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ABSTRACT

In this thesis, we studied the phenomenological results of several classes of neutrino models.

We begin with an investigation of the effect of small perturbations on the µ − τ symmetrical

models. We found that since m1 and m2 are nearly degenerate, µ−τ symmetry mixing scenarios

are able to explain the experimental data with about the same size perturbation for most values

of θ12. This suggests that the underlying unperturbed mixing need not have θ12 close to the

experimentally preferred value.

Then we studied a simple case of type I seesaw model that have four texture zeros in

the Yukawa couplings matrix, which is equivalent to a single texture or cofactor zero for an

off-diagonal element of the light neutrino mass matrix M in the context of low energy phe-

nomenology. Furthermore we studied a variety of neutrino models that have one or two texture

and/or cofactor zeros. We determined the constraints in the space of the CP phase and lightest

neutrino mass using a global fit to neutrino parameters, including recent data on θ13. We used

leptogenesis to further constrain the parameter space for the seesaw models with four zeros in

the Yukawa matrix, and made predictions on neutrinoless double beta decay for these models.

Finally we showed that any neutrino model with a homogeneous relationship among ele-

ments of the light neutrino mass matrix with one mass hierarchy predicts oscillation parameters

and Majorana phases similar to those of models with the same homogeneous relationship among

cofactors of the mass matrix with the opposite mass hierarchy if the lightest mass is not too

small, e.g., less than about 20 meV. This general result applies to texture and/or cofactor zero

models, scaling models, and models that have two equal mass matrix elements or cofactors,

e.g. µ− τ symmetric models.



1

CHAPTER 1. INTRODUCTION TO NEUTRINO PHYSICS

1.1 The Standard Model

Since the beginning of particle physics, physicists have had a strong desire to find an

underlying symmetry that can describe all the fundamental particles and their interactions.

This goal is partially accomplished by the building of the standard model (SM), which took a

lot of hard work by many particle physicists in the last five decades. The building of the SM

started in 1961, when Glashow [1] first proposed SU(2) ⊗ U(1) as the underlying symmetry

to unify the electromagnetic and weak interactions. After that, three groups [2, 3, 4] in 1964

independently proposed the Higgs mechanism to explain the non-zero masses of the gauge

bosons via spontaneous symmetry breaking. Applying the Higgs mechanism, Weinberg [5] in

1967 and Salam [6] in 1968 proposed the SU(2)L ⊗ U(1)Y theory of leptons in its modern

form. In 1970, Glashow, Iliopoulos and Maiani [7] extended the SU(2)L ⊗ U(1)Y theory to

the quark sector. They explained why flavor-changing neutral currents (FCNCs) are highly

suppressed and predicted the existence of charm quarks. In 1972, ’t Hooft and Veltman [8]

proved that this theory can be renormalized under spontaneous symmetry breaking. In 1973,

Gross, Wilczek [9] and Politzer [10] discovered asymptotic freedom of the strong interactions

under the symmetry of SU(3)C . Based on the gauge group SU(3)C ⊗ SU(2)L ⊗ U(1)Y the

standard model was born and achieved enormous success in both theoretical and experimental

physics. It is one of the most successful theories in history because many of its predictions

have been verified by experiments, which includes the gluon [11], W [12] and Z [13] bosons; the

charm [14], bottom [15], and top [16] quarks; and most recently the Higgs boson [17].

The standard model is a quantum field theory that is under the symmetry of the SM gauge

group: SU(3)C ⊗SU(2)L⊗U(1)Y . It contains three different classes of fields: the gauge fields,
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the fermionic fields and a complex scalar field. The gauge fields mediate the strong and electro-

weak interactions and are related to the SM gauge group; see Table 1.1. The fermionic fields

generate matter particles, and can be separated into two types: the quarks qL, uR, dR and the

leptons lL, eR, where L(R) indicates the left (right) chiral projections ψL(R) ≡ (1 ∓ γ5)ψ/2.

Each fermionic field also contains three generations, e.g., u = (u, c, t)T , d = (d, s, b)T and

e = (e, µ, τ)T respectively. The complex scalar field φ is responsible for the masses of all

particles via the Higgs mechanism [2, 3, 4], hence it is also called the Higgs field. Both the

Higgs field and the fermionic fields are assigned into an irreducible representation of the SM

gauge group as shown in Table 1.2.

Table 1.1 Notations for the SM gauge group SU(3)C⊗SU(2)L⊗U(1)Y . λi are the Gell-Mann

matrices, τj are the Pauli matrices and qY is U(1) hypercharge.

gauge group coupling constant generator gauge field

SU(3)C gs
λi
2 (i = 1, ..., 8) Giµ

SU(2)L g
τj
2 (j = 1, 2, 3) W j

µ

U(1)Y g′ qY Bµ

Table 1.2 The Higgs and fermionic fields of the SM with their corresponding representations

of the gauge group SU(3)C ⊗ SU(2)L and charges of U(1)Y .

gauge group φ qL =
( uL
dL

)
uR dR lL = ( νeLeL ) eR

SU(3)C 1 3 3 3 1 1

SU(2)L 2 2 1 1 2 1

qY +1 +1
3 +4

3 −2
3 −1 −2

The dynamics of the SM fields is determined by the SM Lagrangian density, which can be

written in three parts

LSM = LYM + LHiggs + LY ukawa. (1.1)

The Yang-Mills (YM) Lagrangian is

LYM = ψiγµDµψ −
1

4
F iµνF

µν
i , (1.2)

where ψ includes all fermionic fields, Dµ is the gauge-covariant derivative and F includes all

field strength tensors. The Higgs Lagrangian is

LHiggs = (Dµφ)†Dµφ− V (φ), (1.3)
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where φ =
(
φ+

φ0

)
and V (φ) is the Higgs potential. The Yukawa Lagrangian is

LY ukawa = −uRYuφ̃†qL − dRYdφ†qL − eRYeφ̃†lL + h.c., (1.4)

where φ̃ = iτ2φ
∗ is the charge conjugate of φ; Yu, Yd and Ye are all 3× 3 matrices because both

the quarks and the leptons contain three generations.

In order for the vector bosons to acquire mass, spontaneous symmetry breaking is intro-

duced in the Higgs sector. The Higgs potential V (φ) can have the following most general

renormalizable form

V (φ) = µ2(φ†φ) + λ(φ†φ)2, (1.5)

where the sign of µ2 is not restricted, but λ > 0 is required by vacuum stability. Consider

µ2 < 0, minimization of the Higgs potential Eq. 1.5 yields the vacuum expectation value

(VEV) of the complex scalar field to be 〈φ〉0 =
(

0
v/
√

2

)
with v =

√
−µ2/λ.

The spontaneous symmetry breaking, φ → φ′ = 1√
2

(
0

v+H

)
, leads to three main conse-

quences. Firstly, the Higgs Lagrangian becomes

LHiggs →M2
WW

µ+W−µ +
1

2
M2
ZZ

µZµ −
µ4

4λ
+H terms, (1.6)

where W± = 1√
2
(W 1 ∓ iW 2) and Z = − sin θWB + cos θWW

3 are the W and Z gauge bosons,

respectively; the Weinberg angle θW is defined by tan θW ≡ g′

g . The W and Z bosons gain

masses MW = gv
2 and MZ =

√
g2 + g′2 v2 after the spontaneous symmetry breaking, while the

photon field A = cos θWB + sin θWW
3 remain massless.

Secondly, the gauge interactions in the LYM are transformed into the quantum electrody-

namics (QED) interactions that involve photons, the weak charge current (CC) interactions

that involve W bosons and the weak neutral current (NC) interactions that involve Z bosons.

The Lagrangian density of the QED interaction is

LQED = − gg′√
g2 + g′2

JµQAµ, (1.7)

where

JµQ =
2

3
(ū c̄ t̄)γµ

(
u
c
t

)
− 1

3
(d̄ s̄ b̄)γµ

(
d
s
b

)
− (ē µ̄ τ̄)γµ

(
e
µ
τ

)
. (1.8)
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The weak CC and NC interactions are given by

LCC = − g

2
√

2
JµWW

−
µ + h.c., (1.9)

and

LNC = − g

4 cos θW
JµZZµ, (1.10)

where

JµW = (ν̄e ν̄µ ν̄τ )γµ(1− γ5)
(
e
µ
τ

)
+ (ū c̄ t̄)γµ(1− γ5)Vq

(
d
s
b

)
, (1.11)

JµZ = (ū c̄ t̄)γµ(1− γ5)
(
u
c
t

)
− (d̄ s̄ b̄)γµ(1− γ5)

(
d
s
b

)
(1.12)

+ (ν̄e ν̄µ ν̄τ )γµ(1− γ5)
( νe
νµ
ντ

)
− (ē µ̄ τ̄)γµ(1− γ5)

(
e
µ
τ

)
− 4 sin2 θWJ

µ
Q,

and Vq is the Cabibbo-Kobayashi-Maskawa (CKM) matrix.

Thirdly, the fermionic fields also obtain masses through the Yukawa interaction,

LY ukawa → −uRMuuL − dRMddL − eRMeeL + h.c.+H terms, (1.13)

where the mass matrices are

Mu =
v√
2
Yu, Md =

v√
2
Yd, and Me =

v√
2
Ye. (1.14)

Because the right-handed (RH) neutrinos do not exist in the SM, neutrinos has no mass in the

standard model.

1.2 Beyond the Standard Model: Neutrino Oscillations

The three known neutrinos νe, νµ and ντ are called the flavor eigenstates because they are

always produced and measured together with their corresponding partners e, µ, and τ via the

charged current interactions. If all neutrinos are massless, then the flavor eigenstates να are also

the mass eigenstates, which means the lepton flavors will be conserved and there is no neutrino

flavor oscillations. However, as we will discuss later, the existence of neutrino oscillations has

been strongly supported by many experiments with solar, atmospheric, accelerator and reactor

neutrinos in the last two decades.
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1.2.1 Neutrino Oscillations in Vacuum

The propagation of a neutrino in the mass eigenstate |νi〉 is determined by the Schrödinger’s

equation i ddt |νi〉 = H|νi〉, where H ≈ p+m2

2E for extremely relativistic neutrinos. However, when

a neutrino is produced via a CC interaction process with flavor eigenstate |να〉, it is a coherent

superposition of the mass eigenstates |νi〉:

|να〉 =
∑
i

U∗αi|νi〉 (1.15)

where U is a unitary matrix, and is often called the PMNS matrix after the authors of Ref. [18].

Similarly, for an antineutrino produced in a CC interaction process with a flavor eigenstate |ν̄α〉,

we have

|ν̄α〉 =
∑
i

Uαi|ν̄i〉 (1.16)

Then, after a time t, the evolution of the initial flavor eigenstate has

|να(t)〉 =
∑
i

U∗αie
−iEit|νi〉 ≈ e−ipt

∑
i

U∗αie
−im

2
i

2E
t|νi〉. (1.17)

When a neutrino is observed by a neutrino detector, it is also measured by a CC interaction pro-

cess with a flavor eigenstate |νβ〉. The amplitude of observing a neutrino with flavor eigenstate

|νβ〉 at time t in the original neutrino beam with flavor eigenstate |να〉 is

〈νβ|να(t)〉 =
∑
ij

〈νj |UβjU∗αie−i
m2
i

2E
t|νi〉 =

∑
i

UβiU
∗
αie
−im

2
i

2E
t. (1.18)

Since neutrinos are extremely relativistic, the distance traveled by the neutrinos L ≈ t, hence

the probability of finding |νβ〉 at a distance L in an originally |να〉 beam is

P (να → νβ) =

∣∣∣∣∣∑
i

UβiU
∗
αie
−im

2
i

2E
L

∣∣∣∣∣
2

=
∑
ij

U∗αiUβiUαjU
∗
βje
−i

δm2
ij

2E
L

=
∑
i

|U∗αiUβi|2 +
∑
i 6=j

Re
(
U∗αiUβiUαjU

∗
βj

)
cos

(
δm2

ijL

2E

)

+
∑
i 6=j

Im
(
U∗αiUβiUαjU

∗
βj

)
sin

(
δm2

ijL

2E

)

= δαβ − 2
∑
i 6=j

Re
(
U∗αiUβiUαjU

∗
βj

)
sin2 ∆ij + 2

∑
i 6=j

Im
(
U∗αiUβiUαjU

∗
βj

)
sin2 ∆ij , (1.19)
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where δm2
ij = m2

i −m2
j are the mass-squared differences, and ∆ij =

δm2
ijL

4E are the oscillation

arguments. The probabilities for antineutrino channels can be obtained by CPT conjugation.

Assuming no CPT violation in ordinary neutrino oscillation, the antineutrino oscillation prob-

abilities are P (ν̄α → ν̄β) = P (νβ → να).

1.2.2 Three-neutrino Oscillations

In the SM, there are three types of neutrino flavors: νe, νµ, and ντ . Also, the total number

of light active neutrino species is determined by studying the invisible width of the Z boson at

the Large Electron Positron (LEP) collider, and the experimental value of the total number of

active neutrinos is Nν = 2.9840± 0.0082 [19]. So in general, we consider three-neutrino mixing

and the PMNS matrix is a 3× 3 unitary matrix. In the standard parametrization, the PMNS

matrix can be described by

U = V · diag
(

1, ei
φ2
2 , ei

φ3
2

)
, (1.20)

where

V =


1 0 0

0 c23 s23

0 −s23 c23




c13 0 s13e
−iδ

0 1 0

−s13e
iδ 0 c13



c12 s12 0

−s12 c12 0

0 0 1



=


c13c12 c13s12 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 , (1.21)

cij , sij denotes cos θij , sin θij respectively, δ is the Dirac CP phase and φ2, φ3 are the two

Majorana phases. Using the standard parametrization and the probability in Eq. (1.19), we

can obtain the vacuum oscillation probabilities in terms of the oscillation arguments ∆ij , the

three mixing angles θ12, θ23, θ13 and the Dirac CP phase δ. The two Majorana phases do not

affect the vacuum oscillation probabilities.

Experimental results show |δm2
31| � |δm2

21|, hence for the same neutrino energy and travel

distance, |∆31| � |∆21|. For atmospheric and long-baseline neutrino oscillations, ∆31 is dom-

inant, ∆21 is negligible, and the vacuum oscillation probabilities in the leading order approxi-
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mation are [20]

P (νe → νe) ' 1− sin2 2θ13 sin2 ∆31, (1.22)

P (νe → νµ) ' s2
23 sin2 2θ13 sin2 ∆31, (1.23)

P (νµ → νµ) ' 1− (c4
13 sin2 2θ23 + s23 sin2 2θ13) sin2 ∆31, (1.24)

P (νµ → ντ ) ' c4
13 sin2 2θ23 sin2 ∆31. (1.25)

For reactor neutrinos, the ν̄e survival probability is approximately

P (ν̄e → ν̄e) ' 1− sin2 2θ13 sin2 ∆31 − c4
13 sin2 2θ12 sin2 ∆21. (1.26)

From the above oscillation probabilities, we can see in the limit θ13 → 0, the atmospheric/long-

baseline neutrino oscillation and the solar/reactor neutrino oscillation completely decouple and

each is reduced to the form of 2-neutrino oscillation. Also, if θ13 is very small, it is difficult to

resolve the sign of δm2
31 and the quadrant of θ23.

1.2.3 Neutrino Oscillations in Matter

When neutrinos travel through matter, νe interacts with the matter constituents via both

neutral and charged currents, whereas νµ and ντ interact only via the neutral currents (NC),

therefore their propagation in matter is affected by coherent forward scattering, as first shown

by Wolfenstein [21]. Barger, Whisnant, Pakvasa and Phillips [22] studied the matter effect in

long-base neutrino experiments on earth, and found the oscillation amplitude and wavelength in

matter could be resonantly enhanced by the matter effect. Mikheyev and Smirnov [23] applied

the enhancement to the propagation of solar neutrinos in the Sun, and provided the most likely

solution to the solar neutrino puzzle. The matter effect due to coherent forward scattering can

be described by an effective potential [24]. For the CC process, the low-energy Hamiltonian

density can be described by the effective four-fermion interaction term

HCC =
GF√

2
[ν̄e(x)γµ(1− γ5)e(x)][ē(x)γµ(1− γ5)νe(x)]

= −GF√
2

[ν̄e(x)γµ(1− γ5)νe(x)][ē(x)γµ(1− γ5)e(x)], (1.27)
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where we used a Fierz transformation in the above equation. For simplicity, we assume that

the background electrons are thermally distributed and unpolarized, then the electron degrees

of freedom can be integrated out as

HCC =
GF√

2
[ν̄e(x)γµ(1− γ5)νe(x)]

× 1

2

∑
s

∫
d3p

(2π)3
gef(p, T )〈e(p, s)|ē(x)γµ(1− γ5)e(x)|e(p, s)〉

=
GF√

2
Ne[ν̄e(x)γ0(1− γ5)νe(x)] =

√
2GFNeν̄e(x)γ0PLνe(x), (1.28)

where ge is the internal degree of freedom, f(p, T ) is the distribution function of electrons and

Ne is the electron number density. Therefore, the left-handed electron neutrinos propagating

in matter receive an extra effective potential:

VCC =

∫
d3p

(2π)3

d3x

2Ep
〈νeL(p, s)|HCC |νeL(p, s)〉 =

√
2GFNe. (1.29)

Note that for electron anti-neutrinos, the integral above will differ by a sign, i.e., the effective

potential for ν̄e is −
√

2GFNe.

For the NC, we can find the effective potential in a similar way for νx (x = e, µ, τ), which

is [25]

VNC =
√

2GF
∑
f

nf

[
If3L − 2 sin2 θWQ

f
]
, (1.30)

where f stands for electron, proton and neutron, Qf is the charge of f and If3L is the third

component of the weak isospin of left-chiral projection of f . Since for protons, Q = 1 and

I3L = 1
2 , whereas for electrons, Q = −1 and I3L = −1

2 , the NC potential of neutrinos with

electrons and protons cancel and only the neutron contribution is left in ordinary neutral

matter,

VNC = −
√

2GFNn/2, (1.31)

where Nn is the neutron number density. Therefore, for three-neutrino propagating in matter,

the Hamiltonian in the flavor basis can be written as

H = p+
1

2E
UM2U † + VCC + VNC , (1.32)

where M = diag(m1,m2,m3), E is the energy of neutrinos and U is the neutrino vacuum

mixing matrix. Note that the NC contributions are the same for all active neutrino flavors and
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the CC contribution only affects electron neutrinos, therefore for three-neutrino oscillations,

the matter effect can be represented by adding an extra term

A = 2
√

2GFNeE, (1.33)

to the νe − νe element of UM2U †. For anti-neutrinos, a term of

A = −2
√

2GFNeE (1.34)

is added to the νe − νe element of UM2U †.

1.3 Neutrino Oscillation Experiments

There are many neutrino oscillation experiments that have been done in the last five decades,

here I will focus on some recent experiments, especially those that contribute to the latest

global-fit data.

1.3.1 Solar Neutrino Experiments

The first indication of neutrino oscillations came from the measurement of solar neutrinos.

Solar neutrinos are an essential byproduct in the chains of fusion reactions in the Sun. The

main process is called the pp chain, which accounts for 86% of the solar neutrinos. The pp

chain contains two reactions that produce neutrinos: the pp reaction and the pep reaction,

which are

p+ p→ (2H)+ + e+ + νe(≤ 0.42 MeV)

p+ e− + p→ (2H)+ + νe(1.44 MeV), (1.35)

where the neutrino energy is shown in the parentheses. A secondary process is called the hep

chain that contributes about 14% of the neutrino flux. In the hep chain, the reactions that

producing neutrinos are

3He + p→ 4He + e+ + νe(≤ 18.77 MeV)

7Be + e− → 7Li + νe(0.861 MeV). (1.36)
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A tertiary process that produce 0.11% of solar neutrinos are using 8B produced in the hep

chain:

8B→ 8Be + e+ + γ + νe(≤ 14.06 MeV) (1.37)

Also, there are neutrinos created in the CNO cycle:

13N→ 13C + e+ + νe(≤ 1.2 MeV)

15O→ 15N + e+ + νe(≤ 1.73 MeV)

17F→ 17O + e+ + νe(≤ 1.74 MeV). (1.38)

The CNO cycle dominates over the pp chain only if the temperature exceeds 1.8×107K, which

is not met in the Sun, thus the CNO cycle only accounts for 1.5% of the solar neutrino fluxes.

Based on the above nuclear reactions, the solar neutrino fluxes can be calculated in the

Standard Solar Model (SSM) [26]. The first experiment to detect the solar neutrinos was

proposed by Raymond Davis, Jr. [27] in 1964 at the Homestake Mine in South Dakota, USA.

The result shows that the observed number of neutrinos is a factor of two to three times below

the predictions of the SSM [28]. This surprising result kicked off decades long experiments of

exploring solar neutrinos. Up to now, the 37Cl [29], Super-K [30] and SNO [31] experiments

measured the high energy neutrinos (E & 5 MeV) from the 8B process; the Borexino [32] and

37Cl experiment measured the intermediate energy neutrinos from the 7Be process, the pep

process and the CNO cycle; the SAGE[33], GALLEX [34] and GNO [35] experiments mainly

measured the low energy neutrinos from the pp reaction. They all confirm that there was a

deficiency of 1/3 to 1/2 in the measured solar neutrino fluxes relative to the SSM predictions.

Especially, the SNO experiment measured both the combined flux of all three neutrinos from

the NC process and the νe flux from the CC process, a comparison between them show that

the discrepancies of solar neutrinos exist without the calculations in the SSM [36].

The deficiency of solar neutrino fluxes can be explained by neutrino oscillation in the Sun.

Consider two-neutrino propagation in matter [22]

i
d

dt

νe
νµ

 =
1

2E

m2
1 cos2 θ +m2

2 sin2 θ +A δm2 sin θ cos θ

δm2 sin θ cos θ m2
1 sin2 θ +m2

2 cos2 θ


νe
νµ

 , (1.39)
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where δm2 = m2
2 − m2

1, θ is the vacuum mixing angle, and the matter effect term A =

2
√

2GFNeE. The instantaneous eigenstates in matter is related with the flavor eigenstates

by a unitary mixing matrix,ν1m

ν2m

 =

cos θm − sin θm

sin θm cos θm


νe
νµ

 (1.40)

where the effective mixing angle can be obtained by diagonalizing the Hamiltonian in Eq. (1.39),

sin2 2θm =
δm2 sin2 2θ

(δm2 cos 2θ −A)2 + δm2 sin2 2θ
. (1.41)

Note that the oscillation amplitude above can be enhanced if δm2 cos 2θ > 0 and a resonance

can occur at a critical density. The instantaneous states depend on the electron density Ne

and therefore change as the solar neutrinos propagate through the Sun. Since the electron

density in the Sun changes very slowly, an electron neutrino created in the Sun can undergo

an adiabatic transition, the oscillation probability measured on Earth is

〈P (νe → νe)〉 =
1

2
(1 + cos 2θ cos 2θ0

m), (1.42)

where θ0
m is dependent on the electron density N0

e when the neutrino is created, i.e.,

cos 2θ0
m =

δm2 cos 2θ −A√
(δm2 cos 2θ −A)2 + δm2 sin2 2θ

. (1.43)

From Eq. (1.42), we can see even for a small vacuum mixing angle, a large depletion is still

possible if the neutrinos are created above the resonance density. This is known as MSW

effect [23], and can explain the results of solar neutrino experiments very well; see Fig. 1.1.

1.3.2 Atmospheric/Accelerator Neutrino Experiments

The atmospheric neutrinos came from the decay products of pions and kaons, which are

produced when the cosmic rays collide with the atmosphere:

π+,K+ → µ+νµ → e+νeν̄µνµ

π−,K− → µ−ν̄µ → e−ν̄eνµν̄µ. (1.44)
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Figure 1.1 νe survival probability versus energy from solar neutrino experiments. The right-

most data point comes from SNO, the central data point comes from Borexino,

and leftmost data point is infered from combined data of SNO and Borexino. The

solid line corresponds to best-fit with δm2 = 7.6× 10−5 eV2 and sin2 2θ12 = 0.87.

From Ref. [20].

The atmospheric neutrino flux has been well studied. The νµ flux in atmospheric neutrinos is

about twice as large as the νe flux at Eν = 1 GeV, and there are much less neutrinos for Eν & 1

GeV.

It is the study of atmospheric neutrinos by the Super-Kamiokande (Super-K) experiment in

1998 that provides the first compelling evidence for neutrino oscillations [30]. They measured

the νe and νµ fluxes at different zenith angles that correspond to different path lengths L

varying from 10-30 km for downward neutrinos to 12000 km for upward neutrinos, and found

there was significant depletion of muon neutrinos. In 2004, the Super-K collaboration shows

the result of the muon neutrino survival probability versus L/E; see Fig. 1.2. They found a

dip at L/E ≈ 500 km/GeV in the L/E distribution, which favors the explanation of neutrino

oscillation when compared to neutrino decay and neutrino decoherence [37].

Since the pions and kaons are also produced in an accelerator when protons are smashed

into a fixed target, the neutrino oscillations seen in the atmospheric experiments should be

also observed independently in accelerator neutrino experiments. This has been confirmed
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Figure 1.2 Atomospheric Muon neutrino survival propobility versus L/E in the Super-K ex-

periment. The solid line corrsponds to the best-fit expection for two-neutrino

oscillation, and the dashed (dotted) line conrresponds to the best-fits for neutrino

decay (decoherence). From Ref. [37].

by three different accelerator neutrino experiments: K2K [38] and T2K [39] in Japan and

MINOS [40] in the United States. The results of the three accelerator experiments are not only

consistent with that of the atmospheric neutrino Super-K experiment, but also complementary

to it. The long-baseline experiments, especially the MINOS experiment, have a more precise

measurement of δm2
31, while the atmospheric experiment Super-K has a better constraint on

sin2 2θ23. A recent results from MINOS is shown in Fig. 1.3. Assuming CPT invariance, the

neutrino and antineutrino oscillation parameters are identical in the leading order. The best-fits

for two-neutrino oscillation parameters to the MINOS data are [41]:

|∆m2| = (2.41+0.09
−0.10)× 10−3eV2, sin2(2θ) = 0.950+0.035

−0.036. (1.45)
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Figure 1.3 Allowed regions of ∆m2 and sin2(2θ) for two-neutrino oscillation. The neutrino

and antineutrino oscillations are assumed to be identical. From Ref. [41].

1.3.3 Reactor Neutrino Experiments

The fission process in nuclear reactors is always accompanied by a large amount of low

energy ν̄e through beta decays, e.g., a thermal power reactor with 1-MW produces about

2 × 1017 ν̄e per second. The energies of these antineutrinos peaks at 2 MeV and extend up

to about 9 MeV, thus the reactors can be used as natural and cheap sources for studying the

oscillation of ν̄e. The measured reaction used most often is inverse beta decay:

ν̄e + p→ e+ + n. (1.46)

Thus the reactor experiments always measure ν̄e disappearance, i.e., the measured ν̄e flux

compared to the expected flux from the reactor at the detector’s location. In the context of

three neutrino oscillations, the ν̄e survival probability is given in Eq. 1.26.

According to the average distance from the reactors, the reactor neutrino oscillation exper-
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iments can be classified into two types. For short-baseline experiments where the detectors are

close to the reactor, since |∆31| � |∆21|, the survival probability becomes sensitive to θ13, i.e.,

P (ν̄e → ν̄e) ' 1− sin2 2θ13 sin2 ∆31. (1.47)

Most short-baseline experiments observed no oscillation signal [42], which placed an upper

bound on θ13. A recent null result is the CHOOZ reactor experiment, which has L ∼ 1000m

and Eν ∼ 3 MeV, it placed a 90% C.L. upper bound of sin2 2θ13 < 0.16 for δm2
31 = 2.4 ×

10−3 eV2 [43].

For long-baseline experiment, such as KamLAND experiment, the terms involving ∆31

average 1
2 over a complete cycle, in the case when θ13 is very small, the survival probability is

similar to that of two-neutrino oscillation,

P (ν̄e → ν̄e) ' 1− sin2 2θ12 sin2 ∆21. (1.48)

The results from KamLAND show a spectral distortion in the energy spectrum and exhibit

a spectacular oscillatory behavior; see Fig. 1.4. The best-fit oscillation parameters to the

KamLAND data are consistent with the solar result. The solar data provides a very good

measurement of θ12, while KamLAND does better in determining δm2
21. Combining KamLAND

and solar data, we can get the best-fit of parameters [45]

δm2
21 = 7.59+0.20

−0.21 × 10−5eV2, tan2 θ12 = 0.457+0.041
−0.028. (1.49)

Because of the null oscillation results from short baseline experiments, θ13 is believed to

be very small compared to the large mixing angle θ12 and θ23. Some theorists even believed

θ13 = 0 because many models predict a zero mixing angle. The situation has changed rapidly

in the last three years. First in 2011, a nonzero value of θ13 is indicated from three different

collaborations: T2K [39], MINOS [46], and Double Chooz [47] experiments. Then in early 2012,

two reactor experiments Daya Bay [48] and RENO [49] conformed a nonzero measurement of

θ13 independently. Especially, Daya Bay results show θ13 6= 0 at the 5.2σ level. A recent

result from Daya Bay experiments exhibits a spectral distortion in the ν̄e survival probability;

see Fig. 1.5. The best-fit to the Daya Bay data yields the first direct measurement of the ν̄e
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Figure 1.4 ν̄e survival probability versus L0/Eν̄ in KamLAND experiment. From Ref. [44].

mass-squared difference and the most precise estimate of θ13 [50]:

∆m2
ee = 2.59+0.19

−0.20 × 10−3eV2, sin2 2θ13 = 0.090+0.008
−0.009, (1.50)

where ∆m2
ee comes from the definition sin2 ∆ee ≡ cos2 θ12 sin2 ∆31 + sin2 θ12 sin2 ∆32, and is

consistent with the effective mass-squared difference ∆m2
µµ measured in νµ disappearance of

MINOS experiment [51].

1.3.4 Global Three-neutrino Fits

As we discussed before, there are six parameters that can be measured in three-neutrino

oscillation experiments: three mixing angles θ12, θ23, θ13, two mass-squared differences δm2
21,

δm2
31 and a Dirac CP phase δ. Because of some special features among these parameters, e.g.,

|δm2
31| � δm2

21 and a relatively small θ13, many neutrino oscillation experiments are governed

by separate parameters in the leading order. Meanwhile, each type of neutrino oscillation

experiment has its speciality in determining a particular parameter, namely solar neutrino

experiments in determining θ12; short-baseline reactor experiments such as Double Chooz,
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Figure 1.5 ν̄e survival probability versus L0/Eν̄ in Daya Bay experiment. From Ref. [50].

Daya Bay and RENO in determining θ13; atmospheric neutrino experiments such as Super-K

in determining θ23; long-baseline reactor experiments such as KamLAND in determining δm2
21

and long-baseline accelerator experiments such as MINOS in determining δm2
31. Therefore, a

global fit to all the reliable experiments is necessary.and useful to further constrain the known

parameter space. It can also provide a guidance about the unknown oscillation parameters

before their experimental measurement. For example, a hint of sin2 θ13 ∼ 0.02 was indicated

by the global fit in 2008 [52], which is four years before the discovery of θ13 by the Daya Bay

experiment.

Up to now, there is still not enough data to determine the sign of δm2
31, to discriminate

the octant of θ23 and to discover the Dirac phase δ. Since the sign of δm2
31 is undetermined,

there are two possible mass hierarchies: the normal hierarchy (NH) and the inverted hierarchy

(IH), as shown in Fig. 1.6. The normal (inverted) hierarchy is also sometimes called the normal

(inverted) mass ordering. Since |δm2
31| � δm2

21, m1 and m2 are approximately degenerate, thus

∆m2 = m2
3 − (m2

1 + m2
2)/2 instead of δm2

31 is used more often in global fits. The most recent

three-neutrino global fits are shown in Table 1.3.

The three unknown quantities, the sign of ∆m2, θ23 octant and the Dirac phase δ, will be

the main goal of the next-generation neutrino oscillation experiments. In the last section, we
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will discuss the potential of future neutrino oscillation experiments, such as NOνA, LBNE and

JUNO experiments.

Figure 1.6 The neutrino mass spectrum in the normal mass hierarchy (left) and the inverted

mass hierarchy (right).

Table 1.3 Global three-neutrino fits to the neutrino oscillation parameters. Here

δm2 = m2
2 − m2

1 and ∆m2 = m2
3 − (m2

1 + m2
2)/2, with ∆m2 > 0 for NH and

∆m2 < 0 for IH. From Ref. [53].

Parameter Best-fit 1σ range 2σ range 3σ range

δm2/10−5eV2 7.54 7.32-7.80 7.15-8.00 6.99-8.18

sin2 θ12/10−1 3.08 2.91-3.25 2.75-3.42 2.59-3.59

|∆m2|/10−3eV2 (NH) 2.43 2.37-2.49 2.30-2.55 2.23-2.61

|∆m2|/10−3eV2 (IH) 2.38 2.32-2.44 2.25-2.50 2.19-2.56

sin2 θ23/10−1 (NH) 4.37 4.14-4.70 3.93-5.52 3.74-6.26

sin2 θ23/10−1 (IH) 4.55 4.24-5.94 4.00-6.20 3.80-6.41

sin2 θ13/10−2 (NH) 2.34 2.15-2.54 1.95-2.74 1.76-2.95

sin2 θ13/10−2 (IH) 2.40 2.18-2.59 1.98-2.79 1.78-2.98

δ/π (NH) 1.39 1.12-1.77 0.00-0.16 ⊕ 0.86-2.00 0-2.00

δ/π (IH) 1.31 0.98-1.60 0.00-0.02 ⊕ 0.70-2.00 0-2.00

1.4 Massive Neutrino Models

Neutrino oscillation experiments have confirmed that neutrinos are massive. However, neu-

trino oscillation experiments only measure the mass-squared differences, and the absolute scale

of neutrino masses is still unknown, although we can get a upper bound on the sum of all
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neutrinos mass from cosmology. The current 95 % C.L. upper bound on
∑
mν from the Planck

data is 0.66 eV [54]. The nonzero masses of neutrinos can be addressed by introducing right-

handed neutrinos into the SM, while the smallness of the neutrino masses can be explained by

the Seesaw Mechanism.

1.4.1 Dirac vs. Majorana Masses

As we know, a fermion is described by a Dirac field ψ that satisfies the Dirac equation

(iγµ∂µ −m)ψ = 0, which can be derived from the Lagrangian density:

L = ψ̄iγµ∂µψ −mψ̄ψ. (1.51)

Since the SM is based on chiral fields, we can rewrite the mass term above in terms of the

chiral fields ψL,R = 1±γ5
2 ψ:

mψ̄ψ = m(ψ̄RψL + ψ̄LψR)

= m(ψ̄RψL + h.c.). (1.52)

This is the usual mass term that appears in Eq. 1.13 that yields the masses for quarks and

charged-leptons, and it is called the Dirac mass term.

Now can we find additional possible mass terms? Since the Lagrangian has to be Lorentz-

invariant, we consider multiplying one of the fields ψL, ψR, (ψ
c)L, (ψ

c)R by one of the fields

ψ̄L, ψ̄R, (ψc)L, (ψ
c)R, where ψc ≡ C†ψC = Cψ̄T . Note that a product with the same chiralities

always vanish, and (ψL,R)c = (ψc)R,L, which means (ψc)L(ψc)R = ψ̄LψR and (ψc)R(ψc)L =

ψ̄RψL, there are only six Lorentz-invariant mass terms that remain [55]: ψ̄LψR, ψcRψL, ψ
c
LψR,

and ψ̄RψL, ψ̄L(ψc)R, ψ̄R(ψc)L, Since for any two spinors χ and ϕ, (χ̄ϕ)† = ϕ̄χ, the six Lorentz-

invariant mass terms are just ψ̄LψR, ψcRψL, ψ
c
LψR and their hermitian conjugates. We can

use them to build the most general form of the mass terms in the Lagrangian,

−Lm = MD

[
ψ̄LψR + h.c.

]
+
ML

2

[
ψcRψL + h.c.

]
+
MR

2

[
ψcLψR + h.c.

]
= MD

[
ψ̄LψR + h.c.

]
+
ML

2

[
(ψL)cψL + h.c.

]
+
MR

2

[
(ψR)cψR + h.c.

]
, (1.53)

where we have used (ψL,R)c = (ψc)R,L, MD is the usual Dirac mass, ML and MR are two

Majorana masses. The physical meaning of the two Majorana masses can be easily seen if we
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rewrite the Lagrangian in terms of χ ≡ ψL+(ψL)c√
2

and η ≡ ψR+(ψR)c√
2

. We can verify that

χ̄χ =
1

2

[
(ψL)cψL + h.c.

]
η̄η =

1

2

[
(ψR)cψR + h.c.

]
χ̄η = η̄χ =

1

2

[
ψ̄LψR + h.c.

]
. (1.54)

Therefore, the mass terms in the Lagrangian become

−Lm = MD(χ̄η + η̄χ) +MLχ̄χ+MRη̄η

= [χ̄ η̄]

ML MD

MD MR


χ
η

 . (1.55)

Since both χ and η satisfy the Majorana condition χc = χ and ηc = η, they are called the Ma-

jorana fields and ML and MR are their corresponding Majorana masses. Notice that Majorana

mass does not exist for quarks and charged leptons because their electric charge is not zero and

their fields cannot satisfy the Majorana condition, but since neutrinos do not have any electric

charge, they could have both Dirac and Majorana masses.

1.4.2 The Seesaw Mechanism

In order for the neutrinos to have Dirac masses, we introduce the RH neutrino field νR

to the SM. Since there are three generations for the LH neutrino field, we also consider νR =

(νeR, νµR, ντR)T . The Yukawa Lagrangian in the SM is then extended by the following terms

L = −νRYνφ†lL + h.c.. (1.56)

After the spontaneous symmetry breaking φ → 1√
2

( 0
v ), like the quarks and charged leptons,

the neutrino sector also obtain a Dirac mass term

L → −νRMDνL + h.c., (1.57)

where MD = v√
2
Yν . The only problem is that we know mν < 1 eV from cosmology, and v ≈ 246

GeV, which indicates the Yukawa couplings of neutrinos Yν < 6× 10−12. Such a small Yukawa

coupling seems very unnatural.
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The tiny masses of active neutrinos can be elegantly explained by the seesaw mechanism [56].

We consider the neutrinos are Majorana particles and add the Majorana mass terms in the SM.

Firstly, since qY (νL) = −1, the (νL)cνL term violates the hypercharge number by 2 units, thus

the Majorana masses for the LH neutrinos are forbidden by the SM gauge group. However,

the RH neutrinos have qY (νR) = 0 and are singlets of the entire gauge group, we can add a

Majorana mass term for νR into the SM Lagrangian:

L = −MR

2
(νR)cνR + h.c.. (1.58)

Since νR are singlets of the SM gauge group, the Majorana term for νR alone does not pro-

duce neutrino oscillations. Thus, we have to consider both the Dirac and Majorana masses.

Combining Eqs. 1.57 and 1.58, we can get

L = −νRMDνL −
MR

2
(νR)cνR + h.c.,

=
[
ν̄L (νR)c

] 0 MD

MT
D MR


(νL)c

νR

 (1.59)

Assuming MD �MR, the neutrino mass matrix M =

 0 MD

MT
D MR

 can be block-diagonalized

as

D = UTMU '

−MDM
−1
R MT

D 0

0 MR

 , (1.60)

where

U '

 1 MDM
−1
R

−M−1
R MT

D 1

 . (1.61)

In order to see the meaning of the masses more clearly, let us define ν ′

N ′

 ≡ U †
(νL)c

νR

 , and

 ν

N

 ≡ 1√
2

 ν ′ + (ν ′)c

N ′ + (N ′)c

 . (1.62)

Then Eq. 1.59 becomes

L 'MDM
−1
R MT

D ν̄ν −MRN̄N. (1.63)
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From the above equation, we can see there are two Majorana fields: the light neutrinos ν with

a mass matrix

Mν ' −MDM
−1
R MT

D = −YνM−1
R Y T

ν v
2/2, (1.64)

and the heavy neutrinos N with MN 'MR. If MR & 1014−15 GeV, we can get Mν < 1 eV with

Yν ' 1. This mechanism is usually called the Type I seesaw mechanism or canonical seesaw

mechanism. It is the simplest and most popular model to explain the smallness of the observed

neutrino masses. Based on the similar idea of extending the SM by some heavy particles, there

exist other seesaw-like models that can yield small neutrino masses like the Type I seesaw

mechanism. At the tree level, besides the type I seesaw mechanism, there are the Type II

seesaw mechanism [57] that extends the SM content by a scalar triplet and the Type III seesaw

mechanism [58] that extends the SM content by a fermion triplet.

1.4.3 Neutrinoless Double Beta Decay and Leptogenesis

The Majorana nature of the neutrinos implied by the seesaw mechanism has several im-

plications. Here we will discuss two of them: the neutrinoless double beta decay (0νββ) and

leptogenesis.

1.4.3.1 Neutrinoless double beta decay

The neutrinoless double beta decay only occurs when neutrinos are Majorana particles; See

Fig. 1.7. The rate for 0νββ depends on the effective Majorana mass [59], which is equal to the

magnitude of the νe − νe element of the neutrino mass matrix. In the three-neutrino context,

the effective Majorana mass is

|Mee| =

∣∣∣∣∣∑
i

U2
eimi

∣∣∣∣∣ =
∣∣∣m1c

2
12c

2
13 +m2e

iφ2s2
12c

2
13 +m3e

iφ3s2
13e
−2iδ

∣∣∣ . (1.65)

Note that |Mee| can be written in a form that is independent of the Dirac CP phase δ by

redefining φ3. 0νββ has not been observed in experiments yet. The latest experimental result

from EXO-200 [60] shows that the effective mass is less than 140 − 380 meV at 90% C.L. In

the foreseeable future, experiments such as KamLAND-Zen will reach a sensitivity of about 50

meV or below [61]. It is worth pointing out that |Mee| could vanish even for nonzero neutrino
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masses [62], thus a null signal in 0νββ experiments cannot rule out that neutrinos are Majorana

particles.

Figure 1.7 The diagram for neutrinoless double beta in the case of Majorana neutrino ex-

change. From Ref.[62].

1.4.3.2 Leptogenesis

We still do not understand why matter dominates over antimatter in our universe. The

observed baryon asymmetry is ηB0 = nB
nγ

= (6.19± 0.15)× 10−10 at 68% CL [63]. If we assume

the universe began from a symmetric state with equal baryon number and anti-baryon number,

then a baryon asymmetry can be generated only if all the three Sakharov’s conditions [64] are

met: (i) violation of baryon number in fundamental processes; (ii) the existence of CP violation

and (iii) a departure from thermal equilibrium when the baryon number violation processes

occurred. However, the SM provides neither sufficient CP violation nor the equilibrium con-

dition to explain the origin of the baryon asymmetry of our universe. Other scenarios such as

GUT baryogenesis, electroweak baryogenesis, the Affleck-Dine mechanism have been proposed

to explain this puzzle; for a recent review, see Ref. [65].

As a product of the seesaw mechanism, the heavy RH neutrinos will play an important role

at the early times of the universe. In a process called thermal leptogenesis [66], the decay of

these heavy RH neutrinos can lead to the observed baryon asymmetry. One can easily check that

all of Sakharov’s conditions are satisfied in the process: (i) the heavy RH neutrinos can decay

both into lepton-Higgs pair and into their CP conjugate pair, thus violating lepton number, and

can lead to a baryon number violation via the sphaleron process [67]; (ii) the complex phases in
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the neutrino Yukawa couplings result in CP violation, and (iii) the cosmological expansion rate

during the heavy RH neutrinos decay process is faster than the decay lifetime, which yields the

departure from thermal equilibrium.

There are many scenarios of leptogenesis that can explain the observed baryon asymmetry.

In what follows, we adopt a minimal version of leptogenesis [68]. We assume the RH neutrinos

to be hierarchical, M2,M3 �M1, thus the final lepton asymmetry only depends on the decay

of the lightest RH neutrino, which can be written as

ε1 =
∑

α=e,µ,τ

Γ(N1 → φl̄α)− Γ(N1 → φ†lα)

Γ(N1 → φl̄) + Γ(N1 → φ†l)

= − 3

16π

1

(YνY
†
ν )11

∑
j 6=1

Im(YνY
†
ν )2

1j

M1

Mj
. (1.66)

We also work in the single flavor approximation in which M1 > 1012 GeV, so that the flavor

composition of the leptons does not affect the baryon asymmetry of the universe. Then in the

standard model the baryon asymmetry is given by [68]

ηB0 = −9.72× 10−3 × ε1 × η, (1.67)

where η is the wash out efficiency factor, which can be obtained by solving the Boltzmann

equation. A very simple analytic fit yields [68]

η '
(

0.55× 10−3 eV

m̃1

)1.16

, (1.68)

where m̃1 is the so-called effective neutrino mass that is related to the decay rate of the lightest

RH neutrino,

m̃1 =
∑

α=e,µ,τ

|Yνα1|2
v2

2M1
. (1.69)

Equation (1.68) is valid for M1 � 1014 GeV and m̃1 ≥ 0.01 eV. With these constraints, the

baryon asymmetry is

ηB0 =
nB
nγ
' −3.4× 10−4 × ε1(

0.01eV

m̃1
)1.16, (1.70)

For M1 > 1012 GeV with appropriate structure of the Yukawa coupling matrix, we can produce

the observed baryon asymmetry in our universe. On the other hand, successful leptogenesis

may provide hints of the mass of the lightest RH neutrino and the structure of the Yukawa

coupling matrix; see Ref. [69] for a recent review.
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CHAPTER 2. PERTURBATIONS TO µ− τ SYMMETRICAL MODELS

2.1 The µ− τ Symmetry in Neutrino Mixing

There are numerous neutrino mixing scenarios existing in the literature [70]. Several of them

have µ− τ symmetry, such as tri-bimaximal mixing (TBM) [71], bimaximal mixing (BM) [72],

hexagonal mixing (HM) [73] and two scenarios of Golden ratio mixing (GRM) [74, 75]. In these

scenarios, θ23 = 45◦, θ13 = 0, and only θ12 depends on the particular model. The predictions on

three mixing angles can be obtained with a choice of an appropriate discrete flavor symmetry

group; see Table 2.1. Among them, TBM is most popular because the value of θ12 predicted by

TBM is close to that preferred by the current experimental data. However, the latest results

from the T2K [39], MINOS [46], and Double Chooz [47] experiments suggest a nonzero value

of θ13, and the recent Daya Bay [48] and RENO [49] experiments find θ13 6= 0 at the 5.2σ

and 4.9σ level, respectively. Various corrections may reconcile such models with nonzero θ13,

such as vacuum misalignment corrections [76], renormalization group corrections [77], canonical

normalization corrections [78], and charged lepton corrections [79].

Table 2.1 µ − τ symmetrical models with their predictions on three mixing angles and their

corresponding flavor symmetries.

Models θ23 θ12 θ13 Flavor group

TBM 45◦ 35.3◦ 0 A4

BM 45◦ 45◦ 0 S4

GRM1 45◦ 31.7◦ 0 A5

GRM2 45◦ 36◦ 0 D10

HM 45◦ 60◦ 0 D12

We work in the basis in which the charged lepton mass matrix is diagonal. The mass matrix
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for Majorana neutrinos is

M = U∗MdiagU † , (2.1)

where Mdiag = diag(m1,m2,m3), U is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing

matrix [80]. The masses m2 and m3 are complex and m1 can be taken to be real and non-

negative.

The general condition describing µ− τ symmetry (also sometimes called µ− τ universality)

is [81]

|Uµi| = |Uτi| , for i = 1, 2, 3. (2.2)

From the standard form of the mixing matrix these conditions are equivalent to

θ23 = 45◦ , Re(cos θ12 sin θ12 sin θ13e
iδ) = 0 . (2.3)

Hence, there are four classes of µ−τ symmetry: (a) θ23 = 45◦, θ13 = 0; (b) θ23 = 45◦, θ12 = 0; (c)

θ23 = 45◦, θ12 = 90◦; (d) θ23 = 45◦, δ = ±90◦. Class (a) contains models with tri-bimaximal,

bimaximal, hexagonal, and golden ratio symmetries, while class (d) includes tetramaximal

symmetry [82], which predicts θ23 = 45◦, θ12 = 30.4◦, θ13 = 8.4◦, and δ = 90◦. Classes

(b) and (c) have not been studied before because the unperturbed θ12 angle is far from the

experimentally preferred value, but, as we show below, small perturbations can have a large

effect on θ12, and therefore these models should not be ignored.

2.2 Perturbations to Class (a) Symmetry

We consider small perturbations acting on Majorana mass matrices with µ − τ symmetry

and estimate the size of perturbations required to explain the experimental data. We first

examine the effect of small perturbations on models in class (a). The initial (unperturbed)

mixing matrix can be written as

U0 =


cos θ0

12 sin θ0
12 0

− sin θ012√
2

cos θ012√
2

1√
2

sin θ012√
2

− cos θ012√
2

1√
2

 , (2.4)
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and the initial mass matrix is

M0 = U∗0M
diag
0 U †0 =

m0
1c

2
12 +m0

2s
2
12

(m0
2−m0

1)s12c12√
2

(m0
1−m0

2)s12c12√
2

(m0
2−m0

1)s12c12√
2

1
2(m0

3 +m0
2c

2
12 +m0

1s
2
12) 1

2(m0
3 −m0

2c
2
12 −m0

1s
2
12)

(m0
1−m0

2)s12c12√
2

1
2(m0

3 −m0
2c

2
12 −m0

1s
2
12) 1

2(m0
3 +m0

2c
2
12 +m0

1s
2
12)

 , (2.5)

where Mdiag
0 = diag(m0

1,m
0
2,m

0
3), and cjk, sjk denotes cos θ0

jk and sin θ0
jk respectively. Under a

small perturbation the final (resultant) mass matrix can be written as

M = U∗0M
diag
0 U †0 + E , (2.6)

where the perturbation matrix E has the general form

E = M −M0 =


ε11 ε12 ε13

ε12 ε22 ε23

ε13 ε23 ε33

 . (2.7)

Treating the three masses as eigenvalues of the mass matrix with each column of the mixing

matrix as the corresponding eigenvector, we can use traditional perturbation methods to find

the corrections to the three angles and three masses. From experiment we know that m1 and

m2 are nearly degenerate, so that degenerate perturbation theory with |δm0
21| � |δm0

31| and

|εij | < |m0
k| (where δm0

ji = m0
j −m0

i , and the index k denotes the heaviest eigenstate), can be

used. For simplicity, we assume E is real and employ the following notation:

ε1 = ε11 , ε2 = ε12 + ε13 , ε3 = ε12 − ε13 , ε4 = ε22 + ε33 + 2ε23 ,

ε5 = ε22 − ε33 , ε6 = ε22 + ε33 − 2ε23 − 2ε11 . (2.8)

We find the first order corrections to the three masses to be

δm
(1)
i =

1

4

[
4ε1 + ε6±

(
2δm0

21−
√

8ε23 + ε26 + 4(δm0
21)2 + 4δm0

21(2
√

2ε3 sin 2θ0
12 + ε6 cos 2θ0

12)

)]
,

(2.9)

where the plus sign is for i = 1 and the minus sign is for i = 2, and

δm
(1)
3 =

1

2
ε4 . (2.10)
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Table 2.2 Best-fit values and 2σ ranges of the oscillation parameters [83], with

δm2 ≡ |m2|2 −m2
1 and ∆m2 ≡ |m3|2 − (m2

1 + |m2|2)/2.

Parameter θ12(◦) θ13(◦) θ23(◦) δm2(10−5eV2) |∆m2|(10−3eV2)

NH 33.6+2.1
−2.0 8.9+0.9

−0.9 38.4+3.6
−2.3 7.54+0.46

−0.39 2.43+0.12
−0.16

IH 33.6+2.1
−2.0 9.0+0.8

−1.0 38.8+5.3
−2.3 ⊕ 47.5− 53.2 7.54+0.46

−0.39 2.42+0.11
−0.16

The first order corrections to the mixing angles are

δθ
(1)
12 =

1

2
arctan

2
√

2ε3 cos 2θ0
12 − ε6 sin 2θ0

12

2
√

2ε3 sin 2θ0
12 + ε6 cos 2θ0

12 + 2δm0
21

, (2.11)

δθ
(1)
23 =

ε5s
2
12 −

√
2ε2s12c12

2δm0
31

+
ε5c

2
12 +

√
2ε2s12c12

2δm0
32

, (2.12)

δθ
(1)
13 =

√
2ε2c

2
12 − ε5s12c12

2δm0
31

+

√
2ε2s

2
12 + ε5s12c12

2δm0
32

, (2.13)

and the second order correction to θ12 is

δθ
(2)
12 = −

√
2ε2ε5 cos 2(θ0

12 + δθ
(1)
12 ) + (ε22 − ε25/2) sin 2(θ0

12 + δθ
(1)
12 )

4δm0
21δm

0
32

. (2.14)

For |δm0
21| � |δm0

31|, the expressions for δθ
(1)
23 and δθ

(1)
13 simplify to

δθ
(1)
23 '

ε5
2δm0

31

, δθ
(1)
13 '

√
2ε2

2δm0
31

. (2.15)

We note that while δθ
(1)
23 and δθ

(1)
13 are suppressed by a factor of order εj/δm

0
31, to leading order

δθ12 depends only on ratios of linear combinations of ε3 and ε6. Therefore large corrections to

θ12 are possible even when the corrections to θ23 and θ13 are small.

A recent global three-neutrino fit [83] yields the parameter values in Table 2.2. We have

done a numerical search to find perturbed mass matrices that give the oscillation parameters

and which have small perturbations. In our search, we first fix θ0
23 = 45◦ and θ0

13 = 0, consistent

with µ − τ symmetry, and choose a particular value for θ0
12 and the magnitude of m1 for the

normal hierarchy (or m3 for the inverted hierarchy). The global fit in Ref. [83] then defines the

magnitudes of the other two final masses and the three final mixing angles (since θ0
13 = 0, the

initial Dirac phase does not matter).
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We characterize the size of the perturbation as the root-mean-square (RMS) value of the

perturbations, i.e.,

εRMS =

√∑3
i,j=1 |Mij −M0ij |2

9
, (2.16)

where i and j sum over neutrino flavors. Hence, εRMS is determined by the following quantities:

three initial masses, two initial Majorana phases, two final Majorana phases and one final Dirac

phase. We scan over these quantities with all phases taken to be either 0 or 180◦ to find the

minimum value of εRMS for a given θ0
12. We follow the same procedure for classes (b) and (c)

below. For class (d), all values of the phases are allowed.

We show the perturbations that give the smallest εRMS for the normal hierarchy, m1 = 0

and several values of θ0
12 in Table 2.3. It is clear that the sizes of εRMS are approximately the

same regardless of the value of θ0
12; we find that the smallest εRMS for each θ0

12 varies by at most

17% for the examples shown. This can be explained by the perturbation results derived above

as follows. From Eq. (2.8) we have εRMS =
√
ε21 + ε22 + ε23 + 1

2ε
2
5 + 1

4ε
2
4 + 1

4(2ε1 + ε6)2/3; since

m3 � m1,m2 for the normal hierarchy with m1 = 0 eV and the first order perturbations of the

three masses are much smaller than m3, we can assume δm0
31 ≈ m0

3 ≈ m3 ≈
√

∆m2 = 0.0493

eV. Then from Eq. (2.15) we know that in order to get the correction δθ23 = −6.6◦ and

δθ13 = 8.9◦ for any value of θ0
12, we need ε5 = −0.0114 eV and ε2 = 0.0108 eV, so that√

ε22 + ε25/2/3 = 0.00449 eV, which is already close to the εRMS values found in Table 2.3. The

small discrepancy can be explained by the first perturbation of the three masses and other ε’s.

Hence, we can say that the size of the perturbation mainly comes from the corrections to θ23

and θ13. From Eq. (2.11) we know that the correction to θ12 is determined by the relative ratio

of ε3 to ε6 and the actual size of the perturbation does not matter. This means that we can

have large corrections for θ0
12 with a (relatively) small perturbation.

We note that initial values of θ12 on the “dark side” (θ0
12 > 45◦ and m0

1 < m0
2) can also fit

the data with perturbations that are similar in magnitude to those needed for tri-bimaximal

mixing (see the entry for θ0
12 = 60◦ in Table 2.3).

In the top half of Table 2.3, ε11 and ε23 are much smaller than the other εij for some values

of θ0
12. We have checked that if these values are set to zero, the experimental constraints can
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Table 2.3 Top half: values of the perturbations (in 10−3 eV) that give the best-fit param-

eters in Table 2.2 and have the minimum εRMS for the given θ0
12, for the normal

hierarchy and m1 = 0. Bottom half: representative values that fit the experimen-

tal data within 2σ and for which all εij have similar magnitude (with m0
1 = 0,

m0
2 = 0.0054 eV, m0

3 = 0.0595 eV).

θ0
12(◦) ε11 ε12 ε13 ε22 ε23 ε33 εRMS

60 -3.05 -3.50 -5.99 -2.72 -1.52 5.77 4.10

45 (BM) -1.32 -4.74 -4.74 -3.58 -0.66 4.90 3.79

35.3 (TBM) 0.32 -4.66 -4.82 -4.40 0.16 4.08 3.74

30 (HM) 1.07 -4.31 -5.18 -4.78 0.54 3.71 3.79

0 0.00 -1.38 -8.11 -4.24 0.00 4.24 4.36

60 5.41 -4.17 -4.52 -5.00 -9.94 3.36 6.14

45 (BM) 6.76 -4.43 -4.26 -5.67 -9.27 2.69 6.08

35.3 (TBM) 7.66 -4.32 -4.37 -6.12 -8.82 2.24 6.08

30 (HM) 8.11 -4.17 -4.52 -6.35 -8.59 2.01 6.09

0 9.46 -2.52 -6.17 -7.02 -7.92 1.34 6.28

still be satisfied at the 2σ level without a large change in the nonzero parameters. Therefore if

some perturbations are exactly zero due to symmetries, the resulting mass matrix can still fit

the experimental data with small perturbations.

For the inverted hierarchy, some representative sets of εij that give the minimum εRMS are

shown in Table 2.4 for m3 = 0. The minimum εRMS as a function of θ0
12 varies only by about

1% in this case, i.e., the minimum εRMS varies with θ0
12 even less for the inverted hierarchy

than for the normal hierarchy.

Clearly, if perturbations are large enough that tri-bimaximal mixing can explain the ex-

perimental data, then other µ− τ mixing scenarios, such as bimaximal, hexagonal mixing and

golden ratio mixing, can also explain the experimental data with about the same size perturba-

tion. Hence, tri-bimaximal mixing has no special position among the µ − τ symmetry mixing

scenarios when a perturbation is required to fit the experimental data. Also, it is possible for all

the perturbations to have a similar magnitude and still give the oscillation parameters within

their 2σ ranges; see the bottom half of Tables 2.3 and 2.4.

We also varied the size of the final masses by changing the value of m1 in the normal
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Table 2.4 Top half: same as Table 2.3, except for the inverted hierarchy and m3 = 0. Bottom

half: same as Table 2.3, except for the inverted hierarchy and m0
1 = 0.05 eV,

m0
2 = 0.052 eV, m0

3 = 0.

θ0
12(◦) ε11 ε12 ε13 ε22 ε23 ε33 εRMS

60 -0.86 -4.94 -5.64 5.57 -0.43 -4.72 4.31

45 (BM) -0.47 -5.29 -5.29 5.38 -0.23 -4.91 4.29

35.3 (TBM) -0.05 -5.30 -5.28 5.17 0.03 -5.12 4.28

30 (HM) 0.16 -5.23 -5.36 5.07 0.08 -5.22 4.28

0 0.00 -4.47 -6.12 5.15 0.00 -5.15 4.32

60 -3.56 -4.89 -5.27 5.95 2.67 -3.92 4.49

45 (BM) -3.06 -4.98 -5.18 5.70 2.92 -4.17 4.47

35.3 (TBM) -2.73 -4.94 -5.22 5.54 3.08 -4.34 4.46

30 (HM) -2.56 -4.89 -5.27 5.45 3.17 -4.42 4.46

0 -2.06 -4.28 -5.88 5.20 3.42 -4.67 4.50

hierarchy and m3 in the inverted hierarchy. We find that the minimum εRMS decreases as

the size of the final masses increases for both the normal and inverted hierarchies. For the

quasi-degenerate case (in which the magnitude of the absolute masses is larger than
√

∆m2)

the size of the perturbation can be very small. This can be explained by the perturbation

equations: since δm0
31 ≈ m3−m1 ≈ ∆m2/(m3 +m1) for small perturbations, and ∆m2 is fixed

by experimental data, then δm0
31 will decrease if the masses increase, and similarly for δm0

32.

Then Eqs. (2.12) and (2.13) show that in order to get the same corrections for θ0
13 and θ0

23, the

size of the perturbation should also decrease.

2.3 Perturbations to Other µ− τ Symmetry

For class (b) (θ0
23 = 45◦, θ0

12 = 0), since the Dirac phase is irrelevant, the initial mixing

matrix and mass matrix can be written as

U0 =


cos θ0

13 0 sin θ0
13

− sin θ013√
2

1√
2

cos θ013√
2

− sin θ013√
2
− 1√

2

cos θ013√
2

 , (2.17)
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and the initial mass matrix is

M0 = U∗0M
diag
0 U †0 =

m0
1c

2
13 +m0

3s
2
13

(m0
3−m0

1)s13c13√
2

(m0
3−m0

1)s13c13√
2

(m0
3−m0

1)s13c13√
2

1
2(m0

2 +m0
3c

2
13 +m0

1s
2
13) 1

2(−m0
2 +m0

3c
2
13 +m0

1s
2
13)

(m0
3−m0

1)s13c13√
2

1
2(−m0

2 +m0
3c

2
13 +m0

1s
2
13) 1

2(m0
2 +m0

3c
2
13 +m0

1s
2
13)

 . (2.18)

If we redefine the phase of the wavefunction ψ3 to −ψ3, or change the initial angle θ0
23 from

45◦ to 135◦ and switch the indices 2 and 3, then the mass matrix in Eq. (2.18) is exactly the

same as that in Eq. (2.5).

If we use the above matrix as the initial mass matrix, then corrections shift θ12 from 0◦ to

33.6◦, and θ13 from the initial arbitrary angle to 8.9◦. We used the same scan procedure as

before and searched for the minimum εRMS for various values of θ0
13 (see Table 2.5). We find

that for θ0
13 < 20◦, we can still explain the data with about the same size perturbation as was

found for class (a). For example, when θ0
13 = 0◦ for class (b), the initial mass matrix is the

same as θ0
12 = 0 for class (a), and therefore the minimum εRMS is also the same. In particular,

when θ0
13 is close to 8.9◦ in class (b), the minimum εRMS is even smaller than the minimum

value for class (a) because the correction to θ13 is smaller in this case. Although the correction

to θ12 is large, it does not affect the size of the perturbation too much because its size is mainly

due to the corrections to θ13 and θ23, as noted before. However, for δθ13 greater than about

20◦, the size of the perturbation required to fit the data becomes larger since θ13 must change

by more than 10◦.

For class (c) (θ0
23 = 45◦, θ0

12 = 90◦), we find that switching m0
1 with m0

2 makes the initial

mass matrix the same as the initial mass matrix of class (b). Since we scan all possible values

of m0
1 and m0

2, the minimum εRMS for a given θ0
13 for class (c) is the same as for class (b).

For class (d), if we fix θ0
23 = 45◦, δ0 = ±90◦ and vary both θ0

12 and θ0
13, this category includes

mixing scenarios such as the tetramaximal mixing pattern (T4M) [82], and the correlative

mixing pattern with δ = ±90◦ [84]. For θ0
13 < 20◦ and θ0

12 ≤ 45◦, the smallest εRMS for the

normal hierarchy (with m1 = 0) varies from 2.29 × 10−3 eV to 5.26 × 10−3 eV, where the

minimum value occurs at θ0
13 = 9◦ and θ0

12 = 32◦, and the maximum value occurs at θ0
13 = 20◦
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Table 2.5 Top half: same as Table 2.3, except for class (b) (θ0
12 = 0). Bottom half: same as

Table 2.3, except for class (b) and m0
1 = 0, m0

2 = 0.0054 eV, m0
3 = 0.0595 eV.

θ0
13(◦) ε11 ε12 ε13 ε22 ε23 ε33 εRMS

0 0.00 -1.38 -8.11 -4.24 0.00 4.24 4.36

5 0.48 1.44 -5.28 -4.48 -0.24 4.00 3.27

10 -0.44 4.21 -2.52 -4.02 0.22 4.46 3.06

15 -2.64 6.59 -0.14 -2.92 1.32 5.56 3.90

20 -5.85 8.30 1.57 -1.32 2.93 7.17 5.24

0 9.46 -2.52 -6.17 -7.02 -7.92 1.34 6.28

5 9.01 1.13 -2.52 -6.80 -7.69 1.56 5.41

10 7.66 4.67 1.02 -6.12 -7.02 2.24 5.22

15 5.47 8.00 4.35 -5.03 -5.93 3.33 5.80

20 2.50 11.00 7.35 -3.54 -4.44 4.82 6.92

and θ0
12 = 0. Therefore small perturbations can fit the experimental data for a wide range of

θ0
12 and θ0

13 for class (d).

In summary, we studied small perturbations to Majorana mass matrices with µ − τ sym-

metry that yield experimentally preferred oscillation parameters. We find that the size of the

perturbations (which decreases as the neutrino mass scale is increased), is mainly determined

by the corrections to θ23 and θ13, and that small perturbations can give a very large correction

to θ12 because to first order, the θ12 correction depends only on the ratio of perturbation terms

and not on their absolute size. Hence, most mixing scenarios with µ− τ symmetry can explain

the experimental data with perturbations of similar magnitude, and tri-bimaximal mixing has

no special place among scenarios with µ − τ symmetry. We also find that slightly perturbed

µ− τ symmetric models with θ12 = 0 or 90◦ are viable for θ13 < 20◦.
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CHAPTER 3. SEESAW MECHANISM WITH FOUR TEXTURE ZEROS

3.1 Four Zeros in the Neutrino Yukawa Matrix

Low-energy neutrino phenomenology is described by nine parameters in the Majorana mass

matrix of light neutrinos, which can be written as [80]

M = V ∗diag(m1,m2,m3)V †, (3.1)

with V = Udiag(1, eiφ2/2, eiφ3/2), and

U =


c13c12 c13s12 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 . (3.2)

After the measurement of θ13 by the Daya Bay [48], RENO [49], and Double Chooz [85]

experiments, five of them are known; the result of a recent global three-neutrino fit [83] is

shown in Table 2.2. The tiny masses of light neutrinos can be elegantly explained by the

seesaw mechanism [56], but, unfortunately, with the introduction of additional free parameters

that cannot be measured in the forseeable future. The most popular seesaw model is the type I

seesaw, which can be generated to include N right-handed neutrinos. According to Eq. (1.64),

the mass matrix of the light neutrinos can be written as

M = −YνMR
−1Y T

ν v
2/2 = Y TY , (3.3)
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where, for N heavy right-handed neutrinos, MR = diag(M1,M2, · · · ,MN ), Yν is a N×3 Yukawa

coupling matrix, and

Y =
v√
2
MR

−1/2Y T
ν =



y1e y1µ y1τ

y2e y2µ y2τ

...
...

...

yNe yNµ yNτ


. (3.4)

Note that on permuting the rows of the Y matrix (which is equivalent to reordering the right-

handed neutrinos) or applying a rotation to the rows of the Y matrix (which is equivalent to

a rotation in the space of the right-handed neutrinos), the mass matrix of the light neutrinos

remains the same.

The standard seesaw model has N = 3 and permits any set of low-energy neutrino parame-

ters in Mν . A way to extract predictions from the seesaw model is to impose constraints on its

parameters. The most economical seesaw model includes two right-handed neutrinos and two

zeros in the Yukawa coupling matrix, or, equivalently, two zeros in Y [86]. The measurement of

θ13 excludes the normal mass hierarchy (NH) and stringently constrains the allowed parameter

space for the inverted mass hierarchy (IH); in particular, the phase δ must be such that Dirac

CP violation is close to maximal [87]. Also, for two right-handed neutrinos, one of the light

neutrinos must have vanishing mass, so the allowed values of the sum of all light neutrino

masses (which affects structure formation in our universe) and |Mee| (which determines the

rate for neutrinoless double-beta decay, a signal of lepton number violation) are limited.

Here we extend this most economical model to include a third right-handed neutrino. We use

texture zeros in Y as extra constraints, which may arise in, e.g., extra dimensional models [87].

If there are 5 or more texture zeros in Y , the most economical model with two right-handed

neutrinos or a block diagonal matrix is obtained; the latter is excluded by the current exper-

imental data. So the simplest case for three right-handed neutrinos has four texture zeros in

Y , which is equivalent to five nonzero elements; for previous work see Refs. [88, 89]. Here we

derive analytic formulas that relate the free parameters to the dependent ones and determine

the constraints on these models including the recent data on θ13.

There are 3 basic ways to have 5 nonzero elements: (2, 2, 1), (3, 1, 1) or (3, 2, 0), where
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the numbers indicate how many nonzero elements are in each row of the Y matrix. The (3,

2, 0) case is equivalent to two right-handed neutrinos with one texture zero element and one

vanishing mass, and is equivalent to the most economical N = 2 model after a rotation in the

right-handed neutrino space. So only the (2, 2, 1) and (3, 1, 1) cases need to be considered.

There are 9 independent textures in the (2, 2, 1) case and 3 independent textures in the (3, 1,

1) case. We divide them into four classes:

Class 1

1A :


× × 0

× 0 ×

× 0 0

 1B :


× × 0

× 0 ×

0 × 0

 1C :


× × 0

× 0 ×

0 0 ×


Class 2

2A :


× × 0

0 × ×

× 0 0

 2B :


× × 0

0 × ×

0 × 0

 2C :


× × 0

0 × ×

0 0 ×


Class 3

3A :


× 0 ×

0 × ×

× 0 0

 3B :


× 0 ×

0 × ×

0 × 0

 3C :


× 0 ×

0 × ×

0 0 ×


Class 4

4A :


× × ×

0 × 0

0 0 ×

 4B :


× × ×

0 0 ×

× 0 0

 4C :


× × ×

× 0 0

0 × 0


For each class there are six possible permutations of the rows, so there are 72 individual cases

in all [88].

With four zeros in Y , there are five nonzero elements left in Y , but only two phases are

physical, so that there are seven free parameters in the four texture zero model. Hence, we

can use the five observed oscillation parameters from the global fit to determine the allowed

regions for the Dirac CP phase δ and m1 (m3) for the normal (inverted) hierarchy. Then we
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can obtain the values of the Majorana phases φ2 and φ3, completing our knowledge of all the

elements in the light neutrino mass matrix. The νe − νe element of the light neutrino mass

matrix will determine the rate for neutrinoless double-beta decay.

Furthermore, from Eq. (3.3) we can find Y and study leptogenesis. We find the baryon

asymmetry in the minimal version of leptogenesis depend only on the elements of the Y matrix

and the mass of the lightest RH neutrino. This can be seen from Eqs. (1.66), (1.69) and (1.70).

Since Yναi =
√

2
v M

1/2
Ri yiα, the lepton asymmetry becomes

ε1 = − 3M1

8πv2

∑
j 6=1

Im(y1ey
∗
je + y1µy

∗
jµ + y1τy

∗
jτ )2

|y1e|2 + |y1µ|2 + |y1τ |2
, (3.5)

the effective neutrino mass becomes

m̃1 =
∑

α=e,µ,τ

|y1α|2, (3.6)

and the baryon asymmetry is

ηB0 =
nB
nγ
' −3.4× 10−4 × ε1(

0.01eV

m̃1
)1.16. (3.7)

We can see the baryon asymmetry is proportional to the lightest RH neutrino mass M1 in

this case. Since the elements of Y are determined by the light neutrino mass matrix, we can

calculate the lightest right-handed neutrino mass M1 from Eqs. (3.5), (3.6), and (3.7), ensuring

that 1012 GeV < M1 � 1014 GeV.

3.2 Phenomenology

3.2.1 Class 1

The mass matrices of the three textures in Class 1 always have a zero in the (2, 3) entry.

In fact, M23 = 0 is the only condition on Y for all the textures in Class 1, and the condition is

the same for both mass hierarchies (normal and inverted). Take Class 1A for example; we can

write

Y =


a b 0

c 0 d

e 0 0

 , (3.8)
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where a, b, c, d, e are all nonzero complex numbers. Then the mass matrix of the light neutrinos

becomes

M = Y TY =


a2 + c2 + e2 ab cd

ab b2 0

cd 0 d2

 . (3.9)

Comparing Eq. (3.9) with the standard parametrization, if M23 = 0, we can find a solution for

Y as follows:

b = ±M1/2
22 , a = M12/b, d = ±M1/2

33 , c = M13/d, e = ±(M11 − a2 − c2)1/2. (3.10)

Since a, b, c, d, e are all nonzero complex numbers, a solution always exists. Solutions for Y

for the other two textures in Class 1 may be derived in a similar fashion. Therefore, Class 1 is

defined by the necessary and sufficient condition M23 = 0, which can be written as

m1 = −m3e
iφ3Uτ3Uµ3 +m2e

iφ2Uτ2Uµ2

Uτ1Uµ1
. (3.11)

Taking the absolute square gives

m2
1|Uµ1|2|Uτ1|2 −m2

2|Uµ2|2|Uτ2|2 −m2
3|Uµ3|2|Uτ3|2 = 2Re(m3e

−iφ3U∗µ3U
∗
τ3m2e

iφ2Uµ2Uτ2),

(3.12)

or, defining φ = φ3 − φ2,

m2
1 |Uµ1|2|Uτ1|2 −m2

2|Uµ2|2|Uτ2|2 −m2
3|Uµ3|2|Uτ3|2

= −2m2m3c
2
13s23c23Re

[
e−iφ(c12c23 − s12s23s13e

iδ)(c12s23 + s12c23s13e
iδ)
]

= −2m2m3c
2
13s23c23 ×

Re
[
c2

12s23c23 cosφ+ s12c12s13(c2
23 − s2

23) cos(φ− δ)− s2
12s23c23s

2
13 cos(φ− 2δ)

]
.(3.13)

Expanding the cosines yields the form

C = A cosφ+B sinφ, (3.14)

with A, B and C as listed in Table 3.1.
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For Eq. (3.14), if C2 > A2 + B2, there is no solution; if C2 < A2 + B2, there are two

solutions:

φ = 2 arctan
B ±

√
A2 +B2 − C2

A+ C
. (3.15)

We can write Eq. (3.11) in terms of φ as

m1 = eiφ2
−m3e

iφUτ3Uµ3 −m2Uτ2Uµ2

Uτ1Uµ1
. (3.16)

Since m1 is a non-negative real number, we get

φ2 = −arg[
−m3e

iφUτ3Uµ3 −m2Uτ2Uµ2

Uτ1Uµ1
], (3.17)

and

φ3 = φ2 + φ. (3.18)

Therefore, if m1 (m3) and δ in the normal (inverted) hierarchy are known, we can calculate A,

B and C using the five measured oscillation parameters in Table 2.2. We scan the δ and m1

(m3) space to find the allowed regions, which are defined by the condition C2 < A2 + B2 (see

Fig. 3.1 for the normal hierarchy and the upper panel of Fig. 3.2 for the inverted hierarchy).

We show allowed regions corresponding to the best-fit parameters, and those allowed at 2σ.

We also plot iso-φ2 and iso-|Mee| contours using the best-fit oscillation parameters. We only

show the contours for the plus sign of φ in Eq. (3.15) because changing δ to 360◦− δ yields the

same contours for the minus solution.

The allowed regions can be further constrained using leptogenesis. We assume the lightest

right-handed neutrino has mass between 1012 GeV and 1013 GeV and is much lighter than the

others so that we can use Eq. (3.7). We also require m̃1 ≥ 0.01 eV. From Eqs. (3.6) and (3.5),

we see that the baryon asymmetry depends on the sign choices of φ in Eq. (3.15) but not on the

sign choices in Eq. (3.10), because different choices of signs in Eq. (3.10) change the signs of all

parameters in one row of the Y matrix, which yield the same baryon asymmetry. The baryon

asymmetry also depends on the row of Y that is associated with the lightest right-handed

neutrino mass, but the order of the other two rows does not affect the baryon asymmetry.

Since Classes 1A, 1B and 1C have different textures, the allowed regions for successful

leptogenesis are also different in these three cases. Here we only consider Class 1A as an
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Figure 3.1 The allowed regions in the (m1, δ) plane for Class 1 and the normal hierarchy.

The dark shaded regions correspond to the best-fit parameters of the oscillation

parameters, while the light shaded regions are allowed at 2σ. The solid lines are

iso-|Mee| contours (in meV) and the dashed lines are iso-φ2 contours (in degrees).
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Figure 3.2 The upper panel shows the allowed regions in the (m3, δ) plane for Class 1 and

the inverted hierarchy. The shading and line types in the upper panel are as in

Fig. 1. The lower panels show the allowed regions for Class 1A and the inverted

hierarchy with the additional constraint of successful single-flavored leptogenesis.

The hatched (dark shaded) regions use the plus (minus) solution of φ2. From left

to right the three graphs have the first, second and third row of Y associated with

the lightest right-handed neutrino mass, respectively.
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example. We find that successful leptogenesis is not possible for the normal hierarchy. For the

inverted hierarchy, the allowed regions are shown in the three lower panels of Fig. 3.2. Although

the constraints on δ vary according to which right-handed neutrino is lightest, in no case is the

lightest left-handed neutrino allowed to be above 100 meV.

3.2.2 Class 2

Similar to Class 1, the only condition for Class 2 is M13 = 0, which is independent of

hierarchy and can be written as

m1 = −m3e
iφ3Uτ3Ue3 +m2e

iφ2Uτ2Ue2
Uτ1Ue1

. (3.19)

After taking the absolute square, then as in Class 1 this may be put in the form of Eq. (3.14),

with A, B and C as in Table 3.1.

The solutions for φ2 and φ3 then proceed as in Class 1. The allowed regions for the inverted

hierarchy are shown in Fig. 3.3, along with iso-φ2 and iso-|Mee| contours. We see that the

solution found in Ref. [87] with λ1e = λ2τ = 0 or λ1τ = λ2e = 0 for the inverted hierarchy is

a special case of our model with m3 = 0. Leptogenesis predictions for Class 2A IH are also

shown in Fig. 3.3, and give an upper bound on m3 of about 200 meV. The allowed regions for

the normal hierarchy are similar to Fig. 3.4.

3.2.3 Class 3

The only condition for Class 3 is M12 = 0, which can be written

m1 = −m3e
iφ3Uµ3Ue3 +m2e

iφ2Uµ2Ue2
Uµ1Ue1

. (3.20)

This condition is the same for both mass hierarchies and as before this may be put in the form

of Eq. (3.14) with A, B and C as in Table 3.1.

Note that Class 3 is the same as Class 2 for any hierarchy with Uτj → Uµj , or s23 → −c23

and c23 → s23, which is the same as δ → δ + 180◦ when θ23 = 45◦. Since θ23 ≈ 45◦, the

phenomenology of Classes 2 and 3 will be similar. The allowed regions for the normal hierarchy

are shown in Fig. 3.4; also shown are predictions for |Mee| and φ2 and regions compatible with
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Figure 3.3 Same as Fig. 3.2, except for Class 2 and 2A and the inverted hierarchy.
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Figure 3.4 Same as Fig. 3.2, except for Class 3 and 3A and the normal hierarchy.

leptogenesis. The allowed regions for the inverted hierarchy are similar to those for Class 2 in

Fig. 3.3 with δ → δ+ 180◦. We note that the solution found in Ref. [87] with λ1e = λ2µ = 0 or

λ1µ = λ2e = 0 for the inverted hierarchy is a special case in our model with m3 = 0.

3.2.4 Class 4A

Class 4 has no texture zeros in the mass matrix. However, the existence of a solution for Y

still depends on only one condition. Take Class 4A for example, in which case

Y =


a b c

0 d 0

0 0 e

 , (3.21)
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where a, b, c, d, e are all nonzero complex numbers. Then the mass matrix becomes

M = Y TY =


a2 ab ac

ab b2 + d2 bc

ac bc c2 + e2

 , (3.22)

and we see that if M11
M12

= M13
M23

is satisfied, the other variables can be directly determined.

Hence the Class 4A condition is equivalent to M11M23 = M12M13, which means the (2, 3)

cofactor of M , C23 = M12M31 −M11M32, vanishes. Since (M−1)ij = 1
detMCji, the condition

for Class 4A is equivalent to (M−1)23 = 0, i.e., a texture zero in the inverse mass matrix. Since

M−1 = V diag(m−1
1 ,m−1

2 ,m−1
3 )V T , we can write the condition as

m−1
1 Uτ1Uµ1 +m−1

2 eiφ2Uτ2Uµ2 +m−1
3 eiφ3Uτ3Uµ3 = 0 , (3.23)

or

m−1
1 = −m

−1
2 eiφ2Uτ2Uµ2 +m−1

3 eiφ3Uτ3Uµ3

Uτ1Uµ1
. (3.24)

The allowed regions for the normal hierarchy are shown in Fig. 3.5. The allowed regions

for the inverted hierarchy are similar to Fig. 3.1 (Class 1 NH), and the iso-φ2 and iso-|Mee|

contours are similar with φ2 → −φ2. The similarity of an IH scenario with an NH one may

seem unusual, but can be understood by looking at the form of the A, B, and C coefficients

in Table 2; multiplying the coefficients for Class 4A IH by m2m3, and dividing the coefficients

for Class 1 NH by m2m3, we see that A and B are the same for the two cases. For the C

coefficient, the dominant term in each case is the third one, proportional to |Uµ3|2|Uτ3|2 times

the ratio of a larger mass to a smaller one.

The comparison of Class 4A NH with Class 1 IH is more nuanced: when the lightest mass

(m1 for NH, m3 for IH) is very small, the first two terms in the C coefficient have similar size

for Class 1 IH, but only the first term is dominant for Class 4A NH. However, when the lightest

mass is not so small, such that m1 ≈ m2 in the NH, then the same terms in the C coefficient are

dominant. Thus for higher values of the lightest mass, although not necessarily so large that

all three masses are quasi-degenerate, Classes 4A NH and 1 IH give similar predictions. This

can be seen by comparing Figs. 5 and 2: although the allowed regions and contours are quite
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Figure 3.5 Same as Fig. 3.2, except for Class 4A and the normal hierarchy.

different when the lightest mass is below 20 meV, note the similarity of the |Mee| = 100 meV

and φ2 = 60◦ contours.

3.2.5 Class 4B

Similar to Class 4A, the condition for Class 4B is (M−1)13 = 0, which can be written as

m−1
1 = −m

−1
2 eiφ2Uτ2Ue2 +m−1

3 eiφ3Uτ3Ue3
Uτ1Ue1

. (3.25)

This condition is the same for both mass hierarchies, and the analysis follows as in previous

classes, with A, B and C given in Table 3.1.

The allowed regions for the normal (inverted) hierarchy are shown in Fig. 3.6 (Fig. 3.7).

The inverted hierarchy for this case is also similar to Class 2 NH: multiplying the A, B, and

C coefficients by m2m3 for Class 4B IH and dividing them by m2m3 for Class 2 NH, A and B

are identical for the two cases, and the dominant terms in C are also the same. As was true in
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Figure 3.6 Same as Fig. 3.2, except for Class 4B and the normal hierarchy.

the previous section, the reverse correspondence between Class 4B NH and Class 2 IH exists

only for larger values of the lightest mass (see Figs. 6 and 3 when the lightest mass is above

50 meV).

3.2.6 Class 4C

Similar to Class 4A, the condition for Class 4C is (M−1)12 = 0, which can be written as

m−1
1 = −m

−1
2 eiφ2Uµ2Ue2 +m−1

3 eiφ3Uµ3Ue3
Uµ1Ue1

. (3.26)

The corresponding values of A, B and C in Eq. (3.14) are given in Table 3.1.

Note that Class 4C is the same as Class 4B with Uτj → Uµj , or s23 → −c23 and c23 → s23.

As noted in Sec. 3.3, this transformation is equivalent to δ → δ+180◦ when θ23 = 45◦. Therefore

the allowed regions of Class 4C are similar to Class 4B in Fig. 3.6 for the normal hierarchy and

in Fig. 3.7 for the inverted hierarchy with δ → δ + 180◦.
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Figure 3.7 Same as Fig. 3.2, except for Class 4B and the inverted hierarchy.
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The inverted hierarchy for this case is also similar to Class 3 NH, as can be seen by examining

the A, B and C coefficients, and Class 4C NH and Class 3 IH give similar results for larger values

of the lightest mass. Thus there is a general pattern that the texture zero NH and corresponding

cofactor zero IH have similar predictions, and texture zero IH and corresponding cofactor zero

NH have similar predictions when the lightest mass is not too small.

3.3 Discussion

We extended the most economical type I seesaw model to include three right-handed neutri-

nos. The simplest cases that fit the data have four texture zeros in the Yukawa couplings that

connect the left-handed and right-handed neutrinos. These are equivalent to a single texture

or cofactor zero for an off-diagonal element of the light neutrino mass matrix M . The cofactor

zero condition is itself equivalent to a texture zero in M−1. We used the latest experimental

data to obtain the allowed regions for the lightest neutrino mass and Dirac CP phase δ, which

can be measured in future neutrino experiments. We also used leptogenesis to further constrain

the allowed regions; in general there is an upper bound on the lightest neutrino mass of about

100-200 meV for a single-flavored leptogenesis scenario. Figures 2 to 7 show that in any given

model, not all values of δ are consistent with the leptogenesis predictions. Therefore a precise

measurement of δ will reduce the number of viable models.

Once the lightest neutrino mass and Dirac CP phase are determined, these models make

definite predictions for neutrinoless double beta decay. The minimum value of |Mee| for the

best-fit oscillation parameters and the 2σ lower bounds are shown in Table 3.2. We find that

the Class 1 NH and Class 4A IH have a minimum value for |Mee| of around 150 (130) meV

for the best-fit (2σ-allowed) parameters, and could therefore be excluded by the 0νββ decay

experiments that are currently running; Classes 2 IH and 3 IH have a minimum |Mee| of around

50 meV and can be definitively tested by experiments under construction. For Classes 3 NH

and 4A NH the current lower bound on |Mee| is zero, and given the current measurements of

the oscillation parameters, 0νββ decay will not constrain them. The remaining models have

a minimum |Mee| in the range 1 − 20 meV and can only be completely probed by significant

improvements in the sensitivity of 0νββ experiments. The sum of light neutrino masses can also
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Table 3.2 The minimum values of |Mee| (in 10−3 eV) in each class for the best-fit oscillation

parameters, and the 2σ lower bounds.

Class
Best-fit 2σ lower bound

NH IH NH IH

1 142.5 19.0 129.8 15.4

2 1.4 46.9 0.3 44.8

3 0.0 47.4 0.0 45.2

4A 0.0 150.3 0.0 138.3

4B 6.1 18.4 5.7 15.1

4C 8.4 18.2 7.5 14.9

be used to provide additional discrimination among these models. However, there is a general

pattern that a texture zero NH and the corresponding cofactor zero IH have similar predictions,

and a texture zero IH and the corresponding cofactor zero NH have similar predictions when

the lightest mass is not too small. Therefore it may be difficult to uniquely specify the model

from data, although experiments designed to determine the mass hierarchy could resolve this

ambiguity.

Since the models studied in this chapter are equivalent to a single texture or cofactor zero

for an off-diagonal element of Mν , one might also consider examining models with a single

texture or cofactor zero for a diagonal element of Mν . Although not obtainable from texture

zeros in the Yukawa couplings in a type I seesaw model, such models also have seven parameters

in the light neutrino mass matrix and can be analyzed in a similar fashion. We will discuss the

phenomenology of and possible motivation for these models in the next chapter.
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CHAPTER 4. THE TEXTURE/COFACTOR ZERO MODELS

4.1 General Properties of the Texture/Cofactor Zero Models

The tiny masses of light neutrinos can be elegantly explained by the canonical seesaw

mechanism [56], in which the mass matrix of the light neutrinos can be written as

M = −YνM−1
R Y T

ν v
2/2, (4.1)

where v ≈ 246 GeV is the vacuum expectation value (VEV), Yν is 3 × 3 Yukawa coupling

matrix and MR is 3 × 3 heavy right-handed neutrino mass matrix. Here we assume all three

light neutrinos are massive, so that the mass matrix of the light neutrinos is invertible (and

therefore Yν must be invertible), and we can write the seesaw Eq. (4.1) as

MR = −Y T
ν M

−1Yνv
2/2 , (4.2)

Since (M−1)ij = 1
detMCji, where Cji is the (j, i) cofactor of M , and both the light and heavy

neutrino mass matrices are symmetric, any texture zeros in the mass matrix are equivalent to

cofactor zeros in the inverse of the mass matrix. Consequently, Eq. (4.2) implies that if the

Yukawa coupling matrix is diagonal, then a cofactor zero in M implies a texture zero in MR [90].

Similarly, a texture zero in M implies a cofactor zero in MR when the Yukawa coupling matrix

is diagonal.

An interesting feature about the structure of a texture or cofactor zero is that it is stable

against radiative corrections. The one-loop renormalization group equation (RGE) describing

the evolution of the light neutrino masses from the lightest right-handed neutrino mass scale

M1 to electroweak scale MZ is [77]

16π2dM

dt
= αM + C[(YlY

†
l )M +M(YlY

†
l )T ], (4.3)
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where t = ln(µ/M1), µ is the renormalization scale and Yl = diag(ye, yµ, yτ ) is the charged

lepton Yukawa coupling matrix. In the SM, C = −3
2 , α ≈ −3g2

2 + 6y2
t + λ, and in the minimal

supersymmetric standard model (MSSM), C = 1, α ≈ −6
5g

2
1 − 6g2

2 + 6y2
t , where g1, g2 are the

gauge couplings, yt is the top quark Yukawa coupling, and λ is the Higgs self-coupling. The

solution to Eq. (4.3) can be written as [91]

M(MZ) = Iα


Ie 0 0

0 Iµ 0

0 0 Iτ

M(M1)


Ie 0 0

0 Iµ 0

0 0 Iτ

 . (4.4)

where

Iα = exp

[
− 1

16π2

∫ ln(M1/MZ)

0
α(t)dt

]
, (4.5)

and

Il = exp

[
− C

16π2

∫ ln(M1/MZ)

0
y2
l (t)dt

]
, (4.6)

for l = e, µ, τ . Since multiplying diagonal matrices will not change the structure of texture or

cofactor zero, from Eq. (4.4), we can easily see that the texture or cofactor zero models will be

stable against the RGE running from M1 to MZ .

4.2 Symmetry Realization

The texture zeros are due to an Abelian family symmetry that forbidden a specific entry in

the Yukawa matrix and thus appears as a zero at high energies. All the texture and cofactor

zero cases can be realized from discrete ZN symmetries but it requires many scalar singlets [92].

Here we present a simple realization of the one cofactor zero models using a new U(1) gauge

symmetry that only requires two scalar singlets. We denote the charge of the new U(1) gauge

symmetry as Y ′, and make the charge assignments as follows: Y ′(qL) = −Y ′(ucR) = −Y ′(dcR)

for all families in the quark sector to avoid flavor changing neutral currents (FCNC); Y ′(lLi) =

−Y ′(ecRi) = −Y ′(N c
Ri) and Y ′(lLi) 6= Y ′(lLj) for each family in the lepton sector; and Y ′(φ) = 0

for the SM Higgs. The anomaly-free requirement yields the condition [93]

9Y ′(qL) + Y ′(lL1) + Y ′(lL2) + Y ′(lL3) = 0. (4.7)
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If we consider the case with Y ′(qL) 6= 0, then the condition leads to a B −
∑

α xαLα gauge

symmetry with the constraint
∑

α xα = 3, where B and L are the baryon and lepton flavor

numbers, respectively. One of the advantages of this model is that both the charged lepton and

Dirac neutrino mass matrices are diagonal spontaneously because of the charge assignments of

the U(1) gauge symmetry. Hence a cofactor zero in M is equivalent to a cofactor zero in M−1
R ,

which is equivalent to a texture zero in MR. This can be achieved with a suitable B−
∑

α xαLα

gauge symmetry and two SM gauge singlet scalars S1 and S2 with appropriate charges. Taking

the C11 = 0 case for example, if we impose a B − 3Le−Lµ +Lτ symmetry on the model, then

the U(1) charge matrix for the right-handed neutrino mass term Y ′(N
c
iNj) is:

Y ′ =


−6 −4 −2

· −2 0

· · 2

 . (4.8)

Without any additional singlet scalars, the mass matrix of right-handed neutrinos will only

have one non-vanishing entry with the scale MB−3Le−Lµ+Lτ . By adding two additional singlet

scalars S1 and S2 with |Y ′(S1)| = 2 and |Y ′(S2)| = 4 respectively, we can fill all the zero entries

except the (1, 1) entry after S1 and S2 acquire VEVs:

MR = MB−3Le−Lµ+Lτ


0 0 0

· 0 ×

· · 0

+ 〈S1〉


0 0 ×

· × 0

· · ×

+ 〈S2〉


0 × 0

· 0 0

· · 0



∼


0 × ×

· × ×

· · ×

 , (4.9)

where × denotes a non-vanishing entry. The other cases can be also realized similarly; a

complete list is shown in Table 4.1.
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Table 4.1 The anomaly-free U(1) gauge symmetry realization for 6 classes with one cofactor

zero in the light neutrino mass matrix. The Y ′ denotes the charge of the U(1) gauge

symmetry, and S1, S2 are two SM singlet scalars with non-vanishing VEVs.

Class Symmetry generator |Y ′(S1)| |Y ′(S2)|
C11=0 B − 3Le − Lµ + Lτ 2 4

C22=0 B + Le − 3Lµ − Lτ 2 4

C33=0 B − Le + Lµ − 3Lτ 2 4

C12=0 B − 3Le − Lµ + Lτ 2 6

C23=0 B + Le − 3Lµ − Lτ 2 6

C13=0 B − Le + Lµ − 3Lτ 2 6

4.3 Phenomenology

4.3.1 One-zero Models

In this section, we study the phenomenological consequence of imposing one texture zero or

one cofactor zero in the light neutrino mass matrix; for previous work see Refs. [94, 95, 96, 93].

Here we discuss the properties of one texture/cofactor zero in the diagonal entries of the mass

matrix; the results for the off-diagonal cases can be found in the last chapter, which were

obtained in models with four texture zeros in the Yukawa coupling matrix.

Our analysis proceeds as follows. For one texture/cofactor zero cases, there are 7 inde-

pendent parameters in the light neutrino mass matrix; we take them to be θ12, θ23, θ13, δm2,

∆m2, the Dirac CP phase δ, and either m1 (for normal hierarchy, NH, m1 < m2 < m3) or

m3 (for inverted hierarchy, IH, m3 < m1 < m2). Here we derive analytic formulas that relate

the seven free parameters and determine the constraints on these models. For each case we

find the allowed regions in m1- (m3-) δ plane given the best-fit values of θ12, θ23, θ13, δm2 and

∆m2, and also the 2σ allowed regions using the experimental uncertainties in the measured

parameters. We also find iso-|Mee| contours relevant for neutrinoless double beta decay for the

best-fit values.
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4.3.1.1 Mee = 0

The condition Mee = 0 can be written as

m1 = −m3e
iφ3U2

e3 +m2e
iφ2U2

e2

U2
e1

. (4.10)

This condition is the same for all mass hierarchies. Taking the absolute square gives

m2
1|Ue1|4 −m2

2|Ue2|4 −m2
3|Ue3|4 = 2Re(m3e

−iφ3U∗2e3m2e
iφ2U2

e2), (4.11)

or, defining φ = φ3 − φ2,

m2
1|Ue1|4 −m2

2|Ue2|4 −m2
3|Ue3|4 = 2m2m3c

2
13s

2
13s

2
12 cos(−φ+ 2δ). (4.12)

Expanding the cosines yields the form of Eq. 3.14

C = A cosφ+B sinφ, (4.13)

with A, B and C as listed in Table 4.2. Hence the only condition for M11 = 0 having a solution

is C2 ≤ A2 + B2. Since C2 and A2 + B2 do not depend on δ, it will only yield a constraint

on m1 for the normal hierarchy or m3 for the inverted hierarchy. It can be easily seen that

C2 ≤ A2 + B2 cannot be satisfied for the inverted hierarchy, which means that M11 = 0 for

the inverted hierarchy is not possible. For the normal hierarchy and the best-fit oscillation

parameters, the allowed range for m1 is 0.0022 eV ≤ m1 ≤ 0.0066 eV, while the allowed range

at 2σ is 0.0014 eV ≤ m1 ≤ 0.0085 eV.

4.3.1.2 Mµµ = 0

From Mµµ = 0, we get

m1 = −
m3e

iφ3U2
µ3 +m2e

iφ2U2
µ2

U2
µ1

, (4.14)

which is independent of hierarchy. As before this may be put in the form of Eq. (3.14), with

A, B and C given in Table 4.2. From Eq. (3.14), we can find the solution

φ = 2 arctan
B ±

√
A2 +B2 − C2

A+ C
, (4.15)



57

T
ab

le
4
.2

T
h

e
ex

p
re

ss
io

n
s

of
A

,
B

an
d

C
fo

r
on

e
te

x
tu

re
/c

of
ac

to
r

ze
ro

in
th

e
d

ia
go

n
a
l

en
tr

ie
s

of
th

e
m

a
ss

m
at

ri
x
.

C
=
A

co
s
φ

+
B

si
n
φ

C
la

ss
A

B
C

M
1
1

=
0

2m
2
m

3
c2 1

3
s2 1

3
s2 1

2
co

s(
2
δ)

2
m

2
m

3
c2 1

3
s2 1

3
s2 1

2
si

n
(2
δ)

m
2 1
|U
e1
|4
−
m

2 2
|U
e2
|4
−
m

2 3
|U
e3
|4

M
2
2

=
0

2m
2
m

3
s2 2

3
c2 1

3
×

[ c2 1
2
c2 2

3
+
s2 1

2
s2 2

3
s2 1

3
co

s(
2
δ)

−
2
c 1

2
s 1

2
c 2

3
s 2

3
s 1

3
co

s
δ]

2m
2
m

3
s2 2

3
c2 1

3
×

[ s2 1
2
s2 2

3
s2 1

3
si

n
(2
δ)

−
2c

1
2
s 1

2
c 2

3
s 2

3
s 1

3
si

n
δ]

m
2 1
|U
µ

1
|4
−
m

2 2
|U
µ

2
|4
−
m

2 3
|U
µ

3
|4

M
3
3

=
0

2m
2
m

3
c2 2

3
c2 1

3
×

[ c2 1
2
s2 2

3
+
s2 1

2
c2 2

3
s2 1

3
co

s(
2
δ)

+
2
c 1

2
s 1

2
c 2

3
s 2

3
s 1

3
co

s
δ]

2m
2
m

3
c2 2

3
c2 1

3
×

[ s2 1
2
c2 2

3
s2 1

3
si

n
(2
δ)

+
2c

1
2
s 1

2
c 2

3
s 2

3
s 1

3
si

n
δ]

m
2 1
|U
τ
1
|4
−
m

2 2
|U
τ
2
|4
−
m

2 3
|U
τ
3
|4

C
1
1

=
0

2
m
−

1
2
m
−

1
3
c2 1

3
s2 1

3
s2 1

2
co

s(
2
δ)

2m
−

1
2
m
−

1
3
c2 1

3
s2 1

3
s2 1

2
si

n
(2
δ)

m
−

2
1
|U
e1
|4
−
m
−

2
2
|U
e2
|4
−
m
−

2
3
|U
e3
|4

C
2
2

=
0

2m
−

1
2
m
−

1
3
s2 2

3
c2 1

3
×

[ c2 1
2
c2 2

3
+
s2 1

2
s2 2

3
s2 1

3
co

s(
2
δ)

−
2
c 1

2
s 1

2
c 2

3
s 2

3
s 1

3
co

s
δ]

2m
−

1
2
m
−

1
3
s2 2

3
c2 1

3
×

[ s2 1
2
s2 2

3
s2 1

3
si

n
(2
δ)

−
2c

1
2
s 1

2
c 2

3
s 2

3
s 1

3
si

n
δ]

m
−

2
1
|U
µ

1
|4
−
m
−

2
2
|U
µ

2
|4
−
m
−

2
3
|U
µ

3
|4

C
3
3

=
0

2m
−

1
2
m
−

1
3
c2 2

3
c2 1

3
×

[ c2 1
2
s2 2

3
+
s2 1

2
c2 2

3
s2 1

3
co

s(
2
δ)

+
2
c 1

2
s 1

2
c 2

3
s 2

3
s 1

3
co

s
δ]

2m
−

1
2
m
−

1
3
c2 2

3
c2 1

3
×

[ s2 1
2
c2 2

3
s2 1

3
si

n
(2
δ)

+
2c

1
2
s 1

2
c 2

3
s 2

3
s 1

3
si

n
δ]

m
−

2
1
|U
τ
1
|4
−
m
−

2
2
|U
τ
2
|4
−
m
−

2
3
|U
τ
3
|4



58

Then we can write Eq. (4.14) as

m1 = eiφ2
−m3e

iφU2
µ3 −m2U

2
µ2

U2
µ1

. (4.16)

Since m1 is a non-negative real number in the standard parametrization, we get

φ2 = −arg[
−m3e

iφU2
µ3 −m2U

2
µ2

U2
µ1

], (4.17)

and

φ3 = φ2 + φ. (4.18)

It is then possible to calculate the magnitude of the νe−νe element of the neutrino mass matrix

|Mee| = |m1c
2
12c

2
13 +m2e

−iφ2s2
12c

2
13 +m3e

−iφ3s2
13e

2iδ|, (4.19)

which determines the rate for neutrinoless double-beta decay, a signal of lepton number viola-

tion. The allowed regions of the Dirac CP phase δ and the lightest mass m1 (m3) are defined

by the set of them that satisfy the condition C2 ≤ A2 +B2. We scan over δ and m1 (m3) space

to find the allowed regions; see Fig. 4.1 for the normal hierarchy and Fig. 4.2 for the inverted

hierarchy, where regions corresponding to the best-fit parameters and those allowed at 2σ are

shown. The lightest mass for the normal hierarchy is always larger than 0.027 eV at 2σ, while

for the inverted hierarchy, it is strongly dependent on δ. We also plot iso-|Mee| contours using

the best-fit oscillation parameters. Here only the contours for the plus sign of φ in Eq. (4.15)

are shown because changing δ to 360◦ − δ yields the same contours for the minus solution.

4.3.1.3 Mττ = 0

From Mττ = 0, we get

m1 = −m3e
iφ3U2

τ3 +m2e
iφ2U2

τ2

U2
τ1

, (4.20)

which is independent of hierarchy. This may be put in the form of Eq. (3.14), with A, B and

C as in Table 4.2. We find that the normal hierarchy is excluded at 2σ. The allowed region of

δ versus m3 for the inverted hierarchy is shown in Fig. 4.3, along with iso-|Mee| contours. We

notice that for the best-fit oscillation parameters, the lightest mass m3 has an upper bound of

0.047 eV, but there is no upper bound at 2σ.
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Figure 4.1 The allowed regions in the (m1, δ) plane for Mµµ = 0 and the normal hierarchy.

The dark shaded regions correspond to the best-fit parameters of the oscillation

parameters, while the light shaded regions are allowed at 2σ. The solid lines are

iso-|Mee| contours (in meV).

Figure 4.2 Same as Fig. 4.1, except for Mµµ = 0 and the inverted hierarchy.
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Figure 4.3 Same as Fig. 4.1, except for Mττ = 0 and the inverted hierarchy.

4.3.1.4 Cee = 0

If Cee = 0, then also (M−1)ee = 0. Since M−1 = V diag(m−1
1 ,m−1

2 ,m−1
3 )V T , we can write

the condition as

m−1
1 = −m

−1
3 eiφ3U2

e3 +m−1
2 eiφ2U2

e2

U2
e1

, (4.21)

which is the same for either mass hierarchy. Taking the absolute square, we write this in the

form of Eq. (3.14), with A, B and C as in Table 4.2. Since C2 and A2 + B2 do not depend

on δ, it will only yield a constraint on m1 (m3) for the normal (inverted) hierarchy. We find

that the normal hierarchy is excluded at 2σ. For the inverted hierarchy and best-fit oscillation

parameters, the allowed range for m3 is 0.0013 eV ≤ m3 ≤ 0.0031 eV, while the allowed range

at 2σ is 0.0010 eV ≤ m3 ≤ 0.0042 eV.

4.3.1.5 Cµµ = 0

From Cµµ = 0, which is equivalent to (M−1)µµ = 0, we get

m−1
1 = −

m−1
3 eiφ3U2

µ3 +m−1
2 eiφ2U2

µ2

U2
µ1

, (4.22)
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which is the same for either mass hierarchy, and may be put in the form of Eq. (3.14), with A,

B and C as in Table 4.2. The allowed region of δ versus m1 for the normal ordering is shown

in Fig. 4.4 and the allowed region of δ versus m3 for the inverted ordering is shown in Fig. 4.5.

The allowed regions for Class Cµµ = 0 IH (Fig. 4.5) are similar to those for Class Mµµ = 0

NH (Fig. 4.1). The similarity of a cofactor-zero IH scenario with a texture-zero NO can be

understood by looking at the form of the A, B, and C coefficients in Table 4.2. If we multiply

the coefficients for Class Cµµ = 0 IH by m2m3, and divide the coefficients for Class Mµµ = 0

NH by m2m3, we see that A and B become the same for the two cases. For the C coefficient,

the dominant term in each case is the third one, proportional to |Uµ3|4 times the ratio of a

larger mass to a smaller one. Therefore the allowed regions for these two cases are similar.

One can also see a similarity between cofactor-zero models with NH and texture-zero models

with IH, although the correspondence occurs only for larger values of the lightest mass. For

example, for Class Cµµ = 0 NH and Class Mµµ = 0 IH, after multiplying the A, B, and C

coefficients for the NH by m2m3 and dividing the coefficients for the IH by m2m3, the A and

B coefficients are the same. When the lightest mass is not so small, such that m1 ≈ m2 in the

NH, then the same terms in the C coefficient are dominant and proportional to a large mass

divided by a small mass. Thus for higher values of the lightest mass, the allowed regions of

Classes Cµµ = 0 NH and Mµµ = 0 IH must be similar. This can be seen by comparing Figs. 4.4

and 4.2. However, for small values of the lightest mass, the first two terms in the C coefficient

have similar size for Class Mµµ = 0 IH, but only the first term is dominant for Class Cµµ = 0

NH. Thus the allowed regions are quite different when the lightest mass is below 20 meV.

4.3.1.6 Cττ = 0

From Cττ = 0, which is equivalent to (M−1)ττ = 0, we get

m−1
1 = −m

−1
3 eiφ3U2

τ3 +m−1
2 eiφ2U2

τ2

U2
τ1

. (4.23)

This condition is the same for either mass hierarchy. After taking the absolute square, then

as before this may be put in the form of Eq. (3.14), with A, B and C as in Table 4.2. We

find that for the inverted hierarchy, this case is not allowed for the best-fit parameters, but is
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Figure 4.4 Same as Fig. 4.1, except for Cµµ = 0 and the normal hierarchy.

Figure 4.5 Same as Fig. 4.1, except for Cµµ = 0 and the inverted hierarchy.
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Figure 4.6 Same as Fig. 4.1, except for Cττ = 0 and the normal hierarchy.

allowed at 2σ, with a lower bound on m3 of 0.033 eV. The allowed region of δ versus m3 for the

normal hierarchy is shown in Fig. 4.6, along with iso-|Mee| contours. We see that the lightest

mass m1 has an upper bound of 0.044 eV for the best-fit oscillation parameters, and 0.071 eV

at 2σ. Noticed the allowed regions for Class Mττ = 0 IH and Class Cττ = 0 NH also have a

similar correspondence in the A, B, and C coefficients, and they have similar allowed regions

for higher values of the lightest mass; see Figs. 4.6 and 4.3.

4.3.2 Two-zero Models

In this section, we study the consequences of imposing two texture/cofactor zeros in the

neutrino mass matrix. There are three classes of such ansatzes: two texture zeros (TT) [97, 98],

two cofactor zeros (CC) [99, 100], and one texture zero and one cofactor zero (TC) [101]. Of

the nine real parameters of M , five are fixed by measurements of the three mixing angles and

two mass-squared differences; for a recent global three-neutrino fit see Ref. [53]. The remaining

four parameters, which we take to be the lightest mass, the Dirac phase, and the two Majorana

phases, can then be determined from the four constraints that define the two texture/cofactor

zeros. Consequently, the rate for neutrinoless double beta decay (0νββ) which is given by the
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magnitude of the νe − νe element of the neutrino mass matrix,

|Mee| = |m1c
2
12c

2
13 +m2e

−iφ2s2
12c

2
13 +m3e

−iφ3s2
13e

2iδ| , (4.24)

is also determined.

4.3.2.1 Two texture zeros

The condition for a vanishing element Mαβ = M∗αβ = 0 is

m1Uα1Uβ1 +m2e
iφ2Uα2Uβ2 +m3e

iφ3Uα3Uβ3 = 0 . (4.25)

Since there are two such constraints that depend linearly on the masses, the masses are related

by

m1

c1
=
m2e

iφ2

c2
=
m3e

iφ3

c3
, (4.26)

where cj are complex numbers that are quartic in the matrix elements of U . Then, with

δm2 = m2
2 −m2

1 and ∆m2 = |m2
3 − 1

2(m2
1 + m2

2)|, we get two equations that relate m1 to the

oscillation parameters and the Dirac phase δ,

m1 =

√
δm2

|c2/c1|2 − 1
, (4.27)

m1 =

√
1
2δm

2 ±∆m2

|c3/c1|2 − 1
, (4.28)

where the plus and minus signs correspond to the normal hierarchy (NH) and the inverted

hierarchy (IH), respectively. (For the NH the lightest mass is m1, and for the IH the lightest

mass is m3 =
√
m2

1 + 1
2δm

2 −∆m2.) For a fixed set of oscillation parameters each of these two

equations give m1 as a function of δ, and the intersections of the curves give the allowed values

of m1 and δ. We use the data from the latest global fit of Ref. [53] to find the 2σ allowed regions

for the lightest mass and δ that satisfy Eqs. (4.27) and (4.28). Note that if we replace δ by −δ,

the two constraints from the Eqs. (4.27) and (4.28) will be the same since the magnitude of ci

does not depend on the sign of δ, but because the latest global fit has a preference for negative

values of δ [53], the allowed regions for 0 ≤ δ ≤ 180◦ are a little larger than for 180◦ ≤ δ ≤ 360◦.

For two texture zeros in the mass matrix, there are 6!
2!4! = 15 different cases to consider.

If two off-diagonal entries vanish, the mass matrices are block diagonal and have one neutrino
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Table 4.3 The expressions for c1, c2 and c3 for Class X. The symbol × denotes a nonzero

matrix element.

Case Structure c1 c2 c3

X1

 0 0 ×
0 × ×
× × ×

 U∗τ1Ue2Ue3 U∗τ2Ue3Ue1 U∗τ3Ue1Ue2

X2

 0 × 0

× × ×
0 × ×

 U∗µ1Ue2Ue3 U∗µ2Ue3Ue1 U∗µ3Ue1Ue2

X3

 × × ×
× × 0

× 0 0

 U∗e1Uτ2Uτ3 U∗e2Uτ3Uτ1 U∗e3Uτ1Uτ2

X4

 × × ×
× 0 0

× 0 ×

 U∗e1Uµ2Uµ3 U∗e2Uµ3Uµ1 U∗e3Uµ1Uµ2

X5

 × 0 ×
0 0 ×
× × ×

 U∗τ1Uµ2Uµ3 U∗τ2Uµ3Uµ1 U∗τ3Uµ1Uµ2

X6

 × × 0

× × ×
0 × 0

 U∗µ1Uτ2Uτ3 U∗µ2Uτ3Uτ1 U∗µ3Uτ1Uτ2

decoupled from the others, which is inconsistent with the data. Therefore, we only need to

consider 12 cases that can be divided into three categories:

1. One zero on diagonal, off-diagonal zero sharing column and row. The six

possibilities of this type, X1, X2, X3, X4, X5, and X6, are displayed in Table 4.3. Using

the unitarity of U and the fact that the cofactors of Uij are equal to U∗ij , e.g., Ue1Uµ2 −

Ue2Uµ1 = U∗τ3, we obtain the simplified expressions for c1, c2, and c3 provided in Table 4.3.

From a numerical analysis, we find that at the 2σ level, only X1, X2 and X5 are allowed

for the normal hierarchy and X5 and X6 are allowed for the inverted hierarchy. The

allowed regions for X1 and X2 for the normal hierarchy are shown in Figs. 4.7 and 4.8.

The allowed regions for X5 for the normal and inverted hierarchy are shown in Figs. 4.9

and 4.10, respectively. For the best-fit values of the measured oscillation parameters,

X2 NH and X5 IH are not allowed, and the best-fit points for X1 NH and X5 NH are

shown in Figs. 4.7 and 4.9 respectively. Both hierarchies for X5 have nearly maximal CP
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violation, i.e., δ close to 90◦ or 270◦, and a lower bound on the lightest mass of about

30 meV. For X5 NH and X5 IH, the upper bound on the lightest mass is about 290

meV and 250 meV, respectively. For comparison, the 95% C.L. limit from cosmology is∑
mi < 660 meV [102]. The allowed region for X6 IH is very similar to that for X5 IH.

2. One zero on diagonal, off-diagonal zero not sharing column and row. The

three possibilities of this type, Y1, Y2 and Y3, and the corresponding ci’s are displayed in

Table 4.4. At the 2σ level, Y1 and Y2 are allowed for the inverted hierarchy, and their

allowed regions are very similar to that for X5 IH; Y1 is also allowed for the normal

hierarchy and the allowed region is very similar to that for X5 NH; Y3 is excluded at

2σ. All the allowed cases have nearly maximal CP violation, and a lower bound on the

lightest mass of about 30 meV, similar to X5 NH and X5 IH; see Figs. 4.9 and 4.10.

3. Two zeros on diagonal. The three possibilities of this type, Z1, Z2 and Z3, and the

corresponding ci’s are listed in Table 4.5. The numerical results show that only Z1 for

the inverted hierarchy is allowed at the 2σ level, and the allowed regions are shown in

Fig. 4.11. Z1 for the normal hierarchy is excluded at 2σ for m1 < 0.3 eV, which is

consistent with the result of Ref. [103].

Although the allowed regions for the seven acceptable textures of Ref. [94] have been further

restricted by the determination of θ13, all seven textures remain allowed. Further restrictions

on the Dirac CP phase δ [98] can also be placed by the latest global fit [53] for each case.

4.3.2.2 Two cofactor zeros

In Ref. [100] it was shown that for matrices with two zero cofactors, the lightest mass can

vanish only if θ13 = 0. Since θ13 is nonzero at the 7.7σ level [104], we assume there are no

vanishing neutrino masses and the mass matrix is invertible. Since (M−1)αβ = 1
detMCβα (where

Cαβ is the (α, β) cofactor of M), and the Majorana neutrino mass matrix is symmetric, Cαβ = 0

is equivalent to (M−1)αβ = 0. Because M−1 = V diag(m−1
1 ,m−1

2 ,m−1
3 )V T , the constraint is

m−1
1 Uα1Uβ1 +m−1

2 eiφ2Uα2Uβ2 +m−1
3 eiφ3Uα3Uβ3 = 0 . (4.29)
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Figure 4.7 The 2σ allowed regions in the (m1, δ) plane for the TT X1 case and the normal

hierarchy. The black diamonds indicate m1 and δ for the best-fit values of the five

oscillation parameters.

Figure 4.8 Same as Fig. 4.7, except for TT X2 and the normal hierarchy. This case is not

allowed for the best-fit oscillation parameters.
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Figure 4.9 Same as Fig. 4.7, except for TT X5 and the normal hierarchy.

Figure 4.10 Same as Fig. 4.7, except for TT X5 and the inverted hierarchy. This case is not

allowed for the best-fit oscillation parameters.
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Figure 4.11 Same as Fig. 4.7, except for TT Z1 and the inverted hierarchy.

The above equation is the same as Eq. (4.25), except that the mi’s are replaced by their inverses.

Hence, we can follow a procedure similar to that for the TT case to find the favored values of

the lightest mass and δ. Since the cofactor matrix is also diagonalized by the mixing matrix V ,

it cannot be block diagonal, and only 12 different patterns need to be considered. It is possible

to employ the notation for the TT case if the locations of the two zeros are the same in the

cofactor matrix as in the mass matrix. Then all the ci’s are identical, and the only difference

from the TT case is that Eqs. (4.27) and (4.28) are replaced by

m1 =

√
δm2

|c1/c2|2 − 1
, (4.30)

m1 =

√
1
2δm

2 ±∆m2

|c1/c3|2 − 1
. (4.31)

As for the TT case, there are three categories:

1. One zero on diagonal, off-diagonal zero sharing column and row. An interesting

fact is that the two cofactor zero cases in this class yield the same allowed regions as

for the two texture zero cases in the same class [99, 100]; the correspondence is listed in

Table 4.6. The reason for this is that the two cofactor zero conditions in this category
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Table 4.6 The correspondence between the two cofactor zero cases and two texture zero cases

for Class X.

Two cofactor zeros X1 X2 X3 X4 X5 X6

Two texture zeros X3 X4 X1 X2 X6 X5

imply either two texture zeros, or three cofactor zeros in a row or column. The latter

possibility which gives a vanishing mass is excluded since θ13 6= 0. From Table 4.6, we

readily find the cases that are allowed at 2σ: X3, X4 and X6 for the normal hierarchy,

and X5 and X6 for the inverted hierarchy. The allowed regions in the m1(m3)-δ plane

are the same as those for the corresponding cases in the TT ansatz.

2. One zero on diagonal, off-diagonal zero not sharing column and row. There are

three possibilities of this type: Y1, Y2 and Y3; see Table 4.4. At the 2σ level, Y1 and Y2

are allowed for the inverted hierarchy, and their allowed regions are very similar to that

for TT X5 IH; Y2 is also allowed for the normal hierarchy and the allowed region is very

similar to that for TT X5 NH; Y3 is excluded at 2σ. All the allowed cases have nearly

maximal CP violation, and a lower bound on the lightest mass of about 30 meV, similar

to TT X5 NH and and TT X5 IH.

3. Two zeros on diagonal. There are three possibilities of this type: Z1, Z2 and Z3; see

Table 4.5. We find numerically that Z1 is allowed at 2σ for the normal hierarchy only.

The other cases are excluded at 2σ. The allowed regions for Z1 for the normal hierarchy

are shown in Fig. 4.12.

4.3.2.3 One texture zero and one cofactor zero

There are 36 possibilities with one texture zero and one cofactor zero, of which 21 are

equivalent to a TT case [101]. So we only need to study the remaining 15 cases listed in

Table 4.7. The two constraints Mαβ = 0 and Cα′β′ = 0 can be written as

m1A1 +m2e
−iφ2A2 +m3e

−iφ3A3 = 0 , (4.32)
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Figure 4.12 Same as Fig. 4.7, except for CC Z1 and the normal hierarchy.

Table 4.7 The 15 cases with one texture zero and one cofactor zero that are not reducible to

a TT case.

Case Conditions

1A Mee = 0, Cee = 0

1B Mee = 0, Ceµ = 0

1C Mee = 0, Ceτ = 0

2A Meµ = 0, Cee = 0

2D Meµ = 0, Cµµ = 0

3A Meτ = 0, Cee = 0

3F Meτ = 0, Cττ = 0

4B Mµµ = 0, Ceµ = 0

4D Mµµ = 0, Cµµ = 0

4E Mµµ = 0, Cµτ = 0

5D Mµτ = 0, Cµµ = 0

5F Mµτ = 0, Cττ = 0

6C Mττ = 0, Ceτ = 0

6E Mττ = 0, Cµτ = 0

6F Mττ = 0, Cττ = 0
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and

m−1
1 B1 +m−1

2 eiφ2B2 +m−1
3 eiφ3B3 = 0 , (4.33)

where Ai = U∗αiU
∗
βi, and Bi = Uα′iUβ′i for i = 1, 2, 3. Solving these two equations, we get

m3

m1
e−iφ3 =

1

2A3B1
(A2B2 −A1B1 −A3B3 ±

√
Λ) , (4.34)

m2

m1
e−iφ2 =

1

2A2B1
(A3B3 −A1B1 −A2B2 ∓

√
Λ) , (4.35)

where Λ = A2
1B

2
1 +A2

2B
2
2 +A2

3B
2
3−2(A1A2B1B2+A1A3B1B3+A2A3B2B3). Taking the absolute

values of the above equations, we can find the two mass ratios, σ = m2/m1 and ρ = m3/m1.

Then,

m1 =

√
δm2

σ2 − 1
,

m1 =

√
1
2δm

2 ±∆m2

ρ2 − 1
, (4.36)

A numerical study shows that at 2σ, only 2D, 3F and 4B are allowed for the normal

hierarchy, and only 2A, 2D, 3A, 3F , 4B and 6C are allowed for the inverted hierarchy. The

allowed regions for 2D and 3F for the normal hierarchy are shown in Figs. 4.13 and 4.14, and

the allowed regions for 2A, 4B and 6C for the inverted hierarchy are shown in Figs. 4.15, 4.16

and 4.17, respectively. The allowed region for 3A IH is very similar to that for 2A IH. The

allowed region for 4B NH is very similar to that for TT X5 NH, and the allowed regions for 2D

IH and 3F IH are very similar to that for TT X5 IH. They have nearly maximal CP violation,

and a lower bound on the lightest mass of about 30 meV. For 3F NH and 6C IH there are

four best-fit points since there are four solutions to the one texture zero and one cofactor zero

conditions.

4.3.2.4 Discussion of the two-zero models

There are 7 cases that are allowed at the 2σ level for the two texture zero ansatz, 7 cases that

are allowed for the two cofactor zero ansatz, and 6 cases that are allowed for the one texture

and one cofactor zero ansatz. Seven cases allow both hierarchies, so there are a total of 27

possible two-zero cases allowed at 2σ. However, there are many similarities among the allowed
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Figure 4.13 Same as Fig. 4.7, except for TC 2D and the normal hierarchy.

Figure 4.14 Same as Fig. 4.7, except for TC 3F and the normal hierarchy.
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Figure 4.15 Same as Fig. 4.7, except for TC 2A and the inverted hierarchy.

Figure 4.16 Same as Fig. 4.7, except for TC 4B and the inverted hierarchy. This case is not

allowed for the best-fit oscillation parameters.
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Figure 4.17 Same as Fig. 4.7, except for TC 6C and the inverted hierarchy. There are four

best-fit points since there are four solutions to the TC conditions.

regions for these cases. In the next section we will discuss that any case with a homogeneous

relationship among elements of M with one mass hierarchy yields predictions for the oscillation

parameters and phases similar to those given by a case with the same homogeneous relationship

among cofactors of M with the opposite mass hierarchy. The only exceptions are when the

lightest mass is small, of order 20 meV or less, or when the allowed ranges of the oscillation

parameters differ significantly for the two mass hierarchies. The latter situation occurs for θ23,

which is constrained at the 2σ level to be less than about 45.3◦ for the NH but can have larger

values for the IH.

A texture or cofactor zero is the simplest homogeneous relationship; therefore, CC cases

can be dual to TT cases (and, of course, vice versa), and some TC cases can be dual to other

such cases.1 We can identify 8 cases where allowed regions are similar due to the dual-case

argument, 6 cases where a case is allowed at 2σ but its dual case is not because the lightest

mass is small, 5 cases where an IH case is allowed but its dual case is disfavored because θ23

must be larger than 45.3◦. A complete listing of dual case relationships is given in Table 4.8.

1In principle, the TC cases 1A, 2D, and 6F could be self-dual, which means they would have similar allowed
regions for the NH and IH, but these are not allowed at 2σ.
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We note that the allowed regions for the CC Z1 NH case (Fig. 4.12) are similar to the

allowed regions for its dual case, TT Z1 IH (Fig. 4.11). The region for 90◦ ≤ δ ≤ 180◦ in

Fig. 4.11 does not appear in Fig. 4.12 because θ23 has values that are larger than 45.3◦ for the

inverted hierarchy for 90◦ ≤ δ ≤ 180◦, while such values of θ23 are disfavored for the normal

hierarchy.

We can also use the effective Majorana mass for the neutrinoless double beta decay to

differentiate two-zero cases. In Table 4.9, we list the minimum and maximum values of |Mee|

at the 2σ level for each case. Note that for TT X1 and X2, and CC X3 and X4, |Mee| is

identically zero, and therefore they are not listed in the table. We also omit the cases of CC

X5 IH, X6 NH and X6 IH because they give the same phenomenology as the corresponding

cases in the TT class, as given in Table 4.6.

We find that there are four different types of cases phenomenologically:

1. Cases that allow only a small value for the lightest mass, less than 10 meV.

This includes 6 cases: TT X1 NH, TT X2 NH, CC X3 NH, CC X4 NH, TC 2A IH and

TC 3A IH (Figs. 4.7, 4.8 and 4.15, respectively). The value of |Mee| is either zero (for

the TT cases) or close to 50 meV (for the TC cases).

2. Cases that restrict δ to be very close to 90◦ or 270◦. This group consists of 5 cases

with NH (TT X5, CC X6, TT Y1, CC Y2, and TC 4B) and 10 cases with IH (TT X5, TT

X6, CC X5, CC X6, TT Y1, CC Y1, TT Y2, CC Y2, TC 2D, and TC 3F ), all of which

have a minimum value for the lightest mass of about 30 meV. In all NH cases of this type,

the maximum value for m1 is about 290 meV and 35 meV . |Mee| . 290 meV; in all IH

cases, the maximum value for m3 is about 250 meV and 55 meV . |Mee| . 250 meV.

Therefore it will be very difficult to distinguish these cases from each other.

3. Cases in which maximal CP violation is approached for larger values of the

lightest mass. This group includes TT Z1 IH and CC Z1 NH (Figs. 4.11 and 4.12). In

these cases a wide range of δ is possible, although maximal CP violation is not allowed.

4. Cases that are a mixture of types 1 and 2. The TC cases 2D NH, 3F NH, 4B

IH, and 6C IH allow values of the lightest mass less than 10 meV, and also have nearly
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Table 4.8 A listing of which allowed cases have dual cases that are also allowed, and which

do not. The “Maybe” designation is for situations in which the dual case has a NH

and θ23 > 45.3◦; the global analysis of Ref. [53] suggests that for a NH, θ23 < 45.3◦

at 2σ. “Maybe” indicates that the exclusion of the dual case on this basis is not

robust.

Case Hierarchy Dual case allowed?

TT X1 NH No, m1 small

TT X2 NH No, m1 small

TT X5 NH Yes, CC X5 IH

TT X5 IH Maybe, CC X5 NH, if the θ23 restriction were absent

TT X6 IH Yes, CC X6 NH

TT Y1 NH Yes, CC Y1 IH

TT Y1 IH Maybe, CC Y1 NH, if the θ23 restriction were absent

TT Y2 IH Yes, CC Y2 NH

TT Z1 IH Yes, CC Z1 NH (for δ ∈ [0, 90◦] ∪ [180◦, 360◦])

CC X3 NH No, m1 small

CC X4 NH No, m1 small

CC X6 IH Maybe, TT X6 NH, if the θ23 restriction were absent

CC Y2 IH Maybe, TT Y2 NH, if the θ23 restriction were absent

TC 2A IH No, m3 small

TC 2D NH Yes, TC 4B IH (except for low m1 and m3 and if the θ23

restriction were absent)

TC 2D IH Yes, TC 4B NH

TC 3A IH No, m3 small

TC 3F NH Yes, TC 6C IH (except for low m1 and m3)

TC 3F IH Maybe, TC 6C NH, if the θ23 restriction were absent

maximal CP violation when the lightest mass is above about 30 meV (Figs. 4.13, 4.14,

4.16, and 4.17).

Due to the large number of cases and their overlapping predictions, it is currently not

possible to uniquely determine any given case. The latest experimental result from EXO-

200 [60] sets an upper limit on the effective mass |Mee| of less than 140− 380 meV at 90% C.L.

However, with future sensitivities to |Mee| of about 20 meV [61], and a precision measurement

of δ in future long baseline oscillation experiments, we might be able to distinguish between

these cases. Here we run a test on the survivability of two-zero cases by applying an upper limit

on |Mee| and assuming specific values for δ with the 3σ resolution attainable with a 350 kt-

yr exposure at the Long-Baseline Neutrino Experiment [105]. The results in Table 4.10 are
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Table 4.9 The minimum and maximum values of |Mee| (in meV) at 2σ. CC X5 and CC X6

are not shown since they are equivalent to TT X6 and TT X5, respectively. |Mee|
is identically zero for TT X1, TT X2, CC X3 and CC X4.

Case Hierarchy Minimum Maximum

TT X5 NH 37 286

TT X5 IH 58 247

TT X6 IH 62 215

TT Y1 NH 34 276

TT Y1 IH 57 230

TT Y2 IH 60 226

TT Z1 IH 24 >1000

CC Y1 IH 59 231

CC Y2 NH 34 275

CC Y2 IH 56 227

CC Z1 NH 15 >1000

TC 2A IH 45 49

TC 2D NH 3 279

TC 2D IH 60 227

TC 3A IH 45 49

TC 3F NH 3 281

TC 3F IH 57 217

TC 4B NH 35 281

TC 4B IH 16 232

TC 6C IH 15 229
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qualitative without specific confidence levels ascribable.

4.4 Dual Models of the Neutrino Mass Spectrum

Many neutrino models have been built to explain the experimental results and provide

guidance for the next generation of experiments. Some of the models predict a relationship

among the elements of the light neutrino mass matrix, while other models predict the same

relationship among the cofactors of the light neutrino mass matrix. In the last chapter and

previous sections, we found that there are strong similarities between single texture zero models

with one mass hierarchy and single cofactor zero models with the opposite mass hierarchy if the

lightest mass in each case is not too small. This curious feature was also discussed in Ref. [106].

The phenomenon is not unique – models with two equalities between mass matrix elements are

similar to models with two equalities between cofactors with the opposite mass hierarchy, as

noted in Ref. [107]. This similarity to also exist between models with two texture zeros in the

light neutrino mass matrix [97] and models with two cofactor zeros in the light neutrino mass

matrix [99].

In this section we generalize this correspondence by showing that any model with a homo-

geneous relationship among elements of the light neutrino mass matrix with one mass hierarchy

predicts oscillation parameters and Majorana phases similar to those of models with the same

homogeneous relationship among cofactors of the mass matrix with the opposite mass hierarchy.

Since the neutrino mass hierarchy remains undetermined, two such models are indistinguishable

using current data. The allowed oscillation parameters are nearly identical when the masses

are quasi-degenerate, but can differ in some cases when the lightest neutrino mass is very small,

of order of 20 meV or less.

4.4.1 Comparison Between Element and Cofactor Models

The light neutrino mass matrix can be written in the form of Eq. (3.1), i.e.,

M = V ∗diag(m1,m2,m3)V † , (4.37)
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Table 4.10 The two-zero cases that survive (indicated by a tick mark) an upper limit on |Mee|
and a measurement of δ (as in the second row) with the 3σ resolution attainable

by the Long-Baseline Neutrino Experiment with 350 kt-yr of data [105]. The CC

Class X is not shown since it is equivalent to the TT Class X.

Case
|Mee| < 20 meV |Mee| < 50 meV |Mee| < 100 meV

0 90◦ 180◦ 270◦ 0 90◦ 180◦ 270◦ 0 90◦ 180◦ 270◦

TT X1 NH ×
√ √ √

×
√ √ √

×
√ √ √

TT X2 NH
√ √

×
√ √ √

×
√ √ √

×
√

TT X5 NH × × × × ×
√

×
√

×
√

×
√

TT X5 IH × × × × × × × × ×
√

×
√

TT X6 IH × × × × × × × × ×
√

×
√

TT Y1 NH × × × × ×
√

×
√

×
√

×
√

TT Y1 IH × × × × × × × × ×
√

×
√

TT Y2 IH × × × × × × × × ×
√

×
√

TT Z1 IH × × × × ×
√ √ √

×
√ √ √

CC Y1 IH × × × × × × × × ×
√

×
√

CC Y2 NH × × × × ×
√

×
√

×
√

×
√

CC Y2 IH × × × × × × × × ×
√

×
√

CC Z1 NH ×
√

×
√

×
√

×
√

×
√

×
√

TC 2A IH × × × × ×
√

×
√

×
√

×
√

TC 2D NH ×
√

×
√

×
√

×
√

×
√

×
√

TC 2D IH × × × × × × × × ×
√

×
√

TC 3A IH × × × × ×
√

×
√

×
√

×
√

TC 3F NH ×
√

×
√

×
√

×
√

×
√

×
√

TC 3F IH × × × × × × × × ×
√

×
√

TC 4B NH × × × × ×
√

×
√

×
√

×
√

TC 4B IH
√ √

×
√ √ √

×
√ √ √

×
√

TC 6C IH ×
√ √ √

×
√ √ √

×
√ √ √
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where V is a unitary matrix. Either a normal mass hierarchy (NH, m1 < m2 < m3) or an

inverted mass hierarchy (IH, m3 < m1 < m2) are allowed, following the convention that the

mass-squared difference m2
2 −m2

1 is responsible for the oscillation of solar neutrinos.

Suppose a model imposes a relationship among elements of the mass matrix M given by

f (Mαβ) = 0 , (4.38)

where α, β = e, µ, τ and f is a homogeneous function of the Mαβ. We take the coefficients

in the homogeneous function to be real, as in most models. Then from Eq. (4.37), Mαβ =

m1V
∗
α1V

∗
β1 +m2V

∗
α2V

∗
β2 +m3V

∗
α3V

∗
β3 and Eq. (4.38) becomes

f
(
m1V

∗
α1V

∗
β1 +m2V

∗
α2V

∗
β2 +m3V

∗
α3V

∗
β3

)
= 0 . (4.39)

Since the coefficients in the homogeneous function are real, the complex conjugate of the above

equation is

f (m1Vα1Vβ1 +m2Vα2Vβ2 +m3Vα3Vβ3) = 0 (element condition). (4.40)

Now consider a model that imposes the same homogeneous relationship among cofactors of

the light neutrino mass matrix, i.e.,

f (Cαβ) = 0 , (4.41)

where Cαβ is the (α, β) cofactor of M , given by (M−1)αβ = 1
detMCβα. Since the mass matrix

is symmetric and f is a homogeneous function, we have f
(
(M−1)αβ

)
= 0. Then since M−1 =

V diag(m−1
1 ,m−1

2 ,m−1
3 )V T , we can write the condition as

f
(
m−1

1 Vα1Vβ1 +m−1
2 Vα2Vβ2 +m−1

3 Vα3Vβ3

)
= 0 (cofactor condition). (4.42)

To compare the element NH case with the cofactor IH case, we divide the argument in

Eq. (4.40) by m3, multiply the argument in Eq. (4.42) by m3, and use the properties of homo-

geneous functions to write the condition for the element NH case as

f

(
m1

m3
Vα1Vβ1 +

m2

m3
Vα2Vβ2 + Vα3Vβ3

)
= 0 , (4.43)

and the condition for the cofactor IH case as

f

(
m3

m1
Vα1Vβ1 +

m3

m2
Vα2Vβ2 + Vα3Vβ3

)
= 0 . (4.44)
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In the quasi-degenerate regime (m1 ' m2 ' m3), all the mass ratios are approximately unity

so that the three mixing angles and three phases allowed by the constraints are nearly identical

for the two hierarchies.

For masses lighter than about 100 meV, the leading term in each argument is the third term,

and they are identical. The only differences in the sub-leading terms are the two mass ratios. In

Fig. 4.18 we plot the fractional difference between the two mass ratios with opposite hierarchies

versus the lightest mass using the recent best-fit values [83], δm2 ≡ m2
2−m2

1 = 7.54×10−5 eV2

and ∆m2 ≡ |m2
3−(m2

1 +m2
2)/2| = 2.43×10−3 eV2 for the normal hierarchy and 2.42×10−3 eV2

for the inverted hierarchy. The percentage difference between (m1
m3

)NH and (m3
m1

)IH is very small

and always less than 1.7% for any value of the lightest mass. The percentage difference between

(m2
m3

)NH and (m3
m2

)IH becomes less than 10% (5%) {2%} if the lightest mass is larger than 19

(27) {42} meV. Hence except for conditions with α and β such that Vα3Vβ3 is small compared

to Vα1Vβ1 and Vα2Vβ2, the two conditions are almost the same for masses that are not nearly

degenerate. Even in some extreme cases, such as α = β = e, for which the θ13-dependent

leading term is relatively small, the two conditions are almost identical if the lightest mass is

larger than about 20 meV, with the percentage difference between the two mass ratios less than

10%.

To compare the element IH case with the cofactor NH case, we divide the argument in

Eq. (4.40) by m1 and multiply the argument in Eq. (4.42) by m1 to obtain

f

(
Vα1Vβ1 +

m2

m1
Vα2Vβ2 +

m3

m1
Vα3Vβ3

)
= 0 , (4.45)

for the element IH case and

f

(
Vα1Vβ1 +

m1

m2
Vα2Vβ2 +

m1

m3
Vα3Vβ3

)
= 0 , (4.46)

for the cofactor NH case. Again, in the quasi-degenerate regime the two conditions are nearly

identical, and the allowed values of the mixing angles and phases are almost equal in the two

models.

For masses lighter than about 100 meV, the leading terms in each argument are the first

two terms if the lightest mass is not very small. The percentage difference between (m2
m1

)IH and
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Figure 4.18 Fractional differences in mass ratios ∆ for the two mass hierarchies as a function

of the lightest neutrino mass. We set δm2 ≡ m2
2 − m2

1 = 7.54 × 10−5 eV2 and

∆m2 ≡ m2
3 − (m2

1 + m2
2)/2 = 2.43 × 10−3 eV2 for the normal hierarchy and

2.42× 10−3 eV2 for the inverted hierarchy.

(m1
m2

)NH is less than 10% (5%) {2%} if the lightest mass is larger than 19 (30) {53} meV. Hence,

if the lightest mass is not very small, the two conditions are almost identical. The sub-leading

terms are always close to each other because the percentage difference between (m1
m3

)NH and

(m3
m1

)IH is always less than 1.7% for any value of the lightest mass.

In the above analysis we only considered real coefficients in the homogeneous functions. For

complex coefficients, the complex conjugate of Eq. (4.39) does not give Eq. (4.40). However, if

the cofactor-based model has coefficients that are the complex conjugate of the coefficients in

the element-based model, then the cofactor-based model is dual to the corresponding element-

based model.

Although our proof used only one condition, the same arguments can easily be applied

to multiple conditions. The only requirement is that there be two models with the same

homogeneous conditions for the elements and cofactors, respectively. A consequence is that a

model with two texture zeros yields predictions for the oscillation parameters and Majorana

phases similar to those of the corresponding model with two cofactor zeros. Likewise, as noted
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in Ref. [107], models with two equalities between mass matrix elements are similar to models

with two equalities between cofactors.

4.4.2 Application to Neutrino Model Building

The homogeneous relationships in Eqs. (4.38) and (4.41) are quite common in neutrino

mass models, such as texture zero models [94], cofactor zero models [95], scaling models [108],

and models in which two mass matrix elements or cofactors are equal [107]. The latter includes

the µ − τ symmetric models that impose |Meµ| = |Meτ | and |Mµµ| = |Mττ |. However, the

existence of an element/cofactor duality requires models that have the same homogeneous

relationship among elements in one model and cofactors in a second model. While models

with conditions on the elements are common, models with conditions on cofactors are not so

common. However, models with the same homogeneous relationships among cofactors can be

defined. In particular, the existence of the inverse of the right-handed neutrino mass matrix in

the conventional seesaw mechanism [56], with M = MT
DM

−1
R MD, provides a good motivation

for the corresponding cofactor models, as we discuss below.

MD is proportional to the unit matrix. A simple example arises when MD = mDI, so that

inverting the seesaw formula gives M−1 = MR/m
2
D. Since M−1 = CT /Det(M), it follows that

MR ∝ CT . Now since MR is symmetric, any homogeneous relationship among the elements

of the right-handed neutrino mass matrix MR will be equivalent to the same homogeneous

relationship among the cofactors of the light neutrino mass matrix. Thus a dual cofactor

model can be obtained by having the same homogeneous conditions on MR in one model as

there are on M in the dual element model; the cofactor conditions on M are inherited from

MR.

This leads to an even more ambitious conclusion: any model consistent with the observed

mixing angles (and phases) for the light neutrinos will have a dual model with the opposite mass

hierarchy. We can build the dual model by choosing MR to be proportional to M , and according

to our argument above (with MD proportional to the unit matrix), the model generated by MR

would have a light neutrino cofactor matrix that is proportional to M . Thus the cofactors are

related to each other in the same way the elements of M are related to each other, so the model
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generated by MR with the opposite mass hierarchy will be dual to the model represented by

M , and we cannot distinguish these two models without knowing the mass hierarchy.

MD is diagonal. Next we relax the condition that the Dirac mass matrix is proportional

to the unit matrix and consider the case where it is diagonal. If we assume that the same

homogeneous relationship holds for both the light neutrino mass matrix and the right-handed

neutrino mass matrix, under what conditions will the cofactor matrix of M have the same

homogeneous relationship as the elements of M?

Defining MD = diag(c1, c2, c3) and (MR)ij = Rij , since MR is symmetric, the cofactor

matrix for M becomes

C = (DetM)M−1
D MT

R (MT
D)−1 = (DetM)


R11/c

2
1 R12/c1c2 R13/c1c3

R12/c1c2 R22/c
2
2 R23/c2c3

R13/c1c3 R23/c2c3 R33/c
2
3

 . (4.47)

We see that a texture zero in MR still translates to a cofactor zero for M [90]. However, in

general a more complicated homogeneous relationship among elements in MR, such as those

involving more than one element, will not be inherited by the corresponding cofactor matrix

unless there is a special relationship among the ci. For example, Rµµ = Rττ does not imply

Cµµ = Cττ unless c2 = c3.

4.4.3 Resolving the Dual Model Ambiguity

We have shown that if a model has a homogeneous relationship among elements of the

light neutrino mass matrix, it will yield predictions for the oscillation parameters and Majo-

rana phases similar to those of another model with the opposite mass hierarchy that has the

same homogeneous relationship among cofactors of the mass matrix, except when the light-

est neutrino mass is very small, of order 20 meV or less. Many existing models have one

or more homogeneous relationships among mass matrix elements, but there are fewer models

that are constructed by imposing homogeneous relationships among cofactors. However, any

model that fits current neutrino data will have a dual model with the opposite mass hierarchy.

We have shown that if the Dirac mass matrix is proportional to the identity matrix, a dual

cofactor-based model can be generated via the seesaw mechanism if the right-handed neutrino
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mass matrix has the same homogeneous relationships as the light mass matrix elements in an

element-based model. Since the mass hierarchy has not been experimentally determined, we

cannot currently distinguish these dual models from each other.

Current global fits to oscillation data have almost identical best-fit values for the neutrino

mixing angles and mass-squared differences for the two hierarchies. However, different allowed

regions for the oscillation parameters for different mass hierarchies can lead to a breakdown of

duality. In fact, the 2σ allowed regions are somewhat different, especially for the value of θ23,

where second octant values (θ23 > π/4) are allowed only for the inverted hierarchy [83]. Due

to this difference, the 2σ allowed regions for dual models differ even in the quasi-degenerate

regime in a few cases we have studied.

The dual model ambiguity can be resolved by experiments that distinguish between the nor-

mal and inverted hierarchies, such as long baseline neutrino experiments (T2K [109], NOνA [110],

and LBNE [111]), atmospheric neutrino experiments (PINGU [112], and INO [113]) and medium

baseline reactor experiments (JUNO [114]), or a combination of these [115]. Also, tritium beta

decay, neutrinoless double beta decay (0νββ), and structure formation in our universe depend

on the nature of the neutrino mass pectrum, and in principle can be used to distinguish be-

tween dual models. The 95% C.L. sensitivity of the KATRIN experiment [116] to the effective

neutrino mass mβ = (
∑
i
|Vei|2m2

i )
1/2 is 0.35 eV with an uncertainty of 0.08 eV2 on m2

β, which is

insufficient to break the duality. The effective Majorana mass measured by 0νββ experiments

is constrained to be smaller than 140-380 meV at the 90% C.L. [60], which cannot break the

duality. The future sensitivity of 0νββ experiments is expected to be 50 meV or lower [61],

which would provide a partial but strongly model-dependent resolution of the dual model am-

biguity. The current 95% C.L. upper bound on Σmi from cosmology is 0.66 eV [102], which

permits a quasi-degenerate spectrum, so that the duality is unbroken. In the future, lensing

measurements will probe Σmi as low as 0.05 eV [117], which will distinguish between dual

models.
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CHAPTER 5. SUMMARY AND OUTLOOK

5.1 Summation

In this thesis, we have studied the phenomenological results of several classes of neutrino

models: the µ−τ symmetrical models, the seesaw models with four zeros in the Yukawa matrix,

and the texture/cofactor zero models. Most of the results have been published in collaborations

with Danny Marfatia and Kerry Whisnant in several papers [118, 96, 119, 120, 121].

After the discovery of non-zero mixing angle θ13, many popular µ−τ symmetrical models are

in disagreement with the experimental data. We investigated the effect of small perturbations

on the µ−τ symmetrical models that yield experimentally preferred oscillation parameters. We

found that with small perturbations, the deviations of θ13 and θ23 can be fulfilled, but the θ12

correction can be very large, which means the underlying unperturbed mixing need not have

θ12 close to the experimentally preferred value. Due to our observation, the class of possible

neutrino mass models that can lead to acceptable phenomenology can be expanded to include

most mixing scenarios with µ − τ symmetry, and tri-bimaximal mixing has no special place

among scenarios with µ− τ symmetry. Based on this result, we proposed a new class of µ− τ

symmetric models with unperturbed θ12 equal to zero or 90◦, and found they can be viable for

θ0
13 < 20◦ under small perturbation.

We extended the most economical type I seesaw model to include three right-handed neu-

trinos and studied the simplest cases that have four texture zeros in the Yukawa couplings

matrix. In the context of low energy phenomenology, these models are equivalent to a single

texture or cofactor zero for an off-diagonal element of the light neutrino mass matrix M . The

cofactor zero condition is itself equivalent to a texture zero in M−1. We derived analytic formu-

las that relate the Dirac CP phase, the lightest mass and the two Majorana phases to the five
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observed oscillation parameters and determine the constraints on these models. We used the

latest experimental data to obtain the allowed regions for the lightest neutrino mass and Dirac

CP phase δ, which can be measured in future neutrino experiments. Once the lightest neutrino

mass and Dirac CP phase are determined, we can make definite predictions for neutrinoless

double beta decay, which will be probed in future experiments. We also used leptogenesis

to further constrain the allowed regions, and found there is an upper bound on the lightest

neutrino mass of about 100-200 meV for a single-flavored leptogenesis scenario.

We also studied a variety of neutrino models that have one or two texture and/or cofactor

zeros. The one-zero models have two remaining free neutrino parameters, and we determined

the constraints in the space of the CP phase and lightest mass using a global fit to neutrino

parameters, including recent data on θ13. The two-zero models have no remaining independent

parameters and therefore have tighter constraints. We also made predictions for neutrinoless

double beta decay for these models. For the one cofactor zero models, we proposed a simple

realization based on a new U(1) gauge symmetry. During our study of the texture and/or

cofactor zero models, we found there are strong similarities between a texture zero model and

cofactor zero model with the opposite mass hierarchy. We generalized this correspondence by

showing that any neutrino model with a homogeneous relationship among elements of the light

neutrino mass matrix with one mass hierarchy predicts oscillation parameters and Majorana

phases similar to those of models with the same homogeneous relationship among cofactors of

the mass matrix with the opposite mass hierarchy if the lightest mass is not too small, e.g., less

than about 20 meV. This general result applies to texture and/or cofactor zero models, scaling

models, and models that have two equal mass matrix elements or cofactors, e.g. µ−τ symmetric

models. We showed that determining the mass hierarchy would be crucial to distinguish these

dual models. The measurement of tritium beta decay, neutrinoless double beta decay, and

structure formation in our universe can also be used to distinguish between dual models.

5.2 Outlook

The research progress of neutrino physics in the past few decades seems to be driven by

experimental results. Hence, in this section we will first briefly discuss some key experiments
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that may yield promising results in the next decade. After that, we will mention some research

directions that we can explore in the next stage.

5.2.1 Future Neutrino Experiments

The next main goals of neutrino experiments are to determine the neutrino mass hierarchy

and measure the Dirac CP phase δ. The current and proposed long baseline neutrino exper-

iments (T2K [109], NOνA [110], and LBNE [111]) can achieve both goals by using neutrino

and antineutrino beams. This can be seen as follows. From Eqs. (1.33) and (1.34), we know

the matter effect for neutrinos and antineutrinos travelling through the Earth are different. To

the second order of the small parameters θ13 and |δm2
21/δm

2
31|, the probabilities for the NH

are [122]

P (νµ → νe) = x2f2 + 2xyfg cos(δ + ∆) + y2g2,

P (ν̄µ → ν̄e) = x2f̄2 + 2xyf̄g cos(δ −∆) + y2g2, (5.1)

and for the IH,

P (νµ → νe) = x2f̄2 − 2xyf̄g cos(δ −∆) + y2g2,

P (ν̄µ → ν̄e) = x2f2 − 2xyfg cos(δ + ∆) + y2g2, (5.2)

where

x = sin θ23 sin 2θ13, y = α cos θ23 sin 2θ12,

f, f̄ = sin
[
(1∓ Â)∆

]
/(1∓ Â), g = sin(Â∆)/Â, (5.3)

and ∆ = |∆31|, Â = |A/δm2
31|, α = |δm2

21/δm
2
31|. Hence, by studying the transitions of νµ → νe

and ν̄µ → ν̄e, one can determine both the mass hierarchy and measure the Dirac CP phase.

In addition to the long baseline neutrino experiments, a medium-baseline reactor neutrino

experiments such as JUNO [114] can also provide a unique way to determine the mass hierarchy.

This can be seen in the following equation,

P (ν̄e → ν̄e) = 1− sin2 2θ13(cos2 θ12 sin2 ∆31 + sin2 θ12 sin2 ∆32)− cos4 θ13 sin2 2θ12 sin2 ∆21.

(5.4)
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Hence, an excellent detector with energy resolution of 3% and absolute energy scale calibration

at <1% can measure the large mass-squared splitting between ∆31 and ∆21. The medium-

baseline reactor neutrino experiments are free of any effects due to the unknown Dirac CP

phase, thus provide a complementary measurement of the mass hierarchy to the long baseline

neutrino experiments.

5.2.2 Future Research Directions

In our study of the perturbation to µ−τ symmetrical models, we mainly focused on the real

case. One direction we can pursue is to generalize the perturbation results to the complex case,

therefore we can make predictions on the Dirac CP phase and the Majorana phases. Also, in

the previous work, we used the basis where the charged leptons are diagonal, thus the mixing

symmetry mainly comes from the neutrino sector. In the future, we would like to study models

with mixing in both the charged lepton and neutrino sectors, and thus explore the effects due

to the charged lepton corrections.

Also we know the lepton sector has large mixing angles, which is quite different from the

quark sector. In the lepton sector, the seesaw mechanism is introduced as an elegant way

to generate the small masses for the light neutrinos. However, the different mass generation

mechanisms could be the reason for the difference between the structure of the lepton sector

and the quark sector. We would like to explore the texture of both the Dirac mass matrix and

heavy right-handed neutrino mass matrix in the seesaw mechanism, and look for a simple and

natural explanation of the large mixing angles in the lepton sector. Also, we would like to see if

we can find a connection between the mixing angles in the lepton sector and the quark sector.

A preliminary work has been shown in Ref. [123].

From an experimental point of view, the next main goal is to determine the mass hierarchy

and Dirac CP phase. In order to use the matter effect to separate the two mass hierarchies,

a baseline at least as long as the distance between Fermilab and Homestake is needed [122],

e.g. LBNE experiment, but that requires a new beam line. The current experiments (MINOS

and NOνA) have a shorter baseline and therefore do not uniquely determine the parameters

in the whole parameter space. Multiple detectors can help [124], but one current proposal
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(CHIPS [125]) still does not completely remove all the ambiguities. We are planning to look at

two detectors at different off-axis angles and also we would like to look at a variety of on-axis

beam energies.

Another important question in neutrino physics is related to the nature of neutrinos:

whether they are Dirac or Majorana particles is still unknown at the current stage. The

neutrinoless double beta decay experiments are the most promising way to answer this ques-

tion, but it is still possible that the effective mass |Mee| is equal to zero or it is too small to be

detected in the foreseeable future. Another way of resolving this problem is to search for the

lepton number violation processes in collider experiments. We would like to investigate these

possible lepton number violation processes and look for a preferred channel that could lead to

the discovery or constraint to the Majorana neutrinos.
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