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ABSTRACT

The strong Coulomb repulsion between charge carriers in a system with one electron per

site can lead to a full localization of the electrons. The resulting state is called a Mott in-

sulating state. The interplay between the physics of Mott insulators and of unconventional

superconductors has been a focus in condensed matter physics for a long time. Although it

has frequently been argued that the proximity to a Mott insulating phase is responsible for the

emergence of unconventional superconductivity, little progress has been made in obtaining a

convincing microscopic theory. Due to the strong electron-electron (e-e) interaction involved in

Mott insulators, mean field theory is not a reliable tool. Thus other nonperturbative methods,

including the Resonating Valence Bond (RVB) variational theory, have been developed. Re-

cently experimental results showing that a spin liquid state, which is a Mott insulator without

long range magnetic order, can undergo a pressure induced transition into an unconventional

superconducting state has helped to sharpen this question. This experimental observation

demonstrates that the onset of unconventional superconductivity doesn’t require magnetic or-

dering. The RVB picture serves perfectly in this context since it starts with a nonmagnetic

state. The major goal of this thesis is to investigate the unconventional electronic and magnetic

properties of a superconductor close to a Mott insulating phase. Particular emphasis is given

to frustrated systems where the role of quantum frustration is known to be strong and where

the Mott insulator is not magnetically ordered. Specifically we study models relevant to two

frustrated quantum spin systems.

One material of interest is κ − (ET)2 Cu2 (CN)3 , an organic superconductor. Its spin-

liquid ground state can be tuned by pressure into an unconventional superconducting state.

We propose a new variational wavefunction by introducing nonlocal correlation effects into
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the usual partially projected Gutzwiller wavefunction. We successfully find a superconducting

state of d-wave pairing symmetry sandwiched between a metallic state and a spin liquid state

around some critical onsite repulsion U . We also find strong ”Fermi surface” renormalization

when superconductivity starts to emerge.

The other material of interest is SrCu2 (BO3)2 whose ground state is known to be a singlet

dimer state. We derive a multiband BCS wavefunction and apply onto it the full Gutzwiller

projection. We show that the obtained trial wavefunction can give the exact ground state

energy to the undoped system. We then find that the physical properties are dramatically

different for the electron and hole doped cases. We find, for the hole doped case, a plaquette

d-wave pairing pattern and enhanced superconductivity due to this pairing inhomogeneity;

while for the electron doped case, we find a strange metallic state.
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CHAPTER 1. Introduction

Strong electron-electron (e-e) interaction, i.e. the physics of strong correlation among

charge carriers, is believed to be responsible for many interesting phenomena shared by a

number of different materials. High Tc cuprates (1), organic superconductors (2) and heavy

fermion systems (3) are important examples. A Mott insulating phase, unconventional su-

perconductivity, pseudogap behavior, quantum criticality and bad metal behavior are among

the properties caused by the strong e-e interaction. The mechanism of unconventional super-

conductivity has attracted the attention of physicists for a long time. The physics of a Mott

transition, from an insulating to a metallic state caused by localization due to strong Coulomb

repulsion, is believed to be important for this purpose since unconventional superconductivity

and the Mott insulating state appear together in two distinct classes of materials: cuprates

and organic superconductors. The role of magnetic fluctuations is especially stressed since

magnetic ordering seems to always exist in the Mott insulating phase. But this notion has re-

cently been challenged with the discovery of the organic superconductor κ− (ET)2 Cu2 (CN)3

which can be tuned from a magnetically disordered spin liquid state to an unconventional

superconducting state under pressure (4). In this thesis, I would like to investigate how this

special Mott transition can be addressed by a Resonating Valence Bond (RVB) picture to be

detailed shortly. We will use this formulism to investigate the unconventional electronic and

magnetic properties of a superconductor close to a Mott insulating phase. We will put par-

ticular emphasis on frustrated systems, where the role of quantum frustration is known to be

strong and where the Mott insulator is not magnetically ordered. We then will analyze what

this picture implies for another magnetically fully frustrated material, SrCu2 (BO3)2 .
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1.1 Mott insulator vs. band insulator

Materials that are insulating are rather common in everyday life. The insulating nature

of these systems can usually be interpreted as being caused by a fully filled valence band,

shown in the panel (a) of Fig. 1.1, so that electronic motion is fully counteracted by its Bragg

reflection on the Brillioun zone boundary. Examples are many Si-based systems, diamond, etc.

This interpretation is based on the band theory where electrons are assumed not to interact

or if only weakly between each other so that the movement of one electron hardly affects other

electrons (5). Such behavior is called band insulating.

A band insulator is not the only possible explanation on how an insulator can be formed.

One possibility is the localization of electrons in disordered systems. However, there are also

non-disordered clean materials whose valence electrons only half fill an energy band yet they

are insulating. This is contradictory to what the band theory predicts and thus implies that

the e-e interaction comes into play. The insulating behavior caused by this interaction is called

Mott insulating (6).

In a Mott insulator, an energy band is split into two subbands due to the strong e-e

interaction. How large the separation in energy is depends on how strengthy the e-e interaction

is between two electrons staying in the same site. The subbands distinguish themselves from

the usual band in the way how each momentum state, k, is occupied. In the usual band each k

contains a maximum of two electrons of opposite spins, but in a subband only one electron is

allowed. When the material becomes a Mott insulator, the lower subband becomes fully filled.

This is shown in panel (b) of Fig. 1.1.

The distinction between a band and a Mott insulator can also be clearly illustrated in real

space pictures. For a band insulator, a fully filled band is equivalent to a fully filled lattice

in real space, where each site contains two electrons with opposite spins. This is illustrated

in panel (c). A half-filled band corresponds to a real space picture with electrons randomly

sitting on each lattice site. When the e-e interaction becomes strong, electrons repel each other

to reduce their mutual onsite-repulsion and only a single electron is allowed on each site. The

Mott insulator then corresponds to a lattice with each site singly occupied, as shown in the



3

Figure 1.1 Illustration of both a band insulator and a Mott insulator in
terms of energy band filling and its corresponding real space
picture. The upper two plots describe a band insulator. It has
a fully-filled band illustrated in graph (a), or equivalently, fully–
filled sites with each site occupied by electrons of opposite spins
as shown in graph (c). The lower two plots are relevant to a
Mott insulator. The split of the energy band into two subbands
due to strong e-e interaction is illustrated in graph (b) with the
lower one fully filled. The corresponding real space occupation
is shown in graph (d) where each site is singly occupied.

panel (d). Thus, no electron is allowed to move around due to both the strong e-e interaction

and the Pauli exclusion principle.

1.2 Spin liquid state

In a spin liquid state, spins are bound into spin singlets between each other with opposite

spins. Thus, the magnetization at each site has vanishing expectation value and no long range

magnetic correlation exists on the lattice. A spin liquid state is a special type of paramagnetic

states with the existence of a possibly momentum-dependent spin gap.

To understand this better, the spin liquid state can be contrasted to the standard textbook
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example, a collection of weakly interacting local magnetic moments. In this example, the

magnetizations are very similar to that of a spin liquid state at a finite temperature. However,

there are important differences in the short distance magnetic correlations, most significantly,

as temperature is reduced towards T = 0. The spin liquid state still maintains very similar

properties as those at finite temperatures because of the existence of a spin gap. But the

weak interaction existing in magnetic local moments would cause them to develop finite local

magnetization, as is enforced by vanishing entropy at zero temperature.

In a strongly interacting magnetic system, the zero temperature state is usually magneti-

cally ordered in order to reduce the entropy associated with the spin degree’s freedom. This

is not necessarily the case if there exists a strong geometrical frustration, which would reduce

magnetic ordering and might totally change the system into a spin liquid state, where the spin

degree’s freedom is frozen in the singlet channel. It is also useful to contrast the spin liquid

behavior discussed here with the nonmagnetic ground state in the Kondo lattice system (7),

so-called heavy fermion materials. In the latter, the entropy is reduced and the magnetiza-

tion is screened via the interaction between localized spins and conduction electrons. In the

spin liquid materials discussed in this thesis, the interaction is between the strongly correlated

electrons only.

1.3 Conventional vs. unconventional superconductivity

Since the discovery of the first superconducting material, Hg, in 1911 by H. K. Onnes

(8), extensive experimental and theoretical studies have been carried out and reported in the

literature. Several experimental discoveries contributed greatly to the progress in developing

an appropriate theory to explain this fascinating phenomenon, including the Meissner effect,

the isotope effect and flux quantization. These drove the theoretic studies to focus on the

phonon-based interaction to mediate electron-electron attraction. Finally in 1957, Bardeen,

Cooper, and Schrieffer came up with the microscopic theory, BCS theory, to correctly account

for the superconducting phenomenon found till then (9).

The BCS theory might be most easily explained using an effective Hamiltonian involving a
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weakly attractive e-e interaction, which includes both the phonon mediated e-e attraction and

the screened e-e Coulomb repulsion, and can be written as

Ĥ =
∑

k,σ

εkc†k,σck,σ +
∑

k,k′
Vk,k′c

†
k,↑c

†
−k,↓ck′,↑c−k′,↓ (1.1)

with εk the dispersion for free electrons measured from Fermi energy,

Vk,k′ =





V < 0 for |εk| and |εk′ | < ωc

0 otherwise

and ωc the Debye frequency. By introducing the mean field pairing

∆k = 〈ck,↑c−k,↓〉 (1.2)

between two electrons with opposite momenta and spins, called a Cooper pair, the mean-field

decoupled Hamiltonian can be shown to have a ground state

|ΦBCS〉 ∝ e−
∑

k φkc†k,↑c
†
−k,↓ |0〉 , (1.3)

where |0〉 is the electron vacuum state, φk describes the pairing amplitude at given momentum

k and has an expression as

φk =
∆k

Ek + εk
. (1.4)

Here Ek is the dispersion relationship for quasiparticles involved in the Hamiltonian and is

Ek =
√

ε2k + ∆2
k. (1.5)

The pairing in Eq. 1.2 can be homogeneous in momentum space, or equivalently ∆k = ∆,

because of the specific interaction, V, chosen for the problem. This is called an s-wave pairing.

In the BCS theory, ∆ is at the same time the order parameter for the superconducting phase.

From the quasiparticle dispersion relationship, Eq. 1.5, it can be seen that the dispersion de-

velops a finite energy gap 2∆ on the Fermi surface due to the existence of effective attraction

among electrons. This is a conclusion rooted in the weak interaction theory. Physically this

means the formation of a Cooper pair is energetically favored over a pair of noninteracting elec-

trons under weakly attractive interaction. These Cooper pairs move around phase coherently

to give rise to superconductivity.
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During the past few decades, new superconductors with unconventional properties have

been discovered. They include some cuprates with high transitional temperature Tc (10),

organic superconductors whose Tc are usually pretty low (11), and several heavy fermion

compounds (12). We distinguish them from conventional superconductors by telling whether

they are explainable within the BCS theory of phonon based mechanisms and the Fermi liquid

theory in the normal state. Unconventional superconductivity is often featured by the existence

of a non-s-wave pairing, whose pairing wavefunction between two electrons has a different

spacial symmetry from that of the original lattice. For example, it can be a spacial dx2−y2

-type symmetry where the wavefunction changes its sign when the material is rotated by

π/2 in real or momentum space. This non-s-wave nature likely indicates that the mediation

for the pairing is non-phononic. This is also reflected by the phases in the vicinity of the

superconducting phase in the phase diagram of the material. Often they display physical

features which cannot be simply explained by the Fermi liquid theory. For example in some

organic superconductors, the superconducting state can be found to be sandwiched between a

metallic and an insulating state by tuning other controlling parameters, for example, pressure.

The fact that the insulating state is usually a Mott insulating state reveals the strong e-e

interacting nature in these materials.

1.4 Introduction to the RVB mechanism

As mentioned above, the pairing wavefunction in unconventional superconductors is no

longer isotropic, but differs in different spacial directions. This strongly supports a new pairing

mechanism. For example, the fluctuation exchange (FLEX) theory (13) suggests that phonons

are replaced by short ranged antiferromagnetic spin-fluctuation to mediate pairing. However,

the nature of this theory is still weak coupling and is thus, in principle, unable to explain the

systems involved in strong e-e interaction.

In contrast, P.W. Anderson took a different perspective (14). He avoided addressing what

kind of bosonic quasiparticles might be responsible for the pairing of two electrons in the

unconventional superconductors, but proposed that singlets pre-exist and resonate with each
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Figure 1.2 The ground state of the Heisenberg Hamiltonian (see the next
section) involving 4 sites gives the simplest RVB state. The plot
to the left of the arrow shows four spins on a square lattice whose
spin orientations are not fixed as shown, the plot to the right
illustrates a RVB state as the ground state of this Hamiltonian.
It is made up of two products of two singlets (denoted by thick
black lines) which resonate horizontally and vertically on the
four sites.

other. By resonating it means that the same site participates in different singlets at the

same time. The singlets become mobile under appropriate conditions and then the material

would become superconducting if coherency emerges among these singlets. This is called the

Resonating Valence Bond (RVB) picture, and is in close relation to the concept of a spin liquid

state. The idea is illustrated in Fig. 1.2.

The RVB wavefunction originally proposed was

|ΨRV B〉 = P̂ |ΦBCS〉 , (1.6)

where P̂ is a projection operator to fully project out electronic configurations containing dou-

bly occupied sites. These configurations usually have very high energy due to the strong e-e

repulsion and are thus unlikely to appear. The possible weights for all possible electronic

configurations are defined through |ΦBCS〉 , called the underlying wavefunction in this the-

sis. Nowadays more general forms of this wavefunction have been introduced (15)(16). The

advantage of the RV B picture is that it incorporates unconventional pairing, pseudogap phe-

nomenon and in special cases, superconductivity in a natural way. Recent numerical work

shows that this picture could satisfactorily explain different phenomena for the cuprates (17).

Besides this success, it naturally assumes that superconductivity must be controlled by the

existence of a pseudogap (1)(18). This might act as a test on the validity of this picture for

the unconventional superconductivity. Shortcomings of the RVB theory include its difficulty
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in being treated analytically due to the superimposed projection operator as well as difficulties

in dealing with possible excited states. The Gutzwiller approximation may act as a partial

solution to the first concern (19).

1.5 Generic models for strong electron-electron interaction

Hubbard Hamiltonian The relevant model used in this research to describe the strong

e-e interaction is the Hubbard Hamiltonian (20)(21)(22)

Ĥ =
∑

〈i,j〉
tij

(
c†i,σcj,σ + h.c.

)
+ U

∑

i

ni,↑ni,↓ (1.7)

or its generalization

Ĥ =
∑

〈i,j〉
tij

(
c†i,σcj,σ + h.c.

)
+ U

∑

i

ni,↑ni,↓ +
∑

〈i,j〉,σ,σ′
Vijni,σnj,σ′ + ... (1.8)

where 〈i, j〉 denotes nearest neighboring lattice sites and

tij =
∫

drφ∗i (r)
[
− ~

2

2m
∇2

r + V (r)
]

φj (r) (1.9)

U =
∫

dr1dr2 |φi (r1)|2 e2

|r1 − r2| |φi (r2)|2 (1.10)

Vij =
∫

dr1dr2 |φi (r1)|2 e2

|r1 − r2| |φj (r2)|2 . (1.11)

They are based on two fundamental assumptions: i) an adequate description of the physics

is possible by including a limited number of local orbits; ii) the shape of the atomic orbit is

independent of the electronic occupation (23).

The underlying basis set for the above Hamiltonian is composed of the Wannier states

defined in case of a single band as

φi (r) =
1√
N

∑

k

e−ik·Riϕk (r) . (1.12)

Here N is the total number of lattice sites, ϕk (r) is the Bloch state for an electron at momentum

k confined to the first Brillioun zone and Ri denotes a specific lattice site. The Wannier states

are specifically designed to be mutually orthonormal,

〈φi|φj〉 = δi,j . (1.13)
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It is worth mentioning that φi differs from the local atomic orbit implicitly contained in ϕ

in Eq. 1.12 by having an oscillatory tail to maintain orthogonality to other Wannier states.

The physical parameter tij is related to the kinetic energy for an electron to hop between

nearby sites; U, Vij etc. denote the Coulomb repulsions for two electrons to occupy the same

or neighboring sites respectively.

That the e-e interaction is strong interaction is based on the fact that

U À tij ,

which implys that the width of the energy band is relatively narrow for materials with strong

e-e interaction. This fact can be interpreted using a more physical perspective. Narrow bands

require a small overlap of atomic orbits on nearby sites and are treated with the tight binding

approximation (5). Considering that an atomic orbit has the largest probability around a

lattice site, the small overlap in the wavefunction doesn’t change this fact but enables the same

electron to appear equally likely at each lattice site. When another electron is introduced, the

same scenario also applies to it. This means the two electrons would have a larger probability

to meet with each other at the same lattice site if their wavefunction overlap is less. This in

general leads to a stronger e-e interaction between two electrons.

The Hubbard model contains the essence to describe a Mott-Hubbard transition. For

U → 0, it reduces to an independent electron problem and a half-filled band gives metallic

behavior; for U → ∞, electrons are fully localized at each site and are thus unable to move

around if each site is occupied by a single electron, or termed half-filling.

t− J Hamiltonian When U is large, the Hubbard Hamiltonian can be expressed as the

t− J Hamiltonian using a canonical transformation (17)(24). Practically, this transformation

projects the Hubbard Hamiltonian into a subspace where each site is singly occupied. The

double occupancy only appears as a virtual process to enable electron and spin to be exchanged.

This is a reasonable approximation to start with if other typical energy scales in the problem

are much smaller than the onsite repulsion U .
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Up to the second order in tij/U, the t− J Hamiltonian can be expressed as

Ĥt−J = Ĥk + ĤJ (1.14)

with

Ĥk = −
∑

〈i,j〉
tij

(
ni,σ̄c†i,σcj,σnj,σ̄ + hi,σ̄c†i,σcj,σhj,σ̄

)
(1.15)

ĤJ = −
∑

i,j,k;σ,σ′

tijtjk
U

(
hi,σ̄c†i,σcj,σnj,σ̄c†j,σ′ck,σ′hk,σ̄′

)
(1.16)

where hi,σ = 1−ni,σ, ni,σ = c†i,σci,σ. Physically Ĥk describes the direct hopping process for an

electron to reach its empty neighbors. ĤJ describes a virtual hopping process for an electron

to reach its occupied neighbors to form an instant doubly occupied site (doublon); and then

its partner either hops back if i = k 6= j, so-called the virtual exchange process, or hops to a

third empty site if i 6= j 6= k, as is called the three-site hopping process.

In case of half-filling, the t− J Hamiltonian reduces, up to a constant energy shift, to the

Heisenberg Hamiltonian

Ĥh =
∑

〈i,j〉
JijŜi · Ŝj (1.17)

where

Jij =
4t2ij
U

(1.18)

Ŝi =
1
2

∑

σ,σ′
c̃†i,στσ,σ′ c̃i,σ′ (1.19)

with c̃i,σ = ci,σ (1− ni,σ̄) and τ denoting the vector composed of the 3 Pauli matrices.

A brief summary on theoretical treatments to these models The usual practice

treats a Hamiltonian through perturbations if the interaction is weak. But this is not possible

for the Hubbard Hamiltonian with tij ≈ U when e-e interaction becomes strong. On the other

hand, the treatment on the t − J Hamiltonian is also complicated by the intrinsic restriction

to require each site to be singly occupied.

To make some theoretical progress, different approaches have been proposed and are briefly

mentioned below. For the Heisenberg Hamiltonian, besides the usual spin wave expansion (5),
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spin coherent-state representation has been introduced to allow a field theoretical treatment

(25). To analyze the t− J or Hubbard Hamiltonian, slave-boson representation is introduced,

where the charge and spin properties of a dressed electron are assumed to be decomposable,

c̃i,σ = fi,σb†i

with
∑

σ

f †i,σfi,σ + b†ibi = 1

for the t− J Hamiltonian and
∑

σ

f †i,σfi,σ + b†ibi ≤ 2

for the Hubbard Hamiltonian. Here c̃i,σ = ci,σ (1− ni,σ̄), fi,σ satisfies a fermionic anticom-

mutation relationship to represent spin degree’s freedom while bi satisfies a bosonic one to

represent charge degree’s freedom. After applying a mean field decoupling, some theoretical

progress can be made with this approach (26). Other approaches include: Dynamical Mean

Field theory(DMFT) (27) and Dynamical Cluster approximation(DCA) (28) to go beyond a

mean field treatment. Alternatively the Exact Diagonalization(ED) is restricted to a small

lattice size. Different types of Quantum Monte Carlo(QMC) methods are able to treat these

Hamiltonians appropriately for all temperature range, but the sign problem (29) and heavy

numerical complexities are involved. Another simple yet physically meaningful method is the

variational Monte Carlo(VMC) simulation (30). It allows for clear physical insights into the

problem if one properly guesses its ground state wavefunction. Yet it is restricted to zero

temperature and is very hard to get information for excited states.

1.6 Introduction to organic superconductors

General description of organic charge transfer salt Organic superconductors be-

long to the class of material called organic charge transfer salt where electrons are transferred

not between single atoms but between big organic molecules. In these molecules, the atomic

orbits hybridize to share electrons among all the relevant atoms there. The hybridization alters

the ionization energy or electron affinity of valence electrons of the whole molecule. Thus it
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Figure 1.3 The bis(ethylenedithio)tetrathiafulvalene molecule. The planar
view is shown in (a) (31) and the side view in (b).

leads to rather different bond types from what would naively be expected based on individual

atoms. The word ”organic” stresses the fact that mobile carriers come from organic molecules

which act as the donor or cation, while a second type molecule acts as the anion to accept

electrons. Organic superconductors have so far been under intensive study and many review

articles have been published. In this thesis, most of the references are cited from (31)(32)(33)

and references contained within.

The organic molecule of interest in this work is bis(ethylenedithio)tetrathiafulvalene [C10S8H8]

(abbreviated as BEDT-TTF or ET) and is illustrated in Fig. 1.3. The hybridization renders

a single π orbit as the highest occupied molecular orbit(HOMO) extending perpendicular to the

molecular plane. When organic molecules are packed close together, these π orbits overlap and

form conduction bands. There is also small contribution from the lowest unoccupied molecular

orbit(LUMO) in forming the conduction bands. Different packing motifs of the molecules are

represented by different Greek letters, for example, the α, β and κ types illustrated in Fig.

1.4. To form a crystal, anions are needed and they form insulating layers. Different anion

molecules X, say, Cu [N (CN)2] Br, Cu (NCS)2 , I3, Cu2 (CN)3 etc, can be chemically com-

bined with ET in the usual form of (ET)2X where on the average two ET molecules lose one

electron to X. The whole material is a layered structure with the insulating layers separating

nearby conducting layers made up of ET molecules, as shown in Fig. 1.5. Notice here the

special arrangements of the ET molecules in panel (b). Two molecules face each other; these

two molecules as a whole are nearly perpendicular to the nearby pairs, forming the κ type

packing pattern shown in the third graph of Fig. 1.4. This layered structure is responsible for
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Figure 1.4 Schematic packing pattern of ET molecules of three different
phases of (ET)2I3. Here each short line segment denotes an ET
molecule (31).

Figure 1.5 Structure of the κ-(BEDT-TTF)2Cu(NCS)2. (a) 3D view
of the molecular arrangement. The BEDT-TTF molecules
pack in planes separated along the a axis by layers of smaller
Cu(NCS)2 anions represented by line segments with filled dots
on it. (b) Top view along the a axis onto the BEDT-TTF layer.
The close packing of BEDT-TTF molecules allows substantial
overlap of the molecular orbitals between two ET molecules.
The square shown on the plot illustrates a unit cell of the lat-
tice (34).
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the low dimensional character of the material and is experimentally manifested in the Fermi

surface measurements on κ− (ET)2 Cu (NCS)2 (35), as is shown in Fig. 1.6. Also notice in

the panel (a) of Fig. 1.5 that the ET molecules stand against the insulating layers. This leads

people to believe that the material can be easily compressed, as is also experimentally verified

(36). The physical properties of the organic charge transfer salt are affected by the size and

type of the organic molecules, molecular stacking pattern, ethylene groups at the endpoints of

the molecular backbones and the types of anions (31). Of course, they are also affected by the

usual thermodynamic quantities: P, T, H, and strain etc.

Strong electron-electron interaction in κ − (ET)2 X Under ambient pressure, κ −
(ET)2 X can have diverse phases for different choices of X. For example, it can be antiferromag-

netic (X = Cu [N (CN)2] Cl (37)), a spin liquid (X = Cu2 (CN)3 (4)(38)) or a superconductor

(X = Cu (NCS)2 (39)). As hydrostatic pressure exerting on the material increases, a phase

transition takes place between an insulator and a superconductor at a temperature below

several Kelvins (31)(32). This pressure-induced phase transition is a typical Mott-Hubbard

type phase transition reflecting the strong e-e interaction. This interaction is also revealed

by optical conductivity measurements carried out on X = Cu (NCS)2 , which is an ambient

pressure superconductor (40). In the experiment, the DC Drude weights are different for two

temperature values, as shown in Fig. 1.7, which cannot be explained with the simple band

theory. Further on, the superconducting phase is found to be unconventional. The pairing

has been concluded to be of singlet nature for X = Cu [N (CN)2] Br. Numerous evidences

support a d-wave pairing, e.g., the tunneling experiment on X = Cu (NCS)2 (42) shown in

Fig. 1.8. In the figure, it is easy to see that a varying d-wave pairing gap in the conduction

plane reproduces reasonably well the data at different angles for small bias voltage. The gap

amplitude vanishes around φ = 51◦.

Phase diagram for κ− (ET)2 Cu2 (CN)3 The actual material of interest in this thesis

is the κ-phase with anion type X = Cu2 (CN)3 . It was first discovered by U. Geiser, H.

H. Wang et al in 1991 (43) and later revisited by Y. Shimizu, K. Miyagawa et al in 2003
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Figure 1.6 (a) Quasi-2D Fermi surface with weak interlayer disper-
sion effect. The curved lines and circles illustrate some
of the quasiparticle orbits caused by an in-plane field B
in the conduction plane. (b) Interlayer resistance Rzz of
κ-(BEDT-TTF)2Cu(NCS)2 sample as a function of magnetic–
field orientation(θ = 90◦ corresponds to the in-plane magnetic
field). Data for T = 0.48K, 1.4K, 3.0K, 4.4K and 5.1K are
shown, higher background magnetoresistance corresponding to
increasing T . The inset shows the intersections of the linear
extrapolations used to determine the peak width (35).
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Figure 1.7 Non-Drude behavior of the frequency-dependent conductivity
σ (ω) of κ − (ET)2 X with X = Cu[N(CN)2]Br. Notice the
strong temperature dependence of the low-frequency conduc-
tivity. The broad peak around 300meV can be identified with
transitions between the lower and upper Hubbard subbands.
The very sharp spikes are due to infra-red active phonons. The
data shown is for the electric field along b axis, defined in Fig
1.5, in the molecular layer (41).



17

Figure 1.8 (dI/dV ) data obtained in tunnelling experiments on the lateral
surfaces of a κ−(BEDT-TTF)2Cu(NCS)2 single crystal (solid
lines; T = 1.5K). The inset shows the tunnelling direction
defined as angle φ in the b-c conduction plane, defined in Fig
1.5. The dashed curves are a fit to a d-wave pairing model (42).
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(4). Fig. 1.9 shows NMR measurements both on this material, shown in panel (a) , and on

another one with X = Cu(NCN)2Cl in panel (b) as a comparison. Although the absorption

spectrum for this material gives only a persistent nonmagnetic state, which is manifested

by very weak dependence on temperature, the ground state is strongly suggested to be a

spin liquid state at ambient pressure. What is, perhaps, most interesting about this

material is that pressure can tune the spin liquid state into a superconducting state without

ever entering a magnetically ordered state. Similar to identifying that the isotope effect always

goes with a conventional superconducting state, this is very important in answering whether

unconventional superconductivity is always tied to the proximity to a magnetic phase transition

or just a Mott transition or both (44). Meanwhile this seems to argue against theories that

require long range antiferromagnetic fluctuation as the pairing mediator. Recently the whole

phase diagram was mapped out in the T − P plane for this material (45) and is shown in Fig.

1.10. Besides the vertical drop of the first order phase transition line at T = 0 around

Pc ≈ 3.6 × 10−1GPa, it is peculiar that ∂Tc/∂P > 0 holds along that transition line for low

yet finite T . By Clausius-Clapeyron relation,

∂Tc

∂P

∣∣∣∣
phase boundary

=
∆V

∆S
,

where ∆V and ∆S are the volume and entropy jumps at the 1st order phase transition, re-

spectively. Notice the positive slope of the line. Since the volume decreases with pressure, the

entropy also decreases when the spin liquid phase transits to the unconventional superconduct-

ing phase. This is very likely to exclude the existence of a finite spin gap in the spin liquid

phase if the entropy of the unconventional superconducting phase has a power law dependence

on T .

Model Hamiltonian to describe κ − (ET)2 Cu2 (CN)3 The natural guess for the

Hamiltonian description of the system is the use of the Heisenberg Hamiltonian for the spin

degree’s of freedom, because of the existence of the spin liquid insulating ground state at

ambient pressure in this material. But this cannot explain the fact that the material can

be tuned into a superconductor under pressure, which alters t/U with t being bandwidth
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Figure 1.9 1H NMR absorption spectra for a single crys-
tal of κ−(BEDT-TTF)2Cu2(CN)3 in panel (a) and
κ−(BEDT-TTF)2Cu(NCN)2Cl in panel (b) (37) under
the magnetic field perpendicular to the conduction plane.
The spectra show nuclear dipole interactions between the
protons in the ethylene groups in the ET molecule of both
materials. The difference in the spectra shape at high tem-
perature for both materials can be interpreted by different
orientations of ET molecules against external magnetic field
and is thus not important here. To panel (b), the spectra
of κ−(BEDT-TTF)2Cu(NCN)2Cl split below 27K reflect-
ing a transition to an antiferromagnetic ordered state; to
panel (a), however, the shape and location of the spectra
of κ−(BEDT-TTF)2Cu2(CN)3 don’t show distinct change
throughout the temperature range from 36.1K to as low as
32mK, which is 4 orders of magnitude below the J value of
250K. The result indicates the absense of long range magnetic
ordering and strongly suggests a spin liquid state on the
strongly spin frustrated triangular lattice (4).
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Figure 1.10 The T−P phase diagram of κ−(BEDT-TTF)2Cu2(CN)3 con-
structed through resistance and NMR measurements under the
hydrostatic pressure. Details to green and orange curves (the
upper two curves) are stated in the reference and are irrele-
vant to this work. The red curve (the lowest one) showing the
onset superconducting Tc was determined from the in-plane
resistance measurements (45).
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but does not change the band filling. This is because the Heisenberg Hamiltonian requires

single occupation on each site and thus it always gives insulating behavior if the number of

charge carriers doesn’t change. Considering that increased pressure enhances charge carriers

to delocalize, double occupancy must be allowed to enable charge carriers to move around.

Thus the Hubbard Hamiltonian is a more reasonable choice to describe this type of material.

The question is then how to determine different hopping parameters tij and the onsite

Hubbard energy U for this material. An analysis has been carried out on a two-molecule

problem in (23) (46). It is assumed that electrons sit in HOMOs. The basic idea is to map the

expected Hubbard model, defined as

Ĥem = t
∑

σ

(
c†1,σc2,σ + c†2,σc1,σ

)
+ U

∑

i=1,2

ni,↑ni,↓ + V
∑

σ,σ′
n1,σn2,σ′ , (1.20)

to a first principle calculation to microscopically obtain the relevant parameters based on the

bare Hamiltonian,

Ĥ1st =
n∑

i=1,

(
−1

2
∇2

i + v̂ (i)
)

+
n∑

i<j

1
rij

, (1.21)

where t, U and V follow the definitions from Eq. 1.8; n =
∑

i=1,2;σ c†i,σci,σ denotes total number

of electrons on the two molecules, v̂ (i) denotes attraction from core electrons and the ion and

rij denotes distance between two electrons. It is found that t for two molecules facing each

other is much stronger than they are otherwise. Thus these two molecules should be treated

together as a unit called dimer to build the lattice. It is also found that U is much smaller than

the bare U0 because the addition of another electron onto the same molecule would force the

existing electrons to reorganize themselves either on the same molecule or to be transferred to

the other one in the dimer in order to lower the electrostatic energy (47). Similar effects also

exist on the lattice which reduce U even further.

By introducing the concept of dimer in the κ type organic superconductors, the planar

lattice made up of ET molecules can be abstracted as a triangular lattice having effective

hoppings of different strength along different directions. The mapping is shown in the panel

(a) and (b) of Fig. 1.11 and a topologically equivalent square lattice with specific diagonal

hoppings is shown in the panel (c).
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Figure 1.11 Illustration of how the abstract lattice is obtained from the ac-
tual lattice, which is made up of ET molecules shown in panel
(a). By replacing the two molecules facing each other with a
dimer and denoting it with a filled circle, the abstract lattice is
shown in panel (b) where the thickness of the line segment rep-
resents the strength of the effective hopping along that specific
direction. The triangular lattice can be transformed isomor-
phically into a square lattice with specific diagonal hoppings
of different strengths, as shown in panel (c) .

The effective Hubbard Hamiltonian to describe the square lattice related to 2D organic

superconductors can be expressed as

Ĥ = −t
∑

〈i,j〉,σ

(
c†i,σcj,σ + h.c.

)
− t′

∑

〈k,l〉,σ

(
c†k,σcl,σ + h.c.

)
+ U

∑

i

ni,↑ni,↓ (1.22)

where t and t′ represent different effective hoppings along nearest neighbor, denoted by 〈i, j〉 ,
and diagonal directions, denoted by 〈k, l〉 , respectively, U denotes onsite repulsion for two

electrons to sit on the same dimer site. The typical parameters for organic superconductors

are estimated to be

t ≈ 0.05− 0.1eV, t′ ≈ 0.5− 1.0t and U ≈ 5− 10t

depending on the type of X. For κ− (ET)2 Cu2 (CN)3 (4),

t′

t
≈ 1.06

while the relevant U is less accurately determined.

With the dispersion well defined in terms of t and t′, the band filling can be determined

for the κ− type packing pattern involving dimers as the building blocks. Each dimer carries
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one hole and generates bonding and antibonding bands. Thus, the bonding band would be

fully filled while the antibonding band would be half-filled. This is in agreement with the

conclusions based on a Mott insulator model revealed in the different experiments.

Recent theoretical progresses on organic superconductors The strongly corre-

lated nature of the materials were summarized in an early review (48). It was further sub-

stantiated by the inconsistencies between predictions based on weak coupling spin fluctuation

approachs (49) and experimental measurements of the pairing gap (42). As one of the first

works to include strong correlation effects into interpreting the superconductivity and its prox-

imity to a spin liquid insulating state (44), we used a variational Monte Carlo simulation

method with a new type of RVB wavefunction to describe the transition from a spin liquid

state to a superconducting state. My work prompted a subsequent investigation on the same

material (50). Other theories involve the Gutzwiller approximation of the Hubbard-Heisenberg

Hamiltonian (51)(52), and recently a DMFT study on this problem as well. The phase diagram

is successfully calculated using DMFT and is consistent with experimental measurements (53).

1.7 Introduction to SrCu2 (BO3)2

Related experimental facts Another Mott insulator of interest is SrCu2 (BO3)2 , dis-

covered in 1991 by R. W. Smith and D. A. Keszler (54). It has a tetragonal crystal structure

with lattice constants a = 8.995 and c = 6.649 at room temperature. It has a layered structure

with alternative CuBO3 and Sr planes. The 3D view of the crystal is shown in panel (a) of

Fig. 1.12 and a sketch of the CuBO3 layer is shown in panel (b) there. In this layer Cu2+

ions connect each other either through BO3 molecules or through two O sites and are located

at crystallographically equivalent sites. Sr2+ ions do not sit directly above or below Cu2+ or

B3+, instead, they share quadrilateral faces of O sites to form one dimensional chains that

extend parallel along c axis.

The magnetic ions are Cu2+ carrying a spin S = 1/2. The network structure formed by

Cu2+ is shown in panel (c) of Fig. 1.12. A pair of nearest-neighbor Cu2+ ions are connected
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Figure 1.12 (a) Schematic 3D view of the crystal with each type of atoms
shown with different color. (b) Schematic view of the crys-
tal structure of SrCu2(BO3)2 along [001]. The closed circles,
small open circles, and large open circles denote, respectively,
the Cu2+, B3+, and O2− ions. The unit cell is indicated by
dotted lines. (c) 2D coordinates of the Cu2+ spins. The first
and second nearest neighbor Cu pairs are denoted by the solid
and broken lines respectively. (55)
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through O sites to form a dimer unit. They then connect orthogonally through BO3 molecules

to another dimer unit. The ions in a dimer are separated by 2.905Å and two next nearest

neighbor Cu2+ ions by 5.132Å at room temperature. The magnetic property was revisited

by H. Kageyama, K. Yoshimura, et.al (55) in 1999 and in other experiments later on (56).

There are several unique features in this material, spin gapped behavior, almost flat dispersion

for low energy excitation and existence of magnetization plateaux (56). There exists a spin

gap of ∆ ' 35K manifested by exponentially decaying magnetic susceptibility when T → 0

(55), as is shown in Fig. 1.13. The inelastic neutron scattering experiment (57) reveals

that the first triplet excitation spectrum is nearly flat in momentum space. And there also

exists magnetization plateaux of fractional Bohr magnetic moment, i.e. µB, per site in the

magnetization curve (55)(58).

All these features can be explained reasonably well by the Heisenberg Hamiltonian

Ĥh =
∑

〈i,j〉
J Ŝi · Ŝj +

∑

〈l,m〉
J ′Ŝl · Ŝm (1.23)

where 〈i, j〉 denotes next nearest neighbor spin sites and 〈l, m〉 denotes nearest neighbor spin

sites illustrated in panel (c) of Fig. 1.12, and J and J ′ describe the corresponding exchange

interactions accordingly. J and J ′ can be estimated by fitting the theoretical magnetic suscep-

tibility to the experimental curve, which gives

J = 54K and J ′ = 85K.

More careful fits reveal a small component of interlayer coupling with J ′′ = 5K perpendicular to

the CuBO3 layer (56). This comparatively small value is an additional evidence for the quasi-

2D nature of this material. There are additional experimental effects which call for corrections

on the model expressed in Eq. 1.23, especially a Dzyaloshinsky–Moriya interaction (59)(60).

However this interaction only becomes important in an applied magnetic field perpendicular

to the Cu2+ plane. It is irrelevant for the effects to be investigated in this thesis.

Valence bond crystal as a ground state The spin lattice of SrCu2 (BO3)2 is topo-

logically equivalent to the Shastry-Sutherland (SS) lattice (61), as is shown in Fig. 1.14.
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Figure 1.13 Temperature dependence of the magnetic susceptibility in
SrCu2(BO3)2 powder. The open and closed circles represent,
respectively, the measured susceptibility χraw, and spin sus-
ceptibility χspin after subtracting the Curie-Weiss and con-
stant terms from χraw. The solid and broken lines show the
theoretical curves based on a dimer model. The enlarged plot
is shown in the inset, where the solid curve indicates the fit to
χspin ∼ exp (−∆s/kT ). (55)
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Figure 1.14 Illustration of topological equivalence of the actual spin lattice
on the CuBO3 plane (left) to the standard Shastry-Sutherland
lattice (right). The actual spin lattice is also sketched in panel
(c) of Fig 1.12. The equivalence is obtained by evolving the
acute vertex angle shown on the top of the left lattice into a
right one shown on the right lattice. (61)

The peculiarity of the SS lattice is that its ground state can be determined exactly as a singlet

dimer state for a specific range of J ′/J

|Ψ〉 =
∏

〈l,m〉

1√
2

(|l, ↑; m, ↓〉 − |l, ↓; m, ↑〉) (1.24)

where 〈l, m〉 denotes all the relevant diagonal bonds on the lattice and |l, ↑; m, ↓〉 denotes two

holes with spin up at site l and spin down at site m. Since all the singlets are fixed on the

diagonal bonds, this state is also called a valence bond solid or crystal. The exactness of the

singlet dimer state as the ground state was first demonstrated by Shastry and Sutherland in

Ref. (62) and the proof is briefly outlined below.

Firstly the Hamiltonian can be regrouped into the following form

Ĥ =
∑

〈l,m〉

(∑
a

Ĥa
lm

)
, (1.25)

with

Ĥa
lm =

J ′

2
Ŝl · Ŝm + J Ŝa ·

(
Ŝl + Ŝm

)
, (1.26)

where sites a, l and m define an isosceles right triangle on the lattice with dimer bond 〈l, m〉
as the hypotenuse and site a as the vertex. This is illustrated in Fig. 1.15. By considering

that

Ŝa ·
(
Ŝl + Ŝm

)
=

1
2

[
Ŝ+

a

(
Ŝl + Ŝm

)−
+ Ŝ−a

(
Ŝl + Ŝm

)+
]

+ Ŝz
a

(
Ŝl + Ŝm

)z
, (1.27)
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Figure 1.15 A triangle is specifically labeled to illustrate how the whole
Hamiltonian Ĥ can be regrouped into a summation of unit
Hamiltonians Ĥa

lm defined on each triangle.

with

Ŝ+ = Ŝx + iŜy (1.28)

Ŝ− = Ŝx − iŜy, (1.29)

where Ŝx, Ŝy and Ŝz are the x, y and z components of the spin operator Ŝ defined in Eq. 1.19,

and noticing that |Ψ〉 is a direct product of all singlets along diagonal bonds, I can easily see

that

∀a, Ŝa ·
(
Ŝl + Ŝm

)
|Ψ〉 = 0 |Ψ〉 . (1.30)

Thus |Ψ〉 is an eigenvector of Ĥ with an eigenvalue of

E|Ψ〉 = −3
8
NJ ′.

where N denotes total number of sites on the lattice. By Ritz variational principle, the actual

ground state energy Eg cannot exceed E|Ψ〉, or Eg ≤ E|Ψ〉.

On the other hand, there is the Anderson decomposition strategy (63) stating that the sum

of the minimum energy of individual systems gives a lower bound of the total energy of the

whole system. The proof is simple. Suppose that the whole Hamiltonian can be fully divided

into different pieces without anything left unattended

Ĥ =
∑

i

Ĥi (1.31)
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and there exist |ψi〉 as the ground state for each Ĥi such that ∀ |ϕ〉 , 〈ϕ| Ĥi |ϕ〉 ≥ 〈ψi| Ĥi |ψi〉 ,
then the ground state energy for Ĥ would satisfy

〈ψH | Ĥ |ψH〉 =
∑

i

〈ψH | Ĥi |ψH〉

≥
∑

i

〈ψi| Ĥi |ψi〉 (1.32)

where |ψH〉 is the ground state for Ĥ.

Applying it onto the SS lattice, one can get

Ĥ =
∑

〈l,m〉

∑
a

[
J ′

2
Ŝl · Ŝm + JŜa ·

(
Ŝl + Ŝm

)]
(1.33)

≥
∑

〈l,m〉

∑
a

[(
J ′

2
− J

) (
Ŝl + Ŝm

)2
− 3

8
J ′

]
. (1.34)

If J ′/J ≥ 2,

Eg ≥ −3N

8
J ′, (1.35)

otherwise

Eg ≥ 2N

(
J ′

2
− J

)
− 3N

8
J ′. (1.36)

Thus the upper and lower bounds for Eg coincide for J ′ ≥ 2J which means the singlet dimer

state happens to be the exact ground state of the lattice.

In the other limit J ′/J → 0, the SS lattice reduces to the square lattice whose ground

state is known to have antiferromagnetic long range order (15)(64). Considering both these

limits, there is at least one phase transition at some critical J ′/J |c . This has been intensively

studied using mean field or exact diagonalization methods and some intermediate phases have

been introduced as the bridge between the singlet dimer state and the antiferromagnetic state

(56)(65)(66). The accurate value for J ′/J |c and the nature of the intermediate states are still

open questions to be addressed. The consensus for J ′/J |c is around 1.428 (56). Remember,

the ratio to SrCu2 (BO3)2 is
J ′

J

∣∣∣∣
SrCu2(BO3)2

= 1. 5741 (1.37)



30

which is on the safe side of the singlet dimer ground state yet is very close to the critical ratio.

Thus this ground state is expected to be fragile and strong quantum fluctuation is expected to

play an important role upon doping or with changing frustration.

The sign of the diagonal hopping There are different ways to dope this material.

Cu2+ ions can be directly replaced by ions without spins (in-plane doping), then the possible

symmetry operations of the spin lattice would be reduced or even eliminated. What is of

interest in this work is to replace Sr2+ with ions of valence other than 2 (out-of-plane doping).

Then extra charge carriers can be introduced into the spin lattice while the lattice itself is

still unaffected. By doping this way, the Hamiltonian to describe the doped system would be

the t− J Hamiltonian with possible three-site hopping term (not explicitly written out in the

following expression)

Ĥ =
∑

〈i,j〉,σ
tc̃†i,σ c̃j,σ+

∑

〈l,m〉,σ
t′c̃†l,σ c̃m,σ+

∑

〈i,j〉
J

(
Ŝi · Ŝj − ninj

4

)
+

∑

〈l,m〉
J ′

(
Ŝl · Ŝm − nlnm

4

)
(1.38)

where

J =
4t2

U
and J ′ =

4t′2

U
,

c̃i,σ = ci,σ (1− ni,σ̄) , t and t′ are hopping amplitudes on lateral and specific diagonal bonds on

the lattice while U is the hidden onsite repulsion to give rise to the superexchange interaction

J and J ′. This is a natural extension from the Heisenberg Hamiltonian describing pretty well

the undoped system.

There has, however, not been a generally acknowledged successful doping of this material

in experiments. Thus, sofar, the values and signs of t and t′ are unknown. To determine the

magnitude and sign of these two hoppings, a band structure calculation was carried out by

using a local density approximation(LDA) and it was then fitted to a tight binding model

Ĥk =
∑

〈i,j〉,σ
tc†i,σcj,σ +

∑

〈l,m〉
t′c†l,σcm,σ (1.39)

where 〈i, j〉 and 〈l, m〉 denote nearest and next nearest neighbor hoppings respectively on the

SS lattice. The four branches of the energy dispersion at three symmetry points in momentum



31

space are

εΓ =
(
ε0 − 4t + t′, ε0 − t′, ε0 − t′, ε0 + 4t + t′

)

εX = ε0 ±
√

4t2 + t′2 (each sign doubly degenerate)

εM = ε0 ± t′ (each sign doubly degenerate)

where Γ = (0, 0) , X = (π, 0) , M = (π, π) . We assume a unit lattice constant. The LDA

calculation at the Γ-point gives

εΓ = (−0.15099eV, 0.0013eV, 0.0013eV, 0.5913eV) .

This yields

t = 0.0927eV,

t′ = 0.10358eV,

ε0 = 0.11657eV,

or

t = 1043K and t′ = 1205K.

The ratio t′/t ' 1.15 is slightly smaller than
√

J ′/J determined experimentally. Yet only

sign of t and t′ is stressed in this calculation since only this information is unambiguously

determined. In my work, I adapt the convention used in (61) and assume J = 0.3t, which

includes band renormalization effect not included in the LDA calculation. The overall fit of

the first principle calculation together with the tight binding model fit is shown in Fig. 1.16.

From the fit, it is clear that the noninteracting picture for the undoped SrCu2 (BO3)2 predicts

a semi-metal considering that each unit cell contains 4 charge carriers. The fact that this

material is an insulator assumes the existence of strong e-e interaction which changes the

conducting nature of the material.

Current progress on doped SrCu2 (BO3)2 So far, some mean field type analysis have

been performed to investigate doping effects in this material. Different phases are proposed,
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Figure 1.16 The bandstructure of SrCu2(BO3)2 is obtained using density
functional theory and denoted with dashed curve in the plot.
A tight binding fit of the Shastry Sutherland lattice is super-
imposed with solid red curve which perfectly agrees with the Γ
point in the dispersion. Only in-plane dispersion and the fits
closest to the Fermi level are shown.
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including superconducting phases (61)(67), flux phases (67) etc. As I will demonstrate, these

results are due to the mean field nature of the method and their validity is questionable.

Nevertheless, they give hints on the possible phases the material should have and how well

the mean field approach would be potentially applicable to the current problem. On the other

hand, exact diagonalization calculation predicts an insulating phase for the electron doping on

a 32-site lattice by considering an out-of-plane doping (68). This calculation predicted isolated

holes on the lattice and similar magnetic correlation pattern as on the parent compound. A

very special variational study aimed at in-plane doping was carried out in (69). They looked

at the in-plane magnetic correlation by considering how all the other spins respond to the

impurity site. Experimentally, this material is very hard to be doped. So far there is only one

publication available on Sr2+ replacement (70). The major conclusion is that the material

remains insulating for either hole or electron doping. However, recent advances in the sample

preparation of transition metal oxides give us every reason to be optimistic that the obstacles

can be overcome in the doping of this material (71).

1.8 Main objectives and results

This paragraph outlines the main physical aspects, major objectives and the results rel-

evant to my research. The RVB picture is very promising in describing the unconventional

superconductivity (1) and it is most appropriate to describe a transition originated from a spin

liquid state because it itself is such a state. Following the RVB picture (14), I used specific

many-body trial wavefunctions to look into the zero temperature ground state properties of

two different materials, κ− (ET)2 X and SrCu2 (BO3)2 , both of which are believed to reflect

different aspects of the same strongly correlated RVB physics. The generic form of the RVB

wavefunction has been introduced in Eq. 1.6, but is rewritten here for emphasis because this

is the central physical idea exploited in this thesis,

|ΨRV B〉 = P̂ |ΦBCS〉 . (1.40)

Here P̂ denotes some real space projection reflecting specific strongly correlated physics under

consideration and |ΦBCS〉 is some generic BCS wavefunction.
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The method to optimize the wavefunction is to use the variational Monte Carlo (VMC)

simulation. The quantity to be minimized is the energy expectation evaluated as

Ē =
〈ΨRV B| Ĥ |ΨRV B〉
〈ΨRV B|ΨRV B〉 . (1.41)

where Ĥ is the Hamiltonian to describe the specific system. The energy depends on many

variational parameters, including parameters occurring in P̂ , to be explained in more details in

the next chapter, and in |ΨRV B〉 such as effective hoppings between sites i and j, t̃ij , variational

chemical potential at site i, µ̃i, and pairing gaps between sites i and j, ∆̃ij . The complexity

to a specific problem depends on the number of variational parameters and the size of the

lattice. Likewise, other physical observables characterized by operator Ô can also be evaluated

similarly as Ē.

The application of the RVB approach to the organic superconductor and to the Shastry-

Sutherland model is the major innovative aspect in this thesis. In order to explore the phase

space most efficiently during the VMC simulation, a simple algorithm is developed to update

steps for the variational parameters. In order to treat the complex unit cell structure in the

SS model, a generalized multiband BCS wavefunction is derived. These two are the major

technical developments involved in the research.

As compared to the standard BCS wavefunction, the multiband BCS wavefunction is able

to describe inter- and intra-band pairing. Detailed derivations would be skipped here but

only a brief introduction to the relevant notations is offered. The analytic expression for the

multiband BCS wavefunction is written as

∣∣ΦM
BCS

〉
=

∏

n,n′,k

(
1 + hn,n′ (k) c†n,k;↑c

†
n′,−k;↓

)
|0〉 (1.42)

with

hn,n′ (k) =
(
û−1 · v̂)

n,n′ . (1.43)

where û and v̂ build up part of the unitary matrix

U =




û† ŵ

−v̂† κ̂


 (1.44)
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to diagonalize the mean field decoupled Hamiltonian in the singlet pairing channel.

As will be demonstrated in details in this thesis, the RVB mechanism reveals significantly

new and rich information for the ground state properties of these two systems.

For the organic superconductor, κ− (ET)2 Cu2 (CN)3 , I find:

• D-wave superconductivity exists in the transitional region sandwiched between a metallic

and a spin liquid state as onsite repulsion U increase (or, equivalently pressure decreases).

• D-wave pairing symmetry persists in the spin liquid region and gives rise to gapless

excitations in momentum space. This is consistent with experimental observations in

Fig. 1.8 and Ref. (45).

• In the spin liquid state, a strong spacial correlation exists between doubly occupied sites

and empty sites.

• A dramatic renormalization in energy dispersion exists in the spin-liquid insulating state,

which leads to distinct spacial dependence of magnetic correlation from the metallic state.

For the Shastry-Sutherland lattice which is relevant to SrCu2 (BO3)2 , I find:

• This trial wavefunction is able to describe the exact ground state of the undoped system.

• The sign of the hoppings for SrCu2 (BO3)2 is determined by fitting the tight binding

model to a first principle band structure calculation.

• The electron doping on SrCu2 (BO3)2 is equivalent to the hole doping on a SrCu2 (BO3)2-

like system whose diagonal hopping is opposite in sign.

• Nearly homogeneous charge distribution is found for both doping cases. But the varia-

tional chemical potentials are noticeably different within a unit cell.

• Mean field calculation gives inconsistent results with the current variational study for

both doping cases.



36

• With respect to the hole doped system,

1. a probable phase transition exists around 2.5% doping from an insulating state (or

weakly conducting state) to a plaquette d-wave pairing state.

2. spontaneous symmetry breaking is revealed for both effective hoppings and electron

pairings.

3. enhanced inhomogeneous superconductivity is found in the plaquette d-wave pair-

ing state as compared to the superconductivity with homogeneous d-wave pairing

strength.

4. the magnetic correlation is dramatically different for the plaquette d-wave pairing

phase as compared to the parent compound.

• With respect to the electron doped system,

1. multiple local minima close in energy are found which complicate the analysis. Yet

these minima give approximately the same physical observables.

2. effective diagonal hoppings are strongly enhanced with respect to the bare hopping

parameters.

3. the magnetic correlation is very much like that of the parent compound, implying

similar localized nature to the charge carriers as in the parent compound.

4. off diagonal long range order (ODLRO) is calculated to vanish within an error limit

of 10−4 although the pairing gaps can be finite.

5. the low frequency Drude weight is nonzero and thus shows a strange metallic state

with strong magnetic correlation.
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CHAPTER 2. Wavefunction and technical details

2.1 Construction of the RVB wavefunction

The RVB wavefunction has the generic form

|ΨRV B〉 = P̂ |Φ0〉 (2.1)

where P̂ is a projection operator to project out specific electronic configurations with different

weights; |Φ0〉 is some many-body wavefunction defining, with differring prior weights, possi-

ble electronic configurations available for the RVB wavefunction. |Φ0〉 has been named the

underlying wavefunction.

To help interpret it better, an example is provided below, to illustrate the relevant physics

of and concerns on the projected wavefunction. A usual RVB wavefunction chosen to describe

the ground state of a single band t− J Hamiltonian is written as

∣∣∣Ψt−J
RV B

〉
∝

∏

i

(1− ni,↑ni,↓) |ΦBCS〉 (2.2)

with the normalization factor omitted. This is first introduced by P.W. Anderson in 1987

for the purpose of understanding unconventional superconductivity (14). Here the index i

runs through each lattice site. ni,σ for σ =↑, ↓ is the number operator for electrons of a

specific spin on the ith lattice site. Thus D̂i = ni,↑ni,↓ carries values 1 to denote that a

specific site is occupied by two electrons, as is called a doubly occupied site or a doublon, or 0

otherwise. |ΦBCS〉 is the BCS wavefunction which explains the conventional superconductivity.

By mapping Eq. 2.2 to Eq. 2.1, it is easy to notice that in this example

P̂ =
∏

i

(1− ni,↑ni,↓) , (2.3)
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called Gutzwiller Projection (72), and

|Φ0〉 = |ΦBCS〉 . (2.4)

In different problems, P̂ and |Φ0〉 can be of other forms in order to capture specific features

involved there.

Why would one choose Eq. 2.2 to be the candidate for the unconventional superconductiv-

ity? This can be answered from several perspectives. First, it is required that each site should

be either empty or singly occupied for a model system to be describable with a t − J Hamil-

tonian. This is reinforced exactly by the Gutzwiller projection in Eq. 2.3 which suppresses

completely electronic configurations with doubly occupied sites anywhere on the lattice, as can

be seen with the term 1− ni,↑ni,↓ involved in P̂ . To express it more succinctly and physically

more meaningfully, P̂ can be rewritten equivalently into another form

P̂ = g
∑

i D̂i (2.5)

with g = 0+ for the Gutzwiller projection. The exponential,
∑

i D̂i, counts total number of

doubly occupied sites on a given electronic configuration. Only for
∑

i D̂i = 0 can a configu-

ration survive the projection. Written as Eq. 2.5, P̂ can be easily generalized to account for

different strength of onsite repulsions by treating g as a variational parameter between 0 and

1. In the limit of g = 1, the projection is now trivially a constant and the RVB wavefunction

reduces back to the BCS wavefunction, which describes a system with very weak e-e attraction.

Second, it is expected that the trial wavefunction is able to describe phenomena involving

singlet pairings and superconductivity. The straightforward way to incorporate these features

into a wavefunction is to use a prototype which already has these features in it. A natural

candidate is of course the BCS wavefunction. By replacing the homogeneous pairing gaps with

momentum dependent ones, the BCS wavefunction can incorporate into the trial wavefunction

the unconventional pairing between two electrons. These pre-existing pairings presumably

survive the projection when forming the RVB wavefunction. How strong the pairings would

be is determined by the variational approach to minimize the expected energy. However,

superconductivity might not be as lucky. Actually whether or not superconductivity exists,
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together with other physical observables, checks how well the RVB wavefunction describes the

unconventional superconductivity.

On the other hand, parameters involved in the BCS wavefunction might lose their clear

physical interpretation due to the projection operation acting on it in order to incorporate

into the problem the necessary effects out of the strong e-e interaction. The usual parameters

entering the BCS wavefunction are

ε (k) , µ,∆ (k)

and they are the bare electron dispersion, the chemical potential for the system, and the pairing

strength between two electrons and at the same time the superconducting order parameter,

respectively. In the RVB wavefunction, all of them are just variational parameters in the first

place. The projection totally changes the interpretation on µ. It is now just a variational

parameter but might have similar trend as the actual chemical potential. The projection also

affects ∆ (k) . Its place as an order parameter for superconductivity is removed, but its role

as a pairing gap between two electrons is still largely preserved (17). The effect on ε (k) is

more subtle although it clearly doesn’t represent the actual excitation spectrum of electrons

any more. It, however, still acts as an effective dispersion for some quasiparticles, which means

the parameters involved in the dispersion can be totally different from what is for bare ones

(44).

The effect of the projection on the BCS wavefunction can be illustrated in Fig. 2.1. The

real space representation of the BCS wavefunction is illustrated in the panel (a). When the

Gutzwiller projection is applied onto the BCS wavefunction, all the electronic configurations

with doubly occupied sites are removed from the final RVB wavefunction, as shown in the

panel (b).

2.2 RVB wavefunction for κ− (ET)2 Cu2 (CN)3 and SrCu2 (BO3)2

As has been elaborated above, the unique physical features, either contained in a system or

of interest to a researcher, should be taken into account when an appropriate RVB wavefunction

is chosen to describe them. This is reflected in the choice of the projection operator and the
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Figure 2.1 Graphic view of the BCS wavefunction in panel (a) and the
RVB wavefunction after the real space projection is applied in
panel (b), on a 4 by 4 lattice with 4 spin up and down electrons
on it. Each bond is denoted by a thick dashed line segment,
representing an electron pair of opposite spins. Each lattice de-
notes a specific electronic configuration with the corresponding
weights omitted from the illustration. The summation signs
imply a linear superposition of all these configurations.

underlying wavefunction for the projection to act on.

For κ − (ET)2 Cu2 (CN)3 , the experimental fact of a Mott transition caused by pressure

strongly suggests that doubly occupied sites are allowed on the lattice. This means that such

a term

P̂I = g
∑

i D̂i (2.6)

should exist in the overall projection operator, but now g acts as a variational parameter and

takes value between 0 and 1. At the same time, the use of the Hubbard Hamiltonian with

large U/t ratio to describe the system implies that the virtual exchange process, responsible

for the t−J physics and illustrated in Fig. 2.2, should play an important role here in helping

electrons to move around. Ref. (73) suggests that the essence of the process is tied to the

intermediate doublon-holon pair, shown in the middle of Fig. 2.2, where an empty site (holon)

exists just nearby a doubly occupied site (doublon). An operator was introduced to track
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Figure 2.2 Illustration of the virtual exchange process between two elec-
trons of opposite spins on the nearby sites. Each arrow denotes
an electron of specific spin. The initial occupation is shown
to the left of the figure. As the spin up electron hops to the
right site, an intermediate configuration is produced having an
empty and a doubly occupied site next to each other. Then,
very rapidly, the spin down electron hops back to the left site
and the final configuration is shown on the right of the figure.
Through this process, the system develops an exchange energy
of J = 2t2/U.

whether this is the case for a given site,

Θ̂i = ni↑ni↓
∏

δ

(ni+δ − ni+δ,↑ni+δ,↓) (2.7)

where δ denotes all the nearest or next-nearest neighboring sites. This operator takes value

1 only when the given site is doubly occupied without any empty neighbors around it. The

corresponding projection operation is then defined as

P̂II = h
∑

i Θ̂i (2.8)

where h is called the Kaplan parameter in this thesis and assumes value between 0 and 1.

Similar as the Gutzwiller parameter, the Kaplan parameter is also determined variationally

and its magnitude shows how strongly a doublon and a holon are bound to each other, or

equivalently, how significantly the t − J physics enters the problem. It is also possible that

the binding of a doublon and a holon differs along different hopping directions, which is not

considered in this thesis. Then more Kaplan parameters should be introduced in that case.

Combining both these considerations, the overall projection operator would be

P̂ = P̂I P̂II

= g
∑

i D̂ih
∑

i Θ̂i . (2.9)
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The choice of the underlying wavefunction is based on the knowledge of what a ground state

might be on an anisotropic triangular lattice. From Ref. (74) it is known that the Hubbard

model might be in a spin liquid insulating state without long-range magnetic order for t′/t =

0.7 and U/t . 10 − 12t. By considering that it readily describes a spin liquid state and

a superconducting state, and noticing that the abstract lattice for organic superconductors

has a simple unit cell structure, the usual single band BCS wavefunction is chosen to be the

underlying wavefunction.

For SrCu2 (BO3)2 , the choice of the t−J Hamiltonian for the system has decided that the

full Gutzwiller projection is appropriate for the variational RVB wavefunction. However, the

underlying wavefunction cannot be the single band BCS wavefunction any more because of the

symmetry of the SS lattice. As shown in Fig. 1.14, each unit cell contains 4 atoms and thus

the relevant energy bands should be four. If no restriction is superimposed, all the possible

pairings among electrons should be equally considered. These pairings can be within the same

energy band, or between different energy bands. This implies that the wavefunctional form

proposed in Ref. (9) is not appropriate any more because all the pairings there are just within

the same energy band. Thus, this is why a multiband pairing BCS wavefunction is worked out

in this thesis. It is still a BCS type because the concept of two electrons to form a Cooper pair

is used.

2.3 Multiband pairing BCS wavefunction

Multiband pairing effects have been investigated in the past (75), yet explicit expressions

for the pairing amplitude and the BCS wavefunction have, to the best of my knowledge, not

been formulated. In this thesis, they are derived and the derivation is shown in great detail

in Appendix A and B. A brief account on the derivation is given below, followed by the real

space projection of this wavefunction.

Derivation of the pairing amplitude between two electrons Let us consider a

problem on a lattice with N unit cells and m atoms within a unit cell. The following shortcut
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notation is used for a given site

i ≡ (Ri, ri) ,

where Ri, ri denote the coordinate of a unit cell and the atomic index within that unit cell

respectively. The t−J Hamiltonian, without the three-site hopping term, can then be written

as

Ĥt−J = −
∑

〈i,j〉,σ
ti,j c̃

†
i,σ c̃j,σ +

∑

〈i,j〉
Jij

(
Ŝi · Ŝj − ninj

4

)
(2.10)

where c̃i,σ = ci,σ (1− ni,σ̄) , 〈i, j〉 denotes all possible hoppings on the lattice while the exchange

interaction Jij and the spin operator Ŝ follow the definitions in Eq. 1.18 and 1.19.

The BCS wavefunction can be equally understood as the ground state of a mean field

fermionic Hamiltonian decomposed in the pairing channel. To apply this idea, the interaction

part, which is the second part in Eq. 2.10, is re-expressed as

Ŝi · Ŝj − ninj

4
= −1

2
B̃†i,jB̃i,j (2.11)

with

B̃i,j = c̃i;↓c̃j;↑ − c̃i;↑c̃j;↓ (2.12)

the annihilation operator for a spin singlet between site i and j. From the special arrangement

of B on the right side of Eq. 2.11, it is not surprising why the t− J Hamiltonian can be used

to obtain the BCS type wavefunction. The crucial component, spin singlet operator, is readily

contained in this interaction.

By introducing the mean field pairing

∆ij =
〈
B̃i,j

〉
, (2.13)

which is now just a complex parameter, ignoring constant terms in the energy and dropping

the restriction of single occupation on each site, the t − J Hamiltonian is transformed into a

solvable mean field Hamiltonian

Ĥmf = −
∑

〈i,j〉,σ
tijc

†
i,σcj,σ − 1

2

∑

〈i,j〉
Jij

(
∆∗

ijBi,j + B†i,j∆ij

)
. (2.14)
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By applying the Fourier transformation onto the fermionic operators

cr,k;σ =
1√
N

∑

R

e−ik·Rcr,R;σ, (2.15)

Eq. 2.14 can be written equivalently in momentum space as

Ĥmf = −
∑

k

( (
ψT
↑ (k)

)†
ψ↓ (−k)

)



T (k) D (k)

D† (k) −T (k)







ψT
↑ (k)

ψ†↓ (−k)


 (2.16)

where T † (k) = T (k) and ψσ (k) =
(

c1,k;σ c2,k;σ ... cm,k;σ

)
.

Let us suppose that there exists a 2m× 2m unitary matrix

U† =




û† ŵ

−v̂† κ̂


 , (2.17)

with û, v̂, ŵ and κ̂ block matrices of size m×m and satisfying v̂ · κ̂ = û · ŵ, to diagonalize the

mean field matrix

Ĥ =




T (k) D (k)

D† (k) −T (k)


 (2.18)

by U†ĤU. This would give rise to 2m eigenvalues which come out in positive and negative

pairs (61). Without losing generality, it can be assumed that the first four eigenvalues are

positive, then the annihilation operator for quasiparticles of Ĥmf can be written as

zi (k) =
m∑

j=1

[
ûijcj,k;↑ − v̂ijc

†
j,−k;↓

]
. (2.19)

Meanwhile, the following ersatz is introduced for the ground state wavefunction of Ĥmf

∣∣ΦM
BCS

〉 ∝ e
∑

n1,n2,k hn1,n2(k)c†n1,k;↑c
†
n2,−k;↓ |0〉 . (2.20)

Here hn1,n2 (k) denotes the pairing amplitude for two electrons with opposite spins located at

(k, n1) and (−k, n2) . n1, n2 can either be band indices or site indices. To let Eq. 2.20 be the

ground state wavefunction, it is required that

zi (k) |ΦBCS〉 = 0 (2.21)
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for i = 1, 2, ...m. Finally the analytic form for the pairing amplitudes are determined to be

% (k) = û−1 · v̂ (2.22)

where [% (k)]n1,n2
= hn1,n2 (k) . As a comment, from the above expression % (k) is invariant

with respect to different phase conventions chosen to define zi.

Real space projection of the BCS wavefunction It is necessary to project
∣∣ΦM

BCS

〉

into the real space representation. This projection is carried out in two steps. The first step

is to project out a fixed number of particles out of the BCS wavefunction. This is done by

noticing that Eq. 2.20 can be rewritten as

∣∣ΦM
BCS

〉 ∝ e
∑

n1,n2,k hn1,n2 (k)c†n1,k;↑c
†
n2,−k;↓ |0〉 (2.23)

=
∞∑

N=0

1
N !


 ∑

n1,n2,k

hn1,n2 (k) c†n1,k;↑c
†
n2,−k;↓




N

|0〉 (2.24)

and thus 2N particles in the system is just

PN |ΦBCS〉 ∝

 ∑

n1,n2,k

hn1,n2 (k) c†n1,k;↑c
†
n2,−k;↓




N

|0〉 . (2.25)

The second step is to project the above expression into specific real space occupation with

equal number of spin up and down electrons. Generically any electronic configurations in real

space can be denoted as

|~r↑, ~r↓〉 = |r1;↑, r2;↑, ...rN ;↑, rN+1;↓, rN+2;↓, ...r2N ;↓〉 . (2.26)

The inner product of the BCS wavefunction with |~r↑, ~r↓〉 , which automatically projects out

2N particles of equal number of spin up and down, can be written as

〈~r↑, ~r↓|ΦBCS〉 ∝ 〈0|
(∏

i

cri;↑,↑cri;↓,↓

) ∏

n1,n2,k

(
1 + hn1,n2 (k) c†n1,k;↑c

†
n2,−k;↓

)
|0〉 , (2.27)

by noticing that

e
hn1,n2 (k)c†n1,k;↑c

†
n2,−k;↓ = 1 + hn1,n2 (k) c†n1,k;↑c

†
n2,−k;↓ (2.28)
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due to the fermionic nature of c†. The later manipulation and simplification is rather tedious

and are included in Appendix B. The final conclusion is that the 2N particle projection can

be expressed in a determinant form

〈~r↑, ~r↓|ΦBCS〉 ∝

∣∣∣∣∣∣∣∣∣∣∣∣∣

φv1
vN+1

(R1 −RN+1) φv1
vN+2

(R1 −RN+2)

φv2
vN+1

(R2 −RN+1) φv2
vN+2

(R2 −RN+2)

...

φvN
v2N

(RN −R2N )

∣∣∣∣∣∣∣∣∣∣∣∣∣

(2.29)

where φvi
vj

(Ri −Rj) is the pairing wavefunction between two electrons with opposite spins at

site i and j, and is defined as

φvi
vj

(Ri −Rj) =
∑

k

hvi,vj (k) e−ik·(Ri−Rj). (2.30)

2.4 Reformulation of physical expectation into statistical language

The physical quantities observed in the trial wavefunction, |ΨRV B〉 , are defined as an

expectation
〈
Ô

〉
=
〈ΨRV B| Ô |ΨRV B〉
〈ΨRV B|ΨRV B〉 (2.31)

where Ô is the corresponding physical operator. The denominator is introduced to normalize

the trial wavefunction. Here is a list of the relevant physical observables involved in this thesis

work. The corresponding physical operators are also provided, together with a brief discussion

if necessary.

• Energy expectation, E, with

Ô = Ĥ. (2.32)

• Charge density, ni, with

Ô =
∑

σ

c†i,σci,σ. (2.33)

• Magnetic correlation, χij , between two lattice sites, i and j. The corresponding operator

is defined as

Ôij = S+
i S−j (2.34)
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with S+ and S− defined in Eq. 1.28 and 1.29. By plugging in Eq. 1.19, the corresponding

fermionic representation for these two spin operators is checked to be

S+ = c†↑c↓ (2.35)

S− = c†↓c↑. (2.36)

To the spin liquid state considered in this thesis, there is a special property for χij due

to SU (2) rotational invariance in the spin space, that is,
〈
S+

i S−j
〉

= 2
〈
Sz

i Sz
j

〉
. (2.37)

• Off diagonal long range order (ODLRO), ψs, defined as

|ψs|2 = lim
|Ri−Rj |→∞

〈
B†i,i+δBj,j+γ

〉
(2.38)

where Bi,i+δ is defined in Eq. 2.12 and δ, γ are some constant vectors along which singlet

pairs are constructed. It is actually a correlation function for two spin singlets separated

faraway in distance. It is understood that a nonvanishing ODLRO implies the Meisner

effect and the flux quantization (76)(77), and is thus sufficient to indicate the onset of

superconductivity.

• Low frequency Drude weight, Dlow, with

Ô =
∑

r,r′;σ

trr′
[
hr,σ̄c†r,σcr′,σhr′σ̄

] (
rx − r′x

)2

+
∑

r,r′,R,σ,σ′

tr,RtR,r′

U

[
hr,σ̄c†r,σcR,σnR,σ̄c†R,σ′cr′,σ′hr′,σ̄′

] (
rx − r′x

)2
. (2.39)

where hr,σ̄, nR,σ̄ follow notations in Eq. 1.14 and rx is the x component of a lattice site

vector r (17). This expression is specifically related to the t − J Hamiltonian with the

three-site hopping term included in Eq. 1.14. The derivation is included in Ref. (17)

and is omitted here.

• Total charge fluctuation, δnij , on site i and j. It cannot be expressed by a single operator

but is related to charge density operators. It is defined as

δnij =

√√√√
〈(∑

σ

(
c+
i,σci,σ + c+

j,σcj,σ

))2〉
−

〈∑
σ

(
c+
i,σci,σ + c+

j,σcj,σ

)〉2

(2.40)
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and gives useful information on superconducting phase fluctuation (78).

The expectation for a physical quantity defined in Eq. 2.31 looks most simple, however,

its evaluation is definitely nontrivial. The difficulty lies in the fact that the inner products

involved in the expectation cannot be evaluated directly. The whole expression has to be

rewritten as a summation over local quantities under a specific distribution function. Monte

Carlo (MC) simulation can then be used to finish carrying out the rest of the evaluation. This

is done as follows:

The complete closure relationship in the Fock space with N spin-up and N spin-down

electrons on a lattice is written as

I =
∑

{r1;↑,r2;↑,...rN ;↑}
{r1;↓,r2;↓,...rN ;↓}

|r1;↑, r2;↑, ...rN ;↑, r1;↓, r2;↓, ...rN ;↓〉 〈r1;↑, r2;↑, ...rN ;↑, r1;↓, r2;↓, ...rN ;↓| (2.41)

where ri;↑(↓) denotes the lattice site on which the ith spin-up(down) electron sits, or in short

notation

I =
∑

{~r↑,~r↓}
|~r↑, ~r↓〉 〈~r↑, ~r↓| (2.42)

with ~rσ ≡ r1;σ, r2;σ, ...rN ;σ. By inserting it into Eq. 2.31, I obtain

〈
Ô

〉
=

∑

{~r↑,~r↓}
ρ (~r↑, ~r↓)




∑

{~r′↑,~r′↓}
〈~r↑, ~r↓| Ô

∣∣~r′↑, ~r′↓
〉

〈
~r′↑, ~r

′
↓|ΨRV B

〉

〈~r↑, ~r↓|ΨRV B〉


 (2.43)

with

ρ (~r↑, ~r↓) =
|〈~r↑, ~r↓|ΨRV B〉|2

∑
{~r∗↑ ,~r∗↓}

∣∣∣
〈
~r∗↑, ~r

∗
↓|ΨRV B

〉∣∣∣
2 . (2.44)

This can now be interpreted as a statistical mechanics problem. The expectation value is the

mean of the expression bracketed in Eq. 2.43 and the corresponding distribution function is

ρ (~r↑, ~r↓) in a 2N dimensional discrete finite phase space. After reformulating Eq. 2.31 into

Eq. 2.43, it is a standard practice to use the MC simulation to evaluate the mean. The method

used in generating the Markov chain is with the Metropolis algorithm, to be discussed in the

next paragraph.
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2.5 Twice application of the Metropolis algorithm

A very efficient method to generate an intended distribution in a multi-dimensional space

is to use the Markov Chain Monte Carlo (MCMC) method (79). A Markov chain, xi, is a

random array,

xi = (ri,1, ri,2, ...ri,k)

where k is chosen to be the dimensionality of the phase space where the distribution function

is to be generated. By varying each coordinate, ri,j , of the array within its allowed range, xi

represents different points in the phase space. The Markov property should be satisfied for xi

and is expressed mathematically as

Pr (xn+1|xn, xn−1, ...x1) = Pr (xn+1|xn) (2.45)

where Pr (x|...) denotes the conditional probability of x given something else. In simple lan-

guage, the Markov property requires that a new element in the Markov chain should only

depend on its one-time-step-ahead neighboring element. A relevant example of a Markov

chain is given in Appendix C.

With several other enhanced conditions, the Markov chain is able to generate the expected

distribution in the long run independent of the starting element (79)(80). One way to satisfy

these conditions is to use the Metropolis algorithm, invented by Nicholas Metropolis in 1953

(81) and later improved by W.K. Hastings in 1970 (82). (More details on the Hastings-improved

Metropolis algorithm is given in Appendix D.) The idea is closely related to the principle of

detailed balance in statistical mechanics,

p (x1) W (x2|x1) = p (x2) W (x1|x2) (2.46)

where p (x) is the equilibrium distribution function and W (x2|x1) denotes the transitional

probability from state x1 to x2. The Metropolis algorithm makes use of this idea backwards.

It introduces a specifically chosen W (x2|x1) to fulfil the detailed balance mentioned above,

W (x2|x1) = min
(

p (x2)
p (x1)

, 1
)

. (2.47)
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and then p (x) is generated asymptotically as the expected stationary distribution. Practically,

there are subtleties in how to implement this algorithm most efficiently. These are related to

how to mix states most efficiently, or in other words, to make the Markov chain as mobile as

possible in the phase space.

One subtlety is the choice of a pseudo-random number generator to update the Markov

chain. There are different random number generators to use, for example, linear congruential

generator, multiple recursive congruential generator and Mersenne twister (83)(84); and there

are articles on how to check a random number generator (85). What I choose are ran3 from

Numerical Recipe (86) and mt19937 invented by Makoto Matsumoto and Takuji Nishimura in

1997 (87). Among all the random number generators, mt19937 is most intriguing to me. Any

random number sequence it generates has a very long periodicity in repeating itself, very well-

controlled equidistribution which means negligible serial correlation in its output sequence, and

what’s more, all of these properties can be rigorously proved (87). Another subtlety is how to

choose the step size for each coordinate of the random array, xi, as would also be addressed in

the following sections.

Metropolis algorithm in evaluating physical observable Because the physical ob-

servables can be reexpressed as the mean of a function over some distribution function as in

Eq. 2.43, the Metropolis algorithm can be used to help generating a sequence of samples which

satisfy the distribution function re-written here for easy reference

ρ (~r↑, ~r↓) =
|〈~r↑, ~r↓|ΨRV B〉|2

∑
{~r∗↑ ,~r∗↓}

∣∣∣
〈
~r∗↑, ~r

∗
↓|ΨRV B

〉∣∣∣
2 . (2.48)

Let us suppose a spin up electron is chosen to update to another location and thus |~r↑〉 →
∣∣∣~r′↑

〉
,

the transitional probability W|~r↑〉→|~r′↑〉 for this update is defined as

W|~r↑〉→|~r′↑〉 = min




∣∣∣∣∣∣

〈
~r′↑, ~r↓|ΨRV B

〉

〈~r↑, ~r↓|ΨRV B〉

∣∣∣∣∣∣

2

, 1


 (2.49)

by following Eq. 2.47. To attain the highest efficiency in generating the distribution function,

it is important to choose an appropriate scheme to update an electron to a new lattice site.
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The following scheme is used for this purpose

• For 10% of chances, directly hop the electron to a randomly chosen empty site.

• Otherwise, try the electron with direct or spin-flip move to a randomly chosen nearest

or next nearest neighbor site.

In implementing the update of, say, a spin up electron to a new lattice site, W|~r↑〉→|~r′↑〉 needs

to be calculated which involves the evaluation of the ratio
〈
~r′↑, ~r↓|ΨRV B

〉
/ 〈~r↑, ~r↓|ΨRV B〉 . Usu-

ally this is related to evaluating
〈
~r′↑, ~r↓|ΦBCS

〉
/ 〈~r↑, ~r↓|ΦBCS〉 because the projection operators

usually commute with the particle number operators. The general expression for 〈~r↑, ~r↓|ΦBCS〉
is a determinant, as given in Eq. 2.29 and shown in Appendix B. Generally the direct evalu-

ation of a determinant is time-consuming. However, the calculation of
〈
~r′↑, ~r↓|ΦBCS

〉
can be

very much simplified by noticing that it calculates a new determinant whose square matrix is

altered by only one column or one row as compared to 〈~r↑, ~r↓|ΦBCS〉 of one time step ahead

(88). By using the information from 〈~r↑, ~r↓|ΦBCS〉 and applying the matrix algebra, an itera-

tive expression for
〈
~r′↑, ~r↓|ΦBCS

〉
can be obtained which expediates the evaluation very much.

The necessary explanation is provided in Appendix E.

As the procedure continues, a sequence of {~r↑, ~r↓} is generated. And the local physical

observable,

O (ti) = O (~r↑ (ti) , ~r↓ (ti))

=
∑

{~r′↑,~r′↓}
〈~r↑ (ti) , ~r↓ (ti)| Ô

∣∣~r′↑, ~r′↓
〉

〈
~r′↑, ~r

′
↓|ΨRV B

〉

〈~r↑ (ti) , ~r↓ (ti) |ΨRV B〉 , (2.50)

called an observation, is calculated accordingly to each member of the sequence. These obser-

vations can be consecutively partitioned into bins with each of them containing thousands of

observations. Let N denote number of observations in each bin. Each bin is then averaged to

give rise to a sample,

Oi =
1
N

N∑

k=1

O (ti+k) (2.51)

which satisfies a Gaussian distribution centered at the expected mean of the physical observ-

able,
〈
Ô

〉
, according to the Central Limit Theorem (CLT). Finally,

〈
Ô

〉
is estimated by the
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average over all the samples,

Ō =
1
nb

nb∑

i=1

Oi (2.52)

and the standard error for Ō is calculated as

V arŌ =
1

nb (nb − 1)

(
nb∑

i=1

O2
i − n2

b

(
Ō

)2

)
∝ 1√

nbN
(2.53)

where nb denotes number of bins, or samples.

The RVB trial wavefunction depends on the specific boundary conditions chosen for the

problem. This usually causes a finite size effect and should not be important if the lattice size is

big enough. But for a finite lattice size, inappropriate boundary conditions might introduce fake

effects into the result. The boundary conditions involved in this thesis can either be periodic

or antiperiodic. The choice of which boundary conditions used is in principle not restricted,

as long as it is used consistently throughout the simulation and it doesn’t affect any energy

evaluation. However, the periodic boundary conditions applied to both directions are often

energetically favored and, meanwhile, it maintains the symmetry of the variational parameters

on both axes. On the other hand, antiperiodic boundary conditions might introduce additional

complexity in analyzing the simulation results. All these issues are summarized in Appendix

F.

Metropolis algorithm in global minimum search As a variational approach, the

parameters introduced in the RVB wavefunction have to be optimized to give lowest expected

energy, E. To help with this, simulated annealing algorithm is used by defining an artificial

distribution function as

p (~u) = Ce
−E(~u)

kT (2.54)

where ~u = (u1, u2, ..., um) is the set containing all the variational parameters, C is some

normalization constant and kT is called the virtual temperature (89). kT is solely an auxiliary

parameter introduced to help locate the functional minimum. The algorithm mimics the

annealing process by starting with a very high temperature and reducing it very slowly. For

a fixed temperature, lower energy corresponds to higher probability density. With a gradually
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reducing temperature, more weights would be accumulated around the global energy minimum

and parameters are thus most likely to fall within that region of the phase space. The rationale

for the Metropolis algorithm to be applicable in looking for the energy minimum is due to

the fact that no information would be missing if the complete distribution can be accurately

generated. The use of the simulated annealing algorithm is to focus the movement of the

Markov chain around lower energy region to improve efficiency.

To carry out the Metropolis algorithm on the distribution function defined in Eq. 2.54, the

relevant transitional probability W~u→~u′ is defined as

W~u→~u′ = min
(

e
−E(~u′)−E(~u)

kT , 1
)

(2.55)

with ~u′ = {u′1, u′2, ..u′i...} an updated parameter set as compared to ~u. As is easy to see from

this expression, kT plays another role of defining a typical energy difference to be accessible in

a single update.

The step size is another parameter worth considering. It is legitimate to update any number

of variational parameters at the same time. But usually only one parameter is updated. So ~u′

can be written as

~u′ =
{
u′1, u

′
2, ..u

′
i...

}

= {u1, u2, ..ui + δui...}

= ~u + {0, 0, ..δui...} . (2.56)

If one chooses fixed steps for all the parameters, then

δui = εδi (2.57)

where ε ∈ [−1, 1] is a uniform random number and δi is a constant step for the ith dimension.

However, this is not the most efficient method available to generate a distribution by using

a fixed step for each dimension. This can be easily understood by noticing that the energy

landscape can be completely irregular and unpredictable in the whole phase space. Even at

the same location of the phase space, reduced kT intuitively requires a smaller step size to

give rise to smaller energy difference between two consecutive updates. To treat this problem,
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I developed a simple yet very powerful scheme to update steps continuously anywhere and

anytime in the phase space.

To begin with, acceptance ratio, κ, is introduced as

κ =
na

nt
(2.58)

where na is the number of accepted updates and nt is the number of total trial updates. The

idea is: the step size should be reduced when the actual acceptance ratio, κa, is less than the

pre-assumed one, κf ; or increased if otherwise. How much the step size should be adjusted is

suggested by a model calculation. The model assumes a quadratic dispersion,

E (x) = ax2, (2.59)

which is a valid assumption when the simulation is around a local minimum, and repeats the

update many times by sitting initially at x = 0. The theoretical acceptance ratio for a given

step size A with respect to the transitional probability defined in Eq. 2.55 is evaluated to be

κ =

∫ A∗
0 e−x2

dx

A∗
= g (A∗) (2.60)

where A∗ = A

√
a

kT
. Thus the new step size, Anew, should satisfy

Anew

A
=

g−1 (κf )
g−1 (κa)

(2.61)

in order to maintain a fixed acceptance ratio.

There are many practical considerations with respect to the above scheme and other is-

sues involved in the simulated annealing algorithm, in order to make it run stabler and more

efficiently. They are summarized in Appendix G.
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CHAPTER 3. Results for κ− (ET)2 Cu2 (CN)3

As a member of organic superconductors, κ − (ET)2 Cu2 (CN)3 shares many common

features of this class. For example, it has a half-filled energy band; it undergoes a phase

transition from a Mott insulating state to an unconventional superconducting state by tuning

pressure; it has strong e-e interaction and is described by a Hubbard Hamiltonian

Ĥ = −t
∑

〈i,j〉,σ

(
c†i,σcj,σ + h.c.

)
− t′

∑

〈k,l〉,σ

(
c†k,σcl,σ + h.c.

)
+ U

∑

i

ni,↑ni,↓ (3.1)

on an anisotropic triangular lattice shown in Fig. 1.11. The detailed explanation to the nota-

tions involved is given after Eq. 1.22. What make this material special is that the insulating

state is a spin liquid state caused by the strong geometric frustration. This is likely caused by

the fact that t′/t ≈ 1 for this material. The goal of the study is to see whether the strongly

correlated physics, which dominates the phase transition and the unconventional superconduc-

tivity, can be explained reasonably well by a RVB wavefunction where strong e-e interaction

is incorporated through projections proposed under physical consideration. The wavefunction

can be explicitly written down as

|ΨRV B〉 = g
∑

i D̂ih
∑

i Θ̂i
∣∣ΦS

BCS

〉
(3.2)

explained in detail in the last chapter. The single band BCS wavefunction is defined as

∣∣ΦS
BCS

〉 ∝ e−
∑

k φkc†k,↑c
†
−k,↓ |0〉 (3.3)

where

φk =
∆̃k

Ek + (ε̃k − µ̃)
(3.4)

with

Ek =
√

(ε̃k − µ̃)2 + ∆̃2
k. (3.5)
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Figure 3.1 Illustration of definition of the variational parameters, including
effective hoppings and pairings, on the square lattice. Red lines
(from the upper left corner to the lower right corner) correspond
to the additional effective diagonal hoppings not existing in the
bare dispersion.

The explicit functional forms for ε̃k and ∆̃k are

ε̃k = t̃x cos kx + t̃y cos ky + t̃x+y cos (kx + ky) + t̃x−y cos (kx − ky)

∆̃k = ∆̃x cos kx + ∆̃y cos ky + ∆̃x+y cos (kx + ky) + ∆̃x−y cos (kx − ky) .

The variational parameters for the simulation are the different effective hoppings,

t̃x, t̃x+y, t̃x−y, t̃y,

a variational chemical potential, different projection parameters,

µ̃, g, h

and different pairing gaps

∆̃x, ∆̃x+y, ∆̃x−y, ∆̃y

along the bonds where effective hoppings are defined. Fig. 3.1 illustrates on the lattice the

definition of some of the above variational parameters.
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All the simulations are done on a lattice of size at least 12×12 with antiperiodic boundary

condition on x̂ axis and periodic boundary condition on ŷ axis to avoid singularities caused

by vanishing pairings at specific momentum points. The bare parameters take values as t =

−1.0, t′/t = 0.7 with U/ |t| ranging from 5.0 to 12.0. For this material, the experimentally

determined t′/t is slightly different from the value used here. But this difference is checked

not to be of vital importance by other calculations using different methods (50)(53). In the

rest of this chapter, U is used exchangeable with U/ |t| except for cases where they might

cause confusion. By noticing that the pairing amplitude, φk, only depends on the ratio of the

variational parameters in ∆̃k, ε̃k and µ̃, one of these parameters can be fixed without losing

generality. Actually t̃x is fixed to be 1.0.

Implication of g and h Due to the nature of the local projection operators, D̂i and

Θ̂i, it is reasonable to think that the Gutzwiller parameter, g, controls the average number of

doubly occupied sites (doublon), while the Kaplan parameter, h, reflects how strong a doubly

occupied site would be tied to an empty site (holon) as its nearest or next nearest neighbor.

The U dependence of these two parameters are shown in Fig. 3.2, and the behavior of holons,

or equally doublons, can be roughly seen from the two curves.

For small U, holons move around nearly freely except for limited restriction from the double

occupancy on each site. This is reflected by a small g and an h value close to 1. As U increases,

the number of doubly occupied sites is gradually reduced, which is physically expected and

is shown by a declining g. The binding between doulons and holons is gradually enhanced,

shown by a reduced h value away from 1. As U reaches beyond Uc1 ≈ 8.5, a sudden drop in

h indicates the onset of a much stronger correlation between doublons and holons, while a

continuous g shows a nearly unchanged number of doublons. This is suggestive of a new phase

developing out of the original one. The discontinuity in h implies the change in phases is first

order although h itself cannot be thought of as the order parameter simply because it doesn’t

drop to zero while an order parameter does so. By looking at Fig. 3.3, it can be seen that finite

pairing and ODLRO develop around Uc1 . This indicates that the possible phase transition is

between a metallic phase and a superconducting phase.
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Figure 3.2 Gutzwiller parameter g and Kaplan parameter h vs. onsite
repulsion U . It is easy to notice that both these parameters
reduce suddenly at Uc1 ≈ 8.5 and Uc2 ≈ 9.0, suggesting possible
phase transitions.

Within a very narrow region of U, both h and g experience another sudden drop around

Uc2 ≈ 9. The reduction in g is unexpected if the same phase is assumed across U ≈ 9 because

the change in U, the direct control over double occupancy, is continuous. This new phase

is featured by a sudden suppression of doublons and meanwhile, it seems to be dominated

strongly by the t − J physics. Thus, direct electron movement is responsible for less of the

charge mobility, as is implied by the enormous reduction in h around Uc2 and its continuous

reduction as U increases. The nature of this phase should be the same as that of U →∞ for

both g and h curves are continuous in U as shown in Fig. 3.2. It is a straightforward fact that

the phase in the large U limit is insulating and this is also the case here.

Phase diagram revealed by the ODLRO Both the optimal pairing and the ODLRO

are obtained as a function of U and are shown in Fig. 3.3. The optimal pairing automatically

chooses a spacial symmetry of the d-wave type with ∆̃x = −∆̃y. The U dependence of the

pairing strength is shown in the upper panel of the figure. The ODLRO follows the definition
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Figure 3.3 The upper panel shows pairing strength vs. onsite repulsion
U. The optimal pairing pattern is d-wave, ∆̃x = −∆̃y. For
U < Uc1 , ∆̃ basically vanishes. As U increases, ∆̃ increases
rapidly and then is followed by a slow increase. The lower panel
shows the ODLRO calculated w.r.t the optimal pairings shown
above. The persistence of the ODLRO around Uc1 suggests a
superconducting state. For U < Uc1 , a vanishing ODLRO with
zero pairing strength assumes a metallic state; for U À Uc2 ,

slow decay of the ODLRO is believed to be an artifact of the
trial wavefunction (90). Combined with finite pairing, a spin
liquid state is otherwise expected for large U.

in Eq. 2.38 with δ = γ between nearest neighbor sites along the ŷ axis. Its U dependence is

shown in the lower panel of the figure.

For U < Uc1 , the ODLRO vanishes as expected physically because the pairing also vanishes

in the system. The BCS wavefunction then reduces to describe filling of a free Fermi sea.

Without this projection, it describes a metallic state because the energy band is not fully

filled. Even with the projection, the nature of the RVB state is still expected to be metallic

because of the finite values of g and h. Finite g suggests that electrons can still move around

the lattice without major restrictions because doubly occupied sites are allowed to a large
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extent. An h close to 1 clearly implies that there is little resistance coming from doublon holon

binding against the electron movement. However, a metallic state is unintuitive to me since

U/ |t| is not small at all.

When U is between Uc1 and Uc2 , finite pairing develops very rapidly, as is shown in the

upper panel of Fig. 3.3. This implies that some effective attraction begins to emerge between

nearest neighboring electrons along x̂ and ŷ axes although the only physical interaction in the

Hamiltonian is the repulsion between two electrons on the same site. The effective attraction

is also supported by the corresponding sudden reduction in the parameter h at the two critical

U values, implying enhanced binding between two electrons. However, the effective attraction

cannot be simply ascribed to the competition between t and U because the optimization gives

no pairing along the diagonal direction although the bare hopping exists there. With a finite

pairing at U = Uc1 , a finite ODLRO appears suddenly manifesting the onset of superconduc-

tivity. This is an alternative signal of the potential first order phase transition besides the

discontinuity in h. The maximal ODLRO appears for some intermediate ∆̃ value but not for

an even larger magnitude. This is in contradiction to the conclusion from the mean field theory

where ∆̃ is at the same time the superconducting order parameter of the system. This fact

shows the strong e-e interaction built in the RVB wavefunction totally changes the physics

of the system. Why a larger pairing between two electrons would not necessarily give rise to

stronger superconductivity has partially been understood by the increasing difficulty in moving

an electron around as U increases. Thus the additional requirement of moving two pairs of

electrons phase coherently is much harder to satisfy (17). However, this effect should not be

the only one causing the sudden drop of the ODLRO at U = Uc2 because the change of the

ODLRO would then be smooth in the U dependence. The other possible cause might be the

reorganization of electrons in the system around Uc2 , as is reflected by a sudden enhancement

in ∆̃ and sudden reduction in h and g. For U À Uc2 , the state can be regarded as a fragile

superconductor because of the slowly decaying tiny ODLRO. But this has been argued to be

an artifact of the current trial wavefunction because the movement of an electron cannot be

fully suppressed unless g is exactly zero (90). Thus this phase is usually interpreted to be a
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Figure 3.4 Spacial dependence of the ODLRO to three U values. The
ODLRO is stabilized within three lattice constants for all Us.

spin liquid insulating state in order to be consistent with the conclusion coming from the large

U limit of the current Hamiltonian.

The spacial dependence of the singlet singlet correlation function, Fab (R−R′) , is defined

as

Fab

(
R−R′) =

〈
B†R,R+aBR′,R′+b

〉
(3.6)

following the notations from Eq. 2.38. The ODLRO, ψs, is related to Fab (R−R′) by

lim
|R−R′|→∞

Fab

(
R−R′) = |ψs|2 . (3.7)

The lattice dependence of Fab (R−R′) is shown in Fig. 3.4. From the plot, it is easy to see

that Fab (R−R′) quickly stabilizes when the two singlets are separated by 3 lattice constants.

Soon after this work, the experimental phase diagram was measured on this material and is

presented in Fig. 1.10. By noticing that increasing pressure corresponds to effectively decreas-

ing U, and comparing the calculated phase diagram here to the experimental one at T → 0K,

an obvious distinction can be detected that the sharp transition in the experiment is, however,

between the spin-liquid and unconventional superconducting state. The possible reason to
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this inconsistency has been identified in the work of T. Watanabe, H. Yokoyama et al (50).

Motivated by the current work, they introduced an additional Kaplan parameter to account

for possibly different doublon-holon bindings along both lateral and diagonal directions. They

then got qualitatively consistent results with the experiment.

Renormalization on the electron dispersion and its effect As has been mentioned

above, the strong e-e interaction manifests itself in distinguishing the pairing, ∆̃, from the

superconducting order parameter. It also shows itself in choosing the effective fermionic dis-

persion, ε̃k, to be different from the bare one as finite pairing develops. This renormalization

effect lies mainly in the effective diagonal hoppings and is shown in Fig. 3.5. To appreciate it,

please bear in mind that the bare diagonal hoppings are fixed at

tx+y = 0.7t, tx−y = 0.0t

for all U values. This renormalization effect seems to be a generic feature of materials with

strong e-e interaction as well as geometric frustration, as is also hinted in Ref. (91) in a DMFT

calculation and in Ref. (92) in a VMC calculation.

For U < Uc1 , the BCS wavefunction reduces to describing the free band filling, because of

the vanishing pairing. Correspondingly, the effective diagonal hoppings take the same values as

the bare ones as they should do. However, they are not uniquely determined. Actually, the total

energy shows a flat dispersion on these hoppings, which is represented by the huge error bar in

the figure. This has been checked and is due to the finite size effect. When pairing vanishes,

what is crucial for the wavefunction are the occupied momentum points whose energies are

lower. It is not hard to see that there exists different dispersion relationships which are able

to give the same set of occupied momenta and thus result in the same trial wavefunction.

For U > Uc2 , the physics lies mainly in the strongly reduced effective diagonal hopping

and consequentially a spacially more symmetric charge distribution, nk. The bare diagonal

hopping, tx+y, is required to have a much smaller value in its variational counterpart, t̃x+y, by

energy minimization, while the other diagonal hopping, t̃x−y, develops a comparable magnitude

as t̃x+y. The resulting ε̃k is presumably related to the effective dispersion of the quasi-particles
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Figure 3.5 Effective diagonal hoppings, t̃x+y and t̃x−y, along x̂+ŷ and x̂−ŷ

directions respectively, vs. onsite repulsion U . For U < Uc1 ,
there is strong degeneracy in these two effective hoppings, an
artifact due to the finite size effect in case of vanishing gaps; for
U > Uc2 , t̃x+y is strongly reduced as compared to its original
hopping while t̃x−y is now comparable to t̃x+y in magnitude.
As an outcome, the renormalized excitation spectrum is more
symmetric than the original one in momentum space.
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Figure 3.6 Contour plot of |∇kn (k)| for U = 7 and U = 10. The strongly
renormalized dispersion for U = 10, together with the strong
d-wave pairing, generates a nearly fourfold symmetric structure
with the largest gradients along diagonal directions even though
the bare hoppings differ completely along these directions. Red
color shows small gradient while green color shows larger gra-
dients.

aroused in the system due to the strong e-e interaction. But this interpretation is not rigor-

ous because the resulting BCS wavefunction still has to undergo the projection operation to

incorporate the strong e-e interaction. The physically more meaningful quantity is the charge

distribution in momentum space, whose gradient is shown in the right plot of Fig. 3.6. The

maximum gradients are located at the four nearly rotationally symmetric locations in green.

These locations can be predicted by the quasiparticle filling of ε̃k together with the vanishing

d-wave pairings along the diagonal directions, which is exactly the way how the same thing is

predicted within a weak interacting theory. As a comparison, the maximum gradients of nk

coincide with the Fermi surface of the bare dispersion for U < Uc1 , which is shown in the left

plot of the figure. It is in this sense that ε̃k is interpreted as the effective dispersion relationship

for quasi-particles. At the same time, this coincidence also assumes that the projection doesn’t

change significantly the charge distribution defined by the BCS wavefunction in momentum

space.
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When U increases from Uc1 to Uc2 , the effective diagonal hoppings change continuously

to connect the two limits. Meanwhile, the energy minimum is more and more well-defined,

illustrated in Fig. 3.5 with reduced error bars, as the pairing becomes finite. The interest

here lies mainly in the superconductivity maximized around U = Uc1 . The natural question

to ask is the role played by the geometric frustration on the superconductivity. This is made

possible by interpreting ε̃k to be the effective dispersion which determines most directly how

much geometric frustration is actually introduced into the system. The full answer to this

question could be possible if ψs were calculated for different values of t̃x+y and t̃x−y while other

parameters were kept fixed, which was, however, not done in this thesis work. What have been

considered are the wavefunctions optimized in energy at different U values. The analysis is thus

complicated by different amount of geometric frustration together with different e-e interaction.

However, it is likely that in the current problem ε̃k with reduced geometric frustration favors

the formation of the d-wave pairing, which is directly related with superconductivity.

The renormalized dispersion, ε̃k, also affects the magnetic correlation, χij . The spacial

dependence of χij is shown in Fig. 3.7 for an unrenormalized dispersion at U = 7 and for a

strongly renormalized one at U = 11. The comparison indicates two major differences, one is

in the spacial dependence and the other in the contrast between the two diagonal directions.

The spacial dependence of the magnetic correlation for U = 11, which corresponds to a spin

liquid state, is antiferromagnetic and decays much slower than that for U = 7. And, χ between

nearest neighbor sites is much more enhanced for larger U, as is clearly shown in the inset of

the figure. On the other hand, χ along the two diagonal directions are nearly the same for

U = 11, while they are clearly different for U = 7: the χ along x̂− ŷ, where no bare hopping

exists, constantly vanishes but the χ along x̂ + ŷ is finite and is of the same sign as the χs

along the lateral directions. All these are consistent with what is implied by ε̃k. For U = 11,

ε̃k has nearly the same effective hopping magnitude in both diagonal directions. At the same

time, the weakened frustration contained in the effective dispersion, t̃x+y/t̃ ≈ 0.2, enhances

the magnetic correlation to be of wider range. Both of these two facts, together with the

d-wave pairing, give a reasonable interpretation of site dependence of χ in the right panel of
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Figure 3.7 Spacial dependence of χ0,a = 2 〈Sz
0Sz

a〉 on two U values. For
U = 11, the magnetic correlation, χ, along the two diagonal
directions become indistinguishable even though the bare hop-
pings are very different. For U = 7, the two χs can easily be
distinguished. The inset shows U dependence of χi,i+x, mag-
netic correlation between two nearest neighboring sites along x̂

axis.

Fig. 3.7. For U = 7, ε̃k is identically the same as εk. This means that there is strong geometric

frustration along x̂ + ŷ, which qualitatively changes the nature of the magnetic correlation to

be antiferromagnetic on that direction, while no interaction exists along x̂ − ŷ and thus no

magnetic correlation should be expected.

Comment on the finite size effect In order to see how seriously the optimal parameters

would depend on the lattice size, optimal d-wave pairing strengths have been calculated for

different lattice sizes. The results are shown in Fig. 3.8 for both U = 9.5 with finite pairing and

U = 7.0 with vanishing pairing. The conventional 1/L extrapolation carried out for U = 9.5

shows that the pairing does not vanish for infinite lattice size.
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Figure 3.8 Size dependence of optimal d-wave pairing on lattices up to
22× 22 for U = 9.5 and 7.0. To show both dependences in the
same figure, ∆̃ for U = 7.0 is shifted upward by unit magnitude.
Extrapolation to larger systems for U = 9.5 supports a finite
pairing even on an infinitely large lattice.
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CHAPTER 4. Results for Shastry-Sutherland(SS) lattice

For SrCu2 (BO3)2 , the major physics lies in the CuBO3 layers separated from each other

by Sr2+ layers. The spins are carried by Cu2+ ions and they form a lattice structure which

is topologically equivalent to the Shastry-Sutherland (SS) lattice shown in Fig. 1.14. The

Hamiltonian defined on it is the Heisenberg Hamiltonian in Eq. 1.23, or

Ĥh =
∑

〈i,j〉
J Ŝi · Ŝj +

∑

〈l,m〉
J ′Ŝl · Ŝm. (4.1)

The most inspiring feature of the SS lattice is that it has the same exactly solvable ground

state for J ′/J ≥ 2, the spin singlet dimer state (62). It is a product of singlets along specific

diagonal directions and is expressed in Eq. 1.24, or

|Ψ〉 =
∏

〈l,m〉

1√
2

(|l, ↑; m, ↓〉 − |l, ↓;m, ↑〉) . (4.2)

Further theoretical studies have extended the threshold J ′/J to be around 1.428 beyond which

the singlet dimer state is the ground state. Meanwhile, the relevant J ′/J for SrCu2 (BO3)2 is

1. 5741 (56).

In this chapter, the doping effect of this material is investigated. It is an out-of-plane

doping where Sr2+ ions are replaced by other ions. It includes both electron and hole doping

and is described by the t− J Hamiltonian in Eq. 1.38, or

Ĥ =
∑

〈i,j〉,σ
tc̃†i,σ c̃j,σ +

∑

〈l,m〉,σ
t′c̃†l,σ c̃m,σ

+
∑

〈i,j〉
J

(
Ŝi · Ŝj − ninj

4

)
+

∑

〈l,m〉
J ′

(
Ŝl · Ŝm − nlnm

4

)
(4.3)

where

J =
4t2

U
and J ′ =

4t′2

U
.
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The three-site hopping terms are not explicitly written out in the above expression but are

included in the study. Experiments so far have determined J and J ′, but not the relative sign

between t and t′. To answer this question, a first principle calculation is carried out on the band

structure of this material and a tight binding model is fitted to it. This fit reveals that t′ > 0,

while the sign of t is of irrelevance to this material. Due to the fact that only one electron is

allowed on each lattice site, only hole doping can be treated directly in the simulation. How to

treat electron doping is not so straightforward. The necessary consideration will be provided

in the relevant sections.

The RVB wavefunction used for this Hamiltonian has been explained in Chapter 2. It is a

fully projected multiband BCS wavefunction, explicitly written out as

|ΨRV B〉 =
∏

i

(1− ni,↑ni,↓)
∣∣ΦM

BCS

〉
(4.4)

where
∣∣ΦM

BCS

〉
=

∏

k,n1,n2

(
1 + hn1,n2 (k) c†k;n1,↑c

†
−k;n2,↓

)
|0〉 . (4.5)

The relevant notations have been explained in Eq. 2.20. All the variational parameters are

contained in hn1,n2 (k). But unlike φk in the single band BCS wavefunction, there is no explicit

relationship for hn1,n2 (k) to depend on these parameters. The matrix expression is provided

in Eq. 2.22. Although more variational parameters can be included in the study, only the

following parameters are considered here: the six effective hoppings

t̃x1 , t̃x2 , t̃x+y, t̃x−y, t̃y1 , t̃y2 ,

the four variational chemical potentials

µ̃0, µ̃1, µ̃2, µ̃3

and the six pairing gaps

∆̃x1 , ∆̃x2 , ∆̃x+y, ∆̃x−y, ∆̃y1 , ∆̃y2 .

along the bonds where exchange interactions are available. They are supposed to include the

minimal number of variational parameters which are needed to describe this problem. The

definitions are illustrated in Fig. 4.1
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Figure 4.1 Illustration of definition of all the variational parameters used
in the multiband BCS wavefunction on the SS lattice. µ̃s are
variational chemical potentials on each atom in the unit cell,
while t̃ and ∆̃ are variational hoppings and pairings between
nearby atoms.

All the simulations are done on the 12 × 12 lattice with antiperiodic boundary condition

along x̂ axis and periodic boundary condition along ŷ axis, if not stated otherwise. However,

unlike the organic superconductor, this choice of boundary condition is, generally speaking, not

necessary because the concerns on the singularity for the pairing amplitude in the single band

BCS wavefunction doesn’t exist on the SS lattice. What’s more, it introduces confusion into

the data analysis. But all these are noted only at the end of the study. Explicit calculations

checked that these boundary conditions didn’t change the major conclusions, but the optimal

value might be changed for each variational parameter. The bare parameters involved in the

Hamiltonian take values as t = −1.0, J = 0.3 |t| and α = t′/t = ±1.25. These values were taken

from Ref. (61) before the band structure calculation was carried out. Especially J = 0.3 |t| ,
which is the typical relationship for high Tc cuprates. On the other hand, experiments have

determined that J is around 54K, while fitting band dispersion sets t to be around 1043K.

Thus J = 0.05t seems to be a more realistic relationship for SrCu2 (BO3)2. However, several

checks have been carried out and the major conclusions don’t seem to be sensitive to J/t ratios.
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Secondly, the variational parameters involved in the multiband BCS wavefunction also have

one degree of freedom based on the similar reasonings as in the single band BCS wavefunction.

This is fixed by taking t̃x1 to be the energy unit for all the other variational parameters.

There are some general conclusions which apply to both doping cases

µ̃0 = µ̃2 and µ̃1 = µ̃3

t̃x1 = t̃y2 and t̃x2 = t̃y1 .

The relationships for µ̃i are physically easy to understand. Actually µ̃0 and µ̃2, or µ̃1 and µ̃3,

are connected by a diagonal bond if the point group symmetry of the SS lattice is considered.

The relationships for t̃ are nontrivial. This strongly suggests a spontaneous symmetry breaking

in effective hoppings on the lattice. On the other hand, existence of multiple energy minima

make the analysis of the simulation results more difficult, especially to the electron doped case.

Besides the variational study, a slave-boson mean field treatment is also applied to the

same problem. A mean field theory is usually considered inferior as compared to a variational

study using a carefully chosen trial wavefunction. The same situation is also expected here

because the single occupation restriction on each site is hard to impose analytically. However,

the mean field study can still give useful insights into the problem in different aspects. Actually

something which is quite uncommon for this problem is found by comparing the conclusions

from both approaches.

4.1 Exact ground state for the half-filled SS lattice

The real space projection of the BCS wavefunction shows that it is a linear superposition

of products of singlets between different sites on the lattice. The singlet dimer state is one

of those products and is thus contained in the BCS wavefunction as a special subset. It is,

however, totally nontrivial that a simple full Gutzwiller projection is able to exactly filter out

this special term. But this is the case in the current problem. Part of the reason can be

ascribed to the use of
∣∣ΦM

BCS

〉
where the very symmetry of the SS lattice is fully implemented.

As a contrast, the Gutzwiller projected single band BCS wavefunction is unable to give the
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Figure 4.2 α dependence of the simulated total energy, Etot, on the 8 × 8
lattice and the energy for the theoretical single dimer state,
ESS

dimer, for the half-filled SS lattice. The curve for Etot is shown
in red big dots while the curve for ESS

dimer in black small dots.
The lines connecting the dots are just guidance to eye. For
the α range where the two curves overlap with each other, the
agreement is within an error of 10−7. By the way, additional
terms ninj/4 are added to the Heisenberg Hamiltonian in Eq.
4.1. This doesn’t change the physics for the half-filled case yet
the total energy of the dimer ground state is shifted downward

by
N

2

(
J ′

4
+ J

)
.

required singlet dimer state.

In Fig. 4.2 shows the fact that the exact ground state is obtained in the current RVB

wavefunction. There, the simulated energy, Etot, and the theoretical energy for the singlet

dimer state, ESS
dimer, are both presented against α = |t′/t|. From the plot, it is clear that

Etot agrees perfectly with ESS
dimer for α > 1.2 within an error higher than 10−7. Although the

evaluation is done on an 8 × 8 lattice, the agreement is checked and found to be lattice size

independent, which is expected from the localized feature of the singlet dimer state. Physically

this agreement reveals that the current RVB trial wavefunction is capable of capturing the

correct physics related to the complicated unit cell structure of the SS lattice. However for
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Figure 4.3 Illustration of strong degeneracy on effective hoppings for
α = t′/t = 1.25. All the energies are calculated with other
parameters not fully optimized when each effective hopping
changes its value. t̃x1 = t̃x2 is chosen to be the energy unit.
The red curve on the left shows t̃y dependence of the simulated
energy. The blue and black curves on the right show t̃x+y, t̃x−y

dependence of this energy, which both share a large range of dis-
persionless values. The feature of an errorless energy evaluation
reassures the nature of an eigenstate.

α < 1.2, the simulation is able to give out a better variational state than the singlet dimer state

due to the fact that Etot is lower. This critical α is in good agreement with other theoretical

solutions to this problem (56).

Another surprise comes from the fact that there is very strong degeneracy in the variational

phase space for α > 1.2, which is shown in Fig. 4.3 on several effective hoppings using α = 1.25

as an example. The wide flat errorless basin for the diagonal hoppings very clearly illustrates

the degeneracy. Yet actually this degeneracy is an artifact from the simulation because it is

well known that the singlet dimer ground state is a unique state and involves only spin degrees

of freedom. However, the fermionic representation of a spin operator, expressed in Eq. 1.19,
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artificially introduces spacial degrees of freedom from a particle’s creation and annihilation

operators. The singlet property is implicitly taken care of by requiring the spacial pairing

amplitude of two electrons to be of even parity. All these comments imply that it is possible

for the simulation to bring up a flat dispersion, but they still don’t answer why the simulation

must give rise to such a fact. This is still an open question in the current study. Possible reasons

might include the SU (2) spin rotational symmetry inherited in the Heisenberg Hamiltonian.

Reasons might also be related to the fact that a spin singlet can have arbitrary even spacial

functional forms.

The exactness of the simulated ground state as the singlet dimer ground state can also be

proved by the magnetic correlation on the lattice. Theoretically, the magnetic correlation for

two sites in the spin dimer state would be

χij =




−1

2 for site i, j linked by a diagonal dimer bond

0 o.w.
.

This result is fully reproduced by the simulation within an error of 10−4 here.

Finally, the current trial wavefunction might be used to add efforts to determine the critical

α value, αc, beyond which the singlet dimer state ceases to be the ground state of the SS lattice.

One can even reason that this trial wavefunction will give a better estimation on αc than other

current methods except for the exact diagonalization study, which is, however, limited by

small lattice size. The calculation would be similar to what has been presented in Fig. 4.2, but

would be more elaborate. It was not carried out in this study because of time limit. There are

several things to consider if one decides to work on this problem. First, the rigorous αc value

can never be obtained unless the true ground state is known around αc. Second, even with the

current trial wavefunction, αc would be lattice size dependent because the other ground state

for α < αc would be the case. Third, which is purely technical, it would be extremely hard to

locate a slightly energetically favored local minimum in a large dispersionless phase space.
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4.2 Physical properties of the doped SS lattice

The RVB wavefunction used in this study has been shown to give the exact ground state

for the undoped (or parent) SS lattice describing SrCu2 (BO3)2. This fact is so far known to

be unique for a quantum many body system. It implies that the trial wavefunction is very

well controlled for studying the SS lattice under small doping, because the ground state energy

changes continuously with doping. The mobile charge carriers can be introduced either as holes

by taking electrons out of the system, for example, replacing Sr2+ with Na+, or as electrons

by adding electrons into the system, for example, replacing Sr2+ with Al3+. However, these are

difficult to synthesize. Different groups are trying these replacements, but only one successful

case has been reported so far. In this case, only insulating behavior is found for both doping

cases. In the following paragraphs, we would like to discuss the predictions from the current

variational study.

It is straightforward to treat the hole doping in the variational study by assigning fewer

electrons than the number of lattice sites into the system. But the electron doping cannot

be treated alike because the model Hamiltonian requires a single occupation on each site.

This difficulty is addressed by a particle-hole transformation in the next paragraph. Another

complication arising during the simulation is the existence of multiple minima in the phase

space, which is not surprising for a function with so many variational parameters. What is

special in the electron doped case is that many minima well-separated in the phase space have

close energies to each other. However, it is lucky that these minima always give similar physical

observables, as is verified by direct calculations. This greatly simplifies the analysis for the

electron doped case.

The physical quantities are usually presented in the same graph with both electron and hole

dopings plotted, electron doping to the left and hole doping to the right, except for those graphs

that only provide information for a single doping type. From these figures, it is notable that

there is a strong asymmetry between these two types of doping. The hole doped SS lattice can

be described as a plaquette d-wave pairing superconductor, while the electron doped SS lattice

is a valence bond strange metal. The result for the electron doped case is negotiable because it
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is very odd to have a metallic state in a strongly interacting system without symmetry breaking

at zero Kelvin (93). However, the current trial wavefunction doesn’t contain a magnetically

ordered state as one of its options. Such a state cannot be excluded from a ground state.

How to treat electron doping? With using the t − J Hamiltonian on the SS lattice,

electron doping cannot be treated by simply assigning the system more electrons than total

number of lattice sites. This must result in sites with double occupancy and is thus forbidden

by the Hamiltonian. A way around is this to see whether it is possible to transform electrons

into holes by a particle-hole transformation while at the same time keeping the Hamiltonian

and its relevant restrictions unchanged.

The t− J Hamiltonian expressed in Eq. 4.3 can be equivalently written as

Ĥ =
∑

〈i,j〉
tc†i,σcj,σ +

∑

〈l,m〉
t′c†l,σcm,σ

+
∑

〈i,j〉
J

(
Si · Sj − ninj

4

)
+

∑

〈l,m〉
J ′

(
Sl · Sm − nlnm

4

)
(4.6)

∑
σ

ni,σ ≤ 1 (4.7)

where 〈i, j〉 denotes nearest neighbor sites and 〈l, m〉 denotes next nearest neighbor sites.

The only difference between Eq. 4.3 and the above expression is that the single occupation

restriction is explicitly written out here in Eq. 4.7.

Let us consider a general particle-hole transformation

cj,σ → c†j,σeiθj (4.8)

where j is the lattice index, θj is some additional phase factor to c†j,σ and satisfies the same

symmetry and boundary conditions as that of the SS lattice. Remember that different choices

of θj don’t change the physics of the problem. It is straightforward to check that under this

transformation Si · Sj is invariant and
∑

σ ni,σ ≤ 1 is still satisfied, while ninj is shifted by an

irrelevant constant term. What is nontrivially changed is the hopping term

∑

〈i,j〉
tc†i,σcj,σ →

∑

〈i,j〉

[
−te−i(θi−θj)

]
c†j,σci,σ.
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Thus the t − J Hamiltonian would be kept unchanged if a corresponding transformation on

the hopping term is introduced as

tij → t∗ij = −tije
−i(θi−θj). (4.9)

Different options can be chosen for θi. The simplest choice is

θi = 0

which gives

t → t∗ = −t (4.10)

t′ → t′∗ = −t′. (4.11)

Another choice would be

θi =
π

a
(xi + yi)

where a is the lattice constant and (xi, yi) is the coordinate of the ith lattice site, and this

gives

t → t∗ = t (4.12)

t′ → t′∗ = −t′. (4.13)

These two choices seem to be the only options which give different relationships between the

original and the transformed hopping amplitude and at the same time satisfy the requirements

on the symmetry and boundary conditions on the lattice.

By collecting all the above information, it is proved that the hole doped case for a t − J

Hamiltonian with hopping ±t,−t′ describes the same physics as the electron doped case for a

t− J Hamiltonian with hopping t, t′.

What is shared by both doping cases? Although the behaviors for both doping cases

are totally different in many physical aspects, they share one thing in common. That is, the

charge distribution is almost isotropic on the lattice. The maximum relative charge density

difference, defined as (nmax − nmin) / (nmax + nmin) , is about 0.1% among the sites. This is
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Figure 4.4 Charge expectation, 〈n〉 , and variational chemical potentials,
µ̃, for different hole concentrations are shown in this plot. The
curves are just guide to eye. The inset is excerpted from Fig
4.1 to show µ̃s within the unit cell. The upper panel shows
charge expectation on the two inequivalent sites. A tiny relative
difference of 0.1% in charge density appears as doping increases.
The lower panel shows different µ̃s on the two inequivelant sites.
The big difference in µ̃s are in sharp contrast to the nearly
homogenous charge distribution on the lattice.

illustrated for the hole doped case in the upper panel of Fig. 4.4. This conclusion is reassuring

for the Hamiltonian under study. Otherwise Coulomb interactions between nearby sites would

have to be included into the model.

However, the two variational chemical potentials can be distinctive from each other. To

use the case of hole doping as an example, the distinction is shown in the lower panel of the

figure with a smaller µ̃ at site 1 within a unit cell. A smaller µ̃ at site 0 would be the other

degenerate solution. The fact that the charge is still balanced between these two sites reflects

similar degeneracy in other variational parameters in order to counteract the biasness raised
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by µ̃. In the plot, both the variational µ̃ decrease as doping increases, as is expected for a true

chemical potential to accommodate less and less electrons in the system. This suggests that

the variational chemical potentials are still related in some way to the true chemical potential.

However, the difference in µ̃ clearly shows that they are not the true chemical potential which

would otherwise be uniform in the whole system, as is required by phase equilibration. On

the other hand, the strong tendency to reach charge homogeneity can be regarded as a self-

consistency check on the current study. That the system chooses such a nontrivial way to

maintain this charge homogeneity implies a possible intrinsic spontaneous symmetry breaking

in the problem.

Renormalized diagonal hoppings The strong asymmetry manifests itself between

both doping types in the effective hoppings. The doping dependence of these hoppings are

shown in Fig. 4.5. The attention is mainly focused on the two effective diagonal hoppings,

t̃x+y and t̃x−y, since they give the predominant renormalization effects as compared to the

other hoppings. The values of the hoppings shown in the plot should not be taken seriously

but the trends should. This is because the effective hoppings can have a different symmetry

with respect to that of the original lattice. Thus the hopping, treated as the energy unit in the

trial wavefunction, might not be continuously dependent on the hole concentration. (However,

the effective hoppings on the lateral directions don’t differ too much.) The descending trend

on the renormalization effect as doping increases is easy to understand. Less charge carriers

on the lattice reduce chances to form doubly occupied sites. Thus the on site repulsion plays

a less important role.

In the electron doped case, t̃x±y are nearly indistinguishable from each other, which assumes

that there is no symmetry breaking on the lattice. The doping dependence of t̃x±y follows a

monotonic decrease. In the case of no doping, t̃x±y are of the order of 10 times t̃x1 , the energy

unit in the trial wavefunction, shown in Fig. 4.3. As doping increases, t̃x±y gradually reduce

till finally the t̃x±y/t̃x1 ratio reduce to the bare ratio, 1.25, at about 25% of doping. If we still

assume the conclusion made in the last chapter is correct concerning an effective dispersion

within the RVB picture, which says that the effective dispersion describes largely the motion
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Figure 4.5 Effective hoppings vs. dopings for both doping cases, electron
doping shown on the left and hole doping on the right. Dotted
horizontal lines indicate the two different kinds of original hop-
pings on the lattice; dashed curves are guide to eye and show
trends of doping dependence. Please notice that the absolute y

values are in descending order in the figure and t̃x1 is treated
as the energy unit in the trial wavefunction. For the electron
doped case, increasing doping reduces hopping renormalization.
For the hole doped case, the effective diagonal hoppings are
much more enhanced for very small doping. They then are
abruptly reduced beyond some doping threshold and becomes
distinguishable to each other.



81

of quasiparticles in the system, the enhanced effective hopping along the diagonal directions

suggests that quasiparticles prefer a hopping or exchange interaction along the diagonal di-

rections. This implies that the electrons prefer to be localized along the diagonal directions

when additional electrons are added into the system. This naturally leads us to believe that

the same physics in the parent compound would be preserved here. This guess is later verified

by the calculation of magnetic correlation, but it is not completely true.

In the hole doped case, the doping dependence of t̃x±y has a discontinuity around δc
h = 2.5%.

For doping less than δc
h, the effective diagonal hoppings are much more enhanced than their

bare values, very similar to that of the electron doped case. As doping passes over δc
h, t̃x±y

are strongly reduced in magnitude. Meanwhile, they become distinguishable with one effective

hopping being renormalized to be less than 1.25 while the other a bit larger than 1.25. These

are clearly shown in the right panel of Fig. 4.5. Obviously the abrupt discontinuity suggests a

phase transition at 2.5% doping. The nature of both phases will be clarified in later paragraphs.

The phase for δ < δc
h might have some similarities with that of the electron doped case while the

phase for δ > δc
h should be a novel one reflecting less frustration along the diagonal directions.

The difference in the behavior for both doping cases can be observed from the particle-hole

transformation defined in Eq. 4.8. It let t′ → −t′ to mimic the behavior for the electron

doped case. Considering the fact that |t′/t| > 1 for SrCu2 (BO3)2 , t′ would then be the major

hopping amplitude in the Hamiltonian and its sign would surely make a difference.

Magnetic correlation Another interesting contrast between electron and hole doping

is the magnetic correlation. Their doping dependences are shown in Fig. 4.6 by three repre-

sentative values, χ00, the average occupation on the lattice shown with black solid lines, χ0,x,

the magnetic correlation between two nearest neighbor sites shown with red dashed lines and

χ0,−x−y the magnetic correlation along the diagonal bond where a singlet is preformed in the

parent compound, shown with black dotted lines. In both doping cases, χ00 reduces linearly

as doping increases. This behavior is actually expected, and can be treated as a validity check

on the code. What are of major difference are χ0,x and χ0,−x−y.

In the electron doped case, χ0,x is always kept small but |χ0,−x−y| reduces gradually from
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Figure 4.6 Doping dependence of χ0,i for the three chosen directions. The
dark solid curve shows χ0,0 on the same site; the dark dotted
curve shows χ0,−x−y along the diagonal bond direction and the
red dashed curve shows χ0,x between nearest neighbors on the x

axis. For the electron doped case, the magnetic correlation pat-
tern is very similar to that of the parent compound, illustrated
in the left inset for 10% doping. The strongest magnetic cor-
relation is still along the diagonal bond direction, and a small
component along x and y axes. This is shown with thick and
thin line segments respectively in the inset. For the hole doped
case, an abrupt change in magnetic correlation happens around
2.5% of doping with the strongest component being changed
from the diagonal direction to the lateral directions. The right
inset illustrates the strongest magnetic correlations along x and
y axes for 10% hole doping.
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the value 1 for the parent compound to 0.2 at about 25% doping. This magnetic correlation

pattern appears for all the energy minima studied and is very similar to that of the parent

compound. This is thus a strong indication that the underlying state is still closely related

with singlets along the specific diagonal bonds. The reduced magnitude in χ0,−x−y implies

the extra electrons introduced into the system are scattered around and separated from each

other, as can be seen from the nearly linear dependence on doping. That is to say, the singlets

are more diluted as doping increases. On the other hand, the deviation from linearity for

doping dependence of χ0,−x−y must be related with the small yet finite χ0,x. This means that

electrons are not fully isolated in the specific diagonal bonds as extra electrons are added in.

They are now able to interact and communicate with each other along the lateral directions.

However, these effects are extremely short ranged, as can be seen from Fig. 4.7, the spacial

dependence of different magnetic correlations. From the left panel of this figure, it is clear

that the magnetic correlations die out within one lattice constant. Thus the electron doped

system can still be described using a valence-bond-state-like picture, fully consistent with the

exact diagonalization study in Ref. (68). Then, how about its conductivity? Would it still

be an insulator as the parent compound? This has to be checked explicitly by using the low

frequency Drude weight.

In the hole doped case, the doping dependence of χ is qualitatively different from that of

the electron doped case, as shown in Fig. 4.6. The difference lies in the two related aspects,

the existence of a possible phase transition and a re-organization of the electronic behavior.

Around δc
h = 2.5% doping, there is an abrupt change in the magnetic correlation. When

doping is smaller than δc
h, the pattern is similar to that of the electron doped case although the

reduction in χ0,−x−y is much quicker (not shown in the figure). When δ is beyond δc
h, χs along

the lateral directions become dominant among all the magnetic correlations while χ along the

diagonal bond direction is strongly reduced. However, they are still comparable to each other

in magnitude and are of the same nature. For example,

χ0,−x−y

χ0,x
≈ 1

3
(4.14)

for 10% of hole doping. The spacial dependence of the magnetic correlations are shown in the
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Figure 4.7 Spacial dependence of χ0,i on the lattice at 10% doping. Curves
with different colors and line styles represent χ along the three
directions shown on the lattice in the inset. The black solid line
represents χ0,x, the blue dotted line represents χ0,−x−y and the
red dashed line represents χ0,x−y. For the electron doped case,
the strongest magnetic correlation is along the diagonal bond
where the singlet lies in the parent compound. However, there
also exists a small magnetic correlation along the lateral direc-
tions. All χs are short ranged and die out beyond one lattice
constant. For the hole doped case, the magnetic correlations
are qualitatively different from that of the parent compound.
The strongest magnetic correlations are now along the lateral
directions, but χs to all the nearest and next nearest neigh-
boring sites are comparable to each other. Their range is still
short, but extends to two or more lattice constants.
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right panel of Fig. 4.7. They extend wider on the lattice as compared to the electron doped case

although they are still short-ranged. All these show that the electrons are antiferromagnetically

correlated to each other not only between nearest neighboring sites, typical for a square lattice

without frustration or with only weak frustration, but also between next nearest neighbors.

This implies that the system reorganizes itself to give rise to a totally different type of geometric

frustration in the system compared to the original SS lattice. The effective hoppings, t̃, revealed

for the hole doped case suggest that the electrons develop a stronger tendency to delocalize

along the lateral directions.

Pairing between two electrons This set of variational parameters, ∆̃, are most seri-

ously affected by the existence of multiple energy minima, especially in electron doped case.

Unlike the undoped SS lattice, the local minima are well defined in the variational phase space.

For electron doped case, these minima are very close in energy but can be far apart in ∆̃s,

whose optimal values don’t seem to be logically related in any way. For example at 10%

electron doping, two energy minima are found to be

∆̃x1 = 0.073, ∆̃x2 = 0.034, ∆̃y1 = −0.286, ∆̃y2 = −0.244, ∆̃x+y = 0.282, ∆̃x−y = 0.359

∆̃x1 = −1.32, ∆̃x2 = −1.48, ∆̃y1 = −1.12, ∆̃y2 = −1.28, ∆̃x+y = −0.84, ∆̃x−y = −1.88

with a relative energy difference of ∆E/Ē = 0.3%. Thus there is no clear physical picture that

is suggested by the pairing parameters for the electron doped case.

The physical picture for the hole doped case is, however, much better suggested by the

pairing parameters for doping larger than δc
h. It is statistically found that the following rela-

tionships are satisfied among the pairings

∆̃x1 ≈ −∆̃y2 (4.15)

∆̃x2 ≈ −∆̃y1 (4.16)

∆̃x+y ≈ ∆̃x−y ≈ 0 (4.17)

together with
∆̃x1

∆̃x2

À 1 or
∆̃x2

∆̃x1

À 1, (4.18)
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where both the cases with equal ratio are degenerate in energy. Other variational parameters

are assumed to change accordingly. Mapped back onto the SS lattice, the pairings with larger

strength form regularly aligned squares with an original diagonal exchange interaction con-

tained inside. This is illustrated in the inset of Fig. 4.8. By taking into account the fact that

the two pairing parameters on the same axis share the same sign, as indicated in Eq. 4.18, the

state can be called a plaquette d-wave pairing state. The stability of this state is controlled

by the larger pairing parameter, whose doping dependence is shown in Fig. 4.8.

For small doping, less than 2.5%, the pairing is very much complicated by the existence

of multiple energy minima and thus the pairing nature is undetermined. As doping increases,

plaquette d-wave pattern emerges with very strong strength and then gradually reduces in

magnitude. The location of each small plaquette is contrary to one’s expectation. It shows

that the hole doped system tends to have lower symmetry by choosing to locate a plaquette

on a unit cell with only 2-folded rotational symmetry. At the same time, the pairing plaquette

contains in it the weakened effective diagonal hopping if the effective hoppings are also mapped

onto the pairing plaquette lattice. These observations are in full consistency with what have

been observed in the magnetic correlation, including the fact that χ are antiferromagnetic to

all the nearest and next nearest neighboring electron pairs, and, χ0,x and χ0,−x, or χ0,y and

χ0,−y, differ slightly from each other. The formation of such a pairing pattern clearly shows

how the system fully reorganizes itself and leads to a delocalization of singlets. It implies

that the hole doped system is now a true RVB state as compared to the electron doped case.

Why such a plaquette phase would be formed and why it chooses such a specific unit cell to

stay might be related with strong quantum fluctuation. As has been analyzed in Ref. (66),

a half-filled SS lattice with Sp (N) symmetry leads to several plaquette states, including one

similar to ours, once strong quantum fluctuations were taken into account. It is thus plausible

that doping with holes is one way to enhance quantum fluctuations.

The robustness of the plaquette d-wave pairing phase is manifested by comparing it to

two other phases, the homogeneous pairing phase and the noninteracting phase. Taking as an

example the case of 10% hole doping and denoting energies to these three phases as Eplaquette,
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Figure 4.8 Pairing strength vs. hole doping concentration δh. The curves
are just guides to eye. The pairing nature is d-wave like but
with pairing strength alternating in space. An illustration is
given in the inset to show what the pairing pattern looks like
on the lattice. The thickness in the line segments corresponds to
pairing magnitude and red/blue color corresponds to different
sign of the pairing. The diagonal lines indicate the location of
the singlets in the parent compound. For δh < 2.5%, there exists
too many local minima close in energy and thus pairings are
therefore not well-determined. Otherwise, the two pairings with
different strength along lateral directions reduces with doping.
The diagonal pairings are always tiny in the strength.
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Ehomogenous and Enoninteracting, the relative energy gain can be expressed as

Eplaquette −Ehomogenous

Ehomogenous −Enoninteracting
≈ 1.0 (4.19)

together with the absolute energy gain

Eplaquette − Ehomogenous ≈ −0.043t. (4.20)

At the same time, the plaquette d-wave pairing phase is verified to be stable against J values

to as small as J = 0.03t.

ODLRO and low frequency Drude weight It is now time to see whether the doped

materials are conducting or superconducting. The benchmark of superconductivity is the

nonvanishing off diagonal long range order (ODLRO) defined in Eq. 2.38. It is calculated

for both doping cases and is shown in Fig. 4.9. It is found for the electron doped case that

the ODLRO is constantly zero within an error limit of 10−4 for all doping concentrations

under consideration. As has been mentioned before, although complicated by multiple energy

minima, pairings between electrons always exist. The vanishing ODLRO shows, however, these

pairs don’t move coherently in phase. Actually even the mobility of electrons is also in doubt

if a comparison is made with respect to the many physical aspects between the electron doped

case and the insulating parent compound. This concern will be carefully addressed.

The hole doped case corresponds to an inhomogeneous superconductor. Two different

ODLROs are found due to the plaquette pairing formation on the lattice. They are shown as the

black solid line and green dotted line in the right panel of Fig. 4.9. There exists some threshold

doping value, δ0, for finite ODLROs to appear. This δ0 seems to be smaller than δc
h where χ

changes most rapidly. As doping increases, the major ODLRO doesn’t change monotonically,

but the smaller one does. The maximum ODLRO appears around 20% hole doping. Simulation

is not carried out beyond 25% doping for fear that the current trial wavefunction might not

be good enough. The singlet singlet correlation function, Fab (R−R′) , is shown against

separation between two singlets in the inset of the figure. Two cases of spin orientations are

provided to give enough details on the ODLRO. From the graph, it can be seen that the spacial
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Figure 4.9 The ODLRO vs. doping for both doping cases. For electron
doping, the ODLRO vanishes within error limit; for hole doping,
three different ODLROs are provided. The dark solid and green
dotted curves correspond to the plaquette enhanced and weak-
ened ODLRO respectively; red dashed curve shows the ODLRO
calculated from the homogenous d-wave pairing in order to show
the plaquette enhanced superconductivity. The spacial depen-
dences for two ODLROs, Fŷŷ (nx̂) in black and Fx̂x̂ (nx̂) in red,
are shown for 10% hole doping in the inset of the left panel. Here
n is the site index. The stable value which levels off corresponds
to the enhaced ODLRO shown in the right panel (indicated by
the upper broken arrow).
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equilibration is reached when two singlets are separated by only two lattice constants. This

is surprising and indicates the spacial wavefunction of singlet pairs are still confined in space,

which might be a remnant effect from the undoped parent compound. The spacial dependence

of Fab (R−R′) can actually be related to the pairing strength as

Fab

(
R−R′) =

〈
B†R,R+aBR′,R′+b

〉
∝ ∆̃∗

R,R+a∆̃R′,R′+b (4.21)

for |R−R′| > 1 where the lattice constant is chosen to be the unit. When the two singlets

are robust in both pairing strengths, Fab is also strong; while one of them is weak, Fab is also

weak.

The physics of the inhomogeneous superconductor is clarified by comparing the two ODL-

ROs mentioned above, called the enhanced or weakened ODLRO from now on, to the ODLRO

from the trial wavefunction with homogeneous pairings, which is automatically optimized to

be d-wave. The homogeneous ODLRO, ψs,hom, is shown in Fig. 4.9 with a red dashed line

and is between the other two ODLROs. Compared to ψs,hom, the enhanced ODLRO, and

thus the superconductivity of the inhomogeneous superconductor, is obviously boosted by the

formation of the plaquette pairing pattern, as is also noticeable from Eq. 4.21 considering the

fact that

∆̃x2 < ∆̃homo < ∆̃x1

or the other way around. For example at about 20% doping, the enhanced ODLRO is more

than 3 times of the homogeneous ODLRO (optimal ∆̃homo ≈ 0.3 at 20% doping). Why

the plaquette pairing pattern would enhance the superconductivity might be explained if not

fully in a recent publication (94). The authors suggest that, within the weak coupling BCS

theory framework, superconductivity would be enhanced if the spacial characteristic length,

L, is comparable to superconducting coherence length, ξ, because the enhanced electron pairs

would then tunnel most efficiently between the nearby superconducting islands. In my case, L

is the distance between two nearby pairing plaquettes, which equals one lattice constant, and ξ

is also about one lattice constant. Thus these two length scales satisfy the condition proposed

in the reference.
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As some further discussions, the ODLRO from the current RVB wavefunction is about 10%

of that of the unprojected BCS wavefunction using the same set of variational parameters.

Secondly, the mean field transitional temperature, T ∗, can be estimated as

T ∗ '
√

t |Eplaquette −Enoninteracting| ' 0.3t (4.22)

if the normal state entropy is S ' T/t and the mean field T ∗ of a 2-D model yields a rough

estimate for an anisotropic 3-D material. By considering that the actual transition temperature

would be reduced by fluctuations and strong correlation effects, Tc ' T ∗/10 is of several Kelvins

at best.

Let us go back to the previous question, what would be the characteristics of the electron

doped SS lattice? Would it still be an insulator considering that it shares so many similar

features with its parent compound? These include, for example, existence of multiple minima

close in energy, enhanced effective diagonal hoppings, similarity in the magnetic correlation

pattern and the vanishing ODLRO. However, the calculation on the low frequency Drude

weight, Dlow, whose static version is directly related to the conductivity, shows that this is

not the case. Actually Dlow is even bigger than that for the hole doped material of same

hole concentration, which is known to be a superconductor. The doping dependence of Drude

weight is shown in Fig. 4.10. For the electron doped case, it seems to satisfy

Dlow ' 3.18δet (4.23)

at small doping concentration, where δe is the electron doping concentration and t is the bare

lateral hopping as the energy unit. Thus the electron doped material is concluded to be a

strongly correlated metal.

Finite size effects and some remarks Due to the large amount of computational

time involved in the simulation, the finite size effect is not completely checked. Alternatively,

the plaquette phase is verified to remain a local minimum on the 18 × 18 lattice. Then, the

ODLRO was calculated on larger lattice sizes by using the same optimal parameters found

on the 12 × 12 lattice. The calculations are shown in Fig. 4.11 for 10% doping. From the
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Figure 4.10 Low frequency Drude weight vs. doping. For small doping in
the electron doped case, Dlow ' 3.18δet. For small doping in
the hole doped case, Dlow ' 2.9δht.

plot, only a tiny dependence on the lattice size is found for the ODLRO. This fact can be

understood if the electron pairing wavefunction is of short range in space and thus can barely

feel the lattice boundary. This is consistent with the fact that the ODLRO stabilizes within a

very short separation between two singlets. Thus, it is summarized that the existence of the

plaquette phase for the hole doped case argues robustly against the finite size effect.

There are several things which need comments or further work. There is a sharp contradic-

tion between the current prediction and the only experimental result in Ref. (70). I would not

worry too much about the hole doped case since the energy gain is huge between the plaquette

phase and the noninteracting phase, although its vulnerability against possible distortion and

impurities in the CuBO3 plane is still unclear in this study. However, the electron doped case

causes more concerns because of its close similarity to the parent compound. The sudden losing

of the insulating behavior as electrons are added into the system is pretty annoying although

this is not in principle forbidden. However, the experimental insulating behavior against the
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Figure 4.11 Shown here is the size dependence of the enhanced and the
weakened ODLRO evaluated using the same set of parame-
ters under different hole concentrations. From the plot, it is
obvious that the ODLRO is much weakly size dependent.

predicted metallic state for finite doping can be explained by Anderson’s argument with the

impurities and lattice distortion which are introduced inevitably during the doping process

(95). One might also suppose the electron doped system may be involved with other degrees

of freedom which cannot be, or have not been, addressed by the current wavefunction.

One candidate among other possible degrees of freedom is the spin degree’s freedom. The

spontaneous magnetization cannot be addressed by the current RVB wavefunction. However,

a slightly doped system is potentially able to develop finite magnetization (96). Maybe this is

also the case for the electron doped case, which would mean that the conclusions developed

here are not related with the experiment. However, the exact diagonalization study of doping

with one electron on a small lattice seems to show that finite magnetization might not be the

case here (68).

Another choice is to consider other spontaneous symmetry breaking phases, for example,

the flux phase defined as

t̃ij =
∣∣t̃ij

∣∣ eθij and ∆̃ij ∈ R
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Figure 4.12 Flux phase, θ, dependence of total energy is shown for 5%
electron doping. Starting with optimal parameters found for
θ = π/4, minimization is carried out on θ with other param-
eters fixed at the optimal values. The curve obviously shows
that π/4 flux phase is not energetically favored.

where θij denotes any phases accompanying the effective hopping. What have been considered

so far correspond to the zero flux phase. For the half-filled case, the flux phase is degenerate

to some phase with complex pairing strength. But this equivalence doesn’t hold if doping is

introduced (97). The main focus here is on the π flux phase defined by

θij =
π

4
(4.24)

in order to gain an additional phase factor of π for an electron to move around the four edges

of any smallest square on the SS lattice. This is because some mean field theory work has

predicted its existence within doping range of 0.023 ∼ 0.12 (67). In the current simulation,

5% doping was chosen and θ was changed continuously while all the other parameters are kept

at the optimized values for the π flux phase. The results are shown in Fig. 4.12 and indicate

that a vanishing flux phase is very much preferred.
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4.3 Slave Boson mean field treatment

Slave-Boson mean field theory has also applied to the doped SS lattice. Several predictions

have been made, including singlet dimer d-wave pairing state (61), π-flux phase (67), etc. The

numerical simulation, however, has disapproved the π−flux phase and shows that it is not

even a local energy minimum. The next comparison should be the plaquette pairing state for

the hole doped case, which is a very important conclusion readily predicted from the current

variational study but not found in any mean field treatments. However, this might be due to

the fact that the choice of such a state has been pre-excluded from the mean field studies by

defining homogeneous pairings to start with (61). Here, an explicit check of such a plaquette

state is carried out to help better clarify the inconsistencies between these two approaches.

By adapting conventions and notations from (61) and closely following derivations there,

the t− J Hamiltonian expressed in Eq. 4.3 gives the following grand canonical ensemble free

energy for zero temperature

F = N

[
J

(∣∣∣∆̃x1

∣∣∣
2
+

∣∣∣∆̃y1

∣∣∣
2
+

∣∣∣∆̃x2

∣∣∣
2
+

∣∣∣∆̃y2

∣∣∣
2
)
− 2 (µ0 + µ1) +

J ′

2

(∣∣∣∆̃x−y

∣∣∣
2
+

∣∣∣∆̃x+y

∣∣∣
2
)]

−
∑

k,εi

εi (k) θ (εi (k)) (4.25)

where N denotes total number of unit cells on the lattice, εi (k) denotes positive eigenvalues

calculated from the mean field Hamiltonian Hm, whose details can be found in Ref. (61), and

the indication function θ (x) is defined as

θ (x) =





0 for x < 0

1 for x > 0
. (4.26)

∆̃ and µi are referred to Fig. 4.1. Here µi are used to give more freedom to adjust the charge

density on the lattice and the following restrictions

µ0 = µ2, µ1 = µ3 (4.27)

are applied in the above derivation.



96

A Legendre transformation is further applied to switch the free energy, F, into the canonical

ensemble as

Fcan = F + 2
∑

i=0,1

Nµi (4.28)

where N = −1
2

∂F

∂µi

∣∣∣∣
∆̃

. A minimization procedure is then applied onto Fcan to get the optimal

values for the relevant parameters. It immediately turns out that

µ0 = µ1

assuming no charge inhomogeneity in the problem. At the same time, by defining δe and δh

to be the electron and hole doping concentrations, the results are shown in Fig. 4.13 which

clearly shows nonexistence of plaquette phases.

Although for a t − J Hamiltonian both methods give qualitatively consistent conclusions

on a square lattice (17)(98), this doesn’t seem to be the case on the SS lattice. A comparison

indicates that the major conclusions from the mean field theory cannot be reproduced in the

variational treatment, and vice versa. Additionally, this difference should not be attributed to

the three-site hopping term ignored from Eq. 4.3 yet included in the simulation because this

effect should be tiny for the case of small amounts of doping. As has been mentioned at the

beginning of this chapter, we have more confidence in the results of the projected wavefunction

as it better addresses the physics involved on the SS lattice, and it is able to give the exact

ground state at zero doping. The totally different behaviors coming out of both approaches

implies that the omitted quantum fluctuations in the mean field theory actually play a very

important role in producing the correct physics for the doped SS lattice.
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Figure 4.13 Results from the slave-boson mean field calculation are shown
in this plot to check the existence of a plaquette d-wave pairing
pattern for both doping cases. The solid curves are extracted
from ref (61) with the plaquette phase turned off, while the
dotted curves are results from the current simulation with the
option turned on. The differences on several doping values
between the calculation and the reference are checked to be
due to either the finite size effect or existence of multiple local
minima.
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CHAPTER 5. Summary

In this thesis, the question studied was how the strong electron-electron (e-e) interaction

and the existence of geometric frustration affect the physical properties of two materials, κ−
(ET)2 Cu2 (CN)3 and SrCu2 (BO3)2, by using the Resonating Valence Bond (RVB) theory.

Strong e-e interaction and its related physics have been the focus of research in condensed

matter physics for quite a long time. Among them are the Mott insulating and unconventional

superconducting phenomena. A Mott insulator is such a material that would otherwise be

predicted as a metal by the band theory, and is described well by the Hubbard model, the

simplest model to describe strong e-e interaction in narrow band materials. An unconventional

superconductor would have its pairing gaps to be anisotropic in real space, and thus cannot be

explained by the conventional BCS theory. The proximity between these two states revealed in

different experiments leads physicists to believe that deeper understanding of a Mott insulator

might shed light on better interpretation on the unconventional superconductivity. Yet so far

the relevant mechanisms are still under heavy debate. One major concern is whether the Mott

insulator itself is relevant to the unconventional superconductivity, or the magnetic ordering

which usually exists in the Mott insulating state plays the role, or both are equally important.

This problem has been sharpened recently by the discovery of κ − (ET)2 Cu2 (CN)3 with

Tc ≈ 13.5K. What is peculiar with this material is the existence of a nonmagnetic insulating

ground state with gapless excitations. It can be tuned into a superconducting state with d-

wave pairing under pressure. This feature prompts us to make use of the RVB picture to try

to describe the physics involved because the picture contains the nonmagnetic ordering and

the electron pairing in a natural way. Meanwhile, another material, SrCu2 (BO3)2 , attracts

our attention because it has just been experimentally proved to have an isolated spin singlet
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ground state. Under the RVB theory, the preformed pairing singlets would move upon doping

and might give rise to superconductivity. This very interesting aspect of the RVB theory can

thus be explicitly checked on this material. On the other hand, the material is close to quantum

instability and thus rich physics are expected upon doping. Besides the strong e-e interaction,

these two materials share one more thing in common that they are both of quasi-2 dimensional

material.

As is mentioned above, the simplest model to describe the strong e-e interaction is the

Hubbard model with nearby hopping amplitude, t, and strong on-site repulsion U . The large

U limit gives the t − J Hamiltonian where a virtual process takes place to exchange two

electrons of opposite spins. This quick process has a bound doublon (doubly occupied site)

-holon (empty site) state as its intermediate state and develops an energy gain of the order of

t2/U . Both of these two Hamiltonians are relevant in this work. A Hubbard model describes

κ − (ET)2 Cu2 (CN)3 with intermediate onsite repulsion U and strong diagonal hopping t′,

while a t− J Hamiltonian describes SrCu2 (BO3)2 with the existence of specific next nearest

neighbor exchange interactions.

The trial wavefunction is generically a RVB state,

|ΨRV B〉 = P̂ |ΦBCS〉 (5.1)

where P̂ introduces into the system effects resulting from specific e-e interaction relevant to

different problems, and |ΦBCS〉 is the specific underlying wavefunction to contain singlet pair-

ing and nonmagnetic ordering. To κ− (ET)2 Cu2 (CN)3 , P̂ includes a Gutzwiller projection,

with parameter g, to account for the single occupation effects due to the large U and a Ka-

plan projection, with parameter h, to include the intermediate doublon-holon binding effects

responsible for the t − J physics. The underlying wavefunction is the usual single band BCS

wavefunction. Explicitly, they are

P̂ =
∏

i

gD̂ihΘ̂i (5.2)

|ΦBCS〉 ∝
(∑

k

φkc†k,↑c
†
−k,↓

)N

|0〉 . (5.3)
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In case of SrCu2 (BO3)2 , P̂ is the full Gutzwiller projection to exclude electronic configura-

tions with any doublons on them. The underlying wavefunction is now the multiband BCS

wavefunction. Explicitly,

P̂ =
∏

i

(
1− D̂i

)
(5.4)

|ΦBCS〉 ∝

 ∑

n,n′,k

hn,n′ (k) c†n,k,↑c
†
n′,−k,↓




N

|0〉 . (5.5)

The necessary explanation of the notations can be found in chapter 2.

The variational parameters are contained in both P̂ and |ΦBCS〉 . The quantity to optimize

the wavefunction is the energy expectation

〈E〉 =
〈ΨRV B| Ĥ |ΨRV B〉
〈ΨRV B|ΨRV B〉 (5.6)

which can be re-expressed in statistical language as a mean of some local energy with a specific

distribution function closely related to |ΨRV B〉. The Metropolis algorithm is used to generate

the distribution in the 2N dimensional discrete lattice space. It is also used to locate energy

minimum in the variational phase space. A simple yet very efficient algorithm is introduced to

help generate the distribution and improve the simulated annealing algorithm.

For the organic superconductor, κ− (ET )2 Cu2 (CN)3 , here is the summary of the major

results.

• The overall phase diagram was determined as a function of the onsite repulsion U .

Around Uc1 ≈ 8.5, there exists a strong d-wave superconducting state sandwiched be-

tween a metallic state and a spin liquid state. The transition is sharp from the super-

conducting state to the metallic state, but is smooth to the spin liquid state. This is

in qualitative agreement with experiments yet the trend is opposite. The difference has

been identified to be due to the same treatment to doublon holon binding in all directions

in real space.

• A d-wave pairing state quickly develops as U increases beyond Uc1 . As U passes over

Uc2 ≈ 9.0, the system enters a spin liquid state where the t−J physics plays a more and
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more important role. The tiny yet finite ODLRO there is believed to be an artifact of

the trial wavefunction itself.

• At U ≈ Uc1 , the excitation spectrum begins to deviate from the bare dispersion. This is

thought to be caused by absorbing the strong onsite repulsion into quasiparticles. The

resulting deviation becomes more serious as U increases even further. The excitation

spectrum is reformed to be more symmetric in momentum space, which is also sup-

ported by the charge density nk. This effect is thought to partially contribute to the

unconventional superconducting behavior.

• The spacial dependence of the magnetic correlation is dramatically different between the

metallic state and the spin liquid state. This difference can be explained by the strong

deformation on the excitation spectrum of the quasiparticles. Especially, the reduced

effective diagonal hoppings in the spin liquid state readily give very similar magnetic

correlation along the two diagonal directions.

For SrCu2 (BO3)2 , here is the summary of the major conclusions.

• The trial RVB wavefunction constructed from the multiband BCS wavefunction is able

to give the exact ground state energy for the undoped system. This shows that the

wavefunction is able to capture the physics coming from the specific lattice structure. It

implies that the current approach is particularly well controlled for small doping.

• By fitting a tight binding model to a first principle calculation of the band structure

coming out of the actual material, the signs of the bare hoppings are identified: t′ > 0,

yet the sign of t is irrelevant.

• Because the t− J Hamiltonian for this material suppresses completely doubly occupied

sites, electron doping cannot be trivially treated by adding more electrons into the system.

A specific particle-hole transformation is introduced to show that the electron doped case

can be equivalently mapped to a hole doped problem whose t′ is opposite to that of the

actual lattice.
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• Nearly homogeneous charge distribution is found on the lattice for both doping cases.

This is supported by a charge inhomogeneity of 0.1%. This is also reassuring and allows

one to ignore the Coulomb interaction between nearby sites out of the model Hamiltonian.

However for the hole doped case, the variational chemical potentials are significantly

different within a unit cell. Together with the similar trend expected for a true chemical

potential as doping increases, this shows that the variational chemical potentials are not

the true chemical potential but are related to it.

• Dramatically different physics are found between both doping cases. This is understand-

able by noticing that t′ is the dominant energy scale in the problem. The electron or

hole doping literally corresponds to results with different sign in t′.

• In the hole doped system, many physical quantities support a possible existence of a phase

transition around δc
h = 2.5%. For δ > δc

h, they support the existence of the plaquette

d-wave pairing state where the strongest pairings are around unit cells with reduced

effective diagonal hoppings inside. This strongly supports the idea that the electrons

totally re-organize themselves to delocalize along the lateral directions. This is totally

different from the observed behavior in the parent compound.

• In the hole doped system, the ODLRO is strongly enhanced due to the plaquette pairing

pattern as compared to the state with homogeneous d-wave pairing. This is partially

understood by the efficient tunnelling of electron pairs between nearby enhanced su-

perconducting islands when the coherence length is comparable to the inhomogeneity

distance, which is the case here.

• In the hole doped system, the magnetic correlation is very similar to that of the parent

compound for small amounts of doping, then it dramatically changes to be antiferromag-

netic to all the nearest and next nearest neighboring sites as doping increases. Among

those neighboring sites, the nearest ones along the x and y axes are stronger. This

magnetic correlation pattern is readily understood from the plaquette d-wave pairing

pattern.
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• The existence of multiple local energy minima affects the analysis for both doping cases.

But it affects more in the case of electron doped systems because these minima are close in

energy. However, very strangely, these minima all give very similar physical observables.

• In the electron doped system, effective diagonal hoppings are strongly enhanced as com-

pared to the bare hopping parameters. This is understood to show that electrons still

have the tendency to be localized along the diagonal bonds. But it is not as strong as

the undoped material.

• In the electron doped system, the pairing strengths are different for different local minima.

Nonetheless, they all give a vanishing ODLRO within an error of 10−4. Meanwhile, the

low frequency Drude weight, Dlow, is calculated and shows that the electron doped system

is conducting. Together with the significant magnetic correlations along specific diagonal

directions, this shows that the electron doped material is a strange metal if not due to

an artifact of the wavefunction.

• In the electron doped system, the magnetic correlation is very much like that of the

parent compound. This, together with the doping dependence of χ0,x, implies that the

singlets along specific diagonal directions are still responsible in majority for the electron

doped material. The doublons are scattered around the system, isolated from each other.

• Slave Boson mean field treatment is carried out on this system with the option of plaque-

tte pairing being enabled. The optimization automatically gives the diagonal pairings as

the most significant pairings for both doping cases. This is totally inconsistent with the

current simulation. Another contradiction between both approaches is the existence of

the π flux phase in the electron doped case. The mean field study predicted it while the

current study disapproves it. Considering that the current RVB state treats the strong

e-e interaction physics correctly, and reproduces the exact ground state in the parent

compound, the current simulation is believed to be more reliable than the slave boson

mean field treatment. This implies that the quantum fluctuation ignored in the mean

field treatment is very important in capturing the correct physics of SrCu2 (BO3)2 .
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APPENDIX A. Multiband BCS pairing amplitude in momentum space

In this appendix, it contains a detailed derivation of the multiband BCS pairing amplitude

in momentum space. The validity of the obtained result can be seen by collapsing to the

standard BCS pairing amplitude when each unit cell becomes simple. The derivation is not

confined to specific unit cell structure. Different unit cells would only change the matrices

for T and D to be explained shortly. The Hamiltonian to start with is the standard t − J

Hamiltonian, which contains singlet pairing in a natural way.

The major steps are outlined here. First, mean field decoupling is applied to the interacting

t−J Hamiltonian in real space. Then diagonalization of the mean field decoupled Hamiltonian

gives the annihilation operators for the problem. Next, an explicit expression is guessed for the

ground state wavefunction and the annihilation operators are required to make it vanishing.

This finally gives the expression for the pairing amplitude in momentum space. The following

is a detailed account of the derivation on the SS lattice, yet the extension to other lattice is

straightforward.

t − J Hamiltonian and its mean field decomposition On the SS lattice, t − J

Hamiltonian can be written as, with all indices written out explicitly,

Ĥt−J = Ĥk + Ĥ ′

= −
∑

Ri,Rj ;rα,rβ

t
rα,rβ

Ri,Rj
c̃†Ri,rα;σ c̃Rj ,rβ ;σ

+
∑

Ri,Rj ;rα,rβ

J
rα,rβ

Ri,Rj

(
Ŝrα

Ri
· Ŝrβ

Rj
− nRi,rαnRj ,rβ

4

)
(A.1)
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where c̃i,σ = ci,σ (1− ni,σ̄) and t
rα,rβ

Ri,Rj
, J

rα,rβ

Ri,Rj
are defined along specific links between two sites.

Specifically,

t
rα,rβ

Ri,Rj
= t and J

rα,rβ

Ri,Rj
= J

if (Ri, rα) , (Rj , rβ) are nearest neighbor sites and

t
rα,rβ

Ri,Rj
= t′ = αt and J

rα,rβ

Ri,Rj
= J ′ = α2J

if (Ri, rα) , (Rj , rβ) are next nearest neighbor sites. The Ŝ is the spin operator in the fermionic

representation and is defined as

Ŝi =
1
2

∑

σ,σ′
c†iστσ,σ′ciσ′ (A.2)

where τ are the Pauli matrices. Other related spin operators are defined as

S†i = Si,x + iSi,y = c†i,↑ci,↓ =
(
S−i

)† (A.3)

Si,z =
1
2

(ni,↑ − ni,↓) (A.4)

Before the Fourier transformation is carried out on particle operators, some notations are

listed below if only brief.

• Unit lattice constant, a, is assumed to be 1, thus unit length of the corresponding Bravais

lattice is A = 2a = 2.

• Unit vectors of the lattice are denoted as x̂, ŷ and |x̂| = |ŷ| = a = 1. Vectors between the

nearest neighbors on the Bravais lattice are denoted as X̂, Ŷ with
∣∣∣X̂

∣∣∣ =
∣∣∣Ŷ

∣∣∣ = 2a = 2.

• The x and y components of quasimomenta are defined as kX/Y =
2nπ

NA
=

nπ

Na
for n =

0, 1, 2, ...N − 1.Thus k · x̂ = kx while k · ~X = 2kx.

• Atomic indices in the unit cell is labeled by 0, 1, 2, 3 with 0 at the left lower corner, 1 at

the right lower corner, 2 at the left upper corner and 3 at the right upper corner. The

existing diagonal hopping is from site 0 of the current unit cell to site 3 of the unit cell

to the right.
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The Fourier transformation is defined as

ak,r;σ =
1√
N

∑

Ri

cRi,r;σeik·(Ri+δr) ⇔ cRi,r;σ =
1√
N

∑

k

ak,r;σe−ik·(Ri+δr). (A.5)

Here r ∈ {0, 1, 2, 3} as site label, N denotes number of unit cells on the Bravais lattice and δr

is any additional phase factor to each site, which is introduced for convenience. The kinetic

term of Ĥt−J , Ĥk, can be re-expressed as

Ĥk = −
∑

k,σ

Ψ†
σ (k)T (k, δ)Ψσ (k) (A.6)

with

Ψσ (k) =




a0,σ (k)

a1,σ (k)

a2,σ (k)

a3,σ (k)




(A.7)

and

T (k, δ)

= t




0 $01

(
1 + eik·X)

$02

(
1 + eik·Y )

α$03e
ik·X

$10

(
1 + e−ik·X)

0 α$12e
ik·Y $13

(
1 + eik·Y )

$20

(
1 + e−ik·Y )

α$21e
−ik·Y 0 $23

(
1 + eik·X)

α$30e
−ik·X $31

(
1 + e−ik·Y )

$32

(
1 + e−ik·X)

0




(A.8)

where $ij = eik·(δi−δj) is introduced to shorten the expression. By choosing zero phase con-

vention

δ0 = δ1 = δ2 = δ3 = 0,

T (k, δ) would be

T (k) = t




0 1 + eik·X 1 + eik·Y αeik·X

1 + e−ik·X 0 αeik·Y 1 + eik·Y

1 + e−ik·Y αe−ik·Y 0 1 + eik·X

αe−ik·X 1 + e−ik·Y 1 + e−ik·X 0




(A.9)
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and by choosing symmetric phase convention

δ0 = 0, δ1 = x̂, δ2 = ŷ, δ3 = x̂ + ŷ,

T (k, δ) would be

T (k) =




0 2t cos kx 2t cos ky t′ei(kx−ky)

2t cos kx 0 t′ei(kx+ky) 2t cos ky

2t cos ky t′e−i(kx+ky) 0 2t cos kx

t′e−i(kx−ky) 2t cos ky 2t cos kx 0




(A.10)

The interacting term, Ĥ ′, is chosen to be decomposed in the pairing channel in the mean

field treatment. By making use of the fermionic representation for spin operators in Eq. A.2,

it is not hard to check that Ĥ ′ can be re-expressed as a direct product of two singlet operators

Ĥ ′ =
∑

Ri,Rj ;rα,rβ

J
rα,rβ

Ri,Rj

(
Ŝrα

Ri
· Ŝrβ

Rj
− nRi,rαnRj ,rβ

4

)

=
∑

Ri,Rj ;rα,rβ

J
rα,rβ

Ri,Rj

(
−1

2
B†

(Ri,rα),(Rj ,rβ)
B(Ri,rα),(Rj ,rβ)

)
(A.11)

with

B(Ri,rα),(Rj ,rβ) = c̃Ri,rα;↓c̃Rj ,rβ ;↑ − c̃Ri,rα;↑c̃Rj ,rβ ;↓ (A.12)

B†
(Ri,rα),(Rj ,rβ)

= c̃†Rj ,rβ ;↑c̃
†
Ri,rα;↓ − c̃†Rj ,rβ ;↓c̃

†
Ri,rα;↑ =

(
B(Ri,rα),(Rj ,rβ)

)†
. (A.13)

where (Ri, rα) 6= (Rj , rβ) is assumed. Now introduce mean field pairing as

〈
B(Ri,rα),(Rj ,rβ)

〉
=





∆x if (Ri, rα)− (Rj , rβ) = x̂

∆y if (Ri, rα)− (Rj , rβ) = ŷ

∆x+y if (Ri, rα)− (Rj , rβ) = x̂ + ŷ

∆x−y if (Ri, rα)− (Rj , rβ) = x̂− ŷ

, (A.14)

and drop the single occupation restriction on each site and possible constant energy term, and

I get

Ĥ ′ = −
∑

Ri,Rj ;rα,rβ

J
rα,rβ

Ri,Rj

2

〈
B(Ri,rα),(Rj ,rβ)

〉∗ (
cRi,rα;↓cRj ,rβ ;↑ − cRi,rα;↑cRj ,rβ ;↓

)
+ h.c., (A.15)
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the Hamiltonian decomposed in the singlet pairing channel. The Fourier transformation in Eq.

A.5 can be further applied onto the above expression and gives, in the matrix notation,

Ĥ ′ = −
∑

k

(
ΨT
↓ (−k) D† (k)Ψ↑ (k) + h.c.

)
(A.16)

with

D (k, δ)

=
J

2




0 ∆x$01ΘX ∆y$02ΘY α2∆x−y$03e
ik·X

∆x$10Θ∗
X 0 α2$12∆x+ye

ik·Y ∆y$13ΘY

∆y$20Θ∗
Y α2∆x+y$21e

−ik·Y 0 ∆x$23ΘX

α2∆x−y$30e
−ik·X ∆y$31Θ∗

Y ∆x$32Θ∗
X 0




where Θδr = 1 + eik·δr with the same $ij used here. By choosing zero phase convention

δ0 = δ1 = δ2 = δ3 = 0,

D (k, δ) would be

D (k) =
J

2




0 ∆x

(
1 + eik·X)

∆y

(
1 + eik·Y )

α2∆x−ye
ik·X

∆x

(
1 + e−ik·X)

0 α2∆x+ye
ik·Y ∆y

(
1 + eik·Y )

∆y

(
1 + e−ik·Y )

α2∆x+ye
−ik·Y 0 ∆x

(
1 + eik·X)

α2∆x−ye
−ik·X ∆y

(
1 + e−ik·Y )

∆x

(
1 + e−ik·X)

0




(A.17)

and by choosing symmetric phase convention

δ0 = 0, δ1 = x̂, δ2 = ŷ, δ3 = x̂ + ŷ,

D (k, δ) would be

D (k) = J




0 ∆x cos kx ∆y cos ky
α2

2
∆x−ye

iθ−

∆x cos kx 0
α2

2
∆x+ye

iθ+ ∆y cos ky

∆y cos ky
α2

2
∆x+ye

−iθ+ 0 ∆x cos kx

α2

2
∆x−ye

−iθ− ∆y cos ky ∆x cos kx 0




(A.18)

with θ± = kx ± ky.
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When both Ĥk and Ĥ ′ are summarized here together with the chemical potential to each

site, the final mean field Hamiltonian is obtained in matrix notation,

Ĥmf = −
∑

k

(
Ψ†
↑ (k) ΨT

↓ (−k)

)



Tµ (k) D (k)

D† (k) −T T
µ (−k)







Ψ↑ (k)
(
ΨT
↓ (−k)

)†




= −
†∑

k

ª† (k) Hmª (k) (A.19)

where

ª (k) =




Ψ↑ (k)
(
ΨT
↓ (−k)

)†


 (A.20)

and

Tµ (k) = T (k) +




µ0 0 0 0

0 µ1 0 0

0 0 µ2 0

0 0 0 µ3




(A.21)

Quasiparticle creation/annihilation operators from Hmf and guessed ground

state wavefunction To be physically transparent for inter- and intra-band pairing, it is

preferred to transform Ĥmf into the band⊕momentum representation. The band representa-

tion is obtained by diagonalizing T (k) with a unitary matrix W (k)

W † (k) T (k) W (k) =




ε0 0 0 0

0 ε1 0 0

0 0 ε2 0

0 0 0 ε3




= E (k) (A.22)

with

W † (k) W (k) = I4×4. (A.23)

By defining the band representation to be

bk,n;σ =
m−1∑

r=0

w∗r,n (k) ak,r;σ =
1√
N

m−1∑

r=0

∑

Ri

w∗r,n (k) cRi,r;σeik·(Ri+δr) (A.24)
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for n = 0, ..., m − 1 with m = 4, four atoms in each unit cell, Ĥmf can be written in the

band⊕momentum representation as

Ĥmf = −
∑

k

(
Y †
↑ (k) Y T

↓ (−k)

)



TW,µ (k) DW (k)

D†
W (k) −TW,µ (−k)







Y↑ (k)
(
Y T
↓ (−k)

)†


 (A.25)

with Yσ (k) defined similarly as

Yσ (k) =




b0,σ (k)

b1,σ (k)

b2,σ (k)

b3,σ (k)




= W † (k)Ψσ (k) (A.26)

and

TW,µ (k) = W † (k) T (k) W (k) (A.27)

DW (k) = W † (k) D (k) W ∗ (−k) . (A.28)

Let us suppose that Hmf can be diagonalized by a unitary matrix

U (k) =




û† ŵ

−v̂† κ̂


 (k) (A.29)

where û, v̂, ŵ, κ̂ are m×m matrices, such that

U †HmfU =




Emf > 0 0

0 −Emf < 0


 , (A.30)

where Emf is a real positive diagonal matrix. The existence of these paired eigenvalues is

mentioned in Ref. (61) in terms of sympletic matrices. Then U gives quasiparticle cre-

ation/annihilation operators

Z (k) =




zi (k)
(
zT
j (−k)

)†


 =




û −v̂

ŵ† κ̂†







Y↑ (k)
(
Y T
↓ (−k)

)†


 (A.31)

or explicitly

zt=0,1,..,m−1 (k) =
m−1∑

n=0

(
ût,n (k) bn;↑ (k)− v̂t,n (k) b†n;↓ (−k)

)
(A.32)

zt=m,m+1,...,2m−1 (−k) =
m−1∑

n=0

(
ŵn,t−mb†n;↑ (k) + κ̂n,t−mbn;↓ (−k)

)
. (A.33)
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It is noticeable that annihilation operators are related with positive eigenvalues. This is because

a creation operator for quasiparticles should satisfy

[
Hmf , z†

]
= Ωz† (A.34)

with Ω > 0.

But applying Z† (k) onto |0〉 , the electron vacuum state, would not give the expected

ground state for the quasiparticles although Z† (k) is still fermionic. This is because it contains

annihilation operators for electrons and thus the resulting state is ill-defined. In order to get the

ground state for Hmf , an appropriate functional form needs to be guessed and then vanishes

by letting Z (k) act on it. This, following the derivation of the single band BCS wavefunction

(99), is guessed to be

∣∣∣ψtrial
〉
∝ exp


 ∑

n1,n2,k

hn1,n2 (k) b†n1,↑ (k) b†n2,↓ (−k)


 |0〉 (A.35)

∝
∏

n1,n2;k

(
1 + hn1,n2 (k) b†n1,↑ (k) b†n2,↓ (−k)

)
|0〉 , (A.36)

where hn1,n2 (k) defines the pairing amplitude between electrons of opposite spins at (n1,k)

and (n2,−k) . By choosing the wavefunction this way, intra- and inter-band pairings are delt

with on the same footing as long as n denotes band index. However, the nature of the pairing

cannot be determined at the time although it is presumably a spin singlet.

pairing amplitude in momentum space The guessed multiband BCS wavefunction

in Eq. A.35 can be written as
∣∣∣ψtrial

〉
∝

∞∑

n=0

φ̃n

n!
|0〉 (A.37)

with

φ̃ =
∑

k,n1,n2

hn1,n2 (k) b†k,n1,↑b
†
−k,n2,↓. (A.38)

By direct calculation, it can be verified that

[
bk,n,↑, φ̃

]
= g†k,n,↓ (A.39)
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with operator

g†k,n,↓ =
∑
n2

hn,n2 (k) b†−k,n2,↓ (A.40)

which obviously obeys
[
g†k,n,↓, φ̃

]
= 0. Apply bk,n,↑ to each term in the sum of Eq. A.37 and I

can get

bk,n,↑φ̃ |0〉 = g†k,n,↓ |0〉 (A.41)

bk,n,↑φ̃2 |0〉 = g†k,n,↓φ̃ |0〉+ φ̃bk,n,↑φ̃ |0〉 = 2φ̃g†k,n,↓ |0〉 (A.42)

...

bk,n,↑φ̃n |0〉 = nφ̃n−1g†k,n,↓ |0〉 . (A.43)

This result allows to resum the series Eq. A.37 and it gives

bk,n,↑
∣∣∣ψtrial

〉
= g†k,n,↓

∣∣∣ψtrial
〉

. (A.44)

The condition zt (k)
∣∣ψtrial

〉
= 0, t = 0, 1, ..., m− 1, can then be written as

m−1∑

n=0

m−1∑

n′=0

ût,n′ (k) hn′,n (k)
(
b†−k,n,↓

∣∣∣ψtrial
〉)

−
m−1∑

n=0

v̂t,n (k)
(
b†−k,n;↓

∣∣∣ψtrial
〉)

= 0 (A.45)

or equivalently
m−1∑

n′=0

ût,n′ (k) hn′,n (k) = v̂t,n (k) . (A.46)

In matrix notation this implies immediately

% = û−1 · v̂. (A.47)

Similarly I can introduce

j†−k,n;↑ = −
∑
n1

hn1,n (k) b†k,n1,↑ (A.48)

which satisfies

[
b−k,n;↓, φ̃

]
= j†−k,n;↑ (A.49)

[
j†−k,n;↑, φ̃

]
= 0. (A.50)
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Apply b−k,n;↓ to each term in the sum of Eq. A.37 and I can get

b−k,n;↓φ̃ |0〉 = j†−k,n;↑ |0〉 (A.51)

b−k,n;↓φ̃2 |0〉 = 2j†−k,n;↑φ̃ |0〉 (A.52)

... (A.53)

b−k,n;↓φ̃n |0〉 = nj†−k,n;↑φ̃
n−1 |0〉 , (A.54)

or equivalently

b−k,n;↓
∣∣∣ψtrial

〉
= j†−k,n;↑

∣∣∣ψtrial
〉

. (A.55)

The condition zt (k)
∣∣ψtrial

〉
= 0, t = m,m + 1, ...2m− 1 can then be written as

zt=m,...,2m−1 (−k)
∣∣∣ψtrial

〉
=

m−1∑

n=0

(
ŵn,t−mb†n;↑ (k)

∣∣∣ψtrial
〉

+ κ̂n,t−mbn;↓ (−k)
∣∣∣ψtrial

〉)
(A.56)

= 0 (A.57)

and it results in

m−1∑

n=0

ŵn,t−mb†k,n;↑
∣∣∣ψtrial

〉
+

m−1∑

n=0

κ̂n,t−mj†−k,n;↑
∣∣∣ψtrial

〉
= 0, (A.58)

or
m−1∑

n=0

(
ŵn,t−m −

m−1∑

n′=0

κ̂n′,t−mhn,n′ (k)

)
b†k,n,↑

∣∣∣ψtrial
〉

= 0. (A.59)

This gives

ŵn,t−m =
m−1∑

n′=0

κ̂n′,t−mhn,n′ (k) , (A.60)

or in matrix notation

% = ŵ · κ̂−1 (A.61)

To have an existing pairing between two electrons, it is required that Eq. A.47 equals Eq.

A.61, or

v̂ · κ̂ = û · ŵ. (A.62)

This is numerically verified to be the case on the SS lattice.
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Discussion

• ŵ · κ̂−1 type structure of the pairing amplitude % removes freedom coming from the

choices of the unitary transformation to diagonalize Hk. This feature is conceptually very

important since physics should not depend on specific unitary transformation involved

in the calculation.

• Singlet pairing nature requires

hn1,n2 (k) = hn2,n1 (−k) (A.63)

from the fact that spacial wavefunction of a singlet should be even by exchanging two

electrons. This should be automatically satisfied since the decoupling of the interacting

Hamiltonian is done in the singlet channel.

• By setting ∆ → 0, hn1,n2 (k) reaches the correct limit of infinity when both (n1,k) and

(n2,k) are occupied and 0 when either of them are left empty.

• In case of single band pairing, T (k) and D (k) are now scalars such that Hmf can be

simply written as

Hmf (k) =




ε (k) ∆ (k)

∆∗ (k) −ε (k)


 . (A.64)

This is exactly the mean field Hamiltonian used to treat single band BCS theory. This

implies the current multiband BCS wavefunction is able to reach the correct single band

limit.
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APPENDIX B. Real space projection of the multiband BCS wavefunction

The real space projection of the multiband BCS wavefunction is useful in applying Monte

Carlo method to evaluate different physical observables. Meanwhile it also enables the extrac-

tion of the spacial pairing wavefunction between two electrons of opposite spins and momenta.

However, the calculation is tedious and cumbersome, and is complicated by the involvement

of big unit cells. Thus it is better to first fully analyze the procedure on the single band BCS

wavefunction to gain necessary insights. It is realized that two crucial conditions are needed

in expressing the real space projection as a single Slater determinant. When the real space

projection is applied to the multiband BCS wavefunction, it is found that the steps from the

single band case can be closely mapped here and the corresponding two conditions are also

satisfied. This proves that the real space projection on the multiband BCS wavefunction is

also a Slater determinant and the spacial pairing wavefunction between electrons easily follows

up. Here is the detailed account of the analysis.

Implication from canonically projected single band BCS wavefunction The sin-

gle band BCS wavefunction takes the form of

∣∣ΦS
BCS

〉 ∝
∏

k

(
1 + hkc†k;↑c

†
−k;↓

)
|0〉 . (B.1)

The basis for 2N particle projection with equal number of spin up and down is written as

|r1, ↑; r2, ↑; ...; r2N , ↓〉 =
∏

i

c†ri,↑c
†
rN+i,↓ |0〉 , (B.2)

or in momentum space

|r1, ↑; r2, ↑; ...; r2N , ↓〉 ∝
∑

q1,q2,...q2N

ei
∑2N

j=1 qj ·rjc†q1,↑c
†
q2,↑...c

†
q2N ,↓ |0〉 (B.3)



116

with the Fourier transformation defined as

cri;σ =
1√
N

∑

k

ck;σe−ik·ri . (B.4)

Thus the 2N particle projection onto the single band BCS wavefunction gives

〈
r1, ↑; ...; r2N , ↓ |ΦS

BCS

〉

∝
∑

{KN}


 ∏

k∈KN

hk


 ∑

q1,q2,...q2N

ei
∑2N

j=1 qj ·rj 〈0| cq1,↑cq2,↑...cq2N ,↓


 ∏

k∈KN

c†k,↑c
†
−k,↓


 |0〉 (B.5)

where KN denotes a set having in it N unrepeated momenta from the 1st Brillioun Zone, and
{KN

}
denotes the collection of all possible KN sets.

By considering that

∑
q1,q2,...qN

ei
∑N

j=1 qj ·rj 〈0|
∏
qi

cqi,↑


 ∏

{k1,k2,...kN}
c†k,↑


 |0〉

= −
∑

P{ki}
(−1)P ({ki}) ei(kP1

·r1+kP2
·r2+...+kPN

·rN) (B.6)

= −

∣∣∣∣∣∣∣∣∣∣∣∣∣

eik1·r1 eik2·r1

eik1·r2 eik2·r2

...

eikN ·rN

∣∣∣∣∣∣∣∣∣∣∣∣∣

(B.7)



117

where P ({ki}) denotes a permutation for N momenta, I can get

〈
r1, ↑; ...; r2N , ↓ |ΦS

BCS

〉
calc

∝
∑

{KN}


 ∏

k∈KN

hk





 ∑

q1,...qN

ei
∑

τ qτ ·rτ 〈0|
∏
qi

cqi,↑
∏

k∈KN

c†k,↑ |0〉



︸ ︷︷ ︸
spin up

×


 ∑

qN+1,...q2N

ei
∑

τ qτ ·rτ 〈0|
∏
qi

cqi,↓
∏

k∈KN

c†−k,↓ |0〉



︸ ︷︷ ︸
spin down

(B.8)

∝
∑

{KN}


 ∏

k∈KN

hk


×

∣∣∣∣∣∣∣∣∣∣∣∣∣

eik1·r1 eik2·r1

eik1·r2 eik2·r2

...

eikN ·rN

∣∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣∣

e−ik1·rN+1 e−ik1·rN+2

e−ik2·rN+1 e−ik2·rN+2

...

e−ikN ·r2N

∣∣∣∣∣∣∣∣∣∣∣∣∣

(B.9)

=
∑

{KN}

∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ̃ (r1 − rN+1) ϕ̃ (r1 − rN+2)

ϕ̃ (r2 − rN+1) ϕ̃ (r2 − rN+2)

...

ϕ̃ (rN − r2N )

∣∣∣∣∣∣∣∣∣∣∣∣∣

(B.10)

=
∑

{KN}

∑

P

(−1)P (1,2,...N)
N∏

j=1

ϕ̃
(
rPj − rN+j

)
(B.11)

Here ϕ̃ (ri − rj) is a shortcut for the expression

ϕ̃ (ri − rj) =
∑

k∈KN

hkeik·(ri−rj) (B.12)

On the other hand, I know the expected form for the spacial projection of the BCS wave-

function from (99)

〈r1, ↑; ...; r2N , ↓ |ΦBCS〉ideal ∝

∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ (r1 − rN+1) ϕ (r1 − rN+2)

ϕ (r2 − rN+1) ϕ (r2 − rN+2)

...

ϕ (rN − r2N )

∣∣∣∣∣∣∣∣∣∣∣∣∣

(B.13)
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Here ϕ (ri − rj) is a shortcut for the expression

ϕ (ri − rj) =
∑

k∈K
hkeik·(ri−rj) (B.14)

with K denoting all momenta in 1st Brillioun Zone. Obviously it is expected that

〈r1, ↑; ...; r2N , ↓ |ΦBCS〉calc = 〈r1, ↑; ...; r2N , ↓ |ΦBCS〉ideal . (B.15)

However, the comparison between Eq. B.10 and Eq. B.13 shows that the major differences

between both sides of Eq. B.15 are the lack of summation over
{KN

}
and the elements in the

matrix expression of two determinants. There must be something special which absorb the big

summation over
{KN

}
in the left-hand side of Eq. B.15 to give the correct matrix element

on the right-hand side. I would start the analysis from the right-hand side of the equation in

order to find it out. To simplify notation, ai,j (k) is used to stand for hkeik·(ri−rj) and thus

ϕ (ri − rj) =
∑

k∈K ai,j (k) .

The right hand side of the equation can be expanded as

〈r1, ↑; ...; r2N , ↓ |ΦBCS〉ideal

∝
∑

P

(−1)P (1,2,...N)
N∏

i=1

(∑

k∈K
arPi

,rN+i (k)

)
(B.16)

=
∑

P

(−1)P (1,2,...N)
∑

{KN∗}


 ∑

OKN∗

N∏

j=1

arPj
,rN+j

(
kOKN∗

j

)

 (B.17)

=
∑

{KN∗}

∑

OKN∗


∑

P

(−1)P (1,2,...N)
N∏

j=1

arPj
,rN+j

(
kOKN∗

j

)

 (B.18)

=
∑

{KN∗}

∑

OKN∗

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ar1,rN+1

(
kOKN∗

1

)
ar1,rN+2

(
kOKN∗

2

)

ar2,rN+1

(
kOKN∗

1

)
ar2,rN+2

(
kOKN∗

2

)

...

arN ,r2N

(
kOKN∗

N

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(B.19)

where P (1, 2, ...) denotes permutation over {1, 2, 3, ...} , KN∗ denotes momentum set containing

N repeatable momenta from the 1st Brillioun Zone, OKN∗ is any ordered version to KN∗ and

OKN∗
i denotes the ith element in OKN∗. Now let us notice that ai,j (k) is decomposable which
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means

ai,j (k) = fi (k) gj (k) (B.20)

with

fi (k) = hkeik·ri (B.21)

gj (k) = e−ik·rj . (B.22)

This kills all the terms in Eq. B.19 with repeated momenta in OKN∗, and the big sum over

KN∗ is reduced to contain collections of momenta without replacement ,KN . Now the final

expression to the ideal expression can be written as

〈r1, ↑; ...; r2N , ↓ |ΦBCS〉ideal =
∑

{KN}

∑

OKN


∑

P

(−1)P (1,2,...N)
N∏

j=1

arPj
,rN+j

(
kOKN

j

)

 (B.23)

=
∑

{KN}


∑

P

(−1)P (1,2,...N)
∑

OKN




N∏

j=1

arPj
,rN+j

(
kOKN

j

)




 (B.24)

=
∑

{KN}

∑

P

(−1)P (1,2,...N)
N∏

j=1


 ∑

k∈KN

arPj
,rN+j (k)


 (B.25)

∝ 〈r1, ↑; r2, ↑; ...; r2N , ↓ |ΦBCS〉calc ,

To reach the last step, null terms are inserted to make up for the full factorization.

From the above analysis, it is worth noticing that the ability for a fermionic projection on

the BCS wavefunction to result in a single determinant form is due to two things: the condition

that ai,j (k) is factorizable in the indices of two sites, and the fact that a determinant would

vanish if two columns are the same.

Determinant form for real space projected multiband BCS wavefunction By

introducing a combo momentum

k|n = (k, n) ;−k|n = (−k, n)

and a combo location

R|r = (R, r) ,
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the multiband BCS wavefunction can be rewritten as

∣∣∣ψtrial
〉
∝

∏

(k|n,k′|n′)

(
1 + h(k|n,k′|n′)b

+
k|n,↑b

+
k′|n′,↓δk,−k′

)
|0〉 (B.26)

where opposite momenta are reinforced by δk,−k′ . The generalized Fourier transformation can

also be written as

cR|r,σ =
1√
L

∑

q|v
ΩR|r (q|v) bq|v,σ (B.27)

with

ΩR|r (q|v) = e−iq·Rwr,v (q) . (B.28)

The notations are standard: n, v denotes band index, k,q denotes momentum in the 1st

Brillioun Zone, r denotes the specific site in a unit cell, R denotes the position of the given

unit cell and L denotes total number of unit cells on the lattice.

The 2N particle projection of multiband BCS wavefunction can be written as the following,

〈
R1|r1, ↑; ...;RN |rN , ↑;RN+1|rN+1, ↓; ...;R2N |r2N , ↓ |ψtrial

〉
calc

∝
∑

q1|v1,q2|v2,...,q2N |v2N




2N∏

j=1

ΩRj |rj
(qj |vj)


×

〈0|
N∏

j=1

bqj |vj ,↑
2N∏

j=N+1

bqj |vj ,↓
∑

{K}


 ∏

(k|n,k′|n′)∈K
h(k|n,k′|n′)b

+
k|n;↑b

+
k′|n′;↓δk,−k′


 |0〉 (B.29)

∝
∑

{K}


 ∏

(k|n,k′|n′)∈K
h(k|n,k′|n′)





 ∏

(k|n,k′|n′)∈K
δk,−k′


×




∑

q1|v1,
...,

qN |vN

〈0|
N∏

j=1

(
ΩRj |rj

(qj |vj) bqj |vj ,↑
) ∏

(k|n,−)∈K
b+
k|n;↑ |0〉



×




∑

qN+1|vN+1,
...,

q2N |v2N

〈0|
2N∏

j=N+1

ΩRj |rj
(qj |vj) bqj |vj ,↓

∏

(−,k′|n′)∈K
b+
k′|n′;↓ |0〉




(B.30)

where K denotes a set containing N pairs of (k|n,k′|n′) , and (k|n,−) denotes that only k|n is

under consideration. Similarly due to the fermionic nature of electrons, the two expectations
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over vacuum can be evaluated generically as

∑

q1|v1,...,qN |vN

〈0|
N∏

j=1

(
ΩRj |rj

(qj |vj) bqj |vj ,σ

) ∏

(k|n,−)∈K
b+
k|n;σ |0〉

∝

∣∣∣∣∣∣∣∣∣∣∣∣∣

ΩR1|r1
(k1|n1) ΩR1|r1

(k2|n2)

ΩR2|r2
(k1|n1) ΩR2|r2

(k2|n2)

...

ΩRN |rN
(kN |nN )

∣∣∣∣∣∣∣∣∣∣∣∣∣

(B.31)

where {k1,k2, ...,kN} and {n1, n2, ..., nN} are momenta and bands contained in {(k|n,−)} .

Plug it back to Eq. B.30 and notice that the values of n, n′ to specific (k,k′) in (k|n,k′|n′) are

fixed as soon as K is chosen, and I can get

〈
R1|r1, ↑; ...;RN |rN , ↑;RN+1|rN+1, ↓; ...;R2N |r2N , ↓ |ψtrial

〉
calc

∝
∑

{K′}


 ∏

(k|n,−k|n′)∈K′
h(k|n,−k|n′)




∣∣∣∣∣∣∣∣∣∣∣∣∣

ΩR1|r1
(k1|n1) ΩR1|r1

(k2|n2)

ΩR2|r2
(k1|n1) ΩR2|r2

(k2|n2)

...

ΩRN |rN
(kN |nN )

∣∣∣∣∣∣∣∣∣∣∣∣∣

×

∣∣∣∣∣∣∣∣∣∣∣∣∣

ΩRN+1|rN+1
(−k1|n′1) ΩRN+1|rN+1

(−k2|n′2)
ΩRN+2|rN+2

(−k1|n′1) ΩRN+2|rN+2
(−k2|n′2)

...

ΩR2N |r2N
(−kN |n′N )

∣∣∣∣∣∣∣∣∣∣∣∣∣

(B.32)

=
∑

{K′}

∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ̃r1
rN+1

(R1 −RN+1) ϕ̃r1
rN+2

(R1 −RN+2)

ϕ̃r2
rN+1

(R2 −RN+1) ϕ̃r2
rN+1

(R2 −RN+2)

...

ϕ̃rN
r2N

(RN −R2N )

∣∣∣∣∣∣∣∣∣∣∣∣∣

(B.33)

where K′ denotes collection of N pairs of (k|n,k′|n′) δk,−k′ , ϕ̃ri
rj

(Ri −Rj) is defined as

ϕ̃ri
rj

(Ri −Rj) =
∑

(k|n,−k|n′)∈K′
ΩRi|ri

(k|n) h(k|n,−k|n′)ΩRj |rj

(−k|n′) .

There is one thing I might have to clarify in the above simplification. The delta functions
∏

(k|n,k′|n′)∈K δk,−k′ have been applied to reduce K to K′. Please keep in mind that these delta
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functions applies to all the terms in the expression. It remembers where it comes from and

where it acts back.

If I still guess that

〈
R1|r1, ↑; ...;RN |rN , ↑;RN+1|rN+1, ↓; ...;R2N |r2N , ↓ |ψtrial

〉
ideal

∝

∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕr1
rN+1

(R1 −RN+1) ϕr1
rN+2

(R1 −RN+2)

ϕr2
rN+1

(R2 −RN+1) ϕr2
rN+1

(R2 −RN+2)

...

ϕrN
r2N

(RN −R2N )

∣∣∣∣∣∣∣∣∣∣∣∣∣

(B.34)

with

ϕri
rj

(Ri −Rj) =
∑

k,n,n′
ΩRi|ri

(k|n) h(k|n,−k|n′)ΩRj |rj

(−k|n′) , (B.35)

I would like to know whether there is similarly

〈
R1|r1, ↑; ...;RN |rN , ↑;RN+1|rN+1, ↓; ...;R2N |r2N , ↓ |ψtrial

〉
calc

=
〈
R1|r1, ↑; ...;RN |rN , ↑;RN+1|rN+1, ↓; ...;R2N |r2N , ↓ |ψtrial

〉
ideal

. (B.36)

To answer this question, I actually don’t need to go through the similar calculation done for

the single band case. Let us recall in the single band case how the two expressions in Eq. B.15

finally equal each other. It requires that ai,j (k) can be decomposed in coordinates i and j so

that ∣∣∣∣∣∣∣∣∣∣∣∣∣

ar1,rN+1 (k1) ar1,rN+2 (k2)

ar2,rN+1 (k1) ar2,rN+2 (k2)

...

arN ,r2N (kN )

∣∣∣∣∣∣∣∣∣∣∣∣∣

k1=k2= 0, (B.37)

this then gives freedom in adding necessary determinants composed by ai,j (k) to make up for

a complete factorization. In the multiband case, the situation is very similar to that of the

single band case. The only difference is that now (k|n,−k|n′) in the multiband case takes the

place of (k,−k) in the single band case. By defining

ai,j

(
k|n, n′

)
= h(k|n,−k|n′)ΩRi|ri

(k|n)ΩRj |rj

(−k|n′) , (B.38)
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I similarly have
∣∣∣∣∣∣∣∣∣∣∣∣∣

a1,N+1 (k1|n1, n
′
1) a1,N+2 (k2|n2, n

′
2)

a2,N+1 (k1|n1, n
′
1) a2,N+2 (k2|n2, n

′
2)

...

aN,2N (kN |nN , n′N )

∣∣∣∣∣∣∣∣∣∣∣∣∣

(k1,n1)=(k2,n2)
= 0 (B.39)

and this would help to construct a complete factorization in the multiband case as is in the

single band case. Thus Eq. B.36 holds.

The expression given for ϕri
rj

(Ri −Rj) is identified to be the real space pairing wavefunction

for two electrons of opposite spins and can be written as

ϕri
rj

(Ri −Rj) =
∑

k,n,n′
ΩRi|ri

(k|n) h(k|n,−k|n′)ΩRj |rj

(−k|n′)

=
∑

k,n,n′
hn,n′ (k) e−ik·(Ri−Rj)wri,n (k) wrj ,n′ (−k) , (B.40)

or in matrix notation,

ϕ (Ri −Rj) =
∑

k

W (k) % (k) W T (−k) e−ik·(Ri−Rj) (B.41)

where W (k) diagonalizes the kinetic matrix T (k) , and % (k) = û−1 · v̂ is the pairing amplitude

in band⊕momentum representation.

Discussion

• The expression of ϕ (Ri −Rj) can be further simplified to be

ϕ (Ri −Rj) =
∑

k

%0 (k) e−ik·(Ri−Rj) (B.42)

where %0 (k) is now the pairing amplitude in site⊕momentum representation.

• Both % (k) and %0 (k) are independent of arbitrary phases to the eigenvectors forming

the unitary transformation.
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• It is now obvious to get the nature of spin pairing by looking into ϕri
rj

(Ri −Rj). When

two electrons are switched location, the pairing wavefunction would then be defined as

ϕri
rj

(Rj −Ri) =
∑

(ri,rj ;k)

hrj ,ri (k) e−ik·(Rj−Ri) (B.43)

=
∑

(ri,rj ;k)

hrj ,ri (−k) e−ik·(Ri−Rj) (B.44)

We require

ϕrj ,ri (Rj −Ri) = ±ϕri,rj (Ri −Rj) (B.45)

if the pairing is known to have good quantum number in spin angular momentum. This

is equivalent to

hrj ,ri (−k) = ±hri,rj (k) =⇒ %0 (k) = ± (
%0 (−k)

)T (B.46)
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APPENDIX C. An example of a Markov Chain

The concept of the Markov chain is of fundamental importance in generating the required

distribution function using Metropolis algorithm. The Markov Chain is a stochastic process

and is made up of a sequence of random variables, which can either be numbers or arrays.

The basic feature of the Markov Chain is that the appearance of the current random variable

depends statistically only on the random variable one time step before; or in another word,

the Markov Chain has memorylessness property. The random variable at each time step can

be just a random number, or can also be an n-dimensional random vector. Here is an example

relevant to the Metropolis algorithm used in this thesis.

The Markov Chain is a collection of k dimensional vectors, illustrated as

xn = (r1, r2, ...rk) .

Let us suppose the update is done dimension by dimension, and is guided by

r′i = ri + εδi (C.1)

where ε ∼ Unif [−1, 1] and δi is some fixed step for the ith coordinate. That is to say, the ith

dimensional coordinate ri is updated and results in

xi
n =

(
r′1, r

′
2, ...r

′
i, ri+1, ri+2, ...rk

)
(C.2)

and then ri+1 is updated resulting in

xi+1
n =

(
r′1, r

′
2, ...r

′
i, r

′
i+1, ri+2, ...rk

)
, (C.3)

etc. When all dimensions are updated, one get

xn+1 =
(
r′1, r

′
2, ...r

′
i, r

′
i+1, r

′
i+2, ...r

′
k

)
. (C.4)
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Then the Markov Chain is obtained by update through all dimensions. To be specific, it is

not xn, x1
n, x2

n, ...xk
n, xn+1, ... that form the Markov Chain, but xn, xn+1, ... does. The reason is

easy since xi
n and xn are still correlated for i > 1 due to the fact that they must share many

similar components in the vector which violates Markov Chain’s condition.
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APPENDIX D. More on Metropolis-Hastings algorithm

The Metropolis algorithm gives the idea on why a Markov chain is able to generate asymp-

totically a required distribution, but it doesn’t suggest explicitly how to construct the chain

for the problem. This is answered by Hastings improvement on the algorithm. The improved

algorithm gives alternative transitional probability from the old state to a new one if one has a

preference on how to choose it. This would improve greatly the sampling efficiency if one has

already had some knowledge about the distribution function, and thus would prefer to choose

a new state using that knowledge. Some details are given below.

The Metropolis-Hastings algorithm defines the transitional probability, W (x2|x1) , as

W (x2|x1) = min
(

p (x2) Q (x1|x2)
p (x1) Q (x2|x1)

, 1
)

(D.1)

where p (x) is the intended distribution function in the phase space, Q (xi|xj) is called a

proposal density and is a conditional probability on xi given xj . Q (xi|xj) is introduced by

user and is legitimate to be totally irrelevant to p (x) . How the improved algorithm would be

contrasted to the original one can be illustrated in several specific ways.

• The original Metropolis algorithm comes from the Metropolis-Hastings algorithm by

choosing a symmetric Q (xi|xj) such that Q (xi|xj) = Q (xj |xi) . Specifically, it would

reduce to the scheme used in this thesis when

Q (xi|xj) =





1 for |xi − xj | < 2A

0 o.w.
(D.2)

with A > 0 as the step size.

• The algorithm would become a self-avoiding one if limδ→0
1
δ

∫ x1+δ
x1−δ Q (x2|x1) dx2 = 0.
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• The algorithm would function most efficiently in generating the distribution function

p (x) if Q (xi|xj) = p (xi) , which results in W (x2|x1) ≡ 1. This means that all tentative

trials are accepted and the algorithm is the most efficient.

In the last example, the high efficiency is not a surprise because the tentative samples are

specifically chosen according to the proposed density Q (xi|xj) = p (xi). It is in this sense that

the Metropolis-Hastings algorithm is most easily seen to be an importance sampling scheme.
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APPENDIX E. Recursive relationships for two specially related matrices

Usually calculating a determinant of an N × N matrix requires number of floating point

operations of the order of N3. But it might be reduced to be of the order of N2 if the matrix

differs from a known matrix by a row or a column. This would be a great improvement in

the performance if one needs to evaluate a lot of determinants. The reduction will be shown

with the real space projected BCS wavefunction where each electron update causes a change

of either one row or one column in the matrix used to calculate the determinant.

The real space projected BCS wavefunction can be expressed as a Slater determinant

〈r1, ...rN ;R1, ...RN |ΨBCS〉 = det




φ (r1 −R1) φ (r1 −R2) ... φ (r1 −RN )

φ (r2 −R1) φ (r2 −R2)

...

φ (rN −RN )




(E.1)

where all the rows correspond to spin down electrons while all the columns correspond to spin

up electrons. For convenience, the above matrix is denoted as A, and the inverse can be derived

from its accompanying matrix A∗, defined as

A∗i,j = (−1)i+j det




A1,1 ... A1,j−1 A1,j+1

...

Ai−1,0 Ai−1,j−1

Ai+1,0 Ai+1,j+1

...

AN,N




. (E.2)

They satisfy the following relationship

A∗AT = detA (E.3)
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or equivalently

A∗ =
(
AT

)−1
detA. (E.4)

Now let us suppose that the ith spin down electron moves to a new position. Thus the ith

column of A is to be replaced by new elements and the new matrix is denoted as B

B =




A1,1 ... A1,i−1 B1,i A1,i+1

A2,1 ... A2,i−1 B2,i A2,i+1

...

AN,N




. (E.5)

From the matrix algebra, the determinant of matrix B can be calculated out in terms of the

accompanying matrices of the original matrix A,

det B =
∑

k

Bk,iA
∗
k,i. (E.6)

By feeding Eq. E.4 here and rearranging the expression, I get the determinant ratio of matrices

B and A as
det B

det A
=

∑

k

Bk,i

(
AT

)−1

k,i
. (E.7)

Similarly when the ith spin up electron is updated, the determinant ratio would be

det B

det A
=

∑

k

Bi,k

(
AT

)−1

i,k
. (E.8)

The derivation is not completed yet because
(
BT

)−1 is not determined based on
(
AT

)−1.

To get the updated matrix inversion of B from A, please notice that B can be written as

B = A + C = A
(
I + A−1C

)
(E.9)

where the auxiliary matrix C is basically zero except for the ith column

Cmn =





0 if n 6= i

Bm,i −Am,i if n = i
. (E.10)

This gives
(
BT

)−1
=

(
AT

)−1
[(

I + A−1C
)−1

]T
(E.11)
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and at the same time

det
(
I + A−1C

)
=

detB

detA
(E.12)

Usually
(
I + A−1C

)−1 is not easy to evaluate. However this is not the case here because

of the specific structure of C. As is proven below, A−1C is also of the same type as C

(
A−1C

)
mn

=
∑

k

A−1
mkCkn =





0 if n 6= i

∑
k A−1

mkCki if n = i
(E.13)

and thus

I + A−1C =




1
∑

k A−1
1k Cki

1
∑

k A−1
2k Cki

... ...

1 +
∑

k A−1
ik Cki

... ...

∑
k A−1

nk Cki 1




, (E.14)

which gives

det
(
I + A−1C

)
= 1 +

∑

k

A−1
ik Cki. (E.15)

The matrix inverse of this specific type can be easily calculated

(
I + A−1C

)−1 =




1 −
∑

k A−1
1k Cki

1 +
∑

k A−1
ik Cki

1 −
∑

k A−1
2k Cki

1 +
∑

k A−1
ik Cki

... ...

1−
∑

k A−1
ik Cki

1 +
∑

k A−1
ik Cki

... ...

−
∑

k A−1
nk Cki

1 +
∑

k A−1
ik Cki

1




= I − A−1C

1 +
∑

k A−1
ik Cki

. (E.16)

Feed the above expression into Eq E.11 and one can get

(
BT

)−1

m,n
=

(
AT

)−1
[(

I + A−1C
)−1

]T

=
(
AT

)−1

mn
− δn,i

1 +
∑

k′ (AT )−1
k′i Ck′i

∑

k,k∗

(
AT

)−1

mk

(
AT

)−1

k∗,k Ck∗,i. (E.17)
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This can be further simplified to be

(
BT

)−1

m,n
=

(
AT

)−1

mn
− δn,i

detA

detB

∑

k,k∗

(
AT

)−1

mk

(
AT

)−1

k∗,k Ck∗,i (E.18)

by making use of Eq. E.15 and Eq. E.12.

Eq. E.18 and Eq. E.7, E.8 form the set of equations to update det (A) and
(
AT

)−1

when only one row or one column is modified in A. This conclusion is used in calculating

the transition rate in the Metropolis algorithm used to generate a distribution function in the

discrete lattice space, and it is also used in evaluating different physical observables at local

positions.
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APPENDIX F. Issues in calculating physical observables in the code

Sign change of hopping amplitude, t There are two kinds of boundary conditions

used in this research, the periodic and antiperiodic ones defined by whether the single particle

creation (annihilation) operator would change sign or not when it is shifted by the whole

lattice size. This is best shown by a 1D chain of N sites with both ends connected. Each site

is described by ci,σ whose Fourier transformation is defined as

ci,σ =
∑

n

ckn,σeikn·Ri (F.1)

where

kn =
2nπ

N
=⇒ ci,σ = ci+N,σ (F.2)

for periodic boundary condition, and

kn =
(2n + 1)π

N
=⇒ ci,σ = −ci+N,σ (F.3)

for antiperiodic boundary condition. Here n = 0, 1, 2, ..., N − 1. The Hamiltonian to describe

this system is

H =
N−1∑

i=1

tc+
i,σci+1,σ + tc+

N,σc1,σ + h.c. (F.4)

with h.c. denoting the Hermitian Conjugate of the previous terms. It is expected that the

different choices of boundary conditions would not change the fact that crystal momentum is

a good quantum number for this translational invariant system.

By plugging in Eq. F.1 into the Hamiltonian, H can be written in terms of ck,σ as

H =
∑

k

tc†k,σck,σeik −
∑

k,k′
c†k,σck′,σe−ik·RN eik′·R1

(
teik′·RN − tN1

)
+ h.c. (F.5)

where tN1 denotes the hopping to go from the Nth site to the 1st site. From the above
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expression, it is clear that

tN1 =





t for periodic boundary condition

−t for antiperiodic boundary condition
(F.6)

in order to let H be diagonal in momentum space.

Choice of boundary conditions Boundary condition poses concerns in the finite size

effect in two ways: it defines discrete momenta used in the wavefunction, it also introduces

artificial asymmetry between x and y axes which might obscure the actual correlations among

variational parameters. Generally speaking, the use of the periodic boundary condition on

both axes is preferred because it usually gives lower energy than other options, which, in my

point of view, defines a better class of trial wavefunctions. This is illustrated in Fig. F.1

relevant to SrCu2 (BO3)2 . The energy calculated under distinct boundary conditions on both

axes has much higher energy than the case with periodic boundary conditions. As lattice size

increases, these two energies become approaching to each other and presumably agree with

each other on the infinite lattice. However, how seriously the finite size effect would affect

other physical observables is not merely represented by the energy discrepancy.

Negative momentum as a matrix index In defining a multiband BCS wavefunction,

k and −k are both used in defining the decoupled Hamiltonian Hmf . However, −k is not

readily contained in the momentum set defined in Eq. F.2. One can directly insert −k into

where it is needed in Hmf , but this is dangerous in practice especially when additional phase

factors are introduce into the Fourier transformation. The most reliable way is to map the

negative momenta into the valid momentum definition by

−ka + 2π ∈ [−π, π) . (F.7)

This gives

kn′ = −2 (n− 1) π

N
+ 2π =

2 [N − (n− 1)]π
N

(F.8)

⇒ n′ =





1 for n = 1

N − n + 2 for n = 2, 3, ...N
(F.9)
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Figure F.1 Energy for different boundary conditions at 10% doping on 8×8
to 20 × 20 lattice. The evaluation is related to the trial wave-
function for SrCu2(BO3)2. Curves with different colors show
lattice size dependence of energies under different boundary
conditions. What is special about the green curve is the en-
ergy involves the hopping amplitude whose sign is taken care
of according to the antiperiodic boundary condition on the x

axis. The resulting energy curve is then very close to that from
periodic boundary condition. The variability in energy in black
is due to the finite size effect as well as the failure to have an
exact 10% doping on a finite lattice.
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for periodic boundary condition, and

kn′ = −(2n− 1)π

N
+ 2π =

[2 (N − n + 1)− 1]π
N

(F.10)

⇒ n′ = N − n + 1 for n = 1, 2, ...N (F.11)

for antiperiodic boundary condition.
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APPENDIX G. Issues in automating the minimization procedure

To have a hassle-free simulation, one would hope the code to have intelligence to guide itself

throughout the simulation and give out most reliable global minimum. If using a simulated

annealing algorithm and a data set with error, several issues need to be taken care of, including,

how to control data error at specific virtual temperature; how to adjust the step to each

dimension as the Markov chain wanders around the phase space, etc. The solutions are provided

here. Before proceding, I just want to remind that the major concept and notations of the

annealing algorithm are provided in chapter 2 in the thesis.

How much to reduce ∆Ē, the energy error, to adapt to a given kT ? Obviously

∆Ē À kT is not allowed. But ∆Ē ¿ kT would make the algorithm inefficient because ∆Ē is

reduced as square root of number of samples. The most appropriate choice is
〈
∆Ē

〉

kT
' 0.8, (G.1)

whose reasoning is given below by checking how the distribution function, p (~u) , is affected by

energy errors. Here and after, 〈. . .〉 denotes a statistical average.

The actual distribution function for the energies with error would be

p′ (~u) = C

(
∆Ē

kT

)
e
− Ē(~u)+∆Ē

kT (G.2)

= p (u) + γ
∆Ē

kT
+ O

(
∆Ē

kT

)2

(G.3)

where γ is the coefficient collected for linear terms in ∆Ē. If the deviation from the true

energies is randomly signed and mutually uncorrelated, or

〈
∆Ē

〉
= 0, (G.4)



138

then p′ (~u) differs from p (u) to the second order in ∆Ē
kT

. Practically, it can be close yet smaller

than 1.

How to control ∆Ē, the energy error, during the simulation? The phase space

can be totally different at different locations, reflected in totally different energy landscape

and different energy error with a fixed number of iterations. It is hoped that energy error is

controlled to be homogeneous everywhere. This can be done by adjusting number of iterations,

and increasing number of bins if the conjectured number of iterations is still too few. Please

remember, the overall energy error satisfies asymptotically

∆Ē ∝ f (~u)√
N

(G.5)

where N is the totally number of iterations used to obtain the energy estimate and f (~u)

explicitly show that the error itself varies in phase space.

How to tolerate failed energy evaluation? It is possible energy evaluation fails. One

case is that the chemical potential is set too low so that the system is unable to accommodate

as many pre-given electrons. Another instance would be that the samples for a given energy

deviate too much from a normal distribution. If this happens, just reject the failed point and

try a new one because the Metropolis algorithm tolerates mistakes pretty well.

Optimal steps to be adjusted in situ The scheme to adjust the step to each dimension

is presented in chapter 2. The formula is given in Eq. 2.61 and is repeated here

Anew

A
=

g−1 (κf )
g−1 (κa)

(G.6)

where

g (A) =

∫ A
0 e−x2

dx

A
= κ. (G.7)

Here A is the current step size, κa is the actual acceptance ratio coming out of the simula-

tion and κf is some fixed acceptance ratio expected to be maintained. In this section, only

discussions are provided to clarify some details.
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The scheme gives identical formulae for different quadratic dispersions and different values

of kT . This is good news for it to be applied everywhere on the variational phase space because

details of the local region are usually hard to obtain. The formula is used iteratively during

the simulation. The steps would be adjusted consecutively when the Markov chain wanders

around the phase space. When the process is confined within any local energy minimum, the

convergence to the optimal step size is guaranteed.

One might raise concerns on the validity of applying Eq. G.6. One concern is about

the assumption of a quadratic energy dispersion, which is, however, most often not the case.

Then this formula can still be interpreted as a fitting scheme by mapping an irregular energy

landscape onto a quadratic curve. One might also suppose that the fact the process changes

its location all the time is different from what the scheme assumes to calculate the theoretical

κ. The idea to treat these two cases equivalent is supported by the success of the scheme in

practice. Another concern might come from the fact that the running κa is complicated by its

statistical uncertainty together with varying step size during the simulation. The answer to it

is the consecutive update on the steps to maintain a fixed κf . They might be wrong at some

instances, but they give reasonable step size in the long run. Another thing worth mentioning

is that some negative feedback must be applied to the new step size.

The scheme is derived for one dimensional update. But sometimes two or more dimensions

are expected to be updated together. Then it would be a challenge to define κa appropriately.

Even if this can be done, Eq. G.6 might perform badly in giving a reasonable step size.

However, it seems it still works reasonably well when only two dimensions are updated together.

How to avoid getting trapped in a fake energy minimum? Energies come with

error, as is inevitable from the Monte Carlo evaluation. It can thus lead to a fake energy

minimum which might trap the Markov chain there forever. With the current step update

scheme, this can be delt with easily.

As the process has been trapping somewhere, the step sizes are constantly reduced to zero.

Thus the Markov chain must move around if it is a true minimum. However, this criterion

would be too strong in deciding a fake one since there is no a prior knowledge on how sharp the
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local minimum should be. On the other hand, it is perfectly legitimate to stay at the global

minimum for limited time and then switch to higher energies as simulation continues. This

gives the idea to improve the algorithm by artificially giving finite correction, chosen to be

δE = min
(
∆Ē, kT

)
, (G.8)

to an energy each time the Markov chain repeats itself. The correction is not there if ∆Ē = 0,

otherwise, it would facilitate the transition by a maximum factor of e each time the energy is

repeated.

Improved scheme to adjust kT in situ It is crucial to choose an appropriate way to

reduce kT in searching for the global energy minimum with the simulated annealing algorithm.

The original scheme is the simple exponential decay (89), where kT is guided by a constant

reduction, or

k
(n)
T = αn−1kT , (G.9)

disregarding any specific problem. This is obviously not the best scheme because the Markov

chain is biased locally by a reduced kT , besides the natural trend to favor lower energy region.

Although it is impossible to propose the correct scheme to adjust kT , some improvements

might still be possible on this problem. Here are some thoughts.

The trapping at lower energy region is related to the fact that it is harder to jump out of

the valley as compared to falling into it. This feature is required to generate the distribution

p (~u) ∝ e−E(~u)/kT , but leads to low efficiency in locating the global minimum. A plausible way

to makeup for it is to increase kT as long as a sudden drop in energy is detected. However, the

increase in kT should be cautious since it might prevent the algorithm from getting converged.

Similarly, a reduction in kT might also be required to avoid escaping the local minimum when

an increase in energy is detected. This idea is explicitly carried out by answering the following

questions,

• How to detect a change in an energy sequence?

• How much to increase (decrease) kT when a decrease (increase) in energy is detected?
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• Can the process converge and give decent results in reasonable sample size?

Due to the statistical nature of the sampled sequence of fixed size, the trend can be answered

by looking at its time correlation. Let us suppose the sequence of energy samples to be

y1, y2, ...yN

where N is the sample size. The time correlation estimator is defined as

ρ =
∑

n (n− n̄) (yn − ȳ)
δnδy

(G.10)

where ȳ =
1
N

∑
i yi, n̄ =

N + 1
2

and

δy =

√∑
i (yi − ȳ)2

N − 1
; δn =

√∑
i (n− n̄)2

N − 1
. (G.11)

It is usually assumed that {yi} are independently and identically distributed (iid) and thus

〈ρ〉 = 0. But the distribution function of ρ is still hard to determine and thus a new variable

is introduced with a known asymptotic distribution function

z =
1
2

ln
(

1 + ρ

1− ρ

)
=⇒

(√
N − 3

)
z ∼ n (0, 1) . (G.12)

Here n (0, 1) denotes the standard normal distribution and ∼ means ”is distributed as”. The

upper and lower bounds for ρ are defined as

ρ± = ±e2z0 − 1
e2z0 + 1

(G.13)

beyond which the energy sequence has definite trend. Here z0 = 1.96/
√

N − 3 is the 95%

confidence interval for z.

The way to adjust kT in situ is a generalization of the original scheme where an empirical

function W is introduced in place of a fixed ratio in Eq. G.9,

knew
T = W (ρ) kold

T . (G.14)

The functional form for W (ρ) is defined as

W (ρ) =





1 + α1 (ρ− ρ−)2 for ρ < ρ−

1 + α5 (ρ− ρ−) for |ρ| < ρ+

α2ρ
2 + α3ρ + α4 for ρ > ρ+

(G.15)
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with the parameters taking expressions, for example, as

α1 =
u0 − 1

(1− ρ+)2
, (G.16)

α2 =
1− α− ρ+ (1− 2v0 + α)

2ρ+ (1− ρ+)2
, (G.17)

α3 =
α− 1 + (ρ+)2 (1− 4v0 + 3δ)

2ρ+ (1− ρ+)2
, (G.18)

α4 =
1 + α− ρ+ (1 + 3δ) + 2v0 (ρ+)2

2 (1− ρ+)2
, (G.19)

α5 =
α− 1
2ρ+

. (G.20)

Here u0 defines the maximum increment in kT and is directly related to v0 by u0v0 = 1. α has

the physical meaning of α = W (ρ+) and plays the role of the fixed ratio in Eq. G.9. The

logic behind this complicated W (ρ) is to increase kT parabolically when significant decrease in

energy is detected; to reduce kT mildly to ensure convergence by following the well-established

annealing algorithm when energy change is insignificant; to reduce kT a bit more when the

energy sequence is detected to climb out of the valley.

The generalized annealing scheme defined through Eq. G.15 makes it very easy to control

the simulation. The efficiency is mainly controlled by α while the stability by u0. Although

their optimal values cannot be rigorously determined, u0 might be guided by avoiding too

much oscillation in kT , which is caused by lack of detailed information of the energy valley

so that kT can not be adjusted correctly. The quantitative measure for the oscillation is the

energy increment ratio, η, defined to be

η =
π−
π+

where π− (π+) are called the relative(absolute) energy increment and are defined as

π− =
∞∑

n=1

∆n (βπ)n−1 (G.21)

π+ =
∞∑

n=1

|∆n| (βπ)n−1 (G.22)

with ∆n = yn,N − yn,1 and βπ ∈ (0, 1) acting as a soft cutoff. When the energy sequence

is monotone, π− ' π+; while it oscillates or is basically unchanged, |π−| ¿ π+. Thus by
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monitoring η one would have a clear clue on how the energy sequence changes and thus u0 can

be changed accordingly.
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