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ABSTRACT OF DISSERTATION  
 

 
 
 

ROBUST STATISTICAL METHODS FOR NON-NORMAL QUALITY 
ASSURANCE DATA ANALYSIS IN TRANSPORTATION PROJECTS 

 
 

 
The American Association of Highway and Transportation Officials (AASHTO) 

and Federal Highway Administration (FHWA) require the use of the statistically based 
quality assurance (QA) specifications for construction materials. As a result, many of the 
state highway agencies (SHAs) have implemented the use of a QA specification for 
highway construction. For these statistically based QA specifications, quality 
characteristics of most construction materials are assumed normally distributed, however, 
the normality assumption can be violated in several forms. Distribution of data can be 
skewed, kurtosis induced, or bimodal. If the process shows evidence of a significant 
departure from normality, then the quality measures calculated may be erroneous. 

  
In this research study, an extended QA data analysis model is proposed which will 

significantly improve the Type I error and power of the F-test and t-test, and remove bias 
estimates of Percent within Limit (PWL) based pay factor calculation. For the F-test, 
three alternative tests are proposed when sampling distribution is non-normal. These are: 
1) Levene’s test; 2) Brown and Forsythe’s test; and 3) O’Brien’s test. One alternative 
method is proposed for the t-test, which is the non-parametric Wilcoxon - Mann – 
Whitney Sign Rank test.  For PWL based pay factor calculation when lot data suffer non-
normality, three schemes were investigated, which are: 1) simple transformation 
methods, 2) The Clements method, and 3) Modified Box-Cox transformation using 
“Golden Section Search” method.  

 
The Monte Carlo simulation study revealed that both Levene’s test and Brown 

and Forsythe’s test are robust alternative tests of variances when underlying sample 
population distribution is non-normal.  Between the t-test and Wilcoxon test, the t-test 
was found significantly robust even when sample population distribution was severely 
non-normal. Among the data transformation for PWL based pay factor, the modified 
Box-Cox transformation using the golden section search method was found to be the 
most effective in minimizing or removing pay bias. Field QA data was analyzed to 



validate the model and a Microsoft® Excel macro based software is developed, which can 
adjust any pay consequences due to non-normality. 

 
KEYWORDS: Quality Assurance, Non-normality, F-test and t-test, Percent within 
Limits, Robust statistical tests. 
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CHAPTER ONE 
Introduction 

 
 
 
 
 
 
 
 
 

1.1 Introduction 

The road network in the United States of America, which includes thousands of 

miles of interstate routes, U.S. routes, state routes, and other urban and rural roads 

including bridges and other supporting structures, is the largest road network in the 

world. The road system is an integral part of the transport system, plays a significant role 

in achieving effective land-use and regional development and contributes to the overall 

performance and social function of the community. Several studies have established 

strong links between an efficient road network of a country with that country’s broad 

economy, improved defense system, mobility, and sustainability (NCHRP 2006; EC 

2007). The importance of maintaining the road network in a good operating condition is 

evident as well. 

Roads are expensive and require constant monitoring to keep the network 

functional through maintenance and rehabilitation. In order to increase the return of 

public funds, decrease the maintenance costs, and prolong pavements’ life, The American 

Association of State Highway and Transportation Officials (AASHTO) and Federal 

Highway Administration (FHWA) recommend every state to have in place an approved 

Quality Assurance (QA) program for Federal-aid highway construction projects 

(AASHTO 1996; FHWA 1995). The program is structured to ensure that the materials 

and workmanship incorporated into each federal-aid highway construction project on the 

national highway system are in conformity with the requirements of the approved plans 

and specifications, including approved changes. These QA specifications contain 

statistical acceptance plans and require a good understanding of statistics, materials and 

construction variability, and the product quality/performance/cost interrelationship. The 
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outcome of these QA specifications provides best results in term of performance as long 

as the underlying guidelines and assumptions hold true otherwise misleading outputs can 

jeopardize the benefits of the QA program in construction projects. 

1.2 QA Specifications and Evolutions 

According to Transportation Research Board (TRB) glossary, QA specifications 

(also called QA/QC Specifications) are statically based specifications which consist of 

two separate functions—quality control or process control, and acceptance. The 

contractor is responsible for QC (process control), and the highway agency is responsible 

for acceptance of the product. QA specifications typically use methods such as random 

sampling and lot–by– lot testing, which let the contractor know if the operations are 

producing an acceptable product (TRB 2009). The evolution of the QA programs started 

since the results of the AASHO Road Test [1956-1958] were published (AASHTO 

1962). Before the AASHO Road Test, specifications, with few exceptions, were materials 

and methods specifications. It was during the construction of this project [the AASHO 

Road Test] that a sufficient number of unbiased test results of construction materials and 

techniques became available to expose the true variability of these results and their 

relationship to specifications (Bowery et al. 1976). Since AASHTO road test, many 

agencies started measuring the variability of typical material and construction properties 

as a first step in establishing specification limits for statistically based specifications. 

Because these types of specifications were being used for the first time, a great deal of 

education in the proper use of statistical tools was necessary. These types of 

specifications, developed during the 1960s, were for the most part what are called 

“Variability Known” or “Variability Assumed” specifications (Oglio et al. 1965; 

Williamson et al. 1967).  Such specifications concentrated on controlling the average of 

the product or process. By the 1970s, the statistically based specifications had been 

incorporated into QA specifications with a strong dependence on statistical analysis 

(Willenbrock 1975; Halstead 1979). With the development of these programs came the 

recognition of a need for separate quality (process) control and acceptance functions. Part 

of this recognition was the realization by the specifying agency that the contractor, or 

producer, was in the best position to conduct the process control function, because it 

depended on the contractor’s personnel and equipment. The acceptance function was 
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generally agreed to be an agency function to ensure that satisfactory quality control has 

been exercised and that the proper degree of compliance to the specifications has been 

attained. 

With the enactment of federal regulations, “23 CFR 637B”, QA specifications 

were reshaped greatly throughout the USA (FHWA 1995). The regulation opens new 

avenues for innovative materials and construction acceptance procedures. The regulation 

enables transportation agencies to incorporate contractor test data into their quality 

acceptance procedures, and specifies laboratory certification requirements and personnel 

qualifications. Currently, the strategies and practices used by state and federal highway 

agencies to ensure quality employ a wide variety of QA approaches to meet 23 CFR 637 

These QA programs contain three main components, quality control, acceptance, and 

independent assurance (IA). QC is those QA actions and considerations necessary to 

assess and adjust production and construction processes so as to control the level of 

quality being produced in the end product. Most agencies require contractor QC for at 

least one material, and several require it for the majority of materials. The second 

component, acceptance is the process of deciding, through inspection, whether to accept 

or reject a product, including what pay factor to apply. Where contractor test results are 

used in the agency’s acceptance decision, the acceptance process includes contractor 

testing, agency verification, and possible dispute resolution. Many agencies retain the 

entire acceptance function; however, the number of agencies using contractor test results 

in the acceptance decision has substantially increased over the years. The third QA 

function, IA, is a management tool that requires a third party, not directly responsible for 

process control or acceptance, to provide an independent assessment of the product or the 

reliability of test results, or both, obtained from process control and acceptance. The 

results of independent assurance tests are not to be used as a basis of product acceptance. 

Independent assurance gives management an unbiased evaluation of its construction QA 

system and provides assurance of the effectiveness and proficiency of quality control and 

acceptance. When using contractor test results in the acceptance decision, 23 CFR 637B 

requires that verification testing be done by the agency. Verification sampling and testing 

may be part of an independent assurance program (to verify contractor QC testing or 

agency acceptance) or part of an acceptance program (to verify contractor testing used in 
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the agency’s acceptance decision). The ultimate benefits of these statistically based QA 

specifications are that quality characteristics of interest meet specification tolerances and 

the final product performs as designed. 

The majority of state highway agencies now employ statistical quality assurance 

specifications to some degree for highway construction. The basic objective of these 

statistically based specifications is to specify and measure quality characteristics (mix 

properties like asphalt content, gradation, and in-place density) that are related to 

pavement performance, then to pay the contractor for the quality provided. Acceptance 

sampling & testing and the statistically based quality measures are used to quantify 

quality provided (and assumed pavement performance). The contractor is given the 

responsibility for process and quality control sampling and testing which is verified with 

limited quality assurance testing by the specifying agency. This essentially places the 

contractor in responsible charge of its earnings while limiting resources needed by the 

specifying agency to manage the work.  

Figure 1 is a macro view of common components (from an implementation 

perspective) of a typical statistically based QA specification. The components include: 

acceptance sampling, QC and QA, comparison testing (F- and t-testing), quality-level 

analysis (PWL determination), and pay factor determination. Several details are 

obviously excluded from the figure. As mentioned earlier, QC is normally the 

responsibility of the contractor or the contractor’s representative and QC sampling and 

testing is conducted at a relatively high frequency. On the other hand, verification 

sampling and testing is normally conducted by the specifying agency or its representative 

at a significantly lower frequency than QC testing. The ratio of QC and verification tests 

could be in the range of 1:1 to 10: 1 (Hand and Epps 2006). Statistical tests are then 

conducted to assure that the QC and verification data come from the same population. 

Common tests are the F-test and t-test.  The F-test provides a method for comparing the 

variances (standard deviation squared) of the two sets of data. Differences in means are 

assessed by the t-test. Existing AASHTO quality assurance publications, Implementation 

Manual for Quality Assurance, Appendix F (AASHTO 1996) provided guidance for the 

comparison of quality control and acceptance tests by the F-test and t-test. The statistical 

tests used to make the comparisons are called Hypothesis Tests, which are conducted at a 
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Figure 1.1: Typical Statistically Based QA Verification and Acceptance Procedure 
(Modified from Hand and Epps [2006]) 

 
selected level of significance,α . Once the F-test and t-test pass the validity test, the next 

steps are to determine specification compliance and calculate pay factor. Quality is 

actually related to payment via pay factors. A pay factor is a multiplier applied to a 

contractor unit price that is a function of any specific specification compliance measures. 

Several measures are being used for the determination of specification compliance and 

calculation of pay factor. The most frequently used measures are: (1) Mean, (2) Moving 

Average, (3) Percent within Limits (PWL), (4) Average Absolute Deviation (AAD), and 

(5) Percent Defective (PD). According to the TRB glossary, PWL is the percentage of the 

lot falling above the LSL, beneath the USL, or between the USL and LSL. (Where LSL 
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and USL represent lower and upper specification limits, respectively) (TRB 2009). 

Figure 1.2 shows a graphical presentation of PWL. The PWL uses basic statistical 

methodologies to determine the quality of the finished product. After obtaining multiple 

random samples, PWL is computed, starting with the mean and standard deviation of the 

samples and tests, then the mean and standard deviation used to compute the quality 

index, and finally the quality index is converted to an "estimated" PWL using tables and 

computer software (FOCUS 2006). PWL essentially estimates the total percentage of the 

material that meets the specification limits. A PWL of 98.3, for example, means that an 

estimated 98.3 percent of the material meets the project specification.  

Equations for PWL calculation are 

 𝑄𝐿 = 𝑀𝑒𝑎𝑛−𝐿𝑆𝐿
𝑆𝐷

…………………………………………………….…Eqn.(1.1) 

 𝑄𝑈 = 𝑈𝑆𝐿−𝑀𝑒𝑎𝑛
𝑆𝐷

………………………………………………………Eqn.(1.2) 

Where: 

𝑄𝐿 = Quality index for the lower specification limit 

𝑄𝑈 = Quality index for the upper specification limit 

𝐿𝑆𝐿 = Lower Specification Limit 

𝑈𝑆𝐿 = Upper Specification Limit 

𝑀𝑒𝑎𝑛 = The sample mean for the lot 

 𝑆𝐷 = The sample standard deviation for the lot 

QL is used when there is a one-sided lower specification limit, while QU is used when 

there is one-sided upper specification limit. For two-sided specification limits, the PWL 

value is estimated as: 

𝑃𝑊𝐿𝑇 =  𝑃𝑊𝐿𝑈 + 𝑃𝑊𝐿𝐿 −  100……….………………………………………Eqn.(1.3) 

Where: 

 𝑃𝑊𝐿𝑈 =  Percent below the upper specification limit (based on QU) 
 𝑃𝑊𝐿𝐿 = Percent above the lower specification limit (based on QL) 
 𝑃𝑊𝐿𝑇 = Percent within the upper and lower specification limits 
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Figure 1.2: Graphical Presentation of PWL (Burati et al. 2003) 

Intuitively, PWL is a good measure of quality since it is reasonable to assume that the 

more of the material that is within the specification limits, the product should be of better 

quality. Since the PWL measure uses both the mean and standard deviation when 

characterizing material, it is strongly recommended by the Federal Highway 

Administration (FHWA 2004). 

1.3  Problem Statement 

One of the underlying assumptions of the F-test and t-test is that the distribution 

of the observed population is Gaussian or normal. Specification compliance measures are 

also based on the assumptions that both QC and verification test data obtained from 

different lots and sublots are normally distributed. In fact, the use of normal distribution 

simplifies what could otherwise be an arduous task of trying to define populations. 

Defining a normal distribution requires only an estimate of the average and standard 

deviation. Two of the important properties of the normal distribution are that it is 

unimodal, i.e., has one peak, and it is symmetrical. In practice, few populations are truly 

normal, which raises the question about the effectiveness of the above mentioned 

methods and their potential to create large errors in the estimates of the population.  

Although it is reasonable to assume that quality characteristics of most 

construction materials are approximately normal, the normality assumption can be 
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violated in several forms. Distribution of data can be skewed, kurtosis induced or 

bimodal. If the process shows evidence of a significant departure from normality then the 

quality characteristics calculated may be entirely inappropriate. A study conducted by 

Hughes et al. (1998) found that some quality characteristics, for example, for Hot Mix 

Asphalt (HMA), air voids data from the first Oklahoma project and for Portland Cement 

Concrete (PCC), core compressive strength and ground penetrating radar (GPR) 

thickness from the Ohio project were skewed. Some appear bimodal, e.g., for HMA, 10-

mm sieve from the Louisiana project; and for PCC, to a lesser extent, core compressive 

strength from the Illinois project (Hughes et al. 1998). Therefore, if care is not taken to 

examine the distribution of data before making a decision, it will cause significant errors 

in verification tests if the data are assumed to be normally distributed.  

Burati et al. (2006) showed that a moderate amount of skewness in the underlying 

population can affect both the accuracy and the variability of individual lot PWL values 

and may result an erroneous calculation of pay factor. They also found that bias increased 

as the amount of skewness increased, and the bias also increased as the sample size 

increased. Until recently, little research has been done to identify the effect of different 

forms of non-normal distributions in QA data obtained from highway projects. There is 

no information about the nature and magnitude of non-normality in typical quality 

characteristics data. Neither there is any information about the adverse effects of such 

non-normality on verification testing, acceptance and payment to the contractors. Also 

what statistical techniques should be applied in this situation that will result in the least 

amount of bias in the statistical measures has not been identified for QA data analysis.  

1.4 Objective of the Study 

Although there has been a vast amount of research conducted by various 

researchers about various statistical techniques and measures appropriate for non-normal 

distribution of data, little work has been done for the analysis of non-normal QA data for 

transportation projects. No statistical methods have been examined or proposed for the 

analysis of QA data in cases when the distribution of quality characteristics data is non-

normal. Therefore the objectives of this research are to: 
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1. Identify and characterize different forms of non-normal distribution that currently 
or potentially exist in different acceptance quality characteristics of highway QA 
data. 

 
2. Identify statistical techniques for the F-test and t-test that will produce the best 

measures for the analysis of QA data based on the characterization of non-normal 
data. 

 
3. Identify methods that will produce bias free estimates of pay factor when the 

underlying distributions of the QA data are non-normal. 
 

4. Develop a Microsoft© Excel based software to assist, guide, and perform statistical 
analysis for SHAs in their own QA data analysis.   

 

1.5 Scope and Limitation of the Research 

The main focus of this research is primarily limited to analysis of non-normal QA 

data for Hot-Mix Asphalt (HMA) and Portland Cement Concrete Pavement (PCC). Non-

normality in commonly used acceptance quality characteristics such as asphalt content, 

density, air voids, voids in mineral aggregate (VMA), and aggregate gradation for HMA 

and compressive strength, air content, thickness, and smoothness for PCC are under the 

scope of this study. The statistical tests and methods proposed and investigated in this 

study may be applicable to any non-normal distribution other than the ones discussed in 

this study; however, extensive Monte Carlo simulation is warranted for verification 

purposes. Even though statistical methods are proposed based on the HMA and PCC 

acceptance quality characteristics, they could also be applicable to other QA data analysis 

e.g. granular aggregate base courses, structural PCC and embankment QA data analysis 

when their population distribution is non-normal with through prior investigation. 

1.6 Dissertation Organization 

This dissertation is divided into seven chapters. Chapter one contains this 

introduction, problem statement, objective and limitation of this study. Chapter two is a 

literature review and includes underlying theories of non-normal distributions. The 

literature review largely draws upon national and local studies conducted by the FHWA, 

AASHTO, NCHRP, state highway agencies and other research organizations. Chapter 

two also includes an assessment of severity of non-normality in acceptance quality 

characteristics data collected from seven state highway agencies. Chapter three contains a 
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detailed Monte Carlo simulation study that depicts adverse effects of non-normality on 

the F-test and t-test and distortion in PWL based pay factor calculation based on the trend 

of the non-normal distributions extracted from chapter two. Chapter four describes the 

proposed alternative statistical tests of variances and means, and data transformation 

methods with related theories and assumptions. Chapter five presents the Monte Carlo 

simulation study to investigate the robustness of the proposed alternative tests and 

methods and recommends appropriate tests and method based on specific sample 

distribution characteristics. Chapter six contains the description of an Excel macro based 

computer tool “Highway Construction QA Data Analyzer” and its application based on 

the recommendations proposed in chapter five. Chapter seven concludes the dissertation 

with detail research outcomes, the expected contributions to the research and industry, 

and recommendations for future research. Appendix A includes a list of acronyms used in 

this dissertation. Appendix B contains Figures related to detailed comparative simulation 

study between the F-test and the proposed alternative tests of variances. Appendix C 

includes Figures related to detailed comparative simulation study between the t-test and 

the distribution free Wilcoxon test. Appendix D contains Figures related to efficiencies of 

the proposed data transformation methods to produce bias free estimates of pay factors. 
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CHAPTER TWO 
Background 

 

 

 
 
 
 
2.1 Introduction 

This chapter presents the basic information about non-normal distributions, 

theories of non-normal distributions, underlying theories, and some of the early works on 

the analysis of non-normal distributions as part of QA programs for highway construction 

and related fields. The chapter also contains a descriptive analysis of the severity of non-

normality in the form of skewness and kurtosis in LOT acceptance quality characteristic 

data from seven state highway agencies for their highway construction quality assurance 

program. 

2.2 Non-Normal Distributions 

The use of the normal or Gaussian distribution is often made when applying QA 

specifications. But if evidence of non-normal distributions exists, F-test and t-test may 

provide erroneous results as well as severe bias in the estimation of quality measures may 

occur. Whether this bias benefits or harms the agency or the contractor’s efforts to 

accurately measure the quality of the final product largely depends on the nature and the 

extent of the deviation. 

Departures from normality occur in a variety of forms. Scientific evaluations of 

the various forms of non-normality are found in skewness and kurtosis values. These two 

forms of non-normality are described below. 

2.3 Skewness 

2.3.1 Definition 
In probability theory and statistics, skewness is a measure of the asymmetry of 

the probability distribution of a real-valued random variable. According to the AASHTO 
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Standard Specifications, skewness is a lack of symmetry in a probability distribution 

(AASHTO 2007). In general, skewness is a measure of the tendency of the deviations to 

be larger in one direction than in the other. Skewness values that have a large absolute 

value are likely to be from a non-normal distribution. When the distribution has a greater 

tendency to tail to the right, it is said to have positive skewness. This means that there are 

more data in the right tail than would be expected in a normal distribution. Similarly, 

when the distribution has a greater tendency to tail to the left, it is said to have negative 

skewness. For the normal distribution as well as for any other symmetrical distribution, 

the skewness coefficient equals 0. The equation for skewness is shown below: 

Population skewness coefficient: 

 ( )∑ −= 33
i2 n2/X σµγ ………………………………………….Eqn.(2.1) 

 Where: 

  Xi     = ith observation of distribution 

  µ     = population mean 

  σ     = population standard deviation 

  n      = population size 

Sample skewness coefficient: 

 ( ) ( )( )]2n1ns/[XXng 33
i2 −−−= ∑ ……………………………Eqn.(2.2) 

 Where: 

  Xi     = ith observation of distribution 

  X     = sample mean 

  s       = sample standard deviation 

   n      = number of samples 

 

The difference in the formulas between population skewness coefficient and sample 

skewness coefficient is to make the sample skewness unbiased. That means if lots of 

samples from the same population are taken then the average of the sample skewness 
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coefficients would be the population skewness coefficient. Histograms of positive 

skewness are shown in Figure. 2.1. 

 

Normal Distribution, Skewness = 0.0 

 

Skewness = +0.5 

 

Skewness = +1.0 

 

Skewness = +1.5 

 

Skewness = +2.0 

Figure 2.1: Histograms of Different Levels of Skewness 

2.3.2 Source of Skewness in QA Data 

Skewed distributions usually occur because of some physical boundary or limit 

that comes into play for a particular quality characteristic. For example, the percent 

passing a sieve for gradation analysis cannot exceed 100 percent. Therefore, if the 

average percent passing is near 100, then it is possible to have greater spread on the low 

side of the average than on the high side resulting in a negative skewed distribution 

(Burati and Weed 2006). Single-sided specification limit, either natural or artificial, can 
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produce skewed distribution. For example, if a concrete pavement job requires a 

minimum 28 days compressive strength of 3500 psi and most test results are concentrated 

around 3500 psi with few far greater than 3500 psi, then the test data may produce a right 

skewed distribution. Another situation that might produce skewed distribution is when 

the confidence interval of the mean of a quality characteristic is less than zero which is 

not possible for that quality characteristic, for example pavement thickness. The presence 

of outliers is another source of skewness.  

2.4 Kurtosis 

2.4.1 Definition 

In probability theory and statistics, kurtosis is a measure of the “peakedness” in 

a probability distribution of a real valued random variable. The AASHTO Standard 

Specifications provided a similar definition of kurtosis (AASHTO 2007). In general, 

kurtosis measures both the peakedness as well as the heaviness of the tails of a 

distribution. For the normal distribution, the kurtosis equals 0. A positive kurtosis 

indicates a relatively peaked distribution with a heavy tail in comparison with the normal 

distribution, while a negative kurtosis indicates a relatively flat distribution with short 

tail. Both positive and negative kurtosis are indication of non-normality. The equation of 

kurtosis is shown below: 

 
Population kurtosis coefficient: 
   
  ( ) 3]n/X[ 44

i3 −−= ∑ σµγ …………………………………..Eqn.(2.3) 

Where: 

  Xi     = ith observation of distribution 

  µ     = population mean 

  σ     = population standard deviation 

   n      = population size 

 
Sample kurtosis coefficient: 

( ) ( ) ( )( )( ) ( ) ( )( )3n2n/1n3]3n2n1ns/XX1nn[g 244
i3 −−−−−−−−+= ∑ …Eqn.(2.4) 
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 Where: 

  Xi     = ith observation of distribution 

  X     = sample mean 

  s       = sample standard deviation 

   n      = number of samples 

   
2.4.2 Types of Kurtosis 
 

There are two types of kurtosis: Lyptokurtic and Platykurtic. 
 
           1. Leptokurtic 

A distribution with positive kurtosis is called leptokurtic, or leptokurtotic. In 
terms of shape, a leptokurtic distribution has a more acute “peak” around the mean. This 
means a higher probability than a normally distributed variable of values near the mean 
and “fat tails” that is, a higher probability than a normally distributed variable of extreme 
values. Examples of leptokurtic distributions include the student’s t distribution, Laplace 
distribution and the logistic distribution. Such distributions are sometimes termed as 
“super Gaussian”. 

 

 

 

 

 

 

Figure 2.2: Histogram of a t- Distribution with 6 df (a Leptokurtic Distribution) 
 

2. Platykurtic 
A distribution with negative kurtosis is called platykurtic, or platykurtotic. In 

terms of shape, a platykurtic distribution has a smaller “peak” around the mean which 

means a lower probability than a normally distributed variable of values near the mean 

and “thin tails” (that is, a lower probability than a normally distributed variable of 

extreme values). Examples of platykurtic distributions include the continuous or discrete 

 

Kurtosis = +3.3 

http://en.wikipedia.org/wiki/Mean�
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uniform distributions, and the raised cosine distribution. The most platykurtic distribution 

of all is the Bernoulli distribution with p = ½, for which the kurtosis is -2. Such 

distributions are sometimes termed as “sub Gaussian”. 

 

 

 

 

 

 

Figure 2.3: Histogram of a Uniform Distribution (a Platykurtic Distribution) 
 

2.4.3 Source of Kurtosis in QA Data 
The assumption of normality can be violated when actual data distribution can 

be flatter or more peaked than the ideal normal curve i.e.  kurtosis induced. In other 

words, fewer observations cluster near the average and more observations populate the 

extremes, either far above or far below the average compared to the bell curve shape of 

the normal distribution and vice versa. Data may be kurtosis induced if a contractor shots 

for a narrow target limit for a quality characteristic. In many cases, a quality property is 

found in kurtosis induced when the distribution of the property is skewed. The reason is 

when the distribution of a quality measure is skewed to the right or left, it results in long-

tails which means high kurtosis values. This is evident in the study conducted by Hughes 

et al (1998). Three Hot-Mix Asphalt (HMA) projects and three Portland Cement 

Concrete (PCC) projects were examined in this study. For the HMAC projects, 52 

material properties were measured and skewness values greater than +1.0 occurred for 14 

properties. Seven were from gradation measurements and others were from ground 

penetrating radar (GPR) thickness, density, falling weight deflectometer and total specific 

gravity measurements. For these projects, kurtosis values exceeding 1.9 occurred for 11 

properties. Ten of them were the same properties that exceeded the critical skewness 

value. Of the 21 properties measured on the three PCC projects, skewness values 

exceeded the critical value for seven properties; two were from GPR thickness 

 

Kurtosis = -1.2 

http://en.wikipedia.org/wiki/Uniform_distribution�
http://en.wikipedia.org/wiki/Raised_cosine_distribution�
http://en.wikipedia.org/wiki/Bell_curve�
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measurements, three from falling weight deflectometer measurements, one from profile, 

and one from core compressive strength results. Kurtosis values exceeded the critical 

value for six properties; five were the same properties that exceeded the critical skewness 

value. 

2.5 Is Skewness and Kurtosis Really a Significant Issue in Highway QA Data? 
Skewness and kurtosis, two common measures of non-normality, can invalidate 

normality assumption of any QA related statistical analysis.  Several authors mentioned 

existence of high skewness and kurtosis in their projects or LOT data. Here LOT is 

defined as a quantity of similar material, construction, or units of product, subjected to 

either an acceptance or process control decision (TRB 2009).Hughes et al. (1998) studied 

three hot mix asphalt (HMA) projects and three portland cement concrete pavement 

(PCC) projects and found that skewness values greater than ± 1.0 occurred for 14 of 52 

HMA and 7 of 21 PCC properties.  For these projects, kurtosis values exceeding ±1.9 

occurred for 11 HMA and 6 PCC properties. In another study by Olga et al. (2002) that 

examined 1,034 pavement layer thickness samples, 16% of all thickness distributions 

were found to follow a non-normal distribution. 

When the population distribution is non-normal, the F-test and t-test may produce 

misleading results in terms of inflated Type I error and low power. Non-normality may 

also induce significant variability in acceptance quality characteristics (AQC1

                                                 
1 That characteristic of a unit or product that is actually measured to determine conformance with a given 
requirement. When the quality characteristic is measured for acceptance purposes, it is an acceptance 
quality characteristic (AQC); when measured for process control (quality control) purposes, it is a process 
control quality characteristic. 

) data. 

However most importantly, non-normality in AQCs data tends to misdirect contractor 

payment, which can manifest in falsely penalizing contractors who delivered acceptable 

construction and rewarding contractors who delivered poor construction (Burati et al 

2006; Uddin et al 2010). But unfortunately state highway agencies simply disregard this 

possible situation and always assume that distribution is normal. Sometimes the 

underestimation and overestimation of pay factors are considered as risks while in some 

other cases it is argued that over a large number of projects or LOT, the underestimation 

and overestimation of pay factors are expected to follow a normal distribution. This 

assumes that they would balance out. This is true if the unit price of every construction 
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project is uniform. But as it is often the case that highway projects differ significantly 

based on project types (HMA vs PCC), extent (small vs large), quantity and the unit price 

all of which can easily create an imbalance of payment distribution resulting in either 

favoring or penalizing a contractor.  

2.6 Commonly Used Acceptance Quality Characteristics (AQCs) 
Performance potential of a finished construction product is often determined via a 

number of testing protocols.  The results of these tests are then linked to pay factors.  

Therefore, it is informative to know which quality characteristic tests are commonly used 

by state transportation agencies for acceptance and pay purpose. A survey was conducted 

as part of a study that evaluated the effectiveness of QC/QA programs in Kentucky 

(Mahboub et al 2008).  The survey was designed to address various state transportation 

agencies’ QA programs: Portland Cement Concrete Pavements (PCC), Hot Mix Asphalt 

(HMA), Aggregate Base, and Soil and Embankments, and summarized AQCs commonly 

used by various state transportation agencies as part of their QA program (which is a 

combination of QC and acceptance). The survey showed that the most popular HMA 

AQCs that are tested for QA were: 

1. Asphalt Content; 

2. Voids in Mineral Aggregate (VMA); 

3. Air Voids; 

4. Smoothness; 

5. Density; 

6. Gradation; and  

7. Specific Gravity    

Of these, asphalt content, air voids, VMA, smoothness, density and gradation were 

frequently used for pay adjustments for purposes of determining incentive/disincentives. 

In the case of PCC pavement, commonly tested QA AQCs were  

1. Air content;  

2. Temperature;  

3. Water-cement ratio;  

4. Thickness; 

5. Compressive strength;  
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6. Flexural Strength; 

7. Smoothness; 

8. Sand Equivalent; 

9. Slump; 

10. Gradation; and  

11. Unit weight. 

Out of these, most state transportation agencies use some combination of thickness, 

compressive strength, smoothness and air content for pay adjustments. When considering 

aggregate bases, the survey found that only a few states use statistical tools in their 

aggregate QA program.  Such data included sieve analysis of both coarse and fine 

aggregate, moisture content, percent cubical, specific gravity, aggregate fractured faces, 

and Los Angeles Abrasion. In the case of soil and embankment QA program, commonly 

used AQCs were soil moisture content and soil density. 

2.7 QA Data Collections 
Even though previous investigators have reported high skewed and kurtosis 

induced data in their study, there is no study that shows typical degrees of skewness and 

kurtosis in LOT populations. Therefore, field AQCs data were requested from various 

state transportation agencies for their QA programs. A total of seven state transportation 

agencies, including Colorado, Florida, Idaho, Georgia, Kansas, Kentucky and Virginia, 

supplied data for various AQCs for their QA programs. Table 2.1 reports a summary of 

the AQCs data which were supplied to the author. In this part of the dissertation, typical 

or expected LOT basis non-normality in the form of skewness and kurtosis in AQCs for 

Portland Cement Concrete Pavement (PCC), Hot Mix Asphalt (HMA), Aggregate Bases, 

and Soil and Embankments were examined. AQCs that are most likely to be subject to 

skewness and /or kurtosis as well as typical probability of occurrence of these non-

normal characteristics are identified. 

 Although LOT data were requested, several state transportation agencies sent 

process/project/project mix type AQC data. This is largely because of characteristics of 

individual AQC and state transportation agencies practices. For example, Colorado 

Department of Transportation (CDOT) does not use LOT and sub-lots to group the  
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Table 2.1: Representative State Highway Agencies and AQCs Data 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

State 
Highway 
Agency 

Project Type Acceptance quality 
Characteristics 

(AQCs) 

No. of LOT/ 
Process/ 

Project Mix 
Type 

Sample 
Size/LOT or 
Process or 

Project 

Data Type 

Colorado PCCP Pavement Thickness 34 3 to 36 Process 
Compressive 
Strength 

27 3 to 21 Process 

Flexural Strength 6 5 to 37 Process 
Sand Equivalent 23 3 to 21 Process 

HMA  Asphalt Content 76 3 to 40 Process 
Mat Density 83 4 to 56 Process 
VMA 37 3 to 43 Process 
Air Voids 36 3 to 47 Process 

Florida PCCP  Compressive 
Strength 

30 4 to 66 Project/Mix Design 

HMA Asphalt Content 480 4 LOT 
Air Voids 500 4 LOT 
Density 500 4 LOT 
Sieve #8 1630 4 LOT 
Sieve #200 3712 4 LOT 

Aggregate:  
Sieve Analysis 

Coar
se 

Sieve 1 in 570 4 to 63 Monthly/Source 
Sieve ¾ in 136 4 to 52 
Sieve ½ in 532 4 to 63 

Fine Sieve #16 845 4 to 63 Monthly/Source 
Sieve #50 845 4 to 63 
Sieve #100 845 4 to 63 

Soil and 
Embankment  

Moisture Content 1644 3 to 58 Project 
Soil Density 1647 3 to 65 Project 

Georgia HMA Asphalt Content 25 5 to 78 Project/Mix Type 
Idaho HMA Asphalt Content 20 3 to 5 LOT 

Air Voids 14 3 to 5 LOT 
VMA 14 3 to 5 LOT 
Density 20 3 to 7 LOT 
Sieve #4 45 3 to 6 LOT 
Sieve #8 31 3 to 6 LOT 
Sieve #200 54 3 to 6 LOT 

Kansas PCCP  Compressive 
Strength 

1065 3 to 5 LOT 

HMA Air Voids 1580 3 to 10 LOT 
Asphalt Density 6530 4 to 10 LOT 

Virginia HMA Asphalt Content 350 4 to 8 LOT/ Mix Type 
Sieve #4 185 4 to 8 LOT/ Mix Type 
Sieve #8 352 4 to 8 LOT/ Mix Type 
Sieve #200 350 4 to 8 LOT/ Mix Type 

Kentucky HMA Density 66 4 LOT 
Air Voids 66 4 LOT 
VMA 66 4 LOT 
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materials.  Instead CDOT uses process quantities where processes group like materials or 

construction techniques together.  As long as the material being produced does not 

change, it is to be added to the current process. In case of Virginia Department of 

Transportation QA data are aggregated by each individual mix, per plant per year, and 

not by construction project. Each mix is identified by nominal maximum aggregate size, 

and samples are collected from 2000 ton LOTs stratified into 500 ton sub-lots.  During 

analysis, all these issues were considered and since LOT or process (in CDOT) convey 

the same meaning, hereafter all LOT/Process are referred to as LOT for consistency.  

2.8 QA Data Analyses 
 Commonly-used sample sizes per LOT range between 3 and 8. Such a small 

sample size gives a poor estimate of population skewness and kurtosis since there is a lot 

of variability naturally associated with small sample sizes. On the other hand, where a 

sample size is large, there is a greater probability that skewness and kurtosis exist.  When 

a sample size is large, lot size is usually large and production has occurred over several 

days, which means that the process may not be constant, resulting in misleading 

multimodal distribution with high skewness and kurtosis. Since it is the extent and degree 

of skewness and kurtosis in the population distributions that is of interest to state 

transportation agencies, an indirect procedure was followed in this paper to estimate 

population skewness and kurtosis from sample skewness and kurtosis.  For skewness, 

random samples of n = 4, 5, 6, 7, 8, 10, 15, 20, 25, 30, and 50 were simulated from five 

populations with skewness = 0.0, +0.5, +1.0, +1.5 and +2.0 for 10,000 iterations using 

SAS® (SAS 2008). Average variability (standard deviation) of skewness for different 

sample sizes were calculated and plotted as shown in Figure 2.4. As shown in Figure 2.4 

as the sample size increases variability in skewness starts to decrease, and at a sample 

size of 30, the rate of decrease begins to stabilize.  Therefore variability at sample size of 

30 was assumed as the estimate of population skewness. Based on this, a series of 

correction factors were computed for different sample sizes and applied to calculated 

skewness values. For example, when the sample size is 4, average variability of sample 

skewness is 1.008 and average variability of population skewness at sample size of 30 is 

0.55124. So a correction factor for sample size 4 is 0.55124/1.00819 = 0.547. Calculated 

skewness values were multiplied by this factor when LOT sample size is 4 in order to 
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estimate population skewness. Correction factors for skewness for different sample sizes 

are tabulated in Table 2.2 and then averaged in four groups for conveyance of 

application.  In the case of kurtosis, random samples were generated from seven 

populations with kurtosis = -1.2, -0.5, 0.0, +1.0, +1.5, +2.0, and +3.0. Figure 2.5 shows 

the average variability of kurtosis for different sample sizes. For kurtosis, like skewness 

variability in kurtosis at sample size of 30 was assumed as the estimate of population 

kurtosis. As described above for skewness, a similar procedure was followed to calculate 

correction factors for kurtosis and summarized in Table 2.2. 

During analysis of field data some data cleaning operations were performed. First, 

LOT with sample sizes less than 4 were removed from the datasets since at least 4 

samples are required to calculate skewness and kurtosis. Then input data were checked 

for missing and unexpected high or low values. Such LOTs were also removed from the 

datasets.  After conducting data cleaning operations, skewness and kurtosis were 

calculated using sample skewness and kurtosis calculation equations (AASHTO 2007). 

Then those skewness and kurtosis values were multiplied by the correction factors as 

shown in Table 2.2 based on the groups of the sample sizes for an estimate of population 

skewness and kurtosis. In order to identify the severity of skewness and kurtosis in the 

LOT data, measures of skewness and kurtosis were then divided into three groups.  

• Group 1 represented LOT with skewness less than or equal to ±0.25 and kurtosis 

less than or equal to ±1.0 and categorized as LOW in severity. LOT sample 

distribution that was identified as LOW was in fact considered normal assuming 

that variation in skewness and kurtosis occurred due to randomness in sampling.  

• Group 2 represented LOT with skewness greater than ±0.25 but less than or equal 

to ±1.0 and kurtosis greater than ±1.0 but less than or equal to ±2.0 and 

categorized as MEDIUM in severity. LOT with MEDIUM non-normality have 

moderate effects on statistical tests and pay calculations.  

• Group 3 represented LOT with skewness greater than ±1.0 and kurtosis greater 

than ±2.0 and categorized as HIGH in severity. LOT with such skewness and 

kurtosis has significant effects on QA statistical analyses and pay calculations.  

 

 



23 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Variability of Skewness Populations for Different Sample Sizes 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Variability of Kurtosis Populations for Different Sample Sizes 
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Table 2.2: Skewness and Kurtosis Correction Factors to Estimate Population 
Skewness and Kurtosis from Sample Skewness and Kurtosis 
  
 

 

 

 

 

 

 

 

The state transportation agencies’ supplied AQCs were categorized into four construction 

types commonly used by various agencies. They are:  

1) Hot Mix Asphalt  

 2) Portland Cement Concrete Pavements  

3) Aggregate Bases, and  

4) Soil and Embankments. 

Analysis results of the four construction types are described in the following sections. 

1. Hot Mix Asphalt (HMA) 

It is true that the combinations of AQCs that are tested for verification and 

payment purposes differ from state transportation agency to state transportation agency; 

however, frequently used AQCs are: asphalt content, air voids, mat density, voids in 

mineral aggregate (VMA) and gradation. All these AQCs were considered in the analyses 

and presented in this section. LOT data of each AQC from different state transportation 

agencies were accumulated and descriptive statistical analysis was performed for each 

individual LOT to visualize typical frequency and extent of skewness and kurtosis. 

Figures 2.6 (a) and (b), 2.7 (a), (b) and (c), 2.8 (a) and (b) graphically represent 

distribution of LOT skewness and kurtosis of the five typical  AQCs mentioned above 

with aggregate gradation sieve of #4, #8 and #200. Table 2.3 summarizes all five typical 

AQCs with percent LOT in three different skewness and kurtosis region. It is clear from  

Sample Size Skewness 
Correction 

Factor 

Group 
Skewness 
Correction 

Factor 

Kurtosis 
Correction 

Factor 

Group 
Kurtosis 

Correction 
Factor 

4 0.547 
0.577 0.477 0.549 

5 0.607 0.621 
6 0.651 

0.684 
0.700 

0.752 7 0.686 0.758 
8 0.715 0.798 

10 0.764 
0.846 

0.853 
0.914 15 0.855 0.925 

20 0.918 0.964 
25 0.965 

1.000 0.988 1.000 
30 1.000 1.000 
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Figure 2.6: Distribution of LOT Skewness and Kurtosis - a) Asphalt Content, and b) 
Air Voids Data 
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these field data that LOT skewness and kurtosis vary significantly. For these LOT, most 

skewness values varied in the range of 0.0±1.0, whereas most kurtosis values varied in 

between +2.0 to -3.0. For all HMA AQCs included in this analysis (asphalt content, air 

voids, mat density, VMA, and gradation), on average, 10.45% of LOT has HIGH 

skewness (i.e. skewness greater than ±1.0) and 14.26% of LOT had HIGH kurtosis (i.e. 

kurtosis greater than ±2.0). Of all the AQCs, Mat density data were mostly normally 

distributed. On the other hand, air voids, Sieve # 8 and #200 were more prone to non-

normality.  

 TABLE 2.3: Distribution of Skewness and Kurtosis Ranges in HMA Acceptance 
Quality Characteristics 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Acceptance Quality 
Characteristics (AQCs) 

Total LOT Percent LOT with Skewness Percent LOT with Kurtosis 
≤±0.25 >±0.25 

& ≤±1.0 
>±1.0 ≤±1.0 >±1.0& 

≤±2.0 
>±2.0 

Asphalt Content 942 31.9 58.53 9.55 50.68 33.3 16.02 
Mat Density 5984 33.5 54.65 11.8 57.47 32.37 10.16 
Air Voids 4357 31.9 57.6 10.45 47.78 35.57 16.65 
VMA 128 31.6 55.55 12.83 51.28 41.02 7.7 
Sieve #4 (4.96mm) 220 34.2 55.7 10.06 60.73 22.83 16.44 
Sieve #8 (2.36mm) 2584 29.9 60.2 9.84 54.63 29.07 16.3 
Sieve #200 (0.075mm) 1733 28.1 63.24 8.6 45.38 38.04 16.58 
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Figure 2.7: Skewness and Kurtosis of LOT Aggregate Gradation of a) Sieve # 4, b) 
Sieve # 8, and c) Sieve # 200 
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Figure 2.8: Skewness and Kurtosis of LOT - a) Mat Density, and b) Void in Mineral 
Aggregate (VMA)   
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2. Portland Cement Concrete Pavement (PCC) 

LOT skewness and kurtosis analyses of concrete compressive strength, pavement 

thickness, flexural strength and sand equivalent are shown in Figure 2.9 (a), (b) and 2.10. 

About 69.6% LOT compressive strength data were found to have MEDIUM to HIGH 

skewness and 57.5 % data have MEDIUM to HIGH kurtosis. When comparing LOT 

compressive strength data with mix design/ project data, the later was found to be more 

normally distributed. This may be because of relatively large sample size (as high as 66) 

in the mix design data resulting in less variability compared to the smaller sample sizes (4 

to 5) in the LOT data. In the case of pavement thickness, flexural strength and sand 

equivalent, on average, half of LOT data were found normally distributed and half were 

MEDIUM to HIGH in skewness and kurtosis. Table 2.4, which illustrates LOT skewness 

and kurtosis distribution for all PCC ACQs showed, on average, about 40 percent of LOT 

data were normally distributed and about10 percent had skewness greater than ±1.0 and 

kurtosis greater than ±2.0. 

TABLE 2.4: Distribution of Skewness and Kurtosis Ranges in PCC Pavement 
Acceptance Quality Characteristics 
Acceptance Quality 
Characteristics (AQCs) 

Total LOT/ 
Project 

Percent LOT with Skewness Percent LOT with Kurtosis 
≤±0.25 >±0.25 

& ≤±1.0 
>±1.0 ≤±1.0 >±1.0& 

≤±2.0 
>±2.0 

Compressive Strength LOT: 1090 30.40 59.36 10.24 42.50 42.81 14.69 
Project: 30 56.67 36.67 6.66 40.67 50.67 8.66 

Thickness 34 29.0 55.0 16.0 47.0 44.0 9.0 
Flexural Strength 46 60.87 39.13 0.0 100.0 0.0 0.0 
Sand Equivalent 63 43.0 42.0 15.0 57.0 30.0 13.0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



30 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.9: Skewness and Kurtosis of  - a) LOT Basis Concrete Compressive 
Strength, and b) Mix Design/Project Basis Concrete Compressive Strength Data    
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Figure 2.10: Histogram of Severity of Skewness and Kurtosis in LOT Pavement 
Thickness, Flexural Strength and Sand Equivalent Data   
 

3. Soil and Embankment 

Figures 2.11(a) and (b) show project based skewness and kurtosis analysis of soil 

moisture content and soil density.  Skewness and kurtosis values, for these AQCs, show 

the same trend as in other types of construction. For both AQCs, most skewness values 

varied in the range of 0.0±1.0, and for kurtosis the range was 0.0±3.0. For both quality 

characteristics, on average, 25% of the project data were found normally distributed. On 

the other hand, HIGH skewness and kurtosis were found in 15.12% and 16.49% of soil 

density data and 14.4% and 17.45% of soil moisture content data respectively.  
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Figure 2.11: Skewness and Kurtosis of Project Basis  - a) Soil Moisture Content, and 
b) Soil Density   
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4. Aggregate Bases 

Skewness and kurtosis of monthly QC data for three sieve size (1 in, 0.5 in and 0.75 in) 

of coarse aggregate and three sieve size (#16, #50 and #100) of fine aggregate are shown 

in Figures 2.12 (a), (b) , (c) and 2.13 (a), (b), (c). On average, 52% of the monthly coarse 

aggregate sieve data were found normally distributed. On the other hand, about 11% of 

the coarse aggregate sieve data were found to have HIGH skewness and kurtosis. In the 

case of fine aggregate sieve data, 58% of data were found to be normally distributed with 

17% of the fine aggregate sieve data were found to have HIGH skewness and kurtosis. 

Both coarse and fine aggregate analyses revealed greater spread in most sieve data 

producing longer tails and resulting in HIGH positive kurtosis induced distributions 

which is evident in all aggregate figures. Another interesting finding was that skewness 

for boundary sieve sizes, for example, 1 in sieve for coarse aggregate where percent 

passing close to 100 percent and sieve size #100 size for fine aggregate where percent 

retained close to 100 percent, were found mostly negative. This is due to the physical 

boundary limit (material passing or retained cannot be more than 100%) which created a 

greater spread on the low side of the average rather than on the high side resulting in a 

negatively skewed distribution.   
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Figure 2.12: Skewness and Kurtosis of Monthly Sieve Analysis for Coarse Aggregate 
a) Sieve Size = 1 in, b) Sieve Size = ½ in, and c) Sieve Size = ¾  in  
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Figure 2.13: Skewness and Kurtosis of Monthly Sieve Analysis for Fine Aggregate a) 
Sieve Size #16, b) Sieve Size #50, and c) Sieve Size #100)   
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2.9 Conclusion 

The extent and the probability of occurrence of non-normal distribution in the 

form of skewness and kurtosis in LOT and project based AQC data were examined. It 

was found that skewness and kurtosis vary significantly in LOT data. The typical range 

of skewness was 0.0 ±1.0, while the observed range of kurtosis was 0.0±2.0. Table 2.5 

illustrates distribution of skewness and kurtosis among the acceptance quality 

characteristics based on construction types. As shown in Table 2.5, on average, 50 % of 

AQC data violated the normality assumption with 15% having skewness greater than 

±1.0 and kurtosis greater than ±2.0. Of all the AQC, air voids and sieve #4 in HMA, LOT 

basis compressive strength and thickness in PCCP, both soil moisture content and density 

in soil and embankment, and sieve 1 in for coarse aggregate and sieve #100 were found 

to be more prone to high. skewness and kurtosis. 

Table 2.5: Distribution of Skewness and Kurtosis among Acceptance Quality 
Characteristics Based on Construction Types 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Hot Mix Asphalt 
Acceptance Quality 
Characteristics (AQCs) 

Total LOT/ 
Project/ 
Monthly 
Data 

Percent LOT with Skewness Percent LOT with Kurtosis 
≤±0.25 >±0.25 

& ≤±1.0 
>±1.0 ≤±1.0 >±1.0& 

≤±2.0 
>±2.0 

Asphalt Content 942 31.9 58.53 9.55 50.68 33.3 16.02 
Mat Density 5984 33.5 54.65 11.8 57.47 32.37 10.16 
Air Voids 4357 31.9 57.6 10.45 47.78 35.57 16.65 
VMA 128 31.6 55.55 12.83 51.28 41.02 7.7 
Sieve #4 (4.96mm) 220 34.2 55.7 10.06 60.73 22.83 16.44 
Sieve #8 (2.36mm) 2584 29.9 60.2 9.84 54.63 29.07 16.3 
Sieve #200 (0.075mm) 1733 28.1 63.24 8.6 45.38 38.04 16.58 
 
 

Portland Cement Concrete Pavement 
Compressive Strength LOT: 1090 30.40 59.36 10.24 42.50 42.81 14.69 

Project: 30 56.67 36.67 6.66 40.67 50.67 8.66 
Thickness 34 29.0 55.0 16.0 47.0 44.0 9.0 
Flexural Strength 46 60.0 40.0 0.0 100.0 0.0 0.0 
Sand Equivalent 63 43.0 42.0 15.0 57.0 30.0 13.0 
 Soil and Embankment 
Soil Moisture Content 1424 22.4 63.2 14.4 54.75 27.8 17.45 
Soil Density 1623 28.68 56.2 15.12 53.2 30.32 16.48 
 Aggregate Sieve Analysis 

Coarse 
Sieve 1in 433 26.95 48.62 24.43 66.6 18.45 14.95 
Sieve ¾ in 137 45.98 48.18 5.84 73.0 23.35 3.65 
Sieve ½ in 461 39.95 48.38 11.67 65.98 24.02 10.0 

Fine 
Sieve #16 762 31.6 53.44 14.96 68.15 18.85 13.0 
Sieve #50 763 63.16 29.04 7.8 67.18 25.5 7.32 
Sieve#100 747 49.58 34.6 15.82 63.87 24.8 11.33 
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When comparing LOT data with mix design/project QA data in case of PCCP, the later 
were found more normally distributed. This is because of relatively smaller sample sizes 
(4 to 5) in the LOT data compared to large sample size in the mix design/project QA data 
resulting in less variability and more normally distributed data.  
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CHAPTER THREE 
Monte Carlo Simulation Study 

 

 

 

 

 

3.1 Introduction 
Descriptive statistical analysis of field QA data for different construction types 

identified typical range of non-normality in terms of skewness and kurtosis for various 

acceptable quality characteristics was explored in the previous chapter. It was found that 

on average about 15% QA dataset has skewness greater than ±1.0 and kurtosis greater 

than ±2.0. In this chapter, a Monte Carlo Simulation study was performed to quantify the 

effects of non-normality (as identified from the supplied QA data) on QA verification 

tests: F-test and t-test for different LOT frequencies with different sub-lots/LOT 

combination, and significance level. Simulation was also conducted to generate expected 

pay factor values from a payment equation based on the estimated PWL values when 

LOT data were non-normal. Pay factor bias was estimated for purely skewed, purely 

kurtosis and a combination of both skewness and kurtosis, in terms of magnitude and 

direction (overestimation or underestimation) for different sub-lot sizes per LOT. 

3.2 The Monte Carlo Simulation and its Application 

According to Webster’s dictionary, Monte Carlo relates to or involves “the use of 

random sampling techniques and often the use of computer simulation to obtain 

approximate solutions to mathematical or physical problems especially in terms of a 

range of values each of which has a calculated probability of being the solution" 

(Merriam-Webster, Inc., 2010). Monte Carlo simulation (MCS), a computing intensive 

mathematical technique, offers researchers an alternative to the theoretical approach. 

There are many situations where the theoretical approach is difficult to implement, much 

less to find an exact solution. In other cases, when the assumptions of a theory are 

violated in the data, the validity of the estimates about certain sampling distribution 
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characteristics based on the theory can be compromised and uncertain. It is in these kinds 

of analytic situations that MCS becomes very useful to quantitative researchers, because 

this approach relies on empirical estimation of sampling distribution characteristics, 

rather than on theoretical expectations of those characteristics. With a large number of 

replications, the empirical results asymptotically approach the theoretical results making 

MCS a powerful, efficient, and popular method among researchers. The MCS is used by 

professionals and researchers in such widely disparate fields as finance, project 

management, energy, education, psychology, sociology, political science, manufacturing, 

engineering, research and development, insurance, oil & gas, transportation, and the 

environment. 

3.3 Effect of Skewness and Kurtosis on QA Verification Tests 
Many states are moving towards statistically based QA specifications. These QA 

specifications are comprised of process (or quality) control, verification, acceptance, and 

independent assurance procedures. As mentioned earlier, contractors are responsible for 

their quality control, and state highway agencies are responsible for verification and 

acceptance of the final product. For verification purposes, most state highway agencies 

use the AASHTO recommended F-test and t-test as shown in Figure1.1. The F-test 

provides a method for comparing the variances of the two sets of data, whereas 

differences in means are assessed by the t-test, assuming a normal distribution of the 

population. The robustness of these tests is usually measured by estimating the Type I 

error and the power of the tests. In a hypothesis test, a Type I error occurs when the null 

hypothesis is rejected when it is in fact true (Hinkle et al. 1994). The following table 

(Table 3.1) gives a summary of possible results of any hypothesis test. 

 
 
                      Table 3.1: Hypothesis Testing Decision and Error 
 
 
 
 
 
 
This probability of a Type I error can be precisely computed as  

P (Type I error) = significance level =α  

 Decision 
Reject H0 Don't reject H0 

Truth H0 Type I Error Right decision 
H1 Right decision Type II Error 
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The power of a statistical hypothesis test measures the test's ability to reject the null 

hypothesis when it is actually false – that is, to make a correct decision. In other words, 

the power of a hypothesis test is the probability of not committing a type II error. It is 

calculated by subtracting the probability of a type II error from 1, usually expressed as:  

Power = 1 – P (Type II error) = ( )β−1  

The maximum power a statistical test can have is 100%, the minimum is zero. Ideally it is 
expected for a test to have high power, close to 100%. 

3.3.1 Generalized Monte Carlo Simulation Model 

In this section, a Monte Carlo simulation study was performed to explore how 

the Type I error and the power change when the distribution of the population is non-

normal i.e. skewness and kurtosis induced for both the F-test and the t-test. For the 

simulation, an elaborate data analysis model was developed. The flowchart of the 

simulation model is shown in Figure 3.1 and details are explained below. 

I. Number of LOT 

The model starts with the selection of number of LOT to be analyzed for contractor’s 

quality control sampling and testing (QCT) and agency’s verification sampling and 

testing (VT). Practices of conducting the F-test and the t-test vary from one state 

transportation agency to another transportation agency. Usually the F-test and t-test is 

conducted on several LOTs of a project at a time to on the whole project. When a project 

consists of many LOTs (usually greater than 30) central limit theory will apply and 

normality of the sample population distribution will be assumed. However, in many 

projects QCT or VT datasets are small and in such cases, if non-normality is an issue then 

they might have adverse effects on the F-test and the t-test. To simulate such practices 

four LOT frequency of 3, 4, 5, and 10 were selected, where a LOT frequency of 3 means 

VT and QCT data were generated from 3 LOTs and so on. 

II. Sub-lots/LOT 

Number of sub-lots/LOT for VT and QCT also vary widely among state 

transportation agencies. Commonly a state transportation agency samples a fraction of 

contractor’s quality control data for verification purpose and it varies from 1 to 1 to 1 to 

10. In this simulation model, four sub-lots/LOT sizes of 1, 4, 5, and 10 were selected. For 

http://www.stats.gla.ac.uk/steps/glossary/hypothesis_testing.html#2err#2err�
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example, a sub-lots/LOT = 4 means when a contractor tests 4 samples from a LOT, 

agency tests one sample of a particular quality characteristics. The main idea of choosing 

such sub-lots/LOT sizes was to investigate the general trend of both the F-test and the t-

test by mimicking different agencies practices.  

III. Generating Non-normal Population 

A variety of mathematical algorithms have been developed over the years to simulate 

non-normality distribution conditions (Burr 1973; Fleishman 1978; Johnson 1949, 1965; 

Johnson & Kitchen 1971; Pearson & Hartley 1972; Ramberg & Schmeiser 1974; 

Ramberg et al. 1979; Schmeiser & Deutch 1977). In this study, the power transformation 

method was used to generate a sample population with specific skewness and kurtosis 

(Hughes et al. 1998). The reasons for using power transformation method are that the 

method is simple (only powering up a normal distribution), it can produce non-normal 

distribution with specific skewness and kurtosis, and it doesn’t require to input any 

coefficients common to other methods. For the simulation model, five population 

distributions were generated with {skewness = +0.25, kurtosis = +0.08}, {skewness = 

+0.5, kurtosis = +0.4}, {skewness = +1.0, kurtosis = +1.8}, {skewness = +1.5, kurtosis = 

+4.0}, and {skewness = +2.0, kurtosis = +7.5}.  A normal population distribution was 

also generated, which worked as control a group. In each analysis, 10,000 samples of the 

appropriate LOT and sub-lots/LOT were generated with above mentioned skewness and 

kurtosis using the statistical software system SAS® (SAS 2008) and then was analyzed.  

IV. Significance Level 

Before comparing contractor and agency samples, a level of significance, α, must be 

selected. While α values of 1%, 5%, and 10% are common, many agencies select a 

significance level of 1% to minimize the likelihood of incorrectly concluding that the 

results are different when they actually came from the same population. In this simulation 

study, all three significance levels were investigated. 

V. Sample Population Distribution Combination 

When generating random data that represent QCT and VT data, four combinations of 

sample distributions are possible. QCT and VT data may come from sample population 

distributions of 1) Normal—Normal, 2) Normal—Non-normal, 3) Non-normal—Normal, 

and 4) Non-normal—Non-normal respectively (Table 3.2). When both QCT and VT data 
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are normal, the F-test and the t-test are the most appropriate. However, when sample 

population distributions follow any of the three other combinations, the F –test and t –test 

are hypothesized to provide misleading Type I error and erroneous (probably low) power. 

Since distributions of equal amount of positive and negative skewed distributions are 

mirror images of each other, non-normal distributions with only positive skewness and 

kurtosis were considered expecting that deviation in Type I error and power will be same 

for a same negative skewness and kurtosis induced distribution. Type I error and power 

were calculated for all three possible combinations of distributions between QCT and VT 

at three significance levels of 1%, 5% and 10%. 

Table 3.2: Possible Combinations of QCT and VT Data 
 
 

 

 

 

VI. The F-test and t-test 

As mentioned earlier, the F-test provides a method for comparing the variances (standard 

deviation squared) of the contractor’s QCT and agency’s VT data. The detail procedure 

of F-test can be found elsewhere in the literature (AASHTO 2007; Burati et al. 2003), 

however, basic steps of the F-test are as follows.  

Step 1: calculate the F-statistic by taking the ratio of the variance of the 

contractor’s QCT data and agency’s VT data; 

Step 2: determine the critical F-value from F-table for the α level of significance 

chosen and using the degrees of freedom (sample size -1) associated with each set 

of test results;   

Step 3: compare the F-statistic with the critical F-value. If the critical value of F is 

found greater than F-statistic then it is concluded that there is no reason to believe 

that the two sets of data have different variances. That is, they could have come 

from the same population. On the contrary, if F-statistic is greater than the critical 

F value, then it is concluded that the variances of the contractor and agency test 

results are different. 

 
Source Distribution 

QCT Normal Non-Normal 

VT Normal Non-Normal 
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The t-test is used to compare the sample means, i.e., to determine whether or not 

to assume the mean of the contractor’s test results differ from the mean of the agency’s 

verification tests. Procedure of using t-test in QA programs are described in detail in 

AASHTO and FHWA publications (AASHTO 1996; AASHTO 2007; Burati et al. 2003).  

However, the basic steps of the t-test are as follows: 

Step 1: Calculate a t-value based on the variances of the contractor’s QCT and 

agency’s VT are assumed to be either equal or not; 

Step 2: Determine the critical t-value from t-table for the pooled degrees of 

freedom and for a pre-selected level of significance, α; 

If the computed t-value is greater than critical t-value then decide that the two sets 

of tests have significantly different means. On the contrary, if critical t-value is 

greater than t-value then decide that there is no reason to believe the means are 

significantly different. 
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Figure 3.1: Flowchart of the 
Monte Carlo Simulation Study 
for the F-test and t-test 
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3.3.2 Sample Population Distribution Combination 1

VT: Non-normal, QCT: Normal 

  

 
In the first combination of sample population distributions, QCT and VT data 

were generated from different LOT and sub-lots/LOT combination in such a way that 

distribution of VT is non-normal with different skewness and kurtosis values, while QCT 

data are normally distributed.  

I.    F-test 
For the F-test, the standard deviation of the QCT dataset was kept at one and the 

standard deviation of the VT dataset was increased in such a way to produce standard 

deviation ratios of 1 to 5 between the VT and QCT datasets. The power, reported from 

the F-test, showed how often the F-test could identify the differences in standard 

deviations or the population variances of the two datasets. The Type I error can be 

obtained when the standard deviation ratio equals one, that is, both populations have the 

same standard deviation. Simulation results of the first sample distribution combination 

for the F-test are elaborated below. In each case, effects of non-normality on LOT 

frequency, sub-lots/LOT, and significance level were explored in detail. 

a) Effect on LOT Frequency 

Frequency of LOT that constitutes non-normal distribution has adverse effect on 

the Type I error and power of the F-test. Figure 3.3 shows deviations in the Type I error 

and power of the F-test for different standard deviation ratios at significance level of 1% 

for four LOT sizes of 3, 4, 5, and 10 with sub-lot/LOT = 1 i.e., one sample from each 

LOT is tested by the contractor and the agency. [In Figure 3.3, it is necessary to mention 

that the LOT population distributions are designated by the skewness values only, that is, 

by skewness = 1.0 means a non-normal population with skewness = +1.0 and kurtosis = 

+1.8].  Figure 3.2 presents a schematic diagram of this process.  As shown in Figure 3.3, 

the Type I error increased, while the power decreased with the increase in skewness and 

kurtosis in VT datasets. For example, for VT and QCT sample size of 4, the simulation 

showed the Type I error inflated from 0.85% when both VT and QCT datasets were 

normal to 2.4% when VT samples generated from a non-normal distribution with 

skewness = 2.0 and kurtosis=7.5 while QCT were normal. For the same condition, power 
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decreased from 30.45% to 25.6% at standard deviation ratio of 5 [Figure 3.3(b)]. Such 

trend of inflated Type I error and low power due to non-normality in VT samples 

significantly reduce the effectiveness of the F-test in identifying differences in variances 

between contractor tests and agency tests. 

 

 

 

 

 

 
 
 
 
 
Figure 3.2: Schematic Diagram for LOT Frequency = 3 and Sub-lot/LOT = 1 
 

Contractor Samples (QCT) 

Agency Samples (VT) 

LOT1 LOT2 LOT3 
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Figure 3.3: Effect of Non-normality on LOT Frequency in Terms of Type I Error and Power of the F-test when the 
Distribution of VT Samples is Non-Normal and QCT Samples are Normally Distributed 
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b) Effect on Sub-lots/LOT 

Non-normality has profound effects on sub-lots/LOT in respect of the Type I error 

and the power of the F-test. Figures 3.5, 3.6, 3.7, and 3.8 show the fluctuations in the 

Type I error and the power of the F-test when VT samples were non-normal for the four 

LOT frequencies of 3, 4, 5, and 10 with sub-lots/LOT sizes of 1, 4, 5, and 10 at 

significance level of 1%. This VT and QCT sampling process is shown schematically in 

Figure 3.4.  

 

 

 

 

 

 

Figure 3.4: Schematic Diagram for LOT Frequency = 4 and Sub-lots/LOT = 4 
 
When both QCT and VT datasets are normally distributed, it was found that increasing 

sub-lots/LOT significantly increased the power of the F-test. However, as non-normality 

was induced in the VT samples, it adversely affected the F-test with high Type I error and 

low power. For example, for VT sample size of 4 and QCT sample size of 20 (i.e., sub-

lots/LOT = 5), with VT samples were generated from a non-normal distribution with 

skewness = 2.0 and kurtosis =7.5 and QCT samples being normal, simulation results 

showed that the Type I error inflated from 0.9% to 4.25%, a 372% increase, and the 

power decreases from 87.9% to 74.55%, a 15.18% decease, at standard deviation ratio of 

5 [Figure 3.5(c)]. The robustness of the F-test further deteriorated with the increase in 

non-normal LOT frequency. For VT = 4 and QCT = 20 (sub-lot/LOT = 5) with VT 

samples generated from a non-normal distribution with skewness = 2.0 and kurtosis = 

7.5, the Type I error is 4.25% compared to 8.0% for VT = 10 and QCT = 50 under same 

condition [Figure 3.4(c) & 3.6 (c)]. Figures 3.9 and 3.10  illustrated percent change in 

Type I error and power considering when both VT and QCT samples were normally 

Contractor Samples (QCT) 
Agency Samples (VT) 

LOT1 LOT2 LOT4 LOT3 

Sub-lot 
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distributed compared to when VT samples were generated from a non-normal distribution 

having skewness = 2.0 and kurtosis =7.5 and QCT samples being normal for different 

LOT and sub-lots/LOT.  As shown, Type I error severely inflated with the increase in 

skewness and kurtosis, which further increased with increasing non-normal LOT 

frequency. Power, on the other hand, decreased with increasing skewness and kurtosis in 

VT samples. Both scenarios imply reduced capability of the F-test in identifying 

differences in variabilities between contractor test and agency tests.  However, unlike 

Type I error, loss in power decreased as the LOT frequency and sub-lots/LOT increased.  
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Figure 3.5: Effect of Non-normality on Sub-lots/LOT in Terms of Type I Error and 
Power of the F-test when the Distribution of VT Samples is Non-normal and QCT 
Samples are Normally Distributed at Significance Level of 1% (Number of LOT = 
3)  
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Figure 3.6: Effect of Non-normality on Sample Ratio in Terms of Type I Error and 
Power of the F-test when the Distribution of VT Samples is Non-normal and QCT 
Samples are Normally Distributed at Significance Level of 1 %( Number of LOT = 
4) 
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Figure 3.7: Effect of Non-normality on Sample Ratio in Terms of Type I Error and 
Power of the F-test when the Distribution of VT Samples is Non-normal and QCT 
Samples are Normally Distributed at Significance Level of 1% (Number of LOT = 
5) 
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Figure 3.8: Effect of Non-normality on Sample Ratio in Terms of Type I Error and 
Power of the F-test when the Distribution of VT Samples is Non-normal and QCT 
Samples are Normally Distributed at Significance Level of 1%(Number of LOT = 10) 
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Figure 3.9: Percent Changes in the Type I Error of the F-test when Both VT and QCT 
Datasets were Normal Compared to when VT samples were Non-normal with Skewness = 
2.0 and Kurtosis = 7.5 and QCT samples being Normal at Significance Level of 1% 
 
 

 
 
Figure 3.10: Percent Changes in the Power of the F-test when Both VT and QCT Datasets 
were Normal Compared to when VT samples were Non-normal with Skewness = 2.0 and 
Kurtosis = 7.5 and QCT samples being Normal at Significance Level of 1% 
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c) On Significance Levels 

Non-normality in VT samples also induces significant deviation on the 

significance levels and makes the F-test less effective.  Figure 3.11  illustrates the effect 

of non-normality in VT samples on significance levels of the F-test. As shown, in each 

case of LOT frequency, the Type I error inflation  was higher for higher significance 

level. For example, for VT = 3, QCT = 30, and VT samples were generated from a non-

normal distribuion with skewness = 2.0 and kurtosis = 7.5, Type I error at significance 

level of 1% is 3.19% compared to 10.14% at significance level of 5% [Figure 3.11 (a)]. 

Increasing non-normal LOT frequency along with sub-lots/LOT and significance level 

further worsened the Type I error. Considering the above example (i.e., VT =3, QCT = 

30), but now at a significance level of 10%, the Type I error was 16.71%, compared to 

29.98% when VT = 10 and QCT = 100 [Figure 3.11 (a) & (d)]. 
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Figure 3.11: Effect of Non-normality on Significance Level in Terms of Type I Error of the F-test when the Distribution of VT 
Samples is Non-normal and QCT Samples are Normally Distributed 
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II.   t-test 
Like the F-test, a similar Monte Carlo Simulation study was conducted for the t-

test. For the simulation study of t-test, the standard deviation of both VT and QCT dataset 

were kept same and it was set as 1.0. The mean of QCT was set as 0.0, and the mean of 

the VT dataset was increased in terms of standard deviation to produce mean difference 

of 0 to 5 between the VT and QCT datasets. The power of the t-test showed how often 

the t-test could identify the differences in mean of two datasets. The Type I error was 

obtained when the mean of both VT and QCT equaled 0.0, that is, both populations had 

the same mean. Monte Carlo simulation results were analyzed and summarized to 

investigate effects of non-normality in VT samples on LOT frequency, sub-lots/LOT and 

significance level and elaborated below. 

a) Effect on LOT Frequency 

The t-test is a well established test for its robustness even when distribution of 

sample data departs from normality. This is evident in Figures 3.12 from the Monte Carlo 

Simulation study. Type I error, which is the power of the t-test  when mean difference in 

units of standard deviation equals zero for both VT and QCT datasets,  was well 

concentrated around 1%. Power, on the other hand, increased significantly with the 

increase in LOT frequency. Simulations showed that non-normality had in fact positively 

contributed the power of the t-test. The reason is because of higher variability due to non-

normality induces more distinct differences in means between the VT and QCT datasets 

and thereby made t-test more effective in identifying mean differences between 

contractor tests and agency tests. The only except in the case when mean difference 

between VT and QCT datasets was one standard deviation. In this particular case, it was 

found that power of the t-test decreased with an increase in skewness and kurtosis of the 

VT samples, which indicated t-test’s shortcoming in this case. For example, when VT = 5 

and QCT = 5 and mean difference is one standard deviation, the power of the t-test was 

11.5% when both VT and QCT samples were normally distributed compare to 7.45% 

when VT samples were generated from a non-normal distribution with skewness = 2 and 

kurtosis =7.5, a 35.21% decrease [Figure 3.12 (c)].   
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b) Effects on Sub-lots/LOT 
Figures 3.13, 3.14, 3.15, and 3.16 show the effect of sub-lots/LOT on the Type I 

error and the power of the t-test for LOT frequency of 3, 4, 5, and 10 with sub-lots/LOT 

1, 4, 5, and 10 at significance level of 1%. It is evident from these figures that increasing 

sub-lots/LOT significantly increased the power of the t-test in each LOT frequency. It 

was also found that the t-test was very efficient in identifying mean differences between 

VT and QCT datasets even when VT sample population distributions were severely non-

normal. In most cases, deviations of Type I error due to non-normality were found 

insignificant. On the other hand, interestingly power increased as non-normality was 

induced in the VT samples. For example, for VT = 4 and QCT = 16 (sub-lots/LOT = 4), 

and two standard deviation mean difference, simulation results showed that the Type I 

error of the t-test is 1% when VT samples were generated from a non-normal distribution 

with skewness = 2.0 and kurtosis =7.5, however, the power increased from 94% to 97%, 

a 3.2% increase [Figure 3.14(b)]. This trend reinforced the effectiveness of the t-test in 

identifying mean differences between contractor tests and agency tests. The only 

exception of this trend is at the mean difference of one standard deviation between VT 

and QCT datasets. In this particular condition, power of the t-test was found declining 

with an increase in skewness and kurtosis of the VT samples. Figure 3.17 shows percent 

change in power when mean difference between VT and QCT datasets is one standard 

deviation apart considering when VT dataset is normally distributed compare to VT 

samples generated from a non-normal distribution with skewness = 2.0 and kurtosis =7.5 

for four different LOT and sub-lots/LOT.  As it is shown the power of the t-test decreased 

for a non-normal distribution with skewness = 2.0 and kurtosis = 7.5 and the percent of 

power loss was as high as 45.52% for a LOT frequency of 3 with sub-lots/LOT = 5. 

However, the loss in power diminished as LOT frequency and number of sub-lots/LOT 

increased.  
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Figure 3.12: Effect of Non-normality on LOT Frequency in Terms of Type I Error and Power of the t-test when the 
Distribution of VT Samples is Non-Normal and QCT Samples are Normally Distributed at Significance Level of 1%
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Figure 3.13: Effect of Non-normality on Number of Sub-lots/LOT in Terms of Type I Error and Power of the t-test when the Distribution 
of VT Samples is Non-normal and QCT Samples Normally Distributed at Significance Level of 1% (Number of LOT = 3) 
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Figure 3.14: Effect of Non-normality on Number of Sub-lots/LOT in Terms of Type I Error and Power of the t-test when the Distribution 
of VT Samples is Non-normal and QCT Samples are Normally Distributed at Significance Level of 1% (Number  of LOT = 4) 
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Figure 3.15: Effect of Non-normality on Number of Sub-lots/LOT in Terms of Type I Error and Power of the t-test when the Distribution 
of VT Samples is Non-normal and QCT Samples are Normally Distributed at Significance Level of 1% (Number of LOT = 5) 
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Figure 3.16: Effect of Non-normality on Number of Sub-lots/LOT in Terms of Type I Error and Power of the t-test when the Distribution 
of VT Samples is Non-normal and QCT Samples are Normally Distributed at Significance Level of 1% (Number of LOT = 10) 
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Figure 3.17: Percent Change in Power of the t-test when Mean Difference is One Standard 
Deviation Between VT and QCT Samples for four Different LOT and Sub-lots/LOT sizes 
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Figure 3.18: Effect of Non-normality on Significance Level in Terms of Type I Error of the t-test when the Distribution of VT Samples is 
Non-normal and QCT Samples are Normally Distributed 
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3.3.3 

VT: Normal, QCT: Non-normal 

Sample Population Distribution Combination 2 

 
For sample population combination two, samples of QCT and VT were generated 

in such a way that distribution of QCT was non-normal with different skewness and 

kurtosis values, and VT samples were normally distributed.  The Type I error and power 

were calculated from the simulation study and adverse effects on the F-test and t-test are 

illustrated below.  

I.    F-test 

a) Effect on LOT Frequency 

Figures 3.19 (a), (b), (c), and (d) show how the non-normality in QCT samples 

affects the Type I error and power of the F-test for the four LOT frequencies of 3, 4, 5, 

and 10 with each LOT having same number of QCT and VT data at the significance level 

of 1%. It was found that Type I error increased with the increase in skewness and kurtosis 

values of the simulated QCT samples. Even though the power of the F-test increased 

significantly with the increase in LOT frequency, it decreased gradually with the increase 

in skewness and kurtosis of the QCT samples. For example, the simulation results 

showed that for VT = 5 and QCT = 5, the Type I error inflated from 0.83% when both 

VT and QCT samples were normal distributed to 2.95% for QCT samples were generated 

from a non-normal distribution with skewness =2.0 and kurtosis =7.5. The power, on the 

other hand, decreased from 52.26% to 42% when standard deviation ratio was 5 under the 

same scenario [Figure 3.19(c)]. Such deviations in Type I error and the power imply the 

deficiency of the F-test when QCT samples are non-normal. 
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Figure 3.19: Effect of Non-normality on LOT Frequency in Term of Type I Error and Power of the F-test when the Distribution of QCT 
Samples is Non-Normal and VT Samples are Normally Distributed at Significance Level of 1% 
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a) Effect on Sub-lots/LOT 

Non-normality in QCT samples also induces significant deviations on the Type I 

error and the power of the F-test based on sub-lots/LOT. Figures 3.20, 3.21, 3.22, and 

3.23 show deviations in the Type I error and the power of the F-test when QCT samples 

were non-normal for four LOT frequencies of 3, 4, 5, and 10 with sub-lots/LOT sizes of 

1, 4, 5, and 10 at significance level of 1%. It is evident from these figures that increasing 

sub-lots/LOT significantly increased the power of the F-test in identifying differences in 

population variances. However, power decreased as non-normality is induced in the QCT 

samples. In each LOT frequency, the Type I error inflated with the increase in skewness 

and kurtosis and it was the largest at sub-lot/LOT = 1; however, as the number of sub-

lots/LOT increased Type I error inflation decreased, but still remained significantly high.  

Power, on the other hand, was the highest at sub-lots/LOT = 10, but as the number of 

sub-lots/LOT decreased the power decreased as well. For example, for VT = 5, QCT = 

20, and QCT samples were generated from a non-normal distribution with skewness = 

2.0 and kurtosis = 7.5, simulation shows that the Type I error inflated from 0.94% to 

2.55%, a 171.27% increase, and the power decreased from 67.90% to 60.45%, a10.97 % 

decease. For the same LOT frequency but with the number of sub-lots/LOT increased 

from 1 to 10, i.e., VT = 5 and QCT = 50, the Type I error inflated from 0.95% to 5.21%, 

a 140% increase, while the power decreased from 69.9% to 66.47%, a 4.91% decrease 

[Figure 3.22(b) & (d)]. Both scenarios indicate the reduced effectiveness of the F-test in 

identifying the differences in variances between the contractor tests and agency tests. 

Figure 3.24 and Figure 3.25 illustrate the percent change in Type I error and the power of 

the F-test when both VT and QCT datasets were normal compared to when QCT samples 

were generated from a non-normal distribution with skewness = 2.0 and kurtosis = 7.5. 

Both figures reiterated the above mentioned trend. 
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Figure 3.20: Effect of Non-normality on Sub-lots/LOT in Terms of Type I Error and Power 
of the F-test when the Distribution of QCT Samples is Non-normal and VT Samples are 
Normally Distributed at Significance Level of 1% (Number of LOT = 3) 
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Figure 3.21: Effect of Non-normality on Sub-lots/LOT in Terms of Type I Error and Power 
of the F-test when the Distribution of QCT Samples is Non-normal and VT Samples are 
Normally Distributed at Significance Level of 1% (Number of LOT = 4) 
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Figure 3.22: Effect of Non-normality on Sub-lots/LOT in Terms of Type I Error and Power 
of the F-test when the Distribution of QCT Samples is Non-normal and VT Samples are 
Normally Distributed at Significance Level of 1% (Number of LOT = 5) 
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Figure 3.23: Effect of Non-normality on Sub-lots/LOT in Terms of Type I Error and Power 
of the F-test when the Distribution of QCT Samples is Non-normal and VT Samples are 
Normally Distributed at Significance Level of 1% (Number of LOT = 10) 
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Figure 3.24: Percent Change in the Type I Error of the F-test When Both VT and QCT 
Samples were Normal Compared to when QCT Samples were Generated from a Non-
normal Distribution with Skewness = 2.0 and Kurtosis = 7.5 for four Different LOT 
Frequencies and Sub-lots/LOT 
 
 

 
 
Figure 3.25: Percent Change in the Power of the F-test When Both VT and QCT Samples 
were Normal Compared to when QCT Samples were Generated from a Non-normal 
Distribution with Skewness = 2.0 and Kurtosis = 7.5 for four Different LOT Frequencies 
and Sub-lots/LOT 
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b) On Significance Levels 

Figure 3.26  illustrates how non-normality in QCT samples affects the 

significance levels of the F-test. As shown in these figures non-normality induced 

significant deviation in Type I error in each signficance level and reduce the effectiveness 

of the F-test. The deviation in Type I error increased with the increase in sub-lots/LOT in 

each significance level as well as in each LOT frequency. It was also found percent 

change in Type I error deviation due to non-normality was highest at 1% significance 

level and least at 10% significance level. For example, for VT = 5 and QCT = 5 with 

QCT samples were generared from a non-normal distribution with skewness = 2.0 and 

kurtosis = 7.5, the Type I error was 2.95% at significance level of 1%, a 195% inflation, 

whereas it was 23.25% at significance level of 10%, a 132.5% inflation  for same sample 

size of VT = 5 and QCT = 5 [Figure 3.26(c)]. 
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Figure 3.26: Effect of Non-normality on Significance Level in Terms of Type I Error of the F-test when the Distribution of QCT Samples 
is Non-normal and VT Samples are Normally Distributed 
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II.   t-test 

Monte Carlo Simulation results for t-test when QCT dataset was non-normal and VT 

dataset was normally distributed are explained below.  

(a) Effect on LOT Frequency 

Figure 3.27 shows effects of non-normality on LOT frequency for t-test when 

QCT samples were non-normal at significance level of 1%. The Monte Carlo Simulation 

study showed the same trend as it was found in the sample distribution combination 1 for 

Type I error and power of the t-test. That is, the Type I error was found well centered 

around 1%. On the other hand, the power increased significantly, in fact non-normality in 

QCT samples positively boosted  the power of the t-test even when QCT samples were 

generated from a non-normal distribution with skewness = 2 and kurtosis =7.5. This is 

because high non-normality induces high variability resulting in clear distinction in 

means between the VT and QCT datasets, which contribute to the higher power. This 

feature of the t-test proves the robustness of the t-test under non-normality. The only 

except is in the case when mean difference between VT and QCT datasets was one 

standard deviation. In this particular case, the power of the t-test was found decreasing 

with an increase in skewness and kurtosis of the QCT datasets showing potential 

weakness of the t-test. For example, for sample size of VT = 4 and QCT = 4 and mean 

difference of one standard deviation, the power of the t-test is 7.15% when both VT and 

QCT samples are normally distributed compare to 4.3% when QCT samples were 

generated from a non-normal distribution with skewness = 2 and kurtosis =7.5, a 39.86% 

decrease in power due to non-normality [Figure 3.27(b)]. However, loss in power tends to 

decrease as LOT frequency was increased.   
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Figure 3.27: Effect of Non-normality on LOT Frequency in Terms of Type I Error and Power of the t-test when the Distribution of QCT 
Samples is Non-Normal and VT Samples are Normally Distributed at Significance Level of 1%
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b) Effect on Sub-lots/LOT 
Figures 3.28, 3.29, 3.30, and 3.31 show distortion in the Type I error and the 

power of the t-test for LOT frequencies of 3, 4, 5, and 10 with sub-lots/LOT sizes of 1, 4, 

5, and 10 when QCT samples were non-normal and VT samples were normally 

distributed at significance level of 1%. In each case, it is evident from these figures that 

increasing sub-lots/LOT significantly increased the power of the t-test. Simulation study 

also showed that the robustness of the t-test in identifying mean differences between VT 

and QCT datasets even when sample population distributions were severely non-normal. 

However, unlike sample distribution combination 1, deviation of Type I error due to non-

normality was found significant especially at sub-lots/LOT of 4 and 5. This is evident in 

Figure 3.32. As shown, for VT = 5 and QCT =25 simulation results showed that the Type 

I error inflated from 1.05% for a normal distribution to 2.3% when QCT samples were 

generated from a non-normal distribution with skewness = 2.0 and kurtosis =7.5, a 119% 

inflation. Non-normality, on the other hand, contributed the power of the t-test in most 

cases. For example, for VT = 4 and QCT = 16, and a two standard deviation mean 

difference, simulation results showed that the power increased from 74.7% to 78.3%, a 

4.82% increase [Figure 3.29 (b)]. As the LOT frequency along with sub-lots/LOT was 

increased the power of the t-test continued to increase and reached 100% irrespective of 

whether QCT samples were non-normal or not. 
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Figure 3.28: Effect of Non-normality on Sub-lots/LOT in Terms of Type I Error and Power of the t-test when the Distribution of QCT 
Samples is Non-normal and VT Samples are Normally Distributed at Significance Level of 1%  (Number of LOT = 3) 
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Figure 3.29: Effect of Non-normality on Sub-lots/LOT in Terms of Type I Error and Power of the t-test when the Distribution of QCT 
Samples is Non-normal and VT Samples are Normally Distributed at Significance Level of 1% (Number of LOT = 4) 
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Figure 3.30: Effect of Non-normality on Sub-lots/LOT in Terms of Type I Error and Power of the t-test when the Distribution of QCT 
Samples is Non-normal and VT Samples are Normally Distributed at Significance Level of 1% (Number of LOT = 5) 
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Figure 3.31: Effect of Non-normality on Sub-lots/LOT in Terms of Type I Error and Power of the t-test when the Distribution of QCT 
Samples is Non-normal and VT Samples are Normally Distributed at Significance Level of 1% (Number of LOT = 10) 
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Figure 3.32: Percent Change in the Type I Error of the t-test When Both VT and QCT 
Samples were Normal Compared to when QCT Samples were Generated from a Non-
normal Distribution with Skewness = 2.0 and Kurtosis = 7.5 for Four LOT Frequencies and 
Sub-lots/LOT at Significance Level of 1% 
 
 

c) On Significance Levels 

Figures 3.33  illustrate the effect of non-normality on three significance levels of 

1%, 5% and 10% for the t-test. As shown in these figures, distortions in Type I error due 

to non-normality were negligible at significance level of 1%, however, as the significance 

level was increased, distortion in Type I error was intensified, which again deminished 

with the increase in LOT frequencies and sub-lots/LOT. For example, for a sample size 

of VT = 4 and QCT = 4, with QCT samples generated from a non-normal distribuion 

with skewness = 2.0 and kurtosis = 7.5, Type I error at significance level of 1% is 1.35% 

compared to 1.15% at sample size of VT = 10 and QCT = 10 under same condition. 

Considering the same above example,i.e., VT = 4 and QCT = 4 (sub-lot/LOT = 1) but 

now the signifcance level is 5%, the Type I error is 6.55% compared to 5.45% at sample 

size of VT = 4 and QCT = 40 ( sub-lots/LOT = 10) [Figure 3.33(b)]. This trend implies 

the reduced effectiveness of the t-test when significance level is increased. 
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Figure 3.33: Effect of Non-normality on Significance Level in Terms of Type I Error of the t-test when the Distribution of 
QCT Samples is Non-normal and VT Samples are Normally Distributed 
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3.3.4 

 VT: Non-normal, QCT: Non-normal 

Sample Population Distribution Combination 3 

 
In the third and final combination, sample population distributions for QCT and 

VT were generated in such a way that population distribution of both VT and QCT are 

non-normal. The distribution of VT was varied with different skewness and kurtosis 

values, and QCT samples were generated from a fixed non-normal population with 

skewness = 1.0 and kurtosis = 1.8.  Effects of such sample population distribution 

combination on the F-test and t-test are elaborated below. 

I.    F-test 

a) Effect on LOT Frequency 

Figure 3.34 illustrates how the non-normality in both VT and QCT datasets 

affects the Type I error and power of the F-test for four LOT frequencies of 3, 4, 5, and 

10 with each having same number of QCT and VT samples (sub-lot/LOT =1)  at the 

significance level of 1%. Simulation study revealed that when both VT and QCT datasets 

were non-normal, the Type I error and power followed the same trend as previous two 

sample distribution combination. The Type I error was found significantly inflated with 

the increase in skewness and kurtosis of the VT samples. Even though the power of the 

F-test increased significantly with the increase in LOT frequency, it decreased gradually 

with the increase in skewness and kurtosis values of the VT samples in each LOT 

frequency, which reiterated the potential deficiency of the F-test when sample population 

distribution was non-normal. For example, the simulation results showed that for VT = 4 

and QCT = 4, the Type I error inflated from 0.80%, when VT samples were normally 

distribution and QCT samples with a fixed non-normality (skewness = 1.0 and kurtosis = 

1.8), to 1.50% when VT samples were generated from a non-normal distribution with 

skewness = 2.0 and kurtosis =7.5 and QCT with the same fixed non-normality. The 

power, on the other hand, decreased from 34.4% to 30.3% under same condition when 

standard deviation ratio was 5 [Figure 3.34(c)].  
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b) Effect on Sub-lots/LOT 

Effects of sub-lots/LOT on the Type I error and the power of the F-test, when 

both VT and QCT datasets are non-normal are illustrated in Figures 3.35, 3.36, 3.37, and 

3.38  for four LOT frequencies of 3, 4, 5, and 10 with sub-lots/LOT of 1, 4, 5, and 10 at 

significance level of 1%. It is evident from these figures that increasing sub-lots/LOT 

significantly increased the power of the F-test. However, the Type I error inflated 

significantly and the power decreased gradually as non-normality was induced in the VT 

sampling distribution. In each case, the Type I error inflated with the increase in 

skewness and kurtosis of VT samples, which further deteriorated with increase in LOT 

frequency and sub-lots/LOT. For example, for VT = 5, QCT = 5 (sub-lot/LOT = 1), 

simulation results showed that the type I error inflated from 1.30% (VT samples normal) 

to 1.90% (VT samples non-normal with skewness = 2.0 and kurtosis = 7.5), subsequently 

when sub-lots/LOT = 5 the Type I error increased up to 4.7% under same condition. 

Furthermore, when LOT frequency was increased to 10 for same sub-lots/LOT = 5 the 

Type I inflated up to 5.4%. Non-normality in both VT and QCT datasets also induced 

significant power loss for the F-test. The power decreased with the increase in skewness 

and kurtosis of the VT samples for all sub-lots/LOT in each LOT frequency. For 

example, for VT = 4, QCT = 16 (sub-lots/LOT = 4), the power of the F-test decreased 

from 83.7% to 73.8% when VT samples were generated from a non-normal distribution 

with skewness = 2.0 and kurtosis = 7 and standard deviation ratio was 5. This trend again 

implies the reduced effectiveness of the F-test when non-normality assumption is 

violated. Figure 3.39 and Figure 3.40 summarized percent changes in Type I error and 

power respectively, for all LOT frequencies and sub-lots/LOT studied, which echoed the 

same trend as explained above. 
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Figure 3.34: Effect of Non-normality on LOT Frequency in Terms of Type I Error and Power of the F-test when the 
Distribution of Both VT and QCT Samples are Non-Normal 
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Figure 3.35: Effect of Non-normality on Sub-lots/LOT in Terms of Type I Error and Power of the F-test when the Distribution 
of Both VT and QCT Samples are Non-normal (Number of LOT =3) 
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Figure 3.36: Effect of Non-normality on Sub-lots/LOT in Terms of Type I Error and Power of the F-test when the Distribution 
of Both VT and QCT Samples are Non-normal (Number of LOT = 4) 
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Figure 3.37: Effect of Non-normality on Sub-lots/LOT in Terms of Type I Error and Power of the F-test when the Distribution 
of Both VT and QCT Samples are Non-normal (Number of LOT = 5) 
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Figure 3.38: Effect of Non-normality on Sub-lots/LOT in Terms of Type I Error and Power of the F-test when the Distribution 
of Both VT and QCT Samples are Non-normal (Number of LOT = 10) 
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Figure 3.39: Percent Change in the Type I Error of the F-test When VT Samples were 
Normal and QCT Samples were at a Fixed Non-normality Compared to when Both VT 
(with Skewness = 2.0 and Kurtosis = 7.5) and QCT(with Skewness = 1.0 and Kurtosis = 1.8)  
Samples were Non-normal for Four LOT Frequencies and Sub-lots/LOT at Significance 
Level of 1% 
 

 
 
Figure 3.40: Percent Change in the Power of the F-test When VT Samples were Normal and 
QCT Samples were at a Fixed Non-normality Compared to when Both VT (with Skewness 
= 2.0 and Kurtosis = 7.5) and QCT(with Skewness = 1.0 and Kurtosis = 1.8)  Samples were 
Non-normal for Four LOT Frequencies and Sub-lots/LOT at Significance Level of 1% 
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c) On Significance Levels 
Figure 3.41  illustrates the effect of non-normality on three significance levels of 

1%, 5% and 10% for the F-test when both VT and QCT samples are non-normal. As 

shown in these figures, distortion in Type I error due to non-normality was low at 

significance level of 1%, however, as the significance level was increased, distortion in 

Type I error was intensified, which further deteriorate with the increase in LOT 

frequencies and sub-lots/LOT. For example, for VT = 4 and QCT = 4, with QCT at a 

fixed non-normality (with skewness = 1.0 and kurtosis = 1.8) and VT samples generated 

from a non-normal distribuion with skewness = 2.0 and kurtosis = 7.5, Type I error at 

significance level of 1% is 1.6% compared to 3.7% at sample size of VT = 10 and QCT = 

10 under same condition. Considering the same above example,i.e., VT = 4 and QCT = 4 

(sub-lot/LOT = 1) but now the signifcance level is 5%, the Type I error is 6.75% 

compared to 11.1% at sample size of VT = 4 and QCT = 40 ( sub-lots/LOT = 10) [Figure 

3.41 (b)  & (d)]. This trend again re-establishs the reduced effectiveness of the F-test 

when both VT and QCT samples are non- normal. 
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Figure 3.41: Effect of Non-normality on Significance Level in Terms of Type I Error of the F-test when the Distribution of 
Both VT and QCT Samples are Non-normal 
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II.   t-test 

Monte Carlo Simulation results for t-test when both VT and QCT dataset were non-

normal are elaborated below.  

a) Effect on LOT Frequency 

Figure 3.42 shows effects of non-normality on LOT frequency for the t-test when 

both VT and QCT datasets are non-normal at significance level of 1%. The Simulation 

study revealed that deviations in Type I error due to non-normality was the least and it 

was well concentrated around 1%. Power, on the other hand, increased significantly –as 

expected, with the increase in LOT frequency. It was also found that non-normality in 

fact   increase the power of the t-test even when VT samples were generated from a non-

normal distribution with skewness = 2 and kurtosis =7.5. The only except was in the case 

was when mean difference between VT and QCT datasets was one standard deviation. In 

this particular case, it was found that power of the t-test decreased with an increase in 

skewness and kurtosis of the VT datasets. For example, for VT = 4 and QCT = 4 and 

mean difference of one standard deviation, the power of the t-test was 9.85% when VT 

sample were normally distributed and QCT samples were at a fixed non-normality (with 

skewness = 1.0 and kurtosis =1.8) compared to 7.65% when VT samples were generated 

from a non-normal distribution with skewness = 2 and kurtosis =7.5, and QCT samples 

were at the same non-normality, a 22.33% decrease in power due to non-normality 

[Figure 3.42(b)]. However, loss in power decreased as the LOT frequency was increased. 
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Figure 3.42 Effect of Non-normality on LOT Frequency in Terms of Type I Error and Power of the t-test when the 
Distribution of Both VT and QCT Samples are Non-Normal 
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a) Effect on Sub-lots/LOT 
Figures 3.43, 3.44, 3.45, and 3.46 illustrate how non-normality in both VT and 

QCT datasets affects the Type I error and the power of the t-test for four LOT frequencies 

of 3, 4, 5, and 10 with sub-lots/LOT of 1, 4, 5, and 10 at significance level of 1%. For 

each LOT frequency, it is evident from these Figures that increasing sub-lots/LOT 

significantly increased the power of the t-test while producing minimal Type I error 

deviations. This fortifies the robustness of the t-test in identifying mean differences 

between VT and QCT samples even when both sample population distributions were 

severely non-normal. Even though non-normality contributed the power of the t-test in 

most cases, the only exception was at the mean difference of one and two (in case of LOT 

frequency 3 and 4). As shown, at those particular cases, non-normality in fact decreased 

the power of the t-test. For example, for VT = 5 and QCT = 20 (sub-lots/LOT = 4) 

simulation results showed that the power of the t-test decreased from 27.8% to 24.65%, a 

11.33% decrease [Figure 3.45(b)]. Figure 3.47 shows the percent change in the power of 

the t-test when mean differences were at one standard deviation, which reiterate the 

above mentioned phenomena. 
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Figure 3.43: Effect of Non-normality on Sub-lots/LOT in Terms of Type I Error and Power of the t-test when the Distribution 
of Both VT and QCT Samples are Non-normal (Number of LOT = 3) 
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Figure 3.44: Effect of Non-normality on Sub-lots/LOT in Terms of Type I Error and Power of the t-test when the Distribution 
of Both VT and QCT Samples are Non-normal (Number of LOT = 4) 
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Figure 3.45: Effect of Non-normality on Sub-lots/LOT in Terms of Type I Error and Power of the t-test when the Distribution 
of Both VT and QCT Samples are Non-normal (Number of LOT = 5) 
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Figure 3.46: Effect of Non-normality on Sub-lots/LOT in Terms of Type I Error and Power of the t-test when the Distribution 
of Both VT and QCT Samples are Non-normal (Number of LOT = 10) 
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Figure 3.47: Percent Change in the Power of the t-test When VT Samples were Normal and 
QCT Samples were at a Fixed Non-normality Compared to when Both VT (with Skewness 
= 2.0 and Kurtosis = 7.5) and QCT(with Skewness = 1.0 and Kurtosis = 1.8)  Samples were 
Non-normal for Four LOT Frequencies and Sub-lots/LOT at Significance Level of 1% 
 

a) On Significance Levels 

Figure 3.48  illustrates how non-normality in both VT and QCT datasets affect the 

significance levels for the t-test. As shown in these Figures, distortion in Type I error due 

to non-normality is negligible at significance level of 1%, however, as the significance 

level was increased, distortion in Type I error was intensified, which again deminished 

with the increase in LOT frequencies and sub-lots/LOT. For example, for a sample size 

of VT = 4 and QCT = 4, with QCT samples generated from a non-normal distribuion 

with skewness = 2.0 and kurtosis = 7.5, Type I error at significance level of 1% is 1.35% 

compare to 1.15% at sample size of VT = 10 and QCT = 10 under same condition. 

Considering the same above example,i.e., VT = 4 and QCT = 4 (sub-lot/LOT = 1) but 

now the same signifcance level is 5%, the Type I error is 6.55% compare to 5.45% at 

sample size of VT = 4 and QCT = 40 ( sub-lots/LOT = 10) [Figure 3.48(b)]. 

 
 
 
 
 

-30

-25

-20

-15

-10

-5

0

5

10

15

20

1 4 5 10

Pe
rc

en
t C

ha
ng

e 
in

 P
ow

er
 o

f t
he

 t-
te

st

Number of  Sub-lots/LOT

Number of LOT = 3 Number of LOT = 4
Number of LOT = 5 Number of LOT = 10



103 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3.48: Effect of Non-normality on Significance Level in Terms of Type I Error of the t-test when the Distribution of Both 
VT and QCT Samples are Non-normal 
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3.4 Effects of Non-normality on Percent Within Limits (PWL) 

Percent within Limits (PWL) is one of the most widely used Quality Control / 

Quality Assurance (QC/QA) measure of highway pavement materials and construction. 

This is the Federal Highway Administration (FHWA)’s recommended quality measure of 

choice (FOCUS 2006). PWL uses the sample mean and the sample standard deviation to 

estimate the percentage of the material that is within the specification limits, and it is 

similar in concept to determining the area under the normal curve (Burati et al. 2003).  

PWL is capable of handling both one-sided (e.g., concrete compressive strength) and 

two-sided specifications (e.g., asphalt air voids). For most acceptance quality 

characteristics, PWL provides a better measure of specified quality than the other single 

measures, such as average, moving average, average absolute deviation, and conformal 

index.  As a result, many state transportation agencies have adopted and implemented 

PWL for acceptance and payment of the pavement materials and finished construction 

products.  

The use of the PWL method assumes that the population being sampled is 

normally distributed. Even though it is reasonable to assume that the distribution of most 

acceptance quality characteristics is approximately normal, the assumption is not always 

valid. Skewness and kurtosis can invalidate approximate normality assumption of the 

PWL method when their values exceed certain threshold limits. 

In a previous study, it was determined that, if the distribution of a quality 

characteristic is normal, then PWL provides an unbiased payment factor estimate when 

used in a payment equation considering that no minimum or maximum pay factor 

provisions are imposed  (Burati et al 2004). But, how pay factor estimates perform when 

the population distribution of a quality characteristic is non-normal under similar 

situation has not been thoroughly investigated. Burati et al. (2006) showed how a skewed 

population affects PWL values. They found that even a moderate amount of skewness in 

the underlying population can affect both the bias and the variability of individual LOT 

PWL values.  However, in their study, Burati et al (2006) only considered the skewed 

population.  In reality, a population distribution can be skewed, kurtosis induced or both. 

This section of the dissertation examines how, using computer simulation, purely skewed, 

purely kurtosis and a combination of both skewness and kurtosis affect the acceptance 
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pay factor calculation, in terms of magnitude and direction (overestimation or 

underestimation) for four different sub-lot sizes of 3, 4, 5 and 10 per LOT. Here   sub-lot 

represents equally divided LOT quantity as well as number of samples per LOT.  Effect 

of non-normality on expected pay for multiple quality characteristics was also 

investigated using the Kentucky and Illinois pay factor calculation methods as examples 

under the same sub-lot/LOT scenario. Since distributions of equal amount of positive and 

negative skewness are mirror images of each other, only positive skewness was 

considered expecting that bias will be reversed for a same negative skewness, and the 

same is also assumed valid for kurtosis. The term “Bias” is frequently used which 

specifically means the “overestimation / over pay” or “underestimation / under pay” of 

the acceptance pay factor from true normal LOT pay factor.  

3.4.1 Pay Factor Bias for A Single Non-Normal Quality Characteristic 
Simulation studies are widely used to solve many practical problems encountered 

in different disciplines. In this study, a Monte Carlo Simulation was performed to 

generate expected pay factor values from a payment equation based on the estimated 

PWL values. In a normal distribution regime, the PWL is an unbiased estimator of the 

actual PWL.  However, the same may not be true for a non-normal distribution and may 

induce significant bias in pay factor calculation.  Since the number of sub-lots per LOT 

varies in different highway agencies, four sub-lot sizes of 3, 4, 5, and 10 per LOT were 

examined with one test per sub-lot. For the purpose of the simulation, any payment 

equation could have been used. In this study, the payment equation from Kentucky’s 

Jointed Plain Concrete thickness specification was used for the one-sided limit 

simulations, and air content for Class - P concrete specification was used for the two-

sided limits simulations considering that no minimum or maximum pay factor provisions 

are imposed (i.e. one continuous function over the 0 to 100 PWL range) (Kentucky 

Transportation Cabinet 2009).  

These payment equations are: 

 

Pay Factor (Thickness) = 52.5 + (0.5 × PWL)…………………………………….(Eqn.1) 

Pay Factor (Air Content) = 2×  [(25 + (PWL@± 2%×0.25)) + (0.0125×PWL@± 1%)] 

                                                                                                               …………..(Eqn. 2) 
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In the case of air content, Kentucky Transportation Cabinet calculates two sets of 

PWLs. The first one is calculated based on air content ±2% of the target air content of 

Class - P concrete and denoted as PWL@±2% and the second PWL is calculated as air 

content ±1% and denoted as PWL@±1%. These two PWLs are then entered into the Eqn. 2 

and air content pay factor is calculated.  

In each analysis, SAS statistical software (SAS® Inc. 2008) was used to generate 

10,000 LOTs of appropriate size with a specific skewness or kurtosis or a combination of 

both skewness and kurtosis. Steps for calculation pay factor bias are outlined below.  

Step 1: SAS random number generator module was used to generate a sample of n (= 3, 

4, 5 or 10) random numbers from a population of mean = 10, standard deviation =1.0 and 

skewness = 0.0 and kurtosis = 0.0. 

Step 2: Fisherman’s method or power transformation method was used to transfer the n 

random numbers to produce a specific skewness / kurtosis / composite skewness and 

kurtosis. Mean and standard deviation of the n random numbers are computed and 

normalized as 0.0 and 1.0., and designated as MEANES and STDES.  

Step 3: Lower and upper specification limits (LSL & USL) are calculated as Z-value of 

area under normal curve to produce a specific TRUE PWL value. 

Step 4: Quality indexes are calculated as QL =  𝑀𝐸𝐴𝑁𝐸𝑆−𝐿𝑆𝐿
𝑆𝑇𝐷𝐸𝑆

   and QU =  𝑈𝑆𝐿−𝑀𝐸𝐴𝑁𝐸𝑆
𝑆𝑇𝐷𝐸𝑆

 

Step 5: Using the combination of sample size n and quality index, PWL value was 

calculated with the help of PWL tables (AASHTO 1996). 

Step 6: Steps 1 to 5 were repeated 10,000 times and average of 10,000 PWL values was 

calculated and denoted as ESTIMATED PWL. 

Step 7: Both TRUE PWL and ESTIMATED PWL values were then entered into pay 

equations (1 or 2) and calculated pay factor values were denoted as true normal pay 

factor and estimated non-normal pay factor respectively. 

Step 8: Bias was computed by subtracting true normal pay factor from the estimated non-

normal pay factor.  

Both one-sided and two-sided specification limits were investigated. For the one-

sided limit, the PWL was used to compute the pay factor; but for two-sided limits, the 

Percent Defective (PD) specification was utilized. The PD type of specification was 

chosen because it is the complement to PWL (PD =100-PWL), and it produces a more 
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meaningful estimate of the percent of defective material in the tails of skewed, kurtosis 

induced, and composite (both skewed and kurtosis) population distributions for two-sided 

limits. However, during the calculation of pay factors PD is converted to PWL internally 

because pay equations are PWL based. 

I.    Effect of Pure Skewness 

The first part of the study investigated how the pay factor changes when the 

distribution of the population is purely skewed. Fleishman’s power transformation 

method was used to generate such a population distribution (Fleishman 1978). A 

simulation study was performed to estimate the bias in the pay factor with skewness of 

+0.25, +0.5, +0.75 and +1.0 with 10,000 simulated LOTs of specific sub-lot numbers.  

Since skewness values above 1.0 incorporate significant kurtosis, the simulation study 

was restricted for the above mention skewness values only. In the case of a normal 

distribution, the upper and lower specification limits resulted in the same effect on the 

pay factor due to symmetry. However, in the case of a purely skewed distribution, the pay 

factor was influenced differently because of the asymmetry of the distribution tails.  This 

is evident in Figures 3.49 and 3.50 for the bias estimates of the pay factors when the 

population distribution is purely skewed.  

Figures 3.49 (a), (b), (c) and (d) present percent bias in pay factor for a one-sided 

lower specification limit with LOT sizes of 3, 4, 5 and 10 sub-lots per LOT, respectively.  

It was found that a process at the 95 PWL, which results in 100 percent payment to a 

contractor under a normal distribution assumption, received, on average, an extra 

payment in the simulations due to the inflated pay factor by the skewed distribution.  On 

the other hand, at the 50 PWL, which is frequently used by many state transportation 

agencies as the rejectable quality level, the contractor received a pay reduction below the 

actual payment which a contractor should receive. Both scenarios indicate that a purely 

skewed distribution induces noticeable bias in the pay factor calculation.   

Percent pay bias for a one-sided upper specification limit are illustrated in Figures 

3.50 (a), (b), (c) and (d) for sub-lot/LOT = 3, 4, 5, & 10 respectively. The 95 PWL 

population, on average, received a reduced rather than a full payment in the simulations, 

and the 50 PWL population was on average overpaid.  For a LOT size of 4 sub-lots with 

a skewness coefficient of +1.0, the simulated bias values for the 95 PWL and 50 PWL 
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populations were -0.83% and +2.6% respectively [Figure 3.50 (b)].  This means that the 

skewed distributions misdirected the payment calculation by penalizing the acceptable 

products and rewarding the poor products.  This particular pay bias occurs because a few 

high scores cause the mean of the skewed distribution to be distorted toward the tail.  As 

a result, the percent of data in the longer tail of the skewed distribution is higher than that 

of a normal distribution. This skewness results in an underestimation of the 95 PWL 

populations and thereby underestimates the pay factor.  However, when the specification 

limit is at the 50 PWL, the percent of material in the half portion of the longer tail is less 

than the normal distribution, because the median is to the left of the mean for a positively 

skewed distribution, which results in an overestimation of the PWL and pay factor. This 

is graphically illustrated in Figure 3.51. In the case of negative skewness, bias values are 

reversed for both one sided upper and lower specification limits (i.e. the bias for pay 

factor with 90 PWL and positive skewness is equal to –1 times the bias for pay factor 

with 10 PWL and negative skewness). 
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Figure 3.49: Percent Bias in the Pay Factor Considering Pure Positive Skewed Distribution for a One-sided Lower Specification Limit 
Based on 10,000 Simulated LOTs 
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Figure 3.50: Percent Bias in the Pay Factor Considering Pure Positive Skewed Distribution for a One-sided Upper Specification Limit 
Based on 10,000 Simulated LOTs 
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Figure 3.51: Schematic Diagrams Showing Normal Distribution with Superimposed Skewed 
Distribution that Produce Bias in Pay Factor Calculation [Modified from Burati et al (2006)] 
 

The outcome for two-sided limits was different from the outcome for a one-sided 

limit in that the pay bias values varied depending on whether the percent of defective 

(PD) materials was in the shorter or longer tail of the skewed distribution.  Figures 3.52, 

3.53, 3.54, 3.55, and 3.56  show percent bias in the pay factor at PD = 5% , 10%, 20%, 

30%, and 50% for LOT sizes of 3, 4, 5 and 10 sub-lots when different percents of PD 

data are located in the shorter tail of the purely positive skewed distribution.  At the PD = 

5% ( = 95 PWL) and where more defective material data fell into the shorter tail of the 

skewed distribution, it was found that pay factor values were overestimated; conversely, 

when more defective material data were in the longer tail, the pay factor was 

underestimated [Figure 3.52]. The PD = 10% showed the same trend, however, the trend 

reversed in some point between PD = 10 % and PD = 20%. That is when the specification 

limits were set at the PD = 20% and where more defective materials were in the shorter 

tail, the skewness resulted in an underestimation of the pay factor[ Figure 3.54]. The 

same trend continued for PD = 30% and PD = 50% with higher pay bias as PD value 

increased. For a LOT size of 4 sub-lots with a skewness of +1.0, the simulated two-sided 

limit pay bias values for the PD = 5% and PD = 50% populations, when 25% of the 

defective material data  were in the shorter tail (i.e.,75% in the longer tail), were -0.52% 

and +3.0% respectively [Figure 3.52 and 3.56].  It is also evident that LOTs with fewer 
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sub-lots and greater skewness produce greater pay bias. This happens because LOTs with 

very few sub-lots are more sensitive to relative variability in data.   

Burati et al. (2006) estimated bias in PWL values whereas this study estimated 

bias in pay factors.  While the studies differed in scope, the authors compared the results 

by calculating pay factor using KYTC pay equations (Eqn.1 and Eqn.2) for PWL bias of 

Burati et al. (2006).  Pay factor bias in both studies demonstrated similar trends, which is 

the greater the skewness the greater the bias in pay factor for both one-sided and two-

sided specification limits.   For a one-sided specification with 5 sub-lots/LOT (i.e. 5 tests 

per LOT) the pay factor biases are -1% and -0.80% based on the results of Burati et al. 

(2006) and this study respectively. In the case of two-sided limits, when 100% of the 

defective materials are located in the longer tail, Burati et al. (2006) found twice as much 

bias as in this study. Another significant finding reported in Burati et al.’s study is that 

bias increases as sample size increases, which may be associated with underlying 

sampling techniques from the skewed distribution.   This may cause the sample mean to 

deviate from true pollution mean as the sample size increases, resulting in more bias.   On 

the contrary, the authors of the study reported herein find that increases in sample sizes 

results in less variability in pay factors and produce less bias. This complies with the 

central limit theorem that the distribution of an average tends to be normal, even when 

the distribution from which the average is computed is decidedly non-normal, as long as 

the sample size is large enough and the standard deviation is finite. 
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Figure 3.53: Percent Bias in the Expected Pay Factor Considering Pure Skewed Distribution for Two-sided Specification Limits at 
Percent Defective = 10% Based on 10,000 Simulated LOTs  
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Figure 3.54: Bias Percent Bias in the Expected Pay Factor Considering Pure Skewed Distribution for Two-sided Specification Limits at 
Percent Defective = 20% Based on 10,000 Simulated LOTs   
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Figure 3.55: Percent Bias in the Expected Pay Factor Considering Pure Skewed Distribution for Two-sided Specification Limits at 
Percent Defective = 30% Based on 10,000 Simulated LOTs 
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Figure 3.56: Percent Bias in the Expected Pay Factor Considering Pure Skewed Distribution for Two-sided Specification Limits at 
Percent Defective = 50% Based on 10,000 Simulated LOTs  
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II.   Effect of Pure Kurtosis 

To investigate the effects of pure kurtosis on the pay factor, a series of t-

distributions were used. The t-distributions are symmetric distributions with heavy tails, 

and theoretical skewness of zero. Also t-distributions possess a varying amount of 

positive kurtosis depending on different degrees of freedom. Even though t-distributions 

are statistical distributions, here for the purpose of analysis, construction material 

distribution with purely positive kurtosis is approximated as a t-distribution.  In the study, 

t- distributions with degrees of freedom of 5, 6, 7 and 8, 200 were used.  These degrees of 

freedoms correspond to kurtosis of +4.906, +3.044, +2.080, +1.495, +0.025 (based on 

1,000000 replications) and rounded to +5.0, +3.0, +2.0 and +1.5, 0.0 respectively. The 

simulation method, described earlier in the skewness analysis, was performed on the t-

distributions with specific kurtosis mentioned above. Since t-distributions are symmetric 

distributions, the bias in pay factor will be the same for the same PWL values regardless 

of the upper or lower specification limit. Figures 3.57 (a), (b), (c), & (d) illustrate percent 

bias in pay factor for a one-sided limit with sub-lots/LOT of 3, 4, 5 and 10, respectively.  

In this case, it was found that the pay factors were underestimated on the high end of the 

PWL. This was because the tails of the resulting t-distributions were heavier than that of 

a normal distribution. This is schematically shown in Figure 3.60.  Pay factor biases were 

overestimated in the PWL range of 60-95 with the highest pay bias occurring when the 

PWL was 80. The 50 PWL populations suffered almost no pay bias.  Figures 3.58 and 

3.59 illustrate percent pay factor bias at PD = 5%, 10%, 30%, and PD = 50% for LOT 

sizes of 3, 4, 5 and 10 at varying proportions of PD located in the tails of the t-

distributions. The analysis revealed that pay bias for the PD = 5% populations were 

always underestimated irrespective of the proportion of defective materials in the tails, 

which is a result of heavy tails and a narrow peak of t-distributions [Figure 3.58]. On the 

other hand, the pay factor biases were always overestimated for PD = 10%, 30%, and 

50% [Figure 3.59].  For a LOT with 4 sub- lots and with a kurtosis coefficient of +5.0, 

the two-sided limits simulated pay bias for the PD =  5% and PD = 50% populations with 

an equal amount of the defective materials in the tails were -0.09% and +2.65%, 

respectively [Figures 3.58 and 3.59].  Pay biases were significant for LOTs with fewer 
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sub-lots and higher kurtosis, however the magnitude of the kurtosis pay bias was 

relatively small compared to the skewness pay bias. 
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Figure 3.57: Percent Bias in the Expected Pay Factor Considering Pure Positive Kurtosis Induced Distribution for a One-sided 
Specification Limit Based on 10,000 Simulated LOTs 
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Figure 3.58: Percent Bias in the Expected Pay Factor Considering Pure Positive Kurtosis Induced Distribution for Two-sided 
Specification Limits Based on 10,000 Simulated LOTs a) PD =5% and b) PD = 10%  
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Figure 3.59: Percent Bias in the Expected Pay Factor Considering Pure Positive Kurtosis Induced Distribution for Two-sided 
Specification Limits Based on 10,000 Simulated LOTs a) PD =30% and b) PD = 50% 
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Figure 3.60: Schematic Diagrams Showing Normal Distribution with Superimposed t(4) 
Distribution that   Produce Bias in Pay Factor Calculation 
 

III.    Composite Effect of Skewness and Kurtosis 

   Up to this point, the effects on pay factor calculations caused by the two most 

common types of non-normality, skewness and kurtosis, in their pure forms were 

examined separately.   In reality, it is uncommon to find a population with such isolated 

and pure distributions.  Frequently, a population distribution is associated with some 

amount of both skewness and kurtosis, either positive or negative. Therefore, this 

simulation study was further extended by examining the population distributions affected 

by both skewness and kurtosis. Different statistical methods are available to produce a 

population distribution with specific skewness and kurtosis (Burr 1973; Fleishman 1978; 

Johnson 1949, 1965; Johnson & Kitchen 1971; Pearson & Hartley 1972; Ramberg & Schmeiser 

1974; Ramberg et al. 1979; Schmeiser & Deutch 1977). In this study, the power 

transformation method was used to generate a population with specific skewness and 

kurtosis coefficients (Hughes et al. 1998). Four such population distributions were 

generated with {skewness = +0.5, kurtosis = +0.4}, {skewness = +1.0, kurtosis = +1.8}, 

{skewness = +1.5, kurtosis = +4.0}, and {skewness = +2.0, kurtosis = +7.5}.  Simulation 

was again performed on the population distributions to investigate the composite effect of 

skewness and kurtosis on the pay factor.  Figures 3.61 (a), (b). (c). and (d) show the 

percent bias in the pay factor for a one-sided lower specification limit with a LOT 

containing 3, 4, 5, and 10 sub-lots, respectively. The simulation demonstrated that when a 

population distribution suffered both skewness and kurtosis, the one-sided lower 
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specification based population with the 95 PWL was overpaid on average, while the 50 

PWL population received a price reduction. When a quality characteristic is one-sided 

upper specification based, as illustrated in Figures 3.62 (a), (b), (c), and (d) for sub-lot / 

LOT = 3, 4, 5, and 10 respectively, analyses showed a price reduction for the 95 PWL 

population, and extra payment for the 50 PWL population. This means the composite 

effect of skewness and kurtosis on the pay factor follows the same trend as that of pure 

skewness.  However, pay bias values were much higher in the case of the composite 

effect.  Simulated pay bias values were -0.90% and +3.8% for the 95 PWL and 50 PWL 

population respectively for the following conditions: a LOT containing 4 sub-lots with 

skewness and kurtosis coefficient of {skewness = +2.0, kurtosis = +7.5} [Figure 3.62 

(b)].  
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Figure 3.61: Bias in the Pay Factor Considering Composite Effect of Positive Skewness and Kurtosis Induced Distribution for a One-sided 
Lower Specification Limit Based on 10,000 Simulated LOTs 
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Figure 3.62: Percent Bias in the Pay Factor Considering Composite Effect of Positive Skewness and Kurtosis Induced Distribution for a 
One-sided Upper Specification Limit Based on 10,000 Simulated LOTs
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Percent bias in the pay factor for two-sided specification limits at PD = 5% , 10%, 

20%, 30%, 40%, and PD = 50% for LOT containing 3, 4, 5 and 10 sub-lots when the 

different percent of defective materials are located in the shorter tail of the composite 

skewness and kurtosis induced distribution are illustrated in Figures 3.63, 3.64, and 3.65.  

At the PD=5%, the bias in expected pay factors was underestimated with an increase in 

the percent of defective materials falling into the shorter tail [Figure 3.63 (a)].  At PD 

=10% and PD = 20% the trend changed as in most cases pay factors were overestimated. 

As PD values were increased to 30%, 40%, and 50% bias values were reversed [Figure 

3.64 (b), 3.65(a) & (b)]. That is when more defective materials fall at the longer tail, the 

pay factor were overestimated.  At PD = 50%, for a LOT containing 4 sub-lots with 

skewness = 2.0 and kurtosis = 7.5, overestimation was as high as 6.44% when 75% of the 

defective materials data were in the longer tail [Figure 3.65 (b)].  

It is evident in Figures 3.49 to 3.65 that smaller sample sizes and greater skewness 

produced greater bias. This happens as a result of the sample sizes being small produce 

higher variability (standard deviation), which causes significant deviation of the sample 

mean from its true population mean. But as the sample size increases, the variability 

decreases resulting in sample means closer to the true population mean of the skewed 

distribution and thereby produces less bias in the estimated pay factor. 
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Figure 3.63: Percent Bias in the Pay Factor Considering Composite Effect of Positive Skewness and Kurtosis Induced Distribution for 
Two-sided Specification Limits at - a) PD = 5% and b) PD = 10% Based on 10,000 Simulated LOTs  
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Figure 3.64: Percent Bias in the Pay Factor Considering Composite Effect of Positive Skewness and Kurtosis Induced Distribution for 
Two-sided Specification Limits at - a) PD = 20% and b) PD = 30% Based on 10,000 Simulated LOTs 
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Figure 3.65: Percent Bias in the Pay Factor Considering Composite Effect of Positive Skewness and Kurtosis Induced Distribution for 
Two-sided Specification Limits at - a) PD = 40% and b) PD = 50% Based on 10,000 Simulated LOTs 
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3.4.2 Pay Factor Bias for Multiple Non-Normal Quality Characteristics 

To determine the pay factor for a LOT, most highway agencies use multiple 

quality characteristics.  A previous study investigated the bias effect on pay factor of two 

nominal quality characteristics each normally distributed (Burati et al. 2004). In this 

study, similar types of simulations were performed using non-normal population 

distributions considering that quality characteristics involve have equal quality. The 

simulations were carried out to estimate bias in the pay factors using two and three 

quality characteristics.  Kentucky’s class - P concrete pavement’s pay factor, which is 

based on air content and compressive strength, was used to analyze two quality 

characteristics based pay factor.  The calculations follow: 

Composite Pay Factor = PFAC + PFCS 

    Where: 

    PFAC = Pay Factor for Air Content = [((25+(PWL@± 2%×0.25)) + (0.0125×PWL@±

1%))/100]  

    PFCS = Pay Factor for Compressive Strength = [((26.25 + (0.25×PWL))/100] 

For the three quality characteristics-based pay factor analysis, Illinois’s Hot Mix Asphalt 

(HMA) pay factor was used. The HMA pay factor estimates PWL of voids in mineral 

aggregate (VMA), air voids, and density and is calculated as follows: 

CPF = [0.3× (PFVMA) + 0.3× (PFair voids) + 0.4× (PFdensity)]/100 

     Where: 

      CPF = Composite Pay Factor 

PFVMA, PFair voids, and PFdensity = Pay Factor for the designated measured attribute =53+0.5

× (PWL) 

 

 The simulations carried out considering no correlation among the quality 

characteristics and no imposed minimum or maximum pay factor provisions; therefore, 

only cumulative effects of multiple quality characteristics each having equal positive 

skewness and kurtosis were investigated. Tables 3.3 and 3.4 summarize the bias estimates 

of the pay factors for two and three quality characteristics when the population 

distribution suffers both skewness and kurtosis based on Kentucky’s and Illinois’ pay 

factor calculation method.  It is important to mention here that for Kentucky, a PWL 
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specification was used; but for Illinois, a PD specification was used (with equally amount 

of defective materials in the two tails) because all three quality characteristics have two-

sided limits. As one can see in Table 3.3, the 90 to 100 PWL population (light gray area), 

on average, received less than full payment, and the 80 to 50 PWL population (dark gray 

area) received extra payment.  When three quality characteristics were analyzed using the 

Illinois method (Table 3.4), pay factor bias values for the PD = 5% population were fairly 

small and insignificant.  On the other hand, percent bias in pay factor for the PD = 50% 

populations was always overestimated (dark gray area) and was higher for higher 

skewness and kurtosis coefficients.  
 
 
Table 3.3: Comparison of the Payment for Normal and Skewness and Kurtosis Induced 
Distribution with Two Quality Characteristics (Kentucky Method) Based on 10,000 
Simulated LOTs 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   S: Skewness 
   K: Kurtosis 
 

 
Sub-lots/ 

Lot 
PWL Pay Factor 

Considering 
Normal 

Distribution 
(%) 

Distortion in Pay Factor Considering Composite Effect of 
Skewness and Kurtosis Induced Distribution (%) 

CPF (KYTC Method) = PFAC + PFCS 

S=0.0, 
K=0.0 

S=0.5, 
K=0.40 

S=1.0, 
K=1.8 

S=1.5, 
K=4.0 

S=2.0, 
K=7.5 

4 

100 102.5 -0.013 -0.072 -0.130 -0.271 -0.368 
95 100 -0.031 -0.403 -0.576 -0.783 -0.801 
90  97.5 +0.087 -0.280 -0.197 -0.029 +0.120 
80 92.5 -0.057 +0.231 +0.641 +1.106 +1.845 
70 87.5 -0.051 +0.729 +1.455 +2.188 +3.119 
60 82.5 +0.038 +1.216 +1.836 +2.910 +4.089 
50 77.5 -0.082 +1.323 +2.049 +2.932 +4.128 

5 

100 102.5 -0.013 -0.060 -0.129 -0.217 -0.333 
95 100 +0.006 -0.393 -0.568 -0.731 -0.665 
90  97.5 +0.065 -0.174 -0.118 -0.197 +0.096 
80 92.5 -0.008 +0.302 +0.551 +0.980 +1.616 
70 87.5 +0.152 +0.737 +1.317 +2.030 +2.742 
60 82.5 -0.032 +0.911 +1.644 +2.605 +3.424 
50 77.5 -0.076 +1.060 +1.677 +2.450 +3.410 

10 

100 102.5 -0.014 -0.040 -0.071 -0.129 -0.201 
95 100 +0.018 -0.218 -0.274 -0.391 -0.446 
90  97.5 +0.045 -0.077 -0.099 +0.008 +0.205 
80 92.5 -0.012 +0.140 +0.417 +0.795 +1.175 
70 87.5 +0.026 +0.361 +0.742 +1.259 +1.957 
60 82.5 +0.093 +0.525 +0.984 +1.476 +2.258 
50 77.5 +0.023 +0.493 +0.865 +1.465 +1.988 
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Table 3.4: Bias in the Pay Factor for Three Quality Characteristics Considering Composite 
Effect of Skewness and Kurtosis Distribution for Two-sided Specification Limits when 
Equal Amount of Defective Materials on the Tails ( Illinois Method) Based on 10,000 
Simulated LOTs 
 

Sub-lots / 
Lot 

Percent 
Defective  

 
(PD) 

Distortion in Payment Considering Composite Effect of Skewness 
and Kurtosis Induced Distribution (%) 

CPF (Illinois Method) = 0.3*PFVIR VOIDS+0.3*PFVMA+0.4*PFDENSITY 

S=0.0, 
K=0.0 

S=0.5, 
K=0.40 

S=1.0, 
K=1.8 

S=1.5, 
K=4.0 

S=2.0, 
K=7.5 

4 
5(AQL)  

+0.041 +0.069 +0.085 +0.095 +0.010 
5 +0.009 +0.017 +0.107 +0.049 -0.113 

10 +0.004 -0.053 -0.038 -0.073 -0.137 
4 

50(RQL) 
+0.096 +0.033 +0.560 +1.529 +2.548 

5 -0.069 +0.064 +0.776 +1.481 +2.455 
10 -0.075 +0.161 +0.582 +1.282 +2.034 

   S: Skewness 
   K: Kurtosis 
 
3.5 Conclusion 

Non-normality in QA data adversely affects the Type I error and power of the F-

test and significantly reduces its effectiveness. Table 3.5 summarized the percent change 

in the Type I error and the power of the F-test for different sample population distribution 

combinations for a LOT frequency of 5. As it is evident, the Type I error increased while 

power decreased with the increase in skewness and kurtosis of the non-normal data. 

When agency’s datasets were non-normal and the contractor’s datasets were normal, the 

robustness of the F-test further deteriorated with the increase in non-normal LOT 

frequency. However, Type I error improved for the reverse situation. Even though power 

of the F-test reduced in all cases, loss in power decreased as the LOT frequency and sub-

lots/LOT increased. 

The t-test, on the other hand, was found robust in identifying mean differences 

between the agency’s and contractor’s datasets even when distribution of the sample data 

departs from normality. Table 3.6 summarized the percent change in the Type I error and 

the power of the t-test for different sample population distribution combination for a LOT 

frequency of 5. As shown, the Type I error is well concentrated around 1% and power 

increased significantly with the increase in sub-lots/LOT. Simulation study showed that 

non-normality in fact positively contributed the power of the t-test. The only exception in 

the case when mean difference was on standard deviation between agency’s and 
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contractor’s datasets. In this particular case, it was found that the power of the t-test 

decreased with an increase in skewness and kurtosis of the non-normal data.   
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Table 3.5: Percent Change in the Type I error and the Power of the F-test for Different Sample Population Distribution 
Combination at LOT Frequency of 5 at Significance Level of 1% 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

F-test 
Sample  

Population 
Distribution 

Sample Size Type I Error (%) 
at Skewness and 

Kurtosis of Control 
Group 

Type I Error (%) 
at Skewness = 2.0 and 

Kurtosis = 7.5 

% Change Power (%) 
at Skewness 

and Kurtosis of Control 
Group 

Power (%) 
at Skewness = 2.0 and 

Kurtosis = 7.5 

% 
Change 

VT QCT 

V
T:

 N
on

-n
or

m
al

; 
Q

C
T:

 N
or

m
al

1 

5 5 0.95 2.55 +168.42 51.5 44.95 -14.57 

5 20 1.2 4.4 +266.67 92.6 81.44 -13.70 

5 25 1.05 4.75 +352.38 93.8 82.8 -13.29 

5 50 0.6 5.3 +783.33 94.85 86.85 -9.21 

V
T:

 N
or

m
al

; 
 Q

C
T:

 N
on

-n
or

m
al

2 

5 5 0.83 2.95 +255.42 52.28 42.0 -24.48 

5 20 0.94 2.55 +171.28 67.9 60.45 -12.32 

5 25 1.1 2.77 +151.82 68.15 62.58 -8.90 

5 50 0.95 2.28 +140.00 69.9 66.47 -5.16 

V
T:

 N
on

-n
or

m
al

;  
Q

C
T:

 N
on

-n
or

m
al

3 

5 5 1.3 1.9 +46.15 55.8 48.2 -15.77 

5 20 1.5 3.3 +120.00 92.5 87.7 -5.47 

5 25 1.8 4.7 +161.11 92.5 86.9 -6.44 

5 50 2.3 3.7 +60.87 96.0 88.5 -8.47 

 

1 C
ontrol G

roup: V
T – Skew

ness = 0.0 and K
urtosis = 0.0; Q

C
T – Skew

ness = 0.0 and K
urtosis = 0.0 

2 C
ontrol G

roup: V
T – Skew

ness = 0.0 and K
urtosis = 0.0; Q

C
T – Skew

ness = 0.0 and K
urtosis = 0.0 

3 C
ontrol G

roup: V
T – Skew

ness = 0.0 and K
urtosis = 0.0; Q

C
T – Skew

ness = +1.0 and K
urtosis = +1.8 
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Table 3.6: Percent Change in the Type I error and the Power of the F-test for Different Sample Population Distribution 
Combination at LOT Frequency of 5 at Significance Level of 1% 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                               t-test    

Sample  
Population 

Distribution 

Sample Size 

T
yp

e 
I E

rr
or

 (%
) 

at
 S

ke
w

ne
ss

 a
nd

 
K

ur
to

si
s o

f C
on

tr
ol

 
G

ro
up

 

T
yp

e 
I E

rr
or

 (%
) 

at
 S

ke
w

ne
ss

 =
 2

.0
 a

nd
 

K
ur

to
si

s =
 7

.5
 

% Change 

Po
w

er
 (%

) 
at

 S
ke

w
ne

ss
  

an
d 

K
ur

to
si

s  
of

 
C

on
tr

ol
 G

ro
up

 
Po

w
er

 (%
) 

at
 S

ke
w

ne
ss

 =
 2

.0
 a

nd
 

K
ur

to
si

s =
 7

.5
 

at
 M

ea
n 

D
iff

 =
 1

 S
td

. 
D

ev
.  

% Change 

Po
w

er
 (%

) 
at

 S
ke

w
ne

ss
 =

 0
.0

 
an

d 
K

ur
to

si
s =

 0
.0

 

Po
w

er
 (%

) 
at

 S
ke

w
ne

ss
 =

 2
.0

 a
nd

 
K

ur
to

si
s =

 7
.5

 
at

 M
ea

n 
D

iff
 =

 2
 S

td
. 

 

% Change 

VT QCT 

V
T:

 N
on

-n
or

m
al

; 
Q

C
T:

 N
or

m
al

1 

5 5 1.0 1.45 +31.03 11.5 7.45 -54.36 46.2 50.25 +8.06 

5 20 1.0 0.6 -66.67 23.1 20.7 -11.59 86.5 90.25 +4.16 

5 25 1.2 0.55 -118.18 32.05 27.1 -18.27 99.6 100 +0.40 

5 50 1.1 1.0 -10.00 59.1 57.1 -3.50 94.0 97.0 +3.09 

V
T:

 N
on

-n
or

m
al

; 
Q

C
T:

 N
or

m
al

2 

5 5 0.95 1.75 +45.71 10.0 7.3 -36.99 48.55 49.35 +1.62 

5 20 0.6 2.0 +70.00 23.4 24.6 +4.88 85.6 89.2 +4.04 

5 25 1.05 2.3 +54.35 25.45 26.4 +3.60 90.1 90.7 +0.66 

5 50 1.1 1.2 +8.33 29.55 33.6 +12.05 93.65 94.7 +1.11 

V
T:

 N
on

-n
or

m
al

; 
Q

C
T:

 N
on

-n
or

m
al

3 5 5 1.35 1.1 -22.73 13.85 10.95 -26.48 50.2 51.75 +3.00 

5 20 1.05 0.9 -16.67 27.8 24.65 -12.78 84.75 88.1 +3.80 

5 25 1.1 1.0 -10.00 28.15 26.2 -7.44 86.75 90.2 +3.82 

5 50 0.75 1.5 +50.00 32.7 28.15 -16.16 92.75 94.65 +2.01 

 

1 C
ontrol G

roup: V
T – Skew

ness = 0.0 and K
urtosis = 0.0; Q

C
T – Skew

ness = 0.0 and K
urtosis = 0.0 

2 C
ontrol G

roup: V
T – Skew

ness = 0.0 and K
urtosis = 0.0; Q

C
T – Skew

ness = 0.0 and K
urtosis = 0.0 

3 C
ontrol G

roup: V
T – Skew

ness = 0.0 and K
urtosis = 0.0; Q

C
T – Skew

ness = +1.0 and K
urtosis = +1.8 
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Non-normal distributions in the form of skewness and kurtosis also influence 

LOT pay factor calculations. Table 3.7 summarized percent pay bias for composite 

skewness and kurtosis for sub-lots/LOT = 4. As shown, in the case of a one-sided lower 

specification limit, the composite skewness and kurtosis tends to overestimate the 95 

PWL population pay and underestimated the 50 PWL pay. However, in the case of a one-

sided upper specification limit, the 95 PWL population was underpaid and the 50 PWL 

population was significantly overpaid.  For two-sided limits, the payment for 95 PWL 

population was underestimated and at 50 PWL, it was overestimated.  This was 

especially true when more defective materials were in the shorter tail of the skewed 

distribution.  In most cases, the pay bias values for the 95 PWL and 50 PWL payment 

were reversed for both one-sided and two-sided specification limits.   

When considering the magnitude of pay bias, a population distribution that had a 

composite skewness and kurtosis experienced the largest bias in pay. Simulated pay 

factor bias values varied from -3.58% to +3.72% for a one-sided limit, and -4.28% to 

+6.43% for two-sided limits for a LOT with  4 sub-lots and skewness = +2.0 and kurtosis 

= +7.5.  Simulated results showed that skewness and kurtosis influence pay factor 

calculations, which may result in significant underpayment or overpayment.  These bias 

values in pay can easily upset the relative profit margins of the contractor.   

When considering Kentucky’s concrete pavement combined pay factor (based on 

air content and compressive strength of concrete), analyses indicated consistent 

underestimation of the 95 PWL pay and overestimation of the 50 PWL pay. Pay bias 

values were higher for LOTs with fewer sub-lots and higher skewness and kurtosis.  In 

the case of Illinois’s composite pay factor for asphalt pavement (based on voids, VMA 

and density of HMA) pay bias for the 95 PWL pay were insignificant, but the 50 PWL 

pay was overestimated for higher skewness and kurtosis. 
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Table 3.7: Percent Bias in Pay Factor for Sub-lots/LOT = 4 Considering Composite Effect of Positive Skewness and Kurtosis 
Based on 10,000 Simulated LOTs 

Specification Limit PWL/PD Pay Factor Bias (%) 
at Skewness = 0.0 and Kurtosis = 0.0 

Pay Factor Bias (%) 
at Skewness = 2.0 and Kurtosis = 

7.5 

One-sided 

Upper 
95 -0.05 -0.73 

50 -0.14 +3.72 

Lower 95 -0.06 +1.72 

50 -0.01 -3.58 

Two-sided 

Pe
rc

en
t o

f D
ef

ec
tiv

e 
M

at
er

ia
l i

n 
th

e 
Sh

or
te

r T
ai

l 

100 

5 

+0.06 +1.57 

75 +0.03 +0.42 

50 -0.05 +0.07 

25 -0.05 -0.33 

0 -0.06 -0.67 

100 

50 

-0.06 -4.28 
75 +0.11 -2.13 
50 +0.00 +2.65 
25 +0.15 +6.43 
0 +0.06 +3.92 
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CHAPTER FOUR 
Proposed QA Data Analysis Model 

 
 
 
 
 
 

 
 
 
 

4.1 Introduction 

Enacted in 1995, “23 CFR 637B” permits the use of contractor test results for 

acceptance of LOT (FHWA 2007). If the contractor is assigned the acceptance function, 

the contractor's acceptance tests must be verified by the agency. The agency's 

verification sampling and testing function has the same underlying function as the 

agency's acceptance sampling and testing to verify the quality of the product. Most state 

highway agencies use the AASHTO recommended F-test and t-test as verification 

procedure. The literature review and simulation study in chapter three identified several 

shortcomings of the F-test and t-test along with the bias of PWL based pay calculation 

when the underlying distribution of the sample QA data is not normal. In this chapter, an 

extended model is proposed. The model includes alternative tests for the F-test and t-test 

when QA data are non-normal. Several efficient data transformation methods are also 

proposed that will eliminate or minimize bias estimates of PWL based pay factor 

calculation. 

4.2 Proposed QA Data Analysis Model 

The flowchart of the detailed QA data analysis model that will be able to handle 

any sample distribution is illustrated in Figure 4.1. As shown, when contractor’s quality 

control and agency’s quality assurance data, or acceptance quality characteristics data 

that are used for pay factor calculation follow normal distribution the conventional 

method of QA data analysis should be followed. But when any of above mentioned 
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datasets show non-normality with high skewness and kurtosis, alternative tests are 

proposed. Many robust statistical tests which are alternative to the F-test have been 

proposed by statisticians and scientists when sample population distribution is non-

normal (Levene 1960; Miller 1968; Gartside 1972; Layard 1973; Brown & Forsythe 

1974; O’Brien 1981; Geng el al 1979; Conovar 1980;Tiku et al 1984). Of them, three 

methods are widely accepted and recommended by many statisticians. These three tests 

are 1) Levene’s test, 2) Brown & Forsythe’s test, and 3) O’Brien’s test, and herein 

proposed for investigation for QA data analysis. The nonparametric Wilcoxon rank-sum 

test (also known as Mann-Whitney- Wilcoxon test) is proposed for investigation as an 

alternative for the t-test. Three data transformation methods are also proposed for 

investigation to minimize or eliminate PWL based pay bias due to non-normality. Each 

of these proposed tests/methods are explained in more detail in the following section. 

4.2.1 Alternative Tests for the F-test 

I.    Levene’s Test  

Levene's test, an inferential statistical test used to assess the equality of variances 

in different samples, is a widely used alternative to the F-test. The superiority of the 

Levene’s test is that it is less sensitive than the F-test to departures from normality and it 

does not require the normality assumption. Common statistical procedures assume that 

variances across samples are equal and Levene's test is used to examine this assumption. 

Levene’s test statistic is obtained from a one-way ANOVA between groups, where each 

observation has been replaced by its absolute deviation from its group mean or square 

root from the mean. 

The Levene’s test is based on the following hypothesis test. 

The null hypothesis, H0:    k21 ..... σσσ ===  

The alternative hypothesis, Ha:      ji σσ ≠   for at least one pair (i,j).   

Test Statistic:  Given a variable Y with sample of size N divided into k 

subgroups, where Ni is the sample size of the i-th subgroup, the Levene’s test 

statistic is defined as:  
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Figure 4.1: Flow Chart of Extended QA Data Analysis Method (Note: Boxes with 
red & italic show extension of current statistically based verification and acceptance 
procedure) 

QCT Sampling 
and Testing 

VT Sampling 
and Testing 

F-test and T-tests 
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Pass 

Fail 

Dispute  
Resolution, Use 

Raw VT Data/IA 

Calculate Pay 
Factor 

Calculate Skewness 
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Is Skewness ≥ ±0.5 ? 

Alternative Tests for F-test: 
1. Levene’s Test 
2. Brown-Forsythe Test 
3.    O’Brien Test 
 
Alternative Test for t-test  
1. Wilcoxon rank sum test 

Fail 

Dispute 
Resolution, 

Use Raw VT 
Data/IA 

 

1. Data Transformations: 
I. Square Root  
II. log  
III. Inverse 
IV. Inverse Square Root 

2. The Clements’ Method 
3. Modified Box-Cox 

Transformation Using Golden 
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Calculate LOT By LOT PWL   

Calculate 
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Is LOT Skewness ≥ ±0.5 ? 

Calculate LOT By LOT PWL   

Calculate LOT By LOT PWL   

Calculate Pay 
Factor 

Yes No 
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Where: 

|| iijij YYZ −=    (TYPE = ABS)…………………………………………..(3.2)       
22 )( iijij YYZ −= (TYPE = SQUARE)…………………………………….(3.3) 

                     with iY is the mean of i-th subgroup  
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N
1Z      is the mean of the Zij for group i.  

 
The Levene’s test rejects the hypothesis that the variances are equal if  

 ( )kN,1k,FW −−> α  
 
where ( )kN,1k,F −−α is the upper critical value of the F distribution with k - 1 and N - 
k degrees of freedom at a significance level ofα .  

 

Levene’s test is robust for symmetric and moderately skewed distributions. Here 

robustness means the ability of the test to not falsely detect unequal variances when the 

underlying data are not normally distributed and the variables are in fact equal.  

 

II.   Brown-Forsythe Test 

 When the underlying distributions are considerably skewed (Skewness>1.5), 

Levene’s test is not robust. This led Brown et al. (1974) to consider the median and ten 

percent trimmed mean, more robust estimation of central locations, as alternatives to the 

mean in the calculation of absolute deviations as proposed by Levene.  Here the ten 

percent trimmed mean is the mean of the observations after deleting the ten percent 
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largest and ten percent smallest values in that group. The median can be considered a 50 

percent trimmed mean. 

Test Statistic: Let 

|y~y|z jijij −= ………………………………………………………….(3.4) 

where jy~ is the median of group j. In order to correct for the artificial zeros that 

come about with odd numbers of observations in a group, any zij that equals zero 

is replaced by the next smallest zij in group j. The Brown-Forsythe test statistic is 

the model F statistic from a one way ANOVA on zij: 

( ) ( )

( ) ( )∑∑

∑

= =

=

−−

−−
=

p

1j

N

1i

2
*jij

p

1j

2
..*jj

ZZ1p

ZZnpN
F …………………………………………..(3.5) 

where p is the number of groups, nj is the number of observations in group j, and 

N is the total number of observations. 

Brown and Forsythe performed Monte Carlo studies that indicated that using the 

trimmed mean performed best when the underlying data followed a Cauchy distribution 

(a heavy-tailed distribution) and the median performed best when the underlying data 

followed a Chi-square distribution with four degrees of freedom (a heavily skewed 

distribution). Although the optimal choice depends on the underlying distribution, the 

definition based on the median is recommended as the choice that provides good 

robustness against many types of non-normal data while retaining good power. 

 
III. O’ Brien Test 

A more robust method was proposed by O’Brien (1981) to compare group 

variances, and it is directly analogous to the usual ANOVA tests on the group means. 

For a fixed effect with completely randomized design with k subgroups and ni 

observations in the i-th group, the basic steps of this method are as follows: 

1. Compute the sample means, iy , and the unbiased sample variances, 

 ( ) ( )1/2 −−= ∑ i
k

iiji nyys  

http://en.wikipedia.org/wiki/Median�
http://en.wikipedia.org/wiki/Monte_Carlo�
http://en.wikipedia.org/wiki/Trimmed_mean�
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2. For every raw observation, yij , compute 

( ) ( ) ( )
( )( )21

12 22

−−

−−−−+
=

ii

ijiiiji
ij nn

WnsyynnW
Z …………………………..(3.6) 

 
One can use the W= option in parentheses to tune O'Brien's zij dispersion variable to 

match the suspected kurtosis of the underlying distribution. The choice of the value of the 

W= option is rarely critical. By default, W=0.5, as suggested by O'Brien (1979, 1981).  

The O’Brien Procedure appears to be (a) robust to departures from normality, (b) 

easy to apply — most statistical software packages can perform the computations, (c) 

relatively powerful, and (d) generalizable to factorial designs with equal or unequal 

numbers of observations in the groups. 

 4.2.2 Proposed Alternative Method for the t-test: 

The two-sample t-test is one of the most commonly used hypothesis tests to 

compare whether they come from the same population (i.e. there is no difference between 

the two population means). The t-test is based on the t distribution and the general 

formula for t is: 

𝑡 =  
𝑆𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐 − 𝐻𝑦𝑝𝑜𝑡ℎ𝑒𝑟𝑠𝑖𝑧𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐
 

The t-test is very useful in practice because it is robust and quite insensitive to deviations 

from normality in the data. In fact, it is the most powerful test available when its test 

assumptions are met. But, it may not be the best test available when population 

distribution suffers severe non-normality. When population distribution is non-normal 

one alternative of the t-test is the “The Wilcoxon rank sum test” (also known as the 

Mann-Whitney U test or the Wilcoxon-Mann-Whitney test) which is a nonparametric test, 

and it is used to test whether two samples are drawn from the same population. Since it is 

a nonparametric test, normality assumption is not required. The test is performed by 

ranking the combined data set, dividing the ranks into two sets according to the group 

membership of the original observations, and calculating a two sample z statistic, using 

the pooled variance estimate. For large samples, the statistic is compared to percentiles of 

the standard normal distribution. For small samples, the statistic is compared to what 
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would result if the data were combined into a single data set and assigned at random to 

two groups having the same number of observations as the original samples.  

4.2.3 Proposed Data Transformation Methods for PWL Based Pay Factor 
Calculation 

Most state transportation agencies’ pay factor algorithms assume normally 

distributed LOT. However, many quality characteristics variables do not meet the 

assumptions of normal distribution. When LOT data are non-normal significant deviation 

is observed in LOT pay factors based on PWL quality measure Effects of non-normal 

distribution on LOT pay factor were found to be varied based on the specification limits, 

distribution of defective materials on the tails in case of two-sided limits and orientation 

of the non-normal distribution itself.  In such cases, transforming the data will make it fit 

the assumptions better. 

To transform data, one should perform a mathematical operation on each 

observation, then use these transformed numbers in the statistical test. Once the desired 

statistical analysis is done on the transformed data, one should back transform the 

statistical outputs (for example, means, confidence interval, standard errors, etc.) using 

the opposite of the mathematical functions used in the data transformation for the purpose 

of reporting the results. 

I. Simple Data transformation Methods 

The four most common data transformation methods that are used for improving 

normality are discussed: square root, logarithmic, inverse, and inverse square root 

transformations.  

1. Square Root Transformation 

This is the most familiar transformation method which involves taking the square root of 

every value in the data set and then performing the desired statistical analysis. If the 

distribution differs moderately from normal, a square root transformation is tried first. In 

the case of square root transformation, two important data characteristics should be 

observed and resolved first, prior to square root transformation. First, since the square 

root of a negative number is impossible, if there are negative values for a variable a 
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constant must be added to move the minimum value of the distribution above 0, 

preferably to 1.00. Second, numbers of 1.00 and above behave differently than numbers 

between 0.00 and 0.99. The square root of numbers above 1.00 always become smaller, 

1.00 and 0.00 remain constant, and numbers between 0.00 and 1.00 become larger (the 

square root of 4 is 2, but the square root of 0.40 is 0.63). Thus, if one applies a square 

root to a continuous variable that contains values between 0 and 1 as well as above 1, one 

is treating some numbers differently than others, which is probably not desirable in most 

cases. Quality characteristics commonly used for highway QA programs don’t suffer 

such situations and will not be a concern. 

2. Log Transformation(s) 
Logarithmic transformations are actually a class of transformations, rather than a single 

transformation. In brief, a logarithm is the power (exponent) a base number must be 

raised to in order to get the original number. If the data are substantially skewed, one 

might consider using the logarithmic transformation since it has the most impact on 

skewness. If the logarithm transformation is used, it may over compensate a right skewed 

data set and create a left skewed one. The important thing is to plot the data again after 

performing a transformation. As the logarithm of any negative number or number less 

than 1 is undefined, a constant must be added to move the minimum value of the 

distribution, preferably to 1.00, if a variable contains values less than 1.0.  

There are good reasons to consider a range of bases. Cleveland (1984) argues that base 

10, 2, and e should always be considered in a reasonable way. For example, in cases 

where there are extremes of range, base 10 is desirable. However, when there are ranges 

that are less extreme, using base 10 will result in a loss of resolution, and using a lower 

base (e or 2) will serve better. Figure 3.2 graphically presents the different effects of 

using different log bases. For the QA data transformation e base logarithm is used. 

http://en.wikipedia.org/wiki/Skewed�
http://en.wikipedia.org/wiki/Skewed�
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Figure 1Figure 4.2: The Effect of log base on the Efficacy of Transformations 
 
     3. Inverse Transformation 

To take the inverse of a number (x) is to compute 1/x. What this does is essentially make 

very small numbers very large, and very large numbers very small. This transformation 

has the effect of reversing the order of the scores. Thus, one must be careful to reflect, or 

reverse the distribution prior to applying an inverse transformation. To reflect, one 

multiplies a variable by -1, and then adds a constant to the distribution to bring the 

minimum value back above 1.0. Then, once the inverse transformation is complete, the 

ordering of the values will be identical to the original data. If the distribution differs 

severely from normality, the inverse transformation is most appropriate. 

1. Inverse Square Root Transformation 

Inverse square root transformation is the combination of inverse and square root 

transformation. All the precautions and data analysis criteria that are required for square 

root and inverse transformation are applicable for inverse square root transformation.  

 
In general, these four transformations have been presented in the relative order of power 

i.e. the square root transformation has the least power to improve the normality in a 

distribution, and the inverse as well as inverse square root transformation is the most 

powerful.  
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Positive vs. Negative Skewness 

There are, of course, two types of skew: positive and negative. All of the above-

mentioned transformations work by compressing the right side of the distribution more 

than the left side. Thus, they are effective on positively skewed distributions. Should a 

researcher have a negatively skewed distribution, the researcher must reflect the 

distribution, add a constant to bring it to 1.0, apply the transformation, and then reflect 

again to restore the original order of the variable. 

II. Modified Box-Cox Transformation Using Golden Section Search Method 

Normality assumptions are critical for many univariate intervals and hypothesis tests. The 

assumption of normality often leads to tests that are simple, mathematically tractable, and 

powerful compared to tests that do not make the normality assumption. Unfortunately, 

many real data sets are in fact not approximately normal. However, an appropriate 

transformation of a data set can often yield a data set that does follow approximately a 

normal distribution. This increases the applicability and usefulness of statistical 

techniques based on the normality assumption. Among the transformation methods, the 

one-parameter Box-Cox transformation is a popular transformation for eliminating 

skewness and kurtosis in continuous data where all values are positive (Box and Cox, 

1964). It is a family of power transformation, and the goal of the transformation is to 

maximize the probability that the transformed data come from a symmetric normal 

distribution. The original form of the Box-Cox transformation, takes the following form: 

𝑦(𝜆) = �
𝑦𝜆 − 1
𝜆

, 𝜆 ≠ 0

ln𝑦      , 𝜆 = 0
� 

 
where 𝜆 is an unknown power coefficient to be estimated from the data. In the same 
paper, they also proposed an extended form which could accommodate negative y’s: 

𝑦(𝜆) = �
(𝑦 + 𝑐)𝜆 − 1

𝜆
, 𝜆 ≠ 0

ln (𝑦 + 𝑐)      , 𝜆 = 0
� 

 
 
In practice, c, a constant, could be choose such that y + c > 0 for any y. So, one could 

only view λ  as the model parameter. 
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The power transformation family includes several familiar transformations. For example, 

when λ = 1, there is essentially no transformation, just a simple shift to the left by one 

unit). A square root transformation is produced when 𝜆 = 0.5, and 𝜆 = -1 is equivalent to 

a reciprocal transformation. 

An estimate is obtained by finding the value of 𝜆 that maximizes the log-likelihood 

function (as shown below), which is proportional to the probability of observing the raw 

data, when a normal independent model properly describes the transformed observations: 

 

𝐥𝐧�𝐿(𝜆|𝑦1, 𝑦2, … … ,𝑦𝑛)� = −
𝑛
2
𝐥𝐧(𝑠2) + (𝜆 − 1)�𝐥𝐧(𝑦𝑖)

𝑛

𝑖=1

 

where 

•  𝐥𝐧�𝐿(𝜆|𝑦1, 𝑦2, … … ,𝑦𝑛)� is the log-likelihood function 

• n is the number of observations 

• 𝑠2  is the estimated variance (using n as the divisor) of the transformed 

observations 𝑦𝑖(𝜆) 

𝑠2 = 1
𝑛
∑ �𝑦𝑖(𝜆) − 𝑦(𝜆)�������𝑛
𝑖=1

2 

• 𝑦(𝜆)������ being defined as the arithmetic average of the transformed observations 

• 𝑦𝑖 denotes the original observations 

• 𝜆 is the interim estimate of the unknown transformation parameter 

 

The proposed data transformation method implements the Box-Cox transformation 

using the golden section search algorithm. Originally introduced by Kiefer (1953), the 

Golden Section Search is a technique for finding the minimum or maximum of a 

unimodal function by successively narrowing the range of values inside which the 

minimum or maximum is known to exist. The technique derives its name from the fact 

that the algorithm maintains the function values for triples of points whose distances form 

a golden ratio. The golden section search simply starts with prespecified minimum and 

maximum values a and b, which bracket the maximum of log likelihood of λ (ln (λ). That 

is, the maximum lies in the interval (a, b). The golden ratio r = 0.5*(√5-1) ≈ 0.61803399 

is predefined. Then, the two new points c and d are calculated as c = a + r (b – a) and d = 
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b – r (b – a). If l(c) > l(d ) , then a ← d and d ← c. Otherwise, b ← c and c ← d (Figure 

4.3). The process is iterated until |a – b| is less than a predefined tolerance. Each iteration 

successively narrows the bracket surrounding the maximum. The second assignment in 

each pair reduces computation complexity by carrying forward a previously calculated 

intermediate point. The upshot is that each iteration only requires one evaluation of ln(λ ). 

Advantages of the golden section search technique are that it is a robust method and 

requires no information about the derivative of the function. Not only does it achieve 

high accuracy, it does so quickly. Moreover, no normality assumption is warranted. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Golden Section Search Method 

III. The Clements Method 

The simplest way for dealing with non-normal data is to change, or transform the data via 

some mathematical function so that the transformed data are normal, or at least closer to 

normality than the original data. For example, many authors, including Somerville and 

Montgomery (1996) recommended data transformation. However, many practitioners 

may feel uncomfortable working with transformed data and may have difficulty in 

translating the results of the calculations back to the original scale. In addition, a lot of 

“number crunching” may be involved and many transforms may have to be tried before a 

good one is found. An alternative approach to deal with non-normal data is the 

techniques of non-normal quantile or percentile estimation. The most well-known of the 

f(a) f(d) f(c) f(b) 

c 

b 

d 

a 
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quantile transformation techniques was developed by Clements (1989), who used Pearson 

family of curves (1895) to provide better estimates of the quantiles or percentage points. 

Even though the method was originally developed to the modification of the process 

capability indices for non-normality, it can be used for any other indices for instance 

PWL with some modifications. The method is simple and it starts with the calculation of  

the first four moment of the data, which are mean, standard deviation, skewness and 

kurtosis. Since Pearson family of distributions provide approximations to a wide variety 

of frequent distributions of empirical data using first four moments, it is easy to find 

approximate percentage points in terms of skewness and kurtosis. Kotz and Lovelace [7] 

constructed tables of standardized tails of Pearson curves as functions of kurtosis and 

skewness for skewness ranging from −2 to 2 and kurtosis ranging from −1.4 to 12.2. 

Based on skewness and kurtosis, standardized percentiles can be easily obtained and then 

actual percentiles can be estimated. 

Clements’ method has immediate appeal because they do not require mathematical 

transformation of the data, they are easy for non-statisticians to comprehend, and are easy 

to estimate manually with a hand-held calculator. A primary advantage is that no 

complicated distribution fitting is required. A stable process is, of course, assumed.   

4.3 Conclusion 

A detailed model for QA data analysis is proposed based on the sample 

population distributions. For the F-test, three alternative tests, which are 1) Levene’s test, 

2) Brown & Forsythe’s test, and 3) O’Brien’s test are proposed. The nonparametric 

Wilcoxon rank-sum test (also known as Mann-Whitney- Wilcoxon test) is proposed for 

investigation as an alternative for the t-test. Three data transformation methods were also 

proposed to minimize or remove PWL based pay factor bias when underlying LOT 

population distribution is non-normal. It is hypothesized that proposed alternative tests 

and methods will significantly enhanced current QA data analysis process and will be 

able to analysis data under any sample population distribution. 
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CHAPTER FIVE 
Robustness of The Proposed QA Model 

 

 

 

 

 

 

5.1 Introduction 

This chapter contains computer simulation study of the proposed alternative tests 

and methods identified in the previous chapter and development of a robust QA data 

analysis model especially when such data are significantly non-normal. Even though non-

normality in various quality characteristics (test properties) data in Hot Mix Asphalt 

Concrete (HMAC) and Portland Cement Concrete (PCC) projects are evident, such data 

are not abundant. Furthermore, wide variation in skewness and kurtosis in QA data won’t 

present a systematic approach in deciding which alternative tests or methods will work 

best in various situation.  Therefore, a systemic Monte Carlo Simulation studies were 

performed. The Monte Carlo Simulation helps to generate distributions with desired non-

normal properties and different sample sizes to observe the trend of a specific statistical 

test, and thereby help deciding appropriate tests or methods suitable for specific data 

characteristics. In this chapter, results of QA data analysis based on the Monte Carlo 

simulation on the proposed tests or methods are presented and appropriate 

recommendations are proposed. 

5.2 Monte Carlo Simulation Study 

In chapter four, three alternative tests are proposed for F-test when the sampling 

distribution is non-normal. These are 1) Levene’s test (Levene (Abs) and Levene 

(Square)), 2) Brown and Forsythe’s test (BF), and 3) O’Brien’s test (O’Brien). One 

alternative method is proposed for the t-test which is the Wilcoxon rank sum test.  Simple 

data transformations methods, the Clements method, and a modified Box-Cox 
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transformation method are proposed for PWL based pay factor calculations when QA 

datasets are non-normal. Efficacy of each proposed method was investigated by Monte 

Carlo Simulation using various LOT frequencies and sub-lots/LOT with varying 

skewness and kurtosis. Analysis results are summarized in the following sections. 

5.3 Monte Carlo Simulation for Alternative F-tests and t-test 

As indentified in chapter three, non-normality in QA data produce misleading 

results in terms of inflated Type I error and low power for the F-test and thereby reduce 

the effectiveness of the F-test. Non-normality also induced minor distortion in power of 

the t-test.  In quest to identify robust statistical tests when distribution of QA data are 

non-normal, three most widely used alternative tests of variances, which are Leven’s test, 

Brown and Forsythe’s test and O’Brien’s test, along with the non-parametric Wilcoxon 

test alternative to the t-test were investigated. A similar data analysis model as described 

in chapter three was developed and modified for the alternative F-tests and the Wilcoxon 

test. Steps of the simulation model are described below: 

Step1: Four LOT frequencies of 3, 4, 5, and 10 and four sub-lots/LOT sizes of 1, 

4, 5, and 10 were selected to be consistent with the wide range of agency 

practices.  Contactor’s quality control sampling and testing is designated by QCT 

and agency verification sampling and testing is designated by VT.  

Step 2: The power transformation method was used to generate LOT population 

with specific skewness and kurtosis (Hughes et al. 1998). Five population 

distributions were generated with {skewness = +0.25, kurtosis = +0.08}, 

{skewness = +0.5, kurtosis = +0.4}, {skewness = +1.0, kurtosis = +1.8}, 

{skewness = +1.5, kurtosis = +4.0}, and {skewness = +2.0, kurtosis = +7.5}.  A 

normal LOT population was also generated, which worked as the control group. 

In each analysis, 10,000 samples of the appropriate LOT frequencies and sub-

lots/LOT were generated with above mentioned skewness and kurtosis using the 

statistical software system SAS® (SAS 2008).  

Step 3: As mentioned earlier QCT and VT data may come from sample 

population distributions of 1) Normal—Normal, 2) Normal—Non-normal, 3) 

Non-normal—Normal, and 4) Non-normal—Non-normal respectively (Table 
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3.2). When both QCT and VT data are normal, the F-test is the most appropriate 

as recommended by the AASHTO. However, when sample population 

distributions follow any of the three other combinations, the F –test was found to 

provide misleading Type I error and erroneous power. Therefore, any proposed 

alternative test will be more appropriate under such situation. Type I error and 

power were calculated for all three possible combinations of distributions between 

QCT and VT for all three alternative tests along with the F-test at three 

significance levels of 1%.  

5.3.1 Sample Distribution Combination 1 – VT: Non-normal, QCT: Normal 

In the first combination, population distributions for QCT and VT samples were 

generated in such a way that distribution of VT was non-normal with different skewness 

and kurtosis, and QCT samples were normally distributed.   

I. Tests for Differences in Variances 

Figure 5.1 and Figure 5.2 show the comparison of the F-test with the three 

alternative tests in terms of Type I error for four LOT frequencies of 3, 4, 5, and 10 with 

four sub-lots/LOT sizes of 1, 4, 5 and 10 at the significance level of 1%. In the figures, 

the numbers above the bars represent number of sub-lots/LOT, and thereby portrayed 

combined effects of sub-lots/LOT with the increase in skewness and kurtosis in LOT 

population. As shown, as the skewness and kurtosis of VT samples were increased, the F-

test resulted in a significantly higher Type I error, which was further exacerbated with the 

increase in LOT frequencies. Comparative study of alternative tests revealed that when 

LOT frequency was 3 all alternative tests failed to report Type I error at sub-lot/LOT = 1. 

A significantly high Type I error was also observed when sub-lots/LOT was 10. Like the 

F-test, in all alternative tests the Type I increased with the increase in sub-lots/LOT. 

However, it declined with the increase in LOT frequencies. Among the alternative tests, 

the Brown-Forsythe (BF) test produced significantly low Type I error in most LOT 

frequencies and sub-lots/LOT sizes followed by the Levene’s [Lev(SQ)] and O’Brien 

tests (OB). 
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A comprehensive Monte Carlo simulation study was conducted to compare the 

power of the F-test with the proposed alternative tests. Figures 5.3 and 5.4 illustrate the 

comparison of the F-test with the three alternative tests in terms of power for a LOT 

frequency of 5 with sub-lots/LOT of 1, 4, 5, and 10 at the significance level of 1%. 

Appendix B Figures B.1 to B.8 include a compilation of power comparison between the 

F-test and the proposed alternative tests for all LOT frequencies of 3, 4, 5, and 10 with 

sub-lots/LOT of 1, 4, 5, and 10 at the significance level of 1%.  It was found that among 

the alternative tests, the Levene’s [Lev (ABS) and Lev(SQ)] and O’Brien (OB) tests 

produced comparatively better power than the F-test while the BF produced the least 

power. As expected, power increased as LOT frequencies and sub-lots/LOT increased; 

however in all cases, power gradually declined with the increase in non-normality in VT 

sample distribution.  

Recommendation 

Simultaneous investigation of the Type I error efficiency and power of all the 

alternative tests of variances suggest that such tests are not appropriate for small LOT 

frequency (such as 3) and a higher LOT frequency usually provides the most efficient 

balance between the Type I error and the power. Table 5.1 summarized the Type I error 

and power of all the alternative tests along with the F-test for the LOT frequency of 5 and 

illustrated to support the recommendations for this sample population distribution 

combination. As shown in Table 5.1, when number of sub-lots/LOT = 10, they should be 

avoided as they produced significantly high Type I error. Since the number of sub-

lots/LOT in the range of 4 or 5 facilitate the most efficient balance of Type I error and 

power in the presence of non-normality, these two sub-lots/LOT sizes are recommended. 

A closer look at these two sub-lots/LOT in all LOT frequencies revealed that Levene’s 

test [Lev (SQ)] produced optimum Type I error and the best power compared to the other 

alternative tests of variances and the F-test. Therefore, the Levene’s test is recommended 

as an alternative to the F-test when distribution of VT is non-normal and QCT data are 

normally distributed.  
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Table 5.1: The Comparison of the Type I Error and Power of the F-test with the Alternative Tests for the LOT Frequency of 5 
(VT: Non-normal, QCT: Normal) 
 

 

 

 

 

Sample  
Population 

Distribution 

Sub-
lots/LOT 

Type I Error (%) 
at Skewness = 0.0 
and Kurtosis = 0.0 

Type I Error (%) 
at Skewness = 2.0 
and Kurtosis = 7.5 

Power (%) 
at Skewness = 0.0 
and Kurtosis = 0.0 

at Std. Dev. Ratio = 5 

Power (%) 
at Skewness = 2.0 and 

Kurtosis = 7.5 
at Std. Dev. Ratio = 5 

F-test 

1 0.94 1.50 53.06 45.20 
4 0.98 4.40 92.67 81.40 
5 0.60 4.61 93.70 82.80 

10 1.20 5.21 95.90 86.51 

Brown-
Forsythe’s 

Test 

1 0.01 0.05 0.40 0.25 
4 0.28 0.45 69.52 48.75 
5 0.25 0.59 79.05 58.94 

10 0.25 0.99 89.65 22.42 

Levene’s 
Test (Abs) 

1 1.53 2.80 22.96 20.35 
4 1.08 2.75 88.40 78.40 
5 1.00 2.96 91.45 80.59 

10 0.85 3.33 94.50 72.59 

Levene’s 
Test (SQ) 

1 0.50 0.70 7.41 6.10 
4 0.93 1.15 90.76 78.80 
5 1.30 2.09 94.25 84.98 

10 1.25 3.75 96.55 88.30 

O’Brien Test 

1 0.10 0.40 1.79 2.10 
4 1.04 1.20 76.96 58.95 
5 1.70 1.52 91.35 79.76 

10 1.55 4.90 97.40 82.67 
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Figure 5.1: The Comparison of the F-test with Alternative tests in Terms of Type I Error at a Significance Level of 1% for a) Number of 
LOT = 3 and b) Number of LOT = 4 
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Figure 5.2: Comparison of the F-test with Alternative tests in Terms of Type I Error at Significance level of 1% for a) Number of LOT = 5 
and b) Number of LOT = 10 
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Figure 5.3: Comparison of the F-test with Alternative tests in Terms of Power for a LOT Frequency of 5 when a) Standard Deviation 
Ratio = 2 and b) Standard Deviation Ratio = 3 between VT and QCT at the Significance Level of 1% 
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Figure 5.4: Comparison of the F-test with Alternative tests in Terms of Power for a LOT Frequency of 5 when a) Standard Deviation 
Ratio = 4 and b) Standard Deviation Ratio = 5 between VT and QCT at the Significance Level of 1%
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II. Tests for Differences in Means 
In order to compare the performance of the t-test and the Wilcoxon in terms of the 

Type I error and the power, the Monte Carlo Simulation study was conducted. Figures 

5.5, 5.6, 5.7, and 5.8 show the Type I error of the t-test and the Wilcoxon test for LOT 

frequencies of 3, 4, 5 and 10 with the sub-lots/LOT sizes 1, 4, 5, and 10 at significance 

level of 1% and 5%. As mentioned earlier, in the figures, the numbers above the bars 

represent number of sub-lots/LOT, and thereby portrayed combined effects of sub-

lots/LOT with the increase in skewness and kurtosis in LOT population. It was found that 

the Wilcoxon test performed slightly better than the t-test at the significance level of 1% 

whereas the t-test showed better performance at the significance level of 5%.  Unlike the 

F-test , both the t-test and the Wilcoxon test performed well by producing conservative 

Type I error even when VT sample were generated from a non-normal distribution with 

skewness = 2.0 and kurtosis = 7.5. 

As shown earlier the t-test is a robust statistical test to identify mean difference in 

two datasets. It was also found that when mean difference was three standard deviation or 

more, the t-test produced power close to 100% no matter if samples were  normally 

distributed or not. Therefore, the power of the t-test was compared to the distribution free 

Wilcoxon test for mean difference of one standard deviation and two standard deviations 

only. Figure 5.9 shows the power of the t-test and the Wilcoxon test for LOT frequency 

of 5 with the four sub-lots/LOT sizes of 1, 4, 5, and 10 at significance level of 1%. 

Appendix C Figures C.1 to C.4 include a compilation of power comparison between the 

t-test and the Wilcoxon test for all LOT frequencies of 3, 4, 5, and 10 with sub-lots/LOT 

of 1, 4, 5, and 10 at the significance level of 1%. As illustrated in Figure 5.9 when mean 

difference in one standard deviation, the t-test performed better than the Wilcoxon test by 

producing higher power in almost all LOT frequencies and sub-lots/LOT sizes. However, 

when mean difference was two standard deviations, the power of the t-test and the 

Wilcoxon test were found to be almost identical.  

Recommendation 

Table 5.2, which shows side by side comparison of the Type I error and the power 

of the t-test and Wilcoxon test for a LOT frequency of 5, illustrated here to support this 

recommendation. As shown in this Table, both the t-test and the Wilcoxon test produced 
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comparable and conservative Type I error, however, the power of the t-test were 

relatively better than the Wilcoxon test. Therefore, for this sample population distribution 

combination, it is recommended to use the t-test because of its conservative Type I error 

and robust power. 
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Table 5.2: The Comparison of the Type I Error and the Power of the t-test and the Wilcoxon test for LOT Frequency of 5 
(VT: Non-normal, QCT: Normal) 
 

Tests for 
Differences in 

Means 

Sub-
lots/LOT 

Type I Error (%) 
at Skewness = 0.0 and 

Kurtosis = 0.0 

Type I Error (%) 
at Skewness = 2.0 and 

Kurtosis = 7.5 

Power (%) 
at Skewness = 0.0 
and Kurtosis = 0.0 
at Mean Diff = 1 

Power (%) 
at Skewness = 2.0 and 

Kurtosis = 7.5 
at Mean Diff = 1 

t-test 

1 0.9 1.45 9.95 7.45 

4 0.8 0.6 21.2 20.7 

5 1.2 0.85 24.7 22.9 

10 1.1 0.9 32.05 26.95 

Wilcoxon test 

1 0.7 1 7.3 7.4 

4 0.8 0.6 19.4 15 

5 1.4 0.6 20.2 13.6 

10 0.6 0.2 27.4 19.7 
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Figure 5.5: The Comparison of the t-test with the Distribution Free Wilcoxon test in Terms of Type I Error for a LOT Frequency of 3 
with Four Different Sub-lots/LOT at a) Significance Level of 1% and b) Significance Level of 5% 
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Figure 5.6: Comparison of the t-test with the Distribution Free Wilcoxon test in Terms of Type I Error for a LOT Frequency of 4 with 
Four Different Sub-lots/LOT at a) Significance Level of 1% and b) Significance Level of 5% 
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Figure 5.7: Comparison of the t-test with the Distribution Free Wilcoxon test in Terms of Type I Error for a LOT Frequency of 5 with 
Four Different Sub-lots/LOT at a) Significance Level of 1% and b) Significance Level of 5% 
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Figure 5.8: Comparison of the t-test with the Distribution Free Wilcoxon test in Terms of Type I Error for a LOT Frequency of 10 with 
Four Different Sub-lots/LOT at a) Significance Level of 1% and b) Significance Level of 5% 
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Figure 5.9: The Comparison of the t-test with the Distribution Free Wilcoxon test in Terms of the Power for  a LOT Frequency of 5 with 
Four Different Sub-lots/LOT when a) Mean Difference = 1 Std. Dev. and b) Mean Difference = 2 Std. Dev. Between VT and QCT at 
Significance Level of 1% 
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5.3.2 Sample Population Distribution Combination 2 – VT: Normal, QCT: Non-
normal 

In the second combination, population distributions for QCT and VT were generated in 

such a way that distribution of QCT was non-normal with different skewness and kurtosis 

values, and VT data were normally distributed.   

I. Tests for Differences in Variances 

Figure 5.10 and Figure 5.11 show comparison of F-test with the three alternative 

tests in terms of Type I error for LOT frequency of 3, 4, 5, and 10 with four sub-lots/LOT 

sizes of 1, 4, 5, and 10 at the significance level of 1%. As shown, the Type I error of the 

F-test inflated significantly as the severity of non-normality of the QCT samples was 

increased. The F-test’s Type I error further deteriorated with the increase in LOT 

frequencies. Investigation of the alternative tests revealed that when LOT frequency was 

3, all alternative tests failed to report Type I error at sub-lot/LOT = 1. Additionally, 

significantly high Type I error was observed when the number of sub-lots/LOT was 10; 

however, as the LOT frequency was increased, Type I error was declined with the 

increase in sub-lots/LOT. In all alternative tests compared, the Brown-Forsythe’s test 

(BF) performed best by producing most conservative Type I error. However, BF test 

often proved unsuitable when LOT frequency was odd in number. In most cases, the 

Levene’s [Lev(Abs)] and Lev(SQ)] and O’Brien’s (OB) test produced comparable Type I 

errors, which are lower than the inflated Type I error produced by the F-test due to non-

normality in the QCT data. 

Figure 5.12 and 5.13 illustrate the comparison of F-test with the alternative tests 

in terms of power for LOT frequency of 10 with sub-lots/LOT sizes of 1, 4, 5, and 10 at 

the significance level of 1%. Appendix B Figures B.9 to B.16 include a compilation of 

power comparison between the F-test and the alternative tests for all LOT frequencies of 

3, 4, 5, and 10 with sub-lots/LOT of 1, 4, 5, and 10 at the significance level of 1%.  It was 

found that the power increased with the increase in sub-lots/LOT and LOT frequency in 

all alternative tests including the F-test. However, a slight decrease in power was also 

observed with the increase in skewness and kurtosis in QCT data. In most cases, the 
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powers of the Levene’s and O’Brien’s tests were almost the same while BF produced the 

lowest power.  

Recommendation 

Considering all the scenarios, it is recommended that sub-lots/LOT = 1 should be 

avoided as it produced a high Type I error and low power. This is evident in Table 5.3, 

which summarized the Type I error and power of all the alternative tests along with the F-

test for the LOT frequency of 10 and included to support the recommendations for this 

sample population distribution combination. Even though increases in sub-lots/LOT 

along with LOT frequency significantly improved Type I error and produced more 

power, sub-lots/LOT = 10 may not be economically feasible. Since sub-lots/LOT = 4 or 5 

provided the optimum balance between Type I error and power, these two sub-lots/LOT 

sizes are recommended. For this sample population distribution combination, the 

Levene’s test is recommended based on its overall balanced performance in producing 

better Type I error and power. However, if LOT frequency is 10 or more and even, the 

BF test is recommended as the alternative to the F-test.  
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Table 5.3: The Comparison of the Type I Error and Power of the F-test with the Alternative Tests for the LOT Frequency of 
10 (VT: Normal, QCT: Non-normal) 

Sample  
Population 

Distribution 

Sub-
lots/LOT 

Type I Error (%) 
at Skewness = 0.0 
and Kurtosis = 0.0 

Type I Error (%) 
at Skewness = 2.0 
and Kurtosis = 7.5 

Power (%) 
at Skewness = 0.0 
and Kurtosis = 0.0 

at Std. Dev. Ratio = 5 

Power (%) 
at Skewness = 2.0 and 

Kurtosis = 7.5 
at Std. Dev. Ratio = 5 

F-test 

1 1.15 5.15 97.40 94.30 
4 0.85 2.90 99.55 99.55 
5 1.00 2.85 99.95 99.75 

10 1.00 1.75 99.85 99.95 

Brown-
Forsythe’s 

Test 

1 0.54 1.32 54.42 58.34 
4 0.52 1.60 99.04 99.04 
5 0.76 1.30 99.48 99.14 

10 0.96 1.00 99.90 99.64 

Levene’s 
Test (Abs) 

1 1.16 3.86 70.92 74.22 
4 0.86 2.38 99.50 99.40 
5 0.82 2.28 99.80 99.62 

10 0.94 1.60 99.76 99.82 

Levene’s 
Test (SQ) 

1 0.90 1.36 29.38 28.64 
4 0.84 2.28 99.42 98.54 
5 1.18 2.36 99.84 98.94 

10 1.14 1.06 99.98 99.38 

O’Brien Test 

1 0.30 0.76 21.10 22.06 
4 1.22 2.72 98.90 98.00 
5 1.64 2.84 99.84 99.06 

10 1.96 1.48 99.98 99.58 
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Figure 5.10: The Comparison of the F-test with Alternative tests in Terms of Type I Error at Significance level of 1% for a) Number of 
LOT = 3 and b) Number of LOT = 4 
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Figure 5.11: The Comparison of the F-test with Alternative tests in Terms of Type I Error at Significance level of 1% for a) Number of 
LOT = 5 and b) Number of LOT = 10 
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Figure 5.12:The  Comparison of the F-test with Alternative tests in Terms of Power for a LOT Frequency of 10 when a) Standard 
Deviation Ratio = 2 and b) Standard Deviation Ratio = 3 between VT and QCT at a Significance Level of 1% 
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Figure 5.13: The Comparison of the F-test with Alternative tests in Terms of Power for a LOT Frequency of 10 when a) Standard 
Deviation Ratio = 4 and b) Standard Deviation Ratio = 5 between VT and QCT at a Significance Level of 1% 
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II. Tests for Differences in Means 

Monte Carlo Simulation study was conducted to evaluate the performance of the 

t-test and the Wilcoxon in terms of the Type I error and the power when QCT samples 

were non-normal with different skewness and kurtosis while VT samples being normal. 

Figures 5.14, 5.15, 5.16, and 5.17 present the Type I error of the t-test and Wilcoxon test 

for LOT frequencies of 3, 4, 5 and 10 with sub-lots/LOT of 1, 4, 5, and10 at significance 

level of 1% and 5%. It was found that the Wilcoxon test performed slightly better than 

the t-test at significance level of 1% whereas the t-test performed better at significance 

level of 5%.  In this case, both the t-test and Wilcoxon test performed satisfactory by 

producing conservative Type I error even when QCT sample were generated from a 

severely non-normal distribution. 

When mean difference was three standard deviations or more, regardless of 

normal and non-normal distributions the t-test produced power close to 100%. Therefore, 

the power of the t-test was compared to the distribution free Wilcoxon test for mean 

difference of one standard deviation and two standard deviations only. Figure 5.18 shows 

comparison of the power of the t-test and the Wilcoxon test for LOT frequency of 10 with 

sub-lots/LOT of 1, 4, 5, and 10 at significance level of 1%. Appendix C Figures C.5 to 

C.8 include a compilation of power comparison between the t-test and the Wilcoxon test 

for all LOT frequencies of 3, 4, 5, and 10 with sub-lots/LOT of 1, 4, 5, and 10 at the 

significance level of 1%. The Monte Carlo Simulation study demonstrated that for both 

mean difference of one standard deviation and two standard deviations the t-test 

surpassed the Wilcoxon test by producing higher power in almost all LOT frequencies 

and sub-lots/LOT sizes. However, when LOT frequencies reached 10, the power of the t-

test and the Wilcoxon test was found to be almost identical and close to 100%.  

Recommendation 

Table 5.4 shows side by side comparison of the Type I error and the power of the 

t-test and Wilcoxon test for a LOT frequency of 10 and supports the recommendations 

illustrated here. As evident in this table, even though the type I errors for both the t-test 

and the Wilcoxon test are comparable, the power of the t-test is slightly better than the 

Wilcoxon test. For this sample population distribution combination, the t-test is 
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recommended because of its better performance in producing conservative type I error 

and high power irrespective of any sample distribution. 
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Table 5.4: The Comparison of the Type I Error and the Power of the t-test and the Wilcoxon test for LOT Frequency of 10 
(VT: Normal, QCT: Non-normal) 

 
 

 

 

 

 

 

 

 

 

Sample  
Population 

Distribution 

Sub-
lots/LOT 

Type I Error (%) 
at Skewness = 0.0 and 

Kurtosis = 0.0 

Type I Error (%) 
at Skewness = 2.0 and 

Kurtosis = 7.5 

Power (%) 
at Skewness = 0.0 
and Kurtosis = 0.0 
at Mean Diff = 1 

Power (%) 
at Skewness = 2.0 and 

Kurtosis = 7.5 
at Mean Diff = 1 

t-test 

1 1.10 1.15 29.10 29.00 

4 1.05 1.80 55.90 56.30 

5 0.80 1.40 59.85 59.15 

10 0.95 1.35 64.90 65.75 

Wilcoxon test 

1 0.80 1.00 28.40 25.60 

4 0.70 2.00 48.90 53.00 

5 1.20 1.40 55.80 52.80 

10 0.80 1.80 61.60 59.50 
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Figure 5.14: The Comparison of the t-test with the Distribution Free Wilcoxon test in Terms of Type I Error for LOT Frequency of 3 with 
Different Sub-lots/LOT at a) Significance Level of 1% and b) Significance Level of 5% 
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Figure 5.15: The Comparison of the t-test with the Distribution Free Wilcoxon test in Terms of Type I Error for a LOT Frequency of 4 
with Different Sub-lots/LOT at a) Significance Level of 1% and b) Significance Level of 5% 
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Figure 5.16: The Comparison of the t-test with the Distribution Free Wilcoxon test in Terms of Type I Error for a LOT Frequency of 5 
with Different Sub-lots/LOT at a) Significance Level of 1% and b) Significance Level of 5% 
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Figure 5.17: The Comparison of the t-test with the Distribution Free Wilcoxon test in Terms of Type I Error for a LOT Frequency of 10 
with Different Sub-lots/LOT at a) Significance Level of 1% and b) Significance Level of 5% 
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Figure 5.18: The Comparison of the t-test with the Distribution Free Wilcoxon test in Terms of the Power for a  LOT Frequency of 10 
with Four Different Sub-lots/LOT when a) Mean Difference = 1 Std. Dev. and b) Mean Difference = 2 Std. Dev. Between VT and QCT at 
Significance Level of 1% 
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5.3.3 Sample Distribution Combination 3 – VT: Non-normal, QCT: Non-normal 

In the third combination, samples for both QCT and VT were generated from non-normal 

population distributions. VT samples were generated from a non-normal distribution with 

different skewness and kurtosis values, while QCT samples were generated from a fixed 

non-normal distribution with skewness = 1.0 and kurtosis = 1.8. Robustness of the 

alternative F-test and t-test in terms of type I error and power based on the Monte Carlo 

simulation study is elaborated below.   

I. Tests for Differences in Variances 

Figures 5.19 and 5.20 show comparison of F-test with the three alternative tests in 

terms of Type I error when both VT and QCT samples are non-normally distributed for 

LOT frequency of 3, 4, 5, and 10 with four sub-lots/LOT sizes of 1, 4, 5, and 10 at the 

significance level of 1%. As shown, the Type I error of the F-test inflated significantly as 

the severity of non-normality of the VT samples was increased. F-test’s Type I error 

further deteriorated with the increase in LOT frequencies. Investigation of the alternative 

tests revealed that when LOT frequency is 3 all alternative tests failed to report Type I 

error at sub-lots/LOT = 1. Moreover, significantly high Type I error was observed when 

number of sub-lots/LOT was 10. In all alternative tests compared, the Brown-Forsythe’s 

test (BF) performed best by producing most conservative Type I error. However, BF test 

may not be suitable when LOT frequency is odd in number. In most cases, Levene’s and 

O’Brien’s tests produced comparable Type I errors which were lower than the inflated 

Type I error produced by the F-test due to non-normality in both VT and QCT samples. 

Figure 5.21 illustrates comparison of F-test with the alternative tests in terms of 

power when both VT and QCT samples are non-normal for LOT frequency of 10 with 

sub-lots/LOT sizes of 1, 4, 5, and 10 at the significance level of 1%. Appendix B Figures 

B.17 to B.20 include a compilation of power comparison between the F-test and the 

alternative tests for all LOT frequencies of 3, 4, 5, and 10 with sub-lots/LOT of 1, 4, 5, 

and 10 at the significance level of 1%.  It was found that power increased with the 

increase in number of sub-lots/LOT and LOT frequency in all alternative tests including 

the F-test. However, the power decreased slightly with the increase in skewness and 
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kurtosis in VT data. In most cases, the power of the Levene’s and O’Brien’s tests was 

almost same while BF produced the lowest power.  

Recommendation 

Table 5.5 summarized the Type I error and power of all the alternative tests along 

with the F-test for the LOT frequency of 10 and illustrated to support the 

recommendations for this sample population distribution combination. As shown in Table 

5.1, it is recommended that the number of sub-lots/LOT = 10 should be avoided as they 

produced significantly high Type I error. Since sub-lots/LOT = 4 or 5 provided the 

optimum balance between Type I error and power, these sub-lots/LOT sizes are 

recommended. As long as LOT frequencies are small the Levene’s test is the best test. 

When LOT frequency is 10 and above and even, the BF test will provide the best test of 

variance for even LOT frequencies.  
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Table 5.5: The Comparison of the Type I Error and Power of the F-test with the Alternative Tests for the LOT Frequency of 
10 (VT: Non-normal, QCT: Non-normal) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample  
Population 

Distribution 

Sub-
lots/LOT 

Type I Error (%) 
at Skewness = 1.0 
and Kurtosis = 1.8 

Type I Error (%) 
at Skewness = 2.0 
and Kurtosis = 7.5 

Power (%) 
at Skewness = 1.0 
and Kurtosis = 1.8 

at Std. Dev. Ratio = 5 

Power (%) 
at Skewness = 2.0 and 

Kurtosis = 7.5 
at Std. Dev. Ratio = 5 

F-test 

1 2.00 3.70 97.40 94.30 
4 1.60 5.60 99.55 99.55 
5 1.40 5.40 99.95 99.75 

10 1.40 6.40 99.85 99.95 

Brown-
Forsythe’s 

Test 

1 0.50 0.80 54.42 58.34 
4 0.50 0.55 99.04 99.04 
5 0.50 0.65 99.48 99.14 

10 0.30 0.80 99.90 99.64 

Levene’s 
Test (Abs) 

1 0.80 1.30 70.92 74.22 
4 0.60 1.75 99.50 99.40 
5 0.30 1.60 99.80 99.62 

10 0.40 1.80 99.76 99.82 

Levene’s 
Test (SQ) 

1 0.50 0.70 29.38 28.64 
4 0.45 0.85 99.42 98.54 
5 0.90 1.30 99.84 98.94 

10 0.35 1.85 99.98 99.38 

O’Brien Test 

1 0.25 0.70 21.10 22.06 
4 1.45 1.85 98.90 98.00 
5 1.75 1.65 99.84 99.06 

10 1.65 4.25 99.98 99.58 
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Figure 5.19: The Comparison of the F-test with Alternative tests in Terms of Type I Error at Significance level of 1% for a) Number of 
LOT = 3 and b) Number of LOT = 4 
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Figure 5.20: The Comparison of the F-test with Alternative tests in Terms of Type I Error at Significance level of 1% for a) Number of 
LOT = 5 and b) Number of LOT = 10 
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Figure 5.21: The Comparison of the F-test with Alternative tests in Terms of Power for a LOT Frequency of 10 when a) Standard 
Deviation Ratio = 2 and b) Standard Deviation Ratio = 3 between VT and QCT T Samples When Both are Non-normally Distributed 
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Figure 5.22: The Comparison of the F-test with Alternative tests in Terms of Power for a LOT Frequency of 10 when a) Standard 
Deviation Ratio = 4 and b) Standard Deviation Ratio = 5 between VT and QCT when Both VT and QCT Samples are Non-normally 
Distributed 
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II. Tests for Differences in Means 

Monte Carlo Simulation study was conducted to evaluate the performance of the 

t-test and the Wilcoxon in terms of the Type I error and the power when both VT and 

QCT samples were non-normal. Figures 5.23, 5.24, 5.25, and 5.26 present the Type I 

error of the t-test and Wilcoxon test for LOT frequencies of 3, 4, 5 and 10 with sub-

lots/LOT of 1, 4, 5, and10 at significance level of 1% and 5%. It was found that the 

Wilcoxon test performed slightly better than the t-test in both significance levels in most 

LOT and sub-lots/LOT sizes.  Both the t-test and Wilcoxon test performed great by 

producing conservative Type I error centered close to significance level even when VT 

sample were generated from a non-normal distribution with skewness = 2.0 and kurtosis 

= 7.5 and QCT samples were generated from a fixed non-normal distribution with 

skewness = 1.0 and kurtosis = 1.8. 

When mean difference was three standard deviation or more, t-test produced 

power close to 100% no matter how samples were distributed. Therefore, herein power of 

the t-test was compared against the distribution free Wilcoxon test for mean difference of 

one standard deviation and two standard deviations only. Figure 5.27 shows the power of 

the t-test and Wilcoxon test for LOT frequencies of 3, 4, 5 and 10 with sub-lots/LOT of 1, 

4, 5, and 10 at significance level of 1%. Appendix C Figures C.9 to C.12 include a 

compilation of power comparison between the t-test and the Wilcoxon test for all LOT 

frequencies of 3, 4, 5, and 10 with sub-lots/LOT of 1, 4, 5, and 10 at the significance 

level of 1%. The Monte Carlo Simulation study showed that for both mean difference of 

one standard deviation and two standard deviations the t-test outperformed the Wilcoxon 

test by producing higher power in almost all LOT frequencies and sub-lots/LOT sizes. 

However, when LOT frequencies reached 10, the power of the t-test and the Wilcoxon 

test was found almost identical and close to 100%.  

Recommendation 

Table 5.6, which shows comparison of the Type I error and the power of the t-test 

and Wilcoxon test for a LOT frequency of 10, illustrated here to support this 

recommendation. As shown in this Table, for this sample distribution combination, the 

Wilcoxon test is recommended because of its better performance compare to the t-test 

and its robustness of producing conservative type I error and high power. 



192 
 

Table 5.6: The Comparison of the Type I Error and the Power of the t-test and the Wilcoxon test for LOT Frequency of 10

Sample  
Population 

Distribution 

Sub-
lots/LOT 

Type I Error (%) 
at Skewness = 0.0 and 

Kurtosis = 0.0 

Type I Error (%) 
at Skewness = 2.0 and 

Kurtosis = 7.5 

Power (%) 
at Skewness = 0.0 
and Kurtosis = 0.0 
at Mean Diff = 1 

Power (%) 
at Skewness = 2.0 and 

Kurtosis = 7.5 
at Mean Diff = 1 

t-test 

1 1.20 0.80 34.00 31.50 

4 1.45 1.15 56.20 55.95 

5 1.40 0.70 57.30 57.35 

10 1.15 1.10 66.10 62.75 

Wilcoxon test 

1 1.15 1.40 30.65 34.65 

4 1.05 0.80 58.65 68.15 

5 1.10 0.60 62.20 71.70 

10 1.10 0.55 68.70 78.60 
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Figure 5.23: The Comparison of the t-test with the Distribution Free Wilcoxon test in Terms of Type I Error for  LOT Frequency of 3 
with Different Sub-lots/LOT When Distribution of Both QVT and VT Samples were Non-normal at a) Significance Level of 1% and b) 
Significance Level of 5% 
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Figure 5.24: Comparison of the t-test with the Distribution Free Wilcoxon test in Terms of Type I Error for  LOT Frequency of 4 with 
Different Sub-lots/LOT When Distribution of Both QVT and VT Samples were Non-normal at a) Significance Level of 1% and b) 
Significance Level of 5% 
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Figure 5.25: Comparison of the t-test with the Distribution Free Wilcoxon test in Terms of Type I Error for  LOT Frequency of 5 with 
Different Sub-lots/LOT When Distribution of Both QVT and VT Samples were Non-normal at a) Significance Level of 1% and b) 
Significance Level of 5% 
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Figure 5.26: Comparison of the t-test with the Distribution Free Wilcoxon test in Terms of Type I Error for  LOT Frequency of 10 with 
Different Sub-lots/LOT When Distribution of Both QVT and VT Samples were Non-normal at a) Significance Level of 1% and b) 
Significance Level of 5% 
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Figure 5.27: Comparison of the t-test with the Distribution Free Wilcoxon test in Terms of the Power for  LOT Frequency of 10 with Four 
Different Sub-lots/LOT when Distribution of Both VT and QCT Samples were Non-normal for a) Mean Difference = 1 Std. Dev. and b) 
Mean Difference = 2 Std. Dev. Between VT and QCT at Significance Level of 1% 
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5.4 Data Transformation Methods for PWL based Pay Bias 

FHWA’s recommended quality measure, PWL is widely used by different 

transportation agencies to calculate pay factor. PWL is based on normality assumption, 

and as shown earlier through acceptance quality characteristics data analysis that the 

assumption is not always true. Non-normality in terms of skewness and kurtosis 

frequently invalidate the assumption and results varying pay bias. Data transformation is 

widely used to normalize data. Chapter four identifies three common methods of 

analyzing data when such data are non-normal. The proposed methods are 1) simple 

transformation, 2) Clements method, and 3) modified Box-Cox transformation using 

golden section search method. This section investigates the efficiency of the above 

mentioned methods to minimize or remove PWL based pay bias due to non-normality. A 

Monte Carlo Simulation study, as explained in chapter three, was performed to generate 

expected pay factor values from a payment equation based on the estimated PWL values. 

When LOT population distribution is in fact normal, the PWL is an unbiased estimator of 

the actual PWL.  However, the same may not be true for a non-normal distribution and 

may induce significant bias in pay factor calculation.  To be consistent with the previous 

analysis, four sub-lot sizes of 3, 4, 5, and 10 per LOT were examined with one test per 

sub-lot. The same payment equation from Kentucky’s Jointed Plain Concrete thickness 

specification was used for the one-sided limit simulations, and air content for Class - P 

concrete specification was used for the two-sided limits simulations considering that no 

minimum or maximum pay factor provisions are imposed (i.e. one continuous function 

over the 0 to 100 PWL range) (Kentucky Transportation Cabinet 2009).  

These payment equations are: 

Pay Factor (Thickness) = 52.5 + (0.5 × PWL)…………………………………….(Eqn.1) 

Pay Factor (Air Content) = 2×  [(25 + (PWL@± 2%×0.25)) + (0.0125×PWL@± 1%)] 

                                                                                                               …………..(Eqn. 2) 

In each analysis, SAS statistical software (SAS® Inc. 2008) was used to generate 

10,000 LOTs of appropriate size with a specific combination of skewness and kurtosis. 

The Monte Carlo Simulation method was used in the computer program to simulate the 

AQC samples per lot as if their samples were taken from the field. This method draws 
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values from the probability distributions for each design AQC input variable, and uses 

these values to compute the expected pay factor. 

Both one-sided and two-sided specification limits were investigated. For the one-

sided limit, the PWL method was used to compute the pay factor; but for two-sided 

limits, the Percent Defective (PD) specification was utilized. The PD type of specification 

was chosen because it is the complement to PWL (PD =100-PWL), and it produces a 

more meaningful estimate of the percent of defective material in the tails of skewed, 

kurtosis induced, and composite skewed and kurtosis induced population distributions for 

two-sided limits. However, during the calculation of pay factors PD is converted to PWL 

internally because pay equations are PWL based. 

5.4.1 Efficiency of Simple Transformation Methods 

In simple transformation methods, four popular data transformation methods 

commonly used by researchers in science, technology and medicine to normalize data 

were investigated. They are 1) square root transformation, 2) log transformation, 3) 

inverse transformation, and 4) inverse square root transformation. In each case, a non-

normal data set was created with specific skewness and kurtosis and one of the above 

mentioned simple transformation method was used to normalize the data. Then PWL and 

pay factor was calculated for both the transformed and untransformed data set, and 

expected pay bias, if any, was calculated. Steps of the simulation study for calculation 

pay factor bias using simple transformation methods are outlined below.  

Step 1: SAS random number generator module was used to generate a sample of n (= 3, 

4, 5 or 10) random numbers from a population of mean = 10, standard deviation =1.0 and 

skewness = 0.0 and kurtosis = 0.0. 

Step 2: Power transformation method was used to transform the n random data to produce 

a specific skewness and kurtosis (Hughes et al 1998).  

Step 3: The proposed simple transformation methods were used to normalize the data. 

Mean and standard deviation of the normalized n random data are computed, and 

designated as MEANES and STDES.  
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Step 3: Lower and upper specification limits (LSL & USL) are calculated as Z-value of 

area under normal curve to produce a specific TRUE PWL value. The LSL and USL 

were also transformed same as the sample data 

Step 4: Quality indexes are calculated as QL =  𝑀𝐸𝐴𝑁𝐸𝑆−𝐿𝑆𝐿
𝑆𝑇𝐷𝐸𝑆

   and QU =  𝑈𝑆𝐿−𝑀𝐸𝐴𝑁𝐸𝑆
𝑆𝑇𝐷𝐸𝑆

 

Step 5: Using the combination of sample size n and quality index, PWL value was 

calculated with the help of PWL tables (AASHTO 1996). 

Step 6: Steps 1 to 5 were repeated 10,000 times and average of 10,000 PWL values was 

calculated and denoted as ESTIMATED PWL. 

Step 7: Both TRUE PWL and ESTIMATED PWL values were then entered into pay 

equations (1 or 2) and calculated pay factor values were denoted as true normal pay 

factor and estimated non-normal pay factor respectively. 

Step 8: Bias was computed by subtracting true normal pay factor from the estimated non-

normal pay factor.  

 In the case of a normal distribution, the upper and lower specification limits 

resulted in the same effect on the pay factor due to symmetry. However, when sample 

population distribution is non-normal with high skewness and kurtosis, the deviation of 

pay factor was different because of the asymmetry of the distribution tails.  Figure 5.28 

shows comparison of percent bias in pay factor for the four simple transformation 

methods for a one-sided lower specification limit with LOT sizes of 4 and 5 sub-lots per 

LOT. In each figure the number above the bar represents PWL values and simultaneously 

shows how bias in pay factors vary with the in increase in skewness and kurtosis in LOT 

population. Appendix D, Figures D.1 and D.2 includes a compilation of percent bias in 

pay factor for the four simple transformation methods for a one-sided lower specification 

limit with sub-lots/LOT = 3, 4, 5, and 10. As evident in Figure 5.28, the PWL based pay 

bias values in all the simple transformation methods followed the same trend as it was 

without any transformation of data. For PWL in the of range of 100 to 80, expected pay 

factor biases were overestimated and then  pay biases reversed in direction up to PWL of 

50. It was also evident that expected pay biases decreased with the increase in sub-

lots/LOT. Overall, simulation study revealed that none of the simple transformation 

methods performed adequately to remove or eliminate expected pay bias. Among the 

simple transformation methods, the square root transformation method performed slightly 
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better than other methods, however, the square root transformation method still involve 

high pay bias compare to pay bias without any data transformation. 

Comparison of percent bias values in the pay factors for a one-sided upper 

specification limit for the simple transformation methods are illustrated in Figures 5.29 

for sub-lot/LOT =  4 and 5. Figures D.3 and D.4 in Appendix D show pay bias 

comparison for the simple transformation methods for a one-sided lower specification 

limit for all the sub-lots/LOT combination considered in this study. As shown in Figure 

5.29, in all simple transformation methods, the 95 PWL population, on average, received 

a reduced rather than a full payment in the simulations, and the 50 PWL population was 

on average overpaid.  Even though the expected pay bias decreased with the increase in 

sub-lots/LOT, no simple transformation methods performed adequately to remove pay 

bias. The square root transformation method worked slightly better than the other simple 

transformation methods in reducing pay bias, however, bias remained still significantly 

high. 
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Figure 5.28: Efficiency of Simple Transformation Methods to Minimize or Remove Bias in Expected Pay Factor for One-sided Lower 
Specification Limit a) Sub-lots/LOT =4; b) Sub-lots/LOT = 5 
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Figure 5.29: Efficiency of Simple Transformation Methods to Minimize or Remove Bias in Expected Pay Factor for One-sided Upper 
Specification Limit a) Sub-lots/LOT =4; b) Sub-lots/LOT = 5  
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The outcome for two-sided limits was different from the outcome for a one-sided 

limit in that the pay bias values varied depending on whether the percent of defective 

materials was in the shorter or longer tail of the skewed distribution.  Figures 5.30, 5.31, 

5.32, 5.33, and 5.34 show percent bias in the expected pay factor at PD = 5%, 10%, 20%, 

30% and  50% for LOT size of 4 and 5 sub-lots when different percents of PD are located 

in the shorter tail of the non-normal distribution. In each figure, the number above each 

bar represents the skewness of the LOT population and shows combined effects of LOT 

non-normality and PD on the pay factor. In Appendix D, Figures D.5 to D.14 include pay 

bias comparison for the simple transformation methods for two-sided specification limit 

for sub-lots/LOT = 3, 4, 5, and 10. As evident in these Figures, the pay bias followed the 

same trend in all simple transformation method. At the PD = 5% ( = 95 PWL) and where 

more defective material data fell into the longer tail of the skewed distribution, it was 

found that pay factor values were underestimated; conversely, when more defective 

material data were in the shorter tail, the pay factor was overestimated. PD = 10% 

showed the same trend, however, the trend reversed in some point between PD = 10 % 

and PD = 20%. When the specification limits were set at the PD = 20% and where more 

defective material data were in the shorter tail, the non-normality resulted in an 

underestimation of the pay factor. The same trend continued for PD = 30% and PD = 

50% with higher pay bias as PD value increased. However, in each case, expected pay 

bias decreased with the increase in sub-lots/LOT. Like in one-sided specification limit, 

none of the simple transformation method performed well to remove or minimize the pay 

bias.  

Recommendation 

Based on the simulation study, it was found that all simple transformation 

methods studied here, failed to remove or minimize expected PWL based pay bias 

adequately. Table 5.7 summarized comparison of pay bias with square root 

transformation for sub-lots/LOT =4. Root square transformation was selected for 

comparison as it performed best among the simple transformation methods. As shown, 

square root transformation did not have any significant effect in reducing pay bias. 

Therefore, simple transformation methods are not recommended to normalize acceptance 

quality characteristics data for pay factor calculation. 
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Table 5.7: The Comparison of Pay Bias Without Any Transformation with Square Root Transformation for sub-lots/LOT = 4. 

Specification Limit PWL/PD Pay Factor Bias (%) 
at Skewness = 0.0 and Kurtosis = 0.0 

Pay Factor Bias (%) 
at Skewness = 2.0 and Kurtosis = 7.5 

Without 
Transformation 

Square Root 
Transformation 

Without 
Transformation 

Square Root 
Transformation 

One-sided 

Upper 
95 -0.06 NA -0.73 -0.70 

50 +0.14 NA +3.72 +4.11 

Lower 95 -0.07 NA +1.71 +1.90 

50 -0.01 NA -3.58 -3.66 

Two-sided 

Pe
rc

en
t o

f D
ef

ec
tiv

e 
M

at
er

ia
l i

n 
th

e 
Sh

or
te

r 
Ta

il 

100 

5 

0.06 NA 1.57 1.63 
75 0.03 NA 0.42 0.52 
50 -0.05 NA 0.07 0.21 
25 -0.05 NA -0.33 -0.25 
0 -0.06 NA -0.67 -0.47 

100 

50 

-0.06 NA -4.28 -4.08 
75 0.11 NA -2.13 -2.05 
50 0.00 NA 2.65 2.79 
25 0.15 NA 6.43 6.54 
0 0.06 NA 3.92 4.07 

NA: Not Applicable 
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Figure 5.30: Efficiency of Simple Transformation Methods to Minimize or Remove Bias in Expected Pay Factor for Two-sided 
Specification Limits at PD = 5% - a) Sub-lots/LOT =4; b) Sub-lots/LOT = 5  
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Figure 5.31: Efficiency of Simple Transformation Methods to Minimize or Remove Bias in Expected Pay Factor for Two-sided 
Specification Limits at PD = 10% - a) Sub-lots/LOT =4; b) Sub-lots/LOT = 5 
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Figure 5.32: Efficiency of Simple Transformation Methods to Minimize or Remove Bias in Expected Pay Factor for Two-sided 
Specification Limits at PD = 20% - a) Sub-lots/LOT =4; b) Sub-lots/LOT = 5 
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Figure 5.33: Efficiency of Simple Transformation Methods to Minimize or Remove Bias in Expected Pay Factor for Two-sided 
Specification Limits at PD = 30% - a) Sub-lots/LOT =4; b) Sub-lots/LOT = 5 
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Figure 5.34: Efficiency of Simple Transformation Methods to Minimize or Remove Bias in Expected Pay Factor for Two-sided 
Specification Limits at PD = 50% - a) Sub-lots/LOT =4; b) Sub-lots/LOT = 5 

0.50 0.50

0.50

0.50
0.50

1.0
1.0

1.0

1.0
1.0

1.50

1.50

1.50

1.50

1.50

2.0

2.0

2.0

2.0

2.0

0.50 0.50

0.50

0.50
0.50

1.0

1.0

1.0

1.0

1.0

1.50

1.50

1.50

1.50

1.50

2.0

2.0

2.0

2.0

2.0

0.50 0.50

0.50

0.50 0.50

1.0
1.0

1.0

1.0

1.0

1.50

1.50

1.50

1.50

1.50

2.0

2.0

2.0

2.0

2.0

0.50 0.50

0.50

0.50 0.50

1.0
1.0

1.0

1.0

1.0

1.50

1.50

1.50

1.50

1.50

2.0

2.0

2.0

2.0

2.0

0.50 0.50

0.50

0.50
0.50

1.0

1.0

1.0

1.0

1.0

1.50

1.50

1.50

1.50

1.50

2.0

2.0

2.0

2.0

2.0

-6

-4

-2

0

2

4

6

8

10

100 75 50 25 0

B
ia

s i
n 

E
xp

ec
te

d 
PF

 (%
)

Percent of Defective material in the Shorter Tail

Without Transformation
Inverse
Inverse Square Root
LOG
Square Root

0.50 0.50
0.50

0.50 0.50

1.0
1.0

1.0

1.0
1.0

1.50

1.50

1.50

1.50

1.50

2.0

2.0

2.0

2.0

2.0

0.50
0.50

0.50

0.50
0.50

1.0

1.0

1.0

1.0

1.0

1.50

1.50

1.50

1.50

1.50

2.0

2.0

2.0

2.0

2.0

0.50 0.50

0.50

0.50
0.50

1.0

1.0

1.0

1.0

1.0

1.50

1.50

1.50

1.50

1.50

2.0

2.0

2.0

2.0

2.0

0.50 0.50

0.50

0.50 0.50

1.0

1.0

1.0

1.0

1.0

1.50

1.50

1.50

1.50

1.50

2.0

2.0

2.0

2.0

2.0

0.50 0.50

0.50

0.50
0.50

1.0

1.0

1.0

1.0

1.0

1.50

1.50

1.50

1.50

1.50

2.0

2.0

2.0

2.0

2.0

-6

-4

-2

0

2

4

6

8

100 75 50 25 0

B
ia

s i
n 

E
xp

ec
te

d 
PF

 (%
)

Percent of Defective material in the Shorter Tail

Without Transformation
Inverse
Inverse Square Root
LOG
Square Root

Skewness 

Skewness 

210 

 



211 
 

5.4.2 Efficiency of the Clements Method 

The Clements method, which is a non-transformation based method, is a method 

of calculating non-normal percentiles for a distribution of any shape using the Pearson 

family of curves. A Monte carol simulation was conducted to investigate the performance 

of the Clements method to remove or minimize PWL based pay factor bias when LOT 

data were non-normal. The percentage points (95th, 90th, 75th …etc.) generated by the 

Clements method are treated as specification limits. Both mean and median were 

considered as the central tendency of the distributions and were used to calculate pay 

factors. Steps of the simulation study are elaborated below: 

Step 1: SAS random number generator module was used to generate a sample of n (= 3, 

4, 5 or 10) random numbers from a population of mean = 10, standard deviation =1.0 and 

skewness = 0.0 and kurtosis = 0.0. 

Step 2: Power transformation method was used to transform the n random data to produce 

a specific skewness and kurtosis (Hughes et al 1998).  

Step 3: The power transformed data was standardized and then mean, median, and 

standard deviation of the standardized n random data are computed, and designated as 

MEANES, MEDIANES and STDES.  

Step 3: The Clements method was used to calculate percentage points based on the 

specific skewness and kurtosis and used as the Lower and upper specification limits (LSL 

& USL) to produce a specific TRUE PWL value  

Step 4: Considering mean as the central tendency, Quality indexes are calculated as QLM 

=  𝑀𝐸𝐴𝑁𝐸𝑆−𝐿𝑆𝐿
𝑆𝑇𝐷𝐸𝑆

    

and QUM =  𝑈𝑆𝐿−𝑀𝐸𝐴𝑁𝐸𝑆
𝑆𝑇𝐷𝐸𝑆

 

Step 5: Considering median as the central tendency, Quality indexes are calculated as 

QLMED =  𝑀𝐸𝐴𝑁𝐸𝑆−𝐿𝑆𝐿
𝑆𝑇𝐷𝐸𝑆

    

and QUMED =  𝑈𝑆𝐿−𝑀𝐸𝐴𝑁𝐸𝑆
𝑆𝑇𝐷𝐸𝑆

 

Step 6: Using the combination of sample size n and quality index, PWL value was 

calculated with the help of PWL tables (AASHTO 1996). 
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Step 6: Steps 1 to 5 were repeated 10,000 times and average of 10,000 PWL values was 

calculated and denoted as ESTIMATED PWL. 

Step 7: Both TRUE PWL and ESTIMATED PWL values were then entered into pay 

equations (1 or 2) and calculated pay factor values were denoted as true normal pay 

factor and estimated non-normal pay factor respectively. 

Step 8: Bias was computed by subtracting true normal pay factor from the estimated non-

normal pay factor.  

Figure 5.67 presents comparison of percent bias in the expected pay factor for a 

one-sided lower specification limit with LOT sizes of 4, 5 and 10 sub-lots per LOT 

respectively, between the Clements method and the “Sample Data as it is”. It was found 

that when median was used as the central tendency of the distribution, PWL based pay 

bias was always underestimated and underestimation increased with the increase in 

skewness and kurtosis. On the other hand, when mean was used as the central tendency, 

90 PWL based pay factor always underestimated and 50 PWL based pay factor was 

always overestimated. In both cases, percent bias in the expected pay factor was 

significantly high compared to when sample LOT data were used as they were to 

calculate the pay factor, which implies inadequacy of the Clements method to minimize 

or remove PWL based pay factor bias. 

Comparison of percent bias in the expected pay factor between the Clements 

method and “Sample data as it is” for a one-sided upper specification limit are illustrated 

in Figure 5.68 for sub-lot/LOT = 4, 5, & 10 respectively. The simulation results showed 

that for both Clements median and mean, the 95 PWL population, on average, was 

overpaid, and the 50 PWL population was on average underpaid, which was opposite 

when LOT data were used as they were.  Even though the median worked better than the 

mean with the Clements method, bias remained still significantly high. 
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Figure 5.35: Efficiency of the Clements Methods to Minimize or Remove Bias in Expected Pay Factor for One-sided Lower Specification 
Limit -  a) Sub-lots/LOT =4; b) Sub-lots/LOT = 5; c) Sub-lots/LOT = 10   
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Figure 5.36: Efficiency of the Clements Methods to Minimize or Remove Bias in Expected Pay Factor for One-sided Upper Specification 
Limit -  a) Sub-lots/LOT =4; b) Sub-lots/LOT = 5; c) Sub-lots/LOT = 10   
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Figures 5.69 presents percent bias in the expected pay factor for the Clements 

method at PD = 5% and 50% for LOT size of 4, 5 and 10 sub-lots. For the simulation 

study mean was used as the central measure of the distribution and it was assumed that 

equal amount of defective materials are located in the tails of the non-normal distribution.  

As evident in both Figures, in both cases, pay factors were underestimated in most of the 

situations. Even though bias decreased with the increase in sub-lots/LOT, bias still 

remained significantly high in most cases, which means that the Clements method failed 

to minimize or remove the PWL pay bias when LOT data were non-normal. 

Recommendation 

When LOT data consist of 4/5 sub-lots, the Clements method fails to adequately 

estimate the percentage points. Such small data set also results poor estimate of mean, 

median and standard deviation which further worsen by non-normality and results in poor 

estimates of PWL and pay factor and high bias. Therefore, the Clements method is not 

recommended when LOT data are non-normal. 
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Figure 5.37: Efficiency of the Clements Methods to Minimize or Remove Bias in Expected 
Pay Factor for (a) PD = 5% and (b) PD = 50%   
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5.4.3 Efficiency of Modified Box-Cox Transformation using Golden Section Search 
Method 

The Golden Section Search method is one of the most efficient search techniques that can 

be used to maximize the log likelihood function for the Box-Cox transformation. The golden 

section search requires no information about the derivative of the function. It works well 

when distribution is complicated and unimodal. A Monte Carlo simulation study was conducted 

to investigate the efficiency of the modified Box-Cox transformation using golden section search 

method to minimize or remove PWL based pay factor bias induced by non-normality. Steps of the 

simulations are as follows: 

Step 1: SAS random number generator module was used to generate a sample of n (= 3, 

4, 5 or 10) random numbers from a population of mean = 10, standard deviation =1.0 and 

skewness = 0.0 and kurtosis = 0.0. 

Step 2: Power transformation method was used to transform the n random data to produce 

a specific skewness and kurtosis (Hughes et al 1998).  

Step 3: The proposed golden section search method was used to find the power 

coefficients that normalize the data. Mean and standard deviation of the normalized n 

random data are computed, and designated as MEANES and STDES.  

Step 3: Lower and upper specification limits (LSL & USL) are calculated as Z-value of 

area under normal curve to produce a specific TRUE PWL value. The LSL and USL 

were also transformed using the power as was found in step 2 

Step 4: Quality indexes are calculated as QL =  𝑀𝐸𝐴𝑁𝐸𝑆−𝐿𝑆𝐿
𝑆𝑇𝐷𝐸𝑆

   and QU =  𝑈𝑆𝐿−𝑀𝐸𝐴𝑁𝐸𝑆
𝑆𝑇𝐷𝐸𝑆

 

Step 5: Using the combination of sample size n and quality index, PWL value was 

calculated with the help of PWL tables (AASHTO 1996). 

Step 6: Steps 1 to 5 were repeated 10,000 times and average of 10,000 PWL values was 

calculated and denoted as ESTIMATED PWL. 

Step 7: Both TRUE PWL and ESTIMATED PWL values were then entered into pay 

equations (1 or 2) and calculated pay factor values were denoted as true normal pay 

factor and estimated non-normal pay factor respectively. 

Step 8: Bias was computed by subtracting true normal pay factor from the estimated non-

normal pay factor.  
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 Since normal distribution is a symmetric distribution, the upper and lower 

specification limits resulted in the same effect on the pay factor. However, when sample 

population distribution is non-normal with high skewness and kurtosis, the deviation of 

pay factor was different because of the asymmetry of the distribution tails.  Figures 5.70, 

5.71, 5.72, and 5.73 show comparison of percent bias in pay factor between the modified 

Box-Cox transformation using golden section search method and LOT data without 

transformation for a one-sided lower and upper specification limit respectively with LOT 

sizes of 3, 4, 5 and 10 sub-lots per LOT, respectively.  It was found that in both cases, 

PWL based pay bias was significantly minimized in all PWL ranges when modified Box-

Cox transformation using golden section search method was used. Even though at sub-

lots/LOT = 3 showed some significant variation which is due to high variability 

associated with such small sample size, however, as the sub-lots/LOT increased 

variability minimized resulting in smooth curve.  
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Figure 5.38: Efficiency of the  Modified Box-Cox Transformation Using Golden Section Search Method to Minimize or Remove Bias in 
Expected Pay Factor Considering Composite Effect of Positive Skewness and Kurtosis Induced Distribution for a One-sided Lower 
Specification Limit – a) Sub-lots/LOT = 3; b) Sub-lots/LOT = 4 
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Figure 5.39: Efficiency of the  Modified Box-Cox Transformation Using Golden Section Search Method to Minimize or Remove Bias in 
Expected Pay Factor Considering Composite Effect of Positive Skewness and Kurtosis Induced Distribution for a One-sided Lower 
Specification Limit – a) Sub-lots/LOT = 5; b) Sub-lots/LOT = 10 
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Figure 5.40: Efficiency of the  Modified Box-Cox Transformation Using Golden Section Search Method to Minimize or Remove Bias in 
Expected Pay Factor Considering Composite Effect of Positive Skewness and Kurtosis Induced Distribution for a One-sided Upper 
Specification Limit – a) Sub-lots/LOT = 3; b) Sub-lots/LOT = 4 
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Figure 5.41: Efficiency of the  Modified Box-Cox Transformation Using Golden Section Search Method to Minimize or Remove Bias in 
Expected Pay Factor Considering Composite Effect of Positive Skewness and Kurtosis Induced Distribution for a One-sided Upper 
Specification Limit – a) Sub-lots/LOT = 5; b) Sub-lots/LOT = 10 
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Percent bias in the pay factor at the PD = 5% , 10%, 20%, 30%, 40%, and PD = 

50% for LOT containing 3, 4, 5 and 10 sub-lots when the different percent of defective 

materials are located in the shorter tail of the skewness and kurtosis induced distribution 

when modified Box-Cox transformation using golden section search method was used to 

normalize data are illustrated in Figures 5.74, 5.75, and 5.76.  In all cases, it was found 

that the method is very effective to normalize the data and thereby significantly minimize 

pay bias due to non-normality. The only exception was when the sample population was 

slightly non-normal with skewness = 0.5 and kurtosis = 0.4. In this particular situation the 

method was found less effective with some moderate deviation especially at sub-

lots/LOT = 3. Slight increase in pay bias was also observed with the increase in PD, 

however, pay bias induced by non-normality still remained significantly low, which proof 

superiority of the modified Box-Cox transformation using golden section search method 

among all methods investigated in this study. 

Recommendation 

Among the all LOT data transformation methods investigated in this study, the 

modified Box-Cox transformation using golden section search method showed the best 

efficiency in normalizing QA data. This is evident in Table 5.8, which summarized 

comparison of pay bias with the modified Box-Cox transformation using golden section 

method for sub-lots/LOT = 4. As shown, in all cases the modified Box-Cox 

transformation using golden section method performed best in normalizing the data and 

producing bias free estimate of the LOT PWL and pay factor in all PWL range. 

Therefore, this method is proposed to calculate PWL based pay factor when LOT data are 

non-normal.  
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Table 5.8: Comparison of Pay Bias Without Any Transformation with Modified Box-Cox Transformation using Golden 
Section Search Method for sub-lots/LOT = 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Specification Limit PWL/PD Pay Factor Bias (%) 
at Skewness = 0.0 and Kurtosis = 0.0 

Pay Factor Bias (%) 
at Skewness = 2.0 and Kurtosis = 7.5 

Without 
Transformation 

Modified Box-Cox 
Transformation 

using Golden 
Section Method 

Without 
Transformation 

Modified Box-Cox 
Transformation 

using Golden 
Section Method 

One-sided 

Upper 
95 -0.05 NA -0.73 +0.30 

50 -0.14 NA +3.72 -0.22 

Lower 95 -0.06 NA +1.72 +0.33 

50 -0.01 NA -3.58 -0.40 

Two-sided 
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n 
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e 
Sh
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r 
Ta

il 

100 

5 

+0.06 NA +1.57 +0.32 
75 +0.03 NA +0.42 +0.21 
50 -0.05 NA +0.07 +0.10 
25 -0.05 NA -0.33 +0.09 
0 -0.06 NA -0.67 +0.06 

100 

50 

-0.06 NA -4.28 -0.13 
75 +0.11 NA -2.13 +0.21 
50 +0.00 NA +2.65 +0.62 
25 +0.15 NA +6.43 +0.93 
0 +0.06 NA +3.92 +0.73 

NA: Not Applicable 
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Figure 5.42: Efficiency of the  Modified Box-Cox Transformation Using Golden Section Search Method to Minimize or Remove Bias in 
Expected Pay Factor Considering Composite Effect of Positive Skewness and Kurtosis Induced Distribution for Two-sided Specification 
Limits at  - a) PD = 5%; b) PD = 10% 
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Figure 5.43: Efficiency of the  Modified Box-Cox Transformation Using Golden Section Search Method to Minimize or Remove Bias in 
Expected Pay Factor Considering Composite Effect of Positive Skewness and Kurtosis Induced Distribution for Two-sided Specification 
Limits at  - a) PD = 20%; b) PD = 30% 
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Figure 5.44: Efficiency of the  Modified Box-Cox Transformation Using Golden Section Search Method to Minimize or Remove Bias in 
Expected Pay Factor Considering Composite Effect of Positive Skewness and Kurtosis Induced Distribution for Two-sided Specification 
Limits at  - a) PD = 40%; b) PD = 50% 
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5.5 Conclusion 

Non-normality in sample population distribution or in LOT result in adverse 

effects in terms of high Type I error, low power, and pay factor distortion. In this chapter, 

robustness of the three proposed alternative tests of variances, which are Levene’s test, 

Brown-Forsythe’s test, and O’Brien test was investigated. Robustness of the one 

nonparametric test of mean, the Wilcoxon rank sum test along with the efficiency of three 

data transformation method which are simple transformation, the Clements method, and 

modified Box-Cox transformation using golden section search method were investigated 

using a Monte Carlo simulation study. Among the alternative tests of variances, the 

Levene’s test was found the best by providing the best balance between Type I error and 

the power. However, when sample size is 10  or more and even the Brown-Forsythe’s test 

will provide most conservative Type I error and high power. On the other hand, the t-test 

was found more efficient than the Wilcoxon test in terms of well centered and 

conservative Type I error and high power irrespective of sampling distribution. However, 

when sample size is 10 or more, both the t-test and the Wilcoxon test produce almost 

identical results.    

Among the all LOT data transformation methods investigated in this study, the 

modified Box-Cox transformation using golden section search method showed the best 

efficiency in normalizing QA data and producing bias free estimate of the LOT PWL and 

pay factor in all PWL range. Therefore, this method is proposed to calculate PWL based 

pay factor when LOT data are non-normal.  
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CHAPTER SIX 
The QA Data Analysis Tool 

 
 
 
 
 
 
 

 

6.1 Introduction 

Chapter five describes the efficiency and robustness of the alternative tests for 

comparing variances and means of QA data when the sample population distributions are 

non-normal. Efficiency of the three data transformation methods in removing or 

minimizing under payment or over payment consequences due to non-normality for PWL 

based LOT pay factor were also investigated. Depending on the possible combination of 

sample population distributions and the wide range of variabilities in skewness and 

kurtosis in LOT data, it will be difficult for state highway agencies to implement the 

simulation outcomes. Therefore, a computer tool “Highway Construction QA Data 

Analyzer” is developed that will allow users to perform the F-test and t-test for any 

sampling distribution sceneries as well as adjust the pay factor under similar conditions. 

This will not only help state highway agencies and contractors making sound decisions 

based on appropriate statistical tests thus minimalizing the possibility of either 

overpayments or underpayments to the contractors.  

6.2 The Highway Construction QA Data Analyzer 

The construction QA data analyzer is an Excel spreadsheet-based software 

program that uses Visual Basic macros. This tool can be utilized in two ways. State 

highway agencies/practitioners may borrow different components and underlying 

algorithms from this proposed tool and enhanced their existing QA data analysis 

program, or the proposed tool can be enhanced or modified to the requirements of the 
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state highway agencies/practitioners and used as a stand alone QA data analysis software. 

No matter how the proposed tool is implemented it will significantly enhance state 

highway agencies data analysis capabilities and ability to make sound decisions. 

6.3 Structure of the Construction QA Data Analyzer 

An efficient structure of a computer tool significantly increases its functionality 

and usability. During the development of the construction QA data analyzer a significant 

amount of consideration was given about how to incorporate the model within the 

existing QA data analysis programs commonly used by state highway agencies. 

Consideration was also given on the simplicity, efficiency, and user friendliness of the 

model. Since most state highway agencies uses Excel based QA data analysis programs, 

the proposed model was also developed on Microsoft Excel using macros. A flowchart of 

the newly developed construction QA data analyzer is shown in Figure 6.1. As shown, 

the structure of the construction QA data analyzer is divided into three parts. They are  

1. Data Inputs 

2. Data analysis using appropriate tests and methods 

3. Output Generation 

A detailed explanation of each item is given below. 
 

6.3.1 Data inputs 
Data inputs comprise a significant portion of the construction QA data analyzer 

and it includes the first four steps of the tool. The first step requires inputting project 

related information such as project name, project ID, contract ID, project location, 

contractor/ supplier etc. The second step requires more specific item related information 

such as item name, item code, mix design/ mix type, unit cost etc. In the next step the 

user is asked to choose construction type. In this tool two construction types: HMA and 

PCC Pavement were included. Based on the construction type the user then chooses 

quality characteristics and enters related specification limits. The user is then asked to 

enter pay factor coefficients and relative weights of the acceptance quality characteristics. 

In this step, the user is also required to enter significance level, number of LOT and 

number of sub-lots/LOT. An automated table is generated based on the information 

entered in step three to facilitate entering material test data. In step four, the user is  
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Figure 6.1: Flowchart of Highway Construction QA Data Analyzer (continue..) 
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Figure 6.1: Flowchart of Highway Construction QA Data Analyzer 
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required to enter material test data for the quality characteristics chosen for both 

contractor acceptance and agency verification tests. 

 
6.3.2 Data Analysis 

Once all contractor’s acceptance and agency’s verification test data are entered, 

the QA tool will be ready for analysis. Step five of this tool includes the acceptance 

quality characteristics data analysis. The data analysis can be initiated by clicking the 

button “F-test and t-test”. As decided earlier, a skewness value of ±0.5 is considered as 

the cutoff value for a non-normal distribution and based on data characteristics 

appropriate test will be performed. However, if skewness value is less then ±0.5 the 

classical F-test and t-test will be performed. Based on the F-test and t-test, decision will 

be made whether contractor’s acceptance and agency’s verification test data came from 

the same population. 

Once the F-test and t-test are performed the next step is the calculation of LOT 

statistics, LOT percent within limit (PWL) calculation and calculation of pay factor. If 

LOT statistics show that LOT data are normally distributed, then based on the LOT 

statistics LOT basis pay schedule will be generated. However, when LOT statistics show 

significant non-normality with high skewness and kurtosis, then data transformation 

using proposed modified Box-Cox transformation using golden section search method is 

taken place and based on the normalized LOT statistics an appropriate pay schedule will 

be generated. 

 
6.3.3 Output Generation 

Based on the analysis, an output report can be generated by clicking the 

“Summary Report” Button in step six. The report includes all project and item related 

information as well as the F-test and t-test results and LOT basis pay schedule. 

6.4 Conclusion 

A simple and user friendly QA tool is developed based on the simulation study 

performed on the proposed model. By using software that is commonly used in the field 

this tool will easily be adapted as a supplement for existing tools. The tool is efficient 

with great functionality. The tool is also flexible to further enhancements and 
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modification. Using this tool state highway agencies and practitioners will now be able to 

analyze acceptance quality characteristics data irrespective of any sampling distributions.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



CHAPTER SEVEN 
Conclusions and Recommendations 

 
 
 
 
 
 
 
 

7.1 Introduction 

It is evident that acceptance quality test data may often violate normality 

assumption. But unfortunately state highway agencies simply disregard this possible 

situation and always assume that a normal distribution exists. Non-normality in QA data 

lead to misleading F-test and t-test in terms of high Type I error and low power and 

thereby reduce effectiveness of these tests. The presence of high non-normality invalidate 

pay factor calculations based on percent within limit (PWL) and result in significantly 

high over payment or underpayment which again vary based on specification limits, 

severity of non-normality and orientation of the non-normal distribution. Moreover, 

highway projects differ significantly based on project types (HMA vs PCCP), extent 

(small vs large), quantity and the unit price all of which can easily create significant 

imbalances in payment due to non-normal distribution resulting in either favoring or 

penalizing a contractor.  Unfortunately, up until now, no alternative tests or methods have 

been proposed or recommended by either state highway agencies or by the FHWA. This 

study is the first of its kind that focused on non-normality in highway construction QA 

data analysis. The study not only investigated adverse effects of non-normality on QA 

statistical tests: the F-test and t-test, and PWL based pay factor calculation, but also 

proposed alternative tests and data normalization method that will be most appropriate 

specially for highway construction QA data analysis when such data are non-normal. 

7.2 Conclusions of the Study 

The conclusions of the study were deduced based on the objectives as outlined in 

the introduction of this study. 



1. QA Data Characterization 

The extent and the probability of occurrence of non-normal distribution in the form of 

skewness and kurtosis in LOT acceptance quality characteristic (AQC) data were 

examined from seven state highway agencies. It was found that skewness and kurtosis 

vary significantly in LOT data. The typical range of skewness was 0.0 ±1.0, while the 

observed range of kurtosis was 0.0±2.0. Descriptive data analysis revealed that, on 

average, 50 % of AQC data violated the normality assumption with 15% having 

skewness greater than ±1.0 and kurtosis greater than ±2.0. Of all the AQC, sieve analysis 

data, the sieve # 8 and sieve # 200 were found to be more prone to high skewness and 

kurtosis. However, when considering project wise QA data, distribution of the acceptance 

quality characteristics were found to be mostly normal. 

2. Proposed Model Based on Alternative tests 

Non-normality either in project wise sample population distribution or in LOT result in 

adverse effects in terms of high Type I error, low power, and pay factor distortion thereby 

significantly reducing the effectiveness of the tests. The robustness of the three proposed 

alternative tests of variances, which are the Levene’s test, Brown-Forsythe’s test, and 

O’Brien test were investigated using Monte Carlo simulation study. Robustness of the 

one nonparametric test of mean, the Wilcoxon rank sum test was investigated. Among the 

alternative tests of variances, the Levene’s test was found to be the best since it provided 

the most efficient balance between Type I error and the power. However, when the 

sample size is 10 or more and even the Brown-Forsythe’s test is suggested because of its 

more conservative Type I error and high power. However, the t-test was found more 

efficient than the Wilcoxon test in terms of well centered and conservative Type I error 

and high power irrespective of sampling distributions. Nevertheless, when sample size is 

10 or more, both the t-test and the Wilcoxon test produce almost identical results.    

3. Proposed Data Transformation Methods for PWL 

The effectiveness of the three data transformation methods which are simple 

transformation, the Clements method, and modified Box-Cox transformation using 

golden section search method were investigated using a Monte Carlo simulation study. 

Among the all LOT data transformation methods investigated in this study, the modified 

Box-Cox transformation using golden section search method showed the best efficiency 



in normalizing QA data and producing a bias free estimate of the LOT PWL and pay 

factor in all PWL ranges. Therefore, this method is proposed to calculate PWL based pay 

factor when LOT data are non-normal.  

4. Development of a User Friendly QA Tool 

A simple and user friendly QA tool is developed based on the simulation study performed 

on the proposed model. The tool is efficient and provides great functionality that is 

flexible and open to further enhancements and modification. Using this tool state 

highway agencies and practitioners would be able to analyze acceptance quality 

characteristics data irrespective of sampling distributions.  

7.3 Recommendations for Future Research 

Improvements in this research are significantly important towards the ultimate 

solutions that will implement distribution specific statistical test as well as ensure 

accurate calculation of pay factor irrespective of sample population distributions. 

Possible directions of future research are to consider various acceptance quality 

characteristics and construction types. The computer tool presented in this study only 

analyzes three AQC. It is recommended that QA tool be expanded to allow analysis of 

other AQCs such as moisture content, soil density, and aggregate gradation analysis.  

All alternative tests and data transformation methods proposed in this dissertation 

were originally developed based on specific data characteristics. The alternative tests and 

data transformation methods recommended in this study are based on generalized non-

normal distributions. Therefore, it is recommended that the first goals of the state 

highway agencies should be to estimate their QA data characteristics based on their 

historic QA data. Once a good estimate of population characteristics will be available 

then various proposed alternative tests and data transformation methods should be re-

evaluated to decide on appropriate tests for a specific highway agency’s QA data 

characteristics.    

Even though some state highway agencies use AASHTO’s guide specifications 

for pay adjustments, many use their own pay adjustment schedules. A choice of allowing 

the user to input their pay adjustment method can also be recommended for future use. 

Implementing all these will allow QA efforts and procedures such as the one proposed 



here, proceed to the point that will implement appropriate population distribution specific 

statistical tests and bias corrected pay factor calculation, and thereby ensure equitable 

payments based on the quality of the highway construction.  With the addition of this 

tool, this can become a reality. 
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APPENDIX A: LIST OF ACRONYMS 
 
List of Acronyms 
 
QC: Quality Control 

QA: Quality Assurance 

IA: Independent Assurance 

PWL: Percent Within Limit 

USL: Upper Specification Level 

LSL: Lower Specification Level 

HMA: Hot Mix Asphalt 

PCC: Portland Cement Concrete Pavement 

AQC: Acceptance Quality Characteristic 

AQL: Acceptance Quality Level 

RQL: Rejectable Quality Level 

MCS: Monte Carlo Simulation 

VT: Verification Testing 

QCT: Quality Control Testing 

Lev[SQ]: Levene’s (Square) Test 

Lev[Abs]: Levene’s (Absolute) Test 

BF: Brown-Forsythe Test 

OB: O’Brien Test 
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APPENDIX B: COMPARISON OF THE F-TEST WITH ALTERNATIVE TESTS 
IN TERMS OF POWER FOR DIFFERENT SAMPLE POPULATION 
DISTRIBUTION COMBINATIONS 

 

VT: Agency’s Verification Testing 

QCT: Contractor’s Quality Control Testing 
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Figure B.1: Comparison of the F-test with Alternative tests in Terms of Power for a LOT Frequency of 3 when a) Standard 
Deviation Ratio = 2 and b) Standard Deviation Ratio = 3 between VT and QCT (VT: Non-normal, QCT: Normal) 
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Figure B.2: Comparison of the F-test with Alternative tests in Terms of Power for a LOT Frequency of 3 when a) Standard Deviation 
Ratio = 4 and b) Standard Deviation Ratio = 5 between VT and QCT (VT: Non-normal, QCT: Normal) 
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Figure B.3: Comparison of the F-test with Alternative tests in Terms of Power for a LOT Frequency of 4 when a) Standard Deviation 
Ratio = 2 and b) Standard Deviation Ratio = 3 between VT and QCT (VT: Non-normal, QCT: Normal) 
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Figure B.4: Comparison of the F-test with Alternative tests in Terms of Power for a LOT frequency of 4 when a) Standard Deviation 
Ratio = 4 and b) Standard Deviation Ratio = 5 between VT and QCT (VT: Non-normal, QCT: Normal) 
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Figure B.5: Comparison of the F-test with Alternative tests in Terms of Power for a LOT Frequency of 5 when a) Standard Deviation 
Ratio = 2 and b) Standard Deviation Ratio = 3 between VT and QCT (VT: Non-normal, QCT: Normal) 
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Figure B.6: Comparison of the F-test with Alternative tests in Terms of Power for a LOT Frequency of 5 when a) Standard Deviation 
Ratio = 4 and b) Standard Deviation Ratio = 5 between VT and QCT (VT: Non-normal, QCT: Normal) 
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Figure B.7: Comparison of the F-test with Alternative tests in Terms of Power for a LOT Frequency of 10 when a) Standard Deviation 
Ratio = 2 and b) Standard Deviation Ratio = 3 between VT and QCT (VT: Non-normal, QCT: Normal) 
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Figure B.8: Comparison of the F-test with Alternative tests in Terms of Power for a LOT Frequency of 10 when a) Standard Deviation 
Ratio = 4 and b) Standard Deviation Ratio = 5 between VT and QCT (VT: Non-normal, QCT: Normal)  
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Figure B.9: Comparison of the F-test with Alternative tests in Terms of Power for a LOT Frequency of 3 when a) Standard Deviation 
Ratio = 2 and b) Standard Deviation Ratio = 3 between VT and QCT (VT: Normal, QCT: Non-normal) 
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Figure B.10: Comparison of the F-test with Alternative tests in Terms of Power for a Sample Size of 3 when a) Standard Deviation Ratio = 
4 and b) Standard Deviation Ratio = 5 between VT and QCT (VT: Normal, QCT: Non-normal) 
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Figure B.11: Comparison of the F-test with Alternative tests in Terms of Power for a Sample Size of 4 when a) Standard Deviation 
Ratio = 2 and b) Standard Deviation Ratio = 3 between VT and QCT (VT: Normal, QCT: Non-normal) 
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Figure B.12: Comparison of the F-test with Alternative tests in Terms of Power for a Sample Size of 4 when a) Standard Deviation Ratio = 
4 and b) Standard Deviation Ratio = 5 between VT and QCT (VT: Normal, QCT: Non-normal) 
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Figure B.13: Comparison of the F-test with Alternative tests in Terms of Power for a Sample Size of 5 when a) Standard Deviation 
Ratio = 2 and b) Standard Deviation Ratio = 3 between VT and QCT (VT: Normal, QCT: Non-normal) 
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Figure B.14: Comparison of the F-test with Alternative tests in Terms of Power for a Sample Size of 5 when a) Standard Deviation 
Ratio = 4 and b) Standard Deviation Ratio = 5 between VT and QCT (VT: Normal, QCT: Non-normal) 
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Figure B.14: Comparison of the F-test with Alternative tests in Terms of Power for a Sample Size of 10 when a) Standard Deviation 
Ratio = 2 and b) Standard Deviation Ratio = 3 between VT and QCT (VT: Normal, QCT: Non-normal) 
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Figure B.16: Comparison of the F-test with Alternative tests in Terms of Power for a Sample Size of 10 when a) Standard Deviation Ratio 
= 4 and b) Standard Deviation Ratio = 5 between VT and QCT (VT: Normal, QCT: Non-normal) 
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Figure B.17: Comparison of the F-test with Alternative tests in Terms of Power for a Sample Size of 3 when a) Standard Deviation 
Ratio = 2 and b) Standard Deviation Ratio = 3 between VT and QCT (VT: Non-normal, QCT: Non-normal) 
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Figure B.18: Comparison of the F-test with Alternative tests in Terms of Power for a Sample Size of 3 when a) Standard Deviation Ratio = 
4 and b) Standard Deviation Ratio = 5 between VT and QCT (VT: Non-normal, QCT: Non-normal) 
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Figure B.19: Comparison of the F-test with Alternative tests in Terms of Power for a Sample Size of 4 when a) Standard Deviation 
Ratio = 2 and b) Standard Deviation Ratio = 3 between VT and QCT (VT: Non-normal, QCT: Non-normal) 
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Figure A.20: Comparison of the F-test with Alternative tests in Terms of Power for a Sample Size of 4 when a) Standard Deviation 
Ratio = 4 and b) Standard Deviation Ratio = 5 between VT and QCT (VT: Non-normal, QCT: Non-normal) 

261 

 



262 
 

 

 

 

1 1 1 1 1

4
4 4

4 4

5 5 5
5

5

10 10 10
10

10

1 1 1 1 1

4 4 4
4 4

5
5 5 5 5

10 10
10

10
10

1 1
1 1 1

4 4
4 4 4

5 5 5
5

5

10 10
10

10

10

1 1 1 1 1

4 4
4

4
4

5 5
5

5
5

10 10
10

10
10

1 1 1 1 1

4
4

4
4

4

5 5

5
5

5

10 10

10
10

10

0

10

20

30

40

50

0 0.5 1 1.5 2

Po
w

er
 (%

)

Skewness of Sample Population Distribution

1 1 1 1 1

4 4
4

4 4

5 5
5

5
5

10 10 10
10

10

1 1 1 1 1

4 4
4

4
4

5 5
5

5
5

10 10
10

10
10

1 1 1 1 1

4 4 4 4

4

5 5
5

5
5

10 10
10

10

10

1 1 1 1 1

4 4
4

4
4

5 5
5

5
5

10 10
10

10
10

1 1 1 1 1

4 4
4

4
4

5 5
5

5

5

10 10
10

10
10

0

20

40

60

80

0 0.5 1 1.5 2

Po
w

er
 (%

)

Skewness of Sample Population Distribution

 

 
a. 

b. 

Sub-lots/LOT 

Sub-lots/LOT 

Figure B.21: Comparison of the F-test with Alternative tests in Terms of Power for a Sample Size of 5 when a) Standard Deviation 
Ratio = 2 and b) Standard Deviation Ratio = 3 between VT and QCT (VT: Non-normal, QCT: Non-normal) 

262 

 



263 
 

 
 
 

 

Figure B.22: Comparison of the F-test with Alternative tests in Terms of Power for a Sample Size of 5 when a) Standard Deviation Ratio = 
4 and b) Standard Deviation Ratio = 5 between VT and QCT (VT: Non-normal, QCT: Non-normal) 
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Figure B.23: Comparison of the F-test with Alternative tests in Terms of Power for a Sample Size of 10 when a) Standard Deviation 
Ratio = 2 and b) Standard Deviation Ratio = 3 between VT and QCT (VT: Non-normal, QCT: Non-normal) 
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Figure B.24: Comparison of the F-test with Alternative tests in Terms of Power for a Sample Size of 10 when a) Standard Deviation Ratio 
= 4 and b) Standard Deviation Ratio = 5 between VT and QCT (VT: Non-normal, QCT: Non-normal) 

1 1 1 1
1

4 4 4 4 45 5 5 5 510 10 10 10 10

1 1
1

1
1

4 4 4
4

4

5 5 5 5
5

10 10 10 10 10

1 1 1
1

1

4 4 4 4 4
5 5 5 5 510 10 10 10 10

1 1 1 1
1

4 4 4
4

4

5 5 5 5
5

10 10 10 10 10

1 1 1 1
1

4 4 4
4

4

5 5 5 5
5

10 10 10 10 10

0

20

40

60

80

100

0 0.5 1 1.5 2

Po
w

er
 (%

)

Skewness of Sample Population Distribution

1 1 1 1 1
4 4 4 4 45 5 5 5 510 10 10 10 10

1 1

1

1
1

4 4 4 4 45 5 5 5 510 10 10 10 10

1 1
1

1
1

4 4 4 4 45 5 5 5 510 10 10 10 10

1 1
1 1

1

4 4 4 4
4

5 5 5 5 510 10 10 10 10

1 1 1 1
1

4 4 4 4
4

5 5 5 5 510 10 10 10 10

0

20

40

60

80

100

0 0.5 1 1.5 2

Po
w

er
 (%

)

Skewness of Sample Population Distribution

 

 
a. 

b. 

Sub-lots/LOT 

Sub-lots/LOT 

265 

 



266 
 

APPENDIX C: COMPARISON OF THE T-TEST WITH ALTERNATIVE TESTS 
IN TERMS OF POWER FOR DIFFERENT SAMPLE POPULATION 
DISTRIBUTION COMBINATIONS 

 

VT: Agency’s Verification Testing 

QCT: Contractor’s Quality Control Testing 
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Figure C.1: Comparison of the t-test with the Distribution Free Wilcoxon test in Terms of the Power for  a Sample Size of 3 with Different 
Sample Ratios when a) Mean Difference = 1 Std. Dev. and b) Mean Difference = 2 Std. Dev. Between VT and QCT at Significance Level of 
1%  (VT: Non-normal, QCT: Normal) 
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Figure C.2: Comparison of the t-test with the Distribution Free Wilcoxon test in Terms of the Power for  a Sample Size of 4 with Different 
Sample Ratios when a) Mean Difference = 1 Std. Dev. and b) Mean Difference = 2 Std. Dev. Between VT and QCT at Significance Level of 
1%  (VT: Non-normal, QCT: Normal) 
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Figure C.3: Comparison of the t-test with the Distribution Free Wilcoxon test in Terms of the Power for  a Sample Size of 5 with Different 
Sample Ratios when a) Mean Difference = 1 Std. Dev. and b) Mean Difference = 2 Std. Dev. Between VT and QCT at Significance Level of 
1%  (VT: Non-normal, QCT: Normal) 
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Figure C.4: Comparison of the t-test with the Distribution Free Wilcoxon test in Terms of the Power for  a Sample Size of 10 with Four 
Different Sample Ratios when a) Mean Difference = 1 Std. Dev. and b) Mean Difference = 2 Std. Dev. Between VT and QCT at 
Significance Level of 1%  (VT: Non-normal, QCT: Normal) 
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Figure C.5: Comparison of the t-test with the Distribution Free Wilcoxon test in Terms of the Power for  LOT Frequency of 3 with Four 
Different Sub-lots/LOT when a) Mean Difference = 1 Std. Dev. and b) Mean Difference = 2 Std. Dev. Between VT and QCT at 
Significance Level of 1%  (VT: Normal, QCT: Non-normal) 
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Figure C.6: Comparison of the t-test with the Distribution Free Wilcoxon test in Terms of the Power for  LOT Frequency of 4 with Four 
Different Sub-lots/LOT when a) Mean Difference = 1 Std. Dev. and b) Mean Difference = 2 Std. Dev. Between VT and QCT at 
Significance Level of 1%  (VT: Normal, QCT: Non-normal) 
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Figure C.7: Comparison of the t-test with the Distribution Free Wilcoxon test in Terms of the Power for  LOT Frequency of 5 with Four 
Different Sub-lots/LOT when a) Mean Difference = 1 Std. Dev. and b) Mean Difference = 2 Std. Dev. Between VT and QCT at 
Significance Level of 1%  (VT: Normal, QCT: Non-normal) 
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Figure C.8: Comparison of the t-test with the Distribution Free Wilcoxon test in Terms of the Power for  LOT Frequency of 10 with Four 
Different Sub-lots/LOT when a) Mean Difference = 1 Std. Dev. and b) Mean Difference = 2 Std. Dev. Between VT and QCT at 
Significance Level of 1%  (VT: Normal, QCT: Non-normal) 
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Figure C.9: Comparison of the t-test with the Distribution Free Wilcoxon test in Terms of the Power for  LOT Frequency of 3 with Four 
Different Sub-lots/LOT for a) Mean Difference = 1 Std. Dev. and b) Mean Difference = 2 Std. Dev. Between VT and QCT at Significance 
Level of 1%  (VT: Non-normal, QCT: Non-normal) 

1
1 1

1
1

4 4
4

4 4

5
5 5

5 5

10
10 10

10 10

4 4
4 4

4

5
5 5

5 5

10 10
10

10 10

0

5

10

15

20

25

0.00 0.50 1.00 1.50 2.00

Po
w

er
  (

%
)

Skewness of Sample Population Distribution

1 1 1 1 1

4 4 4 4 4
5 5 5 5 5

10 10 10 10 10

4 4 4 4 4
5 5 5 5 5

10 10 10 10 10

0

10

20

30

40

50

60

70

80

90

0.00 0.50 1.00 1.50 2.00

Po
w

er
  (

%
)

Skewness of Sample Population Distribution

 

 a. 

b. 

Sub-lots/LOT 

Sub-lots/LOT 

275 

 



276 
 

 

 
Figure C.10: Comparison of the t-test with the Distribution Free Wilcoxon test in Terms of the Power for  LOT Frequency of 4 with Four 
Different Sub-lots/LOT for a) Mean Difference = 1 Std. Dev. and b) Mean Difference = 2 Std. Dev. Between VT and QCT at Significance 
Level of 1%  (VT: Normal, QCT: Non-normal) 
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Figure C.11: Comparison of the t-test with the Distribution Free Wilcoxon test in Terms of the Power for  LOT Frequency of 5 with Four 
Different Sub-lots/LOT for a) Mean Difference = 1 Std. Dev. and b) Mean Difference = 2 Std. Dev. Between VT and QCT at Significance 
Level of 1%  (VT: Normal, QCT: Non-normal) 
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Figure C.12: Comparison of the t-test with the Distribution Free Wilcoxon test in Terms of the Power for  LOT Frequency of 10 with 
Four Different Sub-lots/LOT for a) Mean Difference = 1 Std. Dev. and b) Mean Difference = 2 Std. Dev. Between VT and QCT at 
Significance Level of 1%  (VT: Normal, QCT: Non-normal) 

1 1 1 1 1

4 4 4 4 45 5 5 5 5
10 10 10 10 10

1 1 1 1 1

4 4 4
4 4

5 5 5 5
510 10

10 10 10

0

20

40

60

80

100

0.00 0.50 1.00 1.50 2.00

Po
w

er
 (%

)

Skewness of Sample Population Distribution

1 1 1 1 1
4 4 4 4 45 5 5 5 510 10 10 10 10

1 1 1 1 1
4 4 4 4 45 5 5 5 510 10 10 10 10

0

20

40

60

80

100

0.00 0.50 1.00 1.50 2.00

Po
w

er
 (%

)

Skewness of Sample Population Distribution

 

 
a. 

b. 

Sub-lots/LOT 

Sub-lots/LOT 

278 

 



279 
 

APPENDIX D: EFFICIENCY OF PROPOSED TRANSFORMATION METHODS TO 
MINIMIZE OR REMOVE BIAS IN EXPECTED PAY FACTOR 
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Figure D.1: Efficiency of Simple Transformation Methods to Minimize or Remove Bias in Expected Pay Factor for One-sided Lower 
Specification Limit a) Sub-lots/LOT =3; b) Sub-lots/LOT = 4 
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Figure D.2: Efficiency of Simple Transformation Methods to Minimize or Remove Bias in Expected Pay Factor for One-sided Lower 
Specification Limit a) Sub-lots/LOT =5; b) Sub-lots/LOT = 10  
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Figure D.3: Efficiency of Simple Transformation Methods to Minimize or Remove Bias in Expected Pay Factor for One-sided Upper 
Specification Limit a) Sub-lots/LOT =3; b) Sub-lots/LOT = 4 
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Figure D.4: Efficiency of Simple Transformation Methods to Minimize or Remove Bias in Expected Pay Factor for One-sided Upper 
Specification Limit a) Sub-lots/LOT =5; b) Sub-lots/LOT = 10  
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Figure D.5: Efficiency of Simple Transformation Methods to Minimize or Remove Bias in Expected Pay Factor for Two-sided 
Specification Limits at PD = 5% - a) Sub-lots/LOT =3; b) Sub-lots/LOT = 4  
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Figure D.6: Efficiency of Simple Transformation Methods to Minimize or Remove Bias in Expected Pay Factor for Two-sided 
Specification Limits at PD = 5% - a) Sub-lots/LOT =5; b) Sub-lots/LOT = 10 
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Figure D.7: Efficiency of Simple Transformation Methods to Minimize or Remove Bias in Expected Pay Factor for Two-sided 
Specification Limits at PD = 10% - a) Sub-lots/LOT =3; b) Sub-lots/LOT = 4 
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Figure D.8: Efficiency of Simple Transformation Methods to Minimize or Remove Bias in Expected Pay Factor for Two-sided 
Specification Limits at PD = 10% - a) Sub-lots/LOT =5; b) Sub-lots/LOT = 10 
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Figure D.9: Efficiency of Simple Transformation Methods to Minimize or Remove Bias in Expected Pay Factor for Two-sided 
Specification Limits at PD = 30% - a) Sub-lots/LOT =3; b) Sub-lots/LOT = 4 
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Figure D.10: Efficiency of Simple Transformation Methods to Minimize or Remove Bias in Expected Pay Factor for Two-sided 
Specification Limits at PD = 30% - a) Sub-lots/LOT =5; b) Sub-lots/LOT = 10 
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Figure D.11: Efficiency of Simple Transformation Methods to Minimize or Remove Bias in Expected Pay Factor for Two-sided 
Specification Limits at PD = 30% - a) Sub-lots/LOT =3; b) Sub-lots/LOT = 4 
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Figure D.12: Efficiency of Simple Transformation Methods to Minimize or Remove Bias in Expected Pay Factor for Two-sided 
Specification Limits at PD = 30% - a) Sub-lots/LOT =5; b) Sub-lots/LOT = 10 
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Figure D.13: Efficiency of Simple Transformation Methods to Minimize or Remove Bias in Expected Pay Factor for Two-sided 
Specification Limits at PD = 50% - a) Sub-lots/LOT =3; b) Sub-lots/LOT = 4 
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Figure D.14: Efficiency of Simple Transformation Methods to Minimize or Remove Bias in Expected Pay Factor for Two-sided 
Specification Limits at PD = 50% - a) Sub-lots/LOT =5; b) Sub-lots/LOT = 10 
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