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ABSTRACT OF DISSERTATION 
 
 
 
 

THREE-DIMENSIONAL FREE SURFACE NON-HYDROSTATIC MODELING OF 
PLUNGING WATER WITH TURBULENCE AND AIR ENTRAINED TRANSPORT 

 
 The advance in computational fluid dynamics in recent years has provided the 
opportunity for many fluid dynamic problems to be analyzed numerically. One such 
problem concerns the modeling of plunging water into a still water body, often 
encountered in pump stations. Air bubbles introduced into the system by the plunging jet 
can be a significant problem, especially when consumed into operating pumps. The 
classical approach to investigate the hydrodynamics of plunging jet in pump stations is by 
physical model studies. This approach is time consuming, tedious and costly. The 
availability of computational power today, along with appropriate numerical techniques, 
allows such phenomenon to be studied in a greater level of detail and more cost efficient. 
Despite the advantages of numerical studies, little attention has been devoted to solve the 
plunging jet and air transport problem numerically.  
 
 In this current work, a 3-dimensional finite volume, Large Eddy Simulation (LES) 
code is developed to simulate these flow conditions. For turbulent flow, the large scale 
quantities were numerically resolved while the dynamic sub-grid scale model is used to 
model the small scale energy dissipations. The code also has the capability to handle free 
surface deformation, an important aspect in simulating the impact section of an 
impinging jet.  

 
Modeling of the air entrainment is performed numerically utilizing the information 

obtained from the hydrodynamics. Migration of air bubbles is modeled using the scalar 
transport equation, modified to account for the buoyancy of the bubbles.  Instead of the 
typical Lagrangian schemes, which track individual air bubbles, air bubble dynamics are 
modeled in the form of concentrations. Modeling air bubbles in this manner is 
computational efficient and simpler to implement. For the air entrainment simulations, 
standard numerical boundaries conditions and empirical entrainment equations are used 
to provide the necessary boundary conditions.  The developed model is compared with 
the literature, producing satisfactory results, suggesting that the code has an excellent 
potential of extending its application to practical industry practices. 
 



 

KEYWORDS: Air bubbles transport, pump station modeling, overfall plunging jet, Finite 

volume method, Large Eddy Simulation. 
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CHAPTER 1  

INTRODUCTION 

 

1.1 - Motivation  
 

The Navier-Stokes equations are thought to be the governing equations for all fluid 

motion and can be used to describe either laminar or turbulent flows [55]. Though simple 

to write, there is no formal analytical solution to these sets of equations.  For that reason 

numerical modeling became an important part in the study of turbulent flows – to obtain 

an approximate solution.  

Fluid dynamics can be described and categorized as laminar, transitional or turbulent 

flows. Laminar flows are the least complicated type of flow. The analytical solution of 

laminar flows can be obtained with ease and is widely available in most fluid mechanics 

textbooks ([55], [102], [111]). Transitional and turbulent flows are difficult to solve due 

to their stochastic and random behavior. Only approximate solutions are available for 

these two types of flow. For centuries, solving turbulent flow problems has been a 

challenge to engineers, mathematicians and physicists. It is no wonder why there is a 

million dollar prize, offered by The Clay Mathematics Institute of Cambridge (CMI), for 

obtaining analytical solution to the governing equation of turbulent and transitional flows. 

Unfortunately, most natural and engineering fluid flow problems fall into this category. 

In civil engineering, three dimensional fluid dynamic problems are mostly academia 

based studies and their commercial uses are limited due to the scale of the problems. The 

application of numerical models to solve for practical fluids problems in civil engineering 

has still yet to catch up with its mechanical and chemical engineering counterparts. 

Although limited, the use of numerical modeling in civil engineering industrial 

application is not unheard of. The dam break analysis is one such example [128]. The 

needs, be it financial feasibility, convenience, or simply the interest in solving more 

complex problems, will be the catalyst to push the use of numerical modeling in civil 

engineering. The modeling of pump stations has seen such needs, especially in vortex 
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studies [36]. Figure 1-1 and Figure 1-2 shows sketches of a simple pump station with a 

planar plunging jet inflow. 

In the past, studies of the pump stations relied on using physical model in laboratories. 

Scaled model had to be constructed and tested for results to determine if any problem 

would arise in the design. In scenarios where problems were identified, design geometry 

change requires the physical model be reconstructed and reexamined to find a workable 

configuration. This process demands tremendous effort and time. Furthermore the results 

obtained from physical model were extrapolated using similarities relationship to the 

prototype. The scaling is problematic due to some unaccounted non-dimensional 

parameters that are physically inconsistent between scale models and prototypes, and 

hence extrapolation of the laboratory data is not always reliable. In addition to modeling 

the hydrodynamics of pump stations, one of the more challenging problems is the air 

entrainment issue. Air bubbles appear as a result of impact, shear and mixing of two 

different fluid phases. In pump stations, air entrainment from an overfall is introduced, 

potentially affecting the operation of pumps. There is a need for a simple and dependable 

way of pump station modeling. Computer aided study seems to be a potentially 

advantageous alternative for this application and does not have the problems associated 

with physical modeling as mentioned prior.  

The goal of this dissertation is to provide some insight on numerical air bubble 

modeling and at the same time offer an alternative to pump station modeling needed by 

the industry. This work is also motivated by the fact that numerical simulation of the air 

bubble and plunging jet problem provides a solution with much greater level of detail, if 

needed. A review of the literature reveals that the influence of air entrainment, forming 

air bubbles in the flow field, is still an area for active research. In addition, a numerical 

code which consists of three dimensional free surface capabilities along with the air 

bubble dynamics modeling is not available for plunging jet flows. 

This research will focus on solving the three dimensional, free surface, plunging jet 

flows using the Large Eddy simulation, a dynamic subgrid-scale model, as well as 

modeling the transport of air bubbles. Air bubbles transport will be modeled via the 

transport equation, with some minor modification to account for buoyancy, with the 

effects added to the hydrodynamic model.   
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Figure 1-1: Plan view of a simple pump station. 

 

 
 

Figure 1-2: Side view of a simple pump station with plunging jet and air entrainment.  

 3



1.2 - Literature Review 

 

 Fluid dynamic problems can be solved via analytical, experimental or numerical 

methods. For more difficult problems, especially problems involving turbulent flows, 

analytical solutions are limited. Analytic solutions are often difficult to obtain due to the 

fact that the governing equations for most fluid flows are the Navier-Stokes equations 

and these are strictly non-linear [83]. While experimental work can be carried out to 

characterize and observe any type of flows, the difficulties and cost of setting up good 

experiments, as well as the tedious process of data collection make the experimental 

approach less desirable. The next option is to numerically obtain approximate solutions to 

the Navier-Stokes equations. The recent advancement of computational fluid dynamics 

(CFD) shows that the trend to model and observe complex fluid flows has shifted to the 

numerical approach.  

Computational fluid dynamics is not a new field of study. In fact, the use of CFD 

dates as far back as the work by Thom [114] in 1933, to simulate the flow past a cylinder 

at low speeds. At present, CFD is considered a vital tool for the study of fluid flows, and 

is used to model the complex relationship of momentum, mass and energy transfer. 

Engineering problems that require computer modeling are typically 3-dimensional 

turbulent flow problems where numerical solutions are difficult to obtain [59]. Large 

Eddy Simulation with dynamic subgrid scale models is the state of the art technology for 

fluid dynamics modeling and has matured to the extent that literature review in this area 

will yield hundreds, if not thousands, of publications. For that reason, a survey on this 

subject is deemed redundant. This work is merely adopting the existing numerical 

schemes and turbulence models for the present application, but integrating air bubble 

dynamics. 

Numerical studies on air bubbles dynamics can be divided into two different 

classifications, namely the microscopic and macroscopic models [66]. The former 

category of bubble dynamic models involves modeling the detailed interaction of the air 

bubbles and water, and greatly emphasizes the interface tracking of the different fluids. 

The later classification models the average property of the two phases and treats the two 

fluids as a mixture. Examples of the microscopic modeling techniques are the interface 
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tracking type procedures such as the level set method [28], and the volume of fluid 

method [109]. Simulation of bubble dynamics in this category requires that the solution 

of the trajectories and the interface of the different fluid. This approach however is not 

suitable for macroscopic modeling of air bubbles, especially in large quantities, or in a 

larger geometry setting. The macroscopic modeling of air bubbles takes on another 

approach. The macroscopic modeling of air bubbles involves the assumption of mixture 

when dealing with the different phases. This leads to a simplified model which is 

computational inexpensive compared to the previously mentioned approach, but does not 

provide detailed information of individual air bubbles. Examples of this class of 

technique include the typical multiphase flow type model [30] and simplified multiphase 

types model [130]. This work will follow the macroscopic approach because detailed 

information of individual air bubbles is unnecessary and in addition, macroscopic models 

are better for large problems, as suggested by Deen et al. [44]  

In the last decade, the simulation of bubble dynamics has received considerable 

interest from chemical engineers [30]. As some authors have suggested ([8], [49], [63]) 

more studies are needed in this area to better understand the different phase interaction 

and turbulence. The publication by Chen et al., [30] in 2005, explicitly stated that most 

previous numerical studies compared their predictions of bubble dynamics qualitatively 

with experimental observations, and only few quantitative comparisons were made. 

Further search attempts to obtain data for numerical comparison of bubble simulation 

especially for multiphase flow type models, yielded little results, concurring to the claim 

by Chen et al. [30].     

A vital part in dealing with air bubble dynamics is the determination of the terminal 

velocities for air bubbles of different sizes. Terminal velocities of air bubbles of different 

sizes had been reported by numerous researchers ([13], [25], [28], [62], [91], [122]). 

Mendelson [91] studied the terminal velocities of different sizes air bubbles in water and 

provided a relationship based on the wave theory. The relationship given in Mendelson’s 

work was then compared with the experimental study by Haberman and Morton [62], and 

decent agreement was observed. However, Mendelson’s equation found difficulties in 

correlating the terminal velocities of bubbles between 0.7 mm and 3 mm in radius. More 

recent work presented by Bozzano and Dante [13] provided the terminal velocity as a set 
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of equations. Bozzano and Dante provided the equations for the terminal velocity that 

also includes the effects of the drag coefficient of air bubbles and the deformation of air 

bubble during the course of its rise. The publication by Bozzano and Dante is significant 

for this work, as the equations were later adopted as part of the modeling of air bubble 

dynamics. The terminal velocities yielded from the equations corresponds well with chart 

given in Wallis’s [122] book.  Bozzano and Dente claimed to have also validated the 

equations using experimental data collected by Haberman and Morton [62].  

Later, Chen and Fan [28] attempted simulation of the rise of a single air bubble 

numerically using the level set method. The detailed nature of Chen and Fan’s work can 

be used as a good assessment for Bozzano and Dante’s equations to further determine its 

validity. Numerical test of Bozzano and Dante’s equations with 8 mm diameter air 

bubbles was conducted, similar to Chen and Fan’s paper. Result of the bubble position 

with time did not match exactly. Numerical results of Chen and Fan obtained a lower 

terminal velocity of approximately 18.75 cm/s. Chen and Fan further commented that 

results obtained experimentally yielded a terminal velocity of 21 - 25 cm/s, which agrees 

with the terminal velocity obtained from the theoretical equations presented by Bozzano 

and Dente. Comparisons were also made with the experimental data by Chanson [25] and 

satisfactory agreements were also obtained.  

Air entrainment from different types of jets had been investigated experimentally by 

several different authors and research groups. Much of the work is experimentally based 

[8]. This is because the theoretical mechanism of air entrainment is not yet fully 

understood. In 1973, Van de Sande and Smith [119] published their hypothesis and 

experimental work on surface entrainment of air by high velocity water jets. In the 

publication, the authors claimed that a theory to predict the amount of air entrainment by 

a plunging jet was conceived for Weber numbers greater than 10 and the length based 

Reynolds numbers to be less than 5 × 105. According to the authors, the experiments 

conducted agreed well with the theory. The paper does relate the amount of air 

entrainment, but the jet was considered a round jet, constructed with cut pipe as the 

nozzle head. For the purpose of this work, interest was placed in plunging jet entrainment 

from a falling nappe, which has similar properties of a planar plunging jet. This 

difference prevented the use of the relationship in this work because the amount of air 
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entrainment not only depends on the impact velocity, but also geometry of the jet, angle 

of the jet, and etc.    

 In early studies of air bubble behavior, the difficulties faced by experimentalist were 

significant. The advancement of air bubble behavior studies was challenged by the task of 

keeping the size of bubbles uniform while experiments were being conducted [67]. 

Published work on air entrainment were scattered in different fields of studies. In 1993, 

Bin attempted a massive reorganization to compile most available experimental and 

theoretical studies on gas entrainment. The compilation resulted in a review article in 

chemical engineering science [8]. The review article was one of the more thorough 

surveys in this field and is a great reference to understand the prior work of other authors 

and research groups. In Bin’s review paper, several major issues were discussed. The 

article highlighted the critical conditions for air entrainment, empirical relationships for 

quantification of air entrainment, characteristics of bubble dispersion, and practical 

applications of the plunging jets. Bin was well aware of the fact that the information 

presented in the review paper was insufficient to completely describe the complicated 

mechanics of air entrainment. In the conclusion of his paper, suggestions were made for 

more theoretical and experimental studies.  

 Shortly after the review paper by Bin, Hadjerioua et al. [63] attempted to relate 

quantity of air entrainment by falling nappes via a 2-dimensional semi-analytic analysis. 

In the article, the momentum equations for the air boundary layer were analytically 

analyzed through the use of integral method to determine the thickness of air layer being 

dragged down the plunge pool. The analytic results were then compared with experiment 

data done by Ervine and Elsawy [50]. Hadjerioua et al. [63] realized the discrepancy 

between the experimental data and the results of the analytical analysis was due to the 

nappe thickness not being factored into consideration, and thus used the least squares 

regression analysis to help establish a general relationship. This semi-analytic equation 

showed good agreement to experimental results. However the use of this equation is 

limited to nappes less than 60 mm thick, and thus not a practical range for an overfall 

nappe in pumping stations. Since Hadjerioua et al. [63] obtained the semi-analytical 

relationship based on Ervine and Elsawy’s [50] experimental data, further investigations 

to find work derived from the same data sets yielded Mason’s publication [86] which 
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provided a well documented equation used by other researchers ([18], [90]) to quantify 

the amount of air entrainment. According to the literature [18], the equation found in 

Mason’s publication is a typical formula used for air bubble quantification of air in 

plunge pool scour research, which resembles the characteristics of the plunging jet for a 

free overfall drop in this study. Therefore, that equation was chosen for air entrainment 

quantification for this research.   

 Hubert Chanson, an experimentalist from University of Queensland, Brisbane, 

Australia has numerous publications ([16], [21], [22], [26]), regarding air entrainment 

quantity and mechanism. In his book [24], Chanson summarized some empirical 

equations that other experimentalist had published in a tabular form with their respective 

application limits. Chanson then proceeds to collapse the equations down into three 

acceptable forms according to the range of impact velocity of the jet. The equation 

provided by Mason [86] was not listed in Chanson’s summary, however it agreed with 

the general form of equations suggested in Chanson’s analysis. Chanson also mentioned 

that the equations were meant for deep receiving pools with no or slow motion. Other 

publications by Chanson could be used to enhance the understanding of the mechanism 

of air entrainment, mainly on location of air bubble generation and quantification under 

extreme cases of an overfall jet. Other forms of equations provided by Cumming and 

Chanson ([38] , [39]) in their papers regarding jet entrainment requires a priori 

knowledge of the flow field and are rather complex.  

 In a more recent article published by Melo [90], a section was dedicated for historical 

review of the air entrainment quantity at the free jet impact section. In the review, the 

work of Chanson was not referenced. It is believed that Melo’s work was independent 

from Chanson’s. Therefore, it is not surprising that Melo suggested an entirely different 

set of equations for the air entrainment quantities. The equations in the article, as cited 

from Ervine and Falvey [51], Ervine et al. [52], Bohrer and Abt [10] and Bohrer et al. 

[11], suggest that the equations were also empirical relations deduced from experimental 

work. Comparison were made using the equations provided in Melo’s work with that of 

Mason’s [86] mentioned earlier, and significant differences in the results were observed. 

The differences may have been attributed to incomplete understanding of the applicable 
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limits of the equations in Melo’s paper. In addition, the equations provided by Melo’s 

might not have been appropriate for an overfall plunging jet.  

  In 2002, El Hammoumi et al. [49] quoted the conclusion from Bin’s work that there 

was still no successful theoretical approach to predict the critical entrainment velocity 

from a vertical plunging jet. That work provided valuable experimental studies, but little 

theoretical work. They claimed that there existed no concrete theoretical insight of 

modeling the plunging jet air entrainment. Currently researchers rely only on empirical 

relations. Due to the lack of understanding of the air entrainment mechanism, numerical 

simulation of the plunging jet into receiving pool of fluid is scarce.  

Early numerical work in civil engineering to simulate large scale water-bubble flow 

began with the work of Zarrati [130] in 1994. Zarrati simulated a channel flow with an 

upstream sluice gate, and air bubbles were artificially injected into the channel. In his 

simulation, Zarratti assumed a mixture fluid, where air and water were treated as a single 

continuum. Zarrati included the buoyancy effect of the air bubbles by adjusting the 

Schmidt number, a parameter in his turbulent model. The problem of doing such 

adjustments is that physics of the buoyant effect is buried in the turbulence modeling part 

of the numerical simulation, and is somewhat questionable. Based on force balance 

between the air bubbles and water, the buoyancy effects should be included as part of the 

resolvable scale. Despite that, the numerical simulation yielded satisfactory results. 

Zarrati’s work helped pave the way for other civil engineering researchers to advance the 

knowledge of simulating multiphase flows and in some sense suggested the possibility of 

treating the two different fluids as a single mixture continuum.  

A group of researchers in China, Xu et al. [124], attempted the simulation of a 3-

dimensional turbulent aerated flow in a plunge pool. The two-phase or multiphase flow 

equations were used. For turbulent modeling, the k-epsilon (k-ε) model was employed, 

similar to Zarrati’s publication. Xu et al. [124] claimed that the results of the simulation 

for air concentration are reasonable and the trend was predicted correctly. The numerical 

results were compared to the experimental work done by Dong Zhiyong for his Ph.D 

dissertation, written in Chinese. In another paper published by Xu et al., [125], a 3-

dimensional simulation of plunge pool was attempted, however, with the exclusion of air 
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entrainment. According to Xu et al. [125] and Liao et al. [81], there was no other prior 

numerical simulation of a 3-dimensional plunge pool prior to theirs. 

Formal numerical simulation for a 3-dimensional pump intake structure was first 

published in 1998 by Constantinescu et al.[36]. Their emphasis established the formation 

of free-surface and wall-attached vortices. The turbulent model used was the k-ε model. 

Follow up work by Ansar et al. [3], Constantinescu and Patel [37], Rajendran et al. [100], 

Constantinescu and Patel [36], Tokyay and Constantinescu [116] and Tokyay and 

Constantinescu [117] focused on the formation of vortices and not air entrainment and 

transport. In addition, no plunging jet was simulated, which differs from this 

investigation.  

As there is still no known formal investigation on the work to numerically simulate an 

inflow of a plunging jet with air bubbles dynamics, this area of study is worth 

investigating.  

 

1.3 - Organization of Dissertation 
 

This dissertation is organized into several different chapters that provide the required 

background, development, validation tests, results as well as conclusion of this research. 

The dissertation begins (Chapter 1) with an introduction to the current trend in fluid 

dynamics modeling, the necessity for this work to be conducted and the objective of this 

dissertation. A literature survey was carried out to provide some insights of previous 

work that is relevant to this dissertation. 

Chapter 2 is devoted to the hydrodynamics and turbulence subgrid scale modeling. 

This chapter outlines the theoretical development and methodology of the hydrodynamics 

model. The choice of the governing equations and the turbulence models used in this 

work were presented, alongside the discussions of the procedure in arriving at their 

usable forms. The numerical schemes for the spatial and temporal discretization, and 

boundary conditions were also detailed in the second chapter of this dissertation.  

Following that, Chapter 3 describes the dynamics and quantification of air bubbles. 

Since there is no formal theoretical quantification of air bubbles from a plunging jet, the 

known empirical relationship from literature was provided. More importantly, Chapter 3 
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attempts to simplify and link the air bubble dynamics with the governing equations for 

the hydrodynamics, as well as provide a simplified model for the tracking of air bubble 

concentration using the scalar transport equation. The modifications to the scalar 

transport equation to accommodate the movement of air bubbles and the relationship of 

the bubble dynamics to the momentum equations were shown. Limitations of the bubble 

transport model were discussed.   

Following the discussion of the air bubbles, the next chapter (Chapter 4) provides 

information on the overfall, namely the size, location, angle and the impinging velocities 

of the jet. The information consists of theoretical and empirical equations from literature 

and was used as part of the essential boundary conditions for the modeling. This short 

chapter also describes the implementation of these boundary conditions at the impact 

section of the free overfall jet.  

In pursuing this work, considerable amount of effort was put into testing the 

numerical code.  Verification and validation of the code was done systematically and is 

shown in Chapter 5. Results from the numerical simulation were compared with analytic, 

numerical and available experimental data from the literature. At the closing of this 

chapter, a simple case of a plunging jet flow was simulated.  

Finally, Chapter 6 concludes the dissertation by providing a summary of the 

achievements and recommendations for future research. The expected end product of this 

research consists of a numerical model which is robust for simulation of either a turbulent 

or laminar conditions for the plunging jet flows, with free surface and air bubbles 

transport capability.  
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CHAPTER 2  

BASIC THEORY AND GOVERNING EQUATIONS 

 

Chapter 2 provides some historical background on the development of the continuity 

and Navier-Stokes equations, leading to the turbulent Large Eddy Simulation 

decomposed equations used in this work. In this chapter, the governing equations, along 

with the numerical schemes, were discussed in depth. Additionally, the spatial and 

temporal discretization techniques for the different terms in the governing equations were 

also detailed.   

A review of the turbulent closure models for the LES equations is provided to 

enhance the reader’s understanding on turbulent modeling. This includes some formal 

explanation of eddy viscosity type subgrid scale models, namely the classical 

Smagorinsky closure model and the dynamic Smagorinsky closure model, emphasizing 

more on the dynamic Smagorinsky closure model. The implementation of some general 

boundary conditions will be discussed.  

 

2.1 - Governing Equations 

 

Mass balance is one of the most fundamental concepts in solving engineering 

problems. The idea of mass balance is widely used to describe mass transfer from one 

location to another in a given control section or volume. The continuity equation uses the 

concept of mass balance to describe the rate of mass transfer in a continuous body of 

fluid in a control volume. In a 3-dimensional Cartesian coordinate system, the continuity 

equation is written as 

 0u v w
x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂
 (2.1.1) 

where, u, v and w are velocities in the x, y, and z direction of the Cartesian coordinate. 

The continuity equation, also known as the divergence-free condition or 

incompressibility constraint, will be one of the governing equations in this work. The 

 12



others governing equations consists of the Navier-Stokes momentum balance equations. 

The momentum balance equations were named after a French scientist, C.L.M.H. Navier 

and English Physicist Sir George Stokes [55]. The Navier-Stokes equations are 

invaluable tool to analyze fluid motion problems, as it is the foundation for most 

computational fluid dynamics codes. Navier-Stokes equations can be thought of as a set 

of second order partial differential equations (PDE) that are derived based on physics of 

fluid motion, namely the conservation of momentum. In Cartesian coordinate system, the 

complete set of Navier-Stokes equations for incompressible fluid consists of the three 

momentum balance in the three different directions, x, y and z coordinates respectively.  

 

x-direction momentum balance: 

 
2 2 2

2 2 2 x
u u u u P u u uu v w
t x y z x x y z

ρ µ
⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + + = − + + + +⎜⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
f⎟  (2.1.2) 

y-direction momentum balance: 

 
2 2 2

2 2 2 y
v v v v P v v vu v w
t x y z y x y z

ρ µ
⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + + = − + + + +⎜⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
f⎟  (2.1.3) 

z-direction momentum balance: 

 
2 2 2

2 2 2 z
w w w w P w w wu v w
t x y z z x y z

ρ µ
⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + + = − + + + +⎜⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
f⎟  (2.1.4) 

where  

ρ   is the density 

µ   is the viscosity, assumed constant, 

P    is the pressure 

fx, fy, fz   are the Coriolis parameter in the three respective directions 

 

Most 3-dimensional fluid dynamics problem can be described using the Navier-

Stokes equations as the governing equation. There are basically three major philosophies 

in approximating the solution to the Navier-Stokes equations. They are the direct 

numerical simulation, time averaged equations, and ensemble averaged equations. The 
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basis of the different approaches and its advantages and disadvantages will be explained 

in the subsequent sections.  

This work will focus on the ensemble averaged type Navier-Stokes equations or the 

Large Eddy Simulation equations. The Reynolds Averaged Navier-Stokes (RANS) 

equations are time averaged equations while the Large Eddy Simulation (LES) set of 

equations are the ensemble averaged family of the Navier-Stokes equations. The LES 

equations can be written as follows 

 ( ) 1i
i j ij T

j i j

u Pu u
t x x x x x

τ ν
ρ

i j

j i

u u⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂
+ + = − + +⎢ ⎥

∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦
 (2.1.5) 

For simplicity, the tensor notation is used to represent the three spatial directions, 

where substituting i=1,2,3 and j=1,2,3 with summation over repeated indices will 

produce the full set of 3-dimensional Navier-Stokes momentum balance equations in a 

spatially filtered field. Equation (2.1.5) is not much different from equations (2.1.2)-

(2.1.4) in terms of solving for the variables, however, the former contains physics and 

statistics which can be used to avoid having to perform a full direct numerical simulation 

(but requiring a turbulent closure model). 

The spatially filtered Navier-Stokes equations will be coupled with the 

incompressibility constraint or continuity equation, shown as equation (2.1.1), to describe 

the dynamics in the flow field. For cases of laminar flow with known boundary 

conditions, problems can be solved using the two sets of equations. However, for a 

turbulent flow problem, a closure for the equation is required. This closure will be further 

discussed in sections 2.3 and 2.4.  For the scope of this research, only incompressible 

fluid is considered.  

 

2.2 – Background on Turbulence Modeling 

 

Ideally numerical approximation of the Navier-Stokes equations can be obtained by 

discretizing the equation into very fine grids and directly solving the discretized 

equations. That is exactly the concept of the direct numerical simulation (DNS). Direct 

numerical simulation is by far the most accurate, however most naïve way to simulate 
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flows of any type. DNS, when implemented appropriately, does not require modeling of 

any terms and is therefore arguably the most complete method to solve the N-S equations. 

In order to capture the large scales and small scales of the slightest changes in velocities 

in a flow field, the resolution of the spatial and temporal grids has to be extremely high. 

Using DNS to perform calculations of a flow field for a finite amount of time requires 

tremendous amount of arithmetic operations. Sometimes, the amount of arithmetic 

required, is in the order of the Reynolds number cube O(Re3) [88], is so overwhelming 

that even the current state of the art computers are insufficient to resolve a practical 

engineering problem. Literatures have shown that simple problems can be carried out 

using DNS [56]; nonetheless the use of DNS is limited due to the affordability of 

computation power. Researchers therefore resort to the knowledge of statistics to simplify 

the Navier-Stokes equations to avoid performing a DNS. Among the well known 

statistical based Navier-Stokes equations are the Reynolds Averaged Navier-Stokes 

(RANS) equations and the Large Eddy Simulation (LES) equations, each having its own 

advantages and disadvantages. 

The RANS is a temporal averaged variation of the Navier-Stokes equations, proposed 

as an alternative to performing a full DNS. The idea of using statistics to tackle the 

turbulent flow problem had been documented in the mid 1890’s [88]. RANS was 

developed based on statistical analysis of turbulent flows. The governing equation of the 

RANS is very similar to that of the DNS, but the physical significance of each term is not. 

In the RANS formulation of the N-S equations, the governing equation was time 

averaged. As a result, another set of equations were obtained to describe the time 

averaged properties of the fluid dynamics, while the fluctuating components of the 

turbulence is modeled.  

The use of a turbulent model to describe the fluctuating quantities greatly reduces the 

computational effort because coarser grids are now possible. The arithmetic requirement 

of RANS is much less than the DNS, with at most, the equivalent order to the Reynolds 

number, O(Re) [88]. Because time averaging is used in the RANS equations, large and 

small scales of turbulence are modeled at the same time. This implies that the solution 

obtained from RANS may not be accurate due to the extensive modeling [88]. In contrast, 
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the LES formulation separate the turbulence scales and tend to resolve the large scale 

turbulence and model the small scale turbulence. The LES has found favor because it 

resolves the important scale in turbulence which contains important physics of flow and 

models the less important scales, i.e. the small scales. Therefore the LES approach is 

chosen for this study. Formal derivation of the LES set of equations will be provided in 

the subsequent section (section 2.3).  

 

2.3 - Large Eddy Simulation (LES) 

 

Large eddy simulation was also developed based on statistical averages of turbulent 

flows. It is no surprise that the governing equations for LES are strikingly similar to that 

of the RANS equations. Unlike the RANS, the LES resolves the large scale and models 

the small scale quantities. This can be done by taking the ensemble average of the N-S 

equations, by passing the N-S equations through a spatial filter with a known filter size. 

Hence the turbulent scales larger than the filter size are resolvable while turbulent scales 

smaller than the filter size are not. 

The fundamental LES decomposition is   

 ( , ) ( , ) '( , )u x t u x t u x t= +  (2.3.1) 

In this decomposition, ( , )u x t are the resolved scale or large scale quantity and the term 

 are known as the unresolved scale, or small scale quantities. The resolved and 

unresolved scale quantities are both spatial and temporal dependant. The properties that 

the RANS approach utilized to simplify its derivation are different from the LES 

decomposition, or more specifically 

'( , )u x t

RANS:   u u=   and  ' 0u =  

LES:   u u≠   and  ' 0u ≠  

In these relationships, the overbar denoted time averaging while tilde represents ensemble 

averaging. Due to this difference, the derivation of LES becomes more complicated than 

the RANS. The fundamental idea of the LES was based on scale separation statistics. As 

discussed in section 2.2, the RANS models all scales of turbulence, LES resolves the 
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large scale while modeling the small scales. This is the main advantage of LES 

formulation over the RANS formulation, as less modeling introduces less modeling errors.      

Before a formal derivation of the LES equations, it is helpful to first introduce the 

filtering concept. In the LES procedure, the main interest is to resolve the larger scales 

motion of the flow. The scales smaller than the wavelength of the spatial step, ∆xi needs 

to be extracted from the governing equation. To accomplish this, a low-pass filter is used. 

The generalized form of the filter [80] is  

 ( ) ( ) ( ) ( )( , ) , ,fi x t fi y t G x y dy fi x y t G y dy= − = −∫ ∫  (2.3.2) 

where G  is defined as the function for the low-pass filter and fi is the vector or scalar 

quantity of interest. The filter function can take on various forms, for example, the 

Gaussian filter, box filter, cutoff filter, etc. [53].  

The derivation of the LES sets of equations involves passing the Navier-Stokes 

equations through the previously defined filter, now called the grid filter. For simplicity, 

the equations will again be written in tensor notation. The filtered equation of continuity 

is obtained by using equation (2.3.1), namely  

 
( 'jj

j j

u u u
x x

∂ ∂ +
=

∂ ∂

)j  (2.3.3) 

Since the divergence-free condition has to be satisfied on large and small scales, therefore, 

by definition,   

 
'

0j

j

u
x

∂
=

∂
 (2.3.4) 

and hence the filtered continuity equation becomes  

 0j

j

u
x

∂
=

∂
 (2.3.5) 

Formulation of the momentum equation is not as straightforward. This is because the 

cross terms are non-linear. Neglecting the Coriolis effect, the grid filtered momentum 

equation becomes 

 ( ) 1i
i j

j i j j

u pu u
t x x x x x

ν
ρ

i j

i

u u⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂
+ = − + +⎢ ⎥

∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦
 (2.3.6) 
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The first term on the left hand side of equation (2.3.6) can be left as is, due to the 

commutative property of the filter with temporal derivatives. The treatment of the right 

hand side is similar to that of the continuity equation. The difficulties lie in the non-linear 

terms where such direct simplification is not possible. These non-linear terms are  

 ( ) ( )( )'i ji j i j
j j

u u u u u u
x x
∂ ∂ '⎡ ⎤= + +⎢ ⎥⎣ ⎦∂ ∂

 (2.3.7) 

and it becomes apparent that because ' 0u ≠ , equation (2.3.7) may only be expanded to 

 ( )( )' ' ' ' '
i j i j i ji j j i i

j j

u u u u u u u u u u u u
x x
∂ ∂⎡ ⎤ '

j
⎡ ⎤+ + = + + +⎢ ⎥⎢ ⎥ ⎣ ⎦⎣ ⎦∂ ∂

 (2.3.8) 

and none of the terms in equation (2.3.8) can be eliminated to simplify the expression to a 

usable form  

 
( )i j

j

u u
x
∂

∂  (2.3.9) 

 Therefore, the nonlinear term have to be treated differently. The only choice to formulate 

equation (2.3.7) into equation (2.3.9) is to introduce an additional modeled term τij, such 

that 

 ( )( )' '
i j i j i j i ji ju u u u u u u u u u ijτ⎡ ⎤+ + + − ≡ +⎢ ⎥⎣ ⎦

 (2.3.10) 

τij will now become the LES subgrid scale terms and will be modeled using a subgrid 

scale (SGS) closure model for the LES formulation. Substitute the above relationship 

back into the filtered Navier-Stokes equations, equation (2.3.6) gives 

 ( )( ) 1' 'i i
i j i j i ji j

j i

u pu u u u u u u u
t x x x x x

ν
ρ

⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞⎡ ⎤+ + + + − = − + +⎢⎜ ⎟⎢ ⎥⎣ ⎦∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎢ ⎥⎣ ⎦

j

j j i

u u
⎥  (2.3.11) 

and the equation will then leads to the usable form of the ensemble averaged Navier-

Stokes equations  

 ( ) 1i
i j ij

j i j

u pu u
t x x x x x

τ ν
ρ

i j

j i

u u⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂
+ + = − + +⎢ ⎥

∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦
 (2.3.12) 

With the exception of the subgrid scale terms, all other variable are resolvable and 

thus can be calculated directly. The following section, section 2.4, details the closure 

model for the LES set of equations.  
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Note that the arithmetic requirement for the LES is not as much as the DNS, however 

is greater than that of RANS. The approximate arithmetic of the LES is to the order of 

O(Re2) [88]. One important feature of the LES approach is that as the grid size 

approaches zero ( ), the LES set of equations will converge to the DNS equations. 

The only questionable part of the LES approximation is the small scale turbulent 

modeling, which is still a topic of research. Until a better solution is found to resolve all 

scales of turbulence, LES and its variants will remain a solid approximation for the 

Navier-Stokes equations.     

0ix∆ →

 

2.4 - Subgrid Scale Model  

 

Turbulent flow modeling involves approximation of the Navier-Stokes equations as 

well as providing a good closure model to mathematically describe the modeled 

velocities fluctuations. The complexity of turbulent flow simulation results from the way 

the Navier-Stokes equations are being solved [64], as well as the construction of the 

closure model. Failure to provide a closure model will result in an ill-posed mathematical 

problem, with the one exception of performing a DNS. As mentioned earlier, DNS is still 

unaffordable and not practical for solving modern engineering problems. Thus, the aim of 

a subgrid scale (SGS) model is to mimic the turbulence fluctuation statistics and convey 

the information back to the large resolved scale.  

Boussinesq paved the way for most turbulent models with his hypothesis that 

turbulent stresses are linearly proportional to mean strain rate [88]. The Boussinesq eddy 

viscosity assumption utilizes the property that the turbulent stresses are proportional to 

the mean velocity gradients, similar to the viscous stresses in laminar flows. Unlike the 

fluid viscosity, the turbulent eddy viscosity is not a fluid property. The turbulent eddy 

viscosity arises as simplified terms which relate the fluctuating velocities to the Navier-

Stokes equations. Boussinesq’s eddy viscosity assumption reduces the complexity of 

calculating the turbulent stresses based on the fluctuating velocities and instead relates 

the stresses as eddy viscosities, as the modeling of the eddy viscosity are far simpler and 

can be conveniently be correlated back to fundamental statistics. Many subgrid scale 
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models used in LES adopted this hypothesis and were built from this idea. The classical 

Smagorinsky models, dynamic models and mixed models were among the better known 

SGS models that took advantage of this hypothesis. The mathematical formulation of the 

classical Smagorinsky model is given as 

 2 ijij t Sτ ν= −  (2.4.1) 

where,  

 2 2
ijt sC Sν = ∆  (2.4.2) 

 1
2

i j
ij

j i

u uS
x x

⎛ ⎞∂ ∂
= +⎜⎜ ∂ ∂⎝ ⎠

⎟⎟  (2.4.3) 

 2ij ij ijS S= S  (2.4.4) 

In the classical Smagorinsky subgrid scale model, Cs, called the Smagorinsky model 

coefficient, is a parameter multiplier that typically ranges in between 0.06 to 0.2, and is 

problem dependant ([47], [53], [57]).  

Though the classical Smagorinsky subgrid scale model is simple, a clear disadvantage 

to this model is that the Smagorinsky model coefficient is neither a constant, nor a 

parameter. Many questions can be raised regarding the problem dependant nature of Cs. 

Therefore, prescribing the value of Cs as a constant coefficient might not be the best way 

to compute the spatially dependant stress terms. In addition, it makes little sense to assign 

the same Cs value for the whole flow field. Velocity fluctuations are different in the 

various regions of the domain, and hence so should Cs.  

  Nevertheless, numerous computational work ([5], [7], [69], [85]) has been 

successfully done using specified values of Cs. Specifying a single value for any 

simulation reduces the computation effort, but the simulation results can only be a crude 

approximation. This deficiency observed from the classical Smagorinsky SGS 

formulation makes it less desirable for the current work. However, because of its 

simplicity, the classical Smagorinsky model will still be considered as a secondary 

turbulent model. 

The dynamic subgrid scale model attempts to address the shortcoming of having a 

constant coefficient. Instead of predefining the parameter Cs, the strategy of the dynamic 
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model is to locally evaluate Cs using information from neighboring cells. To achieve this, 

Germano et al. [57] was one of the first to apply a coarser filter to the grid filtered 

equation of motion and established a mathematical relationship for the variables at the 

two different filter levels. Similar to the procedure in deriving the LES set of equations, 

the LES set of equations (Equation (2.3.12)) is again passed through another filter, a 

larger filter called the test filter, resulting in similar set of equations 

 ( ) 1i
i j ij

j i j

u pu u T
t x x x x x

ν
ρ

i j

j i

u u⎡ ⎤∂ ∂ ∂ ∂ ∂ ∂
+ + = − + +⎢ ⎥

∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦
 (2.4.5) 

Previously the definition of the shear stresses was, i jij i ju u u uτ ≡ − . Similarly, for the test 

filter . Applying the Germano identityi jij i jT u u u u≡ −  [57], the relationship of τij and Tij 

can be established 

 i j i jij ij ijL T u u u uτ= − = −  (2.4.6) 

Lij is better known as the Leonard stresses. Lij can also be quantified using the resolved 

scale velocities. The terms Tij and τij contains the spatially varying Cs coefficients. 

Recall that for incompressible fluid, 

 2 22 ij ijij sC S Sτ = − ∆  (2.4.7) 

and in the same way, Tij can be expressed using the twice filtered quantities 

 2 22 ij ijij sT C S= − ∆ S  (2.4.8) 

Since the Leonard stress terms, Lij, is obtained from ijτ , ijτ will have to be averaged based 

on the same test filter scale. Performing the ensemble averaging gives 

 2 22 ij ijij sC S Sτ = − ∆  (2.4.9) 

It is important to point out that the ensemble averaging performed on ijτ  is not the same 

as simply passing the grid filtered variables through the test filter. The first term on the 

right hand side of equation (2.4.6) should result from the same ensemble average. 

Substituting ijτ and Tij into equation (2.4.6), with ij ij ijL T τ= − , gives 

 ( )2 2 2 22 2ij ij ij ijij s sL C S S C S= − ∆ − − ∆ S  (2.4.10) 
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A standard assumption is that Cs will be scale invariant, i.e. Cs will remain 

“approximately the same” within the test filer width, hence 

  2 2( ) ( ) 2
s sC C sC∆ ≈ ∆ ≈  (2.4.11) 

and thus, 

 2 2 2 22 2ij ij ij ijs sC S S C S S− ∆ = − ∆  (2.4.12) 

Further manipulation can be made to factor out Cs

 2 2 22 ij ij ij ijij sL C S S S S⎡ ⎤= −∆ + ∆⎢ ⎥⎣ ⎦
 (2.4.13) 

For simplicity, the expression is trimmed down to 

 2ij ijL CM=  (2.4.14) 

where, 2 2
ij ij ij ijijM S S S S= −∆ + ∆  and 2

sC C= . The variation of C within the test filter 

can now be minimized by using the least squares approximation. The procedure [82] will 

be shown for completeness, and is as follows: 

Let e be the least squared error term within the test filter  

 ( )2
2ij ije L CM= −  (2.4.15) 

  (2.4.16) 2 4 4ij ij ij ije L CL M C M= − + 2 2

Minimizing the squared error with respect to C leads to 

 ( 24 4ij ij ij ij ij ij
e L L CL M C M M
C C

∂ ∂
= − +

∂ ∂
) 0=

0

 (2.4.17) 

 4 8ij ij ij ijL M CM M− + =  (2.4.18) 

 
2

ij ij

ij ij

L M
C

M M
=  (2.4.19) 

The algebraic tensor operations for equation (2.4.19) restrict cancellation of terms in the 

numerator and denominator. Instead, the numerator and denominator should be calculated 

separately before the division operation is carried out. The steps shown above will 

complete the dynamic subgrid scale model, thus providing a closure for the LES set of 

equations based on flow statistics, and not a specified value. 
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 In this work, the test filter variables are computed using the trapezoidal rule as used in 

Ding [46] and Zang et al. [129]. The implementation of the test filter follows three 

succession steps ([46], [129]) 

 

( )
( )
( )

, , 1, , , , 1, ,

, , , 1, , , , 1,

, , 1 , , , , 1

*

** * * *

** ** **
, ,

1 2
4
1 2
4
1 2
4

j k l j k l j k l j k l

j k l j k l j k l j k l

j k l j k l j k l
j k l

λ λ λ λ

λ λ λ λ

λ λ λ λ

+ −

+

+ −

= + +

= + +

= + +

−
 (2.4.20) 

where λ represent the grid filtered variables. 

The dynamic SGS model is much more appealing than the traditional Smagorinsky 

SGS model because of its capability to calculate Cs based on local spatial information 

instead of a user specified constant as in the case of the classical Smagorinsky model. 

Hence, local physics is represented in the calculations. Another distinct feature of the 

dynamic subgrid scale model is that the magnitude of the dynamic coefficient diminishes 

accordingly as the wall is approached. The traditional Smagorinsky subgrid scale model 

failed to produce this characteristic, and consequently requires the use of a damping 

function. The dynamic subgrid scale model is an improvement over the traditional 

Smagorinsky subgrid scale model and for this reason and is used as the primary turbulent 

model in this work. 

 

2.5 - Anisotropic Grids Treatment for Smagorinsky Model 

 

Variants of Smagorinsky type SGS models use an equivalent length scale as its filter 

length, shown as ∆ in equation (2.4.2). In a three dimensional models, a common practice 

is to follow Deardorff [43], which computes the equivalent length scale as  

 ( )
1
3

x y z∆ = ∆ ∆ ∆
 (2.5.1) 

In cases where the filter length is exaggerated in certain a direction, it is problematic 

to define the correct length scale which the SGS filter operates [104]. In such instance, 

the SGS filter is defined by more than one length scale. Calculating ∆ based on the cubic 
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root of the grid sizes will be problematic because the equivalent length scale will not be a 

good representation of the grid discretization in the direction of the smallest grid size and 

thus create more uncertainties and errors to the SGS model. Scotti and Meneveau [103] 

suggested an adjustment factor for the Smagorinsky type models as a remedy. The 

function f(ag1,ag2) is used as a multiplication factor to the Smagorinsky length scale, and 

can be approximated by     

 2
1 2 1 1 2 2

4( , ) cosh (ln ) ln ln (ln )
27

f ag ag ag ag ag ag 2⎡ ⎤= − +⎣ ⎦  (2.5.2) 

where, 1 2
1 2

2 3

,ag ag∆ ∆
= =

∆ ∆
 

The general rule for ag1 and ag2 is that the grid length scale is always ordered as ∆1 ≤ ∆2  

≤∆3. The adjustment factor, f(ag1,ag2) will be multiplied with the equivalent length scale, 

equation (2.5.1), to give an “adjusted” length scale. For clarity, when Equation (2.5.2) is 

coupled with equation (2.4.1) the resulting expression is 

 2
1 22[ ( ( , ))] ij ijij sC f ag ag S Sτ = − ∆  (2.5.3) 

In this work, equation (2.5.2) is applied to the traditional Smagorinsky model, the 

secondary turbulent model. 

 

2.6 - Finite Volume Numerical Scheme 

 

To perform numerical calculations of the Navier-Stokes equations and the continuity 

equation, the equations have to be discretized. The finite volume discretization is used for 

this study. The finite volume discretization is a localized mass and momentum balance 

preserving numerical scheme which is a desirable trait for the application of this research. 

A locally conservative scheme is important because for open channel flow problems, the 

free surface location varies with time. This variation often requires the vertical grid size 

to be adjusted based on local flux balance. Local conservations will be advantageous 

because mass and momentum balance is necessary in every cell to achieve good accuracy 

in critical parts of the flow field.  
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The complete filtered Navier-Stokes equations can be rewritten in the most general 

form, using tensor notation, as  

 ( ) 1 ( ) hi i j i j ij
j

z
j i j j i j i o i

u u u p u u gh g dz f u
t x x x x x x x x

µ τ ρ
ρ ρ ρ

⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ = − + + + − − +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

∫  (2.6.1) 

where,   

τij are the shear stress terms divided by fluid density 

g is the gravitational force 

h is the depth of water  

ρo is the reference density, density of the fluid 

f is the Coriolis parameter, and 

p is the dynamic pressure term 

 

The pressure tensor term shown in equation is the dynamic pressure, or the pressure 

deviation from hydrostatic pressure. The Navier-Stokes equations can be rewritten as 

follows, analogous to Bradford and Katopodes [14]. 

 s
t x y z

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂ ∂
u f g h  (2.6.2) 

where   represent the different velocities vectors in the Cartesian coordinate system. 

The other variables shown in equation (2.6.2) are shown as follows 

u

2

2

*

0

*

02

0

xx xy

xy yy

xz yz

h

z
xz h

yz
z

zz

u p gh uv
uv v p gh
uw vw

g dz fv
x

uw
gvw s dz fu

y
w p

τ τ
τ τ
τ τ

ρ
ρ

τ
ρτ

ρ
τ

⎛ ⎞ ⎛ ⎞− + + −
⎜ ⎟ ⎜ ⎟

= − = − + +⎜ ⎟ ⎜ ⎟
⎜ ⎟⎜ ⎟− −⎝ ⎠⎝ ⎠
⎛ ⎞∂

− +⎜ ⎟
∂⎜ ⎟−⎛ ⎞ ⎜ ⎟∂⎜ ⎟ ⎜ ⎟= − = − −⎜ ⎟ ∂⎜ ⎟⎜ ⎟− +⎝ ⎠ ⎜ ⎟

⎜ ⎟
⎜ ⎟
⎝ ⎠

∫

∫

f g

h

 
The pressure terms, p, found in the f, g and h are the dynamic pressures divided by the 

density, ρo.  

Here the shear stresses are defined as 
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2xx T
uv
x

τ ∂
=

∂
, 2yy T

v
y

τ ν ∂
=

∂
, 2zz T

w
z

τ ν ∂
=

∂
 

xy T
u v
y x

τ ν
⎛ ⎞∂ ∂

= +⎜ ⎟∂ ∂⎝ ⎠
, xz T

u w
z x

τ ν ∂ ∂⎛ ⎞= +⎜ ⎟∂ ∂⎝ ⎠
,  yz T

v w
z y

τ ν
⎛ ⎞∂ ∂

= +⎜ ⎟∂ ∂⎝ ⎠
 

Unlike Bradford and Katopodes [14], the vertical and horizontal eddy diffusivities are 

not treated separately in the diffusion terms. Hence, the assumption of isotropic 

turbulence must hold. The other implicit assumptions are Boussinesq approximation and 

Boussinesq eddy viscosity assumption. The Boussinesq approximation is used when there 

are differences in density in the fluid, namely due to salinity or temperature changes in 

the domain. This assumption will take into consideration the densities gradients and 

adjust for the buoyancy forces.  

A transformation can be performed to the equations to convert from the Cartesian 

coordinate system to a generalized coordinate system for computation. The purpose of 

the transformation is to create flexibility of the code to take on different types of 

geometry and bathymetry for the governing equations. The transformation into general 

coordinates also provide convenience in calculating odd shaped cells and defines each 

cell as a unit cube, and additionally, placing the velocity vectors perpendicular to its 

respective cell faces, as shown in Figure 2-1.  

Due to the numerical scheme and coordinate transformation, scalar variables such as 

the dynamic pressure, temperature or concentrations are located at the center of the cell.  

The transformation is done once before the numerical computation with the transform 

information stored for later use at each time step. Once computations are done, the 

general coordinate system is transformed back to the Cartesian coordinate system as the 

post processing procedure. For the vertical direction, the transformation variables are 

recalculated at every time step after each update of the free surface. 

The resulting governing equations in generalized coordinate are: 

 
Du

F H P s
Dt

ξ
ξ ξ ξ ξ+ + + =  (2.6.3) 

 
Du

F H P s
Dt

η
η η η η+ + + =  (2.6.4) 
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Du

F P s
Dt

ζ
ζ ζ ζ+ + =  (2.6.5) 

where,  Fi are the convection and diffusion terms,   

      

 

 

 

 

 

ζ 

ξ 
η uζ j,k,l+1/2

uξ j-1/2,k,l uη j,k-1/2,l

 
 

Figure 2-1: A typical computational cell in the generalized coordinate system. 

 27



             Hi are the free surface gradient terms, 
            Pi are the pressure gradient terms, and 

            si are the source or sink terms 

The fluxes and shear stresses are lumped into the variable Fi in equations (2.6.3) 

through (2.6.5) and are defined as 

( ) ( ) ( )2
d

udzF u u u u u w
dt

ξ
ξ ξ ξξ ξ η ξη ξ ζ ξζτ τ τ

ξ η ζ ζ
∂∂ ∂ ∂

= − + − + − −
∂ ∂ ∂ ∂

 

( ) ( ) ( )2
d

udzF u u u u u w
dt

η
η ξ η ξη η ηη η ζ ηζτ τ τ

ξ η ζ ζ
∂∂ ∂ ∂

= − + − + − −
∂ ∂ ∂ ∂

 

( ) ( ) ( )2
d

udzF u u u u u w
dt

ζ
ζ ξ ζ ξζ η ζ ηζ ζ ζζτ τ τ

ξ η ζ ζ
∂∂ ∂ ∂

= − + − + − −
∂ ∂ ∂ ∂

 

The variable wd is an additional term arisen from the deformation of the vertical grid due 

to the free surface change, and will be shown later in section 2.8, equation (2.8.3). The 

free surface terms are 

h hH g l lξ ξξ ξηξ η
⎛ ⎞∂ ∂

= +⎜ ⎟∂ ∂⎝ ⎠
 

h hH g l lη ξη ηηξ η
⎛ ⎞∂ ∂

= +⎜ ⎟∂ ∂⎝ ⎠
 

The pressure terms are 

p p pP l l lξ ξξ ξη ξζξ η ζ
∂ ∂ ∂

= + +
∂ ∂ ∂

 

p p pP l l lη ξη ηη ηζξ η ζ
∂ ∂ ∂

= + +
∂ ∂ ∂

 

( )z
p p pP l l lζ ξζ ηζ ζζ ζ
ξ η ζ

∂ ∂ ∂
= + + +

∂ ∂ ∂
 

All shear stress terms can be expanded into the form 

2 T

u u u
l l lξ ξ

ξξ ξξ ξη ξζτ ν ξ

ξ η ζ
∂ ∂ ∂⎛ ⎞

= + +⎜ ⎟∂ ∂ ∂⎝ ⎠
 

2 T

u u u
l l lη η

ηη ξη ηη ηζτ ν η

ξ η ζ
∂ ∂ ∂⎛ ⎞

= + +⎜ ⎟∂ ∂ ∂⎝ ⎠
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22 T z

u u u u
l l lζ ζ ζ

ζζ ξζ ηζ ζζτ ν ζ ζ

ξ η ζ ζ
∂ ∂ ∂ ∂⎛ ⎞

= + + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
 

( ) ( ) ( )T u l u l u l u l u l u lξη ξ ξη η ξξ ξ ηη η ξη ξ ηζ η ξζτ ν
ξ η ζ

⎛ ⎞∂ ∂ ∂
= + + + + +⎜ ⎟∂ ∂ ∂⎝ ⎠

 

( ) ( ) ( ) 2
T z

u
u l u l u l u l u l u l ξ

ξζ ξ ξζ ζ ξξ ξ ηζ ζ ξζ ξ ζζ ζ ξζτ ν ζ
ξ η ζ ζ

∂⎛ ⎞∂ ∂ ∂
= + + + + + +⎜ ⎟∂ ∂ ∂⎝ ⎠∂

 

( ) ( ) ( ) 2
T z

u
u l u l u l u l u l u l η

ηζ η ξζ ζ ξη η ηζ ζ ηη η ζζ ζ ηζτ ν ζ
ξ η ζ ζ

∂⎛ ⎞∂ ∂ ∂
= + + + + + +⎜ ⎟∂ ∂ ∂⎝ ⎠∂

 

 

where, 
2 2

x ylξξ ξ ξ= +  x x y ylξη ξ η ξ η= +  x x y ylξζ ξ ζ ξ ζ= +  

2 2
x ylηη η η= +  x x y ylηζ η ζ η ζ= +  2 2

x ylζζ ζ ζ= +  

 

Relationships of the contravariant velocities,uξ ,uη , and uζ , to the Cartesian velocities 

are 

x yu u vξ ξ ξ= +  

x yu u vη η η= +  

x yu u v wζ zζ ζ ζ= + +  

The vertical Cartesian velocity components are not shown for uξ and uη. This is due to the 

orthogonality of the horizontal coordinates with the vertical coordinate where the grid 

metric terms ξz and ηz vanishes. The source terms follows the same transformation and 

are 

x x y ys s sξ ξ ξ= +  

x x y ys s sη η η= +  

x x y y z zs s s sζ ζ ζ ζ= + +  

The transformation assumes a linear mapping from the Cartesian coordinate space (x, y, z) 

to the generalized coordinate space (ξ, η, ζ), resulting in the grid metric terms ξx, ξy , ηx, 

ηy, ζx, ζy, and ζz appearing in the equations of the generalized coordinate.  
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The continuity equation retains the same form, but with different coordinate variables.  

 0
u u uξ η ζ

ξ η ζ
∂ ∂ ∂

+ + =
∂ ∂ ∂

 (2.6.6) 

The free surface equation (see section 2.8) after coordinate transformation, is 

 ( ) ( ) 0
h h

d d

h u dz u dz
t ξ ηξ η− −

∂ ∂ ∂
+ +

∂ ∂ ∂∫ ∫ =  (2.6.7) 

The resulting equations (equations (2.6.3) through (2.6.7)) can then be used for the 

hydrodynamic calculations. 

 There are two different ways to obtain the LES sets of equations in the generalized 

coordinate. The first way is to pass the equation through the grid filter before the 

coordinate transformation. The second way is to filter the Navier-Stokes equations after 

the coordinate transformation is performed. In this work, the former approach is taken. 

For convenience, the variables are assumed to be LES decomposed variables and the tilde 

notation will be omitted from this point onwards.  

 

2.7 - Time Splitting Scheme  

 

Time discretization is as important as the spatial discretization. There are three basic 

types of time discretization, fully explicit, semi implicit and fully implicit. In this study, 

the Crank Nicholson (semi-implicit) scheme is used to discretize the pressure and free 

surface terms. The Crank Nicholson time discretization is a second order accurate method, 

thus preserving the overall discretization to second order accuracy.  

The viscous and advection terms were discretized using the explicit predictor-

corrector method. This approach is stable, and does not require additional smoothing 

filters ([9], [14]). As a result of the time discretization, the 3-dimensional momentum 

equations becomes 
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( ) ( )( )

( ) ( )( )

( )
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∆

−
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∆

n

ξ

η  (2.7.1) 

where, the superscript n, n+1/2 and n+1 are current, intermediate and new time levels, 

respectively. The use of a predictor–corrector scheme, demands the computation of 

variables at the intermediate time level, n+1/2. The velocities at the intermediate time 

level can be calculated from the predictor step using the velocities at the current time 

level. In short, the equations are 

 

( )

( )

( )

1
2

1
2

1
2

2

2

2

n nn

n nn

n nn

tu u F H P s

tu u F H P s

tu u F P s

ξ ξ ξ ξ ξ ξ

η η η η η η

ζ ζ ζ ζ ζ

+

+

+

∆
= − + + −

∆
= − + + −

∆
= − + −

 (2.7.2) 

Once these velocities are obtained, the advection, diffusion, and source terms at the 

intermediate time level can be estimated. These intermediate values of the variables will 

then be used to compute the final velocities. But, before the computation of the final 

velocities for each time step, the free surface and pressure terms have to be included as 

part of the iterative procedure.  

To clearly show the vertical implicit treatment of the diffusion terms, equation (2.7.1) 

can be written as  

( )
11 1

1/ 22 1
n nn n

n n
d d

u u u m u m
F w H P w H P s

t
ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξθ θ
ζ ζ ζ ζ

++
+ +− ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞

+ − + − − − − + − − =⎜ ⎟ ⎜ ⎟∆ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
ξ ξ

( )
11 1

1/ 22 1
n nn n

n n
d d

u u u m u m
F w H P w H P s

t
η η η η η η

η η η η ηθ θ
ζ ζ ζ ζ

++
+ +− ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞

+ − + − − − − + − − =⎜ ⎟ ⎜ ⎟∆ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
η
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11 1
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ζ ζ
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− ∂ ∂ ∂ ∂⎛ ⎞
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where the vertical diffusion terms were separated from the horizontal diffusion terms. 

The vertical diffusion terms are   

2T T

u u
m v m v m vT

uξ η ζ
ξ η ζζ ζ ζ

∂ ∂
= = =

∂ ∂
∂
∂

 

Since these vertical diffusion terms are treated implicitly, discretization of these terms 

will result in tridiagonal matrix systems. The solution to the tridiagonal matrix system 

can be obtained using the tridiagonal matrix algorithm (TDMA), also known as the 

Thomas algorithm. 

Next, some explanations are provided on the free surface and dynamic pressure 

treatment, and how these equations can be integrated into the momentum balance 

equations.  

 

2.8 - Free Surface Treatment 

 

A free surface boundary is different from the other boundary conditions because the 

computation of the free surface is not as straightforward as prescribing known fluxes or 

constants at the boundary. A free surface can deform with time and further complicate the 

analysis. The Marker-and-Cell (MAC) method [33], volume of fluid (VOF) method [76], 

level set method [105], and etc. are among the available techniques to solve for free 

surface deformation. In this work, the free surface was computed using a deforming grid 

system in the vertical direction to account for the adjustment of depth caused the change 

in free surface. The deforming grid in the vertical direction required additional terms to 

be added to the Navier-Stokes momentum equations to account for the change of free 

surface elevation in time. The temporal dependant terms for grid movement are written as  

 Du u u x u y u z
Dt t x t y t z t

∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂ ∂ ∂ ∂
 (2.8.1) 

Since the horizontal grids does not vary in time, the second and third terms at the right 

hand side of the equation above goes to zero, hence 

 Du u u z
Dt t z t

∂ ∂ ∂
= +

∂ ∂ ∂
 (2.8.2) 
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In rare cases where the horizontal grids also changes with time, all terms will have to be 

included in the analysis. The left over terms will adjust for the change in the vertical grids. 

Rearranging the equation, 

 d
u Du u z Du uw
t Dt z t Dt z

∂ ∂ ∂
= − = −

∂ ∂ ∂
∂
∂

 (2.8.3) 

The upper case differential operator represents the Lagrangian frame of reference 

while the lower case represents the Eulerian frame of reference. Substituting the equation 

into the Navier-Stokes equations, one will obtain the Navier-Stokes momentum balance 

equations with the deforming grid adjustment. The free surface variables can now be 

factored into the computation by using the principle of mass balance. The basic 

continuity equation has the form 

 0u v w
x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂
 (2.8.4) 

The derivation on the free surface equation requires the use of integration of the 

continuity equation. Performing the integration to the continuity equation in the vertical 

coordinate gives 

 0
h h h

d d d

u v wdz dz dz
x y z− − −

∂ ∂ ∂
+ +

∂ ∂ ∂∫ ∫ ∫ =  (2.8.5) 

From the Leibnitz rule, the equation becomes 

 0
h h h

d d d
udz vdz wdz

x y z− − −

∂ ∂ ∂
+ +

∂ ∂ ∂∫ ∫ ∫ =  (2.8.6) 

Further simplifying the equation gives 

 [ ] 0
h h h

dd d
udz vdz w

x y −− −

∂ ∂
+ + =

∂ ∂∫ ∫  (2.8.7) 

The last term in equation (2.8.7) is defined by [ ] ( ) (h

d
w w h w d

− )= − −  and utilizing the 

impermeable bottom condition, the equation can be rewritten to 

 ( ) 0
h h

d d
udz vdz w h

x y− −

∂ ∂
+ + =

∂ ∂∫ ∫  (2.8.8) 
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The kinematic free surface boundary condition states that, ( ) hw h
t

∂
=

∂
. Thus, using 

the kinematic free surface boundary condition, one obtains the equation used to 

determine the free surface location  

 ( ) ( ) 0
h h

d d

h udz vdz
t x y− −

∂ ∂ ∂
+ +

∂ ∂ ∂∫ ∫ =  (2.8.9) 

Equation (2.8.9) can now be transformed in the general coordinate system. The 

transformation yields 

 ( ) ( ) 0
h h

d d

h u dz u dz
t ξ ηξ η− −

∂ ∂ ∂
+ +

∂ ∂ ∂∫ ∫ =  (2.8.10) 

Bradford and Katopodes [14] and Bradford and Sanders [15] have used this approach 

with success, without resorting to artificial diffusion to stabilize the free surface 

computation. The limitation to this approach is that this procedure is unable to cope with 

wave breaking phenomena. If the surface does break, other techniques should be used to 

approximate the free surface.  

The temporal discretization of the free surface equation using the θ method resulted 

in  

 
( ) ( )

( ) ( ) ( )

11

1 0

nn n h h

d d

n
h h

d d

h h u dz u dz
t

u dz u dz
y

ξ η

ξ η

θ
ξ η

θ
ξ

++

− −

− −

⎛ ⎞− ∂ ∂
+ +⎜ ⎟∆ ∂ ∂⎝

⎛ ⎞∂ ∂
+ − + =⎜ ⎟∂ ∂⎝ ⎠

∫ ∫

∫ ∫

⎠  (2.8.11) 

Spatially discretizing equation (2.8.11) then yields,  

 

( ) ( )
( ) ( )

( )
( ) ( )

( ) ( )

1 1

1/ 2, , 1/ 2, ,1
, 1 1

1
, 1/ 2, , 1/ 2,

1/ 2, , 1/ 2, ,
,

1
, 1/ 2, , 1/ 2,

1

n n
nl

j k l j k ln
j k n n

l
j k l j k l

n n
nl

j k l j k ln
j k n n

l
j k l j k l

u z u z
h t

u z u z

u z u z
h t

u z u z

ξ ξ

η η

ξ ξ

η η

θ

θ

+ +

+ −+

+ +
=

+

+ −

=
+ −

−

⎡ ⎤∆ − ∆
⎢ ⎥+ ∆ =⎢ ⎥+ ∆ − ∆⎢ ⎥⎣ ⎦

⎡ ⎤∆ − ∆
⎢ ⎥− − ∆ ⎢ ⎥+ ∆ − ∆⎢ ⎥⎣ ⎦

∑

∑

 (2.8.12) 

where, ξ, η and ζ  are direction contiguous to the j, k, and l indices respectively, and will 

be used repeatedly from here on. At the n+1 time level, the velocities required are 

approximate velocities that do not take into consideration the dynamic pressure terms, i.e. 

setting p=0. Since the dynamic pressure terms are not considered in the momentum 
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equation (see first 3 equations in time splitting scheme, equations (2.7.1)), only 

intermediate values of F and s are known, the approximate velocities were estimated 

from  

 ( ) ( )1/ 21 11
nn n nu u t F s tH tHξ ξ ξ ξ ξ ξθ θ

++ += − ∆ − − − ∆ − ∆ n  (2.8.13) 

 ( ) ( )1/ 21 11
nn n nu u t F s tH tHη η η η η ηθ θ

++ += − ∆ − − − ∆ − ∆ n  (2.8.14) 

 ( ) 1/ 21 nn nu u t F sζ ζ ζ ζ

++ = − ∆ −  (2.8.15) 

As mentioned earlier, because the horizontal velocities were calculated independent 

of the diffusion terms, discretizing the diffusion terms in each direction resulted in a 

simple tridiagonal matrix, A, for each direction. In matrix form, the horizontal 

components of the approximate velocities in the ξ direction is  

 
1 1n nAU H Uξ ξ ξ

1n+ + ++ =  (2.8.16) 

upon further mathematical manipulation, equation (2.8.16) gives 

  (2.8.17) 
1 1 1 1 1n nA AU A H A Uξ ξ

− + − + −+ = 1n
ξ

+

1n
ξ

Simplifying equation (2.8.17) yields 

 
1 1 1n nU A U A Hξ ξ

+ − −= − +

 (2.8.18) 

Analogous relationship for the Uη vector can be obtained. In the solution process, the 

inverse of the tridiagonal, matrix, A-1 is required. The inverse is calculated from the 

Thomas algorithm (TDMA). Un+1 is now a function of Un and Hn+1. Substituting the 

approximate velocities back into the free surface equation, the equation becomes  
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( )
( ) ( )

( ) ( )

( )
( ) ( )

( ) ( )

( ) ( )( )( )

1 1

1/ 2, 1/ 2,21
, 1 1

, 1/ 2 , 1/ 2

1/ 2, , 1/ 2, ,
,

1
, 1/ 2, , 1/ 2,

1/ 2

1/ 2

1

1

n n

j k j kn
j k n n

j k j k

n n
nl

j k l j k ln
j k n n

l
j k l j k l

nn n

j

H D H D
h t

H D H D

u z u z
h t

u z u z

u t F s tH z

t

ξ ξ

η η

ξ ξ

η η

ξ ξ ξ ξ

θ

θ

θ

θ

+ +

+ −+

+ +

+ −

+ −

=
+ −

+

+

⎧ ⎫−⎪ ⎪− ∆ =⎨ ⎬
+ −⎪ ⎪⎩ ⎭

⎡ ⎤∆ − ∆
⎢ ⎥− − ∆ −⎢ ⎥+ ∆ − ∆⎢ ⎥⎣ ⎦

− ∆ − − − ∆ ∆

∆

∑

( ) ( )( )( )
( ) ( )( )( )
( ) ( )( )( )

, ,

1/ 2

1/ 2, ,

1/ 21

, 1/ 2,

1/ 2

, 1/ 2,

1

1

1

k l

nn n
nl

j k k

nn nl

j k l

nn n

j k l

u t F s tH z

u t F s tH z

u t F s tH z

ξ ξ ξ ξ

η η η η

η η η η

θ

θ

θ

+

−

+
=

+

+

−

⎡ ⎤−⎢ ⎥
⎢ ⎥
⎢ ⎥− ∆ − − − ∆ ∆ +⎢ ⎥
⎢ ⎥
⎢ ⎥− ∆ − − − ∆ ∆ −
⎢ ⎥
⎢ ⎥
⎢ ⎥− ∆ − − − ∆ ∆
⎢ ⎥⎣ ⎦

∑

 (2.8.19)  

The right hand side of equation (2.8.19) consists of the known variables and can be 

calculated. The left hand side of the equation is free surface values at the current time 

level. The variable D denotes total water depth at a cell face.  

As shown in Bradford and Katopodes [14], discretizing the equation with a centered 

difference scheme (shown in Appendix A), yields an equation with nine unknown free 

surface terms, h. Equation (2.8.19) can then be summarized as 

  (2.8.20) 
1 1 1 1 1 1

1 1, 1 2 1, 3 1, 1 4 , 1 5 , 6 , 1 7 1, 1

1 1
8 1, 9 1, 1

n n n n n n
j k j k j k j k j k j k j k

n n
j k j k

a h a h a h a h a h a h a h

a h a h RHS

+ + + + + +
− − − − + − + + −

+ +
+ + +

+ + + + + +

+ + =

1n+

The coefficients a1 through a9 are as follows, with a5 being the coefficient at the center of 

the stencil (diagonal term in the matrix) 

( )
( ) ( )2 1/ 2, , 1/ 2

1 4
j k j k

l D l D
a g t

ξη ξη
θ − −

+
= − ∆  

( )
( ) ( )2 1/ 2, , 1/ 2

3 4
j k j k

l D l D
a g t

ξη ξη
θ − +

+
= − ∆  

( )
( ) ( )2 1/ 2, , 1/ 2

7 4
j k j k

l D l D
a g t

ξη ξη
θ + −

+
= − ∆  

( )
( ) ( )2 1/ 2, , 1/ 2

9 4
j k j k

l D l D
a g t

ξη ξη
θ + +

+
= − ∆  
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( ) ( )
( ) ( )2 , 1/ 2 , 1/ 2

2 1/ 2, 4
j k j k

j k

l D l D
a g t l D

ξη ξη

ξξθ − +

−

⎧ ⎫−⎪ ⎪= − ∆ +⎨ ⎬
⎪ ⎪⎩ ⎭

 

( ) ( )
( ) ( )2 1/ 2, 1/ 2,

4 , 1/ 2 4
j k j k

j k

l D l D
a g t l D

ξη ξη

ηηθ − +

−

⎧ ⎫−⎪ ⎪= − ∆ +⎨ ⎬
⎪ ⎪⎩ ⎭

 

( ) ( )
( ) ( )2 1/ 2, 1/ 2,

6 , 1/ 2 4
j k j k

j k

l D l D
a g t l D

ξη ξη

ηηθ + −

+

⎧ ⎫−⎪ ⎪= − ∆ +⎨ ⎬
⎪ ⎪⎩ ⎭

 

( ) ( )
( ) ( )2 , 1/ 2 , 1/ 2

8 1/ 2, 4
j k j k

j k

l D l D
a g t l D

ξη ξη

ξξθ + −

+

⎧ ⎫−⎪ ⎪= − ∆ +⎨ ⎬
⎪ ⎪⎩ ⎭

 

( ) ( ) ( ) ( ) ( ){ }2
5 1/ 2, 1/ 2, , 1/ 2 , 1/ 2

1
j k j k j k j k

a g t l D l D l D l Dξξ ξξ ηη ηηθ
− + −

= + ∆ + + +
+

 

Assembly of equation (2.8.20) over the entire surface domain creates a matrix with 

nine diagonal nonzero terms. The matrix can then be solved to obtain the solution for the 

value of free surface elevation at the current time level. To aid in solving the resulting 

matrix, a preconditioned biconjugate gradient method is used, with the preconditioner 

being the diagonal elements of the matrix [99]. The solution of the matrix will then be 

used to update the grid metric terms and as well as the approximate velocities. The 

subsequent step will be to obtain the dynamic pressure terms for the equations and update 

all velocities such that mass balance can be satisfied.     

 

2.9 - Pressure Poisson Equation  

 

The computation of the dynamic pressure terms is rather similar to that of the free 

surface terms outlined earlier. In the discussions thus far, the dynamic pressures were 

omitted from the momentum equation when calculating the free surface terms. If 

dynamic pressure is not desired (i.e., hydrostatic problems), then the velocities at n+1 

time level may simply be calculated based on the incompressibility constraint as 

mentioned earlier. However, if dynamic pressure is to be considered, corrections have to 

be made to the velocities, to include the dynamic pressures into the Navier-Stokes 
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equations, in order to satisfy the incompressibility constraint. This requires the solution of 

the Pressure Poisson Equation (PPE). Similar to the free surface calculation procedure, 

the dynamic pressure calculation requires intermediate information, specifically the 

approximate velocities. The approximate velocities are updated to the n+1 time level 

after the solution of the dynamic pressure is obtained. The relationships are 

 

( )
( )
( )

1 1 1

1 1 1

1 1 1

1

1

1

n n n

n n n

n n n

u u tP tP

u u tP tP

u u tP tP

n

n

n

ξ ξ ξ ξ

η η η η

ζ ζ ζ

θ θ

θ θ

θ θ

+ + +

+ + +

+ + +

= − ∆ − − ∆

= − ∆ − − ∆

= − ∆ − − ∆ ζ

=

 (2.9.1) 

Since this procedure is the last step to compute and update the final velocities for a 

full temporal iteration, the solution should be directly related to the continuity equation to 

preserve mass. ui
n+1 has to satisfy the continuity equation, and therefore at the n+1 time 

level this relationship must hold true 

  (2.9.2) 1 1 1 1 1 1
1/ 2, , 1/ 2, , , 1/ 2, , 1/ 2, , , 1/ 2 , , 1/ 2 0n n n n n n

j k l j k l j k l j k l j k l j k lu u u u u uξ ξ η η ζ ζ
+ + + + + +

+ − + − + −− + − + −

Substituting ui
n+1 from equation (2.9.1) into the discretized continuity equation, equation 

(2.9.2), resulted in  

 

( )( ) ( )( )
( )( ) ( )( )
( )( ) ( )( )

1 1 1 1

1/ 2, , 1/ 2, ,

1 1 1 1

, 1/ 2, , 1/ 2,

1 1 1 1

, , 1/ 2 , ,

1 1

1 1

1 1

n n n n n n

j k l j k l

n n n n n n

j k l j k l

n n n n n n

j k l j k l

u tP tP u tP tP

u tP tP u tP tP

u tP tP u tP tP

ξ ξ ξ ξ ξ ξ

η η η η η η

ζ ζ ζ ζ ζ ζ

θ θ θ θ

θ θ θ θ

θ θ θ θ

+ + + +

+ −

+ + + +

+ −

+ + + +

+ −

− ∆ − − ∆ − − ∆ − − ∆ +

− ∆ − − ∆ − − ∆ − − ∆ +

− ∆ − − ∆ − − ∆ − − ∆
1/ 2

0=

 (2.9.3) 

Rearranging equation (2.9.3) yields, 

 

( ) ( ) ( ) ( )
( ) ( )

( )( ) ( )( )
( )( ) ( )( )

1 1 1 1

1/ 2, , 1/ 2, , , 1/ 2, , 1/ 2,

1 1

, , 1/ 2 , , 1/ 2

1 1

1/ 2, , 1/ 2, ,

1 1

, 1/ 2, ,

1 1

1 1

n n n n

j k l j k l j k l j k

n n

j k l j k l

n n n n

j k l j k l

n n n n

j k l j

tP tP tP tP

tP tP

u tP u tP

u tP u tP

ξ ξ η η

ζ ζ

ξ ξ ξ ξ

η η η η

θ θ θ θ

θ θ

θ θ

θ θ

+ + + +

+ − +

+ +

+ −

+ +

+ −

+ +

+

∆ − ∆ + ∆ − ∆

∆ − ∆ =

− − ∆ − − − ∆ +

− − ∆ − − − ∆

( )( ) ( )( )
1/ 2,

1 1

, , 1/ 2 , , 1/ 2
1 1

k l

n n n n

j k l j k l
u tP u tPζ ζ ζ ζθ θ

−

+ +

+ −

+

− − ∆ − − − ∆

l−
+

 (2.9.4) 

The left hand side of equation (2.9.4) contains the unknown variables while the right 

hand side of the equation contains the known variables. For simplicity, the notation RHS 

will be used to denote the right hand side components of equation (2.9.4). Rewriting 

equation (2.9.4) gives 

 38



 
( ) ( ) ( ) ( )
( ) ( )

1 1 1 1

1/ 2, , 1/ 2, , , 1/ 2, , 1/ 2,

1 1

, , 1/ 2 , , 1/ 2

n n n n

j k l j k l j k l j k

n n

j k l j k l

tP tP tP tP

tP tP RHS

ξ ξ η η

ζ ζ

θ θ θ θ

θ θ

+ + + +

+ − +

+ +

+ −

∆ − ∆ + ∆ − ∆

∆ − ∆ =

l−
+

+

 (2.9.5) 

The equation contains the dynamic pressure gradient terms, denoted by P and is centrally 

discretized into a more computable form. This operation yields 

 

1 1 1 1 1 1
1 1, , 1 2 , 1, 1 3 , , 1 4 , 1, 1 5 1, , 1 6 1, 1,

1 1 1 1 1 1 1
7 1, , 8 1, 1, 9 , 1, 10 , , 11 , 1, 12 1, 1, 13 1, ,

1

n n n n n n
j k l j k l j k l j k l j k l j k l

n n n n n n n
j k l j k l j k l j k l j k l j k l j k l

b p b p b p b p b p b p

b p b p b p b p b p b p b p

b

+ + + + + +
− − − − − + − + − − −

+ + + + + + +
− − + − + + − +

+ + + + + +

+ + + + + +
1 1 1 1 1 1

4 1, 1, 15 1, , 1 16 , 1, 1 17 , , 1 18 , 1, 1 19 1, , 1
n n n n n n
j k l j k l j k l j k l j k l j k lp b p b p b p b p b p RHS+ + + + + +
+ + − + − + + + + + ++ + + + + =

 (2.9.6) 

where, 

( 1/ 2, , ) ( , , 1/ 2)
1 4

j k l j k ll l
b t ξζ ξζθ − −+

= − ∆ , ( , 1/ 2, ) ( , , 1/ 2)
2 4

j k l j k ll l
b t ηζ ηζθ − −+

= − ∆  

( , 1/ 2, ) ( , , 1/ 2)
4 4

j k l j k ll l
b t ηζ ηζθ + −+

= ∆ , ( 1/ 2, , ) ( , , 1/ 2)
5 4

j k l j k ll l
b t ξη ξηθ + −+

= ∆  

( 1/ 2, , ) ( , 1/ 2, )
6 4

j k l j k ll l
b t ξη ξηθ − −+

= − ∆ , ( 1/ 2, , ) ( , 1/ 2, )
8 4

j k l j k ll l
b t ξη ξηθ − ++

= ∆  

( 1/ 2, , ) ( , 1/ 2, )
12 4

j k l j k ll l
b t ξη ξηθ + −+

= ∆ , ( 1/ 2, , ) ( , 1/ 2, )
14 4

j k l j k ll l
b t ξη ξηθ + ++

= − ∆  

( 1/ 2, , ) ( , , 1/ 2)
15 4

j k l j k ll l
b t ξζ ξζθ − ++

= ∆ , ( , 1/ 2, ) ( , , 1/ 2)
16 4

j k l j k ll l
b t ηζ ηζθ − ++

= ∆  

( , 1/ 2, ) ( , , 1/ 2)
18 4

j k l j k ll l
b t ηζ ηζθ + ++

= − ∆ , ( 1/ 2, , ) ( , , 1/ 2)
19 4

j k l j k ll l
b t ξζ ξζθ + ++

= − ∆  

( 1/ 2, , ) ( 1/ 2, , ) ( , 1/ 2, ) ( , 1/ 2, )
3 ( , , 1/ 2) 4

j k l j k l j k l j k l
j k l

l l l l
b t l ξζ ξζ ηζ ηζ

ζζθ − + − +
−

− + −⎛ ⎞
= − ∆ +⎜ ⎟

⎝ ⎠
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− + −⎛ ⎞
= − ∆ +⎜ ⎟

⎝ ⎠
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− + −⎛ ⎞
= − ∆ +⎜ ⎟

⎝ ⎠
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j k l j k l j k l j k l
j k l

l l l l
b t l ξη ξη ηζ ηζ

ηηθ + − + −
+

− + −⎛ ⎞
= − ∆ +⎜ ⎟

⎝ ⎠
 

( , 1/ 2, ) ( , 1/ 2, ) ( , , 1/ 2) ( , , 1/ 2)
13 ( 1/ 2, , ) 4

j k l j k l j k l j k l
j k l

l l l l
b t l ξη ξη ξζ ξζ

ξξθ + − + −
+

− + −⎛ ⎞
= − ∆ +⎜ ⎟

⎝ ⎠
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( 1/ 2, , ) ( 1/ 2, , ) ( , 1/ 2, ) ( , 1/ 2, )
17 ( , , 1/ 2) 4

j k l j k l j k l j k l
j k l

l l l l
b t l ξζ ξζ ηζ ηζ

ζζθ + − + −
+

− + −⎛ ⎞
= − ∆ +⎜ ⎟

⎝ ⎠
 

( ) ( ) ( ) ( ) ( ) (( )10 1/ 2, , 1/ 2, , , 1/ 2, , 1/ 2, , , 1/ 2 , , 1/ 2j k l j k l j k l j k l j k l j k lb t l l l l l lξξ ξξ ηη ηη ζζ ζζθ − + − + − += ∆ + + + + + )  

The sets of equations were solved using the same technique as the free surface equation; 

however, with more involved computational effort due to the greater number of 

unknowns.  The assembly of equation (2.9.6) over the entire domain yields a nineteen-

diagonal system of equations. If the horizontal grid is orthogonal to the vertical grid, the 

matrix can be reduced into a seven-diagonal form. The preconditioned biconjugate 

gradient is again used to solve for the dynamic pressures. 

In some simulations where the pressure converges very slowly, it is best to provide a 

Dirichlet boundary condition to the pressure.  This pins the pressure at a point or cell in 

the domain, helping to accelerate the pressure iterations. The pressure at any single point 

is not as important as the pressure gradients to solve the ensemble averaged Navier-

Stokes equations. Therefore, an arbitrary assignment of pressure at a single node/cell will 

not affect the solution of the Navier-Stokes equations. This is especially true in closed 

conduit flow simulation. In open channel flows, the free surface is an essential part of the 

computation and the pressure boundary condition at the free surface has to be zero 

(atmospheric pressure), by definition.  

Once the solution to the PPE is obtained, the determination of the hydrodynamics in 

the Navier-Stokes equations is complete for one time step. The numerical procedure can 

then proceed to solve the scalar transport equation. 

 

2.10 - Transport Equation for Air Bubbles 

 

Air entrainment in the form of small spherical air bubbles is considered in this model 

and is the primary focus of this work. Small air bubbles can be modeled as scalars and 

transported via fluid convection. Unlike the Lagrangian family of tracking techniques, the 

proposed method does not track individual or interfaces of air bubbles, but reports the 

concentration of air bubbles for each computation cell in the domain. This procedure of 

tracking air bubble concentrations require far less memory and arithmetic effort 
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compared to the Lagrangian techniques, which demands tracking precise location of 

individual air bubble. It is not the intent of this work to be able to track every individual 

air bubbles and its position. Tracking the concentration of air bubbles will be adequate 

for the application of pump station design and modeling. The typical scalar transport 

equation will be used to track air concentration. The typical scalar transport equation is 

written as 

 
2 2 2

2 2 2T
u v w D s

t x y z x y z φ
φ φ φ φ φ φ φ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + + − + + =⎜∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠
⎟  (2.10.1) 

where, φ  are the scalar quantities being transported, 

             sφ is the source terms of the scalar quantities, and  

        DT is the eddy diffusivities 

Experimental studies from different authors suggested that the diffusivity of air bubbles is 

in the same order of magnitude as the eddy viscosity of the fluid ([16], [23], [67]). It is 

assumed that the diffusivity for air bubbles will take on the positive values of turbulent 

eddy viscosities. In generalized coordinate system, the equation has the form  

 
fc fc fc

s
t

ξ η ζ
φ

φ
ξ η ζ

∂ ∂ ∂∂
+ + + =

∂ ∂ ∂ ∂
 (2.10.2) 

with the variable fc being, 
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 (2.10.3) 

The grid metric terms are the same as defined in equation (2.6.3) through (2.6.5). 

Temporal discretization of equation (2.10.3) takes on the same predictor-corrector 

scheme used for the LES momentum equations. For the sake of completeness, the 

computation of the predictor and corrector steps are shown again and are as follows 

 
1
2

2

n
n n u u ut s

dt
ξ η ζ

φ

φ φ φ φφ φ ζ
ξ η ζ ζ

+ ∂ ∂ ∂⎛ ⎞∆ ∂
= − + + − −⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

dz   (2.10.4) 
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As indicated, the procedure for solving the scalar transport equation is similar to that 

of the predictor step in the momentum equation. The scalar quantities at the n+1/2 time 

level will be computed from the known values at the n time level. The corrector step will 

then proceed, using the known scalar quantities at the n+1/2 time level.  

 

2.11 - Extrapolation using Monotone Upstream Scheme for 

Conservation Law (MUSCL scheme) 

 

The treatment of the advection terms requires special attention to avoid oscillations 

when computing surface with adverse flux gradients. The Monotone Upstream Scheme 

for Conservation Law (MUSCL) is used to treat the advection fluxes. This scheme 

provides a second order accurate solution even for problems which exhibit shocks, 

discontinuities, or large gradients [120] and is one of the most widely used scheme for 

capturing shock in compressible flows [33]. The successful application of the MUSCL 

scheme have been documented for 2-dimensional [27] and 3-dimensional [79] problems. 

To compute an advection flux, the MUSCL procedure is used to extrapolate 

piecewise linear approximation of flow variable to the cell faces making use of the 

gradients to the left and right of the cell face. Bradford and Katopodes [14] described the 

MUSCL scheme advection flux equation as  

 ( ) ((1
2 L R R Lf u u uψ ψ ψ ψ ψ⊥ ⊥ ⊥= = + − − ))  (2.11.1) 

The notation ψ is a generic representation of an advected flow variable and u⊥ is used 

to represent the velocity component perpendicular to the cell face in consideration. The 

subscripts L and R are the reconstructed or extrapolated quantities on the left and right 

side of a cell face. The extrapolation enables the evaluation of flow variables in a 

staggered grid at intended cell faces, which are used to calculate the advection fluxes. In 

equation (2.11.1) ψL and ψR are defined as 
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1, ,1, ,

1
2 j k lR j k l ξψ ψ ψ ++= − ∆

 (2.11.2) 

 
, ,, ,

1
2 j k lL j k l ξψ ψ ψ= + ∆

 (2.11.3) 

The figure that follows illustrate the boundary of cell with indices j,k,l and how a flow 

variable can be calculated on the cell face labeled E in the ξ direction. The variables on 

the E face of the cell can be constructed from two different directions, the upward 

extrapolation from cell j,k,l, which will produce ψL and the downward extrapolation from 

cell j+1,k,l, which gives ψR. 

In order to calculate ψL and ψR, the gradients from both sides have to also be 

calculated. An upwind discretization scheme is used to evaluate the average gradients, 

ξψ∆ . This technique was pioneered by Van Leer [120] in 1979. The average gradients 

can be calculated in different ways, and in the scope of this work, the beta family of 

averages is used. The criteria for calculating ξψ∆ is  

 

( ) ( )( )sign(a)min max a , , min 0
=

0

b a b ab

ab

β
ψ

⎧ ⎫>⎪ ⎪∆ ⎨ ⎬
≤⎪ ⎪⎩ ⎭0  (2.11.4) 

where 1 2β≤ ≤ , ,j k j ka 1,ψ ψ −= − and 1, ,j k j kb ψ ψ+= − . Setting β  to 2 yields a less 

dissipative Superbee average, while if the values of β  approaches 1, solution obtain will 

have more numerical dissipation. In this work, β  is chosen to be 2. Although the 

procedure shown above is only for a single direction, the MUSCL scheme can easily be 

extended to the other directions with the same outlined procedure.  
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Figure 2-2: MUSCL extrapolation scheme for advection flux in an arbitrary axis. 
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2.12 - General Boundary Conditions 

 

In numerical modeling, simulations are performed for a finite spatial region or 

domain size. However, environments outside of the domain of interest have to be 

considered as changes in the outside environment affect the final solution of the system. 

Boundary conditions are used as constraints to artificially truncate the region of interest 

in such a way that the fluid behavior outside the region of interest can be described 

correctly by the prescribed boundary conditions. It should be emphasized that boundary 

conditions are very important as they can affect the stability and accuracy of a numerical 

scheme [34], and consequently the validity of the solution if not implemented correctly. 

A chosen boundary condition should not introduce more additional unknowns and instead, 

the applied boundary condition should assist in solving the problem by either 

extrapolation or one sided difference [54].   

The present application considered the use of two main types of boundaries, namely 

the Dirichlet type (specified) boundary conditions and the Neumann type boundary 

conditions. The Dirichlet boundary condition is one of the simplest types of boundary 

condition. Dirichlet boundary requires the specification of values on the boundary plane, 

and therefore conditions on the boundary are fixed regardless of changes in the domain. 

A Neumann boundary is a fixed flux boundary, and thus is a derivative type boundary. 

The Neumann boundary conditions make use of a specified gradient value to obtain 

solution at a particular boundary.  

In this work, the main boundaries are the inflow, outflow, side boundaries and bottom 

boundary. Flow simulations require different boundaries conditions for different sides of 

the domain. Prescribing wrong boundary conditions may result in erroneous solutions. 

Therefore, it was essential to understand the different boundary conditions in order to 

appropriately choose the correct boundary for its respective application. Diffusive fluxes 

at the boundaries are intentionally left out of the discussion because the influences of 

these terms are far less compared to the convective terms.   
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Inflow boundary Conditions 
 

The inflow boundary condition is best specified based on results obtained from a 

previous simulation [54]. A good inflow condition contains complete velocity field at the 

inflow section with all its fluctuating components at each time step. Dirichlet or 

Neumann type boundary condition can be used for the inflow boundary. For 

homogeneous isotropic turbulence, the periodic boundary condition can be applied to the 

inflow boundary. The periodic boundary condition basically applies the result at the 

outflow boundary to the inflow boundary, creating a looping effect to the domain. In 

some sense, the periodic boundary condition is similar to the Dirichlet boundary 

condition in which the velocities at the inflow boundary is supplied with known values, 

but the boundary information changes at each time step.  

A specified velocity boundary is primarily used at the inlet boundary of a domain. At 

the inlet, information of the incoming flows are passed on from this boundary to the 

interior nodes. Knowledge on the behavior of the inlet velocities profile is needed in 

order to specify such boundary condition. One important aspect of the inlet specified 

velocity boundary condition is that the inlet velocities are the main driving forces to the 

domain, especially for convection dominated flow. The flux generated by the inlet 

velocities will be convected downstream and thus influence the temporal and spatial 

solution in the domain.  

In a scenario where the downstream condition influences the upstream boundary, a 

specified inflow velocity profile may not be appropriate as this will physically mean that 

the flowrate of the problem changes as depth changes. Therefore a Neumann type 

boundary can be applied to prescribe the flux across a boundary. By using the Neumann 

boundary, the flowrate can be maintained whenever adjustment in depths occurs.  

The only disadvantage of using the Dirichlet and Neumann boundaries for the inflow 

condition is that for channel flow simulation, the inflow condition must contain turbulent 

fluctuation components. Providing random fluctuations to the velocities component is not 

sufficient as the poor temporal and spatial correlation of the velocities fluctuation will be 

damped out very rapidly, as will be explained in section 2.14. It is up to the researcher to 

decide on the method to specify the individual velocities fluctuations, be it statistical 
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randomly generated fluctuations, quasi-random, or empirical data from experimentation. 

However, the object is still to describe the inflow velocities such that the system can be 

described completely and correctly. 

 

Outlet boundary conditions  
 

At the outflow boundary several different combination of boundary condition can be 

used. A typical choice for the outlet boundary condition of a channel flow simulation is 

the constant flux boundary condition, a Neumann type boundary condition. The boundary 

can be described as  

constantl

lx
α∂

=
∂

 

The variable αi denotes a generic variable to represent either a scalar or vector 

quantity in its coordinate direction. To use this boundary condition, flux across the 

boundary has to be prescribed. In simple incompressible steady flow problems, the 

constant is simply set to zero. This extrapolation may not hold true for unsteady flows 

with shocks. It is best to understand the flow in the domain of interest before 

implementing this boundary condition, particularly in determining the value of the flux. 

For the unsteady flow condition described, the use of the unsteady convective boundary 

can be used [54]. The convective boundary condition is sometimes known as the 

radiation or Orlanski boundary condition [97]. The Orlanski boundary condition has the 

form 

0
i

C
t xα
α α∂ ∂

+ =
∂ ∂

 

The basic equation of the Orlanski boundary is also similar to that of the Sommerfeld 

radiation condition, with the exception that Cα be treated as a propagation velocity which 

is a function of its neighboring grid points. However, depending on the application of this 

boundary, Cα may be substituted with the averaged normal velocity across the exit 

boundary ([60] , [115]) or simply a velocity that is independent of the outflow plane but 

still maintain the overall conservation [54].  
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Although outflow boundary conditions can take several forms, the objective of this 

boundary condition remains the same - to minimize or eliminate the reflection of waves 

at the boundary and provide a “realistic” truncation of the actual domain. 

 

No-slip boundary 
 

The no-slip boundary condition is a Dirichlet type boundary condition. The no-slip 

boundary is used as physical boundary for a solid wall. In theory, all velocities on the no-

slip boundary must be equals to zero (or the velocity of a moving wall) 

0iu =  

The use of the no-slip boundary is straight forward. Mass and momentum transfer 

across the wall boundary is forbidden. Although simple, the no-slip boundary does not 

describe the material property or the roughness associated with the surface of a boundary, 

unless detailed bathymetry profile is provided, which include the protruding roughness 

elements. As far as surface roughness is concerned, the no-slip boundary assumes a 

smooth surface. Whenever the no-slip boundary condition is applied, the chosen grid size 

must be very small in order to resolve the tangential velocities adjacent to this boundary 

where the velocities are rapidly changing [127] and the velocity gradients are very large. 

Unless the flow is a laminar type flow, the use of no-slip boundary is computationally 

demanding and therefore is limited.  

 

Free slip boundary 
 

The free-slip boundary is used to describe the continuation of a domain which is 

infinite in length. The use of free slip condition assumes symmetry of the flow for planes 

parallel to the boundary with a zero convective flux, for the direction perpendicular to the 

boundary. In simulations of 2-dimensional problems with a 3-dimensional model, the free 

slip boundary is often used for the direction that is of least important. In some instances, 

this boundary condition can be used to describe an infinitely deep domain, where the 

conditions outside the domain will not have significant influence on the flow inside the 
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domain. An example of this scenario is the free stream region of a flow. In this work, the 

free slip boundary is often used to truncate the flow domain to a manageable length, 

assuming symmetry in the direction of the truncation.  

   

Free surface boundary condition 
 

Calculation of the free surface equation should be accompanied by the necessary 

boundary conditions. The specified surface elevation boundary is nothing more than 

restricting the free-surface movement at the boundary. More than likely, the specified 

surface elevation boundary condition will be coupled with the specified velocity 

boundary condition to re-create the inlet at a controlled section, such as the sluice gate. In 

supercritical flows where the upstream boundary acts as the control, the downstream free 

surface boundary has to be an open boundary where the gradient of the surface elevation 

is assumed to be zero, or simply computed using the method of characteristics. 

For subcritical flows, the fixed surface elevation boundary condition is used for 

downstream control and this boundary can be coupled with a fixed flux boundary. The 

upstream boundary can be of a fixed velocity or flux, and the free surface adjustment will 

be calculated based on the changes of flux throughout the domain.   

 

2.13 - Near Wall Treatment 

 

Flow domain with solid wall boundaries often poses a problem when resolving the 

velocities near the wall. This is especially clear when evaluating the gradient terms, as the 

near wall velocity gradients are often very large. In practice, there are two options 

available to obtain the velocity profile near the wall [4], namely: 

1. The use of a wall function  

2. Grid refinement method 

The later option requires that additional grids to be specified near the boundary to resolve 

the velocity profile in the inner region. Grid refinement requires more nodes to be added 

near and to the wall, consequently increasing computation effort. Typically, this approach 
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is taken when simulations are done in a very fine grid size, like performing a DNS 

simulation, or using non-uniform grid in the direction perpendicular to the wall. The 

reason for using such fine grids near the wall is to break down the large velocity gradients 

into manageable magnitude, thus avoiding instability.      

The use of wall function involves specifying an empirical function previously 

obtained, e.g. the law of the wall or the power law function to regions bounded by the 

boundary layer. This method is especially popular for simulation of high Reynolds 

number flows [94]. The law of the wall has proved to be a popular choice. Wall functions 

are convenient to use and do not require intensive arithmetic effort. Using the wall 

function relates to either the velocities or shear in the boundary layer. An example of the 

wall function is [127]  

 1 ln zu
zκ

+
+

⎛= ⎜
⎝ ⎠

⎞
⎟  (2.13.1) 

Equation (2.13.1) is formally known as the law of the wall function for fully rough 

boundaries. The main idea of using the law of the wall function is to truncate the near 

wall region, and hence no need for very fine grid resolution. Several other forms of the 

wall function can be found and examples of these wall functions are the power law ([1], 

[68]) and the quadratic drag law function ([48], [72], [78]).  

 
1
nzu U

δ∞
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 (2.13.2)  

The former example, shown as equation (2.13.2), can be used analogous to the log law 

function by providing a velocity at the boundary, while the later example, shown as 

equation (2.13.7) uses the drag coefficient to obtain the shear across the boundary. The 

power law function was not used in this work and further elaboration is unnecessary. The 

quadratic drag law wall function and its implementation will be further elaborated later in 

this section. 

The idea of using the partial slip boundaries or wall functions is to provide a 

“fictitious” boundary directly above the physical boundary so that the tangential 

velocities at this boundary are not equal to zero, therefore avoiding the calculation of the 

high velocity gradients explained earlier. This requires that a slip velocity or the shear 
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stress be calculated at the boundary to account for the truncated physical boundary. The 

shear stress can be related to a shear velocity, uτ, [17], namely  

 2 w

w

uu
zτ

τ ν
ρ

∂
= =

∂
 (2.13.3) 

To make use of equation (2.13.3), the gradient of the normal velocities has to be known. 

The direct application of this equation will introduce difficulties because to calculate the 

shear stress, the velocity gradient needs to be calculated near the wall. Linear 

interpolation of the velocity profile at the boundary is erroneous in approximating the 

gradient of the log profile. Thus, another approach had to be taken to calculate the slip 

velocity for better approximation of the gradient. The slip velocity can be calculated with 

the following relationships [127] 
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Where z’ is the distance of the first grid location away from the wall, κ is the Von 

Karmon constant , typically set to the value of 0.41, and z+ can be generalized to [127]  

30
skz+ =  

for a fully turbulent flow over a rough bed. The variable ks is also known as the 

equivalent roughness. Shear at the wall can then be calculated based on equation (2.13.3). 

However, since the discretization of the governing equations produced a staggered grid 

system, and in addition, the implicit treatment of the vertical diffusion terms requires that 

velocities be solved simultaneously, equation (2.13.4) through (2.13.6) cannot be used. 

Another approach must be taken to apply the wall function as the bottom boundary 

condition, that could provide a wall shear stress for the direct calculation in the implicit 

iteration procedure of the vertical diffusion terms.   
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In this work, the quadratic drag law was used to approximate the bottom wall shear. 

The quadratic drag law is often used in numerical models ([9], [48], [72], [78]). The shear 

stress at the wall is written as  

 w dw iC u uτ = i  (2.13.7) 

where,  Cdw is the wall drag coefficient. 

The wall drag coefficient can be calculated from knowing the distance of the first grid 

away from the wall and the wall roughness, given as [48]   

 

2

30ln( )
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s

C
z

k

κ
=

⎛ ⎞
⎜ ⎟
⎝ ⎠  (2.13.8) 

The implementation of equation (2.13.7) and (2.13.8) provides a wall shear stress 

which can then be used as part of the calculation involved in the Navier-Stokes equations. 

Equation (2.13.7) and (2.13.8) were employed as a wall model to provide shear as a 

boundary condition as needed. This eliminated the need to resolve the problem in the 

vertical direction to the scale of less than the laminar sublayer. Since the solution of the 

implicit procedure required that the velocities be solved simultaneously, the quadratic 

drag law was the appropriate choice of wall model for this work. The use of this wall 

model eliminated the need for a slip velocity to be calculated at the wall boundary, and 

instead provided a shear based on the velocity of the first grid above the wall. The shear 

was then associated with vertical diffusion terms to be solve simultaneously. To illustrate 

the implementation of the wall boundary, the LES equations will only be written for the 

vertical diffusion component because of the implicit treatment of this term. For simplicity, 

only one direction, ξ, will be shown, and is given as 
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t
ξ ξ ξ ξθ

ζ ζ

+ − ∂ ∂⎛ ⎞
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RHS

S

 (2.13.9) 

Further discretization of this equation will give a tridiagonal matrix system relating the 

terms uξ,l-1, uξ,l and uξ,l+1 shown below as 

  (2.13.10) ( )2
, 1 , , 1 , , 12d l l T l l lu t w u u u u u RHξ ξ ξ ξ ξ ξθ ν ζ+ − +⎡ ⎤ ⎡ ⎤− ∆ − + − + =⎣ ⎦ ⎣ ⎦

Following that, the coefficients in the matrix are  
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Where al is the lower diagonal coefficient, au being the upper diagonal coefficient and ad 

is the diagonal coefficient in the matrix. The wall boundary, can be applied as follows 

 ( )1d d la a a wbc= + −  (2.13.11) 

where the term (1-wbc) is added to the diagonal term of the first row in the matrix, where 

the wall function is applied. The term wbc is obtained by equating the basic definition of 

the wall shear stresses, equation (2.13.3) with that of the quadratic drag law, equation 

(2.13.7). The relationship is shown as 

 dw w
u v C u u
z

τ∂
= =

∂
 (2.13.12) 

discretizing the equation will yield 

  1l l
dw l l

u u C u u
z

ν−−
=

∆
 (2.13.13) 

rearranging this equation gives  

 (1 1dw l l
l l l

C u u z
u u u bcw

ν−

∆
= − = − )  (2.13.14) 

Substituting equation (2.13.14) into equation (2.13.10) gives the diagonal terms as 

described in equation (2.13.11).  The term bcw for a no-slip condition is 2 while for a free 

slip boundary, bcw is set to 1. 

The disadvantage of using the partial slip boundary is that the computation domain 

lacks the real characteristics that define the energy dissipation near the wall. This 

weakness is apparent when the dynamic SGS is used to model the turbulent dissipation. 

Absence of the correct boundary information from the wall will lead to inaccurate closure 

for the dynamic SGS model. Arguments can be made that the shear stress or partial slip 

velocity provided will be sufficient for the subgrid scale modeling. This argument can 

only be true when the standard Smagorinsky model is used as the SGS model. The 

dynamic SGS model takes into consideration the velocities components at the grid and 

test filter levels, and thus requires these information at the wall boundaries as well. 

Unless correct and accurate information accompanies the partial slip wall boundary 

condition, the dynamic SGS model might not be able to capture the correct small scale 
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energy dissipation generated near the wall. This deficiency had been recognized and 

attempts to improve on the near wall SGS modeling are still in progress ([17], [89]). The 

simplest, but not necessarily the best way, to overcome this deficiency is to employ the 

simple mixing length eddy viscosity model with an ad-hoc wall damping function ([17], 

[98], [123]). The direct calculation of the eddy viscosity is as simple as applying the 

equation found in [17] 
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 (2.13.15) 

More sophisticated methods may involve the use of nested grids [17] along the wall or 

overlaying finer grid zone into the first computational cell (also known as the Two-Layer 

Model, [98]). Then the Reynolds stresses are directly computed, though inaccuracy may 

arise in the nested grid level.  

 

2.14  - Turbulent Inflow Generation 

 

Turbulent inflow specification is another challenge and is still actively being 

researched ([40], [41], [42], [45], [73], [84]). In the case of laminar flows, inflow 

boundary condition can be specified as just the mean velocity profile. Laminar flows are 

viscous forces dominated flow and thus, diffusion is controlled only by the property of 

the working fluid, namely the molecular viscosity. The velocity fluctuations in laminar 

flows are negligible. Contrary to the laminar flows, the nature of turbulent flows is 

different in terms of energy production and dissipation. In turbulent flows, energy is 

dissipated or gained (backscattering) not only at molecular level, but also by the large and 

small eddies produced from the velocities fluctuations. Unless a ‘long’ domain is 

provided to allow the flow to evolve from a laminar flow to a turbulent flow, specifying a 

mean velocity profile is simply insufficient to describe the turbulent properties at the 

inflow boundary.  

A realistic inflow boundary condition for turbulent flows includes the mean velocities 

profile plus the respective velocity fluctuations of each component, as described in the 
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LES decomposition, shown as equation (2.3.1). Intuitively, the simplest way to prescribe 

the velocity fluctuations are to randomly generate numbers and scale the numbers to the 

magnitude desired, and repeating this process for the inflow boundary for each time step. 

The velocities fluctuations generated using this method are also known as ‘white noise’ 

fluctuations [77]. Generating ‘white noise’ fluctuations is not the correct approach to 

describe turbulence, as there are essentially little to none spatial or temporal correlations 

in the velocities fluctuations. Or simply put, not enough energy containing eddies at the 

low wave number range. The pseudo turbulence will disappear after a short period of 

simulation time, leading to a laminar flow solution.  

Periodic boundary condition is applicable if the initial condition is perturbated with 

spatially correlated data. Having the periodic boundary condition saves the hassle of 

inflow data generation for each time step, and has been used in channel flows with 

success ([46], [92]). In simple flow conditions such as channel flow or duct flow 

simulations, the periodic boundary is applicable. Flows in complex geometries and 

bathymetry may not have the luxury of applying the periodic boundary condition. Flows 

with complex geometry and bathymetry may result in non-homogeneous turbulence, and 

thus inflow turbulent boundary condition is still required.   

The inflow boundary condition chosen for this work was from the work of Klein et al. 

[77]. A digital filter was utilized to create two-point correlations between data points with 

a specified length and time scale. The digital filter is first defined as  

 
f

f
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u b rm n+
=−

= ∑  (2.14.1) 

where, 

 rm represent a series of data with zero mean, 0mr = , and unit variance, 1m mr r = .  

bn are the filter coefficients, 

Nf represents the spatial or temporal extent of the filter. 

  

The autocorrelation function can then be written as  
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This equation ties the filter coefficients and the autocorrelation function of um into one 

expression. The filter can also be extended for 3-dimensional applications, simply by 

convolution of filters in the three spatial directions, resulting in  

 jkl j k lb b b b= ⋅ ⋅  (2.14.3) 

Klein et al. also showed another form of interpretation for equation (2.14.2) in an 

engineer’s perspective. For normal application, the autocorrelation function is 

represented by the notation Ruu(x,r) where r denotes a distance vector and r=|r|, a 

magnitude distance or the radius of a sphere filter. Typically, r is chosen to be a multiple 

of the grid size. In the late stage of a homogeneous turbulence, the autocorrelation 

function for a fixed time is written [77] as  
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The above function satisfy the basic properties of Ruu(0)=1, and lim ( ) 0r uuR r→∞ = and 

the length scale can be prescribed. The simplified autocorrelation function in discretized 

form is shown as 
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with the filter coefficients 
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The generation of the inflow data thus uses the simplified equation (2.14.6) along 

with equation (2.14.3) to yield a two dimensional arrays of spatially correlated data for 

every time step. Using the Taylor hypothesis, the data is also autocorrelated temporally.  

The procedure for the digital filter generation of turbulent inflow data is easy to code 

and robust for different types of applications, however may not be divergence free. To 

ensure that the divergence free criteria is met, changes are made.  

In this study, only two components of the velocities fluctuations were prescribed 

while the fluctuations in the third component were obtained from the continuity equation. 

This ensured that divergence free condition was satisfied and the fluctuating velocities 

contained energy at both high and low wave numbers. All turbulent flow simulations 

utilized the inflow boundary fluctuations outlined above unless otherwise stated. 

 

2.15 - Time Step and Stability Criteria 

 

In numerical modeling, it is customary to ensure that a reasonable time step size be 

chosen to produce optimal and stable simulations. Choosing large time steps may lead to 

instability while excessively small time steps require longer run time. The numerical 

model used in this study is nonlinear. Therefore it was difficult to perform a thorough 

stability analysis.  

As shown in section 2.7, the explicit predictor-corrector method was used for the 

viscous and advection terms. For that reason, the Courant-Friedrichs-Lewy (CFL) 

stability condition has to be satisfied. The CFL condition states that the sum of the 

Courant numbers has to be less than or equal to unity [2] in each cell. The CFL condition 

is defined as 
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u t
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∆
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In addition to the CFL condition, the summation of the diffusion number has to be less 

than 0.5 in each cell. This criteria is sometimes known as the Von Neumann criteria and 

is expressed as 
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The minimum of the temporal step sizes from Equation (2.15.1) and equation (2.15.2) 

will govern. Since turbulent eddy viscosities are not known a-priori, therefore equation 

(2.15.1) will be used to estimate the time step size in advance.  

Equation (2.15.2)  can be used as a check if the chosen time step is appropriate. 

Violation of either of the conditions may cause instability and thus a smaller time step 

will be needed. These stability conditions are required but do not necessarily guarantee 

stability [14].  
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CHAPTER 3  

BUBBLE TRANSPORT MECHANISM  

 

Chapter 3 attempts to cover all aspect of the air bubble modeling. The purpose of this 

chapter is to introduce and include air bubbles into the previously discussed numerical 

model. The chapter begins with a general overview of the methodology used to 

incorporate forces generated by air bubbles to the governing equations. The proposed 

strategy to include the modeling of air bubble dynamics can be summarized into a two 

step process. The first step involves the modification of the LES set of momentum 

equations to account for the influence of the air bubbles towards the fluid. To accomplish 

this, a source term is added to the vertical momentum equation to include the forces due 

of the air bubbles. The second step is to slightly modify the scalar transport equation to 

include the effect of air bubble rise. These steps will tie the hydrodynamics of the fluid to 

that of the air bubbles. This chapter also provides the equations used for air entrainment 

quantification from an overfall plunging jet.  

 

3.1 - Equations for Incorporating Air Bubbles in the Flow Field 

 

The governing LES momentum transfer equation (equation (2.3.12)) for fluid flow in 

Cartesian coordinate, shown again here, is  
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u u uu up
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gh∂
 (3.1.1) 

with the continuity equation  

 0k

k

u
x

∂
=

∂
 (3.1.2) 

In actuality, air bubbles and water mixture are two different fluids and is 

discontinuous in space. In a microscopic view of the problem, the dynamics of each fluid 

phase can be described by writing a set of governing equations for the different phases. 

However, that is not the purpose of this work. The application of this work is mainly on 
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modeling large scale problems and thus, a more practical approach is to view the problem 

in a macroscopic perspective. In doing so, air bubbles and water is viewed as a mixture 

and thus was treated as one continuum that coexists everywhere in space [130]. Under 

this assumption, air bubbles are massless and retain its size regardless of its surrounding 

pressure. In addition, under low concentration, the incompressibility assumption will still 

be valid. These assumptions allow the same set of momentum and continuity equations to 

be used to describe the dynamics of the fluid mixture.  

In flows where air bubbles are present, the liquid phase is affected by the total net 

force that the air bubbles exert on each control volume (computational cell), throughout 

the whole domain. One simple way to account for these forces is to include them into the 

momentum equations. To do so, the net momentum transfer from the bubble to the fluid 

has to be modeled and will be lumped into the source terms in the momentum equations. 

The source terms due to the air bubbles can be related back to the movement due to the 

density difference between the air bubbles and the fluid.  

To obtain the source terms, the collective forces of air bubbles of a known 

concentration were calculated for each cell. These forces were then normalized based on 

the unit mass of a cell. The normalization produced the source terms required by 

momentum equations. Upon determination of the source terms, the effects of the air 

bubbles could be accounted for as part of the hydrodynamics solution to the problem.    

Revisiting the momentum equation, the only change that was needed to be made, was 

to include the source terms due to the net force of the air bubble exerted onto the fluid 

flow field. Adding a new source term produced 

 
( ) 1i j j iji i
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( )gh
+  (3.1.3) 

where, Si is the net momentum exerted by the air bubbles on the fluid system. This 

procedure does not require rigorous arithmetic effort and can easily be implemented into 

most existing Navier-Stokes solver. The momentum contributions of the air bubbles 

accounted as the source term, Si, in the LES momentum equations will be presented in the 

next few sections.   
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3.2 - Acting Forces on Single Bubble 

  

The analysis can be started by looking at different forces acting on a single air bubble 

in a control volume. The free body diagram for a single air bubble in is shown in Figure 

3-1. 

The acting forces on a single air bubble consist of the buoyant force, drag force and 

weight of the air bubble, and are written as  

 net b d tF F F W= + +  (3.2.1) 

where, 

Fnet is the net force acting on the bubble, 

Fb is the buoyancy force,   

Fd Drag force, and  

Wt weight of a single air bubble. 

 

The buoyant, drag and weight are forces which directly influence the flow domain in the 

present of air bubbles. The buoyancy force can be defined as the weight of liquid being 

replaced by the rising bubble. Thus,  

 b g lF gρ= ∀  (3.2.2) 

The buoyancy force is the main driving force for the vertical movement of air bubbles. In 

this context, buoyancy force is a function of the volume of air bubble, the density of 

liquid in the surrounding and gravity.  The mass of an air bubble can be calculated simply 

by multiplying the volume by its density. Therefore, weight will be mass multiplied by 

the acceleration of gravity and can be written as  

 t g gW gρ= ∀  (3.2.3) 

In a static liquid, the buoyant force will be balanced with the drag force and the weight of 

the bubble. To simplify the analysis, the weight of the air bubble is neglected. Therefore, 

the two remaining force components are the buoyant force, being balanced by the drag 

force. Since the drag force is directly related to the forces on the surrounding fluid, the 

drag force will be modeled.  Simplifying, Fb will be equal to -Fd.  
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Figure 3-1: Forces on a single air bubble. 
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Assuming liquid is at static, the drag force on a body can be expressed as  

 21
2d d lF C V Aρ= −   (3.2.4) 

where  

Cd is the drag coefficient of the air bubble,  

ρl is the density of the surrounding fluid, 

V is defined as the velocity of the air bubble, and 

A is the maximum cross sectional area of the air bubble that is shearing the fluid. 

To differentiate between the gas and the liquid phase, subscript l will be used for liquid 

phase while subscript g will be used for gas phase in this chapter. Equation (3.2.4) can be 

rewritten to 

 21
2d d l g gF C V Aρ= −  (3.2.5) 

Considering a non-static fluid, then the drag force is directly related to the relative 

velocity of the bubble and the fluid. Therefore, the velocity, which is written in equation 

(3.2.4), is expressed in terms of relative velocity. By definition, relative velocity is the 

difference of the velocity of an object with its background velocity. Substituting this 

definition in equation (3.2.4) gives 

 

 21 ( )
2d d l g l gF C V V Aρ= − −  (3.2.6) 

or simply,  

 1
2d d l r r gF C V V Aρ= −  (3.2.7) 

where  r gV V V= − l

Equation (3.2.7) is consistent with literature [71].  

To further simplify the expression, it was assumed that the velocity of the air bubble 

achieved terminal velocity in a very short time span and thus, g lV V V∞≈ + . Here, the 

subscript ∞ represents the condition when the terminal state was achieved. The 

assumption that the air bubble quickly reaches its terminal velocity is reasonable.  
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Literature has shown that small air bubbles may reach its terminal velocity as fast as 

the first 200 milliseconds of its rise [106]. Therefore, substituting g lV V V∞≈ +  into 

equation (3.2.6) produces 

 21 (
2d d l g l l ) gF C V V V Aρ ⎡ ⎤= − + −⎣ ⎦  (3.2.8) 

Now, since then rV V∞≈ dC C∞≈ . This simplification will give  

 1
2d l gF C V V Aρ∞ ∞ ∞= −  (3.2.9) 

The drag force in equation (3.2.9) is now independent of the fluid velocity. If V∞ and C∞ 

are known, then the drag force on a single bubble is easily determined. The relationship 

between the terminal velocity and the drag coefficient is discussed in the next section. 

Before proceeding to the next section, it is important to realize that the drag force given 

in equation (3.2.9) is in relation to the bubble. An equal and opposite force will be used 

as the force being added to the surrounding fluid.  

 

3.3 - Terminal Velocity 

 

The terminal velocity of air bubbles in water was calculated based on the following 

equations given by Bozzano and Dente [13]. To find the terminal velocity, V∞, of a 

bubble with diameter Dg, the following equation can be used  

 2 4
3

g

d

gD
V

C∞ =  (3.3.1) 

The drag coefficient of an air bubble is 

 
2

0
d f

aC f
R

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 (3.3.2) 

and a is the radius of the air bubble in the horizontal plane and ff is the friction factor. For 

a spherical bubble, a is equivalent to the radius of the bubble. The term (a/Ro)2 is an 

adjustment factor for the deformation of air bubble. The generalized friction factor can be 

calculated by 
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where, Eo is the Eötvös number, Mo is the Morton number and is Re the Reynolds 

number. For clarity, the three dimensionless numbers are written as follows (with the 

subscript l being the liquid phase variables and subscript g for gas phase)  
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where, σ is the surface tension of the liquid. 

The Eötvös number, also known as the bond number is the ratio between the gravity 

force with the surface tension force [65]. The Morton number is the product of 

combination between three different dimensionless numbers, that is, Webber number, 

Froude number and Reynolds number [24]. The Morton number is also called the liquid 

parameter, since it is only a function of fluid properties and gravity constant. Together, 

these dimensionless numbers can be used to characterize the shape of an air bubble 

moving in fluid medium [35]. Hence, the friction factor in equation (3.3.3) can be thought 

of as the friction factor which takes into consideration the shape deformation of the air 

bubble. This trait was desirable for the current research to aid in providing a better overall 

model in estimating the drag created by each air bubble.  

Although the ratio of a/Ro for a sphere bubble is equal to 1, for more realistic 

simulation results deformation will or may occur. Hence the deformation was 

approximated by 
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  An iterative procedure is required to solve for the terminal velocity. In this work, the 

Newton iteration was used and was easily incorporated into the code. Results generated 

from the equations for a wide range of bubble diameter sizes are presented in Figure 3-2. 

Bozzano and Dente suggested that the proposed expression is only valid if the Morton 

number is less than 10-8 [13]. The Morton number of 10-8 was well within the scope of 

this study as calculation showed that the Morton number for water at room temperature 

was several orders of magnitudes smaller than the applicability limit (approximately 10-

11). 

Microscopic movements such as the oscillatory, zig-zag and helical motion have been 

extensively studied ([75], [108], [118]) and these secondary upward motion were 

neglected in this work due to their complexity. These secondary motions could not only 

change the terminal velocity of the air bubbles, additionally the drag coefficient could be 

affected. When simulating air bubbles in terms of concentration, which was the purpose 

of this work, it was difficult to track the secondary movements of each air bubble and 

include them as a bulk quantity. Other researchers are still working on the quantification 

of these relationships for a swarm of air bubble in a pure water-air system [107]. 

Modification could be done in the future when solid relationships are found for water-air 

system of swarm of air bubbles. For the scope of this work, only simple linear uprising 

motion was considered. 

The results from various work were compared ([25], [28], [62], [91]), all showing 

good agreement. Hence equations (3.3.1) through (3.3.4) are used to quantify air bubble 

dynamics.  

 66



 

1

10

100

0.01 0.1 1 10

Terminal Velocity vs. diameter
Te

rm
in

al
 V

el
oc

ity
 (c

m
/s

)

diameter (cm)
 

 

Figure 3-2: Terminal velocity obtained from theoretical equations (Bozzano and Dente 

[13]). 
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3.4 - Link to LES Equations 

 

 In the previous sections (sections 3.2 and 3.3), the terminal velocity and drag 

coefficient of a single air bubble was discussed. This information could be used to 

calculate the force exerted on the fluid by a single air bubble. The collective force of air 

bubbles in terms of concentration is now presented.  

The collective forces of air bubbles on the fluid can be calculated by the summation 

of the forces of all air bubbles in a particular cell. Therefore, will give the 

forces due to N number of bubbles in a control volume (cell). To incorporate the net force 

into the LES decomposed N-S equations, all the forces were expressed in terms of force 

per unit mass, namely 

total d
F N= − ∑ F

 i
l l

NS
ρ

= −
∀ dF  (3.4.1) 

where  is the discretized volume of a cell (for a 3-dimensional problem). N can be 

expressed in terms of concentration, φ by  

l∀

 3
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d

N
rr
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ππ

∀ ∀
= =  (3.4.2) 

where, rd is the radius of a spherical bubble. Substituting back into equation(3.4.1), the 

net source term Si then becomes 
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which can be simplified to 

 3

3
4

d
i

d l

FS
r
φ

π ρ
= −  (3.4.4) 

Now, Si is the source term used in the LES decomposed equations for the vertical 

direction. Since air bubbles only have the tendency to rise due to buoyancy, there were no 

additional source terms to be considered in the horizontal momentum equations (Si=0 for 

horizontal momentum equations).     
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3.5 - Air Entrainment Quantification 

 

The amount of air entrainment had to be quantified based upon the information from 

the inflow plunging jet. Thus far, theoretical or analytical relationship of the air 

entrainment quantification is not well known. Only empirical relationships have been 

reported. Literature review in this area shows many relationships, mainly due to the lack 

of understanding in the precise mechanism that entrains air.     

 For nappes created from an overfall, Hadjerioua et al. [63] provided a semi-analytic 

expression 

  (3.5.1) 4 2.1 0.3 10air jet hq V−= × 6t

Where Vjet is the impinging velocity in meters per seconds and th is the nappe thickness in 

millimeters. However, this equation is not a general equation which is applicable for all 

conditions. Equation (3.5.1) is only applicable for nappes less than 60 mm. For nappes 

greater than this limit, the equation for a vertical rectangular plunging jet is needed.  

Mason [86] provided an equation that relates the volumetric concentration of air, 

intended for sheet or rectangular jets, and was by far the most relevant equation for this 

study. This equation provides a dimensionless relationship, given as follows 
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= −⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 (3.5.2) 

where Ve is a constant of 1.1 m/s, Vjet is the jet impinging velocity, H0 is the drop height 

and th is the thickness of the jet. The application of this equation has been well 

documented and cited on several occasions ([18], [24], [86]). For valid application of this 

equation, the impinging velocity must be being between 1.5 m/s and 9 m/s [24]. Since 

equations (3.5.2) and (3.5.1) were well accepted in studies of similar plunging jet 

scenario, these equation were included as part of the air entrainment model.  

Newer equations can be found, such as that provided in Melo [90]. Melo suggested a 

set of more updated and comprehensive equations to quantify the air entrainment for a 

plunge pool for a partially and fully developed jet, and was obtained from Bohrer and Abt 

[10] and Bohrer et al.[11]. However, the air concentrations given by Melo’s equations 
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was significantly different from equation (3.5.2) and furthermore, its limitations were not 

clearly stated. Therefore, Melo’s equations were not used for this study.    

 The task of quantifying the air entrainment is heavily dependant of empirical 

equations and this work merely utilized these relationships to provide the necessary 

boundary conditions for the plunging jet section. Once the air bubble concentration was 

provided, the burden of modeling the migration and movements of the air bubbles was 

placed on the numerical model itself.  

 

3.6 - Tracking Air Concentration 

 

The goal of this research was not to track every single air bubble, but to track bubbles 

based on concentration in every discretized finite volume. This was done by utilizing the 

scalar transport equation.  

The scalar transport equation is similar to the transient continuity equation with a 

source term. Since the air bubbles are treated as scalar mass particles, the transport 

equation can be used effectively to track the concentration of the air bubbles in each cell. 

To begin a simulation, air bubble concentrations must be provided at the boundary of the 

plunging jet. Once the concentrations were provided at the boundary, the transport and 

migration of the air bubbles could be tracked by using the scalar transport equation 

 i
T

j j j i

u D
t x x x x

φφ φ⎛ ⎞∂∂ ∂ ∂ ∂
+ + + =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

tiSSφ  (3.6.1) 

Here, tensor notation is used in the transport equation, and SSti are the source and sink 

terms for the transport equation respectively and φ is denotes the concentration of air 

bubbles. 

Concentration can be expressed in several different ways. One way to express 

concentration is the volume fraction of gas to liquid and was used in this work.  For an 

arbitrary scalar, no modification is needed to the equation shown above. However, gas 

bubbles have the tendency to move to the free surface and therefore, the motion of the air 

bubble is not only dependant on the flow field.  
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A simple adjustment was made for the bubble dynamics. Since the terms in the scalar 

transport equation basically means the flux change in control volume due to its respective 

direction, the uprising velocity of the air bubbles should also be included. Thus, the 

effective upward velocity becomes the velocity of the liquid plus the terminal velocity of 

the air bubbles. In the Cartesian coordinate system the effective upward velocity is 

 scw w V∞= +  (3.6.2) 

 In generalized coordinate, the effective upward velocity is   

 sc zu u Vζ ζ ζ ∞= +  (3.6.3) 

where the subscript sc is the modification of the vertical velocity for the scalar transport 

equation. For clarity, the scalar transport equation in Cartesian coordinate, for the vertical 

direction can be rewritten as 

 ( )
T

w Vu v D
t z z z z z x y

φφ φ φ φ φ φ∞∂ + ⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + + + + =⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠

tiSS  (3.6.4) 

This modification ensured that the mass entering or leaving the control volume was 

consistent with upward velocity of the air bubbles and that of the fluid. No adjustments 

were needed for the velocities in the horizontal directions. 

The source terms introduced the concentrations of air bubble into the control volume 

at the plunge section while the sink location for the air bubbles was at the free surface. At 

the free surface, the boundary condition was set as the Neumann boundary condition with 

zero flux. This allowed the air bubbles concentration to exit the domain through the free 

surface.  

Lastly the source terms presented in equation (3.4.4) should not be associated with 

that of equation (3.6.4). The source term mentioned in equation (3.4.4) should only be 

coupled with the LES momentum equation while the source term in equation (3.6.4) is 

exclusive to the scalar transport equation.  
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CHAPTER 4  

THE FREE OVERFALL IMPINGING JET 

 

Following the treatment of the air bubble transport, the purpose of Chapter 4 is to 

provide information regarding the location, size, angle, and the velocities components at 

the impinging section. The mentioned boundary information is obtained through a 

sequence of steps which requires the upstream flow and drop height to be specified. The 

boundary conditions are then coupled with the air entrainment quantification to provide 

the complete set of boundary for an overfall jet. The last section in this chapter discusses 

the implementation details for boundary conditions of the overfall jet.  

 

4.1 - Free Overfall   

 

The free overfall is common in hydraulic structures. Free overfalls can be found in 

natural and manmade structures. Examples of the structures that produce the free overfall 

are spillways, waterfalls, weirs and other drop structures. In this work, the free overfall 

was essential in providing the necessary boundary conditions to describe the 

hydrodynamics phenomena in a pump station. The overfall profile was not part of the 

simulation. Therefore, the inlet boundary condition was directly specified at the 

impinging location to enable the simulation for the air entrainment, similar to Xu et al. 

[125]. The velocity impinging the water body was prescribed as inflow, while the amount 

of air entrainment due to the impinging water was obtained from empirical relationships 

described in the previous chapter, section 3.5.  

The impinging location (location of the nappe) can be approximated by particle 

dynamics [101]. The equations for the upper and lower nappe are 

 2 1of ofZ a X b X− = + −  (4.1.1)           

 2
of ofZ a X b X− = +  (4.1.2)                 
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respectively. The coordinates X and Z are in the horizontal streamwise and vertical 

directions, respectively, normalized by the brink depth. The coefficients aof and bof are 

approximated by 

 2

1
2of ofa b

Fe
= =  (4.1.3) 

where Fe is the Froude number at the brink before the drop, written as  

brink

UeFe
gD

=  

where, 

      Ue is the average velocity at the brink (flow/area), and 

      g is acceleration due to gravity 

In order to make use of these equations, the upstream information had to be 

determined. Since the objective of this research was less concerned about the actual 

upstream dynamics of the impinging jet, an arbitrary condition for the upstream flow 

before the overfall was used and the depth at the brink can be approximated by [101]  

 0.715brink criticalD D=  (4.1.4) 

where, Dbrink and Dcritical denote the brink depth and critical depth in the upstream channel, 

respectively. The critical depth can be calculated knowing the flowrate and dimension of 

the upstream channel and is given as [111]  

 

1
2 3

2critical
w

QD
b g

⎛ ⎞
= ⎜

⎝ ⎠
⎟  (4.1.5) 

where, Q is the flow rate of the upstream channel and bw is the width of the upstream 

channel. The determination of the critical depth does not depend on the slope of the 

channel and therefore, the channel can be a horizontal channel. 

To use equations (4.1.1) and (4.1.2) the drop height had to be specified. Once the 

drop height was specified, the horizontal distances of the impinging jet and the average 

velocity could be calculated. 

Simulation of velocity impinging at different angles was also attempted, based on the 

flow condition and the drop height upstream. The lack of knowledge of the different 

velocities components within the nappe impact section makes it difficult to prescribe 

good inflow boundary conditions. However, with the impact angle known, the magnitude 
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and direction of the different velocities components can be approximated, and will be 

shown in section 4.2. In this analysis, the velocity in the lateral direction was assumed to 

be negligible.  

 

4.2 - Impinging Angle and Velocities 

 

One of the more important aspects for the plunging jet boundary conditions were the 

impinging velocities components. The upstream flow can be used to provide the location 

and size of the nappe, but from the hydrodynamics point of view, the needed boundary 

conditions are the velocities, broken down to its respective components at the entrance 

section. Experimental studies by Chanson [21] provide a way to separate the different 

velocities component from the bulk flow impinging the pool. The angle of the falling 

nappe to the horizontal-axis is given as 

 2tan( ) 2
brink

fall
brink

critical critical

DhD
D D

χ
+

=   (4.2.1) 

where,  

χ is the impinging angle, 

Dbrink is the brink depth, 

Dcritical is the upstream critical depth, and 

hfall is the overfall drop height. 

Thus, knowing the resultant velocity, the respective velocity components are determined 

by the angle given in equation (4.2.1). The velocities at the boundary are   

 
( )( )
( )( )

cos

sin
jet

jet

u V

w V

χ

χ

=

=
 (4.2.2) 

Chamani and Beirami [19], showed a similar relation of the velocity u, for a 2-

dimensional channel with a drop into a pool. 
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4.3 - Overfall Jet Boundary Condition 

 

This section explains the logistics of the inflow boundary conditions at the plunging 

jet impact section. The plunging jet itself was not being modeled, therefore the jet impact 

section needed to be specified as a boundary condition. To characterize the jet impact 

section, several important components of the jet had to be determined. First, the jet 

dimension and location was determined. Then, the impact velocities were prescribed. 

Following that, the free surface boundary condition at the impact section was rewritten to 

account for the additional flux introduced by the plunging jet. At the impact section, the 

air entrained concentration will be estimated using an empirical relationship. 

The location of the plunging jet was determined using equation (4.1.1) and (4.1.2).  

From equation (4.1.1) and (4.1.2) the lower and upper nappe location can be determined 

and the difference of the lower and upper nappe at the impact section gives the jet 

thickness. The impact angle was obtained from equation (4.2.1). The impact angle will be 

used to separate the entrance velocity into the different velocities components. Therefore, 

velocity at the entering section only consisted of two different velocity components, as 

suggested in equation (4.2.2). The velocities can then be used as the boundary conditions 

for the momentum equations. In scenarios where the depth changes at the impact location 

of the free overfall, the new averaged depth was used to calculate the jet location at the 

beginning of each time level, and the adjustment can be made to recalculate the location 

and angle of the jet, as well as the air bubble concentration level.  

The free surface boundary condition was also altered to accommodate problems 

involving plunging jets. The simplest mode to account for the added flux by the jet can be 

written as  

 ( ) ( )h h

jetd d

h udz vdz V
t x y− −

∂ ∂ ∂
+ +

∂ ∂ ∂∫ ∫ =  (4.3.1) 

This condition is only true for the plunging section. The variable Vjet is the average 

impinging velocity from the overfall. The average velocity will give a consistent mass 

flux across the jet section. Similar to the previous section (section 2.8), discretizing 

equation (4.3.1) gives  
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Equation (4.3.2) was used as the boundary condition for the free surface equation at the 

jet impact section.  

As explained in section 2.9, the dynamic pressure boundary condition at the surface 

was specified to be zero. In the case of a plunging jet, this condition is not true. The 

baseline assumption used was that the fluid is continuous from the jet to the plunge pool 

and thus specifying a zero pressure at the impact section was contradicting that 

assumption. The Neumann boundary condition was instead used for the pressures at the 

plunging section of the pool with the dynamic pressure flux equal to zero.   

According to literature, air bubbles are generated at the boundary around the jet due 

to the free surface instabilities and the result of air water mixing that developed at the 

intersection ([21], [24]). Therefore, the air bubble concentration should be appropriately 

placed at the surrounding cells (of outside rim) of the intersection between the plunging 

jet and receiving body of water. As mentioned earlier in Chapter 2, scalar variables are 

located at the cell centers while the velocities are located in cell faces. Thus, the 

appropriate placement of the bubble concentration would be at the cells within the 

plunging jet edges, as shown in Figure 4-1. The migration of the air bubble was then 

modeled using the momentum and scalar transport equation. 
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Figure 4-1: Placement of air bubble concentrations at plunging jet entrance boundary.  
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CHAPTER 5  

RESULTS: VERIFICATIONS AND SIMULATIONS 

 

A significant part of computer aided studies is the ability to reproduce analytic 

solution, experimental data or numerical results from literature. In pursue of this work, 

considerable effort was placed in the validation of the numerical code. This chapter deals 

mainly with several selected model verifications and the results of the final product. In 

this chapter, comparisons were conducted to show the validity of every aspect of the 

numerical code. The verifications will include laminar and turbulent flow simulations, 

free surface and dynamic pressure tests and the predictability of the bubble transport 

model. The chapter concludes with a simulation of a plunging jet with the presence of air 

bubbles.  

 

5.1 - Laminar Flow with Analytic Solution  

 

The model was first tested with laminar flow cases. Laminar flows are good case 

studies because of the availability of analytic solutions. Examples of such cases are the 

laminar Couette and Poiseuille flow ([55], [96], [102], [111]). Couette flow is basically 

flow between two parallel plates with one plate being stationary and the other plate 

moving at a certain speed. The Poiseuille flow has the same setup as the Couette flow, 

except that both plates are stationary. The analytic solution for the Poiseuille flow is 

 (1
2 d

P zu z
xνρ

∂
=

∂
)h−  (5.1.1) 

where z = hd is the elevation at the top plate while z=0 is the elevation of the bottom plate. 

The others variables are self explanatory. The analytical solution for Couette flow is  

 0( )
d

zuu z
h

=  (5.1.2) 

where u0 is the speed of the moving top plate.  
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These analytical solutions for laminar Couette and Poiseuille flow can be found in 

fundamental fluid mechanics textbooks ([55], [96], [102], [111]) and are well known. 

Analytic solutions are exact solutions derived based on theory and therefore will be good 

benchmark test cases to check the validity of the main code. 

 

5.2 - Laminar Poiseuille Flow Simulation 

  

The first test carried out is the simulation of flow between parallel plates, also known 

as the Poiseuille flow. The Poiseuille flow is a pressure driven flow, where the velocity 

profile depends on the pressure gradient. Inflow and outflow sections were set as fixed 

inflow and free flow boundary condition. There are basically two ways to perform this 

simulation. The first approach is to use a specified velocity profile and calculate the 

pressure gradient across the channel. The second approach is to provide a pressure 

gradient and let the flow evolve to a steady state velocity profile. The former approach 

was chosen, and the rationale for this choice explained shortly.   

Since the analytic solution is well documented for this type of flow, the solution obtained 

from the simulation can be easily verified. Although the analytical solution is for a two 

dimensional case, simulations were done in a three dimensional environment. The free 

slip boundary was used for the side boundaries. The top and bottom boundary conditions 

were specified as no slip boundaries. The initial condition was provided with a velocity 

profile as in equation (5.1.1).  The initial condition was provided for two reasons. The 

first reason was to avoid the shock scenario from a cold start which requires small 

temporal step to maintain computational stability. The second reason was to provide a 

background velocity to speed up the convergence to the steady state solution. Providing 

the analytical solution as the initial condition basically assumed that the flow is already 

developed, and therefore the correct pressure gradient would be calculated. In this case, a 

pressure gradient of 31.5dp N
dx m

= − was used to calculate the initial and inflow velocities. 

The size of the computational domain was 0.5 m × 0.25 m × 0.25 m which was divided 

into 80 × 40 × 44 uniform cells. The fluid viscosity and density were ν = 1 × 10-4 m2/s 
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and ρ = 1000 kg/m3 respectively. The simulation was marched forward with a time step 

size of ∆t = 2.5 × 10-3 until 10 sec. Figure 5-1 shows the initial condition for the 

simulation along with the computational grids. Although not shown, the initial pressure 

was specified to be zero everywhere in the domain. The analytical velocity profile was 

maintained after 10 sec. With the expected velocity profile maintained, as shown in 

Figure 5-2, the steady state pressure gradient was basically the same as that used to 

calculate the analytic solution. The next figure, Figure 5-3 shows the pressure drop along 

the x-axis. In the figure, the displayed pressure drop is actually p
ρ

. Therefore, to get the 

correct pressure gradient, the values must be multiplied by a density term. At the outflow 

section, the pressure was found to be approximately 4.68 × 10-6 N/m2 with 7.45 × 10-4 

N/m2 at the inflow. This translates to a dp
dx

 of -1.48 N/m3, which closely matches the 

prescribed value of -1.5 N/m3, resulting in an error of about 1.3%.  
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Figure 5-1: Poiseuille flow computational grid and initial condition. 
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Figure 5-2: Two dimensional plot of velocity profile for Poiseuille flow. 
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Figure 5-3: Pressure distribution of Poiseuille flow at steady state. 
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5.3 - Laminar Couette Flow Simulation  

 

Another test for the laminar flow case is the Couette flow. Instead of a pressure 

driven flow, the flow is initiated and driven by the movement of the top lid. The 

conditions for the boundaries are set to be the same as the Poiseuille flow simulation. The 

only difference was that the top boundary was moving at a constant specified velocity of 

0.1 m/s. In this simulation, no pressure gradient was needed. The expected velocity 

profile would be linearly varying from the top plate to the bottom plate. The dimension of 

the domain was also selected to be the same as the previous simulation. The domain was 

divided into 20 × 10 × 11 computational cells.  

The coarseness of the grid forced a smaller time step, ∆t=0.01 sec to be used. Due to 

the cold start, the velocity profile attains steady state at about 800 sec. The code was run 

until t=1000 sec. The results from the numerical simulation at the steady state condition 

also agree well with the analytic solution. Figure 5-4 and Figure 5-5 shows the simulated 

results. In Figure 5-5, the velocity profile matched the analytical solution and therefore 

provided confidence to continue the validation of the code with other test cases.   
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Figure 5-4: steady state solution for Couette flow. 
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Figure 5-5: Steady state velocity at center of channel for Couette flow. 
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5.4 - Laminar Open Channel Flow with Uniform Inflow  

 

The previous simulation were tests cases where the steady state solution is the same 

as that prescribed as the inflow. The next test case is a test case such that the velocity 

profile will be allowed to evolve to the desired analytic solution further away from a 

different inflow velocity profile. In this problem, the inflow was chosen to be a uniform 

profile and the initial condition was chosen to be the same as inflow for the same reasons 

mentioned previously in section 5.2. The simulation was marched until steady state was 

obtained and the expected velocity profile at the end of the channel should be the analytic 

solution. The reason for this test was to ensure that the results from the previous tests 

were not obtained mainly due to strong convection. Thus, if the profile evolves from a 

different inflow condition to the desired analytic solution, then the model is well 

validated for laminar flow conditions. 

The molecular viscosity was chosen to be ν=1.137 × 10-6 m2/s. The density of the 

fluid was set to ρ=1000 kg/m3. Uniform inflow and initial velocity profile was specified 

to be 9.1 × 10-3 m/s.  Since this was an open channel flow problem, free surface and 

dynamic pressure were considered. The channel had a dimension of 4 m × 0.1 m × 0.05 m 

and was discretized into 200 × 10 × 20 cells in the x, y and z direction, respectively. 

Boundary conditions used for this run are free slip boundaries for the sides, constant 

uniform inflow and a fixed depth at the outflow. The bottom was specified as a no slip 

boundary. A temporal step size of 0.1 sec was used, which was stable enough for the 

Crank Nicholson and the explicit schemes.  

Figure 5-6 shows the velocity vectors at t=100 sec, where the flow was still unsteady. 

After several hundred seconds, the flow achieved its steady state. The velocity vectors 

and dynamic pressure at steady state are shown in Figure 5-7 and Figure 5-8, respectively. 

For the open channel flow simulation the dynamic pressure for the fully developed region 

is small. At the inflow, transition from uniform profile to the parabolic velocity profile 

increases the dynamic pressure especially near the bottom of the channel.   
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Figure 5-6: Velocity profile at t=100 sec. 
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Figure 5-7: Velocity profile at steady state, t=1000 sec. 
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Figure 5-8: Dynamic pressure contours plot. 
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Figure 5-9 shows the analytical velocity profile and the numerical results obtained at 

steady state, at a distance of x=80 m from the inflow section. The side boundaries were 

free slip boundaries, therefore the flow is a 2-dimensional flow with little variations 

across the width. The average velocity profile was calculated by averaging the velocities 

of the same depth laterally across the channel. The velocity profile matched the analytic 

profile everywhere except near the vicinity of the free surface. This behavior is 

mathematically justifiable with the way the boundary condition was applied. At the free 

surface, the Neumann boundary was used for the streamwise velocity, namely 0u
z

ν ∂
=

∂
, 

to define a zero shear for the free surface.  

The mathematical implication of this type of boundary is that the velocity gradient 

across the boundary has to be zero. However, analytic solution for laminar open channel 

flow assumes that the velocity profile continues on for an infinite depth. The difference in 

the underlying boundary conditions is the cause of the discrepancy between the numerical 

and analytic solution. 
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Figure 5-9: Laminar flow velocity profile at channel x=80 m from inflow. 
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5.5 - Solitary Wave Run-up  

  

In order to test the free surface and hydrodynamics of the model, the solitary wave 

run-up test was performed. This simulation also tests the non-hydrostatic capability of the 

model. In this test, the two primary interests were the wave amplitude and the travel time, 

or speed, when the wave hits the wall. The travel time can be compared with the 

empirical equation in Ven Te Chow’s book [32].  

 ( )0wavec g A D= +   (5.5.1) 

where c is the celerity or speed of the wave, Awave is the amplitude of the wave and D0 is 

the still water depth. This equation gives the speed which can translate into the travel 

time of the wave. Chan and Street [20] later provided experimental data in which Tang et 

al.[112] used to compare his analytical solution with. Several other authors have made 

the same successful simulation as Chan and Street ([14], [70], [112]).  

The expression for the analytical solution of the wave at different times can be found 

in Tang et al.’s[112] publication. The analytical expression is 

 
( ) ( )2 2

0 1 2

2 2 2 2 2 2
0

[sec sec

1 3 3sec sec sec tanh sec tanh ]
2 4 4

waveh A h L h R

A h L h R h L L h R R

δ δ= + + +

⎛ ⎞+ − −⎜ ⎟
⎝ ⎠

 (5.5.2) 

where,  
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= +

⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

A0 is defined as hwave/ D0, xd is the location to the vertical wall and x0 is the initial starting 

point of the wave (i.e. location of the wave crest at t=0 sec). 
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The wave was described with an initial surface elevation provided by the analytical 

expression. In this simulation, a 20m long channel with a vertical downstream wall and 

still water depth of 1m was used. The dimension of the lateral direction was set arbitrarily, 

chosen to be 1m wide. The crest of the wave was initially at 10m from the upstream 

boundary and the wave height was specified to be 0.1m. Time step was chosen to be 

approximately ∆t=0.048 seconds. In all simulations, the turbulence model was not used 

and an inviscid fluid was assumed. In the simulation, the domain was discretized into 62 

× 62 × 30 cells in the x, y and z direction, and θ of 0.5 (i.e. Crank Nicholson) was used. 

The side walls are free slip boundaries. A rigid wall boundary was used at the 

downstream end with a Neumann type boundary upstream. The no-slip boundary was 

used for the bottom boundary of the domain.  

The dimensionless time scale used in the literature was stated as
0

gT t
D

= , and was 

used as the reference time for comparison. The predicted run-up height, R, of the wave 

when it hits the wall is compared in Figure 5-10, which shows the averaged free surface 

profile of the wave for various times. 

The simulation reproduced the results from the literature with good agreement. In the 

case of Tang et al. [112], the analytical solution given for the time of run up was 

with an amplitude of 0.20151 m. Figure 5-10 shows that the computed amplitude of 

the wave to be approximately 0.20446 m at the same dimensionless time. The celerity 

also compared well with empirical equation found in Chow’s book [32] (equation (5.5.1)). 

The equation yielded 3.28 m/s while numerical results predicted approximately 3.26 m/s.  

9T =
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Figure 5-10: Surface wave propagation with dimensionless time scale.  
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5.6 - Turbulent Channel Flow Simulation  

  

Turbulent channel flows have been studies extensively due to its simple geometry and 

flow nature. Experimental ([61], [126]) and numerical ([31], [87], [95], [131]) studies for 

this problem have been well documented. In turbulent channel flows, it is known that the 

velocity profile will behave according to the log law of the wall relation near the wall 

boundary [93]. This simulation serves two purposes. The first purpose was to validate the 

dynamic subgrid scale model while the second purpose was to test the code in a three 

dimensional setting. All previous simulations were merely two dimensional problems 

extended in a redundant third direction. 

The code was tested with the same setup as Ding’s [46] channel flow case study. The 

domain was made of two parallel plates with free slip side boundaries. Periodic boundary 

condition was employed in the streamwise direction. At the walls, no-slip boundary 

conditions were imposed. The dimensions of the domain can be described relative to the 

channel half width, δ. For historical reasons, the dimensionless quantities, scaled by the 

wall variables are occasionally used in this section. These dimensionless quantities are 

denoted by the superscript positive (+) sign. The wall variable for velocity is the shear 

velocity uτ. previously defined in section 2.13. The wall variable for length is / uτν  and 

time is 2/ uτν . For clarity, generic form of these variables are shown as 

2

, ,yu tuuu y t
u

τ τ

τ ν ν
+ + += = =

 
The streamwise and spanwise dimensions were πδ and 0.289πδ, approximately 570 

times and 160 times the wall units (δuτ/ν), respectively. These dimensions were the 

minimal flow unit used by Jimenez and Moin [74]. In this simulation, the domain was 

discretized with uniform cell size with 32 × 32 × 133 cells. The discretization produced 

cell sizes of ∆x+=17.6, ∆y+=5.11 and ∆z+=2.7. For comparison, the shear Reynolds 

number, Reτ , was chosen to be 180, which was used to calculate the mean pressure 

gradient.  
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The shear Reynolds number is defined as 

 Re uτ
τ

δ
ν

=  (5.6.1) 

and the wall shear is defined as  

 

2
w

i

pu
xττ ρ δ

⎛ ⎞∂
= = ⎜ ⎟∂⎝ ⎠  (5.6.2) 

The streamwise pressure gradient could be explicitly calculated for verification 

purposes. The friction velocity, uτ, from equation (5.6.1) was found to be 9.2124 × 10-1 

m/s and the molecular viscosity used was a constant of 5.118 × 10-3 m2/s.  

The initial condition was provided with a two dimensional mean flow with a three 

dimensional disturbance, similar to Moin and Kim [92] and Ding [46]. The velocity field 

was added with fluctuations in the three different directions 

 ( )8 4 2( , , ) 1 sin( )cos( )sin( )L x
x y

x yu x y z C x L z
L L
π πε π= − +   (5.6.3) 

 1 4 2( , , ) sin( )sin( )cos( )
2 y

x y

x yv x y z L z
L L
π πε π= −  (5.6.4) 

 4 2( , , ) (1 cos( ))sin( )sin( )
x y

x yw x y z z
L L
π πε π= − +  (5.6.5) 

where CL represent the mean velocity, ε=0.1CL, Lx, Ly are lengths of the channel.  

The length scales were non-dimensionalized with the channel half width, thus resulting in the 

vertical (z-direction) coordinate bounded by ±1 as suggested by Moin and Kim [92]. The 

bulk Reynolds number, Re was approximately 3126 and was calculated based on the mean 

velocity, CL, and channel half width, δ. In this work, mean streamwise velocity profile was 

specified to be 16 m/s. Table 5-1 summarizes the details of this simulation.  
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Table 5-1: Summary of the details used for channel flow simulation, Reτ=180. 

 

Re 3126.23 
ν 5.117 × 10-3 m2/s 
ρ 1000 kg/m3

δ 1 m 
H 2 m 

UCL 16 m/s 
dp/dx -8.4868 × 10-1 N/m3

uτ 9.2124 × 10-1 m/s 
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To check for local mass conservation the fluctuation terms in equations (5.6.3)-(5.6.5)  

were differentiated and summed to ensure the divergence free condition was met before 

implementation. The dynamic subgrid scale turbulent model was used for this simulation. 

The time step was approximately 0.0008 time units, δ/uτ,, slightly larger than 0.0003 time 

units as suggested by Zhao and Voke [131]. The computation was carried out for about 

12 time units, approximately 13 sec.  

In this simulation it was important that the results should reproduce streamwise 

velocity that follows the log law while maintaining the correct characteristics for 

turbulent eddy viscosity as shown in Vreman’s work [121] and the profile of dynamic 

model coefficients that resembles the characteristic in Zhao and Voke’s [131] and Ding’s 

[46] result. In comparing the streamwise velocity profile, there are three distinct regions: 

the viscous sublayer (y+<5), the buffer layer (5<y+<30) and the inertial sublayer (y+>30) 

[113]. In the viscous sublayer, the velocity profile must be linear and should follow that 

of the y+= u+ curve. The velocity profile in the inertia sublayer must follow the log law 

relationship. In the buffer layer, the velocity profile should be a smooth transition that 

connects the viscous sublayer to the inertia sublayer velocity profile. 

Streamwise velocity profile obtained from the simulation is plotted along with the log 

law of the wall formula. The plot was shown in Figure 5-11. The velocity profile near the 

solid boundaries matched the y+= u+ curve while away from the boundary, the log law 

profile was recovered with only slight over prediction. A smooth transition was also 

observed within the buffer layer. The over prediction at the inertia layer could have been 

the cause of using a course grid resolution for this simulation, especially near the wall 

boundaries. 

To ensure that mean dynamic model coefficient, C, obtained from the dynamic SGS 

model behave reasonably, numerical results from Zhao and Voke [131] was used as 

comparison. The plot in Figure 5-12 shows the comparison of the dynamic model 

coefficient obtained from this simulation with that of Zhao and Voke’s data. The overall 

trend and magnitude of mean dynamic coefficient agrees reasonably with that of Zhao 

and Voke’s data. 
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Figure 5-11: Mean velocity profile in wall coordinate for channel flow Reτ =180. 
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Figure 5-12: Mean dynamic model coefficient, C in wall coordinate for channel flow Reτ 

=180. 
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As seen in Figure 5-12 the difference in the dynamic coefficients observed at y+<80 

is about an order of magnitude. This difference is not uncommon for there are numerous 

factors which can cause different values of the dynamic coefficients when comparing 

numerical results from works. The more significant factors are the difference in 

numerical scheme and grid resolution, or combinations of both.  

The numerical scheme used in Zhao and Voke’s study, as well as, the vertical grid 

setup was different from this simulation. When comparing the dynamic coefficient for 

two different numerical schemes, differences are expected because of the unequal amount 

of numerical dissipation introduced by the different numerical schemes. Furthermore, 

when different grid sizes were used to simulate the same problem, the dynamic 

coefficient will be different. By definition, the dynamic model coefficient is a function of 

the filter width, also related to the grid sizes. The difference in grid size leads to different 

values of the dynamic model coefficients, but should produce eddy viscosities that 

correlates with the correct mean streamwise velocity profile.  

More importantly, the numerical result produced the important characteristic of the 

dynamic subgrid scale model, which is the reduction of several orders of magnitude in 

the dynamic model coefficient as the wall is approached. This feature is an improvement 

from that of the traditional Smagorinsky model, and a clear advantage of the dynamic 

model when the grid resolution is adequate. The overall magnitude of the dynamic 

Smagorinsky coefficient agrees reasonably with that of Zhao and Voke’s data.    

Since the Dynamic Smagorinsky SGS model was used for this simulation, the eddy 

viscosities are observed to be a problem due to the sign changes from a positive eddy 

viscosity to a negative eddy viscosity in a rapid manner, at random locations, particularly 

when the simulation was first started. A simple treatment is to use a “clipping” method. 

This method, while particularly simple, has little theoretical basis other than providing 

stability for the computations. Ghosal et al. [58], and Ferziger [54], both are well aware of 

the disadvantages of the clipping method and suggested better treatment in their 

publications. Applying the clipping method to control the “negativity” of the eddy 

viscosity translate to a physical meaning that the backscattering process will not have a 

magnitude larger than the molecular viscosity itself. Backscattering is known to be 

physically possible [29] and backscattering can be advantageous in turbulent models. 
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However excessive backscattering causes the loss of stability and may lead to unphysical 

solution.  

Other alternatives are available [80] to compute the eddy viscosity terms, however 

most have added computation expense. Preliminary investigation using the “clipping” 

method showed promising results for this particular simulation.   

The focus of this work was not particularly on turbulence modeling. The author was 

merely implementing existing turbulence theory and models. Therefore, the mentioned 

turbulent SGS models with the underlined Boussinesq eddy viscosity assumption was 

used, and more sophisticated and improved turbulence modeling can be considered in the 

future. For the time being, result obtained from this run agrees reasonably well with 

published data. 

 

5.7 - Channel Flow with Air Bubbles 
  

One of the main components of this work was to trace the migration and transport of 

air bubbles. Little published work can be found with data that is usable to validate this 

part of the work. The only literature that has reasonable applicable value for this work is 

the publication by Zarrati [130]. Zarrati have performed some experimental work to 

obtain air bubble concentrations at different locations along an open channel. He also 

performed a 2-dimensional numerical simulation of a channel flow with air bubbles. The 

experiment data was used for validation of his numerical model. His experimental data 

was also used for the validation of bubble transport model in this work.  

In Zarrati’s experiment, a channel with a downward slope of 14.5º was used. The 

channel was 0.15 m wide with a water depth of approximately 0.0225 meters. A sluice 

gate was located at the upstream end of the channel with an opening of 0.03 meters. 

Through direct email communication with the author, the channel wall roughness, ks, was 

reported to be 1.25 × 10-4 m. At 1.5 m downstream of the sluice gate, air was injected into 

the channel with an air diffuser which is located at the bottom of the channel. Data was 

collected from a reference plane downstream of the air diffuser, and every 0.1 m apart 

until 0.6 m downstream of the reference plane. The average velocity was reported to be 

4.3 m/s. In Zarrati’s numerical simulation, the velocity profile at the inlet of the channel 
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was prescribed based on the power law, with the turbulent boundary layer thickness of 

approximately 10% of the flow depth. The k-ε turbulent closure model was employed in 

his simulation. The size of air bubbles injected was not reported in the experiment data, 

however was mentioned in his numerical simulations to be of diameter greater than 2 mm 

and less than 2 mm, corresponding to terminal velocities of 19 cm/s and 12 cm/s, 

respectively.  

This particular simulation was done using the classical Smagorinsky model with 

calibrated Cs value of 0.8. The reason for this choice is that supercritical flow is a 

difficult problem to simulate with the dynamic subgrid scale model. The scale of the 

problem in addition to the high Reynolds number of the problem suggested the use of 

extremely huge number of grid points, which is currently not feasible. A single node 

processor would not permit the calculation to be carried out in a reasonable amount of 

time. Choosing the classical Smagorinsky model would not require such refined 

resolution, with the expense of using a crude turbulence model. The calibration involves 

matching the Smagorinsky parameter, Cs to the correct hydrodynamics.    

For comparison, Zarrati’s experimental data was used at the inflow section of the 

channel. Interpolation was done to obtain the values of air concentration for each cell 

centered node. Table 5-2 shows the data obtained from Zarrati’s experiment as well as 

the interpolated values of air bubble concentration. In Table 5-2, “Cell #” column denotes 

the computational cell number starting from the bottom of the channel, “zc” represents 

the elevation at the center of a cell and “conc” represent the concentration at the initial 

section. The data without cell numbers are data sets from Zarrati’s experiment while data 

with cell numbers are linearly interpolated air bubble concentrations. Interpolation was 

done as needed, assuming that the distribution of air concentration varies linearly 

between the two known corresponding experimental data. In Zarrati’s computational 

work, 20 vertical grids were chosen, while 100 horizontal grids were used. The same ∆z 

is chosen in this work. 

 104



 

 

 

 

 

Table 5-2: Air bubble concentration used in the verification simulation with values 

interpolated from Zarrati’s experiment [130].  

 

Cell # zc (cm) Conc  Cell # zc (cm) Conc 
1 0.056 7.916  10 1.069 7.645 
2 0.169 8.647    1.100 6.800 
3 0.281 9.378  11 1.181 5.608 
  0.300 9.500  12 1.294 3.958 
4 0.394 10.109    1.400 2.400 
  0.500 10.800  13 1.406 2.678 
5 0.506 10.888  14 1.519 2.065 
6 0.619 11.750  15 1.631 1.747 
  0.700 12.400  16 1.744 1.429 
7 0.731 12.103  17 1.856 1.112 
8 0.844 11.753  18 1.969 0.794 
  0.900 11.500  19 2.081 0.477 
9 0.956 10.178  20 2.194 0.159 
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Since the experiment involved a sluice gate which causes transition, the upstream 

condition (sluice gate) was not included the domain. Instead the inlet boundary condition 

was set to have an average flow rate of 0.0145 m3/s and a fixed depth of 2.25 cm, the 

normal depth used by the author. The channel was 15 cm wide and 60 cm long, with a 

slope of 14.5o. At the bottom of the channel, the quadratic drag wall function was used to 

avoid the near wall high velocity gradients. At the outlet of the channel, an open 

boundary for the flow and a Neumann boundary condition for the free surface were used. 

The domain size was 0.6 m × 0.15 m × 0.023 m. The domain was discretized into 100 × 

25 × 20 number of cells in the x, y and z direction, respectively, while the temporal step 

size was chosen to be ∆t=1×10-4 sec. The temporal step satisfied the CFL stability 

condition. An a priori evaluation of the Von Neumann criteria (equation (2.15.2)) was not 

possible as mentioned earlier, in section 2.15. However, after several iterations the spatial 

and temporal step chosen produced stable runs and is used throughout the entire 

simulation.  

The inflow velocity profile was specified to be a logarithmic profile obtained from 

the log law relationship (equation (2.13.1)) with uτ = 0.564 m/s. Initial conditions follow 

the same inflow logarithmic velocity profile everywhere in the domain to avoid excessive 

shock associated with a cold start simulation.  

Before the air bubbles were introduced, it was crucial that the hydrodynamics of the 

problem is simulated correctly. In some sense, the convection from the nonlinear terms 

would naturally have strong influence in the distribution of the air bubbles. Making sure 

that the velocity profile and depth agrees with open channel flow theory was a good 

check to ensure that the correct physics are captured. This was also used to ensure that 

the implementation of the bottom wall shear using the quadratic drag law relationship 

(equation (2.13.7)) behaves accordingly. The velocity profile can be compared to the log 

law profile while the depth can be compared to the average depth from manning’s 

equation.    
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Figure 5-13: Streamwise velocity profile comparison with analytic solution. 
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The averaged velocity profile from the simulation is obtained and compared with the 

log law velocity profile in Figure 5-13. Here, u-(x=0.15 m), u-(x=0.3 m) and u-(x=0.45 m) 

are averaged velocity profiles obtained at x=0.15 m, x=0.3 m and x=0.45 m of the 

channel length measured, from the upstream boundary. Normal depth found using the 

manning’s equation was approximately 2.3 cm. The numerical result calculated a depth of 

approximately 2.36 cm.  

 In his paper, Zarrati presented the experimental data along with a plot of the 

concentration contours obtained from his numerical model. Comparison can be made 

with both the available information. General trend of the air bubble concentration can be 

compared quantitatively, while a more detailed comparison can be done using the 

provided experimental data. From the experimental measurements the author mentioned 

that concentrations greater than 5% were mainly of large air bubble, with diameter 

greater than 2 mm. Concentration which are below 5% shows most air bubbles with 

diameter less than 2 mm. This observation proved to be useful information in the later 

part of this validation case study. The initial setup of the simulation is shown in Figure 

5-14. 

The simulation was started with the assumption that the flow in the domain is already 

at steady state and thus, the changes in free surface elevation will be small as reported in 

Zarrati’s paper. A small wave was initially generated within the domain and soon passed 

the outflow boundary. The shock was caused by the changes to the flow condition, 

mainly due to the bottom boundary and the air bubble dynamics. Results were collected 

only after the shock had passed through the outflow boundary. The solution obtained 

from this simulation was compared to Zarrati’s experimental data. Numerical results were 

taken at the center of the channel, along the X-Z plane (parallel to the flow direction). It is 

important to state that two simulations were carried out, the first with air bubble diameter 

of 0.75 mm and the other with air bubble diameter of 0.72 mm, which corresponds to the 

terminal velocities of approximately 13.17 cm/s and 12.12 cm/s, respectively. 
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Figure 5-14 : Zarrati’s simulation – domain discretization (t=0 sec). 
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The distribution of the air bubbles concentration was observed to have little change 

after several thousand time steps (approximately 2,500). The primary interest and basis of 

comparison lies on the center of mass of the air bubble concentration. Since the bubble 

concentration profile does not vary much after approximately 2,500 time steps, further 

simulation was unnecessary. A typical concentration profile from the simulation is shown 

in Figure 5-15. Here the channel is plotted with respect to its depth at t=0.25 sec (2,500 

time steps).  

Theoretically speaking, if there is no dispersion of the air bubbles, the air bubble 

concentrations will be an angled line from the inflow plane to the surface, producing 

banded lines for the different concentrations. Due to dispersion, the air bubble diffused 

both vertically and horizontally resulting in a more disseminated pattern, noticeably in 

higher concentration regions. Similar behavior is also expected in this particular 

simulation, given that the Froude number was high (greater than 1), which encourages 

strong turbulent characteristics.  

Quantitatively the steady state bubble concentration profiles had similar traits as that 

of the experimental data and Zarrati’s 2-dimensional simulation results. Figure 5-16 

shows direct comparison of the experiment concentration with the two modeled 

concentration for air bubble diameter of 0.75 mm and 0.72 mm, at depths of 3 mm and 15 

mm away from the channel bed. 

Tabular form of the data is presented for detailed evaluation of the numerical model. 

Table 5-3 and Table 5-4 show the qualitative comparison of Zarrati’s experimental data 

and the numerical results for 0.75 mm diameter air bubbles, while Table 5-5 shows the 

percent difference between the two. The formula used to calculate the % differences is    

 
% M E

E

Conc ConcDiff
Conc

−
=

 (5.7.1) 

In equation (5.7.1), ConcM is the modeled concentration while ConcE is experimentally 

determined concentration. In evaluating the performance of the air bubble transport 

model, Table 5-5 can be used only as a preliminary comparison due to the fact that only a 

single diameter was simulated.  
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Figure 5-15: Sample numerical result of air concentration profile at steady state for 

bubble diameter of 0.75 mm. 
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Figure 5-16: Modeled concentration of different diameter sizes and experimental data 

from 3 mm and 15 mm above channel bed. 
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Table 5-3: Data from Zarrati’s experiment with water velocity 4.3 m/s, medium air input, 

and a flow depth of 2.25 cm. 

 

  Experimentally observed concentration(%) 
  Distance downstream (m) 

elev from  
bed (m) initial section 0.1 0.2 0.25 0.3 0.4 0.5 0.6 
0.017     6.9           
0.016       6.9         
0.015     6.4   5.1   3.3 3.1 
0.014 2.4 6.9             
0.013     6.5 5.9         
0.012         5 4.3 3.1 2.2 
0.011 6.8 7.9 6.2           
0.01       5         
0.009 11.5 7.8 5.4   4.3 3.7 2.4 1.8 
0.007 12.4 7.1             
0.006     4.6 3.7 3.4 2.5 1.4   
0.005 10.8 6             
0.003 9.5 5 3 2.2 1.9 1.5 0.7 0.7 

 

 

Table 5-4: Air bubble concentration from numerical model for 0.75 mm bubbles. 

 

  Modeled concentration(%) 
  Distance downstream (m) 

elev from  
bed (m) initial section 0.1 0.2 0.25 0.3 0.4 0.5 0.6 
0.017     6.35           
0.016       6.34         
0.015     6.75   5.7   3.4 2.54 
0.014 2.4 7.05             
0.013     6.76 5.99         
0.012         4.92 3.6 2.62 1.91 
0.011 6.8 8.3 6.39           
0.01       5.09         

0.009 11.5 8.4 5.73   3.88 2.69 1.9 1.35 
0.007 12.4 7.8             
0.006     4.26 3.36 2.7 1.8 1.24   
0.005 10.8 6.53             
0.003 9.5 4.39 2.28 1.75 1.38 0.9 0.61 0.424 
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Table 5-5: Percentage difference between numerical results and experiment data for air 

bubble concentration of 0.75 mm diameter. 

 
 
  Percentage difference (%) from experimental values 
  Distance downstream (m) 

elev from  
bed (m) initial section 0.1 0.2 0.25 0.3 0.4 0.5 0.6 
0.017     -7.97%           
0.016       -8.12%         
0.015     5.47%   11.76%   3.03% -18.06%
0.014 2.4 2.17%             
0.013     4.00% 1.53%         
0.012         -1.60% -16.28% -15.48% -13.18%
0.011 6.8 5.06% 3.06%           
0.01       1.80%         
0.009 11.5 7.69% 6.11%   -9.77% -27.30% -20.83% -25.00%
0.007 12.4 9.86%             
0.006     -7.39% -9.19% -20.59% -28.00% -11.43%   
0.005 10.8 8.83%             
0.003 9.5 -12.20% -24.00% -20.45% -27.37% -40.00% -12.86% -39.43%
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The maximum percentage difference from Table 5-5 was approximately 40% and was 

at 3 mm above the bed.  Further away from the bottom boundary, less percentage 

difference was observed. Referring back to Figure 5-15, the centre of mass of the air 

bubbles follows a pattern that spans to about 35 cm downstream, having an upward 

curving slope. Disregarding differences near the boundary, the agreement between the 

values of the modeled air concentration and experimental observation was reasonable 

within the first 30 cm from the initial section.  Within the 30 cm span, the largest 

percentage difference was about 20% of under prediction. Concentration after 30 cm 

downstream are predominantly low concentration regions as the center of mass of the air 

bubbles have risen up to the surface. The model did reasonably well in regions of high 

concentrations. As the concentration decreased, the differences became more significant. 

This also means that the error gets more and more pronounced away from the centre of 

mass of the air bubble concentration.  

In this simulation, only bubbles with size of 0.75 mm were modeled. The terminal 

velocity of the air bubble is determined to be approximately 13.17 cm/s. In Zarrati’s 

experimental data, the distributions of air bubble sizes were not reported. The only 

mentioned sizes were that used in his numerical simulation (larger than 2 mm, having a 

terminal velocity of 19 cm/s and smaller than 2 mm, having a terminal velocity of 12 

cm/s). In this respect, air bubbles of larger diameter will, in general have greater terminal 

velocity while smaller air bubbles will have smaller terminal velocities ( Figure 3-2 of the 

terminal velocity plot). Air bubbles in the experiment were generated via a diffuser and 

this might have created air bubbles of various sizes. Therefore, the smaller air bubbles 

will have a greater residence time and hence, could have contributed to the higher 

concentration near the bed in the experimental data. In addition the combination of the 

turbulence model and under resolved grids near the wall could be the other sources of 

error. Near to the wall, air bubble concentration is directly influenced by the turbulent 

eddy viscosities and the velocities vectors. Using a low grid resolution near the wall 

boundary will give poor prediction of the velocity at the first cell because the use of the 

wall function assumes linear velocity gradient from the wall to the first cell. 

Consequently the modeling of the eddy viscosities which also requires the use of velocity 

gradient near the wall will be impacted, hence introducing mixing errors.  
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In view of the fact that this simulation was done with the consideration of only one air 

bubble diameter, some deficiency is expected when compared to experiment values. In 

this case, the extreme differences occurred in places with small amounts of concentration, 

i.e. near the bottom boundary and away from the center of mass. As mentioned earlier, 

Zarrati had hinted in his paper that his experimental observations showed the same trend; 

hence the 12 cm/s terminal velocity was used for his simulation. 

To further highlight the point that different size air bubbles contributed to the large 

percentage differences, the results from the simulation of 0.72 mm diameter air bubble is 

tabulated. This simulation had the same configuration, but with a different size in the air 

bubble, giving a terminal velocity of approximately 12.12 cm/s. The focus of this 

simulation was merely to demonstrate that the small air bubbles reside near the bottom 

boundary for a longer time, which gives higher concentration further away. Reducing the 

size of air bubble had little impact on the hydrodynamics. However, it improved the 

prediction of the modeled concentrations at the bottom boundary, by almost 50% in some 

cases. Table 5-6 and Table 5-7 summarize the results. A significant improvement can be 

seen especially at a distance of 3 mm above the bottom boundary. 
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Table 5-6: Air bubble concentration from numerical model for 0.72 mm bubbles. 

 

  Modeled concentration (%) 
  Distance downstream (m) 

elev from  
bed (m) initial section 0.1 0.2 0.25 0.3 0.4 0.5 0.6 
0.017     6.27           
0.016       6.26         
0.015     6.67   5.66   3.52 2.71 
0.014 2.4 7.01             
0.013     6.7 5.96         
0.012         4.96 3.73 2.79 2.1 
0.011 6.8 8.24 6.37           
0.01       5.14         

0.009 11.5 8.34 5.76   4.01 2.88 2.1 1.54 
0.007 12.4 7.82             
0.006     4.43 3.56 2.91 2.02 1.44   
0.005 10.8 6.61             
0.003 9.5 4.66 2.57 2.01 1.62 1.1 0.77 0.56 

 

 

Table 5-7: Percentage difference between numerical results and experiment data for air 

bubble concentration of 0.72 mm diameter. 

 

  Percentage difference (%) from experimental values 
  Distance downstream (m) 

elev from  
bed (m) initial section 0.1 0.2 0.25 0.3 0.4 0.5 0.6 
0.017     -9.13%           
0.016       -9.28%         
0.015     4.22%   10.98%   6.67% -12.58%
0.014 2.4 1.59%             
0.013     3.08% 1.02%         
0.012         -0.80% -13.26% -10.00% -4.55%
0.011 6.8 4.30% 2.74%           
0.01       2.80%         

0.009 11.5 6.92% 6.67%   -6.74% -22.16% -12.50% -14.44%
0.007 12.4 10.14%             
0.006     -3.70% -3.78% -14.41% -19.20% 2.86%   
0.005 10.8 10.17%             
0.003 9.5 -6.80% -14.33% -8.64% -14.74% -26.67% 10.00% -20.00%
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Figure 5-17 and Figure 5-18 show the propagation of the air bubbles through the 

domain. As earlier mentioned, the small wave can be seen moving at the surface near the 

leading edge of the bubble concentration. Figure 5-17 and Figure 5-18 shows the 

numerical results for air bubble concentration at t=0.06 sec and at t=0.3 sec. Figure 5-18 

can be used to compare with Figure 5-15 to visually see the difference in the 

concentration contours of the two different sizes of air bubbles. 

The smaller diameter air bubbles resulted in higher concentration at 3 mm above the 

channel bed throughout the length of the channel compared to that of the larger air 

bubbles. The overall percentage difference is also improved. Zarrati did mentioned in his 

paper that the smaller size air bubbles tend to occupy the region where concentration is 

lower than 5%, and these are precisely the regions where the percentage differences were 

large in the initial simulation with 0.75 mm diameter air bubbles. Without accurate size 

distributions of the air bubbles, the model prediction can only be an estimate. 
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Figure 5-17: Sample numerical result of air concentration profile at t=0.06 sec for bubble 

diameter of 0.72 mm. 
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Figure 5-18: Sample numerical result of air concentration profile at steady state for 

bubble diameter of 0.72 mm. 
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The results obtained from the 0.75 mm and 0.72 mm diameter air bubbles simulation 

suggested that the model was, to an extent, sensitive to the terminal rise velocity or air 

bubble diameter. A simple sensitivity analysis was carried out. The sensitivity analysis 

was based on Zarrati’s reported terminal velocities in his numerical model. In Zarrati’s 

numerical model a terminal velocity of 12 cm/s was used for the smaller air bubbles, 

while 19 cm/s for the larger size air bubbles. The same reference velocities are used for 

relative comparison. The reference velocities were varied by ±10 percent (V∞ ± 0.1V∞) 

and plotted on the same graph for comparison. The details were summarized in Table 5-8. 

The corresponding differences between the bubble diameter sizes are approximately 

5.1% (for V∞ + 0.1V∞) and -5.6% (for V∞ - 0.1V∞) from that of the reference velocity of 

12 cm/s. For the reference velocity of 19 cm/s, the percentage differences of the bubble 

diameter sizes are approximately 6% (for V∞ + 0.1V∞) and -6% (for V∞ - 0.1V∞).  Plots of 

concentration contours were shown in Figure 5-19 and Figure 5-20. A common trend was 

observed in these figures. At the inflow boundary, there was no different in air bubbles 

concentration profile, as the boundary information was specified. The air bubble 

concentrations became increasingly sensitive to the terminal velocities as the distance 

downstream from the inflow boundary increased. Air bubbles generally have the natural 

tendency to rise while being transported downstream. Therefore, the terminal velocity 

becomes a vital part of the air bubble transport model. A greater terminal velocity gives 

faster rise, while smaller terminal velocity is associated with slower rise for the air bubble 

concentration and this relationship holds true all the way through the length of the 

channel in the simulations. Strictly speaking, the differences in concentration of the 

reference velocity, V∞  and that of the V∞ ± 0.1V∞ (in Figure 5-19 and Figure 5-20) 

gradually becomes greater downstream because the difference of concentration 

downstream is a function of cumulative differences from upstream of the channel, due to 

the different terminal rise velocity. 
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Table 5-8: Details of simulations for sensitivity analysis 

 

 12 cm/s reference velocity 19 cm/s reference velocity 
 terminal velocity bubble diameter terminal velocity bubble diameter 
(V∞ + 0.1V∞) 13.2 cm/s 0.7515 mm 20.9 cm/s 0.975 mm 

V∞ 12 cm/s 0.715 mm 19 cm/s 0.92 mm 
(V∞ - 0.1V∞) 10.8 cm/s 0.675 mm 17.1 cm/s 0.865 mm 

 

 122



Sensitivity of the concentration profiles attributable to the different terminal velocities 

will therefore be more visible further away from the inflow boundary. Although not 

obvious earlier in the discussion, the percentage differences in concentration shown in 

Table 5-5 and Table 5-7 exemplify this effect, in addition to other causes mentioned. This 

further reinforces the fact that the numerical model is sensitive to the terminal velocity 

and requires reasonable data regarding bubble diameter (which corresponds to the correct 

terminal velocity) for accurate modeling of the air bubbles migration in the domain.     

Reasonable agreement of air bubble concentration was obtained near the center of 

mass of the air bubble path. However, away from the center of mass, there were 

justifiable differences in the modeled concentration and the experimental data. A simple 

test of varying the bubble diameter resulted in improved prediction of air bubble 

concentration near the bed and elsewhere, especially in regions of lower concentrations. 

This can be explained by the lower terminal velocities of the bubbles which make it 

possible for greater amount of air bubble to be transported downstream.  
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Figure 5-19: Sensitivity analysis for terminal velocity 12 cm/s. 
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Figure 5-20: Sensitivity analysis for terminal velocity 19 cm/s.  
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5.8 - Plunging Jet Simulation with and without Air Bubbles 
 

The hydrodynamics and bubble transport model have been verified and showed 

reasonable agreement to analytical and experimental results. The next step is to simulate 

a hypothetical plunging jet scenario.  

The simplest case to setup was to assume that the tank is a sloped channel with walls 

on the sides. The initial still water depth should be relatively deep compared to the 

potentially generated waves. Literature regarding solitary wave ([14], [20], [70]) 

suggested that the ratio of amplitude of a wave to the still water depth, Awave/D0, should 

be less than 0.4 to avoid erroneous wave propagation. Therefore, care was taken to ensure 

that the waves generated near the plunging section would not be a major source of error, 

which could lead to unphysical results or instability. Grid sizes were chosen having 

industry application in mind. Fine grids could be selected for academic purposes due to 

the availability of super computers, but for industry applications this may not be so. Thus, 

a relatively coarse grid was utilized. The dynamic SGS model was used for this 

simulation.  

The hypothetical domain was chosen to have a dimension of 4 m × 1.4 m × 1.6 m in 

the x, y and z direction, respectively, which is divided into 40 × 16 × 25 computational 

cells. A slope of So=0.001 was specified, and standard fluid properties of water used. The 

overfall had a width dimension of 0.7 m, and was situated 1 m above the water surface. 

The flowrate of 0.21 m3/s was specified for the overfall. At the bottom of the channel, the 

quadratic drag law wall function (equation (2.13.7)) was used.  

To check for mass conservation, a test was conducted where the channel was 

converted into a tank by applying the no slip boundary to all four sides. For this 

simulation, air bubbles were not modeled. The test showed accumulation of fluid, as 

expected, with the total volume after 10 sec is approximately 11.07 m3, while the 

calculated volume from the flow rate was 11.06 m3. This shows that mass was conserved 

using the plunging jet as the inflow boundary. Results obtained from this run were shown 

in Figure 5-21 through Figure 5-26. The computational grid and initial jet location (high 

magnitude of download velocity) is shown in Figure 5-21.  
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The rise of the water level can be seen alongside with the velocity vectors after 10 sec 

in Figure 5-22 through Figure 5-26. Since the depth in the tank increased over time, the 

location of the jet changed accordingly. The shift in the jet location causes the stagnation 

point at the bottom of the tank to shift at different times of the simulation, however only 

results at t=10 sec will be shown here. Figure 5-22 and Figure 5-23 shows the vertical 

velocity color contours at different cross sections. The jet location can be identified by 

the strong downward velocities.  

In Figure 5-24, the dynamic pressure was observed to have peaked at the location of 

the stagnation point, at the bottom of the tank. The same behavior of the dynamic 

pressure was also reported by Liao et al. [81] in his numerical simulation of a plunge 

pool from a high arch dam. Velocity vectors shown in Figure 5-26 illustrates the plunging 

jet location, where the dense and high velocity vectors are located at the core, and is used 

to trace the overfall jet. To assist in locating the jet, the surface plot of the strong 

downward velocity vectors (-1 m/s) was also shown in the same figure.   

As a minimum, stability criteria based on the CFL condition shown in equation 

(2.15.1) must be satisfied. The temporal step should also be small enough such that the 

Von Neumann criteria, equation (2.15.2), is not violated as discussed in section 2.15. In 

essence, a conservative estimate for the CFL condition is to use the magnitude of the 

impinging velocity, |ujet| for all three coordinate directions and ensure that the chosen 

time step is appropriate. For this simulation, a time step of ∆t=1 × 10-3 was chosen. 

Several trial runs with the chosen time step found that the stability conditions (equation 

(2.15.1) and (2.15.2)) were satisfied.    
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Figure 5-21: Computational grid and overfall jet location for tank simulation. 
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Figure 5-22: Vertical velocity color contours at bottom, mid section and near surface 

planes. 
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Figure 5-23: Vertical velocity color contours and velocity vectors for X-Z plane cross 

section at center of tank and X-Y plane cross section at bottom of tank. 
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Figure 5-24: Dynamic pressure color contours and velocity vectors at bottom, mid section 

and near surface planes for t=10 sec. 
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Figure 5-25: Dynamic pressure color contours and velocity vectors for X-Z plane cross 

section at center of tank and X-Y plane cross section at bottom of tank. 
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Figure 5-26: Velocity vectors and surface plot of -1 m/s vertical velocity in the domain of 

the tank at t=10 sec. 
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For cases with outflow boundary, a fixed depth downstream boundary was assumed 

such that the depth would be greater than the critical and normal depth and would be 

maintained throughout the whole simulation period. A second run was carried out for a 

channel with a fixed depth boundary for the outflow. This simulation was done with the 

intention of establishing a steady state condition where the global flux transfer is zero. In 

the industry, limited volume in pump stations often times requires that the global mass 

transfer be small if not zero, and will be controlled by pump operations. Therefore, the 

intention on this simulation was precisely that, but instead of pumps, the outflow 

boundary was set as a control. The size of air bubbles chosen for this simulation was 1 

mm in diameter. The flow, geometry, spatial and temporal time step sizes was kept the 

same as that in the previous simulation. At the start of the simulation, the air bubble 

concentration generated by the plunging jet was about 5.22% and the jet impingement 

made a 77° angle with the surface of the water. The simulation was carried out for 100 

sec. Changes in depth was minute throughout the simulation.  

In Figure 5-27, the velocity vectors and air bubble concentration at the center of the 

channel was shown. The recirculation zone described in Hadjerioua et al. [63] can also be 

identified. The recirculation zone can be thought of as the energy dissipation region 

where the high momentum from the jet is dissipated in the form of rotating fluid. This 

zone can be distinguished by the velocity vectors being re-circulated back to the direction 

of the plunging jet. In addition, the recirculation of the flow back to the jet also brought 

along some air bubbles which loops back to the near vicinity of the jet.  
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Figure 5-27: X-Z plane channel center cross section plot of plunging jet simulation at 

t=100 sec. Cross section taken at center of channel. 
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Figure 5-28: Near surface bubble concentration for plunging jet simulation at t=100 sec. 
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Figure 5-29: Free surface fluctuations for plunging jet simulation at t=100 sec. 
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Figure 5-28 shows the air bubble concentration near the free surface. The free surface 

deviation cannot be clearly seen in this figure and therefore, Figure 5-29 is a magnified 

view of the free surface deviation from its mean. As discussed in Chapter 3, the rising air 

bubble will add momentum to the surrounding fluid. In regions of higher bubble 

concentrations, away from the jet, the free surface increases. This suggests that the source 

terms due to the air bubbles are affecting the hydrodynamics of the fluid. 

Maximum dynamic pressure occurs at the bottom bed around the stagnation point, 

similar to the tank simulation. It is interesting to note that the minimum pressure 

happened to be at the recirculating zone, closely situated to the stagnation point, and was 

more apparent near the wall boundaries. This behavior was first reported by Borghei [12] 

in his experiment for a circular vertical plunging jet. In experiments conducted by 

Borghei, the negative hydrodynamic pressure had more effect at the side walls due to the 

recirculation of the jet flow, and occurred near the vicinity of the jet core. The 

experimental observation agrees well with the result obtained from this simulation, as the 

flow recirculation seen in Figure 5-30 was associated with the large negative 

hydrodynamic pressures. The high dynamic pressure gradient between the two areas 

relates to a high rate of change of kinetic energy. This further implies the influence of 

turbulence. Figure 5-31 shows that near the recirculation zone negative eddy viscosities 

were predicted by the dynamic SGS model while the eddy diffusivity is greatest along the 

jet column. 

The surface plots of the air bubble concentrations are shown in Figure 5-32 through 

Figure 5-36. The greater air concentration resides near the plunging jet and as the 

distance from the jet increases, the concentration decreased progressively. Looking at the 

5% concentration, the quantitative distribution of the bubble concentration agrees well 

with experiment observations of the air bubble downward diffusion cone by Chanson 

[24], illustrated in Figure 5-37.  Instead of the two cones as illustrated in the figure, the 

overfall jet will form a rectangular like volume of high concentration. The magnified 

view of the diffusion cone is shown in Figure 5-38.  
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Figure 5-30: X-Z plane channel center cross section plot of pressure for plunging jet 

simulation at t=100 sec.  
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Figure 5-31: X-Z plane channel center cross section plot of eddy viscosity for plunging jet 

simulation at t=100 sec.  
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Figure 5-32: Modeled air bubble concentration of 5%. 
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Figure 5-33: Modeled air bubble concentration of 4%. 
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Figure 5-34: Modeled air bubble concentration of 3%. 
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Figure 5-35: Modeled air bubble concentration of 2%. 
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Figure 5-36: Modeled air bubble concentration of 1%. 

 145



 

 

 

 

jet 
air 

 
 

 

Figure 5-37: Chanson’s observation of the air bubble downward diffusion cone from a 

plunging jet. [24]  p.62. 
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Figure 5-38: Magnification of the modeled 5% air bubble concentration from Figure 5-32. 
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At the impact section of the jet, the air concentration was dragged down towards the 

stagnation point due to the momentum of the jet. Along the way, turbulent fluctuations 

dispersed the air bubble to the surrounding fluid volumes. At the stagnation point, the strong 

vertical velocity was converted into horizontal velocities bringing along some air bubbles in 

the horizontal directions. Since less vertical velocity was present after the jet impact section, 

the air bubbles had the opportunity to slowly rise to the surface. Therefore the bubble 

concentration dropped as the distance to the jet impact section increased. However, with the 

addition of a pump the physics and behavior of the hydrodynamics and air bubbles migration 

will differ. Air bubbles might not have the opportunity to rise to the surface before entering 

an operating pump.  
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CHAPTER 6  

CONCLUSIONS AND FUTURE WORK 

  

This research resulted in a Large Eddy Simulation finite volume model suited for use 

in industrial pump station modeling. The model was capable of handling free surface 

deformation and hydrodynamic pressure variations within a domain. In addition, two 

different turbulent models namely the classical Smagorinsky SGS model and the dynamic 

SGS model have been successfully implemented. The subgrid scale models enhanced the 

capability of the numerical code to simulate problems of different natures. 

Several verification simulations were presented for the hydrodynamics and turbulent 

models. Testing for the hydrodynamics includes laminar and turbulent flow cases with 

problems of different physics and boundary conditions. For laminar flow cases, the 

numerical results are compared with analytic solution, while turbulent flow cases were 

compared with published literature.   

In addition to the normal application of a Navier-Stokes solver, the proposed air 

bubble transport model was added to the code. Modeling of the air bubble dynamics 

involved two important considerations. The first being the influence of the air bubble 

towards the LES momentum equations and the second being the influence of the air 

bubble movement towards the scalar transport equation. A source term was added to the 

LES momentum equation in the vertical direction to consider the drag force exerted by 

the air bubbles on the fluid. The scalar transport equation was changed to consider the 

rise of the air bubble. The rise speed of the air bubble was added to the vertical 

hydrodynamic velocity to obtain an effective velocity for the air bubble transport. These 

modifications are general, simple and can be easily implemented to existing Navier-

Stokes solvers used in the industry. To verify the air bubble modeling, simulations were 

carried out to duplicate the experimental data provided in literature.    

Boundary conditions from an overfall plunging jet were added as part of the modeling 

for a pump station. This boundary consisted of the location, angle, magnitude of 

velocities and the amount of air bubble entering the domain. Upon knowing the drop 

height and the flow rate at the overfall, the location of the impinging section can be 
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calculated via particle dynamics. The angle of the impinging jet was calculated from 

empirical equation, and the angle was used to separate the horizontal and vertical velocity 

components. An empirical equation for air entrainment quantification was used.  

Simple modifications to the code could be made to change the location and sources of 

air bubbles in order to simulate other engineering problems. Below is a list summarizing 

the achievements of this work: 

1. Proposed and introduced the bubble transport model and implemented the model 

in a channel flow scenario. The air bubble transport model has been compared 

with experimental result from previous literature and reasonable agreements near 

the core of the air bubble concentration were obtained. The results obtained 

suggested excellent potential to extend its application to problems of a larger scale.  

2. Simulated a plunging jet section with air bubbles. The code was used to solve for 

a hypothetical scenario of a jet impact into a body of still water. Results showed 

the dynamics of both the fluid and bubbles in the channel setup. 

 

While this work is promising, it opens up a lot more opportunity for future research. 

Follow up work may include but are not limited to the following list: 

 

1. Experimental work to be conducted for further verification of the proposed model. 

As suggested earlier in the literature review, there is shortage of data on air 

bubble concentration movements and migration with the plunging jets. Although 

the movement of air bubbles may be different due to varying factors (i.e. 

geometry, jet impact angle, flow rate, etc.), it is very useful to design and conduct 

experiments of a simple scenario as a benchmark test case for numerical work. A 

good experimental setup should consist of a constant head channel or tank with an 

overfall jet inflow, flow visualization device and air bubble quantification. This 

experiment should be designed to collect data of the flow rate, drop height, 

tailwater depth, impact velocities and angle, statistics of bubble size distribution 

at jet impact section, bubble concentration at different cross sections of the 

channel and details of the flow pattern in the channel. The objective of this 

experiment will be to collect air bubble concentration data, flow pattern in a 
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simple setup as well as to determine the average diameter and concentration of air 

bubbles at the jet impact section.  

2. Another suggestion for future work is to experimentally determine a threshold 

concentration that could cause significant loss in pump efficiency. A clear 

allowable limit for volumetric air concentration is needed in order to investigate 

the effectiveness of any flow configurations or pump placements in a pumping 

station. Thus far, little information was found regarding the permissible limit of 

air bubble concentration. Knowing a maximum threshold value for air bubbles 

concentrations will supply a clear guideline for experimental and numerical pump 

station modeling to investigate and mitigate bubble interference with a pump.     

3. The addition of pump in the system to simulate the actual scenario of a pump 

station. Pumps can be added into the system by including sink terms for the fluid 

mass in the domain. For a simplified version of a pump station, a sink near the 

bottom of the pump station can be first modeled before proceeding to a 

submersible pump study.  

4. Inclusion of different groupings of bubble diameter sizes. Since one diameter is 

insufficient to provide enough detail for pump station modeling, therefore there is 

a need to model groups of air bubbles of different sizes.  The deficiencies 

encountered in section 5.7 clearly demonstrated that groups of air bubbles of 

different sizes maybe needed to produce satisfactory prediction of the 

concentrations. At a minimum, three different diameters of air bubbles were 

needed where two to represents each end of the spectrum (maximum and 

minimum) and one for the average diameter size. Having the three bubble 

diameter sizes will at the very least give a better approximation of the near wall 

concentration and provide the information on the effects of the disturbance causes 

by the larger air bubbles towards the flow domain.  

5. Improving simulation time and requirements with parallelization. One avenue 

worth investigating is the potential of parallel computing, suggested by Dr. Yost 

and Dr. McDonough. The Pressure Poisson Equation is known to be the 

bottleneck for serial computations. The preconditioned biconjugate gradient 

method was used in this study to obtain the solution for the Pressure Poisson 
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Equation. The preconditioned biconjugate gradient is not well constructed for 

parallelization. Therefore, other solvers which can be easily parallelized may be a 

better choice. The parallelization of the code will allow larger problems to be 

solved in less time and reduces the memory requirements, e.g., in automotive 

industry, work done by Bauer et al. [6]  with as much as 9 million cells.  

6. To enhance the feature of this code, clustering of the vertical grids is 

recommended, e.g., the use of the σ-coordinate system. In this work, the author 

found that uniform vertical grid distribution was not the most efficient way to 

solve problems pertaining to turbulence, especially when simulating shear 

bounded flows. In some sense, using uniform vertical grids removed some 

conceptual advantages offered by the LES formulation. Future work can be done 

to redistribute the vertical grid by clustering more grids near the wall boundaries. 

Redistributing the vertical grid helps improve computation time, as well as 

provide sufficient resolution to resolve turbulence near the walls without having 

to discretize the grids to a DNS scale resolution for the entire domain.  

7. In application of boundary conditions and turbulence modeling, the application of 

the log law of the wall greatly reduced the grid resolution needed, but came with 

the expense of some information being truncated from the physical boundary. 

Turbulent fluctuations near the boundary could not be accurately characterized by 

the log law of the wall. The use of nested grids seems to be a reasonable choice to 

overcome this problem. However, having nested grids in the system requires 

additional grids, which increases computational time. A relationship to establish 

the missing information from the truncation of the physical boundary is needed to 

correctly model the turbulence. Perhaps, an empirical relationship could be 

arrived at for the fluctuating components as well. In addition, at the free surface 

boundary, the behavior of turbulence differs from that of a typical grid. 

Turbulence at the free surface becomes anisotropic and thus requires more 

attention to the subgrid scale model formulation. This particular suggestion is not 

critical for macroscopic pump station simulation, however, it may help in future 

studies of near pump flow studies.   
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8. Simulation of a planar jet hydrodynamics. The planar jet was not simulated in this 

work. The simulation of the jet require consideration multiple deforming 

boundaries. At the present time, the code used in this work was unable to handle 

such phenomena.  
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APPENDIX A   
Transformation of the Navier-Stokes equations to generalized coordinate 

 

The governing Navier-Stokes momentum balance equations were transformed in this 

work. One of the reason for the transformation was that the Navier-Stokes equations can 

be solved in a uniformly spaced computational grid with unit volume. This feature will 

prove to be advantageous in terms of solving problem with complicated geometries. The 

basics of the transformation will be shown in this section.  

 

To begin the transformation, let ξ, η and ζ be the variables of the transformed equation. 

The three respective variables are variables of the generalized coordinate system and will 

be used throughout the discussion of this work. The goal of the transformation is to 

enable computation to be carried out in uniformly spaced computation grids, however, 

the physical grid may or may not be uniformly spaced. The transformation begins by first 

defining the relationship of the variables in the computational domain and the physical 

domain.  

( ) ( )
( ) (
( ) (

1 , , , ,

2 , , , ,

3 , , , ,
)
)

f x y z x y z

f x y z x y z

f x y z x y z

ξ ξ

η η

ζ ζ

= =

= =

= =

 

Likewise, the mapping from the computational domain to the physical domain is defined 

as 

( ) ( )
( ) ( )
( ) ( )

1 , , , ,

2 , , , ,

3 , , , ,

x g x

y g y

z g z

ξ η ζ ξ η ζ

ξ η ζ ξ η ζ

ξ η ζ ξ η ζ

= =

= =

= =

 

f(x,y,z) and g(x,y,z) are linear mapping functions from the physical domain to 

computational domain and vice versa. Making use of the relationship shown above, the 

partial derivatives were obtained by applying the chain rule of differentiation [110]   

 
x x x x

ξ η ζ
ξ η ζ

∂ ∂ ∂ ∂ ∂ ∂ ∂
= + +

∂ ∂ ∂ ∂ ∂ ∂ ∂
 (A.1) 
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y y y y

ξ η ζ
ξ η ζ

∂ ∂ ∂ ∂ ∂ ∂ ∂
= + +
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 (A.2) 

 
z z z z

ξ η ζ
ξ η ζ

∂ ∂ ∂ ∂ ∂ ∂ ∂
= + +

∂ ∂ ∂ ∂ ∂ ∂ ∂
 (A.3) 

For simplicity, a more convenient set of notations were used and summarized as follows 

 

, ,

, ,

, ,

x y

x y

x y

x y z

x y z

x y z

z

z

z

ξ ξ ξξ ξ ξ

η η ηη η

ζ ζ ζ

η

ζ ζ ζ

∂ ∂ ∂
= = =

∂ ∂ ∂
∂ ∂ ∂

= = =
∂ ∂ ∂
∂ ∂ ∂

= = =
∂ ∂ ∂

 (A.4) 

These terms are also known as the grid metric terms. 

Rewriting the equations, 

 

x x x

y y y

z z z

x

y

z

ξ η ζ
ξ η ζ

ξ η ζ
ξ η ζ

ξ η ζ
ξ η ζ

∂ ∂ ∂
= + +

∂ ∂ ∂ ∂
∂ ∂ ∂

= + +
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

= + +
∂ ∂ ∂ ∂

∂

∂  (A.5) 

These equations are tidier and easily understood. This form of partial derivatives will be 

the basis of our transformation. In matrix form, the equation is hence 

 
x x x

y y y

z z z

x

y

z

ξξ η ζ
ξ η ζ

η
ξ η ζ

ζ

⎡ ⎤∂⎡ ⎤∂
⎢ ⎥⎢ ⎥ ∂∂ ⎢ ⎥⎢ ⎥ ⎡ ⎤
⎢ ⎥∂ ∂⎢ ⎥ ⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥∂∂⎢ ⎥
⎢ ⎥⎢ ⎥ ∂∂⎣ ⎦ ⎣ ⎦

 (A.6) 

Similarly, the reverse of the relationship can be written as 

 

xx y z
x y z

y
x y z

z

ξ ξ ξ

η η η

ζ ζ ζ

ξ

η

ζ

⎡ ⎤⎡ ⎤∂ ⎡ ⎤∂
⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂⎢ ⎥⎢ ⎥ ⎡ ⎤ ⎢ ⎥
⎢ ⎥⎢ ⎥∂ ∂⎢ ⎥ ⎢ ⎥=⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥∂ ∂⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥⎢ ⎥∂ ∂⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦⎣ ⎦⎣ ⎦

 (A.7) 
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Notice that the transformation is the exact inverse of each other. This means that we can 

simply perform a simple matrix multiplication such as 

 
x x x x x x

y y y y y y

z z z z z z

xx y z
x y z

y
x y z

z

ξ ξ ξ

η η η

ζ ζ ζ

ξξ η ζ ξ η ζ
ξ η ζ ξ η ζ

η
ξ η ζ ξ η ζ

ζ

⎡ ⎤∂ ⎡ ⎤∂
⎢ ⎥ ⎢ ⎥∂ ∂⎢ ⎥ ⎡ ⎤ ⎢ ⎥⎡ ⎤ ⎡ ⎤
⎢ ⎥∂ ∂⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥∂ ∂⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎢ ⎥∂ ∂⎢ ⎥
⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦⎣ ⎦

 (A.8) 

By definition, the left hand side of the equation will become simply the derivatives of the 

physical domain.  

 
x x x

y y y

z z z

x xx y z
x y z

y y
x y z

z z

ξ ξ ξ

η η η

ζ ζ ζ

ξ η ζ
ξ η ζ
ξ η ζ

⎡ ⎤ ⎡ ⎤∂ ∂
⎢ ⎥ ⎢ ⎥∂ ∂⎡ ⎤⎢ ⎥ ⎢ ⎥⎡ ⎤

∂ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥= ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥∂ ∂⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦∂ ∂⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥∂ ∂⎣ ⎦ ⎣ ⎦

∂  (A.9) 

From the matrices above, the grid metric matrices have to be the inverse of each other for 

the equivalency to hold.  

 

1

x x x

y y y

z z z

x y z
x y z
x y z

ξ ξ ξ

η η η

ζ ζ ζ

ξ η ζ
ξ η ζ
ξ η ζ

−
⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

 (A.10) 

Knowing that, the relationship of the physical domain and the computational domain can 

be established. Performing the inverse operation, the determinant of the right hand side 

matrix, also known as inverse of Jacobian transformation can now be defined as J.  

 

1

x x x

y y y

z z z

x y z y z y z y z y z y z y z
x y z J x z x z x z x z x z x z
x y z x y x y x y x y x y x y

ξ ξ ξ η ζ ζ η ζ ξ ξ ζ ξ η η ξ

η η η ζ η η ζ ξ ζ ζ ξ η ξ ξ η

ζ ζ ζ η ζ ζ η ζ ξ ξ ζ ξ η η ξ

ξ η ζ
ξ η ζ
ξ η ζ

−
⎡ ⎤ ⎡ − − −⎡ ⎤
⎢ ⎥ ⎢⎢ ⎥ = = − −⎢ ⎥ ⎢⎢ ⎥
⎢ ⎥ ⎢⎢ ⎥ − − −⎣ ⎦ ⎣ ⎦ ⎣

⎤
⎥− ⎥
⎥⎦

)

 (A.11) 

where, 

( ) ( ) (
1J

x y z y z x y z y z x y z y zξ η ζ ζ η η ξ ζ ζ ξ ζ ξ η η ξ

=
− − − + −

 

Substituting this relationship in the Navier-Stokes equation, will give the transformation 

required of the Cartesian to a generalized coordinate system.  
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Since the grid was transformed, the velocity vectors need to also be altered in such a way 

that the computational velocity will be at the location and direction desired for direct 

calculations. The velocities transformation is similar and more straightforward. The chain 

rule was employed to obtain 

 

x x xu u u u

y yv u u u

z zw u u u

ξ η ζ

ξ η ζ

ξ η ζ

y

z

ξ η ζ

ξ η ζ

ξ η ζ

∂ ∂ ∂
= + +

∂ ∂ ∂
∂ ∂ ∂

= + +
∂ ∂ ∂
∂ ∂ ∂

= + +
∂ ∂ ∂

 (A.12) 

Likewise,  

 
x y

x y

x y

u u v w

u u v w

u u v w

ξ

η

ζ

z

z

z

ξ ξ ξ

η η η

ζ ζ ζ

= + +

= + +

= + +

 (A.13) 

For completeness, the matrix form of equation (A.12) and equation (A.13) are  

 
u x x x u
v y y y u
w z z z u

ξ η ζ ξ

ξ η ζ η

ξ η ζ ζ

⎡ ⎤ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ = ⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦

 (A.14) 

and, 

 
x y z

x y z

x y z

u u
u
u w

ξ

η

ζ

ξ ξ ξ
η η η
ζ ζ ζ

⎡ ⎤⎡ ⎤

v
⎡ ⎤

⎢⎢ ⎥ ⎥ ⎢ ⎥= ⎢⎢ ⎥ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

 (A.15) 

This will complete the generalized coordinate transformation section. To obtain the 

transformed Navier-Stokes equations, substitution of terms derived in this section into the 

Navier-Stokes equations will produce the set of equation used for this work. However, 

the procedure to transform the Navier-Stokes momentum equations is very tedious and 

time consuming. As mentioned earlier, it will be very helpful to gain some mathematical 

background and ideas from literature to successfully perform the transformation .  
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Transformation of the continuity equation to generalized coordinate 

 

A simple example of transformation for the continuity equation will be shown. In 

Cartesian coordinate system, the equation for continuity was previously shown in 

equation (2.1.1) and is rewritten here 

0u v w
x y z

∂ ∂ ∂
+ + =

∂ ∂ ∂
 

Applying the relationship shown in equation (A.1) through equation (A.3), results in 

x x x y y y z z
u v w u u u v v v w w w
x y z zξ η ζ ξ η ζ ξ η ζ

ξ η ζ ξ η ζ ξ η ζ
⎛ ⎞ ⎛ ⎞ ⎛∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

+ + = + + + + + + + +⎜ ⎟ ⎜ ⎟ ⎜∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝

⎞
⎟
⎠

Rearranging the right hand side of the equations yields

 x y z x y z x y
u v w u v w u v w

zξ ξ ξ η η η ζ ζ ζ
ξ ξ ξ η η η ζ ζ ζ

⎛ ⎞ ⎛ ⎞ ⎛∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + + + + + +⎜ ⎟ ⎜ ⎟ ⎜∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝

⎞
⎟
⎠

 

Further manipulation yields 

( ) ( ) ( )x y z x y z x y zu v w u v w u v wξ ξ ξ η η η ζ ζ ζ
ξ η ζ
∂ ∂ ∂

= + + + + + + + +
∂ ∂ ∂

 

In using the relationship shown in equation (A.13), the conversion of the Cartesian 

velocities to contravariant velocities will produce the final form of the transformed 

continuity equation and is shown as 

0
u u uu v w

x y z
ξ η ζ

ξ η ζ
∂ ∂ ∂∂ ∂ ∂

+ + = + + =
∂ ∂ ∂ ∂ ∂ ∂

 

For further details of the derivation and coordinate transformation, readers are referred to 

Anderson et al.’s book entitled Computational Fluid Mechanics and Heat Transfer [2].   

 

The calculation of the each mapping term can be simplified by choosing ∆ξ= ∆η=∆ζ= 1, 

hence, when evaluating the flux terms, one can simply use any preferred spatial 

discretization scheme to evaluate xξ, xη, xζ, yξ, yη yζ, zξ, zη and zζ. For completeness, a 

simple example, using a typical finite difference discretization, with a central 

differencing scheme to obtain xξ is  

 
( )

1, , 1, , 1, , 1, ,

2 2
j k l j k l j k l j k lx x x x

xξ ξ
+ − + −− −

= =
∆
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The same operation can be done to complete the mapping. To calculate the grid metric 

terms, xξ, xη, xζ, yξ, yη yζ, zξ, zη and zζ  will be first calculated and used to evaluate J, the 

Jacobian of transformation. The matrix form previously shown as (A.11) will be used to 

obtain the grid metrics.  

 

Central differencing at a cell face and the free surface equation 

 

Before arriving at the computational form for the free surface and the pressure equation, 

the equation involves central differencing the gradient terms at a cell face. This procedure 

is not very much different than the normal central difference formulation. The first order 

central difference formula for a variable f(x) in a cell is  

 ( ) ( ) ( )
2

f x f x h f x h
x

∂ + −
=

∂
−

 (A.16) 

A typical central differencing scheme assumes that all variables are arranged the same 

way in all cells in the domain. Therefore, the procedure to centrally discretize the first 

order gradient terms is straightforward. In this work, since the vectors are located at the 

cell faces while the scalar variables are located at the center of a cell, the discretization 

takes on an additional step. For simplicity, an example was shown on the discretization of 

the free surface term.  

From the free surface section, the equation 

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( )

( ) ( )( )( )

21 1 1 1 1
, 1/ 2, 1/ 2, , 1/ 2 , 1/ 2

, 1/ 2, , 1/ 2, , , 1/ 2, , 1/ 2,
1

1/ 2

1/ 2, ,

1

1

n n n n n
j k j k j k j k j k

nl
n n n n n

j k j k l j k l j k l j k
l

nn n

j k l

n

h t H D H D H D H D

h t u z u z u z u z

u t F s tH z

u t F
t

ξ ξ η η

ξ ξ η η

ξ ξ ξ ξ

ξ ξ

θ

θ

θ

θ

+ + + + +

+ − + −

+ − + −
=

+

+

− ∆ − + − =

⎡ ⎤− − ∆ ∆ − ∆ + ∆ − ∆⎢ ⎥⎣ ⎦

− ∆ − − − ∆ ∆ −

− ∆ −
∆

∑

( ) ( )( )( )
( ) ( )( )( )
( ) ( )( )( )

1/ 2

1/ 2, ,

1/ 21

, 1/ 2,

1/ 2

, 1/ 2,

1

1

1

n n
nl

j k k

nn nl

j k l

nn n

j k l

s tH z

u t F s tH z

u t F s tH z

ξ ξ

η η η η

η η η η

θ

θ

θ

+

−

+
=

+

+

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥− − ∆ ∆ +⎢ ⎥
⎢ ⎥
⎢ ⎥− ∆ − − − ∆ ∆ −
⎢ ⎥
⎢ ⎥
⎢ ⎥− ∆ − − − ∆ ∆
⎢ ⎥⎣ ⎦

∑

l
−
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contains the gradients H that has to be centrally discretized. For discussion sake, only one 

term,  will be discretized. Previously, after the coordinate transformation, 

the term becomes 

( )1

1/ 2,

n

j
H Dξ

+

+ k

  ( )1

1/ 2,
1/ 2,

n

j k
j k

h hH D g l l Dξ ξξ ξηξ η
+

+
+

⎡ ⎤⎛ ⎞∂ ∂
= +⎢ ⎜ ⎟∂ ∂⎝ ⎠⎣ ⎦

⎥  (A.17) 

 

 ( ) 1/ 2, 1/ 2,1
1/ 2,1/ 2,

j k j kn
jj k

h h
H D g l l Dξ ξξ ξηξ η

+ ++
++

∂ ∂⎛ ⎞
= +⎜ ∂ ∂⎝ ⎠

k⎟  (A.18) 

 

1/ 2, 1, ,

1/ 2, 1/ 2, 1/ 2 1/ 2, 1/ 2

2

2

j k j k j k

j k j k j k

h h h

h h h
ξ

η

+ +

+ + + +

∂ −
=

∂
∂ −

=
∂

−

 (A.19) 

The first term is a straightforward central discretization because the result of the 

discretization is a function of h at cell center. The second term produces h at a cell face.  

To treat the inconsistent location of h, simple interpolation will be performed, utilizing 

the neighboring cell center values to produce the same effect as that at the cell face values.  

 1, 1 , 1
1/ 2, 1/ 2 2

j k j k
j k

h h
h + +

+ +
++

=  (A.20) 

Similarly, 

 1, 1 , 1
1/ 2, 1/ 2 2

j k j k
j k

h h
h + −

+ +
−+

=  (A.21) 

Substituting the equation back, one obtains 

 
1, 1 , 1 1, 1 , 1

1/ 2, 1, 1 , 1 1, 1 , 12 2
2 4

j k j k j k j k

j k j k j k j k j k

h h h h
h h h

η

+ + + + − −

+ + +

+ +
−∂ +

= =
∂

h h+ + − −− −
 (A.22) 

Resulting in 

 ( ) 1, , 1, 1 , 1 1, 1 , 11
1/ 2,1/ 2, 2 4

j k j k j k j k j k j kn
jj k

h h h h h h
H D g l l Dξ ξξ ξη

+ + + + + − −+
++

− + − −⎛ ⎞
= +⎜ ⎟

⎝ ⎠
k  (A.23) 
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The discretization is complete for the ( )1

1/ 2,

n

j
H Dξ

+

+ k
term and all the variable h is now 

consistently located in cell center. Similar discretization was carried out for all remaining 

terms to produce the simplified form of the free surface equation.  

The simple 2-dimensional cells in Figure A-1 will illustrates the discretization process 

that involves the cell center points 

j+1, k+1 j+1, k j+1, k-1 

j, k+1 j, k j, k-1 

 
Figure A-1: Discretization stencil and interpolation to obtain cell face values 

 

To obtain the gradient at the cell face shown in the figure as the diamond, the 

discretization in the η direction requires the h values at the location indicated by the 

triangles. The nearest cell centered value to the triangles will be interpolated to obtain the 

values of the triangles. Once the values of the triangles are known, the typical central 

differencing takes place to obtain the value at the diamonds.  
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APPENDIX B  
 

As a summary of the computer code used, the pseudo code which outlines the structure of 

the code is as follows:  

• Acquire input data and initial conditions, boundary type, u,v,w,h, etc. 

• Read in physical coordinate points and connectivity 

• Calculate grid metric terms from physical coordinate 

• Transform Cartesian u, v, w  to computational coordinate uξ ,uη,uζ  

• Determine the location that the free overfall at the surface of the domain 

• Calculate/obtain initial bubble concentration, φn  

• input initial condition, ui
n, hn 

for t = 1 to nt 

• calculate predictor velocities, ui
n+1/2 from old time level ui

n, si
n, hn and pn  

• calculate source terms, si
n+1/2, Fi

n+1/2, si
n+1/2 from ui

n+1/2  

• calculate approximate velocities ui*n+1, from Fi
n+1/2, si

n+1/2 and ui
n, p = 0 

• approximate free surface elevation, hn+1 from hn, ui
n, ui*n+1  

• calculate approximate velocities u**n+1 for pressure calculation, from pn, ui
n, 

Fi
n+1/2 and si

n+1/2 

• solve for dynamic pressures, pn+1, knowing u**n+1 

• calculate new velocities for n+1 time level, ui
n+1 

• Calculate source term for scalar transport equation, sφ
n from ui

n, φn  

• calculate predictor scalar transport, φn+1/2  

• Calculate source term for scalar transport equation, sφ
n+1 from ui

n+1/2, φn+1/2 

• Compute corrector step to find φn+1 

• if t = tplot   

 write output - uξ , uη , uζ,  p, h, φ, νt, etc.   

            end if 

• update  ui
n=ui

n+1, hn=hn+1, pn=pn+1, φn=φn+1  
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return 

end loop 

 

• post process the output 

 

The pseudo code is a crude summary of the simulation steps. Implementation of each step 

requires more further details and should be done with care.  
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