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SUMMARY

In this thesis, a reconfigurable multi-core architecture is described. Its suitability

for executing safety-critical embedded applications is discussed. It is argued that its

dynamic features allow for graceful degradation of the system, and that interference

channels can be mitigated if spatial partitioning is enforced on its Network on Chip

(NoC).

Furthermore, the problem of the allocation of applications on the architecture is

formulated as an Integer Linear Programming optimization problem. An algorithm is

developed to reallocate the applications running on the fabric when hardware faults

occur. The proposed algorithm enforces spatial partitioning on the Network on Chip

throughout the reconfigurations. It supports multiple types of NoC topologies, con-

straints and hardware faults.

Finally, the behavior of the presented algorithm is demonstrated in several configu-

rations and for different scenarios of degradation of the architecture. Its performance

in terms of computation time is studied, and the results indicate that its use in a

real-time environment is possible.

xii



CHAPTER 1

INTRODUCTION

1.1 Multi-Core Architectures

With the onset of multi- and many-core chips, the single-core market is closing down

[1, 2]. Those chips constitute a new challenge for aerospace and safety-critical indus-

tries in general [3, 4]. Little is known about the certification of software running on

these Systems on Chip (SoC). There is therefore a strong need for developing software

architectures based on multi-core architectures, yet compliant with safety-criticality

constraints.

To do so, it is possible to use the inherent advantages of multi-core systems [5].

The first one is the potential for graceful degradation: some cores and some parts of

the Network on Chip (NoC) – the communication system of the SoC – may become

faulty. When such a situation arises, the rest of the computing and communicating

resources may remain available to run the application. Then, these systems allow

on-chip redundancy: by enabling graceful degradation, an application should be able

to maintain its service despite the fault of a part of its cores and network. Each core

can be used for multiple functions, and allocated dynamically, so that the system is

resilient to losses.

1.2 Certification of Safety-Critical Applications

1.2.1 Need for Constraints

The capabilities of multi-core processors (MCP) can only be utilized if the tasks are

properly parallelized and the applications properly segregated [6]. The parallelization
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is done by resource partitioning: each component of a function that has been paral-

lelized is run on a separate computational core until completion, where each result is

then analyzed to give the final result. These partitions must remain independent of

each other until completion and failure of one core should not affect other running

cores. In addition to the proper building and execution requirements needed for par-

allelization, there is also a risk of interference, where one application may affect how

another independent application runs. This leads to issues with determinism. Deter-

minism is the ability to produce a predictable outcome based on preceding operations

and data. This outcome occurs in a specific period of time with repeatability. The

specific period of time is a key for safety-critical applications, as each computational

core must complete its task in a specified amount of time. If the computation takes

longer than allowed, the system and control software may not receive the required

data on time, putting the system at risk.

When dealing with safety-critical airborne systems, different components reside at

different levels of safety-criticality, with some being more critical than others. Here,

we look at three levels of criticality, also known as the Design Assurance Level, or

DAL [7]. There is DAL A criticality, where failure can cause a catastrophic effect

that may cause a crash. DAL B criticality is where a failure has a large negative

impact on the safety or performance of the vehicle, and DAL C criticality is where a

failure is seen as significant but has a lesser impact than hazardous failures.

To implement a safety-critical system on a multi-core processor, several constraints

must be satisfied. When running the system, all tasks must be completed within the

required time constraints. Interference comes about when applications affect the run-

time operations of other running applications. Interference will come about when

resources are shared, or when certain configurations on the execution fabric do not
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hold their intended independence.

In addition to interference coming about from overlapping communication chan-

nels, a multi-core processor utilizes shared memory and shared communication buses.

The shared memory is a source of interference as all computations utilize the memory

available. Similar issues are seen when the MCP communicates with the host. All

of the data and commands are passed through a series of routers that may handle

multiple sources of data and results. Though the shared memory and shared com-

munication bus are possible sources of interference, they can be properly utilized to

reduce possible interference and ensure determinism. Determinism is a critical at-

tribute for the processor. When interference comes about, determinism is lost, and

the accuracy of the results cannot be guaranteed.

Next, it must be shown that all computations are executed within any required

time constraint. Finally, any dynamic features must be properly understood, vali-

dated and documented.

1.2.2 Integrated Modular Avionics

Since the beginning of the 1990s, federated avionics architecture – where one com-

puting resource executes only one application – tend to be replaced by Integrated

Modular Avionics (IMA) architectures [8, 9]. IMA aims at simplifying the develop-

ment of avionics software. In particular, it allows integrating functions of different

criticality levels onto shared hardware [10, 11].

As for federated systems, IMA systems must enforce critical functional separation:

an application cannot affect the behavior of another application. This key require-

ment of IMA is called robust partitioning. Its objective is to provide IMA systems

3



with the same level of isolation and independence between applications as federated

systems [12]. The partitioning must be enforced in both time and space.

To enforce space partitioning, storage locations must only be writable by one ap-

plication. To enforce time partitioning, one application must be guaranteed access to

the hardware resources it requires for a period of time [13].

The standard RTCA DO-297 [14] contains guidance for the certification of inte-

grated avionics systems and architectures [15].

1.2.3 Certification and Implementation of Multi-Core Architectures

With the introduction of multi-core processors in avionics systems, the challenge is

to keep enforcing robust partitioning in IMA architectures [16].

The FAA and EASA worked with industry to quantify a set of requirements that

must be met to certify and use multi-core processors in civil aviation, described in the

FAA CAST-32A Position Paper [17] and the EASA MULCORS [18] research report.

When certain issues arise from failure to meet the parameters as stated previously,

depending on the DAL criticality, systems can fail. To ensure determinism and op-

erations within the required time constraints, multi-core parallelization capabilities

must be properly utilized and interference channels must be removed. This robust

partitioning of the multi-core chip ensures that every computational core or compute

resource used remains independent and isolated from other concurrently running com-

pute resources. With this implementation, the operations will be fully parallelized

and each operation should complete within the allotted time.
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However, the issue of shared memory and shared communication paths remains.

To mitigate any possible interference, detailed resource definitions must be available

within each computational core to track the relevant data. Each compute resource

must track each operation being done inside and being sent to write only memory.

So far, the certification requirements given by the FAA and EASA do not cover

the multi-core platforms that enable the dynamic allocation of software applications

during operation, which is the case of REDEFINE. Nevertheless, the current guidance

is used as a basis for this thesis.

1.3 Reconfigurable Multi-Core Architectures

There exist several different types of reconfigurable multi-core computing architec-

tures [19, 20, 21]. The factors of reconfiguration can be the data path, the memory,

the power, the interconnect, etc.

The reconfigurable architecture studied in the next chapter is the REDEFINE

architecture [22]. Its factors of reconfiguration are:

• the data path: the compute resources can be re-aggregated at runtime on the

fabric,

• the mode: the allocation of the different applications to the compute elements

can be modified at runtime.

1.4 Objectives of the Thesis

The objective of the thesis is to analyze an actual reconfigurable multi-core architec-

ture and to study its suitability for safety-critical embedded applications.
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This will be fulfilled by answering the following questions:

• What is the structure of the architecture and is why is it suitable for safety-

critical applications?

• How can we take advantage of its features to use it in a safety-critical embedded

context?

• Can we design a task allocation algorithm to manage the architecture in real-

time?

1.5 Thesis Outline

This thesis is organized in five chapters. The first chapter consisted in an introduction

to the work, a review of the previous work that led to this thesis and a description of

its objectives.

The following chapters answer the research questions asked above. Chapter 2

describes the structure and the behavior of the REDEFINE architecture, developed

at the Indian Institute of Science (IISc).

Chapter 3 addresses the mathematical formulation of the real-time allocation of

applications problem on REDEFINE, and the elaboration of a centralized algorithm

able to manage the architecture under certain assumptions.

Chapter 4 is an analysis of the results given by this algorithm in different config-

urations, and also includes an analysis of its performance.

Chapter 5 draws the conclusions of the thesis and proposes possibilities for future

work.
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CHAPTER 2

REDEFINE ARCHITECTURE

The basis for this thesis is the REDEFINE architecture, developed at the Indian

Institute of Science (IISc). This architecture is described in this chapter, and its

suitability for safety-critical applications is studied [23].

2.1 Description of the Reconfigurable Architecture

In this section, a high-level description of the reconfigurable multi-core architecture

REDEFINE is given. This architecture allows for processes to be dynamically allo-

cated to the computing resources at runtime.

2.1.1 Execution Model

REDEFINE is composed of an Executable Fabric, an external memory and a Re-

source Manager. The REDEFINE Resource Manager (RRM) is the front-end of the

fabric, and connects it to a host, as seen on Figure 2.1.

The host creates and launches the different kernels that will be executed on the

fabric, through the Resource Manager. Each kernel is defined as an interaction among

a collection of HyperOps. HyperOps are the principal scheduling entities of REDE-

FINE, and are executed in a non-preemptive manner. The compiler is responsible for

the creation of the HyperOps.

Once a kernel has been executed and its results are available, they are communi-

cated to the host via the Resource Manager.
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Figure 2.1: The different components of the REDEFINE architecture.

2.1.2 Fabric Description

The fabric is made of a certain number of tiles, connected in a toroidal mesh topology

(as seen on Figure 2.3) through the Network on Chip (NoC). Each tile contains a

Compute Resource (CR) and a router, as seen on Figure 2.2. The CR (a variation

of the one presented in [24]) is composed of four Compute Elements (CEs), an or-

chestrator, a transporter, a Context Memory (CM) and a piece of the distributed

memory of the fabric. The aggregation of all the individual tiles’ memories forms the

Distributed Shared Memory (DSM) of the architecture. Each Compute Element is

an instruction set processor that can execute a subset of the RISC-V instruction set

architecture as well as some REDEFINE-specific instructions.
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Figure 2.2: Representation of a REDEFINE tile. It contains a router and a
Compute Resource.

A certain number of tiles, on one edge of the fabric, are dedicated to the communi-

cation between the Resource Manager and the fabric. These tiles, called the gateway

tiles, are only composed of routers (as seen on Figure 2.3).

Figure 2.3: The toroidal mesh topology of the NoC for a 4× 4 fabric. The pink
circles represent routers, and the gray squares represent Compute Resources.
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The routing algorithm implemented on REDEFINE is a XY deterministic algo-

rithm [25]. To reach its destination, a packet first moves horizontally along the X-axis

to reach the destination’s column and then vertically along the Y-axis to reach its

row, as shown on Figure 2.4.

Figure 2.4: Illustration of the XY routing algorithm implemented on REDEFINE.
The red arrows indicate the path followed by a packet sent from tile 1 to tile 7.

2.1.3 Compiler

The input to the compiler is a program described in a High-Level Language such as

C. During the data-flow analysis, the compiler constructs the Data Flow Graph. The

basic blocks are then aggregated into HyperOps to form an acyclic graph called the

HyperOp Interaction Graph, describing the producer-consumer relationships between

the HyperOps (as seen on Figure 2.5). Each HyperOp is a subset of the program’s

instructions.

The HyperOps are then partitioned into p-HyperOps. Each p-HyperOp is a sub-

set of the HyperOp’s instructions that will be executed by one Compute Element of

the Compute Resource. Therefore, several instructions of a same HyperOp can be

executed simultaneously within a Compute Resource. The constraint for the forma-
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tion of the HyperOps is that one HyperOp execution should not span more than one

Compute Resource.

Figure 2.5: Illustration of the compilation process.

The compiler computes the number of HyperOps needed for each application,

as well as the spatial configuration of these HyperOps on the fabric. Since intra-

application communication is realized using the relative (x, y) positions of the Com-

pute Resources, each application must be implemented on the fabric in the exact

spatial configuration and orientation computed by the compiler.

The output of the compiler is the application written in a format that is executable

on the REDEFINE architecture. The compiling process takes place offline, before

execution.
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2.1.4 Host

The user is responsible for creating the different kernels that will hold the different

applications to be executed on the architecture. The user provides the binary of the

kernel (output of the compiler) that will be run on the fabric. Once this is done, the

different kernels can be launched on the fabric via the Resource Manager and the

gateway tiles.

The resource requirements for a kernel are specified in terms of numbers of Com-

pute Resources. The memory requirements of a kernel should fit into the Distributed

Shared Memory banks it is allocated to. During the kernel execution phase, the

external memory is not accessed by the kernel.

2.1.5 Runtime

At runtime, the kernels are launched on the fabric by the Resource Manager, provided

that sufficient Compute Resources are available. Inside a kernel, the HyperOps are

launched in a data-driven manner, following the HyperOp Interaction Graph. The

orchestrator of each CR is responsible for selecting and launching the HyperOps on

the Compute Elements. A HyperOp is considered ready to be launched when all its

input operands are available. If several HyperOps are ready to be launched at the

same time, the selection logic of the orchestrator selects the HyperOp that should be

launched first, following a depth-first scheduling algorithm.

A kernel execution starts with a single HyperOp annotated as the Start-HyperOp

and ends with a single HyperOp annotated as the End-HyperOp. After execution of

the End-HyperOp of a kernel, the REDEFINE Resource Manager transfers the results

of the kernel to the host, through the NoC and the gateway tiles. It also informs the

host that the kernel execution has ended, and resets the resources used by the kernel.
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The resources are freed for allocation to other kernels.

2.1.6 Parallelism

There are multiple levels of parallelism within the architecture, provided that sufficient

resources are available:

• different kernels can be executed simultaneously on the fabric,

• within a kernel, different HyperOp instances can be executed simultaneously on

different Compute Resources,

• within a HyperOp instance, different p-HyperOps can be executed simultane-

ously on different Compute Elements.

2.2 Suitability of REDEFINE for Safety-Critical Applications

REDEFINE is developed primarily for high-performance computing purposes, such

as cryptographic algorithms [26]. Nevertheless, its dynamic features could also be

used to build a fault-tolerant safety-critical embedded system.

In this section, the suitability of the REDEFINE architecture for safety-critical

applications is studied through its memory structure and its Network on Chip. This

constitutes a first high-level interference analysis of the architecture.

2.2.1 Memory Management

As memory is a shared resource, it can be a source for interference. The memory

management and memory accesses on REDEFINE are studied first.
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Distributed Shared Memory

On REDEFINE, the shared memory is distributed among all the Compute Resources.

The compiler specifies the resource requirements of each kernels in terms of Compute

Resources and memory space. These requirements are specified to the REDEFINE

Resource Manager (RRM). At the kernel launch time, the RRM binds the logical

CRs to the physical CRs and loads the Distributed Shared Memory banks with the

kernel image available in the external memory.

Each Compute Element executing instructions from one kernel can read and write

in the range of addresses assigned to this kernel. As a HyperOp execution is contained

within a CR, all intra-HyperOp communications (communication among p-HyperOps)

will take place using the CR’s transporter. This way, the NoC is not used for intra-

HyperOp communication. However, inter-HyperOp communication happens through

context memory. A producer HyperOp provides data to a consumer HyperOp by

performing a write to its context frame. Depending on the location of the context

frame, the data transfer takes place via the NoC.

The kernel address space is distributed among the Compute Resources allocated

to the kernel, and shared by all the Compute Elements of the CRs for data loads and

stores. The memory management ensures spatial isolation by making CRs private to

the allocated kernel.

Context Memory

Each Compute Resource contains a Context Memory (CM), as shown on Figure 2.2.

The CR’s orchestrator is responsible for the Context Memory management. The CEs

can only write in the Context Memory, while the orchestrator can only read in this

memory.
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The Context Memory is divided in several context frames, each one being dedi-

cated to one HyperOp instance that will be executed on the CR. The input operands

to a HyperOp instance (up to 16) are stored in this context frame, as well as the

HyperOp metadata, containing information such as the HyperOp ID, the number of

its operands that have been received, the number of p-HyperOps it contains and the

number of input operands yet to be received. When a HyperOp is launched on one

Compute Resource, the orchestrator initializes the Compute Elements’ register files

with the input operands of all the p-HyperOps they will execute.

To exploit locality and reduce the NoC bandwidth required for the execution

of a kernel, a data producer HyperOp and its consumer HyperOp can be allocated

to the same CR at compile time. This implies giving up on the maximum available

parallelism but reduces the NoC traffic. The less a kernel requires network bandwidth,

the less its execution is sensitive to NoC traffic.

Register File and Cache

Each CE has a private instruction cache, a data cache and a register file, where the

inputs operands for each p-HyperOp are loaded during the HyperOp launch. A Hy-

perOp communicates its results to other HyperOps through the Context Memory or

the Distributed Shared Memory (DSM).

In communication through the DSM, the producer HyperOp stores its results in

the DSM address space and the data cache and then communicates the respective

DSM address to the consumer HyperOp via inter-HyperOp communication channels.

If the producer and the consumer HyperOp are associated with different CRs, at the

end of the producer HyperOp’s execution its data caches are reconciled with the DSM.
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The consumer HyperOp’s Compute Resource caches are flushed before its execution

and the required data is read from the DSM.

The cache coherence is ensured through a dag-consistency Distributed Shared

Memory model [27]. L1 cache fills and write-backs happen through the NoC. The

results will then be sent back to the host via the NoC and the gateway tiles (see

Figure 2.3).

2.2.2 Resource Partitioning

The interference analysis of REDEFINE must be done at different levels. At the high-

est level, one kernel running on REDEFINE should not affect the behavior of another

kernel that is or will be running on the fabric. On REDEFINE, the segmented mem-

ory management ensures that the logical address translation of one kernel does not

lead to accessing a physical memory space allocated to another kernel. As memory

and Compute Resources are not shared by multiple kernels, a kernel cannot affect

the correctness of another kernel. The only resource shared by multiple kernels is the

NoC. Therefore, one kernel can only affect the execution time of another kernel.

The compiler ensures that the unordered HyperOps are data-race free. This is

required to ensure a deterministic parallelism: the output of a kernel must not depend

on the order in which the unordered HyperOps are executed.

Nevertheless, the execution time of a HyperOp may be affected by another Hy-

perOp execution if they share the same communication resources.
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2.2.3 Network On Chip

The Network on Chip can be a source of interference. Depending on the traffic on the

NoC, there might be time delays associated with the data communication between

Compute Resources, or between the fabric and the Resource Manager. Since the

intra-HyperOp communication does not use the NoC, this cannot happen within a

HyperOp.

On REDEFINE, the NoC is used:

• by the Resource Manager to load input data and the executables of the kernels

to Compute Resources,

• by the Compute Resources for inter-HyperOp communication during kernel

execution,

• by Compute Resources for L1 cache fills and write-backs during kernel execu-

tion,

• by the Resource Manager to read the outputs of the kernels from the Distributed

Shared Memory.

2.2.4 Running Safety-Critical Applications on REDEFINE

REDEFINE allows for real-time reallocations of applications on the fabric. This mo-

tivates the study of its suitability for safety-critical applications.
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Indeed, provided that spatial partitioning is enforced on the Network on Chip

throughout the execution of the applications, interference between the applications

can be avoided.

Furthermore, in case of a hardware fault, provided that the fault is detected, the

Resource Manager could reallocate the applications so that the system keeps running

as long as enough Compute Resources are available.

The following chapter addresses the development of a centralized task allocation

algorithm that can:

• handle applications of different criticality levels,

• reallocate the applications in real-time when a hardware fault is detected,

• constantly enforce spatial partitioning on the Network on Chip.
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CHAPTER 3

TASK ALLOCATION ALGORITHM

As explained in the previous chapter, the dynamic features of REDEFINE can be ex-

ploited to design a safety-critical embedded system that is tolerant to faults. Indeed,

in case of a hardware fault on the fabric, the Resource Manager could reconfigure the

applications in real-time to ensure that the system keeps running.

To fulfill this objective, the task allocation problem on REDEFINE has to be

mathematically formulated and solved each time a hardware fault occurs.

In this chapter, a high-level mathematical formulation of the problem is given. The

goal is to allow the reconfiguration of the applications in real-time when hardware

faults occur on the platform, with the constraint of enforcing spatial partitioning on

the Network on Chip.

3.1 Description of the Problem

Our interest lies in the dynamic reallocation of tasks when hardware faults occur on

the platform. Throughout the execution, spatial partitioning must be enforced on the

Network on Chip between the applications, to avoid interference, i.e. timing delays.
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This thesis only addresses two types of high-level hardware faults within the fabric

tiles:

• faulty Compute Resources,

• faulty routers.

The algorithm that is developed is a centralized task allocation algorithm that

would eventually be implemented at the REDEFINE Resource Manager level.

3.1.1 Assumptions

As this work addresses the real-time task allocation problem on REDEFINE, the

following assumptions are made:

• hardware faults are detected when they occur,

• the health of the architecture is known to the Resource Manager.

The health monitoring system and the hardware fault models are not discussed in

this thesis. Under these two assumptions, the task allocation algorithm is formulated.

3.1.2 Approach

The task allocation problem can be formulated as an Integer Linear Programming

(ILP) optimization problem, using incidence matrices to describe the compute re-

sources, the topology of the NoC and the routing algorithm [28]. The decision vari-

ables are also incidence matrices, describing the mapping of the applications onto the

compute resources and the mapping of the communication requirements between the

applications onto the communication paths of the NoC. The constraints are used for

instance to enforce spatial partitioning between applications, or to avoid allocating

applications to faulty compute resources. The objective function can for example be

used to minimize the total traffic on the Network on Chip. The algorithm has to be
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efficient enough to compute a suitable reconfiguration without affecting too much the

ability of the system to meet hard real-time constraints.

There is also interest in executing a safety-critical application such as an engine

controller (DAL A) in parallel with a non-critical application, for instance an en-

gine health-monitoring software. Indeed, safety-critical applications are typically low-

demanding in terms of computational power and network traffic, leaving a substantial

amount of available resources on the multi-core platform unused. These remaining

resources could be used to execute computational demanding applications and thus

to better exploit the multi-core architecture’s abilities. However, if hardware faults

occur, the execution of these non-critical applications can be stopped in order to free

compute resources and communication paths for the safety-critical applications, using

a prioritization system. This can also be handled by an Integer Linear Programming

approach.

3.2 Integer Linear Programming Formulation

3.2.1 Modeling the Architecture

As stated above, the online task-allocating problem on the Network on Chip can be

formulated as an Integer Linear Programming problem [29]. Previous work is adapted

and extended to address issues that are specific to the REDEFINE architecture and

safety-critical systems, in particular spatial partitioning on the NoC.

The Network on Chip’s topology is described by an undirected graph. Each ver-

tex represents a Compute Resource and each edge represents a communication path

between two Compute Resources. The matrix G is a NCR ×Npaths incidence matrix

representing this graph, where NCR is the number of CRs on the fabric and Npaths is
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the number of communication paths.

Gij =


1 if the CR i and the NoC path j are incident

0 otherwise

3.2.2 Modeling the Applications

Several undirected graphs represent the Napps different applications that are to be

executed on the platform. On REDEFINE, the compiler computes the number of

Compute Resources (and their spatial configuration) that each application requires,

with the objective of maximizing parallelism (as shown on Figure 2.5). Therefore,

each vertex of a graph represents a Compute Resource that will be assigned to the

application and each edge represents a communication path that links two of these

Compute Resources. The matrix Ak is a Nk
nodes×Nk

links incidence matrix representing

the application k, where Nk
nodes is its number of nodes and Nk

links its number of links.

Ak
ij =


1 if the node i and the link j of application k are incident

0 otherwise

Nnodes =
∑Napps

k=1 Nk
nodes is the total number of application nodes.

Nlinks =
∑Napps

k=1 Nk
links is the total number of application links.

3.2.3 Modeling an Heterogeneous Architecture

Other incidence matrices can be used to specify the type of each Compute Resource

and communication path on the NoC. The different types of Compute Resources can

be used to describe the ability of some of the CRs to execute specific operations (lin-

ear algebra, encryption, etc.). The different types of communication paths can for

instance be used to describe the maximum capacity of the communications paths, or
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to describe which path can realize which type of communication. Both the communi-

cations paths and the CRs can be of several different types.

TCR is a NCR × NCR
types incidence matrix describing the types of each Compute

Resource. NCR
types is the number of different CR types. T paths is a Npaths × Npaths

types

incidence matrix describing the types of each NoC path. Npaths
types is the number of

different communication paths types.

TCR
ij =


1 if the CR i is of type j

0 otherwise

T paths
ij =


1 if the NoC path i is of type j

0 otherwise

For each application Ak, the type of each node is described in the Nk
nodes ×NCR

types

incidence matrix TNk. If a given node is of a certain type, it will need to be allocated

to a CR of the same type.

TNk
ij =


1 if the node i is of type j in application k

0 otherwise

For each application Ak, the type of each link is described in the Nk
links ×Npaths

types

incidence matrix TLk.

TLk
ij =


1 if the link i is of type j in application k

0 otherwise
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An overall application graph represented by the incidence matrix A is constructed

from the Ak (k = 1, . . . , Napps) matrices as such:

A =


A1

. . .

Ak

 is a Nnodes ×Nlinks matrix.

The same can be done with the TNk and TLk (k = 1, . . . , Napps) matrices:

TN =


TN1

...

TNk

 is a Nnodes ×NCR
types matrix.

TL =


TL1

...

TLk

 is a Nlinks ×Npaths
types matrix.

3.2.4 Decision Variables

The decision variables of the problem describe the mapping of the applications’ ver-

tices on the NoC Compute Resources and the mapping of the applications’ edges on

the NoC communication paths.

XCR→apps
ij =


1 if the CR i is allocated to the application node j

0 otherwise

Xpaths→links
ij =


1 if the NoC path i is allocated to the application link j

0 otherwise

XCR→apps is a NCR ×Nnodes matrix and Xpaths→links is a Npaths ×Nlinks matrix.
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3.2.5 Spatial Partitioning

The routing algorithm implemented on REDEFINE is a XY deterministic algorithm

(see Figure 2.4). To reach its destination, a packet first moves along the X-axis to

reach the destination’s column and then along the Y-axis to reach its row. There-

fore, an application can use the router of a tile while not using the CR of the same tile.

To enforce spatial partitioning on the Network on Chip, a tile whose router is used

by an application will be considered as dedicated entirely to this application. This is

symbolized by the gray square on Figure 3.1. The application does not use the CR

of the upper right tile but it uses its router for intra-application communication, for

instance from the upper left tile to the bottom right tile. We will refer to these nodes

as “ghost” nodes.

(a) The spatial configuration of an
application as computed by the compiler.

(b) A “ghost” node (in gray) is added
because the top right tile’s router is used by

the application for intra-application
communication.

Figure 3.1: Every tile that is used by an application for intra-application
communication is considered as a node of this application.

To avoid interference between the applications on the NoC, we must ensure that

two applications never share communication paths and routers. Therefore, in our

formulation, we consider that the ghost nodes of the applications belong to the set

of applications’ nodes. The difference with the other colored “true” nodes is that the

application can still run if the Compute Resource of the tile allocated to a “ghost”

node is faulty while the router of this tile is healthy.
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3.3 Constraints

The task allocation problem can now be formulated. The basic set of constraints is

the following:

1. ∀i = 1, . . . , NCR,
∑Nnodes

k=1 XCR→apps
ik ≤ 1 ⇐⇒ a CR can be allocated to at most

one application.

2. ∀i = 1, . . . , Nnodes,
∑NCR

k=1 XCR→apps
ki = 1 ⇐⇒ each application node must be

assigned to exactly one CR.

3. ∀i = 1, . . . , Npaths,
∑Nlinks

k=1 Xpaths→links
ik ≤ 1 ⇐⇒ a NoC path can be allocated

to at most one application link.

4. ∀i = 1, . . . , Nlinks,
∑Npaths

k=1 Xpaths→links
ki = 1 ⇐⇒ each application link must be

assigned to exactly one NoC path.

5. XCR→apps A = G Xpaths→links ⇐⇒ an application link that connects two ap-

plication nodes must be allocated to a NoC path connecting the two CRs on

which those two nodes have been mapped.

6. (XCR→apps)T TCR = TN ⇐⇒ an application node of type i must be assigned

to a CR of type i.

7. (Xpaths→links)T T paths = TL ⇐⇒ an application link of type i must be assigned

to a NoC path of type i.

8. All the decision variables are binary.

The constraints 1 and 3 are sufficient to ensure that spatial partitioning is enforced

on the NoC, as the “ghost” nodes are considered to be part of the applications.

However, more constraints need to be added to fulfill the objectives of the task

allocation problem.
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3.3.1 Faulty Compute Resources and Routers

More constraints need to be added to take into account that some Compute Resources

or routers may become faulty. Several cases are to be considered. Within a tile:

• If both the Compute Resource and the router are healthy, any application node

can be mapped on the tile.

• If the Compute Resource is faulty but the router is healthy, only “ghost” appli-

cation nodes can be mapped on the tile.

• If the router is faulty, regardless of the health of the Compute Resource, then

no application nodes can be mapped on the tile.

Therefore, to prevent the algorithm from allocating an application node to a tile

i that has a faulty router, the following constraint is used:

Nnodes∑
k=1

XCR→apps
ik = 0

To prevent the algorithm from allocating a true application node to a tile i that

has a faulty Compute Resource, the following constraint is used:

∑
k∈true nodes

XCR→apps
ik = 0

3.3.2 Spatial Orientation of the Applications

For each application it compiles, the REDEFINE compiler outputs the spatial config-

uration and orientation of the Compute Resources to which the application will be

mapped. Intra-application data communication is achieved using the relative (x, y)

positions of the CRs. Therefore, the applications cannot be rotated and must be

strictly implemented in the spatial configuration given by the compiler.
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To enforce this requirement in the ILP formulation, we use the fact that the CRs

are numbered, as shown on Figure 3.2.

Figure 3.2: Example of a 4× 4 mesh topology. Each gray square represents a tile
composed of a Compute Resource and a router. The edges represent communication

paths.

Therefore, using this numbering, we can ensure that the applications are strictly

mapped in the spatial orientation that the compiler computed. Indeed, the relative

orientation of two Compute Resources can be specified by ensuring that the difference

between the two CRs’ numbers is equal to a certain value, as shown on Figure 3.3.
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Figure 3.3: By ensuring that the difference between two CRs’ numbers allocated to
an application is equal to a specific number, the spatial orientation of the

application can be enforced. Here, only two of those constraints are necessary.

In the example above (Figure 3.3), two constraints are necessary to ensure that

the application has the right orientation:

• the difference between the number of the CR allocated to the bottom left CR

and the number of the CR allocated to the upper left CR must be equal to 4,

• the difference between the number of the CR allocated to the bottom right CR

and the number of the CR allocated to the bottom left CR must be equal to 1.

A set of constraint is added to the problem to ensure that the difference between

the numbers of the contiguous pairs of CRs allocated to an application matches the

orientation of this application, as computed by the compiler.

3.3.3 Clusters

Using a set of constraints, we can also ensure that an application is only mapped to a

certain subset of CRs on the NoC, and that the other applications cannot be mapped

on this subset. This has the effect of creating a cluster of CRs that is dedicated to

an application.
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For instance, to make sure that one application named critical is mapped on a

set of contiguous CRs named cluster and that no other application is mapped to this

set, the following constraints must be added:

• ∀i ∈ cluster,
∑

k∈apps\critical X
CR→apps
ik = 0 where apps \ critical is the set of

application nodes that do not belong to critical,

• ∀i ∈ CRs \ cluster,
∑

k∈critical X
CR→apps
ik = 0 where CRs \ cluster is the set of

CRs that are not in cluster.

3.3.4 Reallocating only one Application

As the reconfiguration process affects the behavior of an application for a certain

amount of time, constraints are added so that only the application that is affected by

the hardware fault is reallocated.

This can be done if the decision matrix XCR→apps is stored after each reconfig-

uration. If the previous value of XCR→apps is equal to XCR→apps
old , when a hardware

fault occurs and affects the application affected, then the following constraint can be

enforced for the next reconfiguration:

∀i = 1, . . . , NCR, ∀j ∈ apps \ affected, XCR→apps
ij = XCR→apps

old ij

where apps\affected is the set of application nodes that do not belong to the affected

application.
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3.4 Real-Time Reconfiguration

This section details the functioning of the centralized task allocation algorithm under

the assumptions given above.

In real-time, there are only two cases of hardware fault in which a reconfiguration

needs to be computed:

1. if a true application node is mapped on a tile which CR becomes faulty,

2. if any application node is mapped on a tile which router becomes faulty.

Indeed, a faulty CR within a tile does not affect an application which has one of

its “ghost” application nodes mapped to this same tile – it only uses its router.

3.4.1 Priorities

As stated above, as there is interest in executing one safety-critical application along

with non safety-critical applications simultaneously on the platform, a prioritization

system is implemented in the algorithm.

The prioritization of the applications allows to drop the non safety-critical appli-

cations if not enough resources are available for the critical one.

To do so, the algorithm takes a variable apps as a parameter, describing the set of

applications it should allocate on the fabric. When the algorithm fails to reconfigure

all the applications on the fabric, one or several non-critical applications can be

removed from the set apps.
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3.4.2 Algorithm

The algorithm takes several parameters:

• affected which is the set of application nodes belonging to the application that

is affected by the hardware fault,

• apps which is the set of applications that are to be considered for the reconfig-

uration process,

• XCR→apps
old which is the value of the decision matrix XCR→apps after the last

reconfiguration,

• cluster which is a boolean indicating if the safety-critical application must be

mapped within a specified cluster or not.

Using these parameters, the Integer Linear Programming problem can be solved

in real-time, depending on the health of the architecture.

Figure 3.4 shows an example of flowchart of the algorithm in the case where no

cluster has been defined.

In the case where a cluster has been defined for the safety-critical application,

meaning that a subset of the fabric tiles is dedicated to the critical application, the

flowchart is slightly modified. If a hardware fault affects the critical application, the

algorithm tries to reconfigure it inside the cluster. If this is not possible, then all the

non-critical applications are dropped and the algorithm allows the critical application

to be allocated on the whole fabric. If a hardware fault affects a non-critical applica-

tion, then it can only be reconfigured outside of the cluster.
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The algorithm stops when no solution was found to reallocate the safety-critical

application.

Figure 3.4: Flowchart of the proposed algorithm.

3.5 Objective Function

For this high-level task allocation algorithm, the problem is considered as being a

feasibility problem rather than an optimization problem. The goal is to determine if

a feasible solution exists.
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However, objective functions can be used for instance to:

• minimize/maximize the usage of certain tiles,

• minimize/maximize the usage of certain communication paths of the NoC,

• minimize/maximize the spatial distance between different applications on the

fabric.

3.6 Solving the Optimization Problem

Using the optimization problem solver Gurobi [30], the Integer Linear Programming

problem with the constraints and objective functions formulated above can be solved.

The problem is modeled on MATLAB using the modeling framework CVX [31, 32].
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CHAPTER 4

RESULTS

In this chapter, the behavior of the real-time task allocation algorithm is studied in

different scenarios, as well as its efficiency.

4.1 Capabilities of the Algorithm

In this section, the behavior of the algorithm in different configurations is demon-

strated. In the following examples, the three applications shown on Figure 4.1 are

considered.

(a) Application 1 (b) Application 2 (c) Application 3

Figure 4.1: The spatial configurations of the three different applications that are to
be executed on the platform. The gray squares represent the “ghost” nodes of the

applications, which only use the router of the tile for intra-application
communication.

One of them is considered safety-critical (the blue one), and the other two are

considered non-critical (see Table 4.1).

Table 4.1: Relative priorities and levels of criticality of the three applications.

Color Priority Criticality
Application 1 Blue Highest Critical
Application 2 Green Intermediate Non-Critical
Application 3 Yellow Lowest Non-Critical
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4.1.1 Mesh Topology

First, a 4× 4 Network on Chip in a mesh topology is considered (Figure 4.2).

Figure 4.2: Network on Chip in a 4× 4 mesh topology.

The following objective function is used (1):

Objective 1. max J =
∑

i∈{1,5,9,13}
∑

k∈true nodes XCR→apps
ik

The objective is to maximize the number of “true” application nodes (i.e. nodes

that use both the CR and the router of a tile) that are mapped on the leftmost tiles

(tiles number 1, 5, 9, 13 visible on Figure 4.2).

In this example, the architecture is considered homogeneous and all the Compute

Resources and the NoC paths have the same type.

The first execution of the algorithm gives the following configuration (Figure 4.3):
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Figure 4.3: Result of the first execution of the algorithm. Spatial partitioning is
enforced on the fabric.

Spatial partitioning is enforced on the fabric: no Compute Resources, routers or

NoC communication paths are shared by different applications.

4.1.2 Toroidal Mesh Topology

The topology of the NoC on REDEFINE is a 4×4 toroidal mesh, as seen on Figure 2.3.

The formulation also handles this topology. With this topology and the same objec-

tive 1, the first execution of the algorithm gives the configuration shown on Figure 4.4.

To facilitate the visualization of the NoC, only the wrap-around communication

paths that are actually used by an application are shown on Figure 4.4.
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Figure 4.4: Result of the first execution of the algorithm. The blue application is
mapped to the wrap-around NoC paths, and spatial partitioning is enforced on the

fabric.

As seen on Figure 4.4, the safety-critical application (in blue) is using the wrap-

around NoC paths. Spatial partitioning is still enforced on the fabric.

4.1.3 With a Cluster

In this example, a mesh 8 × 8 topology is considered and a cluster is defined. The

upper left 5×5 square of Compute Resources is dedicated to the safety-critical applica-

tion (in blue). The CRs of the cluster are represented by larger squares on Figure 4.5.

The result of the first execution of the algorithm is shown on Figure 4.6. The

critical application (in blue) is allocated within the cluster while the non-critical

applications are allocated outside of it.
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Figure 4.5: A mesh 8× 8 topology. The cluster (upper left 5× 5 square) is
represented by larger squares.

Figure 4.6: Result of the first execution of the algorithm. The cluster is dedicated
to the safety-critical application (in blue).
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4.2 Graceful Degradation

In this section, the behavior of the algorithm when hardware faults are detected is

demonstrated. We consider the three same applications as in the previous section

(see Figure 4.1 and Table 4.1).

The following representation of the health of the fabric tiles (Figure 4.7) is used:

Figure 4.7: Tile number 1 is unused. Tile number 2 has a faulty Compute Resource.
Tile number 3 has a faulty router.

As a reminder, a true application node can be mapped to a tile only if both

the router and the Compute Resource are healthy. A ghost application node can be

mapped to a tile as long as the router is healthy, regardless of the health of the CR.

4.2.1 Without a Cluster

In this subsection, we give an example of the reconfigurations that occur when hard-

ware faults are detected on a Network on Chip in a mesh 4× 4 topology.

The three applications can be mapped on the whole fabric since no cluster is

defined. Figure 4.8 shows the consecutive reconfigurations on the fabric when several

hardware faults occur.
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(a) The initial configuration on a healthy
fabric.

(b) CR 2 is faulty. It has no impact
because the green application can still

use router 2.

(c) CR 9 is faulty. The yellow
application is reconfigured.

(d) CR 5 is faulty. The green application
is reconfigured, and the yellow one is
dropped since it has a lower priority.

(e) Router 12 is faulty. The blue
application is reconfigured. It can still

use the router of tile 9 because only CR
9 is faulty.

(f) CR 15 is faulty. The blue application
is reconfigured, and the green one is
dropped since it has a lower priority.

Figure 4.8: First scenario of graceful degradation on a mesh 4× 4 fabric.
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As seen on Figure 4.8, the task allocation algorithm allows for graceful degrada-

tion by reconfiguring the architecture when a hardware fault is detected. All along,

spatial partitioning is enforced between the applications that are implemented on the

fabric.

Figure 4.9 shows that when the safety-critical application can no longer be exe-

cuted, the algorithm stops.

Figure 4.9: CR 6 is faulty. The safety-critical application can no longer be executed,
and the algorithm stops.

4.2.2 With a Cluster

In this subsection, we give an example of the reconfigurations that occur when hard-

ware faults are detected on a Network on Chip in a mesh 8 × 8 topology. A cluster

dedicated to the safety-critical application is defined: it can only be mapped to a

subset of fabric tiles. The cluster is consists of the upper left 5×5 square of Compute

Resources, as seen on Figure 4.5 where it is represented by larger squares.
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Figure 4.10 shows the consecutive reconfigurations on the fabric when several

hardware faults occur.

(a) The initial configuration on a healthy
fabric. The cluster is dedicated to the

safety-critical application (in blue).

(b) CR 17 is faulty. The blue application is
reconfigured within the cluster. It can still

use the router of tile 17 since only the CR is
faulty.

(c) CR 27 is faulty. The blue application is
reconfigured within the cluster.

(d) CR 11 is faulty. The blue application is
reconfigured within the cluster. It can still

use the router of tile 11 since only the CR is
faulty.
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(e) Router 58 is faulty. The green
application is reconfigured outside the

cluster.

(f) CR 21 is faulty. The blue application is
reconfigured within the cluster. It can still

use the router of tile 27 since only the CR is
faulty.

(g) CR 37 is faulty. The safety-critical
application cannot be reconfigured inside

the cluster, so all the non-critical
applications are dropped. From now on, the
critical application can be reconfigured on

the whole fabric.

Figure 4.10: Second scenario of graceful degradation on a mesh 8× 8 fabric, with a
subset of fabric tiles dedicated to the safety-critical application (in blue).

As seen on Figure 4.10, the task allocation algorithm enforces spatial partitioning

on the Network on Chip through the reconfigurations. It also maps the safety-critical
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application (in blue) to the cluster as long as it is possible. If it is not, all the non-

critical applications are dropped and the critical application is mapped anywhere on

the fabric, provided that enough Compute Resources and routers are healthy.

4.3 Fault Tolerance

In this section, the number of hardware faults the task allocation algorithm can han-

dle until the safety-critical application can no longer be executed is studied.

We generate 100 sequences of hardware faults to simulate the degradation of the

architecture. They can be either router faults or Compute Resource faults. We then

launch the algorithm on those sequences to study its results and efficiency.

For those trials, the three applications described on Figure 4.1 ar considered, with

the priorities shown in Table 4.1.

4.3.1 4× 4 Fabric

First, a 4 × 4 fabric is considered. Both the mesh and the mesh toroidal topologies

are studied.

As seen on Figure 4.11, for certain sequences, the two topologies can handle the

same number of hardware faults. Furthermore, the toroidal mesh topology is either

equally or more resilient than the mesh topology. This result is consistent with the

fact that the wrap-around NoC paths of the toroidal mesh offer more mapping solu-

tions for the applications links.

On average, the toroidal mesh topology tolerates 7.32 hardware faults while the

mesh topology tolerates 5.50 hardware faults.
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Figure 4.11: Number of hardware faults before the safety-critical application can no
longer be executed on the 4× 4 fabric, for the 100 trials. Mesh topology in blue and

toroidal mesh topology in red.

4.3.2 8× 8 Fabric

A 8 × 8 fabric is now considered. Both the mesh and toroidal mesh topologies are

studied.

As seen on Figure 4.12, the results obtained for the 8 × 8 fabric are similar to

those obtained for the 4×4 fabric. The toroidal mesh fabric tolerates more hardware

faults than the mesh fabric.

On average, the toroidal mesh topology tolerates 41.20 hardware faults while the

mesh topology tolerates 38.57 hardware faults. The larger size of the fabric allows for

more reallocation possibilities than in the 4× 4 case when faults occur.
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Figure 4.12: Number of hardware faults before the safety-critical application can no
longer be executed on the 8× 8 fabric, for the 100 trials. Mesh topology in blue and

toroidal mesh topology in red.

4.4 Computation Time

In this section, the computation time needed by each call of the solver is studied. As

the reconfigurations must take place in real-time when hardware faults are detected,

the algorithm must be efficient enough to compute the reconfigurations.

The computation time is measured on an Apple MacBook Pro (CPU 3.1 GHz

Intel Core i7). The problem is modeled on MATLAB using the modeling framework

CVX, and solved with Gurobi. The same 100 sequences of hardware faults and the

same three applications as in the previous section are used.

47



4.4.1 4× 4 Fabric

First, a 4 × 4 fabric is considered. Both the mesh and the mesh toroidal topologies

are studied.

The first solver call is not shown on Figure 4.13 since it corresponds to the initial

allocation of the applications on the healthy fabric. We are interested in studying the

reconfiguration overhead in case of hardware faults.

Figure 4.13: CPU time used by each solver call for the 100 trials, on a 4× 4 fabric.
Mesh topology in blue and toroidal mesh topology in red.

As seen on Figure 4.13, on average solving the optimization problem takes more

time in the case of a toroidal mesh topology. Indeed, the wrap-around NoC paths of

the toroidal mesh add binary decision variables to the problem.
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4.4.2 8× 8 Fabric

A 8× 8 fabric is now considered. Both the mesh and the mesh toroidal topologies are

studied.

Figure 4.14: CPU time used by each solver call for the 100 trials, on a 8× 8 fabric.
Mesh topology in blue and toroidal mesh topology in red.

As seen on Figure 4.14, the results are similar for a 4 × 4 topology: on average

solving the optimization problem takes more time in the toroidal mesh case.

Moreover, solving the optimization problem takes on average 82.8% more compu-

tation time in the mesh 8 × 8 case than in the mesh 4 × 4 case. Similarly, it takes

on average 70.9% more computation time in the toroidal mesh 8× 8 case than in the

toroidal mesh 4× 4 case. This is coherent, as more decision variables are required to
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describe the optimization problem in the 8× 8 cases.

Overall, the computation time required for the solver calls is well under the sec-

ond for almost every reconfiguration in the considered scenarios. This time strongly

depends on the formulation of the optimization problem, the ILP solver and the

platform on which it is implemented. It could therefore be reduced. The results nev-

ertheless show that solving the problem as it was formulated is not computationally

heavy, and that this approach is suitable for real-time purposes.

In a real implementation, in case of a detected hardware fault, the system would

switch to a healthy redundant system, while the faulty one is reconfigured. It could

then still be used as one of the redundant systems, despite its degraded health.

50



CHAPTER 5

CONCLUSION

5.1 Summary

This thesis aimed at studying a reconfigurable multi-core architecture, discussing its

suitability for executing safety-critical embedded software and developing a task allo-

cation algorithm to enforce certain constraints on its Network on Chip (NoC).

First, the REDEFINE architecture developed at the Indian Institute of Science

was presented. Its high-level structure, compiler, Network on Chip, memory manage-

ment and execution model were described. From this analysis, it was argued that the

architecture is suitable to execute safety-critical applications, provided that the allo-

cation of the applications meets certain constraints, in particular spatial partitioning

on the NoC. In addition, its dynamic features allow for graceful degradation of the

system.

Secondly, a centralized task allocation algorithm for REDEFINE was proposed.

The allocation problem was formulated as an Integer Linear Programming (ILP) op-

timization problem. Under the assumption that hardware faults are detected, it

manages the reallocation of the different applications when faults occur. The algo-

rithm enforces spatial partitioning on the fabric throughout the reconfigurations. It

supports multiple types of NoC topologies, constraints and hardware faults.
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Finally, the behavior of the algorithm in different configurations and its efficiency

were discussed. Several topologies, sets of constraints and hardware faults scenarios

were considered. The performance of the algorithm in terms of computation time

indicates that its use in a real-time environment is possible.

5.2 Future Work

In this section, various research leads emerging from the work achieved are discussed.

First, for the development of the presented task allocation algorithm, it was as-

sumed that the hardware faults are detected when they occur, and that the infor-

mation is made available to the Resource Manager. Therefore, a health monitoring

system must also be designed for the architecture. To that purpose, hardware fault

models must be defined.

Secondly, the proposed algorithm enforces spatial partitioning on the NoC be-

tween the applications at runtime. However, the channels used for input/output

(I/O) communication were not considered in this work. The communication between

the sensors, the actuators and the applications must also meet real-time constraints,

and this constitutes a possibility for future work.

Furthermore, in this work, a centralized task allocation algorithm designed to be

implemented at the Resource Manager level was developed. With this approach, the

Resource Manager constitutes a single point of failure of the architecture. Conse-

quently, there is interest in developing a decentralized task allocation algorithm.
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