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With the ever increasing congestion at airports around the world, measuring and 

modeling the airspace system performance metrics poses one of the most important 

challenges for any strategic decision support system. The Federal Aviation 

Administration and the airlines have been striving to improve utilization of the critical 

resources to improve performance.  

 

This thesis develops theoretical models to understand the performance of national 

airspace system measured in terms of both flight level and passenger level. This thesis 

will address modeling the flight cancellation probability and flight delays in the 

National Airspace System for an aggregated time period and use them to predict 

average passenger delays. It will also showcase avenues for future applications of 

such theoretical models to improve prediction of the airspace congestion and thereby 

improve decision making capability in aviation systems.   
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Chapter 1: INTRODUCTION 

 

1.1 Air Traffic Overview 

Air traffic in the United States has seen phenomenal growth in the past few 

decades. It has evolved from being a small industry into a key economic driver 

employing over 1.7 million people in the United States. Current projections indicate 

that air traffic will grow at an annual rate of 3 - 5% over the next 12 years. 

Unfortunately, the growth in air traffic has not been marked by a corresponding 

increase in airport resources. As a result, the level of congestion has risen, leading to 

staggering delays during peak periods of activity. The disproportion between 

stagnating capacity and ever-increasing demand has (and will have) enormous 

consequences on the performance of the air transportation system.  

 

1.2 The National Airspace System   

This section introduces the structure of the national airspace system and some 

of the terms in Air Traffic Management (ATM). The National Airspace System 

(NAS) is managed by the Federal Aviation Administration in cooperation with the 

airspace users, and consists of the overall airspace and airport environment for the 

operation of aircraft. The NAS is comprised of the aircraft, airports, maintenance 

personnel, airline dispatchers, tower controllers, terminal area controllers, enroute 

controllers and oceanic controllers. Also parts of the NAS are the computers, 

communication equipments, satellite navigation aids and radars. 
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Airspace refers to the physical space in which the aircraft moves along. Since 

the aircraft moves through a system of constrained runways and waypoints (servers), 

the NAS can be viewed as a complex queuing network. The NAS is highly stochastic. 

Accurate information regarding future airport and en-route capacities and demand are 

never available.  

 

Airspace capacity has been unable to keep pace with the growth in demand and 

traffic. This has resulted in congestion in the airspace and in airports – resulting in 

delays. [1] stated that to avert unacceptable levels of congestion, the following 

directions could be followed: 

1. Increase in capacity through new airports and runways 

2. Better air traffic management in strategic and tactical levels 

3. Demand management at airports 

 

Capacity cannot be changed in a short period of time and is not always an 

acceptable solution to the congestion problem. This motivates the need to develop 

computationally inexpensive models to predict performance metrics for the NAS to 

understand the impact of congestion and other such factors. 

 

1.3 National Airspace System Strategy Simulator 

The National Airspace System Strategy Simulator is being developed by the 

FAA as a decision support system to evaluate long-term infrastructure and regulatory 

strategies. The goal is to provide feedback to FAA planners and decision makers on 
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the impact of new technologies, new operational concepts and other major systems 

changes. The decision support capability when institutionalized is intended to support 

such efforts as the FAA strategic plan and the Joint Planning and Development Office 

(JPDO) analysis of the NAS beyond 2015. Its overall goal is to support the operating 

entities in the FAA, and all the constituents within the NAS, can make decisions 

consistent with an integrated performance based management approach to future 

development. 

 

The NAS strategy simulator consists of several components with different 

constraints embedded in a feedback loop so as to understand the system-wide effects. 

In designing the Strategy Simulator model, the National Airspace System is 

conceived as comprising of three interacting sectors: passengers and shippers, fleets 

of aircraft and their operators, and the system of airports and air traffic control (ATC). 

Aircraft fleets draw on services of the airports and ATC in order to provide, in turn, 

services to passengers and shippers.   

♦ Aircraft fleet operators offer to passengers and shippers the opportunity to 

take trips, associated with prices and travel times. Passengers and shippers use 

some or all of that capacity and in exchange provide money to the fleet 

operators. 

♦ Airports and ATC offer fleet operators the opportunity to fly flights. The 

aircraft fleet operators use some or all of that capacity and in exchange they 

provide money through fees and taxes. 
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Figure 1 : Overview of NAS Strategy Simulator  

 

Each sector is represented in the model as a collection of modules computing 

the status of different aspects of the overall system and also the interactions with the 

other modules.   

 

The NAS strategy simulator can be used to address a wide-range of questions. 

Benefits of policy decisions on long-term effects can be evaluated. Specific scenario 

to be evaluated are given as input and based on the models built using historical data, 

the simulator produces the necessary output – in the form of numbers, tables and 

charts. Another approach would be to focus on a specific output and carry out 

simulations to determine the input that most likely lead to the desired output.  

The major inputs for the Strategy Simulator can be broadly categorized into:  

♦ FAA policies and fee structures (landing cost, taxes, cost of slots, etc) 
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♦ Airport policies and fee structures (infrastructure cost, cargo handling, etc) 

♦ Economic & political environment (Inflation, GDP, etc) 

♦ Technology availabilities (technology for controllers, ATC operations, etc) 

Using the inputs, some of the major outputs for the Strategy Simulator are:  

♦ Capacities of the NAS(Dependent on controllers available, slots available,) 

♦ Demand levels for air travel (using capacity, number of flights flown. etc) 

♦ Air travel experience (dependent on flying time, waiting time etc) 

♦ Airlines: number, behavior and policies, financial health (using operating 

costs, taxes levied, profit/loss made) 

♦ Fleet mix: number of various types of aircraft in use (depends on demand, 

landing cost etc) 

♦ Demands on ATC system: operations, peaks, hubs (depends on airline 

behavior, number of flights flown, weather condition, etc) 

♦ ATC personnel: productivity, experience levels, number required 

♦ ATC technology: installed base of various technologies 

♦ FAA finances and trust fund 

 

The NAS Strategy Simulator, with the above inputs and outputs, will be able to 

address an enormous range of questions. Some of the questions are: 
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• Given fleet mix, demand on the system, what will future airspace demand 

look like?  

• What will demand be for Air Traffic Controllers? 

• Which ATC technologies would, if widely adopted, most help the 

performance of the entire NAS? 

• Given any specified set of FAA policies, which technologies will become 

widely adopted? 

• Evaluating the simulated performance of the system as measured using the 

above outputs, if new technologies could be brought online more quickly, and 

adopted more quickly by airlines and airports, how much improvement in 

NAS performance and FAA finances could be expected? 

• Considering increase in demand, what will future ATC personnel 

requirements be? 

• What FAA policies should be adopted to maximize NAS performance? 

• What would be the effect of changing the basis and magnitude of fees and 

ticket taxes? 

• What will the passenger air travel experience be like (delays, segments per 

trip, cost)? 

• Given increase in demand and using delay levels, what will future aircraft mix 

look like? 
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1.4 Problem Description 

 

The steady rise in demand for air transportation has emphasized the need for 

improved air traffic flow management (TFM) within the National Airspace System. 

Examples of TFM initiatives in response to weather conditions and excessive traffic 

volume such as ground stops include ground delay programs, rerouting, airborne 

holding, and miles-in-trail restrictions. These initiatives seek to control the air traffic 

demand to mitigate the demand-capacity imbalance due to the reduction in capacity, 

result in NAS delays [4]. To guide flow control decisions during the operations, and 

for post operations analysis, it is imperative to create a NAS performance model that 

characterizes the relationship between various factors that affect them.  

 

Our study is part of a high-level decision support tool for the Federal Aviation 

Administration to analyze the impact of new technologies for the entire National 

Airspace System and devise new operational concepts and procedures. Some 

examples of problems addressed are the right combination of demand management 

and infrastructure investments, whether or not to build a runway to increase airport 

capacity, how to accommodate high demands, and the impact of introducing 

sophisticated new Air Traffic Control technology [2]. The FAA is moving toward a 

performance based organization concept to make the Air Traffic Control (ATC) 

system more responsive to the nation. The need for a decision support system to 

guide this transformation is even more acute in a period of continued economic 

slowdown. [3] 
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The Federal Aviation Administration and others are using complex computer 

models to analyze National Airspace System performance. The NAS strategy 

simulator is aimed at a mere aggregate level in order to evaluate performance metrics 

over large time horizons for policy level questions. No satisfactory aggregate models 

for delays and cancellations exist. An aggregate model should be independent of 

individual airports but yet characterize various airport characteristics. Also, the model 

should include long-term effects of various factors that impact performance 

adversely. One such factor is en-route convective weather. Bad weather causes the 

reduction of airport arrival and departure capacity resulting from reduced visibility, 

ceiling, and, to some extent, surface winds (i.e., surface weather). In adverse weather 

conditions, Instrument Flight Rules(IFR) are used leading to decreased arrival rates.  

 

The NAS performance models take as input information on NAS capacity and 

demand and output estimates of NAS performance. The objective of the NAS 

performance models is to estimate the relationship between explanatory variables 

related to demand and capacity, and the performance metrics. NAS performance is 

measured at both a flight level and a passenger level.  At the flight level the two 

quantities of interest are average flight delay and flight cancellation probability.  At 

the passenger level, we consider average anticipated delay and average unanticipated 

delay.   

.  
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Airports possess limited capacity to handle aircraft arrivals and departures.  

The capacity, generally measured in operations per hour, depends on basic airport 

characteristics, including technology available, numbers of runways and runway 

layout, to name a few [4]. It also varies over time and conditions, based on factors 

such as weather conditions, runway configuration in use, mix of operations (arrivals 

vs departures), mix of aircraft types as well as other factors.  Another factor is 

whether Visual Meteorological Condition (VMC) or Instrument Meteorological 

Condition (IMC) exist?  For example, at San Francisco International airport (SFO), 

under VMC, aircraft can make side-by-side approaches into the airport’s two parallel 

runways, whereas under IMC this is not possible.  Thus, IMC capacity is 

approximately ½ of VMC capacity.   

 

On-Time Performance of passenger trips is one of the critical performance 

measures of the quality of service provided. Also on-time performance is a significant 

factor in the service-profit chain that drives airline profitability, productivity and 

customer loyalty and satisfaction. For a given flight, passenger trip time is determined 

by flight times, as well as the time accrued by passengers following missed 

connections and cancellations. Knowledge of delays are used for aircraft maintenance 

compliance and crew salary calculations. See [5] and [6]. 

 

This motivates us to estimate passenger delay in order to better measure 

passenger schedule reliability and also understand about passengers who are disrupted 
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in real-time because of their flight getting cancelled or flight getting delayed by so 

much that they miss their connecting flight. 

 

The strategy simulator will contain a list of airport classes. Tracking the 

congestion separately for different airport groups will allow the model to investigate 

the impact on trip attractiveness.  

 

The framework of our study integrates three models that relate demand and 

capacity for national airspace system performance in terms of average flight delay, 

probability of flight cancellation and average passenger delay. 

 

 

 

Figure 2 : NAS performance metrics 
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1.5 Literature Overview 

An extensive literature review was conducted of models for NAS performance 

metrics to provide a full overview of foundation for the models developed in this 

thesis.  We also reviewed general concepts underlying Air Traffic Management 

(ATM).  

A basic aggregate model for NAS delay was developed in [2]. Wieland used a 

queuing model to estimate the capacity of the NAS. A single variable is used to 

predict delay - traffic count. The drawback of the model is that it can account for only 

a small portion of the factors that impact delay.  The expected upward trend in delay 

as traffic grows is evident.  

In [7] daily delays and cancellations to support strategic simulations were 

modeled. This research takes into consideration delay propagation effects. Both 

cancellation probabilities and delays are estimated. The models provide estimates for 

a single airport.   

Several efforts have been made during the past few years to understand the 

connection between weather and delay both at the local and national level The 

concept of the Weather Impacted Traffic Index (WITI), which estimates the impact of 

weather on planned traffic flows, was introduced in [1]. [8] developed computational 

methods for WITI using extended regions around severe weather cells, and a set of 

statistical features, histogram based features, and time-domain features of WITI time 

histories. These produced good correlation between estimated and reported NAS 

delays.  
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[9] extended Chatterji’s work with a goal of establishing an empirical relation 

between weather, traffic and NAS delays, in order to measure the operational delay 

performance of NAS.  

  

[3] has developed a regression model of NAS delay for the FAA where 

lightning strike data was used to characterize en-route weather.  

 

In [10] , further work on weather impacted traffic index(WITI) has been 

carried out. The new weather index has a quantification methodology that can analyze 

outcome variability. The metric computed in the paper used both en-route and 

terminal components.  

 

In [11], research on flight schedule reliability resulted in estimating passenger 

trip delay. He analyzed the impact of disrupting activities on passenger trip time using 

proprietary airline data to investigate the impact of delayed flights, cancelled flights 

and missed connections, on passenger trip time. The limitation of research in [5] is 

that all the results are constrained by one-month (August 2000) based on proprietary 

passenger booking data provided by a single airline.  

  

[6] measured the Air Transportation System on-time performance from a 

passenger’s perspective. The paper tries to understand and predict impacts on 

passenger trip delay given anticipated changes in the future. Simulation algorithms 
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were developed to use publicly accessible flight-based databases to convert flight data 

to passenger trip data. 

 

1.6 Organization of Thesis 

Chapter 2 contains information on data sources and preliminary data 

undertaken prior to formal analysis. It also provides information on the trends in 

airspace performance, with respect to delay and cancellation rate in the NAS.  

 
Chapter 3 provides details about the model, the underlying theory analyzes 

some of the major factors that affect NAS performance. The various metrics 

developed are described and their significance is discussed. This chapter also 

provides motivation for categorizing airports for aggregate models to evaluate 

performance. 

 

In Chapter 4, we develop theoretical models based for NAS performance 

metrics. The results of the model estimation are presented. The models created are 

validated by applying them to real-world data.  

 

In Chapter 5, the main contributions of this thesis are summarized. We also 

evaluate potential areas in air traffic management where the concepts behind these 

models can be applied for increased efficiency in the system.  
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Chapter 2: PROBLEM DESCRIPTION   

 

2.1  Overview   

 

In this chapter, the NAS performance over the years is studied. The following 

three performance metrics are analyzed : 

• Average Flight Delay 

• Flight Cancellation rate 

• Average Passenger Delay 

 

 The air transportation system is a significant contributor to the national 

economy in the form of direct, derived and induced effects. For example, 

employment and taxes are severely impacted because of air transportation system. 

(One such system is the freight handling system – which relies heavily on air 

transportation). Forecasts of demand for air transportation predict significant 

increases in passenger enplanements, cargo and aircraft operations. Analysis of the 

performance of the NAS under current levels of operations indicates that without 

increases in capacity, delays and cancellations and hence passenger delays are 

expected to grow. 
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2.2  Problem Definition   

 

 The three performance metrics for the NAS are to be modeled. Aggregate 

econometric models for flight delays, flight cancellation probabilities and passenger 

delays are to be created.  

 Flight delays can be attributed to queuing effects within the air transportation 

network. As delays in air transportation system worsen, more and more people switch 

to another mode of transportation.  

The steady rise in demand for air transportation has demonstrated the need for 

improved air traffic flow management within the National Airspace System. One of 

the metrics that has been used to assess the performance of NAS is the actual 

aggregate delay. Flight delays, in many cases, are caused by the application of TFM 

initiatives in response to weather conditions and excessive traffic volume. TFM 

initiatives such as ground stops, ground delay programs, rerouting, airborne holding, 

and miles-in-trail restrictions, are actions that are needed to control the air traffic 

demand to mitigate the demand-capacity imbalances due to the reduction in capacity. 

Consequently, TFM initiatives result in NAS delays. Of all the causes, weather has 

been identified as the most important causal factor for NAS delays. Therefore, to 

guide flow control decisions during the day of operations, and for post operations 

analysis, it is useful to create a baseline for NAS performance and establish a model 

that characterizes the relation between weather and NAS delays. Hence given the 

demand and expected weather, the model can be used to predict the expected 

aggregate delay.  
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Flight cancellation probability is defined as the probability that a flight 

scheduled will be cancelled. Airlines usually cancel their flights when they 

experience non-availability problems related to crew, maintenance and security 

personnel, ATC problems like runway breakdowns etc, and weather related problems 

that reduce the airport capacity. Before canceling a flight, the airlines would weigh 

the economics – fuel costs saved for the cancelled flight versus cost incurred due to 

passenger delays and loss of goodwill - and then make a decision whether to cancel a 

flight or not. In most cases, decisions related to cancellations are affected by 

circumstances outside the control of airlines (e.g. weather problems and reduction of 

airport capacities). In some cases, airlines might face an operational problem that 

forces the cancellation of a particular flight. However, many times airlines can 

exercise some control which flights are cancelled and the number of flights cancelled 

after considering economic trade-offs. But, whatever the reasons, the airlines have the 

responsibility to provide their updated flight plans to the ATC system so that airport 

resources can be better used in lieu of flight cancellations. Since flight cancellations 

mean a significant loss to the airlines, it becomes of paramount significance to model 

them accurately. 

  

Flights delayed or cancelled adversely affect the passengers. Loss of 

Productivity (or Passenger Time Value) represents a valuation of the loss of 

passenger time value contributed to U.S. economy due to bad quality of service. 

Passenger delay is the actual delay passengers experienced by disrupting aviation 
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activities, including both flight delay and cancellations. Delay and cancellation are 

essentially the same from the passenger perspective. They both impose delays to 

travel time. Generaly, cancellations generate extremely high passenger delays. In 

order to estimate passenger delay, transformations must be applied to convert the 

number of cancellations into delay of relocated passengers on the cancelled flights. 

Thus the total passenger delay includes not only delays obtained from delayed flights 

but also delays induced by cancellations. 

 

2.3  NAS Performance over the years   

 

2.3.1  Flight Cancellations    

Using the data obtained from ASPM database, the following plot shows the 

probability of cancellation in NAS from January 2000 to December 2004. There has 

been a mild decreasing trend over these years. Probability of cancellation is the 

average of total cancelled flights over total scheduled flights across all major airports 

in a given time horizon. (Here, we have computed for the 35 OEP airports for each 

month). 
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Figure 3 : Flight cancellation probability over the years 

 

2.3.2 Flight Delays     

 Using the data obtained from ASPM database, the following plot 

shows the flight delays in the NAS from January 2000 to December 2004. The flight 

delays had initially decreased but have been on the rise since the beginning of 2003.  

The delays are computed from the ASPM database for the 35 major OEP airports for 

each month. It is the average difference between actual gate-in time and the scheduled 

gate-in time for each flight across all the 35 OEP airports over the entire time horizon 

(in our case the time horizon is one month).  Delays include all flight 

delays(including those under 15 min) but early arrivals are taken as zero. 
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Figure 4 : Flight delays over the years 
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Chapter 3: MODEL DESCRIPTION    

 

3.1  Overview   

 

In this chapter, the basics underlying our models are described. First of all, the 

various factors that affect the NAS performance metrics are explored. We will use 

these factors as the explanatory variables when we formulate the models for flight 

delays, flight cancellations and passenger delays. 

 

The sources for the data and the methods to process them are described here. 

The chapter then gives the motivation for the passenger delay metric. 

 

Two different aggregate modeling approaches are used. In the first approach – 

the whole NAS is considered as a single system and aggregate models are developed. 

In the second approach, we categorize the airports into discrete categories and 

develop aggregate models using them. 

 

The following factors will be looked into for modeling: 

 

• Congestion in the National Airspace System 

• Load factor of the flights 

• Convective en-route weather in the airspace 
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3.2 Effect of Congestion on NAS performance   

 

Demand has been growing over the years at a much faster rate than the 

increase in resources. Government organizations (FAA, NASA, local airport 

authorities) are pursuing measures aimed at redressing congestion over the coming 

decade. While these measures will significantly help in lowering congestion growth, 

they will not be sufficient to handle the forecast demand in the next decade. Hence, 

the need to understand congestion and its impact on the NAS performance becomes 

significant. Demand has been increasing in the NAS. It can also be seen that the 

effect of small increase in demands at certain airports has had a severe effect on their 

delays and cancellations. 

 

Hence, congestion is one important factor that has to be accounted for while 

modeling flight delays and cancellations. Airport congestion in the future is likely to 

get worse due to an increase in demand (i.e., low-cost carrier expansion, regional jets, 

and business aviation) while the supply of airport capacity will likely remain almost 

constant. Given this clear connection between airport performance characteristics and 

congestion, we now define a approach where congestion is estimated based on 

weather conditions (IMC/VMC) and also based on the peak hour demand. 
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3.2.1 Concept of Rho   

 

The NAS performance models take as input information on NAS capacity and 

demand and output estimates of NAS performance.  The airspace system can be 

viewed as a queuing system, where customers (flights) arrive at servers (airports) at a 

mean rate λ and the server processes customers at a mean rate µ.  There would be 

random variations in the actual arrival and service rates leading to the possibility that 

the server is busy when a customer arrives resulting in the formation of queues. The 

total time required by a customer is the sum of the time spent in the queue plus the 

actual service time.  For stable queuing systems, rho (ρ)  is defined as 

 

ρ  =  λ/µ  =  (mean arrival rate) / (mean service rate). 

 

As rho increases, the expected delay experienced by customers becomes very 

large.  Well designed queuing systems typically have rho values that are significantly 

below unity.   

 

 Airports possess limited capacity to handle aircraft arrivals and departures.  

The capacity, generally measured in operations per hour, depends on basic airport 

characteristics, including technology available, numbers of runways and runway 

layout, to name a few.  It also varies over time and conditions, based on factors such 

as weather conditions, runway configuration in use, mix of operations (arrivals vs 

departures), mix of aircraft types as well as other factors.  Also, it depends on whether 



 

 23 

 

Visual Meteorological Conditions (VMC) or Instrument Meteorological Conditions 

(IMC) exist during the time period in question.   

We associate a rho value with any scheduled NAS operation, O.  O is any 

scheduled arrival or departure so that if there are N scheduled flights then there are 2 

N operations.  Consider the time interval, I, that starts at time h* hours before O (h1) 

and ends h* hours after O(h2). We calculate the rho value for that interval and 

associate that value with the operation O. 

   h*          h* 

 

 

 

 

 

 

    

It is possible for the rho associated with a single operation to be greater than 

one.  This can occur where airlines over-schedule for short periods of time or where 

adverse weather conditions reduce capacity below what normally would be an 

acceptable demand level.  Our approach is to consider the distribution of rho and then 

to characterize this distribution by certain statistics – namely the percentile rho-values 

• ρ50 (the median) 

• ρ95 and  

• ρ99.   

h1 h2 O 

time 

ρ

          # Operations scheduled during I at O’s airport 

            Capacity( in # operations) during I at O’s airport 

= 
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Figure 5 : Notional Rho Distribution 

 

The rho distribution is calculated based on scheduled demand and actual capacity.  

Key computational approximations in computing Rho is that the airport rho values are 

computed on an hour-by-hour basis.  This means that all operations in a given hour 

have the same rho value. Rho is defined in terms of the parameter h* as explained 

above. Flights arriving within 15 minutes of their scheduled arrival time are 

considered to be on-time. Hence, in that sense h* is 30 min. But for our computation 

purpose, we have taken h* as one hour and we assume that all operations in that time 

interval have the same rho value. 

 

 

 

ρ50 ρ95 

   100% 

ρ99 

Y = % of 

operations with ρ ≤ 

X 
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3.2.2 Data source and preparation   

 

 The data source used is the Aviation System Performance Metrics (ASPM). 

The following data are used to determine the rho distribution. 

• Airport  (35 major OEP airports) 

• Local Hour (0 to 23 hours) 

• Scheduled Departures (total number of scheduled departures) 

• Scheduled Arrivals (total number of scheduled arrivals) 

• Average Gate Arrival Delay (actual gate arrival delay-including flights that 

arrive within 15 minutes of scheduled arrival time) 

• Cancelled flights (total number of cancelled flights) 

• Airport Arrival Rate(AAR)  (as reported in ASPM–accounts for VMC/IMC) 

• Airport Departure Rate(ADR) (as reported in ASPM–accounts for VMC/IMC) 

 

We will now describe the algorithm for estimating Rho 50, Rho 95 and Rho 99. 

 

RHO50 is the median of the distribution of RHO(O) over all operations, O, in the 

NAS. 

RHO95 is the 95
th

 percentile of the distribution of RHO(O)  

RHO95 is the 99
th

 percentile of the distribution of RHO(O)  

Using the above data, we compute a histogram RHO_HIST(A)  where for each hour 

we compute the following  

 

Rho = (Scheduled Arrivals + Scheduled Departures)/(AAR + ADR) 
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Now, compute  

RHO_NAS(J) = Σall airport classes A P_OPS(A) * RHO_HIST(A,J)  for J = 1, …,24 

where  

P_OPS(A) = the percent of NAS operations associated with airport  A  

RHO_HIST(A,J) = the probability that the RHO(O) = J * .1 for an operation 

O within the airport  A. The rho for each hour in each airport is computed and 

a histogram is made. The histogram gives the number of operations that 

happen in the time interval for the given demand/capacity ratio. It is the rho 

distribution of each hour for the airport.  

 

When the actual rho is computed, it takes into account the scheduled operations and 

actual capacity. Hence, this accounts for the VMC and IMC conditions that might 

exist in a given hour. If IMC condition exist, the capacity goes down in most of the 

airports and hence the rho for that particular hour increases when compared to a 

similar demand devel with VMC conditions. This would be the approach to measure 

the impact of weather conditions on the performance metrics.  

 

Once the histogram for the whole NAS is obtained, the median of the 

operations is taken as Rho50. Similarly Rho95 and Rho99 can be determined 

analytically. 
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3.3  Load Factor   

 

 Load factor is the total percentage of available seats filled in a flight. Figure 6 

shows the variation of load factor over the years. We can observe that the load factor 

has been increasing significantly over the years.  From Figure 7, we can see some 

negative correlation between load factor and cancellation probability. This can be 

explained by a reluctance on the part of airlines to cancel flights if there is little or no 

space on subsequent flights to assign disrupted passengers.   
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Figure 6 : Load factor over the years 
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Figure 7 : Load factor against cancellation probability 

 

 

3.3.1 Data source and preparation   

 

We define load factor for a flight as 

 Load Factor = (Total passengers boarded) / (Total available seating capacity) 

 

The Bureau of Transportation Statistics(BTS) provides a 10% sample of 

coupons(tickets) obtained from the airlines. This is called the T-100 database 

where for all the major airports, the total available seating capacity and total 

passenger flown are reported. Using this data, we computed the average load factor 

of flights for the NAS.  
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3.4 Convective Weather   

 

Flights undergo delays(both enroute and ground delays) because of Traffic 

flow management initiatives in response to weather conditions and excessive traffic 

volume. Weather has been identified as the most important causal factor for NAS 

delays. Hence, there is a need to come up with a metric that accounts for convective 

weather. When rho is computed, terminal area weather (ceiling/visibility) is already 

taken into account since capacity is computed based on VMC/IMC values.  Thus, this 

part of weather is already handled.  But what is needed is something that capture 

enroute weather. Enroute weather impacts both delays and cancellations. FAA 

initiatives like ground delay programs, flow constrained areas, etc impact flights 

flying through the weather affected area. The flight maybe subjected to ground 

delays, rerouting (incurring additional delay) or cancellation. 

 

3.4.1 Weather Impacted Traffic Index   

 

A generic definition of the Weather Impacted Traffic Index (WITI)  is the 

number of aircraft affected by the weather at a given instant of time. Computation of 

WITI was performed using extended regions around severe weather cells, and a set of 

statistical features, histogram based features, and time-domain features of WITI time 

histories were used to establish the best correlation between the estimated and the 

reported NAS delays. Many such WITI’s have been developed using various 

approaches. An exhaustive modeling of WITI is only available over a limited time 

horizon.  
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3.4.2  Weather Index  based on lightning strike data   

 

 Considering that WITI has been difficult to compute and obtain for a large 

dataset, we used a weather index based on lightning strike data developed by the 

FAA. The above figure shows the various lightning strike points in a given month. 

The lightning strike based convective weather index is created by finding where the 

scheduled flight plans intersect actual lightning strikes in a latitude/longitude and 

time based grid. This is computed from the ETMS flight plans.  

 

 

Figure 8 : Lightning strikes in NAS 
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The index is determined by the intensity of the lightning strike and the number of 

flights in the grid center. The cell size is the size of a sector. For each lightning strike, 

the demand that would have flown across that sector in that time period (15 minutes 

about the lightning strike) as per the scheduled flight plan is computed.  

 

 

3.5 Passenger Delay Analysis   

 

Considering that the airline industry is a highly competitive business, service 

reliability serves as a major advantage to attract and retain passengers. Hence, on-

time performance metrics of passengers constitute a very important role in decision 

making and in profits. While longer block times can improve on-time performance, 

they result in greater operating costs for the airlines. Here, we try to estimate 

passenger delay in order to measure passenger schedule reliability. No actual measure 

of passenger delay metric is publicly available. All the passenger delay information 

are proprietary and no data on passenger delay is available.  

 

Some of the factors that affect passenger delays are :  

• Distribution of flight delays 

• Flight cancellation rate  

• Average Load factor  

• Percentage of passengers with 2 or more flight legs in their itinerary  
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We explain in detail the methodology we will follow in computing passenger delay 

metric. 

 

3.5.1 Scenario tree     

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9 : Scenario tree to estimate passenger delay 

 

We construct the above scenario tree to estimate passenger delay. The scenario tree 

captures all factors through which a passenger can get delayed. We assume that all 

flights are either 1-leg or 2-leg trips. The number of 3 or more leg trips is very 

minimal and hence these are not included. The diagram enumerates the various events 

that could occur on a 1 or 2 leg passenger itinerary, where for a 1-leg trip, the flight is 

direct 

trip:  

2-leg 

trip

f1 canceled

f1 not 

canceled

f1canceled

f2 not 

canceled

f1 not 

canceled

f1 delay 
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f2 canceled

Disrupted passenger

Passenger delay = flight 
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denote by f1 and for a 2-leg trip the first flight is f1 and the second is f2.  Each of 

these leads to a different passenger delay.  An example of passenger delay 

calculations is given in appendix 3 based on this state enumeration approach. 

 

 

The various possibilities that could arise are as follows: 

� The passenger takes 1-leg trip.  

a. His delay is the delay of the flight. 

b. If the flight is cancelled, the passenger is disrupted.  

� The passenger takes 2-leg trip.  

a. The first flight gets cancelled. The passenger is disrupted. 

b. The first flight arrives late 

i. The flight is not late enough for the passenger to miss the 

connecting flight 

ii. The flight is delayed sufficiently so that the passenger misses 

the connecting flight. The passenger is disrupted. 

c. The first flight arrives before second leg is scheduled to depart 

i. The second flight is canceled. The passenger is disrupted. 

ii. The second flight takes off and the passenger delay is the delay 

of the second flight. 
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A key calculation required to estimate passenger delay is the probability of a missed 

connection.   

Let  D(f) be the random flight delay. (actual flight delays – delays of flights that 

arrive within 15 minutes of scheduled arrival time are also taken as the actual delay 

time) 

Dm  be the mean flight delay (flights that are delayed more than 15 minutes) 

 

PMISS is  the probability of a passenger missing a connection that we need to compute. 

This is an approximate method to compute the probability of passenger missing a 

connecting flight. This is estimated only statistically and we do not have an extensive 

data on all the parameters to validate the model.  

 

We define two terms : 

• LAY : average flight layover for connecting flights.. 

• CONNECT : minimum time required to connect between two flights 

 

Given the above,  we  the probability that a connection is missed because of a delayed 

flight: 

 

PMISS = Prob{D(f) > LAY – CONNECT} 

 

We assume that if the flight is delayed less than 15 mintues, then passenger makes the 

connection.    
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The following are estimated to determine D(f) : 

PDELAY = the probability that a flight’s delay > 0 Thus, we can partition flights into 

two sets:  the on-time flights and the late flights (delay > 15 minutes).   

PDELAY  is the probability that a flight is late.  

Hence, the mean delay of late flights, Dm-late by 

Dm-late = Dm / PDELAY.  

Given this, we model D(f) and that is used to compute PMISS 

Section 4.4.2 explains how statistically Dm is estimated. In section 4.4.3, D(f) is 

estimated. While estimating D(f), we condition it based on Dm. For given average 

flight delays (where flight delays are computed for flights delayed >=15 min), D(f) 

gives the distribution of flights arriving with various levels of delay. 

 

3.5.2 Disrupted passenger   

 

In the above section, we described scenarios when a passenger’s itinerary is disrupted 

• The flight is cancelled (either the first leg or second leg) 

• The first flight is late so that the passenger misses the connecting flight 

The disrupted passenger undergoes more delay because his recovery time can never 

be guaranteed. He might be able to get onto the next flight or might have to stay 

overnight to get the next available flight.  We use a single delay value for a disrupted 

passenger. This is certainly an area where better modeling would be useful.  
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3.6 Categorizing Airports   

 

  

While the previous section considered the NAS as one single system, such an 

approach has its own limitations. We cannot distinguish between low density airports 

and highly congested airports. Hence, the model is not flexible enough with respect to 

demand changes. Having all airports in the model is not feasible. Hence, we introduce 

the concept of categorizing airports. We will have minimal number of categories so 

that we retain the aggregate approach but still have enough flexibility to perform 

scenario-change analysis.  

 

3.6.1  Factors used to categorize airport   

 

Airports are classified into different categories based on the following parameters: 

 

•  (daily demand) / (daily capacity)  

•  F-BUSY(A) = fraction of traffic during busy period for airport A 

•  W-BUSY(A) = width of busy period for airport A 

 We assume that F-BUSY(A) >= W-BUSY(A).   

•  IMC-FRACT(A) = (IMC capacity of airport A) /(VMC capacity of airport A) 

•  IMC-TIME(A) = fraction of busy period that airport A experiences IMC. 

•  Congestion metric, which is defined as follows 

 

Congestion Metric =  p1 * (DI/IMC) + p2*(DV/VMC) 
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p1 and p2 are the probabilities of occurrence of IMC and VMC conditions, 

respectively. 

DI and DV are the number of scheduled operations during IMC and VMC periods, 

respectively. 

IMC and VMC are the IMC and VMC capacities, respectively. 

 

Using the above parameters, we categorize airports into the following classes: 

 

� High Demand/Capacity, high IMC/VMC 

�  High Demand/Capacity, medium IMC/VMC 

�  High Demand/Capacity, low IMC/VMC 

�  Medium Demand/Capacity, high IMC/VMC 

�  Medium Demand/Capacity, medium IMC/VMC 

�  Medium Demand/Capacity, low IMC/VMC 

�  Low Demand/Capacity 

 

Airport cluster characteristics are fixed – so airports can move among classes over 

time. The IMC/VMC ratio is based on two quantities – the ratio of the capacities and 

the ratio of time for which IMC exists. Hence, an airport which has high IMC/VMC 

but does not experience IMC conditions that often would not be categorized under 

high IMC/VMC. 
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Chapter 4: Model Results and Validation   

 

4.1 Overview   

 

In this chapter, our performance metrics are modeled using statistical 

techniques. The variables described in Chapter 3 are used to model the three 

performance metrics.  

 

First, the modeling framework used for calibration with historical data will be 

described. Then, our modeling assumptions are discussed in further detail. Next, the 

parameters underlying the to flight delay and cancellation models and procedure used 

for the modeling techniques are explained. The flight delay and cancellation models 

using airport categories are explained next. The validations of these models are then 

presented. Passenger delay is then modeled using the flight delay and cancellation 

models.  

 

 

4.2  Calibration of Monthly Models for NAS   

 

From the ASPM database, we compute Rho 50, Rho 95 and Rho 99 for each 

month for the NAS. The following plot shows the monthly variation of Rho 50 and 

Rho 95 from January 2000 to December 2004. 
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Figure 10 : Rho 50 and Rho 95 over the years 
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NAS Rho50 and Rho95 are the 50
th

 and 95
th

 percentile of scheduled operations in 

NAS respectively.  

 

 

4.2.1 Flight Cancellations 

The following plot shows the variation of flight cancellations with Rho 50 and 

Rho 95.  

 

 

 

Figure 11 : Flight cancellation against Rho 50 over the years 
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Figure 12 : Flight cancellation against Rho 95 over the years 

 

As Rho50 increases, tendency to cancel flights increases. Rho50 gives an early 

indication of the severity of the congestion. At high values of Rho95, NAS is very 

congested and a decision to cancel flights will be too late (considering high passenger 

handling expenses – as there will be very less other re-scheduling options). Hence, a 

better sense of the probability of cancellation can be obtained using Rho50 rather than 

Rho95.  Also, the model obtained here using the data fitted using Rho50 yielded 

better results than Rho95. Considering these, we use Rho50 as an independent 
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variable in our model. Also, as detailed in Section 3.3, load factor plays a very 

significant role while a decision to cancel a flight is taken. Hence, Rho50 and load 

factor are used while estimating the model for probability of cancellation of flight for 

NAS. 

 

Figure 13 : Factors involved in Probability of Cancellation 

Having all the necessary input(rho50 and load factor), we do a regression for various 

functional forms of the dependent and independent variables.  

 

 

 

 

 

 

 

 

 

 

Figure 14 : Computing Probability of Cancellation 
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The various functional forms tried were : linear form (a=b
x
+c form), power series 

(b=ax form), polynomial series form(a= bx
2
+cx+d form) and logarithmic form. The 

functional forms were used for either or both the dependent independent variables. 

The following model was selected as it yielded the highest R
2
 value of 0.6132. 

F_Cancel = e
-3.75

 * [ Loadfactor * ( 1 – Rho50) ] 
-3.34 

 

4.2.2 Flight Delays 

The following plot shows the variation of flight delays with Rho 50 and Rho 95.  

 

 

 

 

Figure 15 : Rho 50 against Flight delays over the years 
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Figure 16 : Rho 95 against Flight delays over the years 

 

 

We used Rho95 and the probability of cancellation to calibrate the model for average 

delay. Similar to the cancellation model, various functional forms for both the 

dependent and independent variables were tried and the following model was chosen 

as it yielded the highest R
2
 value of 0.6862.  
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Figure 17 : Factors involved in average flight delay 
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Figure 18 : Computing average flight delay 

 

F_Delay = 38.62 * [ Rho95 ( 1 – F_Cancel) ] – 23.84 
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4.3 Calibration of Monthly Models using Airport Categories 

 

4.3.1 Airport Categories 

 

The models developed in section 4.2 consider the NAS as a single system and 

hence cannot easily respond to specific changes in airport characteristics. As 

explained in Section 3.6.1, we categorize the NAS airports. From ASPM data, for the 

35 OEP airports, the categorizing parameters are either obtained or computed. The 7 

airport categories are  

a. High Demand/Capacity, high IMC/VMC 

b.  High Demand/Capacity, medium IMC/VMC 

c.  High Demand/Capacity, low IMC/VMC 

d. Medium Demand/Capacity, high IMC/VMC 

e.  Medium Demand/Capacity, medium IMC/VMC 

f.  Medium Demand/Capacity, low IMC/VMC 

g.  Low Demand/Capacity 

The following methodology is used to categorize airport 

 

The demand/capacity ratio is computed for each airport and based on the following 

values, they are categorized either as high, medium or low demand/capacity airports. 

� If   1   <  Demand/Capacity  > 0.7   it is categorized as High 

� If  0.4 <  Demand/Capacity  <  0.7 , it is categorized as medium 

� If   0    < Demand/Capacity <  0.4, it is categorized as low. 

 

The breakpoints were chosen so that there are enough airports in each of the three 

categories. Various combinations for the breakpoints were tried until the breakpoints 
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are chosen so that each category has enough airports so as to perform further analysis. 

This is another area where a more robust statistical method can be used for 

categorizing the airport based on their demand and capacity. 

 

If the congestion metric for a particular hour is greater than 0.6, that hour is 

considered as a busy hour. The congestion metric was also chosen so that there are 

sufficient hours in the congested-hour metric. Peak hour values were one major factor 

while determining the congestion metric’s threshold. The breakpoint was to ensure 

that peak hours are included in the busy-hour metric and that traffic in most of the 

airports in all the busy hours included is very much greater than traffic at other time 

intervals. 

 

Each airport is categorized into appropriate clusters based on the following basis: 

a. Compute demand/capacity and classify the airport has high,medium or low. 

b. Compute busy period width and traffic in busy period. Traffic above 0.6 is 

considered high, between 0.5 and 0.6 is considered medium and below 0.5 is 

considered low. Similarly, for busy period, the congestion metric has to be 

above 0.6. 

c. Compute IMC/VMC capacity and period of time for which it exists. If 

IMC/VMC is greater than 0.85, it is considered high, between 0.85 and 0.75 is 

considered as medium and below 0.75 is considered low.  

Using the above criteria, all airports will fall into one of the 7 categories. When the 

demand is low, we do not check for the conditions (b) and (c).  
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Rho distribution is computed for each of the airport classes. Computing rho 

distribution for each airport class is exactly the same as how we determine for NAS – 

the only difference being that while for NAS we take into account all the 35 major 

airports while for each category, we just take in those airports that are categorized 

under them. Hence, given the airport list, we compute the hourly demand/capacity for 

each of the airports in that list and determine the 50
th

, 95
th

 and 99
th

 percentile of 

operations (as explained in section 3.2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 49 

 

Each category with its list of airports are given in the following table 

 

  Category g Category f Category e Category d Category c Category b Category a 

2000 TPA IAH PDX MDW IAD JFK ATL 

  MCO STL MIA PHX DTW PHL ORD 

  SLC DCA CLT SEA SFO DFW LGA 

  BWI LAS FLL DEN LAX EWR BOS 

     SAN MSP       

        CVG       

                

2001 TPA LAS PDX MDW IAD PHL ATL 

  MCO SAN MIA PHX DTW DFW ORD 

  SLC IAH CLT SEA JFK EWR LGA 

  BWI  FLL MSP LAX DEN BOS 

  STL   DCA CVG SFO     

                

2002 TPA LAS PDX MDW IAD JFK ATL 

  MCO IAH MIA PHX DTW PHL ORD 

  SLC BWI CLT SEA LAX DFW LGA 

  SAN  FLL DEN SFO EWR BOS 

  STL   DCA MSP      

      CVG        

                

2003 TPA MIA PDX CVG IAD JFK ATL 

  MCO SAN SEA MDW DTW DFW ORD 

  SLC IAH CLT PHX PHL EWR LGA 

  BWI LAS FLL MSP SFO LAX BOS 

    STL DCA DEN      

              

2004 TPA MIA PDX IAH IAD LAX ATL 

  MCO STL CVG MDW DTW PHL ORD 

  SLC LAS CLT PHX JFK DFW LGA 

  BWI SEA FLL MSP DCA EWR BOS 

  SAN    DEN SFO    

                

2005 TPA CVG PDX  IAD JFK ATL 

  MCO SAN MIA MDW DTW PHL ORD 

  SLC IAH CLT PHX DEN DFW LGA 

  STL BWI FLL SEA LAX EWR BOS 

     LAS MSP DCA    

          SFO     

                

2006 TPA CVG PDX MDW IAD JFK ATL 

  MCO STL MIA PHX DTW PHL ORD 

  SLC BWI CLT MSP LAX DFW LGA 

  SAN SEA FLL DEN DCA EWR BOS 

    LAS IAH   SFO     
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An example of categorizing a particular airport is given below : 

For the year 2004, we take LAX. 

The average demand/capacity = 0.73. Hence, the airport is a high demand/capacity 

airport. Hence, it will be in one of the three categories – a, b or c. (These are high 

demand/capacity categories – depending on other parameters, the right category will 

be chosen). 

 

The congestion metric is computed and the width of busy hour is computed as 0.25 

Fraction of traffic in busy hour = 0.52 

The ratio of the capacities : IMC/VMC = 0.83 

Amount of time for which IMC conditions existed = 8%.  

 

Hence, the airport is highly congested, but does not have volume of traffic in 

congested hours and also high IMC/VMC ratio. Hence, it is classified as category b.  

 

 

4.3.2 Flight Cancellations 

 

The cancellation model described in 4.2.1 considers NAS as a single system. As 

outlined in the previous section, we would want a model that would change to 

specific changes in airport characteristics. That motivated us to categorize airports. 

Hence, we would want a model that would have a structure that would enable us to 

change some of the key parameters. We have estimated a model that gives the option 

to change the congestion metrics (Rho distribution) for each of the airport categories, 
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load factor of NAS and the weather index of NAS. The probability of cancellation is 

computed as a function of Rho 50, Rho 95, Rho 99, load factor and weather index.  

 

 
 

Figure 19 : Probability of cancellation using airport clusters 
 

The functional form is  

 

NAS Cnx = f(Rho50i,Rho95i,Rho99i,Loadfactor,W-Indx) 

 

where i represents values for each of the individual airport classes 

 

Functional form :  

 

Cnx  

 = ∑ (ai1Rho50i(1-LF)^bi1   +   

          ai2Rho95i(1-LF)^bi2    +  

          ai3Rho99i(1-LF)^bi3 ) + 

           c(WITI) 

 

i=1 to 7  (represents the 7 different airport classes) 

 

WITI is the weather index for NAS 

 

A regression was performed and the model has R2 = 0.7081 

 

 Rho50, 

Rho95, 

Rho99 

 Load factor 

 
Cancel Prob 

 
Weather Index 



 

 52 

 

The cancellation model results are given in the appendix A.  

 

 

 

4.3.3 Flight Delays 

 

The average flight delay is computed as a function of Rho 50, Rho 95, Rho 99, load 

factor and cancellation probability.  

 

 
 

Figure 20 : Average flight delays using airport clusters 
 

 

The functional form is  

 

NAS Delay = f(Rho50i,Rho95i,Rho99i,Loadfactor,Cnx) 

 

where i represents values for each of the individual airport classes 

 

Functional form :  

 

Delay  

 = ∑ (ai1Rho50i(1-Cnx)^bi1   +   

          ai2Rho95i(1-Cnx)^bi2    +  

          ai3Rho99i(1-Cnx)^bi3 ) + 

           c(WITI) 
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i=1 to 7  (represents the 7 different airport classes) 

 

WITI is the weather index for NAS 

 

A regression was performed and the model produced an  R2 = 0.7212 

 

The model model results are given in the Appendix B. 

 

 

 

4.4  Passenger Delay   

 

 

Having obtained the models for flight delays and cancellation rate, we now move on 

to estimate the average passenger delay. As outlined in section 3.5, we first estimate 

all the necessary parameters required and finally determine the passenger delay. From 

the scenario tree for the passenger delay model, we compute passenger delay using 

the following formula : 

 

P_DELAY = 

  

  F_DIRECT/100 * (1 – F_CANCEL/100)  * F_DELAY  

+ 

  F_DIRECT/100 * F_CANCEL/100 * P_DEL_DISRUPT  

+ 

  (1 – F_DIRECT/100) * F_CANCEL/100 * P_DEL_DISRUPT  

+ 

  (1 – F_DIRECT/100) * (1 - F_CANCEL/100) * (1 - F_CANCEL/100) 

* (1 - P_MISS)  * F_DELAY  

+ 

  (1 – F_DIRECT/100) * (1 - F_CANCEL/100) * (1 - F_CANCEL/100) 

* (P_MISS)  * P_DEL_DISRUPT  

+ 

  (1 – F_DIRECT/100) * (1 - F_CANCEL/100) * F_CANCEL/100 

*P_DEL_DISRUPT 
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The output of the model is : 

P_DELAY   :  Average Passenger Delay 

The inputs are : 

F_DIRECT  : Proportion of people taking direct flight 

F_CANCEL : Probability of flight getting cancelled 

F_DELAY    : Average flight delay 

P_DEL_DISRUPT : Average delay of disrupted passengers  

P_MISS  : Probability that a passenger misses connecting flight 

 

 

From BTS data, we obtained an estimate that two-third of the passengers take direct 

flight. ie., we set 

   F_DIRECT = 0.66, 

in our model. The data was taken from the 10% ticket sample data in BTS. The time 

period chosen was from January 2000 to December 2004.  

There are no publicly available data giving delay statistics for disrupted 

passengers. Disrputed passengers must be re-assigned to a later flight and often 

experience overnight stays. From an MIT simulation based on actual proprietary data, 

we use an estimate of 420 minutes as the average delay of disrupted passengers [5]. 

 

P_DEL_DISRUPT  = 420 min 

The values for F_CANCEL and F_DELAY can be obtained from one of the 

cancellation and delay models described earlier. For passengers taking flights that 
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take-off as per schedule, their delay is the delay of the flight. The model should also 

use the probability of a passenger who is scheduled to fly on a flight that is canceled. 

This is slightly different from the probability that a flight is canceled. When flight 

cancellations are considered, it doesn’t take into account the number of seats it has 

and the number of passengers that were scheduled to fly in that flight. And one 

cancelled flight does not translate into one passenger (or a linear number of 

passengers) being cancelled. The disrupted passengers are those who are in the 

cancelled flights. Since we do not have actual passenger data for each of the cancelled 

flights, we use the flight cancellation probability, which is an approximation of the 

probability that a passenger is scheduled to fly on a flight that is cancelled. 

 

The following section describes how the probability of a passenger missing a 

connecting flight is computed. 

 

4.4.1 Probability of passenger missing connecting flight   

 

As explained in chapter 3, in a 2-leg trip, whenever the first flight in a two-leg 

itinerary is sufficiently delayed the passenger misses the connecting flight and the 

passenger is disrupted. In this section, we present a model for estimating the 

probability of a passenger missing a connecting flight on a two-leg itinerary.  

 

We model the probability of passenger missing connecting flight as a conditional 

probability. Specifically, we assume that if a flight is not classified as delayed by the 
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FAA 15 minute delay criterion, then the passenger makes the connection to the 

second flight leg. Thus, we estimated the probability that the connection is missed 

given that the flight is delayed. Furthermore, we wish to estimate this conditional 

distribution as a function of the average flight delay. In this way, we can estimate 

passenger delay as a function of flight delay. Thus, we will estimate the flight delay 

distribution conditioned on  

1) Flight delay > 15 minutes and 

2) Overall average flight delay = D , for select constants D 

 

 Hence, as a first step we determine how many flights are delayed more than 15 

minutes in a given month. To estimate the probability of missing a connecting flight, 

we start by determining the delay distribution of the flights.  

Once we have the probability of a flight getting delayed and the distribution of 

flight delays, the probability of passenger missing connecting flight is computed. 

Each flight has a layover time and each passenger requires a minimum connection 

time to catch the connecting flight successfully. A passenger takes the connecting 

flight if the delay of the first flight <= (Layover time – Connection Time) 

This whole procedure can be explained in the following flowchart : 
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Figure 21 : Probability of passenger missing connecting flight 

The following sections explain how the probability of flight being delayed and flight 

delay distribution can be obtained.  

 

4.4.2 Probability of flight being delayed 

 

 

As explained in section 3.5, we need to compute the probability that the flight 

is delayed – Dm. From the ASPM database, for each month from January 2000 to 

December 2004, we determine the following two metrics 

• Average Flight delay in NAS 

• % of flights delayed greater than 15 min 
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A flight is considered delayed only if its total delay minutes are greater than 15 min.  

The following plot shows % of flight delayed against average flight delay. Regression 

was performed with average flight delay as the independent variable.  

 

 

 

 

 

 

 

 

 

 

Figure 22 : Probability of flight being delayed 

 

% of flights delayed = (-0.0206)* F_Delay*F_Delay + 2.0431*F_Delay  

The model had an R
2
 of 0.9628 

 

4.4.3 Delay distribution of flights 

The second step in determining the probability that a passenger misses 

connecting flight is the determination of flight delay distribution. The theoretical 

background was given in section 3.5. This section explains how flight delay 

distribution is estimated..  The following flowchart explains the procedure.  
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Figure 23 : Probability of passenger missing flight given average flight delay 

 

 

From the ASPM database, we determine for each month, the average monthly 

delay. ASPM has an individual flights database. We use data from January 2000 to 

December 2004 for calibration. This database contains information about all the 

scheduled flights. They can be tracked through their tail numbers. It has information 

about their scheduled arrival time and actual arrival time. For each of the months, we 

create a histogram of the delay minutes.  The percentage of flights that are delayed 

within discrete time intervals are found. (Time intervals of 15 min each). The 

following plots are examples of empirical flight delay distribution when average 

delay in NAS was 10 min, 15 min and 20 min respectively. 

Distribution of 
flight delays 

P-Miss � F(Avg flight Delay) 

Individual Flight 
Delays  
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From ASPM, we know the average arrival delay in NAS for a given month. Now for 

each month, we determine the actual number of flights delayed in each of the time 

intervals 0-15,15-30,30-45 min etc. We determine the number of flights whose actual 

delay was in that interval. So, say for example, if the average flight delay is a month 

is 15 mintues, we find from individual flights database of ASPM , the actual number 

of flights that were delayed from 0-15 min, 15-30 min, etc. From this, we compute 

percentage of flights in each interval to obtain the empirical flight delay distribution.  

Given this data of flight distribution for each month given NAS delay, a delay 

distribution of flights for NAS was modeled which is conditioned on the average 

flight delay of NAS.  

  

 

 

 

 

 

 

 

 

 

 

 

Figure 24 : Empirical Flight delay distribution with 10 min average flight delay 
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Figure 25 : Empirical Flight delay distribution with 15 min average flight delay 

 

 

 

 

 

 

 

 

 

 

 

Figure 26 : Empirical Flight delay distribution with 20 min average flight delay 
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A Bi-Weibull distribution was fitted for the data obtained from 48 months. 

The Bi-Weibull distribution is a combination of two weibull distributions and has 5 

parameters: 

   x0 –  point at which the parameters change. 

    (α1 , β1) and (α2 , β2) are  parameters of the two weibull distributions 

 

β2 is a function of the other 4 parameters. 

 

One distribution for all months is determined by performing a regression the 

parameters of the Bi-weibull distribution for each of the months. The regression is 

carried out considering flight delays and flight cancellations as the independent 

variables. 

The model results are as follows :  

• X0  = 11.1081 + 741.87F_Delay + .0104F_Cancel**2          R
2
 = .93 

• α1 = 0.19  +  0.013F_Delay + 0.87*F_Cancel*F_Cancel R
2
 = .87    

• β1 = 1.41 + .083F_Delay + 1.12F_Cancel**2   R
2
 = .901    

•  α2 = 0.487  + 0.0083F_Delay + .032F_Cancel   R
2
 = .82 

The flight delay distribution is thus obtained as the bi-weibull distribution with the 

above parameters. 

Goodness of fit for the bi-weibull distribution is shown below. Maximum 

likelihood Estimation(MLE) method was used to estimate the parameters and the low 

negative log likelihood showed that the model has been fitted well. In MLE, we seek 
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the parameter values that are most likely to have produced the data. The regression 

coefficients were able to replicate the results of the bi-weibull distributions with 

minimal errors and hence it did not distort the distribution.  In MLE, the objective is 

to maximize the likelihood ratio – hence lower the negative log likelihood, better is 

the fit. Hence a value closer to zero is considered good. For our model, negative log 

likelihood ratio of 7.5 or less is considered the threshold for acceptance. We can see 

that many of the months fell in this category, providing us with a very good fit.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27 : Likelihood ratios for bi-weibull distribution 
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4.4.4  Passenger Delay Model   

 

 We have now given sources for all the parameters needed for the passenger 

delay model. The following plot shows the comparison of modeled passenger delay 

against actual average flight delay in the NAS from 2000 to 2004.  It can be seen that 

as flight delay increases the passenger delay increases in a more than linear fashion. 

This supports our claim that as flight delays increase, more passengers are disrupted 

and the impact on passengers grows in a disproportionate manner.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28 : Flight delays against passenger delays 
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4.5  Validation   

 

In this section, we provide a validation of many of the models developed in 

this thesis.  

 

4.5.1 Validation dataset   

The models were calibrated using data available from ASPM from January 

2000 to December 2004. The models are now validated using ASPM data from 

January 2005 to May 2006. Demand grew in 2005 and 2006 when compared to 

previous years. The validation dataset was also derived from ASPM database.  

 

We computed all the input data required by the model from the raw data 

obtained from ASPM. From the demand and capacity in the 35 OEP airports, we 

computed NAS Rho 50, Rho 95 and Rho 99. We also had the convective weather 

index based on lightning strike data for the same period. We used the cancellation 

model to obtain the model’s cancellation probability for the time period. Also, from 

ASPM we knew the actual cancellation rate that occurred. Similarly, we computed 

the model flight delay using all the input parameters. We obtained actual flight delays 

from ASPM database.  
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4.5.2 Validation of flight cancellations using aggregate monthly model   

The following graph shows the comparison between actual cancellations and 

model cancellations. The model cancellation is computed using the model described 

in section 4.2.1. As can be seen, the model performs very closely to the actual 

cancellation. Though there are some errors between actual cancellations and model 

cancellations, we view the level of accuracy demonstrated to be quite satisfactory. 

Also, note that the model both over-predicts and under-predicts cancellation. Hence, 

the model does not exhibit any evident bias. The average least square error difference 

between the actual cancellation rate and the model cancellation rate is 2.7% 
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Figure 29 : Validation of flight cancellation considering NAS as a single system 
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4.5.3 Validation of flight delays using aggregate monthly model   

The following graph shows the comparison between actual flight delays and 

model flight delays. The model flight delays are computed using the model described 

in section 4.2.2. Evidently, the model performs very closely to the actual flight 

delays. The average least square error difference between the actual flight delays and 

the model flight delays is 1.9 minutes. 

 

 

 

 

 

 

 

 

 

Figure 30 : Validation of flight delays considering NAS as a single system 

 

The model both over-predicts and under-predicts flight delays. Hence, the 

model does not exhibit any evident bias. While validating flight delays, we use two 

approaches – one using actual cancellations and one using model cancellations. The 

graph shows clearly that increases in flight delays correlate with the decreases in 

cancellation.  
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4.5.4 Validation of flight cancellations using airport categories   

 

Using actual data, the 35 OEP airports are categorized as before and for each 

of the categories, rho 50, rho 95 and rho 99 are computed. Having obtained all the 

necessary input data, the following graph shows the comparison between actual 

cancellations and model cancellations. The model cancellation is computed using the 

model described in section 4.3.1. As can be seen, the model performs very closely to 

the actual cancellation. The model both over-predicts and under-predicts cancellation. 

Hence, the model does not exhibit any evident bias. When compared with the model 

using NAS as a single system, the validation results from the clusters yield better 

results. The average least square error difference in the cancellation model in which 

NAS is considered as a whole system is 2.7% while in the cluster model, the average 

least square difference is only 1.65%. This can be explained by the fact that the effect 

of congested airports contributing more to the cancellation is better captured in the 

cluster model while in the NAS model, all airports are considered the same.  
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Figure 31 : Validation of flight cancellations considering airport categories 

4.5.5 Validation of flight delays using airport categories   

The following graph shows the comparison between actual flight delays and 

model flight delays. The model delay is computed using the model described in 

section 4.3.2.Evidently, the model performs very closely to the actual flight delays. 

The model both over-predicts and under-predicts flight delays. Hence, the model does 

not exhibit any evident bias. While validating flight delays, we use two approaches – 

one using actual cancellations and one using model cancellations. As in the case of 

cancellation validation, the delay validation is closer to the actual one in the cluster 

model than the delay model considering NAS as a single system. Delays are better 

captured and represented in the airport clusters.  

The average least square error difference in the delay model in which NAS is 

considered as a whole system is 1.9 minutes while in the cluster model, the average 
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least square difference is only 0.93 minutes. Severely congested airports contribute 

more to NAS delays than the other airports 

 

 

 

 

 

 

 

 

 

 

 

Figure 32 : Validation of flight delays considering airport categories 
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Chapter 5:  CONCLUSIONS  

 

In this thesis, three key monthly performance metrics for the national airspace 

system are developed.  

o Average flight delay 

o Flight cancellation rate 

o Average passenger delay 

 

Two different approaches were investigated for the aggregate modeling of 

delays and cancellations – one considering the whole NAS as a single system and the 

other using airport categories. The validation results showed that the models behave 

within acceptable limits and can be readily used in strategic decision support tools for 

high level performance metrics. 

 

The passenger delay model takes into account several major factors that 

impact passenger delay. A limitation of this analysis is that we have not been able to 

validate the results because of the unavailability of passenger delay data. The model 

suggests that there will be large penalty for passengers in terms of delay-minutes 

whenever a flight is cancelled.  That provides an explanation for why passenger 

experience varies from year to year as the overall cancellation probabilities change.  

 

The most important contribution of this thesis is not the models developed, 

but rather, is the methodology developed. The models can be adjusted in response to 
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changing application requirements.  Our models include the main NAS factors and 

hence the ideas and techniques suggested should warrant consideration whenever 

high-level aggregate metrics for the system are required to evaluate performance. 

Many of the approximations used in the model were developed specifically keeping 

typical airspace traffic in mind. 

 

5.1  Recommendations for Future Work   

 

We envision the model will ultimately be available to traffic flow managers as 

well as carrier analysts for high level strategic decision support system. While the 

current model sufficiently captures system complexity of traffic, we believe a more 

accurate and robust approach to the problem could be developed if more factors were 

analyzed and used as explanatory variables in the model.  

 

The two different approaches for flight delays and cancellation models that we 

developed in this thesis produced significant results. It is hoped that these models can 

be used in the future to estimate performance characteristics of demand growth 

scenarios. Thus, next research steps should include providing the flexibility necessary 

to respond to different scenario assumptions.  
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Appendix A:  Regression Results for probability of flight cancellation model 

Source     SS MS  Number of obs = 420  

Model      5.76E+12 8.23E+11  Prob > F = 0.0000  

Residual   1.72E+12 5.26E+09  R-squared = 0.7081  

Dtot        Coef.  Std. Err t  P>|t|  [95% Conf. Interval] 

a11 0.028333 72.27313 6.6 0 334.8867 619.2479 

a12 0.0795526 0.033255 -2.81 0.005 -0.15887 -0.02802 

a13 0.0794262 2.3984 4. 35 0. 000 5. 71299 15.14958 

b11 0.0058226 27.21629 11.86 0 269.3207 376.4042 

b12 0.0551185 12001.16 3.94 0 23664.47 70883.45 

b13 0.0604216 0.031408 8.96 0 0.219691 0.343267 

A21 0.0624469 0.029444 2.95 0.003 0.028928 0.144775 

A22 0.0671915 39319.02 -5.61 0 -297952 -143250 

A23 0.0095602 858.1677 3.841083 0.006828 69.43523 84.34123 

B21 0.0132787 566.5377 7.068578 0.00271 47.99222 1.789983 

B22 0.0146435 479.5134 5.929441 0.004249 88.28528 49.18204 

B23 0.0658055 614.7718 2.589798 0.001293 91.35246 94.69672 

A31 0.0283174 132.7262 8.269004 0.005763 4.197804 8.260735 

A32 0.0209817 323.1366 9.11684 0.008616 22.07716 15.85133 

A33 0.0644841 213.845 3.328312 0.000324 51.53345 25.90281 

B31 0.0654879 108.7326 3.926726 0.009927 25.01773 38.41476 

B32 0.0571152 165.5553 5.546565 0.005754 40.99603 25.48848 

B33 0.0986086 711.3189 1.503322 0.008197 26.32615 81.00781 

A41 0.0487056 514.0411 7.099995 0.006317 78.957 50.31184 

A42 0.0911947 103.7697 8.860716 0.00217 94.88497 73.21385 

A43 0.0558516 878.0298 9.77671 0.006067 60.76984 30.73305 

B41 0.0130386 434.827 8.806123 0.00314 44.13077 21.17963 

B42 0.0196012 866.235 8.274917 0.007361 61.68091 61.90078 

B43 0.0044486 36.68946 1.703835 0.001911 40.09925 40.21134 

A51 0.0481466 384.6953 4.502357 0.003867 82.82656 18.93526 

A52 0.0592508 16.3201 9.577788 0.007716 87.55572 33.46164 

A53 0.0536335 158.5535 4.56274 0.005837 38.89836 71.04318 

B51 0.0497406 285.3747 8.861933 0.0005 85.94702 65.40754 

B52 0.0744416 557.9226 0.526496 0.009915 92.8038 1.996732 

B53 0.0736344 835.0588 7.759757 0.001904 51.85345 92.85831 

A61 0.0252837 858.0042 5.348424 0.007772 79.17088 3.836374 

A62 0.0123801 431.9125 2.913134 0.002981 42.75031 30.06307 

A63 0.0484111 106.8682 5.753742 0.009073 60.35721 44.62224 

B61 0.0295848 747.3557 3.025311 0.007862 40.13058 71.15808 

B62 0.0712704 62.29113 4.784929 0.002791 3.037783 55.80097 

B63 0.0888003 24.71136 2.833942 0.007737 72.19605 12.98287 

A71 0.0263699 568.7611 5.011988 0.005269 11.28533 57.578 

A72 0.098027 404.1063 8.952685 0.002601 21.55692 76.863 

A73 0.0658882 380.171 4.261206 0.007134 28.67905 66.65966 

B71 0.0787937 377.5801 2.921173 0.006201 86.41214 5.779316 

B72 0.0596786 563.1387 8.632057 0.005858 68.38847 38.28234 

B73 0.0585528 467.5914 5.117833 0.008984 89.39038 74.43727 
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Appendix B:  Regression Results for probability of flight delay model 

Source     SS MS  Number of obs = 420  

Model      5.73E+12 8.23E+11  Prob > F = 0.0000  

Residual   2.13E+12 5.26E+09  R-squared = 0.7212  

Dtot        Coef.  Std. Err t  P>|t|  [95% Conf. Interval] 

a11 0.5225486 72.27313 6.6 0 334.8867 619.2479 

a12 0.6996107 0.033255 -2.81 0.005 -0.15887 -0.02802 

a13 0.9617166 2.3984 4. 35 0. 000 5. 71299 15.14958 

b11 0.5881864 27.21629 11.86 0 269.3207 376.4042 

b12 0.6352046 12001.16 3.94 0 23664.47 70883.45 

b13 0.0928357 0.031408 8.96 0 0.219691 0.343267 

A21 0.629398 0.029444 2.95 0.003 0.028928 0.144775 

A22 0.9769543 39319.02 -5.61 0 -297952 -143250 

A23 0.9154648 582.9623 9.787392 0.009514 15.47897 13.05097 

B21 0.1039108 75.99329 1.385639 0.006835 83.08252 70.83523 

B22 0.9679555 649.394 1.786555 0.006238 60.17275 51.75938 

B23 0.1672173 761.6755 1.848803 0.000351 71.43795 50.11962 

A31 0.2491024 676.0076 1.736607 0.000344 81.61498 71.33649 

A32 0.2921272 516.3533 4.131502 0.000114 80.68177 78.12585 

A33 0.7507797 22.01669 1.01349 0.009971 85.46861 44.75873 

B31 0.5417039 332.6256 2.672057 0.001269 43.84186 46.05379 

B32 0.6835583 968.1588 0.254482 0.00158 25.21338 48.27661 

B33 0.5561152 922.1775 8.723871 0.000416 46.99396 69.21593 

A41 0.8832974 500.6322 3.049236 0.004437 10.09477 31.366 

A42 0.4420076 229.9837 5.991177 0.000724 67.35826 11.06842 

A43 0.7781264 962.0675 2.771278 0.007618 37.09889 94.83681 

B41 0.1715647 705.448 1.922725 0.009195 51.59775 47.50689 

B42 0.6144884 667.3276 5.544187 0.006384 90.21644 73.63098 

B43 0.2681502 453.0594 6.201882 0.002323 38.6521 69.07982 

A51 0.9535851 392.3584 4.748856 0.008859 83.03614 31.83565 

A52 0.5088752 287.5331 7.349197 0.009334 35.06619 33.08298 

A53 0.8190684 642.2384 3.54561 0.001913 89.30996 54.47863 

B51 0.8943044 511.8747 5.924426 0.007008 75.35383 46.06529 

B52 0.4354418 155.5949 9.033118 0.001915 40.32467 8.903997 

B53 0.1361126 596.3502 9.335469 0.005449 70.15769 53.82654 

A61 0.830572 953.6881 2.542016 0.004209 4.190075 9.624832 

A62 0.8675991 584.7611 7.361364 0.007689 82.06948 3.86533 

A63 0.041131 910.0771 7.168479 0.005771 95.65605 67.78822 

B61 0.7207658 42.706 7.032396 0.006315 11.58556 37.18383 

B62 0.9677927 163.1957 2.952706 0.003264 96.06433 83.65818 

B63 0.0020336 407.2764 9.577403 0.00456 54.13956 83.41017 

A71 0.095967 617.033 2.368694 0.008888 61.55224 67.82623 

A72 0.2126361 666.3502 1.030312 0.000801 1.609959 84.29244 

A73 0.2783354 616.1546 9.028457 0.008148 85.88095 94.24163 

B71 0.9003365 385.7724 6.435057 5.96E-05 98.46564 74.54139 

B72 0.5028355 437.5448 9.517077 0.006458 70.93237 59.88279 

B73 0.5131882 535.2781 3.393867 0.001266 18.88705 63.99985 
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Appendix C:  Computing Passsenger Delay for a month 

 

For the month of January 2000, 

Average monthly delay  = 13.62 minutes 

Cancellation probability = 3.08% 

F_Direct = 0.66 

P_Del_Disrupt = 420 min 

Lay – Connect = 30 min 

% of flights delayed > 15 min = 24% (from section 4.4.2) 

To compute P_Miss , from section 4.4.3 

X0  = 36.62 

alpha1 = 0.57   

alpha2  = 0.35 

beta1 = 49.65 

beta2 = 22.95 

Hence P_Miss is the probability that passenger missing connecting flight = 0.1134 

 

Using scenario tree formula,  

 

We compute P_Delay = 45.023 minutes 
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