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ABSTRACT

The ATLAS detector is used to search for high-mass states, such as heavy charged gauge

bosons (W ′), decaying to a muon and a neutrino. Results are presented based on the analysis

of pp collisions at a center-of-mass energy of 7 TeV corresponding to an integrated luminosity of

1.04 fb−1. No excess beyond standard model expectations is observed. A W ′ with sequential

standard model couplings is excluded at 95% confidence level for masses below 1.98 TeV.

Results from the muon channel are also combined with the electron channel to further extend

the mass limit up to 2.15 TeV. This is the most stringent limit published to date.
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CHAPTER 1. Introduction

The purpose of this chapter is to provide the reader with a concise background knowledge

in particle physics. It begins with a brief summary of the historical background in section 1.1.

Section 1.2 discusses the most fundamental contemporary model in this field, the standard

model. It concludes with a discussion of possible models beyond the standard model that

might give rise to new particles that are of interest of this study.
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1.1 Historical Background

The main goal of particle physics is to answer the question “What is matter made of?” on

the smallest scale of size. Even though it is fashionable and more romantic to refer all the way

back to Democritus and other ancient Greek atomists when talking about the birth of this

field, it is scientifically more accurate to mark the groundbreaking discovery by J. J. Thomson

in 1897 as the start of this branch of physics as we know it today. He discovered that it was

possible to bend cathode rays in the presence of strong magnetic field, which was suggesting

that these rays were actually a stream of particles, known as electrons today.

In our current understanding, there are four fundamental forces in nature: strong, weak,

electromagnetic and gravitational. These are summarized in order of decreasing strength∗ in

Table 1.1. This table is mostly based on [1].

Force Strength Theory Mediator

Strong 1 Chromodynamics gluon

Electromagnetic 10−2 Electrodynamics photon

Weak 10−6 Flavordynamics W and Z

Gravitation 10−40 Geometrodynamics graviton

Table 1.1: Four fundamental forces in nature.

Gravitation is historically the first force that was discovered by mankind. It is the force

responsible for the planetary motions, tides, and the fall of an apple from a treetop. The

classical theory behind it is the law of universal gravitation that was first published by Sir

Isaac Newton in 1687 [2]. Much later, in 1916, Albert Einstein published his theory of general

relativity [3], which is a relativistic generalization of Newton’s earlier findings. This is reflected

in Table 1.1 as “Geometrodynamics”, which is a more intuitive description. Despite being the

first discovered force, a complete quantum description for gravitation is still missing today.

Also it’s hypothetical mediator, the graviton, still lacks experimental proof. Nonetheless, the

general belief is that this force is too weak to play a significant role in particle physics.

∗“Strength” of a force is strongly correlated to the nature of the source and topological conditions, therefore
these numbers shouldn’t be taken literally as they are provided for a relative comparison.
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The theory behind electromagnetism is called electrodynamics and was first formulated

by James C. Maxwell in 1861 [4]. The electromagnetic force manifests itself as the force

that causes the interaction between electrically charged particles and the force that acts on

a current-carrying wire in a magnetic field, both of which are summarized in the Lorentz’

force law. In fact it is the most dominant force in our daily lives, holding atoms and molecules

together, keeping our heart beating, letting us move our hands. Later in the 1940s the quantum

theory of electrodynamics, QED, was perfected by Richard P. Feynman, Julian Schwinger and

Sin-Itiro Tomonaga, winning them the Nobel Prize in 1965.

The first observation of β− decay, dating back to the 1890s, puzzled the scientists because

this phenomenon wouldn’t fit into classical physics and remained unexplained until the 1930s.

In 1934 Enrico Fermi presented the first theory that explains this observation [5], the first

theory for the weak force, which was later refined by Tsung-Dao Lee and Chen N. Yang in the

1950s. In 1961 Sheldon J. Glashow showed that the electromagnetic and weak forces might be

two different manifestations of a partially unified theory [6], which is known as the electroweak

force today. Then in 1967 Abdus Salam and Steven Weinberg independently revised Glashow’s

theory allowing the masses for theW and Z particles, mediators of the weak force, arise through

spontaneous symmetry breaking with the Higgs mechanism [7]. For their insights, Glashow,

Salam and Weinberg were awarded the Nobel Prize in Physics in 1979. This discovery showed

that it was indeed possible to decrease the number of forces to three: gravitation, electroweak

and strong.

The theory behind the strong force is called quantum chromodynamics, QCD, which

emerged in the mid-seventies. The first studies of strong force, however, were pioneered by

Hideki Yukawa as early as 1934. This force is responsible for the integrity of the nucleus, the

very reason why neutrons and protons stay together within it.

In today’s particle physics, the electroweak and strong forces are explained within the so

called standard model, SM. The next section is devoted to a brief discussion of this fundamental

model.
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1.2 The Standard Model

The standard model of particle physics is a quantum field theory that incorporates quantum

electrodynamics and quantum chromodynamics, the theories behind electroweak and strong

forces, respectively. As discussed in the previous section, it was shaped in the 20th century as

a result of many theoretical and experimental studies. According to this model, all matter,

as we know it, is made of three kinds of elementary particles: quarks, leptons and mediators.

Quarks and leptons come in three generations, and there are four different mediators, all of

which are summarized in Table 1.2.

Generation I II III

Quarks
u c t

d s b

Leptons
e µ τ

νe νµ ντ

γ

g Force

Z Carriers

W

Table 1.2: Elementary particles of the standard model.

The first generation consists of two quarks: up and down and two leptons electron and

electron neutrino. The up quark, also denoted simply as u , carries an electric charge of +2/3,

whereas the down quark, denoted as d , has −1/3. Two up quarks and one down quark make a

proton, with an electric charge of +1 and two down quarks with one up quark make a neutron,

with neutral charge†. The most basic atom, the hydrogen atom, consists of only one proton

and one electron. As the content gets richer, by adding more protons and electrons as well as

neutrons, it is possible to get more complicated atoms. This means that the first generation

of elementary particles make most of the visible matter: our bodies, planets, stars and so on.

Therefore it is not a surprise that they were the first ones to be discovered.

†This is not strictly correct because our current understanding points that protons and neutrons consist of
a sea of quarks and gluons, however this is a good enough simplification of the picture.
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Strange, s, and bottom, b, quarks are the other two down-type quarks, whereas charm, c,

and top, t, are up-type. Top was the last quark to be discovered, which happened in 1995,

independently by the CDF and DØ collaborations [8; 9]. All up-type quarks carry an electric

charge of +2/3, whereas the down-type quarks carry a charge of -1/3. These six “flavors” of

quarks also have associated anti-quarks, which are commonly denoted by q̄, i.e. ū, d̄ etc., and

differ from the quarks only in that some of their properties have equal magnitude but opposite

sign. Within QCD, each quark and anti-quark also carries a so-called color charge, which can

be treated as analogous to electric charge in QED. There are a total of three color charges:

red, green and blue. This makes a total of 36 quarks and anti-quarks (six quark flavors, six

anti-quark flavors - each carrying three different color charges).

As for the leptons, they don’t carry color charge, but electric charge. Electrons, muons and

tau leptons carry an electric charge of -1, whereas all neutrinos are neutral. The anti-leptons

have some of their properties, such as electric charge, reversed, just like anti-quarks. This

makes a total of 12 leptons and anti-leptons (six leptons and six anti-leptons). So, so far, a

total of 48 elementary particles are counted.

Then there are the mediators. Within the standard model, each force is carried by a

particle called the mediator. The mediator of the electromagnetic force is the photon, whereas

the gluon mediates the strong force. Interestingly, the photon doesn’t carry electric charge,

even though it is the mediator for the electromagnetic force, however gluons carry color charge,

and there are a total of eight of them. The weak force on the other hand has three mediators:

W± and Z, where the last one has neutral electric charge. This makes a total of 12 distinct

force carriers, increasing the total number of elementary particles to 60.

In the standard model, all force carriers are massless, except the W and Z. As briefly

mentioned before, the mechanism that gives them their masses in the standard model is called

the Higgs mechanism, which requires the existence of the so-called Higgs boson. So, in total,

the standard model predicts at least 61 “elementary” particles, 36 quarks and anti-quarks, 12

leptons and anti-leptons, 12 force carriers and the Higgs boson. A detailed discussion of the

mathematical formulation of the standard model is out of the scope of this work, however a
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brief qualitative description will be given in the next few pages. Most of the discussion below

is based on [1], in which an interested reader can find more detailed information.

1.2.1 Lagrangians and Gauge Invariance

In classical mechanics the Lagrangian is a function that summarizes the dynamics of a given

system and can be defined as the potential energy, V , subtracted from the kinetic energy, T :

L = T − V. (1.1)

It is a function of the so-called generalized coordinates qi (i.e. q1 = x, q2 = y, q3 = z) and

their time derivatives q̇i (i.e. q̇1 = vx, q̇2 = vy, q̇3 = vz) and in the Lagrangian formulation,

the fundamental law of motion is the Euler-Lagrange equation:

d

dt

(
∂L

∂q̇i

)
=
∂L

∂qi
(i = 1, 2, 3). (1.2)

It is a trivial exercise to show that in the cartesian coordinate system, the x component

of Eq. 1.2 simplifies to the famous equation of Newton, F = ma (= −∇V , where the scalar

potential V is assumed to be conservative).

In classical mechanics one is often interested in the position of a particle, a localized entity

in space, at a given time t, i.e. qi(t). This can be attained by solving Eq. 1.2 if the Lagrangian

that describes the system is known. In relativistic field theory, a mathematical formulation of

the behavior of subatomic particles, one appraises the concept of fields occupying a region of

space instead. Then the goal is usually to obtain these fields, φi(qi), which are functions of

qi where time is also included and treated on an equal footing with space, by solving a more

generalized form of Eq. 1.2:

∂µ

(
∂L

∂(∂µφi)

)
=
∂L
∂φi

(i = 1, 2, 3, . . .), (1.3)

where ∂µ = ∂/∂xµ with index µ = 0, 1, 2, 3 and the full Lagrangian in Eq. 1.2 is replaced with

the Lagrangian density, L. One example of the field variables, φi, can be the temperature

at each point in a room. As interesting as it sounds, historically the form of the Lagrangian
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density describing a given system was often an ad-hoc guess. Now let’s investigate one famous

Lagrangian in a bit more detail.

The Dirac Lagrangian for a spin-1
2 field‡ can be defined as:

L = i(h̄c)ψ̄γµ∂µψ − mc2ψ̄ψ, (1.4)

where i is the imaginary number such that i2 = −1, h̄ is the Planck’s constant, c is the speed

of light, γµ are the so-called gamma matrices (a set of special 4 × 4 matrices) and ψ is the

spinor field with its adjoint spinor ψ̄. A rigorous understanding of all these terms are out of

the scope of this discussion, but if one applies Eq. 1.3 for this particular Lagrangian density,

it yields:

∂L
∂(∂µψ̄)

= 0
∂L
∂ψ̄

= i(h̄c)γµ∂µψ − mc2ψ, (1.5)

hence,

[i(h̄c)γµ∂µ − mc2]ψ = 0. (1.6)

This is the famous Dirac equation that describes a particle of spin-1
2 with mass m in

quantum field theory. It is also possible to obtain a similar equation for the adjoint spinor

through a similar exercise.

Then assume the person wants to make a simple transformation as:

ψ → eiθψ, (1.7)

where e is the exponential function, and θ is any real number. It can easily be shown that

the Lagrangian density defined in Eq. 1.4 remains unchanged since ψ̄ → e−iθψ̄ hence the

exponential terms in ψ̄ψ cancel out. This is called the global gauge invariance. However this

wouldn’t hold if θ was a function of x, i.e. θ(x), due to the derivative term. This means that

‡Spin can be defined to be the angular momentum of a particle in its own rest frame. It is one of the quantum
numbers, which describe values of conserved quantities in the dynamics of the quantum system. One example
for a spin- 1

2
particle is the ever famous electron.
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the Dirac Lagrangian destiny as defined in Eq. 1.4 does not have local gauge invariance. A

natural question at this point is : “Why is it important to have local gauge invariance?”. For

the time being, let’s say this is desired just for the sake of it, however, the answer will be

apparent soon enough. It is possible to achieve this goal by introducing an additional term to

the original Lagrangian that cancels the extra piece that comes from the derivative as:

L → L+ qψ̄γµψ∂µλ, (1.8)

where q is the charge of the particle and λ(x) is defined as:

λ(x) = − h̄c
q
θ(x), (1.9)

only for convenience. This means that it is possible to define a “new” Dirac Lagrangian density

that is indeed invariant as:

L = i(h̄c)ψ̄γµ∂µψ − mc2ψ̄ψ − qψ̄γµψ Aµ, (1.10)

by introducing a “new” vector gauge field, Aµ, that transforms as:

Aµ → Aµ + ∂µλ. (1.11)

In order to complete 1.10 one needs to add a free term for the new gauge field, Aµ, and for

this let’s use:

−1

16π
FµνFµν +

1

8π

(
mAc

h̄

)2

AµAµ (1.12)

where Fµν is the electromagnetic field tensor, defined as Fµν = ∂µAν − ∂νAµ and mA is the

mass of the new field. Of course this choice is merely a coincidence. Eq 1.12 is known as the

Proca Lagrangian, and it describes the electromagnetic field of a physical system in Maxwell’s

theory of electromagnetism. This is why it’s chosen. The only issue with this choice is that

the last term in Eq. 1.12 is not invariant under transformation defined in Eq. 1.11, unless one
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specifically imposes mA = 0. This means that the new gauge filed has to be massless. Then

combining Eq. 1.10 with Eq. 1.12 and setting mA = 0, one gets:

L = [i(h̄c)ψ̄γµ∂µψ − mc2ψ̄ψ] +

[ −1

16π
FµνFµν

]
− [qψ̄γµψ Aµ]. (1.13)

In this last equation, the “new” field, Aµ, is actually nothing but the electromagnetic

potential, with the last two terms being the so-called Maxwell Lagrangian. Eq. 1.13 not only

generates all of the electrodynamics (!) but also explains the currents generated by the Dirac

particles and all these are obtained by imposing local gauge invariance on the Dirac Lagrangian

density defined in Eq. 1.4 and an educated guess for the extra terms needed. Surely this has

an underlying importance.

In principal if a Lagrangian density has global gauge invariance, it is possible to impose

local gauge invariance by adding a vector field to the partial derivatives, ∂µ, to get the so-called

covariant derivatives, Dµ, defined as:

Dµ = ∂µ + i
q

h̄c
Aµ. (1.14)

Now let’s investigate the importance of gauge invariance. A gauge theory in particle physics

is a special type of field theory in which the Lagrangian is invariant under a continuous group

of local transformations (called gauge invariance). The term gauge refers to redundant degrees

of freedom in the Lagrangian. In the above example, it is the electromagnetic potential, Aµ,

that is added by hand to make the initial Lagrangian invariant under the appropriate gauge

transformation. Indeed it is the gauge field of quantum electrodynamics, QED, which is an

abelian§ gauge theory with the symmetry group U(1). Furthermore, when such a theory is

quantized, the quanta of the gauge fields are called gauge bosons. In the case of QED this is

nothing but the photon.

Gauge theories are in the heart of particle physics. The standard model is a non-abelian

gauge theory with the symmetry group U(1)×SU(2)×SU(3) and has a total of twelve gauge

bosons: the photon, three weak bosons and eight gluons (introduced as mediators in Table 1.1,

§An abelian group, also called commutative group, is a group in which for all elements a and b, the relation
a ∗ b = b ∗ a holds.
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and force carriers in Table 1.2). But there is an interesting point here. Remember that the mass

term in the Proca Lagrangian in Eq. 1.12 had to be set to zero to ensure local gauge invariance,

which is the case for the carriers of electromagnetic and strong forces. However, this is certainly

not the case for the weak force carriers. Actually, the principle of local gauge invariance works

very neatly for the electromagnetic and strong forces, but surely the weak interactions need

more than what was discussed above. This brings the discussion to spontaneous symmetry

breaking and the Higgs mechanism.

1.2.2 Spontaneous Symmetry Breaking and the Higgs Mechanism

Let’s investigate yet another Lagrangian: the Klein-Gordon Lagrangian that describes a

scalar field, φ:

L =
1

2
(∂µφ)(∂µφ)− 1

2

(
mc

h̄

)2

φ2. (1.15)

Applying the Euler-Lagrange equation to Eq. 1.15 yields:

∂µ∂
µφ+

(
mc

h̄

)2

φ = 0. (1.16)

This is the Klein-Gordon equation describing a spin-0, i.e. scalar, particle with mass m. As

can be seen from Eq. 1.15, the term of second order in the appropriate field can, in general, be

identified as the “mass” term of the Lagrangian. Let’s investigate a Lagrangian that is slightly

different:

L =
1

2
(∂µφ)(∂µφ) +

1

2
µ2φ2 − 1

4
λ2φ4, (1.17)

where µ and λ are two real constants. At first, the second term seems like the mass term, but

a quick comparison between Eq. 1.15 and Eq. 1.17 reveals a subtle point. The signs of the

second terms are opposite, which means that if the second term in Eq. 1.17 was to be the mass

term, it would be imaginary! This, of course, is not physical and raises the question: How can

one find the mass term for such a Lagrangian?
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Recall the conventional definition of the Lagrangian in Eq. 1.1. For T (φ) = 1
2(∂µφ)(∂µφ),

the potential V (φ) turns out to be:

V (φ) = −1

2
µ2φ2 +

1

4
λ2φ4, (1.18)

with the minimum occurring at:

φ = ±µ
λ
. (1.19)

This actually separates Eq. 1.17 from all the other Lagrangians that have been considered

so far, for which the ground states (where V is minimum) were always φ = 0. At this point,

let’s define a new field, η, so that when Eq. 1.17 is re-written in terms of it, the ground state

is obtained at η = 0:

η = φ± µ

λ
(1.20)

Then Eq. 1.17 becomes:

L =
1

2
(∂µη)(∂µη)− µ2η2 ± µλη3 − 1

4
λ2η4 +

1

4

(
µ2

λ

)2

. (1.21)

Now as can be seen, the second order term has the correct sign, and the mass of the new

field is:

m =
√

2
µh̄

c
. (1.22)

This last bit of mathematical gymnastics doesn’t change any physical property of the

system, but merely puts the Lagrangian in a form where one can identify the mass term with

ease. The bottom line of this exercise is that one can identify the mass term in a Lagrangian

by first finding the ground state, re-expressing it as a function of the deviation, η, from this

minimum, expanding it in terms of η and locating the coefficient of the η2 term.

One interesting difference between Eq. 1.17 and Eq. 1.21 is that the former is even in

φ, it doesn’t change for φ → −φ, however the latter is not even in η. This means when
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Eq. 1.17 is re-written in terms of the new field, it’s symmetry is “broken”. The reason is as

follows. Figure 1.1 shows the potential that is defined in Eq. 1.18, which is also known as the

“double-well” potential, for µ = 2 and λ = 2 (arbitrarily chosen for demonstration). As found

analytically in Eq. 1.19, it has two minima, φ = ±1.

φ

5 4 3 2 1 0 1 2 3 4 5

=
2

)
λ

=
2

, 
µ

; 
φ

V
(

4

2

0

2

4

6

8

10

Figure 1.1: Double well potential as defined in Eq. 1.18 for µ = 2 and λ = 2.

In order to express the Lagrangian in terms of η, with a minimum at η = 0, one has to

choose either of these solutions, +1 or −1 and doing so spoils the symmetry. This phenomenon

is called the spontaneous symmetry breaking. It is spontaneous because there is no external

agent that causes this. Actually, the concept of symmetry breaking is not very strange to daily

life. For example, when one throws a ball up in the air, it comes down, however it doesn’t

go back to right once it’s thrown left, or vice versa. So, on earth, up-down and left-right

symmetry is broken. However there is an external agent that causes this, gravity. Therefore it

is not spontaneous in that sense.

To take one step closer to the Higgs mechanism, let’s define a complex field as:

φ = φ1 + iφ2, (1.23)

where φ1 and φ2 are two real, scalar fields satisfying:

φ∗φ = (φ1 − iφ2)(φ1 + iφ2) = φ2
1 + φ2

2. (1.24)
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Then a 2 dimensional version of Eq. 1.17 can be written as:

L =
1

2
(∂µφ)∗(∂µφ) +

1

2
µ2(φ∗φ)− 1

4
λ2(φ∗φ)2, (1.25)

yielding the potential V :

V (φ, φ∗) = −1

2
µ2(φ∗φ) +

1

4
λ2(φ∗φ)2

= −1

2
µ2(φ2

1 + φ2
2) +

1

4
λ2(φ2

1 + φ2
2)2, (1.26)

where the second line is obtained via Eq. 1.24. The ground state for this potential is then

nothing but a circle in the φ1 − φ2 plane given by the formula:

φ2
1,min + φ2

2,min =

(
µ

λ

)2

(1.27)

with one possible solution as:

φ1,min =
µ

λ
φ2,min = 0 (1.28)

It is also evident that Eq. 1.25 has global invariance under the transformation φ → eiθφ,

however, it doesn’t have local gauge invariance. In order to impose this, let’s make the substi-

tution of ∂µ → Dµ, with Dµ as defined in Eq. 1.14. Then one gets:

L =
1

2
(Dµφ)∗(Dµφ) +

1

2
µ2(φ∗φ)− 1

4
λ2(φ∗φ)2 − 1

16π
FµνFµν . (1.29)

Now, as we did in Eq. 1.21, let’s expand Eq. 1.29 about the ground state defined in Eq. 1.28.

This means re-writing Eq. 1.29 in terms of η and ξ, where they are defined as:

η = φ1 −
µ

λ
ξ = φ2. (1.30)
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Let’s also pick a particular gauge in which the re-written Lagrangian will further be sim-

plified and easier to put into context as:

φ→ φ′ = eiθφ = (cos(θ) + isin(θ))(φ1 + φ2)

= [cos(θ)φ1 − sin(θ)φ2)] + i [sin(θ)φ1 + cos(θ)φ2] . (1.31)

Picking a particular θ so that φ′ is real can be achieved by setting i [sin(θ)φ1 + cos(θ)φ2]

to zero. This implies that θ = −tan−1 (φ2/φ1), hence φ′2 = 0. Then Eq. 1.29 becomes:

L =

[
1

2
(∂µη)(∂µη)− µ2η2

]
+

[
− 1

16π
FµνFµν +

1

2

(
q

h̄c

µ

λ

)2

AµA
µ

]

+

[
µ

λ

(
q

h̄c

)2

η(AµA
µ) +

1

2

(
q

h̄c

)2

η2(AµA
µ)− λµη3 − 1

4
λ2η4

]

+

(
µ2

2λ

)2

. (1.32)

Now, the first line yields a scalar field, η, with the same mass given in Eq. 1.22 and a

massive vector field Aµ. The prior is nothing but the famous Higgs particle and within the

context of weak interactions, the latter gives birth to the massive gauge bosons, W and Z.

The second line holds information regarding the interactions between η and Aµ particles.

These are often visualized pictorially using the so-called Feynman diagrams. For example the

second term in line two is:

1

2

(
q

h̄c

)2

η2(AµA
µ). (1.33)

The Feynman diagram for this interaction is shown in Fig. 1.2, and the inline representation

of it can be made as η + η → A + A. Eq. 1.33 is also called the vertex factor, since it carries

information regarding the interaction vertex and can be used to define an amplitute,M, which

then can be used to calculate the cross section, σ, for the given process. The cross section is

simply a measure for the probability of a given process to occur, and it is often expressed in

units of area, mostly due to historical reasons dating back to fixed target experiments. A more
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detailed discussion of these concepts is out of the scope of this study, but an interested reader

can find more details in [1].

�
η

η

A

A

Figure 1.2: Feynman diagrams for the interaction defined in Eq. 1.33.

The last few pages demonstrated that it’s possible to explain the existence of massive gauge

bosons through spontaneous symmetry breaking and local gauge invariance in the existence of

a Higgs boson. Actually, within the standard model, all elementary particles are massless,

and it’s their interactions with this hypothetical Higgs particle that creates their masses. Of

course the reality is more complicated than what is discussed here. For example, the potential

used in Eq. 1.26 is only educational and the “real” form of it, if it exists at all, is currently

unknown. Moreover, the existence of the Higgs boson still lacks experimental confirmation.

Although not discussed here, the standard model lacks neutrino masses. Therefore, it fails to

explain the experimental observation of the so called neutrino oscillations. This, and other

reasons hint that, even though the standard model is very successful in explaining most of the

experimental observations in elementary particle physics so far, and sometimes with breath-

taking precision, it is not the ultimate theory of particle physics. Therefore, it is very important

to search for new physics, not only those explained by the standard model such as the Higgs

but also anything beyond it, in order to head towards some answers to today’s open questions

in this field. The next section is devoted to the discussion of such possible extensions to the

standard model that predict the existence of heavy charged gauge bosons that form the basis

of the search presented in this work.
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1.3 W ′ Models

The existence of heavy (mV � mW/Z) gauge bosons V ±, V 0 is predicted by many exten-

sions to the standard model. In this work the focus will be given to the charged ones, i.e. V ±,

which are also commonly referred to as W ′. These particles, if they exist, can be observed

in the usual leptonic channels V ± → `±ν as well as V ± → `±νjj arising from V ± → W±Z.

However the most favored channel is often based on the specific model under consideration.

In some models, the leptonic mode can be very strongly suppressed or even forbidden.

Among those is, for example, the right-handed charged bosons W±R as discussed in [10]. In

this model, the leptonic channel is suppressed when the right-handed neutrino νR is too heavy

for the decay WR → eνR to occur. Models with a strongly interacting Higgs sector, i.e. as

discussed in [11], might also favor the WZ decay mode. In these models, V ± bosons may be

considered as resonance in the WZ channel, hence resulting in a naturally large branching

fraction.

On the other hand, there are other models that favor the leptonic channels, such as the

extended gauge models, i.e. [12]. In the simplest approach, the extended gauge models can be

obtained by introducing extra groups to the already existing ones, i.e. the standard model.

Then following a similar procedure as discussed in the previous sections, the “new” heavy

gauge bosons can be obtained through the concept of symmetry breaking. The particular

model considered here is the so-called sequential standard model (SSM ), i.e. the extended

gauge model in [12] with the W ′ couplings to WZ set to zero. In this model, the coupling of

the W ′ to fermions is the same as the standard model W with the main production mechanism

in pp collisions being the quark annihilation process with the associated Feynman diagram

given in Fig. 1.3.
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µ+, ν̄µ

νµ, µ
−

Figure 1.3: Tree level Feynman diagrams for W ′+ → µ+νµ and W ′− → µ−ν̄µ.

The decay width for W ′ → `ν in this formalism can be written as:

Γ(W ′ → `ν) =
α

12

MW ′

sin2θW
, (1.34)

where α = 1
128 , sin2θW = 0.23, MW ′ is the mass of the W ′ and ` = e, µ, τ .

As can be seen in Eq. 1.34, the decay width is linear in W ′ mass, with a leptonic branching

fraction of 8.5%. The branching fraction for W ′ → qq̄ is actually three times larger than that

for leptons, however this channel suffers from significant multi-jet background, whereas the

leptonic channel is cleaner and has better signal to background separation. This is the main

reason why SSM W ′ is most easily searched for in the leptonic channel, as has been done in this

study. Fig. 1.4 shows the leading order production cross section for SSM W ′ times branching

fraction for the muon decay channel, σB, in pp collisions at
√
s = 7 TeV, signifying a possible

discovery could be made for masses up to about 2 TeV with the amount of data considered in

this study.
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Figure 1.4: Leading Order (LO) W ′ production cross section times the branching fraction to

a muon and a neutrino.
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CHAPTER 2. Experimental Setup

This chapter is devoted to the discussion of the experimental setup and the data taking

conditions. It begins with a brief introduction to CERN and the Large Hadron Collider in

section 2.1, which is followed by a somewhat detailed discussion of the ATLAS experiment

and detector in section 2.2. Section 2.3 will conclude the chapter with a summary of the data

taking conditions that are used in the current study.
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2.1 CERN and the LHC

2.1.1 CERN

The European Organization for Nuclear Research, known as CERN, was founded in 1954

on the Franco-Swiss border near Geneva and is currently the world’s largest particle physics

laboratory. The laboratory’s scientific and technical staff designs and builds particle accelera-

tors and ensures their smooth operation. They also help prepare, run, analyze and interpret

the data from complex scientific experiments. Some 8000 visiting scientists, half of the world’s

particle physicists, come to CERN for their research. They represent 580 universities and 85

nationalities [16].

2.1.2 The LHC

The Large Hadron Collider (LHC ) is located on the Franco-Swiss border near Geneva and

is currently the world’s largest and most powerful particle accelerator [17]. It is the latest

addition to CERN’s accelerator complex, as shown in Fig. 2.1, and mainly consists of 27 km

(17 mi) ring, as much as 175 m (574 ft) beneath the surface, of superconducting magnets with

a number of accelerating structures to boost the energy of the particles along the way.

The LHC is designed for two types of collisions: proton-proton and lead-lead, hence it

carries the word hadron in it’s name. The nominal energy for protons is 7 TeV with an

instantaneous luminosity of 1034 cm−2 s−1 and the energy for lead ions is 2.76 TeV/nucleon.

It uses 1232 main dipole magnets that operate at 1.9 K (−271.3 oC) to bend the particles

around the ring. The protons are injected into the ring in groups called bunches, where each

bunch has ≈ 1011 protons and the machine can hold up to 2808 bunches per beam, circulate

them and collide them at four interaction points that host the experiments: ATLAS, ALICE,

CMS and LHCb, as shown in Fig. 2.1.

ALICE, A Large Ion Collider Experiment, and LHCb, Large Hadron Collider beauty, are

specific purpose detectors that are designed to study ion collisions and b-quark production,

respectively, whereas ATLAS, A Toroidal Large hadron collider ApparatuS, and CMS, Compact
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Figure 2.1: CERN accelerator complex

Muon Solenoid, are general purpose detectors designed to cover the widest possible range of

physics at the LHC.

2.2 The ATLAS Experiment and Detector

The ATLAS collaboration consists of about 3000 physicists and engineers from 165 insti-

tutions in 35 countries and its aim is to search for new discoveries in the head-on collisions of

protons at the LHC and learn about the basic forces that have shaped the Universe since the

beginning of time and that will determine its fate [18].

The ATLAS detector is the world’s largest particle detector ever built. It is 44 m long and

25 m in diameter, weighing about 7, 000 tonnes (see Fig. 2.2), which makes it about half as
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big as the Notre Dame Cathedral in Paris and weigh the same as the Eiffel Tower. It consists

of three main parts: inner detector, calorimeter and the muon spectrometer.

Figure 2.2: The ATLAS detector

2.2.1 Inner Detector

The inner detector (ID) is designed for vertex∗ finding and measuring the momenta of

charged particles emerging from the collisions. To meet the measurement requirements imposed

by the benchmark physics processes, it is designed to have pixel and silicon microstrip (SCT )

trackers, used in conjunction with the straw tubes of the transition radiation tracker (TRT )

[19]. A computer generated image of the inner detector can be seen in Fig. 2.3, which shows

the layout of the different sub-systems. The pixel detector, the inner-most part of the ID, is

composed of three layers in the barrel and three disks on each side called the end-caps. Just

outside the pixel detector is the SCT, which has four layers in the barrel and nine disks on

∗Vertices are the positions of interesting physics interactions, such as proton collisions and particle decays.
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each end-cap. The outer-most part of the ID, the TRT, encloses these and is immersed in a

2 T magnetic field, generated by the central solenoid magnet, which extends over a length of

5.3 m with a diameter of 2.5 m. Fig. 2.4 shows a detailed scheme of the inner detector, and

summarizes its main parameters.

Figure 2.3: Cut-away view of the inner detector

The precision detectors (pixel and SCT) have a coverage of |η†| < 2.5, whereas the TRT

coverage goes only up to |η| = 2.0. Intrinsic measurement accuracies and mechanical alignment

tolerances for the inner detector sub-systems are summarized in Table 2.1.

The ID measures the momenta of charged particles in the following way. The trajectory

of a charged particle that is created during a collision is bent due to the existence of the

magnetic field as it travels through the system, and creates the so called hits on the layers

that fall on its trajectory. Each such hit, also called a space-point, is fed into a complicated set

†Pseudorapidity, denoted by η, is a spatial coordinate describing the angle of a particle relative to the beam
axis with the relation η = −ln[tan( θ

2
)], where θ is the angle between the particle’s momentum and the beam

axis.
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Figure 2.4: Scheme of the ATLAS inner detector barrel being crossed by one high-momentum

particle (red line).

of reconstruction algorithms [20], which builds a track for that particle. There are five main

parameters for the tracks, these are: inverse momentum (q/p), azimuthal angle (φ), polar angle

(θ), transverse impact parameter (d0) and longitudinal impact parameter (z0). The resolution

of a track parameter X can be expressed as a function of transverse momentum, pT, as:

σX(pT ) = σX(∞)(1⊕ pX/pT ), (2.1)

where σX(∞) is the asymptotic resolution of parameter X at infinite momentum, pX is the

constant representing the value of pT where the contribution from the intrinsic resolution
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Item Intrinsic Accuracy (µm)
Allignment Tolerances (µm)

Radial (R) Axial (z) Azimuth (R− φ)

Pixel

Layer-0 10 (R− φ) 115(z) 10 20 7

Layer-1&2 10 (R− φ) 115(z) 20 20 7

Disks 10 (R− φ) 115(z) 20 100 7

SCT

Barrel 17 (R− φ) 580(z) 100 50 12

Disks 17 (R− φ) 580(z) 50 200 12

TRT

All 130 30

Table 2.1: Intrinsic measurement accuracies and mechanical alignment tolerances for the inner

detector sub-systems [19].

equals to the multiple-scattering term in the equation for parameter X. Table 2.2 summarizes

the expected resolutions for the five main track parameters mentioned before in two different

η regions, corresponding to barrel and end-cap. A more detailed discussion can be found in

[19].

Track parameter 0.25 < |η| < 0.50 1.50 < |η| < 1.75

σX(∞) pX [GeV] σX(∞) pX [GeV]

Inverse transverse momentum (q/pT ) 0.34 TeV−1 44 0.41 TeV−1 80

Azimuthal angle (φ) 70 µrad 39 92 µrad 49

Polar angle (cot(θ)) 0.7× 10−3 5 1.2× 10−3 10

Transverse impact parameter (d0) 10 µrad 14 12 µrad 20

Longitudinal impact parameter (z0 × sin(θ)) 91 µrad 2.3 71 µrad 3.7

Table 2.2: Expected track-parameter resolutions at infinite transverse momentum, σX(∞),

and transverse momentum, pX , at which the multiple-scattering contribution equals to that

from the detector resoultion. Momentum and angular resolutions are given for muons, and the

impact parameter resolutions are given for pions.

Owing to less dead material, barrel track resolution values are better than the end-cap

values as can be seen in Table 2.2. By design the charge of muons and electrons can be measured

in the ID over the complete acceptance up to 1 TeV with misidentification probabilities on

average of a few percent. In the barrel region, the reconstruction efficiency for muons with

pT> 1 GeV is above 98%, where this number rises to > 99.5% for high-pT muons thanks
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to the Muon Spectrometer, which will be discussed later. Electrons and pions, on the other

hand, suffer from material effects resulting in reconstruction efficiencies between 70% − 95%

for tracks around 5 GeV.

2.2.2 Calorimeter

The ATLAS calorimeter system is composed of two main parts: the electromagnetic (EM )

and the hadronic (HCAL) calorimeters. The former is designed to make precision energy

measurements for particles that interact mainly via electromagnetic force, such as electrons

and photons, whereas the latter is designed for particles that interact strongly. The calorimeter

system is divided into three cryogenic parts as one barrel and two end-caps. Liquid Argon

(LAr) is used in all three parts for the EM calorimeter. The barrel part of the hadronic

calorimeter consists of scintillating tiles, and hence bears the name Tile Calorimeter (TileCal).

They are also used in the outer rings of the end-caps, whereas in the inner ring and the forward

region LAr is used. A computer generated overview of the ATLAS calorimeter system can be

seen in Fig. 2.5.

The ATLAS electromagnetic calorimeter is able to identify efficiently electrons and photons

within a large energy range (5 GeV−5 TeV) and measure their energies with a linearity‡ better

than 0.5%. It uses lead absorbers and liquid argon as the active material, is designed to be

projective in η, and covers a range of |η| < 3.2 (barrel : |η| < 1.475, end-caps : 1.375 <

|η| < 3.2) [21]. However due to the fact that the ID coverage only goes up to |η| = 2.5, the

precision measurements are limited to this region. The EM calorimeter is designed in a unique

accordion shape in order to eliminate azimuthal cracks, and has a total thickness of greater

than 22 radiation lengths (X0) in the barrel region and 24X0 in the end-caps. It is composed

of three layers, generally referred to as “front” (or “strips”), “middle” and “back”. There is

also a pre-sampler, covering |η| < 1.8, to account and correct for the energy loss upstream of

the calorimeter. The granularity of these layers at η = 0 and general details can be seen in

Fig 2.6.

‡The linearity is the ratio between the fitted mean value and the true particle energy.
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Figure 2.5: Overview of ATLAS calorimeters

There are two main ATLAS calorimeter clustering algorithms: “sliding window” and “topo-

logical”. The former clusters calorimeter cells within fixed-size rectangles, which are then slid

across the grid of the calorimeter to find objects above a predefined threshold to form seeds.

These seeds are then used to build clusters by iterating over the calorimeter layers to define the

energy and position of the cluster. The results from this method are used for electron, photon,

and tau lepton identification. The second algorithm clusters together neighboring cells, as long

as the signal in the cells is significant compared to noise. The results of this algorithm are

further used for jet and missing transverse energy reconstruction [24]. The optimal size of the

clusters depends on the particle that is being reconstructed. For example, electrons have larger

cluster sizes than photons due to higher interaction probability in the material upstream of

the calorimeter and also since they carry charge they bend in the magnetic field of the central

solenoid. Another important source of information in identification is the ID, where electrons

leave a trace but photons do not.
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Figure 2.6: Sketch of the accordion structure of the EM calorimeter [21].

The fractional energy resolution is often characterized in the following form:

σ(E)/E = a/E ⊕ b/
√
E ⊕ c, (2.2)

where a is the noise term, b is the sampling term and c is the constant term. For electrons the

sampling term is around 8.7% at low |η| (barrel), and inflates to 21% at |η| = 1.55 (end-cap)

due to an increase of material in front of the calorimeter. Photons, on the other hand, are less

affected by this and have a maximum sampling term of 12%. The constant term is generally

lower than 0.6% and is related to the energy modulation in a cell. A more detailed study of

the expected performance of the LAr can be found at [19].

The ATLAS hadronic calorimeter has a coverage of |η| < 4.9. For the |η| < 1.7 region,

iron scintillating-tiles are used for the barrel and extended barrel regions (TileCal) and the

gap between is partially instrumented with the intermediate tile calorimeter (ITC ) [22]. In
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the high η range, namely 1.5 < |η| < 4.9, LAr calorimetery is used: the hadronic end-cap

calorimeter (HEC ) extends to |η| < 3.2, while the range 3.1 < |η| < 4.9 is covered by the high

density forward calorimeter (FCAL). The total thickness of the hadronic calorimeter at η ∼ 0

is about 11 radiation lengths (with about 1.5 coming from outer support structures), which

is optimized to minimize the punch through to the Muon Spectrometer, which otherwise can

contribute significantly to the muon background [23].

The TileCal is comprised of iron absorbers and scintillating tiles as the active material. As

mentioned before, it consists of three sections, one barrel and two extended barrels on each

side. The barrel coverages the region |η| < 1 and the extended barrels cover 0.8 < |η| < 1.7.

Both the barrel and the extended barrel are longitudinally segmented in three layers. At η ∼ 0,

these layers have a thickness of 1.4, 4.0 and 1.8 interaction lengths, respectively, and have a

granularity of ∆η × ∆φ = 0.1 × 0.1 (0.2 × 0.1 in the last layer). More detail about the Tile

Cal design can be found in [22].

The HEC consists of two independent wheels on each side of the detector and uses LAr

technology as mentioned before. Its design is the same as that of the EM calorimeter, but

uses copper as the absorber, instead of lead. The FCAL consists of three sections: one made

of copper, the other two made of tungsten. In each section the calorimeter consists of a metal

matrix with regularly spaced longitudinal channels filled with concentric rods and tubes. The

rods are at positive high voltage while the tubes and matrix are grounded. The LAr in the

gap between is the sensitive medium. This geometry allows for an excellent control of the gaps

which are as small as 250 µm in the first section. The FCAL design is particularly challenging

because it is the closest component of the calorimeter to the beam pipe and is thus exposed

to significant radiation and required special attention. However it plays a key role in terms of

uniformity of the calorimetric coverage as well as reduced radiation background levels in the

muon spectrometer [23].
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2.2.3 Muon Spectrometer

The ATLAS Muon Spectrometer (MS ) is designed to make precision momentum measure-

ment of muons within |η| < 2.7 from as low as a few GeV up to a few TeV in pT. It is composed

of three subsystems [19]:

• Superconducting coils provide an average of 4 T magnetic field for bending muons for

momentum measurement. The magnetic field integral varies significantly both as a func-

tion of η and φ. The integrated bending strength is roughly constant in η, except for

1.4 ≤ |η| ≤ 1.6, where the transition from barrel to end-cap toroid coils takes place.

• Precision measurement detectors are located in three stations, each including multiple

layers for measuring the η-coordinate, in which most of the deflection occurs. Monitored

Drift Tubes (MDT ) are used for this purpose except for |η| > 2, where Cathode Strip

Chambers (CSC ) are used. The typical measurement precision is ≈ 100 µm. CSCs also

provide a rough φ measurement with ≈ 1 cm precision.

• Resistive Plate Chambers (RPC ) and Thin Gap Chambers (TGC ) are used for rough

η-φ measurements near stations, in barrel and end-cap, respectively. These detectors are

used as the hardware muon triggers.

An overview of the muon spectrometer can be seen in Fig. 2.7 and the η-φ map of ten

detector regions in Fig. 2.8. High-pT muons usually traverse all three stations that provide

precision measurements. However this is not the case in some regions of the detector volume,

i.e. where there are support structures or passages for services. The most notable coverage

drops occur around η ∼ 0 and |η| ∼ 1.2, where also some middle stations are missing. This

effect is demonstrated in Fig. 2.9. In order to achieve the highest efficiency in muon identifica-

tion/reconstruction, especially in such regions, the reconstruction algorithms take advantage

of information from the inner detector, which has full coverage for |η| < 2.5 as discussed before.

Unfortunately, limited MS coverage in these regions is a concern for high-pT muons, for which

the resolution is mostly dominated by the MS measurement. A more detailed discussion of the

muon identification/reconstruction can be found in section 4.5.1.
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The alignment curve is for an uncertainty of 30 µm in the chamber position [19]

Fig. 2.10 shows the relative contributions to the momentum resolution as a function of pT

for muons reconstruction in the MS (i.e. no input from the ID). As can be seen in the figure,

the most dominant contribution to the resolution comes from the energy loss fluctuations and

the multiple scattering at low-pT, and intrinsic resolution and alignment at high-pT. The latter

is more relevant to this search, since it is focused on very high-pT muons and will be discussed

in detail later on.

2.3 2011 Data Taking Period

Figure 2.11 summarizes the 2011 pp collisions data taking performance of ATLAS for data

used in this study. Figure 2.11a shows the total delivered integrated luminosity by the LHC

(green), and the ATLAS recorded integrated luminosity (yellow). The delivered luminosity

accounts for the luminosity delivered from the start of stable beams until the LHC requests

ATLAS to turn the sensitive detectors off to allow for a beam dump or beam studies. Given
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is the luminosity as determined from counting rates measured by the luminosity detectors.

Details can be found in [25].

Figure 2.11b shows the ATLAS data taking efficiency for the same period per week. The

efficiency is defined as the ratio of two numbers: the numerator being the luminosity recorded

by ATLAS and the denominator being the luminosity delivered between the declaration of sta-

ble beams and the LHC request to turn the sensitive detectors off. The empty bins correspond

to the weeks where no stable beams were delivered by the machine. The average efficiency is

calculated to be 95.2%, where the inefficiency includes turn-on of the high voltage for the sen-

sitive detectors, some components of the MS and the contributions that come from individual

problems with a given subdetector.
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Figure 2.11: ATLAS 2011 pp data taking summary for data presented in this study

The total delivered luminosity in this period is 1.58 fb−1 where ATLAS recorded 1.50 fb−1

with an uncertainty of 3.7%. The total luminosity that can be used for a physics analysis,

however, depends on the individual study. The analysis reported here depends on almost all

subsystems and hence requires proper operation of ATLAS as a whole, which includes the ID,

calorimeters, and the MS.

Online data taking is divided into subparts called luminosity blocks (lbn), whose length is

configurable. For the 2011 pp collisions, each lbn corresponds to 60 sec. A run is a collection

of luminosity blocks, whose duration depends on the beam conditions. The detector operation
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during data taking is monitored at all times, and each sub-detector status is set for each lbn

in each run. Then each analysis is required to use a list of “good” lbns for each run, which

is called a Good Runs List (GRL), depending on the sub-systems being used. Therefore the

luminosity used by each study is determined by the GRL and the total luminosity used in

this analysis is 1.04 fb−1 with an uncertainty of 3.7% and corresponds to data collected in

March-June 2011. During the 2010 data taking period, ATLAS recorded (0.05± 3.4%) fb−1,

so the data accumulated in the first half of 2011 is about 30 times more than the entire 2010.

This was achieved by both increasing the bunch intensity as well as the number of bunches,

hence the instantaneous luminosity. Due to this high luminosity there were typically five more

interactions per event (these additional events are refered to as “pile-up”). Figure 2.12 shows

the mean number of interactions per bunch crossing for data that is used in this analysis. Once

the machine reaches nominal operating conditions this number is expected to be about 23.
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study
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CHAPTER 3. Event-Loss Monitoring for the ATLAS Trigger System

Right after the discussion of experimental setup, this chapter is devoted to a brief discussion

of the ATLAS trigger system and its online monitoring, in which the author was heavily

involved. It begins with a description of the ATLAS trigger system in section 3.1. Then a

specific online monitoring tool, OnlineRatesChecker, co-developed by the author, is discussed

in section 3.2. The chapter is summarized and concluded in section 3.3.
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3.1 Introduction to the ATLAS Trigger System

ATLAS uses a three level trigger system, Level-1 (L1), Level-2 (L2) and Event Filter (EF),

in the given order. The combination of the latter two is also called High Level Trigger (HLT).

L1 is a hardware based system, whereas the HLT is software based. A trigger system is required

simply because recording every event is neither affordable, nor desirable. Only events that have

“interesting” physics objects, i.e. high-pTmuons/electrons, are recorded on permanent disk for

detailed analyses. Trigger is the collection of a highly sophisticated and complex structure

that makes the decision if an event is worth recording or not based on its signature.

The ATLAS trigger system is designed on the foundation of “early rejection”. The main

goal is to reject an event as soon as possible unless it includes an object(s) of interest. This

rejection is achieved in two ways in the HLT: usage of trigger algorithms and prescales. A

trigger algorithm is a software algorithm that applies a set of cuts to decide whether the input

object is worth keeping. These cuts are based on physical signatures, e.g. energy deposited in

a given set of calorimeter clusters etc., and the outcome is not known a priori. The prescale

(PS), on the other hand, enforces a trivial rejection based on the frequency of inputs, and

is represented by a real number. For example, a prescale value of 5 means, 4 out of every

5 events will be rejected. At L1, this decision is counter based, which means with a given

initial condition one knows exactly which events will be rejected and which will be accepted.

However at HLT, the decision is more complicated and random, which means that on average

4 out of every 5 events will be rejected, but one doesn’t know which ones exactly. Prescales

can be applied at any level of the trigger system in order to control the output bandwidth of

any trigger.

The configuration keys that uniquely identify the trigger parameters are available in the

trigger database (TriggerDB). They are pre-determined by experts and are available in the

database before they are used in a data taking period. There are four database keys, which are:

Super Master Key (SMK), Level-1 PreScale Key (L1PSK), HLT PreScale Key (HLTPSK) and

Bunch-Group configuration Key (BGK). The last is irrelevant to this discussion but included

for completeness. The SMK identifies the configuration for the L1 trigger items and the HLT
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trigger chains and algorithms. The L1PSK and HLTPSK identify the PS configurations for L1

and HLT, respectively.

As discussed in the previous chapter, there are two natural units of data taking period in

ATLAS. The fundamental unit is called a Luminosity Block (LB), and its length is configurable

but usually lasts approximately for 120 seconds. The collection of a set of LBs is called a Run,

and a run can be as short as a few minutes and as long as days. The SMK is fixed for a run,

however, L1PSK or HLTPSK are defined for a LB because they may be changed within a run.

This design allows for the prescales to be changed to adapt to varying luminosity conditions

during a lengthy run.

The configuration of the whole trigger structure as well as its consistency is quite important

to ensure the quality and reliability of the collected data. This section is devoted to a detailed

discussion of a trigger monitoring tool, OnlineRatesChecker∗, that is designed to raise alarms

when events are lost due to issues related to the configuration of the trigger algorithms in the

HLT.

3.2 OnlineRatesChecker

3.2.1 Input

The HLT trigger consists of multiple computer racks, with each rack consisting of 31 worker

nodes and 1 master node. The counts for all trigger processes that run on every rack used in

data taking are collected by programs called gatherers for each LB. These counts are published

in the form of a 2-D histogram, called the Signature Acceptance, where the x-axis holds the

names of the trigger chains and the y-axis enumerates the various steps of the trigger chain

process. The counts that are relevant to our study are : error counts (error), total input count

to the trigger chain (input), total count that survives prescaling (!PS rate) and total count

that survives algorithm execution (raw rate). All these and some other additional variables

used in the rest of the text are summarized in Table 3.1. Figure 3.1 gives an example Signature

∗This project is a joint effort of the author with Tae Min Hong, PhD. (University of Pennsylvania), Tomasz
Bold, PhD. (University of Califrornia, Irvine & AGH-UST, Krakow) and Jörg Stelzer, PhD. (DESY).
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Acceptance plot for a subset of L2 trigger chains.

Name What and where Description

nerror error on y-axis in Fig. 3.1 Number of processing failures

nall input on y-axis in Fig. 3.1 Number before applying prescale rejection

nps !PS rate on y-axis in Fig. 3.1 Number after applying prescale rejection

ntrig raw rate on y-axis in Fig. 3.1 Number after applying algorithmic rejection

xconf PS true in COOL database Prescale value set in the database

Table 3.1: Definition of different trigger chain counts.
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Figure 3.1: An example Signature Acceptance histogram. The x-axis holds a subset of L2

trigger chains and the y-axis holds the different counts.

The counts are checked to ensure that they are consistent against the relevant prescale value

(xconf) that is stored in the database as well as for self-consistency across the computing racks.

There are two types of checks: the Basic and Statistical checks. By definition, the former is

deterministic such that the failure is an indication of a problem that requires immediate action

by an expert, whereas the latter is probabilistic and requires further examination.
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3.2.2 Basic Checks

The basic checks are performed for the trigger chains that have prescale values that should

either reject or accept all inputs. For example most of the important physics triggers fall into

this category since they are unprescaled, or in other words they have prescale values of xconf =

1. In such a case one knows that the equality nall = nps has to hold, otherwise is an indication

of a problem. In addition, the total error counts per trigger chain algorithm execution are also

monitored during the basic checks and this count is compared with a predetermined value (by

default zero). Table 3.2 summarizes all the checks that are performed under this category, the

associated error codes as well as a description of which conditions should be met to trigger a

given error.

Error code Error name Conditions to be satisfied

9 CHERR NONZERONERROR nerror > threshold

8 CHERR ZERONINPUT POSNNOTPS nall = 0 and nps > 0

7 CHERR ZERONNOTPS POSNRAW nps = 0 and ntrig > 0

6 CHERR ZERONINPUT POSNRAW nall = 0 and ntrig > 0

5 CHERR ZEROTRUEPS POSNNOTPS |xconf | > ZERO† and nps > 0

4 CHERR ZEROTRUEPS POSNRAW |xconf | > ZERO and ntrig > 0

3 CHERR NINPUTNNOTPS PSONE |xconf − 1.0| > ZERO and nall = nps

2 CHERR NINPUTNNOTPS PSNEGOXE |xconf + 1.0| > ZERO and nps 6= 0

1 CHERR NINPUTNNOTPS PSNEG xconf < 0.0 and nps 6= 0

0 CHERR OKAY otherwise

Table 3.2: The basic check error codes and their explanations.

3.2.3 Statistical Checks

As briefly mentioned in the introduction, a trigger with a prescale of xconf accepts 1/xconf

events. However this is true only on average because a random sampling is done on an event-by-

event basis. Under these circumstances one can use a simple binomial probability distribution

function (pdf) to explain the system, with probabilty for passing the prescale:

pps =
1

xconf
. (3.1)

†ZERO signifies 0.00000001 to account for floating point precision.
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For sufficiently large values of nall the pdf converges to a normal distribution with a definite

mean and width, as a result of the central limit theorem. The number of events that passed

the prescale can be considered a random variable:

nps = number of events that passed the xconf prescaling. (3.2)

For the sake of simplicity, one can assign the Poisson mean and width for its parameters, i. e.,

µps = nall · pps

σps =
√
nall · pps

(3.3)

respectively. Now we are able to compute a standard deviation for a particular measurement

nps:

zps =
nps − µps

σps
. (3.4)

We now consider the result of a group of trigger chains. The collection of zps values should

be normally distributed, so for some cut value of zcut we take the number of cases with |zps|>zcut

to be a random variable:

Nps = number of trigger chains with |zps|>zcut. (3.5)

For Ncollection trigger chains, we expect the Gaussian mean and the width to be, respectively,

Mps = Ncollection · erf(zcut/
√

2)

Σps =
√
Ncollection · erf(zcut/

√
2)

. (3.6)

where erf is the (two-sided) integral of the Gaussian function. Following the above scenario,

one is able to compute a standard deviation for a particular measurement Nps:

Zps =
Nps −Mps

Σps
, (3.7)

Now comes the “not so trivial” question of how to choose a threshold Zcut that will raise a

“potential problem” flag when |Zps|>Zcut? For a 2-minute long LB there are 30 calculations
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each hour. If we assume the shifter performs the check once every hour (as a result of the

check list) a cut at Zcut=2 will yield about 1 calculation being an outlier. This seems to be a

reasonable choice.

We now consider two examples to illustrate these tests. First, consider one trigger chain

with the configuration xconf=1000 and the counts nps=55 and nall=73540. The probability

is p=0.001; the Gaussian mean and width are µps=73.5 and σps=8.6, respectively; and the

standard deviation from the mean is zps=−2.15. Statistically speaking, |zps| of greater than

this value happens approximately 3.2%.

Second, consider a collection of trigger chains with the threshold zcut=2 and the number of

trigger chains Nps=20 and Ncollection=300. The Gaussian mean and width are Mps=13.7 and

Σps=3.7, respectively, and the standard deviation from the mean is Zps=1.7. With the choice

of Zcut=2, the shifter will not be alerted.

3.2.4 Output

The result of the basic checks is published in the form of a 2-D histogram, where the x-axis

is filled with the trigger chain names and the y-axis with the computing rack names. Then

for each bin, the value of the test result, as defined in Table 3.2, is filled. The outcome of

an errorless test is an empty histogram with no entries. Fig. 3.2 shows the result of a test

run, where the number of chain errors, nerror, for a random chain (in this case the chain is

“L2 2mu4 MSonly”) is set to a non-zero value artificially, and the full test is run to see if the

system catches the problem. It can be seen in the plot that a value of 9 is set for that particular

trigger chain for all the computing racks, resulting in a successful check.

Even though this histogram is available for the shifter’s visual inspection, in the online

environment it is passed to the Data Quality Monitoring Framework (DQMF ), which runs

the necessary algorithms to check the content automatically and publishes the result, which

automatically sets the associated Data Quality (DQ) flag, in this case TRHLT, meaning Trigger

HLT. An example from an actual run can be found in Fig. 3.3. In case an error is caught as

a result of the basic checks, the flag is set to red, signifying an error. This can then be traced
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L2_mbRmMbts_1

L2_mbRmMbts_2

L2_2mu4_MSonly

L2_mbRmMbts_1_NoCut_Time

L2_MU4_DiMu_FS_noOS

L2_MU4_Trk_Jpsi_loose_passL2

LVL2L21rackY1504D2Gatherer_r_to_t

LVL2L21rackY2004D2Gatherer_r_to_t

LVL2L22rackY1804D2Gatherer_r_to_t

LVL2L22rackY1904D2Gatherer_r_to_t

LVL2L24rackY0404D2Gatherer_r_to_t

LVL2L24rackY1204D2Gatherer_r_to_t

Entries  6
       0       0       0

       0      54       0
       0       0       0

0

1

2

3

4

5

6

7

8

9

Entries  6
       0       0       0

       0      54       0
       0       0       0

Figure 3.2: The result of the basic checks of a test run where an error for one of the chains was

introduced by hand. The x-axis is labeled with trigger chain names; the y-axis with computing

racks; and the z-axis is the color-coded value that represents error codes from Table 3.2.

back using the error code as well as the rack and trigger chain information.

Figure 3.3: The final output of DQ algorithms that are run over the results of

OnlineRatesChecker. A green flag signifies no error is found.

The result of the statistical checks is very similar to the basic checks, but in this case the

bin value is the result of the statistical check, the standard deviation of the observation, as

described in section 3.2.3. Due to the nature of this test, only a yellow flag is set for a value

that is greater than 4, i.e. 4σ, otherwise a green flag is set.



43

3.3 Conclusions

OnlineRatesChecker, an online ATLAS trigger monitoring tool that checks for possible

event-losses and HLT trigger misconfigurations was presented. This tool is deployed online,

and has been a part of the official ATLAS data taking since November, 2010. It is documented

in the internal ATLAS note (ATL-COM-DAQ-2011-062) [26].
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CHAPTER 4. W ′ Search in the Muon plus Neutrino Final State

This chapter discusses the search for physics beyond the standard model via a search for

charged heavy gauge bosons decaying to a muon and a neutrino, i.e. W ′ → µν, using 1 fb−1

of proton-proton collisions at
√
s = 7 TeV collected in March-July 2011 with the ATLAS

detector. It begins with a discussion of the observable that is used for the search in section 4.1.

Section 4.2 describes the simulation used for the analysis and section 4.3 discusses the cross

sections that are used for each sample. The event and object selection criteria are summarized

in sections 4.4 and 4.5, respectively, and the initial results follow in section 4.6. The major

systematics that affect the analysis are discussed in section 4.7. Sections 4.8 through 4.9 discuss

the final results in this channel, and section 4.10 summarizes the combination of these with

the electron channel, i.e. W ′ → eν. The full analysis is summarized in the conclusions section

in 4.11.
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4.1 Identification of Signal and Background Events

As mentioned before, the signature for the W ′ is a lepton plus missing transverse energy,

Emiss
T , to accommodate the existence of the neutrino in the event∗. For such a final state one

can reconstruct the transverse mass, mT, for the lepton-neutrino systems using:

mT =
√

2pTEmiss
T (1− cos∆φ`,Emiss

T
) (4.1)

where pT is the transverse momentum of the lepton, Emiss
T is the missing transverse energy and

∆φ`,EmissT
is the angle between pT and Emiss

T . The definition of the Emiss
T is as follows:

Emiss
T = Emiss

Tcalo − pµT + Eµ,loss
T , (4.2)

where the first term reflects the component resulting from the transverse energy deposition in

the calorimeter, the second term subtracts the muon transverse momentum from this and the

last corrects for the transverse component of the energy deposited in the calorimeter by the

muon which is included in both of the first two terms. One cannot reconstruct the full invariant

mass of W ′ because the longitudinal momentum of the neutrino cannot be determined. The

most notable characteristics of the transverse mass distribution is the Jacobian peak which

falls sharply at the W ′ mass, as demonstrated in Figure 4.1 for a 1750 GeV W ′ .

The main background to W ′ is the high-mT tail of the SM W , and is irreducible since it

has the same signature. Other backgrounds are the SM Z boson that decays into two opposite

charged leptons where one of them cannot be reconstructed, W or Z decaying into tau leptons,

where one of the taus subsequently decays into an electron or muon, and diboson production.

The combination of all of these will be referred to as SM W/Z from now on. In addition to

these, there is also a contribution from tt̄ and QCD jet productions, where a light or heavy

hadron decays leptonically or a jet is misidentified as a lepton.

∗Since the neutrino effectively doesn’t interact with material, it traverses through the detector undetected.
Its existence manifests itself as an imbalance in the total transverse momentum in the event and the vari-
able used for this purpose is called the missing transverse energy, Emiss

T . However there are other effects, i.e.
momentum/energy mis-measurements etc., that also contribute to this observable.
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Figure 4.1: Truth level transverse mass distribution for 1750 GeV W ′ and the demonstration

of the Jacobian peak that falls sharply at the sample mass.

As can be inferred from equation 4.1, such a high-mass state search requires very efficient

lepton/missing energy reconstruction and precision energy/momentum measurements at very

high energies.

4.2 Monte Carlo Samples

4.2.1 Signal Samples

The signal W ′ → µν events are generated using Pythia 6.4 [27]. Ten sets of samples were

generated with mW ′ equal to 500, 600, 750, 1000, 1250, 1500, 1750, 2000, 2250 and 2500 GeV in

all leptonic channels, namely W ′ → `ν, where ` = e, µ and τ . The Pythia default settings are

used, i.e. the W ′ has the same V - A couplings as the standard model W boson but interference

between the W ′ and W is not included, neither are the diboson decay channels. In addition

MRST LO∗ [28] parton distribution functions are used. A detailed list of the signal samples

and their properties can be found in Table A.1 in Appendix A.
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4.2.2 Background Samples

The main backgrounds for this search are the SM W/Z, tt̄, WW/WZ/ZZ (Dibosons) and

QCD events, the dominant one being the leptonic W decays.

SM W and Z samples are generated with Pythia [27]. The largest dataset is the W → µν

sample, which has no filter applied and has ∼ 7M events. In order to have higher statistical

precision in the high-mT region, that is relevant to this search, this sample is combined with the

so called “binned” samples, where the generated W boson mass is restricted to the following

intervals : mtruth
W ∈ [200, 500] GeV, mtruth

W ∈ [500, 1500] GeV, mtruth
W ∈ [1500, 2500] GeV and

mtruth
W ∈ [2500,∞) GeV. All the binned samples have∼ 60k events. The dominant contribution

for the SM Z boson production comes from the Z → µµ decay channel. The dataset used to

account for this background has ∼ 5M events, and has a generator level cut of Mµµ > 60 GeV.

As in the W boson case, binned samples are used to obtain larger statistics in the high

mass region. The binned samples used for Z → µµ are : mtruth
Z ∈ [200, 400] GeV, mtruth

Z ∈

[400, 600] GeV, mtruth
Z ∈ [600, 800] GeV, mtruth

Z ∈ [800, 1000] GeV, mtruth
Z ∈ [1000, 1250] GeV,

mtruth
Z ∈ [1250, 1500] GeV, mtruth

Z ∈ [1500, 1750] GeV and mtruth
Z ∈ [1750, 2000] GeV each hav-

ing ∼ 20k events. Samples of W → τν and Z → ττ with the τ leptons decaying leptonically

are also used.

For the tt̄ sample, MC@NLO [29] is used to generate the matrix elements. Then these events

are passed through Jimmy [30] to describe multiple parton interactions and Herwig [31] to

describe the underlying event and parton showers. CTEQ6.6 [32] parton distribution functions,

PDFs, are used along with the top quark pole mass of 172.5 GeV. The diboson samples,

WW/WZ/ZZ, are generated with Herwig, requiring at least one lepton in the final state.

A data driven method, which is discussed in section 4.6.2.2, is used for the estimation of

the QCD background. However for cross checks, Pythia-generated QCD hard process samples

are also used. These samples are denoted by jj(p1, p2), where the pT of the hard scatter,

quark or gloun, is ∈ [p1, p2] GeV. The most dominant contribution comes from the heavy

flavor decays, i.e. bb̄ and cc̄. Therefore a filter that ensures the existence of at least one muon

with pT> 8 GeV in the final state is used. A detailed list of background samples and their
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properties can be found in Table A.2 in Appendix A.

4.2.3 Simulation

The recorded raw ATLAS data, i.e. readouts from the sub-detector front-end boards etc.,

is kept permanently on disk. The construction of physics objects, such as electrons, muons

etc. using this low level detector information is called the reconstruction step. A better

understanding of the detector response and characteristics over time results in running the

reconstruction step as many times as necessary to improve the quality of the derived physics

objects, i.e. their energies/momenta and so on. The reconstruction used for the MC should be

the same as the reconstruction that is used for the actual data for a one-to-one comparison.

The MC samples used in this analysis are simulated using ATLAS MC10b framework, with a

reconstruction release that is consistent with the reprocessing that is used for the actual data.

The different event generators used for different MC samples were discussed in section 4.2.2.

On top of all these, Photos [33] is used for simulating the final state radiation and Geant4 [34]

for the response of the ATLAS detector.

4.3 Cross Sections

As discussed in section 4.2, all MC samples, including the W ′ signal, except tt̄ and dibosons,

are generated with Pythia [27], using modified Leading-Order parton distribution functions,

namely MRST LO* [28]. The tt̄ sample is generated using MC@NLO [29], whereas Herwig [31]

is used for the diboson production. For all samples, final-state photon radiation (FSR) is

handled by Photos [33] and the propagation of particles and response of the detector are

evaluated using the ATLAS full detector simulation based on Geant4 [34] as discussed in

section 4.2.3.

The W ′ σB limits require background subtraction and mass limits require the knowledge of

theoretical signal cross sections. The total cross sections for W ′ → `ν, W → `ν and Z → `` are

calculated at Next-to-Next-to-Leading-Order (NNLO) with FEWZ [35] using the Gµ scheme

and MSTW2008 PDFs [36]. W → `ν cross section is also calculated using ZWPROD [37],
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and the agreement is found to be better than 0.5%. For the final calculations, the former is

used. Electroweak corrections, which are especially important for the SM W background in

the high-mT region are also included using Horace [38] with real emmision corrections [39].

The following mass dependent parametrization, also called the K-factor, is used to apply all

these corrections to the SM W/Z distributions on an event-by-event basis:

Kpar =


1.15 m < 80 GeV

1.15− 0.00021 (m− 80) 80 < m < 1250 GeV

1.15− 0.00021 (m− 80)− 0.000010 (m− 1250) m > 1250 GeV,

(4.3)

where m is the generated mass of the W/Z in units of GeV. The total cross section factor

in this parametrization is obtain with ZWPROD, therefore an additional factor of 1.016 is

applied to normalize to the FEWZ total cross section instead. This is done to be consistent

with other cross sections, which are also mostly calculated with FEWZ.

The tt̄ cross sections are calculated near-NLO with MC@NLO [29] following [40] with a

top mass of 172.5 GeV. The only exception to higher order cross section calculations are those

for the diboson samples, for which the LO values are used since these samples comprise only

a few percent of the total background.

4.4 Event Selection Criteria

The event selection criteria is designed to obtain a high signal efficiency, but at the same

time keep the background levels and uncertainties at a reasonable level so that they will not un-

dermine the discovery potential. The signal and the main contributions to the background are

discussed in the previous section. The high-mass tail of W → µν is an irreducible background

and the aim is to keep other contributions well below its level. Other electroweak processes,

namely SM Z and diboson production, also contribute to the irreducible background. The

background from tt̄ is significantly below that from EWK processes and its spectrum and cross

section are reasonably well known and so no special cuts are used to suppress it. However

background arising from QCD processes is of special concern because it is not well modeled by
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the Monte Carlo, as the non collision backgrounds arising from cosmic rays, which may become

important when searching for very high-pT muons. Data driven methods are used to estimate

the latter two and event selection requirements are introduced to suppress them. These are

discussed in section 4.6.2 in detail. This section is devoted to a discussion of the general event

selection criteria. The muon specific topics are discussed in section 4.5.3.

4.4.1 Vertex

Only events that have a hard scattering resulting from pp collisions are of interest to this

analysis. Therefore a set of cuts is applied to ensure this. As discussed in section 2.3 there

are typically five additional interactions per event due to the high luminosity. Therefore an

event will have more than one reconstructed vertex associated with it. Out of all the vertex

candidates, that with the highest Σp2
T is called the primary vertex. Only those events that

have at least three tracks coming from the primary vertex that has a z position within 15 cm

of the nominal position is considered to be a collision event, and are used in this analysis.

Additional cuts are also applied to ensure that the muon candidate actually originates from

this vertex. These are discussed in section 4.5.3 in detail.

4.4.2 Jet Cleaning

The measurement of the missing energy relies on two main subsystems: the calorimeter and

the muon spectrometer. In order to protect the analysis from any spurious Emiss
T measurements

that might result from various isolated calorimeter problems, such as hot cells etc., a set of

quality cuts is applied. An event is rejected if any of the jets fail a predefined quality criteria

explained in [46]. This is a very generic requirement for any ATLAS analysis that depends

on calorimeter information. These cuts are applied only to data since some variables that are

used for this selection are not well modeled in MC. However, the overall efficiency of this cut

is quite high therefore no special correction is applied to account for a data/MC discrepancy.
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4.4.3 Emiss
T Cut

The existence of the neutrino in the final state for the signal requires the event to have

some Emiss
T associated with it. In addition to this, Emiss

T is also a good discriminant against

the QCD background, in which the Emiss
T spectrum is softer. Therefore, events are required to

have at least 25 GeV of missing transverse energy as defined in Eq. 4.2.

4.5 Muons

4.5.1 Muon Identification/Reconstruction

There are two families of algorithms in ATLAS to reconstruct muons, STACO [41] and

Muid [42]. Both algorithms are officially approved for physics analysis but for this study muons

reconstructed with the STACO algorithm are used. Therefore, this algorithm is discussed in

more detail.

STACO algorithms use three main approaches to reconstruct muons. The direct approach

is to reconstruct standalone muons using MS tracks and extrapolating these to the beam line.

The second approach is to match the tracks reconstructed in the MS with the nearby ID

tracks to identify combined muons. The last approach is to start from the ID tracks and look

for nearby MS hits to reconstruct tagged muons. This latter approach is used primarily to

reconstruct low-pT muons that may not have enough energy to create hits in especially the

outer stations of the MS. On the other hand, high-pT muons usually traverse through all three

stations, and can be reconstructed with the combined algorithm very efficiently.

The STACO algorithm that reconstructs the MS tracks and extrapolates these to the beam

line is called Muonboy [41]. Muonboy first builds track segments in each of the three muon

stations and then links these to form tracks. After successfully reconstructing an MS track,

the algorithm then extrapolates this to the beam line taking into account both the multiple

scattering and the energy loss in the calorimeter. The energy loss that is assigned to each muon

is based on the material crossed upstream of the calorimeter. The standalone algorithm can

reconstruct muons up to |η| = 2.7 where the limitation comes from the MS detector coverage.
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The ID tracks are reconstructed by the NEWT algorithm described in [20]. Within this

algorithm, the space points that are in the first four layers of the ID are linked to form a track

seed and tracks are reconstructed by extending these to include measurements from the outer

layers [19]. This is the official ATLAS ID track reconstruction and has a very high detection

efficiency over the full detector coverage of the ID, namely |η| < 2.5.

Given that both ID and MS tracks are reconstructed, STACO, whose name derives from

STAtistically COmbined, does a statistical combination of these to obtain a combined track

vector:

T =
C−1

ID TID + C−1
MSTMS

C−1
ID + C−1

MS

(4.4)

where T denotes the vector of five track parameters, which are explained in section 2.2.1,

expressed at the point of closest approach to the beam line and C denotes its covariance

matrix. One important aspect of Eq. 4.4 is that both tracks are weighted by their errors as

part of the combination.

A loose combination criteria helps maintain a high reconstruction efficiency, and requiring

the existence of an ID track gives high rejection against muons produced in the calorimeter,

e.g. those coming from π and K decays, which are backgrounds to this search. Therefore, we

make use of combined muons in this study, with some additional quality cuts that are discussed

in section 4.5.3.

4.5.2 Muon Triggers

ATLAS uses a three level trigger system, Level 1 (L1 ), Level 2 (L2 ) and Event Filter

(EF ), in the given order. As discussed in section 3.1, the combination of the latter two is

also called the High Level Trigger (HLT ). Only events that pass relevant physics triggers are

recorded for offline analysis. L1 is a hardware based trigger, whereas HLT is software based.

At the early stages of data taking, only L1 triggers were used to reject events, but later on as

the instantaneous luminosity increased and HLT algorithms were commissioned, they actively

started to reject events as well.
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As mentioned in section 2.2.3 there are two sub-detectors that are used as muon hardware

triggers: the Resistive Plate Chambers (RPCs) and the Thin Gap Chambers (TGCs), which

cover the barrel and end-cap regions, respectively. At L1 the trigger system uses the inner

most station hits as seeds, defines a window whose size depends on the trigger threshold, and

searches for hits within this window in the outer layers. This procedure is performed using Look

Up Tables (LUTs). If a hit(hits) is(are) found satisfying the necessary criteria, the associated

event is accepted and the information is passed on to the HLT. In such a case, the associated

L1 trigger is said to fire.

The region of the detector that has the object that fired the L1 trigger is called a Region

of Interest (RoI ). The HLT retrieves the RoI information from L1 and requests the detector

readouts from the relevant channels. This greatly enhances the trigger performance since

only a tiny fraction of the whole event is extracted and passed to the HLT. The HLT then

reconstructs the relevant objects and runs a series of algorithms called hypothesis algorithms

to assess whether the object under consideration is worth keeping. If so, the event is written

to tape and all the trigger information is attached to the event.

Both in Monte Carlo and data we require a combination of EF mu22, EF mu22 MG

and EF mu40 MSonly barrel triggers to fire in the event (see Table 4.1). The first two are

combined triggers that require a combined track with pT> 22 GeV, whereas the last requires

an extrapolated MS track with pT> 40 GeV in the event. The offline muon selection is well

within the plateau of the trigger efficiency thanks to the rapid turn-on of the combined muon

triggers. Furthermore, the offline muon that is used for the transverse mass calculation is

required to match the associated trigger element.

Sample Trigger Logic

Data EF mu22 || EF mu22 MG || EF mu40 MSonly barrel

MC EF mu22 || EF mu22 MG || EF mu40 MSonly barrel

Table 4.1: List of muon triggers used in the analysis.
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4.5.3 Offline Muon Selection Criteria

The muon selection cuts can be summarized as follows:

• pCB
T > 25 GeV

• dPV
0 < 1 mm & zPV

0 < 5 mm

• pcone30
T /pT < 0.05

• Muon Combined Performance (MCP) group recommended ID cuts

• NMDT
hits > 2 (in each of the three stations)

• N
RPC/TGC,φ−layer
hits > 1 (in each of at least two of the three RPC/TGC layers)

• No barrel-endcap overlap, no poorly alligned chamber hits, i.e. BEE, EE and BIS78

• NCSC,η
hits = 0

• |S∆(q/p)ID−MS
| < 5 (see Eq. 4.5)

• ∆Rtrig < 0.1

The pT is taken from the combined measurement. Doing so, one gets superior resolution

throughout the full pT spectrum, from the low-pT region where the ID measurement domi-

nates to the high-pT region where the MS takes over. At the time of this study, the average

momentum resolution at 1 TeV was about 15% in the detector regions that are used in this

analysis, which in itself is a spectacular achievement.

The impact parameter cuts applied to dPV0 and zPV0 aim to reduce the cosmic background.

For signal events the muon originates form the production vertex of the W ′ , which is most

probably the primary vertex in the event. However, for a cosmic muon, the measurement of

zPV0 would be “random” and relatively higher than that of a muon coming from the hard

scattering.

Moreover, the muons that are of interest are isolated muons, which means that there

shouldn’t be any jet activity near them. There are two different cuts one can apply to ensure
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this, one is track based and the other is calorimeter based. Here we use the former, and require

the ΣpT in a cone size of ∆R = 0.3 around the muon to be less then 5% of the muon pT.

This gives a high rejection against QCD background, which is mostly dominated by the heavy

flavor decays.

The MCP recommended ID cuts ensure a reliable angular resolution for the combined track

and the high MDT hit multiplicity ensures a precise momentum measurement in the MS, which

is crucial for this analysis. Muons that have overlapping barrel and endcap hits as well as CSC

hits are also rejected due to the alignment in these regions of the MS being far from ideal.

The latter effectively removes the region |η| > 2 from the acceptance. Another cut to ensure

good momentum resolution is the cut applied on the significance of the ∆q/p between the ID

and MS measurements, which is defined in Eq. 4.5. A cut value of 5 denotes a 5σ level cut,

which has a very high efficiency both in data and MC, and aims to remove those muons that

are obviously misreconstructed.

S∆(q/p)ID−MS
=

(q/p)MS − (q/p)ID

σ((q/p)MS − (q/p)ID)
(4.5)

Furthermore, the offline muon is required to have at least two RPC φ-layer hits in two

different MS layers, and to match the online object that fired the trigger under consideration

with the given ∆R criteria.
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4.6 Initial Results

The stability of the event selection throughout the whole data taking period is demonstrated

in Fig. 4.2, which shows the total number of selected events normalized by the integrated

luminosity of each run, hence the event selection cross section. This plot is particularly useful

to assure the full luminosity is used for the analysis.
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Figure 4.2: Event selection cross section (Nsel/Lint) for each run. Each letter corresponds to a

different data taking period.
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The muon pT, η and φ spectrums are shown in Fig. 4.3. In these and all the other kinemat-

ical plots, the points represent data and the filled histograms show the stacked backgrounds.

The open histograms are W ′ → µν signals added to the background with masses in GeV as

indicated in parentheses in the legend. The QCD background estimated from data, as dis-

cussed in detail in section 4.6.2.2, is also shown. The signal and other background samples are

normalized using the integrated luminosity of the data and the NNLO (approximate-NNLO

for tt̄) cross sections listed in Table A.2. In all three distributions, the data and MC agreement

is good. The slight deficit in data in one side of the barrel is due to a L1 trigger issue, which is

well understood and covered by the trigger efficiency measurement uncertainty, as explained

in section 4.7.5. The slight fluctuation in the negative side of the φ distribution is due to the

feet of the detector, which is difficult to simulate perfectly.

The missing transverse energy is calculated using the calorimetric missing transverse energy,

the muon momentum and the transverse energy loss of the muon, as given in Eq. 4.2. These

distributions are demonstrated in Fig. 4.4. As a result of careful modeling of pile-up in the

MC, the data and MC agreement is remarkably good, especially for the Emiss
T distribution. The

slight deficit at the higher end of the muon ETloss is not well understood but doesn’t have any

effect on the final result.

Finally the observable that is used to search for new physics, namely the transverse mass

spectrum, is shown in Fig 4.5. As can be seen, like the rest of the distributions, the data and

MC agreement is good, unfortunately also in the tail of the spectrum giving not much hope for

a hint of new physics. The most dominant background is the SM W production as expected

and the Z background is well below that, thanks to a lower production cross section as well

as a looser second muon veto. The tt̄ and diboson contributions are also low and the QCD

contamination is negligible in the high-mT region that is relevant to this search.

The extraction of signal efficiencies and background expectations, which are used in the

final calculation, are discussed in the following sections, namely 4.6.1 and 4.6.2, respectively.
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Figure 4.3: Muon pT, η and φ distributions after all selection cuts, as well as data/MC ratios

for each. The QCD (i.e. multi-jet) background is taken from the data driven estimate. The

data/MC ratio plots only include the data and the expected background processes.
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Figure 4.4: Muon ETloss, Emiss
T,calo and Emiss

T distributions after all selection cuts. The QCD (i.e.

multi-jet) background is taken from the data driven estimate. The data/MC ratio plots only

include the data and the expected background processes.
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Figure 4.5: mT distribution after all selection cuts. The QCD (i.e. multi-jet) background is

taken from the data driven estimate. The data/MC ratio plot only includes the data and the

expected background processes.
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4.6.1 Signal Efficiencies

Table 4.2 summarizes the event selection efficiencies, namely εMC
sig , for different signal sam-

ples of W ′ → µν. These are the fractions of events that pass all the selection cuts as well as

the mTmin cut. Note that some mass points use the same mTmin thresholds. The expected

number of events for each sample for the total integrated luminosity are also shown.

mW ′ [GeV] mTmin [GeV] εMC
sig Nexp

500 398 0.235± 2.6% 4200

600 447 0.269± 2.7% 2300

750 562 0.279± 2.4% 923

1000 708 0.311± 2.3% 269

1250 794 0.355± 2.7% 95.8

1500 891 0.359± 3.1% 33.0

1750 1000 0.324± 3.2% 10.9

2000 1122 0.314± 3.3% 4.09

2250 1122 0.295± 2.6% 1.61

2500 1122 0.246± 3.7% 0.597

Table 4.2: Uncorrected signal selection efficiencies for each of the Monte Carlo signal samples.

The efficiency is for the final selection plus mT > mTmin. The last column is the expected

number of events for the total integrated luminosity used in this analysis.

4.6.2 Background Estimations

Except for the cosmics and QCD, the expected background levels are evaluated using

simulated samples and normalized using the cross sections discussed in section 4.3 and the

integrated luminosity of the data. The same reconstruction and event selection are applied

to both data and simulated samples. Data driven methods are used to estimate cosmic and

QCD backgrounds as discussed in sections 4.6.2.1 and 4.6.2.2 respectively. Both are found

to be negligible, hence neglected in the final calculation. These discussions are followed by a

summary of the total background expectations in section 4.6.2.3.
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4.6.2.1 Cosmic Background Estimation

Background from cosmic ray muons is suppressed via the impact parameter cuts : dPV
0 <

1 mm and zPV
0 < 5 mm. Since this background is not well modeled by MC, a data driven

approach is used to set an upper limit on its contribution to the total background. For this

estimation, the full analysis is run over all data with inverted impact parameter cuts, namely

dPV
0 > 1 mm and zPV

0 > 5 mm. A total of 126 events passed all the selection cuts for about

1 fb−1, and the d0 vs z0 distribution of these events is shown in Fig. 4.6.
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Figure 4.6: Distribution of d0 vs z0 with inverted impact parameter cuts.

Four d0-z0 regions are used to evaluate the expected cosmic background spectrum nor-

malized to the relative areas of the selection and evaluation regions. These estimates are

summarized in Table 4.3. As can be seen, all four measurements are consistent with each other

and in light of these the cosmic background after all cuts except the mTmin is estimated to be

0.17±0.03(stat)±0.05(sys), which is negligible compared to the other background sources and

is therefore ignored in the final calculation.
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Region Nobserved Ncalculated

2 mm < |dPV
0 | < 15 mm & |zPV

0 | < 150 mm 64 0.16± 0.02

5 mm < |dPV
0 | < 15 mm & |zPV

0 | < 150 mm 36 0.12± 0.02

2 mm < |dPV
0 | < 15 mm & 50 mm < |zPV

0 | < 150 mm 44 0.17± 0.03

5 mm < |dPV
0 | < 15 mm & 50 mm < |zPV

0 | < 150 mm 26 0.13± 0.03

Table 4.3: The cosmic background estimates in different regions. The region parameters are

given in the first column. The second column gives the total number of observed events in

each region, and the third gives the extrapolated number of events into the signal region.

4.6.2.2 QCD Background Estimation

Due to limited statistics, relatively high theoretical cross section uncertainties and imper-

fect fragmentation/hadronization models, it is not preferable to use MC predictions for the

QCD background estimation. Therefore this analysis adopts a data driven estimation for this

background. In this method, events are selected as described in sections 4.4 and 4.5.3 but with

the exclusion of the muon isolation cut. The main QCD contamination in the muon channel

is from heavy flavor decays, i.e. bb̄ and cc̄ production, where one of the quarks decays into

a muon and an energy mis-measurement gives rise to some missing transverse energy. This

combination can mimic the signal. In such events, the muon is mostly expected to be very

close to a jet, or in other words not isolated. Hence, in order to obtain a QCD-enriched data

sample, the isolation cut is reversed, so that only events that have 0.2 < pcone30
T /pT < 0.4 are

considered. These events are then assumed to have the same kinematical distributions in the

signal region, apart from a scale factor, which is separately determined by fitting templates

of the Emiss
T distribution to the Emiss

T spectrum in data. More details on this method can be

found in [45].

One caveat to this method is the lack of data in the high-mT region, where the W ′ → µν

limit is set. To obtain an estimate of the background in this region, a power law fit and

extrapolation technique is used, as shown in Figure 4.7. In order not to bias the fit due to

absence of data in the region of interest, we performed an unbinned likelihood fit using the pdf

form:
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f(mT;C, a) = CmT
a (4.6)

where a determines the slope, and C determines the normalization of the fit. The expected

contamination from the SM W into the QCD enriched sample in the fit region is estimated

to be ∼ 5%, and has marginal effect on the measurement. Therefore, we did not attempt

to perform any background subtraction. One important aspect of such a fit is to assess the

response of the expected number of events to varying the fit ranges. To quantify this effect the

fit is performed in three different mT regions. The corresponding expected number of QCD

events are quoted in Table 4.4.

mTmin

[GeV] mT > 160 GeV mT > 165 GeV mT > 170 GeV

398 0.32+0.23
−0.14 0.32+0.23

−0.14 0.26+0.22
−0.13

447 0.21+0.17
−0.10 0.21+0.17

−0.10 0.16+0.16
−0.09

562 0.09+0.09
−0.05 0.09+0.09

−0.05 0.07+0.09
−0.04

794 0.02+0.03
−0.02 0.02+0.03

−0.01 0.02+0.03
−0.01

891 0.01+0.02
−0.01 0.02+0.02

−0.01 0.01+0.02
−0.01

1000 0.01+0.02
−0.01 0.01+0.02

−0.01 0.01+0.02
−0.01

1122 0.01+0.01
−0.00 0.01+0.01

−0.00 0.00+0.01
−0.00

Table 4.4: QCD background estimates in different fit regions.

Figure 4.7 shows that, especially in the high-mT region, the major contribution to the

overall uncertainty is coming from the slope, with a relative uncertainty of ∼ 20%. In principal

the slope is the only free parameter in the fit since the normalization is determined by the fact

that the integral of the pdf over the full range of the variable should equal unity. However, to be

more conservative we further assigned a fractional error of 1/
√
N to the overall normalization,

motivated by the counting error on N itself. Table 4.4 shows that the expectations derived

using different fit regions agree within their uncertainties. As in the cosmic background case,

the contribution of QCD to the total background is found to be negligible. Hence not used in

the final limit calculation.
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Figure 4.7: QCD background estimates in the muon channel as described in the text, as a

function of mT . (a) shows the different error components, where the red curves represent the

effect of varying the slope by its error, and the green curves for varying the overall normal-

ization by a fractional error of 1/
√
N . (b) has the error band for the combination of these in

quadrature.
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4.6.2.3 Total Background Estimation

Table 4.5 summarizes the total number of expected background events for the full luminosity

and the individual contributions from each background process. As can be seen, the tt̄ sample

runs out of statistics in the highest search bins, but this does not affect the final results as the

major contribution comes form the other EWK processes. In the low mass bins, i.e. 398 GeV,

there is an observed excess in data, which is also visible in the transverse mass spectrum in

Fig. 4.5. This excess manifests itself in three out of the first four bins, but there is good

agreement in the high end tail of the mT distribution. The probability that this is a statistical

fluctuation will be discussed in section 4.9. The event display for the highest-mT candidate is

shown in Fig. 4.8 and a more detailed cut flow chart for data is presented in section 4.6.3.

mTmin

[GeV] NW NZ Ndiboson Ntt̄ NBG Nobs

398 50.1 ± 3.4 4.89 ± 0.96 2.52 ± 0.60 5.1 ± 1.3 62.6 ± 3.8 91

447 32.7 ± 2.0 3.80 ± 0.96 1.49 ± 0.44 3.16 ± 1.01 41.2 ± 2.4 57

562 12.37 ± 0.41 0.834 ± 0.055 0.59 ± 0.28 0.23 ± 0.39 14.03± 0.64 20

708 4.49 ± 0.24 0.288 ± 0.016 0.114 ± 0.083 0.0106± 0.0106 4.90 ± 0.26 4

794 2.53 ± 0.18 0.1689± 0.0096 0.114 ± 0.083 0.0106± 0.0106 2.82 ± 0.20 3

891 1.342± 0.128 0.0931± 0.0048 0.106 ± 0.082 0.0 ± 0.0 1.541± 0.152 2

1000 0.745± 0.091 0.0512± 0.0026 0.0079± 0.0079 0.0 ± 0.0 0.804± 0.092 1

1122 0.397± 0.064 0.0284± 0.0016 0.0079± 0.0079 0.0 ± 0.0 0.433± 0.065 1

Table 4.5: Uncorrected background event counts with Lint = 1.04 fb−1 for each of the Monte

Carlo background samples (W , Z, diboson and tt̄), and their sum. The last column gives the

number of events observed in data.
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Figure 4.8: Highest-mT event (mT = 1350 GeV) observed in data. Side (top left), end

(top right) and three-dimensional (bottom left) views are shown. The muon (blue) has

pT = 695 GeV and the Emiss
T (green) is 680 GeV. The recoiling jet has pT = 330 GeV. The

bottom right detail shows the muon has all the expected hits.
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4.6.3 Data Cut Flow

Table 4.6 summarizes the cut flow of event/object selection in data.

Cut Efficiency Selection Efficiency

Cut Number of events (Relative) (Cumulative)

Total 136,709,631 (100.0± 0.0)% (100.0 ± 0.0 )%

Skim/Slim 30,039,843 ( 22.0± 0.0)% ( 22.0 ± 0.0 )%

GRL 25,230,064 ( 84.0± 0.0)% ( 18.5 ± 0.0 )%

Trigger 20,094,343 ( 79.6± 0.0)% ( 14.7 ± 0.0 )%

Vertex cut 20,057,091 ( 99.8± 0.0)% ( 14.7 ± 0.0 )%

CB Muon pT >25 GeV 12,271,519 ( 61.2± 0.0)% ( 8.98± 0.00)%

ID hits 12,088,969 ( 98.5± 0.0)% ( 8.84± 0.00)%

Impact par. cuts 12,002,619 ( 99.3± 0.0)% ( 8.78± 0.00)%

MS hits 8,332,392 ( 69.4± 0.0)% ( 6.09± 0.00)%

Trigger match 8,228,920 ( 98.8± 0.0)% ( 6.02± 0.00)%

Isolation 3,584,030 ( 43.6± 0.0)% ( 2.62± 0.00)%

Exactly 1 µ 3,472,720 ( 96.9± 0.1)% ( 2.54± 0.00)%

Looser 2nd µ veto 3,284,223 ( 94.6± 0.1)% ( 2.40± 0.00)%

Jet cleaning 3,270,692 ( 99.6± 0.1)% ( 2.39± 0.00)%

Emiss
T > 25 GeV 2,416,512 ( 73.9± 0.0)% ( 1.77± 0.00)%

|S∆(q/p)ID−MS
| < 5 2,383,254 ( 98.6± 0.1)% ( 1.74± 0.00)%

Table 4.6: Muon cut flow for the data, as well as the relative and cumulative selection efficien-

cies for all the cuts.

Table 4.6 gives the detailed cut flow summary for the entire dataset that corresponds to

Lint = 1.04 fb−1. The first step, called “Skim/Slim”, is the process where the data is skimmed

and slimmed by requiring at least one combined STACO muon with pT > 10 GeV in order to

reduce the file sizes so that the computation can be made faster. This is a necessary step as

the analysis has to be repeated many times. These events are collected in special data streams

called physics streams, where the sampling is based on primary physics triggers. However,

during online data taking, if an event has an error such as a timeout while running the trigger

algorithms, etc., it is recorded in a special stream called the debug stream. These events

are then re-analyzed in the offline environment to spot and possibly fix the problem(s). It is

essential to run the full analysis chain over this stream as well as the physics stream to make
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sure we do not miss any signal-like events. Only one event passing all the selection cuts is

found in the debug stream and an event display for this event can be seen in Fig. 4.9. The mT

in this event is ∼ 70 GeV and is consistent with a SM W . It therefore has no effect on the

search.

Figure 4.9: Event display for the only event (mT = 70 GeV) found in the debug stream passing

all the selection cuts. End (left) and side (top right) views of the event are shown. The muon

(purple) has pT = 46 GeV and the Emiss
T (dashed) is 30 GeV. Inner detector tracks with

pT > 1 GeV are shown.

Also, 91 events that pass the lowest threshold cut for the limit calculation, which can be

seen in Table 4.5, are also cross checked for possible double counting and no such occurrence

is found. A detailed list of these events can be found in Table B.1 in the appendix.
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4.7 Systematic Corrections and Uncertainties

The discovery significance as well as the limit extraction depends on the signal selection effi-

ciencies and background estimates which are discussed in sections 4.6.1 and 4.6.2, respectively.

This section shall:

• Assess the factors that correct for biases in MC with respect to data

• Evaluate sources of systematic uncertainties in the measurements and propagate those

to uncertainties on the selection efficiency and background level

Only those uncertainties that have a significant effect are discussed. Among those that

are not explicitly discussed below are: the efficiencies to pass the vertex identification, impact

parameter and S∆(q/p)ID−MS
selection criteria. In all cases, the efficiency in Monte Carlo is over

99% and is expected to be similar in data, as demonstrated in Table 4.6. So the associated

systematic uncertainty would be well under 1% and is thus negligible. The reader should also

recall that the QCD and cosmic backgrounds are neglected since they are greatly suppressed

compared to other background sources.

4.7.1 Muon Identification Efficiency

The measurement of the muon identification efficiency is divided into three parts as: com-

bined muon reconstruction efficiency, inner detector muon efficiency and muon hit efficiency.

These are then combined with the muon isolation efficiency to obtain a total muon selection

efficiency, as discussed in section 4.7.3. In order to have an unbiased sample for these measure-

ments, a method called Tag&Probe is used. According to this method, events are examined

to first find a tag and probe combination. In case of success, the probe is examined to see if

it satisfies a set of predefined requirements. The definitions of tags and probes, as well as the

requirements that the probe has to meet are specific to the measurement and will be explained

in each subsection.
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The efficiency, namely the probability that a probe meets the requirements, is defined as:

ε =
# of successes

# of trials
. (4.7)

It should be noted that in this case, the number of trials is the total number of tag-probe

combinations, and a success is a case where the probe under consideration meets the necessary

criteria. By construction, an object can be a tag and a probe, and an event can be double

counted. Taking this into account is very important so as to not bias the measurement. Each

measurement is also assigned a binomial statistical error.

All three efficiencies mentioned above are calculated both in MC and data, then a correction

factor, CµX = εX(Data)
εX(MC) , is calculated for each. These are then combined to get an overall MC

to data correction factor for the muon identification. This is discussed in section 4.7.1.4.

4.7.1.1 Combined Muon Reconstruction Efficiency

For the combined muon reconstruction efficiency, the tag is a muon candidate that satisfies

all the offline muon selection criteria explained in section 4.5.3. A probe, on the other hand,

is an ID track satisfying the following criteria:

• pT > 25 GeV

• |η| < 2.5

• dPV
0 < 1 mm & zPV

0 < 5 mm

• pcone30
T /pT < 0.05

Moreover, in order to select an enriched Z → µµ sample and reject QCD, the following

cuts are also applied to the tag-probe system:

• qµ = −qtrack

• |∆φµ−track| ≥ 2

• pµ−track
T ≤ 65 GeV
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• 75 GeV ≤ Mµ−track ≤ 105 GeV

• Emiss
T ≤ 35 GeV

Then for each tag-probe combination that fulfills the requirements, all possible combined

muons in the event are analyzed to see if at least one of them matches the probe. The matching

criteria requires a combined muon satisfying ∆Rprobe−CB µ < 0.01.

In MC the efficiency is measured to be (96.7±0.0)%, and in data to be (94.5±0.1)%, where

errors are statistical only. Figure 4.10 shows the combined muon reconstruction efficiency as

a function of the muon pT and η. The high efficiency loss around η ≈ 0 and ±1.2 is due to

limited detector coverage.
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Figure 4.10: Combined muon reconstruction efficiency as a function of muon pT and η.

The uncertainty is estimated by varying the Z mass window cut, and the results are quoted

in Table 4.7. The measured correction is CµCB = 0.978± 0.001(stat)± 0.004(sys).

Invariant Mass Window εCB(Data) εCB(MC) Ratio

[70, 100] GeV (94.94± 0.08)% (96.73± 0.01)% 0.981± 0.001

[75, 105] GeV (94.54± 0.08)% (96.67± 0.01)% 0.978± 0.001

[80, 100] GeV (94.14± 0.08)% (96.61± 0.01)% 0.974± 0.001

Table 4.7: εCB and the correction factor, CµCB, measurements for different mass windows.
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4.7.1.2 Inner Detector Muon Efficiency

The definition of tag objects for this measurement is exactly the same as in the combined

muon reconstruction efficiency measurement. The probe, however, is a MS track extrapolated

to the beam line that satisfies the following criteria:

• pT > 25 GeV

• NMDT
hits > 2 (in each of the three stations)

• N
RPC/TGC,φ−layer
hits > 1 (in each of at least two of the three RPC/TGC layers)

• No barrel-endcap overlap, no poorly alligned chamber hits, i.e. BEE, EE and BIS78

• NCSC,η
hits = 0

Moreover, as for the combined muon reconstruction efficiency measurement, in order to

select an enriched Z → µµ sample, the following cuts are also applied to the tag-probe system:

• qµ = −qMS

• |∆φµ−MS| ≥ 2

• pµ−MS
T ≤ 65 GeV

• 75 GeV ≤ Mµ−MS ≤ 105 GeV

Then for each tag-probe combination, all possible ID tracks in the event are analyzed to

determine whether at least one of them matches the probe. The matching criteria selects

an ID track that satisfies ∆Rprobe−ID track < 0.01 that also matches to a combined muon.

The efficiency in MC is measured to be (100.0 ± 0.0)%, and (99.9 ± 0.0)% in data. In order

to quantify the systematic fluctuations, the measurement is performed for different matching

cones (0.005, 0.01, 0.02) and different run periods. The variations are found to be ≤ 0.3% both

in MC and data. Finally, the corresponding correction factor between data and MC is found

to be CµID = 0.999± 0.000(stat)± 0.003(sys).
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4.7.1.3 Muon Hit Efficiency

The tag definition for this measurement is identical to the previous two. A probe, on the

other hand, is a combined muon that satisfies all criteria explained in section 4.5.3 except

for the ID and MS hit requirements. In order the reject background as much as possible, as

in the previous cases, the tag and probe are required to have opposite charge, be within the

Z mass window of [75, 105] GeV, and be back to back by requiring |∆φtag−probe| ≥ 2, and

ptag−probe
T ≤ 65 GeV.

Given that all these criteria are satisfied, the ID and MS hit requirements explained in

section 4.5.3 are then imposed on the probe and the probability of it passing these additional

criteria is measured. This efficiency is measured to be (69.4± 0.0)% in MC and (69.7± 0.2)%

in data. The pT, η and φ dependences are shown in Fig. 4.12. As can be seen, the MC can

reproduce the data with good accuracy. Most of the efficiency loss is coming from:

• |η| ≈ 0 and 1.2, due to missing stations

• |η| > 2, due to not using the CSC region

• φ ≈ −1 and −2, due to the feet of the detector

Fig. 4.11 shows the η-φ distribution of muons for events that pass all the selection criteria,

except the mTmin cut, and demonstrates the acceptance of the MS hit selection criteria.

The uncertainty is estimated by varying the Z mass window cut, and the results are quoted

in Table 4.8. The measured correction factor is CµHit = 1.005± 0.002(stat)± 0.009(sys).

Invariant Mass Window εHit(Data) εHit(MC) Ratio

[65, 115] GeV (69.05± 0.18)% (69.36± 0.04)% 0.996± 0.002

[75, 105] GeV (69.71± 0.19)% (69.35± 0.04)% 1.005± 0.002

[80, 100] GeV (70.53± 0.20)% (69.92± 0.04)% 1.009± 0.002

Table 4.8: εHit and the correction factor CµHit measurements for different mass windows.
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Figure 4.11: Above is the η-φ distribution of muons for events that pass all selection cuts,

except mTmin, in the data. Below is the summary of ten different MS detector regions as

shown in Fig. 2.8.
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Figure 4.12: Muon hit efficiency as a function of muon pT, η and φ.
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4.7.1.4 Total Muon Identification Efficiency

The overall muon identification efficiency is calculated according to the following equation:

Cµreco = CµCB × C
µ
ID × C

µ
Hit (4.8)

Table 4.9 summarizes the contributions from each individual measurement as well as the

overall correction factor. The measurements are assumed to be uncorrelated and therefore the

errors are added in quadrature.

Source Correction Factor

CB 0.978± 0.001(stat)± 0.004(sys)

ID 0.999± 0.000(stat)± 0.003(sys)

Hit 1.005± 0.002(stat)± 0.009(sys)

All 0.982± 0.002(stat)± 0.010(sys)

Table 4.9: Individual contributions to the overall muon identification correction factor.

4.7.2 Muon Isolation Efficiency

The muon isolation efficiency is also measured using the Tag&Probe method discussed in

section 4.7.1. The tag is required to pass all the offline muon selection cuts, whereas the

probe is required to pass all except the isolation cut. Then the probability of probe passing

the isolation cut is measured. The efficiency is measured to be (96.9 ± 0.0)% in MC and

(96.5 ± 0.1)% in data. Figure 4.13 shows the muon isolation efficiency as a function of muon

pT and η and demonstrates the agreement between data and MC. Most of the inefficiency is

limited to the low-pT region and the cut is fully efficiency in the high-pT region that is of

interest to this analysis, mainly due to the fact that a relative isolation is used. There is also

not a strong angular dependence.

As can be seen on Table 4.10, the efficiencies increase both in data and MC as the cut

becomes looser for the same cone size and as the cone size gets smaller for the same cut value.



78

 [GeV]
µ

T
p

30 40 50 60 70 80 90 100 110 120

E
ff

ic
ie

n
c

y

0.75

0.8

0.85

0.9

0.95

1

1.05

Data 2011

)µµ→MC (Z

(a)

µ
η

2 1.5 1 0.5 0 0.5 1 1.5 2

E
ff

ic
ie

n
c

y

0.75

0.8

0.85

0.9

0.95

1

1.05

Data 2011

)µµ→MC (Z

(b)

Figure 4.13: Muon isolation efficiency as a function of muon pT and η.

Isolation cone size Isolation cut εIsol(Data) εIsol(MC) Ratio

0.2 0.05 (98.35± 0.06)% (98.49± 0.01)% 0.999± 0.001

0.2 0.15 (99.70± 0.03)% (99.72± 0.01)% 1.000± 0.000

0.3 0.05 (96.53± 0.09)% (96.90± 0.02)% 0.996± 0.001

0.3 0.15 (99.42± 0.04)% (99.43± 0.01)% 1.000± 0.000

0.4 0.05 (93.79± 0.12)% (94.59± 0.02)% 0.991± 0.001

0.4 0.15 (98.91± 0.05)% (98.96± 0.01)% 1.000± 0.001

Table 4.10: εIsol and the correction factor CµIsol measurements for different isolation cone sizes

and cut values.

The correction factor is measured to be CµIsol = 0.996± 0.001(stat)± 0.004(sys), signifying

a very good data to MC agreement.

4.7.3 Total Muon Selection Efficiency

The total muon selection efficiency is the combination of the muon identification and

isolation efficiencies. The associated correction factors are 0.982 ± 0.010(stat + sys) and

0.996±0.004(stat+sys), respectively, and result in a combined value of 0.978±0.011(stat+sys).
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4.7.4 Muon Efficiency Extrapolation to High-pT

The muon reconstruction efficiency is expected to suffer some loss in the high-pT region

due to increasing radiative losses. Observing this effect in data is impossible due to the lack

of very high-pT muons. Therefore, we rely on MC for this measurement. Another challenge is

that as the pT of the muons get harder, they are more likely to be created around η ∼ 0. This

results in a significant drop in the efficiency due to the stringent requirement of having hits

in all three layers of the MS. This effect is hard to model precisely in MC and hence might

bias such a measurement. Therefore, we limit ourselves to only 0.1 < |η| < 1.05, and measure

the total reconstruction efficiency as a function of muon pT in a high-pT muon rich ensemble

in MC. The result can be seen in Fig. 4.14. The loss is measured to be roughly linear over

the relevant pT range, and is estimated to be (2.7± 0.5)% TeV−1 relative to the efficiency at

pT= 45 GeV.
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Figure 4.14: Muon reconstruction efficiency as a function of pT for 0.1 < |η| < 1.05 relative to

the muon reconstruction efficiency at pT= 45 GeV.

To be conservative, the scale factor discussed in section 4.7.3 is assigned an additional

uncertainty equal to the efficiency loss measured above. This is parametrized as
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∆ε = 0.000010mW ′ (4.9)

for the W ′ → µν event selection efficiency and as

∆ε = 0.000015mTmin (4.10)

for the mT > mTmin background level, where in both cases the mass is measured in GeV.

4.7.5 Muon Trigger Efficiency

The trigger efficiency measurement is also obtained via a Tag&Probe method. Both offline

muons are required to pass the selection cuts and the tag is required to match any of the

three triggers that are used for the analysis. The probe is investigated to see if it fired any of

the triggers listed on Table 4.1 with a ∆R < 0.1 matching criteria. As in the previous cases,

the tag and probe are required to have opposite charges, be within the Z mass window of

[75, 105] GeV, be back to back by requiring |∆φtag−probe| ≥ 2, and ptag−probe
T ≤ 65 GeV. The

efficiency is measured to be (84.5± 0.0)% in MC and (84.9± 0.1)% in data as summarized in

Table 4.11. Figure 4.15 shows the muon trigger efficiency for the offline muon as a function

of pT, η and φ. Most of the inefficiency is coming from the feet of the detector which limit

the detector coverage. Also the data efficiency is noticeably lower than that of MC in the

positive η end of the barrel due to an L1 trigger problem which was present for about half of

the data that is considered in this analysis. However, since it is localized to a fairly small area

in phase space, it doesn’t change the conclusion that MC can successfully regenerate the data

performance.

εtrig(Data) εtrig(MC) Ratio

(84.46± 0.03)% (84.94± 0.07)% 1.006± 0.001

Table 4.11: Trigger efficiencies and correction factors for data and MC.
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Figure 4.15: Muon trigger efficiency as a function of muon pT, η and φ.

As can be seen from the table, the average correction factor obtained with this method is

Cµtrig = 1.006 ± 0.001 where the uncertainty is purely statistical. To estimate the systematic

uncertainty the difference in the measurement is determined by varying: a) the matching

criteria and b) the mass window. The variation of the measurement due to these changes is

∼ 1%, resulting on an overall trigger correction of Cµtrig = 1.006± 0.001(stat)± 0.010(sys). In

order to cover the angular variations and the known L1 problem that affects a substantial part

of the data, a flat (and generous) 3% total uncertainty is used for the final calculation.

4.7.6 Muon Momentum Resolution

The understanding of the muon momentum resolution is very important for an analysis like

this one as the observable used for the signal search is a function of this variable. Measurements
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performed using cosmic rays as well as early collisions show that the resolution in data is worse

than the MC simulation used for this analysis. The effect of this is a drop in the signal efficiency

as it broadens the W ′ Jacobian peak and an increase in the background. In order to account

for this, the muon momentum is smeared when generating Monte Carlo kinematic distributions

and estimating the event selection efficiency and background level.

The deviations in particle trajectories measured by the tracking systems are proportional to

the inverse of the momentum and so the intrinsic resolution, i.e. that arising from uncertainties

in the position measurements (including alignment), is constant for q/p. Therefore we choose

this variable as our smearing parameter. The smearing is performed using Eq. 4.11.

q/p = S0 + [(q/p)ini + S1g1(q/p)ini + S2g2sin(θ)]/Sp, (4.11)

where g1 and g2 are two random variables chosen from a normal distribution, S0 is the q/p

bias (curvature offset), S1 is the scale coefficient, S2 is the intrinsic resolution coefficient, Sp

is the momentum scale and θ is the polar angle. The following few section are devoted to the

measurement of these parameters, namely Sp,S1,S2 and S0.

4.7.6.1 Muon Momentum Scale

Z → µµ events are an excellent sample to measure the muon momentum scaling and

smearing performance. Both in data and MC, we choose events with two back to back opposite

charge muons, both passing all our selection cuts and coming from the same vertex. Figure 4.16

shows the invariant mass distributions both in data and MC without any extra momentum

smearing for the latter. In each case, the unbinned spectrum is fit to a Breit-Wigner whose

width is fixed to the natural Z boson width of 2.5 GeV, convoluted with a single Gaussian to

mimic the effect of detector resolution and the mean values as well as the standard deviations

are quoted on the plots. The asymmetry seen on the distributions are physics motivated and

arise from final state radiation. It is possible to obtain better fits using a Crystal Ball type

function to account for this effect instead of the Gaussian but this is beyond the scope of this

measurement.
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Figure 4.16: Z peak w/o smearing in MC on left and data on right (filled points). Blue curves

are the Gaussian fits in both cases, with the fit parameters given on each plot.

The momentum scale can be measured by directly comparing the mean values of the fits, as

they are sensitive to the muon momentum scale. The measured value is 91.09± 0.00(stat) GeV

in MC, and 91.06± 0.01(stat) GeV in data, resulting in a data to MC ratio of 0.999(7) ±

0.001(stat). This value is consistent with 1 within its uncertainty, which is also very small.

Therefore, no additional correction is applied to the MC for the momentum scale.

Despite the successful simulation of the mean value, the resolution in data, however, is

significantly worse than that in MC, as is evident from the widths of the fits. In order to

account for this effect, the muon momentum is additionally smeared in the MC to match data,

as discussed in the following section.

4.7.6.2 Muon Momentum Smearing

As mentioned in the previous section, the momentum resolution observed in data is worse

than that predicted by the MC. We account for this effect by smearing the muon momentum

in the MC according to Eq. 4.11. The two relevant coefficients are S1 and S2, which are the

multiple scattering and intrinsic resolution terms, respectively. The multiple scattering term

is more relevant in the low momentum range, whereas the intrinsic resolution dominates the

measurement at the high-pT.

The muon momentum resolution is studied with pp colisions using the di-muon mass dis-

tribution in Z → µµ decays and the comparison of the independent measurements of muons
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from Z → µµ and W → µν decays provided by the two tracking systems, the ID and MS, as

presented in [43]. These measurements are performed by the Combined Muon Performance

(MCP) group and mandated to each analysis group within ATLAS. Therefore in this analysis

we use those results that are described above and the official tools provided by the MCP group.

As a result, the average momentum resolution for muons used in this analysis is estimated

to be around 15% at 1 TeV. This is remarkable in that the design value of 10% is almost

reached after only one year of operation. Fig. 4.17 gives the di-muon mass distribution with

the extra momentum smearing applied on top of Fig. 4.16a, and as can be seen, it reproduces

data, Fig. 4.16b, reasonably well.
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Figure 4.17: Z peak in MC with nominal smearing as mandated by MCP (filled points). Blue

curve is the Gaussian fit, with the fit parameters given on the plot.

The tool that is provided by MCP also provides the option to randomly increase or decrease

the amount of smearing in the ID or MS by an amount reflecting the uncertainty in the smearing

prescription for that system. Fig. 4.18 shows the effect of the baseline and ±1-sigma MCP

smearings on the momentum resolution.

The effects of smearing (and thus momentum resolution) uncertainty on this analysis are

determined by first evaluating the smearing with the baseline prescription and then with both

ID and MS smearing either increased or decreased. The changes in the event selection efficiency

and background level are assigned as systematic uncertainties in those parameters, as discussed

in section 4.7.9.
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Figure 4.18: Effect of the baseline and ±1-sigma MCP smearings on the momentum resolution

in the Monte Carlo. The left plot show the effect in the W → µν sample where the multiple

scattering term dominates. The right plot shows the effect for pT> 500 GeV where the

measurement term dominates. The integrated luminosity for the data is 0.5 fb−1.

4.7.6.3 Muon Curvature Offset

A possible global curvature offset term, S0 in Eq. 4.11, that might bias the measurement, is

also considered. This effect is studied by the CMP group as well, using the so called toroid-off

runs, where the toroidal magnet is turned off to give straight trajectories to the muons within

the MS. Prior studies performed with high energy muons from comic rays, as described in [44],

were also consulted. These studies conclude that a global curvature offset for the muons is

consistent with zero within the measurement error. These studies are verified using Z events

and investigate the following asymmetry observable, A:

A =
(q/pT )µ

+
+ (q/pT )µ

−

2
. (4.12)

A curvature offset will shift the mean of this distribution, which otherwise is expected to be

at zero, and will result in a statistically significant asymmetry. The behavior of this observable

in data is investigated using the same event selection criteria described in section 4.7.6.1 and

the associated distribution is shown in Fig. 4.19. The mean of the distribution is found to be

−0.021± 0.007 TeV−1 for |A| < 10 TeV−1.

In light of all the aforementioned studies, S0 = 0 ± 0.035 TeV−1 is used to assess the

effect on the signal efficiencies and background levels, and the changes in these observables are
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assigned as systematic uncertainties in those parameters in the final calculation, and sumarized

in section 4.7.9.
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Figure 4.19: Asymmetry distribution in data.

4.7.7 Missing Energy Smearing and Scaling

As discussed in section 4.1, understanding the Emiss
T performance is of essence for such a

study as this one. In principle Emiss
T is a very complicated observable that is strongly correlated

to pile-up and the underlying event topology. The MC samples used in this search are the so

called pileup samples, which means that every event has multiple vertices in addition to the

real hard scattering vertex that is of interest. These samples are generated by a statistical

combination of the hard scattering events with a random number of events picked from a pool

of minimum bias events. The randomness is controlled by the average number of interactions

per bunch crossing variable, which is fixed for all the MC samples and shown as the red curve in

Fig 4.20. This “guess” was made before the actual data was taken and was therefore designed

to span a wide range of possibilities. However, the data distribution, the filled histogram in

the same figure, is substantially different than what is in MC. In order to account for this

difference, MC events are reweighted using official ATLAS tools, and the result is shown as the

green curve in the same figure. This is important for the Emiss
T performance because if the MC

is not corrected and the higher luminosity profile is kept as is, the Emiss
T will be overestimated

and will bias the measurement.
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Figure 4.20: Average number of interactions per bunch crossing, µ, in data and MC. The latter

is shown before (red) and after (green) reweighting.

It is evident from Eq. 4.2 that there are two distinct components that have to be taken into

account while studying the Emiss
T systematics. The first is the leptonic part, which comes from

the final state muon and is therefore strongly correlated with the measurement of the muon

pT. To properly account for this contribution and the correlation, the Emiss
T is varied along

with that of the pT when the latter is varied to study the effect of changing the momentum

scale or resolution. Hence, most of the systematic correction and uncertainty arising from the

leptonic contribution to the Emiss
T is included in the muon momentum systematics.

The second part is the non-leptonic contribution that comes from the calorimetric missing

transverse energy measurement. The data vs MC performance of EMiss
T,Calo is studied using

Z → µµ events both for resolution and scale. For these studies both muons are required

to pass all muon quality cuts, as well as additional event kinematic cuts, as explained in

section 4.7.1, to enrich the sample.

Assuming there is no real missing energy in the Z → µµ events, the perpendicular com-

ponent to the direction of the di-muon system of the calorimetric missing transverse energy

provides a direct handle on the Emiss
T,Calo resolution. This distribution is shown in Fig. 4.21

both for reweighted MC and data. Fitting both distributions to a Gaussian within EMiss
T,Calo⊥ ∈

[−20, 20] GeV yields σMC = 9.85± 0.02 GeV and σData = 9.57± 0.03 GeV. The MC repro-

duces data well, therefore no extra correction factor is applied to the MC for the resolution of

the calorimetric transverse missing energy.
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Figure 4.21: Perpendicular component of EMiss
T,Calo to the direction of Z. The filled histogram is

the reweighted Z → µµ MC and the circles represent data for the full luminosity. Linear scale

is given on left, and log scale on right.

The Emiss
T,Calo scale is also studied using Z → µµ events and the component of Emiss

T,Calo

parallel to the direction of the di-muon, which should balance the muon pT that escapes

the calorimeter. The ratio of the Emiss
T observed in the calorimeter to the escaping di-muon

pT provides a measure of the Emiss
T scale as is demonstrated in Fig. 4.22. The escaping pT

subtracted vectorially from the ET deposited in the calorimeter. Again the agreement between

data and Monte Carlo is good, with only a few percent discrepancy. For this analysis, the

systematic uncertainties from the resolution and scale of the non-leptonic Emiss
T are estimated

to be quite small and are neglected.
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Figure 4.22: The Data/MC ratio of parallel component of EMiss
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transverse momentum of the di-muon system corrected for the muon energy deposition in the

calorimeter.
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4.7.8 Theory Corrections and Uncertainties

The production of an on-shell W ′ is suppressed for very large masses by the smallness of

the MRST LO* PDFs at large parton momentum fractions as are used for the signal samples

considered in this analysis. The effect of this on the invariant mass shapes for different W ′

mass samples is demonstrated in Fig. 4.23. The shape, in particular the mass-dependence,

of the W ′ → `ν cross section is corrected to NLO by applying a correction factor, which is

also calculated with FEWZ, to the selection efficiencies. Table 4.12 gives the details of the

acceptance cuts and presents the correction factors in the last row.
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Figure 4.23: Invariant mass shapes of W ′ → `ν at generation level. Events are normalized to

unity for ease of comparison, linear scale is given on left and log scale on right.

The uncertainty on the W ′ cross-section is estimated by varying factorization and renor-

malization scales up and down by a factor of two, using PDF error sets and using the difference

between the MSTW PDFs and the CTEQ66 set. These uncertainties were calculated for the

2010 analysis [45], so the same results are used here. The total uncertainty is obtained by

adding these in quadrature. This uncertainty can simply be parametrized as a function of

mW ′ as follows:

σ(σtot)

σtot
=


0.07 mW ′ ≤ 1000 GeV

0.07 + 0.000008(mW ′ − 1000 GeV) mW ′ > 1000 GeV
(4.13)

Table 4.13 summarizes these uncertainties for all search bins considered in this analysis.
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W ′ [GeV ] Scale Error Choice Total Param

500 1.8% 6.9% 2.0% 7.4% 7.0%

750 2.2% 4.7% 2.8% 5.9% 7.0%

1000 2.1% 6.1% 3.0% 7.1% 7.0%

1250 2.0% 8.0% 2.1% 8.5% 9.0%

1500 3.1% 10.8% 0.2% 11.2% 11.0%

1750 3.5% 12.8% 0.4% 13.3% 13.0%

2000 3.4% 14.7% 3.0% 15.4% 15.0%

2500 4.4% 14.9% 10.0% 18.5% 19.0%

Table 4.13: W ′ → `ν cross section uncertainties. The first column is the W ′ mass and the next

three show the uncertainties arising from scale variation, PDF error sets and choice of PDF

set. The next column shows the total uncertainty obtained adding these in quadrature. The

final column shows the uncertainty obtained with the parametrization in Eq. 4.13.

As discussed in section 4.3, SM W/Z backgrounds are corrected to NNLO using mass

dependent k-factors. In principal, the uncertainties in Table 4.13 are also applicable to W → `ν

dσ/dmT. However, it is the integral of this differential cross section over mT > mTmin that

defines the background level. This integral can be estimated by parametrizing the differential

cross section as:

dσ/dmT = C mT
−a (4.14)

with C only weakly dependent on mT for the appropriate choice of a. If one chooses a = 4,

neglects the mT-dependence, and replaces σ with dσ/dmT in Eq. 4.13, the integral of this

expression using Eq. 4.14 yields:

σ(Nbg)

Nbg
=


0.07 + 0.04× 10−12 mTmin

4 mTmin ≤ 1000 GeV

−0.01 + 0.12× 10−3 mTmin mTmin > 1000 GeV
(4.15)

Table 4.14 shows the resulting uncertainties for the mT thresholds relevant to this analysis,

which is applied to the sum of EW contributions (W → `ν, Z → `` and diboson). The total

cross section uncertainty (9.5%) is used for the tt̄ contribution to the background.
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mTmin [GeV] σ(Nbg)/Nbg

398 7.1%

447 7.2%

562 7.4%

708 8.0%

794 8.6%

891 9.5%

1000 11.0%

1122 12.5%

Table 4.14: Background level uncertainties calculated as described in the text.

4.7.9 Summary of Systematic Uncertainties

Various different sources of systematic uncertainties are discussed through sections 4.7.1

to 4.7.7. Only that result in the largest deviations on the signal selection efficiencies and the

background levels are considered for the final calculation. The exprimental uncertainties can

be summarized as:

• Selection efficiency: As discussed from sections 4.7.1 to 4.7.4, the selection efficiency

includes the combined muon efficiency, inner detector muon efficiency, muon hit efficiency

and isolation efficiency, all of which are measured with Tag&Probe. For each search bin,

the high-pTdegradation of the reconstruction efficiency is taken into account as discussed

in section 4.7.4.

• Trigger efficiency: The trigger efficiency is also measured using a Tag&Probe method

as discussed in section 4.7.5. Instead of applying an event-by-event correction factor, a

flat correction is applied to account for this effect.

• Momentum resolution and curvature offset: These sources are discussed in sec-

tions 4.7.6.2 and 4.7.6.3, respectively. The baseline numbers are obtained using the

nominal values, and the variations are estimated by running the full analysis with ±1σ

errors on each source. Then for each search bin the highest absolute deviation is used as

the systematic uncertainty.
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In addition to these, the uncertainties due to MC statistics as well as the theory are also

taken into account. All these are summarized in Tables 4.15 and 4.16. The former gives the

uncertainties on the signal selection efficiencies and the latter on the background levels.

mW ′ , mTmin [GeV ]

500 600 750 1000 1250 1500 1750 2000 2250 2500

Source Section 398 447 562 708 794 891 1000 1000 1000 1122

Selection efficiency 4.7.3 - 4.7.4 2.1% 2.1% 2.1% 2.2% 2.4% 2.5% 2.7% 2.8% 3.0% 3.2%

Trigger efficiency 4.7.5 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0%

Momentum resolution 4.7.6.2 2.4% 1.4% 1.9% 1.6% 1.3% 2.3% 1.0% 1.7% 2.2% 3.3%

Curvature offset 4.7.6.3 1.4% 0.7% 0.9% 1.6% 1.0% 1.3% 1.1% 1.3% 0.8% 0.8%

All experimental 4.6% 4.0% 4.2% 4.4% 4.2% 4.7% 4.3% 4.6% 4.9% 5.5%

MC statistics 4.6 2.6% 2.7% 2.4% 2.3% 2.7% 3.1% 3.2% 3.3% 2.6% 3.7%

NNLO 4.7.8 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0%

All 6.0% 5.6% 5.7% 5.7% 5.8% 6.3% 6.1% 6.4% 6.3% 7.5%

Table 4.15: W ′ → µν event selection efficiency uncertainties.

mTmin [GeV ]

Source Section 398 447 562 708 794 891 1000 1122

Selection efficiency 4.7.3 - 4.7.4 2.1% 2.1% 2.2% 2.3% 2.3% 2.4% 2.5% 2.6%

Trigger effficiency 4.7.5 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0%

Momentum resolution 4.7.6.2 2.6% 4.2% 0.2% 1.9% 0.9% 0.6% 1.7% 2.3%

Curvature offset 4.7.6.3 2.3% 4.2% 1.9% 2.9% 2.4% 3.0% 4.5% 4.1%

All experimental 5.0% 7.0% 4.2% 5.1% 4.6% 4.9% 6.2% 6.2%

MC statistics 4.6 6.1% 5.9% 4.5% 5.3% 7.1% 9.9% 11.4% 15.0%

EW cross section 4.7.8 6.5% 6.6% 7.3% 8.0% 8.6% 9.5% 11.0% 12.5%

tt̄ cross section 4.7.8 0.8% 0.7% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0%

All 10.3% 11.3% 9.5% 10.9% 12.0% 14.6% 17.0% 20.5%

Table 4.16: Background level uncertainties.
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4.8 Limit Inputs

Table 4.17 summarizes the inputs to the final limit calculation. The first two columns are

the W ′ mass, and the mT threshold. The next two are the corrected signal selection efficiency,

εsig, and the prediction for the number of signal events, Nsig, obtained with this efficiency.

The last two columns are the expected number of background events, Nbg, and the number of

events observed in data, Nobs. The uncertainties for Nsig and Nbg include contributions from

the uncertainties in the cross sections but not from the integrated luminosity as this will be

accounted for separately. All corrections are applied.

mW ′ [GeV] mTmin [GeV] εsig Nsig Nbg Nobs

500 398 0.252 ± 0.015 4500 ± 430 63.7 ± 6.5 91

600 447 0.286 ± 0.016 2450 ± 220 41.8 ± 4.7 57

750 562 0.293 ± 0.017 970 ± 79 14.3 ± 1.4 20

1000 708 0.326 ± 0.019 282 ± 26 4.98 ± 0.54 4

1250 794 0.367 ± 0.021 99.1 ± 10.2 2.87 ± 0.34 3

1500 891 0.374 ± 0.024 34.4 ± 4.4 1.57 ± 0.23 2

1750 1000 0.338 ± 0.020 11.4 ± 1.7 0.82 ± 0.14 1

2000 1122 0.323 ± 0.021 4.21 ± 0.70 0.440 ± 0.090 1

2250 1122 0.288 ± 0.018 1.97 ± 0.36 0.440 ± 0.090 1

2500 1122 0.221 ± 0.017 0.53 ± 0.11 0.440 ± 0.090 1

Table 4.17: Inputs for the W ′ → µν σB limit calculations.

4.9 Discovery Significance and Limit Calculation

Given Table 4.17, the first question that needs to be answered is the consistency of the

observation with the background expectation. For example, in the lowest mass bin, namely

mT > 398 GeV, the total expected background is about 64 events, whereas the observation is

91. In order to answer this question from a statistical point of view, a Bayesian approach is

adopted.

According to Bayes theorem, one can express the signal strength probability at the value

σB, production cross section times branching ratio, as:
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Ppost(σB) = N× LB(σB)× Pprior(σB), (4.16)

where LB(σB) is the likelihood integrated over nuisance parameters, Pprior(σB) is the prior

probability and Ppost(σB) is the posterior probability and N is the normalization factor that

ensures the unitarity of Ppost(σB). Now let’s look at these in detail.

Using the Poisson statistics, one can define the likelihood as:

L(σB) =
(Ltot × σB× εsig + Nbg)Nobs

Nobs!
e−Ltot×σB×εsig+Nbg , (4.17)

which describes the the probability of observing Nobs events given the expectation is:

Nexp = Nsig + Nbg = Ltot × σB× εsig + Nbg. (4.18)

In the last two equations, Ltot is the total integrated luminosity in data, εsig is the signal

selection efficiency obtained from MC, and the Nbg is the total number expected background

events. These three variables characterize the likelihood defined in Eq. 4.17 and the uncertain-

ties in them can be included by multiplying Eq. 4.17 with the probability density functions

(p.d.f.) characterizing any particular uncertainty as:

L(σB, θ1, ..., θN) = L(σB)
∏
gi(θi), i ∈ [1, ...,N], (4.19)

where θ1...θN are N nuisance parameters and gi(θi) is the p.d.f. for the parameter θi. For

convenience, a Gaussian form is assumed for the pdfs, i.e.:

gi(θi) =
1√

2πσi
e
− (θi−θ̂i)

2

2σ2
i (4.20)

where θ̂i is the central value for parameter θi and σi is the uncertainty assigned to that value.

Then one can obtain LB(σB) as:

LB(σB) =

∫
dθ1...dθNL(σB, θ1, ..., θN) (4.21)
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Using the input values provided in Table 4.17, and choosing an appropriate prior prob-

ability, it’s possible to numerically calculate the posterior probability rather easily. For this

analysis a prior that is flat in σB is used, which is widely used in these type of searches in high

energy physics. The posterior probabilities as a function of σB for two mass points, namely

mW ′ = 500 GeV and 1000 GeV, are given in Fig. 4.24.
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Figure 4.24: Posterior probabilities for two mass points.

An interpretation of these distributions can be made in the following manner. If the

posterior probability peaks at σB = 0 fb, then there is no statistically significant excess in the

observation that hints at the possible existence of a signal, hence no discovery. This is the case

in Fig. 4.24b, the posterior probability distribution for mW ′ = 1 TeV. But if it peaks at any

non-zero value, as in Fig. 4.24a - the posterior probability distribution for mW ′ = 500 GeV,

this might be interpreted in two ways: either an upward fluctuation in the background or

existence of signal. In order to test this, the following test statistic is used:

Bdisc = max(Ppost)/Ppost(0). (4.22)

The next step is to generate many Bdisc values for background only to obtain a distribution

that can be used to compare the observed Bdisc value against. This distribution for the mW ′ =

500 GeV mass point is given in Fig. 4.25. The usual comparison with a Gaussian distribution

is made so that a p-value at or below 0.00135 is 3σ evidence of the signal and a p-value at or

below 2.9× 10−7 constitutes a 5σ discovery. As can be seen from Figures 4.24a and 4.25, the
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observed Bdisc = 18.20 falls between the 2σ and 3σ thresholds.
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Figure 4.25: Bdisc distribution for background only for mW ′ = 500 GeV mass point.

This procedure is carried out for all the mass points, and only mW ′ = 500 GeV is found to

exceed 2σ, but since it is still lower than 3σ, the observation is said to be statistically consistent

with background expectations. Therefore, limits are set on σB for SSM W ′.

Given that posterior probabilities are obtained, all one needs to do to get the one-sided

σB limits at 95% CL is to calculate the integral in Eq. 4.23 to get the value of σB that gives

CLBayes = 0.95.

CLBayes =

∫ σB

0
Ppost(ξ)dξ (4.23)

For the integration, uncertainties on the signal event selection efficiency and the expected

number of background events (excluding the contributions from the integrated luminosity) are

handled as uncorrelated nuisance parameters. This is not fully justified, even without the

luminosity, since the signal and background uncertainties have common systematic sources.

However, there is some cancellation, e.g. efficiency leads to a positive correlation while resolu-

tion gives a negative value, and the small size of the signal uncertainties implies the residual

correlations are small compared to that from the integrated luminosity. The integrated lumi-

nosity is treated as a nuisance parameter with full correlation between signal and background.

Fig. 4.26 and Table 4.18 summarize the σB limits obtained as described above.
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Figure 4.26: Expected and observed limits on σB for W ′ → µν. The NNLO calculated cross

section and its uncertainty are also shown.

mW ′ 95% CL limit on σB [fb]

[GeV] none S SB SBL

500 171.1 173.9 186.0 190.8

600 99.0 100.3 107.6 110.0

750 49.2 49.8 50.9 51.7

1000 16.1 16.3 16.5 16.7

1250 14.4 14.5 14.6 14.7

1500 13.0 13.2 13.2 13.3

1750 12.0 12.1 12.1 12.2

2000 13.2 13.3 13.3 13.4

2250 14.8 14.9 14.9 15.0

2500 19.2 19.5 19.6 19.7

Table 4.18: Bayesian Upper limits on W ′ → µν σB. The first column is the W ′ mass and the

following are the 95% CL limits with headers indicating the nuisance parameters for which

uncertainties are included: S for the event selection efficiency (εsig), B for the background

level (Nbg), and L for the integrated luminosity (Lint). The column labeled SBL includes all

uncertainties and is used to evaluate mass limits.
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The expected and observed lower mass limits in the muon channel are obtained from

Fig. 4.26, where the associated curves cut the median NNLO theory cross section. The observed

mass limit is found to be 1.98 TeV with the expected limit of 2.08 TeV.

4.10 Combination of Limits with the Electron Channel

It is possible to further extend these limits by combining the results obtained above with

an orthogonal channel, in this case W ′ → eν. An identical search is performed in the electron

channel, where events are required to pass a set of quality cuts to ensure good background

rejection yet high signal selection efficiencies. Here only the results obtained in this channel will

be used, however the details of the analysis can be found in [48]. The kinematical distributions

after all cuts are shown in Fig. 4.27. The one that is particularly interesting, mT, shows good

data/MC agreement, without any hint for a possible signal, as in the muon channel. The

highest-mT electron event observed in data has mT= 1334 GeV and the event display is given

in Fig. C.1. Table 4.19 summarizes the limit inputs for the electron channel, which is equivalent

to Table 4.17 that was discussed and explained in section 4.8 for muons.

mW ′ [GeV] mTmin [GeV] εsig Nsig Nbg Nobs

500 398 0.388 ± 0.019 6930 ± 620 101.9 ± 10.8 121

600 447 0.456 ± 0.022 3910 ± 330 62.1 ± 7.1 69

750 562 0.429 ± 0.020 1420 ± 110 20.7 ± 3.7 20

1000 708 0.482 ± 0.022 417 ± 35 6.13 ± 0.92 4

1250 794 0.527 ± 0.024 143 ± 14 3.09 ± 0.49 3

1500 891 0.541 ± 0.026 49.6 ± 6.0 1.75 ± 0.32 2

1750 1000 0.515 ± 0.024 17.3 ± 2.4 0.89 ± 0.20 1

2000 1122 0.472 ± 0.023 6.16 ± 0.99 0.48 ± 0.10 1

2250 1122 0.415 ± 0.019 2.84 ± 0.50 0.48 ± 0.10 1

2500 1122 0.333 ± 0.018 0.81 ± 0.16 0.48 ± 0.10 1

Table 4.19: Inputs for the W ′ → eν σB limit calculations.
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Figure 4.27: Spectra of pT (top left), Emiss
T (top right) and mT (bottom) for the electron

channel after event selection. The points represent data and the filled histograms show the

stacked backgrounds. Open histograms are W ′ → eν signals added to the background with

masses in GeV indicated in parentheses in the legend. The QCD backgrounds estimated from

data are also shown. The signal and other background samples are normalized using the

integrated luminosity of the data and the NNLO (approximate-NNLO for tt̄) cross sections

listed in Table A.2.
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Individual electron limits are calculated in an identical manner to the muon channel, which

was discussed in section 4.9. Fig. 4.28 and Table 4.20 summarize the σB limits obtained in the

electron channel.
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Figure 4.28: Expected and observed limits on σB for W ′ → eν. The NNLO calculated cross

section and its uncertainty are also shown.

The expected and observed lower mass limits are again obtained from Fig. 4.28, where

the associated curves cut the median NNLO theory cross section. The observed mass limit in

the electron channel is found to be 2.08 TeV with the expected limit of 2.17 TeV. As can be

seen these limits are more stringent than the muon channel, due primarily to better energy

resolution and relatively higher acceptance.

The measurements in the two decay channels, electron and muon, are combined assuming

the same branching fraction for each. Equation (4.21) remains valid with the Poisson likelihood

replaced by the product of the Poisson likelihoods for the two channels. The electron and

muon integrated luminosity measurements are taken to be fully correlated. The selection

efficiencies are uncorrelated and the background levels are partly correlated, including only
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mW ′ 95% CL limit on σB [fb]

[GeV] none S SB SBL

500 97.1 98.0 117.0 121.2

600 48.9 49.2 59.3 61.1

750 23.0 23.1 28.1 28.5

1000 10.1 10.2 10.5 10.6

1250 9.8 9.9 10.0 10.1

1500 7.5 7.7 7.8 7.8

1750 7.8 7.9 7.9 7.9

2000 8.9 9.0 9.0 9.1

2250 10.2 10.2 10.3 10.3

2500 12.7 12.8 12.8 12.9

Table 4.20: Bayesian Upper limits on W ′ → eν σB. The first column is the W ′ mass and the

following are the 95% CL limits with headers indicating the nuisance parameters for which

uncertainties are included: S for the event selection efficiency (εsig), B for the background

level (Nbg), and L for the integrated luminosity (Lint). The column labeled SBL includes all

uncertainties and is used to evaluate mass limits.

the full correlation between the cross section uncertainties in the two channels. The effect of

this correlation is small: if it is not included, the observed σB limits for the lowest mass points

improve by 2% and those for the high-mass points are unchanged. Fig. 4.29 and Table 4.21

summarize the σB limits obtained for the combination of electron and muon channels. The

observed combined mass limit is found to be 2.15 TeV with an expected limit of 2.23 TeV.
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Figure 4.29: Expected and observed limits on σB for W ′ → `ν. The NNLO calculated cross

section and its uncertainty are also shown.

mW ′ 95% CL limit on σB [fb]

[GeV] none S SB SBL SBc SBcL

500 109.1 109.9 123.9 126.9 126.8 129.8

600 54.6 54.6 62.2 63.7 63.8 65.2

750 23.7 23.8 27.4 27.8 27.8 28.1

1000 7.3 7.3 7.6 7.6 7.6 7.8

1250 7.3 7.3 7.4 7.4 7.4 7.5

1500 5.8 5.9 6.0 6.0 6.0 6.0

1750 5.6 5.6 5.7 5.7 5.7 5.7

2000 6.6 6.7 6.7 6.7 6.7 6.7

2250 7.5 7.5 7.6 7.6 7.6 7.6

2500 9.5 9.6 9.6 9.6 9.6 9.6

Table 4.21: Bayesian Upper limits on W ′ → `ν σB. The first column is the W ′ mass and the

following are the 95% CL limits with headers indicating the nuisance parameters for which

uncertainties are included: S for the event selection efficiency (εsig), B for the background

level (Nbg), and L for the integrated luminosity (Lint). The column labeled SBL includes all

uncertainties and is used to evaluate mass limits. Results are also presented for full correlation

of the background cross sections between the two channels (SBc, SBcL).
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4.11 Conclusions

High-mass states in the muon plus missing transverse momentum final state was searched

for in 1 fb−1 of pp collisions at
√
s = 7 TeV with the ATLAS detector. These results were then

combined with the electron channel results to extend the reach to W ′ → `ν, where ` = e/µ. No

excess beyond Standard Model background expectations is found, hence the Bayesian upper

limits on production cross-section times branching fraction, σB, are set. These limits are

then converted to mass limits using the NNLO cross-section of the Sequential Standard Model

W ′ and masses up to 2.15 TeV are excluded at 95% CL with an expectation of 2.23 TeV.

Fig. 4.30 shows the normalized cross section limits (σlimit/σSSM) for W ′ as a function of mass

for this measurement and those from CDF, CMS and the previous ATLAS search that have

been published at the time of this analysis. The limits presented here provide significant

improvement for masses above 600 GeV, and were therefore submitted to Physics Letters B in

August 2011 and accepted by the journal in September 2011 [48].
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Figure 4.30: Normalized cross section limits (σlimit/σSSM ) for W ′ as a function of mass for

this measurement and those from CDF, CMS and the previous ATLAS search. The cross

section calculations assume the W ′ has the same couplings as the standard model W boson.

The region above each curve is excluded at 95% CL.
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4.12 Outlook

As mentioned in section 2.3, the analysis presented here is based on 1 fb−1 of data collected

in March-June 2011. By the end of 2011 the total available luminosity was increased by a factor

of five allowing for further reach in mT for the W ′ search. Therefore, a natural next step is to

add this new data and redo the analysis. Even though this would appear rather easy, it could

be quite challenging due to different data taking conditions such as increase in instantaneous

luminosity, pile-up etc.

Even though the current analysis is very well established, there are, of course, numer-

ous aspects that can be improved. These include, but are not limited to, development of a

model independent search and a more comprehensive search strategy. The prior is a natural

path to follow as it will allow theorists to use ATLAS results to test their models in a more

straightforward manner. The latter might include the adoption of a template fitting technique

for the signal search instead of the current cut and count method. Even though this comes

with the price of having to understand the shape systematics more rigorously, a better signal

significance would be obtained and hence more stringent limits in the absence of a significant

deviation from the background expectation.

All in all, the search for a heavy charged gauge boson will remain one of the benchmark

analyses within the ATLAS physics program as it gives us a clean way to test the standard

model in the high-pT regime where the new physics can manifest itself.
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APPENDIX A. Signal and Background Monte Carlo Samples

Mass σB [pb]

[GeV] Γ[GeV] B(W ′ → µν) generated higher order Nevt [k] Lint [pb−1]

500 16.68 0.08520 15.55 17.25 60 1160

600 20.02 7.493 8.270 50 2000

750 25.77 0.08313 2.931 3.200 60 6251

1000 34.75 0.08246 0.7792 0.8366 60 24000

1250 43.70 0.08216 0.2555 0.2606 40 51456

1500 52.65 0.08202 0.09257 0.08870 30 113507

1750 61.60 0.08193 0.03622 0.03246 30 308008

2000 70.55 0.08189 0.01501 0.01260 30 790000

2250 78.75 0.006618 0.005260 50 3200000

2500 88.46 0.08184 0.003142 0.002342 30 4300000

Table A.1: Monte Carlo W ′ samples used for the study. First column is the mass value of

the sample, the second is the simulated W ′ width, third is the muon channel branching ratio.

Forth column gives the generator output for the cross section for the sample, and the column

after that is the higher order correction applied to these numbers. The last two columns are

the sample size and the total integrated luminosity each sample corresponds to, respectively.
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σB [pb]

Process generated calculated Nevt [k] Lint [pb−1]

W/Z background

W → µν 8939 10460 7000 670

W → τν (|ητ | < 2.8) 7804 9134 1000 109

W [ 200, 500]→ `ν 8.90 10.42 60 5760

W [ 500, 1500]→ `ν 0.242 0.283 60 212000

W [1500, 2500]→ `ν 0.00079 0.00092 60 6540000

W [ 2500 + ]→ `ν 0.0000090 0.0000072 60 830000000

Z[ 60 + ]→ µµ 856 989 5300 5360

Z[ 250, 400]→ µµ 0.416 0.480 20 42000

Z[ 400, 600]→ µµ 0.0672 0.0777 20 260000

Z[ 600, 800]→ µµ 0.0112 0.0129 20 1550000

Z[ 800, 1000]→ µµ 0.00274 0.0032 20 6300000

Z[1000, 1250]→ µµ 0.000918 0.0000 20 21800000

Z[1250, 1500]→ µµ 0.000249 0.0000 20 80300000

Z[1500, 1750]→ µµ 0.0000769 0.0000 20 260000000

Z[1750, 2000]→ µµ 0.0000260 0.0000 20 770000000

Diboson background

WW 11.49 17.82 250 14000

WZ 3.481 6.07 250 41200

ZZ 0.976 1.387 250 180000

tt̄ background

tt̄→ `X 80.2 89.4 1000 8650

Table A.2: List of Monte Carlo background samples used for the analysis.



108

APPENDIX B. List of High-mT Events in Data

Table B.1: Events passing final selection with mT > 398 GeV for 1.04 fb−1.

Run LumiBlock Event pT η φ d0 z0 Emiss
T mT

178044 164 9886320 192.10 -1.53 -2.18 0.01 -0.30 225.65 416.13

178044 362 34585070 231.05 0.35 1.96 -0.01 -0.11 233.43 464.42

178109 182 4405627 197.23 -1.37 0.18 -0.01 -0.09 207.79 404.80

179804 678 79472072 198.51 -0.23 -0.71 -0.00 0.04 322.49 505.81

179939 322 14478982 403.35 -0.71 -2.66 -0.01 0.01 449.32 851.10

180122 443 37167417 231.08 -0.37 2.76 0.00 0.00 240.77 450.92

180124 526 74068419 218.06 0.43 -0.59 0.00 -0.16 207.06 424.87

180139 173 10051992 292.39 0.32 -2.45 -0.01 0.07 294.89 587.25

180149 86 1386253 252.04 0.18 1.98 0.01 -0.03 162.84 405.17

180149 202 25360846 694.92 0.13 -0.26 0.02 -0.03 679.45 1339.17

180164 843 144514014 195.22 -1.81 -0.22 0.00 -0.01 210.32 405.23

180225 266 50035973 317.43 0.83 0.60 0.01 -0.10 226.34 536.08

180242 216 26294202 281.52 -0.18 -0.36 0.00 -0.09 196.48 470.00

180309 422 68588358 259.48 -0.51 -2.97 -0.01 -0.09 159.35 406.23

180400 437 49367690 260.87 0.61 0.62 0.00 -0.02 255.41 514.30

180400 487 59704798 209.76 0.15 2.11 0.01 -0.10 208.67 418.43

180400 801 117659005 208.64 0.29 1.95 -0.00 0.08 195.58 403.42

180481 496 68971920 203.72 0.04 1.91 0.00 -0.09 224.77 427.98

180636 141 17737928 236.96 0.30 1.15 -0.01 -0.06 215.57 444.69

180636 231 35730995 523.83 -0.84 -1.66 -0.00 0.04 115.08 490.86
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Table B.1: Events passing final selection with mT > 398 GeV for 1.04 fb−1 (cont.).

Run LumiBlock Event pT η φ d0 z0 Emiss
T mT

180636 868 154077881 301.94 0.52 -2.71 0.00 -0.08 174.34 456.28

182284 612 63150462 388.95 -0.59 0.26 -0.01 -0.08 241.54 598.65

182346 159 11095047 203.77 0.50 1.17 0.00 -0.21 213.73 417.38

182424 199 19644277 240.50 -0.69 2.78 -0.01 -0.06 237.21 475.36

182424 379 61035500 280.53 -1.74 -1.32 0.03 -0.21 280.67 561.17

182424 524 89437409 231.99 -0.70 -2.28 -0.00 0.03 204.23 435.32

182454 393 46350845 201.72 0.61 1.72 0.00 0.05 203.50 401.87

182486 533 90903480 225.38 0.16 0.84 -0.00 -0.12 236.76 461.67

182486 608 108261420 210.68 -0.20 -0.98 -0.00 0.17 197.36 404.29

182486 682 124723696 378.59 1.34 -1.86 0.00 0.13 346.87 724.59

182516 320 10433139 233.53 1.43 -1.96 0.00 0.05 255.56 488.57

182747 182 39664355 222.41 1.51 -2.51 0.00 0.02 199.36 420.80

182747 330 74144949 443.67 0.12 -1.73 0.02 0.09 119.90 460.68

182787 155 8021766 437.49 1.89 2.36 -0.02 0.05 187.86 572.80

182787 319 48159447 261.41 -0.31 -0.48 -0.03 0.51 251.05 512.29

182787 484 82649599 278.09 -1.89 2.37 0.02 -0.35 153.33 412.62

182787 634 120217986 205.52 -0.15 -0.41 -0.00 -0.03 222.82 427.99

182796 256 41598961 697.62 0.12 0.27 -0.01 -0.10 125.90 592.49

182796 351 61441974 318.64 0.77 -0.14 0.00 -0.02 284.98 602.41

182886 50 696103 283.02 -0.89 -2.44 0.00 0.05 312.00 577.20

182886 55 1827995 450.36 -0.64 1.00 -0.00 -0.01 530.72 977.62

183003 369 41337610 148.06 0.06 0.97 0.00 -0.07 294.42 416.20

183003 1041 185635710 299.69 1.34 -1.86 -0.01 0.04 290.48 590.03

183003 1057 188708700 229.27 0.36 -0.40 0.01 -0.08 233.92 463.05

183021 879 70442799 243.21 0.46 -2.99 0.00 -0.06 196.41 435.36

183021 914 79006105 236.11 1.01 2.22 -0.01 -0.09 228.52 464.55



110

Table B.1: Events passing final selection with mT > 398 GeV for 1.04 fb−1 (cont.).

Run LumiBlock Event pT η φ d0 z0 Emiss
T mT

183038 78 3664152 251.11 0.46 2.50 -0.00 -0.18 204.76 453.21

183054 184 17584435 279.89 -0.55 0.96 -0.00 -0.06 276.28 554.88

183054 223 27141250 274.71 -1.03 0.91 -0.01 -0.05 257.25 531.60

183081 788 153880513 245.80 -0.28 -1.42 -0.00 -0.10 209.72 451.59

183081 844 165104609 221.78 0.60 -2.01 0.01 -0.05 230.10 451.74

183130 226 45367479 231.45 0.60 1.41 0.00 -0.01 218.56 448.25

183216 520 110119005 215.96 -0.84 0.07 -0.00 -0.05 195.47 400.13

183216 666 141042097 166.29 0.72 0.50 -0.03 -0.10 245.56 404.09

183286 334 69534093 205.07 0.14 2.67 -0.00 0.11 207.41 412.38

183286 603 131757200 327.84 -0.42 -2.93 -0.01 0.02 306.68 634.17

183347 1001 48520480 246.18 -0.22 -0.15 0.01 -0.02 254.42 488.95

183347 1159 77808865 201.00 -1.60 0.11 0.00 -0.11 207.72 406.95

183391 483 53157721 295.55 -0.78 -0.96 0.01 0.06 307.25 602.57

183407 240 18852204 229.96 -1.73 1.43 -0.01 -0.14 251.21 480.64

183426 91 5790566 207.86 -0.13 1.06 0.00 -0.00 199.37 407.12

183426 161 19236834 216.38 -1.39 0.82 -0.00 0.05 194.90 410.70

183462 457 11222901 264.83 -1.62 2.07 -0.00 -0.22 167.11 419.70

183462 675 52010059 247.68 -0.13 -1.62 0.01 0.01 273.03 518.62

183462 751 66786208 209.42 -0.09 2.82 0.01 0.04 236.07 444.69

183462 854 85048510 140.88 -0.89 -1.66 -0.00 -0.06 295.20 406.75

183462 931 98776243 329.22 0.63 2.06 0.00 -0.10 310.13 636.96

183462 1020 113363684 199.08 1.58 2.42 -0.00 -0.08 206.11 405.12

183544 335 10638729 259.16 -1.57 -1.71 0.01 -0.25 268.88 527.54

183544 363 15588080 274.88 -0.55 1.91 -0.01 0.00 302.85 577.05

183580 309 1557274 252.22 0.68 -1.00 0.00 -0.00 232.26 484.04

183581 240 6207511 308.70 -2.00 0.90 -0.01 -0.17 291.46 599.79
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Table B.1: Events passing final selection with mT > 398 GeV for 1.04 fb−1 (cont.).

Run LumiBlock Event pT η φ d0 z0 Emiss
T mT

183581 396 35964963 249.27 -0.37 2.96 0.00 -0.03 315.49 560.81

183581 414 39789316 239.06 -1.59 -1.50 0.02 -0.18 237.91 476.73

183581 539 62969282 207.87 -0.19 -2.18 -0.00 0.15 204.75 412.54

183780 476 15932737 252.29 0.69 -0.73 0.02 0.10 240.78 492.94

183780 1117 125756279 188.27 -1.86 -2.52 -0.00 -0.04 215.77 402.81

183780 1119 126008351 236.47 0.26 -0.16 0.01 -0.05 356.88 580.57

183780 1433 175606230 249.21 0.35 -0.53 0.00 -0.06 241.71 485.58

184022 269 9593939 405.10 -1.54 -2.62 0.01 -0.31 131.25 460.94

184022 376 30699822 235.79 0.16 -2.76 0.00 -0.09 194.67 426.35

184022 538 60941166 358.44 0.19 3.06 0.00 0.03 149.40 438.36

184022 541 61577724 353.25 -0.94 -0.15 0.01 -0.07 353.95 707.19

184022 567 67068849 227.40 -0.18 1.89 -0.00 -0.08 227.32 454.54

184022 1007 145038704 324.08 -0.82 2.34 -0.01 0.03 322.82 646.89

184022 1013 146063942 246.67 -0.31 2.38 -0.00 0.03 229.39 475.73

184066 96 1930115 227.60 -0.18 -0.07 -0.00 -0.22 214.05 440.77

184130 252 8446326 210.66 0.55 -2.74 -0.00 0.01 239.51 449.15

184130 755 99604587 296.56 -1.63 0.93 -0.01 -0.08 291.81 588.35

184130 885 123155144 203.33 -0.88 2.26 -0.01 0.02 332.17 517.52

184130 1078 156494408 231.97 0.45 -1.77 -0.00 -0.09 290.78 518.86
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APPENDIX C. Highest-mT Event Display in the Electron Channel

Figure C.1: Highest-mT event (mT= 1334 GeV) observed in data for the electron channel.

End (top left) and side (top right) views of the event, and an η-φ histogram of ET measured

in the calorimeter (top right) are shown. The electron (red) has pT = 668 GeV and the Emiss
T

(dashed) is 667 GeV. Inner detector tracks tracks with pT> 1 GeV are shown. The threshold

to display calorimeter energy deposits is ET > 1 GeV.
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