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ABSTRACT

We study an extension of resummation to the fully differential cross section in the Drell-Yan

process. This new method extends the Collins-Soper- Sterman formalism to the longitudinal

WL and double delta helicity structure function W∆∆, recovering the next-to-leading-order

predictions. The new extension also modifies the transverse structure function WT obtained

in previous extensions.

The angular coefficients, λ and ν, used for parametrization of the angular distribution, were

studied with the new structure functions. No violation of the Lam-Tung relation was found.

A possible solution to explain the difference between theoretical and experimental results is

proposed. This solution may also explain the existence of the azimuthal asymmetry.

For completeness, leading-order and next-to-leading-order results are presented. The Collins-

Soper-Sterman formalism is also reviewed.
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CHAPTER 1. INTRODUCTION

The Drell-Yan (DY) process also known as lepton pair production is an inclusive large

momentum transfer reaction where two hadrons collide to produce a lepton pair coming from

the decay of a massive vector boson V . This reaction is sometimes schematically written as:

h(PA) + h′(PB) → V (q) +X → l− + l+ +X

where X includes all undetected final hadron states.

This type of process was first seen at BNL by Christenson, et al. [34] and [35]. They

studied the collision

p+ U → µ+µ− +X

for proton energies between 22 to 29 GeV and muon pair mass of around 1.7 GeV. The spec-

trum of lepton pair production observed by them, and many others after, is composed by the

superposition of the continuum which is explained through the DY mechanism [59], [60], [126]

and some quarkonium states which allowed the discovery of the charm quark and the beauty

quark in the 1970’s. For example, the J/Ψ was discovered 1 by muon pair production at BNL

[8] and later on in 1977 the Υ family of resonances was observed at Fermilab [79].

By 1980 DY was already providing information about the antiquark structure of the nu-

cleon [95], and by combining data obtained for the parton distributions of the proton and

antiproton the valence and sea distributions inside of both particles can be obtained [10]. It

was also possible, for the first time, to find out the distributions of unstable particles like the

1This discovery was simultaneous with the e+e− experiment at SLAC [9]
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pion and kaon [11], [99]. It is also worth to mention the discovery of W± and Z0 and the role

that DY played.

Since the 1990’s DY has become together with deep inelastic scattering (DIS) as an impor-

tant source in the global fits for the parton distributions inside a nucleon [104]. DY data has

recently provided the first measurement of the x dependence of the ratio d/u [100] and has

been part of the search for exotic particles, like the Z ′, using forward-backward asymmetry

[110] and the detection of extra dimensions [80]. In the new millennium DY remains a fertile

field for theory [22], [66] and experiment [56], [122].

The angular distribution of the leptons also offers some interesting surprises. When the

vector boson is a virtual photon we can write this distribution (Sec.2.3):

1

σ

dσ

dΩ
=

[
3

4π

1

λ+ 3

] [

1 + λ cos2 θ + µ sin 2θ cosφ+
(ν

2

)

sin2 θ cos 2φ
]

where the coefficients λ, µ and ν may in general depend on the kinematical variables of the

process and dΩ = d cos θdφ with θ and φ polar and azimuthal angles measured in the vector

boson’s rest frame ( Sec. 2.1 ). The parton model predicts λ = 1 µ = ν = 0. Experimentally

these predictions have been tested in three different ranges of energy and two different systems:

NA10 collaboration used π− +W at 194 GeV/c [67], [77], E615 collaboration used the same

system with 252 GeV/c [53] and E886 collaboration used p + d at 800 GeV/c [128]. The

experimental data showed ν as large as 0.3 [67] and [53], this phenomenon is known as the

cos 2φ asymmetry or azimuthal asymmetry in unpolarized Drell-Yan. The asymmetry was

found to be independent of nuclear corrections, increasing with the transverse momentum of

the lepton pair. The values for λ and µ coincide with the theoretical predictions except for a

few cases , [67], [77]. It is important to mention here that E615 results consistently exhibit

much larger values of ν [128]. Meanwhile the recent results from E886 show ν consistent with

zero [128]. In Fig. 1.1 taken from [128] we can observe the experimental results of the three
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collaborations together with fits to the data using:

ν = 16κ1
p2

TM
2
C

(
p2

T + 4M2
C

)2 (1.1)

where MC is a constant with value of about 2.4 GeV/c2 and κ1 = 0.47 ± 0.14 for NA10,

κ1 = 0.93 ± 0.10 for E615 and κ1 = 0.11 ± 0.04 for E866 [128].

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5 3 3.5 4

pT (GeV/c)

ν

π- + W at 194 GeV/c
π- + W at 252 GeV/c
p + d at 800 GeV/c

Figure 1.1 ν vs pT .

Continuing with the surprises, Lam and Tung [88] deduced for the DY process an analogue

of the Callan-Gross relation of DIS which expressed in terms of λ, µ, ν reads:

2ν − (1 − λ) = 0

This relation assumes massless and unpolarized spin 1/2 partons and neglects their intrinsic

transverse momentum. The Lam-Tung formula just states that at high energies the dominant

cross section is for the production of a virtual photon with transverse polarization and it is

valid in any frame where the lepton pair is at rest [38], [88].

Experiments show two types of results. The NA10 and E866 are largely consistent with

the Lam-Tung relation, while the E615 clearly establishes the violation of this relation [128].
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(See Fig. 1.2 taken from [128].)

1

2

3

NA10 π-+W at 194 GeV/c E615 π-+W at 252 GeV/c

E866 p+d at 800 GeV/c

λ

-0.5

0

0.5

µ

-1

-0.5

0

0.5

1

ν

-2

0

2

0 0.5 1 1.5 2 2.5 3 3.5 4

pT (GeV/c)

2ν
-(

1-
λ)

Figure 1.2 Parameters λ, µ, ν and 2ν − (1 − λ) vs pT .

Several types of corrections to the naive picture of the QCD modified parton model have

been put forward in order to explain the violation of the Lam-Tum sum rule and the cos 2φ

asymmetry. We can generically classify these corrections into two types: perturbative and

higher twist.

Higher order corrections in αS change the predicted values for λ, µ and ν but the corrections

at next to leading order do not alter the Lam-Tung relation [88] and it is almost unchanged

by next to next to leading order. It was also found that the slight violation predicted has the
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wrong sign compared with experiment [96].

Cleymans and Kuroda [37], [38] showed that ν and the Lam-Tung relation are modified by

the presence of intrinsic transverse momentum. Unfortunately the value of such modification

for ν is no bigger than 0.005 when ν ≈ 0.290 [67] and 0.05 for the Lam-Tung rule [53].

One particular model of higher twist corrections proposed very early [15],[16] and developed

further in [28], [65] considers non-scaling, non-factoring 1/Q2 contributions that assume that

the number of partons participating in the initial state of DY are more than the minimum nec-

essary. One of the quarks is assumed far off-shell and therefore needs to be regarded as bound.

The bound state is characterized by a gluon exchange with the quark that does not participate

in the hard scattering. Results from [28] allow to conclude that the violation of the Lam-Tum

sum rule and the azimuthal asymmetry may not be fully explained by higher twist effects of

the type just described. It is worth to notice that this model has not been completely ruled out.

In 1993, Brandenburg et al. [27], proposed that a nonperturbative gluonic background

could produce factorization breaking spin correlations in the initial state of the partons. Based

in this idea they proposed 1 − λ− 2ν ≈ −4κ where κ is a measure of the correlation between

the transverse spins of the incoming quarks with

κ = κ0
Q4

T

Q4
T +m4

T

(1.2)

this simple ansatz fits the 194 GeV/c data of NA10.

Boer and Mulders [19] advanced a mechanism inside the factorization frame in order to

elucidate single spin asymmetries in the DY process and in pp↑ → πX. Their idea is the

existence of a transversity distribution function h⊥1 that is chiral-odd T -odd with intrinsic

transverse momentum dependence. This function can be interpreted as the distribution of a

transversely polarized quark with nonzero transverse momentum inside an unpolarized hadron.

Boer later used the same function to explain a nonzero κ [20]. Since then, some models have
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been suggested to explain the possible origin of h⊥1 . For example in [22], h⊥1 of the proton and

the resulting cos 2φ asymmetry were found in a quark-scalar diquark model with initial state

gluon interaction. Lu and Ma [94] did similar calculations but this time h⊥1 of the pion was

determined in a quark-spectator-antiquark model with final state interaction. They were able

to fit the data in a reasonable way.

At this moment it is important to mention the compatibility between the ansatz given by

Brandenburg et al. [27] and the ideas advanced by Boer [20]. Of course some restrictions are

necessary in the general approach of [27], factorization is the most significant among others.

The authors of both papers also have suggested one more possibility as source of spin correla-

tions: instantons [23].

Since the large ν values observed by NA10 and E615 are absent in p+d and the Lam-Tung

relation remains valid also in this system there are constraints on theoretical models that pre-

dict a large azimuthal asymmetry originating from QCD vacuum effects. The experimental

results also suggest that the Boer-Mulders function for sea quarks is much more smaller than

that for valence quarks [101].

So far we have left out the effects of soft gluon emission in the violation of the Lam-Tum

sum rule and the cos 2φ asymmetry. Chiappetta and Le Bellac [33] considered soft-gluon

resummation at low QT in impact parameter space in the Collins Soper (CS) frame [39] fol-

lowing the formalism of Altarelli et al. [2]. They were unable to reproduce the experimental

behavior of ν and found that the deviation of the angular distributions from the 1 + cos2θ

naive behavior is not greater that 5%. Balázs et al. [12] and Ellis et al. [63] applied the

Collins-Soper-Sterman resummation method (CSS) [44], to the analysis of the decay of angu-

lar distributions for electroweak vector bosons in the CS frame. All the above authors have

only resummed the dominant terms of the form αk
S ln

(
Q2/Q2

T

)
/Q2

T which are only present in

the transverse component of the angular distribution and kept the leading order expressions
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for the other coefficients. This approach ignores the existance, in some of the angular factors,

of the 1/QT divergence and large logarithmic corrections as QT → 0 .

Boer ([21] and [24]) using the CSS resummation formalism and the transversity distribu-

tion function h⊥1 has shown the importance of the nonperturbative Sudakov factor to explain

the Q2 behavior of the cos 2φ asymmetry. Gamberg and Goldstein [70] performed a similar

analysis using factorization and the transversity distribution predicting the dependence of ν

as a function of the transverse momentum and the invariant mass of the lepton pair. Quite

recently Boer and Vogelsang [25] have revisited the role of resummation in DY at small trans-

verse momentum; they made clear that the angular coefficients are frame dependent and that

when there is a change of frame the logarithmic terms get reshuffled among them.

Here, we will calculate the fully differential DY cross section resumming the scalar functions

of the hadron tensor in a frame independent way. This resummation is inspired by the CSS

resummation formalism. We will discuss also how this extension may be a possible explana-

tion for the violation of the Lam-Tum sum rule and the azimuthal asymmetry. This study is

also relevant for processes like semi-inclusive deep inelastic scattering and back-to-back hadron

production in two-jet events in electron-positron annihilation, once the definitions of frames

and coordinate axes have been done and where no angular distributions exist.

This dissertation is organized as follows: Chapter 2 contains the basic definitions of the

kinematic variables involved in the process, together with a general analysis of the cross section

assuming only the decay of a heavy photon together with the introduction of the structure

functions; quantities that are measured in experimental setups. Chapter 3 describes the picture

of the DY process in the parton model and the QCD “corrections”. In Chapter 4 the low QT

limit is taken so resummation appears as consequence of the factorization in this region of

the phase space. In Chapter 5 the possible extensions of resummation to the fully differential

cross section appear and numerical results and conclusions are also shown.Three appendices
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complete the thesis. Appendix A contains some extra reference frames used in the literature,

Appendix B shows the QCD corrections to the Drell-Yan picture and Appendix C has several

mathematical results included in order to have a self-contained explanation.
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CHAPTER 2. MODEL INDEPENDENT CONSIDERATIONS

A general definition of the Drell-Yan cross section is presented here. In order to describe

this cross section it is necessary to introduce two different reference frames: the hadron center-

of-mass system and the dilepton center-of-mass system. The corresponding kinematic variables

are also defined. Several types of structure functions are presented in order to exhibit alterna-

tive ways to describe the different components of the cross section.

2.1 Kinematics

In order to describe the Drell-Yan process we will use two coordinate frames: center-of-

mass system of the incident hadrons, or just hadron c.m.s and the center-of-mass system of the

two leptons also known as the dilepton c.m.s. In the hadron c.m.s the hadrons are collinear

and the Z-axis is chosen along the beam direction; the X-axis is chosen to be in the direction

of the transverse momentum of the massive boson1 and the Y -axis just follows from the right

hand rule. We will denote the components in the hadron c.m.s as:

• Pµ
A beam momentum

• Pµ
B target momentum

• lµ− negative lepton momentum

• lµ+ positive lepton momentum

• qµ ≡ lµ+ + lµ− for the momentum of massive boson

1Note that this implies that in absence of QT the X-axis and Y -axis are undefined
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We will work with massless particles P 2
A = P 2

B = l2± = 0. This means that we are assuming

two conditions: the square of the hadronic center-of-mass energy is much bigger that the

hadron masses S = (PA + PB)2 ≫ P 2
A, P

2
B and the invariant mass of the dilepton is much

bigger that the lepton masses q2 = Q2 ≫ l2±. Experimentally it is possible to measure the two

momenta of the produced leptons except in the case of the production of W± boson. With

this information five Lorentz-invariant quantities2 can be found:

• Q2 the invariant mass of the vector boson V

• y the rapidity of V

• Q2
T transverse momentum square of V

• θ, φ polar and azimuthal angles of the positive lepton defined in the dilepton c.m.s.

Now, we need to specify the axes in the dilepton c.m.s. The only condition that we have so

far is that the boson should be at rest in this frame and since Q2 > 0 this is always possible.

In general if QT 6= 0 the beam momentum ~PA and target momentum ~PB are not collinear in

the dilepton c.m.s and therefore they define a plane, the (~PA, ~PB) plane. We will demand that

the y-axis be perpendicular to this plane3 and parallel to the Y -axis of the hadron c.m.s 4. We

will require also that when QT = 0 the z-axis should be the same for both frames 5. Note that

the direction of the x-axis is given by the right hand rule after we have chosen the z-axis. As

soon as we have selected our particular frame we can transform to any similar set of Cartesian

coordinates through a rotation around the y-axis [6]. Some of the popular choices for z-axis

found in the literature are [53], [67], [86] :

• ẑ parallel to the bisector of ~PA and the negative of the target momentum −~PB, this is

the Collins-Soper (CS) frame [39],

• ẑ parallel to the beam momentum ~PA, this is the t-channel helicity or Gottfried-Jackson

(GJ) frame [71],

2The Lorentz invariance is with respect to boosts along the z-axis
3Therefore y-axis is now normal to the reaction plane
4This is the convention of [39] but antiparallel to [53],[67].
5Thus when QT = 0 the two systems will differ only by a boost along the common z-axis
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• ẑ antiparallel to the target momentum ~PB , this is the u-channel (UC) frame [67],

• ẑ antiparallel to the sum of beam momentum and target momentum ~PA + ~PB , this is the

s-helicity (SH) frame [58].

Thus the polar angle θ is the angle between ẑ and ~l+ and the azimuthal angle φ is the angle

between the
(

~PA, ~PB

)

plane and the
(

ẑ,~l+

)

plane, see for example the angles in Fig. 2.1.

Here, we are only going to describe the CS frame leaving the depiction of the other Carte-

sian systems to the Appendix A. The reason of this choice is based in the behavior of this

frame at low QT . In this region the CS frame produces the simplest expressions for the helic-

ity structure functions (see Sec.2.3) because it minimizes the effects of the internal transverse

momentum of the colliding partons [86]. Another reason is the smooth transition of the kinetic

variables and helicity structure functions defined in this frame in the limit QT = 0.

To reach the CS frame for the hadron c.m.s we can follow the next two steps. First boost

along the ẑ-axis to an intermediate frame O∗ in which Q∗
z = 0. Then a second boost in the

−QT direction. In this frame as in the others ~Q′ = 0 and Q
′

0 = Q. Thus the matrix of

transformation of coordinates from hadron c.m.s to CS is given by:

ΛCM→CS =













Q0

Q −QT

Q 0 −Qz

Q

− Q0QT

Q
√

Q2+Q2
T

√
Q2+Q2

T

Q 0 QzQT

Q
√

Q2+Q2
T

0 0 1 0

− Qz√
Q2+Q2

T

0 0 Q0√
Q2+Q2

T













(2.1)

where (Q0, QT , 0, Qz) are the components of qµ measured in the hadron c.m.s.

The vectors ~P
′

A and ~P
′

B now make equal angles with the ẑ-axis, β = arctan (QT /Q). In this

way the definition of the transverse axes in the CS frame are determined by those of the hadron

c.m.s [39], see also Fig.2.1.
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Dilepton center-of-mass plane
 (z, l+) plane

z

PTarget

θ

φ

l-

l+

PBeam
x

y

(PBeam, PTarget ) plane

Figure 2.1 The Collins-Soper frame

2.2 The Drell-Yan cross section

The DY process is given by the elementary amplitude

ū(l+) (ieγµ) v(l−)
i (−gµν)

(l+ + l−)2
〈X| eJν(0) |PA, SA;PB , SB〉 (2.2)

were we are assuming that the interaction is electromagnetic, so the massive vector boson is a

virtual photon γ∗ with momentum q. The square of the amplitude can be represented by the

following diagrams

=

2

· νµ

h(PA)

h′(PB)

X(PX)

l+

l−

X X

qq

µ
ν

These diagrams already make explicit that we can separate the leptonic and hadronic degrees

of freedom using two independent tensors to write the square of the amplitude.

With this information in mind we can write the DY cross section

dσ =
e4

2S2

d3l+
(2π)32E+

d3l−
(2π)32E−

1

(l+ + l−)4
LµνWµν (2.3)
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the leptonic tensor Lµν is given by (neglecting the masses of the leptons),

Lµν ≡ 1

2
Tr [γµ/l+γ

ν /l−]

Lµν = 2lµ−l
ν
+ −Q2gµν + 2lµ+l

ν
− (2.4)

and the hadronic tensor is the square of the hadron matrix element shown in Eq.(2.2)

Wµν ≡ S
∑

X,PX

(2π)4δ4(PA + PB − l+ − l− − PX)

× 〈X(PX)| Jµ(0) |PAPB〉∗ 〈X(PX )| Jν(0) |PAPB〉 (2.5)

Note that an average over the spins of the initial hadron states is understood. Using the

completeness relation
∑

X,PX
|X(PX )〉 〈X(PX)| = 1 and the translation invariance,

J†
µ(y) = ei(P̂A+P̂B)·yJ†

µ(0)e−iP̂X ·y

it is possible to rewrite Wµν as an expectation value of a bilocal operator6 [86]:

Wµν = S

∫

d4y ei(l++l−)·y 〈PAPB |J†
µ(y)Jν(0) |PAPB〉 (2.6)

It is easy to see from this expression that the hadronic tensor contains the dynamical informa-

tion of the hadron state as probed by the virtual photon. Graphically:

=

µ ν

∑

X,PX

µ ν

XX

In order to completely separate the lepton from the hadron degrees of freedom we can

introduce 1 =
∫
d4qδ4(l+ + l− − q) in the phase space of the DY cross section

d3l+
(2π)32E+

d3l−
(2π)32E−

= d4q
d3l

(2π)64E2
δ(Q− 2E)

=
d4qdΩdE

8(2π)6
δ(
Q

2
− E)

=
d4qdΩ

8(2π)6
(2.7)

6There are several other normalization conventions for the hadronic tensor, see for example [14], [98], [121].
The advantage here is a dimensionless tensor.



14

where dΩ ≡ d cos θdφ. Equation (2.7) allows us to rewrite the DY cross section (2.3) as:

dσ

d4qdΩ
=

α2

2S2Q4 (2π)4
LµνWµν (2.8)

here the fine structure constant is given in natural units α = e2

4π . Now the lepton ten-

sor is only function of q and l: Lµν(l+, l−) → Lµν(l, q) and similarly for the hadron part

Wµν(PA, PB , l+, l−) → Wµν(PA, PB , q), thus the separation is complete and manifest7.

2.3 Structure functions

The Lorentz tensor Wµν(PA, PB , q) can be written as a sum of products of tensors and

scalar functions called structure functions. In principle we have at our disposition several

possibilities that may include combinations of the following terms gµν , Pµ
AP

ν
A, Pµ

BP
ν
B , Pµ

AP
ν
B ,

Pµ
Aq

ν , Pµ
Bq

ν and qµqν but symmetry considerations enter into play 8. From the properties of

the electromagnetic current and strong interactions we have some requirements:

qµW
µν =0 Current conservation, gauge invariance (2.9)

(W νµ)∗ =W µν Hermiticity (2.10)

Wµν(P̄A, P̄B , q̄) =W µν(PA, PB , q) Parity (2.11)

Wµν(P̄A, P̄B , q̄) = [W µν(PA, PB , q)]
∗ Time reversal (2.12)

Then, for example, hermiticity requires the symmetric part of the hadronic tensor to be real.

Since Lµν is symmetric we can safely assume that W µν is symmetric and real. By current con-

servation W µν also is “perpendicular” to the vector q, this reduces the number of independent

7Note that this separation is only possible because we have used the dilepton rest frame
8Factors including γµ are missing since we are considering a tensor where configurations over spins have

already been summed and averaged.
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structure functions to four9. Thus, we can write in the most general way,

W µν (PA, PB , q) = −
(

gµν − qµqν

Q2

)

W1 +

(

Pµ
A − q · PA

Q2
qµ

)(

P ν
A − q · PA

Q2
qν

)
W2

S

+

(

Pµ
B − q · PB

Q2
qµ

)(

P ν
B − q · PB

Q2
qν

)
W4

S

−
[(

Pµ
A − q · PA

Q2
qµ

)(

P ν
B − q · PB

Q2
qν

)

+

(

Pµ
B − q · PB

Q2
qµ

)(

P ν
A − q · PA

Q2
qν

)]
W3

S

(2.13)

where the structure functions are now functions of the four independent scalar invariants

Wi = Wi

(
q2, S, q · PA, q · PB

)
. Note, that the gauge invariance and the symmetry of W µν are

explicit. The structure functions shown here are known as invariant structure functions 10.

For reasons of theoretical convenience [86], it is useful to introduce helicity structure func-

tions. These functions are defined as the contraction of the hadronic tensor with a set of

polarization vectors defined with respect to one of the dilepton rest frames:

Wλ,λ′ ≡ ǫµλWµνǫ
∗ν
λ′ (2.14)

here the ǫµλ are the polarization vectors of the virtual photon with:

ǫµ0 ≡ ẑµ

ǫµ±1 ≡ (∓x̂− iŷ)µ /
√

2

and they also satisfy:

qµǫ
µ
λ = 0

ǫ∗µλ ǫνλgµν = −1 (2.15)

where the vectors (x̂, ŷ, ẑ) are the unit vectors of the respective Cartesian set in the chosen rest

frame. These vectors can be expressed in terms of the components of qµ using the appropriate

inverse matrix of any of the following transformations: (2.1), (A.1), (A.2), (A.3).

9When Jµ does not respect parity the number of independent functions rises to 9
10This definition of the invariant structure functions is by no means unique. See for example [86] and [121]
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Let us denote the helicity structure functions following the next set of conventions [86]:

WL ≡ W0,0

WT ≡ W1,1

W∆∆ ≡ W1,−1 +W−1,1

2

W∆ ≡ W1,0 +W0,1√
2

(2.16)

Thus, as their respective name indicates, WT is the structure function for a virtual photon

with transverse polarization, WL is for longitudinal polarization, W∆ is for a single-spin flip

and W∆∆ is for a double-spin flip.

We can rewrite the hadronic tensor W µν in terms of the vectors (x̂, ŷ, ẑ) and the helicity

structure functions:

W µν = −
(

gµν − qµqν

Q2

)

(WT +W∆∆) − 2x̂µx̂νW∆∆ + ẑµẑν (WL −WT −W∆∆)

− (x̂µẑν + x̂ν ẑµ)W∆ (2.17)

From (2.17) is easy to deduce

W µν (−gµν) = 2WT +WL (2.18)

which reflects the two transverse polarizations of the virtual photon.

Contracting (2.17) with the lepton tensor Lµν (l+, l−) in the dilepton c.m.s. where

lµ+ =
Q

2
(1, sin θ cosφ, sin θ sinφ, cos θ)

lµ− =
Q

2
(1,− sin θ cosφ,− sin θ sinφ,− cos θ) (2.19)

we can also express the DY cross section (2.8) in terms of the helicity structure functions [86]:

dσ

d4qdΩ
=

α2

2S2Q2 (2π)4
[
WT

(
1 + cos2 θ

)
+WL

(
1 − cos2 θ

)
+W∆∆ cos 2φ sin2 θ +W∆ sin 2θ cosφ

]

(2.20)
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There are several ways to extract the values of the helicity structure functions: directly from

the hadron tensor using the definitions (2.16), using the following projection operators:

WL = W µν ẑµẑν

WT =
W µν (−gµν) −WL

2

W∆∆ = WT −W µν x̂µx̂ν

W∆ = −W µν ẑµx̂ν (2.21)

or they also can be extracted from the DY cross section.

In order to compare with experimental results we will introduce the angular differential

cross section which is defined as the ratio of differential cross sections [39]:

dN

dΩ
≡ dσ

d4qdΩ

(
dσ

d4q

)−1

(2.22)

which is equal to:

dN

dΩ
=

3

8π

WT

(
1 + cos2 θ

)
+WL

(
1 − cos2 θ

)
+W∆∆ cos 2φ sin2 θ +W∆ sin 2θ cosφ

2WT +WL
(2.23)

where we have used,

dσ

d4q
=

α2

12S2Q2π3
(2WT +WL) (2.24)

We can also rewrite the angular differential cross section as [53], [67]:

dN

dΩ
=

3

4π

1

λ+ 3

(

1 + λ cos2 θ + µ sin 2θ cosφ+
ν

2
cos 2φ sin2 θ

)

(2.25)

the relation between WT ,WL,W∆,W∆,∆ and λ, µ, ν can be easily obtained:

λ =
WT −WL

WT +WL
µ =

W∆

WT +WL
ν =

2W∆∆

WT +WL
(2.26)

Equivalently, we can use a different parametrization [39],

dN

dΩ
=

3

16π

[

1 + cos2 θ +

(
1

2
− 3

2
cos2 θ

)

A0 + 2 sin θ cos θ cosφA1 +
1

2
cos 2φ sin2 θA2

]

(2.27)

and the relations between WT ,WL,W∆,W∆∆ and A0, A1, A2 are:

A0 =
2WL

2WT +WL
A1 =

2W∆

2WT +WL
A2 =

4W∆∆

2WT +WL
(2.28)
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Now the labor for the theory is to calculate W µν to obtain the helicity structure functions.

We will see in the next chapter how this is done in the parton model and how QCD corrects

this naive picture.
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CHAPTER 3. THE PARTON MODEL AND QCD CORRECTIONS

The Drell-Yan quark-antiquark annihilation picture for dilepton production rests on three

basic assumptions: On-shell massless partons, spin 1/2 partons with no polarization if the

parent hadron is unpolarized, and the coupling to the virtual photon is given by QED. We will

see in this chapter how QCD generalizes the parton model. QCD predictions for the helicity

functions to next-to-leading-order are also presented.

3.1 The parton model

3.1.1 The Drell-Yan picture

A light hadron is a bound state of several components where the ratio of the binding energy

to the mass of the constituents is about unity [90]. Because this ratio is so high, compared

with systems like the atom or the nucleus, it is not sound to suppose that the constituents

inside are quasi-free and also it is not sensible to assume a fixed number of these constituents.

As we shall see both affirmations are frame dependent. But first, let us called the constituent

particles “partons” which we will later identify as the quarks and gluons of QCD.

Following Feynman [68], [69], we will study the collision of two hadrons in the center-of-

mass frame of the colliding partons 1 where both particles are moving very fast head on. But

how fast? we will assume that EH ≫ mH ,mp with EH the energy of any hadron so we can

safely neglect all the masses involved. The partons inside each hadron interact with each other

and exist only in virtual states [30], [115]. Let us suppose that these virtual states have a

lifetime in the rest-frame of the hadron equal to τ which has an effective lower bound τ0 > 0,

1The following analysis will work in any generic infinite momentum frame
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so each hadron is made up of virtual states of non-zero lifetime.

Now, let us see the collision from the point of view of one of the participating partons.

This parton will see the approaching hadron experiencing Lorentz contraction and time dila-

tion. For instance, τ is dilated to τ EH

mH
whereas the radius rH is Lorentz contracted to rH

mH

EH

along the direction of motion. Therefore the colliding hadron will appear as a “pancake” with

a contraction along the direction of motion while the perpendicular direction is not affected,

see Fig.(3.1.a). At the moment of the collision, Fig.(3.1.b) the partons in this hadron appear

“frozen” because their self-interactions act at dilated time scales that are much longer than

the collision time.

Since the partons do not interact inside this hadron, there will be a single virtual state with

a well defined number of constituents when the collision takes place. Each parton will carry a

definite fraction ξi of the hadron’s momentum in the center of mass-frame of the parton-parton

collision and each ξi will satisfy 0 ≤ ξi ≤ 1 since it is unlikely that there can exist a parton

moving in opposite direction. Hence, we are assuming that the partons participating in the

hard scattering come with momentum ξiP
µ where Pµ is the momentum of the parent hadron

and P 2 = 0. If we also require that the parton density is not too high, the collision will essen-

tially involve only two partons. Then it makes sense to talk of the interaction of two partons

with defined momentum instead of the collision of two hadrons. After the collision Fig.(3.1.c)

anything can happen but the “final-state interactions” will not interfere with the hard collision.

Thus, it is not surprising that the DY cross section in the parton model is essentially

classical. This means that it is computed combining probabilities instead of amplitudes. We

will introduce the parton distribution function fj/H (ξ) as the probability to encounter a frozen

noninteracting parton of species j with momentum fraction ξ inside a hadron H. In the parton

model the Drell-Yan process involves specifically the annhilation of a parton and anti-parton

pair one for each hadron.
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PB

ξAPA ξBPB

(a)

(b)

(c)

γ∗

PA

Figure 3.1 Schematic parton-model picture for the Drell-Yan process

We can relate the participating partons as a pair quark, antiquark that annihilate each

other. Since our job is to calculate the hadronic tensor we need only to consider the following

QED cut diagram:

i

j

i

j

pA
Q2

ν µ

pB

which will give us the “partonic tensor” :

wµν
jj̄→γ∗ =

1

3

1

4
Tr [/pAγ

µ/pBγ
ν ]

=
1

3

(
pµ

Ap
ν
B + pν

Ap
µ
B − pA · pB gµν

)
(3.1)
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where lower case letters will be used to denote parton variables with

pµ
A = ξAP

µ
A

pµ
B = ξBP

µ
B (3.2)

The 1/3 factor comes from the average over initial state colors

1

3
=

(
1

3

)2 3∑

i,j=1

(δij)
2

and the 1/4 comes for the average over initial spins. Therefore the hadronic tensor for the DY

process is equal to:

W µν
hA+hB→γ∗ = S

∑

j

e2j

∫ 1

0

dξA
ξA

∫ 1

0

dξB
ξB

fj/A (ξA) fj̄/B (ξB)wµν
jj̄→γ∗ (2π)4 δ4(pA + pB − q) (3.3)

where ej is the electric charge of one of the interacting quarks in units of e and the sum is over

all quark and antiquark flavors. Using (2.8) we can find the corresponding cross section:

dσhA+hB→l+l−

d4qdΩ
=
∑

j

∫ 1

0
dξA

∫ 1

0
dξBfj/A (ξA) fj̄/B (ξB)

dσj+j̄→l+l−

d4qdΩ
(3.4)

with

dσj+j̄→l+l−

d4qdΩ
= e2j

α2

2sQ4
wµν

jj̄→γ∗Lµν δ
4(pA + pB − q) (3.5)

where Lµν is the lepton tensor given in Eq.(2.4) and s = (pA + pB)2 = ξAξBS.

In summary, we can consider the parton model as a generalization of the impulse approxi-

mation [30], [90]. This approximation rests upon two physical assumptions: Lorenz contraction

and time dilation of internal states. The time dilation is responsible for the incoherence in the

cross section, since the initial-state interactions between partons happen too early to interfere

with the hard collision and final-state interactions between the fragments occur too late. An

important consequence of incoherence is the universality of parton distributions, since they

describe processes that depend on the hadron and are independent of the hard scattering so

they are the same for all inclusive hard processes [116]. The Lorentz contraction is fundamental

for the universality of the parton distribution functions, since otherwise partons from different
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hadrons would overlap finite times before the hard process, 2 altering the distributions [46].

Notice also that there is no interference between different flavors or different fractions ξ of the

momentum.

3.1.2 Drell-Yan predictions

Our work now is to produce expressions for the helicity functions defined in Eq.(2.16).

The easiest way is to find the DY cross section in the parton model. This is done contracting

wµν
jj̄→γ∗Lµν in the dilepton c.m.s. The corresponding components of the lepton tensor have

already been defined in the last chapter. We need then, to provide the components of wµν .

The components of the beam and target momentum are:

PA =

(√
S

2
, 0, 0,

√
S

2

)

PB =

(√
S

2
, 0, 0,−

√
S

2

)

(3.6)

in the hadron c.m.s, this immediately forces the delta function in Eq.(3.5) to become δ4(pA +

pB − q) = δ(p0
A + p0

B −Q0)δ(p
z
A + pz

B −Qz)δ
2( ~QT ), so we will assume in this section that the

transverse momentum of the emitted photon is zero. Consequently, using the transformation

(2.1), when QT = 0, we can find the components of these two vectors in the dilepton c.m.s. :

P
′

A =

√
S

2

Q0 −Qz

Q
(1, 0, 0, 1)

P
′

B =

√
S

2

Q0 +Qz

Q
(1, 0, 0,−1) (3.7)

After some algebra the result is:

dσj+j̄→l+l−

d4qdΩ
= e2j

α2

12Q2

(
1 + cos2 θ

)
δ(p0

A + p0
B −Q0)δ(p

z
A + pz

B −Qz)δ
2( ~QT ) (3.8)

where we have used the definition of the invariant mass of the photon:

Q2 = Q2
0 −Q2

T −Q2
z (3.9)

2This is a type of initial-state interaction.
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For reasons that will become apparent soon, we need to introduce the rapidity y of the

virtual photon:

y =
1

2
ln

(
Q0 +Qz

Q0 −Qz

)

(3.10)

Thus the delta function and the phase space volume transform:

d4q =
1

2
dQ2dyd2 ~QT (3.11)

δ(p0
A + p0

B −Q0)δ(p
z
A + pz

B −Qz) =
2

S
δ(ξA − xA)δ(ξB − xB) (3.12)

with

xA =
Q√
S
ey

xB =
Q√
S
e−y (3.13)

so we obtain,

dσj+j̄→l+l−

dQ2dyd2 ~QTdΩ
= e2j

α2

12SQ2

(
1 + cos2 θ

)
δ(ξA − xA)δ(ξB − xB)δ2( ~QT ) (3.14)

and the corresponding DY cross section is equal to:

dσhA+hB→l+l−

dQ2dyd2 ~QTdΩ
=

α2

12SQ2

(
1 + cos2 θ

)
δ2( ~QT )

∑

j

e2jfj/A (xA) fj̄/B (xB) (3.15)

Let us pause for a second to analyze the result just obtained. We can see that the cross section

(3.15) has a remarkable consequence. Integrating we find,

Q4dσhA+hB→l+l−

dQ2
=

4πα2

9

Q2

S

∑

j

e2j

∫ 1

0
dξA

∫ 1

0
dξBfj/A (ξA) fj̄/B (ξB) δ

(

ξAξB − Q2

S

)

which explicitly shows that

Q4 dσ

dQ2
= F

(
Q2

S

)

(3.16)

This phenomenon is known as scaling. It means that the cross section and the structure func-

tions of Table 3.1 are independent of the momentum transfer Q to a certain extent. It is as if

for the DY process the Q dependence is totally defined by the annihilation of the quark and

anti-quark pair. This amazing result was one of the early successes of the DY model [60].
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The cross section (3.16) also constitutes a complete prediction, including normalization,

since the parton distribution functions are the same ones extracted from DIS. If the DY pic-

ture is correct, the transverse momentum of the lepton pair should be small, about 300 to 500

MeV and in the rest frame of the lepton pair the angular distribution with respect to the beam

axis is 1 + cos2 θ.

We can extract from Eq.(3.15) the structure functions. Instead, we will use the projection

operators defined in Eq.(2.21). Combining equations (3.1) and (3.3) we find that hadronic

tensor is equal to

W µν
hA+hB→γ∗ =

2(2π)4

3

∑

j

e2jfj/A (xA) fj̄/B (xB)

(

Pµ
AP

ν
B + P ν

AP
µ
B − S

2
gµν

)

δ2
(

~QT

)

(3.17)

From this, it is easy to obtain for any lepton c.m.s 3:

W µν(−gµν) =
2(2π)4

3
S
∑

j

e2jfj/A (xA) fj̄/B (xB) δ2
(

~QT

)

(3.18)

W µν ẑµẑν = 0 (3.19)

W µν x̂µx̂ν =
(2π)4

3
S
∑

j

e2jfj/A (xA) fj̄/B (xB) δ2( ~QT ) (3.20)

W µν ẑµx̂ν = 0 (3.21)

so the values for the helicity structure functions are:

WL = 0

WT = (2π)4

3 S
∑

j e
2
jfj/A (xA) fj̄/B (xB) δ2( ~QT )

W∆∆ = 0

W∆ = 0

Table 3.1 Parton model predictions for structure

functions

One example of the behavior of WT can be observed in Fig.3.2 together with the corre-

sponding cross section for pp̄ collision with a
√
S = 800 GeV/c in the lab frame. See Fig.3.3.
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Figure 3.2 WT vs Q, LO prediction
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Figure 3.3 d2σ
dQ2dy

vs Q, LO prediction

From Eq.(2.26) we can express the above relations in terms of λ, µ, ν:

λ = 1

µ = 0

ν = 0

Table 3.2 Parton model predictions for λ, µ and ν

We have also the interesting relations WL = 0 and WT 6= 0. We can understand this results

as consequence of helicity conservation in QED 4. A virtual photon with total spin 1 can only

couple in a process where the quark-antiquark pair have equal helicities. Thus the photon can

3Remember that when ~QT = 0, they are all equal.
4Helicity conservation is exact only for massless particles or in the high energy limit
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only couple to the following two combinations5:

qLq̄R qRq̄L

Let us take the second one. As it is shown in the Figure 3.4 the z-component of the spin of qR

is parallel to the direction of motion and the opposite is true for q̄L, the total helicity is 1. The

emitted photon can only have the same helicity which means that it has circular polarization

along the z′-axis or that is transversely polarized. Note that for the validity of this argument

is fundamental that the quarks have spin 1/2.

qR qL

z

+1/2 +1/2SZ=

H= +1/2 +1/2

z'

θ

H'=1

Figure 3.4 Helicity conservation in the Drell-Yan process

The parton relations of Table 3.1 imply that the helicity structure functions are not all

independent as we assumed when we deduced the general structure Eq.(2.17) of the hadronic

tensor. In order to find the explicit dependence let us write the most general form for the

hadronic tensor in the dilepton c.m.s6:

W µν = −
(

gµν − qµqν

Q2

)

G1 + x̂µx̂νG2 + ẑµẑνG3 + (x̂µẑν + x̂ν ẑµ)G4 (3.22)

and compare it with the hadronic tensor (3.3):

W µν = −
(

gµν − qµqν

Q2

)

WT − ẑµẑνWT (3.23)

5The value of the helicity for an antiparticle is the opposite of the corresponding value for a particle
6To make easier the comparison with previous literature we remark that the G1 used here is equal to the

invariant structure function W1 defined in Eq. (2.13) and it is also equal to the invariant function of the same
name used in [86], [87], [88] and [25]. This function can be easily extracted because is the coefficient of −gµ,ν

in the hadronic tensor.
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thus

G1 = WT (3.24)

and

2G1 = W µν (−gµν) (3.25)

here we have used Eq.(2.18) and Table 3.2.

From the general relation (3.22) and assuming (3.25) we can obtain the following equations

among them the Lam-Tung relation:

2G1 = 3G1 +G2 +G3 (3.26)

and then, deduce an explicit relation among the G’s

0 = G1 +G2 +G3 (3.27)

Using Eq.(3.22) and Eq.(2.21) we get

WL = G1 +G3

−2W∆∆ = G2

Eq.(3.27) together with the above results allow us to find an equivalent relation in terms of

the helicity structure functions,

WL = 2W∆∆ (3.28)

At the parton level this result is trivial since we have that both functions are equal to zero.

The importance will be seen once we move to next-to-leading order predictions. Equations

(3.25) and also (3.28) are known as the Lam-Tung relation [86] and are the analogues of the

Callan-Gross relation in DIS [86]. The Lam-Tung relation is independent of the lepton c.m.s

chosen and depends fundamentally on Eq.(3.25).

The Lam-Tung result can also be described in terms of the λ, µ, ν, defined in Eq.(2.26):

1 − λ− 2ν = 0 (3.29)

or in terms of the A’s described in the last chapter, equations (2.27) and (2.28):

A0 = A2 (3.30)
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The Lam-Tung relation just expresses the fact that at high energies the dominant cross

section is for the production of a virtual photon with transverse polarization. This is a direct

consequence of collinear partons with spin 1/2 .

3.1.3 The parton model in quantum field theory

We want now to give a field theoretical explanation of the parton model. Thus we need to

start with the Feynman diagram,

ν

PB

pA

PA

X ′

X

Aq̄
β

Aq
α

pB

q

and the corresponding amplitude:

M =
1

q2
ū (pA) (iγν)Aq (PA,X) v (pB) (iγν)A

q̄
(
PB ,X

′)

where,

Aq
α (PA,X) ≡ 〈X|ψα(0) |PA〉

Aq̄
β

(
PB ,X

′) ≡
〈
X ′∣∣ ψ̄β(0) |PB

〉

with ψα(x) and ψ̄α(x) the quark and antiquark fields (we are suppressing any other labels

necessary to specify the state of the interacting hadrons). Aq and Aq̄ can be considered as

the amplitudes to produce a virtual quark or antiquark in the transitions | PA〉 → | X〉 or

| PB〉 → | X ′〉. In the above Feynman diagram we are going to make the following two

assumptions:

1. The interaction is given by the Born approximation.

2. The soft matrix elements |A|2 fall off rapidly for pi off of the mass shell and for pi

non-collinear with the parent hadron momentum Pi, i.e the soft matrix elements only

important when p2
i ≈ 0 and pµ

i Pµ i ≈ 0
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The first assumption means that diagrams like,

are not the dominant contributions to W µν in the limit Q2 → ∞, S → ∞ with Q2/S fixed.

We need now to introduce light-cone coordinates. They can be seen as a change of coordi-

nates from the usual (0, 1, 2, 3) or (t, x, y, z) [49]. Given an arbitrary vector V µ, we define

V + ≡ V 0 + V 3

√
2

(3.31)

V − ≡ V 0 − V 3

√
2

(3.32)

V T ≡ ~VT = (Vx, Vy) (3.33)

with7 V 2 = 2V −V + − (V T )2. Thus we can write V µ =
(
V +, V −, V T

)
. We will introduce also

some “unit” vectors along the plus, minus and transverse directions:

n+ ≡
(
1, 0, 0T

)

n− ≡
(
0, 1, 0T

)

nT ≡
(

0, 0,~1
)

(3.34)

it is easy to see that,

n+ · n+ = n− · n− = n+ · nT = n− · nT = 0 (3.35)

7In general A · B = A+B− + A−B+ − AT · BT



31

and

n+ · n− = 1 (3.36)

Notice that the mathematical value of each Feynman diagram is dependent upon the par-

ticular gauge being used. With this in mind we will use the light-cone gauge8 [51], [112] A+ = 0

which can also be written in covariant way n−µA
µ(x) = 0. It turns out that in the family of

physical gauges, diagrams like the one above are not important [91]. So we can affirm safely

that the hadron tensor is given at Born level by the diagram

PB

pA

pB

Φj/A

Φj̄/B

q q

PA

µν

that corresponds to the annihilation of a quark j from hadron A and antiquark j̄ from hadron

B plus a similar diagram with the antiquark coming from A and a quark from B. So the

hadronic tensor is at lowest order in αS :

W µν = S
∑

j

e2j

∫
d4pA

(2π)4

∫
d4pB

(2π)4
(2π)4 δ4(pA + pB − q)Tr

[

Φj/A (PA; pA) γµΦj̄/B (PB ; pB) γν
]

(3.37)

8It is also possible to use other physical gauges. For example we can change n− to ñ =
�
1/

√
2, 1/

√
2, 0T

�
with ñ2 = −1 [111], [42].
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The sum in W µν is over all quark flavors and we have averaged over quark colors. Here, we

need to define the quark and antiquark correlation matrices 9 [109],[115]:

Φj/A (PA; pA)αβ ≡
∫

d4y e−ipA·y
〈

PA

∣
∣
∣ψ̄

(j)
β (y)ψ(j)

α (0)
∣
∣
∣PA

〉

(3.38)

Φj̄/B (PB ; pB)αβ ≡
∫

d4y e−ipB ·y
〈

PB

∣
∣
∣ψ(j)

α (y)ψ̄
(j)
β (0)

∣
∣
∣PB

〉

(3.39)

where ψ(j) and ψ̄(j) are respectively the unrenormalized quark and antiquark field operators

of flavor j.

Let us check the consequences of assumption 2. We have

p2 = 2p+p− −
(
pT
)2 ≈ 0

pµPµ = P+p− + P−p+ − P T · pT ≈ 0

In terms of the light-cone coordinates the beam momentum is:

PA =

(√

S

2
, 0, 0T

)

(3.40)

and the target momentum:

PB =

(

0,

√

S

2
, 0T

)

(3.41)

thus

pA · PA = P+
A p

−
A ≈ 0

pB · PB = P−
B p

+
B ≈ 0

it is easy to see that pT
A ≈ 0, pT

B ≈ 0, p−A ≈ 0 and p+
B ≈ 0. Therefore, Φj/A will fall off very

quickly when pT
A and p−A get large and in the same way Φj̄/B will not contribute when pT

B and

p+
B are large. We will ignore the quark transverse motion and only the collinear configuration

will be considered. Setting

p+
A = ξAP

+
A (3.42)

and

p−B = ξBP
−
B (3.43)

9Averages over color and spin are understood in this definition.
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the delta function now is:

δ4(pA + pB − q) = δ(p+
A + p+

B −Q+)δ(p−A + p−B −Q−)δ2( ~QT )

= δ(p+
A − ξAP

+
A )δ(p−B − ξBP

−
B )δ2( ~QT )

=

[
1

P+
A

δ

(

ξA − p+
A

P+
A

)][
1

P−
B

δ

(

ξB − p−B
P−

B

)]

δ2( ~QT )

where q = ξAP
+
A + ξBP

−
B . Using the above result and

d4pA = P+
A dξAdp

−dpT

d4pB = P−
B dξBdp

+dpT

we can write the hadronic tensor (3.37) as:

W µν = Sδ2( ~QT )(2π)2
∑

j

e2j Tr
[(
Fj/A

)
γµ
(

Fj̄/B

)

γν
]

(3.44)

where we have defined,

(
Fj/A

)

αβ
≡

∫
dpT

A

(2π)2
dp−A
2π

dξA δ

(

ξA − p+
A

P+
A

)
(
Φj/A

)

αβ

(

Fj̄/B

)

αβ
≡

∫
dpT

B

(2π)2
dp+

B

2π
dξB δ

(

ξB − p−B
P−

B

)(

Φj̄/A

)

αβ

Note that

(
Fj/A

)

αβ
=

∫

dξA δ

(

ξA − p+
A

P+
A

)∫

dy− e−ip+
Ay−

〈

PA

∣
∣
∣ψ̄

(j)
β (0, y−, 0T )ψ(j)

α (0)
∣
∣
∣PA

〉

(3.45)

and

(

Fj̄/B

)

αβ
=

∫

dξB δ

(

ξB − p−B
P−

B

)∫

dy+ e−ip−By+
〈

PB

∣
∣
∣ψ(j)

α (y+, 0, 0T )ψ̄
(j)
β (0)

∣
∣
∣PB

〉

(3.46)

We want now to parametrize
(
Fj/A

)
and

(

Fj̄/B

)

. Since they are 4×4 matrices we can use a gen-

eral decomposition in a basis of Dirac matrices. For example we can use
{
1, γµ, σµν , γ5, γ5γµ

}

to write
(
Fj/A

)

αβ
=

1

2

{
S 1 + Vµγ

µ + Aµγ
5γµ + Pγ5 + Tµνσ

µν
}
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where the factor 1/2 is introduced for later convenience. The quantities S ,Vµ,Aµ,P,Tµν

are only functions of the vectors Pµ
A and pµ

A. Borrowing from DIS the fact that the partonic

part is always odd in gamma matrices, if we neglect the quark mass, we conclude that only
{
γµ, γ5γµ

}
can contribute. For spin averaged process γ5γµ is not present so we are left with

γµ. So
(
Fj/A

)

αβ
is equal to:

(
Fj/A

)

αβ
=

1

2
Vµ (γµ)αβ (3.47)

where V µ is given by:

V
µ = Tr

[
1

2

(
Fj/A

)
γµ

]

(3.48)

Inserting this identity in (3.45) we obtain:

V
µ =

1

2

∫

dξA δ

(

ξA − p+
A

P+
A

)∫

dy− e−ip+
Ay−

〈

PA

∣
∣
∣ψ̄

(j)
β (y+ = 0, y−, yT = 0)γµ

αβψ
(j)
α (0)

∣
∣
∣PA

〉

(3.49)

Now V µ can only be function of the vector Pµ
A and pµ

A thus

V
µ (PA, ξA) = Vj/A (PA, ξA)Pµ

A + O(nµ) (3.50)

with

Vj/A =
V µn−µ

P+
A

(3.51)

where n−µ is the unit vector along the minus direction defined above and the corrections de-

pending on this vector are power suppressed. So, we have:

Vj/A =
1

2P+
A

∫

dξA δ

(

ξA − p+
A

P+
A

)∫

dy− e−ip+
Ay−

〈

PA

∣
∣
∣ψ̄(j)(y+ = 0, y−, yT = 0)γ+ψ(j)(0)

∣
∣
∣PA

〉

(3.52)

and finally putting all together

Fj/A =

1

2P+
A

∫

dξA δ

(

ξA − p+
A

P+
A

)∫

dy− e−ip+
Ay−

〈

PA

∣
∣
∣ψ̄(j)(y+ = 0, y−, yT = 0)γ+ψ(j)(0)

∣
∣
∣PA

〉( /PA

2

)

(3.53)

here /PA = Pµ
Aγµ.



35

We can pause for a second to compare equations (3.45) and (3.53). In the last one we have

separated the spinor and Lorentz indices which are now concealed in /PA/2 and we are left with

a scalar function that contains all the pertinent information.

Substituting (3.53) into (3.44) we find:

W µν = S δ2( ~QT )(2π)2
∑

j

e2j

(
1

2

)2

Tr [/PAγ
µ/PBγ

ν ]

× 1

2P+
A

∫

dξA δ

(

ξA − p+
A

P+
A

)∫

dy− e−ip+
Ay−

〈

PA

∣
∣
∣ψ̄(j)(0, y−, 0T )γ+ψ(j)(0)

∣
∣
∣PA

〉

× 1

2P−
B

∫

dξB δ

(

ξB − p−B
P−

B

)∫

dy+ e−ip−By+
〈

PB

∣
∣
∣Tr

{

γ−ψ(j)(y+, 0, 0T )ψ̄(j)(0)
}∣
∣
∣PB

〉

(3.54)

which can be rewritten as

W µν = S δ2( ~QT )(2π)4
∑

j

e2j

×
∫

dξAδ
(
ξAP

+
A − p+

A

)
fj/A (ξA)

×
∫

dξBδ
(
ξBP

−
B − p−B

)
fj̄/B (ξB)

× 1

4
Tr [/pAγ

µ/pBγ
ν ] (3.55)

where we have defined after comparing with (3.3) [42], [51]:

f0
j/A (ξA) ≡ 1

4π

∫

dy− e−iξAP+
A y−

〈

PA

∣
∣
∣ψ̄(j)(0, y−, 0T )γ+ψ(j)(0)

∣
∣
∣PA

〉

A+=0
(3.56)

f0
j̄/B (ξB) ≡ 1

4π

∫

dy+ e−iξBP−
B y+

〈

PB

∣
∣
∣Tr

{

γ−ψ(j)(y+, 0, 0T )ψ̄(j)(0)
}∣
∣
∣PB

〉

A−=0
(3.57)

The reader should not get confused for the apparent differences between the definitions (3.56)

and (3.57). As it is denoted, they are defined in different gauges and they need to be renor-

malized. To obtain a gauge invariant definition we follow the standard procedure to introduce

a Wilson line between the quark and antiquark fields [51], [102], [112]:

f0
j/A (ξA) =

1

4π

∫

dy− e−iξAP+
A y−

〈

PA

∣
∣
∣ψ̄(j)(0, y−, 0T )γ+O0ψ

(j)(0)
∣
∣
∣PA

〉
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where

O0 = P exp

(

ig0

∫ y−

0
dz−A+

0,a

(
0, z−, 0T

)
ta

)

Here P denotes a path-ordered product, while the ta are the generators for the 3 represen-

tation of SU(3). There is also an implied sum over the color index a.

To see why we need renormalization we can for example rewrite (3.56),

f0
j/A (ξA) =

∑

N

δ
(
P+

A (1 − ξA) − P+
N

) 1

2

〈
PA

∣
∣ψ̄(0)γ+ |PN 〉 〈PN |ψ(0)

∣
∣PA

〉
(3.58)

so it is clear that these matrix elements are UV divergent since they contain outgoing states

|PN 〉 with unbounded transverse and minus momenta [51], [112], [115]. The presence of UV

divergences does not allow us to interpret the above distributions as number densities [112].

The renormalization can be done by ordinary UV renormalization of the field operators [51],

for example the MS [42], MS [46], [112] or DIS [30] schemes can be used. So we finally arrive

to:

fj/A (ξ, µF ) =
1

4π

∫

dy− e−iξP+y−
〈

PA

∣
∣
∣ψ̄(j)(0, y−, 0T )γ+Oψ(j)(0)

∣
∣
∣PA

〉

R
(3.59)

fj̄/A (ξ, µF ) =
1

4π

∫

dy− e−iξP+y−
〈

PA

∣
∣
∣Tr

{

γ+ψ(j)(0, y−, 0T )Ôψ̄(j)(0)
}∣
∣
∣PA

〉

R
(3.60)

here

O = P exp

(

ig

∫ y−

0
dz−A+

a

(
0, z−, 0T

)
ta

)

Ô = P exp

(

−ig
∫ y−

0
dz−A+

a

(
0, z−, 0T

)
tTa

)

Note that with the renormalization a scale µF is introduced. The evolution of the parton

distributions with the scale µF is given by the DGLAP equations [42], [112] :

µ2
F

d

dµ2
F

fj/A (x, µF ) =

∫ 1

x

dξ

ξ

∑

k

Pj/k

(
x

ξ
, αS(µF )

)

fj/A (ξ, µF ) (3.61)

with Pj/k the Altarelli-Parisi kernel expanded in αS to a suitable order and k runs over quark

and antiquark flavors and the gluon.
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The definitions (3.59) and (3.60) are related by charge conjugation. We can take Eq. (3.59)

as antiquark distribution if we define [115]

γ+ψ(j) ≡ ψ̄(j̄), ψ̄(j) ≡ ψ(j̄) (3.62)

For completeness we include here the definition of the gluon distribution [42], [112] :

fg/A (ξ, µF ) =
1

2πξPA

∫

dy− e−iξP+y− 〈
PA

∣
∣F+

a (0, y−, 0T )OabF
+
b (0)

∣
∣PA

〉

R
(3.63)

where

Oab = P exp

(

ig

∫ y−

0
dz−A+

c

(
0, z−, 0T

)
tc

)

Here tc are the generators of the 8 dimensional representation of SU(3).

3.2 QCD Picture

Quantum Chromodynamics (QCD) is the non-Abelian gauge field theory that describes

the strong interaction. In order to understand how QCD generalizes the parton model and

modifies the naive DY picture previously described we will make a short detour in order to

give a part of the historical background.

By the end of the 1960’s and beginning of the 1970’s several experimental facts were present

that made the theoretical picture confusing. From the 1950’s until today we have a continu-

ously increasing set of particles, hadrons, [61] that behave in ways that are reminiscent of the

proton and neutron so very early it was postulated that all of them were composed by “smaller”

more fundamental entities , called quarks, but despite intensive searches free quarks were not

seen. So they became a useful mathematical fiction [124]. But after the DIS experiments of

1969 [18], the discovery of asymptotic freedom [74], [75] and the DY experiments at BNL [34]

their physical reality was accepted and they are now among the fundamental constituents of

matter [61]. Quarks exhibit remarkable properties: their electric charges are fractions
(

1
3 or 2

3

)

of the charge of the electron, they only appear in sets of two or three and when we want to

break them apart it is easier to obtain again sets of two or three than to isolate one. So they
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interact quite strongly.

The attentive reader should be asking now: how is that possible? The parton model pic-

ture described just two sections ago, shows hadrons as bags of quarks behaving as almost free

point-like particles and now we cannot take them apart.

To solve this apparent paradox we will follow the ideas of David Gross [76]. In 1968 Callan

and Gross [31] discovered, using current algebras, an interesting sum rule for the structure

functions F1 and F2 of DIS:

2xF1(x) = F2(x) (3.64)

where x is the Bjorken variable. It was precisely Bjorken whom in fall of the same year noted

that this sum rule together with dimensional analysis would suggest scaling in DIS [76]. This

scaling is of the same type described in Eq.(3.16) and was observed for first time at the DIS

experiment at SLAC of 1969 [18]. Relation (3.64) also implies [32]:

σL

σT
→ 0 (3.65)

when Q2 → ∞ and where σL (σT ) is the cross section for the scattering of longitudinal (trans-

verse) polarized photons. This equation made possible to determine the spin of the constituents

of the nucleons, since σL = 0 is the case for particles of spin 1/2, while at the same time σT = 0

is the case for scalar particles. As has already been said before this is equivalent to Eq.(3.28)

in the DY process.

By 1969 Gross was convinced that [76]

“...in a field-theoretic context only a free, noninteracting theory could produce exact

scaling”

So, he set to prove that no gauge theory could have such behavior. In modern terms his

research plan was to prove that there was no gauge theory with asymptotic freedom, of course
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he proved himself wrong, but his instinct about the importance of scaling was the crucial

insight.

3.2.1 Asymptotic Freedom

The explanation of scaling is the essential characteristic of QCD and paved the way to make

this theory “the theory” of strong interactions. Asymptotic freedom is the term to describe

the decrease of αS , the “strong coupling constant,” at short distances and its increase toward

longer distances and times. Asymptotic freedom elucidates how the quarks can behave almost-

freely, a requirement from scaling, and its flip side that the coupling increases with distance,

a phenomenon known as confinement 10. Analytically, we can prove asymptotic freedom by

calculating the dependence of the coupling constant from the renormalization scale µ [74], [75],

[103]. This is done solving the renormalization group equation 11:

µ
d

dµ

αS(µ)

π
= −β0

(
α(µ)

π

)2

− β1

(
α(µ)

π

)3

−O(α4
S)

This derivative can be calculated pertubatively in QCD. The fist two coefficients are known

[30], [48]:

β0 =
33 − 2nf

12

β1 =
306 − 38nf

48

where nf is the number of quark flavors. To find an approximate solution we can set all βi,

with i ≥ 1, equal to zero to obtain:

µ
d

dµ

αS(µ)

π
= −β0

(
α(µ)

π

)2

and solving for αS(µ) we find

αS(µ) =
αS(µ0)

1 + αS(µ0)
β0

π ln
(

µ2

µ2
0

) (3.66)

Here we have used αS(µ)|µ0
= αS(µ0) as boundary condition. We can choose, for instance,

αS (µ0 ≈MZ) ≈ 0.112 with MZ ≈ 91GeV . It is easy to see how the sign of β0 defines the

10Confinement remains to be analytically proved, see the million dollar price at [36]
11This particular example is performed in the MS scheme
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behavior of the coupling constant. Since β0 > 0 in QCD, we have αS(µ → ∞) → 0. With

asymptotic freedom the strong interaction at high energies becomes “weak” and so pertur-

bative methods are useful. Thus, asymptotic freedom can be applied to observables that are

dominated by the short-distance, high energy behavior of QCD.

Asymptotic freedom can be interpreted as the antiscreening or strengthening of applied

magnetic fields in paramagnetic materials (those materials whose magnetic moments align

with an applied field). This behavior is a consequence of the self-coupling of the gluons and

produces the 33/12 term in β0, while the quarks produce the competing effect of screening;

thus the −2nf/12 is analogous to screening in diamagnetic materials (those whose internal

magnetic field opposed the applied field) [118].

3.2.2 The choice of scale

12The µ present in the previous section is an arbitrary scale introduced during renormal-

ization and determines the strength of the interaction. In principle, it can have any finite

value. In standard perturbative QCD, pQCD, we can expand, for example, a cross section in

the following way13:

σ

(

Q2
i

µ2
,
Q2

j

Q2
j

,
p2

i

µ2
,
m2

µ2
, αS(µ)

)

=

∞∑

n=1

Cn

(

Q2
i

µ2
,
Q2

j

Q2
i

,
p2

i

µ2
,
m2

µ2

)(
αS(µ)

π

)n

(3.67)

where Q2
i and Q2

j are large external momenta which define the energy exchange of the process,

p2
i represents the small external invariants, like small masses of observed external particles,

m2 is the mass scale of the colliding partons: quarks and gluons and µ is the renormalization

scale or factorization scale. We will neglect the small mass scales p2
i and m2

i to fix the value

of αS , since we want it as small as we can. Very often the coefficient functions Cn depend

logarithmically on the ratios of all the mass scales shown in Eq.(3.67); then, if we select a value

µ very different from the large scales Qi we will have large logarithms and as consequence we

12This section and the next one follow closely [105]
13Any physical observable is independent of the renormalization scale



41

can spoil the perturbative expansion. Choosing µ2 ≈ Q2
i we encounter:

Q2
i

Q2
j

≡ χij ≈ O(1)

but

p2
i

Q2
i

≈ O(0),
m2

i

Q2
i

≈ O(0),

here we have assumed that the quark masses and the hadron masses are small compared with

the large scale of the process. Logarithms of the above quantities are quite large and thus

terms like αS (µ ≈ Qi)× ln
(
m2/Q2

i

)
are not small making the expansion unusable. The sensi-

tivity to the masses of the partons is known as infrared sensitivity. Any observable with such

dependence cannot be reliably calculated in pQCD.

The smart reader should be arguing now that the quarks and gluons are not observed in the

detectors so the dependence maybe is just for the masses of the hadrons if they are observed.

Generally, such masses are small compared with the large exchange scale masses of the process.

So, we are back to the same problem. We can conclude that pQCD can be used for observables

which are not sensitive to the masses of the partons or hadrons involved. Such physical quan-

tities are known as infrared safe, IR safe. For this type of quantities we can safely select µ ≈ Q.

Quantitatively, infrared safe observables have the following behavior [115]:

lim
µ→∞

F

(
Q2

i

µ2
,
p2

i

µ2
,
m(µ)2

µ2
, αS(µ)

)

= f

(
Q2

i

µ2
, αS(µ)

)

+ O
((

m2

µ2

)a)

, a > 0

which means that F should approach a limit as m
µ → 0 with Q

µ fixed with corrections that van-

ish as a positive power of m
µ . The above equation just tells us that the larger the momentum

scale in the process, the smaller αS is and the better the perturbative expansion will be.

Going back to the cross section (3.67 ), we can write for µ ≈ Q

σ

(
Q2

i

µ2
, χij , αS(µ)

)

= σ (1, χij , αS(µ)) =

∞∑

n=1

Cn (1, χij , )

(
αS(µ)

π

)n



42

Since the χij are of order 1, we can conclude that pQCD works well when we have a single big

scale or several scales of the same size. If we want to find the cross section for the DY process

at given QT two or more physical scales of different sizes are present14, thus χij ≈ Q2

Q2
T

which

generates large logarithms in the coefficient functions. In consequence, pQCD does not work

well in this or similar cases and it is necessary, in order to obtain sensible results, to resum

these large logarithms to all orders in αS .

The DY process and other collisions like DIS are not fully IR safe. This can also be seen

from the observation that cross sections involving hadrons in the initial state should be sen-

sitive to the mass scale of the hadrons involved. The solution here is to “separate” the short

distance physics from the long distance, long-time scales included in the collision. Factoriza-

tion theorems are precisely the recipes to perform such separation in pQCD. The long-distance

physics is factorized in non-perturbative, well defined and universal functions that can be mea-

sured in some experiments and used in others.

We can conclude this section reviewing what quantities can be calculated in pQCD:

• Infrared safe cross sections, like σtotal (e+e− → hadrons) and jet cross sections.

• Factorizable cross sections like DIS and DY where the IR-dependence can be factorized

in universal functions:

(Observable)[Q2] = (IRSafe)

[
Q2

µ2
F

]

⊗ (IRSensitive)
[
µ2

F

]

Universal

• Q2-dependence of factorizable cross sections. Despite the fact that pQCD cannot cal-

culate the absolute value of the factorizable cross sections, the Q2-dependence is within

what is possible in pQCD because the dependence is defined by what happens around

the big scale Q2. We can calculate the Q2-evolution because renormalization-group in-

14The bulk of the data for observed transverse momentum QT is for the region with Q2
T ≪ Q2 where Q2 is

the invariant mass of the dilepton.
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variants, F , obey the equation

(

µ
d

dµ
− Γ

)

F = 0

with Γ an anomalous dimension.

3.2.3 Infrared safety for processes with initial hadrons

As we will see in the next section, the cross section for hadron-hadron collisions can be

written as:

dσ(Γ) =

∞∑

n=2

∑

a,b

∫

dξA

∫

dξBfa/A (ξA, µF ) fb/B (ξB, µF )

×
∫

dy1

∫

dQT1

∫

dy2

∫

dQT2 . . .

∫

dyn

∫

dQTn

× dσ̂(n)

dy1dQT1dy2dQT2 . . . dyndQTn
Γn (kµ

1 , k
µ
2 , . . . , k

µ
n)

where yn andQTn are the rapidity and transverse momentum of the nth particle, Γn (kµ
1 , k

µ
2 , . . . , k

µ
n)

are constraint functions invariant under the interchange of the n-particles and kµ
n are the parti-

cle momenta. Different constraint functions correspond to different observables. For an IR-safe

quantity we need [84] (1):

Γn+1 (kµ
1 , k

µ
2 , . . . , (1 − λ)kµ

n, k
µ
n) = Γn (kµ

1 , k
µ
2 , . . . , k

µ
n)

with 0 ≤ λ ≤ 1. This equation means that the constraint functions do not distinguish between

states in which one set of collinear particles is substituted for another set with the same total

momentum or when zero momentum particles are absorbed or emitted [116]. (2) we also need

[105]:

Γn+1

(
kµ
1 , k

µ
2 , . . . , k

µ
n , λP

µ
A

)
= Γn+1

(
kµ
1 , k

µ
2 , . . . , k

µ
n , λP

µ
B

)

= Γn (kµ
1 , k

µ
2 , . . . , k

µ
n)

where once again 0 ≤ λ ≤ 1. This condition just requires the observable to be blind to the

details in the regions parallel to either PA or PB . (3) An IR-safe observable also demands we

remove any dependence from the region parallel to both hadrons [105]:

dσ̂ = dσ − initial state collinear counter-terms
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3.2.4 Factorization theorem for Drell-Yan

The field theory realization of the parton model is the factorization of long-distance from

short-distance. As we have already hinted factorization theorems require [30], [46]:

1. All Lorentz invariants defining the process are large and comparable except for particle

masses,

2. One counts all final states that include the specified outgoing particles or jets

The first condition means in the case of DY that S the square of the total center-of-

mass energy and qµ the momentum of the virtual photon γ∗ are large with Q2/S fixed. The

transverse momentum QT of γ∗ is either of order Q or is integrated over. The second condition

means that we will consider the Drell-Yan process as hadronA + hadronB → γ∗ + X where

X denotes “anything else.” For the situation of large measured QT the theorem says [3], [4],

[30],[44], [62], [92], [93], [97] :

Factorization Theorem. The sum of all diagrammatic contributions to the cross section is

a direct generalization of the parton model result (3.15) and is equal to

dσhA+hB→l+l−

dQ2dyd2 ~QTdΩ
= α2

12SQ2

∑

a,b

∫ 1

xA

dξA
ξA

∫ 1

xB

dξB
ξB

fa/A (ξA, µF , αS(µ)) fb/B (ξB, µF , αS(µ))

× Tab

(

QT , Q, θ, φ,
xA

ξA
,
xB

ξB
;
Q2

µ2
F

,
µ2

F

µ2
, αS(µ)

)

(3.68)

where the a, b sum is over all partons: quarks, antiquarks and gluons.

The hard scattering function

Tab

(

QT , Q, θ, φ,
xA

ξA
,
xB

ξB
;
Q2

µ2
F

,
µ2

F

µ2
, αS(µ)

)

is ultraviolet dominated and so computable in perturbation theory. It depends on the partons

a, b, on the virtual photon γ∗ and on the renormalization and factorization scales. But notice

that is independent of the long-distance physics, so it is independent of the physics of the

hadrons A and B. In contrast, the parton distributions

fa/A (ξA, µF , µ) , fb/B (ξB , µF , µ)
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are IR dominated and are determined by the particular hadron involved in the collision. They

also depend on µF . Since the parton distributions are independent of the particular hard

scattering, they are universal and on this fact relies in great part the predicting power of this

formalism.

Graphically we can illustrate the factorization theorem [30],

PB fb/B

PA

a

b

Tab

fa/A

q
ξAPA

ξBPB

Compared with the formula from the parton model (3.15), we have now dependence from two

mass scales: µ the renormalization scale and µF the factorization scale. The renormalization

scale appears in any perturbative calculation, but the factorization scale is proper of observ-

ables where factorization is applied. µF defines the separation between the short-distance

physics from the long-distance effects. Informally speaking, when calculating a diagram and

integrating over kT , the parton transverse momentum, one counts a contribution from k2
T ≤ µ2

F

as part of f (ξ, µ), and from k2
T > µ2

F as contribution to Tab. The factorization scale appears

in a way that is similar to the renormalization scale15. In actual calculations the separation is

done in dimensional regularization, so things are more subtle that dividing an integral in two

parts [113].

15See discussion before Eq.(3.59) and Eq.(3.60)
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In calculations is often used µ = µF and for DY is commonly chosen µ = µF = Q, selection

that we will follow here, but this is not the only possibility and as with the renormalization

scale, any physical observable should be independent of the particular choice of µF .

We would like to finish this section quoting George Sterman [118] and his insightful expla-

nation about the factorization theorem,

“...In the parton model, fa/A (x) denotes the density of partons a with momen-

tum fraction x, a distribution that is assumed to be quantum-mechanically inde-

pendent of the hard scattering at momentum transfer Q, and hence may be treated

as an independent probability. In QCD, fa/A (x, µ) represents the same density,

but only of partons with transverse momentum QT < µF . It is only these partons

whose production may be considered incoherent with the hard scattering.

If there were a maximum transverse momentum QTmax for partons in the nucleon,

fa/A (ξA, QTmax) would freeze for µ > QT , and the theory would revert to the par-

ton model above that scale. This is never the case, however, in a renormalizable

field theory, and scale breaking measures the change in the density as the maximum

transverse momentum increases. Of course, the structure functions and cross sec-

tions that we compute still depend on our choice of µ through uncomputed higher

orders in T and evolution. ”

3.3 QCD corrections to Drell-Yan

In order to calculate the next-to-leading order contributions to DY we need to find the

O (αS) coefficient of the function Tab defined in the Factorization Theorem. So let us first

assume that16 ΛQCD ≪ Q ≈ QT and consider, following the procedure outlined in Appendix

B, the next set of diagrams:

Lowest order contribution,

16The inequality guarantees that pQCD can be used and the equality makes possible the use of the Factor-
ization Theorem.
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γ∗

gluon “radiation”,

γ∗

γ∗

+
+

γ∗

and contributions from the gluon content of the hadrons,

γ∗

+
γ∗

We are going to divide the terms from gluon radiation in two parts: virtual corrections and

real emission subprocess. We will leave the virtual corrections for the next chapter since they

only contribute when QT = 0. Thus the hadronic tensor for nonzero finite measured transverse

momentum is given by:

W µν
NLO = W

µν(R)

jj̄
+W µν

jg +W µν
gj (3.69)

where

W µν
( ) = S

∑

j

∫ 1

xA

dξA
ξA

∫ 1

xB

dξB
ξB

f( )/A (ξA;µ) f( )/B (ξB;µ)wµν
( ) (3.70)

with

wµν
( ) =

∫
d3k

2Ek(2π)3
hµν

( ) (2π)4δ4(pA + pB − q − k) (3.71)

Here k is the momentum of the unobserved particle: a gluon in the case of the real emission

subprocess and a quark for the Compton subprocess. hµν
( ) is defined as the appropriate partonic

tensor in four dimensions. The empty parenthesis in equations (3.70) and (3.71) can be filled
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with the appropriate partonic labels: jj̄, gj or jg. The phase space can be rewritten

∫
d3k

2Ek(2π)3
(2π)4δ4(pA + pB − q − k) = 2π

∫

d4kδ4(pA + pB − q − k)δ(k2)

= 2πδ
[

(pA + pB − q)2
]

and with the help of the parton Mandelstam variables

s = (pB + pA)2 (3.72)

t = (pB − q)2 (3.73)

u = (pA − q)2 (3.74)

we get

2πδ
(
s+ t+ u−Q2

)
(3.75)

Now, we can express the momentum qµ in terms of the rapidity y, Eq.(3.10), the invariant

mass Q2 and the transverse momentum Q2
T ;

qµ =

(√

Q2 +Q2
T cosh y,QT , 0,

√

Q2 +Q2
T sinh y

)

(3.76)

which allows us to rewrite s, t and u:

s =
Q2

zAzB
(3.77)

t = Q2 −Q2 1

zB

√

1 +
Q2

T

Q2
(3.78)

u = Q2 −Q2 1

zA

√

1 +
Q2

T

Q2
(3.79)

with

zA =
xA

ξA

zB =
xB

ξB
(3.80)

where, xA and xB were defined in Eq.(3.13).

The delta function (3.75) can also be reparametrized

2π

S
δ







ξA − xA

√

1 +
Q2

T

Q2







ξB − xB

√

1 +
Q2

T

Q2



− xAxB
Q2

T

Q2



 (3.81)
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and here we have also used

s = ξAξBS (3.82)

xAxB =
Q2

S
(3.83)

For the real emission subprocess qq̄ the parton tensor h
µν(R)

jj̄
is, Eq.(B.7), [87], [108]:

h
µν(R)

jj̄
= 4

9

e2jg
2

ut

{

−4Q2
(
pµ

Ap
ν
A + pµ

Bp
ν
B

)
−
[(
Q2 − t

)2
+
(
Q2 − u

)2
]

gµν

+ 2
(
Q2 − t

) (
pµ

Bq
ν + pν

Bq
µ
)

+ 2
(
Q2 − u

) (
pµ

Aq
ν + pν

Aq
µ
)}

(3.84)

with 4/9 is the “color factor”, eq is the electric charge of the participating quark (or antiquark)

in units of e and g is the strong scale factor. For the Compton subprocess qg we find in

Eq.(B.10), [87], [108]:

hµν
jg =

1

6

e2jg
2

us
{ 8Q2pµ

Ap
ν
A + 4Q2pµ

Bp
ν
B + 4Q2

(
pµ

Ap
ν
B + pµ

Bp
ν
A

)

+
[(
Q2 − s

)2
+
(
Q2 − u

)2
]

gµν − 2
(
Q2 + t+ 2s

) (
pµ

Aq
ν + qµpν

A

)

− 2
(
Q2 + s

) (
pµ

Bq
ν + qµpν

B

)
+ 4sqµqν } (3.85)

and for the exchanged process gq Eq.(B.11):

hµν
gj =

1

6

e2jg
2

ts
{ 8Q2pµ

Bp
ν
B + 4Q2pµ

Ap
ν
A + 4Q2

(
pµ

Ap
ν
B + pµ

Bp
ν
A

)

+
[(
Q2 − s

)2
+
(
Q2 − t

)2
]

gµν − 2
(
Q2 + u+ 2s

) (
pµ

Bq
ν + qµpν

B

)

− 2
(
Q2 + s

) (
pµ

Aq
ν + qµpν

A

)
+ 4sqµqν } (3.86)

Putting all the previous results together we can conclude with the prediction of pQCD to

next-to-leading-order for the hadronic tensor

W µν
( ) = 2π

∑

j

∫ 1

xA

dξA
ξA

∫ 1

xB

dξB
ξB

δ







ξA − xA

√

1 +
Q2

T

Q2







ξB − xB

√

1 +
Q2

T

Q2



− xAxB
Q2

T

Q2





×f( )/A (ξA;µ) f( )/B (ξB;µ)hµν
( ) (3.87)

with the sum over all quark and antiquark flavors.
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3.4 QCD predictions for Drell-Yan

After a long detour we are finally able to give the NLO predictions of pQCD for the

structure functions. It is worth to notice that these functions are frame dependent. This is

built in the definitions for the projection operators given in Eq.(2.21), since the vectors x̂ and ẑ

are particular of the basis chosen in the lepton c.m.s. As it was said before, we will be working

in the Collins-Soper frame, see Section 2.1. In this system we have for ẑ and x̂ in terms of

quantities measured in the hadron c.m.s.:

ẑµ =












sinh y

0

0

cosh y












(3.88) x̂µ =












QT

Q cosh y
√

1 +
Q2

T

Q2

0

QT

Q sinh y












(3.89) ŷµ =












0

0

1

0












(3.90)

With these vectors we can evaluate the necessary inner products

ẑ · pA = −
√
S

2
ξA e

−y

= − Q

2zA
(3.91)

x̂ · pA =

√
S

2

QT

Q
ξA e

−y

=
QT

2zA
(3.92)

ẑ · pB =

√
S

2
ξB ey

=
Q

2zB
(3.93)

x̂ · pB =

√
S

2

QT

Q
ξB ey

=
QT

2zB
(3.94)

where we have used equations (3.6), (3.13), (3.42), (3.43) and (3.80). Remember also that by

construction (regardless of the chosen dilepton c.m.s)

ẑ · q = 0

x̂ · q = 0

ŷ · q = 0 (3.95)
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We are now ready to evaluate the projection operators. First, we can start with the real

emission contributions. In order to make the notation manageable we will omit from the real

structure functions the following overall factor17:

αS (µ)

π
(2π)4

3

∑

j

e2j

∫ 1

xA

dξA
ξA

∫ 1

xB

dξB
ξB

fj/A (ξA;µ) fj̄/B (ξB;µ)

×δ







ξA − xA

√

1 +
Q2

T

Q2







ξB − xB

√

1 +
Q2

T

Q2



− xAxB
Q2

T

Q2



 (3.96)

thus,

wR
L = 2

3π

(
zA

zB
+ zB

zA

)

wR
T = 1

3π

(

1 + 2Q2

Q2
T

)(
zA

zB
+ zB

zA

)

wR
∆∆ = 1

2W
R
L

wR
∆ = 2

3π
Q

QT

(
zA

zB
− zB

zA

)

Table 3.3 NLO predictions for structure functions,

real contribution

where we have exploited the relation

ut = sQ2
T (3.97)

and Eq.(2.21).

Table 3.3 is equivalent to write for dN
dΩ , see Eq.(2.23) and [25], [40] :

dN

dΩ
=

3

16π
[
Q2 + 3

2Q
2
T

Q2 +Q2
T

+
Q2 − 1

2Q
2
T

Q2 +Q2
T

cos2 θ +
1

2

Q2
T

Q2 +Q2
T

cos 2φ sin2 θ

+
QQT

Q2 +Q2
T

K

(

xA, xB ,
QT

S

)

sin 2θ cosφ ] (3.98)

with

K

(

xA, xB ,
QT

S

)

=

zA

zB
− zB

zA

zA

zB
+ zB

zA

(3.99)

where the factor Eq.(3.96) has been omitted in the numerator and denominator. Equation

(3.98) can be used to find λ, µ and ν [25], and they are summarized in Table 3.2.

17Here we have used g2

4π
= αS
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λ =
Q2− 1

2
Q2

T

Q2+ 3
2
Q2

T

µ = QQT

Q2+ 3
2
Q2

T

K
(

xA, xB ,
QT

S

)

ν =
Q2

T

Q2+ 3
2
Q2

T

Table 3.4 NLO predictions for λ, µ and ν, real con-

tribution

Notice that since the terms in denominator and numerator of K
(

xA, xB ,
QT

S

)

are different

and each one of them are in convolution with the parton distribution functions it is not possible

to cancel them as it was done for λ and ν. Interestingly these two parameters are independent

of the parton densities. Probably more interesting is the fact that the Lam-Tung relation still

holds:

1 − λ− 2ν = 0 (3.100)

which can already been seen in the Table 3.3, since WR
∆∆ = 1

2W
R
L .

Similarly, we can now write the overall factor for the helicity structure functions for the Comp-

ton subprocess qg

αS (µ)

π

(2π)4

3

(

−Q2

Q2
T

)
∑

j

e2j

∫ 1

xA

dξA
ξA

∫ 1

xB

dξB
ξB




ξB

√

1 +
Q2

T

Q2 − xB

xB



 fj/A (ξA;µ) fg/B (ξB;µ)

×δ







ξA − xA

√

1 +
Q2

T

Q2







ξB − xB

√

1 +
Q2

T

Q2



− xAxB
Q2

T

Q2





(3.101)

where we have employed

u = −Q2
T

ξA
xA




ξB

ξB

√

1 +
Q2

T

Q2 − xB



 (3.102)

The helicity structure functions are:

The DY predictions for the same process in terms of λ, µ and ν can be found in Table 3.6

where the overall factor, Eq.(3.101), has been omitted in the numerator and denominator.

Similarly to the factor K
(

xA, xB ,
QT

S

)

in Table (3.98) we cannot cancel any terms between
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wC
L = 1

4π

{

(zA − zB)2 + z2
B −

[
(1 − zAzB)2 + z2

B

]
− z2

B
Q2

T

Q2

}

wC
T = − 1

8π

[

(zA − zB)2 + z2
B + (1 − zAzB)2 + z2

B + z2
B

Q2
T

Q2

]

wC
∆∆ = 1

2W
C
L

wC
∆ = − 1

4π
QT

Q

(
z2
A − z2

B

)

Table 3.5 NLO predictions for structure functions,

Compton contribution qg

λ =
3[(zA−zB)2+z2

B]−[(1−zAzB)2+z2
B]−z2

B

Q2
T

Q2

3[(1−zAzB)2+z2
B]−[(zA−zB)2+z2

B]+3z2
B

Q2
T

Q2

µ =
2

QT
Q

(z2
A−z2

B)

3[(1−zAzB)2+z2
B]−[(zA−zB)2+z2

B]+3z2
B

Q2
T

Q2

ν =
−2

�
(zA−zB)2+z2

B−[(1−zAzB)2+z2
B]−z2

B

Q2
T

Q2

�
3[(1−zAzB)2+z2

B]−[(zA−zB)2+z2
B]+3z2

B

Q2
T

Q2

Table 3.6 NLO predictions for λ, µ and ν, Compton

contribution qg

numerator and denominator in order to simplify the structure functions.

To finish, we include the overall factor of the Compton process gq

αS (µ)

π

(2π)4

3

(

−Q2

Q2
T

)
∑

j

e2j

∫ 1

xA

dξA
ξA

∫ 1

xB

dξB
ξB




ξA

√

1 +
Q2

T

Q2 − xA

xA



 fg/A (ξA;µ) fj/B (ξB ;µ)

×δ







ξA − xA

√

1 +
Q2

T

Q2







ξB − xB

√

1 +
Q2

T

Q2



− xAxB
Q2

T

Q2





(3.103)

with

t = −Q2
T

ξB
xB




ξA

ξA

√

1 +
Q2

T

Q2 − xA



 (3.104)

The respective helicity structure functions:
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wC
L = 1

4π

{

(zB − zA)2 + z2
A −

[
(1 − zAzB)2 + z2

A

]
− z2

A
Q2

T

Q2

}

wC
T = − 1

8π

[

(zB − zA)2 + z2
A + (1 − zAzB)2 + z2

A + z2
A

Q2
T

Q2

]

wC
∆∆ = 1

2W
C
L

wR
∆ = − 1

4π
QT

Q

(
z2
B − z2

A

)

Table 3.7 NLO predictions for structure functions,

Compton contribution gq

and values for λ, µ and ν can be seen in Table 3.8. Where once again the overall factor,

λ =
3[(zB−zA)2+z2

A]−[(1−zAzB)2+z2
A]−z2

A

Q2
T

Q2

3[(1−zAzB)2+z2
B]−[(zB−zA)2+z2

A]+3z2
A

Q2
T

Q2

µ =
2

QT
Q

(z2
B−z2

A)

3[(1−zAzB)2+z2
A]−[(zB−zA)2+z2

A]+3z2
A

Q2
T

Q2

ν =
−2

�
(zB−zA)2+z2

A−[(1−zAzB)2+z2
A]−z2

A

Q2
T

Q2

�
3[(1−zAzB)2+z2

A]−[(zB−zA)2+z2
A]+3z2

A

Q2
T

Q2

Table 3.8 NLO predictions for λ, µ and ν, Compton

contribution qg

Eq.(3.103), has been omitted in the numerator and denominator since no further simplification

is possible.

In Fig. 3.5, 3.9 and 3.13 we show the NLO predictions for the parameters λ, µ and ν with

Q = 10 GeV
c ,

√
S = 800 GeV

c and y = 0 in the Collins-Soper frame:

A few comments are now relevant. Observing figures 3.5 through 3.8 we first notice that

many of the central values for λ in the data sets from E615 and E866 are above 1 which contra-

dicts the simple fact that the physical range for this parameter is −1 ≤ λ ≤ 1, see Eq.(2.26).

We can also remark that there is a qualitative agreement between the set from NA10 and the

perturbative predictions. A good match is not expected since the Q dependence has not been
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Figure 3.5 λ vs QT NLO prediction
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Figure 3.6 λ vs QT for NLO and NA10

taken into account.

For the ν parameter we note that the next-to-leading-order prediction is consistently below

the experimental data of NA10 and E615, see figures 3.9,3.10 and 3.11. For the E866 we have

that the theoretical curves go through the experimental points, Fig. 3.12. Comparing Fig.

3.13 with Fig. 1.2 we see that the prediction µ ≈ 0 is compatible with the experimental results

from all three collaborations. We believe that at least part of the poor correspondence between

experiments and NLO predictions can be attributed to the fact that the experimental results

are integrated over Q which in the case of E866 includes a range between 4.5 < Q < 9 GeV/c

and Q > 10.7 GeV/c [128].
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Figure 3.7 λ vs QT for NLO and E615

1 2 3 4 5
QT

0.6

0.8

1.2

1.4

1.6

1.8
Λ

5 GeV�c 10 GeV�c

15 GeV�c

�!!!!S =800GeV�c

Figure 3.8 λ vs QT for NLO and E866

We notice here one prediction more coming from the NLO calculations. The Lam-Tung

relation holds also for the Compton subprocess since WC
∆∆=1

2W
C
L in both Table 3.6 and Table

3.8. This means that the Lam-Tung relation is valid for the NLO corrections for the whole

range18 of allowed QT [25] and [88]. It is also worthy of attention that despite the fact that

we have only worked in the CS frame, the Lam-Tung relation is valid at NLO independently

of the dilepton c.m.s. chosen [88]. To see this, observe first:

h
µν(R)
qq̄ (−gµν) =

4e2jg
2

9

2

ut

[
(Q2 − t)2 + (Q2 − u)2

]
(3.105)

hµν
qg (−gµν) =

e2jg
2

6

2

s(−u)
[
(Q2 − s)2 + (Q2 − u)2

]
(3.106)

hµν
gq (−gµν) =

e2jg
2

6

2

s(−t)
[
(Q2 − s)2 + (Q2 − t)2

]
(3.107)

18The reader should remember that we have assumed that QT >> ΛQCD.
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Figure 3.9 ν vs QT NLO prediction
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Figure 3.10 ν vs QT for NLO and NA10

and then compare with the coefficients of −gµν in Eqs.(3.84), (3.86) and (3.86). Thus, we

deduce from equations (3.22) - (3.28):

W
µν(R)
qq̄ (−gµν) = 2(G1)qq̄ (3.108)

W µν
qg (−gµν) = 2(G1)qg (3.109)

W µν
gq (−gµν) = 2(G1)gq (3.110)

and by the discussion that follows Eq.(3.22) we can conclude that19

1 − λ− 2ν = 0 (3.111)

regardless of the particular dilepton frame used. It is important to remember here that E866

and NA10 are largely compatible with the Lam-Tung relation as can be appreciated in Fig. 1.2.

19This also can be seen easily since G1 is an invariant structure function
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Figure 3.11 ν vs QT for NLO and E615

1 2 3 4 5
QT

-0.1

-0.05

0.05

0.1

Ν

5 GeV�c
10 GeV�c

15 GeV�c

�!!!!S =800 GeV�c

Figure 3.12 ν vs QT for NLO and E886

We finish this chapter with figures 3.14, 3.15 and 3.16 for the NLO predictions for the

WT ,WL,W∆∆ structure functions in a pp̄ collision with Q = 10 GeV
c ,

√
S = 800 GeV

c and

y = 0. The green line denotes Wi = Wi qq̄ +Wi qg +Wi gq, the red one is for Wi = Wi qq̄ and

blue for Wi qg with i = T, L, ∆∆

For the last two pictures, figures 3.17 and 3.17, we have the same parameters in the phase

space used for the previous plots but we have changed the colors to blue for Wqg ∆ and red for

W∆ = W∆ qq̄ +W∆ qg +W∆ gq. There are a couple of important remarks here. As it can be seen

in Fig. 3.18 the contribution from the qq̄-process is not positive definite and it oscillates in sign

wildly as a function of QT , this is the only structure function with such behavior. Observing

the total W∆ qq̄ (red line), we can conclude that W∆ qq̄ decreases the total value of the single

delta structure function that is still positive definite as it is expected from the definition.
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Figure 3.13 µ vs QT NLO prediction
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Figure 3.14 WT vs QT , NLO prediction
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Figure 3.15 WL vs QT , NLO prediction
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Figure 3.16 W∆∆ vs QT , NLO prediction
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Figure 3.17 W∆ vs QT , NLO prediction
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Figure 3.18 W∆ qq̄ vs QT , NLO prediction
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CHAPTER 4. LOW QT LIMIT AND RESUMMATION

Resummation is the organization of soft and collinear radiation to all orders in perturbation

theory [120]. In this chapter we will apply this technique to the inclusive cross section of the

DY process and later in the next chapter we will extend it to the fully differential cross section.

4.1 Low QT limit

In the last chapter the relevant results were calculated under the assumption that ΛQCD ≪

Q ≈ QT . But most of the experimental data lies in the region 0 ≤ QT < Q. This fact forces

us to evaluate the limit of low QT for the structure functions and for λ, µ, ν.

Let us begin with the structure functions for the real contribution. Using the results from

Table 3.3 and Eq.(3.96) we can find, for example, in the case of WR
T ,

lim
QT →0

WR
T = lim

QT→0

32π3

9

(
αS (µ)

π

)
Q2

Q2
T

∑

j

e2j

∫ 1

xA

dξA
ξA

∫ 1

xB

dξB
ξB

fj/A (ξA;µ) fj̄/B (ξB;µ)

×
(
zA
zB

+
zB
zA

)

δ

[

(ξA − xA) (ξB − xB) − xAxB
Q2

T

Q2

]

(4.1)

Observing the delta function in the above expression we can easily identify the regions

where the 1/Q2
T divergence comes from, i.e regions1 where QT → 0:

1. Region where ξA − xA → 0 or zA → 1 with ξB − xB different from zero and constant;

2. Region where ξB − xB → 0 or zB → 1 with ξA − xA different from zero and constant;

3. Region where (ξB − xB), (ξA − xA) → 0 or zA, zB → 1;

1These regions define the regions of integration for the expansion of the delta function, see Fig.C.1
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Using Eq.(C.4) we can find the asymptotic expansion for the integral,

lim
QT→0

WR
T

= lim
QT→0

(
αS (Q)

π

)
64π4

9

1

2π

S

Q2
T

∑

j

e2j

×
{

fj̄/B(xB)

∫ 1

xA

dξA
ξA

fj/A(ξA)
1

ξA

ξ2A + x2
A

(ξA − xA)+

+2fj/A(xA)fj̄/B(xB) ln

[
(1 − xA)(1 − xB)S

Q2
T

]

+fj/A(xA)

∫ 1

xB

dξB
ξB

fj̄/B(ξB)
1

ξB

ξ2B + x2
B

(ξB − xB)+

}

(4.2)

which can be rewritten (after omitting the parton flux factor) as:

lim
QT→0

WR
T

= lim
QT→0

(2π)4

3
S
∑

j

e2j

(
αS (Q)

π

)
1

2π

1

Q2
T

×
{

δ(1 − zB)
4

3

[
1 + z2

A

1 − zA

]

+

+ δ(1 − zA)
4

3

[
1 + z2

B

1 − zB

]

+

+ 2δ(1 − zA)δ(1 − zB)

[
4

3
ln

(
Q2

Q2
T

)

− 2

]}

(4.3)

where Eq.(C.8) was used. See figures 4.1 and 4.2 for the properties of the asymptotic behavior

of the NLO prediction in pp̄ with Q = 10 GeV
c ,

√
S = 800 GeV

c and y = 0:

0 1 2 3
QT

1. ´ 108

1. ´ 1010

1. ´ 1012

1. ´ 1014

WT
Asymp

Figure 4.1 WAsymp
T qq̄ vs QT , 0.1 ≤ QT ≤ 4 NLO prediction

Notice that in Eq.(4.3) the regions where the divergences are present have been made ex-

plicit and a divergence proportional only to ln
(

Q2

Q2
T

)

has been left neglected. We observed from
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Figure 4.2 WAsymp
T qq̄ vs QT , 3 ≤ QT ≤ 5 NLO prediction

Table 3.3 that WR
L and WR

∆∆ have a similar singularity, which is integrable. Their contribution

at low QT is negligible compared with the singularities of WR
T . Therefore, the cross section in

the limit QT → 0 is dominated by the transverse structure function.

WR
∆ has a singularity proportional to 1/QT as can be seen below:

lim
QT→0

WR
∆

= lim
QT→0

(
αS (Q)

π

)
64π4

9

1

2π

S

QTQ

∑

j

e2j

×
{

fj/A(xA)

∫ 1

xB

dξB fj̄/B(ξB)
ξB + xB

ξ2B
− fj̄/B(xB)

∫ 1

xA

dξA fj/A(ξA)
ξA + xA

ξ2A

}

(4.4)

= lim
QT→0

(2π)4

3
S
∑

j

e2j

(
αS (Q)

π

)
1

2π

1

QTQ

{

δ(1 − zA)
4

3
(1 + zB)

−δ(1 − zB)
4

3
(1 + zA)

}

(4.5)

Note the absence of the logarithmic singularity which is present in all the other structure func-

tions.

The limits for λ, µ, ν real contribution are easily obtained from Table 3.4:

lim
QT→0

λ = 1

lim
QT →0

µ = 0

lim
QT →0

ν = 0 (4.6)
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which just recovers the parton model prediction.

For the Compton subprocess contributions, Tables 3.5 and 3.8, we first observe that

limQT→0W
C
L is zero or finite for any of the regions where QT → 0, this of course is also

valid for WC
∆∆. For the qg subprocess, Table 3.5, the only region that contains a divergence is

zA → 1 and we have as limits:

lim
QT→0

WC
T

= lim
QT→0

(2π)4

3
S
∑

j

e2j

(
αS (Q)

π

)
1

2π

1

Q2
T

{
1

2

[
(1 − zB)2 + z2

B

]
δ(1 − zA)

}

(4.7)

and

lim
QT→0

WC
∆

= lim
QT→0

(2π)4

3
S
∑

j

e2j

(
αS (Q)

π

)
1

2π

1

QTQ

{
1

2

(
1 − z2

B

)
δ(1 − zA)

}

(4.8)

likewise we can obtain, from Table 3.5, for the gq process, in the zB → 1 region:

lim
QT→0

WC
T

= lim
QT→0

(2π)4

3
S
∑

j

e2j

(
αS (Q)

π

)
1

2π

1

Q2
T

{
1

2

[
(1 − zA)2 + z2

A

]
δ(1 − zB)

}

(4.9)

and

lim
QT→0

WC
∆

= lim
QT→0

(2π)4

3
S
∑

j

e2j

(
αS (µ)

π

)
1

2π

1

QTQ

{
1

2

(
1 − z2

A

)
δ(1 − zB)

}

(4.10)

The existence of the singularities proportional to 1/Q2
T and ln

(
Q2

Q2
T

)

/Q2
T in the low Q2

T limit

spoils the usefulness of the perturbative expansion in this region. We will see in Sec. (4.3.1)

how resummation handles this problem to all orders, but first we turn our attention to the

physical origin of the singularities just observed. We finish this section with a graphic example

of the behavior of WT qg for pp̄ with Q = 10 GeV
c ,

√
S = 800 GeV

c and y = 0:
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Figure 4.3 WAsymp
T qg vs QT , NLO prediction

4.2 Origin of the singularities

The divergences that we have observed above are typical examples of infrared divergences

(IR). These divergences are related with the long distance behavior of QCD, but at the same

time they play an important role in the short distance behavior of the DY process. The IR

divergence emerges due to the presence of a massless field, in our case the gluon. If this mass-

less field couples to another massless field, like the quarks that we are considering here, or to

itself, a second type of IR divergence appears, which is called collinear (CO) divergence.

So we have two types IR divergences:

• Soft divergence mG → 0

• Collinear divergence mq → 0

Here, mG and mq are fictitious masses for the gluon and quark respectively. Since both

types appear in the massless limit, they are also generically called mass divergences [98].

Let us see how this appears in a generic diagram with gluon emission:
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pi

θik

(pi − k)

k

pi represents either pA or pB, the 4-momentum of the incoming quark or antiquark, and k is

the 4-momentum of the radiated gluon. Let us remember that

pi = ξi

(√
S

2
, 0, 0,

√
S

2

)

k = (k0, kT , 0, kz)

so

pi · k = ξi

√
S

2
k0 (1 − cos θik) (4.11)

where we have used the relation k2 = k2
0 − k2

T − k2
z = 0. We can now identify when pi · k → 0:

• k0 → 0;

• cos θik → 1 i.e when θik → 0

In the second case, for instance, the radiated gluon becomes collinear with the incoming parton,

forcing the adjacent propagator, which is proportional to 1/(pi −k)2 = 1/(−2pi ·k), to become

singular. Notice that this is only possible because we are assuming p2
i = 0, i.e a massless

quark. For the first case, we have a soft gluon, since ~k → 0, and as consequence we also have

2 kT → 0. Therefore, at the same time that the gluon goes soft also becomes collinear. There

is a superposition of the soft and collinear singularities.

The role of these singularities can be better appreciated in the integrated cross section.

Using Eq.(3.105):

h
µν(R)
qq̄ (−gµν) =

4e2jg
2

9

2

ut

[
(Q2 − t)2 + (Q2 − u)2

]

2Because the gluon is massless.
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and since

t̂ = (k − pB)2 = −2pB · k

û = (k − pA)2 = −2pA · k

we can rewrite Eq.(3.105) in the low QT limit, in the region zA → 1 with ξB − xB different

from zero [54]:

lim
QT→0

h
µν(R)
qq̄ (−gµν)

=
4e2jg

2

9

2

û

zBQ
2

z2
B

[
1 + z2

B

zB − 1

]

+ finite part

=
4e2jg

2

9

Q2

zB (pA · k)

[
1 + z2

B

1 − zB

]

which explicitly shows the divergence associated with gluon emission [54]. Now, including the

normalization factors and the delta function, but omitting the parton flux factor, we have from

equations (2.18), (2.24) and (3.87):

dσ

d4q
=

α2

12S2Q2π3

4e2jg
2

9
4π

S

Q2
T

[
1 + z2

B

1 − zB

]

δ (1 − zA) (4.12)

dσ

d4q
=

4

9

α2

SQ2

αS(Q)

π

4

3

1

Q2
T

[
1 + z2

B

1 − zB

]

δ (1 − zA) (4.13)

dσ

dQ2dydQ2
T

= e2jσ0 ·
γqq

Q2
T

δ (1 − zA) (4.14)

where we have defined:

σ0 =
4

9

α2π

SQ2

γqq =
αS(Q)

2π

4

3

[
1 + z2

B

1 − zB

]

Integrating with respect to Q2
T we obtain:

dσ

dQ2dy
= e2jσ0 · γqq δ (1 − zA) ln

(
µ2

F

m2

)

(4.15)

with µ2
F ≈ Q2 and m2 ≈ q2T , where q2T is a sort of minimum transverse momentum chosen as

IR cutoff. The logarithm is an explicit consequence of the presence of a collinear divergence.
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In the relation (4.14) it is explicitly seen that the cross section can be written as the product

of two factors: the first term σ0 is the total cross section for the DY process at parton level,

while the second factor γqq can be interpreted as the probability of a quark to radiate a gluon

and so to become a quark with momentum fraction z and transverse momentum QT [78].

This factorization is a typical example of collinear factorization. We have found that in the

low QT limit3, the divergent part4 of the cross section or of the transverse structure function,

can be written as a product of two probabilities: the probability of interaction e2jσ0 and the

probability of gluon emission γqq [78]. These probabilities can be calculated separately and

then multiplied. This is the realization of the parton model picture of the DY process in QCD.

Pictorially,

dσ
dQ2dydQ2

T

=

e2jσ0

γqq(z,Q
2
T )

1 − z

4.3 Resummation

Let us first study the usual formula of the cross section [44], [57] for the DY process with

measured QT
5:

dσ

dQ2dyd2 ~QT

=
4πα2

9SQ2

∑

a,b

∫ 1

xA

dξA
ξA

∫ 1

xB

dξB
ξB

fa/A (ξA, µ) fb/B (ξB , µ)Tab

(

QT , Q,
xA

ξA
,
xB

ξB
;µ, g(µ)

)

(4.16)

this formula is valid up to corrections m/Q and when QT ≈ Q. The sum runs over all species

a and b of partons (i.e gluons and flavors of quarks and antiquarks). The hard scattering

function T but not f has a perturbative expansion in powers of αS(µ). As we have already

3i.e. when the gluons are emitted with low transverse momentum
4To be precise, the part proportional to 1/Q2

T
5Note that the angular dependence has been integrated, compare with equations (B.1), (B.2) and (B.3)
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said we have chosen µ ≈ Q to avoid the large logarithms ln (Q/µ) which otherwise may spoil

the low-order perturbative approximation to T . Writing explicitly the perturbative expansion

for T :

Tab

(

QT , Q,
xA

ξA
,
xB

ξB
;µ,αS(µ)

)

=

∞∑

n=0

[
αS (µ)

π

]n

T n
ab

(

QT , Q,
xA

ξA
,
xB

ξB
;µ

)

(4.17)

the lowest order corresponds to the parton picture for DY:

T 0
ab = e2aδab̄δ

(

1 − xA

ξA

)

δ

(

1 − xB

ξB

)

δ2
(

~QT

)

(4.18)

The general form for the coefficients is known [57]:

T n
ab

(

QT , Q,
xA

ξA
,
xB

ξB
;µ

)

= N n
ab

(

QT , Q,
xA

ξA
,
xB

ξB
;µ

)

δ2
(

~QT

)

+

2n−1∑

m=0

T n,m
ab

(

QT , Q,
xA

ξA
,
xB

ξB
;µ

)[
lnm(Q2/Q2

T )

Q2
T

]

+Rn
ab

(

QT , Q,
xA

ξA
,
xB

ξB
;µ

)

(4.19)

Where we have divided T n
ab in terms according to their behavior when QT → 0. “Divergent

terms,” those proportional to 1/Q2
T , 1/Q2

T × logs and δ2
(

~QT

)

have been taken out and what

is left has been included in the “regular terms” function Rn
ab. This separation should be under-

stood in the sense of distributions, i.e. the low QT limit needs to be taken after the integration

with respect to ξA and ξB [44].

It is easy to observe that the perturbative expansion of Tab is not dominated by successive

powers of αn
S(µ) but by terms of the form αn

S(µ)
[

ln2n−1(Q2/Q2
T )

Q2
T

]

; thus, the logarithms that we

encountered for first time in Eq.(4.3) are a generic feature order by order of the perturbative

expansion. These terms are potentially big when QT → 0. This fact renders the low terms

approximation of T useless. How this problem is fixed is the subject of the next two subsections.

4.3.1 From factorized to resummed formula

The reorganization of soft and collinear divergences is the most amazing result that we are

going to present in this dissertation. It was first obtained by Collins and Soper in the analysis
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of back-to-back jets in e+e− [41] and [43], and then extended by the same authors together

with G. Sterman for the DY process in [44].

Let us look at the formula obtained by them:

dσ

dQ2dydQ2
T

≈ 4π2α2

9Q2S

1

(2π)2

∫

d2bei
~QT ·~b

∑

j

e2j

×
∑

a

∫ 1

xA

dξA
ξA

fa/A (ξA; 1/b)
∑

b

∫ 1

xB

dξB
ξB

fb/B (ξB; 1/b)

× exp

{

−
∫ Q2

1/b2

dµ̄2

µ̄2

[

ln

(
Q2

µ̄2

)

A(g(µ̄)) +B(g(µ̄))

]}

×Cja

(
xA

ξA
; g(1/b)

)

Cj̄b

(
xB

ξB
; g(1/b)

)

+
4π2α2

9Q2s
Yf (QT ;Q,xA, xB) (4.20)

The sum runs over gluons and flavors of quarks and antiquarks. The f ′s are the same parton

distributions mentioned before but evaluated at renormalization scale µ = 1/b. ~b is the dual

variable of ~QT in the Fourier transform, i.e b is the impact parameter variable dual to the

transverse momentum variable QT .

The first term in equation (4.20) is dominant in the cross section when QT ≪ Q and the

Yf term defined as,

Yf (QT ;Q,xA, xB)

=
∑

a,b

∫ 1

xA

dξA
ξA

fa/A (ξA;µ)

∫ 1

xB

dξB
ξB

fb/B (ξB;µ)

∞∑

n=1

(
αS(µ)

π

)n

Rn
ab

(

QT , Q,
xA

ξA
,
xB

ξB
;µ

)

(4.21)

which becomes important when QT ≈ Q [44]. The A, B and C functions are calculable in

pQCD and the low order coefficients of their expansions in αS are known [44], [63] and [123].

In order to justify the resummed formula (4.20), we need to start with the properties of the

amplitude or the cross section in the “elastic limit” [52], [114]. This limit 6 is characterized by

6The reader should observe that the final state in this elastic limit includes an arbitrary number of particles.
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a single hard scale Q and a fixed number of jet functions of mass m, negligible compared with

the hard scale.

In the elastic limit, a new scale m is introduced with Q ≫ m ≫ ΛQCD. The presence

of the second scale has as consequence that the perturbative calculation receives logarithmic

enhancements in the ratio Q/m for every order in αS [119].

Resummation of two-scale logarithms can be deduced when a cross section or amplitude

is a product or convolution of factors that separate the distinct scales, Q and m, through the

introduction of a third scale, the factorization scale µF ≫ ΛQCD. Formally,

σ(Q,m) = w(Q,µF ) ⊗ f(µF ,m) (4.22)

Where there is factorization, there is evolution [119]. Since the physical cross section cannot

depend on the factorization scale, any changes in the short distance function w, due to µF ,

must be compensated by changes in the long distance function f ,

µF
d

dµF
lnσ(Q,m) = 0 ⇒ µF

d ln f

dµF
= −P (αS (µF )) = −µF

d lnw

dµF

where the kernel P can depend only on the variables that the functions hold in common.

Where there is evolution, there is resummation , which can be understood as the solution to

the evolution equations [52].

In the case of the inclusive Drell-Yan cross section,

Haā ⊗ Pa/A ⊗ Pā/B ⊗ S

The convolution here is in transverse momenta. The functions Pa/A and Pā/B represent

the contributions of the two jets, S represents the contributions of soft quanta not part of the

jets and H that of the hard quanta [52].
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As we have remarked before the DY cross section is not infrared safe but the long distance

physics only is present in the jet functions and the soft radiation function S.

By now it should be clear that the low QT limit taken in Sec. (4.1) corresponds to the

elastic limit of the DY process and equations (4.3) and (4.14) are particular instances of the

factorization behavior just described .

Explicitly, in the low QT limit for DY with measured pair mass squared Q2, transverse

momentum ~QT and rapidity y we have [116]:

dσAB

dQ2dyd2 ~QT

=
4πα2

9Q2S

∑

a

∫
dξA
ξA

∫
dξB
ξB

∫
d2kTd

2k
′

Td
2kT,s

(2π)6
δ2
(

~QT − ~kT − ~k
′

T − ~kT,s

)

×Pa/A (ξA, kT ;µF )Pā/B

(

ξB, k
′

T ;µF

)

Haā

(
Q2;µF

)
S (kT,s;µF ) (4.23)

Note that the collinear factorization holds as convolution in terms of the transverse mo-

menta of gluons emitted from the parton distribution functions associated with the incoming

hadrons, along with “central” soft gluons from the soft subdiagram. Symbolically,

PA

PB

Pf/A

Pf̄/B

H

S

H†

q

γ∗

q

γ∗

In last figure all lines are on-shell and massless, and the virtual photon γ∗ with momentum

q, q2 = Q2, is linked to partons through the two hard-scattering functions H and H† in the
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amplitude and complex conjugate respectively. H and H† depend only on quanta off-shell by

order Q2. On-shell particles with momenta of order Q fall into the two jet functions Pa/A and

Pā/B of collinear particles 7. These jet functions have their origin with the incoming partons,

so they can be identified as parton distributions [52].

Using

δ2
(

~QT − ~kT − ~k
′

T − ~kT,s

)

=

∫
d2~b

(2π)2
e
i~b·
�

~QT −~kT−~k
′
T−~kT,s

�
(4.24)

we can “Fourier transform” Eq.(4.23) to obtain in the elastic limit:

dσAB

dQ2dyd2 ~QT

≈ 4πα2

9Q2S

∫
d2~b

(2π)2
ei

~b· ~QT W̃ (b;Q,xA, xB , ) (4.25)

where we have defined :

W̃ (b;Q,xA, xB , )

≡
∑

a

∫
dξA
ξA

∫
dξB
ξB

Haā

(
ξA, ξB , Q

2, P+
A , P

−
B ; g (µF )

)

×P̃a/A

(

ξA,
P+

A

µF
, bm; g (µF )

)

P̃ā/B

(

ξB ,
P−

B

µF
, bm; g (µF )

)

×S̃
(
ξA, ξB , P

+
A , P

−
B , bm; g (µF )

)
(4.26)

with

P̃a/A

(

ξA,
P+

A

µF
, bm; g (µF )

)

=

∫
d2~kT

(2π)2
e−i~b·~kT Pa/A (ξA, kT ;µF ) (4.27)

P̃ā/B

(

ξB ,
P−

B

µF
, bm; g (µF )

)

=

∫
d2~k

′

T

(2π)2
e−i~b·~k′

T Pā/B

(

ξB , k
′

T ;µF

)

(4.28)

S̃
(
ξA, ξB , P

+
A , P

−
B , bm; g (µF )

)
=

∫
d2~kT,s

(2π)2
e−i~b·~kT,sS (ξA, ξB , kT,s;µF ) (4.29)

The jet functions are matrix elements of quark fields separated by a spacelike vector
(

0+, y−,~b
)

,

P̃a/A

(

ξA,
P+

A

µF
, bm; g (µF )

)

=
1

4π

∫

dy− e−iξAP+
A

y−
〈

PA

∣
∣
∣ψ̄(a)(0+, y−,~b)γ+ψ(a)(0)

∣
∣
∣PA

〉

(4.30)

where a spin average has been suppressed. These matrix elements are gauge-dependent and in

the light-cone gauge or any physical gauge they absorb all double logarithms8 of b (or QT in

7This is an equivalent description of the “elastic limit.”
8These logarithms come from integrating with respect to QT the differential cross section or the transverse

structure function, Eq.(4.3)
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momentum space) [116]. At b = 0, they coincide with the previously defined quark distribution

functions (3.59) and (3.60).

Simplifying the notation and exhibiting explicitly the gauge dependence we write:

W̃ (b,Q)

= H
(
pA · n
µF

,
pB · n
µF

; g (µF )

)

P̃
(
pA · n
µF

; g (µF )

)

P̃
(
pB · n
µF

; g (µF )

)

S̃ (pA · n, pB · n; g (µF ))

(4.31)

Since W̃ (b,Q) is independent of the factorization scale,

µF
d

dµF
ln W̃ (b,Q) = 0

we obtain,

µF
∂

∂µF
ln H̃

(
pA · n
µF

,
pB · n
µF

; g (µF )

)

= −γH (g (µF )) (4.32)

µF
∂

∂µF
ln P̃

(
pi · n
µF

; g (µF )

)

= −γi (g (µF )) (4.33)

µF
∂

∂µF
ln S̃ (pA · n, pB · n; g (µF )) = −γS (g (µF )) (4.34)

Here the gammas are anomalous dimensions with

γH +
∑

i

γi + γS = 0 (4.35)

which means that generally speaking each of the functions H̃, P̃ and S̃ needs renormalization

and we assume it to be multiplicative. Note that their individual renomalization dependence

cancels in their product [52].

A similar analysis can be done with the gauge-fixing vector n [116]. W̃ (b,Q) is independent

of n. Thus under a variation in pi · n at fixed n2 or any other implicit n-dependence we have,

(pA · n)2
d

d (pA · n)2
ln W̃ (b,Q) = 0 (4.36)
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which implies,

0 = (pA · n)2
∂

∂ (pA · n)2
ln H̃

(
pA · n
µF

,
pB · n
µF

; g (µF )

)

+ (pA · n)2
∂

∂ (pA · n)2
ln P̃

(
pA · n
µF

; g (µF )

)

+ (pA · n)2
∂

∂ (pA · n)2
ln S̃ (pA · n, pB · n; g (µF ))

The above equation can be rewritten as,

(pA · n)2
∂

∂ (pA · n)2
ln P̃

(
pA · n
µF

,mb ; g (µF )

)

= − (pA · n)2
∂

∂ (pA · n)2
ln H̃

(
pA · n
µF

,
pB · n
µF

; g (µF )

)

︸ ︷︷ ︸

G
�

pA·n
µF

;g(µF )
�

− (pA · n)2
∂

∂ (pA · n)2
ln S̃ (pA · n, pB · n,mb ; g (µF ))

︸ ︷︷ ︸

K(mb; g(µF ))

(4.37)

where we have introduced the two new functions G and K which match the changes of the

hard part and soft part respectively [52]. By Eq.(4.33),

(pA · n)2
∂

∂ (pA · n)2

(

µF
∂

∂µF
ln P̃

)

= 0

so the combination G+K is renormalization invariant [52],

(pA · n)2
∂

∂ (pA · n)2
γa (g (µF )) = µF

∂

∂µF

[

G

(
pA · n
µF

; g (µF )

)

+K (mb; g (µF ))

]

= 0

and by separation variables,

µF
∂

∂µF
K (mb; g (µF )) = −γK (g (µF ))

µF
∂

∂µF
G

(
pA · n
µF

; g (µF )

)

= γK (g (µF ))

Now, integrating the first equation we get

K (mb ; g (µF )) = −1

2

∫ µ2
F

m2

dµ
′2

µ′2
γK

(

g
(

µ
′2
))

+K (mb ; g (m))

and choosing 9

m ≈ c1/b

µF ≈ c2Q (4.38)

9Thus c1 ≈ 1
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we find [44]:

K (mb ; g (µF )) +G

(
pA · n
µF

; g (µF )

)

= −1

2

∫ (c2Q)2

(c1/b)2

dµ
′2

µ′2
γK

(

g
(

µ
′2
))

+K
(

c1 ; g
(c1
b

))

+G

(
1

c2
; g (c2Q)

)

(4.39)

The numbers c1, c2 are integration constants that can be used, later on, to compare with per-

turbative calculations.

We can simplify Eq.(4.39) using the following identity [44]:

F (b,Q) = −
∫ (c2Q)2

(c1/b)2

d
(
1/b̄2

)

1/b̄2
∂

∂ ln
(
1/b̄2

)F (b̄, Q) + F (c1/(c2Q), Q)

Let F (b,Q) = K (mb ; g (µF )) +G
(

Q
µF

; g (µF )
)

so,

K (mb ; g (µF )) +G

(
Q

µF
; g (µF )

)

= −
{
∫ (c2Q)2

(c1/b)2

dµ̄2

µ̄2
A (g (µ̄)) +B (c1, c2, g(c2Q))

}

(4.40)

with

A (g (µ̄)) ≡ 1

2

∂K (c1, g (µ̄))

∂g
β (g (µ̄)) +

1

2
γK (g (µ̄))

B (c1, c2, g(c2Q)) ≡ −K (c1, g(c2Q)) −G (1/c2, g(c2Q))

Going back to Eq.(4.37) we can write, using Eq.(4.40):

(pA · n)2
∂

∂ (pA · n)2
ln P̃

(
pA · n
µF

, c1 ; g (µF )

)

= −
{
∫ (c2Q)2

(c1/b)2

dµ̄2

µ̄2
A (g (µ̄)) +B (c1, c2, g(c2Q))

}

(4.41)

and integrating,

ln P̃
(

1

c2
, c1 ; g (c2Q)

)

= −
∫ (c2Q)

(c1/b)
d ln

(
Q̄2
)

[
∫ (c2Q̄)2

(c1/b)2

dµ̄2

µ̄2
A (g (µ̄)) +B

(
c1, c2, g(c2Q̄)

)

]

(4.42)

Here we have employed the following relation10

pA · n = p+
A = ξAP

+
A = ξA

√

S

2
→ Q√

2
ey

10Therefore (pA · n) /µF ≈ 1/c2 and like c1, we have c2 ≈ 1
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which is valid when ξA → xA, i.e valid in the elastic limit.

Eq.(4.42) can be rewriten as,

ln P̃
(

1

c2
, c1 ; g (c2Q)

)

= −
∫ (c2Q)

(c1/b)

dQ̄2

Q̄2

[
∫ (c2Q̄)2

(c1/b)2

dµ̄2

µ̄2
A (g (µ̄)) +B

(
c1, c2, g(c2Q̄)

)

]

= −
∫ (c2Q)2

(c1/b)2

dµ̄2

µ̄2

[
∫ (c2Q̄)2

(µ̄)2

dQ̄2

Q̄2
A (g (µ̄)) +B (c1, c2, g(c2µ̄))

]

= −
∫ (c2Q)2

(c1/b)2

dµ̄2

µ̄2

[

A (g (µ̄)) ln

(
c22Q

2

µ̄2

)

+B (c1, c2, g(c2µ̄))

]

(4.43)

We are almost there. To solve equations (4.33) and (4.41) we write,

P̃a/A

(

ξA,
P+

A

µF
, bm; g (µF )

)

= exp

{

−
∫ (c2Q)2

(c1/b)2

dµ̄2

µ̄2

[

A (g (µ̄)) ln

(
c22Q

2

µ̄2

)

+B (c1, c2, g(c2µ̄))

]}

× exp

{

−
∫ µF

µR

dµ′

µ′
γa

(
µ′
)
}

P̃a/A (ξA, Qb, c1; g (µR)) (4.44)

Here we have introduced µR, an arbitrary renormalization scale, which is also the third

integration constant. Like the first two, it will be used also to match the resummed formula

with the perturbative calculation. We will define,

µR = m =
c3
b

(4.45)

and choose the values of c1, c2 and c3 according to [7] (also [44]):

c1 = c3 = 2e−γE , c2 = 1, where γE is Euler’s constant, (4.46)

or we could have followed the most elaborated analysis of [63] where the integration limits in

the Sudakov factor are used to match the NLO results of [2].
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Solving equations (4.22) and (4.36) we find for W̃ (b,Q),

W̃ (b,Q)

= exp

{

−
∫ Q2

(c1/b)2

dµ̄2

µ̄2

[

A (g (µ̄)) ln

(
Q2

µ̄2

)

+B (c1, g(µ̄))

]}

×P̃a/A (ξA, Qb, c1; g (c3/b)) P̃ā/A (ξB, Qb, c1; g (c3/b))

×H
(
xA

ξA
,
xB

ξB
, Qb; g (c3/b) , c3/b

)

S̃ (c1; g (c3/b)) (4.47)

where equations (4.35) and (4.44) were used.

At this moment, we will assume that in the collinear configuration the xA/ξA and a de-

pendence factorizes from the xB/ξB and b dependence11:

W̃ (b;Q,xA, xB)

=
∑

a,b

∫ 1

xA

dξA
ξA

∫ 1

xB

dξB
ξB

fa/A (ξA; c1/b) fb/B (ξB ; c1/b)

×
∑

j

e2jCja

(
xA

ξA
, b;

c1
c2

; g(c1/b), c1/b

)

Cj̄a

(
xB

ξB
, b;

c1
c2

; g(c1/b), c1/b

)

(4.48)

here j = u, ū, d, d̄, . . . is the flavor of the annihilating quark or antiquark from hadron A and

as has been usual, ej is its charge in units of e [44].

So we have found for W̃ (b;Q,xA, xB) [44],

W̃ (b;Q,xA, xB)

=
∑

j

e2j
∑

a

∫ 1

xA

dξA
ξA

fa/A (ξA; c1/b)
∑

b

∫ 1

xB

dξB
ξB

fb/B (ξB; c1/b)

× exp

{

−
∫ Q2

(c1/b)2

dµ̄2

µ̄2

[

A (g (µ̄)) ln

(
Q2

µ̄2

)

+B (c1, g(µ̄))

]}

×Cja

(
xA

ξA
, b;

c1
c2

; g(c1/b), c1/b

)

Cj̄a

(
xB

ξB
, b;

c1
c2

; g(c1/b), c1/b

)

(4.49)

The functions Ci are known as coefficient functions which transform the parton distribution

functions f into distributions Ci ⊗ fi specific of the process at hand.

11This assumption can be justified assuming that partons a and ā radiate independently, i.e their respective
fields do not overlap
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The final step is to plug in the result of Eq.(4.49) into Eq.(4.25) to obtain the resummed

formula for the cross section at low QT :

dσ

dQ2dyd2 ~QT

≈ 4πα2

9Q2S

∫
d2~b

(2π)2
ei

~b· ~QT W̃ (b;Q,xA, xB)

=
4πα2

9Q2S

∫
d2~b

(2π)2
ei

~b· ~QT

∑

j

e2j
∑

a

∫ 1

xA

dξA
ξA

fa/A (ξA; c1/b)

×
∑

b

∫ 1

xB

dξB
ξB

fb/B (ξB ; c1/b)

× exp

{

−
∫ Q2

(c1/b)2

dµ̄2

µ̄2

[

A (g (µ̄)) ln

(
Q2

µ̄2

)

+B (c1, g(µ̄))

]}

×Cja

(
xA

ξA
, b;

c1
c2

; g(c1/b), c1/b

)

Cj̄a

(
xB

ξB
, b;

c1
c2

; g(c1/b), c1/b

)

(4.50)

To have a formula valid also when QT ≈ Q we will include the Y term defined in Eq.(4.21)

dσ

dQ2dyd2 ~QT

≈ 4πα2

9Q2S

∫
d2~b

(2π)2
ei

~b· ~QT W̃ (b;Q,xA, xB) +
4πα2

9Q2S
Y (QT ;Q,xA, xB) (4.51)

We need to evaluate the two dimensional Fourier transform present in Eq.(4.51). This is

done as follows12

∫
d2~b

(2π)2
ei

~b· ~QT =

∫
db

(2π)
b J0(QT b) =

1

2πQ2
T

∫

dr r J0(r)

with r = QT b. Thus we can write

∫
d2~b

(2π)2
ei

~b· ~QT W̃ (b;Q,xA, xB)

=
1

2πQ2
T

∫

dr r J0(r) W̃

(
r

QT
;Q,xA, xB

)

(4.52)

and assume that
∣
∣
∣W̃ (r)

∣
∣
∣ ≤ 1

r
for 0 ≤ r <∞ (4.53)

12Here the integral representation of the Bessel function of the first kind [5]:

J0(x) =
1

2π

Z 2π

0

dθeix cos θ

was employed.
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in order to guarantee the existence of the integral.

Eq.(4.52) can be further simplified employing the following recurrence relation among Bessel

functions [5]:

d

dx
[x J0(x)] = xJ1(x)

which allows us to integrate by parts,

∫ ∞

0
dr r J0(r) W̃ (r) = −

∫ ∞

0
dr r J1(r)

dW̃ (r)

dr
(4.54)

Notice that we are using:

r J1(r) W̃ (r)
∣
∣
∣

∞

0
= 0

which is guaranteed by the condition (4.53). A second possibility to obtain similar results is

to require the exponential to dominate the value of W̃ (r). In this case we need to adopt the

following three conditions:

1. The coefficient functions Ci(r) are continuous for 0 < r <∞ with the possibility of poles

of finite order at r = 0 or r = ∞.

2. A(r) > 0

3. |B(r)| < A(r) ln r for 0 ≤ r <∞.

Conditions two and three guarantee that the value of the integral in the exponential is positive

for any value of r. They also guarantee that the following two limits:

lim
r→0

W̃ (r) = 0

lim
r→∞

W̃ (r) = 0

hold, which allows us to ignore the boundary values during the integration by parts.

4.3.2 From resummed formula to fixed order perturbative analysis

In order for the result of Eq.(4.50) to have any predictive power we need to know the

functions A, B and C. In practice, this is not possible. The best that we can do is to
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find the lower terms of their perturbative expansions and hope that higher terms do not

dominate the value of W̃ (r). We need to observe here that the function W̃ (r) can be calculated

perturbatively only for small r i.e 1
b ≫ ΛQCD and an extrapolation to large values of r i.e

1
b ≪ ΛQCD requires non-perturbative input. This extrapolation is required in order to complete

the Fourier transform in Eq.(4.52). At least four approaches have been proposed to handle the

extension to high values of b [120]:

1. Instead of working in b-space we can work in QT -space directly. This was done in the

original work of [57] and revived by [64] and [83].

2. Artificially prevent b to reach large values by replacing it with a new variable b∗ and

parametrize the non-perturbative region in terms of a form factor FNP
ij (Q, b, xA, xB).

Where the “freezing” of b at b∗ is achieved by

b∗ =
b

√

1 + (b/bmax)2
, b∗ < bmax (4.55)

with the parameter bmax ≈ 1/ΛQCD which separates the perturbative region from the

non-perturbative one. The form of the function FNP is still matter of debate. This ap-

proach was first introduced by [44] and it has been selected here to perform the numerical

analysis. See Sec.5.1 in particular equations (5.11) and (5.12).

3. Qiu and Zhang [106] and [107] proposed that for b∗ > bmax,

W̃ (b;Q,xA, xB) = W̃Pert (bmax)FNP (b; bmax) (4.56)

Unlike the original CSS formalism, W̃ (Q, b;xA, xB) is not altered and is independent of

the non-perturbative parameters when b < bmax.

4. In order to avoid the singularity present at 1/b = ΛQCD we can alter the b-space contour

integral. This technique was first introduced in threshold resummation [17] and then

adopted by [85] and [117] and also by [26].

All these approaches require introduction of new parameters for a quantitative fit.
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To find the lower terms of A, B and C we will proceed as follows: we will find a formal

expression for the cross section from the resummed formula Eq.(4.50) valid up to a finite or-

der. Then, we will match this expression with the cross section at the same order obtained in

perturbation theory. We will assume that this expansion around Q≫ ΛQCD is approximately

equal to the product of the perturbative expansions of the exponential and the coefficient

functions together with the evolution of the distribution functions13. This product should be

understood as the multiplication term by term of the respective series.

We will start with the coefficient functions14:

Cja

(

b;
xA

ξA
,
c1
c2

; g(µ;Q), µ

)

=

∞∑

n=0

[
αS (µ;Q)

π

]n

C̃
(n)
ja

(
xA

ξA
, b;

c1
c2

;µ

)

=

∞∑

n=0

[
αS (Q)

π

]n

C
(n)
ja

(
xA

ξA
, b;

c1
c2

;µ

)

(4.57)

with

αS(µ;Q)

π
=

αS(Q)

π
− β1 ln

(
µ2

Q2

)[
αS(Q)

π

]2

+ . . . (4.58)

β1 =
1

12
(33 − 2Nf ) here Nf is the number of flavors

and there is a similar one for Cj̄b.

Let us find an expansion for the exponential. We will make use of the fact that A, B and

αS have perturbative series around Q:

exp

{

−
∫ Q2

(c1/b)2

dµ̄2

µ̄2

[

A (g (µ̄)) ln

(
Q2

µ̄2

)

+B (c1, g(µ̄))

]}

=
∞∑

n=0

1

n!

{

−
∫ Q2

(c1/b)2

dµ̄2

µ̄2

[

A (g (µ̄)) ln

(
Q2

µ̄2

)

+B (c1, g(µ̄))

]}n

=

∞∑

n=0

1

n!

{

−
∫ Q2

(c1/b)2

dµ̄2

µ̄2

[ ∞∑

l=1

[
αS (µ̄;Q)

π

]l

Al (c1) ln

(
Q2

µ̄2

)

+

∞∑

m=1

[
αS (µ̄;Q)

π

]m

Bm (c1, c2)

]}n

(4.59)

13Notice that the distribution functions are nonpertubative quantities. Therefore, we do not have an expansion
for them in terms of αS(Q)

14To simplify notation we will write µ for µR = c1/b
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Suppose now that we can exchange the order of the sum and integral sign without affecting

the final result. Then,

exp

{

−
∫ Q2

(c1/b)2

dµ̄2

µ̄2

[

A (g (µ̄)) ln

(
Q2

µ̄2

)

+B (c1, g(µ̄))

]}

=
∞∑

n=0

(−1)n

n!

{ ∞∑

l=1

Al (c1)

∫ Q2

(c1/b)2

dµ̄2

µ̄2

[
αS (µ̄;Q)

π

]l

ln

(
Q2

µ̄2

)

+
∞∑

m=1

Bm (c1, c2)

∫ Q2

(c1/b)2

dµ̄2

µ̄2

[
αS (µ̄;Q)

π

]m
}n

(4.60)

=

∞∑

n=0

[
αS(Q)

π

]n

F (n)
(

c1, c2;
c1
b

;Q
)

(4.61)

Here F (n)
(
c1, c2;

c1
b ;Q

)
is defined order by order in αS(Q)/π .

Now, we have evolution of the distribution functions:

µ2 d

dµ2
fj/A (x, µ) =

∫ 1

x

dξ

ξ

∑

k

Pj/k

(
x

ξ

)

fj/A (ξ, µ) (4.62)

with Pj/k(z) the DGLAP kernel. This kernel can be expanded in terms of αS(µ)

Pj/k(z;µ) =

∞∑

n=1

(
αS(µ)

π

)n

P
(n)
j/k(z;µ) (4.63)

and at order O(αS(Q)) we have for example:

µ2 d

dµ2
fj/A (x, µ) =

αS(Q)

2π

∫ 1

x

dξ

ξ

∑

k

P
(1)
j/k

(
x

ξ

)

fj/A (ξ,Q) (4.64)

where P
(1)
j/k(z) defined in Table (B.1). Thus, we obtain for W̃

W̃ (b;Q,xA, xB) =

∞∑

n=0

[
αS(Q)

π

]n

W̃ (n)

(

b;Q,xA, xB ;
c1
c2

;µ

)

(4.65)

and at lowest order this is equal to:

W̃ (0)

(

xA, xB , b;
c1
c2

;µ

)

=
∑

j

e2j
∑

a,b

∫ 1

xA

dξA
ξA

fa/A (ξA;µ)

∫ 1

xB

dξB
ξB

fb/B (ξB;µ)C
(0)
ja

(
xA

ξA
, b;

c1
c2

;µ

)

C
(0)

j̄b

(
xB

ξB
, b;

c1
c2

;µ

)

(4.66)
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Here we have used F (0) = 1. We can also easily find the coefficient of the leading order

using the prediction of the parton model. For C(0) we get [44],

C
(0)
ja

(

z, b;
c1
c2

;µ

)

= δjaδ(z − 1) (4.67)

C
(0)
jg

(

z, b;
c1
c2

;µ

)

= 0 (4.68)

These results were obtained comparing the Fourier transform of the singular part of equations

(4.17), (4.18) with the perturbative expansion of Eq.(4.48).

In general we find:

W̃ (n)

(

xA, xB , b;
c1
c2

;Q

)

=
∑

j

e2j
∑

a

∫ 1

xA

dξA
ξA

fa/A (ξA;µ)
∑

b

∫ 1

xB

dξB
ξB

fb/B (ξB;µ)

×
n∑

k=0

k∑

l=0

C
(l)
ja

(
xA

ξA
, b;

c1
c2

;µ

)

C
(k−l)

j̄b

(
xB

ξB
, b;

c1
c2

;µ

)

F (n−k)
(

c1, c2;
c1
b

;Q
)

(4.69)

Now we want to use our previous results to find the expansion of O(αS(Q)) for the cross

section deduced from the resummed formula. Therefore, we need to go back to Eq.(4.54). The

derivative is equal to

−
∫ ∞

0
dr r J1(r)

dW̃ (r)

dr
=

∞∑

n=0

[
αS (Q)

π

]n
{

−
∫ ∞

0
dr r J1(r)

dW̃ n(r)

dr

}

which expanded at O(αS(Q)) is

−
∫ ∞

0
dr r J1(r)

dW̃ 1

dr

= −
(
αS(Q)

π

)∫ ∞

0
dr r J1(r)

d

dr

{

fa/A

(

ξA;
c1QT

r

)

fb/B

(

ξB;
c1QT

r

)

×
[

C
(0)
ja (r)C

(0)

j̄b
(r)F (1)(r) + C

(0)
ja (r)C

(1)

j̄b
(r) + C

(1)
ja (r)C

(0)

j̄b
(r)
]}

(4.70)
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where we have omitted some integrals and sum factors. Through our particular choice of

renormalization constant µ ≈ c3/b we can make the C’s independent of r, which means:

−
∫ ∞

0
dr r J1(r)

dW̃ 1

dr

= −
(
αS(Q)

π

)∫ ∞

0
dr r J1(r)

×
{[

fb/B

(

ξB;
c1QT

r

)
d

dr
fa/A

(

ξA;
c1QT

r

)

+ fa/A

(

ξA;
c1QT

r

)
d

dr
fb/B

(

ξB;
c1QT

r

)]

×
[

C
(0)
ja (r)C

(0)

j̄b
(r)F (1)(r) + C

(0)
ja (r)C

(1)

j̄b
(r) + C

(1)
ja (r)C

(0)

j̄b
(r)
]

+

[

fa/A

(

ξA;
c1QT

r

)

fb/B

(

ξB;
c1QT

r

)][

C
(0)
ja C

(0)

j̄b

d

dr
F (1)(r)

]}

(4.71)

The terms containing the derivatives of the distribution functions will give a contribution

proportional to α2
S(Q) by Eq.(4.64) and therefore they do not contribute to O(αS(Q)). So we

get:

−
∫ ∞

0
dr r J1(r)

dW̃ 1

dr
= −

(
αS(Q)

π

)∫ ∞

0
dx r J1(r)C

(0)
ja C

(0)

j̄b

d

dr
F (1)(r) + O(α2

S(Q)) (4.72)

We are still one term short. We need to take into account a term proportional to O(αS(Q))

coming from W̃ 0:

−
∫ ∞

0
dr r J1(r)

dW̃ 0

dr

= −
∫ ∞

0
dr r J1(r)C

(0)
ja C

(0)

j̄b

[

fb/B

(
1

r

)
d

dr
fa/A

(
1

r

)

+ fa/A

(
1

r

)
d

dr
fb/B

(
1

r

)]

(4.73)

collecting terms (4.72) and (4.73) we finally obtain:

−C(0)
ja C

(0)

j̄b

∫ ∞

0
dr r J1(r)

×
[

fb/B

(
1

r

)
d

dr
fa/A

(
1

r

)

+ fa/A

(
1

r

)
d

dr
fb/B

(
1

r

)

+

(
αS(Q)

π

)
d

dr
F (1)

]

(4.74)

We have now to evaluate the above integral to order αS(Q). Let us start with the derivatives,

both are easy. Using the evolution Eq.(4.64) we can write to order αS(Q):

d

dr
fa/A

(

x;
1

r

)

=
−2

r

αS(Q)

2π

∫ 1

x

dξ

ξ

∑

k

P
(1)
a/k

(
x

ξ

)

fa/A (ξ;Q) (4.75)
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and likewise for the second derivative,

d

dr
F (1)(r)

= − d

dr

{

A(1)

2
ln2

(
Q2r2

Q2
T c

2
1

)

+B(1) ln

(
Q2r2

Q2
T c

2
1

)}

= −2

r

{

A(1) ln

(
Q2r2

Q2
T c

2
1

)

+B(1)

}

(4.76)

Inserting equations (4.75) and (4.76) into (4.74) we find using f
(
ξ; 1

r

)
≈ f (ξ;Q) and equations

(4.67), (4.68):

αS(Q)

π
δjaδj̄bδ(1 − zA)δ(1 − zB)

∫ ∞

0
dr J1(r)

×
[

fb/B (ξB;Q)

∫ 1

xA

dξ

ξ

∑

k

P
(1)
a/k

(
x

ξ

)

fa/A (ξ;Q) + fa/A (ξA;Q)

∫ 1

xB

dξ

ξ

∑

k

P
(1)
b/k

(
x

ξ

)

fb/B (ξ;Q)

+ fa/A (ξA;Q) fb/B (ξB ;Q)

{

2A(1) ln

(
Q2r2

Q2
T c

2
1

)

+ 2B(1)

}]

(4.77)

In Eq.(4.70) we omitted some integral factors and sums which can be evaluated with the deltas

to obtain:

αS(Q)

π

∑

j

e2j

[

fj̄/B (xB ;Q)

∫ 1

xA

dξA
ξA

∑

k

P
(1)
j/k

(
xA

ξA

)

fj/A (ξA;Q)

+fj/A (xA;Q)

∫ 1

xB

dξB
ξB

∑

k

P
(1)

j̄/k

(
xB

ξB

)

fj̄/B (ξB ;Q)

+ fj/A (xA;Q) fj̄/B (xB;Q)

{

2A(1) ln

(
Q2

Q2
T

)

+ 2B(1)

}]

(4.78)

here the following two integrals where employed [72]:

∫ ∞

0
dr J1(r) = 1 (4.79)

∫ ∞

0
dr J1(r) ln

(
r

c1

)

= 0 (4.80)
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Remember that c1 = 2eγE . Formula (4.78) allows to write for the differential cross section

predicted from the resummed equation at order αS(Q) when QT ≪ Q

dσ

dQ2dyd2 ~QT

≈ 4πα2

9Q2S

1

2πQ2
T

(
αS(Q)

π

)
∑

j

e2j

[

fj̄/B (xB ;Q)

∫ 1

xA

dξA
ξA

∑

k

P
(1)
j/k

(
xA

ξA

)

fj/A (ξA;Q)

+fa/A (xA;Q)

∫ 1

xB

dξB
ξB

∑

k

P
(1)

j̄/k

(
xB

ξB

)

fj̄/B (ξB;Q)

+ fj/A (xA;Q) fj̄/B (xB ;Q)

{

2A(1) ln

(
Q2

Q2
T

)

+ 2B(1)

}]

(4.81)

4.3.3 A and B functions

We need now the perturbative expression. It can be easily obtained from equations15 (2.18),

(3.12) and (4.3)

dσ

dQ2dyd2 ~QT

≈ 4πα2

9Q2S

1

2πQ2
T

(
αS(Q)

π

)
∑

j

e2j

[

fj̄/B (xB ;Q)

∫ 1

xA

dξA
ξA

∑

k

P
(1)
j/k

(
xA

ξA

)

fj/A (ξA;Q)

+fj/A (xA;Q)

∫ 1

xB

dξB
ξB

∑

k

P
(1)

j̄/k

(
xB

ξB

)

fj̄/B (ξB;Q)

+2 fj/A (xA;Q) fj̄/B (xB;Q)

{
4

3
ln

(
Q2

Q2
T

)

− 2

}]

(4.82)

where we have used the equality:

(
1 + z2

1 − z

)

+

=
1 + z2

(1 − z)+
+

3

2
δ(1 − z) (4.83)

See Appendix (C). From equations (4.81) and (4.82) we conclude:

A(1) =
4

3
B(1) = −2 (4.84)

15Notice that W R
L is finite at low QT .
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For completeness we will include here the known predictions for A and B [13]:

A(1)(c1) = CF

A(2)(c1) = CF

[(
67

36
− π2

12

)

NC − 5

18
Nf − 2β1 ln

(
2e−γE

c1

)]

B(1)(c1, c2) = CF

[

−3

2
− 2 ln

(
2e−γEc2
c1

)]

B(2)(c1, c2) = CF

{

CF

(
π2

4
− 3

16
− 3ζ(3)

)

+NC

(
11

36
π2 − 193

48
+

3

2
ζ(3)

)

+
Nf

2

(

−1

9
π2 +

17

12

)

−
[(

67

18
− π2

6

)

NC − 5

9
Nf

]

ln

(
2e−γE c2
c1

)

+ 2β1

[

ln2

(
2e−γE

c1

)

− ln2(c2) −
3

2
ln(c2)

]}

where Nf is the number of light quark flavors, CF = tr(tata) is the second order Casimir of the

quark representation (with ta being the SU(NC) generators in the fundamental representation),

β1 = (11NC − 2Nf )/12 and ζ(x) is the Riemann zeta function, and ζ(3) ≈ 1.202. For QCD,

NC = 3 and CF = 4/3. Using the canonical selection for the constants c1, c2, Eq.(4.46) the

second order coefficients in the Sudakov exponent simplify to

A(2)(c1 = 2e−γE ) = CF

[(
67

36
− π2

12

)

NC − 5

18
Nf

]

(4.85)

B(2)(c1 = 2e−γE , c2 = 1) = C2
F

(
π2

4
− 3

16
− 3ζ(3)

)

+ CFNC

(
11

36
π2 − 193

48
+

3

2
ζ(3)

)

(4.86)

+CFNf

(

− 1

18
π2 +

17

24

)

(4.87)

4.3.4 C functions

Now we should turn our attention to the C functions. We cannot find their first order

coefficients directly from W̃ 1, since they only appear at second order16. Fortunately there is

a quantity of order αS that can help us. We are going to Fourier transform the divergent part

of the cross section,

∫

d2 ~QT e−i~b· ~QT
dσ

dQ2dyd2 ~QT

≈ 4πα2

9Q2S
W̃ (b;Q,xA, xB) (4.88)

16See equations (4.71) and (4.72).
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and expand W̃ around µ = c1
b = Q. As consequence of this choice, the exponential factor is

reduced to unity. Then, we have:

∫

d2 ~QT e−i~b· ~QT
dσ

dQ2dyd2 ~QT

≈ 4πα2

9Q2S

∑

a,b

∫ 1

xA

dξA
ξA

∫ 1

xB

dξB
ξB

fa/A (ξA;Q) fb/B (ξB ;Q)

×
∑

j

e2jCja

(
xA

ξA
, b;

c1
c2

; g(Q), Q

)

Cj̄a

(
xB

ξB
, b;

c1
c2

; g(Q), Q

)

=
4πα2

9Q2S

∑

a,b

∫ 1

xA

dξA
ξA

∫ 1

xB

dξB
ξB

fa/A (ξA;Q) fb/B (ξB ;Q)

×
∑

j

e2j

(
αS(Q)

π

)n n∑

k=0

C
(k)
ja

(
xA

ξA
, b;

c1
c2

;Q

)

C
(n−k)

j̄b

(
xB

ξB
, b;

c1
c2

;Q

)

(4.89)

which at O (αS(Q)) is equal to:

∫

d2 ~QT e−i~b· ~QT
dσ(1)

dQ2dyd2 ~QT

≈ 4πα2

9Q2S

(
αS(Q)

π

)
∑

a,b

∫ 1

xA

dξA
ξA

∫ 1

xB

dξB
ξB

fa/A (ξA;Q) fb/B (ξB;Q)

×
∑

j

e2j

[

C
(1)
ja

(
xA

ξA
, b;

c1
c2

;Q

)

C
(0)

j̄b

(
xB

ξB
, b;

c1
c2

;Q

)

+ C
(0)
ja

(
xA

ξA
, b;

c1
c2

;Q

)

C
(1)

j̄b

(
xB

ξB
, b;

c1
c2

;Q

)]

(4.90)

=
4πα2

9Q2S

(
αS(Q)

π

)
∑

a

∑

j

e2j

[

fj̄/B (xB ;Q)

∫ 1

xA

dξA
ξA

fa/A (ξA;Q)C
(1)
ja

(
xA

ξA
, b;

c1
c2

;Q

)

+fj/A (xA;Q)

∫ 1

xB

dξB
ξB

fa/B (ξB;Q)C
(1)

j̄a

(
xB

ξB
, b;

c1
c2

;Q

)]

(4.91)

In order to calculate the perturbative contribution we need to Fourier transform Eq. (4.82)

and since QT = 0 is in the range of this integral we also need to include the contributions to

the cross section at this value. Both terms, the real contribution and the virtual contribution

require regularization; we will use dimensional regularization with dimension n = 2 − 2ǫ

Let us start with the real contribution. We have to modify Eq. (4.82) to include an overall

factor equal to µ2ǫ to keep the coupling constant dimensionless and a factor of (2π)2ǫ due to

phase space. There is also the factor (1−ǫ) that comes from the Dirac algebra in n-dimensions.
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Putting this together with equations (4.82) and (B.7) we find the Fourier transform of the

divergent part of the real contribution of the cross section;

∫

dn ~QT e
−i ~QT ·~b dσ(R)

dQ2dyd2 ~QT

≈ N
(1 − ǫ)

2π

(
αS(Q)

π

)

(2πµ)2ǫ
{

I0

[

δ(1 − zB)P
(1)
j/k (zA)

+ δ(1 − zA)P
(1)

j̄/k
(zB) + 2δ(1 − zA)δ(1 − zB)

(
4

3
lnQ2 − 2

)

−ǫ4
3

(δ(1 − zA)(1 − zB) + δ(1 − zB)(1 − zA))

]

−2
4

3
δ(1 − zA)δ(1 − zB)I1

}

(4.92)

where N ≡∑j e
2
j

4πα2

9Q2S and (see Appendix C)

I0 ≡
∫
dn ~QT

Q2
T

e−i ~QT ·~b =

(
2

b

)n−2

π
n
2 Γ
(n

2
− 1
)

(4.93)

I1 ≡
∫
dn ~QT

Q2
T

e−i ~QT ·~b lnQ2
T =

(
2

b

)n−2

π
n
2 Γ
(n

2
− 1
) [

ψ
(n

2
− 1
)

− γE − ln

(
b2

4

)]

(4.94)

with Γ(z) the gamma or factorial function, ψ(z) is the logarithmic derivative of the gamma

function and γE is the Euler’s constant. Taking n = 2 − 2ǫ we find:

I0 = −π
(
b2

4π

)ǫ [
1

ǫ
+ γE + O(ǫ)

]

(4.95)

I1 = = −π1−ǫ

[
1

ǫ2
− γE

ǫ
− π2

12
− 3

2
γ2

E − 2γE ln
b2

4
− 1

2
ln2 b

2

4
+ O(ǫ)

]

(4.96)

which allow us to calculate

(2πµ)2ǫI0 = −π
(

1

ǫ
+ γE + ln

(
b2πµ2

)
+ O(ǫ)

)

(4.97)

(2πµ)2ǫI1 = −π
[

1

ǫ2
+

1

ǫ

(
ln(4πµ2) − γE

)
− 2γE ln

(
b2

4

)

− 3

2
γ2

E − π2

12

−1

2
ln2

(
b2

4

)

+
1

2
ln2(4πµ2) − γE ln(4πµ2) + O(ǫ)

]

(4.98)

Now the virtual part. The evaluation of the Fourier transform is trivial due to the presence
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of the δ2( ~QT ) in the phase space thus:

∫

d2 ~QT e
−i ~QT ·~b dσ(V )

dQ2dyd2 ~QT

= N(1 − ǫ)
−4

3

(
αS(Q)

π

)[
4πµ2

−Q2

]ǫ
Γ2(1 − ǫ)Γ(1 + ǫ)

Γ(1 − 2ǫ)

(
1

ǫ2
+

3

2ǫ
+ 4

)

δ(1 − zA)δ(1 − zB)

= N(1 − ǫ)
−4

3

(
αS(Q)

π

){
1

ǫ2
+

1

ǫ

[
3

2
− γE + ln

(
4πµ2

Q2

)]

+ 4 − 3

2
γE +

1

2
γ2

E − 7

12
π2

+ ln

(
4πµ2

Q2

)(
3

2
− γE

)

+
1

2
ln2

(
4πµ2

Q2

)

+ O(ǫ)

}

(4.99)

Here equations (B.9), (2.24), (3.3) and (3.12) were used. We can observe here that the real

and virtual parts contain divergent parts proportional to 1/ǫ2 and 1/ǫ. The first term comes

from the superposition of soft and collinear singularities. In the virtual diagram the 1/ǫ term

comes from either soft or collinear singularities, while in the real contribution only collinear

singularities are present.

Adding equations (4.92) and (4.99) we get:

∫

d2−2ǫ ~QT e
−i ~QT ·~b

(

dσ(R)

dQ2dyd2 ~QT

+
dσ(V )

dQ2dyd2 ~QT

)

= N(1 − ǫ)

(
αS(Q)

π

){

− 1

2ǫ

[
4

3

(
1 + z2

A

1 − zA

)

+

δ(1 − zB) +
4

3

(
1 + z2

B

1 − zB

)

+

δ(1 − zA)

]

+δ(1 − zA)δ(1 − zB)

[

2

3
π2 − 23

6
− 8

3
ln2

(

Qb eγE−3/4

2

)]

−
[
2

3

(
1 + z2

A

1 − zA

)

+

δ(1 − zB) +
2

3

(
1 + z2

B

1 − zB

)

+

δ(1 − zA)

]
(
γE + ln(b2πµ2)

)

+
2

3
[δ(1 − zA)(1 − zB) + δ(1 − zB)(1 − zA)]

}

(4.100)

The first remarkable thing to observe is the cancellation of the terms proportional to 1/ǫ2.

This is an example of the Kinoshita-Lee-Navenberg theorem [98] where the soft divergences of

the virtual gluon correction to qq̄ cancel with the soft divergences of the qq̄G final state. Now

the term proportional to 1/ǫ is absorbed by the distribution functions by the Factorization

Theorem in the Drell-Yan process Eq.(B.6). So we are left with a collection of finite terms.



92

These numbers are equal to:

C
(1)
ja

(

zA, b;
c1
c2

;Q

)

δ(1 − zB) +C
(1)

j̄b

(

zB , b;
c1
c2

;Q

)

δ(1 − zA)

= δ(1 − zA)δ(1 − zB)

[

2

3
π2 − 23

6
− 8

3
ln2

(

c1 e
γE−3/4

2c2

)]

−
[
2

3

(
1 + z2

A

1 − zA

)

+

δ(1 − zB) +
2

3

(
1 + z2

B

1 − zB

)

+

δ(1 − zA)

]

ln

(
e2γEb2µ2

MS
4

)

+
2

3
[δ(1 − zA)(1 − zB) + δ(1 − zB)(1 − zA)] (4.101)

Here equations (4.38), (4.67), (4.68) and (4.90) where used together with µMS = µMS e
(ln(4π)−γE)/2

at NLO [91]. Thus we can conclude [13], [44]:

C
(1)
ja

(

z, b;
c1
c2

;Q

)

= δja

{

δ(1 − z)

[

1

3
π2 − 23

12
− 4

3
ln2

(

c1 e
γE−3/4

2c2

)]

− 4

3

(
1 + z2

1 − z

)

+

ln

(
eγEbµMS

2

)

+
2

3
(1 − z)

}

(4.102)

To calculate the C-function for the Compton subprocess we proceed likewise. But we need

to include the factor 2(1− ǫ) to account for the degrees of freedom of the gluon in n = 2(1− ǫ)

dimensions. From equations (B.10) and (4.7) we find:

∫

d2−2ǫ ~QT e
−i ~QT ·~b dσ(qG)

dQ2dyd2 ~QT

= N

(
αS(Q)

π

)
(2πµ)2ǫ

2(1 − ǫ)π
I0

{
1

2

[
(1 − zB)2 + z2

B

]
(1 − ǫ) + ǫzB(zB − 1)

}

δ(1 − zA)

= N

(
αS(Q)

π

){

− 1

2ǫ

1

2

[
(1 − zB)2 + z2

B

]
+
zB(1 − zB)

2

−1

2
ln

(
eγE bµMS

2

)
[
(1 − zB)2 + z2

B

]
}

δ(1 − zA) + O(ǫ) (4.103)

Again the divergent part is absorbed by the distribution functions. Therefore we deduce that

[44], [13]:

C
(1)
jg

(

z, b;
c1
c2

;Q

)

=
zB(1 − zB)

2
− 1

2
ln

(
eγEbµMS

2

)
[
(1 − zB)2 + z2

B

]
(4.104)
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With the canonical choices for µ = µMS, c1 and c2 expressions (4.102) and (4.104) are simplified

to:

C
(1)
ja (z) = δja

[

δ(1 − z)

(
1

3
π2 − 8

3

)

+
2

3
(1 − z)

]

(4.105)

C
(1)
jg (z) =

z(1 − z)

2
(4.106)

which can also be found in [44] or [63].

4.3.5 Finite Part

To finish our description of the resummed formula Eq.(4.20), we need to exhibit formulas

for the Yf part defined in Eq.(4.21). The Yf term is equal to the difference of the fixed order

perturbative result and their low QT limit. Let us start with the qq̄ process, we have at NLO:

R1
jj̄ = R1

j̄j

=
2

3πQ2
T

{
(Q2 − t)2 + (Q2 − u)2

s
δ(s + t+ u−Q2)

−δ(1 − zB)

[
1 + z2

A

1 − zA

]

+

− δ(1 − zA)

[
1 + z2

B

1 − zB

]

+

− 2δ(1 − zA)δ(1 − zB)

(

lnQ2 − 3

2

)}

(4.107)

where equations (3.105) and (4.82) have been used. For the Compton contribution, qg subpro-

cess we obtain using equations (3.106) and (4.103)

R1
jg = R1

j̄g

=
1

4π

{
(Q2 − s)2 + (Q2 − u)2

−us δ(s + t+ u−Q2) − 1

Q2
T

[
(1 − zB)2 + z2

B

]
δ(1 − zA)

}

(4.108)

and similarly for the gq subprocess

R1
gj = R1

gj̄

=
1

4π

{
(Q2 − s)2 + (Q2 − t)2

−ts δ(s + t+ u−Q2) − 1

Q2
T

[
(1 − zA)2 + z2

A

]
δ(1 − zB)

}

(4.109)

At this order any other possible contributions like R1
gg, R1

jj′, R1
j̄j′

do not contribute [44].
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CHAPTER 5. RESUMMATION AND STRUCTURE FUNCTIONS

In this chapter we will apply resummation to the fully differential cross section. In the first

section we apply resummation only to the transverse structure function. Then we explore how

to extend resummation to the remaining functions. Conclusions are also included.

5.1 First extension

The most direct way to extend resummation to the fully differential cross section of the

Drell-Yan process is to apply this technique to each one of the structure functions defined in

Chapter 2. Unfortunately, only WT has the right structure. Let us understand this better. By

Eq.(2.24) the integrated cross section is proportional to the sum 2WT +WL, but the transverse

structure function dominates at low QT , thus:

lim
QT→0

dσ

d4q
= lim

QT→0

α2

6S2Q2π3
WT (5.1)

since the singularity for WT is the dominant singularity1. Hence, when we performed the

resummation of the integrated cross section we were actually resumming WT . Clearly this

implies for the differential cross section:

lim
QT →0

dσ

d4qdΩ
= lim

QT→0

α2

2S2Q2 (2π)4
[
WT

(
1 + cos2 θ

)]
(5.2)

and therefore at low QT we have:

dσ

d4qdΩ
≈ α2

2S2Q2 (2π)4
[
WResum.

T

(
1 + cos2 θ

)]
(5.3)

1The fact that this singularity is proportional to 1
Q2

T

is fundamental for resummation
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and for 0 < QT ≈ Q

dσ

d4qdΩ

=
α2

2S2Q2 (2π)4
[
WResum.

T

(
1 + cos2 θ

)]

+
α2

2S2Q2 (2π)4

[

W f
T

(
1 + cos2 θ

)
+W f

L

(
1 − cos2 θ

)
+W f

∆∆ cos 2φ sin2 θ +W f
∆ sin 2θ cosφ

]

(5.4)

with [12],[13] and [63]:

WResum.
T

=
(2π)4S

3

1

(2π)2

∫

d2bei
~QT ·~b

∑

j

e2j
∑

ab

FNP
ab (Q, b, xA, xB)

×
∫ 1

xA

dξA
ξA

fa/A (ξA; 1/b∗)

∫ 1

xB

dξB
ξB

fb/B (ξB; 1/b∗)

× exp

{

−
∫ Q2

1/b2∗

dµ̄2

µ̄2

[

ln

(
Q2

µ̄2

)

A(g(µ̄)) +B(g(µ̄))

]}

×Cja

(
xA

ξA
; g(1/b∗)

)

Cj̄a

(
xB

ξB
; g(1/b∗)

)

(5.5)

where FNP
ab and b∗ have been explained at the beginning of section 4.3.2 and the functions A,

B and C are the same functions found in the last chapter. The finite pieces are:

For WT

qq̄ subprocess:

W finite
T (qq̄) = W pert

T (qq̄) −W asymp
T (qq̄)

=
(2π)4S

3

(
αS(Q)

π

)
2

3π

{
1

2

(

1 +
2Q2

Q2
T

)(
zA
zB

+
zB
zA

)

δ(s + t+ u−Q2)

− 1

Q2
T

[

δ(1 − zB)

[
1 + z2

A

1 − zA

]

+

+ δ(1 − zA)

[
1 + z2

B

1 − zB

]

+

+ 2δ(1 − zA)δ(1 − zB)

(

ln
Q2

Q2
T

− 3

2

)]}

(5.6)
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qg subprocess:

W finite
T (qg) = W pert

T (qg) −W asymp
T (qg)

=
(2π)4S

3

(
αS(Q)

π

)
1

4πQ2
T

{

−1

2

[

(zA − zB)2 + z2
B + (1 − zAzB)2 + z2

B + z2
B

Q2
T

Q2

]
Q2

zB





√

1 +
Q2

T

Q2
− zB



 δ(s + t+ u−Q2)

−
[
(1 − zB)2 + z2

B

]
δ(1 − zA)

}
(5.7)

for gq subprocess:

W finite
T (gq) = W pert

T (gq) −W asymp
T (gq)

=
(2π)4S

3

(
αS(Q)

π

)
1

4πQ2
T

{

−1

2

[

(zB − zA)2 + z2
A + (1 − zBzA)2 + z2

A + z2
A

Q2
T

Q2

]
Q2

zA





√

1 +
Q2

T

Q2
− zA



 δ(s + t+ u−Q2)

−
[
(1 − zA)2 + z2

A

]
δ(1 − zB)

}
(5.8)

For the finite part of the other structure functions we just have to recall the expressions

for WL, W∆ and W∆∆ present in Chapter 4 and in Tables 3.3, 3.5 and 3.7.

We define here:

W Total
T = W resummed

T +W finite
T (5.9)

and observe in Fig. 5.1 the prediction for W Total
T vs QT . Based on this graph and comparing

with Figures 3.14-3.17 we can conclude that:

λ ≈ 1 ν ≈ 0 µ ≈ 0 (5.10)

which can also be seen in Figures 5.2, 5.3, and 5.4 for pp̄ in the Collins-Soper frame with

Q = 10 GeV/c, y = 0 and
√
S = 800 GeV/c. For the nonperturbative part, the BLNY

parameterization was used [89]:

FNP (Q, b, bmax, xA, xB) = exp

[

−b2
(

g1 + g1g3 ln(100 xA xB)) + g2 ln
Q

2Q0

)]

(5.11)
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with the following values:

g1 = 0.21 GeV 2

g2 = 0.68 GeV 2

g3 = −0.6

Q0 = 1.6 GeV

bmax = 0.5 GeV −1 for b∗ (5.12)

where b∗ was defined in Eq.(4.55)

1 2 3 4 5
QT

2·1013
4·1013
6·1013
8·1013
1·1014

1.2·1014
1.4·1014

WT
Total

Figure 5.1 WT
Total vs QT

1 2 3 4
QT

0.999975

0.999985

0.99999

Λ

Figure 5.2 λ vs QT resummation prediction

We can understand the above results as consequence of the hierarchy of divergences for

each of the structure functions and the corresponding resummation performed on WT . Since
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Figure 5.3 ν vs QT resummation prediction

1 2 3 4
QT

0.5
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Figure 5.4 µ vs QT resummation prediction

1/Q2
T is the dominant divergence and WL and W∆∆ are finite at low QT , we have that W pert

T is

the dominant structure function. This also implies that W resummed
T is the dominant quantity,

except for a region of very low QT , where the divergence of W∆ dominates. We will ignore

this region, since we cannot trust perturbative results there.

Now, let us remember the definitions of λ, ν and µ Eq.(2.26):

λ =
WT −WL

WT +WL
µ =

W∆

WT +WL
ν =

2W∆∆

WT +WL

thus, including the results from resummation we have:

λ =
W Total

T −W finite
L

W Total
T +W finite

L

µ =
W finite

∆

W Total
T +W finite

L

ν =
2W finite

∆∆

W Total
T +W finite

L
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thus, at low QT but different from 0 they become:

λ =
W Total

T

W Total
T +W finite

L

≈ 1 µ =
1

W Total
T

≈ 0 ν =
1

W Total
T

≈ 0

From these outcomes we can deduce the validity of the Lam-Tum relation for the resummed

predictions at low QT . Observe that the above predictions are compatible with the experimen-

tal results from E866 (See Fig. 1.2).

The validity of the Lam-Tung is also implied by

dσ

d4q
≈ α2

12S2Q2π3

(

2W Total
T

)

which follows the by discussion that appears after Eq.(3.25).

Conceptually, the above extension is not satisfactory since we are mixing fixed order per-

turbative predictions with resummed results. We would like to apply resummation to the other

structure functions and check if we can obtain a violation of the Lam-Tum relation and a ν

behavior closed to the measured one. We also want a method of resummation that can be

independent of the photon rest frame used.

5.2 Second extension

Let us begin this section with the following claim:

Divergent part form. The divergent part at low QT of the Drell-Yan parton tensor has the

following form at any order in the perturbative expansion:

wµν diverg ≡ lim
QT→0

wµν

= F0 d
µν + F1

QT

Q−

(
nµ

+n
ν
T + nν

+n
µ
T

)
+ F2

QT

Q+

(
nµ
−n

ν
T + nν

−n
µ
T

)
+ F3

(
nµ

Tn
ν
T

)
+ F4 d

µν

(5.13)

where2:

dµν = nµ
+n

ν
− + nν

+n
µ
− − gµν

2Vectors n+,n− and nT were defined in Eq.(3.34)
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and the Fi are scalar functions of the relevant kinematic variables. These functions are such

that F1 +F2 = F0 with the following behavior at low QT : F0 α 1/Q2
T and for the rest of them

either there are divergent or zero. If they are divergent then F1,F2 α 1/Q2
T and F3,F4 α 1/QT

Proof. Let us start with the following basic observation. at QT ≈ 0 we have only two vectors:

pA, pB from which we can only form one symmetric tensor:

D1

(
pµ

Ap
ν
B + pν

Ap
µ
B

)
+ D2 g

µν

with D1 and D2 two arbitrary scalar functions. Now, if we require gauge invariance these two

functions are not longer independent. Then, we get 3:

F
(

pµ
Ap

ν
B + pν

Ap
µ
B − s

2
gµν
)

It is important to notice that this tensor is gauge invariant only when QT = 0. Using

definitions (3.34), and equations (3.42) and (3.43), together with (3.40) and (3.41), we can

write this tensor as F0 d
µν . The fact that dµν is unique in the low QT limit allows us to

conclude the following relation between this tensor and the partonic tensor for the Drell-Yan

process:

wµν diverg =

(

lim
QT→0

F0(QT )

)

dµν (5.14)

Notice also that dµν only has a nonzero projection along the transverse structure function4.

Thus, we can identify F0 with wT at any order in perturbation theory. The general form of

WT is known:

W n
T α T n

ab

(

QT , Q,
xA

ξA
,
xB

ξB
;µ

)

(5.15)

with T n
ab defined in Eq.(4.19). Then

lim
QT→0

Fn
0 (QT ) =

1

Q2
T

ln2n−1

(
Q2

Q2
T

)

(5.16)

taking into account only the 1/Q2
T divergence we observe for low QT but different from zero

at any order in the perturbative expansion:

F0(QT )dµνqµ = −QT F0(QT )nν
T (5.17)

3Compare with Eq.(3.17), where F = 1.
4This can seen from Table 3.1 and Eq.(3.17)
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The scalar function in the term at the right hand of Eq.(5.17) is proportional to 1/QT and

accompanies the vector nν
T . In order to preserve gauge invariance, we need to consider the

following tensors5: nµ
+n

ν
T + nν

+n
µ
T , nµ

−n
ν
T + nν

−n
µ
T , nν

Tn
µ
T and dµν and the corresponding scalar

functions6. These are the only tensors that contracted with qµ yield a term proportional to

nν
T . Notice that the function accompanying dµν can only be at most proportional to 1/QT ,

otherwise it will be included in F0. A companion of nν
Tn

µ
T proportional to 1/Q2

T contradicts the

fact that wT is the only structure function with singularities proportional to 1/Q2
T . We define

F1 and F2 as the scalar functions of QT

Q−

(
nµ

+n
ν
T + nν

+n
µ
T

)
and QT

Q+

(
nµ
−n

ν
T + nν

−n
µ
T

)
respectively

with

Q+ =
Q ey√

2

√

1 +
Q2

T

Q2
(5.18)

Q− =
Q e−y

√
2

√

1 +
Q2

T

Q2
(5.19)

In similar way we define F3 and F4. The relation F1 + F2 = F0 is consequence of gauge

invariance7.

Despite the fact that we have used gauge invariance to find the general form of Eq.(5.13),

this tensor is not gauge invariant in general. Therefore, we need to find a tensor that conserves

current and includes as much as we can of tensor (5.13). Inspired by the form of the tensors

for the annihilation and Compton subprocesses, we construct order by order in perturbation

theory the following gauge invariant combination:

kµν ≡

F0 d
µν + F1

QT

Q−

(

nµ
+n

ν
T + nν

+n
µ
T +

QT

Q−
nµ

+n
ν
+

)

+ F2
QT

Q+

(

nµ
−n

ν
T + nν

−n
µ
T +

QT

Q+
nµ
−n

ν
−

)

(5.20)

We remark here that this tensor contains the most divergent part of wµν plus a certain finite

5Remember that wµν is symmetric.
6We could have started with the general set nµ

+nν
T + nν

+nµ
T ,nµ

−nν
T + nν

−nµ
T ,nν

T nµ
T , gµν and nµ

+nν
− + nν

+nµ
−

and reduce its independent elements using gauge invariance and the behavior of the scalar functions at low QT ;
either way you could have ended with the same set of tensors and scalar functions.

7We proved in Sec.(2.3) that there are only 4 independent structure functions at any given transverse mo-
mentum for W µν .
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part necessary to assure kµνqµ = 0. We define a new finite tensor by

fµν ≡ wµν − kµν (5.21)

notice that fµν is gauge invariant and finite or at most with a divergence proportional to 1/QT

when QT → 0.

We can observe this kind of decomposition applied to the annihilation subprocess:

w
µν (NLO)
qq̄

=
1

sQ2
T

[
(Q2 − t)2 + (Q2 − u)2

]
δ
(
s+ t+ u−Q2

)
dµν

+

[
(Q2 − u)2

sQ2
T

δ
(
s+ t+ u−Q2

)
]
QT

Q−

(

nµ
+n

ν
T + nν

+n
µ
T +

QT

Q−
nµ

+n
ν
+

)

+

[
(Q2 − t)2

sQ2
T

δ
(
s+ t+ u−Q2

)
]
QT

Q+

(

nµ
−n

ν
T + nν

−n
µ
T +

QT

Q+
nµ
−n

ν
−

)

with F1 = (Q2−u)2

sQ2
T

δ
(
s+ t+ u−Q2

)
, F2 = (Q2−t)2

sQ2
T

δ
(
s+ t+ u−Q2

)
and fµν = 0. For the

Compton subprocess we have:

wµν (NLO)
qg

=
1

−2su

(
u2 + s2 + 2tQ

)
δ
(
s+ t+ u−Q2

)
dµν

+

[
(Q2 + t+ 2s)(t+ s) − 2sQ2

−2su
δ
(
s+ t+ u−Q2

)
]
QT

Q−

(

nµ
+n

ν
T + nν

+n
µ
T +

QT

Q−
nµ

+n
ν
+

)

+

[
(Q2 + s)(Q2 − t) − 2sQ2

−2su
δ
(
s+ t+ u−Q2

)
]
QT

Q+

(

nµ
−n

ν
T + nν

−n
µ
T +

QT

Q+
nµ
−n

ν
−

)

with

F1 =
(Q2 + t+ 2s)(t+ s) − 2sQ2

−2su
δ
(
s+ t+ u−Q2

)

F2 =
(Q2 + s)(Q2 − t) − 2sQ2

−2su
δ
(
s+ t+ u−Q2

)
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and

fµν (NLO)
qg

=

{

Q2
T s

[

(nµ
+n

ν
− + nν

+n
µ
−) − Q2

2Q2
−
nµ

+n
ν
+ − Q2

2Q2
+

nµ
−n

ν
− + 2nν

Tn
µ
T

]

+Q3
T s

[
1

Q−

(
nµ

+n
ν
T + nν

+n
µ
T

)
+

1

Q+

(
nµ
−n

ν
T + nν

−n
µ
T

)
]

+ Q4
T s

[
1

2Q2
+

nµ
−n

ν
− +

1

2Q2
−
nµ

+n
ν
+

]}

δ
(
s+ t+ u−Q2

)

The existence of kµν allows us to find the following relations:

wL = kµν ẑµẑν =
Q2

T

Q2 +Q2
T

(F1 + F2) (5.22)

where we have used

ẑµn
µ
+ = −e

−y

√
2
, ẑµn

µ
− =

ey√
2
, ẑµn

µ
T = 0 (5.23)

and

wT =

[

1 − Q2
T

2
(
Q2 +Q2

T

)

]

(F1 + F2) (5.24)

here we have employed the projector operators defined in Eq.(2.21).

In like manner:

w∆∆ = wT − kµν x̂µx̂ν =
1

2

Q2
T

Q2 +Q2
T

(F1 + F2) (5.25)

where we have drawn upon:

x̂µn
µ
+ =

e−y

√
2

QT

Q
, x̂µn

µ
− =

ey√
2

QT

Q
, x̂µn

µ
T = −

√

1 +
Q2

T

Q2
(5.26)

and finally,

w∆ = −kµν ẑµx̂ν =
QT

Q

(

1 − Q2
T

Q2 +Q2
T

)

(F2 −F1) (5.27)

The above relations are valid at any order in the perturbative expansion, thus:

wL =
Q2

T

Q2 +Q2
T

F0

wT =

(

1 − Q2
T

2Q2 + 2Q2
T

)

F0

w∆∆ =
1

2

Q2
T(

Q2 +Q2
T

) F0 (5.28)



104

Now we observe here that F0 is the transverse structure function defined in the previous section

and therefore we can apply the resummation technique used there. This allows to conclude:

WL =
Q2

T

Q2+Q2
T

W Total
T

WT =
[

1 − Q2
T

2Q2+2Q2
T

]

W Total
T

W∆∆ =
Q2

T

2Q2+2Q2
T

W Total
T

Table 5.1 Tensor predictions for WL, WT and W∆∆

The new structure functions WT , WL, W∆∆ have some important properties at low QT .

For instance, WL, W∆∆ α Q2
T which is expected from general considerations and suggested

by the form of the NLO prediction for qq̄ process, Table 3.3. WT has a correction equal to
(

1 − Q2
T

2Q2+2Q2
T

)

which was anticipated since the transverse structure function should decrease

with an increase in QT , the correction should be proportional to Q2
T because it has to finite at

QT = 0 limit.

The attentive reader should be asking now why W∆ is missing. As can be seen from

Eq.(5.27) this function is proportional to F2−F1. This difference is not renormalization group

invariant which makes impossible the use of collinear resummation.

Despite the fact that we are working only in the CS frame the above method also is ap-

plicable to any frame. The only change necessary is to use the corresponding ẑµ, x̂ν in the

contraction with the tensor kµν . This is an advantage if we compare with the method ex-

plained in Sec. 5.1

One observation more is important. We are neglecting here two types of terms. The first

set of terms come from the finite part of the tensor separation. These terms are finite at low
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QT limit. The second set of terms, which are proportional to a finite power of ln Q2

Q2
T

, come

from taking only the divergent part of F1 and F2. Since both sets of terms can be neglected

compared with the terms that we have retained and resummed, we expect that our results

capture the relevant physics.

We present in Figures 5.5-5.7 the predicted behavior for WL, WT and W∆∆ for pp̄ in

the Collins-Soper frame with Q = 10 GeV/c, y = 0 and
√
S = 800 GeV/c, using the same

nonperturbative tensor of the last section, equations (5.11) and (5.12).

0 2 4 6 8 10
QT

5. ´ 1010
1. ´ 1011

5. ´ 1011
1. ´ 1012

WL

Figure 5.5 WL vs QT extension prediction

0 2 4 6 8 10
QT

2. ´ 1012

5. ´ 1012
1. ´ 1013
2. ´ 1013

5. ´ 1013
1. ´ 1014

WT

Figure 5.6 WT vs QT extension prediction

The following step is to check for the predicted values for λ and ν which can be seen in
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Figure 5.7 W∆∆ vs QT extension prediction

Table 5.2.

λ =
Q2− 1

2
Q2

T

Q2+ 3
2
Q2

T

ν =
Q2

T

Q2+ 3
2
Q2

T

Table 5.2 Tensor predictions for λ and ν

Notice that we have an important relation between WL and W∆∆:

W∆∆

WL
=

1

2
(5.29)

which represents no departure from our previous results, since Eq. (5.29) is equivalent to the

Lam-Tung relation:

1 − λ− 2ν = 0

This fact may explain why the violation of the LT relation at NNLO is so small. Now, compare

Table 3.3 with Table 5.2. We have recovered the results of NLO with finite structure functions,

thus the graphics for NLO become also the graphics for the extension of resummation.

We can observe again the behavior for λ, ν in figures 5.8 - 5.15.
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Figure 5.8 λ vs QT extension prediction
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Figure 5.9 λ vs QT for extension and NA10

5.3 Conclusions

This study had the following objectives:

1. Extend resummation to the fully differential cross section.

2. Use the new extension to explain the azimuthal asymmetry and,

3. Comprehend the magnitude of the violation of the Lam-Tung relation and the difference

in sign between the known predictions and of the measured values.

We will finish by summarizing what is has been found in each one of these goals.

• In Sec. 5.2 we developed a new method that extends resummation in the Drell-Yan

process to the longitudinal and double delta structure functions. This new method also

yielded a modification of the transverse structure function. This modification includes



108

1 2 3 4 5
QT

0.6

0.8

1.2

1.4

1.6

Λ

4 GeV�c
5 GeV�c 10 GeV�c

15 GeV�c

�!!!!S =252 GeV�c

Figure 5.10 λ vs QT for extension and E615
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Figure 5.11 λ vs QT for extension and E886

now a quadratic dependence in the transverse momentum and in the invariant mass of

the dilepton. This new technique also includes the effects of the nonperturbative part of

the Sudakov factor.

• We have studied the structure functions WT , WL, W∆∆ and W∆, exploring the contribu-

tions of the annihilation process q+ q̄ → γ∗ + g and Compton subprocess q+ g → γ∗ + q.

This exploration was done following the parton model, perturbative QCD, colllinear fac-

torization and resummation and “extension” of resummation. The new functions WT ,

WL and W∆∆ are finite in the low QT limit, which is an improvement over the NLO

calculations, which diverge as a power of 1/QT , see Tables 3.3, 3.5 and 3.7.

• We have also studied the angular coefficients λ, µ and ν defined on terms of the structure

functions. As it can be seen in Table 5.2, the predictions obtained in the extended

resummation for λ and ν are independent of the parton distribution functions and they
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Figure 5.12 ν vs QT extension prediction
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Figure 5.13 ν vs QT for extension and NA10

are well defined since they are ratios of finite structure functions at low QT . These

predictions contrast with the NLO results presented in Tables 3.4, 3.6 and 3.8, where

the functions obtained are ratios between divergent structure functions. This fact puts

into doubt the usefulness of the NLO predictions at low QT . We have reproduced these

results in the frame of the extended resummation.

• Experiments NA10, E615 and E866 are fixed target experiments. NA10 performed DY in

π− +W at 194 GeV/c with kinematic variables8: (xF , Q,QT ) with ranges: 0 ≤ xF ≤ 0.6

, 4.7 ≤ Q ≤ 8.5 GeV/c and Q > 11 GeV/c [67] and [77]. E615 used also π− +W but at

252 GeV/c with ranges 0.2 < xF < 1 and 4.05 ≤ Q ≤ 8.55 GeV/c [53]. E866 used p + d

at 800 GeV/c with ranges 0 ≤ xF ≤ 0.8 , 4.5 ≤ Q ≤ 9 GeV/c and Q > 10.7 GeV/c [128].

8xF is known as the Feynman-x variable and it is defined as x = PL

PL max
≈ 2 sinh y

√
Q2+Q2

T√
S

where PL is the

longitudinal momentum of the particle and PL max =
√

S
2

is the maximum longitudinal momentum allowed.
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Figure 5.14 ν vs QT for extension and E615
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Figure 5.15 ν vs QT for extension and E886

These experiments divided each QT bin in different number of bins in (cos θ, φ). Then,

they find the angular parameters using a standard least-squares fit to the distribution:

dN

dΩ
=

3

4π

1

λ+ 3

(

1 + λ cos2 θ + µ sin 2θ cosφ+
ν

2
cos 2φ sin2 θ

)

This procedure presents a conceptual problem. As it can be observed in the matrix

presented in Eq. (2.1), the transformation to the CS reference frame is a continuous

function of the measured quantities. This in practice means that the measured angles

only make sense if we keep fixed the kinematical variables because a change in them

implies a change in the reference frame. Since the result presented in Figures 1.1 and 1.2

have integrated Q and xF dependence there is the possibility that the observed results

have integrated part of their physical meaning. An ideal experimental analysis will use

bins in (xF , Q,QT ) as small as possible9.

9Of course statistics and the particular experimental set-up will play a very important role
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• The λ behavior is not clear from the experimental point of view. As it was remarked

before, when we compared the NLO predictions with the data, most of the central points

of the E615 and E866 sets are above 1, see Figures 5.10 and 5.11. Since −1 ≤ λ ≤ 1

is the allowed range, we will ignore those points. The NA10 points show a qualitative

match with the theoretical curves, which is also the case of the NLO predictions, Fig.

3.6.

• A question that remains unanswered is the magnitude of ν, which gave origin to the so-

called azimuthal asymmetry. The predictions found here for ν cannot explain the results

reported by the NA10 and E615 collaborations because they are consistently below the

experimental values, see Figures 5.13 and 5.14. This is also the case for NLO and

NNLO predictions in pQCD [96]. For the E866 results Fig. 5.15 we have a qualitative

agreement. We remark that the theoretical curves show a strong Q-dependence that

should be included in the experimental analysis. The Q2-dependence is supported by the

data [55].

• We did not obtain, with the extended resummation, a violation of the Lam-Tung rela-

tion. The NNLO corrections only predict a minute violation [96]. At first look this will

render the prediction done here useless. As it was point out previously, the central values

obtained by E615 and E866 collaborations for λ are above 1 which is not physical (see

Eq.(2.26)). To see see how this affects the experimental values obtained by the exper-

iments, observe that since the Lam-Tung relation is equal to 2ν − (1 − λ), as quoted

by the experiments, we have a positive value coming from the (1 − λ), which combined

with 2ν gives a positive result. Since λ should decrease with an increase in transverse

momentum, we expect (1 − λ) to be positive and therefore to decrease the value of 2ν.

From the theoretical point of view, a violation of the Lam-Tung relation reflects how

fast ν increases and how fast λ decreases and the sign will depend precisely on that. A

different way to see this is using the structure functions: 2ν− (1−λ) ≥ 0 is equivalent to

2W∆∆ ≥WL. The sign of the violation tells us about the relative size between these two

functions. Notice here that the NA10 set is consistent with the physical expectations.



112

Since the experimental results have integrated the Q and xF dependence, is difficult

to assert how big or the sign of the violation. We believe that the Lam-Tung relation

requires further theoretical and experimental study.

• The techniques developed here can be applied to W±, Z0 or Higgs production. These

cases will require a generalization of the tensor structure used, since we will have to

account for a parity violation term. This study is also relevant for processes like semi-

inclusive deep inelastic scattering and back-to-back hadron production, in two-jet events

in electron-positron annihilation, where no angular distributions exist. There are also

plenty of possibilities for further theoretical application.



113

APPENDIX A. ADDITIONAL REFERENCE FRAMES

This appendix contains descriptions of some extra reference frames used in the literature.

They are all expressed in terms of variables measured in the center of frame and their trans-

formation matrices from this frame are also included.

Some dilepton center-of-mass frames

Since all the dilepton frames are related by a rotation around the common y-axis we will

define the rest of the frames mentioned in Sec. 2.1 in terms of matrix of a rotation from the CS

frame. The general form of this matrix is
(

cos γ sinγ
− sinγ cos γ

)

where γ is the angle between a specified

vector and the z-axis in the CS frame. With this definition the matrices of transformation from

the hadron c.m.s to any particular dilepton c.m.s are easily found.

Gottfried-Jackson frame

For example, in the GJ frame the z-axis is parallel to the three-vector ~P
′

A See Fig. A.1.

The components of this vector in the CS frame are ~P
′

A =
√

s
2

√
Q0−Qz

Q0+Qz

(
−QT

Q , 0, 1
)

, so we

need to rotate an angle γGJ = arctan
(

QT

Q

)

. The matrix of rotation is defined by the values

cos γGJ = Q√
Q2+Q2

T

and sin γGJ = QT√
Q2+Q2

T

. And the matrix of transformation of coordinates

is

ΛCM→GJ =













Q0

Q −QT

Q 0 −Qz

Q

− QT

Q0−Qz
1 0 QT

Q0−Qz

0 0 1 0

Q2
T Q0−Q2Qz

Q(Q2
0−Q2

z)
−QT

Q 0
Q2Q0−Q2

T Qz

Q(Q2
0−Q2

z)













(A.1)
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z

Dilepton center-of-mass plane 
(z,l+) plane

θ

φ

l-

l+

PBeam

PTarget

x

y

(PBeam, PTarget) plane

Figure A.1 The Gottfried-Jackson frame

U-channel frame

For this frame the z-axis is antiparallel to the direction of the target momentum ~PB , see

Fig.A.2. The components of this vector are ~P
′

B =
√

s
2

√
Q0−Qz

Q0+Qz

(

−QT√
Q2+Q2

T

, 0, −Q√
Q2+Q2

T

)

and the

angle of rotation is the same as in the GJ frame but the rotation is performed in the opposite

direction. Therefore, the matrix of transformation of frames is:

ΛCM→UC =













Q0

Q −QT

Q 0 −Qz

Q

− QT

Q0+Qz
1 0 − QT

Q0+Qz

0 0 1 0

−Q2
T Q0+Q2Qz

Q(Q2
0−Q2

z)
QT

Q 0
Q2Q0+Q2

T Qz

Q(Q2
0−Q2

z)













(A.2)

Then we can describe the z-axis in the CS frame as the bisector of the angle between the

t-channel and u-channel frames [53].

S-helicity frame

The s-helicity frame is the last one to be consider here. The z-axis is antiparallel to the

direction of ~PA + ~PB , see Fig.A.3.

This vector has components ~P
′

A + ~P
′

B =
√

s
Q

√

Q2
T Q2

0−Q2
zQ2

Q2
0−Q2

z

(

−QT Q0√
Q2

T Q2
0−Q2

zQ2
, 0, −QzQ√

Q2
T Q2

0−Q2
zQ2

)
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Dilepton center-of-mass plane
(z, l+) plane

z
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φ
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l+
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θ
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(PBeam, PTarget) plane

Figure A.2 The U-channel frame

Therefore, the angle of rotation is γSH = arctan
(

QT Q0

QQz

)

, and the transformation matrix,

ΛCM→SH =













Q0

Q −QT

Q 0 −Qz

Q

0 Qz

| ~Q| 0 −QT

| ~Q|
0 0 1 0

−| ~Q|
Q

QT Q0

Q| ~Q| 0 QzQ0

Q| ~Q|













(A.3)

Dilepton center-of-mass plane
(z,l+) plane

z

PTarget

φ

l-

l+

PBeam

x

θ

y

(PBeam,PTarget) plane

Figure A.3 The S-helicity frame

where
∣
∣
∣ ~Q
∣
∣
∣ =

√

Q2
T +Q2

z is the magnitude of the vector part of Q as seen in the hadron

c.m.s. The matrix A.3 can also be described as the combination of a rotation in the hadron
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c.m.s. and a boost. The matrix of rotation is defined by






Qz

~Q
−QT

| ~Q|
QT

| ~Q|
Qz

| ~Q|




 (A.4)

This rotation makes the new z-axis parallel to ~Q. In this intermediate frame Q has as com-

ponents
(

Q0, 0, 0,
∣
∣
∣ ~Q
∣
∣
∣

)

and the boost takes this four-vector to the dilepton c.m.s. The boost

matrix is equal to











Q0

Q 0 0 −|~Q|
Q

0 1 0 0

0 0 1 0

−| ~Q|
Q 0 0 Q0

Q












(A.5)
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APPENDIX B. NLO CORRECTIONS TO THE DRELL-YAN PROCESS

The corrections of O (αS) for DY are presented in dimensional regularization, with n =

4 − 2ǫ.

From factorization theorem to measured cross section

The factorization theorem for the DY with measured transverse momentum Eq.(3.68) can

be written as:

dσhA+hB→l+l−

dQ2dyd2 ~QTdΩ
= σ0

∑

a,b

∫ 1

xA

dξA
ξA

∫ 1

xB

dξB
ξB

fa/A (ξA, µ) fb/B (ξB, µ)

× Tab

(

QT , Q, θ, φ,
xA

ξA
,
xB

ξB
;µ,αS(µ)

)

(B.1)

where we have already used µ = µF = Q and defined

σ0 ≡ α2

12SQ2

Our objective now is to find the NLO corrections to the naive DY. Since the hard scattering

function T , but not f , has a perturbative expansion we can write:

Tab

(

QT , Q, θ, φ,
xA

ξA
,
xB

ξB
;µ,αS(µ)

)

=
∑∞

n=0

[
αS (µ)

π

]n

× T n
ab

(

QT , Q, θ, φ,
xA

ξA
,
xB

ξB
;µ

)

(B.2)

In the lowest order of perturbation theory only q + q̄ → γ∗ can contribute, so T 0 is defined by

the parton cross section Eq.(3.15) and is equal to:

T 0
ab = e2aδab̄δ

(
xA

ξA
− 1

)

δ

(
xB

ξB
− 1

)

δ2
(

~QT

) (
1 + cos2 θ

)
(B.3)

For any higher order we can proceed as follows. Since the hard-scattering function is

independent of the external hadrons, we can compute it using Eq.(B.1) assuming the particular
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case of parton-parton reaction. Then the distribution functions f now represent the parton

content of the external partons and
dσ

j+k→l+l−

dQ2dyd2 ~QT dΩ
is the n−dimensional scattering cross section

which contains poles as ǫ→ 0. Since the external particles are partons, perturbative expansions

now exist for fa/j making possible to find T [30]. The pertubative expansion of the functions

fa/j (ξ;µ, ǫ) can be obtained from their definitions (3.59) and (3.63), using the adequate parton

states. In the MS scheme we can find [30], [45], [46]:

fa/j (ξ;µ, ǫ) = δajδ (1 − ξ) − 1

2ǫ

αS

π
P

(1)
a/j (ξ) + O

(
α2

S

)
(B.4)

with P
(1)
a/j (ξ) the lowest order Altarelli-Parisi kernel that provides the evolution with µ of the

parton distribution functions Eq.(3.61). In Table B.1, we list the one loop kernels of QCD

[102]. Once we use Eq.(B.4) into the factorization theorem we get:

dσ
(0)
jk

dQ2dyd2 ~QTdΩ
+
αS

π

dσ
(1)
jk

dQ2dyd2 ~QTdΩ

= σ0

{

T
(0)
jk +

αS

π
T

(1)
jk

− 1

2ǫ

αS

π

∑

a

∫ 1

xA

dξA P
(1)
a/j

(ξA) T
(0)
ak

(
xA

ξA
, xB , Q, θ;µ; ǫ

)

− 1

2ǫ

αS

π

∑

b

∫ 1

xB

dξB P
(1)
b/k(ξB) T

(0)
jb

(

xA,
xB

ξB
, Q, θ;µ; ǫ

)}

+ O
(
α2

S

)

(B.5)

which allows us to obtain at one loop:

T
(1)
jk =

1

σ0

dσ
(1)
jk

dQ2dyd2 ~QTdΩ

+
1

2ǫ

∑

a

∫ 1

xA

dξA P
(1)
a/j(ξA) T

(0)
ak

(
xA

ξA
, xB , Q, θ;µ; ǫ

)

+
1

2ǫ

∑

b

∫ 1

xB

dξB P
(1)
b/k(ξB) T

(0)
jb

(

xA,
xB

ξB
, Q, θ;µ; ǫ

)

(B.6)

Hence, we can obtain T
(1)
jk subtracting from the parton cross section certain factors containing

1/ǫ, the Altarelli-Parisi kernel and the parton level result. Notice that when ΛQCD ≪ Q ≈ QT

we have T
(1)
jk = 1

σ0

dσ
(1)
jk

dQ2dyd2 ~QT dΩ
,which is given only by the sum of the real emission and the

Compton subprocesses.
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P
(1)
q/q(z) = P

(1)
q̄/q̄(z) = 4

3

[

(1 + z2) 1
(1−z)+

+ 3
2δ(1 − z)

]

P
(1)
q̄/q(z) = P

(z)
q/q̄(z) = 0

P
(1)
q/g(z) = P

(1)
q̄/g(z) = 1

2

[
z2 + (1 − z)2

]

P
(1)
g/q(z) = P

(1)
g/q̄(z) = 4

3

[
1+(1+z)2

z

]

P
(1)
g/g(z) = 6

[
(1−z)

z + z
(1−z)+

+ z(1 − z) +
(

11
12 − nf

18

)
δ(1 − z) ]

Table B.1 One-loop evolution kernels in QCD

n-dimensional parton cross section at one-loop

In order to calculate the DY cross section to one-loop, we need to consider the sum of

following contributions [115], [127] :

Real emission diagrams:

2

γ∗

+

γ∗

Virtual corrections diagrams:

+ ++

1

2

1

2

where we have included only half of the renormalization of certain fermion lines, since the

other half is included in the renormalization of the parton distribution functions.
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Compton subprocess:

+

2

Since we are interested in the predictions of pQCD for the structure functionsWT ,WL,W∆,W∆,∆,

we will keep the Lorentz indices associated with the virtual photon.

Real emission subprocess

pA β, b α, a

q

µ
ν

pB

= −
1
4CFµ

2ǫ

(q − pB)4
Tr [/pAγ

α (q − pB) · γ γν/pBγ
µ (q − pB) · γ γα]

= (1 − ǫ)
CFµ

2ǫ

t
[ − ugµν + 2

(
pµ

Bq
ν + pν

Bq
µ
)

− 4pµ
Bp

ν
B − 2

(
pµ

Ap
ν
B + pν

Ap
µ
B

)
]

pA

pB

= (1 − ǫ)
CFµ

2ǫ

u
[ − tgµν + 2

(
pµ

Aq
ν + pν

Aq
µ
)

− 4pµ
Ap

ν
A − 2

(
pµ

Bp
ν
A + pν

Bp
µ
A

)
]
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q

µ

(q − pB)

pA

pB

q

β, b

α, a

pB

pA

ν

(pA − q)

= −
1
4CFµ

2ǫ

tu
Tr [/pAγ

α (q − pB) · γ γν/pBγα (pA − q) · γ γµ]

=
CFµ

2ǫ

ut
{ − 2spµ

Ap
ν
B + 2sqµpν

B − 2
(
Q2 − u

)
pµ

Bp
ν
B + 2spµ

Aq
ν

− 2
(
Q2 − t

)
pµ

Ap
ν
A + 2Q2pµ

Bp
ν
A − sQ2gµν

− ǫ
[
2spµ

Aq
ν − 2spµ

Ap
ν
B − 2

(
Q2 − t

)
pµ

Ap
ν
A

+ 2
(
Q2 − t

)
qµpν

A − 2sqµqν + 2sqµpν
B − 2Q2pµ

Bp
ν
A

+ 2
(
Q2 − u

)
pµ

Bq
ν − 2

(
Q2 − u

)
pµ

Bp
ν
B − utgµν ]}

pA

pB pB

pAα, a
ν q

(q − pB) (pA − q)

q µ
β, b

= −
1
4CFµ

2ǫ

tu
Tr [/pAγ

ν (pA − q) · γ γα/pB γµ (q − pB) · γ γα]

=
CFµ

2ǫ

ut
{ − sQ2gµν − 2

(
Q2 − t

)
pµ

Ap
ν
A + 2Q2pµ

Ap
ν
B − 2spµ

Bp
ν
A

+ 2sqµpν
A − 2

(
Q2 − u

)
pµ

Bp
ν
B + 2spµ

Bq
ν

− ǫ
[
−2spµ

Bp
ν
A + 2spµ

Bq
ν − 2Q2pµ

Ap
ν
B

+ 2
(
Q2 − u

)
qµpν

B − utgµν + 2sqµpν
A

+ 2
(
Q2 − t

)
pµ

Aq
ν − 2

(
Q2 − t

)
pµ

Ap
ν
A

− 2sqµqν − 2
(
Q2 − u

)
pµ

Bp
ν
B ]}

The color factor CF is equal to 1
9

∑8
a,b=1 Tr

[
λaλb

]
= 4

9 , where we have used the standard

normalization for the color matrices Tr
[
λaλb

]
= 1

2δ
ab. Finally, we can add our previous results

to obtain for qq̄:

h
µν(R)

jj̄
=

4

9

e2jg
2µ2ǫ

ut
{ − 4Q2

(
pµ

Ap
ν
A + pµ

Bp
ν
B

)
−
[(
Q2 − t

)2
+
(
Q2 − u

)2
]

gµν

+ 2
(
Q2 − t

) (
pµ

Bq
ν + pν

Bq
µ
)

+ 2
(
Q2 − u

) (
pµ

Aq
ν + pν

Aq
µ
)

− ǫ
[
2
(
Q2 + s

) (
pµ

Bq
ν + qµpν

B

)
+ 2

(
Q2 + s

) (
pµ

Aq
ν + qµpν

A

)

− 4Q2
(
pµ

Ap
ν
A + pµ

Bp
ν
B

)
− 4Q2

(
pµ

Ap
ν
B + pµ

Bp
ν
A

)
−
(
Q2 − s

)2
gµν − 4sqµqν ]}

(B.7)

with s = (pB + pA)2, t = (pB − q)2 and u = (pA − q)2.
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Virtual corrections

= 0

The virtual corrections include fermion self-energy

and vertex correction diagrams . Since the basic

interaction is electromagnetic these corrections have

the same group structure and their corresponding

counterterms cancel each other. Notice also that

because the fermions are massless, the fermion self-

energy without counterterm is a scaleless integral,

which is equal to zero in dimensional regularization

[115].

Thus, we are left only with the diagrams corresponding to vertex correction calculated as if

there is not courterterm.

+

pA

pB

µ ν

Since the sum of these corrections is proportional to

the Born level diagram, we can write:

h
µν(V )

jj̄
=

1

3

e2j
4

2Re
(
γ
(
Q2
))
Tr [/pAγ

ν /pBγ
µ]

=
2e2j
3
Re γ

(
Q2
) (

pµ
Ap

ν
B − s

2
gµν + pµ

Bp
ν
A

)

(B.8)

where [115]:

γ
(
Q2
)

= − αS

2π

4

3

[
4πµ2

−Q2

]ǫ
Γ2(1 − ǫ)Γ(1 + ǫ)

Γ(1 − 2ǫ)

×
(

1

ǫ2
+

3

2ǫ
+ 4

)

(B.9)

Note that because Eq.(B.8) is not the square of an amplitude, it is not required to be positive.
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Compton subprocess

(pA − q) (pA − q)

α, a β, b

pA

q q

νµ

pB

pA

pB

= − CF2µ
2ǫ

u24 (1 − ǫ)
Tr [ /pA γµ (pA − q) · γ γα

× (pB + pA − q) · γ γα (pA − q) · γ γν ]

=
CF2µ

2ǫ (1 − ǫ)

u (1 − ǫ)

[
sgµν − 2

(
pµ

Ap
ν
B + pµ

Bp
ν
A

)]

pA

pB

ν β, b

pB

q
pA

q

µα, a

= − CF2µ
2ǫ

s24 (1 − ǫ)
Tr [ /pA γα (pA + pB) · γ γµ

× (pB + pA − q) · γ γν (pA + pB) · γ γα ]

=
(1 − ǫ)

s (1 − ǫ)

[
ugµν + 2

(
pµ

Ap
ν
B + pµ

Bp
ν
A

)
+ 4pµ

Bp
ν
B − 2

(
qµpν

B + pµ
Bq

ν
)]

q

(pA − q)

α, a
pB

pA pA

β, b

q

µ

pB

ν

(pB + pA)

= − CF2µ
2ǫ

4su (1 − ǫ)
Tr [ /pA γα (pA + pB) · γ γµ

× (pA + pB − q) · γ γα (pA − q) · γ γν ]

=
CF2µ

2ǫ

su (1 − ǫ)
{ tQ2gµν + 4Q2pµ

Ap
ν
A + 2

(
2Q2 − u

)
pµ

Ap
ν
B

+ 2spµ
Bp

ν
A + 2

(
Q2 − u

)
pµ

Bp
ν
B

− 2
(
Q2 + s

)
pµ

Aq
ν − 2spµ

Bq
ν − 2

(
Q2 − u

)
qµpν

A

− 2
(
Q2 − u

)
qµpν

B + 2sqµqν

− ǫ
[
sugµν + 2spµ

Bp
ν
A − 2upµ

Ap
ν
B

+ 2
(
Q2 − u

)
pµ

Bp
ν
B − 2spµ

Bq
ν ]}
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(pA − q)

β, b

q

µ

pB

pA

ν

q
pA

α, a

pB

(pA + pB)

= − CF2µ
2ǫ

4su (1 − ǫ)
Tr [ /pA γµ (pA − q) · γ γα

× (pA + pB − q) · γ γν (pA + pB) · γ γα ]

=
CF2µ

2ǫ

su (1 − ǫ)
{ tQ2gµν + 4Q2pµ

Ap
ν
A + 2

(
2Q2 − u

)
pµ

Bp
ν
A

− 2Q2pµ
Ap

ν
B − 2

(
Q2 + s

)
qµpν

A

+ 2
(
Q2 + s

)
pµ

Ap
ν
B + 2

(
Q2 − u

)
pµ

Bp
ν
B

− 2sqµpν
B − 2

(
Q2 − u

)
pµ

Aq
ν

− 2
(
Q2 − u

)
pµ

Bq
ν + 2sqµqν

− ǫ
[
sugµν − 2upµ

Bp
ν
A + 2spµ

Ap
ν
B

+ 2
(
Q2 − u

)
pµ

Bp
ν
B − 2sqµpν

B ]}

Remember that in n = 4 − 2ǫ dimensions, the polarization degree of freedom is 2 for a

quark and n− 2 = 2(1 − ǫ) for a gluon. This is why we have the extra factor (1 − ǫ) dividing

the expressions of the previous diagrams. We have also CF2 = 1
3

1
8

∑

a,b Tr
[
λaλb

]
= 1

6 , so the

final result for the Compton subprocess qg is:

hµν
jg =

1

6

e2jg
2µ2ǫ

us (1 − ǫ)
{ 8Q2pµ

Ap
ν
A + 4Q2pµ

Bp
ν
B + 4Q2

(
pµ

Ap
ν
B + pµ

Bp
ν
A

)

+
(
2tQ2 + u2 + s2

)
gµν − 2

(
Q2 + t+ 2s

) (
pµ

Aq
ν + qµpν

A

)

− 2
(
Q2 + s

) (
pµ

Bq
ν + qµpν

B

)
+ 4sqµqν − ǫ [ − 2 (u+ s)

(
pµ

Bq
ν + qµpν

B

)

+
(
Q2 − t

)2
gµν + 4Q2pµ

Bp
ν
B ]} (B.10)

In order to consider the diagrams with pA and pB exchanged, we only need to transform the

above expression using pA ↔ pB and u ↔ t and thus the result for the Compton subprocess

gq is:
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hµν
gj =

1

6

e2jg
2µ2ǫ

ts (1 − ǫ)
{ 8Q2pµ

Bp
ν
B + 4Q2pµ

Ap
ν
A + 4Q2

(
pµ

Bp
ν
A + pµ

Ap
ν
B

)

+
(
2uQ2 + t2 + s2

)
gµν − 2

(
Q2 + u+ 2s

) (
pµ

Bq
ν + qµpν

B

)

− 2
(
Q2 + s

) (
pµ

Aq
ν + qµpν

A

)
+ 4sqµqν − ǫ [ − 2 (t+ s)

(
pµ

Aq
ν + qµpν

A

)

+
(
Q2 − u

)2
gµν + 4Q2pµ

Ap
ν
A ]} (B.11)
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APPENDIX C. SOME USEFUL MATHEMATICAL RESULS

We include here some mathematical results used in chapter 4.

Extraction of divergent contributions

In Eq.(4.2) a modified version of the formal identity [82]:

δ (mn− c) =
δ (m)

n+
− δ (m) δ (n) ln (c) +

δ (n)

m+
+ O(c) (C.1)

was introduced. Here, we will explain the extra term present and the unusual definition used

for the “+ distributions.” We need to start with an integral equal to Eq.(4.1):

∫ 1

xA

dξAf(ξA)

∫ 1

xB

dξB g(ξB)δ

[

(ξA − xA) (ξB − xB) − xAxB
Q2

T

Q2

]

introducing the change of variables m = ξA − xA and n = ξB − xB we have a new integral

∫ 1−xA

0
dm f(m+ xA)

∫ 1−xB

0
dn g(n + xB) δ (mn− c)

with c = xAxB
Q2

T

Q2 . We now take the limit of low QT or equivalently c→ 0 to obtain:

lim
c→0

[ ∫ 1−xA

√
c

dm

m
f(m+ xA)

∫ 1−xB

√
c

dn g(n + xB) δ(n)

+

∫ 1−xA

√
c

dm f(m+ xA) δ(m)

∫ 1−xB

√
c

dn

n
g(n+ xB)

]

which is equal to

lim
c→0

[

g(xB)

∫ 1−xA

√
c

dm

m
f(m+ xA) + f(xA)

∫ 1−xB

√
c

dn

n
g(n + xB)

]

where we have used the regions of integration defined in Fig.C.1. Taking the limit we find

g(xB)

∫ 1−xA

0

dm

m+
f(m+xA)+ g(xB)f(xA) ln

[
(1 − xA)(1 − xB)

c

]

+f(xA)

∫ 1−xB

√
c

dn

n+
g(n+xB)
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mn=c

1-XA

1-xB

√c

√c

0

Figure C.1 Regions of integration

where the following definition

∫ b

0
dx
f(x)

x+
≡ lim

ǫ→0

∫ b

ǫ
dx
f(x) − f(0)

x
(C.2)

= lim
ǫ→0

[∫ b

ǫ
dx
f(x)

x
− f(0) ln

(
b

ǫ

)]

(C.3)

was employed. Now, going back to the original variables we get:

g(xB)

∫ 1

xA

dξA
f(ξA)

(ξA − xA)+
+ g(xB)f(xA) ln

[
(1 − xA)(1 − xB)

c

]

+ f(xA)

∫ 1

xB

dξB
g(ξB)

(ξB − xB)+
(C.4)

The integrals containing “+ distributions” are finite and the only divergence is in the term

that contains the logarithm.

Relation between plus-distributions and plus-distributions

The standard definition for the plus-distribution is [102]:

∫ 1

0
dx F+(x)G(x) ≡

∫ 1

0
dx F (x) [G(x) −G(1)] (C.5)

A second definition is also important [44]:

∫ 1

a
dx F+(x)G(x) ≡

∫ 1

a
dx F (x) [G(x) −G(1)] −G(1)

∫ a

0
dx F (x) (C.6)
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Note that this definitions assume that the singularity is in x = 1.

Now, in Chapter 4 we have the following integral in Eq.(4.2):

∫ 1

x

dξ

ξ

f(ξ)

(ξ − x)+

ξ2 + x2

ξ
=

∫ 1

x

dξ

(ξ − x)

[

f(ξ)
ξ2 + x2

ξ2
− 2f(x)

]

(C.7)

where the equality comes from Eq.(C.3). Observe that the singularity is in ξ = x, in the lower

limit of the integral. In order to compare with the standard literature we need to introduce

the variable z = x/ξ and the definition of Eq.(C.6). So Eq.(C.7) becomes

∫ 1

x

dz

z
f(
x

z
)
1 + z2

1 − z
− 2f(x)

∫ 1

x

dz

z

(
1

1 − z

)

=

∫ 1

x
dz

1 + z2

1 − z

[
f(z)

z
− f(x)

]

+ f(x)

∫ 1

x
dz

1 + z2

1 − z
− 2f(x)

∫ 1

x

dz

z

(
1

1 − z

)

=

∫ 1

x

dz

z

[
1 + z2

1 − z

]

+

f(z) + f(x)

∫ 1

0
dz

1 + z2

1 − z
− 2f(x)

∫ 1

x

dz

z

(
1

1 − z

)

which allows us to write

∫ 1

x

dξ

ξ

f(ξ)

(ξ − x)+

ξ2 + x2

ξ
=

∫ 1

x

dz

z

[
1 + z2

1 − z

]

+

f(z) − f(x)

[
3

2
+ 2 ln

(
1 − x

x

)]

(C.8)

Using relation (C.6), we can prove the equality between the two expressions used in this

thesis for the DGLAP kernel:

(
1 + z2

1 − z

)

+

=
1 + z2

(1 − z)+
+

3

2
δ(1 − z) (C.9)

The procedure used to prove the above equation is the familiar one: we introduce a test

function f and we check the equality between integrals. Starting from the left hand side of

Eq.(C.9):

∫ 1

a
dz [f(z) − f(1)]

(
1 + z2

1 − z

)

− f(1)

∫ a

0
dz

(
1 + z2

1 − z

)

=

∫ 1

a
dz
f(z)(1 + z2) − 2f(1)

1 − z
− f(1)

∫ 1

0
dz

(
1 + z2

1 − z

)

+ 2f(1)

∫ 1

a

1

1 − z

=

∫ 1

a
dz
f(z)(1 + z2) − 2f(1)

1 − z
− 2f(1)

∫ a

0

1

1 − z
+

3

2
f(1)

=
1 + z2

(1 − z)+
+

3

2
δ(1 − z)
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Fourier transform in n-dimensions

For completeness reasons, we describe here the procedure outlined in [73] to perform the

Fourier integral for spherical functions. A function f(x1, x2, ..., xn) is spherical if it depends

only on the single variable x = (x2
1 + x2

2 + ...+ x2
n)

1
2 .

Before we proceed, we need to state a few facts about ultraspherical of Gegenbauer poly-

nomials Cα
n (x) [1]. The first relation that we need is their normalization conditions:

∫ 1

−1
dx
(
1 − x2

)α−1/2
Cα

n (x)Cα
m(x) = δmn

π 21−2αΓ(n+ 2α)

n!(n+ α) [Γ(α)]2
α 6= 0 (C.10)

= δmn
2π

n2
α = 0 (C.11)

where α is arbitrary except for the condition α > −1
2 . Another important property is

Cα
0 (x) = 1 (C.12)

we will make use also of the following expansion:

eipx cos θ = Γ(α)
(px

2

)−α
∞∑

k=0

(α+ k)ikJα+k(px)C
α
k (cos θ) (C.13)

where α is arbitrary and Jν(x) is the Bessel function of first kind [1]. Now we are ready. We

want to evaluate
∫

dnx f(x)ei~p·~x (C.14)

with ~p = (p1, p2, ..., pn). Using expansion Eq.(C.13) in Eq.(C.14) we find

∞∑

k=0

(α+ k)ik
∫

dx xn−1f(x)Jα+k(px)
(px

2

)−α
∫ π

0
dθn−2 sinn−2(θn−2)C

α
k (cos θn−2)

∫

dΩn−3

(C.15)

We can perform the integral with respect to θn−2 with the help of the orthonormality relation

(C.11). Comparing, we need k = 0 and α = n
2 − 1, thus we get

(
2π

p
)

n
2 p

∫

dx f(x)x
n
2 Jn

2
−1(px) (C.16)

choosing f(x) = 1
x2 , we can perform the integral after reading it in a table of integrals [72]:

(
2π

p
)

n
2 p

∫

dx x
n
2
−2Jn

2
−1(px) =

(
2

p

)n−2

π
n
2 Γ
(n

2
− 1
)

(C.17)



130

likewise with f(x) = 1
x2 ln(x2)

(
2π

p
)

n
2 p

∫

dx x
n
2
−2Jn

2
−1(px) ln(x2) =

(
2

p

)n−2

π
n
2 Γ
(n

2
− 1
) [

ψ
(n

2
− 1
)

− γE − ln

(
b2

4

)]

(C.18)
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