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Combinatorial optimization problems such as routing, scheduling, covering and packing

problems abound in everyday life. At a very high level, a combinatorial optimization problem

amounts to finding a solution with minimum or maximum cost among a large number of feasible

solutions. An algorithm for a given optimization problem is said to be exact if it always returns an

optimal solution and is said to be efficient if it runs in time polynomial on the size of its input. The

theory of NP-completeness suggests that exact and efficient algorithms are unlikely to exist for the

class of NP-hard problems. Unfortunately, a large number of natural and interesting combinatorial

optimization problems are NP-hard.

One way to cope with NP-hardness is to relax the optimality requirement and instead look

for solutions that are provably close to the optimum. This is the main idea behind approximation

algorithms. An algorithm is said to be a ρ-approximation if it always returns a solution whose cost

is at most a ρ factor away from the optimal cost.

Arguably, one of the most important techniques in the design of combinatorial algorithms

is the primal-dual schema in which the cost of the primal solution is compared to the cost of a

dual solution. In this dissertation we study the primal-dual schema in the design of approximation

algorithms for a number of covering and scheduling problems.
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Chapter 1

Introduction

1.1 Combinatorial Optimization

Combinatorial optimization problems such as routing, scheduling, covering and packing

problems abound in everyday life. At a very abstract level, a combinatorial optimization problem

can be defined as a pair (F , c) where F is a set of feasible solutions and c : F → R+ is a cost

function. For minimization problems, a solution F ∈ F is said to be optimal if c(F ) ≤ c(F ′) for

all F ′ ∈ F . Likewise, for maximization problems, a solution F ∈ F is optimal if c(F ) ≥ c(F ′) for

all F ′ ∈ F .

An algorithm A for an optimization problem (F , c) is said to be exact if A returns an

optimal feasible solution. Of course, a trivial algorithm is to exhaustively consider every solution

in F and keep the one with minimum or maximum cost. This is commonly not an option since F is

usually given implicitly and |F| grows exponentially on the size of the string encoding the problem

instance. To make this discussion concrete consider the following balancing problem: Given a set

A of n integers, find a subset X such that X and A \ X are as balanced as possible; in other

words, F is the power set of A and c(X) = |∑a∈X a −∑a∈A\X a|. Note that even though the

input is a list of n numbers there are 2n feasible solutions; as a result, exhaustive search becomes

prohibitively slow even for small values of n. Therefore, from a practical point of view, it is crucial

to have efficient algorithms that avoid exhaustive search.

An algorithm A is said to be efficient if its running time is polynomial on the size of its

input. The theory of NP-completeness provides strong evidence that exact and efficient algorithms

are unlikely to exist for the class of NP-hard problems—such algorithms would imply efficient

algorithms for any problem whose solution can be verified efficiently. Moreover, the class of NP-
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hard problems contains a huge number of practical, and sometimes deceivingly simple-looking,

problems such as the above balancing problem.

Therefore, when dealing with NP-hard problems in order to obtain efficient algorithms we

must give up optimality. An algorithm A for a given minimization problem (F , c) is said to be

a ρ-approximation if it runs in polynomial time and always finds a solution F ∈ F such that

c(F ) ≤ ρ c(F ′) for all F ′ ∈ F .

Arguably, one of the most important techniques in the design of combinatorial algorithms

is the primal-dual schema [46, 91] in which the cost of the primal solution is compared to the cost

of a dual solution. This dissertation is mainly concerned with the design of efficient approximation

algorithms for combinatorial optimization problems. The unifying theme of our results is the

sophisticated use of the primal-dual schema.

The rest of this chapter is organized as follows. Section 1.2 introduces the primal-dual

schema. Section 1.3 presents our techniques. Finally, Sections 1.4 and 1.5 review the literature

and outline our contributions in two application areas: partial cover and data migration.

1.2 Primal-dual schema

At the heart of the primal-dual schema is the theory of linear programming. A linear

program is an optimization made up of a system of linear inequalities and a linear objective

function:

min c · x

Ax ≥ b

x ≥ 0

Here A ∈ Rn×m is a matrix and c, x ∈ Rm are column vectors. The expression c · x denotes

the dot product of c and x, that is, c · x = cT x.

A key realization is that optimization problems come in pairs—every minimization problem
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having a maximization counterpart, and vice versa.

max b · y

AT y ≤ c

y ≥ 0

The above linear program is the dual problem of the original, primal, problem. The relation

between these two programs is captured by the following theorems, the proof of which can be

found in any linear programming textbook [26, 30, 87, 97].

Theorem 1.1 (Weak duality). Let x be a feasible solution for the primal problem and y be a

feasible solution for the dual problem, then c · x ≥ b · y.

Theorem 1.2 (Strong duality). Let x∗ be an optimal solution for the primal problem and y∗ be

an optimal solution for the dual problem, then c · x∗ = b · y∗.

This is excellent news for algorithm design. Namely, the dual problem offers a tight lower

bound for the primal problem. In addition to being each other’s certificate of optimality, a pair of

optimal primal and dual solutions are closely related via complementary slackness.

Theorem 1.3 (Complementary slackness). Let x∗ and y∗ be feasible primal and dual solutions

respectively. Then x∗ and y∗ are optimal if and only if x∗ · (AT y − c) ≥ 0 and y∗ · (Ax∗ − b) ≤ 0 .

Complementary slackness is also the driving force of the primal-dual schema for the design of

exact algorithms. Essentially, it constitutes a way of reducing a weighted instance to an unweighted

instance, which in general is easier to deal with. The method was first used by Kuhn [78] to design

an exact and efficient algorithm for the assignment problem. A thorough treatment of the primal-

dual schema for exact algorithms can be found in the book of Papadimitriou and Steiglitz [91].

The main focus of this dissertation, however, is not exact but approximation algorithms.

At a very high level a primal-dual ρ-approximation for a given minimization problem works

as follows. First, we formulate the optimization problem as an integer program, then we relax the

integrality constrains to get a linear program and derive its dual. Note that, by Theorem 1.1, any

solution to the dual program provides a lower bound for the original optimization problem. Our
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algorithm constructs a dual solution, and then, guided by this process, builds an integral primal

solution. In the analysis the cost of primal solution is shown to be at most ρ times the cost of the

dual solution, where ρ ≥ 1. The reason why in general we cannot have ρ = 1 is that by relaxing

the integrality constraints of the primal program we may be enlarging the feasible region, thus an

optimal fractional solution may be cheaper than an optimal integral solution, and by Theorems 1.1

and 1.2, the dual solution cannot offer a lower bound better than the optimal (primal) fractional

solution. In other words ρ must be at least as large as the integrality gap of the integer program

formulation, which is defined as the ratio of the cost of an optimal integral solution to the cost of

an optimal fractional solution.

In the same way complementary slackness is used in the primal-dual schema for exact

algorithms, a relaxed version thereof is used in the design of approximation algorithms.

Theorem 1.4. Let x and y be feasible primal and dual solutions respectively satisfying the relaxed

complementary slackness conditions x · (αAT y − c) ≥ 0 and y · (Ax− β b) ≤ 0 for some α, β ≥ 1.

Then c · x ≤ α β b · y.

Proof. It follows immediately from the relaxed complementary slackness conditions

c · x ≤ α x · (AT y) = α y ·Ax ≤ α β b · y

Recall that a primal-dual algorithm constructs an integral primal solution x and a frac-

tional dual solution y. These two solution are related via relaxed complementary slackness and

Theorem 1.4 is invoked in the analysis to show that x is a ρ-approximation where ρ = α β.

1.3 Our techniques

The role that relaxed complementary slackness plays in the primal-dual schema for ap-

proximation algorithms is not as central as in exact algorithms. Rather than being the driving

force behind the dual update and the construction of the primal solution, these two procedures

must be designed, some times in an ad-hoc fashion, to meet the relaxed complementary slackness
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conditions. As such, the primal-dual schema for approximation algorithms leaves more room for

new algorithmic ideas. Each chapter of this dissertation deals with a different aspect of the ba-

sic primal-dual schema and linear programming duality. What follows is a short description of

the techniques used throughout the dissertation; a more detailed description can be found in the

Overview section opening each respective chapter.

• Lagrangian relaxation. This technique is closely related to linear programming duality and

has been successfully applied to the design of approximation algorithms. In Chapter 2 we

study the strengths and limitations of Lagrangian relaxation applied to partial cover.

• Making educated guesses. Most algorithms for partial cover problems require that we guess

some attribute of the optimal solution, modify the instance accordingly, run a basic algorithm

on each guess and finally return the best solution found. In Chapter 3 we show how to speed

up certain primal-dual algorithms for partial cover by reusing the work done in the dual

update and making guesses along the way.

• Beyond primal complementary slackness. Usually, the integer linear formulation for the

primal problem uses binary variables and after the dual update is carried out, a primal

solution is built by setting to 1 a subset of those variables whose dual constraint is tight. In

Chapter 4 we study a scheduling problem where the primal solution is constructed using a

more sophisticated method.

• Adaptive local ratio. There is a close relation between the local ratio technique and the

primal-dual schema. Local ratio algorithms decompose the input weight function into a

positive linear combination of simpler weight functions called models. Based on this de-

composition, a primal solution is constructed so that it is ρ-approximate with respect to

every model. These models typically have a very simple structure that remains “unchanged”

throughout the execution of the algorithm. In Chapter 5 we show that adaptively choosing

a model from a richer spectrum of functions can lead to better approximations.

• Dual fitting. This is a technique used to bound the approximation ratio of a given heuristic.
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The underlying idea is very simple: To show that the solution output by the algorithm is

ρ-approximate in the analysis we construct a dual infeasible solution that violates the dual

constraints by at most a ρ factor, but has enough cost to pay for the primal solution. In

Chapter 6 we apply dual fitting to analyze an algorithm for a scheduling problem.

The problems to which we apply these techniques are drawn from two main application

areas: partial cover and data migration. The next two sections introduce the main problems in

these areas, review previous work and outline our contributions.

1.4 Partial cover

The input for a covering problem consists of a collection S, which may be given implicitly

or explicitly, of subsets of a universal set U and a cost function c : S → R+. The set C ⊆ S is said

to cover an element j in U if j belongs to some subset in C; we say C is a cover if every element

j in U is covered by C. The objective is to find a minimum cost cover. Alternatively, a covering

problem can be specified by element-set incidence matrix A = {aij} where aij = 1 if and only if

the ith element of U belongs to the jth set in S.

As numerous surveys [4, 21, 40, 61, 89] on the subject attest, much work has been done on

covering problems because of both their simple and elegant formulation, and their pervasiveness

in different application areas. In its most general form the problem, also known as the set cover

problem, cannot be approximated within (1− ǫ) ln |U | unless NP ⊆ DTIME(|U |log log |U |) [32], and

a simple greedy algorithm is a ln |U | approximation [25, 67, 80]. Due to this hardness, special,

easier, cases have been studied.

The most general class of covering problems that can be solved efficiently are those whose

element-set incidence matrix is balanced. A 0, 1 matrix is balanced if it does not contain a square

submatrix of odd order with row and column sums equal to 2. These matrices were introduced by

Berge [15] who showed that if A is balanced then the polyhedron {x≥ 0 : Ax≥ 1} is integral. A

0, 1 matrix is totally balanced if it does not contain a square submatrix with row and column sums

equal to 2 and no identical columns. Kolen [75] gave a simple primal-dual algorithm that solves
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optimally the covering problem defined by a totally balanced matrix. A 0,±1 matrix is totally

unimodular if every square submatrix has determinant 0 or ±1. Totally balanced and totally

unimodular matrices are subclasses of balanced matrices; the two classes are neither disjoint nor

one is included in the other. For more results on balanced matrices, the reader is referred to the

excellent survey of Conforti et al. [29].

Beyond this point, even minor generalizations can make our covering problem hard. For

example, consider the vertex cover problem: Given a graph G = (V,E) we are to choose a minimum

size subset of vertices such that every edge is incident on at least one of the chosen vertices. This

captures precisely the special case of set cover where each element belongs to two sets. If G is

bipartite, the problem can be written as a totally unimodular matrix; however, if G is a general

graph the problem becomes NP-hard. Indeed, it was one of the first problems shown to be NP-hard

in Karp’s seminal paper [69] on computational complexity. Numerous approximation algorithms

have been developed for it [60], and the best known approximation factor for general graphs is

2− o(1) [11, 53, 54, 68]. However, after 25 years of study, the best constant factor approximation

for vertex cover remains 2 [10, 27, 58]. On the negative side, it is NP-hard to approximate vertex

cover within any factor smaller than 10
√

5 − 21 ≈ 1.36 [31], and conditional on the stronger

assumption of the Unique Games Conjecture [70], vertex cover cannot be approximated within

2− ǫ [71].

The lack of progress in approximating vertex cover has led researchers to seek generaliza-

tions of this basic problem that can still be approximated within twice of optimum. Two such

generalizations are multicut on trees and capacitated vertex cover. The input of the multicut

problem on trees is a tree T and a collection of pairs of vertices; a cover is formed by a set of edges

whose removal separates all pairs. The problem was first studied by Garg et al. [43] who gave an

elegant primal-dual 2-approximation. Unlike most optimization problems that are easy to solve on

trees, multicut is APX-hard even on unit cost stars, as it contains vertex cover as a special case.

The input of the capacitated vertex cover problem is a graph G = (V,E) and a capacity kv for each

vertex v ∈ V ; unlike regular vertex cover a vertex v can cover only kv edges incident on it, thus
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enough copies of each vertex must be chosen to cover the edges assigned to them. Despite its seem-

ingly abstract nature, capacitated vertex cover has applications in computational biology [49] and

cellular network planning [14]. Guha et al. [49] developed a primal-dual 2-approximation for the

problem. An LP rounding algorithm achieving the same approximation factor was later developed

by Gandhi et al. [39]. The hard capacitated version, where there is a bound on how many copies of

a vertex we can choose, was studied by Chuzhoy and Naor [24]. They showed that weighted vertex

cover with hard capacities is as hard as set cover and gave a 3-approximation for the unweighted

version. This was later improved by Gandhi et al. [38], who gave a 2-approximation.

A notable shortcoming of the standard set cover formulation is that certain hard-to-cover

elements, also known as outliers [20], can render the optimal solution very expensive. For example,

suppose a government planning office must decide where to open new facilities, e.g., fire stations.

We would like every house to have a facility within a certain distance. Among a set of potential

locations we must select a subset of locations to open facilities such that every house is covered.

Because of sparsely populated areas, e.g., rural areas, it would be unreasonable to try to cover every

house in the country. The number of facilities needed to cover every house will be much larger

than the number needed to cover, say, 90% thereof. Motivated by the presence of outliers, the

unit-profit partial version of a given covering problem calls for a collection of sets covering not all,

but a specified number k of elements. Many 2-approximations are known for partial vertex cover

[9, 17, 36, 59]. Partial multicut, also known as k-multicut, was recently studied independently of

each other by Levin and Segev [79] and by Golovin et al. [47], who gave a 8
3 + ǫ approximation

algorithm. In the general setting we are given a profit function p : U → R+ and a target coverage

parameter P . The objective is to find a minimum cost collection of sets covering at least P profit.

Könemann et al. [76] showed how to design a 4
3α+ǫ approximation for any partial covering problem

using Lagrangian relaxation and an α-LMP1 approximation as a black box. Their algorithm runs

in time polynomial on |U |, |S| 1ǫ and the running time of the α-LMP approximation.

1The definition of an α-LMP approximation is somewhat technical, so it is deferred until Section 2.2.
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1.4.1 Our contributions

In Chapter 2 we show a lower bound of 4
3α on the approximation ratio that can be achieved

using Lagrangian relaxation and an α-LMP as a black box, thus matching the upper bound of

Könemann et al. [76]. Then we study the integrality gap of the standard linear relaxation for

partial totally balanced cover. We show that IP ≤
(
1 + 1

3k−1

)
LP + k cmax for any k≥1, and that

there are instances where IP >
(
1 + 1

3k−1

)
LP + k

2 cmax, where IP and LP denote the cost of the

optimal integral and fractional solutions respectively and cmax is the cost of the most expensive

set in the instance. Our approach is based on Lagrangian relaxation and Kolen’s primal-dual

algorithm. Finally, we show that this implies improved approximations for the partial version of a

number of problems such as multicut and path hitting on trees, rectangle stabbing, and set cover

with ρ-blocks. These results appear in [85].

In Chapter 3 we present a technique to speed up algorithms for partial covering problems.

We obtain 2-approximations for partial vertex cover and partial capacitated vertex cover with unit

profits. For the latter problem, this is the first known 2-approximation. Both algorithms run in

O(m + n log n) time. These results appear in [84]. Very recently, the same the technique has been

successfully applied by Bar-Yehuda et al. [14] within the local ratio framework.

1.5 Data Migration

The data migration problem arises in large storage systems, such as Storage Area Net-

works [72], where a dedicated network of disks is used to store multimedia data. As the data

access pattern changes over time, the load across the disks needs to be rebalanced so as to con-

tinue providing efficient service. This is done by computing a new data layout and then “migrating”

data to convert the initial data layout to the target data layout. While migration is being per-

formed, the storage system is running suboptimally, therefore it is important to compute a data

migration schedule that converts the initial layout to the target layout quickly.

This problem can be modeled as a transfer graph [74], in which the vertices represent the

storage disks and an edge between two vertices u and v corresponds to a data object that must be
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transferred from u to v, or vice-versa. Each edge has a processing time that represents the transfer

time of a data object between the disks corresponding to the end points of the edge. An important

constraint is that any disk can be involved in at most one transfer at any time.

Several variations of the data migration problem have been studied. These variations arise

either due to different objective functions or due to additional constraints. One common objective

function is to minimize the makespan of the migration schedule, i.e., the time by which all mi-

grations complete. Coffman et al. [28] show that when the edges have unit processing times, the

problem reduces to edge coloring of the transfer (multi)graph of the system. The best approxima-

tion algorithm known for minimum edge coloring [88] then yields an algorithm for data migration

with unit edge processing times, whose makespan is 1.1χ′ +0.8, where χ′ is the chromatic index of

the graph. An asymptotic scheme that uses (1+ ǫ)χ′ +O( 1
ǫ
) colors is also known [96]. Approxima-

tion algorithms are also developed [1, 50, 72, 73] for generalizations of the makespan minimization

problem in which there are storage constraints on disks and constraints on how the data can be

transferred.

The data migration problem has also been studied with the objective of minimizing the sum

of weighted completion time over all storage disks. Kim [74] proved that the problem is NP-hard

when edges have unit processing times and showed that Graham’s list scheduling algorithm [48],

when guided by an optimal solution to a linear programming relaxation, gives an approximation

ratio of 3. Gandhi et al. [37] show that Kim’s analysis is tight. When edges have arbitrary process-

ing times Kim [74] gave a 9-approximate solution. Gandhi et al. [37] improved the approximation

factor to 5.03. They present two algorithms each achieving an approximation ratio of 5.83 and

show that combining the two solutions yields an approximation ratio of 5.03.

A problem related to the data migration problem is open shop scheduling. In this problem,

we have a set of jobs, J , and a set of machines M1, . . . ,Mm. Each job Jj ∈ J consists of a set of

mj operations. For 1 ≤ i ≤ mj , operation oj,i has processing time pj,i and must be processed on

Mφ(j,i). Each machine can process a single operation at any time, and two operations that belong

to the same job cannot be processed simultaneously. Each job Jj has a positive weight, wj and
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the objective is to minimize the sum of weighted completion times of all jobs. This problem is

a special case of the data migration problem [37]. The open shop scheduling problem has been

studied in [18, 63, 94, 95].

There has also been interest in the study of the data migration problem with the objective to

minimize the average completion time over all data transfers. This corresponds to minimizing the

average edge completion time in the transfer graph. For arbitrary edge processing times, several

constant factor approximation algorithms [35, 52, 74] are known with the best approximation factor

being 7.682 [35]. For the case of unit-length processing times, Bar-Noy et al. [6] showed that the

problem is NP-hard and gave a simple 2-approximation algorithm. When restricted to bipartite

graphs, the latter problem becomes a variant of open shop scheduling in which the operations have

unit processing times and the objective is to minimize the sum of completion times of operations;

for this problem Gandhi et al. [37] give a 1.796-approximate solution that uses a sum coloring

algorithm due to Halldórsson et al. [52].

1.5.1 Our contributions

In Chapter 4 we study the data migration problem with the objective to minimize the

average completion time of the disks. We give a 3-approximation for unit-length transfers and

a 5.83-approximation for transfers with arbitrary lengths. Both algorithms are primal-dual and

constitute the first purely combinatorial approximations for these problems—all previously known

algorithms for these problems require solving a large linear program, and are therefore not very

practical. We also show that two natural greedy heuristics for the problem are not constant factor

approximations.

In Chapter 5 we improve the approximation ratio for unit-length transfers to 1 + φ, where

φ = 1+
√

5
2 is the Golden ratio. Our approach is based on a novel use of the local ratio and the

factor-revealing LP techniques. First we cast the primal-dual algorithm from Chapter 4 as a local

ratio algorithm and provide a family of instances showing the analysis given there is tight. To

overcome these difficult instances we propose to adaptively choose a model minimizing the local
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ratio and formulate the problem of finding such a model as a linear program. In the analysis we

show that the models found using this linear program exhibit a local ratio better than that of the

usual 0-1 models found in the literature [13]. To derive the worst-case local ratio of our scheme we

formulate as a mathematical program the problem of building a worst-case instance maximizing

the local ratio. Since we already use a linear program to guide our local-ratio algorithm, the

resulting factor-revealing program is non-linear. Somewhat surprisingly, even though we cannot

solve numerically the factor-revealing program, we are still able to prove a bound of 1 + φ on

its cost. Finally, we show that our analysis is tight by giving a family of instances in which our

algorithm attains this ratio.

In Chapter 6 we study the data migration problem with the objective to minimize average

completion time of the transfers. We define the notion of strongly minimal schedule and prove

that this schedule is
√

2-approximate. Our analysis is almost tight as these schedules can be, in

the worst case, a 1.375-factor away from optimum. We show how to compute strongly minimal

schedules for bipartite graphs in polynomial time.

The results in Chapters 4 and 6 appears in [33], while those in Chapter 5 appear in [86].
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Chapter 2

Lagrangian Relaxation

This chapter studies the strengths and limitations of Lagrangian relaxation applied to partial

cover. We show that for partial cover in general no algorithm that uses Lagrangian relaxation and

an α-LMP approximation as a black box can yield an approximation factor better than 4
3α. This

matches the upper bound given by Könemann et al. [76].

Faced with this limitation we study a specific, yet broad class of covering problems: partial

totally balanced cover. By carefully analyzing the inner workings of a known primal-dual LMP

algorithm we are able to give a tight characterization of the integrality gap of the standard linear

relaxation of the problem. As a result, we obtain improved approximations for the partial version

of multicut and path hitting on trees, rectangle stabbing, and set cover with ρ-blocks.

2.1 Overview

Lagrangian relaxation has been used extensively in the design of approximation algorithms

for a variety of problems such as TSP [56, 57], k-MST [3, 23, 41, 42], partial vertex cover [59],

k-median [2, 19, 65] and MST with degree constraints [77]. In this chapter we study the strengths

and limitations of Lagrangian relaxation applied to the partial cover problem. Let S be collection

of subsets of a universal set U with cost c : S → R+ and profit p : U → R+, and let P be a target

coverage parameter. A set C ⊆ S is a partial cover if the overall profit of elements covered by C is

at least P . The objective is to find a minimum cost partial cover.

The high level idea behind Lagrangian relaxation is as follows. In an IP formulation for

partial cover, the constraint enforcing that at least P profit is covered is relaxed : The constraint

is multiplied by a parameter λ and lifted to the objective function. This relaxed IP corresponds,

up to a constant factor, to the prize-collecting version of the underlying covering problem in which
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there is no requirement on how much profit to cover but a penalty of λ p(i) must be paid if we leave

element i ∈ U uncovered. An approximation algorithm for the prize-collecting version having the

Lagrangian multiplier preserving (LMP) property1 is used to obtain values λ1 and λ2 that are close

together for which the algorithm produces solutions C1 and C2 respectively. These solutions are

such that C1 is inexpensive but infeasible (covering less than P profit), and C2 is feasible (covering

at least P profit) but potentially very expensive. Finally, these two solutions are combined to

obtain a cover that is both inexpensive and feasible.

Roughly speaking there are two ways one can combine C1 and C2. One option is to treat

the approximation algorithm for the prize-collecting version as a black box, only making use of

the LMP property in the analysis. Another option is to focus on a particular LMP algorithm,

exploiting additional structure that this algorithm may offer. Perhaps not surprisingly, the latter

approach has yielded better approximation guarantees. For example, for k-median compare the

6-approximation of Jain and Vazirani [65] to the 4-approximation of Charikar and Guha [19]; for

k-MST compare the 5-factor to the 3-factor approximation, both due to Garg [42].

Our results support the common belief regarding the inherent weakness of the black-box

approach. First, we show a lower bound on the approximation factor achievable for Partial Cover

in general using Lagrangian relaxation and the black-box approach that matches the recent upper

bound of Könemann et al. [76]. To overcome this obstacle, we concentrate on Kolen’s algorithm for

prize-collecting totally balanced cover [75]. By carefully analyzing the algorithm’s inner workings

we identify structural similarities between C1 and C2, which we later exploit when combining the

two solutions. As a result we derive an almost tight characterization of the integrality gap of

the standard linear relaxation for partial totally balanced cover. This in turn implies improved

approximation algorithms for a number of related problems.

The rest of the chapter is organized as follows. Section 2.3 shows that for partial cover in

general no algorithm that uses Lagrangian relaxation and an α-LMP approximation as a black

box can yield an approximation factor better than 4
3α. Section 2.4 gives an almost tight char-

1The definition of the LMP property is outlined in Section 2.2.
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acterization of the integrality gap of the standard LP for partial totally balanced cover, which

settles a question posed by Golovin et al. [47]. Our approach is based on Lagrangian relaxation

and Kolen’s algorithm. We show that IP ≤
(
1 + 1

3k−1

)
LP + k cmax for any k≥ 1, where IP and

LP are the costs of the optimal integral and fractional solutions respectively and cmax is the cost

of the most expensive set in the instance. The trade-off between additive and multiplicative er-

ror is not an artifact of our analysis or a shortcoming of our approach. On the contrary, this is

precisely how the integrality gap behaves. More specifically, we show a family of instances where

IP >
(
1 + 1

3k−1

)
LP + k

2 cmax. In other words, there is an unbounded additive gap in terms of cmax

but as it grows the multiplicative gap narrows exponentially fast.

Finally, in Section 2.5 we show how the above result can be applied, using ideas from

[44, 47, 55], to get a ρ + ǫ approximation or a quasi-polynomial time ρ-approximation for covering

problems that can be expressed with a suitable combination of ρ totally-balanced matrices. This

translates into improved approximations for a number of problems: a 2 + ǫ approximation for the

partial multicut on trees [47, 79], a 4 + ǫ approximation for partial path hitting on trees [92], a

2-approximation for partial rectangle stabbing [44], and a ρ approximation for partial set cover

with ρ-blocks [55]. In addition, the ǫ can be removed from the first two approximation guarantees if

we allow quasi-polynomial time. It is worth noting that prior to our work, the best approximation

ratio for all these problems could be achieved with the framework of Könemann et al. [76]. In each

case our results improve the approximation ratio by a 4
3 multiplicative factor.

2.2 Partial cover and Lagrangian relaxation

Let S = {1, . . . ,m} be a collection of subsets of a universal set U = {1, . . . , n}. Each set

has a cost specified by c ∈ Rm
+ , and each element has a profit specified by p ∈ Rn

+. Given a target

coverage P , the objective of the partial cover problem is to find a minimum cost solution C ⊆ S

such that p(C) ≥ P , where the notation p(C) denotes the overall profit of elements covered by

C. The problem is captured by the IP below. Matrix A = {aij} ∈ {0, 1}n×m is an element-set

incidence matrix, i.e., aij = 1 if and only if element i ∈ U belongs to set j ∈ S; variable xj indicates
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whether set j is chosen in the solution C; variable ri indicates whether element i is left uncovered.

min c · x

Ax + Ir ≥ 1

p · r ≤ p(U)− P

ri, xj ∈ {0, 1}

Lagrangian relaxation is used to get rid of the constraint bounding the profit of uncovered

elements to be at most p(U)−P . The constraint is multiplied by a parameter λ, called a Lagrange

multiplier, and is lifted to the objective function. The resulting IP corresponds, up to the constant

λ (p(U)−P ) factor in the objective function, to the prize-collecting version of the covering problem,

where the penalty for leaving element i uncovered is λpi.

min c · x + λp · r − λ (p(U)− P )

Ax + Ir ≥ 1

ri, xj ∈ {0, 1}

Let OPT be the cost of an optimal partial cover and OPT-PC(λ) be the cost of an optimal

prize-collecting cover for a given λ. Let A be an α-approximation for the prize-collecting variant

of the problem. Algorithm A is said to have the Lagrangian multiplier preserving (LMP) property

if it produces a solution C such that

c(C) + α λ
(
p(U)− p(C)

)
≤ α OPT-PC(λ). (2.1)

Note that OPT-PC(λ) ≤ OPT + λ (p(U)− P ). Thus,

c(C) ≤ α
(
OPT + λ

(
p(C)− P

))
. (2.2)

Therefore, if we could find a value of λ such that C covers exactly P profit then C is α-

approximate. However, if p(C) < P , the solution is not feasible, and if p(C) > P , equation (2.2)

does not offer any guarantee on the cost of C. Unfortunately, there are cases where no value of λ

produces a solution covering exactly P profit. Thus, the idea is to use binary search to find two
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Figure 2.1: Lower bound instance for the black-box approach.

values λ1 and λ2 that are close together and are such that A(λ1) covers less, and A(λ2) covers

more than P profit. The two solutions are then combined in some fashion to produce a feasible

cover.

2.3 Limitations of the black-box approach

A common way to combine the two solutions returned by the α-LMP is to treat the algorithm

as a black box, solely relaying on the LMP property (2.1) in the analysis. More formally, an

algorithm for partial cover that uses Lagrangian relaxation and an α-LMP approximation A as a

black box is as follows. First, we are allowed to run A with as many different values of λ as desired;

then, the solutions thus found are combined to produce a feasible partial cover. No computational

restriction is placed on the second step, except that only sets returned by A may be used.

Theorem 2.1. In general, the partial cover problem cannot be approximated better than 4
3α using

Lagrangian relaxation and an α-LMP algorithm A as a black box.

Let A1, . . . Aq and B1, . . . Bq be sets as depicted in Figure 2.1. For each i and j the inter-

section Ai ∩ Bj consists of a cluster of q elements. There are q2 clusters. Set Ai is made up of q

clusters; set Bi is made up of q clusters and two additional elements (the leftmost and rightmost

elements in Figure 2.1.) Thus |Ai| = q2 and |Bi| = q2 + 2. In addition, there are sets O1, . . . , Oq,

which are not shown in the picture. Set Oi contains one element from each cluster and the leftmost
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element of Bi. Thus |Oi| = q2 + 1. The cost of Oi is 1
q
, the cost of Ai is 2 α

3 q
, and the cost of Bi is

4 α
3 q

. Every element has unit profit and the target coverage is P = q3 + q.

It is not hard to see that O1, . . . , Oq is an optimal partial cover with a cost of 1. Furthermore,

for any value of λ the optimal prize-collecting cover uses sets of one kind.

Lemma 2.1. For all values of λ, the optimal prize-collecting cover is either the empty solution or

A1, . . . , Aq or B1, . . . , Bq or O1, . . . , Oq.

Proof. Suppose that some subset of the B-sets and the O-sets have already been chosen. Every

A-set has the same marginal benefit independent of the other A-sets. Thus, in an optimal solution

either all the A-sets are chosen or none is.

Now suppose that the O-sets and the A-sets have already been chosen. In this case there

are two marginal benefits for a B-set, depending on whether an O-set already covers the leftmost

element of the set or not. Thus, an optimal strategy for the B-sets is either to choose none, all, or

the complement of the O-sets, i.e., Bi is chosen if and only if Oi is not chosen. A solution where

B-sets and O-sets complement each other is always worse than either choosing all the O-sets and

no B-sets, or vice versa. Thus, in an optimal solution either all the B-sets are chosen or none is.

It follows that in an optimal solution O-sets are either all in or all out. Furthermore, if the

B-sets are chosen then there is no reason to choose any of the remaining sets. If the B-sets are

not chosen and the O-sets are chosen then there is no reason to choose any of the remaining sets.

The only possibility left are to choose only the A-sets, or the empty cover.

The α-LMP approximation algorithm we use has the unfortunate property that it never

returns sets from the optimal partial cover.

Lemma 2.2. There exists an α-LMP approximation A that for the above instance and any value

of λ outputs either ∅ or A1, . . . , Aq or B1, . . . , Bq.

Proof. Let us denote each of these four alternatives by E, A, B and O from Lemma 2.1. The

prize-collecting cost of these covers is (q3 + 2q)λ, 2
3α + 2q λ, 4

3α and 1 + q λ respectively. For

a fixed value of λ, the minimum of these four quantities corresponds to the cost of the optimal
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prize-collecting cover. The line below shows which solution is optimal as a function of λ.

0

E

2α
3q3

A

3−2α
3q

O

4α−3
3q

B

λ

If α is big enough, the A-interval disappears. Namely, if 2α
3q3 > 3−2α

3q
, the line looks as

follows:

0

E

1
q3+q

O

4α−3
3q

B

λ

We are now ready to describe the α-LMP algorithm. Given a value of λ, we need to decide

whether to output the empty cover, the A-sets or the B-sets. If λ falls in the interval corresponding

to one of these three solutions then output that solution; since the cover output is optimal, the

LMP property (2.1) follows trivially.

If λ falls in the O-interval and λ ≤ 1
3q

then output the A-sets; the LMP property holds since

c(A) + α λ p(A) =
2

3
α + α λ 2q ≤ α(1 + λ q) = α

(
c(O) + λ p(O)

)
.

If λ falls in the O-interval and λ > 1
3q

then output the B-sets; the LMP property holds since

c(B) + α λp(B) =
4

3
α < α(1 + λ q) = α

(
c(O) + λ p(O)

)
.

Hence, if we use A from Lemma 2.2 as a black box we must build a partial cover with the

sets A1, . . . , Aq, B1, . . . , Bq. Note that in order to cover q2 + q elements either all A-sets, or all

B-sets must be used. In the first case q
2 additional B-sets are needed to attain feasibility, and the

solution has cost 4
3α; in the second case the solution is feasible but again has cost 4

3α. Theorem 2.1

follows.

One assumption usually made in the literature [3, 34, 76] is that cmax = maxj cj ≤ ǫOPT,

for some constant ǫ > 0, or more generally an additive error in terms of cmax is allowed. This does

not help in our construction as cmax can be made arbitrarily small by increasing q.
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Admittedly, our lower bound example belongs to a specific class of covering problem (every

element belongs to at most three sets), and although the example can be embedded into a partial

totally unimodular covering problem (see Theorem 2.2 below), it is not clear how to embed it into

other classes of covering problems. Nevertheless, the 4
3α upper bound of Könemann et al. [76]

makes no assumption about the underlying covering problem, only using the LMP property in

the analysis. It was entirely conceivable that the 4
3α factor could be improved using a different

merging strategy—Theorem 2.1 precludes this possibility.

Theorem 2.2. Partial totally unimodular cover cannot be approximated better than 4
3 using La-

grangian relaxation and a 1-LMP algorithm A as a black box.

Proof. The instance is similar to that used in Theorem 2.1: The A-sets and the B-sets, given

in Figure 2.1, are the same; for each i we define Oi as Bi minus the rightmost element. The

cost of each A, B and O set is 2
3 , 4

3 and 1 respectively. The target coverage parameter is again

P = q(q2 + 1).

It is straightforward to check that Lemmas 2.1 and 2.2 still holds for our new instance

and α = 1. It only remains to show that the resulting element-set incidence matrix A is totally

unimodular. A matrix A is totally unimodular if and only if every submatrix A′ of A has an

equitable coloring [45]. An equitable coloring of a 0,1 matrix A′ is a partition of its columns into

red and blue columns such that in every row of A′ the number of blue 1’s and red 1’s differs by at

most one. Let us construct an equitable coloring for A′: all the A-sets are colored blue; for each

i, if Bi and Oi are present in A′ then color one red and the other blue, and if only one is present

then color it red. Clearly the coloring is equitable; thus, A is totally unimodular.

2.4 Partial totally balanced cover

In order to overcome the lower bound of Theorem 2.1, one must concentrate on a specific

class of covering problems or make additional assumptions about the α-LMP algorithm. In this

section we focus on covering problems whose IP matrix A is totally balanced. More specifically,

we study the integrality gap of the standard linear relaxation for partial totally balanced cover
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(P-TBC) shown below. Recall that these are problems defined by a 0-1 matrix that do not contain

a square submatrix with row and column sums equal to 2 and no identical columns.

min c · x

Ax + Ir ≥ 1

p · r ≤ p(U)− P

ri, xe ≥ 0

LP Duality

max 1 · y − (p(U)− P )λ

AT y ≤ c

y ≤ λp

yi, λ ≥ 0

Theorem 2.3. Let IP and LP be the cost of the optimal integral and fractional solutions of an

instance of P-TBC. Then IP ≤
(
1 + 1

3k−1

)
LP+k cmax for any k ∈ Z+. Furthermore, for any large

enough k ∈ Z+ the exists an instance where IP >
(
1 + 1

3k−1

)
LP + k

2 cmax.

The rest of this section is devoted to proving Theorem 2.3. Our approach is based on

Lagrangian relaxation and Kolen’s algorithm for prize-collecting totally balanced cover (PC-TBC).

The latter exploits the fact that a totally balanced matrix can be put into greedy standard form

by permuting the order of its rows and columns; in fact, the converse is also true [62]. A matrix

is said to be in standard greedy form if it does not contain as an induced submatrix


 1 1

1 0


 (2.3)

There are polynomial time algorithms that can transform a totally balanced matrix into

greedy standard form [62, 81, 90, 99] by shuffling the rows and columns of A. Since this transfor-

mation does not affect the underlying covering problem, we assume that A is given in standard

greedy form.

2.4.1 Kolen’s algorithm for prize-collecting totally balanced cover

For the sake of completeness we describe Kolen’s primal-dual algorithm for PC-TBC given

in Figure 2.2. The algorithm finds a dual solution y and a primal solution C, which is then pruned

in a reverse-delete step to obtain the final solution Ĉ. The linear and dual relaxations for PC-TBC

appear below.
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min c · x + λp · r

Ax + Ir ≥ 1

ri, xe ≥ 0

LP Duality

max 1 · y

AT y ≤ c

y ≤ λp

yi ≥ 0

The residual cost of the set j w.r.t. y is defined as c′j = cj −
∑

i:aij=1 yi. The algorithm

starts from the trivial dual solution y = 0, and processes the elements in increasing column order

of AT . Let i the index of the current element. Its corresponding dual variable, yi, is increased

until either the residual cost of some set j containing i equals 0 (we say set j becomes tight), or yi

equals λpi (Lines 3-5).

Kolen(A, c, p, λ)

1 // Dual update

2 y ← 0, C ← ∅, Ĉ ← ∅

3 for i← 1 to n do

4 δ ← min{c′j | aij = 1}

5 yi ← min{λpi, δ}

6 C ← {j | c′j = 0}

7 // Reverse delete

8 while C 6= ∅ do

9 j ← largest set index in C

10 Ĉ ← Ĉ + j

11 C ← C \ { j′ | j dominates j′ or j = j′ }

12 return (Ĉ, y)

Figure 2.2: Kolen’s algorithm for partial totally-balanced cover.

22



Let C = {j | c′j = 0} be the set of tight sets after the dual update is completed. As it stands

the cover C may be too expensive to be accounted for using the lower bound provided by 1 · y

because a single element may belong to multiple sets in C. The key insight is that some of the

sets in C are redundant and can be pruned.

Definition 2.1. Given sets j1, j2 we say that j1 dominates j2 in y if j1 > j2 and there exists an

item i such that yi > 0 and i belongs to j1 and j2, that is, aij1 = aij2 = 1.

The reverse-delete step iteratively identifies the largest index j ∈ C, adds it to Ĉ, and

removes j and all the sets dominated by j. This is repeated until no set is left in C (Lines 8–11).

Notice that all sets j ∈ C are tight, thus we can pay for set j by charging the dual variables

of items that belong to j. Because of the reverse-delete step if yi > 0 then i belongs to at most

one set in Ĉ; thus in paying for Ĉ we charge covered items at most once. Using the fact A is

in standard greedy form, it can be shown [75] that if i was left uncovered then we can afford its

penalty, i.e., yi = λpi. The solution Ĉ is optimal for PC-TBC since

∑

j∈ bC

cj +
∑

i∈U s.t.
∄ j∈ bC : aij=1

λpi =
∑

i∈U s.t.
∃ j∈ bC : aij=1

yi +
∑

i∈U s.t.
∄ j∈ bC : aij=1

yi =
∑

i∈U

yi. (2.4)

If we could find a value of λ such that Kolen(A, c, p, λ) returns a solution (Ĉ, y) covering

exactly P profit, we are done since from (2.4) it follows that

∑

j∈ bC

cj =
∑

i∈U

yi − λ (p(U)− P ). (2.5)

Notice that (y, λ) is a feasible for the dual relaxation of P-TBC and its cost is precisely the right

hand side of (2.5). Therefore for this instance IP=DL=LP and Theorem 2.3 follows.

Unfortunately, as Section 2.4.4 shows, there are cases where no such value of λ exists.

Nonetheless, we can always find a threshold value λ such that for any infinitesimally small δ > 0,

λ− = λ− δ and λ+ = λ + δ produce solutions covering less and more than P profit respectively.

2.4.2 Finding a threshold value

One way to find a threshold value is to do a binary search on λ in the interval [0, cmax/pmin].

This leads to pseudo-polynomial time algorithm. Below we show an algorithm that runs in strongly
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polynomial time using Megiddo’s parametric search [83] that makes O(n log m) calls to the proce-

dure Kolen.

The idea is to treat λ as an unknown that lies in a certain range (λl, λr). Initially λl = 0

and λr = maxi,j
cj

pi
. Residual capacities and dual variables are kept as a linear function of λ.

We maintain the invariant that λ+
l covers less than P profit and λ−

r covers more than P profit.

Suppose that in the interval (λl, λr) the algorithm agrees on the first q elements. By this we mean

that if we run the algorithm with any value λ ∈ (λl, λr) the value of the dual variables of these

elements (as a function of λ) is the always the same. In each iteration we either find a threshold

value or we narrow the interval such that the algorithm agrees on one more element. This cannot

go on forever because the algorithm will eventually behave the same way throughout the interval

and the invariant would be violated. If at any point along the way we find a value of λ covering

exactly P profit we stop as the solution is optimal. For simplicity, from now on we assume that

this never happens.

bc

λl

bc

λ1

bc

λ2

bc

λ3

bc

λr

λ

c′(·)

Figure 2.3: Narrowing the interval for λ.

Suppose that kolen agrees on the first i− 1 elements in the interval (λl, λr). Note that the

residual costs and i’s penalty are linear functions of λ. As a result, which set has the minimum

residual cost, and thus which one becomes tight, if any, varies with λ. Our goal is to narrow

the interval such that the set that becomes tight is always the same, or yi = piλ within the new

interval. If we draw the lines corresponding to the residual costs of set that i belongs to and piλ,

the lower envelope corresponds to the next tight event, either a set or element i, see Figure 2.3. Let

λ1, . . . , λs correspond to the intersection points of the lower envelope, and λ0 = λl and λs+1 = λr.
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For every 0 ≤ a ≤ s, within the interval (λa, λa+1) the algorithm agree on i. Note that either one

of the λa is a threshold value, or there exists an a such that λ+
a covers less than P profit and λ−

a+1

covers more than P profit. Given the latter we update λl = λa and λr = λa+1 and repeat.

Theorem 2.4. A threshold value can be found by making O
(
|U | log |S|

)
calls to kolen.

Proof. When searching for the next set to become tight binary search can be used to find the right

a to narrow the interval using log |S|+ 1 calls to kolen.

2.4.3 Merging two solutions

Let y (y−) be dual solution and C (C−) the set of tight sets when Kolen is run on λ (λ−).

Without loss of generality assume Ĉ covers more than P profit. (The case where Ĉ covers less

than P profit is symmetrical: we work with y+ and C+ instead of y− and C−.)

Our plan to prove Theorem 2.3 is to devise an algorithm to merge Ĉ and Ĉ− in order to

obtain a cheap solution covering at least P profit. Before presenting the algorithm we need to

establish an important property regarding these two solutions.

Lemma 2.3. For each i ∈ U there exists a ∈ Z, independent of δ, such that yi = y−
i + aδ.

Proof. By induction, using the fact that the same property holds for the residual cost of the

sets.

A useful corollary of Lemma 2.3 is that C− ⊆ C, since if the residual cost of a set is non-zero

in y it must necessarily be non-zero in y−. Notice that the converse of Lemma 2.3 does not hold

in general.

At the heart of our approach is the notion of a merger graph G = (V,E). The vertex set of

G is made up of sets from the two solutions, i.e., V = Ĉ ⊕ Ĉ−. The edges of G are directed and

given by

E =





(j1, j2)
j1 ∈ Ĉ− \ Ĉ, j2 ∈ Ĉ \ Ĉ− s.t. j1 dominates j2 in y−, or

j1 ∈ Ĉ \ Ĉ−, j2 ∈ Ĉ− \ Ĉ s.t. j1 dominates j2 in y





(2.6)

This graph has a lot of structure that can be exploited when merging the solutions.
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Lemma 2.4. The merger graph G = (V,E) of Ĉ− and Ĉ is a forest of out-branchings.

Proof. First note that G is acyclic, since if (j1, j2) ∈ E then necessarily j1 > j2. Thus, it is

enough to show that the in-degree of every j ∈ V is at most one. Suppose otherwise, that is, there

exist j1, j2 ∈ V such that (j1, j), (j2, j) ∈ E. Assume that j1 < j2 and j ∈ Ĉ (other cases are

symmetrical).

By definition (2.6), we know that j1 (j2)∈ Ĉ− and that
i1 i2 i2 i1

j 1 1 1 1

j1 1 1 1

j2 1 1 1

there exists i1 (i2) that belongs to j and j1 (j2) such that

y−
i1

> 0 (y−
i2

> 0). Since AT is in standard greedy form we

can infer that i2 belongs to j1 if i1 < i2, or i1 belongs to j2 if

i1 > i2: The diagram on the right shows how, using the fact that AT does not contain (2.3) as an

induced submatrix, we can infer that the boxed entries must be 1. In either case we get that j2

dominates j1 in y−, which contradicts the fact that both belong to Ĉ−.

The procedure merge, given in Figure 2.4, starts from the infeasible solution D = Ĉ− and

guided by the merger graph G, it modifies D step by step until feasibility is attained. The operation

used to update D is to take the symmetric difference of D and a subtree of G rooted at a vertex

r ∈ V , which we denote by Tr. For each root r of an out-branchings of G we set D ← D ⊕ Tr,

until p(D ⊕ Tr) > P . At this point we return the solution produced by increase(r,D).

Notice that after setting D ← D ⊕ Tr in Line 5, the solution D “looks like” Ĉ within Tr.

Indeed, if all roots are processed then D = Ĉ. Therefore, at some point we are bound to have

p(D ⊕ Tr) > P and to make the call increase(r,D) in Line 6. Before describing increase we

need to define a few terms. Let the absolute benefit of set j, which we denote by bj , be the profit

of elements uniquely covered by set j, that is,

bj = p
({

i ∈ U | ∀ j′ ∈ Ĉ ∪ Ĉ− : aij′ = 1 iff j′ = j
})

. (2.7)

Let D ⊆ Ĉ ∪ Ĉ−. Note that if j ∈ D, the removal of j decreases the profit covered by D by at

least bj ; on the other hand, if j /∈ D, its addition increases the profit covered by at least bj . This
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merge(Ĉ−, Ĉ)

1 let G be the merger graph for Ĉ− and Ĉ

2 D ← Ĉ−

3 for each root r in G do

4 if p(D ⊕ Tr) ≤ P

5 then D ← D ⊕ Tr

6 else return increase(r,D)

Figure 2.4: Merging two solutions.

notion of benefit can be extended to subtrees,

∆(Tj ,D) =
∑

j′∈Tj\D

bj′ −
∑

j′∈Tj∩D

bj′ . (2.8)

We call this quantity the relative benefit of S with respect to D. It shows how the profit of uniquely

covered elements changes when we take D ⊕ Tj . Note that ∆(Tj ,D) can positive or negative.

Everything is in place to explain increase(j,D), whose pseudo-code is given in Figure 2.5.

The algorithm assumes the input solution is infeasible (more precisely, p(D) ≤ P ) but can be made

feasible by adding some sets in Tj , that is, p(P ) + ∆(Tj ,D) > P . If adding j to D makes the

solution feasible then return D + j (Lines 2-3). If there exists a child c of j that can be used to

propagate the call down the tree then do that (Lines 4-5). Otherwise, split the subtree Tj : Add j

to D and process the children of c, setting D ← D ⊕ Tc until D becomes feasible (Lines 6-9). At

this point p(D) > P and p(D⊕Tc) ≤ P . If P −p(D⊕Tc) < p(D)−P then call increase(c,D) else

call decrease(c,D) and let D′ be the cover returned by the recursive call (Line 10-12). Finally,

return the cover with minimum cost between D and D′.

The twin procedure decrease(j,D) is essentially symmetrical: The input is feasible (p(D) ≥

P ) but can be made infeasible by removing some sets in Tj , that is, p(D) + ∆(Tj ,D) < P .

At a very high level, the intuition behind the increase/decrease scheme is as follows. In
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increase(j, D)

1 // assume p(D) ≤ P < p(D) + ∆(Tj , D)

2 if p(D + j) ≥ P

3 then return D + j

4 if ∃ child c of j : p(D) + ∆(Tc, D) > P

5 then return increase(c, D)

6 D ← D + j

7 while p(D) ≤ P do

8 c← child of j maximizing ∆(Tc, D)

9 D ← D ⊕ Tc

10 if P − p(D ⊕ Tc) < p(D)− P

11 then D′ ← increase(c, D)

12 else D′ ← decrease(c, D ⊕ Tc)

13 return min cost {D, D′}

decrease(j, D)

1 // assume p(D) ≥ P > p(D) + ∆(Tj , D)

2 if p((D ⊕ Tj) + j) ≥ P

3 then return (D ⊕ Tj) + j

4 if ∃ child c of j : p(D) + ∆(Tc, D) < P

5 then return decrease(c, D)

6 D ← D + j

7 while p(D) ≥ P do

8 c← child of j minimizing ∆(Tc, D)

9 D ← D ⊕ Tc

10 if p(D ⊕ Tc)− P < P − p(D)

11 then D′ ← increase(c, D ⊕ Tc)

12 else D′ ← decrease(c, D)

13 return min cost {D ⊕ Tc, D
′}

Figure 2.5: Increase/Decrease procedures for reducing the deficiency/excess.
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each call one of three things must occur:

(i) A feasible cover with a small coverage excess is found (Lines 2-3), or

(ii) The call is propagated down the tree at no cost (Lines 4-5), or

(iii) A subtree Tj is split (Lines 6-9). In this case, the cost cj cannot be accounted for, but

the offset in coverage |P − p(D)| is reduced at least by a factor of 3.

If the increase/decrease algorithms split many subtrees (incurring a high extra cost) then the

offset in coverage must have been very high at the beginning, which means the cost of the dual

solution is high and so the splitting cost can be charged to it. In order to flesh out these ideas into

a formal proof we need to establish some crucial properties of the merger graph and the algorithms.

Lemma 2.5. If yi < λpi, there exist j′ ∈ Ĉ and j′′ ∈ Ĉ− such that j′ = j′′ or (j′, j′′) ∈ E or

(j′′, j′) ∈ E.

Proof. Since yi < λpi, by Lemma 2.3 we get that y−
i < λpi as well. The way kolen does the

dual update ensure the existence of a set j ∈ C− such that aij = 1. Because of the reverse-delete

step either j ∈ Ĉ− or there exists j1 ∈ Ĉ− that dominates j in y− trough i1 ∈ U , i.e., yi1 > 0 and

ai1j = ai1j1 = 1. Notice that, set j is tight after we process i; since yi1 > 0 and ai1j = 1 it follows

that i1 ≤ i. Since A is in standard greedy form we infer that aij1 = 1. By Lemma 2.3, we have

C− ⊆ C, thus j ∈ C. A similar reasoning as above shows that either j ∈ Ĉ or there exists j2 ∈ Ĉ

that dominates j in y trough i2 ∈ U and aij2 = 1.

If there exists a set in Ĉ− ∩ Ĉ covering i the lemma
i1 i2 i i2 i1 i

j 1 1 1 1 1 1

j1 1 1 1 1 1

j2 1 1 1 1 1

follows, so suppose otherwise. If j ∈ Ĉ− (j ∈ Ĉ) then there

exists j2 ∈ Ĉ (j1 ∈ Ĉ−) that dominates j in y− (y), and

again the lemma holds. Finally, consider the case j /∈ Ĉ−

and j /∈ Ĉ. Assume j1 < j2, the other case is symmetrical. Because A is in standard greedy form

we get that (j2, j1) ∈ E if i1 < i2 or (j1, j2) ∈ E if i2 < i1. In either case the lemma follows. The

diagram on above shows a summary of the entries that were inferred using the fact that A does

not contain (2.3) as an induced submatrix.
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Lemma 2.6. At all times Ĉ− ∩ Ĉ ⊆ D ⊆ Ĉ− ∪ Ĉ, and for every arc in E at least one endpoint

is in D.

Proof. Before D ← D⊕Tc (Line 9), for every (j′, j′′) in Tc we have |{j′, j′′}∩D| = 1 and j ∈ D.

Lemma 2.7. Let (j,D) be the input of increase/decrease. For increase we always have

p(D) ≤ P < p(D) + ∆(Tj ,D), while for decrease we always have p(D) ≥ P > p(D) + ∆(Tj ,D).

Proof. We show by induction on the number of calls that the property holds. At the base case the

call is made by merge. Here we have p(D) ≤ P < p(D ⊕ Tj), we claim that

p(D ⊕ Tj)− p(D) = ∆(Tj ,D), (2.9)

from which the property follows. We argue that for each i ∈ U its contribution to both sides of

(2.9) is the same. If yi < λpi then by Lemmas 2.5 and 2.6 element i is covered by both D and

D ⊕ Tj , thus its contribution to (2.9) is nil. The same is true if yi = λpi, and i is covered by Ĉ−

and Ĉ. In the remaining cases i is uniquely covered, thus its contribution is also the same on both

sides.

For the inductive step suppose the lemma holds in the this call. Clearly, if the next call is

made in Line 3 the lemma holds. Suppose that the call is made in Line 11-12. Note that after adding

j to D (Line 7) property (2.9) holds for every child c of j, that is, p(D ⊕ Tc)− p(D) = ∆(Tc,D).

By inductive hypothesis we are bound to exit the while loop, thus the lemma holds in the next

call.

Recall that y is also a feasible solution for the dual relaxation of P-TBC and its cost is given

by DL =
∑n

i=1 yi − (p(U)− P )λ. The following lemma proves the upper bound of Theorem 2.3.

Lemma 2.8. Suppose merge outputs D. Then c(D) ≤
(
1 + 1

3k−1

)
DL + k cmax for all k ∈ Z+.

Proof. Let us digress for a moment for the sake of exposition. Suppose that in Line 6 of merge,

instead of calling increase, we return D′ = D ⊕ Tr. Notice every arc in the merger graph has

exactly one endpoint in D′. By Lemma 2.5, any element i not covered by D′ must have yi = λ pi.
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Furthermore, if yi > 0 then there exists at most one set in D′ that covers i; if two such sets exist,

one must dominate the other in y and y−, which is not possible. Hence,

c(D) =
∑

j∈D′

∑

i:aij=1

yi =
∑

i s.t.
∃ j∈D′ : aij=1

yi =
∑

i∈U

yi − (p(U)− p(D′))λ ≤ DL + (p(D′)− P )λ (2.10)

In the fortunate case that (p(D′) − P )λ ≤ kcmax, the lemma would follow. Of course, this need

not happen and this is why we make the call to increase instead of returning D′.

Let jq be the root of the qth subtree split by increase/decrease. Also let Dq the solution

right before splitting Tjq
, and D′

q and D′′
q be the feasible/infeasible pair of solutions after the

splitting, which are used as parameters in the recursive calls (Lines 11-12). Suppose Lines 7-9

processed only one child of jq, this can only happen in increase, in which case p(D′′
q ) > P but

p(D′′
q )− bjq

< P . The same argument used to derive (2.10) gives us

c
(
D′′

q \ {j≤q}
)
≤
∑

i∈U

yi −
(
p(U)− p(D′′

q ) + bjq

)
λ ≤ DL (2.11)

The cost of the missing sets is c({j≤q}) ≤ q cmax, thus if q ≤ k the lemma follows. A similar bound

can be derived if the recursive call ends in Line 3 before splitting the kk subtree. Finally, the last

case to consider is when Lines 7-9 process two or more children jq for all q ≤ k. In this case

|p(Dq)− P | ≥ 3min
{
|p(D′

q)− P |, |p(D′′
q )− P |

}
= 3 |p(Dq+1)− P |, (2.12)

which implies |p(D1)− P | ≥ 3k−1|p(Dk)− P | ≥ 3k−1|p(D′′
k)− P |. Also, P − p(D1) ≤ DL since all

elements i not covered by D1 must be such that yi = λpi. Hence, as before

c (D′′
k \ {j≤k}) ≤ DL + (p(D′′

k)− P )λ ≤ DL +
P − p(D1)

3k−1
≤
(

1 +
1

3k−1

)
DL (2.13)

Adding the cost of {j≤k} we get the lemma.

2.4.4 Integrality gap example

Let T be a rooted tree and {(si, ti)}ni=1 be a collection of pairs of nodes of T , each defining

a unique path in T . Let A be the incidence matrix of paths to edges of T . The covering problem

defined by A is the well-know Multicut problem where the objective is to find a minimum cost set

31



of edges whose removal separates all pairs. If for every pair, si is the ancestor of ti or vice-versa,

then A is totally balanced. We now show a family of instances of P-TBC with an integrality gap

of IP >
(
1 + 1

3k−1

)
LP + k

2 cmax. This finishes the proof of Theorem 2.3.

Our tree T is made up of a complete binary tree with height 2q plus a 2-path coming out of

the apex of the binary tree going up into the real root of T ; thus the tree has 22q+1 +1 nodes. See

Figure 6.3 for a picture of the instance. The cost of every edge is 3. There are two kinds of paths:

internal and fringe paths. For every node in the binary tree there is an internal path of length two

coming out of the node going up; there are 22q+1 − 1 such paths each having a profit of 4q. For

each leaf and the root there is a fringe path of length 1 incident on it; there are 22q + 1 such paths

each having a profit of 2. The target coverage is given by P = 2
(
4q−1 + . . . + 40 + 1

)
= 22q+1+4

3 ,

where the shorthand notation X means p(U)−X.

Consider the dual solution y where every internal path gets a dual value of 1 and every

fringe path gets a dual value of 2. The solution is feasible for λ = 1 and has cost

DL =
∑

i∈U

yi − Pλ =
10 4q − 1

3
(2.14)

To show that y is optimal, we construct a primal fractional solution x with the same cost,

which is a convex combination of two integral solutions x̃1 and x̃2. Let x̃1 consist of edges in every

other level of T starting at the leaf level. Let x̃2 be the complement of x̃1. Note that p(x̃1) = 2

and p(x̃2) = 22q+1; consider the convex combination αp(x̃1) + βp(x̃2) = P and let x = αx̃1 + βx̃2.

c(x) = αc(x̃1) + βc(x̃2) = α
(
c(x̃1) + p(x̃1)

)
+ β

(
c(x̃2) + p(x̃2)

)
− P = DL (2.15)

Let x̃ be the solution defined as follows. For edges incident on a leaf, the P
2 − 1 rightmost

ones are not chosen in x̃, while the remaining are. For other edges, choose the edge only if one of

the edges immediately below is not chosen (see Figure 2.6). If we try to pay for x̃ using the dual

cost we will charge twice 2q − 1 internal paths whose both edges are chosen in x̃. In other words,

c(x̃) = DL + 2q − 1 (2.16)

Due to their high profit, internal paths cannot be left uncovered. Using this fact we can

infer that x̃ is indeed an optimal integral solution covering P profit. Choosing k = q log3 4 we get
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(a) The tree T for q = 2 (b) Solution x̃1

(c) Solution x̃2 (d) Solution x̃

Figure 2.6: Integrality gap example for partial totally balanced cover. a) The instance for q = 2.

b-d) The wiggly edges belong to the corresponding solution.
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the lower bound of Theorem 2.3. That is, for large enough q,

c(x̃) >

(
1 +

1

3k−1

)
c(x) + cmax

k

2
. (2.17)

For smaller values of k the slightly weaker bound with cmax
k−4
2 additive error holds. It is

worth noting that the example can be adapted to yield the same bound for instances with unit

profits.

2.5 Applications

In this section we show how Theorem 2.3 implies better approximation algorithms for a

number of covering problems that can be expressed with a suitable combination of ρ totally-

balanced matrices.

Definition 2.2. Matrix B is said to be row-induced by a collection of matrices A1, . . . Ak ∈ Rn×m

if for all i, the ith row of B equals the ith row of Aj for some 1 ≤ j ≤ k.

Definition 2.3. Matrix A ∈ {0, 1}n×m is said to be ρ-separable if there exist matrices A1, . . . Aρ ∈

{0, 1}x×m such that A =
∑

q Aq and every matrix row-induced by A1, . . . , Aρ is totally balanced.

Our algorithms make us of following lemma to absorb the additive error in our bounds.

Lemma 2.9. Let A be an algorithm for a given partial covering problem (U,S, P ) that produces

a solution with cost at most α OPT + k cmax, where OPT is the cost of the optimal solution. Then

there exists an α-approximation that makes |U | k
α−1 calls to A.

Proof. The idea is to run A on a modified instance (U ′,S ′, P ′). Let X be the k
α−1 most ex-

pensive sets in the optimal cover for (U,S, P ). Let S ′ = S \ { j | cj > minj′∈X cj′}, U ′ =

U \ { i | covered by X}, and P ′ = P − p(X). The optimal solution in the new instance has cost

OPT′ = OPT− c(X).

Adding X to the solution returned by A(U ′, S′, P ′) gives us a feasible solution, for the

original instance, with cost at most

α OPT′ + k c′max + c(X) ≤ α OPT′ + k
α− 1

k
c(X) + c(X) = α OPT.
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Unfortunately we do not know which sets comprise X. Therefore A is run on every choice

of X and the best cover found is returned. The number of calls to A needed is |U | choose k
α−1 .

We are ready to describe our approximation algorithms for covering problems that can be

described with a ρ-separable matrix. We assume the decomposition is given to us. For an arbitrary

matrix finding such a decomposition, or even testing for its existence, may be hard. However, for

our application problems it is easy to find the ρ matrices using the problem definition.

Theorem 2.5. Let A be ρ-separable into matrices A1, . . . , Aρ where ρ > 1. For any constant

ǫ > 0 there is a (ρ+ ǫ)-approximation and a quasi-polynomial time ρ-approximation for the partial

covering problem defined by A.

Proof. Our algorithm is based on the approach of [47, 55]. First, we find an optimal fraction

solution (x, r) for the partial covering problem defined by A. Let aq
i be the ith row of Aq. Notice

that for each i there must exist a qi such that aqi

i · x ≥ 1−ri

ρ
. Second, we construct a matrix B

by choosing aqi

i as the ith row of B. Note that B is totally balanced. Finally, we find a threshold

value λ∗ for B and invoke merge to find a cover D.

Any feasible solution for B is also feasible for A, thus D is a feasible cover for A. Note that

(ρx, r) is a feasible fractional solution for B. Let OPT be the cost optimal solution for A. By

Lemma 2.8 and letting k ≥ log3
ρ
ǫ

+ 1 we get,

c(D) ≤
(

1 +
1

3k−1

)
c(x′) + k cmax =

(
1 +

1

3k−1

)
ρ c(x) + k cmax ≤ (ρ + ǫ)OPT + k cmax (2.18)

This solution is ρ + ǫ approximate with an additive error of k cmax that can be absorbed using

Lemma 2.9

For the quasi-polynomial time ρ-approximation, setting k ≥ log ρ |U |+ 1 we get

c(D) ≤
(

1 +
1

ρ |U |

)
c(x′) + k cmax ≤ ρ c(x) + (k + 1) cmax ≤ ρOPT + (k + 1) cmax. (2.19)

And the theorem follows.

This implies improved approximation algorithm for the partial version of Multicut and Path

Hitting on Trees, and Rectangle Stabbing. To show this, we use the following fact about totally

35



balanced matrices. Let T be a rooted tree. An s-t path in T is said to be descending if s is an

ancestor of t. Let P and Q be collections of descending paths in T , and let A be the P-Q incidence

matrix A = {ai,j}, where ai,j = 1 if and only if the ith path in P intersects the jth path in Q.

It is known that A is totally balanced: To put the matrix into Greedy Standard form arrange the

columns and rows of A so that the paths in P and Q appear in non-increasing distance from the

root.

Corollary 2.1. There is a 2 + ǫ approximation and a quasi-polynomial time 2-approximation for

Partial Multicut on Trees.

Proof. The input of Partial Multicut is a tree T and a collection of paths P in T , the problem is

defined by the P-E[T ] incidence matrix A. Even though a path in P may not be descending, we

can always split such a path into two separate descending paths. Therefore, A is 2-separable.

Corollary 2.2. There is a 4 + ǫ approximation and a quasi-polynomial time 4-approximation for

Path Hitting on Trees.

Proof. The input of Partial Path Hitting is a tree T and two collections of paths P and Q in T ,

the covering problem is defined by the P-Q incidence matrix A. Parekh and Segev [92] noted that

if we split each path in Q into two descending paths the cost of the optimal solution increases by

at most a factor of 2. The matrix of this modified problem is 2-separable.

Our last application problem is Rectangle Stabbing. This is a special case of Set Cover

with ρ-Blocks, a broad class of covering problems introduced by Hassin and Segev [55], where the

incidence matrix defining the problem is such that every row has ρ blocks of contiguous 1’s.

Theorem 2.6. Let A be a matrix defining an instance of Set Cover with ρ-Blocks. Then there

exists a polynomial time ρ-approximation algorithm for the partial covering problem defined by A.

Proof. We proceed as in Theorem 2.5 to reduce A to a matrix B. This new matrix is not only

totally balanced, but each row consists of a single block of consecutive 1’s. For such matrices the

merger graph used in Section 2.4.3 is in fact a path. In this case, at most one subtree is split in the
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execution of increase. Therefore we get the stronger guarantee that IP ≤ LP + cmax. Plugging

in this into the proof of Theorem 2.5 gives the desired result.

Corollary 2.3. There is a 2-approximation for Partial Rectangle Stabbing and a d-approximation

for Partial d-dimensional Rectangle Stabbing.
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Chapter 3

Making Educated Guesses

In order to narrow the integrality gap of a natural LP formulation, approximation algorithms

for partial cover usually need to modify the instance by pruning certain expensive sets. Indeed,

many algorithms work as follows: Guess the most expensive set in an optimal solution, prune

sets more expensive than the guessed set, run a basic algorithm on each modified instance, and

return the best solution found. In this chapter we present a technique for speeding up primal-dual

algorithms for partial covering. The high level idea is to run the basic algorithm once and make

several guesses along the way. This allows us to design faster algorithms for two variants of vertex

cover.

3.1 Overview

Let G = (V,E) be a graph and let cv be the cost of vertex v ∈ V . A set of vertices C ⊆ V

is said to cover an edge e ∈ E if at least one of the endpoints of e is present in C. Given a target

coverage parameter P , the partial vertex cover problem asks for a set of vertices with minimum

weight covering at least P edges.

The problem is clearly NP-hard as it generalizes vertex cover. The paper by Bshouty and

Burroughs [17] was the first to give a factor 2 approximation for partial vertex cover using LP-

rounding. Subsequently, combinatorial algorithms with the same approximation guarantee were

proposed. Let the input be a graph on n vertices and m edges. Hochbaum [59] presented an

O(nm log n2

m
log n) time algorithm based on Lagrangian Relaxation; Bar-Yehuda [9] developed an

O(n2) time algorithm using the local-ratio technique; finally, a primal-dual algorithm which runs

in O(n(n log n + m)) time was given by Gandhi et al. [36]. Our approach builds on the work of

Gandhi et al. [36].
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Motivated by a problem in computational biology, the capacitated vertex cover problem was

proposed by Guha et al. [49]. For each vertex v ∈ V we are given a capacity kv and a weight cv. A

capacitated vertex cover is a function x : V → N0 such that there exists an orientation of all edges

in which the number of edges directed into v ∈ V is at most kvxv. When e is oriented toward v

we say e is covered by or assigned to v. The weight of the cover is
∑

v∈V cvxv. We want to find a

cover with minimum weight. In their paper, Guha et al. [49] give a primal-dual 2-approximation

for the problem which runs in O(m+n log n) time. An LP rounding algorithm achieving the same

approximation factor was later developed by Gandhi et al. [39]. Given a coverage parameter P , the

partial capacitated vertex cover problem ask for a minimum cost cover covering at least P edges.

Our results are fast algorithms for partial vertex cover and partial capacitated vertex cover.

Section 3.2 explains some of the challenges in designing approximation algorithms for these prob-

lem and outlines the high level idea of our approach. In Section 3.3 we give a primal-dual 2-

approximation algorithm for partial vertex cover that runs in O(n log n+m) time. This represents

an improvement in running time over previously known algorithms for the problem. Section 3.4

shows how to adapt the primal-dual algorithm of [49] for capacitated vertex cover to get a 2-

approximation for the partial version, which constitutes the first approximation algorithm for

partial capacitated vertex cover.

3.2 LP Formulation

Let us describe an integer linear program formulation for the partial vertex cover problem.

Each vertex v ∈ V has associated a variable xv ∈ {0, 1} which indicates if v is picked for the

cover. For every edge e ∈ E one of its endpoints is picked or the edge is left uncovered. A variable

pe ∈ {0, 1} indicates the latter, i.e., pe = 1 means e is left uncovered. The number of uncovered

edges cannot exceed s = m− P . The LP relaxation of the IP just described is given below.
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min
∑

v∈V cvxv

pe + xu + xv ≥ 1 ∀ e = {u, v} ∈ E

∑
e∈E pe≤ s

xv, pe≥ 0 ∀ e ∈ E, v ∈ V

(LPpvc)

As it stands, LPpvc exhibits an unbounded integrality gap.

d

r

Consider the graph on the right: A star where the center node r has

degree d, all leaves have unit weight while the center node has weight

10. Suppose P = 2, that is, we must cover two edges. The optimal

integral solution picks two leaves, thus having a total cost of 2. On the other hand, a fractional

solution can set xr = 2
d

of the center node r and xu = 0 for u 6= r, and pe = 1 − 2
d

for every

edge e. The cost of the fractional solution is 20/d. Choose d big enough to make the cost as small

as desired.

Fortunately, the integrality gap can be narrowed provided we know what is the most ex-

pensive vertex in the optimal solution. Let OPT be the optimal solution; we will also use OPT

to denote the cost of the optimal solution. Suppose we knew that h ∈ V is the most expensive

vertex in OPT. We modify the LP formulation as follows: our solution must pick h and is not

allowed to use vertices more expensive than h, the latter can be achieved by setting their weight

to∞. While this change does not increase the cost of the integral optimal solution, it does narrow

the integrality gap. For example, in the above star example setting the weight of the center to ∞

effectively closes the integrality gap. Gandhi et al. [36] showed how to use the above modification

to develop a primal-dual 2-approximation algorithm. Since we do not know the most expensive

vertex in OPT, we must guess. Their procedure, which takes O(n log n + m) time, is run on every

choice of h ∈ V , and the cheapest cover produced is returned. Therefore, their algorithm runs in

O(n(n log n + m)) time.

Our approach is along these lines, but instead of doing exhaustive guessing we run our

algorithm just once and make different guesses along the way. One may say that the algorithm

40



makes educated guesses. This allows us to bring down the running time.

Theorem 3.1. There is a 2-approximation algorithm for the partial vertex cover problem which

runs in O(n log n + m) time.

In the next section we describe our algorithm and prove the above theorem.

3.3 Partial vertex cover

The dual program for LPpvc is given below. By E(v) we refer to the edges incident to

vertex v.

max
∑

e∈E ye − sz

∑
e∈E(v) ye≤ cv ∀ v ∈ V

ye≤ z ∀ e ∈ E

ye, z≥ 0 ∀ e ∈ E

(DLpvc)

Initially all dual variables are set to 0, and all edges are unassigned. The algorithm works

in iterations, each consisting of a pruning step followed by a dual update step. As the algorithm

progresses we build a set C ⊆ V , which is initially empty. Along the way we may disallow some

vertices; we keep track of these with the set R, which also starts off empty.

In the pruning step we check, for every vertex v ∈ V \ {C ∪R }, if C + v is a feasible cover.

If that is the case, we guess C + v as a candidate cover, and disallow vertex v: set cv ← ∞ and

add v to R. Notice that multiple vertices may be disallowed in a single pruning step.

Let E(R) be the edges with both endpoints in R. If |E(R)| > s we stop as there is no hope

of finding a cover anymore since V \R is not feasible. At this point we return the candidate cover

with minimum weight.

In the dual update step we uniformly raise z and the ye variables of unassigned edges

until some vertex u becomes tight, i.e., its dual constraint is met with equality. Notice that once

disallowed, a vertex can never become tight since cv = ∞ for all v ∈ R. Hence, u ∈ V \ R. If

multiple vertices become tight at the same time then arbitrarily pick one to process. Vertex u
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is added to C, unassigned edges in E(u) are assigned to u and their dual variables are frozen.

After processing u we proceed to the next iteration. In each dual update step only one vertex is

processed, even if multiple tight vertices are available. This ensures that adding u to C does not

make C feasible, otherwise u would have been disallowed in the previous pruning step.

The algorithm terminates when |E(R)| > s, at which point we know OPT must use at least

one vertex in R. Let h be the first vertex in OPT to be disallowed, and C the set at the moment

h was pruned. By definition C + h is a feasible solution; suppose its cost, c(C + h), is at most

twice OPT. Since the algorithm returns a candidate cover with minimum weight, we achieve an

approximation ratio of 2. It all boils down to proving the following lemma.

Lemma 3.1. Let h be the first vertex in OPT to be disallowed. Also, let R and C be the sets

constructed by the algorithm right before h was disallowed. Then c(C + h) ≤ 2OPT.

Proof. We start off by strengthening the LP formulation. Let c′u = cu for u /∈ R and c′u = +∞ for

u ∈ R. Since h ∈ OPT and R ∩OPT = ∅, the following is a valid LP relaxation for our problem.

min
∑

v∈V c′vxv

pe + xu + xv ≥ 1 ∀ e = {u, v} ∈ E

∑
e∈E pe≤ s

xh≥ 1

xu, pe≥ 0 ∀ e ∈ E, v ∈ V

(LP′
pvc)

The dual of LP′
pvc is given below.

max
∑

e∈E ye − sz + γ

∑
e∈E(v) ye≤ c′v ∀ v ∈ V − h

∑
e∈E(h) ye + γ≤ c′h

ye≤ z ∀ e ∈ E

ye, z, γ≥ 0 ∀ e ∈ E

(DL′
pvc)
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Let (y, z) be the value of the dual variables just before h was disallowed. Let γ = c′h −
∑

e∈E(h) ye. The solution (y, z, γ) is feasible for DL′
pvc. Thus, by weak duality, OPT ≤∑e∈E ye−

sz + γ.

Let r be the vertex added to C just before h was disallowed. (If there is no such vertex,

i.e., C = ∅, then the cover {h} is optimal.) Let f be the number of unassigned edges just before r

became tight. Among these f edges, suppose tr were incident on r and th were incident on h.

Every vertex v ∈ C is tight (cv =
∑

e∈Ev ye), thus

c(C + h) =


∑

v∈C

∑

e∈E(v)

ye


+

∑

e∈E(h)

ye + γ,

≤ 2

(
∑

e∈E

ye − fz

)
+ (tr + th)z + γ.

The second line follows because edges assigned before r became tight are considered at most

twice in the first line. The remaining edges have ye = z and there are tr + th of them.

Now consider the pruning step right before r became tight. Vertex r was not disallowed

then because f − tr > s. Similarly f − th > s. Thus tr + th ≤ 2 (f − s). It follows that

c(C + h) ≤ 2

(
∑

e∈E

ye − sz

)
+ γ ≤ 2OPT.

For the implementation we keep two priority queues for the vertices. We refer to the value

of z as the current time in the execution of the algorithm. The first queue uses the key k1(u),

which denotes the time at which vertex u will become tight; initially k1(u) = cu

|E(u)| . The second

queue uses the key k2(u), which denotes the number of unassigned edges incident to u; initially

k2(u) = |E(u)|.

Let g be the number of unassigned edges; initially g = m. In the pruning step we fetch a

vertex v with maximum k2 value. If g − k2(v) > s proceed to the dual-update step. Otherwise,

disallow v by removing v from both queues and adding v to R. Repeat until |E(R)| > s, or

g − k2(v) > s.

In the dual update step we fetch a vertex v with minimum k1 value. Set g ← g− k2(v), add
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v to C and remove v from both queues. For every neighbor u /∈ C ∪R, if k1(u) = 1 remove u from

both queues. Otherwise increase k1(u) to z + (k1(u)− z) k2(u)
k2(u)−1 and decrease k2(u) to k2(u)− 1.

In order to deal with the guessing we store C as a sorted list, adding vertices at the end.

Also we keep two variables h and b. When a vertex v is disallowed we check if the candidate cover

C + v is cheaper than the current best candidate cover. If that is the case, set h← v and b← |C|.

At the end of the algorithm the cover returned is made up of h and the first b elements of C.

The running time is dominated by the priority queue operations. At most 2n remove and

2m modify key operations are performed, which using Fibonacci heaps takes O(n log n + m) time.

This finishes the proof of Theorem 3.1.

3.4 Partial capacitated vertex cover

Our technique can be used to solve a more general version of the vertex cover problem. In

the partial capacitated vertex cover problem every vertex u ∈ V has a capacity ku and a weight

cu. A single copy of u can cover at most ku edges incident to it, the number of copies picked is

given by xu ∈ N0. Every edge e = {u, v} ∈ E is either left uncovered (pe = 1) or is assigned to

one of its endpoints, variables yeu and yev indicate the latter. The number of edges assigned to a

vertex u cannot exceed kuxu, while the ones left unassigned cannot be more than s = m−P . The

LP relaxation of the program just described is given below. The additional constraint xv ≥ yev is

needed to narrow the integrality gap (c.f. [49]).

min
∑

v∈V cvxv

pe + yeu + yev ≥ 1 ∀ e = {u, v} ∈ E

∑
e∈E(v) yev ≤ kvxv ∀ v ∈ V

xv ≥ yev ∀ v ∈ e ∈ E

∑
e∈E pe≤ s

pe, yev, xv ≥ 0 ∀ v ∈ e ∈ E

(LPpcvc)
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For the sake of completeness we describe how to, given an integral feasible cover x, set the

y and p variables. This an assignment problem that can be solved using max flow. Consider a

network with two layers, a source, and a sink. In the first layer there is a node for every e ∈ E;

in the second layer there is a node for every v ∈ V plus a dummy node that represents the option

of leaving an edge uncovered. Every e is connected with unit-capacity edges to the source, its two

endpoints and the dummy node. Every node v is connected with an edge with capacity kvxv to the

sink. Finally, the dummy node is connected to the sink using an edge with capacity s. An integral

flow shipping m units of flow from the source to the sink corresponds to a valid edge assignment

for x and vice versa.

Our algorithm, however, does not use this approach, rather, m−s edges are assigned to one

of their endpoints; then as many copies of each vertex as necessary are chosen to cover the edges

assigned to it. The algorithm works in iterations, each having a pruning step followed by a dual

update step. For the latter we follow the algorithm in [49] which is described here for completeness.

The dual program of LPpcvc is given below.

max
∑

e∈E αe − sz

kvqv +
∑

e∈E(v) lev ≤ cv ∀ v ∈ V

αe≤ qv + lev ∀ v ∈ e ∈ E

αe≤ z ∀ e ∈ E

qv, lev, αe, z≥ 0 ∀ v ∈ e ∈ E

(DLpcvc)

Initially all variables are set to 0 and all edges are unassigned. At the beginning, vertex u

is said to be high degree if more than ku unassigned edges are incident to u, otherwise u is low

degree. As we will see a vertex u may start off as high degree and later become low degree as

adjacent edges get assigned to its neighbors. For such u we define Lu to be the set of unassigned

edges incident to u just after u becomes low degree. If u is low degree from the beginning, i.e.,

deg(u) ≤ ku, we define Lu = E(u).

In the pruning step when processing a vertex v ∈ V \ {C ∪R}, although in principle we are
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allowed to pick multiple copies of it, we check if adding just one copy of v to the current solution

makes it feasible. If that is the case, guess the current solution plus v and then disallow v: add it

to R and set cv ←∞.

In the dual update step we uniformly raise z and αe for all unassigned edges. Because of

the constraint αe ≤ qv + lev one of the terms on the right hand side must be raised by the same

amount. Which variable is increased depends on the nature of v: If v is high degree we raise qv,

otherwise we raise lev. When some vertex u becomes tight we add it to C and open it: If u is high

degree we assign to it all the unassigned edges in E(u), otherwise u is low degree and all edges in

Lu are assigned to it. Notice that in the later case some of the edges in Lu might have already

been assigned. This means that some of the edges originally assigned to a high degree vertex when

it was opened may later be taken away by the opening of low degree neighbors. Therefore the

number of copies of a vertex that is needed can decrease over time after it is opened. In what

follows, when we talk about the current solution we mean the current assignment of edges.

Suppose that in the dual update step the algorithm opens vertex u. If u is low degree, its

opening cannot make the solution feasible, otherwise it would have been disallowed in the previous

pruning step. On the other hand, if u is high degree, opening u may make the solution feasible,

since we can use multiple copies of u. In the latter case we say the algorithm ends prematurely : we

assign to u just enough edges to make the solution feasible (i.e., exactly s edges are left unassigned)

and we return the best solution among the candidate covers and the current solution. If on the

other hand this does not happen and R grows to the point where |E(R)| > s we stop and return

the best candidate cover.

Let us first consider the case where the algorithm ends prematurely, we will show that we

can construct a solution with cost at most 2
(∑

e∈E αe − sz
)
. Let ϕ be the edge assignment

when the algorithm ended prematurely, where ϕ(v) denotes the set of edges assigned to vertex

v. Constructing the solution is simple: we pick enough copies of every vertex to cover the edges

assigned to it, that is, for every u ∈ V we chose
⌈
|ϕ(u)|

ku

⌉
copies of u.

Let u be one of the vertices opened. Furthermore suppose u was low degree when it was
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opened, this means only one copy is needed. If u started off as low degree then cu =
∑

e∈Lu
leu =

∑
e∈Lu

αe as qu = 0. On the other hand if u became low degree afterward then |Lu| = ku and only

edges in Lu have nonzero leu. Thus,

cu = quku +
∑

e∈Lu

leu =
∑

e∈Lu

(qu + leu) =
∑

e∈Lu

αe.

In both cases we can pay for u by charging once the edges in Lu.

Now let us consider the case when u is high degree. By definition more than ku edges were

assigned to u when it became tight. Note that some of these edges may later be taken away by

low degree neighbors. There are two cases to consider. If |ϕ(u)| < ku we only need one copy of

u, charging once the edges originally assigned to u (which are more than ku and have αe = qu) is

enough to pay for cu = kuqu. Otherwise
⌈
|ϕ(u)|

ku

⌉
copies of u are needed. Unfortunately our budget

of
∑

e∈ϕ(u) αe = |ϕ(u)|qu = |ϕ(u)|
ku

cu is only enough to pay for the first
⌊
|ϕ(u)|

ku

⌋
copies. The key

observation is that edges in ϕ(u) will not be charged from the other side, therefore charging any

ku edges in ϕ(u) one more time is enough to pay for the extra copy needed.

How many times can a single edge be charged? At most twice, either from a single (high

degree) endpoint or once from each endpoint. We are leaving s edges uncharged with αe = z,

therefore the solution can be paid with 2(
∑

e∈E αe − sz).

Before ending prematurely the algorithm may have disallowed some vertices. If none of

them is used by OPT, strengthening the LP by setting their weight to ∞ does not increase the

cost of the integral optimal solution. Therefore the cost of the dual solution is a lower bound on

OPT. It follows from the above analysis that the cover found has cost at most 2OPT. Otherwise

OPT uses at least one vertex in R. Notice that if the algorithm terminates because |E(R)| > s we

also get that R ∩ OPT 6= ∅. In either case, let h ∈ R ∩ OPT be such that vertices disallowed by

the algorithm before h do not belong to OPT.

Let R and C be the sets constructed by the algorithm just before h was disallowed. We

proceed as before by strengthening the LP relaxation. Let c′u = cu for u /∈ R and c′u = +∞ for
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u ∈ R. Since h ∈ OPT and R ∩OPT = ∅, the following is a valid LP relaxation for our problem.

min
∑

v∈V c′vxv

pe + yeu + yev ≥ 1 ∀ e = {u, v} ∈ E

∑
e∈E(v) yev ≤ kvxv ∀ v ∈ V

xv ≥ yev ∀ v ∈ e ∈ E

∑
e∈E pe≤ s

xh≥ 1

pe, yev, xv ≥ 0 ∀ v ∈ e ∈ E

(LP′
pcvc)

The dual of LP′
pcvc is given below.

max
∑

e∈E αe − sz + γ

kvqv +
∑

e∈E(v) lev ≤ c′v ∀ v ∈ V − h

khqh +
∑

e∈E(h) leh + γ≤ c′h

αe≤ qv + lev ∀ v ∈ e ∈ E

αe≤ z ∀ e ∈ E

qv, lev, αe, z≥ 0 ∀ v ∈ e ∈ E

(DL′
pcvc)

Let (α, q, l, z) be the dual solution constructed by the algorithm just before h was disallowed.

Let γ = c′h −
(
khqh +

∑
e∈E(h) leh

)
. The solution (α, q, l, z, γ) is a feasible solution for DL′

pcvc.

Hence, its cost offers a lower bound on OPT.

Now consider the edge assignment when h was pruned. Before constructing the cover we

need to modify the assignment. If h is low degree, we assign to h the edges in Lh, otherwise we

assign to it any kh unassigned edges in E(h). This may cause strictly less than s edges to be left

unassigned. To fix this we take away from r, the last vertex to become tight, enough edges as to

leave exactly s edges unassigned. (If there is no such vertex, i.e., C = ∅, then the cover {h} is

optimal.) This can always be done because h was not disallowed before r was opened. Let ϕ be

the edge assignment after this modification. Now we build the cover by picking as many copies of
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each vertex as necessary to cover the edges assigned to it.

Suppose that just before r became tight there were f unassigned edges. Among these f

edges, suppose tr were incident on r and th were incident on h. There are two cases to consider

depending on the number of copies of r needed.

Suppose a single copy of r is needed. This can happen because r was low degree, or because

r was high degree but later some edges were taken away from r in order to leave exactly s edges

uncovered. In either case, using the charging scheme described above, we get:

∑

u∈V

⌈ |ϕ(u)|
ku

⌉
cu ≤ 2

(
∑

e∈E

ye − fz

)
+
(
tr + min{th, kh}

)
z + γ,

≤ 2

(
∑

e∈E

ye − sz

)
+ γ.

The second inequality follows because f − tr > s and f − min{th, kh} > s, which in turn

hold because the algorithm did not end prematurely when r was opened and h was not disallowed

in the pruning step before r became tight.

Now suppose r was high degree and multiple copies of r were chosen. Then

∑

u∈V

⌈ |ϕ(u)|
ku

⌉
cu ≤ 2

(
∑

e∈E

ye − fz

)
+
(
2|ϕ(r)|+ min{th, kh}

)
z + γ,

≤ 2

(
∑

e∈E

ye − sz

)
+ γ.

The second inequality follows because after the reassignment f − s = |ϕ(r)|+ min{th, kh}.

In both cases we can pay for the cover with twice the cost of the dual solution, thus, there is

a candidate cover that is 2 approximate. Since we chose a candidate cover with minimum weight

the algorithm is a 2-approximation.

The implementation is similar to that of the algorithm for partial vertex cover described in

Section 3.3. We keep two priority queues for the vertices. The first queue is used during the dual

update to fetch the next vertex to become tight. The second priority queue is used during the

pruning step to fetch a vertex with most unassigned edges incident on.

When a certain vertex v is disallowed we check if the cost of the candidate cover induced by

v and the current edge assignment is cheaper than the current best candidate cover, if that is the
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case we remember v. In order to do this efficiently we need to keep track of the cost of the current

edge assignment. Note that when a vertex u is opened the cost increases because of the additional

copies of u that are needed. However, if u is low degree it is possible that the number of copies of

a high degree neighbor in Lu may decrease. This is easy to check by scanning the edges in Lu.

Suppose h was the vertex that induced the best candidate cover when it was disallowed.

To recover the actual solution the algorithm is run a second time. When the algorithm tries to

disallow h we stop and return the cover built at this point.

Theorem 3.2. There is a 2-approximation algorithm for the partial capacitated vertex cover prob-

lem which runs in O(n log n + m) time.

3.5 Generalizations

The pruning/dual update technique is quite general and may be applied to other covering

problems where a primal-dual already exist for the full version of the problem. For example, the

primal-dual algorithm of Jain and Vazirani [65] for the facility location problem can be used in

conjunction with our method to design a faster approximation algorithm for the partial version

of the problem, which was studied by Charikar et al. [20]. Very recently, the technique has been

used by Bar-Yehuda et al. [14] to develop approximation algorithms for a more general version of

partial capacitated vertex cover where the edges have arbitrary profits.
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Chapter 4

Beyond Primal Complementary Slackness

Primal-dual algorithms are typically based on linear programming formulations in which

the primal program uses 0-1 variables. After the dual update is carried out, a primal solution is

built by setting to 1 a subset of those variables whose dual constraint is tight. In this chapter we

explore the use of more sophisticated procedures for building a primal solution. As a result, we

obtain the first purely combinatorial algorithm for the data migration problem where the objective

is to minimize the average completion time over all storage disks.

4.1 Overview

Let G = (V,E) be a graph. (All our graphs are multigraphs, for simplicity, however, we

drop the multi prefix when talking about graphs and sets of edges.) Let E(u) denote the set of

edges incident on a vertex u. The vertices and edges in G are jobs to be completed. Each vertex v

has weight wv and each edge has processing time pe. The completion time, Ce, of edge e is simply

the time at which its processing is completed. The completion time, Cv, of vertex v is the latest

completion time of any edge in E(v). The crucial constraint is that two edges incident on the same

vertex cannot be processed at the same time. The objective is to minimize
∑

v∈V wvCv.

Kim [74] gave approximation algorithms for this problem: A 3-approximation when edges

have unit processing times and a 9-approximation for the general case. Kim’s algorithms round the

solution produced by a linear programming relaxation for the problem. This algorithm involves

solving a linear program with an exponential number of constraints, though there are equivalent

linear programs with a polynomial number of constraints (cf. [35]). Gandhi et al. [37] show that

Kim’s algorithm can not give an approximation guarantee better than 3. The best approximation

guarantee for the general case is 5.03 [37] which is obtained by combining solutions to two algo-
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rithms each of which yields an approximation guarantee of 5.83. At a very high level all known

algorithms for this problem comprise of the following two steps: (i) label the edges, (ii) consider

the edges for scheduling in sorted order of their labels. The algorithms in [37, 74] label the edges

based on the fractional completion times in the linear programming solution.

In this chapter we present simple and efficient primal-dual algorithms, which constitute the

first purely combinatorial algorithms for the problem. A novel aspect of our approach is that, unlike

typical primal-dual algorithms, the primal solution is not constructed using relaxed complementary

slackness. Rather, in step (i), the dual update assigns labels to the edges. These labels are used,

in step (ii), to guide a scheduling procedure, which is almost identical to that in [74] for unit edge

processing times and that in [37] for arbitrary edge processing times. In the analysis, the cost of

the schedule is related to the cost of the dual solution via the labels, yielding a 3-approximation

for unit-length processing times, and a 5.83-approximation for arbitrary processing times.

4.2 A Linear Programming Relaxation

The following linear programming relaxation for the data migration problem was given by

Kim [74]. Such relaxations have been proposed earlier by Wolsey [101] and Queyranne [93] for

single machine scheduling problems and by Schulz [98] and Hall et al. [51] for parallel machines

and flow shop problems. For a vertex v, let Cv represent the completion time of v. Let N(u)

represent the set of neighbors of vertex u and E(u) the set of edges incident on u. For any edge

e = (u, v), we use pe to denote the processing time of e. For any set F ⊆ E, let p(F ) =
∑

e∈F pe

and p(F )2 =
∑

e∈F p2
e.

min
∑

v∈V

wv Cv

subject to

∑

e=(u,v)∈S(u)

pe Cv ≥
p(S(u))2 + p(S(u)2)

2
∀u ∈ V, S(u) ⊆ E(u) (4.1)

Cv ≥ p(E(v)) ∀v ∈ V (4.2)

52



The dual LP contains a variable yS(u) for each set S(u), corresponding to constraint (4.1),

and a variable zv for each v ∈ V , corresponding to constraint (2) . The dual LP is given below.

max
∑

u∈V
S(u)⊆E(u)

p(S(u))2 + p(S(u)2)

2
yS(u) +

∑

v∈V

p(E(v))zv

subject to

zv +
∑

e=(u,v)
S(u):e∈S(u)

yS(u) pe ≤ wv ∀v ∈ V (4.3)

yS(u) ≥ 0 ∀u ∈ V, S(u) ⊆ E(u) (4.4)

4.3 Algorithm

The algorithm consists of two phases—labeling and scheduling. In the labeling phase, the

vertices receive labels which are then used to label the edges. The scheduling phase uses the edge

labels to decide the order in which the edges must be considered for processing.

4.3.1 Labeling Phase

The high level idea of the labeling algorithm is as follows. Each vertex is initially unlabeled.

The algorithm proceeds in iterations. In each iteration we find a vertex x which maximizes the

total length of edges going from x to unlabeled neighbors of x, call this set of edges S(x). If there

exists a high degree node h such that p(E(h)) > p(S(x)), then assign h a label of p(S(x)) and raise

zh until constraint (4.3) is tight, namely,

zh = wh −
∑

e=(u,h)
S(u):e∈S(u)

yS(u) pe.

Otherwise, the value of the dual variable yS(x) is increased until the dual constraint (4.3) is met

with equality for some unlabeled neighbor of v. In other words, yS(x) assumes the smallest value

such that for some vertex v ∈ N(x) such that (x, v) ∈ S(x) we have

∑

e=(u,v)
S(u):e∈S(u)

yS(u) pe = wv.
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label(V,E)

1 for v ∈ V do

2 ℓv ← nil // v is unlabeled

3 while there exists an unlabeled vertex do

4 x← vertex maximizing p(S(x)), where S(x) = {(x, v) ∈ E(x) | ℓv = nil}

5 h← unlabeled vertex maximizing p(E(h))

6 if p(E(h)) > p(S(x))

7 zh ← wh

8 ℓh ← p(S(x)) // h is now labeled

9 else

10 yS(x) ← min
{

wvP
e=(x,v) pe

| v ∈ N(u) s.t. ℓv = nil
}

11 for v ∈ N(x) s.t. ℓv = nil do

12 wv ← wv − yS(x)

∑
e=(x,v) pe

13 if wv = 0

14 ℓv ← p(S(x)) // v is now labeled

15 return ℓ

Figure 4.1: Labeling procedure.
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All unlabeled neighbors of x for which the above equality holds are labeled p(S(x)).

Let us denote the label of vertex u by ℓu. These labels induce an ordering on the vertices.

This ordering can be naturally extended to the edges: For any two edges e = (u, v) and f = (u′, v′),

we say ℓe ≤ ℓf if

(i) min{ℓu, ℓv} < min{ℓu′ , ℓv′}, or

(ii) min{ℓu, ℓv} = min{ℓu′ , ℓv′} and max{ℓu, ℓv} ≤ max{ℓu′ , ℓv′}.

The pseudo-code for the labeling phase is given in Figure 4.1. We now state and prove an

important properties of the labels and the dual solution generated by our algorithm.

Lemma 4.1. Let e = (v, w) ∈ E and Fe(w) = {f ∈ E(w) | ℓf ≤ ℓe}. Then, p(Fe(w)) ≤ ℓv.

Proof. Let Ne(w) = {y ∈ N(w) | (w, y) ∈ Fe(w)}. Note that for each vertex y ∈ Ne(w) we have

ℓy ≤ ℓv. Consider the iteration of the algorithm in which the first vertex in Ne(w) is labeled, and

let y be that vertex. At the beginning of this iteration the sum of the processing times of edges in

E(w) whose other endpoints are unlabeled is at least p(Fe(w)). Notice that x is chosen (Line 4 in

the pseudo-code Label) to be the vertex with the maximum value of p(S(x)), where S(x) is set

of edges incident on x whose other endpoints are unlabeled. Therefore, it must be the case that

p(Fe(w)) ≤ p(S(x)) = ℓy, which by definition is at most ℓv.

Lemma 4.2. For any h ∈ V . If zh > 0 then p(E(h)) > ℓh.

Proof. In the pseudo-code, variable zh is set in Line 7. In order to reach Line 7, the condition of

if statement in Line 6 must be satisfied. Thus, p(E(h)) > ℓh.

Lemma 4.3. Let x, v ∈ V and S(x) ⊆ E(x) such that (x, v) ∈ S(x). If yS(x) > 0 then

max{ℓv, p(E(v))} ≤ p(S(x)).

Proof. Consider the iteration in which yS(x) was set. In the pseudo-code, variable yS(x) is set in

Line 10. In order to reach Line 10, it must be that in this iteration all unlabeled vertices have

degree at most p(S(x)). In particular, since v was unlabeled at the beginning of the iteration,

p(E(v)) ≤ p(S(x)). If vertex v is labeled in this iteration then ℓv = p(S(x)). Otherwise v is
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schedule(V,E, ℓ)

1 sort edges in non-decreasing ℓ order

2 for e = (u, v) ∈ E (in sorted order) do

3 schedule e as early as possible without creating

conflicts with edges scheduled so far.

Figure 4.2: Scheduling with unit-length processing times

labeled in a later iteration. Since the value of the labels assigned by the algorithm only decreases

with time, we have ℓv ≤ p(S(x)).

4.3.2 Scheduling edges with unit processing times

The scheduling phase is almost the same as the list scheduling algorithm [48] used by Kim

[74]. The only difference is in the entity that is used to decide the order in which the edges are

processed. We use the edge labels generated by algorithm Label to decide the ordering whereas

Kim [74] uses the completion times of edges as returned by the linear programming solution.

The edges are sorted in increasing order of their labels. The edges are then processed in this

order. When processing (u, v) ∈ E, the edge is scheduled at the earliest time such that no edge

incident upon u or v is already scheduled at that time. The pseudo-code is given in Figure 4.2.

Let us analyze the algorithm. Let C̃v be the completion time of vertex v in our algorithm.

Recall that E(v) denotes the set of edges incident on v, and N(v) the set of neighbors of v.

Lemma 4.4. For each v ∈ V , C̃v ≤ ℓv + |E(v)| − 1.

Proof. Let ev = (w, v) be the last edge to finish among the edges in E(v). Recall from Lemma 4.1

that Fev
(w) = {f ∈ E(w) | ℓf ≤ ℓev

}. Observe that because of the order in which the edges are

scheduled, we have

C̃v ≤ |Fev
(w)|+ |E(v)| − 1.

56



From Lemma 4.1 we know that p(Fev
(w)) = |Fev

(w)| ≤ ℓv. Substituting this in the above expres-

sion completes the proof.

Theorem 4.1. The data migration problem with edges having unit processing times has a 3-approximate

primal-dual algorithm.

Proof. Let G = (V,E) be an instance of the data migration problem. The cost of the schedule

found by our algorithm is given by

∑

v∈V

wvC̃v ≤
∑

v∈V

wv (ℓv + |E(v)|) [ using Lemma 4.4 ]

=
∑

v∈V

wv ℓv +
∑

v∈V

wv |E(v)|

Clearly
∑

v∈V wv|E(v)| ≤ OPT (G). Thus, if we can show that
∑

v∈V wvℓv ≤ 2OPT (G) we

are done. To that end, we relate
∑

v∈V wvℓv to the cost of dual feasible solution obtained by the

algorithm, which we denote by DFS(G).

∑

v∈V

wv ℓv =
∑

v∈V

(
zv +

∑

e=(u,v)
S(u):e∈S(u)

yS(u)

)
ℓv [ every vertex is tight ]

=
∑

v∈V

zv ℓv +
∑

v∈V

∑

e=(u,v)
S(u):e∈S(u)

yS(u) ℓv

≤
∑

v∈V

zv |E(v)| +
∑

v∈V

∑

e=(u,v)
S(u):e∈S(u)

yS(u) ℓv [ using Lemma 4.2 ]

≤
∑

v∈V

zv |E(v)| +
∑

v∈V

∑

e=(u,v)
S(u):e∈S(u)

yS(u) |S(u)| [ using Lemma 4.3 ]

=
∑

v∈V

zv |E(v)| +
∑

u∈V
S(u)⊆E(u)

∑

e∈S(u)

yS(u) |S(u)|

=
∑

v∈V

zv |E(v)| +
∑

u∈V
S(u)⊆E(u)

yS(u) |S(u)|2

≤ 2DFS(G)

Since DFS(G) is a lower bound on OPT (G), it follows that
∑

v∈V wvℓv ≤ 2OPT (G).
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Figure 4.3: Instances showing the relevance of the labeling step.

4.3.2.1 Order matters

In this section we explore the importance of the labeling step. Consider the following natural

and intuitive variant of schedule: Instead of sorting the edges based on the label we process the

edges in any arbitrary order, scheduling them as early as possible without creating conflicts with

the edges scheduled so far. While this algorithm gives a solution that is at most twice the cost of

optimal for min
∑

e Ce [6] and min maxe Ce, the following example shows that for the objective of

min
∑

v Cv it may produce a solution with cost Ω( 3
√

n) times the optimum.

Consider a complete graphs on q vertices. To this, attach q copies of K1,
√

q, so that each

node in Kq is the center of one of the stars, as shown in Figure 4.3 on the left. The optimal solution

first schedules the stars in parallel and then the edges in Kq, with a total cost of Θ(q2). On the

other hand, a minimal solution may schedule the edges in Kq before the stars, incurring an overall

cost of Θ(q2.5). Since the graph has Θ(q1.5) vertices, this shows that a minimal schedule can be a

factor Ω( 3
√

n) away from the optimum.

Looking at the previous example we see that we should have scheduled the edges incident to

the nodes with degree 1 before working on edges whose endpoints have higher degree. This suggests

a heuristic based on degrees instead of labels: First sort the edges (u, v) ∈ E in non-decreasing

value of min(du, dv), breaking ties with max(du, dv); then schedule the edges (in sorted order) as

early as possible without creating a conflict with the partial schedule built so far.

This new heuristic clearly solves the previous example optimally. Unfortunately, it is not a

constant approximation either, as it may produce a solution with cost Ω ( 4
√

n ) times optimum.
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Our bad instance, shown in Figure 4.3 on the right, has three layers. The first, second and

third layers contain q, s and s2 nodes respectively. The first and second layer are connected with

a complete bipartite graph Kq,s. The nodes in the third layer are divided into s groups, each

forming a Ks that is connected to a single node in the second layer. The parameters q and s will

be chosen to get the desired gap.

Notice that nodes in the first and third layers have degree s, thus, the heuristic first schedules

the edges in the Ks’s, and then we are free to schedule the remaining edges in any order as their

endpoints have degree s and q + s. Suppose a solution S1 first schedules the edges from the first

to the second layer, while S2 first schedules the edges from the second to the third layer. In S1

the second-layer nodes are busy for the first q time steps working on the Kq,s edges, as a result,

every node in the third layer finishes by Ω(q), and the overall cost is Ω(s2q). On the other hand,

in S2 the third-layer nodes finish by O(s) and the first and second-layer nodes finish by O(q + s);

thus, the overall cost is O((q + s)2 + s3) = O(q2 + s3). Choosing q = s
3
2 , the ratio of the cost of

S1 and S2 is Ω(
√

s). The graph has O(s2) nodes, therefore the greedy schedule can be an Ω( 4
√

n )

factor away from optimum.

4.3.3 Scheduling edges with arbitrary processing times

The scheduling phase is essentially the same as in [37]. The only difference is in the order

in which the edges are scheduled – we decide the order using the labels on the edges, whereas in

[37], the ordering is based on the completion times of the edges in the optimal linear programming

solution. For completeness, we restate the scheduling algorithm here as described in [37]. In the

scheduling phase, each edge e = (u, v) waits for We time units before it can be scheduled, where

We = β max{p(Fe(u)), p(Fe(v))}.

In the above expression, Fe(u) = {f ∈ E(u) | ℓf ≤ ℓe} and Fe(v) = {f ∈ E(v) | ℓf ≤ ℓe}. When

processing (u, v) ∈ E, the edge is scheduled at the earliest time such that no edge incident upon u

or v is already scheduled at that time. When e is being processed, we say that e is active. Once it

becomes active, it remains active for pe time steps, after which it is finished. A not-yet-active edge
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can be waiting only if none of its neighboring edges are active; otherwise, it is said to be delayed.

Thus, at any time, an edge is in one of four modes: delayed, waiting, active, or finished. When

adding new active edges, among those that have done their waiting duty, the algorithm uses the

labels on edges as priority. The precise rules are given in the pseudo-code below. Let wait(e, t)

denote the number of time steps that e has waited until the end of time step t. Let Active(t) be

the set of active edges during time step t. Let C̃e (C̃u) be the completion time of edge e (vertex u)

in our algorithm.

The pseudo code for the algorithm, as it appears in Figure 4.4, would run in pseudo-

polynomial time; however, it is easy to implement the algorithm in strongly polynomial time, by

increasing t in each iteration by the smallest remaining processing time of an active edge.

Let us analyze the algorithm. Consider a vertex x and an edge e = (x, y). Let Be(x) =

{f ∈ E(x) | ℓf > ℓe, C̃f < C̃e}, i.e., edges in E(x) that have a greater label than that of e, but

finish before e in our algorithm. Recall that Fe(x) = {f ∈ E(x) | ℓf ≤ ℓe}. Note that e ∈ Fe(x).

Let Fe(x) = Fe(x) \ {e}.

We analyze the completion time of an arbitrary but fixed vertex v ∈ V . Without loss of

generality, let ev = (v, w) be the edge that finishes last among the edges in E(v). We analyze our

algorithm for the case where all edges in Fev
(v) ∪ Fev

(w) finish before eu in our algorithm. If this

is not true then our results can only improve. Let C̃v be the completion time of vertex v in our

algorithm.

Lemma 4.5. For each v ∈ V , C̃v ≤ β max{p(Fev
(v)), ℓv}+ p(E(v)) + p(Fev

(w)) + p(Bev
(w)).

Proof. Observe that when ev is in delayed mode it must be that some edge in Fev
(v) ∪ Bev

(v) ∪

Fev
(w) ∪Bev

(w) must be active. Hence, we have

C̃v = C̃ev

≤Wev
+ p(Fev

(v)) + p(Bev
(v)) + p(Fev

(w)) + p(Bev
(w))

= β max{p(Fev
(v)), p(Fev

(w))}+ p(E(v)) + p(Fev
(w)) + p(Bev

(w))

≤ β max{p(Fev
(v)), ℓv}+ p(E(v)) + p(Fev

(w)) + p(Bev
(w))
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schedule(V,E, ℓ,W )

1 sort edges in non-decreasing ℓ order

2 t← 0

3 Finished← Active(t)← ∅

4 for e ∈ E do

5 wait(e, t)← 0

6 while Finished 6= E do

7 t← t + 1

8 Active(t)← {e | e ∈ Active(t− 1) and e 6∈ Active(t− pe)}

9 for e ∈ Active(t− 1) \Active(t) do

10 C̃e ← t− 1

11 Finished← Finished ∪ {e} // e is finished

12 for e = (u, v) ∈ E \ (Active(t) ∪ Finished) in sorted order do

13 if Active(t) ∩ (E(u) ∪ E(v)) = ∅ and wait(e, t− 1) = We

14 then Active(t)← Active(t) ∪ {e} // e is active

15 for e = (u, v) ∈ E \ (Active(t) ∪ Finished) do

16 if (Active(t) ∩ (E(u) ∪ E(v)) = ∅)

17 then wait(e, t)← wait(e, t− 1) + 1 // e is waiting

18 else wait(e, t)← wait(e, t− 1) // e is delayed

19 return C̃

Figure 4.4: Scheduling with arbitrary processing times.
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The last expression follows using Lemma 4.1.

Lemma 4.6. For any vertex v ∈ V , p(Fev
(w)) + p(Bev

(w)) ≤ max{p(Fev
(v)), ℓv}+ 1

β
p(E(v)).

Proof. Let f = (w, z) ∈ Bev
(w) be an edge with the largest label. When edge f is waiting, it must

be that ev is waiting or some edge in E(v) is being processed. Thus we have

β
(
p(Fev

(w)) + p(Bev
(w))

)
≤ Wf

≤ Wev
+ p(E(v))

= β max{p(Fev
(v)), p(Fev

(w))}+ p(E(v))

≤ β max{p(Fev
(v)), ℓv)}+ p(E(v))

The last inequality follows from Lemma 4.1.

Lemma 4.7. For any vertex v ∈ V , C̃v ≤ (1 + β) max{p(E(v)), ℓv}+ (1 + 1
β
) p(E(v))

Proof. The claim follows from Lemmas 4.5 and 4.6, and the fact that p(Fev
(v)) ≤ p(E(v)).

Theorem 4.2. The data migration problem with edges having arbitrary processing times has a

5.83-approximate primal-dual algorithm.

Proof. Let G = (V,E) be an instance of the data migration problem. The cost the schedule found

by our algorithm is given by

∑

v∈V

wvC̃v ≤
∑

v∈V

wv

(
(1 + β) max{p(E(v)), ℓv}+

(
1 +

1

β

)
p(E(v))

)
[ using Lemma 4.7 ]

= (1 + β)
∑

v∈V

wv max{p(E(v)), ℓv}+

(
1 +

1

β

)∑

v∈V

wv p(E(v))

Clearly,
∑

v∈V wv p(E(v)) ≤ OPT (G). Now, suppose

∑

v∈V

wv max{p(E(v)), ℓv} ≤ 2OPT (G). (4.5)

It follows that

∑

v∈V

wvC̃v ≤
(

3 + 2β +
1

β

)
OPT (G).

The right hand side in the above expression is minimized for β = 1√
2
, which gives a ratio of

3 + 2
√

2 ≈ 5.83. It all boils down to showing (4.5). This is done by relating the left hand side
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of (4.5) to the cost of the dual feasible solution obtained by the algorithm, which we denote by

DFS(G).

∑

v∈V

wv max{p(E(v)), ℓv}

=
∑

v∈V

(
zv +

∑

e=(u,v)
S(u):e∈S(u)

yS(u)pe

)
max{p(E(v)), ℓv} [ all v ∈ V are tight ]

≤
∑

v∈V

zv p(E(v)) +
∑

v∈V

∑

e=(u,v)
S(u):e∈S(u)

yS(u) pe max{p(E(v)), ℓv} [ using Lemma 4.2 ]

≤
∑

v∈V

zv p(E(v)) +
∑

v∈V

∑

e=(u,v)
S(u):e∈S(u)

yS(u) pe p(S(u)) [ using Lemma 4.3 ]

=
∑

v∈V

zv p(E(v)) +
∑

u∈V
S(u)⊆E(u)

∑

e∈S(u)

yS(u) pe p(S(u))

=
∑

v∈V

zv p(E(v)) +
∑

u∈V
S(u)⊆E(u)

yS(u) p(S(u))2

≤ 2DFS(G)

Since DFS(G) is a lower bound on OPT (G), it follows that
∑

v∈V wv max{p(E(v)), ℓv} ≤

2OPT (G).
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Chapter 5

Adaptive Local Ratio

This chapter deals with the local ratio technique, a well-known paradigm for designing

approximation algorithms for combinatorial optimization problems which is closely related to the

primal-dual schema. At the heart of every local ratio algorithm is the update step in which a model

weight function is subtracted from the input weight function. These models usually have a very

simple structure that remains “unchanged” throughout the execution of the algorithm. We show

that adaptively choosing a model from a richer spectrum of functions can lead to a better local

ratio, which translates into better approximations. Indeed, by turning the search for a good model

into an optimization problem of its own, we get improved approximations for a data migration

problem.

5.1 Overview

The local ratio technique and primal dual schema are two well-known paradigms for de-

signing approximation algorithms for combinatorial optimization problems. Over the years a clear

connection between the two paradigms was observed as researchers found primal-dual interpreta-

tions for local-ratio algorithms [7, 22] and vice-versa [8, 11]. This culminated with the work of

Bar-Yehuda and Rawitz [12] showing their equivalence under a fairly general and encompassing

definition of primal-dual and local-ratio algorithms. For a survey of results and a historical account

on the local ratio technique see [13].

At a very high level a, local-ratio algorithm starts by decomposing the input weight function

w into a positive linear combination of models ŵi, that is, w = ǫ1ŵ1+. . .+ǫnŵk and ǫi ≥ 0. Guided

by this process, a solution S is constructed such that ŵi(S) ≤ α ŵi(A) for any feasible solution A,

we refer to α as the local ratio of ŵi. As a result, S is α-approximate with respect to w [11].
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Typically the models used in local-ratio approximation algorithms are 0-1 functions or sim-

ple aggregates of structural features of the problem at hand. (In the primal-dual parlance this

corresponds to increasing some dual variables uniformly when constructing the dual solution.)

Furthermore, the structure of the models remains “unchanged” throughout the execution of the

algorithm. For example, for the vertex cover problem, Bar-Yehuda and Even [11] set the weight

of the endpoints of a yet-uncovered edge to 1 and the remaining vertices to 0, while Clarkson

[27] chooses a set of edges forming a star and sets the weight of each vertex to the number of

yet-uncovered star edges incident on it.

In this chapter we demonstrate that adaptively choosing a model from a richer spectrum

of weight functions can lead to a better local ratio, and thus to better approximations. Indeed,

by turning the search for a good model into an optimization problem of its own, we get improved

approximations for the data migration problem with the objective minimizing sum of vertex com-

pletion times. We hope our findings encourage the study of non-uniform updates for local-ratio or

primal-dual algorithms; perhaps in some cases, as in our problem, this may help realize the full

potential of these techniques.

In Section 5.2, we cast the primal-dual algorithm from the previous chapter as a local-

ratio algorithm and provide a family of instances showing the analysis is tight. To overcome

these difficult instances we propose to adaptively choose a model minimizing the local ratio and

formulate the problem of finding such a model as a linear program. Interestingly, our algorithm

is neither purely combinatorial nor LP rounding, but lies somewhere in between. Every time the

weight function needs to be updated, an LP is solved to find the best model. These LPs are much

smaller that the usual LP formulations, so the our scheme should be faster than an LP rounding

algorithm.

In the analysis we show that the models found using the LP exhibit a better local ratio than

the usual 0-1 models. Somewhat surprisingly a precise characterization of the local ratio can be

derived analytically. We prove that the overall scheme is a 1 + φ approximation, where φ = 1+
√

5
2

is the Golden ratio, and give a family of instances achieving this ratio.

65



To derive the worst-case local ratio of our scheme we use a method similar to the factor-

revealing LP approach of Jain et al. [66], which has been successfully applied in the analysis of

many greedy heuristics [5, 16, 64, 66]. The idea there is to formulate as an LP the problem of

building a worst-case instance maximizing the approximation ratio achieved by the heuristic at

hand, and then upperbound the cost of this LP by producing a dual solution. We too formulate as

a mathematical program the problem of building a worst-case instance maximizing the local ratio.

The main difference here is that, since we already use an LP to guide our local-ratio algorithm,

the resulting factor-revealing program is non-linear. Even though we cannot solve this program

numerically, we are still able to prove a tight bound of 1 + φ on its cost.

5.2 Algorithmic Framework

The input to our problem consists of a transfer graph G = (V,E) and a weight function

w : V → R+. For ease of exposition, we assume G is simple1. A feasible schedule S : E → Z+

is a proper edge-coloring of G, that is, if two edges e1 6= e2 are incident on the same vertex then

S(e1) 6= S(e2). We are to find a scheduling minimizing w(S) =
∑

u∈V w(u)maxv∈N(u){S(u, v)}.

Let us cast the primal-dual algorithm of Section 4.3 as a local-ratio algorithm; in the process,

we generalize it slightly. Algorithm alr has two stages: labeling and scheduling. The labeling

stage assigns a label ℓu to every u ∈ V ; these labels are then used to guide the scheduling stage.

The pseudo-code of alr is given in Figure 5.1.

Initially every node is unlabeled, i.e., ℓv = nil for all v ∈ V . Denote the set of unlabeled

neighbors of u with UN(u) = {v ∈ N(u) | ℓv = nil}. In each iteration, choose a node u with the

maximum number of unlabeled neighbors ∆ = |UN(u)|. Then choose a model ŵ : V → R+ with

support in UN(u), find the largest ǫ ≥ 0 such that ǫŵ ≤ w, and set w ← w − ǫŵ. As a result, at

least one vertex in UN(u) has zero weight in the updated w; set the label of these vertices to ∆.

This continues until all vertices are labeled and w = 0.

Once the labels are computed, the edges (u, v) ∈ E are sorted in increasing value of

1In Section 5.5 we show how to remove this assumption
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alr(V,E,w)

1 // labeling stage

2 for u ∈ V do

3 ℓu ← nil

4 while there exists an unlabeled vertex do

5 choose u ∈ V maximizing ∆ = |UN(u)|

6 choose ŵ with support in UN(u)

7 w ← w −min
{

w(u)
ŵ(u)

∣∣ ŵ(u) > 0
}

ŵ

8 for v ∈ UN(u)
∣∣w(v)=0 do

9 ℓv ← ∆

10 // scheduling stage

11 sort the edges in non-decreasing ℓ order

12 S ← empty schedule

13 for e ∈ E in sorted order do

14 add e to S as early as possible

15 return S

Figure 5.1: Pseudo-code for alr.

min{ℓu, ℓv}, breaking ties with max{ℓu, ℓv}. The edges are scheduled greedily in sorted order:

Start with the empty schedule, and add the edges, one by one in sorted order, to the current

schedule as early as possible without creating a conflict.

The labels guide the scheduling phase and let us bound the finishing time of the vertices.

Lemma 5.1. In S, every vertex v ∈ V finishes no later than ℓv + dv − 1.

Proof. Let (v, y) be the edge incident on v that is scheduled the latest in S. Note that the algorithm

can schedule at most dv− 1 edges incident on v before scheduling (v, y). How many edges incident
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on y were scheduled before (v, y)? We claim that at most ℓv − 1. Thus, (v, y) must be scheduled

not later than ℓv + dv − 1. To prove our claim, let X = {x ∈ N(y) | ℓx ≤ ℓv}. The quantity we

want to bound is clearly at most |X| − 1. Notice that the value of the labels assigned in Line 9 of

alr can only decrease with time. Consider the first iteration of the algorithm in which the node

u chosen in Line 4 of alr was such that |UN(u)| = ℓv; at this point in time UN(y) = X. Since u

is chosen to maximize |UN(u)| it follows that |X| = |UN(y)| ≤ |UN(u)| = ℓv.

As it stands, the algorithm is underspecified: We have not described how the model ŵ chosen

in Line 5. It is important to realize though, that Lemma 5.1 holds regardless of our choice of ŵ. In

Section 4.3 we used ŵ(v) = I [v ∈ UN(u)] as a model, where I [·] is a 0-1 indicator function. Recall

that this yields a 3-approximation. In order to gain some intuition on the local ratio technique let

us show that the local ratio of ŵ(v) = I [v ∈ UN(u)] is at most 3.

Lemma 5.2. If Line 5 always uses ŵ(v) = I [v ∈ UN(u)] then ŵ(S) ≤ 3 ŵ(A) for any schedule A.

Proof. An obvious lowerbound on ŵ(A) is
∑

v∈V ŵ(v)dv =
∑

v∈UN(u) dv. Furthermore, since

nodes in UN(u) share u as a common neighbor, it follows that ŵ(A) ≥ ∑i∈[∆] i > ∆2/2, where

∆ = |UN(u)|. On the other hand, by Lemma 5.1

ŵ(S) ≤
∑

v∈UN(u)

(ℓv + dv − 1) ≤ ∆2 +
∑

v∈UN(u)

dv < 3 ŵ(A).

The second inequality follows from the fact that the value of labels only decreases with time.

Since S is a 3-approximation with respect to every model and the input weight function w

is a positive linear combination of these models, it follows that S is 3-approximate with respect to

w as well. It is worth pointing out that the bound on the local ratio of Lemma 5.2 is essentially

tight with respect to Lemma 5.1. To see this, consider what happens when the ith vertex in UN(u)

has degree di = i. Of course, this alone does not imply a tight bound on the overall approximation

guarantee, but as we will see in Lemma 5.4, there is a family of instances where the algorithm in

Section 4.3 produces a schedule whose cost is 3− o(1) times optimum.

Notice that the degree sequence di = i can be easily circumvented if we use a different

model: Instead of ŵ(v) = I [v ∈ UN(u)], which has a local ratio ≈ 3, use the model that just sets
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to 1 the node in UN(u) with degree ∆, which in this case has a local ratio of ≈ 2. Indeed, in general

choosing the best model between ŵ(v) = I [v ∈ UN(u)] and ŵ(v) = I [v ∈ argmaxx∈UN(u)dx] leads

to a local ratio of 3−β2 ≈ 2.802, where β ≈ 0.445 is a root of the polynomial p(x) = x3−x2−2x+1.

The ratio can be achieved with with the degree sequence di = min{i, ⌈β∆⌉}, which again, can be

shown to be tight using Lemma 5.4.

Besides a modest improvement in the approximation guarantee, this suggests a general line

of attack: In each iteration find a model that minimizes the local ratio.

5.3 Minimizing the local ratio

The abstract problem we are to solve is the following: Given a sequence d = (d1, d2, . . . , d∆)

corresponding to the degrees of vertices in UN(u), find weights ŵ = (ŵ1, ŵ2, . . . , ŵ∆) minimizing

the local ratio of ŵ.

In order to evaluate the goodness of a given model ŵ we first need an upper bound on ŵ(S),

where S is the schedule produced by alr. For this we use Lemma 5.1 and the fact that the values

of labels assigned in Line 7 of alr can only decrease with time.

Definition 5.1. UB(d, ŵ) =
∑

i∈[∆] ŵi (di + ∆− 1).

Similarly, we need a lower bound on ŵ(A), where A can be any schedule. Note that A must

schedule the edges from UN(u) to u at different time slots; this induces a total order on UN(u),

which we denote by the permutation σ : [∆]→ [∆]. Notice that vertex i cannot finish earlier than

σ(i), nor earlier than di since all edges incident on i must be scheduled before it finishes.

Definition 5.2. LB(d, ŵ) = minσ:[∆]→[∆]

∑
i∈[∆] ŵi max{di, σ(i)}.

It follows from the above discussion that ŵ(S) ≤ UB(d, ŵ) and LB(d, ŵ) ≤ ŵ(A) for all A.

Hence, the minimum local ratio for d can be expressed as a function of UB and LB.

Definition 5.3. Let ρ(d) = inf
ŵ

UB(d, ŵ)

LB(d, ŵ)
be the minimum local ratio of d.

We now turn our attention to the problem of computing a model ŵ with a local ratio that

achieves ρ(d). This can be done using the program min{UB(d, ŵ) |LB(d, ŵ) ≥ 1, ŵ ≥ 0}, which
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can be re-written as a linear program.

min
∑

i∈[∆](di + ∆− 1) ŵi

subject to

∑
i∈[∆] ŵi max{di, σ(i)} ≥ 1 ∀σ : [∆]→ [∆] (5.1)

ŵi ≥ 0 ∀ i ∈ [∆] (5.2)

(LP1)

Clearly, LP1 computes a model ŵ with local ratio ρ(d). Even though LP1 is exponentially

large, it can be solved in polynomial time using the ellipsoid method—the separation oracle involves

solving a minimum assignment problem. The ellipsoid method, however, is not practical, so below

we derive a more succinct formulation.

min
∑

i∈[∆](di + ∆− 1) ŵi

subject to

∑
i∈[∆] (yi − zi) ≥ 1 (5.3)

yi − zj ≤ max(di, j) ŵi ∀ i, j ∈ [∆] (5.4)

yi, zi, ŵi ≥ 0 ∀ i ∈ [∆] (5.5)

(LP2)

The idea behind LP2 is to replace the cost of the assignments in (5.1) with their dual lower

bound. If (ŵ, y, z) is a feasible solution of LP2 then ŵ is a feasible solution of LP1, since for any

assignment σ,

1 ≤
∑

i∈[∆]

(yi − zi) ≤
∑

i∈[∆]

(yi − zσ(i)) ≤
∑

i∈[∆]

ŵi max{di, σ(i)}.

Since the polytope of the assignment problem is integral [30, Chapter 5.3], the converse also

holds. In other words, for a fixed ŵ, there exist y and z obeying (5.4) such that

min
σ

∑

i∈[∆]

ŵi max{di, σ(i)} =
∑

i∈[∆]

(yi − zi).

This finishes the description of alr from Figure 5.1. Namely, in each iteration of the labeling

stage, Line 5 must solve LP2 to find the best model for the degree sequence of nodes in UN(u).
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Definition 5.4. Let ρ = supd ρ(d) and ρ∆ = maxd:|d|=∆ ρ(d).

Theorem 5.1. alr is a ρ-approximation for the data migration problem and this is tight.

The proof that the algorithm is a ρ-approximation is similar to that of Lemma 5.2. Let S be

the schedule produced by alr. For every model ŵ used by alr, by definition, S is ρ-approximate

with respect to ŵ. Since the input weight function is a linear combination of these models S is a

ρ-approximation. The tightness claim follows from the next two lemmas.

Lemma 5.3. For any ∆, ρ∆ < ρ2∆.

Proof. Let d be such that ρ∆ = ρ(d). Then define d′2i−1 = d′2i = 2di. Let (ŵ′, y′, z′) be an

optimal solution of LP2 for d′ with cost ρ(d′). Define yi = y′
2i−1 + y′

2i, zi = z′2i−1 + z′2i and

ŵi = 2(ŵ′
2i−1 + ŵ′

2i). Then (ŵ, y, z) is a feasible solution for d with cost strictly less than ρ(d′).

Thus ρ∆ = ρ(d) < ρ(d′) ≤ ρ2∆.

Hence, for our lower bound we only need to worry about large values of ∆. Let d be a degree

sequence of length ∆ such that ρ∆ = ρ(d). For technical reasons, assume that di < ∆ (the local

ratio is smaller in this case) and di > 1 for i ≥ 2 (otherwise we can use a stronger upper bound).

We show that for large ∆, the algorithm can produce solutions arbitrarily close to ρ∆.

Lemma 5.4. Suppose that Line 5 of alr always chooses the model ŵ when the vertices in UN(u)

have degrees d1, . . . , d∆, where di > 1 for i ≥ 2 and di < ∆ for all i. Then the algorithm can

produce a schedule with cost UB(d,w)
LB(d,w)

(
1− 1

∆

)
times the optimum.

Proof. Consider the instance in Figure 5.2: a tree with four levels. The ith node in the second

level has weight of ŵi, nodes in other levels have weight zero. The root has degree ∆; the ith node

in the second level has degree di, i.e., it has di− 1 children; nodes in the third level have degree ∆.

Consider an execution of the algorithm that chooses the root in the first iteration, as a

result, all nodes in the second level get a label of ∆. In the next
∑

i(di − 1) iterations the leaves

are labeled ∆−1. Finally, the remaining nodes get a label less than ∆−1. Now consider a node in

the third level, note that the children are labeled ∆− 1, while its parent is labeled ∆. Therefore,
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∆

d1 − 1
. . .

d∆ − 1

∆− 1
. . . . . . . . .

∆− 1

Figure 5.2: Tight instance for alr.

the edges between the third and forth level will be scheduled before those between the second and

the third level. Also assume the edges incident on the root are scheduled from right to left. As

a result, the ith node in the second level finishes by di + ∆ − 2. On the other hand, the optimal

solution has cost precisely LB(d, ŵ). Therefore, the approximation ratio is precisely

∑
i∈[∆] ŵi (di + ∆− 2)

LB(d, ŵ)
=

UB(d, ŵ)−∑i∈[∆] ŵi

LB(d, ŵ)
≥ α

(
1− 1

∆

)
.

As a corollary, we get that the analysis of Section 4.3 is essentially tight since the model

ŵi = 1 has a local ratio of 3− 2
∆+1 for the degree sequence di = i.

However, if we use LP2 to find the best model then the approximation factor becomes ρ,

which by Lemmas 5.3 and 5.4 is tight. It only remains to bound ρ. Somewhat surprisingly, a precise

characterization in terms of the Golden ratio φ = 1+
√

5
2 ≈ 1.618 can be derived analytically.

Theorem 5.2. ρ = 1 + φ.

The next section is devoted to proving this theorem. Figure 5.3 shows ρ∆ for small values

of ∆ obtained through exhaustive search.

5.4 A tight bound for ρ

We start by showing that ρ ≤ 1+φ. In a sense, we need to argue that every degree sequence

d has a good model. Recall that the best model can be found with the linear program LP2. At

first glance this may seem like an obstacle since we are essentially treating LP2 as a black box;
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∆ ρ∆

1 1

2 1.5

3 1.7273

4 1.9310

5 2.0115

6 2.1042

7 2.1863

8 2.2129

9 2.2589

10 2.2857

∆ ρ∆

20 2.4453

30 2.5006

40 2.5275

50 2.5447

60 2.5556

70 2.5667

80 2.5728

...
...

∞ 1 + φ

0 20 40 60 80
1

2

3

bc

bc

bc

bc
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bc

bc
bc
bc
bc

bc
bc

bc bc bc bc bc

Figure 5.3: Experimental evaluation of ρ∆ = ρd:|d|=∆ρ(d).

however, we can exploit linear duality to show the upper bound.

The idea is to replace LP2 with its dual problem LP3 given below. By the Strong Duality

Theorem the optimal solution of LP2 and LP3 have the same cost.

max α

subject to

∑
j∈[∆] xij ≥ α ∀ i ∈ [∆]

∑
i∈[∆] xij ≤ α ∀ j ∈ [∆]

∑
j∈[∆] max(di, j)xij ≤ di + ∆− 1 ∀ i ∈ [∆]

xij , α ≥ 0 ∀ i, j ∈ [∆]

(LP3)

Therefore, ρ(d) equals the cost of the optimal solution of LP3 for the sequence d. Recall

that ρ∆ = maxd:|d|=∆ ρ(d). Suppose we modify LP3 by letting d1, . . . , d∆ be variables in [∆]. The

result is a mathematical program for ρ∆, albeit a non-linear one.
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max α

subject to

∑
j∈[∆] xij ≥ α ∀ i ∈ [∆] (5.6)

∑
i∈[∆] xij ≤ α ∀ j ∈ [∆] (5.7)

∑
j∈[∆] max(di, j)xij ≤ di + ∆− 1 ∀ i ∈ [∆] (5.8)

xij , α ≥ 0 ∀ i, j ∈ [∆] (5.9)

di ∈ [∆] ∀i ∈ [∆] (5.10)

(NLP∆)

The plan is to show that NLP∆ is upperbounded by 1 + φ. To that end, let us first derive

some structural properties about the solutions for NLP∆.

Lemma 5.5. There is an optimal solution (x, d, α) for NLP∆ such that for all i:

i) di = min{k | ∑k
j=1 xi,j ≥ 1},

ii) xi,j = 0 for all j ≤ di − 2, and

iii) If xi,di−1 6= 0 then xk,di
= 0 for all k < i.

Proof. Suppose di < min{k | ∑k
j=1 xi,j ≥ 1}. If di obeys (5.8) then we can increment di by 1,

since this increases the left hand side of (5.8) by less than 1 and its right hand side by 1. Similarly

if di > min{k | ∑k
j=1 xi,j ≥ 1} we can safely decrease di without violating feasibility. Thus, from

now on we can assume that i) is always satisfied.

First sort the rows of x so that d1 ≤ d2 ≤ . . . ≤ d∆. The plan is to modify x row by row

until ii) and iii) are satisfied. For the base case i = ∆. Suppose there exists k < di such that

xi,k > 0. That means xi,di
< α. By (5.8) and the fact that i = ∆, there must be an i′ < i such

that xi′,di
> 0. Let ǫ = min{xi,k, xi′,di

}. Decrease xi,k and xi′,di
by ǫ, and increase xi,di

and xi′,k

by ǫ. Note that the update does not affect constraint (5.8) for i or i′. However, it may decrease
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di′ (as function of x) in which case we must resort the rows. The update is repeated until xi,k = 0

for all k < di.

Assuming that rows in [i + 1,∆] obey ii) and iii), we show how to modify the ith row. The

idea is very similar to the base case, the only difference is that if there exists k < di such that

xi,k > 0 then the fact that xi,di
< α is not enough to conclude the existence of i′ < i such that

xi′,di
> 0 since the remaining non-zero entries in the dith column may be in rows i′ > i. However,

if this is the case then by iii) we have xi′,di−1 = 0 for i′ > i since xi,di
> 0. Thus, we can safely do

the update for xi,di−1 until xi,k = 0 for all k ≤ di − 2. Also note that if we have to switch from

xi,di
to xi,di−1 then xi′,di

= 0 for i′ < i. Putting all together we get properties ii) and iii) for the

ith row.

Lemma 5.6. For any ∆, the objective value of NLP∆ is upperbounded by (1 + φ) + 1
∆−1 .

Proof. Let (x, d, α) be an NLP∆ solution satisfying Lemma 5.5. Our goal is to show that α ≤

1+φ+ 1
∆−1 . Let k the largest index such that (φ−1)k < dk. If k = ∆ then consider constraint (5.8)

for i = ∆

∑

j∈[∆]

max{d∆, j}xi,j ≤ d∆ + ∆− 1,

α d∆ ≤ d∆ + ∆. (5.11)

Where (5.11) follows from (5.7). Rearranging the terms in (5.11) we get

α ≤ ∆

d∆
+ 1 <

∆

(φ− 1)∆
+ 1 = φ + 1.

Let us consider the case k < ∆. Adding up constraints (5.8) for all i such that k < i ≤ ∆

∆∑

i=k+1

∆∑

j=1

max{di, j}xi,j ≤
∆∑

i=k+1

(di + ∆− 1),

dk+∆−k−1∑

j=dk

α j ≤
∆∑

i=k+1

(φ− 1)i + (∆− k)(∆− 1). (5.12)

Where (5.12) follows from the fact that xi,j = 0 for all i > k and j < dk (by Lemma 5.5), every

row and column of x add up to α (by constraints (5.6) and (5.7)), and di ≤ (φ− 1)i for all i > k
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Figure 5.4: How to construct a solution for NLP∆.

(by definition of k). Simplifying (5.12) using dk > (φ− 1)k, we get

α ≤ (φ− 1)(k + 1 + ∆) + 2(∆− 1)

2(φ− 1)k + ∆− k − 1
.

The right hand side of (5.4) is maximized for k = ∆− 1. Thus,

α ≤ (φ− 1)2∆ + 2(∆− 1)

2(φ− 1)(∆− 1)
=

2(φ∆− 1)

2(φ− 1)(∆− 1)
= (1 + φ) +

1

∆− 1
. (5.13)

Which is precisely what we needed.

By Lemmas 5.3 and 5.6, we get that ρ ≤ 1 + φ. The next lemma finishes the proof of

Theorem 5.2 by showing that ρ ≥ 1 + φ.

Lemma 5.7. For every ∆, the objective value of NLP∆ is lowerbounded by (1 + φ)
(
1− 3

∆

)
.

Proof. The plan is to construct a feasible solution (x, d, α) for NLP∆ with α = (1 + φ)
(
1− 3

∆

)
.

Since the cost of the optimal solution can only be larger than this, the lemma follows.

Imagine drawing on the Cartesian plane a ∆ by ∆ grid, and lines l1 = (φ − 1)x and

l2 = ∆ − (2 − φ)x. See Figure 5.4 for a picture of the grid for ∆ = 7. Define the cell (i, j) to

be the square [i− 1, i] × [j−1, j]. Suppose the intersection of cell (i, j) and l1 defines a segment

of length L then we set xi,j = cL φ√
3−φ

, where c is a constant, which will be chosen shortly to

make the solution feasible. Similarly, if the intersection of cell (i, j) and l2 has length L then we
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set xi,j = cL 1√
6−3φ

. It is easy to check that for every j and i:

∑

j′∈[∆]

xi,j′ =
∑

i′∈[∆]

xi′,j = c (1 + φ).

Hence, due to constraints (5.6) and (5.7) the cost of the dual solution is α = c (1 + φ). Let

di = ⌈(φ− 1)i⌉. It only remains to find the largest c that satisfying (5.8). To that end we demand

for every i ∈ [∆] that

⌈(φ− 1)i⌉ c φ + ⌈∆− (2− φ)(i− 1)⌉ c ≤ ⌈(φ− 1)i⌉+ ∆− 1.

It can be verified that the above inequality holds for c = 1− 3
∆ .

5.5 Generalizations

Throughout the paper we have assumed that the transfer graph G is simple. In practice G

is typically a multigraph, so we now show how to modify the description of alr given in Figure 5.1

to handle multigraphs. Let E(u, v) denote the set of edges between u and v. First, in Line 4 of

alr we choose a vertex u maximizing ∆ =
∑

v∈UN(u) |E(u, v)|. To compute the model ŵ we create

a degree sequence d′1, . . . d′∆ by making |E(u, v)| copies of dv for each v ∈ N(u). Solve LP2 to

get weights ŵ′, and then set ŵ(v) to be the sum of ŵ′
i for the indices i induced by dv. These two

modifications make the discussion on the approximation ratio for alr to carry over to multigraphs.
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Chapter 6

Dual Fitting

In this last chapter we study the data migration problem with the objective to minimize

the sum of completion times of edges. We define the notion of strongly minimal schedule and give

an efficient algorithm to compute this schedule in bipartite graphs. We use dual fitting to prove

that these schedules are
√

2-approximate. To show that our analysis is almost tight, we provide

an instance with a strongly minimal schedule that is a 1.375-factor away from optimum.

6.1 Overview

The problem of scheduling the edges of a graph to minimize the sum of their completion

times can be cast as an edge coloring problem: Given G = (V,E) we want to partition the edge

set E into matchings M1, . . . ,Mk as to minimize
∑

i i |Mi|. Indeed, this problem is also known as

minimum sum edge coloring.

A schedule M1, . . . ,Mk is said to be minimal if every matching Mi is maximal with respect

to G \ ∪j<iMj . Bar-Noy et al. [6] showed that any minimal schedule is 2-approximate. The main

result of this chapter is to identify a stronger minimality requirement that results in a better

approximation guarantee.

Data migration in bipartite graphs is equivalent to a variant of open shop scheduling in which

we want to minimize the sum of operation completion times. Marx [82] showed that the problem

is APX-hard. Gandhi et al. [37] showed that using the sum-coloring algorithm of Halldórsson et al.

[52] one can obtain a 1.796 approximation guarantee.

In Section 6.2 we define the notion of strongly minimal schedule. Using dual fitting we prove

that any strongly minimal schedule is
√

2-approximate. We also show that a strongly minimal

schedule always exist for bipartite graphs and that they can be computed in polynomial time. In
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Section 6.2.1 we show that our analysis is almost tight by giving an example on which the algorithm

gives a 1.375-approximate solution. Finally, in Section 6.2.2 studies the integrality gap of the LP

relaxation used in our proofs.

6.2 Strongly minimal schedules

Let us define the notion of strongly minimal schedule and prove that it is
√

2-approximate.

Definition 6.1. A schedule M1, . . . ,Mk of G is strongly minimal if, for all 1 ≤ b ≤ k, the

b-matching ∪i≤bMi is maximal with respect to G.

Theorem 6.1. Any strongly minimal schedule is
√

2-approximate.

Proof. The high level idea of the proof is to assign every edge to at least one of its endpoints.

Each vertex is responsible for paying for the cost of the edges assigned to it. In order to pay for

this cost each vertex charges a lower bound on the completion time of the edges assigned to it.

Let (u, v) ∈ Mi, we say endpoint u is full if u is matched in all Mj<i. We consider the

endpoints of edges in M1 to be full. Notice that every edge (u, v) ∈ Mi must have at least one

full endpoint, otherwise ∪j<iMj + (u, v) would be a valid (i− 1)-matching, which contradicts the

fact that the schedule is strongly minimal. If both endpoints of (u, v) are full then the edge is

half-assigned to u and v. Otherwise the edge is fully-assigned to the one full endpoint.

Every vertex u is responsible for the cost of edges assigned to it. If an edge is half-assigned

to u, then u pays for half of its completion time; if the edge is fully-assigned then u pays in full.

Let s1 and s2 be the number of half-assigned and fully-assigned edges to u respectively. Notice

that all edges assigned to u must belong to Mj for some j ≤ s1 + s2. Think of u as paying 1
2 of

the completion time of all edges assigned to it, plus an additional 1
2 for the fully-assigned edges,

which in the worst case will be scheduled the latest,

u must pay ≤ 1

2

s1+s2∑

i=1

i +
1

2

s1+s2∑

i=s1+1

i.

Vertex u will pay this amount by charging the completion time (in the optimal solution) of

the edges assigned to it. Fully-assigned edges are charged a soon-to-be-determined ρ factor, and
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half-assigned edges are charged ρ
2 . This constitutes u’s budget. How fast can the optimal solution

possibly schedule these edges?

u’s budget ≥ ρ

2

s1+s2∑

i=1

i +
ρ

2

s2∑

i=1

i.

Notice that every edge is charged at most to an extent of ρ: fully-assigned edges are charged

ρ once, from a single endpoint, and half-assigned edges are charged ρ
2 twice, once from each

endpoint. Thus, strongly greedy schedules are ρ-approximate. The discrepancy between the upper

and lower bound on the completion times of edges assigned to u is due to fully-assigned edges

which are scheduled the latest in the upper bound, and the earliest in the lower bound. We need

to determine the smallest ρ such that u’s budget is enough to cover u’s payment, namely

(s1 + s2)(s1 + s2 + 1)

4
+

(1s1 + s2 + 1)s2

4
≤ ρ

(s1 + s2)(s1 + s2 + 1)

4
+ ρ

s2(s2 + 1)

4
.

Or equivalently,

(s1 + s2)
2 + (2s1 + s2)s2 ≤ ρ(s1 + s2)

2 + ρs2
2 + (ρ− 1)(s1 + 2s2).

Let α = s2

s1+s2
, since ρ > 1 the above follows provided

1 + 2α− α2

1 + α2
≤ ρ.

The left hand side is maximized for α =
√

2− 1, which yields
√

2 ≤ ρ

Strongly minimal schedules are not guaranteed to exist for general graphs, for example

a triangle does not allow a strongly minimal schedule. Nevertheless, we can still show that in

bipartite graphs they always exist and can be computed in polynomial time. The bipartite, is an

interesting and nontrivial case: It is a variant of the open shop scheduling problem in which we

want to minimize the sum of completion time of operations [37]. The problem is APX-hard [82]

and the best known approximation guarantee for it is 1.796 [37].

Theorem 6.2. The procedure find strongly minimal is a
√

2-approximation for minimizing

the sum of completion times of unit length operations in open shop scheduling.
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find strongly minimal(G)

1 for i← ∆ to 1 do

2 Mi ← a matching incident to all vertices of G with degree i

3 G← G \Mi

4 return M1,M2, . . . ,M∆

Figure 6.1: Computing a strongly minimal schedule.

Proof. In each iteration, the procedure find strongly minimal computes a matching incident

to the maximum degree vertices of G and removes the matching from G. This continues until all

edges have been removed. The matchings found are then scheduled in reverse order. Because the

degree of G decreases by one with each iteration, the algorithm finishes after ∆ iterations, here ∆

is the degree of the original graph.

Let us argue that the schedule found is strongly minimal. Let e ∈Mi and b < i, we want to

show that e cannot be added to ∪j≤bMj without violating the b-matching property. Let G′ be the

remaining graph when Mi was computed. One of the endpoint of e must have degree i in G′, let u

be that endpoint. After removing Mi the degree of u becomes i− 1, and thus u must be matched

in Mi−1. In general u will be matched in all Mj<i. Therefore, the degree of u in ∪j≤b Mj is b,

which in turn means the b-matching is maximal with respect to e.

In bipartite graphs a matching incident to all the maximum degree vertices always exists

and can be computed in polynomial time. Together with Theorem 6.1, this finishes the proof.

6.2.1 An almost tight example

While at first sight the analysis of the approximation factor of strongly minimal schedules

may seem too pessimistic, it turns out it is almost tight. Consider the following bipartite graph

with vertices u1, . . . , un on one side and vertices v1, . . . , vn on the other side of the bipartition.
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There is an edge (ui, vj) ∈ E if and only if i ≤ j.

It is not difficult to show that the optimal schedule uses matchings

Ok = {(ui, vi+k−1) | i ≤ n− k + 1}

and has cost
∑n

i=1 i (n− i + 1) = 1
6n3 + 3n2 + 2n.

Now suppose we run find strongly minimal. Initially the maximum degree vertices are

u1 and vn, and the algorithm finds the matching Mn consisting of (u1, vn
2
) and (un

2 +1, vn). After

removing Mn the maximum degree vertices are u1, u2, vn−1, and vn. In general the algorithm may

find, for n
2 < k ≤ n,

Mk = {(ui, vi+k−n
2 −1) | i ≤ n− k + 1} ∪ {(uj−k+ n

2 +1, vj) | j ≥ k}.

After these matchings are removed from the graph we are left with a complete bipartite graph on

u1, . . . un
2

and vn
2 +1, . . . vn, thus |Mk| = n

2 for all 1 ≤ k ≤ n
2 . Therefore, the cost of this strongly

minimal schedule is 11
48n3 + 5

8n2 + 1
3n. Figure 6.2 shows the input graph along with the optimal

solution and the above strongly minimal schedule.

The ratio of the cost of the optimal and strongly minimal solutions approaches 1.375 as

n→∞. Compare this to the approximation guarantee of
√

2 ≈ 1.414 obtained in Theorem 6.1.

6.2.2 Integrality gap

Let us now study the inherent limitations of the lower bounding technique used to prove The-

orem 6.1. The lower bound used there can be generalized as follows: For any subset of edges S(u)

incident on a vertex u, we know that any feasible schedule must spend at least |S(u)|(|S(u)|+1)
2 time

on these edges. We can charge the cost incurred by this set of edges, a factor yS(u) ≥ 0. If for every

edge e the total charge
(∑

S(u) : e∈S(u) yS(u)

)
on e is at most 1, then

∑
S(u)

|S(u)|(|S(u)|+1)
2 yS(u)

offers a lower bound on the cost an optimal schedule. The best such lower bound corresponds to

the optimal solution of the following dual linear program.
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b) The optimal schedule.
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c) A strongly minimal schedule.

Figure 6.2: Construction of the almost tight instance for find strongly minimal.
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max
∑

u∈V
S(u)⊆E(U)

|S(u)|(|S(u)|+ 1)

2
yS(u)

subject to

∑

S(u):e∈S(u)

yS(u) ≤ 1 ∀e ∈ E (6.1)

yS(u) ≥ 0 ∀u ∈ V, S(u) ⊆ E(u)

Indeed, the proof of Theorem 6.1 can be viewed as a case of dual-fitting in which constraint

(6.1) is violated a
√

2 factor. To determine how good a lower bound the dual offers, we derive the

primal LP and study its integrality gap.

Theorem 6.3. The integrality gap of the LP below is at least 4
3 in general graphs and at least

10
9 in bipartite graphs.

min
∑

e∈E

Ce

subject to

∑

e∈S

Ce ≥
|S(u)|(|S(u)|+ 1)

2
∀u ∈ V, S(u) ⊆ E(u) (6.2)

Ce ≥ 0 ∀e ∈ E

Proof. For general graphs, consider a triangle. The optimal solution schedules one edge at the

time, and incurs a cost of 6. The LP can schedule all edges at Ce = 1.5, with a cost of 4.5. Thus,

the integrality gap for this graph is 4
3 .

For the bipartite case (our example is in fact a tree) consider a spider with three legs of

length two. The graph is shown on the right in Figure 6.3 along with the edge completion times

of an optimal schedule (in black) and of the optimal LP solution (in gray). Optimum schedules

three edges in M1, two in M2 and one in M3, with a total cost of 10. On the other hand, the LP

solution manages to schedule all edges in two rounds, with a total cost of 9. Thus the integrality
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Figure 6.3: Integrality gap examples for general and bipartite instances for min
∑

e Ce. Integral

finishing times appear in black; fractional finishing times appear in gray.

gap for bipartite graphs is at least 10
9 .

6.2.3 Limitations of strongly minimal schedules

We conclude this section with a note on the limitations of strongly minimal schedules. One

common generalization of our scheduling problem is to minimize the weighted sum of completion

times. In this setting the proof of Theorem 6.1 does not go through as we make crucial use of the

fact that the edges have uniform weight.

It would be natural to hope that the following slight modification of find strongly min-

imal would produce good schedules: Instead of finding any matching incident to the maximum

degree vertices, find one with minimum weight. Unfortunately, the following bipartite example

shows that strongly minimal schedules are just not suited for the weighted case. Take a path of

length four and replace each edge with a copy of Kt,t. The edges in the first and the last Kt,t have

weight 1, and the ones in the middle have weight 0. The optimal solution schedules the first and

the last Kt,t in the first t rounds and the remaining edges are scheduled in the next 2t rounds,

with a total cost of t2(t + 1). On the other hand, any strongly minimal solution can schedule at

most t edges with weight 1 per round, thus incurring a total cost of t2(2t + 1). The ratio of the

cost of the two solutions approaches 2 as t→∞.
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Chapter 7

Conclusions

Undoubtedly, the primal-dual schema is a powerful technique for designing approximation

algorithms. The results in this thesis illustrate, however, that there is still room for new algorith-

mic ideas within the basic schema, and that sometimes in order to fully realize its potential we

must look into more sophisticated uses of it. One aspect of the primal-dual schema that is not yet

fully understood is the apparent asymmetry in complexity of the dual update for exact and ap-

proximation algorithms. As noted by Williamson [100], the dual update of many exact primal-dual

algorithms involve increasing and decreasing variables, while nearly every approximation algorithm

only increases the dual variables. Perhaps more sophisticated dual updates could lead to better

approximations.

Our results in Chapter 2 suggest that Lagrangian relaxation is a powerful technique for

designing approximation algorithms for partial covering problems, even though the black-box ap-

proach may not be able to fully realize its potential. Perhaps requiring additional properties from

the α-LMP algorithm could lead to better-than-4
3α approximations for partial cover in general.

For example, we could ask that the primal solutions around the threshold value λ∗ be related

to a single dual solution through relaxed complementary slackness conditions. We note that this

particular strategy would fail since the lower bound example from Section 2.3 can be adapted to

fit this more restrictive framework. More specifically, a dual solution can be constructed such that

the solutions returned by the algorithm around λ∗ obey complementary slackness conditions (and

relaxed primal complementary slackness when α > 1). We leave as an open problem to explore

this direction of research.

It would be interesting to extend our study on the strengths and limitations of Lagrangian

relaxation to other domains. The obvious candidate is the k-median problem. Jain and Vazirani
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[65] designed a 2α-approximation for k-median using as a black box an α-LMP approximation

for facility location. Later, Jain et al. [66] gave a 2-LMP approximation for facility location. Is

the algorithm in [65] optimal in the sense of Theorem 2.1? Can the algorithm in [66] be turned

into a 2-approximation for k-median by exploiting structural similarities when combining the two

solutions?

The class of totally unimodular matrices is probably the most important subclass of bal-

anced matrices. An open problem in the area of partial cover is to establish good approximations

for partial totally unimodular cover (P-TUC). The element-set incidence matrix for the instance

used in Section 2.4.4 is both totally balanced and totally unimodular, so the lowerbound on the

integrality gap applies for P-TUC as well. Does the upper bound of Theorem 2.3 also hold for

P-TUC?

In Chapter 4 we showed the first purely combinatorial algorithms for data migration to

minimize the sum of vertex completion times via a more sophisticated procedure for constructing

the primal (integral) solution instead of primal complementary slackness. Perhaps this approach

could lead to combinatorial algorithms for other scheduling problems.

In Chapter 5 we introduced the notion of adaptive local ratio in the design of a 1+φ approx-

imation for the data migration problem to minimize the sum of vertex completion times. It would

interesting to find other examples where optimizing the local ratio leads to better approximations.

Another interesting problem is whether there is a combinatorial algorithm for finding an optimal

model for alr.
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