both 

wait-to-batch time (WTBT) and batch interarrival time SCV for formed batches after 

the batch formation process. After the batch is formed, queueing can be approximated 

using the formulas previously discussed, substituting parameters pertaining to the 

batch for the individual parameters. 

For individual arrivals, the interarrival time SCV of formed batches is obtained by 

dividing the individual arrival SCV by k (Hopp and Spearman, 2001). However, to 

model our clinic thoroughly, in this chapter, we calculate the interarrival time 

variability for batches formed from any kind of arrivals from more than one stream 

with batch size variability. In this thesis, we assume that the process batches are larger 

than the arrival batches  

Additionally, again from Chapter 2, we had Formula 5 to calculate WTBT for cases 

with individual arrivals. In this section, we introduce our new approach to estimate 

WTBT for the cases with batch arrivals from multiple arrival streams. 
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4.4.1 Batch formation variability  

In this case, residents arrive in batches (arrival batches) to the workstation. The 

arriving batches may come from multiple workstations and may have different batch 

sizes with batch size variability. Arriving residents are grouped into process batches of 

a given size to perform the process. There may be multiple servers that can process 

different batches in parallel.  We assume that the process batches are larger than the 

arrival batches.  In this domain, an example is a workstation where residents must 

view an educational video.  The process batch is the group of residents watching the 

video at the same time.  

Arriving residents enter a batch formation queue.  A process batch is formed 

whenever there are ik  residents waiting in this queue.  These residents then leave this 

queue, and the newly formed process batch enters a process queue, where it waits for a 

server to process it. 

We will use the following notation: 

2
aic  = Aggregate batch interarrival time SCV at station i 

2
bic  = Interarrival time SCV for process batches at station i (after being formed) 

ki = Processing batch size at station i 

AiK  = Average batch size of all batches that come to station i  

2
AiC  = SCV of the batch size of all batches that come to station i  

BjiK  = Average batch size of batches that come to station i from station j 
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λBji = Batch flow rate from station j to station i (batches per minute) 

2
Bjic  = Interarrival time SCV for batches that come to station i from station j 

λAi = Batch arrival rate at station i (batches per minute) 

ri = Arrival rate at station i (residents per minute) 

A key quantity for estimating the performance of such a workstation is the 

variability associated with the formation of process batches.  The time between two 

consecutive process batches forming is a random variable with a SCV of 2
bic , which 

we call the batch formation variability (SCV). There is no established estimate for this 

term. Thus, we developed and tested four different estimates h
iX , for h = 1, 2, 3, and 4. 

Next, we consider two special cases.  First, if all of the residents arrive 

individually, then it is easy to see that the variability is pooled (Hopp and Spearman, 

2001): 

2
2 ai
bi

i

cc
k

=  

Second, if all of the arrival batches have exactly AiK  residents, then each process 

batch has exactly /i Aik K  arrival batches: 

2
2 1 Ai ai
bi i

i

K cc X
k

= =  

In general, however, the size of the arrival batches varies and has SCV of the batch 

size of 2
AiC .  Thus, in the general case, the above equation is only an approximation. 
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Intuitively it is clear that the arrival batch size variability 2
AiC  affects the batch 

formation variability. Therefore, we decided to create and test a second estimate:  

( )2 2
2 Ai ai Ai
i

i

K c C
X

k
+

=  

4.4.1.1 SCV of the batch size of all batches that come to a station  

Before running some tests to calculate the values of 2
iX , we need to have SCV of 

the batch size of all batches that come to a station ( 2
AiC ). We calculate the variability 

of the arriving batch size by adapting a formula from Fowler et al. (2002), who 

calculate the process time SCV for different products that arrive at different rates.  If 

the different products represent batches from different stations and we assume that the 

service time per resident is a constant, then the process time SCV is exactly the SCV 

of the batch size of coming batches which is: 

( )2 2 2
2

11 1
i

Ai Bji Bji Bji
j SAi Ai

C C K
K

λ
λ ∈

= − + +∑            (Formula 22) 

The next section will discuss the results of the tests calculating the value of 2
iX for 

some scenarios. 

4.4.1.2 Initial batch formation experiments 

To evaluate the two estimates ( 1
iX , 2

iX ), we conducted sets of computational 

experiments using a discrete-event simulation model of the station.  Each simulation 

replication was 150,000 to 600,000 minutes long, with a warm-up period of 100,000 
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to 400,000 minutes. Ten replications were conducted for each scenario. Simulation 

results are shown as 95% confidence intervals. 

Initially, seven scenarios were tested.  In all of the scenarios, three workstations (1, 

2, and 3) sent batches to a fourth workstation, which is the workstation of interest.  

This forms three arrival streams, one from each workstation. In this set of scenarios, 

the batch size for each arrival stream is a constant (that is, all of the batches in each 

arrival stream has the same number of residents), and the interarrival times are 

exponentially distributed.  The batch sizes and mean interarrival times for each stream 

were changed. The process batch size ik  varied as well. Table 47 describes the seven 

scenarios, and table 48 describes the results for the scenarios. 

 
Table 47. Description of Scenarios 1 to 7 

Mean interrarrival 
times (mins) Arrival batch size 

Scenario ki 
1 2 3 1 2 3 

1 10 6 7 10 1 2 2 
2 10 6 7 10 1 3 5 
3 10 6 7 10 2 4 6 
4 10 6 7 10 8 1 5 
5 15 6 4 10 8 7 6 
6 30 6 4 10 6 2 12 
7 30 6 4 10 3 11 7 

 
 

Table 48. Results for Scenarios 1 to 7 
Batch 

formation 
variability 
estimates 

Confidence interval on batch 
formation variability from 

simulation results 
Relative error 

Sc
en

ar
io

 

1
iX  2

iX  
2
bic  from 

Simulation 

Lower
bound

Upper 
bound 

1
iX  2

iX  

1 0.159 0.174 0.173 0.165 0.182 8.128% 0.609% 
2 0.267 0.361 0.37 0.361 0.379 27.718% 2.468% 
3 0.367 0.435 0.452 0.443 0.461 18.689% 3.641% 
4 0.483 0.673 0.722 0.713 0.732 33.183% 6.746% 
5 0.467 0.474 0.504 0.496 0.512 7.377% 6.002% 
6 0.236 0.313 0.325 0.318 0.332 27.277% 3.753% 
7 0.221 0.272 0.283 0.275 0.292 21.907% 4.088% 
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Next, we tested scenarios in which the interarrival time distributions of each arrival 

stream in Scenario 4 were changed in order to vary the variability in each arrival 

stream.  The mean interarrival times and other parameters remained as specified for 

Scenario 4, and the other two arrival streams kept exponentially distributed interarrival 

times. Scenarios 4.1.1 to 4.1.8 changed the first arrival stream as shown in Table 49.  

(Note Scenario 4.1.4 is the same as the original Scenario 4.) 

 
 

Table 49. Description of Scenarios 4.1.1 to 4.1.8 

Scenario Interrarrival time 
distribution 

Interarrival time 
variability (SCV) 

4.1.1 Constant 0 
4.1.2 Gamma(2, 3.5) 0.5 
4.1.3 Gamma(4/3, 21/4) 0.75 
4.1.4 Exponential 1 
4.1.5 Gamma(2/3, 21/2) 1.5 
4.1.6 Gamma(1/2, 14) 2 
4.1.7 Gamma(1/4, 28) 4 
4.1.8 Gamma(1/5, 35) 5 

 

Scenarios 4.2.1 through 4.2.8 modified the interarrival time distributions of the 

second arrival stream to increase the arrival variability in the same way. The mean 

interarrival time remained 7 minutes for these eight scenarios. Likewise, Scenarios 

4.3.1 through 4.3.8 modified the interarrival time distributions of the third arrival 

stream to increase the arrival variability in the same way. The mean interarrival time 

remained 10 minutes for these eight scenarios. 
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Table 50. Results for Scenarios 4.1.1 to 4.1.8  

Batch 
formation 
variability 
estimates 

Confidence interval on batch 
formation variability from 

simulation results 
Relative error 

Sc
en

ar
io

 

1
iX  2

iX  
2
bic  from 

Simulation 

Lower
bound

Upper 
bound 

1
iX  2

iX  

4.1.1 0.29 0.48 0.21 0.201 0.219 36.5% 127.6% 
4.1.2 0.38 0.58 0.50 0.495 0.513 23.7% 14.2% 
4.1.3 0.43 0.62 0.63 0.620 0.638 31.1% 0.7% 
4.1.4 0.48 0.67 0.72 0.713 0.731 33.2% 6.7% 
4.1.5 0.58 0.77 0.90 0.893 0.911 35.6% 14.4% 
4.1.6 0.68 0.87 1.04 1.027 1.045 34.5% 16.0% 
4.1.7 1.07 1.26 1.36 1.355 1.373 21.4% 7.4% 
4.1.8 1.27 1.46 1.48 1.472 1.490 14.4% 1.5% 

 
 

 
Table 51. Results for Scenarios 4.2.1 to 4.2.8 

Batch 
formation 
variability 
estimates 

Confidence interval on batch 
formation variability from 

simulation results 
Relative error 

Sc
en

ar
io

 

1
iX  2

iX  
2
bic  from 

Simulation 

Lower
bound

Upper 
bound 

1
iX  2

iX  

4.2.1 0.31 0.51 0.717 0.708 0.726 56.2% 29.5% 
4.2.2 0.40 0.59 0.707 0.698 0.716 43.7% 16.7% 
4.2.3 0.44 0.63 0.727 0.718 0.736 39.4% 13.1% 
4.2.4 0.48 0.67 0.722 0.713 0.731 33.2% 6.7% 
4.2.5 0.57 0.76 0.739 0.730 0.748 23.3% 2.5% 
4.2.6 0.65 0.84 0.737 0.728 0.745 11.6% 14.3% 
4.2.7 0.99 1.18 0.754 0.745 0.763 31.0% 56.4% 
4.2.8 1.16 1.35 0.743 0.714 0.771 55.6% 81.4% 

 
 
 

Table 52. Results for Scenarios 4.3.1 to 4.3.8 
Batch 

formation 
variability 
estimates 

Confidence interval on batch 
formation variability from 

simulation results 
Relative error 

Sc
en

ar
io

 

1
iX  2

iX  
2
bic  from 

Simulation 

Lower
bound

Upper 
bound 

1
iX  2

iX  

4.3.1 0.36 0.56 0.62 0.612 0.636 41.5% 10.9% 
4.3.2 0.42 0.61 0.68 0.660 0.701 37.7% 9.6% 
4.3.3 0.45 0.64 0.70 0.683 0.715 35.2% 7.9% 
4.3.4 0.48 0.67 0.73 0.716 0.742 33.8% 7.6% 
4.3.5 0.54 0.73 0.77 0.756 0.785 29.7% 5.0% 
4.3.6 0.60 0.79 0.78 0.734 0.831 23.3% 1.1% 
4.3.7 0.84 1.03 0.86 0.817 0.901 2.7% 19.5% 
4.3.8 0.95 1.14 0.90 0.861 0.935 6.2% 27.5% 
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Scenarios 7.1.1 through 7.1.8 modified the interarrival time distributions of the first 

arrival stream in Scenario 7 to increase the arrival variability, but the mean interarrival 

time remained 6 minutes. Scenarios 7.2.1 through 7.2.8 modified the interarrival time 

distributions of the second arrival stream to increase the arrival variability, but the 

mean interarrival time remained 4 minutes. 

 
Table 53. Results for Scenarios 7.1.1 to 7.1.8 

Batch 
formation 
variability 
estimates 

Confidence interval on batch 
formation variability from 

simulation results 
Relative error 

Sc
en

ar
io

 

1
iX  2

iX  
2
bic  from 

Simulation 

Lower
bound

Upper 
bound 

1
iX  2

iX  

7.1.1 0.18 0.23 0.27 0.257 0.275 33.5% 14.5% 
7.1.2 0.20 0.25 0.27 0.266 0.280 27.1% 8.6% 
7.1.3 0.21 0.26 0.28 0.273 0.297 26.2% 8.5% 
7.1.4 0.22 0.27 0.27 0.268 0.282 19.5% 1.2% 
7.1.5 0.24 0.29 0.29 0.257 0.325 16.3% 1.0% 
7.1.6 0.27 0.32 0.29 0.276 0.308 9.2% 8.0% 
7.1.7 0.35 0.40 0.31 0.290 0.332 14.0% 30.2% 
7.1.8 0.40 0.45 0.31 0.294 0.330 27.6% 43.7% 

 
 
 

Table 54. Results for Scenarios 7.2.1 to 7.2.8 
Batch 

formation 
variability 
estimates 

Confidence interval on batch 
formation variability from 

simulation results 
Relative error 

Sc
en

ar
io

 

1
iX  2

iX  
2
bic  from 

Simulation 

Lower
bound

Upper 
bound 

1
iX  2

iX  

7.2.1 0.19 0.24 0.126 0.118 0.134 49.3% 89.3% 
7.2.2 0.20 0.26 0.213 0.204 0.222 4.0% 19.7% 
7.2.3 0.21 0.26 0.251 0.242 0.260 15.1% 5.0% 
7.2.4 0.22 0.27 0.283 0.271 0.295 21.8% 3.9% 
7.2.5 0.24 0.29 0.337 0.328 0.347 29.5% 14.5% 
7.2.6 0.25 0.30 0.377 0.354 0.400 32.5% 19.1% 
7.2.7 0.32 0.37 0.474 0.466 0.481 32.3% 21.6% 
7.2.8 0.35 0.40 0.504 0.502 0.506 29.8% 19.8% 

 
 

The next step was to look at the impact of varying the arrival rates. To do this, we 

created Scenarios 4.4.1 through 4.4.5 and Scenarios 4.5.1 through 4.5.5 from the 
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original Scenario 4. The interarrival time distributions of the first and second arrival 

streams remained as exponential distributions. For Scenarios 4.4.1 through 4.4.5, the 

interarrival times for the third arrival stream were constant. 

 For Scenarios 4.5.1 through 4.5.5, the interarrival times for the third arrival stream 

had a gamma distribution with α  equal to 0.5. Thus, the interarrival time SCV equals 

2. The mean interarrival times were varied as shown in table 55. 

 
 

Table 55. Description of Scenarios 4.4.1 to 4.4.5 and Scenarios 4.5.1 to 4.5.5 

Interrarrival time means (mins) 

Sc
en

ar
io

 

Arrival stream 1 Arrival stream 2 Arrival stream 3 

4.4.1 (4.5.1) 6 10 10 
4.4.2 (4.5.2) 7 5 10 
4.4.3 (4.5.3) 6 7 10 
4.4.4 (4.5.4) 15 10 6 
4.4.5 (4.5.5) 10 15 5 

 

In addition, we created Scenarios 7.3.1 through 7.3.5 and Scenarios 7.4.1 through 

7.4.5 from the original Scenario 7. In Scenarios 7.3.1 to 7.3.5, the interarrival time 

distributions of the second and third arrival streams remained as exponential 

distributions, but the interarrival times for the first arrival stream had a gamma 

distribution with α  equal to 2.  

 In Scenarios 7.4.1 to 7.4.5, the interarrival time distributions of the first and third 

arrival streams remained as exponential distributions, but the interarrival times for the 

second arrival stream had a gamma distribution with α  equal to 2/3. The mean 

interarrival times were varied as shown in table 56. 
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Table 56. Description of Scenarios 7.3.1 to 7.3.5 and Scenarios 7.4.1 to 7.4.5 

Interrarrival time means (mins) 

Sc
en

ar
io

 

Arrival stream 1 Arrival stream 2 Arrival stream 3 

7.3.1 (7.4.1) 3 12 3 
7.3.2 (7.4.2) 6 6 12 
7.3.3 (7.4.3) 12 10 20/3 
7.3.4 (7.4.4) 4 20 15 
7.3.5 (7.4.5) 12 4 15 

 
 
 
 

 
Table 57. Results for Scenarios 4.4.1 to 4.4.5 

Batch 
formation 
variability 
estimates 

Confidence interval on batch 
formation variability from 

simulation results 
Relative error 

Sc
en

ar
io

 

1
iX  2

iX  
2
bic  from 

Simulation 

Lower
bound

Upper 
bound 

1
iX  2

iX  

4.4.1 0.38 0.54 0.63 0.623 0.641 39.141% 13.993%
4.4.2 0.33 0.55 0.57 0.558 0.576 42.506% 2.572% 
4.4.3 0.60 0.79 0.62 0.611 0.636 3.732% 26.886%
4.4.4 0.29 0.43 0.31 0.295 0.319 5.564% 40.660%
4.4.5 0.24 0.34 0.35 0.331 0.375 32.410% 2.595% 

 
 
 
 

Table 58. Results for Scenarios 4.5.1 to 4.5.5 
Batch 

formation 
variability 
estimates 

Confidence interval on batch 
formation variability from 

simulation results 
Relative error 

Sc
en

ar
io

 

1
iX  2

iX  
2
bic  from 

Simulation 

Lower
bound

Upper 
bound 

1
iX  2

iX  

4.5.1 0.67 0.83 0.81 0.800 0.829 17.796% 1.707% 
4.5.2 0.51 0.73 0.74 0.730 0.758 31.971% 1.526% 
4.5.3 0.60 0.79 0.77 0.752 0.796 22.463% 2.201% 
4.5.4 0.59 0.73 0.81 0.801 0.819 27.133% 9.625% 
4.5.5 0.78 0.88 0.88 0.869 0.884 11.043% 0.958% 
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Table 59. Results for Scenarios 7.3.1 to 7.3.5 
Batch 

formation 
variability 
estimates 

Confidence interval on batch 
formation variability from 

simulation results 
Relative error 

Sc
en

ar
io

 

1
iX  2

iX  
2
bic  from 

Simulation 

Lower
bound

Upper 
bound 

1
iX  2

iX  

7.3.1 0.20 0.25 0.27 0.249 0.293 26.611% 8.006% 
7.3.2 0.22 0.28 0.30 0.283 0.318 25.971% 5.678% 
7.3.3 0.23 0.27 0.29 0.278 0.302 19.323% 5.334% 
7.3.4 0.14 0.20 0.19 0.184 0.202 25.015% 4.874% 
7.3.5 0.28 0.32 0.35 0.338 0.353 19.547% 7.798% 

 
 
 
 

Table 60. Results for Scenarios 7.4.1 to 7.4.5 
Batch 

formation 
variability 
estimates 

Confidence interval on batch 
formation variability from 

simulation results 
Relative error 

Sc
en

ar
io

 

1
iX  2

iX  
2
bic  from 

Simulation 

Lower
bound

Upper 
bound 

1
iX  2

iX  

7.4.1 0.24 0.29 0.26 0.193 0.317 6.749% 13.046%
7.4.2 0.24 0.31 0.41 0.383 0.427 39.675% 24.625%
7.4.3 0.25 0.29 0.34 0.332 0.356 28.100% 16.311%
7.4.4 0.16 0.22 0.25 0.217 0.275 33.411% 9.983% 
7.4.5 0.32 0.36 0.49 0.472 0.500 33.833% 25.479%

 
 
 
4.4.1.3 Discussion of initial batch formation experiments 
 

Based on these results, we see that 1
iX , the first estimate for batch formation 

variability is generally much worse than 2
iX , the second estimate for batch formation 

variability.  The latter estimate is, however, only acceptable when all of the arrival 

streams have interarrival time distributions with moderate variability, which occurs in 

Scenarios 1 to 7, Scenarios 4.1.3 to 4.1.5, Scenarios 4.2.3 to 4.2.5, Scenarios 4.3.3 to 

4.3.5, Scenarios 7.1.3 to 7.1.5, and Scenarios 7.2.3 to 7.2.5. 
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Clearly, changes to arrival variability affect the batch formation variability.  

Moreover, changes in the arrival variability of smaller batches have less impact than 

changes in the arrival variability of larger batches.  For example, the batch formation 

variability changes much more across Scenarios 4.1.1 to 4.1.8 (which modifies the 

arrival stream with the largest batch size) than it does across Scenarios 4.2.1 to 4.2.8, 

which modifies the arrival stream with the smallest batch size.   

Similarly, the batch formation variability changes much more across Scenarios 

7.2.1 to 7.2.8 (which modifies the arrival stream with the largest batch size) than it 

does across Scenarios 7.1.1 to 7.1.8, which modifies the arrival stream with the 

smallest batch size.   

However, 2
iX , the second estimate for batch formation variability, does not include 

information about the batch sizes.  Based on these observations, we developed two 

more estimates that replace the aggregate batch arrival variability term with terms that 

explicitly incorporate batch size information: 

2
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4.4.1.4 Evaluation of additional estimates 

To evaluate these two new estimates ( 3
iX , 4

iX ), we calculated them for the 

scenarios discussed in Section 4.4.1.2. Tables 61 to 69 show the results, along with the 

2
iX  estimates previously calculated.  These results show the fourth estimate 4

iX  is 

more accurate than the others.  It is especially good with the interarrival time 

variability is moderate (between 0.5 and 1.5). 

 
 

Table 61. Results for Scenarios 4.1.1 to 4.1.8 
Batch formation variability 

estimates Relative errors 

Sc
en

ar
io

 

2
iX  3

iX  4
iX  2

iX  3
iX  4

iX  

4.1.1 0.48 0.348 0.287 127.6% 65.8% 36.6% 
4.1.2 0.58 0.511 0.480 14.2% 2.2% 3.9% 
4.1.3 0.62 0.592 0.577 0.7% 6.0% 8.4% 
4.1.4 0.67 0.674 0.674 6.7% 6.4% 6.4% 
4.1.5 0.77 0.837 0.867 14.4% 7.1% 3.7% 
4.1.6 0.87 0.999 1.060 16.0% 3.9% 2.0% 
4.1.7 1.26 1.651 1.834 7.4% 21.4% 34.9% 
4.1.8 1.46 1.976 2.221 1.5% 33.5% 50.1% 

 

 

 
 

Table 62. Results for Scenarios 4.2.1 to 4.2.8 
Batch formation variability 

estimates Relative errors 

Sc
en

ar
io

 

2
iX  3

iX  4
iX  2

iX  3
iX  4

iX  

4.2.1 0.51 0.639 0.669 29.5% 10.9% 6.7% 
4.2.2 0.59 0.656 0.671 16.7% 7.2% 5.1% 
4.2.3 0.63 0.665 0.672 13.1% 8.5% 7.5% 
4.2.4 0.67 0.674 0.674 6.7% 6.7% 6.7% 
4.2.5 0.76 0.691 0.676 2.5% 6.5% 8.5% 
4.2.6 0.84 0.709 0.679 14.3% 3.9% 7.9% 
4.2.7 1.18 0.778 0.689 56.4% 3.2% 8.6% 
4.2.8 1.35 0.813 0.694 81.4% 9.5% 6.5% 
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Table 63. Results for Scenarios 4.3.1 to 4.3.8 

Batch formation variability 
estimates Relative errors 

Sc
en

ar
io

 

2
iX  3

iX  4
iX  2

iX  3
iX  4

iX  

4.3.1 0.56 0.552 0.583 10.9% 11.0% 6.0% 
4.3.2 0.61 0.613 0.628 9.6% 9.9% 7.6% 
4.3.3 0.64 0.643 0.651 7.9% 8.1% 7.0% 
4.3.4 0.67 0.674 0.674 7.6% 7.7% 7.7% 
4.3.5 0.73 0.735 0.719 5.0% 4.6% 6.6% 
4.3.6 0.79 0.796 0.764 1.1% 2.0% 2.0% 
4.3.7 1.03 1.040 0.946 19.5% 20.9% 10.0% 
4.3.8 1.14 1.162 1.036 27.5% 29.1% 15.1% 

 

 

Table 64. Results for Scenarios 7.1.1 to 7.1.8 
Batch formation variability 

estimates Relative errors 

Sc
en

ar
io

 

2
iX  3

iX  4
iX  2

iX  3
iX  4

iX  

7.1.1 0.23 0.24 0.26 14.5% 12.9% 4.4% 
7.1.2 0.25 0.25 0.26 8.6% 6.1% 1.9% 
7.1.3 0.26 0.26 0.27 8.5% 6.2% 4.2% 
7.1.4 0.27 0.27 0.27 1.2% 0.6% 0.6% 
7.1.5 0.29 0.29 0.28 1.0% 0.1% 4.0% 
7.1.6 0.32 0.31 0.29 8.0% 6.2% 1.7% 
7.1.7 0.40 0.38 0.31 30.2% 22.8% 0.6% 
7.1.8 0.45 0.42 0.33 43.7% 34.5% 4.9% 

 

 

 
Table 65. Results for Scenarios 7.2.1 to 7.2.8 

Batch formation variability 
estimates Relative errors 

Sc
en

ar
io

 

2
iX  3

iX  4
iX  2

iX  3
iX  4

iX  

7.2.1 0.24 0.17 0.14 89.3% 36.2% 8.5% 
7.2.2 0.26 0.22 0.20 19.7% 4.1% 4.2% 
7.2.3 0.26 0.25 0.24 5.0% 1.7% 5.2% 
7.2.4 0.27 0.27 0.27 3.9% 4.0% 4.0% 
7.2.5 0.29 0.32 0.34 14.5% 4.6% 0.6% 
7.2.6 0.30 0.37 0.41 19.1% 1.4% 7.8% 
7.2.7 0.37 0.57 0.68 21.6% 20.6% 42.7% 
7.2.8 0.40 0.67 0.81 19.8% 33.3% 61.0% 
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Table 66. Results for Scenarios 4.4.1 to 4.4.5. 

Batch formation variability 
estimates Relative errors 

Sc
en

ar
io

 

2
iX  3

iX  4
iX  2

iX  3
iX  4

iX  

4.4.1 0.54 0.55 0.586 13.9% 12.9% 7.0% 
4.4.2 0.55 0.53 0.553 2.6% 7.4% 3.0% 
4.4.3 0.79 0.55 0.585 26.9% 10.6% 5.6% 
4.4.4 0.43 0.33 0.366 40.7% 6.7% 18.1% 
4.4.5 0.34 0.34 0.394 2.6% 1.9% 12.6% 

 
 

 
 

 
Table 67. Results for Scenarios 4.5.1 to 4.5.5 

Batch formation variability 
estimates Relative errors 

Sc
en

ar
io

 

2
iX  3

iX  4
iX  2

iX  3
iX  4

iX  

4.5.1 0.83 0.82 0.784 1.7% 1.4% 3.2% 
4.5.2 0.73 0.75 0.728 1.5% 1.8% 1.6% 
4.5.3 0.79 0.80 0.767 2.2% 3.7% 0.4% 
4.5.4 0.73 0.83 0.796 9.6% 2.6% 1.8% 
4.5.5 0.88 0.89 0.838 0.9% 1.0% 4.8% 

 
 
 
 
 

 
 

Table 68. Results for Scenarios 7.3.1 to 7.3.5 
Batch formation variability 

estimates Relative errors 

Sc
en

ar
io

 

2
iX  3

iX  4
iX  2

iX  3
iX  4

iX  

7.3.1 0.25 0.25 0.26 8.0% 8.8% 3.4% 
7.3.2 0.28 0.27 0.29 5.7% 8.7% 4.3% 
7.3.3 0.27 0.27 0.28 5.4% 7.5% 4.7% 
7.3.4 0.20 0.18 0.20 4.9% 2.9% 6.8% 
7.3.5 0.32 0.32 0.33 7.8% 8.8% 6.8% 
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Table 69. Results for Scenarios 7.4.1 to 7.4.5 

Batch formation variability 
estimates Relative errors 

Sc
en

ar
io

 

2
iX  3

iX  4
iX  2

iX  3
iX  4

iX  

7.4.1 0.29 0.30 0.31 13% 13.9% 19.3% 
7.4.2 0.31 0.37 0.39 24.7% 10.4% 6.0% 
7.4.3 0.29 0.34 0.35 16.3% 1.2% 3.7% 
7.4.4 0.22 0.24 0.26 9.9% 2.6% 4.2% 
7.4.5 0.36 0.44 0.46 25.5% 9.4% 6.7% 

 
 
 
 
 
 
 
 

 
Figure 44. Results for Scenarios 4.1.1 to 4.3.8 
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Figure 45. Results for Scenarios 7.1.1 to 7.2.8 
 
 
 
 

 
Figure 46. Results for Scenarios 4.4.1 to 4.5.5 and Scenarios 7.3.1 to 7.4.5 
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4.4.2 Wait time to form a batch (WTBT) 

As noted in Chapter 2, when customers arrive at a batch service process, they must 

first wait while the other customers in the batch arrive, then wait as a batch for the 

server to become available. Hopp and Spearman (2001) refer to this first delay as wait-

to-batch time (WTBT) and define it for a single server station with individual arrivals 

as: 1
2

kWTBT
λ
−

=  (Formula 5 from Chapter 2). 

In this formula, k is the number of customers or jobs needed to form a complete 

process batch andλ is the arrival rate of individuals to the batch process workstation.  

In this section, we will study the WTBT for the general cases which can be 

employed in our model formulation section in the next chapter for the queueing with 

batch service process and any kind of the arrivals. 

If we have multiple arrival streams with an average batch size of BjiK  and batch 

arrival rate of Bjiλ , the arrival rate of residents (customers) per min ( ir )  is calculated 

by the following formula: 

1

1

i

i Bji Bji
j

r Kλ
−

=

=∑   (Formula 23) 

    

Therefore, similarly to WTBT from Formula 5 which is for individual arrivals for a 

single server station, we replace the ir  instead of the individual arrival rate. In this 

way, the average time residents spend waiting to form a process batch is the following 

formula despite of having multiple servers in batch service station:  
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1
2
i

i
i

kWTBT
r
−

=     (Formula 24) 

As we will see from the simulation results in validation section of Chapter5, 

Formula 24 is an acceptable equation to estimate the WTBT even in general cases. 

Moreover, it includes Formula 5 for the individual arrival cases. 

4.5 Branching process of individuals after batch processing  

  Modeling the flow of batches is an important question that we must answer before 

constructing our model completely. There are two different approaches to 

discuss.  They define the batch flow rate and batch size distribution differently. 

Before beginning to analyze these approaches, we define some notation needed for 

our discussion. 

pij = Routing probability from station i to station j 

ri = Arrival rate at station i (residents per minute) 

ki = Processing batch size at station i 

λBji = Batch flow rate from station j to station i (batches per minute) 

λAi = Batch arrival rate at station i (batches per minute) 

BjiK  = Average batch size of batches that come to station i from station j 

2
BjiC  = SCV of the batch size of batches that come to station i from station j 

AiK  = Average batch size of all batches that come to station i  

2
AiC  = SCV of the batch size of all batches that come to station i  
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In the first approach, the batch flow rate from station j to station i equals the rate at 

which batches depart station j. That is, λBji = j

j

r
k

. 

The batch size distribution is a binomial distribution with jk trials and a success 

probability of jip . 

This approach allows batches to be of size 0, however. Thus, although the arrival 

rate doesn’t change due to the branching process, we can have empty batches, which is 

not realistic. 

In the second approach, the batch flow rate is reduced. The idea of the second 

approach, which is fundamental to the clinic models in Chapter 5, is from Curry et al. 

(2002).  

Since the probability of all jk  individuals in a process batch leaving station j and 

going to a station other than station i  is (1 ) jk
jip− , the probability of having a batch of 

at least individual moving to station i from station j is1 (1 ) .jk
jip− −  Therefore, the 

batch arrival rate to station j from station i is: 

(1 (1 ) )
k jj

Bji ji
j

r
p

k
λ = × − −     (Formula 25) 

For stations with individual service processes, since the jk  is1, Bji j jir pλ = . 

The total batch arrival rate to station i is the aggregation of all batch arrivals from 

upstream stations which is: 
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i

Ai Bji
j S

λ λ
∈

= ∑     (Formula 26) 

Si is the set of stations that send residents to station i: { }: , 0i jiS j j i P= < > . 

  In the case that the only upstream station for station i is station j, each batch 

arriving to station i, has a random batch size of 1 to jk . Thus, the random batch size 

distribution should be binomial which is equal or bigger than 1. 

If we define jiB  as the random batch size of batches that come to station i from 

station j, the probability distribution for jiB  is: 

( )
1 (1 )

(1 ) j

j

j
k

ji

k nn
ji ji

ji n
p

p

k p
P B n P

n

−⎛ ⎞
= ⎜ ⎟⎜ ⎟ − −⎝ ⎠

−
= = ×    { }1,2,... jn k∈  

It should be said that this probability distribution is a conditional binomial 

distribution given that the batch size is positive.  

 Moreover, if we define BjiK (see the notation in Section 4.5) as average batch size 

of batches that come to station i from station j, the mean of this probability distribution 

is the expected batch size of batches that come from station j to station i: 

( )1 1 j

j ji
Bji k

ji

k P
K

P
=

− −
   (Formula 27) 
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Similarly, if we calculate the variance of this distribution and divide it by the 

square of average ( BjiK ), we have the SCV of the batch size of batches that come to 

station i from station j ( 2
BjiC ): 

( )( )2
1 1 1 jk

ji j ji ji ji
Bji

j ji

P k P P P
C

k P
− − + − −

=    (Formula 28) 

This equation for 2
BjiC  is used to calculate 2

AiC  in Formula 22 in Section 4.4.1.1. 

Finally, to calculate AiK , the average batch size of batches that come to station i from 

all upstream stations, we make use of the simplest way, which is the average based on 

the proportion of the total flow rate associated with each batch size. In this way,  

1

i

Ai Bji Bji
j SAi

K Kλ
λ ∈

= ∑    (Formula 29) 

i

Ai Bji
j S

λ λ
∈

= ∑ is from Formula 26. Additionally, Formula 29 is similar to the formula 

introduced in Section 3.2 for multiple batch arrival streams. 
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4.6 Waiting time for mixed arrival and individual process service  

As we have previously mentioned, for stations with mixed arrivals and individual 

processing, residents arrive to the workstation in batches and individually. The arrival 

batches may come from different batch service process workstations, and the batch 

sizes from each workstation may vary due to the routing probabilities. There are also 

individual arrivals from individual service process workstations.  The workstation has 

multiple, parallel servers that serve residents individually.  

To analyze this case, we model all of the arrivals as batches and divide the waiting 

times into two parts: CTq and WIBT.  

CTq is the average time that batches hold in a queue until a server becomes 

available, and each batch must wait to get to the head of the queue, at which point they 

are “opened” and individual entities enter the server’s queue 

Wait-in-batch-time or WIBT is the average time that a resident spends in the batch 

from the time that the batch “opens” until the resident begins service. 

In the Section 4.1 and 4.2, we estimated WIBT for some specific and general cases 

and concluded that Formulas 21 and 22 are suitable to calculate the WIBT for this type 

of queueing system. 

In this section, we estimate CTq, the average time that batches hold in a queue until 

they get to the head of the queue.  
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We can estimate CTq for [ ] / /1XG G  with Formula 3 from Section 2.2.4, while we 

don’t have any estimate for [ ] / /XG G m .  

2
21

2 1
ei i

qi ai Ai i
Ai i

c uCT c K t
K u

⎛ ⎞⎛ ⎞
= +⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

      (Formula 3) 

Our approach in this section to estimate the time that batches spend in the queue is 

that we model the [ ] / /XG G m  workstation as a [ ] / /1XG G system by combining the 

multiple parallel servers into one fast server that can process residents with a modified 

process time distribution that has a mean of iT .  

In other words, since for a [ ] / /1XG G  system, it takes Ai iK t min to serve a batch 

because of having a single server, in a [ ] / /XG G m system, it takes roughly iT  min 

between opening up a batch and leaving the last entity of the batch from the station. 

By estimating iT  , we can make use of Formula 3 to estimate CTq, for 

[ ] / /XG G m as follows: 

2
21

2 1
ei i

qi ai i
Ai i

c uCT c T
K u

⎛ ⎞⎛ ⎞
= +⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

 

To estimate the iT , our methodology is to run simulations with various 

specifications for some scenarios to compare the results for the CTq, and to extract a 

general formula for iT . 

The purpose of carrying out these experiment types is to find the approximate 

behavior of iT  versus factors such as the number of servers, utilization, arrival batch 
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size and process time to come up with a general iT  formula that corresponds to all of 

the cases. 

We will again use the notation and relationships from Section 4.1. 

4.6.1 Experiments  

In this section, we make use of the same 3 types of computational experiments 

carried out in Section 4.2 to estimate WIBT.  

In these simulation experiments, we use a discrete-event simulation model of the 

station. Each type of experiment consists of a number of sets and each set includes 

several scenarios.  

As a reminder, experiment type one consisted of 8 sets that we named set 1 to set 8. 

Experiment type two included 2 sets that we named sets 9 and 10. Finally, experiment 

type three used sets 11 and 12. 

For each scenario, we ran a simulation model with 10 replications and a confidence 

interval of 95%, each 1,000,000 minutes long with the warm-up periods of 500,000 

minutes. All the results in this section are in terms of minute. 
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4.6.1.1 First type of experiment 

In the first type of simulation, we have different sets with a constant number of 

servers, processing time, and utilization. The arrival batch size and batch arrival rate 

are the variables within each set of scenarios.  

Among the 8 sets of simulation of scenarios, the utilization ranges from 25% up to 

93%. In each set, the arrival batch size varied from 1 to 13 or 16, the number of 

servers had a one of the fixed size of 3, 4, 6, 8, 10, 12, and the interarrival times and 

processing time were exponentially distributed.  

Tables 70 to 77 show the CTq from the simulation model with its upper and lower 

bound of 95% of confidence interval for each scenario in Set 1 to 8. The tables also 

describe other specifications for the scenarios and the name of the scenarios. 

 
Table 70. Observed CTq and specifications for Scenarios 1-1-1 to 1-1-13 (Set 1) 
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 c
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%
 c

on
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al
 

1-1-1 0.50 4 1 25.00% 2 0.014 0.002 0.026 
1-1-2 0.25 4 2 25.00% 2 0.045 0.01 0.08 
1-1-3 0.16 4 3 25.00% 2 0.082 0.009 0.155 
1-1-4 0.12 4 4 25.00% 2 0.138 0.048 0.228 
1-1-5 0.1 4 5 25.00% 2 0.208 0.118 0.298 
1-1-6 0.084 4 6 25.00% 2 0.273 0.203 0.343 
1-1-7 0.072 4 7 25.00% 2 0.355 0.255 0.455 
1-1-8 0.0625 4 8 25.00% 2 0.429 0.329 0.529 
1-1-9 0.056 4 9 25.00% 2 0.505 0.415 0.595 
1-1-10 0.05 4 10 25.00% 2 0.592 0.502 0.682 
1-1-11 0.046 4 11 25.00% 2 0.679 0.619 0.739 
1-1-12 0.042 4 12 25.00% 2 0.756 0.686 0.826 
1-1-13 0.039 4 13 25.00% 2 0.014 0.002 0.026 
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Table 71. Observed CTq and specifications for Scenarios 1-2-1 to 1-2-13 (Set 2) 

 

 

 

 

 

 

 

Table 72. Observed CTq and specifications for Scenarios 1-3-1 to 1-3-13 (Set 3) 
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 c
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1-2-1 0.50 6 1 50.00% 6 0.204 0.192 0.216 
1-2-2 0.25 6 2 50.00% 6 0.466 0.376 0.556 
1-2-3 0.16 6 3 50.00% 6 0.735 0.645 0.825 
1-2-4 0.12 6 4 50.00% 6 1.062 0.952 1.172 
1-2-5 0.1 6 5 50.00% 6 1.38 1.28 1.48 
1-2-6 0.084 6 6 50.00% 6 1.844 1.754 1.934 
1-2-7 0.072 6 7 50.00% 6 2.244 2.024 2.464 
1-2-8 0.0625 6 8 50.00% 6 2.631 2.201 3.061 
1-2-9 0.056 6 9 50.00% 6 3.014 2.894 3.134 

1-2-10 0.05 6 10 50.00% 6 3.577 3.457 3.697 
1-2-11 0.046 6 11 50.00% 6 3.967 3.567 4.367 
1-2-12 0.042 6 12 50.00% 6 4.6 4.4 4.8 
1-2-13 0.039 6 13 50.00% 6 4.875 4.775 4.975 
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 c
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1-3-1 0.50 3 1 58.33% 3.5 0.937 0.925 0.949 
1-3-2 0.25 3 2 58.33% 3.5 1.574 1.354 1.794 
1-3-3 0.17 3 3 58.33% 3.5 2.337 2.107 2.567 
1-3-4 0.13 3 4 58.33% 3.5 2.941 2.621 3.261 
1-3-5 0.10 3 5 58.33% 3.5 3.792 3.392 4.192 
1-3-6 0.08 3 6 58.33% 3.5 4.393 4.173 4.613 
1-3-7 0.07 3 7 58.33% 3.5 5.098 4.698 5.498 
1-3-8 0.06 3 8 58.33% 3.5 6.183 5.983 6.383 
1-3-9 0.06 3 9 58.33% 3.5 6.871 6.751 6.991 
1-3-10 0.05 3 10 58.33% 3.5 7.677 7.577 7.777 
1-3-11 0.05 3 11 58.33% 3.5 8.001 7.911 8.091 
1-3-12 0.04 3 12 58.33% 3.5 9.231 9.131 9.331 
1-3-13 0.04 3 13 58.33% 3.5 9.643 9.433 9.853 
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Table 73. Observed CTq and specifications for Scenarios 1-4-1 to 1-4-16 (Set 4) 

 

Table 74. Observed CTq and specifications for Scenarios 1-5-1 to 1-5-13 (Set 5) 
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1-4-1 0.75 12 1 62.50% 10 0.212 0.2 0.224 
1-4-2 0.38 12 2 62.50% 10 0.507 0.287 0.727 
1-4-3 0.25 12 3 62.50% 10 0.85 0.62 1.08 
1-4-4 0.19 12 4 62.50% 10 1.269 0.949 1.589 
1-4-5 0.15 12 5 62.50% 10 1.67 1.27 2.07 
1-4-6 0.13 12 6 62.50% 10 2.115 1.895 2.335 
1-4-7 0.11 12 7 62.50% 10 2.66 2.26 3.06 
1-4-8 0.09 12 8 62.50% 10 3.169 2.969 3.369 
1-4-9 0.08 12 9 62.50% 10 3.695 3.575 3.815 

1-4-10 0.08 12 10 62.50% 10 4.298 4.198 4.398 
1-4-11 0.07 12 11 62.50% 10 4.748 4.658 4.838 
1-4-12 0.06 12 12 62.50% 10 5.327 5.227 5.427 
1-4-13 0.06 12 13 62.50% 10 5.938 5.838 6.038 
1-4-14 0.05 12 14 62.50% 10 6.431 6.341 6.521 
1-4-15 0.05 12 15 62.50% 10 7.152 7.072 7.232 
1-4-16 0.05 12 16 62.50% 10 7.981 7.882 8.08 
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1-5-1 0.50 4 1 68.75% 5.5 1.785 1.773 1.797 
1-5-2 0.25 4 2 68.75% 5.5 3.1 3.065 3.135 
1-5-3 0.17 4 3 68.75% 5.5 4.248 4.175 4.321 
1-5-4 0.13 4 4 68.75% 5.5 5.684 5.594 5.774 
1-5-5 0.10 4 5 68.75% 5.5 6.872 6.782 6.962 
1-5-6 0.08 4 6 68.75% 5.5 7.97 7.9 8.04 
1-5-7 0.07 4 7 68.75% 5.5 9.265 9.165 9.365 
1-5-8 0.06 4 8 68.75% 5.5 11.934 11.834 12.034 
1-5-9 0.06 4 9 68.75% 5.5 13.29 13.2 13.38 

1-5-10 0.05 4 10 68.75% 5.5 13.926 13.836 14.016 
1-5-11 0.05 4 11 68.75% 5.5 15.81 15.75 15.87 
1-5-12 0.04 4 12 68.75% 5.5 17.107 17.037 17.177 
1-5-13 0.04 4 13 68.75% 5.5 17.922 17.822 18.022 
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Table 75. Observed CTq and specifications for Scenarios 1-6-1 to 1-6-13 (Set 6) 

 

 

 

 

 

 

 

Table 76. Observed CTq and specifications for Scenarios 1-7-1 to 1-7-13 (Set 7) 
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1-6-1 0.75 10 1 75.00% 10 1.245 1.233 1.257 
1-6-2 0.38 10 2 75.00% 10 2.216 2.181 2.251 
1-6-3 0.25 10 3 75.00% 10 3.26 3.187 3.333 
1-6-4 0.19 10 4 75.00% 10 4.509 4.419 4.599 
1-6-5 0.15 10 5 75.00% 10 5.804 5.714 5.894 
1-6-6 0.13 10 6 75.00% 10 6.632 6.562 6.702 
1-6-7 0.11 10 7 75.00% 10 8.132 8.032 8.232 
1-6-8 0.09 10 8 75.00% 10 9.105 9.005 9.205 
1-6-9 0.08 10 9 75.00% 10 10.791 10.701 10.881 

1-6-10 0.08 10 10 75.00% 10 11.95 11.86 12.04 
1-6-11 0.07 10 11 75.00% 10 13.327 13.267 13.387 
1-6-12 0.06 10 12 75.00% 10 14.853 14.783 14.923 
1-6-13 0.06 10 13 75.00% 10 15.936 15.836 16.036 

Sc
en

ar
io

 n
am

e 

Batch 
arrival rate 

per min 

N
um

be
r 

of
 

se
rv

er
s 

A
rr

iv
al

 b
at

ch
 si

ze
 

U
til

iz
at

io
n 

M
ea

n 
Pr

oc
es

s 
tim

e(
m

in
) 

CTq  
From  

simulation

L
ow

er
 b

ou
nd

 fo
r 

95
%

 c
on

fid
en

ce
 

in
te

rv
al

 
U

pp
er

 b
ou

nd
 fo

r 
95

%
 c

on
fid

en
ce

 
in

te
rv

al
 

1-7-1 0.50 4 1 81.25% 6.5 5.451 5.439 5.463 
1-7-2 0.25 4 2 81.25% 6.5 8.372 8.292 8.452 
1-7-3 0.17 4 3 81.25% 6.5 11.83 11.73 11.93 
1-7-4 0.13 4 4 81.25% 6.5 15.119 14.819 15.419 
1-7-5 0.10 4 5 81.25% 6.5 17.377 17.077 17.677 
1-7-6 0.08 4 6 81.25% 6.5 22.972 22.472 23.472 
1-7-7 0.07 4 7 81.25% 6.5 25.271 25.071 25.471 
1-7-8 0.06 4 8 81.25% 6.5 26.523 25.723 27.323 
1-7-9 0.06 4 9 81.25% 6.5 28.651 27.751 29.551 

1-7-10 0.05 4 10 81.25% 6.5 34.115 33.135 35.095 
1-7-11 0.05 4 11 81.25% 6.5 36.037 35.137 36.937 
1-7-12 0.04 4 12 81.25% 6.5 43.92 43.02 44.82 
1-7-13 0.04 4 13 81.25% 6.5 47.043 45.843 48.243 
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Table 77. Observed CTq and specifications for Scenarios 1-8-1 to 1-8-13 (Set 8) 

 

 

 

 

 

 

4.6.1.2 Second type of experiment 

In the second type of simulation, we have 2 different sets with constant arrival 

batch sizes, processing time and utilization. On the other hand, our variable here is the 

number of servers, which changes in each scenario.  

In this experiment, the utilization is either 60% or 80%. In each set, the number of 

servers varied from 1 to 13, the arrival batch was 4 or 6, and the interarrival times and 

processing time were exponentially distributed.  

Table 78 and 79 show the CTq from the simulation model with its upper and lower 

bound of 95% of confidence interval for each scenario. The tables also describe other 

simulations’ specifications of the scenarios and the name of the scenarios. 
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1-8-1 0.75 8 1 93.75% 10 17.228 17.216 17.24 
1-8-2 0.38 8 2 93.75% 10 23.076 22.996 23.156 
1-8-3 0.25 8 3 93.75% 10 31.693 31.393 31.993 
1-8-4 0.19 8 4 93.75% 10 42.508 42.008 43.008 
1-8-5 0.15 8 5 93.75% 10 50.418 49.718 51.118 
1-8-6 0.13 8 6 93.75% 10 61.89 61.09 62.69 
1-8-7 0.11 8 7 93.75% 10 69.736 69.136 70.336 
1-8-8 0.09 8 8 93.75% 10 81.86 81.16 82.56 
1-8-9 0.08 8 9 93.75% 10 95.102 94.302 95.902 
1-8-10 0.08 8 10 93.75% 10 92.161 91.181 93.141 
1-8-11 0.07 8 11 93.75% 10 107.442 106.242 108.642 
1-8-12 0.06 8 12 93.75% 10 121.138 120.238 122.038 
1-8-13 0.06 8 13 93.75% 10 124.898 123.698 126.098 
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Table 78. Observed CTq and specifications for Scenarios 2-1-1 to 2-1-13 (Set 9) 

 

 

 

 

 

 

 

Table 79. Observed CTq and specifications for Scenarios 2-2-1 to 2-2-13 (Set 10) 
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2-1-1 0.10 1 6 60.00% 1 5.196 5.106 5.286 
2-1-2 0.20 2 6 60.00% 1 2.398 2.32 2.476 
2-1-3 0.30 3 6 60.00% 1 1.383 1.293 1.473 
2-1-4 0.40 4 6 60.00% 1 0.947 0.903 0.991 
2-1-5 0.50 5 6 60.00% 1 0.701 0.658 0.744 
2-1-6 0.60 6 6 60.00% 1 0.531 0.491 0.571 
2-1-7 0.70 7 6 60.00% 1 0.418 0.398 0.438 
2-1-8 0.80 8 6 60.00% 1 0.352 0.342 0.362 
2-1-9 0.90 9 6 60.00% 1 0.293 0.263 0.323 

2-1-10 1.00 10 6 60.00% 1 0.247 0.217 0.277 
2-1-11 1.10 11 6 60.00% 1 0.207 0.167 0.247 
2-1-12 1.20 12 6 60.00% 1 0.179 0.149 0.209 
2-1-13 1.30 13 6 60.00% 1 0.154 0.114 0.194 

Sc
en

ar
io

 n
am

e 

Batch arrival 
rate 

per min 

N
um

be
r 

of
 

se
rv

er
s 

A
rr

iv
al

 b
at

ch
 si

ze
 

U
til

iz
at

io
n 

M
ea

n 
Pr

oc
es

s 
tim

e(
m

in
) 

CTq  
From  

simulation

L
ow

er
 b

ou
nd

 fo
r 

95
%

 c
on

fid
en

ce
 

in
te

rv
al

 
U

pp
er

 b
ou

nd
 fo

r 
95

%
 c

on
fid

en
ce

 
in

te
rv

al
 

2-2-1 0.20 1 4 80.00% 1 10.216 10.006 10.426 
2-2-2 0.40 2 4 80.00% 1 4.899 4.769 5.029 
2-2-3 0.60 3 4 80.00% 1 2.952 2.862 3.042 
2-2-4 0.80 4 4 80.00% 1 2.085 1.985 2.185 
2-2-5 1.00 5 4 80.00% 1 1.569 1.489 1.649 
2-2-6 1.20 6 4 80.00% 1 1.316 1.226 1.406 
2-2-7 1.40 7 4 80.00% 1 1.1 1.08 1.12 
2-2-8 1.60 8 4 80.00% 1 0.857 0.847 0.867 
2-2-9 1.80 9 4 80.00% 1 0.73 0.7 0.76 

2-2-10 2.00 10 4 80.00% 1 0.684 0.654 0.714 
2-2-11 2.20 11 4 80.00% 1 0.638 0.598 0.678 
2-2-12 2.40 12 4 80.00% 1 0.5 0.47 0.53 
2-2-13 2.60 13 4 80.00% 1 0.53 0.49 0.57 
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4.6.1.3 Third type of experiment 

In the third type of simulation, we have 2 different sets with constant arrival batch 

sizes and processing time. On the other hand, our variable here is the number of 

servers and utilization, which changes in each scenario. Since the batch interarrival 

time doesn’t vary as we had in experiment type 2, the utilization is a variable in 

addition to the number of the servers. 

In this experiment, the batch arrival rate of either 0.2 or 0.15 (batch/min). In each 

set, the arrival batches size varied from 1 to 13, the arrival batch size was 4 or 6 and 

the interarrival times and processing time were exponentially distributed.  

Table 80 and 81 show the CTq from the simulation model with its upper and lower 

bound of 95% of confidence interval for each scenario.  

 
Table 80. Observed CTq and specifications for Scenarios 3-1-1 to 3-1-13 (Set 11) 
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3-1-1 0.20 1 4 96.00% 1.2 86.281 85.941 86.621
3-1-2 0.20 2 4 48.00% 1.2 1.143 1.053 1.233 
3-1-3 0.20 3 4 32.00% 1.2 0.267 0.257 0.277 
3-1-4 0.20 4 4 24.00% 1.2 0.078 0.077 0.079 
3-1-5 0.20 5 4 19.20% 1.2 0.026 0.025 0.027 
3-1-6 0.20 6 4 16.00% 1.2 0.01 0.009 0.011 
3-1-7 0.20 7 4 13.71% 1.2 0.004 0.0036 0.0044
3-1-8 0.20 8 4 12.00% 1.2 0.001 0.0008 0.0013
3-1-9 0.20 9 4 10.67% 1.2 0 0 0 

3-1-10 0.20 10 4 9.60% 1.2 0 0 0 
3-1-11 0.20 11 4 8.73% 1.2 0 0 0 
3-1-12 0.20 12 4 8.00% 1.2 0 0 0 
3-1-13 0.20 13 4 7.38% 1.2 0 0 0 
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Table 81. Observed CTq and specifications for Scenarios 3-2-1 to 3-2-13 (Set 12) 

 

 

 

 

 

4.6.2 Summary and results 

In the section, we find some estimates for iT  and compare the numerical results 

from our best estimate with the simulation results brought in Tables 70 to 81.  

The good initial guess for iT  is that for the high utilization when the servers are 

always busy, from the perspective of the servers, we can replace the batch arrivals 

with individual arrivals with the arrival rate of AiK times the batch arrival rate.  

In this way, our [ ] / /XG G m  system is changed to a / /G G m . Since we our 

assumption is to have a imaginary server with the serving time of iT , this iT   for high 

utilization cases can be Ai i

i

K t
m
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3-2-1 0.15 1 6 90.00% 1 31.637 31.2970 31.9770 
3-2-2 0.15 2 6 45.00% 1 1.223 1.1330 1.3130 
3-2-3 0.15 3 6 30.00% 1 0.32 0.3100 0.3300 
3-2-4 0.15 4 6 22.50% 1 0.115 0.1140 0.1160 
3-2-5 0.15 5 6 18.00% 1 0.047 0.0460 0.0480 
3-2-6 0.15 6 6 15.00% 1 0.019 0.0180 0.0200 
3-2-7 0.15 7 6 12.86% 1 0.008 0.0076 0.0084 
3-2-8 0.15 8 6 11.25% 1 0.004 0.0037 0.0043 
3-2-9 0.15 9 6 10.00% 1 0.002 0.0017 0.0023 
3-2-10 0.15 10 6 9.00% 1 0.001 0.0007 0.0013 
3-2-11 0.15 11 6 8.18% 1 0 0 0 
3-2-12 0.15 12 6 7.50% 1 0 0 0 
3-2-13 0.15 13 6 6.92% 1 0 0 0 
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Therefore, we propose that we must have a factor of utilization in iT  to be 

eliminated when it is close to 1.  

In this way, iT  should be something like CAi i
i

i

K t u
m

, which C  can be itself a function 

of different factors such as utilization, number of servers or batch arrival size. 

The point is that when the im =1, iT  should be Ai iK t  (Formula 3). We found out so 

many possible guesses for C , but among them one of them is better than the others 

and it corresponds to all the cases in our clinics. 

In this thesis, we assume the best possible C  is 11
im

−  and our chosen estimate for 

the iT  will be (1 1/ )imAi i
i

i

K t u
m

− . 

Tables 82 to 93 show the comparison between the simulation results for CTq from 

Tables 70 to 81 and our best estimate for CTq in which iT  will be (1 1/ )imAi i
i

i

K t u
m

− .  
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Table 82. Simulations results and CTq estimate for Scenarios 1-1-1 to 1-1-13 (Set 1) 

 

 

 

   
 

 
 
 
 
 
 
 

 
 

 
 

Table 83. Simulations results and CTq estimate for Scenarios 1-2-1 to 1-2-13 (Set 2) 

Sc
en

ar
io

 #
 

CTq from  
Simulation 

CTq for 
  

(1 1/ )K t miAi iT ui imi

−
=

  

 
Absolute 

error  
 

Percentage error% 

1-1-1 0.014 0.059 0.045 320.90% 
1-2-1 0.045 0.088 0.043 96.42% 
1-3-1 0.082 0.118 0.036 43.72% 
1-4-1 0.138 0.147 0.009 6.75% 
1-5-1 0.208 0.177 0.031 15.01% 
1-6-1 0.273 0.206 0.067 24.45% 
1-7-1 0.355 0.236 0.119 33.60% 
1-8-1 0.429 0.265 0.164 38.19% 
1-9-1 0.505 0.295 0.210 41.66% 

1-10-1 0.592 0.324 0.268 45.25% 
1-11-1 0.679 0.354 0.325 47.93% 
1-12-1 0.756 0.383 0.373 49.34% 
1-13-1 0.837 0.412 0.425 50.72% 

Sc
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io
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CTq from 
Simulation 

CTq for 
  

(1 1/ )K t miAi iT ui imi

−
=

 
 

Absolute error 
 

Percentage error% 

1-2-1 0.204 0.561 0.357 175.11% 
1-2-2 0.466 0.842 0.376 80.65% 
1-2-3 0.735 1.122 0.387 52.72% 
1-2-4 1.062 1.403 0.341 32.12% 
1-2-5 1.380 1.684 0.304 22.01% 
1-2-6 1.844 1.964 0.120 6.52% 
1-2-7 2.244 2.245 0.001 0.04% 
1-2-8 2.631 2.526 0.105 4.01% 
1-2-9 3.014 2.806 0.208 6.90% 

1-2-10 3.577 3.087 0.490 13.71% 
1-2-11 3.967 3.367 0.600 15.12% 
1-2-12 4.600 3.648 0.952 20.70% 
1-2-13 4.875 3.929 0.946 19.41% 
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Table 84. Simulations results and CTq estimate for Scenarios 1-3-1 to 1-3-13 (Set 3) 

 

 

 

 

 

 
 
 

 

Table 85. Simulations results and CTq estimate for Scenarios 1-4-1 to 1-4-16 (Set 4) 
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CTq from  
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CTq for 
  

(1 1/ )K t miAi iT ui imi

−
=

 
 

Absolute error 
 

Percentage error% 

1-3-1 0.937 1.140 0.203 21.70% 
1-3-2 1.574 1.710 0.136 8.67% 
1-3-3 2.337 2.281 0.056 2.41% 
1-3-4 2.941 2.851 0.090 3.07% 
1-3-5 3.792 3.421 0.371 9.79% 
1-3-6 4.393 3.991 0.402 9.15% 
1-3-7 5.098 4.561 0.537 10.53% 
1-3-8 6.183 5.131 1.052 17.01% 
1-3-9 6.871 5.702 1.169 17.02% 

1-3-10 7.677 6.272 1.405 18.31% 
1-3-11 8.001 6.842 1.159 14.49% 
1-3-12 9.231 7.412 1.819 19.71% 
1-3-13 9.643 7.982 1.661 17.22% 
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−
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Absolute error 
 

Percentage error% 

1-4-1 0.212 0.903 0.691 325.82% 
1-4-2 0.507 1.354 0.847 167.08% 
1-4-3 0.850 1.805 0.955 112.41% 
1-4-4 1.269 2.257 0.988 77.84% 
1-4-5 1.670 2.708 1.038 62.17% 
1-4-6 2.115 3.160 1.045 49.39% 
1-4-7 2.660 3.611 0.951 35.75% 
1-4-8 3.169 4.062 0.893 28.19% 
1-4-9 3.695 4.514 0.819 22.16% 

1-4-10 4.298 4.965 0.667 15.52% 
1-4-11 4.748 5.416 0.668 14.08% 
1-4-12 5.327 5.868 0.541 10.15% 
1-4-13 5.938 6.319 0.381 6.42% 
1-4-14 6.431 6.770 0.339 5.28% 
1-4-15 7.152 7.222 0.070 0.98% 
1-4-16 7.981 7.673 0.308 3.86% 
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Table 86. Simulations results and CTq estimate for Scenarios 1-5-1 to 1-5-13 (Set 5) 

 

 

 

 

 

 

 

Table 87. Simulations results and CTq estimate for Scenarios 1-6-1 to 1-6-13 (Set 6) 
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CTq from  
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CTq for 
  

(1 1/ )K t miAi iT ui imi

−
=

 
 

Absolute error 
 

Percentage error% 

1-5-1 1.785 2.284 0.499 27.95% 
1-5-2 3.100 3.426 0.326 10.51% 
1-5-3 4.248 4.568 0.320 7.53% 
1-5-4 5.684 5.710 0.026 0.45% 
1-5-5 6.872 6.852 0.020 0.29% 
1-5-6 7.970 7.994 0.024 0.30% 
1-5-7 9.265 9.136 0.129 1.40% 
1-5-8 11.934 10.278 1.656 13.88% 
1-5-9 13.290 11.420 1.870 14.07% 

1-5-10 13.926 12.562 1.364 9.80% 
1-5-11 15.810 13.703 2.107 13.32% 
1-5-12 17.107 14.845 2.262 13.22% 
1-5-13 17.922 15.987 1.935 10.79% 
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CTq from  
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CTq for 
  

(1 1/ )K t miAi iT ui imi

−
=

 
 

Absolute error 
 

Percentage error% 

1-6-1 1.245 2.316 1.071 86.00% 
1-6-2 2.216 3.474 1.258 56.75% 
1-6-3 3.260 4.631 1.371 42.07% 
1-6-4 4.509 5.789 1.280 28.39% 
1-6-5 5.804 6.947 1.143 19.69% 
1-6-6 6.632 8.105 1.473 22.21% 
1-6-7 8.132 9.263 1.131 13.90% 
1-6-8 9.105 10.421 1.316 14.45% 
1-6-9 10.791 11.578 0.787 7.30% 

1-6-10 11.950 12.736 0.786 6.58% 
1-6-11 13.327 13.894 0.567 4.25% 
1-6-12 14.853 15.052 0.199 1.34% 
1-6-13 15.936 16.210 0.274 1.72% 
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Table 88. Simulations results and CTq estimate for Scenarios 1-7-1 to 1-7-13 (Set 7) 

 

 

 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

Table 89. Simulations results and CTq estimate for Scenarios 1-8-1 to 1-8-13 (Set 8) 
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CTq from  
Simulation 

CTq for 
  

(1 1/ )K t miAi iT ui imi

−
=

 
 

Absolute error 
 

Percentage error% 

1-7-1 5.451 6.026 0.575 10.55% 
1-7-2 8.372 9.039 0.667 7.97% 
1-7-3 11.830 12.052 0.222 1.88% 
1-7-4 15.119 15.065 0.054 0.35% 
1-7-5 17.377 18.079 0.702 4.04% 
1-7-6 22.972 21.092 1.880 8.19% 
1-7-7 25.271 24.105 1.166 4.61% 
1-7-8 26.523 27.118 0.595 2.24% 
1-7-9 28.651 30.131 1.480 5.17% 

1-7-10 34.115 33.144 0.971 2.85% 
1-7-11 36.037 36.157 0.120 0.33% 
1-7-12 43.920 39.170 4.750 10.81% 
1-7-13 47.043 42.183 4.860 10.33% 

Sc
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CTq from  
Simulation 

CTq for 
  

(1 1/ )K t miAi iT ui imi

−
=

 
 

Absolute error 
 

Percentage error% 

1-8-1 17.228 17.721 0.493 2.86% 
1-8-2 23.076 26.581 3.505 15.19% 
1-8-3 31.693 35.441 3.748 11.83% 
1-8-4 42.508 44.301 1.793 4.22% 
1-8-5 50.418 53.162 2.744 5.44% 
1-8-6 61.890 62.022 0.132 0.21% 
1-8-7 69.736 70.882 1.146 1.64% 
1-8-8 81.860 79.742 2.118 2.59% 
1-8-9 95.102 88.603 6.499 6.83% 

1-8-10 92.161 97.463 5.302 5.75% 
1-8-11 107.442 106.323 1.119 1.04% 
1-8-12 121.138 115.183 5.955 4.92% 
1-8-13 124.898 124.044 0.854 0.68% 
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Table 90. Simulations results and CTq estimate for Scenarios 2-1-1 to 2-1-13 (Set 9) 

 

 

 

 

 

 

 

 
Table 91. Simulations results and CTq estimate for Scenarios 2-2-1 to 2-2-13 (Set 10) 
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 #
 

CTq from  
Simulation 

CTq for 
  

(1 1/ )K t miAi iT ui imi

−
=

 
 

Absolute error 
 

Percentage error% 

2-1-1 5.196 5.250 0.054 1.04% 
2-1-2 2.398 2.033 0.365 15.21% 
2-1-3 1.383 1.245 0.138 9.98% 
2-1-4 0.947 0.895 0.052 5.52% 
2-1-5 0.701 0.698 0.003 0.46% 
2-1-6 0.531 0.572 0.041 7.66% 
2-1-7 0.418 0.484 0.066 15.81% 
2-1-8 0.352 0.420 0.068 19.24% 
2-1-9 0.293 0.370 0.077 26.43% 

2-1-10 0.247 0.332 0.085 34.21% 
2-1-11 0.207 0.300 0.093 44.92% 
2-1-12 0.179 0.274 0.095 53.03% 
2-1-13 0.154 0.252 0.098 63.65% 

Sc
en

ar
io

 #
 

CTq from  
Simulation 

CTq for 
  

(1 1/ )K t miAi iT ui imi

−
=

 
 

Absolute error 
 

Percentage error% 

2-2-1 10.216 10.000 0.216 2.11% 
2-2-2 4.899 4.472 0.427 8.71% 
2-2-3 2.952 2.873 0.079 2.69% 
2-2-4 2.085 2.115 0.030 1.43% 
2-2-5 1.569 1.673 0.104 6.63% 
2-2-6 1.316 1.384 0.068 5.16% 
2-2-7 1.100 1.180 0.080 7.26% 
2-2-8 0.857 1.028 0.171 19.99% 
2-2-9 0.730 0.911 0.181 24.82% 

2-2-10 0.684 0.818 0.134 19.60% 
2-2-11 0.638 0.742 0.104 16.33% 
2-2-12 0.500 0.679 0.179 35.84% 
2-2-13 0.530 0.626 0.096 18.12% 
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Table 92. Simulations results and CTq estimate for Scenarios 3-1-1 to 3-1-13 (Set 11) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 

Table 93. Simulations results and CTq estimate for Scenarios 3-2-1 to 3-2-13 (Set 12) 
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CTq from  
Simulation 

CTq for 
  

(1 1/ )K t miAi iT ui imi

−
=

 
 

Absolute error 
 

Percentage error% 

3-1-1 86.281 72.000 14.281 16.55% 
3-1-2 1.143 0.959 0.184 16.07% 
3-1-3 0.267 0.220 0.047 17.54% 
3-1-4 0.078 0.081 0.003 4.12% 
3-1-5 0.026 0.038 0.012 46.46% 
3-1-6 0.010 0.021 0.011 106.81% 
3-1-7 0.004 0.012 0.008 210.19% 
3-1-8 0.001 0.008 0.007 699.86% 
3-1-9 0.000 0.005 0.005 #DIV/0! 

3-1-10 0.000 0.004 0.004 #DIV/0! 
3-1-11 0.000 0.003 0.003 #DIV/0! 
3-1-12 0.000 0.002 0.002 #DIV/0! 
3-1-13 0.000 0.002 0.002 #DIV/0! 

Sc
en

ar
io

 #
 

CTq from  
Simulation 

CTq for 
  

(1 1/ )K t miAi iT ui imi

−
=

 
 

Absolute error 
 

Percentage error% 

3-2-1 31.637 31.500 0.137 0.43% 
3-2-2 1.223 0.960 0.263 21.46% 
3-2-3 0.320 0.224 0.096 29.98% 
3-2-4 0.115 0.083 0.032 27.83% 
3-2-5 0.047 0.039 0.008 17.08% 
3-2-6 0.019 0.021 0.002 11.49% 
3-2-7 0.008 0.013 0.005 58.93% 
3-2-8 0.004 0.008 0.004 104.96% 
3-2-9 0.002 0.006 0.004 179.04% 

3-2-10 0.001 0.004 0.003 296.36% 
3-2-11 0.000 0.003 0.003 #DIV/0! 
3-2-12 0.000 0.002 0.002 #DIV/0! 
3-2-13 0.000 0.002 0.002 #DIV/0! 
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We note that, for Sets 1 to 12, in general the results are good. We have a large 

percentage error only when the absolute error is small. Therefore, according to these 

results, we make use of the obtained estimate for iT  which is (1 1/ )imAi i
i

i

K t u
m

− in this 

thesis to calculate the CTq for the stations with mixed arrival and individual process 

service. 
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4.7 Summary of the chapter 

Because this chapter contains many tables and figures, it will be useful to 

summarize the findings and results in this chapter as follows:  

1. Batch arrivals to the individual process stations with multiple numbers of 

servers.  

2. Self service stations 

3. Batch processing stations 

4.7.1 Batch arrivals with individual process stations with multiple servers. 

Since we divided the total waiting time in this type of station into two sections 

(CTq and WIBT), we summarize the results for each separately.  

Recall that CTq is the average time that batches wait in queue before opening.  

4.7.1.1 Summary for WIBT  

• Tables 6 to 8 in Section 4.1.1 showed that the Formula 10 (the first formula for 

WIBT) would be a good estimate. 

• Based on Figures 16 to 32 in Section 4.2.3.1, we conclude that Formula 13 is a 

good estimate for WIBT for the first type of experiment. In this experiment, we have 

different sets with a constant number of servers, processing time, and utilization. The 

arrival batch size and batch arrival rate are the variables within each set of scenarios 

and the purpose of this experiment is to find a relationship between WIBT and the 

arrival batch size. 
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• From Tables 21 to 22 in Section 4.2.3.2, we conclude that Formula 17 is a 

good estimate for WIBT for the second type of experiment. In this experiment, we 

have 2 different sets with constant arrival batch sizes, processing time and utilization. 

On the other hand, our variable here is the number of servers, which changes in each 

scenario. The purpose of this experiment is to find a relationship between the WIBT 

and the number of servers. 

• From Tables 25 to 26 in Section 4.2.3.3, we conclude that Formula 17 is also a 

good estimate for WIBT for the third type of the experiment in which we have 2 

different sets with constant arrival batch sizes, processing time. Our variable here is 

the number of servers and utilization, which changes in each scenario. Since the batch 

interarrival time doesn’t vary as we had in experiment type 2, the utilization is a 

variable in addition to the number of the servers. 

• Tables 30 to 41 in Section 4.2.3.4 showed that Formulas 21 and 4 were 

respectively good estimates for WIBT for all cases that had multiple and single 

number of servers in a batch arrival-individual process station.  

4.7.1.2 Summary for CTq  

From Tables 82 to 93 in Section 4.6, we found an estimate for iT  the average 

processing time of one fast server, by combing the multiple numbers of servers in a 

batch arrival-individual processing station. These tables also showed that utilizing this 

estimate in Formula 3 (instead of Ai iK t ) was a good approximation for CTq. 
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4.7.2 Self service station 

From Tables 42 to 46 in Section 4.3, we extracted some estimates for the 

interdeparture time SCV for the self service station. These tables also demonstrated 

that the estimate having aω  as the weight factor was a better approximation than the 

others. 

4.7.3 Batch processing stations 

From previous sections, for this type of the station, the arrival entities (jobs or 

items) should wait until they form a batch with the same size as the batch processing 

size.  

After the batch formation, we have only the batches that have to wait in queue to 

get to the head of the line to be served in batches. To calculate the CTq for each 

formed batch, we must first estimate the batch formation variability. 

Finally, after the batch processing, each served batch has to be broken into the 

smaller batches based on the routing probabilities, resident departure rates, and the 

size of the batches. Therefore, we need to follow an approach to study this process. 

According to above, we summarize the findings and results for batch processing 

station into three sections. 

4.7.3.1 Summary for WTBT (wait-to-batch-time) 

In Section 4.4.2, we introduced Formula 24 which was the best estimate for WTBT 

for the cases with multiple batch arrivals from different streams. 
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4.7.3.2 Summary for batch formation variability  

• Tables 50 to 60 in Section 4.1.1.1 compared the first two found estimates ( 1
iX  

and 2
iX ) for the batch formation variability (SCV) at batch processing stations. 

• Tables 61 to 69 in Section 4.4.1.4 showed that the fourth estimate ( 4
iX ) for 

batch formation variability was the best one. 

4.7.3.3 Summary for our branching process  

In Section of 4.5 of this chapter, we introduced our applied branching or splitting 

process of individuals after the batch processing station. It should be said again that 

the utilized probability distribution to model this process was a conditional binomial 

distribution with positive batch size, and, based on that, we were able to find out 

Formulas 25, 26, 27, 28 and 29 to model the our branching process completely.  
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 Chapter 5: Model formulation 

In this chapter, which is the main objective of this thesis, we bring our findings and 

formulas from Chapter 4 and integrate them with other existing models for queueing 

system. In order to construct our final model of the mass dispensing and vaccination 

clinic, we divide the clinic queueing systems into 6 different types of stations whose 

related equations and formulas can be either completely different or similar to each 

other. 

These new types of queueing systems are defined based on all combinations of 

arrival process and service process. The arrival process may be individual or groups 

from multiple arrival streams with batch size variability. The service process may be 

individual service, batch service, or self service. As noted before, for queueing 

systems with the mixed arrival and batch service process, we study only the case 

where the average arrival batch size is less than the batch processing size. 

In this chapter, first, we introduce the approach that we are going to utilize to 

construct our complete clinic models. Then, we analyze mathematically the behavior 

of all 6 types of queueing systems.  

Finally, we validate our clinic model by running some long-run simulation for 

specific clinic examples and comparing the simulation results with the estimates 

obtained from our mathematical equations.  
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In order to have a consistent notation among all 6 types of queueing systems, we 

changed some of the notation from the previous chapter and added some new notation 

to be able to study the behavior of all types of queueing systems perfectly. 

5.1 Our approach and assumptions   

This section introduces our approach, which is generally a type of decomposition 

method, introduced in Chapter 2, as well as some assumptions required to model mass 

dispensing and vaccination clinics. 

We will make use of parametric decomposition approach (PDA), which is a type of 

decomposition. Networks of queues have proven to be useful models to analyze the 

performance of complex systems such as computers, communications networks, and 

production job shops.  

There is a network of nodes and directed arcs. The nodes represent service 

facilities, and the arcs represent flows of customers, jobs, or packets. There is also one 

external node, which is not a service facility, representing the outside world. 

Customers enter the network on directed arcs from the external node to the internal 

nodes, move from node to node along the internal directed arcs, and eventually leave 

the system on one of the directed arcs from an internal node to the external node. The 

flows of customers on the arcs are assumed to be random so that they can be 

represented as stochastic processes. 

If all servers are busy at a node when a customer arrives, then the customer joins a 

queue and waits until a server is free. When there is a free server, that customer begins 

service, which is carried out without interruption. Successive service times at each 
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node are assumed to be random variables, which may depend on the type of customer 

but which otherwise are independent of the history of the network and are mutually 

independent and identically distributed. After the customer completes service, s/he 

goes along some directed arc from that node to another node. The customer receives 

service in this way from several internal nodes and then eventually leaves the network. 

A picture of a typical network (without the external node) is given in Figure 47. 

 

Figure 47. An open network of queues (modified from Whitt, 1983a) 

An important feature of this model is that we have movement from node j to node i 

in forward flow not backward flow. In other words, as we have in our mass dispensing 

and vaccination clinics, customers or jobs cannot return to a node where they 

previously received service. 

Our clinic model makes the following assumptions: 

 Assumption 1. The network is open rather than closed. Customers come from 

outside, receive service at one or more nodes, and eventually leave the system. 
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Assumption 2. There are no buffer capacity constraints. There is no limit on the 

number of customers that can be in the entire network, and each service facility has 

unlimited waiting space. 

Assumption 3. There can be any number of servers at each node. They are identical 

independent servers, each serving either one customer or a batch of customers at a 

time. In other words, stations can have batch service processes with different sizes.  

Assumption 4. Customers are selected for service at each facility according to the 

first-come, first-served discipline. 

Assumption 5. Customers can be created or combined at the node with the different 

coming batch sizes and also an arrival can cause more than one departure. In other 

words, we can have the multiple arrival streams for a workstation. 

Assumption 6. The arrival batch size from each arrival stream can have variability. 

In addition, as we see in Section 5.5.1, the variability in batch size can be generated in 

superposition (aggregation or merging) and splitting (branching) process.  

Assumption 7. The customers can arrive to the first workstation either one by one or 

in batches. 

Assumption 8. Workstation service times and interarrival times follow a general 

distribution that is characterized by its first two moments.  

Assumption 9. From Curry and Deuermeyer (2002), we know that it’s better to have 

the batch move (transfer) after the stations with batch service process instead of 

splitting those served batches to individuals. 
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Assumption 10. As we have previously mentioned we only have forward flow not 

backward flow in our model. 

Assumption 11. All of the analysis and calculations is under the steady state 

condition. 

Our basic approach, which is a simplified version of one introduced by Whitt 

(1983a) as QNA1, is to represent all the arrival processes and service-time 

distributions by a few parameters. However, Whitt doesn’t have any kinds of mixed 

arrival, batch service process, and stations with infinite number of servers, which we 

do allow. 

 The congestion at each facility is then described by approximate formulas that 

depend only on these parameters. The parameters for the internal flows are determined 

by applying an elementary calculus that transforms the parameters for each of the 

three basic network operations: superposition (merging), splitting, and flow through a 

queue (departure).  

These basic operations are depicted in Figure 48. In this figure (a) is superposition 

or merging, (b) is splitting (branching or decomposition) and (c) is departure or flow 

through a queue. 

                                                 
1 Queueing network analyzer 



         

 163 
 

 

Figure 48. Basic network operations (Whitt, 1983a) 
 

When the network has queues in series, the basic transformations can be applied 

successively one at a time, but in general it is necessary to solve a system of equations 

or use an iterative method. To summarize, there are four key elements in this general 

approach: 

1. Parameters characterizing the flows and nodes that will be readily available in 

applications and that have considerable descriptive power in approximations of the 

congestion at each node. 

2. Approximations for multiple servers queues based on the partial information 

provided by the parameters characterizing the arrival process and the service-time 

distribution at each node. 

3. A calculus for transforming the parameters to represent the basic network 

operations: merging, splitting, and departure. 

4. A synthesis algorithm to solve the system of equations resulting from the basic 

calculus applied to the network. 
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In this approach, we use two parameters to characterize the arrival processes and 

the service times, one to describe the rate and the other to describe the variability. For 

the service times, the two parameters are the first two moments. However, we actually 

work with the mean service time and the squared coefficient of variation, which is the 

variance of the service time divided by the square of its mean.  

For the arrival processes, the parameters are associated with renewal-process 

approximations. The first two parameters are equivalent to the first two moments of 

the renewal interval (interval between successive arrival points1) in the approximating 

renewal process. The equivalent parameters we use are the arrival rate, which is the 

reciprocal of the renewal-interval mean, and the squared coefficient of variation, 

which is the variance of the renewal interval divided by the square of its mean.  

To sum up, we can say there are three basic steps in the decomposition methods: 

1. Characterization of the arrival process: At each station the arrival process 

resulting from the superposition of different streams arriving to that station is 

(approximately) determined. 

2.  Analysis of the queue: Based on the characteristics of the arrival process 

determined in step 1, the queueing effects at the station are (approximately) computed. 

3.  Determination of the departure process: The characteristics of the departure 

process of each product from the station are (approximately) determined. The 

departure streams in turn become arrivals at some other stations. 

                                                 
1 Interarrival time 
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Several variants of the decomposition method can be developed by varying the 

implementation of the three steps. One of the most often used procedures is the 

parametric decomposition approach (PDA). 

5.1.1 Parametric decomposition approach (PDA) 

 The approximation method in QNA is perhaps best described as a parametric-

decomposition method. Under the parametric decomposition approach (PDA), in 

addition to assuming that each node can be treated as being stochastically independent 

(the decomposition assumption), the arrival process to, the departure process from, 

and the flow between each node are approximated by renewal processes. Further, it is 

assumed that two parameters: mean and variance of the interarrival and service time 

distributions are adequate to estimate the performance measures at each node. Hence 

to compute the performance measures we need to (i) approximate all the flows in the 

network, and (ii) compute the performance measures based on the first two moments 

of the interarrival and service times. 

 Accordingly, the description of the PDA will be in two parts: flow analysis and 

estimation of performance measures. 

5.1.1.1 Flow analysis 

As noted above, we have 3 main operations in decomposition approach: 

superposition (merging), departure and splitting. We will delve into each of them in 

this section. 
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Let jip  be the probability of a job going to station i, upon completion of service at 

station j. For the renewal process approximating the flow from station j to station i, 

let jiL  and 2
jic be the mean and the squared coefficient of variation (SCV) of the 

renewal interval length (interarrival time).  

Denote the flow rate from node j to i by jir  which 1/ji jir L= . In PDA, the 

superposition of the flows arriving at a node is further approximated by a renewal 

process. We let ir  and 0ir  denote the total flow rate and the flow rate from external 

environment into i respectively.  The flow rates jir are determined by the following 

traffic equations: 

1

0
1

i

i i j ji
j

ji j ji

r r r p

r r p

−

=

= +

=

∑
 

While determining the flow rates is straightforward, approximations are needed for 

the SCVs. In particular we need procedures for approximating by a renewal process 

each of the following: (i) superposition of renewal processes, (ii) departure processes 

from queues, and (iii) flow along each arc out of a node (splitting the departure 

stream). 

(i) Approximations for Superposition of Renewal Processes 

In PDA only the mean and the variance of the approximating renewal interval need 

to be determined. The mean is straightforward to compute: the arrival rate of the 

approximating process must equal the arrival rate of the superposition process. Whitt 
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(1982) considers two basic procedures for determining the variance of the 

approximating process. He calls them micro and macro approaches. 

Let nS  be the time of the thn arrival after time 0, and ( )nV S the variance of the 

random variable nS . Under the macro approach the variance of the approximating 

renewal interval is set at ( ) /n nLim V S n→∞ .  

The macro approach is also called the asymptotic method. Henceforth we refer to 

the limiting variance and SCV as the asymptotic variance and asymptotic SCV. 

Under the micro approach the variance of the approximating renewal interval is set 

at 1( )V S .The time interval starting from 0 until the first arrival after 0 is referred to as 

the stationary interval of the superposition process. Henceforth we refer to 1( )V S as the 

stationary interval variance and the corresponding SCV as the stationary interval SCV. 

The asymptotic SCV can be computed readily from the SCVs of the interarrival 

times of each of the process being merged. We let 2
aic and 2

jic  denote the total 

interarrival time SCV and interarrival time SCV from station j into i respectively. The 

asymptotic SCV of the arrivals to station i can be given by: 

1
2

12

i

ji ji
j

ai
i

c r
c

r

−

==
∑

 

When the two approaches, micro and macro, were used to estimate performance 

measures of queueing systems, Whitt (1982) and Albin (1981, 1984) found that 

neither method dominated. Based on their experiments they discovered that a convex 
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combination of the SCVs provided by the micro and macro approaches yielded the 

best results. This approach has been called the hybrid approach (Albin, 1984). 

If we let 2
asc , 2

sc  and 2
hc , denote the asymptotic, stationary, and hybrid SCV 

respectively. Then, 2 2 2(1 )h as sc wc w c= + − , where 0 1w≤ ≤ , and w  is a function of the 

utilization of the server and the number of arrival streams being merged. 

 As the number of arrival processes being merged goes to infinity, the stationary 

interval is asymptotically correct. On the other hand as the utilization goes to 1, the 

asymptotic limit is asymptotically correct. The weighting factor w  is so chosen that as 

the number of process being merged goes to infinity, w  goes to zero, and as the 

utilization goes to 1, w  goes to 1. 

In the queueing network analyzer proposed by Whitt (1983a) the following 

approximation is used: 

( ) ( )

2 2

2

12

Utilization of station i

1

1
1 4 1 1
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i
ai i ji ji
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⎜ ⎟= ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

=

∑

∑

             (Formula 30) 

We should say that, Formula 30 is our best choice to calculate the aggregate 

interarrival time SCV in this thesis. 
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(ii) Approximations for the departure process 

The departure process from a queue is in general not a renewal process.  However, 

in PDA it is approximated by a renewal process. The mean of the approximating 

renewal interval is easy to determine. Two alternatives have been considered for the 

variance: the stationary departure interval variance and the asymptotic limit.  

Whitt (1984) shows that for G/G/m queues with utilization less than 1, the 

asymptotic variance of the departure process is the same as the variance of the 

interarrival times. Hence, once again the asymptotic limit is easy to determine. 

However the computational tests indicated that the stationary interval provides better 

approximation, and that was adopted by Whitt (1983a).  

Unfortunately, determining the stationary interval distribution of the departure 

stream is not easy, and instead of computing the exact stationary interdeparture 

interval SCV, approximations are employed.  

Combining the formula for the stationary interval due to Marshall (1968) with the 

Kraemer-Langenbach-Belz (1976) approximation for the expected waiting time, Whitt 

(1983a) obtains the following approximation formula for the interdeparture time SCV. 

If we let 2
dic and 2

eic to be interdeparture time SCV from station i and service time 

SCV at station i, respectively, we have:   

2 2 2 2 2(1 )di i ei i aic u c u c= + −
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It can be concluded that if workstation i is always busy, so that if iu =1, 

then 2 2
di eic c= . Similarly, if the machine is (almost) always idle, so that if iu =0, 

then 2 2
di aic c= . For intermediate utilization levels, 0 < iu < 1, 2

dic is a combination of 

2
aic and 2

eic . 

When there is more than one server (m>1), the following formula from Hopp and 

Spearman (2001) is a reasonable way to estimate 2
dic  for station i: 

2 2
2 2 2 ( 1)1 (1 )( 1) i ei

di i ai
i

u cc u c
m
−

= + − − +           (Formula 31) 

Whitt (1983a) suggested modifying Formula 31 to Formula 32 to have a better 

estimate for interdeparture time SCV. Formula 32 shows the new formula for 2
dic , 

which we utilize in this thesis for stations with batch service process with any types of 

arrival and also stations with individual arrival and individual service process. 

2 2
2 2 2 (max( ,0.2) 1)1 (1 )( 1) i ei

di i ai
i

u cc u c
m

−
= + − − +         (Formula 32) 

For stations with batch arrival process and individual service process, the only 

existing formula for individual interdeparure time SCV is from Curry et al. (2002), for 

stations with single server. This formula for the station i is: 

2 2 2 2 2 2(1 ) ( 1)(1 )Ai Aidi i bi i ei ic K u c u c K u= − + + − −          (Formula 33) 

  In Formula 33, AiK  is the average batch arrival size to station i and 2
bic  is the 

batch interarrival time SCV to station i.  
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From simulation results, we see that Formula 33 can be used approximately for 

stations with multiple servers as well. For simplicity, we can have a single server with 

a faster process time instead of having m servers. Additionally, a simple algebra with 

service time variance and mean of service time shows that the service time SCV for 

stations with a single server is equal to the service time SCV for stations with multiple 

servers. That is why Formula 33 can be used for all stations with any number of 

servers with batch arrival and individual service process approximately.  

In the modeling section, we will make use of Formula 33 to calculate 2
dic for any 

stations with (mixed) batch arrival and individual service process discipline. 

(iii) Approximations for flow along each arc (splitting) 

If the routing is Markovian, and the departures from the station are approximated 

by a renewal process, the flow along each arc will be a renewal process. Under these 

assumptions, the interdeparture time along each arc out of the station will be the 

random sum of interdeparture times from the station. The number of interdeparture 

times (from the station) that have to be convoluted is of course geometrically 

distributed. Hence the SCVs for the flows along each arc can readily be expressed in 

terms of the interdeparture time SCV from the source station and the routing 

probabilities. 

From Sevcik et al. (1977), the simplest interarrival time SCV from station j to 

station i ( 2
jic ) equation is defined below as a function of 2

djc : 

2 2 1ji ji dj jic p c p= + −          (Formula 34) 
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If the departure process is Poisson (i.e., 2
djc = 1), then Formula 34 is exact and 

gives 2
jic  =1. Note that as 1jip → , then Formula 34 results in 2 2

ji djc c→ . That is, as 

the expected departure rates from station  j to station i tend to the merged expected 

departure rate from station  j, the interarrival time SCV from station  j to station i also 

tends to the merged interdeparture time SCV from station  j.  

Furthermore, as 0jip → , then Formula 34 results in 2 1jic → , indicating that as the 

proportion of flow between stations j and i tends to zero, the departure process 

between these two stations tends to a Poisson process.  

Formula 34 can be a good estimation for analyzing the splitting process after 

stations with individual service process and one arrival stream. So in this thesis, it is a 

good formula for analyzing the splitting process after stations with mixed arrival and 

individual service process.  

When we have a mixed arrival process, we change all these streams to one 

imaginary stream with the size of the average batch size of coming batches from all 

arrival streams. However, Formula 34 is not a good estimation for stations with the 

multiple arrival streams. 

In order to improve Formula 34 and find a better estimate when we want to 

calculate the 2
jic  after stations with multiple arrival streams, intuitively, we assume 

each of arrival streams to a station similarly can be considered as a different class of a 

product. Under this assumption, it’s possible to make use of an alternative expression 
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for the splitting process of multiple classes with deterministic routings introduced by 

Segal and Whitt (1989) for individual service process. 

 If we let 2
jce  be the average of the external interarrival time SCV of the classes at 

station j, weighted by the expected number of visits of each class at station j, 2
jic can 

be: 

2 2 2 2 2(1 ) (1 )ji ji dj ji ji aj ji jc p c p p c p ce= + − + −           (Formula 35) 

1
2

2 1

j

nj nj
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j
j
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r

−

==
∑

 

In this thesis, we assume that a station can have multiple arrival streams. So, we 

can make use of Formula 36 for all stations with individual arrivals and individual 

service process. 

2

2 2 2 2(1 ) (1 ) j

nj nj
n S

ji ji dj ji ji aj ji
j

r c
c p c p p c p

r
∈

= + − + −
∑

        (Formula 36) 

 

From Formula 30, we have only one stream arriving to station j, then 

22
j ajce c= and then interestingly Formula 35 will be simplified to Formula 37, which 

is similar to Formula 34. Formula 37 can be a good estimate for 2
jic in self service 

stations with any type of the arrival process. 

2 2 2(1 )ji ji dj ji ajc p c p c= + −         (Formula 37) 

However, for analyzing the splitting process after stations whose batch processing 

size is bigger than 1 ( 1jk > ), none of afore-mentioned formulas for 2
jic is a good 
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estimation. So, we need to have a new estimation for this case, since Formulas 34, 35 

and 36 are for stations with individual service process ( 1jk = ).  

According to the branching approach described in Section 4.5, Formula 37 can be 

changed to its general form for a station with batch service process and a batch process 

size of jk . 

2 2 2(1 (1 ) ) (1 )j jk k
ji ji dj ji ajc p c p c= − − + −      (Formula 38) 

Formula 38 can be employed for the splitting process after stations with more than 

one arrival streams such as mixed arrival process, when according to Formula 35, 

22
j ajce c= . A good example of this situation is a station with a batch service process 

and mixed arrivals. We need to have the batch formation process before it. This 

makes 2
jce  equal to 2

ajc and changes both of them to 2
bjc (the batch interarrival time 

SCV of station  j after batch formation). In this way, we have to change Formula 38 to 

Formula 39, which has 2
bjc instead of 2

ajc . Formula 39 can be a good estimation when 

we have mixed arrivals (more than one arrival stream) to a batch service process in 

this thesis.  

We should emphasize again that we study only batch process where the average 

arrival batch size is less than the process batch process size.  

2 2 2(1 (1 ) ) (1 )j jk k
ji ji dj ji bjc p c p c= − − + −       (Formula 39) 
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Until now, we studied the splitting process for all the kinds of stations in this 

section, the only remaining type which has to be considered is stations with one 

individual arrival stream and batch service process.  

From Section 4.5 for the splitting process after the batch process stations and 

Formula 34, which is suitable for only one arrival stream, Formula 40 can be used for 

the splitting process after a station with an individual arrival process and a batch 

service process. 

  Formula 34 depends upon jip , the probability of an individual going from station j to 

station i. The probability of having a batch of at least individual moving to station i 

from station j is1 (1 ) .jk
jip− −  

Similarly, in Formula 34, the probability that the individual goes to some other 

station is (1 )jip− , while the probability of having no batches moving to station i from 

station j is (1 ) jk
jip− .This leads to Formula 40:  

2 2(1 (1 ) ) (1 )j jk k
ji ji dj jic p c p= − − + −        (Formula 40) 

5.1.1.2 Estimation of performance measures 

The performance measures at each station are estimated using approximations that 

are based on the first two moments of the interarrival and service times. A wide 

variety of approximations have been proposed for the analysis of G/G/m queues. From 

Hopp and Spearman (2001) we have (as a reminder it  is the average processing times 

of station i): 
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( )
2 2 12 2

(G/G/m )
2 1

im
ai ei i

qi i
i i

c c uCT t
m u

+ −⎛ ⎞⎛ ⎞+
= ⋅ ⋅⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

       (Formula 41)  

The CTq for G/G/1 is
( )

2 2

2 1
ai ei i i

i

c c u t
u

⎛ ⎞+
⋅⎜ ⎟ −⎝ ⎠

. Whitt (1984) and Bitran et al. (1989), 

propose a better approximation for CTq in G/G/ 1: 

( )
2 2

2 2
2

2 2

2

(G/G/1 ) .
2 1

2(1 )(1 )exp 1
3 ( )

1 1

ai ei i i
qi i

i

i ai
i ai

i ai ei

i ai

c c u tCT g
u

u cg if c
u c c

g if c

⎛ ⎞+
= ⋅⎜ ⎟ −⎝ ⎠

⎡ ⎤− − −
= <⎢ ⎥+⎣ ⎦
= ≥

      (Formula 42) 

For G/G/m we can divide the it  by im , so instead of Formula 41, we can create 

Formula 43: 

( )
2 2

2 2
2

2 2

2

(G/G/m )
2 1

2(1 )(1 )exp 1
3 ( )

1 1

ai ei i i
qi i

i i

i ai
i ai

i ai ei

i ai

c c u tCT g
m u

u cg if c
u c c

g if c

⎛ ⎞+
= ⋅⎜ ⎟ −⎝ ⎠

⎡ ⎤− − −
= <⎢ ⎥+⎣ ⎦
= ≥

   (Formula 43) 

 To improve Formula 43, we can the iu  in the numerator by 2 2 1im
iu + − . In this way, we 

estimate formula CTq using Formula 44: 
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( )
2 2 12 2

2 2
2

2 2

2

(G/G/m ) .
2 1

2(1 )(1 )exp 1
3 ( )

1 1

im
ai ei i i

qi i
i i

i ai
i ai

i ai ei

i ai

c c u tCT g
m u

u cg if c
u c c

g if c

+ −⎛ ⎞+
= ⋅⎜ ⎟ −⎝ ⎠

⎡ ⎤− − −
= <⎢ ⎥+⎣ ⎦
= ≥

(Formula 44) 

Furthermore, when the queueing system is heavily loaded, or iu  approaches 1, the 

heavy traffic approximation (Kollerstrom, 1974) of the queueing system states that the 

distribution of steady state waiting time in queue in a G/G/m system is approximately 

exponential with mean value of: 

2 2 2/ /(G/G/m )
2(1 )

ai i ei i i i
qi

i

c r c t r mCT
u

+
=

−
           (Formula 45) 

In Formula 45, ir  is the arrival rate at station i (residents per minute). We use Formula 

45 for stations with utilization higher than 90%.  

Therefore, our model uses Formula 44 and 45 for high utilization stations. The 

formulas change slightly depending upon the type of arrival process and type of 

service process.  
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5.2 Model description   

After introducing all of the approaches, findings, and formulas necessary to analyze 

the different types of stations, we present in this section the complete models for the 6 

different types of stations and estimate their performance measures. 

First, we bring in new more general notation to be able to manifest the behaviors of 

all 6 types of stations consistently. Most of the notation is similar to the notation used 

in previous sections. Finally, we present the 6 queueing systems that represent the 

types of stations found in mass dispensing and vaccination clinics. 

We use “i” throughout to denote a station, with 0 referring to the arrival process, 1 

through “I” referring to the stations in the clinic, and “I+1” referring to the exit.  The 

abbreviation “SCV” refers to the squared coefficient of variation.  The SCV of a 

random variable equals its variance divided by the square of its mean. 

5.2.1 Inputs 

P = Number of residents to be treated at the clinic (residents) 

H = Length of time interval that clinic will be providing treatment (hours) 

mi = Number of staff at station i  

ki = Processing batch size at station i 

ti = Mean process time at station i (minutes) for processing ki entities 
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σi
2 = Process time variance at station i (minutes2) 

dij = Distance from station i to station j (feet) 

v = Average walking speed (feet per second) 

pij = Routing probability from station i to station j 

k0 = Initial arrival batch size 

cB01
2 =Batch interarrival time SCV at station 1 

2
01BC  = SCV of the batch size of batches arriving to station 1 

5.2.2 Calculated quantities 

Si = Set of stations that send residents to station i  

ri = Arrival rate at station i (residents per minute) 

λBji = Batch flow rate from station j to station i (batches per minute) 

λAi = Batch arrival rate at station i (batches per minute) 

BjiK  = Average batch size of batches that come to station i from station j 

2
BjiC  = SCV of the batch size of batches that come to station i from station j 

AiK  = Average batch size of all batches that come to station i  
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2
AiC  = SCV of the batch size of all batches that come to station i  

2
aic  = Aggregate batch interarrival time SCV at station i 

2
bic  = interarrival time SCV for process batches at station i (after being formed) 

2
eic  = Process time SCV at station i for ki entities 

2
dic  = Interdeparture time SCV at station i for process batches 

2
Bjic  = Interarrival times SCV for batches that come to station i from station j 

mi’ = Minimum number of staff at station i to meet required throughput. 

ui = Utilization at station i 

WTBT i = Wait time to form a batch size of ki at station i (minutes)  

WIBT i = Wait in batch time at station i (minutes) 

 CTqi = Average queue time at station i (minutes) 

 Wi = Average time spent traveling to the next station after station i (minutes) 

 5.2.3 Outputs 

TH’ = Required throughput (residents per minute) 

CT i = Cycle time at station i (minutes) 



         

 181 
 

TCT = Total cycle time in clinic (minutes) 

WIP = Average number of residents in clinic 

R = Clinic capacity (residents per minute) 

The throughput required to treat the population in the given time is 60
PTH H

′ = .  

A key concept in the queueing network model is the flow of batches from on 

workstation to another.  An external arrival process and the departure of process 

batches from workstations may create move batches. The flow of batches from one 

workstation to another is characterized by the following: the rate at which batches 

flow, the variability of that flow (specifically, the interarrival times SCV), the mean 

batch size, and the SCV of the batch size. 

Si is the set of stations that send residents to station i: { }: , 0i jiS j j i p= < > . For the 

first station, { }1 0S = , representing the source from residents arrive. All arriving 

residents go to the first station.  Therefore, 01 1p = , while 0 0ip =  and 0 0B iλ =  for all i 

> 1. If the first station has a batch process, the SCV of batch size many be positive. 

01

1 01 0

1

1

1

/

0
2 2

B

A B

A

A

r TH

TH k

K k

C C

λ λ

′=

′= =

=

=

 

We calculated the arrival rates for the other stations based on the routing 

probabilities. 
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1 1

1 1

i i

i Bji Bji j ji
j j

r K r pλ
− −

= =

= =∑ ∑       (See Section 4.4.2, Formula 23) 

i

Ai Bji
j S

λ λ
∈

= ∑                           (See Section 4.5, Formula 26) 

1

i

Ai Bji Bji
j SAi

K Kλ
λ ∈

= ∑                (See Section 4.5, Formula 29) 

Following Whitt (1983a), we estimate the aggregate batch interarrival times SCV at 

each station as follows: 

( ) ( )

2 2

2

12

1

1
1 4 1 1

i

i

i
ai i Bji Bji

j SAi

i
i i

Bji
i

j S Ai

wc w c

w
u v

v

λ
λ

λ
λ

∈

−

∈

= − +

=
+ − −

⎛ ⎞⎛ ⎞
⎜ ⎟= ⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑

∑

    (See Section 5.1.1.1, Formula 30)     

We use station arrival rates to determine the minimum staff at each station: i i
i

i

rtm
k

′ =  

We then use user-selected staff levels mi to calculate station utilization: i i
i

i i

rtu
m k

=   

The process time SCV at each workstation can determined immediately:
2

2
2
i

ei
i

c
t
σ

=  
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The average time spent traveling to the next station after station i depend upon the 

routing probabilities and the average walking speed:  

1

1

1
60

I

i in in
n i

W p d
v

+

= +

= ∑  

To present the remainder of the model, we will discuss six cases that are 

distinguished by the arrival process and the service type (individual processing, batch 

processing or self service). 

1. Individual arrivals, individual service process 

2. Individual arrivals, batch service process 

3. Individual arrivals, self-service 

4. Mixed arrivals, individual service process 

5. Mixed arrivals, batch service process 

6. Mixed arrivals, self-service 
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5.2.4 Individual arrivals, individual service process 

In this case, residents arrive individually to the workstation.  The workstation has 

multiple, parallel servers that serve residents individually.  Thus, the workstation can 

be modeled as a G/G/m queueing system and we can use well-known results for this 

case. 

The arrival rate ri and interarrival time variability 2

aic  can be determined as 

discussed in outputs (Section 5.2.3). In this case, 1BjiK = , 2 0BjiC = and  for all the 

upstream workstations j that send residents to workstation i. Moreover, it’s obvious 

that Ai irλ = . 

The following approximation estimates the time that residents spend waiting for 

service: 

( )

2 2 12 2
.

2 1

mic c u tai ei i iCT gqi im ui i

+ −
+

=
−

⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
      (See Section 5.1.1.2, Formula 42) 

Where the parameter ig , suggested by Whitt (1984) and Bitran et al. (1989), equals 

1 if the interarrival time variability 2 1aic ≥ .  However, if 2 1aic < , then it can be 

determined as follows: 

( )
22 2 22 1 1 / 3i ai i ai eiu c u c c

g ei

⎛ ⎞⎛ ⎞ ⎛ ⎞
⎜ ⎟⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎝ ⎠
− − − +

=  

Additionally, from Section 5.1.1.2 for utilization higher than 90% from Section 

5.1.1.2, waiting time for service can be estimated by following term as well.  
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2 2 2/ /

2(1 )
ai Ai ei i Ai i

qi
i

c c t mCT
u

λ λ+
=

−
          (See Section 5.1.1.2, Formula 45) 

The cycle time at station i is: 

CT CT t Wi qi i i= + +  

For the interdeparture time SCV, as we had in Section 5.1.1.1, we use the 

interdeparture time variability estimate from Hopp and Spearman (2001) and adapt 

results from Whitt (1983a). The batch flow from workstation i to a downstream 

workstation n is characterized as follows: 

Bin i inr pλ =                                                                                  (See Section 4.5, Formula 25) 

( )( ) ( )
2

2 2 2 21 1 1 (0.2, ) 1
uic u c Max ci ai eidi mi

= + − − + −                    (See Section 5.1.1.1, Formula 32) 

( ) ( )21 12 2 2 21
1

p iinc p c p p c cin in in aiBin Bji Bjidi jAi
λ

λ

− −
∑= + − +
=

         (See Section 5.1.1.1, Formula 36) 

1BinK =  
2 0BinC =  
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5.2.5 Individual arrivals, batch service process 

In this case, residents arrive individually to the workstation.  The workstation has 

multiple, parallel servers.  Each server processes a group of residents simultaneously 

(thus, it is a parallel process batch).  We assume that the server processes only full 

batches.  The most common example in this domain is an education station in a mass 

smallpox vaccination clinic.  Each server is a staff person running video equipment in 

a classroom where residents watch a video about the smallpox vaccine. 

In this case, arriving residents form process batches of a fixed size, and then each 

batch waits for a server to process it. After processing, the batch leaves the 

workstation (see Section 4.4.2 for more details). 

As before, the arrival rate ri and interarrival time variability 2
cai  can be determined 

as discussed in outputs (Section 5.2.3). In this case, 1BjiK =  and 2 0BjiC =  for all 

upstream workstations j that send residents to workstation i, so consequently AiK  

equals to1. 

WTBTi  is the average time that residents spend waiting for to form a process batch: 

1
2
i

i
i

kWTBT
r
−

=        (See Section 4.4.2, Formula 24) 

The “arrival” of process batches (after they are formed) has less variability than the 

arrival of individual residents due to variability pooling.  
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From Section 4.4.1, the best found formula experimentally to calculate 2
bic , 

interarrival time SCV for process batches at station i after being formed, is: 

2
2 ai
bi

i

cc
k

=           (See Section 4.4.1, Formula 1Xi when K Ai =1)  

Once batches are formed, the queueing system is essentially a G/G/m system, so we 

use the same approximations as we had in previous section. The following 

approximation estimates the time that process batches spend waiting for service: 

( )
2 2 12 2

.
2 1

im
bi ei i i

qi i
i i

c c u tCT g
m u

+ −⎛ ⎞⎛ ⎞+
= ⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

 

Where the parameter ig , suggested by Whitt (1984) and Bitran et al. (1989), equals 

1 if the batch interarrival time variability 2
1cbi ≥ . However, if 2 1cbi < , then 

( )( ) ( )( )22 2 22 1 1 / 3u c u c ci i eibi bi
g ei

− − − +
=  

Similar to individual arrival/individual service process, for the cases with 

utilization higher than 90% from Section 5.1.1.2, waiting time for service can be 

yielded by the following equation (In this type of queueing system the arrival batch 

rate to the station after being formed is Ai

ik
λ

): 

              
2 2 2/ /( )

2(1 )
i bi Ai ei i Ai i i

qi
i

k c c t k mCT
u

λ λ+
=

−
          (See Section 5.1.1.2, Formula 45) 
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The cycle time at station i  includes the wait-to-batch time, the queue time, the 

process time, and the walking time: 

CT WTBT CT t Wi i qi i i= + + + . 

Residents leave this type of station in batches.  The move batch size varies due to 

the stochastic routing (See our batch branching approach in Section 4.5). 

  Not all of the residents in a particular process batch go to the same station.  The 

batch flow from workstation i to a downstream workstation n is characterized as 

follows: 

( )( )1 1 iki
Bin in

i

r p
k

λ = − −                                                 (See Section 4.5, Formula 25) 

( )( ) ( )
2

2 2 2 21 1 1 (0.2, ) 1i
di i bi ei

i

uc u c Max c
m

= + − − + −         (See Section 5.1.1.1, Formula 32) 

2 2(1 (1 ) ) (1 )i ik k
Bin in di inc p c p= − − + −                                 (See Section 5.1.1.1, Formula 40) 

( )1 1 i

i in
Bin k

in

k pK
p

=
− −

                                                      (See Section 4.5, Formula 27) 

( )( )2 1 1 1 ik
in i in in in

Bin
i in

p k p p p
C

k p
− − + − −

=                        (See Section 4.5, Formula 28) 
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5.2.6 Individual arrivals, self service  

In this case, residents arrive individually to the workstation.  The residents perform 

the process themselves without any external resources.  In this domain, an example 

would be a workstation where each resident must complete a form. Thus, as we 

studied in Section 4.3, the workstation can be modeled as a G/G/∞ queueing system. 

The arrival rate ri and interarrival time variability 2
cai  can be determined as 

discussed in outputs (Section 5.2.3). The only point is that to calculate 2
cai for self 

service station, iw  in Formula 30 should be 1. Moreover, 1BjiK =  and 2 0BjiC =  for all the 

upstream workstations j that send residents to workstation i.  The cycle time at station 

i is CT t Wi i i= + . 

To estimate the interdeparture time variability, we first take into account the 

following facts.  As a reminder, for a G/D/∞ system, the interdeparture time SCV 

equals the interarrival time SCV because the departure process is simply the arrival 

process shifted by a constant equal to the processing time. For a M/G/∞ system, the 

departure process is a Poisson process; thus the interdeparture time SCV equals 1.  For 

a G/G/∞ system, Whitt (1983a) suggests that the interdeparture time SCV approaches 

1 as the load (the arrival rate divided by the service rate) goes to infinity.  

 On the other hand, if the load is near 0, the service rate is relatively fast, implying 

that customers spend very little time in the system.  Thus, we would expect the 

interdeparture time SCV to equal the interarrival time SCV. These imply that, in the 

general case (a G/G/∞ system with moderate load), the interdeparture time SCV will 
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be somewhere between the interarrival time SCV and one, in which it will depend 

upon the load. Therefore, we conducted experiments to characterize this relationship 

and to examine various weights for interpolating between the arrival variability and 

one. Based on the results (Section 4.3.1), we decided to use the following 

approximation: 

i i ir tρ =       (See Section 4.3)  

( ) ( )
2 2 2 2

2 2
2 2

2 2
1

1 1

i ei i ei
di ai

i ei i ei

c cc c
c c

ρ ρ

ρ ρ

⎛ ⎞
⎜ ⎟

= − +⎜ ⎟
⎜ ⎟+ +
⎝ ⎠

      (See Section 4.3)  

We should point out that that since we have individual departure from self service 

stations; it behaves as if we had individual service process. From this, the batch flow 

from workstation i to a downstream workstation n is characterized as follows.  

      Bin i inr pλ =                     (See Section 4.5, Formula 25) 

2 2 2(1 )Bin in di in caic p c p= + −          (See Section 5.1.1.1, Formula 34) 

1BinK =  

2 0BinC =  
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5.2.7 Mixed arrivals, individual service process 

This case has a more general arrival process.  Residents arrive to the workstation in 

batches and individually. The arrival batches may come from different batch process 

workstations, and the batch sizes from each workstation can be random varying due to 

the routing probabilities. There are also individual arrivals from individual process 

workstations. The workstation has multiple, parallel servers that serve residents 

individually.  

To analyze this case we model all of the arrivals as batches.  Each batch must wait 

to get to the head of the queue, at which point it “opens” and at least one of the 

residents in the batch begins service.  The other residents must wait in the batch for a 

server.  

We calculated the variability (SCV) of the arriving batch size in Section 4.4.1.1 by 

adapting a formula from Fowler et al. (2002), who calculated the process time SCV 

for different products that arrive at different rates. 

( )2 2 2
2

11 1
i

Ai Bji Bji Bji
j SAi Ai

C C K
K

λ
λ ∈

= − + +∑   (See Section 4.4.1.1, Formula 22) 

The arrival rate ri and arrival variability 2
cai can be determined as discussed in 

outputs (Section 5.2.3).  

To estimate the time that batches spend in the queue, we model the workstation as a 

[ ] / /1XG G system by combining the multiple parallel servers into one fast server that 

can process residents with a modified process time distribution that has a mean of iT  
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(calculated below) and a SCV of 2
/C c KeiAi Ai+  from Buzacott and Shanthikumar 

(1993). 

1(1 )
imAi i

i i
i

K tT u
m

−

=  (See Section 4.6) 

2
21

2 1
ei i

qi ai Ai i i
Ai i

c uCT c C T g
K u

⎛ ⎞⎛ ⎞
= + +⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

     (See Section 5.1.1.2, Formula 42 when im =1) 

The queue time estimate, as suggested by Whitt (1984) and Bitran et al. (1989), 

includes the parameter ig , which equals 1 if the interarrival time SCV 2 1aic ≥ . 

Otherwise,  

( )( ) ( )( )22 2 22 1 1 / 3 /i ai i ai Ai ei Aiu c u c C c K

ig e
− − − + +

=  

Similar to other cases, for the individual process stations with mixed arrival and the 

utilization higher than 90% from Section 5.1.1.2, we can estimate the waiting time for 

batches spend in the queue by modeling the workstation as a G/G/1 system by 

combining the multiple parallel servers into one fast server that has a mean of iT  

mentioned earlier in this section. In this way, this waiting time can be yielded by: 

              

2
2 2/ ( )

2(1 )

ei
ai Ai Ai i Ai

Ai
qi

i

cc C T
KCT

u

λ λ+ +
=

−
          (See Section 5.1.1.2, Formula 45) 

When the batch reaches the front of the queue, it is opened. Some residents will go 

first, while others will wait. The average time spent waiting is the wait-in-batch-time.   
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According to our experiments and analysis for WIBT from Section 4.2 for general 

cases, the best WIBT yields from Formulas 4 and 21:   

      ( 1)  if =1
2

Ai i
i

K tWIBT m−
=           (See Sections 4.2.3.4 and 2.2.4, Formula 4). 

2

2

( 1)  if >1
(3 )

i

i

u
Ai i i

iu
i i

K t uWIBT m
u m

−

−

−
=

−
          (See Section 4.2.3.4, Formula 21)  

The cycle time at station i is i qi i i iCT CT WIBT t W= + + + . Using the interdeparture time 

SCV approximation from Curry and Deuermeyer (2002) in Section 5.1.1.1 for 

multiple servers, the batch flow from workstation i to a downstream workstation n is 

characterized as follows: 

Bin i inr pλ =                                                            (See Section 4.5, Formula 25) 

( )2 2 2 2 2 21 (1 ) ( 1)di Ai ai i i Ai i eic K c u u K u c= − + − − +    (See Section 5.1.1.1, Formula 33) 

2 2 1Bin in di inc p c p= + −                                           (See Section 5.1.1.1, Formula 34) 

1BinK =  

2 0BinC =  
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5.2.8 Mixed arrivals, batch service process 

This case has the more general arrival process and process batches. Residents arrive 

to the workstation in batches and individually. The arrival batches may come from 

different batch processing workstations, and the batch sizes from each workstation can 

be random varying due to the routing probabilities. There are also individual arrivals 

from individual processing workstations.  The workstation has multiple, parallel 

servers.  Each server processes a group of residents simultaneously (thus, it is a 

parallel process batch).  

As in the previous case, we model all of the arrivals as batches. Here, however, the 

arriving batches are combined into a process batch. Each arriving batch must wait to 

form the process batch. After it is formed, a process batch must wait to get to the head 

of the queue, at which point it begins service. 

Just as a reminder, in this thesis, we only study the mixed arrival with batch service 

workstation in which the average arriving batch size to the station is equal or smaller 

than the batch processing size of the station. 

   As before, we calculated the SCV of the arriving batch size by adapting a formula 

from Fowler et al. (2002) in Section 4.4.1.1. If the different products represent batches 

from different stations and we assume that the service time per resident is a constant, 

then the process time SCV is exactly the SCV of the batch size for arriving batches: 

( )2 2 2
2

1 1 1
i

Ai Bji Bji ji
j SAi Ai

C C k
K

λ
λ ∈

= + −∑    (See Section 4.4.1.1, Formula 22) 



         

 195 
 

Because the arrival batches are not the same as the process batches, residents must 

wait to form the process batches: 

1
2
i

i
i

kWTBT
r
−

=   (See Section 4.4.2, Formula 24) 

For the interarrival time SCV of process batches 2
cbi  (after they are formed), we will 

use the results from Section 4.4.1.1 to choose the best formula among them, which is: 

2 2

2

2

2 i

i

Bji Bji Bji
j SAi

Ai
i

Bji Bji
j S

cbi

K

K

c
K C
k

λ

λ

∈

∈

⎛ ⎞
⎜ ⎟
⎜ ⎟= +
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑

∑
        (See Section 4.4.1.1, Formula 4

Xi  ) 

The arrival rate ri and AiK  can be determined as discussed in outputs (Section 

5.2.3).  

Then, we estimate the queueing in the resulting G/G/m system: 

2 2 12 2

2 (1 )

im
bi ei i

qi i i
i i

c c uCT t g
m u

+ −⎛ ⎞⎛ ⎞+
= ⎜ ⎟⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠

   (See Section 5.1.1.2, Formula 42) 

The parameter ig , suggested by Whitt (1984) and Bitran et al. (1989), equals 1 if 

the batch interarrival time SCV 2 1bic ≥ .  However, if 2 1bic < , then 

( )( ) ( )( )22 2 22 1 1 / 3i bi i bi eiu c u c c

ig e
− − − +

=  

Similar to individual arrival/batch service process, for the cases with the utilization 

higher than 90% from Section 5.1.1.2, waiting time for service can be yielded by the 
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following equation (In this type of queueing system the arrival batch rate to the station 

after being formed is Ai Ai

i

K
k
λ

): 

              
2 2 2/( ) /( )

2(1 )
Ai Aii bi Ai ei i Ai i i

qi
i

k c K c t K k mCT
u

λ λ+
=

−
        (See Section 5.1.1.2, Formula 45) 

The cycle time at station i is i i qi i iCT WTBT CT t W= + + + . 

The batch flow from workstation i to a downstream workstation n is characterized 

as follows: 

( )( )1 1 iki
Bin in

i

r p
k

λ = − −                                                 (See Section 4.5, Formula 25) 

( )( ) ( )
2

2 2 2 21 1 1 (0.2, ) 1i
di i bi ei

i

uc u c Max c
m

= + − − + −         (See Section 5.1.1.1, Formula 32) 

2 2 2(1 (1 ) ) (1 )i ik k
Bin in di in bic p c p c= − − + −                           (See Section 5.1.1.1, Formula 39) 

( )1 1 i

i in
Bin k

in

k pK
p

=
− −

                                                      (See Section 4.5, Formula 27) 

( )( )2 1 1 1 ik
in i in in in

Bin
i in

p k p p p
C

k p
− − + − −

=                        (See Section 4.5, Formula 28) 
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5.2.9 Mixed arrivals, self service 

In this case, residents arrive to the workstation in batches and individually. The 

residents perform the process themselves without any external resources.  The cycle 

time at station i is i i iCT t W= + . Moreover, to calculate 2
cai  for self service station, iw  in 

Formula 30 should be 1.  

To estimate the interdeparture time variability, we adapt the estimate used in the 

self-service case (Section 4.3). The key change is that the interarrival time variability 

of individuals depends upon the batch size and the batch interarrival time variability. 

The only big assumption in the following formula is that, we assume the SCV of 

batch size arriving to self service station is so small, so it’s ignorable in our 

calculation. That is why; we don’t have any effect of  2
AiC  in the formula. 

i i ir tρ =    (See section 4.3) 

( )
( ) ( )

2 2 2 2
2 2

2 2
2 2

1 1
1 1

i ei i ei
di Ai ai Ai

i ei i ei

c cc K c K
c c

ρ ρ

ρ ρ

⎛ ⎞
⎜ ⎟

= + − − +⎜ ⎟
⎜ ⎟+ +
⎝ ⎠

   (See Section 4.3) 

We should point out that that since we have individual departure from self service 

stations; it behaves as if we had individual service process. 

The batch flow from workstation i to a downstream workstation n is characterized 

as follows: 

Bin i inr pλ =                     (See Section 4.5, Formula 25) 
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2 2 2(1 )Bin in di in caic p c p= + −          (See Section 5.1.1.1, Formula 34) 

1BinK =  

2 0BinC =  

We should say that we don’t have any numerical results and experiments for the 

mixed arrival with self service station. 

5.2.10 Clinic Performance Measures 

The clinic capacity is determined by bounds set by each station’s capacity and the 

relative arrival rates: 

1

1, ,
min i i

i I
i i

k m rR
t r=

⎧ ⎫
= ⎨ ⎬

⎩ ⎭…
 

Because of the stochastic routing, the clinic’s total cycle time is a weighted sum of 

the station cycle times: 

11

1 I

i i
i

TCT rCT
r =

= ∑  

The average number of residents in the clinic follows from Little’s Law:   

1WIP rTCT=  
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5.3 Model validation  

In order to evaluate this queueing network approximation, we compared the 

model’s results to the results from a discrete-event simulation package using Rockwell 

Software’s Arena® 5.00. To validate our formulas for our clinic modeling, we will 

carry out four different kinds of experiments including a few tests and scenarios for 

each one. In each of these experiments, we only have bus arrival process to the first 

station at the clinic. Moreover, we assume that the traveling time among stations is 

negligible in our calculations. 

 For the first experiment, we designed experiments for different scenarios for a 

mass smallpox vaccination clinic that includes batch processes. In this experiment, we 

relied on a time study of a mass smallpox vaccination clinic exercise to collect our 

needed data. In this exercise, we didn’t have any self service stations, and we assumed 

that the arrival bus size was fixed. 

For the remaining 3 experiments, we will have 2 tests for each one. In each of these 

tests, we design the test to have different combinations of stations to be able to 

validate thoroughly the 6 queueing cases proposed previously in Section 5.2. The 

major differences between the last 3 experiments and the first one are that, in the last 3 

experiments, we will have self service workstations. Additionally, we will have the 

arrival bus size variability. 

For each of these 4 experiments, we use the simulation results for the confidence 

interval of 95%. 
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 5.3.1 First experiment 

To obtain data for this experiment, we relied on a time study of a mass smallpox 

vaccination clinic exercise on June 21, 2004, by the Montgomery County, Maryland, 

DHHS.  From the exercise we collected data on the processing times at each 

workstation as well as measuring how long residents spent in the clinic. The exercise, 

which lasted a few hours, had hundreds of volunteers go through the clinic as 

residents.  No residents received actual vaccinations or medications.  

The model was tested at several levels of resident arrival rates, from 20% to 97.5% 

of clinic capacity under the different scenario. We ran 10 replications of 2000 hours, 

with 500 hours of warm-up time allowed to achieve steady state for each scenario.  

Data was recorded for mean total time and mean queueing time at each node, as well 

as mean time in system and mean system WIP.   

In our model of a mass smallpox vaccination clinic, residents arrived by bus. Each 

bus brought exactly 50 residents. Bus interarrival times were exponentially distributed.  

Table 94 describes each of the eight stations in the clinic. Table 95 shows the routing 

probabilities from one station to another (only station numbers are shown to save 

space). Table 96 lists the capacity of each station and its bound on the clinic capacity.  

The vaccination station is the bottleneck station, and the clinic capacity is 5.123 

residents per minute. 

We should say that in this experiment, we have 21 scenarios in which arrival rate 

starts from nearly its maximum rate (5.123 residents per min) and continues to the 

lower rates. 
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Table 94. Parameters for Mass Smallpox Vaccination Clinic (first experiment) 

Workstation 

N
um

be
r 

of
 S

ta
ff

 Mean 
service 
Time 
(min.) 

Service 
Time 
SCV 

Processing time distribution 
(min.) 

Batch 
processing 

size ki 

1. Triage 5 0.259 0.268 0.125+EXPO(0.134) 1 

2. Symptoms Room 3 1.213 0.264 0.59 + EXPO(0.623) 1 

3. Holding Room 3 3.800 1.000 EXPO(3.8) 1 

4. Registration 8 0.122 0.630 0.025+EXPO(0.0995) 1 

5. Education 8 24.000 0.111 18+EXPO(6) 30 

6. Screening 9 1.724 0.261 0.999 + GAMM(1.07, 0.678) 1 

7. Consultation 6 3.770 0.308 GAMM(1.16, 3.25) 1 

8. Vaccination 16 3.260 0.124 1 + GAMM(0.581, 3.89) 1 

 
 

 
 

Table 95. Routing table for Mass Smallpox Vaccination Clinic 
 To 

From 2 3 4 5 6 7 8 Exit 
1 0.048 0.032 0.921 0 0 0 0 0 
2  0 0.67 0 0 0 0 0.33 
3   0.65 0 0 0 0 0.35 
4    1.00 0 0 0 0 
5     1.00 0 0 0 
6      0.262 0.738 0 
7       0.941 0.059 
8        1.00 

 
 

 
 
 

Table 96. Capacity for Mass Smallpox Vaccination Clinic’s stations 

Workstation 
Station 
capacity 

(residents/min) 

Relative 
Throughput 

 

Bound on clinic 
capacity 

(residents/min) 
1. Triage 19.293 1.000 19.293 
2. Symptoms Room 2.473 0.048 51.849 
3. Holding Room 0.789 0.032 24.905 
4. Registration 65.844 0.973 67.659 
5. Education 10.000 0.973 10.276 
6. Screening 5.219 0.973 5.363 
7. Consultation 1.592 0.255 6.249 
8. Vaccination 4.908 0.958 5.123 
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Table 97 shows the average total cycle time in terms of minute for each entity in 

the clinic from simulation results and our clinic mathematical models as well as the 

percentage of error between them. 

Moreover, Figure 49 shows the total cycle time estimates from the queueing 

network model and the discrete event simulation for a variety of arrival rates. The plot 

for the simulation results includes error bars showing the 95% confidence interval on 

each estimate. 

 

Table 97. Comparison of total cycle time for mass smallpox vaccination clinic 

Scenario 
Arrival rate to 

the clinic 
(residents/min) 

 
Total cycle time 
from simulation  

 

 
Total cycle time 

from clinic mathematical 
model and formulas 

 

 
Pe

rc
en

ta
g

e 
er

ro
r 

%
 

 

1 5.00 253.23 126.17 50.18% 
2 4.85 126.85 96.25 24.13% 
3 4.75 99.06 86.23 12.96% 
4 4.60 79.95 76.65 4.12% 
5 4.50 69.87 72.24 3.41% 
6 4.25 60.51 59.32 1.97% 
7 4.17 58.62 57.46 1.99% 
8 3.57 48.87 49.19 0.64% 
9 3.13 45.69 46.05 0.80% 

10 2.78 44.48 44.59 0.26% 
11 2.63 44.14 44.17 0.07% 
12 2.50 44.01 43.88 0.31% 
13 2.27 43.66 43.56 0.22% 
14 2.00 43.83 43.51 0.73% 
15 1.85 44.05 43.64 0.92% 
16 1.67 44.50 44.00 1.12% 
17 1.52 45.03 44.49 1.19% 
18 1.43 45.56 44.86 1.53% 
19 1.25 46.72 45.91 1.74% 
20 1.11 47.88 47.07 1.69% 
21  1.00 49.25 48.30 1.94% 
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Cycle time from simulation (min) with lower and upper bound 
(confidence interval for 95%) 
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Figure 49. Comparison of total cycle time for mass smallpox vaccination clinic 

Due to the batching at the education station, total cycle time does not always 

decrease as the arrival rate decreases. At low arrival rates, there is significant waiting 

to form the education batches, which increases total cycle time. 

When the arrival rate is low to moderate, there is a small difference between the 

estimates from the queueing network model and the discrete event simulation.  
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As the arrival rate approaches the clinic capacity, the difference between the two 

estimates is large due almost entirely to different estimates for the cycle time at the 

vaccination station, which has the highest utilization (since it is the clinic bottleneck).   

5.3.2 Second experiment 

In this experiment, we have 7 workstations with different specifications. All of the 

workstations have individual service process and the fourth station is a self service 

station with individual arrival.  

The model was tested at several levels of resident arrival rates, from 20% to 94.5% 

of clinic capacity under the different scenario. We ran 10 replications of 4000 hours, 

with 1000 hours of warm-up time allowed to achieve steady state for each scenario. 

Data was recorded for mean total time and mean queueing time at each node, as well 

as mean time in system and mean system WIP.   

In this experiment consisting of 2 tests: Test 2-1 and Test 2-2, residents arrived by 

bus to the clinic. Each bus brought 20 residents with variability. Bus interarrival times 

were exponentially distributed and all of the service process distributions had gamma 

distributions to allow different process time SCV. The only difference between these 2 

tests is that in Test 2-1, the SCV of bus size is 0.05 (almost zero), while in Test 2-2, 

the SCV of bus size is 0.2. 

Table 98 describes each of the seven stations in the clinic. Table 99 shows the 

routing probabilities from one station to another. Table 100 lists the capacity of each 

station and its bound on the clinic capacity.  
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In this experiment, station number 7 is the bottleneck station, and the clinic 

capacity is 10.704 residents per minute. We should say that in this experiment, for 

each test we have 8 scenarios in which arrival rate starts from nearly its maximum rate 

(10.704 residents per min) and continues to the lower rates. 

 
 

Table 98. Parameters for constructed clinic (Second experiment) 

Workstation 
Number 

N
um

be
r 

of
 S

ta
ff

 Mean 
service 
Time 
(min.) 

Service 
Time 
SCV 

Processing time distribution 
(min.) 

Batch 
processi
ng size 

ki 

1 15 1 1.11 GAMM(0.9,1.11) 1 

2 9 1.752 0.52 GAMM (1.91,0.92) 1 

3 8 1.154 0.40 GAMM (2.5,0.46) 1 

4 (Self service) n/a 6 0.56 GAMM (1.8,3.33) 1 

5 5 2 1.00 GAMM (1,2) 1 

6 7 1.5 0.44 GAMM (2.25,0.67) 1 

7 9 2 0.50 GAMM (2,1) 1 

 
 
 

 
 

Table 99. Routing table for the clinic in the second experiment 
 To         

From 2 3 4 5 6 7 Exit 
1 0.200 0.300 0.500 0 0 0 0 
2   0.400 0 0 0.600 0 0 
3     0.700 0 0.000 0.300 0 
4       0.250 0.350 0.400 0 
5         0 0 1.00 
6           0 1.00 
7             1.00 

 
 
 
 

Table 100. Table capacity for the clinic’s stations in the second experiment 
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Workstation 
Station 
capacity 

(residents/min) 

Relative 
Throughput 

 

Bound on clinic 
capacity 

(residents/min) 
1 15 1.000 15 
2 5.137 0.200 25.685 
3 6.932 0.380 18.243 

4 (Self service) n/a 0.766 n/a 
5 2.5 0.192 13.055 
6 4.667 0.388 12.024 
7 4.500 0.420 10.704 

We should mention this point that since station number 4 is a self service 

workstation and we don’t have any servers, the capacity is not applicable (n/a) for self 

service station. 

5.3.2.1 Results for Test 2-1 

In Test 2-1, the SCV of arrival bus size is 0.05. Therefore, we model the bus arrival 

batch size distribution with 1+Poisson (19). Table 101 shows the average total cycle 

time in terms of minute for each entity in the clinic from simulation results (Test 2-1) 

and from our clinic mathematical models as well as the percentage of error between 

them. 

Moreover, Figure 50 shows the total cycle time estimates from the queueing 

network model and the discrete event simulation for a variety of arrival rates in Test 2-

1. The plot for the simulation results includes error bars showing the 95% confidence 

interval on each estimate. 
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Table 101. Comparison of total cycle time for the clinic (Test 2-1) 

Scenario 
Arrival rate to 

the clinic 
(residents/min) 

 
Total cycle time 
from simulation  

 

 
Total cycle time 

from clinic mathematical 
model and formulas 

 

 
Pe

rc
en

ta
g

e 
er

ro
r 

%
 

 

1 10.00 16.65 16.78 0.79% 
2 9.09 11.96 12.83 7.30% 
3 8.00 10.26 9.80 4.48% 
4 6.67 9.34 9.12 2.32% 
5 5.00 8.76 8.67 1.07% 
6 3.33 8.50 8.42 0.95% 
7 2.50 8.41 8.34 0.84% 
8 2.00 8.37 8.30 0.91% 

 

Cycle time from simulation (min) with lower and upper bound 
(confidence interval for 95%) 
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Figure 50. Comparison of total cycle time for the clinic (Test 2-1) 
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5.3.2.2 Results for Test 2-2 

In Test 2-2 the SCV of arrival bus size is 0.2. Therefore, we model the bus arrival 

batch size distribution with 100-Poisson (80).  

Table 102 shows the average total cycle time in terms of minute for each entity in 

the clinic from simulation results (Test 2-2) and from our clinic mathematical models 

as well as the percentage of error between them. 

Moreover, Figure 51 shows the total cycle time estimates from the queueing 

network model and the discrete event simulation for a variety of arrival rates in Test 2-

2. The plot for the simulation results includes error bars showing the 95% confidence 

interval on each estimate. 

 
 

Table 102. Comparison of total cycle time for the clinic (Test 2-2) 

Scenario 
Arrival rate to 

the clinic 
(residents/min) 

 
Total cycle time 
from simulation  

 

 
Total cycle time 

from clinic mathematical 
model and formulas 

 
 

Pe
rc

en
ta

g
e 

er
ro

r 
%

 
 

1 10.00 18.80 18.11 3.65% 
2 9.09 12.72 12.93 1.62% 
3 8.00 10.71 9.86 7.89% 
4 6.67 9.60 9.16 4.56% 
5 5.00 8.95 8.68 3.00% 
6 3.33 8.62 8.42 2.27% 
7 2.50 8.51 8.34 2.04% 
8 2.00 8.47 8.30 2.02% 

 
 
 



         

 209 
 

Cycle time from simulation (min) with lower and upper bound 
(confidence interval for 95%) 
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Figure 51. Comparison of total cycle time for the clinic (Test 2-2) 

When the arrival rate is low to moderate, there is a small difference between the 

estimates from the queueing network model and the discrete event simulation.  



         

 210 
 

5.3.3 Third experiment 

In this experiment, we have 7 workstations with different specifications. The first 4 

workstations have individual service process and the last three one are batch process 

workstations. Moreover, like experiment number 2, station 4 is a self service station 

with individual arrival.  

The model was tested at several levels of resident arrival rates, from 39% to 97.5% 

of clinic capacity under the different scenarios. We ran 10 replications of 4000 hours, 

with 1000 hours of warm-up time allowed to achieve steady state for each scenario. 

Data was recorded for mean total time and mean queueing time at each node, as well 

as mean time in system and mean system WIP.   

In this experiment consisting of 2 tests: Test 3-1 and Test 3-2, residents arrived by 

bus to the clinic. Each bus brought 50 residents with the variability of 0.02. Bus 

interarrival times were exponentially distributed and all of the service process 

distributions had gamma distributions to be able us to make different process time 

SCV. The only difference between these 2 tests is having 2 different process time 

variances for self service station. Therefore, in Test 3-1, the process time SCV of self 

service station is 0.56, while in Test 3-2, the process time SCV of self service station 

is 1. 

The routing probabilities from one station to another in this experiment are the 

same as experiment number 2 (See Table 99). Table 103 lists the capacity of each 

station and its bound on the clinic capacity which is similar for both Test 3-1 and 3-2. 
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In this experiment, station number 6 is the bottleneck station, and the clinic capacity is 

10.736 residents per minute. 

In this experiment, for each test we have 8 scenarios in which arrival rate starts 

from nearly its maximum rate (10.736 residents per min) and continues to the lower 

rates. 

Table 103. Table capacity for the clinic’s stations in the third experiment 

Workstation # 
Station 
capacity 

(residents/min) 

Relative 
Throughput 

 

Bound on clinic 
capacity 

(residents/min) 
1 12.126 1.000 12.126 
2 2.854 0.200 14.269 
3 6.066 0.380 15.963 

4 (Self service) n/a 0.766 n/a 
5 12.500 0.192 65.274 
6 4.167 0.388 10.736 
7 5.000 0.420 11.893 

Since station number 4 is a self service workstation and we don’t have any servers, 

the capacity is not applicable (n/a) for self service station. 

Additionally, because the SCV of arrival bus size is 0.02 in this experiment, we 

model the bus arrival batch size distribution with 1+Poisson (49).  

5.3.3.1 Results for Test 3-1 

In Test 3-1, process time SCV of self service station is 0.56. Table 104 describes 

each of the seven stations in the clinic for Test 3-1. Table 105 shows the average total 

cycle time (in minutes) for each entity in the clinic from simulation results (Test 3-1) 
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and from our clinic mathematical models as well as the percentage of error between 

them. 

Moreover, Figure 52 shows the total cycle time estimates from the queueing 

network model and the discrete event simulation for a variety of arrival rates in Test 3-

1. The plot for the simulation results includes error bars showing the 95% confidence 

interval on each estimate. 

 

Table 104. Parameters for constructed clinic (Test 3-1) 

Workstation # 

N
um

be
r 

of
 S

ta
ff

 Mean 
service 
Time 
(min.) 

Service 
Time 
SCV 

Processing time 
distribution (min) 

Batch 
process 
size ki 

1 15 1.237 0.73 GAMM(1.38,0.9) 1 
2 5 1.752 0.52 GAMM (1.91,0.92) 1 
3 7 1.154 0.40 GAMM (2.5,0.46) 1 

4 (Self service) n/a 6 0.56 GAMM (1.8,3.33) 1 
5 1 4 0.25 GAMM (4.1) 50 
6 5 24 0.01 GAMM (144,0.17) 20 
7 4 24 0.01 GAMM (144,0.17) 30 

 

Table 105. Comparison of total cycle time for the clinic (Test 3-1) 

Scenario 
Arrival rate to 

the clinic 
(residents/min) 

 
Total cycle time 
from simulation  

 

 
Total cycle time 

from clinic mathematical 
model and formulas 

 

 
Pe

rc
en

ta
g

e 
er

ro
r 

%
 

 

1 10.42 113.12 54.45 51.87% 
2 10.00 61.85 47.80 22.71% 
3 9.62 49.74 45.22 9.08% 
4 9.09 44.30 41.98 5.22% 
5 8.70 42.14 39.62 5.96% 
6 7.04 39.07 37.88 3.05% 
7 5.26 39.47 38.52 2.40% 
8 4.17 41.25 40.24 2.44% 
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Cycle time from simulation (min) with lower and upper bound 
(confidence interval for 95%) 
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Figure 52. Comparison of total cycle time for the clinic (Test 3-1) 

 

5.3.3.2 Results for Test 3-2 

In Test 3-2, process time SCV of self service station is 1. Table 106 describes each 

of the seven stations in the clinic for Test 3-2. Table 107 shows the average total cycle 

time in terms of minute for each entity in the clinic from simulation results (Test 3-2) 

and from our clinic mathematical models as well as the percentage of error between 

them. 
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Moreover, Figure 53 shows the total cycle time estimates from the queueing 

network model and the discrete event simulation for a variety of arrival rates in Test 3-

2. The plot for the simulation results includes error bars showing the 95% confidence 

interval on each estimate. 

 

Table 106. Table Parameters for constructed clinic (Test 3-2) 

Workstation 
Number 

N
um

be
r 

of
 S

ta
ff

 Mean 
service 
Time 
(min.) 

Service 
Time 
SCV 

Processing time 
distribution (min) 

Batch 
process 
size ki 

1 15 1.237 0.73 GAMM(1.38,0.9) 1 
2 5 1.752 0.52 GAMM (1.91,0.92) 1 
3 7 1.154 0.40 GAMM (2.5,0.46) 1 

4 (Self service) n/a 6 1 GAMM (1,6) 1 
5 1 4 0.25 GAMM (4.1) 50 
6 5 24 0.01 GAMM (144,0.17) 20 
7 4 24 0.01 GAMM (144,0.17) 30 

 

 

Table 107. Comparison of total cycle time for the clinic (Test 3-2) 

Scenario 
Arrival rate to 

the clinic 
(residents/min) 

 
Total cycle time 
from simulation  

 

 
Total cycle time 

from clinic mathematical 
model and formulas 

 

 
Pe

rc
en

ta
g

e 
er

ro
r 

%
 

 

1 10.42 154.98 54.36 64.92% 
2 10.00 58.45 47.74 18.32% 
3 9.62 49.37 45.17 8.50% 
4 9.09 44.23 41.94 5.17% 
5 8.70 42.21 39.60 6.19% 
6 7.04 38.93 37.86 2.73% 
7 5.26 39.39 38.50 2.25% 
8 4.17 41.24 40.23 2.45% 
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Figure 53. Comparison of total cycle time for the clinic (Test 3-2) 

When the arrival rate is low to moderate, there is a small difference between the 

estimates from the queueing network model and the discrete event simulation. As the 

arrival rate approaches the clinic capacity, the difference between the two estimates is 

large due almost entirely to different estimates for the cycle time at the station 6, 

which has the highest utilization (since it is the clinic bottleneck).  
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 5.3.4 Fourth experiment 

In this experiment, we have 6 workstations with different specifications in which 

all stations other than station 1 and 6 are batch process stations. Moreover, the station 

6 is a self service station with individual arrival.  

The model was tested at several levels of resident arrival rates, from 55% to 98% of 

clinic capacity under the different scenario. We ran 10 replications of 4000 hours, with 

1000 hours of warm-up time allowed to achieve steady state for each scenario. Data 

was recorded for mean total time and mean queueing time at each node, as well as 

mean time in system and mean system WIP.   

In this experiment consisting of 2 tests: Test 4-1 and Test 4-2, residents arrived by 

bus to the clinic. Each bus brought 40 residents with the variability. Bus interarrival 

times were exponentially distributed and all of the service process distributions had 

gamma distributions to be able us to make different process time SCV. The only 

difference between these 2 tests is that in Test 4-1, the SCV of bus size is 0.024 

(almost zero), while in Test 4-2, the SCV of bus size is 0.25. 

Table 108 describes each of the seven stations in the clinic. Table 109 shows the 

routing probabilities from one station to another. Table 110 lists the capacity of each 

station and its bound on the clinic capacity.  

In this experiment, station number 1 is the bottleneck station, and the clinic 

capacity is 4.85 residents per minute. In this experiment, for each test we have 8 

scenarios in which arrival rate starts from nearly its maximum rate (4.85 residents per 

min) and continues to the lower rates. 
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Table 108. Parameters for constructed clinic (Fourth experiment) 

Workstation 
Number 

N
um

be
r 

of
 S

ta
ff

 Mean 
service 
Time 
(min.) 

Service 
Time 
SCV 

Processing time distribution 
(min.) 

Batch 
processing 

size ki 

1 6 1.237 1.11 GAMM(1.38,0.9) 1 
2 2 14 0.52 GAMM (1.96,7.14) 30 
3 2 18 0.40 GAMM (9.53, 1.89) 40 
4  2 21 0.56 GAMM (6.3, 3.33) 50 
5 2 23 1.00 GAMM (8.82,2.61) 60 

6 (Self service) n/a 6 0.44 GAMM (3,2) 1 

 
 
 
  

Table 109. Routing table for the clinic in the fourth experiment 
 To 

From 2 3 4 5 6 Exit 
1 0.20 0.30 0.50 0 0 0 
2  0.25 0 0.35 0.4 0 
3   0.45 0.55 0 0 
4    0 1.00 0 
5     0 1.00 
6      1.00 

 
 

 
 
 

Table 110. Table capacity for the clinic’s stations in the fourth experiment 

Workstation 
Station 
capacity 

(residents/min) 

Relative 
Throughput 

 

Bound on clinic 
capacity 

(residents/min) 
1 4.850 1.000 4.850 
2 4.286 0.200 21.429 
3 4.444 0.350 12.698 
4 4.762 0.658 7.242 
5 5.217 0.263 19.876 

6 (Self service) n/a 0.738 n/a 
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Since station number 6 is a self service workstation and we don’t have any servers, 

the capacity is not applicable (n/a) for self service station. 

5.3.4.1 Results for Test 4-1 

In Test 4-1, the SCV of arrival bus size is 0.024. Therefore, we model the bus 

arrival batch size distribution with 1+Poisson (39). Table 111 shows the average total 

cycle time in terms of minute for each entity in the clinic from simulation results (Test 

4-1) and from our clinic mathematical models as well as the percentage of error 

between them. 

Moreover, Figure 54 shows the total cycle time estimates from the queueing 

network model and the discrete event simulation for a variety of arrival rates in Test 4-

1. The plot for the simulation results includes error bars showing the 95% confidence 

interval on each estimate. 

 
 

Table 111. Comparison of total cycle time for the clinic (Test 4-1) 

Scenario 
Arrival rate to 

the clinic 
(residents/min) 

 
Total cycle time 
from simulation  

 

 
Total cycle time 

from clinic mathematical 
model and formulas 

 

 
Pe

rc
en

ta
g

e 
er

ro
r 

%
 

 

1 4.76 268.75 285.25 6.14% 
2 4.55 118.00 119.14 0.97% 
3 4.44 103.04 102.64 0.38% 
4 4.35 92.78 93.28 0.53% 
5 4.21 89.36 85.13 4.73% 
6 4.00 81.13 78.32 3.46% 
7 3.33 73.69 72.40 1.75% 
8 2.67 76.13 75.15 1.28% 

 

 



         

 219 
 

 

 
Figure 54. Comparison of total cycle time for the clinic (Test 4-1) 
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5.3.4.2 Results for Test 4-2 

In Test 4-2 the SCV of arrival bus size is 0.25. Therefore, we model the bus arrival 

batch size distribution with 440-Poisson (400).  

Table 112 shows the average total cycle time in terms of minute for each entity in 

the clinic from simulation results (Test 4-2) and from our clinic mathematical models 

as well as the percentage of error between them. 

Moreover, Figure 55 shows the total cycle time estimates from the queueing 

network model and the discrete event simulation for a variety of arrival rates in Test 4-

2.  

The plot for the simulation results includes error bars showing the 95% confidence 

interval on each estimate. 

 
Table 112. Comparison of total cycle time for the clinic (Test 4-2) 

Scenario 
Arrival rate to 

the clinic 
(residents/min) 

 
Total cycle time 
from simulation  

 

 
Total cycle time 

from clinic mathematical 
model and formulas 

 

 
Pe

rc
en

ta
g

e 
er

ro
r 

%
 

 
1 4.76 336.60 334.52 0.62% 
2 4.55 135.95 132.27 2.70% 
3 4.44 122.05 112.11 8.15% 
4 4.35 105.20 100.62 4.35% 
5 4.21 95.39 90.57 5.05% 
6 4.00 85.59 82.04 4.14% 
7 3.33 76.84 73.90 3.82% 
8 2.67 78.14 75.84 2.94% 
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Cycle time from simulation (min) with lower and upper bound (confidence 
interval for 95%) 
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Figure 55. Comparison of total cycle time for the clinic (Test 4-2) 

As we see from the results for Test 4, when the arrival rate is low to moderate, 

there is a small difference between the estimates from the queueing network model 

and the discrete event simulation.  
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5.4 Summary of the chapter 

Since the whole objective of this thesis is to be able to construct a thorough model 

of a mass dispensing and vaccination clinic, to summarize this chapter, we only will 

review and analyze the results of Experiments 1 to 4 and our formulas from the 

analytical model for these experiments.   

Before briefly discussing each experiment, note that batch processing and batch 

moves (transfer) make estimating the batch size more difficult. Therefore, the relative 

error between the simulation results and the formulas for performance measures such 

as waiting time or cycle time increases in cases with high arrival rate or when the 

utilization of the bottleneck station is very high.  

In Experiment 1, which had no self service and batch size variability for arriving 

buses, we had 21 scenarios in which arrival rates varied from 20% to 97.5% of clinic 

capacity. From Table 97, we found out that relative error between the simulation 

results and the approximation for total cycle time was good except for scenarios with 

high arrival rate, because of the batch processing which was mentioned as an 

important point at the beginning of this section.  

The other reason for a large relative error for scenarios with a high arrival rate is 

that the bottleneck station is the last station. Errors in the performance measures of the 

first five stations all affect simultaneously the cycle time estimate of the sixth station, 

which is the bottleneck station.  
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In Experiment 2, station 4 was a self service station. In addition, the clinic had 

batch size variability at the first station. In this experiment, we had 8 scenarios for 

each test in which arrival rates varied from 20% to 94.5% of clinic capacity. In 

Experiment 2, the clinic had only individual processing, and there was no batch 

processing with batch moves. From Tables 101 and 102, we see that the relative error 

between the simulation results and the approximations for total cycle time was good 

for all of the scenarios within each test, although the resident arrival rate to the clinic 

was very high and close to the clinic maximum capacity for some scenarios.  

Additionally, from Figures 50 and 51, we see that the confidence intervals include 

the estimates from the cycle time approximation. 

Similarly, for Experiment 3, station 4 was a self service station, and the first station 

had arrival batch size variability. In this experiment, we had 8 scenarios for each test 

in which arrival rates varied from 20% to 94.5% of clinic capacity. In Experiment 3, 

the clinic had stations with individual and batch processing. From Table 105 and 107, 

we see that the relative error between the simulation results and the approximation for 

total cycle time was good except for the cases in which the arrival rate was very high 

and close to the clinic maximum capacity.  

Additionally, we see in Figures 52 and 53 that the confidence interval for high 

arrival rates didn’t include the cycle time estimate from formulas. In Experiment 3, the 

bottleneck station has arrivals from the first four stations. As we saw in Experiment 1, 

errors when estimating the performance measures of the first four stations all affect 

simultaneously the cycle time estimates of the sixth station. Thus, they increase the 

relative error between the simulation results and the approximations. 
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Experiment 4 was similar to Experiment 3. Because the bottleneck station in 

Experiment 4 is the first station, without any upstream stations, the batch processing 

and batch moves don’t cause any errors in estimating the cycle time of the first station. 

From Tables 111 and 112, we see that, although we have batch processing and batch 

move throughout the clinic in Experiment 4, the relative error between the simulation 

results and the cycle time estimates is small even for the cases with high arrival rate, 

when the bottleneck utilization is close to 1. 

Figure 54 and 55 shows that the fact that since the first station is bottleneck station, 

confidence intervals include the estimates from the formulas for cycle time even for 

the high arrival rate cases. 
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Chapter 6: Conclusion 

The overall goal of this research has been to provide public health emergency 

preparedness and response planners with mathematical models that can help them to 

estimate the important performance measures such as total waiting or cycle time in the 

mass dispensing and vaccination clinic. With this information, planners become better 

informed when they have to make decisions regarding staff placement, POD layout, 

and other relevant concerns. 

 The proposed models in Chapter 5 correspond to clinics that consist of different 

kinds of stations with any kind of arrival process (individual or batch) or service 

process (individual, batch or self service). The recommended model in this thesis can 

also satisfy cases that we have batch size variability. 

6.1 Conclusion 

Although this research was motivated by a specific application in emergency 

planning area, it should be applicable also to the design and analysis of manufacturing 

systems with similar specifications to our clinic models. 

Briefly, what we have done successfully in this thesis has been consistently 

modeling mass dispensing and vaccination clinics that can consist of diverse 

workstations with any kind of arrival processes or any type of service processes (such 

as individual processing, batch processing or self service) as an integrated and 

complete queueing network.  
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In order to synthesize a variety of existing and new proposed models into a 

systematic approach for the type of queueing network explained in this thesis, we have 

made significant and innovative contributions in this thesis. For example, one of the 

studied models in this thesis has been queueing systems with both batch arrivals with a 

positive SCV of a batch size and batch service process whose batch size is bigger than 

the arrival batch. Moreover, including self service workstations in a mass dispensing 

and vaccination clinic model as well as studying their behavior has been another 

unique and interesting section of this thesis. 

 However, in spite of having approximations including novel contributions and 

having been one of the first recommended mathematical models integrating all 

possible types of workstations into a single model, our estimates have some 

limitations that have to be mentioned at this point. 

First, as we saw in our simulation results in Chapter 5, for the scenarios whose 

bottleneck station utilizations are close to 1 (more than 90%), the percentage error 

between the simulation results and the numerical results from our proposed formulas 

was relatively large. 

Additionally, our proposed formulas to estimate CTq for all types of stations had 

more errors compared to the simulation results in which the average interarrival time 

SCV has been large (more than 4).     

Finally, since in this thesis, we studied the behavior of workstations with batch 

arrival and batch processing in which the average arriving batch size is always less 
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than the batch processing size, we cannot model cases in which the average arrival 

batch size to a workstation is greater than the batch processing size. 

6.2 Future work for research 

Several parts of this work reveal opportunities for further research to be performed 

in the future.  

One highly critical concern that needs further research is creating some new 

estimates for waiting time in queue for all of the 6 different types of workstations, 

proposed in Chapter 5, in which the arrival process has high aggregated interarrival 

time SCV (more than 4) and when the utilization is relatively high (bigger than 90%).    

Additionally, cases where the average arrival batch size to a workstation is more 

than the batch processing size need to be studied. It may be possible to model these 

cases similar to what we had in stations with batch arrival and individual process 

service. In this way, it is necessary to study again the trend of the WIBT and CTq as 

done in Chapter 4 by running simulation models with a range of parameter values, 

studying the results, and then extracting trends to get insight into relationships, 

motivate the models, and estimate their parameters. 

The other interesting issue to investigate is to have a new model that can support 

the possibility of having different types of customer classes such as families in a mass 

dispensing and vaccination clinic. Since in a real clinic, each family may prefer to 

travel and spend times in all stations through the clinic together, families with 

different sizes can be considered as classes that can have their own specifications such 
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as different process time and process time SCV in each station depending on the size 

of the families and other criteria.  

In the meanwhile, it will be useful to take the analytical model from Treadwell 

(2006) and compare it with the results from the new model in this thesis. This 

comparison will show how the new model is more exact and complete and can include 

the cases that Treadwell (2005) cannot model. 

Finally, as we mentioned in this thesis several times, we considered mass 

dispensing and vaccination clinics as open queueing networks, so we were able to 

adopt the parametric decomposition approach as a tool to study and analyze the 

behavior of the clinic. However, another possible approach by which one can 

investigate mass dispensing and vaccination clinic behavior is the diffusion approach, 

although it is more appropriate for closed queueing networks. Thus, diffusion 

approach can be another area for researchers to construct a new model of clinics with 

new estimates based on the assumptions and facts existing in this approach. 
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